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Abstract 

The design of a smart electric power grid is a challenge. One of the famous 

problems in this field is the Economic load dispatch (ELD) problem. ELD is a 

challenge optimization problem to minimize the total cost of the thermally 

generated power that satisfies a set of equality and inequality constraints. To 

solve this problem, we need to maximize the power network load under several 

operational constraints. Meanwhile, we need to minimize the cost of power 

generation and minimizing the loss in the network transmission. Traditional 

optimization methods were used to solve such problems as linear programming. 

Meta-heuristic search algorithms have shown encouraging performance in 

solving various real-life complex problems. This thesis attempts to provide a 

comprehensive comparison between nine meta-heuristic search algorithms 

including Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Crow 

Search Algorithm (CSA), Differential Evolution (DE), Salp Swarm Algorithm (SSA), 

Harmony Search (HS), Sine Cosine Algorithm (SCA), Multi-Verse Optimizer (MVO), 

and Moth-Flame Optimization Algorithm (MFO). Our developed results 

demonstrated that meta-heuristics search algorithms (i.e., CSA and DE) can offer 

the optimal set of power for each power station. These are computed power fulfill 

the supply needs and maintain both minimum power cost and minimum power 

losses in power transmission. In the future, we hope to continue to solving the 

power generation problem area like unit commitment problems by apply on Meta-

heuristics algorithm and explores the best minimums fuel cost. 
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 المستخلص 

 

 مشكلة هي  المجال هذا في  الشهيرة المشاكل من واحدة. تحديًا الذكية الكهربائية الطاقة شبكة تصميم يمثل

 المولدة للطاقة الإجمالية التكلفة لتقليل التحدي تحسين مشكلة هي  ELD(. ELD) الاقتصادي الحمل إرسال

زيادة   إلى  بحاجة نحن المشكلة، هذه لحل. المساواة وعدم المساواة قيود من مجموعة تلبي  والتي  حراريًا

 الطاقة  توليد  تكلفة لتقليل  بحاجة  نحن  ،ذلك غضون  في . التشغيلية القيود  من العديد ظل  في  الطاقة شبكة تحمل

 أظهرت . الخطية البرمجة مثل مشاكل لحل  التقليدية التحسين طرق  استخدام تم. الشبكة نقل في  الخسارة  وتقليل

 طروحة الا  هذه تحاول. الواقعية معقدةال المشكلات من العديد حل في  مشجعًا أداءً  الفوقي  البحث خوارزميات

 حشد  تحسين ،( GAs) الجينية الخوارزميات وهي  الفوقية بحثلل خوارزميات تسعة بين شاملة مقارنة تقديم

 سرب خوارزمية ، ( DE) التفاضلي  التطور ،( CSA) الغراب عن البحث خوارزمية ، ( PSO) الجسيمات

 المتعددة  الآيات  ومحسن( SCA) الجيبي  التمام جيب  وخوارزمية( HS) البحث التناغم ، ( SSA) سرب

(MVO )العثة لهب تحسين  وخوارزمية (MFO .) الفوقية البحث خوارزميات أن المطورة نتائجنا أظهرت 

 باحتياجات  تفي  محسوبة طاقة هذه. طاقة محطة لكل المثلى  الطاقة مجموعة تقدم أن يمكن( DE و CSA أي)

 في  .الطاقة  نقل  في   الطاقة  خسائر  من  الأدنى   والحد  الطاقة  تكلفة  من الأدنى  الحد على  وتحافظ الإمداد

 على التطبيق خلال من الوحدة التزام مشاكل مثل  الطاقة توليد مشكلة حل في  نستمر أن نأمل المستقبل،

 .وقود ل تكلفة أفضل واستكشاف  الفوقي  الاستدلال خوارزمية
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Chapter 1 

Introduction 

1.1 Preface 

The main aim of power system supply utility has been identified to provide a smooth 
power generation system to the consumers. It will be ensured that the electrical 

power is generated with minimum cost. That is mean to achieve an economic 
operation of the power system; the total demand must be appropriately shared 

among the units. This will minimize the total generation cost for the power system 
with the voltage level maintained at the safe operating limits. Economic dispatcher 

defined as the process of allocating generation levels to the generating units in the 

mix so that the system load is fully supplied most economically. The method of 
economic dispatch for generating units at different loads must have total fuel cost at 

the minimum point. 

Meta-heuristics are global search algorithms and their goal is to find an acceptable 

solution within a reasonable time frame when the problem is very complex and the 
search space is extremely large (Yang 2008). In their essence, meta-heuristics 

incorporate randomness and a local search in their process (ye 2017). These features 
support meta-heuristics to find a suboptimal solution when applying traditional 

algorithms for evaluating every possible solution is impossible. In general, nature-

inspired algorithms can be classified into two main categories: Evolutionary 
Algorithms and Swarm Intelligence algorithms. Evolutionary algorithms are mainly 

inspired by the Darwinian theory of evolution and natural selection. This research will 
talk about nine techniques of nature-inspired algorithms to solve the problem of high 

fuel cost in the smart grid, and shows the results of implement three units’ system, 

six-unit system, and IEEE thirty bus on nine algorithms to reach the general aim of the 
proposed research. 

1.2 Problem Statement 

The mathematical principle of the ELD problem depends on formulating the power cost 

as a minimization of an optimization function. The primary goal of the ELD problem is to 
decrease the generation cost of power distribution and the allocated power network not 

reliable and cannot fulfill the customer’s needs and minimize power losses during 

transmission. 
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1.3 Proposed Solution 

The proposed solution for the ED Problem by using the mathematical formulating of the 
power cost to a provided the minimization of an optimization function by testing various 

(nine) algorithms to known the convergence performance of proposed search algorithms 
to get the best algorithms. 

 

1.4 Objectives 

The objectives of this study are to decrease the generation cost of power distribution. For 

a particular thermal system that consists of n generators, the total generation cost use 

meta-heuristic search algorithms adopted in this study shall be used to optimize the cost 

function of the generated power. This function can be presented as given in Equation to 
testing nine algorithms. This was reported in terms of the total cost, time, and load 

fulfillment accuracy. 

 

1.5 Methodology 

This study shall be used MATLAB to execute optimize the cost function of the generated 
power to solve multi-objective optimization procedures using LP. The LP technique with 

piecewise linearization provided an overall economic benefit.  

 

1.6 Scope 

The scope of this Study for using Optimization Techniques to Minimizing Fuel Cost in the 

Smart Grid. 
 

1.7 Thesis Outlines 

The rest of this thesis prospectus is structured as follows: 

Chapter 2: Review of Relevant Literature. This chapter describes scholarly articles and 

journals that explain a variety of concepts that are Meta-heuristics Algorithms. 
Chapter 3: Problem Formulation. This chapter emphasizes the explains the minimize 

fuel cost formulating to economic dispatch problem. 
Chapter 4: Nature-inspired Meta-heuristics Search Algorithms. This section describes 

scholarly articles and journals that explain a variety of concepts that are Meta-heuristics 
Algorithms. 

Chapter 5: Experimental Results. This chapter shows the results of implement three 
units system, six unit system, and IEEE thirty bus on nine algorithms to reach the general 

aim of the proposed research. 
Chapter 6: Conclusions and Future work. This chapter shows the conclusion and Future 

work of this research. 

Chapter 7: Bibliography. A list of references  
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Chapter 2 

Literature Review 

Meta-heuristics are widely known as efficient approaches for many hard optimization 
problems. The classification of meta-heuristic divided to single solution and 

population. We determine optimization problems as problems that cannot be solved 
to optimal, by any exact method within a reasonable time limit. 

Can be divide problems into several categories depending on whether they are 
continuous or discrete, constrained or unconstrained, mono or multi-objective, static 

or dynamic. Meta-heuristics can be used to solve all these problems. Meta-heuristics 

define an algorithm designed to solve a wide range of hard optimization problems 
without having to deeply adapt to each problem. 

Indeed, the Greek prefix” meta” is used to indicate that these algorithms are 
“higher-level” heuristics, in contrast with problem-specific heuristics. Meta-heuristics 

are generally applied to problems for which there is no satisfactory problem-specific 

algorithm to solve them. 

One pioneer contribution is the proposition of the simulated annealing method by 

(S. Kirkpatrick 1983). In 1986, the tabu search was proposed by (Glover 2008), and 
the artificial immune system was proposed by (J.D. Farmer 1986). In 1988, Koza 

registered his first patent on genetic programming, later published in 1992(Koza 
1992). In 1989, Goldberg published a well-known book on genetic algorithms 

(Goldberg 1989). In 1992, Dorigo completed his PhD thesis,in which he describes his 
innovative work on ant colony optimization(Dorigo 1992).In 1993, the first algorithm 

based on bee colonies was proposed by Walker et al (A. Walker 1993).Another 
significant progress is the development of the particle swarm optimization by 

Kennedy and Eberhart in 1995 (J. Kennedy 1995).The same year, Hansen and 

Ostermeier proposed CMAES(N. Hansen 1995).In 1996, Mu¨hlenbeinand Paaß 
proposed the estimation of distribution algorithm(Mu¨hlenbein 1996). In 1997, Storn 

and Price proposed differential evolution (R.M. Storn 1997). In 2002, Passino 
introduced an optimization algorithm based on bacterial foraging (Passino 

2002).Then, Simon proposed a bio-geographybased optimization algorithm in 
2008(Simon 2008). 

2.1 Single-solution based metaheuristics 

Called trajectory methods are Reverse from population-based metaheuristics, they 

start with a single initial solution and move away from it, describing a trajectory in 
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the search space. Trajectory methods mainly encompass the simulated annealing 

method, the tabu search, the GRASP method, the variable neighborhood search, the 
guided search, the iterated local search, and their variants. 

2.1.1 Simulated Annealing 

      The origins of the Simulated Annealing method (SA) are in statistical mechanics 

(Metropolis algorithm (N. Metropolis 1953). It was first proposed by Kirkpatrick et 
al. (S. Kirkpatrick 1983), and independently by Cerny (Cerny 1985). 

SA is inspired by the annealing technique used by the metallurgist s to obtain a” 
well ordered” solid state of minimal energy )while avoiding the” meta-stable” 

structures, characteristic of the local minimum of energy). This technique consists of 
carrying a material at a high temperature, then in lowering this temperature slowly. 

SA transposes the process of the annealing to the solution of an optimization 

problem: the objective function of the problem, similar to the energy of a material, 
and then minimized, by introducing a fictitious temperature T, which is a simple 

controllable parameter of the algorithm. 
SA has been successfully applied to several discrete or continuous optimization 

problems, though it has been found too avid or unable to solve some combinatorial 

problems. The adaptation of SA to continuous optimization problems has been 

particularly studied in a wide bibliography can be found in (Alba 2005) (H.G. Beyer 
2002) (N.E. Collins 1988) (Fleischer 1995) (C. Koulamas 1994) (P.V. Laarhoven 1987) 
(Ed 2008). 

2.1.2 Tabu search 

Tabu Search (TS) was formalized in 1986 by Glover (Glover 2008). TS was designed to 
manage an embedded local search algorithm. It explicitly uses the history of the search, 
both to escape from local minima and to implement an explorative strategy. Its main 
characteristic is indeed based on the use of mechanisms inspired by human memory. It 
takes, from this point of view, a path opposite to that of SA, which does not use memory, 
and thus is unable to learn from the past. 
 
2.2 Population-based meta-heuristics 

Population-based meta-heuristics deal with a set (that means a population) of 

solutions rather than with a single solution. The most studied population-based 
methods are related to Evolutionary Computation (EC) and Swarm Intelligence (SI). 

EC algorithms are inspired by Darwin’s evolutionary theory, where a population of 
individuals is modified through recombination and mutation operators. In SI, the idea 

is to produce computational intelligence by exploiting simple analogs of social 

interaction, rather than purely individual cognitive abilities. 
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2.2.1 Evolutionary Computation 

Evolutionary Computation (EC) is the general term for several optimization 
algorithms that are inspired by the Darwinian principles of nature’s capability to 

evolve living beings well adapted to their environment. Usually found grouped under 
the term of EC algorithms (also called Evolutionary Algorithms (EAs)), are the 

domains of genetic algorithms (Holland 1975a), evolution strategies (Rechenberg 
1973), evolutionary programming (L.J. Fogel 1966), and genetic programming (Koza, 

Bennett, Andre, Keane, and Dunlap 1997). Despite the differences between these 

techniques, which will be shown later, they all share a common underlying idea of 
simulating the evolution of individual structures via processes of selection, 

recombination, and mutation reproduction, thereby producing better solutions. 
 

2.2.2 Genetic algorithm 

The Genetic Algorithm (GA) is the most well-known and most used evolutionary 
computation technique. It was originally developed in the early 1970s at the 

University of Michigan by John Holland and his students, whose research interests 

were devoted to the study of adaptive systems (Holland 1975b). The basic GA is very 

generic, and there are many aspects that can be implemented differently according to 
the problem: representation of solution (chromosomes), selection strategy, type of 

crossover and mutation operators, etc. The most common representation of the 
chromosomes applied in GAs is a fixed-length binary string. Simple bit manipulation 

operations allow the implementation of crossover and mutation operations. 

These genetic operators form the essential part of the GA as a problem-solving 
strategy. Emphasis is mainly concentrated on the crossover as the main variation 

operator, which combines multiple (usually two) individuals that have been selected 
together by exchanging some of their parts. There are various strategies to do this, 

e.g., n-point and uniform crossover. An exogenous parameter personal computer 
(crossover rate) indicates the probability per individual to undergo crossover. Typical 

values for personal computer are in the range [0.6,1.0] (B¨ack and Schwefel 1993). 

Individuals for producing offspring are chosen using a selection strategy after 
evaluating the fitness value of each individual in the selection pool. Some of the 

popular selection schemes are roulette-wheel selection, tournament selection, 
ranking selection, etc. A comparison of selection schemes used in GAs is given in (T. 

Blickle 1995) (D.E. Goldberg 1991). After crossover, individuals are subjected to 
mutation. Mutation introduces some randomness into the search to prevent the 

optimization process from getting trapped into local optima. It is usually considered 
as a secondary genetic operator that performs a slight perturbation to the resulting 

solutions with some low probability. 

Typically, the mutation rate is applied with less than one percent probability, but 

the appropriate value of the mutation rate for a given optimization problem is an open 
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research issue. The replacement (survivor selection) uses the fitness value to identify 

the individuals to maintain as parents for successive generations and is responsible 
to assure the survival of the fittest individuals. Interested readers may consult the 
book by Goldberg (Goldberg 1989) for more detailed background information on GAs. 

2.2.3 Differential evolution 

The Differential Evolution (DE) algorithm is one of the most popular algorithms for 
continuous global optimization problems. It was proposed by Storn and Price in the 

’90s )R.M. Storn 1997( in order to solve the polynomial fitting problem and has 
proven to be a very reliable optimization strategy for many different tasks. Like any 

evolutionary algorithm, a population of candidate solutions for the optimization task 
to be solved is arbitrarily initialized. For each generation of the evolution process, 

new individuals are created by applying reproduction operators (crossover and 

mutation). The fitness of the resulting solutions is evaluated and each individual 
(target individual) of the population competes against a new individual (trial 

individual) to determine which one will be maintained into the next generation. 

The trial individual is created by recombining the target individual with another 

individual created by mutation (called mutant individual). Different variants of DE 

have been suggested by Price et al. (K.V. Price 2005) and are conventionally named 

DE/ x/ y/ z, where DE stands for Differential Evolution, x represents a string that 

denotes the base vector, i.e. the vector being perturbed, whether it is “ rand” )a 
randomly selected population vector( or “ best” )the best vector in the population 

with respect to fitness value), y is the number of difference vectors considered for 
perturbation of the base vector x and z denotes the crossover the scheme, which may 

be binomial or exponential. The DE/rand/1/bi n-variant, also known as the classical 
version of DE, is used later on for the description of the DE algorithm. 

 

2.2.4 Swarm intelligence 

The Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for 

solving optimization problems that takes inspiration from the collective behavior of 
a group of social insect colonies and of other animal societies. SI systems are typically 

made up of a population of simple agents (an entity capable of performing/executing 
certain operations) interacting locally with one another and with their environment. 

These entities with very limited individual capability can jointly (cooperatively) 
perform many complex tasks necessary for their survival. Although there is normally 

no centralized control structure dictating how individual agents should behave, local 
interactions between such agents often lead to the emergence of global and self-

organized behavior. Several optimization algorithms inspired by the metaphor s of 

swarming behavior in nature are proposed. Ant colony optimization, Particle Swarm 



16 

Optimization, Bacterial foraging optimization, Bee Colony Optimization, Artificial 

Immune Systems, and Bio-geography-Based Optimization. 
Fundamentals of Computational Swarm Intelligence Book (Engelbrecht 2006) 

introduces the reader to the mathematical models of social insects’ collective behavior 
and shows how they can be used in solving optimization problems. Another book by 

Chan et al. (F.T.S. Chan 2007) aims at presenting recent developments and 

applications concerning optimization with SI, making a focus on Ant and Particle 
Swarm Optimization. (S. Das 2008) provide a detailed survey of the state-of-the-art 

research centered around the applications of SI algorithms in bioinformatics. (A. 
Abraham 2008) deals with the application of SI in data mining. 

Particle swarm optimization 

 The Particle Swarm Optimization (PSO) was initially introduced in 1995 by James 

Kennedy and Russell Eberhart as a global optimization technique (J. Kennedy 1995). 
It uses the metaphor of the flocking behavior of birds to solve optimization problems. 

There are a number of differences between PSO and evolutionary optimization 
illustrated in (Angeline 1998), where some of the philosophical and performance 

differences are explored. 

      In the PSO algorithm, many autonomous entities (particles) are stochastically 
generated in the search space. Each particle is a candidate solution to the problem, 

and is represented by a velocity, a location in the search space, and has a memory that 
helps it in remembering its previous best position. A swarm consists of N particles 

flying around in a D-dimensional search space. Moreover, every particle swarm has 
some sort of topology describing the interconnections among the particles. The set of 

particles to which a particle i is topologically connected is called i’s neighborhood. The 
neighborhood may be the entire population or some subset of it. Various topologies 

have been used to identify “some other particle” to influence the individual. The two 
most commonly used ones are known as gbest )for “global best”( and lbest )for “local 

best”(. The traditional particle swarm topology known as gbest was one where the 

best neighbor in the entire population influenced the target particle. 

While this may be conceptualized as a fully connected graph. The lbest topology, 

introduce d in (R.C. Eberhart 1995), is a simple ring lattice where each individual is 
connected to K = 2 adjacent members in the population array, with toroidal wrapping 

(naturally, this can be generalized to K ¿ 2) (J. Kennedy 1995). pointed out that the 
gbest topology had a tendency to converge very quickly with a higher chance of 

getting stuck in local optima. On the other hand, the lbest topology was slower but 
explored more fully, and typically ended up at a better optimum (J. Kennedy 2002).  
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Chapter 3 

Economic Dispatch of Thermal Units 

The complication of interconnections and the scope of the areas of electric power 
systems that are controlled in a synchronized way is fast increasing. This requires 

optimal allocation of the outputs of a great number of active generators. Whether a 
generator should participate in sharing the load at a given break of time is a problem 

of unit commitment. when the unit commitment problem has been solved, it becomes 
a problem of optimal allocation of the available generations to meet the predicted load 

demand for the current interval. At a current-day energy management center, highly 
developed optimization techniques are used to govern not only the optimal outputs 

of the active generators, but also the optimal settings of various control devices such 
as the tap settings of load tap changers (LTCs), outputs of VAR compensating devices, 

desired settings of phase convert etc. 

The favorite objective for such optimization problems can be many, such as the 
minimization of the cost of generation, minimization of the total power loss in the 

system, minimization of the voltage deviations, and maximization of the reliability of 
the power supplied to the customers. One or more of these objectives can be 

considered while formulating the optimization strategy. Determination of the real 
power outputs of the generators so that the total cost of generation in the system is 

minimized is traditionally known as the problem of economic load dispatch (ELD). 
popular of generating systems are of three types: nuclear, hydro, and thermal (using 

fossil fuels such as coal, oil and gas). Nuclear plants tend to be operated at constant 

output power levels. Operating cost of hydro units do not change much with the 
output. The operating cost of thermal plants, however, change great with the output 

power level. In this chapter, we will discuss the problem of ELD for power systems 
consisting of thermal units only as generators. 

3.1 Economic Dispatch Problem 

Primary we formulate the ELD problem neglecting transmission losses. This is 
justified when a group of generators are connected to a particular bus-bar, as in the 

case of individual generating units in a power plant, or when they are physically 
located very close to each other. This ensures that the transmission losses can be 

neglected due to the short distance involved. One such system configuration is shown 
in Figure 3.1, where N thermal units are connected to a single bus-bar that is 

supplying a load Pload. Input to each unit is expressed in terms of cost rate (say $/h). 
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The total cost rate is the sum of cost rates of individual units. The essential operating 

constraint is that the sum of the power outputs must be equal to the load (note that 
we are neglecting power losses here). 

 

Figure 3.1: N thermal units connected to a bus to serve a load Pload 

3.1.1 Fuel Cost Characteristics 

The economic dispatch problem is the determination of generation levels such that 
the total cost of generation becomes minimum for a defined level of load. Now, for 

thermal generating units, the cost of fuel per unit power output varies significantly 
with the power output of the unit. So, one needs to consider the fuel cost 

characteristics of the generators while finding their optimal real power outputs. The 

fuel cost characteristics is shown below Figure. 

Mostly, the cost of work, supply and maintenance are fixed. Pmin is the output 

level below which it is uneconomical or technically infeasible to operate the units. 
Pmax is the maximum output power limit. For formulating the dispatch problem, fuel 

costs are usually represented as a quadratic function of output power, as shown 
below. 

 F(P) = aP2 + bP + c (3.1) 
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Figure 3.2: Typical fuel cost characteristics 

3.1.2 Problem Formulation 

The total fuel cost of operating N generators is given by 

N 

FT = F1(P1) + F2(P2) + ... + FN(PN) = XFi(Pi) 
i=1 

Neglecting transmission losses, total generation should meet the total load. Hence, 
the equality constraint is, 

n 
X 

 Pi = PLoad (3.2) 
i=1 

Based on the maximum and minimum power limits of the generators, following 
inequality constraints can be imposed: 

 Pi,min ≤ Pi ≤ Pi,max (3.3) 

This is a constrained optimization problem that can be solved by multiple method. 

Economic Operation of Power Systems (A. J. Wood 2006) (Kirchmayer 1979) 

 • Swarm-based algorithms such as particle swarm optimization (Gaing 2003; Kuo 

2008; Rahmani, Othman, Yusof, and Khalid 2012; Dewangan, Jain, and Huddar 2010), 

cuckoo search (Nguyen and Vo 2015; Sen and Acharjee 2016), ant colony optimization 

(Aristidis 2006), 
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• Evolutionary-based algorithms such as evolutionary algorithms (Sahoo, Dash, 

Prusty, and Barisal 2015), genetic algorithm (Gaing 2003; Chen and Chang 

1995), harmony search algorithm (Chakraborty, Roy, Panigrahi, Bansal, and 
Mohapatra 2012), biogeography-based optimization (Bhattacharya and 
Chattopadhyay 2010), and • Trajectory-based algorithms such as simulated 

annealing (Bhattacharya and Chattopadhyay 2011). 

3.2 Mathematical Formulation of ELD 

In this section, we start by providing a formulation to the ELD problem. The economic 

dispatch problem objective is to maximize the economic welfare of a power network 
under various operation constraints. Assume we have a network with n buses 

(nodes). The unconstrained ELD problem can be formulated as: 

 Min Ck(Pk) = C1(P1) + ··· + C1(Pn) 
n 

 = XCk(Pk) (3.4) 
k=1 

where Ik represents the net power injection at bus k, and Ck(Pk) is the cost function 
of producing power at bus k. A power system with this given configuration can be 

presented as in Figure 3.3 where n thermal units are connected to a single bus-bar 
that is supplying a load power Pk. The input to each unit is expressed in terms of cost 
rate (say $/h) Pk. k = 1,...,n, n is the number of power generator units. The cost 

presented in Equation 3.4 can be approximated in a quadratic form as given in 
Equation 3.5 for minimization purposes (Bergen 1986; Wood and Wollenberg 2010). 

 

Figure 3.3: Two generators and Three Bus power system 

n 

 Min Ck(Pk) = XαkPk2 + βkPk + γk (3.5) 
k=1 
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Pk is the generated power from generator unit k, αk,βk and γk are the fuel cost 

coefficients of unit i. Two types of constraints shall be considered while solving this 
problem; equality constraints and inequality constraints. 

3.2.1 Power Balance Equality Constraints 

A real power system has to generate enough power such that it covers both the 

demand and the transmission lines power loss. It is known that the power produced 
at any power station go through large and complex networks such as transformers, 

transmission lines, cables and additional equipment to supply the end users of their 
demand. Therefore, it is always the case that the power units in a network always 

produce extra power not only to match the demand but also to recover the waste of 
transmission power. This difference in the generated and distributed power PG is 

recognized as Transmission and Distribution loss power PL. Any lack in the generated 
power PG will cause shortage in feeding the power in demand PD which could be a 
reason for several problems for the system and loads (See Equation 3.6). 

  (3.6) 

where PD is the load demand and PL is the transmission lines loss, while n and Pk 

have the same definition as in Equation 3.5. 

To consider the effect of transmission losses in our cost computation, we adopted 

the loss coefficient method which proposed by Kron and Kirchmayer (Bergen 1986; 
Wood and Wollenberg 2010). In this method, a matrix ζ is defined as ”the transmission 

loss coefficients matrix” used to include the power loss. ζ is a square matrix with a 

dimension of Rn×n while n is the number of power generation units in the system. 

Equation 3.7 describes the definition of PL based the transmission loss ζ-matrix. 

 n n 

 PL = XXPiζijPj (3.7) 
i=1 j=1 

where PLoss is the transmission power loss, Pi,Pj are the power generated from any two 
power generator units i,j. Meanwhile, ζij is the elements of the matrix ζ between i and 
j power generator units. 

3.2.2 Generation Limit Inequality Constraints 

The generated power from the power generation system should satisfy number of 
constraints based on the capacity of the generation unit. For instance, the generation 
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units cannot exceed a certain power generation unit since this nay cause instability 

for the synchronous generators. Meanwhile, generating less power than a minimum 
limit may cause the rotor to over speed. These limitations for the kth generator are 

described in Equation 3.9 and presented in (Saadat 2008). 

  (3.8) 

where Pkmin and Pkmax are the limitation of generation for the kth generation unit. 

3.2.3 Generation Limit Inequality Constraints 

The generated power from the power generation system should satisfy number of 
constraints based on the capacity of the generation unit. For instance, the generation 

units cannot exceed a certain power generation unit since this nay cause instability 

for the synchronous generators. Meanwhile, generating less power than a minimum 
limit may cause the rotor to over speed. These limitations for the kth generator are 

described in Equation 3.9 and presented in (Saadat 2008). 

 Pkmin ≤ Pk ≤ Pkmax,k = 1,...,n (3.9) 

where  and  are the limitation of generation for the kth generation unit.  
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Chapter 4 

Nature-inspired Meta-heuristics Search Algorithms 

Meta-heuristics are global search algorithms and their goal is to find an acceptable 
solution within a reasonable time frame when the problem is very complex and the 

search space is extremely large. In their essence, meta-heuristics incorporate 
randomness and a local search in their process. These features support meta-

heuristics to find a suboptimal solution when applying traditional algorithms for 
evaluating every possible solution is impossible. However, this does not grantee that 

meta-heuristics will always find the optimal solution neither that they will work. 
Basically, there are two main components of the meta-heuristics algorithms: 

exploration and exploitation. In the exploration component, the algorithm tries to 
explore and test different areas in the search space, while on the other hand, in the 

exploitation component, the algorithm tries to focus the search around some 

suboptimal found solutions (Yang 2008). 

Most of nature-inspired algorithms are population-based algorithms where they 

start by randomly generating a predetermined number of candidate solutions (also 
called individuals) then they start to iteratively update the generated solutions using 

a specific designed mechanism. In every iteration, the algorithm evaluates all 
individuals using a fitness function to assess their quality considering them as 

possible solutions for the targeted problem. In some meta-heuristics, fitness values 
affect the search direction of the algorithm. 

In general, nature-inspired algorithms can be classified into two main categories: 

Evolutionary Algorithms and Swarm Intelligence algorithms. Evolutionary algorithms 
are mainly inspired by the Darwinian theory on evolution and natural selection. Best 

example of this type is the well-regarded Genetic Algorithm (GA). GA was first 

proposed and designed in the works of John Holland (Holland 1992). GA is 

distinguished by its reproduction operators namely; the crossover and mutation 
operators. On the other side, most of the Swarm Intelligence algorithms are inspired 

by the movement or interaction of some families of birds, fish or animals in nature. A 
well-regarded example of this category is the Particle Swarm Optimization (PSO). PSO 

was first introduced by Kennedy and Eberhart in 1995 (J. Kennedy 1995; Poli, 

Kennedy, and Blackwell 2007). In PSO, individuals (or particles) are updated based 
on the best-found solution by all individuals and the best solution found by the 

updated individual itself. 
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4.1 Genetic Algorithm 

GA is an evolutionary approach, which applies evolutionary operators and a 
population of solutions to achieve a global optimal solution. Gas includes selection, 

recombination and mutation. Candidate solutions to the problem are encoded as 
chromosomes, and then a fitness function inversely proportional to the mean squared 

error value is applied to determine the chromosomes surviving likelihood in the next 
generation. In GA we use a model of the natural selection in real life, where an initial 

population of solutions called individuals is randomly generated. The algorithm 

produces new solutions of the population by genetic operations, such as 

reproduction, crossover and mutation (?). The new generation consists of the possible 
survivors with the highest fitness score, and new individuals estimated from the 

previous population using the genetic operations. 

GA search the solution space of a function through the use of simulated evolution, 
i.e., the survival of the fittest strategy (?). GAs was used to solve linear and nonlinear 

problems by exploring all regions of the state space and exponentially exploiting 
promising areas through mutation, crossover, and selection operations applied to 

individuals in the population. which are individual solutions (analogous to 
chromosomes) of the state space. These operators, which rely on probability rules, 

are applied to the population, and successive generations are produced. 

In general, the starting search for an optimal solution begins with a randomly 
generated population of chromosomes. Each generation will have a new set of 

chromosomes obtained from the application of the operators. A fitness, or objective 
function, is defined according to the problem. The parent selection process ensures 

that the fittest members of the population have highest probability of becoming 
parents, in the hope that their offspring will combine desirable features, and have 

superior fitness, to both. The algorithm terminates either when a set of generation 
number is reached, or the fitness has reached a” satisfactory” level. The use of a GA 

requires the determination of six fundamental issues: 

1. Representation 

2. Distribution of initial population 

3. Fitness Function 

4. Selection Mechanism 

5. Reproduction Parameters (i.e., Crossover and Mutation) 

6. Termination Criteria 
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The main steps for GA procedure can be summarized as follows: 

1. Generate an initial population. 

2. Evaluate the fitness of each individual according to the given fitness function. 

3. Select the fittest individual for mating. 

4. Apply reproductive operators (e.g., crossover, mutation) to create offspring. 

5. Evaluate the fitness of the offspring and select the fit individuals from the 

current generation and the offspring. They form the population of the next 

generation. 

6. Stop if stopping criterion is met, else go to step 3. 

The GA can be presented as in Figure 4.1. 

 

Figure 4.1: Flowchart for GAs 
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4.2 Particle Swarm Optimization 

PSO belongs to a class of swarm intelligence techniques that are used to solve 
optimization problems (J. Kennedy 1995). Each particle in PSO is updated by 
following two” best” values: 

• pbest: Each particle keeps track of its coordinates in the solution space which are 

associated with the best solution (i.e fitness) that has achieved so far by that 
particle. This value is called personal best, pbest. 

• gbest: It is tracked by the PSO is the best value obtained so far by any particle in 

the neighborhood of that particle. This value is called Global Best, gbest. 

 

Figure 4.2: Flowchart for PSO 
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The PSO Algorithm works as follows: 

Let X and V denote the particles position and its corresponding velocity in search 

space respectively. At iteration K, each particle i has its position defined by XiK 

= [Xi,1,Xi,2,....,Xi,N] and a velocity is defined as ViK = [Vi,1,Vi,2,....,Vi,N] in search space N. 
Velocity and position of each particle in the next iteration can be calculated as: 

Vi,nk+1 = W ∗ Vi,nk + C1 ∗ rand1 ∗ (pbesti,n − Xi,nk ) + C2 ∗ rand2 ∗ (gbestn − Xi,nk ) (4.1) 

 wherei = 1,2.....m and n = 1,2,...,N 

i,n 

 Xi,nk+1 = XXmin,i,nk + V,i,nk+1,ifXifXikmin,i,n+1 < X<min,i,n= Xik+1 <= Xmax,i,n (4.2) 

 Xmax,i,n, ifXik+1 > Xmax,i,n 

Algorithm for PSO initialize each particle to contain Nc randomly selected cluster 

means. t=1 to tmax(maximum number of iterations) each particle i each pixel Zp 

calculate d(Zp,mij)forallclusterscij Assign ZptoCij where d(Zp,mij) = min∀c=1,...,Nc d(Zp,mic) 

d(Zp,mij) represents the euclidean distance between the p-th pixel Zp and the centroid 
of j-th cluster of pixel i Calculate the fitness function f(xi(t),Z) where Z is a matrix 

representing the assignment of pixels to clusters of particle i Update the personal best 
and the global best positions Update the cluster centroids 

The inertia weight W is an important factor for the PSO convergence. It is used to 

control the impact of previous history of velocities on the current velocity. A large 

inertia weight factor facilitates global exploration (i.e., searching of new area) while 

small weight factor facilitates local exploration. Therefore, it is better to choose large 
weight factor for initial iterations and gradually reduce weight factor in successive 

iterations. This can be done by using 

  (4.3) 

where max and Wmin are initial and final weight respectively, Iter is current 

iteration number and Itermax is maximum iteration number. 

Acceleration constant C1 called cognitive parameter pulls each particle towards 
local best position whereas constant C2 called social parameter pulls the particle 

towards global best position (ye 2017). The particle position is modified by Equation 

(4.2). The process is repeated until stop-ping criterion is reached. 
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The number of threshold levels is the dimension of the problem. For example, if 
there are ”m” threshold levels, the ith particle is represented as follows: 

 Xi = (Xi,1,Xi,2,....,Xi,m) (4.4) 

Its implementation consists of the following steps: 

• Initialization of the swarm: For a population size p, the particles are randomly 

generated between the minimum and the maximum limits of the threshold 
values. 

• Evaluation of the objective function: The objective function values of the 
particles are evaluated using the objective functions. 

• Initialization of pbest and gbest: The objective values obtained above for the 

initial particles of the swarm are set as the initial pbest values of the particles. 
The best value among all the pbest values is identified as gbest. 

• Evaluation of velocity: The new velocity for each particle is computed using the 

Equation. 

• Update the swarm: The particle position is up-dated using Equation 4.1. The 

values of the objective function are calculated for the updated positions of the 
particles. If the new value is better than the previous pbest, the new value is set 
to pbest. Similarly, gbest value is also updated as the best pbest. • Stopping 

criteria: If the stopping criteria are met, the positions of particles represented 
by gbest are the optimal threshold values. Otherwise, the procedure is repeated 
from step 4. 

There are many advantages of PSO. They include: 

1. PSO is easy to implement and only few parameters have to be adjusted. 

2. Unlike the GA, PSO has no evolution operators such as crossover and mutation. 

3. In GAs, chromosomes share information so that the whole population moves 
like one group, but in PSO, only global best particle (gbest) gives out information 
to the others. It is more robust than GAs. 

4. PSO can be more efficient than GAs; that is, PSO often finds the solution with 

fewer objective function evaluations than that required by GAs (P. R. Lorenzo 
2017). 
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5. Unlike GAs and other heuristic algorithms, PSO has the flexibility to control the 

balance between global and local exploration of the search space. 

 

4.3 Crow Search Algorithm 

The CSA is a recent nature-inspired metaheuristic which was proposed in 

(Askarzadeh 2016). The abstract ideas of CSA are inspired by the behavior of crows 

birds in nature. Crows are considered as one of the most intelligent birds. It was 

reported in different studies that crows show clever behaviors such as the ability to 

hide their exceeded food and the ability to find it again. Moreover, crows 
communicate in sophisticated way and they have good memory to recognize objects. 
As a search algorithm, CSA was implemented based on the following four main points: 

• Crows exist in nature as flocks so the CSA is formed as a population-based 
algorithm. 

• Crows can remember the place where they hide their food and retrieve it again. 

• Crows can watch other animal to steal their food. 

• Crows manage to protect their store of food with a ratio. 

In CSA, a solution for a targeted problem is represented as the position of the crow 

at a given time as shown in Equation 4.5, where xi,G is the position of crow i at iteration 
G. Note that we used G to denote the concept of iteration which is analogous to 

generation in GA or DE. xi,G is consisted of D variables which represents the dimension 
of the problem. 

  (4.5) 

CSA is a population-based metaheuristic. As most of optimizers that belong to this 

family, it starts by randomly generating a group of possible solutions of size N called 
flock of crows. Therefore, the size of the population is N×D. CSA incorporates also the 

concept of memory, which represents the qualities of the positions of the crows. The 
quality of each position is measured by the fitness function and stored in an array as 
given in Equation 4.6. 
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  (4.6) 

Crows in the flock update their position using the following mechanism: each crow 

i selects another crow j from the flock to follow in a hope to find the food hidden by 

the latter crow mj. This movement is represented as given in Equation 4.7. 

  (4.7) 

where rj is a random generated number drawn from uniform distribution between 0 
and 1, while APj,G is the awareness probability of crow j at iteration G. 

The fitness of the new position is checked, if its quality is better than the current 
one then the position is updated. Otherwise, the crow stays in the same position. Then, 
the memory can be updated as given in Equation 4.8. 

  (4.8) 

where f denotes the value of fitness function. Similarly, if the fitness value of the new 
position is better than the memorized position then the crow updates its memory 

accordingly. The processes of generating new positions, evaluating them and 
updating memories are repeated until a predefined termination condition is met. 

4.4 Differential Evolution 

Differential Evolution (DE) is one of the most well-regarded evolutionary algorithms 
(R.M. Storn 1997). Similarity to other evolutionary algorithms, DE first initializes the 

first population. It then performs difference-vector based mutation, crossover, and 
selection. During the optimization process each solution is evaluated by an objective 

function and assigned an objective value. Each of these steps are discussed as follows 
(Das and Suganthan 2011). 
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4.4.1 Initialization 

DE is considered as a real-parameter optimization algorithm. Therefore, each variable 

has a minimum and maximum. The following vector is initialized considering the 
lower and upper bounds of each variable: 

 ~xi,G = [x1,i,G,x2,i,G,...,xD,i,G] (4.9) 

where i is an index to refer to ith vector in the population, G is the generation number, 

and D indicates the number of dimension (variables of the problem). 

The initialization is done using the following equation: 

 xj,i,0 = ubj + r · (ubj − lbj) (4.10) 

where ubj is the upper bounds in the jth dimension and lbj shows the lower bout in the 
jth dimension. 

4.4.2 Mutation 

Mutation in nature occurs in genome with random changes in the genes. In DE, if a 
solution faces mutation, it is called donor. To perform mutation in DE, three vectors 

are sampled randomly: . This means the indices of these three vectors 

are randomly chosen between one and the maximum number of vectors in the 
population. To perform mutation, the difference between two of these vectors are 

calculated (and normalized) for each donor vector. Their difference are then added 

up to the third vector, which give the final donor vector. These steps can be 
represented in an equation as follows: 

  (4.11) 

where F is a scalar number and normally chosen in the interval of [0.4,1]. 

4.4.3 Crossover (reproduction) 

Crossover is the main operator to promote exploration in any evolutionary algorithm. 
In DE, crossover is done after mutation. The resulting vector in DE is called the trial 

vector. There are different crossover operators in the literature which mainly varies 
in the crossover point in the vectors. Regardless of the crossover starting point, it can 

be formulated as follows: 
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uj,i,G = vj,i,G (4.12) 

for  j =< n >D ... < n + L − 1 >D  

xj,i,G 
 ∀j ∈ [1,D]  

where L shows the donor’s number of components, n is randomly chosen in the 
interval of [1,D], and <>D is a modulo function. 

4.4.4 Selection 

The selection operator eventually selects the best solutions and allow them to move 
the the next generation. In DE, if a solution becomes better than its parents, it is 

replaced by them immediately. Otherwise, the solution is move the the next 
generation intact. The mathematical formulation for this operator is as follows for 
minimization problems: 

 if

(4.13) if 

For maximization problems, this equation should be written as follows: 

if 

i,G+1(4.14) 

 Xi,G if f(Ui,G) < f(Xi,G) 

The DE algorithm repeatedly runs these steps until the satisfaction of an end 

criterion. 

4.4.5 Fitness Function 

Our objective is to find estimate the optimal power units values Pk,k = 1,...,n, n is the 
number of power units, which minimize the objective criterion L (see Equation 

4.15). 

 ] (4.15) 

where Ck(Pk) is the cost of power generated from generator Pk, PD is the demand 

load, PL is the transmission lost power. λ is an arbitrary chosen parameter with high 
value to penalize the losses in the cost computation. In our case, λ was set to 100. 
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4.5 Salp Swarm Algorithm 

The Salp Swarm Algorithm (SSA) is a recent nature-inspired optimizer proposed by 
Mirjalili et al.(Mirjalili 2017). The purpose of SSA is to develop a population-based 

optimizer by mimicking the swarm behavior of salps in nature (Abbassi 2019). 

The performance of the original SSA as an ELM trainer has not been investigated 

to date. SSA algorithm reveals satisfactory diversification and intensification 
propensities that make it appealing for evolving ELM training tasks. The unique 

advantages of SSA cannot be obtained by using some traditional optimizers such as 

PSO, GWO, and GSA techniques. 

The SSA can be considered as a capable, flexible, simple, and easy to be understood 

and utilized in parallel and serial modes. Furthermore, it has only one adaptively 
decreasing parameter to make a fine alance between the diversification and 

intensification inclinations. 

In order to avoid immature convergence to local optima (LO), the position vectors 
of salps are gradually updated considering other salps in a dynamic crowd of agents. 

The dynamic movements of salps enhance the searching capabilities of the SSA in 
escaping from LO and immature convergence drawbacks. It also keeps the elite salp 

found so far to guide other members of swarm towards better areas of the feature 
space. 

The SSA has an iterative generates nature and evolves some random individuals 
(that means salps) inside the bounding box of the problem. Then, all salps should 

update their location vectors. The leader salp will attack in the direction of a food 

source, while all followers can move towards the rest of salps (and leader directly or 
indirectly) (Mirjalili 2017). 

4.6 Harmony Search 

4.6.1 Diversification and Intensification 

In reviewing other metaheuristic algorithms, we have repetitively focused on two 
major components: diversification and intensification. They are also referred to as 

exploration and exploitation (C and A 2003) (M and C 2005). These two components 
are seemingly dictating each other, but their balanced combination is crucially 

important to the success of any metaheuristic algorithms (C and A 2003) (M and C 
2005). 

The best diversification or exploration makes sure the search in the parameter 

space can explore as many locations and regions as possible in an efficient and 
effective manner. 
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It also ensures that the evolving system will not be trapped in biased local optima. 

Diversification is often represented in the implementation as the randomization 
and/or additional stochastic component superposed onto the deterministic 

components. If the diversification is too strong, it may explore more accessible search 
space in a stochastic manner, and subsequently will slow down the convergence of 

the algorithm. 

If the diversification is too weak, there is a risk that the parameter space explored 
is so limited and the solutions are biased and trapped in local optima, or even lead to 

meaningless solutions. 

On the other hand, the appropriate intensification or exploitation intends to 
exploit the history and experience of the search process. It aims to ensure to speed up 

the convergence, when necessary, by reducing the randomness and limiting 
diversification. 

Intensification is often carried out by using memory such as in Tabu search and/or 
elitism such as in the genetic algorithms. In other algorithms, it is much more 

elaborate to use intensification such as the case in simulated annealing and firefly 
algorithms. If the intensification is too strong, it could result in premature 

convergence, leading to biased local optima or even meaningless solutions, as the 

search space is not well explored. If the intensification is too weak, convergence 

becomes slow. 

The optimal balance of diversification and intensification is required, and such a 
balance itself is an optimization process. 

Fine-tuning of parameters is often required to improve the efficiency of the 

algorithms for a particular problem. A substantial number of studies might be to 
choose the right algorithms for the right optimization problems (Yang2008), though 

it lacks systematic guidance for such choices. 

 

4.6.2 Analyze the Harmony Search algorithm 

when we analyze the Harmony Search algorithm in the context of the major 

components of meta-heuristics and try to compare it with other metaheuristic 

algorithms, we can identify its ways of handling intensification and diversification in 

the HS method, and probably understand why it is a very successful metaheuristic 
algorithm. 

In the HS algorithm, diversification is essentially controlled by the pitch 

adjustment and randomization, here there are two subcomponents for diversification, 
which might be an important factor for the high efficiency of the HS method. 
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The first subcomponent of composing ‘new music’, or generating new solutions, 

via randomization would be at least at the same level of efficiency as other algorithms 
by randomization. 

Pitch adjusting is carried out by adjusting the pitch in the given bandwidth by a 

small random amount relative to the existing pitch or solution from the harmony 
memory. Essentially, pitch adjusting is a refinement process of local solutions. Both 

memory considering and pitch adjusting ensure that the good local solutions are 
retained while the randomization and harmony memory considering will explore the 

global search space effectively. 

The subtlety of this is that it is a controlled diversification around the good 
solutions (good harmonics and pitches), and it almost acts like an intensification 

factor as well. The randomization explores the search space more efficiently and 
effectively; while the pitch adjustment ensures that the newly generated solutions are 

good enough, or not too far away from existing good solutions. 

The intensification is mainly represented in the HS algorithm by the harmony 

memory accepting rate accept. A high harmony acceptance rate means the good 
solutions from the history/memory are more likely to be selected or inherited. 

Obviously, if the acceptance rate is too low, the solutions will converge more 

slowly. As mentioned earlier, this intensification is enhanced by the controlled pitch 
adjustment. Such interactions between various components could be another 

important factor for the success of the HS algorithm over other algorithms. 

In addition, the implementation of HS algorithm is also easier. There is some 
evidence to suggest that HS is less sensitive to the chosen parameters, which means 

that we do not have to fine-tune these parameters to get quality solutions. 

Furthermore, the HS algorithm is a population-based metaheuristic, which means 

that multiple harmonics groups can be used in parallel. Proper parallelism usually 
leads to better implantation with higher efficiency. 

The good combination of parallelism with elitism as well as a fine balance of 

intensification and diversification is the key to the success of the HS algorithm, and in 
fact, to the success of any metaheuristic algorithms. 

These advantages make it very versatile to combine HS with other metaheuristic 
algorithms such as PSO to produce hybrid meta-heuristics and to apply HS in various 

applications (Geem ZW and GV 2001) (KS and ZW 2005) (ZW 2006) (M and Mahdavi 

2008) (ZW 2008) (ZW 2007). 
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4.7 Sine Cosine Algorithm 

The Sine Cosine Algorithm (SCA)is a novel population-based optimization algorithm 
for solving optimization problems. The SCA creates multiple initial random candidate 

solutions and requires them to fluctuate outwards or towards the best solution using 
a mathematical model based on sine and cosine functions. Several random and 

adaptive variables also are integrated to this algorithm to emphasize exploration and 
exploitation of the search space in different milestones of optimization. 

The performance of SCA is benchmarked in three test phases. Firstly, a set of well-

known test cases including unimodal, multi-modal, and composite functions are 

employed to test exploration, exploitation, local optima avoidance, and convergence 

of SCA. 

Secondly, several performance metrics (search history, trajectory, average fitness 

of solutions, and the best solution during optimization) are used to quantitatively and 
qualitatively observe and confirm the performance of SCA on shifted two-dimensional 

test functions. 

Finally, the cross-section of an aircraft’s wing is optimized by SCA as a real 
challenging case study to verify and demonstrate the performance of this algorithm 

in practice. 

The results of test functions and performance metrics prove that the proposed 

algorithm is able to explore different regions of a search space, avoid local optima, 
converge towards the global optimum, and exploit promising regions of a search 

space during optimization effectively. 

The SCA algorithm obtains a smooth shape for the airfoil with a very low drag, 
which demonstrates that this algorithm can highly be effective in solving real 

problems with constrained and unknown search spaces (Mirjalili 2017). 

The SCA algorithm theoretically is able to determine the global optimum of 
optimization problems due to the following reasons: 

SCA creates and improves a set of random solutions for a given problem, so it 
intrinsically benefits from high exploration and local optima avoidance compared to 

other single-solution-based algorithms. 

Different regions of the search space are explored when the sine and cosine 
functions return a value greater than 1 or less than -1. 

Promising regions of the search space is exploited when sine and cosine return 
value between -1 and 1. 

The SCA algorithm smoothly transits from exploration to exploitation using 

adaptive range change in the sine and cosine functions. 
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The best approximation of the global optimum is stored in a variable as the 

destination point and never get lost during optimization. 

Since the solutions always update their positions around the best solution 
obtained so far, there is a tendency towards the best regions of the search spaces 

during optimization 

Since the proposed algorithm considers optimization problem as black boxes, it is 

readily incorporable to problems in different fields subject to proper formulation of 
the problem (Mirjalili 2017). 

4.8 Multi-Verse Optimizer 

4.8.1 Inspiration 

The big bang theory (Khoury J 2002) discusses that our universe starts with a massive 

explosion. According to this theory, the big bang is the origin of everything in this 

world, and there was nothing before that. The multi-verse theory is another recent 

and well-known theory among physicists (M 2004). It is believed in this theory that 

there is more than one big bang and each big bang causes the birth of a universe. The 

term multi-verse stands opposite of universe, which refers to the existence of other 

universes in addition to the universe that we all are living in (M 2004). 

Multiple universes interact and might even collide with each other in the 

multiverse theory. 

The multi-verse theory also suggests that there might be different physical laws in 

each of the universes. 

We chose three main concepts of the multi-verse theory as the inspiration for the 

MVO algorithm: white holes, black holes, and wormholes. A white hole has never seen 

in our universe, but physicists think that the big bang can be considered as a white 

hole and maybe the main component for the birth of a universe (DM 1974). It is also 

argued in the cyclic model of multi-verse theory (Steinhardt PJ 2002) that big bangs 

white holes are created where the collisions between parallel universes occur. Black 

holes, which have been observed frequently, behave completely in contrast to the 

white wholes. They attract everything including light beams with their extremely high 

gravitational force (PC 1978). Wormholes are those holes that connect different parts 
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of a universe together. The wormholes in the multi-verse theory act as time/space 

travel tunnels where objects are able to travel instantly between any corners of a 

universe (or even from one universe to another) (Morris MS 1988). 

Every universe has an inflation rate that causes its expansion through space (AH 

2007). The inflation speed of a universe is very important in terms of forming stars, 

planets, asteroids, black holes, white holes, wormholes, physical laws, and suitability 

for life. It is argued in one of the cyclic multi-verse models (Steinhardt PJ 2005) that 

multiple universes interact via white, black, and wormholes to reach a stable 

situation. This is the exact inspiration of the MVO algorithm, which is conceptually 

and mathematically modeled in the following subsection. 

4.9 Moth-Flame Optimization Algorithm 

In the anticipated MFO algorithm, we assume that the candidate solutions are the 

moths and their positions in space are variables of the problem. Consequently, the 

moths can fly in a 1-Dimensional, 2-Dimensional, 3-Dimensional, or hyper-

dimensional area by altering their positions. As the MFO algorithm is a population-

based procedure. 

One point to be observed here is that both the moths and the flames are considered 

as solutions and both are updated and treated differently in every iteration. 

The real search agents are the moths that fly in the search space while the finest 

spot of moths attained thus far is represented by the flames. Put it in another way, the 

flames are regarded as pins or flags which are released by the moths while looking 

through the search space. Consequently, every moth explores nearby a flame (flag) 

and revises it whenever it finds a superior solution. A moth will not miss its best 

solution by applying this procedure (YASIR ALI SHAH1 and NAWAZ3 2018). 
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Chapter 5 

Experimental Results 

5.1 Planning of a Three Units Power System 

The three-unit system as a case study problem selected from (Saadat 2008) was 
utilized to explore the performance of CSA and DE as optimization methods to identify 

the best set of power generation of the unit power system. The adopted system is 
expected to produce a demand power of approximately 150 megawatts (MW). Table 

5.1 displays the cost coefficients of the fuel of the three units system under 

investigation, or identified as P1, P2 and P3 generators, and the coefficient matrix of the 
power loss (ζ) for the three units system are given next. 

 

Table 5.1: Cost fuel coefficient of the three units system 

Pi αi βi γi Pmin Pmax 

 ($/MW2) ($/MW2) ($/MW2) (MW) (MW) 

P1 0.0080 7.00 200 10 85 

P2 0.0090 6.30 180 10 80 

P3 0.0070 6.80 140 10 70 

 

                       Table 5.2: Coefficient matrix of the power loss (ζ) for the three units 

 

 

Table 5.1 shows the computing power of the three units system based nine 

metaheuristic search algorithms with a demand power of 150 MW, where table 5.2 
shows losses of transmission lines have been taken into account in these calculations. 
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The cost results are shown in Table 5.1 support that the load estimation methods 

- based CSA, and achieved better cost results than the algebraic method on the same 
three units power system, demonstrating their sensible capacities. The performance 

of proposed search algorithms for the three units power system is shown for up to 
500 iterations in Figure 5.1. This convergence curve represents the fitness function 

created by nine meta-heuristic search algorithms for the power load estimation for 
three units’ system. 

 

 

 
Figure 5.1: Three Units System: Convergence of evolutionary process of several 

metaheuristic search algorithms 
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Table 5.3: Cost Coefficient of Six Units System 

 SSA MFO MVO SCA GA PSO HS CSA DE 

P1 35.52 23.9847 32.6064 27.2953 57.3072 25.5111 53.4052 32.8112 32.8101 

P2 59.71 80 65.0719 67.4894 72.084 61.0358 56.4331 64.5944 64.595 

P3 57.07 48.5765 54.6698 57.5698 23.5098 65.7379 43.1074 54.9365 54.9369 

PPi 152.29 152.56 152.35 152.35 152.90 152.28 152.95 152.34 152.34 

PD 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 

Cost 

($/hr) 
1597.83 1600.93 1597.53 1598.12 1612.05 1599.11 1656.28 1597.48 1597.48 

 

5.2 Planning of a Six Units Power System 

A set of experiments on six units’ system consisting of six thermal power plant units 

was performed to illustrate the effectiveness of several meta-heuristics search 
algorithms in estimating the generation unit power. The prime goal is to find an 

estimate for the power load for each ith unit system, Pi so that the cost is reduced.  
 

Table 5.4: Cost Coefficient of Six Units System 
 

Pi αi βi γi Pmin Pmax 

 ($/MW2) ($/MW2) ($/MW2) (MW) (MW) 

P1 0.0070 7.0 240.0 100 500 

P2 0.0095 10 200.0 50 200 

P3 0.009 8.5 220.0 80 300 

P4 0.009 11 200.0 50 150 

P5 0.008 10.5 220.0 50 200 

P6 0.0075 12 190.0 50 120 
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of the thermal units cost coefficient given in Table 5.3, and Table 5.4 show the 

coefficient matrix (ζ) is provided next. 

Nine meta-heuristic search algorithms were executed to allocate the best 
performance and compute the estimated power load by each algorithm. The 

performance of proposed search algorithms for the three units power system is 
shown for up to 500 iterations in Figure 5.2. This convergence curve represents the 

fitness function created by nine meta-heuristic search algorithms for the power load 
estimation for six units system. 

Table 5.5: Coefficient matrix of the power loss (ζ) for the six units 

 

 

ζ = 

0.0170 

0.0120 

0.0070 
0.0010 
−0.0050 

−0.0020 

0.0120 
0.0140 
0.0090 

0.0010 

−0.0060 

−0.0010 

0.0070 
0.0090 
0.0310 

0 

−0.0100 

−0.0060 

−0.0010 

0.0010 
0 

0.0240 

−0.0060 

−0.0080 

−0.0050 

−0.0060 
−0.0100 
−0.0060 

0.1290 
−0.0020 

−0.0020 

−0.0010 

−0.0060 

−0.0080 

−0.0020 

0.1500 

 

 

 

   × 10−3 

 

Table 5.6: Optimal generations power of various algorithms 

 
Power SSA MFO MVO SCA GA PSO HS CSA DE 

P1 443.5555 500 452.8114 417.6776 288.9704 471.9346 409.6441 446.9736 447.5787 

P2 173.5464 200 182.2327 200 315.0599 187.8771 193.7739 173.319 173.0238 

P3 269.286 236.0095 263.0214 300 116.3195 272.913 285.2534 263.7248 263.9873 

P4 131.7837 150 135.484 150 160.0623 140.4767 147.215 138.9444 139.1728 

P5 182.4648 128.8926 152.5703 134.1542 259.6067 100.0305 124.6418 165.6265 165.0263 

P6 75.15023 60.3902 89.25042 73.43134 137.9263 102.2144 114.7046 86.8287 86.62046 

PPi 1275.787 1275.292 1275.37 1275.263 1277.945 1275.446 1275.233 1275.417 1275.409 

PD 1263 1263 1263 1263 1263 1263 1263 1263 1263 
Cost 

($/hr) 

15447.54 15498.2 15445.69 15488.04 16135.5 15494.94 15490.75 15442.66 15442.66 
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Figure 5.2: Six Units System: Convergence of evolutionary process of several 

metaheuristic search algorithms 

 

5.3 Planning for the IEEE 30 Bus System 

To further illustrate the efficacy of both CSA and DA in solving the ELD problem, both 

are practiced to a standard IEEE 30 bus consisting of a system of six units thermal 
power plant. The goal is to locate the best generated power of the ith generator, Pi, for 

the IEEE 30 Bus with six generator test system shown in Figure 5.7. 
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Figure 5.3: IEEE 30 Bus consisting of six generators test system 

The thermal units characteristics of the IEEE 30 bus system are shown in Table 

5.3 and the coefficient matrix (ζ) indicating the losses is introduced below. 

Table 5.7: Cost Coefficient of IEEE 30 Bus System 

Pi αi βi γi Pmin Pmax 

 ($/MW2) ($/MW2) ($/MW2) (MW) (MW) 

P1 15.240 

×10−2 
38.53973 

×102 
756.79886 10 125 

P2 10.587 

×10−2 
46.15916 

×102 
451.32513 10 150 

P3 2.803 

×10−2 
40.39655 

×102 
1049.9977 35 225 

P4 03.546 

×10−2 
38.30553 

×102 
1243.5311 35 210 

P5 2.111 

×10−2 
36.32782 

×102 
1658.5596 130 325 

P6 1.799 

×10−2 
38.27041 1356.6592 125 315 
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Table 5.8: Coefficient matrix of the power loss (ζ) for IEEE 30 Bus System 

 

 

   ζ =   

0.1400 

0.0170 
0.0150  
0.0190 
0.0260 

0.0220 

0.0170 
0.0600 
0.0130 
0.0160 
0.0150 
0.0200 

0.0150 
0.0130 
0.0650 
0.0170 
0.0240 
0.0190 

0.0190 
0.0160 
0.0170 
0.0710 
0.0300 
0.0250 

0.0260 
0.0150 
0.0240 
0.0300 
0.0690 
0.0320 

0.0220 

0.0200 

0.0190      

0.0250 

0.0320 

0.0850 

 

 

 × 10−3 

 

 

It is evident from Table 5.3 that the CSA and DE-based methods reported the best 

performance regarding the best load results. The computed values for each power 
unit Pi (i = 1,2,...,6) for the standard IEEE 30 Bus shown in Table 5.3. The performance 

of proposed meta-heuristic search algorithms for the IEEE30 Bus system is shown for 
up to 500 iterations in Figure 5.4. This convergence curve represents the fitness 

function created by nine meta-heuristic search algorithms for the power load 
estimation for IEEE30 Bus system. 

 

 
Figure 5.4: IEEE 30 Bus: Convergence of evolutionary process of several 

metaheuristic search algorithms 
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Table 5.9: Cost Coefficient of IEEE 30 Bus system 
Power SSA MFO MVO SCA GA PSO HS CSA DE 

P1 31.3561 27.71748 33.05922 23.49077 120.4477 125 21.56365 32.59279 32.60999 

P2 13.29429 21.9596 13.88867 14.34295 103.4747 125 105.1503 14.49964 14.36192 

P3 144.0152 130.5341 139.9768 135.2147 115.2445 125 204.1934 141.6495 141.6919 

P4 135.9548 125.1346 134.5273 157.3899 124.2421 125 100.7099 136.0354 135.7933 

P5 263.4618 255.0508 262.7322 262.9998 124.5823 125 193.4693 257.5987 257.7318 

P6 237.2559 265.3226 241.2151 231.2804 121.2529 125 196.193 242.9515 243.1477 

PPi 825.338 825.7192 825.3993 824.7184 709.2442 750 821.2795 825.3275 825.3366 

PD 800 800 800 800 800 800 800 800 800 

Cost 

($/hr) 
41898.68 41925.3 41897.52 41962.89 50023 48639.58 43143.66 41896.63 41896.63 

 

The results are compared in terms of the operating cost of generators and power 

generation. Wide simulation results are observed to minimum operation cost, 

minimum standard deviation among best, mean, and worst solution showing that 

both CSA and DE provided good ex-portability, fast convergence with iteration leads 
to robustness and good solution quality. 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we provided an innovative model to manage a smart electric power grid 
to increase the quality of top service and reduce the cost of operation. This is a 

complex adaptive system design problem for distributed power generation. This 
work focused on solving optimization problems in the smart grid by using 

Metaheuristic search algorithms. This research explored the Economic dispatch (ED) 
problem aiming to distribute the load demand between all of the various generation 

units in an electrical system such that the total cost of generation is very minimum. 

To solve the ED problem, we used nine search algorithms and compared their results. 
The efficiency and effectiveness of the nine techniques are bench-marked for different 

test cases consisting of IEEE 30 bus, three, six for generating units with high 
nonlinearity. The results are compared in terms of the operating cost of generators 

and power generation. Wide simulation results are observed to minimum operation 
cost, minimum standard deviation among best, mean, and worst solution showing 

that both CSA and DE provided good ex-portability, fast convergence with iteration 
leads to robustness and good solution quality.  

 

6.2 Future Work 

In the future, we hope to continue to solving the power generation problem area like 

unit commitment problems by apply on Meta-heuristics algorithm and explores the 

best minimums fuel cost. 
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