Ultraviolet, Visible and Infrared Simultaneous Spectrophotometric Assay of Pyrimethamine and Sulphadoxine in Dicomponent Antimalarial Drugs

التحليل المضوائي الطيفي الآني بالأشعة فوق البنفسجية والمرئية وتحت الحمراء للبايروميثامين والسلفادوكسين في أدوية مضادات الملاريا ثنائية التكوين

By

Rehab Abd Elgadir Ibrahim Abd El Elwhab

B.Sc. Science Laboratory - Chemistry
Post Graduate Higher Diploma in Chemistry

A thesis submitted for requirement of Master Degree of Science (M.Sc) in Chemistry

Supervisor:

Dr. Mohammed Elmukhtar Abd Elaziz
Dedication

This effort is dedicated to

My dear parents,

Lovely husband,

Brother, sisters and kids.

Deep appreciation for their moral support, aspiration and fortitude.

I hope this degree will make them prouder.
Acknowledgements

Thanks Allah, the most gracious, the most compassionate, for giving me strength and health to complete this work.

I’m indebted to Dr. Mohammed Emuktar Abd Alaziz, my supervisor, for assistances I received from him, both professionally and personally.

I must acknowledge Dr. Asma Ali Said, Dr. Omar Adum Gebla and austaz Mohammed Eisa for their assistance, helpful, suggestions and support to finish this work.

Also, I must acknowledge Mr Asim Elrashid, Amipharma laboratories, Khartoum North and Nadia Khatar, instrument lab, college of science, for their assistance.

Also, I must acknowledge all of them for their assistance.
Abstract

The development of new methods for the assay of active components in diconponent antimalarial drugs are of great interest to pharmaceutical analysis, especially in developing countries.

Pyrimethamine and sulphadoxine, in particular, are still of continued use in the chemotherapy treatment of malaria disease. The growing need to develop more simple, accurate and sensitive assay methods is obvious. In the present work pyrimethamine and sulphadoxine were spectrophotometrically determined not only in the visible but also in the ultraviolet and infrared regions of the electromagnetic spectrum, using the two simultaneous equations method.

Whereas the ultraviolet method was based on measurement of the maximum absorbance of pyrimethamine and sulphadoxine at 275 nm and 265 nm, the visible procedure was developed on the bases of their maximum absorbance of their cholaranilic complexes at 520 nm, 500 nm respectively. The Infrared method, however, was based on their characteristic absorbance, (i.e. $-\log_{10}$ transmittance) at 833 nm, 1319 nm respectively. In all the three developed simultaneous spectrophotometric assay methods of pyrimethamine and sulphadoxine, contents in
لا يوجد نص يمكن قراءته بشكل طبيعي من الصورة المقدمة.
Table of contents

Acknowledgment i
Abstract in English ii
Abstract in Arabic iii
Table of Content iv
List of Tables x
List of Figures xi

Chapter one: Introduction

1. Introduction 1
1.1 Radiation/Matter interaction 1
1.1.1 General properties of electromagnetic radiation 2
1.1.1.1 Wave properties of electromagnetic radiation 3
1.1.1.2 Particle properties of electromagnetic radiation 4
1.1.2 The electromagnetic spectrum 5
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.3 Spectrochemical methods</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3.1 Emission spectroscopy</td>
<td>8</td>
</tr>
<tr>
<td>1.1.3.2 Absorption of radiation</td>
<td>9</td>
</tr>
<tr>
<td>1.1.3.2.1 Absorption spectra</td>
<td>10</td>
</tr>
<tr>
<td>1.1.3.2.2 Atomic absorption</td>
<td>11</td>
</tr>
<tr>
<td>1.1.3.2.3 Molecular absorption</td>
<td>12</td>
</tr>
<tr>
<td>1.1.4 Electronic spectra and molecular structure</td>
<td>15</td>
</tr>
<tr>
<td>1.1.4.1 Absorption by isolated chromophors</td>
<td>16</td>
</tr>
<tr>
<td>1.1.4.2 Absorption by conjugated chromophores</td>
<td>19</td>
</tr>
<tr>
<td>1.1.4.3 Absorption by aromatic compounds</td>
<td>19</td>
</tr>
<tr>
<td>1.2 The objective</td>
<td>20</td>
</tr>
<tr>
<td>Chapter two: Litterateur reviews</td>
<td></td>
</tr>
<tr>
<td>2. Fansidar</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Pyrimethamine</td>
<td>21</td>
</tr>
<tr>
<td>2.1.1 Chemical structure</td>
<td>21</td>
</tr>
<tr>
<td>2.1.2 Physical properties</td>
<td>22</td>
</tr>
<tr>
<td>2.1.3 Structure activity</td>
<td>22</td>
</tr>
<tr>
<td>2.1.4 Uses</td>
<td>26</td>
</tr>
<tr>
<td>2.2 Sulphadoxine</td>
<td>27</td>
</tr>
<tr>
<td>2.2.1 Chemical structure</td>
<td>28</td>
</tr>
</tbody>
</table>
2.2.2 Physical properties
2.3 Analytical methods
2.3.1 Ultraviolet and visible spectroscopy
 2.3.1.1 Types of transition in organic molecules
 2.3.1.2 Choice of solvent
 2.3.1.3 Factors affecting absorption spectra
 2.3.1.3.1 Solvent effects
 2.3.1.3.2 Steric effects
 2.3.1.4 Qualitative identification absorption spectroscopy
 2.3.1.5 Quantitative absorption apectroscopy of ultraviolet
 2.3.1.6 Visual colorimetric methods
 2.3.1.7 Photometric methods
 2.3.1.8 Choice of wavelength
 2.3.1.9 Absorption's Law
 2.3.2 Visible spectroscopy
 2.3.3 Infrared spectroscopy
 2.3.3.1 Basic theory of IR
 2.3.3.2 Quantum treatment of vibrations
 2.3.3.3 Dipole moment
2.3.3.4 Fate of absorbed radiation .. 53
2.3.3.5 Selection rule for vibrational Transitions 59
2.3.3.6 Types of molecular vibrations 57
2.3.3.7 Qualitative analysis Infrared 61
2.3.3.7.1 Characteristic bond and group frequencies 61
2.3.3.7.2 Intensity spectroscopy 62
2.3.3.8 Quantitative analysis of infrared 63

Chapter three: Materials and Methods

3. Materials and Method .. 67
 3.1 Materials ... 67
 3.2 Instruments .. 67
 3.3 Glass ware ... 68
 3.4 Preparations of reagents and stock solutions 68
 3.5 Identification tests of pyrimethamine 70
 3.5.1 Ultraviolet spectrum of standard pyrimethamine 70
 3.5.2 Infrared spectrum of standard pyrimethamine 71
 3.5.3 Melting point of standard pyrimethamine 71
 3.6 Identification tests of sulfadoxine 71
 3.6.1 Ultraviolet spectrum of standard sulfadoxine 71
3.6.2 Infrared spectrum of standard sulfadoxine

3.6.3 Melting point of standard sulfadoxine

3.7 Determination of absorption maxima for chloranilic acid and its complexes with sulphadoxine and pyrimethamine

3.8 Constructions of calibration curves and their validation

3.9 Simultaneous assay of pyrimethamine and sulphadoxine in their dosage forms in the visible region

3.10 Simultaneous assay of pyrimethamine and sulphadoxine in their dosage forms in the ultra-violet region

3.11 FT-IR spectrophotometric analysis of pyrimethamine and sulphadoxine (quantitative analysis)

3.12 Simultaneous assay of pyrimethamine and sulphadoxine in their dosage forms in the infrared region

Chapter four: Results and discussion

4.1 Results

4.1.1 Results of ultraviolet spectrum of standard pyrimethamine

4.1.2 Results of ultraviolet spectrum of standard sulphadoxine

4.1.3 Results of the absorption maxima for chloranilic acid and its complexes with pyrimethamine and sulphadoxine

4.1.4 Results of visible spectrum of standard pyrimethamine
4. 1.5 Results of visible spectrum of standard sulphadoxine 80
4. 1.6 Results of simultaneous assay pyrimethamine and sulphadoxine in their dosage forms in the visible region 82
4. 1.7 Results of simultaneous assay of pyrimethamine and sulphadoxine in their dosage forms in the ultra-violet region 82
4. 1.8 Results of FT-IR (quantitative analysis) pyrimethamine 83
4. 1.9 Results of FT-IR (quantitative analysis) sulphadoxine 84
4. 1.10 Results of simultaneous assay of pyrimethamine and sulphadoxine in their dosage forms in the infrared region 85
4.2 Calculation of the concentrations of pyrimethamine and sulphadoxine in their dosage forms 85

4. 2.1 Calculations of the concentrations of pyrimethamine and sulphadoxine in the drug by using ultraviolet region 87
4.2.2 Calculations of the concentrations of pyrimethamine and sulphadoxine in the drug by using visible region 88
4.2.3 Calculations of the concentrations of pyrimethamine and sulphadoxine in the drug by using infrared region 90
4.3 Discussion 107

Conclusions and Suggestions for Further Work 117
Chapter Five: References

Table 1.1 The various regions of the electromagnetic spectrum 6
Table 1.2 The four major classes of spectrochemical methods 7
Table 1.3 Electronic absorption bands for representative chromophores 18
Table 2.1 Some solvents used in ultraviolet spectroscopy 33

List of Tables
Table 2.2 IR spectral region

Table 4.1 Absorbance of variable concentrations of pyrimethamine

 Solut solution at $\lambda_{\text{max}} = 275$nm

Table 4.2 Absorbance of variable concentrations of pyrimethamine

 Solut solution at $\lambda_{\text{max}} = 265$nm

Table 4.3 Absorbance of variable concentrations of sulfadoxine solution at $\lambda_{\text{max}} = 265$nm

Table 4.4 Absorbance of variable concentrations of sulfadoxine solution at $\lambda_{\text{max}} = 275$nm

Table 4.5 The absorption maxima for chloranilic acid and its complexes with sulphadoxine and pyrimethamine

Table 4.6 The absorbance of complex of pyrimethamine with chloranilic at $\lambda_{\text{max}} = 520$nm

Table 4.7 The absorbance of complex of pyrimethamine with chloranilic at $\lambda_{\text{max}} = 500$nm

Table 4.8 The absorbance of complex of sulfadoxine with chloranilic at
\[\lambda_{\text{max}} = 520\text{nm} \]

Table 4.9 The absorbance of complex of sulfadoxine with chloranilic at

\[\lambda_{\text{max}} = 500\text{nm} \]

Table 4.10 Simultaneous absorption of sulphadoxine and pyrimethamine in their dosage forms in the visible region

Table 4.11 Simultaneous absorption of sulphadoxine and pyrimethamine in their dosage forms in the ultra-violet region

Table 4.12 Absorbance of variable concentrations of pyrimethamine at \(\lambda_{\text{max}} = 833\text{nm} \) (IR quantitative)

Table 4.13 Absorbance of variable concentrations of sulphadoxine at

\[\lambda_{\text{max}} = 833\text{nm} \) (IR quantitative)

Table 4.14 Absorbance of variable concentrations of sulphadoxine at \(\lambda_{\text{max}} = 1319\text{nm} \) (IR quantitative)

Table 4.15 Simultaneous absorption of sulphadoxine and pyrimethamine in their dosage forms in the infrared region

Table 4.16 Comparative of the original concentrations of fansidar brand
and calculated concentrations

List of Figures

Figure 1.1 Wave motion of electromagnetic radiation 5
Figure 1.2 Energy level diagram illustrating energy changes associated with absorption of electromagnetic radiation 14
Figure 2.3 Bonding and anti-bonding molecular orbital 30
Figure 2.4 Types of transition in organic molecules 31
Figure 2.5 Energy level Diagram 55
Figure 4.1 UV spectrum standard pyrimethamine 91
Figure 4.2 IR spectrum of standard pyrimethamine 92
Figure 4.3 UV spectrum standard sulphadoxine 93
Figure 4.4 IR spectrum of standard sulphadoxine 94
Figure 4.5 IR spectrum of fansidar

Figure 4.6 Absorbance of variable concentrations of pyrimethamine solutions at λ_{max} 275nm

Figure 4.7 Absorbance of variable concentrations of pyrimethamine solutions at λ_{max} 265nm

Figure 4.8 Absorbance of variable concentrations of sulfadoxine solutions at λ_{max} =265nm

Figure 4.9 Absorbance of variable concentrations of sulfadoxine solutions at λ_{max} =275nm

Figure 4.10 The absorbance of complex of pyrimethamine with chloranilic acid at λ_{max}=520nm

Figure 4.11 The absorbance of complex of pyrimethamine
with chloranilic acid at $\lambda_{\text{max}} = 500\text{nm}$

Figure 4.12 The absorbance of complex of sulfadoxine with chloranilic acid at $\lambda_{\text{max}} = 520\text{nm}$

Figure 4.13 The absorbance of complex of sulfadoxine with chloranilic acid at $\lambda_{\text{max}} = 500\text{nm}$

Figure 4.14 Absorbance of variable concentrations of pyrimethamine at $\lambda_{\text{max}} = 833\text{nm (IRquantitative)}$

Figure 4.15 Absorbance of variable concentrations of sulphadoxine at $\lambda_{\text{max}} = 833\text{nm (IRquantitative)}$

Figure 4.16 Absorbance of variable concentrations of sulphadoxine at $\lambda_{\text{max}} = 1319\text{nm (IRquantitative)}$