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Abstract 

 

This study aims to study the scattering theory using the Generalized Special 

Relativistic and some basic quantity equations, where it was found the scattering 

cross-section contains a new limit in which the cross section depends on the particle 

mass, and this result did not appear in the scattering theory based on the Schrödinger 

equation , and thus this theory enables us to give us information more precisely about 

the scattering phenomenon, and what distinguishes this theory also, we found that it 

leads to the scattering theory based on the Schrödinger equation when neglecting the 

mass of the particle. 
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 المستخلص

 

وبعض معادلات  الكمية يهدف هذا البحث إلى دراسة نظرية التشتت بإستخدام النظرية النسبية الخاصة المعممة 

الأساسية حيث وجد أن المقطع العرضي للتشتت يحتوي على حد جديد يعتمد فيه المقطع العرضي على كتلة 

التشتت المعتمدة على معادلة شرودينجر، وبالتالي تمكننا هذه الجسيمات وهذه النتيجة لم تظهر في نظرية 

النظرية من إعطائنا معلومات أدق حول ظاهرة التشتت، وما يميز هذه النظرية أيضاً وجدنا أنها تؤول إلى 

                                                    .نظرية التشتت المعتمدة على معادلة شرودينجر عند إهمال كتلة الجسيم

 

 

 

 

 

 

 

 

 

 



VI 
 

Table of Contents 

Subject Page 

Holy Quran   I  

Dedication   II  

Acknowledgment  III  

Abstract English   IV  

Abstract Arabic   V   

Table of Contents  VI  

Chapter One 

Introduction 

 

 

1.1 Electromagnetic Waves  1  

1.2 Research Problem 3 

1.3 Aim of The Work 4  

1.4 Thesis Layout 4  

Chapter Two 

Theoretical background 

 

 

2.1 Introduction 5 

2.2 A brief History 5 

2.3 De Broglie Matter Waves 8 

2.4 The Schrodinger Equation 9 

2.4.1 Sinusoidal Waves 9 

2.4.2 Particle Wave Equations 10 

2.4.3 A wave Equation For A free Particle 11 

2.4.4 Wave Equation For A particle in A potential Energy Field 13 

2.4.5 Particle Flux and Probability Density 15 



VII 
 

2.5 The Klein-Gordon Equation 16 

2.6 The Dirac Equation 18 

2.6.1 Dirac's 𝜶 and 𝜷 Matrices 20 

2.6.2 The Continuity Equation 22 

2.7 Scattering 23 

2.7.1 Tyndall Effect 23 

2.7.2 Multiple Scattering 24 

2.7.3 Thomson Scattering 24 

2.7.4 Compton Scattering 24 

2.7.5 Brillion Scattering 25 

2.7.6 Raman Scattering 25 

2.7.7 Rayleigh Scattering 26 

2.8 Scattering Theory 27 

2.8.1 Scattering In One Dimension 28 

2.8.1.1 Reflection and Transmission Amplitudes 
31 

2.8.1.2 Scattering from the Left 
31 

2.8.1.3 Scattering from the Right 
33 

2.8.2 Scattering in Three Dimensions 
34 

2.8.2.1 The Cross-Section 
34 

2.8.2.2 Classical Scattering 
35 

2.8.2.3 Rutherford Scattering 
36 

2.8.2.4 The Scattering Amplitude 
37 

2.8.3 Scattering off a Lattice 
39 

2.8.3.1 The Bragg Condition 
42 

2.9 Lippmann Schwinger Equation 
44 

  



VIII 
 

Chapter Three  

Literature review  

3.1 Introduction  48 

3.2 Solving the Quantum Scattering Problem for Systems of Two and 

Three Charged Particles 

48 

3.3 Investigations on Cement Pastes by Small-angle X-ray Scattering 

and BET: the Relevance of Fractal Geometry 

50 

3.4 Light Scattering by Polymers 52 

3.5 Introducing Scattering Theory with a Computer 53 

3.6 Scattering Theory from Homogeneous and Coated Spheres: 54 

3.7 Scattering Theory and Geometry 54 

3.8 On an Evaluation of the Accuracy of the Uniform Semi Classical 

Approximation for Differential Elastic Scattering Cross Sections 
55 

3.9 Microscopic Description of Elastic and Direct Inelastic Nucleon 

Scattering Off Spherical Nuclei  
57 

3.10 Energy Quantization of Electrons for Spherically Symmetric 

Atoms and Nano Particles According to Schrödinger Equation: 
60 

3.11 Harmonic Oscillator Solution for Free and Time Independent 

Potential String within the Framework of Dirac Special Relativistic 

Equation: 

60 

3.12 Time Independent Generalized Special Relativity Quantum 

Equation and Travelling Wave Solution 
61 

3.13 Quantum Equation for Generalized Special Relativistic Linear 

Hamiltonian 
62 

Chapter Four  



IX 
 

Scattering using potential dependent SR 

4.1 Introduction 63 

4.2 General Scattering Theory 63 

4.3 Scattering by Uniform Potential for Nearly Free Particle 74 

4.4 Scattering by Spherical Nucleus for Nearly Free Particle 76 

4.5 Scattering by Harmonic Oscillator for Nearly Free Particle 77 

4.6 Scattering of Ground State Harmonic Oscillator for Perpendicular 

Scattering 

78 

4.7 Scattering of Nearly Free Particle by Electric Dipole Molecules 81 

4.8 Discussion 82 

4.9 Conclusion 84 

4.10 Future Work 84 

References 85 

 
 

 

 



1 
 

Chapter One 

Introduction 

(1.1) Electromagnetic Waves: 

        Light is the oldest well known electromagnetic waves. It is used at that time for 

lighting and seeing things around. Later on light is discovered to be related to the 

electromagnetic waves that are electric and magnetic travelling waves perpendicular 

to each other [1]. 

The wave nature of electromagnetic waves was formulated mathematically using 

Maxwell’s equations. This wave nature succeeded in explaining the laws of 

reflection and refraction beside interference and diffraction [2]. But unfortunately 

the spectrum of the radiation emitted by the black body seems to be too difficult to 

be explained using the wave nature of electromagnetic fields [3, 4]. This forces 

Maxplank to propose that light and electromagnetic waves behave as discrete quanta 

[5, 6]. This new particle (quanta) version succeeded in explaining the black body 

radiation beside pair production, photoelectric effect and Compton effect [7, 8].  

Thus there are two versions to describe the interaction of electromagnetic waves 

with matter. The wave version and the particle (quanta) version [9, 10, 11]. One of 

the most important interactions is the scattering process [12, 13, 14].  

Scattering theory is important as it underpins one of the most ubiquitous tools in 

physics, almost everything we know about nuclear and atomic physics has been 

discovered by scattering experiments, e.g. Rutherford’s discovery of the nucleus, the 

discovery of sub-atomic particles (such as quarks), etc. In low energy physics, 

scattering phenomena provide the standard tool to explore solid state systems, e.g. 

neutron, electron, x-ray scattering, etc. [15]. 
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Scattering is even more important, much of our information about the interaction 

between particles being derived from scattering experiments [16]  

Scattering process takes place when the incident electromagnetic beam enter bulk 

matter. In this case photons collide with atoms and change their direction and energy. 

The scattering process leads to gain energy by the medium. This energy can be 

converted into heat energy or can excite atoms [17]. 

 Almost everything we know about nuclei and elementary particles has been 

discovered in scattering experiments, from Rutherford’s surprise at finding that 

atoms have their mass and positive charge concentrated in almost point-like nuclei, 

to the more recent discoveries, on a far smaller length scale, that protons and 

neutrons are themselves made up of apparently point-like quarks.  

The simplest model of a scattering experiment is given by solving Schrödinger’s 

equation for a plane wave impinging on a localized potential. A potential V(r) might 

represent what a fast electron encounters on striking an atom, or an alpha particle a 

nucleus. Obviously, representing any such system by a potential is only a beginning, 

but in certain energy ranges it is quite reasonable, and we have to start somewhere 

[18] 

The theoretical investigation and description of scattering (collision) processes of 

atomic particles represents an important field of application of Quantum Mechanics. 

One can gain therewith valuable information about particle interactions (e.g., nuclear 

forces), about elementary interaction potentials, about the structure of matter (e.g., 

crystal structures), and so on. The energetic structure of atoms and molecules, 

however, is spectroscopic ally investigated, where by any kind of energy supply the 

particle is transferred from its ground state into an excited state. The energy, which 

is emitted with the return into the ground state, e.g. in form of a photon, is analyzed. 

Initial and final state of the process stem from the discrete spectrum of the Hamilton 
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operator (bound states). In contrast, it is typical for scattering processes that the 

initial and final state of the considered system both lie in the continuous part of the 

eigen-value spectrum. The scattered particle comes from infinity into the sphere of 

action of the scattered, in order to be detected after the collision again asymptotically 

at infinity. The particle is therefore not in a bound state. An example of how one can 

draw conclusions from scattering processes about the physical properties of atomic 

and subatomic particles, we have already got to know in connection with the 

classical Rutherford scattering. Its analysis led to a first, already rather realistic 

nuclear model. We had seen there that in Classical Physics the collision between two 

particles can uniquely be described by their velocities and the impact parameter. 

Although the latter could not be precisely given, so that we were forced to revert to 

means of Statistics, nevertheless the total classical process remained of course in 

principle deterministic. That is now different, though, in Quantum Mechanics, since 

concepts like path, impact parameter have lost their meaning. Accordingly, 

quantum-mechanically, for a scattering process, only probability statements are 

possible. In the following, we will have to concentrate ourselves on the question, 

with which probability particles are deflected (scattered) at the angle (ϑ, ϕ) relative 

to the original direction of motion, as a consequence of their interaction with 

collision partners [19] 

(1.2) Research Problem: 

Elementary particles behavior cannot fully explained by using ordinary quantum 

field theory. For example the number of neutrinos with different masses is difficult 

to be explained. There are many interactions of elementary particles that cannot be 

explained using the ordinary scattering theories. 
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(1.3) Aim of The Work: 

The aim of this work is to construct new quantum field theory based on generalized 

special relativity (GSR) to explain scattering of elementary particles  

(1.4) Thesis Layout: 

          The thesis consists 4 chapters. 

Chapters one and two are concerned with the introduction and theoretical back 

ground. Chapter three and four are devoted for the literature review and the model. 
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Chapter Two 

Theoretical background 

(2.1) Introduction: 

    The scattering quantum theory is based on quantum equations. These equations 

are presented here. 

(2.2) A brief History: 

1900 (Planck): Max Planck proposed that light with frequency 𝑣 is emitted in 

quantized lumps of energy that come in integral multiples of the quantity, 

𝐸 = ℎ𝑓 = ℏ𝑤             (2.2.1) 

Where ℎ = 6.63 × 10−34𝐽. 𝑠 is Planck's constant, and 

                                                ℏ =  ℎ
2𝜋⁄ = 1.06 × 10−34𝐽. 𝑠             (2.2.2). 

The frequency 𝑣  of light is generally very large (on the order of 1015𝑠−1 for the 

visible spectrum), but the smallness of ℎ wins out, so the ℎ𝑓 unit of energy is very 

small (at least on an everyday energy scale). The energy is therefore essentially 

continuous for most purposes. 

However, a puzzle in late 19th-century physics was the blackbody radiation 

problem. In a nutshell, the issue was that the classical (continuous) theory of light 

predicted that certain objects would radiate an infinite amount of energy, which of 

course can't be correct. Planck's hypothesis of quantized radiation not only got rid of 

the problem of the infinity, but also correctly predicted the shape of the power curve 

as a function of temperature. 

Planck's hypothesis simply adds the information of how many lumps of energy a 

wave contains. Although strictly speaking, Planck initially thought that the 

quantization was only a function of the emission process and not inherent to the light 

itself. 
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1905 (Einstein): Albert Einstein stated that the quantization was in fact inherent to 

the light, and that the lumps can be interpreted as particles, which we now call 

“photons.” This proposal was a result of his work on the photoelectric effect, which 

deals with the absorption of light and the emission of elections from a material. That 

𝐸 =  𝑝𝑐 for a light wave. (This relation also follows from Einstein's 1905 work on 

relativity, where he showed that E = pc for any massless particle, an example of 

which is a photon.) And we also know that 𝑤 =  𝑐𝑘  for a light wave. 

𝐸 =  ℏ𝑤                                    (2.2.3) 

𝑝 = ℏ𝑘                                        (2.2.4) 

This result relates the momentum of a photon to the wavenumber of the wave it is 

associated with. 

1913 (Bohr):  Neil’s Bohr stated that electrons in atoms have wavelike properties. 

This correctly explained a few things about hydrogen, in particular the quantized 

energy levels that were known. 

1924 (de Broglie): Louis de Broglie proposed that all particles are associated with 

waves, where the frequency and wavenumber of the wave are given by the same 

relations we found above for photons, namely 𝐸 =  ℏ𝑤 and 𝑝 =  ℏ𝑘. The larger 

𝐸 and 𝑝  are, the larger 𝑤 and 𝑘 are. Even for small 𝐸 and 𝑝 that are typical of a 

photon, 𝑤 and 𝑘 are very large because ℏ is so small. So any everyday-sized particle 

with large (in comparison) energy and momentum values will have extremely large 

𝑤 and 𝑘 values. This (among other reasons) makes it virtually impossible to observe 

the wave nature of macroscopic amounts of matter. 

This proposal (that 𝐸 =  ℏ𝑤 and 𝑝 =  ℏ𝑘 also hold for massive particles) was a big 

step, because many things that are true for photons are not true for massive (and 

nonrelativistic) particles. For example, 𝐸 =  𝑝𝑐 (and hence 𝑤 =  𝑐𝑘) holds only for 

massless particles (we'll see below how 𝑤 and 𝑘 are related for massive particles). 
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But the proposal was a reasonable one to try. And it turned out to be correct, in view 

of the fact that the resulting predictions agree with experiments. 

The fact that any particle has a wave associated with it leads to the so-called wave-

particle duality. Are things particles, or waves, or both? Well, it depends what you're 

doing with them. Sometimes things behave like waves, sometimes they behave like 

particles. A vaguely true statement is that things behave like waves until a 

measurement takes place, at which point they behave like particles. However, 

approximately one million things are left unaddressed in that sentence. The wave-

particle duality is one of the things that few people, if any, understand about quantum 

mechanics. 

1925 (Heisenberg): Werner Heisenberg formulated a version of quantum mechanics 

that made use of matrix mechanics. We won't deal with this matrix formulation (it's 

rather difficult), but instead with the following wave formulation due to Schrodinger 

(this is a waves book, after all). 

1926 (Schrodinger): Erwin Schrodinger formulated a version of quantum mechanics 

that was based on waves. He wrote down a wave equation (the so-called Schrodinger 

equation) that governs how the waves evolve in space and time. We'll deal with this 

equation in depth below. Even though the equation is correct, the correct 

interpretation of what the wave actually meant was still missing. Initially 

Schrodinger thought (incorrectly) that the wave represented the charge density. 

1926 (Born): Max Born correctly interpreted Schrodinger's wave as a probability 

amplitude. By” amplitude" we mean that the wave must be squared to obtain the 

desired probability. More precisely, since the wave (as we'll see) is in general 

complex, we need to square its absolute value. This yields the probability of finding 

a particle at a given location (assuming that the wave is written as a function of 𝑥). 

This probability isn't a consequence of ignorance, as is the case with virtually every 

other example of probability you're familiar with. For example, in a coin toss, if you 
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know everything about the initial motion of the coin (velocity, angular velocity), 

along with all external influences (air currents, nature of the floor it lands on, etc.), 

then you can predict which side will land facing up. Quantum mechanical 

probabilities aren't like this. They aren't a consequence of missing information. The 

probabilities are truly random, and there is no further information (so-called “hidden 

variables") that will make things unrandom. The topic of hidden variables includes 

various theorems (such as Bell's theorem) 

And experimental results that you will learn about in a quantum mechanics course. 

1926 (Dirac): Paul Dirac showed that Heisenberg's and Schrodinger's versions of 

quantum mechanics were equivalent, in that they could both be derived from a more 

general version of quantum mechanics. 

2.3 De Broglie Matter Waves:  

The possibility that particles of matter like electrons could be both particle-like and 

wave-like was first proposed by Louis de Broglie in 1923. Specifically he proposed 

that a particle of matter with momentum 𝑝 could act as a wave with wavelength [20]  

λ =
ℎ

𝑝
                                                      (2.3.1) 

From the relativistic equation for total energy:  

𝐸2 = 𝑐2𝑝2 + 𝑚°
2𝑐4                                  (2.3.2)  

With zero photon mass, we get that 

 𝐸2 = 𝑐2𝑝2         ⇒ 𝐸 = 𝑐𝑝                                    (2.3.3) 

𝑃 =
𝐸

𝐶
=

ℎ𝑓
𝑐⁄  = ℎ

λ⁄                                 (2.3.4) 

When dealing with sinusoidal functions of space and time 

                                       𝜓 = [𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)]                       (2.3.5) 

We usually use 

                                  𝜔 = 2𝜋𝑣      𝑎𝑛𝑑        𝑘 =
2𝜋

𝜆
                   (2.3.6),  
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The angular frequency and wave number. This gives us 

                         𝑝 =  ћ𝑘    ,     𝐸 =  ћ𝜔        𝑎𝑛𝑑        𝜔 =  𝑐𝑘              (2.3.7),  

Where 

                                    ћ = ℎ/2𝜋.  

2.4 The Schrodinger Equation: 

        The first step in the development of a logically consistent theory of 

nonrelativistic quantum mechanics is to devise a wave equation which can describe 

the covert, wave-like behavior of a quantum particle. This equation is called the 

Schrodinger equation. The role of the Schrodinger equation in quantum mechanics 

is analogous to that of Newton's Laws in classical mechanics. Both describe motion. 

Newton's Second Law is a differential equation which describes how a classical 

particle moves, whereas the Schrodinger equation is a partial differential equation 

which describes how the wave function representing a quantum particle ebbs and 

flows. In addition, both were postulated and then tested by experiment [21]. 

2.4.1 Sinusoidal Waves: 

The most elegant wave is a sinusoidal travelling wave with definite wavelength λ 

and period  𝜏, or equivalently definite wave number,𝑘 =  2𝜋/𝜆 and angular 

frequency 𝜔 = 2𝜋
𝜏⁄ . Such a wave may be represented by the mathematical function 

𝜓(𝑥, 𝑡) = 𝐴 cos(𝑘𝑥 − 𝜔𝑡)                      (2.4.1.1) 

Where 𝐴 is a constant. At each point 𝑥, the function 𝜓(𝑥, 𝑡) oscillates with 

Amplitude 𝐴 and period 2𝜋
𝜔⁄ . At each time 𝑡, the function 𝜓(𝑥, 𝑡) undulates with 

amplitude 𝐴 and wavelength 2𝜋/𝑘. Moreover, these undulations move, like a 

Mexican wave, in the direction of increasing 𝑥 with velocity 𝜔 𝑘⁄  ; for example, the 

maximum of 𝜓(𝑥, 𝑡) corresponding to  

𝑘𝑥 − 𝜔𝑡 = 0                                          (2.4.1.2) 

Occurs at the position 
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𝑥 =
𝜔𝑡

𝑘
                                                   (2.4.1.3), 

And the minimum corresponding to 

𝑘𝑥 − 𝜔𝑡 = 𝜋                                          (2.4.1.4) 

Occurs at the position 

𝑥 =
𝜆

2
+

𝜔𝑡

𝑘
                                              (2.4.1.5) ; 

In both cases the position moves with velocity 𝜔 𝑘⁄  . 

The function 𝑠𝑖𝑛 (𝑘𝑥 − 𝜔𝑡) , like 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) , also represents a sinusoidal 

Travelling wave with wave number 𝑘 and angular frequency 𝜔. Because 

                        𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) =  𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡 − 𝜋
2⁄ )                        (2.4.1.6) , 

The undulations and oscillations of 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) are out of step with those of 

 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) ; the waves 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) and  𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) are said to have a 

phase difference of 𝜋 2⁄ . The most general sinusoidal travelling wave with wave 

number 𝑘 and angular frequency 𝜔 is the linear superposition 

𝜓(𝑥, 𝑡) = 𝐴 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡) + 𝐵  𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)                    (2.4.1.7) 

Where 𝐴 and 𝐵 are arbitrary constants. 

Very often in classical physics, and invariably in quantum physics, sinusoidal 

travelling waves are represented by complex exponential functions of the form 

𝜓(𝑥, 𝑡) = 𝐴 𝑒𝑖(𝑘𝑥−𝜔𝑡)                                    (2.4.1.8) 

2.4.2 Particle Wave Equations: 

In classical physics, fundamental laws of physics are used to derive the wave 

equations which describe wave-like phenomena; for example, Maxwell's laws of 

electromagnetism can be used to derive the classical wave equation which governs 

electromagnetic waves in the vacuum. In contrast, we shall view the wave equation 

governing the wave-like properties of a quantum particle as a fundamental equation 

which cannot be derived from underlying basic physical principles. We, like the 
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inventors of quantum theory, can only guess the form of this wave equation and then 

test for consistency and agreement with experiment [22]. 

2.4.3 A wave Equation For a Free Particle: 

We shall construct a possible wave equation for a freely moving non-relativistic 

Particle by considering the properties of the de Broglie waves describing the particle. 

According to λ = ℎ
𝑝⁄  a particle with momentum 𝑝 has a de Broglie wavelength 

given by λ = ℎ
𝑝⁄  . This implies that a de Broglie wave with wave number 

𝑘 =
2𝜋

𝜆
                                                  (2.4.3.1) 

Describes a particle with momentum 

𝑝 = ћ𝑘                                                   (2.4.3.2) 

We shall extend this idea by assuming that a de Broglie wave packet with a range of 

wave numbers between 𝑘 − ∆𝑘 and 𝑘 + ∆𝑘 describes a particle with an uncertain 

momentum 

∆𝑝 ≈ ћ∆𝑘                                              (2.4.3.3)  

We shall also assume that the length of this wave packet is a measure of ∆𝑥 , the 

uncertainty in the position of the particle.  

∆𝑥 ∆𝑝 ≈ ℎ                                          (2.4.3.4) 

Thus, a DE Broglie wave packet can account for the uncertainties in the position and 

momentum of a quantum particle. 

However, we note that a de Broglie wave must be transformed by a measurement. If 

a precise measurement of the position is made, the new wave packet describing the 

particle must be very short, a superposition of sinusoidal waves with a very wide 

range of wavelengths. Similarly, if a precise measurement of the momentum is 

made, the new wave packet is very long with a sharply defined wavelength. This 
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implies that the wave packet is a fragile entity which is transformed by a 

measurement. No one knows how this happens. 

We shall now impose the condition that the wave packet represents a moving 

quantum particle. Specifically, we shall require that the group velocity of the packet 

is equal to the velocity of a particle with mass 𝑚 and momentum  𝑝 = ћ𝑘; we shall 

require that 

𝑑𝜔

𝑑𝑘
=

ћ𝑘

𝑚
                                           (2.4.3.5) 

This equation may be integrated to give the following dispersion relation for the de 

Broglie waves describing a freely moving quantum particle of mass 𝑚: 

𝜔 =
ћ𝑘2

2𝑚
                                            (2.4.3.6) 

In obtaining this relation we have set the constant of integration to zero because this 

constant gives rise to no observable consequences in non-relativistic quantum 

mechanics. 

Our task is to find a wave equation which has sinusoidal solutions which obey this 

dispersion relation. The simplest such wave equation is called the 

Schrodinger equation. For a free particle moving in one dimension, it has the form 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ћ2

2𝑚

𝜕2𝜓

𝜕𝑥2
                                 (2.4.3.7) 

It is easy to verify that the complex exponential 

𝜓(𝑥, 𝑡) = 𝐴 𝑒𝑖(𝑘𝑥−𝜔𝑡)                                (2.4.3.8) 

Thus 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝑖ℏ(−𝑖𝜔)𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) = ℏ𝜔𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)                (2.4.3.9) 

−
ћ2

2𝑚

𝜕2𝜓

𝜕𝑥2
=

ћ2𝑘2

2𝑚
𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)                          (2.4.3.10) 
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And we have a solution provided 

ℏ𝜔 = ћ2𝑘2

2𝑚⁄                                               (2.4.3.11) . 

Because the sinusoidal solution equation (2.4.3.10), describes a wave moving in the 

𝑥 direction with wave number 𝑘 and angular velocity 𝜔, we shall assume that it 

represents a free particle moving in the x direction with a sharply defined momentum 

𝑝 = ћ𝑘 and energy 

𝐸 =
𝑝2

2𝑚
⁄ = ℏ𝜔                                       (2.4.3.12) . 

There are, of course, many other solutions of the Schrodinger equation which 

represent other states of motion of the particle. 

We emphasize that in order to accommodate the dispersion relation for de 

Broglie waves, we have arrived at a wave equation, the free particle Schrodinger 

equation (2.4.3.7), whose solutions are necessarily complex functions of space and 

time. These complex functions are called wave functions. We recall that classical 

waves are often represented by complex functions, but this representation is purely 

a matter of mathematical convenience; classical waves are real functions of space 

and time. In contrast, Schrodinger wave functions are not real functions of space and 

time. They are complex functions which describe the covert wave-like behaviour of 

a quantum particle. 

So far we have only considered sinusoidal solutions of the Schrodinger equation, but 

given these solutions we can construct other types of solutions. Because each term 

in the Schrodinger equation is linear in the wave function 𝜓, a superposition of 

solutions is also a solution [23]. 

2.4.4 Wave Equation For A particle in A potential Energy Field: 

The interactions of a non-relativistic particle can usually be described in terms of a 

potential energy field. For example, an electron in a hydrogen atom can be thought 

of as moving in the potential energy field 
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𝑉 (𝑟) = −𝑒2

4𝜋𝜖°𝑟2⁄                                      (2.4.4.1) 

Of nucleus. In classical mechanics, this field implies that an electron at a distance 𝑟 

from the nucleus experiences an attractive force of magnitude −𝑒2

4𝜋𝜖°𝑟
2⁄ . In 

quantum mechanics, it implies that the wave equation for the electron is not the 

simple free-particle wave equation given by equation (2.4.3.7).  

In 1926, Erwin Schrodinger invented a wave equation for a quantum particle in a 

potential energy field which led to a successful description of atoms and other 

microscopic systems. It is a generalization of the wave equation for a free particle 

given by equation (2.4.3.7). The Schrodinger equation for a particle moving in the 

three-dimensional potential energy field 𝑉(𝑟) is 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= [−

ћ2

2𝑚
∇2 + 𝑉(𝑥)] 𝜓                           (2.4.4.2)   

When the particle moves in a one-dimensional potential 𝑉(𝑥) the Schrodinger 

equation simplifies to 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= [−

ћ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)] 𝜓                        (2.4.4.3) 

It is easy to find solutions of the Schrodinger equation when the potential energy is 

a constant. For example, when a particle moves along the 𝑥 axis with constant 

potential energy 𝑉0, the wave function 

𝜓(𝑥, 𝑡) = 𝐴 𝑒𝑖(𝑘𝑥−𝜔𝑡)                                       (2.4.4.4) 

Is a solution of equation (2.4.4.3) provided 

ℏ𝜔 =
ћ2𝑘2

2𝑚
+  𝑉0                                              (2.4.4.5) 

This wave function represents a particle with sharply defined total energy 𝐸 and 

momentum 𝑝 given by 
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𝐸 =
𝑝2

2𝑚
+  𝑉0         𝑎𝑛𝑑       𝑝 = ℏ𝑘                    (2.4.4.6)  

2.4.5 Particle Flux and Probability Density: 

The Schrodinger wave equation 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= [−

ћ2

2𝑚
∇2 + 𝑉(𝑥)] 𝜓                           (2.4.5.1) 

Where 𝜓(𝑟, 𝑡) is the wave function which is interpreted as the amplitude of 

probability of finding the particle at position 𝑟 at time 𝑡 . The complex conjugate of 

Schrodinger wave equation is 

−𝑖ℏ
𝜕𝜓∗(𝑟, 𝑡)

𝜕𝑡
= [−

ћ2

2𝑚
∇2 + 𝑉(𝑥)] 𝜓∗(𝑟, 𝑡)                (2.4.5.2)   

Multiplying equation (2.4.5.1) by 𝜓∗ on the left and equation (2.4.5.2) by 𝜓 on the 

right and subtracting the latter from the former, we get 

−
ћ2

2𝑚
{𝜓∗∇2𝜓 − 𝜓∇2𝜓∗} = 𝑖ℏ (𝜓∗

𝜕𝜓

𝜕𝑡
+

𝜕𝜓∗

𝜕𝑡
𝜓)            (2.4.5.3) 

−
ћ2

2𝑚
∇. {𝜓∗∇𝜓 − 𝜓∇𝜓∗} = 𝑖ℏ

𝜕

𝜕𝑡
(𝜓∗𝜓)                          (2.4.5.4) 

Defining the probability current density 𝐽 and the probability density 𝜌, 

𝐽 =
ћ

2𝑚𝑖
{𝜓∗∇𝜓 − 𝜓∇𝜓∗}          𝑎𝑛𝑑     𝜌 = 𝜓∗𝜓                    (2.4.5.5) 

We obtain the continuity equation, 

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝐽 = 0                                               (2.4.5.6) 

Equation (2.4.5.6) is the continuity equation, expressing the conservation law that 

the rate of change of particle density in a given region is equivalent to the particle 

flux through the surface enclosing the region. Please note that the probability density 

𝜌 is a positive definite quantity which is physically acceptable [22]. 
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2.5 The Klein-Gordon Equation: 

The Schrodinger equation was derived from the non-relativistic energy-momentum 

relation. It's nonlinear in 𝐸 and 𝑝, which does not allow us to use a Lorentz covariant 

notation. We know that there is a more appropriate relativistic equation. What 

happens if we take [23]  

𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4                                            (2.5.1) 

And using the usual recipe of treating the energy and momentum as differential 

operators we obtain the relativistic wave equation 

−ћ2
𝜕2𝜓

𝜕𝑡2
= (−𝑐2ћ2∇2 + 𝑚2𝑐4)𝜓                            (2.5.2) 

Which, on rearrangement, yields 

(
1

𝑐2

𝜕2

𝜕𝑡2
− ∇2 +

𝑚2𝑐2

ћ2
) 𝜓 = 0                              (2.5.3) 

Equation (2.5.3) is the Klein-Gordon equation, the complex conjugate of which is 

given by 

(
1

𝑐2

𝜕2

𝜕𝑡2
− ∇2 +

𝑚2𝑐2

ћ2
) 𝜓∗ = 0                             (2.5.4) 

Multiplying equation (2.5.3) by 𝜓∗ on the left and equation (2.5.4) by 𝜓 on the left 

and subtracting, we obtain 

1

𝑐2
(𝜓∗

𝜕2𝜓

𝜕𝑡2
− 𝜓

𝜕2𝜓∗

𝜕𝑡2
) − 𝜓∗∇2𝜓 + 𝜓∇2𝜓∗ = 0            (2.5.5) 

Since  

1

𝑐2

𝜕

𝜕𝑡
(𝜓∗

𝜕𝜓

𝜕𝑡
− 𝜓

𝜕𝜓∗

𝜕𝑡
) + ∇. ( 𝜓∗∇𝜓 − 𝜓∇𝜓∗) = 0                     (2.5.6) 
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This is the continuity equation for the Klein-Gordon equation, can be written in the 

form of continuity equation 

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝐽 = 0                                                   (2.5.7) 

Choosing for the current density 𝐽 the same expression  

𝐽 =
ћ

2𝑚𝑖
{𝜓∗∇𝜓 − 𝜓∇𝜓∗}                              (2.5.8) 

As given in equation (2.4.5.5) for the non-relativistic Schrodinger equation. In the 

present case, the continuity equation will be satisfied only if we choose for the 

probability density 𝜌 the expression 

𝜌 =
𝑖ћ

2𝑚𝑐2
(𝜓∗

𝜕𝜓

𝜕𝑡
− 𝜓

𝜕𝜓∗

𝜕𝑡
)                                 (2.5.9) 

The probability density  𝜌 as given by equation (2.4.5.6) involves both 𝜓 and 

𝜕𝜓

𝜕𝑡
  Which can be fixed arbitrarily and hence admits both positive and negative 

values. Since the probability density should be a positive definite quantity, the Klein-

Gordon equation was not accepted as a wave equation for several years until Pauli 

and Weisskopf2 reinterpreted it as afield equation in the same sense as Maxwell's 

equation for electromagnetic field. By putting the rest mass 𝑚 =  0 in is the Klein-

Gordon equation (2.5.3) we obtain the field equation for the electromagnetic field. 

The Klein-Gordon equation is a second-order differential equation in 𝑡 and this has 

yielded the physically unacceptable negative values also for the probability density 𝜌 

. It may be observed that the Schrodinger equation is a first-order differential 

equation in 𝑡 and hence yielded a positive definite value for the probability density. 

Taking this clue, Dirac attempted to linearize the relativistic relation  

𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4                                              (2.5.10) 

Which is quadratic in both 𝐸 and 𝑝 and arrived at the Dirac equation. 
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Thus the attempts to overcome the early difficulties encountered in the formulation 

of Relativistic Quantum Mechanics paid rich dividends. Dirac succeeded in 

linearizing the relativistic relation energy-momentum which is quadratic in both 

energy and momentum and obtained the Dirac equation for the electron with the 

intrinsic properties of spin and magnetic moment. Interpretation of the Klein-Gordon 

equation as a field equation has sowed the seed for the development of the Quantum 

Field theory [22]. 

2.6 The Dirac Equation: 

The Dirac equation is a relativistic quantum mechanical wave equation for 

spin− 1
2⁄  particles (e.g. electrons), which was derived by Dirac. The difficulties in 

finding a consistent single-particle theory from the kiln-Gordon equation led Dirac 

to search for an equation that  

 Had a positive-definite conserved probability density and 

 Was first order both in time and space.    

One can show that these two conditions imply that a matrix equation is required. The 

reason why the Klein-Gordon equation did not yield a positive-definite probability 

density is connected with the second-order time derivative in this equation, which 

arises because the Klin-Grdon equation is related to the relativistic energy-

momentum relation via the correspondence principle that includes a term 𝐸2. Thus, 

a better Lorentz covariant wave equation with a positive-definite probability density 

should have a first-order time derivative only [24].   

Starting with the relativistic relation 

𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4                                       (2.6.1) 

Between the energy and momentum of a free particle of mass m, Dirac obtained a 

linear relation 

𝐸 = 𝑐𝛼. 𝑝 + 𝛽𝑚𝑐2                                       (2.6.2) 
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Using two operators 𝛼 and 𝛽 which commute with both position and momentum 

vectors. Squaring equation (2.6.2), we obtain 

𝐸2 = 𝑐2(𝛼. 𝑝)2 + 𝛽2𝑚2𝑐4 + (𝛼. 𝑝)𝛽𝑚𝑐3 + 𝛽(𝛼. 𝑝)𝑚𝑐3                 (2.6.3) 

Which will reduce to the relativistic energy-momentum relation  

𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4                                                 (2.6.4) 

If the operators 𝛼 and 𝛽 obey the following relations: 

(𝛼. 𝑝)2 = 𝑝2,       𝛽2 = 1,        𝛼𝛽 = −𝛽𝛼                    (2.6.5) 

The relation 

(𝛼. 𝑝)2 = (𝛼𝑥𝑝𝑥 + 𝛼𝑦𝑝𝑦 + 𝛼𝑧𝑝𝑧)2 = 𝑝2                 (2.6.6) 

Implies 

𝛼𝑥
2 = 𝛼𝑦

2 = 𝛼𝑧
2 = 1;                                           (2.6.7) 

𝛼𝑥𝛼𝑦 = −𝛼𝑦𝛼𝑥;      𝛼𝑦𝛼𝑧 = −𝛼𝑧𝛼𝑦;        𝛼𝑧𝛼𝑥 = −𝛼𝑥𝛼𝑧                  (2.6.8) 

Using the usual recipe for the first quantization of replacing the energy and 

momentum by differential operators 

𝐸 → 𝑖ℏ
𝜕

𝜕𝑡
          𝑎𝑛𝑑          𝑝 → −𝑖ℏ∇                            (2.6.9)  

Hence the time-dependent Dirac equation for a free particle is obtained. 

𝑖ℏ
𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= (−𝑖𝑐ℏ𝛼. ∇ + 𝛽𝑚𝑐2)𝜓(𝑟, 𝑡)                      (2.6.10) 

The space-time dependence of the free particle Dirac wave function can be explicitly 

written as 

𝜓(𝑟, 𝑡) = 𝐴𝑒(𝑖 ℏ)(⁄ 𝑝.𝑟−𝐸𝑡)                                  (2.6.11) 

This satisfies the time-dependent Dirac equation (2.6.10) for a free particle; from 

which we obtain the time-independent Dirac equation 

(𝑐𝛼. 𝑝 + 𝛽𝑚𝑐2)𝜓 = 𝐸𝜓                                       (2.6.12) 
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With a multi-component wave function 𝜓 . If 𝛼𝑥, 𝛼𝑦 , 𝛼𝑧 and 𝛽 are matrices of 

dimension 𝑁 × 𝑁, then the Dirac wave function  𝜓 should be a column vector with 

𝑁 components. In equation (2.6.12), 𝑝 is the momentum vector and not an operator. 

2.6.1 Dirac's 𝜶 and 𝜷 Matrices: 

The Dirac Hamiltonian should be Hermitian, i.e. 𝐻 =  𝐻∗. Since 𝑝 is Hermitian, 

𝐻 = 𝑐(𝛼. 𝑝 + 𝛽𝑚𝑐);             𝐻∗ = 𝑐(𝛼∗. 𝑝 + 𝛽∗𝑚𝑐).                   (2.6.1.1) 

This means that 𝛼𝑖 , (𝑖 =  𝑥;  𝑦;  𝑧)  ; and 𝛽 matrices are Hermitian. 

𝛼𝑖
∗ = 𝛼𝑖  ,         (𝑖 =  𝑥;  𝑦;  𝑧);              𝛽∗ = 𝛽                   (2.6.1.2) 

Since 

𝛼𝑖
2 = 1,    (𝑖 =  𝑥;  𝑦;  𝑧);     𝑎𝑛𝑑       𝛽2 = 1                      (2.6.1.3) 

 It follows that  

𝛼𝑖 = 𝛼𝑖
−1            𝑎𝑛𝑑            𝛽 = 𝛽−1                            (2.6.1.4) 

Which means that the matrices 𝛼𝑖 and 𝛽 are non-singular and consequently their 

determinant is non-zero. 

det(𝛼𝑖) ≠ 0,      (𝑖 =  𝑥;  𝑦;  𝑧);        𝑎𝑛𝑑     det(𝛽) ≠ 0               (2.6.1.5) 

We have already seen that the Dirac matrices 𝛼𝑥, 𝛼𝑦 , 𝛼𝑧 , 𝛽 anticommute. 

If they are of dimension 𝑁 × 𝑁, then 

𝛼𝑖𝛽 = −𝛽𝛼𝑖                            

det(𝛼𝑖𝛽) = det(−1) det(𝛽𝛼𝑖)                           

det(𝛼𝑖) det(𝛽) = det(−1) det(𝛽) det(𝛼𝑖)                       (2.6.1.6)  

From which, we deduce that 

det(−1) = (−1)𝑁 = 1,                               (2.6.1.7) 

Assuming that the matrices 𝛼𝑖; 𝛽 are of dimensions 𝑁 × 𝑁 and the condition 

(2.6.1.6) is satisfied if 𝑁 is even. 

𝑁 = 2,4,6, … …                             (2.6.1.8) 
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We have seen that the (2 × 2) matrices permit only three ant commuting matrices 

(the Pauli matrices) along with the unit matrix as independent matrices and all other 

matrices can be represented as a linear combination of them. Since in Dirac equation, 

we have four ant commuting matrices, they should be of higher dimension, at 

least(4 × 4). 

Dirac's 𝛼 and 𝛽 matrices are traceless. Since 𝛼𝑖𝛽 = −𝛽𝛼𝑖, it follows that 

𝛼𝑖𝛽𝛼𝑖
−1 = −𝛽                                           

𝑇𝑟𝑎𝑛𝑐𝑒 (𝛼𝑖𝛽𝛼𝑖
−1) = −𝑇𝑟𝑎𝑛𝑐𝑒 𝛽                                    

𝑇𝑟𝑎𝑛𝑐𝑒 (𝛼𝑖
−1𝛼𝑖𝛽) = −𝑇𝑟𝑎𝑛𝑐𝑒 𝛽                                

𝑇𝑟𝑎𝑛𝑐𝑒 (𝛽) = −𝑇𝑟𝑎𝑛𝑐𝑒 𝛽                              (2.6.1.9) 

This means that 𝑇𝑟𝑎𝑛𝑐𝑒 𝛽 = 0. In the above derivation, we have used the cyclic 

property of the Trace. 

𝑇𝑟𝑎𝑐𝑒 (𝐴𝐵𝐶) =  𝑇𝑟𝑎𝑐𝑒 (𝐶𝐴𝐵)                                 (2.6.1.10) 

Similarly, it can be shown that Trace 𝛼𝑖 = 0; (𝑖 =  𝑥;  𝑦;  𝑧). Let us now give an 

explicit representation3 for the Dirac matrices which satisfy all the above properties. 

𝛼𝑖 = [
0 𝜎𝑖

𝜎𝑖 0
] ,           𝛽 = [

1 0
0 −1

],                           (2.6.1.11) 

Where 𝜎𝑖  denotes the familiar Pauli matrices and 𝐼 denotes the 2 × 2 unit matrix. 

Although the Dirac matrices are of dimension 4 × 4, we have written conveniently 

in the 2 × 2 form in equation. (2.6.1.11). Explicitly, 

𝛼𝑥 = [

0 0
0 0
0 1
1 0

     

0 1
1 0
0 0
0 0

] ,                   𝛼𝑦 = [

0 0
0 0
0 −𝑖
𝑖 0

     

0 −𝑖
𝑖 0
0 0
0 0

]  

 

𝛼𝑧 = [

0 0
0 0
1 0
1 −1

     

1 0
0 −1
0 0
0 0

] ,             𝛽 = [

1 0
0 1
0 0
0 0

     

0 0
0 0

−1 0
0 −1

]            (2.6.1.12) 
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2.6.2 The Continuity Equation: 

Multiplying the Dirac equation (2.6.10) on the left by 𝜓∗, we get 

𝑖ℏ𝜓∗
𝜕𝜓

𝜕𝑡
= −𝑖𝑐ℏ𝜓∗𝛼. ∇𝜓 + 𝛽𝑚𝑐2𝜓∗𝜓                        (2.6.2.1) 

Taking the Hermitian conjugate of the Dirac equation (2.6.10) and multiplying on 

the right by 𝜓 , we get 

−𝑖ℏ
𝜕𝜓∗

𝜕𝑡
𝜓 = 𝑖𝑐ℏ(∇𝜓∗). 𝛼∗𝜓 + 𝛽∗𝑚𝑐2𝜓∗𝜓.                      (2.6.2.2)  

Remembering that 𝛼 and 𝛽 are Hermitian matrices and subtracting (2.6.2.1) from 

(2.6.2.2), we obtain 

𝑖ℏ
𝜕

𝜕𝑡
(𝜓∗𝜓) = −𝑖𝑐ℏ(𝜓∗𝛼. ∇𝜓 + (∇𝜓∗). 𝛼𝜓) = −𝑖𝑐ℏ∇. (𝜓∗𝛼𝜓)            (2.6.2.3) 

Which can be written as a continuity equation 

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝐽 = 0                                         (2.6.2.4) 

Since  𝜓 is a column vector and 𝜓∗, a row vector as given below 

𝜓 = [

𝑎
𝑏
𝑐
𝑑

],                𝜓∗ = [𝑎∗ 𝑏∗ 𝑐∗ 𝑑∗],                   (2.6.2.5) 

The probability density 

𝜌 = 𝜓∗𝜓 = 𝑎𝑎∗ + 𝑏𝑏∗ + 𝑐𝑐∗ + 𝑑𝑑∗                        (2.6.2.6) 

Is a positive-definite quantity, overcoming the difficulty encountered in the Klein-

Gordon equation. The probability current density 𝐽 together with the probability 

density  𝜌 obeys the continuity equation (2.6.2.4). So, the Dirac equation has become 

a physically acceptable relativistic wave equation [22]. 
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2.7 Scattering: 

“Scattering” evokes a simple image. We begin with separate objects which are far 

apart and moving towards each other. After some time they collide and then travel 

away from each other and, eventually are far apart again. We don’t necessarily care 

about the details of the collision except insofar as we can predict from it where and 

how the objects will end up. This picture of scattering is the first one we physicists 

learn, In many cases the laws of conservation of momentum and energy alone can 

be used to obtain important results concerning the properties of various mechanical 

processes. It should be noted that these properties are independent of the particular 

type of interaction between the particles involved [25]. 

2.7.1 Tyndall Effect: 

The Tyndall effect is the scattering of light by particles in colloidal systems such as 

emulsion or suspensions. It is named after 19th-century Irish scientist John Tyndall. 

The Tyndall effect is used to find the difference between types of mixtures, namely, 

solution, colloidal and suspension. For example, the Tyndall effect is seen when car 

headlamps are used in fog. According to [26], the light of shorter wavelength scatters 

better. Thus the color of scattered light has a bluish tint. This is also the reason why 

the sky looks blue when viewed away from the sun. The blue light from the sun is 

scattered to a greater degree and is therefore visible far from its source . 

This effect occurs because short wavelengths of light towards the blues and the 

spectrum hit the air molecules in the earth’s atmosphere and are reflected down to 

the earth surface. Longer wavelengths towards the end of the spectrum are less 

affected by the particles and pass on through the earth’s atmosphere. Blue light 

scatters more rapidly than red light at sunset, and the path length of the sun through 

the atmosphere is longer at any other time of the day. This is because the blue 
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components of the light have undergone multiple scattering events such that the 

intensity at such great seeing distance is minimal due to long path length. 

2.7.2 Multiple Scattering: 

 Multiple scattering is realized in accordance with the laws of single scattering 

at each successive act. The final result is obtained by successive adding the results 

of simple scatterings taking into account the statistical nature of their occurrence. 

The radiation scattered by a particle may be scattered by another particle, and so on 

[27].   

2.7.3 Thomson Scattering: 

 Thomson scattering is the type of electromagnetic scattering by charged 

particles in which the electric and magnetic particles components of the incident 

wave accelerate the particle. As it in turn emits radiation and the wave is scattered. 

The main cause of the acceleration of the particle is due to the electric field 

components of the incident wave. The particle will move in the direction of the 

oscillating electric field, resulting in electromagnetic dipole radiation. The moving 

particle radiates strongly in a direction perpendicular to its motion and that radiation 

will be polarized along the direction of its motion, depending on where an observer 

is located. The light scattered from a small volume element may be appear to be 

more or less polarized [28].  

2.7.4 Compton Scattering:  

Compton scattering is the type of scattering that occur as a result of change in energy 

(increase in wavelength) of an X – ray or gamma ray photon when it interacts with 

matter. The effect is important as it demonstrates that light cannot be explained 

purely as a wave phenomenon. Compton experiment convinced physicists that light 



25 
 

can behave as a stream of particles whose energy is proportional to the frequency 

[29].  

2.7.5 Brillion Scattering: 

In Brillion scattering the light in a medium (such as crystal or water) interacts with 

time dependent density variation and changes its frequency and path. The density 

variation may be as a result of acoustic modes such as phonons or temperature 

gradient as described in classical physics. When the medium is compressed its index 

of refraction changes and light path necessarily bends [28].  

From a quantum point of view, Brillion scattering is an interaction of light photons 

with acoustic or vibration quantum (phonons), with magnetic spin waves (magnums) 

or with other low frequency quasi particles interacting with light. 

 According to Matveev (1988), the interaction consists of an inelastic scattering 

process in which a phonon or magnum is either created (stokes process) or 

annihilation (anti stokes) the energy of the scattered light is slightly changed, that is 

decreased for a stokes process and increase for anti- stokes process. This shift known 

as Brillion shift, is equal to the energy of the interacting phonon and magnum, and 

thus Brillion scattering can be used to measure phonon and magnum energies. 

For intense beam (e. g laser light) travelling in a medium such as fiber, the variation 

in the electric field of the beam itself may produce acoustic vibration in the medium. 

The beam may undergo Brillion scattering from these vibrations, usually in opposite 

direction to the incoming beam . 

2.7.6 Raman Scattering: 

Raman scattering or the Raman Effect is the type of in-elastic scattering of a photon. 

When light is scattered from an atom or molecule, most photon have the same energy 

(frequency) and wavelength as the incident photons. A small part of the scattered 
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light is (approximately 1 in millions photons) is scattered by an excitation, with the 

scattered photons having different form, and usually lower than a frequency of the 

incident photons. In a gas Raman scattering can occur with a change in vibration, 

rotational or electronic energy of a molecule [30]. 

2.7.7 Rayleigh Scattering: 

Rayleigh scattering is strongly dependent on the viewing angle with a degree of 

dependence in turn dependent on photon wavelength; hence the shorter the 

wavelength, the stronger the light scattering. The sky is blue because of Rayleigh 

scattering which is stronger with shorter wavelengths. Blue-violet light has a shorter 

wavelength than red light, so blue-violent is scattered more strongly, resulting in a 

blue sky. The relative size of scattering particles is defined by the ratio of its 

characteristic dimension and wavelength [30] where r is the radius of a spherical 

particle, λ is wavelength. 

Rayleigh scattering occurs when light travels in transparent solids and liquids but is 

most prominently seen in gases. The amount of Rayleigh scattering that happens to 

a beam of light is dependent upon the size of the particles and the wavelength of the 

light; in particular, the scattering coefficient, and hence the intensity of the scattered 

light, varies for small size particles inversely with the fourth power of the 

wavelength. This wavelength dependence means that blue light is scattered much 

more than red light. In the atmosphere, the result is that blue light is scattered much 

more than glare at longer wavelengths, and so one sees blue light coming from all 

directions of the sky. At higher altitudes, high up in the mountain or an airplane, we 

can observe that the sky is much darker because the amount of scattering particles is 

much lower. When the Sun is quiet on the horizon, the sunlight must pass through a 

much higher air mass to reach an observer on the ground. This causes much more 

scattering of blue light, but a relatively little scattering of red light, and results in a 



27 
 

pronounced red-hued sky in the direction towards the sun, Rayleigh scattering can 

be defined as scattering in small size parameters regime. The amount of Rayleigh 

scattering that occurs to a beam of light is dependent upon the size of the particles 

and the wavelength of the sun in particular, and the scattering coefficient. Moreover, 

the intensity of the scattered light, varies for small size parameter inversely with 

fourth power of the wavelength, which means that the shorter wavelength of the blue 

light will scatter more than the longer wavelength of green and red light which gives 

the sky a blue appearance. However, when one looks towards the sun one sees colors 

that were not scattered away to longer wavelengths, such as red and yellow light. 

When the sun is near the horizon the volume of air through which sunlight must pass 

is significantly greater than when the sun is high in the sky. Accordingly, the gradient 

from a red-yellow sun to the blue is considerably sharper at sunrise and sunset. 

Rayleigh scattering was explained by Lord Rayleigh who described the details in 

1871.The angular distribution of Rayleigh scattering given by the term (1+cos2q) is 

symmetric in the plane normal to the incident direction of the light, and so the 

forward scatter equally the backward scatter [30].  

2.8 Scattering Theory: 

One of the best ways to understand the structure of particles and the forces between 

them is to scatter them off each other. This is particularly true at the quantum level 

where the systems cannot be seen in the literal sense and must be probed by indirect 

means. The scattering process gives us information about the projectile, the target, 

and the forces between them. A natural way to proceed (when possible) is to consider 

cases where two of these are known and learn about the third. Consider, for example, 

experiments at the Stanford Linear Accelerator Center in which high-energy photons 

were used to bombard static neutrons. The structure of the photon and its coupling 

to matter are well understood the photon is a point particle to an excellent 
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approximation and couples to electric charge in a way we have studied in some 

detail. It therefore serves as an excellent probe of the neutron. For instance, the very 

fact that the neutron, which is electrically neutral, interacts with the photon tells us 

that the neutron is built out of charged constituents (whose total charge add up to 

zero). These scattering experiments also revealed that the neutron's constituents have 

spin 
1

2
 , and fractional charges (

2

3
𝑒, −

1

3
), a picture that had been arrived at from 

another independent line of reasoning. Furthermore they also indicated that the 

interaction between these constituents (called quarks) gets very weak as they get 

close. This information has allowed us to choose, from innumerable possible models 

of the interquark force, one that is now considered most likely to succeed, and goes 

by the name of quantum chromo dynamics (QCD), a subject that is being vigorously 

investigated by many particle physicists today [31]. 

Scattering theory is the study of an interacting system on a time and/or distance scale 

which is large compared to the scale of the actual interaction. 

This is a natural phenomenon occurring in several branches of physics; optics (think 

of the blue sky), acoustics, x-ray, sonar, particle physics [32]. 

The basic idea behind scattering theory is simple: there’s an object that you want to 

understand. So you throw something at it. By analyzing how that something bounces 

off, you can glean information about the object itself. 

      A very familiar example of scattering theory is called “looking at things”. In this 

section we’re going to explore what happens when you look at things by throwing a 

quantum particle at an object. 

2.8.1 Scattering in One Dimension: 

We start by considering a quantum particle moving along a line. The maths here will 

be simple, but the physics is sufficiently interesting to exhibit many of the key ideas. 
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The object that we want to understand is some potential 𝑉 (𝑥)  . Importantly, the 

potential is localized to some region of space which means that 𝑉 (𝑥) → 0 .  as 𝑥 →

±∞. An example is shown to the right. We will need the potential to fall-off to be 

suitably fast in what follows although, for now, we won’t be careful about what this 

means [34, 35, and 36]. A quantum particle moving along the line is governed by 

the Schrodinger equation, 

−
ћ2

2𝑚

𝜕2𝜓

𝜕𝑥2
+ 𝑉(𝑥)𝜓 = 𝐸𝜓                              (2.8.1.1) 

Solutions to this equation are energy Eigen states. They evolve in time as 𝜓(𝑥, 𝑡) =

𝑒−𝑖𝐸𝑡 ћ⁄ 𝜓(𝑥). For any potential, there are essentially two different kinds of states that 

we’re interested in. 

    • Bound States are states that are localized in some region of space. The wave 

functions are normal sable and have profiles that drop o↵ exponentially far from the 

potential 

𝜓(𝑥)~𝑒−𝜆|𝑥|      𝑎𝑠      |𝑥| → ∞                               (2.8.1.2) 

Because the potential vanishes in the asymptotic region, the Schrodinger equation 

relates the asymptotic fall-off to the energy of the state, 

𝐸 = −
ћ2𝜆2

2𝑚
                                                            (2.8.1.3) 

In particular, bound states have E < 0. Indeed, it is this property which ensures that 

the particle is trapped within the potential and cannot escape to infinity. 

Bound states are rather special. In the absence of a potential, a solution which decays 

exponentially to the left will grow exponentially to the far right. But, for the state to 

be normal sable, the potential has to turn this behavior around, so the wave function 

decreases at both 𝑥 → −∞. And 𝑥 → +∞. This will only happen for specific values 

of 𝜆. Ultimately, this is why the spectrum of bound states is discrete, like in the 

hydrogen atom. It’s where the name “quantum” comes from. 
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   • Scattering States are not localized in space and, relatedly, the wave functions are 

not normal sable. Instead, asymptotically, far from the potential, scattering states 

take the form of plane waves. In one dimension, there are two possibilities 

                            Right moving     𝜓 ~ 𝑒𝑖𝑘𝑥 

                              Left moving     𝜓 ~ 𝑒−𝑖𝑘𝑥                             (2.8.1.4) 

Where 𝑘 >  0. To see why these are left or right moving, we need to put the time 

dependence back in. The wave functions then take the form 𝑒±𝑖𝑘𝑥−𝑖𝐸𝑡/ћ. The peaks 

and troughs of the wave move to the right with the plus sign, and to the left with the 

minus sign. Solving the Schrodinger equation in the asymptotic region with 𝑉 =  0 

gives the energy 

𝐸 =
ћ2𝑘2

2𝑚
                                                        (2.8.1.5) 

Scattering states have 𝐸 >  0. Note that, in contrast, to bound states, nothing special 

has to happen to find scattering solutions. We expect to find solutions for any choice 

of 𝑘. 

This simple classification of solutions already tells us something interesting. 

Suppose, for example, that the potential looks something like the one shown in the 

figure. You might think that we could find a localised solution that is trapped 

between the two peaks, with 𝐸 >  0. But this can’t happen because if the wave 

function is to be normalisable, it must have 𝐸 <  0. The physical reason, of course, 

is quantum tunnelling which allows the would-be bound state to escape to infinity 

[33, 34, and 35]. 

                                                



31 
 

 

2.8.1.1 Reflection and Transmission Amplitudes: 

Suppose that we stand a long way from the potential and throw particles in. What 

comes out? This is answered by solving the Schrodinger equation for the scattering 

states. Because we have a second order differential equation, we expect that there 

are two independent solutions for each value of 𝑘. We can think of these solutions 

physically as what you get if you throw the particle in from the left or in from the 

right. Let’s deal with each in turn [33, 34, and 35]. 

2.8.1.2 Scattering from the Left: 

We throw the particle in from the left. When it hits the potential, one of two things 

can happen: it can bounce back, or it can pass straight through. Of course, this being 

quantum mechanics, it can quite happily do both at the same time. Mathematically, 

this means that we are looking for a solution which asymptotically takes the form 

𝜓𝑅(𝑥)~ {𝑒𝑖𝑘𝑥 + 𝑟𝑒−𝑖𝑘𝑥          𝑥 → −∞
𝑡𝑒𝑖𝑘𝑥                         𝑥 → +∞

                            (2.8.1.2.1) 

We’ve labelled this state 𝜓𝑅 because the ingoing wave is right-moving. This can be 

seen in the first term 𝑒𝑖𝑘𝑥 which represents the particle we’re throwing in from 𝑥 →

−∞. The second term 𝑟𝑒−𝑖𝑘𝑥 represents the particle that is reflected back to 𝑥 →

−∞ after hitting the potential. The coefficient 𝑟 ∈  𝐶 is called the reflection 

amplitude. Finally, the term 𝑡𝑒𝑖𝑘𝑥 at 𝑥 → +∞ represents the particle passing through 

the potential. The coefficient 𝑡 ∈  𝐶 is called the transmission coefficient. (Note: in 

this formula 𝑡 is a complex number that we have to determine; it is not time!) There 

is no term 𝑒−𝑖𝑘𝑥 at 𝑥 → +∞ because we’re not throwing in any particles from that 

direction. Mathematically, we have chosen the solution in which this term vanishes. 

Before we proceed, it’s worth flagging up a conceptual point. Scattering is clearly a 

dynamical process: the particle goes in, and then comes out again. Yet there’s no 
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explicit time dependence in our ansatz (2.8.1.2.1); instead, we have a solution 

formed of plane waves, spread throughout all of space. It’s best to think of these 

plane waves as describing a beam of particles, with the ansatz (2.8.1.2.1) giving us 

the steady-state solution in the presence of the potential. 

The probability for reflection R and transmission T are given by the usual quantum 

mechanics rule: 

𝑅 = |𝑟|2            𝑎𝑛𝑑     𝑇 = |𝑡|2                          (2.8.1.2.2) 

In general, both 𝑅 and 𝑇 will be functions of the wavenumber 𝑘. This is what we 

would like to calculate for a given potential and we will see an example shortly. But, 

before we do this, there are some observations that we can make using general 

statements about quantum mechanics. 

Given a solution 𝜓(𝑥) to the Schrodinger equation, we can construct a conserved 

probability current 

𝐽(𝑥) =
−𝑖ћ

2𝑚
(𝜓∗

𝜕𝜓

𝜕𝑥
− 𝜓

𝜕𝜓∗

𝜕𝑥
)                              (2.8.1.2.3) 

Which obeys 

𝑑𝐽

𝑑𝑥
=  0                                                   (2.8.1.2.4). 

This means that 𝐽(𝑥) is constant. (Mathematically, this is the statement that the 

Wronskian is constant for the two solutions to the Schrodinger equation). For our 

scattering solution 𝜓𝑅, with asymptotic form (2.8.1.2.1), the probability current as 

𝑥 → −∞ is given by 

𝐽(𝑥) =
ћ𝑘

2𝑚
[(𝑒−𝑖𝑘𝑥 + 𝑟∗𝑒+𝑖𝑘𝑥)(𝑒𝑖𝑘𝑥 − 𝑟𝑒−𝑖𝑘𝑥) + (𝑒𝑖𝑘𝑥 + 𝑟𝑒−𝑖𝑘𝑥)(𝑒−𝑖𝑘𝑥

− 𝑟∗𝑒+𝑖𝑘𝑥)]                                                              (2.8.1.2.5) 

𝐽(𝑥) =
ћ𝑘

𝑚
(1 − |𝑟|2)          𝑎𝑠    𝑥 → −∞                             (2.8.1.2.6) 

Meanwhile, as 𝑥 → +∞, we have 
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𝐽(𝑥) =
ћ𝑘

2𝑚
|𝑡|2                𝑎𝑠     𝑥 → +∞                                  (2.8.1.2.7) 

Equating the two gives 

1 − |𝑟|2 = |𝑡|2              ⇒ 𝑅 + 𝑇 = 1                                (2.8.1.2.8) 

This should make us happy as it means that probabilities do what probabilities are 

supposed to do. The particle can only get reflected or transmitted and the sum of the 

probabilities to do these things equals one [33, 34, and 35]. 

2.8.1.3 Scattering from the Right: 

This time, we throw the particle in from the right. Once again, it can bounce back 

off the potential or pass straight through. Mathematically, we’re now looking for 

solutions which take the asymptotic form 

𝜓𝐿(𝑥)~ {𝑡′𝑒−𝑖𝑘𝑥                                          𝑥 → −∞
𝑒−𝑖𝑘𝑥 + 𝑟′𝑒+𝑖𝑘𝑥                           𝑥 → +∞

                    (2.8.1.2.9) 

Where we’ve now labelled this state 𝜓𝐿 because the ingoing wave, at 𝑥 → +∞, is 

left-moving. We’ve called the reflection and transmission amplitudes 𝑟′ and 𝑡′. 

There is a simple relation between the two solutions 𝑅 in (2.8.1.2.1) and 𝐿 in 

(2.8.1.2.9). 

This follows because the potential 𝑉 (𝑥) in (2.8.1.1) is a real function, so if 𝜓𝑅 is a 

solution then so is 𝜓𝑅
∗ . And, by linearity, so is 𝜓𝑅

∗ − 𝑟∗𝜓𝑅 which is given by 

𝜓𝑅
∗ (𝑥) − 𝑟∗𝜓𝑅(𝑥)~𝜓𝐿(𝑥)~ {

(1 − |𝑟|2)𝑒−𝑖𝑘𝑥                      𝑥 → −∞

𝑡∗𝑒−𝑖𝑘𝑥 + 𝑟∗𝑡𝑒+𝑖𝑘𝑥                𝑥 → +∞
        (2.8.1.2.1) 

This takes the same functional form as (2.8.1.2.9) except we need to divide through 

by 𝑡∗ to make the normalisations agree. (Recall that scattering states aren’t 

normalized anyway so we’re quite at liberty to do this.) Using 1 − |𝑟|2 = |𝑡|2, this 

tells us that there is a solution of the form (2.8.1.2.9) with 

𝑡′ = 𝑡       𝑎𝑛𝑑    𝑟′ = −
𝑟∗𝑡

𝑡∗
                             (2.8.1.2.2) 
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Notice that the transition amplitudes are always the same, but the reflection 

amplitudes can differ by a phase. Nonetheless, this is enough to ensure that the 

reflection probabilities are the same whether we throw the particle from the left or 

right 

𝑅 =  |𝑟|2  =  |𝑟′|2                                             (2.8.1.2.3). 

2.8.2 Scattering in Three Dimensions: 

Our real interest in scattering is for particles moving in three spatial dimensions, 

with Hamiltonian 

𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑟)                                                   (2.8.1.2.1) 

Recall that there are two distinct interpretations for such a Hamiltonian 

         • We could think of this as the motion of a single particle, moving in a fixed 

background potential 𝑉 (𝑟). this would be appropriate, for example, in Rutherford’s 

famous experiment where we fire an alpha particle at a gold nucleus. 

         • Alternatively, We could think of this as the relative motion of two particles, 

separated by distance r, interacting through the force  

𝐹 =  −∇𝑉(𝑟)                                                  (2.8.1.2.2) 

We could take 𝑉(𝑟) to be the Coulomb force, to describe the scattering of electrons, 

or the Yukawa force to describe the scattering of neutrons. 

In this section, we will use language appropriate to the first interpretation, but 

everything we say holds equally well in the second. Throughout this section, we will 

work with rotationally invariant (i.e. central) potentials, so that 𝑉 (𝑟)  =  𝑉 (|𝑟|). 

2.8.2.1 The Cross-Section: 

Our first goal is to decide what we want to calculate. The simple reflection and 

transmission coefficients of the one-dimensional problem are no longer appropriate. 

We need to replace them by something a little more complicated. We start by 

thinking of the classical situation [33, 34, and 35]. 
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2.8.2.2 Classical Scattering: 

Suppose that we throw in a single particle with kinetic energy 𝐸. Its initial trajectory 

is characterized by the impact parameter 𝑏, defined as the closest the particle would 

get to the scattering center at 𝑟 =  0 if there were no potential. The particle emerges 

with scattering angle 𝜃, which is the angle between the asymptotic incoming and 

outgoing trajectories, as shown in the figure. By solving the classical equations of 

motion, we can compute 𝜃(𝑏; 𝐸) or, equivalently, 𝑏(𝜃; 𝐸). 

                         

      Figure: What becomes of an infinitesimal cross-sectional area after scattering. 

 

Now consider a uniform beam of particles, each with kinetic energy 𝐸. We want to 

understand what becomes of this beam. Consider the cross-sectional area, denoted 

𝑑𝜎. We write this as 

𝑑𝜎 = 𝑏𝑑𝜙𝑑𝑏                                             (2.8.2.2.1) 

The particles within 𝑑𝜎 will evolve to the lie in a cone of solid angle 𝑑Ω, given by 

𝑑Ω = 𝑠𝑖𝑛𝜃 𝑑𝜙 𝑑𝜃                                             (2.8.2.2.2) 

Where, for central potentials, the infinitesimal angles 𝑑𝜙, are the same in both these 

formulae. The differential cross-section is defined to be 
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𝑑𝜎

𝑑Ω
=

𝑏

𝑠𝑖𝑛𝜃
|
𝑑𝑏

𝑑𝜃
|                                     (2.8.2.2.3) 

The left-hand side should really be |𝑑𝜎 𝑑Ω⁄ |, but we’ll usually drop the modulus. 

The differential cross-section is a function of incoming momentum 𝑘, together with 

the outgoing angle 𝜃 [33, 34, and 35]. 

More colloquially, the differential cross-section can be thought of as 

𝑑𝜎

𝑑Ω
𝑑Ω

=
Number of particles scattered into 𝑑Ω per unit time

Number of incident particles per area 𝑑𝜎 per unit time
         (2.8.2.2.4) 

We write this in terms of flux, defined to be the number of particles per unit area per 

unit time. In this language, the differential cross-section is 

𝑑𝜎

𝑑Ω
=

Scattered flux

Incident flux
                                          (2.8.2.2.5) 

We can also define the total cross-section 

𝜎𝑇 = ∫ 𝑑Ω
𝑑𝜎

𝑑Ω
                                                      (2.8.2.2.6) 

Both the differential cross-section and the total cross-section have units of area. The 

usual unit used in particle physics, nuclear physics and atomic physics is the barn, 

with 1 𝑏𝑎𝑟𝑛 =  10−28 𝑚2. The total cross-section is a crude characterisation of the 

scattering power of the potential. Roughly speaking, it can be thought of as the total 

area of the incoming beam that is scattered. The differential cross-section contains 

more detailed information. 

2.8.2.3 Rutherford Scattering: 

Rutherford scattering is the name given to scattering off a repulsive Coulomb 

potential of the form 

𝑉(𝑟) =
𝐴

𝑟
       𝑤𝑖𝑡ℎ      𝐴 > 0                                   (2.8.2.3.1) 
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Where, for two particles of charge 𝑞1 and 𝑞2, we have 

𝐴 =
𝑞1𝑞2

4𝜋𝜖°
                                                    (2.8.2.3.2). 

2𝑏𝐸 = 𝐴 𝑐𝑜𝑡
𝜃

2
                                           (2.8.2.3.3) 

This gives the differential cross-section, 

𝑑𝜎

𝑑Ω
=

𝑏

𝑠𝑖𝑛𝜃
|
𝑑𝑏

𝑑𝜃
| = (

𝐴

4𝐸
)

2 1

𝑠𝑖𝑛4(𝜃 2⁄ )
                  (2.8.2.3.4) 

This scattering amplitude played an important role in the history of physics. 

Rutherford, together with Geiger and Marsden, fired alpha particles (a helium 

nucleus) at gold foil. They discovered that the alpha particles could be deflected by 

a large angle, with the cross-section given by (2.8.2.3.4). Rutherford realized that 

this meant the positive charge of the atom was concentrated in a tiny, nucleus. 

There is, however, a puzzle here. Rutherford did his experiment long before the 

discovery of quantum mechanics. While his data agreed with the classical result 

(2.8.2.3.4), there is no reason to believe that this classical result carries over to a full 

quantum treatment. We’ll see how this pans out later in this section. 

There’s a surprise when we try to calculate the total cross-section 𝜎𝑇. We find that 

it’s infinite! This is because the Coulomb force is long range. The potential decays 

to 𝑉 (𝑟)  → 0 as 𝑟 → ∞, but it drops off very slowly. This will mean that we will 

have to be careful when applying our formalism to the Coulomb force. 

2.8.2.4 The Scattering Amplitude: 

The language of cross-sections is also very natural when we look at scattering in 

quantum mechanics [34, 35, and 36]. As in equation (2.8.1.1), we set up the 

scattering problem as a solution to the time-independent Schrodinger equation, 

which now reads 

[−
ћ2

2𝑚
∇2 + 𝑉(𝑟)] 𝜓 = 𝐸𝜓                              (2.8.2.4.1) 
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We will send in a plane wave with energy 𝐸 which we choose to propagate along 

the z-direction. This is just 

𝜓𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑟) = 𝑒𝑖𝑘𝑧                                         (2.8.2.4.2) 

Where 𝐸 =  ℏ2𝑘2/2𝑚. However, after scattering off the potential, the wave doesn’t 

only bounce back in the z direction. Instead, it spreads out spherically, albeit with a 

phase and amplitude which can vary around the sphere. It’s hard to take photographs 

of quantum wave functions, but the water waves shown on the right give a good 

analogy for what’s going on. Asymptotically, as 𝑟 → ∞, this scattered wave takes 

the form 

𝜓𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑(𝑟) = 𝑓(𝜃, 𝜙)
𝑒𝑖𝑘𝑟

𝑟
                                 (2.8.2.4.3) 

The 1/𝑟 fall-off follows from solving the free Schrodinger equation; we’ll see this 

explicitly below. However, there is a simple intuition for this behavior which follows 

from thinking of |𝜓|2 as a probability, spreading over a sphere which grows as 𝑟2 

as  𝑟 → ∞. The 1/𝑟 fall-off ensures that this probability is conserved. Our final 

ansatz for the asymptotic wave function is then 

𝜓(𝑟) = 𝜓𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑟) + 𝜓𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑(𝑟)                         (2.8.2.4.4) 

The function 𝑓(𝜃; 𝜙) is called the scattering amplitude. For the central potentials 

considered here it is independent of 𝜙, so 𝑓 =  𝑓(𝜃). It is the 3d generalisation of 

the reflection and transmission coefficients that we met in the previous section. Our 

goal is to calculate it. 

The scattering amplitude is very closely related to the differential cross-section. To 

see this, we can look at the probability current 

𝐽 = −𝑖
ћ

2𝑚
(𝜓∗∇𝜓 − 𝜓∇𝜓∗)                                     (2.8.2.4.5) 

Which obeys ∇. 𝐽 = 0. For the incident wave, we have 
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𝐽𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 =
ћ𝑘

𝑚
�̂�                                                        (2.8.2.4.6) 

This is interpreted as a beam of particles with velocity 𝑣 =  ћ𝑘/𝑚 travelling in the 

z-direction. Meanwhile, the for the scattered wave we use the fact that 

∇𝜓𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 = 𝑖𝑘 𝑓(𝜃)
𝑒𝑖𝑘𝑟

𝑟
 �̂� + 𝒪 (

1

𝑟2
)                   (2.8.2.4.7) 

𝐽𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 =
ћ𝑘

𝑚

1

𝑟2
|𝑓(𝜃)|2�̂� + 𝒪 (

1

𝑟3
)                       (2.8.2.4.8) 

This means that, as 𝑟 → ∞, the flux of outgoing particles crossing an area 𝑑𝐴 

subtended by the solid angle 𝑑Ω 

𝐽𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 . �̂� 𝑑𝐴 =
ћ𝑘

𝑚
|𝑓(𝜃)|2𝑑Ω                                  (2.8.2.4.9) 

The differential cross-section is defined to be the ratio of the scattered flux 

through 𝑑Ω, divided by the incident flux. In other words, it is 

𝑑𝜎

𝑑Ω
=

ћ𝑘|𝑓(𝜃)|2/𝑚

ћ𝑘/𝑚
= |𝑓(𝜃)|2                                   (2.8.2.4.10) 

This is rather nice. It means that if we can compute the scattering amplitude 𝑓(𝜃), it 

immediately tells us the differential cross-section. The total cross-section is defined, 

as before, as 

𝜎𝑇 = ∫ 𝑑Ω|𝑓(𝜃)|2                                                         (2.8.2.4.11) 

2.8.3 Scattering off a Lattice: 

There, we confidently described the various lattice structures that underlay different 

solids. But how do we know this? The answer, of course, is scattering. Firing a beam 

of particles whether neutrons, electrons or photons in the X-ray spectrum at the solid 

reveals a characteristic diffraction pattern. Our goal here is to understand this within 

the general context of scattering theory. 
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Our starting point is the standard asymptotic expression describing a wave scattering 

off a central potential, localized around the origin, 

𝜓(𝐫)~𝑒𝑖𝐤.𝐫 + 𝑓(𝐤; 𝐤′)
𝑒𝑖𝑘𝑟

𝑟
                                      (2.8.3.1) 

Here we’re using the notation, introduced in earlier sections, of the scattered 

momentum 

𝐤′ = 𝑘�̂�                                           (2.8.3.2) 

The idea here is that if you sit far away in the direction �̂�, you will effectively see a 

wave with momentum 𝐤′. We therefore write 𝑓(𝐤; 𝐤′) to mean the same thing as 

𝑓(𝑘; 𝜃, 𝜙). 

Suppose now that the wave scatters off a potential which is localized at some other 

position, 𝐫 =  𝑅. Then the equation (2.8.3.1) becomes 

𝜓(𝐫)~𝑒𝑖𝐤.(𝐫−𝐑) + 𝑓(𝐤; 𝐤′)
𝑒𝑖𝑘|𝐫−𝐑|

|𝐫 − 𝐑|
                        (2.8.3.3) 

For 𝑟 → ∞, we can expand 

|𝐫 − 𝐑| = √𝑟𝟐 + 𝑅𝟐 − 2𝐫. 𝐑 ≈ 𝑟√1 − 2𝐫. 𝐑 𝑟𝟐⁄ ≈ 𝑟 − �̂�. 𝐑           (2.8.3.4) 

We then have 

𝜓(𝐫)~𝑒−𝑖𝐤.𝐑 [𝑒𝑖𝐤.𝐫 + 𝑓(𝐤, 𝐤′)𝑒−𝑖(𝐤′−𝐤)·𝐑
𝑒𝑖𝑘𝑟

𝑟
 ]                    (2.8.3.5) 

The overall factor is unimportant, since our interest lies in the phase shift between 

the incident wave and the scattered wave. We see that we get an effective scattering 

amplitude 

𝑓𝑅(𝐤; �̂�) = 𝑓(𝐤, 𝐤′)𝑒𝑖𝐪.𝐑                                 (2.8.3.6) 

Where we have defined the transferred momentum 

𝐪 = 𝐤 − 𝐤′                                                        (2.8.3.7) 

Now let’s turn to a lattice of points 𝛬. Ignoring multiple scatterings, the amplitude 

is simply the sum of the amplitudes from each lattice point 
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𝑓𝛬(𝐤, 𝐤′) = 𝑓(𝐤, 𝐤′) ∑ 𝑒𝑖𝐪.𝐑

𝐑∈Λ

                        (2.8.3.8) 

However, we already discussed the sum  

∆(𝐪) = ∑ 𝑒𝑖𝐪.𝐑

𝐑∈Λ

                                                (2.8.3.9) 

The sum has the nice property that it vanishes unless 𝐪 lies in the reciprocal 

lattice 𝛬∗. This is simple to see: since we have an infinite lattice it must be true that, 

for any vector𝐑𝟎 ∈ Λ, 

∆(𝐪) = ∑ 𝑒𝑖𝐪.𝐑

𝐑∈Λ

= ∑ 𝑒𝑖𝐪.(𝐑−𝐑𝟎)

𝐑∈Λ

= 𝑒−𝑖𝐪.𝐑𝟎∆(𝐪)                    (2.8.3.10) 

This means that either 𝑒−𝑖𝐪.𝐑𝟎 = 1 or ∆(𝐪) =  0. The former result is equivalent to 

the statement that 𝐑 ∈ 𝛬∗. . More generally,  

∑ 𝑒𝑖𝐪.𝐑

𝐑∈Λ

≡ ∆(𝐪) = 𝑉∗ ∑ 𝛿(𝐪 − 𝐐)

𝐐∈Λ∗

                          (2.8.3.11) 

Where 𝑉∗ is the volume of the unit cell of 𝛬∗. We see that ∆(𝐪) is very strongly 

(formally, infinitely) peaked on the reciprocal lattice. 

The upshot of this discussion is a lovely result: there is scattering from a lattice if 

and only if 

𝐤 − 𝐤′ ∈ 𝛬∗                                                (2.8.3.12) 

This is known as the Laue condition. If the scattered momentum does not satisfy this 

condition, then the interference between all the different scattering sites results in a 

vanishing wave. Only when the Laue condition is obeyed is this interference 

constructive [33, 34, and 35]. 
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              Figure 108: The Ewald sphere.                  Figure 109: Salt. 

Alternatively, the Laue condition can be viewed as momentum conservation, with 

the intuition that the lattice can only absorb momentum in 𝛬∗. 

Solutions to the Laue condition are not generic. If you take a lattice with a fixed 

orientation and fire a beam with fixed 𝐤, chances are that there are no solutions to 

(2.8.3.12). To see this, consider the reciprocal lattice as shown in the left-hand panel 

of the figure. From the tip of 𝐤 draw a sphere of radius 𝑘. This is sometimes known 

as the Ewald sphere and its surface gives the possible transferred momenta 

𝐪 = 𝐤 − 𝐤′. There is scattering only if this surface passes through a point on the 

reciprocal lattice. 

To get scattering, we must therefore either find a wave to vary the incoming 

momentum 𝐤, or find a way to vary the orientation of the lattice. But when this is 

achieved, the outgoing photons 𝐤′ = 𝑘�̂� sit only at very specific positions. In this 

way, we get to literally take a photograph of the reciprocal lattice! The resulting 

diffraction pattern for salt (NaCl) which has a cubic lattice structure is shown in the 

right-hand panel. The four-fold symmetry of the reciprocal lattice is clearly visible. 

2.8.3.1 The Bragg Condition: 

There is an equivalent phrasing of the Laue condition in real space. Suppose that the 

momentum vectors obey 

𝐤 − 𝐤′ = 𝐐 ∈ Λ∗                                      (2.8.3.1.1) 
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Since 𝐐 is a lattice vector, so too is 𝑛𝐐 for all 𝑛 ∈  𝑍. Suppose that 𝐐 is minimal, so 

that 𝑛𝐐 is not a lattice a vector for any 𝑛 <  1. Defining the angle 𝜃 by 𝐤 . 𝐤′ =

𝑘2 𝑐𝑜𝑠𝜃, we can take the square of the equation above to get 

2𝑘2(1 − 𝑐𝑜𝑠𝜃) = 4𝑘2𝑠𝑖𝑛2(𝜃 2⁄ ) = 𝑄2   ⇒   2𝑘 sin(𝜃 2⁄ ) = 𝑄             (2.8.3.1.2) 

We can massage this further. The vector 𝐐 ∈ Λ∗ defines a set of parallel planes in Λ. 

Known as Bragg planes, these are labelled by an integer 𝑛 and defined by those 𝐚 ∈

Λ which obey 𝐚 ·  𝐐 =  2𝜋𝑛. The distance between successive planes is 

𝑑 =
2𝜋

𝑄
                                           (2.8.3.1.3) 

Furthermore, the wave vector 𝑘 corresponds to a wavelength 𝜆 = 2𝜋 𝑘⁄ . We learn 

that the Laue condition written as the requirement that 

𝜆 = 2𝑑 sin(𝜃 2⁄ )                                                   (2.8.3.1.4) 

Repeating this argument for vectors 𝑛𝐐 with n ∈ 𝐙, we get 

𝑛𝜆 = 2𝑑 sin(𝜃 2⁄ )                                                   (2.8.3.1.5) 

                                           

This is the Bragg condition. It has a simple interpretation. For 𝑛 =  1, we assume 

that the wave scatters off two consecutive planes of the lattice, as shown figure. The 

wave which hits the lower plane travels an extra distance of 2𝑥 = 2𝑑 sin(𝜃 2⁄ ). The 

Bragg condition requires this extra distance to coincide with the wavelength of light. 

In other words, it is the statement that waves reflecting off consecutive planes 

interfere constructively. 

The Bragg condition gives us license to think about scattering of light off planes in 

the lattice, rather than individual lattice sites. Moreover, it tells us that the 
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wavelength of light should be comparable to the atomic separation in the crystal. 

This means x-rays. The technique of x-ray crystallography was pioneered by Max 

von Laue, who won the 1914 Nobel Prize. The Bragg law was developed by William 

Bragg, a fellow of Trinity and director of the Cavendish. He shared the 1915 Nobel 

Prize in physics with his father, also William Bragg, for their development of 

crystallographic techniques [34, 35, 36]. 

X-ray crystallography remains the most important technique to determine the 

structure of materials. Two examples of historical interest are shown in the figures. 

The picture on the left is something of an enigma since it has five-fold symmetry. 

Yet there are no Bravoes lattices with this symmetry! The diffraction pictures is 

revealing a quasi-crystal, an ordered but non-periodic crystal. The image on the right 

was taken by Rosalind Franklin and is known as “photograph 51”. It provided a 

major, and somewhat controversial, hint to Crick and Watson in their discovery of 

the structure of DNA. 

2.9 Lippmann Schwinger Equation: 

Having established the basic concepts for the scattering problem, we turn now to the 

illustration of the physical ideas that underlie the scattering analysis using integral 

equation methods. We recall that we are looking for the solution of the stationary 

Schrodinger equation [36] 

[−
ћ2

2𝑚
∇2 + 𝑉(𝑟)] 𝜓(𝑟) = 𝐸𝜓(𝑟)      𝑉(𝑟) = 0    except r 

∈  target region T                            (2.9.1) 

That is consistent with the boundary condition of an incident plane wave 

𝜓(𝑟)  =  𝑒𝑖𝑘𝑟                                            (2.9.2) 

And an emanating scattered wave. The energy 𝐸 is determined by the energy of the 

incident plane wave  
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𝐸 =
ћ2𝑘2

2𝑚
                                                             (2.9.3) 

 By introducing the Green function 𝐺 

[
ћ2

2𝑚
∇2 + 𝐸] 𝐺(𝑟, 𝑟′) = 𝛿(𝑟 − 𝑟′)                            (2.9.4) 

For the potential-free Schrodinger equation, the Schrodinger equation for 𝜓(𝑟), 

[
ћ2

2𝑚
∇2 + 𝐸] 𝜓(𝑟) = 𝑉(𝑟)𝜓(𝑟)                         (2.9.5) 

Can be transformed into an integral equation 

𝜓′(𝑟) = 𝜓(𝑟) + ∫ 𝑑3𝑟′𝐺(𝑟, 𝑟′)𝑉(𝑟′)𝜓(𝑟′)                         (2.9.6) 

In which the formal expression 𝑉(𝑟)𝜓(𝑟)is conceived as inhomogeneity of the 

differential equation (2.9.1). This integral equation is called the Lippmann-

Schwinger equation. Hereby, 𝜓(𝑟) is the above cited plane-wave solution of the 

potential-free Schrodinger equation. The index k in 𝜓′ expresses the fact that this 

state has evolved from one that in the remote past was a plane wave of the particular 

wave vector 𝐤. Obviously, in the limit of zero potential,𝑉 (𝑟)  →  0, the scattered 

and the incident wave are identical,  

𝜓′(𝑟) = 𝜓(𝑟)                                        (2.9.7). 

The Green function 𝐺(𝑟, 𝑟′) is not uniquely determined by the Schrodinger equation 

(2.9.1). 

Also here the unique solution requires a boundary condition, which is chosen such, 

that the solution 𝜓′(𝑟)describes outgoing scattered waves. The Green function 

𝐺(𝑟, 𝑟′) 

𝐺(𝑟, 𝑟′) = −
2𝑚

ћ2

1

4𝜋

𝑒𝑖𝑘|𝑟−𝑟′|

|𝑟 − 𝑟′|
         𝑤𝑖𝑡ℎ      𝑘 = √

2𝑚

ћ2
𝐸           (2.9.8) 
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Describes then the stationary radiation of a particle of energy 𝐸 that is generated 

at 𝑟′, by a spherical wave outgoing from the target. In other words, the Green 

function 𝐺(𝑟, 𝑟′) gives the amplitude of this wave at location 𝑟 due to its generation 

by the source at 𝑟′, under the condition that the wave is not further scattered during 

its propagation from 𝑟′ to 𝑟. By the Lippmann-Schwinger equation, the incident 

wave 𝜓(𝑟).is superimposed with spherical waves emitted from scattering at position 

𝑟′ in the target. The amplitude of these scattered waves is proportional to the 

interaction potential  𝑉(𝑟′)and the amplitude of the total wave field 𝜓(𝑟′)at that 

point. 

Recalling our experimental set-up that the distance between target and detector is 

significantly larger than the size of the sample, for large distances between 𝑟 and the 

scattering center 𝑟′ it is useful to expand the Green function 𝐺 in powers of 
𝑟′

𝑟
 ≪ 1 

assuming that the extent of 𝑟′ is restricted to the space of a small target or scattering 

volume, respectively, 𝑟′ ∈ 𝑇. Approximating for 𝑟′ ≪ 𝑟 

1

|𝑟 − 𝑟′|
=

1

𝑟
 + 𝒪 (

1

𝑟2
)      𝑎𝑛𝑑      |𝑟 − 𝑟′| ≈ 𝑟 − �̂�. 𝑟′     𝑤𝑖𝑡ℎ  �̂� =

𝐫

𝑟
        (2.9.9) 

And inserting this into the relation (2.9.8) one obtains the asymptotic form, or far-

field limit, respectively, of the Green function 𝐺, 

𝐺(𝑟, 𝑟′) = −
2𝑚

ћ2

1

4𝜋

𝑒𝑖𝑘𝑟

𝑟
 𝑒−𝑖𝑘�̂�.𝑟′

+ 𝒪 (
1

𝑟2
)                         (2.9.10) 

Inserting this expression into the Lippmann-Schwinger equation (2.9.6) one obtains 

the asymptotic solution of the wave function 𝜓′(𝑟) for large distances r 

𝜓(𝐫)~𝑒𝑖𝐤.𝐫 + 𝑓(�̂�)
𝑒𝑖𝑘𝑟

𝑟
                                            (2.9.11) 

Which is exactly the boundary condition (2.9.11) we conjectured from Huygens’ 

Principle, whereas the scattering amplitude 𝑓(�̂�) = 𝑓(𝜃, 𝜙) is given by the integral, 
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That can be interpreted as a transition-matrix element from the scattering state 

described by𝜓′(𝑟′) to the scattered state at far distances, which is a plane-wave state 

described by 𝐤′  = 𝑘. �̂�, the wave vector of the scattered wave in the direction of the 

detector, which is known in the experiment. 𝑇(𝑘′;  𝑘) is referred to as the 𝑇 matrix 

or transition amplitude, a quantity proportional to the scattering amplitude. Due to 

the far-field approximation (2.9.9) the scattering pattern 𝑓(�̂�) is independent of the 

distance between target and detector, depending only on the angles to the detector 

from the target. In optics this is known as the Fraunhofer diffraction and in this 

context approximation (2.9.10) is also referred to as the Fraunhofer approximation 

of the Green function. 

 

                       

Scattering geometry for the calculation of the far-field limit at the detector. In the 

Fraunhofer approximation, we assume that |𝑟| ≫  |𝑟′|. 
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Chapter Three  

Literature Review  

3.1 Introduction: 

Some of the attempts made to improve scattering theory to agree with observations 

are presented here. 

Some of the researches done to use GSR and PDSR are also presented. 

3.2 Solving the Quantum Scattering Problem for Systems of Two and 

Three Charged Particles: 

     A rigorous formalism for solving the Coulomb scattering problem has been done 

in this work. The approach is based on splitting the interaction potential into a finite-

range part and a long-range tail part. The scattering problem can be reformulated by 

applying exterior complex scaling. The scaled problem has zero boundary conditions 

at infinity and can be implemented numerically for finding scattering amplitudes. 

The systems under consideration may consist of two or three charged particles [37]. 

The technique presented in is first developed for the case of a two body single 

channel Coulomb scattering problem. 

The partial wave results are summed up to obtain the scattering amplitude for the 

three dimensional scattering problem. The approach is generalized to allow the two 

body multichannel scattering problem to be Sol wood. 

The potential splitting technique is further developed and validated for the three-

body Coulomb scattering problem. It is shown that only a part of the total interaction 

potential should be split to obtain the inhomogeneous equation required such that 

the method of exterior complex scaling can be applied. The final six-dimensional 



49 
 

equation is reduced to a system of three-dimensional equations using the full angular 

momentum representation. Such a system can be numerically implemented using the 

existing full angular momentum complex exterior scaling code (FAMCES). 

The total scattering amplitude is expressed as the sum of the partial wave scattering 

amplitudes. Then generalize this single-channel theory to a two-body multi-channel 

theory.  

The potential division technique developed in the thesis is generalized so to describe 

quantum mechanical scattering of three charged particles in the sense that a third 

particle collides with two bound to each other particles. It is shown that only the part 

of the total potential which describes the interaction between the two bound particles 

is included in the so-called driven Schrödinger equation that describes the process. 

So it is only on this potential as the potential sharing technique combined with 

external complex scaling must be applied. This leads to a six-dimensional 

inhomogeneous equation which reduces to a system of three-dimensional equations 

in a complete angular momentum representation. This one formalism has been 

implemented in an existing computational computer program of resonance states in 

three-body systems (FAMCES) to now, in addition, calculate quantum mechanical 

three-body scattering. 

The single channel two body scattering problem is considered in the framework of 

partial wave decomposition. The potential splitting approach is suggested to extent 

the exterior complex scaling approach first applied by Rescigno et al to the Coulomb 

scattering problem. The driven Schrödinger equation with zero boundary conditions 

is obtained and mathematically validated. 

The integral representation for the scattering amplitude is derived using the Green’s 

function formalism. It is shown that the scattering amplitude is completely defined 

by the solution of the driven equation in the inner region. 
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Therefore, the driven Schrödinger equation with zero boundary conditions can be 

used to solve the scattering problem. The local representation for the scattering 

amplitude is also obtained. For large values of the splitting parameter, R, the 

formulation of the problem and the representations for the scattering amplitudes do 

not include the Coulomb functions. The Coulomb potential tail is taken into account 

by using the factor exp[ihlog2kR] in the representations for the scattering amplitude. 

The theoretical results are tested on the example of the purely Coulomb interaction, 

𝑉(𝑟)  =  2𝑟−1, and the Coulomb interaction plus the short-range term, 𝑉(𝑟) =

 2𝑟−1 + 15𝑟2exp[−𝑟].  The numerical implementation of the theory shows that the 

desired accuracy of the calculated data can be achieved by an appropriate choice of 

the splitting parameter, R. It is also shown that the integral representation for the 

scattering amplitude provides the better convergence as R grows as compared with 

the local representation [37, 38]. 

3.3 Investigations on Cement Pastes by Small-Angle X-ray Scattering 

and BET: the Relevance of Fractal Geometry: 

   The microstructural properties of Portland cement (PC) were studied and 

compared by small-angle X-ray scattering (SAXS) and the Brunauer-Emmett- Teller 

(BET) method. SAXS measurements have shown that the microstructure of PC 

samples cannot be described in terms of a classical porous medium with a well-

defined specific inner surface, but rather obeys the formalism of fractal geometry. 

Measurements have been taken on powdered and size-fractionated cement samples 

with different water-cement ratios (wlc) and different amounts of added chloride 

salts, and on different types of cements. The analysis of the data obtained by SAXS 

showed that inner surface and volume structure are fractal; however, only the mass 

fractal dimension Dm (2·3-3·0) could be evaluated with sufficient precision and 

reproducibility. By comparing these Dm values and the specific surface areas 
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obtained by BET (40-70 m2/g), a correlation between Dm and BET surface was 

found when only one parameter (wlc) was varied [39]. 

The SAXS measurements showed that drying procedures (which are necessary for 

BET measurements) give rise to a different microstructure of the cement samples, 

as revealed by different Dm values for these samples. 

Both methods BET gas adsorption and SAXS yield microstructural parameters: the 

specific inner-surface by BET on the one hand and the mass-fractal dimension Dill 

obtained from SAXS on the other. The latter combines structural properties such as 

spatial scale invariance, degree of porosity, branching, roughness and connectivity 

in one quantitative parameter for the microstructure in the nm range. When the 

results from the same samples were compared, a linear correlation was found at 

different w/c values, whereas in all other cases - where the type of cement or the 

amount of added chloride salts (at constant w/c) was varied - no such correlation 

(either linear or inverse) between the values from the two methods could be obtained. 

This might be because each method accesses a different length scale in the 

submicroscopic range. On the other hand, there need not be a dependency between 

the mass fractal dimension Dm and the specific surface as obtained by BET. A 

compraison of the surface fractal dimension Ds and the BET surface in the case of 

our cement samples the scattering was largely dominated by Dm and therefore Ds 

was not measurable with sufficient precision.  

Generally, SAXS has proved to be a suitable complementary method the results 

obtained with SAXS shows (where no Sj was definable) that the concept of a 

'specific inner surface' is largely method-dependent, the ease and speed of modern 

SAXS measurements, which also reflect properties of inner structure of cement, and 

the fact that no pretreatment such as drying is required make this an interesting 

analytical tool in this field. 
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3.4 Light Scattering by Polymers: 

This work describes two light-scattering experiments that have recently been 

introduced into the physical chemistry teaching laboratory [40]. 

The first experiment involves the measurement of the mass-average molar mass and 

degree of coiling of polystyrene and is interpreted by the full mathematical theory 

of light scattering. The second experiment concerns the study of transitions in 

gelatin. The primary structure of a polymer is determined by the type and number of 

atoms in a polymer chain, the secondary structure by the mode and degree of chain 

coiling, and the quaternary structure by the way in which neighboring chains 

interact. The two experiments together illustrate the elucidation of these three levels 

of structure. 

The results obtained shows that the scattering intensities pass through a maximum 

as the solutions melt but that this effect is suppressed at higher concentrations 

(solution 3). There is also an overall inversion in light-scattering intensity as the 

concentration is increased from solution 

1 to 2 to 3.finally there is a decrease in intensity from solution 4 (pH 5) to solution 

5 (pH 8), and a similar change can be seen with solutions made up in sodium chloride 

solution. All these effects can be interpreted by the students through thoughtful 

application of the theory described earlier. 
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                 Figure. Light-scattering intensity of gelatin gels and solutions 

3.5 Introducing Scattering Theory with a Computer: 

This research presents a new way to introduce scattering theory. This new method 

is based on the use of a computer to calculate classical particle trajectories and then 

quantum mechanical phase shifts. The strategy uses a computer and general 

programs which, though very simple, work for any problem with a spherically 

symmetric potential. The strategy introduces the concepts of differential and total 

cross section in a classical context. It then discusses the asymptotic phase shifts 

between wave functions with and without the potential present and, finally, it 

discusses cross sections in terms of the interference between these wave functions 

[41].  

This new way emphasizes the physical content of scattering experiments: the 

concept that the potential determines the number of particles scattered into various 

directions, and the concept that potentials change the asymptotic phase of quantum 

mechanical wave functions. The ideas used are easy to explain and easy to visualize, 

and the necessary computation can be done on even the smallest computation 

facilities. 
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3.6 Scattering Theory from Homogeneous and Coated Spheres: 

  In this work one used computer for the Scattering of electromagnetic radiation from 

a sphere. This paper describes how it is possible to use the Mathematical language 

and structure to obtain efficient and easy scattering algorithms for homogeneous and 

coated spheres. The calculations are based on Mie calculation developed using 

Mathematical language and packages [42].  

The code is based on a very easy approach taking vantage of the semantics of 

Mathematical. The code has been also implemented for coated sphere where the Mie 

coefficients are computed taking into account the new structure. The mathematical 

form of the scattering functions have similar form as those for homogeneous sphere. 

The development of our Mie scattering code by Mathematical can be considered like 

a tool to analyze and verify intermediate results obtained using computer codes 

developed using numerical approach. 

3.7 Scattering Theory and Geometry: 

This work shows how selected geometries can be used to regularize singular 

potentials, and then computed scattering amplitudes for quanta incident on a static 

non-relativistic wormhole. Secondly, one studied selected spatial geometries that 

can either enhance or suppress scattering amplitudes, to produce either extremely 

sharp resonances and/or very strong cloaking for a specified angular momentum. 

One presented in detail a simple model for an impenetrable sphere surrounded by a 

Riemannian step geometry. Lastly, one considered the scattering of particles by a 

variety of geometrical holes and computed quantum scattering cross-sections for 

simple models where non-relativistic particles are incident on a selection of specified 

hole geometries in various spatial dimensions [43]. 

This model shows the effects of geometry on the time-independent scattering of non-

relativistic particles, as described by solutions of the covariant Helmholtz equation. 
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Specific geometries were used to illustrate these scattering effects through the exact 

computation of partial wave amplitudes. One exhibited various relationships 

between non-relativistic quantum systems involving a potential, in flat space, and 

systems without a potential but defined on curved manifolds. We presented very 

specific examples involving 1/𝑟 potentials and regularized 1/𝑅4 potentials on 

wormhole manifolds. 

 One also analyzed in detail the simple cloaked sphere geometric model to show that 

resonances are produced more prodigiously as the aspect ratio of the model 

increases, an effect somewhat similar to what happens in Mie scattering when the 

index of refraction is increased. One argued that such resonances tend to make it 

more difficult for the model to achieve stealth and invisibility to low momentum 

incident waves. Since the analysis is non-relativistic, one believe it may be useful as 

written for understanding suitably designed, nan scale quantum devices, devices one 

computed also scattering amplitudes for the impenetrable hyper-sphere & the 

foxhole geometry, and for the bottomless hyper-cylinder & the cylindrical 

wormhole, in N dimensions.  

3.8 On an Evaluation of the Accuracy of the Uniform Semi Classical 

Approximation for Differential Elastic Scattering Cross Sections: 

    The uniform approximation to the differential elastic scattering cross section is 

extended to allow direct comparison of approximated cross sections with cross 

sections computed by exact evaluation of the partial wave sum using WKB phase 

shifts. Results of calculations are presented and an assessment is made of the 

accuracy and utility of the uniform approximation [44]. 

This work shows that the uniform approximation offers a highly accurate method of 

computing differential elastic cross sections in cases where semi classical behavior 

is to be expected. For A greater than 50 and angles greater than 2𝜋/ 𝐴, the cross 
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sections derived in this manner and those obtained by the exact evaluation of the 

partial wave sum are, from the point of view of experimental interpretation, 

indistinguishable. 

The time required to compute 𝜎𝐸
∗ to uniform percentage accuracy increases roughly 

as 𝐴3, the calculation of 𝜎𝐵
∗  is insensitive to the value of A. In fact, the computation 

time for 𝜎𝐵
∗  decreases with increasing A, since at A values large enough that the 

interference term cannot be resolved experimentally its computation can be omitted, 

leaving only 𝜎𝐿𝑅
∗ . another advantage of the uniform approximation is that nearly all 

the computations are of classical quantities which are independent of the value of A; 

if a series of cross sections for various A values is desired this fact can be used to 

decrease computing time still further. Typical computing time for a 200 point 

angular grid on the IBM 360/65 was 5-15 sec to obtain the very precise cross sections 

used in this work; less accurate results can be obtained in times about an order of 

magnitude less. 

The speed of the uniform approximation, coupled with its ability to compute cross 

sections for large A conveniently, brings several uses immediately to mind. One of 

the authors (J.M.M.) has constructed a program to generate angular positions of 

rainbow extreme in graphical form for various three-parameter potentials. Such 

graphs can provide a rapid means of infering best-fit parameters for simple potentials 

from differential scattering data. The analytic form of the cross section discussed 

here has already found use in schemes to effect an inversion of cross section data to 

give the point-by-point interaction potential,1l·19.25 and it can be anticipated that 

more such applications will follow. 
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3.9 Microscopic Description of Elastic and Direct Inelastic Nucleon 

Scattering off Spherical Nuclei: 

The purpose of this study is to improve the modeling of nucleon direct inelastic 

scattering to the continuum using a microscopic and parameter-free approach. For 

the first time, direct elastic scattering, inelastic scattering to discrete excitations and 

to the continuum are described within a microscopic approach without adjustable 

parameters. Proton scattering off 𝒁𝒓𝟗𝟎 and 𝑷𝒃𝟐𝟎𝟖 are the reactions used as test case 

examples of the calculations. The model uses the Melbourne g-matrix and the 

Random Phase [45]. 

Approximation description of nuclear states, implemented with the Gogny D1S 

interaction. The relevant optical and transition potentials in a finite nucleus are 

calculated within a local density approximation. 

The study is limited to incident energies above 40MeV. We first checked that this 

model provides an accurate account of measured cross sections for elastic scattering 

and inelastic scattering to discrete states. It is then applied to the direct inelastic 

scattering to the continuum considering all one-phonon excitations predicted within 

the RPA approach. This accounts for a part of the direct pre-equilibrium emission, 

often labeled as the one-step direct process in quantum-based approaches. 

This approach provides a very accurate description of angular distributions where 

the one-step process dominates. The impact of collective excitations is shown to be 

non-negligible for energy transfer to the target up to 20MeV, decreasing as the 

incident energy increases. For incident energies above 80MeV, the model provides 

a good account of direct proton emission for an energy transfer to the target up to 

30MeV. However, the proton emission we predict underestimates the measured 

cross sections for incident energies below 80MeV.  
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A fully microscopic models, based on a description of target excitations provided by 

the RPA nuclear structure model implemented with the Gogny force, was applied to 

the description of direct elastic and inelastic scattering to discrete excitations and to 

the continuum (pre-equilibrium emission). While previous implementation of 

microscopic models for pre-equilibrium emission used adjustable two body 

interactions, such as a Yukawa form factors, our modeling is fully based on a 

microscopic description of target states and a realistic two-body interaction. 

Furthermore, direct elastic scattering, direct excitation to collective states and pre-

equilibrium emission, limited to the first step, are described within the same 

framework. 

The Melbourne g-matrix, used as the in-medium NN interaction, and the RPA one-

body ground states and transition densities matrix were used to build the relevant 

optical and transition potentials which are both complex, energy dependent and non-

local. These ingredients were used to calculate first the elastic scattering, then the 

direct inelastic scattering to low energy discrete excitations in 𝒁𝒓𝟗𝟎 and 𝑷𝒃𝟐𝟎𝟖, 

within the DWBA framework. In the 60–200MeV incident energy range, the present 

modeling, which does not involve any adjustment, provides a satisfactory account 

of measured elastic and inelastic cross sections. 

These calculations demonstrate that the present modeling provides an accurate 

account of direct elastic scattering and inelastic scattering to discrete state processes 

above 60MeV. This approach was then applied to describe emission to the 

continuum or in other words to Pre-equilibrium emission. Calculations are limited 

to the one-step direct process. 

From this analysis, several conclusions have been drawn. First, the collectivity 

described within the RPA model has a strong impact on nucleon emission up to an 

energy transfer to the target of 20MeV. This impact decreases as the incident energy 

increases. For energy transfers larger that 20MeV, calculations based on the RPA 
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wave function are identical to those based on uncorrelated particle-hole excitations 

of the HF mean field. As the Melbourne g-matrix contains two-body spin-orbit and 

tensor components, all transitions to non-natural parity states predicted by the RPA 

model are included. Comparison to data indicated that for incident energies above 

120MeV, the emission is well accounted for as low emission angles and for an 

energy transfer up to approximately 40MeV. Inclusion of collective excitations was 

shown to be crucial to obtain this agreement. However, in the incident energy range 

40– 80MeV, our calculations underestimate the data even at forward angles and this 

disagreement becomes larger for decreasing incident energies. This discrepancy is 

partly related the two-body interactions used in the modeling. 

Various approximations that were used in the derivation of the Melbourne g-matrix 

were removed and provided more accurate solutions to the Bruckner-Bethe- 

Goldstone equation. Moreover, recent studies also revealed the role of di-nucleon 

structures at low densities which could strongly impact the description of nuclear 

surface sensitive reactions. These studies could help describing direct nucleon 

inelastic scattering within the nuclear matter approach, when the incident energy 

decreases. Besides, further developments are planned to improve the present 

analysis, such as the use of QRPA wave functions and the extension to more targets. 

Finally, the so-called rearrangement corrections, which accounts for the 

modification in the density-dependent two-body interaction which is caused by the 

density fluctuations during the inelastic process, are not included in the present work. 

In a previous study performed within the JLM folding model, this dynamical effect 

was shown to strongly impact the cross sections magnitude. 

Rearrangement corrections were shown to strongly depend on the incident energy, 

the projectile disposing and the transition multipolarity. These corrections should be 

implemented in the framework of the g-matrix full folding model to assess its impact 
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on calculated cross sections for direct inelastic to both discrete states and to the 

continuum. 

Those developments will ensure to accurately predict the one-step contribution to 

pre-equilibrium emission. More work is still needed to extend our modeling to 

account for emission mechanisms beyond the one-step process. 

3.10 Energy Quantization of Electrons for Spherically Symmetric 

Atoms and Nano Particles According to Schrödinger Equation: 

 Schrödinger Equation for spherical atoms and nano particles was used to describe 

the behavior of electrons and phonons by treating them as strings oscillating 

thermally and under the action of external force. The solution shows that for 

thermally excited phonons and electrons the energy and frequency are quantized .For 

electrons excited by external force the energy and frequency are also quantized. The 

energy in both cases resembles the zero point energy for harmonic oscillator of the 

quantum system. The solution also describes free as well as bounded electrons. The 

results obtained agree with previous models and observations [46]. 

For spherically symmetric atoms or nano particles the string model shows that the 

electrons are regularly distributed inside them. The energy is quantized and is 

imaginary for thermally oscillating strings and is also quantized and resembles that 

of ordinary harmonic quantum oscillator when the external force acts only. The 

energy is positive or negative describing either free or bounded electrons. 

3.11 Harmonic Oscillator Solution for Free and Time Independent 

Potential String within the Framework of Dirac Special Relativistic 

Equation: 

 It is well known that Dirac relativistic equation describes the relativistic particle 

which is either free or move in any potential field. Even if one utilized the 

electromagnetic Hamiltonian which recognizes the effect of electromagnetic 
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potential, the time dependent part of Dirac equation gives the same form which is 

free from the potential term if the potential is time independent. In this case the time 

dependent part gives a sine or cosine solution describing quantized string energy like 

that of harmonic oscillator but with no zero point energy. However if one follows 

De Broglie hypothesis and assumes that the string oscillator is in the form of a highly 

localized wave packet the time dependent part gives cosine solution with energy 

expression typical to that of Schrodinger equation which recognizes the existence of 

zero point energy. This means that when the wave packet is localized in the form of 

a particle it has a rest mass energy corresponding to the zero point energy [47]. 

The solution of the Klein Gordon equation shows that the energy is quantized by 

applying periodicity conditions and assuming the particles as continuous wave trains 

and as a localized wave group. Strikingly the solutions show that all particles behave 

as strings no matter what the potential is. When one consider strings to be highly. 

3.12 Time Independent Generalized Special Relativity Quantum 

Equation and Travelling Wave Solution: 

 The generalized special relativity, which accounts for the effect of fields through 

the potential, is used to derive a new Dirac relativistic quantum equation. This new 

quantum equation consists of a potential term which emerged naturally from the 

relativistic energy expression. The solution of this equation predicts the propagation 

of travelling wave inside fields without attenuation. Thus it can describe the 

electromagnetic wave propagation inside bulk matter. It also predicts the existence 

of bio photons as stationary waves that spreads themselves, instantaneously through 

the surrounding media. It also shows that particles behave as harmonic oscillator 

inside atoms with rest mass energy equal to the zero point energy. These results 

agree with observations [48]. 
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The linear GSR quantum equation shows that the particles sometimes acts as 

travelling waves with quantized harmonic oscillator energy and zero point energy. 

It also predicts that bio photons are stationary simultaneously distributed waves. 

3.13 Quantum Equation for Generalized Special Relativistic Linear 

Hamiltonian: 

Using generalized special relativistic energy –momentum relation, a useful linear 

equation was obtained. The coefficients and matrixes resembles that of Dirac 

relativistic quantum equation .A new quantum linear relativistic equation sensitive 

to the potential and the effects of fields was also obtained. This equation reduces to 

that of Dirac in the absence of fields. The perturbed Hamiltonian consist of free 

energy term beside linear potential term which resembles that of ordinary 

perturbation theories. The travelling wave solution gives a new potential dependent 

energy relation, which reduces to that of Dirac in the absences of field. Move over 

this expression for energy can be a pure imaginary for strong potential and energetic 

particle, which indicates efficient energy absorption by the medium as proposed by 

electromagnetic theory [49]. 

The coefficient and matrixes of the GSR linear Dirac quantum equation resembles 

that of Dirac. The GSR linear relativistic equation consists of an additional term, 

representing potential. This equation reduces to that of ordinary Dirac in the absence 

of fields. The travelling wave solution gives an energy expression reduces to that of 

Dirac in the absence of fields. 

(3.14) Summary and Critique:  

Most of the work done for scattering is based on computational physics which gives 

limited contribution as far it does not account for the scattering of fast particles 

beams. The GSR attempts does not applied to the scattering process. Thus one needs 

a new model based on GSR to account for the scattering of fast particles. 
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Chapter Four 

Scattering Using Potential Dependent SR 

4.1 Introduction: 

The scattering flux and cross section which are exhibited in the standard texts cannot 

account for fast particles as far as it is based on Schrodinger equation which is based 

also on Newtonian mechanics.  

Anew relativistic scattering quantum equation is exhibited here in this chapter.   

4.2 General Scattering Theory:  

In many cases the laws of conservation of momentum and energy alone can be used 

to obtain important results concerning the properties of various mechanical 

processes. It should be noted that these properties are independent of the particular 

type of interaction between the particles involved [25]. 

The energy according to the GSR given by  

𝐸 =
𝑚°𝑐

2

√ 𝑔𝑜𝑜 − 𝑣2

𝑐2⁄

                                         (4.2.1) 

Thus 

𝐸2 =
𝑚°

2𝑐4

𝑔𝑜𝑜𝑚2𝑐4 − 𝑚2𝑣2𝑐2

𝑚2𝑐4

                                 (4.2.2) 

 But                                 𝐸 = 𝑚𝑐2                                                   (4.2.3) 

Inserting equation (4.2.3) in equation (4.2.2) yields 
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𝑔𝑜𝑜𝐸2 = 𝑝2𝑐2 + 𝑚°
2𝑐4                            (4.2.4) 

 

 Where              𝑔𝑜𝑜 = 1 +
2Ø

𝑐2
= 1 +

2𝑚Ø

𝑚𝑐2
 

𝑔𝑜𝑜 = 1 +
2𝑉

𝐸
                                       (4.2.5) 

Substituting equation (4.2.5) in equation (4.2.4) yields 

(1 +
2𝑉

𝐸
) 𝐸2 = 𝑝2𝑐2 + 𝑚°

2𝑐4              (4.2.6) 

Rearranging equation (4.2.6) gives 

𝐸2 + 2𝑉𝐸 = 𝑝2𝑐2 + 𝑚°
2𝑐4                    (4.2.7) 

Multiplying both side of this equation by 𝜓 gives 

𝐸2𝜓 + 2𝑉𝐸𝜓 = 𝑝2𝑐2𝜓 + 𝑚°
2𝑐4𝜓                    (4.2.8) 

According to the wave nature of particles 

𝜓 = 𝐴𝑒
𝑖
ℏ

(𝑝𝑥−𝐸𝑡)
                                       (4.2.9) 

Differentiating equation (4.2.9) with respect to space and time yields 

𝜕𝜓

𝜕𝑡
=

−𝑖𝐸

ℏ
𝜓 

−ℏ

𝑖

𝜕𝜓

𝜕𝑡
= 𝐸𝜓 = 𝑖ℏ

𝜕𝜓

𝜕𝑡
 

−ℏ2
𝜕2𝜓

𝜕𝑡2
= 𝐸2𝜓 
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𝜕𝜓

𝜕𝑥
=

𝑖𝑝

ℏ
𝜓      𝑎𝑛𝑑     

𝜕2𝜓

𝜕𝑥2
=

−𝑝2

ℏ2
𝜓   ⇒    𝑝2𝜓 = − ℏ2  

𝜕2𝜓

𝜕𝑥2
                   (4.2.10) 

Substituting equation (4.2.10) in equation (4.2.9) yields 

−ℏ2
𝜕2𝜓

𝜕𝑡2
+ 2𝑉 (𝑖ℏ

𝜕𝜓

𝜕𝑡
) = − ℏ2𝑐2 𝛻2𝜓 + 𝑚°

2𝑐4𝜓                     (4.2.11) 

From this equation by suggesting a solution  

𝜓 = 𝑢(𝑟)𝑒
−𝑖
ℏ

𝐸𝑡                                                                 (4.2.12) 

𝜕𝜓

𝜕𝑡
=

−𝑖𝐸

ℏ
𝜓    ⇒   

𝜕2𝜓

𝜕𝑡2
= −

𝐸2

ℏ2
𝜓                              (4.2.13) 

A direct substitution equation (4.2.13) in equation (4.2.11) yields 

𝐸2𝑢(𝑟)𝑒
−𝑖
ℏ

𝐸𝑡 + 2𝑉𝐸𝑢(𝑟)𝑒
−𝑖
ℏ

𝐸𝑡 = − ℏ2𝑐2 𝛻2𝜓 + 𝑚°
2𝑐4𝜓                 (4.2.14) 

𝐸2𝜓 + 2𝑉𝐸𝜓 = − ℏ2𝑐2 𝛻2𝜓 + 𝑚°
2𝑐4𝜓                                        (4.2.15) 

This equation can be written as 

𝛻2𝜓 +
𝐸2

ℏ2𝑐2
𝜓 =

(𝑚°
2𝑐4 − 2𝐸𝑉)

ℏ2𝑐2
𝜓                                   (4.2.16) 

Where: 

  
𝐸2

ℏ2𝑐2
= 𝑘2                                                    (4.2.17) 

(𝑚°
2𝑐4 − 2𝐸𝑉)

ℏ2𝑐2
= 𝑈                                         (4.2.18) 

Substituting (4.2.17)(4.2.18) in (4.2.16) yields  

𝛻2𝜓 + 𝑘2𝜓 = 𝑈𝜓                                         (4.2.19)  



66 
 

This equation represent scattered particles equation.  

𝛻2(𝐺𝐴) + 𝑘2(𝐺𝐴) = 𝐴𝛿𝑟𝑟′                                   (4.2.20) 

Integrating both sides yields 

∫ 𝛻2(𝐺𝐴)𝑑𝑟′ + 𝑘2 ∫(𝐺𝐴)𝑑𝑟′ = ∫ 𝐴(𝑟′)𝛿𝑟𝑟′ 𝑑𝑟′ = 𝐴(𝑟)                    (4.2.21) 

Comparing this equation with equation (4.2.19) gives  

𝐴(𝑟) = 𝑈(𝑟)𝜓(𝑟)                                                             (4.2.22) 

𝜓 = ∫(𝐺𝐴)𝑑𝑟′ = ∫ 𝐺(𝑟, 𝑟′)𝐴(𝑟, 𝑟′)𝑑𝑟′                                      (4.2.23) 

𝜓(𝑟) = ∫ 𝐺(𝑟, 𝑟′)𝑈(𝑟′)𝜓(𝑟′)𝑑𝑟′                                   (4.2.24) 

Thus the general equation to equation (4.2.19) gives:  

𝜓(𝑟) = 𝑒𝑖𝑘𝑟 + ∫ 𝐺(𝑟, 𝑟′)𝑈(𝑟′)𝜓(𝑟′)𝑑𝑟′                             (4.2.25) 

Where 

𝐺(𝑟, 𝑟′) =
−1

4𝜋

𝑒𝑖𝑘𝑟

𝑟
𝑒−𝑖𝑘𝑟′

                                      (4.2.26) 

𝑈 =
(𝑚°

2𝑐4 − 2𝐸𝑉)

ℏ2𝑐2
                                              (4.2.27) 

Substituting (4.2.26) (4.2.27) in equation (4.2.25) yields  

𝜓(𝑟) =
−1

4𝜋

𝑒𝑖𝑘𝑟

𝑟ℏ2𝑐2
∫ 𝑒−𝑖𝑘.𝑟′

𝜓(𝑟′)(𝑚°
2𝑐4 − 2𝐸𝑉(𝑟′))𝑑𝑟′               (4.2.28) 
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This equation can be written as 

𝜓(𝑟) =
−1

4𝜋

𝑒𝑖𝑘𝑟

𝑟ℏ2𝑐2
[𝑚°

2𝑐4 ∫ 𝑒−𝑖𝑘.𝑟′
𝜓(𝑟′)𝑑𝑟′

− 2𝐸 ∫ 𝑒−𝑖𝑘.𝑟′
𝜓(𝑟′)𝑉(𝑟′)𝑑𝑟′]                         (4.2.29) 

For simplification consider 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4𝜋ℏ2
∫ 𝑒−𝑖𝑘𝑟′𝑐𝑜𝑠𝛼𝜓(𝑟′)𝑑𝑟′                                (4.2.30) 

𝑓(𝜃, 𝜑) =
𝐸

2𝜋ℏ2𝑐2
∫ 𝑒−𝑖𝑘𝑟′𝑐𝑜𝑠𝛼  𝜓(𝑟′)𝑉(𝑟′)𝑑𝑟′                    (4.2.31) 

Thus equation (4.2.25) becomes  

𝜓(𝑟) = 𝑒𝑖𝑘𝑟 + 𝑄(𝜃, 𝜑)
𝑒𝑖𝑘𝑟

𝑟
+ 𝑓(𝜃, 𝜑)

𝑒𝑖𝑘𝑟

𝑟
                           (4.2.32) 

Where   

𝜓𝑖𝑛(𝑟) = 𝑒𝑖𝑘𝑟                                                                              (4.2.33) 

𝜓𝑠𝑐(𝑟) =
𝑒𝑖𝑘𝑟

𝑟
(𝑄 + 𝑓) =

𝑒𝑖𝑘𝑟

𝑟
𝐷(𝜃, 𝜑)                                  (4.2.34)  

Where                                        𝑄 + 𝑓 = 𝐷(𝜃, 𝜑)                                  (4.2.35) 

Using the 

𝑆𝑠𝑐 =
𝑖ℏ

2𝑚
[𝜓𝑠𝑐(𝑟)∇𝜓𝑠𝑐

̅̅ ̅̅̅(𝑟) − 𝜓𝑠𝑐
̅̅ ̅̅̅(𝑟)∇𝜓𝑠𝑐(𝑟)]                    (4.2.36) 

Where: 

𝜓𝑠𝑐(𝑟) = 𝐷(𝜃, 𝜑)
𝑒𝑖𝑘𝑟

𝑟
       ⇒     𝜓𝑠𝑐

̅̅ ̅̅̅(𝑟) =  �̅�(𝜃, 𝜑)
𝑒−𝑖𝑘𝑟

𝑟
              (4.2.37)  
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 ∇𝜓𝑠𝑐
̅̅ ̅̅̅(𝑟) =

𝜕𝜓𝑠𝑐
̅̅ ̅̅̅

𝜕𝑟
= �̅�(𝜃, 𝜑) [

−𝑖𝑘

𝑟
−

1

𝑟2
] 𝑒−𝑖𝑘𝑟                     (4.2.38) 

  ∇𝜓𝑠𝑐
̅̅ ̅̅̅(𝑟) = −�̅�(𝜃, 𝜑) [

𝑖𝑘

𝑟
+

1

𝑟2
] 𝑒−𝑖𝑘𝑟 =

−�̅�(𝜃, 𝜑)

𝑟2
𝑒−𝑖𝑘𝑟[𝑖𝑘𝑟 + 1] 

∇𝜓𝑠𝑐(𝑟) =
𝜕𝜓𝑠𝑐

𝜕𝑟
= 𝐷(𝜃, 𝜑) [

𝑖𝑘

𝑟
−

1

𝑟2
] 𝑒𝑖𝑘𝑟 

∇𝜓𝑠𝑐(𝑟) =
𝐷(𝜃, 𝜑)

𝑟2
𝑒𝑖𝑘𝑟[𝑖𝑘𝑟 − 1]                         (4.2.39) 

A direct substitution equation (4.2.39) in equation (4.2.36) gives 

𝑆𝑠𝑐 =
𝑖ℏ

2𝑚

|𝐷2|

𝑟3
[−(𝑖𝑘𝑟 + 1) − (𝑖𝑘𝑟 − 1)]                     (4.2.40) 

𝑆𝑠𝑐 =
𝑖ℏ

2𝑚

|𝐷2|

𝑟3
(−2𝑖𝑘𝑟) 

𝑆𝑠𝑐 =
ℏ𝑘

𝑚𝑟2
|𝐷2|                                                           (4.2.41)  

but                                      𝑝 = 𝑚𝑣 = ℏ𝑘                                          (4.2.42) 

Thus the scattering flux is given by: 

𝑆𝑠𝑐 =
𝑚𝑣

𝑚𝑟2
|𝐷2| = 𝑆𝑠𝑐 =

𝑣

𝑟2
|𝐷2| = (4.2.43) 

According to the definition of the scattering cross section 𝑆𝑠𝑐 =
𝑣

𝑟2
𝜎   

Thus the scattering cross section 𝜎 is given by: 

𝜎 = |𝐷2|                                                                  (4.2.44) 
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Maxwell’s equation describe the behavior of moving and static changes as well as 

electromagnetic waves (emw), the electric field intensity E for a medium with 

electric permittivity and conductivity is given by      

∇2𝐸 + 𝜖𝜇
𝜕2𝐸

𝜕𝑡2
− 𝜇𝜎

𝜕𝐸

𝜕𝑡
= 0                                       (4.2.45) 

Consider a solution in the form  

𝐸 = 𝐸°𝑒
𝑖(𝑘𝑥−𝜔𝑡)                                                       (4.2.46) 

Differentiating equation (4.2.46) with respect to space and time yields  

∇2𝐸 = −𝑘2𝐸                ,               
𝜕𝐸

𝜕𝑡
= −𝑖𝜔𝐸                              

           
𝜕2𝐸

𝜕𝑡2
= −𝜔2𝐸     , 𝑎𝑛𝑑 𝑙𝑒𝑡       𝜖𝜇 =

1

𝑐2
                     (4.2.47) 

Inserting equation (4.2.47) in (4.2.45) gives  

−𝑘2𝐸 +
𝜔2

𝑐2
𝐸 + 𝑖𝜇𝜎𝜔𝐸 = 0                                                      (4.2.48) 

Multiplying both side of equation (4.2.48) by  
ℏ2𝑐2

𝐸
  gives  

−ℏ2𝑘2𝑐2 + ℏ2𝜔2 + 𝑖𝜇𝜎𝜔ℏ2𝑐2 = 0                                    (4.2.49) 

Rearranging equation (4.2.49) gives  

ℏ2𝜔2 = ℏ2𝑘2𝑐2 −  𝑖𝜇𝜎𝜔ℏ2𝑐2                                                 (4.2.50) 

Where  
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    𝐸 = ℏ𝜔             𝑎𝑛𝑑            𝑝 = ℏ𝑘                                 (4.2.51) 

Thus equation (4.2.50) becomes:    

𝐸2 = 𝑝2𝑐2 − 𝑖𝜇𝜎𝐸ℏ𝑐2                                                    (4.2.52) 

Comparing this equation with the Einstein energy momentum relation   

𝐸2 = 𝑝2𝑐2 + 𝑚°
2𝑐4                                                   (4.2.53) 

Gives: 

𝑚°
2𝑐4 = −𝑖𝜇𝜎𝐸ℏ𝑐2                                                  (4.2.54) 

Using the definition of the conductivity ( 𝜎 = 𝜎1 + 𝑖𝜎2 ) thus equation (4.2.54) 

becomes: 

 𝑚°
2𝑐4 = −𝑖𝜇(𝜎1 + 𝑖𝜎2)𝐸ℏ𝑐2                                      (4.2.55)  

 But this term (𝑚°
2𝑐4 ) represent the real part:   

𝑚°
2𝑐4 = 𝜇𝜎2𝐸ℏ𝑐2                                                         (4.2.56) 

To find the conductivity of a certain medium consider a particle moving with 

velocity  𝑣 in a resistive medium of coefficient 𝛾 under the action of the electric 

field 𝐸 .the equation of motion of the particle is given by:    

𝑚
𝑑𝑣

𝑑𝑡
= −𝓀°𝑥 + 𝛾𝑣 + 𝑒𝐸                                                        (4.2.57) 

Assume the solution   

𝑥 = 𝑥°𝑒
𝑖𝜔𝑡                                                                          (4.2.58) 
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Where: 

     𝑣 =
𝑑𝑥

𝑑𝑡
= 𝑖𝜔𝑥     ,       𝑥 =

𝑣

𝑖𝜔
                       

𝑑𝑣

𝑑𝑡
= (𝑖𝜔)(𝑖𝜔𝑥) = −𝜔2𝑥           

𝓀° = 𝑚𝜔°
2                                                        (4.2.59) 

Substituting (4.2.59) in (4.2.57) yields: 

−𝑚𝜔2𝑥 = −𝑚𝜔°
2𝑥 + 𝑖𝛾𝜔𝑥 + 𝑒𝐸                              (4.2.60) 

Rearranging equation (4.2.60) gives: 

𝑒𝐸 = 𝑚(𝜔°
2 − 𝜔2)𝑥 − 𝑖𝛾𝜔𝑥                                      (4.2.61) 

Thus:  

𝑥 =
𝑒𝐸

𝑚(𝜔°
2 − 𝜔2) − 𝑖𝛾𝜔

                                     (4.2.62) 

Multiplying both side of equation (4.2.62) by  𝑚(𝜔°
2 − 𝜔2) + 𝑖𝛾𝜔  gives: 

𝑥 =
𝑒𝐸[𝑚(𝜔°

2 − 𝜔2) + 𝑖𝛾𝜔]

𝑚2(𝜔°
2 − 𝜔2)2 + 𝛾2𝜔2

                                  (4.2.63) 

Where: 

𝑥 =
𝑣

𝑖𝜔
           ⇒    𝑣 = 𝑖𝜔𝑥                                   (4.2.64) 

Thus: 

𝑣 =
𝜔𝑒𝐸[−𝛾𝜔 + 𝑖𝑚(𝜔°

2 − 𝜔2)]

𝑚2(𝜔°
2 − 𝜔2)2 + 𝛾2𝜔2

                           (4.2.65) 
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From equation (4.2.65) one gets: 

𝑣 = 𝑣1 + 𝑖𝑣2         ⇒         𝜎 = 𝜎1 + 𝑖𝜎2                   (4.2.66) 

Using the definition of current density 𝑗 and the conductivity 𝜎 one gets: 

𝑗 = 𝑛𝑒𝑣 = 𝜎𝐸                                                                   (4.2.67) 

Substituting (4.2.65) in (4.2.67) yields: 

𝜎 =
𝑛𝜔𝑒2[−𝛾𝜔 + 𝑖𝑚(𝜔°

2 − 𝜔2)]

𝑚2(𝜔°
2 − 𝜔2)2 + 𝛾2𝜔2

                                    (4.2.68) 

Thus the real part 𝜎1and the imaginary part 𝜎2of the conductivity are given by: 

𝜎1 =
𝑛𝜔𝑒2[−𝛾𝜔]

𝑚2(𝜔°
2 − 𝜔2)2 + 𝛾2𝜔2

                                               (4.2.69) 

𝜎2 =
𝑛𝜔𝑒2[𝑚(𝜔°

2 − 𝜔2)]

𝑚2(𝜔°
2 − 𝜔2)2 + 𝛾2𝜔2

                                                (4.2.70) 

Hence from (4.2.70) equation (4.2.56) becomes: 

𝑚°
2𝑐4 =

𝑛𝜇𝑒2𝐸2𝑐2𝑚(𝜔°
2 − 𝜔2)

𝑚2(𝜔°
2 − 𝜔2)2 + 𝛾2𝜔2

                                           (4.2.71) 

While the imaginary part in equation (4.2.55) represent the energy of frictional 

medium 𝐸𝑓   

Thus For frictional medium  

𝐸2 = 𝑝2𝑐2 + 𝑚°
2𝑐4 + 𝑖𝐸𝑓                                                       (4.2.72) 

From equation (4.2.55) yields 𝐸𝑓 

𝑚°
2𝑐4 = −𝑖𝜇𝜎𝐸ℏ𝑐2 = −𝑖𝜇𝐸ℏ𝑐2(𝜎1 + 𝑖𝜎2)                            (4.2.73) 
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Hence:  

𝐸𝑓 = −𝑖𝜇𝐸ℏ𝑐2𝜎1                                                                      (4.2.74) 

𝐸𝑓 =
𝑖𝑛𝜇𝑒2𝐸2𝑐2𝛾𝜔

𝑚2(𝜔°
2 − 𝜔2)2 + 𝛾2𝜔2

                                                     (4.2.75) 

Let: 

𝑉 = 0  [Thus see equation (4.2.31)  ]   𝑓(𝜃, 𝜑) = 𝑜 

Thus according to equation (4.2.35) 

𝐷(𝜃, 𝜑) = 𝑄(𝜃, 𝜑)                                                 (4.2.76) 

Thus equation (4.2.27) becomes  

𝑈 =
𝑚°

2𝑐4

ℏ2𝑐2
                                                           (4.2.77) 

For simplification equation (4.2.71) consider  

𝑚2(𝜔°
2 − 𝜔2)2 ≪ 𝛾2𝜔2      𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔  𝐸2 = ℏ2𝜔2                   (4.2.78) 

Therefor equation (4.2.71) becomes: 

𝑚°
2𝑐4 =

𝑛𝜇𝑒2ℏ2𝑐2𝑚(𝜔°
2 − 𝜔2)

𝛾2
                                             (4.2.79) 

Substituting equation (4.2.79) in equation (4.2.77) yields: 

𝑈 =
𝑛𝜇𝑒2𝑚(𝜔°

2 − 𝜔2)

𝛾2
                                                   (4.2.80) 

In this case equation (4.2.28) becomes:  
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𝜓𝑠𝑐(𝑟) =
−1

4𝜋

𝑒𝑖𝑘𝑟

𝑟
[
𝑛𝜇𝑒2𝑚(𝜔°

2 − 𝜔2)

𝛾2
∫ 𝑒−𝑖𝑘.𝑟′

𝜓(𝑟′)𝑑𝑟′]                   (4.2.81) 

𝜓𝑠𝑐(𝑟) =
𝑄(𝜃, 𝜑)

4𝜋

𝑒𝑖𝑘𝑟

𝑟
                                                         (4.2.82) 

Where: 

𝑄(𝜃, 𝜑) = [−
𝑛𝜇𝑒2𝑚(𝜔°

2 − 𝜔2)

𝛾2
∫ 𝑒−𝑖𝑘.𝑟′

𝜓(𝑟′)𝑑𝑟′]                          (4.2.83) 

4.3 Scattering by Uniform Potential for Nearly Free Particle: 

For nearly free particle the wave function is 

𝜓(𝑟) = 𝑒𝑖𝑘𝑟 𝑐𝑜𝑠𝛼                                             (4.3.1) 

If the potential is uniform  

𝑉 = 𝑉°                                                             (4.3.2) 

 According to equation (4.2.30) (4.2.31) and Substituting equations (4.3.1) (4.3.2) 

yields   

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4𝜋ℏ2
∫ 𝑒𝑖𝑘𝑟′ 𝑐𝑜𝑠𝛼   𝑒−𝑖𝑘𝑟′𝑐𝑜𝑠𝛼𝑑𝑟′

𝑟°

0

                      (4.3.3) 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4𝜋ℏ2
∫ 𝑑𝑟′

𝑟°

0

=
−𝑚°

2𝑐2

4𝜋ℏ2
[𝑟′]0

𝑟°                              (4.3.4) 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4𝜋ℏ2
𝑟°                                                        (4.3.5) 

𝑓(𝜃, 𝜑) =
𝐸

2𝜋ℏ2𝑐2
∫ 𝑒−𝑖𝑘𝑟′𝑐𝑜𝑠𝛼  𝑒𝑖𝑘𝑟′ 𝑐𝑜𝑠𝛼𝑉°𝑑𝑟′                              (4.3.6) 
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   𝑓(𝜃, 𝜑) =
𝐸𝑉°

2𝜋ℏ2𝑐2
∫ 𝑑𝑟′

𝑟°

0

=
𝐸𝑉°

2𝜋ℏ2𝑐2
[𝑟′]0

𝑟°                               (4.3.7) 

        𝑓(𝜃, 𝜑) =
𝐸𝑉°

2𝜋ℏ2𝑐2
𝑟°                                                    (4.3.8)   

Using equation (4.2.35) together with equation (4.3.5) (4.3.8) one gets: 

𝐷(𝜃, 𝜑) = 𝑄 + 𝑓 =
−𝑚°

2𝑐2

4𝜋ℏ2
𝑟° +

𝐸𝑉°

2𝜋ℏ2𝑐2
𝑟°                         (4.3.9) 

Thus according to equation (4.2.43) the scattering flux is given by: 

𝑆𝑠𝑐 =
𝑣

𝑟2
|𝐷2| 

𝑆𝑠𝑐 =
𝑣

𝑟2
[
−𝑚°

2𝑐2

4𝜋ℏ2
𝑟° +

𝐸𝑉°

2𝜋ℏ2𝑐2
𝑟°]

2

                                      (4.3.10) 

𝑆𝑠𝑐 =
𝑣

𝑟2

𝑟°
2

4𝜋2ℏ4
[
𝑚°

4𝑐4

4
− 𝑚°

2𝐸𝑉° +
𝐸2𝑉°

2

𝑐4
]                        (4.3.11) 

According to the definition of the scattering cross section 𝜎: 

𝑆𝑠𝑐 = 𝜎
𝑣

𝑟2
                                                            (4.3.12) 

 Thus from equation (4.2.43) 

𝑆𝑠𝑐 =
𝑣

𝑟2
|𝐷2| 

Comparing equation (4.3.12) with equation (4.2.43) the scattering cross section is 

thus gives by: 

𝜎 = |𝐷2|                                                                   (4.3.13) 
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𝜎 = |𝐷2| =
𝑟°

2

4𝜋2ℏ4
[
𝑚°

4𝑐4

4
− 𝑚°

2𝐸𝑉° +
𝐸2𝑉°

2

𝑐4
]                            (4.3.14)      

4.4 Scattering by Spherical Nucleus for Nearly Free Particle: 

If the atom has Z protons then the coulomb potential is given by: 

𝑉 =
−𝑍𝑒2

4𝜋𝜀°𝑟
                                                          (4.4.1) 

For nearly free particle the wave function is 

𝜓(𝑟) = 𝑒𝑖𝑘𝑟 𝑐𝑜𝑠𝛼                                                      (4.4.2) 

Substituting equation (4.4.1) and (4.4.2) in equation (4.2.30) (4.2.31) one gets: 

𝑓(𝜃, 𝜑) =
𝐸

2𝜋ℏ2𝑐2
∫ 𝑒−𝑖𝑘𝑟′𝑐𝑜𝑠𝛼  𝑒𝑖𝑘𝑟′ 𝑐𝑜𝑠𝛼 (

−𝑍𝑒2

4𝜋𝜀°𝑟
′
) 𝑑𝑟′

𝑟°

𝑟𝑛

              (4.4.3)  

Where 𝑟𝑛is the nucleus radius 

Thus: 

𝑓(𝜃, 𝜑) =
−𝐸

8𝜋2ℏ2𝑐2

𝑍𝑒2

𝜀°
∫

𝑑𝑟′

𝑟′

𝑟°

𝑟𝑛

                                                (4.4.4) 

        𝑓(𝜃, 𝜑) =
−𝐸

8𝜋2ℏ2𝑐2

𝑍𝑒2

𝜀°

[ln 𝑟′]𝑟𝑛

𝑟°                                                 (4.4.5) 

     𝑓(𝜃, 𝜑) =
𝐸

8𝜋2ℏ2𝑐2

𝑍𝑒2

𝜀°

[ln 𝑟𝑛 − ln 𝑟°]                                    (4.4.6) 

𝑓(𝜃, 𝜑) =
𝐸

8𝜋2ℏ2𝑐2

𝑍𝑒2

𝜀°
[ln

𝑟𝑛

𝑟°
]                                          (4.4.7) 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4𝜋ℏ2
∫ 𝑒𝑖𝑘𝑟′ 𝑐𝑜𝑠𝛼   𝑒−𝑖𝑘𝑟′𝑐𝑜𝑠𝛼𝑑𝑟′

𝑟°

𝑟𝑛

                           (4.4.8) 
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𝑄(𝜃, 𝜑) =
𝑚°

2𝑐2

4𝜋ℏ2
[𝑟𝑛 − 𝑟°]                                              (4.4.9) 

Using equation (4.2.35) together with equation (4.4.7) (4.4.9) one gets: 

𝐷(𝜃, 𝜑) = 𝑄 + 𝑓 =
𝑚°

2𝑐2

4𝜋ℏ2
[𝑟𝑛 − 𝑟°] +

𝐸

8𝜋2ℏ2𝑐2

𝑍𝑒2

𝜀°
[ln

𝑟𝑛

𝑟°
]                 (4.4.10) 

Thus according to equation (4.2.43) the scattering flux in this case is given by: 

𝑆𝑠𝑐 =
𝑣

𝑟2
|𝐷2| 

𝑆𝑠𝑐 =
𝑣

𝑟2
|(

𝑚°
2𝑐2

4𝜋ℏ2
[𝑟𝑛 − 𝑟°] +

𝐸

8𝜋2ℏ2𝑐2

𝑍𝑒2

𝜀°
[ln

𝑟𝑛

𝑟°
])

2

|                       (4.4.11) 

Using equation (4.2.44) the scattering cross section takes the form: 

𝜎 = |𝐷2| = |(
𝑚°

2𝑐2

4𝜋ℏ2
[𝑟𝑛 − 𝑟°] +

𝐸

8𝜋2ℏ2𝑐2

𝑍𝑒2

𝜀°
[ln

𝑟𝑛

𝑟°
])

2

|                             (4.4.12) 

4.5 Scattering by Harmonic Oscillator for Nearly Free Particle: 

Atoms can also be treated as harmonic oscillators, in this case the potential is given 

by: 

𝑉(𝑟) = −𝓀𝑟                                                             (4.5.1) 

Inserting equation (4.5.1) in equation (4.2.30) (4.2.31) together with equation (4.3.1) 

gives: 

𝑓(𝜃, 𝜑) =
𝐸

2𝜋ℏ2𝑐2
∫ 𝑒−𝑖𝑘𝑟′𝑐𝑜𝑠𝛼  𝑒𝑖𝑘𝑟′ 𝑐𝑜𝑠𝛼(−𝓀𝑟′)𝑑𝑟′

𝑟°

𝑟ℎ

                 (4.5.2)  

𝑓(𝜃, 𝜑) =
−𝐸𝓀

2𝜋ℏ2𝑐2
∫ (𝑟′)𝑑𝑟′

𝑟°

𝑟ℎ

=
−𝐸𝓀

2𝜋ℏ2𝑐2
[
𝑟′2

2
]

𝑟ℎ

𝑟°

                            (4.5.3) 
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𝑓(𝜃, 𝜑) =
𝐸𝓀

2𝜋ℏ2𝑐2
[
𝑟ℎ

2

2
−

𝑟°
2

2
]                                                 (4.5.4) 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4𝜋ℏ2
∫ 𝑒𝑖𝑘𝑟′ 𝑐𝑜𝑠𝛼   𝑒−𝑖𝑘𝑟′𝑐𝑜𝑠𝛼𝑑𝑟′

𝑟°

𝑟ℎ

                       (4.5.5) 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4𝜋ℏ2
∫ 𝑑𝑟′

𝑟°

𝑟ℎ

=
−𝑚°

2𝑐2

4𝜋ℏ2
[𝑟° − 𝑟ℎ]                           (4.5.6) 

𝑄(𝜃, 𝜑) =
𝑚°

2𝑐2

4𝜋ℏ2
[𝑟ℎ − 𝑟°]                                          (4.5.7) 

Hence according to equation (4.2.35)  

𝐷(𝜃, 𝜑) = 𝑄 + 𝑓 =
𝑚°

2𝑐2

4𝜋ℏ2
[𝑟ℎ − 𝑟°] +

𝐸𝓀

2𝜋ℏ2𝑐2
[
𝑟ℎ

2

2
−

𝑟°
2

2
]                       (4.5.8)  

Thus according to equation (4.2.43) the scattering flux in this case is given by: 

𝑆𝑠𝑐 =
𝑣

𝑟2
 |(

𝑚°
2𝑐2

4𝜋ℏ2
[𝑟ℎ − 𝑟°] +

𝐸𝓀

2𝜋ℏ2𝑐2
[
𝑟ℎ

2

2
−

𝑟°
2

2
])

2

|                          (4.5.9) 

Using equation (77) the scattering cross section takes the form: 

𝜎 = |𝐷2| = |(
𝑚°

2𝑐2

4𝜋ℏ2
[𝑟ℎ − 𝑟°] +

𝐸𝓀

2𝜋ℏ2𝑐2
[
𝑟ℎ

2

2
−

𝑟°
2

2
])

2

|                        (4.5.10) 

4.6 Scattering of Ground State Harmonic Oscillator for 

Perpendicular Scattering: 

 The wave function for ground state harmonic oscillator is: 

𝜓(𝑟) =
𝛼

1
2⁄

𝜋
1

4⁄
𝑒−

𝛼2𝑟2

2                                                         (4.6.1) 
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The potential is given by: 

𝑉(𝑟) = −𝓀𝑟                                                                    (4.6.2) 

For perpendicular scattering: 

𝛼 = 90                    𝑐𝑜𝑠𝛼 = 𝑜                                       (4.6.3) 

Substituting equations (4.6.1) (4.6.2) and (4.6.3) in equation (4.2.30) (4.2.31) gives: 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4𝜋ℏ2
∫ (

𝛼
1

2⁄

𝜋
1

4⁄
) 𝑒−

𝛼2𝑟′2

2  𝑑𝑟′
𝑟°

𝑟ℎ

                           (4.6.4) 

For     𝑟° → ∞       𝑎𝑛𝑑       𝑟ℎ → 0  one can let: 

𝑥 =
𝛼2𝑟′2

2
     ⇒       

𝑑𝑥

𝑑𝑟′
= 𝛼2𝑟′                                                    (4.6.5) 

𝑑𝑟′ =
𝑑𝑥

𝛼2𝑟′
=

𝛼𝑑𝑥

𝛼2(2𝑥)
1

2⁄
=

𝑥
−1

2⁄ 𝑑𝑥

√2 𝛼
                                        (4.6.6) 

Inserting equations (4.6.5) (4.6.6) in equation (4.6.4) gives: 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4√2 ℏ2𝜋(5
4⁄ )𝛼(1

2⁄ )
∫ 𝑥(−1

2⁄ )𝑒−𝑥𝑑𝑥
∞

0

                    (4.6.7) 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2 Γ(1
2⁄ )

4√2 ℏ2𝜋(5
4⁄ )𝛼(1

2⁄ )
=

−𝑚°
2𝑐2√𝜋

4√2 ℏ2𝜋(5
4⁄ )𝛼(1

2⁄ )
                       (4.6.8) 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4√2 ℏ2𝜋(3
4⁄ )𝛼(1

2⁄ )
                                                       (4.6.9) 

𝑓(𝜃, 𝜑) =
𝐸

2𝜋ℏ2𝑐2
∫ (

𝛼
1

2⁄

𝜋
1

4⁄
𝑒−

𝛼2𝑟′2

2 )(−𝓀𝑟′)𝑑𝑟′
𝑟°

𝑟ℎ

                            (4.6.10) 
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𝑓(𝜃, 𝜑) = (
𝐸

2𝜋ℏ2𝑐2
) (

−𝓀 𝛼
1

2⁄

𝜋
1

4⁄
) ∫ 𝑒−

𝛼2𝑟′2

2 𝑟′𝑑𝑟′
𝑟°

𝑟ℎ

                                 (4.6.11) 

Put  

𝑦 = −
𝛼2𝑟′2

2
   ⇒   

𝑑𝑦

𝑑𝑟′
= −𝛼2𝑟′                                         (4.6.12) 

𝑟′𝑑𝑟′ =
𝑑𝑦

−𝛼2
                                                                  (4.6.13) 

 Thus equation (4.6.11) become: 

𝑓(𝜃, 𝜑) = (
𝐸

2𝜋ℏ2𝑐2
) (

−𝓀𝛼
1

2⁄

−𝛼2𝜋
1

4⁄
) ∫ 𝑒𝑦𝑑𝑦

𝑟°

𝑟ℎ

                                (4.6.14) 

𝑓(𝜃, 𝜑) =
𝓀𝐸

2𝜋(5
4⁄ )𝛼(3

2⁄ )ℏ2𝑐2
[𝑒𝑦]𝑟ℎ

𝑟°

=
𝓀𝐸

2𝜋(5
4⁄ )𝛼(3

2⁄ )ℏ2𝑐2
[𝑒−

𝛼2𝑟′2

2 ]
𝑟ℎ

𝑟°

                        (4.6.15) 

 𝑓(𝜃, 𝜑) =
𝓀𝐸

2𝜋(5
4⁄ )𝛼(3

2⁄ )ℏ2𝑐2
[𝑒−

𝛼2𝑟°
2

2 − 𝑒−
𝛼2𝑟ℎ

2

2 ]                     (4.6.16) 

According to equation (4.2.35) and substituting equations (4.6.9) (4.6.16) yields: 

𝐷(𝜃, 𝜑) =
−𝑚°

2𝑐2

4√2 ℏ2𝜋(3
4⁄ )𝛼(1

2⁄ )

+
𝓀𝐸

2𝜋(5
4⁄ )𝛼(3

2⁄ )ℏ2𝑐2
[𝑒−

𝛼2𝑟°
2

2 − 𝑒−
𝛼2𝑟ℎ

2

2 ]                           (4.6.17) 

Thus according to equation (4.2.43) the scattering flux in this case: 
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𝑆𝑠𝑐 =
𝑣

𝑟2
|(

−𝑚°
2𝑐2

4√2 ℏ2𝜋(3
4⁄ )𝛼(1

2⁄ )

+
𝓀𝐸

2𝜋(5
4⁄ )𝛼(3

2⁄ )ℏ2𝑐2
[𝑒−

𝛼2𝑟°
2

2 − 𝑒−
𝛼2𝑟ℎ

2

2 ])

2

|           (4.6.18) 

Using equation (4.2.44) the scattering cross section in this case: 

𝜎 = |(
−𝑚°

2𝑐2

4√2 ℏ2𝜋(3
4⁄ )𝛼(1

2⁄ )

+
𝓀𝐸

2𝜋(5
4⁄ )𝛼(3

2⁄ )ℏ2𝑐2
[𝑒−

𝛼2𝑟°
2

2 − 𝑒−
𝛼2𝑟ℎ

2

2 ])

2

|                   (4.6.19) 

4.7 Scattering of Nearly Free Particle by Electric Dipole Molecules: 

When the molecules of the bulk matter are in the form of electric dipole having 

charge (𝑞) such that the distance between the poles are d. in this case the potential is 

given by: 

𝑉 =
𝑞𝑑

4𝜋𝜀°𝑟
2

                                                    (4.7.1) 

For nearly free particle the wave function is 

𝜓(𝑟) = 𝑒𝑖𝑘𝑟 𝑐𝑜𝑠𝛼                                       (4.7.2) 

Thus according to equation (4.2.30) (4.2.31) and substituting (4.7.1) (4.7.2) 

𝑄(𝜃, 𝜑) =
−𝑚°

2𝑐2

4𝜋ℏ2
∫  𝑑𝑟′

𝑟°

𝑑

                                   (4.7.3) 

𝑄(𝜃, 𝜑) =
𝑚°

2𝑐2

4𝜋ℏ2
[𝑑 − 𝑟°]                                     (4.7.4) 
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𝑓(𝜃, 𝜑) =
𝐸

2𝜋ℏ2𝑐2
∫ (

𝑞𝑑

4𝜋𝜀°𝑟′2) 𝑑𝑟′
𝑟°

𝑑

                      (4.7.5) 

𝑓(𝜃, 𝜑) =
𝐸𝑞𝑑

8𝜋2ℏ2𝑐2𝜀°
∫

𝑑𝑟′

𝑟′2

𝑟°

𝑑

                                  (4.7.6)  

𝑓(𝜃, 𝜑) =
𝐸𝑞𝑑

8𝜋2ℏ2𝑐2𝜀°
[
−1

𝑟′
]

𝑑

𝑟°

                                       (4.7.7)  

𝑓(𝜃, 𝜑) =
𝐸𝑞𝑑

8𝜋2ℏ2𝑐2𝜀°
[
1

𝑑
−

1

𝑟°
]                                     (4.7.8) 

Hence from equation (4.2.35): 

𝐷(𝜃, 𝜑) = 𝑄 + 𝑓 =
𝑚°

2𝑐2

4𝜋ℏ2
[𝑑 − 𝑟°] +

𝐸𝑞𝑑

8𝜋2ℏ2𝑐2𝜀°
[
1

𝑑
−

1

𝑟°
]                       (4.7.9) 

Thus the scattering flux in this case is given according to equation (4.2.43) by: 

𝑆𝑠𝑐 =
𝑣

𝑟2
|𝐷2| = 𝑆𝑠𝑐 =

𝑣

𝑟2
|(

𝑚°
2𝑐2

4𝜋ℏ2
[𝑑 − 𝑟°] +

𝐸𝑞𝑑

8𝜋2ℏ2𝑐2𝜀°
[
1

𝑑
−

1

𝑟°
])

2

|         (4.7.10) 

The scattering cross section is given according to equation (4.2.44): 

𝜎 = |𝐷2| = |(
𝑚°

2𝑐2

4𝜋ℏ2
[𝑑 − 𝑟°] +

𝐸𝑞𝑑

8𝜋2ℏ2𝑐2𝜀°
[
1

𝑑
−

1

𝑟°
])

2

|                           (4.7.11) 

4.8 Discussion: 

Using the GSR and PDSR at useful expression relating energy, momentum and 

potential energy has been found in equation (4.2.7)with the aid of the wave equation 

(4.2.9) a new PDSR and GSR quantum was found in equation (4.2.11). 

For time independent potential 𝑉(𝑟) a time dependent solution was suggested in 

equation (4.2.12) the new quantum equation which depend on the potential  𝑉 , 
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energy 𝐸 and the spatial variation of the wave function 𝜓 , has been exhibited in 

equations (4.2.16)and  (4.2.19). 

Greens equation and function in equation (4.2.20)(4.2.26) and (4.2.27)was used to 

solve the quantum equation (4.2.19) as shown by equations (4.2.28) and (4.2.32). 

According to equations (4.2.30) (4.2.31) (4.2.32) (4.2.34)and (4.2.44) the 

scattering cross section 𝜎 consist of two terms 𝑓 and 𝑄. The term 𝑓 is the ordinary 

well known term, while the new term 𝑄 consists of rest mass energy 𝑚°𝑐
2 instead 

of the potential𝑉. Using Maxwell’s equation(4.2.45) , beside Max Plank and De 

Broglie hypothesis a relativistic energy – momentum relation consisting of an 

imaginary term dependent on the conductivity 𝜎 was found as shown by 

equation (4.2.52). This term is related to the rest mass 𝑚° according to equation 

(4.2.54), when comparing (4.2.52). with the ordinary SR energy – momentum 

relation (4.2.53). Considering 𝜎 in a complex form (see equation (4.2.55)) an 

additional imaginary term standing for friction as shown by equation  (4.2.74). 

Using the equation (4.2.57), which describes the freely vibrating particle moving in 

a frictional medium under the action of a travelling electromagnetic field, a useful 

expression for conductivity was found in equations (4.2.69) and (4.2.70). This 

enables expressing the rest mass term in terms of electromagnetic wave frequency 𝑤. 

This enables describing the scattering proses of electromagnetic waves which 

propagate inside a medium in which particles vibrate with natural frequency 𝑤°. 

Restricting ourselves to high resistive medium as shown by equation (4.2.78) the 

scattering cross section 𝜎 = 𝑄(𝜃, 𝜑) is frequency dependent as shown by equation 

(4.2.83). According to plank theory 𝐸 = ℏ𝑤 the scattering cross section depends on 

particles energy which agrees with observations.  
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In section (4.3) the scattering by uniform potential indicates that the scattering cross 

section depends on the rest mass, thus depends on the frequency as shown by 

equations (4.3.14) and (4.2.79). The scattering by spherical nucleus by nearly free 

particle, also indicates frequency and rest mass dependence of the scattering cross 

section, with additional terms representing the nucleus radius and the particle size as 

shown by equation (4.4.12). The scattering by harmonic oscillator and electric 

dipoles indicate the same dependence of the scattering cross sections as shown by 

equations (4.5.10) (4.6.19) and (4.7.11). 

 4.9 Conclusion: 

The new quantum PDSR (GSR) equation for scattering process shows some 

interesting results. It indicates that the scattering cross section and flux reduces to 

the ordinary one. It consists also of an additional term standing for rest mass energy 

and is frequency dependent. 

4.10 Future Work: 

This new equation need to be verified experimentally to see how the additional term 

can correct calculations for the scattering flux and cross section. The new model 

need to be examined for fast particles where SR is applicable.     
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