TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Table of contents</td>
<td>iii</td>
</tr>
<tr>
<td>Last of Table</td>
<td>v</td>
</tr>
<tr>
<td>Last of figures</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Abstract (in Arabic)</td>
<td>vii</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION1

1.1. Overview ...1
1.2 Studies on Electronic and Nuclear Stopping Power2
1.2.1. Studies on Electronic Stopping Power4
1.2.2. Studies on Nuclear Stopping Power5
1.3. Studies on Electronic and Nuclear Range6
1.3.1. Studies on Electronic Range6
1.3.2. Studies on Nuclear Range ...6
1.4. Studies on SRIM Program ..8
1.5. The scope of the Study ..9

CHAPTER TWO: MATHEMITICAL BACKGROUND10

2.1. Electronic and Nuclear Stopping Power and range Equations10
2.1.2. Bethe-Block equation……10
2.1.3. The Bethe-Bloch Stopping Power Formula is commonly expressed a……14
2.1.4. Electronic Stopping Power……..15
2.1.5. Nuclear Stopping……17
2.1.6. Electronic and Nuclear Range……18
2.2. The SRIM Program………..21
2.2.1. Description of Program or Function ………………………………………21
2.2.2. Program Features……22
2.2.3 TRIM………24
2.2.4 Basic Principles of SRIM………25

CHAPTER THREE: SIMULATION METHODS……………………………………………………………………………………………………27
3.1 Simulation of the Stopping Power of Ions in Matter…………………………………………………………………………………………27
3.2 Simulation of the Range of Ions in Matter……………………………………………………………………………………………………28

CHAPTER FOUR: RESULTS AND DISCUSSION…………………………………………………………………………………………………31
4.1 Results and Discussion………32
4.2 Conclusion ………47

REFERENCES……48
LIST OF TABLES

Table 4.1: Stopping power of H ion in concrete……………………………………31

Table 4.2 Total stopping power of H ion in concrete and compounds…………..36

Table 4.3 Range of concrete and compounds………………………………………40
LIST OF FIGURES

Figure 1.1: Typical ratio between nuclear and electronic stopping power.5

Figure 1.2: Shows SRIM Setup Window ..23

Figure 1.3: Shows TRIM Setup Window ...24

Figure 4.1: electronic /unclear stopping power of concrete34

Figure 4.2: Total/elect/nuclear stopping power of H ion in concrete34

Figure 4.3: Total stopping power of H ion in concrete36

Figure 4.4: Total stopping power for concrete and compound39

Figure 4.5: Total range for concrete and compound42

Figure 4.6: Total range of concrete ..43

Figure 4.7: Total range of compound ..43