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                    Abstract 
 
 

In this research, two models were built to obtain automatic segmentation of the verses of 

the Holy Quran at the phoneme level, in the first model the Hidden Markov Model Tool Kit 

HTK was used, the second model was built using the KALDI toolkit at phoneme. 

to obtain the objectives of this research two data sets have been used. The first data set 

consisted of a database of 2 hours with the voice of 10 Sudanese male reciters who recited 

the Quran carefully under the supervision of an expert in the correct and most accurate 

recitations of the ascription to the Messenger (Peace Be Upon Him), the recordings of 16 

Surahs of the Quran. the recitation commenced orderly as in the Holy Quran, starting from 

Surah Al-Bayyinah to Surah An-Nas. 

 the second data set has been recorded or 100 reciters non-Arab reciters (Indian male) 

and a total speech corpus of 80 hours in the correct and most accurate recitations. The data 

set contains surahs (Al-Fatiha, Al-Asr, Al-Kawthar, Al-Ikhlas, Al-Falaq, and An-Nas) the 

dataset also contains 10 letters which have similar pronunciation. ظ، ذ، ط، ت، ض، ع، ح، خ، ) 

 ص، غ(

in this research four experiments were evaluated as follows. In the first experiment a 

process of training and testing the first model was conducted using the first database, the 

results obtained from the automatic segmentation was 62%. in the second experiment a 

process of training and testing the second model was conducted using the first database, the 

results obtained from the automatic segmentation was 62% for test set 70%, and 75% for dev 

set. in the third experiment a process of training and testing the second model was conducted 

using the second database but the 10 letters have been omitted, the results obtained from the 

automatic segmentation was 95% for test set, and 99% for dev set. in the fourth experiment a 

process of training and testing the second model was conducted using the second database 

but the 10 letters have been applied, the results obtained from the automatic segmentation 

was 99.9% for test set and dev set. 
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 المستخمص

 
، في نموذجين بغرض التحصل عمى تقطيع آلي لآيات القرآن الكريم عمى مستوى الػفونيم في هذا البحث تم بناء وتطوير   

 .  KALDI_Tool، اما في النموذج الثاني تم إستخدام  HTK_Toolالنموذج الأول تم إستخدام  

قراء )ذكور عشرة بصوت اعتان سلتحقيؽ أهداؼ البحث تم إستخدام قاعدتين لمبيانات، قاعدة البيانات الأولي مدتها 

بجنسية سودانية( يتمون القرآن قراءة محكمة بإشراؼ خبير  بالقراءة الصحيحة لمسند إلى الرسول )صمى الله عميه وسمم(، 

من سورة البينة وصولًً إلى  ابتداءسورة من سور القرآن وهي بالترتيب في كتاب القرآن الكريم  ستة عشرالتسجيلات لعدد 

قارئ غير ناطقين بالمغة العربية )ذكور بجنسية مائة بصوت  ثمانون ساعةت الثانية مدتها سورة الناس، قاعدة البيانا

سور من سور القرآن وهي بالترتيب في كتاب القرآن الكريم  ستةهندية( يتمون القرآن قراءة محكمة، التسجيلات لعدد 

عربية تتشابه في النطؽ عشرة أحرؼ ؽ لعدد )الفاتحة، العصر، الكوثر، الإخلاص، الفمؽ و الناس( بالإضافة لتسجيل النط

 وهي )ظ، ذ، ط، ت، ض، ع، ح، خ، ص، غ( .

النموذج الأول  اختبارفي هذا البحث تم تقييم أربعة تجارب كالتالي، في التجربة الأولي تم إجراء عممية تدريب و    

 اختبارثانية تم إجراء عممية تدريب و في التجربة ال .26قاعدة البيانات الأولي وكان دقة التقطيع الآلي % باستخدام

  dev set و للtest set   70% لل دقة التقطيع الآلي مقدار قاعدة البيانات الأولي وكان باستخدامالنموذج الثاني 

النموذج الثاني باستخدام قاعدة البيانات الثانية مع استبعاد  اختبار. في التجربة الثالثة تم إجراء عممية تدريب و %75

 test لل   دقة التقطيع الآليفقط، وكان التسجيلات التي تحتوي عمي السور  واستخدامالتسجيلات الخاصة بنطؽ الأحرؼ 

set 95%  لل  99%  و .dev set   باستخداماني النموذج الث اختبارفي التجربة الرابعة تم إجراء عممية تدريب و 

 . dev set و  test set لل  99.9 الآلي % عدقة التقطيمقدار  وكان قاعدة البيانات الثانية
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Chapter I 

                                   Introduction 

       This chapter contains and discusses background for this thesis, statement of the problem, 

Important of the Research Questions, Research Hypotheses, research objectives, Research 

Methodology, Research Scope, and finally presents the Thesis Outline. 

0.1 Background  

    Automatic segmentation for the holy Quran is challenging because of the lexical 

variety and data sparseness of the Arabic language. Arabic can be considered as one of the 

most morphologically complex languages. reducing the entry barrier to build robust 

Automatic Speech segmentation system for Arabic has been a research concern over the past 

decade [1][2]. unlike American English, for example, which has Carnegie Mellon University  

dictionary, standard KALDI scripts available, the Arabic language has no freely available 

resource for researchers to start working on Automatic Speech segmentation systems. to 

build a Holy Quran Automatic Speech segmentation system, a researcher does not only need 

to understand the technical details, but also to have the language expertise, which is a barrier 

for many people. this has been the main motivation for us to release and share this with the 

community. Researchers who are interested in building a baseline Arabic Automatic Speech 

segmentation system can use it as a reference. 

        significant amount of research has been done in Automatic phonetic segmentation 

which is a technique that defines boundary locations of certain sounds in each utterance. its 

use is required in situations where phone boundaries or limits must be detected for very large 

corpora. the areas of speech and speaker recognition, speech synthesis and speech coding use 

segmentation of speech according to its phonetic transcription [3]. 

         It is typically used to form sub-word units for the purpose of concatenative speech 

synthesis [4][5], and to determine sound boundaries in massive language corpora Also, to 

train neural network-based speech recognition systems, or in other applications initiated and 

increasingly motivated by a study of pronunciation variability based on the analysis of the 

results of phonetic segmentation. a comprehensive analysis of certain sound realizations can 

also promote the clinical diagnosis of serious diseases that affect speech production, or the 

analysis of the pronunciation variability in formal or informal language [6].  
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        multiple methods were used for the purpose of phonetic segmentation of speech; the 

most significant method being based on is the Hidden Markov Model (HMM) (Donovan, 

1996; Ljolje et al., 1996; Nefti and Boffard, 2001; Pellom, 1998; Toledano and Gmez, 2002). 

most modern speech recognition systems use HMM which intuitively forms the backbone of 

the task of speech segmentation and is well suited for it [3]. 

the most crucial issue in the field of speech such as ASR, speech synthesis, speech database 

and speech identification and speaker verification are the segmentation of continuous speech 

into their corresponding phonemes. the most proposed phoneme-level speech segmentation 

utilized is either manual segmentation or automatic segmentation techniques. manual speech 

segmentation requires an expert / phonetician, and its segmentation is based on listening and 

visual assessment of the boundaries required. However, manual phonetic segmentation is 

tedious, expensive, inconsistent, error-prone, and time-consuming [7]. 

         due to what was previously said in respect of manual speech segmentation, the 

development and need of automatic speech segmentation became increasingly important and 

needed. in brief, automatic speech segmentation techniques were divided into two types, 

namely, supervised and unsupervised segmentation techniques. Supervised procedures 

require prior expert knowledge of phoneme boundaries [8] [9]. these boundaries of the 

phonemes were in the form of their pre-segmented ones. it also required predefined models 

of the phoneme set of a particular language. on the other hand, unsupervised methods do not 

require a predefined model and no previous expert knowledge of phoneme sets or their limits 

are needed. it is mostly used in automatic speech segmentation through new modelling and 

training data sets [7]. 

         Hence, for a given utterance with available acoustic implementation and known 

content, ideally on a phonetic level, the basic solution for determining sound boundaries or 

limits is based on a forced alignment of trained HMM models. in training acoustic models of 

speech recognizers, this technique is used by default as an important step. It can be 

performed using various toolkits that implement HMM-based speech recognition, e.g., HTK 

[10], Sphinx [8] or KALDI [11]. Above all, KALDI stands as the most popular language 

research toolkits worldwide.  

        in 2006, a diversity of a new procedure for learning (DNNs) with many hidden layers of 

nonlinear units, introduced a paradigm escalation in machine learning and artificial 

intelligence. DNNs were successfully experimented for acoustic modelling and have shown 
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outstanding performance. research showed confirmed proof that the use of DNN improves 

the accuracy of speech segmentation. Therefore, the development of DNN-HMM hybrid 

acoustic models is growing rapidly and on a large scale respectively in all knowledge areas 

of speech Research [12]. 

1.1 Motivations and problem statement 

         The main research problem is evaluating the correctness and accuracy of any person‟s 

reading of the verses of the holy Qur‟an, because for the recitation to be correct, it is not 

enough only to pronounce the letters of the verse correctly, but also each letter must take its 

correct time lap, especially with regard to the provisions of the (muddud=extensions of the 

holy Quran) and Accurately calculate the time of each letter precisely. 

             The process of performing various types of segmentation is a very hard and time-

consuming process, especially if the volume of data is as large as the Holy Quran with all the 

Surahs in it. 

         It possible to implement the segmentation process manually, and depends mainly on the 

focus of the person, who performs this task and his/her personal evaluation of the 

segmentation (expert judgement), which may differ from one person to another, and this will 

result in accuracy issues. therefore, the search for an alternative began to find ways to 

perform this task, thus avoiding the errors and inaccuracy that people may fall into and save 

effort and time and get better segmentation accuracy. 

     Manual segmentation is not time beneficial. through an experiment the time taken to 

perform the segmentation process at the phoneme level of Surat Al-Falaq (one audio 

recording), which contains 121 phonemes, was 20 minutes. to perform the same task for 100 

reciter it needs 33 hours of continuous work, which is very hard and requires a great deal of 

patience, focus, time consuming and may end up with inaccurate segmentation. the matter 

becomes worse by increasing the volume of data. 

     One of the most prominent topics currently is how to develop a system that teaches the 

correct reading of the Holy Quran and to implement this, the information must be extracted 

from the audio database, which is often a very large one (extracting the percentage of the 

audio file in addition to its linguistic content). one of the most important processes of this 

procedure is the process of adding sentence boundaries.  this matter is of great importance as 

it represents the correct way to read the Holy Quran in compliance with the rules of Tajwid 

(intonation), in addition to defining word or sentence breaks that is very necessary to avoid 



 
 
 
 
 

 
4  

ambiguity in the meaning or changing it. 

         Number of research have been completed that address the automatic segmentation of 

speech into different units of speech for several languages, but there is scarce researching 

that addresses the automatic segmentation of the verses of the Holy Quran at the phoneme 

level. 

        In this research, more than one tool was used represented in HTK-Tool and KALDI-

Tool, to obtain the automatic segmentation of the verses of the Holy Quran and the details of 

this are addressed in Chapter Three. 

1.2 Importance of this research 

        This research is concerned with finding methods to perform the automatic segmentation 

at phoneme level for the holy Quran to obtain excellent segmentation accuracy, a process 

that is almost impossible to be done manually as the time length of the phoneme can be 10 

milliseconds. 

        The importance of this research is represented in a number of points, the first of which 

is: creating data, in both forms text and audio for the Holy Quran, which is an important 

matter due to the scarcity of recordings of the verses of the Holy Quran that must be free 

from noise and reliable, it is a must that the recitations is done correctly and perfectly, as 

well as with regard to the text corpus of the verses in conformity with the language and the 

rules of Tajwid (intonation). 

        The second point is that the segmentation process is considered as the basis for the 

success of all systems related to speech from division and synthesis to applications for 

understanding speech. Accordingly, all systems that teach the Holy Quran or test the user's 

learning and correct it or convert the Quranic texts into audible verses primarily all depend 

on the segmentation process and its accuracy is reflected in the final outputs. 

 

1.3 Research Questions 

1- What speech features or their combinations would result in optimal speech segmentation? 

2- What model is optimal for automatic speech segmentation? 

3- What distinguishes DNN- HMM from GMM- HMM? 

4- Could results be improved and better accuracy obtained? What are the requirements? 

5- What are the limitations for GMM- HMM and DNN- HMM? 
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 1.4 Research Hypotheses 

H1: Using DNN-HMM achieves best results of segmentation. 

H2: The increase in corpus size, will result in more accurate findings. 

H3: an accurate representation of text with respect to the spoken words will have direct 

impact in better results at the training phase. 

H4: The assurance of training phase outcomes, is directly related to the audio recording 

which should not contain any noise or echo. Keep in mind that is the major element of 

capturing good result in the training phase and can be limiting factor for the rest of the entire 

research. 

1.5 Research Objectives 

1.5.1 General Objective 

        The main objective of this research is , to build a model For the verses of the Holy 

Quran at phoneme level to evaluate the correctness and accuracy for the reciters reading the 

verses of the holy Qur‟an, because for the reading to be correct, it is not enough only to 

pronounce the letters of the verse correctly, but also each letter must take its correct time, 

especially with regard to the provisions of the (muddud=extensions of the holy Quran) and 

Accurately calculate the time of each letter precisely.  

1.5.2 Specific Objectives 

        Investigating, examining, and evaluating the impact of different Acoustic models. 

Contributing to filling the limitation of resources of the automatic segmentation regarding 

the Holy Quran, from audio or text files that are compatible with HTK and KALDI. 

  1.6 Research Methodology 

        This part provides an overview of the research methodologies used in this research. 

this research adopted the GMM-HMM methodology, represented using the HTK tool and the 

DNN-HMM methodology, represented using the KALDI tool. 

        the research methodology aims at finding solutions to the research questions in a 

theoretical scientific form that achieves the objectives and adds something useful to the body 

of knowledge. 

      the techniques that were used aimed directly at addressing the research objectives and 

goals. 

to achieve this, there are several stages represented in: 
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1. Preparing text and acoustic corpus. 

2. Creating acoustic model. 

3. Creating language model. 

4. Training of the system. 

5. Testing the system. 

6. Obtaining an automatic segmentation. 

7. Evaluating the model. 

1.7 Research Scope 

        This research is concerned with finding and calculating the accuracy of automatic 

segmentation of verses of the Holy Quran by using different models such as HTK Tool and 

KALDI Tool and comparing the results obtained automatically with the results of manual 

segmentation that were achieved by using PRAAT program and based on the comparison 

the accuracy of automatic segmentation is calculated. 

1.8   Thesis Outline 

        This thesis has the following structure: Chapter 2 provides the necessary theoretical 

back- ground in addition to a detailed discussion of related works and methodologies. 

Chapter 3 introduces the research methodology and the proposed solution for automatic 

phonetic segmentation for verses. Chapter 4 presents further interpretation of the results. 

Finally, conclusions, and future work set out in chapter 5. 
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Chapter II 

 

 

 

 

Theoretical Background and Related Works 

 

 

 

        This chapter covers the overall concepts of the General characteristics of speech, 

Speech segmentation, Segmentation units, Types of automatic speech segmentation, 

Types of features are used for segmenting, Automatic speech segmentation methods, 

Phonology of the Holy Qur'an recitation, The Standard Arabic Phonology, Speech 

segmentation architecture, Machine learning, Supervised machine learning algorithms, 

Artificial neural networks, Deep learning methods, Deep neural networks  and finally 

presents the Related work on Deep Neural Network for Acoustic Models. 

2.0 Introduction  

        Segmentation of continuous speech into its corresponding phonemes is a very important 

issue in the area of speech like ASR, speech synthesis, speech database, and language 

identification and speaker verification. the most proposed phoneme level speech 

segmentations are using either manual segmentation or automatic segmentation techniques. 

In manual speech segmentation expert/phonetician is required and its segmentation is based 

on listening and visual judgment on required boundaries. However, manual phonetic 

segmentation is tedious, expensive, inconsistent, prone to errors and time-consuming task. 

there is also a disagreement between phoneticians and there are no clear, common, and 

coherent strategies to segment speech wave forms. considering these and other disadvantages 

the development of automatic speech data is becoming increasingly important [3, 4]. 

generally, automatic speech segmentation methods are divided into two types, namely 

supervised and unsupervised segmentation methods. supervised methods require a priori 

knowledge about phoneme boundaries [41].  
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        these boundaries of phonemes are existed in the form of their pre-segmented. It also 

requires pre-defined models of phoneme set of a specific language. on the other side, 

unsupervised methods don‟t require pre-defined model and knowledge about phoneme sets 

and their boundaries respectively. it is most used in automatic speech segmentation through 

new modeling and training data sets [8]. Thus, unsupervised method yields a desirable and 

more flexible framework for automatic segmentation of a speech at phoneme level [41].   

2.1 General characteristics of speech  

        A continuous speech signal consists of two main parts: one carries the speech 

information, and the second carries the silent or noise sections that are in between the 

utterances, without any verbal information.  The verbal (informative) part of speech can be 

further divided into two main types: Voiced and Unvoiced speech. While humans speak all 

air paths through larynx, voiced sounds are generated when vocal cords are semi closed 

while when they are opened unvoiced speech is generated. In voiced speech is a relatively 

slowly changing periodic signal with case frequency of vibration of vocal cords called pitch. 

Male‟s contribution of pitch is commonly in the range between 50Hz to 250Hz while 

female‟s contribution of pitch lies between 120Hz and 500Hz.  Unvoiced speech sounds are 

produced by air passed directly through vocal tract formations.  Unlike voiced speech, 

unvoiced speech does not exhibit periodicity, and is characterized by a noise-like signal. The 

speech production process involves producing speech utterances which are groups of 

successive voiced and/or unvoiced sounds. These sounds usually are very smoothly 

connected. Speech utterances are separated by silence regions.  There is no excitation 

supplied to the vocal tract during silence regions and hence there is no speech output. None-

the-less, silence is considered an integral part of speech signal [45].  Acoustic signals during 

silence regions are mainly background noise and speech irrelevant mouth sounds. 
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2.2 Speech segmentation  

        Speech segmentation can be defined as the process of finding the limits (with specific 

characteristic) in natural spoken language between words, syllables or phonemes [46][47].      

The main objective of Speech segmentation is to serve other speech analysis problems such 

as speech synthesis, data training for speech recognizers, or to fabricate and label prosodic 

databases. Therefore, it can be viewed as a vital sub-issue for various fields in speech 

analysis and research [48][49].  The traditional approach handling this issue is by manual 

segmentation of speech, which is generally performed by specialized phoneticians. However, 

this method is based on listening and visual judgment on required boundaries which makes it 

inconsistent and time consuming [50][51].  which is considered very convenient, another 

method is an automatic segmentation.  

        The speech can be automatically segmented into sub word units which are defined 

acoustically [52].  In Automatic speech Recognition ASR systems, segmentation can be 

performed: 

i. At the system training stage, when segmentation is applied to the training set recordings. 

ii. At the recognition stage [47]. 

2.3 Segmentation units  

        The Speech recognition and synthesis systems need a speech signal to be segmented 

into some basic units like Words, Phonemes, or syllables. Depending on the extent or size of 

vocabulary the decision of representative units is made. Word is the most natural unit of 

segmentation.  It's not suitable to use words as the units for segmentation because of the 

absence of generalization and more memory space consumption [52]. 

        Phonemes are the smallest segmental unit of sound employed to form meaning.  The 

same phoneme in various words has distinctive significance.  There is an over generalization 

of phonemes.  So, the blend of phoneme and words gives rise to next level basic unit of 

speech called as syllables.  Syllable like units are defined by rules, a syllable must have a 

vowel called its nucleus. [53] 

       The realization of a phoneme is strongly influenced by its adjacent phonemes. Phonemes 

are highly context dependent. Hence, the acoustic variability of basic phonetic units due to 

context is extremely large and is not well understood in many languages [54][52] 
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2.4 Types of automatic speech segmentation  

        Automatic speech segmentation strategies can be grouped in various perspectives; 

however, one very common classification is the division to blind and aided segmentation 

algorithms. 

2.4.1 Blind segmentation 

         The term blind segmentation refers to methods where there is no pre-existing or 

external knowledge regarding linguistic properties, such as orthography or full phonetic 

annotation of the signal to be segmented. Blind segmentation is applied in various 

applications, for example speaker verification systems, speech recognition systems, language 

identification systems, and speech corpus segmentation and labeling [55]. 

         Solutions to this problem comprise of algorithms which do not require any background 

knowledge about the phonetic content and are based predominantly on statistical signal 

analysis [56][47].  

         Due to the lack of external or top-down information, the first phase of blind 

segmentation relies completely on the acoustical features present in the signal.  The second 

phase or bottom-up processing is normally built on a front-end parameterization of the 

speech signal, often using MFCC, LP-coefficients, or pure FFT spectrum [57]. 

 2.4.2 Aided segmentation 

        Aided segmentation Algorithms use some sort of external linguistic knowledge of the 

speech stream to segment it into relating segments of the wanted type. An orthographic or 

phonetic transcription is used as a parallel contribution with the speech or training the 

algorithm with such data [58].  These algorithm types are computationally consuming. This 

group includes algorithms using recognition with Hidden Markov Models (HMMs) 

[59][60][61], Dynamic Time Warping (DTW) [62] or Artificial Neural Networks (ANNs) 

[63]. The algorithms of this group are employed only in the ASR system training stage. 

        One of the most common methods in ASR for utilizing phonetic annotations is with 

HMM- based systems [64].   HMM-based algorithms have dominated most speech 

recognition applications since the 1980s because of their high performance in recognition 

and relatively small computational complexity in the field of speech recognition 

[65][66][67][68]. 
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2.5 Types of features used for segmenting 

         Two types of signal features are used for segmenting speech signal: time-domain features 

and frequency domain features. 

2.5.1 Time-Domain Signal Features 

        Time-domain features are widely used for speech segment extractions. These features are 

useful when it is needed to have algorithm with simple implementation and efficient 

calculation. 

2.5.1.1 Short-time signal energy 

        Short-time energy is the dominant and most natural feature that has been used. Physically, 

energy is a measure of how much signal there is at any one time.  energy is used to discover 

voiced sound, which have higher energy than silence/unvoiced sound in a continuous speech. the 

energy of a signal is typically calculated on a short time basically by windowing the signal at a 

particular time, squaring the samples, and taking the average.  the square root of this result is an 

engineering quantity, known as the Root Mean Square (RMS) value. The short-time energy 

function of a speech frame with length N is defined as: [69][70] 
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 The short-term root mean square (RMS) energy of this frame is given by: [71][72][73][74]  
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Where x(n) is the discrete-time audio signal and w(n) is rectangle window function [71][72] 

[73] [74]. 
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2.5.1.2 Short-time average zero-crossing rate 

        The average zero-crossing rate refers to the number of times speech samples change 

algebraic sign in each frame [69].  The rate at which zero crossings occur is a simple 

measure of the frequency content of a signal.  It is a measure of number of times in a given 

time interval/frame that the amplitude of the speech signals passes through a value of zero 

[75]. Unvoiced speech components normally have much higher ZCR values than voiced 

ones. The short-time average zero-crossing rate is defined as: 
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And w (n) is a rectangle window of length N, given in equation (2.3) [71][73]. 

2.5.2 Frequency-domain signal features 

         The most information of speech is amassed in 250Hz-6800Hz frequency range. to extract 

frequency-domain features, discrete Fourier transform can be used. The Fourier representation 

of a signal demonstrates the spectral composition of the signal [76]. 

2.5.2.1 Spectral centroid 

        The spectral centroid is a measure used in digital signal processing to characterize a 

spectrum. It indicates where the center of gravity of the spectrum high values corresponding to 

brighter sounds [77] [78].   The spectral centroid, SCi  of the i-th frame is defined as the center 

of gravity of its spectrum and it is given by the following equation: [76] 

    
∑   ( )  ( )
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                (   ) 

       Where x(n) represents the weighted frequency value, or magnitude, of bin number n, and 

f(n) represents the center frequency of that bin in DFT spectrum.  The DFT is given by the 

following equation and can be computed efficiently using a fast Fourier transform (FFT) 

algorithm [76]. 
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 Here, Xk is the DFT coefficients of i-th short-term frame with length N [72][71][73]. 

2.5.2.2 Spectral flux 

        Spectral flux is a measure of how quickly the power spectrum of a signal is changing 

calculated by comparing the power spectrum for one frame against the power spectrum from 

the previous frame, also known as the Euclidean distance between the two normalized 

spectra. 

 The spectral flux can be used to determine the timbre of an audio signal, or in onset 

detection [79] among other things. The equation of Spectral Flux, SFi  is given by: 
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Here, Xi(k) is the DFT k-th coefficient of i-th short-term frame with length N, given in 

equation (2.7)  [71][73]. 

2.6 Automatic speech segmentation methods 

        Automatic speech segmentation methods are divided into two types: 

 2.6.1 Supervised methods 

         Require a priori knowledge [82][83][84]. Most of the supervised methods are based on 

forced alignment techniques starting from an orthographic transcription of the speech 

material.  

This means that the representation of the word or utterance in terms of discrete units is 

known from a lexicon which includes the words‟ pronunciations and pre-trained acoustic 

models of these units are needed for the forced alignment. The task of the segmentation 

algorithm is then to optimally locate the unit boundaries [85]. 
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 2.6.2 Unsupervised methods 

        Require no training data for segmenting the speech signal. Instead, they use sets of rules 

derived from or encoding human knowledge to segment speech.  Acoustic rate of change 

[85]; see for early work on unsupervised automatic speech segmentation [86]; for more 

recent work, see below is an example of prior human knowledge that is used to solve the 

speech segmentation task. The task for an unsupervised segmentation algorithm then is two-

fold; the number of segments in the speech signal needs to be determined this is usually 

determined by a parameter, and the position of the boundaries based on the acoustic signal 

needs to be determined [85]. 

        There are some good reasons for using unsupervised methods. First, supervised 

methods require extensive training on carefully prepared speech material.  The training 

material needs to be transcribed in terms of the units the algorithm is supposed to segment 

the speech signal into, usually phones. Furthermore, usually large amounts of training data 

are needed to train the supervised algorithms; however, large amounts of training data are 

not always easily obtained, and neither are transcriptions.  Unsupervised methods, on the 

other hand, do not require training; so, obviously no training material is needed. For each 

new language, speech style, dialect or accent, supervised algorithms may need to be 

retrained, whereas unsupervised methods are based on human knowledge and understanding 

of the nature of speech and are therefore language and speech style independent. 

Furthermore, supervised methods require the units to be defined beforehand, e.g., phones, 

diphones, syllables, and words, to be able to train models for them, whereas unsupervised 

methods, in principle, do not. Thus, unsupervised methods yield a desirable and more 

flexible framework for the automatic segmentation of speech. Finally, unsupervised 

segmentation methods are generally simpler algorithms than supervised methods [87]. 

2.7 Phonology of the Holy Qur'an recitation 

        Basic requirements for a pronunciation teacher include knowledge of acoustic 

properties of both correct pronunciation and common pronunciation mistakes.  This section 

discusses the different aspects of acoustic phonetic modeling of the Holy Qur'an recitation.  

a phoneme is defined as "the smallest unit which can make a difference in meaning". But in 

the Holy Qur'an phoneme can be more accurately defined as "the smallest speech unit which 
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can make a difference in correctness of recitation [195]. 

2.8 The Standard Arabic Phonology 

        Studies of phonetics of the Arabic language stated that standard Arabic language has 

28 consonants plus 3 short vowels and their 3 long These phonemes and their SAMBA 

transcription symbols are listed in table 2.1 (SAMBA) [195].  

Table 2.1 Standard Arabic phonemes. 

 

TYPE 

 

SYMBOL 

 

ORTHOGRAPHY 

Consonants ? أ 

b ب  

t  ت 

T ث  

Z ج  

X\ ح 

x خ   

d د 

D ذ 

r ر 

z ز 

s س 

S ش 

s' ص 

d' ض 

t' ط 

D' ظ 
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 ع (\?) '?

G غ 

f ف 

q ق 

k ك 

l ل 

 l' ا 

m م 

n ن 

h ه 

w و 

j ي 

 

Short Vowels 

i كسرة 

a فتحة 

u ضمة 

 

Long Vowels 

i: 9ي  

a: 9ا  

u: 9و  

 

        Table 2.2 Shows Arabic language phoneticians' classification of these phonemes 

according to their acoustic characteristics [195]. 
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Table 2.2 Acoustic characteristics of standard Arabic phonemes 

 

PHONEME 

VOICED/ 

UNVOICED 

 

PLOSIVES 

 

FRICATIVES 

 

NASALS 

 

TRILL 

? - P - - - 

b V P - - - 

t U P - - - 

T U - F - - 

Z V P - - - 

X\ U - F - - 

x U - F - - 

d V P - - - 

D V - F - - 

r V - - - T 

z V - F - - 

s U - F - - 

S U - F - - 

s' U - F - - 

d' V P - - - 

t' V P - - - 

D' V - F - - 

?' V - F - - 

G V - F - - 

f U - F - - 

q V P - - - 

k U P - - - 



 
 
 
 
 

 
18  

l V - - - - 

m V - - N - 

n V - - N - 

h U - F - - 

w V - - - - 

j V - - - - 

i i: V - - - - 

a a: V - - - - 

u u: V - - - - 

 

2.9 Differences in the Holy Qur'an phonology 

        In correct recitation of the Holy Qur'an some phonemes deviate from their standard 

pronunciation to a totally new form that could differ by some properties. To represent these 

deviations special phonemes can be added to represent those special pronunciations. These 

special pronunciations are for letters 'Raa', 'Meem', 'Noon', vowels and 'Kalkala' or 

"agitation" [195]. 

2.9.1 The Letter Raa "ر" 

        In the Holy Qur'an phoneme Raa "r" "ر" can be emphatic or non-emphatic to 

distinguish these two cases we will use symbol "r" for non-emphatic Raa and " r' " for 

emphatic Raa [195]. 

2.9.2 The Letter Meem "م" 

       In the Holy Qur'an phoneme Meem "m" "م" has three cases: 

1. non-concealed, which is similar to the corresponding phoneme in standard Arabic. 

2. Repeated "Gonna" which has the same acoustic characteristics to the phoneme "m" in 

standard Arabic but have extra length. 

3. Concealed if it was not vowelized and followed by letter Baa "b" "ب". It mainly differs 

than "m" in standard Arabic by duration and can also differ by acoustic features [195]. 
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2.9.3 The Letter Noon "ى" 

        In the Holy Qur'an phoneme Noon "n" "ن" has five cases: 

1. non-concealed which is similar to the corresponding phoneme in standard Arabic. 

2. Repeated "Gonna" which has the same acoustic characteristics to the phoneme "n" in 

standard Arabic but have extra length. 

3. Concealed if it was not vowelized and followed by any letter from the group "t T Z d D z s 

S s' d' t' D' f q k" "ت ث ج د ذ ز س ش ص ض ط ظ ف ق ك". It mainly differs than "n" in standard 

Arabic by duration and can also differ by acoustic features. 

 4. Consolidated in letter Waw "w" "و" when it is not vowelized and followed by letter Waw. 

It differs than both "n" and "w" in standard Arabic by duration and differs by acoustic 

features. 

5. Consolidated in letter Yaa "j" "ى" when it is not vowelized and followed by letter Yaa. It 

differs than both "n" and "j" standard Arabic by duration and also differ by acoustic features 

[195]. 

2.9.4 Extra lengthening of Vowels and Semivowels 

       In correct rotation of the Holy Qur'an, vowels and semivowels may be extra lengthened 

than their original lengths. The lengthening is measured in a unit called "motion” which is 

defined as the time it takes to fold or unfold a hand finger. main possible extra lengthening is 

2, 4 and 6 motions. table 2.3 shows the symbols used for each vowel and semivowel at each 

possible extra lengthening period [195]. 

2.9.5 The agitation "Kalkala" " لقلقلةا " 

        Kalkala is a vowel like sound that follows any not vowelized occurrence of the 

phonemes "b Z d t' q" "ب ج د ط ق". The symbol "K" will use to represent it [195]. 
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                  Table 2.3 Symbols of extra-lengthened vowels and semivowel   

Vowel Or Semivowel 2 motions 4 Motions 6 Motions 

I i: i:: i::: 

A a: a:: a::: 

U u: u:: u::: 

W w: w:: w::: 

J j: j:: j::: 

 

2.10 Speech segmentation architecture  

        A typical speech segmentation system is developed with major components that include 

acoustic front-end, acoustic model, lexicon, language model and decoder as shown in Figure 

2.1 Acoustic front-end takes care of converting the speech signal into appropriate features 

which provides useful information for segmentation. The input audio waveform from a 

microphone is converted into a sequence of fixed-size acoustic vectors is a process called 

feature extraction.  The parameters of word / phone models are estimated from the acoustic 

vectors of training data. The decoder operates by searching through all possible word 

sequences to find the sequence of words that is most likely to generate. The likelihood is 

defined as an acoustic model P (O|W) and P (W) is determined by a language model.  The 

functionality of automatic speech segmentation system can be described as an extraction of a 

number of speech parameters from the acoustic speech signal for each word or sub-word 

unit. The speech parameters describe the word or sub-word by their variation over time and 

together they build up a pattern that characterizes the word or sub-word.  
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Figure 2.1 Speech segmentation architecture 

2.10.1 Acoustic front-end  

        Acoustic front-end involves signal processing and feature extraction. In speech 

segmentation, the main goal of the feature extraction step is to compute a parsimonious 

sequence of feature vectors providing a compact representation of the given input signal 

[89]. The feature extraction is usually performed in three stages. The first stage is called the 

speech analysis or the acoustic front end. It performs spectra temporal analysis of the signal 

and generates raw features describing the envelope of the power spectrum of short speech 

intervals. The second stage compiles an extended feature vector composed of static and 

dynamic features. Finally, the last stage (which is not always present) transforms these 

extended feature vectors into more compact and robust vectors that are then supplied to the 

recognizer. There is no feature suitable for particular application, but the choice of features 

has to fulfill the following properties: they should allow an automatic system to discriminate 

between different through similar sounding speech sounds, they should allow for the 

automatic creation of acoustic models for these sounds without the need for an excessive 
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amount of training data, and they should exhibit statistics which are largely invariant across 

speakers and speaking environment. To find some statistically relevant information from 

incoming data, it is important to have mechanisms for reducing the information of each 

segment in the audio signal into a relatively small number of parameters, or features. These 

features should describe each segment in such a characteristic way that other similar 

segments can be grouped together by comparing their features. There are enormous 

interesting and exceptional ways to describe the speech signal in terms of parameters. Some 

of the feature extraction methods are, (PCA), (LDA), (ICA), (LPC), Cepstral Analysis, Mel-

Frequency Scale Analysis, Filter-Bank Analysis, (MFCC), Kernal Based Feature Extraction, 

Dynamic Feature Extraction, Wavelet based features, Spectral Subtraction and (CMS).  

       in noise robust speech recognition, many auditory-based feature extraction methods, 

such as (ZCPA), (ALSD), (PMVDR), (PNCC), (IIF), amplitude modulation spectrogram, 

Gammatone frequency cepstral coefficients, (SPARK), and Gabor filter bank features are 

effectively applied [90].  

        There are many feature representations in use, but the most common is the Mel 

frequency cepstral coefficient (MFCC) feature set [80]. The MFCC feature extraction 

process has many steps which are elaborated below, and the pictorial representation is given 

in Figure 2.2. 

A. Pre-emphasis: This stage is used to amplify energy in the high frequencies of the input 

speech signal. This allows information in these regions to be more recognizable during HMM 

model training and recognition. 

B.  Windowing: This stage slices the input signal into discrete time segments. This is done by 

using a window of N milliseconds wide and at offsets of M milliseconds long. A Hamming 

window is commonly used to prevent edge effects associated with the sharp changes in a 

rectangular window.  

C.  Discrete Fourier transform: DFT is applied to the windowed speech signal, resulting in 

the magnitude and phase representation of the signal.  

D.  Mel filter bank: While the resulting spectrum of the DFT contains information in each 

frequency, human hearing is less sensitive at frequencies above 1000 Hz. This concept also 

has a direct effect on performance of ASR systems; therefore, the spectrum is warped using a 

logarithmic Mel scale. to create this effect on the DFT spectrum, a bank of filters known as 
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triangular filters is constructed with filters distributed equally below 1000 Hz and spaced 

logarithmically above 1000 Hz. The output of filtering the DFT signal by each Mel filter is 

known as the Mel spectrum. 

E.  Log: Taking logarithm of this provides Mel spectrum co-efficient. 

F. Discrete cosines transform:  discrete cosine transforms The final step in obtaining MFCC 

is performing discrete cosine transform on the Mel spectrum coefficients. The output of DCT 

is Mel-cepstral coefficients of 13th order. 

G. Delta MFCC features: In order to capture the changes in speech from frame to frame, the 

first and second derivative of the MFCC coefficients are also calculated and used [91]. 

 

Figure 2.2 Diagram for MFCC algorithm 

2.10.2 Acoustic model  

         Acoustic model is one of the most important knowledge sources for automatic speech 

segmentation system, which represents acoustic features for phonetic units to be recognized. 

In building an acoustic model, one fundamental and important issue is choosing of basic 

modeling units. When the target language of the speech is specified, there is several types of 

sub word unit can be used for acoustic modeling. Different acoustic modeling unit can make 

a dramatic difference on the performance of the speech segmentation system.  Acoustic 

modeling of speech typically refers to the process of establishing statistical representations 

for the feature vector sequences computed from the speech waveform.  Hidden Markov 

Model (HMM) is one of the most used statistical models to build acoustic models. Other 

acoustic models include segmental models, super segmental models (including hidden 

dynamic models), neural networks, maximum entropy models, and (hidden) conditional 

random fields, etc. An acoustic model is a file that contains statistical representations of each 

of the distinct sounds that makes up a word. Each of these statistical representations is 
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assigned a label called a phoneme acoustic model is created by taking a large database of 

speech called a speech corpus and using special training algorithms to create statistical 

representations for each phoneme in a language. Each phoneme has its own HMM.  The 

speech decoder listens for the distinct sounds spoken by a user and then looks for a matching 

HMM in the acoustic model. Each spoken word w is decomposed into a sequence of basic 

sounds called base phones.  The acoustic model describes the probability of a specific 

observation given a base phone.  

2.10.3 Language model  

        A language model is a collection of constraints on the sequence of words acceptable in 

a given language. These constraints can be represented, for example, by the rules of a 

generative grammar or simply by statistics on each word pair estimated on a training corpus. 

Although there are words that have similar sounding phone, humans generally do not find it 

difficult to recognize the word.  This is mainly because they know the context, and also have 

a fairly good idea about what words or phrases can occur in the context. Providing this 

context to a speech segmentation system is the purpose of language model.  The language 

model specifies what are the valid words in the language and in what sequence they can 

occur. Language models are usually trained that is, the n-gram probabilities are estimated by 

observing sequences of words in corpora of text that contain, typically, millions of word 

tokens and by reducing perplexity on training data [92].  Common language models are 

bigram and trigram models. These models contain computed probabilities of groupings of 

two or three particular words in a sequence, respectively. There are tools for language 

modeling like CMU, Statistical Language Modeling (SLM) Toolkit, Stanford Research 

Institute Language Modeling Toolkit. 

 2.10.4 Segmenter 

        In this stage, the task is to find the most likely word sequence W given the observation 

sequence O, and the acoustic-phonetic-language model.  The decoding problem can be 

solved using dynamic programming algorithms. Rather than evaluating likelihoods of all 

possible model paths generating O, the focus is on finding a single path through the network 

yielding the best match to O. To estimate the best state sequence for the given observation 

sequence, the Viterbi algorithm is frequently used [93].  In the case of larger vocabulary, it 

would be challenging to consider all possible words during the recursive part of the Viterbi 
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algorithm. To address this, a beam search can be used for Viterbi iteration, only the words 

with path probabilities above a threshold are considered when extending the paths to the next 

time step.          This approach speeds up the searching process. The Viterbi algorithm 

assumes that each of the best paths at time t must be an extension of each of the best paths 

ending at time t − 1, which is not generally true. The path that seems to be less probable than 

others in the beginning may turn into being the best path for the sequence as a whole the 

most probable phoneme sequence does not need to correspond to the most probable word 

sequence). this issue is addressed by extended Viterbi and forward-backward algorithms 

[92]. 

2.11 Machine learning  

        Over the years, sophisticated skills were developed to recognize patterns like speech, 

handwriting, facial features, etc. The pursuit to computer programs that make computers 

learn the above skills from the past experience gave birth to machine learning.  Mitchell [94] 

stated in the context of machine learning that, “A computer program is said to learn from 

experience E with respect to some class of tasks in T and performance measure P, if its 

performance at tasks in T, as measured by P, improves with experience E.” Few related basic 

terminologies used with machine learning are introduced as follows:  

Example: an instance of the input. 

 Features: an attribute set characterizing the input, represented as a vector or linear array. 

 Labels: the category or class associated (e.g., positive or negative in binary classification or 

a real value in regression).  

Training data: data used to train the ML algorithm during learning phase.  

Test data: data used to test the performance of the learning algorithm during generalization 

phase. Depending on how the machine gains knowledge to respond correctly, learning can 

be categorized into four basic methods as briefed in the following sections.  

       Machine learning algorithms employ a variety of statistical, probabilistic and 

optimization methods to learn from past experience and detect useful patterns from large, 

unstructured and complex datasets [95]. These algorithms have a wide range of applications, 

including automated text categorisation [96], network intrusion detection [97], junk e-mail 

filtering [98], detection of credit card fraud [99], customer purchase behavior detection 
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[100], optimising manufacturing process [101] and disease modelling [102]. Most of these 

applications have been implemented using supervised variants [98][99][102] of the machine 

learning algorithms rather than unsupervised ones. In the supervised variant, a prediction 

model is developed by learning a dataset where the label is known and accordingly the 

outcome of unlabelled examples can be predicted [103]. 

2.11.1 Supervised learning  

        In supervised learning, the machine is trained with labelled dataset where output 

response or class for each input data vector is known.  The assumption is that if the training 

data is large enough, a hypothesis that can perform well on the test data can be obtained. A 

simple example of supervised learning is curve-fitting problem.  Given a set of input data, 

the machine is trained to generate the curved surface that best fits the training dataset, and 

during testing the machine is expected to correctly interpolate the new data over the curved 

surface.  Feed-forward neural networks like perceptrons (adopting delta learning rule or 

perceptron learning rule), multilayer perceptrons (MLP, adopting back propagation), and 

constrained MLPs fall under this category [88]. 

 2.11.2 Unsupervised learning  

        In unsupervised learning, the machine is expected to learn the patterns in the unlabelled 

input dataset by itself without any feedback from the environment.  The problem can be 

stated as finding the patterns in input dataset to partition or cluster the training data into 

subsets in an appropriate way. Taxonomic problems, where designing efficient ways to 

group the data into meaningful clusters, fall under this category.  Examples are Hebb and 

Hopfield networks (Hebbian learning), Kohonen networks/self-organizing maps, and (ART) 

networks/ART (competitive learning). Auto encoder is a simple network that is trained to 

produce what is given at the input, i.e. by setting the target output as the input.  The network 

is trained to reproduce the input using gradient descent back propagation unsupervised 

learning method. Auto encoders are stacked to form a deep network that can be pre-trained 

using unsupervised learning to fix better initial weights and bias values [88]. 

2.11.3 Semi-supervised 

         Learning In semi-supervised learning, both labelled and unlabelled data are used for 

training the system. Typically, a small proportion of labelled data is used with a large 

https://link.springer.com/article/10.1186/s12911-019-1004-8#ref-CR9
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amount of unlabelled data. This type of learning approach is usually adopted in problems 

where obtaining labelled data is very expensive [88]. 

 

 

 2.11.4 Active learning 

         In active learning, the algorithm interactively queries the user to obtain the labels for 

the examples. This is used in scenarios where unlabelled data is abundant but labelling the 

data is expensive [88]. 

2.12 Supervised machine learning algorithms 

        At its most basic sense, machine learning uses programmed algorithms that learn and 

optimise their operations by analysing input data to make predictions within an acceptable 

range. With the feeding of new data, these algorithms tend to make more accurate 

predictions. Although there are some variations of how to group machine learning 

algorithms, they can be divided into four broad categories according to their purposes and 

the way the underlying machine is being taught.  

        In supervised machine learning algorithms, a labelled training dataset is used first to 

train the underlying algorithm.  This trained algorithm is then fed on the unlabelled test 

dataset to categories them into similar groups. Using an abstract dataset for three diabetic 

patients, Figure 2.3 shows an illustration about how supervised machine learning algorithms 

work to categories diabetic and non-diabetic patients. Supervised learning algorithms suit 

well with two types of problems: classification problems; and regression problems.  In 

classification problems, the underlying output variable is discrete. This variable is 

categorized into different groups or categories, such as „red‟ or „black‟, or it could be 

„diabetic‟ and „non-diabetic‟.  The corresponding output variable is a real value in regression 

problems, such as the risk of developing cardiovascular disease for an individual [109] 
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Figure 2.3 An illustration of how supervised machine learning algorithms wor 

 

2.12.1 Decision tree 

        Decision tree (DT) is one of the earliest and prominent machine learning algorithms. A 

decision tree models the decision logics i.e., tests and corresponds outcomes for classifying data 

items into a tree-like structure.  The nodes of a DT tree normally have multiple levels where the 

first or top-most node is called the root node.  All internal nodes (i.e., nodes having at least one 

child) represent tests on input variables or attributes. Depending on the test outcome, the 

classification algorithm branches towards the appropriate child node where the process of test 

and branching repeats until it reaches the leaf node [104].  The leaf or terminal nodes 

correspond to the decision outcomes.  DTs have been found easy to interpret and quick to learn, 

and are a common component to many medical diagnostic protocols [105].  When traversing the 

tree for the classification of a sample, the outcomes of all tests at each node along the path will 

provide sufficient information to conjecture about its class. An illustration of an DT with its 

elements and rules is depicted in Figure 2.4. 

 

Figure 2.4 Decision tree 

https://link.springer.com/article/10.1186/s12911-019-1004-8#ref-CR24
https://link.springer.com/article/10.1186/s12911-019-1004-8#ref-CR25
https://link.springer.com/article/10.1186/s12911-019-1004-8#Fig3
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        An illustration of a Decision tree. Each variable (C1, C2, and C3) is represented by a circle 

and the decision outcomes (Class A and Class B) are shown by rectangles. In order to 

successfully classify a sample to a class, each branch is labelled with either „True‟ or „False‟ 

based on the outcome value from the test of its ancestor node 

2.12.2 Naïve Bayes 

         Naïve Bayes (NB) is a classification technique based on the Bayes‟ theorem [106]. This 

theorem can describe the probability of an event based on the prior knowledge of conditions 

related to that event. This classifier assumes that a particular feature in a class is not directly 

related to any other feature although features for that class could have interdependence among 

themselves [107].  By considering the task of classifying a new object (white circle) to either 

„green‟ class or „red‟ class, Figure 2.5 provides an illustration about how the NB technique 

works. According to this figure, it is reasonable to believe that any new object is twice as likely 

to have „green‟ membership rather than „red‟ since there are twice as many „green‟ objects (40) 

as „red‟. In the Bayesian analysis, this belief is known as the prior probability. Therefore, the 

prior probabilities of „green‟ and „red‟ are 0.67 (40 † 60) and 0.33 (20 † 60), respectively. Now 

to classify the „white‟ object, we need to draw a circle around this object which encompasses 

several points (to be chosen prior) irrespective of their class labels. Four points (three „red‟ and 

one „green) were considered in this figure. Thus, the likelihood of „white‟ given „green‟ is 0.025 

(1 † 40) and the likelihood of „white‟ given „red‟ is 0.15 (3 ÷ 20). Although the prior probability 

indicates that the new „white‟ object is more likely to have „green‟ membership, the likelihood 

shows that it is more likely to be in the „red‟ class. In the Bayesian analysis, the final classifier 

is produced by combining both sources of information (i.e., prior probability and likelihood 

value). The „multiplication‟ function is used to combine these two types of information and the 

product is called the „posterior‟ probability.  Finally, the posterior probability of „white‟ being 

„green‟ is 0.017 (0.67 × 0.025) and the posterior probability of „white‟ being „red‟ is 0.049 

(0.33 × 0.15). Thus, the new „white‟ object should be classified as a member of the „red‟ class 

according to the NB technique. 

https://link.springer.com/article/10.1186/s12911-019-1004-8#ref-CR27
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Figure 2.5 A simplified illustration of the K-nearest neighbor algorithm 

 When K = 3, the sample object („star‟) is classified as „black‟ since it gets more „vote‟ from the 

„black‟ class. However, for K = 5 the same sample object is classified as „red‟ since it now gets 

more „vote‟ from the „red‟ class [109]. 

2.12.3 Hidden Markov Models 

        Hidden Markov model is derived from the Markov chain. While each state in the 

Markov chain represents a specific observable event, a state has a probabilistic function for 

observation in the hidden Markov model.  Thus, the sequence of states is unobservable 

„hidden‟ in the hidden Markov model. Modelling of a signal temporal variation problem is 

the main cause for using hidden states [109]. 

        Belong to the Markov assumption, the probability of the state is depending just on the 

previous state. This assumption reduces the number of model parameters, thus the usage of 

the memory for modelling. 
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Figure 2.6 Example for a 3-states hidden Markov model 

 

        An example is shown in Figure 2.6 for more understanding of HMM. The model in the 

Figure has three states and four observation symbols, between each state couple there is a 

transition probability, and for each state there is a probability distribution for the observation 

symbols. For the initial state, there is a probability set represents the probability of each state 

to be the initial state. 

We can conclude from the example that the definition of HMM needs to three probability 

distributions: 

𝑨 = {𝑎 𝑗} - A transition probability distribution, where 𝑎 𝑗 is the probability of the 

transition from state i to state j [110]. 

𝑎 𝑗 = (   = 𝑗|  −1 =  ) (2.9) 

𝑩 = {𝑏 ( )} - A matrix of output probability, where 𝑏 ( ) is the probability distribution 

of symbol    observation in state i. 

𝑏( ) = 𝑃(   =   |   =  ) (2.10) 

𝝅 = {𝜋 } - Initial state distribution. 

𝜋  = ( 0 =  ) (2.11) 

       Because A, B and π are probability distributions, the summation of each distribution 

must equal to 1. 

       There are three problems must be solved to prepare the HMM for the real usage [109]. 

We can summarize these problems by three questions: How we can determine the 

probability of that the given HMM generates a given observation sequence? What is the best 
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path of hidden states is in HMM that generates a given observation sequence? What is the 

proper parameters for the HMM to model a set of observation sequences? 

        The first question represents the Evaluation problem, which represented by 𝑃( |Φ), 

where Φ is a given model and X is the observation sequence   = ( 1,  1, …,  𝑇 ) [110]. 

        The simple solution for the evaluation problem is by generate all possible state 

sequences, then calculate the probability of each sequence and find the summation of these 

probabilities. This solution has an exponential computation ( 𝑇) where T is the length of the 

observation sequence [110]. 

        For computation simplicity, the forward algorithm is used. The algorithm benefit from 

the HMM assumption, where each state probability is depending just on the previous state 

and the observable symbol probability in the current state.  Then it is possible to find the 

total probability with recursion on t, then it reduces the complexity to 𝑂( 2𝑇) [110]. 

        The second problem is the Decoding problem. The decoding is helpful in many 

applications such as the segmentation and the searching in the continuous speech. The 

solution of this problem is similar to the evaluation problem solution but it instead of finding 

the summation of all possible sequences, just finding the sequence that score the maximum 

probability value. Viterbi algorithm is used for solving this problem, Viterbi is a form of the 

dynamic programing algorithms which partition the problem into small partial problems 

[110]. 

        Learning problem is a complex problem because that the estimation of the model 

parameters cannot be determined analytically. Forward-backward algorithm depending on 

Expectation Maximization principle named Baum-Welch is the used algorithm for HMM 

learning [110]. 

2.13 Gaussian mixture models  

         GMMS are used for modelling continuous distribution components as parametric probability 

distributions (Gaussian or normal), and the entire dataset can be modelled using mixture of such 

distributions or Gaussians. 

        GMMs are powerful in forming smooth approximations over a large class of sample 

distributions. GMM-based HMMs or GMM/HMM system is the most used ML approach in ASR.         

A GMM/HMM system is represented by l D (p, A, B), where p is a vector of state prior 

probabilities; A D (ai,j) is the state transition matrix; B D {b1,. . .,bn} is the set of GMMS of state 

j. The HMM state is usually associated with a sub-segment of a phoneme in speech. A sentence is 
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modelled by concatenating HMMs for the sequence of phones and GMM distribution is used to 

generate a vector in the HMM state [88].  

2.13.1 GMM formulation 

        The spectral features extracted from speech are real valued but applying HMMs on 

continuous observations is not directly possible. Instead, the possible values of an observation 

feature vector ot are assumed to be normally distributed.  The observation likelihood function 

bj(ot) is represented as a Gaussian. Given a dataset, the mean and variance can be obtained from 

the data, but the state that corresponds to an observation is not known. Hence, a way is needed to 

assign each observation vector ot to every possible state i, incorporating the probability that the 

HMM was in state i at time t. Let this probability be Yt(i).  Each vector of observation is modelled 

as a multivariate Gaussian with diagonal covariance matrices, and Baum– Welch algorithm is 

used to estimate the probability and to compute the mean and the variance. 

       A mixture of Gaussians is needed to model the multidimensional function and they need to 

be trained. The usual procedure to train the mixture of Gaussians (GMMs) is to choose M the 

number of Gaussians and splitting the Gaussian into two and running the forward–backward 

algorithm to retrain the Gaussians.  This process is repeated until M Gaussians are generated. 

Another approach is to do embedded training where each phone HMM embedded in an entire 

sentence is trained. Both word segmentation and alignment can be done as a part of the training 

process. Typically, CD phones are used, and decision-tree-based state tying is used to cluster the 

many states into various clusters [88].                        

2.13.2 Limitations of GMMs in GMM-HMM based acoustic models 

        In GMM-HMM acoustic models, GMMs are used to model the relationship between the 

states of the HMM and the acoustic input. These models have proven efficient in dealing with 

the acoustic variations related to speaker accents, pronunciation variations, and environmental 

noise, etc.  In fact, due to these variations, modeling the state densities of HMM using a mixture 

of Gaussians is more accurate than using a single form of density function. In addition, the 

availability and the efficiency of the EM algorithm for estimating the parameters of the model 

have played an important role in the success of GMMs in HMM-based acoustic models. Hence, 

it was difficult to find a new method that can outperform GMMs. 

        Despite their efficiency, GMMs do suffer from several shortcomings that should be 

addressed. In [189], three of the major GMM problems are identified. First, GMMs assume that 
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the data distribution is necessarily Gaussian. Second, the parameters of GMMs at each HMM 

state are not trained using the whole data of all states but with the subset associated with that 

state given the alignment. On the other hand, the number of GMM parameters needed to be 

estimated across all states is very big, especially in context-dependent acoustic models, and may 

require a large amount of training data [190]. Finally, techniques used for feature dimensionality 

reduction may significantly reduce the accuracy in estimating the GMM parameters due to the 

potential elimination of some useful information. 

        Another critical shortcoming of GMMs in acoustic modeling is that they may require a 

large number of diagonal Gaussians or full-covariance Gaussians to model highly nonlinear data; 

whereas other models exist and can fit such kind of data with only a few parameters [191].  In 

[192], it was argued that GMMs are also statistically inefficient at modeling high-dimensional 

data with componential structure.  This inefficiency was attributed to the fact that for two 

significantly different sub-bands of independent patterns, when the first contains N different 

patterns and the second contains M different patterns, a GMM requires N.M components to 

model such data. In fact, each data has only one single latent cause, and hence each component 

must fit both sub-bands. However, only N + M components are necessary to explain such data 

for a model that uses multiple causes, in which each component is specific for a single sub-band.  

This shortcoming of GMM may affect the efficiency of GMM-HMM based ASR system where a large 

number of Gaussians at each HMM state must be estimated from a sub-set of the data derived from the 

alignment. Furthermore, in GMMs, every single Gaussian aims at modeling a partition from the input 

space. Having many Gaussians with independent means may lead to local generalization [193]. 

        Many approaches have been proposed to overcome some of the limitations of GMMs. Since 

GMMs are typically trained as generative models using the EM algorithm, applying a 

subsequent stage of discriminative training was a first attempt to significantly improve the 

GMM-HMM acoustic models. The objective function of the discriminative training has a close 

relationship with the main goal of the ASR system. Maximum Mutual Information Estimation 

(MMIE) is one of the most common discriminate estimation methods. It aims at maximizing the 

separation between acoustic models by taking into account not only the likelihood of the training 

word strings given the labels, but also the probability of other possible word string hypotheses 

[194]. 
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Using feed forward ANNs to replace GMMs in continuous density HMM for acoustic modeling 

was an alternative means to address the problem of GMMs discussed above. The introduction of 

an effective new procedure for learning deep neural networks has motivated researchers to apply 

deeper architecture for acoustic modeling [194]. 

        On the other hand, it has been asserted that [191] the information embedded in speech can 

be represented with lower-dimensional data. However, GMMs are incapable of exploring highly 

correlated features. In consequence, they cannot handle the latent information from a large 

window of frames [194]. 

2.14 Artificial neural networks 

        One type of network sees the nodes as „artificial neurons. These are called artificial 

neural networks (ANNs) [111].  An artificial neuron is a computational model inspired in the 

natural neurons. Figure 2.7 shows Natural neurons receive signals through synapses located 

on the dendrites or membrane of the neuron. When the signals received are strong enough 

(surpass a certain threshold), the neuron is activated and emits a signal though the axon. This 

signal might be sent to another synapse and might activate other neurons [112]. 

 

Figure 2.7 Natural neurons (artist‟s conception) [112]. 

        Tthe complexity of real neurons is highly abstracted when modelling artificial neurons. 

These basically consist of inputs (like synapses), which are multiplied by weights (strength 

of the respective signals), and then computed by a mathematical function which determines 

the activation of the neuron.  Another function (which may be the identity) computes the 

output of the artificial neuron (sometimes in dependance of a certain threshold). ANNs 

combine artificial neurons to process information [112]. 
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Figure 2.8 An artificial neuron [112] 

        The higher a weight of an artificial neuron is, the stronger the input which is multiplied 

by it will be. Weights can also be negative, so we can say that the signal is inhibited by the 

negative weight. Depending on the weights, the computation of the neuron will be different.  

By adjusting the weights of an artificial neuron, we can obtain the output we want for 

specific inputs. But when we have an ANN of hundreds or thousands of neurons, it would be 

quite complicated to find by hand all the necessary weights. But we can find algorithms 

which can adjust the weights of the ANN to obtain the desired output from the network.  

This process of adjusting the weights is called learning or training as shows in Figure2.8 

[112][115]. 

        The number of types of ANNs and their uses is very high.  Since the first neural model 

[113] there have been developed hundreds of different models considered as ANNs. The 

differences in them might be the functions, the accepted values, the topology, the learning 

algorithms, etc. Also, there are many hybrid models where each neuron has more properties 

than the ones we are reviewing here. Because of matters of space, we will present only an 

ANN which learns using the backpropagation algorithm [112][115] for learning the 

appropriate weights, since it is one of the most common models used in ANNs, and many 

others are based on it [112]. 

        Since the function of ANNs is to process information, they are used mainly in fields 

related with it. There are a wide variety of ANNs that are used to model real neural 

networks, and study behavior and control in animals and machines, but also there are ANNs 

which are used for engineering purposes, such as pattern recognition, forecasting, and data 

compression [114][115]. 

Applications of ANNs: 
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1. Control (such as cars in ALVINN). 

2. Recognize/Classify (written/spoken words). 

3. Predict (trends).  

 

Figure 2.9 ANN unit [115] 

        In the Figure 2.9 shown above, there are n input units (Xi) connected with n links (Wi). 

It also has one output. The ANN unit is composed of two main parts: the first part sums the 

input and sends it to the threshold function.  If the activation is greater than 0 then the unit 

activates and sends a “1” as the output, otherwise it sends a 0 (or –1). The X0 can be set to 

any value so that instead of tuning the threshold function to activate at some fixed-point Y, 

X0 can be set to -Y [115]. 

Two commonly used types of ANNs are Time-Delay Neural Networks (TDNNs) [116] and 

recurrent neural networks [117][118]. 

2.15 Deep learning methods  

        Deep learning algorithms have recently emerged from machine learning and soft 

computing techniques.  Since then, several deep learning algorithms have been recently 

introduced to scientific communities and are applied in various application domains. Today 

the usage of DL has become essential due to their intelligence, efficient learning, accuracy 

and robustness in model building. 

        Convolutional neural network (CNN) Recurrent neural network (RNN), Denoising 

autoencoder (DAE), deep belief networks (DBNs), Long Short-Term Memory (LSTM) are 

the most popular deep learning methods have been widely used.  In this section, the 

description of each method is described along with the notable applications. 
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2.15.1 Convolutional neural network  

        CNN is one of the most known architectures of DL techniques. This technique is generally 

employed for image processing applications. CNN contains three types of layers with different 

convolutional, pooling, and fully connected layers Figure 2.10 In each CNN, there are two stages 

for the training process, the feed-forward stage, and the back-propagation stage. The most 

common CNN architectures are ZFNet [119], GoogLeNet [120], VGGNet [121], AlexNet [122], 

ResNet [123]. 

 

Figure 2.10 CNN architecture 

        Although CNN is primarily known for image processing applications, the literature includes 

other application domains, e.g., energy, computational mechanics, electronics systems, remote 

sensing, etc as shown in table 2.4. 
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Table 2.4 Applications of CNN 

Reference Application 

Bhatnagar et al. 2019 [124] Prediction of aerodynamic flow 

Nevavuori et al. 2019 [125] Crop yield prediction 

Ajami et al. 2019 [126] Advanced image processing 

Lossau et al. 2019 [127] 

 

Motion estimation and correction of medical 

imaging 

Kong et al. 2020 [128] Condition monitoring of wind turbines 

2.15.2 Recurrent neural networks 

        RNN is designed to recognize sequences and patterns such as speech, handwriting, text, and 

such applications. RNN benefits cyclic connections in the structure which employ recurrent 

computations to sequentially process the in-put data [129].  RNN is basically a standard neural 

network that has been ex-tended across time by having edges which feed into the next time step 

instead of into the next layer in the same time step.  Each of the previous inputs data are kept in a 

state vector in hidden units, and these state vectors is utilized to compute the outputs Figure.2.11 

presents the architecture of RNN. 

 

Figure 2.11 RNN architecture 

        RNN is relatively newer deep learning method. Therefore the application domains are still 

young and plenty of rooms remains for research and exploration. The energy, hydrological 

prediction, expert systems, navigation, and economics are the current applications reported in the 

literature as shown in table 2.5. 
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Table 2.5 Applications of RNN  

Reference Application 

Zhu et al. 2019 [130] Wind speed prediction 

Pan et al. 2019 [131] Tropical cyclone intensity 

prediction 

Bisharad et al. 2019 [132] Music genre recognition 

Zhong et al. 2019 [133]  Ship Trajectory Restoration 

Jarrah et al. 2019 [134]  Stock price trends predict 

2.15.3 Denoising autoencoder  

        DAE has been extended from AE as asymmetrical neural network for learning features 

from noisy datasets. DAE consists of three main layers, including input, encoding, and decoding 

layers [76]. DAE is able to be aggregated for taking high-level features. Stacked Denoising 

Autoencoder (SDAE), as an un-supervised algorithm, is generated by the DEA method, which 

can be employed for nonlinear dimensionality reduction.  This method is a type of feed-forward 

neural network and employs a deep architecture with multiple hidden layers and a pre training 

strategy [135][136]. Figure 2.12 presents the architecture of DEA architecture. 

 

Figure 2.12 DEA architecture 

        DEA is slowly starting to be known among researchers as an efficient DL algorithm. DEA 

has already been used in various application domains with promising results.  The energy 

forecasting, cybersecurity, banking, fraud detection, image classification, and speaker 

verification are among the current popular applications of DEA as shown in table 2.6. 
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Table 2.6 Applications of DEA  

Reference Application 

Chen et al. 2019 [137] Improving the cyberphysical systems 

Liu et al. 2019 [138] Electric load forecasting 

Nicolai et al. 2018 [139] Laser-based scan registration 

Yue, et al. 2018 [140] Collaborative Filtering 

Roy et a. 2018 [141] Noisy image classification 

Tan et al. 2018 [142] Robust Speaker Verification 

 

2.15.4 The deep belief networks  

        DBNs are employed for high dimensional manifolds learning of data. This method contains 

multiple layers, including connections between the layers except for connections between units 

within each layer.  DBNs can be considered as a hybrid multi-layered neural network, including 

directed and undirected connections.  DBNs contains restricted Boltzmann machines (RBMs) 

which are trained in a greedy manner.  Each RBM layer communicates with both the previous 

and subsequent layers [136][143][144].   This model is consisting of a feed-forward network and 

several layers of restricted Boltzmann machines or RBM as feature extractors [145].  A hidden 

layer and visible layer are only two layers of an RBM, Figure2.13 presents the architecture of 

DBN architecture [146]. 

 

Figure 2.13 DBN architecture 



 
 
 
 
 

 
42  

        DBN is one of the most reliable deep learning methods with high accuracy and 

computational efficiency.  Thus, the application domains have been divers, including exciting 

application in a wide range of engineering and scientific problems. Human emotion detection, 

time series prediction, renewable energy prediction, economic forecasting, and cancer diagnosis 

have been among the public application domains as mentioned in table 2.7. 

Table 2.7 Applications of DBN 

Reference Application 

Hassan et al. 2019 [147] Human emotion recognition 

Cheng et al. 2019 [148] Time series prediction 

Yu et al. 2019 [149] wind speed prediction 

Zheng et al. 2019 [150] Exchange rate forecasting 

Ahmad et al. 2019 [151] Automatic Liver Segmentation 

Ronoud et al. 2019 [152] Breast cancer diagnosis 

 

2.15.5 Long short-term memory  

        LSTM is an RNN method which benefits feedback connections to be used as a general-

purpose computer.  This method can of for both sequences and pat-terns recognition and image 

processing applications. In general, LSTM contains three central units, including input, output, 

and forget gates.  LSTM can control on deciding when to let the input enter the neuron and to 

remember what was computed in the previous time step.  One of the main strengths of the LSTM 

method is that it decides all these based on the current input itself, Figure2.14 presents the 

architecture of LSTM architecture. 
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                                                      Figure 2.14 LSTM architecture 

        LSTM has shown great potential in environmental applications summarized in table 2.8, 

e.g., geo-logical modeling, hydrological prediction, air quality, and hazard modeling. Due to the 

generalization ability of the LSTM architecture, it can be suitable for many application domains. 

Energy demand and consumption, wind energy industry, and solar power modeling are the other 

application domains of LSTM. Further investigation is essential to explore the new deep learning 

methods and explore the application domains, as it has been done for machine Learning methods 

[153][154][155][156] as shown in table 2.8.  

Table 2.8 Applications of LSTM 

Reference Application 

Ghimire et al. 2019 [157] Solar radiation forecasting 

Liu 2019 [158] Volatility forecasting 

Hong et al. 2019 [159] Fault prognosis of battery systems 

Krishan 2019 [160] Air quality prediction 

Zhang et al. 2019 [161] Structural seismic prediction 

Hua et al. 2019 [162] Time Series Prediction 

Zhang et al. 2019 [163] Wind turbine power prediction 

Vardaan et al. 2019 [164] Earthquake trend prediction 

2.16 Deep neural networks 

        A Deep Neural Network is defined as a feed-forward Artificial Neural Network (ANN) 

that has multiple layers of hidden units stacked on top of each other between the input and 
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the output layers [165][166] The main goal of DNNs is the discrimination between classes; 

however, they are often generatively pretrained to initialize their parameters [167]. 

2.16.1 Motivations for training DNNs 

        ANNs are connectionist models composed of highly connected computational units 

(neu- rons) organized in a specific manner that makes them able to perform a nonlinear 

trans- formation to the input data. In a feed-forward ANN, the units in one layer are 

connected to the units in the next layers using unidirectional connections. In fact, each 

hidden unit j, in layer l, is connected to all the units in the layer l 1, and has an activation 

function, typically logistic, that is responsible for summing the weighted input from the layer 

below, and for processing the result to the layer above as a single output. The output of the 

units i can be calculated using the following equation [166] as shown in Figure 2.15. 

 

 

 

 

 

Figure 2.15 Feed-forward ANN with multiple inputs, two outputs and one hidden layer 

        ANNs are discriminatively trained in a supervised way using the backpropagation 
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learning algorithm that measures the error between the network outputs and the desired 

outputs and updates the network parameters (the weights and biases) by applying the 

gradient descent optimization technique with the aim of reducing the local error [167]. 

        The motivation behind designing ANNs is to mimic the computational power of the 

human brain. In fact, ANNs have shown great success in the areas of machine learning, 

pattern recognition and classification. Moreover, they have proven a notable strength in 

modeling nonlinear systems. They have been used in a wide range of applications including 

robotics, medical, communication systems, data mining, sales and marketing [167].  

However, only shallow-structured architectures were exploited, and researchers have failed, 

for many years, to train networks with more than one hidden layer. 

         The main difficulty that arises is the” curse of dimensionality”, which states that the 

variations in the input data grow exponentially with a linear increase in their dimensionality 

[167][169]. In consequence, the network may require a huge number of training data in 

order to model all these variations, and the learning process is inherently very complex and 

computationally very expensive. 

        This problem begs the need for different new approaches to train deep-layered neural 

networks. The clue might lie in understanding how the human brain processes this vast 

amount of information, received in a very high frequency, with such an ease.  It has been 

argued that the brain processes the sensory input through multiple layers in a hierarchical 

fashion. Each layer extracts new features from its inputs and creates a higher-level 

representation to pass it on to the next higher level [167][169]. 

        Thus, designing deep architectures is an attempt to emulate the representational power 

and the information modeling ability of the human brain. Learning a DNN to extract useful 

features from its input data and eliminate unnecessary variations is considered the key 

solution to preventing the curse of dimensionality.  As a result, the number of training 

examples required for learning high dimensional data would drastically decrease.  A DNN 

can achieve this features extraction and transformation using hierarchical processing of the 

input data akin to what the brain does.  The idea is to feed the input data to the first layer 

which learns to extract a new representation of its input and provides its output to the layer 

above.  The next layer then derives a new higher-level representation from its inputs. The 

process continues all the way to the top layer, resulting in meaningful features and a new 
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description of the input data. 

        Despite the big development in the area of computer hardware and machine learning 

algorithms, researchers have failed to train a network with many layers of nonlinear feature 

detectors.  The backpropagation learning algorithm has been the efficient and traditional way 

for discriminatively training ANNs due to its ease of implementation.  However, attempts to 

train a DNN that learns to derive features and build internal representations from complex 

inputs using the back-propagation algorithm have led to dismal results. In fact, training deep 

networks seems to be very difficult and hard to optimize; these net- works perform worse 

than shallow ones in terms of generalization [168]. As networks become deeper, they tend to 

get stuck more often in poor local minima.   This trend is attributed to the random 

initialization of the weights in the back-propagation algorithm.  Moreover, the large number 

of layers drives the network to learn rare dependencies and variations in the input data, 

which makes it very prone to the problem of overfitting [165] [166 ][176] [170]. 

        Due to these generalization problems, learning deep-layered architectures for tackling 

very complicated applications fell out of favor amongst both researchers and industry. 

Hence, many experiments were made to overcome these problems and to find a good 

learning algorithm able to mimic the robustness of the brain in representing information, and 

able to produce good classification results in terms of time and accuracy. 

2.16.2 DNN-HMM for acoustic modeling 

         Acoustic modeling in speech segmentation refers to the process of creating statistical 

representations for the feature vector sequences computed from the speech waveform. As 

discussed in chapter one, these acoustic models should be robust and capable of modeling 

not only the variability intrinsic in human speech but also the noise that characterizes the 

background environment. In fact, the acoustic models should determine the probability P (A 

W ) of an  acoustic vector sequence A, given that  the uttered word sequence  is W . Due to 

the large number of different possible pairings of W with A, sophisticated statistical models 

are needed [171]. HMMs are typically the most useful acoustic models in speech 

segmentation. 

In ASR, HMMs are typically used to model the sequential structure of speech signals [55, 

58], with Gaussian densities at each state in order to model the local spectral variability in the 

sound wave [172]. Using the Expectation Maximization (EM) algorithm, GMMs are easy to 
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fit to data. Indeed, they have proved effective in modeling the relationship between HMM 

states and the acoustic input represented [more often as a set of MFCCs. With enough 

components, GMMs can accurately model the probability distribution over the acoustic input 

feature vectors associated with each state of an HMM [166].  Nonetheless, GMMs in HMM-

based acoustic models suffer from some major limitations that have motivated researchers to 

find other models. 

 

2.16.3 DNN-HMM hybrid architecture for acoustic modeling 

        Early attempts to use feed-forward ANNs as a substitute for GMMs in HMM-based 

acoustic models offered several advantages over GMMs. In [173], three major ones were 

reported. First, in contrast to GMMs, ANNs do not require detailed assumptions about the 

data distribution in order to estimate the posterior probabilities over HMM states. Second, 

when using ANNs, it is possible to apply different types of data, including the combination 

of discrete and continuous features.  Finally, yet importantly, ANNs make use of all the 

training data to model their parameters.  Furthermore, ANNs have shown great capabilities 

at modeling highly nonlinear data. 

        The effectiveness of the new deep learning algorithms developed recently has 

strengthened the idea that neural networks are suitable for acoustic modeling. As reviewed in 

the previous.  the algorithm for training deep neural networks consists of a two-step‟s 

procedure: first, a generative pre-training step that aims at initializing the weights of the 

network and extracting higher new representations of the input at each layer, followed by a 

discriminative fine-tuning step with the backpropagation learning algorithm. DBNs have 

been the most common technique for generatively pre-training deep networks where each 

layer extracts a new higher representation and new structures from the input. This pre 

training stage has the great advantage of reducing over fitting and reducing the computation 

cost during the discriminative fine-tuning with the back-propagation algorithm, a cost that 

was considered the major impediment with deep networks. It also helps the network to 

rapidly converge towards better local minima.  In earlier literature, DNNs generatively pre 

trained as DBNs were often called DBNs. To eliminate any ambiguity, Hinton et al. 

introduced the new name DBN-DNNs in [166]. 

        In combining pre-trained DNNs with HMMs within a single hybrid architecture for 
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acoustic modeling, researchers intended to combine the representational power of DBN- 

DNNs and the sequential modeling capability of HMMs. 

2.16.4 Interfacing DNNs with HMMs 

        To interface DNN with HMM for modeling acoustic data, the network is trained to 

estimate the probability distribution over the states of the HMM.  Considered as static 

classifiers with fixed dimensionality input vectors, DNNs are unable to perform sequence 

segmentation with variable dimensionality of the inputs and outputs such as speech 

segmentation [170].  However, HMMs are the most powerful tool that can handle sequential 

patterns using dynamic programming.  Thus, combining HMMs and DNNs fruitfully takes 

advantage of both static and sequential pattern recognition, which makes such hybrid 

architecture very useful for speech segmentation. 

        DNN trained to predict the posterior probability over Monophone HMM states. The 

training data consist of a window of n successive frames of speech coefficient. A network 

composed of many layers of nonlinear units was first generatively pre-trained using RBMs 

and contrastive divergence to extract new features of the input at each layer. Then, the 

network was discriminatively trained with the back-propagation algorithm to predict the 

label of the central frame as shown in Figure 2.16. In fact, the output layer that represents the 

states of the HMMs provides a probability distribution over the possible labels of the central 

frame. Figure 2.16 illustrates the architecture of DNN for phone segmentation. 

          As described in the second chapter, an HMM is defined by 3 parameters: 

the initial state distribution πi = P (s0 = i), 

the transition probability aij = P (st = j st−1 = i) , which is the probability of taking a transition  

from state i to state j at time t, 

the emission probability  bj(xt)  =  P (xt|st  =  j)  defined  as  the  probability  that  the state j 

generates the acoustic observation xt at time t. In GMM-HMM, this emission probability is 

estimated using the GMMs. 

In DNN-HMM, DNN is used instead of GMM to estimate the emission probability at each 

state. In phoneme segmentation, the DNN produces the posterior probability, P (st|xt), of the 

mono-phone HMM states given the acoustic observation xt. However, 

p(xt|st) = p(st|xt). p(xt)/p(st). 

         The probability p(st) can be estimated from an initial state-level alignment on the 

coustic training data using a Viterbi decoder. The probability p(xt) is assumed to be” 
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independent of the word sequence and can be ignored during decoding” [175].  Hence, to get 

the emission probability P (xt|st), the posterior probability p(st|xt) should be divided by the 

prior p(st). However, it is asserted that this division may not provide improvement in 

segmentation accuracy under some conditions [175].  

        The DNN-HMM hybrid architecture can also be used for acoustic modeling in 

continuous speech segmentation task, as presented in [175][176] In contrast to the context-

independent (CI) DNN-HMM hybrid architecture described above for phoneme 

segmentation, the DNN can be trained to predict probability distributions over tri-phone 

HMMs, forming thus a context-dependent (CD) DNN-HMM hybrid architecture for large-

vocabulary continuous speech segmentation task. The idea is to use senones as modeling 

units rather than mono- phones. The method involves two main steps [175].  First, the 

Viterbi algorithm is used to generate the senone-level alignment on a tied tri-phone GMM-

HMM baseline. Then, the DNN-HMM is trained to predict the senones in each frame or 

sequence of frames. It has been proven that the better the baseline system used during forced 

alignment, the better the final results of the CD-DNN-HMM system [175] [166].  

        DNN-HMM hybrid architecture has shown successful results and good segmentation 

per- formance in both isolated and continuous speech segmentation tasks. In fact, DBN-

DNNs have proven capability to outperform GMMs in acoustic modeling.  

 

Figure 2.16 Interfacing DNN and HMM for continuous speech [177] 
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2.16.5 Time delay neural network  

        In a time delay neural network, the temporal context is modeled by using a hierarchical 

architecture. Each layer in a TDNN operates at a different temporal resolution.  The outputs 

of the activation from previous hidden layer are spliced as the input of the current layer. 

Therefore, the current layer operates at a much wider context, compared with the previous 

layer. As we go to higher layers of the network, increasingly wide context is seen by the 

network.  

        Like Convolutional Neural Networks (CNNs [200]), the transforms in the same layer of 

a TDNN are tied across time to reduce the number of parameters and make the 

transformation invariant to time shift of the input [200]. TDNNs are seen as a precursor to 

the CNNs.  proposed a method to subsample the TDNN network. The splicing configuration 

{-1,1} means that we splice the input at current time step minus 1 and the current time step 

plus 1 (i.e. the current frame is dropped). Sub-sampling reduces the dimension of the input 

and thus the model size.  

        The overall input contexts of TDNNs are limited, for example, asymmetric context 

windows of up to 16 frames in past and 9 frames in the future are investigated in [200].  The 

success of TDNNs indicates that the most valuable information for the recognition of the 

current frame lies in a relatively narrow context. This is true even when recurrent models are 

used. Truncated Back Propagation Through Time. 

2.16.6 What distinguishes DNN- HMM from GMM- HMM 

        DNNs have proven efficient in acoustic modeling and shown results competitive with 

GMMs. However, many differences exist between GMMs and DNNs, which have made 

DNNs more powerful for speech segmentation.  DNNs are more efficient at modeling highly 

non-linear data [166]. with many hidden units, DNN can easily model multiple simultaneous 

events within one frame or window.  However, doing so is very difficult for GMM because 

each data point is assumed to be generated by a single Gaussian in the mixture.  In addition, 

DNN can efficiently be trained using multiple frames of acoustic features; whereas GMM, 

which requires uncorrelated data, is unable to exploit multiple frames [166]. 

        Despite the advantage of the EM algorithm for training GMMs, which can be easily 

parallelized on a cluster machine [166], DNNs present many advantages that have made 

them the most prominent technique for acoustic modeling in speech segmentation.  In [178], 
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the success of DNNs over GMMs in acoustic modeling was attributed to three main facts.  

First, neural networks are very flexible at modeling the data without any preliminary 

assumptions about its distribution. In addition, DNNs are exponentially more compact than 

GMMs due to the” distributed representation” of the input, which can be explained by the 

big number of units that together can represent a single input vector.  Second, the deep 

architecture of DNNs that are composed of many nonlinear layers plays an important role in 

improving the flexibility and the modeling capacity of the network.  In fact, extracting higher 

representation and a highly non-linear statistical structure at each layer has a great impact on 

improving the segmentation accuracy of the system.  Finally, the generative pre-training 

phase using an unsupervised layer-wise training algorithm represents the most important 

advantage of DBN-DNNs. On one hand, this phase aims at extracting regularities in the 

input data so as to adjust the weights for a good generative model; on the other hand, it 

initializes the weights of the network for a good discrimination between the labels during the 

supervised learning stage. Indeed, the pre-training phase plays an important role in reducing 

over fitting, improving the generalization, and reducing the computation during the 

discriminative fine-tuning with back-propagation learning algorithm. 

        Due to these advantages, generatively pre-trained DNNs are competitive to GMMs for 

acoustic modeling.  

2.17   

2.18 Related work on Deep Neural Network for Acoustic Models 

        In the past few years, research has been done in the field of speech knowledge research. 

Deep learning has arisen as a recent area of machine learning and use in speech systems.  

Deep Neural Networks having GPU cards with high compute capability are used for 

modeling for the speech systems. 

        The HTK toolkit is provides DNN for speech systems، KALDI toolkit is having good 

documentation of DNNs script that is useful in the field of speech knowledge research. So, 

the KALDI toolkit is preferable over other toolkits for the implementation of speech models 

based on DNN. The research work on the KALDI ASR toolkit using DNN was studied 

which shows the experimental results of sequence discriminative training based on n-gram 

model [202][203][204] They recommend the training of a DNN based acoustic model of 

continuous speech recognition system for large vocabulary.  The researchers evaluated the 
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recognition of the phone on the Italian corpus with the help of the KALDI toolkit [205].  

Even then the obtained results using DNNs were not superior to the results of the baseline 

method. Cosi explains that it‟s because of insuffi cient size of corpus that failed to tune the 

DNN architecture for language corpus. Researchers performed a case study on the Analysis 

of ASR for the diff erent Indian Languages [206].   In this paper, the significance of Punjabi 

language has been analyzed so that relevant research work can be implemented for Punjabi 

language.   The HTK and SPHINX Speech recognition toolkits were used by them. Feature 

extraction techniques i.e., MFCC and Extended MFCC have also been discussed.   M. Dua 

and Aggarwal used the concept of HMM for speech command recognition (speaker-

dependent) using the Punjabi Language and turned a machine to an intelligent one that 

responded to the instructions in Punjabi Language [207].  

         In many recent papers, it was shown that DNN-HMM models outperform traditional 

GMM-HMM models. In [208], context-depended model based on a deep belief network for 

large-vocabulary speech recognition is presented.  Deep belief networks have un-directed 

connections between the 2 top layers and directed connections to all other layers from the 

layer above. In that research, a hybrid DNN-HMM architecture was used; it was shown that 

DNN-HMM model can outperform GMM-HMMs, and the authors have achieved a relative 

sentence error reduction of 5.8 %. In [209], context-depended DNNs-HMMs (CD-DNN-

HMMs) are described. CDDNN-HMMs combine ANN-based HMMs with tied-state 

triphones and deep-belief network pre-training. Efficiency of the models was evaluated on 

the phone call transcription task. The application of CD-DNN-HMMs has reduced the word 

error rate (WER) from 27.4 % to 18.5 %. An application of the tandem approach to acoustic 

modeling is presented in [210]. The input of the network was a window of successive feature 

vectors. Training of the network was performed according to the standard procedure that is 

used for a hybrid DNN-HMM system.  Then extracted features were fed to the GMM-HMM 

system. The training was performed according to the standard expectation-maximization 

procedure.  The authors have obtained a relative WER reduction of 31 % over baseline 

MFCC and PLP acoustic features with the context-independent models. In [211], the 

possibility of obtaining the features directly from DNN without a conversion of output 

probabilities to features suitable for GMM-HMM system was researched. Experiments with 

the use of a 5-layer perceptron in a bottle-neck layer were conducted. After training the 

DNN, the outputs of the bottle-neck layer were used as features for GMM-HMM system for 
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speech recognition system. There was obtained the reduction of WER comparing to the 

system with probabilistic features, as well as the reduction of model size because only a part 

of the network was used. Research of DNN for acoustic modeling for large vocabulary 

continuous speech recognition (LVCSR) was also presented in [212]. In this paper, the 

authors have conducted an empirical investigation on what aspects of the DNN-based AM 

design are most important for performance of a speech recognition system.  It was shown 

that increasing model size and depth is effective only up to a certain point. In addition, a 

comparison of standard DNNs, convolution NNs and deep locally untied NNs was made. It 

was found out that deep locally untied NNs perform slightly better. In [213], the KALDI 

toolkit was used for DNN-based children speech recognition for Italian. Karel‟s and Dan‟s 

DNN training was explored. Speech recognition results obtained using the Karel‟s 

implementation were slightly better than the Dan‟s DNN, but both implementations 

significantly outperformed non-DNN configuration. The KALDI toolkit was used for 

Serbian speech recognition in [214]. The DNN models were trained using the Karel‟s 

implementation on a single CUDA GPU. Depending on the test set a relative WER reduction 

of 15–22 % comparing to the GMM-HMM system was obtained. In [215], KALDI was used 

in conjunction with PDNN (Python deep learning toolkit) developed under Theano 

environment (http://deeplearning.net/software/theano/). The authors used KALDI for 

training GMMs. DNN was trained with the help of PDNN, and then obtained DNN models 

were loaded into KALDI for speech recognition. Four receipts were described in [215]: 

DNN Hybrid, Deep Bottleneck Feature (BNF) Tandem, BNF+DNN Hybrid, convolution NN 

Hybrid. 
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Chapter III 

 

 

 

 

Research Methodology 

 

 

 

 

 

        In this chapter discuss the overall design of the proposed models, Gaussian mixture 

models, GMM formulation, Limitations of GMMs in GMM-HMM based acoustic models, 

DNN-HMM hybrid architecture for acoustic modeling, Interfacing DNNs with HMMs, Time 

delay neural network, Automatic segmentation model implementation using HTK, the 

standard KALDI receipt for DNN-based acoustic modeling steps, Implementation of 

automatic segmentation model at phoneme level using KALDI toolkit. 

3.0 Introduction  

        Investigations of combining artificial neural networks (ANNs) and hidden Markov 

models (HMMs) for acoustic modeling were started between the end of the 1980s and the     

beginning of the 1990s [179].   At present the usage of ANNs in automatic speech 

recognition (ASR) becomes very popular because of increasing performance of computers.  

For acoustic modeling, ANNs are often combined with HMMs using hybrid and tandem 

methods [179].  In the hybrid method, ANNs are used for estimating the posterior 

probabilities of an HMM state. In the tandem method, outputs of ANNs are used as an 

additional stream of input features for HMM-GMM (Gaussian Mixture Models) system. 

      In this research, present a study on deep neural network (DNN) based acoustic models 

(AMs) for Quran verses phoneme segmentation.  For training and testing the model and used  
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the open-source KALDI toolkit [180].  The KALDI software is written in C++ and based on 

the Open FST library and uses BLAS and LAPACK libraries for linear algebra. There are 

two implementations of DNNs in KALDI.  The first one is Karel‟s implementation [181]. It 

supports Restricted Boltzmann Machines (RBM) pre-training, stochastic gradient training 

using graphics processing units (GPU), and discriminative training. The second 

implementation is Dan‟s implementation [182].  It does not support Restricted Boltzmann 

Machine pre-training; instead, a method like the greedy layer-wise supervised training [183] 

or the “layer-wise backpropagation” [184] is used. For the given research, we have chosen 

the Karel‟s implementation.  

3.1 Overview of the theoretical model 

3.1.1 HMMS for phonetic segmentation 

        The objective here is to build on the extensive knowledge and infrastructure available in the 

speech field to discover alternative phoneme pronunciations for words. The sampling rate is 16 

ksps, and analysis window is 25.6 msec (about 410 samples), with consecutive frames overlap 

by 10 msec. Each window is pre-emphasized and is multiplied by a Hamming window [185].  

The basic feature vector uses the Mel Frequency Cepstrum Coefficients MFCC.  The Mel-

frequency scale is linear frequency spacing below 1000 Hz and a logarithmic spacing above 

1000 Hz. The MFCCs are obtained by taking the Discrete Cosine Transform (DCT) of the log 

power spectrum from Mel spaced filter banks.  The system uses a 12-coefficients basic feature 

vector.  The basic feature vector is usually normalized by subtracting the mean over the sentence 

utterance.  x (0) represents the log Mel spectrum energy and is used to derive other feature 

parameters.  The basic feature vector is highly localized.  To account for the temporal properties, 

3 other derived vectors are constructed from the basic MFCC coefficients: a 40-ms and 80-ms 

differenced MFCCs (24 parameters), a 12-coefficient second order differenced MFCCs, and 3–

dimensional vector representing the normalized power (log energy), differenced power, and 

second-order differenced power The HMM shown in Figure 3.1 to represent the speech 

phonemes. The model, known as Bakis model, has a fixed topology consisting of 3 emitting 

sates and one output state. Output probability distributions in HMM states are modeled with 

mixtures of 8 diagonal covariance Gaussians.  First, context independent HMMs of one Gaussian 

were trained. Then these HMMs were successively extended to one more Gaussian and re-

estimated to up to 8 Gaussians. Baum- 
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Welch re-estimation was used during the whole process.   The phonetic labels used were 

generated automatically from the orthographic transcription using a set of rules.   Alternative 

pronunciations were not considered, but we do not expect this to constitute a major problem 

because the training material was recorded and manually verified to avoid important dialectal 

and pronunciation variations. It is a common practice to use context independent HMMs for 

speech segmentation [186][187].  Context-dependent HMMs can better model the spectral 

movements in phonetic transitions. However, the segmentations they produce tend to be less 

precise than the ones produced by context independent HMMs.  A theoretical explanation for 

this behavior was presented in [188], where it was argued that the cause is the loss of alignment, 

during the training process, between the context dependent HMMs and the phones.  Context-

dependent HMMs are always trained with realizations of phones in the same context.  For that 

reason, the HMMs do not have any information to discriminate between the phone and its 

context.   As a result, the HMM (particularly the lateral states) can end up modeling part of other 

phones or not all the phones. Context-independent HMMs, on the other hand, are trained with 

realizations of phones in different contexts.  For that reason, they should be able to discriminate 

between the phone to model (invariable in all the training examples) and its context (which 

varies). 

 

Figure 3.1 The 5-states HMM phoneme model 
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        Once a phonetic transcription has been selected, automatic segmentation can proceed 

in the following way.   Sentence models are generated by simply concatenating all relevant 

phoneme models.  Next, the speech data are assigned by respectively Viterbi to the acoustic 

model of the complete phoneme sequence. 

        The Viterbi algorithm returns the single best path through the model given the observed 

speech signal x i T i , = 1,2,... , where T is the number of frames in the utterance. 

 

        With si a sequence of HMM states (one state for each time frame) which is consistent with 

the sequence model S,T being the number of time frames.   Thus, the Viterbi algorithm results in 

the segmentation which reaches maximum likelihood for the given feature vectors. 

3.1.2 Gaussian mixture models  

         GMMS are used for modelling continuous distribution components as parametric probability 

distributions (Gaussian or normal), and the entire dataset can be modelled using mixture of such 

distributions or Gaussians. 

        GMMs are powerful in forming smooth approximations over a large class of sample 

distributions.  GMM-based HMMs or GMM/HMM system is the most used ML approach in 

ASR.     A GMM/HMM system is represented by l D (p, A, B), where p is a vector of state prior 

probabilities; A D (ai,j) is the state transition matrix; B D {b1,. . .,bn} is the set of GMMS of state 

j. The HMM state is usually associated with a sub-segment of a phoneme in speech.   A sentence 

is modelled by concatenating HMMs for the sequence of phones and GMM distribution is used to 

generate a vector in the HMM state [88].  

3.1.3 GMM formulation 

        The spectral features extracted from speech are real valued but applying HMMs on 

continuous observations is not directly possible.  Instead, the possible values of an observation 

feature vector ot are assumed to be normally distributed.  The observation likelihood function 

bj(ot) is represented as a Gaussian.  Given a dataset, the mean and variance can be obtained from 

the data, but the state that corresponds to an observation is not known.  Hence, a way is needed to 

assign each observation  
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vector ot to every possible state i, incorporating the probability that the HMM was in state i at 

time t. Let this probability be Yt(i).  Each vector of observation is modelled as a multivariate 

Gaussian with diagonal covariance matrices, and Baum– Welch algorithm is used to estimate the 

probability and to compute the mean and the variance. 

        A mixture of Gaussians is needed to model the multidimensional function and they need to 

be trained.  The usual procedure to train the mixture of Gaussians (GMMs) is to choose M the 

number of Gaussians and splitting the Gaussian into two and running the forward–backward 

algorithm to retrain the Gaussians. This process is repeated until M Gaussians are generated.  

Another approach is to do embedded training where each phone HMM embedded in an entire 

sentence is trained.  Both word segmentation and alignment can be done as a part of the training 

process.  Typically, CD phones are used, and decision-tree-based state tying is used to cluster the 

many states into various clusters [88].     

3.1.4 Limitations of GMMs in GMM-HMM based acoustic models 

        In GMM-HMM acoustic models, GMMs are used to model the relationship between the 

states of the HMM and the acoustic input.  These models have proven efficient in dealing with 

the acoustic variations related to speaker accents, pronunciation variations, and environmental 

noise, etc.  In fact, due to these variations, modeling the state densities of HMM using a mixture 

of Gaussians is more accurate than using a single form of density function.  In addition, the 

availability and the efficiency of the EM algorithm for estimating the parameters of the model 

have played an important role in the success of GMMs in HMM-based acoustic models. Hence, 

it was difficult to find a new method that can outperform GMMs. 

        Despite their efficiency, GMMs do suffer from several shortcomings that should be 

addressed.  In [189], three of the major GMM problems are identified.  First, GMMs assume that 

the data distribution is necessarily Gaussian.  Second, the parameters of GMMs at each HMM 

state are not trained using the whole data of all states but with the subset associated with that 

state given the alignment.  On the other hand, the number of GMM parameters needed to be 

estimated across all states is very big, especially in context-dependent acoustic models, and may 

require a large amount of training data [190].  Finally, techniques used for feature dimensionality 

reduction may significantly reduce the accuracy in estimating the GMM parameters due to the 

potential elimination of some useful information. 

        Another critical shortcoming of GMMs in acoustic modeling is that they may require a 

large number of diagonal Gaussians or full-covariance Gaussians to model highly nonlinear data; 
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whereas other models exist and can fit such kind of data with only a few parameters [191]. In 

[192], it was argued that GMMs are also statistically inefficient at modeling high-dimensional 

data with componential structure.  This inefficiency was attributed to the fact that for two 

significantly different sub-bands of independent patterns, when the first contains N different 

patterns and the second contains M different patterns, a GMM requires N.M components to 

model such data.  In fact, each data has only one single latent cause, and hence each component 

must fit both sub-bands.  However, only N + M components are necessary to explain such data 

for a model that uses multiple causes, in which each component is specific for a single sub-band.  

This shortcoming of GMM may affect the efficiency of GMM-HMM based ASR system where a large 

number of Gaussians at each HMM state must be estimated from a sub-set of the data derived from the 

alignment. Furthermore, in GMMs, every single Gaussian aims at modeling a partition from the input 

space. Having many Gaussians with independent means may lead to local generalization [193]. 

        Many approaches have been proposed to overcome some of the limitations of GMMs.  

Since GMMs are typically trained as generative models using the EM algorithm, applying a 

subsequent stage of discriminative training was a first attempt to significantly improve the 

GMM-HMM acoustic models. The objective function of the discriminative training has a close 

relationship with the main goal of the ASR system.  Maximum Mutual Information Estimation 

(MMIE) is one of the most common discriminate estimation methods. It aims at maximizing the 

separation between acoustic models by considering not only the likelihood of the training word 

strings given the labels, but also the probability of other possible word string hypotheses [194]. 

        Using feed forward ANNs to replace GMMs in continuous density HMM for acoustic 

modeling was an alternative means to address the problem of GMMs discussed above. The 

introduction of an effective new procedure for learning deep neural networks has motivated 

researchers to apply deeper architecture for acoustic modeling. 

        On the other hand, it has been asserted that [191] the information embedded in speech can 

be represented with lower-dimensional data. However, GMMs are incapable of exploring highly 

correlated features. In consequence, they cannot handle the latent information from a large 

window of frames. 

3.1.5 DNN-HMM hybrid architecture for acoustic modeling 

        Early attempts to use feed-forward ANNs as a substitute for GMMs in HMM-based 

acoustic models offered several advantages over GMMs. In [173], three major ones were 
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reported.  First, in contrast to GMMs, ANNs do not require detailed assumptions about the 

data distribution in order to estimate the posterior probabilities over HMM states. Second, 

when using ANNs, it is possible to apply different types of data, including the combination 

of discrete and continuous features. Finally, yet importantly, ANNs make use of all the 

training data to model their parameters. Furthermore, ANNs have shown great capabilities at 

modeling highly nonlinear data. 

        The effectiveness of the new deep learning algorithms developed recently has 

strengthened the idea that neural networks are suitable for acoustic modeling.  As reviewed 

in the previous, the algorithm for training deep neural networks consists of a two-step‟s 

procedure: first, a generative pre-training step that aims at initializing the weights of the 

network and extracting higher new representations of the input at each layer, followed by a 

discriminative fine-tuning step with the backpropagation learning algorithm.  DBNs have 

been the most common technique for generatively pre-training deep networks where each 

layer extracts a new higher representation and new structures from the input.  This pre 

training stage has the great advantage of reducing over fitting and reducing the computation 

cost during the discriminative fine-tuning with the back-propagation algorithm, a cost that 

was considered the major impediment with deep networks.  It also helps the network to 

rapidly converge towards better local minima. In earlier literature, DNNs generatively pre 

trained as DBNs were often called DBNs.  To eliminate any ambiguity, Hinton et al. 

introduced the new name DBN-DNNs in [166]. 

        In combining pre-trained DNNs with HMMs within a single hybrid architecture for 

acoustic modeling, researchers intended to combine the representational power of DBN- 

DNNs and the sequential modeling capability of HMMs. 

3.1.6 Interfacing DNNs with HMMs 

        To interface DNN with HMM for modeling acoustic data, the network is trained to 

estimate the probability distribution over the states of the HMM.  Considered as static 

classifiers with fixed dimensionality input vectors, DNNs are unable to perform sequence  

 

segmentation with variable dimensionality of the inputs and outputs such as speech 

segmentation [170].  However, HMMs are the most powerful tool that can handle sequential 

patterns using dynamic programming.  Thus, combining HMMs and DNNs fruitfully takes 
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advantage of both static and sequential pattern recognition, which makes such hybrid 

architecture very useful for speech segmentation. 

        DNN trained to predict the posterior probability over Monophone HMM states. The 

training data consist of a window of n successive frames of speech coefficient.  A network 

composed of many layers of nonlinear units was first generatively pre-trained using RBMs 

and contrastive divergence to extract new features of the input at each layer.  Then, the 

network was discriminatively trained with the back-propagation algorithm to predict the 

label of the central frame.  In fact, the output layer that represents the states of the HMMs 

provides a probability distribution over the possible labels of the central frame.  Figure 3.2 

illustrates the architecture of DNN for phone segmentation. 

  As described in the second chapter, an HMM is defined by 3 parameters: 

the initial state distribution πi = P (s0 = i), the transition probability aij = P (st = j st−1 = i) , 

which is the probability of taking a transition  from state i to state j at time t,  the emission 

probability  bj(xt)  =  P (xt|st  =  j)  defined  as  the  probability  that  the state j generates the 

acoustic observation xt at time t. In GMM-HMM, this emission probability is estimated using 

the GMMs. 

        In DNN-HMM, DNN is used instead of GMM to estimate the emission probability at 

each state. In phoneme segmentation, the DNN produces the posterior probability, P (st|xt), 

of the mono-phone HMM states given the acoustic observation xt. However, 

p(xt|st) = p(st|xt). p(xt)/p(st). 

         The probability p(st) can be estimated from an initial state-level alignment on the 

coustic training data using a Viterbi decoder. The probability p(xt) is assumed to be” 

independent of the word sequence and can be ignored during decoding” [175].  Hence, to get 

the emission probability P (xt|st), the posterior probability p(st|xt) should be divided by the 

prior p(st). However, it is asserted that this division may not provide improvement in 

segmentation accuracy under some conditions [175].  

        The DNN-HMM hybrid architecture can also be used for acoustic modeling in 

continuous speech segmentation task, as presented in [175][176] In contrast to the context-

independent (CI) DNN-HMM hybrid architecture described above for phoneme 

segmentation, the DNN can be trained to predict probability distributions over tri-phone 

HMMs, forming thus a context-dependent (CD) DNN-HMM hybrid architecture for large-

vocabulary continuous speech segmentation task.  The idea is to use senones as modeling 
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units rather than mono- phones. The method involves two main steps [175].  First, the 

Viterbi algorithm is used to generate the senone-level alignment on a tied tri-phone GMM-

HMM baseline.  Then, the DNN-HMM is trained to predict the senones in each frame or 

sequence of frames. It has been proven that the better the baseline system used during forced 

alignment, the better the results of the CD-DNN-HMM system [175] [166].  

        DNN-HMM hybrid architecture has shown successful results and good segmentation 

performance in both isolated and continuous speech segmentation tasks.  In fact, DBN-

DNNs have proven capability to outperform GMMs in acoustic modeling.  The following 

subsection 

 

Figure 3.2 Interfacing DNN and HMM for continuous speech [177] 

         explores the main differences between GMMs and DNNs, and the main strengths of 

both deep-layered networks and the new learning algorithm for acoustic modeling. 

3.1.7 Time delay neural network  

       In a time delay neural network, the temporal context is modeled by using a hierarchical 

architecture. Each layer in a TDNN operates at a different temporal resolution. The outputs 

of the activation from previous hidden layer are spliced as the input of the current layer. 

Therefore, the current layer operates at a much wider context, compared with the previous 

layer. As we go to higher layers of the network, increasingly wide context is seen by the 

network.  

        Convolutional Neural Networks (CNNs [200]), the transforms in the same layer of a 

TDNN are tied across time in order to reduce the number of parameters and make the 
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transformation invariant to time shift of the input [200].  TDNNs are seen as a precursor to 

the CNNs.  proposed a method to subsample the TDNN network. The splicing configuration 

{-1,1} means that we splice the input at current time step minus 1 and the current time step 

plus 1 (i.e. the current frame is dropped).  Sub-sampling reduces the dimension of the input 

and thus the model size.  

        The overall input contexts of TDNNs are limited, for example, asymmetric context 

windows of up to 16 frames in past and 9 frames in the future are investigated in [200].  The 

success of TDNNs indicates that the most valuable information for the recognition of the 

current frame lies in a relatively narrow context. This is true even when recurrent models are 

used. Truncated Back Propagation Through Time.  

3.2 Automatic verses Segmentation framework 

In the Automatic verses Segmentation framework, all the steps mentioned below is followed 

3.2.1. Data preparation 

        Data preparation is an important step of solving machine learning problems. An 

accurate, properly prepared text and speech corpus is very important for speech research 

areas.  It is the  

first stage of automatic speech segmentation model. It has high contribution to the 

performance of automatic speech segmenter.  

        the steps for getting data ready for speech segmentation model includes data collection, 

manual segmentation, lexicon preparation and pronunciation dictionary preparation. 

3.2.2. Feature extraction 

        The final stage of data preparation is to parameterize the raw speech of the waveforms 

into sequences of feature vectors. This means that HTK is not as efficient in processing wav 

files as it is with its internal format.  Therefore, should convert wav files to another format 

called MFCC format. Feature extraction is the process of transforming the speech waveform 

into a set of feature vectors. Mel Frequency Cepstral Coefficients is used to parameterize the 

speech signals into feature vectors with MFCC coefficients. 

 

3.2.3. HMM model building 

        An acoustic model is a file that contains a statistical representation of each distinct 

sound that make-up each word used in grammar. Acoustic models are statistical models 
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which capture the correspondence between a short sequence of acoustic vectors and an 

elementary unit of speech. The elementary units of speech that are used in our research is the 

phoneme.      

        HMM is used to model the acoustic component, Acoustic modeling process takes 

pronunciation dictionary, training text corpus, feature vectors of the training speech corpus 

as main inputs.  

3.2.4 Automatic Verses Segmentation Framework 

        The proposed models are composed of three stages to get Automatic verses 

Segmentation include audio segmentation, features extraction and phoneme boundary 

detection. 

        the input audio is segmented into non-overlapping frames. These smaller frames are 

used in feature extraction for classification of speech/non-speech segments.  

        Figure 3.3 summarized the general steps which need to get the Automatic verses 

Segmentation by using different models represented in htk tool and kaldi tppl. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Automatic verses Segmentation framework 

 

 

3.3 Automatic segmentation model implementation using HTK 

3.3.1 Dictionary preparation 
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        The audio file and its word-level transcription are input.  A wordlist and a dictionary are 

created as shown in Figure 3.4, also a list of phones was created for which HMMs will be 

estimated.  The model created initially will lack small pause.  Orthographic transcriptions are 

converted into the HTK label format- mlf (master label file).  The same thing is done for the 

phones in transcripts as shown in Figure 3.5. 

 

Figure 3.4 Section of dictionary file  

 

 

Figure 3.5 Section of Phones file 

 

3.3.2 Creating MFCCs  
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        Mel Frequency Cepstral Coefficients (MFCCs) is the standard in this research. To 

create the cepstral, which is the raw data used to form HMMs, we use the HTK tool HCopy 

which takes a single configuration file as input. This configuration file contains information 

such as sampling rate, pre-emphasis coefficient, window size etc.  

        The final stage of data preparation is to parameterize the raw speech waveforms into 

sequences of feature vectors. Here configuration parameters for feature extraction are given 

from configuration script config as shown in Figure 3.6. 

 

Figure 3.6 Config file [218] 

          In config file TARGETKIND = MFCC_0_D_A, 

For each signal frame, the following coefficients are extracted:  

        The 12 first MFCC coefficients [c1,…, c12] (since NUMCEPS = 12).  

        The “null” MFCC coefficient c0, which is proportional to the total energy in the frame 

(suffix “_0” in TARGETKIND). 

         13 “Delta coefficients”, estimating the first order derivative of [c0, c1,…, c12] (suffix 

“_D” in TARGETKIND).  

         13 “Acceleration coefficients”, estimating the second order derivative of [c0, c1,…, 

c12] (suffix “_A” in TARGETKIND). 

         Altogether, a 39-coefficient vector is extracted from each signal frame.  

         hcopy.scp is a script which contains source/target paths for the wav*s files and its 

correspondent MFCCS for the training data set as shown in Figure 3.7. 
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Figure 3.7 section of the hcopy file 

3.3.3 HMM Initialization and Training 

3.3.3.1 HMM Definition 

         The first step is to choose a priori a topology for each HMM: 

 1. Number of states 

 2. Form of the observation functions (associated with each state)  

 3. Disposition of transitions between states 

        Such a definition is not straightforward. There is no fixed rule for it. In HTK, an HMM 

is described in a text description file as shown in Figure 3.8.  

        After continuous researching and reviews from past papers [3]. I have concluded that 

the best state-of-art for this model would be 7 states, and in every state a single mixture. 

 

Figure 3.8 The description file for the HMM [218] 

        <NumStates> 5 gives the total number of states in the HMM, including the 2 non-

emitting states 1 and 5. 
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       <State> 2 introduces the description of the observation function of state 2.  Here we 

have chosen to use single-gaussian observation functions, with diagonal matrices. Such a 

function is entirely described by a mean vector and a variance vector (the diagonal elements 

of the autocorrelation matrix). States 1 and 6 are not described since they have no 

observation function. 

        <Mean> 39 0.0 0.0 (...) 0.0 (x 39)   gives the mean vector (in a 39-dimension 

observation space) of the current observation function. Every element is arbitrary initialized 

to 0: the file only gives the “prototype” of the HMM (its global topology). These coefficients 

will be trained later. 

        <Variance> 39 1.0 1.0 (...) 1.0 (x 39) gives the variance vector of the current 

observation function. Every element is arbitrary initialized to 1. 

        <TransP> 5 Gives the 5x5 transition matrix of the HMM.  

        Where aij is the probability of transition from state i to state j. Null values indicate that 

the corresponding transitions are not allowed.  The other values are arbitrary initialized (but 

each line of the matrix must sum to 1).  They will be later modified, during the training 

process. 

3.3.3.2 HMM flat-start Initialization 

        The HTK tool HCompV will scan a set of data files, compute the global mean and 

variance and set all of the Gaussians in a given HMM to have the same mean and variance. 

Hence, assuming that a list of all the training files is stored in train.scp as shown in Figure 

3.9, Here train.scp is a script containing list of MFCC files, which are participating in 

Training. hmm0 is output directory name.  proto is basic HMM definition file، then get 

output macro file vFloors and hmmdefs file. 

 

Figure 3.9 section of the train.scp file 

            HCompV has several options specified for it. The -f option causes a variance floor 

macro (called vFloors) to be generated which is equal to 0.01 times the global variance. This 
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is a vector of values which will be used to set a floor on the variances estimated in the 

subsequent steps. The –m option asks for means to be computed as well as variances.  Given 

this new prototype model stored in the directory hmm0, a Master Macro File (MMF) called 

hmmdefs containing a copy for each of the required Monophone (in this model we have 72 

monophones) HMMs is constructed by manually copying the prototype and relabeling it for 

each required monophone (including “sil”). The format of an MMF is similar to that of an 

MLF and it serves a similar purpose in that it avoids having a large number of individuals 

HMM definition files as shown in Figure 3.10. 

 

Figure 3.10 section from Macros and hmmdefs files [218] 

3.3.4 Re-estimation HTK 

         allows re-estimating the flat start monophones using the HTK tool HERest. For this, 

HMM definitions are created in which each unique phoneme is defined by the prototype.  

Re-estimation is done thrice to improve the model.  

        re-estimated using the embedded re-estimation tool HERest invoked as illustrated in 

figure 3.11. 
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Figure 3.11 Re-estimation tool HERest [218] 

3.3.5 Training and segmenting  

        Now that several versions of the model to be used have been created and trained, it's 

time to fix a few assumptions that have been made on the way.  The first is the two types of 

"silence" in the corpus- sil, goes at the beginning and end of sentences, and sp, which lacks 

an HMM. 

        The two should be similar, but not entirely the same, HMM and phones.  

        To make the models more robust following steps are 

3.3.5.1 Fixing the silence models  

        The middle state from the model for sil is copied to build a model for small pause sp.  A 

script-based editor for HMMs, HHed is used. 

3.3.5.2 Training Re-estimation  

        is performed twice more with the new model for sp which has been introduced while 

fixing the silence model. 

3.3.5.3 Re-aligning data 

         The point of this re-alignment is to check for alternate pronunciations of words in the 

dictionary. The generated dictionary may contain multiple pronunciations; at this step, HTK 

decides which pronunciation is more applicable.  Here Viterbi algorithm is implemented 

using the HVite, HTK tool, as shown in Figure 3.12.  

        As noted earlier, the dictionary contains multiple pronunciations for some words, 

particularly function words.  The phone models created so far can be used to realign the 
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training data and create new transcriptions. This can be done with a single invocation of the 

HTK recognition tool HVite. 

 

 

Figure 3. 12 HVite tool [218] 

3.3.5.4 More training  

        After the most likely pronunciation has been chosen for each item in the dictionary in 

the previous step, two more rounds of training are performed using HERest.  

3.3.5.5 The creation of Triphones from Monophones 

        The monophones are subsequently copied into a set of tied triphone models (we used 

the script driven editor” HHEd” from the HTK toolkit for tying), and triphone models are 

computed using embedded re-estimation. 

3.3.5.6 Initiating the Adapted System 

        Although the training techniques described previously can produce high performance, 

these systems can be improved upon by customizing the HMMs to the characteristics of a 

particular speaker. HTK provides the tools HEREST and HVITE to perform adaptation 

using a small amount of enrollment or adaptation data. The two tools differ in that 

HEREST performs offline supervised adaptation while HVITE recognizes the adaptation 

data and uses the generated transcriptions to perform the adaptation.  Generally, more robust 

adaptation is performed in a supervised mode, as provided by HEREST, but given an initial 

well trained model set, HVITE can still achieve noticeable improvements in performance. 

 

3.3.5.7 Segmenting 

http://www.seas.ucla.edu/spapl/weichu/htkbook/node41_mn.html
http://www.seas.ucla.edu/spapl/weichu/htkbook/node49_mn.html
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         We have a sufficient model to obtain time-aligned phoneme transcriptions. The model 

works by adjusting alignments to maximize the degree to which words cluster, so HTK 

should have computed the most likely location of every phoneme using Viterbi algorithm 

(within the linear order of a sentence), using the model we've built so far. At this point, there 

is another possibility for refining the model before outputting the segmentations. HVite is 

used once more to output the final segments. 

        Aligned is a master label file, which contains phoneme-level Transcriptions with time 

stamps. Units for time stamps as shown in Figure 3.13. 

 

Figure 3.13 section from the Aligned.mlf file 
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     All the steps to build GMM-HMM base automatic segmentation model at phoneme level 

summarized in Figure 3.14. 

 

Figure 3.14 Architecture of the GMM-HMM base automatic segmentation at phoneme level 

 

3.4 The standard KALDI receipt for DNN-based acoustic modeling 

steps 

        KALDI is an open-source toolkit for speech recognition written in C++, the goal of 

KALDI is to have modern and flexible code that is easy to understand, modify and extend, 



 
 
 
 
 

 
74  

KALDI is available on Source Forge (see http://KALDI.sf.net/).  The tools compile on the 

commonly used Unix-like systems and on Microsoft Windows. The standard KALDI receipt 

for DNN-based on acoustic modeling steps 

3.4.1 Data preparation 

        In the data preparation step, we will create directories in data which will store any 

training and test sets, features and eventually a language model. 

Create files for: 

3.4.1.1 Text 

        The text file is essentially the utterance-by-utterance transcript of the corpus. This is a 

text file with the following format: 

utt_id WORD1 WORD2 WORD3 WORD4 … 

utt_id = utterance ID 

Example text file: 

110236_20091006_82330_F_0001 I‟M WORRIED ABOUT THAT 

110236_20091006_82330_F_0002 AT LEAST NOW WE HAVE THE BENEFIT 

110236_20091006_82330_F_0003 DID YOU EVER GO ON STRIKE 

… 

120958_20100126_97016_M_0285 SOMETIMES LESS IS BETTER 

120958_20100126_97016_M_0286 YOU MUST LOVE TO COOK 

Once you‟ve created text, the lexicon will also need to be reduced to only the words present 

in the corpus. This will ensure that there are no extraneous phones that we are “training”. 

3.4.1.2 Wav.scp 

        av.scp contains the location for each of the audio files.  If your audio files are already in 

wav format, use the following template: 

        file_id path/file, Example wav.scp file: 

110236_20091006_82330_F path/110236_20091006_82330_F.wav 

111138_20091215_82636_F path/111138_20091215_82636_F.wav 

111138_20091217_82636_F path/111138_20091217_82636_F.wav 

… 

120947_20100125_59427_F path/120947_20100125_59427_F.wav 

120953_20100125_79293_F path/120953_20100125_79293_F.wav 

120958_20100126_97016_M path/120958_20100126_97016_M.wav 

http://kaldi.sf.net/
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        If your audio files are in a different format (sphere, mp3, flac, speex), you will have to 

convert them to wav format. 

3.4.1.3 Utt2spk 

        utt2spk contains the mapping of each utterance to its corresponding speaker.  As a side 

note, engineers will often conflate the term speaker with recording session, such that each 

recording session is a different “speaker”.  Therefore, the concept of “speaker” does not have 

to be related to a person – it can be a room, accent, gender, or anything that could influence 

the recording. When speaker normalization is performed then, the normalization may 

actually be removing effects due to the recording quality or particular accent type.  This 

definition of “speaker” then is left up to the modeler. 

        utt2spk is a text file with the following format: 

utt_id spkr 

utt_id = utterance ID 

spkr = speaker ID 

Example utt2spk file: 

110236_20091006_82330_F_0001 110236 

110236_20091006_82330_F_0002 110236 

110236_20091006_82330_F_0003 110236 

110236_20091006_82330_F_0004 110236 

… 

120958_20100126_97016_M_0284 120958 

120958_20100126_97016_M_0285 120958 

120958_20100126_97016_M_0286 120958 

 

 

 

3.4.1.4 Spk2utt 

        spk2utt is a file that contains the speaker to utterance mapping.  This information is 

already contained in utt2spk, but in the wrong format. The following line of code will 

automatically create the spk2utt file and simultaneously verify that all data files are present 

and in the correct format: 

utils/fix_data_dir.sh data/train 
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        While spk2utt has already been created, you can verify that it has the following format: 

spkr utt_id1 utt_id2 utt_id3 

3.4.1.5 lexicon.txt 

        You will need a pronunciation lexicon of the language you are working on.  A good 

English lexicon is the CMU dictionary, which you can find here.  The lexicon should list 

each word on its own line, capitalized, followed by its phonemic pronunciation 

WORD W ER D 

LEXICON L EH K S IH K AH N 

        The pronunciation alphabet must be based on the same phonemes you wish to use for 

your acoustic models.  You must also include lexical entries for each “silence” or “out of 

vocabulary” phone model you wish to train. 

3.4.2 Features extraction 

        Mel Frequency Cepstral Coefficients (MFCC) are the most used features, but 

Perceptual Linear Prediction (PLP) features and other features are also an option.  These 

features serve as the basis for the acoustic models. 

         We‟ll now generate the features and the corresponding feats.scp script file, that will 

map utterance ids to positions in an archive, e.g. feats.ark. For GMM-HMM systems we 

typically use MFCC or PLP features, and then apply cepstral mean and variance 

normalisation. 

          feature extraction and waveform-reading code aims to create standard MFCC features, 

setting reasonable defaults but leaving available the options that people are most likely to 

want to tweak (for example, the number of mel bins, minimum and maximum frequency 

cutoffs, and so on).  This code only reads from .wav files containing pcm data. These files 

commonly have the suffix .wav or. pcm (although sometimes the .pcm suffix is applied to 

sphere files; in this case the file would have to be converted). If the source data is not a wave 

file then it is up to the user to find a command-line tool to convert. 

        The command-line tools compute-mfcc-feats and compute the features; as with other 

KALDI tools, running them without arguments will give a list of options. The example 

scripts demonstrate the usage of these tools. 

3.4.2.1 Computing MFCC features 

        Here we describe how MFCC features are computed by the command-line tool 

compute-mfcc-feats. This program requires two command-line arguments: an rspecifier to 
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read the .wav data (indexed by utterance) and a w specifier to write the features (indexed by 

utterance); see The Table concept and Specifying Table formats: wspecifiers and rspecifiers 

for more explanation of these terms.  In typical usage, we will write the data to one big 

"archive" file but also write out an "scp" file for easy random access; see Writing an archive 

and a script file simultaneously for explanation. The program does not add delta features (for 

that, see add-deltas). It accepts an option –channel to select the channel (e.g. –channel=0, –

channel=1), which is useful when reading stereo data. 

        The computation of MFCC features is done by an object of type Mfcc, which has a 

function Compute() to compute the features from the waveform. 

        The overall MFCC computation is as follows: 

1. Work out the number of frames in the file (typically 25 ms frames shifted by 10ms 

each time). 

2. For each frame: 

3. Extract the data, do optional dithering, preemphasis and dc offset removal, and 

multiply it by a windowing function (various options are supported here, e.g. 

Hamming) 

4.  Work out the energy at this point (if using log-energy not C0). 

5. Do FFT and compute the power spectrum 

6. Compute the energy in each mel bin; these are e.g. 23 triangular overlapping bins 

whose centers are equally spaced in the mel-frequency domain. 

7. Compute the log of the energies and take the cosine transform, keeping as many 

coefficients as specified (e.g. 13) 

8. Optionally do cepstral liftering; this is just a scaling of the coefficients, which 

ensures they have a reasonable range. 

        The lower and upper cutoff of the frequency range covered by the triangular mel bins 

are controlled by the options –low-freq and –high-freq, which are usually set close to zero 

and the Nyquist frequency respectively, e.g. –low-freq=20 and –high-freq=7800 for 16kHz 

sampled speech. 

        The features differ from HTK features in several ways, but almost all of these relate to 

having different defaults.  With the option –HTK-compat=true, and setting parameters 

correctly, it is possible to get very close to HTK features. One possibly important option that 

we do not support is energy max-normalization.  This is because we prefer normalization 
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methods that can be applied in a stateless way and would like to keep the feature 

computation such that it could in principle be done frame by frame and still give the same 

results. The program compute-mfcc-feats does, however, have an option –subtract-mean to 

subtract the mean of the features. This is done per utterance; there are different ways to do it 

per speaker (e.g. search for "cmvn", meaning cepstral mean and variance normalization, in 

the scripts). 

3.4.3 Training a Monophone model 

        A Monophone model is an acoustic model that does not include any contextual 

information about the preceding or following phone.  It is used as a building block for the 

triphone models, which do make use of contextual information. 

        *Note: from this point forward, we will be assuming a Gaussian Mixture Model/Hidden 

Markov Model (GMM/HMM) framework.   This is in contrast to a deep neural network 

(DNN) system. 

        The parameters of the acoustic model are estimated in acoustic training steps; however, 

the process can be better optimized by cycling through training and alignment phases. This is 

also known as Viterbi training (related, but more computationally expensive procedures 

include the Forward-Backward algorithm and Expectation Maximization).  By aligning the 

audio to the reference transcript with the most current acoustic model, additional training 

algorithms can then use this output to improve or refine the parameters of the model. 

Therefore, each training step will be followed by an alignment step where the audio and text 

can be realigned. 

3.4.4 Training a triphone model  

        While Monophone models simply represent the acoustic parameters of a single 

phoneme, we know that phonemes will vary considerably depending on their particular 

context. The triphone models represent a phoneme variant in the context of two other (left 

and right) phonemes. 

        At this point, we‟ll also need to deal with the fact that not all triphone units are present 

(or will ever be present) in the dataset.   There are (# of phonemes)3 possible triphone 

models, but only a subset of those will occur in the data. Furthermore, the unit must also 

occur multiple times in the data to gather sufficient statistics for the data.   A phonetic 

decision tree groups these triphones into a smaller amount of acoustically distinct units, 



 
 
 
 
 

 
79  

thereby reducing the number of parameters and making the problem computationally 

feasible. 

3.4.5 Training a triphone model with delta and delta-delta features 

        computes delta and double-delta features, or dynamic coefficients, to supplement the 

MFCC features.  Delta and delta-delta features are numerical estimates of the first and 

second order derivatives of the signal (features).  As such, the computation is usually 

performed on a larger window of feature vectors.  While a window of two feature vectors 

would probably work, it would be a very crude approximation (similar to how a delta-

difference is a very crude approximation of the derivative).  Delta features are computed on 

the window of the original features; the delta-delta are then computed on the window of the 

delta-features. 

3.4.6 Training a triphone model with Linear Discriminative 

Analysis (LDA) and Maximum Likelihood Linear Transform 

(MLLT) 

        stands for Linear Discriminant Analysis – Maximum Likelihood Linear Transform. The 

Linear Discriminant Analysis takes the feature vectors and builds HMM states, but with a 

reduced feature space for all data.  The Maximum Likelihood Linear Transform takes the 

reduced feature space from the LDA and derives a unique transformation for each speaker. 

MLLT is therefore a step towards speaker normalization, as it minimizes differences among 

speakers. 

3.4.7 Speaker adapted training (SAT) 

        stands for Speaker Adaptive Training. SAT also performs speaker and noise 

normalization by adapting to each specific speaker with a particular data transform.  This 

results in more homogenous or standardized data, allowing the model to use its parameters 

on estimating variance due to the phoneme, as opposed to the speaker or recording 

environment. 

3.4.8 Training on feature space maximum likelihood linear 

regression (fMLLR) adapted features 

        stands for Feature Space Maximum Likelihood Linear Regression. After SAT training, 

the acoustic model is no longer trained on the original features, but on speaker-normalized 

features. For alignment, we essentially must remove the speaker identity from the features by 
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estimating the speaker identity (with the inverse of the fMLLR matrix), then removing it 

from the model (by multiplying the inverse matrix with the feature vector).  These quasi-

speaker-independent acoustic models can then be used in the alignment process. 

3.4.9 Training the final DNN-HMM model 

        The DNN-HMM model is trained using fMLLR-adapted features; the decision tree and 

alignments are obtained from the SAT-fMLLR GMM system. 

        CTM is a master label file, which contains phoneme-level Transcriptions with time 

stamps. Units for time stamps, All the steps to build  DNN-HMM base automatic 

segmentation model at phoneme level summarized in Figure 3.15. 

 

Figure 3.15 Architecture of the DNN-HMM base automatic segmentation at phoneme level 

3.5 Implementation of automatic segmentation model at phoneme 

level using KALDI toolkit 

        The model started with the initialization phase. According to KALDI toolkit, Speech 

features were calculated and used in KALDI recipes.  As primary Cepstral features (used in 

AMs mono and tri1), we utilised 13 MFCCs including the zeros Cepstral coefficient, which 

were calculated for the short-term frame with the length of 25 ms and with the step of 10 ms 
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above the signal have been shifted. The Cepstral mean of normalization was designated to 

this 13-element vector of short-term static features, and delta (dynamic) and delta-delta 

(acceleration) features accomplished them to the final length of 39.  Linear Discriminative 

Analysis LDA features (used in AM tri2) was evaluated from the context obtained by 

splicing 5 short term feature vectors on both sides, continuing by LDA and Maximum 

Likelihood Linear Transform MLLT, which recognises decorrelation and the reduction of 

the dimension to the length of 40.  

        After the generation of the feature, all the words in the transcription must be 

implemented by the creation of a record-specific dictionary.  Given that the orthography is to 

be phonetical, so the words in the lexicon are made up of their graphemes. KALDI uses the 

lexicon, acoustic model, and transcripts to create dataset-specific finite state transducers as a 

final preparation for the alignment. The baseline 3-gram model was created using SRI 

Language Modelling Toolkit (SRILM). 

        I have used the 3 as the value of N, due to the past researching and it was found that it 

reduces the perplexity which is the performance measurement metrics for the N-gram 

language model evaluation [216] [217]. 

        In pursuance of AM tri3, a linear regression with maximum probability feature-space 

Maximum Likelihood Linear Regression (fMLLR) followed in the feature space for every 

speaker (also called Speaker Adaptive Training SAT).  Ultimately, these 40-dimensional 

fMLLR features with mean and variance normalization in a mutual context were applied as 

input in this AM, we selected TDNN based on acoustic modeling with 6 hidden layers and 

1024 units in each hidden layer. 

 

        The phonetic segmentation depends on the quality of the inputs, obviously, but it also 

depends heavily on the accuracy of the phonetic content entered. The phonetic content of 

utterances can be acquired by a grapheme-to-phoneme conversion or from a pronunciation 

lexicon, which can also cover pronunciation variability by including more pronunciation 

variants.  This approach must be used when setting sound boundaries for spontaneous and 

informal speaking, a higher diversity of language dialects and other conditions with 

relatively high pronunciation variability.  It can be held manually (for some very special 
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condition) or automatically (to add certain sound substitutions or reductions to the regular 

pronunciation based on pre-specified conditions.  

         using a GPU speeds up training by about a factor of (mor than 10) faster than just using 

the CPU in our setup. Without using a GPU, it would take about three months to train the 

best model. 
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Chapter VI 

 

 

 

 

Results Interpretation 

 

 

 

        In this chapter, described the experiments of phoneme level automatic speech 

segmentation based on the design developed in Chapter three and then the experiments 

results are presented for evaluation. Theis experiments covers two models of speech 

segmentation.  

        Firstly, automatic segmentation is implemented with HTK toolkit Secondly, automatic 

segmentation is implemented with KALDI toolkit.  

4.0 Experiment No (1) 

The model was built with the same mentioned steps in section  3. 3 

        The data split chosen for all models in this research was 70% for training and 30% for 

testing because all research in this field chooses the same split, for example. [219] [220] 

4.0.1 Dataset 

        Quran verses data set has been recorded with a duration of (2 hours) with having its 

corresponding text corpus, its contains 1.060 recordings of the verses of the Holy Quran with 

the voice of 10 reciters who recite the Quran carefully under the supervision of an expert of 

the correct reading of the ascription to the Messenger (Peace Be Upon Him), the recordings 

of 16 Surahs of the Quran, which are in order in the Holy Quran, starting from Surah Al-

Bayyinah to Surah An-Nas, then using the MFCC to perform the Features Extraction 

Process, then building the Language Model and the Acoustic Model, then performing 

training process for the model at the level of Monophone and Triphone, Dataset Details 

summarized in table 4.1. 
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Table 4.1: Dataset Details in experiment no 1 

 Num.Speakers Num.Waves 

Training Set 7 742 

Test Set 3 318 

 

4.0.2 Evaluation criteria 

        There are several methods by which the performance of the automatic segmentation is 

evaluated, which is explained in detail in [158].  the most suitable evaluation method for my 

research was accuracy accordingly to past papers [18] [222]. 

         The direct method of evaluating the segmentation is to measure the accuracy, i.e., to 

find the number of correct boundaries. The accuracy is usually given as a percentage and is 

calculated as:  

Accuracy =         
                 

                 
   ×100                                 Based on [18], 

        For implementing Boundary Comparison For the given sets of reference (ref) and 

segmented (seg) phone boundaries, we proceed as follows. First, make a search space of 10 

ms (90 ms to the left and 90 ms to the right) around each reference boundary.  If the search 

spaces of two ref boundaries overlap, then shrink the search spaces by truncating at the 

middle of the overlapping area.  This shrinking of the search space is done to prevent a 

single seg boundary from appearing in the search space of two neighboring ref boundaries. 

For comparison, a single boundary from the ref set is taken along with its search space.  Any 

seg boundary that lies within the search space of this ref boundary is considered a match 

otherwise a miss.  This is repeated for all ref boundaries. The result is obtained by taking the 

mean of the results from all the utterances. 

        The accuracy was calculated in all the experiments conducted in this research in the 

same way as previously explained. 
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Figure 4.1 Manual Segmentation at word level by PRAAT tool 

 

 

 

 

 

 

 

 

Figure 4.2 Manual Segmentation at phonetic level using PRAAT tool 

        Figure 4.1 shows the representation of a word by the PRAAT tool for one of the verses 

from Surat Al-Bayinah at the word level. Figure 4.2 shows the representation of a word at 

the phonemic level. As shown in the red color, PRAAT tool allows you to determine the 

beginning and end of each phoneme by time, in a fraction of a second, and depending on 
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that, it is determining the begin boundary and end boundary for every phoneme (manual 

segmentation). 

4.0.3 Results  

        The goal in speech segmentation is not to achieve a perfect phonetic segmentation. 

Automatic phonetic segmentations are generally evaluated by comparison with 

segmentations produced manually, which is the most accurate segmentation method known 

so far, but by no means error-free.  

        To measure the performance of automatic speech segmentation, phoneme-mapping 

concept is used. The manually segmented phonemes boundaries are compared with each 

phoneme found during automatic speech segmentation. The formulas used to calculate the 

accuracy of the Automatic phonetic segmentations mention in the Evaluation Criteria 

section, 

in our study the accuracy was evaluated using two different tolerance values 5ms, 10ms as 

can be seen in table 4.2. 

        Table no. 4.2 shows the results of comparison between the segmented results obtained 

using HTK with the manually segmented results using PRAAT tool. 

Table 4.2 The obtained results for automatic phonetic segmentation accuracy in experiment no 1 

 

 % Performance for ≤ 5ms % Performance for ≥ 10 ms 

Test Set 60% 70 % 

Adaptation 

Set 

62% 70 % 

 

4.1 Experiment No (2) 

      The model was built with the same steps mentioned in the section with the same 

parameters mentioned in sections 3.4, 3.5. 

4.1.1 Dataset 

        Quran verses data set has been recorded with a duration of (2 hours) with having its 

corresponding text corpus, containing 1.060 recordings of the verses of the Holy Quran with 

the voice of 10 reciters who recite the Quran carefully under the supervision of an expert of 
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the correct reading of the ascription to the Messenger (Peace Be Upon Him), the recordings 

of 16 Surahs of the Quran, which are in order in the Holy Quran, starting from Surah Al-

Bayyinah to Surah An-Nas, Dataset Details summarized in table 4.3. 

Table 4.3 Dataset Details in experiment no 2 

 Num.Speakers Num.Waves 

Training Set 7 742 

Test Set 2 212 

Development Set 1 106 

 

4.1.2 Results 

Table 4.4 The obtained results for automatic phoneme segmentation accuracy in experiment no 2 

 % Performance for ≤ 5ms % Performance for ≤ 10ms 

Test Set 00 % 01% 

Dev Set 07 % 07% 

 

4.2 Experiment No (3) 

        The model was built with the same steps mentioned in the section with the same 

parameters mentioned in sections 3.4, 3.5. 

4.2.1 Dataset 

        Quran verses data set has been recorded with having its corresponding text corpus and 

number of waves 100 for 100 reciters and a total speech corpus of (5.3 hours). All Quran 

verses text corpus are recorded in mono channel, *.wav format and 16 kHz sample 

frequency. The dataset was split into a training set, a test set, and development set to 

simulate the real data collection and training procedure and to avoid having overlap between 

training, test, and development sets.  The data set contains surah (al-Fatiha, al-Asr, al-

Kawthar, al-Ikhlas, al-Falaq and an-Nas) and assuming that the reciters were non-Arab 

speakers The training phase was implemented, by selecting 70 waves for 70 reciters. The 

testing of the model was done using 20 waves for 20 reciters. Lastly, the development 
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dataset was selected from 10 reciters with a total of 10 waves, all respectively without 

overlap or repetition, Dataset Details summarized in table 4.5. 

Table 4.5 Dataset Details in experiment no 3 

 Speakers Hours 

Training Set 70 5.3 

Test Set 20 1.3 

Development Set 10 0.6 

 

 

 

4.2.2 Results 

Table 4.6 The obtained results for automatic phonetic segmentation accuracy in experiment no 3 

 % Performance for ≤ 5ms % Performance for ≤ 10ms 

Test Set 95 % 97% 

Dev Set 99 % 99.9% 

 

4.3 Experiment No (4) 

        The model was built with the same steps mentioned in the section with the same 

parameters mentioned in section 3.5 

4.3.1 Dataset 

        Quran verses data set has been recorded with having its corresponding text corpus and 

number of waves 1100 for 100 reciters and a total speech corpus of (80 hours). All Quran 

verses text corpus are recorded in mono channel, *.wav format and 16 kHz sample 

frequency. The dataset was split into a training set, a test set, and development set to 

simulate the real data collection and training procedure and to avoid having overlap between 
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training, test, and development sets. The data set contains verses from (al-Fatiha, al-Asr, al-

Kawthar, al-Ikhlas, al-Falaq and an-Nas) and assuming that the reciters were non-Arab 

speakers.  and it contains also records for 10 letters which have similarities in pronunciation 

to increase the system learning capabilities. The training phase was implemented, by 

selecting 770 waves for 70 reciters. The testing of the model was done using 220 waves for 

20 reciters. Lastly, the development dataset was selected from 10 reciters with a total of 110 

waves, all respectively without overlap or repetition, Dataset Details summarized in table 

4.7. 

 

 

Table 4.7 Dataset D.etails in experiment no 4 

 Speakers Hours 

Training Set 70 56 

Test Set 20 16 

Development Set 10 8 

 

4.3.2 Results 

        To measure the performance of automatic speech segmentation, phoneme-mapping 

concept is used. The manually segmented phoneme boundaries are compared with each 

phoneme sequences found during automatic speech segmentation.  The formulas used to 

calculate the accuracy of the Automatic phonetic segmentations mention in the Evaluation 

Criteria section. 

Table 4.8 The obtained results for automatic phoneme segmentation accuracy in experiment no 4 

 % Performance for ≤ 5ms 

Test Set 99.9 % 

Dev Set 99.9 % 
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on automatic segmentation results. The best result was obtained when DNN with 9 

hidden layers and 1024 units in each hidden layer, in dev set 

 

 

 

Figure 4.3 decreasing error rate while increasing number of iterations 
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Figure 4.4 Evaluate of Different Models for Automatic Verses Segmentation at Phoneme Level 

 

 

4.4 Result discussion  

        This research has demonstrated a clearer insight of using DNN-HMM at phonetic 

automatic segmentation by using the verses of the noble holy Qur‟an with different 

parameters. comparing the efficiency of the different tools and involving different sizes of 

data set to draw a clear understanding to which methodology may result in the highest 

accuracy. The methodological choices were constrained, we built more than one model using 

different tools and using two different datasets. through 4 different experiments, interpreting 

with the previous results noted in this study that comparing the details of the first and second 

experiment, that the DNN has contributed to improve the results of automatic segmentation. 

when looking at comparing the details of the second and third experiment, we note that the 
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large size of the database on which the model is trained contributes significantly to improve 

the accuracy of the results obtained. finally, when comparing the results obtained from the 

third and fourth experiment, the influence and role of the language model appears 

significantly in improving the results obtained to reach an accuracy of 99.9%. 

4.5 Limitations 

           The main limitation we faced is the creation of the dataset. For training the model we 

must record at least 5 hours for one hundred reciters to improve the accuracy. This number 

of recording hours takes a long time for the recording and the pre-processing, and in our 

work, we must cooperate with one hundred expert reciters to record the selected Holy Quran 

verses.  We expect that the creation of dataset with perfect properties take about two years at 

least. In the addition of the need for a lot of efforts and times, the recording in proper 

environment cost a lot of money.  It costs about US $100 for each recording hour, according 

to these limitations we create one dataset for only 10 speakers.  (I would like at this point to 

thank RDI that has given me the second data set ready which I believe has given them great 

trouble and effort including time to do the recording) 

  



 
 
 
 
 

 
93  

Chapter VII 

 

 

 

 

Conclusion and Further Work 

 

 

 

 

5.0 Conclusion 

        In this thesis we have studied GMM-HMM and DNN-HMM based on AM for holy 

Quran verses, using the HTK toolkit and Kaldi toolkit.  We have experimented with 

DNNs with different numbers of hidden layers, the automatic phonetic segmentation 

experiments showed that the results obtained was 99.9% compared with manual 

segmentation. the main goal of this thesis was the development of Deep Neural 

Network-Hidden Markov Model (DNN-HMM) hybrid acoustic models for phoneme 

Automatic segmentation, with an emphasis on providing a systematic implementation 

procedure.   This thesis also aimed to empirically confirm the capability of DNNs to 

outperform Gaussian Mixture Models (GMMs), and to investigate the performance of 

DNNs in acoustic modeling. 

        In this thesis, a thorough overview of the fundamentals of speech segmentation 

was presented, including the description of the different components required to build 

Automatic Speech segmentation models. Theories about GMM and DNNs, their 

architectures and learning algorithms were reviewed. The problems of GMMs in HMM-

based acoustic models were discussed. 



 
 
 
 
 

 
94  

        Training a neural network with many hidden layers and a large output layer on a 

large amount of data was computationally very expensive.  To accelerate the training, 

parallel computing using Graphic Processing Units (GPUs) was exploited. 

        The investigations proved that by increasing the number of layers the segmentation 

accuracy does necessarily increase Finally, it was proved that DNNs can provide better 

acoustic estimations than GMMs, which often underestimate.  

5.1 Future Work 

       For further research, we will investigate in the holy Quran by using some other 

DNN‟s configurations and types with larger data set. 

        Further investigations are required to identify other major factors behind the 

performance of DNNs in acoustic modeling. Our next steps will focus on incorporating 

more advanced speech-modeling and feature-extraction techniques available to build the 

automatic segmentation model. 
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