Contents

No		Dago
INU	Dedication	Page V
	Acknowledgement	V
	Abstract in English	V
	(Abstract in(Arabic	V
	Chapter One: Introduction and basic concepts	
1.1	Introduction	1
1.2	The importance of the Study	3
1.3	The aim of the study	3
1.4	Procedures of the study	3
1.5	Sample study	4
1.6	Thesis out line	4
1.7	Basic concepts	5
7.1 .1	The nature of light	5
7.2 .1	The wave nature of light	6
7.3 .1	The particle nature of	8
7.4 .1	Regions of the electromagnetic spectrum	10
7.5 .1	The power of light	10
7.6 .1	Transparent and opaque matters	11
1.7.7	Homogeneity and Heterogeneity	12
1.7.8	Organic Materials	12
1.7.9	Interaction of Light with matter	13
7.10 .1	microwave interactions	14
7.11 .1	Infrared interaction	15
7.12 .1	Visible light interactions	16
7.13 .1	Ultraviolet interactions	17
7.14 .1	X-ray interactions	18
7.15 .1	Absorption	19
7.16 .1	Emittance	22
7.17 .1	Emission Spectra	22
7.18 .1	The relation between transmittance, reflectance, absorbance	23
1.7.19	Reflection and refraction: Snell's law	24
7.20 .1	Critical angle	27
7.21 .1	Dispersion	28
7.22 .1	Scattering	28
7.23 .1	Bragg's law	30

	Chapter two			
2.1	The history of thin films	33		
2.2	The production of thin film	34		
2.3	Thin film deposition techniques	34		
2.3.1	Physical vapour deposition	34		
2.3.2	evaporationÉ	34		
2.3.4	Thermal evaporation	35		
2.3.5	Electron-beam evaporation	36		
2.3.6	Laser deposition of thin films	37		
2.3.7	Chemical vapour deposition	39		
2.3.8	Sputtering	40		
2.3.9	Coating	41		
2.3.10	Spin coating	41		
2.4	Antireflection	41		
2.5	Transmission and reflection of coating on substrate	42		
	Chapter three			
3.1	Optical thin –film materials	44		
3.2	Thin semiconducting films	44		
3.3	'Film thickness	45		
3.4	Optical properties of thin films	45		
3.5	Mechanical properties of thin films	46		
3.6	Characterization of thin films	46		
3.7	Some applications of thin films	47		
3.8	Optical filter	47		
3.9	Emission of light	48		
3.9.1	Luminescence properties	48		
3.9.4	Band gap luminescence	53		
3.9.5	Properties of semiconductors	56		
3.9.7	Intrinsic and extrinsic semiconductors	60		
	Chapter Four: Experimental work			
4.1	Introduction	62		
4.2	Apparatus and experiment procedures	62		
4.3	Structural measurements	68		
4.4	Sample preparation	69		
4.5	The methods of MnS thin films deposition	69		
4.6	Methods of thickness measurement	70		
4.7	Transmission and reflection measurement	71		

	Chapter Five: Results and discussions	
5.1	Introduction	72
5.2	Result and analysis	72
5.3	Discussion	76
5.4	Calculation analysis of thickness	83
5.5	Conclusion	86
5.6	Future work	87
	References	88

Appendix

No	List of figures	Page
1	.Figure 1.1 the Electromagnetic spectrum	9
2	Figure 1.2 the interaction of radiation with matter	14
3	Figure 1.3 Microwaves interactions	15
4	.Figure 1.4: Infrared interaction	16
5	.Figure 1.5 Visible interactions	17
6	.Figure 1.6: Ultraviolet interactions	18
7	.Figure 1.7 X-ray interactions	19
8	Figure 1.8: Linear absorption of light in a sample of .thickness	20
9	Figure 1.9: Schematic diagram as illustration absorption coefficient of light	21
10	.Figure 1.10 Reflection and refraction	24
11	Figure 1.12 definition of critical angle.	27
12	Figure 1.13 Schematic diagram as illustration to derive Bragg's Law	31
13	Figure 2.1 Simplified atomic energy level diagram showing excited states of atomic He-Ne that are relevant to the .operation of the He-Ne laser at 632nm	38
14	.Figure 2.2Magnetron sputtering process	40
15	.Figure 2.3 scheme of multilayer reflection	44
16	.Figure 3.2 Excitation to emission	51
17	Figure 3.3 Schematic diagram of how atoms emit light	55
18	Figure 3.5 schematic energy band a conductor with possibilities partially filled conduction band and shown a semiconductor and insulator.	58
19	Figure 4.1 Schematic view of Michelson interferometer	63
20	Figure 4.2 thermal evaporation deposition system (Coating units).	65
21	Figure 4.3 Schematic view of Michelson interferometer	66
22	Figure 4.4 UV Vis Spectrophotometer optical designs	68
23	Figures 4.6 sample of (MnS) substrate on glass	70
24	Figure 5.1 DTA diagram of as synthesized MnS in	76

	powder form.	
25	Figure 5.2 the transmission spectrum of MnS-1 versus wave lengths	77
26	Figure 5.3 the transmission spectrum of MnS-3 versus wave lengths.	78
27	Figure 5.4 the absorption coefficient of MnS2 versus wave .lengths	79
27	Figure 5.4 the absorption coefficient of MnS2 versus wave .lengths	79
28	Figure 5.5 the absorption coefficient of MnS3 versus wave .lengths	80
29	Figure 5.6 the absorption spectrum of MnS-2 before treatment	81
30	Figure 5.7 Transmission spectrum of MnS-3	82
31	Figure 5.8 Thickness of MnS-2 versus treatment temperature	82
32	A-1 coating unit champers	93
33	.A-2 Michelson interference for thickness measurement	93
34	A-3 Furnace for samples treatment between (50-250 °C).	94
35	The figures and diagrams of MnS samples	94
36	The figures and diagrams of MnS samples	94
37	Transmission of Sample 6	96
38	Absorption of Sample 7	97
39	Transmission of sample 7	97
40	Absorption of sample 5	98
41	Transmission of sample 5	98

List of tables

No	Table	page
1	.Table 1.1 spectrum of Electromagnetic radiation	10
2	Table 3.2 Luminescence types and excitation source	52

3	Table No 4.1 some characteristic of MnS	63
4	Tables 4.2.Conditions under which the Samples were	69
	prepared	
5	Table 5.1 the incident and transmitted intensity of different	73
	beam wavelengths of MnS-2	
7	Table 5.2 the transmission percentage of Sample MnS-2	73
8	Table 5.3 the transmission of MnS-2	74
9	Table 5.4 the reflection of Sample No.2 MnS-2	74
10	Table 5.5 the absorption coefficient of Sample MnS-2	75
11	Table 5.6 the refractive index of Sample No. MnS-2	75
12	Table 5.7 the absorption of Sample No.2 MnS-2	75
13	Table 5.8 MnS-2 layer thickness	83
14	Table 5.9 the thickness of MnS-2.	84
14	Table 5.10 heat temperature and thickness.	84