

Sudan University of Science and Technology

College of Graduate Studies

New Direction in Derivative Free Optimization

 اتجاه جديد في الامثلية خالية المشتقة

A Thesis Submitted in Fulfillment of the Requirements for

the Degree of Ph.D in Mathematics

By

Ahmed Mohamed Nageeb Alwasela ahmed

Supervisor

Dr.Mohsin Hassan Abdalla Hashim

2023

i

Dedications

To My Great Father, Mother, Brothers and Sister.

ii

Acknowledgements

I would like to express deepest gratitude to my supervisor

Dr. Mohsin Hassan Abdalla Hashim of University of Khartoum for

his full support, expert guidance, understanding and

encouragement throughout my study and research. A special

thanks is extended to Sudan University of Science &Technology

for giving me this chance for higher studies. Lastly my heart is full

of thanks to my brothers and sister who helped in preparing this

project and all dear friends for their help.

A special thanks is extended to D:Salwa Harfi Wadie he

advised me to direct me to the right path and supported me

academically and spare me any information whenever I needed

help at any time in the search were supportive of me .

iii

Abstract

 In this thesis, we study a derivative-free trust-region algorithm for

large-scale unconstrained optimization, using symmetric-rank1 (SR1) to

update the Hessian at every iteration. The centeral finite-difference

iterations are used to approximate the gradient of the function. The

iterative solution method and truncated Newton method were used to

solve the trust-region sub-problem. Its performance is tested on some

problems and compared the solutions found by truncated Newton method

and iterative solution method.

iv

 الخلاصة

انثقت خانيت انًشتقت نلأيثهيت غيز - في هذِ الاطزوحت قًُا بذراست خىارسييت يُطقت

تى . نتحذيث هيسياٌ في كم تكزار (SR1)انًقيذة عهي َطاق واسع وباستخذاو انزتبت

طزيقت انحم انتكزاري .استخذاو تكزاراث انفزق انًُتهي انًزكشي نتقزيب اَحذار انذانت

تى اختبار ادائها . انثقت- وطزيقت َيىتٍ انًقطىعت تى استخذايهًا نحم انًسأنت انجشئيت نًُطقت

عهي بعض انًسائم ويقارَت انحهىل انتي وجذث بىاسطت طزيقت َيىتٍ انًقطىعت وطزيقت

 .انحم انتكزاري

v

The Contents

Subject Page

Dedication i

Acknowledgements ii

Abstract iii

Abstract ” Arabic” iv

The Contents v

Chapter 1

Introduction

Section (1.1): Introduction 1

Section (1.2): Statement of the problem 2

Section (1.3): Objectives 2

Section (1.4): Methodology 2

Section (1.5): Thesis Layout 3

Chapter 2

Fundamentals of Unconstrained Optimization

Section (2.1): Introduction 4

Section (2.2): What is a solution 4

Section (2.3): Overview of Algorithms 8

Section (2.4): Line Search Methods 10

Section (2.5): Step Length 11

Section (2.6): Convexity 16

Section (2.7): Derivatives and Convexity 17

Section (2.8): Taylor Series 19

vi

Section (2.9): Rates of Convergence 22

Chapter 3

Trust-Region Methods

Section (3.1): Introduction 24

Section (3.2): Outline of the Trust-Region Approach 26

Section (3.3): Iterative Solution of the Sub-Problem 28

Section (3.4): Truncated Newton Method 33

Chapter 4

Quasi-Newton Methods

Section (4.1): Introduction 36

Section (4.2) : The BFGS Method 36

Section (4.3) : The SR1 Method 40

Chapter 5

The Main Proposal and MATLAB Computational

Section (5.1): Available Methods for Derivative Free Optimization 44

Section (5.2): Finite-Difference Derivative Estimates 44

Section (5.3): Derivative-Free Trust-Region Method for Solving

Large-Scale Optimization Problems Using Truncated Newton

Method and Iterative Method

48

Section (5.4): Numerical results: 54

Conclusion 59

Appendix 60

References 67

1

Chapter 1
1.1 Introduction:

 Many industrial and engineering applications need to solve optimization

problems in which the derivatives of the objective function are unavailable.

They try to avoid unnecessary evaluations in the objective function. The

absences of computable derivatives prohibit the use of Taylor models

largely used in differentiable problems. Moreover, in general, the

optimization without derivatives is not easy, since we attempt to obtain a

minimum point with less information [5].Derivative free optimization

(DFO) methods are designed for solving nonlinear optimization without

constraints where the derivative of the objective function are not available.

We consider formally the problem

min
𝑥∈𝑅𝑛

𝑓(𝑥)

Where 𝑓is a smooth nonlinear objective function from 𝑅𝑛 into R and is

bounded below. We assume that the gradient ∇𝑓(𝑥) and the Hessian

∇2𝑓(𝑥) can not be computed for any 𝑥. There is a high demand from

practitioners for such methods because this kind of problems occur

relatively frequently in the industry. In applications either the evaluation of

the objective function 𝑓(𝑥) is very difficult or expensive, or the derivatives

of 𝒇are not available. The last situation occurs when the computation of

𝒇(𝒙) at a given point 𝒙 results from some physical, chemical or

econometrical experiment or measurement, or is a result of large and

expensive computer simulation for which the source code is either not

available or un modifiable, which can be considered as a black box. In

practice the value of 𝑓(𝑥) is contaminated with noise or may be non-

smooth; but we don't consider these cases in this proposal.

There are mainly four classes of derivative-free optimization methods.

The first class of DFO algorithms are the direct search or pattern search
methods which are based on the exploration of the variable space by using
sample points from a predefined class geometric pattern and use either the
Melder-Need simplex algorithm or parallel direct search
algorithm.They do not exploit the inherit smoothness of the objective
function and require therefore a very large number of function evaluations.
They can be useful for non-smooth problems.

2

The second class of DFO's are line search methods which consists of a
sequence of 𝑛 + 1 one-dimensional searches introduced by Powell. The
combination of finite difference techniques coupled with quasi-Newton
method constitutes the third class of the algorithms. The last class of the
methods are based on modeling the objective function by multivariate
interpolation in combination with the trust-region techniques.These
methods were introduced by Winfried and by Powell. In this search we
consider this class of DFO algorithms [1,10,12].
1.2 Statement of the problem:

Designing a method to solve

min
𝑥∈𝑅𝑛

𝑓(𝑥)

Without the use of derivatives. it improves the way the derivatives are

approximated .

1.3 Objectives:

 Attaining efficiency in the solution of the problem.

 Enhancing trust region based methods.

 Studying the performance of the proposed method.

1.4 Methodology:

 Polynomial interpolation is used to approximate the function 𝑓(𝑥) at a

points {𝑦1, 𝑦2, 𝑦3 , …… , 𝑦𝑁} where 𝑁 =
 𝑛+1 (𝑛+2)

2
 .These points are

randomly selected using a proposed technique..

 trust region method is used in every iteration to produce an acceptable

decrease in the function value.

 Merging the search-based method for enhancement.

1.5 Thesis Layout:

 In Chapter 2 Fundamentals of Unconstrained Optimization. Line Search

and Trust Regions. Some well-known method are studied.

Chapter 3 Trust Region and solution of its sub-problem. Details of Quasi-

Newton's Methods in Chapter 4.

3

 Chapter 5 discusses the main algorithms and results. MATLAB

Computational of the Proposed Algorithm and The thesis Conclusion.

4

Chapter 2
Fundamentals of Unconstrained Optimization

2.1 Introduction:
In unconstrained optimization, we minimize an objective function that
depends on real variables, with no restrictions at all on the values of these
variables. The mathematical formulation is
 𝑚𝑖𝑛𝑥𝑓(𝑥) (2.1)
Where𝑥 ∈ 𝐼𝑅𝑛 is a real vector with 𝑛 ≥ 1 components and 𝑓: 𝐼𝑅𝑛 → 𝐼𝑅is a
smooth function.Usually, we lack a global perspective on the function𝑓 . All
we know are the values of 𝑓 and maybe some of its derivatives at a set of
points 𝑥0, 𝑥1, 𝑥2,fortunately, our algorithms get to choose these points,
and they try to do so in a way that identifies a solution reliably and without
using too much computer time or storage. Often, the information about
𝑓does not come cheaply, so we usually prefer algorithms that do not call for
this information unnecessarily[1,12].
2.2 What is a Solution?

Generally, we would be happiest if we found a global minimizer of 𝑓 , a
point where the function attains its least value. A formal definition is a
point 𝑥∗ is a global minimizer if 𝑓(𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥, where 𝑥 ranges over
all of 𝐼𝑅𝑛 (or at least over the domain of interest to the modeler). The
global minimizer can be difficult to find, because our knowledge of 𝑓 is
usually only local.Since our algorithm does not visit many points, we
usually do not have a good picture of the overall shape of 𝑓 , and we can
never be sure that the function does not take a sharp dip in some region
that has not been sampled by the algorithm. Most algorithms are able to
find only a local minimizer, which is a point that achieves the smallest value
of 𝑓 in its neighborhood. Formally, we say:
A point 𝑥∗ is a local minimizer if there is a neighborhood 𝛾 of 𝑥∗ such that
𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝛾 .(Recall that a neighborhood of 𝑥∗ is simply an
open set that contains 𝑥∗) A point that satisfies this definition is sometimes
called a weak local minimizer. This terminology distinguishes it from a
strict local minimizer, which is the outright winner in its neighborhood.
Formally, A point 𝑥∗ is a strict local minimizer (also called a strong local
minimizer) if there is a neighborhood 𝛾 of 𝑥∗ such that 𝑓 (𝑥∗) < 𝑓(𝑥) for all
𝑥 ∈ 𝛾 with 𝑥 ≠ 𝑥∗.For the constant function 𝑓 𝑥 = 2, every point 𝑥 is a
weak local minimizer, while the function 𝑓 𝑥 = (𝑥 − 2)4 has a strict local
minimizer at 𝑥 = 2.A slightly more exotic type of local minimizer is defined
as follows.
A point 𝑥∗is an isolated local minimizer if there is a neighborhood 𝛾 of 𝑥∗
such that 𝑥∗is the only local minimizer in 𝛾.Some strict local minimizers
are not isolated, as illustrated by the function

5

𝑓 𝑥 = 𝑥4 cos
1

𝑥
 + 2𝑥4 , 𝑓 0 = 0

Which is twice continuously differentiable and has a strict local minimizer
at 𝑥∗ = 0.
However, there are strict local minimizers at many nearby points 𝑥𝑗 , and

we can label these points so that 𝑥𝑗 → 0 as 𝑗 → ∞ .While strict local

minimizers are not always isolated, it is true that all isolated local
minimizers are strict.
Figure 2.1 illustrates a function with many local minimizers. It is usually
difficult to find the global minimizer for such functions, because algorithms
tend to be “trapped”at local minimizers. This example is by no means
pathological. In optimization problems associated with the determination
of molecular conformation, the potential function to be minimized may
have millions of local minima.

Figure 2.1 A difficult case for Global Minimization.
Sometimes we have additional “global” knowledge about f that may help in
identifying global minima. An important special case is that of convex
functions, for which every local minimizer is also a global minimizer.
Recognizing a Local Minimum:
From the definitions given above, it might seem that the only way to find
out whether a point 𝑥∗ is a local minimum is to examine all the points in its
immediate vicinity, to make sure that none of them has a smaller function
value. When the function 𝒇 is smooth, however, there are more efficient
and practical ways to identify local minima. In particular, if 𝒇 is twice
continuously differentiable, we may be able to tell that 𝑥∗ is a local
minimizer (and possibly a strict local minimizer) by examining just the
gradient 𝛻𝑓(𝑥∗) and the Hessian𝛻2𝑓(𝑥∗).The mathematical tool used to

6

study minimizers of smooth functions is Taylor’s theorem. Because this
theorem is central to our analysis throughout the search, we state it now.
Theorem 2.1 (Taylor’s Theorem).
Suppose that 𝑓: 𝐼𝑅𝑛 → 𝐼𝑅 is continuously differentiable and that 𝑝 ∈ 𝐼𝑅𝑛 .
Then we have that
 𝑓 𝑥 + 𝑝 = 𝑓(𝑥) + 𝛻 𝑓(𝑥 + 𝑡𝑝)𝑇 𝑝 (2.2)
For some 𝑡 ∈ (0, 1). Moreover, if 𝑓 is twice continuously differentiable, we
have that

 𝛻 𝑓 𝑥 + 𝑝 = 𝛻𝑓 𝑥 + 𝛻2 𝑓 𝑥 + 𝑡𝑝 𝑝𝑑𝑡
1

0
 (2.3)

and that

 𝑓 𝑥 + 𝑝 = 𝑓(𝑥) + 𝛻 𝑓 (𝑥)𝑇𝑝 +
1

2
𝑝𝑇𝛻2𝑓(𝑥 + 𝑡𝑝)𝑝, (2.4)

For some 𝑡 ∈ (0, 1).
Necessary conditions for optimality are derived by assuming that 𝑥∗ is a
local minimize and then proving facts about 𝛻𝑓(𝑥∗) and 𝛻2𝑓(𝑥∗).
Theorem 2.2 (First-Order Necessary Conditions):
If 𝑥∗ is a local minimizer and 𝑓 is continuously differentiable in an open
neighborhood of 𝑥∗, then 𝛻𝑓 𝑥∗ = 0 .
Proof.
 Suppose for contradiction that 𝛻𝑓 𝑥∗ ≠ 0. Define the vector 𝑝 = −𝛻𝑓 𝑥∗
and note that 𝑝𝑇𝛻𝑓 𝑥∗ = − 𝛻𝑓 𝑥∗ 2 < 0. Because 𝛻𝑓 is continuous
near 𝑥∗, there is ascalar 𝑇 > 0 such that
𝑝𝑇𝛻𝑓(𝑥∗ + 𝑡𝑝) < 0, for all 𝑡 ∈ [0, 𝑇].For any 𝑡 ∈ (0, 𝑇], we have by Taylor’s
theorem that
𝑓 𝑥∗ + 𝑡 𝑝 = 𝑓 𝑥∗ + 𝑡 𝑝𝑇𝛻𝑓(𝑥∗ + 𝑡𝑝), for some 𝑡 ∈ (0, 𝑡).
Therefore, 𝑓(𝑥∗ + 𝑡 𝑝) < 𝑓 𝑥∗ for all 𝑡 ∈ (0, 𝑇]. We have found a direction
leading away from 𝑥∗ along which 𝑓 decreases, so 𝑥∗ is not a local
minimizer, and we have acontradiction. We call 𝑥∗ a stationary point if
𝛻𝑓 𝑥∗ = 0. According to Theorem 2.2, any local minimizer must be a
stationary point.
For the next result we recall that a matrix 𝑩 is positive definite if 𝑝𝑇𝐵𝑝 > 0
for all 𝑝 ≠ 0, and positive semi definite if 𝑝𝑇𝐵𝑝 ≥ 0 for all 𝑝.
Theorem 2.3 (Second-Order Necessary Conditions):
If 𝑥∗is a local minimizer of 𝒇 and 𝛻2𝑓 exists and is continuous in an open
neighborhood of 𝑥∗, then 𝛻𝑓 𝑥∗ = 0 and 𝛻2𝑓(𝑥∗) is positive semi definite.
Proof.
We know from Theorem 2.2, that 𝛻𝑓 𝑥∗ = 0. For contradiction, assume
that 𝛻2𝑓(𝑥∗) is not positive semi definite. Then we can choose a vector 𝑝
such that 𝑝𝑇𝛻2𝑓(𝑥∗)𝑝 < 0, and because 𝛻2𝑓 is continuous near 𝑥∗, there
is a scalar 𝑇 > 0 such that 𝑝𝑇𝛻2𝑓(𝑥∗ + 𝑡𝑝)𝑝 < 0 for all 𝑡 ∈ [0, 𝑇].
By doing a Taylor series expansion around 𝑥∗, we have for all 𝑡 ∈ (0, 𝑇]
and some 𝑡 ∈ (0, 𝑡) that

7

𝑓(𝑥∗ + 𝑡 𝑝)= 𝑓 (𝑥∗) + 𝑡 𝑝𝑇𝛻𝑓 𝑥∗ +
1

2
𝑡 2𝑝𝑇𝛻2𝑓 𝑥∗ + 𝑡𝑝 𝑝 < 𝑓(𝑥∗).

As in Theorem 2.2, we have found a direction from 𝑥∗ along which 𝑓 is
decreasing, and so again, 𝑥∗ is not a local minimize.
Theorem 2.4 (Second-Order Sufficient Conditions):
Suppose that 𝛻2𝑓 is continuous in an open neighborhood of 𝑥∗ and that
𝛻𝑓 𝑥∗ = 0 and 𝛻2𝑓(𝑥∗) is positive definite. Then 𝑥∗ is a strict local
minimizer of 𝑓.
Theorem 2.5:
When 𝑓 is convex, any local minimize 𝑥∗ is a global minimizer of 𝑓. If in
addition 𝑓 is differentiable, then any stationary point 𝑥∗ is a global
minimizer of 𝑓 .
Proof.
Suppose that x. is a local but not a global minimizer. Then we can find a
point 𝑧 ∈ 𝐼𝑅𝑛 with 𝑓(𝑧) < 𝑓(𝑥∗). Consider the line segment that joins 𝑥∗ to
z, that is,
 𝑥 = 𝜆z + 1 − 𝜆 𝑥∗ ,for some 𝜆 ∈ (0, 1]. (2.5)

by the convexity property for 𝑓 , we have
 𝑓 𝑥 ≤ 𝜆𝑓 𝑧 + 1 − 𝜆 𝑓(𝑥∗) < 𝑓(𝑥∗) (2.6)
any neighborhood 𝑁 of 𝑥. contains a piece of the line segment (2.5), so
there will always be points 𝑥 ∈ 𝑁 at which (2.6) is satisfied. Hence, 𝑥∗ is
not a local minimizer.For the second part of the theorem, suppose that 𝑥∗ is
not a global minimizer and choose 𝑧 as above. Then, from convexity, we
have

𝛻𝑓 𝑥∗ 𝑇 𝑧 − 𝑥∗ =
𝑑

𝑑𝜆
𝑓 𝑥∗ + 𝜆 𝑧 − 𝑥∗ 𝜆=0

lim
𝜆↓0

𝑓 𝑥∗ + 𝜆 𝑧 − 𝑥∗ − 𝑓 𝑥∗

𝜆
≤ lim

𝜆↓0

𝜆𝑓 𝑧 + (1 − 𝜆)𝑓 𝑥∗ − 𝑓 𝑥∗

𝜆

𝑓 𝑧 − 𝑓(𝑥∗) < 0.
Therefore, 𝛻𝑓(𝑥∗) ≠ 0, and so 𝑥∗ is not a stationary point.
Nonsmooth problems:
This search focuses on smooth functions, by which we generally mean
functions whose second derivatives exist and are continuous. We note,
however, that there are interesting problems in which the functions
involved may be nonsmooth and even discontinuous. It is not possible in
general to identify a minimizer of a general discontinuous function. If,
however, the function consists of a few smooth pieces, with discontinuities
between the pieces, it may be possible to find the minimizer by minimizing
each smooth piece individually. If the function is continuous everywhere
but non-differentiable at certain points, as in Figure 2.2, we can identify a
solution by examing the subgradient or generalized gradient, which are
generalizations of the concept of gradient to the nonsmooth case[1,12].

8

Figure 2.2 Nonsmooth function with minimum at a kink.

Here, we mention only that the minimization of a function such as the one
illustrated in Figure 2.2(which contains a jump discontinuity in the first
derivative 𝑓 ′ (𝑥) at the minimum) is difficult because the behavior of 𝑓 is
not predictable near the point of nonsmoothness. That is, we cannot be
sure that information about 𝑓 obtained at one point can be used to infer
anything about 𝑓 at neighboring points, because points of
nondifferentiability may intervene. However, minimization of certain
special nondifferentiable functions, such as
 𝑓 𝑥 = 𝑟(𝑥) 1 , 𝑓 𝑥 = 𝑟(𝑥) ∞ (2.7)
(where𝑟(𝑥) is a vector function),
2.3 Overview of Algorithms:
All algorithms for unconstrained minimization require the user to supply a
starting point, which we usually denote by 𝑥0. The user with knowledge
about the application and the data set may be in a good position to choose
𝑥0 to be a reasonable estimate of the solution. Otherwise, the starting point
must be chosen by the algorithm, either by a systematic approach or in
some arbitrary manner.
Beginning at 𝑥0, optimization algorithms generate a sequence of iterates
{𝑥𝑘}𝑘=0

∞
that terminate when either no more progress can be made or when

it seems that a solutionpoint has been approximated with sufficient
accuracy. In deciding how to move from one iterate 𝑥𝑘 to the next, the
algorithms use information about the function 𝑓 at 𝑥𝑘 , and possibly also
information from earlier iterates 𝑥0, 𝑥1, . . . , 𝑥𝑘−1. They use this information
to find a new iterate 𝑥𝑘+1 with a lower function value than 𝑥𝑘 . (There exist
nonmonotone algorithms that do not insist on a decrease in 𝑓 at every step,
but even these algorithms require 𝑓 to be decreased after some prescribed
number 𝑚 of iterations, that is, 𝑓(𝑥𝑘) < 𝑓 (𝑥𝑘−𝑚).

9

There are two fundamental strategies for moving from the current point 𝑥𝑘
to a new iterate 𝑥𝑘+1 . Most of the algorithms described in this search follow
one of these approaches.
Two Strategies: Line Search and Trust Region:
In the line search strategy, the algorithm chooses a direction 𝑝𝑘 and
searches along this direction from the current iterate 𝑥𝑘 for a new iterate
with a lower function value. The distance to move along 𝑝𝑘 can be found by
approximately solving the following one dimensional minimization
problem to find a step length 𝛼:
 𝑚𝑖𝑛𝛼>0𝑓(𝑥𝑘 + 𝛼𝑝𝑘) (2.8)
By solving (2.8) exactly, we would derive the maximum benefit from the
direction 𝑝𝑘 , but an exact minimization may be expensive and is usually
unnecessary. Instead, the line search algorithm generates a limited number
of trial step lengths until it finds one that loosely approximates the
minimum of (2.8). At the new point, a new search direction and step length
are computed, and the process is repeated.
In the second algorithmic strategy, known as trust region, the information
gathered about 𝑓 is used to construct a model function 𝑚𝑘 whose behavior
near the current point 𝑥𝑘 is similar to that of the actual objective function .
Because the model 𝑚𝑘may not be agood approximation of 𝑓 when 𝑥 is far
from 𝑥𝑘 , we restrict the search for a minimizer of 𝑚𝑘 to some region
around 𝑥𝑘 . In other words, we find the candidate step 𝑝 by approximately
solving the following subproblem:
 𝑚𝑘(𝑥𝑘 + 𝑝)𝑝

𝑚𝑖𝑛 , where 𝑥𝑘 + 𝑝 lies inside the trust region. (2.9)

If the candidate solution does not produce a sufficient decrease in 𝑓 , we
conclude that the trust region is too large, and we shrink it and re-solve
(2.9). Usually, the trust region is a ball defined by 𝑝 2 ≤ ∆ where the
scalar ∆ > 0 is called the trust-region radius. Elliptical and box-shaped trust
regions may also be used.The model 𝑚𝑘 in (2.9) is usually defined to be a
quadratic function of the form

 𝑚𝑘 𝑥𝑘 + 𝑝 = 𝑓𝑘 + 𝑝𝑇∇𝑓𝑘 +
1

2
𝑝𝑇𝐵𝑘𝑝 (2.10)

where 𝑓𝑘 , 𝛻𝑓𝑘 , and 𝐵𝑘 are a scalar, vector, and matrix, respectively.
As the notation indicates, 𝑓𝑘 and 𝛻𝑓𝑘 are chosen to be the function and
gradient values at the point 𝑥𝑘 , so that 𝑚𝑘and 𝑓 are in agreement to first
order at the current iterate 𝑥𝑘 . The matrix 𝐵𝑘 is either the Hessian 𝛻2𝑓𝑘or
some approximation to it.
Example 2.1:Suppose that the objective function is given by
𝑓 𝑥 = 10(𝑥2 − 𝑥2

1)2 + (1 − 𝑥1)2. at the point 𝑥𝑘 = (0, 1)
It's gradient and Hessian are

∇𝑓𝑘 =
−2
20

 , ∇2𝑓𝑘 =
−38 0

0 20

10

Figure 2.3 Two Possible Trust Regions (Circles) and their

Corresponding Steps 𝒑𝒌.
The solid lines are contours of the model function 𝑚𝑘 .The contour lines of
the quadratic model (2.10) with 𝐵𝑘 = 𝛻2𝑓𝑘 are depicted in Figure
2.3,which also illustrates the contours of the objective function 𝑓 and the
trust region. We have indicated contour lines where the model 𝑚𝑘 has
values 1 and 12. Note from Figure 2.3 that each time we decrease the size of
the trust region after failure of a candidate iterate,the step from 𝑥𝑘 to the
new candidate will be shorter, and it usually points in a different direction
from the previous candidate. The trust-region strategy differs in this
respect from line search, which stays with a single search direction. In a
sense, the line search and trust-region approaches differ in the order in
which they choose the direction and distance of the move to the next
iterate. Line search starts by fixing the direction 𝑝𝑘 and then identifying an
appropriate distance, namely the step length 𝛼𝑘 . In trust region, we first
choose a maximum distance—the trust-region radius ∆𝑘—and then seek a
direction and step that attain the best improvement possible subject to this
distance constraint. If this step proves to be unsatisfactory, we reduce the
distance measure ∆𝑘 and try again.
2.4 Line Search Methods:
Each iteration of a line search method computes a search direction 𝑝𝑘 and
then decides how far to move along that direction. The iteration is given by
 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 (2.11)
where the positive scalar 𝛼𝑘 is called the step length. The success of a line
search method depends on effective choices of both the direction 𝑝𝑘 and
the step length 𝛼𝑘 .Most line search algorithms require 𝑝𝑘 to be a descent
direction one for which 𝑝𝑘

𝑇𝛻𝑓𝑘 < 0 because this property guarantees that

11

the function 𝑓 can be reduced along this direction. Moreover, the search
direction often has the form
 𝑝𝑘 = −𝐵𝑘

−1𝛻𝑓𝑘 (2.12)
Where 𝐵𝑘 is a symmetric and nonsingular matrix. In the steepest descent
method, 𝐵𝑘 is simply the identity matrix , while in Newton's method, 𝐵𝑘 is
the exact Hessian 𝛻2𝑓𝑘 . In quasi-Newton methods, 𝐵𝑘 is an approximation
to the Hessian that is updated at every iteration by means of a low-rank
formula. When 𝑝𝑘 is defined by (2.12) and 𝐵𝑘 is positive definite, we have
 𝑝𝑘

𝑇𝛻𝑓𝑘 = −𝛻𝑓𝑘
𝑇𝐵𝑘

−1𝛻𝑓𝑘 < 0 (2.13)
and therefore 𝑝𝑘 is a descent direction.In this chapter, we discuss how to
choose αk and pk to promote convergence from remote starting points.
Since the pure Newton iteration is not guaranteed to produce descent
directions when the current iterate is not close to a solution. We now give
careful consideration to the choice of the step-length parameter 𝛼𝑘 .
2.5 Step Length:
In computing the step length 𝛼𝑘 , we face a tradeoff. We would like to
choose 𝛼𝑘 to give a substantial reduction of 𝑓 , but at the same time we do
not want to spend too much time making the choice. The ideal choice would
be the global minimizer of the univariate function ∅(・) defined by
 ∅ 𝛼 = 𝑓 𝑥𝑘 + 𝛼𝑝𝑘 , 𝛼 > 0 (2.14)
But in general, it is too expensive to identify this value (see Figure 2.4). To
find even a local minimizer of ∅ to moderate precision generally requires
too many evaluations of the objective function 𝑓 and possibly the gradient .
More practical strategies perform an inexact line search to identify a step
length that achieves adequate reductions in 𝑓 at minimal cost.Typical line
search algorithms try out a sequence of candidate values for 𝛼, stopping to
accept one of these values when certain conditions are satisfied. The line
search is done in two stages: A bracketing phase finds an interval
containing desirable step lengths, and a bisectionor interpolation phase
computes a good step length within this interval. Sophisticated linesearch
algorithms can be quite complicated.

Figure 2.4 The Ideal Step Length is the Global Minimizer.

We now discuss various termination conditions for line search algorithms
and show that effective step lengths need not lie near minimizers of the

12

univariate function ∅(𝛼) defined in (2.14).A simple condition we could
impose on 𝛼𝑘 is to require a reduction in 𝑓 , that is, 𝑓 (𝑥𝑘 + 𝛼𝑘𝑝𝑘) <
 𝑓 (𝑥𝑘). That this requirement is not enough to produce convergence to 𝑥∗
is illustrated in Figure 2.5, for which the minimum function value is

𝑓 ∗ = −1, but a sequence of iterates {𝑥𝑘} for which 𝑓 𝑥𝑘 =
5

𝑘
, 𝑘 = 0,1, . ..

yields a decrease at each iteration but has a limiting function value of zero.
The insufficient reduction in 𝑓 at each step causes it to fail to converge to
the minimizer of this convex function. To avoid this behavior we need to
enforce a sufficient decrease condition, a concept we discuss next.

Figure 2.5 Insufficient Reduction in f .

The Wolfe Conditions:
A popular inexact line search condition stipulates that 𝛼𝑘 should first of all
give sufficient decrease in the objective function 𝑓 , as measured by the
following inequality:

 𝑓 𝑥𝑘 + 𝛼𝑝𝑘 ≤ 𝑓 𝑥𝑘 + 𝑐1𝛼𝛻𝑓𝑘
𝑇𝑝𝑘 (2.15)

for some constant 𝑐1 ∈ (0, 1). In other words, the reduction in 𝑓 should be
proportional to both the step length 𝛼𝑘 and the directional derivative
∇𝑓𝑘

𝑇𝑝𝑘 . Inequality (2.15) is sometimes called the Armijo condition.The
sufficient decrease condition is illustrated in Figure 2.6. The right-hand-
side of (2.15), which is a linear function, can be denoted by 𝑙(𝛼). The
function 𝑙(∙) has negative slope 𝑐1∇𝑓𝑘

𝑇𝑝𝑘 , but because 𝑐1 ∈ (0, 1), it lies
above the graph of ∅ for small positive values of 𝛼. The sufficient decrease
condition states that 𝛼 is acceptable only if ∅(𝛼) ≤ 𝑙(𝛼). The intervals on
which this condition is satisfied are shown in Figure 2.6 In practice, 𝑐1 is
chosen to be quite small, say 𝑐1 = 10−4 .The sufficient decrease condition is
not enough by itself to ensure that the algorithm makes reasonable
progress because, as we see from Figure 2.6, it is satisfied for all sufficiently
small values of 𝛼. To rule out unacceptably short steps we introduce a
second requirement, called the curvature condition, which requires 𝛼𝑘 to
satisfy

13

 ∇𝑓 𝑥𝑘 + 𝛼𝑘𝑝𝑘 𝑇𝑝𝑘 ≥ 𝑐2∇𝑓𝑘
𝑇𝑝𝑘 (2.16)

for some constant 𝑐2 ∈ (𝑐1, 1), where 𝑐1 is the constant from (2.15). Note
that the left-hand side is simply the derivative ∅′ (𝛼𝑘), so the curvature
condition ensures that the slope of ∅ at𝛼𝑘 is greater than 𝑐2 times the initial
slope ∅′ (0). This makes sense because if the slope ∅′ (𝛼)

Figure 2.6 Sufficient Decrease Condition.

Figure 2.7 The Curvature Condition.

is strongly negative, we have an indication that we can reduce
𝑓 significantly by moving further along the chosen direction. On the other
hand, if ∅′ (𝛼𝑘) is only slightly negative or even positive, it is a sign that we
cannot expect much more decrease in 𝑓 in this direction, so it makes sense
to terminate the line search. The curvature condition is illustrated in Figure
2.7. Typical values of 𝑐2 are 0.9 when the search direction 𝑝𝑘 is chosen by a
Newton or quasi-Newton method, and 0.1 when 𝑝𝑘 is obtained from a

14

nonlinear conjugate gradient method. The sufficient decrease and
curvature conditions are known collectively as the Wolfe conditions.We
illustrate them in Figure 2.8 and restate them here for future reference:
 𝑓 𝑥𝑘 + 𝛼𝑘𝑝𝑘 ≤ 𝑓 (𝑥𝑘) + 𝑐1𝛼𝑘∇𝑓𝑘

𝑇𝑝𝑘 (2.17a)
 𝛻𝑓 𝑥𝑘 + 𝛼𝑘𝑝𝑘 𝑇𝑝𝑘 ≥ 𝑐2∇𝑓𝑘

𝑇𝑝𝑘 (2.17b)
With 0 < 𝑐1 < 𝑐2 < 1 .A step length may satisfy the Wolfe conditions
without being particularly close to a minimizer of ∅, as we show in
Figure2.8.We can, however, modify the curvature condition to force 𝛼𝑘 to lie
in at least a broad neighborhood of a local minimizer or stationary point of
∅. The strong Wolfe conditions require 𝛼𝑘 to satisfy
 𝑓 𝑥𝑘 + 𝛼𝑘𝑝𝑘 ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘∇𝑓𝑘

𝑇𝑝𝑘 (2.18a)

 𝛻𝑓 𝑥𝑘 + 𝛼𝑘𝑝𝑘 𝑇𝑝𝑘 ≤ 𝑐2 ∇𝑓𝑘
𝑇𝑝𝑘 (2.18b)

With 0 < 𝑐1 < 𝑐2 < 1. The only difference with the Wolfe conditions is that
we no longer allow the derivative ∅′ (𝛼𝑘)to be too positive. Hence, we
exclude points that are far from stationary points of ∅.

Figure 2.8 Step Lengths Satisfying the wolfe Conditions.

It is not difficult to prove that there exist step lengths that satisfy the Wolfe
conditions for every function 𝑓 that is smooth and bounded below.
The Goldstein Conditions:
Like the Wolfe conditions, the Goldstein conditions ensure that the step
length 𝛼 achieves sufficient decrease but is not too short. The Goldstein
conditions can also be stated as a pair of inequalities, in the following way:
𝑓 𝑥𝑘 + 1 − 𝑐 𝛼𝑘∇𝑓𝑘

𝑇𝑝𝑘 ≤ 𝑓 𝑥𝑘 + 𝛼𝑘𝑝𝑘 ≤ 𝑓 𝑥𝑘 + 𝑐𝛼𝑘∇𝑓𝑘
𝑇𝑝𝑘 (2.19)

with 0 < 𝑐 < 1/2. The second inequality is the sufficient decrease condition
(2.15), where as the first inequality is introduced to control the step length
from below; see Figure 2.8 A disadvantage of the Goldstein conditions vis-
`a-vis the Wolfe conditions is that the first inequality in (2.19) may exclude
all minimizers of ∅. However, the Goldstein and Wolfe conditions have

15

much in common, and their convergence theories are quite similar. The
Goldstein conditions are often used in Newton-type methods but are not
well suited for Quasi-Newton methods that maintain a positive definite
Hessian approximation.

Figure 2.9 The Goldstein conditions.

Sufficient Decrease and Backtracking:
We have mentioned that the sufficient decrease condition (2.17a) alone is
not sufficient to ensure that the algorithm makes reasonable progress
along the given search direction. However, if the line search algorithm
chooses its candidate step lengths appropriately, by using a so-called
backtracking approach, we can dispense with the extra condition (2.17b)
and use just the sufficient decrease condition to terminate the line search
procedure. In its most basic form, backtracking proceeds as follows.
Algorithm 2.1 (Backtracking Line Search).
Choose 𝛼 > 0, 𝜌 ∈ (0, 1), 𝑐 ∈ (0, 1);
Set 𝛼 ← 𝛼 ;

repeat until 𝑓 𝑥𝑘 + 𝛼𝑝𝑘 ≤ 𝑓 (𝑥𝑘) + 𝑐𝛼𝛻𝑓𝑘
𝑇𝑝𝑘

𝛼 ← 𝜌𝛼;
end (repeat)
Terminate with 𝛼𝑘 = 𝛼.
In this procedure, the initial step length 𝛼 is chosen to be 1 in Newton and
quasi-Newton methods, but can have different values in other algorithms
such as steepest descent or conjugate gradient. An acceptable step length
will be found after a finite number of trials, because αk will eventually
become small enough that the sufficient decrease condition holds (see
Figure 2.6). In practice, the contraction factor 𝜌 is often allowed to vary at
each iteration of the line search.
We need ensure only that at each iteration we have 𝜌 ∈ [𝜌𝑙𝑜 , 𝜌𝑖], for some
fixed constants 0 < 𝜌𝑙𝑜 < 𝜌𝑖 < 1 .The backtracking approach ensures
either that the selected step length 𝛼𝑘 is some fixed value (the initial choice
𝛼), or else that it is short enough to satisfy the sufficient decrease condition

16

but not too short. The latter claim holds because the accepted value 𝛼𝑘 is
within a factor 𝜌 of the previous trial value, 𝛼𝑘/𝜌, which was rejected for
violating the sufficient decrease condition, that is, for being too long.
This simple and popular strategy for terminating a line search is well suited
for Newton methods but is less appropriate for Quasi-Newton and
conjugate gradient methods.
2.6 Convexity:
There is one important case where global solutions can be found, the case
where the objective function is a convex function and the feasible region is
a convex set. Let us first talk about the feasible region. A set 𝑆 is convex if,
for any elements 𝑥 and 𝑦 of 𝑆,
𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑆 𝑓𝑜𝑟 𝑎𝑙𝑙 0 ≤ 𝛼 ≤ 1.
In other words, if 𝑥 and 𝑦 are in 𝑆, then the line segment connecting 𝑥 and 𝑦
is also in 𝑆.Examples of convex and nonconvex sets are given in Figure 2.9.
More generally, every set defined by a system of linear constraints is a
convex set;.A function 𝑓 is convex on a convex set 𝑆 if it satisfies

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦)
for all 0 ≤ 𝛼 ≤ 1 and for all 𝑥, 𝑦 ∈ 𝑆. This definition says that the line
segment connecting the points (𝑥, 𝑓(𝑥)) and (𝑦, 𝑓 (𝑦)) lies on or above the
graph of the function; see Figure2.5. Intuitively, the graph of the function is
bowl shaped.
Analogously, a function is concave on S if it satisfies

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≥ 𝛼𝑓 (𝑥) + (1 − 𝛼)𝑓(𝑦)

For all 0 ≤ 𝛼 ≤ 1 and for all 𝑥, 𝑦 ∈ 𝑆.

Figure 2.10. Convex and Nonconvex Sets.

Figure 2.11. Convex function.

Linear functions are both convex and concave.
We say that a function is strictly convex if

17

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) < 𝛼𝑓(𝑥) + 1 − 𝛼 𝑓 𝑦 for all 𝑥 ≠ 𝑦 and 0 < 𝛼 < 1
where 𝑥, 𝑦 ∈ 𝑆.
Theorem 2.6:
Let 𝑥∗ be a local minimizer of a convex optimization problem. Then 𝑥∗is
also a global minimizer. If the objective function is strictly convex, then 𝑥∗is
the unique global minimizer.
Proof.
The proof is by contradiction. Let 𝑥∗ be a local minimizer and suppose, by
contradiction,that it is not a global minimizer. Then there exists some point
𝑦 ∈ 𝑆 satisfying
𝑓(𝑦) < 𝑓(𝑥∗). 𝐼𝑓 0 < 𝛼 < 1,then
𝑓 (𝛼𝑥∗ + (1 − 𝛼)𝑦) ≤ 𝛼𝑓 (𝑥∗) + (1 − 𝛼)𝑓(𝑦) < 𝛼𝑓(𝑥∗) + (1 − 𝛼)𝑓(𝑥∗) =
𝑓(𝑥∗).
This shows that there are points arbitrarily close to 𝑥∗ (i.e., when 𝛼 is
arbitrarily close to 1) whose function values are strictly less than 𝑓 (𝑥∗).
These points are in 𝑆 because 𝑆 is convex. This contradicts the definition of
a local minimizer. Hence a point such as 𝑦 cannot exist, and 𝑥∗ must be a
global minimizer.
If the objective function is strictly convex, then a similar argument can be
used to show that 𝑥∗ is the unique global minimize.
For general problems it may be as difficult to determine if the function 𝑓
and the region S are convex as it is to find a global solution, so this result is
not always useful.However, there are important practical problems, such as
linear programs, where convexity can be guaranteed [1,12].
2.7 Derivatives and Convexity :
If a one-dimensional function 𝑓 has two continuous derivatives, then an
alternative definition of convexity can be given that is often easier to check.
Such a function is convex if and only if 𝑓 ′′ 𝑥 ≥ 0 for all 𝑥 ∈ 𝑆;
For example, the function 𝑓(𝑥) = 𝑥4 is convex on the entire real line
because 𝑓(𝑥) = 12𝑥2 ≥ 0 for all 𝑥. The function 𝑓 (𝑥) = 𝑠𝑖𝑛𝑥 is neither
convex nor concave on the real line because 𝑓(𝑥) = −𝑠𝑖𝑛𝑥 can be both
positive and negative. In the multidimensional case the Hessian matrix of
second derivatives must be positive semidefinite; that is, at every point
𝑥 ∈ 𝑆.
𝑦𝑇∇2𝑓 𝑥 𝑦 ≥ 0 for all 𝑦 ;
Notice that the vector 𝑦 is not restricted to lie in the set S. The quadratic
function 𝑓 𝑥1, 𝑥2 = 4𝑥1

2 + 12𝑥1𝑥2 + 9𝑥2
2

is convex over any subset of 𝑅2 since

𝑦𝑇∇2𝑓 𝑥 𝑦 = 𝑦1 , 𝑦2
8 12

12 18

𝑦1

𝑦2
 = 8𝑦2

1
+ 24𝑦1𝑦2 + 18𝑦2

2

= 2(2𝑦1 + 3𝑦2)2 ≥ 0.

18

Alternatively, it would have been possible to show that the eigenvalues of
the Hessian matrix were all greater than or equal to zero. In the one-
dimensional case, if a function satisfies
𝑓 ′′ (𝑥) ≥ 0 for all 𝑥 ∈ 𝑆;
Then it is strictly convex on 𝑆. In the multidimensional case, if the Hessian
matrix ∇2𝑓(𝑥) is positive definite for all 𝑥 ∈ 𝑆, then the function is strictly
convex on 𝑆. This is not an “if and only if ” condition, since the Hessian of a
strictly convex function need not be positive definite every where.
Now we consider another characterization of convexity that can be applied
to functions that have one continuous derivative. In this case a function 𝑓 is
convex over a convex set 𝑆 if and only if it satisfies

𝑓 𝑦 ≥ 𝑓 𝑥 + 𝛻𝑓 𝑥 𝑇(𝑦 − 𝑥)
for all 𝑥, 𝑦 ∈ 𝑆. This property states that the function is on or above any of
its tangents. (See Figure 2.11) To prove this property, note that if 𝑓 is
convex, then for any 𝑥 and 𝑦 in 𝑆 and for any 0 < 𝛼 ≤ 1,
𝑓 (𝛼𝑦 + (1 − 𝛼)𝑥) ≤ 𝛼𝑓(𝑦) + (1 − 𝛼)𝑓(𝑥),
so that
𝑓 (𝑥 + 𝛼(𝑦 − 𝑥)) − 𝑓 (𝑥)

𝛼
≤ 𝑓 (𝑦) − 𝑓 (𝑥).

If we let 𝛼 approach 0 from above, we can conclude that
𝑓(𝑦) ≥ 𝑓 (𝑥) + 𝛻𝑓 (𝑥)𝑇(𝑦 − 𝑥).

Figure 2.12. Convex Function with Continuous First Derivative.

Conversely, suppose that the function 𝑓 satisfies
𝑓 𝑦 ≥ 𝑓 𝑥 + 𝛻𝑓 𝑥 𝑇 𝑦 − 𝑥 for all 𝑥 and 𝑦 in S. 𝐿𝑒𝑡 𝑡 = 𝛼𝑥 + (1 − 𝛼)𝑦.
Then 𝑡 is also in the set 𝑆, so

𝑓(𝑥) ≥ 𝑓 (𝑡) + 𝛻𝑓 (𝑡)𝑇(𝑥 − 𝑡)
and

𝑓(𝑦) ≥ 𝑓(𝑡) + 𝛻𝑓(𝑡)𝑇(𝑦 − 𝑡).

Multiplying the two inequalities by 𝛼 and 1 − 𝛼, respectively, and then
adding yields the desired result[1,12].

19

2.8 Taylor Series:
The Taylor series is a tool for approximating a function 𝑓 near a specified
point 𝑥0. The approximation obtained is a polynomial, i.e., a function that is
easy to manipulate. The Taylor series is a general tool it can be applied
when ever the function has derivatives and it has many uses:
 It allows you to estimate the value of the function near the given point

(when the function is difficult to evaluate directly).
 The derivatives and integral of the approximation can be used to

estimate the derivatives and integral of the original function.
 It is used to derive many algorithms for finding zeroes of functions (see

below), for minimizing functions, etc.
Since many problems are difficult to solve exactly, and an approximate
solution is often adequate (the data for the problem may be in accurate),
the Taylor series is widely used, both theoretically and practically. Even if
the data are exact, an approximate solution may be adequate, and in any
case it is all we can hope for under most circumstances. How does it work?
We first consider the case of a one-dimensional function 𝑓 with n
continuous derivatives. Let x0 be a specified point (say x0 = 17.5 or x0 =
0). Then the nth order Taylor series approximation is

 𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑓 ′ 𝑥0 +
1

2
𝑝2𝑓 ′′ 𝑥0 +

1

3!
𝑝3𝑓 ′′′ 𝑥0 + ⋯ +

1

𝑛 !
𝑝𝑛𝑓(𝑛) 𝑥0 (2.20)

Here 𝑓(𝑛) 𝑥0 is the nth derivative of 𝑓 at the point x0 ,and n! =
n n − 1 n − 2 · · · 3 · 2 · 1 . In this formula, p is a variable; we will
decide later what values 𝑝 will take. The approximation will normally only
be accurate for small values of 𝑝 [1,13].

Example 2.2: (Taylor Series). Let 𝑓 𝑥 = 𝑥 and let 𝑥0 = 1. Then

𝑓 𝑥0 = 𝑥0 = 1 = 1

𝑓 ′ 𝑥0 =
1

2
𝑥0

−
1
2 =

1

2

𝑓 ′′ 𝑥0 = −
1

4
𝑥0

−
3
2 = −

1

4

𝑓 ′′′ 𝑥0 =
3

8
𝑥0

−
5
2 =

3

8

⋮
Hence, substituting into the formula for the Taylor series,

𝑓 𝑥0 + 𝑝 ≈ 𝑓 𝑥0 + 𝑝𝑓 ′ 𝑥0 +
1

2
𝑝2𝑓 ′′ 𝑥0 +

1

3!
𝑝3𝑓 ′′′ 𝑥0 + ⋯

+
1

𝑛!
𝑝𝑛𝑓(𝑛) 𝑥0

= 1 +
1

2
𝑝 +

1

2
𝑝2 −

1

4
 +

1

6
𝑝3(

3

8
)

20

How do we use this? Suppose we want to approximate 𝑓(1.6). Then
𝑥0 + 𝑝 =
1 + 𝑝 = 1.6, and so 𝑝 = 0.6:

 1.6 = 1 + 0.6 ≈ 1 +
1

2
(0.6) +

1

2
 0.6 2 −

1

4
 +

1

6
 0.6 3(

3

8
) ≈ 1.2685

The true value is 1.264911 . .. ; the approximation is accurate to three digits.
The first two terms of the Taylor series give us the formula for the tangent
line for the function 𝑓 at the point 𝑥0. We commonly define the tangent line
in terms of a general point 𝑥, and not in terms of 𝑝. Since 𝑥0 + 𝑝 = 𝑥, we
can rearrange to get 𝑝 = 𝑥 − 𝑥0. Substitute this into the first two terms of
the series to get the tangent line:
𝑦 = 𝑓(𝑥0) + (𝑥 − 𝑥0)𝑓 ′ (𝑥0).

Figure 2.13. Taylor Series Approximation.
For the example above we get

𝑦 = 1 + 𝑥 − 1
1

2
 or 𝑦 =

1

2
(𝑥 + 1).

The first three terms of the Taylor series give a quadratic approximation to
the function 𝑓 at the point 𝑥0. This is illustrated in Figure 2.13. So far we
have only considered a Taylor series for a function of one variable. The
Taylor series can also be derived for real-valued functions of many
variables. If we use matrix and vector notation, then there is an obvious
analogy between the two cases:

-1 variable: 𝑓 (𝑥0 + 𝑝) = 𝑓 𝑥0 + 𝑝𝑓 ′ 𝑥0 +
1

2
𝑝2𝑓 ′′ 𝑥0

n-variables: 𝑓 (𝑥0 + 𝑝) = 𝑓 𝑥0 + 𝑝𝑇𝛻𝑓(𝑥0) +
1

2
𝑝𝑇𝛻2𝑓 (𝑥0)𝑝 +· · · .

In the second line above 𝑥0 and 𝑝 are both vectors. The notation 𝛻𝑓(𝑥0)
refers to the gradient of the function 𝑓 at the point 𝑥 = 𝑥0. The notation
𝛻2𝑓 (𝑥0) represents the Hessian of 𝑓 at the point 𝑥 = 𝑥0.

21

Example 2.3: Consider the function
𝑓 𝑥1, 𝑥2 = 𝑥1

3 + 5𝑥1
2𝑥2 + 7𝑥1𝑥2

2 + 2𝑥3
2 at the point 𝑥0 = (−2,3)𝑇

The gradient of this function is

𝛻𝑓 𝑥 =
3𝑥1

2 + 10𝑥1𝑥2 + 7𝑥2
2

5𝑥1
2 + 14𝑥1𝑥2 + 6𝑥2

2

and the Hessian matrix is

𝛻2𝑓 =
6𝑥1 + 10𝑥2 10𝑥1 + 14𝑥2

10𝑥1 + 14𝑥2 14𝑥1 + 12𝑥2

at the point 𝑥0 = (−2,3)𝑇 these become

𝛻𝑓 𝑥0 =
15

−10
 , 𝛻2𝑓 𝑥0 =

18 22
22 8

If 𝑝 = (𝑝1, 𝑝2)T = (0.1, 0.2)𝑇 , then
𝑓 (−1.9, 3.2) = 𝑓(−2 + 0.1, 3 + 0.2)

= 𝑓 (𝑥0 + 𝑝)

≈ 𝑓 (𝑥0) + 𝑝𝑇𝛻𝑓 (𝑥0) +
1

2
𝑝𝑇𝛻2𝑓(𝑥0)𝑝

= −20 + 0.1 0.2
15

−10
 +

1

2
 0.1 0.2

18 22
22 8

0.1
0.2

= −20 − 0.5 + 0.69 = −19.81.
The true value is 𝑓 (−1.9, 3.2) = −19.755 , so the approximation is
accurate to three digits.
The Taylor series for multidimensional problems can also be derived using
summations rather than matrix-vector notation:

𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑖

𝑛

𝑖=1

 𝜕𝑓(𝑥)

𝜕𝑥𝑖

𝑥=𝑥0

+
1

2
 𝑝𝑖

𝑛

𝑗 =1

𝑝𝑗

𝑛

𝑖=1

 𝜕
2𝑓(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

𝑥=𝑥0

+ ⋯

The formula is the same as before; only the notation has changed.
There is an alternate form of the Taylor series that is often used, called the
remainder form. If three terms are used it looks like

1-variable: 𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑓 ′ 𝑥0 +
1

2
𝑝2𝑓 ′′ 𝜉

n-variables: 𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑇𝛻𝑓(𝑥0) +
1

2
𝑝𝑇𝛻2𝑓 (𝜉)𝑝.

The point 𝜉 is an unknown point lying between 𝑥0 and 𝑥0 + 𝑝. In this form
the series is exact, but it involves an unknown point, so it cannot be
evaluated. This form of the series is often used for theoretical purposes, or
to derive bounds on the accuracy of the series.The accuracy of the series
can be analyzed by establishing bounds on the final “remainder”term.
If the remainder form of the series is used, but with only two terms, then
we obtain
1-variable: 𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑓 ′ 𝜉
n-variables: 𝑓 𝑥0 + 𝑝 = 𝑓 𝑥0 + 𝑝𝑇𝛻𝑓(𝜉).
This result is known as the mean-value theorem [1,12].

22

2.9 Rates of Convergence:

Many of the algorithms discussed do not find a solution in a finite number
of steps. Instead these algorithms compute a sequence of approximate
solutions that we hope get closer and closer to a solution. When discussing
such an algorithm, the following two questions are often asked:
 Does it converge?
 How fast does it converge?
It is the second question that is the topic of this section. If an algorithm
converges in a finite number of steps, the cost of that algorithm is often
measured by counting the number of steps required, or by counting the
number of arithmetic operations required. For example, if Gaussian
elimination is applied to a system of n linear equations, then it will require
about 𝑛3 operations. This cost is referred to as the computational
complexity of the algorithm. For many optimization methods, the number
of operations or steps required to find an exact solution will be infinite, so
some other measure of efficiency must be used. The rate of convergence is
one such measure. It describes how quickly the estimates of the solution
approach the exact solution.
Let us assume that we have a sequence of points 𝑥𝑘 converging to a
solution 𝑥∗. We define the sequence of errors to be

𝑒𝑘 = 𝑥𝑘 − 𝑥∗
Note that

lim
𝑘→∞

𝑒𝑘 = 0

We say that the sequence {𝑥𝑘} converges to 𝑥∗ with rate 𝑟 and rate constant
C if

lim
𝑘→∞

 𝑒𝑘+1

 𝑒𝑘 𝑟
= 𝐶

and 𝐶 < ∞. To understand this idea better, let us look at some examples.
Initially let us assume that we have ideal convergence behavior
 𝑒𝑘+1 = 𝐶 𝑒𝑘 𝑟 for all 𝑘,
so that we can avoid having to deal with limits. When r = 1 this is referred
to as linear convergence:
 𝑒𝑘+1 = 𝐶 𝑒𝑘 .
If 0 < 𝐶 < 1, then the norm of the error is reduced by a constant factor at
every iteration.
If 𝐶 > 1, then the sequence diverges. (What can happen when C = 1?) If we
choose 𝐶 = 0.1 = 10−1 and 𝑒0 = 1, then the norms of the errors are
1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7,

23

and seven-digit accuracy is obtained in seven iterations, a good result. On
the other hand, if 𝐶 = 0.99, then the norms of the errors take on the values

1, 0.99, 0.9801, 0.9703, 0.9606, 0.9510, 0.9415, 0.9321, . . . ,
and it would take about 1600 iterations to reduce the error to 10−7, a less
impressive result.
If 𝑟 = 1 and 𝐶 = 0, the convergence is called superlinear. Superlinear
convergence includes all cases where 𝑟 > 1 since if

lim
𝑘→∞

 𝑒𝑘+1

 𝑒𝑘 𝑟
= 𝐶 < ∞

Then

lim
𝑘→∞

 𝑒𝑘+1

 𝑒𝑘
= lim

𝑘→∞

 𝑒𝑘+1

 𝑒𝑘 𝑟
 𝑒𝑘 𝑟−1 = 𝐶 × lim

𝑘→∞
 𝑒𝑘 𝑟−1 = 0

When 𝑟 = 2, the convergence is called quadratic. As an example, let
𝑟 = 2, 𝐶 = 1, and 𝑒0 = 10−1. Then the sequence of error norms is
10−1, 10−2,10−4, 10−8,
and so three iterations are sufficient to achieve seven-digit accuracy.
In this form of quadratic convergence the error is squared at each iteration.
Another way of saying this is that the number of correct digits in 𝑥𝑘 doubles
at every iteration. Of course, if the constant 𝐶 = 1, then this is not an
accurate statement, but it gives an intuitive sense of the attractions of a
quadratic convergence rate.For optimization algorithms there is one other
important case, and that is when 1 < 𝑟 < 2.This is another special case of
superlinear convergence. This case is important because (a) it is
qualitatively similar to quadratic convergence for the precision of common
computer calculations, and (b) it can be achieved by algorithms that only
compute first derivatives, where as to achieve quadratic convergence it is
often necessary to compute second derivatives as well. To get a sense of
what this form of superlinear convergence looks like, let r = 1.5, C = 1, and
 e0 = 10−1. Then the sequence of error norms is
1×10−1, 3×10−2, 6×10−3, 4×10−4, 9×10−6, 3×10−8,
and five iterations are required to achieve single-precision accuracy[1,12].

24

Chapter 3

Trust-Region Methods

3.1 Introduction:

Line search methods and trust-region methods both generate steps with
the help of a quadratic model of the objective function, but they use this
model in different ways. Line search methods use it to generate a search
direction, and then focus their efforts on finding a suitable step length 𝛼
along this direction.

 Trust-region methods define a region around the current iterate within
which they trust the model to be an adequate representation of the
objective function, and then choose the step to be the approximate
minimizer of the model in this region. In effect, they choose the direction
and length of the step simultaneously. If a step is not acceptable, they
reduce the size of the region and find a new minimizer. In general, the
direction of the step changes whenever the size of the trust region is
altered. The size of the trust region is critical to the effectiveness of each
step. If the region is too small, the algorithm misses an opportunity to take
a substantial step that will move it much closer to the minimizer of the
objective function. If too large, the minimizer of the model may be far from
the minimizer of the objective function in the region, so we may have to
reduce the size of the region and try again. In practical algorithms, we
choose the size of the region according to the performance of the algorithm
during previous iterations. If the model is consistently reliable, producing
good steps and accurately predicting the behavior of the objective function
along these steps, the size of the trust region may be increased to allow
longer, more ambitious, steps to be taken. A failed step is an indication that
our model is an inadequate representation of the objective function over
the current trust region. After such a step, we reduce the size of the region
and try again. The trust-region approach on a function 𝑓 of two variables in
which the current point 𝑥𝑘 and the minimize 𝑥∗ lie at opposite ends of a
curved valley. The quadratic model function 𝑚𝑘 , whose elliptical contours
are shown as dashed lines, is constructed from function and derivative
information at 𝑥𝑘 and possibly also on information accumulated from
previous iterations and steps. A line search method based on this model
searches along the step to the minimizer of 𝑚𝑘 (shown), but this direction
will yield at most a small reduction in 𝑓, even if the optimal step length is
used. The trust-region method steps to the minimizer of 𝑚𝑘 within the
dotted circle (shown), yielding a more significant reduction in 𝑓 and better
progress toward the solution. In this chapter, we will assume that the

25

model function 𝑚𝑘 that is used at each iterate 𝑚𝑘 is quadratic. Moreover,
𝑚𝑘 is based on the Taylor-series expansion of 𝑓 around 𝑥𝑘 , which is

Figure 3.1 Trust-region and line search steps.

 𝑓 𝑥𝑘 + 𝑝 = 𝑓𝑘 + 𝑔𝑘
𝑇𝑝 +

1

2
𝑝𝑇∇2𝑓 𝑥𝑘 + 𝑡𝑝 𝑝 (3.1)

where𝑓𝑘 = 𝑓 𝑥𝑘 , and 𝑔𝑘 = ∇𝑓(𝑥𝑘) and 𝑡 is some scalar in the interval
 0,1 . By using an approximation 𝐵𝑘 to the Hessian in the second-order
term, 𝑚𝑘 is defined as follows

 𝑚𝑘 𝑝 = 𝑓𝑘 + 𝑔𝑘
𝑇𝑝 +

1

2
𝑝𝑇𝐵𝑘𝑝 (3.2)

Where 𝐵𝑘 is some symmetric matrix. The difference between 𝑚𝑘(𝑝) and
𝑓(𝑥𝑘 + 𝑝)is 𝑜 𝑝 2 , which is small when 𝑝 is small.

 When 𝐵𝑘 is equal to the true Hessian ∇2𝑓 𝑥𝑘 , the approximation
error in the model function𝑚𝑘 is 𝑜 𝑝 3, so this model is especially accurate
when 𝑝 is small. This choice 𝐵𝑘 = ∇2𝑓(𝑥𝑘) leads to the trust-region
Newton method. We emphasize the generality of the trust-region approach
by assuming little about 𝐵𝑘 except symmetry and uniform boundedness. To
obtain each step, we seek a solution of the sub-problem

 min𝑝∈𝐼𝑅𝑛 (𝑚𝑘 𝑝) = 𝑓𝑘 + 𝑔𝑘
𝑇𝑝 +

1

2
𝑝𝑇𝐵𝑘𝑝 (3.3)

Where ∆𝑘> 0 is the trust-region radius. In most of our discussions, we
define · to be the Euclidean norm, so that the solution 𝑝𝑘

∗ of (3.3) is the
minimizer of 𝑚𝑘 in the ball of radius ∆𝑘 . Thus, the trust-region approach
requires us to solve a sequence of sub-problems (3.3) in which the
objective function and constraint (which can be written as 𝑝𝑇𝑝 ≤ ∆𝑘

2) are

both quadratic. When 𝐵𝑘 is positive definite and 𝐵𝑘
−1𝑔𝑘 ≤ ∆𝑘 , the

26

solution of (3.3) is easy to identify it is simply the unconstrained minimum
𝑝𝑘

𝐵 = −𝐵𝑘
−1𝑔𝑘 of the quadratic 𝑚𝑘 𝑝 . In this case, we call 𝑝𝑘

𝐵 the full step
see [1]. The solution of (3.3) is not so obvious in other cases, but it can
usually be found without too much computational expense. In any case, as
described below, we need only an approximate solution to obtain
convergence and good practical behavior .

3.2 Outline of the Trust-Region Approach :

 One of the key ingredients in a trust-region algorithm is the strategy
for choosing the trust-region radius ∆𝑘 at each iteration. We base this
choice on the agreement between the model function 𝑚𝑘 and the objective
function 𝑓 at previous iterations. Given a step 𝑝𝑘 we define the ratio

 𝜌𝑘 =
𝑓 𝑥𝑘 −𝑓(𝑥𝑘+𝑝𝑘)

𝑚𝑘 0 −𝑚𝑘(𝑝𝑘)
 (3.4)

 The numerator is called the actual reduction, and the denominator is
the predicted reduction (that is, the reduction in 𝑓 predicted by the model
function). Note that since the step 𝑝𝑘 is obtained by minimizing the model
𝑚𝑘 over a region that includes 𝑝 = 0, the predicted reduction will always
be non-negative. Hence, if 𝜌𝑘 is negative, the new objective value
𝑓 𝑥𝑘 + 𝑝𝑘 is greater than the current value 𝑓 𝑥𝑘 , so the step must be
rejected. On the other hand, if 𝜌𝑘 is close to 1, there is good agreement
between the model 𝑚𝑘 and the function 𝑓 over this step, so it is safe to
expand the trust region for the next iteration. If 𝜌𝑘 is positive but
significantly smaller than 1, we do not alter the trust region, but if it is close
to zero or negative, we shrink the trust region by reducing ∆𝑘 at the next
iteration see [1,12,41].

The following algorithm describes the process.

Algorithm 3.1 (A Model Trust Region Algorithm)

Given ∆ > 0 , ∆0∈ 0, ∆ 𝑎𝑛𝑑 𝜂 ∈ 0,
1

4
 :

For 𝑘 = 0,1,2, … ..
Obtain 𝑝𝑘by (approximately) solving (3.3);
Obtaine 𝜌𝑘 by (3.4)

if 𝜌𝑘 <
1

4

∆𝑘+1=
1

4
∆𝑘

else

if 𝜌𝑘 >
3

4
 𝑎𝑛𝑑 𝑝𝑘 = ∆𝑘

∆𝑘+1= 𝑚𝑖𝑛(2∆𝑘 , ∆)

27

else
∆𝑘+1= ∆𝑘

If 𝜌𝑘 < 𝜂
𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘

else
𝑥𝑘+1 = 𝑥𝑘

end(for)
 We need to focus on solving the trust-region sub-problem (3.3). In
discussing this matter, we sometimes drop the iteration subscript 𝑘 and
restate the problem (2-1) as follows

 min𝑝∈𝐼𝑅𝑛 𝑚 𝑝 ≝ 𝑓 + 𝑔𝑇𝑝 +
1

2
𝑝𝑇𝐵𝑝 𝑠. 𝑡. 𝑝 ≤ ∆ (3.5)

A first step to characterizing exact solutions of (3.5) is given by the
following theorem (due to [[1]), which shows that the solution 𝑝∗of (3.5)
satisfies

 𝐵 + 𝜆𝐼 𝑝∗ = −𝑔 (3.6)

 for some 𝜆 ≥ 0.

Theorem 3.1 :

 The vector 𝑝∗ is a global solution of the trust-region problem

 min𝑝∈𝐼𝑅𝑛 𝑚 𝑝 = 𝑓 + 𝑔𝑇𝑝 +
1

2
𝑝𝑇𝐵𝑝 𝑠. 𝑡. 𝑝 ≤ ∆, (3.7)

if and only if 𝑝∗ is feasible and there is a scalar 𝜆 ≥ 0 such that the following
conditions are satisfied:

 𝐵 + 𝜆𝐼 𝑝∗ = −𝑔, (3.8a)

 𝜆 ∆ − 𝑝∗ = 0, (3.8b)

 𝐵 + 𝜆𝐼 is positive semi-definite. (3.8c)

 We delay the proof of this result until Section (3.3), and instead
discuss just its key features here with the help of Figure (3.2). The
condition (3.8b) is a complementarily condition that states that at least one
of the nonnegative quantities 𝜆 and (∆ − 𝑝∗) must be zero. Hence, when
the solution lies strictly inside the trust region (as it does when ∆= ∆1 in
Figure (3.2), we must have 𝜆 = 0 and so 𝐵𝑝∗ = −𝑔 with 𝐵 positive semi-
definite, from (3.8a) and (3.8c), respectively. In the other cases ∆= ∆2 and
∆= ∆3, we have 𝑝∗ = ∆, and so 𝜆 is all owed to take a positive value. Note
from (3.8a) that

28

𝜆𝑝∗ = −𝐵𝑝∗ − 𝑔 = −∇𝑚 𝑝∗ .

Figure 3.2 Solution of trust-region sub-problem for different radius ∆𝟏, ∆𝟐, ∆𝟑

thus, when 𝜆 > 0, the solution 𝑝∗ is collinear with the negative gradient of
𝑚 and normal to its contours. These properties can be seen in Figure (3.2).
In this Section, we describe two strategies for finding approximate
solutions of the sub-problem (3.3), which achieve at least as much
reduction in 𝑚𝑘 as the reduction achieved by the so-called iterative method
is used to identify the value of 𝜆 for which (3.6) is satisfied by the solution
of the sub-problem. The second strategy truncated Newton Method.
3.3 Iterative Solution of the Sub-problem :

 In this section, we describe a technique that uses the characterization
(3.6) of the sub-problem solution, applying Newton’s method to find the
value of 𝜆 which matches the given trust-region radius ∆ in (3.5). We also
prove the key result Theorem (3.1) concerning the characterization of
solutions of (3.7). The characterization of Theorem (3.1) suggests an
algorithm for finding the solution 𝑝 of (3.7).Either 𝜆 = 0 satisfies (3.8a)
and (3.8c) with 𝑝 ≤ ∆, or else we define

𝑝 𝜆 = − 𝐵 + 𝜆𝐼 −1𝑔

For 𝜆 sufficiently large that 𝐵 + 𝜆𝐼 is positive definite and seek a value
𝜆 > 0 such that

 𝑝 𝜆 = Δ. (3.9)

 This problem is a one-dimensional root-finding problem in the
variable 𝜆. To see that a value of 𝜆 with all the desired properties exists, we
appeal to the eigen-de-composition of 𝐵 and use it to study the properties
of 𝑝(𝜆) .Since𝐵 is symmetric, there is an orthogonal matrix 𝑄 and a
diagonal matrix Λ such that 𝐵 = 𝑄Λ𝑄𝑇 , where

29

Λ = 𝑑𝑖𝑎𝑔 𝜆1, 𝜆2, … , 𝜆𝑛 ,

and𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 are the eigen-values of 𝐵. Clearly,

𝐵 + 𝜆𝐼 = 𝑄 Λ + 𝜆𝐼 𝑄𝑇 ,

and for 𝜆 ≠ 𝜆𝑗 ,we have

 𝑝 𝜆 = −𝑄(Λ + 𝜆𝐼)−1𝑄𝑇𝑔 = −
𝑞𝑗

𝑇𝑔

𝜆𝑗 +𝜆
𝑞𝑗 ,𝑛

𝑗=1 (3.10)

where𝑞𝑗 denotes the 𝑗𝑡 column of 𝑄. Therefore, by orthogonality of

𝑞1, 𝑞2, … , 𝑞𝑛 , we have

 𝑝(𝜆) 2 =
 𝑞𝑗

𝑇𝑔
2

 𝜆𝑗 +𝜆
2 .𝑛

𝑗=1 (3.11)

Figure 3.3 𝒑(𝝀) as a function of 𝝀

This expression tells us a lot about 𝑝 𝜆 .If𝜆 > −𝜆1, we have 𝜆𝑗 + 𝜆 > 0 for

all 𝑗 = 1,2, … , 𝑛, and so 𝑝(𝜆) is a continuous, non-increasing function of
𝜆 on the interval −𝜆1, ∞ . In fact, we have that

 lim𝜆→∞ 𝑝(𝜆) = 0. (3.12)

Moreover, we have when 𝑞𝑗
𝑇𝑔 ≠ 0q that

 lim𝜆→−𝜆𝑗
 𝑝(𝜆) = ∞. (3.13)

Figure (3.3) plots 𝑝(𝜆) against 𝜆 in a case in which 𝑞1
𝑇𝑔, 𝑞2

𝑇𝑔, and 𝑞3
𝑇𝑔 are

all nonzero. Note that the properties (3.12) and (3.13) hold and that

30

 𝑝(𝜆) is a non-increasing function of 𝜆 on −𝜆1, ∞ . In particular, as is
always the case when 𝑞1

𝑇𝑔 ≠ 0, that there is a unique value 𝜆∗ ∈ (−𝜆1, ∞)
such that 𝑝(𝜆∗) = ∆. (There may be other, smaller values of 𝜆 for which
 𝑝(𝜆) = ∆, but these will fail to satisfy (3.8c). We now sketch a procedure
for identifying the 𝜆∗ ∈ (−𝜆1, ∞) for which 𝑝(𝜆∗ = ∆, which works
when 𝑞1

𝑇𝑔 ≠ 0. (We discuss the case of 𝑞1
𝑇𝑔 = 0 later.) First, note that when

𝐵 positive definite and 𝐵−1𝑔 ≤ ∆, the value 𝜆 = 0 satisfies (3.8), so the
procedure can be terminated immediately with 𝜆∗ = 0. Otherwise, we could
use the root-finding Newton’s method to find the value of 𝜆 > −𝜆1 that
solves

 ∅1 𝜆 = 𝑝(𝜆) − ∆= 0. (3.14)

 The disadvantage of this approach can be seen by considering the
form of 𝑝(𝜆) when 𝜆 is greater than, but close to, −𝜆1.For such 𝜆, we can
approximate ∅1 by a rational function, as follows

∅1 𝜆 ≈
𝐶1

𝜆 + 𝜆1
+ 𝐶2,

where 𝐶1 > 0 and 𝐶2 are constants. Clearly this approximation (and
hence ∅1) is highly nonlinear, so the root-finding Newton’s method will be
unreliable or slow. Better results will be obtained if we reformulate the
problem (3.14) so that it is nearly linear near the optimal 𝜆.By defining

∅2 𝜆 =
1

∆
−

1

 𝑝(𝜆)
,

It can be shown using (3.11) that for 𝜆 slightly greater than −𝜆1, we have

∅2 𝜆 ≈
1

∆
−

𝜆 + 𝜆1

𝐶3

for some 𝐶3 > 0. Hence, ∅2 is nearly linear near −𝜆1(see Figure (3.4), and
the root-finding

Figure 3.4 𝟏/ 𝒑(𝝀) as a function of 𝝀.

31

Newton’s method will perform well, provided that it maintains 𝜆 >
−𝜆1.The root-finding Newton’s method applied to ∅2 generates a sequence
of iterates 𝜆(𝑙) by setting

 𝜆(𝑙+1) = 𝜆(𝑙) −
∅2(𝜆(𝑙))

∅2
′ (𝜆(𝑙))

. (3.15)

After some elementary manipulation, this updating formula can be
implemented in the following practical way see [1].

Algorithm (3.2) (Trust Region Sub-problem)

𝐺𝑖𝑣𝑒𝑛 𝜆(0), Δ > 0:

𝑓𝑜𝑟 ℓ = 0,1,2, …

𝐹𝑎𝑐𝑡𝑜𝑟 𝐵 + 𝜆(ℓ)𝐼 = 𝑅𝑇𝑅;

𝑆𝑜𝑙𝑣𝑒 𝑅𝑇𝑅𝑝ℓ = −𝑔, 𝑅𝑇𝑞ℓ = 𝑝ℓ;

𝑆𝑒𝑡

 𝜆(ℓ+1) = 𝜆(ℓ) +
 𝑝ℓ

 𝑞ℓ

2

 𝑝ℓ −∆

∆
 ; (3.16)

𝑒𝑛𝑑 𝑓𝑜𝑟 .

Safeguards must be added to this algorithm to make it practical for
instance, when 𝜆(𝑙) < −𝜆1the Cholesky factorization

𝐵 + −𝜆𝑙𝐼 = 𝑅𝑇𝑅

will not exist. A slightly enhance version of this algorithm does, however,
converge to a solution of (3.9) in most cases. The main work in each
iteration of this method is, of course, the Cholesky factorization of
𝐵 + −𝜆𝑙𝐼. Practical versions of this algorithm do not iterate until
convergence to the optimal 𝜆 is obtained with high accuracy, but are
content with an approximate solution that can be obtained in two or three
iterations see [71].

Example 3.1:

Consider 𝑓: 𝐼𝑅𝑛 → 𝐼𝑅 defined by 𝑓 𝑥 = 𝑥1
3 + 3𝑥1𝑥2

2

and let 𝑥 = (0,0)𝑇 and 𝑝 = (1,2)𝑇

𝑓 𝑥 + 𝑝 = 𝑓 𝑥 + ∇𝑓(𝑥 + 𝛼𝑝)𝑇𝑝

𝑓 𝑥 + 𝑝 = (𝑥1 + 𝑝1)3 + 3 𝑥1 + 𝑝1 (𝑥2 + 𝑝2)2 (∗)

32

by substituting 𝑥 𝑎𝑛𝑑 𝑝 in (∗)

𝑓 𝑥 + 𝑝 = (0 + 1)3 + 3 0 + 1 0 + 2 2 = 1 + 3 × 4 = 13

𝑓 𝑥 + 𝛼𝑝 = (𝑥1 + 𝛼𝑝1)3 + 3 𝑥1 + 𝛼𝑝1 𝑥2 + 𝛼𝑝2 2

∇𝑓 𝑥 + 𝛼𝑝 =

𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2

=
3 𝑥1 + 𝛼𝑝1 2 + 3(𝑥2 + 𝛼𝑝2)2

6 𝑥1 + 𝛼𝑝1 (𝑥2 + 𝛼𝑝2)

=
3 0 + 𝛼 × 1 2 + 3(0 + 𝛼 × 2)2

6 0 + 𝛼 × 1 (0 + 𝛼 × 2)
 = 15𝛼2

12𝛼2

∇𝑓(𝑥 + 𝛼𝑝)𝑇𝑝 = 15𝛼2 12𝛼2
1
2
 = 15𝛼2 + 24𝛼2 = 39𝛼2

𝑓 𝑥 + 𝑝 = 𝑓 𝑥 + ∇𝑓(𝑥 + 𝑝)𝑇𝑝

13 = 0 + 39𝛼2 ⇒ 𝛼2 =
13

39
⇒ 𝛼2 =

1

3
⇒ 𝛼 =

1

 3

Example 3.2:

Find ∇𝑓 𝑥 and ∇2𝑓 𝑥 , If 𝑥 = (1,1)𝑇

𝑓 𝑥 = 100 𝑥2 − 𝑥1
2 2 + (1 − 𝑥1)2

Solution

𝑓 𝑥 = 100 𝑥2
2 − 2𝑥2𝑥1

2 + 𝑥1
4 + 1 − 2𝑥1 + 𝑥1

2

= 100𝑥2
2 − 200𝑥2𝑥1

2 + 100𝑥1
4 + 1 − 2𝑥1 + 𝑥1

2

100𝑥1
4 + 𝑥1

2 − 2𝑥1 + 100𝑥2
2 − 200𝑥2𝑥1

2 + 1

𝜕𝑓

𝜕𝑥1
= 400𝑥1

3 + 2𝑥1 − 2 − 400𝑥2𝑥1

𝜕𝑓

𝜕𝑥2
= 200𝑥2 − 200𝑥1

2

∇𝑓 𝑥 =

𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2

=
400𝑥1

3 + 2𝑥1 − 2 − 400𝑥2𝑥1

200𝑥2 − 200𝑥1
2 =

400 + 2 − 2 − 400
200 − 200

=
0
0

33

𝜕2𝑓

𝜕𝑥1
2 = 1200𝑥1

2 + 2 − 400𝑥2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
= −400𝑥1

𝜕2𝑓

𝜕𝑥2𝜕𝑥1
= −400𝑥1

𝜕2𝑓

𝜕𝑥2
2 = 200

∇2𝑓 𝑥 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2

=
1200𝑥1

2 + 2 − 400𝑥2 −400𝑥1

−400𝑥1 200

=
1200 + 2 − 400 −400

−400 200
 =

802 −400
−400 200

3.4 Truncated Newton Method:
In this section, we study truncated Newton method (modified Newton CG),
which is assumed to be the solution of the trust region subproblem(3.3).
This algorithm, due to Steihaug [1], is specified below as Algorithm 3.3. A
complete algorithm for minimizing 𝑓 is obtained by using Algorithm 3.3 to
generate the step pkrequired by Algorithm 3.1, for some choice of tolerance
ϵk at each iteration. we use dj to denote the search directions of this

modified CG iteration and zj to denote the sequence of iterates that it

generates[1,12].
Algorithm 3.3 (CG-Steihaug)
Given tolerance 𝜖k > 0 ;
Set 𝑧0 = 0, 𝑟0 = ∇𝑓𝑘 , 𝑑0 = −𝑟0 = −∇𝑓𝑘 ;
If 𝑟0 < 𝜖k
Return 𝑝𝑘 = 𝑧0 = 0;
For 𝑗 = 0,1,2, … ..
If 𝑑𝑗

𝑇𝐵𝑘𝑑𝑗 ≤ 0

Find 𝜏 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗 minimizes 𝑚𝑘 𝑝𝑘 in Algorithm 3.1 and

satisfies 𝑝𝑘 ≤ ∆𝑘
Return 𝑝𝑘 ;
Set 𝛼𝑗 = 𝑟𝑗

𝑇𝑟𝑗 𝑑𝑗
𝑇𝐵𝑘𝑑𝑗 ;

Set 𝑧𝑗+1 = 𝑧𝑗 + 𝛼𝑗 𝑑𝑗 ;

If 𝑧𝑗+1 ≥ ∆𝑘

Find 𝜏 ≥ 0 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗 satisfies 𝑝𝑘 = ∆𝑘 ;

Return 𝑝𝑘 ;

34

Set 𝑟𝑗+1 = 𝑟𝑗 + 𝛼𝑗 𝐵𝑘𝑑𝑗 ;

If 𝑟𝑗+1 < 𝜖k

Return 𝑝𝑘 = 𝑧𝑗 +1;

Set 𝛽𝑗+1 = 𝑟𝑗+1
𝑇 𝑟𝑗+1 𝑟𝑗

𝑇𝑟𝑗 ;

Set 𝑑𝑗+1 = −𝑟𝑗 +1 + 𝛽𝑗 +1𝑑𝑗 ;

End(for)
The initialization of 𝑧0 to zero in Algorithm 3.3 is a crucial feature of the
algorithm. Provided 𝛻𝑓𝑘 2 ≥ ϵk , Algorithm 3.3 terminates at a point pk
for which 𝑚𝑘(𝑝𝑘) ≤ 𝑚𝑘(𝑝𝑘

𝑐

), that is, when the reduction in model function

equals or exceeds that of the Cauchy point. To demonstrate this fact, we
consider several cases. First, if 𝑑0

𝑇𝐵𝑘𝑑0 = (𝛻𝑓𝑘)𝑇𝐵𝑘𝛻𝑓𝑘 ≤ 0 , then the
condition in the first if statement is satisfied, and the algorithm returns the
Cauchy point 𝑝 = −∆𝑘(𝛻𝑓𝑘)/ 𝛻𝑓𝑘 . Otherwise, Algorithm 3.3 defines 𝑧1 as
follows:

𝑧1 = 𝛼0𝑑0 = 𝑟0
𝑇𝑟0 𝑑0

𝑇𝐵𝑘𝑑0 𝑑0 = −
(𝛻𝑓𝑘)𝑇𝛻𝑓𝑘

(𝛻𝑓𝑘)𝑇𝐵𝑘𝛻𝑓𝑘
𝛻𝑓𝑘 .

If 𝑧1 < ∆𝑘 , then 𝑧1 is exactly the Cauchy point. Subsequent steps of
Algorithm 3.3 ensure that the final pksatisfies 𝑚𝑘(𝑝𝑘) ≤ 𝑚𝑘(𝑧1) .
 When z1 ≥ ∆k , on the other hand, the second if statement is activated,
and Algorithm 3.3 terminates at the Cauchy point, proving our claim. This
property is important for global convergence: Since each step is at least as
good as the Cauchy point in reducing the model mk , Algorithm 3.3 is
globally convergent. Another crucial property of the method is that each
iterate 𝑧𝑗 is larger in norm than its predecessor. This property is another

consequence of the initialization z0 = 0. Its main implication is that it is
acceptable to stop iterating as soon as the trust-region boundary is
reached, because no further iterates giving a lower value of the model
function 𝑚𝑘 will lie inside the trust region.

Theorem 3.2.
The sequence of vectors {zj } generated by Algorithm 3.3 satisfies

0 = z0 2 < ⋯ zj 2
< zj+1

2
< ⋯ pk 2 ≤ ∆k .

PROOF. We first show that the sequences of vectors generated by
Algorithm 3.3 satisfy 𝑧𝑗

𝑇𝑟𝑗 = 0 for 𝑗 ≥ 0 and 𝑧𝑗
𝑇𝑑𝑗 > 0 for 𝑗 ≥ 1. Algorithm

3.3 computes 𝑧𝑗+1 recursively in terms of 𝑧𝑗 ; but when all the terms of this

recursion are written explicitly, we see that

 𝑧𝑗 = 𝑧0 + 𝛼𝑖
𝑗−1
𝑖=0 𝑑𝑖 = 𝛼𝑖

𝑗−1
𝑖=0 𝑑𝑖

since 𝑧0 = 0 .Multiplying by 𝑟𝑗 and applying the expanding subspace

property of conjugate gradients

 𝑧𝑗
𝑇𝑟𝑗 = 𝛼𝑖

𝑗−1
𝑖=0 𝑑𝑖

𝑇𝑟𝑗 = 0 (3.17)

35

An induction proof establishes the relation 𝑧𝑗
𝑇𝑑𝑗 > 0. By applying the

expanding subspace property again, we obtain
𝑧1

𝑇𝑑1 = 𝛼0𝑑0 𝑇 −𝑟1 + 𝛽1𝑑0 = 𝛼0𝛽1𝑑0
𝑇𝑑0 > 0.

We now make the inductive hypothesis that 𝑧𝑗
𝑇𝑑𝑗 > 0 and deduce that

 𝑧𝑗+1
𝑇 𝑑𝑗+1 > 0. From (3.17), we have 𝑧𝑗+1

𝑇 𝑟𝑗 +1 = 0, and therefore

 𝑧𝑗+1
𝑇 𝑑𝑗+1 = 𝑧𝑗+1

𝑇 (−𝑟𝑗 +1 + 𝛽𝑗+1𝑑𝑗)

𝛽𝑗+1 𝑧𝑗+1
𝑇 𝑑𝑗 = 𝛽𝑗+1(𝑧𝑗 + 𝛼𝑗 𝑑𝑗)𝑇𝑑𝑗

𝛽𝑗+1𝑧𝑗
𝑇𝑑𝑗 + 𝛼𝑗 𝛽𝑗+1𝑑𝑗

𝑇𝑑𝑗

Because of the inductive hypothesis and positivity of 𝛽𝑗 +1and 𝛼𝑗 , the last

expression is positive. We now prove the theorem. If Algorithm 3.3

terminates because 𝑑𝑗
𝑇𝐵𝑘𝑑𝑗 ≤ 0 or 𝑧𝑗+1

2
≥ ∆𝑘 , then the final point 𝑝𝑘 is

chosen to make 𝑝𝑘 2 = ∆𝑘 , which is the largest possible length. To cover
all other possibilities in the algorithm, we must show that

 𝑧𝑗 2
< 𝑧𝑗+1

2
when𝑧𝑗+1 = 𝑧𝑗 + 𝛼𝑗 𝑑𝑗 and 𝑗 ≥ 1. Observe that

 𝑧𝑗+1
2

2
= 𝑧𝑗 + 𝛼𝑗 𝑑𝑗

𝑇
 𝑧𝑗 + 𝛼𝑗 𝑑𝑗 = 𝑧𝑗 2

2
+ 2𝛼𝑗 𝑧𝑗

𝑇𝑑𝑗 + 𝛼𝑗
2 𝑑𝑗 2

2

It follows from this expression and our intermediate result that

 𝑧𝑗 2
< 𝑧𝑗+1

2
, so our proof is complete.

36

Chapter 4

Quasi-Newton Methods

4.1 Introduction :
In the mid 1950s, W.C. Davidon, a physicist working at Argonne National
Laboratory, was using the coordinate descent method to perform a long
optimization calculation. At that time computers were not very stable, and
to Davidon’s frustration, the computer system would always crash before
the calculation was finished. So Davidon decided to find a way of
accelerating the iteration. The algorithm he developed—the first quasi-
Newton algorithm—turned out to be one of the most creative ideas in
nonlinear optimization. It was soon demonstrated by Fletcher and Powell
that the new algorithm was much faster and more reliable than the other
existing methods, and this dramatic advance transformed nonlinear
optimization overnight.
During the following twenty years, numerous variants were proposed and
hundreds of papers were devoted to their study. An interesting historical
irony is that Davidon’s paper [110] was not accepted for publication; it
remained as a technical report for more than thirty years until it appeared
in the first issue of the SIAM Journal on Optimization in 1991 [111].
Quasi-Newton methods, like steepest descent, require only the gradient of
the objective function to be supplied at each iterate. By measuring the
changes in gradients, they construct a model of the objective function that
is good enough to produce superliner convergence.
Moreover, since second derivatives are not required, Quasi-Newton
methods are sometimes more efficient than Newton’s method[1,12].
4.2 The BFGS Method:
The most popular Quasi-Newton algorithm is the BFGS method, named for
its discoverers Broyden, Fletcher, Goldfarb, and Shanno.
We begin the derivation by forming the following quadratic model of the
objective function at the current iterate 𝑥𝑘 :

 𝑚𝑘 𝑝 = 𝑓𝑘 + ∇𝑓𝑇
𝑘
𝑝 +

1

2
𝑝𝑇𝐵𝑘𝑝. (4.1)

Here 𝐵𝑘 is an 𝑛 × 𝑛 symmetric positive definite matrix that will be revised
or updated at every iteration. Note that the function value and gradient of
this model at 𝑝 = 0 match 𝑓𝑘and ∇𝑓𝑘 , respectively. The minimize 𝑝𝑘 of this
convex quadratic model, which we can write explicitly as
 𝑝𝑘 = −𝐵−1

𝑘∇𝑓𝑘 (4.2)
is used as the search direction, and the new iterate is
 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 (4.3)
where the step length 𝛼𝑘 is chosen to satisfy the Wolfe conditions (2.15).

37

Instead of computing 𝐵𝑘 a fresh at every iteration, Davidon proposed to
update it in a simple manner to account for the curvature measured during
the most recent step. Suppose that we have generated a new iterate 𝑥𝑘+1
and wish to construct a new quadratic model, of the form

𝑚𝑘+1 𝑝 = 𝑓𝑘+1 + ∇𝑓𝑇
𝑘+1

𝑝 +
1

2
𝑝𝑇𝐵𝑘+1𝑝.

What requirements should we impose on 𝐵𝑘+1, based on the knowledge
gained during the latest step? One reasonable requirement is that the
gradient of 𝑚𝑘+1 should match the gradient of the objective function 𝑓 at
the latest two iterates 𝑥𝑘 and 𝑥𝑘+1. Since ∇𝑚𝑘+1 0 is precisely 𝛻𝑓𝑘+1, the
second of these conditions is satisfied automatically. The first condition can
be written mathematically as

∇𝑚𝑘+1 −𝛼𝑘𝑝𝑘 = 𝛻𝑓𝑘+1 − 𝛼𝑘𝐵𝑘+1𝑝𝑘 = 𝛻𝑓𝑘
By rearranging, we obtain
 𝐵𝑘+1𝛼𝑘𝑝𝑘 = 𝛻𝑓𝑘+1 − 𝛻𝑓𝑘 . (4.4)
To simplify the notation it is useful to define the vectors
 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 = 𝛼𝑘𝑝𝑘 , 𝑦𝑘 = 𝛻𝑓𝑘+1 − 𝛻𝑓𝑘 (4.5)
so that (4.4) becomes
 𝐵𝑘+1𝑠𝑘 = 𝑦𝑘 (4.6)
We refer to this formula as the secant equation.
Given the displacement 𝑠𝑘 and the change of gradients 𝑦𝑘 , the secant
equation requires that the symmetric positive definite matrix 𝐵𝑘+1 map 𝑠𝑘
into 𝑦𝑘 . This will be possible only if 𝑠𝑘 and 𝑦𝑘 satisfy the curvature
condition
 𝑠𝑘

𝑇𝑦𝑘 > 0 (4.7)
as is easily seen by premultiplying (4.6) by 𝑠𝑘

𝑇 .When 𝑓 is strongly convex,
the inequality (4.7) will be satisfied for any two points 𝑥𝑘 and 𝑥𝑘+1
.However, this condition will not always hold for nonconvex functions, and
in this case we need to enforce (4.7) explicitly, by imposing restrictions on
the line search procedure that chooses the step length 𝜶. In fact, the
condition (4.7) is guaranteed to hold if we impose the Wolfe (2.15) on the
line search. To verify this claim, we note from (4.5) that 𝛻𝑓𝑘+1

𝑇 𝑠𝑘 ≥
𝑐2𝛻𝑓𝑘

𝑇 𝑠𝑘 , and therefore
 𝑦𝑘

𝑇𝑠𝑘 ≥ (𝑐2 − 1)𝛻𝑓𝑘
𝑇 𝑝𝑘 (4.8)

Since 𝑐2 < 1 and since 𝑝𝑘 is a descent direction, the term on the right is
positive, and the curvature condition (4.7) holds. When the curvature
condition is satisfied, the secant equation (4.6) always has a solution 𝐵𝑘+1.

In fact, it admits an infinite number of solutions, since the
𝑛(𝑛 + 1)

2
 degrees

of freedom in a symmetric positive definite matrix exceed the 𝑛 conditions
imposed by the secant equation. The requirement of positive definiteness
imposes 𝑛 additional inequalities (all principal minors must be positive)but
these conditions do not absorb the remaining degrees of freedom. To

38

determine 𝐵𝑘+1 uniquely, we impose the additional condition that among
all symmetric matrices satisfying the secant equation, 𝐵𝑘+1is, in some
sense, closest to the current matrix 𝐵𝑘 . In other words, we solve the
problem
 min𝐵 𝐵 − 𝐵𝑘 (4.9a)
 Subject to 𝐵 = 𝐵𝑇 , 𝐵𝑠𝑘 = 𝑦𝑘 (4.9b)
Where 𝑠𝑘 and 𝑦𝑘 satisfy (4.7) and 𝐵𝑘 is symmetric and positive definite.
Different matrix norms can be used in (4.9a), and each norm gives rise to a
different quasi-Newton method. A norm that allows easy solution of the
minimization problem (4.9) and gives rise to a scale-invariant optimization
method is the weighted Frobenius norm

 𝐴 𝑊 ≡ 𝑊1 2 𝐴𝑊1 2
𝐹

, (4.10)

The weight matrix 𝑊 can be chosen as Many matrix satisfying the relation
𝑦𝑘 = 𝑠𝑘 .With this weighting matrix and this norm, the unique solution of
(4.9) is
 (DFP)𝐵𝑘+1 = 𝐼 − 𝜌𝑘𝑦𝑘 𝑠𝑘

𝑇

 𝐵𝑘 𝐼 − 𝜌𝑘𝑠𝑘 𝑦𝑘

𝑇

 + 𝜌𝑘𝑦𝑘 𝑦𝑘

𝑇

 (4.11)

With

 𝜌𝑘 =
1

𝑦𝑘
𝑇𝑠𝑘

 (4.12)

This formula is called the DFP updating formula, since it is the one
originally proposed by Davidon in 1959, and subsequently studied,
implemented, and popularized by Fletcher and Powell. The inverse of 𝐵𝑘 ,
which we denote by

𝐻𝑘 = 𝐵𝑘
−1

is useful in the implementation of the method, since it allows the search
direction (4.2) to be calculated by means of a simple matrix–vector
multiplication. Using the Sherman–Morrison–Woodbury formula we can
derive the following expression for the update of the inverse Hessian
approximation 𝐻𝑘 that corresponds to the DFP update of 𝐵𝑘 in (4.11):

 DFP 𝐻𝑘+1 = 𝐻𝑘 −
𝐻𝑘𝑦𝑘 𝑦𝑘

𝑇𝐻𝑘

𝑦𝑘
𝑇𝐻𝑘𝑦𝑘

−
𝑠𝑘 𝑠𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

 (4.13)

The DFP updating formula is quite effective, but it was soon superseded by
the BFGS formula, which is presently considered to be the most effective of
all Quasi-Newton Updating formulae. BFGS updating can be derived by
making a simple change in the argument that led to (4.11). Instead of
imposing conditions on the Hessian approximations 𝐵𝑘 , we impose similar
conditions on their inverses 𝐻𝑘 . The updated approximation 𝐻𝑘+1 must be
symmetric and positive definite, and must satisfy the secant equation (4.6),
now written as

𝐻𝑘+1𝑦𝑘 = 𝑠𝑘
The condition of closeness to 𝐻𝑘 is now specified by the following analogue
of (4.9):

39

 min𝐵 𝐻 − 𝐻𝑘 (4.14a)
 Subject to 𝐻 = 𝐻𝑇 , 𝐻𝑦𝑘 = 𝑠𝑦𝑘 (4.14b)
The norm is again the weighted Frobenius norm described above, where
the weight matrix 𝑊 is now any matrix satisfying 𝑠𝑘 = 𝑦𝑘 .
The unique solution 𝐻𝑘+1 to (4.14) is given by

 (BFGS) 𝐻𝑘+1 = 𝐼 − 𝜌𝑘𝑠𝑘 𝑦𝑘
𝑇

 𝐻𝑘 𝐼 − 𝜌𝑘𝑦𝑘 𝑠𝑘

𝑇

 + 𝜌𝑘𝑠𝑘 𝑠𝑘

𝑇

 (4.15)

With 𝜌𝑘 defined by (4.12).
Just one issue has to be resolved before we can define a complete BFGS
algorithm: How should we choose the initial approximation 𝐻0 ?
Unfortunately, there is no magic formula that works well in all cases. We
can use specific information about the problem, for instance by setting it to
the inverse of an approximate Hessian calculated by finite differences at 𝑥0
. Otherwise, we can simply set it to be the identity matrix, or a multiple of
the identity matrix, where the multiple is chosen to reflect the scaling of the
variables [1].
Algorithm 4.1 (BFGS Method).
Given starting point 𝑥0, convergence tolerance 𝜖 > 0, inverse Hessian
approximation 𝐻0;
𝑘 ← 0;
While 𝛻𝑓𝑘 > 𝜖 ;
Compute search direction
 𝑝𝑘 = −𝐻𝑘𝛻𝑓𝑘 ; (4.16)
Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 where 𝛼𝑘 is computed from a line search
procedure to satisfy the Wolfe conditions ;
Define 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘 = 𝛻𝑓𝑘+1 − 𝛻𝑓𝑘 ;
 Compute 𝐻𝑘+1 by means of (4.15);
𝑘 ← 𝑘 + 1;
end (while)
The algorithm is robust, and its rate of convergence is superlinear,which is
fast enough for most practical purposes.
Implementation:
A few details and enhancements need to be added to Algorithm 3.4 to
produce an efficient implementation. The line search, which should satisfy

either the Wolfe conditions, should always try the step length 𝛼𝑘 = 1 first,
because this step length will eventually always be accepted (under certain
conditions), there by producing superlinear convergence of the overall
algorithm. The values 𝑐1 = 10−4 and 𝑐2 = 0.9 are commonly used.
As mentioned earlier, the initial matrix 𝐻0 often is set to some multiple 𝛽𝐼
of the identity, but there is no good general strategy for choosing the
multiple 𝛽. We change the provisional value 𝐻0 = 𝐼 by setting

 𝐻0 ←
𝑦𝑘

𝑇𝑠𝑘

𝑦𝑘
𝑇𝑦𝑘

𝐼 (4.17)

40

before applying the update (4.12) , (4.15) to obtain 𝐻0.
4.3 The SR1 Method:
In the BFGS and DFP updating formulae, the updated matrix 𝐵𝑘+1 (or 𝐻𝑘+1)
differs from its predecessor 𝐵𝑘 (or 𝐻𝑘) by a rank-2 matrix. In fact, as we
now show, there is a simpler rank-1 update that maintains symmetry of the
matrix and allows it to satisfy the secant equation.
Unlike the rank-two update formulae, this symmetric-rank-1, or SR1,
update does not guarantee that the updated matrix maintains positive
definiteness. Good numerical results have been obtained with algorithms
based on SR1, so we derive it here and investigate its properties.
The symmetric rank-1 update has the general form

𝐵𝑘+1 = 𝐵𝑘 + 𝜎𝑣𝑣𝑇
Where 𝜎 is either +1 𝑜𝑟 − 1, and 𝜎 and 𝑣 are chosen so that 𝐵𝑘+1satisfies
the secant equation (4.5) that is, 𝐵𝑘+1𝑠𝑘 = 𝑦𝑘 . By substituting into this
equation, we obtain
 𝑦𝑘 = 𝐵𝑘𝑠𝑘 + [𝜎𝑣𝑇𝑠𝑘]𝑣. (4.18)
Since the term in brackets is a scalar, we deduce that 𝑣 must be a multiple
of 𝑦𝑘 − 𝐵𝑘𝑠𝑘 , that is, 𝑣 = 𝛿(𝑦𝑘 − 𝐵𝑘𝑠𝑘) for some scalar 𝛿. By substituting
this form of 𝑣 into (4.18), we obtain
 𝑦𝑘 − 𝐵𝑘𝑠𝑘 = 𝜎𝛿2[𝑠𝑘

𝑇

(𝑦𝑘 − 𝐵𝑘𝑠𝑘)] 𝑦𝑘 − 𝐵𝑘𝑠𝑘 (4.19)

and it is clear that this equation is satisfied if (and only if) we choose the
parameters 𝛿 and 𝜎 to be

𝜎 = 𝑠𝑖𝑔𝑛 𝑠𝑘
𝑇

 𝑦𝑘 − 𝐵𝑘𝑠𝑘 , 𝛿 = ± 𝑠𝑘

𝑇

 𝑦𝑘 − 𝐵𝑘𝑠𝑘

−
1
2

Hence, we have shown that the only symmetric rank-1 updating formula
that satisfies the secant equation is given by

 (SR1) 𝐵𝑘+1 = 𝐵𝑘 +
 𝑦𝑘−𝐵𝑘𝑠𝑘 𝑦𝑘−𝐵𝑘𝑠𝑘 𝑇

 𝑦𝑘−𝐵𝑘𝑠𝑘 𝑇𝑠𝑘
 (4.20)

By applying the Sherman–Morrison formula, we obtain the corresponding
update formula for the inverse Hessian approximation 𝐻𝑘 :

 (SR1) 𝐻𝑘+1 = 𝐻𝑘 +
 𝑠𝑘−𝐻𝑘𝑦𝑘 𝑠𝑘−𝐻𝑘𝑦𝑘 𝑇

 𝑠𝑘−𝐻𝑘𝑦𝑘 𝑇𝑦𝑘
 (4.21)

This derivation is so simple that the SR1 formula has been rediscovered a
number of times. It is easy to see that even if 𝐵𝑘 is positive definite, 𝐵𝑘+1
may not have the same property. (The same is, of course, true of 𝐻𝑘 .) This
observation was considered a major drawback in the early days of
nonlinear optimization when only line search iterations were used.
However, with the advent of trust-region methods, the SR1 updating
formula has proved to be quite useful, and its ability to generate indefinite
Hessian approximations can actually be regarded as one of its chief
advantages. The main drawback of SR1 updating is that the denominator in

41

(4.20) or (4.21) can vanish. In fact, even when the objective function is a
convex quadratic, there may be steps on which there is no symmetric
rank-1 update that satisfies the secant equation. It pays to reexamine the
derivation above in the light of this observation. By reasoning in terms of
𝐵𝑘 (similar arguments can be applied to 𝐻𝑘), we see that there are three
cases:
1. If 𝑦𝑘 − 𝐵𝑘𝑠𝑘 𝑇𝑠𝑘 ≠ 0 ,then the arguments above show that there is a

unique rank-one updating formula satisfying the secant equation (4.6),
and that it is given by (4.20).

2. If 𝑦𝑘 = 𝐵𝑘𝑠𝑘 , then the only updating formula satisfying the secant
equation is simply 𝐵𝑘+1 = 𝐵𝑘

3. If 𝑦𝑘 ≠ 𝐵𝑘𝑠𝑘and 𝑦𝑘 − 𝐵𝑘𝑠𝑘 𝑇𝑠𝑘 = 0 ,then (4.19) shows that there is no
symmetric rank-one updating formula satisfying the secant equation.

The last case clouds an otherwise simple and elegant derivation, and
suggests that numerical instabilities and even breakdown of the method
can occur. It suggests that rank-one updating does not provide enough
freedom to develop a matrix with all the desired characteristics, and that a
rank-two correction is required. This reasoning leads us back to the BFGS
method, in which positive definiteness (and thus nonsingularity) of all
Hessian approximations is guaranteed. We are interested in the SR1
formula for the following reasons.
(i) A simple safeguard seems to adequately prevent the breakdown of the
method and the occurrence of numerical instabilities.
(ii) The matrices generated by the SR1 formula tend to be good
approximations to the true Hessian matrix—often better than the BFGS
approximations.
We now introduce a strategy to prevent the SR1 method from breaking
down. It has been observed in practice that SR1 performs well simply by
skipping the update if the denominator is small. More specifically, the
update (4.20) is applied only if

 𝑠𝑘
𝑇 𝑦𝑘 − 𝐵𝑘𝑠𝑘 ≥ 𝑟 𝑠𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘 , (4.22)

Where 𝑟 ∈ (0, 1) is a small number, say 𝑟 = 10−8. If (4.22) does not hold,
we set 𝐵𝑘+1 = 𝐵𝑘 . Most implementations of the SR1 method use a skipping
rule of this kind. We now give a formal description of an SR1 method using
a trust-region framework, which we prefer over a line search framework
because it can accommodate indefinite Hessian approximations more
easily[1,2].
Algorithm 4.2 (SR1 Trust-Region Method).
Given starting point 𝑥0 , initial Hessian approximation 𝐵0 , trust-region
radius ∆0 , convergence tolerance 𝜖 > 0 , parameters 𝜂 ∈ (0, 10−3) and
𝑟 ∈ (0, 1);
𝑘 ← 0;

42

while 𝛻𝑓𝑘 > 𝜖 ;
Compute 𝑝𝑘 by solving the trust region sub-problem find 𝑝𝑘 ;
Compute
𝑦𝑘 = 𝛻𝑓 (𝑥𝑘 + 𝑝𝑘) − 𝛻𝑓𝑘 ,

𝜌𝑘 =
𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝑝𝑘)

𝑚𝑘 0 − 𝑚𝑘(𝑝𝑘)

if 𝜌𝑘 > 𝜂
𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘 ;
else
𝑥𝑘+1 = 𝑥𝑘 ;
end (if)
if 𝜌𝑘 > 0.75
if 𝑝𝑘 ≤ 0.8∆𝑘
∆𝑘+1= ∆𝑘 ;
else
∆𝑘+1= 2∆𝑘 ;
end (if)
else if 0.1 ≤ 𝜌𝑘 ≤ 0.75
∆𝑘+1= ∆𝑘 ;
else
∆𝑘+1= 0.5∆𝑘 ;
end (if)

if 𝑠𝑘
𝑇 𝑦𝑘 − 𝐵𝑘𝑠𝑘 ≥ 𝑟 𝑠𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘

Use (4.20) to compute 𝐵𝑘+1 (even if 𝑥𝑘+1 = 𝑥𝑘);
else
𝐵𝑘+1 ← 𝐵𝑘 ;
end (if)
𝑘 ← 𝑘 + 1;
end (while)
Properties of SR1 Updating:
One of the main advantages of SR1 updating is its ability to generate good
Hessian approximations. We demonstrate this property by first examining
a quadratic function. For functions of this type, the choice of step length
does not affect the update, so to examine the effect of the updates, we can
assume for simplicity a uniform step length of 1, that is,
 𝑝𝑘 = −𝐻𝑘𝛻𝑓𝑘 , 𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘 . (4.23)
It follows that 𝑝𝑘 = 𝑠𝑘 .
Theorem 4.1.
Suppose that 𝑓: 𝐼𝑅𝑛 → 𝐼𝑅 is the strongly convex quadratic function

𝑓 𝑥 = 𝑏𝑇𝑥 +
1

2
𝑥𝑇𝐴𝑥 , where 𝐴 is symmetric positive definite. Then for any

starting point 𝑥0 and any symmetric starting matrix 𝐻0, the iterates {𝑥𝑘}

43

generated by the SR1 method (4.21), (4.23) converge to the minimizer in
at most 𝒏 steps, provided that (𝑠𝑘 − 𝐻𝑘𝑦𝑘)𝑇 𝑦𝑘 ≠ 0 for all 𝑘.
Moreover, if 𝑛 steps are performed, and if the search directions 𝑝𝑖 are
linearly independent, then 𝐻𝑛 = 𝐴−1.
Theorem 4.2.
Suppose that 𝑓 is twice continuously differentiable, and that its Hessian is
bounded and Lipschitz continuous in a neighborhood of a point 𝑥∗. Let {𝑥𝑘}
be any sequence of iterates such that 𝑥𝑘 → 𝑥∗for some 𝑥∗ ∈ 𝐼𝑅𝑛 . Suppose
in addition that the inequality (4.22) holds for all 𝑘, for some 𝑟 ∈ (0, 1),
and that the steps 𝑠𝑘 are uniformly linearly independent. Then the matrices
𝐵𝑘 generated by the SR1 updating formula satisfy

lim
𝑘→∞

 𝐵𝑘 − ∇2𝑓(𝑥∗) = 0

The term “uniformly linearly independent steps” means, roughly speaking,
that the steps do not tend to fall in a subspace of dimension less than 𝑛.
This assumption is usually, but not always, satisfied in practice[1,12].

44

Chapter 5

Available Methods for Derivative Free Optimization

5.1 Introduction :

 Derivative free optimization methods have a long history, see

([37],[36]) and [32] for extensive discussions and references. These

methods come essentially in different classes, a classification strongly

influenced see [75],[15].

 The first class contains algorithms which use finite-difference

approximation of the objective function's derivatives in the context of a

gradient based method, such as nonlinear conjugate gradients or quasi-

Newton methods (see, [12],[75]). The methods in the second class are often

referred to as pattern search methods, because they are based on the

exploration of the variable space using a well-specified geometric pattern,

typically a simplex. The algorithm described see [112] is still the most

popular minimization technique in use today in this context. The methods

of the third class are, for example, based on the progressive building and

updating of a model of the objective function. Design of Experiment and

interpolation models are proposed see ([70],[15]). Response surface

methodology is described see [31]. Trust-region methods also belong to

this class, see ([12],[15],[75]).

5.2 Finite-Difference Derivative Estimates:
Finite differencing refers to the estimation of 𝑓 ′ (𝑥) using values of 𝑓(𝑥).
The simplest formulas just use the difference of two function values which
gives the technique its name. Finite differencing can also be applied to the
calculation of 𝛻𝑓(𝑥) for multidimensional problems, as well as to the
computation of 𝑓 ′′ (𝑥) and the Hessian matrix 𝛻2𝑓(𝑥). For a problem with
𝑛 variables, computing 𝛻𝑓(𝑥) will be about 𝑛 times as expensive as
computing 𝑓(𝑥), and computing 𝛻2𝑓 (𝑥) will be about 𝑛2 times as
expensive as 𝑓(𝑥). Hence, even though this technique relieves the burden of
deriving and programming derivative formulas, it is expensive
computationally. In addition, finite differencing only produces derivative

45

estimates, not exact values. Finite-difference estimates can be derived
from the Taylor series. In one dimension,

𝑓 𝑥 + = 𝑓 𝑥 + 𝑓 ′ 𝑥 +
1

2
2𝑓 ′′ (𝜉)

A simple rearrangement gives

𝑓 ′ 𝑥 =
𝑓 𝑥 + − 𝑓(𝑥)

−

1

2
𝑓 ′′ (𝜉)

leading to the approximation

 𝑓 ′ 𝑥 =
𝑓 𝑥+ −𝑓(𝑥)

 (5.1)

This is the most commonly used finite-difference formula. It is sometimes
called the forward difference formula because 𝑥 + is a shift “forward”
from the point x. This formula could also have been derived from the
definition of the derivative as a limit,

𝑓 ′ 𝑥 = 𝑙𝑖𝑚→0
𝑓 𝑥+ −𝑓(𝑥)

;

but this would not have provided an estimate of the error in the formula.

Example 3.3: Consider the function
𝑓 𝑥 = 𝑠𝑖𝑛 𝑥

with derivative 𝑓 ′ (𝑥) = 𝑐𝑜𝑠(𝑥). The results of using the finite-difference

formula 𝑓 ′ (𝑥) ≈
𝑠𝑖𝑛 (𝑥 +)−𝑠𝑖𝑛 (𝑥)

for x = 2 and for various values of are given in Table 5.1.
The derivation of the finite-difference formula indicates that the error will

be equal to
1

2
𝑓 ′′ (𝜉). Since ξ is between 𝑥 and 𝑥 + ,

error≈
1

2
𝑓′′ (𝜉) =

1

2
(−𝑠𝑖𝑛(𝑥)) =

1

2
(−𝑠𝑖𝑛(2)) ≈

1

2
(−0.91) = 0.455 .

This corresponds to the results in the table for h between 100and 10−8, but
after that the error starts to increase, until eventually the finite-difference
calculation estimates that the derivative is equal to zero. This phenomenon
will be explained below by examining the errors that result when finite
differencing is used. We now estimate the error in finite differencing when
the calculations are performed on a computer. Part of the error is due to
the inaccuracies in the formula itself; this is called the truncation error:

truncation error =
1

2
 𝑓 ′′ (𝜉) In addition there are rounding errors from

the evaluation of the formula (𝑓(𝑥 +) − 𝑓 (𝑥))/ on a computer that
depend on ϵmach , the precision of the computer calculations . There are
rounding errors from the evaluations of the function 𝑓 in the numerator:

(rounding error)1 ≈ |𝑓 (𝑥)|𝜖𝑚𝑎𝑐

46

Table 5.1. Finite differencing.
which are then magnified and augmented by the division by h:

(rounding error)1 ≈
|𝑓 (𝑥)|𝜖𝑚𝑎𝑐

+ |𝑓 ′ (𝑥)|𝜖𝑚𝑎𝑐

 (the first rounding error is magnified by 1/h and then there is an
additional rounding error from the division that is proportional to the
result 𝑓 ′ (𝑥)). Under typical circumstances, when h is small and 𝑓(𝑥) is not
overly large, the first term will dominate, leading to the estimate

rounding error ≈
|𝑓 (𝑥)|𝜖𝑚𝑎𝑐

. The total error is the combination of the

truncation error and the rounding error

error ≈
1

2
 𝑓 ′′ (𝜉) +

|𝑓 (𝑥)|𝜖𝑚𝑎𝑐

.

For fixed 𝑥 and for almost fixed ξ (ξ is between 𝑥 and 𝑥 + , and h will be
small), this formula can be analyzed as a function of alone.
To determine the “best” value of we minimize the estimate of the error as
a function of . Differentiating with respect to and setting the derivative
to zero gives
1

2
 𝑓 ′′ (𝜉) −

|𝑓 (𝑥)|𝜖𝑚𝑎𝑐

2
= 0,

which can be rearranged to give

 =
2|𝑓 (𝑥)|𝜖𝑚𝑎𝑐

 𝑓 ′′ (𝜉)

47

In cases where 𝑓(𝑥) and 𝑓 ′′ (𝜉) are neither especially large nor small, the
simpler approximation

 = 𝜖𝑚𝑎𝑐

can be used. If the more elaborate formula for h is substituted into the
approximate formula for the error, then the result can be simplified to

error ≈ 2𝜖𝑚𝑎𝑐 𝑓 𝑥 . 𝑓 ′′ (𝜉) ,

or more concisely to the result that the error is O(ϵmach).

In the example above, ϵmach ≈ 10−16 and the simplified formula for h

yields ≈ 𝜖𝑚𝑎𝑐 ≈ 10−8 . This value of h gives the most accurate

derivative estimate in the example.The more elaborate formula for yields
 ≈ 2.1 × 10−8, almost the same value. The error with this value of is
about 1.4 × 10−8, slightly worse than the value given by the simpler
formula. This does not indicate that the derivation is invalid; rather it only
emphasizes that the terms used in the derivation are estimates of the
various errors. As expected, the errors in this example are approximately

equal to ϵmach .

In practical settings the value of 𝑓 ′′ (𝜉) will be unknown (even the value of
𝑓(𝑥) will be unknown) and so the more elaborate formula for cannot be

used. Some software packages just use = 𝜖𝑚𝑎𝑐 . or some simple

modification of this formula (for example, taking into account
|𝑥| 𝑜𝑟 |𝑓 (𝑥)|). An alternative is to perform extra calculations for one value
of 𝑥, perhaps the initial guess for the optimization algorithm, to obtain an
estimate for 𝑓 ′′ (𝜉) and then use this to obtain a better value for h that will
be used for subsequent finite-difference calculations.
An additional complication can arise if |x| is large. If < 𝜖𝑚𝑎𝑐 |𝑥|, then the
computed value of 𝑥 + will be equal to 𝑥 and the finite-difference
estimate will be zero. Thus, in the general case the choice of h will depend
on 𝜖𝑚𝑎𝑐 , |𝑥|, and the values of 𝑓 ′′ .
If higher accuracy in the derivative estimates is required, then there are
two things that can be done. One choice is to use higher-precision
arithmetic (arithmetic with a smaller value of ϵmach). This might just mean
switching from single to double precision, a change that can sometimes be
made with an instruction to the compiler without any changes to the
program. If the program is already in double precision, then on some
computers it is possible to use quadruple precision, but quadruple
precision arithmetic can be much slower than double precision since the
instructions for it are not normally built into the computer hardware.
The other choice is to use a more accurate finite-difference formula. The
simplest of these is the central-difference formula

𝑓 ′ 𝑥 =
𝑓 𝑥+ −𝑓(𝑥−)

2
−

1

2
2[𝑓 ′′′ 𝜉1 + 𝑓 ′′′ 𝜉2].

48

It can be derived using the Taylor series for 𝑓(𝑥 +) and 𝑓(𝑥 −) about
the point . Higher derivatives can also be obtained by finite differencing.
For example, the formula

 𝑓 ′′ 𝑥 =
𝑓 𝑥+ −2𝑓 𝑥 +𝑓(𝑥−)

2
−

1

24
2[𝑓(4) 𝜉1 + 𝑓(4) 𝜉2]. (5.2)

can be derived from the Taylor series for 𝑓(𝑥 +) and 𝑓(𝑥 −) about the
point 𝑥. The derivatives of multidimensional functions can be estimated by
applying the finite difference formulas to each component of the gradient
or Hessian matrix. If we define the vector

ej = (0 · · · 0 1 0 · · · 0)T

having a one in the 𝑗𝑡 component and zeroes elsewhere, then

 [𝛻𝑓 (𝑥)]𝑗 ≈
𝑓 (𝑥 + 𝑒𝑗) − 𝑓 (𝑥)

 (5.3)

If the gradient is known, then the Hessian can be approximated via

 [𝛻2𝑓(𝑥)]𝑗𝑘 =
𝜕2𝑓(𝑥)

𝜕𝑥𝑗 𝜕𝑥𝑘
≈

[𝑓 𝑥 + 𝑒𝑘 − 𝑓 𝑥]𝑗

. (5.4)

If it is feasible to use complex arithmetic to evaluate 𝑓(𝑥), then an
alternative way to estimate 𝑓 ′ (𝑥) is to use
𝑓 ′ 𝑥 ≈ ℑ 𝑓 𝑥 + 𝑖 /,

where i = −1and ℑ [f] is the imaginary part of the function 𝑓 . This
formula is capable of producing more accurate estimates of the derivative
(sometimes up to full machine accuracy) with only one additional function
evaluation, for a broad range of values of [1,12].
5.3 Derivative-Free Trust-Region Method for Solving Large-Scale
Optimization Problems Using Truncated Newton Method and Iterative
Method
In this chapter we present, a derivative-free trust-region algorithm for
large-scale unconstrained optimization which are arise in many aspects of
science ,engineering, and economics. In proposed method we using
symmetric-rank1(SR1) discussed in chapter 4 to approximate the Hessian
,and using central finite-difference approximation to the gradient of the
function .We are solving the trust-region sub-problem by two methods
truncated Newton method discussed in section (3.4)and Iterative Method
discussed in section (3.3).Its performance is tested on some problems.
Consider the general unconstrained optimization problem
 𝑚𝑖𝑛𝑥∈𝑅𝑛 𝑓(𝑥) (5.5)
Where 𝑓(𝑥) is a continuously differentiable function defined in 𝑅𝑛 .
Many applications give rise to unconstrained optimization problems with
thousands or millions of variables. Problems of this size can be solved
efficiently only if the storage and computational costs of the optimization
algorithm can be kept at a tolerable level. A diverse collection of large-scale
optimization methods has been developed to achieve this goal, each being
particularly effective for certain problem types [1],[10],[12].

49

Trust region methods for the unconstrained optimization problem (5.5)
compute a trial step in each iteration. Trust-region methods make explicit
reference to a “model” of the objective function. For Newton’s method this
model is a quadratic model derived from the Taylor series for 𝑓 about the
point 𝑥𝑘 :

 𝑞𝑘 𝑥𝑘 = 𝑓 𝑥𝑘 + ∇𝑓(𝑥𝑘)𝑇𝑝 +
1

2
𝑝𝑇∇2𝑓(𝑥𝑘)𝑝 (5.6)

the method will only “trust” this model within a limited neighborhood of
the point 𝑥𝑘 , defined by the constraint
 𝑝 ≤ ∆𝑘 (5.7)
this will serve to limit the size of the step taken from 𝑥𝑘 to 𝑥𝑘+1 . The value
of 𝑘 is adjusted based on the agreement between the model 𝑞𝑘(𝑝) and the
objective function 𝑓(𝑥𝑘 + 𝑝).If the agreement is good, then the model can
be trusted and 𝑘 increased. If not, then 𝑘 will be decreased.(In the
discussion here we assume that . = . 2 that is, we use the Euclidean
norm. At iteration 𝑘 of a trust-region method, the following sub-problem is
solved to determine the step:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑝𝑞𝑘 𝑥𝑘 = 𝑓 𝑥𝑘 + ∇𝑓(𝑥𝑘)𝑇𝑝 +
1

2
𝑝𝑇∇2𝑓(𝑥𝑘) (5.8)

 Subject to
 𝑝 ≤ ∆𝑘

The following is a description of a model trust region algorithm for
unconstrained optimization.
Algorithm 5.1 (A Model Trust Region Algorithm)

Given ∆ > 0 , ∆0∈ 0, ∆ 𝑎𝑛𝑑 𝜂 ∈ 0,
1

4
 :

For 𝑘 = 0,1,2, … ..
Obtain 𝑝𝑘by (approximately) solving (5.6);

Obtain 𝜌𝑘 =
𝑓 𝑥𝑘 −𝑓(𝑥𝑘+𝑝𝑘)

𝑚𝑘 0 −𝑚𝑘(𝑝𝑘)

if𝜌𝑘 <
1

4

∆𝑘+1=
1

4
∆𝑘

else

if𝜌𝑘 >
3

4
 𝑎𝑛𝑑 𝑝𝑘 = ∆𝑘

∆𝑘+1= 𝑚𝑖𝑛(2∆𝑘 , ∆)
else

∆𝑘+1= ∆𝑘
If 𝜌𝑘 < 𝜂

𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘
else

𝑥𝑘+1 = 𝑥𝑘
end(for)

50

In this chapter , we study the case when the matrix 𝐵𝑘 = ∇2𝑓 is updated by
the symmetric-rank-1(SR1) discussed in section(3.8). When the number of
variables is very large, it could be very costly to solve Equation (5.8)
exactly. Therefore, various methods for calculating an approximate solution
of Equation (5.8) have been developed, such as the dogleg [1] and double
dogleg techniques [1], the truncated Newton Method [1,14] and subspace-
iterated methods[1], etc. in this chapter we use truncated Newton Method
and Iterative Method .
Truncated Newton Method:
We study truncated Newton method (modified Newton CG), which is
assumed to be the solution of the trust region sub-problem (5.6). This
algorithm, due to Steihaug [1], is specified below as Algorithm 5.2. A
complete algorithm for minimizing f is obtained by using Algorithm 5.2 to
generate the step 𝑝𝑘 required by Algorithm 5.1, for some choice of
tolerance ϵk at each iteration. we use dj to denote the search directions of

this modified CG iteration and 𝑧𝑗 to denote the sequence of iterates that it

generates[1,12,13,52,109].
Algorithm 5.2 (CG-Steihaug)
Given tolerance 𝜖k > 0 ;
Set 𝑧0 = 0, 𝑟0 = ∇𝑓𝑘 , 𝑑0 = −𝑟0 = −∇𝑓𝑘 ;
If 𝑟0 < 𝜖k
Return 𝑝𝑘 = 𝑧0 = 0;
For 𝑗 = 0,1,2, … ..
If 𝑑𝑗

𝑇𝐵𝑘𝑑𝑗 ≤ 0

Find 𝜏 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗 minimizes 𝑚𝑘 𝑝𝑘 in Algorithm 5.1 and

satisfies 𝑝𝑘 ≤ ∆𝑘
Return 𝑝𝑘 ;
Set 𝛼𝑗 = 𝑟𝑗

𝑇𝑟𝑗 𝑑𝑗
𝑇𝐵𝑘𝑑𝑗 ;

Set 𝑧𝑗+1 = 𝑧𝑗 + 𝛼𝑗 𝑑𝑗 ;

If 𝑧𝑗+1 ≥ ∆𝑘

Find 𝜏 ≥ 0 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗 satisfies 𝑝𝑘 = ∆𝑘 ;

Return 𝑝𝑘 ;
Set 𝑟𝑗+1 = 𝑟𝑗 + 𝛼𝑗 𝐵𝑘𝑑𝑗 ;

If 𝑟𝑗+1 < 𝜖k

Return 𝑝𝑘 = 𝑧𝑗 +1;

Set 𝛽𝑗+1 = 𝑟𝑗+1
𝑇 𝑟𝑗+1 𝑟𝑗

𝑇𝑟𝑗 ;

Set 𝑑𝑗+1 = −𝑟𝑗 +1 + 𝛽𝑗 +1𝑑𝑗 ;

End(for).

51

Iterative Solution of the Sub-Problem :
We study Iterative Solution, which is assumed to be the solution of the trust
region sub-problem. A complete algorithm for minimizing 𝑓 is obtained by
using Algorithm 5.3 to generate the step 𝑝𝑘required by Algorithm 5.1, for
some choice of tolerance 𝜖k at each iteration. More details in Chapter3.
Algorithm (5.3) (Trust Region Sub-problem)
𝐺𝑖𝑣𝑒𝑛 𝜆(0), Δ > 0:

𝑓𝑜𝑟 ℓ = 0,1,2, …

𝐹𝑎𝑐𝑡𝑜𝑟 𝐵 + 𝜆(ℓ)𝐼 = 𝑅𝑇𝑅;

𝑆𝑜𝑙𝑣𝑒 𝑅𝑇𝑅𝑝ℓ = −𝑔, 𝑅𝑇𝑞ℓ = 𝑝ℓ;

𝑆𝑒𝑡

 𝜆(ℓ+1) = 𝜆(ℓ) +
 𝑝ℓ

 𝑞ℓ

2

 𝑝ℓ −∆

∆
 ; (5.9)

𝑒𝑛𝑑 𝑓𝑜𝑟 .
Gradient Estimation via Central Finite Differences
Finite differencing refers to the estimation of 𝑓 ′ (𝑥) using values of 𝑓(𝑥).
central finite differences (CFD) based on the sample set
 𝑋 = {𝑥 + 𝜎𝑒𝑖}𝑖=1

𝑛 ∪ {𝑥 − 𝜎𝑒𝑖}𝑖=1
𝑛 , and is computed as

 [𝑔(𝑥)]𝑖 = 𝛻 𝑓 𝑥 =
𝑓 𝑥+𝜎𝑒𝑖 −𝑓(𝑥−𝜎𝑒𝑖)

2𝜎
, for 𝑖 = 1, 2 , …… , 𝑛 (5.10)

CFD approximations require 2𝑛 functions evaluations. More details in
section 5.2 [1][12].
The Symmetric-Rank-1(SR1) Method
We have shown that the only symmetric rank-1 updating formula that
satisfies the secant equation is given by (4.20) the SR1 updating formula
has proved to be quite useful, and its ability to generate indefinite Hessian
approximations can actually be regarded as one of its chief advantages
[1,12], more details in Chapter3.

 The algorithm 1

The algorithm proposed using truncated Newton method to solve trust

region sub-problem and using symmetric-rank-1 to find approximation to

Hessian and using Central Finite Difference to approximate the Gradient.

52

Algorithm 5.4 (SR1 Trust-Region Method)
Given starting point 𝑥0 , initial Hessian approximation 𝐵0 , trust-region
radius ∆0 , convergence tolerance 𝜖 > 0 , parameters 𝜂 ∈ (0, 10−3) and
𝑟 ∈ (0, 1);
𝑘 ← 0;
Compute 𝑔𝑘 = 𝛻𝑓𝑘 using finite differences eqs(5.10)
While 𝛻𝑓𝑘 > 𝜖 ;
Compute 𝑝𝑘 by solving the subproblem using Algorithm 5.2 find 𝑝𝑘 ;
Compute
𝑦𝑘 = 𝛻𝑓 (𝑥𝑘 + 𝑝𝑘) − 𝛻𝑓𝑘 ,

𝜌𝑘 =
𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝑝𝑘)

𝑚𝑘 0 − 𝑚𝑘(𝑝𝑘)

if 𝜌𝑘 > 𝜂
𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘 ;
else
𝑥𝑘+1 = 𝑥𝑘 ;
end (if)
if 𝜌𝑘 > 0.75
if 𝑝𝑘 ≤ 0.8∆𝑘
∆𝑘+1= ∆𝑘 ;
else
∆𝑘+1= 2∆𝑘 ;
end (if)
else if 0.1 ≤ 𝜌𝑘 ≤ 0.75
∆𝑘+1= ∆𝑘 ;
else
∆𝑘+1= 0.5∆𝑘 ;
end (if)
if 𝑠𝑘

𝑇 𝑦𝑘 − 𝐵𝑘𝑠𝑘 ≥ 𝑟 𝑠𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘

Use (4.20) to compute 𝐵𝑘+1 (even if 𝑥𝑘+1 = 𝑥𝑘);
else
𝐵𝑘+1 ← 𝐵𝑘 ;
end (if)
𝑘 ← 𝑘 + 1;
end (while)

53

The algorithm 2
The algorithm proposed using Iterative Solution method to solve trust
region sub problem and using symmetric-rank-1 to find approximation to
Hessian and using Central Finite Difference to approximate the Gradient.
Algorithm 5.5 (SR1 Trust-Region Method)
Given starting point 𝑥0 , initial Hessian approximation 𝐵0, trust-region radius ∆0,
convergence tolerance 𝜖 > 0, parameters 𝜂 ∈ (0, 10−3) and 𝑟 ∈ (0, 1);
𝑘 ← 0;
Compute 𝑔𝑘 = 𝛻𝑓𝑘 using finite differences eqs(5.10)
While 𝛻𝑓𝑘 > 𝜖 ;
Compute 𝑝𝑘 by solving the sub-problem using Algorithm5.3 find 𝑝𝑘 ;
Compute
𝑦𝑘 = 𝛻𝑓 (𝑥𝑘 + 𝑝𝑘) − 𝛻𝑓𝑘 ,

𝜌𝑘 =
𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝑝𝑘)

𝑚𝑘 0 − 𝑚𝑘(𝑝𝑘)

if 𝜌𝑘 > 𝜂
𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘 ;
else
𝑥𝑘+1 = 𝑥𝑘 ;
end (if)
if 𝜌𝑘 > 0.75
if 𝑝𝑘 ≤ 0.8∆𝑘
∆𝑘+1= ∆𝑘 ;
else
∆𝑘+1= 2∆𝑘 ;
end (if)
else if 0.1 ≤ 𝜌𝑘 ≤ 0.75
∆𝑘+1= ∆𝑘 ;
else
∆𝑘+1= 0.5∆𝑘 ;
end (if)
if 𝑠𝑘

𝑇 𝑦𝑘 − 𝐵𝑘𝑠𝑘 ≥ 𝑟 𝑠𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘
Use (4.20) to compute 𝐵𝑘+1 (even if 𝑥𝑘+1 = 𝑥𝑘);
else
𝐵𝑘+1 ← 𝐵𝑘 ;
end (if)
𝑘 ← 𝑘 + 1;
end (while)

54

5.4 Numerical results:
1. 𝒇 𝒙 = 𝟏𝟎𝟎(𝒙𝟏 − 𝒙𝟐)𝟔 + 𝟏𝟎(𝒙𝟑 − 𝟏)𝟖+(𝒙𝟏 − 𝟒)𝟒 the optimal solution

𝒙∗ = 𝟒 𝟒 𝟏

 With 𝒙𝟎 =
𝟐
𝟐
𝟎
 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟏

Method

Derivative free Trust-region method

using truncated Newton method

𝝐 = 𝟏𝟎−𝟔

Derivative free Trust-region

method using Iterative

Solution

𝝐 = 𝟏𝟎−𝟔

iteration k 1000 60

The optimal

point 𝒙∗

𝟑. 𝟒𝟖𝟖𝟕
𝟒. 𝟒𝟕𝟐𝟑
𝟎. 𝟗𝟖𝟏𝟐

𝟑. 𝟗𝟗𝟖𝟔
𝟑. 𝟗𝟖𝟕𝟖
𝟏. 𝟎𝟏𝟗𝟏

 Using 𝒙𝟎 = 𝟎 𝟎 𝟎 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟓𝟎𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 =
𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏

Method

Derivative free Trust-region method

using truncated Newton method

𝝐 = 𝟏𝟎−𝟏𝟐

Derivative free Trust-region

method using Iterative

Solution

𝝐 = 𝟏𝟎−𝟏𝟐

iteration k 50000 1556

The optimal

point 𝒙∗

4.0081

4.1612

1.0038

4.0000

4.0003

0.9998

55

 𝒙𝟎 =
𝟐
𝟐
𝟎
 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟏

Method

Derivative free Trust-region method

using truncated Newton method

𝝐 = 𝟏𝟎−𝟔

Derivative free Trust-region

method using Iterative

Solution

𝝐 = 𝟏𝟎−𝟔

iteration k 2594 60

The optimal

point 𝒙∗

𝟒. 𝟎𝟔𝟑𝟐
𝟒. 𝟎𝟐𝟎𝟖
𝟎. 𝟗𝟖𝟏𝟐

𝟑. 𝟗𝟗𝟖𝟔
𝟑. 𝟗𝟖𝟕𝟖
𝟏. 𝟎𝟏𝟗𝟏

 𝒙𝟎 =
𝟐
𝟐
𝟎
 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 =

𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏

Method

Derivative free Trust-region method

using truncated Newton method

𝝐 = 𝟏𝟎−𝟏𝟐

Derivative free Trust-region

method using Iterative

Solution

𝝐 = 𝟏𝟎−𝟏𝟐

iteration k 100000 177

The o

ptimal

point 𝒙∗

𝟒. 𝟎𝟗𝟒𝟓
𝟑. 𝟖𝟕𝟓𝟎
𝟏. 𝟎𝟎𝟏𝟗

4.0000
4.0000
1.0140

56

2. (𝒊 − 𝒙𝒊)
𝟒𝟏𝟎

𝒊=𝟏 the optimal solution
𝒙∗ = 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎

 Using x0 = 0 0 0 0 0 0 0 0 0 0

Method

Derivative free Trust-region

method using truncated Newton

method

ϵ = 10−12

Derivative free Trust-

region method using

Iterative Solution

ϵ = 10−12

iteration k 10000 127

The optimal

point x∗

1.0094

2.0015

3.0006

3.9886

5.0005

5.9993

7.0984

7.9871

8.6187

10.0007

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

57

 Using x0 = 0 0 0 0 0 0 0 0 0 0

Method

Derivative free Trust-region

method using truncated Newton

method

ϵ = 10−9

Derivative free Trust-

region method using

Iterative Solution

ϵ = 10−9

iteration k 10000 101

The optimal

point x∗

𝟏. 𝟎𝟎𝟗𝟒
𝟐. 𝟎𝟎𝟏𝟓
𝟑. 𝟎𝟎𝟎𝟔
𝟑. 𝟗𝟖𝟖𝟔
𝟓. 𝟎𝟎𝟎𝟓
𝟓. 𝟗𝟗𝟗𝟑
𝟕. 𝟎𝟗𝟖𝟒
𝟕. 𝟗𝟖𝟕𝟏
𝟖. 𝟔𝟏𝟖𝟕
𝟏𝟎. 𝟎𝟎𝟎𝟕

𝟏.𝟎𝟎𝟎𝟐
𝟐.𝟎𝟎𝟎𝟐
𝟑.𝟎𝟎𝟎𝟐
𝟒.𝟎𝟎𝟎𝟐
𝟓.𝟎𝟎𝟎𝟐
𝟔.𝟎𝟎𝟎𝟐
𝟕.𝟎𝟎𝟎𝟐
𝟖.𝟎𝟎𝟎𝟐
𝟖.𝟗𝟗𝟗𝟗
𝟗.𝟗𝟗𝟗𝟖

3. 𝑓 𝑥 = (i − xi)
420

i=1

With

x0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 , delta =

1 , iteration = 1000, erorr ϵ =0.00000000000001

The optimal solution

x∗ =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20

58

Method

Derivative free Trust-region

method using truncated Newton

method

ϵ = 10−14

Derivative free Trust-

region method using

Iterative Solution

ϵ = 10−14

iteration k 1000 139

The optimal

point x∗

1.0000

2.0067

2.9997

3.9996

5.0067

6.0000

6.9996

8.0000

9.0003

10.0067

11.0067

11.9999

12.9997

14.0000

15.0067

16.1593

17.0004

18.0000

19.2186

20.0000

 1.0000

 2.0000

 3.0000

 4.0000

 5.0000

 6.0000

 7.0000

 8.0000

 9.0000

 10.0000

 11.0000

 12.0000

 13.0000

 14.0000

 15.0000

 16.0000

 17.0000

 18.0000

 19.0000

 20.0000

59

 Conclusion

 In this study a practical algorithm has been developed based on

Trust Region frame work. Centered Finite Difference are used to

approximate gradient of the Function, and Symmetric Rank-1 is used to

approximation Hessian matrix in Trust Region frame work. The Truncated

Newton method and Iterative method were used to solve the trust-region

sub-problem. The results obtained from the practical implementation

showed the adequacy of these methods .The method use iterative solution

to solve the trust region sub-problem is more efficiency than the truncated

Newton method. The work did not include constrained problems. It was

limited to unconstrained Optimization problems. For further study, we

suggest developing methods for constrained problems.

60

Appendix: MATLAB Implementation :
(i) The function lowsys()is a auxiliary function to solve the lower

triangular system 𝐴𝑥 = 𝑏

function x=lowsys(A,b)

n=length(b);

fori=1:n

x(i)=b(i);

for j=1:i-1

x(i)=x(i)-A(i,j)*x(j);

end

x(i)=x(i)/A(i,i);

end

x=x';

(ii) The function uppsys() is a auxiliary function to solve the upper

triangular system 𝐴𝑥 = 𝑏

function x=uppsys(A,b)

n=length(b);

fori=n:-1:1

x(i)=b(i);

for j=i+1:n

x(i)=x(i)-A(i,j)*x(j);

end

x(i)=x(i)/A(i,i);

end

x=x';

(iii) The function chky()obtains the choleki function 𝐿 of a given positive

definite matrix (𝐴 + 𝑑𝐼) or returns 𝑝 = 0 if 𝐴 is not positive definite

(it uses the function lowsys())

61

function [L,p]=chky(A,d)

[n,n]=size(A);

A=A+d*eye(n);

L=[];

p=1;

if A(1,1)<=0

 p=0;

else

L(1,1)=sqrt(A(1,1));

end

k=1;

while and(k<=n-1,p==1)

 z=lowsys(L(1:k,1:k),A(k+1,1:k));

L(k+1,1:k)=z';

 c=A(k+1,k+1)-L(k+1,1:k)*L(k+1,1:k)';

if c>0

L(k+1,k+1)=sqrt(c);

else

 p=0;

end

 k=k+1;

end

(iv) The function cgahmed()is the mean function that obtains the best

direction 𝑝 at minimizing the approximating quadratic function in the

region of radius delta (using truncated Newton method (modified

Newton CG)).

[p status] = cgahmed(n, fk2, gk, Hk, delta,zax)

eps = 1e-10;
z = zeros(n,1);

62

r = gk;
d = -r;
if (norm(r) <eps)
 p = z;
status = 'Stopping criteria';
return

end

fori=1:zax

if (d'*Hk*d <= 0)

status = 'Negative curvature';
tau = roots([d'*d, 2*(d'*z), z'*z - delta^2]);
 p1 = z + tau(1)*d; % first candidate

 p2 = z + tau(2)*d; % second candidate

% Check which is largest

 m1 = fk2 + gk'*p1 + (p1'*Hk*p1)/2;
 m2 = fk2 + gk'*p2 + (p2'*Hk*p2)/2;
if (m1 < m2)

 p = p1;
return

else

 p = p2;
return

end

end

 a = (r'*d) / (d'*Hk*d);
zo = z;
 z = z + a*d;
if (norm(z) >= delta)

tau = max(roots([d'*d, d'*zo, zo'*zo - delta^2]));
assert (tau >= 0) % A positive solution should exist

 p = zo + tau*d;
status = 'Trust-region boundary';
return

end

ro = r;
 r = r + a*Hk*d;
if (norm(r) <eps)

 p = z;
status = 'Stopping criteria';
return

end

 b = (r'*r) / (ro'*ro);

63

 d = -r + b*d;

end

end

(v) The function tsubprobahmed()is the mean function that obtains the

best direction 𝑝 at minimizing the approximating quadratic function

in the region of radius delta (using Iterative Solution).

p=tsubprobahmed(G,g,delta)

np=2*delta;
[L,r]=chy(G,0);
if r==1

 y=lowsys(L,-g);
 p=uppsys(L',y);
np=norm(p);
end

ifnp>delta

 d=10;
 [L,r]=chy(G,d);
while r==0

 d=2*d;
 [L,r]=chy(G,d);
end

for l=1:10
 y=lowsys(L,-g);
 p=uppsys(L',y);
 q=lowsys(L,p);
 d=d+((norm(p)/norm(q))^2)*((norm(p)-delta)/delta);
 [L,r]=chy(G,d);
while r==0

 d=d+1;
 [L,r]=chy(G,d);
end

end

end
(vi) The function finitedifferenceCD()is the function that obtains the

Gradient using centered finite difference that using in the main

symmetric rank-1 SR1 method .

function g=finitedifferenceCD(x)

64

n=length(x);
H=eye(n);
al=0.001;
hcd=3^1/3*al^1/3;
fori=1:n

 d=H(i,:);
g(:,i)=(f(x+hcd*d')-f(x-hcd*d'))/(2*hcd);
end

 g=g';
end

(vii) The function SR1TrustRegionnewton() input initial point 𝑥0, initial

delta, and the iterates 𝑚𝑎𝑥. (It uses all function above to give

minimizing of quadratic function without using derivative.

[x k] = SR1TrustRegion(x0,max,delta)

%find the mimmm of the function using SRI trstregion

d=delta;
r=10^-8;
new=10^-3;
x=x0;
n=length(x);
B0=eye(n);
g=finitedifferenceCD(x);
[s status] = cgahmed(n, fk2, g, B0, d,max);
for k=1:max

while (norm(g) <=0.00000000001)

return

end

last_g=g;
last_x=x;
 x=x+s;
 g=finitedifferenceCD(x);
 y=g-last_g;
ared=(f(last_x)-f(x));
pred=-(((last_g)'*s)+((0.5*s')*(B0*s)));
if (ared/pred)>new

 x=x+s;
else

 x=last_x;
end

if((ared/pred)>0.75)&& ((norm(s))<=0.8*d)

65

delta=d;
else

delta=2*d;
end

if ((ared/pred)>0.1)&& ((ared/pred)<=0.75)

delta=d;
else

delta=0.5*d;
end

 m=B0*s;
 m1=y-m;
 m2=norm(s);
 m3=norm(m1);
 m4=m1'*s;
if (abs(s'*m1)>=r*(m2*m3))

 H=(m1*m1')/m4;
 B=H+B0;
 [s status] = cgahmed(n, fk2, g, B, delta,max);
 x=x+s;
end

end

end

the above function using truncated Newton method (modified Newton

CG)) to solve trust region subproblem .

(viii) The function SR1TrustRegioniterative() input initial point 𝑥0, initial

delta, and the iterates 𝑚𝑎𝑥. (It uses all function above to give

minimizing of quadratic function without using derivative.

[x k] = SR1TrustRegioniterative(x0,max,delta)

d=delta;
r=10^-8;
new=10^-3;
x=x0;
n=length(x);
B0=eye(n);
g=finitedifferenceCD(x);
s=tsubprobmarim(B0,g,d);
for k=1:max

while (norm(g) <=0.00000000001)

return

66

end

last_g=g;
last_x=x;
 x=x+s;
 g=finitedifferenceCD(x);
 y=g-last_g;
ared=(f(last_x)-f(x));
pred=-(((last_g)'*s)+((0.5*s')*(B0*s)));
if (ared/pred)>new

 x=x+s;
else

 x=last_x;
end

if((ared/pred)>0.75)&& ((norm(s))<=0.8*d)

delta=d;
else

delta=2*d;
end

if ((ared/pred)>0.1)&& ((ared/pred)<=0.75)

delta=d;
else

delta=0.5*d;
end

 m=B0*s;
 m1=y-m;
 m2=norm(s);
 m3=norm(m1);
 m4=m1'*s;
if (abs(s'*m1)>=r*(m2*m3))

 H=(m1*m1')/m4;
 B=H+B0;
s=tsubprobmarim(B0,g,d);
 x=x+s;
end

end

end

the above function using using Iterative Solution method to solve trust

region subproblem .

67

References:
[1] jorge nocedal stephen j. Wright , numerical optimization ,secondedition
2006
[2] a. R. Conn, k. Scheinberg, and p. L. Toint, on the convergence of
derivative-free methods for unconstrained optimization, in approximation
theory and optimization: tributes to m. J. D. Powell, a. Iserles and m.
Buhmann, eds., Cambridge, England, 1997, Cambridge university press, pp.
83{108}.
[3] , recent progress in unconstrained nonlinear optimization
without derivatives, mathematical programming, series b, 79 (1997), pp.
397{414.
[4] , a derivative free optimization algorithm in practice, tech. Rep.
Tr98/11, department of math- ematics, university of namur, namur,
belgium, 1998.
[5] a. R. Conn, k. Scheinberg, and l. Vicente, error estimates and poisedness
in multivariate polynomial interpolation, tech. Rep., ibm t. J. Watson
research center, 2006.
[6] , geometry of interpolation sets in derivative free optimization,
mathematical programming, se- ries a, 111 (2007), pp. 141{172.
[7] g. Deng and m. Ferris, adaptation of the UOBYQA algorithm for noisy
functions, in proceedings of the 38th conference on winter simulation,
winter simulation conference, 2006, pp. 312{319.
[8] e. D. Dolan and j. J. Mor_e, benchmarking optimization software with
performance pro_les, math- ematical programming, series a, 91 (2002), pp.
201{213.
[9] r. Fourer, d. M. Gay, and b. W. Kernighan, ampl: a modeling language
for mathematical programming, scienti_c press, 1993. Www.ampl.com.
[10] marazzi, m. And j. Nocedal, wedge trust region methods for derivative
free optimization, mathe- matical programming, series a, 91 (2002), pp.
289{305.
 [11] marco boresta1 · tommaso colombo1 · alberto de santis 1 · stefano
lucidi , a mixed finite differences scheme for gradient approximation ,
journal of optimization theory and applications (2022)
194:124https://doi.org/10.1007/s10957-021-01994-w
[12] igor griva stephen g. Nash arielasofer george mason university fairfax,
virginia, linear and nonlinear optimization second edition, society for
industrial and applied mathematics, 2009
[13] yuan, y. On the truncated conjugate gradient method. Math. Program.
87, 561–573 (2000). Https://doi.org/10.1007/s101070050012
[14] a. R. Conn, n. I. M. Gould, and ph. L. Toint. Trust-region methods. Mps-
siam series on optimization. Society for industrial and applied
mathematics, philadelphia, pa, usa, 2000.

https://doi.org/10.1007/s101070050012

68

[14] a. R. Conn, k. Scheinberg, and ph. L. Toint. A derivative free
optimization algorithm in practice, 1998. Proceedings of the 7th
aiaa/usaf/nasa/issmo symposium on multidisciplinary analysis and
optimization, september 2-4.

[15] a. R. Conn, p.l. toint, an algorithm using quadratic interpolation for
unconstrained derivative free optimization, in "nonlinear optimization and
applications", g. Di pillo and f. Gianessi, eds, plenum publishing, new york,
(1996), 27-47.

[16] a. R. Conn, k. Scheinberg, p.l. toint, on the convergence of derivative-
free methods for unconstrained optimization, in "approximation theory
and optimization: tribute to m.j.d. powell", a. Iserles, m. Buhmann, eds,
cambridge university press, (1997),83-108

[17] a. R. Conn, k. Scheinberg, p.l. toint, recent progress in unconstrained
nonlinear optimization without derivatives, mathematical programming,
79 (1997), 397-414

[18] a. Waechter, an interior point algorithm for large-scale nonlinear
optimization with applications in process engineering , phd. Thesis,
department of chemical engineering, carnegie mellon university (2002
[19] a. R. Conn, k. Scheinberg, and ph. L. Toint. On the convergence of
derivative-free methods for unconstrained optimization. In a. Iserles and m.
Buhmann, editors, approximation theory and optimization: tributes to m. J.
D. Powell, pages 83–108, cambridge, england, 1997.

[20] a. R. Conn, p.l. toint, an algorithm using quadratic interpolation for
unconstrained derivative free optimization, in "nonlinear optimization and
applications", g. Di pillo and f. Gianessi, eds, plenum publishing, new york,
(1996), 27-47.

[21] a. R. Conn, k. Scheinberg, p.l. toint, recent progress in unconstrained
nonlinear optimization without derivatives, mathematical programming,
79 (1997), 397-414

[22] a.r. conn, n.i.m. gould, ph.l. Toint, lancelot: a fortran package for large-
scale nonlinear optimization, springer verlag, 1992.

 [23] b. Colson, ph. L. Toint, exploiting band structure in unconstrained
optimization without derivatives, a.h. siddiqi, m. Kocvera, eds, trends in
industrial and applied mathematics, vol. 72 applied optimization, (2002),
kluwer, 131-147.

69

[24] b. Colson, ph. L. Toint, a derivative-free algorithm for sparse
unconstrained optimization problems, optimization and engineering, 2
(2001), 349-412

[25] b. Colson, ph. L. Toint, optimizing partially separable functions without
derivatives, optimization methods and software, 20 (2005), 493-508.

 [26] b. Colson, ph. L. Toint, exploiting band structure in unconstrained
optimization without derivatives, a.h. siddiqi, m. Kocvera, eds, trends in
industrial and applied mathematics, vol. 72 applied optimization, (2002),
kluwer, 131-147

[27 b. Colson, ph. L. Toint, optimizing partially separable functions without
derivatives, optimization methods and software, 20 (2005), 493-508.

 [28] b. Colson, ph. L. Toint, a derivative-free algorithm for sparse
unconstrained optimization problems, optimization and engineering, 2
(2001), 349-412

[29] b. Colson, ph. L. Toint, optimizing partially separable functions without
derivatives, optimization methods and software, 20 (2005), 493-508

 [30] ch. Audet, v. Béchard, and s. Le digabel. Nonsmooth optimization
through mesh adaptive direct search and variable neighborhood search. J.
Of global optimization, 41:299–318, june 2008.

[31] ch. Audet and jr. J. E. Dennis. Mesh adaptive direct search algorithms
for constrained optimization. Siam j. On optimization, 1]7:188–217, january
2006.

 [32] convergence properties of a class of minimization algorithms, in
nonlinear programming 2, o. L. Mangasarian, r. R. Meyer, and s. M.
Robinson, eds., academic press, new york, 1975, pp. 1–27.

[33] carl-erik froberc instiute for computer sciences university of
lund,sweden – intorduction to numerical analysis- second edition.

 [34] d. Goldfarb, curvilinear path steplength algorithms for minimization
which use directions of negative curvature, mathematical programming, 18
(1980), pp. 31–40

[35] d.m. gay, \computing optimal local constrained step", siam j. Sci.
Stat.comp. 2(1981) 186-197.

[36] d.c. sorensen, \newton's method with a model trust region
modification", siam j. Numer. Anal. 20(1982) 409-426.

70

[37] d. Winfield, function and functional optimization by interpolation in
data tables, phd thesis, harvard university, cambridge, usa, 1969.

[38] derivative-free algorithms in engineering optimization anders
holmström göteborg, october 2000 pp for the degree of master of science

[39] dixon, i.c.w. (1972). Nonlinear optimization. London, the english
universities press ltd.

[40] direct search algorithms for optimization calculations, acta numerica,
7 (1998), pp. 287–336.

[41] e. O. Omojokun, trust region algorithms for optimization with
nonlinear equality and inequality constraints, ph. D. Thesis, university of
colorado at boulder, 1989.

[42] e. H. Moore. On the reciprocal of the general algebraic matrix. In the
fourteenth western meeting of the american mathematical society, number
26, pages 394–395. Bulletin of the american mathematical society, 1920.

[43] e. Polak, optimization: algorithms and consistent approximations,
springer, 1997.

[44] f. Rendl and h. Wolkowicz, \a semide¯nite framework for trust region
sub-problems with applications to large scale minimization", math. Prog.
77(1997) 273-299.

[45] f. V. Berghen, h. Bersini, condor a new parallel, constrained extension
of powell's uobyqa algorithm: experimental results and comparison with
the dfo algorithm, journal of computational and applied mathematics, 181
(2005), 157-175

 [46] g. B. Dantzig,linear programming and extensions, princeton
university press, princeton, nj, 1963

[47] g. H. Golub andc. F. Vanloan, matrix computations, the johns hopkins
university press, baltimore, third ed., 1996.

[48] g.h. golub and u. Von matt, \quadratically constrained least squares
and quadratic problems", numerische mathematik 59(1991) 561-580.

[49] g. A. Schultz,r.b.schnabel, andr. H. Byrd, a family of trust-region-based
algorithms for unconstrained minimization with strong global convergence
properties, siam journal on numerical analysis, 22 (1985), pp. 47–67.

 [50] himmelblau, d. M. (1972). Applied nonlinear programming. New york,
mc graw-hill.

71

 [51] j. J. Mor´ eandd. C. Sorensen,on the use of directions of negative
curvature in a modified newton method, mathematical programming, 16
(1979), pp. 1–20

 [52] jorge nocedal and stephen g. Nash. A numerical study of the limited
memory bfgs method and the truncated-newton method for large scale
optimization. Siam journal on optimization, 1(3):358{372, 1991.

[53] j.e. dennis and h.h.w. mei, \two new unconstrained optimization
algorithms which use function and gradient values", jota 28(1979) 453-
482.

[54] j.j. mor¶e, \recent developments in algorithms and software for trust
region methods", in: a. Bachem, m. Gräotschel and b. Korte, eds.,
mathematical programming: the state of the art (springer-verlag, berlin,
1983) pp. 258-287.

[55] j.j. mor’e, d.c. sorenson, computing a trust region step, siam. J. Sci.
Statsit. Comput. 4 (1983), 553-572

 [56] j. E. Dennis andr. B. Schnabel,a view of unconstrained optimization, in
optimization, vol. 1 of handbooks in operations research and management,
elsevier science publishers, amsterdam, the netherlands, 1989, pp. 1–72.

[57] j. Stoer, r. Bulirsch, introduction to numerical analysis, springer-verlag,
1993.

[58] k.schittkowski, more test examples for nonlinear programming codes,
springerverlag, berlin, 1987 (numbers above 199).

 [59] linear and nonlinear optimization second edition igor griva stephen g.
Nash ariela sofer george mason university fairfax, virginia society for
industrial and applied mathematics • philadelphia

[60] m. Bazaraa,h.sherali, andc. Shetty, nonlinear programming, theory and
applications., john wiley & sons, new york, second ed., 1993.1–17.

[61] m.r. celis, j.e. dennis and r.a. tapia, \a trust region algorithm for
nonlinear equality constrained optimization", in: p.t. boggs, r.h. byrd and
r.b. schnabel, eds., numerical optimization (siam, philadelphia,1985) pp.
71-82.

[62] m.j.d. powell, \a new algorithm for unconstrained optimization", in: j.b.
rosen, o.l. mangasarian and k. Ritter, eds., nonlinear programming
(academic press, new york, 1970) pp. 31-66. (1970a)

72

[63] m.j.d. powell, \a hybrid method for nonlinear equations", in: p.
Robinowitz, ed., numerical methods for nonlinear algebraic equations
(gordon and breach science, london, 1970) pp. 87-144. (1970b)

[64] m.j.d. powell, \convergence properties of a class of minimization
algorithms", in: o.l. mangasarian, r.r. meyer and s.m. robinson, eds.,
nonlinear programming 2 (acadmic press, new york, 1975) pp. 1-27.

[65] m.j.d. powell, \non-convex minimization calculations and the
conjugate gradient method", in: d.f. griffiths, ed., numerical analysis
lecturenotes in mathematics 1066 (springer-verlag, berlin, 1984) pp. 122-
141.

[66] m.j.d. powell and y. Yuan, \ a trust region algorithm for equality
constrained optimization", math. Prog. 49(1991) 189-211.

[67] m. J. D. Powell, a direct search optimization method that models the
objective and constraint functions by linear interpolation, in "advances in
optimization and numerical analysis", eds. S. Gomez and j.p. hennart,
kluwer academic publishers,(1994).

[68] m. J. D. Powell. Direct search algorithms for optimization calculations.
Acta numerica, 7:287–336, 1998.

[69] mitchell, t. M. (1997). Machine learning. New york, mcgraw-hill.

 [70] m. Marazzi, j. Noncedal, wedge trust region methods for derivative
free optimization, mathematical programming ser. A, 91 (2002), 289-305

 [71] m. Schäafer, b. Karasäozen, k. Yapc, äo. Ugur, derivative free
optimization of stirrer conjgurations, the proceedings of the enumath 2005
spain, july 2005, a. Bermudez, a. Gomez, d. Quintela, p. Salgado, eds,
springer, 2006

 [72] newton’s method, in studies in numerical analysis, vol. 24 of maa
studies in mathematics, the mathematical association of america, 1984, pp.
29–82.

[73] nonlinear optimization: trust region algorithms", in: s.t. xiao, f. Wu,
eds., proceedings of the third chinese siam conference (tsinghua university
press, beijing, 1994), pp.84-102.

[74] nash, s. G. And a. Sofer (1996). Linear and nonlinear programming.
Singapore, mcgrawhill.

73

[75] of trust-region derivative free optimization survey methods bäulent
karasäozen middle east technical university department of mathematics &
institute of applied mathematics 06531 ankara, turkey.

 [76] owen, a. B. (1992). “orthogonal arrays for computer experiments,
integration and visualisation.” Statistica sinica2: 439-452.

[77] ,practical methods of optimization, john wiley and sons, new york,
second ed. 1987.

[78] p. E. Gill,w.murray,andm. H. Wright,practical optimization, academic
press, 1981.

[79] ph. L. Toint, towards an efficient sparsity exploiting newton method
for minimization", in: i.s. du, ed., sparse matrices and their uses (academic
press, london, 1981) pp. 57-88.

 [80] p. G. Ciarlet and p. A. Raviart. General lagrange and hermite
interpolation in irn with applications to finite element methods. Archive for
rational mechanics and analysis,46(3):177–199, 1972.

[81] p. Erdős. Problems and results on the theory of interpolation. Ii. Acta
mathematica hungarica, 12:235–244, 1961.

[82] polyak, b. T. (1987). Introduction to optimization. New york,
optimization software inc.

 [83] r.k.ahuja,t.l.magnanti, andj. B. Orlin, network flows theory, algorithms,
and applications, prentice-hall, englewood cliffs, n.j., 1993.

[84] r. P. Brent, algorithms for minimization without derivatives, prentice
hall, englewood cliffs, nj, 1973.

[85] r. Bulirsch andj. Stoer,introduction to numerical analysis, springer-
verlag, new york, 1980.

 [86] r. L. Rardin,optimization in operations research, prentice hall,
englewood cliffs, nj, 1998.

[87] r. B. Schnabel ande. Eskow,a new modified cholesky factorization, siam
journal on scientific computing, 11 (1991), pp. 1136–1158.

[88] r. Byrd, r.b. schnabel and g.a. shultz, a trust region algorithm for
nonlinearly constrained optimization", siam j. Numer. Anal. 24 (1987)
1152-1170.

74

[89] r. Byrd, r.b. schnabel and g.a. shultz, approximation solution of the
trust region problem by minimization over two-dimensional
subspaces",math. Prog. 40(1988) 247-263.

[90] r. Fletcher, a model algorithm for composite ndo problem", math. Prog.
Study 17(1982) 67-76.

[91] r. Fletcher, practical methods of optimization (second edition) (john
wiley and sons, chichester, 1987)

[92] recent developments in algorithms and software for trust region
methods, in mathematical programming: the state of the art, springer-
verlag, berlin, 1983, pp. 258–287.

[118] r.l. burden, j.d. faires, numerical analysis, eighth ed., brooks/cole,
2005.

 [93] recent progress in unconstrained nonlinear optimization without
derivatives, mathematical programming, series b, 79 (1997), pp. 397–414.

 [94] s. H. Cheng andn. J. Higham, a modified cholesky algorithm based on a
symmetric indefinite factorization, siam journal of matrix analysis and
applications, 19 (1998), pp. 1097–1100.

[95] s. Gratton, ph.l. Toint, a. Tr oltzsch technical report tr/pa/10/70an
active-set trust-region method for derivative-free nonlinear bound-
constrainedoptimization

 [96] s. J. Smith. Lebesgue constants in polynomial interpolation. Annales
mathematicae et informaticae, 33:109–123, 2006.

[97] sacks, j., h. P. Wynn, et al. (1992). “screening predicting and computer
experiments.” Technometrics34(1): 15-25.

 [98] t. Steihaug, \the conjugate gradient method and trust regions in large
scale optimization", siam j. Numer. Anal. 20(1983) 626-637.

[99] torczon, v. (1991). “on the convergence of the multidirectional search
algorithm.” Siam journal on optimization1(1): 123-145.

[100] the NEWUOA software for unconstrained optimization without
derivatives, numerical analysis report dampt 2004/na05, university of
cambridge, cambridge, uk, 2004.

 [101] UOBYQA: unconstrained optimization by quadratic approximation,
mathematical rogramming, series b, 92 (2002), pp. 555–582.

75

[102] w. L. Winston,operations research, wadsworth publishing co., third
ed., 1997.

[103](http://www.lri.fr/~hansen/cmaes_inmatlab.html).
Http://www.particleswarm.info/,http://www.icsi.berkeley.edu/~storn/co
de

[104] w.hock and k.schittkowski, test problems for nonlinear programming
codes, springerverlag, berlin, 1981 (numbers below 199) and.

 [105] wilkinson householder’s method for the solution of the algebraic
eigen problem the computer journal, 23-27(april 1960).

[106] y. Yuan, on a subproblem of trust region algorithms for constrained
optimization", math. Prog. 47(1990) 53-63.

[107] y. Yuan, on the convergence of a new trust region algorithm",
numerische mathematik 70(1995) 515-539.

[108] y. Yuan, \an example of non-convergence of trust region algorithms".
In: y. Yuan, ed. Advances in nonlinear programming, (kluwer, 1998), pp.
205-215

[109] y. Yuan, on the truncated conjugate gradient method", report, icm99-
003, icmsec, chinese academy of sciences. Beijing, china, 1999.

[110] W. C.DAVIDON,Variable metric method for minimization, Technical
ReportANL–5990 (revised), Argonne National Laboratory, Argonne, IL,
1959.
[111] , Variable metric method for minimization, SIAM
Journal on Optimization, 1 (1991), pp. 1–17.
[112] Nelder, J. A. and R. Mead (1965). “A Simplex method for

function minimization.” Computer Journal7: 308-313.

http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.particleswarm.info/
http://www.icsi.berkeley.edu/~storn/code
http://www.icsi.berkeley.edu/~storn/code
http://www.icsi.berkeley.edu/~storn/code

76

Derivative-Free Trust-Region Method for Solving Large-Scale optimization

Problems Using Truncated Newton Method

Ahmed Mohamed1 and M. H. A. Hashim2

1. Sudan University of Science and Technology College of graduate ,Department of

Mathematics, Alnajeeb177@Gmail.com

2. Department of Applied Mathematics, Faculty of Mathematical Sciences, University
of Khartoum, Khartoum, Sudan , mhahashim61@gmail.com

Abstract

In this work we present a derivative-free trust-region algorithm for large-scale

unconstrained optimization, using symmetric-rank1(SR1)to approximate the Hessian

and using central finite-difference approximation to the gradient of the function . The

truncated Newton method algorithm is used for solving the trust-region sub problem.

Its performance is tested on some problems.

Keywords: Unconstrained optimization, derivative-free optimization, trust-region

methods, symmetric-rank-1(SR1), Finite-difference.

1. Introduction :
The general unconstrained optimization problem is stated as :

 𝑚𝑖𝑛𝑥∈𝑅𝑛 𝑓(𝑥) (1)

where 𝑓(𝑥) is a continuously differentiable function defined in 𝑅𝑛 .

Many applications give rise to unconstrained optimization problems with

thousands or millions of variables. Problems of this size can be solved

efficiently only if the storage and computational costs of the optimization

algorithm can be kept at a tolerable level. A diverse collection of large-scale

optimization methods has been developed to achieve this goal, each being

particularly effective for certain problem types [1],[10],[13].

Trust region methods for the unconstrained optimization problem (1)

compute a trial step in each iteration. Trust-region methods make explicit

reference to a “model” of the objective function. For Newton’s method this

mailto:Alnajeeb177@Gmail.com

77

model is a quadratic model derived from the Taylor series for 𝑓 about the

point 𝑥𝑘 :

 𝑞𝑘 𝑥𝑘 = 𝑓 𝑥𝑘 + ∇𝑓(𝑥𝑘)𝑇𝑝 +
1

2
𝑝𝑇∇2𝑓(𝑥𝑘)𝑝 (2)

the method will only “trust” this model within a limited neighborhood of

the point 𝑥𝑘 , defined by the constraint

 𝑝 ≤ ∆𝑘 (3)

this will serve to limit the size of the step taken from 𝑥𝑘 to 𝑥𝑘+1 . The value

of 𝑘 is adjusted based on the agreement between the model 𝑞𝑘(𝑝) and the

objective function 𝑓(𝑥𝑘 + 𝑝).If the agreement is good, then the model can

be trusted and 𝑘 increased. If not, then 𝑘 will be decreased.(In the

discussion here we assume that . = . 2that is, we use the Euclidean

norm.

At iteration 𝑘 of a trust-region method, the following subproblem is solved

to determine the step:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑝 𝑞𝑘 𝑥𝑘 = 𝑓 𝑥𝑘 + ∇𝑓(𝑥𝑘)𝑇𝑝 +
1

2
𝑝𝑇∇2𝑓(𝑥𝑘)𝑝 (4)

Subject to

 𝑝 ≤ ∆𝑘

The following is adscription of a model trust region algorithm for

unconstrained optimization.

Algorithm 1 (A Model Trust Region Algorithm)

Given ∆ > 0 , ∆0∈ 0, ∆ 𝑎𝑛𝑑 𝜂 ∈ 0,
1

4
 :

For 𝑘 = 0,1,2, … ..

Obtain 𝑝𝑘 by (approximately) solving (2);

Obtained 𝜌𝑘 =
𝑓 𝑥𝑘 −𝑓(𝑥𝑘+𝑝𝑘)

𝑚𝑘 0 −𝑚𝑘(𝑝𝑘)

if 𝜌𝑘 <
1

4

78

 ∆𝑘+1=
1

4
∆𝑘

else

if 𝜌𝑘 >
3

4
 𝑎𝑛𝑑 𝑝𝑘 = ∆𝑘

 ∆𝑘+1= 𝑚𝑖𝑛(2∆𝑘 , ∆)

else

 ∆𝑘+1= ∆𝑘

If 𝜌𝑘 < 𝜂

 𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘

else

 𝑥𝑘+1 = 𝑥𝑘

end(for)

In this paper, we study the case when the matrix 𝐵𝑘 = ∇2𝑓 is updated by

the symmetric-rank-1(SR1). The symmetric rank-1 update has the general

form

 𝐵𝑘+1 = 𝐵𝑘 + 𝜎𝑣𝑣𝑇 (5)

where 𝜎 is either +1 𝑜𝑟 − 1, and 𝜎 and 𝑣 are chosen so that 𝐵𝑘+1 satisfies

the (secant equation), that is,

 𝑦𝑘 = 𝐵𝑘+1𝑠𝑘 (6)

When the number of variables is very large, it could be very costly to solve

Eqs.(4) exactly. Therefore, various methods for calculating an approximate

solution of Eqs. (4) have been developed, such as the dogleg and double

dogleg techniques [1], the truncated CG method[1,14] and subspace-

iterated methods [1], to name few.

79

2. Modified Newton CG Algorithm:
In this section, we study truncated Newton method (modified Newton

CG), which is assumed to be the solution of the trust region sub problem

(4). This algorithm, due to Steihaug [1], is specified below as Algorithm 2.

A complete algorithm for minimizing 𝑓 is obtained by using Algorithm 2 to

generate the step 𝑝𝑘 required by Algorithm 1, for some choice of tolerance

𝜖k at each iteration. we use 𝑑𝑗 to denote the search directions of this

modified CG iteration and 𝑧𝑗 to denote the sequence of iterates that it

generates[1,14].

Algorithm 2 (CG-Steihaug)

Given tolerance 𝜖k > 0 ;

Set 𝑧0 = 0, 𝑟0 = ∇𝑓𝑘 , 𝑑0 = −𝑟0 = −∇𝑓𝑘 ;

If 𝑟0 < 𝜖k

Return 𝑝𝑘 = 𝑧0 = 0;

For 𝑗 = 0,1,2, … ..

If 𝑑𝑇
𝑗𝐵𝑘𝑑𝑗 ≤ 0

Find 𝜏 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗 minimizes 𝑚𝑘 𝑝𝑘 in Algorithm 1 and

satisfies 𝑝𝑘 ≤ ∆𝑘

Return 𝑝𝑘 ;

Set 𝛼𝑗 = 𝑟𝑇
𝑗 𝑟𝑗 𝑑𝑇

𝑗 𝐵𝑘𝑑𝑗 ;

Set 𝑧𝑗 +1 = 𝑧𝑗 + 𝛼𝑗 𝑑𝑗 ;

If 𝑧𝑗+1 ≥ ∆𝑘

Find 𝜏 ≥ 0 such that 𝑝𝑘 = 𝑧𝑗 + 𝜏𝑑𝑗 satisfies 𝑝𝑘 = ∆𝑘 ;

Return 𝑝𝑘 ;

Set 𝑟𝑗+1 = 𝑟𝑗 + 𝛼𝑗 𝐵𝑘𝑑𝑗 ;

If 𝑟𝑗+1 < 𝜖k

Return 𝑝𝑘 = 𝑧𝑗 +1;

Set 𝛽𝑗+1 = 𝑟𝑇
𝑗+1𝑟𝑗 +1 𝑟𝑇

𝑗 𝑟𝑗 ;

Set 𝑑𝑗+1 = −𝑟𝑗 +1 + 𝛽𝑗 +1𝑑𝑗 ;

End(for)

80

3. Gradient Estimation Via Central Finite Differences

Finite differencing refers to the estimation of 𝑓 ′(𝑥) using values of 𝑓(𝑥).

central finite differences (CFD) based on the sample set 𝑋 = {𝑥 +

𝜎𝑒𝑖}𝑖=1𝑛∪{𝑥−𝜎𝑒𝑖}𝑖=1𝑛n , and is computed as

 [𝑔(𝑥)]𝑖 = 𝛻 𝑓 𝑥 =
𝑓 𝑥+𝜎𝑒𝑖 −𝑓(𝑥−𝜎𝑒𝑖)

2𝜎
, for 𝑖 = 1, 2 , … …… , 𝑛 (7)

CFD approximations require 2𝑛 functions evaluations[1][12][13].

4. the symmetric-rank-1(SR1) method

The symmetric rank-1 update has the general form

 𝐵𝑘+1 = 𝐵𝑘 + 𝜎𝑣𝑣𝑇 (8)

where 𝜎 is either +1 𝑜𝑟 − 1, and 𝜎 and 𝑣 are chosen so that 𝐵𝑘+1 satisfies

the eqs(6) . By substituting into this equation, we obtain

 𝑦𝑘 = 𝐵𝑘𝑠𝑘 + [𝜎𝑣𝑇𝑠𝑘]𝑣. (9)

Since the term in brackets is a scalar, we deduce that 𝑣 must be a multiple

of 𝑦𝑘 − 𝐵𝑘𝑠𝑘 , that is, 𝑣 = 𝛿(𝑦𝑘 − 𝐵𝑘𝑠𝑘) for some scalar 𝛿. By substituting

this form of 𝑣 into (7), we obtain

 𝑦𝑘 − 𝐵𝑘𝑠𝑘 = 𝜎𝛿2 𝑠𝑇
𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘 , (10)

and it is clear that this equation is satisfied if (and only if) we choose the

parameters 𝛿 and 𝜎 to be

 𝜎 = 𝑠𝑖𝑔𝑛 𝑠𝑇
𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘 , 𝛿 = ± 𝑠𝑇

𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘 −1 2 (11)

Hence ,we have shown that the only symmetric rank-1 updating formula

that satisfies the secant equation is given by

 𝐵𝑘+1 = 𝐵𝑘 +
 𝑦𝑘−𝐵𝑘𝑠𝑘 𝑦𝑘−𝐵𝑘𝑠𝑘 𝑇

 𝑦𝑘−𝐵𝑘𝑠𝑘 𝑇𝑠𝑘
 (12)

the SR1 updating formula has proved to be quite useful, and its ability to

generate indefinite Hessian approximations can actually be regarded as

81

one of its chief advantages. give a formal description of an SR1 method

using a trust-region framework[1,13,]

5. The Algorithm

Due to the truncated Newton method (modified Newton CG)properties

studied in the section2, and central Finite difference (CFD) studied in

section3, and the symmetric-rank-1(SR1) method studied in section3, we

can construct trust region algorithms based on the traditional trust region

philosophy.

The algorithm proposed using truncated Newton method to solve trust

region subproblem and using symmetric-rank-1 to find approximation to

Hessian and using finite difference to approximate the Gradient .

Algorithm 4 (SR1 Trust-Region Method)

Given starting point 𝑥0 , initial Hessian approximation 𝐵0 , trust-region

radius ∆0 , convergence tolerance 𝜖 > 0 , parameters 𝜂 ∈ (0, 10−3) and

𝑟 ∈ (0, 1);

𝑘 ← 0;

Compute 𝑔𝑘 = 𝛻𝑓𝑘 using finite differences eqs(7)

while 𝛻𝑓𝑘 > 𝜖 ;

Compute 𝑝𝑘 by solving the subproblem using Algorithm 2 find 𝑝𝑘 ;

Compute

𝑦𝑘 = 𝛻𝑓 (𝑥𝑘 + 𝑝𝑘) − 𝛻𝑓𝑘 ,

 𝜌𝑘 =
𝑓 𝑥𝑘 −𝑓(𝑥𝑘+𝑝𝑘)

𝑚𝑘 0 −𝑚𝑘(𝑝𝑘)

if 𝜌𝑘 > 𝜂

𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘 ;

else

𝑥𝑘+1 = 𝑥𝑘 ;

end (if)

if 𝜌𝑘 > 0.75

if 𝑝𝑘 ≤ 0.8∆𝑘

∆𝑘+1= ∆𝑘 ;

82

else

∆𝑘+1= 2∆𝑘 ;

end (if)

else if 0.1 ≤ 𝜌𝑘 ≤ 0.75

∆𝑘+1= ∆𝑘 ;

else

∆𝑘+1= 0.5∆𝑘 ;

end (if)

if 𝑠𝑇
𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘 ≥ 𝑟 𝑠𝑘 𝑦𝑘 − 𝐵𝑘𝑠𝑘

Use (12) to compute 𝐵𝑘+1 (even if 𝑥𝑘+1 = 𝑥𝑘);

else

𝐵𝑘+1 ← 𝐵𝑘 ;

end (if)

𝑘 ← 𝑘 + 1;

end (while)

6. Numerical Results

4. 𝒇 𝒙 = 𝟏𝟎𝟎(𝒙𝟏 − 𝒙𝟐)𝟔 + 𝟏𝟎(𝒙𝟑 − 𝟏)𝟖+(𝒙𝟏 − 𝟒)𝟒 optimal solution

𝒙∗ = 𝟒 𝟒 𝟏

 With 𝒙𝟎 =
𝟐
𝟐
𝟎
 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟏

 Solution with SR1TrustRegionnewton()

𝒙 =
𝟑. 𝟒𝟖𝟖𝟕
𝟒. 𝟒𝟕𝟐𝟑
𝟎. 𝟗𝟖𝟏𝟐

 , 𝒌 = 𝟏𝟎𝟎𝟎

 With 𝒙𝟎 =
𝟐

𝟐

𝟎

 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟏

 Solution with SR1TrustRegionnewton()

𝒙 =
𝟒. 𝟎𝟔𝟑𝟐
𝟒. 𝟎𝟐𝟎𝟖
𝟎. 𝟗𝟖𝟏𝟐

 , 𝒌 = 𝟐𝟓𝟗𝟒

 𝒙𝟎 =
𝟐
𝟐
𝟎
 , 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟏

 Solution with SR1TrustRegionnewton()

83

𝒙 =
𝟒. 𝟎𝟏𝟕𝟎
𝟑. 𝟗𝟔𝟎𝟖
𝟏. 𝟎𝟕𝟓𝟔

 , 𝒌 = 𝟏𝟔𝟒

5. (𝒊 − 𝒙𝒊)

𝟒𝟏𝟎
𝒊=𝟏 the optimal solution

𝒙∗ = 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎

 With 𝒙𝟎 =

𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎

, 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟏

 Solution with SR1TrustRegionnewton()

𝒙 =

𝟏. 𝟎𝟎𝟏𝟕
𝟐. 𝟎𝟎𝟏𝟑
𝟑. 𝟑𝟕𝟐𝟐
𝟑. 𝟗𝟗𝟓𝟕
𝟓. 𝟎𝟎𝟑𝟑
𝟔. 𝟎𝟎𝟏𝟖
𝟕. 𝟎𝟎𝟐𝟑
𝟖. 𝟎𝟎𝟏𝟗
𝟗. 𝟎𝟎𝟎𝟖
𝟗. 𝟗𝟗𝟗𝟖

 , 𝒌 = 𝟔𝟒

 With 𝒙𝟎 =

𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎

, 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟏

 Solution with SR1TrustRegionnewton()

84

𝒙 =

𝟎. 𝟗𝟗𝟓𝟒
𝟏. 𝟗𝟗𝟐𝟑
𝟑. 𝟐𝟏𝟖𝟓
𝟑. 𝟖𝟕𝟒𝟖
𝟓. 𝟐𝟒𝟗𝟑
𝟓. 𝟗𝟗𝟔𝟑
𝟕. 𝟎𝟎𝟎𝟎
𝟕. 𝟗𝟗𝟖𝟏
𝟖. 𝟗𝟗𝟓𝟔
𝟏𝟎. 𝟎𝟎𝟎𝟐

 , 𝒌 = 𝟖𝟐

 With 𝒙𝟎 =

𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎

, 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏

 Solution with SR1TrustRegionnewton()

 𝒙 =

𝟏. 𝟎𝟐𝟗𝟑
𝟐. 𝟎𝟓𝟗𝟐
𝟐. 𝟗𝟕𝟗𝟓
𝟑. 𝟔𝟗𝟗𝟗
𝟒. 𝟗𝟗𝟑𝟐
𝟓. 𝟗𝟐𝟖𝟐
𝟔. 𝟗𝟗𝟑𝟕
𝟖. 𝟎𝟕𝟏𝟑
𝟗. 𝟎𝟑𝟎𝟏
𝟗. 𝟗𝟓𝟕𝟐

 , 𝒌 = 𝟒𝟔𝟓

 With 𝒙𝟎 =

𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎
𝟎

, 𝒅𝒆𝒍𝒕𝒂 = 𝟏 , 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 = 𝟏𝟎𝟎𝟎𝟎, 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏

 Solution with SR1TrustRegionnewton()

85

𝒙 =

𝟏. 𝟎𝟎𝟗𝟒
𝟐. 𝟎𝟎𝟏𝟓
𝟑. 𝟎𝟎𝟎𝟔
𝟑. 𝟗𝟖𝟖𝟔
𝟓. 𝟎𝟎𝟎𝟓
𝟓. 𝟗𝟗𝟗𝟑
𝟕. 𝟎𝟗𝟖𝟒
𝟕. 𝟗𝟖𝟕𝟏
𝟖. 𝟔𝟏𝟖𝟕
𝟏𝟎. 𝟎𝟎𝟎𝟕

 , 𝒌 = 𝟏𝟎𝟎𝟎𝟎

7. Conclusion

In this paper we have presented a derivative-free trust-region algorithm for

large-scale unconstrained optimization. The algorithm using symmetric-

rank1(SR1)to approximation Hessian and using centered finite-difference

approximation to the gradient of function , and using the truncated Newton

method algorithm for solving the trust-region sub problem.

Numerical experiments on several functions show the good performances

of the proposed method.

References
[1] Jorge Nocedal Stephen J. Wright , Numerical Optimization ,SecondEdition
2006
[2] A. R. Conn, K. Scheinberg, and P. L. Toint, On the convergence of derivative-
free methods for unconstrained optimization, in Approximation Theory and
Optimization: Tributes to M. J. D. Powell, A. Iserles and M. Buhmann, eds.,
Cambridge, England, 1997, Cambridge University Press, pp. 83{108.
[3] , Recent progress in unconstrained nonlinear optimization without
derivatives, Mathematical Pro-
gramming, Series B, 79 (1997), pp. 397{414.
[4] , A derivative free optimization algorithm in practice, Tech. Rep. TR98/11,
Department of Math- ematics, University of Namur, Namur, Belgium, 1998.
[5] A. R. Conn, K. Scheinberg, and L. Vicente, Error estimates and poisedness in
multivariate
polynomial interpolation, tech. rep., IBM T. J. Watson Research Center, 2006.
[6] , Geometry of interpolation sets in derivative free optimization, Mathematical
Programming, Se- ries A, 111 (2007), pp. 141{172.
[7] G. Deng and M. Ferris, Adaptation of the UOBYQA algorithm for noisy
functions, in Proceedings of the 38th conference on Winter simulation, Winter
Simulation Conference, 2006, pp. 312{319.

86

[8] E. D. Dolan and J. J. Mor_e, Benchmarking optimization software with
performance pro_les, Math- ematical Programming, Series A, 91 (2002), pp.
201{213.
[9] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for
Mathematical Programming, Scienti_c Press, 1993. www.ampl.com.
[10] Marazzi, M. and J. Nocedal, Wedge trust region methods for derivative free
optimization, Mathe- matical Programming, Series A, 91 (2002), pp. 289{305.
[11] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, MPS-SIAM
Series on Optimization, SIAM, Philadelphia, 2000.
[12] Marco Boresta1 · Tommaso Colombo1 · Alberto De Santis 1 · Stefano Lucidi ,
A Mixed Finite Differences Scheme for Gradient Approximation , Journal of
Optimization Theory and Applications (2022)
194:124https://doi.org/10.1007/s10957-021-01994-w
[13] Igor Griva Stephen G. Nash Ariela Sofer George Mason University Fairfax,
Virginia, Linear and Nonlinear Optimization second edition, Society for Industrial
and Applied Mathematics, 2009
[14] Yuan, Y. On the truncated conjugate gradient method. Math. Program. 87,
561–573 (2000). https://doi.org/10.1007/s101070050012

 [15]S. M. Robinson, Numerical Optimization 2nd ed (Jorge Nocedal, Stephen
J.Wright).pdf.

[16]B. Karasözen, “Survey of trust-region derivative free optimization methods,”
J. Ind. Manag. Optim., vol. 3, no. 2, pp. 321–334, 2007, doi:
10.3934/jimo.2007.3.321.
[17]E. A. E. Gumma, M. M. Ali, and M. H. A. Hashim, “A derivative-free algorithm
for non-linear optimization with linear equality constraints,” Optimization, vol.
69, no. 6, pp. 1361–1387, 2020, doi: 10.1080/02331934.2019.1690491.
[18]M. J. D. Powell, “The NEWUOA software for unconstrained optimization
without derivatives,” pp. 255–297, 2006, doi: 10.1007/0-387-30065-1_16.

https://doi.org/10.1007/s101070050012

87

Derivative-Free Trust-Region Method for Solving Large-Scale Optimization

Problems Using Iterative Method

Ahmed Mohamed1 and M. H. A. Hashim2

3. Sudan University of Science and Technology ,College of graduate ,Department of

Mathematics, Alnajeeb177@Gmail.com

4. Department of Applied Mathematics, Faculty of Mathematical Sciences, University
of Khartoum, Khartoum, Sudan , mhahashim61@gmail.com

Abstract

 In this paper, we present a derivative-free trust-region algorithm for

large-scale unconstrained optimization, using symmetric-rank1(SR1)to

approximate the Hessian. The centeral finite-differences are used to

approximate the gradient of the function. An Iterative Solution Method is

used for solving the trust-region sub-problem. Its performance is tested on

some problems and Compared to the Truncated Newton Method for solving

trust-region sub-problem.

Keywords : Unconstrained Optimization, Derivative-Free Optimization, Trust-Region

Methods, Symmetric-Rank-1(SR1), Finite-Differences.

1. Introduction
The general unconstrained optimization problem is stated as

 minx∈Rn f(x) (1)

Where f(x) is a continuously differentiable function defined in Rn .

large-scale optimization methods has been developed to solve

unconstrained optimization problems with thousands or millions of

variables which arise in many applications . Problems of this size can be

solved efficiently only if the storage and computational costs of the

optimization algorithm can be kept at a tolerable level. To achieve this goal

collection of large-scale optimization methods has been developed, each

being particularly effective for certain problem types[1][10][13].

mailto:Alnajeeb177@Gmail.com
mailto:mhahashim61@gmail.com

88

Trust region methods for the unconstrained optimization problem (1)

compute a trial step in each iteration by solving the following sub-problem

minimizep qk xk = f xk + ∇f(xk)Tp +
1

2
pT∇2f(xk)p (2)

Subject to

 p ≤ ∆k

The following is a description of a model trust region algorithm for

unconstrained optimization.

Algorithm 1 (A Model Trust Region Algorithm)

Given ∆ > 0 , ∆0∈ 0, ∆ and η ∈ 0,
1

4
 :

For k = 0,1,2, … ..

Obtain pk by approximately solving (2);

Obtain ρk =
f xk −f(xk +pk)

mk 0 −mk (pk)

If ρk <
1

4

 ∆k+1=
1

4
∆k

else

if ρk >
3

4
 and pk = ∆k

 ∆k+1= min(2∆k , ∆)

else

 ∆k+1= ∆k

If ρk < 𝜂

 xk+1 = xk + pk

else

 xk+1 = xk

end(for)

89

In this paper, we study the case when the matrix Bk = ∇2f is updated by the

symmetric-rank-1(SR1) method at each iteration . The symmetric rank-1

update has the general form

 Bk+1 = Bk + σvvT (3)

where σ is either +1 or − 1, and σ and v are chosen so that Bk+1 satisfies

the (secant equation), that is,

 yk = Bk+1sk (4)

When the number of variables is very large, it could be very costly to solve

Eqs(2) exactly. Therefore, various methods for calculating an approximate

solution of Eqs(2) have been developed, such as the dogleg and double

dogleg techniques ,the truncated CG method[1,14] and subspace-iterated

methods [1], to name few.

2. Iterative Solution Of The Sub-problem

In this section, we study Iterative Solution, The technique that uses the

characterization

 B + λI p∗ = −g (5)

 for some λ ≥ 0.

of the sub-problem solution, applying Newton’s method to find the value of

λ which matches the given trust-region radius ∆ in (2).

We Define

p λ = − B + λI −1g

For λ sufficiently large that B + λI is positive definite and seek a value λ > 0

such that

 p λ = Δ (6)

 This problem is a one-dimensional root-finding problem in the variable λ.

The method is assumed to be the solution of the trust region sub-problem

(2). A complete algorithm for minimizing f is obtained by using Algorithm 1

90

to generate the step pk required by Algorithm1, for some choice of

tolerance ϵk at each iteration.

Algorithm 2 (Trust Region Sub-Problem)

Given λ(0), Δ > 0:

 for ℓ = 0,1,2, …

 Factor B + λ(ℓ)I = RTR;

Solve RTRpℓ = −g, RTqℓ = pℓ;

 Set

 λ(ℓ+1) = λ(ℓ) +
 pℓ

 qℓ

2

 pℓ −∆

∆
 ; (7)

end for .

3. Gradient Estimation Via Central Finite Differences

Finite differencing refers to the estimation of f ′ (x) using values of f(x).

central finite differences (CFD) based on the sample set X = {x + σei}i=1
n ∪

{x − σei}i=1
nn , and is computed as

 [g(x)]i = ∇ f x =
f x+σei −f(x−σei)

2σ
, for i = 1, 2 , ……… , n (8)

CFD approximations require 2n functions evaluations[1][12][13].

4. The Symmetric-Rank-1(SR1) Method

The symmetric rank-1 update has the general form

 Bk+1 = Bk + σvvT (9)

where σ is either +1 or − 1, and σ and v are chosen so that Bk+1 satisfies

the eqs(4) . By substituting into this equation, we obtain

 yk = Bksk + [σvTsk]v (10)

Since the term in brackets is a scalar, we deduce that v must be a multiple

of yk − Bksk , that is, v = δ(yk − Bksk) for some scalar δ. By substituting

this form of v into (7), we obtain

91

 yk − Bksk = σδ
2 sT

k yk − Bksk yk − Bksk , (11)

and it is clear that this equation is satisfied if (and only if) we choose the

parameters δ and σ to be

 σ = sign sT
k yk − Bksk , δ = ± sT

k yk − Bksk
−1 2

 (12)

Hence ,we have shown that the only symmetric rank-1 updating formula

that satisfies the secant equation is given by

 Bk+1 = Bk +
 yk −Bk sk yk −Bk sk T

 yk −Bk sk T sk
 (13)

the SR1 updating formula has proved to be quite useful, and its ability to

generate indefinite Hessian approximations can actually be regarded as

one of its chief advantages. give a formal description of an SR1 method

using a trust-region framework[1,13,]

5. The Algorithm

Due to the Iterative method properties studied in the section2, and central

Finite difference (CFD) studied in section3, and the symmetric-rank-1(SR1)

method studied in section4, we can construct trust region algorithms

based on the traditional trust region philosophy. The algorithm proposed

using Iterative method to solve trust region sub-problem and using

symmetric-rank-1 to update Hessian matrix at each iteration and using

finite difference to approximate the Gradient of the function .

Algorithm 3 (SR1 Trust-Region Method)

Given starting point x0 , initial Hessian approximation B0 , trust-region

radius ∆0 , convergence tolerance ϵ > 0 , parameters η ∈ (0, 10−3) and

r ∈ (0, 1);

k ← 0;

Compute gk = ∇fk using finite differences eqs(8)

while ∇fk > 𝜖 ;

Compute pk by solving the subproblem using Algorithm 2 find pk ;

92

Compute

yk = ∇f (xk + pk) − ∇fk ,

 ρk =
f xk −f(xk +pk)

mk 0 −mk (pk)

if ρk > η

xk+1 = xk + pk ;

else

xk+1 = xk ;

end (if)

if ρk > 0.75

if pk ≤ 0.8∆k

∆k+1= ∆k ;

else

∆k+1= 2∆k ;

end (if)

else if 0.1 ≤ ρk ≤ 0.75

∆k+1= ∆k ;

else

∆k+1= 0.5∆k ;

end (if)

if sT
k yk − Bksk ≥ r sk yk − Bksk

Use (13) to compute Bk+1 (even if xk+1 = xk);

else

Bk+1 ← Bk ;

end (if)

k ← k + 1;

end (while)

6. Numerical Results:

93

1- 𝒇 𝒙 = (𝒊 − 𝒙𝒊)
𝟒𝟏𝟎

𝒊=𝟏 the optimal solution

𝒙∗ = 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 , 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟏𝟎−𝟏𝟐

Using x0 = 0 0 0 0 0 0 0 0 0 0

Method

Derivative free Trust-region

method using truncated Newton

method

ϵ = 10−12

Derivative free Trust-

region method using

Iterative Solution

ϵ = 10−12

iteration k 10000 127

The optimal

point x∗

1.0094

2.0015

3.0006

3.9886

5.0005

5.9993

7.0984

7.9871

8.6187

10.0007

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

2- 𝒇 𝒙 = 𝟏𝟎𝟎(𝒙𝟏 − 𝒙𝟐)𝟔 + 𝟏𝟎(𝒙𝟑 − 𝟏)𝟖+(𝒙𝟏 − 𝟒)𝟒 the optimal solution

𝒙∗ = 𝟒 𝟒 𝟏 , 𝒆𝒓𝒐𝒓𝒓 𝝐 = 𝟏𝟎−𝟏𝟐

Using x0 = 0 0 0 , 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 10000

94

Method

 Derivative free Trust-region

method using truncated Newton

method

ϵ = 10−12

Derivative free Trust-

region method using

Iterative Solution

ϵ = 10−12

iteration k 10000 610

The optimal

point x∗

4.1286

4.3041

1.0038

4.0000

3.9994

0.9897

 Using x0 = 0 0 0 , 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 50000

Method

 Derivative free Trust-region

method using truncated Newton

method

ϵ = 10−12

Derivative free Trust-

region method using

Iterative Solution

ϵ = 10−12

iteration k 50000 1556

The optimal

point x∗

4.0081

4.1612

1.0038

4.0000

4.0003

0.9998

3- 𝑓 𝑥 = (i − xi)
420

i=1

With

x0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 , delta =

1 , iteration = 1000, erorr ϵ =0.00000000000001

The optimal solution

x∗ =

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

95

Method

Derivative free Trust-region

method using truncated Newton

method

ϵ = 10−14

Derivative free Trust-

region method using

Iterative Solution

ϵ = 10−14

iteration k 1000 139

The optimal

point x∗

1.0000

2.0067

2.9997

3.9996

5.0067

6.0000

6.9996

8.0000

9.0003

10.0067

11.0067

11.9999

12.9997

14.0000

 1.0000

 2.0000

 3.0000

 4.0000

 5.0000

 6.0000

 7.0000

 8.0000

 9.0000

 10.0000

 11.0000

 12.0000

 13.0000

 14.0000

96

15.0067

16.1593

17.0004

18.0000

19.2186

20.0000

 15.0000

 16.0000

 17.0000

 18.0000

 19.0000

 20.0000

7. Conclusions

In this paper we have presented derivative-free trust-region algorithm for

large-scale unconstrained optimization. The algorithm using symmetric-

rank1(SR1)to approximation Hessian and using centeral finite-difference

approximation to the gradient of function. The Iterative method is used for

solving the trust-region sub-problem ,and the results is compared with

Truncated Newton method. Numerical experiments on several functions

show the good performance of the proposed method. For further study, we

suggest developing methods for constrained problems.

References:

[1] Jorge Nocedal Stephen J. Wright , Numerical Optimization

,SecondEdition 2006

[2] A. R. Conn, K. Scheinberg, and P. L. Toint, On the convergence of

derivative-free methods for unconstrained optimization, in Approximation

Theory and Optimization: Tributes to M. J. D. Powell, A. Iserles and M.

Buhmann, eds., Cambridge, England, 1997, Cambridge University Press, pp.

83{108.

97

[3] , Recent progress in unconstrained nonlinear optimization

without derivatives, Mathematical Pro- gramming, Series B, 79 (1997), pp.

397{414.

[4] , A derivative free optimization algorithm in practice, Tech. Rep.

TR98/11, Department of Math- ematics, University of Namur, Namur,

Belgium, 1998.

[5] A. R. Conn, K. Scheinberg, and L. Vicente, Error estimates and

poisedness in multivariate polynomial interpolation, tech. rep., IBM T. J.

Watson Research Center, 2006.

[6] , Geometry of interpolation sets in derivative free optimization,

Mathematical Programming, Se- ries A, 111 (2007), pp. 141{172.

[7] G. Deng and M. Ferris, Adaptation of the UOBYQA algorithm for noisy

functions, in Proceedings of the 38th conference on Winter simulation,

Winter Simulation Conference, 2006, pp. 312{319.

[8] E. D. Dolan and J. J. Mor_e, Benchmarking optimization software with

performance pro_les, Math- ematical Programming, Series A, 91 (2002), pp.

201{213.

[9] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language

for Mathematical Programming, Scienti_c Press, 1993. www.ampl.com.

[10] Marazzi, M. and J. Nocedal, Wedge trust region methods for derivative

free optimization, Mathe- matical Programming, Series A, 91 (2002), pp.

289{305.

[11] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, MPS-

SIAM Series on Optimization, SIAM, Philadelphia, 2000.

[12] Marco Boresta1 · Tommaso Colombo1 · Alberto De Santis 1 · Stefano

Lucidi , A Mixed Finite Differences Scheme for Gradient Approximation ,

Journal of Optimization Theory and Applications (2022)

194:124https://doi.org/10.1007/s10957-021-01994-w

98

[13] Igor Griva Stephen G. Nash Ariela Sofer George Mason University

Fairfax, Virginia, Linear and Nonlinear Optimization second edition, Society

for Industrial and Applied Mathematics, 2009

[14] Yuan, Y. On the truncated conjugate gradient method. Math. Program.

87, 561–573 (2000). https://doi.org/10.1007/s101070050012

[15]“Linear Algebra and Its Applications,” Linear Algebra and Its

Applications, vol. 373, no. SUPPL. 2003, doi: 10.2307/2978065.

 [16]S. Hammarling and C. Lucas, “Updating the QR factorization and the

least squares problem,” MIMS Rep., no. November, p. 73, 2008, [Online].

Available: http://eprints.ma.man.ac.uk/1192/.

https://doi.org/10.1007/s101070050012

