List of Contents

Chapter One: Basic Concepts

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1-2</td>
<td>Interaction of Electromagnetic Wave with Matter.</td>
<td>2</td>
</tr>
<tr>
<td>1-3</td>
<td>The Nature of Light.</td>
<td>3</td>
</tr>
<tr>
<td>1-3-1</td>
<td>The Wave Nature of Light.</td>
<td>3</td>
</tr>
<tr>
<td>1-3-2</td>
<td>The Particle Nature of Light.</td>
<td>3</td>
</tr>
<tr>
<td>1-3-3</td>
<td>The Intensity of Light.</td>
<td>4</td>
</tr>
<tr>
<td>1-3-4</td>
<td>Microwave interaction.</td>
<td>4</td>
</tr>
<tr>
<td>1-3-5</td>
<td>Infrared light interaction.</td>
<td>4</td>
</tr>
<tr>
<td>1-3-6</td>
<td>Visible light interaction.</td>
<td>4</td>
</tr>
<tr>
<td>1-3-7</td>
<td>Ultraviolet light interaction.</td>
<td>5</td>
</tr>
<tr>
<td>1-3-8</td>
<td>X-Ray interaction.</td>
<td>5</td>
</tr>
<tr>
<td>1-4</td>
<td>Conservation Law.</td>
<td>5</td>
</tr>
<tr>
<td>1-5</td>
<td>The Laws of Reflection and Refraction.</td>
<td>6</td>
</tr>
<tr>
<td>1-6</td>
<td>Absorption Law.</td>
<td>7</td>
</tr>
<tr>
<td>1-6-1</td>
<td>Bear Lambert Law</td>
<td>7</td>
</tr>
<tr>
<td>1-7</td>
<td>Properties of an Optical Material.</td>
<td>8</td>
</tr>
<tr>
<td>1-7-1</td>
<td>The Refractive Index.</td>
<td>8</td>
</tr>
<tr>
<td>1-7-2</td>
<td>Reflectance.</td>
<td>8</td>
</tr>
<tr>
<td>1-7-3</td>
<td>Transmittance.</td>
<td>9</td>
</tr>
<tr>
<td>1-7-4</td>
<td>Absorbance.</td>
<td>9</td>
</tr>
<tr>
<td>1-8</td>
<td>Fundamentals of Lasers.</td>
<td>10</td>
</tr>
<tr>
<td>1-8-1</td>
<td>Monocromaticity.</td>
<td>10</td>
</tr>
<tr>
<td>1-8-2</td>
<td>Coherence.</td>
<td>11</td>
</tr>
<tr>
<td>1-8-3</td>
<td>Directionality.</td>
<td>11</td>
</tr>
<tr>
<td>1-8-4</td>
<td>Brightness.</td>
<td>11</td>
</tr>
<tr>
<td>1-9</td>
<td>Laser interaction with matter.</td>
<td>11</td>
</tr>
<tr>
<td>1-9-1</td>
<td>Nonlinear Effect.</td>
<td>12</td>
</tr>
<tr>
<td>1-9-2</td>
<td>Laser Damage.</td>
<td>12</td>
</tr>
<tr>
<td>1-10</td>
<td>Optical Components.</td>
<td>13</td>
</tr>
<tr>
<td>1-10-1</td>
<td>Optical Sources.</td>
<td>13</td>
</tr>
</tbody>
</table>
1-10-2 Optical Detectors.

1-10-3 Optical Filters

1-10-4 Optical Mirrors.

1-10-5 Optical Attenuators.

1-10-6 Optical Polarizers.

1-11 Aim of This Work

Chapter Two: Materials and Methods

2-1 Introduction.

2-2 The Materials.

2-2-1 The Zinc Oxide.

2-2-2 The Manganese Oxide.

2-2-3 The Potassium Bromide.

2-3 Equipments and Tools.

2-3-1 The Pressing Machine and its Die.

2-3-2 The UV-VIS Spectrophotometer.

2-3-3 The NIR Spectrophotometer.

2-3-4 The Laser Sources.

2-3-5 The Optical Detector.

2-3-6 The Digital Multimeter.
The Setup and Methodology.

2-4-1 Disks Fabrication.

2-4-2 Determination of the transmission spectrum of the fabricated disks

2-4-3 Determination of the absorption coefficients of the fabricated disks:

Chapter Three: Results and Discussion

3-1 Introduction.

3-2 Results of group 1.

3-2-1 Determination of the Absorption Coefficients Using Diode Laser (532nm)

3-2-2 Determination of the Absorption Coefficients Using HeNe Laser (632.8nm).

3-2-3 Determination of the Absorption Coefficients Using Omega Diode Laser (675nm).

3-2-4 Determination of the Absorption Coefficients Using Diode Laser (810nm).

3-2-5 Determination of the Absorption Coefficients Using Omega Diode Laser (820nm).

3-2-6 Determination of the Absorption Coefficients Using Diode Laser (940nm).

3-2-7 Determination of the Absorption Coefficients Using Nd-YAG Laser (1064nm).

3-2-8 Calculation of the Absorption Coefficient for group (1).

3-2-9 The transmittance of disks in group (1) for different lasers wavelengths

3-3 Results of group 2.

3-4 Results of group 3.

3-4-1 Determination of the Absorption Coefficients Using Diode Laser (532nm)
3-4-2 Determination of the Absorption Coefficients Using HeNe Laser (632.8nm).

3-4-3 Determination of the Absorption Coefficients Using Omega Diode Laser (675nm).

3-4-4 Determination of the Absorption Coefficients Using Diode Laser (810nm).

3-4-5 Determination of the Absorption Coefficients Using Omega Diode Laser (820nm).

3-4-6 Determination of the Absorption Coefficients Using Diode Laser (940nm).

3-4-7 Determination of the Absorption Coefficients Using Nd-YAG Laser (1064nm).

3-4-8 Calculation of the Absorption Coefficient for group (3).

3-2-9 The transmittance of disks in group (3) for different lasers wavelengths

3-5 Discussion

3-6 Conclusions.

3-7 Future Work.

References
الهدف من هذا البحث هو تصميم وتصنيع مرشحات وموهنتان بصرية لبعض الأطوال الموجية في المنطقتين تحت الحمراء والمرئية من الطيف الكهرومغناطيسي.

تم اختيار مادتي أكسيد الخارصين وأكسيد المنجنيز لتصنيع المرشحات والموهنتان في شكل أقراص وذلك بناءً على الفحوصات الطيفية الأولية التي أجريت لهذه المواد.

كما تم اختيار أقراص في شكل أقراص باستخدام طريقة التشكيل بالقواطع، حيث تم تصنيع ثلاثة أنواع من الأقراص، النوع الأول هو خليط من أكسيد الخارصين مع بروميد البوتاسيوم والنوع الثاني من أكسيد المنجنيز مع بروميد البوتاسيوم، حيث تم ضغط هذين النوعين في شكل أقراص مختلفة بتغير التركيز وال السمك معاً. أما النوع الثالث فهو عبارة عن خليط من أكسيد الخارصين وأكسيد المنجنيز وبروميد البوتاسيوم، حيث تم ضغط هذه النوع بتغير السمك.

بناءً على الفحوصات التي أجريت، تم تصميم ثلاثة أنواع من الأقراص من البلاستيك، النوع الأول كان خليط من أكسيد الخارصين مع بروميد البوتاسيوم والنوع الثاني هو خليط من أكسيد المنجنيز مع بروميد البوتاسيوم، حيث تم ضغط هذين النوعين في شكل أقراص مختلفة بتغير التركيز والسمك معاً. أما النوع الثالث فهو عبارة عن خليط من أكسيد الخارصين وأكسيد المنجنيز وبروميد البوتاسيوم، حيث تم ضغط هذه النوع بتغير السمك.

خليط من البلاستيك، النوع الأول كان خليط من أكسيد الخارصين مع بروميد البوتاسيوم والنوع الثاني هو خليط من أكسيد المنجنيز مع بروميد البوتاسيوم، حيث تم ضغط هذين النوعين في شكل أقراص مختلفة بتغير التركيز والسمك معاً. أما النوع الثالث فهو عبارة عن خليط من أكسيد الخارصين وأكسيد المنجنيز وبروميد البوتاسيوم، حيث تم ضغط هذه النوع بتغير السمك.

بناءً على النتائج المتحصلة، تم إقتراح بعض الأعمال المستقبلية.
Abstract

In this work, the main objective was to design and fabricate different disks to act as optical filters and attenuators for wavelengths in the Visible (VIS) and Infrared Regions (IR) of the electromagnetic spectrum.

Zinc Oxide (ZnO) and Manganese Oxide (MnO$_2$) were selected to fabricate the disks based on the spectrometric investigations of the disks in the middle and near IR regions. The disks were fabricated by compression molding method that produces three groups of disks. The first group includes zinc oxide with the potassium bromide (KBr) and the second group includes manganese oxide with the potassium bromide, those two groups were produced with different thickness and different concentration. The third group includes zinc oxide and manganese oxide with potassium bromide that produces different disks by changing the thickness.

Different types of lasers with (532, 632.8, 675, 810, 820, 940 and 1064nm) wavelengths were used in this study, as light sources. Photodetector and Digital multimeter were used to record the incident and transmitted intensities. Graphs were drawn from the results and the absorption coefficients were calculated for all groups. For the disks of group (1), the high value of transmitted intensity was for 820nm, where up to 77% of incident intensity was transmitted. Which means those disks can be used as filters in this wavelength. And the low value of transmitted intensity was for 532nm and 632.8nm, where just 0.2% and (0.4 to 1.9) % of the incident intensity was transmitted, respectively. Those disks of group (1) can be used as attenuators in these wavelengths. For the disks of group (2), no result, were obtained for the transmitted intensity. For the disks of group (3), the high value of transmitted intensity was for 1064nm, where up to 70% of incident intensity was transmitted. It means that those disks of group (3) can be used as filters in this wavelength. And the low value of transmitted intensity was for 675nm, where just 2% of the incident intensity was transmitted. It means that those disks of group (3) can be used as attenuators in this wavelength.
From the obtained results some future works were suggested.

Acknowledgment

I sincerely thank Allah, the most Gracious, and most Merciful for enabling me to complete my M.Sc. successfully.
I would like to express my sincere thanks, gratitude and deep appreciation to my supervisor Prof. Nafie Abd Al-Latief Al-Muslet for his efforts, time and helpful supervision that contributed much to successful completion of my research.
I wish to extend my sincere thanks, gratitude and deep appreciation to my family, friends and colleagues at the Department of Physics, Sudan University of Science and Technology, for their moral support and encouragement throughout the duration of my research.
Dedication

I dedicate this research to my family, with whom all things are possible.