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Abstract 

The Singularity Versus Exact Dimensionality, Beurling dimension, Overlaps, 

Projections of Random Self-Similar measures and sets are studied. The Dimension 

Conservation and scaling of spectral and a class of random convolution on the real 

line of self-similar sets and measures with consecutive digits and fractal Percolation 

are discussed. We obtain the spactra of a Cantor, Moran and Bernoulli measures 

with Exponential spectra in the Hilbert space. We investigate the self-affine and 

self-similar measures with dense rotations, singular projection, discrete slices and 

vector-valued representations. The uniformity, Hausdorff and Packing Measures 

with Fourier Frames and Slices of Dynamically Defined sets are constructed. 
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 الخلاصة
قمنا بدراسة الشذوذیة مقابل الأبعاد المضبوضة وبعد بیرلینج والتداخل وإسقاطات قیاسات 

عشوائیة والفئات تم مناقشة حفظ البعد والتدریج الطیفي وعائلة الالتفاف العشوائي على مماثلة ذاتیا 

الخط الحقیقي لفئات المماثلة الذاتیة والقیاسات مع الارقام المتتالیة والنفاذ الي الكسوریة قمنا بالحصول 

یاسات القعلي طیف كانتور وقیاسات موران وبیرنولي مع الطیف الاسي في فضاء ھلبرت تم بحث 

النسیبیة الذاتیة والمماثلة الذاتیة مع الدورات الكثیفة والإسقاط الشاذ والخط المتقطع والتمثیلات قیٌمة 

المتجھ. قمنا بتشخیص القیاسات المنتظمة وھاوسدورف والتعبئة مع إطارات فورییر وشرائح الفئات 

  المعرفة دینامیكیا.
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Introduction 
 

We study the geometric properties of random multiplicative cascade measures 
defined on self-similar sets. We show that such measures and their projections and 
sections are almost surely exact-dimensional, generalizing Feng and Hu’s result [11] for 
self-similar measures. We introduce a technique that uses projection properties of fractal 
percolation to establish dimension conservation results for sections of deterministic self-
similar sets. For example, let ܭ be a self-similar subset of ℝଶ with Hausdorff dimension 
dimு ܭ > 1 such that the rotational components of the underlying similarities generate 
the full rotation group. Then for all ߳ > 0, writing ߠ for projection onto the line ܮఏ in 
direction ߠ, the Hausdorff dimensions of the sections satisfy dimு ݀൫ܭ ∩ ఏߨ

ିଵݔ൯ >
dimு ܭ − 1 − ߳ for a set of ݔ ∈ ఏܮ  of positive Lebesgue measure, for all directions ߠ 
except for those in a set of Hausdorff dimension 0.  

We analyze all orthonormal bases of exponentials on the Cantor set defined by 
Jorgensen and Pedersen. A complete characterization for all maximal sets of orthogonal 
exponentials is obtained by establishing a one-to-one correspondence with the spectral 
labelings of the infinite binary tree. With the help of this characterization we obtain a 
sufficient condition for a spectral labeling to generate a spectrum (an orthonormal basis). 
This result not only provides us an easy and efficient way to construct various of new 
spectra for the Cantor measure but also extends many previous results in the literature. In 
fact, most known examples of orthonormal bases of exponentials correspond to spectral 
labelings satisfying this sufficient condition. For {ࣞ}ୀଵ

ஶ  be a sequence of digit sets in 
ℕ and let {ܾ}ୀଵ

ஶ  be a sequence of integer numbers bigger than 1. We call the family 
൛ ݂,ࣞೖ

(ݔ) = ܾ
ିଵ(ݔ + ݀): ݀ ∈ ࣞ, ݇ ≥ 1ൟ a Moran iterated function system (IFS), which 

is a natural generalization of an IFS. For 0 < ߩ < 1 and ܰ > 1 an integer, let ߤ be the 
self-similar measure defined by ߤ(·) = ∑ ଵ

ே
(·)ଵିߩ)ߤ − ݅)ேିଵ

ୀ . We prove that ܮଶ(ߤ) has 

an exponential orthonormal basis if and only if ߩ = ଵ

 for some ݍ > 0 and ܰ divides ݍ.  

For ܣ be a ݀ × ݀ integral expanding matrix and let ܵ (ݔ) = ݔଵ൫ିܣ + ݀൯ for some 

݀ ∈ ℤௗ, ݆ = 1, … , ݉. The iterated function system (IFS) ൛ ܵൟ
ୀଵ


 generates self-affine 
measures and scale functions. In general this IFS has overlaps, and it is well known that 
in many special cases the analysis of such measures or functions is facilitated by 
expressing them in vector-valued forms with respect to another IFS that satisfies the open 
set condition. We examine Fourier frames and, more generally, frame measures for 
different probability measures. We prove that if a measure has an associated frame 
measure, then it must have a certain uniformity in the sense that the weight is distributed 
quite uniformly on its support. To be more precise, by considering certain absolute 
continuity properties of the measure and its translation, we recover the characterization 
on absolutely continuous measures ݃ ݀ݔ with Fourier frames obtained. Moreover, we 
prove that the frame bounds are pushed away by the essential infimum and supremum of 
the function g. This also shows that absolutely continuous spectral measures supported 
on a set ߗ, if they exist, must be the standard Lebesgue measure on ߗ up to a 
multiplicative constant. We consider equally-weighted Cantor measures ߤ, arising from 
iterated function systems of the form ܾିଵ(ݔ + ݅), ݅ = 0, 1, … , ݍ − 1, where ݍ < ܾ. We 
classify the (ݍ, ܾ) so that they have infinitely many mutually orthogonal exponentials in 
 divides ܾ, the measures have a complete orthogonal ݍ ,൯. In particular, ifߤଶ൫ܮ
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exponential system and hence spectral measures. Improving the construction, we 
characterize all the maximal orthogonal sets ߉ when ݍ divides ܾ via a maximal mapping 
on the ݍ−adic tree in which all elements in ߉ are represented uniquely in finite ܾ−adic 
expansions and we can separate the maximal orthogonal sets into two types: regular and 
irregular sets. For a regular maximal orthogonal set, we show that its completeness in 
 ,൯ is crucially determined by the certain growth rate of non-zero digits in the tailߤଶ൫ܮ
of the ܾ−adic expansions of the elements.  

For 1 ≤ ݉ < ݊ be integers, and let ܭ ⊂ ℝ be a self-similar set satisfying the 
strong separation condition, and with dim ܭ = ݏ > ݉. We study the a.s. values of the 
ݏ − ݉-dimensional Hausdorff and packing measures of ܭ ∩ ܸ, where ܸ is a typical ݊ −
݉-dimensional affine subspace. We present some one-parameter families of 
homogeneous self-similar measures on the line such that, the similarity dimension is 
greater than 1 for all parameters and the singularity of some of the self-similar measures 
from this family is not caused by exact overlaps between the cylinders. We construct a 
planar homogeneous self-similar measure, with strong separation, dense rotations and 
dimension greater than 1, such that there exist lines for which dimension con-servation 
does not hold and the projection of the measure is singular.  

A spectrum of a probability measure ߤ is a countable set ߉ such that 
{exp(−2ߣ݅ߨ ·) , ߣ ∈  We consider the problem when .(ߤ)ଶܮ is an orthogonal basis for {߉
a countable set become the spectrum of the Cantor measure. Starting from tree labeling 
of a maximal orthogonal set, we introduce a new quantity to measure minimal level 
difference between a branch of the labeling tree and its subbranches. Then we use 
boundedness and linear increment of that level difference measurement to justify whether 
a given maximal orthogonal set is a spectrum or not. This together with the tree labeling 
of a maximal orthogonal set provides fine structures of spectra of Cantor measures. Given 
a Borel probability measure ߤ on ܴ and a real number . We call pa spectral eigenvalue 
of the measure ߤ if there exists a discrete set ߉ such that the sets   

(߉)ܧ ≔ ൛݁ଶగఒ௫ ∶ ߣ ∈ (߉)ܧ   ൟ    and߉ ≔ ൛݁ଶగఒ௫ ∶ ߣ ∈  ൟ߉
are both orthonormal basis for Hilbert space ܮଶ(ߤ). We consider the equally-weighted 

Cantor measures ߤ, generated by the iterated function system (IFS) ቄ ݂(ݔ) = ௫


+ 


ቅ
ୀ

ିଵ
, 

where 2 ≤ ݍ ∈ ℤ and ݍ <  ∈ ℝ. It is known that if ݍ divides , then ߤ, is a spectral 
measure with a spectrum  

,߉ = {0, 1, … , ݍ − 1} + ,0} 1, … , ݍ − 1}             
,ଶ{0+ 1, … , ݍ − 1} + ⋯ (finite sum)              

(Dai, He and Lai (2013)[362]).  
For ߤ be a Borel probability measure with compact support. We consider 

exponential type orthonormal bases, Riesz bases and frames in ܮଶ(ߤ). We show that if 
 must be of pure type. We also classify various ߤ admits an exponential frame, then (ߤ)ଶܮ
 that admits either kind of exponential bases, in particular, the discrete measures and ߤ
their connection with integer tiles. We study the Beurling dimension of Bessel sets or 
sequence and frame spectra of some self-similar measures on ℝௗ .  
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Chapter 1 
Exact Dimensionality and Dimension Conservation 

 

We show that a compact group extension argument, enables us to generalize 
Hochman and Shmerkin’s theorems on projections of deterministic self-similar measures 
[14] to these random measures without requiring any separation conditions on the 
underlying sets. We give applications to self-similar sets and fractal percolation, 
including new results on projections, ܥଵ-images and distance sets. For a class of self-
similar sets we obtain a similar conclusion for all directions, but with lower box 
dimension replacing Hausdorff dimensions of sections. We obtain similar inequalities for 
the dimensions of sections of Mandelbrot percolation sets. 

 

Section (1.1): Projections of Random Self-Similar Measures and Sets: 
Relating the Hausdorff dimension of a set ܭ ⊆ ℝௗ to the dimensions of its 

projections and sections has a long history. The most basic result, due to Marstrand [22] 
in the plane and to Mattila [24] more generally, is that if ܭ ⊆ ℝௗ  is Borel or analytic, 
then, writing Πௗ, for the family of orthogonal projections from ℝௗ  onto its ݇-
dimensional subspaces, 

dimு ܭߨ = min(݇, dimு  (1)                                             (ܭ
for almost all ߨ ∈ Πௗ, with respect to the natural invariant measure on Πௗ,, where dimு  
denotes Hausdorff dimension. We discuss the dimensions of sections or slices of sets and 
show that for almost all ߨ ∈ Πௗ,, if dimு ܭ > ݇, the sections ିߨଵݔ ∩  satisfy ܭ

dimு ݔଵିߨ)  ∩ (ܭ ≤ dimு ܭ  − ݇                                        (2) 
for Lebesgue almost all ݔ ∈  of positive Lebesgue ݔ with equality for a set of ,(ܭ)ߨ
measure; see [25] for a good exposition of this material. 

The Hausdorff dimension of a probability measure ߤ is defined as 
dimு ߤ  = inf  {dimு ܭ : (ܭ)ߤ > 0}.                                      (3) 

The dimension properties of projections and sections of measures directly parallel those 
for sets; indeed the conclusions for sets generally follow from the measure analogues. 

These classical results have been extended beyond recognition, for example to 
families of generalized projections [29], to obtain estimates on the size of 'exceptional' 
projections ߨ for which the conclusions (1) or (2) fail [29], and to packing dimensions 
[10]. Almost all of this work concerns sections and projections of general Borel or 
analytic sets ܭ for which the possibility of exceptional projections can never be excluded. 
It has recently been noted that for specific classes of sets and measures the dimensions of 
projections or sections may be constant for all ߨ, or at least it may be possible to identify 
the exceptional ߨ. In particular, highly innovative approaches of Hochman and Shmerkin 
[14] and Furstenberg [12] have addressed this for self-similar sets and measures, we 
generalise their results to a random setting. 

A family of contractions ℐ = { ݂}ୀଵ
  on ℝௗ, referred to as an iterated function 

system (IFS), defines a unique non-empty compact set ܭ such that 

ܭ = ራ  


ୀଵ
݂(ܭ);                                                          (4) 

 is termed the attractor of the IFS, see, for example, [9]. Here we consider an IFS of ܭ
contracting similarities 

ℐ = { ݂ = ݎ ܱ ⋅ }ୀଵݐ+
 ,                                                  (5) 
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where each ݂  is a composition of a scaling of ratio ݎ < 1, an orthonormal rotation ܱ  
and a translation ݐ; we call such an attractor ܭ a self-similar set. Our conclusions will 
depend very much on the nature of the rotation group ܩ of the IFS, that is the closure of 
the subgroup of ܱܵ(݀, ℝ) generated by the ܱ . 

We obtain almost sure properties of projections and sections of random 
multiplicative cascade measures on self-similar sets. The precise definition is given but 
for the purposes such a measure will be denoted by ߤ and be supported by a self-similar 
set ܭ. In particular, ߤ is statistically self-similar, that is, roughly speaking, the restriction 
of ߤ to each small statistically self-similar, that is, roughly speaking, the restriction of ߤ 
to each small scale component of ܭ has, after scaling, the same random distribution as ߤ 
itself. Our motivation for considering such measures is that they are the natural random 
generalisations of self-similar measures but also are the natural tools for studying fractal 
percolation processes. Moreover, random cascade measures provide the classical models 
for multiplicative chaos theory, an area that has recently attracted attention because of its 
connection to quantum gravity, see [30]. 

We give a precise construction of the probability space underlying the random 
cascade measures, and thus obtain an ergodic random dynamical system on the space of 
random cascade measures. An application of the compact group extension theorem shows 
that the skew product of this random dynamical system with the rotation group ܩ is also 
ergodic. 

These ergodicities are used to show that almost surely a random multiplicative 
cascade measure ̃ߤ, as well as almost all of its projections and sections (with respect to 
the Haar measure on ܩ) are exact dimensional, that is the local dimensions exist and are 
constant almost everywhere. The proofs, which reformulate the measures of small balls 
as a type of Birkhoff sum, are adapted from the ergodic theoretic approach introduced for 
the deterministic case in [11]. This sum converges to the conditional entropy with respect 
to a sub- ߪ-algebra that captures the overlapping structure of self-similar sets, giving 
exact-dimensionality without any seperation condition (i.e. without requiring the union 
in (4) to be disjoint), as well as a formula for the exact dimension in terms of the 
conditional entropy. 

One consequence of this is an almost sure 'dimension conservation' property, 
relating the dimensions of the projections to those of perpendicular sections. Writing ߤߨ 
for the measure on (ܭ)ߨ obtained by projecting ߤ under ߨ, and ߤ௬,గ for the section of ̃ߤ 
by the (݀ − ݇)-dimensional plane ିߨଵݕ, we get the following conclusions when the 
rotation group is finite. 
Corollary (1.1.1)[1]: Suppose that ܩ is finite. Then for every projection ߨ ∈ Πௗ,, 

dimு ߤ̃ߨ  + dimு ௬,గߤ̃  = dimு ݕ almost all-ߤ̃ߨ for  ߤ̃  ∈  (6)                (ܭ)ߨ
almost surely. In particular, if ̃ߤ is deterministic then (6) holds for all ߨ. 
Proof. See Corollary (1.1.10) and Corollary (1.1.11). 

Note that the deterministic case extends the result of Furstenberg [12] by 
dispensing with the separation requirement that the union in (4) is disjoint. 

We show that if ܩ = ܱܵ(݀, ℝ) then almost surely all projections of ̃ߤ and, indeed, 
all images of ߤ under non-singular ܥଵ-maps, have dimension equal to the 'generic' value. 
The deterministic results that were proved using CP-processes in [14] follow as a special 
case. Here we adopt a new approach utilising the skew product dynamical system, leading 
to results such as the following. 
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Corollary (1.1.2)[1]: If ܩ = ܱܵ(݀, ℝ) then almost surely, conditional on non-extinction 
of the random measure ߤ, 

dimு ߤ̃ߨ  = min(݇, dimு ߨ )  for allߤ  ∈ Πௗ, .                              (7) 
More generally, for all ܥଵ maps ℎ: ܭ ↦ ℝ  without singular points, 

dimு  ℎ̃ߤ = min(݇, dimு  (8)                                                 .(ߤ̃
Proof. See Theorem (1.1.21) and Corollary (1.1.23). 

We specialise these results to deterministic self-similar sets, and in particular show 
that conclusions relating to the dimensions of all projections and dimension conservation 
are valid without any separation condition on the selfsimilar construction, extending work 
of Hochman and Shmerkin [14] and Furstenberg [12]. Again there are consequences for 
the dimensions of images of sets under ܥଵ-mappings and also for the dimensions of 
distances sets. 

Recently there has been considerable interest in geometric properties of 
percolation on self-similar sets, that is random subsets ܭℙ of ܭ obtained by removing 
components of the iterated construction of ܭ according to a self-similar probability 
distribution ℙ. Associating the natural measures on ܭℙ with random cascade measures, 
we obtain new almost sure properties of projections and dimension conservation for these 
random sets. 

Symbolic or code space underlies the structure of selfsimilar sets. 
Let Λ = {1, ⋯ , ݉} be the alphabet on ݉ ≥ 2 symbols. Denote by Λ∗ =∪ஹ Λ the 

set of finite words, with the convention that Λ = {∅}. Let Λℕ be the symbolic space of 
infinite sequences from the alphabet. For ݅ ∈ Λℕ and ݊ ≥ 0 let ݅ห ∈ Λ be the first ݊ 

digits of ݅. For ݅ ∈ Λ let [݅] = ቄ݅ ∈ Λ: ݅ห


= ݅ቅ be the ܿݎ݈݁݀݊݅ݕ rooted at ݅. We may 
endow Λℕ with the standard metric ݀ఘ with respect to a number ߩ ∈ (0,1), that is for 

݅, ݆ ∈ Λℕ, ݀ఘ(݅, ݆) = ୧୬ቄஹ:หஷቚߩ


ቅ. Then ൫Λℕ, ݀ఘ൯ is a compact metric space. Let ℬഥ be 
its Borel ߪ-algebra. Define the left-shift map ߪ by ߪ(݅) = (݅ାଵ)ஹଵ for ݅ = (݅)ஹଵ ∈
Λℕ. 

Let ℐ be an IFS as in (5) with non-empty compact attractor ܭ ⊆ ℝௗ satisfying (4). 
For ݅ = ݅ଵ ⋯ ݅ ∈ Λ write 

݂ = ݂భ ∘ ⋯ ∘ ݂ = ݎ ܱ + ݐ , 
where ݎ = భݎ ⋯ ݎ , ܱ = ܱభ ⋯ ܱ and ݐ  is the appropriate translation. Throughout the 
paper, ܩ = ⟨ పܱ: ଓ ∈ Λ⟩തതതതതതതതതതതതത will denote the rotation group of the IFS, that is the compact 
subgroup of ܱܵ(݀, ℝ) generated by the orthonormal maps { ܱ , ݅ ∈ Λ}. 

Let Φ: Λℕ ↦ (݅)be the canonical projection, that is Φ ܭ = lim→ஶ   ݂ห
 for (ݔ)

some ݔ ∈ ܴ Let .ܭ = max{|ݔ|: ݔ ∈ ߩ and {ܭ = max{ݎ: ݅ ∈ Λ}. Then it is easy to see 
that Φ: ൫Λℕ, ݀ఘ൯ ↦  .is ܴ-Lipschitz ܭ

A random multiplicative cascade is essentially a measure on Λℕ constructed in a 
self-similar manner on the successive Λ, see [17,4]. Let (Ω, ℱ, ℙ) be a probability space. 
Let 

ܹ = ( ܹ)∈ஃ ∈ [0, ∞) 
be a random vector defined on (Ω, ℱ, ℙ) with ∑∈ஃ  ॱ( ܹ) = 1. Let ൛ܹ []: ݅ ∈ Λ∗ൟ be a 
sequence of independent and identically distributed random vectors having the same law 
as ܹ. For ݅ ∈ Λ∗, ݊ ≥ 1 and ݆ = ݆ଵ ⋯ ݆ ∈ Λ define 
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ܳ
[] = ܹଵ

[]
ܹమ

[భ] ⋯ ܹ

[భ⋯షభ], 

and for ݅ ∈ Λ∗ and ݊ ≥ 1 define ܻ
[] = ∑∈ஃ  ܳ

[]. By definition ቄ ܻ
[]ቅ

ஹଵ
 is a non-

negative martingale. Assume that 
(ܽ0)  ℙ(#{݅ ∈ Λ: ܹ > 0} > 1) > 0;                        

 (a1) There exists  > 1 such that   


ୀଵ

 ॱ൫ ܹ
൯ < 1.                    (9) 

Then ܻ
[] converges a.s. to a nontrivial limit which we denote by ܻ[], with expectation 

ॱ൫ܻ[]൯ = 1. It is easy to see that ܻ[], ݅ ∈ Λ∗ have the same law as ܻ = ܻ[∅]. Moreover, 
for  > 1 we have ॱ(ܻ) < ∞ if and only if ∑ୀଵ

  ॱ൫ ܹ
൯ < 1 (see [6,16]). Since Λ∗ is 

countable, ܻ[] is well-defined for all ݅ ∈ Λ∗ simultaneously. Moreover, by construction, 

ܻ[] =   


ୀଵ
ܹ

[]ܻ[].                                                     (10) 

Then for each ݅ ∈ Λ∗ we may define a random measure ߤ[] on Λℕ by 
([݆])[]ߤ = ܳ

[] ⋅ ܻ[],  ݆ ∈ Λ∗.                                           (11) 
The measure ߤ[] is called the random multiplicative cascade measure generated by the 
sequence ൛ܹ[]: ݆ ∈ Λ∗ൟ. By definition the sequence ൛ߤ[]: ݅ ∈ Λ∗ൟ has the same law. 
Moreover, by (10) we have statistical self-similarity in the sense that for ݅ ∈ Λ∗ and ݆ ∈
Λ, 

ห[]ߤ
[]

= ܳ
[] ⋅ []ߤ ∘ ቚିߪ

[]
.                                         (12) 

Sometimes we will write (⋅) = (⋅)[∅], in particular ܳ = ܳ
[∅] and ߤ =  Our main .[∅]ߤ

interest will be in random cascade measures on the self-similar set ܭ given by the 
canonical projection Φߤ of ߤ onto ܭ. For more on random cascade measures, see [4]. 

We now give a precise definition of the probability space on which the i.i.d. 
sequence ൛ܹ[]: ݅ ∈ Λ∗ൟ is defined. First recall that the random vector ܹ  is defined on the 
probability space (Ω, ℱ, ℙ). We will work on the countable product space 

(Ω∗, ℱ∗, ℙ∗) = ໆ  
∈ஃ∗

(Ω , ℱ , ℙ), 

where (Ω , ℱ , ℙ) = (Ω, ℱ, ℙ) for each ݅ ∈ Λ∗. For ݅ ∈ Λ∗ define the projection 
:ߨ Ω∗ ↦ Ω . 

Then by letting ܹ [] = ܹ ∘ ݅  forߨ ∈ Λ∗ we obtain a family of i.i.d. random vectors on 
(Ω∗, ℱ∗, ℙ∗). For ݅ ∈ Λ∗ let ߤ[] ≡ ,⋅)[]ߤ ߱) be the random cascade measure generated by 
the sequence ൛ܹ []: ݆ ∈ Λ∗ൟ, as in (11). For ݅ ∈ Λ∗ define 

:ߟ Ω∗ ∋ ൫ ߱൯
∈ஃ∗ ↦ ൫߱ ൯

∈ஃ∗ ∈ Ω∗. 

By definition ܹ [] = ܹ [] ∘ ,݅  for allߟ ݆ ∈ Λ∗, thus 
,⋅)[]ߤ ߱) = ,⋅൫[]ߤ  ߱൯.                                                (13)ߟ

Consequently, from (12), for any ܤ ∈ ℬ, 
ܤ)[]ߤ ∩ [݆], ߱)  = ܳ

[](߱) ⋅ ܤ)ିߪ)[]ߤ ∩ [݆]), ߱)

 = ܳ
[](߱) ⋅ ܤ)ିߪ൫[]ߤ ∩ [݆]), .߱൯ߟ
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Let (Ωᇱ, ℱᇱ) = (Λℕ × Ω∗, ℬ ⊗ ℱ∗). Let ℚ be the Peyrière measure on (Ωᇱ, ℱᇱ) 
with respect to ߤ = ܣ that is for all ,[∅]ߤ ∈ ℱᇱ, 

ℚ(ܣ) = න  
ஐ∗

න  
ஃಿ

߯൫݅, ߱൯ߤ൫d݅, ߱൯ℙ∗( d߱).                               (14) 

It is easy to see that (Ωᇱ, ℱᇱ, ℚ) is a probability space. Notice that the inside integral is 
only defined when ߤ is not trivial. Write ℙ∗(ܣ) = ℙ∗(ܣ ∩ {∥ ߤ ∥> 0})/ℙ∗({∥ ߤ ∥> 0}) 
for ܣ ∈ ℱ∗ for the probability conditional on ߤ being non-trivial. Thus "for ℚ-a.e. (݅, ߱) 
"is equivalent to "for ℙ∗-almost all ߤ, and ߤ-a.e. ݅". Define the skew product 

ܶ: Ωᇱ ∋ (݅, ߱) ↦ ൫݅ߪ, ∣ଵ(߱)൯ߟ ∈ Ωᇱ. 
Lemma (1.1.3)[1]: The Peyrière measure ℚ is ܶ-invariant. 
Proof. For all ܤ ∈ ℱᇱ 

ℚ(ܶିଵܤ)  = න  
ஐ∗

 න  
ஃಿ

 ்߯షభ(݅, ,d݅)ߤ(߱ ߱)ℙ∗( d߱)

 = න  
ஐ∗

 න  
ஃಿ

 ߯൫݅ߪ, ,d݅)ߤ∣߱൯ߟ ߱)ℙ∗( d߱)

 =   
∈ஃ

 න  
ஐ∗

 න  
[]

 ߯൫݅ߪ, ,d݅)ߤ߱൯ߟ ߱)ℙ∗( d߱)

 =   
∈ஃ

 න  
ஐ∗

  ܹ
[(]

(߱) න  
[]

 ߯൫݅ߪ, ,݅ߪ൫dߤ߱൯ߟ ߱൯ℙ∗( d߱)ߟ

 =   
∈ஃ

 න  
ஐ∗

  ܹ
[∅](߱) න  

ஃಿ
 ߯൫݅, ,൫d݅ߤ߱൯ߟ ߱൯ℙ∗( d߱)ߟ

 =   
∈ஃ

 ॱ ൫ ܹ൯ℚ(ܤ)

 = ℚ(ܤ).

 

Proposition (1.1.4)[1]: The dynamical system (Ωᇱ, ℱᇱ, ℚ, ܶ) is mixing. 
Proof. Let ࣛ be the semi-algebra consisting of sets of the form 

݅ห = ݆, ܹ
 ∈ ܤ

, ܽ ∈ Λ, ܾ ∈∪ୀଵ
 Λ , 

for ݇ ∈ ℕ, ݆ ∈ Λ and ܤ
 Borel subsets of [0, ∞). It is clear that ࣛ generates ℱᇱ, so we 

only need to verify that for ܣ, ܤ ∈ ࣛ, lim→ஶ  ℚ(ܶିܣ ∩ (ܤ = ℚ(ܣ)ℚ(ܤ). This follows 
from the fact that by the construction of ࣛ, given ܣ, ܤ ∈ ࣛ, there exists ݊ such that 
ܶିܣ and ܤ are independent for all ݊ ≥ ݊. 

For ݅ ∈ Λ∗ define 

[]‾ߤ = ߯{ఓ([])வ}
[]|ߤ

([݅])ߤ
  and  ߤ‾ [] = ߯൛∥∥ఓ[]∥∥வൟ

[]ߤ

∥∥[]ߤ∥∥
, 

with the convention that ߤ‾ = ‾ߤ [∅]. Then ߤ‾[] and ߤ‾ [] are either probability measures or 
trivial. If |݅| = ݊, then from (12) we have 

[]‾ߤ ∘ ିߪ = ߯{ொவ}ߤ‾ [].                                                (15) 
The measure sequence ൛ߤ‾ [⋅|]ൟஹ is a stationary process under the Peyrière measure. This 
sequence is similar to Furstenberg's CP-processes: Let Δ be the natural partition operator 
on symbolic space: Δ[݅] = {[݆݅]: ݆ ∈ Λ} for ݅ ∈ Λ∗. Starting from (ߤ‾, [∅]) we move to 
൫ߤ‾ [], [݅]൯ with probability ߤ‾([݅]) for ݅ ∈ Λ, and from ൫ߤ‾ [], [݅]൯ we move to ൫ߤ‾ [], [݆݅]൯ 
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with probability ߤ‾ []([݆]) for ݆ ∈ Λ, and continue in this way. The resulting measure 
sequence clearly falls into the same sample space as ൛ߤ‾ [⋅|]ൟஹ, but it seems unlikely 
they will have the same law unless the random cascade measures degenerate to Bernoulli 
measures. 

Let ܩ = ⟨ పܱ: ଓ ∈ Λ⟩തതതതതതതതതതതതത be the closed subgroup of ܱܵ(݀, ℝ) generated by the 
orthogonal maps { ܱ, ݅ ∈ Λ}. For future reference note that ܩ also equals the closed 
subsemigroup generated by the orthogonal maps { ܱ , ݅ ∈ Λ}; this follows since the 
inverse of any element in a compact group can be approximated arbitrarily closely by 
positive powers of the element. Let ℬீ  be Borel ߪ-algebra of ܩ and let ߦ be its normalized 
Haar measure. Define the measurable map ߶: Ωᇱ ∋ (݅, ߱) ↦ ܱหଵ

∈ ܺ Let .ܩ = Ωᇱ ×  ܩ
and define the skew product 

థܶ: ܺ ∋ (߱ᇱ , ݃) ↦ ൫ܶ߱ᇱ , ݃߶(߱ᇱ)൯ ∈ ܺ. 
It is easy to verify that the product measure ℚ ×  .is ܶథ-invariant ߦ
Proposition (1.1.5)[1]: The dynamical system ൫ܺ, ℱᇱ ⊗ ℬீ , ℚ × ,ߦ ܶథ൯ is ergodic. 
Proof. From Proposition (1.1.4) we know that (Ωᇱ, ℱᇱ, ℚ, ܶ) is ergodic. Using the 
compact group extension theorem, see for example [19], థܶ is ergodic if and only if the 
equation 

(ᇱ߱ܶ)ܨ = ܴ൫߶(߱ᇱ)൯ܨ(߱ᇱ) for ℚ-a.e. ߱ᇱ ,                                 (16) 
where ܴ is an irreducible (unitary) representation (of degree ݇, say) and ܨ: Ωᇱ ↦ ℂ is 
measurable, has only the trivial solution ܴ, the trivial 1-dimensional representation, with 
  is the Bernoulli measure on Λℕ corresponding to the probability vectorߤ constant. Let ܨ
 = ൫ॱ( ܹ)൯∈ஃ. From the measuable function ܨ in (16) we may construct the following 
vector measure ߣ on Λℕ, defined as 

(ܫ)ߣ = න  
ஐ∗

න 
ூ

,൫݅ܨ ߱൯ߤ൫d݅, ߱൯ℙ∗( d߱), ܫ∀ ∈ ℬ. 

Then ߣ is absolutely continuous with respect to ߤ  since, for any set ܧ ∈ ℬ with 
(ܧ)ߤ = 0, 

 
|(ܧ)ߣ|  ≤ lim sup

ோ→ஶ
 න  

ஐ∗
 න  

ா
 ߯{|ி|ஸோ}|ܨ(݅, ,d݅)ߤ|(߱ ߱)ℙ∗( d߱)

 ≤ lim sup
ோ→ஶ

 ܴ ⋅ (ܧ)ߤ = 0.
 

Denote by ݂ = dߣ/dߤ  the corresponding Radon-Nikodym derivative. In particular 

݂൫݅൯ = lim
→ஶ

 
ߣ ቀቂ݅ห


ቃቁ

ߤ ቀቂ݅ห


ቃቁ
 for ߤ-a.e. ݅                                       (17) 

Now fix ܫ = [݅ଵ݅ଶ ⋯ ݅]. From (16) 

ܴ൫ ܱభ ൯ߣ([݅ଵ݅ଶ ⋯ ݅])  = න  
ஐ∗

 න  
[భమ⋯]

 ܴ൫ ܱభ ൯ܨ(݅, ,d݅)ߤ(߱ ߱)ℙ∗( d߱)

 = න  
ஐ∗

 න  
[భమ⋯]

,݅ߪ൫ܨ  ,d݅)ߤభ߱൯ߟ ߱)ℙ∗( d߱)

 = න  
ஐ∗

  ܹభ න  
[మ⋯]

,݅)ܨ  ,d݅)[భ]ߤ(߱ ߱)ℙ∗( d߱)

 = ଶ݅])ߣ([݅ଵ])ߤ ⋯ ݅]).

 

This yields 
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ଶ݅])ߣ ⋯ ݅])
([݅ଶߤ ⋯ ݅]) = ܴ൫ ܱభ൯

ଵ݅ଶ݅])ߣ ⋯ ݅])
([݅ଵ݅ଶߤ ⋯ ݅]). 

Together with (17) we finally get 
(݅ߪ)݂ = ܴ ቀܱ√ଵቁ ݂(݅) for ߤ-a.e. ݅.  

From [29, Corollary 4.5] we know that the dynamical system ൫Λℕ × ,ܩ ℬ ⊗ ℬீ , ߤ × 
,ߦ ,݅)థߪ థ൯ is ergodic, whereߪ ݃) = ቀ݅ߪ, ܱ݃หభ

ቁ is a compact group extension of the 
Bernoulli full-shift with ߪథ having a dense orbit. By using the compact group extension 
theorem again this implies that ܴ must be the trivial 1-dimensional representation. 
Applying this to (16) we get that 

(ᇱ߱ܶ)ܨ =  ,for ℚ-a.e. ߱ᇱ (ᇱ߱)ܨ
so ܨ is constant using Proposition (1.1.4). 

Let ߮: ܻ ↦ ܼ be a continuous mapping between two metric spaces ܻ and ܼ. For a 
Borel measure ߥ on ܻ write 

ߥ߮ = ߥ ∘ ߮ିଵ 
for the pull-back measure of ߥ on ܼ through ߮. 

For a measure ߥ and ݔ ∈ supp (ߥ) let 

(ݔ)ఔܦ = lim
→

 
log ݔ)ܤ)ߥ, ((ݎ

log ݎ  

whenever the limit exists, where ݔ)ܤ,  If for .ݎ and radius ݔ is the closed ball of centre (ݎ
some ߙ ≥ 0 we have ܦఔ(ݔ) =  .is exact-dimensional ߥ we say that ݔ .a.e-ߥ for ߙ

For 0 < ݎ < 1 and ߥ a probability measure supported by a compact subset ܣ of 
ℝௗ, let 

(ߥ)ܪ = − න  


log ݔ)ܤ)ߥ,  (ݔd)ߥ((ݎ

be the ݎ-scaling entropy of ߥ. Note that, writing ℳ for the probability measures supported 
by ܣ, the map ܪ: ℳ → ℝ ∪ {∞} need not be continuous in the weak-star topology. 
However, ܪ  is lower semicontinuous as it may be expressed as the limit of an increasing 
sequence of continuous functions of the form ߥ ↦ ∫ max൛݇, log ൫1/∫ ݂(ݔ −
ൟ where ݂(ݔ݀)ߥ൯(ݕ݀)ߥ(ݕ  is a decreasing sequence of continuous functions 
approximating ߯(,). The lower entropy dimension of ߥ is defined as 

dim ߥ  = lim inf
→

 
(ߥ)ܪ
−log ݎ

 

and the Hausdorff dimension of ߥ is dimு ߥ = inf{dimு :ܣ  (ܣ)ߥ > 0}. Then 
dimு ߥ ≤ dim  ,ߥ

with equality when ߥ is exact-dimensional, see [8,9]. 
The following result is the conditional measure theorem of Rohlin [31] adapted to 

symbolic spaces. 
Theorem (1.1.6)[1]: Let ߟ be a countable ℬ-measurable partition of Λℕ in the sense that 
the quotient space Λℕ/ߟ is separated by a countable number of measurable sets in ℬ. Let 
 measure, there-ߥ be a Borel probability measure on Λℕ. Then for every ݅ in a set of full ߥ
is a probability measure ߥ

ఎ defined on ߟ(݅) (the unique element in ߟ that contains ݅) such 
that for any measurable set ܤ ∈ ℬ, the mapping ݅ ↦ ߥ

ఎ(ܤ) is ̂ߟ-measurable (̂ߟ is the 
sigma-algebra generated by ߟ) and 
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(ܤ)ߥ = න  
ஃℕ

ߥ
ఎ(ܤ)ߥ൫d݅൯. 

These properties imply that for any ݂ ∈ ,ଵ(Λℕܮ ℬ, ߥ we have (ߥ
ఎ(݂) = ॱఔ(݂ ∣ -ߥ for (ߟ̂

a.e. ݅, and ߥ(݂) = ∫ ॱఔ(݂ ∣  .ߥd(ߟ̂
For any sub-Borel ߪ-algebra ࣛ of ℬ, any countable ℬ-measurable partition ࣪ of 

Λℕ, and any Borel probability measure ߥ on Λℕ we define the conditional information 
۷ఔ(࣪ ∣ ࣛ) = −   

∈࣪

߯log ॱ ఔ(߯ ∣ ࣛ) 

and the conditional entropy 

۶ఔ(࣪ ∣ ࣛ) = න  
ஃొ

۷ఔ(࣪ ∣  (d݅)ߥ(݅)(ࣛ

For the trivial ߪ-algebra ࣨ = {∅, Λℕ} we use the convention that ۷ఔ(࣪) = ۷ఔ(࣪ ∣ ࣨ) 
and ۶ఔ(࣪) = ۶ఔ(࣪ ∣ ࣨ). 

We state, the following result from Feng & Hu [11] which we will need in several 
places. 
Proposition (1.1.7)[1]: Let ߥ be a Borel probability measure on Λℕ. Let ߟ and ࣪ be two 
countable measurable partitions of Λℕ. Let ߮: Λℕ ↦ ℝௗ be a continuous function and 
denote by ℬఝ the ߪ-algebra generated by ߮ିଵℬ(ℝௗ). Then for ߥ − ܽ. ݁. ݅ ∈ Λℕ, 

lim
→

  log
ߥ

ఎ ൬߮ିଵ ቀܤ൫߮൫݅൯, ൯ቁݎ ∩ ࣪൫݅൯൰

ߥ
ఎ ൬߮ିଵ ቀܤ൫߮൫݅൯, ൯ቁ൰ݎ

= −۷൫࣪ ∣ ߟ̂ ∨ ℬఝ൯൫݅൯. 

Moreover, writing 

ℎ(݅) = − inf
வ

 log 
ߥ

ఎ൫߮ିଵ(ܤ(߮(݅), ((ݎ ∩ ࣪(݅)൯

ߥ
ఎ൫߮ିଵ(ܤ(߮(݅), ൯((ݎ

 

and assuming ۶ఔ(࣪) < ∞, then ℎ ≥ 0 and ℎ ∈ ଵ(Λℕ) with ∫ஃಿܮ  ℎ(݅) ≤ ۶ఔ(࣪) +  ,ௗܥ
where ܥௗ depends only on ݀. 
Proof. This is proved in [11, Proposition 3.5]. The bound for ∫ஃಿ  ℎ(݅) is contained within 
the proof. 

We establish the exact-dimensionality of random cascade measures on self-similar 
sets without any separation condition, as well as of the projections of the measures onto 
subspaces and of sliced measures for ߦ almost all rotations. 

Let ߨ ∈ Πௗ, . For ݅ ∈ Λℕ define the fibre 
[݅]గ = ଵି(Φߨ) ቀߨΦ൫݅൯ቁ, 

and write గ࣪ = ൛[݅]గ: ݅ ∈ Λℕൟ. It is a measurable partition since the quotient space Λℕ/ గ࣪ 
is separated by {(ߨΦ)ିଵܤ} where {ܤ} is the sequence of closed cubes in ߨ(ℝௗ) with 
rational vertices. Denote by ࣪గ the ߪ-algebra generated by గ࣪. Due to Theorem (1.1.6), 
given the measurable partition గ࣪, for any probability measure ߥ on (Λℕ, ℬ), for every ݅ 
in a set of full ߥ-measure, there is a probability measure ߥ

࣪గ, which we shortly denote 
by ߥ,గ, defined on గ࣪(݅) = [݅]గ such that for any ܤ ∈ ℬ, the mapping ݅ ↦ -is గ࣪ (ܤ),గߥ
measurable and 

(ܤ)ߥ = න  
ஃℕ

 .(di)ߥ(ܤ),గߥ
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Furthermore for any ݂ ∈ ,ଵ(Λℕܮ ℬ, (݂),గߥ we have (ߥ = ॱఔ൫݂ ∣ గ࣪൯ for ߥ-a.e. ݅, and 
(݂)ߥ = ∫ ॱఔ൫݂ ∣ గ࣪൯dߥ. Moreover, ߥ,గ depends only on [݅]గ; thus we may write ߥ௬,గ =
ݕ ,గ whenߥ ∈ (݅)Φߨ is such that (ܭ)ߨ = ܣ By definition for every Borel set .ݕ ∈ ℬഥ 

(ܣ)ߥ = න  
ஃℕ

(d݅)ߥ(ܣ),గߥ = න  
௬∈గ()

 (18)                    .(ݕd)ߥΦߨ(ܣ)௬,గߥ

The following lemma, which is a variant of properties stated in [25, Chapter 10], 
expresses these conditional measures geometrically as limits of measures of narrow 
slices. 
Lemma (1.1.8)[1]: For every set ܣ ∈ ℬ, for ߨΦߥ-a.e. ݕ ∈  ,(ܭ)ߨ

(ܣ)௬,గߥ = lim
→

 
ܣ)ߥ ∩ Φିଵିߨଵ(ݕ)ܤ, (((ݎ

,ݕ)ܤ)ଵିߨΦିଵ)ߥ (((ݎ , 

or equivalently for ߥ-a.e. ݅ ∈ Λℕ, 

(ܣ),గߥ = lim
→

 
ܣ൫ߥ ∩ Φିଵିߨଵ(ߨ)ܤΦ(݅), ൯((ݎ

,(݅)Φߨ)ܤ)ଵିߨ൫Φିଵߥ ൯((ݎ
. 

Proof. Let ݂: ݅ ↦ :݂‾ and (ܣ),గߥ ݕ ↦ ܤ By (18), for any .(ܣ)௬,గߥ ∈ ℬ ቀߨ(ℝௗ)ቁ, 

ܣ)ߥ ∩ Φିଵିߨଵܤ) = න  
షభగషభ

݂ dߥ = න  


‾݂ dߨΦ(19)                         .ߥ 

Define a measure ߣ on (ܭ)ߨ by (ܤ)ߣ = ܣ)ߥ ∩ Φିଵିߨଵܤ) for ܤ ∈ ℬ ቀߨ(ℝௗ)ቁ. By (19) 
 with ߥΦߨ is absolutely continuous with respect to ߣ

,ݕ)ܤ)ߣ ((ݎ
,ݕ)ܤ)ߥΦߨ ((ݎ

=
1

,ݕ)ܤ)ߥΦߨ ((ݎ
න  

(௬,)
‾݂ dߨΦߥ. 

Letting ݎ → 0 and applying the differentiation theory of measures, see for example, [25, 
Theorem 2.12], 

lim
→

 
ܣ)ߥ ∩ Φିଵିߨଵ(ݕ)ܤ, (((ݎ

,ݕ)ܤଵିߨΦିଵ)ߥ ((ݎ =  (ܣ)௬,గߥ

for ߨΦߥ-a.e. ݕ, as required. 
Let ߨ ∈ Πௗ, be fixed. Here is the main theorem. 

Theorem (1.1.9)[1]: ℙ∗ − ܽ.  ,.ݏ
(i) Φߤ is exact-dimensional with dimension 

ߙ =
ॱ ቀ۶ఓ‾ (࣪ ∣ ℬ)ቁ + ∑  

ୀଵ  ॱ( ܹlog ܹ )
∑  

ୀଵ  ॱ( ܹ)log ݎ
. 

(ii) For ߦ-a.e. ݃ ∈ ,ܩ  is exact-dimensional with dimension ߤΦ݃ߨ

(ߨ)ߚ =
ॱℙ∗×క ቀ۶ఓ‾ ൫࣪ ∣ ℬగ൯ቁ + ∑  

ୀଵ  ॱ( ܹ log ܹ)
∑  

ୀଵ  ॱ( ܹ) log ݎ
. 

(iii) For ߦ-a.e. ݃ ∈ ݕ .a.e-ߤΦ݃ߨ for ,ܩ ∈ ,(ܭ)݃ߨ Φߤ‾௬,గ is exact-dimensional with 
dimension 

(ߨ)ߛ =
ॱ ቀ۶ఓ‾ (࣪ ∣ ℬ)ቁ − ॱℙ∗×క ቀ۶ఓ‾ ൫࣪ ∣ ℬగ൯ቁ

∑  
ୀଵ  ॱ( ܹ) log ݎ

. 

'Dimension conservation' for ߦ-almost all rotations now follows. 
Corollary (1.1.10)[1]: ℙ∗ − a.s. for ߦ-a.e. ݃ ∈ ߤΦ݃ߨ and ܩ − ܽ. ݁. ݕ ∈  ,(ܭ)݃ߨ

dimு ‾ߤΦ݃ߨ + dimு Φߤ‾௬,గ = dimு Φߤ‾. 
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Proof. If follows from Theorem (1.1.9) that these measures are exact-dimensional and 
ߙ = (ߨ)ߚ +  .(ߨ)ߛ

We immediately get the following corollary. 
Corollary (1.1.11)[1]: If ܩ is finite then for every projection ߨ ∈ Πௗ,, almost surely 

dimு ‾ߤΦߨ  + dimு  Φߤ‾௬,గ = dimு Φߤ‾  for ߨΦߤ‾ a.e. ݕ ∈  (20)              ,(ܭ)ߨ
that is ߨ is dimension conserving. In particular, if ߤ‾ is deterministic (i.e. a selfsimilar 
measure), then (20) holds for all ߨ ∈ Πௗ,. 
Proof of Theorem (1.1.9)(i). The proof is adapted from [11]. Recall that ܴ =
max{|ݔ|: ݔ ∈ ݊ For .{ܭ ≥ 0 and ݅ ∈ Λℕ let 

,݅)ܤ ݊) = Φିଵ ൬ܤ ቀΦ(݅), ܴ ⋅ หݎ


ቁ൰, 

with the convention that ݎ∅ = 1. By definition we have ܤ(݅, 0) = Λℕ for all ݅ ∈ Λℕ. For 
݊ ≥ 1 let 

݂: Λℕ × Ω∗ ∋ ൫݅, ߱൯ ↦ − log
‾ߤ ቀܤ൫݅, ݊൯ ∩ ࣪൫݅൯ቁ

‾ߤ ቀܤ൫݅, ݊൯ቁ
∈ ℝ. 

Applying Proposition (1.1.7) in the case of ߟ = ࣨ and ߮ = Φ we have that given any 
߱ ∈ Ω∗ such that ∥ ߤ ∥> 0, for ߤ-a.e. ݅ ∈ Λℕ, 

lim
→ஶ

  ݂(݅, ߱) = ۷ఓ‾ (࣪ ∣ ℬ)(݅): = ݂(݅, ߱). 
Furthermore, as ࣪ is a finite partition of ݉ elements and ߤ‾ is a probability measure, 
setting 

‾݂൫݅, ߱൯ = − inf
ஹଵ

  log
‾ߤ ቀܤ൫݅, ݊൯ ∩ ࣪൫݅൯ቁ

‾ߤ ቀܤ൫݅, ݊൯ቁ
, 

we have 

න  
ஃొ

‾݂൫݅, ߱൯ߤ‾൫d݅, ߱൯ ≤ ۶ఓ‾ (࣪) + ௗܥ ≤ log ݉ + ௗܥ . 

This implies that ‾݂ ∈  .ଵ(ℚ)ܮ
Next we apply the following ergodic theorem due to Maker [20]. 

Theorem (1.1.12)[1]: Let (ܺ, ℬ, ,ߤ ܶ) be a measure-preserving system and let { ݂} be 
integrable functions on (ܺ, ℬ, (ݔ)If ݂ .(ߤ → a.e. and if sup (ݔ)݂  | ݂(ݔ)| =  is (ݔ)݂‾
integrable, then for a.e. ݔ, 

lim
1
݊   

ିଵ

ୀ
݂ି ∘ ܶ(ݔ) = ஶ݂(ݔ), 

where ஶ݂(ݔ) = lim ଵ


∑ୀ
ିଵ  ݂ ∘ ܶ(ݔ). 

Lemma (1.1.13)[1]: ℙ∗ − a.s. for ߤ-a.e. ݅ ∈ Λℕ, 

lim
→ஶ

  −
1
݊ log ෑ  

ିଵ

ୀ

‾ߤ ൣ ݅∣∣݇ ൧ ቀܤ൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቁ

‾ߤ
[∣ቃ ቀܤ൫ߪ݅, ݊ − ݇൯ቁ

= ॱ ቀ۶ఓ‾ (࣪ ∣ ℬ)ቁ. 

Proof. First notice that −log 
ఓ‾ [∣ೖ]ቀಅ൫ఙೖ,ି൯∩࣪൫ఙೖ൯ቁ

ఓ‾ [∣ೖ]ቀಅ൫ఙೖ,ି൯ቁ
= ݂ି ∘ ܶ(݅, ߱). From Theorem 

(1.1.12), for ℚ-a.e. (݅, ߱), 
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lim
→ஶ

 
1
݊   

ିଵ

ୀ
݂ି ∘ ܶ(݅, ߱) = ஶ݂(݅, ߱), 

where ஶ݂(݅, ߱) = lim→ஶ   ଵ


∑ୀ
ିଵ  ݂ ∘ ܶ(݅, ߱). But for ℚ-a.e. (݅, ߱) ∈ Ωᇱ, ஶ݂(݅, ߱) = 

ॱℚ(݂) = ॱ ቀ۶ఓ‾ (࣪ ∣ ℬ)ቁ by Proposition (1.1.4), hence the conclusion. 
The next lemma, an analogue of [11, Lemma 5.3] for self-similar sets, relates the 

shift on symbolic space to its geometric effect on balls in ℝௗ. 
Lemma (1.1.14)[1]: For ݅ ∈ Λℕ and ݎ > 0 we have 

Φିଵ ቀܤ൫Φ(݅), ∣ଵݎ ⋅ ൯ቁݎ ∩ ࣪൫݅൯ = ଵΦିଵିߪ ቀܤ൫Φ൫݅ߪ൯, ൯ቁݎ ∩ ࣪൫݅൯. 
Proof. For ݅ = ݅ଵ݅ଶ ⋯ and ݎ > 0 we have 

,(݅)൫Φܤ ∣ଵݎ ⋅ ൯ݎ = ݂భ(ܤ(Φ(݅ߪ),  .((ݎ
Thus 

Φିଵ ቀܤ൫Φ(݅), ∣ଵݎ ⋅ ൯ቁݎ ∩ ࣪൫݅൯ = Φିଵ ൬ ݂భ ቀܤ൫Φ൫݅ߪ൯, ൯ቁ൰ݎ ∩ ࣪൫݅൯. 
As 
       ݆ = ݆ଵ݆ଶ ⋯ ∈ Φିଵ൫ ݂భ ,(݅ߪ)Φ)ܤ) ൯((ݎ ∩ ࣪(݅) 

 ⇔ ݆ଵ = ݅ଵ, Φ(݆) ∈ ݂భ(ܤ(Φ(݅ߪ), ((ݎ
 ⇔ ݆ଵ = ݅ଵ, ݂భ(Φ(݆ߪ)) ∈ ݂భ(ܤ(Φ(݅ߪ), ((ݎ
 ⇔ ݆ଵ = ݅ଵ, Φ(݆ߪ) ∈ ,(݅ߪ)Φ)ܤ (ݎ

 ⇔ ݆ଵ = ݅ଵ, ݆ ∈ ,(݅ߪ)Φ)ܤ)ଵΦିଵିߪ ((ݎ
 ⇔ ݆ ∈ ,(݅ߪ)Φ)ܤ)ଵΦିଵିߪ ((ݎ ∩ ࣪(݅)

 

we get Φିଵ൫ ݂భ(ܤ(Φ(݅ߪ), ൯((ݎ ∩ ࣪(݅) = ,(݅ߪ)Φ)ܤ)ଵΦିଵିߪ ((ݎ ∩ ࣪(݅), hence the 
conclusion. 

For ݅ ∈ Λℕ and ݊ ≥ 1, conditioning on ߤ ቀቂ݅หቃቁ > 0, we obtain 

,݅)ܤ൫ߤ ݊)൯

[ప̇∣]ߤ ቀܤ൫ߪ݅, 0൯ቁ
= ෑ  

ିଵ

ୀ

 
ቂ|ೖቃߤ ቀܤ൫ߪ݅, ݊ − ݇൯ቁ

[∣ ାଵ]ߤ ቀܤ൫ߪାଵ݅, ݊ − ݇ − 1൯ቁ
                                      (21) 

= ෑ  
ିଵ

ୀ

 
[∣ೖ]ߤ ቀܤ൫ߪ݅, ݊ − ݇൯ቁ

[∣ೖ]ߤ ቀܤ൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቁ

[∣]ߤ ቀܤ൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቁ

[ೖశభ[]ߤ ቀܤ൫ߪାଵ݅, ݊ − ݇ − 1൯ቁ
 

= ෑ  
ିଵ

ୀ

 
[∣ೖ]ߤ ቀܤ൫ߪ݅, ݊ − ݇൯ቁ

[∣ೖ]ߤ ቀܤ൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቁ

[∣ೖ]ߤ ቀିߪଵܤ൫ߪାଵ݅, ݊ − ݇ − 1൯ ∩ ࣪൫ߪ݅൯ቁ

[∣ೖశభ]ߤ ቀܤ൫ߪାଵ݅, ݊ − ݇ − 1൯ቁ
 

= ෑ  
ିଵ

ୀ

 
[∣ೖ]ߤ ቀܤ൫ߪ݅, ݊ − ݇൯ቁ

ቂหೖቃߤ ቀܤ൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቁ
⋅ ܹೖశభ

[∣ೖ] 

= ෑ  
ିଵ

ୀ

‾ߤ ቂหೖቃ ቀܤ൫ߪ݅, ݊ − ݇൯ቁ

ቂหೖቃ‾ߤ ቀܤ൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቁ
⋅ ܹೖశభ

ቂหೖቃ
.                                                         (22) 

To complete the proof of (i) we need the following lemma. 
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Lemma (1.1.15)[1]: ℙ∗ − ܽ. ݅ .a.e-ߤ for .ݏ ∈ Λℕ, 

(a) lim→ஶ   ଵ


log ∏ୀ
ିଵ  ܹ ೖశభ

ቂหೖቃ
= ∑ୀଵ

  ॱ( ܹlog ܹ ); 

(b) lim→ஶ   ଵ


log ቚݎ


= ∑ ॱ( ܹ) log ݎ

ୀଵ   ; 

(c) lim→ஶ   ଵ


log ∥∥
ቂหቃߤ∥

∥∥
∥ = 0. 

Proof. (a) and (b) follow from the strong law of large numbers under the Peyrière 
measure ℚ. (c) follows from [3, Theorem IV (ii)]. 

Combining Lemma (1.1.13), (22) and Lemma (1.1.15) we have proved that ℙ∗-a.s. 
for ߤ-a.e. ݅ ∈ Λℕ, 

lim→ஶ  
log Φߤ ൬ܤ ቀΦ(݅), หݎ

ቁ൰

log ݎห

=
ॱ ቀ۶ఓ‾ (࣪ ∣ ℬ)ቁ + ∑ୀଵ

  ॱ( ܹlog ܹ )

∑ୀଵ
  ॱ( ܹ)log ݎ

, 

which gives the conclusion. 
Proof of Theorem (1.1.9)(ii). The proof is analogous to that of Theorem (1.1.9)(i); we 
can formally replace Φ by ݃ߨΦ. Here we only present the differences. For ݊ ≥ 0, ݃ ∈  ܩ
and ݅ ∈ Λℕ let 

,݅)గܤ ݊) = ଵି(Φ݃ߨ) ൬ܤ ቀ݃ߨΦ൫݅൯, ܴ ⋅ หݎ
ቁ൰. 

Notice that ܤగ(݅, 0) = Λℕ for all ݅ ∈ Λℕ. For ݊ ≥ 1 let 

݂ : Λℕ × Ω∗ × ܩ ∋ (݅, ߱, ݃) ↦ −log 
,݅)గܤ൫‾ߤ ݊) ∩ ࣪(݅)൯

,݅)గܤ൫‾ߤ ݊)൯
∈ ℝ. 

Using Proposition (1.1.7) again in the case of ߟ = ࣨ and ߮ =  Φ we get that given݃ߨ
any ߱ ∈ Ω∗ such that ∥ ߤ ∥> 0 and given any ݃ ∈ ݅ .a.e-ߤ for ,ܩ ∈ Λℕ, 

lim
→ஶ

 ݂ ൫݅, ߱, ݃൯ = ۷ఓ‾ ൫࣪ ∣ ℬగ൯൫݅൯: = ݂൫݅, ߱, ݃൯.                            (23) 
Furthermore, 

න  
ஃಿ

sup


 ห ݂൫݅, ߱, ݃൯หߤ‾൫d݅, ߱൯ ≤ ۶ఓ‾ (࣪) + ௗܥ ≤ log ݉ +  .ௗܥ

This implies that sup  | ݂| ∈ ଵ(ℚܮ ×  By using Theorem (1.1.12) and Proposition .(ߦ
(1.1.5) it follows that ℙ∗-a.s. for ߦ-a.e. ݃ ∈ ݅ .a.e-ߤ and ܩ ∈ Λℕ, 

lim→ஶ  
1
݊ ∑ୀ

ିଵ   ݂ି ∘ థܶ
൫݅, ߱, ݃൯ = ॱℚ×క(݂) = ॱℙ∗×క ቀ۶ఓ‾ ൫࣪ ∣ ℬగ൯ቁ.     (24) 

The following is an analogue of Lemma (1.1.14). 
Lemma (1.1.16)[1]: For ݅ ∈ Λℕ, ݃ ∈ ݎ and ܩ > 0 we have 

ଵି(Φ݃ߨ) ቀܤ൫݃ߨΦ൫݅൯, ∣ݎ ⋅ ൯ቁݎ ∩ ࣪൫݅൯

= ଵିߪ ቀܱ݃ߨหభ
Φቁ

ିଵ
൬ܤ ቀܱ݃ߨหభ

Φ൫݅ߪ൯, ቁ൰ݎ ∩ ࣪൫݅൯. 
Proof. For ݅ = ݅ଵ݅ଶ ⋯ and ݎ > 0 we have 

ܤ ቀ݃ߨΦ(݅), หభݎ
⋅ ቁݎ = ݃ߨ ݂భ ቀܤ൫Φ൫݅ߪ൯,  .൯ቁݎ

Thus 
ଵି(Φ݃ߨ) ൬ܤ ቀ݃ߨΦ൫݅൯, หభݎ

⋅ ቁ൰ݎ ∩ ࣪(݅) = ଵି(Φ݃ߨ) ൬݃ߨ ݂భ ቀܤ൫Φ൫݅ߪ൯, ൯ቁ൰ݎ ∩ ࣪൫݅൯. 
But 
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݆ = ݆ଵ݆ଶ ⋯ ∈ ݃ߨଵ൫ି(Φ݃ߨ) ݂భ(ܤ(Φ(݅ߪ), ൯((ݎ ∩ ࣪(݅)

⇔ ݆ଵ = ݅ଵ, Φ(݆) ∈ ݃ߨଵ൫ି(݃ߨ) ݂భ ,(݅ߪ)Φ)ܤ) ൯((ݎ

⇔ ݆ଵ = ݅ଵ, ݂భ(Φ(݆ߪ)) ∈ ݃ߨଵ൫ି(݃ߨ) ݂భ(ܤ(Φ(݅ߪ), ൯((ݎ
⇔ ݆ଵ = ݅ଵ, ݃ߨ ݂భ (Φ(݆ߪ)) ∈ ݃ߨ ݂భ(ܤ(Φ(݅ߪ), ((ݎ
⇔ ݆ଵ = ݅ଵ, ݃ߨ ܱభ(Φ(݆ߪ)) ∈ ݃ߨ ܱభ(ܤ(Φ(݅ߪ), ((ݎ

⇔ ݆ଵ = ݅ଵ, ݃ߨ ܱభΦ(݆ߪ) ∈ ݃ߨ൫ܤ ܱభΦ(݅ߪ), ൯ݎ

⇔ ݆ଵ = ݅ଵ, ݆ ∈ ݃ߨଵ൫ିߪ ܱభΦ൯ିଵ ቀܤ൫ܱ݃ߨభΦ(݅ߪ), ൯ቁݎ

⇔ ݆ ∈ ଵିߪ ቀܱ݃ߨหభ
Φቁ

ିଵ
൬ܤ ቀܱ݃ߨหభ

Φ൫݅ߪ൯, ቁ൰ݎ ∩ ࣪൫݅൯,

 

which gives the conclusion. 
For ݅ ∈ Λℕ and ݊ ≥ 1, conditioning on ߤ ቀቂ݅หቃቁ > 0, 

 
,݅)గܤ൫ߤ ݊)൯

ߤ ቂ݅ห


ቃ ቀܤగை!൫ߪ݅, 0൯ቁ
= ෑ  

ିଵ

ୀ

 
[∣]ߤ ൬ܤగை̇ೖ൫ߪ݅, ݊ − ݇൯൰

[|ೖశభ]ߤ ቆܤగைหೖశభ
൫ߪାଵ݅, ݊ − ݇ − 1൯ቇ

 

                                   = ෑ  
ିଵ

ୀ

 
ቂหೖቃߤ ቀܤగை఼̇

Φ൫ߪ݅, ݊ − ݇൯ቁ

[ప̇|ೖ]ߤ ൬ܤగைೖ൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯൰
 

ቂหೖቃߤ ቆܤగைಽ̇ೖ
൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቇ

ቂหೖశభቃߤ ൬ܤగைೖశభ ቀߪାଵ݅, ݊ − ݇ − 1ቁ൰
                   

  = ෑ  
ିଵ

ୀ

[|ೖ]ߤ ቆܤగைหೖ
൫ߪ݅, ݊ − ݇൯ቇ

ቂหೖቃߤ ቆܤగை↓̇ೖ
 ቀߪ݅, ݊ − ݇ቁ ∩ ࣪൫ߪ݅൯ቇ

 

ቂหೖቃߤ ቆିߪଵܤగைഊ̇ೖశభ
൫ߪାଵ݅, ݊ − ݇ − 1൯ ∩ ࣪൫ߪ݅൯ቇ

[|ೖశభ]ߤ ቆܤగை↓̇ೖశభ
 ቀߪାଵ݅, ݊ − ݇ − 1ቁቇ

 

= ෑ  
ିଵ

ୀ

 
ቂหೖቃߤ ൬ܤగை఼̇ೖ

൫ߪ݅, ݊ − ݇൯൰

[|ೖ]ߤ ቆܤగைഊ̇ೖ
൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቇ

⋅ ܹೖశభ

ቂหೖቃ
                     

= ෑ  
ିଵ

ୀ

 
ቂหೖቃ‾ߤ ൬ܤగை఼̇ೖ൫ߪ݅, ݊ − ݇൯൰

‾ߤ ቂหೖቃ ൬ܤగைೖ൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯൰
⋅ ܹೖశభ

ቂ୧หೖቃ
.            (25) 

Notice that for ݇ ≥ 0, 
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݂ି ∘ థܶ
(݅, ߱, ݃) = log 

‾ߤ [|ೖ] ቆܤగைഀೖ ൫ߪ݅, ݊ − ݇൯ቇ

‾ߤ ൣೖ൧ ቆܤగைหೖ
൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቇ

. 

Using (24) we conclude that ℙ∗-a.s. for ߦ-a.e. ݃ ∈ ݅ .a.e-ߤ and ܩ ∈ Λℕ, 

lim
→ஶ

 
1
݊ log ෑ  

ିଵ

ୀ

‾ߤ [|ೖ] ቆܤగைหೖ
൫ߪ݅, ݊ − ݇൯ቇ

൧݅ൣ‾ߤ ቆܤగைഊ̇ೖ
൫ߪ݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቇ

 

= ॱℙ∗×క ቀ۶ఓ‾ ൫࣪ ∣ ℬగ൯ቁ.                      (26) 
This completes the proof. 
Proof of Theorem (1.1.9)(iii). Given ݇ ≥ 1, ݃ ∈ ‾ߤ and ܩ > 0, Lemma (1.1.8) yields that 
for ߤ-a.e. ݅ ∈ Λே 

,݅)ܤ,గ൫‾ߤ ݇) ∩ ࣪(݅)൯ = lim
→ஶ

 
,݅)ܤ൫‾ߤ ݇) ∩ ,݅)గܤ ݊) ∩ ࣪(݅)൯

,݅)గܤ൫‾ߤ ݊)൯
. 

From Lemmas (1.1.14) and (1.1.16) we get 
,݅)ܤ൫‾ߤ ݇) ∩ ,݅)గܤ ݊) ∩ ࣪(݅)൯

,݅)గܤ൫‾ߤ ݊)൯

=
,݅)ܤ൫‾ߤ ݇) ∩ ,݅)గܤ ݊) ∩ ࣪(݅)൯

‾ߤ ቀܤగ(݅, ݊) ∩ ቁ(ߤ)࣪

,݅)గܤ൫‾ߤ ݊) ∩ ࣪(݅)൯
,݅)గܤ൫‾ߤ ݊)൯

=
‾ߤ [↓൧ଵቃ ൫ܤ(݅ߪ, ݇ − 1) ∩ ,݅ߪ)గைభ̇Φܤ ݊ − 1)൯

‾ߤ [∣ଵ] ቀܤగைభ̇భ(ߤߪ, ݊ − 1)ቁ

,݅)గܤ൫‾ߤ ݊) ∩ ࣪(݅)൯
,݅)గܤ൫‾ߤ ݊)൯

.

 

Since ߤ‾ []భ] is absolutely continuous with respect to ߤߪ‾|[]ଵ], we obtain, in a similar way 
to the proof of Lemma (1.1.8), that for ߤ-a.e. ݅ ∈ Λℕ, 

lim→ஶ  
ቂหభቃ‾ߤ ቀܤ(݅ߪ, ݇ − 1) ∩ గைหభܤ

(݅ߪ, ݊ − 1)ቁ

‾ߤ []భ] ቀܤగைభ̇భ(݅ߪ, ݊ − 1)ቁ
= ఙ,గை∣భ‾ߤ

ൣభ൧ ൫ܤ(݅ߪ, ݇ − 1)൯. 

On the other hand, by (23), 

lim
→ஶ

 
,݅)గܤ൫‾ߤ ݊) ∩ ࣪(݅)൯

,݅)గܤ൫‾ߤ ݊)൯
= exp ቀ−۷ఓ‾ ൫࣪ ∣ ℬగ൯൫݅൯ቁ. 

Hence, for ݇ ≥ 1, ℙ∗ a.s. for ߦ-a.e. ݃ ∈ ݅ .a.e-ߤ and ܩ ∈ Λℕ, 

,݅)ܤ,గ൫‾ߤ ݇) ∩ ࣪(݅)൯ = ఙ,గைഠ̇∣భ‾ߤ

ቂหభቃ
൫ܤ(݅ߪ, ݇ − 1)൯ ⋅ exp ൫−۷ఓ‾ ൫࣪ ∣ ℬగ൯(݅)൯. 

This gives, noting that ߤ‾ఙ
[,గ ቃ

̇ࡸ
ቀܤ൫ߪ݅, 0൯ቁ = 1, 

,݅)ܤ,గ൫‾ߤ  ݊)൯ 

= ෑ  
ିଵ

ୀ

ఙ,గைഠ̇∣భ‾ߤ

ቂหೖቃ
ቀܤ൫ߪ݅, ݊ − ݇൯ቁ

ఙೖ‾ߤ ,గை|ೖ

ቂหೖቃ
ቀܤ൫݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቁ

exp ቆ−۷
ఓഥቂหೖቃ ቀ࣪ ∣ ℬగைഠ̇∣భቁ ൫ߪ݅൯ቇ (27) 
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We need the following lemma: 
Lemma (1.1.17)[1]: ℙ∗ a.s. for ߦ-a.e. ݃ ∈ ݅ .a.e-ߤ and ܩ ∈ Λℕ, 

lim
→ஶ

 
1
݊ log ෑ  

ିଵ

ୀ

ఙೖ,గை|ೖ‾ߤ

[|ೖ] ቀܤ൫ߪ݅, ݊ − ݇൯ቁ

ఙೖ‾ߤ ,గை|ೖ

ቂหೖቃ
ቀܤ൫݅, ݊ − ݇൯ ∩ ࣪൫ߪ݅൯ቁ

= ॱ ቀ۶ఓ‾ (࣪ ∣ ℬ)ቁ. 

Proof. For ݊ ≥ 1 let 

݂൫݅, ߱, ݃൯ = − log
,గ‾ߤ ቀܤ൫݅, ݊൯ ∩ ࣪൫݅൯ቁ

గ‾ߤ ቀܤ൫݅, ݊൯ቁ
. 

Applying Proposition (1.1.7) in the case of ߟ = గ࣪ and ߮ = Φ we get that given ݃ ∈  ,ܩ
for ℚ-a.e. (݅, ߱) ∈ Ωᇱ the sequence ݂  converges to 

݂: = ۷ఓ‾ ൫࣪ ∣ గ࣪ ∨ ℬ൯ = ۷ఓ‾ (࣪ ∣ ℬ), 
Here we have used that the ߪ-algebra గ࣪  is a sub- ߪ-algebra of ℬ. Moreover, since 
∫ sup  | ݂|dߤ‾ ≤ ۶ఓ‾ (࣪) + ௗܥ ≤ log ݉ + ,ௗܥ sup  | ݂| is integrable. As 

1
݊

log ෑ  
ିଵ

ୀ

‾ߤ
ఙೖ,గைหೖ

ቂหೖቃ
ቀܤ൫ߪ݅, ݊ − ݇൯ቁ

ఙೖ,గ‾ߤ
ൣ∣ౡ൧ ቀܤ(݅, ݊ − ݇) ∩ ࣪൫ߪ݅൯ቁ

=
1
݊

  
ିଵ

ୀ
݂ି ∘ థܶ

(݅, ߱, ݃), 

the conclusion follows from Theorem (1.1.12) and Proposition (1.1.5). 
By Proposition (1.1.5) we have ℙ∗ a.s. for ߦ-a.e. ݃ ∈ ݅ .a.e-ߤ and ܩ ∈ Λℕ, 

lim→ஶ  
1
݊

  
ିଵ

ୀ

  ۷ఓ‾ ቂหೖቃ ቀ࣪ ∣ ℬగܱหೖ
Φቁ ൫ߪ݅൯ = ॱℙ∗×క ቀ۶ఓ‾ ൫࣪ ∣ ℬగ൯ቁ 

Combining (27) and Lemma (1.1.17) we get that ℙ∗-a.s. for ߦ-a.e. ݃ ∈ ݅ .a.e-ߤ and ܩ ∈
Λℕ, 

lim
→ஶ

 
1
݊

log ߤ‾,గ൫ܤ(݅, ݊)൯ = ॱ ቀ۶ఓ‾ (࣪ ∣ ℬ)ቁ − ॱℙ∗ × ߦ ቀ۶ఓ‾ ൫࣪ ∣ ℬగ൯ቁ, 

so that ℙ∗-a.s. for ߦ-a.e. ݃ ∈ ݅ .a.e-ߤ and ܩ ∈ Λℕ, 

lim→  
log Φߤ‾,గ(ܤ(Φ(݅), ((ݎ

log ݎ
=

ॱ ቀ۶ఓ‾ (࣪ ∣ ℬ)ቁ − ॱℙ∗×క ቀ۶ఓ‾ ൫࣪ ∣ ℬగ൯ቁ
∑  

ୀଵ  ॱ( ܹ) log ݎ
. (28) 

Together with (18) this yields (iii). 
We generalize the results of [14] on projections and images under ܥଵ functions 

without singularites to random cascade measures. 
Let ܦ = ,0)ܤ ܴ) where ܴ = max{|ݔ|: ݔ ∈  Denote by ℳ the family of .{ܭ

probability measures on ܦ and let ℬ⋆ be its weak-\star topology. Denote by ܥ(ℳ) the 
family of all continuous functions on ℳ. We use the separability of ܥ(ℳ) in ∥⋅∥ஶ to get 
convergence of ergodic averages for all ℎ ∈  .(ℳ)ܥ
Proposition (1.1.18)[1]: ℙ∗ − a.s. for ߦ-a.e. ݃ and ߤ-a.e. ݅, 

limே→ஶ  
1
ܰ

  
ேିଵ

ୀ

 ℎ ቀܱ݃న|̇
Φߤ‾ [୧]൧ቁ = ॱொ×క(ℎ(݃Φߤ‾)) 

for all ℎ ∈  .(ℳ)ܥ
Proof. Let {ℎ}ஹଵ be a countable dense sequence in ܥ(ℳ). If we write 
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:ܯ ܺ ∋ (݅, ߱, ݃) ↦ ݃Φߤ‾ ∈ ℳ, 
then it is easy to verify that for ݊ ≥ 1 

ܯ ∘ ܶథ
൫݅, ߱, ݃൯ = ܱ݃ห

Φߤ‾ቂหቃ. 
It follows from Proposition (1.1.5) that ℙ∗-a.s. for ߦ-a.e. ݃ and ߤ-a.e. ݅, 

lim
ே→ஶ

 
1
ܰ   

ேିଵ

ୀ

ℎ ቀܱ݃ห
Φߤ‾ [ଵ̇]ቁ = ॱℚ×క(ℎ(݃Φߤ‾))  for all ݇ ≥ 1. 

For any ℎ ∈ take a subsequence {ℎ ,(ℳ)ܥ
ᇱ }ஹଵ of {ℎ}ஹଵ that converges to ℎ. On the 

one hand, since ℳ is compact, ℎ is bounded, so by the uniform convergence in ∥⋅∥ஶ, 
lim
→ஶ

 ॱℚ×క(ℎ
ᇱ (݃Φߤ‾)) = ॱℚ×క൫ℎ(݃Φߤ‾)൯. 

On the other hand, for each ܰ, 

อ
1
ܰ   

ேିଵ

ୀ

 ℎ
ᇱ ൫ܱ݃∣Φߤ‾ [∣]൯ −

1
ܰ   

ேିଵ

ୀ

 ℎ൫݃ ܱ∣Φߤ‾ [∣]൯อ ≤ ∥∥ℎ
ᇱ − ℎ∥∥ஶ. 

Thus the limit 

lim
ே→ஶ

 
1
ܰ

  
ேିଵ

ୀ

ℎ ቀܱ݃ห
Φߤ‾ [|]ቁ 

exists and equals lim→ஶ  ॱℚ×క(ℎ
ᇱ (݃Φߤ‾)) = ॱℚ×క(ℎ(݃Φߤ‾)), ℙ∗-a.s. for ߦ-a.e. ݃ and ߤ-

a.e. ݅. 
We use the ߩ-tree method in [14] to obtain close lower bounds for the dimensions 

of projections of measures. Let ߩ = max{ݎ: ݅ ∈ Λ} and ܿ = min{ݎ: ݅ ∈ Λ}. For ݅ =
݅ଵ ⋯ ݅ ∈ Λ∗ write ݎ

ି = భݎ ⋯ ݍ షభ. For eachݎ ≥ 1 we redefine the alphabet used for 
symbolic space to obtain one for which the contraction ratios do not vary too much: 

Λ = ൛݅ ∈ Λ∗: ݎ
ି > ߩ  and ݎ ≤  .ൟߩ

By definition ܿߩ < ݎ ≤ ݅  for allߩ ∈ Λ. The canonical mapping Φ : ൫Λ
ℕ, ݀ఘ൯  ܭ ↦

is ܴ-Lipschitz where ܴ = max{|ݔ|: ݔ ∈ Setting ቊ .{ܭ ܹ
[] = ቀܳ

[]ቁ
∈ஃ

: ݆ ∈ Λ
∗ ቋ gives 

a random cascade measure ߤ  on Λ
ℕ. Observe that it is the same random cascade measure 

as ߤ on embedding Λ
ℕ into Λℕ. (The slight ambiguity in notation should not cause any 

confusion: the subscript ݍ will always refer to the parameter redefining the alphabet, so, 
for example, ܹ, refers to the element of ܹ ≡ ܹ

[∅] with index ∈ Λ. ) 
Let ܩ = ൻ పܱ: ଓ ∈ Λൿതതതതതതതതതതതതതത and let ߦ  be its normalised Haar measure. As before, Πௗ, 

is the set of orthogonal projections from ℝௗ onto its ݇-dimensional subspaces. 
For ߨ ∈ Πௗ,, ݍ ∈ ℕ and ߥ a measure on ℝௗ, define 

݁(ߨ, (ߥ =
1

(ߩ/1) logݍ
 .(ߥߨ)ఘܪ

So ݁ : Πௗ, × ℳ ↦ [0, ݇] is lower semicontinuous. Let ܧ(ߨ) = ॱℙ∗ ×
,ߨ)൫݁ߦ ݃Φߤ‾)൯. 
Theorem (1.1.19)[1]: ℙ∗ − ܽ. ݃ .-a.eߦ for .ݏ ∈  ,ܩ

dimு (‾ߤΦ݃ߨ)  ≥
(ߩ/1) logݍ

(ߩ/1) logݍ − log ܿ
(ߨ)ܧ − ߨ for all (ݍ/1)ܱ ∈ Πௗ,, 

where the implied constant in ܱ(1/ݍ) only depends on ߩ, ܿ, ܴ and ݇. 
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Proof. Applying Proposition (1.1.18) to a sequence of continuous functions 
approximating ݁  from below and using the monotone convergence theorem, we have 
that ℙ∗-a.s. for ߦ-a.e. ݃ and ߤ-a.e. ݅, 

lim inf
1
ܰ   

ே

ୀଵ

 ݁ ቆߨ, ܱ݃ห
Φߤ‾

ቂหቃ
ቇ ≥ ߨ for all(ߨ)ܧ ∈ Πௗ,.             (29) 

Using the strong law of large numbers we note that ℙ∗-a.s. for ߤ-a.e. ݅ ∈ Λ
ℕ, 

lim
→ஶ

 
log ܳ ห

−݊
= −   

∈ஃ

ॱ ቀ߯൛ௐ,வൟ ܹ, log ܹ,ቁ ∈ (0, ∞), 

so in particular, ℙ∗-a.s. for ߤ-a.e. ݅ ∈ Λ
ℕ, ܳห

> 0 for all ݊ ≥ 1. Identically, 

߯{ொ∣வ}ߤ‾
[∣] = ߯ቄொ∣ வቅ߯ቄ∥∥

∥ఓ
[∣]

∥∥
∥வቅ ⋅

ߤ
ൣ∣൧

∥∥
ߤ∥

ൣ∣൧
∥∥
∥

=  ,,ൣ∣൧‾ߤߪ

where 

,[∣]‾ߤ = ߯൛ఓ([∣])வൟ

หൣ∣൧ߤ

ߤ ൫ൣ݅ ∣൧൯
, 

so by (15) 

ఘܪ ൬ܱ݃ߨ∣Φ߯ቄொ∣வቅߤ‾
ൣ∣൧൰  = ఘܪ ቀ݃ߨ ܱ∣Φߪߤ‾,ൣ∣൧ቁ

 = ఘ⋅∣ܪ
ቀ݃ߨΦߤ‾,ൣ∣൧ቁ

 ≤ శభ(ఘ)ܪ ቀ݃ߨΦߤ‾,ൣ∣൧ቁ .

 

Hence, using (29), ℙ∗-a.s. for ߦ-a.e. ݃ and ߤ-a.e. ݅, 

1
(ߩ/1) logݍ

lim infே→ஶ  
1
ܰ

  


୬ୀଵ

శభ(ఘ)ܪ  ቀ݃ߨΦߤ‾,[|൧ቁ ≥ ߨfor all (ߨ)ܧ ∈ Πௗ, . 

The mapping ݂ ≡ :Φ݃ߨ ൫(Λ)ℕ, ݀ఘ൯ ↦ ℝ is ܴ-Lipschitz. By [14, Theorem 5.4] there 

exist a ߩ-tree ൫ܺ, ݀ఘ൯ and maps (Λ)ℕ ↦


ܺ ↦
ᇲ

ℝ  such that ݂ = ݂ᇱℎ, where ℎ is a tree 
morphism and ݂ᇱ is ܥ-faithful (see [14, Definition 5.1] ) for some constant ܥ depending 
only on ܴ  and ݇ . Then, applying [14, Proposition 5.3] to the ܿ ,-tree ൫ܺߩ ݀ఘ ൯ (for which 
݂ᇱ is ܿିଵܥ-faithful), there is a constant ܥ ᇱ depending only on ܿିଵܥ and ݇ such that for 
all ݊ ≥ 1, 

ቚܪ(ఘ)శభ ቀ݂ߤ‾,ൣ∣൧ቁ − శభ(ఘ)ܪ ቀℎߤ‾,[|൧ቁቚ ≤  .ᇱܥ
Consequently, ℙ∗-a.s. for ߦ-a.e. ݃ and ߤ‾-a.e. ݅, 

1
(ߩ/1) logݍ

lim infே→ஶ  
1

ܰ − 1
  

ே

ୀଵ

శభ(ఘ)ܪ  ቀℎߤ‾,[|൧ቁ 

≥ (ߨ)ܧ − ܱ ൬
1
ݍ

൰ for all  ߨ ∈ Πௗ, ,                   

where the constant in ܱ ܥ and ߩ only depends on (ݍ/1) ᇱ. By [14, Theorem 4.4] it follows 
that ℙ∗-a.s. for ߦ-a.e. ݃, 
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dimு  ℎߤ‾ ≥
(ߩ/1) logݍ

(ߩ/1) logݍ − log ܿ
(ߨ)ܧ − ߨ for all (ݍ/1)ܱ ∈ Πௗ, .  

Since ݂ᇱ is ܥ-faithful and ݂ᇱℎߤ‾ = ‾ߤ݂ = ‾ߤΦ݃ߨ =  the conclusion follows ,‾ߤΦ݃ߨ
from [14, Proposition 5.2]. 

The projection results in [14] require the strong separation condition on the 
underlying IFS ℐ. With the approach we avoid the need for any separation condition at 
all. Moreover, our results apply to random cascade measures as well as deterministic 
measures on self-similar sets. 

We assume that the rotation group ܩ ≡ ⟨ పܱ: ଓ ∈ Λ⟩തതതതതതതതതതതതത is connected and we denote by 
ߨ its normalised Haar measure. We fix ߦ ∈ Πௗ,  and write Π =  .ܩߨ

We remark that the arguments extend to the more general setting where the orbit 
 is connected. This includes the case of certain restricted ܩ̃ where ,ܩ̃ߨ is of the form ܩߨ
families of projections, for example for projections onto the lines lying in certain cones. 
Lemma (1.1.20)[1]: If ܩ is connected then ߨܩ = Π for each ݍ ≥ 1. 
Proof. For ݅ = ݅ଵ݅ଶ ⋯ ݅ ∈ Λ∗ (where ݅ ∈ Λ ) let ܱ = ܱభ ܱమ ⋯ ܱ . It is sufficient to 
prove that the group ܪ: = ൻ ܱ: ݅ ∈ Λൿ is dense in ܩ. (Recall that the closed group 
generated by a set of elements coincides with the closed semigroup generated by them). 
Write Λழ = {݅ ∈ Λ∗: ݎ > }. Then ⋃∈ஃಬߩ   ܱܪ is dense in ܩ. By Baire's category 
theorem, we may choose ݆ ∈ Λழ such that ܱ ఫܪതതതതത has nonempty interior in ܩ. Consequently 
‾ܪ  has nonempty interior, so if ℎ is in the interior of ܪ‾  then ܪ‾ = ℎିଵܪ‾ . Thus ܪ‾  contains 
a neighborhood of the identity, so since a compact connected Lie group is generated by 
any neighbourhood of its identity, ܪ‾ =  .ܩ

Hence for ߨ ∈ Π we have 
(ߨ)ܧ = ॱℙ∗×క൫݁(ߨ, ݃Φߤ‾)൯ = ॱℙ∗×క൫݁(ߨ, ݃Φߤ‾)൯. 

For the same reason we can also deduce from Theorem (1.1.9) (ii) that ℙ∗-a.s. for ߦ-a.e. 
݃ ∈ ,ܩ̃  is exact-dimensional with dimension ߤ݃Φߨ

(ߨ)ߚ =
ॱℙ∗×క ቀ۶ఓ‾ ൫࣪ ∣ ℬగబ൯ቁ + ∑  

ୀଵ  ॱ( ܹlog ܹ )
∑  

ୀଵ  ॱ( ܹ)log ݎ
. 

Theorem (1.1.21)[1]: Let ߨ ∈ Πௗ, and let ܩ be connected. Then the limit 
:(ߨ)ܧ = lim

→ஶ
 (ߨ)ܧ 

exists for every ߨ ∈ Π, and ܧ: Π ↦ [0, ݇] is lower semi-continuous. Moreover: 
(i) ܧ(ߨ݃) =  .݃ .a.e-ߦ for (ߨ)ߚ
(ii) For a fixed ߨ ∈ Π, ℙ∗-a.s. for ߦ-a.e. ݃, 

dim ‾ߤΦ݃ߨ  = dimு ݃ߨΦߤ‾ =  .(ߨ)ܧ
(Recall that dim is the entropy dimension.) 
(iii) ℙ∗-a.s. for ߦ-a.e. ݃ ∈  ,ܩ

dimு ݃ߨΦߤ‾ ≥ ߨ for all (ߨ)ܧ ∈ Π. 
Proof. The proof is almost the same as that of [14, Theorem 8.2]. By Theorem (1.1.19) 
and Lemma (1.1.20) we have for each ݍ ≥ 1 that ℙ∗-a.s. for ߦ-a.e. ݃ ∈  ,ܩ

dimு (‾ߤΦ݃ߨ)  ≥
(ߩ/1) logݍ

(ߩ/1) logݍ − log ܿ
(ߨ)ܧ − ߨ for all (ݍ/1)ܱ ∈ Π, 

where the implied constant in ܱ(1/ݍ) only depends on ߩ, ܿ, ܴ and ݇. This implies that 
ℙ∗-a.s. for ߦ-a.e. ݃ ∈  ,ܩ
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dimு (݃ߨΦߤ‾) ≥ lim sup
→ஶ

ߨ for all (ߨ)ܧ  ∈ Π. 

On the other hand by using Fatou's lemma we have 
ॱℙ∗×క(dim ((‾ߤΦ݃ߨ)  ≤ lim inf

→ஶ
 (ߨ)ܧ 

This implies that lim→ஶ ߨ exists for all (ߨ)ܧ  ∈ Π. Then (ii) and (iii) follow directly, 
and (i) follows from Theorem (1.1.9)(ii). 

For the lower semicontinuity of ܧ, fix ߨ ∈ Π and ߳ > 0. Using that ܧ(ߨ) →  (ߨ)ܧ
and ܧ is lower semicontinuous, there exist a number ݍ and a neighbourhood ࣯(ߨ) of ߨ 
in Πௗ,  such that for all ߨᇱ ∈  ,(ߨ)࣯

(ߩ/1) logݍ
(ߩ/1) logݍ − log ܿ

(ᇱߨ)ܧ − (ݍ/1)ܱ ≥ (ߨ)ܧ − ߳. 

This gives that ℙ∗-a.s. for ߦ-a.e. ݃ ∈  ,ܩ
dimு (ߨᇱ݃Φߤ‾) ≥ (ߨ)ܧ − ߳ for all ߨᇱ ∈  .(ߨ)࣯

By (ii) this yields that ܧ(ߨᇱ) ≥ (ߨ)ܧ − ߳ for all ߨᇱ ∈  .giving the conclusion ,(ߨ)࣯
We can now obtain a constant lower bound for the dimension of the projected 

measure over all ߨ ∈ Π. 
Corollary (1.1.22)[1]: Let ܩ be connected and let ߨ ∈ Πௗ, . Then ℙ∗ − ܽ.  .ݏ

dimு ߨΦߤ ≥ ߨ for all  (ߨ)ߚ ∈ Π =  (30)                               .ܩߨ
Proof. Since ܧ is lower semi-continuous, it follows from Theorem (1.1.21)(i) that for any 
߳ > 0 the set 

࣯ఢ = ൛ߨ ∈ Πௗ,: (ߨ)ܧ > (ߨ)ߚ − ߳ൟ 
is open and dense in Π. Write ࣯ఢ݃ = :݃ߨ} ߨ ∈ ࣯ఢ} for ݃ ∈  Then from Theorem .ܩ
(1.1.21)(iii) we have ℙ∗-a.s. for ߦ-a.e. ݃ ∈  ,ܩ

෨࣯ఢ = ߨ} ∈ Π: dimு ‾ߤΦߨ  > (ߨ)ߚ − ߳} ⊇ ࣯ఢ ݃. 
Since ࣯ఢ  has non-empty interior, we deduce that ℙ∗-a.s. ෨࣯ఢ = Π as required. 
Corollary (1.1.23)[1]: If ܩ = ܱܵ(݀, ℝ), then ℙ∗-a.s. 

dimு ߤΦߨ  = min(݇, dimு Φߤ)  for all ߨ ∈ Πௗ,.                        (31) 
Moreover, with ߙ and (ߨ)ߚ as in Theorem (1.1.9)(i), (ii), (ߨ)ߚ = min(݇, ߨ for all (ߙ ∈
Πௗ,. 
Proof. If ܩ = ܱܵ(݀, ℝ), then ߨܩ = Πௗ, and for any ߨ ∈ Πௗ, there exists ݃ ∈  such ܩ
that ߨ݃ = (ߨ)ߚ Due to the invariance of Haar meausres this implies that .ߨ =  (ߨ)ߚ
for all ߨ ∈ Πௗ,, thus a constant. Then by Corollory (1.1.22) we get that ℙ∗-a.s. 
dimு ߤΦߨ  ≥ ߨ for all (ߨ)ߚ ∈ Πௗ,, with equality for almost all ߨ by Theorem 
(1.1.9)(ii). From the definition of dimension of measures (3), and applying the projection 
theorems of Marstrand [22] and Mattila [24] to sets ܧ with Φ(ܧ)‾ߤ > 0 and dimு ܧ  >
dimு  Φߤ‾ − ߳, for ߳ > 0, it follows that ℙ∗-a.s. dimு ߤΦߨ  ≤ min(݇, dimு Φߤ) =
min(݇, ߨ for all (ߙ ∈ Πௗ, with equality for a.a. ߨ ∈ Πௗ,. The conclusions follow. 

As in [14] results on projections may be generalized to ܥଵ-maps without singular 
points, that is ܥଵ-maps for which the derivative matrix is everywhere non-singular. 
Proposition (1.1.24)[1]: Let ߨ ∈ Π = :ଵ-maps ℎܥ  G. For allߨ ,0)ܤ ܴ) ↦ ℝ such that 
sup௫∈ ௫ℎܦ∥∥  − ∥∥ߨ < ∗, we have that ℙߩܿ − a.s. for ߦ-a.e. ݃ ∈  ,ܩ

dimு  ℎ݃Φߤ‾ ≥ (ߨ)ܧ −  ,(ݍ/1)ܱ
where the constant in ܱ(1/ݍ) only depends on ߩ, ܿ, ܴ and ݇. 
Corollary (1.1.25)[1]: If ܩ = ܱܵ(݀, ℝ), then ℙ∗-a.s., for all ܥଵ-maps ℎ: ܭ ↦ ℝ  without 
singular points, 
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dimு ℎΦߤ = m  (݇, dimு Φ(32)                                          .(ߤ 
Proof. Corollary (1.1.23) together with Theorem (1.1.21)(ii) yields that (ߨ)ܧ =
min(݇, dimு  Φߤ) = min(݇, ߨ is a constant for all (ߙ ∈ Πௗ,, and it is the maximum 
possible value since ℎ is a ܥଵ map. The result follows from Proposition (1.1.24). 

Random cascade measures include non-random measures as a special case, so we 
can apply our results to the fractal geometry of deterministic self-similar sets. We 
consider an IFS ℐ of similarities on ℝௗ(5) with rotation group ܩ = ⟨ పܱ: ଓ ∈ Λ⟩തതതതതതതതതതതതത =
ܱܵ(݀, ℝ), with self-similar attractor ܭ the unique non-empty compact subset of ℝௗ 
satisfying ܭ =∪ୀଵ


݂(ܭ). Recall that ℐ satisfies the strong separation condition (SSC) if 

this union is disjoint and satisfies the open set condition (OSC) if there is a non-empty 
open set ܸ such that ܸ ⊆∪ୀଵ


݂(ܸ) with this union disjoint. If either SSC or OSC are 

satisfied then 

dimு ܭ = where   ݏ  


ୀଵ

  ݎ
௦ = 1.                                     (33) 

To transfer our results to sets we need to ensure that the sets support suitable measures. 
From the definitions, if a probability measure ߥ is supported by a compact set ܭ then 
dimு ߥ  ≤ dimு  satisfies the strong ܭ We say that an IFS ℐ with self-similar attractor .ܭ 
variational principle if there is a Bernoulli probability measure ߤ on Λℕ such that 
dimு  Φߤ = dimு ܩ No self-similar set with .ܭ  = ܱܵ(݀, ℝ) which does not satisfy the 
strong variational principle is known, and in particular the principle holds in the cases 
described in the following lemma. 
Lemma (1.1.26)[1]: (a) If the IFS ℐ satisfies the open set (or strong separation) condition 
then ℐ satisfies the strong variational principle. 

(b) Given 0 < ݎ < ଵ
ଶ
 and ܱ, the IFS ℐ in (5) satisfies the strong variational 

principle for almost all (ݐଵ, … ,  .) in the sense of md-dimensional Lebesgue measureݐ
Proof. (a) With ݏ given by (33), the Bernoulli probability measure ߤ on Λℕ, defined by 

([݅])[∅]ߤ = ݎ
௦ (݅ = 1, … , ݉),                                         (34) 

has dimு Φߤ = dimு This fact is the key step in showing that dimு .ܭ  ܭ  =  when OSC ݏ
holds, see for example [15]. 

(b) This follows by applying to self-similar sets the argument used in [7] to find 
the almost sure dimension of self-affine sets. With ߤ as in (34), integrating the ݐ-energy 
of the image measures Φߤ over a parameterized family of self-similar sets gives that the 
energy is bounded for almost all (ݐଵ, … , ݐ ) for allݐ < so that dimு ,ݏ ܭ  =  for almost ݏ
all (ݐଵ, … ,  .(ݐ

The following two corollaries, obtained by applying Corollaries (1.1.22) and 
(1.1.23) to selfsimilar sets, weaken the conditions that guarantee the dimensions of 
projections and images from those of [14] to just the strong variational principle. 
Corollary (1.1.27)[1]: Let ܭ be the self-similar attractor of an IFS I with rotation group 
ܱܵ(݀, ℝ) such that the strong variational principle is satisfied. Then 

dimு ܭߨ  = min(݇, dimு ߨ for all (ܭ  ∈ Πௗ,. 
Corollary (1.1.28)[1]: Let ܭ be the self-similar attractor of an IFS ℐ with rotation group 
ܱܵ(݀, ℝ) such that the strong variational principle is satisfied. Then for all ܥଵ − maps 
ℎ: ܭ → ℝ  without singular points 

dimு  ℎ(ܭ) = min  (݇, dimு  .(ܭ 
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The distance set of ܣ ⊆ ℝௗ is defined as (ܣ)ܦ = ݔ|} − :|ݕ ,ݔ ݕ ∈  and the pinned {ܣ
distance set of ܣ at ܽ is ܦ(ܣ) = ݔ|} − ܽ|: ݔ ∈  A general open problem is to relate .{ܣ
the Hausdorff dimensions and Lebesgue measures of (ܣ)ܦ and ܦ(ܣ) to that of ܣ. For 
self-similar sets in the plane, Orponen [27] showed that if dimு ܭ  > 1 then 
dimு (ܭ)ܦ  = 1. We have the following variant. 
Corollary (1.1.29)[1]: Let ܭ be the self-similar attractor of an IFS ℐ with rotation group 
ܱܵ(݀, ℝ) such that the strong variational principle is satisfied. Then there exists ܽ ∈  ܭ
such that 

min  (1, dimு (ܭ  = dimு (ܭ)ܦ  ≤ dimு (ܭ)ܦ  ≤ 1. 
Proof. Take a point ܽ ∈ ݅ and some ,ܭ ∈ Λ such that ܽ ∉ ݂(ܭ). Then ݂(ܭ) is similar to 
:ଵ-maps ℎܥ so by scaling, Corollary (1.1.28) applies to ,ܭ ݂(ܭ) → ℝ. The mapping 
ℎ: ݂(ܭ) → ℝ given by ℎ(ݔ) = ݔ| − ܽ| is ܥଵ and has no singular points, so applying 
Corollary (1.1.28) to ݂(ܭ) gives 

dimு{|ݔ − ܽ|: ݔ ∈ ݂(ܭ)} = dimு൛ℎ൫ ݂(ܭ)൯ൟ                       
= min  (1, dimு ݂(ܭ)) = min  (1, dimு  (ܭ 

since ݂(ܭ) is similar to ܭ. Since ܽ ∈ (ܭ)and ݂ ܭ ⊆ ,ܭ ݔ|} − ܽ|: ݔ ∈ ݂(ܭ)}  .(ܭ)ܦ ⊇
Furstenberg [12] showed that if a self-similar set has finite rotation group finite and 
satisfies the SSC then all directions are dimension conserving. Here we can dispense with 
the separation condition. 
Corollary (1.1.30)[1]: Let ܭ be the self-similar attractor of an IFS ℐ with finite rotation 
group such that the strong variational principle is satisfied. Then every direction is 
dimension conserving, that is for all ߨ ∈ Πௗ, there is a number Δ > 0 such that 

Δ + dimு ݕ}  ∈ ℝ: dimு(ܭ ∩ (ݕଵିߨ ≥ Δ} ≥ dimு (35)                    ܭ 
(we take dim ∅ = −∞). 
Proof. This follows from Corollary (1.1.11) taking Δ = dimு  Φߤ‾௬,గ for some measure ߤ 
satisfying the strong variational principle. 

Examples such as the Sierpiński triangle [18] and the Sierpiński carpet [21] show 
that the value of Δ in (35) can vary with ߨ. 

Whilst fractal percolation or Mandelbrot percolation is most often based on a 
decomposition of a ݀-dimensional cube into ݉ௗ equal subcubes of sides ݉ିଵ, random 
subsets of any self-similar set may be constructed using a similar percolation process. Let 
ℐ = { ݂ = ݎ ܱ ⋅ }ୀଵݐ+

  be an IFS of similarities with attractor ܭ and let ℙ be a 
probability distribution on ࣪ (Λ), the collection of all subsets of Λ = {1, … , ݉}. We define 
a sequence of random subsets of Λ inductively as follows. The random set ଵܵ ⊆ Λ has 
distribution ℙ. Then, given ܵ, let ܵାଵ =∪∈ௌ ܵ  where ܵ = ൛݆݅: ݆ ∈ ଵܵ

 ൟ ⊆ Λାଵ and 
where ܵ ଵ

 ⊆ Λ has the distribution ℙ independently for each ݅ ∈ ܵ . A sequence of random 
subsets {ܭ}ୀଵ

ஶ  of ܭ is given by ܭ =∪∈ௌ ݂(ܭ). We write ܭℙ =∩ୀ
ஶ ܭ  for the 

resulting random compact subset of ܭ which is known as the percolation set. (Note that 
standard Mandelbrot percolation on a cubic grid is a particular case of percolation on a 
self-similar set satisfying OSC.) 

We say that (ℐ, ℙ) satisfies the strong variational principle if there exists a random 
cascade measure ߤ on Λℕ such that there is a positive probability of ܭℙ ≠ ∅, and such 
that, conditional on ܭℙ ≠ ∅, 

dimு ℙܭ  = dimு  Φߤ =  (36)                                             ߙ
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a.s., where ߙ is given by Theorem (1.1.9)(i). The next lemma gives a condition for (ℐ, ℙ) 
to satisfy the strong variational principle, in which case ߙ is given by an expectation 
equation. 
Lemma (1.1.31)[1]: Let (ℐ, ℙ) be as above with ℐ satisfying ܱܵܥ and with ॱ{card ܵ ଵ} >
1. Then (ℐ, ℙ) satisfies the strong variational principle with ߙ given by 

ॱ ቌ  
∈ௌభ

ݎ 
ఈቍ = 1.                                                        (37) 

Proof. By standard branching process theory [2], if ॱ{card ଵܵ} > 1 there is a positive 
probability that ܭℙ ≠ ∅. Under OSC, conditional on ܭℙ ≠ ∅ the a.s. dimension of ܭℙ is 
the solution ߙ of (37) The random cascade defined by the random vector 

ܹ = ( ଵܹ, … , ܹ) = ቀݎଵ
ఈ߯{ଵ∈ௌ}(߱), … , ݎ

ఈ߯{∈ௌ}(߱)ቁ.                     (38) 
gives rise to a random measure Φߤ supported by ܭℙ such that ℙ∗(ܭℙ ≠ ∅) > 0. Using a 
potential-theoretic estimate or a direct verification of the formula in Theorem 
(1.1.9)(i), dimு  Φߤ = dimு ܭℙ =  given by (37) equals that ߙ a.s., see [7,26], so the ߙ
of Theorem (1.1.9)(i). 

Investigation of the dimensions of projections of the basic ݉-adic square-based 
percolation process goes back some years, see [5] for a survey, and recently Rams and 
Simon [32] showed using direct geometric arguments that a.s. all orthogonal projections 
of square-based percolation have Hausdorff dimension min{1,  is the ߙ where ,{ߙ
dimension of the percolation set. The following application of Corollary (1.1.22) gives a 
similar conclusion for percolation on self-similar sets for which the IFS has dense 
rotations. 
Corollary (1.1.32)[1]: If (ℐ, ℙ) satisfies the strong variational principle and has rotation 
group ܱܵ(݀, ℝ), then a.s. conditional on ܭℙ ≠ ∅, 

dimு ℙܭߨ  = min  (݇, dimு (ℙܭ = min  (݇, ߨ for all (ߙ ∈ Πௗ,, 
where ߙ is given by (36). 

Again, Corollary (1.1.25) gives a variant for ܥଵ-maps. 
Corollary (1.1.33)[1]: If (ℐ, ℙ) satisfies the strong variational principle and has rotation 
group ܱܵ(݀, ℝ), then a.s. conditional on ܭℙ ≠ ∅, 

dimு ℎ(ܭℙ) = min  (݇, dimு (ℙܭ = min  (݇,  (ߙ
for all ܥଵ-maps ℎ: ܭ → ℝ  without singular points, where ߙ is given by (36). 

Distance sets of percolation sets have also attracted interest recently, see [32] for 
the case of square-based percolation. The following result follows from a similar 
argument to that of Corollary (1.1.29) but in a random setting using Corollary (1.1.33). 
Corollary (1.1.34)[1]: Suppose that (ℐ, ℙ) satisfies the strong variational principle and 
has rotation group ܱܵ(݀, ℝ). Then a.s. conditional on ܭℙ ≠ ∅, there exists ܽ ∈  ℙ suchܭ
that 

min  (1, (ߙ = dimு (ℙܭ)ܦ  ≤ dimு (ℙܭ)ܦ  ≤ 1, 
where ߙ is given by (36). 
Section (1.2): Self-Similar Sets and Fractal Percolation: 

Relating the Hausdorff dimension dimு ܭ of a set ܭ  ⊂ ℝௗ to the dimensions of 
its sections and projections has a long history. The best-known result on projections is 
that, if ܭ is Borel or analytic, then, writing ߨ: ℝௗ → ܸ for orthogonal projection onto 
the subspace ܸ, 

dimு ܭߨ = min  (݇, dimு  (39)                                         ,(ܭ
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for almost all ݇-dimensional subspaces ܸ (with respect to the natural invariant measure 
on subspaces). For sections of sets, for almost all ݇-dimensional subspaces ܸ, the 
dimensions of the sections or slices ߨ

ିଵݔ ∩  satisfy ܭ of ܭ
dimு (ܭ ∩ ߨ

ିଵݔ) ≤ max(0, dimு ܭ  − ݇) 
for Lebesgue almost all ݔ ∈ ܸ (we take dimு  ∅ = −∞ ). Moreover, for all ߳ > 0 and 
almost all ܸ, there is a set ఢܹ ⊂ ܸ of positive ݇-dimensional Lebesgue measure such that 

dimு ܭ)  ∩ ߨ
ିଵݔ) ≥ max(0, dimு ܭ − ݇) − ߳                           (40) 

for ݔ ∈ ఢܹ . These inequalities were obtained by Marstrand [48] for subsets of the plane, 
and extended to general ݀ and ݇ by Mattila [50]. Kaufman [45] introduced the potential 
theoretic method which is now commonly used in studying dimensions of projections 
and sections of sets. 

These properties are complemented by the fact [49] that, for all ݇-dimensional 
subspaces ܸ, for all 0 ≤ Δ ≤ ݀ − ݇, 

Δ + dimு ݔ}  ∈ ܸ: dimு (ܭ ∩ ߨ
ିଵݔ) ≥ Δ} ≤ dimு  ܭ 

In particular, if dimு ܭ  > ݇ then for all ܸ 
dimு ܭ)  ∩ ߨ

ିଵݔ) ≤ dimு ܭ − ݇ 
for Lebesgue almost all ݔ ∈ ܸ. A good exposition of this material may be found in [51]. 
Fursternberg [41] introduced the notion of dimension conservation: given ܭ ⊂ ℝௗ, a 
projection ߨ is said to be dimension conserving for ܭ if there is a number Δ > 0 such 
that 

Δ + dimு {ݔ ∈ ܸ: dimு(ܭ ∩ ߨ
ିଵݔ) ≥ Δ} ≥ dimு  (41)                      ܭ 

We consider a slightly weaker property when dimு ܭ  > ݇. We say that a projection ߨ 
is weakly dimension conserving if, for all ߳ > 0, 

dimு(ܭ ∩ ߨ
ିଵݔ) > dimு ܭ − ݇ − ߳  for all ݔ ∈ ܹ,                      (42) 

where ܹ is a 'large' subset of ܸ , either with dimு  ܹ = ݇ or with ℒ(ܹ) > 0, where ℒ 
denotes ݇-dimensional Lebesgue measure. It follows from (40) that ߨ is weakly 
dimension conserving for almost every ݇-dimensional subspace ܸ. 

There has been great interest recently in identifying classes of sets, in particular 
classes of self-similar sets and their variants, for which these various inequalities hold for 
all, rather than just almost all, subspaces. Several establish (39) for all projections for 
classes of self-similar sets [41,43,54,58] and for percolation on self-similar sets 
[40,55,56,57,59]. Here we consider dimensions of sections, and identify sets for which 
(42), or a similar inequality for box-counting dimension, holds for all subspaces ܸ. 

Recall that an iterated function system (IFS) ℐ = { ݂}ୀଵ
  on ℝௗ is a family of 2 ≤

݉ < ∞ contractions ݂: ℝௗ → ℝௗ . An IFS determines a unique non-empty compact ܭ ⊂
ℝௗ such that 

ܭ = ራ  


ୀଵ
݂(ܭ),                                                          (43) 

called the attractor of the IFS, see [39,44]. If the ݂  are all similarities then ܭ is self-
similar. The IFS satisfies the strong separation condition (SSC) if the union (43) is 
disjoint, and the open set condition (OSC) if there is a non-empty open set ܷ such that 
∪ୀଵ


݂(ܷ) ⊂ ܷ with this union disjoint. If either SSC or OSC hold then dimு ܭ =  ݏ

where ݏ is given by ∑ୀଵ
 ݎ 

௦ = 1, where ݎ  is the similarity ratio of ݂ . 
We may write an IFS of (orientation preserving) similarities as 

ℐ = { ݂ = ܴݎ ⋅ +ܽ}ୀଵ
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where ܴ ∈ ܱܵ(݀, ℝ) is a rotation, ݎ is the scaling ratio and ܽ  is a translation. If the 
group ܩ generated by {ܴଵ, … , ܴ} is dense in ܱܵ(݀, ℝ) we say that the IFS has dense 
rotations. 

A number of results on dimension conservation of self-similar sets have been 
established. Furstenberg [41] showed that (41) holds for projections onto all subspaces ܸ  
for a class of 'homogeneous' sets. These include self-similar sets where the IFS ℐ consists 
of contracting homotheties (i.e. similarities without rotation or reflection so that ܴ =  ܫ
for all ) that satisfy SSC or OSC. For example, variants on the Sierpiński carpet are of 
this type, where the value of Δ in (41) depends on the subspace ܸ. There are detailed 
analyses of sections of the Sierpiński carpet in [47,46] and of sections of the Sierpiński 
gasket or triangle in [35]. In the case where the IFS ℐ satisfies OSC and the group 
generated by {ܴଵ, … , ܴ} is finite, then every projection is dimension conserving, that is 
for all ܸ (41) holds for some number Δ, see [40,42]. 

We demonstrate that many self-similar sets ܭ are weakly dimension conserving 
for all, or virtually all, projections ߨ. For self-similar sets in ℝଶ where ℐ satisfies OSC 
and has dense rotations and dimு ܭ  > 1, (42) holds with ℒ(ܹ) > 0 for all ߳ > 0 and for 
projections onto all lines ܸ, except for lines in a set of directions of Hausdorff dimension 
0. Provided that we replace Hausdorff dimension by lower box dimension on the left-
hand side of the inequality we get (42) for all lines, for a large class of sets that satisfy a 
projection condition. We also show that, almost surely, (42) is true for all ݇-dimensional 
subspaces ܸ for random subsets of ℝௗ obtained by the Mandelbrot percolation process. 

The idea is to demonstrate weak dimension conservation for a deterministic set ܭ 
by running a percolation-type process on ܭ to 'probe' the dimensions of its sections. We 
construct random sets ܭఠ ⊂ ݇ such that ܭ < dim ܭఠ < ݇ + ߳/2 with positive 
probability. Writing ܮ௫  for the (݀ − ݇)-plane through ݔ and perpendicular to ܸ, if 
dim (ܭ ∩ (௫ܮ < dim ܭ − ݇ − ߳ for some ݔ ∈ ܸ there is a high probability that ܭఠ ∩
௫ܮ = ∅ or equivalently that ݔ ∉  ఠ. By invoking results on projections of random setsܭߨ
that show that with positive probability dim ߨܭఠ = ݇, we conclude that there must be 
a significant subset of ݔ ∈ ܸ, indeed a subset of dimension ݇, for which this does not 
occur. 

We formulate this principle in a general context in Proposition (1.2.1) and 
Proposition (1.2.2). To apply it in various settings we utilise results on dimensions of 
projections of percolation sets from [40,55,56,57]. Theorem (1.2.14) and Theorem 
(1.2.16) depend on the absolute continuity of projections of an alternative type of random 
measure, and this is established in Theorem (1.2.13) which is a random version of a 
deterministic result of Shmerkin and Solomyak [58]. 

We present a general formulation of our method for obtaining lower bounds for 
the dimensions of sections of a set given a knowledge of the dimensions of projections 
of related random subsets. The method applies to sets that can be modeled in terms of an 
infinite rooted tree. These include self-similar sets, where the tree provides a natural 
description of the hierarchical construction of the set, but extends to a many further 
fractals. 

Let Λ = {1, … , ݉} be an alphabet of ݉ ≥ 2 symbols, with Λ denoting the set of 
words of length ݊ ≥ 0. Let Σ∗: =∪ஹ Λ be the set of finite words and Σ: = Λℕ the 
corresponding symbolic space of all infinite words. For each ܑ ∈ Σ∗ denote by [ܑ] ⊂ Σ the 
set of infinite words that start with ܑ, that is the cylinder rooted at ܑ. We denote the 
diameter of a set ܣ ⊂ ℝௗ by |ܣ|. 
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We consider fractals which are the image of a subset of symbolic space under a 
continuous mapping Φ: Σ ↦ ℝௗ with the usual metrics. For each i ∈ Σ∗ we write ܤ(Φ[ܑ]) 
for the closed convex hull of Φ[ܑ]. We also assume throughout that there is a number 
݀ > 0 such that 

 inradius ܤ(Φ[ܑ])
 diameter ܤ(Φ[ܑ])

≥ ݀  for all ܑ ∈ Σ∗ 

thus the convex hulls cannot get 'too long and thin'. We assume throughout that Φ satisfies 
the following two conditions: 

(a) There exist 0 < ܿ, ܿଵ < ∞ such that for all ߩ ∈ (0, ܿ), the set 
Λఘ = {ܑ ∈ Σ∗: ߩ ≤ |Φ[ܑ]| < ܿଵ(44)                                       {ߩ 

yields a finite covering of Σ, that is #Λఘ < ∞ and Σ =∪ܑ∈ஃഐ [ܑ]; 
(b) There exists an integer ݊ such that for all ߩ ∈ (0, ܿ) and ݔ ∈ ℝ, 

#൛ܑ ∈ Λఘ: ݔ ∈ ൟ([ܑ]Φ)ܤ ≤ ݊.                                         (45) 
These conditions will certainly be satisfied if Φ codes the attractor of an IFS satisfying 
OSC. 

We may define measures of Hausdorff type on subsets of Φ(Σ) by setting, for all 
ݏ > 0, ܨ ⊂ Φ(Σ) and ߜ > 0, 

ℳఋ
௦(ܨ) = inf ቐ  

ஶ

ୀଵ

  หΦൣ ܑ൧ห
௦
: Φିଵ(ܨ) ⊂ ራ  

ஶ

ୀଵ

  ൣ ܑ൧, หΦൣ ܑ൧ห ≤  ቑ          (46)ߜ

and 
ℳ௦(ܨ) = lim

ఋ↘
 ℳఋ

௦(ܨ). 
Then ℳ௦ is equivalent to the restriction of ݏ-dimensional Hausdorff measure ℳ௦ to 
Φ(Σ). Clearly ℋ௦(ܨ) ≤ ℳ௦(ܨ) for ܨ ⊂ Φ(Σ). For the opposite inequality (to within a 
constant multiple), note that the number of sets Φ[ܑ] with ܑ ∈ Λఘ that overlap ܷ ∩ Φ(Σ) 
is bounded for all ܷ ⊂ ℝ with |ܷ| = ߩ < ܿ, from comparing the volumes of maximal 
inscribed balls of ܤ(Φ[ܑ]) with that of some ball centered in ܷ of radius |ܷ| and using 
(45). In particular, dimு ܨ  = inf{ݏ: ℳ௦(ܨ) = 0} = sup{ݏ: ℳ௦(ܨ) = ∞} for ܨ ⊂ Φ(Σ). 

In a similar way, (44) and (45) imply that the box-counting dimension of subsets 
of Φ(Σ) may be found by counting cylinders. In particular, the lower box-counting 
dimension of ܨ ⊂ Φ(Σ) is given by 

dimܨ = limఘ→ 
log൛#ܑ ∈ Λఘ: ܨ ∩ ([ܑ]Φ)ܤ ≠ 0ൟ

− log ߩ
.                      (47) 

Let ℬஊ be the ߪ-field generated by the cylinders of Σ. Let ℙ be a probability measure on 
ℬஊ. Let Σఠ be a random subset of Σ and let 

Σ∗
ఠ: = {ܑ ∈ Σ∗: [ܑ] ∩ Σఠ ≠ ∅}. 

We adopt the convention that ܣఠ: = ܣ ∩ Σఠ if ܣ is a subset of Σ and ܣఠ: = ܣ ∩ Σ∗
ఠ if ܣ 

is a subset of Σ∗. 
For ߙ ≥ 0 we say that Σఠ is an ߙ-random subset of Σ if there exists a constant ܿ ଶ <

∞ such that for all ߩ ∈ (0, ܿ) and all ܑ ∈ Λఘ, 
ℙ൫ܑ ∈ Λఘ

ఠ൯ ≤ ܿଶߩఈ .                                                     (48) 
For our applications, Σఠ will typically be the symbolic set underlying fractal percolation 
on ܭ, so that Φ(Σఠ) =  .ఠܭ
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Let ܸ be a ݇-dimensional subspace of ℝௗ and let ߨ: ℝௗ → ܸ denote orthogonal 
projection onto ܸ. Write ℒ  for ݇-dimensional Lebesgue measure on ܸ identified with 
ℝ in the obvious way. (If ݇ = 1 then ܸ is a line and we write ℒ for Lebesgue measure 
on ܸ.) 

The following two propositions are our principal tools. The first, which concerns 
the Hausdorff measure of sections, has stronger hypotheses on the projection of the 
random subset but a weaker condition on the projection of the original set, than the second 
which concerns the lower box dimension of sections. 
Proposition (1.2.1)[33]: Let ܣ ∈ ℬஊ. Let Σఠ be an ߙ-random subset of Σ for some ߙ >
0, let Φ: Σ → ℝௗ satisfy (a) and (b) above, and let ܸ be a ݇-dimensional subspace of ℝௗ. 
If ℙ ቀℒ ቀߨ൫Φ(ܣఠ)൯ቁ > 0ቁ > 0, then 

ℒ{ݔ ∈ ܸ: dimு (Φ(ܣ) ∩ ߨ
ିଵ(ݔ)) ≥ {ߙ > 0. 

Proof. Let 
ܵ = ݔ} ∈ ܸ: dimு (Φ(ܣ) ∩ ߨ

ିଵ(ݔ)) <  .{ߙ
Let ݔ ∈ ܵ. Using (46), for all ߳ > 0 we may find a set of words ࣤ ⊂ Σ∗ such that 
Φିଵ(Φ(ܣ) ∩ ߨ

ିଵ(ݔ)) ⊂ ܑܷ∈ࣤ[ܑ] and ∑ܑ∈ࣤ  |Φ[ܑ]|ఈ < ߳. Then Φ(ܣఠ) ∩ ߨ
ିଵ(ݔ) ⊂ 

⋃ܑ∈ࣤ∩ஊ∗
ഘ  Φ[ܑ] and 

ॱ(#{ܑ ∈ ࣤ ∩ Σ∗
ఠ}) =   

ܑ∈ࣤ

ℙ(ܑ ∈ Σ∗
ఠ) ≤ ܿଶ   

ܑ∈ࣤ

|Φ[ܑ]|ఈ < ܿଶ߳, 

using (48), so ℙ({ܑ ∈ ࣤ ∩ Σ∗
ఠ} ≠ ∅) < ܿଶ߳. Since ߳ is arbitrarily small, we conclude that 

for all ݔ ∈ ܵ, Φ(ܣఠ) ∩ ߨ
ିଵ(ݔ) = ∅ almost surely. 

By Fubini's theorem, almost surely 
ℒ ቀܵ ∩ ൯ቁ(ఠܣ)൫Φߨ = ℒ(ݔ ∈ ܵ: Φ(ܣఠ) ∩ ߨ

ିଵ(ݔ) ≠ 0) = 0. 
Hence, with positive probability, 

0 < ℒ ቀߨ൫Φ(ܣఠ)൯ቁ = ℒ൫ߨ൫Φ(ܣఠ)൯ ∖ ܵ൯ ≤ ℒ൫ߨ൫Φ(ܣ)൯ ∖ ܵ൯. 
The second general proposition concerns the lower box-counting dimension of 

sections of sets. Here we require a condition that, for all ܑ ∈ Σ∗, the projection of Φ[ܑ] 
onto the subspace ܸ is the same as that of its convex hull; in particular this will be the 
case if Φ[ܑ] is connected. 
Proposition (1.2.2)[33]: Let Σఠ be an ߙ-random subset of Σ for some ߙ > 0, let Φ: Σ → 
ℝௗ satisfy (a) and (b) above, and let ܸ be a line, that is a 1 -dimensional subspace of ℝௗ. 
Suppose that the projection of Φ[ܑ] onto ܸ is the same as that of its convex hull ܤ(Φ[ܑ]) 
for all ܑ ∈ Σ∗⋅. If ℙ൫dimு ൫Φ(Σఠ)൯ߨ  = 1൯ > 0, then for every ߳ ∈ (0,  ,(ߙ

dimு  ቄݔ ∈ ܸ: dim(Φ(Σ) ∩ ߨ
ିଵ(ݔ)) > ߙ − ߳ቅ = 1. 

Proof. To keep the notation simple, we give the proof for Φ: Σ → ℝଶ where the sections 
are intersections with lines perpendicular to the line ܸ . The proof is virtually identical for 
Φ: Σ → ℝௗ where ݀ > 2. Write ܮ௫ ≡ ߨ

ିଵ(ݔ) for the line through ݔ ∈ ܸ perpendicular to 
ܸ. For ݔ ∈ ܸ and ߩ ∈ (0, ܿ) write 

,ݔ)ܰ :(ߩ = #൛ܑ ∈ Λఘ: ([ܑ]Φ)ܤ ∩ ௫ܮ ≠ ∅ൟ ≡ #൛ܑ ∈ Λఘ: Φ[ܑ] ∩ ௫ܮ ≠ ∅ൟ       (49) 
for the 'box counting numbers', where the equivalence follows as every line that intersects 
the convex hull ܤ(Φ[ܑ]) also intersects Φ[ܑ]. 
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Here is the first of three subsidiary lemmas within this proof. This enables us to 
reduce consideration of coverings of subsets of ܮ௫ when estimating ܰ(ݔ,  to a small set (ߩ
of ݔ. We identify ܸ with ℝ × {0} ⊂ ℝଶ in the obvious way. 
Lemma (1.2.3)[33]: Let ߩ ∈ (0, ܿ) and ܯ > 0. Let ܫ ⊂ ܸ be an interval with |ܫ| ≤  ߩ
such that ܰ(ݔ, (ߩ ≤ ݔ for some ܯ ∈ ,ଵݔ Then there exist .ܫ ଶݔ ∈ ଵݔ with ܫ ≤  ଶ such thatݔ

,ଵݔ)ܰ ,(ߩ ,ଶݔ)ܰ (ߩ ≤  ܯ
and such that, if ݔ ∈ ,ݔ)ܰ has ܫ (ߩ ≤ then, for all i ,ܯ ∈ Λఘ such that ܤ(Φ[i]) ௫ܮ ∩ ≠ ∅, 
either ܤ(Φ[ܑ]) ∩ ௫భܮ ≠ ∅ or ܤ(Φ[ܑ]) ∩ ௫మܮ ≠ ∅. 
Proof. Let ݔଵ

ᇱ = inf{ݔ ∈ :ܫ ,ݔ)ܰ (ߩ ≤ ଵݔ)ܰ If .{ܯ
ᇱ , (ߩ ≤ ଵݔ then take ܯ = ଵݔ

ᇱ . Otherwise 
take ݔଵ > ଵݔ

ᇱ  sufficiently close to ݔଵ
ᇱ  to ensure that both ܰ(ݔଵ, (ߩ ≤  and ܯ

൛ܑ ∈ Λఘ : ([ܑ]Φ)ܤ ∩ ௫భܮ ≠ ∅ൟ
 = ൛ܑ ∈ Λఘ: ([ܑ]Φ)ܤ ∩ ௫భܮ ≠ ∅ and ߨ(int ܤ(Φ[ܑ])) ∩ ,ଵݔ] ∞) ≠ ∅ൟ.

 

In the same way, we may take ݔଶ to be sup{ݔ ∈ :ܫ ,ݔ)ܰ (ߩ ≤  or a slightly smaller {ܯ
number if necessary. Clearly we may ensure that ݔଵ ≤ ଶݔ . Since the ܤ(Φ[ܑ]) with i ∈ Λఘ 
have diameter at least ߩ and ݔଶ − ଵݔ ≤  .the conclusion of the lemma follows ,ߩ

We now write 
ܰఠ(ݔ, (ߩ = #൛ܑ ∈ Λఘ

ఠ: ([ܑ]Φ)ܤ ∩ ௫ܮ ≠ ∅ൟ 
for the random analogue of (49). Fix ߳ ∈ (0, ߩ and for (ߙ ∈ (0, ܿ) let ఘܵ be the 
deterministic subset of ܸ: 

ఘܵ = ൛ݔ ∈ ܸ: ,ݔ)ܰ (ߩ ≤  ఈାఢ/ଶൟ.                                    (50)ିߩ
The second subsidiary lemma shows that if ݔ ∈ ఘܵ then the probability that ܮ௫ has non-
empty intersection with Φ(Σఠ) is small. 
Lemma (1.2.4)[33]: Let ߩ ∈ (0, ܿ) and let ܫ ⊂ ܸ be an interval with |ܫ| ≤  such that ߩ
ܫ ∩ ఘܵ ≠ ∅. Then 

 ℙ(ܰఠ(ݔ, (ߩ > 0 for some ݔ ∈ ܫ ∩ ఘܵ൯ ≤ 2ܿଶߩ
ച
మ.                          (51) 

Proof. If ܫ ∩ ఘܵ = ∅ then (51) is trivial. Otherwise, applying Lemma (1.2.3) to the 
interval ܫ, taking ܯ = ,ଵݔ ఈାఢ/ଶ and noting (50), we may findିߩ ଶݔ ∈ ܫ ∩ ఘܵ  such that, 
for all ݔ ∈ ܫ ∩ ఘܵ, all ߱, and all ܑ ∈ Λఘ

ఠ ⊂ Λఘ with ܤ(Φ[ܑ]) ∩ ௫ܮ ≠ ∅, either ܤ(Φ[ܑ]) ∩
௫భܮ ≠ ∅ or ܤ(Φ[ܑ]) ∩ ௫మܮ ≠ ∅. In particular, for all ݔ ∈ ܫ ∩ ఘܵ  

ܰఠ(ݔ, (ߩ ≤ ܰఠ(ݔଵ, (ߩ + ܰఠ(ݔଶ,  (52)                                  .(ߩ
For ݆ = 1,2, using (48) and (50), 

ॱ ቀܰఠ൫ݔ , ൯ቁߩ  =   ቄℙ൫ܑ ∈ Λఘ
ఠ൯: ܑ ∈ Λఘ , ([ܑ]Φ)ܤ ∩ ௫ೕܮ ≠ ∅ቅ

 ≤   ቄܿଶߩఈ: ܑ ∈ Λఘ, ([ܑ]Φ)ܤ ∩ ௫ೕܮ ≠ ∅ቅ

 ≤ ܿଶߩఈܰ൫ݔ , ൯ߩ
 ≤ ܿଶߩఈିߩఈାఢ/ଶ,

 

so 
ℙ൫ܰఠ൫ݔ , ൯ߩ > 0൯ ≤ ܿଶߩఢ/ଶ. 

The conclusion (51) follows from (52). 
Let 

ܵ = ൛ݔ ∈ ܸ: dim(Φ(Σ) ∩ (௫ܮ ≤ ߙ − ߳ൟ. 
Note that, for all ߩ ∈ (0, ܿ), we have 
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Φ(Σ) ∩ ௫ܮ ⊂ ራ  
ܑ∈ஃഐ

Φ[ܑ] ∩ ௫ܮ . 

Thus, from (50), (49) and (47), 

ܵ ⊂ ሩ  
ஶ

ேୀேబ

ራ  
ஶ

ୀே

ܵଶష , 

where we choose ܰ so that 0 < 2ିேబ < ܿ. 
The final subsidiary lemma essentially shows that the Hausdorff dimension of ܵ 

cannot be too big. 
Lemma (1.2.5)[33]: With ܵ as above, dimு  ൫ߨ൫Φ(Σఠ)൯ ∩ ܵ൯ ≤ 1 − ߳/4 almost surely. 
Proof. For ߩ ∈ (0, ܿ) write 

ఘܭ
ఠ: = ራ  ൛ܤ(Φ[ܑ]): ܑ ∈ Λఘ

ఠൟ ⊃ Φ(Σఠ). 
Let ܫ ⊂ ܸ be an interval with |ܫ| = ߩ ≤ ܿ. If ఘܵ ∩ ܫ ≠ ∅ then by Lemma (1.2.4) 

ℙ൫ߨ൫ܭఘ
ఠ൯ ∩ ఘܵ ∩ ܫ ≠ ∅൯ ≤ 2ܿଶߩఢ/ଶ. 

For ݊ ≥ ܰ, let ࣝ be the family of closed binary subintervals of ܸ  of lengths 2ି . Thus, 
for ݊ ≥ ܰ, 

ॱ൫#݆: ଶషܭ)ߨ
ఠ ) ∩ ܵଶష ∩ ܫ ≠ ∅, ܫ ∈ ࣝ൯ ≤ 2ାଵ|Φ(Σ)|2ܿଶ2ିఢ/ଶ = ܿଷ2(ଵିఢ/ଶ). 

In particular, 

  
ஶ

ୀேబ

2ି(ଵିఢ/ସ)ॱ൫#݆: ଶషܭ)ߨ
ఠ ) ∩ ଶܵି ∩ ܫ ≠ ∅, ܫ ∈ ࣝ൯ = ܿଷ   

ஶ

ୀேబ

2ିఢ/ସ < ∞. 

Then, for all ܰ ≥ ܰ, 

൫Φ(Σఠ)൯ߨ ∩ ܵ  ⊂ ൫Φ(Σఠ)൯ߨ ∩ ራ  
ஶ

ୀே

 ܵଶష

 = ራ  
ஶ

ୀே

൫Φ(Σఠ)൯ߨ  ∩ ܵଶି

 ⊂ ራ  
ஶ

ୀே

ଶషܭ)ߨ 
ఠ ) ∩ ଶܵି

 ⊂ ራ  
ஶ

ୀே

  ራ  
ூೕ∈ࣝ

  ൛ܫ: ଶషܭ)ߨ
ఠ ) ∩ ܵଶି ∩ ܫ ≠ ∅ൟ.

 

Hence, writing ℋఋ
௦ for the ݏ-dimensional Hausdorff ߜ-premeasure, and ℋ௦ for ݏ 

dimensional Hausdorff measure, it follows on taking these covers of ߨ൫Φ(Σఠ)൯ ∩ ܵ for 
each ܰ that 

     ॱ ቀℋଵିఢ/ସ൫ߨ൫Φ(Σఠ)൯ ∩ ܵ൯ቁ = ॱ ൬ lim
ே→ஶ

 ℋଶషಿ
ଵିఢ/ସ൫ߨ൫Φ(Σఠ)൯ ∩ ܵ൯൰ 

                               ≤ lim sup
ே→ஶ

 ॱ ቀℋଶషಿ
ଵିఢ/ସ൫ߨ൫Φ(Σఠ)൯ ∩ ܵ൯ቁ 

≤ ॱ ൮   
ஶ

ୀேబ

 2ି(ଵିఢ/ସ)൫#݆: ଶషܭ)ߨ
ఠ ) ∩ ܵଶష ∩ ܫ ≠ ∅, ܫ ∈ ࣝ൯൲ < ∞. 
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It follows that almost surely ℋଵିఢ/ସ൫ߨ൫Φ(Σఠ)൯ ∩ ܵ൯ < ∞ and so 
dimு  ൫ߨ൫Φ(Σఠ)൯ ∩ ܵ) ≤ 1 − ߳/4. 
To complete the proof of Proposition (1.2.2), note that 

dimு ൫Φ(Σఠ)൯ߨ  = m  ൛dimு  ൫ߨ൫Φ(Σఠ)൯ ∩ ܵ൯, dimு ൫ߨ൫Φ(Σఠ)൯ ∖ ܵ൯ൟ 
so that, conditional on dimு ߨ൫Φ(Σఠ)൯ = 1, an event of positive probability by the 
hypothesis of the proposition, 

1 ≤ max൛1 − ߳/4, dimு  ൫ߨ൫Φ(Σఠ)൯ ∖ ܵ൯ൟ ≤ max{1 − ߳/4, dimு (Φ(Σ))ߨ)  ∖ ܵ)}. 
But this is a deterministic statement, so we conclude that dimு (Φ(Σ))ߨ)  ∖ ܵ) = 1. 

Next we obtain a weak dimension conservation property for the lower boxcounting 
dimension of sections for self-similar sets with dense rotations. We also do so for the 
Hausdorff dimension of sections of Mandelbrot percolation sets. 

The best known model of fractal percolation is Mandelbrot percolation, based on 
a decomposition of the ݀-dimensional cube into ܯௗ equal subcubes of sides ିܯଵ; its 
topological properties have been studied extensively, see [36,39,57]. Statistically self-
similar subsets of any self-similar set may be constructed using a similar percolation 
process which may be set up in terms of the symbolic space formulation. 

Let ℐ = { ଵ݂, … , ݂} be an IFS of similarities with attractor ܭ. Intuitively, 
percolation on ܭ is performed by retaining or deleting components of the natural 
hierarchical construction of ܭ in a self-similar random manner. Starting with some non-
empty compact set ܦ such that ݂(ܦ) ⊂  for all ݅, we select a subfamily of the sets ܦ
{ ଵ݂(ܦ), … , ݂(ܦ)} according to some probability distribution, and write ܭଵ for the union 
of the selected sets. Then, for each selected ݂(ܦ), we choose subsets from 
{ ݂ ଵ݂(ܦ), … , ݂ ݂(ܦ)} according to the same probability distribution, independently for 
each ݅, with the union of these sets comprising ܭଶ. Continuing in this way, we get a 
nested hierarchy ܭ ⊃ ଵܭ ⊃ ଶܭ ⊃ ⋯ of random compact sets, where ܭ  denotes the 
union of the components remaining at the ݇ th stage. The random percolation set ܭఠ ⊂
ఠܭ is then given by ܭ =∩ୀ

ஶ ܭ , see Figure 1. 
More formally, percolation on a self-similar set ܭ is defined using the natural 

representation of ܭ by symbolic space. We take Λ = {1, … , ݉} with Σ∗ =∪ஹ Λ  the set 
of finite words and Σ = Λே the infinite words. The canonical 

 
Figure 1[33]: A self-similar attractor of an IFS with rotations and a subset obtained by 
the percolation process 
 

map Φ: Σ → ܭ ⊂ ℝௗ is given by Φ(݅ଵ݅ଶ … ) =∩ୀ
ஶ

݂భ ⋯ ݂(ܦ) for any nonempty 
compact set ܦ such that ݂(ܦ) ⊂ ݅ for ܦ = 1, … , ݉. Then ܭ =∪ܑ∈ஊ Φ(ܑ), with Φ 
providing a (not necessarily injective) index to the points of ܭ. 
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To define percolation on ܭ, let (Ω, ࣛ, ℙ) bè a probability space. Lět ܺ ≡ 
( ଵܺ, … , ܺ) be a random vector taking values in {0,1}. Let ࣲ = ൛ܺ୧ ≡ 
൫ ଵܺ

୧ , … , ܺ
୧ ൯ൟܑ∈ஊ∗

 be a family of independent random vectors with values in {0,1}, each 
having the distribution of ܺ, on the probability space (Ωஊ∗ , ࣲࣛ , ℙ ⊗ Σ∗), where ࣲࣛ ⊂
ࣛஊ∗ is the ߪ-algebra generated by ࣲ. This defines a random set Σఠ = ቄ݅ଵ݅ଶ … ∈

Σ: ܺభ
∅

ܺమ

భ
ܺయ

భమ ⋯ = 1ቅ ⊂ Σ. The percolation set ܭఠ ⊂  is the image of Σఠ under the ܭ
canonical map, that is the random set ܭఠ = Φ(Σఠ). 

By standard branching process theory [34], if ॱ (#݅: ܺ = 1) > 1 there is a positive 
probability that Σఠ, and thus ܭఠ, is non-empty. Provided the IFS defining ܭ satisfies 
OSC then, conditional on ܭఠ ≠ ∅, 

dim ఠܭ = dimு ఠܭ = .a ݏ s where s satisfies ॱ ൭  


ୀଵ

  ܺݎ
௦൱ = 1.         (53) 

where ݎ  is the scaling ratio of ݂ , see [38,52]. 
We say that the percolation process is standard with exponent ߙ if the distribution 

of ܺ = ( ଵܺ, … , ܺ) is defined by ℙ( ܺ = 1) = ݎ
ఈ , ℙ( ܺ = 0) = 1 − ݎ

ఈ  independently 
for ݅ = 1, … , ݉. Then by (53), provided that ߙ < dimு  there is a positive probability ,ܭ 
that ܭఠ ≠ ∅, in which case dimு ఠܭ  = dimு ܭ  −  ..a.s ߙ

The following theorem on the dimension of projections of percolation subsets of 
self-similar sets was obtained as a corollary of a more general theorem on projections of 
random cascade measures on self-similar sets [40]. 
Theorem (1.2.6)[33]: [40] Let ܭ be the attractor of an IFS of contracting similarities on 
ℝௗ with dense rotations and satisfying ܱܵܥ. Let ℙ be a probability distribution of a 
standard percolation process on ܭ with ॱ(#݅: ܺ = 1) > 1, so that the percolation set 
ఠܭ ≠ ∅ with positive probability. Then, conditional on ܭఠ ≠ ∅, almost surely 

dimு (ఠܭ)ߨ = min  (݇, dimு  ,(ఠܭ
for every ݇-dimensional subspace ܸ. 

Thus, conditional on non-extinction, the projections of ܭఠ onto all subspaces have 
the 'generic' dimension. We now apply Proposition (1.2.2) to sections of selfsimilar sets. 
The conclusion applies to self-similar sets ܭ such that their projection onto each line is 
the same as that of the convex hull of ܭ. This includes the case where ܭ is connected as 
well as many other self-similar sets, see Figure 2. 

 
Figure 2[33]: A connected and a totally disconnected self-similar set with dense rotations 
satisfying the conditions of Theorem (1.2.7) 
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Theorem (1.2.7)[33]: Let ℐ be an IFS of contracting similarities on ℝௗ with dense 
rotations and satisfying ܱܵܥ. Let ܭ be the attractor of ℐ and suppose ݏ = dimு ܭ  > 1 
and that the projection of ܭ onto every 1-dimensional subspace equals that of its convex 
hull. Then for every 1-dimensional subspace ܸ of ℝௗ and all ߳ ∈ (0, ݏ − 1),  

dimு൛ݔ ∈ ܸ: dim൫ܭ ∩ ߨ
ିଵ(ݔ)൯ > dimு ܭ − 1 − ߳ൟ = 1.               (54) 

Proof. Let ܭ have its symbolic representation Φ: Σ → ℝௗ. As Φ[ܑ] is similar to ܭ for all 
ܑ ∈ Σ∗, the projection of each Φ[ܑ] onto every 1-dimensional subspace is the same as that 
of its convex hull. We set up standard percolation with exponent ݏ − 1 on ܭ via its 
symbolic representation, as above. Then there is a positive probability of non-extinction, 
conditional on which almost surely, dimு (ఠܭ)ߨ  = min{1, dimு ܭ  − ݏ) − 1)} = 1 for 
every line ܸ, using Theorem (1.2.6). 

A consequence of OSC is that Φ satisfies conditions (a) and (b) (at (44) and (45)) 
with ܿ = and ܿଵ |ܭ| = maxଵஸஸ ݎ 

ିଵ. Moreover, if ݅ଵ … ݅ ∈ Λఘ then ℙ൫݅ଵ … ݅ ∈
Λఘ

ఠ൯ = భݎ
ఈ ⋯ ೖݎ

ఈ ≤  ఈ, so that (48) is satisfied. The conclusion follows byߩఈି|ܭ|
Proposition (1.2.2) since Φ(Σ) =  .ܭ

It would be desirable to dispense with the requirement in Theorem (1.2.7) that the 
projections of ܭ are the same as those of its convex hull. Without such a condition it is 
not hard to show that (54) can be replaced by the conclusion that 

dimு ݔ}  ∈ ܸ: (ݔ)݀ > dimு ܭ  − 1 − ߳} = 1 
where ݀(ݔ): = limఘ→ log # ఘܰ൫ܮ௫

ఘ൯/−log ߩ and where ఘܰ൫ܮ௫
ఘ൯ denotes the number of 

ܑ ∈ Λఘ such that ܤ(Φ[ܑ]) ∩ ௬ܮ ≠ ∅ for some ݕ ∈ ݔ] − ,ߩ ݔ +  is a kind of (ݔ)݀ Here) .[ߩ
lower box-counting dimension conditioning on fibres that is always no less than the actual 
lower box-counting dimension of the fibre, with possibility of being strictly larger.) 

Next we apply Proposition (1.2.1) to Mandelbrot percolation. Let ܭ be the unit 
cube in ℝௗ . Fix an integer ܯ ≥ 2 and a probability 0 <  < 1. We divide ܭ into ܯௗ 
subcubes of side 1/ܯ in the natural way, and retain each subcube independently with 
probability  to get a set ܭଵ formed as a union of the retained subcubes. We repeat this 
process with the cubes in ܭଵ, dividing each into ܯௗ subcubes of side 1/ܯଶ and choosing 
each with probability  to get a set ܭଶ, and so on. This process, termed Mandelbrot 
percolation, leads to a percolation set, which we write here as ܭ

ఠ =∩ୀ
ஶ ܭ  to 

emphasize the dependence on . 
This may be regarded as percolation on the self-similar set defined by the IFS ℐ =

൛݂భ ,…, : 1 ≤ ݆ଵ, … , ݆ௗ ≤  ൟ on ℝௗ whereܯ

݂భ ,…, ,ଵݔ) … , (ௗݔ = ൬
ଵݔ + ݆ଵ − 1

ܯ
, … ,

ௗݔ + ݆ௗ − 1
ܯ

൰ ; 
as before the random construction may be represented in symbolic space, using an 
alphabet of ܯௗ letters. 

If  > ܭ ௗ then, as above, that there is a positive probability thatିܯ
ఠ ≠ ∅, 

conditional on which dimு ܭ 
ఠ = ݀ + log /log ܯ. A useful observation is that for 0 <

, ᇱ < 1 the intersection of independent realizations of the two random sets ܭ
ఠ and ܭᇲ

ఠ 
has the same distribution as that of ܭᇲ

ఠ . 
Rams and Simon [55,56,57] and Simon and Vágó [59] have recently obtained 

results on the dimensions and Lebesgue measure of projections of Mandelbrot 
percolation that are almost surely valid for projections onto all subspaces. 
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Theorem (1.2.8)[33]: [55,59] Let 1 ≤ ݇ ≤ ݀ − 1 and let ܭ
ఠ ⊂ ℝௗ be the random set 

obtained by Mandelbrot percolation on the d-dimensional unit cube, using repeated 
subdivision into ܯௗ subcubes, and selecting cubes independently with probability  >
ௗିܯ/1 . Then, conditional on ܭ

ఠ ≠ ∅, dimு ܭ
ఠ = ݀ + log /log ܯ > ݇, and for every 

݇-dimensional subspace ܸ we have ℒ൫ߨܭ
ఠ൯ > 0, indeed, ߨܭ

ఠ contains an open 
subset of ܸ. 

Applying Proposition (1.2.1) to Theorem (1.2.8) we obtain dimension conservation 
properties for Mandelbrot percolation. 
Theorem (1.2.9)[33]: Let 1 ≤ ݇ ≤ ݀ − 1. Let ܭ

ఠ ⊂ ℝௗ  be the random set obtained by 
Mandelbrot percolation on the ݀-dimensional unit cube, using repeated subdivision into 
 ௗ subcubes and selecting cubes independently with probabilityܯ >  ௗି. For allܯ/1
߳ > 0, almost surely conditional on ܭ

ఠ ≠ ∅, for all ݇-dimensional subspaces ܸ. 
ℒ൛ݔ ∈ ܸ: dimு  ൫ܭ

ఠ ∩ ߨ
ିଵ(ݔ)൯ ≥ dimு ܭ 

ఠ − ݇ − ߳ൟ > 0. 
Proof. We may represent the heierarchy of ܯ-ary subcubes of the unit cube in symbolic 
space Σ with an alphabet Λ of ݉ = :ௗ letters with Φܯ Λ → ܭ = [0,1]ௗ the natural 
cannonical mapping. With notation for percolation as above, let the probability 
distribution ( ଵܺ, … , ܺ) on Λ be given by ℙ( ܺ = 1) = , ℙ( ܺ = 0) = 1 −  ,
independently for ݅ = 1, … , ݉. This defines a random set Σ

ఠ ⊂ Σ such that ܭ
ఠ = Φ൫Σ

ఠ൯ 
is the Mandelbrot percolation set, with dimு ܭ

ఠ = ݀ + log /log ܯ conditional on non-
extinction. Now let ᇱ = and let Σᇲ (ௗିି)ିܯଵି

ఠᇲ
⊂ Σ be an independent random set 

defined in the same way but using probability ᇱ; we use Σᇲ
ఠᇲ

 to 'probe' the dimensions 
of ܭ

ఠ. 
The random set ∑

ఠ  ∩ Σᇲ
ఠᇲ

 has the same distribution as a random set Σᇲ
ఠᇲᇲ

, 
constructed in the same way with probability ᇱ. Thus, conditional on Σ

ఠ ∩ Σᇲ
ఠᇲ

≠ ∅, 

dimு  Φ ቀΣ
ఠ ∩ Σᇲ

ఠᇲ
ቁ = ݀ + log ᇱ/log ܯ = ݇ + ߳ almost surely, so by Theorem 

(1.2.8), almost surely, 

ℒ ቀߨ ൬Φ ቀΣ
ఠ ∩ Σᇲ

ఠᇲ
ቁ൰ > 0                                          (55) 

for all ݇ -dimensional subspaces ܸ . Using independence and Fubini's theorem, conditional 
on Σ

ఠ ≠ ∅, almost surely conditional on Σ
ఠ ∩ Σᇲ

ఠᇲ
≠ ∅, inequality (55) holds for all ܸ 

(Note that, conditional on Σ
ఠ ≠ ∅, ℙ ቀΣ

ఠ ∩ Σᇲ
ఠᇲ

≠ ∅ቁ > 0. ቁ 

We may regard Σᇲ
ఠᇲ

 as an ߙ-random subset of Σ where = −log ᇱ/log ܯ = 
log /log ܯ + ݀ − ݇ − ߳. Taking ܣ = Σ

ఠ in Proposition (1.2.1) (so in the notation there 
ఠܣ = Σ

ఠ ∩ Σᇲ
ఠᇲ

ቁ we conclude that, conditional on Σ
ఠ ≠ ∅, 

ℒ൛ݔ ∈ ܸ: dimு  ൫Φ൫Σ
ఠ൯ ∩ ߨ

ିଵ(ݔ)൯ ≥ ൟߙ > 0, 
and the conclusion follows, noting that Φ൫Σ

ఠ൯ = ܭ
ఠ . 

We now show that we have weak dimension conservation for the Hausdorff 
dimension of sections of plane self-similar sets in all directions apart from a set of 
directions of Hausdorff dimension 0. To achieve this we use Proposition (1.2.1) together 
with a result on the absolute continuity of projections of a class of random measures 
supported by random subsets of self-similar sets, which is a extension of a result of 
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Shmerkin and Solomyak [58] for deterministic measures. We do this first for self-similar 
sets where the defining similarities are translates of each other. Then a device of Peres 
and Shmerkin [54] enables us to extend the conclusion to general similarities. 
Let 

ℐ = { ݂ = ఏܴݎ ⋅ +ܽ}ୀଵ
                                              (56) 

be an IFS in the plane, where ݎ ∈ (0,1) and ܴఏ is the orthogonal rotation with an angle 
ߠ ∈ :As before Φ .(ߨ0,2] Σ ↦ ℝଶ is the canonical mapping from the symbolic space to 
the plane. 

Let (Ω, ࣛ, ℙ) be a probability space. Let 

ܺ: Ω ↦ ൝(ଵ, … , ( ∈ [0,1]:   


ୀଵ

   = 1ൡ                             (57) 

be a random probability vector allowing zero entries. For ݊ ∈ ℕ denote by 
߯: Ωℕ → Ω 

the projection from Ωℕ onto its ݊th coordinate. Then ࣲ = ൛ܺ() = ܺ ∘ ߯ൟ∈ℕ forms a 
i.i.d. sequence on the probability space (Ωℕ, ࣲࣛ , ℙ ⊗ ℕ), where ࣲࣛ ⊂ ࣛ⊗ℕ is the ߪ-
algebra generated by ࣲ. Let ߥ be the random probability measure on Σ defined by 

ଵ݅])ߥ … ݅]) = ܺభ

(ଵ) ⋯ ܺೖ

() for all ݅ଵ … ݅ ∈ Σ∗.                         (58) 
Note that the measure ߥ is not the same as the random cascade measures studied, 

for example, in [40]. Here for ݇ ≥ 1 the ratio ([݅ଵ … ݅݅ାଵ]) : ߥ([݅ଵ … ݅]) is the same 
for all ݅ଵ … ݅ ∈ Λ. The reason why we consider this particular random measure is that 
its Fourier transform has a convolution structure, which is essential for the proof of 
absolute continuity in Theorem (1.2.13). 

Let ℚ be the probability measure on the product space Σ × Ωℕ given by  

ℚ(ܣ) = න  
ஐ

 න 
ஊ

 (ܑ, ܣ ℙ⊗ℕ(d࣓) for all(di)ߥ(࣓ ∈ ℬஊ ⊗ ࣲࣛ . 

Denote by ߪ: Σ × Ωℕ ↦ Σ × Ωℕ the left shift 
ଵ݅ଶ݅)ߪ … , ߱ଵ߱ଶ … ) = (݅ଶ݅ଷ … , ߱ଶ߱ଷ … ). 

The next proposition and theorem are direct analogues of those obtained in [40] for 
random cascade measures. 
Proposition (1.2.10)[33]: The dynamical system (Σ × Ωℕ, ℬஊ ⊗ ࣲࣛ , ,ߪ ℚ) is mixing. 
Proof. The proof is similar to that of [40, Proposition 2.2]. Let ℬ be the semialgebra of 
ℬஊ ⊗ ࣲࣛ consisting of sets of the form 

ቄ(ܑ, ࣓): ܑ| = ,ܒ ܺ
() ∈ ܤ

ቅ 
for ݇ ∈ ℕ, ܒ ∈ Λ, ܾ ∈ {1, … , ݇}, ܽ ∈ Λ and ܤ

 Borel subsets of [0,1]. It is clear that ℬ 
generates ℬஊ ⊗ ࣲࣛ, so we only need to verify that lim→ஶ ℚ(ିߪ(ܣ) (ܤ ∩ =
ℚ(ܣ)ℚ(ܤ) for ܣ, ܤ ∈ ℬ. This follows since by the construction of ℬ, given ܣ, ܤ ∈ ℬ, 
there exists a positive integer ݊ such that ିߪ(ܣ) and ܤ are independent for all ݊ ≥ ݊. 

Let ߨఉ: ℝଶ ↦ ℝଶ be orthogonal projection onto the line making an angle ߚ with 
the ݔ-axis. Write ߤ = Φߥ for the measure defined by (ܣ)ߤ =  Starting from .(ܣΦିଵ)ߥ
Proposition (1.2.10) and proceeding just as in [40], we obtain the following projection 
property. 
Theorem (1.2.11)[33]: Suppose that ߨ/ߠ is irrational. Then almost surely, for all ߚ ∈
[0,  (ߨ

dimு ߤఉߨ = min  (1, dimு  .(ߤ
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Proof. When ߨ/ߠ is irrational, the closed rotation group ܩ generated by ܴఏ is the whole 
group ܵ ܱ(2, ℝ). Given this, the proof follows exactly the same lines as in of [40, Sections 
2.7&4]. In particular, since ܩ = ܱܵ(2, ℝ), the dimension of the projections equals the 
maximal possible value, just as in [40, Corollary 4.6], 

Theorem (1.2.13) below, a random analogue of [58, Theorem B], gives conditions 
for the projections of the random measure ߤ to be almost surely absolutely continuous in 
all directions except for a set ܧ of Hausdorff dimension 0 . First, in the following lemma, 
we specify the set ܧ and verify that its dimension is 0. We adapt the delicate estimates of 
[58, Lemmas 3.2&3.4] to our requirements, in particular obtaining estimates for the 
dimensions of ܧ,(ߜ, ܰ) that do not depend on ݍ or ݇. 

For ݔ ∈ ℝ let ∥ ݔ ∥= min{|ݔ − ݆|: ݆ ∈ ℤ} and we write [ܰ] = {1, … , ܰ} for each 
positive integer ܰ. 
Lemma (1.2.12)[33]: Fix ݎ ∈ (0,1), ߛ ∈ ℝ, ܾ ∈ (0, ∞) and ߠ ∈ ℝ with ߨ/ߠ irrational. 
For ߜ ∈ ቀ0, ଵ

ଶ
ቁ and integers ݍ, ݇ ≥ 1, ܰ ≥ 2, let ܧ,(ߜ, ܰ) be the set of all ߚ ∈ [0,  (ߨ

such that 

max
ఛ∈ൣଵ,షೖ൧

 
1
ܰ

# ቊ݊ ∈ [ܰ]: ߚ) ି(ேି)cosݎܾ߬∥∥ + ߛ − ∥∥(ߠ݇ݍ݊ ≤
ଶݎ

15
ቋ > 1 −  ,ߜ

 and let  ܧ = ሩ  
ஹଷ

ራ  
,ஹଵ

lim sup
ே→ஶ

,݅/,(1ܧ  ܰ). 

Then dimு ܧ = 0. 
Proof. For the time being we fix the integers ݍ, ݇, ܰ ≥ 1 and abbreviate ܿ: = :, ℓݎܾ =
:ߙ  andିݎ = ଶ/15ݎ Note that .ߠ݇ݍ = 1/(15ℓଶ). Let ߬ ∈ [1, ℓ]. 
Given ߚ ∈ [0, ݊ for each ,(ߨ = 1, … , ܰ write 

ܿ߬ℓேିcos (ߚ + ߛ − (ߙ݊ = ݇ + ߳, where ݇ ∈ ℤ and ߳ ∈ ቈ−
భ

మ,భ

ଶ
ቇ.        (59) 

For ݔ ∈ ℝ let ݓ௫ = (cos ݔ, sin ݔ). Since ߨ/ߙ is irrational, the unique solution of the 
equation 

ܿଵݓଶఈ + ܿଶݓఈ =  ,ݓ
is ܿଵ = −1 and ܿଶ = 2cos ߙ. Clearly |ܿଵ|, |ܿଶ| ≤ 2. 

Applying the formula ൻݓ௫ , ఉାఊିఈൿݓ = cos (ߚ + ߛ − ߙ݊ − ݔ for (ݔ = ,ߙ2 ,ߙ 0 
and using (59) we get that 

ܿଵℓଶ(݇ାଶ + ߳ାଶ) + ܿଶℓ(݇ାଵ + ߳ାଵ) = ݇ + ߳ .                      (60) 
This implies that if 

max{|߳|, |߳ାଵ|, |߳ାଶ|} ≤ 1/(15ℓଶ) ≤ 1/൫3(2ℓଶ + 2ℓ + 1)൯, 
then 

|ܿଵℓଶ݇ାଶ + ܿଶℓ݇ାଵ − ݇| <
1
2

, 
which means that ݇ାଶ and ݇ାଵ uniquely determine ݇ . On the other hand, 

|ܿଵℓଶ߳ାଶ + ܿଶℓ߳ାଵ − ߳| ≤ ℓଶ + ℓ + 1. 
Hence for fixed ݇ାଶ and ݇ାଵ, there are at most ⌊2(ℓଶ + ℓ + 1) + 1⌋ ≤ 7ℓଶ possible 
values of ݇ . Also, from (59), there are at most (2ܿℓ + 1)(2ܿℓଶ + 1) ≤ (2ܾ + 1)ଶℓଷ 
possible pairs of (݇ே, ݇ேିଵ). 

For ߜ ∈ ቀ0, ଵ
ଶ
ቁ denote by [ܰ]ߜ the set of all subsets of [ܰ] with cardinality no less 

than (1 − ܣ For .ܰ(ߜ ∈ [ܰ]ఋ let ܣሚ: = {0 ≤ ݊ ≤ ܰ − 2: ݊ + 2, ݊ + 1, ݊ ∈ ሚܣ# Then .{ܣ ≥



35 

(1 − ܰ(ߜ3 − 3. This implies that the number of possible sequences (݇)ୀ
ே  

corresponding to ߚ ∈ [0, |for which |߳ (ߨ ≤ 1/(15ℓଶ) in (59) for all ݊ ∈  is bounded ,ܣ
above by 

(2ܾ + 1)ଶℓଷ(7ℓଶ)ଷఋேାଷ. 
Note that once (݇ே , ݇ேିଵ) is given, the possible values of the remaining ݇ are 
determined by (60), hence the value of ߬ ∈ [1, ℓ] is irrelevant. Then, by Chernoff's 
entropy inequality for binomial sums, see [37], or alternatively using Stirling's 
approximation, 

#[ܰ]ఋ ≤   
⌊ఋே⌋

ୀ

൬ܰ
൰ ≤ 2ே[ିఋ ୪୭ ఋି(ଵିఋ) ୪୭(ଵିఋ)] ≤ e√ఋே, 

for all ܰ and ߜ ∈ ቀ0, ଵ
ଶ
ቁ, where ܥ is a universal constant. 

Combining these estimates, the number of possible sequences (݇)ୀଵ
ே  

corresponding to ߚ ∈ [0,  satisfying (ߨ

max
ఛ∈[ଵ,ℓ]

 
1
ܰ

#{݊ ∈ [ܰ]: ∥∥ܿ߬ℓேିcos (ߚ + ߛ − ∥∥(ߙ݊ ≤ 1/(15ℓଶ)} > 1 −  ,ߜ

is bounded above by 
e√ఋே(2ܾ + 1)ଶℓଷ(7ℓଶ)ଷఋேାଷ. 

From (59), identically 

ߚ + ߛ − ߙ݊ = tanିଵ ቆ
ℓ(݇ାଵ + ߳ାଵ)
(݇ + ߳)sin ߙ

− cot ߙቇ. 

Since ߨ/ߙ is irrational, by estimating the derivatives of the function 
(ݔ)݂ = tanିଵ ((ℓ/sin ߙ)ݔ − cot ߙ), 

there is a constant ܥᇱ depending only on ℓ and ߙ such that 
ߚ ∈ ߙ൫݆ܤ − ߛ + ݂൫ ݇ାଵ/ ݇൯, ܥ ᇱℓିே൯ 

where ݆ may be 1 or 2 (to ensure that ݇ଵ and ݇ଶ are not both 0 when ܰ is sufficiently 
large). Hence the set ܧ,(ߜ, ܰ) can be covered by 

2e√ఋே(2ܾ + 1)ଶℓଷ(7ℓଶ)ଷఋேାଷ = 2e√ఋே(2ܾ + 1)ଶିݎଷ(7ିݎଶ)ଷఋேାଷ 
balls of radius ܥ ᇱℓିே = ܥ ᇱݎே. 

Using these coverings, it follows that 

dimு ൬lim sup
ே→ஶ

,ߜ),ܧ  ܰ)൰  ≤
ߜ√ܥ + log 7)ߜ3 − (ݎ log݇ݍ2

ݎ log݇ݍ−
 ≤ (6 + ܥ) + 3log 7)/−log ߜ√(ݎ.

 

By countable stability of Hausdorff dimension, for ݅ ≥ 3, 
dimு  ራ  

,ஹଵ

lim sup
ே→ஶ

,݅/,(1ܧ  ܰ) ≤ (6 + ܥ) + 3log 7)/−log ݎ)/√݅, 

giving the conclusion. 
Here is the theorem on the absolute continuity of projections of random measures 

in all but a small set of exceptional directions when the underlying similarities are 
translates of each other. The proof uses Fourier transforms along the lines of [58, 
Theorem B]. 
Theorem (1.2.13)[33]: Suppose that ߨ/ߠ is irrational and let ℐ be an IFS of the form (56) 
satisfying OSC. Then there exists a set ܧ ⊂ [0, ܧ with dimு (ߨ = 0 such that, for every 
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random self-similar measure ߤ = Φߥ with respect to ℐ of the form defined by (57)-(58) 
and satisfying 

ℙ (there exist ݅, ݆ ∈ Λ such that ܺ, ܺ ≥ ൯∗ = 1                             (61) 
for some ∗ > 0 and 

ℙ(dimு ߤ  = (ݏ = 1                                                    (62) 
for some ݏ > 1, almost surely for all ߚ ∈ [0, (ߨ ∖  is ߤఉߨ the projected measure ,ܧ
absolutely continuous with respect to Lebesgue measure. 
Proof. We write ang (ݖ) for the angle between the line containing {0,  .axis-ݔ and the {ݖ
For ݅, ݆ ∈ Λ let ܧ, be the set given by Lemma (1.2.12) for the ratio ݎ and angle ߠ in the 
IFS (56) with ߛ = ang ൫ܽ − ܽ൯ + ܾ and ߠ = หܽ − ܽห. Let ܧ =∪,∈ஃ ,ܧ . Then 
dimு ܧ  = 0; we will show that the projected measures ߨఉߤ are absolutely continous 
when ߚ ∈ [0, (ߨ ∖  .ܧ

With ߤ = Φߥ as stated, we may, by (61), choose ݅, ݆ ∈ Λ with หܽ − ܽห > 0 such 
that 

ℙ൫ ܺ, ܺ ≥ :൯∗ =  > 0;                                            (63) 
these ݅ and ݆ will remain fixed throughout the proof. 

For each ݍ ≥ 1, we may regard the attractor ܭ of the IFS (56) as the attractor of 
the iterated IFS 

ℐ: = ቄ ୧݂: = ݂భ ⋯ ݂ ≡ ܴఏݎ ⋅ +ܽ୧: ܑ = ݅ଵ … ݅ ∈ Λቅ, 
so that ܭ = Φ൫Σ൯ where Σ : = ൛ܑଵܑଶ … : ܑ ∈ Λൟ and Φ  is the cannonical map. Let ߥ 
be the random self-similar measure of the form (57)-(58) with respect to 

ࣲ = ൞ܺ,(): = ቌ ୧ܺ
,() ≡ ෑ  



ୀଵ

  ܺ

(ିା)ቍ

୧ୀభ…∈ஃ

ൢ

ஹଵ

. 

Then ߤ = Φߥ for all ݍ ≥ 1. Note that ߤ satisfies 

ߤ =   
ܑ∈ஃ

ܑܺ
,(ଵ)ܑ݂  ,(ଵ),                                                   (64)ߤ

where ߤ,(ଵ) is the copy of ߤ generated by ൛ܺ,(ାଵ)ൟ∈ℕ. In terms of Fourier transforms, 
writing ܶ = ߦ ܴఏ, equation (64) yields that forݎ ∈ ℝଶ, 

(ߦ)ߤ̂ =   
ܑ∈ஃ

ܑܺ
,(ଵ)e୧గ⟨,క⟩

ܶߤ,(ଵ)  (65)                                   .(ߦ)

Iterating (65) and taking the limit, 

(ߦ)ߤ̂ = ෑ  
ஶ

ୀ

Ψ
(ߦ),                                                     (66) 

where, for ݊ ≥ 0, 
Ψ

(ߦ) =   
ܑ∈ஃ

ܑܺ
,(ାଵ)e୧గൻ ்

ܑ,కൿ. 

From (66), for ݍ ≥ 1 and ݇ ≥ 2, we can write ߤ as a convolution of two measures ߤ, ∗
 ,, whereߟ

,ෞߤ (ߦ) = ෑ  
∖ାଵ

Ψ
(ߦ) and ߟ,ෞ (ߦ) = ෑ  

∣ାଵ

Ψ
(ߦ). 
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Notice that ߤ, is within the class of random self-similar measures of the form (57)-(58); 
indeed it has the same law as the random self-similar measure with respect to the IFS 

൛ ܶ
 ⋅ +ܑ݂భ ⋯ ܑ݂ೖషభ((0,0))ൟ

ܑభ…ܑೖషభ∈(ஃ)ೖషభ  
and the random vector 

ቄ ܑܺభ

,(ଵ) ⋯ ܑܺೖషభ

,(ିଵ)ቅ
ܑభ…ܑೖషభ∈(ஃ)ೖషభ

. 

Thus, almost surely, dimு ,ߤ  = ିଵ


dimு ߤ = ିଵ


ݏ > 1 by (62) and for some 
sufficiently large ݇ which we fix for the remainder of the proof. Applying Theorem 
(1.2.11) we can find a set Ωଵ with ℙ(Ωଵ) = 1 such that, for all ߱ ∈ Ωଵ, for all ߚ ∈ [0,  ,(ߨ
ݍ ≥ 1, 

dimு ߨఉߤ, = 1.                                                   (67) 
The rest of the proof estimates the Fourier transform of ߨఉߟ, using Lemma (1.2.12). 
From (63), for ݍ ≥ 1 and ݊ ≥ 0 the event 

,ܣ = ቄ ܺ
(ା), ܺ

(ା) ≥ for some ℎ ∗ = 0, … , ݍ − 1ቅ 

has probability ℙ൫ܣ,൯ = 1 − (1 − . Since ቄ߯,ೖቅ(
ஹ

 are i.i.d. random variables 
for all ݍ ≥ 1, by the strong law of large numbers we can find a set Ωଶ with ℙ(Ωଶ) = 1 
such that for all ߱ ∈ Ωଶ, for all ݍ ≥ 1, 

lim
ே→ஶ

 
1
ܰ

  
ே

ୀ

߯,ೖ (߱) = 1 − (1 − ( .                               (68) 

By (61) we may also find a set Ωଷ with ℙ(Ωଷ) = 1 such that for all ݊ ≥ 1,  
there exists ℓ ∈ Λ such that ℓܺ

() ≥  (69)                                .∗
Take ߱ ∈ Ωଵ ∩ Ωଶ ∩ Ωଷ. The rest of the proof will be deterministic. 

Let ߚ ∈ [0, (ߨ ∖ By Lemma (1.2.12) there exists ݅ .ܧ = ݅(ߚ) such that for all 
ݍ ≥ 1 there exists ܰ = ܰ(ߚ, ߚ such that (ݍ ∉ ,,(1/݅ܧ ܰ) for all ܰ ≥ ܰ. In other 
words, for all ܰ ≥ ܰ, 

maxఛ∈ൣଵ,షೖ൧  
1
ܰ

# ቊ݊ ∈ [ܰ]: ି(ேି)ݎܾ߬∥∥ cos(ߚ + ߛ − ∥∥(ߠ݇ݍ݊ >
ଶݎ

15
ቋ 

≥
1
݅

,                                                                   (70) 

where ߛ = ang ൫ܽ − ܽ൯ + ܾ and ߠ = หܽ − ܽห. Take ݍ large enough so that (1 − ( <
1/4݅. We show, in a similar manner to [58, Proposition 3.3], that the projected measure 
 , has positive Fourier dimension. (Recall that the Fourier dimension of a measureߟఉߨ
(ߦ)መߣ such that ߪ is the supremum of ߣ = ܱ൫|ߦ|ିఙ/ଶ൯. ) 

Writing ݓఉ = (cos ߚ, sin ߚ) as before and applying the formula 
ߣఉߨ (ݐ) = ݐ) ఉ൯ݓݐመ൫ߣ ∈ ℝ) 

for the Fourier transform of the projection of a measure ߣ on ℝଶ, we obtain 

,ෟߟఉߨ (ݐ) = ෑ  
ஶ

ୀଵ

Ψିଵ
 ൫ݓݐఉ൯. 

By (68), we can find an integer ଵܰ such that for all ܰ ≥ ଵܰ, 
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ே

ୀ

 ߯,ೖ(߱) ≥ ܰ(1 − 2(1 − (( ≥ ܰ ൬1 −
1

2݅
൰.               (71) 

We claim that if ߯,ೖ (߱) = 1, then there exist distinct ܑଵ, ܑଶ ∈ Λ such that 

ܑܺభ

,(), ܑܺమ

,() ≥ ;(∗)  ang ൫ܑܽభ − ܑܽమ൯ = ang ൫ܽ − ܽ൯;   
หܑܽభ − ܑܽమ ห =  ିଵ.                            (72)ݎܾ

To see this, by (69) we can find ݅ଵ, … , ݅ ∈ Λ such that ܺ

(ା) ≥ ݈ for all ∗ = 0, … , ݍ −
1. Also ܺ

(ା), ܺ
(ା) ≥ for some ℎ ∗ ∈ {0, … , ݍ − 1} since ߯,ೖ(߱) = 1. Then 

it is easy to check that ܑଵ = ݅ଵ … ݅ିଵ݅݅ାଵ … ݅ and ܑଶ = ݅ଵ … ݅ିଵ݆݅ାଵ … ݅ satisfy (72). 
Hence for all ݊ ≥ 0 such that ߯,ೖ(߱) = 1 we can write, for some ݀, ܑ݀ ∈ ℝ, 

Ψ
 ൫ݓݐఉ൯  =   

ܑ∈ஃ

  ܑܺ
,()e୧గൻ ்

ೖషభܑ,௧௪ഁൿ

 = e୧గௗబ ቌ ܑܺభ

,() + ܑܺమ

,()e୧గൻ ்
ೖషభ൫మିభ ൯,௧௪ഁൿ +   

ܑஷܑభ,ܑమ

  ܑܺ
,()e୧గௗቍ .

 

Let ݐ = ߬ ே, where(ିݎ)߬ ∈ [1, ܰ ] andିݎ ≥ ଶܰ: = max{ ܰ, ଵܰ}, where ܰ =
ܰ(ߚ, is given for (70). Note that ang ൫ܑܽభ (ݍ − ܑܽమ൯ = ߛ −  Then .ߠ

ൻ ܶ
ିଵ൫ܑܽమ − ܑܽభ൯, ఉൿݓݐ  = ൻݐିଵݎܾ ܶ

ିଵିݓఊାఏ, ఉൿݓ
 = ି(ேି)ݎܾ߬ cos(ߚ + ߛ − (ߠ݇ݍ݊ .

 

Since ∑୧∈ஃ   ୧ܺ
,() = 1 and ୧ܺభ

,(), ୧ܺమ

,() ≥ (∗) , there is a constant ߩ = 
,∗)ߩ ,ݎ ,ݍ ݇) > 0 such that 

หΨିଵ
 ൫ݓݐఉ൯ห ≤ 1 −  ߩ

whenever ∥∥ܾ߬ݎି(ேି)cos (ߚ + ߛ − ∥∥(ߠ݇ݍ݊ >  ଶ/15. From (70) and (71) weݎ
deduce that 

#൛݊ ∈ [ܰ]: หΨିଵ
 ൫ݓݐఉ൯ห ≤ 1 − ൟߩ ≥ ൬

1
݅

−
1

2݅
൰ ܰ =

1
2݅

ܰ. 

Hence 
หߨఉߟ,ෟ ห(ݐ) ≤ (1 − ே/ଶబ(ߩ ≤  ,୪୭ (ଵିఘ)/(ଶబ୪୭ )ିݐ

provided ݐ ≥  ., has positive Fourier dimensionߟఉߨ (ேమାଵ), soିݎ
It was shown in [58, Lemma 4.3] that the convolution of a measure of full 

Hausdorff dimension with one of positive Fourier dimension is absolutely continuous 
with respect to Lebesgue measure. Since dimு ,ߤఉߨ  = 1 by (67), applying [58, Lemma 
4.3] to ߨఉߤ, and ߨఉߟ, gives that ߨఉߤ is absolutely continuous. 

We now apply Theorem (1.2.13) to get weak dimension conservation for self-
similar sets in ℝଶ where the IFS consists of similarities with irrational rotations that are 
translates of each other and satisfy OSC. 
Theorem (1.2.14)[33]: Let ߨ/ߠ be irrational and suppose that the IFS ℐ = { ݂ =  .ఏܴݎ
+ܽ}ୀଵ

  on ℝଶ, with ݎ > 1/݉ and satisfying ܱ :ݏ so that ,ܭ has attractor ,ܥܵ = dimு ܭ  =
−log ݉ /log ݎ > 1. 

Then there is a set ܧ ⊂ [0, ܧ with dimு (ߨ = 0 such that for all ߚ ∈ [0, (ߨ ∖  for ,ܧ
all ܧ ∈ (0, ݏ − 1), 

ℒଵ൛ݔ ∈ :(ܭ)ఉߨ dimு ൫ܭ ∩ ఉߨ
ିଵ(ݔ)൯ ≥ ݏ − 1 − ߳ൟ > 0. 
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Proof. For each integer ݍ > log 2/−log ݎ we may regard ܭ as the attractor of the IFS 
ℐ : = ቄ ݂భ ⋯ ݂: 1 ≤ ݅ଵ, … , ݅ ≤ ݉ቅ so that ܭ = Φ൫Σ൯ where Σ : = ൛ܑଵܑଶ … : ܑ ∈ Λൟ 
and Φ is the cannonical map. Let ܧ ⊂ [0, be the set with dimு (ߨ ܧ  = 0 given by that 
Theorem (1.2.13) for the IFS ℐ. Take ܧ =∪வ୪୭ ଶ/ି୪୭   so that dimுܧ ܧ  = 0. 
Now fix ߳ ∈ (0, ݏ − 1). Let ݍ > log 2/−log ݎ be an integer to be specified later. Let 

: = ൬ݎ(௦ିଵିఢ) −
2

݉൰
݉

݉ − 2
=

݉(ଵାఢ)/௦ − 2
݉ − 2

∈ (0,1),                 (73) 

since ݎ௦ = ݉ିଵ and 2 < ିݎ = ݉/௦. Let ܵ  be a random subset of Λ  defined as 
follows. First choose two different symbols from Λ with uniform probability, then select 
each of the remaining ݉  − 2 symbols with probability , all actions being independent; 
in this way ܵ  always contains at least two symbols. Moreover, for each ܑ ∈ Λ, 

ℙ൫ܑ ∈ ܵ൯  =
2

݉ +
݉ − 2

݉ 

 = .(௦ିଵିఢ)ݎ
 

Let ቄ ܵ
(): ݇ ∈ ℕቅ be a sequence of independent copies of ܵ. Then the set 

Σ
ఠ: = ܵ

(ଵ) × ܵ
(ଶ) × ⋯ 

is an ߙ-random set, with ߙ = log ݎ(௦ିଵିఢ)/log ݎ = ݏ − 1 − ߳, witn Φ satisfying (1) 
and (b) at (44) and (45). 

Define a random vector ܺ  in a uniform manner, that is, 

ܺ = ቊ
߯൫ܑ ∈ ܵ ൯

# ܵ
ቋ

ܑ∈ௌ

; 

then ൫ܺ൯ܑ ≥ 1/݉ : = ܑ for at least two ∗ ∈ ܵ . Let ቄܺ
(): ݇ ∈ ℕቅ be independent copies 

of ܺ  which are supported by ܵ
(). These random vectors define a random measure ߥ 

on Σ  of the form described in (57) and (58) at the start of this section. Then ߥ has 
support Σ

ఠ, and Φߥ has support ܭఠ = Φ൫Σ
ఠ൯. From the strong law of large numbers, 

and using OSC when mapping the measure under Φ, almost surely 

dimு Φߥ =
ॱ൫log  #ܵ൯

− log ݎ . 

Write Bin (݊,  Then . to denote the binomial distribution with ݊ points and probability (
ॱ൫log # ܵ൯ = ॱ൫log ൣ Bin ൫݉ − 2, ൯ + 2൧൯ = log ൫݉(ଵାఢ)/௦൯ −  (1)

as ݍ → ∞, on using (73) to express  in terms of ݉ together with a simple application 
of Chebyshev's inequality. Thus 

dimு  Φߥ =
log ൫݉(ଵାఢ)/௦൯ − (1)

−log ݉ ି/௦ = 1 + ߳ − (ଵିݍ) > 1 

provided we now choose ݍ sufficiently large. 
From Theorem (1.2.13), almost surely for all ߚ ∈ [0, (ߨ ∖ ܧ ⊂ [0, (ߨ ∖ ܧ , the 

projected measure ߨఉΦߥ is absolutely continuous with respect to Lebesgue measure, 
so ℒଵ ቀߨఉ(ܭఠ)ቁ > 0. The conclusion follows from Proposition (1.2.1), taking ܣ = Σ, 
ܭ = Φ(Σ) and ߙ = ݏ − 1 − ߳. 

We now extend Theorem (1.2.14) to general sets of similarities using a technique 
of Peres and Shmerkin [54, Proposition 6]. This allows us to reduce a general plane IFS 
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to one where the similarities are mutual translates with the attractor a subset of that of the 
original IFS and of arbitraily close dimension to which we may apply Theorem (1.2.14). 
Proposition (1.2.15)[33]: Let ℐ = ൛ ݂ = ܴఏݎ ⋅ +ܽൟ

ୀଵ


 be an IFS on ℝଶ satisfying OSC 
with attractor ܭ. For all ߳ > 0 there is an IFS ℐఢ, satisfying ܵܵܥ and formed by a 
collection of compositions of maps from ℐ, such that all the maps in ℐఢ have the same 
rotation ܴ ఏ for some angle ߠ and the same contraction ratio 0 < ݎ < 1, and with attractor 
ఢܭ ⊂ such that dimு ܭ ఢܭ  > dimு ܭ  − ߳. 

Moreover, if ℐ has dense rotations then we may take ߨ/ߠ to be irrational. 
Proof. First we may assume that ℐ satisfies SSC, since there is an IFS formed by 
compositions of the maps in ℐ that satisfies SSC with attractor a subset of ܭ and with 
Hausdorff dimension arbitrarily close to that of ܭ, see, for example, [53]. 
Next, as in the proof of [54, Proposition 6], we may find integers ݊ଵ, … , ݊ such that the 
IFS ℐఢ formed by all those compositions of the maps of ℐ taken in any order such that ݂  
occurs ݊  times for each ݅ = 1, … , ݉, has an attractor ܭఢ ⊂ with dimு ܭ ఢܭ  > dimு ܭ  −
߳. All the maps in ℐఢ have rotation ܴఏ = ܴభఏభା⋯ାఏ  and contraction ratio ݎ =
ଵݎ

భ ⋯ ݎ
 . 

Now suppose that ℐ has dense rotations. If (݊ଵߠଵ + ⋯ + ݊ߠ)/ߨ is irrational 
then there is nothing further to prove. Otherwise, at least one of the ߠ , say ߠଵ, is an 
irrational multiple of ߨ. By a slight modification of the proof of [54, Proposition 6] we 
may conclude that the attractor of the IFS ℐఢ

ᇱ formed by the compositions of the maps of 
ℐ such that ଵ݂ occurs ݊ଵ − 1 times and ݂  occurs ݊ times for = 2, … , ݉, with attractor 
ఢܭ

ᇱ ⊂ has dimு ܭ ఢܭ 
ᇱ > dimு ܭ  − ߳. (We just note in [54, Proposition 6] that the number 

of paths ending at a neighboring lattice point to ݒ is comparable to the number of paths 
ending at ݒ. ) Then ൫(݊ଵ − ଵߠ(1 + ⋯ + ݊ߠ൯/ߨ is irrational so the conclusion holds 
for ℐఢᇲ

ᇱ . 
Theorem (1.2.16)[33]: Let 

ℐ = ൛ ݂ = ܴఏݎ ⋅ +ܽൟ
ୀଵ
  

be an IFS on ℝଶ with dense rotations satisfying OSC, with attractor ܭ and with ݏ =
dimு ܭ  > 1, where ݏ is given by ∑ୀଵ

 ݎ 
௦ = 1. Then there is a set ܧ ⊂ [0,  with (ߨ

dimு ܧ  = 0 such that for all ߚ ∈ [0, (ߨ ∖ ߳ for all ,ܧ ∈ (0, ݏ − 1), 
ℒଵ൛ݔ ∈ :(ܭ)ఉߨ dimு  ൫ܭ ∩ ఉߨ

ିଵ(ݔ)൯ ≥ ݏ − 1 − ߳ൟ > 0.                    (74) 
Proof. For each ߳ > 0, applying Theorem (1.2.14) to the amended IFS ℐఢ with attractor 
 ,ఢ given by Proposition (1.2.15) (replacing ߳ by ߳/2 in both theorem and proposition)ܭ
there is a set ܧఢ ⊂ [0, ఢܧ with dimு (ߨ = 0, such that (74) holds for all ߚ ∈ ఢܧ . So that 
the set of exceptional ߚ does not depend on ߳ , we let ܧ =∪ୀబ

ஶ ଶష, where 2ିబܧ < ݏ −
1, so that dimு ܧ  = 0. 

A natural question is whether these results can be strengthened from 'weak 
dimension conservation' to 'dimension conservation', that is whether the '߳' can be 
removed in the conclusion of Proposition (1.2.2), and in Theorem (1.2.7), Theorem 
(1.2.9), Theorem (1.2.14) and Theorem (1.2.16). 

 Another natural question is whether, in Proposition (1.2.2), the condition on the 
projection of ܤ(Φ[ܑ]) can be weakened, with a consequential weakening of the 
corresponding condition on the projections of ܭ in Theorem (1.2.7). Furthermore, can 
dim  of the sections be replaced by dimு  in the conclusions of Proposition (1.2.2) and 
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Theorem (1.2.7)? An alternative approach would be to eliminate the exceptional set of 
directions in Theorem (1.2.14) and thus Theorem (1.2.16). 

This raises the question of whether the box-dimension and Hausdorff dimension 
of sections of self-similar set are 'typically' equal for all, or perhaps 'nearly all' directions. 
If dim(ܭ ∩ (ܮ = dimு ܭ)  ∩  or at least for a large set of lines, then ,ܮ for every line (ܮ
one might be able to replace lower box dimension by Hausdorff dimension in the 
conclusion of Theorem (1.2.7). There are plane self-similar sets defined by homotheties 
with at least some sections having distinct Hausdorff and lower box dimensions, for 
example for certain horizontal sections of the 1-dimensional Sierpiniski triangle, that is 
the attractor of the plane IFS with maps ଵ݂(ݔ, (ݕ = ቀଵ

ଷ
,ݔ ଵ

ଷ
ቁݕ , ଶ݂(ݔ, (ݕ = ቀଵ

ଷ
ݔ +

ଶ
ଷ

, ଵ
ଷ

ቁݕ , ଷ݂(ݔ, (ݕ = ቀଵ
ଷ

,ݔ ଵ
ଷ

ݕ + ଶ
ଷ
ቁ (we are grateful to Thomas Jordan for pointing out this 

example to us); see also [35]. Is this possible for selfsimilar sets with dense rotations? 
 Similar conclusions to Proposition (1.2.2) and thus Theorem (1.2.7) might be 

expected for projections onto ݇-dimensional subspaces ܸ where ݇ ≥ 2. However, it 
seems hard to get an analogue of Lemma (1.2.3) in this case. One would need to show 
that for any cube ܫ ⊂ ܸ with |ܫ| ≤ ݔ there is a bounded number of points ݎ ∈ ܸ with 
ݔ)ܰ , (ݎ ≤ ,ݔ)ܰ such that if ܯ (ݎ ≤ ݔ for some ܯ ∈ ௫ܮ then some ܫ  intersects every set 
ܑ such that ([ܑ]Φ)ܤ ∈ Λ  that intersects ܮ௫. (Here ܰ(ݔ,  with ([ܑ]Φ)ܤ is the number of (ݎ
ܑ ∈ Λ  that intersect ܮ௫, the (݀ − ݇)-plane through ݔ ∈ ܸ and perpendicular to ܸ.) 

Our results have been presented for self-similar sets defined by orientation 
preserving similarities. It would be possible to extend them to allow some of the maps to 
be orientation-reversing, for example by replacing an IFS by one formed by appropriate 
orientation-preserving compositions of the maps with little reduction in the dimension of 
the attractor, as in the proof of [54, Proposition 6]. 
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Chapter 2 
A Class of Spectral 

We obtain two new conditions for a labeling tree to generate a spectrum when other 
digits (digits not necessarily in {0, 1, 2, 3}) are used in the base 4 expansion of integers 
and when bad branches are allowed in the spectral labeling. These new conditions yield 
new examples of spectra and in particular lead to a surprizing example which shows that 
a maximal set of orthogonal exponentials is not necessarily an orthonormal basis. We 
show, under certain conditions in terms of (ܾ , ࣞ), that the associated Moran measure 
߉ is a spectral measure, i.e., there exists a countable set ߤ ⊂ ℕ such that ൛݁ଶగఒ௫ ∈  ൟ is߉
an orthonormal basis for ܮଶ(ߤ). The special case is the Cantor measure with ߩ = ଵ

ଶ
 and 

ܰ = 2 [125], which was proved recently to be the only spectral measure among the 
Bernoulli convolutions with 0 < ߩ < 1 [113]. 
Section (2.1): Spectra of a Cantor Measure: 

For certain probability measures ߤ in ℝௗ there exist orthonormal bases of 
countable families of complex exponentials ൛݁ଶగఒ⋅௫ ∣ ߣ ∈ Λൟ for the Hilbert space ܮଶ(ߤ). 
We called them Fourier series by analogy with the classical example of intervals on the 
real line. In this case, the measure ߤ is called a spectral measure and the set Λ is called a 
spectrum for ߤ. When ߤ = ଵ

|ஐ|
 where Ω is bounded subset of positive Lebesgue) ݔ݀

measure |Ω| > 0 and ݀ݔ is the Lebesgue measure), the existence of a spectrum is closely 
related to the well-known Fuglede conjecture which asserts that there exists a spectrum 
for ߤ if and only if Ω tiles ℝௗ by translations using discrete set. This conjecture was 
proved to be false in higher dimensions by Tao [82] and others, but it is still open in 
dimension 1 and 2. See [76,77,74,71] for some important results and developments 
related to the spectral pairs with respect to probability measures that are obtained by 
restricting the Lebesgue measure to bounded sets. 
Definition (2.1.1)[60]: Let ݁ ఒ(ݔ): = ݁ଶగఒ⋅௫ , ݔ ∈ ℝௗ , ߣ ∈ ℝௗ . A probability measure ߤ on 
ℝௗ is said to be a spectral measure if there exists a set Λ ⊂ ℝௗ such that the family 
{ ఒ݁ ∣ ߣ ∈ Λ} is an orthonormal basis for ܮଶ(ߤ). In this case Λ is called a spectrum for the 
measure ߤ. 

There exist other probability measures that are not the restriction of the Lebesgue 
measure to bounded sets, but they admit spectra. The first example of a singular, non-
atomic, spectral measure was constructed by Jorgensen and Pedersen in [68], and 
Strichartz [78] gave a simplification of part of the proof. These results led to the the 
spectral theory for fractal measures which has recently become an important topic of 
research in harmonic analysis. These fractal measures also have very close connections 
with the theory of multiresolution analysis in wavelet analysis (see e.g., [66, 63]). 

The Jorgensen-Pedersen measure is constructed on a slight modification of the 
Middle Third Cantor set. This can be obtained as follows: consider the interval [0,1]. 
Divide it into 4 equal intervals, and keep the intervals ቂ0, ଵ

ସ
ቃ, and ቂଵ

ଶ
, ଷ

ସ
ቃ. Then take each of 

these intervals and repeat the procedure ad inf. The result is a Cantor set 

ܺସ: = ൝  
ஶ

ୀଵ

 ܽ
1

4 ∣ ܽ ∈ {0,2}ൡ. 
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The probability measure ߤସ  on ܺସ assigns measure ଵ
ଶ
 to the sets ܺସ ∩ ቂ0, ଵ

ସ
ቃ and ܺସ ∩

ቂଶ
ସ

, ଷ
ସ
ቃ, measure ଵ

ସ
 to the four intervals at the next stage, etc. It is the Hausdorff measure of 

Hausdorff dimension ୪୬ ଶ
୪୬ ସ

= ଵ
ଶ
. 

The set ܺସ and the measure ߤସ can be defined also in terms of iterated function 
systems (see [67]). Consider the iterated function system (IFS) 

߬(ݔ) =
ݔ
4 ,  ߬ଶ(ݔ) =

ݔ + 2
4 , ݔ)  ∈ ℝ). 

Then the IFS {߬, ߬ଶ} has a unique attractor ܺସ , i.e., a unique compact subset of ℝ with 
the property that 

ܺସ = ߬(ܺସ) ∪ ߬ଶ(ܺସ). 
The measure ߤସ  is the unique probability measure on ℝ which satisfies the invariance 
equation: 

න (ݔ)ସߤ݀(ݔ)݂  =
1
2

ቆන  ݂ ቀ
ݔ
4

ቁ (ݔ)ସߤ݀ + න  ݂ ൬
ݔ + 2

4
൰ ቇ(ݔ)ସߤ݀ ,  ൫݂ ∈ .(ℝ)൯ܥ (1) 

Moreover, the measure ߤସ is supported on ܺସ. 
 [68], proved that the set 

Λ = ൝  


ୀ

 4݀ ∣ ݀ ∈ {0,1}, ݊ ≥ 0ൡ 

is a spectrum for ߤସ . 
The results of Jorgensen and Pedersen were further extended for other measures, 

and new spectra were found in [79,75,62,64,65,73,72]. Some surprising convergence 
properties of the associated Fourier series were discovered in [80]. 

Two approaches to harmonic analysis on Iterated Function Systems have been 
popular: one based on a discrete version of the more familiar and classical second order 
Laplace differential operator of potential theory, see [81,70]; and the other is based on 
Fourier series. The first model in turn is motivated by infinite discrete network of 
resistors, and the harmonic functions are defined by minimizing a global measure of 
resistance, but this approach does not rely on Fourier series. the second approach begins 
with Fourier series, and it has its classical origins in lacunary Fourier series [69]. 

In general, for a given probability measure ߤ any of the following possibilities can 
occur: (i) there exists at most a finite number of orthogonal complex exponentials in 
 there are infinite families of orthogonal complex exponentials and one of them (ii) ;(ߤ)ଶܮ
is an orthonormal basis for ܮଶ(ߤ), and in this case ߤ is a spectral measure. The first 
example satisfying (i) is the Middle Third Cantor set, with its Hausdorff measure of 
dimension ୪୬ ଶ

୪୬ ଷ
. In [68] it was proved that for this measure no three exponentials are 

mutually orhtogonal. Detailed analysis on this was given and many new examples were 
constructed in [64]. However, for a given measure ߤ it remains a very difficult problem 
to "characterize" all the spectra or the maximal families of orthogonal exponentials. 
Moreover, it is not known whether every such a maximal family must be an orthonormal 
basis for ܮଶ(ߤ). We answer all these questions for the measure ߤସ . 

We first establish a one-to-one correspondence between the labeling of the infinite 
binary tree and the base 4 expansions (using the digits {0,1,2,3}) of the integers. Then we 
characterize all maximal sets of orthogonal exponentials in ܮଶ(ߤସ) by showing that they 
correspond to spectral labelings of the binary tree. In Example (2.1.25) we show that 
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there are maximal sets of orthogonal exponentials which are not spectra for ߤସ . This is 
surprising, since in the previous examples in the literature, all maximal sets of orthogonal 
exponentials were also spectra for the associated fractal measure. 

The spectral labeling characterization helps us obtain one sufficient condition for 
a maximal family of exponentials to an orthonormal basis for ܮଶ(ߤସ). This sufficient 
condition improves the known results from [68,79,75,62], and, it clarifies why some of 
the candidates for a spectrum constructed in [75, 79] are incomplete, and how they can 
be completed to spectra for ߤସ. 

We consider other digits that can be used for the base 4 expansion of the integers 
in the candidate set Λ, and give some sufficient conditions when these will generate 
spectra for ߤସ . We construct some examples of spectra and give the example showing 
that a maximal set of orthogonal exponentials is not necessarily a spectrum. In addition 
a result of Strichartz in [79] is improved with the help of our Theorem (2.1.21). 

In an attempt to obtain a "complete" characterization of all the spectra, we present 
a few other basic properties of spectra for ߤସ and give another sufficient condition for a 
spectral labeling to generate a spectrum where limited number of "bad" paths are allowed 
in the labeling. This new condition allows us to construct an example (Example (2.1.29)) 
of a spectral labeling that gives us a spectrum even though it does not satisfy the 
hypothesis of Theorem (2.1.17). Although we were not able to obtain a "complete" 
characterization for a maximal family to generate a spectrum, we believe that a 
combination of our results Theorem (2.1.17) and Proposition (2.1.28) might come close. 

For the sake of clarity, we focus our discussion on the fractal measure ߤସ. We 
believe that this example has many of the key features that might occur in more general 
fractal measures, and most of our results can be generalized for other IFS measures. 

To define the sets of integers that correspond to families of orthogonal 
exponentials, we will recall some basic facts about base 4 expansions of integers. 
Definition (2.1.2)[60]: Let ݇ be an integer. Define inductively the sequences (݀)ஹ 
and (݇)ஹ, with ݀ ∈ {0,1,2,3} and ݇ ∈ ℤ: ݇: = ݇; using division be 4 with 
remainder, there exist a unique ݀  ∈ {0,1,2,3} and ݇ ଵ ∈ ℤ such that ݇  = ݀ + 4݇ଵ. If ݇ 
has been defined, then there exist a unique ݀ ∈ {0,1,2,3} and ݇ ∈ ℤ such that ݇ =
݀ + 4݇ାଵ. 

The infinite string ݀݀ଵ … ݀ … will be called the base 4 expansion or the encoding 
of ݇. We will use the notation 

݇ = ݀݀ଵ … ݀ …. 
We will denote by 0 the infinite sequence 000 …, and similarly 3 = 333 … The notation 
݀݀ଵ … ݀0 indicates that the infinite string begins with ݀ … ݀ and ends in an infinite 
repetition of the digit 0 . Similarly for the notation ݀ … ݀3. 
Proposition (2.1.3)[60]: Let ݇ ∈ ℤ with base 4 expansion ݇ = ݀ … ݀ … If ݇ ≥ 0 then 
its base 4 expansion ends in 0, i.e., there exists ܰ ≥ 0 such that ݀ = 0 for all ݊ ≥ ܰ. In 
this case 

݇ = ݀ … ݀ே0 =   
ே

ୀ

4݀.                                               (2) 

If ݇ < 0 then its base 4 expansion ends in 3, i.e., there exists ܰ ≥ 0 such that ݀ = 3 for 
all ݊ ≥ 3. In this case 



45 

݇ = ݀ … ݀3 =   
ே

ୀ

4݀ − 4ேାଵ.                                       (3) 

Moreover, if ݇ is defined by the formula on the right-hand side of (2) or (3) then its base 
4 expansion is ݀ … ݀ே0, in the first case, or ݀ … ݀ே3 in the second case. 
Proof. For ݇ ≥ 0, the base 4 expansion is well known. Let us consider the case when 
݇ < 0 and let ݇ = ݀ … ݀ … be its base 4 expansion. Take ܰ ≥ 0 such that ݇ ≥ −4ேାଵ. 
Let (݇)ஹ be defined as in Definition (2.1.2). Then 0 > ݇ = ݇ ≥ −4ேାଵ. Since ݇ଵ =
బିௗబ

ସ
 it follows that ݇ଵ ≥ ିସ ‾ಿ శభିଷ

ସ
≥ −4ே. By induction 0 > ݇ேାଵ ≥ −4 = −1. So 

݇ேାଵ = −1. Then ݇ேାଶ = ିଵିଷ
ସ

, so ݇ = −1 and ݀ = 3 for all ݊ ≥ ܰ + 1. Thus the 
base 4 expansion of ݇ ends in 3. Moreover, since ݇ேାଵ = −1, we have that ݇ே = ݀ே −
4, ݇ேିଵ = ݀ேିଵ + 4݇ே = ݀ேିଵ + 4݀ே − 4ଶ, and, by induction 

݇ = ݇ = ݀ + 4݀ଵ + ⋯ + 4ே݀ே − 4ேାଵ. 
Lemma (2.1.4)[60]: Let ܾ be an integer and let ܾ = ܾܾଵ … be its base 4 expansion. Let 
a be another integer that has base 4 expansion ending with the expansion of ܾ, i.e., ܽ =
ܽ … ܾܾܽଵ … Then 

ܽ = ܽ + 4ܽଵ + ⋯ + 4ܽ + 4ାଵܾ.                                      (4) 
Conversely, if the integers a and b satisfy (4) with ܽ … ܽ ∈ {0,1,2,3}, then the base 4 
expansion of a has the form ܽ = ܽ … ܾܾܽଵ …, where ܾ = ܾܾଵ … is the base 4 
expansion of ܾ. 

The base 4 expansion ݀݀ଵ … of an integer ݇ is completely determined by the 
conditions: ݀ ∈ {0,1,2,3} for all ݊ ≥ 0, and 

  
ே

ୀ

݀4 ≡ ݇mod4ேାଵ,  (ܰ ≥ 0). 

Proof. The proof follows directly from Proposition (2.1.3) by a simple computation. 
We will characterize maximal sets of orthogonal exponentials and give a sufficient 

condition for such a maximal set to generate an orthonormal basis for ܮଶ(ߤସ). 
First we will characterize maximal sets of orthogonal exponentials. These will 

correspond to sets of integers whose base 4 expansions can be arranged in a binary tree. 
We will call this arrangement a spectral labeling of the binary tree. 
Definition (2.1.5)[60]: Let ࣮ be the complete infinite binary tree, i.e., the oriented graph 
that has vertices 

ࣰ: = {∅} ∪ {߳ … ߳ ∣ ߳ ∈ {0,1}, ݊ ≥ 0}, 
and edges ℰ: (∅, 0), (∅, 1), (߳ … ߳ , ߳ … ߳߳ାଵ) for all ߳ … ߳ ∈ ࣰ, and ߳ାଵ ∈
{0,1}, ݊ ≥ 0. The vertex ∅ is the root of this tree. 

A spectral labeling ℒ of the binary tree is a labeling of the edges of ࣮ with labels 
in {0,1,2,3} such that the following properties are satisfied: 

(i) For each vertex ݒ in ࣰ, the two edges that start from ݒ have labels of different 
parity. 

(ii) For each vertex ݒ in ࣰ, there exist an infinite path in the tree that starts from ݒ and 
ends with edges that are all labeled 0 or all labeled 3. 

We will use the notation ࣮(ℒ) to indicate that we use the labeling ℒ. 
Given a spectral labeling, we will identify the vertices ݒ ∈ ࣰ with the finite word 

obtained by reading the labels of the edges in the unique path from the root ∅ to the vertex 
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ݒ We will sometimes write .ݒ = ݀݀ଵ … ݀, to indicate that the vertex ݒ is the one that 
is reached from the root by following the labels ݀ … ݀ . 

We identify an infinite path in the tree ࣮ (ℒ) from a vertex ݒ with the infinite word 
obtained by reading the labels of the edges along this path. See Figure 1 [60] for the first 
few levels in a spectral labeling. 
Definition (2.1.6)[60]: Let ℒ be a spectral labeling of the binary tree. Then the set of 
integers associated to ℒ is the set 

Λ(ℒ): = {݇ = ݀݀ଵ … … ∣ ݀݀ଵ … is an infinite path in the tree starting from ∅ and 
ending in 0 or 3}. 

Theorem (2.1.7)[60]: Let Λ be a subset of ℝ with 0 ∈ Λ. Then { ఒ݁ ∣ ߣ ∈ Λ} is a maximal 
set of mutually orthogonal exponentials if and only if there exists a spectral labeling ℒ of 
the binary tree such that Λ = Λ(ℒ). 
Proof. We will need several lemmas. 
Lemma (2.1.8)[60]: The Fourier transform of ߤସ is 

(ݐ)ସߤ̂ = ݁
ଶగ௧

ଷ ෑ  
ஶ

ୀଵ

cos ൬2ߨ
ݐ

4൰ , ݐ)  ∈ ℝ).                                     (5) 

The convergence of the infinite product is uniform on compact subsets of ℝ. 

 
Figure 1[60]: The first levels in a spectral labeling of the binary tree. 0323 is a path in 
the tree from the root ∅, 13 is a path in the tree from the vertex 12. 
 
Proof. Applying the invariance equation (1) to the exponential function ݁ ௧ , ݐ ∈ ℝ, we get 

(ݐ)ସߤ̂ =
1 + ݁ଶగଶ௧

ସ

2
ସߤ̂ ൬

ݐ
4

൰ = ݁ଶగ௧
ସcos ൬2ߨ

ݐ
4

൰ ସߤ̂ ൬
ݐ
4

൰. 
Since ̂ߤସ(0) = 1, the cosine function is Lipschitz near 0 , and cos 0 = 1, we can iterate 
this relation to infinity and obtain 

(ݐ)ସߤ̂ = ݁ଶగ ∑  ಮ
ೕసభ   ௧ସೕ ෑ  

ஶ

ୀଵ

cos ൬2ߨ
ݐ

4 ൰. 

Lemma (2.1.9)[60]: Let ߣ, ᇱߣ ∈ ℝ. Then ఒ݁ is orthogonal to ݁ఒᇲ  in ܮଶ(ߤସ) iff ߣ − ᇱߣ ∈ ࣴ, 
where 

ࣴ: = ݔ} ∈ ℝ ∣ (ݔ)ସߤ̂ = 0} = ൛4(2݇ + 1) ∣ 0 ≤ ݆ ∈ ℤ, ݇ ∈ ℤൟ.                (6) 
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Proof. We have ⟨ ఒ݁, ݁ఒᇲ ⟩ = ∫ ݁ଶగ(ఒିఒᇲ)௫݀ߤସ(ݔ) = ߣ)ସߤ̂ − ᇱ). So ఒ݁ߣ ⊥ ݁ఒᇲ iff ߣ − ᇱߣ ∈
ࣴ. Using the infinite product in (6), we obtain that ߣ − ᇱߣ ∈ ࣴ iff there exists ݆ ≥ 1 such 
that cos ቀ2ߨ ఒିఒᇲ

ସೕ ቁ = 0. So 2ߣ)ߨ − (ᇱߣ ∈ 4ߨ ቀℤ + ଵ
ଶ

ቁ. This implies (6). 
Note that, since 0 ∈ Λ, for any element ܽ ∈ Λ, we have ݁  ⊥ ݁. Then with Lemma 

(2.1.9), we must have ܽ ∈ ࣴ ⊂ ℤ. 
For an integer ݇ with base 4 expansion ݇ = ݀ … ݀ …, we will denote by ݀ (݇): =

݀, the ݊-th digit of the base 4 expansion of ݇. 
The next lemma follows from an easy computation. 
Lemma (2.1.10)[60]: If ݊, ݊ᇱ ≥ 0, ݇, ݇, ܽ, ܽᇱ ∈ ℤ with ܽ, ܽᇱ not divisible by 4, and 
4(4݇ + ܽ) = 4ᇲ (4݇ᇱ + ܽᇱ) then ݊ = ݊ᇱ. 
Lemma (2.1.11). Let Λ be a subset of ℝ with 0 ∈ Λ. Assume { ఒ݁ ∣ ߣ ∈ Λ} is a maximal 
set of orthogonal exponentials in ܮଶ(ߤସ). Then for ݀, … , ݀ିଵ ∈ {0,1,2,3} the set 

݀)ܦ … ݀ିଵ): = {݀(ܽ) ∣ ܽ ∈ Λ, ݀(ܽ) = ݀, … , ݀ିଵ(ܽ) = ݀ିଵ} 
has either zero or two elements of different parity. This means that the n-th digit of the 
base 4 expansion of elements in Λ with prescribed first ݊ − 1 digits, can take only 0 or 2 
values, and if it takes 2 values, then these values must have different parity, i.e., {0,1}, or 
{0,3}, or {1,2} or {2,3}. 
Proof. Suppose ܦ(݀ … ݀ିଵ) has at least one element. Suppose ܽ, ܽᇱ ∈ ݀)ܦ … ݀ିଵ) 
with ݀(ܽ) = ݀(ܽᇱ) = ݀ for all 0 ≤ ݇ ≤ ݊ − 1, and assume ݀(ܽ) ≠ ݀(ܽᇱ). 
Then (see Lemma (2.1.4)) there exist ܾ, ܾᇱ ∈ ℤ such that 

ܽ = 4ାଵܾ + 4݀(ܽ) + 4ିଵ݀ିଵ + ⋯ + ݀,  ܽᇱ 
= 4ାଵܾᇱ + 4݀(ܽ

ᇱ ) + 4ିଵ݀ିଵ + ⋯ + ݀  
Then ܽ − ܽᇱ = 4൫4(ܾ − ܾᇱ) + ݀(ܽ) − ݀(ܽᇱ)൯. By Lemma (2.1.9), since ܽ, ܽᇱ ∈ Λ, 
we must have ܽ − ܽᇱ ∈ ࣴ, so ܽ − ܽᇱ = 4(2݇ + 1) = 4(4݈ + ݁) for some ݉ ≥
0, ݇, ݈ ∈ ℤ, ݁ ∈ {1,3}. Thus, with Lemma (2.1.10), ݊ = ݉ and ݀(ܽ) − ݀(ܽᇱ) is an odd 
number. In particular, it follows that ܦ(݀ … ݀ିଵ) contains at most 2 elements. 

Suppose now that ܦ(݀ … ݀ିଵ) has just one element. Then for all ܽ ∈ Λ, with 
݀(ܽ) = ݀  for all 0 ≤ ݇ ≤ ݊ − 1, one has that ݀(ܽ) is constant ݀ . 

Let ݀
ᇱ : = ݀ + 1mod4 and let ܽᇱ: = 4݀

ᇱ + 4ିଵ݀ିଵ + ⋯ + ݀. We claim that 
݁ᇲ is orthogonal to all ݁, ܽ ∈ Λ. 

Let ܽ ∈ Λ. 
Case I: ݀(ܽ) = ݀ for all 0 ≤ ݇ ≤ ݊ − 1. Then, with Lemma (2.1.4), for some ܾ ∈ ℤ, 

ܽ = 4ାଵܾ + 4݀ + 4ିଵ݀ିଵ + ⋯ + ݀ 
so ܽ − ܽᇱ = 4(4ܾ + ݀ − ݀

ᇱ ) ∈ 4(2ℤ + 1) ⊂ ࣴ. Therefore, with Lemma 
(2.1.9), ݁ᇲ ⊥ ݁ . 
Case II: There is an integer 0 ≤ ݇ ≤ ݊ − 1 such that ݀(ܽ) = ݀, … , ݀ିଵ(ܽ) = ݀ିଵ 
and ݀(ܽ) ≠ ݀ . Then for some ܾ ∈ ℤ, 

ܽ = 4ାଵܾ + 4݀(ܽ) + 4ିଵ݀ିଵ + ⋯ + ݀ 
Since ܦ(݀ … ݀ିଵ) is not empty, there is a ܽ ᇱᇱ ∈ Λ such that ݀ (ܽᇱᇱ) = ݀, … , ݀(ܽᇱᇱ) =
݀, so 

ܽᇱᇱ = 4ାଵܾᇱᇱ + 4݀ + 4ିଵ݀ିଵ + ⋯ + ݀, 
for some ܾᇱᇱ ∈ ℤ. 

Then, as before, since ܽ, ܽᇱᇱ are in the tree, and they differ first time at the ݇-th 
digit, we have that ݀ − ݀(ܽ) is odd. 
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It follows that ܽ − ܽᇱ = 4(4ܾ − 4ି݀
ᇱ − 4ିିଵ݀ିଵ − ⋯ − 4݀ାଵ +

݀(ܽ) − ݀) ∈ 4(2ℤ + 1) ⊂ ࣴ. Hence ݁ ⊥ ݁ᇲ. 
We construct the spectral labeling ℒ as follows: we label the root of the tree by ∅. 

Using Lemma (2.1.11), the set ܦ(∅): = {݀(ܽ) ∣ ܽ ∈ Λ} has two elements ݀ and ݀
ᇱ . 

We label the edges from ∅ by ݀ and ݀
ᇱ . 

By induction, if we constructed the label ݀  … ݀ for a vertex, this means that there 
exists an element ܽ  of Λ that has base 4 expansion starting with ݀ … ݀. Therefore, using 
Lemma (2.1.11), the set ܦ(݀ … ݀) contains exactly two elements of different parity 
݁, ݁ᇱ. We label the edges that start from the vertex ݀ … ݀ by these elements ݁, ݁ᇱ. In 
particular we have that the sets ܦ(݀ … ݀݁) and ܦ(݀ … ݀݁ᇱ) are not empty. 

Next, we check that, from any vertex in this tree, there exists an infinite path that 
ends in 0 or 3. 

Consider a vertex in this tree, and let ݀ … ݀ be its label. Then, by construction, 
the set ܦ(݀ … ݀) is not empty. Therefore there is some ܽ in Λ such that ݀(ܽ) =
݀, … , ݀(ܽ) = ݀. If we denote ݀ : = ݀(ܽ) for all ݇ ≥ ݊, then by construction the tree 
contains the vertices labeled ݀ … ݀ for all ݇ ≥ 0. Since the string ݀݀ଵ … is the base 4 
expansion of ܽ, it follows that the infinite sequence ݀݀ଵ … ends in either 0 or 3. 
Therefore there is an infinite path from the vertex ݀ … ݀ that ends in either 0 or 3. 

Finally, we have to check that Λ = Λ(ℒ). If ܽ ∈ Λ and it has base 4 expansion ܽ =
݀݀ଵ …, then the vertices ݀ … ݀ are all in the tree ࣮(ℒ) so the infinite path ݀݀ଵ … is a 
path in this tree starting from the root ∅. Thus Λ ⊂ Λ(ℒ). 

For the converse we prove the following: 
Lemma (2.1.12)[60]: If ܽ = ݀݀ଵ … , ܽᇱ = ݀

ᇱ ݀ଵ
ᇱ … are two distinct infinite paths in the 

binary tree Λ(ℒ) starting from the root, that end in either 0 or 3, then ݁ ⊥ ݁ᇲ. 
Proof. Let ݇ ≥ 0 be the first index such that ݀ ≠ ݀

ᇱ . Then ݀ = ݀
ᇱ , … , ݀ିଵ = ݀ିଵ

ᇱ  
and since ℒ is a spectral labeling, we have that ݀  − ݀

ᇱ  is odd. With Lemma (2.1.4) there 
exist ܾ, ܾᇱ ∈ ℤ such that 

ܽ = 4ାଵܾ + 4݀ + 4ିଵ݀ିଵ + ⋯ + ݀,  ܽᇱ 
= 4ାଵܾᇱ + 4݀

ᇱ + 4ିଵ݀ିଵ
ᇱ + ⋯ + ݀

ᇱ . 
Then ܽ − ܽᇱ = 4(4(ܾ − ܾᇱ) + ݀ − ݀

ᇱ ) ∈ 4(2ℤ + 1) ⊂ ࣴ. So ݁ ⊥ ݁ᇲ . 
Lemma (2.1.12) shows that, since ℒ is a spectral labeling, the set { ఒ݁ ∣ ߣ ∈ Λ(ℒ)} 

is a set of mutually orthogonal exponentials. Since Λ ⊂ Λ(ℒ) and Λ is maximal, it follows 
that Λ = Λ(ℒ). 

It remains to prove that, if ℒ is a spectral labeling, then Λ(ℒ) corresponds to a 
maximal set of exponentials. We have seen above that Λ(ℒ) corresponds to a family of 
orthogonal exponentials; we have to prove it is maximal. Suppose there exists ߣ ∈ ℝ such 
that ఒ݁ ⊥ ݁ for all ܽ ∈ Λ(ℒ). In particular ఒ݁ ⊥ ݁, and with Lemma (2.1.9), we have 
ߣ ∈ ℤ. Let ݀݀ଵ … be the base 4 expansion of ߣ. Let ݇ ≥ 0 be the first index such that 
݀ … ݀ is not in the tree ࣮(ℒ). One of the labels of the edges from the vertex ݀  … ݀ିଵ 
has the same parity as ݀, and is different from ݀. Let ݀

ᇱ  be this label. Then ݀ − ݀
ᇱ ∈

{−2,2}. Using property (ii) in the definition of a spectral labeling, there exists an infinite 
path ܽ in the tree that starts with ݀ … ݀ିଵ݀

ᇱ  and ends with 0 or 3. Then, 
ܽ = ݀ + ⋯ + 4ିଵ݀ିଵ + 4݀ + 4ାଵܾ,  ߣ 

 = ݀ + ⋯ + 4ିଵ݀ିଵ + 4݀
ᇱ + 4ାଵܾᇱ, 

for some ܾ, ܾᇱ ∈ ℤ. Then ܽ − ߣ = 4൫݀ − ݀
ᇱ + 4(ܾ − ܾᇱ)൯ ∉ ࣴ, because ݀ − ݀

ᇱ  is 
even, and not a multiple of 4 (see Lemma (2.1.10)). With Lemma (2.1.9), ఒ݁ is not 
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perpendicular to ݁ . This shows that Λ(ℒ) corresponds to a maximal set of orthogonal 
exponentials. 

This concludes the proof of Theorem (2.1.7). 
Theorem (2.1.7) shows that when a spectral labeling ℒ of the binary tree is given, 

it generates a maximal family of mutually orthogonal exponentials, by reading base 4 
expansions from the tree. We will give a sufficient condition for a spectral labeling to 
generate a spectral set, i.e., an orthonormal basis of exponentials. 

We will begin by defining certain "good" paths. The restriction on the spectral 
labeling will require that good paths can be found from any vertex. 
Definition (2.1.13)[60]: Let ܽ ∈ ℤ and let ܽ = ݀݀ଵ … be its base 4 expansion. We call 
the length of ܽ the smallest integer ݊ such that either ݀ = 0 for all ݇ ≥ ݊ or ݀ = 3 for 
all ݇ ≥ ݊. We will use the notation ݊ = lng (ܽ). 
Fix integers ܲ, ܳ > 0. Let ߱ = ߱߱ଵ … be an infinite path ending in 0 or 3, ߱ ∈
{0,1,2,3} for all ݊ ≥ 0. 

We will say that the path ߱ is (ܲ, ܳ)-good (or just good) if the there exists ݊ ≥ 0 
such that the following two conditions are satisfied: 

(i) ߱, … , ߱ ∈ {0,2} and the number of occurrences of 2 in ߱ … ߱ is less than ܲ; 
(ii) lng (߱ାଵ߱ାଶ … ) ≤ ܳ. 

We divide the proof into several lemmas. 
Lemma (2.1.14)[60]: ([68]). Let Λ be a set such that { ఒ݁ ∣ ߣ ∈ Λ} is an orthonormal 
family in ܮଶ(ߤସ). Then 

  
ఒ∈ஃ

ݐ)ସߤ̂| + ଶ|(ߣ ≤ ݐ) 1 ∈ ℝ).                                             (7) 

The set Λ is a spectrum for ߤସ  iff 
  
ఒ∈ஃ

ݐ)ସߤ̂| + ଶ|(ߣ = ݐ) 1 ∈ ℝ).                                          (8) 

Proof. Let ࣪ be the projection onto the span of { ఒ݁ ∣ ߣ ∈ Λ}. Then, using Parseval's 
identity, we have for all ∈ ℝ : 

1 ≥ ∥∥࣪݁ି௧∥∥ଶ =   
ఒ∈ஃ

|⟨ ఒ݁, ݁ି௧⟩|ଶ =   
ఒ∈ஃ

ݐ)ସߤ̂| +  .ଶ|(ߣ

This implies (7) and one of the ⇒ part in the last statement. For the converse, if (8) holds, 
then ݁ି௧ is in the span of { ఒ݁}ఒ, and using the Stone-Weiertrass theorem, this implies that 
the span is ܮଶ(ߤସ). 
Lemma (2.1.15)[60]: Assume that there exist ߳ > 0 and ߜ > 0 such that for any ݕ ∈
[−߳, 1 + ߳] and any vertex ݒ = ݀ … ݀ேିଵ in the binary tree ࣮(ℒ), there exists an 
infinite path ߣ(݀ … ݀ேିଵ) in the tree, starting from ݒ, ending in 0 or 3, such that 
ห̂ߤସ൫ݕ + ݀)ߣ … ݀ேିଵ)൯ห

ଶ
≥  .ସߤ . Then Λ(ℒ) is a spectrum forߜ

The main idea of the proof of Lemma (2.1.15) is the same as the one used in a 
characterization of orthonormal scaling functions in wavelet theory [61], and is similar 
to the one used in the proof of Theorem 2.8 in [79]. But since 0 is not always present in 
the branching at a vertex, the details are more complicated. 
Proof. With Theorem (2.1.7) we know that { ఒ݁ ∣ ߣ ∈ Λ(ℒ)} is an orthonormal family. We 
need to check (8). For a finite word ݀ … ݀ேିଵ with ݀, … ݀ேିଵ ∈ {0,1,2,3}, we write 
݀ … ݀ேିଵ ∈ Λ(ℒ), if ݀ … ݀ேିଵ is the label of a vertex in the binary tree ࣮(ℒ). 

For ݀ … ݀ேିଵ in Λ(ℒ), let 
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௫ܲ
ே(݀ … ݀ேିଵ): = ∏ୀଵ

ே   cosଶ ቆ
ݔ)ߨ2 + ݀ + ⋯ + 4ேିଵ݀ேିଵ)

4 ቇ , ݔ)  ∈ ℝ).      (9) 

We claim that for any ܰ ≥ 1, 
  

ௗబ…ௗಿషభ∈ஃ(ℒ)
௫ܲ
ே(݀ … ݀ேିଵ) = 1.                                          (10) 

For this, note that if {݁, ݁ᇱ} is any one of the following sets {0,1}, {0,3}, {1,2}, {2,3}, we 
have 

cosଶ ቆ
ݔ)ߨ2 + ݁)

4
ቇ + cosଶ ቆ

ݔ)ߨ2 + ݁ᇱ)
4

ቇ = 1, ݔ)  ∈ ℝ).                      (11) 

Then (10) follows from (11) by induction. 
Next, fix ݔ ∈ ℝ. Pick ܳ ଵ such that for ܰ ≥ ܳଵ, |௫|

ସಿ ≤ ߳. Then for any ݀  … ݀ேିଵ ∈

Λ(ℒ), the point ݕ: = ௫ାௗబା⋯ାସಿషభௗಿషభ

ସಿ ∈ [−߳, 1 + ߳]. Therefore there exists a path 
݀)ߣ … ݀ேିଵ) starting from the vertex ݀ … ݀ேିଵ, ending in 0 or 3 with ห̂ߤସ൫ݕ +
݀)ߣ … ݀ேିଵ)൯หଶ ≥  . We haveߜ

௫ܲ
ே(݀ … ݀ேିଵ) 

   ≤
1
ߜ

௫ܲ
ே(݀ … ݀ேିଵ) อ̂ߤସ ൭

ݔ + ݀ + ⋯ + 4ேିଵ݀ேିଵ

4ே + ݀)ߣ … ݀ேିଵ)൱อ
ଶ

 

=
1
ߜ

ෑ  
ே

ୀଵ

 cosଶ ቆ
ݔ൫ߨ2 + ݀ + ⋯ + 4ேିଵ݀ேିଵ + 4ேߣ(݀ … ݀ேିଵ)൯

4 ቇ ×                                     

ෑ  
ஶ

ୀଵ

  ቤcosଶ ቆ
ݔ + ݀ + ⋯ + 4ேିଵ݀ேିଵ + 4ேߣ(݀ … ݀ேିଵ)

4ேା ቇቤ
ଶ

=
1
ߜ

ห̂ߤସ൫ݔ + ݀ + ⋯ + 4ேିଵ݀ேିଵ + 4ேߣ(݀ … ݀ேିଵ)൯หଶ =
1
ߜ

ห̂ߤସ൫ݔ + ௫(݀ߟ … ݀ேିଵ)൯หଶ,

 

where for all ݀ … ݀ேିଵ ∈ Λ(ℒ), we denote 
௫(݀ߟ … ݀ேିଵ): = ݀ + ⋯ + 4ேିଵ݀ேିଵ + 4ேߣ(݀ … ݀ேିଵ) ∈ Λ(ℒ). 

Note that the base 4 expansion of ߟ௫(݀ … ݀ேିଵ) starts with ݀ … ݀ேିଵ. 
We claim that for any ߳ > 0 there exists ఢܲ and ܳఢ  such that 

  
ௗబ…ௗಿషభ∈ஃ(ℒ)

୪୬ ൫ఎೣ(ௗబ…ௗಿషభ)൯ஹച

௫ܲ
ே(݀ … ݀ேିଵ) < ߳,  (ܰ ≥ ܳఢ).                       (12) 

Fix ߳ > 0. Using (7), there exists ఢܲ ≥ ܳଵ =: ܳఢ such that 
  

ఒ∈ஃ(ℒ),୪୬ (ఒ)ஹച

ݔ)ସߤ̂| + ଶ|(ߣ <  .ߜ߳

Then, using the previous calculation, for ܰ ≥ ܳఢ, 

  
బ…ಿషభ∈౻(ℒ)

ౢౝ ቀആೣ൫బ…ಿషభ൯ቁಱುച

௫ܲ
ே(݀ … ݀ேିଵ) ≤

1
ߜ

  
୪୬ ൫ఎೣ(ௗబ…ௗಿషభ)൯ஹച

ห̂ߤସ൫ݔ + ௫(݀ߟ … ݀ேିଵ)൯ห
ଶ
 

                                      ≤
1
ߜ

  
ఒ∈ஃ(ℒ),୪୬(ఒ)ஹച

ݔ)ସߤ̂| + ଶ|(ߣ < ߳. 
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This proves (12). 
From (12) we get that for all ܰ ≥ ܳఢ , 
  

బ…ಿషభ∈౻(ℒ)

ౢౝ ቀആೣ൫బ…ಿషభ൯ቁಱುച

௫ܲ
ே(݀ … ݀ேିଵ) 

=   
ௗబ…ௗಿషభ∈ஃ(ℒ)

௫ܲ
ே(݀ … ݀ேିଵ) −   

బ…ಿషభ∈౻(ℒ)

ౢౝቀആೣ൫బ…ಿషభ൯ቁಱುച

௫ܲ
ே(݀ … ݀ேିଵ)     (13) 

=
ୠ୷  (ଵ)

1 −   
బ…ಿషభ∈౻(ℒ)

ౢౝቀആೣ൫బ…ಿషభ൯ቁಱುച

  ௫ܲ
ே(݀ … ݀ேିଵ) > 1 − ߳.                                   (14) 

We also have for all ߣ = ݀݀ଵ ⋯ ∈ Λ(ℒ), 
ݔ)ସߤ̂| + ଶ|(ߣ = lim

ே→ஶ
  ௫ܲ

ே(݀ … ݀ேିଵ).                                       (15) 
To prove (15), we consider two cases: if ߣ ends in 0, then ߣ = ݀ + ⋯ + 4ିଵ݀ିଵ for 
some  ≥ 0, ݀ = 0 for ݇ ≥ ܰ and for , ≥  ,

௫ܲ
ே(݀ … ݀ேିଵ) = ෑ  

ே

ୀଵ

cosଶ ቆ
ݔ)ߨ2 + (ߣ

4 ቇ → ݔ)ସߤ̂| +  .ଶ|(ߣ

If ߣ ends in 3, then ߣ = ݀ + ⋯ 4ିଵ݀ିଵ − 4, for some , ݀ = 3 for ݇ ≥  and for ,
 ≥ ܰ, 

௫ܲ
ே(݀ … ݀ேିଵ) = ෑ  

ே

ୀଵ

 cosଶ ቌ
ߨ2 ቀݔ + ݀ + ⋯ + 4ିଵ݀ିଵ + 4(3 + ⋯ + 3 ⋅ 4ேିଵି)ቁ

4 ቍ =

ෑ  
ே

ୀଵ

  cosଶ ቆ
ݔ൫ߨ2 + ݀ + ⋯ + 4ିଵ݀ିଵ − 4 + 4ே൯

4 ቇ = ෑ  
ே

ୀଵ

  cosଶ ൬
ݔ)ߨ2 + (ߣ

4 ൰ → ݔ)ସߤ̂| + .ଶ|(ߣ

 

This proves (15). 
Now, any ߣ ∈ Λ(ℒ) with lng (ߣ) < ఢܲ has base 4 expansion of the form ߣ =

݀ … ݀ചିଵ0 or = ݀ … ݀ചିଵ3, with ݀ … ݀ച ∈ Λ(ℒ). Therefore there are at most 2ച ⋅
2 = 2ചାଵ such ߣ. With (15), for each such ߣ we can approximate |̂ߤସ(ݔ +  ଶ by|(ߣ

௫ܲ
ே(݀(ߣ) … ݀ேିଵ(ߣ)), where ݀(ߣ)݀ଵ(ߣ) … is the base 4 expansion of ߣ. 

Therefore, using (15), there exists ܰ as large as we want, ܰ ≥ ܳఢ, such that 
  

ఒ∈ஃ(ℒ),୪୬ (ఒ)ழച

  ݔ)ସߤ̂| + ଶ|(ߣ >   
ఒ∈ஃ(ℒ),୪୬ (ఒ)ழച

  ௫ܲ
ே(݀(ߣ) … ݀ேିଵ(ߣ)) − ߳.  (16) 

But if ݀ … ݀ேିଵ ∈ Λ(ℒ) and ߟ: = ௫(݀ߟ … ݀ேିଵ) has length lng (ߟ) < ఢܲ then, the first 
ܰ digits of ߟ௫(݀ … ݀ேିଵ) are ݀(ߟ) = ݀, … , ݀ேିଵ(ߟ) = ݀ேିଵ and ߟ௫(݀ … ݀ேିଵ) is 
an element of Λ(ℒ) such that lng (ߟ) < ఢܲ. Therefore 

  
ௗబ…ௗಿషభ∈ஃ()

୪୬൫ఎೣ(ௗబ…ௗಿషభ)൯ழച

௫ܲ
ே(݀ … ݀ேିଵ) ≤   

ఒ∈ஃ(ℒ),୪୬(ఒ)ழച

௫ܲ
ே൫݀ … ݀ேିଵ(ߣ)൯.      (17) 

From (17), and (13), (14) we get 
  

ఒ∈ஃ(ℒ),୪୬(ఒ)ழച

  ௫ܲ
ே(݀(ߣ) … ݀ேିଵ(ߣ)) > 1 − ߳.                            (18) 

Then using (16), we have 
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ఒ∈ஃ(ℒ)

ݔ)ସߤ̂| + ଶ|(ߣ ≥   
ఒ∈ஃ(ℒ),୪୬(ఒ)ழച

ݔ)ସߤ̂| + ଶ|(ߣ > 1 − 2߳. 

Since ߳ > 0 and ݔ ∈ ℝ are arbitrary, Lemma (2.1.15) follows from Lemma (2.1.14). 
Lemma (2.1.16)[60]: For each ܲ , ܳ ≥ 0, there exists ߜ > 0 depending only on ܲ , ܳ, such 
that for all ݔ ∈ ቂ− ଵ

ସ
, ଷ

ସ
ቃ and all (ܲ, ܳ)-good paths ߱ of one of the forms ߱ = 0 or ߱ =

0 … 02݀݀ଵ …, the following inequality holds 
ݔ)ସߤ̂| + ߱)|ଶ ≥   .ߜ

(Note that, unless it is 0, the path ߱ contains at least one 2 after some zeros. The 2 can 
be on the first position 2 …. Note also that the path does not have to be in the binary tree.) 
Proof. First we prove that for any ݊, ݇ ∈ ℤ, ݊ ≥ 0, 

ݔ)ସߤ̂| + 4݇)|ଶ ≥ ଶ|(ݔ)ସߤ̂| ቚ̂ߤସ ቀ
ݔ

4 + ݇ቁቚ
ଶ

, ݔ)  ∈ ℝ).                  (19) 
If ݊ ≥ 1, we have 
ݔ)ସߤ̂| + 4݇)|ଶ

 

= cosଶ ቆ
ݔ)ߨ2 + 4݇)

4 ቇ … cosଶ ቆ
ݔ)ߨ2 + 4݇)

4 ቇ ෑ  
ஶ

ୀାଵ

 cosଶ ቆ
ݔ)ߨ2 + 4݇)

4 ቇ 

         = ෑ  


ୀଵ

  cosଶ ൬
ݔߨ2
4 ൰ ෑ  

ஶ

ୀଵ

  cosଶ ቌ
ߨ2 ቀ ݔ

4 + ݇ቁ
4 ቍ ≥ ଶ|(ݔ)ସߤ̂| ቚ̂ߤସ ቀ

ݔ
4 + ݇ቁቚ

ଶ
. 

If ݊ = 0, then |̂ߤସ(ݔ + 4݇)|ଶ ≥ ଶ|(ݔ)ସߤ̂| ቚ̂ߤସ ቀ ௫
ସబ + ݇ቁቚ

ଶ
 simply because |̂ߤସ(ݔ)| ≤ 1. 

This proves (19). 
The function |̂ߤସ|ଶ is continuous and its zeros are ࣴ = ൛4 (2݇ + 1) ∣ ݆ ≥ 0, ݆, ݇ ∈

ℤൟ (see Lemma (2.1.9)). This implies in particular that |̂ߤସ(4݇ + 2)|ଶ ≠ 0 for all ݇ ∈ ℤ. 
If an integer ܽ has base 4 expansion ܽ = ܽܽଵ … of length lng (ܽ) ≤ ܳ then |ܽ| ≤ 4ொ. 
Indeed, if ܽ = ܽ … ܽொିଵ0, then 0 ≤ ܽ = ܽ + ⋯ + 4ொିଵܽொିଵ ≤ 3 + ⋯ + 4ொିଵ3 =
4ொ − 1. If ܽ = ܽ … ܽொିଵ3, then 0 ≥ ܽ = ܽ + ⋯ + 4ொିଵܽொିଵ − 4ொ ≥ −4ொ . 

Pick ߳ଵ > 0 small (we will need ߳ଵ < 
ସ଼

 ). The function |̂ߤସ|ଶ is continuous and 
non-zero on the compact set 

:ܣ = [−1 + ߳ଵ, 1 − ߳ଵ] + {2 + 4݇||݇ ∣≤ 4ொ}. 
Therefore, there exists a ߜଵ > 0 such that 

ଶ|(ݕ)ସߤ̂| ≥ ,ଵߜ ݕ)  ∈  (20)                                              .(ܣ
Take now ݔ ∈ ቂ− ଵ

ସ
, ଷ

ସ
ቃ and let ߱ be a (ܲ, ܳ)-good path of the forms mentioned in the 

hypothesis. If ߱ = 0 then ݔ + ߱ = ݔ ∈ ݔ)ସߤ̂| and ܣ + ߱)|ଶ ≥  ߱ ଵ. In the other caseߜ
has the form: 

߱ = 4భ 2 + ⋯ 4మ2 + ⋯ + 4 2 + 4ାଵ݇, 
where 0 ≤ ݊ଵ < ⋯ < ݊, 1 ≤  ≤ ܲ and ݇ is an integer with base 4 expansion of length 
≤ ܳ, so |݇| ≤ 4ொ . Using (19) we have, by induction: 
ݔ)ସߤ̂| + ߱)|ଶ ≥ ଶ|(ݔ)ସߤ̂| ቚ̂ߤସ ቀ

ݔ
4భ

+ 2 + 4మିభ 2 + ⋯ + 4 ିభ2 + 4 ାଵିభ݇ቁቚ
ଶ
 

≥ ଶ|(ݔ)ସߤ̂| ቚ̂ߤସ ቀ
ݔ

4భ
+ 2ቁቚ

ଶ
ฬ̂ߤସ ൬

ݔ
4మ

+
2

4మିభ
+ 2 + 4యିమ 2 + ⋯ + 4ିమ 2 + 4ାଵିమ ݇൰ฬ

ଶ
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ଶ|(ݔ)ସߤ̂| ቚ̂ߤସ ቀ
ݔ

4భ
+ 2ቁቚ

ଶ
ฬ̂ߤସ ൬

ݔ
4మ

+
2

4మିభ
+ 2൰ฬ

ଶ

⋯ ฬ̂ߤସ ൬
ݔ

4షభ
+

2
4షభିభ

+ ⋯ +
2

4షభିషమ
+ 2൰ฬ

ଶ

×

ฬ̂ߤସ ൬
ݔ

4
+

2
4 ିభ

+ ⋯ +
2

4ି ିଵ + 2 + 4݇൰ฬ
ଶ

.
 

We have, when ݊ ≥ 1 

−1 + ߳ଵ < −
1
4

≤
ݔ

4
+

2
4ିభ

+ ⋯ +
2

4ିିଵ ≤
3

16
+

2
4

1

1 − 1
4

=
41
48

< 1 − ߳ଵ. 

If ݊ = 0 then ݈ = 1 and −1 + ߳ଵ < ௫
ସబ ≤ ଷ

ସ
< 1 − ߳ଵ. Thus we can use (20) on each term 

in the product above, and we obtain that 
ݔ)ସߤ̂| + ߱)|ଶ ≥ ଵߜ

 ≥ ଵߜ
 . 

This proves Lemma (2.1.16). 
Theorem (2.1.17)[60]: Let ℒ be a spectral labeling of the binary tree. Suppose there exist 
integers ܲ, ܳ ≥ 0 such that for any vertex ݒ in the tree, there exists a (ܲ, ܳ)-good path 
starting from the vertex ݒ. Then the set Λ(ℒ) is a spectrum for ߤସ. 
Proof. We will show that the conditions of Lemma (2.1.15) are satisfied. Take ݕ ∈
ቂ− ଵ

ସ
, ହ

ସ
ቃ and, take ݀ … ݀ேିଵ to be a vertex in the binary tree ࣮(ℒ). 

We distinguish two cases: 
Case I: ݕ ∈ ቂ− ଵ

ସ
, ଷ

ସ
ቃ. We will construct a path ߣ in the tree starting from the vertex 

݀ … ݀ேିଵ. For this we follow the even-labeled branches until we reach the first 2 (recall 
that exactly one of the branches from every vertex is labeled by 0 or 2). If we cannot find 
a 2, then this means that ߣ = 0 is a path in the tree from the vertex ݀ … ݀ேିଵ, and with 
Lemma (2.1.16), we obtain |̂ߤସ(ݕ + ଶ|(ߣ = ଶ|(ݕ)ସߤ̂| ≥  .ߜ

Suppose we can find a 2 after finitely many steps from ݀ … ݀ேିଵ. Then from the 
vertex ݀ … ݀ேିଵ0 … 02, by hypothesis, we can find a (ܲ, ܳ)-good path ߛ in the tree. 
Then ߣ: = 0 … ܲ) is a ߛ02 + 1, ܳ)-good path in the tree from the vertex ݀  … ݀ேିଵ. Then 
with Lemma (2.1.16), ݕ)ସߤ̂| + ଶ|(ߣ ≥  .ߜ
Case II: ݕ ∈ ቂଷ

ସ
, ହ

ସ
ቃ. We will construct a path ߣ from the vertex ݀ … ݀ேିଵ. For this we 

follow the oddlabeled branches until we reach the first 1. If we cannot find a 1 , then this 
means that ߣ = 3 is a path in the tree from the vertex ݀ … ݀ேିଵ; so ߣ = −1, and ݕ +
ߣ = ݕ − 1 ∈ ቂ− ଵ

ସ
, ଵ

ସ
ቃ so we get |̂ߤସ(ݕ + ଶ|(ߣ ≥  .ߜ

If we can find a 1 after finitely may steps from ݀ … ݀ேିଵ, then from the vertex 
݀ … ݀ேିଵ3 … 31 there exists a (ܲ, ܳ)-good path ߛ in the tree. Then take ߣ: = 3 …  ,ߛ31
with 3 s in the beginning. Then 

ݕ + ߣ = ݕ + 3 + 4 ⋅ 3 + ⋯ + 4ିଵ3 + 41 + 4ାଵߛ = ݕ + 4 − 1 + 4 + 4ାଵߛ 
                = ݕ − 1 + 4(2 +  .(ߛ4
But then ݕ − 1 ∈ ቂ− ଵ

ସ
, ଵ

ସ
ቃ and 4(2 + ܲ) is a (ߛ4 + 1, ܳ)-good path (it is not a path in 

the tree but that does not matter), that contains at least a 2 (on position ). Therefore, with 
Lemma (2.1.16), we get |̂ߤସ(ݕ + ଶ|(ߣ ≥  Thus the hypotheses of Lemma (2.1.15) are .ߜ
satisfied and this implies that Λ(ℒ) is a spectrum for ߤସ. 

As a special consequence of Theorem (2.1.17) we obtain the following corollary, 
which generalizes the results from [68], where the labels allowed were only {0,1}. 
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Corollary (2.1.18)[60]: Suppose ℒ is a labeling of the binary tree such that for each 
vertex ݒ in the tree, the two edges that start from ݒ are labeled by either {0,1} or {0,3}. 
Then Λ(ℒ) is a spectrum for ߤସ . 
Proof. Clearly this is a spectral labeling because for each vertex the path 0 starting at ݒ 
is in the tree. This is also a (0,0)-good path, so the conditions of Theorem (2.1.17) are 
satisfied. 

We consider the spectral labeling of the binary tree with other digits, not 
necessarily {0,1,2,3}. We show that a spectral labeling is a spectrum if the set of digits is 
uniformly bounded and the zero label is included at each vertex (partially improving a 
result in [79]). Moreover, we provide the first counterexample for the fractal measure ߤସ 
of a maximal set of orthogonal exponentials which is not a spectrum for ߤସ . 
Definition (2.1.19)[60]: Suppose now we want to label the edges in the binary tree with 
other digits, not necessarily {0,1,2,3}. At each branching we use different digits, but we 
obey the rule that at each branching we can use only labels of the type {0, ܽ} where ܽ ∈
ℤ is some odd number which varies from one branching to another. Thus, at the root we 
have a set ܣ∅ of the form {0, ܽ} with ܽ ∈ ℤ odd, and inductively, at each vertex ܽ  … ܽିଵ 
with ܽ ∈ ,∅ܣ … , ܽିଵ ∈ బ…ೖషమܣ , we have a set ܣబ…ೖషభ  of the form 
{0, ܽ(ܽ, … , ܽିଵ)} with ܽ(ܽ … , ܽିଵ) ∈ ℤ odd. We define the set 

Λ: = ൝  


ୀ

 4ܽ ∣ ܽ ∈ ,∅ܣ … , ܽ ∈ బ…ೖషభܣ , ݊ ≥ 0ൡ .                  (21) 

Definition (2.1.20)[60]: Suppose the sets ܣ∅, … ,  బ…ೖషభ are given as in Definitionܣ
(2.1.19). We say that an integer ߣ has a modified base 4 expansion with digits in ܣ if 
there exists an infinite sequence ܽܽଵ … with the following properties 

(i) ܽ ∈ ,∅ܣ ܽ ∈ ݇ బ…ೖషభ, for allܣ ≥ 1; 
(ii) ∑ୀ

ିଵ  ܽ4 ≡ ݊ mod4, for allߣ ≥ 0. 
We call ܽܽଵ … the ܣ-base 4 expansion of ߣ. We denote by Λ(ܣ) the set of all integers 
that have a modified base 4 expansion with digits in ܣ. 

Note that if ℒ is a spectral labeling and ߣ ∈ ℒ, then its base 4 expansion coincides 
with the ℒ-base 4 expansion. 
Theorem (2.1.21)[60]: Consider the sets of digits ܣ as in Definition (2.1.19). 

(i) For the set Λ in (21), the exponentials { ఒ݁ ∣ ߣ ∈ Λ} form an orthogonal family. 
There exists a unique spectral labeling ℒ such that Λ ⊂ Λ(ℒ). Moreover Λ(ℒ) =
Λ(ܣ). 

(ii) If the sets ܣబ…ೖ are uniformly bounded, then Λ(ℒ) is a spectrum for ߤସ . 
Proof. To see that the exponential in { ఒ݁}ఒ∈ஃ are orthogonal, take ߣ = ∑ୀ

ஶ  4ܽ, ᇱߣ =
∑ୀ

ஶ  4ܽ
ᇱ  in Λ, ߣ ≠ ,ᇱߣ ܽ, ܽ

ᇱ = 0 for ݇ large. Let ݊ be the first index such that ܽ ≠
ܽ

ᇱ . Then ߣ − ᇱߣ = 4൫(ܽ − ܽ
ᇱ ) + 4݈൯ for some integer ݈. Since ܽ − ܽ

ᇱ  is odd, we 
have ̂ߤସ(ߣ − (ᇱߣ = 0 (with Lemma (2.1.9)). Therefore ఒ݁ ⊥ ݁ఒᇲ. 

Using Zorn's lemma, there is a maximal set Λᇱ of orthogonal exponentials such that 
Λ ⊂ Λᇱ. With Theorem (2.1.7), there exists a spectral labeling ℒ such that Λ(ℒ) = Λᇱ. The 
key fact here is the uniqueness. We can construct the spectral labeling ℒ as in the proof 
of Theorem (2.1.7) and Lemma (2.1.11). We consider base 4 expansions of elements in 
Λ. We want to prove that, if we fix ݀ … ݀ିଵ ∈ {0,1,2,3} then the set 

݀)ܦ … ݀ିଵ): = {݀(ߣ) ∣ ߣ ∈ Λ, ݀(ߣ) = ݀, … , ݀ିଵ(ߣ) = ݀} 
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will have 0 or 2 elements, and if it has 2 , then they have different parity. Since Λ ⊂ Λᇱ it 
is clear that this set can have at most 2 elements, and if there are two then they have 
different parity. So it remains to prove only that it cannot have exactly one. 

Suppose the set contains at least one element. Then there exists ߣ = ∑ୀ
ஶ  4ܽ , 

with the digits ܽ in the sets ܣ, such that the base 4 expansion of ߣ starts with ݀ … ݀ିଵ. 
Take now ߣᇱ: = ∑ୀ

ିଵ  4ܽ + 4ܽ and ߣᇱᇱ = ∑ୀ
ିଵ  4ܽ + 4ܽ

ᇱ  where ܽ
ᇱ  is the other 

digit beside ܽ  in ܣబ…షభ = {ܽ , ܽ
ᇱ }. Since ߣ − ߣ ᇱ andߣ −  ᇱᇱ are multiples of 4 theߣ

base 4 expansions of ߣ, ,ᇱߣ ᇱᇱ will have the same first ݊ digits ݀ߣ … ݀ିଵ. The ݊ + 1-st 
digits in the base 4 expansion of ߣ and ߣᇱ will be of different parity because ܽ − ܽ

ᇱ  is 
odd. Thus ܦ(݀ … ݀ିଵ) has 0 or 2 elements of different parity and these are completely 
determined from the set Λ (not just from the maximal one Λᇱ). 

Then the construction of the spectral labeling ℒ proceeds just as in the proof of 
Theorem (2.1.7). 

Next, we prove that an integer ߣ is in Λ(ℒ) iff it has a modified base 4 expansion 
with digits in ܣ. First, we have that an integer ߣ with base 4 expansion ݀݀ଵ … is in the 
tree iff for all ݊, there exists ܽ, … , ܽே, ܽ ∈ ,∅ܣ ܽ ∈  బ…ೖషభ, such that the base 4ܣ
expansion of ∑ୀ

ே  ܽ4 begins with ݀ … ݀ିଵ. But this implies that ∑ୀ
  4݀ ≡

∑ୀ
  4ܽmod4ାଵ for all ݈ ≤ ݊ − 1. In particular the digits ܽ … ܽିଵ are completely 

determined by the digits ݀ … ݀ିଵ, so they do not change if we increase ݊. 
Thus, if ߣ = ݀݀ଵ … is in Λ(ℒ), there exist ܽ, ܽଵ, … from ܣ, such that for all ݊ ≥

0, 

ߣ ≡   


ୀ

4݀ ≡   


ୀ

4ܽmod4ାଵ. 

Therefore ߣ is in Λ(ܣ). 
Conversely, let ߣ be in Λ(ܣ), and let ݀݀ଵ … be its base 4 expansion. Then there 

exist ܽ, ܽଵ, … from ܣ such that for all ݊. 

  


ୀ

4݀ ≡ ߣ ≡   


ୀ

4ܽmod4ାଵ. 

This implies that the base 4 expansion of ∑ୀ
  4ܽ begins with ݀ … ݀ so ݀ … ݀  is a 

label in the tree ࣮(ℒ), and letting ݊ → ∞, we get that ߣ is in Λ(ℒ). This completes the 
proof of (i). 

Next we prove (ii), i.e., if the sets ܣబ…ೖ are uniformly bounded then Λ(ℒ) is a 
spectrum. We will check the conditions of Theorem (2.1.17). Let ܳ ≥ 0 such that all the 
digits ܽ used in Λ satisfy |ܽ| ≤ 4ொ. 

Take a vertex ݀ … ݀ିଵ in the tree ݀ ∈ {0,1,2,3}. This implies that there exists a 
ߣ = ∑ୀ

ஶ  4ܽ  in Λ, ܽ = 0 for ݇ large, such that the base 4 expansion of ߣ starts with 
݀ … ݀ିଵ. Take ߣᇱ: = ∑ୀ

ିଵ  4ܽ ∈ Λ. Since ߣ − ᇱߣ = 4݈ for some integer ݈, the base 4 
expansion of ߣᇱ starts also with ݀ … ݀ିଵ. But |ߣᇱ| ≤ ∑ୀ

  |ܽ|4 ≤ 4ொ ସିଵ
ସିଵ

≤ 4ொା. 
Therefore the base 4 expansion of ߣᇱ will have 0 or 3 from position ܳ + ݊ on. Thus, since 
ᇱߣ ∈ Λ, there exists a (0, ܳ)-good path in the tree that starts at the vertex ݀  … ݀ିଵ. With 
Theorem (2.1.17), Λ(ℒ) is a spectrum for ߤସ. 
Remark (2.1.22)[60]: In [79], Strichartz analyzed the spectra of a more general class of 
measures. When restricted to our example, his results (Theorem 2.7 and 2.8 in [79]) cover 
the case when all vertices at some level ݊  use the same digits {0, ܽ}. In our notation, this 
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means that ܣబ,…,షభ =:   depends only on the length ݊, and not on the digitsܣ
ܽ … ܽିଵ. In [79, Theorem 2.8], an extra condition is needed to guarantee that the set 

Λ = ൝  


ୀ

 ܾ4 ∣ ܾ ∈ {0, ܽ}݊ ≥ 0ൡ 

is a spectrum ߤସ . The condition requires the set ଵ
ସ ܣ + ଵ

ସషభ ଵܣ + ⋯ + ଵ
ସ

 ିଵ beܣ
separated from the zeroes of the function 

ෑ  


ୀଵ

cosଶ ቀ2ߨ
ݔ

4ቁ 

uniformly in ݇. 
Theorem (2.1.21) improves this result by removing this extra condition. Even when 

the condition is not satisfied we still get a spectrum for ߤସ , namely Λ(ܣ), but this might 
be bigger than Λ. 
Example (2.1.23)[60]: Let all the sets ܣబ…ೖషభ in Definition (2.1.19) be equal to {0,3}. 
The results in [79] do not apply (since ∑ୀ

   ଷ
ସೖ approaches 1 ). Then the set 

Λ = ൝  


ୀ

 ܽ4 ∣ ܽ ∈ {0,3}, ݊ ≥ 0ൡ, 

will give an incomplete set of exponentials. To complete it one has to consider the set 
Λ(ܣ) which in this case 

Λ(ܣ) = Λ ራ  ൝  


ୀ

 ܽ4 − 4ାଵ ∣ ܽ ∈ {0,3}, ݊ ≥ 0ൡ. 

The second part comes from the integers with base 4 expansion ending in 3. The set Λ 
contains only those integers that have a base 4 expansion ending in 0. Λ(ܣ) is a spectrum, 
by Theorem (2.1.21) (ii). The reason for the incompleteness of Λ is that the integers are 
not read correctly (perhaps thoroughly is the better word) from the labels ܣ. 
Example (2.1.24)[60]: Suppose ܣ∅ = {0,15} and ܣబ…ೖషభ = {0,9} for all ݇ ≥ 1. Then 
the set 

Λ: = ൝  


ୀ

 ܽ4 ∣ ܽ ∈ {0,15}, ܽ ∈ {0,9} for ݇ ≥ 1, ݊ ≥ 0ൡ, 

does not give a maximal set of orthogonal exponentials. ݁ଷ is perpendicular to all ఒ݁, ߣ ∈
Λ. Indeed 3 has ܣ-base 4 expansion 15999 …, so 3 ∈ Λ(ܣ), and Λ(ܣ) is a spectrum by 
Theorem (2.1.21). 
Example (2.1.25)[60]: In this example we construct a set of digits ܣ which will give a 
spectral labeling, which is not a spectrum. Thus we will have Λ = Λ(ܣ) = Λ(ℒ) but Λ is 
not a spectrum. The reason for the incompleteness of { ఒ݁ ∣ ߣ ∈ Λ} is thus more subtle, the 
set is a maximal set of orthogonal exponentials, but it does not span the entire ܮଶ(ߤସ). 
Consider the following set 

Λ: = ൝  
ே

ୀ

 4 ቀ4ଵೖశమି + 1ቁ ߜ ∣ ߜ ∈ {0,1}, ܰ ≥ 0ൡ.                   (22) 

We will prove the following 
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Proposition (2.1.26)[60]: There exists a spectral labeling ℒ such that Λ(ℒ) = Λ, so, by 
Theorem (2.1.7) the set { ఒ݁ ∣ ߣ ∈ Λ} forms a maximal family of orthogonal exponentials. 
Λ is not a spectrum for ߤସ. 
Proof. The elements in Λ have the form 

ߣ =   
ஶ

ୀ

ቀ4ଵೖశమ + 4ቁ  ,                                            (23)ߜ

where ߜ ∈ {0,1} and ߜ = 0 for ݇ larger than some ܰ ≥ 0. 
Let ߣ = ݀݀ଵ … be the base 4 expansion of this element. Since ߣ ≥ 0 the expansion 

ends in 0. Then, note that 
(i) ݀ = 1 iff one of the following two conditions is satisfied: 

(i) ݇ is not of the form 10ାଶ and ߜ = 1; 
(ii) ݇ = 10ାଶ for some ݊ ≥ 0, and ߜ = 1 and ߜ = 0. 

(ii) ݀ = 2 iff ݇ = 10ାଶ for some ݊ ≥ 0, and ߜ = 1 and ߜ = 1. 
(iii) ݀ = 0 in all other cases. 

We construct the spectral labeling ℒ as follows: First, we consider the spectral 
labeling ℒ where only the labels {0,1} are used at each vertex. We build a new binary 
tree ࣮(ℒ, ℒ) with a different kind of labeling. For the vertices we keep the labels from 
࣮(ℒ), but we label the edges differently. We will change the labeling {0,1} to {1,2} at 
certain vertices. This will be done in the following way: for all ܰ ≥ 0 and for all vertices 
ߜ … ேߜ  with ߜே = 1, in the subtree with root ߜ … ேߜ  we will change the labeling at all 
vertices at level 10ேାଶ from {0,1} to {1,2}. So, at a vertex ߜ … ேାଵߜேߜ …  ଵಿశమିଵ, theߜ
edges are labeled {1,2} instead of {0,1}. 

The spectral labeling ℒ is obtained by relabeling the vertices consistently with the 
labels of the edges. 

We have to check that Λ(ℒ) = Λ. If ߣ = ݀݀ଵ ⋯ ∈ Λ(ℒ), ending in 0, then we 
construct a sequence ߜߜଵ … by reading the labels of the vertices in ࣮(ℒ, ℒ) along ߣ. 
Then by construction 

ߣ =   
ஶ

ୀ

4݀ =   
ஶ

ୀ

ቀ4ଵೖశమ + 4ቁ  ߜ

so ߣ ∈ Λ. Conversely, if ߜ, … , ேߜ  are in {0,1} it is clear that the base 4 expansion of 
∑ୀ

ே   ቀ4ଵೖశమ + 4ቁ  . is in Λ(ℒ)ߜ
The labeling ℒ is a spectral labeling because one can end a path in 0 : just follow 

the zeros in the labeling of the vertices in ࣮(ℒ, ℒ). 
Next we prove that Λ is not a spectrum for ߤସ. We will show that 

  
ఒ∈ஃ

ସ(1ߤ̂| + ଶ|(ߣ < 1.                                           (24) 

First, let ߣ = ߜ)ߣ … :(ேߜ = ∑ୀ
ே   ቀ4ଵೖశమ + 4ቁ ߜ , with ߜே = 1, and let ߣ = ݀݀ଵ … be 

the base 4 expansion. Then ݀ଵಿశమ = 1 and ݀ = 0 for ݇ > 10ேାଶ. Since for ݇ < ܰ, we 
have 10ାଶ ≤ 10ேାଵ, and ݇ < 10ேାଵ, we see that ݀ = 0 for 10ேାଵ < ݇ < 10ேାଶ. 
Thus the base 4 expansion of ߣ ends with a 1 on position 10ேାଶ and 9 ⋅ 10ேାଵ zeros 
before that. 

We use the following notation: for ݁ ଵ݁ … ݁ , . ݁ ଵ݁ … ݁: = బ

ସ
+ ⋯ + 

ସ. Let 
:(ݔ)݉ = cosଶ (2ݔߨ). Let the base 4 expansion of 1 + ܾ be ߣ ܾଵ … Then ܾ = ݀ + 1 and 
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ܾ = ݀ for all ݊ ≥ 1. Then ଵାఒ
ସ

≡. ܾmodℤ, ଵାఒ
ସమ ≡. ܾଵܾmodℤ … ଵାఒ

ସ
≡. ܾିଵ … ܾ. 

Since ݉ ≤ 1 we have 

ସ(1ߤ̂| + ଶ|(ߣ = ෑ  
ஶ

ୀଵ

݉ ൬
1 + ߣ

4 ൰ ≤ ݉ ൬
1 + ߣ

4ଵಿశమାଵ൰. 

But ଵାఒ
ସభబಿశమశభ ≡ :ݕ =. ܾଵಿశమ … ܾଵಿశభ … ܾmodℤ. But we saw above that ܾଵಿశమ =

ܽଵಿశమ = 1 and ܾ  = ܽ = 0 for 10ேାଵ < ݊ < 10ேାଶ. So ݕ − ଵ
ସ

= ݕ − .1 has at least 9 ⋅

10ேାଵ zeros after the decimal point. Therefore 0 ≤ ݕ − ଵ
ସ

= ݕ − .1 ≤ ଵ
ସవ⋅భబಿశభ. Then 

(ݕ)݉ = cosଶ ൭2ߨ ቆ
1
4

+ ൬ݕ −
1
4

൰ቇ൱ = sinଶ  ቆ2ߨ ൬ݕ −
1
4

൰ቇ 

≤ ଶߨ4 ൬ݕ −
1
4൰

ଶ

≤
ଶߨ4

4ଵ଼⋅ଵಿశభ .                                

Therefore 

ସ(1ߤ̂| + ଶ|(ߣ ≤ ݉ ൬
1 + ߣ
4ଵಿశభ൰ = (ݕ)݉ ≤

ଶߨ4

4ଵ଼⋅ଵಿశభ . 

Then 

  
ఒ∈ஃ

ସ(1ߤ̂| + ଶ|(ߣ =   
ஶ

ேୀ

  
ഃబ,…,ഃಿషభ∈{బ,భ}

ഃಿసభ

ห̂ߤସ൫1 + ߜ)ߣ … ே)൯หଶߜ ≤   
ஶ

ேୀ

2ே ଶߨ4

4ଵ଼⋅ଵಿశభ < 1. 

With Lemma (2.1.14), this shows that Λ is not a spectrum for ߤସ . 
We describe some basic properties of spectra for the measure ߤସ, and we give an 

example of a spectral labeling which generates a spectrum but does not satisfy the 
conditions of Theorem (2.1.17).  
Proposition (2.1.27)[60]: 

(i) If Λଵ, Λଶ are spectra for ߤସ, Λଵ, Λଶ ⊂ ℤ, and ଵ݁ , ݁ଶ are two integers of different 
parity, then the set Λ: = (4Λଵ + ݁ଵ) ∪ (4Λଶ + ݁ଶ) is a spectrum for ߤସ. 

(ii) If Λ is a spectrum for ߤସ, Λ ⊂ ℤ, then there exist Λଵ, Λଶ ⊂ ℤ and ݁ଵ, ݁ଶ  integers of 
different parity such that 

Λ = (4Λଵ + ଵ݁) ∪ (4Λଶ + ݁ଶ).                                    (25) 
Moreover, for any decomposition of Λ as in (25), the sets Λଵ, Λଶ are spectra for ߤସ . 
Proof. (i) We use Lemma (2.1.14). We have for ݔ ∈ ℝ, using Lemma (2.1.8): 

  
ୀଵ,ଶ

    
ఒ∈ஃ

  ݔ)ସߤ̂| + ߣ4 + ݁)|ଶ =   
ୀଵ,ଶ

    
ఒ∈ஃ

 cosଶ ൬2ߨ
ݔ + ݁

4
+ ൰ߣ ฬ̂ߤସ ൬

ݔ + ݁

4
+ ൰ฬߣ

ଶ
=

  
ୀଵ,ଶ

 cosଶ ൬2ߨ
ݔ + ݁

4 ൰   
ఒ∈ஃ

  ฬ̂ߤସ ൬
ݔ + ݁

4 + ൰ฬߣ
ଶ

=   
ୀଵ,ଶ

  cosଶ ൬2ߨ
ݔ + ݁

4 ൰ = 1.
 

For the next to last equality we used the fact that Λ are spectra and Lemma (2.1.14). For 
the last equality we used the fact that ଵ݁ − ݁ଶ is odd. 

(ii) We can assume that 0 ∈ Λ. Otherwise, we work with Λ − ߣ  for some ߣ ∈ Λ. 
Then, since Λ is a spectrum, by Theorem (2.1.7) there is a spectral labeling ℒ of the binary 
tree. Take ଵ݁, ݁ଶ to be the labels of the edges that start from the root ∅, and take Λ to be 
the set of integers that correspond to infinite paths in the subtree with root ݁ . Then it is 
clear that (25) is satisfied. 



59 

Assume now that Λ is decomposed as in (25). We want to prove that Λଵ, Λଶ are 
spectra. A simple check, that uses Lemma (2.1.9), shows that { ఒ݁ ∣ ߣ ∈ Λ} is an 
orthonormal family, for both ݅ = 1,2. With Lemma (2.1.14) and the computation above 
we have for all ݔ ∈ ℝ, 

1 =   
ୀଵ,ଶ

cosଶ ൬2ߨ
ݔ + ݁

4 ൰   
ఒ∈ஃ

ฬ̂ߤସ ൬
ݔ + ݁

4 + ൰ฬߣ
ଶ
 

=:   
ୀଵ,ଶ

cosଶ ൬2ߨ
ݔ + ݁

4
൰ ℎஃ ൬

ݔ + ݁

4
+            .൰ߣ

Take now ݔ ∉ ℤ. From Lemma (2.1.14), we have ℎஃ ቀ௫ା

ସ
+ ቁߣ ≤ 1. Also 

cosଶ ቀ2ߨ ௫ା

ସ
ቁ ≠ 0 for ݅ = 1,2. If ℎஃ ቀ௫ା

ସ
+ ቁߣ < 1 for one of the  's, then this would 

contradict the equality above. Thus ℎஃ ቀ௫ା

ସ
+ ቁߣ = 1 for all ݔ ∉ ℤ, ݅ = 1,2. But as in 

the proof of Lemma (2.1.14), this implies that ݁ି௫ is in the span of { ఒ݁ ∣ ߣ ∈ Λ} for all 
ݔ ∉ ℤ, and since ݁ can be approximated uniformly by ݁௫ with ݔ ∉ ℤ, it follows that ݁ 
is also spaned by exponentials in Λ. Then as in the proof of Lemma (2.1.14), it follows 
that Λ is a spectrum. 

Applying Proposition (2.1.27) several times, we see that the spectral property is a 
"tail" property: it does not depend on the labeling of the first few edges. In other words, 
if all the subtrees, from some level on, correspond to spectra, then the entire tree will 
correspond to a spectrum. 
Proposition (2.1.28)[60]: Let ℒ be a spectral labeling. For each vertex ݀ … ݀ିଵ, let 
ℒௗబ…ௗషభ  be the spectral labeling obtained by reading the labels in the subtree with root 
݀ … ݀ିଵ. Suppose there exists a finite set ࣭ of paths in the binary tree ࣮(ℒ), that start 
at the root ∅, and that satisfy the following conditions: 

(i) The paths do not end in 0 or 3; 
(ii) For any vertex ݀ … ݀ିଵ that does not lie on any of the paths in ࣭, the spectral 

labeling ℒௗబ…ௗషభ gives a spectrum, i.e. Λ൫ℒௗబ…ௗషభ൯ is a spectrum. 
Then Λ(ℒ) is a spectrum. 
Proof. Let ݉(ݔ): = cosଶ (2ݔߨ), ݔ ∈ ℝ. 
Fix ݔ ∈ ℝ and let ߱߱ଵ … be a path in ࣮(ℒ) that does not end in 0 or 3. We prove that 

lim
→ஶ

 ෑ  


ୀଵ

݉ ቆ
ݔ + ߱ + ⋯ + 4ିଵ߱ିଵ

4 ቇ = 0.                               (26) 

To prove (26), we will show first that there exists ߳  > 0 and a subsequence ൛݊ൟஹ such 
that 

dist ቆ
ݔ + ߱ + ⋯ + 4ିଵ߱ିଵ

4
, ൜0,

1
2

, 1ൠቇ ≥ ߳, )  ≥ 0).                (27) 

If not, then 

dist ቆ
ݔ + ߱ + ⋯ + 4ିଵ߱ିଵ

4 , ൜0,
1
2

, 1ൠቇ → 0, as ݊ → ∞. 

Take ߳ > 0 small ߳ < ଵ
ସభబ. For ݊ large, ݕ: = ௫ାఠబା⋯ାସషభఠషభ

ସ  is close to 0, ଵ
ଶ
 or 1. 
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If |ݕ − 0| < ߳ then ݕାଵ = ௬ାఠ

ସ
 is close to either 0 when ߱  = 0, or ଵ

ସ
, ଶ

ସ
, ଷ

ସ
 when 

߱ = 1,2 or 3. 
If ቚݕ − ଵ

ଶ
ቚ < ߳ then ݕାଵ is close to either ଵ

଼
, ଷ

଼
, ହ

଼
 or 

଼
, so it cannot be close to 

ቄ0, ଵ
ଶ

, 1ቅ. 

If |ݕ − 1| < ߳ then ݕାଵ is close to ቄ0, ଵ
ଶ

, 1ቅ only when ߱ = 3. 

Thus, the only paths that will make ݕ stay close to ቄ0, ଵ
ଶ

, 1ቅ, as ݊ → ∞, are the 
ones that end in 0 or 3. This proves (27). 

If (27) is satisfied then, since ݉(ݕ) = 1 only at 0, ଵ
ଶ
 and 1, for ݕ ∈ (−1/4,5/4), 

there exists some ߜ > 0, with ߜ < 1, such that for all  ≥ 0, 

݉ ቆ
ݔ + ߱ + ⋯ + 4ିଵ߱ିଵ

4
ቇ ≤  (28)                                     .ߜ

Then for ݊ ≥ ݊ we have, since 0 ≤ ݉ ≤ 1 and ݉ is ℤ-periodic, 

ෑ  


ୀଵ

݉ ቆ
ݔ + ߱ + ⋯ + 4ିଵ߱ିଵ

4 ቇ ≤ ෑ  


ୀଵ

݉ ቆ
ݔ + ߱ + ⋯ + 4ିଵ߱ିଵ

4
ቇ ≤ ߜ . 

This implies (26). 
Let ࣰ(࣭) be the set of labels of vertices on the paths in ࣭. 
To prove Proposition (2.1.28), we use Lemma (2.1.14). Using the computation in 

the proof of Proposition (2.1.27) we have for all ݊ ≥ 0 : 

   
ఒ∈ஃ(ℒ)

ݔ)ସߤ̂| + ଶ|(ߣ =   
ௗబ…ௗషభ∈ஃ(ℒ)

ෑ  


ୀଵ

݉ ቆ
ݔ + ݀ + ⋯ + 4ିଵ݀ିଵ

4 ቇ × 

                        
ఒ∈ஃ൫ℒబ…షభ൯

ቤ̂ߤସ ቆ
ݔ + ݀ + ⋯ + 4ିଵ݀ିଵ

4 + ቇቤߣ
ଶ

 

≥   
ௗబ…ௗషభ∈ஃ(ℒ)∖ࣰ(࣭)

ෑ  


ୀଵ

 ݉ ቆ
ݔ + ݀ + ⋯ + 4ିଵ݀ିଵ

4 ቇ   
ఒ∈ஃ൫ℒబ…షభ൯

 

 ቤ̂ߤସ ቆ
ݔ + ݀ + ⋯ + 4ିଵ݀ିଵ

4 + ቇቤߣ
ଶ

= (∗). 

Since Λ൫ℒௗబ…ௗషభ൯ is a spectrum for all ݀  … ݀ିଵ not in ࣰ(࣭), with Lemma (2.1.14) we 
obtain 

(∗) =   
ௗబ…ௗିଵ

∈ஃ(ℒ)∖ࣰ(࣭)

ෑ  


ୀଵ

݉ ቆ
ݔ + ݀ + ⋯ + 4ିଵ݀ିଵ

4 ቇ 

= 1 −   
ௗబ…ௗషభ
∈ஃ(ℒ)∩ࣰ(࣭)

ෑ  


ୀଵ

݉ ቆ
ݔ + ݀ + ⋯ + 4ିଵ݀ିଵ

4 ቇ = (∗∗).          

We used (10) for the previous equality. 
We use the notation ߱ = ݀(߱)݀ଵ(߱) … We have then with (26), 
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(∗∗) = 1 −   
ఠ∈࣭

ෑ  


ୀଵ

݉ ቆ
ݔ + ݀(߱) + ⋯ + 4ିଵ݀ିଵ(߱)

4 ቇ → 1 

Example (2.1.29)[60]: We construct an example of a spectral labeling ℒ such that Λ(ℒ) 
is a spectrum for ߤସ but ℒ does not satisfy the conditions of Theorem (2.1.17). 

 
Figure 2[60]: A spectral labeling which gives a spectrum but does not satisfy the 
conditions of Theorem (2.1.17). 
 

For this pick an infinite path in the binary tree and label it with 111 …. 
Let ℒ be the spectral labeling which uses {0,1} at each branch. We know Λ(ℒ) 

is a spectrum. Let ℒ be the spectral labeling which uses {1,2} for first ݊ levels in the 
tree and {0,1} for the rest. Using Proposition (2.1.27), we have that Λ(ℒ) is a spectrum. 
We label the edges in the binary tree as follows. At the root, we already have one label 
1. We use 0 for the other edge, and we label the subtree with root 0 using ℒ. At the 
vertex 1 … 1ᇣᇤᇥ

 times 

, we already have one label 1. We use 2 for the other edge, and we label the 

subtree with root 1 … 1ᇣᇤᇥ
 times 

 using ℒ. 

Doing this for all ݊, we get a spectral labeling ℒ. Proposition (2.1.28) shows that 
Λ(ℒ) is a spectrum for ߤସ. Clearly ℒ does not satisfy the conditions of Theorem (2.1.17), 
because for any ܲ ≥ 0, if we take the vertex 1 … 1ᇣᇤᇥ

 times 

, any path from this vertex has to go 

through a barrage of at least ܲ +  1 twos, before it can end times in 0. 
Section (2.2): Spectral Moran Measures: 

For ߤ be a Borel probability measure with compact support in ℝௗ. One of basic 
problems in harmonic analysis associated ߤ is whether there exists a countable set Λ such 
that ܧ(Λ) = ൛݁ଶగ⟨௫,ఒ⟩: ߣ ∈ Λൟ is an orthonormal basis for ܮଶ(ߤ). If there exists such a set 
Λ, we say ߤ is a spectral measure and Λ is a spectrum of ߤ. This problem has a long 
history. The first general conjecture on this issue, was due to Fuglede [93]. 
Conjecture (2.2.1)[83]: Let Ω be a Borel subset of ℝௗ with finite Lebesgue measure. 
Then the Lebesgue measure restricted on Ω is a spectral measure if and only if Ω is a 
translation tile, i.e., there exists a set Γ in ℝௗ such that {Ω + :ݐ ݐ ∈ Γ} is a partition of ℝௗ 
(up to Lebesgue measure zero). 
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Although the conjecture has been proved to be false in both directions in dimension 
3 and in higher dimensions [91,98,108], it is still suggestive in the research of spectral 
measure theory. In many cases, the existence of spectral measures is equivalent to the 
existence of tiles. In dimensions 1 and 2, the conjecture is still open in both directions. 

The second general result was given by He, Lai and Lau [94]; they showed that if 
 is absolutely continuous or singularly continuous ߤ is a frame spectral measure, then ߤ
with respect to the Lebesgue measure, or a finite counting measure (spectral measures 
are frame spectral ones). It is known that the problem with respect to a finite counting 
measure is either very easy or very difficult [94]. Dutkay and Lai recently studied the 
frame spectral measures when ߤ is absolutely continuous [89,102]. We concern the 
singular measures. 

There exists a big difference in the spectral theory between absolutely continuous 
measures and singular measures (see e.g. [84-86,88,89,93,91,94,99-103,108]). The first 
example of singularly spectral measure was given by Jorgensen and Pedersen [97]. They 
showed that the 4th Cantor measure is a spectral measure. Later on, many concentrated 
their work on investigating self-similar/self-affine measures which are generated by 
iterated function systems (IFS) [90] and the construction of their spectrums [85-
87,94,95,100,104,105,107]. An IFS is a family of contraction functions { ݂(ݔ)}ୀଵ

 , which 
determines a unique nonempty compact set ܶ, called an attractor, and a Borel probability 
measure ߤ supported on ܶ satisfying 

ܶ = ራ  


ୀଵ
݂(ܶ), (⋅)ߤ  =   



ୀଵ

ߤ ∘ ݂
ିଵ(⋅), 

where {}ୀଵ
  are called probability weights, that is,  > 0 and ∑ୀଵ

   = 1. The 4 th 
Cantor measure mentioned before is generated by the IFS ଵ݂(ݔ) = ௫

ସ
, ଶ݂(ݔ) = ௫ାଶ

ସ
 with 

equal probability weight. 
In ℝ, a large class of self-similar measures have been proved to be spectral 

measures by Laba and Wang [100]. Let ቄ ௗ݂(ݔ) = ଵ


ݔ) + ݀)ቅ
ௗ∈ࣞ

 be an IFS, where ܾ ⩾ 2 
is an integer and ࣞ ⊂ ℤ is a digit set with 0 ∈ ࣞ. In this case the corresponding self-
similar measure with equal weight probability is denoted by ߤ,ࣞ. Eaba and Wang showed 
that, if ࣞ is an integer tile, i.e., there exists Γ ⊂ ℤ such that {Γ + ݀}ௗ∈ࣞ is a partition of 
ℤ, and the cardinality of ࣞ (denoted by #\mathcal{D} ) has no more than two distinct 
prime factors, then there exists ܰ such that #ࣞ is a factor of ܰ and ߤே,ࣞ is a spectral 
measure. 

A pair (ܾ, ࣞ) is called admissible if there exists a finite set ࣝ ⊂ ℤ with #C = #ࣞ =
,ଵ/ଶ݁ଶగௗ/൧ௗ∈ࣞ,∈ࣝ is unitary (usually (ܾିଵࣞିݍൣ such that the matrix ݍ ࣝ) is called a 
compatible pair). Eaba and Wang [100] proved that ߤ,ࣞ is a spectral measure if (ܾ, ࣞ) 
is admissible. 

We consider the following more general function system: let {ܾ}ୀଵ
ஶ  be a 

sequence of integer numbers with all ܾ ⩾ 2 and let {ࣞ}ୀଵ
ஶ  be a sequence of digit sets 

with 0 ∈ ࣞ ⊂ ℕ for each ݊ ⩾ 1. We call the function system ൛ ݂,ௗ(ݔ) = ܾ
ିଵ(ݔ +

݀): ݀ ∈ ࣞൟୀଵ
ஶ  a Moran IFS, which is a generalization of an IFS. 

Let ߜ  be the Dirac measure and denote 
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ாߜ =
1

ܧ#   
∈ா

 ߜ

for a finite set ܧ. For the completeness, we introduce the following known theorem (see, 
e.g. [107]). 

The measure ்ߤ in Theorem (2.2.3) is called a Moran measure. In order to 
construct a spectral measure from a Moran IFS ൛ ݂,ௗ(ݔ) = ܾ

ିଵ(ݔ + ݀): ݀ ∈ ࣞൟୀଵ
ஶ

, we 
assume that all (ܾ , ࣞ) are admissible according to Proposition (2.2.2). In this case, it 
was called an infinite compatible tower by Strichartz [107] (note that the choices of 
(ܾ , ࣞ) for ݇ ⩾ 1 are finite in Strichartz's case). Under some other conditions, he proved 
that the measure ்ߤ  in Theorem (2.2.3) is a spectral measure for an infinite compatible 
tower. Many such examples can be found in [94,107]. However, all these examples are 
indeed the convolution of a counting measure supported on a finite set and a self-similar 
spectral measure. Here we show that 

If sup{ݔ: ݔ ∈ ܾ
ିଵࣞ , ݇ ⩾ 1} < ∞, we believe that the measure ்ߤ given in 

Theorem (2.2.3) is a spectral measure if and only if all (ܾ , ࣞ) are admissible. 
To summarize, there are three methods to show a measure to be a spectral one. The 

first one is due to Jorgensen and Pedersen [97]. They proved it by showing that the Ruelle 
transfer operator has a unique solution. The second is due to Strichartz [106], who proved 
it by approximation in terms of the weak convergence of measures. The third is due to 
Dutkay et al. [86] and Dai et al. [85]. They proved it by constructing a concrete spectral 
set. The proof of Theorem (2.2.5) is inspired by the ideas from [85,92]. 

To prove Proposition (2.2.2), we define the mask function of a finite set ܣ in ℝ by 

݉(ߦ) =
1

ܣ#   
∈

݁ିଶగక . 

As usually, the Fourier transform of a probability measure ߤ in ℝ is defined by 

(ߦ)ߤ̂ = න  ݁ିଶగక௫݀(ݔ)ߤ. 

Then ݉(ߦ) =  .(ߦ)ߜ̂
Proposition (2.2.2)[83]: Let ࣞ = {0,1, … , ݍ − 1} be a digit set with ݍ > 1. Then (ܾ, ࣞ) 
is admissible if and only if ݍ is a factor of ܾ. 
Proof. To show the sufficiency, we write ܾ = ࣝ and choose ݎݍ = {0, ,ݎ ,ݎ2 … , ݍ) −  .{ݎ(1
It is easy to see that (ܾିଵࣞ, ࣝ) is a compatible pair. Hence (ܾ, ࣞ) is admissible. 

Conversely, let gcd (ݍ, ܾ) = ݀ and ݍ = ,ଵݍ݀ ܾ = ܾ݀ଵ. If (ܾ, ࣞ) is admissible, then 
there exists ࣝ ⊂ ℤ with #ࣝ = #ࣞ and 0 ∈ ࣝ such that (ܾିଵࣞ, ࣝ) is a compatible pair. 
Moreover ݉ࣞ൫ܾିଵ൫ ܿ − ܿ)൯ = 0 for all 0 ⩽ ݆ < ݇ ⩽ ݍ − 1. It is known that, if ࣝ ≡
ࣝᇱ(modܾ), then (ܾିଵࣞ, ࣝᇱ) is a compatible pair too. So we can assume that all ܿ  satisfy 
0 = ܿ < ⋯ < ܿିଵ < ܾ. For 1 ⩽ ݇ <  we have ,ݍ

|݉ࣞ(ܾିଵܿ)| = ቤ
sin ܾ ିଵܿݍߨ
ܾ sin ݍ ିଵܿߨ

ቤ = 0. 

This yields ܿ = ܾଵ for 1ߙ ⩽ ݇ <  are integers and 0ߙ where all ,ݍ < ଵߙ < ⋯ <  .ିଵߙ
Hence ߙିଵ ⩾ ݍ − 1. By the assumption that all ܿ < ܾ, we have ܾ > ିଵܾଵߙ ⩾ ݍ) −
1)ܾଵ, and then ݀ > ݍ − 1. On the other hand, ݀ = gcd (ݍ, ܾ), thus ݀ =  .ݍ

For the sake of convenience, we introduce some notations from symbolic 
dynamical system. Let {ࣞ}ୀ

ஶ  be a sequence of digit sets in ℕ. Denote ܦ =  and {ߴ}
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ܦ = ൛ߪଵߪଶ ⋯ :ߪ ߪ ∈ ࣞ , 1 ⩽ ݆ ⩽ ݊ൟ 
for ݊ ⩾ 1. Then the collection of all finite words is ܦ∗ = ⋃ୀ

ஶ   and the set of allܦ 
infinite words is denoted by 

ஶܦ = ൛ߪଵߪଶ ⋯ : ߪ ∈ ࣞ , ݆ ⩾ 1ൟ. 
Theorem (2.2.3)[83]: Let ൛ ݂,ௗ(ݔ) = ܾ

ିଵ(ݔ + ݀): ݀ ∈ ࣞൟୀଵ
ஶ  be a Moran IFS. Suppose 

that sup {ݔ: ݔ ∈ ܾ
ିଵࣞ , ݇ ⩾ 1} < ∞, then the sequence of measures 

ߤ = భߜ
షభࣞଵ ∗ షభࣞమ(భమ)ߜ

∗ ⋯ ∗ షభࣞ(భమ⋯ೖ)ߜ  
converges to a Borel probability measure ்ߤ with compact support ܶ in a weak sense, 
where * is the convolution sign and 

ܶ =   
ஶ

ୀଵ

(ܾଵܾଶ ⋯ ܾ)ିଵࣞ = ൝  
ஶ

ୀଵ

  (ܾଵܾଶ ⋯ ܾ)ିଵ݀: ݀ ∈ ࣞ , ݇ ⩾ 1ൡ. 

Proof. Let 0)ܤ, ,ݎ−) be the open interval (ݎ  in ℝ. Then (ݎ
݂,ௗ(0)ܤ, ((ݎ ⊆ ,0)ܤ ,(ݎ   for ݀ ∈ ࣞ and ݇ ⩾ 1, 

where ݎ satisfies that ݎ ⩾ 2sup{ݔ: ݔ ∈ ܾ
ିଵࣞ , ݇ ⩾ 1}. 

For any ߪ = ଶߪଵߪ ⋯ ߪ ∈ (ݔ), we write ఙ݂ܦ = ଵ݂,ఙభ ∘ ଶ݂,ఙమ ∘ ⋯ ∘ ݂,ఙ  ,.i.e ,(ݔ)

ఙ݂ is the composition of ൛ (ݔ) ݂,ఙ ൟ(ݔ)
ୀଵ


. Then it is casy to check that 

ܶ = ሩ  
ஶ

ୀଵ

ራ  
ఙ∈

ఙ݂(0)ܤ,  ((ݎ

and thus it is a compact set. 
Recall that ߤ = భߜ

షభࣞଵ ∗ షభࣞଶ(భమ)ߜ ∗ ⋯ ∗ భమ⋯)ߜ )షభࣞ
. Then 

(ߦ)ߤ̂ = భࣞߜ̂
(ܾଵ

ିଵࣞߜ̂(ߦమ
((ܾଵܾଶ)ିଵߦ) ⋯ ࣞߜ̂

((ܾଵܾଶ ⋯ ܾ)ିଵߦ). 
By a standard check, the product converges uniformly on each compact set in complex 
space to an entire function ݂(ݖ) = ∏ୀଵ

ஶ ࣞߜ̂ 
((ܾଵܾଶ ⋯ ܾ)ିଵݖ). By Levy's continuity 

theorem [96, p. 167], there exists a probability measure ߤ such that ̂(ݔ)ߤ =  ߤ and (ݔ)݂
converges weakly to ߤ. Moreover, the support of ߤ is the compact set ܶ. 

Let Λ be a countable set. The following well-known lemma, which was proved in 
[97], gives a criterion for Λ to be a spectrum of a probability measure ݒ. 
Theorem (2.2.4)[83]: Let ݒ be a Borel probability measure in ℝ with compact support. 
Then a countable set Γ is a spectrum for ܮଶ(ݒ) if and only if 

:(ߦ)ܳ =   
ఊ∈

ߦ)ݒ̂| + ଶ|(ߛ ≡ 1,   for ߦ ∈ ℝ. 

Moreover, if Γ is a bi-zero set of ݒ, i.e., (Γ − Γ) ∖ {0} ⊆ :(ݒ̂)ࣴ = :ߦ} (ߦ)ݒ̂ = 0}, then 
 .is an entire function (ݖ)ܳ

We denote ࣞ = {0,1, … , ݍ − 1} with ݍ > 1 and ݍ ∣ ܾ. 
Theorem (2.2.5)[83]: For any ݇ ⩾ 1, let ࣞ = {0,1, … , ݍ − 1} with ݍ > 1 and ݍ ∣ ܾ . 
Let ൛ ݂,ௗ(ݔ) = ܾ

ିଵ(ݔ + ݀): ݀ ∈ ࣞ}ୀଵ
ஶ  be a Moran IFS. Then the measure ்ߤ given in 

Theorem (2.2.3) is a spectral measure. 
Proof. Note that, if ݍଶ = ܾଶ, then we have 
భߜ       

షభ{0,1, … , ଵݍ − 1} ∗  షభ{,ଵ,…,మିଵ}(భమ)ߜ
 = భߜ

షభ{,ଵ,…,భିଵ}ା(భమ)షభ{,ଵ,…,మିଵ}

 = .షభ{,ଵ,…,భమିଵ}(భమ)ߜ
                         (29) 
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Hence, we prove Theorem (2.2.5) by considering the following two cases: 
Case 1. There are only finitely many integers ݇ such that ܾ > . In particular, if ܾݍ =
݇  forݍ ⩾ 1, then 

ߤ = భߜ
షభࣞଵ ∗ షభࣞమ(భమ)ߜ ∗ ⋯ ∗ షభࣞ(భమ⋯)ߜ =  షభ{,ଵ,…,భమ⋯ିଵ}(భమ⋯)ߜ

tends weakly to the Lebesgue measure restricted on [0,1], which is denoted by ℒ|[,ଵ], 
when ݊ goes to infinity. This shows that the limit measure ߤ = ℒ|[,ଵ] is a spectral 
measure. By the assumption that there are only finitely many integers ݇ such that ܾ >
, there exists ℓݍ ⩾ 1 such that ܾ = ݍ  for ݇ > ℓ. In this case, we have ߤ = ℓߤ ∗  ,ݒ
where 

(ܧ)ݒ  = షభࣞℓశభ(భమ⋯ℓశభ)ߜ ∗ షభࣞℓశమ(భమ⋯ℓశభℓశమ)ߜ ∗ ⋯ (ܧ)
 = ℒ|[,ଵ]൫(ܾଵܾଶ ⋯ ܾℓ)ܧ൯

 

for a Borel set ܧ. Next, we will show that 
Λ: = ࣞଵ + ܾଵࣞଶ + ⋯ + ܾଵܾଶ ⋯ ܾℓିଵࣞℓ + ܾଵܾଶ ⋯ ܾℓℤ 

is a spectrum of ߤ. Note that ̂ߤℓ(ߦ) = ∏ୀଵ
ℓ ೖࣞߜ̂ 

((ܾଵܾଶ ⋯ ܾ)ିଵߦ) and 
(ߦ)ݒ̂ = ߯̂[0,1]((ܾଵܾଶ ⋯ ܾℓ)ିଵߦ), 

where ߯ ˆ[,ଵ](ߦ) = ∫
ଵ  ݁ିଶగక௫݀ݔ and ߯ [,ଵ] is the characteristic function of [0,1]. We have 

      
ఒ∈ஃ

  ߦ)ߤ̂| + ଶ|(ߣ =   
ఒ∈ࣞభାభࣞమା⋯ାభమ⋯ℓషభࣞℓ

   
∈ℤ

  ߦ)ℓߤ̂| + ߣ + ܾଵܾଶ ⋯ ܾℓ݊)|ଶ 

× |߯̂[0,1]((ܾଵܾଶ ⋯ ܾℓ)ିଵ(ߦ + (ߣ + ݊)|ଶ 
          =   

ఒ∈ࣞభାభࣞమା⋯ାభమ⋯ℓషభࣞℓ

   
∈ℤ

  ߦ)ℓߤ̂| +  ଶ|(ߣ

ห߯̂[,ଵ]((ܾଵܾଶ ⋯ ܾℓ)ିଵ(ߦ + (ߣ + ݊)ห
ଶ
 

  =   
ఒ∈ࣞభାభࣞమା⋯ାభమ⋯ℓషభࣞℓ

  ߦ)ℓߤ̂| +  ଶ|(ߣ

= 1.                                                                  
Hence, the assertion follows. 
Case 2. There exist infinitely many integers ݇ ⩾ 1 such that ܾ >  . We divide this caseݍ
into two subcases: 
Subcase I. In this part, we always assume that ܾ > ݊  forݍ ⩾ 1. Then ܾ/ݍ = ݎ ⩾
2. 

Note that the measure we focus on is ߤ = ்ߤ = భߜ
ିଵࣞଵ ∗ షభࣞଶ(భమ)ߜ ∗ ⋯, and its 

Fourier transform is 

(ߦ)ߤ̂ = ෑ  
ஶ

ୀଵ

݉ࣞ ൬
ߦ

ܾଵܾଶ ⋯ ܾ
൰.                                   (30) 

Observe that the zero set of ݉ࣞ is 

ࣴ൫݉ࣞ൯ = ൛ߦ ∈ ℝ: ݉ࣞ (ߦ) = 0ൟ = ൜
ܽ

ݍ
: ܽ ∈ ℤ ∖  .ℤൠݍ

Hence, the zero set of ̂ߤ can be expressed explicitly by 

(ߤ̂)ࣴ  − ൜
ܾଵܾଶ ⋯ ܾ

ݍ
ܽ: ݊ ⩾ 1, ܽ ∈ ℤ ∖ ℤൠݍ

 = {ܾଵܾଶ ⋯ ܾିଵݎܽ: ݊ ⩾ 1, ܽ ∈ ℤ ∖ ℤ}.               (31)ݍ
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Now we construct a countable set Λ = ୀ{ߣ}
ஶ  in terms of ({ݍ}, {ܾ}). For any ݊ ∈

ℕ, ݊ ≠ 0, there exists a unique ߪ = ଵߪ ⋯ ߪ ∈ ,ܦ ߪ ≠ 0, such that 

݊ = ଵߪ + ଵݍଶߪ + ⋯ + ଵݍߪ ⋯ ିଵݍ =   


ୀଵ

ଵݍߪ ⋯  ିଵ.                  (32)ݍ

We define ߣ = 0 and 

ߣ = ଵݎଵߪ + ଶܾଵݎଶߪ + ⋯ + ܾଵݎߪ ⋯ ܾିଵ =   


ୀଵ

ܾଵܾଶݎߪ ⋯ ܾିଵ,       (33) 

where ߪ = ଵߪ ⋯ ߪ  is the word given in (32). We call Λ = ୀ{ߣ}
ஶ  the set determined by 

,{ݍ}) {ܾ}). 
If the Claim (2.2.9) is true, then Theorem (2.2.5) holds for Subcase I. We will prove 

the Claim (2.2.9) later. 
Subcase II. According to (29) and Subcase I, we can assume without loss of generality 
that ܾଵ = ଵ and ܾݍ > ݍ  for ݇ ⩾ 2. Let Λ = ୀ{ߣ}

ஶ  be the spectrum of ݒ = మߜ
షభࣞଶ ∗ 

షభࣞయ(మయ)ߜ ∗ ⋯ given in Subcase I. Now we prove that ࣞ ଵ + ܾଵΛ is a spectrum of ߤ. Note 
that ̂(ߦ)ߤ = ݉ࣞభ

(ܾଵ
ିଵݒ̂(ߦ(ܾଵ

ିଵߦ) and 

(ߦ)ܳ  =   
ఒ∈ࣞభାభஃ

  ߦ)ߤ̂| + ଶ|(ߣ

 =   
భିଵ

ୀ

   
ஶ

ୀ

  ห݉ࣞభ ൫ܾଵ
ିଵ(ߦ + ݅ + ܾଵߣ)൯หଶห̂ݒ൫ܾଵ

ିଵ(ߦ + ݅ + ܾଵߣ)൯หଶ

 =   
భିଵ

ୀ

  ห݉ࣞభ
(ܾଵ

ିଵ(ߦ + ݅))หଶ ≡ 1.

 

By Theorem (2.2.4), Theorem (2.2.5) for Subcase II follows. 
We will concentrate on proving the Claim (2.2.9). The following theorem says that 

Λ = ୀ{ߣ}
ஶ  is an orthogonal set. 

Theorem (2.2.6)[83]: The countable set Λ = ୀ{ߣ}
ஶ  determined by ({ݍ}, {ܾ}) is an 

orthogonal set for ܮଶ(ߤ). 
Proof. It is equivalent to show that Λ is a bi-zero set. For any ݊ > ݊ᇱ ⩾ 0, there exist ߪ =
ଵߪ ⋯ ߪ  and ߪᇱ = ଵߪ

ᇱ ⋯ ᇲߪ
ᇱ ∈  such that ∗ܦ

݊ =   


ୀଵ

ଵݍߪ ⋯ ,ିଵݍ  ݊ᇱ =   
ᇲ

ୀଵ

ߪ
ᇱݍଵ ⋯  .ିଵݍ

If ݇ > ݇ᇱ, let ߪ
ᇱ = 0 for ݇ᇱ + 1 ⩽ ݆ ⩽ ݇. Then, by the definition of Λ, we have 

ߣ =   


ୀଵ

ܾଵܾଶݎߪ ⋯ ܾିଵ, ᇲߣ  =   


ୀଵ

ߪ
ᇱݎܾଵܾଶ ⋯ ܾିଵ. 

Let ݏ be the first index such that ߪ௦ ≠ ௦ߪ
ᇱ. Then 

ߣ − ᇲߣ = ܾଵܾଶ ⋯ ܾ௦ିଵ(ߪ௦ݎ௦ − ௦ߪ
ᇱݎ௦ + (௦ܾܯ =

ܾଵ ⋯ ܾ௦(ߪ௦ − ௦ߪ
ᇱ + (௦ݍܯ

௦ݍ
 

for some integer ܯ. ,௦ߪ ௦ߪ
ᇱ ∈ ࣞ௦ implies that ݍ௦ ∤ ௦ߪ) − ௦ߪ

ᇱ). Hence, ߣ − ᇲߣ ∈  by (ߤ̂)ࣴ
(31). 
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Next we show the completeness of Λ = ୀ{ߣ}
ஶ . Denote ߤே = భߜ

షభࣞଵ ∗
షభࣞଶ(భమ)ߜ ∗ ⋯ షభࣞಿ(భమ⋯ಿ)ߜ ∗

, ேݒ = ಿశభߜ
షభ ࣞேାଵ ∗ షభࣞேାଶ(ಿశభಿశమ)ߜ ∗ ⋯, then 

(ߦ)ேߤ̂ = ෑ  
ே

ୀଵ

݉ࣞೕ ቆ
ߦ

ܾଵܾଶ ⋯ ܾ
ቇ , (ߦ)ேݒ̂  = ෑ  

ஶ

ୀଵ

݉ࣞಿశೕ ቆ
ߦ

ܾேାଵܾேାଶ ⋯ ܾேା
ቇ. 

It is known that ߤே  converges weakly to ߤ when ܰ tends to infinity (Theorem (2.2.3)) 
and 

(ߦ)ߤ̂ = ேݒ̂(ߦ)ேߤ̂ ൬
ߦ

ܾଵܾଶ ⋯ ܾே
൰.                                     (34) 

For the measure ߤே , we have 
Theorem (2.2.7)[83]: Let Λ = ୀ{ߣ}

ஶ  be the orthogonal set determined by ({ݍ}, {ܾ}). 
Then for all ܰ ⩾ 1, 

  
భ⋯ಿିଵ

ୀ

ߦ)ேߤ̂| + )|ଶߣ ≡ 1.                                         (35) 

Proof. First, we show the mutual orthogonality of {ߣ}ୀ
భ⋯ಿିଵ for ܮଶ(ߤே). Note that 

(ߦ)ேߤ̂ = ෑ  
ே

ୀଵ

݉ࣞೕ ቆ
ߦ

ܾଵ ⋯ ܾ
ቇ. 

For any ݊, ݊ᇱ ∈ {0,1, … , ଵݍ ⋯ ேݍ − 1} with ݊ ≠ ݊ᇱ, by (32), we have 

݊ =   
ே

ୀଵ

ଵݍߪ ⋯ ିଵ  and  ݊ᇱݍ =   
ே

ୀଵ

ߪ
ᇱݍଵ ⋯  ,ିଵݍ

where ߪ = ଵߪ ⋯ ,ேߪ ᇱߪ = ଵߪ
ᇱ ⋯ ேߪ

ᇱ ∈ ,ேܦ ߪ  andߪ
ᇱ may be zero for 1 ⩽ ݆ ⩽ ܰ. Let ݏ ⩽

ܰ be the first index such that ߪ௦ ≠ ௦ߪ
ᇱ. Then, we can write 

ߣ − ᇲߣ = ܾଵܾଶ ⋯ ܾ௦ିଵ(ߪ௦ݎ௦ − ௦ߪ
ᇱݎ௦ +  (௦ܾܯ

for some integer ܯ. It follows from the periodicity of the exponential function ݁ଶగ௫ that 

݉ࣞೞ ൬
ߣ − ᇲߣ

ܾଵܾଶ ⋯ ܾ௦
൰ = ݉ࣞೞ ቆ

௦ߪ − ௦ߪ
ᇱ

௦ݍ
ቇ = 0. 

Hence, ̂ߤே(ߣ − ᇲߣ ) = 0. Since {ߣ}ୀ
భ⋯ಿିଵ has exactly ݍଵ ⋯  ே elements, so it is aݍ

spectrum for ܮଶ(ߤே). The result follows by Theorem (2.2.4). 
The next lemma says that ̂ݒே(ߦ) is uniformly bounded in modulus from below for 

ܰ ⩾ 1 and 0 < ߦ ⩽ 1. 
Lemma (2.2.8)[83]: For any 0 < ߦ ⩽ 1 and ܰ ⩾ 1, ଶ|(ߦ)ேݒ̂| ⩾  for some positive ߙ
constant ߙ. 
Proof. Recall that 

|(ߦ)ேݒ̂| = ෑ  
ஶ

ୀଵ

ቤ݉ࣞಿశೕ ቆ
ߦ

ܾேାଵ ⋯ ܾேା
ቇቤ. 

By simple calculation, we have sin ݔ/ݔ ⩾ 1 − ݔ ଶ/6 forݔ > 0. Since ܾ/ݍ = ݎ ⩾ 2 
for ݇ ⩾ 1, then 

ห݉ࣞ
(ܾ

ିଵߦ)ห =
sin ܾ 

ିଵݍߦߨ
ܾߨ sinݍ

ିଵߦ ⩾
sin ܾ

ିଵݍߦߨ
ܾ

ିଵݍߦߨ ⩾ 1 −
1
6

(ܾ
ିଵݍߦߨ)ଶ     (36) 

and for ݆ ⩾ 1 
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ߦߨேାݍ
ܾேାଵ ⋯ ܾேା

⩽
ߨ
2 . 

Consequently, 

|(ߦ)ேݒ̂| ⩾ ෑ  
ஶ

ୀଵ

൬1 −
1
6

ቀ
ߨ
2ቁ

ଶ
൰ > 0, 

which follows from the convergence of the sum ∑ୀଵ
ஶ  ଵ


ቀ గ

ଶೕቁ
ଶ
. 

From the proof of Lemma (2.2.8), we have the following inequality which will be 
used in the proof of the Claim (2.2.9): 

|(ߦ)ேݒ̂| ⩾ ෑ  
ஶ

ୀଵ

൭1 −
1
6 ቆ

ߦߨேାݍ
ܾேାଵ ⋯ ܾேା

ቇ
ଶ

൱ ,  ∀0 < ߦ ⩽ 1.             (37) 

Now we can prove the Claim (2.2.9). The measure ߤ: =  .is given in Theorem (2.2.3) ்ߤ
Λ = ୀ{ߣ}

ஶ  is the orthogonal set determined by ({ݍ}, {ܾ}), i.e., 

ߣ =   


ୀଵ

ܾଵݎߪ ⋯ ܾିଵ, 

if ݊ = ∑ୀଵ
 ଵݍߪ  ⋯ ߪ ିଵ, whereݍ = ଵߪ ⋯ ߪ ∈ ܦ  

Claim (2.2.9)[83]: The countable set Λ = ୀ{ߣ}
ஶ  determined by ({ݍ}, {ܾ}) is an 

orthonormal basis for ܮଶ(ߤ). 
Proof. Let 

ܳே(ߦ) =   
భ⋯ಿିଵ

ୀ

ߦ)ߤ̂| + (ߦ)ܳ  )|ଶ  andߣ =   
ஶ

ୀ

ߦ)ߤ̂| +  .)|ଶߣ

For any ܰ ⩾ 1, using (34), we have the following identity: 

ܳଶே(ߦ)  = ܳே(ߦ) +   
భ⋯మಿିଵ

ୀభ⋯ಿ

  ߦ)ߤ̂| + )|ଶߣ

 = ܳே(ߦ) +   
భ⋯మಿିଵ

ୀభ⋯ಿ

  ߦ)ଶேߤ̂| + )|ଶߣ ฬ̂ݒଶே ൬
ߦ + ߣ

ܾଵܾଶ ⋯ ܾଶே
൰ฬ

ଶ

.      (38)

 

Our goal is to prove that ܳ(ߦ) = ∑ୀ
ஶ ߦ)ߤ̂|  + )|ଶߣ ≡ 1. Since ܳ is an entire function 

by Theorem (2.2.6) and Theorem (2.2.4), we only need to determine the value of ܳ(ߦ) 
for some small values of ߦ. Let 0 < ߦ ⩽ 1. For ݍଵ ⋯ ேݍ ⩽ ݊ ⩽ ଵݍ ⋯ ଶேݍ − 1, we may 
write ߣ as 

ߣ =   
ଶே

ୀଵ

ܾଵܾଶݎߪ ⋯ ܾିଵ, 

where ߪ ∈ ൛0,1, … , ݍ − 1ൟ. Recall that ܾ = ݎ  andݎݍ ⩾ 1 for ݇ ⩾ 1. Then we have 
ߦ + ߣ

ܾଵܾଶ ⋯ ܾଶே
⩽

ଵݎ + ଵݍ) − ଵݎ(1 + ଶݍ) − ଶܾଵݎ(1 + ⋯ + ଶேݍ) − ଶேܾଵݎ(1 ⋯ ܾଶேିଵ

ܾଵܾଶ ⋯ ܾଶே
 

=
ܾଵ + ଶݍ) − ଶܾଵݎ(1 + ⋯ + ଶேݍ) − ଶேܾଵݎ(1 ⋯ ܾଶேିଵ

ܾଵܾଶ ⋯ ܾଶே
   

⩽
ଶݎ + ଶݍ) − ଶݎ(1 + ⋯ + ଶேݍ) − ଶேܾଶݎ(1 ⋯ ܾଶேିଵ

ܾଶ ⋯ ܾଶே
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⩽
ଶேݎ + ଶேݍ) − ଶேݎ(1

ܾଶே
= 1.                                                                       (39) 

Therefore, using Lemma (2.2.8), Theorem (2.2.7) and the inequality (39), we have 

ܳଶே(ߦ)  ⩾ ܳே(ߦ) + ߙ   
భ⋯మಿିଵ

ୀభ⋯ಿ

  ߦ)ଶேߤ̂| + )|ଶߣ

 = ܳே(ߦ) + ߙ ቌ1 −   
భ⋯ಿିଵ

ୀ

  ߦ)ଶேߤ̂| + )|ଶቍ.                      (40)ߣ

 

We now argue by contradiction. Assume that Λ = ୀ{ߣ}
ஶ  is not a spectrum of ߤ. Then 

there exists a ߦ, 0 < ߦ < 1, such that ܳ(ߦ) < 1 and ̂ߤ(ߦ) ≠ 0 since ܳ is entire and 
(0)ߤ̂ = 1. Let ߚ be so that ܳ(ߦ) < ߚ < 1. For 0 ⩽ ݊ < ଵݍ ⋯ ேݍ , we have, by (39), 

ߦ + ߣ

ܾଵܾଶ ⋯ ܾଶே
=

1
ܾேାଵ ⋯ ܾଶே

ߦ + ߣ

ܾଵܾଶ ⋯ ܾே
⩽

1
ܾேାଵ ⋯ ܾଶே

⩽
1

4ே .                (41) 

It follows from (37) that 

ฬ̂ݒଶே ൬
ߦ + ߣ

ܾଵܾଶ ⋯ ܾଶே
൰ฬ ⩾ ෑ  

ஶ

ୀଵ

൭1 −
1
6

ቆ
ߨଶேାݍ

ܾଶேାଵ ⋯ ܾଶேା

ߦ + ߣ

ܾଵܾଶ ⋯ ܾଶே
ቇ

ଶ

൱.     (42) 

By (41) and the assumption that ܾ ⩾ 4, 

  
ஶ

ୀଵ

1
ܾଶேାଵ ⋯ ܾଶேାିଵ

ߨଶேାݍ
ܾଶேା

ߦ + ߣ

ܾଵܾଶ ⋯ ܾଶே
⩽

ߨ
2

1
4ே   

ஶ

ୀଵ

1
4݆ − 1

<
ߨ

4ே . 

Hence, by the fact that ln (1 − (ݔ ⩾ for 0 ݔ2− ⩽ ݔ ⩽ 1/2, (42) and the above inequality, 
we have 

ln ฬ̂ݒଶே ൬
ߦ + ߣ

ܾଵܾଶ ⋯ ܾଶே
൰ฬ ⩾ −

ߨ
3 ⋅ 4ே  

uniformly for 0 ⩽ ݊ < ଵݍ ⋯ ܰ ே. This implies that, if ܰ is large enough, sayݍ ⩾ ܯ > 0, 

ฬ̂ݒଶே ൬
ߦ + ߣ

ܾଵܾଶ ⋯ ܾଶே
൰ฬ

ଶ

⩾
(ߦ)ܳ

ߚ
 

for 0 ⩽ ݊ < ଵݍ ⋯ ேݍ . Consequently, for ܰ ⩾ and 0 ܯ ⩽ ݊ < ଵݍ ⋯  ,ேݍ

ߦ)ߤ̂| + )|ଶߣ = ฬ̂ߤଶே(ߦ + ଶேݒ̂(ߣ ൬
ߦ + ߣ

ܾଵ ⋯ ܾଶே
൰ฬ

ଶ

⩾
(ߦ)ܳ

ߚ
ߦ)ଶேߤ̂| +  .)|ଶߣ

Combining (40) we have 

ܳଶே(ߦ)  ⩾ ܳே(ߦ) + ߙ ቌ1 −
ߚ

(ߦ)ܳ   
భ⋯ಿିଵ

ୀ

  ߦ)ߤ̂| + )|ଶቍߣ

 ⩾ ܳே(ߦ) + 1)ߙ − (43)                                                              .(ߚ

 

Therefore 
1 ⩾ ܳଶℓே(ߦ) ⩾ ܳே(ߦ) + ℓ1)ߙ − (ߚ ⩾ ℓ1)ߙ −  (ߚ

for ℓ ⩾ 1, which is impossible. Hence, Λ must be a spectrum. 
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Section (2.3): ࡺ-Bernoulli Measures:  
For ߤ be a probability measure on ℝ௦ with compact support. For a countable subset 

߉ ⊂ ℝ௦ , we let ௸݁ = ൛ ఒ݁ = ݁ିଶగ〈ఒ,௫〉: ߣ ∈  a ߉ a spectral measure, and ߤ ൟ. We call߉
spectrum of ߤ if ௸݁  is an orthogonal basis for ܮଶ(ߤ). The existence and nonexistence of a 
spectrum for ߤ is a basic problem in harmonic analysis, it was initiated by Fuglede in 
[122], and has been studied extensively since then [113–119,123,125,128–
130,132,133,136,137]. Recently He, Laiand Lau [123] proved that a spectral measure ߤ 
must be of pure type, i.e., ߤ is absolutely continuous or singular continuous with respect 
to the Lebesgue measure or counting measure supported on a finite set (actually this holds 
more generally for frames).  

When ߤ is the Lebesgue measure restricted on a set ܭ in ℝ௦ , it is well-known that 
the spectral property is closely connected with the tiling property of ܭ, and is known as 
the Fuglede problem [122,126,128,137]. For continuous singular measures, the first 
spectral measure was given by Jorgensen and Pedersen [125]: the Cantor measure ߤఘ 
with contraction ratio ߩ = 1/2݇. There are considerable studies for such measures 
[114,118,120,124,128, 132,133,136], and a celebrated open problem was to characterize 
the spectral measures ߤఘ , 0 < ߩ < 1 among the Bernoulli convolutions 

(⋅)ఘߤ = ଵିߩ)ఘߤ1/2 ⋅) + ଵିߩ)ఘߤ1/2 ⋅ −1) . 
In [124], Hu and Lau showed that ߤఘ admits an infinite orthonormal set if and only if ߩ 
is the ݊-th root of ݍ/ where  is odd and ݍ is even. The characterization problem was 
finally completed recently by Dai [113] that the above Cantor measures ߤଵ/(ଶ) are the 
only class of spectral measures among the ߤ. 

We study the spectrality of the self-similar measures. Let 0 < ߩ < 1, ܦ =
{0, ݀ଵ … . ݀ேିଵ} be a finite set in ℝ, and ൛ݓൟ

ୀ
ேିଵ a set of probability weights. We call ߤ 

a self-similar measure generated by (ߩ, ൟݓand ൛ (ܦ
ୀ
ேିଵ

 if ߤ is the unique probability 
measure satisfying 

(⋅)ߤ =
1
ܰ

 ݓ

ேିଵ

ୀ

(⋅)ଵିߩ൫ߤ − ݀൯.                                     (44) 

We will use ߤ,ே to denote the special case where ࣞ = {0 … …  ܰ − 1} with uniform 
weight, i.e., 

(⋅),ேߤ =
1
ܰ

 ,ேߤ

ேିଵ

ୀ

(⋅)ଵିߩ) − ݆).                                   (45) 

The spectral property of such measure was first studied by Dai, He and Lai [114] as a 
generalization of the Bernoulli convolution in [113] (ࣞ = {0,1}). Our main result is to 
extend the characterization of spectral Bernoulli convolution to the class of ߤఘ,ே in (45). 
Our motivation to extend the Bernoulli convolutions to this class of measures is due to a 
conjecture of Laba and Wang, and also to answer a question on the convolution of 
spectral measures. We prove 
Theorem (2.3.1)[109]: Let 0 < ߩ < 1. Then ߤఘ,ே is a spectral measure if and only if ߩ =
ଵ

 for some integer ݍ > 1 and ܰ|ݍ. 
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The sufficiency of the theorem follows from the same pattern as the Cantor 
measure in [125] by producing a Hadamard matrix, then construct the canonical 
spectrum. On the other hand, the proof of the necessity needs more work. We observe 
that for ߤఘ,ே to be a spectral measure, ߩ must be an algebraic number. We prove by 
elimination that each of the following cases can NOT admit a spectrum (for 


, we always 

assume they have no common factor): 
(i) ߩ = ቀ


ቁ

ଵ/
ݎ ݁݉ݏ ݎ݂ > l (it is an irrational) (Proposition (2.3.5)): 

(ii) ߩ ≠ ቀ


ቁ
భ
ೝ ݎ ݕ݊ܽ ݎ݂ > 1 and is an irrational (Proposition (2.3.8)):  

(iii) ρ = 

 and 1 ≤  ݃݁݀(ܰ. (ݍ  <  ܰ (Proposition (2.3.15)): 

(iv) ߩ = 

<  .   1 and N|  (Proposition (2.3.19))             

Let ̂ߤ,ே be the Fourier transform of ߤ,ே, and ࣴ൫̂ߤ,ே൯ the zeros of ̂ߤఘ,ே. The proof is 
based on the criteria in Theorem (2.3.3) and Lemma (2.3.4), and the technique is to make 
use of some explicit expressions of ࣴ൫̂ߤఘ,ே൯ , and that ߉ − ߉ ⊂ ࣴ൫̂ߤఘ,ே൯ for any 
exponential orthogonal set ߉. 

The most subtle part of the proof is (iv). As is known, there is certain canonical 
 ,and there are also others. In [118] ,(see (46)) ߉ in a spectrum ߣ adic expansion of-ݍ
Dutkay et al. treated the 4-adic expansions as in a symbolic space ߗଶ

∗, and considered 
certain maps on ߗଶ

∗ to ℤା to preserve the maximal orthogonality property. This idea was 
refined and investigated by Dai, He and Lai [114] by replacing the ݍ-adic expansion on 
ℤ with digits in ܥ = {−1,0, , , , , , , , , , , ݍ − 2}. Let ∶ ேߗ 

∗ → ࣝ be a selection map as defined 
in Definition (2.3.11) (it was called a maximal map in [114]), and let ߡ∗(i) =
∑ ஶߡ

ୀଵ (i0ஶ|)ݍିଵ. The importance of the selection map is in the following theorem 
(Theorem (2.3.13)), which also has independent interest. 
Theorem (2.3.2)[109]: Suppose ߩ = ܰ and ݍ/ ߉ Then .ݍ| ⊂ ࣴ൫̂ߤఘ,ே൯ defines a maximal 
exponential orthogonal subset in ܮଶ൫ߤఘ,ே൯ if and only if there exist ݉ ≥ 1 and a 
selection map ߡ such thatΛ = బିߩ ܰିଵ൫ߗ)∗ߡே

ఐ )൯ . 
We set up the notations, the basic criteria of spectrum, and the element properties 

of the zero set ࣴ൫ߤ,ே൯ . We settle cases (i), (ii). For the case ߩ =  we give a detailed ,ݍ/
study of the maximality of ߉ such that ߉ − ߉ ⊂ ࣴ൫ߤఘ,ே൯ , which is used to consider cases 
(iii) and (iv). We give some remarks of the spectral measures and the remaining 
questions. 

We assume that ߤ is a probability measure with compact support. The Fourier 
transformation of ߤ is defined as usual, 

(ߦ)ߤ̂ = න ݁ିଶగక௫  . (ݔ)ߤ݀

Let ࣴ(̂ߤ) ∶= :ߦ} (ߦ)ߤ̂ = 0} be the set of zeros of ̂ߤ. We denote the complex exponential 
function ݁ିଶగఒ(⋅) by ఒ݁ . Note that { ఒ݁: ߣ ∈  if and only if (ߤ)ଶܮ is an orthogonal set in {߉
ߣ൫ߤ̂ − ൯ߣ = 0 for any ߣ ≠ ߣ ∈ ;߉ } if ߤ is called a spectrum of ߉ ఒ݁}ఒ∈௸ is an 
orthonormal basis for ܮଶ(ߤ) . For ߦ ∈ ℝ, we let 

(ߦ)ܳ =  |
ఒ∈௸

ߦ)ߤ̂ +  ଶ|(ߣ
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The following theorem is a basic criterion for the spectrality of [125] ߤ. 
Theorem (2.3.3)[109]: Let ߤ be a probability measure with compact support, and let 
߉ ⊂ ℝ be a countable subset. Then 

(i) { ఒ݁}ఒ∈௸ is an orthonormal set of ܮଶ(ߤ) if and only if ܳ(ߦ) ≤ 1 for ߦ ∈ ℝ; and 
(ii) it is an orthonormal basis if and only if ܳ(ߦ) ≡ 1 for ߦ ∈ ℝ. 

We use the notation ߉ to denote a subset such that 0 ∈ {0}\߉ and ߉ ⊂  We say . (ߤ̂)ࣴ
that ߉ is a bi-zero set of ߤ if (߉ − {0}\(߉ ⊂  and call it a maximal bi-zero set if it ,(ߤ̂)ࣴ
is maximal in ࣴ(̂ߤ) to have the set difference property. Clearly that ߉ is a bi-zero set is 
equivalent to { ఒ݁: ߣ ∈  An exponential orthonormal . (ߤ)ଶܮ is an orthogonal subset of {߉
basis corresponds to a maximal bi-zero set, but the converse is not true. In fact we will 
give a characterization of the maximal bi-zero sets of ߤ,ே for the case  = 


 and ܰ|ݍ, 

and establish the spectrality through Theorem (2.3.3)(ii). 
As a simple consequence of Theorem (2.3.3), we have the following useful lemma. 

Lemma (2.3.4)[109]: Let ߤ = ߤ ∗  ଵ be the convolution of two probability measuresߤ
ߤ , ݅ = 0,1, and they are not Dirac measures. Suppose that ߉ is a bi-zero set of ߤ, then 
 .ߤ but cannot be a spectrum of ,ߤ is also a bi-zero of ߉
Proof. Note that ߤ  is not a Dirac measure is equivalent to |̂ߤ(ߦ)| ≢ 1. Since ̂ߤ(0) = 1, 
there exists ߦ such that |̂ߤ(ߦ)| ≠ 0 and |̂ߤଵ(ߦ)| < 1. Hence by Theorem (2.3.3)(i), 

(ߦ)ܳ =  |
ఒ∈௸

ߦ)ߤ̂ + ଶ|(ߣ =  |
ఒ∈௸

ߦ)ߤ̂ + ߦ)ଵߤ̂|ଶ|(ߣ + ଶ|(ߣ <  |
ఒ∈௸

ߦ)ߤ̂ + ଶ|(ߣ ≤ 1. 

The result follows by Theorem (2.3.3)(i) and (ii).  
Now we consider the self-similar measure ߤఘ,ே in Theorem (2.3.1). It was proved 

in [114] that if  =  ఘ,ே is a spectral measure. The proof is quiteߤ then ,ݍ|ܰ and ݍ/1
simple. In fact as ܰ|ݍ, we write ݍ = ݎ If .ݎܰ = 1, then ߤ is just the Lebesgue measure on 
the unit interval, and the result is trivial. If ݎ > 1, observe that for ࣞ = {0, . . . , ܰ − 1} 
and ߁ = ,0}ݎ … , ܰ − 1}, the matrix 

:ܪ = ቈ
1

√ܰ
݁ଶగ௫̇

 
∈ࣞ,∈௰

= 
1

√ܰ
݁ଶగ

ே൨
ஸ,ஸேିଵ

 

is a Hadamard matrix (i.e., ܪܪ∗ = ,ଵࣞିݍ) This shows that .(ܫ  ,is a compatible pair (߁
hence ߤଵ/,ே is a spectral measure [128], and the canonical spectrum is given by 

߉ = ቐ ܽ



ୀ

ݍ : ܽ ∈ ,߁ ݇ ≥ 0ቑ                                    (46) 

(note that the spectrum is not unique). Our main task is to prove the converse. The 
strategy is to eliminate all the possible cases so that the only admissible case is ߩ =  ݍ/1
with ܰ|ݍ. 

Recall that the Fourier transform of ߤఘ,ே has the following expression 

(ߦ)ఘ,ேߤ̂ = (ߦߩ)ఘ,ேߤ̂(ߦߩ)ேܯ = ෑ ேܯ

ஶ

ୀଵ

 (ߦߩ)

where ܯே(ߦ) = ଵ
ே

∑ ݁ିଶగక  is the mask polynomial of ࣞ. It is clear that |ܯே(ߦ)| =

|  ୱ୧୬ ேగక
ே ୱ୧୬ గక

|, and the zeros of ܯே(ߦ) are ܽ/ܰ, ܽ ∈ ℤ\{0}, ܰ(ܽ. Let 
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(ேܯ)ࣴ = ቄܽ
ܰ : ܽ ∈ ℤ\{0}, ܰቚܽቅ = ቄ

ܽ
ܰ

: ܽ ∈ ℤ\ܰℤቅ.                       (47) 
It follows from the infinite product expression of ̂ߤఘ,ே that 

ࣴ൫̂ߤఘ,ே൯ = ቄିߩ ܽ
ܰ : ݇ ≥ 1, ܽ ∈ ℤ\ܰℤቅ.                                  (48) 

For distinct ߣଵ, ଶߣ ∈  imply that ߉ and the bi-zero property of (48) ,{0}\߉
భିߩ

ܽଵ

ܰ
− మିߩ

ܽଶ

ܰ
= ିߩ ܽ

ܰ
. 

Hence ߩ is an algebraic number. Recall that an algebraic number is a root of an integer 
equation of the form ܿݔ + ܿଵݔିଵ + ⋯ + ܿ ∈ ℤ[ݔ], and it is called an algebraic 
integer if ܿ = 1. 

For any integer ݎ ≥ 1, let 
ℚଵ/ = ߩ} = :ଵ/ݑ 0 < ݑ <  .{݈ܽ݊݅ݐܽݎ ܽ ݏ݅ 1

We make the convention that the above ݎ is the smallest integer for ߩ = ଵ/ݑ  (for 

example: ߩ =  ቀସ
ଽ
ቁ

ଵ/ସ
=  ቀଶ

ଷ
ቁ

ଵ/ଶ
, we will take ݎ = 2). Hence for ߩ ∈ ℚଵ/, ݎ > 1, then ߩ 

is an irrational. 
Proposition (2.3.5)[109]: Let ∈ ℚଵ/, ݎ > 1, then ߤ,ே is not a spectral measure. 
Proof. Let ߩ = ଵ/ where 0ݑ < ݑ < 1 is a rational. We write 

(ߦ),ேߤ̂ = ෑ ேܯ

ஶ

ୀଵ

(ߦߩ) = ෑ ෑ ேܯ



ୀଵ

ஶ

ୀ

൫ݑߩߦ൯ . 

Define the probability measures ߤ(⋅) = ିߩݑ௨,ே൫ߤ ⋅൯, 1 ≤ ݅ ≤  Then .ݎ

(ߦ)ߤ̂ = ሡ ேܯ

ஶ

ୀ

൫ݑߩߦ൯ 

for 1 ≤ ݅ ≤ ߤ ఉ is the convolution ofߤ Then .ݎ , ݅ = 1,2, … ,  be a bi-zero set of ߉ Let .ݎ
ߤ is also a bi-zero set of ߉ ఘ,ே. We claim thatߤ  for some ݅. Indeed, let ߣ =
ೕିೕିߩ ܽ/ܰ, 1 ≤ ݅ଵ, ݅ଶ ≤ ,ݎ ݆ = 1,2, be any two distinct elements in ߉. The bi-zero 
property of ߉ for ߤ implies that 

ܰ/భିభܽଵିߩ − ܰ/మିమܽଶିߩ =  .ܰ/ିܽି
Without loss of generality assume ݇ଵ, ݇ଶ ≥ ݇, then we have ݑ(భି)ߩభିܽଵ − (మି)ݑ ×
మିܽଶߩ = ܽ. This implies ݅ଵ = ݅ଶ = ݅ because the minimal polynomial of ߩ is ݔ −  .ݑ
Hence ߉ is a bi-zero set of ߤ , and by Lemma (2.3.4), ߉ cannot be a spectrum of ߤ.  

Next we consider ߩ ∉ ℚଵ/, ݎ > 1. We need two lemmas. 
Lemma (2.3.6)[109]: Suppose ߉ is an infinite bi-zero set of ߤ,ே with 0 ∈ ߩ Then .߉ ∉
ℚଵ/  for all ݎ ≥ 1 implies that ߩ is an algebraic integer. 
Proof. Since {0}\߉ ⊂ ࣴ൫̂ߤఘ,ே൯ , we denote ߉ = ୀ{ߣ}

ஶ  so that ߣ = 0 and ߣ =
ೖି

ೖ

ே
, where ܰ|ܽ for ݇ ≥ 1. We can assume that ݊  ≤ ݊ାଵ for ݇ ≥ 1. Fix ℓ ≥ 1. For 

any integer ܩ > 0 and ݇ > ℓ, by the bi-zero property of ߉, we have 
ߣ − ℓߣ = ೖ,ℓିߩ

ܽ,ℓ

ܰ
, ܽ,ℓ ∈ ℤ\ܰℤ. 

We claim #൛݇: ݊,ℓ ≤ ൟܩ ≤ (ܰ −  Otherwise, by the pigeon hole principle, there .ܩ(1
exist ݇ଵ, ݇ଶ such that ݊భ,ℓ = ݊మ,ℓ ≤ and ܰ|൫ܽభ,ℓ ܩ − ܽమ,ℓ൯ . Then, by the definition of 
ܼ൫̂ߤ,ே൯ and ߩ ∉ ℚଵ/ for all ݎ ≥ 1, we have 
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భߣ − మߣ = భߣ − ℓߣ + ℓߣ − మߣ = ೖభ,ℓିߩ
ܽభ,  − ܽమ,ℓ

ܰ
∉ ܼ൫̂ߤ,ே൯ . 

Hence the claim follows. Taking any ݇ > ℓ such that ݊,ℓ > ݊ℓ, we conclude from 

ೖିߩ
ܽ

ܰ − ℓିߩ
ܽℓ

ܰ = ೖ,ℓିߩ
ܽ,ℓ

ܰ  
that there exists a polynomial (ݔ) = ܽℓݔ௦ + ௧ݔܾ + ܿ with ݏ > (ߩ) and ݐ = 0. Let 
(ݔ)߶ = ܿݔ + ܿଵݔିଵ + ⋯ + ܿ ∈ ℤ[ݔ] be the minimal polynomial of ߩ. This 
implies that ߶(ݔ)|(ݔ) , and thus ܿ|ܽℓ. Let ℓ run through all ߣℓ ∈  Then .߉

1
ܿ

{0}\߉ ⊆ ࣴ൫̂ߤ,ே൯.                                                 (49) 

To show that ଵ
బ

 ఘ,ே we need to prove thatߤ is a bi-zero set of ߉
1
ܿ

߉) − {0}\(߉ ⊆ ࣴ൫̂ߤఘ,ே൯ .                                         (50) 

For any ߣభ ≠ మߣ ∈ ,by the claim there exists ݇ such that  min ൛݊,భ ,߉ ݊,మൟ > ݊భ,మ , 
thus 

 ೖభ,ೖమିߩ
ܽభ,మ

ܰ
= భߣ − మߣ = ൫ߣభ − ൯ߣ − ൫ߣమ −  ൯ߣ

          = ೖ,ೖమିߩ
ܽ,మ

ܰ
− ೖ,ೖభିߩ

ܽ,భ

ܰ
. 

Similar to the above, we have ܿ|ܽభ,మ . Then (50) holds. 
By repeating the same argument, we see that ଵ

బ
ೖ  ,ே forߤ is also a bi-zero set of ߉

any ݇ ≥ 1. This forces ܿ = 1.  
For any ݔ ∈ ℝ, let ‖ݔ‖ = 〈ݔ〉 is the unique number such that 〈ݔ〉 where ,|〈ݔ〉| ∈

(−1/2,1/2] and ݔ − 〈ݔ〉 ∈ ℤ. Clearly ‖ݔ‖ is the distance from ݔ to ℤ. 
Lemma (2.3.7)[109]: Let ߩ be a root of ݔ + ܿଵݔିଵ + ⋯ + ܿఊఐ ∈ ℤ[ݔ]. Then for any 
ܽ ∈ ℤ\ܰℤ, 

max
ଵஸ୬ஸ୫

ቛିߩ ܽ
ܰ

ቛ ≥ ൭ܰ  |


ୀଵ

ܿ|൱
ିଵ

∶= ߙ > 0.                       (51) 

Proof. Denote ିߩ 
ே

= ିߩ〉 
ே

〉 + ݇ , 1 ≤ ݊ ≤ ݉. Then 

ܽ
ܰ

+  ܿ



ୀଵ

ିߩ〉 ܽ
ܰ

〉 +  ܿ



ୀଵ

݇ = 0.                            (52) 

If |〈ିߩ 
ே

〉| < for 1 ߙ ≤ ݊ ≤ ݉, then | ∑ ܿ

ୀଵ ିߩ〉 

ே
〉| < ଵ

ே
. This contradicts (52) as 

ܽ ∈ ℤ\ܰℤ. Hence the result follows.  
Some ideas of Feng and Wang [121] are used in the following proof. 

Proposition (2.3.8)[109]: Let ߩ be an irrational and ߩ ∉ ℚଵ/ for any ݎ > 1. Then ߤ,ே 
is not a spectral measure. 
Proof. Suppose on the contrary that ߤఘ,ே is a spectral measure. Then, by Lemma (2.3.6), 
(ݔ)߮ is an algebra integer, and  = ݔ + ܿଵݔିଵ+. . . +ܿ ∈ ℤ[ݔ] is the minimal 
polynomial of ߩ. 
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Let ߉ be a spectrum of ߤఘ,ே with 0 ∈ ߉ Denote .߉ = ߉ ∩ ቄିߩ 
ே

: ܽ ∈ ℤ\ܰℤቅ for 
݇ ≥ 1. Then #߉ ≤ ܰ − 1 for ݇ ≥ 1 (by the proof of Lemma (2.3.6)). Let ܯே(ߦ) be the 
mask polynomial and let (ߦ)ܩ = ∑ |ேିଵ

ୀଵ ேܯ ቀߦ + 
ே

ቁ |ଶ. Then by applying Theorem 

(2.3.3) to the point mass measure ଵ
ே

 we have ,{,…,ேିଵ}ߜ

(ߦ)ܩ + ଶ|(ߦ)ேܯ| =  |
ேିଵ

ୀ

ேܯ ൬ߦ +
݅

ܰ
൰ |ଶ = 1, 

and hence (0)ܩ = 0. Observing that (ݖ)ܩ is an entire function, then there exist an entire 
function (ݖ)ܪ and integer ݐ > 0 such that (ݖ)ܩ = (0)ܪ and (ݖ)ܪ௧ݖ ≠ 0. To prove that 
(ߦ)ܳ = ଶ|(ߦ),ேߤ̂| + ∑ ∑ |ఒ∈ஃೖ

ஶ
ୀଵ ߦ)ఘ,ேߤ̂ + ଶ|(ߣ ≢ 1, we first observe that for any ߦ, 

 |
ఒ∈௸ೖ

ߦ)ఘ,ேߤ̂ + ଶ|(ߣ =  ෑ |


ୀଵఒ∈௸ೖ

ߦ)ߩே൫ܯ + ൯|ଶ(ߣ ⋅ ఘ,ேߤ̂| ቀߩ(ߦ + ቁ(ߣ |ଶ 

≤  |
ఒ∈௸ೖ

ேܯ ቀߩ(ߦ + ቁ(ߣ |ଶ          

≤  (53)                                                                                . (ߦߩ)ܩ
(The last inequality follows from ߣ ∈ ߉ , ߣߩ = 

ே
≠ 0, ܽ|ܰ. ) Let ݉ and ߙ(< 1/2) be 

defined as in Lemma (2.3.7), and let ߚ =  min {1 − :ଶ|(ݔ)ேܯ| 2/ߙ ≤ |ݔ| ≤ 1 −  .{2/ߙ
Then obviously ߚ > 0. Note that for each ݇ > ݉ and ߣ ∈ ߉ , 

ߣߩ =  (ି)ିߩ
ܽ
ܰ

, ݆ = 1,2, . . . , ݇ − 1. 
Hence for 0 ≤ ߦ ≤ ,2/ߙ ݇ > ݉, by Lemma (2.3.7), there exists ݇ − ݉ ≤ ℓఒ ≤ ݇ − 1 
such that ‖ߩℓഊ(ߦ + ଶ‖(ߣ ≥  Hence from (53), we have .2/ߙ

 |
ఒ∈௸ೖ

ߦ),ேߤ̂ + ଶ|(ߣ ≤  |
ఒ∈௸ೖ

ேܯ ቀߩℓഊ(ߦ + ቁ(ߣ |ଶ ⋅ ேܯ| ቀߩ(ߦ + ቁ(ߣ |ଶ 

            ≤ (1 − (ߚ  |
ఒ∈௸ೖ

ேܯ ቀߩ(ߦ + ቁ(ߣ |ଶ 

≤ (1 −  (54)                                                               . (ߦߩ)ܩ(ߚ
Note that {0}\߉ = U∈ℕ߉ , and ߉భ ∩ మ߉ = ∅ when ݇ଵ ≠ ݇ଶ since ߣ ∉ ℚ

భ
ೝ for all ݎ ∈

ℕ. Hence, by (53) and (54), 

(ߦ)ܳ =  |
ఒ∈௸

ߦ),ேߤ̂ +                                            ଶ|(ߣ

= ଶ|(ߦ)ఘ,ேߤ̂| +   |
ఒ∈௸ೖ

ஶ

ୀଵ

ߦ),ேߤ̂ +  ଶ|(ߣ

≤ ଶ|(ߦ),ேߤ̂| +  ܩ


୩ୀଵ

(ߦߩ) + (1 − (ߚ  ܩ
வ

 (55)           . (ߦߩ)

On the other hand, recall that (ݖ)ܩ = (0)ܪ and (ݖ)ܪ௧ݖ = 0, then 0 < ଵܥ ≤ |(ݖ)ܪ| ≤  ଶܥ
if |ݖ| ≤ ߟ ≤ Therefore for 0 .ߟ for some small 2/ߙ ≤ ߦ ≤  ,ߟ
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௧ߩଵܥ

1 − ௧ߩ ௧ߦ ≤  ܩ
ஶ

ୀ

(ߦߩ) ≤
௧ߩଶܥ

1 − ௧ߩ ௧ߦ ,                                 (56) 

and 

ଶ|(ߦ)ఘ,ேߤ̂| = ෑ |
ஶ

ୀଵ

ଶ|(ߦߩ)ேܯ = ෑ ቀ1 − ቁ(ߦߩ)ܩ
ஶ

ୀଵ

                 

≤ ݁ିఀೖసభ
ಮ ீ൫ఘೖక൯ ≤ 1 −  ܩ

ஶ

ୀଵ

(ߦߩ) +  ቌ ܩ
ஶ

ୀଵ

 ቍ ,   (57)(ߦߩ)

where (ߦ) satisfies that lim  ߦ/(ߦ) = 0. Hence, by (55) and (57), we have 

(ߦ)ܳ ≤ 1 − ߚ  ܩ
ஶ

ୀ

(ߦߩ) +  ቌ ܩ
ஶ

ୀଵ

 ቍ.                        (58)(ߦߩ)

By (56) this implies ܳ(ߦ) < 1 for ߦ > 0 small enough. That ߉ cannot be a spectrum 
follows by Theorem (2.3.3).  

In view of Proposition (2.3.5) and Proposition (2.3.8), we have to prove that ߤఘ,ே 
cannot be a spectral measure in the remaining cases (iii) and (iv) for ߩ =  These will .ݍ/
be proved latter. 

We will consider ߩ = ߉ are co-primes throughout. Let ݍ , we assume ,ݍ/ =
ୀ{ߣ}

ஶ ⊆ ࣴ൫̂ߤ,ே൯ (with ߣ = 0) be a bi-zero set of ߤఘ,ே. Then by (48), 

ߣ = ൬
ݍ


൰
ೖ ܽ

ܰ
 with ܽ ∈ ℤ\ܰℤ, ݇ ≥ 1.                               (59) 

We will give another expression of the ߣ which is more convenient to use here. 
Lemma (2.3.9)[109]: Let ߉ be a bi-zero set of ߤ,ே with ߩ = 


. Then there exists ݉ > 0 

such that each ߣ ∈  admits an expression {0}\߉
ߣ = బି ೖݍ

ܿ

ܰ ℎ ܿݐ݅ݓ  ∈ ℤ\ݍℤ ܽ݊݀ ݉ ≥ ݉                   (60) 
(note that ܰ can be a factor of ܿ). Moreover, if ܰ|ݍ, then we can write 

ߣ = ೖݍబି
ܿ

ܰ
ℎ ܿݐ݅ݓ  ∈ ℤ\ܰℤ ܽ݊݀ ݉ ≥ ݉. 

Proof. For the expression of ߣ  in (59), we let ܽ = ܽ
ᇱ ೖݍ  so that ݍ|ܽ

ᇱ . Then we can 
write ߣ as 

ߣ = ൬
ݍ
൰

ೖାೖ ܽ
ᇱ ೖ

ܰ ≔ ൬
ݍ
൰

ೖ ܾ

ܰ ,                                      (61) 

where ݍ is not a factor of ܾ for ݇ ≥ 1. Let ݉ ≥ 1 be the smallest among all such ݉ , 
and denote the corresponding ߣ ∈ by ቀ ߉


ቁ

బ ഊ

ே
. Then by the bi-zero property, for any 

݉ > ݉, 

൬
ݍ
൰

బ ܾ

ܰ − ൬
ݍ
൰

ೖ ܾ

ܰ = ൬
ݍ
൰

 ܾ
ܰ. 

It is easy to see that ݉ = ݉, and then ೖିబ  is a factor of ܾ . It follows from this that 
we can rewrite ߣ  as 

ߣ = ೖݍబି
ܿ

ܰ , 
where ݍ|ܿ for ݇ ≥ 1. 
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The second assertion follows by observing that the ݈ in (61) is zero (as ݍ|ܽ 
follows by ܰ|ݍ and ܰ|ܽ). Hence the above ܿ = ܽ/ೖିబ  is not divisible by ܰ by 
(59).  
Corollary (2.3.10)[109]: Let ߉ be a bi-zero set of ߤ,ே and let ܰ|ݍ and  = 


. Denote 

ܳ = {qma: ܽ ∈ ℤ\ܰℤ, ݉ ≥ 0}. Then 

߉) − {0}\(߉ ⊆
1

బܰߩ
ܳ ⊂ ࣴ ቀ̂ߤ,ே(ߦ)ቁ,                                (62) 

where ݉ is as in Lemma (2.3.9). 
Proof. It suffices to show that 

߉) − {0}\(߉ ⊆
1

బܰ
:ܽݍ} ݉ ≥ ݉, ܽ ∈ ℤ\ܰℤ}. 

If ݉ > ݇ for ߡ݉ ≠ ݈, we have ߣ − ߣ = ݍబି
ೖష ೖି

ே
∈ ଵ

ఘே
ܳ because ܰ|ܿ . 

If ݉ = ݉ for ݇ ≠ ݈, then by Lemma (2.3.9), 
ߣ − ߣ = బି ೖݍ (ܿ − ܿℓ)/ܰ =  ܰ/ೖାఈcݍబି

where ݍ|ܿ. By the bi-zero property in (59), we have 

బି ܰ/ೖାఈܿݍ = ߣ − ߣ = ൬
ݍ
൰


ܽ/ܰ 

where ܰ(ܽ. Then ݍೖାఈିܿ = బିܽ, which implies that ݉ + ߙ = ݊, and thus ܽ =
ఈାೖିబܿ . Hence ܰ|ܿ and the claim follows.  

It is well-known that every positive integer has a unique ݍ-adic expansion. In order 
to do this for all integers in ℤ, we use the ݍ-adic expansion on the set ࣝ =
{−1,0, … , ݍ − 2}. We will establish a relation of the ߣ  in the bi-zero set ߉ with such 
expansion. We characterize the maximal bi-zero set by certain tree-structure. We need 
the additional condition that ܰ|ݍ, and a special selection map to be defined. 

Let ߗே = {0, … , ܰ − 1} and let ߗே
∗ = Uୀ

ஶ ேߗ
  be the set of finite words (by 

convention ߗே
 = {∅}). We use i = ݅ଵ ⋯ ݅  to denote an element in ߗே

 , and |i| = ݇ is the 
length. For any i, j ∈ ேߗ

∗ , ij is their natural conjunction. In particular, ∅i = i, i0ஶ = i00 …, 
and 0 = 0 ⋯ 0 ∈ ேߗ

 . 
Definition (2.3.11). Suppose ܰ, ∶ We call a map .ݍ|ܰ are positive integers and ݍ ேߗ 

∗ →
{−1,0, … , ݍ − 2} a selection mapping if 

(i) ߡ(r݈) = (0)ߡ = 0 for all ݊ ≥ 1; 
(ii) for any i = ݅ଵ ⋯ ݅ ∈ ேߗ

 , (i)ߡ ∈ (݅ + ܰℤ)nܥ, where ܥ = {−1,0,1, , ݍ − 2}; 
(iii) for any i ∈ ேߗ

∗ , there exists j ∈ ேߗ
∗  such that ߡ vanishes eventually on ij0ஶ, i.e., 

(ij0)ߡ = 0 for sufficient large ݇. 
Note that ࣝ ≡ ேߗ ⊕ ܰ{0, … , ݎ − 1}(mod ݍ) where ݍ =  is a selection map on ߡ and ,ܰݎ
each level ݇. More explicitly, (ii) means 

(i)ߡ = ൜݅ + ,ݐܰ if 0 ≤ ݅ ≤ ܰ − 2,
݅ + ,’ݐܰ if ݅ = ܰ − 1,                                    (63) 

where ݐ ∈ {0, … , ݎ − 1} and ݐᇱ ∈ {−1,0, … , ݎ − 2}. Next we let 
ேߗ

ఐ = {i = ݅ଵ ⋯ ݅ ∈ ேߗ
∗ ∶  ݅ ≠ 0, (i0)ߡ = 0 for sufficient large ݊}  ∪ {∅} 

and for any i ∈ ேߗ
ఐ  we define 

(݅)∗ߡ  =  ߡ
ஶ

ୀଵ

(i0ஶ)|ݍିଵ 
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Here we regard i0ஶ = i00 …, and i0ஶ| denotes the word of the first ݊ entries. Clearly 
(∅)∗ߡ = 0. 

Let ܳ = ܽ :ܽݍ}  ∈ ℤ\ܰℤ, ݉ ≥ 0} be as in Corollary (2.3.10), a subset {0}\ܮ ⊂
ܳ is called a ܦ-set of ܳ if 0 ∈ ܮ and ܮ − ܮ ⊂ ܳ ∪ {0} (D for difference), and call it a 
maximal D-set if for any ݊ ∈ ,ܮ\ܳ ܮ ∪ {݊} is not a D-set. The main idea of the proof of 
the following theorem is in [114] (and the selection map is called a maximal map there) 
(see also [118]). We provide a simplified proof here for completeness. 
Proposition (2.3.12)[109]: Suppose ܰ|ݍ. Then ܮ ⊂ ܳ ∶=  {qa: ݉ ≥ 0, ܽ ∈ ℤ\ܰℤ} is a 
maximal ܦ-set of ܳ if and only if ܮ = ேߗ)∗ߡ

ఐ ) for some selection map ߡ. 
Proof. We first prove the sufficiency. For a selection map ߡ, it is direct to check that ܮ =
ேߑ)∗ߡ

ఐ ) is a D-set of ܳ ⊆ ℤ by the definition of ߡ. We need only show that ܮ is maximal in 
ܳ. Suppose otherwise, there exists ݊ ∉ ܮ and ܮ ∪ {݊} is a D-set. We can express ݊ 
uniquely as 

݊ = ܽ + ܽଵݍ + ⋯ + ܽℓݍℓ, ܽ ∈ ࣝ = {−1,0,1, … , ݍ − 2}.                 (64) 
We claim that ܽ  = ݅ for some (ଵ݅)ߡ ଵ ∈ ݆ ே. If otherwise, letߗ ∈ ேߗ = {0, … , ܰ − 1} such 
that ܽ ∈ ݆ + ܰℤ. In view of property (ii) of ߡ (or (63)), ܰ|൫ܽ −  ൯ . By property (iii)(݆)ߡ
of ߡ, there exists i = ݅ଵ ⋯ ݅ ∈ ேߗ

ఐ  with ݅ଵ = ݆. Then 
݊ − (i)∗ߡ  = ܽ − (݆)ߡ +  ,ܾݍ

where ܾ is an integer. Hence ݊ − (݅)∗ߡ  ∉ ܳ (as it has a factor ܰ, and not a factor of ݍ). 
This contradicts that ܮU{݊} is a D-set of ܳ, and the claim follows. 

Similarly, by considering ݊ − (ଵ݅)ߡ = ݊ − ܽ in (64), we can show that ܽଵ =
for some 0 (ଵ݅ଶ݅)ߡ ≤ ݅ଶ < ܰ − 1, and so on. After finitely many steps, we have ݊ =  (i)∗ߡ
for some i ∈ ேߗ

ఐ , which contradicts ݊ ∉  .and the sufficiency follows ,ܮ
Conversely, suppose that ܮ is a maximal D-set of ܳ . Denote ܮ = ୀ{ߣ}

ஶ  with ߣ =
0. Then ߣ  can be expressed by 

ߣ = ܽ, + ܽ,ଵݍ + ⋯ + ܽ,ೖ ೖݍ =  ܽ,

ஶ

ୀ

 ,ݍ

where −1 ≤ ܽ, ≤ ݍ − 2 for 0 ≤ ݊ ≤ ݈ and ܽ, = 0 for ݊ > ݈ . Note that all ܽ, are 
zero. We first consider ൛ܽ,: ݇ ≥ 0ൟ, the first coefficients of the ߣ ’s. As ܽ, can be 
written uniquely as ݅ + ߙܰ ∈ ࣝ = {−1,0, … , ݍ − 2} for some ݅ ∈ ேߗ = {0, … , ܰ −
1}, we claim that 

൛ܽ,: ݇ ≥ 0ൟ = {݅ + :ߙܰ ݅ ∈ {ேߗ ⊆ ࣝ.                                    (65) 
(Here ߙ depends only on ݅, but not on ݇, hence the set has ܰ elements.) Indeed if 
൛ܽ,: ݇ ≥ 0ൟ⊃

≠{݅ + :ߙܰ ݅ ∈ ே}, then there exist ݇ଵ and ݇ଶ such that ܰ|൫ܽభ,ߗ − ܽమ,൯ . 
Hence 

భߣ − మߣ = ܽభ, − ܽమ, + ܾݍ ∉ ܳ 
(same reasoning as the above), which contradicts that ܮ is a D-set in ܳ. If ൛ܽ,: ݇ ≥ 0ൟ ≠
⊂ {݅ + :ߙܰ ݅ ∈ ே}, then there exists 0ߗ ≤ ݅ᇱ ≤ ܰ − 1 such that ܰ(൫ܽ, − ݅ᇱ൯ for ݇ ≥
0. Clearly ܮ ∪ {݅ᇱ} is a D-set in ܳ, which contradicts the maximality of ܮ. This proves the 
claim. We rewrite (65) as 

൛ܽ,: ݇ ≥ 0ൟ = ൛݅ + బߙܰ ,: ݅ ∈ ேൟߗ ⊆ ࣝ. 
From the claim, we can define ߡ on ߗே  by ߡ(݅) = ݅ + ,,ߙܰ ݅ = 0,1, … , ܰ − 1 and in 
particular (0)ߡ = 0. Similarly we can show that, for each 0 ≤ ݅ ≤ ܰ − 1, 
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൛ܽ,ଵ: ܽ, = ݅ + బߙܰ ,ൟ
ୀ
ஶ

= ൛݅ଵ + భߙܰ , 1: ݅ଵ ∈ ேൟߗ ⊆ ࣝ 
and define ߡ(݅݅) = ݅ + ,,ଵߙܰ ݅ = 0,1, … , ܰ − 1. Again, we can show that 

{ܽ,ଶ: ܽ, = ݅ + బߙܰ , ܽ݊݀ ܽ,ଵ = ݅ଵ + భߙܰ ,ଵ}ୀ
ஶ = ൛݅ଶ + మߙܰ ,ଶ: ݅ଶ ∈  ேൟߗ

and define ߡ(݅݅ଵ݅) = ݅ + ,,ଶߙܰ ݅ = 0,1, … , ܰ − 1. Inductively, we can define a map ߡ on 
ேߗ

∗  (with ߡ(∅) = 0). By the construction of ߡ, it is easy to see that (i) and (ii) in Definition 
(2.3.11) are satisfied. For any i = ݅݅ଵ ⋯ ݅ ∈ ேߗ

∗  with ݅ ≠ 0, again by the construction 
of ߡ, there exist infinitely many ߣ such that ܽ,௧ = ݅௧ + ,௧ for 0ߙܰ ≤ ݐ ≤ ݊. Fix such 
a ݇, if ݇ ≥ ݈ , we have ߣ = ∑ ܽ,

ஶ
ୀ ݍ = ݇ If ; (i)∗ߡ < ݈ , there exists j =

݆ାଵ݆ାଶ ⋯ ݆ೖ such that ܽ,௧ = ݅)ߡ ⋯ ݆݅ାଵ ⋯ ݆௧) for ݊ + 1 ≤ ݐ ≤ ݈. Then 

ߣ =  ܽ,

ஶ

ୀ

ݍ =  .(݆݅)∗ߡ

This implies that (iii) in Definition (2.3.11) holds. Hence, ߡ is a selection mapping and 
ܮ ⊆ ேߗ)∗ߡ

ఐ ). The necessity follows by the maximal property of ܮ and the proof of the 
sufficiency.  

It follows directly from Corollary (2.3.10) and Proposition (2.3.12) that 
Theorem (2.3.13)[109]: Suppose ߩ = ߉ Then .ݍ|ܰ and ݍ/ ⊂ ࣴ൫̂ߤఘ,ே൯ is a maximal bi-
zero set if and only if there exist ݉ ≥ 1 and a selection map ߡ such that =
ேߗ)∗ߡబܰିଵ൫ି

ఐ )൯ . 
In particular, we see that for  = 1, the spectrum ߉ in (46) corresponding to the 

case ݉ = 1 and the selection map ߡ is to take ߡ(i) = ݅  in (63). Also by observing that 
ேߗ)∗ߡ

ఐ ) is an infinite set, we have 
Corollary (2.3.14)[109]: Suppose ߩ =  ఘ,ே൯ admits an infiniteߤଶ൫ܮ then ,ݍ|ܰ and ݍ/
exponential orthonormal set. 

We show the necessity of Theorem (2.3.1) when ߩ is a rational number. 
Proposition (2.3.15)[109]: Let ߩ = 


 and 1 ≤ gcd(ܰ, (ݍ < ܰ, then ߤఘ,ே is not a spectral 

measure. 
Proof. Suppose on the contrary that ߤఘ,ே is a spectral measure. Let ߉ be a spectrum of 
,ே with 0ߤ ∈ ݀ Denote .߉ = gcd(ܰ, ݀ If . (ݍ = 1, by Lemma (2.3.9), we have 

߉ ⊆ బି ቄݍ ܽ
ܰ

: ݉ ≥ ݉, ܽ ∈ ℤ\ݍℤቅ U{0}. 
Denote ࣞ = {0,1, … , ܰ − 1} and let ߤᇱ = ఘభࣞߜ ∗ ఘమࣞߜ ∗ … ∗ ࣞߜ ∗ ఘబశమࣞߜ ∗ … be the 
convolution of ߜೖࣞ for ݇ ≥ 1 and ݇ ≠ ݉ + 1 (here ߜ = ଵ

ஷ
∑ ∈ߜ  and ߜ is the 

Dirac measure). Then ߤ,ே = ఘబశభࣞߜ ∗  ᇱ. Theߤ is a bi-zero set of ߉ ᇱ. We claim thatߤ
claim leads to a contradiction by Lemma (2.3.4). We prove the claim by assuming that 
బିଵିߩ 

ே
∈ ߉ − ܽ where ߉ ∈ ℤ\ܰℤ. Then there exist ݇, ݈ such that 

బିଵିߩ ܽ
ܰ

= ೖିݍబି
ܽ

ܰ
− ିݍబି

ܽ

ܰ
, 

where ܽ , ܽ ∈ (ℤ\ݍℤ) ∪ {0}. Then |ܽ. Hence ିߩబିଵ 
ே

= బିߩ /
ே

∈ ࣴ൫ܯே൯ 
and the claim follows; If 1 < ݀ < ܰ, write ܰ = ܰᇱ݀, ݍ = ࣞ ᇱ݀. Thenݍ = ࣝ + ݀ℰ, where 
ࣝ = {0,1, … , ݀ − 1} and ℰ = {0,1, … , ܰᇱ − 1}. Note that ܯே(ߦ) = ேᇲܯ(ߦ)ௗܯ  and (ߦ݀)

(ߦ)ఘ,ேߤ̂ = ෑ ேܯ

ஶ

ୀଵ

(ߦߩ) = ෑ ௗܯ

ஶ

ୀଵ

(ߦߩ) ෑ ேᇲܯ

ஶ

ୀଵ

 . (ߦ݀ߩ)
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Let ݒ be the probability measure such that 

(ߦ)ොݒ = ሡ ௗܯ

ஶ

ୀଵ

(ߦߩ) ෑ ேᇲܯ

ஹଵ,ஷబାଵ

 . (ߦ݀ߩ)

Then ߤ = ݒ ∗ ఘబశభௗℰߜ . We claim that ߉ is a bi-zero set of ݒ. Hence the proposition 
follows by Lemma (2.3.4) again. 

To prove the claim, we let ߟ ∈ ߉) − {0}\(߉ ቀ⊂ ࣴ൫ߤ,ே൯ቁ , then either ߟ ∈  (ݒ)ࣴ

or ߟ ∈ ࣴ ቀܯேᇲ ൫బାଵ݀(⋅)൯ቁ. The first case satisfies the claim trivially. Hence we need 
only consider the second case, i.e., there exists ߟ ∈ ߉) − ߟ such that (߉ ∈

ࣴ ቀܯேᇲ ൫బାଵ݀(⋅)൯ቁ. By (48), we have ߟ = ଵ
ఘబశభௗ


ேᇲ ൬= ቀ


ቁ

బାଵ 
ே

൰ with ܰᇱ(ܽ; also 
by (60), there exist ݇, ℓ such that 

ߟ = బି ೖݍ
ܿ

ܰ − ℓݍబି
ℓܥ
ܰ , 

where ݂ܿݍ and ݍ(ܿℓ. Hence we have బశభୟ


= ೖݍ ܿ − ℓݍ ܿℓ. This implies that |ܽ. 
By letting ܽᇱ =  we see that ܰ(ܽᇱ (as ܰᇱ(ܽ). Therefore ,/ܽݍ

ߟ = ൬
ݍ


൰
బାଵ ܽ

ܰ
= ൬

ݍ


൰
బ ܽᇱ

ܰ
∈ ࣴ ቀܯே൫ߩబ(⋅)൯ቁ. 

As ࣴ ቀܯே൫ߩబ  (⋅)൯ቁ ⊂   .the claim follows ,(ݒ)ࣴ
Lemma (2.3.16)[109]: Let ߡ be a selection mapping. Then 

 |
୧∈ఆಿ

ഈ ,|୧|ஸ

ߦାబିଵ൫ߤ̂ + ൯|ଶ(i)∗ߡబܰିଵିߩ ≤ 1 

for ݊ ≥ 1 and ߦ ∈ ℝ. 
Proof. First we prove the case for ݉  = 1. According to the Bessel inequality, it suffices 
to show that ିߩଵܰିଵߡ∗({i ∈ ேߑ

ఐ : |i| ≤ ݊}) is a bi-zero set of ߤ . For any i, j ∈ ேߑ
ఐ , i ≠ j 

and 1 ≤ |i|, |j| ≤ ݊, we let iᇱ = i0ି|୧| ∶= ݅ଵ
ᇱ ⋯ ݅

ᇱ  and ݆ᇱ = ݆0ି|| ∶= ݆í ݆
ᇱ . Let ݏ be the 

smallest integer such that ݅௦
ᇱ ≠ ݆௦

ᇱ. Then ݏ ≤ ݊ and 
(i)∗ߡ − (j)∗ߡ = ൫ߡ(iᇱ|ௌ) − ௦ିଵݍ൯(iᇱ|௦)ߡ +  ௦ݍߙ

for some integer ߙ. By (63), (iᇱ|௦)ߡ −  is not divisible by ܰ. It follows from (47) (iᇱ|௦)ߡ
that, 

ேܯ ቀߩ௦ିߩଵܰିଵ൫ߡ∗(i) − ൯ቁ(j)∗ߡ = ேܯ ቆ
(iᇱ|௦)ߡ௦ିଵ൫ − ൯(iᇱ|௦)ߡ

ܰ
ቇ = 0. 

This implies that ̂ߤ ቀିߩଵܰିଵ൫ߡ∗(i) − ൯ቁ(i)∗ߡ = 0. Similarly, we have 
൯(i)∗ߡଵܰିଵିߩ൫ߤ̂ = 0 for any i ∈ ேߑ

ఐ  and 0 < |i| ≤ ݊. By Theorem (2.3.3), 

 |
୧∈ఆಿ

ഈ ,|୧|ஸ

ߦ൫ߤ̂ + ൯|ଶ(i)∗ߡଵܰିଵିߩ ≤ 1. 

This completes the proof for ݉ = 1. For ݉ > 1, we observe that 
|(ߦ)ାబିଵߤ̂| = |(ߦబିଵߩ)ߤ̂||(ߦ)ఊబିଵߤ̂| ≤  |(ߦబିଵߩ)ߤ̂|

and apply the inequality. The result follows.  
The following lemma is a simple generalization of Lemma 2.10 in [113]. 
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Lemma (2.3.17)[109]: Let ܽ =  ln / ln ݍ. Then for any ߦ > 1 there exists ߦᇱ such that 
ߦଶߩ ≤ ᇱߦ ≤  and ߦ

|(ߦ)ఘ,ேߤ̂| ≤  ,|(ᇱߦ),ேߤ̂|ܿ
where ܿ =  max ቄ|ܯே(ߦ)|: ଵ

ଶ
≤ ߦ ≤ ଵ

ଶ
ቅ < 1. 

Proof. For any ݔ ∈ ℝ, denote the unique number 〈ݔ〉 that satisfies 〈ݔ〉 ∈ (−1/2,1/2] and 
ݔ − 〈ݔ〉 ∈ ℤ. If 〈ߦߩ〉 ∉  ቀ- ଵ

ଶ
, ଵ

ଶ
ቁ , then 

|(ߦ)ఘ,ேߤ̂| = |(ߦߩ)ఘ,ேߤ̂||(ߦߩ)ேܯ| = |(ߦߩ)ఘ,ேߤ̂||(〈ߦߩ〉)ேܯ| ≤  .|(ߦߩ)ఘ,ேߤ̂|ܿ
Hence we obtain the desired inequality by letting ߦᇱ = 〈ߦߩ〉 If ;ߦߩ ∈  ቀ- ଵ

ଶ
, ଵ

ଶ
ቁ , then 

ߦߩ − 〈ߦߩ〉 = ௧ݍ௧ݎ + ⋯ + ݍݎ ,                                        (66) 
where 0 ≤ ݎ < ݐ for ݍ ≤ ݆ ≤ ݈ and ݎ௧ > 0. Then 

〈ߦ௧ାଶ〉 = 〈ߦߩ〉௧ାଵߩ〉 +
௧ାଵ௧ݎ

ݍ
〉. 

Note that |ߩ௧ାଵ〈ߦߩ〉| < ଵ
ଶ

 and ଵ


≤ |〈శభ


〉| ≤ ିଵ


, then 〈ߩ௧ାଶߦ〉 ∉  ቀ- ଵ

ଶ
, ଵ

ଶ
ቁ . 

By (66), we have ߦ ≥ ௧ݍ , which implies ߩ௧ ≥ ܽ ିଵ, whereߦ =  ln / ln ݍ. Let 
ᇱߦ = ᇱߦ then ,ߦ௧ାଶߩ ≥  , and henceߦଶߩ

|(ߦ)ߤ̂| =  |(ߦ௧ାଶߩ)ߤ̂||(ߦ௧ାଶߩ)ேܯ| |(ߦߩ)ேܯ|
≤     |(ߦ௧ାଶߩ)ߤ̂||(〈ߦ௧ାଶߩ〉)ேܯ|
≤                                    .|(ᇱߦ)ߤ̂|ܿ

Lemma (2.3.18)[109]: Assume  > 1, then there exist integers ܾ ≥ 2, ݊ ≥ 2, and real 
numbers ߚ > 1, ܥ > 1 such that for any i ∈ ேߗ

ఐ  with ݊ < |i| ≤ (݊ + 1), ݊ ≥ ݊, we 
have 

,ேߤ̂| ቀߩ(ାଵ)್ା(బିଵ)൫ߦ + బିߩ ܰିଵߡ∗(i)൯ቁ | ≤
ܥ

݊ఉ 

for 0 ≤ ߦ ≤ ଵ
ଶഁ୭ே

. 

Proof. Note that  > 1 implies that ݍ > 2. Let ܾ be an integer such that ܾ > 1 +  ୪୭ 
 ୪୭ 

, 

where ܽ =  log / log ݍ, and ܿ is as in Lemma (2.3.17). Since ߡ∗(i)  = ∑ ߡ ൫i0ஶ|൯ݍିଵ 
for any i ∈ ఐߑ , let ܲ be the largest index such that ߡ(i0ஶ|ℓ) ≠ 0. Then ܲ ≥ ݊ + 1, and a 
direct estimation shows that 

|(i)∗ߡ| ≥ ℓିଵݍ − ݍ) − 2)  ିଵݍ
ℓିଵ

ୀଵ

≥ ℓିଷݍ +
1
2. 

This together with the assumption on ߦ implies that 

ߦబିଵߩ| +
(i)∗ߡ
ܰߩ

| ≥
|(i)∗ߡ|

ܰ
−

1
ܰߩ2

≥ ℓିସݍ ≥  .್ିଷݍ

Let ߟ = ್(ାଵ)ߩ ቀߩబିଵߦ + ఐ∗(୧)
ே

ቁ . It is easy to see that if ݊ is large enough, then (݊ +
1) + 3 ≤ ݊ + ܾଶ݊ିଵ. Hence if we take a large ݊, then for ݊ ≥ ݊, 

|ߟ| ≥
್(ାଵ)

್ାଷି್(ାଵ)ݍ ≥
್(ାଵ)

మ್షభݍ = ൭
್(ଵାଵ/)

మݍ ൱
್షభ

≥ ቆ


మቇݍ
್షభ

≥ ್షభݍ  

Applying Lemma (2.3.17) to ߟ =  recursively, we have ߟߩ
|(ߟ)ߤ̂| ≤ |(ଵߟ)ߤ̂|ܿ ≤ ≤ ܿ|̂ߤ(ߟ)| 
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as long as |ߟ| ≥ 1. This is the case if we let ݈ = ቂlog
ଶభష್

ଵି
ቃ, because 

|ߟ| ≥ ିଵ|ߟ|ଶߩ ≥ ≥ |ߟ|ଶାଶା⋯ାଶషభߩ ≥ ߩ
ଶ

ଵି|ߟ| > ିݍ ଶ
ଵିݍ್షభ ≥ 1. 

Hence, 

|(ߟ)ߤ̂| ≤ ܿ ≤ ܿ ୪୭ೌ
ଶభష್

ଵି = ܿ୪୭ೌ
ଶ

ଵି݊ି(ିଵ) ୪୭ / ୪୭ . 
The lemma follows by assigning ܥ and ߚ in the obvious way.  
Proposition (2.3.19)[109]: Let ߩ = 


. If ݍ|ܰ and  > 1, then ߤ,ே is not a spectral 

measure. 
The proof of this case is more elaborate. We show that any maximal bi-zero set ߉ 

of ߤ,ே does not satisfy the condition on ܳ(ߦ) in Theorem (2.3.3)(ii). To this end, we 
define 

ߤ = ఘఆಿߜ ∗ … ∗ ఆಿߜ  
for ݊ ≥ 1. Then 

(ߦ)ߤ̂ = ෑ ேܯ



ୀଵ

൫ߩߦ൯ ܽ݊݀̂ߤఘ,ே(ߦ) =  . (ߦߩ)ఘ,ேߤ̂(ߦ)ߤ̂

Proof. We assume all the parameters in Lemma (2.3.18). To simplify the notations, we 
write ߤ = ,,ேߤ (i)ߙ = ,(i)∗ߡబܰିଵିߩ ℐ = {i ∈ ேߗ

ఐ , |i| ≤ ݊}, ℐ,ାଵ = {i ∈ ேߗ
ఐ , ݊ <

|i| ≤ (݊ + 1)}. Let 

ܳ(ߦ) =  |
ℐ

ߦ൫ߤ̂ +  ൯|ଶ(i)ߙ

Then 

ܳାଵ(ߦ) = ܳ(ߦ) +  |
ℐ,శభ

ߦ൫ߤ̂ +  ൯|ଶ(i)ߙ

              = ܳ(ߦ) +  |
ℐ,శభ

ߦାబିଵ൫್(ାଵ)ߤ̂ + ߤ̂|൯|ଶ(i)ߙ ቀ(ାଵ)್ାబିଵ൫ߦ + ൯ቁ(i)ߙ |ଶ 

     ≤ ܳ(ߦ) +
ଶܥ

݊ଶఉ  |
ℐ,శభ

ߦାబିଵ൫್(ାଵ)ߤ̂ +  ൯|ଶ (by Lemma (2.3.18))(i)ߙ

≤ ܳ(ߦ) +
ଶܥ

݊ଶఉ ቌ1 −  |
;௰

ߦାబିଵ൫್(ାଵ)ߤ̂ +  ൯|ଶቍ (by Lemma (2.3.17))(i)ߙ

                  ≤ ܳ(ߦ) +
ଶܥ

݊ଶఉ ൫1 − ܳ(ߦ)൯ . 
This implies that ݊ > ݊, 

1 − ܳାଵ(ߦ) ≥ ൫1 − ܳ(ߦ)൯ ቆ1 −
ଶܥ

݊ଶఉቇ ≥ ⋯ ≥ ቀ1 − ܳబ
ቁ(ߦ) ෑ ቆ1 −

ଶܥ

݇ଶఉቇ


ୀబ

 . 

Now let ܳ(ߦ) = ∑ |∈ஐಿ
ഈ ߦ൫ߤ̂ +  ൯|ଶ, it is the sum over a maximal bi-zero set (by(i)ߙ

Theorem (2.3.13)). The above implies 



83 

1 − (ߦ)ܳ ≥ ’ܥ ቀ1 − ܳబ
 , ቁ(ߦ)

where ܥ ᇱ = ∏ ቀ1 − మ

మഁቁஶ
ୀబ

≠ 0. This implies that ܳ(ߦ) ≢ 1, and hence by Theorem 
(2.3.3) and Theorem (2.3.13), any maximal bi-zero set of ߤఘ,ே cannot be a spectrum when 
ߩ = ,ݍ/ ,  are co-prime, and ݍ ≠ 1.  

It was proved in [123] that if ߤ is a spectral self-similar measure with support in 
[0,1] and ݑ is a probability counting measure support on a finite set in ℤ, then the 
convolution ߤ ∗  is a spectral measure. It was ݒ is a spectral measure if and only if ݒ
pointed out by Gabardo and Lai (private communication) that if both ߤ and ݒ are two 
probability measures with ߤ ∗ ݒ =  is the Lebesgue measure [,ଵ]|ܮ where ,[,ଵ]|ܮ
restricted on [0,1], then both ߤ and ݒ are spectral measures (which is a corollary of the 
main results in [110] and [131]). It has been asked: 

Is the convolution of two spectral self-similar measures with essentially disjoint 
supports a spectral measure ‘? 

The question can be answered by Theorem (2.3.1). Observe that {0,1,2,3} =
{0,1} ⊕ {0,2}, hence 

ଵ/,ସߤ = ଵ/,ଶߤ ∗  .ଵ/,{,ଶ}ߤ
It follows that both ߤଵ/,ଶ and ߤଵ/,{,ଶ} are spectral measures (by [125] or Theorem 
(2.3.1)), but Theorem (2.3.1) implies that ߤଵ/,ସ is not a spectral measure. As a 
consequence, convolution of two spectral measures may not be spectral. 

One of the challenge questions on the spectral measures is the conjecture of Laba 
and Wang [128]: 

Let ߤ be a self-similar measure as in (44), then ߤ is a spectral measure if and only 
if (i) ݓ = 1/ܰ; (ii) ߩ = ݍ for some integer ݍ/1 > 1; and (iii) there exist a constant ܿ 
and an integer digit set ࣞᇱ such that ࣞ = ܿࣞᇱ and ࣞᇱ ⊕ ℬ ≡ {0, … , ݍ − 1} (mod q) for 
some ℬ ⊂ ℤ. 

In [117], it was shown that (i) is necessary for a spectral measure under the no 
overlap condition. Our Theorem (2.3.1) settles the case where ࣞ = {0, … , ܰ − 1}. The 
digit set ࣞᇱ in (iii) is called an integer tile. The study of integer tiles has a long history 
related to the geometry of numbers ([112]), and the spectral property of ࣞ as a discrete 
set itself is still unsolved [127]. 

As was proved in [125], the Cantor measure ߤଵ/ with ݇ an odd integer is not a 
spectral measure. It is well known that a relaxing of the orthonormal basis is the concept 
of frame introduced by Duffin and Schaeffer in the 50s (see [111]). We call a measure ߤ 
an ܨ-spectral measure (߁ for frame) if there exists a countable set { ఒ݁: ߣ ∈ ,ܣ and {߉ ܤ >
0 such that for any ݂ ∈  , (ߤ)ଶܮ

ଶ‖݂‖ܣ ≤  |
ఒ∈ஃ

〈݂, ఒ݁〉|ଶ ≤  ,ଶ‖݂‖ܤ

and call ߤ an ܴ-spectral measure if in addition it is a basis (R for Riesz). The frame 
structure of ܮଶ[0,1] has been studied in detail in [130,134]; also there are extensive 
studies of the frames on ܮଶ(ߤ) [114,135]. However the basic problem whether ߤଵ/ with 
݇ an odd integer, in particular for ߤଵ/ଷ, is an ߁-(or R- ) spectral measure is still unresolved. 
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Chapter 3 
Self-Affine Measures and Uniformity with Spectral Property  

We shoe a general theorem on such representation. The proof is constructive; it 
depends on using a tiling IFS ൛߰ൟ

ୀଵ
  to obtain a graph directed system, together with 

the associated probability on the vertices to form some transition matrices. As 
applications, we study the dimension and Lebesgue measure of a self-affine set, the ܮ-
spectrum of a self-similar measure, and the existence of a scaling function (i.e., an ܮଵ-
solution of the refinement equation). We then investigate affine iterated function systems 
(IFSs), we show that if an IFS with no overlap admits a frame measure then the 
probability weights are all equal. We also show that the Laba-Wang conjecture is true if 
the self-similar measure is absolutely continuous. We will present a new approach to the 
conjecture of Liu and Wang [206] about the structure of non-uniform Gabor orthonormal 
bases of the form ࣡(݃, ,߉ ࣤ). We exhibit complete orthogonal exponentials with zero 
Beurling dimensions. These examples show that the technical condition in Theorem 3.5 
of [218] cannot be removed. For an irregular maximal orthogonal set, we show that under 
some condition, its completeness is equivalent to that of the corresponding regularized 
mapping. 
Section (3.1): Vector-Valued Representations: 

We assume that ܣ is a ݀ × ݀ integral expanding matrix (i.e., all its eigenvalues 
have moduli > 1) and ࣞ = {݀ଵ, … , ݀} ⊂ ℤௗ. We call (ܣ, ࣞ) an integral affine pair. This 
pair defines an iterated function system (IFS) ൛ ܵൟ

ୀଵ
  on ℝௗ  by 

ܵ(ݔ) = ݔଵ൫ିܣ + ݀൯, ݔ  ∈ ℝௗ . 
It is known that under a suitable norm on ℝௗ, the expanding property of ܣ implies that 
the ܵ  's are contractive, hence there exists a unique nonempty compact set ܭ satisfying 

ܭ = ራ  


ୀଵ
ܵ(ܭ). 

Alternatively, ܭ can be written in the form of radix expressions 

൝  
ஶ

ୀଵ

ିܣ 
݀ : ݀ ∈ ࣞൡ. 

We call the attractor ܭ a self-affine set, and a self-affine region if ܭ∘ ≠ ∅. In the case 
where |det ܣ| = ݉, a self-affine region ܭ will tile ℝௗ  by certain translations of ܭ (cf., 
e.g., [157]); we call such a ܭ a self-affine tile. If we associate to the family ൛ ܵൟ

ୀଵ
  a set 

of positive probability weights ൛ൟ
ୀଵ


, then there exists a unique probability measure ߤ 
supported on ܭ satisfying 

(ܧ)ߤ =   


ୀଵ

ߤ ቀ ܵ
ିଵ(ܧ)ቁ =   



ୀଵ

(ܧ)ܣ൫ߤ − ݀൯                     (1) 

for any Borel subset ܧ of ℝௗ. This measure is called a self-affine measure. If, in addition, 
the matrix ܣ is a constant multiple of an orthonormal matrix, (i.e., ܣ is a similarity and 
൛ ܵൟ

ୀଵ
  are similitudes), then in the above terminology we replace self-affine by self-

similar. 
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The above IFS also plays a special role in the refinement equation in wavelet 
theory: 

(ݔ)݂ =   


ୀଵ
݂ܽ൫ݔܣ − ݀൯, ݔ  ∈ ℝௗ ,                                   (2) 

where ܽ ∈ ℝ and ∑ୀଵ
   ܽ = |det ܣ|. An ܮଵ-solution of this equation is called a scaling 

function. It can be seen that the Radon-Nikodym derivative of the ߤ in (1) satisfies the 
refinement equation. 

One of the most basic assumptions in the study of iterated function systems is the 
open set condition (OSC): there exists a bounded open set ܷ such that 

ܵ(ܷ) ⊂ ܷ  for each ݆  and  ܵ(ܷ) ∩ ܵ(ܷ) = ∅  if ݅ ≠ ݆. 
Under this condition the attractor ܭ can be identified with a symbolic space and the 
invariant measure ߤ can be identified with a product measure on the symbolic space; their 
geometric and analytic properties are well understood (see, for example, 
[146],[2],[167],[175]). However, there are many important cases where the OSC is not 
satisfied (we loosely say that the IFS has over݈ܽ), for example when ݉(= #ࣞ) >
|det ܣ| in the above ൛ ܵൟ

ୀଵ
 . The overlapping IFS's have very complicated and rich 

structure; there are many attempts to study them by imposing various conditions such as 
the transversality condition [173], the weak separation condition ([155],[161],[164], 
[171]) and the finite type condition [168]. 

We consider a vector-valued representation of the self-affine measure ߤ through a 
new IFS that satisfies the OSC. This approach was first used by Daubechies and Lagarias 
[141,142] for the refinement equation (2) with ܣ = [2], ࣞ = {0, … , ݉ − 1}. The vector 
form of the equation is 

(ݔ)ܨ = ܶ(ݔ2)ܨ + ଵܶݔ2)ܨ − 1) 
where ܨ: [0,1] → ℝିଵ is defined by (ݔ)ܨ = ,(ݔ)݂] … , ݔ)݂ + ݉ − 2)]௧ and ܶ, ଵܶ are 
(݉ − 1) × (݉ − 1) matrices determined by the coefficients ܽ, they are called transfer 
matrices. This representation initiated the investigation of the joint spectral radius to 
prove the existence and regularity of scaling functions (e.g., [156],[154],[165]). Another 
attempt of vector-valued representation was due to Strichartz [174] and Lau and Ngai 
[161] for the Bernoulli convolution associated with the golden ratio; it was used to give 
an explicit formula for the ܮ-spectrum and verify the multifractal formalism for ݍ > 0 
in such case. Feng has made a further investigation for ݍ ≤ 0 and extended this to the 
Pisot numbers [147,148]. 

Note that all the established cases are on ℝ. Here we will concentrate on integral 
self-affine measures on ℝௗ. We will use a tiling IFS (i.e., the attractor is a self-affine tile) 
to be the new IFS with OSC for the vectorvalued representation. Our main result is 
Theorem (3.1.1)[138]: For each self-affine measure ߤ generated by an integral affine 
pair (ܣ, ࣞ), there exists a self-affine ℤௗ-tile ܶ such that, for the set ℰ = { ଵ݁, … , ݁ே} =
{݁ ∈ ℤௗ: ܭ ∩ (ܶ∘ + ݁) ≠ ∅}, the vector-valued measure 

(ܧ)ࣆ = ܧ))ߤ] ∩ ܶ) + ݁ଵ), … , ܧ))ߤ ∩ ܶ) + ݁ே)]௧ 
satisfies 

(⋅)ߤ =   


ୀଵ
ܹߤ ቀ߰

ିଵ(⋅)ቁ ,                                                  (3) 
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where ݈ = |det (ܣబ)| for some ݊ ≥ 1, {߰(ݔ) = ݔ)బିܣ + ܿ)}ୀଵ
  is the associated 

integral IFS generating ܶ, and ܹ = [ ܹ(ݑ, ,[(ݒ 1 ≤ ݅ ≤ ݈, are nonnegative ܰ × ܰ 
matrices satisfying: (i) ܹ: = ∑ୀଵ

   ܹ  is irreducible; (ii) ܹ is Markov, i.e., the column 
sums of ܹ are all 1. 

The ℤௗ-tile ܶ in the theorem means ܶ admits ℤௗ as a tiling set. The IFS {߰}ୀଵ
  

corresponding to ܶ satisfies the OSC. One of the most important consequences of this 
representation is that 

((ܶ)ఙ߰)ࣆ = ఙܹ(4)                                                   ,(ܶ)ࣆ 
where ߪ = (݅ଵ, … , ݅) ∈ Σ

 , Σ = {1, … , ݈}, ߰ఙ = ߰భ ∘ ⋯ ∘ ߰  and ఙܹ = ܹభ ⋯ ܹ. 
The family of {߰ఙ(ܶ)} generates the Borel sets and the product of the matrices determines 
the local property of ߤ. 

In the theorem the tile ܶ is generated by ܣ (or ܣబ  for some ݊ ) and a suitable 
choice of the digit set ࣝ ∈ ℤௗ  (it has to meet the technical requirement that ߤ(∂ܶ + ݁) =
0 for all ݁ ∈ ℤௗ). The set ℰ = {݁ଵ, … , ݁ே} is considered as a set of vertices, and an edge 
from ݁௨  to ݁௩ exists if there exist ܿ ∈ ࣝ and ݀ ∈ ࣞ such that 

ܿ − ݀ + ௨݁ܣ = ݁௩                                                     (5) 
(see (9), Lemma (3.1.10)(iii) and Lemma (3.1.12)). The associated weights of this graph-
directed system are the ܹ  = ,ݑ)ݓ] ,ݑ)ݓ with [(ݒ (ݒ =   where the ݆ is determined by 
(5). 

The theorem also holds for the refinement equation (2) with some obvious 
adjustments. With the vector form, all the known theory for the joint spectral radius will 
go through. 

For a given pair (ܣ, ࣞ), it is in general difficult to determine whether the self-affine 
set ܭ is a self-affine region, which is a necessary condition for (2) to have an ܮଵ-solution; 
in the case #ࣞ = |det ܣ|, the ܭ is a self-affine tile [157]. This question has been studied 
in some detail in [152] and an algorithm was given there (see also [168],[175] for self-
affine tiles). We make use of the main theorem to give a unified and more satisfactory 
criterion as follows: 
Theorem (3.1.2)[138]: Let { ܹ}ୀଵ

  be the transition matrices in Theorem (3.1.1) 
corresponding to  = 1/݉. Then the following conditions are equivalent: 

(i) ܭ is a self-affine region, i.e., ܭ∘ ≠ ∅; 
(ii) ܭ has positive Lebesgue measure; 
(iii) ( ఙܹ)∼ ≠ 0 for any ߪ = (݅ଵ, … , ݅), 1 ≤ ݅ ≤ ݈, ݊ > 0, where ݒ denotes the 

vector with 1 in the nonzero entries of ݒ and 0 elsewhere; 1 is the column vector 
with 1 in all entries. 

Let ℱ = { = ,ଵݒ … , ) } be the set of all distinctݒ ఙܹ)∼. It is easy to see that ݎ ≤ 2ே. 
Hence we can determine whether ܭ∘ ≠ ∅ in at most 2ே steps. It is known that the 
Lebesgue measure of such a ܭ is a rational number [152], and is an integer if ܭ is a tile 
[157]. We prove 
Theorem (3.1.3)[138]: Let ܭ be a self-affine region generated by an integral affine pair. 
Then the Lebesgue measure of ܭ is given by 

ℒ(ܭ) =   


ୀଵ

ܽߙ(ݒ), 

where ߙ(ݒ) is the number of nonzero entries of ݒ ∈ ℱ and {ܽ}ୀଵ
  is defined through 

the matrix ܩ = ,ݏ)ܩ] ×[(ݐ  with 
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,ݏ)ܩ (ݐ = ݈ିଵ#{݅: ( ܹݒ௦)∼ = ,{௧ݒ  1 ≤ ,ݏ ݐ ≤  .ݎ
The detailed definition of {ܽ}ୀଵ

  is given in Theorem (3.1.23). For the case ܭ∘ = ∅, we 
want to determine its dimension. As a consequence of Theorem (3.1.2), we have ݒ = 0 
in ℱ (after rearrangement), and the matrix ܩ in Theorem (3.1.3) can be expressed as 

ܩ = ቂܩଵ ݃
0 1ቃ. 

Theorem (3.1.4)[138]: Let ܭ be the self-similar set coming from a pair (ܣ, ࣞ), where ܣ 
is a similarity, and suppose that ܭ∘ = ∅. Then dim ܭ = dimୌ ܭ = ݀ − log ߣଵ/log ߷ <
݀, where ߣଵ is the maximal eigenvalue of ܩଵ and ߷ is the contraction ratio of the IFS. 

As another application of Theorem (3.1.1), we consider the multifractal structure 
of the self-similar measure in (1). Let 

(ݔ)ߙ = lim
→

 
log ߤ(ܤ(ݔ))

log ݎ
 

be the local dimension of ߤ at ݔ. Let ܭఈ = ݔ} ∈ :ܭ ߙ =  A classical heuristic .{(ݔ)ߙ
principle called the multifractal formalism says that 

dimୌ ܭఈ =  ,(ߙ)∗߬
where ߬∗(ߙ) is the Legendre transform of ߬  The validity of the .ߤ -spectrum ofܮ the ,(ݍ)
formalism has to be considered in individual cases and depends on the differentiability 
of ߬(ݍ). For example, if the IFS consists of similitudes and satisfies the OSC, then there 
is an explicit expression of ߬(ݍ) and the formalism holds ([146], [140], [145]). For 
overlapping IFS, there were extensive investigations of the Bernoulli convolution 
associated with the golden ratio [161] and the Pisot numbers [148], the convolution of 
the Cantor measure ([166],[150]) and some other related self-similar measures 
([172],[176]). In these cases some extraordinary phenomena were revealed when ݍ < 0. 
There was also a study of the scaling functions where the coefficients are allowed to be 
negative (e.g., [143]). 

By using the vector representation in Theorem (3.1.1), the product of matrices in 
(4) and the results in [149] and [162], we have 
Theorem (3.1.5)[138]: Let ߤ be the self-similar measure associated with the integral 
similar pair (ܣ, ࣞ). Then 

(ݍ)߬ = lim
→ஶ

 
log ∑  |ఙ|ୀ  ∥∥ ఙܹ∥∥ଵ



nlog ߷
, ݍ  > 0, 

where |ߪ| is the length of ߪ and ∥∥ ఙܹ∥∥ଵ is the sum of all entries of ఙܹ . Moreover, ߬(ݍ) is 
differentiable and the multifractal formalism holds for ݍ > 0. 

We prove Theorem (3.1.1); the analog for the scaling function is also described. 
The vector-valued measure in Theorem (3.1.1) is constructive; we illustrate the 
construction by some examples. We use a special case of Theorem (3.1.1) to consider 
self-affine sets; Theorems (3.1.2)-(3.1.4) are proved there. We consider the multifractal 
structure of integral self-similar measures, and prove Theorem (3.1.5). 

Let (ܣ, ࣞ) be an integral affine pair as in the last section with ࣞ = {݀ଵ, … , ݀} and 
let ൛ ܵൟ

ୀଵ


 be the associated self-affine IFS. We will use the following symbols 
throughout: Σ = {1, … , ݉} (or just Σ if there is no confusion) and Σ∗ = ⋃ஹ  Σ. For 
any ܬ = ݆ଵ … ݆ ∈ Σ, let ܵ = ܵభ ∘ ⋯ ∘ ܵ  and 

݀ = ݀ + ܣ ݀షభ + ⋯ + ିଵܣ
݀భ ,  ࣞ = ࣞ + ࣞܣ + ⋯ +  .ିଵࣞܣ

We call a compact set ܶ ⊆ ℝௗ a tile if there exists a discrete set ࣮ (tiling set ) such 
that ℝௗ = ⋃௭∈࣮  (ܶ + ∘ܶ) and (ݖ + (ݖ ∩ (ܶ∘ + (ᇱݖ = ∅ for any two distinct ݖ, ᇱݖ ∈ ࣮. If 
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the tiling set can be chosen to be ℤௗ, then we call ܶ a ℤௗ-tile. It is known that if ܶ is a 
self-affine tile (i.e., the attractor of an integral affine pair (ܣ, ࣝ) ), then ܶ admits a ℤௗ-
tiling if and only if ℒ(ܶ) (the Lebesgue measure of ܶ ) is 1 ; in this case #ࣝ = |det ܣ| =
݈ and ࣝ is a complete residue set, i.e., the set of cosets {[݀]: ݀ ∈ ࣝ} equals ℤௗ/ܣℤௗ[159]. 

Using Corollary 5 and Theorem 1 of [177] (or Theorem (3.1.3) of [157]), we have 
the following lemma which guarantees the existence of a ℤௗ-tile for a given ܣ. 
Lemma (3.1.6)[138]: For any integral expanding matrix ܣ, there exists an integer ݇ > 0 
and a digit set ࣝ ⊆ ℤௗ with #ࣝ = หdet (ܣ)ห such that ܶ: = ܣ)ܶ , ࣝ) is a ℤௗ-tile. 
Indeed, according to [177], the ݇  can be chosen such that all eigenvalues of ܣ are greater 
than 3√݀ in modulus. For such ݇, let ܳ = :ݔܣ} ݔ ,ଵݔ] = … , ௗ]௧ݔ , ݔ ∈ (−1/2,1/2]}. 
Then ࣝ = ܳ ∩ ℤௗ satisfies the condition of Lemma (3.1.6). In the one- or two-
dimensional cases, the bound 3√݀ can be improved to 2. We also remark that the ܣ, ݇ ≥
1, in the above lemma cannot be taken to be ܣ as there exist expanding integral matrices 
݀ with size) ܣ > 3 ) such that ܶ(ܣ, ࣝ) is not a ℤௗ-tile for any integral digit set ࣝ with 
#ࣝ = |det (ܣ)| ([163, corrigendum/addendum] and [170]). So far, for an integral 
similarity matrix ܣ, no example has been found for which we must choose ݇ > 1. 

We will introduce an auxiliary IFS {߰}ୀଵ
  such that the attractor ܶ is a ℤௗ-tile; 

this system satisfies the open set condition automatically and we will reduce the self-
affine measure ߤ to be a vectorvalued self-affine measure ࣆ of {߰}ୀଵ

  in the next section. 
First we state 
Lemma (3.1.7)[138]: Let ൛ ܵൟ

ୀଵ


 be the IFS generated by the integral affine pair (ܣ, ࣞ), 

let ߤ be a self-affine measure, and let ܭ be the attractor of the IFS ൛ ܵൟ
ୀଵ


. Let ܶ =
,ܣ)ܶ ࣝ) be a ℤௗ-tile and let ܸ = ⋃{ܶ∘ + :ݖ ܶ)ߤ + (ݖ > ݖ 0 ∈ ℤௗ}. Then 

(i) ܸ is a nonempty open set and is invariant with respect to ൛ ܵൟ
ୀଵ


; 
(ii) if ܸ ∩ ܭ ≠ ∅, then ߤ(∂ܶ + (ݖ = 0 for all ݖ ∈ ℤௗ ( ∂ܶ is the boundary of ܶ ). 

Consequently, ߤ is concentrated on either ⋃௭∈ℤ  (ܶ∘ + or ⋃௭∈ℤ (ݖ  (∂ܶ +  .(ݖ
Proof. Set ܵ (ݔ) = ݔଵ൫ିܣ + ݀൯, ݀ ∈ ࣞ. If ߤ(ܶ + (ݖ > 0, then ߤ൫ ܵ(ܶ + ≤ ൯(ݖ
ܶ)ߤ + (ݖ > 0. Since ܶ = ,ܣ)ܶ ࣝ) is a ℤௗ-tile, ࣝ is a complete residue set of ܣ. Hence 
there exist ܿ ∈ ࣝ and ݁ ∈ ℤௗ such that ݖ + ݀ = ܿ +  and ݁ܣ

ܵ (ܶ + (ݖ  = ଵ൫ܶିܣ + ݖ + ݀൯ = ܶ)ଵିܣ + ܿ + (݁ܣ
 = ܶ)ଵିܣ + ܿ) + ݁ ⊆ ܶ + ݁.

 

Hence ߤ(ܶ + ݁) ≥ ൫ߤ ܵ(ܶ + ൯(ݖ ≥ ܶ)ߤ + (ݖ > 0 and ܵ(ܶ∘ + (ݖ ⊆ ܶ∘ + ݁ ⊆ ܸ. It 
follows that ܵ(ܸ) ⊆ ܸ for all ݆. This proves (i). 

To prove (ii), we assume ܸ ∩ ܭ ≠ ∅; then we can find ݔ ∈ ܸ ∩ ,ܭ ߝ > 0 and ܬ ∈
Σ  such that ܵబ(ܭ) ⊆ (ݔ)ఌܤ ⊆ ܸ. We rearrange the distinct ܵ 's, ܬ ∈ Σ , as ൛߶ൟ

ୀଵ


 
with ߶ଵ = ܵబ and let ݓ = ∑ௌୀథೕ   > 0. Then we have 

(a) ߶ଵ(ܭ) = ܵబ(ܭ) ⊆ ܸ and ߶(ܸ) ⊆ ܸ, ݆ = 1, … ,  ;ݎ
(b) ܭ = ⋃ ߶(ܭ)

ୀଵ   
(c) ߤ(⋅) = ∑ୀଵ

 ൫߶ߤݓ 
ିଵ(⋅)൯. 

For this new IFS ൛߶ൟ
ୀଵ
 , let Σ෨ = {2,3, … ,  and let {ݎ
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ܧ = ራ  
∈ஊೝ

∖ஊ෩ೝ


߶(ܭ). 

For any ܬ = ݆ଵ ⋯ ݆ ∈ Σ
 ∖ Σ෨

, there is an 1 ≤ ݏ ≤ ݊ such that ݆௦ = 1. 
Note that ߶(ܭ) ⊆ (ܭ)for all ݆, so it follows from (a) that ߶ ܭ ⊆

߶భ⋯ೞషభ൫߶ೞ(ܭ)൯ ⊆ ߶భ⋯ೞషభ(ܸ) ⊆ ܸ and hence ܧ ⊆ ܸ. Using (b) and (c), we have 

1  ≥ (ܸ)ߤ ≥ (ܧ)ߤ =   
∈ஊೝ



ߤݓ  ቀ߶
ିଵ(ܧ)ቁ

 ≥   
∈ஊೝ

∖ஊ෩ೝ


ߤݓ  ቀ߶
ିଵ(ܧ)ቁ ≥   

∈ஊೝ
∖ஊ෩ೝ



ߤݓ  ቀ߶
ିଵ൫߶(ܭ)൯ቁ

 =   
∈ஊೝ

∖ஊ෩ೝ


(ܭ)ߤݓ  =   
∈ஊೝ



ݓ  −   
∈ஊ෩ೝ



ݓ 

 = ቌ  


ୀଵ

ቍݓ 



− ቌ  


ୀଶ

ቍݓ 



= 1 − (1 − ଵ)ݓ .

 

Since ݓଵ > 0, we have (1 − ଵ)ݓ → 0 as ݊ → ∞. Therefore ߤ(ܸ) = 1 and ߤ( ‾ܸ ) =
(ܭ)ߤ = 1. Noting that ∂ܸ = ⋃{∂ܶ + :ݖ ܶ)ߤ + (ݖ > 0, ݖ ∈ ℤௗ}, we have ߤ(∂ܸ) =
ܶ∂)ߤ + (ݖ = 0 for all ݖ ∈ ℤௗ. 

In view of the above lemma, we need to find a ℤௗ-tile ܶ such that 
ܶ∂)ߤ + (ݖ = 0  for all ݖ ∈ ℤௗ , 

or equivalently, (ܶ∘ + (ݖ ∩ ܭ ≠ ∅ for some ݖ ∈ ℤௗ. This can be achieved by a certain 
translation of the tile: 
Lemma (3.1.8)[138]: Let ܭ be the attractor of the integral affine pair (ܣ, ࣞ) and let ܶ =
,ܣ)ܶ ࣝ) be a ℤௗ-tile. Then there are ݇ > 0 and ݁ ∈ ࣝ such that ܶ: = ,ܣ)ܶ ࣝ − ݁) is 
also a ℤௗ-tile and ܭ ∩ ( ܶ

∘ + (ݖ ≠ ∅ for some ݖ ∈ ℤௗ . 
Proof. Let ܤఋ(ݔ) ⊆ ܶ∘ and let ܽ ∈ ℕௗ  be such that ݔ ∈ ܭ + ܽ. Since ܶ is a tile, ܽ +
ݖ ∈ ܶ for some ݖ ∈ ℤௗ; hence there exist ܿೕ ∈ ࣝ such that ܽ + ݖ = ∑ୀଵ

ஶ ܿೕିܣ   (recall 
that ܶ = {∑ୀଵ

ஶ :ݔିܣ  ݔ ∈ ࣝ} ). Let ܫ be the identity matrix and let 

ܽ = ݖ− + ܫ) − )ିଵିܣ   


ୀଵ

ܿೕିܣ . 

Note that ିܣ converges to the zero matrix, hence lim→ஶ  ܽ = ܽ. Let ݇ be such that 
ܽ ∈ ܽ + ܭ) ఋ(0). Thenܤ + ܽ) ∩ ܶ∘ ≠ ∅. Let ݁ = ∑ୀଵܣ

 ିܣ 
ܿೕ = ∑ୀଵ

 ିܿೕܣ  . We 
see that ݁ ∈ ࣝ and 

ܶ  = ,ܣ)ܶ ࣝ − ݁) = ,ܣ)ܶ ࣝ) −   
ஶ

ୀଵ

݁ିܣ 

 = ,ܣ)ܶ ࣝ) − ܫ) − ݁ିܣ)ିଵିܣ = ܶ − (ܽ + .(ݖ

 

This implies ܭ ∩ ( ܶ
∘ + (ݖ ≠ ∅. 

We can now give the main result. 
Theorem (3.1.9)[138]: Let (ܣ, ࣞ) be an integral affine pair. Then there is ݊ > 0 and a 
digit set ࣝ ⊆ ℤௗ with #ࣝ = |det (ܣబ)| such that 

(i) ܶ = బܣ)ܶ , ࣝ) is a ℤௗ-tile; 
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(ii) for any self-affine measure ߤ associated with (ܣ, ࣞ), 

ߤ ൭ ራ  
௭∈ℤ

  (∂ܶ + ൱(ݖ = 0. 

Proof. Lemma (3.1.6) implies that there exists an integer ݇ > 0 and a digit set ሚࣝ such 
that ܶ൫ܣ, ሚࣝ൯ is a ℤௗ-tile. Lemma (3.1.8) shows that there exists an integer ݎ > 0 and an 
integral vector ݁ ∈ ሚࣝ such that ܭ ∩ ቀ(ܶ(ܣ, ሚࣝ − ݁))∘ + (ݖ ≠ ∅ . for some ݖ ∈ ℤௗ. Let 
݊ = ࣝ and ݎ݇ = ሚࣝ − ݁. Then ܶ(ܣబ , ࣝ) is a ℤௗ-tile and (ܶ(ܣబ , ࣝ)∘ + (ݖ ∩ ܭ ≠ ∅ for 
some ݖ ∈ ℤௗ. The remaining assertion follows from Lemma (3.1.7). 

We will prove Theorem (3.1.1) via several lemmas. For the ݊ and ࣝ defined in 
Theorem (3.1.9), if ݊ > 1, let ൛߶ൟ

ୀଵ


 be the distinct ܵ  's, ܬ ∈ Σబ , and ݓ =

∑൛: ܬ ∈ Σ
బ , ܵ = ߶ൟ. 

Then ߤ satisfies 

(⋅)ߤ =   


ୀଵ

ߤݓ ቀ߶
ିଵ(⋅)ቁ. 

We can therefore replace ൛ ܵൟ
ୀଵ
  and the corresponding probability weights ൛ൟ

ୀଵ
  by 

the IFS ൛߶ൟ
ୀଵ


 and ൛ݓൟ
ୀଵ


, respectively. Hence, in order to prove Theorem (3.1.1), we 
can assume without loss of generality that ݊ = 1 in Theorem (3.1.9), i.e., we assume 

(H) ܶ = ,ܣ)ܶ ࣝ) is a ℤௗ-tile such that ߤ൫⋃௭∈ℤ  (∂ܶ + ൯(ݖ = 0. 
This assumption ensures that, for any ݖ ∈ ℤௗ, ܶ)ߤ + (ݖ > 0 if and only if ܭ ∩
(ܶ∘ + (ݖ ≠ ∅. 

Let ߰(ݔ) = ݔ)ଵିܣ + ܿ) for some ܿ ∈ ࣝ. Since we have two IFS's and so two index 
sets, to avoid confusion we will use ܫ, to denote the multi-indices in Σ ܬ

∗ , and ߪ, ߬ to 
denote those in Σ

∗(݈ = |det ܣ|). Note that ூܵ(0) = (ݔ)݀ூ and ூܵିܣ = ݔ)ିܣ + ݀ூ). 
Since ܵ  and ߰ are defined by the same matrix ܣ, one can show directly that 

ܵூ
ିଵ߰ఙ(ݔ) = ݔ + ܿఙ − ݀ூ ∀ܫ ∈ Σ

 , ߪ ∈ Σ
 ,                             (6) 

and 
ܶ)ఙ߰)ߤ + ݁)) =   

ூ∈ஊ


൫ߤூ ூܵ
ିଵ(߰ఙ(ܶ + ݁))൯                              

                              =   
ூ∈ஊ



ܶ)ߤூ + ݁ + ܿఙ − ݀ூ) ∀݁ ∈ ℤௗ, ߪ ∈ Σ
 . 

The above reveals the basic relationship of ൛ ܵൟ
ୀଵ
  and {߰}ୀଵ

  and we make use of this 
to form a weighted directed graph system. Let 

ℰ = {݁ଵ, … , ݁ே} = {݁ ∈ ℤௗ: ܭ ∩ (ܶ∘ + ݁) ≠ ∅}                          (7) 
and 

ℬ = {߰ఙ(ܶ) + ݁௨ : ݁௨ ∈ ℰ, ߪ ∈ Σ
},  ݊ ≥ 0.                             (8) 

Since ܶ is a ℤௗ-tile by our assumption (H), it is easy to prove  
Lemma (3.1.10)[138]: With the above notations, we have 

(i) for any ܧ, ܨ ∈ ℬ , ∘ܧ ∩ ∘ܨ ≠ ∅ if and only if ܧ =  ;ܨ
(ii) ℬ is a partition (with overlaps at the boundary) of the union ⋃ா∈ℬ ⊆)ܧ   ;(ܭ
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(iii) if ݖ ∈ ℤௗ and ܧ = ܶ)ିܣ + ܧ then ,(ݖ ∈ ℬ if and only if there are unique ߪ ∈
Σ

 and ݁௨ ∈ ℰ such that ܿఙ + ݁௨ܣ =  ;ݖ
(iv) (ܶ∘ + ݁௨) ∩ ܭ ≠ ∅ for all ݁௨ ∈ ℰ. 

Lemma (3.1.11)[138]: For any ܫ ∈ Σ
 , ܬ ∈ Σ

 , ߪ ∈ Σ
 , ߬ ∈ Σ

  and ݖ ∈ ℤௗ,  
ܿఙఛ − ݀ூ + ݖାܣ ∈ ℰ  implies  ܿఙ − ݀ூ + ݖܣ ∈ ℰ. 

Proof. Observe that ߰ఙ(ܶ) + ݖ = ܶ)ିܣ + ܿఙ +  so (6) implies ,(ݖܣ
ூܵ
ିଵ(߰ఙ(ܶ) + (ݖ = ܶ + ܿఙ − ݀ூ +  .ݖܣ

Since ߤ( ூܵ
ିଵ(ܧ)) = ∑ᇲ∈ஊ

ೖ ൫ߤᇲ  ூܵᇲ
ିଵ(ܧ)൯, we have 

ܶ)ߤ + ܿఙ − ݀ூ + (ݖܣ  = ൫ߤ ூܵ
ିଵ(߰ఙ(ܶ) + ൯(ݖ ≥ ൫ߤ ூܵ

ିଵ(߰ఙఛ(ܶ) + ൯(ݖ

 ≥ ߤ ቀ ூܵ
ିଵ(߰ఙఛ(ܶ) + ቁ(ݖ

 = ൫ܶߤ + ܿఙఛ − ݀ூ + ൯ݖାܣ > 0,

 

and the lemma follows. 
As a crucial step to reformulate the self-affine measure of ൛ ܵ ൟ

ୀଵ


 in terms of the 

auxiliary IFS {߰}ୀଵ
 , we have 

Lemma (3.1.12)[138]: The family {ିܣ(ܶ + :(ݖ ݖ ∈ ℤௗ , ݊ ≥ 0} generates the Borel 
subsets of ℝௗ, and for any ݖ ∈ ℤௗ, 

ܶ)ିܣ)ߤ + ((ݖ =   
ே

௩ୀଵ

൭  ൝ூ : ܫ ∈   




  , ݖ − ݀ூ = ݁௩ൡ൱ ܶ)ߤ + ݁௩) 

for some ݁௩ ∈ ℰ. 
Proof. The first part is clear as ܶ is a tile with ℤௗ  as a tiling set. For the identity we note 
that 

ܶ)ିܣ)ߤ + ((ݖ  =   
ூ∈ஊ



൫ߤூ  ூܵ
ିଵ(ିܣ(ܶ + ൯((ݖ

 =   
ூ∈ஊ



ܶ)ߤூ  − ݀ூ + .(ݖ
 

By the definition of ℰ, ܶ)ߤ − ݀ூ + (ݖ > 0 if and only if ݖ − ݀ூ = ݁௩  for some ݁௩ ∈ ℰ. 
The lemma follows by replacing ݖ − ݀ூ  with ݁௩ in the above expression. 

It follows from Lemma (3.1.10)(iii) that we only need to consider those sets 
ܶ)ିܣ + ݖ such that (ݖ = ܿఙ + ݁௨ܣ ∈ ℰ. In view of the above lemma, we define ܹ =
,ݑ)ݓ] ,ே×ே[(ݒ 1 ≤ ݅ ≤ ݈, by 

,ݑ)ݓ (ݒ = ቊ
 , ܿ − ݀ + ௨݁ܣ = ݁௩ for some ݆,
0,  otherwise .

                   (9) 

Then we have 
Lemma (3.1.13)[138]: For any ߪ = ଵߪ ⋯ ߪ ∈ Σ

, let ఙܹ = ,ݑ)ఙݓ]  be the [(ݒ
corresponding product matrix. Then 

,ݑ)ఙݓ (ݒ =   ൝ூ: ܫ ∈   




, ܿఙ − ݀ூ + ݁௨ܣ = ݁௩ൡ.                   (10) 

Proof. We will use induction. The identity is obviously true for ݊ = 1 by the definition 
of ܹ . Assume it is true when ݊ = ݇ − 1. For ݊ = ݇, let ߪ = ,ݎ߬ ߬ ∈ Σ

ିଵ, ݆ܬ ∈ Σ
 . By 
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Lemma (3.1.11), ܿఙ + ݁௨ܣ − ݀ ∈ ℰ implies ܿఛ + ିଵ݁௨ܣ − ݀ ∈ ℰ. Let ఛܹ =
ൣܽ௨,௩൧ே×ே. By the induction hypothesis we have 

ܽ௨,௩ =  :ூ}  ܫ ∈ Σ
ିଵ, ܿఛ − ݀ூ + ିଵ݁௨ܣ = ݁௩}. 

This implies that 

,ݑ)ఙݓ (ݒ =    
ே

௧ୀଵ

 ܽ௨,௧ݓ(ݐ, (ݒ

=    
ே

௧ୀଵ

  ቀ ூ}  : ܫ ∈ Σ
ିଵ, ܿఛ − ݀ூ + ିଵ݁௨ܣ = ௧݁}ቁ

 ⋅ ቀ :}  ܿ − ݀ + ௧݁ܣ = ݁௩}ቁ

=    
ே

௧ୀଵ

  :ூ}  ܫ ∈ Σ
ିଵ, ܿఛ − ݀ூ + ିଵ݁௨ܣ = ݁௧ , ܿ − ݀ + ܣ ௧݁ = ݁௩}

=    ൛: ܬ ∈ Σ
 , ܿఙ − ݀ + ݁௨ܣ = ݁௩ൟ,

 

(the last equality follows from Lemma (3.1.11)). 
We have assumed in (H) that ݊  = 1 in the statement of Theorem (3.1.9). Also we 

assume all ݀ in ࣞ are distinct, otherwise we can combine the corresponding ܵ  and   
together. Let ܸ = ⋃ୀଵ

ே  ൫ܶ∘ + ݁൯. Lemma (3.1.7) implies that ܸ is open and invariant 
with respect to ൛ ܵൟ

ୀଵ


, and ߤ(∂ܶ + (ݖ = 0 for all ݖ ∈ ℤௗ. For 
(ܧ)ࣆ = ܧ))ߤ] ∩ ܶ) + ݁ଵ), … , ܧ))ߤ ∩ ܶ) + ݁ே)]௧ 

we have, by the self-affine identity, 

௩((ܧ)ࣆ)  = ܶ))ߤ ∩ (ܧ + ݁௩) =   


ୀଵ

ܶ)ܣ)ߤ  ∩ (ܧ + ௩݁ܣ − ݀)

 =   


ୀଵ

ߤ  ൮ቌራ  


ୀଵ

  ൫ܶ + ܿ൯ ∩ ቍ(ܧ)ܣ + ௩݁ܣ − ݀൲

 =   


ୀଵ

ߤ  ቌራ  


ୀଵ

  ൫ܶ ∩ ൫(ܧ)ܣ − ܿ൯ + ܿ൯ + ௩݁ܣ − ݀ቍ .

 

Use ߤ(∂ܶ + (ݖ = 0, (9) and the fact that ܶ is a ℤௗ-tile to obtain 

௩((ܧ)ࣆ)  =   


ୀଵ

   


ୀଵ

൫ܶߤ  ∩ ൫(ܧ)ܣ − ܿ൯ + ܿ + ௩݁ܣ − ݀൯

 =   


ୀଵ

   
ே

ୀଵ

,ݒ)ݓ  ൫ܶߤ(ݎ ∩ ൫(ܧ)ܣ − ܿ൯ + ݁൯.

 

This implies (ܧ)ࣆ = ∑ୀଵ
   ܹࣆ൫߰

ିଵ(ܧ)൯. 
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To prove statement (i), we note that for any 1 ≤ ,ݑ ݒ ≤ ܰ, our assumption (H) on 
ܶ implies that ܭ ∩ (ܶ∘ + ݁௨) ≠ ∅, so there exists an integer ݊ and ܫ ∈ Σ

  such that 
ூܵ(ܶ + ݁௩) ⊆ ܶ + ݁௨. Since 

ூܵ(ܶ + ݁௩) = ܶ)ିܣ + ݁௩ + ݀ூ) 
with ݁௩ + ݀ூ ∈ ℤௗ, Lemma (3.1.10)(iii) implies that there exists ߪ ∈ Σ

  such that ܿఙ −
݀ூ + ݁௨ܣ = ݁௩; by Lemma (3.1.13), we see that for ܹ = ∑ୀଵ

   ܹ , the (ݑ,  entry of (ݒ
ܹ is ≥ ூ  and hence is positive. Thus we have proved that ܹ is irreducible. 

For (ii), we first consider the expression ܿ − ݀௦ + ௨݁ܣ = ݁௩ in (9). We claim that 
the pair (݁௨ , ܿ) is uniquely determined by ݁௩ and ݀௦. Indeed, if ܿ − ݀௦ + ௨ᇲ݁ܣ = ݁௩, 
then ିܣଵ൫ܿ − ܿ൯ = ݁௨ᇲ − ݁௨ ∈ ℤௗ. Since ܶ is a ℤௗ-tile, {ܿଵ, … , ܿ} is a complete set of 
residues ( modܣ ) [159], and we conclude that ݑᇱ = ݅ and ݑ = ݆, which yields the claim. 

It follows from the claim that distinct pairs (݁௨ , ܿ) and ൫݁௨ᇲ , ܿ൯ with ݓ(ݑ, (ݒ > 0 
and ݓ(ݑᇱ, (ݒ > 0 correspond to distinct ݀௦. Hence 

  
ே

௨ୀଵ

,ݑ)ݓ  (ݒ =   
ூ

ୀଵ

    
ே

௨ୀଵ

,ݑ)ݓ  (ݒ ≤   


௦ୀଵ

  ௦ = 1, ݒ  = 1, … , ܰ,                (11) 

i.e., the column sums of ܹ are ≤ 1. On the other hand, by the vector self-affine identity 
just proved, [ߤ(ܶ + ଵ݁), … , ܶ)ߤ + ݁ே)]௧ is a positive 1eigenvector of ܹ. This implies 
that all column sums of ܹ must be 1. 

The proof is complete. 
The above proof yields 

Corollary (3.1.14)[138]: With the same assumptions and notations of Theorem (3.1.1), 
we have 

((ܶ)ఙ߰)ࣆ = ఙܹࣆ(ܶ), ߪ∀  ∈ Σ∗. 
We remark that in the above proof, each  appears exactly once in each column of ܹ. 
Also the matrices { ܹ}ୀଵ

  are not unique, not even the same size. They depend on the 
choice of ࣝ for the tile ܶ; an example is given for the case ܣ = [3] on ℝ. 

For the actual construction of ࣆ and ܹ , we have to find the set ℰ in the theorem 
as both the tile ܶ and the attractor ܭ may not be expressed explicitly. We provide an 
algorithm to construct ℰ by using the expression in (9). 
Proposition (3.1.15)[138]: Let ܭ be the attractor of (ܣ, ࣞ), and let ܶ = ,ܣ)ܶ ࣝ) be a ℤௗ-
tile such that ܭ ∩ (ܶ∘ + (ݖ ≠ ∅ for some ݖ ∈ ℤௗ as above. Let ℰ = ∅ and let ∅ ≠ ℰଵ ⊆
ℰ. Define 

ℰାଵ = ℰ ∪ ቀℤௗ ∩ ଵ൫(ℰିܣ ∖ ℰିଵ) + ࣞ − ࣝ൯ቁ ,  ݊ > 0.                (12) 
Then there is an ݊ > 0 such that ℰ = ℰାଵ, and for this ݊ we have ℰ = ℰ. 
Proof. Since ℰ is a finite set, we need only prove ℰ ⊆ ℰ for all ݊ > 0, and ℰ ⊆ ⋃வ  ℰ . 

We prove the first inclusion by induction. Assume that ℰ ⊆ ℰ and let ݖ ∈ ℰାଵ ∖
ℰ. Then there exist ݁ ∈ ℰ , ݀ ∈ ࣞ and ܿ ∈ ࣝ such that ݖ = ଵ൫݁ିܣ + ݀ − ܿ൯. Hence 

ܶ)ߤ + (ݖ ≥ ܶ)ܣ)ߤ + (ݖ − ݀) = ܶܣ൫ߤ + ݁ − ܿ൯. 
Note that ܶܣ ⊇ ܶ + ܿ  and ݁ ∈ ℰ ⊆ ℰ, so ߤ(ܶ + (ݖ ≥ ܶ)ߤ + ݁) > 0. This implies 
ℰାଵ ⊆ ℰ and induction follows. 

For the second inclusion, let ݁௩ ∈ ℰ. Choose ݁௨ ∈ ℰଵ. Since ܹ = ∑ୀଵ
   ܹ  is 

irreducible, there exist ݁௩భ , … , ݁௩ ∈ ℰ with ݒଵ = ݒ and ݑ = ,ାଵݒ൫ݓ such that ݒ ൯ݒ >
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0. From the definition of { ܹ}ୀଵ
 , we see that ݁ ௩ೕశభ ଵିܣ ∋ ቀ݁௩ೕ + ࣞ − ࣝቁ. Therefore ݁ ௩ ∈

ℰ from the definition of ℰ  and since ݁௩భ ∈ ℰଵ. Hence ℰ ⊆ ⋃வ  ℰ . 
We illustrate this algorithm by some examples. To conclude, we consider the 

refinement equation 

(ݔ)݂ =   


ୀଵ
݂ܽ൫ݔܣ − ݀൯, ݔ  ∈ ℝௗ ,                                 (13) 

where ܣ and ݀ ∈ ࣞ are as before, and the coefficients ൛ ܽൟ
ୀଵ
  are real and satisfy 

∑ୀଵ
   ܽ = |det ܣ|. The ܮଵ-solution of the equation is called a scaling function. In this 

case, ݂ is supported by ܭ and is unique up to a constant multiple. It is well known that 
for the scaling function in ℝ with scaling 2, the analysis depends very much on a vector-
valued setup ([141], [142], [154], [165]). For the higher dimensional case, the same 
technique in the proof of Theorem (3.1.1) can be used for the vector-valued reduction. 
Below we state such a theorem without proof. 

Similarly to the definition of ܹ , we define the ܰ × ܰ matrices ܥ, 1 ≤ ݅ ≤ ݈, by 

,ݑ)ܥ (ݒ = ቊ ܽ , ܿ − ݀ + ௨݁ܣ = ݁௩  for some ݆,
0,  otherwise .

 

Then ݈ = |det ܣ| is an eigenvalue of ܥ: = ∑ୀଵ
 -ܰ . For any function ݂, we define anܥ 

dimensional vector function ܨ = ,ଵܨ) … ,  ே) byܨ

(ݔ)ܨ = ቊ
ݔ)݂ + ݁), ݔ ∈ ܶ,
0,  otherwise .

                              (14) 

Theorem (3.1.16)[138]: Let ݂ be a function supported by ܭ, the attractor of (ܣ, ࣞ), and 
let ܨ be defined as above. Then ݂ is an ܮଵ-solution of the refinement equation (13) if and 
only if ܨ is an ܮଵ-solution of 

(ݔ)ܨ =   


ୀଵ

ܨܥ  ∘ ߰
ିଵ(ݔ), a. e. ݔ ∈ ℝௗ .                        (15) 

There is vast literature on scaling functions on ℝ using the joint spectral radius associated 
with the above {ܥ}ୀଵ

 . Most of the theorems can be generalized directly once the vector-
valued form is established. We list one of these as an example ([165],[155]). For any 
vector ߥ ∈ ℝே, let (ߥ)ܪ be the linear subspace spanned by {ܥఙ(ܫ − :ߥ(ܥ ݅ = 1, … , ݈, ߪ ∈
Σ

∗}, where ܫ is the ܰ × ܰ identity matrix. 
Proposition (3.1.17)[138]: With the above notations, let ߥ be a nonzero l-eigenvector of 
∑ୀଵ

  :. Then the following three statements are equivalentܥ 
(i) the equation (13) has a nontrivial ܮଵ-solution; 
(ii) lim→ஶ  ݈ି∑ఙ∈ஊ

  ∑ୀଵ
 ܫఙ൫ܥ∥∥  − ∥∥ߥ൯ܥ = 0; 

(iii) there exists an integer ݇ > 0 such that 
݈ି   

ఙ∈ஊ
ೖ

∥∥ݓఙܥ∥∥ < ݓ∀ 1 ∈ ,(ߥ)ܪ ∥ ݓ ∥≤ 1.  

We will illustrate the construction of the vector form in Theorem (3.1.1). First we 
consider the well known cases associated with ܣ = 2 on ℝ under our present setting. 
Example (3.1.18)[138]: Let ܣ = 2, ࣞ = {0, … , ݉ − 1} and let ߤ be the self-similar 
measure generated by (ܣ, ࣞ) with associated weights ൛ൟ

ୀଵ
 . 
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The attractor is ܭ = [0, ݉ − 1]. According to Theorem (3.1.1), we choose ࣝ =
{0,1}; then ܶ = [0,1]. It follows that 

ℰ = {݅: ܭ)ߤ ∩ [݅, ݅ + 1]) > 0} = {0,1, … , ݉ − 2}. 
Let ܿ = ݅ − 1, ݀ = ݆ − 1 and ݁௨ = ݑ − 1 ∈ ℰ. Then the definition of ܹ  in (9) implies 
that ݓ(ݑ, (ݒ =   if and only if ݆ = ݑ2 − ݒ + ݅ − 1. Hence 

ଵܹ = [ଶ௨ି௩] =

⎣
⎢
⎢
⎢
⎡
ଵ 0 0 ⋯ 0
ଷ ଶ ଵ ⋯ 0
ହ ସ ଷ ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ ⎦ିଵ

⎥
⎥
⎥
⎤

,

ଶܹ = [ଶ௨ି௩ାଵ] =

⎣
⎢
⎢
⎢
⎡
ଶ ଵ 0 ⋯ 0
ସ ଷ ଶ ⋯ 0
 ହ ସ ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ ⎦

⎥
⎥
⎥
⎤

.

 

The ଵܹ and ଶܹ are uniquely determined regardless of the choice of ࣝ, since, for any 
other digit set ࣝᇱ such that ܶ(2, ࣝᇱ) is a ℤ-tile of ℝ, there is an integer ݇ such that 
ܶ(2, ࣝ) = ܶ(2, ࣝᇱ) + ݇ and the sets {ܶ + ݁} are unchanged. 
Example (3.1.19)[138]: Let ܣ = 3, ࣞ = {0,2,4,6} and let ߤ be the self-similar measure 
generated by (ܣ, ࣞ) with associated weights ൛ൟ

ୀଵ
ସ

. 
The attractor is ܭ = [0,3]. If we choose ࣝ = {0,1,2}, then ܶ = [0,1] and hence ℰ =
{0,1,2}. Let 

ܿ = ݅ − 1,  ݀ = 2݆ − 2,  ݁௨ = ݑ − 1. 
Then the definition of ܹ  implies that ݓ(ݑ, (ݒ =  if and only if 2݆ ݑ3 = − ݒ + ݅ − 1. 
Hence we have 

ଵܹ = 
ଵ 0 0
0 ଶ 0
ସ 0 ଷ

൩ ,  ଶܹ = 
0 ଵ 0

ଷ 0 ଶ
0 ସ 0

൩ ,  ଷܹ = 
ଶ 0 ଵ
0 ଷ 0
0 0 ସ

൩. 

These coincide with the ܶ, ଵܶ and ଶܶ defined in [166]. 
If we choose ࣝ = {−1,0,1}, then ܶ = [−1/2,1/2] and so ℰ = {0,1,2,3}. For this 

choice, 

ଵܹ = ൦

0 0 0 0
ଶ 0 ଵ 0
0 ଷ 0 ଶ
0 0 ସ 0

൪ ,  ଶܹ = ൦

ଵ 0 0 0
0 ଶ 0 ଵ
ସ 0 ଷ 0
0 0 0 ସ

൪ ,  ଷܹ = ൦

0 ଵ 0 0
ଷ 0 ଶ 0
0 ସ 0 ଷ
0 0 0 0

൪. 

We see that, unlike the case in Example (3.1.18), if we choose a different ࣝ (and hence), 
we may have different ℰ and ܹ . 

Also, note that ࣞ ⊂ 2ℤ; if we consider (ܧ)ߥ ≐ ࣝ and choose (ܧ2)ߤ = {0,1,2}, let 
(ܧ)ߤ = ܧ)ߤ) ∩ (2ܶ)), ܧ)ߤ ∩ (2ܶ) + 2))௧ . Then 

(ܧ)ࣆ =   
ଷ

ୀଵ
ܹܧ3)ࣆ − 2݆) 

with 

ଵܹ = ଵ 0
ସ ଷ

൨ ,  ଶܹ = ቂ
ଶ ଵ
0 ସ

ቃ ,  ଷܹ = ቂଷ ଶ
0 0 ቃ. 

This is simpler than the previous two representations. 
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Example (3.1.20)[138]: Let ܣ = ቂ 1 1
−1 1ቃ , ࣞ = {[0,0]௧, [1,0]௧ , [0,1]௧} and let ߤ be the 

self-similar measure generated by (ܣ, ࣞ) with associated weights ൛ൟ
ୀଵ
ଷ

 and ܭ be the 
attractor. 

Choose ࣝ = {[0,0]௧, [1,0]௧}. Then ܶ = ,ܣ)ܶ ࣝ) is a ℤଶ-tile (the twin dragon). For 
this example, both ܭ and ܶ are more complicated. Note that ܶ ⊆ ࣞ and ܭ − ࣝ =
{[0, −1]௧ , [1, −1]௧, [0,0]௧, [1,0]௧, [0,1]௧}. Let ℰଵ = {[0,0]௧} By Proposition (3.1.15) we 
find ℰ  inductively and the process stops at the 11th step with 

ℰଵଵ = {[−1, −2]௧, [−2, −1]௧ , [−2,0]௧, [0, −2]௧ , [−1, −1]௧ , [−1,0]௧ , [0, −1]௧ , 
[0,0]௧ , [−1,1]௧, [1, −1]௧ , [1,0]௧ , [0,1]௧, [1,1]௧}. 

Therefore ℰ = ℰଵଵ and there are 13 translates of ܶ∘ intersecting ܭ. By the definition of 
ܹ  in (9), we have 

ଵܹ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 ଷ ଵ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ଷ 0 0 ଵ 0 0 0 0
ଷ ଶ 0 0 ଵ 0 0 0 0 0 0 0 0
0 0 0 0 0 ଶ ଷ ଵ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ଷ 0
ଶ 0 0 ଵ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ଶ 0 0 ଵ 0 0 0
0 0 0 0 0 0 0 0 0 0 ଷ ଶ ଵ
0 0 0 0 0 0 0 0 0 0 ଶ 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,  

ଶܹ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 ଵ 0 0 0 0 0 0 0 0 0 0 0
0 0 ଷ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ଷ 0 0 0 0
ଵ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ଶ 0 ଷ ଵ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ଷ ଶ 0 0 ଵ 0
0 0 0 ଷ ଶ 0 ଵ 0 0 0 0 0 0
0 0 0 0 0 0 0 ଶ 0 ଷ ଵ 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ଷ
0 0 0 ଶ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ଶ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 ଶ
0 0 0 0 0 0 0 0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

We devoted to the calculation of the Lebesgue measure and Hausdorff dimension 
of integral selfaffine sets. These problems have been investigated in [175] and [152]. We 
will make use of the matrix representation to give an alternative approach, which unifies 
the considerations with the measures and functions and seems to be simpler. 

We will use the notations defined with the special set of probabilities ଵ = ⋯ =
 = 1/݉ (actually any set of positive probabilities {}ୀଵ

  will do). We also suppose 
that the assumption (H) holds for the auxiliary affine system. 
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For any ݎ × ݏ matrix (or vector if ݏ = ܤ(1 = ൫ ܾ൯, let ܤ∼ = ൫ ෨ܾ൯ be such that ܾ෨  
equals 1 if ܾ ≠ 0, and equals 0 if ܾ = 0. For any two nonnegative matrices ܤ and ܥ 
such that ܥܤ is well defined, we have 

∽(ܥܤ) = ,ܤ∀ ∽(∽ܥܤ) ܥ ≥ 0.                                           (16) 
This follows from the fact that ∑௦   ܾ௦ܿ௦ ≠ 0 if and only if ∑௦  ܾ ௦ܿ̃௦ ≠ 0. 

We first provide a constructive way to check if ܭ is a self-affine region, i.e., ܭ∘ ≠
∅ (see the remark after the theorem). By Theorem (3.1.1), we have 
Theorem (3.1.21)[138]: Let ܭ be the attractor generated by the integral affine pair (ܣ, ࣞ) 
and let ܶ = ,ܣ)ܶ ࣝ) be a ℤௗ-tile satisfying (H). Then the following statements are 
equivalent: 

(i) ܭ is a self-affine region, i.e., ܭ∘ ≠ ∅; 
(ii) ℒ(ܭ) > 0; 
(iii) ܹ ఙ ≠ 0 (equivalently ( ఙܹ)∼ ≠ 0 ) for any ߪ ∈ Σ

 , ݊ > 0; 
(iv) ܶ ⊆ ⋃ୀଵ

ே  ൫ܭ − ݁൯, where ℰ = { ଵ݁, … , ݁ே} = {݁ ∈ ℤௗ: ܶ)ߤ + ݁) > 0} as in (8). 
Proof. The implications (i)⇒(ii) and (iv)⇒(i) are obviously true. 
(ii)⇒(iii). If there exist ݊ > 0 and ߪ ∈ Σ

 such that ఙܹ = 0, then the identity in Theorem 
(3.1.1) implies that 

(⋅)ࣆ =   
ఛ∈∑  

  ∖{ఙ}
ఛܹࣆ൫߰ఛ

ିଵ(⋅)൯. 

It follows that ࣆ is supported by the attractor of the IFS {߰ఛ: ߬ ∈ Σ
 ∖  which is of {{ߪ}

Lebesgue measure zero. Since we have supp ࣆ = ⋃ୀଵ
ே  supp ࣆ = ⋃ୀଵ

ே  ቀܶ ∩ ൫ܭ − ݁൯ቁ, 

it follows that ℒ ቀܶ ∩ ൫ܭ − ݁൯ቁ = 0. Therefore ℒ(ܭ) ≤ ∑ୀଵ
ே  ℒ ቀ൫ܶ + ݁൯ ∩ ቁܭ = 0, a 

contradiction. 
(iii) ⇒ (iv). Assume that ܶ ⊈ ⋃ୀଵ

ே  ൫ܭ − ݁ ൯. Then ܶ∘ ∖ ⋃ୀଵ
ே  ൫ܭ − ݁൯ is a 

nonempty open set. Since ߤ is supported by ܭ, the definition of ࣆ implies that ࣆ is 
supported by ⋃ୀଵ

ே  ൫ܭ − ݁൯, hence ࣆ ቀܶ∘ ∖ ⋃ୀଵ
ே  ൫ܭ − ݁൯ቁ = 0. Since ܶ is the attractor 

of ൛߰ൟ
ୀଵ


, there exist ݊ > 0 and ߪ ∈ Σ
 such that ߰ఙ(ܶ) ⊆ ܶ∘ ∖ ⋃ୀଵ

ே  ൫ܭ − ݁൯. 
Corollary (3.1.14) implies that 0 = ((ܶ)ఙ߰)ࣆ = ఙܹࣆ(ܶ), hence ఙܹ = 0, a 
contradiction. 

Note that (16) implies ( ఙܹఛ)∼ = ( ఙܹ( ఛܹ)∼)∼, so ( ఛܹ)∼ ∈ ℱ if |߬| = ݊. 
Hence there exists an ݊ > 0 such that ℱ = ℱାଵ and, for this ݊, ℱ = ℱ. Theorem 
(3.1.21)(iii) can be used to check whether the attractor ܭ has nonvoid interior in at most 
2ே  steps. 

We will use the above setup to consider the Lebesgue measure of a self-affine 
region. According to the Remark we denote the set of distinct elements of ℱ =
{( ఙܹ)∼: ߪ ∈ Σ

∗} by { = ,ଵݒ ,ଶݒ … ,  denote the number of nonzero entries (௧ݒ)ߙ }. Letݒ
of ݒ௧ , and let 

ܰ,௧ = ߪ}# ∈ Σ
 : ( ఙܹ)∼ = ,{௧ݒ  ݊ > 0. 

Let ℬ be the tile partition defined in (8), and let 
ℬ

∗ = ܧ} ∈ ℬ: ∘ܧ ∩ ܭ ≠ ∅}. 
It is easy to see that ⋂ୀଵ

ஶ  ⋃ா∈ℬ
∗ ܧ  =  .ܭ

Lemma (3.1.22)[138]: With the above notation, we have 
(i) ℒ(ܭ) = lim→ஶ  ݈ି#ℬ

∗ ; 
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(ii) #ℬ
∗ = ∑௧ୀଵ

  ܰ ,௧ߙ(ݒ௧), ݊ = 1,2, … 
Proof. Since ܶ  is a ℤௗ-tile, ℒ(ܶ) = 1. Therefore ℒ(ܧ) = ݈ିℒ(ܶ) = ݈ି for ܧ ∈ ℬ

∗ , and 

ℒ(ܭ) = lim
→ஶ

 ℒ ቌ ራ  
ா∈ℬ

∗

ቍܧ  = lim
→ஶ

    
ா∈ℬ

∗

ℒ(ܧ) = lim
→ஶ

 ݈ି#ℬ
∗ . 

This proves (i). 
For each ܧ ∈ ℬ, there exist unique ߪ ∈ Σ

 and ݁௧  such that ܧ = ߰ఙ(ܶ) + ݁௧( 
Lemma (3.1.10) ) and ࣆ(߰ఙ(∂ܶ)) = 0 for all ߪ ∈ Σ

∗(Lemma (3.1.7)) Hence Corollary 
(3.1.14) implies ߰ఙ(ܶ) + ௧݁ ∈ ℬ

∗  if and only if the ݐ th row of ఙܹ  is nonzero (i.e. the ݐ 
th coordinate of ( ఙܹ)∼ is 1 ). This means that, for any given ߪ ∈ Σ

, the number of 
nonzero rows of ఙܹ  is given by #{߰ఙ(ܶ) + ௧݁ ∈ ℬ

∗ : 1 ≤ ݐ ≤ ܰ} = ௧( ఙܹ )∼. Hence 
#ℬ

∗ =   
ఙ∈ஊ



 #{߰ఙ(ܶ) + ݁௧ ∈ ℬ
∗ : 1 ≤ ݐ ≤ ܰ} =   

ఙ∈ஊ


 ௧( ఙܹ)∼.             (17) 

The identity in (ii) follows directly from this and the definition of ܰ ,௧. Let ܩ be the ݎ ×  ݎ
matrix defined by 

,ݏ)ܩ (ݐ = ݈ିଵ#{݅ ∈ Σ : ( ܹݒ௦)∼ = ,{௧ݒ  1 ≤ ,ݏ ݐ ≤  (18)                   ,ݎ
where ݈ is the number of ܹ  in Theorem (3.1.1) and ℱ = { = ,ଵݒ ,ଶݒ … ,  }. It is clearݒ
from the definition that each row sum of ܩ is 1, hence ܩ is a Markov matrix. 

Before going on, we will recall some basic facts on the Perron-Frobenius theory 
on nonnegative matrices [139]. If a Markov matrix ܤ is primitive then it is easy to show 
that lim→ஶ ݍ there is ,ܩ  exists. For the Markov matrixܤ  > 0 and a permutation matrix 
ܲ such that 

ܲ௧ܩܲ = ቂܺ ܻ
0 ܼቃ  with ܼ = ൦

ܴଵ 0 ⋯ 0
0 ܴଶ ⋯ 0
⋮ ⋱ ⋮
0 0 ⋯ ܴ

൪, 

where each ܴ  is primitive with maximal eigenvalue ߷(ܴ) = 1, and ܺ has maximal 
eigenvalue ߷(ܺ) < 1. 

It follows that lim→ஶ  ܼ = ܴ exists. Since ߷(ܺ) < 1, lim→ஶ  ܺ = 0 and each 
ܴ  is primitive. Therefore lim→ஶ ܩ  = ܩ

() exists and 
ܩܲ

()ܲ௧  = lim
→ஶ

ܲ௧ܩܲ 

 = lim
→ஶ

  ቂܺ ܺିଵܻ + ܺିଶܻܼ + ⋯ + ܻܼିଵ

0 ܼ ቃ

 = 0 ܫ) − ܺ)ିଵܻܴ
0 ܴ

൨ .

           (19) 

If in addition ܩ has rational entries, we claim that the limiting matrix ܩ
() also has 

rational entries. Indeed, in view of (19), we can assume ܩ to be primitive. In that case, 1 
is a simple eigenvalue and all the other eigenvalues have moduli < 1. Let ܝ be the left 1 
-eigenvector with ∑ ݑ  = 1. Then 

lim
→ஶ

ܩ  = ቈ
ܝ
⋮
ܝ

. 

Hence the claim will follow if we can show that ܝ is rational. Note that if ܩ is of order ݇, 
then ܩ − ݇ has rank ܫ − 1. We can assume 



99 

ܩ − ܫ = ቂܥ ∗
܊ ∗ቃ, 

where ܥ is a (݇ − 1) × (݇ − 1) nonsingular matrix. It is checked directly that [−ିܥ܊ଵ, 1] 
is a left 1-eigenvector of ܩ by noticing that ܩ − ݇ has rank ܫ − 1 and has rational 
coordinates. By uniqueness it equals ܝ after normalization. This proves the claim. 
Theorem (3.1.23)[138]: Let ܭ be the attractor generated by the integral affine pair 
,ܣ) ࣞ). Let ܩ be defined as in (18). Then lim→ஶ  is (ܭ)and ℒ ݍ  exists for someܩ 
rational. Furthermore, 

ℒ(ܭ) =   


ୀଵ
ܽߙ൫ݒ൯, 

where [ܽଵ, … , ܽ] is the first row of ܩ
() = lim→ஶ  . given by (19)ܩ 

Proof. First we claim that ܩ satisfies 
,ݏ)ܩ (ݐ = ݈ି#{ߪ ∈ Σ

: ( ఙܹ ∽(௦ݒ = ,{௧ݒ  1 ≤ ,ݏ ݐ ≤  (20)                 .ݎ
The case ݊ = 1 follows from the definition. Assume that (20) is true for ݊ > 0, and 
consider ܩାଵ. Since ( ܹ ఙܹ)∼ = ( ܹ( ఙܹ)∼)∼ by (16), we have 

,ݏ)ାଵܩ (ݐ  =   


ୀଵ

,ݏ)ܩ  ,݅)ܩ(݅ (ݐ

 = ݈ିିଵ   


ୀଵ

 #൛݆ ∈ Σ : ൫ ܹݒ௦൯
∼

= ߪ}#ൟݒ ∈ Σ
: ( ఙܹݒ)∼ = {௧ݒ

 = ݈ିିଵ   


ୀଵ

 #൛݆ߪ ∈ Σ
ାଵ: ൫ ܹݒ௦൯

∼
= ݒ , ( ఙܹݒ)∼ = ௧ൟݒ

 = ݈ିିଵ#{߬ ∈ Σ
ାଵ: ( ఛܹݒ௦)∼ = ,{௧ݒ

 

proving the claim. 
This implies that ܰ,௧ = ݈ܩ(1, ,(ݐ ݐ = 1, … ,  ,By Lemma (3.1.22) .ݎ

ℒ(ܭ) = lim
→ஶ

 ݈ି#ℬ
∗ = lim

→ஶ
 .(ݒ)ߙܩଵ܍ 

Now with the choice of ݍ, it follows from the above digression on nonnegative matrices 
that ܩ

() = lim→ஶ  .has the expression as in the theorem follows (ܭ) exists and ℒܩ 
That ℒ(ܭ) is rational also follows from the digression. 

We remark that the theorem and (19) allow us to obtain a simple algorithm to 
calculate ℒ(ܭ). That ℒ(ܭ) is rational was proved in [152] using a different method. 

Next we consider the case of ܭ∘ = ∅. Theorem (3.1.21) implies that ఙܹ = 0 for 
some ߪ. Without loss of generality, let ݒ = 0. Then ܩ has the following expression: 

ܩ = ቂܩଵ ݃
0 1ቃ ,  ݃ ≠ 0. 

We denote the maximal eigenvalue of ܩଵ by ߣଵ. 
Lemma (3.1.24)[138]: With the above notations, if ܭ∘ = ∅, we have 

(i) 0 < ଵߣ < 1; 
(ii) lim→ஶ   ୪୭ #ℬ

∗

ି୪୭ ద = ݀ − ୪୭ ఒభ

୪୭ ద
, where ߷ = |det ܣ|ିଵ/ௗ. 

Proof. (i) For any 1 ≤ ݏ ≤ ݎ − 1, assume that the ݐ th coordinate of ݒ௦ is positive. Since 
∑   ܹ  is irreducible, there exists ܹ  such that the ݐ th column of ܹ  is nonzero, so ܹݒ௦ ≠
0. Hence the ݏ th row of ܩଵ contains at least one nonzero entry, which is ≥ ݈ିଵ by the 
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definition of ܩଵ. This means that each row sum of ܩଵ is at least ݈ିଵ, and therefore ߣଵ ≥
݈ିଵ > 0. 

By Theorem (3.1.21), there is a ߪ ∈ Σ
 such that ఙܹ = 0. (20) implies that all 

entries in the last column of ܩ are positive. This means that all row sums of ܩଵ
 are less 

than 1. Hence ߣଵ < 1. 
(ii) By the definition of ܰ,, (20) implies ܰ,௦ = ݈ܩ(1, for any 1 (ݏ ≤ ݏ ≤  .ݎ

Using Lemma (3.1.22) (ii) and ߙ(ݒ) = 0, we have 
#ℬ

∗ = ݈[1,0, … ଵܩ[0,
ߙ, 

where ߙ = ,(ଵݒ)ߙ] … ,  ଵ-eigenvectorߣ be a nonnegative right ߚ ௧ is positive. Let[(ିଵݒ)ߙ
of ܩଵ satisfying ∥ ߚ ∥ଵ= 1. Then ߚ ≤ coordinatewise. For any 1 ߙ ≤ ݆ ≤ ݎ − 1, let ߪ ∈
Σ∗ be such that ( ఙܹ)∼ = ݒ . As (20) implies that there exists ݇ ≥ 0 such that the (1, ݆) 
entry of ܩଵ

 is positive, we have [1,0, … ଵܩ[0,
ߚ = ଵߣ

[1,0, … ߚ[0, = ଵߣ
ߚଵ > 0. This 

implies that ߚଵ = [1,0, … ߚ[0, > 0. Hence #ℬ
∗ ≥ ݈[1,0, … ଵܩ[0,

ߚ = ߷ିௗߣଵ
ߚଵ > 0. It 

follows that 

lim inf
→ஶ

 
log #ℬ

∗

−log ߷ ≥ ݀ −
log ଵߣ

log ߷
. 

On the other hand, for ߣ > ଵܩିߣ ଵ, we haveߣ
 → 0 as ݊ → ∞. There is a constant ܽఒ >

0 such that #ℬ
∗ = ݈[1,0, … ଵܩ[0,

ߙ ≤ ݈ܽఒߣ = ߷ିௗܽఒߣ (݊ > 0). Therefore 

lim sup
→ஶ

 
log #ℬ

∗

−log ߷ ≤ ݀ −
log ߣ
log ߷

 

for any ߣ >  .ଵ, and (ii) follows by combining the estimations of the limsup and liminfߣ
Theorem (3.1.25)[138]: Let ܭ be the attractor of an integral affine pair (ܣ, ࣞ) with ܣ a 
similarity. Suppose ܭ∘ = ∅. Then 

dim ܭ = dimୌ ܭ = ݀ − log ߣଵ/log ߷ < ݀. 
Proof. The theorem follows by showing that 

 ݀ − log ߣଵ/log ߷ ≥ dımതതതതതതതܭ ≥ dimୌ ܭ ≥ ݀ − log ߣଵ/log ߷.           (21) 
For ܧ ⊂ ℝௗ  and ߜ > 0, let ܧఋ = ݕ} ∈ ℝௗ: ∥ ݔ − ݕ ∥< ݔ for some ߜ ∈ -ߜ be the {ܧ
neighborhood of ܧ. Let ߜ = ߷. It is clear that 

ℒ൫ܧఋ൯ = ߷ௗℒ( ଵܶ) ∀ܧ ∈ ℬ
∗ , ݊ > 0. 

(Here ଵܶ is the 1-neighborhood of ܶ.) It follows from ܭఋ ⊆ ⋃ா∈ℬ
∗ ఋܧ   that 

ℒ൫ܭఋ ൯ ≤   
ா∈ℬ

∗

ℒ൫ܧఋ ൯ = (#ℬ
∗ )߷ௗℒ( ଵܶ). 

By Lemma (3.1.24)(ii), we have 

lim inf
→ஶ

 
log ℒ൫ܭఋ ൯

log ߷ ≥
log ଵߣ

log ߷ . 

Hence the first inequality in (21) holds in view of [146, Proposition 3.3.2]. 
The second inequality is well known. For the third, since (ܶ∘ + ݁) ∩ ܭ ≠ ∅ for 

any ݁ ∈ ℰ, we can find a constant ߝ > 0 and points ݔ ∈ (ݔ)ఌܤ such that ܭ ⊆ ܶ∘ +
݁ , 1 ≤ ݅ ≤ ܰ. Choose an invariant open set ܸ of the IFS { ܵ}ୀଵ

  such that ܭ ⊂ ܸ. Then 
there exists ݇ > 0 such that หିܣ(ܸ)ห < ଵ

ଶ
ܫ Hence there exists .ߝ ∈ Σ

  such that 

ூܵ
( ‾ܸ ) ⊆ (ݔ)ఌܤ ⊆ ܶ∘ + ݁ ,  1 ≤ ݅ ≤ ܰ.                                (22) 

For any ܧ ∈ ℬ
∗ , we can write ܧ = ߰ఙ(ܶ) + ݁௨ = ூܵ(ܶ + ݁) for some ߪ ∈ Σ

 , ܫ ∈ Σ
  

and ݁௨ , ݁ ∈ ℰ (by Lemma (3.1.10)(iii) and the proof of Theorem (3.1.1)). Hence 
ூܵூ ( ‾ܸ) ⊂ ாܫ Therefore, there exist .∘ܧ ∈ Σ

ା such that ܵூಶ ( ‾ܸ ) ⊂ Let Ψ .ܧ  be the set of 
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all those ூܵಶ ; they are in one-to-one correspondence with ܧ ∈ ℬ
∗ , so Ψ  has cardinality 

#ℬ
∗ . We use this class of maps as an IFS; each Ψ has contraction ratio ߷ା , and from 

(22), they satisfy the open set condition. Let ܭ be the attractor. It follows from the well 
known identity that 

dimୌ ܭ = −log (#ℬ
∗ )/((݊ + ݇)log ߷). 

Since ܭ ⊆ ܭ we have dim୍୍ ,ܭ ≥ −log (#ℬ
∗ )/((݊ + ݇)log ߷) for all ݊ > 0. Hence 

Lemma (3.1.24) implies that the third inequality in (21) holds. 
Example (3.1.26)[138]: Let ܣ = ቂ 2 1

−1 2ቃ , ࣞ = {[0,0]௧, [1,0]௧ , [0,1]௧ , [1,1]௧, [2, −1]௧} 
and let ܭ be the attractor generated by (ܣ, ࣞ). Then dimୌ ܭ ≈ 1.820. 
For this we let 

ࣝ = {[0,0]௧ , [1,0]௧ , [0,1]௧ , [−1,0]௧, [0, −1]௧}. 
Then, from the remark after Lemma (3.1.6), we see that ܶ = ,ܣ)ܶ ࣝ) is a ℤଶ-tile, and 
ܶ∘ ∩ ܭ ≠ 0, since ࣝ = ܳ ∩ ℤଶ. Let ℰଵ = {[0,0]௧}. By using Proposition (3.1.15), we find 
ℰ = {[0,0]௧, [1,0]௧ , [0,1]௧ , [1,1]௧}. 

Let ଵ = ଶ = ଷ = ସ = ହ = 1/5. By the definition of ܹ , we have 

ଵܹ =
1
5

൦

1 0 0 0
1 0 0 0
0 0 1 1
0 0 0 0

൪ ,  ଶܹ =
1
5

൦

1 1 0 0
0 1 0 0
0 0 0 1
0 0 0 0

൪ ,  ଷܹ =
1
5

൦

1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

൪ ,

ସܹ =
1
5

൦

0 0 0 0
0 0 0 0
0 0 1 0
0 1 0 1

൪ ,  ହܹ =
1
5

൦

0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 1

൪ .

 

Therefore 
ℱଵ  = {[1,1,1,1]௧, [1,1,1,0]௧ , [0,0,1,1]௧, [1,1,0,0]௧},
ℱଶ  = ℱଵ ∪ {[0,0,1,0]௧},  ℱଷ = ℱଶ ∪ {[0,0,0,1]௧},
ℱସ  = ℱଷ ∪ {[0,0,0,0]௧} = ℱହ.

 

Hence ℱ = ℱସ and ܭ = ∅. It follows that 

ଵܩ =
1
5

⎣
⎢
⎢
⎢
⎢
⎡
0 2 2 1 0 0
0 1 1 2 1 0
0 0 2 1 2 0
0 0 0 3 1 1
0 0 0 1 3 0
0 0 1 0 2 1⎦

⎥
⎥
⎥
⎥
⎤

, 

so that ߣଵ ≈ 0.882 and dimୌ ܭ = 2 − log ߣଵ/(−log 2) ≈ 1.820. 
Let {ܤఋ(ݔ)} denote a family of disjoint balls with radius ߜ and centers ݔ ∈  .ܭ

The ܮ − spectrum (or moment scaling exponent) of a self-similar measure ߤ is defined 
by 

(ݍ)߬ = lim
ఋ→ା

 
log൫s  ∑   ൯(ݔ)ఋܤ൫ߤ 


൯

log ߜ
                                 (23) 

if the above limit exists, where the supremum is taken over all such families of balls 
[146,144]. (If the limit does not exist, one can replace the limit by lim inf.) 
Proposition (3.1.27)[138]: Let ߤ be the self-similar measure generated by the integral 
similar pair (ܣ, ࣞ). Then 
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(ݍ)߬ = lim
→ஶ

 
log ∑  ா∈ℬ (ܧ)ߤ 

݊log ߷
, ݍ  > 0, 

where ℬ = ൛߰ఙ(ܶ) + ݁: ݁ ∈ ℰ, ߪ ∈ Σ
ൟ is a tile-partition of ܭ defined in (8). 

Proof. Let ܽ = 1 + |ܶ| where |ܶ| is the diameter of ܶ. From [169], we know that the 
limit in the definition of ߬(ݍ) exists for all ݍ ≥ 0. Hence it suffices to show that 

  
ா∈ℬ

(ܧ)ߤ  ≈ sup   
୧

ߤ  ቀܤద(ݔ)ቁ


, ,ݍ  ݊ > 0,                      (24) 

where the supremum is taken over all families of disjoint balls ൛ܤద ൟ(ݔ)

 with ݔ ∈  .ܭ

For such a family, let 
ℱ,௫ = ൛ܧ ∈ ℬ: ܧ ∩ దܤ (ݔ) ≠ ∅ൟ,  ࣡,ா = ൛݅: ܧ ∩ దܤ (ݔ) ≠ ∅ൟ. 

It is easy to see that there exists a constant ܾ > 0 such that 
max  #ℱ,௫ , maxா∈ℬ  #࣡,ா ≤ ܾ. 

Hence 

  


ߤ  ቀܤద ቁ(ݔ)


 ≤   


ߤ  ቀራ  ൛ܧ ∈ ℱ,௫ൟቁ


 ≤   


 ܾ൫max  ൛(ܧ)ߤ: ܧ ∈ ℱ,௫ൟ൯


 ≤ ܾାଵ  :(ܧ)ߤ}  ܧ ∈ ℬ} ∀ݍ ≥ 0.

 

It follows that 
sup   



ߤ  ቀܤద(ݔ)ቁ


≤ ܾାଵ   
ா∈ℬ

ݍ∀ (ܧ)ߤ  ≥ 0.                      (25) 

On the other hand, for each ܧ ∈ ℬ satisfying (ܧ)ߤ > 0, choose a point from ܭ ∩  and ܧ
denote this set by {ݕ: ݅ = 1, … ,  Then we have .{ݎ

  
ா∈ℬ

(ܧ)ߤ ≤   


ୀଵ

ߤ ቀܤద ቁ(ݕ)


ݍ∀  ≥ 0, ݊ > 0.                        (26) 

For the family ൛ܤద దܤൟ, we can choose a disjoint subfamily ቄ(ݕ) ቀݕೕ ቁቅ and a number 
 :depending only on ܶ and ݀ such that ݏ

(i) # ቄ݅: దܤ (ݕ) ∩ దܤ ቀݕೕ ቁ ≠ ∅ቅ ≤ (ݕ)దܤ for all ݅ (note that ݏ ∩ 

దܤ ቀݕೕቁ ≠ ∅ implies ܧ ⊆ ଶదܤ ቀݕೕ ቁ൰; 

(ii) ߤ ቀܤద ൫ݕభ൯ቁ = maxஹଵ ߤ  ቀܤద(ݕ)ቁ and for ݆ ≥ 2, ߤ ൬ܤద ቀݕೕ ቁ൰ = 

max ቄߤ ቀܤద ቁ(ݕ) : దܤ (ݕ) ∩ ⋃ୀଵ
ିଵ దܤ  ൫ݕೖ൯ = ∅ቅ; 

(iii) any ܤద దܤ intersects at least one (ݕ) ቀݕೕ ቁ. 
Therefore (26) implies 

  
ா∈ℬ

(ܧ)ߤ  ≤ ݏ   


ߤ  ൬ܤద ቀݕೕ ቁ൰


≤ ݏ sup    


ߤ  ቀܤద(ݔ)ቁ


ݍ∀  ≥ 0 (27) 

(the second inequality is by (i)), and (24) follows from (25) and (27). 
We can now express ߬(ݍ) in terms of the transition matrices { ܹ}ୀଵ

  in Theorem 
(3.1.1). 
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Theorem (3.1.28)[138]: Let ߤ be the self-similar measure generated by the integral 
similar pair (ܣ, ࣞ). Then 

(ݍ)߬ = lim
→ஶ

 
log ∑  ఙ∈ஊ

   ∥∥ ఙܹ∥∥ଵ


݊log ߷
, ݍ  ≥ 0, 

where ఙܹ  is defined in Theorem (3.1.1), and ∥∥ ఙܹ∥∥ଵ is the sum of all entries of ఙܹ . 
Proof. Let ܍  be the ݅ th column of the ܰ × ܰ identity matrix. From Lemma (3.1.10)(iii), 
Lemma (3.1.12) and Corollary (3.1.14), for all ݊ > 0 we have 

  
ா∈ℬ

(ܧ)ߤ =   
ே

ୀଵ

  
ఙ∈ஊ



ܶ)ିܣ)ߤ + ܿఙ) + ݁) =   
ே

ୀଵ

  
ఙ∈ஊ



܍)
௧

ఙܹࣆ(ܶ)). 

Using ൫∑ୀଵ
ே  ܽ൯


≈ ∑ୀଵ

ே  ܽ
  (ܰ, ݍ > 0 fixed ) for any ܽ ≥ 0, we have 

  
ே

ୀଵ

  
ఙ∈ஊ



܍)
௧

ఙܹࣆ(ܶ)) ≈   
ఙ∈ஊ



ቌ  
ே

ୀଵ

  ܍
௧

ఙܹࣆ(ܶ)ቍ



. 

Therefore 

(ݍ)߬  = lim
→ஶ

 
log ∑  ఙ∈ஊ

   (∑  ே
ୀଵ   ܍

௧
ఙܹࣆ(ܶ))

݊log ߷

 = lim
→ஶ

 
log ∑  ఙ∈ஊ

   ∥∥ ఙܹ∥∥ଵ


݊log ߷ , ݍ  ≥ 0,
 

by using the fact that ∑ୀଵ
ே ܍ 

௧ = [1, … ,1] and ࣆ(ܶ) is a fixed vector with strictly positive 
coordinates. 

Note that ߬(ݍ) is a concave function. For a concave function ݃  on ℝ, the Legendre 
transform (or concave conjugate) of ݃ is defined as 

(ߙ)∗݃ = inf ߙݍ}  − :(ݍ)݃ ݍ ∈ ℝ}. 
If ݃ is differentiable at ݍ and ݃ᇱ(ݍ) = (ߙ)∗݃ then ,ߙ = ߙݍ −  .(ݍ)݃

For a Borel measure ߤ with support ܭ, we let 

(ݔ)ߙ = lim
→

 
log ߤ(ܤ(ݔ))

log ݎ
 

be the local dimension of ߤ at ݔ. Let ܭఈ = ݔ} ∈ :ܭ (ݔ)ߙ =  A .ߤ level set of-ߙ be the {ߙ
heuristic principle called multifractal formalism suggests that the dimension spectrum 
dimୌ ܭఈ should equal the Legendre transform of ߬(ݍ), i.e., 

(ߙ)∗߬ = dimୌ ܭఈ . 
This is the case when the IFS satisfies the OSC ([140],[162]). In the present case, by 
Theorem (3.1.1), ∑ୀଵ

   ܹ  is irreducible, hence [149, Theorem (3.1.3)] shows that ߬(ݍ) is 
differentiable for all ݍ > 0. Also the IFS satisfies the weak separation condition under 
our assumption of integral entries in ܣ and ࣞ. Hence [156, Theorem B] implies that the 
multifractal formalism holds for all ݍ > 0: 
Theorem (3.1.29)[138]: Let ܣ be an integral similarity matrix. Let ߤ be the selfsimilar 
measure generated by the integral pair (ܣ, ࣞ). Then the ܮ-spectrum ߬(ݍ) of ߤ is 
differentiable for all ݍ > 0 and 

(ߙ)∗߬ = dimୌ ܭఈ , ߙ∀  = ߬ᇱ(ݍ), ݍ > 0. 
We do not have a complete understanding for ݍ < 0. In [163], it is shown that for some 
special cases the equality of Theorem (3.1.29) also holds for ݍ < 0. Note that there is a 
simple example where ߬(ݍ), ݍ < 0, is not differentiable at one point: ܣ = 3, ࣞ =
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{0,1,2,3} and weights {1/8,3/8,3/8,1/8}[166]; there is a modification of the multifractal 
formalism for that case [150]. Other interesting cases were considered in [151],[176] and 
[172]. 
Section (3.2): Measures with Fourier Frames:  

Everyone knows about Fourier series: the exponential functions ൛݁ଶగ௫: ݊ ∈ ℤൟ 
form an orthonormal basis for ܮଶ[0,1]. Perturbations of the set ℤ will produce frames for 
 ଶ[0,1], or "non-harmonic" Fourier series, see e.g., [187, 208]. This idea was laterܮ
extended to orthonormal bases or frames of exponentials (Fourier frames) for fractal 
measures [182, 190, 196, 182, 190, 194, 195, 207, 200, 211, 212, 213, 183, 184, 191]. 

In [185] the notion of frames of exponentials for an arbitrary measure was extended 
to that of a frame measure. 
Definition (3.2.1)[178]: Let ߤ be a finite, compactly supported Borel measure on ℝௗ. 
The Fourier transform of a function ݂ ∈  is defined by (ߤ)ଵܮ

ߤ݂݀ (ݐ) = න ,(ݔ)ߤଶగ௧⋅௫݀ି݁(ݐ)݂  ݐ)  ∈ ℝௗ). 

Denote by ݁௧ , ݐ ∈ ℝௗ, the exponential function 
௧݁(ݔ) = ݁ଶగ௧⋅௫, ݔ)  ∈ ℝௗ). 

We say that a Borel measure ߥ is a Bessel measure for ߤ if there exists a constant ܤ > 0 
such that for every ݂ ∈  we have ,(ߤ)ଶܮ

∥ ߤ݂݀ ∥మ(ఔ)
ଶ ≤ ܤ ∥ ݂ ∥మ(ఓ)

ଶ . 
We call ܤ a (Bessel) bound for ߥ. We say the measure ߥ is a frame measure for ߤ if there 
exists constants ܣ, ܤ > 0 such that for every ݂ ∈  we have ,(ߤ)ଶܮ

ܣ ∥ ݂ ∥మ(ఓ)
ଶ ≤∥ ߤ݂݀ ∥మ(ఔ)

ଶ ≤ ܤ ∥ ݂ ∥మ(ఓ)
ଶ . 

We call ܣ, ܣ a tight frame measure if ߥ We call .ߥ bounds for (frame) ܤ =  and ܤ
Plancherel measure if ܣ = ܤ = 1. 

Using the above definitions, we see that a set ܧ(Λ): = { ఒ݁: ߣ ∈ Λ} is a Fourier 
frame for ܮଶ(ߤ) if and only if the measure ߥ = ∑ఒ∈ஃ  ఒ is a frame measure forߜ 
.ߤ { ఒ݁: ߣ ∈ Λ} is a tight frame if and only if the measure ߥ = ∑ఒ∈ஃ  ఒ is a tight frameߜ 
measure for ߤ. When ܧ(Λ) is an orthonormal bases, ߤ is called a spectral measure and Λ 
is called a spectrum of ([205 ,196]) ߤ. 

In [198], Lai proved that for absolutely continuous measures ݀ߤ =  if ,ݔ݀(ݔ)݃
there exists a Fourier frame, then the function ݃  must be bounded above and below on its 
support. The proof is based on comparing the Beurling densities. We give another 
approach to prove the theorem. We consider the translates of the original measure ߤ 
restricted to some subset ܨ with (ܨ)ߤ > 0. We denote here by ߱ the measure ߱(⋅) =

ܶߤ|ிା(⋅) = ⋅))ߤ +ܽ) ∩ ܨ) + ܽ)) with ܽ ∈ ℝௗ. We have the following theorem. 
Theorem (3.2.2)[178]: Let ߤ be a finite Borel measure on ℝௗ and suppose there exists a 
frame measure for ߤ, with frame bounds ܣ, ܤ > 0. Assume ߱ ≪  Then .ߤ

ܤ
ܣ

≥ ∥∥
∥݀߱

ߤ݀ ∥∥
∥

ஶ
. 

This result shows that the frame bounds control the change of the measure along 
translations. It will be the key step and it will work also for other general measures which 
satisfy this translational absolute continuity assumption, not just the Lebesgue measure. 
First, we will extend the result in [198] by showing that the essential supremum and 
infimum of the function ݃ will push away the frame bounds of any frame measure for 
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ߤ݀ =  In particular, if ݃ is not bounded below or above on its support, then no such .ݔ݀݃
frame measure can exist. 
Theorem (3.2.3)[178]: Let ݀ߤ =  ߥ be an absolutely continuous measure on ℝௗ. If ݔ݀݃
is a frame measure for ߤ with frame bounds ܣ, ܤ > 0 then 

ܤ
ܣ ≥

esssupఓ(݃)
essinfఓ(݃) . 

It has been conjectured that a spectral measure must be uniform on its support. It is known 
that for discrete measures, spectral measures must have only finitely many atoms and the 
atoms must have equal weight ([207, 191]). For absolutely continuous measures, spectral 
measures on finite union of intervals must have uniform density ([207, 181]). Now, an 
immediate corollary to the inequality in Theorem (3.2.3) is the complete solution to this 
problem in the case of absolutely continuous spectral measures. More generally, we have 
Corollary (3.2.4)[178]: In the hypotheses of Theorem (3.2.3) suppose ߤ =  admits ݔ݀݃
a tight frame measure. Then ݃ is a characteristic function of its support. 

For the case singular measures, the conjecture on spectral self-similar measures of 
Eaba and Wang in [205] asserts that these spectral measures occur only for equal 
probability weights and when the digit set ℬ has a tiling property. We consider the 
invariant measure associated to an affine iterated function system: 

ℬߤ =   
∈ℬ

ℬߤ ∘ ߬
ିଵ, 

where ߬(ݔ) = ܴିଵ(ݔ + ܾ). Assuming also the no overlap condition for ߤℬ  (i.e. 
ℬ(߬(ܺ)ߤ ∩ ߬ᇲ (ܺ)൯ = 0, where ܺℬ  is the attractor of the IFS) and checking the 
translational absolute continuity assumption in Theorem (3.2.10), we prove the following 
result. 
Theorem (3.2.5)[178]: If ߤℬ  defined above satisfies the no overlap condition and ߤℬ  
admits a frame measure, then all  must be equal. 

If the affine iterated function system does not satisfy the no overlap condition, it is 
not known whether we still have the above conclusion. However, with a freedom of 
choosing the probability weights and the maps, it is of interest to investigate the existence 
of frame measures in this case. We found that the frame bounds, probability weights and 
the contraction ratio are closely related. In particular, we can solve the Eaba-Wang 
conjecture when the self-similar measures is absolutely continuous. 
Theorem (3.2.6)[178]: Suppose ߤ defined in (33) is absolutely continuous with respect 
to the Lebesgue measure and suppose ߤ admits a tight frame measure. Then 

(i) ଵ = ⋯ = ே =  .ߣ
(ii) ߣ = ଵ

ே
. 

(iii) There exists ߙ > 0 such that ࣞ: = ℬߙ ⊂ ℤ and ࣞ tiles ℤ. 
To formulate this in another way, Theorem (3.2.6) shows that the only absolutely 
continuous self-similar measures admitting exponential orthonormal bases/ tight frames/ 
tight frame measures are the measures supported on a self-similar tile by (ii) and [203]. 
The statement in (iii) says that tile digit set ࣞ will be a scaled integer tile. This is proved 
by considering the self-replicating tiling set of the attractor ܺℬ . 

Our study is based on the translational absolute continuity assumption. We were 
not able to show that measures with frame measures must have always this property. But 
from all the examples that we have, this conjecture should be true. We can construct 
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examples of singular measures for which the translational absolute continuity assumption 
in Theorem (3.2.2) fails. 

Our results on frame measures and spectral measures also have applications to 
Gabor systems (also known as Weyl-Heisenberg systems). Given ݃ ∈  ଶ(ℝௗ) and aܮ
discrete set Γ ∈ ℝଶௗ, a Gabor system is a set of functions: 

࣡(݃, Γ) = ൛݁ଶగ⋅௫݃(ݔ − ܾ): ܽ, ܾ ∈ ℝௗ and (ܽ, ܾ) ∈ Γൟ. 
Such a system is called a Gabor frame (Gabor orthonormal basis) if ࣡(݃, Γ) is a frame 
(an orthonormal basis) on ܮଶ(ℝௗ). If Γ = Λ × ࣤ, we will write ࣡(݃, Λ, ࣤ) = ࣡(݃, Λ × ࣤ). 
Basic theory of Gabor systems can be found in [188]. 

In [206], the function ݃ = (ℒ(Ω))ିଵ/ଶ߯Ω(ℒ denotes the Lebesgue measure) with 
Λ and ࣤ discrete subsets of ℝௗ were considered and the following proposition is proved: 
Proposition (3.2.7)[178]: [206] Suppose that 

(i) |݃| = (ℒ(Ω))ିଵ/ଶ߯ஐ where Ω is a bounded measurable set. 
(ii) { ఒ݁: ߣ ∈ Λ} is an orthonormal basis of ܮଶ(Ω) and 

(iii) ࣤ  is a tiling set of Ω. 
Then ࣡(݃, Λ, ࣤ) is a Gabor orthonormal basis of ܮଶ(ℝௗ). 

ࣤ is a tiling set of Ω means that ⋃௧∈ࣤ  (Ω +  covers ℝௗ and the intersection of (ݐ
Ω + and Ω ݐ +  ᇱ. In this case, Ω is aݐ and ݐ ᇱ has zero Lebesgue measure for distinctݐ
translational tile. The proof of this proposition is a standard generalization of the proof 
that ࣡(߯[0,1], ℤ, ℤ) is a Gabor orthonormal basis. 

In the literature on Gabor systems, there are many examples of functions ݃ that 
form a Gabor frame with some Γ. For example, if ݃ is a compactly supported function 
with |݃(ݔ)| ≥ ܿ > 0 on some small cube, then there exists a Γ so that ࣡(݃, Γ) is a Gabor 
frame (see [188, p.125]). However, the requirement for orthonormal bases is more 
restrictive. 

There is no known example of a function ݃ which is not a characteristic function 
such that its associated Gabor system forms an orthonormal basis with some Γ. Therefore, 
Liu and Wang conjectured that the converse of the above proposition holds and they 
proved it in the case when ݃ is supported on an interval. We prove 
Theorem (3.2.8)[178]: If the window function ݃ is non-negative, the converse of 
Proposition (3.2.7) holds. 

We will prove Theorem (3.2.2) and Theorem (3.2.3) as Theorem (3.2.10) and 
Theorem (3.2.12) respectively. Then we give a discussion of the corollaries of Theorem 
(3.2.3), in particular, Corollary (3.2.4). We consider the affine iterated function system 
and prove Theorem (3.2.5). We investigate the iterated function system on ℝଵ and prove 
Theorem (3.2.6). We present some concluding remarks on frame measures for singular 
measures. We will focus on Gabor orthonormal bases and prove Theorem (3.2.8). 
Definition (3.2.9)[178]: Let ߤ be a Borel measure on ℝௗ. For a Borel subset ܧ of ℝௗ, we 
denote by ߤ|ா the restriction of ߤ to the set ܧ, i.e., 

:(ܨ)ா|ߤ = ܧ)ߤ ∩ of ℝௗ ܨ for all Borel subsets ,(ܨ . 
For ܽ ∈ ℝௗ, we denote by ܶߤ, the translation by ܽ of the measure ߤ,i.e., 

ܶ(ܨ)ߤ: = ܨ)ߤ + ܽ), for all Borel subsets ܨ of ℝௗ . 
This means that 

න  ݂݀ ܶߤ = න ݔ)݂  −  (ݔ)ߤ݀(ܽ

for all functions ݂ ∈ )ଵܮ ܶߤ). 
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We will use the standard notation ߤ ≪  is absolutely continuous ߤ to indicate that ߥ
with respect to ߥ and we use the notation ௗఓ

ௗఔ
 for its Radon-Nikodym derivative if ߥ is ߪ-

finite. The following theorem is the key step for the next results. 
Theorem (3.2.10)[178]: Let ߤ be a finite Borel measure on ℝௗ and suppose there exists 
a frame measure ߥ for ߤ, with frame bounds ܣ, ܤ > 0. Assume in addition that there 
exists a set ܨ of positive measure ߤ and ܽ ∈ ℝௗ such that the measure ܶ(ߤ|ிା) ≪  .ߤ
Then 

ܤ
ܣ ≥ ∥∥

∥݀ ܶ(ߤ|ிା)
ߤ݀ ∥∥

∥
ஶ

.                                              (28) 

Proof. Let ℎ: = ௗ்ೌ (ఓ|ಷశೌ)
ௗఓ

 and let ܯ: =∥ ℎ ∥ஶ. Of course, if ܯ < 1 there is nothing to 
prove, so we can assume ܯ ≥ 1. Restricting to a subset of ܨ we can assume also ܯ < ∞. 
We have for bounded functions  : 

න  ݂݀ ܶߤฬ
ிା

= න ݔ)݂  − ฬߤ݀(ܽ
ிା

(ݔ) = න  
ிା

ݔ)݂ −  (ݔ)ߤ݀(ܽ

and 

න  ݂݀ ܶߤฬ
ிା

= න  .(ݔ)ߤ݀(ݔ)ℎ(ݔ)݂ 

Therefore the values of the function ݂ can be ignored outside ܨ and so we can assume ݂ 
is supported on ܨ and the same is true for ℎ; and we have: 

න  
ிା

ݔ)݂ − (ݔ)ߤ݀(ܽ = න 
ி

 .(ݔ)ߤ݀(ݔ)ℎ(ݔ)݂

Since ܯ is the essential supremum of ℎ, given ߳ > 0, we can find a subset ܧ of ܨ, of 
positive measure ߤ, such that ܯ − ߳ ≤ ℎ ≤  .ܧ on ܯ

Take ଵ݂: = ଵ
ඥఓ(ா)

߯ா. We have ∥∥ ଵ݂∥∥మ(ఓ) = 1. Also 

∥∥ ଵ݂(⋅ −ܽ)∥∥మ(ఓ)
ଶ = න  | ଵ݂(ݔ − ܽ)|ଶ݀(ݔ)ߤ = න  | ଵ݂(ݔ)|ଶℎ(ݔ)݀(ݔ)ߤ, 

therefore 
ܯ − ߳ ≤ ∥∥ ଵ݂(⋅ −ܽ)∥∥మ(ఓ)

ଶ ≤  .ܯ
We have 

൬ ଵ݂(⋅ (ݐ)(ߤ݀(ܽ− = න  ଵ݂(ݔ − ܽ)݁ିଶగ௧⋅௫݀(ݔ)ߤ = ݁ିଶగ௧ න  ଵ݂(ݔ − ܽ)݁ିଶగ௧⋅(௫ି)݀(ݔ)ߤ

= ݁ିଶగ௧ න  ଵ݂(ݔ)݁ିଶగ௧⋅௫ℎ(ݔ)݀(ݔ)ߤ = ݁ିଶగ௧
ଵ݂ℎ݀ߤ (ݐ)

 

This means that 
|( ଵ݂(⋅ |(ߤ݀(ܽ− = ห ଵ݂ℎ݀ߤ ห. 

Next we estimate 

න ܯ|  ଵ݂ − ଵ݂ℎ|ଶ݀ߤ = න  | ଵ݂|ଶ|ℎ − ߤଶ݀|ܯ ≤ ߳ଶ∥∥ ଵ݂∥∥మ(ఓ)
ଶ = ߳ଶ. 

Then, using the upper frame bound: 
ܯ∥∥ ଵ݂݀ ߤ − ݂ℎ݀ߤ ∥∥మ(ఔ)

ଶ ≤ ܯ∥∥ܤ ଵ݂ − ଵ݂ℎ∥∥మ(ఓ)
ଶ ≤ ߳ଶܤ. 

This implies that 
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ቚ∥∥ܯ ଵ݂݀ߤ ∥∥మ(ఔ)
ଶ − ∥∥( ଵ݂(⋅ మ(ఔ)∥∥(ߤ݀(ܽ−

ଶ ቚ =

ቚ∥∥ܯ ଵ݂݀ߤ ∥∥మ(ఔ) − ∥∥( ଵ݂(⋅ మ(ఔ)ቚ∥∥(ߤ݀(ܽ− ⋅ ቀ∥∥ܯ ଵ݂݀ߤ ∥∥మ(ఔ) + ∥∥( ଵ݂(⋅ మ(ఔ)ቁ∥∥(ߤ݀(ܽ−

 ≤ ܯ∥∥ ଵ݂݀ ߤ − ݂ℎ݀ߤ ∥∥మ(ఔ) ⋅ ൫√ܯܤ + ൯ܯ√ܤ√ ≤ ܯܤ√൫ܤ√߳ + ൯ܯ√ܤ√ =: .߳ܥ

 

Then 
ܯ∥∥ ଵ݂݀ మ(ఔ)∥∥ߤ

ଶ

∥∥( ଵ݂(⋅ మ(ఔ)∥∥(ߤ݀(ܽ−
ଶ = 1 +

ܯ∥∥ ଵ݂݀ మ(ఔ)∥∥ߤ
ଶ − ∥∥( ଵ݂(⋅ మ(ఔ)∥∥(ߤ݀(ܽ−

ଶ

∥∥( ଵ݂(⋅ మ(ఔ)∥∥(ߤ݀(ܽ−
ଶ ≤ 1 +

߳ܥ
ܯ)ܣ − ߳). 

On the other hand 
ܯ∥∥ ଵ݂݀ మ(ఔ)∥∥ߤ

ଶ

∥∥( ଵ݂(⋅ మ(ఔ)∥∥(ߤ݀(ܽ−
ଶ ≥

ܯ∥∥ܣ ଵ݂∥∥మ(ఓ)
ଶ

∥∥ܤ ଵ݂(⋅ −ܽ)∥∥మ(ఓ)
ଶ ≥

ଶܯܣ

ܯ)ܤ − ߳). 

Combining the two inequalities, and letting ߳ go to zero, we obtain 
ܤ
ܣ ≥  ܯ

which is the desired inequality. 
Definition (3.2.11)[178]: Let ߤ be a Borel measure on ℝௗ. Let ݂  be a non-negative Borel 
measurable function. We define the essential supremum of  : 

esssupఓ (݂) =∥ ݂ ∥ஶ: = inf ܯ}  ∈ [0, ∞]: ݂ ≤ ,ܯ ߤ −  a.e. }. 
We define the essential infimum of  : 

essinfఓ  (݂): = sup  {݉ ≥ 0: ݂ ≥ ݉, ߤ −  a.e. }. 
Theorem (3.2.12)[178]: Let ߤ =  ߥ be an absolutely continuous measure on ℝௗ. If ݔ݀݃
is a frame measure for ߤ with frame bounds ܣ, ܤ > 0 then 

ܤ
ܣ ≥

esssupఓ(݃)
essinfఓ(݃) . 

In particular, if esssupఓ  (݃) = ∞ or essinfఓ  (݃) = 0 then there is no frame measure for 
 .ߤ
Proof. Let ܯ: = esssup (݃) and ݉: = essinf (݃) and assume for the moment that ݉ > 0 
and ܯ < ∞. Take ߳ > 0 arbitrary. Then there exist a set of positive Lebesgue measure ܥ 
such that ݉ ≤ (ݔ)݃ ≤ ݉ + ߳ for ݔ ∈  such ܦ and a set of positive Lebesgue measure ,ܥ
that ܯ − ߳ ≤ (ݔ)݃ ≤ ݔ for all ܯ ∈  .ܦ

We need a lemma: 
Lemma (3.2.13)[178]: Let ܥ and ܦ be two sets of positive Lebesgue measure in ℝௗ. 
Then there exists a subset ܧ of ܥ, of positive Lebesgue measure and some ܽ ∈ ℝௗ such 
that ܧ + ܽ ⊂  .ܦ
Proof. Taking subsets we can assume ܥ and ܦ are bounded. Consider the convolution 
߯ ∗ ߯ି. We have 

߯ ∗ ߯ି(ݐ) = න  ߯(ݔ)߯ି(ݐ − ݔ݀(ݔ = න  ߯(ݔ)߯ା௧(ݔ)݀ݔ = ℒ൫ܥ ∩ ܦ) +  .൯(ݐ

We claim that ߯  ∗ ߯ି cannot be identically zero. Taking the Fourier transform we have 
ܥ߯ ∗ ߯ି = ߯ෞ ⋅ ߯ିෞ . Both functions are analytic in each variable and not identically 
zero. 

Hence their product cannot be identically zero. Therefore ߯ ∗ ߯ି(ܽ) ≠ 0 for 
some ܽ ∈ ℝௗ. So ℒ(ܥ ∩ ܦ) + ܽ)) > 0. Let ܧ: = ܥ ∩ ܦ) + ܽ) ⊂ ܧ Then .ܥ − ܽ ⊂  ,ܦ
and this proves the lemma. 
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Returning to the proof of the theorem, using Lemma (3.2.13) we find a set ܧ of 
positive Lebesgue measure and some ܽ ∈ ℝௗ such that ݉ ≤ (ݔ)݃ ≤ ݉ + ߳ and ܯ − ߳ ≤
ݔ)݃ + ܽ) ≤ ݔ for all ܯ ∈  .ܧ

But the the measure ܶ(ߤ|ாା) = ݔ)݃ +  ா so|ݔ݀(ܽ

∥∥
∥݀ ܶ(ߤ|ாା)

ߤ݀ ∥∥
∥

ஶ
=

∥∥
ݔ)݃∥∥ + ܽ)

(ݔ)݃ ฬ
ா∥∥

∥∥

ஶ

≥
ܯ − ߳
݉ + ߳. 

Letting ߳ → 0 and using Theorem (3.2.10) we obtain the result. 
Assume now ܯ = ∞. Then for any ܰ we can find a subset ܥ of positive Lebesgue 

measure such that ܰ ≤ esssup (݃|) < ∞ and 0 < essinf (݃|) ≤ ܲ for some fixed ܲ. 
Take the restriction ߤ|  of the measure ߤ to ܥ. Then it is clear that ߥ is also a frame 
measure for ߤ| with the same frame bounds. Then we can apply the previous argument 
to conclude that ܣ/ܤ ≥ ܰ/ܲ. Letting ܰ → ∞ we obtain a contradiction. A similar 
argument shows that essinf (݃) > 0. 

We now give some corollaries of Theorem (3.2.12). The first one is the case when 
ܣ =  .ܤ
Corollary (3.2.14)[178]: In the hypotheses of Theorem (3.2.12). suppose ߤ =  ݔ݀݃
admits a tight frame measure (or Plancherel measure), then ݃ is a constant multiple of a 
characteristic function. 

In other words, if ݃ is not a constant multiple of a characteristic function then the 
measure ߤ =  does not admit tight frame measures; in particular it does not admit ݔ݀݃
tight frames of weighted exponential functions {ݓఒ ఒ݁: ߣ ∈ Λ}, where ݓఒ ∈ ℂ for all ߣ ∈
Λ. 
Proof. From Theorem (3.2.12), we see that if ܣ = (݃) then esssupఓ ܤ = essinfఓ (݃) 
which means that ݃ is a characteristic function. The second statement follows by noting 
that weighted frames of exponentials correspond to discrete frame measures ߥ =
∑ఒ∈ஃ  .ߣ ఒ is the Dirac measure atߜ ఒ, whereߜఒ|ଶݓ| 

If we replace the Lebesgue measure by general Hausdorff measure, we were not 
able to prove whether Theorem (3.2.12) will hold since Lemma (3.2.13) cannot be 
generalized to Hausdorff measures; we have the following example. 
Example (3.2.15)[178]: Let ܥ be the set of numbers in [0,1] that can be represented in 
base 10 using digits {0,1} and ܦ be the same as ܥ except the digits are {0,2}. Then there 
is no ܧ ⊂  with positive Hausdorff dimension (so none of its Hausdorff measures will ܥ
be positive) such that ܧ + ܽ ⊂ ܽ for some ܦ ∈ ℝ. 
Proof. It is easy to see that ܥ −  is the set of numbers in [−1/2,1/2] that have a base ܥ
10 representation with digits in {−1,0,1}, while ܦ −  is the set of numbers in ܦ
[−1/2,1/2] that have a base 10 representation with digits in {−2,0,2}. Hence, (ܥ − (ܥ ∩
ܦ) − (ܦ = {0}. 

Suppose there exists ܧ ⊂ ܧ with positive Hausdorff dimension such that ܥ + ܽ ⊂
ܽ for some ܦ ∈ ℝ. Then ܧ − ܧ ⊂ ܥ − ܧ) and ,ܥ + ܽ) − ܧ) + ܽ) ⊂ ܦ − ܧ− But .ܦ = 
ܧ) + ܽ) − ܧ) + ܽ), this implies that ܧ − ܧ ⊂ ܥ) − (ܥ ∩ ܦ) − ܧ ,Hence .(ܦ − ܧ = {0}. 
This means that ܧ has at most one point, so it has zero Hausdorff dimension. This is a 
contradiction. 

However, as Theorem (3.2.10) holds for general measures, we still have the 
following corollary. 
Corollary (3.2.16)[178]: Let ℋ௦ be the Hausdorff measure of dimension ݏ > 0 on ℝௗ. 
Let ݀ߤ  where ݃ is some non-negative Borel measurable function whose (ݔ)ℋ௦݀(ݔ)݃ =
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support Ω is a compact set with 0 < ℋ௦(Ω) < ∞. Suppose there exists a Borel set ܧ and 
some ܽ ∈ ℝௗ such that ܧ, ܧ + ܽ ⊂ Ω and such that there exist constants 0 < ݉, ܯ < ∞ 
with 

(ݔ)݃ ≤ ݉ for all ݔ ∈ (ݔ)݃ and ܧ ≥ ݔ for all ܯ ∈ ܧ + ܽ.  
Then for any frame measure ߥ for ߤ, its frame bounds ܣ,  satisfy the inequality ܤ

ܤ
ܣ ≥

ܯ
݉. 

Proof. Since ℋ௦ is translation invariant, we have for ∈  : ܧ
݀ ܶ(ߤ|ாା)

ߤ݀
(ݔ) =

ݔ)݃ + ܽ)
(ݔ)݃

≥
ܯ
݉

. 

The conclusion follows from Theorem (3.2.10). 
Definition (3.2.17)[178]: Let ܴ be a real ݀ × ݀ expansive matrix, i.e., all its eigenvalues 
|ߣ| have absolute value ߣ > 1. Let ℬ = {ܾଵ, ⋯ , ܾே} be a finite subset of ℝௗ and let 
൫൯ୀଵ

ே  be a set of positive probability weights,  > 0 and ∑ୀଵ
ே   = 1. We define 

the affine iterated function system (IFS) 
߬ :(ݔ) = ܴିଵ(ݔ + ܾ), ݔ)  ∈ ℝௗ , ݅ = 1, ⋯ ܰ). 

According to Hutchinson [193], there exists a unique compact set ܺℬ  called the attractor 
that has the invariance property 

ܺℬ = ራ  
ே

ୀଵ

߬
(ܺℬ). 

Moreover, in this case 

ܺℬ = ൝  
ஶ

ୀଵ

 ܴିܾ: ܾ ∈ ℬ for all ݊ ∈ ℕൡ.                            (29) 

Also, there is a unique Borel probability measure ߤℬ  on ℝௗ called the invariant measure, 
such that 

(ܧ)ℬߤ =   


୧ୀଵ

  ℬߤ ቀ߬
ିଵ(ܧ)ቁ ,   for all Borel sets (30)                 .ܧ 

In addition, the measure ߤℬ  is supported on the attractor ܺℬ . We will write ܺ = ܺℬ and 
ߤ =  ℬ when there is no confusion. We will call the attractor and the invariant measureߤ
a self-similar set and a self-similar measure respectively if ܴିଵ = for some 0 ܱߣ < ߣ <
1 and orthogonal matrix ܱ. 

If for all ݅ ≠ ݆, ݅, ݆ ∈ {1, ⋯ , ܰ}, we have ߤ ቀ߬ (ܺ) ∩ ߬ೕ (ܺ)ቁ = 0 then we say that 
the affine IFS has no overlap. 

It is convenient to introduce some multiindex notation for a given affine IFS: let 
Σ = {1, ⋯ , ܰ}, Σ = Σ × ⋯ × Σᇣᇧᇧᇤᇧᇧᇥ


 and Σ∗ = ⋃ୀଵ

ஶ  Σ, the set of all finite words. Given ܫ = 

݅ଵ ⋯ ݅ ∈ Σ , ߬ூ(ݔ) = ߬భ
∘ ⋯ ∘ ߬

,(ݔ) ூ = భ
⋯ 

 and ܺூ = ߬ூ(ܺ). By iterating 
the invariant identity of ܺ, it is easy to see that 

ܺ = ራ  
ூ∈ஊ

ூܺ .                                                             (31) 
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Finally, we write ܫ = ܫ ⋯ ถܫ


 where ܬܫ denotes concatenation of the words ܫ and ܬ. In this 

case, ߬ூ (ݔ) = ߬ூ ∘ ⋯ ߬ூ(ݔ) = ߬ூ
(ݔ). 

We recall that, for the self-similar IFS, the well known open set condition (OSC) 
states that there exists open set ܷ such that 

ራ  
ே

ୀଵ

߬(ܷ) ⊂ ܷ and ߬ (ܷ) ∩ ߬ೕ (ܷ) = ∅ for all ݅ ≠ ݆ 

This condition is fundamental in fractal geometry. Before going to the main theorem in 
this section, we first clarify the relation between OSC and no overlap condition using 
theorems in [210] and [202]. 
Proposition (3.2.18)[178]: If ߤ = ℬߤ  is a self-similar measure, then the open set 
condition implies the no overlap condition of the measures ߤ. 
Proof. By [210], we can choose an open set ܷ  such that ܷ ∩ ܺ ≠ ∅. Pick ݔ ∈ ܷ ∩ ܺ, then 
there exists a ball of radius ߳ and centered at ݔ, denoted by ܤఢ(ݔ), is a subset of ܷ. On 
the other hand, from (31) we have for all ݊ > 0 there exists some ܫ ∈ Σ such that ݔ ∈ ூܺ  
(since ∈ ܺ ). As the diameter of ூܺ  is tending to 0 as ݊ tends to infinity, it shows that for 
݊ large, ூܺ ⊂ (ݔ)ఢܤ ⊂ ܷ. Writing ܫ = ݅ଵ ⋯ ݅, by iterating the invariance equation (30), 

(ܷ)ߤ ≥ )ߤ ூܺ) ≥ భ ൫ߤ ܺమ⋯൯ ≥ ⋯ ≥ భ
⋯ 

> 0. 
We can then use Theorem 2.3 in [202] to conclude that ߤ(ܷ) = 1. Writing also ܷ : =
߬(ܷ) with ܾ ∈ ℬ, by Corollary 2.5 in [202], ߤ(∂ ܷ ) = 0, where ∂ ܷ denotes the 
boundary of ܷ. As ܺ ⊂ ‾ܷ , the closure of ܷ, we have ߬(ܺ) ⊂ ܷതതതത and hence by ܷ ∩

ܷೕ = ∅ from the OSC, 

ߤ ቀ߬ (ܺ) ∩ ߬ೕ (ܺ)ቁ ≤ ߤ ቀܷഢ
തതതത ∩ ܷണ

തതതതቁ = ߤ ቀ ܷ ∩ ܷೕ ቁ = 0. 
It is not known whether the no overlap condition implies the OSC. We know that 

the post-critically finite (p.c.f.) fractals (the intersections consist only of finite points) 
introduced by Kigami [197] satisfy the no overlap condition. However, except for some 
partial results in [179] and [186], it is still an open question whether all p.c.f. fractals have 
the OSC. 

Much less is known for affine iterated function system. We just know that if the 
OSC is satisfied, we can also choose ܷ to be an open set with non-empty intersection 
with the invariant set [189]. However, we do not know whether Proposition (3.2.18) holds 
in affine IFS. 

We can now prove the main theorem using Theorem (3.2.10). 
Theorem (3.2.19)[178]: Let (߬)∈ℬ,  ∈ℬ be an affine iterated function system with()
no overlap as in Definition (3.2.17). Suppose the invariant measure ߤ admits a frame 
measure. Then all the probabilities  , ܾ ∈ ℬ must be equal. 
Lemma (3.2.20)[178]: Pick two elements ܾ ≠ ܿ in ℬ and let ݊ ∈ ℕ. Define ܾ(): = ܾ +
ܴܾ + ⋯ + ܴିଵܾ and similarly for ܿ(). Let ܽ: = ܴି൫ܿ() − ܾ()൯ and ܨ = ߬

(ܺ) (i.e. 
߬ ∘ ⋯ ∘ ߬(ܺ) for ݊ compositions). 

Consider the measure ܶ(ߤ|ிା) with the notation as in Definition (3.2.9). Then 
this measure is supported on ܨ, it is absolutely continuous with respect to ߤ and the 
Radon-Nikodym derivative is constant on ܨ : 

݀ ܶ(ߤ|ிା)
ߤ݀ =





 . 
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Proof. It is easy to see that ߬
(ݔ) = ܴିݔ + ܴିܾ() and therefore ߬

(ݔ) + ܽ = ߬
(ݔ) 

for any ݔ ∈ ℝௗ. This implies that ܨ + ܽ = ߬
(ܺ), so the measure ܶ (ߤ|ிା) is supported 

on ߬
(ܺ). Also, we have ߬

ି(ݔ) = ܴݔ − ܾ(). 
For any ܾ  in ℬ, we consider a arbitrary Borel set ܧ of ߬ 

(ܺ). We note that ߬ 
(ܺ) ⊂

߬(ܺ). By the fact that ߤ ∘ ߬ᇲ
ିଵ is supported on ߬ᇲ (ܺ), the no overlap condition and the 

invariance identity (30), we get that for all ܾᇱ ≠ ܾ, 
൫߬ᇲߤ

ିଵ(ܧ)൯ ≤ ߤ ∘ ߬ᇲ
ିଵ(߬(ܺ) ∩ ߬ᇲ (ܺ)) ≤ ᇲ

ିଵߤ(߬(ܺ) ∩ ߬ᇲ (ܺ)) = 0 
and hence for any ܾ in ܤ 

(ܧ)ߤ =   
ᇲ∈ℬ

ᇲ ߤ ቀ߬ᇲ
ିଵ(ܧ)ቁ = ߤ ቀ߬

ିଵ(ܧ)ቁ = ⋯ = 
ߤ൫߬

ି(ܧ)൯. 

Now for a Borel subsel ܧ of ܨ, we have that ܧ + ܽ is conlained in ܨ + ܽ = ߬
(ܺ) and 

thus 
ܶ(ߤ|ிା)(ܧ) = ܧ)ߤ + ܽ) = 

ߤ(߬
ି(ܧ + ܽ)) = 

ߤ൫ܴ(ܧ + ܽ) − ܿ()൯ =


ߤ൫ܴܧ − ܾ()൯ = 

ߤ(߬
ି(ܧ)) =





 .(ܧ)ߤ

 

This establishes the absolute continuity and also that the density is exactly 
/

. 
Returning to the proof of the theorem, if we have a frame measure with frame 

bounds ܣ and ܤ, then by Theorem (3.2.10) and Lemma (3.2.20), we have that 
ܤ
ܣ

≥





  for all ܾ, ܿ ∈ ℬ and ݊ ∈ ℕ. 

This implies that all the probabilities  have to be equal. 
We focus on affine iterated function systems that do not satisfy the no overlap 

condition. We will prove some general results on ℝௗ and then apply them to special cases. 
From the proof of Theorem (3.2.19), we need to explore the following two questions: 

(i) Given any Borel measures ߤ, is the measure ܶ (ߤ|ிା) absolutely continuous with 
respect to ߤ for Borel sets ܨ in the support of ߤ with positive measure in ߤ? 

(ii) If ߤ =  ? ((ܺ)ூ߬)ߤ ℬ, how to estimateߤ
In answering these questions, we found the results in [192] particularly useful, for 

the case of self-similar invariant measures. Recall that ℋఈ denotes the ߙ-Hausdorff 
measure. We collect their results in the following theorem. 
Theorem (3.2.21)[178]: [192] Let ߤ = ℬߤ  be the self-similar measure defined in 
Definition (3.2.17). Let ܴ = ଵܱ for some 0ିߣ < ߣ < 1 and orthogonal matrix ܱ. Then 

(i) If ߤ ≪ ℋఈ|, then ℋఈ| ≪  .ߤ
(ii) If ߤ ≪ ℒ| and the Radon-Nikodym derivative has an essential upper bound, then 

ೕ ≤ ௗߣ  for all ݆. 
For the first question, when the measure is self-similar, the following is a simple 

sufficient condition. 
Proposition (3.2.22)[178]: Suppose ߤ = ℬ is self-similar and 0ߤ < ℋఈ(ܺ) < ∞. If the 
measure ߤ ≪ ℋఈ|, then for any Borel sets ܨ in the support of ߤ and for any 
ܽ, ܶ(ߤ|ிା) ≪  .ߤ
Proof. By Theorem (3.2.21)(i), ℋఈ| ≪ ܧ also. Hence, if ߤ ⊂  is a Borel set such that ܨ
(ܧ)ߤ = 0, then ℋఈ|(ܧ) = 0. But ܨ ⊂ ܺ, so ℋఈ(ܧ) = ℋఈ|(ܧ) = 0. As the 
Hausdorff measure is invariant under translations, ℋఈ|(ܧ + ܽ) ≤ ℋఈ(ܧ + ܽ) = 0. 
Hence, by ߤ ≪ ℋఈ|, 

ܶ(ߤ|ிା)(ܧ) = ܧ)ߤ + ܽ ∩ ܨ + ܽ) ≤ ܧ)ߤ + ܽ) = 0. 
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But ܶ(ߤ|ிା) is supported on ܨ, hence we have established the absolute continuity. 
The investigation of the second question is more difficult when there is overlap. 

For a self-affine measure in (30), we can iterate the invariance identity ݊ times and then 
identify the maps ߬ூ , ߬ such that ߬ூ = ߬: = ߬. Denote by ࣛ the set all equivalence 
classes under this identification, for the compositions of ݊ maps that coincide, and let ఛ 
be the sum of the weights in the equivalence class (i.e., for ∈ ࣛ, ఛ = :ூ}∑ ߬ூ = ߬}). 
We therefore have 

ߤ =   
ఛ∈ࣛ

ߤఛ ∘ ߬ିଵ.                                                 (32) 

Note that if there is no overlap, ࣛ = {߬ூ: ܫ ∈ Σ} and ఛ = ூ . In this case, (߬ூ
(ܺ)) = 

ூ
. To extend our results to IFSs with overlap, we introduce the following definition. 

Definition (3.2.23)[178]: Consider the IFS as in Definition (3.2.17). Given ߬ ∈ ࣛ, we 
define ݔఛ to be the fixed point of ߬ if ݔఛ =  We say that the IFS satisfies the fixed .(ఛݔ)߬
point condition if there exists ݇ > 0 and ߬ ∈ ࣛ such that the fixed point 

ఛݔ ∉ ߬̃(ܺ) for all ߬̃ ≠ ߬, ߬̃ ∈ ࣛ. 
The following proposition shows that fixed point condition gives a partial answer to the 
second question. 
Proposition (3.2.24)[178]: Given an IFS and suppose that the fixed point condition is 
satisfied for some ݇ ∈ ℕ and ߬ ∈ ࣛ. Then there exists ݊ such that for all ݊ ≥ ݊, 

((ܺ)߬)ߤ = ఛܥ
 

where ܥ is independent of ݊. 
Proof. Writing ߬ = ߬ூ  for some ܫ = ݅ଵ ⋯ ݅ ∈ Σ , ூܾ = ܾೖ + ⋯ + ܴିଵܾభ  and since 
ఛݔ = ߬ூ(ݔఛ) = ߬ூ

(ݔఛ) for all ݊, we have 

ఛݔ =   
ஶ

ୀଵ

ܴି
ூܾ . 

By (29), ݔఛ ∈ ܺ. Moreover, ݔఛ = ߬(ݔఛ) ∈ ߬(ܺ) for all ݊ ∈ ℕ. Since ߬(ܺ) and 
߬̃(ܺ), ߬̃ ∈ ࣛ , are compact sets and the diameter of ߬(ܺ) tends to 0 , from the fixed 
point condition, there exists ݊ such that for all ݊ ≥ ݊, ߬(ܺ) ∩ ߬̃(ܺ) = ∅ for all ߬̃ ≠ ߬ 
and ߬̃ ∈ ࣛ. 

For all ݊ ≥ ݊, using the invariance identity (32), 
((ܺ)߬)ߤ =   

ఛᇲ∈ࣛೖ

 .൫߬ᇱିଵ(߬(ܺ))൯ߤఛᇲ

From the above, we have ߤ൫߬ᇱିଵ(߬(ܺ))൯ = 0 if ߬ᇱ ≠ ߬. Hence, 
((ܺ)߬)ߤ = ൫߬ିଵ(߬(ܺ))൯ߤఛ =  .((ܺ)ିଵ߬)ߤఛ

Inductively, ߤ(߬(ܺ)) = ఛ
ିబ ((ܺ)బ߬)ߤ = ఛܥ

, where ܥ = ఛ
ିబ  is ((ܺ)బ߬)ߤ

independent of ݊. 
If we assume that the invariant measure is self-similar and is absolutely continuous 

with respect to the Lebesgue measure, we can use Theorem (3.2.3) and Proposition 
(3.2.24) to obtain the following: 
Theorem (3.2.25)[178]: Let ߤ be a self-similar measure which is absolutely continuous 
with respect to the Lebesgue measure supported on ܺ. If ߤ admits a frame measure then 
ఛ ≤ ௗߣ  for all ߬ ∈ ࣛ. Suppose furthermore that the fixed point condition is satisfied 
for some ݇ ∈ ℕ and ߬ ∈ ࣛ, then, for these particular ݇ and ߬, ఛ = ௗߣ . 
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Proof. Since ߤ ≪ ℒ|, we can write ݀ߤ =  with ݃ is supported on ܺ. As the ݔ݀(ݔ)݃
measure is absolutely continuous with respect to the Lebesgue measure, ℒ(ܺ) > 0. By 
Theorem (3.2.3), ݃ has finite, positive essential upper and lower bounds on ܺ. By 
Theorem (3.2.21) (ii) applied to (32) (where the expanding matrix now becomes 
,(ܱߣ ఛ ≤ ఛ ௗ for all ݆. We now establishߣ ≥  .ௗߣ

Suppose now fixed point condition is satisfied but ఛ <  ௗ. By Propositionߣ
(3.2.24), we will then have for all ݊ ≥ ݊ with ݊ defined in Proposition (3.2.24) that, 

((ܺ)߬)ߤ
ℒ(߬(ܺ)) =

((ܺ)߬)ߤ
(ܺ)ௗℒߣ

≤ ܥ ቀ
ఛ

ௗቁߣ


→ 0 asn → ∞. 

But the density ݃ has a positive essential lower bound ݉ > 0, so 
((ܺ)߬)ߤ
ℒ(߬(ܺ)) =

1
ℒ൫߬(ܺ)൯

න  
ఛ()

ݔ݀(ݔ)݃ ≥ ݉ > 0. 

This is a contradiction. Hence, ఛ =  .ௗ. This completes the proofߣ
If the fixed point condition is satisfied by words which contain all the digits, then 

all the probability weights are equal. 
Corollary (3.2.26)[178]: Let ߤ = ℬߤ  be a self-similar measure which is absolutely 
continuous with respect to the Lebesgue measure supported on ܺ and assume that ߤ has 
a frame measure. Suppose there exists a word I in Σ  such that I contains all the digits in 
{1, … , ܰ} and such that the fixed point ݔூ of the map ߬ூ  does not belong to any of the sets 

߬(ܺ) for ܬ ∈ Σ, ܬ ≠  Then all the probabilities .ܫ  are equal, ߣௗ = ଵ
ே

, there is no 

overlap and ௗఓ
ௗℒ

= ଵ
ℒ()

߯. 
Proof. The condition on ݔூ  given in the hypothesis implies that the only word ܬ for which 

߬ = ߬ூ is ܬ = ܫ So, if .ܫ = ݅ଵ … ݅ then ఛ = ூ = ∏ୀଵ
 ೖ 

. From Theorem (3.2.25), 
we have that  ≤ ݅ ௗ for allߣ ∈ {1, … , ܰ}. Also, since the fixed point condition is 
satisfied for ݊ and ߬ூ, we get that ఛ = ௗߣ . But then 

ௗߣ = ෑ  


ୀଵ

ೖ
≤  .ௗߣ

This implies that ೖ
= ௗߣ  for all ݇ ∈ {1, … , ݊}. Since all the digits in {1, … , ܰ} appear 

among the elements {݅ଵ, … , ݅ே} we obtain that all the probabilities   are equal to ߣௗ. 
Since they sum up to 1 , this implies that ߣௗ = ଵ

ே
. Since also ℒ(ܺ) is positive, ܺ is a self-

similar tile [203] on ℝௗ. The rest of the statements will then follow. On the other hand, 
we can also prove it directly. 

Since ℒ(ܺ) is positive, we apply the Lebesgue measure to the invariance identity 
of the attractor to get 

ℒ(ܺ) ≤   
ே

ୀଵ

ℒ ቀ߬
(ܺ)ቁ = (ܺ)ௗℒߣܰ = ℒ(ܺ). 

This implies that the sets ߬ (ܺ) have overlap of zero Lebesgue measure. Since ߤ is 
absolutely continuous, this means that the IFS has no overlap. We can then check that the 
Lebesgue measure on ܺ, rescaled by ଵ

ℒ()
 to get a probability measure, is invariant for the 

IFS. By the uniqueness of the invariant measure we get that ௗఓ
ௗℒ

= ଵ
ℒ()

߯. 
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We are not sure whether for any affine IFS there are always fixed points that satisfy 
the conditions in Theorem (3.2.25) or Corollary (3.2.26). However, the fixed point 
conditions for finite iterations can many times be checked in concrete situations by an 
algorithm. We will also see that there are always such fixed points for IFSs on ℝଵ. 

We now apply the previous results to some IFSs with overlap to determine whether 
they have frame measures. Although these results can be applied on ℝௗ, we restrict our 
attention to ℝଵ and there is no loss of generality to consider, upon rescaling, IFSs with 
functions ߬ (ݔ) = ݔߣ + ܾ , for 0 < ߣ < 1, ݅ = 1, . . , ܰ and 

ℬ = {0 = ܾଵ < ⋯ < ܾே = 1 −  .{ߣ
In this case, the self-similar set ܺ is a subset [0,1]. The self-similar measure with weights 
  is the unique Borel probability measure satisfying 

ߤ =   
ே

ୀଵ

ߤ ∘ ߬
ିଵ.                                                  (33) 

Theorem (3.2.27)[178]: Suppose the measure ߤ defined in (33) is absolutely continuous 
with respect to ℋఈ| and 0 < ℋఈ(ܺ) < ∞. Then 

(i) If ߤ admits a frame measure, then ଵ =  .ே
(ii) If ߙ = 1 (i.e. ߤ ≪ ℒ| ) and ߤ admits a frame measure, then  ≤  for all ݆ and ߣ

ଵ = ே =  .ߣ
Proof. (i) Note that ߬ଵ(0) = 0, so the fixed point of ߬ ଵ is 0 . On the other hand, ߬  (ܺ) ⊂ 
[ܾ , ܾ + ܫ Hence, the fixed point condition holds for .[ߣ = 1. Proposition (3.2.24) implies 
that there exists ݊ such that 

((ܺ)ଵ߬)ߤ = ଵଵܥ
, for all ݊ ≥ ݊.                                    (34) 

Similarly, as ߬ே(1) = 1, we have 
((ܺ)ே߬)ߤ = ேଶܥ

 , for all ݊ ≥ ݊.                                    (35) 
Now for any ݊ ≥ ݊, define ܨ = ߬ଵ

(ܺ) and ܽ = 1 − ߣ . Then ܨ + ܽ = ߬ே (ܺ). By 
Proposition (3.2.22), ܶ(ߤ|ிା) ≪ Let ℎ .ߤ = ݀ ܶ(ߤ|ிା)/݀ߤ. Then by Theorem 
(3.2.10) and (34), 

ܶ(ߤ|ிା)(߬ଵ(ܺ)) = න  
ఛభ

()
ℎ݀ߤ ≤

ܤ
ܣ

((ܺ)ଵ߬)ߤ =
ܤଵܥ

ܣ
ଵ

. 

On the other hand, ܨ + ܽ = ߬ே (ܺ) and so 
ܶ(ߤ|ிା)(߬ଵ(ܺ)) = ே߬)ߤ (ܺ)) = ேଶܥ

 . 
Combining these, we obtain for all ݊, 

൬
ே

ଵ
൰


≤

ܤଵܥ
ܣଶܥ

. 

This is possible only if ே ≤ ܽ ଵ. By reversing the role of 1 and ܰ and letting =
−(1 − ଵ ), we obtainߣ ≤ ே . 

To prove (ii), from (i) and the given assumption, all the conditions in Theorem 
(3.2.25) are satisfied. We have ଵ = ே =  .ߣ

For an absolutely continuous self-similar measure that admits a frame measure, 
near the boundary, the measure must behave like a Lebesgue measure and this can only 
happen when ଵ = ே =  In the middle part of the attractor, there are overlaps and we .ߣ
cannot conclude whether the weights are equal to ߣ. 

However, if now the measure admits a tight frame measure, then Corollary (3.2.14) 
applies and we can actually solve the Eaba-Wang conjecture [205] when the measure is 
absolutely continuous. 
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Theorem (3.2.28)[178]: Suppose ߤ defined in (33) is absolutely continuous with respect 
to the Lebesgue measure on ܺ and suppose ߤ admits a tight frame measure. Then 

(i) ଵ = ⋯ = ே =  .ߣ
(ii) ߣ = ଵ

ே
. 

(iii) There exists ߙ > 0 such that ࣞ: = ℬߙ ⊂ ℤ and ࣞ tiles ℤ. 
Proof. Since ߤ =  has a tight frame measure, from Corollary (3.2.14), we have that ݔ݀݃
݃ is a multiple of a characteristic function, and since ߤ is supported on the attractor ܺℬ , 
we have that ߤ = ܿℒ| for some constant ܿ > 0. 

We will prove by induction that  = and ߬ೖ ߣ
(ܺℬ) ∩ ߬ℓ

(ܺ) has Lebesgue 
measure zero for all ℓ > ݇. When ݇ = 1, we know from Theorem (3.2.27) that ଵ =  .ߣ
From the invariance equation of ߤ, 

൫߬భߤ (ܺ)൯ = (ܺ)ߤߣ +   
ே

ୀଶ

ߤ ൬߬ೕ
ିଵ ቀ߬భ

(ܺ)ቁ൰. 

But ߤ൫߬భ(ܺ)൯ = ܿℒ|൫߬భ(ܺ)൯ =  so the equation above implies that ,(ܺ)ߤߣ

ߤ ൬߬ೕ
ିଵ൫߬భ(ܺ)൯൰ = 0. In particular, this shows for all ݆ ≥ 2, ൫߬భ(ܺ)൯ߤ ∩ ߬ೕ (ܺ)ቁ = 0. 

But since ߤ is a renormalized the Lebesgue measure on ܺ, this proves the statement for 
݇ = 1. 

Suppose we have proved the statement for all ݅ ≤ ݇ − 1. We now consider the set 
:ܣ = ߬ೖ߬భ

 (ܺ), where ݊ will be chosen later. This has positive Lebesgue measure and 
is contained in ܺ so it has positive ߤ measure. From the rescaling we considered, we have 
ܺ ⊂ [0,1]. We have that, for ݈ > ݇, (recall that ܾଵ = 0 ), 

ܣ ∩ ߬ℓܺ ⊂ ାଵ[0,1]ߣ) + ܾ) ∩ (ܾℓ +  .([0,1]ߣ
Since ܾ < ܾℓ for ℓ > ݇, we can pick ݊ large enough so that this intersection is empty. 
In this case, ߤ ቀ߬ℓ

ିଵ(ܣ)ቁ = 0. On the other hand, for all ݅ ≤ ݇ − 1, by the induction 

hypothesis, ߤ ቀ߬
ିଵ(ܣ)ቁ ≤ ߤ ቀ߬

ିଵ൫߬ೖ(ܺ)൯ቁ = 0. In the invariance equation, we have 
only the ݇-th term left: 

(ܣ)ߤ = ߤ ቀ߬ೖ
ିଵ(ܣ)ቁ. 

Again, ߤ is just the Lebesgue measure, so  =  ,Finally, using the induction hypothesis .ߣ

൫߬ೖߤ (ܺ)൯ = (ܺ)ߤߣ +   
ே

ℓୀାଵ

ߤℓ ൬߬ℓ
ିଵ ቀ߬ೖ

(ܺ)ቁ൰. 

The no overlap follows in the same way as in ݇ = 1. 
By induction, we have proved (i). (ii) follows immediately from (i). Finally, we 

now have ିߣଵ = #ℬ and the attractor ܺ has positive Lebesgue measure. It means that the 
attractor is a self-similar tile on ℝଵ [203]. By Theorem 4 in [204], there exists ߙ > 0 such 
that 

ࣞ = ℬߙ ⊂ ℤ. 
To prove that ࣞ tiles the integer lattice, we use some known properties of self-similar 
tiles. We will finish the proof in Proposition (3.2.29) below. 

Consider ࣞ ⊂ ℤ and #ࣞ = ܰ. Then if the attractor ܺ(= ܺ(ܰ, ࣞ)) of the IFS 
defined by ߬ௗ(ݔ) = ܰିଵ൫ݔ + ݀൯ has positive Lebesgue measure, ܺ is a translational 
tile. A selfreplicating tiling set of ܺ is a tiling set for ܺ which satisfies 
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ࣤ = ܰࣤ ⊕ ࣞ.                                                           (36) 
The direct sum here means that every element ݐ in ࣤ can be expressed uniquely as ܰݐᇱ +
݀ for ݐ ∈ ࣤ and ݀ ∈ ࣞ. 
Proposition (3.2.29)[178]: Let ߬ௗ(ݔ) = ଵ

ே
ݔ) + ݀), with ࣞ: = {݀} ⊂ ℤ and #ࣞ = ܰ. If 

the attractor ܺ of ൛߬ௗൟ is a self-similar tile on ℝଵ, then there exists ℰ ⊂ ℤ such that ࣞ ⊕
ℰ = ℤ. 
Proof. This result actually holds for any dimension [199] by some deeper considerations 
from the theory of the self-affine tiles. Here, we give another proof in dimension 1 for 
completeness. 

By translation and rescaling, we can assume ࣞ ⊂ ℤା, 0 ∈ ࣞ and g.c.d. ࣞ = 1. 
From Theorem 3.1 in [201], there exists a unique self-replicating tiling set ࣤ that is a 
subset of ℤ (i.e. ⊂ ℤ ). In the following, we claim that there exists ࣡ such that ࣤ ⊕ ࣡ =
ℤ. The proof is the similar to the proof of Theorem 3 in [204]. 

For ݐ ∈ [0,1) and a finite subset ࣡ in ℤ, let 
:(ݐ)࣡ = {݆ ∈ ℤ: ݐ + ݆ ∈ ܺ} and ܺ࣡: = ݐ} ∈ [0,1): (ݐ)࣡ = ࣡}.             (37) 

Since ܺ is compact, ࣡(ݐ) is a finite set and only finitely many ܺ࣡  are non-empty. Denote 
these non-empty sets by ࣡ଵ, ⋯ , ࣡, then from the definitions in (37), 

[0,1) = ራ  


ୀଵ

ܺ࣡ೕ  and ܺ = ራ  


ୀଵ

ቀܺ࣡ೕ + ࣡ቁ. 

Moreover, ܺ࣡ೕ  are mutually disjoint. Thus ቄܺ࣡ೕ + ݇: ݆ ∈ {1, … , ݉}, ݇ ∈ ℤቅ is a partition 

of ℝ; also, since ܺ tiles ℝ by ࣤ, this implies that ቄܺ࣡ೕ + ࣡ + ݇: ݆ ∈ {1, … , ݉}, ݇ ∈ ࣤቅ is 
a partition of ℝ. Then, for any ݆, the set ܺ࣡ೕ + ࣡ tiles ܺ࣡ೕ + ℤ using ࣤ. Hence, 

ܺ࣡ೕ + ℤ = ܺ࣡ೕ + ࣡ ⊕ ࣤ. 
This shows that ℤ = ࣡ ⊕ ࣤ. 

Add ࣡൫= ࣡൯ to both sides of (36), 
ℤ = ࣤ ⊕ ࣡ = ܰࣤ ⊕ ࣡ ⊕ ࣞ. 

This means that ࣞ tiles ℤ by ℰ: = ܰࣤ ⊕ ࣡. 
We apply our results to IFSs with a small number of maps. The simplest ones are 

the Bernoulli convolutions. 
Example (3.2.30)[178]: Let us consider the biased Bernoulli convolution ߤ =  ,ఒ withߤ
contraction ratio 0 < ߣ < 1 as follows: 

ߤ = ߤ ∘ ߬ଵ
ିଵ + (1 − ߤ( ∘ ߬ଶ

ିଵ 
where ߬ଵ(ݔ) = (ݔ)and ߬ଶ ݔߣ = ݔߣ + (1 −  Let also .(ߣ

ܣ = ൛(, :(ߣ ,ఒߤ ≪ ℒൟ and ܵ = (0,1)ଶ ∖   .ܣ
Denote ℱ = ൛(, :(ߣ :,ఒ has a frame measure}. It is known that {(1/2,1/2݊)ߤ ݊ ∈ ℕ} is 
contained in ℱ. We are interested in the question whether these are all the possible 
elements in ℱ. Concluding from the above theorems, we have 

(i) If 0 < ߣ ≤ 1/2, then the IFS satisfies the open set condition and hence has no 
overlap. This means that if ߤ has a frame measure, then  = 1/2 by Theorem 
(3.2.19). 

(ii) If 1/2 < ߣ < 1, there is non-trivial overlap. In this case,  = 1/2 =  by ߣ
Theorem (3.2.27). Hence, we conclude that ܣ ∩ ℱ = {(1/2,1/2)}. 
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Example (3.2.31)[178]: The purpose of this example is to show how Theorem (3.2.25) 
can be applied to the sets ߬ூ(ܺ), so that we can check if more general measures ߤ have a 
frame measure. Let 

߬ଵ(ݔ) =
1
3

,ݔ ߬ଶ(ݔ) =
1
3

ݔ +
4

21
, ߬ଷ(ݔ) =

1
3

ݔ +
10
21

, ߬ସ(ݔ) =
1
3

ݔ +
2
3

 
and consider the self-similar measure ߤ defined as follows: 

ߤ =
1
3

ߤ ∘ ߬ଵ
ିଵ +

1
6

ߤ ∘ ߬ଶ
ିଵ +

1
6

ߤ ∘ ߬ଷ
ିଵ +

1
3

ߤ ∘ ߬ସ
ିଵ.                     (38) 

Then ߤ is absolutely continuous with respect to the Lebesgue measure on [0,1], but ߤ has 
no frame measure. 
Proof. We can rescale the digit of the IFS by a factor 7/2 so that the IFS becomes 

߬ଵ(ݔ) =
1
3

,ݔ ߬ଶ(ݔ) =
1
3

ݔ) + 2), ߬ଷ(ݔ) =
1
3

ݔ) + 5), ߬ସ(ݔ) =
1
3

ݔ) + 7). 
The absolute continuity is completely determined by its mask polynomial 

(ߦ)݉ =
1
3

+
1
6

݁ଶగଶక +
1
6

݁ଶగହక +
1
6

݁ଶగక =
1
6

൫2 + ݁ଶగଶక + ݁ଶగହక + 2݁ଶగక൯. 
We note that ߤ is absolutely continuous if for all ݊ ∈ ℤ ∖ {0}, there exists ݇ such that 
݉(3ି݊) = 0 (see [180, Theorem 1.1]) The coefficients ܿ  in this theorem will be ܿ =
ܰ  where   are our probabilities and ܰ = 3 is the scaling factor, ߣ = 3 and ݀ = ܾ  in 
the notation of [180]. If ݃ is a solution to the refinement equation in [180] then ߤ =  ݔ݀݃
is our invariant measure). To check this condition, write ݊ = ±3ݏ for some ݎ ≥ 0 and 
3 does not divide ݏ. Let ݇ = ݎ + 1, then 3ି݊ =  This implies that .3/ݏ±

݉(3ି݊)  =
1
6 ൫2 + ݁ଶగଶ௦/ଷ + ݁ଶగହ௦/ଷ + 2݁ଶగ௦/ଷ൯

 =
1
3

൫1 + ݁ଶగ௦/ଷ + ݁ଶగଶ௦/ଷ൯ = 0. ( since 3 does not divide ݏ)
 

To see there is no frame measure, we note that we cannot use Theorem (3.2.27) since 
ଵ = ସ = ଵ

ଷ
 and probability weights are not equal. Now, we iterate (38) one more time 

so that ߤ is the invariant measure of the IFS with the following 16 maps (i.e. ࣛଶ =
൛߬: ݅, ݆ ∈ {1,2,3,4}ൟ ): 

߬ଵଵ(ݔ) =
1
9

ݔ ߬ଵଶ(ݔ) =
1
9

ݔ +
4

63
߬ଵଷ(ݔ) =

1
9

ݔ +
10
63

߬ଵସ(ݔ) =
1
9

ݔ +
2
9

߬ଶଵ(ݔ) =
1
9

ݔ +
4

21
߬ଶଶ(ݔ) =

1
9

ݔ +
16
63

߬ଶଷ(ݔ) =
1
9

ݔ +
22
63

߬ଶସ(ݔ) =
1
9

ݔ +
26
63

 

߬ଷଵ(ݔ) =
1
9

ݔ +
10
21

 ߬ଷଶ(ݔ) =
1
9

ݔ +
34
63

       ߬ଷଷ(ݔ) =
1
9

ݔ +
40
63

    ߬ଷସ(ݔ) =
1
9

ݔ +
44
63

 

ସܶଵ(ݔ) =
1
9

ݔ +
2
3

 ߬ସଶ(ݔ) =
1
9

ݔ +
46
63

߬ସଷ(ݔ) =
1
9

ݔ +
52
63

߬ସସ(ݔ) =
1
9

ݔ +
56
63

 
and the weight for ߬   is . Moreover, it is easy to see that the self-similar set ܺ of this 
IFS is [0,1]. Consider ߬ ଶଷ(ݔ), the fixed point ݔଶଷ = ଵଵ

ଶ଼
. Note that the map that can overlap 

with ߬ଶଷ(ܺ) are ߬ଶଶ(ܺ) and ߬ଶସ(ܺ). Since ߬ଶଶ(ܺ) = [16/63,23/63] and ߬ଶସ(ܺ) =
[26/63,31/63], a direct calculation shows that ݔଶଷ is not in ߬ଶଶ(ܺ) nor in ߬ଶସ(ܺ). Since 
also ߬ଶଷ(ܺ) ∩ ߬(ܺ) = ∅ for all other ݆݅ ≠ 22 or 24,  ଶଷ does not belong to all the otherݔ
߬ (ܺ). In particular, if ߤ has a frame measure, then Theorem (3.2.25) applies which 
shows that ଶଷ = ଶߣ = ଵ

ଽ
, but this is not the case since ଶଷ = ଵ

ଷ
. 
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The study of frame measures or Fourier frames for singular measures is intriguing 
and leaves a lot of open problems for us to investigate. We outline the strategies and 
problems which may be essential towards a full solution for the case of singular measures. 

The main strategy exhibited is based on the assumption that measures restricted on 
a subset are absolutely continuous after translations of that subset. We don't know 
whether measures with a frame measure must satisfy this assumption. However, there do 
exist examples for which such translational absolute continuity fails. The following 
suggests that singular measures supported essentially on positive Lebesgue measurable 
sets give such examples. 
Example (3.2.32)[178]: Let ߤ be a measure whose support is exactly [0,1]. Suppose ߤ is 
singular with respect to the Lebesgue measure on [0,1], then there exists ܨ, ܨ + ܽ ⊂ [0,1] 
such that ܶ(ߤ|ிା) is singular with respect to ߤ. 
Proof. As the measure is singular with respect to the Lebesgue measure on [0,1], we can 
find a set ܧ ⊂ [0,1] such that ℒ(ܧ) > 0 but (ܧ)ߤ = 0. By decomposing [0,1] into dyadic 
intervals, we may assume ܧ is in some dyadic interval ܨ = [݅2ି , (݅ + 1)2ି] for any ݊. 
Let ܫ = :ݔ} ܨ + ݔ ⊂ [0,1]} = [−݅2ି, 1 − (݅ + 1)2ି]. Note that 

න 
ூ

ܧ)ߤ + ݔ݀(ݔ = ඵ 
ூ

߯ாା௫(ݕ)݀(ݕ)ߤ݀ݔ = ඵ 
ூ

߯௬ିா(ݔ)݀(ݕ)ߤ݀ݔ

= න  ℒ൫(ݕ − (ܧ ∩  .(ݕ)ߤ൯݀ܫ

As −ܧ ⊂ [−(݅ + 1)2ି, −݅2ି], we have that ݕ − ܧ ⊂ ݕ if ܫ ∈ [2ି , 1 − 2ି]. 

න 
ூ

ܧ)ߤ + ݔ݀(ݔ ≥ න  
ଵିଶష

ଶష
ℒ(ܧ)݀(ݕ)ߤ = ℒ(ܧ)2ି])ߤ , 1 − 2ି]) > 0. 

Here, 2ି])ߤ, 1 − 2ି]) > 0 because ߤ is supported on [0,1]. Hence, there exists ܽ such 
that ܧ)ߤ + ܽ) > 0. To complete the proof, we note that (ܧ)ߤ = 0 but ܶ(ߤ|ிା)(ܧ) = 
ܧ)ߤ + ܽ ∩ ܨ + ܽ) = ܧ)ߤ + ܽ) > 0, this shows the singularity of the measures. 

There are many measures that satisfy the condition in Example (3.2.32). In the case 
of selfsimilar measures, one of the most common examples are the Bernoulli 
convolutions with overlap and with contraction ratio equal to a Pisot number [209]. 

It is natural to expect that assumption in Theorem (3.2.10) should be necessary for 
the existence of frame measures. In particular, we say that a finite Borel measure ߤ is 
translationally absolutely continuous if for all Borel sets ܨ in the support of ߤ and (ܨ)ߤ >
0 and for all ܽ ∈ ℝௗ , ܶߤ|ிା ≪  .ߤ

Another concept that describes, for a given measure ߤ, the differences in its local 
distribution is the local dimension at points ݔ ∈ supp (ߤ). Let ߙ > 0 

:(ߙ)ܭ = ቊݔ ∈ supp ߤ: dimloc  (ݔ)ߤ: = lim→  
log ߤ(ܤ(ݔ))

log ݎ exists and equals ߙ} 

where ܤ(ݔ) is the ball of radius ݎ centered at ݔ. If ݔ ∈ ߳ it means that for all ,(ߙ)ܭ > 0, 
we have for all ݎ sufficiently small, 

ఈିఢݎ ≤ ((ݔ)ܤ)ߤ ≤ ఈାఢݎ . 
The standard 1/݊-Cantor measure ߤ has only one local dimension log 2/log ݊ . If ߤ is 
convolved with a discrete measure of finite number of atoms, it still has only one local 
dimension. On the other hand, it is known that equal contraction non-overlapping 
selfsimilar measures with unequal probability weights have more than one local 
dimension. We do not know examples of measures that have more than one local 
dimension and that have a frame measure. If there are two local dimensions, the balls 
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around two points scale differently which means the mass around those balls is not evenly 
distributed. Combining these observations, we propose the following conjecture: 
Conjecture (3.2.33)[178]: If ߤ is a measure with a frame measure, then ߤ must be 
translationally absolutely continuous and it has only one local dimension. 

In other words, such a measure has only trivial multifractal structure. On the other 
hand, even if the ߤ has only one local dimension, we still need to classify the measures 
for which there exists a Fourier frame. In particular, the following is a famous problem: 
 Does the one-third Cantor measure have a frame measure, Fourier frame or :(ۿ)
exponential Riesz basis? 

It is known that the middle third Cantor measure has no orthogonal spectrum. For 
some recent approaches, in [183], necessary conditions for the existence of frame 
spectrum are found in terms of the Beurling dimension. It is also shown that all fractal 
measures arising from the iterated function systems with equal contraction ratios admit 
some Bessel exponential sequences of positive Beurling dimension [184]. However, there 
is still no complete answer to the question. The standard one-third Cantor measure is a 
measure with only one local dimension log 2/log 3, so the method we used cannot work. 
While we contend that it is difficult to answer whether the Cantor measure has frame 
measures or not, we can ask the following simpler questions: 
(Q2): Find a singular measure with a Fourier frame but which is not absolutely 
continuous with respect to a spectral measure nor a convolution of spectral measures with 
some discrete measures. 
(Q3): Find a self-similar measure admitting a Fourier frame of the type described in Q2.  
(Q4): If a measure has a frame measure, does it have a Fourier frame? 

We consider the Gabor system of the form 
࣡(݃, Λ, ࣤ): = ൛݁ଶగఒ⋅௫݃(ݔ − :( ߣ ∈ Λ,  ∈ ࣤൟ 

where ݃ ∈ ,ଶ(ℝௗ)ܮ Λ, ࣤ are discrete sets in ℝௗ. We say that ࣡(݃, Λ, ࣤ) is an orthonormal 
basis if the functions in the system ࣡(݃, Λ, ࣤ) is orthonormal and for all ݂ ∈  ,ଶ(ℝௗ)ܮ

  
ఒ∈ஃ

  
∈ℱ

ฬන ݔ)ଶగఒ⋅௫݃ି݁(ݔ)݂  − ฬݔതതതതതതതതതതതത݀(
ଶ

=∥ ݂ ∥ଶ
ଶ .                    (39) 

We also observe that if ࣡(݃, Λ, ࣤ) is a Gabor orthonormal basis of ܮଶ(ℝௗ), then for any 
ߣ) , ( ∈ ℝଶௗ , ࣡(݃, Λ − ߣ , ࣤ −  .ଶ(ℝௗ)ܮ ) is also a Gabor orthonormal basis of
Hence, there is no loss of generality to assume (0,0) ∈ Λ × ࣤ. 

We recall one proposition due to Jorgensen and Pedersen. 
Proposition (3.2.34)[178]: [196] Let ߤ be a compactly supported probability measure on 
ℝௗ. Then { ఒ݁: ߣ ∈ Λ} is an orthonormal basis on ܮଶ(ߤ) if and only if 

  
ఒ∈ஃ

ݔ)ߤ̂| + ଶ|(ߣ ≡ 1. 

We will now prove the conjecture in [206] when ݃ is non-negative. Our main theorem is 
as follows, 
Theorem (3.2.35)[178]: Let ݃ ∈  ଶ(ℝௗ) be non-negative function supported on aܮ
bounded set Ω with positive Lebesgue measure. Let Λ and ࣤ be discrete sets. Suppose 
that ࣡(݃, Λ, ࣤ) is a Gabor orthonormal basis of ܮଶ(ℝௗ), then 

(i) ࣤ is a tiling set of Ω. 
(ii) |݃(ݔ)| = ଵ

ඥℒ(ஐ)
߯ஐ(ݔ) a.e. on Ω. 

(iii) { ఒ݁: ߣ ∈ Λ} is a spectrum of ܮଶ(Ω). 
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Proof. We divide the proof into three claims. 
Claim (3.2.36)[178]:: If ࣡(݃, Λ, ࣤ) is complete in ܮଶ(ℝௗ), then ℒ൫ℝௗ ∖ ⋃∈ࣤ  (Ω +
൯( = 0. 

Suppose that ℒ൫ℝௗ ∖ ⋃௧∈ࣤ  (Ω + ൯(ݐ > 0, let ܭ ⊂ ℝௗ ∖ ⋃௧∈ࣤ  (Ω +  be such that ,(ݐ
0 < ℒ(ܭ) < ∞. Then ݂ = ߯, then ݂ is a nonzero ܮଶ function, but 

න ݔ)ଶగఒ⋅௫݃݁(ݔ)݂  − ݔ݀( = 0 

since ݃(⋅ is supported on Ω (− +  This contradicts the .ܭ which is disjoint from 
completeness of the system. 
Claim (3.2.37)[178]: If ࣡(݃, Λ, ࣤ) is a Gabor orthonormal basis in ܮଶ(ℝௗ), then 
ℒ൫(Ω + ( ∩ (Ω + ᇱ)൯ = 0 , for all  ≠ , ᇱ and ᇱ ∈ ࣤ. 

Suppose for some  ≠ ᇱ, we have ℒ൫Ω,ᇲ൯ > 0 where Ω,ᇲ = (Ω + ( ∩
(Ω + ,ᇱ). By the orthonormality of the functions represented by (0 ,and (0 (  ᇱ), we
have 

න  
ஐ,ᇲ

ݔ)݃ − ݔ)݃( − ݔ݀(ᇱ = 0. 

As ݃ is non-negative, ݃(⋅ ⋅)݃(− (ᇱ− = 0 almost everywhere on Ω,ᇲ. But ݃(⋅  (−
and ݃(⋅ ᇱ) are supported on Ω− + and Ω  +  ᇱ respectively and they are non-zero
almost everywhere there. This is a contradiction since Ω,ᇲ has positive Lebesgue 
measure. 
Claim (3.2.38)[178]: { ఒ݁: ߣ ∈ Λ} is a spectrum of ܮଶ(|݃|ଶ݀ݔ). 

For any ݐ ∈ ℝௗ, we let ௧݂(ݔ) = ∫ ଶగ⟨௧,௫⟩. Then݁(ݔ)݃ | ௧݂|ଶ = ∫ |݃|ଶ < ∞. We use 
this in (39) and obtain 

  
ఒ∈ஃ

  | න หݔଶ݁ଶగ(௧ିఒ)⋅௫݀|(ݔ)݃| 
ଶ

+   
ఒ∈ஃ

    
∈ࣤ∖{}

  ฬන ݔ)݃(ݔ)݃  − ฬݔଶగ(௧ିఒ)⋅௫݀݁(
ଶ
 

          = න ݔଶ݀|(ݔ)݃|  = 1 

where ∫ |݃|ଶ = 1 follows from the orthonormality and (0,0) ∈ Λ × ࣤ. As ݃(⋅)݃(⋅  (−
is nonzero only on Ω ∩ Ω +  which is of Lebesgue measure 0 by Claim (3.2.37) , we get 
that ݃(⋅)݃(⋅ (− = 0 almost everywhere and thus all the integrals in the second sum on 
the left hand side are zero. Hence, 

  
ఒ∈ஃ

|(|݃|ଶ݀ݔ)(ݐ − ଶ|(ߣ ≡ න  |݂|ଶ݀(40)                              .ߤ 

This is equivalent to say Λ is a spectrum of ܮଶ(|݃|ଶ݀ݔ) by Proposition (3.2.34). 
We can now complete the proof the theorem. Claim (3.2.36) and 2 shows that ࣤ is 

a tiling set of Ω. This proves (i). By Corollary (3.2.14) and Claim (3.2.38), |݃| = ܿ߯ஐ. As 
∫ |݃|ଶ݀ݔ = 1 and we can see easily that ܿ = (ℒ(Ω))ିଵ/ଶ. Hence (ii) holds. Finally (iii) 
follows immediately from Claim (3.2.38). 
Section (3.3): Cantor Measures with Consecutive Digits: 

For ߤ be a compactly supported Borel probability measure on ℝௗ. We say that ߤ 
is a spectral measure if there exists a countable set ߉ ⊂ ℝௗ so that (߉)ܧ: = {݁ଶగ〈ఒ,௫〉: ߣ ∈
 is ݔIf ߯ఆ݀ .ߤ is called a spectrum of ߉ ,In this case .(ߤ)ଶܮ is an orthonormal basis for {߉
a spectral measure, then we say that ߗ is a spectral set. The study of spectral measures 
was first initiated by B. Fuglede in 1974 [221], when he considered a functional analytic 
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problem of extending some commuting partial differential operators to some dense 
subspace of ܮଶ functions. In his first attempt, Fuglede proved that any fundamental 
domains given by a discrete lattice are spectral sets with its dual lattice as its spectrum. 
On the other hand, he also proved that triangles and circles on ℝଶ are not spectral sets, 
while some examples (e.g. [0, 1] ∪ [2,3]) that are not fundamental domains can still be 
spectral. From the examples and the relation between Fourier series and translation 
operators, he proposed a reasonable conjecture on spectral sets: ߗ ⊂ ℝ௦ is a spectral set 
if and only if ߗ is a translational tile. This conjecture baffled experts for 30 years until 
2004, Tao [237] gave the first counterexample on ℝௗ, d ≥ 5. The examples were 
modified later so that the conjecture is false in both directions on ℝௗ, d ≥ 3 [227,227]. It 
remains open in dimensions 1 and 2. Despite the counter examples, the exact relationship 
between spectral measures and tiling is still mysterious. 

The problem of spectral measures is as exciting when we consider fractal 
measures. Jorgensen and Pedersen [223] showed that the standard Cantor measures are 
spectral measures if the contraction is ଵ

ଶ
, while there are at most two orthogonal 

exponentials when the contraction is ଵ
ଶାଵ

.  Following this discovery, more spectra self-
similar/self-affine measures were also found ([230,219] et al.). The construction of these 
spectral self‐similar measures is based on the existence of the compatible pairs (known 
also as Hadamard triples). It is still unknown whether all such spectral measures are 
obtained from compatible pairs. Having an exponential basis, the series convergence 
problem was also studied by Strichartz. It is surprising that the ordinary Fourier series of 
continuous functions converge uniformly for standard Cantor measures [236]. By now 
there are considerable amount of literatures studying spectral measures and other 
generalized types of Fourier expansions like the Fourier frames and Riesz bases ([216], 
[218],[220],[224],[226],[222],[229],[230],[232],[234],[235]). 

In [225], Hu and Lau made a start in studying the spectral properties of Bernoulli 
convolutions, the simplest class of self‐similar measures. They classified the contraction 
ratios with infinitely many orthogonal exponentials. It was recently shown by Dai that 
the only spectral Bernoulli convolutions are of contraction ratio ଵ

ଶ
 [215]. We study 

another general class of Cantor measures on ℝଵ. Let ܾ > 2 be an integer and ݍ < ܾ be 
another positive integer.  

We consider the iterated function system (IFS) with maps 
݂(ݔ) = ܾିଵ(ݔ + ݅) , ݅ = 0, 1 , … . , ݍ − 1. 

The IFS arises a natural self‐similar measure ߤ =  , satisfyingߤ

(ܧ)ߤ = 
1
ݍ

ିଵ

ୀ

ߤ ቀ ݂
ିଵ(ܧ)ቁ                                       (41) 

for all Borel sets ܧ. Note that we only need to consider equal weight since non‐equally 
weighted self‐similar measures here cannot have any spectrum by Theorem 1.5 in [220]. 
It is also clear that if ݍ =  .becomes the standard Cantor measure of ܾିଵ contraction ߤ ,2
For this class of self‐similar measures, we find surprisingly that the spectral properties 
depend heavily on the number theoretic relationship between ݍ and ܾ. Our first result is 
to show that ߤ =  ܾ and ݍ , has infinitely many orthogonal exponentials if and only ifߤ
is not relatively prime. If moreover, ݍ divides ܾ, the resulting measure will be a spectral 
measure. However, when ݍ does not divide ܾ and they are not relatively prime (e.g. ݍ =
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4, ܾ = 6), variety of cases may occur and we are not sure whether there are spectral 
measures in these classes. 

We then focus on the case when ܾ =  in which we aim at giving a detailed ݎݍ
classification of its spectra. The classification of spectra, for a given spectral measure, 
was first studied by Lagarias, Reeds and Wang [231]. They considered the spectra of 
 ଶ([0,1)ௗ) (more generally fundamental domains of some lattices) and they showed thatܮ
the spectra of ܮଶ([0,1)ௗ) are exactly all the tiling sets of [0,1) ௗ.  If  ݀ = 1 , the way of 
tiling [0,1) is rather rigid, and it is easy to see that the only spectrum (respectively the 
tiling set) is the translates of the integer lattice ℤ. 

Such kind of rigidity breaks down even on ℝଵ if we turn to fractal measures. The 
first attempt of the classification of its spectra was due to [217]; Dutkay, Han and Sun 
decomposed the maximal orthogonal sets of one‐fourth Cantor measure using 4‐adic 
expansion with digits {0,1, 2, 3} and put them into a labeling of the binary tree. The 
maximal orthogonal sets will then be obtained by reading all the infinite paths with digits 
ending eventually in 0 (for positive elements) or 3 (for negative elements). They also 
gave some sufficient conditions on the digits for a maximal orthogonal set to be a 
spectrum. The condition is not easy to verify. 

Turning to our self‐similar measures with consecutive digits where the one‐fourth 
Cantor measure is a special case, we will classify all the maximal orthogonal sets using 
mappings on the standard ݍ‐adic tree called maximal mappings. This construction 
improves the tree labeling method in [217] in two ways. 

(a) We will choose the digit system to be {−1, 0, 1, … , ܾ − 2} instead of 
{0, 1, … , ܾ − 1}. By doing so, all integers (both positive and negative) can be 
expanded into ܾ‐adic expansions terminating at 0. 

(b) We impose restrictions on our labeling position on the tree so that together with 
(a), all the elements in a maximal orthogonal set can be extracted by reading some 
specific paths in the tree. These paths are collected in a countable set ߁  defined in 
(45). 
Having such a new tree structure of a maximal orthogonal set, we discover there 

are two possibilities for the maximal sets depending on whether all the paths in ߁  are 
corresponding to some elements in the maximal orthogonal sets (i.e. the values assigned 
are eventually 0). If it happens that all the paths in ߁  behave nicely as said, we call such 
maximal orthogonal sets regular. It turns out that regular sets cover most of the 
interesting cases and we can give regular sets a natural ordering {ߣ ∶  ݊ = 0, 1, 2, . . . }. 
If the standard ݍ‐adic expansion of ݊ has length ݇, we define ܰ 

∗ to be the number of non‐
zero digits in the ܾ‐adic expansion using {−1, 0, … , ܾ − 2} of ߣ after ݇ . ܰ 

∗ is our crucial 
factor in determining whether the set is a spectrum. We show that if ܰ

∗ grows slowly 
enough or even uniformly bounded, the set will be a spectrum, while if ܰ

∗ grows too fast, 
say it is of polynomial rates, then the maximal orthogonal sets will not be a spectrum. 

In [218], Dutkay et al. tried to generalize the classical results of Landau [233] about 
the Beurling density on Fourier frames to fractal settings. They defined the concept of 
Beurling dimensions for a discrete set and showed that all Bessel sequences for an IFS of 
similitudes with no overlap condition must have Beurling dimension not greater than its 
Hausdorff dimension of the attractor. Under technical assumption on the frame spectra, 
they showed that the above two dimensions coincide. They conjectured that the 
assumption can be removed. However, as we see that ܰ

∗ counts the number of non‐zero 
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digits only, we can freely add ܾݍ for any ݉ > 0 on the tree of the canonical spectrum. 
These additional terms push the ߣ’s as far away from each other as wanted and we 
therefore show that there exists a spectrum of zero Beurling dimension. 

We discuss the maximal orthogonal sets of ߤ, and classify all maximal 
orthogonal sets via the maximal mapping on the ݍ‐adic when ݍ divides ܾ. In Section 4, 
we discuss the regular spectra and prove the growth rate criteria. The examples of the 
spectra with zero Beurling dimensions will be given. We give a study on the irregular 
spectra. 

Let ߉ be a countable set in ℝ and denote (߉)ܧ = { ఒ݁ ∶ ߣ  ∈ (ݔ)where ఒ݁ {߉ =
݁ଶగఒ௫ . We say that ߉ is a maximal orthogonal set (spectrum) if (߉)ܧ is a maximal 
orthogonal set (an orthonormal basis) for ܮଶ(ߤ) . Here (߉)ܧ is a maximal orthogonal set 
of exponentials means that it is a mutually orthogonal set in ܮଶ(ߤ) such that if ߙ ∉ ఈ݁ ,߉  
is not orthogonal to some ݁ ఒ , ߣ ∈  is called a spectral ߤ admits a spectrum, then (ߤ)ଶܮ If .߉
measure. Given a measure ߤ, the Fourier transform is defined to be 

(ߦ)ߤ̂ = න ݁ଶగక௫
 

 
 .(ݔ)ߤ݀

It is easy to see that (߉)ܧ is an orthogonal set if and only if 
߉) − {0}\(߉ ⊂ :(ߤ̂)ࣴ = ߦ} ∈ ℝ: (ߦ)ߤ̂ = 0}. 

We call such ߉ a bi‐zero set of ߤ. For ߤ =  .,, we can calculate its Fourier transformߤ

(ߦ)ߤ̂ = ෑ 
1
ݍ

ቀ1 + ݁ଶగషೕక + ⋯ + ݁ଶగషೕ(ିଵ)కቁ൨
ஶ

ୀଵ

.                    (42) 

Denote 

(ߦ)݉ =
1
ݍ

൫1 + ݁ଶగక + ⋅⋅⋅  +݁ଶగ(ିଵ)క൯                             (43) 

and thus |݉(ߦ)| = |  ୱ୧୬ గక
 ୱ୧୬ గక

|. The zero set of ݉ is 

ࣴ(݉) = ൜
ܽ
ݍ : ݍ † ܽ, ܽ ∈ ℤൠ, 

where ݍ †  ܽ means ݍ does not divide ܽ. We can then write ̂(ߦ)ߤ = ∏ ݉ஶ
ୀଵ ൫ܾିߦ൯ , so 

that the zero set of ̂ߤ is given by 

(ߤ̂)ࣴ = ൜
ܾ

ݍ ܽ ∶  ݊ ≥ 1, ݍ † aൠ = ܾܽ}ݎ ∶  ݊ ≥ 0, ݍ † ܽ},                  (44) 

where ݎ =  .ݍ/ܾ
We have the following theorem classifying which ߤ, possess infinitely many 

orthogonal exponentials.  
We wish to give a classification on the spectra and the maximal orthogonal sets 

whenever they exist. To do this, it is convenient to introduce some multi-index notations: 
denote ߑ = {0, … , ݍ − 1}, ߑ

 = ߑ and {ߴ}
 = ߑ × … × ᇣᇧᇧᇧᇤᇧᇧᇧᇥߑ



.  

Let ߑ
∗ = ⋃ ߑ

ஶ
ୀ  be the set of all finite words and let ߑ

ஶ = ߑ × ߑ × … be the 
set of all infinite words. Given ߪ = ଶߪଵߪ … ∈ ஶߑ ∪ ߪߴ we define ,∗ߑ = |ߪ ,ߪ =
ଵߪ ⋯ ߪ  for ݇ ≥ 0 where ߪ| = and adopt the notation 0ஶ ߪ for any ߴ = 000 ⋯ , 0 =
0 … 0ᇣᇤᇥ


  and ߪߪᇱ is the concatenation of ߪ and ߪᇱ. We start with a definition. 
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Definition (3.3.1)[214]: Let ߑ
∗ be all the finite words defined as above. We say it is a ݍ‐

adic tree if we set naturally the root isߴ  , all the ݇‐th level nodes are ߑ
  for ݇ ≥ 1 and all 

the offsprings of ߪ ∈ ߑ
∗ are ݅ߪ for ݅ = 0, 1, … , ݍ − 1. 

Let ߬ be a map from ߑ
∗  to real numbers. Then the image of ߬  defines a ݍ‐adic tree 

labeling. Define ߁  
:߁ = ൛0ߪஶ: ߪ = 1ߪ … ߪ ∈ ߑ

∗ , ߪ ≠ 0ൟ.                             (45) 
߁  will play a special role in our construction. 

Suppose that for some word ߪ = ᇱ0ஶߪ ∈ ߁ (|ߪ)߬ ,  = 0 for all ݇ sufficiently 
large, we say that ߬ is regular on ߪ, otherwise irregular. Let ܾ be another integer, if ߬ is 
regular on some ߪ ∈ ܫܫ  , we define the projection߁

ఛ from ߁  to ℝ as 

ෑ  
ఛ

  

 

(ߪ) =  ߬
ஶ

ୀଵ

 ିଵ .                                         (46)ܾ(|ߪ)

The above sum is finite since ߬(ߪ|) = 0 for sufficiently large ݇. If ߬ is regular on any ߪ 
in ߁ , we say that ߬ is a regular mapping. 
Example (3.3.2)[214]: Suppose ܾ = ܥ let ,ݍ = {ܿ = 0, ܿଵ, … , ܿିଵ} be a residue system 
mod ܾ where ܿ ≡ ݅(mod ܾ) . Define ߬(ߴ) = 0 and ߬(ߪ) = ܿఙೖ  if ߪ = ଵߪ ߪ … ∈ ߑ

 ⊂
ߑ

∗ . Then it is easy to see that ߬  is regular on any ߪ ∈ ߁  and hence it is regular. Moreover, 
ܫܫ

ఛ(߁) ⊆ ℤ.                                                        (47) 
When ܥ = {0,1, … , ܾ − 1}, then the mapping ߎ

ఛ is a bijection from ߁  onto ℕ ∪ {0}. 
In [217], putting their setup in our language, they classified maximal orthogonal 

sets of standard one‐fourth Cantor measure via the mapping ߬ from ߑଶ
∗ to {0,1 , 2, 3}. 

However, some maximal orthogonal sets may have negative elements in which those 
elements cannot be expressed finitely in 4‐adic expansions using digits {0,1 , 2, 3}. In our 
classification, we will choose the digit system to be ܥ = {−1, 0, 1, … , ܾ − 2} in which 
we can expand any integers uniquely by finite ܾ‐adic expansion. We have the following 
simple but important lemma. 
Lemma (3.3.3)[214]: Let ܥ = {−1, 0, 1, … , ܾ − 2} with integer ܾ ≥ 3 and let ߬ be the 
map defined in Example (3.3.2). Then ܫܫ

ఛ is a bijection between ߁  and ℤ. 
Proof. For any ݊ ∈ ℤ and |݊| < ܾ, it is easy to see that there exists unique ߪ ∈ ߁  such 
that ݊ = ܫܫ

ఛ(ߪ) . For example, ݊ = ܾ − 1 , then ݊ = ܫܫ
ఛ(ߪଵߪଶ) where ߪଵ = −1 and ߪଶ =

1. When |݊| ≥ ܾ, then ݊ can be decomposed uniquely as ݊ = ℓܾ + ܿ  where ܿ ∈  We .ܥ
note that |ℓ| = | ି


|  ≤ ||ାିଶ


< |݊|.  If |ℓ| < ܾ,  we are done. Otherwise, we further 

decompose ℓ in a similar way and after finite number of steps, |ℓ| < ܾ. The expansion is 
unique since each decomposition is unique. 

We now define a ݍ‐adic tree labeling which corresponds to a maximal orthogonal 
set for ߤ, when ܾ = ܾ We observe that for .ݎݍ = ܥ we can decompose ,ݎݍ =
{−1, 0, … , ܾ − 2} in ݍ disjoint classes according to the remainders after being divided by 
:ݍ ܥ = ⋃ ܥ

ିଵ
ୀ  where 

ܥ = (݅ + (ℤݍ ∩  .ܥ
Definition (3.3.4)[214]: Let ߑ

∗ be a ݍ‐adic tree and ܾ =  we say that ߬ is a maximal ,ݎݍ
mapping if it is a map ߬ = ߬, ∶ ߑ 

∗ → {−1, 0, … , ܾ − 2} that satisfies 
(i) ߬(ߴ) = ߬(0) = 0 for all ݊ ≥ 1, 
(ii) for all ݇ ≥ ଵߪ)߬ ,1 … (ߪ ∈ ఙೖܥ , 
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(iii) for any word ߪ ∈ ߑ
∗ , there exists ߪᇱ such that ߬ is regular on ߪߪᇱ0ஶ ∈ ߁ . 

We call a tree mapping a regular mapping if it satisfies (i) and (ii) in above and is 
regular on any word in ߁ . Clearly, regular mappings are maximal. 

Given a maximal mapping ߬ , the following sets will be of our main study (see Fig. 
1 [214]). 

(߬)߉ ∶= ൛ܫܫ
ఛ(ߪ) : ∈ ,߁ ߬ is regular on ߪൟ.                          (48) 

From now on, we will assume that ܾ = ܥ ,ݎݍ = {−1, 0, 1, …  , ܾ − 2} and 0 ∈  The .߉
main results are as follows and this is also the reason why ߬  is called a maximal mapping. 

For the proof, (i) in Definition (3.3.4) is to ensure 0 ∈  is to make sure the (ii) .߉
mutual orthogonality and (iii) is for the maximal orthogonality. 

If ߉ is a spectrum of ܮଶ(ߤ) , we call the associated maximal mapping ߬ a spectral 
mapping. We will restrict our attention to regular mappings (i.e. for all ߪ ∈ ߁  , ߬ is 
regular on ߪ). In this 

߬  ⟶  
Fig. 1[214]: An illustration of the 3‐adic tree and the associated mapping ࣎. 

 

Case, ߉(߬) = ൛ܫܫ
ఛ(ߪ) ∶ ߪ  ∈  ൟ. The advantage of considering regular mappings is that߁

we can give a natural ordering of the maximal orthogonal set (߬). The ordering goes as 
follows: given any ݊ ∈ ℕ, we can expand it into the unique finite ݍ‐adic expansion, 

݊ =  ߪ



ୀଵ

, ିଵݍ ߪ ∈ {0, … , ݍ − ߪ    ,{1 ≠ 0.                     (49) 

In this way ݊ is uniquely corresponding to one word ߪ = ଵߪ … ‐ݍ , which is called theߪ
adic expansion of ݊. For a regular mapping ߬, there is a natural ordering of the maximal 
orthogonal set ߉(߬): ߣ = 0 and 

ߣ = ܫܫ
ఛ(0ߪஶ) =  ߬



ୀଵ

൫ߪ|൯ܾିଵ +  ߬
ே

ୀାଵ

൫0ߪି൯ܾିଵ                (50) 

where ߪ = ଵߪ ⋯ (0ேିߪ)߬ ,adic expansion of ݊ in (49)‐ݍ  is theߪ ≠ 0 and  ߬൫0ߪℓ൯ =
0 for all ℓ > ܰ − ݇. Under this ordering, we have ߉(߬) = ୀ{ߣ}

ஶ . Let 
ܰ
∗ = #൛ℓ: ߪ = ଵߪ ⋯ ,ߪ ߬൫0ߪℓ൯ ≠ 0ൟ, 

where we denote #ܣ the cardinality of the set ܣ. The growth rate of ܰ
∗ is crucial in 

determining whether ߉ݎ(߬) is a spectrum of ܮଶ(ߤ). To describe the growth rate, we let 
ࣨ,
∗ =  max { ܰ

∗: ݍ ≤ ݇ < }, ℒݍ
∗ =  min { ܰ

∗ ∶ ݍ  ≤ ݇ < ାଵ} and ℳݍ =
 max { ܰ ∶  1 ≤ ݇ <  }. We have the following two criteria depending on the growthݍ
rate of ܰ

∗. 
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The following is the most important example of Theorem (3.3.14). 
Example (3.3.5)[214]: For a regular mapping ߬, if ܯ: = sup{ ܰ

∗} is finite, then ߉ must 
be a spectrum. 
Proof. Note that ࣨ,

∗ ≤   willߙ and therefore any strictly increasing sequences ܯ
satisfy the second condition in (46). Let ߙଵ = 1 and ߙାଵ = ݊ + ℳఈ  for ݊ ≥ 1. Then 
the first condition holds and hence ߉ must be a spectrum by Theorem (3.3.14). 

We will also see that when there is some slow growth in ࣨ
 can still be a ߉ ,∗

spectrum. The exact growth rate for ߉ to be a spectrum is however hard to obtain from 
the techniques we used. 

Now, we can construct some spectra which can have zero Beurling dimension from 
regular orthogonal sets using Theorem (3.3.14). In fact, they can even be arbitrarily 
sparse. 

We also make a study on the irregular spectra, although most interesting cases are 
from the regular one. Let ߬ be a maximal mapping such that it is irregular on 
,ଵ0ஶܫ} … , ܫ ே0ஶ}, whereܫ ∈   is non‐zero, and is regular on theܫ and the last digit in ∗ߑ
others in ߁ . We define the corresponding regularized mapping ߬ோ: 

߬ோ(ߪ) = ൜0, if ߪ = 0ܫ  for ݇ ≥ 1;
, (ߪ)߬ otherwise.

 

Our result is as follows. 
Theorem (3.3.6)[214]: Let ߬ be an irregular maximal mapping of ߤ. Suppose ߬ is 
irregular only on finitely many ߪ in ߁ . Then ߬ is a spectral mapping if and only if a 
corresponding regularized mapping ߬ோ is a spectral mapping. 

We will prove this theorem more generally in Theorem (3.3.20) by showing that 
the spectral property is not affected if we alter only finitely many elements in ߁ . 
However, we do not know whether the same holds if the finiteness assumption on 
irregular elements is removed. 

We discuss the existence of orthogonal sets for ߤ,, in particular, Theorem (3.3.7) 
and Theorem (3.3.9) are proved. 
Theorem (3.3.7)[214]: ߤ =  , has infinitely many orthogonal exponentials if and onlyߤ
if the greatest common divisor between ݍ and ܾ is greater than 1. If ݍ divides ܾ, then ߤ, 
is a spectral measure. 
Proof.  Let  gcd(ݍ, ܾ) = ݀. Suppose ݍ and ܾ are relatively prime i.e. ݀ = 1. Let 

ࣴ: = {
ܾ

ݍ ܽ: ݍ † ܽ}. 

It is easy to see that ܼ൫̂ߤ,൯ = ⋃ ࣴ
ஶ
ୀଵ . Note that for any ܽ  with ݍ † ܽ, we have ݍ † ܾܽ 

since gcd(ݍ, ܾ) = 1. Hence, if ݊ > 1, 
ܾ

ݍ ܽ =
ܾିଵ

ݍ
(ܾܽ) ∈ ࣴିଵ. 

This implies that ࣴଵ ⊃ ܼଶ ⊃ ⋯ and ܼ൫̂ߤ,൯ = ܼଵ. Let 

Y = { 
ܾ
ݍ

ܽ ∶ ݍ  † ܽ, ܽ ≡ ݅(mod ݍ)}, 

then ܼ൫̂ߤ,൯ = ⋃ Y
ିଵ
ୀଵ . If there exists a mutually orthogonal set ߉ for ߤ, with #߉ ≥

we may assume 0 ,ݍ ∈ {0}\߉ so that ߉ ⊂ ࣴ൫̂ߤ,൯ . Hence there exists 1 ≤ ݅ ≤ ݍ − 1 
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such that Y ∩ ଵߣ ଶ. But thenߣ , ଵߣ contains more than 1 element, say ߉ − ଶߣ = 


 where ݎ
 .߉ This contradicts the orthogonal property of .ݎ|ݍ

Suppose now ݀ > 1, we know ݀ ≤ ݀ We first consider .ݍ =  and prove that the ݍ
measure is a spectral measure. This shows also the second statement. Write now ܾ =  ݎݍ
and define ࣞ = {0, 1, … , ݍ − 1} and ܵ = {0, ,ݎ ݍ) … −  Then it is easy to see that .{ݎ(1
the matrix 

:ܪ = ݁ଶగ
 ൨

ஸ,ஸିଵ
= ቈ݁ଶగ

 
ஸ,ஸିଵ

 

is a Hadamard matrix (i.e. ܪܪ∗ = This shows ଵ .(ܫݍ


ࣞ and ܵ form a compatible pair as 
in [230]. Therefore it is a spectral measure by Theorem 1.2 in [230]. 

Suppose now 1 < ݀ <  ௗ, is a spectral measure and henceߤ We have shown that .ݍ
ࣴ൫̂ߤௗ,൯ contains an infinite bi‐zero sets ߉ (i.e. ߉ − ߉ ⊂ ࣴ൫̂ߤௗ,൯ ∪ {0}). We claim that 
ࣴ൫̂ߤௗ,൯ ⊂ ࣴ൫̂ߤ,൯ and hence ࣴ൫̂ߤ,൯ has infinitely many orthogonal exponentials. To 
justify the claim, we write  ݍ = ݀ Note that for .ݐ݀ † ܽ, 

ܾ

݀
ܽ =

ܾ

ݍ
 ,(ܽݐ)

as ݍ cannot divide ܽݐ. Hence,  


(ܽݐ)  ∈ ࣴ൫̂ߤ,൯. This also completes the proof of 

Theorem (3.3.7). 
Remark (3.3.8)[214]: In view of Theorem (3.3.7), we cannot decide whether there are 
spectral measures when 1 < gcd(ݍ, ܾ)  <  , is the convolutions ofߤ ,In general .ݍ
several self‐similar measures with some are spectral and some are not spectral. If ݍ = 4, 
ܾ = 6, we know that {0,1, 2, 3} = {0,1} ⊕ {0,2} and hence 

(ߦ)ସ,ߤ̂ = ෑ ൭
1 + ݁ଶగషೕక

2 ൱
ஶ

ୀଵ

⋅ ෑ ൭
1 + ݁ଶగଶషೕక

2 ൱
ஶ

ୀଵ

=  (ߦ)ොଶݒ(ߦ)ොଵݒ

where ݒଵ =  ଶ is the equal weight self‐similar measure defined by the IFS withݒ ଶ, andߤ
maps ଵ


and ଵ ݔ


ݔ) + 2). Hence, ߤସ, = ଵݒ ∗ ଶݒ ଵ andݒ ଶ. It is known that bothݒ  are spectral 

measures, but we do not know whether ߤସ, is a spectral measure. If ݍ = 6 and ܾ = 10, 
then {0, 1, … , 5}  = {0,1} ⊕ {0,2,4} and hence ߤ,ଵ is the convolution of ߤଶ,ଵ with a 
non‐spectral measure with 3 digits and contraction ratio 1/10. Because of its 
convolutional structure, it may be a good testing ground for studying the Laba‐Wang 
conjecture [230] and also for finding non-spectral measures with Fourier frame 
[220,224]. 
Theorem (3.3.9)[214]: ߉ is a maximal orthogonal set of ܮଶ൫ߤ,൯ if and only if there 
exists a maximal mapping ߬ such that = ܾ where ,(߬)߉ݎ =  .ݎݍ
Proof. Suppose ߉ =  for some maximal mapping ߬. We show that it is a maximal (߬)߉ݎ
orthogonal set for ܮଶ(ߤ). To see this, we first show ߉ is a bi‐zero set. Pick , ߣ, ᇱߣ ∈  by ,߉
the definition of ߉(߬), we can find two distinct ߪ, ߁ ᇱ inߪ  such that 
ߣ = 


ܫܫ

ఛ(ߪ) ,                ߣᇱ = 


ܫܫ
ఛ(ߪᇱ). 

Let ݇ be the first index such that ߪ| ≠ ᇱ|ߪ . Then for some integer ܯ, we can write 
ߣݍ − ᇱߣݍ = ܾ ∑ ൫߬(ߪ|) − ൯ஶ(ᇱ|ߪ)߬

ୀ ܾିଵ = ܾ ቀ൫߬(ߪ|) − ൯(ᇱ|ߪ)߬ +  . ቁܯܾ
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By (ii) in Definition (3.3.4), ߬(ߪ|) ܽ݊݀ ߬(ߪᇱ|) are in distinct residue classes of 
(|ߪ)߬ does not divide ݍ This means .ݍ −  .ܾ divides ݍ ,On the other hand . (ᇱ|ߪ)߬
Hence, ݍ does not divide ൫߬(ߪ|) − ൯(ᇱ|ߪ)߬ + ߣ ,By (44) .ܯܾ −  . (ߤ̂)ࣴ ᇱ lies inߣ

To prove the maximality of the orthogonal set ߉, we show by contradiction. Let 
ߠ ∉ Since 0 .߉ is orthogonal to all elements in ߠ but ߉ ∈ ߠ ,߉ ≠ 0 and ߠ = ߠ − 0 ∈
 Hence, by (44) we may write .(ߤ̂)ࣴ

ߠ =  ,(ିଵܾܽ)ݎ
where ݍ does not divide ܽ. Expand ܾିଵa in ܾ‐adic expansion using digits 
{−1, 0, … , ܾ − 2} 

ܾିଵܽ = ିଵܾିଵߝ + ܾߝ + ⋯ +  ,ାℓܾାℓߝ
௦ ,0ߪ ିଵ. Note that there exists uniqueߝ does not divide ݍ ≤ ௦ߪ ≤ ݍ − 1 , such that ߝ௦ ≡
݇ for (ݍ ݀݉) ௦ߪ − 1 ≤ ݏ ≤ ݇ + ℓ.  Denote ߪ௦ = ௦ߝ = 0 for ݏ > ݇ + ℓ. Since ߠ ∉  we ,߉
can find the smallest integer ߙ such that ߬(0ିଶ      ߪିଵߪ ⋯ (ఈߪ ≠  ఈ. By (iii) in theߝ
definition of ߬, we can find ߪ ∈ ߪ  so that߁ = 0ିଶߪିଵߪ ⋯  ᇱ0ஶ and ߬ is regularߪఈߪ
on ߪ, then there exists ܯᇱ such that 

ߠ − ܫܫݎ
ఛ(ߪ) = ఈߝ)ఈܾݎ − ߬(0ିଵߪିଵ … (ఈߪ +  . (ᇱܾܯ

By (ii) in the definition of ߬, ߬(0ିଵߪିଵ ⋯ (ఈߪ ≡  which is also congruent , (ݍ mod)ఈߪ
to ߝఈ by our construction. This implies ߠ − ߎݎ

ఛ(ߪ) is not in the zero set of ̂ߤ since ݍ 
divides ߝఈ − ߬(0ିଵ݅ିଵ ⋯ ݅ఈ) and ܾ does not divide it either. It contradicts to ߠ being 
orthogonal to all ߉. 

Conversely, suppose we are given a maximal orthogonal set ߉ of ܮଶ(ߤ) with 0 ∈
߉  Then .߉ ⊂  Hence, we can write . (ߤ̂)ࣴ
߉ = ఒܽݎ} ∶ ߣ  ∈ ,߉ ܽఒ = ܾିଵ݉ for some ݇ ≥ 1 and ݉ ∈ ℤ with ݍ † ݉}, 
where ܽ = 0. Now, expand ܽఒ in ܾ‐adic expansion with digits chosen from ܥ =
{−1 , 0, … , ܾ − 2}. 

ܽఒ =  ఒߝ
()

ஶ

ୀଵ

ܾିଵ                                                 (51) 

Let (ߴ)ܦ = ቄߝఒ
(ଵ) ∶ ߣ  ∈  ቅ be all the first coefficients of ܾ‐adic expressions (51) of߉

elements in ߉, and let ܥ)ܦଵ, … , ܿ) = ቄߝఒ
(ାଵ) ∶ ఒߝ 

(ଵ) = ,ଵܥ ఒߝ …
() = ܿ, ߣ ∈  ቅ be all߉

the ݊ + 1- st coefficients of elements in ߉ whose first ݊ coefficients are fixed, where 
ܿଵ , ܿଶ, … , ܿ ∈  .We need the following lemma .ܥ
Lemma (3.3.10)[214]: With the notations above, (ߴ)ܦ contains exactly ݍ elements which 
are in distinct residue class (݉ݍ ݀) and 0 ∈ ,ଵܿ)ܦ Moreover, if . (ߴ)ܦ … , ܿ) with all 

ܿ ∈  elements which are in distinct residue ݍ is non‐empty, then it contains exactly ܥ
class (݉ݍ ݀) also. In particular, 0 ∈ ,ଵܿ)ܦ … , ܿ) if ܿଵ = ⋯  = ܿ = 0 for ݊ ≥ 1. 
Proof. Clearly, by (51), 0 ∈ and 0 (ߴ)ܦ ∈ ,ଵܿ)ܦ … , ܿ) if ܿଵ = ⋯  = ܿ = 0 for ݊ ≥ 1. 

Suppose the number of elements in (ߴ)ܦ is strictly less than ݍ. We let ߙ ∈  (ߴ)ܦ\ܥ
such that ߙ is not congruent to any elements in (ߴ). Then, for any ߣ ∈  by (51) we have ,߉

ߙݎ − ߣ = ݎ ቌߙ −  ఒߝ
()

ஶ

ୀଵ

ܾିଵቍ =
ܾ
ݍ ቌߙ − ఒߝ

(ଵ) +  ఒߝ
()

ஶ

ୀଶ

ܾିଵቍ . 

Note that ݍ † ቀߙ − ఒߝ
(ଵ)ቁ for all ߣ ∈  is mutually ߙݎ by the assumption, this implies ߉

orthogonal to ߉ but is not in ߉, which contradicts to maximal orthogonality. Hence (ߴ)ܦ 
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contains at least ݍ elements. If (ߴ)ܦ contains more than ݍ elements, then there exists 
ܽఒభ = ∑  ஶ

ୀଵ ఒభߝ

()ܾିଵ , ܽఒమ = ∑ ఒమߝ

()ஶ
ୀଵ ܾିଵ such that ߝఒభ

(ଵ) ≡ ఒమߝ

(ଵ)(mod ݍ) and ߝఒభ

(ଵ) ≠

ఒమߝ

(ଵ). Then ݎ(ܽఒభ − ܽఒమ) = 


ቀߝఒభ

(ଵ) − ఒమߝ

(ଵ) +  This means .ܯ ቁ for some integerܯܾ

൫ܽఒభݎ − ܽఒమ൯ is not a zero of ̂ߤ. This contradicts to the mutual orthogonality. Hence, (ߴ)ܦ 
contains exactly ݍ elements which are in distinct residue class (mod ݍ) . 

In general, we proceed by induction. Suppose the statement holds up to ݊ − 1. If 
now ܥ)ܦଵ, … , ܿ) is non‐empty, then ܦ(ܿଵ, … , ܿ) is also non‐empty for all ݇ ≤ ݊. we 
now show that ܦ(ܿଵ, … , ܿ) must contain at least ݍ elements. Otherwise, we consider 
ߠ = ଵܿ)ݎ + ⋯ + ܾܿିଵ + , ଵܿ)ܦ\ܥ is in ߙ ) whereܾߙ … , ܿ) and ߙ is not congruent to 
any elements in (ܿଵ , … , ܿ)(mod ݍ). If ߣ ∈ ߣ and ߉ = ଵܿ)ݎ + ⋯ + ܾܿିଵ + ܿାଵ

ᇱ ܾ +
⋯ ) where ܿାଵ ≠ ܿାଵ

ᇱ  and ݇ ≤ ݊, then ܿାଵ, ܿାଵ
ᇱ ∈ ,ଵܿ)ܦ … , ܿ) and hence ߠ and ߣ are 

mutually orthogonal by the induction hypothesis. If ߣ ∈  is such that the first ݊ digit ߉
expansion are equal to ߠ, the same argument as in the proof of (ߴ)ܦ shows ߠ will be 
orthogonal to this ߣ. Therefore, ߠ will be orthogonal to all elements in ߉, a contradiction. 
Also in a similar way as the above, ܦ(ܿଵ, … , ܿ) contains exactly ݍ elements can be 
shown. 

Returning to the proof of Theorem (3.3.9), by convention, we define ߬ (ߴ) = 0 and 
on the first level, we define ߬(ߪଵ) to be the unique element in (ߴ)ܦ such that it is 
congruent to ߪଵ(mod ݍ) . For ߪ = ଵߪ … ߬  , we defineߪ  to be the unique element (ାଵߪߪ)
in ܦ൫߬(ߪ|ଵ), … ,  ൯ (it is non‐empty from the induction process) that is congruent to(|ߪ)߬
Then ߬(0) . (ݍ mod)ାଵߪ = 0 for ݇ ≥ 1. 

We show that ߬ is a maximal mapping corresponding to ߉. (i) is satisfied by above. 
By Lemma (3.3.10), ߬ is well‐defined with (ii) in Definition (3.3.4). Finally, given a node 
ߪ ∈ ߑ

, by the construction of the ߬ we can find ߣ whose first ݊ digits in the digit 
expansion (51) exactly equals the value of ߬(ߪ|) for all 1 ≤ ݇ ≤ ݊. Since the digit 
expansion of ߣ becomes 0 eventually, we continue following the digit expansion of ߣ so 
that (iii) in the definition is satisfied. 

We now show that  Λ =  For each ܽఒ given in (51), Lemma (3.3.10) with . (߬)߉ݎ
the definition of ߬ shows that there exists unique path ߪ such that ߬(ߪ|) = ఒߝ

() for all 
݊. As the sum is finite, this means  Λ ⊂ ܫܫ Conversely, if some .(߬)߉ݎ

ఛ(ߪ) ∈  is (߬)߉ݎ
not in ߉, then from the previous proof we know ܫܫ

ఛ(ߪ) must be orthogonal to all elements 
in ߉. This contradicts to the maximal orthogonality of ߉. Thus, ߉ =  . (߬)߉ݎ

We study under what conditions a maximal orthogonal set is a spectrum or not a 
spectrum. 
Lemma (3.3.11)[214]: ([223]). Let ߤ be a Borel probability measure in ℝ with compact 
support. Then a countable set ߉ is a spectrum for ܮଶ(ߤ) if and only if 

:(ߦ)ܳ =  |
 

ఒ∈௸

ߦ)ߤ̂ + ଶ|(ߣ ≡ 1, ߦݎ݂ ∈ ℝ. 

Moreover, if Λ is a bi-zero set, then ܳ is an entire function. 
Note that the first part of Lemma (3.3.11) is well‐known. For the entire function 

property, we just note that the partial sum ∑ | … 
|ఒ|ஸ |ଶ is an entire function and it is 

locally uniformly bounded by applying Bessel’s inequality, hence ܳ  is entire by Montel’s 
theorem in complex analysis. One may refer to [223] for the details of the proof. 

Let ߜ  be the Dirac measure with center ܽ. We define 
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ℰߜ =
1

#ℰ
 ߜ

 

∈ℰ

 

for any finite set ℰ. Let ߤ be the self‐similar measure in (41). Write ࣞ = {0,1, … , ݍ − 1} 
and ܦ = ଵ


ࣞ + ⋯ + ଵ

ೖ ࣞ for ݇ ≥ 1. We recall that the mask function of ࣞ is 

(ߦ)݉ =
1
ݍ

൫1 + ݁ଶగక + ⋅⋅⋅  +݁ଶగ(ିଵ)క൯ 

and define ߤ = ೖߜ  , then 

(ߦ)ෞߤ = ෑ ݉


ୀଵ

(ܾିߦ) 

and it is well‐known that ߤ  converges weakly to ߤ when ݇ tends to infinity and we have 

(ߦ)ߤ̂ = ߤ̂(ߦ)ෞߤ ൬
ߦ

ܾ൰.                                                 (52) 

Lemma (3.3.12)[214]: Let ߬ be a regular mapping and let ߉ = (߬)߉ݎ = ୀ{ߣ}
ஶ  be the 

maximal orthogonal set determined by ߬. Then for all ݊ ≥ 1, 

 |
ିଵ

ୀ

ߦ)ෞߤ + )|ଶߣݎ ≡ 1.                                               (53) 

Proof. We claim that {ߣݎ}ୀ
ିଵ = 


ୀ{ߣ}

ିଵ is a spectrum of ܮଶ(ߤ) . We can then use 
Lemma (3.3.11) to conclude our lemma. Since this set has exactly ݍ elements, we just 
need to show the mutual orthogonality. To see this, we note that 

(ߦ)ߤ̂ = ݉ ൬
ߦ
ܾ

൰ ⋯ ݉ ൬
ߦ

ܾ൰ .                                           (54) 
Given ݈ ≠ ݈ᇱ in {0, … , ݍ − 1}, let ߪ = ଵߪ ⋯ ᇱߪ  andߪ = ଵߪ ߪ …

ᇱ  be the ݍ‐adic 
expansions of ݈ and ݈ᇱ respectively as in (49), where ߪ and ߪ

ᇱ  may be zero. We let ݏ ≤
݊ be the first index such that ߪ௦ ≠ ௦ߪ

ᇱ. Then we can write 
ߣ − ᇲߣ = ܾ௦ିଵ(߬(ߪ|௦) − (ᇱ|௦ߪ)߬ +  (ܯܾ

for some integer ܯ. We then have from the integral periodicity of ݁ଶగ௫ that 

݉ ቆ
ߣ)ݎ − ᇲߣ )

ܾ௦ ቇ = ݉ ቆ
(௦|ߪ)߬ − (ᇱ|௦ߪ)߬

ݍ
ቇ = 0. 

It is equal to 0 because (ii) in the definition of maximal mapping implies that ݍ does not 
divide (ߪ|௦) − ߣ)ݎ൫ߤ̂ ,Hence, by (54) . (ᇱ|௦ߪ)߬ − ᇲߣ )൯ = 0. 

Now, we let 

ܳ(ߦ) =  |
ିଵ

ୀ

ߦ)ߤ̂ + ,)|ଶߣݎ (ߦ)ܳ ݀݊ܽ =  |
ஶ

ୀ

ߦ)ߤ̂ +  .)|ଶߣݎ

For any ݊ and , we have the following identity: 

                ܳା(ߦ) = ܳ(ߦ) +  |
శିଵ

ୀ

ߦ)ߤ̂ +  )|ଶߣݎ

= ܳ(ߦ) +  |
శିଵ

ୀ

ାෟߤ ߦ) + ߤ̂|)|ଶߣݎ ൬
ߦ + ߣݎ

ܾା ൰ |ଶ.                    (55) 
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We see whether ܳ(ߦ) ≡ 1. Then by invoking Lemma (3.3.11), we can determine whether 
we have a spectrum. As ܳ is an entire function by Lemma (3.3.11), we just need to see 
the value of ܳ(ߦ) for some small values of ߦ. To do this, we need to make a fine 
estimation of the terms |̂ߤ ቀకାఒೖ

శ ቁ |ଶ in the above. Write 

ܿ୫୧୬ =  min ቐෑ |
ஶ

ୀ

݉൫ܾିߦ൯|ଶ ∶ |ߦ|  ≤
ܾ − 1

ܾݍ ቑ > 0, 

where |݉(ߦ)| = |ୱ୫̇గక|
| ୱ୧୬ గక|

 and ∏ |ஶ
ୀ ݉൫ܾିߦ൯|ଶ =  ଶ. Denote|(ߦ)ߤ̂(ߦ)݉|

ܿ ୫ୟ୶ =  max ൜|݉(ߦ)|ଶ ∶  
1

ܾଶ ≤ |ߦ| ≤
ܾ − 1

ܾݍ ൠ < 1. 

The following proposition roughly says that the magnitude of the Fourier transform is 
controlled by the number of non‐zero digits in the ܾ‐adic expansion in a uniform way. 
Recall that ܾ = ݎ with ݎݍ ≥ 2. 
Proposition (3.3.13)[214]: Let |ߦ| ≤ ିଶ)

ିଵ
 and let 

ݐ = ߦ +  ݀

ே

ୀଵ

ܾೖ , 

where ݀ ∈ {1, 2, … , ݎ − 1} and 1 ≤ ݊1 < ⋯ < ݊ே. Then 
ܿ ୫୧୬ 

ேାଵ ≤ ଶ|(ݐ)ߤ̂| ≤  ܿ୫ୟ୶ 
ே .                                              (56) 

Proof. First it is easy to check that, for |ߦ| ≤ ିଶ)
ିଵ

 and all ݀ ∈ {0,1, 2, … , ݎ − 1}, we 
have 

ቤ
ߦ + ∑ ݀


ୀଵ ܾ

ܾାଵ ቤ ≤
1

ܾାଵ ൭
ܾ)ݎ − 2)

ܾ − 1
+ ݎ) − 1)(ܾ + ܾଶ + ⋯ + ܾ)൱      

=
ܾ)ݎ − 2) + ݎ) − 1)(ܾାଵ − ܾ)

ܾାଵ(ܾ − 1) ≤
ܾ − 1

ܾݍ
                        (57) 

for ݊ ≥ 1. The inequality in the last line follows from a direct comparison of the 
difference and ݍ ≥ 2. To simplify notations, we let ݊ = 0 and ݊ேାଵ = ∞. Then |̂(ݐ)ߤ|ଶ 
equals 

ෑ |
ஶ

ୀଵ

݉൫ܾିݐ൯|ଶ = ෑ ෑ |
శభ

ୀାଵ

ே

ୀ

݉൫ܾିݐ൯|ଶ .                          (58) 

We now estimate the products one by one. By (57), we have 

ቤ
ߦ + ∑ ݀


ୀଵ ܾ݇
ܾାଵ ቤ ≤

ܾ − 1
ܾݍ

 

Hence, together with the integral periodicity of ݉ and the definition of ܿ, we have for 
all ݅ > 0, 

ෑ |
శభ

ୀ ାଵ

݉൫ܾିݐ൯|ଶ = ෑ |
శభ

ୀାଵ

݉ ൮ܾି ቌߦ +  ݀



ୀଵ

ܾೖ ቍ൲ |ଶ  

≥ ෑ |
ஶ

ୀ

݉(ܾି(
ߦ + ∑ ݀


ୀଵ ܾ݇
ܾାଵ ‖|ଶ ≥           (59)ܥ
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For the case ݅ = 0, it is easy to see that | క


| ≤ ିଶ
(ିଵ) < ିଵ


. Hence, 

∏  భ
ୀబାଵ |݉൫ܾିݐ൯|ଶ ≥ ∏ |ஶ

ୀ ݉ ൬ܾି ቀక


ቁ൰ |ଶ ≥ ܿ . Putting this fact and (59) into 

(58), we have |̂(ݐ)ߤ|ଶ ≥  ܿ୫୧୬ 
ேାଵ  

We next prove the upper bound. From |݉(ߦ)| ≤ 1, (58) and the integral periodicity 
of ݉, 

ଶ|(ݐ)ߤ̂| ≤ ෑ |
ே

ୀଵ

݉൫ܾି(ାଵ)ݐ൯|ଶ                            

= ෑ |
ே

ୀଵ

݉ ൮ܾି(ାଵ) ቌߦ +  ݀



ୀଵ

ܾ݇ቍ൲ |ଶ                   (60) 

By (57) we have 

ߦ| +  ݀



ୀଵ

ܾ݇| ≥ ܾ − ߦ| +  ݀

ିଵ

ୀଵ

ܾ݇| ≥ ܾ −
ܾషభ(ܾ − 1)

ݍ ≥ ܾିଵ 

By (57), (60), the above and the definition of ܿ ୫ୟ୶ , we obtain that |̂(ݐ)ߤ|ଶ ≤  ܿ୫ୟ୶ 
ே . 

We now prove Theorem (3.3.14). Write ܿଵ = ܿ  and ܿଶ = ܿ ୫ୟ୶ , where ܿ 
and  ܿ୫ୟ୶  are in Proposition (3.3.13). Also recall the quantities defined. For any ݊ ∈ ℕ, 
the ݍ‐adic expression of ݊ is ∑ ߪ


ୀଵ ߪ ିଵ withݍ ≠ 0. Then for the map ߬ we have 

ߣ =  ߬


ୀଵ

൫ߪଵ ⋯ ൯ܾିଵߪ +  ߬
ே

ୀାଵ

൫ߪଵ ⋯  0ି൯ܾିଵߪ

where ߬(ߪଵ ⋯ (  0ேିߪ ≠ 0 and ܰ
∗ = #൛߬൫ߪଵ ⋯ 0ߪ ൯ ≠ 0 ∶  ݇ + 1 ≤ ݆ ≤ ܰൟ. 

Moreover, ࣨ,
∗ = maxஸழ { ܰ

∗}, ℒ
∗ = minஸழశభ{ ܰ

∗} and ℳ =
maxଵஸழ { ܰ}. 
Theorem (3.3.14)[214]: Let ߉ = for a regular mapping ߬. Then we can find 0 (߬)߉ݎ <
ܿଵ < ܿଶ < 1 so that the following holds. 

(i) If there exists a strictly increasing sequence ߙ satisfying 

ାଵߙ − ℳఈ → ∞, ܽ݊݀  ܿଵ
ࣨഀ ,ഀశభ

∗
ஶ

ୀଵ

= ∞,                              (61) 

then ߉ is a spectrum of ܮଶ(ߤ). 
(ii) If  ∑ ܿଶ

ℒ
∗ஶ

ୀଵ < ∞, then ߉ is not a spectrum of ܮଶ(ߤ) . 
Proof. (i) Let ߙ be the increasing sequence satisfying (61) and let |ߦ| ≤ ିଶ

ିଵ
. Recall (55), 

ܳఈశభ
(ߦଵିݍ) = ܳఈ

(ߦଵିݍ) +  |
ഀశభିଵ

ୀഀ

ఈశభෟߤ ߦଵିݍ) + ߤ̂|)|ଶߣݎ ቆ
ߦଵିݍ + ߣݎ

ܾఈశభ
ቇ |ଶ 

For ݇ = ఈݍ , … , ఈశభݍ − 1 , we may write ߣ  as 

ߣ =  ܿ

ఈశభିଵ

ୀ

ܾ +  ݀

ெೖ

ୀଵ

ೕܾݍ , 
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where ܿ ∈ {−1, … , ܾ − 2}, ݀ ∈ {1, … , ݎ − 1} and ߙାଵ ≤ ݊ଵ < ݊ଶ < ⋯ < ݊ெೖ  with 
݊ெೖ = ܰ and ܯ ≤ ܰ

∗, where ܰ, ܰ
∗ were defined in (50) or see the above. Note also 

that the second term on the right hand of the above is zero whenever ܰ <  ,ାଵ. Nowߙ

ߦଵିݍ + ߣݎ

ܾఈశభ
=

ߦଵିݍ + ଵିݍ ∑ ܿ
ఈశభ
ୀଵ ܾ

ܾఈశభ
+  ݀

ெೖ

ୀଵ

ܾೕିఈశభାଵ 

Note that 

|
ߦ
ݍ +

1
ݍ  ܿ



ୀଵ

ܾ| ≤
ܾ − 2

ܾ)ݍ − 1) + (ܾ − 2)
ܾାଵ − ܾ
ܾ)ݍ − 1) ≤

ܾ − 2
ܾ)ݍ − 1) ܾାଵ 

=
ܾ)ݎ − 2)

ܾ − 1
ܾ                                

for all ݇ ≥ 1. Hence, Proposition (3.3.13) implies that 

ߤ̂| ቆ
ߦଵିݍ + ߣݎ

ܾఈశభ
ቇ |ଶ ≥ ܿଵ

ଵାெೖ ≥ ܿଵ
ଵାேೖ

∗
≥ ܿଵ

ଵାேഀ,ഀశభ
∗

 

for all ݍఈ ≤ ݇ <  ,ఈశభ. Therefore, together with Lemma (3.3.12)ݍ

ܳఈశభ
(ߦଵିݍ) ≥ ܳఈ

(ߦଵିݍ) + ܿଵ
ଵାࣨഀ ,ഀశభ

∗
 |

ഀశభ ିଵ

ୀഀ

ఈశభෟߤ ߦଵିݍ) + )|ଶߣݎ

= ܳ(ିݍଵߦ) + ܿଵ
ଵାࣨഀ ,ഀ శభ

∗

ቌ1 −  |
ഀ ିଵ

ୀ

ఈశభෟߤ ߦଵିݍ) +   .)|ଶቍߣݎ

From elementary analysis, there exists 0 ,ߜ < ߜ < 1, such that |̂(ߦ)ߤ|ଶ is decreasing on 
(0, (0)ߤ̂ in fact, since) (ߜ = 1 and |̂(ߦ)ߤ|ଶ is entire in complex plane, there exists ߟ > 0 
such that |̂(ߦ)ߤ| < 1 for all 0 < ߦ < ,ଶ is not decreasing on (0|(ߦ)ߤ̂| If .ߟ ߜ for any (ߜ >
0, we can find a sequence ߦ → 0 such that (|̂ߤ|ଶ)ᇱ(ߦ) = 0 and thus (|̂ߤ|ଶ)ᇱ ≡ 0 by the 
entire function property of |̂ߤ|ଶ, this is impossible). In the proof, it is also useful to note 
that |̂(ߦ−)ߤ| =  such that ߉ We now argue by contradiction. Suppose there exists .|(ߦ)ߤ̂|
Theorem (3.3.14) (i) holds but is not a spectrum, then there exists ݐ <  min ቄߜ, ିଶ

ିଵ
ቅ 

such that ܳ(ିݍଵݐ) < 1because ܳ is entire. for 0 ≤ ݇ ≤ ఈݍ − 1 , we have 

|
ݐଵିݍ + ߣݎ

ܾఈశభ
| ≤

1 + ℳഀܾݎ

ܾఈశభ
: = ߚ . 

By the assumption that ߙାଵ − ℳఈ → ∞, we have for all ݊ large, say ݊ ≥ ߚ ,ܯ <  ߜ

so that |̂ߤ ቀషభ௧బାఒೖ

ഀశభ
ቁ |ଶ ≥ ߴ ଶ and we can find|(ߚ)ߤ̂| < 1 such that 

(ݐଵିݍ)ଶܳି|(ߚ)ߤ̂| ≤ ߴ < 1 ,      for ݊ ≥  ܯ
because ߚ tends to zero when ݊ tends to infinity and ̂(0)ߤ = 1. According to ̂(ߦ)ߤ =
ఈశభߤ̂

 we have , (ఈశభܾ/ߦ)ߤ̂(ߦ)

ݐଵିݍ)ߤ̂| + )|ଶߣݎ = ఈశభߤ̂|
ݐଵିݍ) + ߤ̂(ߣݎ ቆ

ݐଵିݍ + ߣݎ

ܾఈశభ
ቇ |ଶ

≥ ఈశభߤ̂|
ݐଵିݍ) + ଶ|(ߚ)ߤ̂|)|ଶߣݎ ≥

(ݐଵିݍ)ܳ
ߴ

ఈశభߤ̂|
ݐଵିݍ) +  .)|ଶߣݎ

From (55) and for all ݊ ≥  ,ܯ
         ܳఈశభ

 (ݐଵିݍ)
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≥ ܳఈ
(ݐଵିݍ) + ቌ1 −

ߴ

ݍ)ܳ − 1௧బ)
 |

ഀ ିଵ

ୀ

ݐଵିݍ)ߤ̂ + )|ଶቍߣݎ ܿଵ
ଵାࣨഀ ,ഀశభ

∗
 

≥ ܳఈ
(ݐଵିݍ) + (1 − )ܿଵߴ

ଵାࣨഀ ,ഀశభ
∗

                                         
Taking summation on ݊ from ܯ to ܯ +  where  > 0 and noting that ܳ(ݐ) ≤ 1 for 
any ݊ we have 

1 ≥ ܳఈಾశశభ
(ݐଵିݍ) ≥ ܳఈಾ

(ݐଵିݍ) + (1 − (ߴ  ܿଵ
ଵାࣨഀ ,ഀశభ

∗
ெା

ୀெ

 

As ∑ ܿଵ
ࣨഀ ,ഀశభ

∗
ஶ
ୀெ = ∞ by the assumption, the right hand side of the above tends to 

infinity. This is impossible. Hence, ߉ must be a spectrum. 
(ii) The proof starts again at (55) with  = 1, we have 

ܳାଵ(ିݍଵߦ) = ܳ(ିݍଵߦ) +  |
శభ

ୀ

ାଵෟߤ ߦଵିݍ) + ߤ̂|)|ଶߣݎ ቆ
ߦଵିݍ + ߣݎ

ܾାଵ ቇ |ଶ 

Since ܰ
∗ ≥ ℒ

∗  for ݍ ≤ ݇ <  ାଵ , Proposition (3.3.13) implies thatݍ

ܳାଵ(ିݍଵߦ) ≤ ܳ(ିݍଵߦ) + ܿଶ
ℒ

∗
 |

శభିଵ

ୀ

ାଵෟߤ ߦଵିݍ) +  )|ଶߣݎ

Using Lemma (3.3.12) and noting that |ߤାଵෟ(ߦ)|ଶ ≥  ଶ, we have|(ߦ)ߤ̂|

ܳାଵ(ିݍଵߦ) ≤ ܳ(ିݍଵߦ) + ܿଶ


∗
ቌ1 −  |

ିଵ

ୀ

ߦଵିݍ)ାଵෟߤ + )|ଶቍߣݎ

≤ ܳ(ିݍଵߦ) + ܿଶ
ℒ

∗
൫1 − ܳ(ିݍଵߦ)൯  . 

Hence, 
1 − ܳାଵ(ିݍଵߦ) ≥ ൫1 − ܳ(ିݍଵߦ)൯ ቀ1 − ܿଶ


∗

ቁ                         

≥ ⋯ ≥ ൫1 − ܳଵ(ିݍଵߦ)൯ ෑ൫1ℒೖ
∗

− ܿଶ൯


ୀଵ

.                     (62) 

Since ∑ ܿଶ


∗ 
 < ∞, :ܤ = ∏ ቀ1 − ܿଶ


∗

ቁஶ
ୀଵ > 0 and hence as ݊ tends to infinity in (62), we 

have 
1 − (ߦଵିݍ)ܳ ≥ ൫1 − ܳଵ(ିݍଵߦ)൯ ⋅ ܤ > 0. 

Therefore, ߬ is not a spectral mapping. 
As known from Example (3.3.5), ߬ is a spectral mapping if  sup { ܰ

∗} is finite. 
Now, we give an example of a spectrum with slow growth rate of ܰ

∗. 
Example (3.3.15)[214]: Let ߬ be a regular mapping so that ܰ ≤ log݊ + logభ

షమlog݊ 
and ܰ

∗ ≤ logభ
షమ log ݊ for ≥ 1 , where ܿଵ is given in Theorem (3.3.14). Then ߉ݎ(߬) is a 

spectrum of ܮଶ(ߤ) . 
Proof. Take ߙ = ݊ଶ. Recalling ℳ = maxଵஸழ ܰ , we have 

ାଵߙ − ℳఈ ≥ (݊ + 1)ଶ − ݊ଶ − logభ
షమ݊ଶ, 

which tends to infinity when ݊ tends to infinity. Note that 
ఈࣨ ,ఈశభ
∗ = max

ഀ ஸழഀ ାଵ
  ࣨ

∗ ≤ logభ
షమ logݍ(ାଵ)మ = logభ

షమ(݊ + 1)ଶ. 
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Then 

 ܿଵ
ࣨഀ ,ഀశభ

∗
ஶ

ୀଵ

≥  ܿଵ
୪୭భషమ (ାଵ)మ  

ஶ 

ୀଵ

 = 
1

݊ + 1

ஶ

ୀଵ

= ∞ . 

By Theorem (3.3.14) the result follows. 
On the other hand, if ܰ

∗ is so that ℒ
∗ ≥ (1 + logమ(ߝ

షభ݊, for some ߝ > 0 and ݊ ≥
1 , then ߉ݎ(߬) is not a spectrum. This is done by checking the condition of Theorem 
(3.3.14) (ii) using the similar method as above. Finally, we prove Theorem (3.3.16). 
Theorem (3.3.16)[214]: Let ߤ = ܾ , be a measure defined in (41) withߤ >
,ݍ)and gcd ݍ ܾ) = ݃ Then given any increasing non‐negative function .ݍ ,0] ݊  ∞), there 
exists a spectrum ܮ ݂ ߉ଶ(ߤ) such that 

lim
ோ→ஶ

sup
௫ఢℝ

  
#൫߉ ∩ ݔ) − ܴ, ݔ + ܴ)൯

݃(ܴ) = 0.                                  (63) 

Proof. For any ݊ ∈ ℕ, ݊ can be expressed as 

݊ =  ߪ



ୀଵ

 ିଵ ,                                                       (64)ݍ

where all ߪ ∈ {0,1, … , ݍ − 1} and ߪ ≠ 0. Let {݉}ୀଵ
ஶ  be a strictly increasing sequence 

of positive integers with ݉ଵ ≥ 2. We now define a maximal mapping in terms of this 
sequence by ߬(ߴ) = ߬(0) = 0 for ݇ ≥ 1 and for ݊ as in (64), 

(ߪ)߬ = ቐ
,ߪ if ߪ = ଵߪ ⋯ ,ߪ ߪ ≠ 0;
0, if ߪ = ଵߪ ⋯ , 0ℓߪ ܲ ≠ ݉;
, ݍ if ߪ = ଵߪ … 0ℓandℓߪ = ݉ .

 

By the definition we have ߣ = 0 and 

ߣ =  ߬


ୀଵ

൫ߪଵ. . . ൯ܾିଵߪ + ܾݍ , 

consequently, ܰ
∗ = 1 and by Theorem (3.3.14) (i) (see also Example (3.3.5)), ߉: =

ୀ{ߣ}
ஶ  is a spectrum for ܮଶ(ߤ) . 

We now find ߉ with density in (48) zero by choosing ݉. To do this, we first note 
that there exists a strictly increasing continuous function ℎ(ݐ) from [0, ∞) onto itself such 
that ℎ(ݐ) ≤ ݐ for (ݐ)݃ ≥ 0 and it is sufficient to replace ݃  in the proof. In this (ݐ)by ℎ (ݐ)
way, the inverse of ℎ(ݐ) exists, and we denote it by ℎିଵ(ݐ) . 

Now, note that 

ߣ ≤ ݍ
ܾ − 1
ܾ − 1

+ ܾݍ ≤ ݍ) + 1)ܾ . 
Hence, 

ାଵߣ − ߣ ≥ శభܾݍ − ݍ) + 1)ܾ ≥ ܾାଵ.                             (65) 
Therefore, we choose ݉  so that ܾ ≥ 2ℎିଵ(ܾାଵ) for all ݊ ≥ 1. For any ℎ(ܴ) ≥ 1 , 
there exists unique ݏ ∈ ℕ such that ܾ௦ିଵ ≤ ℎ(ܴ) < ܾ௦. Then 

sup
௫∈ℝ

  #൫߉ ∩ ݔ) − ܴ, ݔ + ܴ)൯

ℎ(ܴ)  ≤
  sup

௫∈ℝ
  # ቀ߉ ∩ ൫ݔ − ℎିଵ(ܾ௦), ݔ + ℎିଵ(ܾݏ)൯ቁ

ܾ௦ିଵ  
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Note from (65) that the length of the open intervals ൫ݔ − ℎିଵ(ܾ௦), ݔ + ℎିଵ(ܾݏ)൯ is less 
than ߣାଵ − ݊  wheneverߣ ≥ ߉ This implies that the set .ݏ ∩ ൫ݔ − ℎିଵ(ܾ௦), ݔ +
ℎିଵ(ܾݏ)൯ contains at most one ߣ where ݊ ≥  We therefore have .ݏ

sup
௫∈ℝ

  # ቀ߉ ∩ ൫ݔ − ℎିଵ(ܾ௦), ݔ + ℎିଵ(ܾ௦)൯ቁ ≤ ݏ + 1. 

Thus the result follows by taking limit. 
Let ߬ be a maximal mapping (not necessarily regular) for ߤ = ܾ , withߤ =  .ݎݍ

Given any ܫ = ଵߪ ⋯ ߪ ∈ ߑ
 = {0,1, … , ݍ − 1}  with ߪ ≠ 0. Define a map ߬ᇱ by 

߬ᇱ(ߪ) = ൜0, ߪ = 0ℓ for ℓܫ ≥ 1;
, (ߪ)߬ otherwise.  

Clearly ߬ᇱ is a maximal mapping. The main result is as follows. 
This result shows that if we arbitrarily change the value of ߬ along an element in 

߁  as above, the spectral property of ߬ is unaffected. In particular, Theorem (3.3.6) 
follows as a corollary because we can alter the irregular elements one by one using 
Theorem (3.3.20). 

Note that we can decompose 

߁ = ൛0ߪஶ: ߪ ∈ ߑ
∗ൟ = ራ  

 

ூ∈ఀ 

߁ܫ                                          (66) 

for all ݊ ≥ 1. And recall that 
(߬)߉ = ܫܫ}

ఛ(ܬ) ∶ ∈ ߁  , ߬ is regular on ܬ}, 
where ܫܫ

ఛ(ܬ) = ∑ ߬ஶ
ୀଵ ܫܫ ିଵ. Denote naturallyܾ(|ܬ)

ఛ(ܫ) = ∑ ߬
ୀଵ ܫ ିଵ ifܾ(|ܫ) ∈ ߑ

 
, and ܫܫ,ூ

ఛ (ܬ) = ∑ ߬ஶ
ୀଵ ଵ݆ܫ) ⋯ ݆)ܾିଵ for ܬ = ݆ଵ݆ଶ … ∈  .߬ is regular for ܬ ܫ  where߁

Define also 
By (66) we have 

(߬)ூ߉ = ,ூܫܫ}
ఛ (ܬ) ∶ ∈ ߁  , ߬ is regular on ܬ}. 

(߬)߉ = ራ ൫ܫܫ
ఛ(ܫ) + ܾ߉ூ(߬)൯

 

ூ∈ఀ


 . 

The following is a simple lemma which was also observed in [217]. 
Proposition (3.3.17)[214]: Let ߬ be a tree mapping and ݊ ≥ 1. Then ߉ݎ(߬) is a spectrum 
for ߤ if and only if all ߉ݎூ(߬) , ܫ ∈ ߑ

 , are spectra. 
Proof. Recall that ߤ  satisfies ̂(ߦ)ߤ = (ߦ)ߤ̂ and (ߦିܾ)ߤ̂(ߦ)ߤ̂ = ∏ ݉

ୀଵ ൫ܾିߦ൯. 
where ݉(ߦ) = ଵ


∑ ݁ଶగ(ିଵ)క

ୀଵ . Write ூܳ(ߦ) ∑ | 
ఒ∈௸(ఛ) ߦ)ߤ̂ +  ଶ. Note that|(ߣݎ

(ߦ)ܳ =  |
 

ఒ∈௸(ఛ)

ߦ)ߤ̂ + ଶ|(ߣݎ

=  |
 

ூ∈ఀ   ,ఒ∈௸(ఛ)

ߦ)ߤ̂ + ܫܫݎ
ఛ(ܫ) + ߤ̂|ଶ|(ߣܾݎ ቆ

ߦ + ܫܫݎ
ఛ(ܫ)

ܾ + ቇߣݎ |ଶ

=  |
 

ூ∈ఀ 
  ,   ఒ∈௸(ఛ)

ߦ൫ߤ̂ + ܫܫݎ
ఛ(ܫ)൯|ଶ|̂ߤ ቆ

ߦ + ܫܫݎ
ఛ(ܫ)

ܾ + ቇߣݎ |ଶ

=  |
 

ூ∈ఀ


ߦ൫ߤ̂ + ܫܫݎ
ఛ(ܫ)൯|ଶ. ܳூ  ቆ

ߦ + ܫܫݎ
ఛ(ܫ)

ܾ ቇ . 
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In a similar proof of Lemma (3.3.12), we have 

1 ≡  |
 

ூ∈ఀ


ߦ൫ߤ̂ + ߎݎ
ఛ(ܫ)൯|ଶ. 

Invoking Lemma (3.3.11), the result follows. 
Proposition (3.3.17) asserted that spectral property is determined by a finite 

number of nodes. The following two lemmas show that the spectral property of a 
particular node ߪ can be determined by infinitely many of its offsprings and is 
independent of the regularity of 0ߪஶ. These are the key lemmas to the proof of Theorem 
(3.3.20). 
Lemma (3.3.18)[214]: Let ܫ ∈ ߑ

ܫ ℎݐ݅ݓ∗ ≠  ,0ஶܫ the empty word. If ߬ is regular on ,ߴ
then 

(߬)ூ߉ = ൛ܫܫ,ூ
ఛ (0ஶ)ൟ ∪ ራ ራ ቀܫܫ,ூ

ఛ (0ିଵ݆) + ܾ߉ூೖషభ(߬)ቁ
ିଵ

ୀଵ

ஶ

ୀଵ

 , 

where ܫܫ,ூ
ఛ (0ିଵ݆) = (0ܫ)߬ + ܾ(0ଶܫ)߬ + ⋯ +  ,0ஶܫ ିଵ. If ߬ is irregular onܾ(0ିଵ݆ܫ)߬

then 

(߬)ூ߉ = ራ ራ ቀܫܫ,ூ
ఛ (0ିଵ݆) + ܾ߉ூೖషభ(߬)ቁ

ିଵ

ୀଵ

ஶ

ୀଵ

 . 

Proof. Check it directly. 
Lemma (3.3.19)[214]: Let ߬ be a maximal mapping and let ܫ ∈ ߑ

∗. Then ߉ூ(߬) is a 
spectrum of ߤ if and only if ߉ூೖషభ(߬) are spectra of ߤ for all ݇ ≥ 1 ܽ݊݀ ݆ = 1 , … , ݍ −
1. 
Proof. The necessity is clear from Proposition (3.3.17). We now prove the sufficiency. 
Assume that ߉ூೖషభ(߬) are spectra for all ݇ ≥ 1 ܽ݊݀ ݆ = 1 , . . . , ݍ − 1. We need to show 
that ூܳ (ߦ)  = ∑ | 

ఒ∈ஃ(ఛ) ߦ)ߤ̂ + ଶ|(ߣݎ ≡ 1. 
By the integral periodicity of ݉ and Lemma (3.3.11) which will be used in the 

second equality below, we have for all ݇ ≥ 2, 

 |
ିଵ

ୀଵ

ߤ̂ ቀߦ + ,ூܫܫݎ
ఛ (0ିଵ݆)ቁ |ଶ

=  |
ିଵ

ୀଵ

ିଵߤ̂ ቀߦ

+ ,ூܫܫݎ
ఛ (0ିଵ)ቁ |ଶ|̂ߤଵ ቆ

ߦ + ,ܫܫݎ
ఛ (0ିଵ) + ିଵܾ(0ିଵ݆)߬ݎ

ܾ ቇ |ଶ

= ିଵߤ̂| ቀߦ + ,ூܫܫݎ
ఛ (0ିଵ)ቁ |ଶ ቆ1 − ଵߤ̂| ቆ

ߦ + ,ூܫܫݎ
ఛ (0)

ܾ ቇ |ଶቇ

= ିଵߤ̂| ቀߦ + ,ூܫܫݎ
ఛ (0ିଵ)ቁ |ଶ − ߤ̂| ቀߦ + ,ூܫܫݎ

ఛ (0)ቁ |ଶ. 

If ݇ = 1 , the above becomes ∑ |ିଵ
ୀଵ ଵߤ̂ ቀߦ + ,ூߎݎ

ఛ (݆)ቁ |ଶ = 1 − ଵߤ̂| ቀߦ + ,ூܫܫݎ
ఛ (0)ቁ |ଶ. 

Now we simplify the following terms which is corresponding to the unions of the sets 
in Lemma (3.3.18), 
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ିଵ

ୀଵ

ஶ

ୀଵ

 |
 

ఒ∈௸ బೖషభೕ(ఛ)

ߦ൫ߤ̂ + ,ூܫܫݎ
ఛ (0ିଵ݆) +  ൯|ଶߣܾݎ

=     |
 

ఒ∈௸ బೖషభೕ(ఛ)

ିଵ

ୀଵ

ஶ

ୀଵ

ߤ̂ ቀߦ + ,ூܫܫݎ
ఛ (0ିଵ݆)ቁ |ଶ|̂ߤ ቆ

ߦ + ,ூܫܫݎ
ఛ (0ିଵ݆)
ܾ + ቇߣ |ଶ 

  =   |
ିଵ

ୀଵ

ஶ

ୀଵ

ߤ̂ ቀߦ + ,ூܫܫݎ
ఛ (0ିଵ݆)ቁ |ଶ = 1 − lim

ே→ஶ
| ேߤ̂ ቀߦ + ,ூܫܫݎ

ఛ (0ே)ቁ |ଶ 

=  1 − ෑ |
ஶ

ୀଵ

݉ ቆ
ߦ + ,ூܫܫݎ

ఛ ൫0൯
ܾ݆

ቇ |ଶ                                                                         (67) 

We now divide the proof into two cases. 
Case (i). If 0ܫஶ is regular, then |̂ߤ ቀߦ + ,ூܫܫݎ

ఛ (0ஶ)ቁ |ଶ =

∏ |ஶ
ୀଵ ݉ ൬

కାூூ್ ,
ഓ ൫ೕ൯

ೕ ൰ |ଶ. Hence, by 
Lemma (3.3.18), 

ܳூ (ߦ) = ߤ̂| ቀߦ + ,ூߎݎ
ఛ (0ஶ)ቁ |ଶ + (67) ≡ 1. 

This shows ߉ݎூ(߬) is a spectrum. 
Case (ii). If 0ܫஶ is irregular, then Lemma (3.3.18) shows that 

ூܳ (ߦ)  = (67) = 1 − ෑ |
ஶ

ୀଵ

݉ ቆ
ߦ + ,ூܫܫݎ

ఛ ൫0 ൯
ܾ ቇ |ଶ 

Note that, by (ii) in the definition of the maximal mapping, we may write 

,ூ(0)ߎݎ = ݎ  ߬


ୀଵ

൫0ܫ ൯ܾିଵ = ݎ ൫ݏݍ൯


ୀଵ

ܾିଵ =  ݏ



ୀଵ

ܾ               (68) 

for ݏ ∈ {0, 1, … , ݎ − 1}. Then 

ூܳ (ߦ)  = 1 − ෑ |
ஶ

ୀଵ

݉ ቆ
ߦ + ,ூܫܫݎ

ఛ ൫0ିଵ൯
ܾ ቇ |ଶ.                                (69) 

Suppose on the contrary ூܳ (ߦ)  < 1 for some ߦ > 0. Since ܳூ  is entire, we may assume 
|ߦ| is small, say ߦ < ିଵ

ିଵ
. From (69), we must have  

ෑ |
ஶ

ୀଵ
݉ ቆ

ߦ + ,ூߎݎ
ఛ ൫0ିଵ൯
ܾ ቇ |ଶ > 0. 

For those ݊ such that ݏ ≠ 0 in (68). 
1
ܾ

≤
ݏ

ܾ
≤ ቤ

ߦ + ∑ ݏ

ୀଵ ܾ

ܾାଵ ቤ ≤
ݎ − 1

ܾ(ܾ − 1) <
1

ܾ)ݍ − 1)    . 

Hence, letting ܿ =  max {|݉(ߦ)|ଶ ∶  ଵ


≤ |ߦ| < ଵ
(ିଵ)} < 1 , we have 

|݉ ቆ
ߦ + ,ூܫܫݎ

ఛ (0)
ܾାଵ ቇ |ଶ = |݉ ቆ

ߦ + ∑ ݏ

ୀଵ ܾ

ܾାଵ ቇ |ଶ ≤ ܿ , 

and 



140 

ෑ |
ஶ

ୀଵ

݉ ቆ
ߦ + ,ூߎݎ

ఛ ൫0ିଵ൯
ܾ ቇ |ଶ = lim

ே→ஶ
ෑ |

ே

ୀଵ

݉ ቆ
ߦ + ,ூߎݎ

ఛ ൫0ିଵ൯
ܾ ቇ |ଶ 

                            <  lim
ே→ஶ

ܿ#{:௦ஷ,ஸே}. 
As 0ܫஶ is irregular, there exists infinitely many ݏ ≠ 0. The above limit is zero. This is 
a contradiction and hence ߉ூ(߬) must be a spectrum. 
Theorem (3.3.20)[214]: With the notation above, ߬ is a spectral mapping if and only if 
߬ᇱ is a spectral mapping. 
Proof. By the definition of ߬ and ߬ᇱ, ߉ூᇲ (߬) = ூᇲ߉ (߬ᇱ) for all ܫᇱ ᇱܫ and ܫ ≠ ∈ ߑ

. 
Moreover, ߉ூషభ(߬) = ݇ ூೖషభ(߬ᇱ) for all߉ > 1 and  ݆ = 1 , . . . , ݍ − 1. Therefore, if ߬ 
is a spectrum, then ߉ூᇲ (߬ᇱ) are spectra of ߤ for all ߪᇱ ≠ ᇱߪ and ߪ ∈ ߑ

  by Proposition 
(3.3.17). On the other hand, ߉ூೖషభ(߬ᇱ) are spectra of ߤ also as ߬ is a spectrum. By 
Lemma (3.3.19),  ߉ூ(߬ᇱ) is also a spectrum. We therefore conclude that ߉(߬ᇱ) is a 
spectrum of ߤ by Proposition (3.3.17) again. The converse also holds by reversing the 
role of ߬ and ߬ᇱ. This completes the whole proof. 
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Chapter 4 
Hausdorff and Packing Measures with Singularity and Self-Similar Measure with 
Dense Rotations 

We show that for certain numbers 0 < ܽ, ܾ < ଵ
ଶ
 , for instance ܽ = ଵ

ସ
 and ܾ = ଵ

ଷ
, if 

ܭ = ܥ × ܭ) then typically we have ℋ௦ିܥ ∩ ܸ) = 0. We can obtain such a family as 
the angle-ߙ projections of the natural measure of the Sierpinski carpet. We present more 
general one-parameter families of self-similar measures ݒఈ, such that the set of 
parameters ߙ for which ݒఈ is singular is a dense ܩఋ set but this "exceptional" set of 
parameters of singularity has zero Hausdorff dimension. In fact, the set of directions is 
residual and the typical slices of the measure, perpendicular to these directions, are 
discrete. 
Section (4.1): Slices of Dynamically Defined Sets: 

For 1 ≤ ݉ < ݊ be integers, and given 0 ≤ ݐ ≤ ݊ let ܪ௧ and ܲ௧ be the ݐ-
dimensional Hausdorff and Packing measures respectively. Let ݏ ∈ (݉, ݊) be a real 
number, and let ܭ ⊂ ℝ be compact with 0 < ℋ௦(ܭ) < ∞. Denote by µ the restriction 
of ܪ௦ to ܭ, by ܩ the set of all ݊ − ݉-dimensional linear subspaces of ℝ, and by ீߦ  the 
natural measure on ܩ. It is well known that dimு(ܭ ∩ ݔ) + ܸ)) = ݏ − ݉ and 
ℋ௦ି(ܭ ∩ ݔ) + ܸ)) < ∞, for µ × ,ݔ) .a.e-ܩߦ ܸ) ∈ ܭ ×  see Theorem 10.11 in) ܩ 
[248]). It is also known that if ݏ = dim ܭ)then dim ܭ ∩ ݔ) + ܸ)) ≤ max{0, ݏ −
݉} for every ܸ ∈ and ℋ ܩ − ܽ.e. ݔ ∈ ܸୄ (see Lemma 5 in [241]), where ݀݅݉ܲ stands 
for the packing dimension. ܭ will denote certain self-similar or self-affine sets, in which 
cases it will be shown that more can be said about the µ × ܭ)typical values of ℋ௦ି-ீߦ ∩
ݔ) + ܸ)) and ܲ௦ି(ܭ ∩ ݔ) + ܸ )). 

Assume first that ܭ is a self-similar set which satisfies the strong separation 
condition (SSC). If ݉ = 1 and ܭ is rotation-free, then from a result by Kempton 
(Theorem 6.1 in [247]) it follows that ℋ௦ି(ܭ ∩ ݔ) + ܸ)) > 0 for µ × ,ݔ) .షೌ.eீߦ ܸ), if 
and only if ௗೇ఼ µ

ௗℋ  ∈ ݀)ஶܮ  ܲ ୄµ) for ீߦషೌ .e. ܸ  where ఼ܲis the orthogonal projection 
onto ܸୄ . In Theorem (4.1.9) below the case of a general 1 ≤ ݉ < ݊ and a general self-
similar set ܭ, satisfying the SSC, will be considered. A necessary and sufficient condition 
for ℋ௦ି(ܭ ∩ ݔ) + ܸ)) > 0 to holds for µ × షೌீߦ . ݁. ,ݔ) ܸ) will be given. In Corollary 
(4.1.12) this condition is verified when ݉ = 1, ݏ > 2 and the rotation group of ܭ is finite. 
Also given in Theorem (4.1.9), is a necessary and sufficient condition for ℋ௦ି(ܭ ∩
ݔ) + ܸ)) = 0 to hold for µ × ,ݔ) .షೌ.eீߦ ܸ). 

Continuing to assume that ܭ is a self-similar set with the SSC, it will be shown in 
Theorem (4.1.10) that ܲ௦ି(ܭ ∩ ݔ) + ܸ)) > 0 for µ × షೌீߦ .e. (ݔ, ܸ). Also given in 
Theorem (4.1.10), is a sufficient condition for ܲ௦ି(ܭ ∩ ݔ) + ܸ)) = ∞ to hold for µ ×
ೌீߦ .e. (ݔ, ܸ). By using this condition, it is shown in Corollary (4.1.14) that this is in fact 
the case when ݉ = 1 and ݏ > 2. This extends a result of Orponen (Theorem 1.1 in [252]), 
which deals with the case in which ݊ = 2, ݏ > ݉ = 1 and ܭ is rotation-free. 

We consider the case in which ݊ = 2, ݉ = 1 and ܭ is a certain self-affine set. For 
0 < ߩ < ଵ

ଶ
 let ܥఘ ⊂ [0,1] be the attractor of the IFS { ఘ݂,ଵ, ఘ݂,ଶ}, where ఘ݂,ଵ(ݐ) = ߩ ·  and ݐ

ఘ݂,ଶ(ݐ) = ߩ · ݐ + 1 − ݐ for each ߩ ∈ ℝ. It will be assumed that ܭ = ܥ × , where 0ܥ <
ܽ, ܾ < ଵ

ଶ
 are such that ܽିଵ and ܾ ିଵ are Pisot numbers, ୪୭ 

୪୭ 
   is irrational, and dimு(ܥ) +

dimு(ܥ) > 1. Under these conditions it is shown in [251] that there exists a dense ܩఋ 
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set, of 1-dimensional linear subspaces ܸ ⊂ ℝଶ, such that ܲµ and ܪଵ are singular. By 
using this fact, it will be proven in Theorem (4.1.20) below that ℋ௦ି(ܭ ∩ ݔ) + ܸ)) =
0 for µ × ,ݔ) .షೌ.eீߦ ܸ). This result demonstrates some kind of smallness of the slices 
ܭ ∩ ݔ) + ܸ), hence it may be seen as related to a conjecture made by Furstenberg 
(Conjecture 5 in [243]).. In our setting this conjecture basically says that for ீߦషೌ .e. ܸ ∈
ܭ)we have dimு ܩ ∩ ݔ) + ܸ)) ≤ max{dimு ܭ − 1,0} for each ݔ ∈ ℝଶ, which 
demonstrates the smallness of the slices in another manner. 

Let 0 < ݉ < ݊ be integers, let ܩ be the Grassmann manifold consisting of all ݊ −
݉-dimensional linear subspaces of ℝ, let ܱ(݊) be the orthogonal group of ℝ, and let 
ܷ ை be the Haar measure corresponding to ܱ(݊). Fixߦ ∈ ܧ and for each Borel set ܩ ⊂  ܩ
define 

(ܧ)ீߦ = ݃}ைߦ ∈ ܱ(݊)|ܷ݃ ∈  (1)                                  ,{ܧ
then ீߦ  is the unique rotation invariant Radon probability measure on ܩ. For a linear 
subspace ܸ of ℝ let ܲ be the orthogonal projection onto  ܸ, let ܸୄ be the orthogonal 
complement of ܸ , and set ௫ܸ = ݔ + ܸ for each ݔ ∈ ℝ. 

Let ߉ be a finite and nonempty set. Let {߶ఒ}ఒ∈௸ be a self-similar IFS in ℝ, with 
attractor ܭ ⊂ ℝ and with dimு ܭ = ݏ  > ݉. For each ߣ ∈ there exist 0 ߉ < ఒݎ < 1, 
ℎఒ ∈ ܱ(݊) and ܽ ఒ ∈ ℝ, such that ߶ఒ(ݔ) = ఒݎ · ℎఒ(ݔ) + ܽఒ for each ݔ ∈ ℝ . We assume 
that {߶ఒ}ఒ∈௸ satisfies the strong separation condition. Let ܪ be the smallest closed sub-
group of ܱ(݊) which contains {ℎఒ}ఒ∈௸, and let ߦு be the Haar measure corresponding to 
ܧ For each .ܪ ⊂ ℝ set µ(ܧ) = ℋೞ(∩ா)

ℋೞ()
 , then µ is a Radon probability measure which 

is supported on ܭ. For each 0 ≤ ݏ < ∞, ν a Radon probability measure on ℝ, and ݔ ∈
ℝ set 

,ߥ)௦∗߆ (ݔ = lim
ఢ↓

sup
,ݔ)ܤ൫ݒ ߳)൯

(2߳)௦  and ߆∗
௦(ߥ, (ݔ = lim

ఢ↓
inf

,ݔ)ܤ൫ݒ ߳)൯
(2߳)௦ ,           (2) 

where ݔ)ܤ, ߳) is the closed ball in ℝ with center ݔ and radios ǫ. It holds that ߆௦
 (·,ߥ)∗

and ߆∗
௦(ߥ,·) are Borel functions. For ܸ ∈ ,ݔ)ܨ define ܩ ℎ) = ∗߆

(ܲ()఼µ, ܲ()^ୄ(ݔ)) 
for (ݔ, ℎ) ∈ ܭ × ܭ is a Borel function from ܸܨ then ,ܪ × ,to [0 ܪ ∞]. In what follows 
the collection {ܨ}∈ீ will be of great importance for us. 

Let ܸ be the set of all ܸ ∈  with ܩ
ு(ℋ\{ℎߦ ∈ ℋ: ܲ()఼µ ≪ ℋ}) = 0 . 

In Lemma (4.1.8) below it will be shown that (ܸ\ܩ)ீߦ = 0. First we state our results 
regarding the Hausdorff measure of typical slices of ܭ. 

From Theorem (4.1.9) we can derive the following Corollaries. 
Remark (4.1.1)[238]: It is known that under the assumptions of Corollary (4.1.13) we 
have ݀݅݉(఼ܲµ) = ݉ for each ܸ ∈  It is not known .(see Theorem 1.6 in [245]) ܩ
however if ఼ܲ µ ≪ ܸ  for eachܪ ∈  which is in fact a major open problem. Hence ,ܩ
Corollary (4.1.13) implies that determining whether 

µ × ,ݔ)}ீߦ ܸ) ∈ ܭ × :ܩ ℋ௦ି(ܭ ∩ ௫ܸ) > 0} > 0 
is probably quite hard. 

We state our results regarding the packing measure of typical slices. 
From Theorem (4.1.10) the following corollary can be derived. 

Assume ݊ = 2 and ݉ = 1. Given 0 < ߩ < ଵ
ଶ
 define ఘ݂,ଵ, ఘ݂,ଵ: ℝ → ℝ by 

ఘ݂,ଵ(ݔ) = ߩ · (ݔ)and ఘ݂,ଶ ݔ = ߩ · ݔ + 1 − ݔ for each ߩ ∈ ℝ, 
let ܥఘ ⊂ [0,1] be the attractor of the IFS { ఘ݂,ଵ, ఘ݂,ଶ}, set ݀ఘ = dimு ఘܥ   (so that ݀ߩ =
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୪୭ ଶ
୪୭ ఘషభ), and for each ܧ ⊂ ℝ set µఘ(ܧ) = ௗഐܪ/ௗഐ൫ഐ∩ா൯ܪ   . (ఘܥ)

The following notations will be used in the proofs of Theorems (4.1.9) and 
(4.1.10). For each ߣ ∈ ఒ set ߉ = ఒݎ

௦. Then µ is the unique self-similar probability 
measure corresponding to the IFS {߶ఒ}ఒ∈௸ and the probability vector (ఒ)ఒ∈௸, i.e. µ 
satisfies the relation µ = ∑ ఒ · µ ∘ ߶ఒ

ିଵ
ఒ∈௸  . Given a word ߣଵ · . . .· ߣ = ݓ ∈  we write ∗߉

௪ = ఒభ ·. . .· ఒ , ௪ݎ = ఒభݎ ·. . .· ఒݎ  , ℎ௪ = ℎఒభ ·. . .· ℎఒ , ߶௪ = ߶ఒభ ∘. . .∘ ߶ఒ and ܭ௪ =
߶௪(ܭ). For each ݈ ≥ 1 and ݔ ∈ (ݔ)ݓ let ,ܭ ∈ ߉  be the unique word of length l which 
satisfies ݔ ∈ ௪(௫)ܭ . Set also 

ߩ = min ቄ݀ ቀ߶ఒభ
,(ܭ) ߶ఒమ

,ଵߣ :ቁ(ܭ) ଶߣ ∈ ଵߣ and ߉ ≠   ଶቅ,                 (3)ߣ
then ߩ > 0 since {߶ఒ}ఒ∈ஃ satisfies the strong separation condition. Given ଵܸ, ଶܸ ∈  set ܩ
݀ீ( ଵܸ, ଶܸ) = ฮ ܲభ − ܲమฮ (where ‖·‖ stands for operator norm), then ݀ீ is a metric on 
 .ܩ

The following dynamical system will be used in the proofs of Theorems (4.1.9) 
and (4.1.10). Set ܺ = ܭ × ,ݔ) and for each ܪ ℎ) ∈ ܺ let ܶ(ݔ, ℎ) = (߶௪భ(௫)

ିଵ ,ݔ ℎ௪భ(௫)
ିଵ · ℎ). 

It is easy to check that the system (ܺ, µ × ,ுߦ ܶ) is measure preserving and from corollary 
4.5 in [253], and from it follows that it is ergodic. Also, for ݇ ≥ 1 and (ݔ, ℎ) ∈ ܺ it is 
easy to verify that ܶ(ݔ, ℎ) = (߶௪ೖ(௫)

ିଵ ,ݔ ℎ௪భ(௫)
ିଵ · ℎ).  

Let ℝ be the Borel ߪ-algebra of ℝ. For each ܸ ∈ set ܴ ܩ = ఼ܲ
ିଵ(ܴ), and let 

{µ , ௫∈ℝ{ݔ  be the disintegration of µ with respect to ܴ  (see section 3 of [242]). For µ −
ܽ .e. ݔ ∈ ℝ the probability measure µ,௫ is defined and supported on ܭ ∩ ௫ܸ. Also, for 
each ݂ ∈ ݔ ଵ(µ) the map that takesܮ ∈ ℝ to ∫ ݂݀µ,௫ is ܴ  -measurable, the formula 

 න ݂݀µ = න න  (ݔ)µ݀(ݕ)µ,௫݀(ݕ)݂

is satisfied, and for µ − ܽ.e. ݔ ∈ ܸୄ we have 

න ݂݀µ,௫ = lim
ఢ↓

1
఼ܲµ(ݔ)ܤ, ߳))

·  න ݂݀µ 
 

ೇ఼
షభ ((௫,ఢ))

 

For more details on the measures ൛µ,௫ൟ௫∈ℝ see section 3 of [242] and the references 
therein. 

We shall now prove some lemmas that will be needed later on. The following 
lemma will be used with ߦு in place of ߟ, when ߦு is considered as a measure on ܱ(݊) 
(which is supported on ܪ). 
Lemma (4.1.2)[238]: Let ܳ be a compact metric group, and let ߥ be its normalized Haar 
measure. Let ߟ be a Borel probability measure on ܳ, then for each Borel set ܧ ⊂ ܳ 

(ܧ)ߥ = න ܧ)ߟ · (ݍ)ߥ݀ (ଵିݍ
 

ொ
. 

Proof. For each Borel set ܧ ⊂ ܳ define (ܧ)ߞ = ∫ ܧ)ߟ ·  (ݍ)ߥ݀ (ଵିݍ
ொ . Since ߥ is invariant 

it follows that for each ݃ ∈ ܳ  

(ܧ)ߞ = න ܧ)ߟ · ݃ · (ݍ)ߥ݀(ଵିݍ
 

ொ
= න ܧ)ߟ · ݃ · ݍ) · ݃)ିଵ) ݀(ݍ)ߥ

 

ொ
=  .(ܧ)ߞ 

This shows that ߞ is a right-invariant Borel Probability measure on ܳ , hence ߥ =  by the ߞ
uniqueness of the Haar measure, and the lemma follows.  
Lemma (4.1.3)[238]: Let ࣰ be the set of all ܸ ∈  with ܩ
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ℎ}\ܪ)ுߦ ∈ ≫ ఼µ()ܲ :ܪ ℋ}) = 0, 
then (ࣰ\ܩ)ீߦ = 0. 
Proof. Set ܮ = ܸ}\ܩ ∈ :ܩ ఼ܲ µ ≪ ℋ}. Since ݏ > ݉ it follows that ܫ(µ) <
∞ (where ܫ(µ) is the m-energy of µ), hence from Theorem 9.7 and equality (3.10) in 
[248] we get that (ܮ)ீߦ = 0. Let ܷ ∈ ′ܮ be as in (1) and set ܩ = {݃ ∈ ܱ(݊) ∶  ܷ݃ ∈  ,{ܮ
then ߦை(ܮ′) = ீߦ (ܮ) = 0. Let ܤ ⊂ ܱ(݊) be a Borel set with ܮ′ ⊂ (ܤ)ைߦ and ܤ = 0, then 
from Lemma (4.1.2) it follows that 

0 = (ܤ)ைߦ = න ܤ)ுߦ · ݃ିଵ)݀ߦை(݃) 

From this we get that for ߦைషೌ .e. ݃ ∈ ܱ(݊) 
0 = ܤ)ுߦ · ݃ିଵ) ≥ ′ܮ)ுߦ · ݃ିଵ) = ு{ℎߦ ∈ :ܪ ℎ ∈  {′ܮ

= ൛ℎ\ܪு൫ߦ ∈ ܪ ∶ ܲ()఼µ ≪ ℋൟ൯,                        
and so 

ℎ}\ܪ)ுߦ ∈ :ܪ ܲ()఼µ ≪ ℋ}) = 0 for ீߦషೌ . ݁. ܸ ∈  ,ܩ
which proves the lemma.  
Lemma (4.1.4)[238]: Let ܼ be the set of all (ݔ, ܸ) ∈ ܭ ×  such that µ,௫ is defined and ܩ

µ,௫(ܭ௪) = lim
ఢ↓

µ
௪ܭ ∩ ఼ܲ

ିଵ൫ܤ(఼ܲݔ, ߳)൯
఼ܲµ൫ܤ(఼ܲݔ, ߳)൯ 

    for each ݓ ∈  ,∗߉

then for each ܸ ∈  we have ܩ
µ × ,ݔ)}ுߦ ℎ) ∈ ,ݔ) :ܺ ℎܸ) ∉ ࣴ} = 0 . 

Proof. Fix ܸ ∈  It holds that ࣴ is a Borel set, see section 3 of [249] for a related .ܩ
argument. It follows that the set 

ࣴ = ,ݔ)} ℎ) ∈ ,ݔ) :ܺ ℎܸ) ∈ ࣴ} 
is also a Borel set. From the properties stated we get that 

µ{ݔ ∈ :ܭ ,ݔ) ℎ) ∉ ࣴ } = 0 for each ℎ ∈  ,ܪ
and so µ × ு(ܺ\ࣴ)ߦ = 0 by Fubini’s theorem. This proves the lemma.  
Lemma (4.1.5)[238]: Given a compact set ܭ෩ ⊂ ℝ and 0 < ݐ ≤ ݊, the map that takes 
,ݔ) ܸ) ∈ ෩ܭ × ෩ܭ)ℋ௧ ݐ ܩ ∩ ௫ܸ) is Borel measurable. 
Proof. For ߜ > 0 be as defined in section 4.3 of [248]. Let ܪఋ

௧  . Let (ݔ, ܸ) ∈ ෩ܭ × ,ܩ ߳ >

0 and {(ݔ , ܸ)}ୀଵ
ஶ ⊂ ෩ܭ × ݔ) be such that ,ܩ , ܸ)


→ ,ݔ) ܸ). Let ଵܹ, ଶܹ, . . . ⊂ ℝ be 

open sets with ܭ෩ ∩ ௫ܸ ⊂ ∪ୀଵ
ஶ

ܹ, 

 ቀdiam൫ ܹ൯ቁ
௧
 

ஶ

ୀଵ

≤ ఋܪ
௧ ൫ܭ෩  ∩ ൯ݔܸ + ߳ 

and ݀݅ܽ݉൫ ܹ൯ ≤ ݆ for each ߜ ≥ 1. Since ܭ෩ is compact and since (ݔ , ܸ)

→ ,ݔ) ܸ), it 

follows that ܭ෩ ∩ ௫ܸೖ
 ⊂∪ ୀଵ

ஶ
ܹ  for each ݇ ≥ 1 which is large enough, and so for each 

such ݇ 

ℋఋ
௧(ܭ෩ ∩ ௫ܸೖ

 ) ≤  ቀdiam൫ ܹ൯ቁ
௧

ஶ

ୀଵ

< ఋܪ
௧(ܭ෩ ∩ ௫ܸ) + ߳. 

It follows that the function that maps (ݔ, ܸ) to ℋఋ
௧(ܭ෩ ∩ ௫ܸ) is upper semi-continuous, and 

so Borel measurable. Now since ℋ௦ = lim
→ஶ

ℋభ
ೖ

௦    the lemma follows.  

Lemma (4.1.6)[238]: Given 0 < ݐ ≤ ݊ and a Radon probability measure ߥ on ܭ ×  the ,ܩ
map that takes (ݔ, ܸ) ∈ ܭ × ܲ to ܩ ௧(ܭ ∩ ௫ܸ) is ߥ-measurable (i.e. this map is universally 
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measurable). 
Proof. Let ܽ ≥ 0 and set ܧ = ,ݔ)} ܸ)  ∈ ܭ × ܭ)௧ܲ :ܩ ∩ ௫ܸ) < ܽ}, then in order to prove 
the lemma it suffice to show that ܧ is ߥ-measurable. Set ܻ = ܥ} ⊂ :ܭ  ,{is compact ܥ
endow ܻ with the Hausdorff metric, and let ܩ be the ߪ-algebra of ܻ which is generated 
by its analytic subsets. Set 

ℰ = ܥ}  ∈ ܻ: ܲ௧(ܥ) < ܽ}, 
then from Theorem 4.2 in [250] it follows that ℰ ∈  and so from Theorem 21.10 in ,ܩ
[246] we get that ℰ is universally measurable.  

For each (ݔ, ܸ) ∈ ܭ × ,ݔ)߰ set ܩ ܸ) = ܭ ∩ ௫ܸ , it will now be shown that ߰: ܭ ×
ܩ → ܻ is a Borel function. For each ݕ ∈ ,ݔ) the function that maps ܭ ܸ) ∈ ܭ ×  to ܩ
ܭ)݀ ∩ ௫ܸ , ݈ is lower semi-continuous, and hence a Borel function. For each (ݕ ≥ 1 let 

ܵ ⊂ ,ݔ)be finite and ݈ିଵ-spanning, and set ߰ ܭ ܸ) = ݕ} ∈ ܵ: ܭ)݀ ∩ ௫ܸ , (ݕ ≤ ݈ିଵ} for 
each (ݔ, ܸ) ∈ ܭ × :It holds that ߰ .ܩ ܭ × ܩ → ܻ is a Borel function and ߰

→ஶ 
ሱ⎯ሮ ߰ 

pointwise, hence ߰ is a Borel function. Note also that ܧ = ߰ିଵ(ℰ). Since ℰ is universally 
measurable it is ߥ ∘ ߰ିଵ-measurable, and so there exist ܣ and ܥ, Borel subsets of ܻ , such 
that ࣛ ⊂ ℰ ⊂ ࣝ and ߥ ∘ ߰ିଵ(ܣ\ܥ) = 0. It holds that ߰ିଵ(ࣛ) ܽ݊݀ ߰ିଵ(ࣝ) are Borel 
subsets of ܭ × ,ܩ ߰ିଵ(ࣛ) ⊂ ℰ ⊂ ߰ିଵ(ܥ) and ߥ(߰ିଵ(ܥ)\߰ିଵ(ࣛ)) = 0. This shows 
that ܧ is ߥ-measurable, and the lemma is proved.  
Lemma (4.1.7)[238]: For (ݔ, ℎ, ܸ) ∈ ܭ × ܪ × ,ݔ)߰ set ܩ ℎ, ܸ) = ,ݔ) ℎܸ) and let ܤ ∈
ܭ × ܸ .షೌ.eீߦ be universally measurable. Assume that for ܩ ∈ ுషೌ.e. ℎߦ it holds for ܩ ∈
 that ܪ

µ{ݔ ∈ :ܭ ,ݔ)߰ ℎ, ܸ) ∈ {ܤ = 0  
then µ × (ܤ)ீߦ = 0. 
Proof. Since ܤ is universally measurable there exist Borel sets ܣ, ܥ ⊂ ܭ × ܣ with ܩ ⊂
ܤ ⊂ and µ ܥ × ுߦ × ((ܣ\ܥ)ଵି߰)ீߦ = 0. From the assumption on ܤ and from Fubini’s 
theorem it follows that 

µ × ுߦ × ൯(ܥ)൫߰ିଵீߦ = µ × ுߦ ×                           ൯(ܣ)൫߰ିଵீߦ

= ඵ µ{ݔ: ,ݔ) ℎ, ܸ) ∈ ߰ିଵ(ܣ)}݀ߦு(ℎ)݀ீߦ(ܸ)          

≤ ඵ µ{ݔ: ,ݔ) ℎ, ܸ) ∈ ߰ିଵ(ܤ)}݀ߦு(ℎ)݀ீߦ(ܸ) = 0 . 

Now from Fubini’s theorem, from the definition of ீߦ  given in (1), and from Lemma 
(4.1.2), it follows that 

0 = µ × ுߦ × ((ܥ)ଵି߰)ீߦ = ඵ :ு{ℎߦ ,ݔ) ℎ, ܸ) ∈ ߰ିଵ(ܥ)}݀ீߦ (ܸ)݀µ(ݔ)   

= ඵ :ு{ℎߦ ,ݔ) ℎ, ܷ݃) ∈ ߰ିଵ(ܥ)}݀ߦை(݃)݀µ(ݔ)

= ඵ :ு{ℎߦ ,ݔ) ℎܷ݃) ∈ (ݔ)ை(݃)݀µߦ݀{ܥ

= ඵ ு({ℎߦ ∶ ,ݔ) ℎܷ) ∈ {ܥ · ݃ିଵ)݀ߦை(݃)݀µ(ݔ)

= න ,ݔ) :݃}ைߦ ܷ݃) ∈ (ݔ)µ݀{ܥ = න :ܸ}ீߦ ,ݔ) ܸ) ∈ (ݔ)µ݀{ܥ  = µ × (ܥ)ீߦ

≥ µ ×  ,(ܤ)ீߦ
which completes the proof of the lemma.  

Fix ܸ ∈ ࣰ for the remainder of this section, set ܸ = , and for each ℎܨ ∈  set ܪ
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ܸ = ℎܸ and ܲ = ܲ൫൯఼. Set 

ܳ = ,ݔ)} ℎ) ∈ ܺ: ,ݔ)ܨ ℎ) ≠ )∗߆ ܲµ, ܲ(ݔ)) or ݔ)ܨ, ℎ) = ,ݔ)ܨ ݎ ∞ ℎ) = 0} 
where ߆∗ is as defined in (2), then ܳ is a Borel set. it follows that 

µ{ݔ ∈ :ܭ ,ݔ) ℎ) ∈ ܳ} = 0    for each ℎ ∈ with ܲµ ܪ ≪ ℋ, 
hence since ܸ ∈ ࣰ we have 

 µ × (ܳ)ுߦ = න µ{ݔ: ,ݔ) ℎ) ∈ ு(ℎ)ߦ݀{ܳ
 

ு
= 0.                              (4) 

Let ܦ be the set of all (ݔ, ℎ) ∈ ܺ such that ܲµ ≪ ℋ, µ ,  ,is defined ݔ

µ ,௫(ܭ௪) = lim
ఢ↓

µܭ௪ ∩ ܲ
ିଵ൫ܤ( ܲݔ, ߳)൯

ܲµ൫ܤ( ܲݔ, ߳)൯
for each ݓ ∈  ,∗߉

and 

0 < ,ݔ)ܨ ℎ) = lim
ఢ↓ ܲµ

)ܤ ܲ(ݔ), ߳)
(2߳) < ∞ . 

From the choice of  , from Lemma (4.1.4) and from (4), it follows that µ × (ܦ\ܺ)ுߦ =
0. Set ܦ =∩ୀ

ஶ ܶିܦ, then µ × (ܦ\ܺ)ுߦ = 0 since ܶ is measure preserving. The 
following lemma will be used several times below. 
Lemma (4.1.8)[238]: Given ݇ ≥ 1 and (ݔ, ℎ) ∈  , we haveܦ

µ,௫(ܭ௪ೖ ((ݔ) = ൫ݔ)ܨ, ℎ)൯ିଵ · ௪ೖ(௫)ݎ
௦ି · ,ݔ)ܶ)ܨ ℎ)) . 

Proof. Set ݑ =  then ,(ݔ)ݓ

µ,௫(ݑܭ) = lim
ఢ↓

µ ቀܭ௨ ∩ ܲ
ିଵ൫ܤ( ܲݔ, ߳)൯ቁ

ܲµ൫ܤ( ܲݔ, ߳)൯
                                                  

    = lim
ఢ↓

(2߳)

ܲµ൫ܤ( ܲݔ, ߳)൯
·

µ ቀܭ௨ ∩ ܲ
ିଵ൫ܤ( ܲݔ, ߳)൯ቁ
(2߳)  

= ൫ݔ)ܨ, ℎ)൯
ିଵ

· lim
ఢ↓

µ ቀܭ௨ ∩ ܲ
ିଵ൫ܤ( ܲݔ, ߳)൯ቁ
(2߳)  . 

For each ߳ > 0 set ܧఢ = ܲೠ
షభ 

ିଵ ೠܲ)ܤ)
షభℎ(߶ିଵ (ݔ)ݑ), ߳ · ௨ݎ

ିଵ)), then since 

ܲ
ିଵ൫ܤ( ܲݔ, ߳)൯ = ݔ + ܸ + ,0)ܤ ߳)                          

= ߶௨(߶௨
ିଵ(ݔ) + ܸೠ

షభ + ,0)ܤ ߳ · ௨ݎ
ିଵ))  = ߶௨(ܧఢ), 

it follows that 

µ ,௫(ܭ௨) = ൫ݔ)ܨ, ℎ)൯
ିଵ

· lim
ఢ↓

µ൫߶௨(ܭ ∩ ఢ)൯ܧ
(2߳)              

= ൫ݔ)ܨ, ℎ)൯ିଵ · lim
ఢ↓

1
(2߳)  ௪ · µ(߶௪

ିଵ(߶௨(ܭ ∩ (((ఢܧ
௪∈ஃ∗

. 

Given ݓ ∈ (ܭ)we have ߶௨ {ݑ}\߉ ∩ ߶௪(ܭ) = ∅, so ߶௪
ିଵ(߶௨(ܭ)) ∩ ܭ = ∅, and so 

µ ,௫(ܭ௨) = ൫ݔ)ܨ, ℎ)൯
ିଵ

· lim
ఢ↓

௨ · µ(ܭ ∩ (ఢܧ
(2߳)

= ൫ݔ)ܨ, ℎ)൯ିଵ · ௨ݎ
௦ି · lim

ఢ↓
 µ

ఢܧ
(2߳ · ௨ݎ

ିଵ)

= ൫ݔ)ܨ, ℎ)൯
ିଵ

· ௨ݎ
௦ି · ௨߶)ܨ

ିଵ(ݔ), ℎ௨
ିଵℎ)  

= ൫ݔ)ܨ, ℎ)൯ିଵ · ௨ݎ
௦ି · ,ݔ)ܶ)ܨ ℎ)), 
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which proves the lemma.  
Theorem (4.1.9)[238]: 

(i) Given ܸ ∈ ܸ, if ‖ܸܨ‖ಮ(µ×కಹ) < ∞ then ℋ௦ି(ܭ ∩ ݔ) + ℎܸ)) > 0 for µ ×
ுషೌߦ .e. (ݔ, ℎ) ∈ ܭ ×  .ܪ

(ii) Given ܸ ∈ ܸ, if ‖ܨ‖ಮ(µ×కಹ) = ∞ then ℋ௦ି(ܭ ∩ ݔ) + ℎܸ)) = 0 for µ ×
ுషೌߦ .e. (ݔ, ℎ) ∈ ܭ ×   .ܪ

(iii) ℋ௦ି(ܭ ∩ ௫ܸ) > 0 for µ × ,ݔ) .షೌ.eீߦ ܸ) ∈ ܭ × ‖ಮ(µ×కಹ)ܨ‖ if and only if ܩ <
∞ for ீߦషೌ.e. ܸ ∈   .ܩ

(iv) ℋ௦ି(ܭ ∩ ௫ܸ) = 0 for µ × ,ݔ) .షೌ.eீߦ ܸ) ∈ ܭ × ‖ಮ(µ×కಹ)ܨ‖ if and only if ܩ =
∞ for ீߦషೌ.e. ܸ ∈  .ܩ

Proof. Part (i): Assume that ܸ  is such that ‖ܨ‖ಮ(µ×కಹ) < ∞. Set ܯ = ,ಮ(µ×కಹ)‖ܨ‖ ܧ =
,ݔ)} ℎ): ,ݔ)ܨ ℎ) ≤ ଵܧ and {ܯ = ܦ ∩ (∩ୀ

ஶ ܶି(ܧ)), then µ × (ଵܧ\ܺ)ுߦ = 0. For 
ுషೌߦ .e. ℎ ∈  we have ܪ

µ{ݔ ∈ :ܭ ,ݔ) ℎ) ∉ {ଵܧ = 0, 
fix such ℎ ∈ ݈ For each .ܪ ≥ 1 set 

ܣ = ݔ} ∈ :ܭ ,ݔ) ℎ) ∈ ,ݔ)ܨ ଵ andܧ ℎ) ≥ ݈ିଵ}, 
and fix ݈ ≥ 1. Set ߢ = min{ݎఒ: ߣ ∈  it will now be shown that ,{߉

௦ି൫µబ∗߆ ,௫ , ൯ݔ ≤ ݔ for each ܯି௦݈(ߢߩ2) ∈ బܣ ,                       (5) 
where ߩ is as defined in (3). Let ݔ ∈ బܣ  and let ߩߢ > ߜ > 0. Let ݇ ≥ 1 be such that 
௪ೖݎ (ݔ) ≥ ఋ

ఘ
> ݑ ௪ೖశభ(௫), and setݎ = ,ݔ)From Lemma (4.1.8) and from ܶ .(ݔ)݇ݓ ℎ) ∈

 we get that ܧ
µబ ,௫(ܭ௨) = ൫ݔ)ܨ, ℎ)൯

ିଵ
· ௨ݎ

௦ି · ,ݔ)ܶ)ܨ ℎ)) ≤ ݈ · ௨ݎ
௦ି ·  ,ܯ

and so 
µబ ,௫൫ݔ)ܤ, ൯(ߜ

௦ି(ߜ2) ≤
µబ ,௫ ቀܤ൫ݔ, ߩ · ௪ೖ(௫)൯ቁݎ

ቀ2ߩ · ௪(ೖశభ)(௫)ቁݎ
௦ି ≤

µబ , (௨ܭ)ݔ
ߩ2) ·  ௨)௦ିݎ

             ≤
݈ݎ௨

௦ିܯ
ߢߩ2) · ௨)௦ିݎ =  ,ܯି௦݈(ߢߩ2)

which proves (5). It holds that 
ݔ} ∈ :ܭ ,ݔ) ℎ) ∈ {ଵܧ =∪ୀଵ

ஶ  ,ܣ
hence 

0 = µ(ܭ\∪ୀଵ
ஶ (ܣ = න µబ , ୀଵ∪\ܭ)ݔ

ஶ (ݔ)) ݀µܣ , 

and so for µ − ܽ.e. ݔ ∈ there exist ݈௫ ܭ ≥ 1 with µబ ,௫൫ܣೣ ∩ ௫ܸ
బ൯ = µబ ,௫(ܣೣ) > 0. 

Fix such ݔ ∈ ݕ and let ܭ ∈ ೣబܣ
∩ ௫ܸబ

బ , then from (5) we get that 
௦ି(µబ∗߆ ,௫బ

, (ݕ = ௦ି(µబ∗߆ , ,ݕ (ݕ ≤ ି௦݈௫బ(ߢߩ2)  ,ܯ
and so from Theorem 6.9 in [248] it follows that 

ℋ௦ି൫ܭ ∩ ௫ܸబ

బ൯ ≥ ℋ௦ି ቀܣೣబ
∩ ௫ܸబ

బቁ                                      

≥ 2ି(௦ି)(2ߢߩ)௦ି݈௫బ
ିଵିܯଵ · µబ ,௫బ

ೣబܣ)
∩ ௫ܸబ

బ) > 0. 
This proves that if ‖ܨ‖ಮ(µ×కಹ) < ∞, then for ߦுషೌ.e. ℎ ∈  we have ܪ

ℋ௦ି(ܭ ∩ ݔ) + ℎܸ)) > 0 for µ − ܽ. ݁. ݔ ∈  ,ܭ
and so (i) follows from Theorem (4.1.10) and Fubini’s theorem. 
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Part (ii): Assume that ܸ is such that ‖ܨ‖ಮ(µ×కಹ) = ∞, then 
µ × ,ݔ)}ுߦ ℎ): ,ݔ)ܨ ℎ) > {ܯ > 0 for each 0 < ܯ < ∞ . 

For each integer ܯ ≥ 1 set 
ெܧ = ,ݔ)} ℎ) ∈ ܺ: ,ݔ)ܨ ℎ) > ,ெܧ and   {ܯ = ∩ேୀଵ

ஶ ∪ୀே
ஶ ܶି(ܧெ), 

then µ × (ெܧ)ுߦ > 0, and so µ × (,ெܧ\ܺ)ுߦ = 0 since µ ×  ு is ergodic (see Theoremߦ
1.5 in [254]). Set ܧ෨  = ܦ ∩ (∩ெୀଵ

ஶ ,ெ), then µܧ × (෨ܧ\ܺ)ுߦ = 0. For ߦு-a.e. ℎ ∈  it ܪ
holds that µ{ݔ ∈ :ܭ ,ݔ) ℎ) ∉ {ܧ = 0, fix such ℎ ∈  and set ܪ

ܣ  = ݔ} ∈ :ܭ ,ݔ) ℎ) ∈  . {෨ܧ
Note that since (ݔ, ℎ) ∈ ݔ  for someܦ ∈ it follows that ܲబµ ,ܭ ≪ ℋ. It will now be 
shown that 

௦ି൫µబ∗߆ ,௫, ൯ݔ = ∞ for each ݔ ∈  (6)                                  .ܣ
Let ݔ ∈ ,ܣ ܯ ≥ 1 and ܰ ≥ 1 be given, then there exists ݇ ≥ ܰ with ܶ(ݔ, ℎ) ∈ ܦ ∩
,ݔ)ܶ)ܨ ெ, and soܧ ℎ)) > ݑ Set .ܯ = ߚ and (ݔ)݇ݓ = ൫ݔ)ܨ, ℎ)൯

ିଵ
, then from Lemma 

(4.1.8) 
µబ ,௫(ܭ௨) = ߚ · ௨ݎ

௦ି · ,ݔ)ܶ)ܨ ℎ)) ≥ ߚ · ௨ݎ
௦ି ·   ܯ

Set ݀ = ଵݕ|}ݑݏ − :|ଶݕ ,ଵݕ ଶݕ ∈  then ,{ܭ
µబ ,௫ ൬ܤ ቀݔ, ݀ · ௪ೖݎ

ቁ൰(ݔ)

ቀ2݀ · ௪ೖݎ
ቁ(ݔ)

௦ି ≥
µబ ,௫(ܭ௨)

(2݀ · ௨)௦ିݎ ≥
ߚ · ௨ݎ

௦ି · ܯ
(2݀ · ௨)௦ିݎ =

ߚܯ
(2݀)௦ି . 

Since lim
→ஶ

௪ೖݎ (ݔ) = 0 we get that ߆∗௦ି(µబ ,௫, (ݔ ≥ ெఉ
(ଶௗ)ೞష , and so (6) follows since 

ݔ can be chosen arbitrarily large. Let ܯ ∈ ݕ and ܣ ∈ ܣ ∩ ௫ܸ
బ , then from (6) we get 

௦ି(µబ∗߆ ,௫, (ݕ = ௦ି(µబ∗߆ ,௬, (ݕ = ∞ . 
Now from Theorem 6.9 in [248] it follows that for each ܯ ≥ 1 

ℋ௦ି൫ܣ ∩ ௫ܸ
బ൯ ≤ ଵିܯ  ·  µబ ,௫(ܣ ∩ ௫ܸ

బ) ≤  ,ଵିܯ
and so ℋ௦ି(ܣ ∩ ௫ܸ

బ) = 0 since ܯ can be chosen arbitrarily large. Also, from 
µ(ܣ\ܭ) = 0 and Theorem 7.7 in [248] we get that 

 න ℋ௦ି ቀ(ܣ\ܭ) ∩ ௬ܸ
బቁ ݀ℋ(ݕ) 

 

൫బ ൯
఼

≤ const · ℋ௦(ܣ\ܭ) = const · µ(ܣ\ܭ) = 0 . 

This shows that ℋ௦ି((ܣ\ܭ) ∩ ௬ܸ
బ) = 0 for ℋ-a.e. ݕ ∈ (ܸబ)ୄ, and so ܪ௦ି((ܭ\

(ܣ ∩ ௫ܸ
బ) = 0 for µ-a.e. ݔ ∈ since ܲబµ ܭ ≪ ℋ. It follows that for µ-a.e. ݔ ∈  and) ܣ

so for µ-a.e. ݔ ∈  we have (ܭ
ℋ௦ି(ܭ ∩ ௫ܸ

బ) = ℋ௦ି(ܣ ∩ ௫ܸ
బ) + ℋ௦ି((ܣ\ܭ) ∩ ௫ܸ

బ) = 0 . 
From this, Lemma (4.1.5) and Fubini’s theorem, it follows that ℋ௦ି(ܭ ∩ ௫ܸ

) = 0 for 
µ × ,ݔ) .ு-a.eߦ ℎ) ∈ ܭ ×  .which proves (ii) ,ܪ
Part (iii): Assume that ‖ܨ‖ஶ < ∞ for ீߦ-a.e. ܸ ∈  ,From Lemma (4.1.8) and part (i) .ܩ
it follows that for ீߦ-a.e. ܸ ∈ ு-a.e. ℎߦ it holds for ܩ ∈  that ܪ

ℋ௦ି(ܭ ∩ ݔ) + ℎ)) > µ ݎ݂ 0 − ܽ. ݁. ݔ ∈  . ܭ
Set 

ܤ = ,ݔ)} ܸ) ∈ ܭ × :ܩ ܭ)௦ିܪ ∩ ௫ܸ) = 0}, 
then from Lemma (4.1.5) we get that ܤ is a Borel set (hence universally measurable), and 
so µ × (ܤ)ீߦ = 0 by Lemma (4.1.7). For the other direction, set ܹ = {ܸ ∈ :ܩ ‖ஶܨ‖ =
∞} and assume that ீߦ(ܹ) > 0. From part (ii) it follows that for ீߦ-a.e. ܸ ∈ ܹ we have 
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ℋ௦ି(ܭ ∩ ݔ) + ℎ)) = µ ݎ݂ 0 × ுߦ − ܽ. ݁. ,ݔ) ℎ) ∈ ܺ, 
and so from Lemma (4.1.2) 

0 < (ࣱ)ீߦ ≤ න µ × ,ݔ)ு൛ߦ ℎ): ℋ௦ି൫ܭ ∩ ݔ) + ℎܸ)൯ = 0ൟ݀ீߦ(ܸ)

= ඵ ு൛ℎߦ ∶ ℋ௦ି൫ܭ ∩ ݔ) + ℎܷ݃)൯ = 0ൟ݀ߦை(݃)݀µ(ݔ)

= ඵ ு൫൛ℎߦ ∶ ℋ௦ି൫ܭ ∩ ݔ) + ℎܷ)൯ = 0ൟ · ݃ିଵ൯݀ߦை(݃)݀µ(ݔ)

= න :ை൛݃ߦ ℋ௦ି൫ܭ ∩ ݔ) + ܷ݃)൯ = 0ൟ݀µ(ݔ)

= න ܸ}ீߦ ∶ ℋ௦ି(ܭ ∩ (ݔܸ = 0}݀µ(ݔ) = µ × ,ݔ)}ீߦ ܸ): ℋ௦ି(ܭ ∩ (ݔܸ

= 0}, 
which completes the proof of (iii). Part (iv) can be proven in a similar manner, and so the 
proof of Theorem (4.1.9) is complete.  
Theorem (4.1.10)[238]:: 

(i) ܲ௦ି(ܭ ∩ ௫ܸ) > 0 for µ × ,ݔ) .షೌ.eீߦ ܸ) ∈ ܭ ×  .ܩ
(ii) Given ܸ ∈ ܸ, if ቛ ଵ

ிೇ
ቛ

ಮ(µ×కಹ)
= ∞ then ܲ௦ି(ܭ ∩ ݔ) + ℎܸ)) = ∞ for µ ×

,ݔ) .ுషೌ.eߦ  ℎ) ∈ ܭ ×  .ܪ
(iii) If ቛ ଵ

ிೇ
ቛ

ಮ(µ×కಹ)
= ∞ for ீߦషೌ  .e. ܸ ∈ ܭ)then ܲ௦ି ,ܩ ∩  ௫ܸ) = ∞ for µ  .షೌ.eீߦ ×

,ݔ) ܸ) ∈ ܭ ×  .ܩ
Proof.  
Part (i): Let ܯ > 0 be so large such that for 

ܧ = ,ݔ)} ℎ) ∈ ܺ: ,ݔ)ܨ ℎ) ≤  {ܯ
we have µ × (ܧ)ுߦ > 0. Set ܧ =∩ேୀଵ

ஶ ∪ୀே
ஶ ܶି(ܧ), then µ × (ܧ\ܺ)ுߦ = 0 since µ ×

ଵܧ ு is ergodic. Setߦ  = ܧ ∩ , then µܦ × (ଵܧ\ܺ)ுߦ = 0. For ߦு-a.e. ℎ ∈  it holds that ܪ
µ{ݔ ∈ :ܭ ,ݔ) ℎ) ∉ {ଵܧ = 0, fix such ℎ ∈ ݈ For each .ܪ ≥ 1 set 

ܣ = ݔ} ∈ :ܭ ,ݔ) ℎ) ∈ ,ݔ)ܨ ଵ andܧ ℎ) ≥ ݈ିଵ}, 
and fix ݈ ≥ 1. It will now be shown that 

∗߆
௦ି൫µబ ,௫, ൯ݔ ≤ ݔ for each ܯି௦݈(ߩ2) ∈ బܣ .                       (7) 

Let ݔ ∈ బܣ  and let ܰ ≥ 1 be given, then since (ݔ, ℎ) ∈ ݇ ଵ it follows that there existܧ ≥
ܰ with ܶ(ݔ, ℎ) ∈ ܧ ∩ ,ݔ)ܶ)ܨ , and soܦ ℎ)) ≤ ݑ Set .ܯ =  then from ,(ݔ)ݓ
Lemma (4.1.8) we have 

µబ ,௫(ݑܭ) = ൫ݔ)ܨ, ℎ)൯
ିଵ

· ௨ݎ
௦ି · ,ݔ)ܶ)ܨ ℎ)) ≤ ݈ݎ௨

௦ିܯ , 
from which it follows that 

µబ ,௫ ቀܤ൫ݔ, ߩ · ௪ೖ(௫)൯ቁݎ

൫2ߩ · ௪ೖ(௫)൯ݎ
௦ି ≤

µబ ,௫(ܭ௨)
ߩ2) · ௨)௦ିݎ ≤

݈ݎ௨
௦ିܯ

ߩ2) · ௨)௦ିݎ =  . ܯି௦݈(ߩ2)

This proves (7) since ݎ௪ೖ(௫) tends to 0 as ݇ tends to ∞. 
As in the proof of part (i) of Theorem (4.1.9), from µ(ܭ\∪ୀଵ

ஶ (ܣ = 0 it follows 
that for µ-a.e. ݔ ∈ there exists ݈௫ ܭ ≥ 1 with µబ ,௫(ܣೣ ∩ ௫ܸ

బ) > 0. Fix such an ݔ  and 
let ∈ ೣబܣ

∩ ௫ܸబ

బ  , then from (7) we get 
∗߆

௦ି(µబ ,௫బ
, (ݕ = ∗߆

௦ି(µబ ,௬, (ݕ ≤ ݉(ߩ2) − ೣబݏ
 ,ܯ
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and so from Theorem 6.11 in [248] it follows that 
࣪௦ି൫ܭ ∩ ௫ܸబ

బ൯ ≥ ࣪௦ି ቀܣೣబ
∩ ௫ܸబ

బቁ ≥ ௦ି݈௫బ(ߩ2)
ିଵିܯଵ · µబ ,௫బ

ೣబܣ)
∩ ௫ܸబ

బ) > 0. 
Since (ܸ\ܩ)ீߦ = 0, this shows that for ீߦ-a.e. ܸ ∈ ு-a.e. ℎߦ it holds for ܩ ∈  that ܪ
࣪௦ି(ܭ ∩ ݔ) + ℎܸ)) > 0 for µ-a.e. ݔ ∈  Set .ܭ

ܤ = ,ݔ)} ܸ) ∈ ܭ × :ܩ ࣪௦ି(ܭ ∩ ௫ܸ) = 0}, 
then from Lemma (4.1.6) we get that ܤ is universally measurable, and so the claim stated 
in (i) follows from Lemma (4.1.7). 
Proof of part (ii): Assume ܸ is such that ቛଵ

ி
ቛ

ಮ(µ×కಹ)
= ∞, then 

µ × ,ݔ)}ுߦ ℎ): ,ݔ)ܨ ℎ) < {ଵିܯ > 0 for each 0 < ܯ < ∞ . 
For each integer ܯ ≥ 1 set 

ெܧ = ,ݔ)} ℎ): ,ݔ)ܨ ℎ) < ,ெܧ ଵ} andିܯ =∩ேୀଵ
ஶ ∪ୀே

ஶ ܶି(ܧெ), 
then since µ × ு is ergodic and µߦ × (ெܧ)ுߦ > 0 it follows that µ × (,ெܧ\ܺ)ுߦ =  0. 
Set ܧ෨ = ܦ ∩ (∩ெୀଵ

ஶ ,ெ), then µܧ × (෨ܧ\ܺ)ுߦ = 0. For ߦு-a.e. ℎ ∈ ݔ}it holds that µ ܪ ∈
:ܭ ,ݔ) ℎ) ∉ {෨ܧ = 0, fix such ℎ ∈ ܣ and set ܪ = ݔ} ∈ :ܭ ,ݔ) ℎ) ∈  ෨)}. It will now beܧ
shown that 

∗߆
௦ି൫µబ ,௫, ൯ݔ = 0 for each ݔ ∈  (8)                                .ܣ

Let ݔ ∈ ,ܣ ܯ ≥ 1 and ܰ ≥ 1 be given, then there exists ݇ ≥ ܰ with ܶ(ݔ, ℎ) ∈ ܦ ∩
,ݔ)ܶ)ܨ ெ, and soܧ ℎ)) < ݑ ଵ. Setିܯ =  (௫), then from Lemma (4.1.8)ݓ

µబ ,௫(ܭ௨) = ൫ݔ)ܨ, ℎ)൯ିଵ · ௨ݎ
௦ି · ,ݔ)ܶ)ܨ ℎ))  ≤ ൫ݔ)ܨ, ℎ)൯ିଵ · ௨ݎ

௦ି ·  , ଵିܯ
from which it follows that 

µబ ,௫ ൬ܤ ቀݔ, ߩ · ௪ೖݎ
ቁ൰(ݔ)

ቀ2ߩ · ௪ೖ(ೣ)ቁݎ
௦ି ≤

µబ ,௫(ݑܭ)
ߩ2) · ௨)௦ିݎ ≤

൫ݔ)ܨ, ℎ)൯
ିଵ

· ௨ݎ
௦ି · ଵିܯ

ߩ2) · ௨)௦ିݎ  

                           = ି௦(ߩ2) · ൫ݔ)ܨ, ℎ)൯
ିଵ

·  .ଵିܯ
This shows that 

∗߆
௦ି(µబ ,௫, (ݔ ≤ ି௦(ߩ2) · ൫ݔ)ܨ, ℎ)൯ିଵ ·  ,ଵିܯ

and so (8) holds since ܯ can be chosen arbitrarily large. We have 

0 = µ(ܣ\ܭ) = න µబ ,௫(ܣ\ܭ) ݀µ(ݔ) , 

hence µబ ,௫(ܣ ∩ ௫ܸ
బ) > 0 for µ-a.e. ݔ ∈ ݔ Fix such .ܭ ∈ ∋ and let ܭ ܣ ∩ ௫ܸబ

బ , then 
from (8) we get 

∗߆
௦ି൫µబ ,௫బ

, ൯ݕ = ∗߆
௦ି൫µబ ,௬, ൯ݕ = 0 . 

Now from Theorem 6.11 in [248] it follows that for each ߳ > 0 
࣪௦ି(ܭ ∩ ௫ܸబ

బ) ≥ ࣪௦ି(ܣ ∩ ௫ܸబ

బ) ≥ ߳ିଵ · µబ ,௫బ
ܣ) ∩ ௫ܸబ

బ), 
which shows that ࣪௦ି(ܭ ∩ ௫ܸబ

బ) = ∞ since ߳ can be chosen arbitrarily small and 

µబ ,௫బ
ܣ) ∩ ௫ܸబ

బ) > 0. This proves that if ቛ ଵ
ிೇ

ቛ
ಮ(µ×కಹ)

= ∞, then for ߦு-a.e. ℎ ∈  we ܪ

have ࣪௦ି(ܭ ∩ ݔ) + ℎܸ )) = ∞ for µ-a.e. ݔ ∈  and so (ii) follows from Lemma ,ܭ
(4.1.6) and Fubini’s theorem. Proof of part (iii): Assume that ቛ ଵ

ிೇ
ቛ

ಮ(µ×కಹ)
= ∞ for ீߦ-

a.e. ܸ ∈ ܸ .a.e-ீߦ then from Lemma (4.1.3) and part (ii) it follows that for ,ܩ ∈  it holds ܩ
for ߦு-a.e. ℎ ∈ ܭ)that ࣪௦ି ܪ ∩ ݔ) + ℎܸ)) = ∞ for µ-a.e. ݔ ∈  Set .ܭ
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ܤ = ,ݔ)} ܸ) ∈ ܭ × ܭ)௦ି࣪ :ܩ ∩ (ݔܸ < ∞} , 
then from Lemma (4.1.6) we get that ܤ is universally measurable, and so the claim stated 
in (iii) follows from Lemma (4.1.7). This completes the proof of Theorem (4.1.10).  

The following lemma will be used in the proofs of Corollary (4.1.12) and Corollary 
(4.1.14). For its proof see Lemma 3.2 in [244] and the discussion before it. 
Lemma (4.1.11)[238]: Assume ݉ = 1 and ݏ > 2, then ఼ܲµ ≪ ℋ and 

ௗೇ఼µ

ௗℋ  has a 
continuous version for ீߦ-a.e. ܸ ∈  .ܩ
Corollary (4.1.12)[238]: Assume ݉ = 1, ݏ > 2 and |ܪ| < ∞, then ℋ௦ି(ܭ ∩ ௫ܸ) >
0 for µ × ,ݔ) .షೌ.eீߦ ܸ) ∈ ܭ ×  .ܩ
Proof. Assuming ݉ = 1, ݏ > 2 and |ܪ| < ∞, it will be shown that ‖ܨ‖ಮ(µ×కಹ) < ∞ 
for ீߦ-a.e. ܸ ∈  From this and from part (iii) of Theorem (4.1.9) the corollary will .ܩ
follow. Set 

ܧ = {ܸ ∈ :ܩ ఼ܲµ ≪ ℋ and ఼݀ܲµ/݀ℋ is continuous},  
then from Lemma (4.1.11) we get (ܧ\ܩ)ீߦ = 0. From this and from Lemma (4.1.2) it 
now follows that 

0 = (ܧ\ܩ)ீߦ = ݃}ைߦ ∈ ܱ(݊): ܷ݃ ∉ {ܧ = න :ு{ℎߦ ℎܷ݃ ∉  (݃)ைߦ݀{ܧ

= න ு{ℎߦ ∶ ℎܸ ∉                 ,(ܸ)ீߦ݀{ܧ

and so ߦு{ℎ: ℎܸ ∉ {ܧ = 0 for ீߦ-a.e. ܸ . We fix such a ܸ ∈ |ܪ| Since .ܩ < ∞, for each 
ℎ ∈ ு{ℎ}ߦ we have ܪ > 0, and so ℎܸ ∈ For each ℎ .ܧ ∈ ݕ and ܪ ∈ (ℎܸ)ୄ set ܳ(ݕ) =
∗߆

(ܲ()఼µ, fix ℎ ,(ݕ ∈ ܹ and set ,ܪ = (ℎܸ)ୄ. Since ℋ(ݕ)ܤ, (ݎ ∩ ܹ) = (2߳) 
for each ݕ ∈ ܹ and 0 < ߳ < ∞, it follows from Theorem 2.12 in [248] that ܳబ(ݕ) =
ௗೈµ
ௗℋ ݕ .for ℋa.e (ݕ) ∈ ܹ, i.e. the function ܳబ  equals a continuous function as 
members of ܮଵ(ܹ, ℋ). Also, since µ is supported on a compact set it follows that the 
set {ݕ ∈ ܹ: ܳబ(ݕ) ≠ 0} is bounded, so ܳబ equals a continuous function with compact 
support in ܮଵ(ܹ, ℋ), which shows that ฮܳబฮ

ಮ(ௐ,ℋ) < ∞. Since ܲௐµ ≪ ℋ it 

follows that ฮܳబฮ_(ܮஶ(ܲௐµ) < ∞. Now set ܯ = max{‖ܳ‖_(ܮஶ(ܲ()఼µ): ℎ ∈  ,{ܪ
then ܯ < ∞ since |ܪ| < ∞. Also, we have 

0 =
1

|ܪ|  ܲ()఼

∈ு

µ{ݕ ∈ (ℎܸ)ୄ: |ܳ(ݕ)| >  {ܯ

=
1

|ܪ|  µ{ݔ ∈ :ܭ |ܳ(ܲ()఼(ݔ))| > {ܯ
∈ு

=
1

|ܪ|  ܺ ℎ ∈              ܪ

 µ{ݔ ∈ :ܭ ,ݔ)ܨ| ℎ)| > {ܯ
∈ு

= න µ{ݔ ∈ :ܭ ,ݔ)ܨ| ℎ)| >  ு(ℎ)ߦ݀{ܯ

                      = µ × ,ݔ)}ுߦ ℎ) ∈ ܭ × :ܪ ,ݔ)ܨ| ℎ)| >         ,{ܯ
which shows that ‖ܨ‖ಮ(µ×కಹ) ≤ ܯ < ∞. This completes the proof of Corollary 
(4.1.12).  
Corollary (4.1.13)[238]:: Assume that ܪ = ܱ(݊) and 

µ × ,ݔ)}ீߦ ܸ) ∈ ܭ × :ܩ ܭ)௦ିܪ ∩ ௫ܸ) > 0} > 0, 
then there exists 0 < ܯ < ∞ such that for each ܸ ∈ we have ఼ܲ ܩ  µ ≪   withܪ

ฯ
఼݀ܲµ
ܪ݀ ฯ

ಮ(ு)
 ≤  .ܯ
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Proof.  Assume that ܪ = ܱ(݊) and 
µ × ,ݔ)}ீߦ ܸ): ℋ௦ି(ܭ ∩ ௫ܸ) > 0} > 0 . 

Let ܸ ∈ ࣰ, then since ߦு =  ை we haveߦ
µ × ,ݔ)}ுߦ ℎ): ℋ௦ି(ܭ ∩ ݔ) + ℎܸ)) > 0} > 0 , 

and so from part (ii) of Theorem (4.1.9) it follows that ‖ܨ‖ಮ(µ×కಹ) < ∞. Set ܯ =
‖ಮ(µ×కಹܨ‖ ), set 

ܧ = {ܹ ∈ :ܩ ܲௐ఼ µ ≪ ℋ and ฯ
݀ܲௐ఼µ
݀ℋ ฯ ஶ(ℋ)ܮ ≤  ,{ܯ

and for each ℎ ∈ ℋ set ܲ = ܲ()఼ . We shall first show that (ܧ\ܩ)ீߦ = 0. Since 
ܲௐ఼µ ≪ ℋ for ீߦ-a.e. ܹ ∈ ுߦ and since ,(see the proof of Lemma (4.1.3)) ܩ =  ை, weߦ
have 

(ܧ\ܩ)ீߦ = ൛ܹ\ܩ൫ீߦ ∈ :ܩ ܲௐ఼µ ≪ ℋൟ൯                                   

ீߦ+ ൝ܹ ∈ :ܩ ܲௐ఼µ ≪ ℋ and ብ
݀ܲௐ఼ఓ

݀ℋ ብ
ಮ(ℋ)

≤ ൡܯ . (9) 

Let ℎ ∈ be such that ܲµ ܪ ≪ ℋ and ቛௗµ
ௗℋቛ

ಮ(µ)
≤  then ,ܯ

0 = ܲµ{ݕ ∈ (ℎܸ)ୄ:
݀ ܲµ
݀ℋ (ݕ) > {ܯ = (ℎܸ)ୄ 1

ቄௗµ
ௗℋவெቅ

·
݀ ܲµ
݀ℋ ݀ℋ 

≥ ܯ · ℋ ൜ݕ ∈ (ℎܸ)ୄ:
݀ ܲµ
݀ℋ (ݕ) >   ,ൠܯ

which shows that ቛௗµ
ௗℋቛ

ಮ(ℋ)
≤  From this and from (9) it follows that .ܯ

(ܧ\ܩ)ீߦ = ுߦ ቊℎ: ܲµ ≪ ℋܽ݊݀ ฯ
݀ ܲµ
݀ℋฯ

ಮ(µ)
>  ቋ.                (10)ܯ

From Theorem 2.12 in [248] we get that for each ℎ ∈ ℋ with ܲµ ≪ ℋ 

,ݔ)ܨ ℎ) =
݀ ܲµ
݀ℋ ൫ ܲ(ݔ)൯    for µ − ܽ. ݁. ݔ ∈  ,ܭ

and so from (10) 
ீߦ (ܧ\ܩ) ≤ :ு൛ℎߦ ,·)ܨ‖ ℎ)‖ಮ(µ) >               ൟܯ

= :ு൛ℎߦ µ൛ݔ: ,ݔ)ܨ ℎ) > ‖ಮ(µ×కಹܨ‖ )ൟ  > 0ൟ = 0 .            
Since ீߦ(ܹ) > 0 for every non-empty open set ܹ ⊂ (ܧ\ܩ)ீߦ it follows from ,ܩ = 0 
that ܧ is dense in ܩ, and so in order to prove the corollary it suffice to show that ܧ is a 
closed subset of ܩ. Let ܹ ∈ ݕ ത, letܧ ∈ ܹ

ୄ and let ݎ ∈ (0, ∞). Given ߳ > 0 there exists 
ܹ ∈  such that ,(with respect to the metric ݀ீ defined) ܩ so close to ܹ in ܧ

ܲௐబ
఼

ିଵ ,ݕ)ܤ) ((ݎ ∩ ܭ ⊂ ܲௐ఼
ିଵ ,ௐ఼௬ܲ)ܤ) ݎ + ߳)). 

From this and since ܹ ∈  it follows that ܧ
ܲௐబ

఼µ൫ݕ)ܤ, ൯(ݎ = µ ቀܲௐబ
఼

ିଵ ൫ݕ)ܤ, ൯(ݎ ∩ ቁܭ ≤ µ ቀܲௐ఼
ିଵ ൫ܤ(ܲௐ఼ݕ, ݎ + ߳)൯ቁ     

= ܲௐ఼µ ቀ൫ܤ(ܲௐ఼ݕ, ݎ + ߳)൯ቁ = න
݀ܲௐ఼ µ
݀ℋ ݀ℋ

 

൫ೈ఼ ௬,ାఢ൯∩ௐ఼
 

≤ ܯ · ℋ(ܤ(ܲௐ఼ݕ, ݎ + ߳) ∩ ܹୄ) = ܯ · ൫2 · ݎ) + ߳)൯


,            
and since this holds for each ߳ > 0 we have 

ܲௐబ
఼ µ(ݕ)ܤ, (ݎ ∩ ܹ

ୄ) ≤ ܯ · (ݎ2) = ܯ · ℋ(ݕ)ܤ, (ݎ ∩ ܹ
ୄ) . 

This holds for every ݕ ∈ ܹ
ୄ and ݎ ∈ (0, ∞), hence ܹ ∈  ,by Theorem 2.12 in [248] ܧ
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which shows that ܧ is closed in ܩ and completes the proof of the corollary. 
Corollary (4.1.14): Assume ݉ = 1 and ݏ > 2, then ܲ௦ି(ܭ ∩ (ݔܸ = ∞ for µ × -ܩߦ
a.e. (ݔ, ܸ) ∈ ܭ ×  .(see Lemma 3.2 in [244]) .ܩ
Proof. Assuming ݉ = 1 and ݏ > 2, it will be shown that ቛ ଵ

ிೇ
ቛ

ಮ(µ×కಹ)
= ∞ for ீߦ-a.e. 

ܸ ∈  From this and part (iii) of Theorem (4.1.10) the corollary will follow. Set .ܩ

ܧ = {ܸ ∈ :ܩ ఼ܲµ ≪ ℋ and
఼݀ܲµ
݀ℋ   is continuous} 

then as in the proof of Corollary (4.1.12) it follows from Lemma (4.1.8) and Lemma 
(4.1.2) that 

0 = (ܧ\ܩ)ீߦ = න :ு{ℎߦ ℎ ∉ ீߦ݀{ܧ (ܸ) , 

and so ߦு{ℎ: ℎܸ ∉ {ܧ = 0 for ீߦ-a.e. ܸ . Fix such ܸ ∈ ܯ let ,ܩ > 0, set 
ܣ = {ℎ ∈ :ܪ ℎܸ ∈  ,{ܧ

and for each ℎ ∈ ݕ and ܪ ∈ (ℎܸ)ୄ set ܳ(ݕ) = ∗߆
(ܲ()఼  µ,  and (ݕ

ܮ  = ݕ} ∈ (ℎܸ)ୄ: 0 < ܳ(ݕ) ≤  .{ଵିܯ
Fix ℎ ∈ ܹ and set ܣ = (ℎܸ)ୄ. From Theorem 2.12 in [248] it follows that ܳబ

(ݕ) =
ௗೈµ
ௗℋ ݕ .for ℋ-a.e (ݕ) ∈ ܹ, hence the function ܳబ equals a continuous function in 
,ܹ)ଵܮ ℋ). Also, since µ is supported on a compact set, it follows that the set {ݕ ∈
ܹ: ܳబ(ݕ) ≠ 0} is bounded. From these two facts it easily follows that ℋ(ܮబ) > 0, 
and so ܲௐµ(ܮబ) > 0 since ܳబ = ௗೈµ

ௗℋ  and ܳబ > 0 on ܮబ . From this we get that 
0 < µ{ݔ ∈ :ܭ ܳబ(ܲௐ(ݔ)) ≤ {ଵିܯ = µ{ݔ ∈ :ܭ ,ݔ)ܨ ℎ) ≤  ,{ଵିܯ

and so by Fubini’s theorem 

µ × ,ݔ)}ுߦ ℎ):
1

,ݔ)ܨ ℎ) ≥ {ܯ = න µ{ݔ ∈ :ܭ ,ݔ)ܨ ℎ) ≤ ு(ℎ)ߦ݀{ଵିܯ
 


> 0. 

It follows that ቛ ଵ
ிೇ

ቛ
ಮ(µ×కಹ)

≥ and so ቛ ,ܯ ଵ
ிೇ

ቛ
ಮ(µ×కಹ)

= ∞ since we can choose ܯ as 

large as we want. This completes the proof of the corollary.  
Set ߉ = {1,2}. Given 0 < ߩ < ଵ

ଶ
, define ఘ݂,ଵ, ఘ݂,ଶ: ܴ → ܴ by ఘ݂,ଵ(ݔ) = ߩ ·  and ݔ

ఘ݂,ଶ(ݔ) = ߩ · ݔ + 1 − ݔ for each ߩ ∈ ܴ, let ܥఘ ⊂ [0,1] be the attractor of the IFS 
{ ఘ݂,ଵ, ఘ݂,ଶ}, set ݀ఘ = dimு ఘ (so that ݀ఘܥ = ୪୭ ଶ

୪୭ ఘషభ ), and for each ܧ ⊂ ܴ set µఘ(ܧ) =
ℋഐ൫ഐ∩ா൯

ுഐ ൫ഐ൯
 . Let 0 < ܽ < ܾ < ଵ

ଶ
 be such that ଵ


 and ଵ


 are Pisot numbers, ୪୭ 

୪୭ 
  is irrational, 

and ݀ + ݀ > 1. Let ܫ = [0,1) and let ܮ be Lebesgue measure on ܫ. Fix ߬ ∈ (0, ∞), and 
for each ݐ ∈ ݖ and ܫ ∈ ܴଶ define ܹ௧ = ݔ} · (1, ߬ · ܽ௧) ∶ ݔ ∈ ܴ}, ܸ௧ = (ܹ௧)ୄ and ௭ܸ

௧ =
ݖ + ܸ௧ . In order to prove Theorem (4.1.20) we shall first prove the following: 

Set ߙ = log ܾ log ܽ (so ߙ ∈ ݐ and for each ,(ܳ\ܫ ∈ (ݐ)ܴ set ܫ = ݐ +  .mod 1 ߙ
Given 0 < ߩ < ଵ

ଶ
 and a word ߣଵ ·. . .· ߣ = ݓ ∈ write ఘ݂,௪ ,∗߉ = ఘ݂,ఒభ  ∘. . .∘ ఘ݂,ఒ  and 

ఘ,௪ܥ = ఘ݂,௪(ܥఘ). For each ݊ ≥ 1 and ݔ ∈ (ݔ)ఘ,ݓ ఘ letܥ ∈   be the unique word of߉
length n which satisfies ݔ ∈ (ݔ)ఘ,௪ഐ,(௫), and let ఘܵܥ = ఘ݂,௪ഐ,ଵ(௫)

ିଵ  We also write .(ݔ)
(ݔ)ఘ,ݓ = ∅ and ܥఘ,∅ =  ఘ. The following dynamical system will be used in the proof ofܥ
Theorem (4.1.19). The idea of using this system comes from the partition operator 
introduced in section 10 of [245]. Set ܭ = ܥ × ,ܥ ܺ = ܭ × ,ܫ µ = µ × µ , ߥ = µ × ℒ, 
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and for each (ݔ, ,ݕ (ݐ ∈ ܺ define 

,ݔ)ܶ ,ݕ (ݐ = ൜
(x, Sୠ(y), R(t)),    if t ∈ [0,1 − α) 
((Sୟ(x), Sୠ(y), R(t)),              else . 

It is easy to check that the system (ܺ, ,ߥ ܶ) is measure preserving, and from Lemma 2.2 
in [240] it follows that it is ergodic. Let ℛ be the Borel ߪ-algebra of ℝଶ. For each ݐ ∈  ܫ
let ௧ܲ be the orthogonal projection onto ܹ௧ , and let ൛µ௧,௭ൟ௭∈ℝమ be the disintegration of µ 
with respect to ௧ܲ

ିଵ(ℛ). Also, for each (ݖ, (ݐ ∈ ܺ define ݖ)ܨ, (ݐ = ∗߆
ଵ( ௧ܲµ, ௧ܲݖ).  

Lemma (4.1.15)[238]: It holds that ܫଵ(µ) < ∞, where ܫଵ(µ) is the 1-energy of µ. 
Proof. Set ߜ = 1 − 2ܾ, then for each (ݔ, (ݕ ∈ ℝଶ and ݇ ≥ 1 

µ ൬ܤ ቀ(ݔ, ,(ݕ ߜ · ܽቁ൰ ≤ µ ቀ(ݔ − ߜ · ܽ , ݔ + ߜ · ܽ) × ݕ) − ߜ · ܽ , ݕ + ߜ · ܽ)ቁ

≤ µ(ݔ − ߜ · ܽ , ݔ + ߜ · ܽ) · µ(ݕ − ߜ · ܽ , ݕ + ߜ · ܽ)
≤ 2ି · 2ି[ ୪୭್ ] ≤ 2ି · 2[ି ୪୭್ ]  = 2 · ܽ(ଵା ୪୭್) ୪୭ೌ ଶషభ  
= 2 · ܽ(ௗೌାௗ್) . 

This shows that there exists a constant ܯ > 0 with µ(ݖ)ܤ, ((ݎ ≤ ܯ · ௗೌାௗ್ݎ  for each ݖ ∈
ܴଶ and ݎ > 0. Since ݀ + ݀ > 1, the lemma follows from the discussion found at the 
beginning of chapter 8 of [248].  
Lemma (4.1.16)[238]: Let ݊ଵ, ݊ଶ ≥ ଵݓ ,1 ∈ భ߉  and ݓଶ ∈ మ߉ . For each (ݔ, (ݕ ∈  set ܭ
,ݔ)݃ (ݕ = ( ݂,௪భ(ݔ), ݂,௪మ(ݕ)), then for each Borel set ܤ ⊂   ܭ

µ൫݃(ܤ)൯ = 2ିభିమ · µ(ܤ) . 
Proof. We prove this by using the ߨ −  be the collection of ܧ theorem (see [239]). Let ߣ
all Borel sets ܤ ⊂ ((ܤ)݃)which satisfy µ ܭ = 2ିభିమ · µ(ܤ), then ℰ is a ߣ-system. Set 
ܲ = ,௨భܥ} × ,௨మܥ : ,ଵݑ ଶݑ ∈ {∗߉ ∪ {∅}, then ܲ is a ߨ-system, ܲ ⊂ ℰ and ߪ(ܲ) equals the 
collection of all Borel subsets of ܭ. From the ߨ − (ܲ)ߪ theorem it follows that ߣ ⊂ ℰ, 
hence ℰ equals the collection of all Borel subsets of ܭ, and the lemma is proven.  

Lemma (4.1.17)[238]: It holds that 0 < ℋௗೌାௗ್(ܭ) < ∞, and µ(ܧ) = ℋೌశ್(∩ா)
ℋೌశ್ ()  for 

each Borel set ܧ ⊂ ℝଶ. 
Proof. From Theorem 8.10 in [248] it follows that ℋௗೌାௗ್ (ܭ) > 0, and by an 
elementary covering argument it can be shown that ℋௗೌାௗ್ (ܭ) < ∞. The rest of the 
lemma can be proven by using the ߨ −   .theorem, as in the proof of Lemma (4.1.16) ߣ
Lemma (4.1.18)[238]: Let 0 < ܯ < ∞ and set ܧெ = ,ݖ)} (ݐ ∈ ܺ: ,ݖ)ܨ (ݐ >  then ,{ܯ
(ெܧ)ߥ > 0. 
Proof. Assume by contradiction that ߥ(ܧெ) = 0 and set 

ܮ = ݐ} ∈ :ܫ µ{ݖ: ,ݖ) (ݐ ∈ {ெܧ = 0}, 
then ℒ(ܮ\ܫ) = 0, and so ܮത =  Set .ܫ

ܣ = ݐ} ∈ :ܫ ௧ܲµ ≪ ℋଵܽ݊݀ ฯ
݀ ௧ܲµ
݀ℋଵฯ

ಮ(ℋభ)
≤  ,{ܯ

and let ݐ ∈ ݖ .For ௧ܲµ-a.e .ܮ ∈ ௧ܹ we have ߆∗
ଵ( ௧ܲµ, (ݖ ≤  hence from parts (2) and (3) ,ܯ

of Theorem 2.12 in [248] it follows that ݐ ∈ ܮ This shows that .ܣ ⊂ ܣ̅ and so that ,ܣ =  .ܫ
By an argument similar to the one given at the end of the proof of Corollary (4.1.13), it 
can be shown that ܣ is a closed subset of ܫ, and so ܣ =  In particular it follows that .ܫ

௧ܲµ ≪ ℋଵ for each ݐ ∈  which is a contradiction to Theorem 4.1 in [251]. This shows ,ܫ
that we must have ߥ(ܧெ) > 0, and the lemma is proven. 
Theorem (4.1.19)[238]: For µ × µ × ,ݔ) .a.e-ܮ ,ݕ (ݐ ∈ ܥ × ܥ ×  it holds that ܫ
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ℋௗೌାௗ್ିଵ((ܥ × (ܥ ∩ ௫ܸ,௬
௧ ) = 0. 

Proof. Let ܦ be the set of all (ݖ, (ݐ ∈ ܺ such that ௧ܲµ ≪ ℋଵ, µ௧,௭ is defined, 

µ௧,௭(ܥ,௪భ × (,௪మܥ = lim
ఢ↓

µ ቀ൫ܥ,௪భ × ,௪మ൯ܥ ∩ ௧ܲ
ିଵ൫ܤ( ௧ܲݖ, ߳)൯ቁ

௧ܲµ൫ܤ( ௧ܲݖ, ߳)൯
 

for each ݓଵ, ଶݓ ∈  and ,∗߉

0 < ,ݖ)ܨ (ݐ = lim
ఢ↓

௧ܲµ൫ܤ( ௧ܲݖ, ߳)൯
2߳

<  ∞ . 
From Lemma (4.1.15) and from the same arguments as the ones given at the beginning, 
it follows that (ܦ\ܺ)ߥ = 0. Set ܦ = ∩ୀ

ஶ ܶିܦ, then ߥ(ܺ\ܦ) = 0 since ܶ is measure 
preserving. For 0 < ܯ < ∞ let ܧெ be as in Lemma (4.1.18), and set ܧ,ெ =
∩ேୀଵ

ஶ ∪ୀே
ஶ ܶି(ܧெ). Since ߥ(ܧெ) > 0, it follows from the ergodicity of 

(ܺ, ,ߥ (,ெܧ\ܺ)ߥ ݐℎܽݐ (ܶ = 0. Set ܦଵ = ܦ ∩ (∩ெୀଵ
ஶ ,ܧ (ଵܦ\ܺ)ߥ then ,(ܯ = 0. For ℒ-

a.e. ݐ ∈ ݖ}it holds that µ ܫ ∈ :ܭ ,ݖ) (ݐ ∉ {ଵܦ = 0, fix such ݐ ∈ ܣ and set ܫ = ݖ} ∈
:ܭ ,ݖ) (ݐ ∈ ܣ ଵ}. Note that fromܦ ≠ ∅ it follows that ௧ܲబµ ≪ ℋଵ. Set ߟ = ݀ + ݀ − 1. 
It will now be shown that  

,ఎ൫µ௧బ,௭∗߆ ൯ݖ = ∞ for each ݖ ∈  (11)                                    ܣ
Let (ݔ, (ݕ = ݖ ∈ ߚ and set ܣ = ൫ݖ)ܨ, )൯ݐ

ିଵ
, then 0 < ߚ < ∞ since (ݖ, (ݐ ∈  . Letܦ

ܯ ≥ 1 and ܰ ≥ 1 be given, then there exists ݇ ≥ ܰ with ܶ(ݖ, (ݐ ∈ ܦ ∩  ெ, and soܧ
,ݖ)ܶ)ܨ ((ݐ > ݈ Set .ܯ = ݐ] + ݇ఈ], then 

µ௧బ,௭൫ܥ,௪(௫) × ,௪ೖ(௬)൯ܥ = lim
ఢ↓

ߤ ൬൫ܥ,௪(௫) × ,௪ೖ(௬)൯ܥ ∩ ௧ܲబ
ିଵ ቀܤ൫ ௧ܲబݖ, ߳൯ቁ൰

௧ܲబµ ቀܤ൫ ௧ܲబݖ, ߳൯ቁ
 

= lim
ఢ↓

2߳

௧ܲబ µ ቀܤ൫ ௧ܲబݖ, ߳൯ቁ

ߤ ൬൫ܥ,௪(௫) × ,௪ೖ(௬)൯ܥ ∩ ௧ܲబ
ିଵ ቀܤ൫ ௧ܲబݖ, ߳൯ቁ൰

2߳
 

= ߚ · lim
ఢ↓

ߤ ൬൫ܥ,௪(௫) × ,௪ೖ(௬)൯ܥ ∩ ௧ܲబ
ିଵ ቀܤ൫ ௧ܲబݖ, ߳൯ቁ൰

2߳
.                (12) 

For each (ݔ′, (′ݕ ∈ ℝଶ set ݃(ݔ′, (′ݕ = ( ݂,௪(௫)(ݔ′), ݂ ,௪ೖ(௬)(ݕ′)), then 
,௪(௫)ܥ × ,௪ೖ(௬)ܥ = ݂,௪(௫)(ܥ) × ݂,௪ೖ(௬)(ܥ) = ܥ)݃ ×  ).               (13)ܥ

Let ߳ > 0, and let ܮ: ℝଶ → ℝଶ  be a linear map with (1,0)ܮ = (ܽ , 0) and (0,1)ܮ =
(0, ܾ). Since ܮ is the linear part of the affine transformation ݃, we have 

         ௧ܲబ
ିଵ ቀܤ൫ ௧ܲబݖ, ߳൯ቁ = ݖ + ܸ௧బ + ,0)ܤ ߳)                                                           

                                   = ݃ ∘ ݃ିଵ(ݖ) + ܮ ∘ ଵ(ܸ௧బ)ିܮ + ܮ ∘ ,0)ܤଵ൫ିܮ ߳)൯ 
= ݃ ቀ݃ିଵ(ݖ) + ଵ(ܸ௧బ)ିܮ + ,0)ܤଵ൫ିܮ ߳)൯ቁ.                  (14) 

From ܽି ≥ ܽି௧బିഀାଵ ≥ ܽ · ܾି, we obtain 
,0)ܤଵ൫ିܮ ߳)൯ ⊃ ,0)ܤ ߳ · ܽ · ܾି).                                      (15) 

Also we have 
ଵ(ܸ௧బ)ିܮ = ଵ((ܹ௧బ)ୄ)ିܮ = ,ଵ(൫(1ିܮ ߬ · ܽ௧బ) · ܴ൯ୄ) = ߬))ଵିܮ · ܽ௧బ , −1) · ℝ) 

= (߬ · ܽ௧బ · ܽି, −ܾି) · ℝ = ቆ߬ · ܽ௧బ ·
ܾ

ܽ , −1ቇ · ℝ,           
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and so since 
ܾ

ܽ = ܽ^(݇ · log ܾ − ݈ = ܽఈି[௧బାఈ], 
it follows that 

ଵ(ܸ௧బ)ିܮ = ൫߬ · ܽ௧బାఈି[௧బାఈ], −1൯ · ℝ = ൬ቀ1, ߬ · ܽோೖ(௧బ)ቁ · ܴ൰
ୄ

 = ܸோೖ(௧బ).    (16) 
Set 

ܳఢ = ோܲೖ(௧బ)
ିଵ )ோೖ(௧బ)ܲ)ܤ) ݂,௪(௫)

ିଵ ,(ݔ) ݂,௪ೖ(௬)
ିଵ ,((ݕ) ܾ߳ܽି)), 

then from (14), (15) and (16) it follows that 
     ௧ܲబ

ିଵ(ܤ( ௧ܲబݖ, ߳)) = ݃(݃ିଵ(ݖ) + ଵ(ܸ௧బିܮ ) + ,0)ܤ)ଵିܮ ߳))) 
⊃ ݃(( ݂,௪(௫)

ିଵ ,(ݔ) ݂,௪ೖ(௬)
ିଵ ((ݕ) + ܸோೖ(௧బ) + ,0)ܤ ܾ߳ܽି)) = ݃(ܳఢ). 

Now from (12), (13) and Lemma (4.1.16) we get that 

µ௧బ,௭(ܥ,௪(௫) × (,௪ೖ(௬)ܥ = ߚ · lim
ఢ↓

ܥ)݃)ߤ × (ܥ ∩ ܳఢ)
2߳  

           = ߚ · 2ିି ·
ܽ

ܾ · lim
ఢ↓

ܥ)݃)ߤ × (ܥ ∩ ܳఢ)
2ܾ߳ܽି  

                                       ≥
ߚ
2 · 2ିିఈ ·

ܽ
ܾ · ܨ ൬ቀ ݂,௪(௫)

ିଵ ,(ݔ) ݂,௪ೖ(௬)
ିଵ ቁ(ݕ) , ܴ(ݐ)൰ 

=
ܽߚ
2 · 2ିିఈ · ܾି · ܨ ቀܶ(ݖ, )ቁݐ ≥

ܽߚ
2 · 2ିିఈ · ܾି ·   .ܯ

Since 

,௪(௫)ܥ × ,௪ೖ(௬)ܥ ⊂ ,ݖ)ܤ
2 · ܾ

ܽ
) and 2ିିఈ · ܾି · ܾିఎ = 1, 

it follows that 

µ௧బ ,௭ ቆܤ ൬ݖ, 2 · ܾ

ܽ  ൰ቇ

(4ܽିଵ · ܾ)ఎ ≥
µ௧బ ,௭൫ܥ,௪(௫) × ,௪ೖ(௬)൯ܥ

(4ܽିଵ · ܾ)ఎ ≥
ܽߚ
2 · 2ିିఈ · ܾି · ܯ

(4ܽିଵ · ܾ)ఎ  

                         ≥
ଶܽߚ

8 · ܯ · 2ିିఈ · ܾି · ܾିఎ =
ଶܽߚ

8 ·  . ܯ

This shows that ߆∗ఎ(µ௧బ,௭, (ݖ ≥ ఉమ

଼
· ߚ which proves (1) since ,ܯ > 0 and ܯ can be 

chosen arbitrarily large.  
Let ݖ ∈ ݑ and ܣ ∈ ܣ ∩ ௭ܸ

௧బ , then from (1) 
,ఎ(µ௧బ,௭∗߆ (ݑ = ఎ(µ௧బ∗߆ ,௨, (ݑ = ∞, 

and so from Theorem 6.9 in [248] we get that ܪఎ(ܣ ∩ ௭ܸ
௧బ) = 0. Also it holds that 

µ(ܣ\ܭ) = 0, hence from Theorem 7.7 in [248] and from Lemma (4.1.17) we get that 

න ℋఎ ቀ(ܣ\ܭ) ∩ ௨ܸ
௧బቁ ݀ℋଵ(ݑ)

 

ௐబ
≤ const ∙ ℋఎାଵ(ܣ\ܭ) = const · µ(ܣ\ܭ) = 0. 

This shows that ℋఎ((ܣ\ܭ) ∩ ௨ܸ
௧బ) = 0 for ℋଵ-a.e. ݑ ∈ ܹ௧బ, and so ℋఎ((ܣ\ܭ) ∩

௭ܸ
௧బ) = 0 for µ-a.e. ݖ ∈ since ௧ܲబµ ܭ ≪ ℋଵ. It follows that for µ-a.e. ݖ ∈ -and so for µ ,ܣ

a.e. ݖ ∈  ,ܭ
ℋఎ ܭ) ∩ ௭ܸ

௧బ) = ℋఎ(ܣ ∩ ௭ܸ
௧బ) + ℋఎ((ܣ\ܭ) ∩ ௭ܸ

௧బ) = 0 . 
From this, from Lemma (4.1.10), and from Fubini’s theorem it follows that ℋఎ(ܭ ∩

௭ܸ
௧) = 0 for ߥ-a.e. (ݖ, (ݐ ∈ ܺ, which completes the proof of Theorem (4.1.19).  
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Theorem (4.1.20)[238]: Let 0 < ܽ < ܾ < ଵ
ଶ
 be such that ଵ


 and ଵ


 are Pisot numbers, ୪୭ 

୪୭ 
 

is irrational and ݀ + ݀ > 1, then ܪௗೌାௗ್ିଵ((ܥ × (ܥ ∩ (ܸ௫,௬)) = 0 for µ × µ ×
,ݔ) .షೌ.eீߦ ,ݕ ܸ) ∈ ܥ × ܥ ×  .ܩ
Proof. Let ܩ be the set of all 1-dimensional linear subspaces of ℝଶ, and set 

ܧ = ,ݖ)} ܸ) ∈ ܭ × :ܩ ܭ)ௗೌାௗ್ିଵܪ ∩ ௭ܸ) = 0}. 
For each −∞ ≤ ଵݐ < ଶݐ ≤ ∞ set 

௧భ,௧మܩ = {ܸ ∈ :ܩ ܸ = ,ݐ) −1) · ℝ ݐ݅ݓℎ ݐ ∈ ,ଵݐ)  .{(ଶݐ
Given ݇ ∈ ℤ we can apply Theorem (4.1.19) with ߬ = ܽ , in order to get that (ݖ, ܸ) ∈  ܧ
for µ × ,ݖ) .a.e-ீߦ ܸ) ∈ ܭ × ೖశభ,ೖܩ . By doing this for each ݇ ∈ ℤ we get that (ݖ, ܸ) ∈
for µ ܧ × ,ݖ) .a.e-ீߦ ܸ) ∈ ܭ ×  ,ஶ. Now Theorem (4.1.20) follows from the symmetryܩ
of ܭ with respect to the map that takes (ݔ, (ݕ ∈ to (1 ܭ − ,ݔ   .(ݕ
Section (4.2): Versus Exact Overlaps for Self-Similar Measures:  

There has been a rapid development in the field of self-similar Iterated Function 
Systems (IFS) with overlapping construction. Most importantly, Hochman [258] proved 
for any self-similar measure ߥ that we can have dimension drop (that is dimுߥ <
min{1, dimௌ  only if there is a superexponential concentration of cylinders ,({ݒ
Consequently, for a one-parameter family of self-similar measures {ߥఈ}ఈ on ℝ, satisfying 
a certain non-degeneracy condition the Hausdorff dimension of the measure ߥఈ is equal 
to the minimum of its similarity dimension and 1 for all parameters ߙ except for a small 
exceptional set of parameters ܧ. This exceptional set ܧ is so small that its packing 
dimension (and consequently its Hausdorff dimension) is zero. The corresponding 
problem for the singularity versus absolute continuity of self-similar measures was 
treated by Shmerkin and Solomyak [268]. They considered one-parameter families of 
self-similar measures constructed by one-parameter families of homogeneous self-similar 
IFS, also satisfying the non-degeneracy condition of Hochman Theorem. It was proved 
in [268] that for such families {ߥఈ} of self-similar measures if the similarity dimension 
of the measures in the family is greater than 1 then for all but a set of Hausdorff dimension 
zero of parameters ߙ, the measure να is absolute continuous with respect to the Lebesgue 
measure. The results presented imply that in this case it can happen that the set of 
exceptional parameters have packing dimension 1 as opposed to Hochman’s Theorem 
where we remind that the packing dimension of the set of exceptional parameters is equal 
to 0.  

Still, we do not know what causes the drop of dimension or the singularity of a 
selfsimilar measure on the line of similarity dimension greater than 1. In particular it is a 
natural question whether the only reason for the drop of the dimension or singularity of 
self-similar measures having similarity dimension larger than 1 is the "exact overlap". 
More precisely, let {߮}ୀଵ

  be a self-similar IFS and ߥ be a corresponding self-similar 
measure. We say that there is an exact overlap if we can find two distinct ݅ = (݅ଵ, . . . , ݅) 
and ݆ = (݆ଵ, . . . , ݆ℓ) finite words such that 

߶భ ∘···∘ ߶ೖ = ߶భ ∘···∘ ߶ℓ .                                      (17)  
The following two questions have naturally arisen for a long time (e.g. Question 1 below 
appeared as [263, Question 2.6]): 

Question 1: Is it true that a self-similar measure has Hausdorff dimension strictly 
smaller than the minimum of 1 and its similarity dimension only if we have exact 
overlap?  
Question 2: Is it true for a self-similar measure ߥ having similarity dimension 
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greater than one, that ߥ is singular only if there is exact overlap?  
Most of the experts believe that the answer to Question 1 is positive and it has been 
confirmed in some special cases [258]. On the other hand, a result of Nazarov, Peres and 
Shmerkin indicated that the answer to Question 2 should be negative. Namely, they 
constructed in [261] a planar self-affine set having dimension greater than one, such that 
the angle-α projection of its natural measure was singular for a dense ܩఋ set of parameters 
α. However, this was not a family of self-similar measures. Question 2 has not yet been 
answered. 

We consider one-parameter families of homogeneous self-similar measures on the 
line, having similarity dimension greater than 1. We call the set of those parameters for 
which the measure is singular, set of parameters of singularity.  

(a) We point out that the answer to Question 2 above is negative.  
(b) We consider one-parameter families of self-similar measures for which the set of 

parameters of singularity is big in the sense that it is a dense ܩఋ set but in the same 
time the parameter set of singularity is small in the sense that it is a set of Hausdorff 
dimension zero. We call such families antagonistic. We point out that there are 
many antagonistic families. Actually, we show that such antagonistic families are 
dense in a natural collection of one parameter families.  

(c) As a corollary, we obtain that it happens quite frequently that in Shmerk in 
Solomyak Theorem (Theorem (4.2.9)) the exceptional set has packing dimension 
1. (Corollary (4.2.21).)  

(d) We extend the scope of [262, Proposition 8.1] from infinite Bernoulli convolution 
measures to very general one-parameter families of (not necessarily self-similar, 
or self-affine) IFS, and state that the parameter set of singularity is a ܩఋ set 
(Theorems (4.2.11), (4.2.12)). 
We make the observation that the combination of an already existing method of 

Peres, Schlag and Solomyak [262] and a result due to Manning and [259] yields that the 
answer to Question 2 is negative.  

There are two ingredients of our argument:  
(i) The fact that the set of parameters of singularity is a Gஔ set in any reasonable one-

parameter family of self-similar measures on the line.  
(ii) The existence of a one-parameter family of self-similar measures having similarity 

dimension greater than one (for all parameters) with a dense set of parameters of 
singularity. 

It turned out that both of these ingredients have been a vailable for a while in the literature. 
Although in an earlier version of their longer proof for (i), we learned from B. Solomyak 
that (i) has already been proved in [262] in the special case of infinite Bernoulli 
convolutions. Actually, [262] acknowledged that the short and elegant proof of [262] is 
due to Elon Lindenstrauss. We extend the scope of [262] to a more general case. Then 
following the supposition of the anonymous referee we finally got a very general case. 
So, to prove (i), we will present here a more detailed and very general extension of the 
proof of [262].  

On the other hand (ii) was proved in [259]. 
First we introduce the Hausdorff and similarity dimensions of a measure and then 

we present some definitions related to the singularity and absolute continuity of the family 
of measures considered. 

(i) The notion of the Hausdorff and box dimension of a set is well known ([257]).  
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(ii) Hausdorff dimension of a measure: Let ݉ be a measure on ℝௗ. The Hausdorff 
dimension of ݉ is defined by 

 dimு݉ ∶= inf{dimுܣ: (ܣ)݉ > 0, and A is a Borel set}                (18) 
see [257] for an equivalent definition. 

(iii) We will use the following definition of the Packing dimension of a set ܪ ⊂ ℝௗ 
[257]: 

dimܪ = inf{sup


dımതതതതതതത ܧ ܪ : ⊂ ራ ܧ

ஶ

ୀଵ

} ,                               (19) 

where dım  തതതതതതതത stands for the upper box dimension. The most important properties 
of the packing dimension can be found in [257]. 

(iv) Similarity dimension of a self-similar measure: Consider the self-similar IFS on 
the line: ℱ: = :(ݔ)߮} = ݎ · ݔ + }ୀଵݐ

 , where ݎ ∈ (−1,1)\{0}. Further we are 
giventhe probability vector ݓ: = ,ଵݓ) . . . ,  ). Then there exists a unique measureݓ
(ܪ)ߥ satisfying ߥ = ∑ ݓ · ߥ ቀ߮

ିଵ(ܪ)ቁ
ୀଵ . (See [257].) We call ߥ = ℱߥ ,w the 

self-similarmeasure corresponding to ℱ and ݓ. The similarity dimension of ߥ is 
defined by 

dimௌ(ߥℱ , (ݓ : =
∑ ݓ log ݓ


ୀଵ

∑ ݓ log ݎ

ୀଵ

.                                    (20) 

Let 
 ℱఈ: = ቄ߮

ఈ(ݔ) ≔ ఈ,ݎ · ݔ + ݐ
(ఈ)ቅ

ୀଵ


ߙ          , ∈  (21)                         ܣ

be a one-parameter family of self-similar IFS onℝ and let µ be a measure on the symbolic 
space ߑ: = {1, . . . , ݉}ℕ . We write  

߮భ ...
ఈ : = ߮భ

ఈ ∘···∘ ߶
ఈ ఈ,భݎ ݀݊ܽ  ...: = ఈ,భݎ ··· ఈ,ݎ . 

The natural projection ߎఈ: ߑ → ℝ is defined by 

:(݅)ఈߎ  = lim
→ஶ

߮భ…
ఈ (0) =  ೖݐ

(ఈ)ݎఈ,భ ...,ೖషభ

ஶ

ୀଵ

,                       (22) 

where ݎఈ,భ...,ೖషభ: = 1 when ݇ = 1. Let µ be a probability measure on ߑ. We study the 
family of its push forward measures {ߥఈ}ఈ∈: 

(ܪ)ఈߥ ∶= :(ܪ)µ∗(ఈߎ) = µ(ߎఈ
ିଵ(ܪ)),                                (23) 

where ܪ is a Borel subset of ߑ. The elements of the symbolic space ߑ ∶= {1, . . . , ݉}ே  are 
denoted by ݅ = (݅ଵ, ݅ଶ, . . . ). If ݓ: = ,ଵݓ) . . . ,  ) is a probability vector and µ is theݓ
infinite product of ݓ, that is µ = ,ଵݓ} . . . ,  }ே then the corresponding one-parameterݓ
family of self-similar measures defined in (23) is denoted by ൛ߥఈ,௪ൟఈ∈. The set of 
parameters of singularity and the set of parameters of absolute continuity with ܮ-density 
are denoted by 

 ्݅݊݃൫ܨఈ,µ൯: = ߙ} ∈ :ܣ ఈߥ ⊥ ℒܾ݁}.                                    (24) 
and 

ொ(ℱఈݐ݊ࣝ  , µ) ∶= :ߙ} ఈߥ ≪ ℒܾ݁ ݐ݅ݓℎ ܮ ݀݁݊ݍ ܽ ݎ݂ ݕݐ݅ݏ > 1}.     (25) 
Definition (4.2.1)[255]: Using the notation introduced in (21)-(24) we say that the family 
  :ఈ∈ is antagonistic if both of the two conditions below hold{ఈߥ}

dimு ्݅݊݃(ℱఈ , µ) = dimு ቀࣝݐ݊ொ(ℱఈ , µ)ቁ


= 0                      (26) 
and 
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 ्݅݊݃(ℱఈ , µ) ݅ܩ ݁ݏ݊݁݀ ܽ ݏఋ (27)                            .ܣ ݂ ݐ݁ݏܾݑݏ 
Clearly, ्݅݊݃ ⊂ ൫ࣝݐ݊ொ൯


. Our aim is to prove that the angle-ߙ projections of the 

natural measure of the Sierpiński-carpet is an antagonistic family. This implies that in 
Shmerkin-Solomyak’s Theorem, [268] the exceptional set has packing dimension 1. 

Whenever we say that {ߥఈ}ఈ∈ is a one-parameter family of self-similar IFS we 
always mean that{ߥఈ}ఈ∈ is constructed from a pair (ℱఈ , µ) as in (23), for a µ =  ,ேݓ
where ݓ = ,ଵݓ) . . . ,   .) is a probability vectorݓ

We always assume that the one-parameter family of self-similar IFS {ℱఈ }ఈ∈ 
satisfies properties P1-P4 below:  
P1: The parameter domain is a non-empty, proper open interval A.  
P2: 0 < :ݎ = inf

ఈ∈,ஸ
|ఈ,ݎ| ≤ sup

ఈ∈,ஸ
|ఈ,ݎ| = ௫ݎ : < 1.  

P3: ݐ௫
∗ : = sup

ఈ∈,ஸ
ݐ|

(ఈ)| < ∞.  

P4: Both of the functions ߙ ⟼ ݐ
(ఈ) and ߙ ⟼ ఈݎ , ߙ ∈  the closure) ܣ̅ can be extended to ,ܣ

of ܣ) such that these extensions are both continuous. Note that P4 implies P3. It follows 
from properties P2 and P3 that there exists a big ߦ ∈ ℝା such that 

(ఈߥ)ݐݏ  ⊂ ,ߦ−) ,(ߦ ߙ∀ ∈  (28)                                     .ܣ
We always confine ourselves to this interval (−ߦ,  In particular, whenever we write .(ߦ
ܪ  for a setܪ ⊂ ℝ we mean (−ߦ,  It will be our goal to prove that additionally the .ܪ\(ߦ
following properties also hold for some of the families under consideration: 
P5A: ्݅݊݃(ℱఈ , µ) is dense in ܣ.  
P5B: ्݅݊݃(ℱఈ , µ) is a ܩఋ dense subset of ܣ. We will prove below that Properties P5A 
and P5B are equivalent. Our motivating example, where all of these properties hold is as 
follows. 

Our most important example is the family of angle-ߙ projection of the natural 
measure of the usual Sierpiński carpet. We will see that the set of angles of singularity is 
a dense ܩఋ set which has Hausdorff dimension zero and packing dimension 1. First we 
define the Sierpiński carpet.  
Definition (4.2.2)[255]: Let ݐଵ, . . . , ଼ݐ ∈ ℝଶ be the 8 elements of the set {{0,1,2} ×
{0,1,2}\{(1,1)}} in any particular order. The Sierpiński carpet is the attractor of the IFS 

ܵ: = ൜߮(ݔ, :(ݕ =
1
3

,ݔ) (ݕ +
1
3

ൠݐ
ୀଵ

଼

.                                   (29) 

 
Figure 1[255]: The first three approximations of the Sierpiński carpet 

 

Example (4.2.3)[255]: (Motivating example). Let ܵ be the IFS given in (29). Let µ ∶=

ቀଵ
଼

, . . . , ଵ
଼
ቁ

ே
 be the uniform distribution measure on the symbolic space ߑ: =

{1, . . . ,8}ே. Further we write ߎ for the natural projection from ߑ to the attractor ߉. Let 
:ߥ = µ. Let ℓఈ∗ߎ ⊂ ℝଶ  be the line having angle ߙ with the positive half of the ݔ-axis (see 
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Figure 2). Let proj  be the angle-α projection from ℝଶ to the line ℓఈ. For each ߙ, 
identifying ℓఈ  with the ݔ-axis, proj defines a one parameter family of self-similar IFS 
on the ݔ-axis: 

ܵఈ : = ቄ߮
(ఈ)ቅ

ୀଵ

଼
 , 

where ߙ ∈ :ܣ = (0, and ߶ (ߨ
(ఈ)(ݔ) = ݔఈ,ݎ + ݐ

(ఈ)  with ݎఈ, ≡ 1/3 and ݐ
(ఈ) = ݐ ·

,(ߙ)ݏܿ) ݅ For an .((ߙ)݊݅ݏ ∈  .ఈ(݅) as in (22)ߎ we define the natural projection ߑ
Clearly,ߎఈ: = ఈ݆ݎ ∘ :ఈߥ The natural invariant measure for ܵఈ is .ߎ =  .µ∗(ఈߎ) 
Obviously,ߥఈ =  .ߥ∗(ఈ݆ݎ)
 

 
Figure 2[255]: The projected system 

 

The fact that Property P5A holds for the special case in the example was proved in 
[259]. It follows from the proof of Bárány and Rams [256] that property P5A holds also 
for the projected family of the natural measure for most of those self-similar carpets, 
which have dimension greater than one. 
Remark (4.2.16)[255]: (The cardinality of parameters of exact overlaps). It is obvious 
that in the case of the angle-ߙ projections of a general self-similar carpet, exact overlap 
can happen only for countably many parameters. However, this is not true in general. To 
see this, we follow the ideas of ܥ௦. Sándor [265] and construct the one parameter family 

of self-similar IFS ቄ ܵ
(௨)ቅ

ୀଵ

ଷ
 , ݑ ∈ ܷ, where ܵ

(௨): = ߣ
(௨)(ݔ + 1) and (ߣଵ

(௨) , ଶߣ
(௨) , ଷߣ

(௨)) =

( ௨
ଵାఌ

, ,ݑ ݑ + :ܷ further,(ߝ = ଵ
ଷ

+ ఌ
ଷ

, ଵ
ଷ

+ ߟ − ߟ for sufficiently small {ߝ > 0 and 0 < ߝ <
ଷ
ସ

ݑ Then for all .ߟ ∈ ܷ we have:  

(a) there is an exact overlap, namely: ଵܵଷଶ
(௨) ≡ ܵଶଵଷ

(௨) ,  
(b) the similarity dimension of the attractor is greater than 1,  
(c) the Hausdorff dimension of the attractor is smaller than 1. 

We collect those theorems. The theorems below are more general as stated here. 
We confine ourselves to the generality that matters for us. 
Theorem (4.2.5)[255]: [258] Given the one-parameter family {ℱఈ}{ఈ∈} in the form as in 
(21). For ݅, ݆ ∈ :ߑ = {1, . . . , ݉} we define 

∆,(ߙ): = ߮
ఈ(0) − ߮

ఈ(0) and ∆(ߙ): = min
,∈∑  

൛∆,(ߙ)ൟ.            (30) 

Moreover, we define the exceptional set of parameters ܧ ⊂   ܣ
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ܧ  ∶= ሩ ራ ሩ ∆
ିଵ(−ߝ , (ߝ

வே

ஶ

ேୀଵఢவ

.                             (31) 

Then for an ߙ ∈ ܧ  and for every probability vector w the Hausdorff dimension of the 
corresponding self-similar measure ߥఈ,௪ is  

,ߙߥ)ܪ݉݅݀  (ݓ = min{1, ,ߙߥ)ܵ݉݅݀  (32)                              {(ݓ
The following Condition will also be important:  
Definition (4.2.6)[255]: We say that for an ߙ ∈ ,ܣ ℱఈ satisfies Condition H if 

ߩ∃  = (ߙ)ߩ > 0, ∃݊ = ݊(ߙ) ↑ ∞, ∆ೖ
(ߙ) > ೖߩ .                  (33) 

Observe that ߙ ∈   . if and only if ℱఈ satisfies Condition Hܧ
Definition (4.2.7)[255]: We say that the Non-Degeneracy Condition holds if 

 ∀݅, ݆ ∈ ,ߑ ݅ ≠ ݆, ߙ∃ ∈ .ݏ ܣ .ݐ (݅)ఈߎ ≠  ఈ(݆).                        (34)ߎ
Theorem (4.2.8)[255]: [258] Assume that the Non-Degeneracy Condition holds and the 
following functions are real analytic: 

ߙ  ⟼ ,ఈ,ݎ ݅ = 1, . . . , ݉ and ߙ ⟼ ݐ
(ఈ) .                             (35) 

Then 
dimு ܧ = dim ܧ = 0.                                          (36) 

Theorem (4.2.9)[255]: [268] We assume that the conditions of Theorem (4.2.8) hold. 
Here we confine ourselves to homogeneous self-similar IFS on the line of the form 

ℱఈ : = ቄ߮
ఈ(ݔ) ≔ ఈݎ · ݔ + ݐ

(ఈ)ቅ
ୀଵ


, ߙ ∈  (37)                           .ܣ

Then there exists an exceptional set ܧ ⊂ with dimு ܣ ܧ = 0 such that for any ߙ ∈  ܧ
and for any probability vector ݓ = ,ଵݓ) . . . , (ఈ,௪ߥ)) with dimௌݓ > 1 we have 

ఈ,௪ߥ ≪ ℒܾ݁ with ܮ  density, for some ݍ > 1 
Lídia Torma realized in her Master’s Thesis [269] that the proof of Bárány and Rams 
[256], related to the projections of general self-similar carpets, works in a much more 
general setup, without any essential change.  
Theorem (4.2.10)[255]: (Extended version of Bárány-Rams Theorem). Given an ܽ ∈
ℝ\{0}. Let ࣮ = {݊ · ܽ}∈ be the corresponding lattice on ℝ. Moreover, given the self-
similar IFS on the line of the form:  

 ܵ ∶= ൜ ܵ(ݔ): =
1
ܮ · ݔ + ൠݐ

ୀଵ



 ,                                         (38) 

where ܮ ∈ ℕ, ܮ ≥ 2 and ݐ ∈ ࣮ for all ݅ ∈ {1, . . . , ݉}. We are also given a probability 
vector ݓ = ,ଵݓ) . . . , ݓ ) with rational weightsݓ = ݍ/ ,  , ݍ ∈ ܰ\{0} satisfying 

ܮ ∤ ܳ: = ,ଵݍ}݈݉ܿ . . . , ,{ݍ ݏ = : dimௌߥ =
− ∑ ݓ log ݓ


ୀଵ

log ܮ > 1,            (39) 

where ߥ is the self-similar measure corresponding to the weights ݓ. That is ߥ = ∑ ݓ

ୀଵ ·

ߥ ∘ ܵ
ିଵ . Then we have  

dimு ݒ < 1.                                                 (40) 
As we have already mentioned the following result appeared as [262] in the special case 
when the family of self-similar measures is the Bernoulli convolution measures. We 
extend the original proof of [262] to the following much more general situation. 
Theorem (4.2.11)[255]: Let ℝ ⊂ ℝௗ be a non-empty bounded open set. Let ܷ  be a metric 
space (the parameter domain). Let ߣ be a finite Radon measure with (ߣ)ݐݏ ⊂ ℝ (the 
reference measure). For every ߙ we are given a probability Radon measure ߥఈ  such that 
(ఈߥ)ݐݏ ⊂ ℝ. Let  
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ோܥ  ≔ {݂: ܴ → [0,1]: ݂ is continuous}.                             (41) 
For every ܨ ∈ :ߔ ோ we defineܥ ܷ → ܴ  

:(ߙ)ߔ = න (ݔ)ఈߥ݀(ݔ)݂
 

ோ
.                                          (42) 

Finally, we define 
्݅݊݃ఒ({ߥఈ}ఈ∈): = ߙ} ∈ ܷ: ఈߥ ⊥   (43)                              .{ߣ

If ߙ ⟼   .ఋ setܩ is a(ఈ∈{ఈߥ})is lower semi-continuous then ्݅݊݃ఒ (ߙ)ߔ
Proof. Recall that ߥఈ is a probability measure for all ߙ. Note that without loss of 
generality we may assume that ߣ is also a probability measure on ܴ. For every ߝ > 0 we 
define 

:ఌܣ = ൜݂ ∈ ோܥ : න (ݔ)ߣ݀(ݔ)݂ < ൠߝ . 

We follow the proof of [262] and a suggestion of an unknown referee. First we fix an 
arbitrary sequence ߝ ↓ 0 and then define 

ܵୄ: =  ሩ ራ ߙ} ∈ (ߙ)ߔ :ܷ > 1 − {ߝ
∈ഄ

ஶ

ୀଵ

. 

Since we assumed that ߙ ⟼ ߙ}is lower semi-continuous, the set (ߙ)ߔ ∈ ܷ: (ߙ)ߔ >
1 −  ఋ set. Hence it is enough to prove thatܩ } is open. That is ܵୄ is aߝ

 ्݅݊݃ఒ({ߥఈ}ఈ∈) = ܵୄ.                                         (44) 
First we prove that ्݅݊݃ఒ({ߥఈ}ఈ∈) ⊆ ܵୄ. Let ߚ ∈ ्݅݊݃ఒ({ߥఈ}ఈ∈). Fix an arbitrary 
ߝ > 0. Then by definition we can find a ܶ ⊂ ܴ such that 

(ܶ)ఉߥ  = 1, (ܶ)ߣ = 0.                                      (45) 
Recall that both ߣ and ߥఉ are Radon probability measures. So we can choose a compact 
ఌܥ ⊂ ܶ such that 

(ఌܥ)ఉߥ  > 1 − ,ߝ (ఌܥ)ߣ = 0.                                     (46) 
Using that ߣ is a Radon measure, we can choose an open set ఌܸ ⊂ ℝ such that ܥఌ ⊂  ఌܸ  
and ߣ( ఌܸ) < We can choose an ఌ݂ .ߝ ∈ )ݐݏ ோ such thatܥ ఌ݂) ⊂ ఌܸ  and ఌ݂|ܥఌ ≡ 1 (see 
[264]). Then ∫ ఌ݂݀(ݔ)ߣ ≤ )ߣ ఌܸ) < that is ఌ݂) ߝ ∈ ∫ ఌ) andܣ ఌ݂(ݔ)݀ߥఉ(ݔ) ≥ (ఌܥ)ఉߥ >
1 − ߝ Since .ߝ > 0 was arbitrary we obtain that ߚ ∈ ܵୄ. Now we prove that ܵୄ ⊆
्݅݊݃ఒ{ߥఈ}ఈ∈. Let ߚ ∈ ܵୄ. Then for every ݊ there existsan ݂ ∈  ோ such thatܥ

 න ݂(ݔ)݀ߥఉ(ݔ) > 1 − ߝ  and න ݂݀(ݔ)ߣ < ߝ .                     (47) 

Let ܥఉ: = ఉܥ ఉ is compact andܥ ,Clearly .(ఉߥ)ݐݏ ⊂ ܴ. We define ݃ : = ݂1ഁ , ܽ݊݀ ݃: =
1ഁ . Clearly, 0 ≤ ݃(ݔ) ≤ ݔ for all (ݔ)݃ ∈  ఉ andܥ

 න (ݔ)ఉߥ݀(ݔ)݃ = 1, න ݃(ݔ)݀ߥఉ(ݔ) > 1 −  ܽ݊݀ නߝ ݃݀(ݔ)ߣ <  .ߝ

Hence, 

݃
భ(ఔഁ)
ሱ⎯⎯⎯ሮ  ݃. 

Thus, we can select a subsequence ݃ೖ such that ݃ೖ (ݔ) → ݔ ఉ- almost allߥ for (ݔ)݃ ∈
 ఉ. Letܥ

:ఉܦ = ݔ} ∈ ఉ: ݃ೖܥ (ݔ) →  .{(ݔ)݃
Then on the one hand we have 

ఉ൯ܦఉ൫ߥ  = 1.                                                       (48) 
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On the other hand using the Lebesgue Dominated Convergence Theorem: 

(ఉܦ)ߣ  = න (ݔ)ߣ݀(ݔ)݃
 

ഁ

= න lim
→ஶ

݃ೖ
(ݔ) (ݔ)ߣ݀

 

ഁ

 

= lim
→ஶ

න ݃ೖ (ݔ)ߣ݀(ݔ)
 

ഁ

≤ lim
→ஶ

ೖߝ = 0.                         (49) 

Putting together (48) and (49) we obtain that ߚ ∈ ्݅݊݃ఒ({ߥఈ}ఈ∈).  
Theorem (4.2.12)[255]: We consider one-parameter families of measures ߥఈ on ℝௗ for 
some ݀ ≥ 1, which are constructed as follows: The parameter space ܷ is a non-empty 
compact metric space. We are given a continuous mapping 

:ߎ  ܷ × Ω → ܴ ⊂ Rୢ,                                             (50) 
where ܴ is an open ball in ܴௗ and Ω is a compact metric space (in our applications ܷ is 
a compact interval, Ω =  ఈ is the natural projection corresponding to the parameterߎ and ߑ
 Moreover let µ be a probability Radon measure on Ω. (In our applications µ is .(ߙ
Bernoulli measure on ߑ.) For every ߙ ∈ ܷ we define 

:ఈߥ  =  µ.                                                    (51)∗(ఈߎ)
Clearly, ߥఈ is a Radon measure whose support is contained in ܴ . Finally let ߣ be a Radon 
(reference) measure whose support is also contained in ܴ. (In our applications ߣ is the 
Lebesgue measure Lebd restricted to ܴ.) 

Then the set of parameters of singularity 
 ्݅݊݃ఒ(ߎఈ , µ): = ߙ} ∈ ܷ: ఈߥ ⊥  (52)                                {ߣ

is a ܩఋ set. 
Proof. This theorem immediately follows from Theorem (4.2.9) if we prove that for every 
݂ ∈ :߰ (·) is continuous. To see this we setߔ ோ the functionܥ ܷ × Ω → ܴ, 

,ߙ)߰ ߱) = ,((߱)ఈߎ)݂ :(ߙ)ߔ ℎ݁݊ݐ = න (ݔ)ఈߥ݀(ݔ)݂ = න ,ߙ)߰ ߱)݀µ(߱) , 

where the last equality follows from the change of variables formula. By compactness, ߰  
is uniformly continuous. Hence for every ߝ > 0 we can choose ߜ > 0 such that 
whenever ݀݅ߙ))ݐݏଵ, ߱), ,ଶߙ) ߱)) < ,ଵߙ) ߰| then ߜ ߱) − ,ଶߙ)߰ ߱)| <  where ,ߝ
,ଵߙ)൫ݐݏ݅݀ ߱), ,ଶߙ) ߱)൯ ≔ max{݀݅ݐݏ(ߙଵ, ,(ଶߙ ,Ω(߱ଵݐݏ݅݀ ߱ଶ)}. Using that µ is a 
probability measure, we obtain that |ߔ(ߙଵ) − |(ଶߙ)ߔ < ,ଵߙ)ݐݏ݅݀ whenever ߝ (ଶߙ <
  .ߜ
Corollary (4.2.13)[255]: Using the notation and assuming our Principal Assumption we 
obtain that the set of parameters of singularity ्݅݊݃(ℱఈ , µ) is a ܩఋ set. The proof is 
obvious since our Principal Assumptions imply that the conditions of Theorem (4.2.12) 
hold. To derive another corollary we need the following fact. It is well known, but we 
could not look it up in the literature, therefore we include its proof here. 
Fact (4.2.14)[255]: Let ܪ ⊂ ℝௗ be a ܩఋ set which is not a nowhere dense set. Then 
dim ܪ = ݀.  
Proof. Since ܪ is not a nowhere dense set, there exist a ball ܤ such that ܤ ⊂  ഥ. That isܪ
ܸ: = ܤ ∩  that is by Banach’s Theorem ܸ is not a set of first ,ܤ ఋ set inܩ is a dense ܪ
category. So, if ܸ ⊂∪ୀଵ

ஶ ܧ  then there exists an ݅ such thatܧ  is not nowhere dense in ܤ. 
That is there exists a ball ܤ ⊂ ܤ such that ܤ ⊂ . Then dimܧ ܧ = ݀. Hence by (52) 
we have dim ܪ ≥ dim ܸ = ݀. On the other hand, dim ܪ ≤ ݀ always holds. Applying 
this for ्݅݊݃(ℱఈ , µ) we obtain that 
Corollary (4.2.15)[255]: Under the conditions of Theorem (4.2.6), for the set of 



165 

parameters of singularity ्݅݊݃(ℱఈ , µ) the following holds:  
(i) Either ्݅݊݃(ℱఈ , µ) is nowhere dense or  
(ii) dim(्݅݊݃(ℱఈ , µ)) = ݀.  

Remark (4.2.16)[255]: Let µ be a compactly supported Borel measure on ℝଶ with 
dimு ߤ > 1. Let ߥఈ: =  µ. Then Theorem (4.2.12) immediately implies that∗(ఈ݆ݎ)
either the singularity set 

्݅݊݃ℒ{ߥఈ}ఈ∈[,గ) = ߙ} ∈ [0, :(ߨ ఈߥ ⊥ ℒܾ݁ଵ} 
or its complement is big in topological sense. More precisely,  

(a) Either ्݅݊݃ℒ൫{ߥఈ}ఈ∈[,గ)൯ is a residual subset of [0,  or (ߨ

(b)  ቀ्݅݊݃ℒ൫{ߥఈ}ఈ∈[,గ)൯ቁ

 contains an interval.  

We remind that a set is called residual if is its complement is a set of first category and 
residual sets are considered as "big" in topological sense. In contrast we recall that by 
Kaufman’s Theorem (see e.g. [260]) we have  

ఈߥ  ≪ ℒܾ݁ଵ for ℒܾ݁ଵ almost all ߙ ∈ [0,  (53)                            .(ߨ
The following theorem shows that there are reasons other than exact overlaps for the 
singularity of self-similar measures having similarity dimension greater than one.  
Theorem (4.2.17)[255]: Using the notation of our Example (4.2.3) (angle-ߙ projections 
of the Sierpiński carpet), we obtain that 

 ्݅݊݃(ܵఈ , µ) = ߙ} ∈ ܣ ∶ ఈߥ ⊥ ℒܾ݁}݅ܩ ݁ݏ݊݁݀ ܽ ݏఋ  (54)                ݐ݁ݏ 
and 

dimு(ࣝݐ݊ொ(ܵఈ , µ)) = 0.                                     (55) 
That is (ܵఈ , µ) is antagonistic in the sense of Definition (4.2.1). 
Proof. The first part follows from Corollary (4.2.13) and from the fact that property P5A 
holds for the projections of the Sierpiński-carpet. This was proved in [259]. Now we turn 
to the proof of the second part of the Theorem. This assertion would immediately follow 
from Shmerkin and Solomyak [268, Theorem A] if we could guarantee that the Non-
Degeneracy Condition holds. Unfortunately in this case it does not hold. Still it is possible 
to gain the same conclusion not from the assertion of [268] but from its proof, combined 
with [268] as it was explained by P. Shmerkin [266]. For completeness we point out the 
only two steps of the original proof of [268] where we have to make slight modifications. 
Let P be the set of probability Borel measures on the line. We write 

:ܦ = µ ∈ ܲ: |µො(ߦ)| = µܱ(|ߦ|ିఙ)  for some ߪ > 0.                    (56) 
The elements of ܦ are the probability measures on the line with power Fourier-decay. 

Let ቄ߶
(ఈ)ቅ

ୀଵ

଼
 be the IFS defined in Example (4.2.3). Now we write the projected self-

similar natural measure ߥఈ of the Sierpiński carpet in the infinite convolution form. That 
is we consider ߥఈ as the distribution of the following infinite random sum: 

ఈߥ ∼  ൬
1
3൰

ିଵ

ܣ

ஶ

ୀଵ

, 

where ܣ are independent Bernoulli random variables with ܲ(ܣ = ߶
(ఈ)(0)) =

1/8. For ݇ ≥ 2 integers we decompose the random sum on the right hand side as 

ఈߥ ∼  ൬
1
3

൰
ିଵ

ܣ

ஶ

ୀଵ
∤

 +  ൬
1
3

൰
ିଵ

ܣ

ஶ

ୀଵ
|

. 
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Writing ߟఈ,
,  and ߟఈ,

ᇱᇱ  for the distribution of the first and the second random sum, 
respectively, we get ߥఈ = ఈ,ߟ

ᇱ ∗ ఈ,ߟ
ᇱᇱ . We show that with appropriately chosen k we can 

apply [268] to ߟఈ,
ᇱ  and ߟఈ,

ᇱᇱ  which would conclude the proof. To this end it is enough to 
show that on the one hand  

dimு ఈ,ߟ
ᇱ = 1 for every ݇ large enough                           (57) 

and on the other hand we have 
ఈ,ߟ 

ᇱᇱ ∈ ,ܦ ∀݇ ≥ 2.                                            (58)  
This is the first place where we depart from the proof of [268]. According to [267] if 
dimௌ ఈ,ߟ

ᇱ > 1 (which holds if ݇ is big enough), then there exists a countable set ܧ
ᇱ  such 

that dimு ఈ,ߟ
ᇱ = 1 for all ߙ ∉ ܧ

ᇱ . Note that the original proof at this point relies on the 
non-degeneracy condition, what we do not use here. 

To get the Fourier decay of ߟఈ,
ᇱᇱ  we follow the proof of [268]. In our special case, 

we may choose the function ݂ in the middle in [268] as 

(ߙ)݂ =
ఈ݆ݎ ቀ2

3 , 0ቁ − ఈ݆ݎ ቀ1
3 , 2

3ቁ

ఈ݆ݎ ቀ0, 2
3ቁ − ఈ݆ݎ ቀ1

3 , 2
3ቁ

= (ߙ)݊ܽݐ 2 − 1. 

Clearly ݂ is non-constant and ݂ିଵ preserves the Hausdorff dimension. Hence by [268] 
there is a set ܧ

ᇱᇱ of Hausdorff dimension 0 such that ߟఈ,
ᇱᇱ  has power Fourier-decay for all 

ߙ ∉ ܧ
ᇱᇱ. Altogether, setting the 0-dimensional exceptional set of parameters ܧ =

⋃ ܧ
ᇱஶ

ୀଶ ⋃ ܧ
ᇱᇱ, by [268] we have that ߥఈ is absolutely continuous with an ܮ density for 

some ݍ > 1 for all ߙ ∉  .exactly as in the proof of [268] with no further modifications ܧ
In Theorem (4.2.17) we have proved that the family of the angle-ߙ projection of 

the Sierpiński carpet is antagonistic in the sense of Definition (4.2.1). We prove that there 
are many antagonistic families.  

First of all we remark that the Non-Degeneracy Condition does not hold for all 
families. For example let 

ℱఈ: = ൜
1
2 · ݔ + ݐ

(ఈ)ൠ
ୀଵ



 , ݉ ≥ 2.                                  (59) 

Then for every ߙ, (݅)ఈߎ = ݅ ఈ(݆) forߎ = (1,2, . . . ,2, . . . ) and ݆ = (2,1, . . . ,1, . . . ). So, the 
non-degeneracy condition does not hold. However, if the contraction ratio is the same 
ߣ ∈ (0, ଵ

ଶ
) for all maps of all IFS in the family (the family is equi-homogeneous) and the 

translations are independent real-analytic functions then the Non-Degeneracy Condition 
holds:  
Proposition (4.2.18)[255]: Given 

 ℱఈ: = ቄߣ · ݔ + ݐ
(ఈ)ቅ

ୀଵ


 , ݉ ≥ 2, ߙ ∈  (60)                            ,ܣ

where  
(a) ߣ ∈ (0, ଵ

ଶ
) and 

(b) For ℓ = 1, . . . , ݉, the functions ߙ ⟼ ℓݐ
(ఈ) = ∑ ܽℓ, · ஶߙ

ୀ , are independent real 
analytic functions: 

ߙ∀   ∈ ,ܣ  ߛ · ݐ
(ఈ)



ୀଵ

≡ 0 ݅ff ߛଵ = ··· = ߛ  = 0.                       (61) 

Then {ܨఈ}ఈ∈ satisfies the Non-Degeneracy Condition.  
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Proof. Fix two distinct ݅, ݆ ∈ For every ℓ .ߑ = 1, . . . , ݉ , define ݍℓ: = ,݅)ℓݍ ݆) by 
:ℓݍ  =  ିଵߣ

{:ೖୀℓ}

−  ିଵߣ

{:ೖୀℓ}

.                                   (62) 

Then 

(݅)ఈߎ  − (݆)ఈߎ =  ߙ  · ܾ

ஶ

ୀ

,                                   (63) 

where 

 ܾ: =  ܽℓ, · ℓݍ



ℓୀଵ

                                              (64) 

for all ݇ ∈ ℕା,where ℕା: = ℕ\{0}. Observe that for ܾ: = (ܾ, ܾଵ, . . . ) and ∀ℓ = 1, . . . , ݉ 
for ܽℓ: = (ܽℓ,, ܽℓ,ଵ, ܽℓ,ଶ, . . . ܽℓ,, . . . ) we have that (64) can be written as 

 ℓݍ · ܽℓ



ℓୀଵ

= ܾ.                                               (65) 

Assume that 
ߙ∀  ∈ ,ܣ (݅)ఈߎ − (݆)ఈߎ ≡ 0.                                  (66) 

To complete the proof it is enough to verify that ݅ = ݆. Using (63), we obtain from (66) 
that ܾ = 0 for all ݇ ∈ ℕା. Note that (61) states that the vectors{ܽℓ}ℓୀଵ

  are independent. 
So, from ܾ = 0 and from (65) we get that ݍଵ =··· = ݍ = 0. This and ߣ ∈ ቀ0, ଵ

ଶ
ቁ implies 

that ݅ = ݆.  
Here we prove the following assertion: The collection of one-parameter families 

of IFS and self-similar measures are dense in the collection of equi-homogeneous IFS 
having contraction ratio 1/ܮ) ܮ ∈ ℕା) equipped with invariant measures with similarity 
dimension greater than one.  
Definition (4.2.19)[255]: First we consider collections of equi-homogeneous self-similar 
IFS having at least 4 functions. 

(i): Let ृ be the collection of all pairs (ℱఈ , µ) satisfying the conditions below:  
• {ℱఈ}ఈ∈ is of the form:  

 ℱఈ: = ൜߮
(ఈ)(ݔ): =

1
ܮ

· ݔ + ݐ
(ఈ)ൠ

ୀଵ



, ߙ ∈  (67)                            ,ܣ

where ݉ ≥ ܣ ,4 ⊂ ℝ is a proper interval (ܣ is compact) and  
ܮ  ∈ ℕ, 3 ≤ ܮ ≤ ݉ − 1.                                            (68) 

Moreover, the functions ߙ ⟼ ℓݐ
ఈ are continuous on ܣ for all ℓ = 1, . . . , ݉. 

• Let µ be an infinite product measure µ: = ,ଵݓ) . . . , :ߑ )ே onݓ = {1, . . . , ݉}ே satisfying: 

:ݏ = −
∑ ݓ log ݓ


ୀଵ

log ܮ > 1,                                      (69) 

(ii): Now we define a rational coefficient sub-collection ृ, ⊂ ृ satisfying a 
non-resonance like condition (70) below:  
ߙ • ⟼ ݐ

(ఈ) are polynomials of rational coefficients. We assume that ቄݐ
(ఈ)ቅ

ୀଵ


 are 

independent, that is (59) holds. Moreover,  
• The weights ݓ  are rational: {ݓ}ୀଵ

 , ݓ = ݎ , withݍ/ݎ , ݍ ∈ ℕ\{0} satisfy-ing: 
ܮ  ∤ ,ଵݍ}݈݉ܿ . . . ,  },                                           (70)ݍ

where lcm is the least common multiple. Let ߥఈ: =  .µ∗(ఈߎ)
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Proposition (4.2.20)[255]: 
(a) All elements {ߥఈ} of ृ, are antagonistic.  
(b) ृ , is dense in ृ  in the sup norm.  

Proof. (a) It follows from Proposition (4.2.18) that we can apply Shmerkin-Solomyak 
Theorem (Theorem (4.2.9)). This yield that ࣝݐ݊ொ (defined in (24)) satisfies 

dimு ቀࣝݐ݊ொ(ℱఈ , µ)ቁ


= 0. On the other hand, for every rational parameter ߙ, (ℱఈ , µ) 
satisfies the conditions of Theorem (4.2.9). So, for every ߙ ∈ ܳ we have dimு ఈݒ < 1. 
Using this and Corollary (4.2.13) we get that ्݅݊݃(ℱఈ , µ) is a dense ܩఋ set. So, {ߥ}ఈ∈ 
is antagonistic.  

(b) Let (ℱ෨ఈ, µ) ∈ ृ  , with  ℱ෨ఈ  = ቄ߮
(ఈ)(ݔ): = ଵ


· ݔ + ݐ̃

(ఈ)ቅ
ୀଵ


 ande µ =

,ଵݓ) . . . , ߝ )ே. Fix anݓ > 0. We can find independent polynomials ߙ ⟼ ݐ
(ఈ)݅ =

1, . . . , ݉ of rational coefficients such that ቛ ̃ݐ
(ఈ) − ݐ

(ఈ)ቛ < ߙ for all ߝ ∈ ݅ and ܣ =
1, . . . , ݉. Moreover, wecan find a product measure µ = ,ଵݓ) . . . , ݓ )ே such that forݓ =
,ଵݓ) . . . , ݓ‖ ) we haveݓ − ‖ݓ < ݓ has rational coefficients ݓ and ߝ = ݍ/  satisfying 
(70).  
Corollary (4.2.21)[255]: Let (ℱఈ , µ) ∈ ℱ, Then 

dim(्݅݊݃(ℱఈ , µ)) = 1.                                           (71) 
Section (4.3): Singular Projections and Discrete Slices: 

For ܴ be a 2 × 2 rotation matrix, with ܴ ≠ ݊ for all ݀ܫ ≥ 1, and let ݎ ∈ (0,1). 
Consider a homogeneous IFS on ℝଶ 

{߮(ݔ) = ݔܴݎ + ܽ}∈ூ , 
with the strong separation condition (SSC), and a self-similar measure 

ߤ =   
∈ூ

 ⋅ ߮ߤ. 

It is among the most basic planar self-similar measures. Hence it is a natural question in 
fractal geometry to study the dimension and continuity of the projections { ௨ܲߤ}௨∈ௌ and 
slices 

ቄ൛ߤ௨,௫ൟ௫∈ℝమ : ݑ ∈ ܵቅ. 
Here ܵ is the unit circle of ℝଶ, ௨ܲ is the orthogonal projection onto the line spanned by ݑ, 
and ൛ߤ௨,௫ൟ௫∈ℝమ  is the disintegration of ߤ with respect to ௨ܲ

ିଵ(ℬ), where ℬ is the Borel ߪ-
algebra of ℝଶ. A more elaborate description of these disintegrations is given. Note that 
the atoms of ௨ܲ

ିଵ(ℬ) are lines perpendicular to span {ݑ}. 
Dimension wise, the behaviour of the projections is as regular as possible. Indeed, 

Hochman and Shmerkin [279] have proven that ௨ܲߤ is exact dimensional, with 
dim ௨ܲߤ = min  {1, dim  ,{ߤ

for each ݑ ∈ ܵ. A version of this, for self-similar sets with dense rotations, was first 
proven by Peres and Shmerkin [286]. Considering the continuity of the projections, 
Shmerkin and Solomyak [288] have shown, assuming dim ߤ > 1, that the set 

ܧ = ൛ݑ ∈ ܵ: ௨ܲߤ is singular ൟ 
has zero Hausdorff dimension. 

We discuss the concept of dimension conservation and the dimension of slices. A 
Borel probability measure ߥ on ℝଶ is said to be dimension conserving (DC), with respect 
to the projection ௨ܲ , if 
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dimு ߥ = dimு ௨ܲߥ + dimு ݔ .a.e-ߥ ௨,௫ forߥ ∈ ℝଶ, 
where dimு stands for Hausdorff dimension. It always holds that ߥ is DC with respect to 

௨ܲ for almost every ݑ ∈ ܵ. This follows from results, valid for general measures, 
regarding the typical dimension of projections (see [280]) and slices (see [282]). Falconer 
and Jin [275] have shown that ߥ is DC, with respect to ௨ܲ for all ݑ ∈ ܵ, whenever ߥ is 
self-similar with a finite rotation group. An analogous statement, for self-similar sets with 
the SSC, was first proven by Furstenberg [278]. Another related result for sets is due to 
Falconer and Jin [276]. They showed that if ܭ ⊂ ℝଶ is self-similar, with dim ܭ > 1 and 
a dense rotation group, then for every ߳ > 0 there exists ఢܰ ⊂ ܵ, with dimு  ܰ ఢ = 0, such 
that for ݑ ∈ ܵ ∖ ఢܰ  the set 

ݔ} ∈ span {ݑ}: dimு (ܭ ∩ ௨ܲ
ିଵ{ݔ}) > dim ܭ − 1 − ߳} 

has positive length. 
Taking these results into account, it is natural to ask whether the sets ܧ, defined 

above, and 
ܨ = ݑ} ∈ ܵ:  ,{is not DC with respect to ௨ܲ ߤ

must be empty whenever the dimension of ߤ exceeds 1. A version, for self-similar sets, 
of this folklore question regarding ܧ is asked in Section 4 of [271]. We show that ܧ and 
 are not necessarily empty, and in fact can both be topologically large. The following ܨ
theorem is our main result. Recall that a measure ߥ is said to be discrete if it is supported 
on a countable set. 
Theorem (4.3.1)[270]: There exist ݎ ∈ (0,1), a 2 × 2 rotation matrix ܴ  with ܴ ≠ Id for 
all ݊ ≥ 1, and a homogeneous planar self-similar IFS 

{߮(ݔ) = ݔܴݎ + ܽ}∈ூ 
with the SSC, such that the self-similar measure ߤ = ∑∈ூ ଵି|ܫ|  ⋅ ߮ߤ satisfies dim ߤ >
1, and each of the sets 

൛ݑ ∈ ܵ: ௨ܲߤ is singular ൟ                                                 (72) 
And 

൛ݑ ∈ ܵ: ݔ .a.e-ߤ ௨,௫ is discrete forߤ ∈ ℝଶ}                           (73) 
contains a dense ܩఋ subset of ܵ. 

If ߥ is a discrete measure on ℝଶ then clearly dim ߥ = 0, hence we get the following 
corollary. 
Corollary (4.3.2)[270]: Let ߤ be the self-similar measure from Theorem (4.3.1), then the 
set 

ݑ} ∈ ܵ:  {with respect to ௨ܲ ܥܦ is not ߤ
contains a dense ܩఋ subset of ܵ. 

Theorem (4.3.1) is related to an example obtained by Nazarov, Peres and Shmerkin 
[285]. They have presented a planar self-affine measure ߥ, with the SSC and having 
dimension greater than 1, such that the set of ݑ ∈ ܵ for which ௨ܲߥ is singular contains a 
 ఋ subset. We do not pursue this, but our argument can probably be used for showingܩ
that, for a residual set of directions ݑ ∈ ܵ, the slices ൛ߥ௨,௫ൟ௫∈ℝమ  are ߥ-typically discrete. 
Also related to Theorem (4.3.1), by Simon and Vágó [289], in which certain one-
parameter families of self-similar measures ߥఈ on the line are constructed. For these 
families it holds that the similarity dimension of ߥఈ is greater than 1 for every ߙ, but the 
set of parameters for which ߥఈ is singular is topologically large. 

In our construction of ߤ the rotational part ܴݎ, of the maps in the IFS, comes from 
a reciprocal of a complex Pisot number. While dealing with parametric families of 
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measures, Pisot numbers have been used before, in several situations, in order to 
demonstrate the existence of exceptional parameters for which the corresponding 
measures are singular. This was first done by Erdös [274], who proved that the Bernoulli 
convolution corresponding to ߣ, i.e. the distribution of the random sum ∑  ± ߣ , is 
singular whenever ିߣଵ ∈ (1,2) is Pisot. The example from [285], mentioned above, also 
utilizes real Pisot numbers. In [290], complex Pisot numbers are used in order to obtain 
examples of singular complex Bernoulli convolutions. 

As a by-product of our construction, we obtain information on the Hausdorff 
measure of typical slices of self-similar sets at the critical dimension. Let ܭ be a planar 
self-similar set with the SSC, and denote by ܕ the Haar measure of ܵ. Write ݏ for the 
Hausdorff dimension of ܭ, and assume ݏ > 1. For ݐ ≥ 0 denote by ℋ௧ the ݐ-dimensional 
Hausdorff measure. Given ݑ ∈ ܵ and ݔ ∈ ܭ ௨,௫ for the sliceܭ write ܭ ∩ ݔ) + span {ݑ}). 
Since 0 < ℋ௦(ܭ) < ∞, the Hausdorff dimension of ܭ௨,௫ is equal to ݏ − 1, with finite 
ℋ௦ିଵ-measure, for ℋ௦ × ,ݔ) .a.e-ܕ (ݑ ∈ ܭ × ܵ (see Theorem 10.11 in [284]). However, 
it was not known whether the set 

ܳ = ൛(ݔ, (ݑ ∈ ܭ × ܵ: ℋ௦ିଵ൫ܭ௨,௫൯ > 0ൟ 
must have positive ℋ௦ × m-measure. In Corollary 2.3 from [287] the author has shown 
that if this holds, and ܭ has dense rotations, then ௨ܲ(ℋ௦|) is absolutely continuous for 
all ݑ ∈ ܵ. In our example from Theorem (4.3.1) we shall have ߤ = ܥ ⋅ ℋ௦|, where ܥ >
0 is a normalizing constant. Hence we obtain the following corollary. 
Corollary (4.3.3)[270]: Let {߮}∈ூ be the IFS constructed in Theorem (4.3.1). Denote 
by ܭ its attractor, and write ݏ for the Hausdorff dimension of ܭ. Then ݏ > 1 and, 

ℋ௦ × ,ݔ)൛ܕ (ݑ ∈ ܭ × ܵ: ℋ௦ିଵ൫ܭ௨,௫൯ > 0ൟ = 0. 
It is interesting to note that, in contrast with Corollary (4.3.3), if ܭ ⊂ ℝ is self-similar, 
with the SSC, finite rotation group and dimension ݏ greater than 2݉, then ℋ௦ି(ܭ ∩ 
ܸ) > 0 for typical affine (݊ − ݉)-planes ܸ ⊂ ℝ (see Corollary 2.2 in [287]). 

The measure ߤ from Theorem (4.3.1) is constructed. We show that the set defined 
in (72) is residual. We complete the proof by establishing this for the set appearing in 
(73). 

We carry out the construction of the measure ߤ from Theorem (4.3.1). It will be 
convenient to identify ℝଶ with the complex plane ℂ. We shall use some simple facts from 
the theory of field extensions, for which we refer to chapters 17 and 18 in [281]. Our 
example involves complex Pisot numbers, which we now define. 
Definition (4.3.4)[270]: An algebraic integer ߠ ∈ ℂ is called a complex Pisot number if 
ߠ ∉ ℝ, |ߠ| > 1, and all of the Galois conjugates of ߠ (i.e. the other roots of the minimal 
polynomial of ߠ ), except ߠ‾, are less than one in modulus. 

Given algebraic numbers ߙଵ, … , ߙ ∈ ℂ, we denote by ℚ[ߙଵ, … ,  ] the smallestߙ
subfield of ℂ containing ߙଵ, … , ߙ . If ܨ ⊂ :ܧ] are subfields of ℂ, we write ܧ  for the [ܨ
degree of the field extension ܨ/ܧ. The next lemma is probably known, but we could not 
find an appropriate reference. Hence the proof, which uses a bit of Galois theory, is given 
at the end. 

Now let ߠ be a complex Pisot number such that 
 arg ߠ ∉  ℚߨ
 |ߠ| lies in (3,4);  
 the minimal polynomial of ߠ has constant term 1 or −1. 

For example, the polynomial ݂(ܺ) = ܺଷ + ܺଶ + 10ܺ + 1 has three roots, 
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ߠ ≈ −0.45 + 3.11݅, തതതߠ ≈ −0.45 − 3.11݅ and ߙ ≈ −0.1.  
Since ݂ doesn't have a root in ℤ, it follows from Gauss's lemma that ݂ is irreducible over 
ℚ. Hence ݂ is the minimal polynomial of ߠ over ℚ, and 

[ℚ[ߠ]: ℚ] = deg ݂ = 3. 
This shows that ߠ is a complex Pisot number, and from Lemma (4.3.5) we get 

that arg ߠ ℚ. Since 3ߨ ∌ < |ߠ| < 4 and the constant term of ݂ is 1, the number ߠ 
satisfies all of the required properties. 

Write ߣ = may be thought of as a 2 ߣ ଵ and note thatିߠ × 2 matrix ܴݎ, where ݎ =
ߣ From arg .ߣ and ܴ is a planar rotation by angle arg |ߣ| ∉ ℚ it follows ܴߨ ≠  for all ݀ܫ
݊ ≥ 1. Let ࣰ be the set of all (ܽଵ, ܽଶ) ∈ ℂଶ for which the IFS 

൛ݖ → ߣ ⋅ ݖ + (−1)
ܽ : ݇, ݆ ∈ {1,2}ൟ 

satisfies the strong separation condition (SSC). Since |ߣ| < ଵ
ଷ
, it is not hard to see that 

ቀଶ
ଷ

, ଶ
ଷ

ቁ ∈ ࣰ and in particular that ࣰ ≠ ∅. The next lemma is proven at the end of this 
section. 

Clearly ࣰ is open in ℂଶ, hence from ࣰ ≠ ∅ and Lemma (4.3.6) it follows that there 
exists 

(ܽଵ, ܽଶ) ∈ ࣰ ∩ (ࣳ × ࣳ). 
For ݇, ݆ ∈ {1,2} and ݖ ∈ ℂ set 

߮,(ݖ) = ߣ ⋅ ݖ + (−1) ⋅ ܽ , 
then the IFS 

Φ: = ൛߮,: ݇, ݆ ∈ {1,2}ൟ 
satisfies the SSC. Denote by ℳ(ℂ) the collection of all compactly supported Borel 
probability measures on ℂ. Let ߤ be the unique member of ℳ(ℂ) with 

ߤ =
1
4

൫߮ଵ,ଵߤ + ߮ଵ,ଶߤ + ߮ଶ,ଵߤ + ߮ଶ,ଶߤ൯, 
then 

dimு ߤ =
log 4

log|ߠ| > 1. 

Denote by ⟨⋅,⋅⟩ the Euclidean inner product on ℂ, i.e. ⟨ݖ, ⟨ݓ = Re (ݖ ⋅ ‾ݓ ) for ݖ, ݓ ∈ ℂ. 
Write 

ܵ = ݖ} ∈ ℂ: |ݖ| = 1}, 
and ௭ܲݓ = ,ݓ⟩ ݖ for ⟨ݖ ∈ ܵ and ݓ ∈ ℂ. Note that ௭ܲߤ is, up to affine equivalence, the 
pushforward of ߤ by the orthogonal projection onto the line ݖ ⋅ ℝ. The following 
proposition is proven. 

Denote by ℬ the Borel ߪ-algebra of ℝ or ℂ. For ݖ ∈ ܵ let ൛ߤ௭,௪ൟ௪∈ℂ ⊂ ℳ(ℂ) be 
the disintegration of ߤ with respect to ௭ܲ

ିଵ(ℬ), as defined in Theorem 5.14 in [273]. This 
means that ߤ௭,௪ is supported on ௭ܲ

ିଵ( ௭ܲݓ) for ݓ ∈ ℂ, and for each bounded ℬ-
measurable ݂: ℂ → ℝ 

න ௭,௪ߤ݂݀  = ఓ൫݂ܧ ∣ ௭ܲ
ିଵ(ℬ)൯(ݓ) for ߤ-a.e. ݓ ∈ ℂ. 

Here the right hand side is the conditional expectation of ݂  given ௭ܲ
ିଵ(ℬ) with respect to 

 ,In order to prove Theorem (4.3.1) it remains to establish the following proposition .ߤ
which is done. 
Lemma (4.3.5)[270]: Let ߠ be a complex Pisot number with [ℚ[ߠ]: ℚ] = 3, then arg ߠ ∉
 .ℚߨ
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Proof. By the assumptions on ߠ there exists ߙ ∈ ℂ, with |ߙ| < 1, such that ߠ‾ and ߙ are 
the Galois conjugates of ߠ. Set ܧ = ℚ[ߠ, ,‾ߠ ݂ let ,[ߙ ∈ ℚ[ܺ] be the minimal polynomial 
of ߠ over ℚ, and let ܩ be the Galois group of the field extension ܧ/ℚ. Note that ܧ is a 
splitting field for ݂ over ℚ, and that the roots of ݂ are ߠ,  It follows, by Lemma .ߙ and ‾ߠ
18.3 in [281], that the action of ܩ on {ߠ, ,‾ߠ  into a ܩ induces an isomorphism from {ߙ
subgroup of ܵ ଷ, where ଷܵ  is the symmetric group on 3 letters. It also follows, by Theorem 
18.13 in [281], that the extension ܧ/ℚ is Galois. Hence, from Corollary 18.19 and 
Lemma 17.6 in [281], we get 

|ܩ| = :ܧ] ℚ] = :ܧ] ℚ(ߠ)] ⋅ [ℚ(ߠ): ℚ] = :ܧ] ℚ(ߠ)] ⋅ 3, 
which shows that 3 divides |ܩ|. Let ߪ ∈ (ߚ)ߪ be with ܩ = ߚ for ‾ߚ ∈  has order ߪ then ,ܧ
2. This implies that 2 divides |ܩ|, and so it must hold that ܩ is isomorphic to ܵଷ. Now 
assume by contradiction that arg ߠ ∈ ߠ ℚ, thenߨ ∈ ℝ for some ݊ ≥ 1. Let ߬ ∈  be ܩ
such that ߬(ߠ) = ,ߠ (‾ߠ)߬ = (ߙ)߬ and ߙ =  are distinct, both have order ߪ Since ߬ and .‾ߠ
2, and ܩ is isomorphic to ଷܵ, it follows that the group generated by ߬ and ߪ is ܩ. Clearly 
(ߠ)߬ = ߠ  and from ߠ ∈ ℝ we get ߪ(ߠ) = ߠ , hence ߟ(ߠ) = ߟ  for allߠ ∈  .ܩ
Let ߟ ∈ (ߠ)ߟ be with ܩ =  then ,ߙ

ߠ = (ߠ)ߟ = (ߠ)ߟ = ߙ . 
But we also have |ߠ| > 1 >  |, which yields a contradiction, and so it must holds thatߙ|
arg ߠ ∉  ⋅ℚߨ
Lemma (4.3.6)[270]: The set ࣳ: = {݇ ⋅ ߣ : ݇, ݈ ∈ ℕ} is dense in ℂ. 
Proof. Let ݖ ∈ ℂ and ߳ > 0 be given, and let ܰ ≥ 1 be with |ߣே| < ߳ Since 

arg ߣ = − arg ߠ ∉  ,ℚߨ
we have that 

{݈ ⋅ arg ߣ mod2ߨ}ୀே
ஶ  

is dense in [0,2ߨ). It follows there exists ݈ ≥ ܰ with 
ቚexp ቀ݅ ⋅ arg (ߣ)ቁ − exp (݅ ⋅ arg ݖ)ቚ < ߳.                                (74) 

Let ݇ ≥ 0 be the integer with ݇ ⋅ หߣห ≤ |ݖ| < (݇ + 1) ⋅ หߣห, then 
|ݖ|| − |݇ ⋅ ||ߣ ≤ |ேߣ| < ߳. 

From this, from arg (݇ ⋅ (ߣ = arg (ߣ), and from (74), the lemma follows.  
Let ߠ, ,ߣ (ܽଵ, ܽଶ), Φ: = ൛߮,: ݇, ݆ ∈ {1,2}ൟ and ߤ be as obtained. We shall show that 

there exists a dense ܩఋ subset ܤ of ܵ, such that for every ݖ ∈  the Fourier transform of ܤ
௭ܲߤ does not decay to 0 at infinity. 

Lemma (4.3.7)[270]: There exist constants ߩ ∈ (0,1) and ܥ > 0, with 
dist(2 Re(ߠ) , ℤ) ≤ ܥ ⋅ ݊ | for all|ߩ ∈ ℤ.                                (75) 

Proof. Let ߠଷ, … ,  is an algebraic ߠ Since .‾ߠ other than ߠ  be the Galois conjugates ofߠ
integer, 

ߠ + തതതതߠ +   


ୀଷ

ߠ
 ∈ ℤ for all ݊ ∈ ℕ. 

It follows that (75) holds for ݊ ∈ ℕ with 
ߩ = max  ൛หߠห: 3 ≤ ݆ ≤ ݉ൟ ∈ (0,1) 

and ܥ = ݉ − 2. Since |ߠ| > 1 and for each integer ݊ < 0 
dist (2Re (ߠ), ℤ) ≤ |ߠ|2 , 

the lemma follows.  
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Given ߥ ∈ ℳ(ℂ) let ℱ(ߥ) be the Fourier transform of ߥ as a measure on ℝଶ, i.e. 
for ߦ ∈ ℂ 

ℱ(ߥ)(ߦ) = න  


݁⟨௭,క⟩݀(ݖ)ߥ = න 
ℂ

exp൫݅ Re൫ݖ ⋅ ൯൯‾ߦ  .(ݖ)ߥ݀

The proof of the following proposition resembles the argument given by Erdös in [274]. 
Proposition (4.3.8)[270]: There exists a constant ܿ > 0 with หℱ(ߤ)൫4ߠߨேതതതത൯ห > ܿ for all 
ܰ ∈ ℕ. 
Proof. Let ଵܺ, ܺଶ, … be i.i.d. random variables with 

ℙ൫ ଵܺ = (−1)
ܽ൯ =

1
4  for ݇, ݆ ∈ {1,2}. 

Since ߤ is the unique Borel probability measure on ℂ with 

ߤ =
1
4 ൫߮ଵ,ଵߤ + ߮ଵ,ଶߤ + ߮ଶ,ଵߤ + ߮ଶ,ଶߤ൯, 

it is equal to the distribution of the random sum ∑ୀ
ஶ ߣ  ⋅ ܺ. Hence for every ߦ ∈ ℂ, 

ℱ(ߤ)(ߦ)  = ෑ  
ஶ

ୀ

 ℱ ൮
1
4

⋅   
ଶ

ୀଵ

  ቀߜఒೕ + ఒೕቁ൲ିߜ (ߦ)

 = ෑ  
ஶ

ୀ

 
1
4 ⋅   

ଶ

ୀଵ

  ൬exp ቀ݅Re ൫ߣ
ܽ ⋅ ൯ቁ‾ߦ + exp ቀ݅Re ൫−ߣ

ܽ ⋅ ൯ቁ൰‾ߦ

 = ෑ  
ஶ

ୀ

 
1
2

⋅ ൫cos൫Re൫ߣܽଵ ⋅ ൯൯‾ߦ + cos൫Re൫ߣܽଶ ⋅ .൯൯൯‾ߦ

 

Since ܽଵ, ܽଶ ∈ ࣳ, where ࣳ is defined in Lemma (4.3.6), for ݆ = 1,2 there exist ݇ , ݈ ∈ ℕ 
with ܽ = ݇ ⋅ ܰ ೕ. Hence forିߠ ∈ ℕ, 

ℱ(ߤ)൫4ߠߨேതതതത൯  = ෑ  
ே

ୀିஶ

 
1
2

⋅ (cos(4ߨ Re(ߠܽଵ)) + cos(4ߨ Re(ߠܽଶ)))

 = ෑ  
ே

ୀିஶ

 
1
2

(cos(4݇ߨଵ ⋅ Re(ߠିభ )) + cos(4݇ߨଶ ⋅ Re(ߠିమ))).

    (76) 

Let us show that ܾ ≠ 0 for every ݊ ∈ ℤ, where 

ܾ: =
1
2 ൬cos ቀ4݇ߨଵ ⋅ Re (ߠିభ)ቁ + cos ቀ4݇ߨଶ ⋅ Re (ߠିమ)ቁ൰. 

Recall that the set of algebraic integers is closed under addition, subtraction and 
multiplication. The product of ߠ with its Galois conjugates is equal to the constant term 
of the minimal polynomial of ߠ, which is ±1 by assumption. These conjugates are all 
algebraic integers, hence ିߠଵ is an algebraic integer, and so ߠ is an algebraic integer for 
all ݊ ∈ ℤ. Let ݊ ∈ ℤ, then from the identity 

cos ߚ + cos ߛ = 2 cos ൬
ߚ + ߛ

2
൰ cos ൬

ߚ − ߛ
2

൰  for all ߚ , ߛ ∈ ℝ, 
we obtain 

ܾ = cos(2ߨ ⋅ Re(݇ଵߠିభ + ݇ଶߠିమ)) ⋅ cos(2ߨ ⋅ Re(݇ଵߠିభ − ݇ଶߠିమ)).   (77) 
Since 2Re (݇ଵߠିభ + ݇ଶߠିమ ) is equal to 

݇ଵߠିభ + ݇ଶߠିమ + ݇ଵߠିభതതതതതതത + ݇ଶߠିమതതതതതതത, 
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it is an algebraic integer, and so it can't be of the form ݇ + ଵ
ଶ
 with ݇ ∈ ℤ. It follows the 

first term in the product (77) is nonzero. In a similar manner the second term in (77) is 
nonzero, which shows ܾ ≠ 0.  

Fix ݊ ∈ ℤ and ݆ ∈ {1,2}, and let ݀ ∈ ℤ be with 
ห2Re ൫ߠିೕ ൯ − ݀ห = dist൫2 Re൫ߠିೕ ൯ , ℤ൯. 

Let ܥ and ߩ be the constants from Lemma (4.3.7), and write 
:ܥ = ܥߨ2 ⋅ max  {݇ଵ, ݇ଶ} ⋅ ିߩ ୫ୟ୶  {భ ,మ}. 

From Lemma (4.3.7), 
       ቚcos ቀ4ߨ ݇ ⋅ Re ൫ߠିೕ ൯ቁ − 1ቚ 

 = ቚcos ቀ4ߨ ݇ ⋅ Re ൫ߠିೕ ൯ቁ − cos ൫2ߨ ݇݀൯ቚ

 ≤ ߨ2 ݇ ⋅ ห2Re ൫ߠିೕ൯ − ݀ห = ߨ2 ݇ ⋅ dist ൫2Re ൫ߠିೕ ൯, ℤ൯

 ≤ ߨ2 ݇ܥ ⋅ หିೕหߩ ≤ ܥ ⋅ .||ߩ

 

This shows 

|ܾ| ≥ 1 −
1
2

  
ଶ

ୀଵ

ቚcos ቀ4ߨ ݇ ⋅ Re ൫ߠିೕ൯ቁ − 1ቚ ≥ 1 − ܥ ⋅  .||ߩ

Now let ܯ ≥ 1 be such that ܥ ⋅ ||ߩ < 1 for all ݊ ∈ ℤ with |݊| ≥  Then from (76) it .ܯ
follows that for each ܰ ≥ 0, 

หℱ(ߤ)൫4ߠߨேതതതത൯ห ≥ ෑ  
ିெ

ୀିஶ

|ܾ| ෑ  
ெିଵ

ୀଵିெ

|ܾ| ෑ  
ஶ

ୀெ

|ܾ| 

≥ ෑ  
ஶ

ୀெ

(1 − ܥ ⋅ )ଶߩ ⋅ ෑ  
ெିଵ

ୀଵିெ

|ܾ| > 0,                          

which completes the proof.  
Let ℳ(ℝ) be the collection of all compactly supported Borel probability measures 

on ℝ. Given ߥ ∈ ℳ(ℝ) let ℱ(ߥ) be the Fourier transform of ߥ, i.e. 

ℱ(ߥ)(ݎ) = න  
ℝ

݁௫݀(ݔ)ߥ for ݎ ∈ ℝ. 

Recall that 
ܵ = ݖ} ∈ ℂ: |ݖ| = 1}, 

and ௭ܲݓ = ,ݓ⟩ ݖ for ⟨ݖ ∈ ܵ and ݓ ∈ ℂ. For ݊ ≥ 1 write 

ܷ = ൜ݖ ∈ ܵ: sup
ஹ

 |ℱ( ௭ܲ(ݎ)(ߤ| > ܿൠ, 

where ܿ is the constant from Proposition (4.3.8). 
Lemma (4.3.9)[270]: Let ݊ ≥ 1, then ܷ  is an open and dense subset of ܵ. 
Proof. Note that for ݖ ∈ ܵ and ݎ ∈ ℝ 

ℱ( ௭ܲ(ݎ)(ߤ = න  
ℝ

exp(݅ݎݔ) ݀ ௭ܲ(ݔ)ߤ = න  
ℝ

exp(݅⟨ݓ, (⟨ݖݎ (ݓ)ߤ݀ = ℱ(ߤ)(ݖݎ), 

hence 

ܷ = ൜ݖ ∈ ܵ: sup
ஹ

 |ℱ(ߤ)(ݖݎ)| > ܿൠ. 

Now since ℱ(ߤ) is continuous it follows ܷ is open in ܵ. Set ߟ = exp (−݅arg ߠ), then 
from Proposition (4.3.8) 
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หℱ൫ܲఎೖ ห(|ߠ|ߨ4)൯ߤ = หℱ(ߤ)൫4ߠߨതതത൯ห > ܿ                               (78) 
for every integer ݇ ≥ 0. Let ܰ ≥ 1 be with |4ߠߨே| ≥ ݊, then {ߟ}ୀே

ஶ ⊂ ܷ by (78). By 
assumption arg ߠ ∉ ୀே{ߟ} ℚ, henceߨ

ஶ  is dense in ܵ, which proves the lemma. 
We can now complete the proof of Proposition (4.3.10). 

Proposition (4.3.10)[270]: There exists a dense ܩఋ subset ܤ of ܵ , such that ܲ ௭ߤ is singular 
for all ݖ ∈  .ܤ
Proof. Set ܤ =∩ୀଵ

ஶ ܷ, then ܤ is a dense ܩఋ subset of ܵ by Lemma (4.3.9) and Baire's 
theorem. Let ݖ ∈ )then ℱ ,ܤ ௭ܲ(ݎ)(ߤ does not tend to 0 as ݎ → ∞. Hence, by the Riemann-
Lebesgue lemma, ௭ܲߤ is not absolutely continuous. From the law of pure types (see 
Theorem 3.26 in [272]) it now follows ௭ܲߤ is singular, which completes the proof of the 
Proposition.  

In order to prove Proposition (4.3.16) we shall use the following theorem due to 
Wiener (see Section VI.2.12 of [283]). 
Theorem (4.3.11)[270]: For every ߥ ∈ ℳ(ℝ), 

  
௫∈ℝ

ଶ({ݔ}ߥ) = lim
ெ→ஶ

 
1

ܯ2
න  

ெ

ିெ
|ℱ(ߥ)(ߦ)|ଶ݀ߦ. 

Let ߠ, Φ and ߤ be as above. For ݖ ∈ ܵ write ୄݖ = ݁ିగ/ଶݖ. Given ݊, ݇ ∈ ℕ set 
,ܬ = ൛ݖ ∈ ܵ: ൻ4ߠߨതതത, ൿୄݖ ∈ (݊, ݊ + 1)ൟ, 

and let ܸ =∪∈ℕ  .,ܬ
Lemma (4.3.12)[270]: Let ݊ ∈ ℕ, then ܸ  is a dense open subset of ܵ. 
Proof. Since ܬ, is open in ܵ for every ݇ ∈ ℕ the same holds for ܸ. Let ܽ ∈ ℝ and 0 <
߳ < 1 be given. For ܧ ⊂ ℝ write (ܧ)ݍ = ܧ + |ߠ| ℤ. Sinceߨ2 > 1 and arg ߠ ∉  ℚ, thereߨ
exists ݇ ∈ ℕ with 

ห4ߠߨതതതห >
݊ + 1

cos ቀߨ
2 − ߳ቁ

 and arg ൫4ߠߨതതത൯ ∈ ܽ)ݍ − ߳, ܽ + ߳). 

Set ݓ = ݐ തതത and forߠߨ4 ∈ ℝ write ݂(ݐ) = ൻݓ, ݁௧ൿ. It holds that 

݂(arg ୄݓ)  = ൽݓ,
ୄݓ

ඁ|ୄݓ| = 0,

݂(arg ୄݓ + ߳)  = ݂ ቀarg ݓ −
ߨ
2 + ߳ቁ = ർݓ,

ݓ
|ݓ| ⋅ ݁(ఢିగ/ଶ)

 = Re ൬ݓ ⋅
‾ݓ

|ݓ| ⋅ ݁ቀగ
ଶିఢቁ൰ = |ݓ| ⋅ cos ቀ

ߨ
2 − ߳ቁ > ݊ + 1,

 

and 
[arg ୄݓ, arg ୄݓ + ߳] ⊂ ݍ ቂܽ − ߳ −

ߨ
2

, ܽ + 2߳ −
ߨ
2

ቃ. 

Hence, since ݂ is continuous and 2ߨ-periodic, there exists ݐ ∈ ቂܽ − ߳ − గ
ଶ

, ܽ + 2߳ − గ
ଶ

ቃ 

with ݂(ݐ) ∈ (݊, ݊ + 1). Set ݖ = exp ൬݅ ቀݐ + గ
ଶ

ቁ൰, then 

,ݓ⟩ ⟨ୄݖ = ൻݓ, ݁௧ൿ = (ݐ)݂ ∈ (݊, ݊ + 1), 
and so ݖ ∈ ,ܬ ⊂ ܸ. Now since ܽ and ߳ are arbitrary and 

arg ݖ ∈ ݍ ቄݐ +
ߨ
2

ቅ ⊂ ܽ]ݍ − ߳, ܽ + 2߳], 
it follows that ܸ is dense in ܵ, which proves the lemma.  
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Set ܤ =∩∈ℕ ܸ, then ܤ is a dense ܩఋ subset of ܵ by Lemma (4.3.12). Fix ݖ ∈  ܤ
and recall that ൛ߤ௭,௪ൟ௪∈ℂ is the disintegration of ߤ with respect to ܲ ௭

ିଵ(ℬ), where ℬ is the 
Borel ߪ-algebra of ℂ. In order to prove the proposition, it suffices to show that ߤ௭,௪ is 
discrete for ߤ-a.e. ݓ ∈ ℂ. Write 

߬௪(ߦ) = ߦ − ߦܴ and ݓ = തതതୄݖ ⋅ ,ݓ for ߦ ߦ ∈ ℂ,                               (79) 
for each ݓ ∈ ℂ let ߥ௪ = ܴ߬௪ߤ௭,௪, and note that ߥ௪ ∈ ℳ(ℝ). 
Lemma (4.3.13)[270]: Let ܿ > 0 be the constant from Proposition (4.3.8), then for each 
݊ ∈ ℕ there exists ݐ ∈ (݊, ݊ + 1) with 

න  |ℱ(ߥ௪)(ݐ)|ଶ݀(ݓ)ߤ > ܿଶ.                                                (80) 

Proof. Let ݊ ∈ ℕ. Since ݖ ∈ ܸ there exists ݇ ∈ ℕ and ݐ ∈ (݊, ݊ + 1) with 
ൻ4ߠߨതതതതത, ൿୄݖ = ߟ . Writeݐ =  .തതതതത, then by Proposition (4.3.8)ߠߨ4

ܿ < |ℱ(ߤ)(ߟ)| ≤ න  ฬන  ݁⟨క,ఎ⟩݀ߤ௭,௪(ߦ)ฬ  (81)                           .(ݓ)ߤ݀

Let ܳ௭఼  be the orthogonal projection onto ୄݖℝ, i.e. 
ܳ௭఼ߦ = ,ߦ⟩ ߦ for ୄݖ⟨ୄݖ ∈ ℂ. 

From (81) and since ߬௪ߤ௭,௪ is supported on ୄݖℝ for ݓ ∈ ℂ, 

ܿ  < න  ฬන  ݁(కା௪,ఎ⟩݀߬௪ߤ௭,௪(ߦ)ฬ (ݓ)ߤ݀

 = න  ห݁⟨௪,ఎ⟩ห ⋅ ฬන  ݁⟨క,ఎ⟩݀ܳ௭ ⊥ ߬௪ߤ௭,௪(ߦ)ฬ (ݓ)ߤ݀

 = න  ฬන  exp(݅⟨ܳ௭఼ߦ, ฬ(ߦ)௭,௪ߤ௪߬݀(⟨ߟ .(ݓ)ߤ݀

 

Now since ܳ௭఼ is self-adjoint, ⟨ߟ,  ,, and ܴ from (79) is a rotationݐ is equal to ⟨ୄݖ

ܿ  < න  ฬන  exp (݅⟨ߦ, ฬ(ߦ)௭,௪ߤ௪߬݀(⟨ୄݖݐ (ݓ)ߤ݀

 = න  ฬන  exp (݅⟨ܴߦ, ݐ ⋅ ฬ(ߦ)௭,௪ߤ௪߬݀(⟨ୄݖܴ (ݓ)ߤ݀

 = න  ฬන  ݁క௧݀ߥ௪(ߦ)ฬ (ݓ)ߤ݀ = න  |ℱ(ߥ௪)(ݐ)|݀(ݓ)ߤ.

 

From this and Jensen's inequality the lemma follows.  
Let us define the set, 

௭ܧ = ൛ݓ ∈ ℂ: {ݓ}௭,௪ߤ > 0ൟ.                                                (82) 
Lemma (4.3.14)[270]: It holds that ߤ(ܧ௭) > 0. 
Proof. Let {ݐ}∈ℕ be the numbers obtained in Lemma (4.3.13). Since supp (ߤ) is 
compact and 

supp൫ߤ௭,௪൯ ⊂ supp(ߤ)  for ߤ-a.e. ݓ ∈ ℂ, 
there exists ܯ > 0 such that ߥ௪ is supported on ܬ = ,ܯ−] ݓ .a.e-ߤ for [ܯ ∈ ℂ. Write 

ℳ(ܬ) = ൛ߥ ∈ ℳ(ℝ):  ,ൟܬ is supported on ߥ
then it is easy to see that ℱ(ߥ) is ܯ-Lipschitz for ߥ ∈ ℳ(ܬ). Hence there exist ߜ > 0 and 
intervals {ܣ}∈ℕ, such that for every ݊ ∈ ℕ it holds 

ݐ ∈ ܣ ⊂ (݊, ݊ + 1), 
ߥ and for each ,ߜ  has lengthܣ ∈ ℳ(ܬ), 

||ℱ(ߥ)(ݐ)|ଶ − |ℱ(ߥ)(ݔ)|ଶ ∣<
ܿଶ

2
 for ݔ ∈  .ܣ
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We now get from (80) that for each ܰ ≥ 1, 

ܿଶ  ≤ න  
1
ܰ   

ேିଵ

ୀ

  |ℱ(ߥ௪)(ݐ)|ଶ݀(ݓ)ߤ

 = න  
1

ܰߜ
  
ேିଵ

ୀ

 න  


  |ℱ(ߥ௪)(ݐ)|ଶ݀(ݓ)ߤ݀ݔ

 ≤ න  
1

ܰߜ
  
ேିଵ

ୀ

 න  


  |ℱ(ߥ௪)(ݔ)|ଶ +
ܿଶ

2
(ݓ)ߤ݀ݔ݀

 ≤ න  
1

ܰߜ න  
ே

ିே
  |ℱ(ߥ௪)(ݔ)|ଶ݀(ݓ)ߤ݀ݔ +

ܿଶ

2 ,

 

which gives 
ଶܿߜ

4
≤ න  

1
2ܰ

න  
ே

ିே
|ℱ(ߥ௪)(ݔ)|ଶ݀(ݓ)ߤ݀ݔ. 

Now by Theorem (4.3.11) and the bounded convergence theorem, 

න    
క∈ℂ

(ݓ)ߤ݀{ߦ}௭,௪ߤ   = න    
௫∈ℝ

  (ݓ)ߤ݀{ݔ}௪ߥ

 = න  lim
ே→ஶ

 
1

2ܰ
න  

ே

ିே
  |ℱ(ߥ௪)(ߦ)|ଶ݀(ݓ)ߤ݀ߦ

 = lim
ே→ஶ

 න  
1

2ܰ
න  

ே

ିே
  |ℱ(ߥ௪)(ߦ)|ଶ݀(ݓ)ߤ݀ߦ ≥

ଶܿߜ

4
> 0.

 

This gives ߤ(ܨ௭) > 0, where 
௭ܨ = ൛ݓ ∈ ℂ: {ߦ}௭,௪ߤ > 0 for some ߦ ∈ ℂൟ. 

Let ݓ ∈  ௭, then there existsܨ
ߦ ∈ supp ൫ߤ௭,௪൯ ⊂ ݓ +  ℝୄݖ

with ߤ௭,௪{ߦ} > 0. Since ߤ௭,క = ߦ ௭,௪ it followsߤ ∈  ௭ is defined in (82), andܧ ௭, whereܧ
so 

(௭ܧ)௭,௪ߤ ≥ {ߦ}௭,௪ߤ > 0. 
Now from ߤ(ܨ௭) > 0 we get 

(௭ܧ)ߤ ≥ න  
ி

(ݓ)ߤ݀(௭ܧ)௭,௪ߤ > 0, 

which proves the lemma.  
Write ܫ = {1,2}ଶ and let Φ = {߮}∈ூ be the IFS constructed. Recall that ߣ =  ,ଵିߠ

for each ݅ ∈ there exists ܽ ܫ ∈ ℂ with ߮(ݓ) = ݓߣ + ܽ for ݓ ∈ ℂ, and Φ satisfies the 
SSC. Let ܭ ⊂ ℂ be attractor of Φ, write ℬ for the restriction of the Borel ߪ-algebra ℬ 
to ܭ, and let ܶ: ܭ → ݔܶ be such that ܭ = ߮

ିଵ(ݔ) for ݅ ∈ ݔ and ܫ ∈ ߮(ܭ). 
Lemma (4.3.15)[270]: It holds that ߤ(ܧ௭) = 1. 
Proof. Given ܣଵ, ଶܣ ∈ ℬ with ߤ(ܣଵΔܣଶ) = 0 we write ܣଵ =  algebra-ߪ For a .ߤଶmodܣ
ℱ ⊂ ℬ and ܣଵ ∈ ℬ we write ܣଵ ∈ ℱmodߤ whenever there exists ܣଶ ∈ ℱ with ܣଵ =
,ܭ) The system .ߤଶmodܣ ℬ , ܶ,  is measure preserving and isomorphic to a Bernoulli (ߤ
shift. We shall show that 
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௭ܧ ∈ ሩ  
ஶ

ୀ

ܶି(ℬ)          mod ߤ, 

from which the lemma will follow by the zero-one law.  
Given a word ݅ଵ ⋅ … ⋅ ݅ = ߙ ∈ write ߮ఈ ∗ܫ = ߮భ ∘ … ∘ ߮  and ܭఈ = ߮ఈ(ܭ). For 

݊ ∈ ℕ and ݓ ∈ (ݓ)ߙ let ܭ ∈ ݓ  be the unique word of length ݊ for whichܫ ∈  ,ఈ(௪)ܭ
where ߙ(ݓ) is the empty word ∅ and ܭ∅ = ,݉ For .ܭ ݊ ∈ ℕ and ݓ ∈  set ܭ

ݖ =
ݖߠ

|ݖߠ| ∈ ܵ and ܨ,(ݓ) =  .ఈ(௪)൯ܭ௭,௪൫ߤ

For ݉ ∈ ℕ, ݓ ∈ ℂ and ߜ > 0 let 
௪ܸ
(ߜ) = ݓ + ݖ

ୄ ⋅ ℝ + ,0)ܤ  ,(ߜ
where 0)ܤ,  From Lemma (4.3.9) in .ߜ is the open disk in ℂ with centre 0 and radius (ߜ
[277] we get that for each ݉ ∈ ℕ and ܣ ∈ ℬ, 

௭ߤ ,௪(ܣ) = lim
ఋ↓

 
)ߤ ௪ܸ

(ߜ) ∩ (ܣ
൫ߤ ௪ܸ

(ߜ)൯
 for ߤ-a.e. ݓ ∈ ℂ. 

Fix ݉, ݊ ∈ ℕ, then for ߤ-a.e. ݓ ∈  ܭ

(ݓܶ),ܨ =
ఈ(்௪)൯ܭ௭,்ೢ൫ߤ

௭ߤ ,்௪൫ܭఈబ(்௪)൯
= lim

ఋ↓
 
ߤ ቀ்ܸ ௪

 (ߜ) ∩ ఈ൫்ೢ)൯ܭ

൫்ܸߤ ௪
 (ߜ) ∩ ఈబ(்௪)൯ܭ

.         (83) 

Since ߤ satisfies the SSC, 
߮ఈ(ܭ) ∩ ߮ఈ(௪)(ܭ) = ∅ for ߙ ∈ ܫ ∖  ,{(ݓ)ߙ}

hence, 
൫߮ఈߤ

ିଵ൫߮ఈ(௪)(ܭ)൯ = 0 for ߙ ∈ ܫ ∖  .{(ݓ)ߙ}
From this and (83) it follows that for ߤ-a.e. ݓ ∈  ,ܭ

(ݓܶ),ܨ = lim
ఋ↓

 
∑  ఈ∈ூ   ି|ܫ| ⋅ ߤ ൬߮ఈ

ିଵ ቀ߮ఈ(௪)൫்ܸ ௪
 (ߜ) ∩ ఈ(்௪)൯ቁ൰ܭ

∑  ఈ∈ூ   ି|ܫ| ⋅ ߤ ൬߮ఈ
ିଵ ቀ߮ఈ(௪)൫ ்ܸ௪

 (ߜ) ∩ ఈబ(்௪)൯ቁ൰ܭ
. 

Now since ߤ = ∑ఈ∈ூ ି|ܫ|  ⋅ ߮ఈߤ, 

(ݓܶ),ܨ = lim
ఋ↓

 
ߤ ቀ߮ఈ(௪)൫்ܸ ௪

 (ߜ) ∩ ఈ(்௪)൯ቁܭ

ߤ ቀ߮ఈ(௪)൫்ܸ ௪
 (ߜ) ∩ ఈబ(்௪)൯ቁܭ

 for ߤ-a.e. ݓ ∈  (84)        .ܭ

For every ߜ > 0, 
߮ఈ(௪)( ்ܸ௪

 ((ߜ)  = ߮ఈ(௪)(ܶݓ) + ݖߣ
ୄ ⋅ ℝ + ߣ ⋅ ,0)ܤ (ߜ

 = ݓ + ݖ
ୄ ⋅ ℝ + ,0)ܤ (|ߣߜ| = ௪ܸ

(|ߣߜ|).
 

Hence from (84) it follows that for ߤ-a.e. ݓ ∈  ,ܭ

(ݓܶ),ܨ = lim
ఋ↓

 
൫ߤ ௪ܸ

(|ߣߜ|) ∩ ఈశ(௪)൯ܭ

൫ߤ ௪ܸ
(|ߣߜ|) ∩ ఈ(௪)൯ቁܭ

=
ఈశ(௪)൯ܭ௭,௪൫ߤ
ఈ(௪)൯ܭ௭,௪൫ߤ

,              (85) 

where we have used the fact that ߤ௭,௪൫ܭఈ(௪)൯ > 0 for ߤ-a.e. ݓ ∈   .ܭ
Let ݉ ∈ ℕ, then from (85) we get that modߤ it holds 

௭ܧ  = ቊݓ ∈ :ܭ lim


 
ఈశ(௪)൯ܭ௭,௪൫ߤ
ఈ(௪)൯ܭ௭,௪൫ߤ

> 0ቋ

 = ቄݓ ∈ :ܭ lim


(ݓܶ),ܨ  > 0ቅ ∈ ܶି(ℬ),
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which shows 
௭ܧ ∈∩∈ℕ ܶି(ℬ)                  mod    ߤ. 

Now since (ܭ, ℬ , ܶ, (௭ܧ)ߤ is isomorphic to a Bernoulli shift, it follows that (ߤ = 0 or 
1. But by Lemma (4.3.14) we have ߤ(ܧ௭) > 0, which completes the proof of the lemma. 

We can now complete the proof of Proposition (4.3.16). 
Proposition (4.3.16)[270]: There exists a dense ܩఋ subset ܤ of ܵ, such that for each ݖ ∈
ݓ .a.e-ߤ ௭,௪ is discrete forߤ it holds that ܤ ∈ ℂ. 
Proof. As mentioned above, it suffices to show ߤ௭,௪ is discrete for ߤ-a.e. ݓ ∈ ℂ. By 
Lemma (4.3.15) we have ߤ(ܧ௭) = 1, and so ߤ௭,௪(ܧ௭) = 1 for ߤ-a.e. ݓ ∈ ℂ. Fix such a 
ݓ ∈ ℂ and let ܣ = ݓ + (ܣ)௭,௪ߤ ℝ. Sinceୄݖ = 1 and ߤ௭,௪ = ߦ ௭,క forߤ ∈  ,ܣ

1 = ௭ܧ)௭,௪ߤ ∩ (ܣ = ߦ௭,௪൛ߤ ∈ :ܣ {ߦ}௭,௪ߤ > 0ൟ. 
This shows that ߤ௭,௪ is discrete, which completes the proof. 
Corollary (4.3.17)[439]: Let ߠ be a complex Pisot number with [ℚ[ߠ]: ℚ] = 3, then 
arg ߠ ∉  .ℚߨ
Proof. By the assumptions on ߠ  there exists ߙ ∈ ℂ, with |ߙ| < 1, such that ߠ‾ and ߙ are 
the Galois conjugates of ߠ . Set ܧ = ℚ[ߠ , ‾ߠ , let ݂ ,[ߙ ∈ ℚ[ܺ] be the minimal 
polynomial of ߠ over ℚ, and let ܩ be the Galois group of the field extension ܧ/ℚ. Note 
that ܧ is a splitting field for ݂  over ℚ, and that the roots of ݂  are ߠ ,  ,It follows .ߙ  and‾ߠ
by Lemma 18.3 in [281], that the action of ܩ on {ߠ , ,‾ߠ  induces an isomorphism from {ߙ
into a subgroup of ଷܵ ܩ , where ଷܵ is the symmetric group on 3 letters. It also follows, by 
Theorem 18.13 in [281], that the extension ܧ/ℚ is Galois. Hence, from Corollary 18.19 
and Lemma 17.6 in [281], we get 

|ܩ| = :ܧ] ℚ] = :ܧ] ℚ(ߠ)] ⋅ [ℚ(ߠ): ℚ] = :ܧ] ℚ(ߠ)] ⋅ 3, 
which shows that 3 divides |ܩ|. Let ߪ ∈ (ߚ)ߪ be with ܩ = ߚ for ‾ߚ ∈  has order ߪ then ,ܧ
2. This implies that 2 divides |ܩ|, and so it must hold that ܩ is isomorphic to ܵଷ. Now 
assume by contradiction that arg ߠ ∈ ߠ ℚ, thenߨ

ଵାఢ ∈ ℝ for some ߳ ≥ 0. Let ߬ ∈  be ܩ
such that ߬(ߠ) = ߠ , (‾ߠ)߬ = ߬ and ߙ (ߙ) = ߬ . Since‾ߠ  and ߪ are distinct, both have order 
2, and ܩ is isomorphic to ଷܵ, it follows that the group generated by ߬ and ߪ is ܩ. Clearly 
߬൫ߠ

ଵାఢ൯ = ߠ
ଵାఢ  and from ߠ

ଵାఢ ∈ ℝ we get ߪ൫ߠ
ଵାఢ൯ = ߠ

ଵାఢ, hence ߟ൫ߠ
ଵାఢ൯ = ߠ

ଵାఢ for 
all ߟ ∈ ߟ Let.ܩ ∈ (ߠ)ߟ be with ܩ =  then ,ߙ

ߠ
ଵାఢ = ߠ൫ߟ

ଵାఢ൯ = ଵାఢ(ߠ)ߟ =  .ଵାఢߙ
But we also have หߠ

ଵାఢห > 1 >  ଵାఢ|, which yields a contradiction, and so it must holdsߙ|
that arg ߠ ∉  ⋅ℚߨ
Corollary (4.3.18)[439]: The set ࣳ: = ൛݇ ⋅ ߣ

 : ݇, ݈ ∈ ℕൟ is dense in ℂ. 
Proof. Let ݖ ∈ ℂ and ߳ > 0 be given, and let ܰ ≥ 1 be with หߣ

ேห < ߳. Since 
arg ߣ = − arg ߠ ∉  ,ℚߨ

we have that 
{݈ ⋅ arg ߣ  mod2ߨ}ୀே

ஶ  
is dense in [0,2ߨ). It follows there exists ݈ ≥ ܰ with 

ቚexp ቀ݅ ⋅ arg ൫ߣ
൯ቁ − exp (݅ ⋅ arg ݖ)ቚ < ߳. 

Let ݇ ≥ 0 be the integer with ݇ ⋅ หߣ
ห ≤ |ݖ| < (݇ + 1) ⋅ หߣ

ห, then 
ቚ|ݖ| − ห݇ ⋅ ߣ

หቚ ≤ หߣ
ேห < ߳. 
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From this, from arg ൫݇ ⋅ ߣ
൯ = arg ൫ߣ

൯, and from (74), the lemma follows.  
Corollary (4.3.19)[439]: There exists a dense ܩఋ subset ܤ of ܵ , such that ௭ܲ

ଶߤ  is singular 
for all ݖ ∈  .ܤ
Proof. Set ܤ =∩ఢୀ

ஶ
ଵܷାఢ , then ܤ is a dense ܩఋ subset of ܵ  by Lemma (4.3.9) and Baire's 

theorem. Let ݖ ∈ then ℱ൫ ,ܤ ௭ܲ
ଶߤ൯(1 + ߳) does not tend to 0 as ߳ → ∞. Hence, by the 

Riemann-Lebesgue lemma, ܲ ௭
ଶߤ  is not absolutely continuous. From the law of pure types 

(see Theorem 3.26 in [272]) it now follows ௭ܲ
ଶߤ  is singular, which completes the proof 

of the Proposition.  
Corollary (4.3.20)[439]: There exists a dense ܩఋ subset ܤ of ܵ, such that for each ݖ ∈  ܤ
it holds that (ߤ)௭,௪ is discrete for ߤ-a.e. ݓ ∈ ℂ. 
Proof. As mentioned above, it suffices to show (ߤ)௭,௪ is discrete for ߤ-a.e. ݓ ∈ ℂ. By 
Lemma (4.3.15) we have ߤ(ܧ௭) = 1, and so (ߤ)௭,௪(ܧ௭) = 1 for ߤ-a.e. ݓ ∈ ℂ. Fix such 
a ݓ ∈ ℂ and let ܣ = ݓ + ߤ) ℝ. Sinceୄݖ )௭,௪(ܣ) = 1 and (ߤ)௭,௪ = ߦ ௭,క for(ߤ) ∈  ,ܣ

1 = ௭ܧ)௭,௪(ߤ) ∩ (ܣ = ߦ௭,௪൛(ߤ) ∈ :ܣ {ߦ}௭,௪(ߤ) > 0ൟ. 
This shows that (ߤ)௭,௪ is discrete, which completes the proof. 
Corollary (4.3.21)[439]: There exist constants ߩ ∈ (0,1) and ߳ ≥ 0, with 

dist൫2 Re൫ߠ
ଵାఢ൯ , ℤ൯ ≤ (1 + ߳) ⋅ ଵାఢ| for all (1|ߩ + ߳) ∈ ℤ. 

Proof. Let (ߠ)ଷ, … , ‾ߠ  other thanߠ  be the Galois conjugates of(ߠ) . Since ߠ  is an 
algebraic integer, 

ߠ
ଵାఢ + ߠ̅

ଵାఢ +   


బୀଷ

൫ߠ
ଵାఢ൯



 
∈ ℤ for all (1 + ߳) ∈ ℕ. 

It follows that (75) holds for (1 + ߳) ∈ ℕ with 
ߩ = max  ൛ห(ߠ)బห: 3 ≤ ݆ ≤ ݉ൟ ∈ (0,1) 

and ߳ = ݉ − 3. Since |ߠ| > 1 and for each integer ߳ ≥ 0 
dist ൫2 Re൫ߠ

ଵିఢ൯ , ℤ൯ ≤ |ଵିఢߠ|2 , 
the lemma follows.  
Corollary (4.3.22)[439]: There exists a constant ߳ ≥ 0 with หℱ(ߤ)൫4ߠ̅ߨ

ே൯ห > 1 + ߳ for 
all ܰ ∈ ℕ. 
Proof. Let ଵܺ, ܺଶ, … be i.i.d. random variables with 

ℙ൫ ଵܺ = (−1)
ܽ൯ =

1
4  for ݇, ݆ ∈ {1,2}. 

Since ߤ  is the unique Borel probability measure on ℂ with 

ߤ =
1
4

൫߮ଵ,ଵߤ + ߮ଵ,ଶߤ + ߮ଶ,ଵߤ + ߮ଶ,ଶߤ൯, 

it is equal to the distribution of the random sum ∑ఢୀଵ
ஶ ߣ 

ଵିఢ ⋅ ଵܺିఢ. Hence for every ߦ ∈ ℂ, 

ℱ൫ߤ൯(ߦ) = ෑ  
ஶ

ఢୀଵ

 ℱ ൮
1
4

⋅   
ଶ

ୀଵ

 ቀߜఒೕ
భషചೕ

+ ఒೕିߜ
భషചೕ

ቁ൲                             (ߦ)

= ෑ  
ஶ

ఢୀଵ

 
1
4

⋅   
ଶ

ୀଵ

  ൬exp ቀ݅Re ൫ߣ
ଵିఢ

ܽ ⋅ ൯ቁ‾ߦ + exp ቀ݅Re ൫−ߣ
ଵିఢ

ܽ ⋅  ൯ቁ൰‾ߦ
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             = ෑ  
ஶ

ఢୀିଵ

 
1
2

⋅ ൫cos൫Re൫ߣ
ଵିఢܽଵ ⋅ ൯൯‾ߦ + cos൫Re൫ߣ

ଵିఢܽଶ ⋅  .൯൯൯‾ߦ

Since ܽଵ, ܽଶ ∈ ࣳ, where ࣳ is defined in Lemma (4.3.6), for ݆ = 1,2 there exist ݇ , ݈ ∈ ℕ 
with ܽ = ݇ ⋅ ߠ

ିೕ. Hence for ܰ ∈ ℕ, 

ℱ൫ߤ൯൫4ߠ̅ߨ
ே൯  = ෑ  

ே

ఢୀିஶ

 
1
2 ⋅ ൫cos൫4ߨ Re൫ߠ

ଵିఢܽଵ൯൯ + cos൫4ߨ Re൫ߠ
ଵିఢܽଶ൯൯൯

 = ෑ  
ே

ఢୀିஶ

 
1
2

൫cos൫4݇ߨଵ ⋅ Re൫ߠ
ଵିఢିభ ൯൯ + cos൫4݇ߨଶ ⋅ Re൫ߠ

ଵିఢିమ൯൯൯.

 

Let us show that ܾଵିఢ ≠ 0 for every (1 − ߳) ∈ ℤ, where 

ܾଵିఢ: =
1
2

൬cos ቀ4݇ߨଵ ⋅ Re ൫ߠ
ଵିఢିభ൯ቁ + cos ቀ4݇ߨଶ ⋅ Re ൫ߠ

ଵିఢିమ൯ቁ൰. 
Recall that the set of algebraic integers is closed under addition, subtraction and 
multiplication. The product of ߠ  with its Galois conjugates is equal to the constant term 
of the minimal polynomial of ߠ , which is ±1 by assumption. These conjugates are all 
algebraic integers, hence ߠ

ିଵ is an algebraic integer, and so ߠ
ଵିఢ is an algebraic integer 

for all (1 − ߳) ∈ ℤ. Let (1 − ߳) ∈ ℤ, then from the identity 

cos ߚ + cos ߛ = 2 cos ൬
ߚ + ߛ

2
൰ cos ൬

ߚ − ߛ
2

൰  for all ߚ , ߛ ∈ ℝ, 
we obtain 
ܾଵିఢ = cos ൫2ߨ ⋅ Re൫݇ଵߠ

ଵିఢିభ + ݇ଶߠ
ଵିఢିమ൯൯ ⋅ cos ൫2ߨ ⋅ Re൫݇ଵߠ

ଵିఢିభ − ݇ଶߠ
ଵିఢିమ ൯൯. 

Since 2Re ൫݇ଵߠ
ଵିఢିభ + ݇ଶߠ

ଵିఢିమ ൯ is equal to 

݇ଵߠ
ଵିఢିభ + ݇ଶߠ

ଵିఢିమ + ݇ଵ̅ߠ
ଵିఢିభ + ݇ଶ̅ߠ

ଵିఢିమ , 
it is an algebraic integer, and so it can't be of the form ݇ + ଵ

ଶ
 with ݇ ∈ ℤ. It follows the 

first term in the product (77) is nonzero. In a similar manner the second term in (77) is 
nonzero, which shows ܾଵିఢ ≠ 0.  

Fix (1 − ߳) ∈ ℤ and ݆ ∈ {1,2}, and let ݀ ∈ ℤ be with 
ቚ2Re ቀߠ

ଵିఢିೕቁ − ݀ቚ = dist ቀ2 Re ቀߠ
ଵିఢିೕቁ , ℤቁ. 

Let 1 + ߳ and ߩ be the constants from Lemma (4.3.7), and write 
:ܥ = 1)ߨ2 + ߳) ⋅ max  {݇ଵ , ݇ଶ} ⋅ ିߩ ୫ୟ୶  {భ ,మ}. 

From Lemma (4.3.7), 

      ቚcos ൬4ߨ ݇ ⋅ Re ቀߠ
ଵିఢିೕ ቁ൰ − 1ቚ 

 = ቚcos ൬4ߨ ݇ ⋅ Re ቀߠ
ଵିఢିೕ ቁ൰ − cos ൫2ߨ ݇݀൯ቚ

 ≤ ߨ2 ݇ ⋅ ቚ2Re ቀߠ
ଵିఢିೕቁ − ݀ቚ = ߨ2 ݇ ⋅ dist ቀ2Re ቀߠ

ଵିఢିೕቁ , ℤቁ

 ≤ ߨ2 ݇(1 + ߳) ⋅ หଵିఢିೕหߩ ≤ ܥ ⋅ .|ଵିఢ|ߩ

 

This shows 

|ܾଵିఢ| ≥ 1 −
1
2   

ଶ

ୀଵ

ቚcos ൬4ߨ ݇ ⋅ Re ቀߠ
ଵିఢିೕ ቁ൰ − 1ቚ ≥ 1 − ܥ ⋅  .|ଵିఢ|ߩ



182 

Now let ܯ ≥ 1 be such that ܥ ⋅ |ଵିఢ|ߩ < 1 for all (1 − ߳) ∈ ℤ with |1 − ߳| ≥  Then .ܯ
from (76) it follows that for each ܰ ≥ 0, 

หℱ(ߤ)൫4ߠ̅ߨ
ே൯ห ≥ ෑ  

ିெ

ఢୀିஶ

|ܾଵିఢ| ෑ  
ெିଵ

ఢୀெ

|ܾଵିఢ| ෑ  
ஶ

ఢୀଵିெ

|ܾଵିఢ| 

                                    ≥ ෑ  
ஶ

ఢୀଵିெ

(1 − ܥ ⋅ ଵିఢ)ଶߩ ⋅ ෑ  
ெିଵ

ఢୀெ

|ܾଵିఢ| > 0, 

which completes the proof. 
Corollary (4.3.23)[439]: Let ߳ ≥ 0, then ଵܷାఢ is an open and dense subset of ܵ. 
Proof. Note that for ݖ ∈ ܵ and (1 + ߳) ∈ ℝ 

ℱ൫ ௭ܲ
ଶߤ ൯(1 + ߳) = න  

ℝ
exp(݅1)ݔ + ߳)) ݀ ௭ܲ

ଶߤ            (ݔ)

= න  
ℝ

exp(݅⟨ݓ, (1 + (⟨ݖ(߳ (ݓ)ߤ݀ = ℱ൫ߤ൯((1 +  ,(ݖ(߳

hence 

ଵܷାఢ = ൜ݖ ∈ ܵ: sup
ఢஹ

 |ℱ(ߤ)((1 + |(ݖ(2߳ > 1 + ߳ൠ. 

Now since ℱ(ߤ) is continuous it follows ଵܷାఢ is open in ܵ. Set ߟ = exp (−݅arg ߠ), then 
from Proposition (4.3.8) 

ቚℱ ቀ ఎܲೖ
ଶ ቁߤ ൫4ߠ|ߨ|൯ቚ = หℱ(ߤ)൫4ߠ̅ߨ

൯ห > 1 + ߳ 
for every integer ݇ ≥ 0. Let ܰ ≥ 1 be with ห4ߠߨ

ேห ≥ 1 + ߳, then {ߟ}ୀே
ஶ ⊂ ଵܷାఢ by 

(78). By assumption arg ߠ ∉ ୀே{ߟ} ℚ, henceߨ
ஶ  is dense in ܵ, which proves the lemma. 

Corollary (4.3.24)[439]: Let (1 + ߳) ∈ ℕ, then ଵܸାఢ is a dense open subset of ܵ. 
Proof. Since ܬଵାఢ, is open in ܵ for every ݇ ∈ ℕ the same holds for ଵܸାఢ. Let ܽ ∈ ℝ and 
0 < ߳ < 1 be given. For ܧ ⊂ ℝ write (ܧ)ݍ = ܧ + |ߠ| ℤ. Sinceߨ2 > 1 and arg ߠ ∉  ,ℚߨ
there exists ݇ ∈ ℕ with 

ห4ߠ̅ߨ
ห >

2 + ߳

cos ቀߨ
2 − ߳ቁ

 and arg ൫4ߠ̅ߨ
൯ ∈ ܽ)ݍ − ߳, ܽ + ߳). 

Set ݓ = ߠ̅ߨ4
 and for (1 + ߳) ∈ ℝ write ݂(1 + ߳) = ൻݓ, ݁(ଵାఢ)ൿ. It holds that 

݂ (arg ୄݓ)  = ൽݓ,
ୄݓ

ඁ|ୄݓ| = 0,

݂(arg ୄݓ + ߳)  = ݂ ቀarg ݓ −
ߨ
2

+ ߳ቁ = ർݓ,
ݓ

|ݓ|
⋅ ݁(ఢିగ/ଶ)

 = Re ൬ݓ ⋅
‾ݓ

|ݓ| ⋅ ݁ቀగ
ଶିఢቁ൰ = |ݓ| ⋅ cos ቀ

ߨ
2

− ߳ቁ > 2 + ߳,

 

and 
[arg ୄݓ, arg ୄݓ + ߳] ⊂ ݍ ቂܽ − ߳ −

ߨ
2 , ܽ + 2߳ −

ߨ
2ቃ. 

Hence, since ݂  is continuous and 2ߨ-periodic, there exists (1 + ߳) ∈ ቂܽ − ߳ − గ
ଶ

, ܽ +

2߳ − గ
ଶ

ቃ with ݂(1 + ߳) ∈ (1 + ߳, 2 + ߳). Set ݖ = exp ൬݅ ቀ1 + ߳ + గ
ଶ

ቁ൰, then 

,ݓ⟩ ⟨ୄݖ = ൻݓ, ݁(ଵାఢ)ൿ = ݂(1 + ߳) ∈ (1 + ߳, 2 + ߳), 
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and so ݖ ∈ ଵାఢ,ܬ ⊂ ଵܸାఢ. Now since ܽ and ߳ are arbitrary and 

arg ݖ ∈ ݍ ቄ1 + ߳ +
ߨ
2

ቅ ⊂ ܽ]ݍ − ߳, ܽ + 2߳], 
it follows that ଵܸାఢ  is dense in ܵ, which proves the lemma.  
Corollary (4.3.25)[439]: Let ߳ ≥ 0 be the constant from Proposition (4.3.8), then for 
each (1 + ߳) ∈ ℕ there exists (1 + ߳)ଵାఢ ∈ (1 + ߳, 2 + ߳) with 

න  หℱ൫(ߥ)௪൯((1 + ߳)ଵାఢ)ห
ଶ

(ݓ)ߤ݀ > (1 + ߳)ଶ. 

Proof. Let (1 + ߳) ∈ ℕ. Since ݖ ∈ ଵܸାఢ there exists ݇ଵାఢ ∈ ℕ and (1 + ߳)ଵାఢ ∈ (1 +
߳, 2 + ߳) with ർ4ߠ̅ߨ

భశച , ୄݖ = (1 + ߳)ଵାఢ. Write ߟ = ߠ̅ߨ4
భశച , then by Proposition 

(4.3.8). 

1 + ߳ < หℱ൫ߤ൯(ߟ)ห ≤ න  ฬන  ݁⟨క,ఎ⟩݀൫ߤ൯
௭,௪

ฬ(ߦ)  .(ݓ)ߤ݀

Let ܳ௭఼  be the orthogonal projection onto ୄݖℝ, i.e. 
ܳ௭఼ߦ = ,ߦ⟩ ߦ for ୄݖ⟨ୄݖ ∈ ℂ. 

From (81) and since ߬௪(ߤ)௭,௪ is supported on ୄݖℝ for ݓ ∈ ℂ, 

1 + ߳  < න  ฬන  ݁(కା௪,ఎ⟩݀߬௪(ߤ)௭,௪(ߦ)ฬ (ݓ)ߤ݀

 = න  ห݁⟨௪,ఎ⟩ห ⋅ ฬන  ݁⟨క,ఎ⟩݀ܳ௭ ⊥ ߬௪൫ߤ൯
௭,௪

ฬ(ߦ) (ݓ)ߤ݀

 = න  ฬන  exp(݅⟨ܳ௭఼ߦ, ฬ(ߦ)௭,௪(ߤ)௪߬݀(⟨ߟ ߤ݀ .(ݓ)

 

Now since ܳ ௭఼  is self-adjoint, ⟨ߟ, is equal to (1 ⟨ୄݖ + ߳)ଵାఢ, and ܴ  from (79) is a rotation, 

1 + ߳  < න  ฬන  exp (݅⟨ߦ, (1 + ߳)ଵାఢୄݖ⟩)݀߬௪(ߤ)௭,௪(ߦ)ฬ (ݓ)ߤ݀

 = න  ฬන  exp (݅⟨ܴߦ, (1 + ߳)ଵାఢ ⋅ ฬ(ߦ)௭,௪(ߤ)௪߬݀(⟨ୄݖܴ (ݓ)ߤ݀

 = න  ฬන  ݁క(ଵାఢ)భశച݀(ߥ)௪(ߦ)ฬ (ݓ)ߤ݀ = න  หℱ൫(ߥ)௪൯((1 + ߳)ଵାఢ)ห݀ߤ .(ݓ)

 

From this and Jensen's inequality the lemma follows.  
Corollary (4.3.26)[439]: It holds that ߤ(ܧ௭) > 0. 
Proof. Let {(1 + ߳)ଵାఢ}(ଵାఢ)∈ℕ be the numbers obtained in Lemma (4.3.13). Since 
supp (ߤ ) is compact and 

supp൫(ߤ)௭,௪൯ ⊂ supp൫ߤ൯  for ߤ-a.e. ݓ ∈ ℂ, 
there exists ܯ > 0 such that (ߥ)௪ is supported on ܬ = ,ܯ−] ݓ .-a.eߤ for [ܯ ∈ ℂ. Write 

ℳ(ܬ) = ൛ߥ ∈ ℳ(ℝ): ߥ  is supported on ܬൟ, 
then it is easy to see that ℱ(ߥ) is ܯ-Lipschitz for ߥ ∈ ℳ(ܬ). Hence there exist ߜ > 0 
and intervals {ܣଵାఢ}(ଵାఢ)∈ℕ, such that for every (1 + ߳) ∈ ℕ it holds 

(1 + ߳)ଵାఢ ∈ ଵାఢܣ ⊂ (1 + ߳, 2 + ߳), 
ߥ and for each ,ߜ ଵାఢ has lengthܣ ∈ ℳ(ܬ), 

||ℱ(ߥ)((1 + ߳)ଵାఢ)ห
ଶ

− |ℱ(ߥ)(ݔ)|ଶ ∣<
(1 + ߳)ଶ

2  for ݔ ∈  .ଵାఢܣ
We now get from (80) that for each ܰ ≥ 1, 
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(1 + ߳)ଶ  ≤ න  
1
ܰ   

ேିଵ

ఢୀିଵ

  หℱ൫(ߥ)௪൯((1 + ߳)ଵାఢ)ห
ଶ

(ݓ)ߤ݀

 = න  
1

ܰߜ
  
ேିଵ

ఢୀିଵ

 න  
భశച

  หℱ൫(ߥ)௪൯((1 + ߳)ଵାఢ)หଶ݀ߤ݀ݔ(ݓ)

 ≤ න  
1

ܰߜ
  
ேିଵ

ఢୀିଵ

 න  
భశച

  หℱ൫(ߥ)௪൯(ݔ)ห
ଶ

+
(1 + ߳)ଶ

2
(ݓ)ߤ݀ݔ݀

 ≤ න  
1

ܰߜ
න  

ே

ିே
  หℱ൫(ߥ)௪൯(ݔ)ห

ଶ
(ݓ)ߤ݀ݔ݀ +

(1 + ߳)ଶ

2
,

 

which gives 
1)ߜ + ߳)ଶ

4 ≤ න  
1

2ܰ න  
ே

ିே
หℱ൫(ߥ)௪൯(ݔ)ห

ଶ
 .(ݓ)ߤ݀ݔ݀

Now by Theorem (4.3.11) and the bounded convergence theorem, 

          න    
క∈ℂ

  ߤ݀{ߦ}௭,௪(ߤ)  (ݓ)

 = න    
௫∈ℝ

  (ݓ)ߤ݀{ݔ}௪(ߥ)

 = න  lim
ே→ஶ

 
1

2ܰ
න  

ே

ିே
  หℱ൫(ߥ)௪൯(ߦ)หଶ݀ߤ݀ߦ(ݓ)

 = lim
ே→ஶ

 න  
1

2ܰ
න  

ே

ିே
  หℱ൫(ߥ)௪൯(ߦ)หଶ݀ߤ݀ߦ(ݓ) ≥

1)ߜ + ߳)ଶ

4
> 0.

 

This gives ߤ(ܨ௭) > 0, where 
௭ܨ = ൛ݓ ∈ ℂ: {ߦ}௭,௪(ߤ) > 0 for some ߦ ∈ ℂൟ. 

Let ݓ ∈  ௭, then there existsܨ
ߦ ∈ supp ൫(ߤ)௭,௪൯ ⊂ ݓ +  ℝୄݖ

with (ߤ)௭,௪{ߦ} > 0. Since (ߤ)௭,క = ߦ ௭,௪ it follows(ߤ) ∈ ௭ܧ ௭, whereܧ  is defined in 
(82), and so 

(௭ܧ)௭,௪(ߤ) ≥ {ߦ}௭,௪(ߤ) > 0. 
Now from ߤ(ܨ௭) > 0 we get 

(௭ܧ)ߤ ≥ න  
ி

൫ߤ൯
௭,௪

(ݓ)ߤ݀(௭ܧ) > 0, 

which proves the lemma. 
Corollary (4.3.27)[439]: It holds that ߤ(ܧ௭) = 1. 
Proof. Given ܣଵ, ଶܣ ∈ ℬ with ߤ(ܣଵΔܣଶ) = 0 we write ܣଵ = ߤଶmodܣ . For a ߪ-algebra 
ℱ ⊂ ℬ and ܣଵ ∈ ℬ we write ܣଵ ∈ ℱmodߤ  whenever there exists ܣଶ ∈ ℱ with ܣଵ =
ߤଶmodܣ . The system ൫ܭ, ℬ , ܶ,  ൯ is measure preserving and isomorphic to a Bernoulliߤ
shift. We shall show that 

௭ܧ ∈ ሩ  
ஶ

ఢୀିଵ

ܶି(ଵାఢ)(ℬ)          mod ߤ , 

from which the lemma will follow by the zero-one law.  
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Given a word ݅ଵ ⋅ … ⋅ ݅ଵାఢ = ߙ ∈ write ߮ఈ ∗ܫ = ߮భ ∘ … ∘ ߮భశച and ܭఈ = ߮ఈ(ܭ). 
For (1 + ߳) ∈ ℕ and ݓ ∈ (ݓ)ଵାఢߙ let ܭ ∈ ଵାఢ be the unique word of length 1ܫ + ߳ for 
which ݓ ∈ ∅ܭ is the empty word ∅ and (ݓ)ߙ ఈభశച(௪), whereܭ = ݉ For .ܭ , (1 + ߳) ∈ ℕ 
and ݓ ∈  set ܭ

ݖ =
ߠ

ݖ
หߠ

ݖห
∈ ܵ and ܨ,ଵାఢ(ݓ) =  .ఈభశച(௪)൯ܭ௭,௪൫(ߤ)

For ݉ ∈ ℕ, ݓ ∈ ℂ and ߜ > 0 let 
௪ܸ
(ߜ) = ݓ + ݖ

ୄ ⋅ ℝ + ,0)ܤ  ,(ߜ
where 0)ܤ,  From Lemma 3.3 in [277] .ߜ is the open disk in ℂ with centre 0 and radius (ߜ
we get that for each ݉ ∈ ℕ and ܣ ∈ ℬ, 

(ܣ)௭,௪(ߤ) = lim
ఋ↓

 
)ߤ ௪ܸ

(ߜ) ∩ (ܣ
ߤ ൫ ௪ܸ

(ߜ)൯
 for ߤ-a.e. ݓ ∈ ℂ. 

Fix ݉, (1 + ߳) ∈ ℕ, then for ߤ-a.e. ݓ ∈  ܭ

(ݓܶ),ଵାఢܨ =
ఈభశച(்௪)൯ܭ௭,்ೢ൫(ߤ)
ఈబ(்௪)൯ܭ௭,்௪൫(ߤ)

= lim
ఋ↓

 
ߤ ቀ ்ܸ௪

 (ߜ) ∩ ఈభశച൫்ೢ)൯ܭ

൫்ܸߤ ௪
 (ߜ) ∩ ఈబ(்௪)൯ܭ

. 

Since ߤ  satisfies the SSC, 
߮ఈ(ܭ) ∩ ߮ఈ(௪)(ܭ) = ∅ for ߙ ∈ ܫ ∖  ,{(ݓ)ߙ}

hence, 
൫߮ఈߤ

ିଵ൫߮ఈ(௪)(ܭ)൯ = 0 for ߙ ∈ ܫ ∖  .{(ݓ)ߙ}
From this and (83) it follows that for ߤ-a.e. ݓ ∈  ,ܭ

(ݓܶ),ଵାఢܨ = lim
ఋ↓

 
∑  ఈ∈ூ   ି|ܫ| ⋅ ߤ ൬߮ఈ

ିଵ ቀ߮ఈ(௪)൫்ܸ ௪
 (ߜ) ∩ ఈభశച(்௪)൯ቁ൰ܭ

∑  ఈ∈ூ   ି|ܫ| ⋅ ߤ ൬߮ఈ
ିଵ ቀ߮ఈ(௪)൫்ܸ ௪

 (ߜ) ∩ ఈబ(்௪)൯ቁ൰ܭ
. 

Now since ߤ = ∑ఈ∈ூ ି|ܫ|  ⋅ ߮ఈߤ , 

(ݓܶ),ଵାఢܨ = lim
ఋ↓

 
ߤ ቀ߮ఈ(௪)൫ ்ܸ௪

 (ߜ) ∩ ఈభశച(்௪)൯ቁܭ

ߤ ቀ߮ఈ(௪)൫்ܸ ௪
 (ߜ) ∩ ఈబ(்௪)൯ቁܭ

 for ߤ-a.e. ݓ ∈  .ܭ

For every ߜ > 0, 
߮ఈ(௪) ቀ்ܸ ௪

(ଵାఢ)(ߜ)ቁ  = ߮ఈ(௪)(ܶݓ) + ߣ
ݖ

ୄ ⋅ ℝ + ߣ
 ⋅ ,0)ܤ (ߜ

 = ݓ + ݖ
ୄ ⋅ ℝ + ,൫0ܤ หߣߜ

ห൯ = ௪ܸ
൫หߣߜ

ห൯.
 

Hence from (84) it follows that for ߤ-a.e. ݓ ∈  ,ܭ

(ݓܶ),ଵାఢܨ = lim
ఋ↓

 
൫ߤ ௪ܸ

൫หߣߜ
ห൯ ∩ ఈశభశച(௪)൯ܭ

൫ߤ ௪ܸ
൫หߣߜ

ห൯ ∩ ఈ(௪)൯ቁܭ
=

ఈశభశച(௪)൯ܭ௭,௪൫(ߤ)
ఈ(௪)൯ܭ௭,௪൫(ߤ)

, 

where we have used the fact that (ߤ)௭,௪൫ܭఈ(௪)൯ > 0 for ߤ-a.e. ݓ ∈   .ܭ
Let ݉ ∈ ℕ, then from (85) we get that modߤ it holds 

௭ܧ  = ቊݓ ∈ :ܭ lim
ଵାఢ

 
ఈశభశച(௪)൯ܭ௭,௪൫(ߤ)

ఈ(௪)൯ܭ௭,௪൫(ߤ)
> 0ቋ

 = ቄݓ ∈ :ܭ lim
ଵାఢ

(ݓܶ),ଵାఢܨ  > 0ቅ ∈ ܶି(ℬ),
 

which shows 
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௭ܧ ∈∩∈ℕ ܶି(ℬ) mod    ߤ . 
Now since ൫ܭ, ℬ , ܶ, (௭ܧ)ߤ ൯ is isomorphic to a Bernoulli shift, it follows thatߤ = 0 
or 1. But by Lemma (4.3.14) we have ߤ(ܧ௭) > 0, which completes the proof of the 
lemma. 
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Chapter 5 
Scaling of Spectra 

We provide a characterization for the integrally expanding set ߉ܭ of a spectrum ߉ 
to be a spectrum again, thereby we find all integers ܭ such that ߉ܭସ are spectra of the 
1/4-Cantor measure ߤସ , where ߉ସ ∶= ൛∑ ݀4ஶ

ୀ ∶ ݀ ∈ {0, 1}ൟ is the first known 
spectrum for ߤସ . Furthermore, we construct a spectrum ߉ such that the integrally 
shrinking set ܭ/߉ is a maximal orthogonal set but not a spectrum for some integer ܭ. We 
determine the spectral eigenvalues of a class of random convolution on ℝ. We study some 
positive integers ܾ such that ܾ߉, is also a spectrum of the equally-weighted Cantor 
measures ߤ,. 
Section (5.1): Cantor Measures: 

A fundamental problem in harmonic analysis is whether {݁(ݔߣ݅ߨ2−)ݔ, ߣ ∈  is {߉
an orthogonal basis of ܮଶ(µ), the space of all square-integrable functions with respect to 
a probability measure µ. The above probability measure µ is known as a spectral measure 
and the countable set ߉ as its spectrum. Spectral theory for the Lebesgue measures on 
sets has been studied extensively since it initialed by Fuglede 1974 [304], see 
[301,307,315]. He, Lai and Lau [305] proved that a spectral measure is pure type (i.e. 
either absolutely continuous or singular continuous or counting measure). For singular 
continuous measures, the first spectral measure was found by Jorgenson and Pederson in 
1998 [307], they proved that ߉ସ: = {∑ d୬4୬ஶ

ୀ : ݀ ∈ {0,1}} is a spectrum of the 
Bernoulli convolution µସ. Since then, some significant progresses have been made and 
various new phenomena different from spectral theory for the Lebesgue measure have 
been discovered [292–9,306–308,314]. For instance, Fourier frames on the unit interval 
[0,1) have Beurling dimension one [308], while spectra of a singular measure could have 
zero Beurling dimension [293]. Here we define the Cantor measure µ, with 2 ≤ ݍ ∈ ℤ 
and ݍ < ܾ ∈ ℝ, 

 µ, =
1
ݍ  µ, ቀ ݂

ିଵ (·)ቁ
ିଵ

ୀ

,                                                (1) 

 is a self-similar probability measure associated with the iterated function system, 
݂(ݔ) = ܾ/ݔ + ,ݍ/݅ ݅ = 0,1, . . . , ݍ − 1. 

And we call the special case µ : = µଶ, the Bernoulli convolutions. In 1998, Jorgenson 
and Pederson proved in [307] that Bernoulli convolutions µ with ܾ ∈ 2ℤ are spectral 
measures. The converse problem stood for a long time and it was solved in [292] by the 
author in 2012 after important contributions by Hu and Lau [306]. The complete 
characterization for Bernoulli convolutions in [292] was recently extended by He, Lau 
[295] to the Cantor measure µ, that it is a spectral measure if and only if 

 2 ≤ ,ݍ
ܾ
ݍ

∈ ℤ.                                                           (2) 

The Cantor measures µ, with ݍ and ܾ satisfying (2) are few of known singular spectral 
measures, but the structure of their spectra is little known, even for the Bernoulli 
convolution µସ. We explore fine structure of spectra of these Cantor measures. Our 
exploration starts from tree structure of a (maximal) orthogonal set ߉, meaning that 
,(ݔߣ݅ߨ2−)ݔ݁} ߣ ∈  In 2009, Dutkay, Han .(,ߤ)ଶܮ is a (maximal) orthogonal set of {߉
and Sun gave a complete characterization of the maximal orthogonal sets of the Bernoulli 
convolution µସ by introducing a tree labeling tool [297]. He, Lai developed a tree labeling 
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technique for Cantor measures ߤ, [293]. They proved that a countable set is a maximal 
orthogonal set of the Cantor measure ߤ, if and only if it can be labeled as a maximal 
tree, see Theorem (5.1.10). Thus maximal orthogonal sets have tree structure and they 
can be built selecting maximal tree appropriately. While a maximal orthogonal set is not 
necessarily a spectrum since it may lack of completeness in ܮଶ(ߤ,). The completeness 
of maximal orthogonal sets for Cantor measures ߤ, is quite challenging, see [293,295, 
297–299,307,314] for various sufficient and necessary conditions. In fact, the 
completeness of exponential sets is a classical problem in Fourier analysis since 1930s’, 
see [309–313, 316]. 

The main contribution is to introduce a quantity ܦఛ,ఋ to measure minimal level 
difference between a branch ߜ of the labeling tree and its subbranches, see Definition 
(5.1.3). We show in Theorem (5.1.10) that a maximal orthogonal set ߉ with maximal tree 
labeling ߬ is a spectrum if ܦఛ,ఋ is uniform bounded on all tree branches ߜ, and also in 
Theorem (5.1.12) that it is not a spectrum if ܦఛ,ఋ increases linearly to the level of the tree 
branches ߜ. Unlike spectra of the Lebesgue measure on the unit interval, a spectrum ߉ of 
a singular measure could have the integrally rescaled set ߉ܭ being its spectrum too, see 
[298, 299, 307] for the Bernoulli convolution µସ. We apply our completeness results in 
Theorem (5.1.10) and Theorem (5.1.12) to characterize the spectral property of the 
rescaled set ߉ܭ for a given spectrum ߉ of the Cantor measure µ, via no repetend of ܭ 
for the labeling tree of ߉. As corollaries, we find all integers ܭ such that ߉ܭସ are spectra 
of the Bernoulli convolution µସ, see Corollary (5.1.5), and we construct a spectrum ߉ of 
the Cantor measure µ, such that the rescaled set ߉/(ܾ − 1) is its maximal orthogonal 
set but not its spectrum, see Theorem (5.1.12), Theorem (5.1.15) and Theorem (5.1.18). 

We recall some preliminaries about (maximal) orthogonal sets for Cantor 
measures, and state our main results. We consider the problem when a maximal 
orthogonal set is a spectrum. We discuss the necessity for a maximal orthogonal set to be 
a spectrum. We discuss rationally rescaling of a spectrum. 

We start from recalling a characterization of orthogonal sets of a probability 
measure µ via its Fourier transform  µො, 

µො(ߦ) ∶= න ݁ିଶగక௫
 

ℝ
݀µ(ݔ). 

Observe that the zero set of the Fourier transform  µො, , see (19) for its explicit 
expression, is ܼ, = {ܾܽ: ܽ ∈ ℤ\ݍℤ, 0 ≤ ݆ ∈ ℤ}. Then a discrete set ߉ is an orthogonal 
set of µ, if and only if we have the following for orthogonal sets of the Cantor measure 
µ, [293,295]: 

߉  − ߉ ⊂ ℤ, ∪ {0}.                                                  (3) 
As orthogonal sets (maximal orthogonal sets and spectra) are invariant under translations, 
we always normalize them by assuming that 

 0 ∈ ߉ ⊂ ℤ.                                                          (4) 
To introduce the tree structure of the maximal orthogonal set of the Cantor measure µ,, 
we need some notation and concepts. Denote ߑ : = {0,···, ݍ − 1}, and ߑ

: =
ߑ ×···× ᇣᇧᇧᇤᇧᇧᇥߑ



, 1 ≤ ݊ ≤ ∞ be the ݊ copies of ߑ , and ߑ
∗: = ⋃ ߑ


ଵஸழஶ . Given ߜ = ଶߜଵߜ ·

·· ∈ ߑ
∗ ∪ ߑ

ஶ and ߜ′ ∈ ߑ
∗, we define ߜ′ߜ is the concatenation of ߜ′ and ߜ, and adopt the 
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notation 0ஶ = 000 ···, 0 = 0 ··· 0ᇣᇤᇥ


  . We call an element in ߑ
∗ ∪ ߑ

ஶ as a tree branch. For 

each tree branch ߜ = ଶߜଵߜ ···, denote  

:|ߜ = ቊ
ଶߜଵߜ) ··· ߜ  when ߜ ∈ ߑ

ஶ, and 
 (δ0ஶ)|     when δ ∈ Σ୯

∗ ,           

for all ݇ ≥ 1.  
Definition (5.1.1)[291]: For 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ, we say that a mapping ߬: ߑ

∗ →
{−1,0, . . . , ܾ − 2} is a tree mapping if  

(i) ߬(0) = 0 for all ݊ ≥ 1, and  
(ii) ߬(ߜ) ∈ ߜ + ߜ ℤ ifݍ = ଵߜ ··· ߜ ∈ ߑ

, ݊ ≥ 1, 
and that a tree mapping ߬ is maximal if  

(iii) for any ߜ ∈ ߑ
∗ there exists ߜ′ ∈ ߑ

∗ such that ߬((ߜߜ′)|݊) = 0 for sufficiently large 
integers ݊. 

In [293], He, Lai established the following characterization for a maximal 
orthogonal set of the Cantor measure µ, via some maximal tree mapping. 
Theorem (5.1.10)[291]: ([293]) Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ. Assume that ߉ is a countable set of 
real numbers containing zero. Then ߉ is a maximal orthogonal set of the Cantor measure 
µ, if and only if there exists a maximal tree mapping ߬ such that ߉ =   where ,(߬)߉

(߬)߉  ≔ ൝ ିଵܾ(|ߜ)߬
ஶ

ୀଵ

ߜ : ∈ ߑ
∗  such that 

(|ߜ)߬ = 0 for sufficiently large ݉ൡ.                (5) 

Given a maximal tree mapping ߬ : ߑ
∗ → {−1,0, … , ܾ –  2}, we say that ߜ ∈ ߑ

 , ݊ ≥ 1, is a 
߬-regular branch if ߬(ߜ|) = 0 for sufficiently large ݉. Define ߎఛ,: ߑ

∗ ∪ ߑ
ஶ → ℝ, ݊ ≥

1, by 

(ߜ)ఛ,ߎ =  (ିଵ)ܾ(|ߜ)߬


ୀଵ

.                                              (6) 

One may verify that the restriction of ߎఛ, onto ߑ
 is one-to-one for any ݊ ≥ 1. For a ߬-

regular tree branch ߜ ∈ ߑ
∗, we can extend the definition ߎఛ,(ߜ), ݊ ≥ 1, in (6) to ݊ = ∞ 

by taking limit in (6), 

:(ߜ)ఛ,ஶߎ =  ିଵܾ(|ߜ)߬
ஶ

ୀଵ

.                                          (7) 

Applying the above ܾ -nary expression, we conclude that a maximal orthogonal set of the 
Cantor measure µ, is the image of ߎఛ,ஶ for some maximal tree mapping ߬, 

(߬)߉ = ൛ߎఛ,ஶ(ߜ): ߜ ∈ ߑ
∗  are ߬ − regular branchesൟ 

This together with Theorem (5.1.10) suggests that various maximal orthogonal sets of the 
Cantor measure µ, could be constructed by selecting maximal tree mapping 
appropriately. 

Now we introduce a quantity to measure (minimal) level difference between a tree 
branch and its subbranches, which plays important role in our study of spectral property 
of Cantor measures. For ߜ′ ∈ ߑ

∗ and ߜ ∈ ߑ
 for some ݊ ≥ 1, define  
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(′ߜ)ఛ,ఋܦ  = (′ߜ)ఋܣ# +  ൫ ݊ − ݊ିଵ − 1൯
ೕ∈ഃ(ఋᇲ)

,                          (8) 

where ܣఋ(ߜ′): = {݉ ≥ 1: (|′ߜߜ)߬ ≠ 0}, :(′ߜ)ఋܤ = {݉ ≥ 1: (|′ߜߜ)߬ ∉ ,{ℤݍ ݊ = 0, 
and ൛ ݊ൟ

ஹଵ
 is a strictly increasing sequence of positive integers given by { ݊: ݆ ≥ 1} =

 .ܧ is the cardinality of a set ܧ# and ,(′ߜ)ఋܣ
Definition (5.1.3)[291]: Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ and ߬: ߑ

∗ → {−1,0, . . . , ܾ − 2} be a maximal 
tree mapping. Define 

:ఛ,ఋܦ = inf൛ܦఛ,ఋ(ߜᇱ): ᇱߜ ∈ ߑ
∗ ൟ , ߜ ∈ ߑ

∗ .                                   (9) 
Given a maximal tree mapping ߬: ߑ

∗ → {−1,0, . . . , ܾ − 2}, we say that ߜ ∈ ߑ
, ݊ ≥ 1, is 

a a ߬-main branch if ߬(ߜ|) = 0 for all ݉ > ݊. Clearly ߜ ∈ ߑ
∗ is a ߬-regular branch if 

and only if either ߜ is a ߬ -main branch or 0ߜ  is for some ݇ ≥ 1; and for any ߜ ∈ ߑ
∗ there 

exists a ߬-main subbranch ߜߜ′, where ߜ′ ∈ ߑ
∗ . For any ߜ ∈ ߑ

∗, one may verify that the 
quantity ܦఛ,ఋ is the minimal distance to its ߬-main subbranches,  

ఛ,ఋܦ = inf൛ܦఛ,ఋ(ߜᇱ): ߜߜᇱare ߬ − main branchesൟ < ∞.                (10) 
A challenging problem in spectral theory for the Cantor measure µ, is when a maximal 
orthogonal set becomes a spectrum [293,295,297–299,307,314]. Now we present our 
main results. In our first main result, a sufficient condition via boundedness of ܦఛ,ఋ , ߜ ∈
ߑ

∗ , is provided for a maximal orthogonal set of the Cantor measure µ, to its spectrum.  
We believe that the boundedness assumption on ܦఛ,ఋ, ߜ ∈ ߑ

∗ , is a very weak 
sufficient condition for a maximal orthogonal set to be a spectrum. In fact, as shown in 
the next theorem, the above boundedness condition on ܦఛ,ఋ, ߜ ∈ ߑ

∗, is close to be 
necessary.  
Theorem (5.1.12)[291]: Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ, ߬: ߑ

∗ → {−1,0, . . . , ܾ − 2} be a maximal 
tree mapping. If there exists a positive number ߳  such that for each ݊ ≥ 1 and ߜ = ଶߜଵߜ ·
·· ߜ ∈ ߑ

 with ߜ ≠ 0,  
ఛ,ఋܦ  ≥ ߳݊,                                                     (11) 

then ߉(߬) in (5) is not a spectrum of the Cantor measure µ,. 
Finally we apply our completeness results in Theorem (5.1.10) and Theorem 

(5.1.12) to the rescaling invariant problem when the rescaled set ߉ܭ is a spectrum of the 
Cantor measure µ, if ߉ is. This simple and natural way to construct new spectra from 
known ones is motivated from the conclusion that if ܭ = 5  for some ݇ ≥ 1, then the 
rescaled set ߉ܭସ: = ߣܭ} ∶ ߣ ∈  ସ} of the spectrum߉

:ସ߉  = ൞ ݀4
ஶ

ୀ

, ݀ ∈ {0,1}ൢ                                        (12) 

of the Bernoulli convolution µସ is also a spectrum [298,299,307]. In the next theorem, 
we show that if the maximal tree mapping τ associated with the spectrum ߉ satisfies the 
boundedness assumption (37), then the integrally rescaled set ߉ܭ is a spectrum of the 
Cantor measure µ, if and only if it is a maximal orthogonal set. 

Applying Theorem (5.1.12), we find all possible integers ܭ such that ߉ܭସ are 
spectra of the Bernoulli convolution µସ, c.f. [298,299,307]. 
Corollary (5.1.5)[291]: Let ߉ସ be as in (12) and ܭ ≥ 3 be an odd integer. Then ߉ܭସ is 
a spectrum of the Bernoulli convolution µସ if and only if there does not exist a positive 
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integer ܰ such that 

ܭ   ݀4ିଵ
ே

ୀଵ

∈ (4ே − 1)ℤ\{0}                                    (13) 

for some ݀ ∈ {0,1},1 ≤ ݆ ≤ ܰ. 
Given a spectral set ߉ of the Cantor measure µ,, its irrational rescaling set ߉ݎ 

(i.e., ݎ ∉ ℚ) is not an orthogonal set (and hence not a spectrum) by (4). The next question 
is when a rational rescaling set ߉ݎ is an orthogonal set, or a maximal orthogonal set, or a 
spectrum. A necessary condition is that ߉ݎ ⊂ ℤ by (4), but unlike integral rescaling 
discussed in Theorem (5.1.12) there are lots of interesting problems unsolved yet. We 
apply Theorem (5.1.10) and Theorem (5.1.12) to construct a spectrum ߉ of the Cantor 
measure µ, such that the rescaled set ߉/(ܾ − 1) is its maximal orthogonal set but not 
its spectrum, see Theorem (5.1.18). 

We prove Theorem (5.1.10). For that purpose, we need several technical lemmas 
on spectra of the Cantor measure µ,, a crucial lower bound estimate for its Fourier 
transformb µ, , and an identity for multi-channel conjugate quadrature filters.  

For an orthogonal set ߉ of ܮଶ(µ,) containing zero, let 

:(ߦ)௸ܳ =   |µ,ෞ + ߦ) ଶ|(ߣ 

ఒ∈௸

.                                            (14) 

Then ܳ௸  is a real analytic function on the real line with ܳ௸(0) = 1, and 
(ߦ)௸ܳ = ห( ఒ݁ , ݁ିక)ห

ଶ

ఒ∈௸

≤ ‖݁ − ଶ‖ߣ = 1, ߦ ∈ ℝ, 

where the equality holds if ߉ is a spectrum. The converse is shown to be true in [293, 
307]. This provides a characterization for an orthogonal set of the Cantor measure µq,b 
to be its spectrum. 
Lemma (5.1.6)[291]: ([293, 307]) Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ, and let ܳ௸(ߦ) be defined by (14). 
Then an orthogonal set ߉ of the Cantor measure µ, is a spectrum if and only if ܳ (ߦ)௸ =
ߦ ݈݈ܽ ݎ݂ 1 ∈ ℝ. 

For the Cantor measure µ,, taking Fourier transform at both sides of the equation 
(1) leads to the following refinement equation in the Fourier domain: 

 µ,(ߦ) = ,ܪ ൬
ߦ
ܾ

൰ · µ,ෞ ൬
ߦ
ܾ

൰,                                          (15) 
where 

(ߦ),ܪ  ≔
1
ݍ

 ݁ିଶగక


ିଵ

 ୀ

                                              (16) 

is a periodic function with the properties that ܪ,(0) = 1, 
(ߦ),ܪ  = 0 if and only if ܾߦ ∈ ℤ\ݍℤ,                                    (17) 

and  

,ܪ 
ᇱ ൬

݆
ܾ

൰ ≠ 0 for all ݆ ∈ ℤ.                                              (18) 
Applying (15) repeatedly and then taking limit ݉ → ∞, we obtain an explicit expression 
for the Fourier transform of the Cantor measure µ,:  
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µ,ෞ (ߦ) = µ,ෞ(ߦ)ܪ ൬
ߦ

ܾ൰ = ෑ ,ܪ ൬
ߦ

ܾ൰
ஶ

ୀଵ

, ݉ ≥ 1,                     (19) 

 where 

:(ߦ)ܪ = ෑ ,ܪ ൬
ߦ

ܾ൰
ஶ

ୀଵ

, ݉ ≥ 1.                                         (20) 

Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ. Define 
:ݎ   = inf

|క|ஸ(ିଶ)/(ିଵ) 
|µ,ෞ |(ߦ) and            

:ଵݎ = inf
ଵஸஸିଵ 

inf
|క|ஸ(ିଶ)/(ିଵ) 

ܾ/ߦ),ܪ|ଵି|ߦ| + ݆/ܾ)| .        (21) 

Then it follows from (17), (18) and (19) that both ݎ and ݎଵ are well-defined and positive, 
ݎ  > 0 and ݎଵ > 0.                                                          (22) 

Set 

 ܶ = ൬−
1

ܾ − 1
,

ܾ − 2
ܾ −  1

൰ ൬−
1

ܾ(ܾ − 1) ,
ܾ − 2

ܾ(ܾ −  1)൰.                           (23) 

For any ݉ ≥ 1 and ݀  ∈ {−1,0, . . . , ܾ −  2},1 ≤ ݆ ≤ ݉, with ݀ ≠ 0, one may verify that 

 ቌߦ +  ܾ݀ିଵ


ୀଵ

ቍ ܾି ∈ ܶ for all ߦ ∈ ൬−
1

ܾ −  1 ,
ܾ − 2
ܾ − 1൰.                 (24) 

To prove Theorem (5.1.10), we need the following two lemmas which are related to the 
lower bound estimates of |µ,ෞ ߦ) + ߦ for |(ߣ ∈ ܶ and ߣ ∈ ℤ.  
Lemma (5.1.7)[291]: Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ, µ, be the Cantor measure in (1), and let ߣ =
∑ ݀ೕ ܾೕିଵ

ୀଵ  for some positive integers ݊ , 1 ≤ ݆ ≤ satisfying 0 ,ܭ =: ݊ < ݊ଵ < . . . <
݊, and for some ݀ೕ , 1 ≤ ݆ ≤ ,belonging to the set {−1,1,2 ,ܭ . . . , ܾ − 2}. Then  

หµ,ෞ ߦ) + ห(ߣ ≥ ݎ
ାଵ  ቀ భ

( ି ଵ)ቁ
#

ܾ∑ ൫ೕିೕషభିଵ൯ೕ∈ಳ , ߦ ∈ ܶ,                 (25)  
where ܤ = {1 ≤ ݆ ≤ :ܭ ݀ೕ < ,ݎ ℤ} andݍ  .ଵ are given in (21)ݎ
Proof. For 0 ≤ ݅ ≤ ߦ define ,ܭ = ߦ and ߦ = ߦ) + ∑ ݀ೕ ܾೕିଵ

ୀଵ )/ܾ  for 1 ≤ ݅ ≤  .ܭ
Then 

ߦ  ∈ ܶ for all 0 ≤ ݅ ≤  (26)                                                  ܭ
by (24). Observe that 

 หܪ,(ߟ)ห ≤ 1  for all ߟ ∈ ℝ   and sup
ఎ∈்್

|(ߟ),ܪ| < 1.                    (27) 

The above observation, together with (19), (26) and the fact that ܪ, has period 

, 

impliesni 

ෑ ቤ
ߦ),ܪ + (ߣ

ܾℓ ቤ


ℓୀషభାଵ

=  ෑ ቮܪ, ቌߦ +  ݀ೕ ܾೕିଵ
ିଵ

ୀଵ

+ ݀ೕ ܾିଵቍ ܾିℓቮ


ℓୀషభାଵ

  

                   = ෑ ฬܪ, ൬
ିଵߦ

ܾℓᇲ ൰ฬ
ିషభ

ℓᇲୀଵ

≥ หµ,ෞ ห(ିଵߦ) ≥  ݎ

if ݀ ∈  ℤ; andݍ
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    ෑ หܪ,(ߦ + (ߣ ܾℓ⁄ ห


ℓୀషభାଵ

=  ෑ ቮܪ, ቌቌߦ +  ݀ೕ ܾೕିଵ
ିଵ

ୀଵ

ቍ ܾିℓቮቍ
ିଵ

ℓୀషభାଵ

 

∙ ተܪ, ൮ቌߦ +  ݀ೕܾೕିଵ
ିଵ

ୀଵ

+ ݀ೕܾೕିଵቍ ܾି൲ተ 

                                ≥ |µ,ෞ |(ିଵߦ) · หܪ,(ߦିଵ/ܾିషభ + ݀/ܾ)ห 
≥ ିଵ|/ܾିషభିଵߦ|ଵݎݎ  ≥ ܾ)/ଵܾିାషభݎݎ − 1)                

if ݀ ∉   ℤ. Combining the above two lower bound estimates withݍ

µ,ෞ ߦ) + (ߣ = ቌෑ ෑ ߦ)),ܪ + (ℓܾ/(ߣ


ℓ ୀషభାଵ



ୀଵ

ቍ · µ,ෞ ߦ) + ܾ/(ߣ             (28) 

proves (21).  
Lemma (5.1.8)[291]: Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ, and ߬: ߑ

∗ → ℝ be a maximal tree mapping 
satisfying (37). Then for each ߜ ∈ ߑ

ெ, ܯ > 0, there exists ߜ′ ∈ ߑ
∗  such that  

ቚµ,ෞ ቀߦ + ቁቚ(ᇱߜߜ)ఛ,ஶߎ ≥ ଶഓାଶݎ ቚܪெ ቀߦ + ቁቚ(ߜ)ఛ,ெߎ ߦ     , ∈ ܶ,           (29) 

where ݎ = min (ݎ, ଵ


, భ

(ିଵ)) and ݎ,  .ଵ are defined in (21)ݎ
Proof. If ߜ is a ߬-main branch, we set ߜ′ = 0. In this case, 

ቚµ,ෞ ቀߦ + ቁቚ(ᇱߜߜ)ఛ,ஶߎ = ቚµ,ෞ ቀߦ +                                                         ቁቚ(ߜ)ఛ,ெߎ

                                = ቚܪெ ቀߦ + ቁቚ(ߜ)ఛ,ெߎ · µ,ෞ ߦ) +  ெܾ/((ߜ)ఛ,ெߎ

                                   ≥ ൭ inf
ఎ∈ቀି ଵ

ିଵ,ିଶ
ିଵቁ

หµ,ෞ ห൱(ߟ) · ቚܪெ ቀߦ +  ቁቚ(ߜ)ఛ,ெߎ

 ≥ ݎ ቚܪெ ቀߦ + ቁቚ(ߜ)ఛ,ெߎ ߦ      , ∈ ܶ,                               (30) 
where the second equalities follows from (19), while the first inequality holds as 

ܾିெ ቀߦ + ቁ(ߜ)ఛ,ெߎ ∈ −
1

ܾ − 1
,

ܾ − 2
(ܾ − 1)     for all ߦ ∈ ܶ. 

Now consider ߜ is not a ߬-main branch. In this case, define 
ᇱߜ  ≔ 0ߜᇱᇱ ,                                                           (31) 

where ݉ ≥ 1 is the smallest integer such that ߬(ߜ|ାெ) ≠ 0, and ߜᇱᇱ ∈ ߑ
∗ is so chosen 

that the quantities ܦఛ,ఋ(ߜᇱᇱ) in (9) and ܦఛ,ఋ in (10) are the same, 
ఛ,ఋܦ (ᇱᇱߜ) = ఛ,ఋܦ .                                                  (32) 

Let ߟଵ = కାഓ,ಾశ(ఋ)
ಾశ  and ߟଶ = కାഓ,ಾ(ఋ)

ಾ  for ߦ ∈ ܶ. Then 

ଵߟ ∈ ܶ and ߟଶ ∈ ൬−
1

ܾ −  1 ,
ܾ − 2
ܾ − 1൰                                    (33) 

by (24) and ߬(0ߜ) = (ାெ|ߜ)߬ ≠ 0. Write 

(ᇱᇱߜ0ߜ)ఛ,ஶߎ −
(ᇱᇱߜ0ߜ)ఛ,ெାߎ

ܾெା = ݆ ܺ ܭ = 1 ݀ೕܾೕିଵ 
for some integers ݊, 1 ≤ ݆ ≤ satisfying 1 ,ܭ ≤ ݊ଵ < ݊ଶ <  …  < ݊ and some ݀ೕ ∈
{−1,1,2, … , ܾ − 2}, 1 ≤ ݆ ≤  Therefore .ܭ
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ቚµ,ෞ ቀߦ + ቁቚ(ᇱߜߜ)ఛ,ஶߎ = ቚܪெ ቀߦ + ቁቚ(ᇱߜߜ)ఛ,ஶߎ · อ ෑ ߦ)),ܪ + (ܾ/((′ߜߜ)ఛ,ஶߎ
ெା

ୀெାଵ

อ 

∙ หµ,ෞ ߦ)) +  ெା)หܾ/((′ߜߜ)ఛ,ஶߎ

= ߦ)ெܪ| + |((ߜ)ఛ,ெߎ  · อෑ ,ܪ ቀ
ଶߟ

ܾ ቁ


ୀଵ

อ · ቮµ,ෞ ଵߟ) +  ܾ݀ೕିଵ


ୀଵ

ቮ   

     ≥ ଶഓ,ഃబݎݎ µ,ෞ|(′′ߜ) |(ଶߟ) · ߦ)ெܪ| +  |((ߜ)ఛ,ெߎ
≥ ݎ

ଶݎଶഓ,ഃబ  ቚܪெ ቀߦ +  ቁቚ,                                                  (34)(ߜ)ఛ,ெߎ
where the first inequality follows from (19), (27) and Lemma (5.1.7). Combining (30) 
and (34) proves (29). 

Observe that ܪ,(ߦ) in (16) satisfies 

หܪ,(ߦ + ݆ ܾ⁄ )ห
ଶ

ିଵ

ୀ

= 1.                                               (35) 

To prove Theorem (5.1.10), we need a similar identity for ܪ(ߦ), ݉ ≥ 1, with shifts in 
ߑ)ఛ,ߎ

).  
Lemma (5.1.9)[291]: Let 2 ≤ ,ݍ ݍ/ܾ ∈, ߬: ߑ

∗ → ℝ be a tree mapping, and let 
,(ߦ)ܪ ݉ ≥ 1, be as in (34). Then 

 หܪ(ߦ + ห(ߜ)ఛ,ߎ
ଶ

ఋ∈ఀ


= ߦ   ,1 ∈ ℝ.                                    (36) 

Proof. For ݉ = 1,  

 ቚܪ ቀߦ + ቁቚ(ߜ)ఛ,ߎ
ଶ

ఋ∈ఀ


=  ܾ/ߦ),ܪ| + ߬(݆)/ܾ)|ଶ

ିଵ

ୀ

   

=  ܾ/ߦ),ܪ| + ݆/ܾ)|ଶ

ିଵ

ୀ

= 1,                          

where the last equality follows from (35), and the second one holds as ܪ, has period 
(݆)߬ and ܾ/ݍ − ݆ ∈ ,ℤݍ 0 ≤ ݆ ≤ ݍ − 1, by the tree mapping property for ߬. This proves 
(36) for ݉ = 1. Inductively we assume that (36) hold for all ݉ ≤ ݇. Then for ݉ = ݇ +
1, 

      ቚܪ ቀߦ + ቁቚ(ߜ)ఛ,ߎ
ଶ

ఋ∈ఀ


 

=   ቚܪ ቀߦ + ቁቚ(ᇱ݆ߜ)ఛ,ାଵߎ
ଶ

· หܪ,(ߦ/ܾାଵ + ାଵหܾ/(݆′ߜ)ఛ,ାଵߎ
ଶ

ିଵ

ୀఋᇱ∈ఀ
ೖ

 

=   ቚܪ ቀߦ + ቁቚ(ᇱߜ)ఛ,ߎ
ଶ

· หܪ,(ߦ/ܾାଵ + ାଵܾ/(′ߜ)ఛ,ߎ + ݆/ܾ)ห
ଶ

ିଵ

ୀఋᇱ∈ఀ
ೖ

= 1, 

where the first equality holds as ܪାଵ(ߦ) =  the second one follows ,(ାଵܾ/ߦ),ܪ(ߦ)ܪ
from the observations that ܪ and ܪ, are periodic functions with period ܾ ିଵݍ and ݍ/ܾ 
respectively and that  
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(݆′ߜ)ఛ,ାଵߎ = (′ߜ)ఛ,ߎ + ܾ(ᇱ݆ߜ)߬ ∈ (′ߜ)ఛ,ߎ + ݆ܾ + ,ℤܾݍ 0 ≤ ݆ ≤ ݍ − 1, 
by the tree mapping property for ߬, and the last one is true by (35) and the inductive 
hypothesis. This completes the inductive proof.  

We have all ingredients for the proof of Theorem (5.1.10). 
Theorem (5.1.10)[291]: Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ. If ߬: ߑ

∗ → {−1,0, . . . , ܾ − 2} is a maximal 
tree mapping such that 

:ఛܦ  = sup൛ܦఛ,ఋ: ߜ ∈ ߑ
∗ൟ < ∞,                                     (37) 

then ߉(߬) in (5) is a spectrum of the Cantor measure µ,.  
Proof. Let ܳ (ߦ) ∶=  be the function in (14) associated with the maximal orthogonal (ߦ)௸ܳ
set ߉: =  ଶ(µ,). As ܳ is an analytic function on the real line, the spectralܮ of (߬)߉
property for the maximal orthogonal set ߉ reduces to proving ܳ (ߦ) ≡ 1 for all ߦ ∈ ܶ by 
Lemma (5.1.6). Suppose, on the contrary, there exists ߦ ∈ ܶ such that 

(ߦ)ܳ  < 1.                                                             (38) 
For ݊ ≥ 1, set 

:߉  = ൛ߎఛ,ஶ(ߜ): ߜ ∈ ߑ
 such that τ is regular on ߜൟ                     (39) 

and define 
 ܳ(ߦ): =  หµ,ෞ ߦ) + ห(ߣ

ଶ

 ఒ∈௸

, ߦ ∈ ℝ.                                   (40) 

Then 
lim

→ஶ
߉ = ߉ and ߉ ⊂ ݊ ାଵ for all߉ ≥ 1, 

since ߉ = ߑ and (߬)߉
∗ =∪ୀଵ

ஶ ߑ
 . This implies that ܳ(ߦ), ݊ ≥ 1, is an increasing 

sequence that converges to ܳ(ߦ), i.e., 
 lim
→ஶ

ܳ(ߦ) = ߦ   ,(ߦ)ܳ ∈ ℝ.                                         (41) 
Thus for sufficiently small ߳ > 0 chosen later, there exists an integer ܰ such that 

(ߦ)ܳ  − ߝ ≤ ܳே(ߦ) ≤ ܳ(ߦ) ≤ (ߦ)ܳ < 1  for all ݊ ≥ ܰ.               (42) 
For any ߜ ∈ ߑ

 being ߬-regular, 
lim

→ஶ
ܪ ቀߦ + ቁ(ߜ)ఛ,ߎ = lim

→ஶ
ܪ ቀߦ +  ቁ(ߜ)ఛ,ஶߎ

= µ,ෞ ቀߦ + ቁ(ߜ)ఛ,ஶߎ ߦ      , ∈ ℝ.             (43) 
For any ߜ ∈ ߑ

 such that δ is not ߬-regular, the set {݉ ≥ ݊ + 1: (|ߜ)߬ ≠ 0} contains 
infinite many integers. Denote that set by { ݉ , ݆ ≥ 1} for some strictly increasing 
sequence ൛ ݉ൟ

ୀଵ
ஶ

. Recall that 

 ߬ ቀߜ|ೕ ቁ ∈ ℤݍ ∩ {−1,1,2, . . . , ܾ − 2}   for all ݆ ≥ 1                       (44) 
by the tree mapping property for ߬. Therefore for ݉ ≤ ݉ < ݉ାଵ with ݆ ≥ 1, 

ߦ)ܪ| + |((ߜ)ఛ,ߎ ≤ | ೕܪ ቀߦ + ቁቚ(ߜ)ఛ,ߎ = ቚܪೕ ൬ߦ + ఛ,ೕߎ
              ൰ቚ(ߜ)

≤ ෑ ቚܪ,(ߦ + ఛ,ೕߎ ೖାଵ)ቚܾ/((ߜ)
ିଵ

ୀଵ

 

= ෑหܪ,(ߦ + ೖାଵ)หܾ/((ߜ)ఛ,ೖߎ
ିଵ

ୀଵ
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≤ ቆ sup
ఎ∈்್

หܪ,(ߟ)หቇ
ିଵ

|݆ − ߦ   ,1 ∈ ܶ,                               (45) 

where the inequalities follow from (24), (27) and (44), and the equalities hold by the tree 
mapping property ߬ and the ݍ/ܾ periodicity of the filter ܪ,. Combining (27) and (45) 
proves that 

lim
→ஶ

ቚܪ ቀߦ + ቁቚ(ߜ)ఛ,ߎ = ߦ    ,0 ∈ ܶ                                   (46) 
if ߜ ∈ ߑ

 is not ߬-regular. Applying (43) and (46) with ݊ and ߦ replaced by ܰ and ߦ 
respectively, we can find a sufficient large integer ܯ ≥ ܰ + 1 such that  

  ቚܪெ ቀߦ + ቁቚ(ߜ)ఛ,ெߎ
ଶ

ఋ∈ఀ
ಿ

≤  หµ,ෞ ߦ) + ห(ߣ
ଶ

ఒ∈௸ಿ

+ ߝ ≤ (ߦ)ܳ +  (47)          .ߝ

This together with Lemma (5.1.9) implies that 

 ቚܪெ ቀߦ + ቁቚ(ߜ)ఛ,ெߎ 
ଶ

ఋ∈ఀ
ಾ\ఀ

ಿ

> 1 − (ߦ)ܳ − ߝ > 0,                        (48) 

where 
ߑ

ெ\ߑ
ே = ߜ ∈ ߑ

ெ: ே0ஶ|ߜ ≠  0ஶߜ
Now, for each ∈ ߑ

ெ\ߑ
ே , let (ߜ)ߣ =  .selected as in Lemma (5.1.3) ′ߜ with (′ߜߜ)ఛ,ஶߎ

Observe that (ߜ)ߣ − (ߜ)ఛ,ெߎ ∈ ܾெℤ for all ߜ ∈ ߑ
ெ\ߑ

ே . This implies that ߣ(ߜଵ) ≠
,ଵߜ for two distinct (ଶߜ)ߣ ଶߜ ∈ ߑ

ெ\ߑ
ே  . Therefore 

(ߦ)ܳ =  หµ,ෞ ߦ) + ห(ߣ
ଶ

ఒ∈௸

≥   หµ,ෞ ߦ) + ห(ߣ
ଶ

ఒ∈௸ೣ

+   หµ,ෞ ൫ߦ + ൯ห(ߜ)ߣ
ଶ

ఋ∈ఀ
ಾ\ఀ

ಿ

 

≥ (ߦ)ܳ − ߝ + ସഓାସݎ  ቚܪெ ቀߦ + ቁቚ(ߜ)ఛ,ெߎ
ଶ

ఋ∈ఀ
ಾ\ఀ

ಿ

      

                             ≥ (ߦ)ܳ − ߝ + ସഓାସ(1ݎ − (ߦ)ܳ −  ,(ߝ
where the second inequality follows from (41) and Lemma (5.1.3), and the last holds by 
(48). This contradicts to (38) by letting ߝ chosen sufficiently small.  

Given a tree mapping ߬, define 

ఛܰ(݊): = ቐ
inf

ஷఋ∈ఀ
ఛ,ఋ(0ஶ)ܦ ݂݅ ݊ = 1

inf
ఋ∈ఀ

\ఀ
షభ

݊ ݂݅ ఛ,ఋ(0ஶ)ܦ ≥ 2,                               (49) 

where ߑ
\ߑ

ିଵ: = :݆′ߜ} ′ߜ ∈ ߑ
ିଵ, 1 ≤ ݆ ≤ ݍ − 1}. In this section, we establish the 

following strong version of Theorem (5.1.12). 
Theorem (5.1.11)[291]: Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ, ߬: ߑ

∗ → {−1,0, . . . , ܾ − 2} be a maximal 
tree mapping, and let ఛܰ(݊), ݊ ≥ 1, be as in (49). Set 

:ଶݎ = :|(ߦ),ܪ|}ݔܽ݉ 1/ܾ ≤ ܾ(ܾ − |ߦ|(1 ≤ ܾ − 2}. 
If ∑ ଶݎ

ଶேഓ()ஶ
ୀଵ < ∞, then ߉(߬) in (5) is not a spectrum of ܮଶ(µ,).  

Proof. Let ܰ ≥ 2 be so chosen that ܰ ఛ(݊) ≥ 1 for all ݊ ≥ ܰ. The existence follows the 
series convergence assumption on ఛܰ(݊), ݊ ≥ 1. Take ߜ ∈ ߑ

\ߑ
ିଵ being ߬-regular, 

where ݊ ≥ ܰ. Write {݉ ≥ ݊ + (|ߜ)߬ :1 ≠  0} = {݊: 1 ≤ ݇ ≤  for some integers  {ܭ
݊ < ݊ଵ < ݊ଶ < . . . < ݊, where ܭ ≥ ఛܰ(݊). Therefore for ߦ ∈ ܶ,  

ቚµ,ෞ ቀߦ + ቁቚ(ߜ)ఛ,ஶߎ = ቚܪ ቀߦ + ቁቚ(ߜ)ఛ,ஶߎ ·  หµ,ෞ ߦ) +    )หܾ/((ߜ)ఛ,ஶߎ
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≤ ቚܪ ቀߦ + ቁቚ(ߜ)ఛ,ߎ · ෑหܪ,(ߦ + ఛ,ೖߎ ೖିଵ)หିܾ/((ߜ)


ୀଵ

  

                         ≤ ቆsup
ఎ∈்್

ቇ|(ܾ/ߟ),ܪ|


· ߦ)ܪ| +  |((ߜ)ఛ,ߎ

≤ ଶݎ
ேഓ() ቚܪ ቀߦ +  ቁቚ,                                             (50)(ߜ)ఛ,ߎ

where the first equality holds by (19); the first inequality follows from (19), (27) and 
ೖ|ߜ)߬ ) ∈ ,ℤݍ 1 ≤ ݇ ≤  by the tree mapping property for ߬; the second inequality is ,ܭ
true since (ߦ + ఛ,ೖߎ ೖିܾ/((ߜ) ∈ ܶ by (24); and the last inequality follows from the 
definition of the quality ܰ ఛ(݊). Let ߉ and ܳ , ݊ ≥ 1, be as in (39) and (40) respectively, 
and set ߉ = {0} and ܳ(ߦ) = หµ,ෞ ห(ߦ)

ଶ
. Then for ݊ ≥ 1 and ߦ ∈ ܶ,  

1 − ܳ(ߦ) = 1 − ܳିଵ(ߦ) − ߜ ܺ ∈  ቚµ,ෞ ቀߦ + ቁቚ(ߜ)ఛ,ஶߎ
ଶ

ఀ
\ఀ

షభ௦ ఛି௨ 

    

≥ 1 − ܳିଵ(ߦ) − ଶݎ
ଶேഓ()   ቚܪ ቀߦ + ቁቚ(ߜ)ఛ,ߎ

ଶ

ఋ∈ఀ
\ఀ

షభ

 

                           ≥ 1 − ܳିଵ(ߦ) − ଶݎ
ଶேഓ()  หµ,(ߦ + ห(ߣ

ଶ

ఒ∈௸షభ

 

= (1 − ଶݎ
ଶேഓ() · 1 − ܳିଵ(ߦ),                                                                     (51) 

where the first equality holds because 
ିଵ߉\߉ = ൛ߎఛ,ஶ(ߜ): ߜ ∈ ߑ

\ߑ
ିଵ ݅ݏ ߬ − regularൟ;  

the first inequality is true by (48); and the second inequality follows from Lemma (5.1.9) 
and 

 หµ,ෞ ߦ) + ห(ߣ
ଶ

ఒ∈௸షభ

≤  ቚܪ ቀߦ + ቁቚ(ߜ)ఛ,ߎ
ଶ

ఋ∈ఀ
షభ

, ߦ ∈ ℝ, 

by (19) and (27). Recall that lim
→ஶ

ܳ(ߦ)  = ,(ߦ)ܳ ߦ ∈ ℝ, by (41). Applying (50) 

repeatedly and using the convergence of ∑ ଶݎ
ଶேഓ()ஶ

ୀଵ  gives 

 1 − (ߦ)ܳ ≥ ቌ ෑ ቀ1 − ଶݎ 
ଶேഓ()ቁ

ஶ

ୀேబାଵ 

ቍ · ቀ1 − ܳேబ
ቁ(ߦ) ߦ    , ∈ ܶ.         (52) 

On the other hand, 

ܳேబ (ߦ) =  หµ,ෞ ߦ) + ห(ߣ
ଶ

ఒ∈௸ಿబ

<  ቚܪேబ ቀߦ + ఛ,ேబߎ
ቁቚ(ߜ)

ଶ

 ఋ∈ఀ
ಿబ

= 1, ߦ ∈ ܶ 

by (19), (27) and (36). This together with (51) proves that ܳ(ߦ) < 1 for all ߦ ∈ ܶ, and 
hence ߉ =  .ଶ(µ,) by Lemma (5.1.6)ܮ is a not a spectrum for (߬)߉

For a maximal tree mapping τ satisfying (11), 

 ଶݎ
ଶேഓ()

ஶ

ୀଵ

≤  ଶݎ
ଶఢబ

ஶ

ୀଵ

< ∞, 

where the last inequality holds as |ܪ,(ߦ)| < 1 if ܾక ∉  ℤ. This together with Theoremݍ
(5.1.11) proves Theorem (5.1.12). Now it remains to prove Theorem (5.1.11). 
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We first prove Theorem (5.1.12). We then consider verification of maximal 
orthogonality of the rescaled set ߉ܭ. We show that the rescaled set ߉ܭ is not a maximal 
orthogonal set of the Cantor measure µ, if and only if the labeling tree ߬ ߑ)

∗) has certain 
periodic properties (66) and (68). 

By Theorem (5.1.12) and Theorem (5.1.15), we see that the rescaled set ߉ܭ is a 
spectrum if and only if the labeling tree of ߉ contains no repetend of ܭ. For the spectrum 
 ସ of the Bernoulli convolution µସ in (12), the associated maximal tree mapping ߬ଶ,ସ on߉
ଶߑ

∗ is given by 
 ߬ଶ,ସ(ߜ) = ߜ  forߜ = ଵߜ ··· ߜ ∈ ଶߑ

, ݊ ≥ 1.                            (53) 
Thus ܦఛమ,ర,ఋ = 0 for all ߜ ∈ ଶߑ

∗, and the requirement (37) is satisfied for the maximal tree 
mapping ߬ଶ,ସ. Hence Corollary (5.1.5) follows immediately from Theorem (5.1.12) and 
Theorem (5.1.15). Finally, we construct a spectrum ߉ of the Cantor measure µ, such 
that ߉/(ܾ − 1), a seemingly denser set than the spectrum ߉, is its maximal orthogonal 
set but not its spectrum. 
Theorem (5.1.12)[291]: Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ, ߬: ߑ

∗ → {−1,0, . . . , ܾ − 2} be a maximal 
tree mapping satisfying (37), and ߉(߬) be as in (5). Then for any integer ܭ being prime 
with ܾ,  is a spectrum of the Cantor measure µ, if and only if it is a maximal (߬)߉ܭ
orthogonal set. 
Proof. The necessity is obvious. Now we prove the sufficiency. Without loss of 
generality, we assume ܭ is positive since −߉ is a spectrum (maximal orthogonal set) if 
and only if ߉ is. Let ߢ be the maximal tree mapping associated with the maximal 
orthogonal set ߉ܭ of the Cantor measure µ(,). The existence of such a mapping follows 
from Theorem (5.1.10) and the assumption on ߉ܭ. Denote the integral part of a real 
number ݔ by ⌊ݔ⌋. By Theorem (5.1.10) and the assumption that ܦఛ < ∞, it suffices to 
prove that 

 inf൛ܦ,ఋ(ߜᇱ), ᇱߜ ∈ ߑ
∗ൟ ≤ (2⌊log ⌊ܭ + ఛܦ)(4 + ߜ   ,(1 ∈ ߑ

∗ .            (54) 
Take ߜ ∈ ߑ

 , ݊ ≥ 1, and let ߜଵ ∈ ߑ
∗ be so chosen that ߜߜଵ is ߢ-regular. As ߎ,ஶ(ߜߜଵ) ∈

ߞ there exists ,߉ܭ ∈ ߑ
 such that 

(ߞ)ఛ,ߎܭ  − (ߜ),ߎ ∈ ܾℤ.                                          (55) 
Let ߞ′ ∈ ߑ

∗  be so chosen that ߞߞ′ is a τ-main subbranch of ߞ and 
(ᇱߞ)ఛ,ܦ  = ఛ,ܦ ,                                                    (56) 

where the existence of such a tree branch ߞ′ follows from (10). Therefore the verification 
of (54) reduces to showing the existence of ߜ′ ∈ ߑ

∗  such that ߜߜ′ is a ߢ-main branch, 
(ᇱߞߞ)ఛ,ஶߎܭ  =  (57)                                          ,(ᇱߜߜ),ஶߎ

and 
(ᇱߜ),ఋܦ  ≤ (2⌊log ⌊ܭ + 4)൫ܦఛ, + 1൯.                               (58) 

By Theorem (5.1.10), there exists a ߢ-main branch ߜଶ ∈ ߑ
∗  such that 

(ଶߜ),ஶߎ  =  (59)                                              .(ᇱߞߞ)ఛ,ஶߎܭ
Then 

(ଶߜ),ߎ  − (ߜ),ߎ ∈ (ߞ)ఛ,ߎܭ − (ߜ),ߎ + ܾℤ = ܾℤ                  (60) 
by (55). This together with one-to-one correspondence of the mapping ߎ,: ߑ

 → ℤ 
proves ߜଶ = ′ߜ for some ′ߜߜ ∈ ߑ

∗ . The equation (57) follow from (59). Now it remains 
to prove (58). Without loss of generality, we assume that ߎ,ஶ(ߜߜ′) ≠  because ,(ߜ),ߎ
otherwise ܦ,ఋ(ߜ′) = 0 and hence (58) follows immediately. Thus we may write 
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(ᇱߜߜ),ஶߎ  = (ߜ),ߎ +  ܾ݀ାିଵ


ୀଵ

                                 (61) 

for a strictly increasing sequence {݉}ୀଵ
  of integers and some ݀ ∈ {−1,1, . . . , ܾ −

2},1 ≤ ݈ ≤ (′ߞߞ)ఛ,ஶߎ Also we may assume that .ܮ ≠  because otherwise ,(ߞ)ఛ,ߎ
(′ߞߞ)ఛ,ஶߎܭ = (ߞ)ఛ,ߎܭ ∈ ܾ)/ܾ−)ܭ − 1), (ܾ − 2)ܾ/(ܾ − 1)) and 

(′ߜߜ),ஶߎ < (−ܾାಽିଵ/(ܾ − 1), (ܾ − 2)ܾାିଵ/(ܾ − 1)) 
by (24) and (61). This together with (57) implies that ܾಽିଵ ≤  and hence ܭ

(′ߜ),ఋܦ ≤ ݉ ≤ ⌊log ⌊ܭ + 1. 
Therefore we can write 

(′ߞߞ)ఛ,ஶߎ = (ߞ)ఛ,ߎ +  ܾܿାೕିଵ
ே

ୀଵ

, 

where ܿ ∈ {−1,1, . . . , ܾ − 2},1 ≤ ݆ ≤ ܰ, and ൛ ݊ൟ
ୀଵ
ே

 is a strictly increasing sequence of 
integers. To prove (58) for the case that ߎఛ,ஶ(ߞߞ′) ≠  we need the following ,(ߞ)ఛ,ߎ
claim: 
Claim (5.1.13)[291]: {݉ , 1 ≤ ݈ ≤ {ܮ ⊂ ∪ୀ

ே [ ݊, ݊ + ⌊log ⌊ܭ + 1]. 
Proof. Suppose, on the contrary, that Claim (5.1.13) does not hold. Then there exists 1 ≤
݈ ≤ such that ݊బ ܮ + ⌊log ⌊ܭ + 1 < ݉ < ݊బାଵ for some 0 ≤ ݆ ≤ ܰ, where we set 
݊ = 0 and ݊ேାଵ = +∞. Observe that 

,ߎ + ݉(ߜߜᇱ) − ఛ,ାೕబߎܭ
(ᇱߞߞ) ∈ ܾାℤ                           (62) 

by (57) and the assumption ݉ < ݊బ + 1, and 
,ାߎ     

(ᇱߜߜ) − ఛ,ାೕబߎܭ
 (ᇱߞߞ)

∈ ܾ݀ାିଵ +
ܾାିଵ − 1

ܾ − 1
[−1, ܾ − 2] − ܭ

ܾାೕబ − 1
ܾ − 1

[−1, ܾ − 2] 

⊂ ܾ݀ାିଵ + (−ܾାିଵ, ܾାିଵ)                                                (63) 
by the definitions of ߎ,ା  and ߎఛ,ାೕబ

 and the assumption ݊బ + log ܭ + 1 < ݉. 
Combining (62) and (63) leads to the contradiction that ݀ ∈ {−1,1, . . . , ܾ − 2}. This 
completes the proof of Claim (5.1.13). 

To prove (58) for the case that ߎఛ,ஶ(ߞߞ′) ≠   :we need another claim ,(ߞ)ఛ,ߎ
Claim (5.1.14)[291]: If ݊ + ⌊log ⌊ܭ + 1 < ݊ାଵ, then there exists ݈ such that ݉బ =

݊ାଵ, ݉బିଵ ∈ [ ݊, ݊ + ⌊log ⌊ܭ + 1] and ݀బ ∈ ℤ if and only if ܿାଵݍ ∈  .ℤݍ
Proof. Let ݈ be the smallest integer ݈ with ݉ ≥ ݊ାଵ. By Claim (5.1.13), ݉బିଵ ≤ ݊ +
⌊log ⌊ܭ + 1 ≤ ݊ାଵ − 1. Observe that ߎ,ାబ(ߜߜ′) − (′ߞߞ)ఛ,ାೕశభߎܭ ∈ ܾାೕశభℤ by 
(57); and 
,ାబߎ

(′ߜߜ) −   (′ߞߞ)ఛ,ାೕశభߎܭ

∈ ݀బ ܾାబ ିଵ − ܭ ܿାଵܾାೕశభିଵ +
ܾାబିଵ

ܾ −  1 (−1, ܾ − 2) −
ାೕܾܭ

ܾ − 1 (−1, ܾ − 2) 

⊂ ݀బ ܾାబ ିଵ − ܭ ܿାଵܾାೕశభିଵ + ܾାೕశభିଵ(−1,1).                                         (64) 
Thus ݀బܾబ ିೕశభ − ܭ ܿାଵ ∈ ܾℤ. This together, with the assumptions that ܿାଵ ∈
{−1,1, . . . , ܾ − 2} and that ܭ and ܾ are coprime, implies that ݉బ = ݊ାଵ and ݀బ ∈  ℤ ifݍ
and only if ܿାଵ ∈  ℤ. From the argument in (64), we see thatݍ

,బߎ  ିଵ(ߜߜᇱ) = ఛ,ೕߎܭ
 (65)                                          .(ᇱߞߞ)
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Thus ݉బିଵ ≥ ݊, as ߎ,బିଵ(ߜߜ′) ∈ ܾబషభ(− 1/(ܾ − 1), (ܾ − 2)/(ܾ − 1) and 
ఛ,ೕߎܭ (′ߞߞ) ∉ ܾ)/ೕିଵ(− 1ܾܭ − 1), (ܾ − 2)/(ܾ − 1)by (24). This completes the proof 
of Claim (5.1.14).  

Having established the above two claims, let us return to the proof of the inequality 
(58). Note that if 

൛݇ ∈ ℤ: ݉బିଵ < ݇ < ݉బ ൟ ⊄ ∪ୀ
ே [ ݊ , ݊ + ⌊log ⌊ܭ + 1] 

for some 1 ≤ ݈ ≤ then by Claim (5.1.13), there exists 1 ,ܮ ≤ ݆ ≤ ܰ such that 
݉బିଵ ≤ ݊బିଵ + ⌊log ⌊ܭ + 1 < ݊బ ≤ ݉బ . 

Then ݉బ = ݊బ , ݉బିଵ ≥ ݊బିଵ and ݀బ ∈ ℤ if and only if ܿబݍ ∈  .ℤ by Claim (5.1.14)ݍ
Thus ∪ௗ∉ℤ (݉ିଵ, ݉) ⊂ (∪ୀ

ே [ ݊, ݊ + ⌊log ⌊ܭ + 1] ∪ (∪ೕ∉ℤ ൫ ݊ିଵ, ݊൯) , and 
thus 

 (݉ − ݉ିଵ − 1)
ௗ∉ℤ

≤ (⌊log ⌊ܭ + 2)(ܰ + 1) +  ( ݊ − ݊ିଵ − 1)
ೕ∉ℤ

. 

This together with Claim (5.1.13), implies 
(′ߜ),ఋܦ ≤ 2(⌊log ⌊ܭ + 2)(ܰ + 1) +  ൫ ݊ − ݊ିଵ − 1൯

ೕ∉ℤ

 

≤ (2⌊log ⌊ܭ + 4)൫ܦఛ,(ߞᇱ) + 1൯.               
We get (58) and hence complete the proof of Theorem (5.1.12).  
Theorem (5.1.15)[291]:: Let 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ, ߬: ߑ

∗ → {−1,0, . . . , ܾ − 2} be a maximal 
tree mapping, ߉: = ܭ be as in (5), and let (߬)߉ > 1 be an integer coprime with ܾ. Then 
 is not a maximal orthogonal set of the Cantor measure µ, if and only if there exist ߉ܭ
ߜ ∈ ߑ

ஶ and a nonnegative integer ܯ such that {߬(ߜ|)}ୀெାଵ
ஶ  periodic sequence ܽ ݏ݅ 

with positive period ܰ, i.e., 
(|ߜ)߬  = ,(ାே|ߜ)߬ ݊ ≥ ܯ + 1,                                          (66) 

and that the word ܹ = ߱ଵ߱ଶ ··· ߱ே  defined by 
߱ = 1,(ெା|ߜ)߬ ≤ ݆ ≤ ܰ,                                               (67) 

is a repetend of the recurring ܾ-band decimal expression of ݅/ܭ for some ݅ ∈ ℤ\{0}, i.e., 
݅
ܭ

= 0. ߱ே ··· ߱ଶ߱ଵ߱ே ··· ߱ଶ߱ଵ߱ே ···=   ߱ ܾିேషభ

ே

ୀଵ

ஶ

ୀଵ

=
∑ ܾ߱ିଵே

ୀଵ

ܾே − 1
.    (68) 

Proof. (⟸) Let 
ߣ  = (ߜ)ఛ,ெߎܭ − ܾ݅ெ,                                                    (69) 

where ݅ ∈ ℤ is given in (68). Inductively applying (68) proves that 
ߣ  = (ߜ)ఛ,ெାேߎܭ − ܾ݅ெାே = ··· = (ߜ)ఛ,ெାேߎܭ − ܾ݅ெାே , ݊ ≥ 1.         (70) 

Take ߣ ∈  By the .(ݔߣܭ݅ߨ2−)ݔ݁ is orthogonal to (ݔߣ݅ߨ2−)ݔ݁ Now we show that .߉
maximality of the tree mapping ߬, there exists a ߬-main branch ߞ ∈ ߑ

 for some ݉ ≥ 1 
by Theorem (5.1.10) such that 

ߣ  =  (71)                                                        .(ߞ)ఛ,ஶߎ
Also for sufficiently large ݊ ≥ 1, there exists ߣ ∈  by the maximality of the tree ߉
mapping ߬ such that ߣ ,  and ߣ

ߣ  − (ߜ)ఛ,ெାேߎ ∈ ܾெାே ℤ.                                           (72) 
The reason for ߣ ≠ (ߜ)ఛ,ெାேߎ is that ߣ ≠ ܹ for sufficiently large ݊ by (ߞ)ఛ,ெାேߎ =
߱ଵ  . . . ߱ே  , 0N by (68). As both ߣ, ߣ ∈  there exists a nonnegative integer ݈ and an ,߉
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integer ܽ ∈ ℤ\ݍℤ by (3) such that 
ߣ  − ߣ = ܾܽ .                                                           (73) 

Now we show that 
 ݈ < ܯ + ܰ                                                             (74) 

when ݊ is sufficiently large. Suppose, on the contrary, that ݈ ≥ ܯ + ܰ. Then 
ߣ  − ఛ,ெାேߎ (ߜ) ∈ ܾெାேℤ.                                              (75) 

On the other hand, 
ఛ,ெାேߎ (ߜ) ∈ ܾெାே[−1/(ܾ − 1), (ܾ − 2)/(ܾ − 1)] 

by the tree mapping property for ߬. Therefore ߣ =  ,݊ for sufficiently large (ߜ)ఛ,ெାேߎ
which is a contradiction as 

ఛ,ெାேߎ (ߜ) ∉ ܾெାே(ିଵ)(−1/(ܾ − 1), (ܾ − 2)/(ܾ − 1)) 
by ܹ = ߱ଵ . . . ߱ே  , 0N and the tree mapping property for ߬. Combining (72),(73) and 
(74) and recalling that ܭ and ܾ are co-prime, we obtain that 

ߣܭ  − ఛ,ெାெߎܭ
(ߜ) = ܾܽ                                              (76) 

for some integers 0 ≤ ݈ < ܯ + ܰ and  ܽ ∈ ℤ\ݍℤ. Thus the inner product between 
 is equal to zero by (3), (70) and (76). This proves (ݔߣܭ݅ߨ2−)ݔ݁ and (ݔߣ݅ߨ2−)ݔ݁
that ߉ܭ is not a maximal orthogonal set as ߣ ∈  .is chosen arbitrarily ߉

(⟹) By (3) and the assumption on the rescaled set ߉ܭ, there exists a maximal 
orthogonal set ߆ of the Cantor measure µ, such that 

߉ܭ  ⊊ ߆ ⊂ ℤ.                                                         (77) 
Take ߴ ∈  Then .(߉ܭ)\߆

ߴ = (ߞ),ஶߎ =  (78)                                            (ߞ),ߎ
for some ߢ-main branch ߞ ∈ ߑ

 , ݉ ≥ 1, where ߢ is the maximal tree mapping 
associated with the maximal orthogonal set ߆. Let ߬ be the maximal tree mapping in 
Theorem (4) such that ߉ =   :To establish the necessity, we need the following claim .(߬)߉
Claim (5.1.16)[291]: Let ݊ ≥ 1. For any ߞ ∈ ߑ

 there exists a unique ߜ ∈ ߑ
 such that 

(ߞ),ߎ − (ߜ)ఛ,ߎܭ ∈ ܾℤ. 
Proof. Observe that 

(ଵߜ)ఛ,ߎܭ  − (ଶߜ)ఛ,ߎܭ ∉ ܾℤ for all distinct ߜଵ, ଶߜ ∈ ߑ
 ,               (79) 

because ܾ ݍ/ ∈ ℤ, ܾ and ܭ  are coprime, and ߎఛ,(ߜଵ) − (ଶߜ)ఛ,ߎ = ܾܽ  for some 0 ≤ ݈ ≤
݊ − 1 and ܽ ∉  ,ℤ. On the other handݍ

൛ߎܭఛ,(ߜ): ߜ ∈ ߑ
ൟ + ܾℤ = ߉ܭ + ܾℤ ⊂ ߆ + ܾℤ  

= ൛ߎ,(ߞ): ∋ ߞ ߑ
ൟ + ܾℤ                 (80) 

by (77). Combining (79) and (80) leads to 
 ൛ߎܭఛ,(ߜ): ߜ ∈ ߑ

ൟ + ܾℤ = ൛ߎ,(ߞ): ߞ ∈ ߑ
ൟ + ܾℤ.                   (81) 

Then Claim (5.1.16) follows from (81) and (79).  
To establish the necessity, we need another claim:  

Claim (5.1.17)[291]: ߴ ∉  .ℤܭ
Proof. Suppose, on the contrary, thatߴ   ∈ ߣ ℤ. Then for anyܭ ∈ ܽ there exist ,߉ ∈ ℤ\ݍℤ 
and 0 ≤ ݈ ∈ ℤ by (3) and (77) such that ߴ − ߣܭ = ܾܽ. This together with the co-prime 
assumption between ܭ and b implies that ܽ/ܭ ∈ ℤ and 0 ≠ ܭ/ߴ − ߣ ∈ ቀ


ቁ ܾ . Thus 

߉ ∪  is an orthogonal set for the measure µ, by (3), which contradicts to the {ܭ/ߴ}
maximality of the set ߉.  

Now we continue our proof of the necessity. Let ܰ be the smallest positive integer 
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such that (ܾே − ܭ/ߴ(1 ∈ ℤ, where the existence follows from the co-prime property 
between ܭ and ܾ . By Claim (5.1.17), there exists ߱  ∈ {−1,0, . . . , ܾ − 2},1 ≤ ݆ ≤ ܰ, such 
that the word ܹ: = ߱ଵ߱ଶ ··· ߱ே ≠ 0 and 

ߴ

ܭ
= ܿ. ߱ே ··· ߱ଶ߱ଵ߱ே ··· ߱ଶ߱ଵ ··· = ܿ +

∑ ܾ߱ିଵே
ୀଵ

ܾே − 1
                  (82) 

for some integer ܿ ∈ ܼ. Let ܹ′ = ߱ଵ
ᇱ ߱ଶ

ᇱ ··· ߱ே
ᇱ  be so chosen that ߱

ᇱ ∈ {−1,0, . . . , ܾ −
2}, 1 ≤ ݆ ≤ ܰ, and 

൫ ߱
ᇱ + ߱൯ܾିଵ

ே

ୀଵ

=

⎩
⎪
⎨

⎪
⎧ 0  ݂݅  ܾ߱ିଵ

ே

ୀଵ

∈
ܾே − 1
ܾ − 1

[−1,1)

ܾே − 1   ݂݅  ܾ߱ିଵ
ே

ୀଵ

∈
ܾே − 1
ܾ − 1 [1, ܾ − 2]

 

The existence of such a word ܹ′ follows from the observation that 

൞ ܾ߱ିଵ
ே

ୀଵ

, ߱ ∈ {−1,0, . . . , ܾ − 2}ൢ = ቆ
ܾே − 1
ܾ − 1  [−1, ܾ − 2]ቇ ∩ ℤ. 

Let ݊ > ݉/ܰ and set ߞே = 0ேିߞ ∈ ߑ
ே  . By Claim (5.1.16) and the ߢ-main branch 

assumption for ߞ, there exists ߜே ∈ ߑ
ே  such that 

(ேߜ)ఛ,ேߎܭ  − ߴ ∈ ܾேℤ.                                         (83) 
Combining (82), (5.86) and (83) and recalling that ܭ and ܾ are coprime, we obtain 

(ܾே − (ேߜ)ఛ,ேߎ)(1 − ܿ̃) +  ߱ᇱ
ܾିଵ

ே

ୀଵ

∈ ܾேℤ, 

where 

ܿ̃ =

⎩
⎪
⎨

⎪
⎧ ܿ  ݂݅  ܾ߱ିଵ

ே

ୀଵ

∈
ܾே − 1
ܾ − 1 [−1,1)

ܿ − 1   ݂݅  ܾ߱ିଵ
ே

ୀଵ

∈
ܾே − 1
ܾ − 1

[1, ܾ − 2].

 

Therefore 

(ேߜ)ఛ,ேߎ  − ܿ̃ − ( ܾ߱ିଵ
ே

ୀଵ

)(1 +  ܾܰ + ···  + ܾ(݊ − 1)ܰ ∈  ܾܼ݊ܰ.         (84) 

By the construction of ߱
ᇱ , 1 ≤ ݆ ≤ ܰ, ∑ ߱ᇱ

ܾିଵே
ୀଵ ∈ ಿିଵ

ିଵ
(−1, ܾ − 2]. If either 

∑ ߱′ܾିଵே
ୀଵ ∈ ಿିଵ

ିଵ
(−1, ܾ − 2) or ∑ ߱′ܾିଵே

ୀଵ = ಿିଵ
ିଵ

(ܾ − 2) and ܿ̃ ≤ 0, then for 
sufficiently large ݇, 

ܿ̃ + ( ߱ᇱ
ܾିଵ

ே

ୀଵ

)(1 + ܾே +··· +ܾ(ିଵ)ே =  ܾିଵߠ
ே

ୀଵ

 

for some ߠ ∈ {−1,0, . . . , ܾ − 2},1 ≤ ݆ ≤ ݇ܰ, as it is contained in [−(ܾே − 1)/(ܾ −
1), (ܾே − 1)(ܾ − 2)/(ܾ − 1)]. This together with (84) implies that 
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(ேߜ)ఛ,ேߎ =  ܾିଵߠ
ே

ୀଵ

+  ߱ᇱ
ܾିଵ

ே

ୀଵ

൫ܾே + ··· + ܾ(ିଵ)ே൯ 

for ݊ ≥ ݇. Thus there exists ߜ ∈ ߑ
ஶ such that ߜ|ே = ேߜ  and 

(ேା|ߜ)߬  = ߱
ᇱ, 1 ≤ ݆ ≤ ܰ 

for ݊ ≥ ݇, which proves the desired conclusion. Now consider the case that 
∑ ߱′ܾିଵே

ୀଵ = ಿିଵ
ିଵ

(ܾ − 2) and ܿ̃ > 0. In this case, ߱
ᇱ = ܾ − 2 for all 1 ≤ ݆ ≤ ܰ and 

ܰ = 1 by the selection of the integer ܰ. Further we obtain from (84) that 

(ߜ)ఛ,ߎ −  ܿ̃ + 1 +  ܾିଵ


ୀଵ

∈ ܾℤ, 

which implies that there exists ߜ ∈ ߑ
ஶ such that ߜ| = ߜ  and ߬(ߜ|) = −1 for 

sufficiently large ݊, which proves the desired conclusion. 
Theorem (5.1.18)[291]: Consider 2 ≤ ,ݍ ݍ/ܾ ∈ ℤ and ܾ > 4. Define a tree mapping 
:ߢ ߑ

∗ → {−1,0,1, . . . , ܾ − 2} by 

(ାଵ|ߜ)ߢ = ൞

ߜ ݂݅ 0 = 0 and ݇ ≥ 0                                            
1 ݂݅  ߜ ≤ ߜ ≤ ݍ − 1  and ݇ = 0                         
1 ݂݅  ݍ ≤ ߜ ≤ ݍ − 1  and ݇ ∈ {1,2, … , ఋܭ , 2ܾ}
0     ݂݅  1 ≤ ߜ ≤ ݍ − ఋܭ ݀݊ܽ 1 < ݇ ≠ 2ܾ         

ߜ ݂݅  ∈ Σ୯
ଵ         (85) 

where 0 ≤ ఋܭ ≤ ܾ − 2 is the unique integer such that ܭ)ݍఋ + 1) + ߜ ∈ (ܾ − 1)ℤ; and 
inductively  

(ା|ߜ)ߢ = ቐ
݆   ݂݅ ݇ = 0

݇ ݂݅  ݍ ∈ {1,2, … , ఋܭ , ݊ + 2ܾ − 1}
0  ݂݅ ݇ > ఋܭ   ܽ݊݀ ݇ ≠ ݊ + 2ܾ − 1

                            (86) 

if ߜ = ′ߜ j for some ′ߜ ∈ ߑ
ିଵ, ݊ ≥ 2 and ݆ ∈ {1, . . . , ݍ − 1}, where ܭఋ ∈ {0,1, . . . , ܾ − 2} 

is the unique integer such that 

 (|ߜ)ߢ
ିଵ

ୀଵ

+ ఋܭ)ݍ + 1) + ݆) ∈ (ܾ − 1)ℤ.                               (87) 

Then 
:,߉  = ൛ߎ,ஶ(ߜ): ߜ ∈ ߑ

∗ൟ                                            (88) 
is a spectrum of the Cantor measure µ,, and the rationally rescaled set ߉,/(ܾ − 1) is 
its maximal orthogonal set but not its spectrum. 
Proof. First we show that ߉, is a spectrum of the Cantor measure µ,. Observe that ߢ 
is a maximal tree mapping, every ߜ ∈ ߑ

∗ is ߢ-regular, and ߉, =  We then obtain .(ߢ)߉
from Theorem (5.1.10) that 

  , is a maximal orthogonal set of the Cantor measure µ,.           (89)߉
From the definition of the maximal tree mapping ߢ it follows that 

Dச,ஔ ≤ ,ఋ(0ஶ)ܦ ≤ ఋܭ + 1 ≤ ܾ − 1 for all ߜ ∈ ߑ
∗ ,                         (90) 

where ܭఋ  is given in (17). Therefore the spectral property for ߉, holds by (89), (90) and 
Theorem (2). Next we prove that ߉,/(ܾ − 1) is a maximal orthogonal set for the Cantor 
measure µ,. From (3) and the spectral property for the set ߉, We obtain that 

,߉  − ,߉ ⊂ ൛ܾܽ: 0 ≤ ݆ ∈ ℤ, ܽ ∈ ℤ\ݍℤൟ ∪ {0}.                         (91) 
On the other hand, 

0 ∈ ,߉ ⊂ ℤ 
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and for any ߜ ∈ ߑ
∗, 

(ߜ),ஶߎ  =  ିଵܾ(|ߜ)ߢ
ஶ

ୀଵ

∈  (|ߜ)ߢ
ஶ

ୀଵ

+ (ܾ − 1)ℤ = (ܾ − 1)ℤ             (92) 

by (25)–(26). Combining (78) and (79) leads to 
,߉) − ܾ)/(,߉ − 1) ⊂ {ܾܽ: 0 ≤ ݆ ∈ ℤ, ܽ ∈ ℤ\ݍℤ} ∪ {0}, 

and hence ߉,/(ܾ − 1) is an orthogonal set for the Cantor measure µ, by (3). Now we 
establish the maximality of the rescaled set ߉,/(ܾ − 1). Suppose, on the contrary, that 
there exists ߣ < ܾ)/,߉ − 1) such that ߉ሚ,: = ܾ)/,߉ − 1) ∪  is an orthogonal {ߣ}
set for the Cantor measure µ,. Then 

(ܾ − ሚ,߉(1 − (ܾ − ሚ,߉(1 ⊂ (ܾ − 1){ܾܽ: 0 ≤ ݆ ∈ ℤ, ܽ ∈ ℤ\ݍℤ} ∪ {0} ⊂ {ܾܽ ∶ 0 
≤ ݆ ∈ ℤ, ܽ ∈ ℤ\ݍℤ} ∪ {0}                      

and (ܾ −  ሚ, is an orthogonal set for the Cantor measure µ, by (3). This contradicts߉(1
the spectral property for ߉,. Finally we prove that ߉,/(ܾ − 1) is not a spectrum of the 
Cantor measure µ,. Let ߬ ,: ߑ

∗ → {−1,0, . . . , ܾ − 2} be the maximal tree mapping such 
that ߉,/(ܾ − 1) =  By Theorem (5.1.11), the non-spectral property for the set .(,߬)߉
ܾ)/,߉ − 1) reduces to showing that  

ఛ,್,ఋ(0ஶ)ܦ  ≥ ݊                                                           (93) 
for all ߜ ∈ ߑ

\ߑ
ିଵ, ݊ ≥ 2,being ߬, ܾ-regular. Recall that ߉, =  This together .(ߢ)߉

with (25) and (26) implies the existence of ߟ ∈ ߑ
 , ݉ ≥ 1, such that 

 (ܾ − (ߜ)ఛ,್,ஶߎ(1 = (ߟ),ஶߎ =  ܾ݀ିଵ
ାିଶ

ୀଵ

+ ݍ  · ܾଶାଶିଶ,                (94) 

where ݀ ∈ {0,1,··· , for all 1 {ݍ ≤ ݆ ≤ ݉ + ܾ − 2 and ݀ ∈ {1, . . . , ݍ − 1}. Write 

್,ఛߎ  ,ஶ(ߜ) =  ܾܿିଵ
ஶ

ୀଵ

=  ܾܿିଵ
ெ

ୀଵ

                                      (95) 

where ܿ : = ߬,(ߜ|) ∈ {−1,0, . . . , ܾ −  2} and ܯ ≥ ݊ is so chosen that ܿெ ≠ 0. The 
existence of such an integer follows from ߬,(ߜ|) ∈ ℤ\ݍℤ and ߬,(ߜ|) = 0 for 
sufficiently large ݆. Combining (94) and (95) leads to 

 ܾܿିଵ
ெ

ୀଵ

=
1

ܾ − 1 ቌ  ܾ݀ିଵ
ାିଶ

ୀଵ

+ ݍ · ܾାିଶቍ + ݍ  ܾ
ଶାଶିଷ

ୀାିଶ

 

∈ ݍ  ܾ
ଶାଶିଷ

ୀାିଶ

+ ൬0,
ܾ − 2
ܾ − 1൰ ܾାିଶ,              

where the last inequality follows as ݍ ≤ ܾ − 3. This, together with ܿ ∈  {−1,0,1, . . . , ܾ −
2}, 1 ≤ ݆ ≤  implies that ,ܯ

ܯ  = 2݉ + 2ܾ − 2 and ܿ = ,ݍ ݉ + ܾ − 2 < ݆ ≤  (96)                 .ܯ
On the other hand, for ߜ ∈ ߑ

\ߑ
ିଵ it follows from the tree mapping property for ߬, 

that ܿ ∉ ݊ ℤ. Thusݍ ≤ ݉ + ܾ − 2 according to (96). Therefore 
್,ఛܦ ,ఋ(0ஶ) ≥ ܯ − (݉ + ܾ − 2) ≥ ݊. 

This proves (93) and then the conclusion that ߉, is not a spectrum of the Cantor set µ, 
by Theorem (5.1.11). 
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Section (5.2): A class of Random Convolution on ℝ: 
For ߤ be a compactly supported Borel probability measure on ℝௗ. One 

fundamental problem in Fourier analysis is to find a sequence ߉ ⊆ ℝௗ such that the 
family of complex exponential functions (߉)ܧ: = ൛݁ଶగ〈ఒ,௫〉ൟఒ∈௸ forms an orthogonal 
basis (Fourier basis) for ܮଶ(ߤ), the space of all square-integrable functions with respect 
to the measure ߤ. In this case, the measure ߤ is called a spectral measure and ߉ is called 
a spectrum for ߤ. We also say that (ߤ,  is a spectral pair. The study on spectral measures (߉
has a long history, e.g., see [352], and has been attracted much attention after the work 
of Fuglede [338].  

Jorgensen and Pedersen [347] initiated an investigation of spectral property of the 
fractal measures. They showed that the infinite Bernoulli convolution ߤఘ  is a spectral 
measure if ߩ = 2݇ for ݇ ∈ ℕ, and is not a spectral one if ߩ = 2݇ + 1 for ݇ ∈ ℕ. Recently, 
Dai [321] showed that the scales 2݇ are the only values that generate spectral Bernoulli 
convolutions. Actually, Jorgensen and Pedersen’s example opened up a new area in 
researching the harmonic analysis on fractals. Many other interesting singular measures 
which admit orthonormal Fourier series have been constructed, see [318–320,325,326, 
330,334,336,339,340,348,353–355], etc.  

It is well known that a given singular spectral measure has more than one spectrum 
which is not obtained by translations of each other. Hence a natural question is: can we 
construct all spectra for a given spectral measure? It is a very challenging question. 
Motivated by this question, many found various method to construct spectra for a given 
spectral measure, see [321–323,325,326,330–332,335,348–350]. Among these results, 
one basic but most important constructing method is to check that whether the scaling set 
of a spectrum by a real number is also a spectrum. The first spectrum for the Bernoulli 
convolution ߤଶ(݇ ∈ ℕ) given in [347] is 

,(2݇߉ (ܥ = ቐ(2݇)ିଵ


ୀଵ
ܿ : ܿ ∈ ,ܥ ݉ ∈ ℕቑ  with ܥ = ൜0,

݇
2ൠ. 

Later on, Jorgensen et al. [343], Li [349,350] provided some conditions on the integer 
numbers  for the scaling set  

,(2݇߉ (ܥ =  ቐ(2݇)ିଵ


ୀଵ
ܿ: ܿ ∈ ,ܥ ݉ ∈ ℕቑ  with ܥ = ൜0,

݇
2ൠ.  

to be a spectrum for ߤଶ . In particular, Laba and Wang [348], Dutkay and Jorgensen 
[332], Dutkay and Haussermann [328] studied for what digits {0,  odd, the  with ,{
scaling set 

,(4߉ (ܥ =  ቐ 4ିଵ


ୀଵ
ܿ : ܿ ∈ ,ܥ ݉ ∈ ℕቑ  with ܥ = {0,1} 

is a spectrum for ߤସ . 
Based on these researches, Fu, He and Wen [335] borrowed the notation 

“eigenvalue” in linear algebra to describe the above phenomena, and discovered a class 
of new spectra for the measure ߤଶ , ݇ > 1 mentioned above.  
Definition (5.2.1)[317]: Let ߤ be a Borel probability measure on ℝ. A real number  is 
called a spectral eigenvalueof μif there exists a discrete set ߉ such that both ߉ and ߉ are 
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spectra for ߤ. The set ߉ is called an eigen-spectrum for μ corresponding to the eigenvalue 
 .

The study on the spectral eigenvalues of a given singular spectral measure is of interest 
and helps us find more surprising facts. For example, the eigen-spectra corresponding to 
a eigenvalue may have the cardinality of the continuum, and the Fourier series associated 
to the eigen-spectra corresponding to the same eigenvalue may have the same 
convergence property, see [335]. Other interesting connections between the spectral 
eigenvalues and Fourier analysis, number theory, dimension theory, operator theory and 
ergodic theory have been found by Strichartz [354][355], Dutkay and [326][328][333], 
Jorgensen, Kornelson and Shuman [344][346] and Jorgensen [342], etc. Motivated by the 
analysis for the Bernoulli convolutions ߤଶ  in [335], we determine the spectral 
eigenvalues of the following three (singular) spectral measures respectively.  

(a) Let ߤఘ,  be a self-similar measure arising from the iterated function system 
(IFS) {ିߩଵ(ݔ + ݅): ݅ ∈ ߩ on ℝ, where {ܦ ∈ ℕ and ܦ = {0, 1,···, ݍ − 1}. An equivalent 
expression of the measure ߤఘ, is the following infinite convolution  

:ఘ,ߤ = ∗ఘషమߜ∗ఘషభߜ ···                                                    (97) 
in the weak∗-topology (see, e.g. [351]). Here, the symbol ∗denotes the convolution of 
two measures and ߜா for a finite set ܧ denotes the atomic measure 

ாߜ =
1

ܧ#
 ߜ
∈ா

 

where ߜ  is the Dirac point mass measure at the point ݁, ܧݎ = :݁ݎ} ݁ ∈  is the ܧ# and {ܧ
cardinality of ܧ. In 2014, Dai, He and Lau [324] gave the following complete 
characterization on the spectrality and non-spectrality of ߤఘ,.  
Theorem (5.2.2)[317]: The Cantor measure ߤఘ, is a spectral measure if and only if ݍ ≥
2 and ߩ|ݍ.  

(b) Let ߩ > 1 and let {ܽ , ܾ}ୀଵ
ஶ  be a sequence of integers with bounded from 

upper and lower, then the measure ߤఘ , {ܽ , ܾ}, called infinite Bernoulli convolution by 
An, He and Li [320], is defined by 

ఘߤ , {ܽ, ܾ} = ఘషభ{భ,భ}ߜ ∗ ఘషమ{మ,మ}ߜ ∗···  
in the weak∗-topology. 

 [320], showed that if ߤఘ ,{ೖ,ೖ} is a spectral measure, then ߩ is an even integer, 
which extends the very nice result of Dai [321]. On the contrary, they obtained a sufficient 
but not necessary condition for a large class of measures ߤఘ,{ೖ,ೖ} to be spectral. More 
explicitly, let ݀ ∶= ܾ − ܽ = 2݉  with all ݉’s are odd positive integers, ܮ =
max
ஹଵ

݈ < ∞, their main result [320] showed that  
Theorem (5.2.3)[317]: Let ߩ = 2ାଵݍ be an integer such that ݈ > ݍ ifܮ = 1 and ݈ ≥  if ܮ
the odd number ݍ > 1. Then the infinite Bernoulli convolution ߤఘ , {ܽ, ܾ} is a spectral 
measure.  

(c) Let ߩ > 1 and let {ܽ, ܾ, ܿ}
ஶ = 1 be a sequence of integers with bounded 

from upper and lower, then ߤఘ , {ܽ , ܾ , ܿ} is defined by the infinite convolution 
ఘߤ , {ܽ , ܾ , ܿ}: = ,ఘషభ{ܽଵߜ ܾଵ, ܿଵ} ∗ ,ఘషమ{ܽଶߜ ܾଶ, ܿଶ} ∗···  

in the wea݇∗-topology. Under a mild condition, Fu and Wen [337] established the 
following characterization on the spectral property of the measure ߤఘ , {ܽ, ܾ , ܿ}.  
Theorem (5.2.4)[317]: With the above notations, if ݃ܿ݀(ܾ − ܽ, ܿ − ܽ) = 1 for all 
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݇ ∈ ܰ, then ߤఘ , {ܽ , ܾ , ܿ} is a spectral measure if and only if ߩ ∈ 3ℕ and {ܾ − ܽ, ܿ −
ܽ}  ≡  {1, 2} (mod 3) for all ݇ ∈ ℕ. Corresponding to Theorem (5.2.2), Theorem (5.2.3) 
and Theorem (5.2.4), our main results stated as follows. 
Theorem (5.2.5)[317]: Let  be a real number. Under the assumption of Theorem (5.2.3), 
the following two statements are equivalent:  

(i)  is a spectral eigenvalue of ߤఘ, {ܽ, ܾ};  
(ii)  = భ

మ
 for some ଵ, ଶ ∈ ℤ\{0}, where ݃ܿ݀(ଵ, (ଶ = 1 and ଵ,  ଶ are odd

integers.  
Theorem (5.2.6)[317]:: Let  be a real number. Under the assumption of Theorem 
(5.2.4), 

(i) if ߩ = 3 , then  = ±1 are the only spectral eigenvalues of ߤఘ , {ܽ, ܾ, ܿ}; 
(ii) if ߩ > 3, then  is a spectral eigenvalue of ߤఘ , {ܽ, ܾ, ܿ} if and only if  = భ

మ
 

where ଵ,  .ଶ and 3 are pairwise coprime
We have to point out that the above three measures with particular form are a class 

of random convolution defined by Dutkay and Lai in [334]. Also, see [319,320,335,354] 
for more examples in which the random convolution is spectral. We introduce some basic 
definitions and preliminaries on spectral property of spectral measures. We will prove 
Theorem (5.2.4), (5.2.5) and (5.2.6) respectively. 

Given a probability measure ߤ on ℝ, the Fourier transform ̂ߤ of ߤ is defined by 

(ߦ)ߤ̂  = න ݁ିଶగక௫݀ߦ∀)      ,(ݔ)ߤ ∈ ℝ). 

 For a discrete set ߉, we say that ߉ is an orthogonal set (or orthogonal system) for ߤ if 
߉ − ߉ ⊆ (ߤ̂)ܼ ∪ {0} 

where ܼ(݂) denotes the zero set of the function ݂ on ℝ, i.e. ܼ(݂) = ߦ} ∈ ℝ: (ߦ)݂ = 0}. 
Defining 

(ߦ)௸ܳ = |̂ߦ)ߤ + ଶ|(ߣ

ఒ∈௸

, ߦ∀) ∈ ℝ). 

The following theorem provides a universal test which allows us to determine whether a 
discrete set ߉ is an orthogonal set or a spectrum for the measure ߤ. 
Theorem (5.2.7)[317]: (See [347].) Let ߤ be a compactly supported Borel probability 
measure on ℝ, and let ߉ ⊆ ℝ be a discrete subset. Then  

(i) ߉ is an orthogonal set for ߤ if and only if ܳ௸(ߦ) ≤ 1 for ߦ ∈ ℝ;  
(ii) (ߤ, (ߦ)௸ܳ is a spectral pair if and only if (߉ ≡ 1 for ߦ ∈ ℝ;  
(iii) ܳ௸ is an entire function on the complex plane ܥ if ߉ is an orthogonal set for ߤ; 

consequently, (ߤ, ܳ is a spectral pair if and only if (߉ (ߦ)௸ ≡ 1 for all ߦ ∈ ,0)ܤ  ,(ݎ
which is an open ball centered at 0 with radius ݎ. 

As a consequence of Theorem (5.2.7), one can easily get that the following lemma. 
Lemma (5.2.8)[317]: Let ߤ be a compactly supported Borel probability measure on ℝ, 
and let ߉ ⊆ ℝ be a countable subset. Then (ߤ, ,ߤ) is a spectral pair if and only if (߉  (߉−
is a spectral pair. 
Proof. In terms of the fact |̂(ߦ)ߤ| =  we have that ,|(ߦ−)ߤ̂|

 |̂ߦ)ߤ + ଶ|(ߣ

ఒ∈௸

= |̂ߦ−)ߤ − ଶ|(ߣ

ఒ∈௸ 

, ߦ∀) ∈ ℝ), 

which yields that the desired result by Theorem (5.2.7)(ii).  
Based on the infinite convolution, another useful test for the spectrality and 
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nonspectrality of the measure is given by Dai, He and Lau in [324].  
Lemma (5.2.9)[317]: Let ߤ = ߤ ∗  ଵ be the convolution of two probability measuresߤ
ߤ , ݅ = 0,1, and they are not Dirac measures. Suppose that ߉ is an orthogonal set for ߤ 
with 0 ∈  .ߤ but cannot be a spectrum for ,ߤ is also an orthogonal set for ߉ then ,߉

Up to now, many interesting spectral measures in ℝௗ  have been constructed by 
using the ideas of compatible pairs, please see [329,348,354]. Here we only concern the 
integral compatible pairs on ℝ.  
Definition (5.2.10)[317]: Let ߩ be a positive integer and let ܦ, ܥ ⊆ ܼ be two finite subsets 
with the same cardinality ݍ. We say that (ିߩଵܦ, ݍ forms a compatible pair if the (ܥ ×  ݍ
matrix 

:,ܪ = ଵିݍ
ଶൣ݁ଶగఘషభௗ൧ௗ∈,∈                                       (98) 

is an unitary matrix, i.e., ܪ,ܪ,
∗ =  .ܫݍ

The following properties of compatible pairs have been proved in [348,354] and 
will be used to prove our main theorems.  
Lemma (5.2.11)[317]: Let ߩ be a positive integer and let ܦ, ܥ ⊆ ℤ be two finite subsets 
such that (ିߩଵܦ,   forms a compatible pair. Then (ܥ

(i) (ߜఘషభ, ,ఘషభߜ) and (ܥ   ;are spectral pairs (ܥ−
(ii) (ିߩଵ(ܦ + ܽ), ܥ + ܾ) forms a compatible pair for any ܽ, ܾ ∈ ℤ;  
(iii) suppose that ܥ ⊆ ℤ such that ܥ ≡ ,ܦଵିߩ) then ,(ߩ mod) ܥ   ;is a compatible pair (ܥ
(iv) suppose that (ିߩଵܦ, ܦ are compatible pairs and define (ܥ = ଵܦଵିߩ +···

ܥ  andܦିߩ+ = ܥݓ + ܥଵݓߩ +··· ݓ with ܥିଵݓିଵߩ+ ∈ {− 1, 1}. Then 
,ܦ) ݇ ) is a compatible pair for eachܥ ≥ 1.  

The concept of compatible pair clearly provides us two useful iterated function system 
(IFS) {߮ௗ(ݔ) = ݔ)ଵିߩ + ݀): ݀ ∈ (ݔ)and its dual IFS {߰ {ܦ = ݔ)ଵିߩ + ܿ): ܿ ∈  .{ܥ
Since the two pairs of IFSs {߮ௗ}ௗ∈ and {߰}∈ are contractive maps, then Hutchinson’s 
theorem can be applied: 
Theorem (5.2.12)[317]: (See [341].) For the IFS {߮ௗ(ݔ) = ݔ)ଵିߩ + ݀): ݀ ∈  there ,{ܦ
is a unique Borel probability measure ߤఘ, satisfying the self-similar identity 

ఘ,ߤ =
1

ܦ#
 ఘ,ߤ  ∘ ߮ௗ

ିଵ

ௗ∈

, 

and the support of the measure ߤఘ, is the unique compact set ܶ(ߩ,  satisfying that (ܦ

,ߩ)ܶ (ܦ = ራ ߶ௗ(ܶ(ߩ, ((ܦ
ௗ∈

. 

The dual definitions for ߤఘ, and ܶ(ߩ,  It .{(ݔ)߰} can also be defined by the dual IFS (ܥ
is well known (e.g., see [353]) that the dual compact set ܶ(ߩ,  plays an important role (ܥ
in the study of spectral property of the measure ߤఘ,. Reminding that each element ݔ ∈
,ߩ)ܶ  :ߩ has the following radix expansion in base (ܥ

ݔ =  ିߩ
ܿ

ஶ

ୀଵ

, ܿ ∈  (99)                                                    .ܥ

Definition (5.2.13)[317]: With the above expansion of ݔ ∈ ,ߩ)ܶ  as in (99), we give (ܥ
definitions:  

(i) we say that the expansion (in base ߩ) of ݔ is unique if there exists an unique 
infinite word ܿଵܿଶ ···∈  ;ℕ  such that (99) holdsܥ
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(ii) we say that the expansion of ݔ is finite if the infinite word ܿଵܿଶ ··· ends with 0ஶ; 
(iii) we say that the expansion of ݔ is ultimately periodic (resp., periodic) if the infinite 

word ܿଵܿଶ ··· is ultimately periodic (resp., periodic), that is, there exist constants 
݉, ℓ ∈ ℕ such that ܿାℓ = ܿ for ݆ ≥ ݉ (resp., ܿାℓ  = ܿ  for all ݆ ∈ ℕ).  

The proof of Theorem (5.2.15) depends on Lemma (5.2.9) and the following 
theorem.  
Theorem (5.2.14)[317]: Let ߩ = ݍ be a positive integer with positive integers ݎݍ ≥ 2 
and ݎ ≥ 1. Then 

(i) for ݎ = 1 , the set ߉ = ℤ with 0 ∈  ఘ,, and hence thereߤ is the only spectrum for ߉
is no  ∈ ℝ\{±1} such that ߉,  ;ఘ,ߤ are spectra for ߉

(ii) for ݎ ≥ 2, and for any two finite integers ଵ, )݀ܿ݃ ଶ with , ( ݍ = 1 for ݅ = 1,2, 
there is a common discrete set ߉ (depending on ଵ and ଶ) such that ߉, ,߉ଵ  ߉ଶ
are spectra for ߤఘ,. 

It is clear that Theorem (5.2.14)(i) is trivial, since the measure ߤఘ, is then the Lebesgue 
measure restricted on the unit interval [0, 1]. Before demonstrating Theorem (5.2.14)(ii), 
we finish the proof of Theorem (5.2.15). 
Theorem (5.2.15)[317]: Let  be a real number. Under the assumption of Theorem 
(5.2.12),  

(i) if ߩ =  then ,ݍ = ±1 are the only spectral eigenvalues of ߤఘ,;  
(ii) if ߩ >  ఘ, if and only ifߤ is a spectral eigenvalue of  then , ݍ = ଶ/ଵ  where 

,ଵ  .are pairwise coprime ݍ ଶ and
Proof. (i) It is trivial, since Theorem (5.2.14)(i). (ii) Sufficiency. Suppose  = భ

మ
, where 

,ଵ)݀ܿ݃ (ଶ = 1 and ݃ܿ݀( , (ݍ = 1 for ݅ = 1, 2. By Theorem (5.2.14)(ii), there exists a 
common discrete set ߉ such that  ,߉ଵ ,߉ଶ߉ are spectra for ߤఘ,. Let ߉ =  Then .߉ଶ
,߉  ఘ,, as desired. Necessity.Fixߤ are spectra for ߉ ∈ ℝ and suppose ߉, with 0 ߉ ∈  ߉
are both spectra for ߤఘ,. Observe that the zero set of the Fourier transform ̂ߤఘ, is 

ܼ൫̂ߤఘ,൯ = ራ (ℤݍ\ℤ)ݎߩ
ஶ

ୀ

.                                       (100)  

Let ߉ = ,(ℤݍ\ℤ)ݎߩ ݇ ≥ 0.  
Claim (5.2.16)[317]: We have ߉ ∩ ߉ ≠ ∅.  
Proof. If ߉ ∩ ߉ ≠ ∅, then ߉ ⊆∪ୀଵ

ஶ ߉ , and it is easy to check that߉ − ߉ ⊆∪ୀଵ
ஶ ߉ ∪

{0}. This means that ߉ is an orthogonal set for the measure ߤ ∶= ∗ ఘషమߜ (ఘషయ)ߜ ∗···, 
where ߤఘ, = ఘషభߜ ∗  ఘ,, aߤ is not a spectrum for the measure ߉ ,By Lemma (5.2.9) .ߤ
contradiction.  
Claim (5.2.17)[317]: ିݎଵ(߉ ∩ (߉ ∪ {0} contains a complete set of representatives of the 
set ℤ/ݍℤ.  
Proof. Suppose on the contrary that there exists a ݊ ∈ {1, 2,···, ݍ − 1} such that 

߉)ଵିݎ ∩ (߉ ∩ (݊ + (ℤݍ = ∅. 
This yields, for any ߣ ∈ ߉ ∩  that ,߉

ߣ − ݊ݎ ∈ ⊇)(ℤݍ\ℤ)ݎ  .((ఘ,ߤ̂)ܼ
Furthermore, since {0}\߉ ⊆ ߣ then for ,(ఘ,ߤ̂)ܼ ∈ ݇ , there exist߉\߉ ∈ ℕ and ܽ ∈
 ℤ\ݍℤ such that ߣ = ܽݎߩ =  and hence ,ܽݎ(ݎݍ)

ߣ − ݊ݎ = ܽߩ)ݎ − ݊) ∈ ⊇)(ℤݍ\ℤ)ݎ  .((ఘ,ߤ̂)ܼ
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The above argument shows that ݊ݎ is orthogonal to every element of the set ߉, that is, 
 ห̂ߤఘ,(ߦ + ห(ߣ

ଶ

ఒ∈௸∪{బ}

≤ ߦ∀)1 ∈ ℝ).                                      (101) 

Since ߉ is a spectrum for ߤఘ,, that is, 

 ห̂ߤఘ,(ߦ + ห(ߣ
ଶ

ఒ∈௸

 ≡ ߦ∀)1 ∈ ℝ),                                        (102) 

 we conclude, from (101) and (102), that m 

ห̂ߤఘ,(ߦ + )ห݊ݎ
ଶ

≡ ߦ∀)  0 ∈ ℝ).  
This is impossible since  ̂ߤఘ,(0) = 1. The claim is true. 

By the orthogonality of ߉, ,߉ we have ,߉ ߉ ⊆ (ఘ,ߤ̂)ܼ ⊆ ℤ, hence  is a rational 
number. Let  = భ

మ
 , where ݃ܿ݀(ଵ, (ଶ = 1 and 

)݀ܿ݃ , (ݍ = ݀ for ݅ = 1 ,2.                                         (103) 
Moreover, for ݅ = 1, 2, we define 

 = ݀
ᇱ, where 

ᇱ ∈ ℤ.                                            (104) 
Next, we use the proof by contradiction to show that ݀ଵ = ݀ଶ = 1in (103) and 

(104). 
(a) To prove ݀ଵ = 1. Suppose ݀ଵ > 1. We view ଵ as an element of the cyclic 

group ℤ , and set ଵ be the cyclic group generated by ଵ in ℤ. The assumption ݀ଵ > 1 
means that ଵ is a proper subgroup of ℤ, which yields that ଵℤ does not contain a 
complete set of the set ℤ/ݍℤ. On the other hand, the condition ߉ ,߉ ⊆ (ఘ,ߤ̂)ܼ ∪ {0} ⊆
ℤ implies that ଵݎ


߉ ⊆ ℤ and భ

మ
߉ ⊆ ℤ. Since ݃ܿ݀(ଵ, (ଶ = 1, we have ଵ

మ
߉ ⊆ ℤ, and 

hence 
1
ݎ

߉) ∩ (߉ ∪ {0} ⊆
ଵ

ଶݎ
߉ ∪ {0} ⊆  .ଵℤ

Applying Claim (5.2.17) to the spectrum ߉ instead of ߉, we get that the set ଵℤ contains 
a complete set of the group ℤ/ݍℤ. The above discussions imply that ݀ଵ = 1.  

(b) To prove ݀ଶ = 1. In fact, if ݀ଶ > 1, by Claim (5.2.17), there exists ߣ ∈ ߉ ∩
ߣ ,for example) ߉ ∈ ଶ݀)ݎ − 1 + (ℤݍ ∩  such that (߉

݃ܿ݀(݀ଶ,
ߣ

ݎ
) = 1 

Since ݃ܿ݀(݀ଶ, (ଵ = 1, we have ݃ܿ݀(݀ଶ, (ݎ ߣଵ = 1. Combining with (104), we have 
that 


ߣ

ݎ
=

1
ଶ

ᇱ  
ଵ

ߣ
ݎ

݀ଶ
∉ ℤ.                                                (105) 

Therefore ߣ ∉ ⊇)(ఘ,ߤ̂)ܼ  ఘ,, whichߤ is not a spectrum for the measure ߉ ,ℤ). Thusݎ
is a contradiction. This finishes the proof of Theorem (5.2.15).  

The following is a direct corollary of Theorem (5.2.15).  
Corollary (5.2.18)[317]: Let ߩ = ݎ is a prime number and ݍ where ,ݎݍ ≥ 2. If ߤఘ, is 
spectral, then all the values in the set ݍℤ + {1, 2,···, ݍ − 1} are spectral eigenvalues of 
ଶ/ଵ ,ఘ,. Consequentlyߤ  are all spectral eigenvalues of ߤఘ,, where ଵ, ଶ ℤݍ ∋ + {1,··
·, ݍ − 1}. The following is devoted to proving Theorem (5.2.14)(ii). We begin with some 
lemmas. 
Lemma (5.2.19)[317]: Let ߩ = ,ݍ be a positive integer with ݎݍ ݎ ≥ 2 and ܦ = {0, 1,···
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, ݍ − 1} and ܥ = ,)݀ܿ݃ is an integer with  If .ܦݎ (ݍ = 1 , then ܥ ≡  and (ߩ ݀݉)ܥ
hence for any infinite word ݓ ∈ {− 1, 1}ℕ, the set 

,ߩ)௪߉ :(ܥ =  ቐ ିଵߩݓ
ܿ



ୀଵ

: ܿ ∈ ,ܥ ݓ ∈ {− 1,1}, ݉ ∈ ℕቑ 

is an orthogonal system for ߤఘ,. 
Proof. We identify ܦ with the cyclic group ℤݍ with neutral element 0. Now the 
assumption ݃ܿ݀(, (ݍ = 1 implies that  is a generator of the group ℤݍ, i.e., , ···,2
, ݍ = 0 are distinct elements in ℤݍ, which is equivalent to say that ܦ ≡  .(ݍ mod)ܦ
Thus, ܥ ≡ ߥ the first statement holds. Let ,(ߩ mod)ܥ = ఘషభߜ ∗ ఘషమߜ ∗···∗  ఘషߜ
and ߉ = ܥଵݓ + ܥߩଶݓ +···  . Then the second statement follows fromܥିଵߩݓ+
the properties of compatible pair (ିߩଵܦ,  ) (see Lemma (5.2.11)(i) and (iv)) and theܥ
following relationships  

ܼ൫̂ߤఘ,൯ = ራ (ෞߥ)ܼ
ஶ

ୀଵ

 and  ߉௪(ߩ, (ܥ = ራ ߉

ஶ

ୀଵ

. 

In particular, if  = 1 in Lemma (5.2.19), Fu, He and Wen [335] obtained a class of 
spectra for Cantor measure ߤఘ, via infinite word in {−1, 1}ℕ, which is listed as follows. 
Lemma (5.2.20)[317]: (See [335].) Let ߩ = ,ݍ be a positive integer with ݎݍ ݎ ≥ 2. Then 
for any infinite word ݓ = ଷݓଶݓଵݓ ···∈ {−1, 1}ℕ, the set 

,ߩ)௪߉ :(ܥ = ቐ ିଵߩݓ
ܿ



ୀଵ

: ܿ ∈ ,ܥ ݓ ∈ {− 1,1}, ݉ ∈ ℕቑ                 (106) 

is a spectrum for the measure ̂ߤఘ,, where ܥ = ,ݎ ܦ = {0, 1,···, ݍ − 1}. Fixing  ≠ 1 be 
a non-zero positive integer such that ݃ܿ݀(, (ݍ = 1. For any positive integers M, N, we 
define  

:ெ,ேܩ = ܥ) + ܥߩ +··· (ܥெିଵߩ+ − ܥெߩ) +···  ),           (107)ܥெାேିଵߩ+
and let ܶ(ߩெାே, ݔ)(ெାே)ିߩ} ெ,ே) be the attractor of IFSܩ + :(݃ ݃ ∈  ெ,ே}. Moreܩ
precisely, 

,ெାேߩ)ܶ (ெ,ேܩ =  ൝ ݃(ெାே)ିߩ

ஶ

ୀଵ

: ݃ ∈  ெ,ேൡܩ

=  ൝(−1)൫ఛ()൯ିߩܿ

ஶ

ୀଵ

: ܿ ∈ ൡܥ ,                  (108) 

where ߬ is a (ܯ + ܰ)-periodic function on ℤ and ߬(݇) = 1for 1 ≤ ݇ ≤ ܰ and ߬(݇) =
0for ܰ + 1 ≤ ݇ ≤ ܯ + ܰ.  
Lemma (5.2.21)[317]: If ݃ܿ݀(, (ݍ = 1 , then each element ݔ in the compact set 
,ߩ)ܶ ܥ ∪  .has a unique expansion in base ρ, and is ultimate periodic ((ܥ−)
Moreover, the expansion of each element ݔ ∈ ,ߩ)ܶ ܥ ∪ ((ܥ−) ∩  cannot be (ఘ,ߤ̂)ܼ
finite. 
Proof. One can easily check it by using the methods and techniques in [320]. The readers 
can also refer to Lemmas 4.10, 4.11 and 4.12 in [335]. Here we omit the details in the 
proof.   

For ߜ > 0, the closed ߜ-neighborhood of ܶ(ߩெାே,  ெ,ே) is defined byܩ
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,ெାேߩ)ܶ) ߜ((ெ,ேܩ = ݔ} ∈ ℝ: ,ݔ)ݐݏ݅݀ ,ெାேߩ)ܶ ((ெ,ேܩ ≤  .{ߜ
The following lemma essentially gives a characterization on the completeness of the 
orthogonal system ߉௪(ߩ,  .(ఘ,ߤ)ଶܮ ) in the Hilbert spaceܥ
Lemma (5.2.22)[317]: With the notations above, for any positive integer  with 
,)݀ܿ݃ (ݍ = 1 there exist positive integers ܯ, ܰ ∈ ℕ (depending on ) such that 

(ఘ,ߤ̂)ܼ ∩ ,ெାேߩ)ܶ (ெ,ேܩ = ∅.                                    (109) 
Consequently, there exist positive constants ߝ, ߜ > 0 such that 

ห̂ߤఘ,(ߦ)ห
ଶ

≥  ߝ 
holds for all ߦ ∈ ,ெାேߩ)ܶ)  .ߜ((ெ,ேܩ
Proof. Since the set ܼ(̂ߤఘ,) is discrete, then its intersection with ܶ(ߩ, ܥ ∪  is ((ܥ−)
a finite set, say that ܣ ∶= ,ଵݔ} ଶݔ ,···, ܥ }. Sinceݔ =  then ,ܦݎ

ܶ൫ߩ, ܥ ∪ ൯(ܥ−) = ݎ ቐ ିߩ
ܿ

ஶ

ୀଵ

: ܿ ∈ ܦ ∪ ቑ(ܦ−) = ,ߩ)ܶݎ : ܦ ∪  .((ܦ−)

Thus, each ݔ ∈  has the form ܣ

ݔ = ݎ   ିߩ
ܿ,

ஶ

ୀଵ

, ܿ, ∈ ݍ) −} − 1),··· ,0,···, ݍ − 1}.                     (110) 

By Lemma (5.2.7) and the expansion of ݔ  in (5.110), the elements in A can be rearranged 
and divided into the following (at most) three classes:  

(a) for ݔ , 1 ≤ ݅ ≤ ,ݏ ݏ ∈ ℕ, there are at least one term ܿ, > 0 and at least one term 
ܿ,

ᇲ < 0. We may assume that ݆ > ݆
ᇱ;  

(b) for ݔ , ݏ + 1 ≤ ݅ ≤ ݏ + ,ݐ ݐ ∈ ℕ, all terms ܿ, ≥ 0 and there are infinitely many 
ܿ, > 0. Set ݆: = ݉݅݊{݆: ܿ, > 0};  

(c) for ݔ , ݏ + ݐ + 1 ≤ ݅ ≤ ݉, all terms ܿ, ≤ 0 and there are infinitely many ܿ, < 0.  
For 1 ≤ ݅ ≤ ݏ + :ܰ we define ,ݐ = 1ݔܽ݉ ≤ ݅ ≤ ݏ + ݏ Next, for .{݆}ݐ + ݐ + 1 ≤ ݅ ≤ ݉ 
we choose a common positive integer ܯ ∈ ܰ such that ܿ , ݆ < 0 for some ݆, where ܰ <
݆ < ܯ + ܰ. Now we define ܩெ,ே be as in (107).  

We claim that ݔ ∉ ,ெାேߩ)ܶ  ”+“ ெାே). Otherwise, by comparing the symbolsܩ
or “ −” of ܿ, in the expansion of ݔ  in the classes (a), (b) and (c) with that in (108), we 
get that the above ݔ is have two different expansions in base ߩ, it is a contradiction to 
Lemma (5.2.7). Thus the claim is true and this yields the desired result (109). The second 
statement follows from the continuity of the function  ߤఘ, and the compactness of the set 
,ெାேߩ)ܶ   .(ெ,ேܩ

What’s more, according to Lemma (5.2.7), one can do the similarly procedure as 
in the proof of Lemma (5.2.22) to the following intersection ܼ൫̂ߤఘ,൯ ∩∪ୀଵ

ଶ ,ߩ)ܶ ܥ ∪
,ଵ where ,((ܥ−) ଶ > 0 are integers with ݃ܿ݀(, (ݍ = 1 for ݅ = 1,2, and get the 
following lemma. 
Lemma (5.2.23)[317]: For any two positive integers ଵ, ,)݀ܿ݃ ଶ satisfying that (ݍ =
1 for ݅ = 1,2, there exist positive integers ܯ, ܰ ∈ ℕ (depending on ଵ,  ଶ) such that

(ఘ,ߤ̂)ܼ ∩ ,ெାேߩ)ܶ (ெ,ேܩ = ∅, ݅ = 1 ,2.                                (111) 
Consequently, there exist positive constants ߝ, ߜ > 0 such that ห ̂ߤఘ,(ߦ)ห

ଶ
≥  holds for ߝ

all ߦ ∈ ቀ∪ୀଵ
ଶ ܶ൫ߩெାே, ெ,ே൯ቁܩ

ఋ
. 
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Proof. Fixing integer   with ݃ܿ݀(, (ݍ = 1 for ݅ = 1, 2. Next we need to construct a 
discrete set ߉ such that both ଵ߉ and ଶ߉ are spectra for ߤఘ,. From Lemma (5.2.22), one 
can assume that ଵ > 0 and ଶ > 0. Let ܯ, ܰ, ,ߝ  be as in Lemma (5.2.23) and define ߜ

:ெ,ே߉ = (−1)ఐ()ߩିଵܥ

ஶ

ୀଵ

, 

where ߡ is a (ܯ + ܰ)-periodic function on ℤ such that ߡ(݇) = 0 for 1 ≤ ݇ ≤  and ܯ
(݇)ߡ = 1for ܯ + 1 ≤ ݇ ≤ ܯ + ܰ.It follows from Lemma (5.2.21) that ߉ெ,ே is a 
spectrum for the measure ߤఘ,. Thus, it is enough to show that ଵ߉ெ,ே is a spectrum for 
the measure ߤఘ,. The case for ଶ߉ெ,ே can be proved similarly. By letting ߉ெ,ே

 : =
∑ (−1)ఐ()ߩିଵܥ

(ெାே)
ୀଵ  and ߥ: = ఘషభߜ ∗ ఘషమߜ ∗···∗  ఘష(ಾశಿ), we get, from Lemmaߜ

(5.2.20) and Lemma (5.2.11), that (ߥ, ெ,ே߉ଵ
 ) is a spectral pair for all ݊ ∈ ℕ, which is 

equivalent to say that 
  ߦ)ߥ̂| + ଶ|(ߣ

ఒ∈భ௸ಾ,ಿ


= 1 , ߦ∀) ∈ ℝ).                                    (112)  

In terms of the facts ߉ெ,ே =∪ୀଵ
ஶ ெ,ே߉

  and ܼ(̂ߥ) ⊆  ெ,ே is߉ଵ we obtain that ,(ఘ,ߤ)ܼ
an orthogonal set for ߤఘ,, i.e., 

ߣ ∈ ߦ)ఘ,ߤெ,ேห߉ଵ + ห(ߣ
ଶ

≤ 1, ߦ∀) ∈ ℝ).                                (113) 
Moreover, for any ߣ ∈ ெ,ே߉ଵ

 , we have ିߩ(ெାே)ߣ ∈ ,ெାேߩ)ܶ  ெ,ே) and by Lemmaܩଵ
(5.2.23) 

 ห̂ߤఘ,(ߦ + หଶ(ߣ = ߦ)ߥ̂| + ଶ|(ߣ ቤ̂ߤఘ, ቆ
ߦ + ߣ

ቇቤ(ெାே)ߩ
ଶ

≥ ߦ)ෞߥ|ߝ +   , ଶ|(ߣ

whenever |ߦ| < ݀݊ܽ  ߜ కାఒ
ఘ(ಾశಿ) ∈ ൫ܶ(ߩெାே, ெାே)൯ܩଵ

ఋ
.Summing over all ߣ ∈  ,ெ,ே߉ଵ

we obtain, from (113), that 
1 ≥  ߦ)ߥ̂|ߝ + ଶ|(ߣ

ఒ∈భ௸ಾ,ಿ

. 

Thus, the constant 1/ߝ is the dominated function, and thus by dominated convergence 
theorem and (112), we have 

  ห̂ߤఘ,(ߦ + ห(ߣ
ଶ

ఒ∈భ௸ಾ,ಿ

= 1 , |ߦ|) <  .( ߜ

Combining with Theorem (5.2.7), we obtain that ଵ߉ெ,ே is a spectrum for ߤఘ,. This 
finishes the proof of Theorem (5.2.14)(ii). In particular, Theorem (5.2.14) implies the 
following fact which is labeled as Theorem (5.2.14).  
Theorem (5.2.24)[317]: Let ߩ = ,ݍ be a positive integer with ݎݍ ݎ ≥ 2. Then for any 
integer  with ݃ܿ݀(, (ݍ = 1,  ߉ ఘ,, that is, there is a setߤ is a spectral eigenvalue of 
such that ߉,  .ఘ,ߤ are spectra for ߉

More generally, one can similarly get the general version of Theorem (5.2.14). 
Theorem (5.2.24). Let ߩ = ,ݍ be a positive integer with ݎݍ ݎ ≥ 2. Then for any finite 
integers ଵ, ···, )݀ܿ݃  with , (ݍ = 1 for 1 ≤ ݅ ≤ ݊, there is a common discrete set 
,߉ such that (depending on pis)߉ ,···,߉ଵ   .ఘ,ߤ are all spectra for ߉

 We will establish the proof of Theorem (5.2.14) by generalizing the ideas used. 
Recall that ݀: = ܾ − ܽ = 2ೖ݉  with all ݉’s are odd positive integers, ܮ =
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max
ஹଵ

݈ < ∞ and ߩ = 2ାଵݍ is an integer such that ݈ > ݍ if ܮ = 1 and ݈ ≥ ݍ if ܮ > 1. One 
can easily get that  

|(ߦ)ఘ,{ೖ,ೖ}ߤ̂| = ෑหߜመఘషೖ{ೖ ,ೖ}(ߦ)ห
ஶ

ୀଵ

= ෑหߜመఘషೖ{,ௗೖ}(ߦ)ห
ஶ

ୀଵ

= ,|(ߦ)ఘ,{,ௗೖ}ߤ̂| ∋ ߦ∀) ℝ).  

Thus, for any discrete set ߉,   
ห̂ߤఘ,{ೖ,ೖ}(ߦ + ห(ߣ

ଶ

ఒ∈௸

= ห̂ߤఘ,{,ௗೖ}(ߦ + ห(ߣ
ଶ

ఒ∈௸

ߦ∀)  ∈ ℝ).  

This means that the spectrality and non-spectrality of the measures ߤఘ,{ೖ,ೖ} and ߤఘ,{,ௗೖ} 
are the same. Moreover, (ߤఘ,{,ௗೖ}, ,ఘ,{,ௗೖ}ߤ) is a spectral pair if and only if (߉  is (߉ଵିݍ
a spectral pair. We will prove the following statement which is equivalent to Theorem 
(5.2.14). 

In order to prove Theorem (5.2.8), we need to make some preparations for it. Since 
(መ{, }ߜ)ܼ = ଶℤାଵ

ଶ
 , ݊ ∈ ℕ, then 

 ܼ൫̂ߤఘ,{,ௗೖ}൯ = ራ
ߩ

݀ݍ2
(2ℤ + 1)

ஶ

ୀଵ

.                                        (114) 

It is easy to see that (ିߩଵ{0, ,{݀ݍ {0, 2ିೖ }) is a compatible pair for all ݇ ∈ ℕ. Based on 
the value of ݍ, we define 

ܩ = ቊ
{0,1,2,2ଶ ,···, 2}, if ݍ > 1;                  
{0,2,2ଶ,···, 2}, = ݍ ݂݅ 1 and ݈ > ,ܮ

  

which contains all different sets {0, 2ିೖ} for ݇ ∈ ℕ. Let ܦ be the set of all different ݀’s 
for ݇ ∈ ℕ, say that, ܦ = {݀(ଵ), ݀(ଶ),···, ݀(ே)}. Here and below in this section we use 
,ݔଵିߩ} ఘ,൛,ௗ()ൟ to denote the self-similar measure generated by the IFSߤ ݔ)ଵିߩ +
  ,Clearly .{(()݀ݍ

ܼ൫̂ߤఘ,{,ௗೖ}൯ ⊆ ራ ܼ ቀ̂ߤఘ,൛,ௗ()ൟቁ
ே

ୀଵ

: =  ܰ݅ = 1 ∞݇ = 1 ራ ራ
ߩ

()݀ݍ2
(2ℤ + 1)

ஶ

ୀଵ

ே

ୀଵ

 . 

Let us use ܶ(ߩ, ܩ ∪ ݔ)ଵିߩ} to denote the attractor of the IFS ((ܩ−) + ݃) ∶ ݃ ∈  ,{ܩ
where  is an odd integer. The following Lemma (5.2.11) characterize the finer structure 
of the compact set ܶ(ߩ, ܩ ∪  which essentially follows from Lemma 2.3, 3.1 ,((ܩ−)
and 3.3 in [320], we state it without a proof. 
Lemma (5.2.25)[317]: With the above notations, we get that  

(i) each rational number in the set ܶ(ߩ, ܩ ∪  has a unique expansion in base ρ ((ܩ−)
and the expansion is ultimate periodic;  

(ii) the expansion of the element in ܶ(ߩ, ܩ ∪ ((ܩ−) ⋂ ቀ⋃ ܼ ቀ̂ߤఘ,൛,ௗ()ൟቁே
ୀଵ ቁ is not 

finite. For any positive integers ܯ, ܰ ∈ ℕ, we construct a set as follows 

:ெ,ே߉ = (−1)ఐ()ߩିଵ{0,2ିೖ }
ஶ

ୀଵ

= ൝(−1)ఐ()ߩିଵ{0,2ିೖ}


ୀଵ

: ݉ ≥ 1ൡ ,     (115) 

where ߡ is a (ܯ + ܰ)-periodic function on ℤ such that ߡ(݇) = 0 for 1 ≤ ݇ ≤  and ܯ
(݇)ߡ = 1 for ܯ + 1 ≤ ݇ ≤ ܯ + ܰ. 

For any positive integer ݊ ∈ ℕ we set 
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ெ,ே߉
 : =  (−1)ఐ()ߩିଵ{0,2ିೖ}

(ெାே)

ୀଵ

, 

and 
ఘ,ߥ = ,ଵ{0ିߩ)_ߜ {ଵ݀ݍ ∗ ,ଶ{0ିߩ)_ߜ {ଶ݀ݍ ∗···∗ ఘష(ಾశಿ)ߜ ൛,  (ெାே)ൟ. 

Lemma (5.2.26)[317]: For any odd integer , the set ߉ெ,ே
  is a spectrum for the measure 

  .ఘ,{,ௗೖ}ߤ ெ,ே is an orthogonal set for߉ ,ఘ,. Consequentlyߥ
Proof. For an odd integer p, one can easily check that (ିߩଵ{0, ,{݀ݍ ఐ(){0,2ିೖ(1−) }) 
is a compatible pair for all ݇ ∈ ℕ. By the property of the compatible pairs (see Lemma 
(5.2.22)), (∑ ,{0ିߩ ,{݀ݍ ெ,ே߉

(ெାே)
ୀଵ ) is a compatible pair, which yields the first 

statement. Because ߉ெ,ே
  is increasing as ݊ and 

ெ,ே߉ = ራ ெ,ே߉


ஶ

ୀଵ

, (ఘ,{,ௗೖ}ߤ̂)ܼ = ራ (ఘ,ߥ̂)ܼ
ஶ

ୀଵ

. 

The second statement follows. Associated to the above function ߡ in (115), we define 

:ெ,ேܩ =  (−1)ఐ()ߩିଵܩ,
ெାே

ୀଵ

                                          (116) 

and let ܶ(ߩெାே, ݔ)(ெାே)ିߩ} ெ,ே) be the attractor of the IFSܩ + ݃): ݃ ∈  ெ,ே}.Theܩ
following is completeness characterization of the spectral property of the set ߉ெ,ே and its 
scaling set ߉ெ,ே for  ∈ ℤ, which is a key ingredient for the proof of Theorem (5.2.9). 
Lemma (5.2.27)[317]: With the notations above, for any odd integer , there are positive 
integers ܯ, ܰ (depending on ) such that the following two statements hold:  

(i) ቀ⋃ ே(ఘ,൛,ௗ()ൟߤ)ܼ
ୀଵ ቁ ⋂ ,ெାேߩ)ܶ (ெ,ேܩ = ∅;  

(ii) ቀ⋃ ே(ఘ,൛,ௗ()ൟߤ)ܼ
ୀଵ ቁ ⋂ ,ெାேߩ)ܶ (ெ,ேܩ = ∅.  

Consequently, there are positive constants ߝ,  such that ߜ

ෑ ቚ̂ߤఘ,൛,ௗ()ൟ(ߦ)ቚ
ଶ

ே

ୀଵ

≥  (117)                                         ߝ

holds for ߦ ∈ ቀܶ൫ߩெାே, ெ,ே൯ቁܩ
ఋ

∪ ቀܶ൫ߩெାே, ெ,ே൯ቁܩ
ఋ
. 

Proof. Suppose  is a positive odd integer. Since ܼ(̂ߤఘ,൛,ௗ()ൟ) is uniformly discrete for 
each ݅ = 1,2,···, ݉ and the sets ܶ(ߩ, ܩ ∪ ,((ܩ−) ,ߩ)ܶ ܩ ∪  are compact, then ((ܩ−)
both 

ࣛଵ: = ൭ራ (ఘ,൛,ௗ()ൟߤ̂)ܼ
ே

ୀଵ

൱ ∩ ,ߩ)ܶ ܩ ∪   ((ܩ−)

and 

ࣛଶ: = ൭ራ (ఘ,൛,ௗ()ൟߤ̂)ܼ
ே

ୀଵ

൱ ∩ ,ߩ)ܶ ܩ ∪    ((ܩ−)

are finite sets. Suppose ࣛ = ࣛଵ ∪ ࣛଶ = ଵݔ}  , ,···,ଶݔ ݉){ݔ ∈ ℕ). From Lemma 
(5.2.26), each ݔ ∈ ࣛଵ has a unique expansion in base ߩ: 
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= ݅ݔ  ݃,ିߩ,ݓ

ஶ

ୀଵ

, where ݓ, ∈ {− 1,0,1}, ݃, ݆ ∈  (118)                   ,ܩ

and each ݔ ∈ ࣛଶ has a unique expansion in base ߩ: 

ݔ =  ݃,ିߩ,ݓ

ஶ

ୀଵ

, where ݓ, ∈ {− 1,0,1}, ݃, ∈  (119)                   .ܩ

A useful observation is that each ݔ ∈ ࣛଵ ∩ ࣛଶ will correspond to two different in-finite 
word ݓ,ଵݓ,ଶݓ,ଷ ··· ∈ {− 1, 0, 1}ே. Without loss of generality, we assume that each ݔ ∈
ࣛ is in this case, and hence the number of infinite words correspond to ܣ is 2݉. Whence, 
the above infinite words can be rearranged and divided into the following (at most) three 
classes:  

(a) there is s infinite words, written as ݓ,ଵݓ,ଶ ···, ݅ = 1 , 2,···,  such that at least one ,ݏ
term ݓ,

ᇲ > 0 and at least one term ݓ,
ᇲ < 0. We may assume that ݆ > ݆

ᇱ; 
(b) there is ݐ infinite words, written as ݓ,ଵݓ,ଶ ···, ݅ = ݏ  + 1, ݏ + 2,···, ݏ +  such that ݐ

all terms ݓ, ≥ 0 and there are infinitely many ݓ, > 0. Set ݆ = min൛݆ ∶ ,ݓ >
0ൟ ; 

(c) there is 2݉ − ݏ) + ,ଶݓ,ଵݓ infinite words, written as (ݐ ···, ݅ = ݏ + ݐ + 1 , ݏ +
ݐ + 2,···, 2݉ such that all terms ݓ, ≤ 0 and there are infinitely many ݓ, < 0. 
Let ܰ = ,···,ଵ݆} ݔܽ݉ ݆௦ା௧} and then choose ܯ ∈ ℕ such that ݓ, < 0 for all ݏ +
ݐ + 1 ≤ ݅ ≤ 2݉ and for some ݆, where ܰ < ݆ < ܯ + ܰ. Now define ܩெ,ே as in 
(119), that is, 

ெ,ேܩ = ܩ) + ܩߩ +··· (ܩெିଵߩ+ − ܩெߩ) + ܩெାଵߩ +···  .(ܩெାேିଵߩ+
The following compact set is generated by the IFS {(ିߩ(ெାே)(ݔ + ݃): ݃ ∈  :{(ெ,ேܩ

,ெାேߩ)ܶ (ெ,ேܩ =  ெ,ேܩ(ெାே)ିߩ

ஶ

ୀଵ

= ൝(−1)ఛ()ିߩ݃: ݃ ∈ ܩ


ୀଵ

ൡ,      (120) 

where ߬ is a (ܯ + ܰ)-periodic function on ℤ and ߬(݇) = 1for 1 ≤ ݇ ≤ ܰ and ߬(݇) = 0 
for ܰ + 1 ≤ ݇ ≤ ܯ + ܰ.By comparing the leading ܯ + ܰ words ݓ,ଵݓ,ଶ ···  ,ெାே ofݓ
ݔ ∈ ଵܣ ଵ in (118) with that in (120), we get thatܣ ∩ ,ெାேߩ)ܶ (ெ,ேܩ = ∅. In the same 
reason, from (119) and (120) , we get that ࣛଶ ∩ ,ெାேߩ)ܶ (ெ,ேܩ = ∅. Since 
,ெାேߩ)ܶ (ெ,ேܩ ⊆ ,ߩ)ܶ ܩ ∪ ,ெାேߩ)ܶ and ((ܩ−) (ெ,ேܩ ⊆ ,ߩ)ܶ ܩ ∪  then the ,((ܩ−)
statements (i) and (ii) hold. The inequality (117) follows from the continuity of the 
function  
,0}ߤ  ݅ for {()݀ݍ = 1,···, ܰ and the compactness of the sets ܶ(ߩெାே,  ெ,ே) andܩ
,ெାேߩ)ܶ  .(ெ,ேܩ
Theorem (5.2.28)[317]: Under the assumption of Theorem (5.2.14), then for any odd 
integer  there is a discrete set ߉ (depending on ) such that ߉,  are both spectra for ߉
  .ఘ,{,ௗೖ}ߤ
Proof. For any odd positive integer , let ܯ, ܰ, ,ߝ  be given by Lemma (5.2.27). We will ߜ
show the sets ߉ெ,ே (see (115)), ߉ெ,ே are spectra for the measure ߤఘ,{,ௗೖ}. Fix ߦ ∈
,ߜ−)  and let (ߜ

݂(ߣ): = ቊหߥఘ,(ߦ + ห(ߣ
ଶ

 , ߣ ݂݅ ∈ ெ,ே߉
 ;

0, ∋ ߣ ݂݅ ெ,ே߉\ெ,ே߉
 .
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By Lemma (5.2.26), we have 
  ห̂ߥఘ,(ߦ + หଶ(ߣ

ఒ∈௸ಾ,ಿ


= 1 and  หߤఘ,{,ௗೖ}(ߦ + หଶ(ߣ

ఒ∈௸ಾ,ಿ

≤ ߦ∀)1 ∈ ℝ).           (121) 

Observing that 

(ߦ)ఘ,{,ௗೖ}ߤ̂ = (ߦ)ఘ,ߥ̂ ෑ መఘషೕ൛,ௗೕశ(ಾశಿ)ߜ ൟ ቆ
ߦ

(ெାே)ߩ
ቇ

ஶ

ୀଵ

 . 

Thus, for ߣ ∈  ெ,ே, we have߉

ห̂ߤఘ,{,ௗೖ}(ߦ + หଶ(ߣ = ห̂ߥఘ,(ߦ + หଶ(ߣ ෑ ቤߜመఘషೕ൛,ௗೕశ(ಾశಿ) ൟ ቆ
ߦ

(ெାே)ߩ
ቇቤ

ଶஶ

ୀଵ

 

≥ ห̂ߥఘ,(ߦ + ห(ߣ
ଶ

ෑ ቤ̂ߤఘ.൛,ௗ()ൟ ቆ
ߦ + ߣ

(ெାே)ߩ
ቇቤ

ଶே

ୀଵ

               (122) 

Since 
ெ,ே߉

 ⊆ ெ,ேܩ + ெ,ேܩெାேߩ +···  ,ெ,ேܩ(ିଵ)(ெାே)ߩ+
then 

ெ,ே߉(ெାே)ିߩ
 ⊆ ,ெାேߩ)ܶ  .(ெ,ேܩ

Therefore, for any ߣ ∈ ெ,ே߉
 , we obtain that ఒ

ఘ(ಾశಿ) ∈ ,ெାேߩ)ܶ  ெ,ே). From Lemmaܩ
(5.2.27) (i) and (122), we get that 

ห̂ߤఘ,{,ௗೖ}(ߦ + ห(ߣ
ଶ

≥ ߦ)ఘ,ߥห̂ߝ + ห(ߣ
ଶ

, ߦ∀ ∈ ,ߜ−)  .(ߜ
Summing over all ߣ ∈  ெ,ே, we have, from (121), that߉

1 ≥  ߝ ห̂ߥఘ,(ߦ + ห(ߣ
ଶ

 ఒ∈௸ಾ,ಿ

. 

Whence, applying dominated convergence theorem to the functions { ݂}ୀଵ
ஶ , we obtain 

that 
 ห̂ߤఘ,{,ௗೖ}(ߦ + หଶ(ߣ

ఒ∈௸ಾ,ಿ

= lim
→ஶ

 ห̂ߥఘ,(ߦ + หଶ(ߣ

 ఒ∈௸ಾ,ಿ

≡ 1, ߦ∀ ∈ ,ߜ−)  .(ߜ

By Theorem (5.2.24), the set ߉ெ,ே is a spectrum for the measure ߤఘ,{,ௗೖ}. Furthermore, 
if we do the same procedure for ߉ெ,ே instead of ߉ெ,ே, we will also get, from Lemma 
(5.2.27)(ii), that ߉ெ,ே is a spectrum for the measure ߤఘ,{,ௗೖ}. Lemma (5.2.27) and 
Theorem (5.2.9) can also be generalized as follows and we state them without proofs.  
Lemma (5.2.29)[317]: For finite positive odd integers ଵ, ,···,ଶ  , there are positive
integers ܯ, ܰ (depending on ଵ, ,···,ଶ  :) such that the following two statements hold

(i) ቀ⋃ ே(ఘ,൛,ௗ()ൟߤ̂)ܼ
ୀଵ ቁ ⋂ ,ெାேߩ)ܶ (ெ,ேܩ = ∅;  

(ii) ቀ⋃ ே(ఘ,൛,ௗ()ൟߤ̂)ܼ
ୀଵ ቁ ⋂ ,ெାேߩ)ܶ (ெ,ேܩ = ∅. For ݆ = 1,2, … , ݊.  

Theorem (5.2.30)[317]: Under the assumption of Theorem (5.2.14), for any finite 
positive odd integers ଵ,···,  , there is a common discrete set ߉(depending on 

ᇱݏ) such 
that  ,߉ଵ߉,···, ఘߤ are spectra for ߉ , {0, ݀ݍ}.  
Theorem (5.2.31)[317]: Let  be a real number. Under the assumption of Theorem 
(5.2.14), the following two statements are equivalent:  

(i)  is a spectral eigenvalue of ߤఘ,{,ௗೖ};  
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(ii)  = భ

మ
 for some ଵ, ଶ ∈ ℤ\{0} where ݃ܿ݀(ଵ, (ଶ = 1 and ଵ,  ଶ are odd

integers. 
Proof. “(ii) ⇒ (i)”. Suppose  = భ

మ
, where ଵ,  ଶ are odd. By Theorem (5.2.30), there

exist a common discrete set ߉ such that ߉, ,߉ଵ ߉ ఘ,൛,ௗൟ. Ifߤ are spectra for ߉ଶ =  ,߉ଶ
then ߉ = ߉ଶଵ = (߉ଶ)ଶଵ = ,߉ So .߉ଵ  .”ఘ,. “(i) ⇒ (ii)ߤ are spectra for ߉
Suppose ߉, ,߉ ఘ,൛,ௗൟ. Thenߤ are spectra for the measure ߉ ߉ ⊆ ܼ ቀ̂ߤఘ,൛,ௗൟቁ ∪ {0}, 
and hence  is a rational number. Suppose  = ,ଵ ଶ for some ଵ ଶ ∈ ܼ \{0} such that 
,ଵ)݀ܿ݃ (ଶ = 1. We prove (ii) by showing that there exist contradiction in the following 
two cases. 
Case I. ଵ is even and ଶ is odd. In this case, we show that ߉ is not a spectrum for the 
measure ߤఘ,{,ௗೖ}. By Lemma (5.2.23), it is enough to show that 

߉ ⊆ ራ
ߩ

݀ݍ2
(2ℤ + 1)

ஶ

ୀଶ

.                                        (123) 

In fact, from (123) and the values of ρ and all ݀’s, one can easily check that 

߉ − ߉ ⊆ ራ
(ߩ)
݀ݍ2

 (2ℤ + 1) 
ஶ

ୀଶ

. 

which is equivalent to say that ߉ is an orthogonal set for the measure ߤ: = ఘషమ{,ௗమ}ߜ ∗
ఘష{,ௗయ}ߜ ∗···, where ߤఘ,{,ௗೖ} = ఘషభ{,ௗభ}ߜ ∗  is not a spectrum for the ߉ ,Whence .ߤ

measure ߤఘ,{,ௗೖ} by Lemma (5.2.23). It remains to prove (123). Let ߉ = ఘೖ

ଶௗೖ
(2ℤ +

1). Suppose on the contrary that there is some ߣ ∈ ߣ such that ݇߉ ∈  ଵ, then there exist߉
ܽ, ܽ′ ∈ 2ℤ + 1 such that 

ߣ =
ଵ

ଶ

ߩ

݀ݍ2
ܽ =

ߩ
ଵ݀ݍ2

ܽ′. 

This yields that 
ିଵܽ݀ଵߩଵ = ܽᇱଶ݀ where ݇ ≥ 1.                                   (124) 

Now we derive contradictions as follows: When ݇ = 1, the equation (124) becomes 
ଵܽ = ݇ ଶܽ′, which is a contradiction. When > 1, the conditions ݀ = 2ೖ݉  and ߩ =
2ାଵݍ, where ݉  is an odd integer and ݈ > ݈ , imply that (124) becomes 

2భ݉ଵܽ(ିଵ2ିೖߩ)ଵ = ܽᇱଶ݉ , 
which is impossible since ଵ, ,′ܽ ିଵ2ିೖ are even integers andߩ ଶ, ݉  are odd integers. 
The desired relation (123) holds.  
Case II. ଵ is odd and ଶ is even. In this case, we will show that ߉ is not a spectrum for 
the measure ߤఘ , {0, ݀ݍ} by showing that ߣ ∉ ߣ if (ఘ,{,ௗೖ}ߤ̂)ܼ ∈ ଵ߉ ∩  We firstly .߉
obtain, by Lemma (5.2.23) again, that ߉ଵ ∩ ߉ ≠ ∅. Let’s just suppose that there exists 
some ߣ ∈ ଵ߉ ∩ ߣ such that ߉ ∈ ܽ Then, from (114), there exist .(ఘ,{,ௗೖ}ߤ̂)ܼ , ܽ′ ∈ 2ℤ +
1, ݇ ∈ ℕ such that 

ߣ = 
ܽߩ

ଵ݀ݍ2
=

ߩ

݀ݍ2
ܽᇱ ⇔ ݀ܽ =  ିଵܽᇱ݀ଵ.                            (125)ߩ

Recall that ߩ = 2ାଵݍ and ݀ = 2ೖ ݉ for ݇ ≥ 1, where ݈ ≥ sup
ஹଵ

݈  and ݍ, ݉  are odd ݏ’

integers. Defining ଶ = 2௦ଶ
ᇱ  where ݏ ≥ 1 and ଶ is odd. Hence, via an explicit 
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calculation, the above equality (125) becomes 
ଵܽ݉ = 2(ାଵ)(ିଵ)ାభିೖା௦ݍିଵܽభ

ᇱ ଶ
ᇱ . 

Since ଵ, ܽ, ݉ , ,ݍ ܽ′, ݉ଵ, ଶ
ᇱ  are odd integers, then 

(݈ + 1)(݇ − 1) + ݈ଵ − ݈ + = ݏ 0 .                                     (126) 
When ݇ = 1, one gets that ݏ = 0, which is a contradiction to the assumption of ଶ; When 
݇ > 1, one gets, from ݈ ≥ ݈  and ݈ ≥ ݈ଵ, that 

(݈ + 1)(݇ − 1) + ݈ଵ − ݈ + ݏ ≥ (݈ + 1) + ݈ଵ − ݈ + ݏ ≥ 1 + ݈ଵ + ݏ > 0. 
It is a contradiction to the equation (126). The proof of Theorem (5.2.31) is complete. 

We will complete the proof of Theorem (5.2.14). We point out that the techniques 
and methods used for infinite Bernoulli convolutions. However, due to the special 
property of ߤఘ,{ೖ,ೖ,ೖ}, we will show that the proof of Theorem (5.2.14) can be reduced 
to that of Theorem (5.2.12) for the measure ߤఘ,ଷ: = ఘ,బߤ , where ߩ ∈ 3ℕ and ܦ =
{0, 1, 2}. For simplicity, let ߩ = ݎ with ݎ3 ≥ 1, and let ܦ = {ܽ , ܾ , ܿ} for ݇ ≥ 1 
satisfying that {ܾ − ܽ, ܿ − ܽ} ≡ {1, and ݃ܿ݀(ܾ (3 ݀݉) {2 − ܽ, ܿ − ܽ) = 1 for 
all ݇ ∈ ℕ.  
Lemma (5.2.32)[317]: Let ߩ = ݎ be an integer with ݎ3 ≥ 1 and let ܥ =   whereܦݎ
ܦ = {0, 1, 2}. Then  

(i) (ିߩଵܦ, ݇ ) is a compatible pair forܥ ≥ 0; 
(ii) (ିߩଵܦ, ݇ ) is a compatible pair forܥ ≥ 0, where  ∈ 3ℤ + {1, 2}; 
(iii) ܼ(ߜመ_(ିߩଵܦ) = (ܦመఘషభߜ)ܼ = 3ℤ)ݎ + {1, ݇ ݎ݂ ({2 ≥ 1; 
(iv) ܼ(̂ߤఘ,ೖ) = ఘ,బߤ̂)ܼ ) = ⋃ 3ℤ)ݎିଵߩ + {1, 2})ஶ

ୀଵ , where ߤఘ,బ : = ఘషభబߜ
∗

ఘషమబߜ
∗ ··· and ߤఘ,ೖ : = ఘషభభߜ

∗ ఘషమమߜ
∗ ఘషయయߜ

∗··· in the wea݇∗-topology.  
Proof. (i) Let ܦ = ܦ − ܽ = {0, ܾ − ܽ , ܿ − ܽ} for all ݇ ∈ ℕ. Then it is easy to 
check that for ݇ ∈ ℕ the matrix in (98) 

ఘషభೖ,బܪ
= ఘషభబܪ ,బ

=
1

√3
ቌ

1 1 1

1 ݁ଶగଵ
ଷ ݁ଶగଶ

ଷ

1 ݁ଶగଶ
ଷ ݁ଶగସ

ଷ

ቍ , ݂݅ ൜
ܾ − ܽ ≡ (3 ݀݉) 1
ܿ − ܽ ≡   (3 ݀݉) 2

or 

ఘషభೖܪ ,బ = ఘషభబ,బܪ =
1

√3
ቌ

1 1 1

1 ݁ଶగଵ
ଷ ݁ଶగଵ

ଷ

1 ݁ଶగଶ
ଷ ݁ଶగଶ

ଷ

ቍ , ݂݅ ൜
ܾ − ܽ ≡ (3 ݀݉) 1
ܿ − ܽ ≡  (3 ݀݉) 2

is unitary, which means that both (ିߩଵܦ, ,ܦଵିߩ) ) andܥ  ) are compatible pairs. Byܥ
Lemma (5.2.26)(ii), we get the desired result (i). 

(ii) Clearly, ܥ ≡  if (ߩ ݀݉) ܥ ∈ 3ℤ + {1, 2}. Thus (ii) follows by Lemma 
(5.2.26) (iii). 

(iii) and (iv) can be easily obtained by computation. 
The case ߩ = 3 is interesting and the following lemma gives a proof of Theorem (5.2.3)(i) 
and also implies that there exists a lot of spectral measures with ℤ as a unique spectrum. 
Lemma (5.2.33)[317]: If ߤଷ, k is a spectral measure, then ߉ = ℤ is the only spectrum 
with 0 ∈ ,ଷߤ for the measure ߉  . Consequently, there is noܦ ∈ ℝ\{±1} such that the 
sets ߉ and ߉ are spectra for ߤଷ,ೖ . 
Proof. From the proof of [337], we know that 

,3)߉ {0, −1,1}): = {0, −1,1} + 3{0, −1,1} + 3ଶ{0, −1,1} +···= ℤ 
is a spectrum for the measure ߤଷ,ೖ , which is equivalent to say that ܳℤ(ߦ): = ݊ ∈ ܼ 



220 

ห̂ߤଷ,ೖ
+ ߦ) ݊)ห

ଶ
≡ ߦ∀ )1 ∈ ℝ). Now we claim that ℤ is the unique spectrum for ߤଷ,ೖ . 

Indeed, if a discrete set ߉ = ℤ is also a spectrum for the measure ߤଷ,ೖ , then {0}\߉ ⊆
ଷ,ೖߤ̂)ܼ ) = ⋃ 3((3ℤ + 1)ஶ

ୀ ∪ (3ℤ + 2)) = ℤ. 
Furthermore, for any ݊ ∈ ℤ\߉, we can find a ߦ ∈ (0, 1) such that  ̂ߤଷ,ೖ ߦ) +

݊) ≠ 0, and hence 
(ߦ)௸ܳ ≔ หߤଷ,ೖ

ߦ) + ห(ߣ
ଶ

ఒ∈௸

≤  ห̂ߤଷ,ೖ
ߦ) + ห(ߣ

ଶ

ఒ∈ℤ{బ}

  

= ܳ(ߦ) − ห̂ߤଷ,ೖ
ߦ) + ݊)หଶ = 1 − ห̂ߤଷ,ೖ

ߦ) + ݊)หଶ < 1.        
It is a contradiction to Theorem (5.2.24). The proof is complete. The following 

lemma with Lemma (5.2.32) are two essential ingredients for the reduction of the proof 
of Theorem (5.2.14)(ii). 
Lemma (5.2.34)[317]: Let ߩ = ݎ be an integer with ݎ3 > 1 and let ܥ =   whereܦݎ
ܦ = {0, 1, 2}.  

(i) For any ݓ = ଶݓଵݓ ···∈ {−1, 1}ℕ, the set 

,ߩ)௪߉ :(ܥ =  ൞ ିଵߩݓ
ܿ



ୀଵ

: ܿ ∈ ,ܥ ݓ ∈ {− 1,1}ൢ , 

is an orthogonal system for ߤఘ,ೖ, where  ∈ 3ℤ + {1, 2}. 
(ii) For any ݓ = ଶݓଵݓ ···∈ {−1, 1}ℕ, the set 

,ߩ)௪߉ :(ܥ = ൞ ିଵߩݓ
ܿ



ୀଵ

∶  ܿ ∈ ,ܥ ݓ ∈ {− 1,1}ൢ,                 (127) 

is a spectrum for the measure ߤఘ,ೖ .  
Proof. (i) If  ∈ 3ℤ + {1, 2}, then ܥ ≡ ݓ where ,(ߩ mod) ܥݓ ∈ {− 1, 1}. Thus, by 
Lemma (5.2.32)(ii), (ିߩଵܦ,  ,) are compatible pairs. Therefore, it is easy to checkܥݓ
similar to the proof of Lemma (5.2.26), that the desired result follows from Lemma 
(5.2.34) and the relationship 

,ߩ)௪߉ (ܥ = ራ(ݓଵܥ + ܥߩଶݓ +··· (ܥିଵߩݓ+
ஶ

ୀଵ

. 

(ii) Please refer to [335]. Now we can give the proof of Theorem (5.2.14) (ii). 
It is enough to construct a discrete set ߉ in the form (127) such that ߉,  ߉ଶ and ߉ଵ

are all spectra for the measure ߤఘ , {ܽ, ܾ, ܿ}, where ଵ, ଶ ∈ 3ℤ + {1, 2}and 
,ଵ)݀ܿ݃ (ଶ = 1. By Lemma (5.2.32), for the above ଵ and ଶ, the remaining task is to 
choose an infinite word ݓ ∈ {− 1, 1}ℕ such that ଵ߉௪(ߩ, ,ߩ)௪߉ଶ ) andܥ  ) are bothܥ
spectra for the measure ߤఘ,ೖ . As in the proof of Theorem (5.2.6)(ii), we can see 
(especially see Lemma (5.2.4) and (5.2.9)) that the choice of ݓ will depend on the 
intersection of the zero set ܼ(ߤఘ,ೖ ) and the compact set ܶ(ߩ, ܥ ∪ ݅ for ((ܥ−) =
1,2. It follows from Lemma (5.2.27)(iv) that the set ܼ ఘ,ೖߤ) ) can be replaced by ܼ  .(ఘ,బߤ)
Whence, the proof of the sufficiency has reduced to that of Theorem (5.2.14)(ii) for the 
measure ߤఘ,బ . Necessity. Fix  ∈ ℝ and suppose ߉, with 0 ߉ ∈  are both spectra for ߉
 ఘ,ೖ. Clearly, the proof for the necessity of Theorem (5.2.12) can be applied successfullyߤ
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to that of the measure ߤఘ,బ . From Lemma (5.2.27) (iii) and (iv), one can repeat this whole 
proof (in the necessity of Theorem (5.2.2)) for the measure ߤఘ,ೖ instead of ߤఘ,బ . As a 
consequence,  = భ

మ
 where ଵ,   .ଶ and 3 are pairwise coprime

Section (5.3): Self-Similar Measures with Consecutive Digits: 
A probability measure ߤ on ℝ with compact support is said to be a spectral measure 

if there exists a countable set Λ of real numbers, called a spectrum of ߤ, such that ܧ(Λ) =
൛݁ିଶగఒ௫ : ߣ ∈ Λൟ forms an orthonormal basis for ܮଶ(ߤ). A well-known classic example is 
the Lebesgue measure on [0,1] for which the set ℤ is the only spectrum containing 0. The 
existence of a spectrum for a probability measure is one of fundamental problems in 
applied harmonic analysis builded on a measure, and it was initiated by Fuglede [372]. 
In 1998, Jorgensen and Pedersen [378] discovered the first families of non-atomic 
singular spectral measures. They showed that the Bernoulli convolutions are spectral 
measures if the contraction ratios are the reciprocal of an even integer. Recently, Dai 
[360] showed that the only spectral Bernoulli convolutions are of the above cases. The 
details on the background of Bernoulli convolutions and recent topics are given in 
[360,371,383,385,384] and the references therein. Actually, the spectral measure 
problem attracts more attention due to Jorgensen and Pedersen's examples. Following 
this discovery, various singular spectral measure on self-similar/self-affine/moran fractal 
sets have been constructed (see [378,360,361,362,380,382,367,357,358,373]). Usually, 
the following two types of questions have been considered: 

(Q1) When is a Borel probability measure ߤ spectral? 
Until now, there are only a few classes of singular spectral measures that are 

known. It is still a basic problem to find more spectral measures. 
(Q2) For a given spectral measure ߤ, can we find all the spectra of ߤ ? 

It is quite challenging to characterize all the spectra of a given singular spectral measure 
 The first attempt of the classification of .(no example is known with this property) ߤ
spectra was studied by Dutkay, Han and Sun [364]. They gave a complete 
characterization of the maximal orthogonal sets of the one-fourth standard Cantor 
measure (denoted by ߤସ ) by introducing a labeling tool on the infinite binary tree. They 
gave some sufficient conditions for a maximal orthogonal set to be a spectrum. Later, 
Dai, He and Lai [362] gave some sufficient conditions and necessary conditions for a 
maximal orthogonal set of ߤସ to be a spectrum. Generally speaking, for a given singular 
spectral measure ߤ, there are two basic problems (call them spectral eigenvalue problems) 
as follows: 

Case ۷. Let Λ be a spectrum of ߤ. Find all real numbers ܾ such that ܾΛ is also a 
spectrum of ߤ.  

Case II. Find all real numbers ܾ for which there exists a set Λ such that both Λ and 
ܾΛ are spectra of ߤ.  

Let an iterated function system (IFS) on ℝ of the form ݂(ݔ) = ௫


+ 


, ݅ =
0,1, … , ݍ − 1 where 2 ≤ ݍ ∈ ℤ and  ∈ ℝ. By Hutchinson's theorem [359,369,374], 
there exists a unique Borel probability measure ߤ, with compact support ܶ , satisfying 
that 

(ܧ),ߤ =   
ିଵ

ୀ

1
ݍ

,ߤ ቀ ݂
ିଵ(ܧ)ቁ                                   (128) 
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for any Borel set ܧ ⊆ ℝ and ܶ, is the unique compact set satisfying that 

ܶ, = ራ  
ିଵ

ୀ
݂൫ ܶ,൯. 

When ݍ = 2, , becomes the standard Cantor measure of contraction ratio ଵߤ

 denoted 

by ߤ, i.e., the Bernoulli convolutions. For the ߤ,, there are some known results focused 
on the above two questions: 

 ߤ, is a spectral measure if and only if 


∈ ℤ [363]. If  =  , isߤ the measure ,ݍ
the Lebesgue measure restricted to the interval [0,1]. 

 Let ܾ be a real number. If  >  with ݍ


∈ ℤ, then 

ܾ ∈ ݎ} ∈ ℝ : there exists a set Λ such that both Λ and ݎΛ are spectra of ߤ,ൟ 
if and only if ܾ = భ

మ
, where gcd (ܾଵ, ܾଶ) = 1 and ܾଵ, ܾଶ are coprime with ݍ 

respectively [370]. 
The remaining relatively tractable situation is Case II of the above (Q2) for the 

measure ߤ,. The special cases are the Bernoulli convolution ߤଶ  with ݇ ∈ ℤା, i.e., the 
set of all positive integers. It is known that the simplest spectrum for ߤଶ  [378] is 

Λଶ = ቐ  


ୀ

  ܽ(2݇): ܽ ∈ {0,1}, ݊ ∈ ℕ: = {0,1,2, … }ቑ. 

Later, Laba, Wang, Jorgensen, Dutkay and Li et al. investigated for what ܾ ∈ ℕ, the 
scaling set ܾΛସ or ܾΛଶ is also a spectrum of ߤସ, or ߤଶ respectively [379,366,368,376, 
381]. We will investigate those problems for the general case ߤ,. 

The study was motivated by the following surprising facts and questions also: (i) 
There exists a singular spectral measure ߤ such that the Fourier expansion of any function 
in ܮଶ(ߤ) with respect to a spectrum is uniformly convergent, but it is not convergent with 
respect to another spectrum for some continuous functions [365,386,387]. (ii) There 
exists a singular spectral measure with a maximal orthogonal set Λ (not a basis), but ݇Λ 
is a spectrum of ߤ for some ݇ > 1 [361]. (iii) The ordinary Fourier series of continuous 
functions converge uniformly for standard Cantor measures with respect to a model 
spectrum [387]. It is natural to ask whether these phenomena are universal? 

In 2013, Dai, He and Lai [362] proved the following: 
Theorem (5.3.1)[356]: If ݍ divides , then ߤ, is a spectral measure with a spectrum 

Λ, = {0,1, … , ݍ − 1} + ,0,1} … , ݍ − 1} + ,ଶ{0,1 … , ݍ − 1} + ⋯ (finite sum). 
We often refer to the spectrum Λ, as the canonical spectrum of ߤ,. The appellation is 
due to Jorgensen [377]. 
Assumption (5.3.2)[356]: We will assume 


∈ ℤ with  > ݍ ≥ 2. 

We answer when the scaling set ܾΛ, is also a spectrum of ߤ, for ܾ ∈ ℤ. Note 
that if Λ is a spectrum of ߤ, , then we have −Λ is also a spectrum of ߤ,. Thus we only 
need to consider the case that ܾ ∈ ℕ. 

The next theorem gives a general characterization of the integer ܾ by applying the 
properties of quadratic congruence equations and the order of elements in the finite group. 
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Here ݀ݎ() means the order of  in the multiplicative group ℤ
∗  (see Definition 

(5.3.16)) and ⌊ݔ⌋ means the greatest integer number which is no larger than ݔ. 
We introduce some basic definitions and lemmas. We prove Theorem (5.3.12). At 

the end, we provide a direct method to prove ( − 1)Λ is not a spectrum of ߤ,. The 
proof of Theorem (5.3.19) is presented. Finally, we give an example to illustrate our 
theory . 

Let ߤ be a Borel probability measure on ℝ with compact support. Denote the 
exponential function ݁ ିଶగఒ௫ by ݁ ఒ. We say that a countable set Λ is a maximal orthogonal 
set (spectrum) of ߤ if ܧ(Λ): = { ఒ݁: ߣ ∈ Λ} is a maximal orthogonal set (an orthonormal 
basis) for ܮଶ(ߤ). Here ܧ(Λ) is a maximal orthogonal set of exponentials means that it is 
a mutually orthogonal set in ܮଶ(ߤ) such that if ߙ ∉ Λ, ݁ఈ  is not orthogonal to some ݁ ఒ, ߣ ∈
Λ. It is easy to show that Λ is an orthogonal set of ߤ if and only if ̂ߤ൫ߣ − ൯ߣ = 0 for any 
ߣ ≠ ߣ ∈ Λ, which is equivalent to 

(Λ − Λ) ∖ {0} ⊆ ࣴఓ̂ .                                                 (129) 
Here ࣴ: = :ߦ} (ߦ)݂ = 0} is the set of the roots of the function ݂  on the real line. And (ߦ)
the Fourier transform of ߤ is defined as usual, 

(ߦ)ߤ̂ = න  ݁ିଶగక௫  d(ݔ)ߤ. 

By the definition of Fourier transform of ߤ, and (128), one has 

(ߦ),ߤ̂ = ݉, ൬
ߦ
൰ ,ߤ̂ ൬

ߦ
 ൰,                                        (130)

where ݉,(ߦ) = ଵ


൬1 + ݁ିଶగ
 + ⋯ + ݁ିଶగ(షభ)

 ൰. Iterating (130), we obtain an 

explicit expression of the Fourier transform of the measure ߤ, : 

(ߦ),ߤ̂ = ෑ  
ஶ

ୀଵ

݉, ൬
ߦ

 .൰

It is easy to calculate that 

ࣴఓ̂, = ራ  
ஶ

ୀଵ

ࣴ, . 

Furthermore, we have ࣴ, = ቄ


: ݍ ∤ ܽ, ܽ ∈ ℤቅ and ࣴఓ̂, = :ܽ} ݍ ∤ ܽ, ܽ ∈
ℤ, ݊ ≥ 0}. 
Lemma (5.3.3)[356]: Let ܾ ∈ ℕ. Then ܾΛ, is an orthogonal set of ߤ, if and only if 
ݍ ∤ ܾ݇ with 1 ≤ ݇ ≤ ݍ − 1. 
Proof. Since ࣴఓ̂, = ൛ܽ: ܽ ∈ ℤ ∖ ,ℤݍ ݆ ≥ 0ൟ, by (129), we obtain that ܾΛ, is an 
orthogonal set of ߤ, if and only if 

൫ܾΛ, − ܾΛ,൯ ∖ {0} ⊆ ఓ̂ࣴ, .                                       (131) 
For ߣଵ ≠ ଶߣ ∈ ܾΛ,, we write ߣଵ = ܾ(݀ + ଵ݀ + ⋯ + ଶߣ ݀) and = ܾ(݀

ᇱ +
ଵ݀

ᇱ + ⋯ + ݀
ᇱ ), where ݉ ≥ ݊. Let ݏ be the minimal index such that ݀௦ ≠ ݀௦

ᇱ . Then 
ଵߣ − ଶߣ = ௦(ܾ(݀௦ − ݀௦

ᇱ) +  (ܯ
for some integer ܯ. By (131) and ݀௦, ݀௦

ᇱ ∈ {0,1, ⋯ , ݍ − 1}, we obtain that ܾΛ, is an 
orthogonal set of ߤ, if and only if ݍ ∤ ܾ݇ with 1 ≤ ݇ ≤ ݍ − 1. 



224 

Remark (5.3.4)[356]: Theorem (5.3.12) in [370] tells us that if ܾΛ, is a spectrum of 
,ܾ) ,, then gcdߤ (ݍ = 1. Note that the condition gcd (ܾ, (ݍ = 1 implies ݍ ∤ ܾ݇ with 1 ≤
݇ ≤ ݍ − 1. In fact, if this is not true, there exists an integer ݆ ∈ {1,2, … , ݍ − 1} such that 
ݍ ∣ ݆ܾ. Since gcd (ܾ, (ݍ = 1 we have ݍ ∣ ݆. This is a contradiction. 
Definition (5.3.5)[356]: Let ܾ ∈ ℤ with |ܾ| ≥ 2. Let ܦ, ܥ ⊆ ℤ be finite sets of integers 
with #ܦ = ,ܾ) We say that the system .ܦ means the cardinality of ܦ# where ,ܥ# ,ܦ  (ܥ
forms a Hadamard triple (or (ܾିଵܦ,  (forms a compatible pair, as it is called in [379] (ܥ
if the matrix 

ܪ =
1

ܦ#√
ൣ݁ଶగషభௗ൧ௗ∈,∈ 

is unitary, i.e., ܪ∗ܪ =  .ܫ
Lemma (5.3.6)[356]: Let ܦ = ,0,1}ݏ … , ݍ − 1} and ܥ = ܾ{0,1, … , ݍ − 1}, where ݏ = 


 

and ܾ ∈ ℕ. Then (, ,ܦ ݍ forms a Hadamard triple if and only if (ܥ ∤ ܾ݇ with 1 ≤ ݇ ≤
ݍ − 1. 
Proof. Let ܪ = ଵ

√
ൣ݁ଶగషభௗ൧

ௗ∈,∈
 and for simplicity we assume ܪ∗ܪ = ଵ


[ܽ]. 

Then for ݉ = ݊, we have ܽ = ݁ + ݁ + ⋯ + ݁ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ


= ݉ For .ݍ ≠ ݊, we have 

ܽ = ൞

1 − ݁ଶగ(ି)

1 − ݁ଶగ
(ି),

 if 
݊)ܾݏ − ݉)


∉ ℤ,

,ݍ  otherwise. 

 

Therefore, ܽ = 0 is equivalent to 


(݊ − ݉) ∉ ℤ, i.e., ݍ ∤ ܾ݇ with 1 ≤ ݇ ≤ ݍ − 1.   
Definition (5.3.7)[356]: Let ܾ ∈ ℕ. We say that a finite set {ݔ, ,ଵݔ … , {ିଵݔ ⊆ ℝ is an 
extreme cycle for the digit set ܾ{0,1, … , ݍ − 1} (or an extreme cycle, for short) if there 
exists {݈, ݈ଵ, … , ݈ିଵ} ⊆ ܾ{0,1, … , ݍ − 1} such that 

(i) ݔ = ௫షభାషభ


 for all 1 ≤ ݅ ≤ ݎ − 1, and ݔ = ௫ೝషభାೝషభ


, 

(ii) 


ݔ ∈ ℤ for all 0 ≤ ݅ ≤ ݎ − 1. 
The points ݔ(0 ≤ ݅ ≤ ݎ − 1) are called extreme cycle points. 

By Theorem (5.3.19) in [379], Definition (5.3.7) and Lemma (5.3.6), we can obtain 
the following theorem which is important. 
Theorem (5.3.8)[356]: Let ܾ ∈ ℕ and ݍ ∤ ܾ݇ with 1 ≤ ݇ ≤ ݍ − 1. Then ܾΛ, is a 
spectrum of ߤ, if and only if the only extreme cycle for the digit set ܾ {0,1, … , ݍ − 1} is 
the degenerate one {0}. 
Remark (5.3.9)[356]: When ܾ =  − 1, we have (ܾ − 1)Λ, is not a spectrum of ߤ, 
by Theorem (5.3.8). In fact, the set {1} is an extreme cycle: 1 = ଵା(ିଵ)


. We will provide 

another direct method to prove the case. Recall that if ܾΛ, is a spectrum of ߤ,, then 
gcd (ܾ, (ݍ = 1. However, the example also implies that the converse is not true. 

Depending on the above theorem, our question can be directly turned into a number 
theory question. That is to say, we are required to find all the possible integers ܾ  for which 
there are non-degenerate extreme cycle for the digit set ܾ{0,1, … , ݍ − 1}. This method is 
originated from the work of Dutkay, Haussermann [366]. 
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We will introduce a couple of propositions, which are introduced in a more general 
case ߤ, as follows in comparison with ߤ,. They will play a key role in proving 
Theorem (5.3.12). 

Let ܾ be an integer with |ܾ| ≥ 2 and let ܦ ⊆ ℤ be a finite digit set with #ܦ ≥ 2. 
Then they naturally arise an IFS ቄ ௗ݂(ݔ) = ଵ


ݔ) + ݀): ݀ ∈  ,ቅ and the self-similar set ܶ,ܦ

where ܶ, can be expressed by 

ܶ, = ൝  
ஶ

ୀଵ

 ܾ݀ି: ݀ ∈ ݊ for all ܦ ∈ ℕൡ. 

They generate the self-similar measure ߤ,, which is the unique probability measure 
with compact support ܶ, satisfying 

(ܧ),ߤ =   
ௗ∈

1
ܦ#

),ߤ ௗ݂
ିଵ(ܧ)) 

for any Borel set ܧ ⊆ ℝ. Similarly, one can easily compute the Fourier transform of the 
measure ߤ,: 

,ߤ̂ = ෑ  
ஶ

ୀଵ

݉ ൬
ߦ

ܾ൰ 

where 
݉(ߦ) =   

ௗ∈

݁ିଶగௗక . 

Thus, we obtain the following relationship 

ఓ್̂ࣴ,ವ = ራ  
ஶ

ୀଵ

ܾࣴವ .                                                 (132) 

The following proposition was proved in [371]. Since the proof is simple, we give it here. 
Proposition (5.3.10)[356]: Let ܾ be an integer with |ܾ| ≥ 2, and let ܦ and ܣ be two finite 
subsets of ℤ such that 0 ∈  Then the .(may not be equal ܣ and ܦ the cardinality of) ܣ
following two statements are equivalent: 

(i) ್ࣴషభ⋂ ܶ, = ∅, 
(ii) ࣴఓ್̂,ವ⋂ ܶ, = ∅, 

where 

ܶ, = ൝  
ஶ

ୀଵ

 ܾܽି: ܽ ∈ ݊ for all ܣ ∈ ℕൡ. 

Proof. (i) ⇒ (ii) Suppose ್ࣴషభ ∩ ܶ, = ∅. Since 0 ∈  we have ,ܣ
ܾି

ܶ, ⊆ ܶ, for all ݆ ∈ ℕ. 
This leads to ್ࣴషభ ವ⋂ܾି

ܶ, = ∅ for all ݆ ∈ ℕ. Notice that ್ࣴషభ ವ = ܾࣴವ . Thus (ii) 
holds by (132). (ii) ⇒ (i) It follows easily by (132). 

The following proposition goes back to the work of Strichartz [386]. Actually, his 
conclusion is for a more general Borel probability measure on ℝ which is called Moran 
measure. 
Proposition (5.3.11)[356]: Let ܾ be an integer with |ܾ| ≥ 2, and let ܦ and ܥ be two finite 
subsets of ℤ such that 0 ∈ ܦ ∩ ,ܾ) and ܥ ,ܦ forms a Hadamard triple. Let Λ, (ܥ =
൛Σୀ

 ܾܿ: ܿ ∈ ,ܥ ݊ ∈ ℕൟ. Suppose that ࣴఓ್̂,ವ ∩ ܶ, = ∅, where 
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ܶ, = ൝  
ஶ

ୀଵ

 ܾܿି: ܿ ∈ ݊ for all ܥ ∈ ℕൡ. 

Then Λ, is a spectrum of ߤ,. 
We now present the proof of Theorem (5.3.12). 

Theorem (5.3.12)[356]: Let ܾ ∈ ℕ. If ܾ < 

 and ݍ ∤ ܾ݇ with 1 ≤ ݇ ≤ ݍ − 1, i.e., ݍ does 

not divide ܾ݇, then ܾΛ, is ܽ spectrum of ߤ,. 
Proof. Let ܦ = ,0,1}ݏ … , ݍ − 1} and ܥ = ܾ{0,1, … , ݍ − 1}, where ݏ = 


. It is easy to see 

that 

ܶ,  = ൝  
ஶ

ୀଵ

 ܿି: ܿ ∈ ݊ for all ܥ ∈ ℕൡ

 ⊆ ቈ0,
ݍ)ܾ − 1)

 − 1  ,

 

and 
್ࣴషభವ

= ,ࣴ = {ܽ: ݍ ∤ ܽ, ܽ ∈ ℤ}. 

From the hypothesis ܾ < it follows that (ିଵ) ݏ
ିଵ

< 1. Thus, ್ࣴషభ ∩ ܶ, = ∅. We then 
obtain that 

ఓ̂ࣴ,ವ ∩ ܶ, = ∅ 
by Proposition (5.3.10). Since ݍ ∤ ܾ݇ with 1 ≤ ݇ ≤ ݍ − 1, one has (, ,ܦ  forms a (ܥ
Hadamard triple by Lemma (5.3.6). Consequently, Λ, = ܾΛ, is a spectrum of ߤ, by 
Proposition (5.3.11). Note that ߤ, =  ,. This completes the proof of Theoremߤ
(5.3.12). 

We conclude with a proposition for which we provide another method to prove 
that ( − 1)Λ, is not a spectrum of ߤ,. 
Proposition (5.3.13)[356]: Let ܾ ∈ ℕ. If ܾ =  − 1. Then ܾΛ, is not a spectrum of 
 .,ߤ
Proof. First, we prove that ( − 1)Λ, is an orthogonal set of ߤ,. To see it, for any 
ଵߣ ≠ ଶߣ ∈ ) − 1)Λ,, we write ߣଵ = ) − 1)∑ୀ

ஶ  ܽ and ߣଶ = ) − 1)∑ୀ
ஶ  ܾ  

(finite sum), where ܽ , ܾ ∈ {0,1, … , ݍ − 1} for all ݊ ≥ 0. Let ݇ be the first index such 
that ܽ ≠ ܾ . Then for some integer ܯ, we can write 

ଵߣ − ଶߣ = )) − 1)(ܽ − ܾ) +  .(ܯ
Since ܽ ≠ ܾ, we can easy to know ݍ ∤ ) − 1)(ܽ − ܾ). Then ߣଵ − ଶߣ  lies in ࣴఓ̂, . 
Therefore, ( − 1)Λ, is an orthogonal set of ߤ, by (129). 

Next, we prove ܧ൫( − 1)Λ,൯: = ൛݁ିଶగ(ିଵ)ఒ௫ൟఒ∈ஃ,
 is not complete in 

)൫ܧ,൯, i.e., we need to prove that ቀspanതതതതതതߤଶ൫ܮ − 1)Λ,൯ቁ
ୄ

≠ ∅. Our goal now is to 

prove that for any ݆ ∈ {1,2, … , ݍ − 1}, ݁ି ∈ ቀspanതതതതതതܧ൫( − 1)Λ,൯ቁ
ୄ

. In fact, we take 
the inner product of ݁(ିଵ)ఒ for ߣ ∈ Λ, and ݁ି for ݆ ∈ {1,2, … , ݍ − 1}: 

ൻ݁(ିଵ)ఒ, ݁ିൿ = ),൫ߤ̂ − ߣ(1 + ݆൯. 
Let ߣ = ∑ୀ

  ܽ with ܽ ∈ {0,1, … , ݍ − 1}. Then we see that 
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) − ߣ(1 + ݆ = ߣ) + ݆) − ߣ = ൭݆ +   


ୀ

 ܽାଵ൱ −   


ୀ

ܽ. 

Note that ߣᇱ: = ݆ + ∑ୀ
  ܽାଵ is another element of Λ,. Then, using (129) and since 

Λ, is a spectrum of ߤ,, we have 
) − ߣ(1 + ݆ ∈ ࣴఓ̃, . 

Thus, we obtain that ൻ݁(ିଵ)ఒ, ݁ିൿ = 0 and so ݁ି ∈ ൬ୱ୮ୟ୬
ா

൫( − 1)Λ,൯൰
ୄ

. 

Remark (5.3.14)[356]: To complete ( − 1)Λ,, one can consider the set Λ‾ = ) −
1)Λ, ∪ ൛( − 1)∑ୀ

  ܽ − ାଵ : ܽ ∈ {0,1, … , ݍ − 1}, ݊ ≥ 0}. Similarly as in [364], 
by introducing a technique of tree labeling for ߤ, , we can prove that Λ‾  is a spectrum of 
) ,. This sheds light on the statement thatߤ − 1)Λ, is not a spectrum of ߤ,. 

We will begin by proving two lemmas and then use them to prove Theorem 
(5.3.19). We start with some concepts in number theory (e.g., see [375]). 
Definition (5.3.15)[356]: Let ܾ ∈ ℕ. We denote by ℤ the finite ring of integers modulo 
ܾ, ℤ/ܾℤ. And we denote by ℤ

∗  the set of elements in ࣴ that has a multiplicative inverse. 
Definition (5.3.16)[356]: Let ܾ ∈ ℕ and ݃ܿ݀(, ܾ) = 1. Denote the subgroup ܩ  of ℤ

∗  
generated by , 

:ܩ = : (modܾ)} ݊ = 0,1, … }. 
The order of  in the group ܼ

∗ is defined to be the smallest positive integer ݔ such that 
௫ ≡ 1 (modܾ). 

Denote by ord  . the order of () 
The following two lemmas are motivated by the work of Dutkay, Haussermann 

[366]. 
Lemma (5.3.17)[356]: If ݔ∗ is an extreme cycle point for some extreme cycle, then ݔ∗ ∈
ℤ and ݔ∗ has a periodic base p expansion, i.e., 

∗ݔ =
ܽ

 +
ܽଵ

ଶ + ⋯ +
ܽିଵ

 +
ܽ

ାଵ +
ܽଵ

ାଶ + ⋯ +
ܽିଵ

ଶ + ⋯, 

where ܽ ∈ ܾ{0,1, … , ݍ − 1}. 
Proof. Suppose ݔ∗ is an extreme cycle point for ܺ = ,ݔ} ,ଵݔ … ,  ିଵ}. Without loss ofݔ
generality, we assume ݔ∗ =  . Then by the definition of extreme cycle, we haveݔ

ݔ  =
ିଵݔ

 +
݈ିଵ



 =
ିଶݔ

ଶ +
݈ିଶ

ଶ +
݈ିଵ


 = ⋯

 =
ݔ

 +
݈

 +
݈ଵ

ିଵ + ⋯ +
݈ିଵ


,                       (133)

 

where {݈, ݈ଵ, … , ݈ିଵ} ⊆ ܾ{0,1, … , ݍ − 1}. By iterating the above equality infinitely, one 
has ݔ is of the periodic base  expansion. For the sake of brevity, we denote 


=  Since .ݏ

ݔݏ ∈ ℤ, we have ݔ ∈ ℤ
௦
. If ݔ = ௦ା

௦
 with ݉ ∈ ℤ and ݅ ∈ {1,2, … , ݏ − 1}, then 

ଵݔ =
ݔ + ݈

 =
݉ݏ + ݅

ݏ + ݈

 , 
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where ݈  ∈ ܾ{0,1, … , ݍ − 1}. We claim ݔݏଵ = ௦(ାబ)ା
௦

∉ ℤ. In fact, if ݔݏଵ = ௦(ାబ)ା
௦

=
݇ ∈ ℤ, then ݅ = ݇ݍ)ݏ − ݉ − ݈) =: ݅ ଵ, which is contrary to݇ݏ ∈ {1,2, … , ݏ − 1}. Thus, 
ଵݔݏ ∉ ℤ, which contradicts the condition (ii) of the definition of extreme cycle. Hence, 
ݔ ∈ ℤ. 
Lemma (5.3.18)[356]: Let ܥ = ܾ{0,1, … , ݍ − 1} and gcd (ܾ, ( = 1. Then 

:ݔ} {  is an extreme cycle point for some extreme cycleݔ = ܶ, ∩ ℤ, 
where ܶ, is the attractor of the iterated function system ቄ ݂(ݔ): ݂(ݔ) = ௫ା


, ݅ ∈

ܾ{0,1, … , ݍ − 1}ቅ. 
Proof. If ݔ  is an extreme cycle point for some extreme cycle, by Lemma (5.3.17), we 
have ݔ ∈ ℤ and 

ݔ =
ܽ

 +
ܽଵ

ଶ + ⋯ +
ܽିଵ

 +
ܽ

ାଵ +
ܽଵ

ାଶ + ⋯ +
ܽିଵ

ଶ + ⋯, 

where ܽ ∈ ܾ{0,1, … , ݍ − 1}. And since ܶ, = ቄ∑ୀଵ
ஶ   

 : ܿ ∈ ܾ{0,1, … , ݍ − 1}ቅ, one 
easily sees that  

ݔ ∈ ܶ, ∩ ℤ. 
Conversely, for any ݔ ∈ ܶ, ∩ ℤ, we observe that ܶ , = ⋃∈{,ଵ,…,ିଵ}  ݂ ൫ ܶ,൯. So we 
have ݔ ∈ ݂൫ ܶ,൯ for some ݅ ∈ ܾ{0,1, … , ݍ − 1}. Then there exists ିݔଵ ∈ ܶ, such that 
ݔ = ௫షభା


. Thus ିݔଵ ݔ = − ݅ ∈ ܶ, ∩ ℤ and then we have ିݔଵ ≡  (modܾ). Byݔ

induction, we obtain ିݔଵ, ,ଶିݔ … ∈ ܶ, ∩ ℤ and ݈, ݈ଵ, … ∈ ܾ{0,1, … , ݍ − 1} such that 
ିݔ = ௫షೕషభାೕ


 for all ݆ ≥ 1. Moreover, we have ିݔ ≡  and ܾ are   (modܾ). Sinceݔ

relatively prime, we have  ≡ 1(modܾ), where ܽ = ord  Then .() 
ିݔ ≡  . (mod ܾ)ିݔ

Since ିݔ ≡  and ܾ are relatively prime  (modܾ) and according to the fact thatݔ
again, it follows that ିݔ ≡  are contained in ܶ,ݔ  andିݔ (modܾ). Becauseݔ ⊆
ቂ0, (ିଵ)

ିଵ
ቃ, it follows that ିݔ =   is an extreme cycle point for some extremeݔ . Thenݔ

cycle. Thus, we complete the proof. 
We now present the proof of Theorem (5.3.19). 

Theorem (5.3.19)[356]: Let ܾ ∈ ℕ. Suppose ܾ is a prime with gcd (ܾ, ( = 1. Then the 
following statements hold: 

(i) If ord  () is even, then ܾΛ, is a spectrum of ߤ,. 

(ii) If ord  () is odd with ord  () > బݍ − 1 where ݊ = 
୪୬ ್(షభ)

షభ

୪୬ 
 + 1, then ܾΛ, 

is a spectrum of ߤ,. 
Claim (5.3.20)[356]: If there exists a number denoted by ݕ in ܩ  with ݕ ≡ −1(modܾ), 
then ܾΛ, is a spectrum of ߤ,. 
Proof. Suppose ܾΛ, is not a spectrum of ߤ,, there exists a non-degenerate extreme 
cycle ܺ ,ݔ} = ଵݔ , … , ܮ ିଵ} withݔ = {݈, ݈ଵ, … , ݈ିଵ} ⊆ ܾ{0,1, … , ݍ − 1} by Theorem 
(5.3.8). Since ݔାଵ = ௫ା


 for ݅ ∈ {0,1, … , ݎ − 2}, we have ݔାଵ ≡  .(modܾ)ݔ

Moreover, ݔ = ௫ೝషభାೝషభ


. Then 
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ݔି ≡ ݔ  (modܾ) for ݅ ∈ {0,1, … , ݎ − 1}. 
So for any ݉ ∈ ℕ, we obtain that ݔ is congruent modulo ܾ with an element in ܺ. 
Combining with the assumption that there exists a number denoted by ݕ in ܩ  with ݕ ≡
−1(modܾ), we conclude that there exists ݆ ∈ ℕ such that 

ݔݕ ≡ ݔ  (modܾ) 
and 

ݔݕ ≡  . (modܾ)ݔ−
Thus, we obtain that ݔ ≡ (modܾ). By Lemma (5.3.18), we have 0ݔ− < ݔ ≤ (ିଵ)

ିଵ
 

for all ݅ ∈ {0,1, … , ݎ − 1}. From these, we obtain that ݔ > (ିଵ)
ିଵ

. In fact, we have 

ܾ − ݔ −
ݍ)ܾ − 1)

 − 1 ≥ ܾ − 2
ݍ)ܾ − 1)

 − 1 =
ܾ

 − 1 ) − ݍ2 + 1) > 0. 

Consequently, we have ܾ − ݔ > (ିଵ)
ିଵ

 and so ݔ > (ିଵ)
ିଵ

. This is a contradiction. Thus, 
the claim follows. 

Returning to the proof of (i), we will use the well-known quadratic congruence 
equation ݔଶ ≡ 1(modܾ) [375]. Let ܽ be the smallest positive integer such that  ≡

1(modܾ). By the assumption that ܽ is even, we have ቀ
ೌ
మቁ

ଶ
≡ 1(modܾ) and 

ೌ
మ ∈  .ܩ

Since ܾ is a prime, we have 



ଶ ≡ ±1 (modܾ). 

By the minimality of ܽ , we get that 
ೌ
మ ≢ 1(modܾ). Thus 

ೌ
మ ≡ −1(modܾ). And we then 

have ܾΛ, is a spectrum of ߤ, by the above claim. 
(ii). Suppose ܾ Λ, is not a spectrum of ߤ,, there exists a non-degenerate extreme 

cycle ܺ ,ݔ} = ,ଵݔ … , ܮ ିଵ} withݔ = {݈, ݈ଵ, … , ݈ିଵ} ⊆ ܾ{0,1, … , ݍ − 1}. By the 
definition of extreme cycle, it is easy to see that 

ݔ ≡ ݔ  (modܾ) for all ݅ ∈ {0,1, … , ݎ − 1}. 
Since 0 < ݔ ≤ (ିଵ)

ିଵ
< ܾ and ܾ  is a prime, one has  ≡ 1(modܾ). By the condition of 

(ii) and the definition of order of , we have ݎ ≥ ord  (ܾ) > బݍ − 1 (the last inequality 
is the assumption of Theorem (5.3.19)(ii)). 

Next, we consider the set ܶ,: = {∑ୀଵ
ஶ  ܿି: ܿ ∈ ݊ for all ܥ ∈ ℕ} where ܥ =

ܾ{0,1, … , ݍ − 1}. We denote the cardinality of ൫ ܶ, ∩ ℤ൯ ∖ {0} by ܰ,. We will give a 
better estimate of ܰ, in order to reach a contradiction. First, we note that ܶ, ⊆
ቂ0, (ିଵ)

ିଵ
ቃ which implies ܰ, ≤ ቔ(ିଵ)

ିଵ
ቕ. Furthermore, we have 

ܶ,: = ܾܶ, 
where ܶ = {∑ୀଵ

ஶ  ܿ ି: ܿ ∈ {0,1, … , ݍ − 1} for all ݊ ∈ ℕ}. Let Θ = {0,1,2, … , ݍ − 1} 
and Θ

 = ൛ܫ = ݅ଵ݅ଶ ⋯ ݅: ݅ ∈ Θ, 1 ≤ ݇ ≤ ݊ൟ. Then the set ܶ can be decomposed into 
the following form: 

ܶ = ራ  
ఙ∈


ఙܶ, 

where ߪ = ଶߪଵߪ …   andߪ
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ఙܶ  = ቐ
ଵߪ


+

ଶߪ

ଶ + ⋯ +
ߪ

 +   
ஶ

ୀାଵ

  ܿି: ܿ ∈ {0,1, … , ݍ − 1} for all ݆ ≥ ݊ + 1ቑ

 ⊆ 
ଵߪ


+

ଶߪ

ଶ + ⋯ +
ߪ

 ,
ଵߪ


+

ଶߪ

ଶ + ⋯ +
ߪ

 +
ݍ) − 1)

) − ൨(1

 =: ఙܫ

 = ൬
ଵߪ


+

ଶߪ

ଶ + ⋯ +
ߪ

൰ + ቈ0,
ݍ) − 1)

) − .                                                       (134)(1

 

With (134), we have ܶ, ⊆ ܾ⋃ఙ∈
 ݊ ఙ. Then for anyܫ  ∈ ℕ, 

ܰ,  ≤ ඌ
ݍ)ܾ − 1)

) − ඐ(1 + ݍ) − 1) ൬ඌ
ݍ)ܾ − 1)

) − ඐ(1 + 1൰

 = ݍ ඌ
ݍ)ܾ − 1)

) − ඐ(1 + ݍ − 1.                                                (135)
 

We will give a better estimation of ܰ, below. For any ݊ ∈ ℕ, one has 

ݍ)ܾ − ݍ(1

) − (1 + ݍ − 1 ≥ 2ඨܾ
ݍ) − ଶݍ(1

) − (1 − 1. 

And the equality holds if and only if (ିଵ)

(ିଵ) = ݊ ,., i.eݍ =
୪୬ ್(షభ)

షభ

୪୬ 
. Denote ݊ =


୪୬ ್(షభ)

షభ

୪୬ 
 + 1. Observe that ቔ (ିଵ)

(ିଵ)బ
ቕ = 0.  

Then ܰ, ≤ బݍ ቔ (ିଵ)
(ିଵ)బ

ቕ + బݍ − 1 = బݍ − 1. 
Therefore, ݎ ≥ ord  (ܾ) > బݍ − 1 ≥ ܰ,. By Lemma (5.3.18), it is easy to see 

that ܰ, ≥  .which is a contradiction. This completes the proof of Theorem (5.3.19) ݎ
Through the following example, we illustrate that Theorem (5.3.19) provides a 

sufficient condition for us to find more spectra. The calculation will be complicated with 
the increasing of ܾ.  

Therefore, we only find the ܾ  less than 100 that can be judged by Theorem (5.3.19), 
so that ܾΛ,ଷ is still a spectrum of ߤ,ଷ. 
Example (5.3.21)[356]: Let  = 6, ݍ = 3. If 5 < ܾ ≤ 100 with ܾ prime, then ܾΛ,ଷ is a 
spectrum of ߤ,ଷ. 
Proof. The possible choices of ܾ are the following: 

ܲ = {7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}. 
For any ܾ ∈ ܲ, 

(i) when 7 ≤ ܾ ≤ 13, we have ݊  = 1 and 3బ − 1 = 2. By a simple calculation, one 
has ord  () > 2. Then by Theorem (5.3.19), we obtain that ܾΛ,ଷ is a spectrum 
of ߤ,ଷ. 

(ii) when 17 ≤ ܾ ≤ 89, we have ݊ = 2 and 3బ − 1 = 8. 
Case I. ܾ ∈ {19,23,43,47,67,71}: = ଵܲ. In this case, it is easy to see that ord  is () 

odd with ord  () > 8. 
Case II. ܾ ∈ ܲ ∖ ଵܲ. In this case, we have that ord  () is even. Then by Theorem 

(5.3.19), we obtain that ܾΛ,ଷ is a spectrum of ߤ,ଷ. 
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(iii) when ܾ = 97, we have that ord  () is even. Then by Theorem (5.3.19)(i), 
we obtain that ܾΛ,ଷ is a spectrum of ߤ,ଷ. This finishes the proof. 

Dutkay, Haussermann [366] proved that if ܾ is a prime with ܾ > 3, then ܾΛସ is a 
spectrum of ߤସ. Depending on the result and the known examples, we guess the 
following: let ܾ >  − 1, if ܾ is a prime with gcd (ܾ, ( = 1, then ܾΛ, is a spectrum of 
 .,ߤ
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Chapter 6 
Exponential and Beurling Dimension 

We construct a class of singularly continuous measures that has an exponential 
Riesz basis but no exponential orthonormal basis. It is the first of such kind of examples. 
We obtain the exact upper bound of the dimensions, which is the same given by Dutkay. 
The upper bound is attained in usual cases and some examples are given to explain the 
theory. 
Section (6.1): Exponential Spectra in Hilbert Space: 

We assume that ߤ is a (Borel) probability measure on ℝௗ  with compact support. 
We call a family ܧ(Λ) = ൛݁ଶగఒ௫: ߣ ∈ Λൟ(Λ is a countable set) a Fourier frame of the 
Hilbert space ܮଶ(ߤ) if there exist ܣ, ܤ > 0 such that 

ܣ ∥ ݂ ∥ଶ⩽   
ఒ∈

  ห݂, ݁ଶగఒ௫ห
ଶ

⩽ ܤ ∥ ݂ ∥ଶ,  ∀݂ ∈  (1)                      .(ߤ)ଶܮ

Here the inner product is defined as usual, 

ൻ݂, ݁ଶగఒ௫ൿ = න  
ℝ

 .(ݔ)ߤଶగఒ௫݀ି݁(ݔ)݂

 .(ߤ)ଶܮ is called an (exponential) Riesz basis if it is both a basis and a frame of (ܣ)ܧ
Fourier frames and exponential Riesz bases are natural generalizations of exponential 
orthonormal bases in ܮଶ(ߤ). They have fundamental importance in nonharmonic Fourier 
analysis and close connection with time-frequency analysis [390,396,397]. When (1) is 
satisfied, ݂ ∈ (ݔ)݂ can be expressed as (ߤ)ଶܮ = ∑ఒ∈  ܿఒ݁ଶగఒ௫, and the expression is 
unique if it is a Riesz basis. 

When ܧ(Λ) is an orthonormal basis (Riesz basis, or frame) of ܮଶ(ߤ), we say that 
 is ܣ is a spectral measure (R-spectral measure, or F-spectral measure respectively) and ߤ
called a spectrum (ܴ-spectrum, or F-spectrum respectively) of ܮଶ(ߤ). We will also use 
the term orthonormal spectrum instead of spectrum when we need to emphasis the 
orthonormal property. If ܧ(Λ) only satisfies the upper bound condition in (1), then it is 
called a Bessel set (or Bessel sequence); for convenience, we also call Λ a Bessel set of 
 .(ߤ)ଶܮ

One of the interesting and basic questions in non-harmonic Fourier analysis is: 
What kind of compactly supported probability measures in ℝௗ belong to the above 

classes of measures? 
When ߤ is the restriction of the Lebesgue measure on ܭ with positive measure, the 

question whether it is a spectral measure is related to the well known Fuglede problem of 
translational tiles (see [395,410,402,414]). While it is easy to show that such ߤ is an F-
measure, it is an open question whether it is an R-spectral measure. If ܭ is a unit interval, 
its F-spectrum was completely classified in terms of de Brange's theory of entire 
functions [411]. In another general situation, Lai [401] proved a sharp result that if ߤ is 
absolutely continuous with respect to the Lebesgue measure, then it is an F-spectral 
measure if and only if its density function is essentially bounded above and below on the 
support. 

The problem becomes more intriguing when ߤ is singular. The first example of 
such spectral measures was given by Jorgensen and Pedersen [399]. They showed that 
the Cantor measures with even contraction ratio (ߩ = 1/2݇) is spectral, but the one with 
odd contraction ratio (ߩ = 1/(2݇ + 1)) is not. This raises the very interesting question 
on the existence of an exponential Riesz basis or a Fourier frame for such measures, and 
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more generally for the self-similar measures [403,404,394,413,398]. In particular Dutkay 
et al. proposed to use the Beurling dimension as some general criteria for the existence 
of Fourier frame [392]. They also attempted to find a self-similar measure which admits 
an exponential Riesz basis or a Fourier frame but not an exponential orthonormal basis 
[393]. However, no such examples have been found up to now. 

We will carry out a detail study of the three classes of spectra mentioned. It is 
known that a spectral measure must be either purely discrete or purely continuous [404]. 
Our first theorem is a pure type law for the F-spectral measures. 

For the proof, the discrete case is based on the frame inequality, and the two 
continuous cases make use the concept of lower Beurling density of the F-spectrum. 

To complete the previous digression on the continuous measures, we have the 
following conclusions for finite discrete measures. 

To determine such discrete ߤ to be a spectral measure, we will restrict our 
consideration on ℝଵ and let ࣝ ⊂ ℤାwith 0 ∈ ࣝ. Then the Fourier transform of ߤ is 

(ݔ)ߤ̂ =  + ݔଵ݁ଶగభ + ⋯ + :ିଵ݁ଶగೖషభ௫ = ݉ఓ(ݔ), 
where ܲ = ୀ{}

ିଵ is a set of probability weights. We call ݉ఓ(ݔ) the mask polynomial 
of ߤ. Let ࣴఓ = ൛ݔ ∈ [0,1): ݉ఓ(ݔ) = 0ൟ be the zero set of ݉ఓ(ݔ), and Λ is called a bi-
zero set if Λ − Λ ⊂ ࣴఓ ∪ {0}. Denote the cardinality of ܧ by #ܧ. It is easy to see the 
following simple proposition. 
Proposition (6.1.1)[388]: Let ߤ = ∑∈ࣝ ߜ   with ࣝ ∈ ℤାand 0 ∈ ࣝ. Then ߤ is a spectral 
measure if and only if there is a bi-zero set Λ of ݉ఓ and #Λ = #ࣝ. In this case, all the  
are equal. 

The determination of the bi-zero set is, however, non-trivial, as the zeros of a mask 
polynomial is rather hard to handle. As an implementation of the proposition, we work 
out explicit expressions of the set ࣝ and the bi-zero set when # ࣝ = 3,4. It is difficult to 
have such expression beyond 4 directly. On the other hand, there are systematic studies 
of the zeros of the mask polynomials by factorizing the mask polynomial as cyclotomic 
polynomials (the minimal polynomial of the root of unity). This has been used to study 
the integer tiles and their spectra (see [391,402,407]). We adopt this approach to a class 
of self-similar measures (which is continuous) in our consideration: 

Let ݊ > 0 and let ࣛ ⊂ ℤାbe a finite set with 0 ∈ ࣛ, we define a self-similar 
measure ߤ: =   by,ࣛߤ

(ܧ)ߤ =
1

ܣ#   
∈ࣛ

ܧ݊)ߤ − ܽ) 

where ܧ is a Borel subset in ℝ. Note that the Lebesgue measure on [0,1] and the Cantor 
measures are such kind of measures. The following theorem is a combination of the 
results in [412,402] and [403] : 
Theorem (6.1.2)[388]: Let ࣛ ⊂ ℤାbe a finite set with 0 ∈ ࣛ. Suppose there exists ℬ ⊂
ℤାsuch that ࣛ ⊕ ℬ = ℕ where ℕ = {0, … , ݊ − 1}. Then ࣛߜ = ∑∈ࣛ ߜ   is a spectral 
measure with a spectrum in ଵ


ℤ; the associated self-similar measure ࣛߤ, is also a spectral 

measure, and it has a spectrum in ℤ if gcd ࣛ = 1. 
Note that the 1/4-Cantor measure ߤ{,ଶ},ସ satisfies the above condition, but not the 

1/3-Cantor measure. In fact, it is an open problem whether the 1/3-Cantor measure is 
an F-spectral measure. To a lesser degree we want to know the existence of a singularly 
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continuous measure that admits an R-spectrum but is not a spectral measure. We search 
for new R-spectral measures and to obtain such an example as corollary. 

We let ߟ be a discrete probability measure with support ࣝ ⊂ ℤା.Let ݒ be another 
probability measure on ℝ with support Ω ⊆ [0,1], and let ߤ = ߟ ∗  be the convolution ݒ
of ߟ and ݒ. Our main result is 
Theorem (6.1.3)[388]: Let ߤ = ߟ ∗  is an ܴ-spectral ݒ be as the above, and assume that ݒ
measure with a spectrum in ℤ. Then ߤ is an ܴ-spectral measure. 
In addition, if ࣴ ௩ ⊆ ℤ. Then ߤ is a spectral measure if and only if both ߟ and ݒ are spectral 
measures. 

We can modify the theorem slightly with the spectrum Γ and ࣴ ௩ to be some subsets 
of rationals (Theorem (6.1.17), Theorem (6.1.19)), this covers some more interesting 
cases (e.g., the Cantor measures). Finally by taking ߟ to be a non-uniform discrete 
measure (Proposition (6.1.1)) and ݒ =   in Theorem (6.1.2), we conclude from,ࣛߤ
Theorem (6.1.3) that 
Example (6.1.4)[388]: There exists a singularly continuous measure which is an R-
spectral measure, but not a spectral measure. 

We prove Theorem (6.1.6) and Theorem (6.1.9). We then deal with the discrete 
spectral measures; Proposition (6.1.1) is proved, and explicit expressions of ࣝ (with # 
ࣝ = 3,4) for ࣝߤ  to be a spectral measure (Example (6.1.12), Example (6.1.13)) are 
sought. We make a further discussion of the discrete spectral measures in connection with 
the class of integer tiles. We prove the two statements in Theorem (6.1.3) in two 
theorems, and Example (6.1.4) follows as a corollary.. 

Recall that a ߪ-finite Borel measure ߤ on ℝௗ can be decomposed uniquely as 
discrete, singularly continuous and absolutely continuous measures, i.e., ߤ = ௗߤ + ௦ߤ +
 .equals only one of the three components ߤ is said to be of pure type if ߤ . The measureߤ

In our proof of the pure type property of the F-spectral measures, we need to use 
the lower Beurling density of an infinite discrete set Λ ⊂ ℝௗ: 

:Λିܦ = lim inf
→ஶ

  inf
௫∈ℝ

 
#(Λ ∩ ܳ(ݔ))

ℎௗ , 
where ܳ (ݔ) is the standard cube of side length ℎ centered at ݔ. Intuitively Λ is distributed 
like a lattice if ିܦΛ is positive. In [405], Landau gave an elegant and useful necessary 
condition for Λ to be an F-spectrum on ܮଶ(Ω) : ିܦΛ ⩾ ℒ(Ω) where ℒ is the Lebesgue 
measure. The following proposition provides some relationships between the lower 
Beurling density and the types of the measures. 
Proposition (6.1.5)[388]: Let ߤ be a compactly supported probability measure on ℝௗ, 
and Λ is an F-spectrum of ߤ, we have 

(i) If ߤ = ∑∈ࣝ ߜ   is discrete, then #Λ < ∞ and #ࣝ < ∞; 
(ii) If ߤ is singularly continuous, then ିܦΛ = 0; 
(iii) If ߤ is absolutely continuous, then ିܦΛ > 0. 

Proof. (i) By the definition of Fourier frame, we have for all ݂ ∈  ,(ߤ)ଶܮ

  
ఒ∈ஃ

อ  
∈ࣝ

 ݂(ܿ)݁ଶగ(ఒ,)อ
ଶ

⩽ ܤ   
∈ࣝ

|݂(ܿ)|ଶ . 

Taking ݂ = ߯బ, where బ > 0, we have (#Λ) ⋅ బ
ଶ ⩽ బܤ . Hence #Λ ⩽ బ/ܤ < ∞. 

This implies #C < ∞ by the completeness of Fourier frame. 
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(ii) Suppose on the contrary that ିܦΛ ⩾ ܿ > 0. We claim that ℤௗ is a Bessel set of 
Λ, we can choose a large ℎିܦ By the definition of .(ߤ)ଶܮ ∈ ℕ such that 

inf
௫∈ℝ

 ൫#(Λ ∩ ܳ(ݔ))൯ ⩾ ܿℎௗ > 1. 

Taking ݔ = ℎܖ, where ܖ ∈ ℤௗ, we see that all cubes of the form ℎܖ + [−ℎ/2, ℎ/2)ௗ 
contains at least one points of Λ, say ܖߣ. Since Λ is an F-spectrum, {ܖߣ}ܖ∈ℤ is a Bessel 
set. By the stability under perturbation (see e.g.. [392, Proposition 2.3]) and 

ܖߣ| − ℎܖ| ⩽ diam([−ℎ/2, ℎ/2)ௗ) = √݀ℎ, 
we conclude that ℎℤௗ is also a Bessel set of ܮଶ(ߤ). As a Bessel set is invariant under 
translation, we see that the finite union ℤௗ = {,…,ିଵ}∋ܓ⋃  (ℎℤௗ +  is again a Bessel (ܓ
set of ܮଶ(ߤ), which proves the claim. 

Now consider 
:(ݔ)ܩ =   

ℤ∋ܖ

ݔ)ߤ̂| +  .ଶ|(ܖ

 is a periodic function (mod ℤௗ ). As ℤௗ is a Bessel set, applying the definition to ܩ
݁ଶగ(௫,⋅), we see that (ݔ)ܩ ⩽ ܤ < ∞. Hence ܩ ∈  ଵ([0,1)ௗ) andܮ

න  
ℝ

ݔଶ݀|(ݔ)ߤ̂| =   
ℤ∋ܖ

න  
[,ଵ)

ݔ)ߤ̂| + ݔଶ݀|(ܖ = න  
[,ଵ)

ݔ݀|(ݔ)ܩ| < ∞. 

This means that ̂ߤ ∈  must be absolutely continuous. This is a ߤ ଶ(ℝௗ), which impliesܮ
contradiction. 

(iii) If ߤ is absolutely continuous, then the density function must be bounded above 
and below almost everywhere on the support of ߤ [401, Theorem (6.1.6)]. Hence, Λ is an 
F-spectrum of ܮଶ(Ω), where Ω is the support of ߤ. By Landau's density theorem, ିܦΛ ⩾
ℒ(Ω) > 0. 

Now it is easy to conclude that an F-spectral measure is of pure type. 
Theorem (6.1.6)[388]: Let ߤ be an F-spectral measure on ℝௗ. Then it must be one of the 
three pure types: discrete (and finite), singularly continuous or absolutely continuous. 
Proof. First let us assume that if ߤ is decomposed into non-trivial discrete and continuous 
parts, ߤ ௗߤ = + ߤ . Let Λ be an F-spectrum of ߤ. As ܮଶ(ߤௗ) and ܮଶ(ߤ௦) are non-trivial 
subspaces of ܮଶ(ߤ), it is easy to see that Λ is also an F-spectrum of both ܮଶ(ߤௗ) and 
Then #Λ .(ߤ)ଶܮ < ∞ by Proposition (6.1.5)(i); but #Λ = ∞ since ܮଶ(ߤ) is an infinite 
dimensional Hilbert space. This contradiction shows that ߤ is either discrete or purely 
continuous. 

Suppose ߤ is continuous and has non-trivial singular part ߤ௦ and absolutely 
continuous part ߤ. By applying the same argument as the above, Λ is an F-spectrum of 
 This is impossible in view of the Beurling density of Λ in Proposition .(ߤ)ଶܮ and (௦ߤ)ଶܮ
(6.1.5)(ii) and (iii). 

The following corollary is immediate from Theorem (6.1.6). 
Corollary (6.1.7)[388]: A spectral measure or an ܴ-spectral measure must be of pure 
type. 

We will show that all discrete measures on ℝௗ are R-spectral measures. By 
Proposition (6.1.5)(i), we only need to consider measures with finite number of atoms. 
Let ࣝ = {ܿ, … , ܿିଵ} ⊂ ℝௗ be a finite set and let 

ߤ =   
∈ࣝ

ߜ ,   with  > 0,   
∈ࣝ

 = 1.                                    (2) 
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For ߣ ∈ ℝௗ, we denote the vector ൣ݁ଶగ⟨ఒ,బ⟩, … , ݁ଶగ(ఒ,షభ)൧
௧
 by ܞఒ. 

Proposition (6.1.8)[388]: Let ࣝ = {ܿ, … , ܿିଵ} ⊂ ℝௗ and let ߤ be as in (2). Let Λ =
,ߣ} … , {ିଵߣ ⊂ ℝௗ be another finite set. Then 

(i) Λ is an F-spectrum of ߤ if and only if span ൛ܞఒబ , … , ఒషభൟܞ = ℂ. 
(ii) Λ is an R-spectrum of ߤ if and only if ݉ = ݊ in the above identity. 

Proof. (i) Suppose first Λ is an F-spectrum of ߤ. Let ܝ = ,ݑ] … ,  ିଵ]௧ be such thatݑ
ൻܝ, ఒൿܞ = 0 for all ݅ . Consider ݂  as a function defined on ࣝ  with ݂(ܿ) = /ݑ . By using 
the lower bound of the Fourier frame, we have 

ܣ   
∈ࣝ

  |݂(ܿ)|ଶ ⩽   
ఒ∈ஃ

  อ  
∈ࣝ

 ݂(ܿ)݁ଶగ⟨ఒ,⟩อ
ଶ

=   
ఒ∈ஃ

  ,ܝ⟩| ఒ⟩|ଶܞ = 0. 

It follows that ݂(ܿ) = 0 for all ܿ ∈ ࣝ, hence ܝ =  and the necessity in (i) follows. 
Conversely, the assumption implies that the vectors ܞఒబ , … ,  ఒషభ form a frame onܞ

ℂ (see [390, Corollary 1.1.3]), i.e., there exist ܣ, ܤ > 0 such that for all ܝ =
,ݑ] … , ିଵ]௧ݑ ∈ ℂ 

ܣ   
ିଵ

ୀ

|ଶݑ| ⩽   
ఒ∈

,ܝ⟩| ఒ⟩|ଶܞ ⩽ ܤ   
ିଵ

ୀ

 .|ଶݑ|

For any ݂ ∈ ܝ we take ,(ߤ)ଶܮ = ൣ݂(ܿ)బ , … , ݂(ܿିଵ)షభ൧
௧
, we see that Λ is a frame 

with lower bound (min  )ܣ and upper bound (max  .ܤ( 
(ii) is clear from (i). 

Theorem (6.1.9)[388]: Let ߤ = ∑∈   be a discrete probability measure in ℝௗ withߜ 
ࣝ a finite set. Then ߤ is an ܴ-spectral measure. 
Proof. Let ࣝ = {ܿ, … , ܿିଵ}. We first establish the theorem for ࣝ ⊂ ℝଵ. Let ܹ =
span {ܞఒ: ߣ ∈ ℝଵ}, it suffices to show that ܹ = ℂ. Then we can select {ߣ , … , {ିଵߣ ⊂
ℝଵ so that ൛ܞఒబ , … ,  ఒషభൟ a basis of ℂ. The theorem for ℝଵ will follow from Propositionܞ
(6.1.8)(ii). 

To see ܹ = ℂ, it suffices to show that if ⟨ܝ, ⟨ఒܞ = 0 for all ߣ ∈ ℝ, then ܝ = . 
To this end, we write ܝ = ,ݑ] … ,  ିଵ]௧, and the given condition isݑ

  
ିଵ

ୀ

݁ଶగఒݑ = 0. 

We differentiate the expression with respect to ߣ for ݇ times with ݇ = 1, … , ݊ − 1, then 

  
ିଵ

ୀ

ܿݑ
݁ଶగఒ = 0. 

This means 

൦

1 1 ⋯ 1
ܿ ܿଵ ⋯ ܿିଵ
⋮ ⋮ ⋮ ⋮

ܿ
ିଵ ܿଵ

ିଵ ⋯ ܿିଵ
ିଵ

൪ ⋅

⎣
⎢
⎢
⎡ ݁ଶగఒబݑ

ଵ݁ଶగఒభݑ

⋮
⎦ିଵ݁ଶగఒషభݑ

⎥
⎥
⎤

= 0. 

As all ܿ  are distinct, the Vandermonde matrix is invertible. Hence, 
݁ଶగఒబݑൣ , ଵ݁ଶగఒభݑ , … , ିଵ݁ଶగఒషభ൧௧ݑ = , 

and thus ܝ = . This completes the proof of the theorem for ℝଵ. 
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On ℝௗ, we note that by Proposition (6.1.8), {ܿ, … , ܿିଵ} admits an R-spectrum 
,ߣ} … , ,ିଵ} if and only if {ܳܿߣ … , ܳܿିଵ} admits an R-spectrum {ܳߣ, … ,  ,{ିଵߣܳ
where ܳ is any orthogonal transformation on ℝௗ . Now given any {ܿ, … , ܿିଵ} on ℝௗ, 
we let ℓ  be the line passes through two points ܿ , ܿ , and choose a line ℓ such that ℓ is 
not perpendicular to any ℓ . Apply an orthogonal transformation ܳ so that the first axis 
coincides with the direction of ℓ. In this way the construction shows that the first 
coordinates of ܳܿ, … , ܳܿିଵ are all distinct. 

We then apply the same argument as in ℝଵ above, using partial differentiation with 
respect to the first coordinates which are all distinct, the Vandermonde matrix is 
invertible, hence the theorem follows. 
Remark (6.1.10)[388]: If ܿ, … , ܿିଵ have rational coordinates, then we can choose 
elements Λ to have rational coordinates also. To see this, by multiplying an integer, we 
can assume that {ܿ, … , ܿିଵ} are in ℤௗ, we consider the determinant function  

(ߣ)߮ = ,ߣ)߮ … , (ିଵߣ = det 
݁ଶగ(ఒబ,బ) ⋯ ݁ଶగ(ఒభ,షభ)

⋱
݁ଶగ(ఒషభ,బ) ⋯ ݁ଶగ(ఒషభ ,షభ⟩

൩ 

with ߣ = ,ߣ) … ,  is a trigonometric polynomial on ℝௗ, whose (ߣ)߮ ିଵ) on ℝௗ. Thenߣ
zero set is a closed set of Lebesgue measure zero. We can choose ߣ so that ߮(ߣ) ≠ 0 and 
is rational, and Proposition (6.1.8)(ii) shows that Λ ߣ = ,ߣ} … ,  ିଵ} is an ܴ-spectrumߣ
will rational coordinates. 

The R-spectrum shown in Theorem (6.1.9) is not explicit. It is also not easy to see 
whether a given set Λ is an R-spectrum since the invertibility of the matrix is not easy to 
establish in general. A probabilistic approach of finding such Λ in the case of 
trigonometric polynomials was given in [389]. The work gave a theoretical background 
on the theory of reconstruction of multivariate trigonometric polynomials via random 
sampling sets. 

To carry out Theorem (6.1.9) further, we consider the condition that a discrete 
measure to be an orthogonal spectral measure. We will restrict our consideration on the 
one-dimensional case, and by translation, we can assume, without loss of generality, that 
ࣝ ⊂ ℤାand 0 ∈ ࣝ. The mask polynomial of ߤ = ∑∈ࣝ   isߜ 

݉ࣝ,(ݔ) = (ݔ)ߤ̂ =   
∈ࣝ

݁ଶగ௫ . 

In case ܲ is a set of equal probability, then we just use the notation ݉ࣝ(ݔ). We call 
a set Λ a bi-zero set of ݉ࣝ, if 0 ∈ Λ and ݉ࣝ,൫ߣ − ൯ߣ = 0 for distinct ߣ , ߣ ∈ Λ. It is 
clear that such ܧ(Λ) is an orthogonal set in ܮଶ(ߤ). 
Proposition (6.1.11)[388]: Let ࣝ ⊂ ℤ be a finite set, and let ߤ = ∑∈ࣝ ߜ  . Then ߤ is a 
spectral measure if and only if there is a bi-zero set Λ of ݉ࣝ, and #ࣝ = #Λ. In this case, 
all the  's are equal. 
Proof. Note that ߤ is a spectral measure if and only if there exists a set Λ = ,ଵߣ} … ,  {ߣ
with ݊ = #ࣝ such that ̂ߤ൫ߣ − ൯ߣ = 0 for all ݅ ≠ ݆. Since ̂(ݔ)ߤ = ݉ࣝ,(ݔ), this is 
equivalent to Λ is a bi-zero set of ݉ࣝ, and #ࣝ = #Λ. 

To see that all the  are equal, we put ݂ = ߯ into the Parseval's identity. 
  
ఒ∈ஃ

หൻ݂, ݁ଶగ(ఒ,௫)ൿหଶ =∥ ݂ ∥ଶ. 

We obtain ∑ఒ∈  
ଶ =  ,. Hence = 1/#Λ = 1/#ࣝ. 
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We use Proposition (6.1.11) to obtain explicit expressions of ࣝ with #C ⩽ 4 that 
are discrete spectral measures. It is trivial to check that when #ࣝ = 1,2, the associated ߤ 
is always a spectral measure. 
Example (6.1.12)[388]: Let ࣝ = {ܿ = 0, ܿଵ, ܿଶ} ⊂ ℤାwith gcd (ࣝ) = 1. Then ߤ =
∑∈ࣝ ܿ  is a spectral measure if and only ifߜ  ଶ ≡ 2ܿଵ(mod3)( i.e., ࣝ  is a complete residue 
(mod3)). 
Proof. For the sufficiency, we write ܿଵ = 3݇ + ݅, ݅ = 1,2 and ݇ ∈ ℕ. Then ܿଶ = 3݈ + 2݅ 
and 

{0, ܿଵ, ܿଶ} = {0,1,2} (mod3). 
It is direct to check that Λ = ቄ0, ଵ

ଷ
, ଶ

ଷ
ቅ is a bi-zero set of ݉ࣝ(ݔ) with #Λ = #ࣝ and hence 

 .is a spectral measure ߤ
For the necessity, we let Λ = {0, ,ଵߣ ଶ} be such that ݉ࣝ(ܾଵ)ߣ = ݉ࣝ(ܾଶ) =

݉ࣝ(ܾଶ − ܾଵ) = 0. Note that ݉ࣝ(ݔ) = 1 + ݁ଶగభ௫ + ݁ଶగమ௫. Then ݉ࣝ  has roots in (ݔ)
(0,1) if and only if ݁ଶగభ௫ = ݁ଶగ/ଷ, ݁ଶగమ = ݁ସగ/ଷ (or the other way round). Hence 
there exists ݇, ݈ ∈ ℤାsuch that 

ݔଵܿߨ2 = ߨ2݇ +
2
3 ,ߨ ݔଶܿߨ2  = ߨ2݈ +

4
3  .ߨ

It follows that ݔ = ଷାଵ
ଷభ

= ଷାଶ
ଷమ

. Since gcd (ܿଵ, ܿଶ) = 1, we have 3݇ + 1 = ܿଵ݉ and 3݈ +
2 = ܿଶ݉. Hence 3 ∤ ݉, and 3 ∣ (ܿଶ − 2ܿଵ) This implies the sufficiency. 
Example (6.1.13)[388]: Let ࣝ = {ܿ = 0, ܿଵ, ܿଶ, ܿଷ} ⊂ ℤାwith gcd (ࣝ) = 1. Then ߤ is a 
spectral measure if and only if after rearrangement, ܿଵ is even, ܿଶ, ܿଷ are odd, and ܿଵ =
2ఈ(2݇ + 1), ܿଶ − ܿଷ = 2ఈ(2ℓ + 1) for some ߙ > 0. 
Proof. We first prove the necessity. The mask polynomial of ߤ is ݉ (ݔ)ࣝ = 1 + ݁ଶగభ௫ +
݁ଶగమ௫ + ݁ଶగయ௫. That ݉ࣝ(ݔ) = 0 implies 

ห1 + ݁ଶగభ௫ห = ห1 + ݁ଶగ(యିమ)௫ห,                                           (3) 
which yields (i) ݁ଶగభ௫ = ݁ଶగ(యିమ)௫ or (ii) ݁ଶగభ௫ = ݁ିଶగ(యିమ)௫. Putting (i) into 
(ݔ)ࣝ݉ = 0, we have (1+e 2ܿ݅ߨଵݔ ) (1 + ݁ଶగమ௫൯ = 0. Hence we have two sets of 
equations: 

2ܿଵݔ = 2݇ + 1;  2(ܿଷ − ܿଶ)ݔ = 2݈ + 1.                                     (4) 
or 

2ܿଶݔ = 2݇ + 1;  2(ܿଷ − ܿଵ)ݔ = 2݈ + 1.                                       (5) 
From (4), we have ݔ = ଶାଵ

ଶభ
= ଶାଵ

ଶ(యିమ). Let ܽ = gcd (ܿଵ, ܿଶ − ܿଷ). It is easy to show that 
there exists ݉ such that 

2݇ + 1 =
ܿଵ݉

ܽ
,  2݈ + 1 =

(ܿଷ − ܿଶ)݉
ܽ

.                                      (6) 
Hence ݉, ܿଵ/ܽ, (ܿଷ − ܿଶ)/ܽ must be odd. Also note that gcd (ܿଵ, ܿଶ, ܿଷ) = 1, it follows 
from a direct check of the above that two of the ܿଵ, ܿଶ, ܿଷ must be odd, and one must be 
even (all three cases can happen). 

The same argument applies to (5) and to (ii). The last statement also follows in the 
proof. 

To prove the sufficiency, we first observe from the above that for ܿଵ even, ܿଶ, ܿଷ 
odd, there are solutions ݔଵ , ଶݔ ∈ (0,1) from (i) (see (4)-(6)): 

ଵݔ =
2݅ + 1

2ܽ ,  0 ⩽ ݅ < ܽ; ଶݔ  =
2݆ + 1

2ܾ ,  0 ⩽ ݆ < ܾ, 
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where gcd (ܿଵ, ܿଶ − ܿଷ) as above, and ܾ = gcd (ܿଶ, ܿଷ − ܿଵ). Since ܾ is odd, we can take 
2݆ + 1 = ܾ, so that ݔଶ = ଵ

ଶ
 is a solution of ݉ࣝ(ݔ) = 0. Let 

ଵߣ =
1
2

, ଶߣ  =
1

2ܽ
, ଷߣ  =

2ఈgcd (ݎ, (ݏ + 1
2ܽ

, 
where ܿଵ = 2ఈݎ, ܿଶ = 2ఈݏ and ݎ,  are odd integers as in the assumption. We claim that ݏ
Λ = {0, ,ଵߣ ,ଶߣ ܽ Indeed, since .(ݔ)ࣝ݉ ଷ} is a bi-zero set ofߣ = 2ఈgcd (ݎ, ,(ݏ ଵߣ − ଶߣ =
(ܽ − 1)/2ܽ is of the form ݔଵ  for ݅ = 2ఈିଵgcd (ݎ, (ݏ − 1, ଷߣ − ଵߣ = ଷߣ ଶ andߣ − ଶߣ =  ,ଵߣ
the claim follows. 

For #ࣝ large, it is difficult to evaluate the zero set of the mask polynomial. 
However there is a number-theoretical approach to study such zeros related to the 
spectrum and integer tiling. 

We will give a brief discussion of the relationship between discrete spectral 
measures and integer tiles, and provide the tools we need. Let ࣛ ⊂ ℤାand assume that 
0 ∈ ࣛ, we say that ࣛ is an integer tile if there exists ࣮ such that ࣛ ⊕ ࣮ = ℤ, i.e., ࣛ +
[0,1] tiles ℝ. Equivalently, ࣛ is a tile if there exists ℬ and ݊ such that 

ࣛ ⊕ ℬ ≡ ℤ (mod݊).                                                (7) 
Recall that the Fuglede conjecture asserts that for Ω ⊂ ℝௗ with positive measure, Ω is a 
translational tile if and only if the restriction of the Lebesgue measure ℒ|ஐ is a spectral 
measure. Although the conjecture is proved to be false in either direction [414,400], it 
remains unanswered for dimension 1 and 2 , and for some special classes of tiles in any 
dimension. 

Let ࣛ  be a finite subset in ℤ, then the Fuglede conjecture reduces to ࣛ  is an integer 
tile if and only if ࣛ + [0,1] is a spectral set, i.e., ℒ|ࣛା[,ଵ] is a spectral measure. It is also 
known that the latter part is also equivalent ࣛߜ = ∑∈ࣛ ߜ   is a discrete spectral measure 
[410]. This also follows from Theorem (6.1.19). In Example (6.1.12), the spectral 
condition for # ࣝ = 3 is equivalent to ࣝ is a complete residue (mod 3), which trivially 
satisfies (7). Hence the conjecture is true for # ࣝ = 3. In Example (6.1.13), the spectral 
condition is equivalent to 

ࣝ = {0, 2ఈ(2݇ + ݎ2,(1 + ݎ1,2 + 1 + 2ఈ(2ℓ + 1)} 
for some non-negative integers ݇, ,ݎ ℓ. If we let ℬ = {0,2} ⊕ ⋯ ⊕ {0, 2ఈିଵ}, then it is 
direct to check that ࣝ ⊕ ℬ ≡ ℤଶഀశభ  (mod 2ఈାଵ ). Hence by (7), the conjecture is true for 
#C = 4. Actually, by using some deeper number-theoretic argument, it can be shown that 
if #ࣝ = , ఉ whereݍఈ  are distinct primes, then ࣝ is an integer tile implies it is a ݍ
spectral set [391,402]. 

The following is a useful sufficient condition of a discrete spectral measure. The 
condition trivially imply the underlying set is an integer tile. 
Theorem (6.1.14)[388]: Let ࣛ ⊂ ℤାbe a finite set with 0 ∈ ࣛ. Suppose there exists ℬ ⊂
ℤାsuch that 

ࣛ ⊕ ℬ = ℕ 
where ℕ = {0, … , ݊ − 1}. Then the discrete measure ࣛߜ = ∑∈ࣛ ߜ   (with equal weight) 
is a spectral measure with a spectrum contained in ଵ


ℤ. 

The theorem was due to [412] (and also in [394]), and the proof involves an 
inductive construction of the spectrum. The spectrum is implicit and the proof is long. 
We will provide an alternative proof using the properties of the root of unity as the zeros 
of the mask polynomial. The framework is from [391] and the spectrum is explicitly given 
in [402]. Because of the number-theoretical notations and techniques. 
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Finally, we state a related theorem of the self-similar measures which follows from 
the known results. 
Theorem (6.1.15)[388]: Let ࣛ ⊂ ℤାbe a finite set with 0 ∈ ࣛ. Suppose there exists ℬ ⊂
ℤାsuch that ࣛ ⊕ ℬ = ℕ. Let ߤ be the self-similar measure satisfying 

(⋅)ߤ =
1

ܣ#
  
∈ࣛ

݊)ߤ ⋅ −ܽ). 

Then ߤ is a spectral measure. Moreover, if gcd (ࣛ) = 1, then the spectrum Λ of ߤ can be 
chosen to be in ℤ. 
Proof. Denote the spectrum of ࣛߜ  in Theorem (6.1.14) by ࣭ with ࣭ ⊂ ଵ


ℤ, then (ࣛ, ࣭) 

form a compatible pair as in [403], i.e., 
1

√#ࣛ
ൣ݁ଶగ௦൧∈ࣛ,௦∈࣭  

is a unitary matrix. The theorem follows from [403, Theorem (6.1.9)]. For the last part, 
since we can change the residue representatives of Γ with ࣭ = ଵ


Γ and Γ ⊂ {−(݊ −

2), … , ݊ − 2}. With gcd (ࣛ) = 1, Theorem (6.1.9) in [403] states that  
Λ = Γ ⊕ ݊Γ ⊕ ݊ଶΓ ⊕ ⋯ 

is a spectrum. This spectrum clearly lies in ℤ. 
Remark (6.1.16)[388]: For the 1/4-Cantor measure, ߤ(⋅) = ଵ

ଶ
4)ߤ ⋅) + ଵ

ଶ
4)ߤ ⋅ −2). It is 

easy to compute the Fourier transform is ̂(ߦ)ߤ = ݁ଶగభ
యక∏ୀଵ

ஶ  cos ൫24/ߦߨ൯ and the zero 
set of ̂ߤ is ࣴఓ = ൛4ܽ: ܽ is odd and ݆ ⩾ 0}. Note that ࣛ = {0,2} and the condition of the 
theorem is satisfied, the spectrum of ߤ can be taken as [399] 

Λ = {0,1} ⊕ 4{0,1} ⊕ 4ଶ{0,1} ⊕ ⋯ ⊂ ࣴఓ. 
However the condition ࣛ ⊕ ℬ = ℕ in Theorem (6.1.15) is quite restrictive. For the 
1/6-Cantor measure, (⋅) = ଵ

ଶ
6)ߤ ⋅) + ଵ

ଶ
6)ߤ ⋅ −2), according to [399], it is again a 

spectral measure and the spectrum is 

Λ =
3
2

({0,1} ⊕ 6{0,1} ⊕ 6ଶ{0,1} ⊕ ⋯ ). 
But for ࣛ = {0,2} in this case, we cannot find ℬ so that ࣛ ⊕ ℬ = ℕ. Also, ߤ does not 
admit spectrum Λᇱ ⊂ ℤ. The proof is as follows: If so, observe that 

Λᇱ ⊂ ࣴఓ = ൛6ܽ/4: ܽ is odd and ݆ ⩾ 1ൟ. 
As ߣ is an integer, we see that for ߣ ∈ Λᇱ, ߣ = 6ܽ/4, and ݊ ⩾ 2 necessarily. Let ݔ =
3/2, then ݔ ∈ ࣴఓ ∖ Λᇱ and ݔ − ߣ = 6(1 − 6ିଵܽ)/4 ∈ ࣴఓ. This means ∑ఒ∈ஃ ݔ)ߤ̂|  −
ଶ|(ߣ = 0, which shows that Λᇱ cannot be a spectrum by Proposition (6.1.18). 

Let ݒ be a probability measure with compact support Ω ⊂ [0,1] and let ߟ be a 
discrete probability measure with support on ࣝ ⊂ ℤାand probability weight ܲ, i.e. ߟ =
,ࣝߜ = ∑∈ࣝ ߤ . Thenߜ  = ߟ ∗ ࣝ has support on ߥ + Ω. Given a non-negative integer ݍ, 
we let ߟ =  .ࣝ,ߜ
Theorem (6.1.17)[388]: Let ݒ be an ܴ-spectral measure with a spectrum Γ and assume 
that there exists an integer ݍ ⩾ 1 such that ݍΓ ⊆ ℤ. Then ߤ: = ߟ ∗  is an ܴ-spectral ݒ
measure. 
Proof. We write ࣛ = ࣝݍ = {0 = ܽ, ܽଵ, … , ܽ  ଵ}. By Theorem (6.1.9), there exists an 
R-spectrum of ࣛ which we denote it as ࣭ = {0 = ,ݏ ,ଵݏ … ,  ିଵ}. By Propositionݏ
(6.1.8)(ii), we see that 
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det ൣ ݁ଶగ௦൧
∈ࣛ,௦∈࣭

≠ 0. 
We will show that ࣭ ⊕ Γ is an R-spectrum of ߤ. 

Since Ω = supp (ݒ) ⊂ [0,1], for any ݂ ∈ ,(ߤ)ଶܮ ݂ is uniquely determined by the 
vector-valued function [݂(ݔ + ܽ),, … , ݔ)݂ + ܽିଵ)]௧ on Ω. Let ܯ = ൣ݁ଶగ௦൧∈ࣛ,௦∈࣭ , it 
is invertible. We define 

[݃(ݔ), … , ݃ିଵ(ݔ)]௧ = ݔ)݂]ଵିܯ + ܽ), … , ݔ)݂ + ܽିଵ)]௧ , ݔ  ∈ Ω. 
Clearly ݃ ∈ for 0 (ݒ)ଶܮ ⩽ ݆ ⩽ ݇ − 1. It is easy to see ݏ + Γ is also an R-spectrum of ݒ, 
so that ݃ can be uniquely expressed as 

݃(ݔ) =   
ఊ∈

ܿ௦ೕାఊ݁ଶగ൫௦ೕାఊ൯௫. 

Hence, we have 

,(ݔ)݃]ܯ … , ݃ିଵ(ݔ)]௧ =   
ିଵ

ୀ

  ݁ଶగబ௦ೕ ݃(ݔ), … ,   
ିଵ

ୀ

  ݁ଶగೖషభ௦ೕ ݃(ݔ)

௧

. 

and therefore 

ݔ)݂ + ܽ) =   
ିଵ

ୀ

݁ଶగ௦ೕ   
ఊ∈

ܿ௦ೕାఊ݁ଶగ൫௦ೕାఊ൯௫ =   
ିଵ

ୀ

  
ఊ∈

ܿ௦ೕାఊ݁ଶగ൫௦ೕାఊ൯(௫ା).  (8) 

Note that the last equality follows from ܽߛ = (ߛݍ) ܿ is an integer by the assumption 
Γݍ ⊂ ℤ. By a change of variable with ݕ = ݔ + ܽ for each ݅, we have 

(ݕ)݂ =   
ିଵ

ୀ

  
ఊ∈

ܿ௦ೕାఊ݁ଶగ൫௦ೕାఊ൯௬, ݕ  ∈ ࣝ + Ω = supp(ߤ). 

It is easy to see that the above representation is unique, this means ܧ(࣭ + Γ) is both a 
basis and a frame of ܮଶ(ߤ). Hence ܧ(࣭ + Γ) is a Riesz basis. 

We now recall a general criterion of spectral measures due to Jorgensen and 
Pedersen [399]. 
Proposition (6.1.18)[388]: Let ߤ be a probability measure on ℝௗ with compact support. 
Then ܣ is an orthogonal spectrum of ߤ if and only if 

(ݔ)ܳ =   
ఒ∈ஃ

  ݔ)ߤ̂| + ଶ|(ߣ ≡ 1, ݔ  ∈ ℝ. 

In particular, if ߤ = ∑∈ࣝ   is a discrete spectral measure with spectrum Λ, thenߜ  =
1 /#C by Proposition (6.1.11) and 

  
ఒ∈ஃ

ห݉ࣝ,(ݔ + ห(ߣ
ଶ

≡ 1. 

To determine whether ߤ in Theorem (6.1.17) is a spectral measure, we have the following 
simple characterization. 
Theorem (6.1.19)[388]: Let ݒ be an ܴ -spectral measure and suppose ࣴݍ௩ ⊂ ℤ. Then ߤ =
ߟ ∗  .are spectral measures ݒ and ߟ is a spectral measure if and only if both ݒ
Proof. It is clear that ߟ is a spectral measure if and only if ߟ  is also a spectral measure. 
We first prove the sufficiency. Let ࣛ = ࣭ and let ,ࣝݍ = {0, ,ଵݏ … ,  ିଵ} be a bi-zero setݏ
of ݉ ࣛ, (note that ܲ  is a set of equal weights by Proposition (6.1.11)). Let Γ be a spectrum 
of ݒ, then ݍΓ ⊆ ℤ by the hypothesis that ࣴݍ௩ ⊂ ℤ. The Fourier transform of ߤ satisfies 

(ߦ)ߤ̂ = ݉ࣛ,(ߦ)̂(ߦ)ݒ. 
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By the spectral property of ࣭ and Γ, 
  

⩽⩽ିଵ

   
ఊ∈

  ห̂ߤ൫ݔ + ݏ + ൯หߛ
ଶ

 =   
⩽⩽ିଵ

   
ఊ∈

  ห݉ࣛ,൫ݔ + ݏ + ൯หߛ
ଶ

ห̂ݒ൫ݔ + ݏ + ൯หߛ
ଶ

 =   
⩽⩽ିଵ

   
ఊ∈

  ห݉ࣛ,൫ݔ + ൯หݏ
ଶ

ห̂ݒ൫ݔ + ݏ + ൯หߛ
ଶ

 =   
⩽⩽ିଵ

  ห݉ࣛ,൫ݔ + ൯หଶݏ = 1.

 

Hence ࣭ ⊕ Γ is an orthogonal spectrum of ߤ by Proposition (6.1.18). 
Conversely, suppose that Λ is a spectrum of ߤ and without loss of generality 

assume 0 ∈ Λ. Denote ݔ = {ݔ} +  is the maximum integer which is less [ݔ] where [ݔ]
than or equal to ݔ. We claim that ࣭ = :{ߣݍ}ଵିݍ} ߣ ∈ Λ} is a bi-zero set of ݉ࣛ,. Indeed, 
by writing ߣ = {ߣݍ}ଵିݍ +  we have ,[ߣݍ]ଵିݍ

0 = (ߣ)ߤ̂ = ݉ࣛ,(ିݍଵ{ߣݍ} + (ߣ)ݒ̂([ߣݍ]ଵିݍ = ݉ࣛ,(ିݍଵ{ߣݍ})̂(9)          (ߣ)ݒ 
for each ߣ ∈ Λ. Note that ̂(ߣ)ݒ = 0 implies ߣݍ ∈ ℤ (by the assumption ࣴ௩ ⊂ ℤ ), so that 
{ߣݍ} = 0, (9) implies that either ିݍଵ{ߣݍ} = 0 or it is a root of ݉ࣛ,. For any given 
distinct ିݍଵ{ߣݍଵ}, {ଶߣݍ}ଵିݍ ∈ ࣭ and {ߣݍଵ} > ଵߣ)ݍ}ଵିݍ we have ,{ଶߣݍ} − {(ଶߣ =
{ଵߣݍ})ଵିݍ −  .is a root of ݉ࣛ,.. This proves the claim ({ଶߣݍ}

Let us write Λ = ⋃ୀ
ିଵ  ൫ݏ + Λ൯, ݏ ∈ ࣭, where Λ = ൛ିݍଵ[ߣݍ]: {ߣݍ}ଵିݍ =  .ൟݏ

Since Λ is a spectrum of ߤ, we must have for all ߣଵ, ଶߣ ∈ Λ, 
0 = ଵߣ)ߤ̂ − (ଶߣ = ݉ࣛ,(ߣଵ − ଵߣ)ݒ(ଶߣ −  .(ଶߣ

But ܽ(ିݍଵ[ߣݍ]) ∈ ℤ for all ܽ ∈ ࣛ = ଵߣ)this shows ݉ࣛ, ,ࣝݍ − (ଶߣ ≠ 0 and hence 
ଵߣ)ݒ − (ଶߣ = 0. Therefore ܧ൫Λ൯, 0 ⩽ ݆ ⩽ ݇ − 1, are the orthogonal set of ݒ. By the 
Bessel inequality, ∑ఒ∈ஃೕ  ห̂ݒ൫ݔ + ݏ + ൯หߣ

ଶ
⩽ 1. Note further that ࣭ is a bi-zero set of 

݉ࣛ,. By Proposition (6.1.18), we have 

1  ≡   
ఒ∈ஃ

  ݔ)ߤ̂| + ଶ|(ߣ =   
ିଵ

ୀ

    
ఒ∈ஃ

  ห̂ߤ൫ݔ + ݏ + ൯หߣ
ଶ

 =   
ିଵ

ୀ

    
ఒ∈ஃೕ

  ห݉ࣛ,൫ݔ + ݏ + ݔ൫ݒ൯̂ߣ + ݏ + ൯หߣ
ଶ

 =   
ିଵ

ୀ

    
ఒ∈ஃೕ

  ห݉ࣛ,൫ݔ + ݔ൫ݒ൯̂ݏ + ݏ + ߣܽ ൯หଶ ( sinceߣ ∈ ℤ)

 ⩽   
ିଵ

ୀ

  ห݉ࣛ,൫ݔ + ൯หݏ
ଶ

⩽ 1.

 

Hence ࣭ is the orthogonal spectrum of ߟ  by Proposition (6.1.18) again, so that ߟ is a 
spectral measure. From the third line of the above, we also have 

1 ≡   
ିଵ

ୀ

ห݉ࣛ,൫ݔ + ൯หݏ
ଶ

  
ఒ∈ஃೕ

ห̂ݒ൫ݔ + ݏ + ൯หߣ
ଶ

. 
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With ∑ୀ
ିଵ  ห݉ࣛ,൫ݔ + ൯หݏ

ଶ
≡ 1, we must have ∑ఒ∈ஃೕ  ห̂ݒ൫ݔ + ݏ + ൯หߣ

ଶ
≡ 1. Hence, ݒ is 

a spectral measure and any one of the Λ is a spectrum of ݒ. 
It has been an open question whether the 1/3-Cantor measure has an F-spectrum 

(or even an R-spectrum). To a less extend, we do not know a non-trivial singularly 
continuous R-spectral measure. We can make use of Theorems (6.1.17) and (6.1.19) to 
construct such measures. 
Example (6.1.20)[388]: There exists a singularly continuous R-spectral measure which 
is not a spectral measure. 
Proof. Consider the self-similar measure ࣛݒ, in Theorem (6.1.15) with ࣛ satisfying 
ࣛ ⊕ ℬ = ℕ and gcd (ࣛ) = 1. It is a spectral measure and has a spectrum Γ ⊂ ℤ. 
Moreover we claim that ࣴ௩ ⊂ ℤ. Indeed, observe that 

(ߦ)ݒ̂ = ෑ  
ஶ

ୀଵ

݉ࣛ ൬
ߦ

݊൰ 

where ݉ࣛ  stands for the mask polynomial of ࣛ under equal weight. As ࣛ ⊕ ℬ = ℕ, 
we have 

(ߦ)ℬ݉(ߦ)ࣛ݉ = 1 + ݁ଶగక + ⋯ + ݁ଶగ(ିଵ)క . 
The zero set of ݉ࣛ  on [0,1) is a finite subset ܼ ⊂ {1/݊, … , ݊ − 1/݊}. Let ܼᇱ = ܼ + ℤ. 
This shows that ࣴఔ = ⋃ୀଵ

ஶ  ܼ݊ᇱ. This proves the claim and the condition in Theorem 
(6.1.19) holds (taking ݍ = 1). 

Now we let ߟ =   be a discrete measure with any finite set ࣝ of non-negative,ࣝߜ
integers and non-uniform weight ܲ. ߤ = ߟ ∗   is an R-spectral measure but not a,ࣛݒ
spectral measure by Theorem (6.1.17) and Theorem (6.1.19). These measures is clearly 
singular if #ࣛ < ݊. 

Finally, if ܧ is a Borel set with positive Lebesgue measure, we use ܮଶ(ܧ) to denote 
the square integrable functions on ܧ. We remark that ܮଶ(ܧ) always have an F-spectrum, 
and the existence of orthogonal spectrum is related to the translational tile as in Fuglede's 
conjecture. For R-spectrum, it is not known whether every Borel set ܧ with positive 
Lebesgue measure, ܮଶ(ܧ) has an ܴ-spectrum. In regard to this we have the following 
simple result. 
Corollary (6.1.21)[388]: If ܧ be a finite union of closed intervals with rational endpoints. 
Then ܮଶ(ܧ) admits an R-spectrum. 
Proof. By the hypothesis and by suitably rescaling and translation, there exist two 
integers ݎ and ݏ such that 

ܧݎ + ݏ = [0,1] + ࣛ: =  ,ܨ
where 0 ∈ ࣛ and ࣛ ∈ ℤାis a finite set. By Proposition (6.1.1) with ݒ being the Lebesgue 
measure on [0,1], we see that ܨ has an R-spectrum, which implies ܮଶ(ܧ) also has an R-
spectrum. 

We remark that similar results were obtained in [409] who considered the problem 
from the sampling point of view and used techniques in complex analysis. We do not 
know whether the condition of rational endpoints can be removed. In [406], the case when 
the end-points lying in certain groups was considered, and the above also follows as a 
corollary. 
Section (6.2): Self-Similar Measures: 

For ߤ be a Borel probability measure with compact support in ℝௗ. We call ߤ a 
Fourier-Bessel measure with a Bessel set or Bessel sequence ߉ in ℝௗ if  
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|〈݂, ఒ݁〉|ଶ

ఒ∈௸

 ≤ ,ଶ‖݂‖ܤ ∀ ݂ ∈  ,(ߤ)ଶܮ

where ఒ݁ = ݁ିଶగ〈ఒ,௫〉, ,ݔ〉  .is a Bessel bound ܤ is the standard inner product in ℝௗ and 〈ݕ
Moreover, if in addition there exists ܣ > 0 such that 

ଶ‖݂‖ܣ ≤ |〈݂, ఒ݁〉|ଶ

ఒ∈௸

 ≤ ݂∀    ,ଶ‖݂‖ܤ ∈  .(ߤ)ଶܮ

Then ߤ is called a (Fourier) frame spectral measure with a frame spectrum ߉, and ܣ,  ܤ
are called the lower and upper frame bounds respectively. In particular, ߤ is called a Riesz 
spectral (reps. spectral) measure with Riesz spectrum (resp. spectrum) ߉ if ܧ௸ = { ఒ݁}ఒ∈௸ 
is both a frame and basis (resp. orthonormal basis) for ܮଶ(ߤ). For the frame spectral 
measure ߤ, any function in ܮଶ(ߤ) can be expanded in terms of the exponentials family 
 The frame theory has become the pillar of applied harmonic analysis, including Gabor .௸ܧ
analysis, wavelets, compressive sensing, interpolation and sampling theory, signal 
processing, and has been developed rapidly in recent years in both theory and 
applications. 

Details on the background of general frame theory and recent topics are given in 
[416,426,427]. 

Recently He, Lau and Lai [430] proved that a Fourier frame spectral measure ߤ 
must be of pure type, that is, ߤ is one of a discrete measure with finite support, a singular 
continuous or an absolutely continuous measure with respect to the Lebesgue measure. 
It has a long history to study a normolized Lebesgue measure restricted to a set to be a 
frame spectral measure (can be traced back at least to 1967, the work of Landau [434]). 
The spectral measure problems attract more attention due to the famous Fuglede (spectral 
set) conjecture. From the beginning of this issue, the Beurling density plays a key role. 
We will discuss the relationship between the Beurling density (and dimension) and frame 
spectral measures (and Fourier-Bessel measures) which are singular with respect to the 
Lebesgue measure. Let ߉ be a countable set or sequence  in ℝௗ . The ݎ −(upper) Beurling 
density of ߉ is defined by 

ܤ
ା(߉) = lim

→ஶ
sup sup

௫∈ℝ

#൫߉ ∩ ,ݔ)ܤ ℎ)൯
ℎ  , 

where #ܧ is the cardinality of the set ܧ and ݔ)ܤ, ℎ) is the open ball with center ݔ and 
radius ℎ. And the Beurling dimension of ߉ is defined by 

dim ߉ = inf{ݎ: ܤ
ା(߉) = 0} = sup{ݎ: ܤ

ା(߉) = ∞}. 
According to the results of Landau [434] and Lai [433], the Beurling dimension of a 
frame spectrum of an absolutely continuous frame spectral measure equals to the space 
dimension ݀. In general, there is a conjecture as follows: 
Conjecture (6.3.1)[415]: Let ߤ be a Borel probability measure with compact support 
ܶ ⊂ ℝௗ . If ߤ is a frame spectral measure with a frame spectrum ߉, then 

dim ߉  ≤ dimு ܶ, 
where dimு ܶ is the Hausdorff dimension of the set T. 

According to Conjecture (6.3.1), we call a Fourier-Bessel measure with compact 
support ܶ  a Bessel spectral one if there exists a Bessel set ߉ satisfying dim ߉ = dimு ܶ, 
in this case ߉ is called a Maximal Fourier-Bessel set. We prove that Conjecture (6.3.1) 
holds for a class of Fourier-Bessel measures. It is very surprising and interesting that 
there exists a Fourier spectrum ߉ for a spectral measure ߤ satisfying that dim ߉ = 0 <
dimு ܶ[419]. 
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Dutkay et.al. [423] proved that Conjecture (6.3.1) holds for self-similar frame 
spectral measures with the same contracting ratios, equal probability weight and open set 
condition (OSC) (see the definition in the following). We will prove that Conjecture 
(6.3.1) holds for all Bessel sets or sequence  of a self-similar measure with the OSC which 
can have no the same contracting ratio and no equal probability weight. 

For Φ = {߮(ݔ)}ୀଵ
ே  be an iterated function system (IFS) on ℝௗ  (or a domain ܦ in 

ℝௗ in general cases), that is, all ߮(ݔ) are contractive in ℝௗ with ratio ߩ < 1. Let ܲ =
ୀଵ{}

ே  be a positive probability weight, i.e., all  > 0 and ∑ 
ே
ୀଵ = 1. By Hutchinson’s 

theorem [429, 431], there exists a unique Borel probability measure ߤ =  ః, withߤ
compact support ܶ = ( ܶ)ః satisfying that 

(ܧ)ߤ                      =  ߤ ቀ߮
ିଵ(ܧ)ቁ                                             (10)

ே

ୀଵ

 

for any Borel set ܧ ⊂ ℝௗ and ܶ is the unique compact set or sequence  satisfying that 

ܶ = ራ ߮(ܶ)
ே

ୀଵ

. 

The probability measure ߤ satisfying (10) is called an invariant measure with respect to 
the IFS Φ = {߮(ݔ)}ୀଵ

ே  and the probability weight ܲ and ܶ is called the attractor of the 
IFS. In particular, if all ߮(ݔ) are self-similar mappings in ℝௗ , that says, ߮(ݔ) =
ݔ)ܣ + ݀), where ܣ = ܳߩ , 0 < ߩ < 1 and ܳ  is an orthonormal matrix for each 1 ≤
݅ ≤ ܰ, then the IFS is called a self-similar IFS, the measure ߤ a self-similar measure and 
ܶ a self-similar set. 

We say that an IFS {߮(ݔ)}ୀଵ
ே  satisfies the open set condition (OSC) if there exists 

a bounded open set  ܸ ⊂ ℝௗ such that  

  ራ ߮(ܸ)
ே

ୀଵ

⊂ ܸ                                                   (11) 

and the union on the left is pairwise disjoint. And we say an IFS satisfies the strong open 
set condition (SOSC) if there exists a bounded open set ܸ satisfying (11) and ܸ ∩ ܶ ≠ ∅, 
where ܶ is the attractor of the IFS. According to the results of Schief [437], the following 
three statements are equivalent: (a) the self-similar IFS {߮(ݔ)}ୀଵ

ே  satisfies the OSC; (b) 
the self-similar IFS {߮(ݔ)}ୀଵ

ே  satisfies the SOSC; and (c) 0 < (ܶ)௦ܪ < ∞, where ݏ is 
the unique solution of the equation ∑ ߩ

௦ே
ୀଵ = 1, ߩ  is the ratio of the similitude ߮ (ݔ) for 

each 1 ≤ ݅ ≤ ܰ and ܪ௦ denotes the ݏ −dimensional Hausdorff measure. In this case the 
ୀଵ{(ݔ)߮} is called the self-similar dimension of the IFS ݏ

ே . 
Theorem (6.3.2)[415]: Let Φ = {߮(ݔ) = ݔ)ܳߩ + ݀)}ୀଵ

ே  be a self-similar IFS 
satisfying the OSC and let ܲ = ୀଵ{}

ே  be a positive probability weight. Then, for each 
Bessel set ߉ of the self-similar measure ߤ =  ,,ߤ

dim ߉ ≤ dimு ܶ =  ,ݏ
where ܶ  is the self-similar set and ݏ is the self-similar dimension. Moreover, if dim ߉ =
dimு ܶ, then  = ߩ

௦ for 1 ≤ ݅ ≤ ܰ. 
For Φ be of the open set condition. We remark that if  = ߩ

௦ for 1 ≤ ݅ ≤ ܰ [437], 
there exists a constant ܿ ≠ 0 such that ܿߤః, is the restriction of the ݏ −Hausdorff 
measure to ܶ; In other case, ߤః, is singular with respect to the ݏ −Hausdorff measure 
[436]. In singular case, we guess that ߤః, is not a Bessel spectral measure. 
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To prove Theorem (6.3.2), we study the relationship between the IFS with the OSC 
and SOSC motivated by the work of Deng et al. [421] and Dutkay et al. [424] and their 
applications, all results in those two sections are suitable for an IFS consisting of analytic 
functions on a domain in complex plane. 

Let ߆ே = {1, 2, . . . , ܰ}. Denote all the words with length ݊ by ߆ே
 =

ܫ} = ݅ଵ݅ଶ · · · ݅: all ݅ ∈ ே߆ ே} and all the finite words by߆
∗ = ⋃ ே߆

ஶ
ୀ , where ߆ே

 = {∅} 
is the set containing only empty word. For an IFS {߮(ݔ)}ୀଵ

ே  and a probability weight 
ܲ = ୀଵ{}

ே , we denote that, if ܫ = ݅ଵ݅ଶ · · · ݅ ∈ ே߆
 , 

߮ூ(ݔ) = ߮భ ∘ ߮మ ∘· · · ∘ ߮
,(ݔ) ூܶ = ߮ூ(ܶ) and ூ = భ మ · · ·  , 

where the notion ◦ means the composition of the functions. The following result is 
motivated by Dutkay et al. [423]. 
Theorem (6.3.3)[415]: Let Φ = {߮(ݔ) = ݔ)ܳߩ + ݀)}ୀଵ

ே  be a self-similar IFS 
satisfying the OSC. Let ߤ =  ః, be the self-similar measure with respect to the IFS andߤ
a positive probability weight ܲ = ୀଵ{}

ே . Let ߉ be a frame spectrum of ߤ. If there exists 
ܫ = ݅ଵ݅ଶ . . . ݅ ∈ ே߆

  for some ݊ ≥ 1 such that 
sup
ఒ∈௸

inf
ఊ∈௸

‖߮ூ(ߣ) − ‖ߛ < ∞. 

Then dim ߉  = dimு ܶ = ூ if and only if ݏ = ூߩ
௦ , where ܶ is the self-similar set, ݏ is 

the self-similar dimension of the IFS and ߩூ = భߩభߩ . . . ߩ . 
An IFS {߮(ݔ)}ୀଵ

ே  is called an open mapping IFS if all ߮(ݔ) are open mappings. 
Here we give several results on an IFS with OSC or SOSC, which will be used in the 
following. 
Theorem (6.3.4)[415]: Let {߮(ݔ)}ୀଵ

ே  be an open mapping IFS on ℝௗ satisfying the 
SOSC with a bounded open set or sequence  ܸ. Let ߤ be the invariant measure with 
respect to the IFS and a probability weight ܲ. Then 

(i) ߤ(߲ܸ) = 0, where ߲ܸ is the boundary of the open set ܸ; 
(ii) The invariant measure ߤ satisfies the no overlap condition, i.e., ߤ ቀ߮(ܶ) ∩

߮(ܶ)ቁ = 0 for any ݅ ≠ ݆; 

(iii) ߤ ቀ߮
ିଵ߮(ܶ)ቁ = 0 for any ݅ ≠ ݆. 

The no overlap condition is also called a measurably separated condition, which 
was used to study the spectrality of self-similar measures with equal weight probability 
and equal contracting ratios in [423, 428]. We prove Theorem (6.3.4) by the following 
three propositions, which are motivated by the work of Deng et al. [421] and Dutkay et 
al. [424]. 
Proposition (6.3.5)[415]: Let {߮(ݔ)}ୀଵ

ே  be an IFS on ℝௗ satisfying the OSC by a 
bounded open set ܸ. Let ߤ be the invariant measure with respect to the IFS and a 
probability weight ܲ. Then the IFS satisfies the SOSC with the open set ܸ if and only if 
(ܸ߲)ߤ = 0. 
Proof. Observe that the attractor ܶ  of the IFS satisfies that ܶ ⊂ ܸ . Then ߤ(ܸ) = )ߤ ܸഥ ) =
1 by ߤ(߲ܸ) = 0 and the sufficiency follows. Conversely, let ݔ ∈ ܶ ∩ ܸ by the SOSC. 
Then there exists ߜ > 0 such that the open ball ݔ)ܤ, (ߜ ⊂ ܸ. By the contraction of 
functions in the IFS, there exist an integer ݉ ≥ 1 and ܫ ∈ ே߆

 such that ߮ூ(ܶ) ⊂
,ݔ)ܤ (ߜ ⊂ ܸ. Iterating (10) ݉ −times, we obtain that 
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(·)ߤ =  ூܲߤ൫߮ூ
ିଵ(·)൯

ூ∈௵ಿ


                                            (12) 

and {߮ூ(ݔ)}ூ∈௵ಿ
  is also an IFS satisfying the SOSC with the same open set ܸ. Therefore, 

for the simpler notations we can assume that ߮ଵ(ܶ) ⊂ ܸ without loss of generality. 
We notice that, for ݊ ≥ 1 and ܫ = ݅ଵ݅ଶ · · · ݅ ∈ {1, 2, . . . , ܰ}\{2, 3, . . . , ܰ}: =

ே߆
\߆ଶ,ே

 , there exists ݇, 1 ≤ ݇ ≤ ݊, such that ݅ = 1. Then 
߮ூ(ܶ) ⊂ ߮భమ···ೖ (ܶ) ⊂ ߮భమ···ೖషభ

(ܸ) ⊂ ܸ. 
Hence, by (12) we have 

1 ≥ (ܸ)ߤ =  ூܲߤ൫߮ூ
ିଵ(ܸ)൯

ூ∈௵ಿ


≥  ூܲߤ൫߮ூ
ିଵ(ܸ)൯

ூ∈௵ಿ
 \௵మ,ಿ



 

                 ≥  ூܲߤ ቀ߮ூ
ିଵ൫߮ூ(ܶ)൯ቁ

ூ∈௵ಿ
 \௵మ,ಿ



=  ூܲ
ூ∈௵ಿ

 \௵మ,ಿ


 

=  ூܲ
ூ∈௵ಿ



−  ூܲ
ூ∈௵మ,ಿ



                             

= 1 − ൭ 

ே

ୀଶ

൱



.                                 

Consequently, ߤ(ܸ) = 1 and ߤ(߲ܸ) = )ߤ തܸ ) − (ܸ)ߤ = 0.  
Proposition (6.3.6)[415]: Let {߮(ݔ)}ୀଵ

ே  be an open mapping IFS satisfying the OSC 
with a bounded open set ܸ. Let ߤ be the invariant measure with respect to the IFS and a 
probability weight ܲ. If ߤ(߲ܸ) = 0, then the ߤ satisfies the no-overlap condition. 
Proof. By the OSC, one sees that ߮ (ܸ) ∩ ߮(ܸ) = ∅ for any ݅ ≠ ݆. Since all ߮   are open 
mappings, then ߮(ܸ) is an open set for each ݅, and we have 

߮(ܸ) ∩ ߮( തܸ) = ߮(ܸ) ∩ ߮(ܸ) = ∅.                                (2.2) 
Then 

ܸ ∩ ߮
ିଵ ቀ߮(߲ܸ)ቁ ⊂ ߮

ିଵ ቀ߮(ܸ) ∩ ߮(߲ܸ)ቁ ⊂ ߮
ିଵ ቀ߮(ܸ) ∩ ߮(ܸ)ቁ = ∅. 

Consequently, 
ܸ ∩ ߮

ିଵ ቀ߮(߲ܸ)ቁ ⊂ ߲ܸ 
and by the fact the attractor ܶ ⊂ ܸ one has 

߮)ߤ
ିଵ ቀ߮(߲ܸ)ቁ = 0.                                                 (14) 

Using (13) again, we have 
߮(ܶ) ∩ ߮(ܶ) ⊂ ߮൫ܸ൯ ∩ ߮൫ܸ൯ ⊂ ߮(߲ܸ) ∩ ߮(߲ܸ)                (15) 

for ݅ ≠ ݆. Then, by (14) and (15), 
ߤ ቀ߮(ܶ) ∩ ߮(ܶ)ቁ ≤ ߤ ቀ߮(߲ܸ) ∩ ߮(߲ܸ)ቁ 

=  ߤ௦ ൬߮௦
ିଵ ቀ߮(߲ܸ) ∩ ߮(߲ܸ)ቁ൰

ே

௦ୀଵ

≤ 0.      

Hence the ߤ satisfies the no-overlap condition.  
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Proposition (6.3.7)[415]: Let {߮(ݔ)}ୀଵ
ே  be an IFS on ℝௗ . Let ߤ be the invariant measure 

with respect to the IFS and a probability weight ܲ. Then ߤ satisfies the no-overlap 

condition if and only if ߤ ൬߮
ିଵ ቀ߮(ܶ)ቁ൰ = 0 for any ݅ ≠ ݆. 

Proof. Suppose that ߤ ൬߮
ିଵ ቀ߮(ܶ)ቁ൰ = 0 for any ݅ ≠ ݆. Then 

ߤ ቀ߮(ܶ) ∩ ߮(ܶ)ቁ =  ߤ ൬߮
ିଵ ቀ߮(ܶ) ∩ ߮(ܶ)ቁ൰

ே

ୀଵ

 

≤  ߤ ቀ߮
ିଵ൫߮(ܶ)൯ቁ + ߤ ቀܶ ∩ ߮

ିଵ൫߮(ܶ)൯ቁ + ߤ ൬ܶ ∩ ߮
ିଵ ቀ߮(ܶ)ቁ൰

ଵஸஸே,ஷ,

 

   = 0. 
That is, ߤ satisfies the no-overlap condition. Conversely, suppose that ߤ ቀ߮(ܶ) ∩

߮(ܶ)ቁ = 0 for any ݅ ≠ ݆. Then 

0 = ߤ ቀ߮(ܶ) ∩ ߮(ܶ)ቁ =  ߤ ൬߮
ିଵ ቀ߮(ܶ) ∩ ߮(ܶ)ቁ൰

ே

ୀଵ

. 

In particular, we have 

0 = ߤ ൬߮
ିଵ ቀ߮(ܶ) ∩ ߮(ܶ)ቁ൰ = ߤ ൬ܶ ∩ ߮

ିଵ ቀ߮(ܶ)ቁ൰ = ߤ ൬߮
ିଵ ቀ߮(ܶ)ቁ൰. 

Hence, we complete the proof.  
For {߮(ݔ)}ୀଵ

ே  be an IFS and let ܶ  be its attractor. Let ܲ = ୀଵ{}
ே  be a probability 

weight. 
For ݅ = ݅ଵ݅ଶ · · · ݅ ∈ ே߆

 , recall that 
ூܶ = ߮ூ(ܶ), ூܲ = భ మ  · · ·   , 

where ߮ூ(ݔ) = ߮భ ∘ ߮మ · · ·∘ ߮
is the composition of the mappings ߮ೖ (ݔ)

,(ݔ) 1 ≤
݇ ≤ ݊. 
Theorem (6.3.8)[415]: Let {߮(ݔ)}ୀଵ

ே  be an open and bijective mapping IFS in ℝௗ 
satisfying the SOSC and let ܶ be its attractor. Let ߤ be the invariant measure with respect 
to the IFS and a probability weight ܲ = ୀଵ{}

ே . Then 
(i) ߤ( ூܶ) = ூܲ for ܫ ∈ ே߆

∗ ; 
(ii) Let ݂ ∈ )ଵܮ ܶ, ܫ and (ߤ ∈ ே߆

∗ . Then 

න ݂ ∘ ߮ூ
ିଵ(ݔ)݀ߤ

 

்

= ூܲ න ߤ݂݀
 

ೝ்

; 

(iii) Let ݂ ∈ ,ܶ)ଵܮ ܫ and (ߤ ∈ ே߆
∗ . Then 

න ݂ ∘ ߮ூ(ݔ)݀ߤ
 

ೝ்

= ூܲ
ିଵ න ߤ݂݀

 

்

. 

Proof. (i) For ܫ = ݅ଵ݅ଶ · · ·  ݅ ∈ ே߆
  and ݊ ≥ 1, we have 

ூ(ܶ)ߤ =  ߮)ߤ
ିଵ(  ܶ)ூ)

ே

ୀଵ

=  ߤ ൬߮
ିଵ ቀ߮భ ∘ ߮మ ∘· · · ∘ ߮

(ܶ)ቁ൰. 

Note that ∑ ߮
ିଵ ቀ߮భ ∘ ߮మ ∘· · · ∘ ߮

( ܶ)ቁ ⊂ ∑ ߮
ିଵ ∘ ߮భ

( ܶ). By Theorem 
(6.3.4) and by induction, we have 
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ூ(ܶ)ߤ = ߤభ ቀ߮మ ∘· · · ∘ ߮
(ܶ)ቁ = మభ · · · (ܶ)ߤ = ூܲ. 

(ii) By (10) we have 

න ݂ ∘ ߮ூ
ିଵ(ݔ)݀ߤ

 

்

=  

ே

ୀଵ

න ߯ ்൫߮(ݔ)൯݂ ∘ ߮
ିଵ ∘ ߮షభ

ିଵ ∘· · · ∘ ߮మ
ିଵ ቀ߮భ

ିଵ ∘ ߮(ݔ)ቁ  ,ߤ݀

where ߯ா(ݔ) is the characteristic function of ܧ ⊂ ℝௗ . Note that ߯ ்൫߮(ݔ)൯ = 1 if and 
only if ݔ ∈ ߮

ିଵ ∘ ൫߮భ ∘ ߮మ ∘· · ·  ߮ ൯(ܶ). Then, by Theorem (6.3.4) again, 

න ݂ ∘ ߮ூ
ିଵ(ݔ)݀ߤ

 

்

 = భ න ߯ఝభ
షభ( ்)(ݔ)݂ ∘ ߮

ିଵ ∘ ߮షభ
ିଵ ∘· · · ∘ ߮మ

ିଵ(ݔ)݀ߤ 

= మభ · · ·   න ߯ఝ
షభ∘ఝషభ

షభ ∘···∘ఝభ
షభ( ೝ்)

                ߤ݀(ݔ)݂ (ݔ)

=  ூܲ න ߤ݀(ݔ)݂
 

்

.                                

(iii) Firstly, 

ூܲ
ିଵ න (ݔ)ߤ݀(ݔ)݂

 

்

= ூܲ
ିଵ න ݂ ∘ ߮ூ ∘ ߮ூ

ିଵ(ݔ)݀(ݔ)ߤ
 

்

. 

Secondly, by (ii), we get 

ூܲ
ିଵ න ݂ ∘ ߮ூ ∘ ߮ூ

ିଵ(ݔ)݀(ݔ)ߤ
 

்

= න ݂ ∘ ߮ூ(ݔ)݀(ݔ)ߤ
 

்

. 

Hence, the assertion (iii) follows. 
For ߤ be a Borel probability measure with compact support. Recall that it is a frame 

spectral measure if there exists ߉ such that 
ఓ‖݂‖ܣ

ଶ ≤ ห〈݂, ఒ݁〉ఓห
ଶ

ఒ∈௸

≤ ఓ‖݂‖ܤ
ଶ ,         ∀ ݂ ∈  ,(ߤ)ଶܮ

where ఒ݁ = ݁ିଶగఒ௫ and 0 < ≥ ܣ ܤ < ∞. And it is a Fourier-Bessel measure with a 
Bessel set ߉ if the above inequality holds for the right hand. Moreover, it is a Bessel 
spectral measure if there exists a Bessel set ߉ such that its Beurling dimension is equal 
to the Haudorff dimension of the support of the measure ߤ. 

Now we give several examples to explain the existence of the frame spectral 
measures and Fourier-Bessel measures. One of famous self-similar measures is the 
Bernoulli convolution, which has been studied from 1930s and has several equivalent 
definitions from analysis, geometry and probability. The simplest definition is the self-
similar measure ߤఘ generated by the IFS ߮(ݔ) = ݔ)ߩ − 1), ߮ଵ(ݔ) = ݔ)ߩ + 1), 0 <
ߩ < 1 and the probability ܲ = {1/2, 1/2}, that is, ߤఘ is the unique probability measure 
satisfying that 

(ܧ)ఘߤ =
1
2 ఘ൫߮ߤ

ିଵ(ܧ)൯ +
1
2 ఘ൫߮ଵߤ

ିଵ(ܧ)൯ 
for any Borel set or sequence  ܧ ⊂ ℝ. It is known or easy to show the following results 
on Bernoulli convolution: 

 ߤఘ is a spectral measure if and only if ߩ = ଵ
ଶ

 for some ݍ ∈ ℕ [418]; 
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 If ߤఘ is absolutely continuous with respect to the Lebesgue measure on [0, 1] and 
ߩ ≠ ଵ

ଶ
, then ߤఘ is not a frame spectral measure [433]. This is almost true for ߩ in 

ቀଵ
ଶ

, 1ቁ [433]; 
 If ߤఘ is absolutely continuous with respect to Lebesgue measure on [0, 1] and ߩ ∈

[2ିଵ/ଶ, 1), then the density of ߤఘ is bounded by [438, Corollary 1]. Similar to the 
result of Lai [433], it is easy to show that ߤఘ a Maximal Fourier-Bessel measure in 
this case. And this holds for almost all ߩ in [2 − 1/2, 1). 

The remaining cases are (a) whether a singular measure ߤఘ for 1/2 < ߩ < 1 is a frame 
spectral measure (difficult problem); (b) we guess that ߤఘ  is a frame spectral measure for 
0 < ߩ < 1/2 if and only if ߩ = ଵ

ଶ
 for some ݍ ∈ ℕ, and equivalent to that ߤఘ  is a Maximal 

Fourier-Bessel measure for 0 < ߩ < 1/2. 
In general, we have that  

Theorem (6.3.9)[415]: Let {߮(ݔ)}ୀଵ
ே  be an open and bijective mapping IFS satisfying 

the SOSC and let ܶ  be its attractor. Let ߤ be the invariant measure with respect to the 
IFS and a positive probability weight ܲ = ୀଵ{}

ே . Suppose that the ܧ௸ is a Fourier frame 
with lower and upper bounds ܣ and ܣ)ܧ ≥  Then .(ܤ

(i) For ܫ ∈ ே߆
 , ݊ ≥ 1, ߤ ∘ ߮ூ is a Fourier frame spectral measure with lower and 

upper bounds ܣ ூܲ and ܤ ூܲ respectively, i.e., 
ܣ ூܲ‖݂‖ఓ∘ఝ

ଶ ≤ ห〈݂, ఒ݁〉ఓ∘ఝ หଶ

ఒ∈௸

≤ ܤ ூܲ‖݂‖ఓ∘ఝ
ଶ ,    ∀ ݂ ∈ )ܮ ܶ, ߤ ∘ ߮ூ); 

(ii) For ܫ ∈ ே߆
 , ݊ ≥ 1, ߤ ∘ ߮ூ is a Fourier frame spectral measure with lower and 

upper bounds ூܲ
ିଵܣ and ூܲ

ିଵܤ respectively, i.e., 

ܣ ூܲ
ିଵ‖݂‖ఓ∘ఝ

షభ
ଶ ≤ ቚ〈݂, ఒ݁〉ఓ∘ఝ

షభቚ
ଶ

ఒ∈௸

≤ ܤ ூܲ
ିଵ‖݂‖ఓ∘ఝ

షభ
ଶ ,   ∀ ݂ ∈ ,ܶ)ܮ ߤ ∘ ߮ூ

ିଵ); 

where ூܶ = ߮ூ(ܶ). 
Proof. Observe that 

〈݂, ఒ݁〉ఓ∘ఝ = න ߤ݀ଶగ〈ఒ,௫〉݁(ݔ)݂ ∘ ߮ூ(ݔ)
 

ೝ்

         

                          = න ݂൫߮ூ
ିଵ(ݔ)൯݁ଶగ〈ఒ,ఝ

షభ(௫)〉݀(ݔ)ߤ
 

்

 

= ூܲ න (ݔ)ߤ݀ଶగ〈ఒ,௫〉݁(ݔ)݂
 

்

 ൫by Theorem (6.3.8)(ii)൯ 

= ூܲ〈݂, ఒ݁〉௨                
and by similar calculations, 

‖݂‖ఓ∘ఝ
ଶ = ூܲ‖݂‖ఓ

ଶ . 
Then (i) follows. To prove (ii), similarly, we have 〈݂, ఒ݁〉ఓ∘ఝ

షభ = ூܲ
ିଵ〈߯ ் ݂ , ఒ݁〉ఓ and 

‖݂‖ఓ∘ఝ
షభ

ଶ = ூܲ
ିଵฮ߯ ்݂ฮ

ఓ
ଶ

. Then (ii) follows.  
Recall that the Fourier transformation of the measure ߤ is defined by 

(ߦ)ߤ̂ = න ݁ିଶగ〈క,௫〉݀(ݔ)ߤ. 
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The following corollaries will be used. 
Corollary (6.3.10)[415]: With the same hypotheses given in Theorem (6.3.9) and in 
addition, we assume that ߮ (ݔ) = ܴ(ݔ + ݀) is a contracting affine mapping for 1 ≤ ݅ ≤
ܰ. Then 

ܣ ூܲ
ିଵ ≤ หߤ൫ܴூ

ߣ)் − ൯ห(ݔ
ଶ

ఒ∈௸

≤ ܤ ூܲ
ିଵ, for ܫ ∈ ே߆

∗  and ݔ ∈ ℝௗ . 

Proof. Recall ߮ூ(ݔ) = ߮భ ∘ ߮మ ∘· · · ∘ ߮
(ݔ)Thus ߮ூ .(ݔ) = ܴூ(ݔ + ݀ூ) where ܴூ =

ܴభܴమ · · ·  ܴ , ݀ூ = ݀ + ܴ
ିଵ݀షభ + · · ·  +ܴ

ିଵܴషభ
ିଵ · · · ܴమ

ିଵ݀భ and ߮ூ
ିଵ(ݔ) =

ܴூ
ିଵݔ − ݀ூ . Choose ݂(ݔ) = ݁௬(ݔ) = ݁ିଶగ〈௬,௫〉 for ݕ ∈ ℝௗ . Then 

〈݁௬ , ఒ݁〉ఓ∘ఝ
షభ = න ݁ଶగ〈ఒି௬,௫〉݀ߤ ∘ ߮ூ

ିଵ(ݔ)
 

்

 

              = න ݁ଶగ〈ఒି௬,ఝ(௫)〉 ߤ݀ 
 

்

 

                                            = ݁ଶగ〈ఒି௬,ோௗ〉 න ݁ଶగ〈ோ
(ఒି௬),௫〉݀(ݔ)ߤ

 

் 

 

                          = ݁ଶగ〈ఒି௬,ோௗ〉̂ߤ൫ܴூ
ݕ)் −  ൯(ߣ

and ฮ݁௬ฮ
ఓ∘ఝ

షభ
ଶ = 1. Hence, the assertion follows by Theorem (6.3.9)(ii).  

Corollary (6.3.11)[415]: With the same hypotheses given in Theorem (6.3.9) and 
Corollary (6.3.10) respectively, and replacing the frame spectrum ߉ with a Bessel set ߉, 
then the same results hold for the Bessel set. 
Proof. The proof is similar to Theorem (6.3.9) and Corollary (6.3.10). 

Let ߉ be a countable set in ℝௗ . The upper ݎ − density of ߉ is defined by 

ܦ
ା(߉) = lim

→ஶ
sup

#൫߉ ∩ ,0)ܤ  ℎ)൯
ℎ  

and the Beurling upper ݎ − density of ߉ is defined by 

ܤ
ା(߉) = lim

→ஶ
sup sup

௫∈ℝ

#൫߉ ∩ ,ݔ)ܤ  ℎ)൯
ℎ . 

Similarly, we can define the (resp. Beurling) lower ݎ − density of ߉ denote it by ܦ
 (߉)ି

(resp. ܤ
 .((߉)ି

It is easy to prove the following result on the right hand. Then we define the 
Beurling dimension of ߉ by 

dim ߉ = inf{ݎ: ܤ
ା(߉) = 0} = sup{ݎ: ܤ

ା(߉) = ∞}. 
Clearly dim ߉ܽ = dim  for any nonzero real number ܽ, which will be used of this ߉
paper. 
Remark (6.3.12)[415]: From the ݎ − density of ߉ ⊂ ℝௗ, we can define similarly the 
Banach dimension of ߉ by 

dim ߉ = inf{ݎ: ܦ
ା(߉) = 0} = sup{ݎ: ܦ

ା(߉) = ∞}, 
which has been used extensively, e.g. see [417, 423, 425]. Clearly, ܦ

ା(߉) ≤ ܤ
ା(߉). We 

remark that all the results on the Beurling dimension are true if we replace it by the 
Banach dimension except Theorem (6.3.16). However, for all examples of frame 
spectrum that we know, the conclusion of Theorem (6.3.16) is also true if we use the 
Banach dimension. 
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Theorem (6.3.13)[415]: Let Φ = {߮(ݔ) = ݔ)ܳߩ + ݀)}ୀଵ
ே  be a self-similar IFS 

satisfying the OSC. Let ߤ =  ః, be the self-similar measure with respect to the IFS andߤ
a positive probability weight ܲ = ୀଵ{}

ே . Suppose that ߉ is a Bessel set for ߤ. Then 
(i) dim ߉ ≤ dimு ܶ, where ܶ is the self-similar set; 
(ii) if there exists a Bessel set ߉ such that dim ߉ = dimு ܶ =  then all ,ݏ = ߩ

௦ , 
where ݏ is the self-similar dimension. 

Proof. It is known that dimு ܶ =  by Schief [437]. We first prove (i). And (ii) follows ݏ
easily. 

Since ̂(0)ߤ = 1, there exist ߜ > 0 such that 

ଶ|(ߦ)ߤ̂| ≥
1
2 ,          for |ߦ| ≤  .ߜ

Let  be an integer such that ߩ୫ୟ୶
 ≔ max

ଵஸஸே
ߩ

 ≤  Suppose that there exists ݅ such that .ߜ 
 ≠ ߩ

௦ . Then there exists ݇ such that  > ߩ
௦  by ∑ 

ே
ୀଵ = ∑ ߩ

௦ே
ୀଵ = 1. Choose ߝ > 0 

satisfying  ≥ ߩݎ
௦ . Let ℎ > 1 be arbitral, then there exists a natural number ݊  satisfying 

that ߩ
ିାଵ ≤ ℎ < ߩ

ି. For any ߣ ∈ ߉ ∩ ,ݔ)ܤ ℎ), we have ߣ − ݔ ∈ ,0)ܤ ℎ) and thus 
ܳߩ)

்)ା(ߣ − (ݔ ∈ ,൫0ܤ ߩ
ାℎ൯ ⊂ ,0)ܤ  .(ߜ

Consequently, 
#൫߉ ∩ ,ݔ)ܤ ℎ)൯

2 ≤  ቚ̂ߤ ቀ(ߩܳ
்)ା(ߣ − ቁቚ(ݔ

ଶ

ఒ∈௸∩(௫,)

            

≤  ቚ̂ߤ ቀ(ߩܳ
்)ା(ߣ − ቁቚ(ݔ

ଶ

ఒ∈௸

 ൫by Corollary (6.3.10)൯  

    ≤ ܤ
ି(ା) ≤ ܤ

ିିݎߩ
ି௦ . 

Hence, we obtain that 


#൫߉ ∩ ,ݔ)ܤ ℎ)൯

ℎ௦ା୪୬ / ୪୬ ఘೖ
≤ ܤ2 

ି ߩିݎ
ି௦

ℎ௦ା୪୬ / ୪୬ ఘೖ
≤ ܤ

ିߩ
ି௦ , 

where the second inequality follows from ℎ ≥ ߩ
ିାଵ and ݏ + ln ݎ / ln ߩ ≥ 0 (since 

 ≥ ߩݎ
௦). 

Therefore 
௦ା୪୬ܤ / ୪୬ ఘೖ

ା (߉) ≤ ܤ2 
ିߩ

ି௦    and  dim ߉ ≤ ݏ + ln ݎ / ln ߩ <  .ݏ
Clearly, when all  = ߩ

௦ , then dim ߉ ≤ ݎ by the same idea (choose ݏ = 0 in the 
previous proof) and (i) follows. Then (ii) follows easily by (i).  

We believe that the converse of Theorem (6.3.13)(ii) is not true in some cases. The 
Bernoulli convolutions would be counterexamples for some 0 < ߩ < 1. To prove 
Theorem (6.3.3), we need the following lemmas. The first one was proved in [423, 430]. 
It can be viewed as the stability of Bessel set under a constant perturbation of a Bessel 
set and has origin of Duffin and Schaeffer [422]. The following proof was given in [430]. 
Lemma (6.3.14)[415]: Let ߉ = ୀ{ߣ}

ஶ  be a Bessel set or sequence  of ߤ with compact 
support in [−ܲ, ܲ]ௗ and Bessel bound ܤ. If there exists ܮ such that |ߣ − |ߛ ≤  for ܮ
݊ ≥  0, then ߁ = ୀ{ߛ}

ஶ  is also a Bessel set or sequence   of ߤ with a Bessel bound 
ܣ) + ௗ(ଶగ)మାௗమ݁(ߝ . 
Proof. It is sufficient to show that all ߛ = ቀߛଵ

(), . . . , ௗߛ
()ቁ differs ߣ = ቀߣଵ

() , . . . , ௗߣ
()ቁ 

only on the first component, and the statement follows by induction on the number of 
components. 
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It is easy to see that 

ห〈݂(ݔ), ݁ିଶగఊ·௫〉ห
ଶ

ஶ

ୀ

= ห〈݂(ݔ), ݁ଶగ(ఊିఒ)·௫ , ݁ିଶగఒ·௫〉ห
ଶ

ஶ

ୀ

                           

                      =  ฬ〈݂(ݔ), ݁ଶగቀఊభ
()ିఒభ

()ቁ·௫ , ݁ିଶగఒ·௫〉ฬ
ଶஶ

ୀ

 

=  ተተ
൬2݅ߨ ቀߛଵ

() − ଵߣ
()ቁ൰



݇! 〈݂(ݔ)ݔଵ
 , ݁ିଶగఒ·௫〉

ஶ

ୀ

ተተ

ଶ
ஶ

ୀ

   

                          ≤  
ଶ(ܮߨ2)

݇!

ஶ

ୀ


ห〈݂(ݔ)ݔଵ

 , ݁ିଶగఒ·௫〉หଶ

݇!

ஶ

ୀ

ஶ

ୀ

 

≤ ݁(ଶగ)మ 
ଵݔ(ݔ)ฮ݂ܤ

ฮ
ଶ

݇!

ஶ

ୀ

         

≤                      ,మାమ‖݂‖ଶ(ଶగ)݁ܤ
where we have used Cauchy-Schwarz inequality at the fourth line above. Hence, the 
assertion follows.  

The following lemma was given in [423]. In order to be complete we give its proof 
here. 
Lemma (6.3.15)[415]: Let ߤ be a Bessel measure with a Bessel set , Bessel bound ܤ and 
support in [−ܲ, ܲ]ௗ. Then, for any ߝ ≥ 0, 

    max
‖௫‖ஸ(ଵାఌ)

ݔ)ߤ̂| + ଶ|(ߣ

ఒ∈௸

≤ ௗ൫ଶగ(ଵାఌ)൯మାௗమ݁ܤ                              (16) 

Proof. Since ̂(ߦ)ߤ is a continuous function in ℝௗ , then, for each ߣ ∈  ఒݎ there exists ,߉
such that 

max
‖௫‖ஸଵାఌ

ݔ)ߤ̂| + |(ߣ =  |(ఒݎ)ߤ̂|

and |ߣ − |ఒݎ ≤ ௸∋ఒ{ఒݎ} ,According to Lemma (6.3.14) .ݎ  is also a frame spectrum of ߤ. 
Then 

 max
‖௫‖ஸ(ଵାఌ)

ݔ)ߤ̂| + ଶ|(ߣ

ఒ∈௸

= |̂ߤ(ݎఒ)|ଶ

ఒ∈௸

 ≤ ௗ൫ଶగ(ଵାఌ)൯మାௗమ݁ܤ . 

Theorem (6.3.16)[415]: Let Φ = {߮(ݔ) = ݔ)ܣ + ݀)}ୀଵ
ே  be a self-similar IFS 

satisfying the OSC. Let ߤ =  , be the self-similar measure with respect to the IFS andߤ
a positive probability weight ܲ = ୀଵ{}

ே . Suppose that ߉ is a frame spectrum of ߤ. If 
there exist a constant ܮ  and ܫ ∈ ே߆

  such that 
sup
ఒ∈௸

inf
ఊ∈௸

ூܣ‖
ߣ் − ‖ߛ  ≤  .ܮ

Then dim ߉ = dimு ܶ = ூ if and only if ݏ = ூߩ
௦ , where ܶ is the self-similar set or 

sequence  , ݏ is the self-similar dimension and ߩ  is the ratio of ܣ for 1 ≤ ݅ ≤ ܰ. 
Proof. The necessity follows by Theorem (6.3.13)(ii). We need to prove the sufficiency. 
Let the lower and upper frame bounds of the frame ܧ௸ are ܣ, ܣ +  respectively. It is well ߝ
known that ߉ is relative uniformly discrete and thus there exists unique ߚ ∈  dependent ߉
of ߣ such that ‖ܣூ

ߣ் − ‖ߚ = inf
ఊ∈௸

ூܣ‖
ߣ் −  .‖ߛ

For any ߣ ∈ :߮ we define two mappings ,߉ ߉ → :߰ and ߉ ߉ → ,0)ܤ  by (ܮ
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ூܣ‖
ߣ் − ‖(ߣ)߮ = inf

ఊ∈௸
ூܣ‖

ߣ் − ‖ߛ , (ߣ)߰ = ூܣ
ߣ் −  .(ߣ)߮

Then 
ூܣ 

ߣ் = (ߣ)߮ +  (17)                                                         (ߣ)߰
Iterating (17) ݊ times, we have 

ூܣ
்ߣ = ߮()(ߣ) + ߰(ߣ),                                                   (18) 

Where ߰(ߣ) = ூܣ
ିଵ߰(ߣ) + ூܣ

ିଶ߰൫߮(ߣ)൯ + · · ·  + ߰ ቀ߮(ିଵ)(ߣ)ቁ. Then 

‖߰(ߣ)‖ ≤ ூܣ‖
ିଵ߰(ߣ)‖ + ฮܣூ

ିଶ߰൫߮(ߣ)൯ฮ + · · ·  + ቛ߰ ቀ߮(ିଵ)(ߣ)ቁቛ 

                               ≤  ூߩ
ିܮ

ିଵ

ୀ

≤
ܮ

1 − ூߩ
. 

If ߮()(ߣଵ) = ߮()(ߣଶ), by (18) one has ‖ߣଵ − ‖ଶߣ ≤ ∑ ଶೝ

ଵିఘ
ூߩ

ି. Then 

ߣ)# ∈ (ߣ)()߮ :߉ = ߮()(ߣଵ), ଵߣ ∈ ߉ ≤ # ൭߉ ∩ ܤ ൬ߣଵ,
ܮ2

1 − ூߩ
ூߩ

ି൰൱ 

       ≤ sup
௫∈ℝ

# ൭߉ ∩ ܤ ൬ߣଵ,
ܮ2

1 − ூߩ
ூߩ

ି൰൱. 

For any ݊ ∈ ℤ, by Corollary (6.3.10), (18) and Lemma (6.3.15), we have 
ூܣ

ି ≤ |̂ܣ)ߤூ
்ߣ)|ଶ

ఒ∈௸

                                            

     =   ห̂ߤ൫ߣᇱ + ߰(ߣ)൯หଶ

ఝ()(ఒ)ୀఒᇲ ,ఒ∈௸ఒᇲ∈௸

 

     ≤   max
‖௫‖ஸ 

ଵିఘ

ݔ)ߤ̂| + ᇱ)|ଶߣ

ఝ()(ఒ)ୀఒᇲఒᇲ∈௸

 

≤ sup
௫∈ℝ

# ൭߉ ∩ ܤ ൬ݔ,
ܮ2

1 − ூߩ
ூߩ

ି൰൱  max
‖௫‖ஸ 

ଵିఘ

ݔ)ߤ̂| + ᇱ)|ଶߣ

ఒᇲ∈௸

   

                             ≤ ቀଶగ݁ܤ 
ଵିఘ

ቁ
మశುమ

sup
௫∈ℝ

# ൭߉ ∩ ܤ ൬ݔ,
ܮ2

1 − ூߩ
ூߩ

ି൰൱ 

As ூ = ூߩ
௦ , one has 

௦ܤ
ା(߉) = lim

→ஶ
sup
௫∈ℝ

#൫߉ ∩ ,ݔ)ܤ ℎ)൯
ℎ௦ ≥  lim

→ஶ
sup

sup
௫∈ℝ

#൫߉ ∩ ,ݔ)ܤ ℎ)൯
ℎ௦

ቀߩூ
ି ܮ2

1 − ூߩ
ቁ

௦  

=
ܣ

ܾ݁ቀଶగ 
ଵିఘ

ቁ
మశುమ

ቀ ܮ2
1 − ூߩ

ቁ
௦
.                                             

then dim ߉ ≥ Hence dim .ݏ ߉ =  .by Theorem (6.3.13) ݏ
For ߤ be a Borel probability measure with compact support in ℝௗ. We say that ߉ ⊂

ℝௗ is a spectrum of ߤ if ܧ௸ = { ఒ݁}ఒ∈௸ is an orthonormal basis for ܮଶ(ߤ), and in this case 
,ߤ)  is called a spectral pair. Define (߉
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ܳఓ,௸(ߦ) = |ߦ)ߤ + ଶ|(ߣ

ఒ∈௸

, 

where 

(ߦ)ߤ̂ = න ݁ିଶగ〈క,௫〉݀(ݔ)ߤ 

is the Fourier transformation of the measure ߤ. It is well known that (ߤ,  is a spectral (߉
pair if and only if ܳఓ,௸(ߦ) ≡  1 in ℝௗ [432]. 

For ܾ be an integer with |ܾ|  ≥  2 and let ܦ ⊂ ℤ be a finite digit set with #ܦ ≥ 2. 
Then they naturally generate an IFS ௗ݂(ݔ) = ଵ


ݔ) + ݀), ݀ ∈  and the self-similar set or ,ܦ

sequence  ܶ(ܾ, ,ܾ)ܶ where ,(ܦ  can be expressed by (ܦ

ܶ(ܾ, (ܦ = ൝ ܾ݀ି
ஶ

ୀଵ

: all  ݀ ∈ ൡܦ : =  ܾିܦ
ஶ

ୀଵ

. 

Moreover, for any probability weight ܲ =  ௗ∈, they generate the self-similar{ௗ}
measure ߤ =  ,,, which is the unique probability measure with compact supportߤ 
ܶ(ܾ,  satisfying (ܦ

(ܧ)ߤ =  ߤௗ ቀ ௗ݂
ିଵ(ܧ)ቁ

ௗ∈

 

for any Borel set ܧ ⊂ ℝ. The advantage of the measure ߤ,, is that 

(ߦ),,ߤ̂ = ෑ ,ܯ ൬
ߦ

ܾ൰
ஶ

ୀଵ

, 

where ܯ,(ߦ) = ∑ ௗ݁ିଶగௗకೝௗ∈  is the mask of the digit set ܦ. Then it is easy to show 
that, for any 0 ≠ ܽ ∈ ℝ, (a). ൫ߤ,,, ,,ି,ߤ) ൯ is a spectral pair if and only if߉  is a (߉
spectral pair; And (b). (ߤ,°,, ,,ߤis a spectral pair if and only if ቀ (߉ , ଵ

°
 ቁ is a spectral߉

pair. 
The usual and natural conditions to guarantee that ߤ,, is a spectral measure are 

the following (not necessary): (a) The probability weight ܲ is equal probability weight 
by Laba and Wang conjecture [435]; And (b) The pair (ܾ,  is admissible, that is, there (ܦ

exists a finite set ܥ ⊂ ℤ with #ܥ = such that the matrix  ܦ# ଵ
√#

݁ଶగ
್ ൨

ௗ∈,∈
 is unitary 

(usually (ܾିଵܦ,  , beߤ is called a compatible pair). For the sake of brevity we denote (ܥ
the measure ߤ,, with equal weight probability. 

To prove Theorem (6.3.19), we need the following two lemmas. The first one was 
proved in [424, Theorem 2.4] and the second one was proved in [435, Theorem (6.3.2)]. 
Lemma (6.3.17)[415]: If (ܾ,  ,,, admits a frame spectral measureߤ is admissible and (ܦ
then all  must be equal. 
Lemma (6.3.18)[415]: Let (ܾିଵܦ, ܵ) be a compatible pair. Then the self-similar measure 
|ܾ| , is a spectral measure. If moreoverߤ > 2, gcd(ܦ − (ܦ = 1, 0 ∈ ܵ and ܵ ⊂
[2 − |ܾ|, |ܾ| − 2], then ߉(ܾ, ܵ) is a spectrum for ߤ,, where ߉(ܾ, ܵ) = ൛∑ ܾݏ


ୀ : ݊ ≥

1, ݏ ∈ ܵൟ: = ∑ ܾܵஶ
ୀ . 

Theorem (6.3.19)[415]: Let (ܾ, ܲ be admissible and let (ܦ =  ௗ∈ be a positive{ௗ}
probability weight. Then the self-similar measure ߤ =  ,, is a frame spectral measureߤ
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if and only if ܲ is an equal probability weight. In the frame spectral case, there exists a 
frame spectrum ߉ such that 

dim ߉ = dimு ܶ(ܾ, (ܦ = ݏ =
ln ܦ#
ln|ܾ| , 

where ܶ(ܾ,  .is the self-similar set or sequence   and s is the self-similar dimension (ܦ
Proof. By the hypotheses of Theorem (6.3.19) and according to Lemma (6.3.17) and 
Lemma (6.3.18), the first assertion follows. To show the second assertion, by Theorem 
(6.3.2), we need to find a frame spectrum ߉ such that dim ߉ ≥ dimு ܶ(ܾ,  .(ܦ

According to the basic facts given before Theorem (6.3.19), without loss of 
generality we assume that 0 ∈ ,ܦ gcd(ܦ − (ܦ = ᇱܦ Define .ݐ = ଵ

௧
 It is easy to check .ܦ

that (ܾିଵܦᇱ, ,ᇱܦis a compatible pair, and (ܾିଵ (ܵݐ ܵ∗) is also a compatible pair if ܵ∗ ≡
So we can choose ܵ∗ such that 0 .(ܾ mod) ܵݐ ∈ ܵ∗ and ܵ∗ ⊂ [2 − |ܾ|, |ܾ| − 2] and thus 
,ܾ)߉ ܵ∗) is a spectrum of ߤ,ᇲ  if |ܾ| > 2, which is equivalent to that ߉ ቀܾ, ଵ

௧
ܵ∗ቁ is a 

spectrum of ߤ,. 
Observe that dimு ܶ(ܾ, (ܦ = ݏ = ୪୬ #

୪୬||  given by Schief [437]. The proof is divided 
into two cases as follows. 

Case I: Suppose |ܾ| = 2. Then #ܦ = 2 by the admissible property of (ܾ,  and (ܦ
ܦ# ≥ 2. Notice that ߤଶ,{,ଵ} (resp. ିߤଶ,{,ଵ}) is the Lebesgue measure restriction on [0, 
1](resp. ቂ− ଶ

ଷ
, ଵ

ଷ
ቃ) and thus ൫ߤଶ,{,ଵ},ℤ൯ (resp. (ିߤଶ,{,ଵ},ℤ)) is a spectral pair. Then 

ቀߤ,{,ௗ},
ଵ
ௗ

ℤቁ is a spectral pair and dim
ଵ
ௗ

ℤ = 1 = dimு ܶ(ܾ,  .(ܦ

Case II: Suppose |ܾ| > 2. We need to show that dim ߉ ቀܾ, ଵ
௧

ܵ∗ቁ ≥ ୪୬ #
୪୬|| . By 

Theorem (6.3.16), it suffices to show that 
sup

ఒ∈௸ቀ,ଵ௧ௌ∗ቁ
inf

௦∈௸ቀ,ଵ௧ௌ∗ቁ
‖ܾିଵߣ − ‖ݏ < ∞                                     (5.1) 

Since ߉(ܾ, ܵ∗) = ܵ∗ +  ܾܵ∗ + · · · and 0 ∈ ܵ∗, then for any ߣ ∈ ߉ ቀܾ, ଵ
௧

ܵ∗ቁ we have ߣ =
ଵ
௧

ଵݏ) + ଶݏܾ + · · ·  + ܾݏାଵ) for some ݏ ∈ ܵ∗, 1 ≤ ݅ ≤ ݇ + 1. This implies that 

inf
௦∈௸ቀ,ଵ௧ௌ∗ቁ

‖ܾିଵߣ − ‖ݏ ≤ ฯܾିଵߣ −
1
ݐ

ଶݏ) + ଷݏܾ · · · +ܾିଵݏାଵ)ฯ ≤ ‖ܾିଵݏଵ‖ 

≤ |ܾ|ିଵ max
௦∈ௌ∗

|ݏ| ≤
|ܾ| − 2

|ܾ| .         

Hence (19) follows and we complete the proof.  

Example (6.3.20)[415]: Let ቄ߮(ݔ) = ଵ
ସ

ݔ) + ݅ − 1)ቅ
ୀଵ

ସ
 be an IFS generated by ܾ = 4 

and ܦ = {0, 1, 2, 3} and let ܲ = ቄ
ଶ

 , 
ଶ

, 
ଶ

, 
ଶ
ቅ be a probability weight ( + ݍ = 1, , ݍ >

0). Suppose ߤ =  ସ,{,ଵ,ଶ,ଷ}, is the self-similar measure with respect to the IFS and theߤ
probability weight. Then ߤ is a frame spectral measure if and only if  = ݍ = ଵ

ଶ
. 

Moreover, if  ≠  then ,ݍ
߉ =  {0, 2}  +  4{0, 2}  +  4ଶ{0, 2} + · · ·  (all finite sums) 

is a Bessel set or sequence  with dim ߉ = ଵ
ଶ

< dimு ܶ(4, {0, 1, 2, 3}) = 1 for ߤ. 
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Proof. Let ܾ = 4, ܦ = {0, 1, 2, 3}. It is easy to see that (ܾିଵܦ,  is a compatible pair (ܦ
and thus (ܾ,  is a frame spectral ߤ ,is admissible. According to Theorem (6.3.19) (ܦ
measure if and only if  = ݍ = ଵ

ଶ
. 

Moreover, if  ≠  notice that ,ݍ
ସషೖ{,ଵ,ଶ,ଷ},ߜ = ସషೖ{,ଶ},{,}ߜ ∗  ,ସషೖ{,ଵ}ߜ

where ߜସషೖ{,ଵ,ଶ,ଷ}, = 
ଶ

൫ߜ + ସషೖ൯ߜ + 
ଶ

൫ߜଶ·ସషೖ + ସషೖ{,ଶ},{,}ߜ ଷ·ସషೖ൯ andߜ = ߜ +
 ଶ·ସషೖ. Then one hasߜݍ

ߤ = ସషభ{,ଵ,ଶ,ଷ},ߜ ∗ ସషమ{,ଵ,ଶ,ଷ},ߜ ∗ · · · 
= ସ,{,ଶ},{,}ߤ  .ସ,{,ଵ}ߤ ∗

Since ߉ = {0, 2} + 4{0, 2} + · · · (all finite sum) is a spectrum for ߤସ,{,ଵ} [432], 
for any ݂ ∈  we have ,(ܴ)ܥ

ห〈݂, ఒ݁〉ఓหଶ

ఒ∈௸

=  ฬඵ〈݂(ݔ + ,(ݕ ݁ଶగఒ(௫ା௬)〉ௗఓర,{బ,మ},{,} ฬ(ݕ)ସ,{,ଵ}ߤ݀(ݔ)
ଶ

ఒ∈௸

 

                    =  ฬන〈݂(ݔ + ,(ݕ ݁ଶగఒ௫〉ఓర,{బ,మ},{,}݁
ଶగఒ௬݀ߤସ,{,ଵ}(ݕ)ฬ

ଶ

ఒ∈௸

 

  = න ቚ〈݂(ݔ + ,(ݕ ݁ଶగఒ௫〉ఓర,{బ,మ},{,}ቚ
ଶ

 (ݕ)ସ,{,ଵ}ߤ݀

≤ ඵ|݂(ݔ +   (ݕ)ସ,{,ଵ}ߤ݀(ݔ)ସ,{,ଶ},{,}ߤଶ݀|(ݕ

= ‖݂‖మ(ఓ),                                                               
where the third equality holds since ߉ is a spectrum for ߤସ,{,ଵ}. Hence, ߉ is a Bessel set 
or sequence  for ߤ. 

By Theorem (6.3.2), we have 

dim ߉ ≤ dimு ܶ(4, {0, 1}) =
1
2

. 

On the other hand, let ߉ = ∑ 4{0, 2}
ୀ . Then ߉ ⊆ ቂ0, ଶ

ଷ
(4ାଵ − 1)ቃ with #߉ =

2ାଵ. 
Thus, we have 

ଵܤ
ଶ

ା(߉) = lim
→ஶ

sup
௫∈ℝ

#൫߉ ∩ ,ݔ)ܤ ℎ)൯

ℎ
ଵ
ଶ

                        

≥ lim
→ஶ

߉# ∩ ቀ− 2
3 4ାଵ, 2

3 4ାଵቁ

ቀ2
3 4ାଵቁ

ଵ
ଶ

 

≥ lim
→ஶ

2ାଵ

ቀ2
3 4ାଵቁ

ଵ
ଶ

= ൬
3
2

൰
ଵ
ଶ

> 0.  

It follows that dim(߉) ≥ ଵ
ଶ
. Hence, dim(߉) = ଵ

ଶ
.  

Note that ܧ௸ is an orthogonal family of ߤ if and only if ̂ߣ)ߤ − (ᇱߣ = 0 for any ߣ ≠
ᇱߣ ∈  which is equivalent to that ,߉

߉) − {0} \ (߉ ⊂ :ߦ} (ߦ)ߤ̂ = 0}: =  (20)                                 .(ߤ̂)ܼ
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Example (6.3.21)[415]: Let ߤ = ܶ ସ,{,ଶ} be the Cantor measure onߤ = ܶ(4, {0, 2}) with 
equal weight. Let ,  be two different positive numbers satisfying ݍ + ݍ = 1 with  ≠
(ܧ)ߥ Suppose that .ݍ = (ܧ)ߤ + ܧ)ߤݍ  − 2) for any Borel set ܧ ⊂ ℝ, then ߥ is a non-
spectral frame measure. 
Proof. It is easy to see that ߥ = ߤ ∗ ߟ where ߟ = ߜ +  is a spectral ߥ ଶ. Supposeߜݍ
measure with a spectrum ߉. Since ܧ௸ is an orthogonal family in ܮଶ(ߥ), by (20), one has 
߉) − {0} \(߉ ⊂ (ߥ̂)ܼ Note that .(ߥ̂)ܼ  = (ߤ̂)ܼ ∪  By a simple calculation, we know .(ߟ̂)ܼ
(ߟ̂)ܼ = ∅. Then (߉ − {0}\(߉ ⊂  is an orthogonal ௸ܧ By (20) again, one sees that .(ߤ̂)ܼ
family in ܮଶ(ߤ). By Lemma 2.2 in [420], ߉ must be not a spectrum of ߥ. This is a 
contradiction. Then ߥ is non-spectra. And by Theorem (6.3.19) in [430], one has ߥ is a 
frame measure. 
Corollary (6.3.22)[439]: Let {߮(ݔ)}ୀଵ

ே  be an IFS on ℝௗ  satisfying the OSC by a 
bounded open set  or sequence  ܸ . Let ߤ be the invariant measure with respect to the IFS 
and a probability weight ܲ . Then the IFS satisfies the SOSC with the open set or sequence 
  ܸ  if and only if ߤ(߲ ܸ) = 0. 
Proof. Observe that the attractor ܶ of the IFS satisfies that ܶ ⊂ തܸ . Then ∑ )ߤ ܸ) =
∑ )ߤ ܸഥ ) = 1 by ∑ ߲)ߤ ܸ) =  0 and the sufficiency follows. Conversely, let ݔ ∈  ܶ  ∩  ܸ  
by the SOSC. Then there exists ߜ > 0 such that the open ball ݔ)ܤ, (ߜ ⊂  ܸ . By the 
contraction of functions in the IFS, there exist an integer ݉ ≥ 1 and ܫ ∈ ே߆

 such that 
∑ ߮ூ( ܶ) ⊂ ,ݔ)ܤ (ߜ ⊂ ∑ ܸ . Iterating (10) ݉ −times, we obtain that 

(·)ߤ =  ூܲߤ൫߮ூ
ିଵ(·)൯

ூ∈௵ಿ


 

and {߮ூ(ݔ)}ூ∈௵ಿ
  is also an IFS satisfying the SOSC with the same open set or sequence 

ܸ . Therefore, for the simpler notations we can assume that ∑ ߮ଵ( ܶ) ⊂ ∑ ܸ  without loss 
of generality. 

We notice that, for ݊ ≥ 1 and ܫ = ݅ଵ݅ଶ · · · ݅ ∈ {1, 2, . . . , ܰ}\{2, 3, . . . , ܰ}: =
ே߆

\߆ଶ,ே
 , there exists ݇, 1 ≤  ݇ ≤  ݊, such that ݅ = 1. Then 

 ߮ூ( ܶ) ⊂  ߮భమ···ೖ ( ܶ)  ⊂  ߮భమ···ೖషభ
( ܸ) ⊂  ܸ . 

Hence, by (12) we have 
1 ≥  )ߤ ܸ) =   ூܲߤ൫߮ூ

ିଵ( ܸ)൯
ூ∈௵ಿ



≥   ூܲߤ൫߮ூ
ିଵ( ܸ)൯

ூ∈௵ಿ
 \௵మ,ಿ



 

                ≥   ூܲߤ ቀ߮ூ
ିଵ൫߮ூ( ܶ)൯ቁ

ூ∈௵ಿ
 \௵మ,ಿ



=  ூܲ
ூ∈௵ಿ

 \௵మ,ಿ


 

=  ூܲ
ூ∈௵ಿ



−  ூܲ
ூ∈௵మ,ಿ



                                      

=  1 − ൭ 

ே

ୀଶ

൱



.                                          

Consequently, ∑ )ߤ ܸ) = 1 and ∑ ߲)ߤ ܸ)  =  ∑ )ߤ ܸഥ ) −  ∑ )ߤ ܸ)  =  0.  
Corollary (6.3.23)[439]: Let {߮(ݔ)}ୀଵ

ே  be an open mapping IFS satisfying the OSC 
with a bounded open set or sequence   ܸ. Let ߤ be the invariant measure with respect to 
the IFS and a probability weight ܲ. If ∑ ߲)ߤ ܸ) = 0, then the ߤ satisfies the no-overlap 
condition. 



259 

Proof. By the OSC, one sees that ∑ ߮( ܸ) ∩ ∑ ߮( ܸ) = ∅ for any ݅ ≠ ݆. Since all ߮  are 
open mappings, then ∑ ߮( ܸ) is an open set for each ݅, and we have 

 ߮( ܸ) ∩  ߮( ܸഥ ) =  ߮( ܸ) ∩  ߮( ܸ) = ∅. 
Then 

 ܸ ∩ ߮
ିଵ ቀ ߮(߲ ܸ)ቁ ⊂ ߮

ିଵ  ቀ߮( ܸ) ∩ ߮(߲ ܸ)ቁ ⊂  ߮
ିଵ ቀ߮( ܸ) ∩ ߮( ܸ)ቁ

= ∅. 
Consequently, 

 ܸ ∩ ߮
ିଵ ቀ ߮(߲ ܸ)ቁ ⊂  ߲ ܸ  

and by the fact the attractor ܶ ⊂ ܸ  one has 
 ߮)ߤ

ିଵ ቀ ߮(߲ ܸ)ቁ = 0. 
Using (13) again, we have 

  ߮ ( ܶ) ∩ ߮( ܶ) ⊂  ߮൫ ܸ൯ ∩ ߮൫ܸ൯ ⊂  ߮(߲ ܸ) ∩ ߮(߲ ܸ) 
for ݅ ≠ ݆. Then, by (14) and (15), 

 ߤ ቀ߮( ܶ) ∩ ߮( ܶ)ቁ ≤  ߤ ቀ߮(߲ ܸ) ∩ ߮(߲ ܸ)ቁ 

                                               =   ߤ௦ (߮௦
ିଵ ቀ߮(߲ ܸ) ∩ ߮(߲ ܸ)ቁ

ே

௦ୀଵ

≤  0.  

Hence the ߤ satisfies the no-overlap condition.  
Corollary (6.3.24)[439]: Let {߮(ݔ)}ୀଵ

ே  be an IFS on ℝௗ . Let ߤ be the invariant measure 
with respect to the IFS and a probability weight ܲ. Then ߤ satisfies the no-overlap 

condition if and only if ∑ ߤ ൬߮
ିଵ ቀ߮( ܶ)ቁ൰ = 0 for any ݅ ≠ ݆. 

Proof. Suppose that ∑ ߤ ൬߮
ିଵ ቀ߮( ܶ)ቁ൰ = 0 for any ݅ ≠ ݆. Then 

 ߤ ቀ߮( ܶ) ∩ ߮( ܶ)ቁ =   ߤ ൬߮
ିଵ ቀ߮( ܶ) ∩ ߮( ܶ)ቁ൰

ே

ୀଵ

 

≤    ߤ ቀ߮
ିଵ൫߮( ܶ)൯ቁ +  ߤ ቀ ܶ ∩ ߮

ିଵ൫߮( ܶ)൯ቁ
ଵஸஸே,ஷ,

 

+  ߤ ൬ ܶ ∩ ߮
ିଵ ቀ߮( ܶ)ቁ൰ =  0. 

That is, μ satisfies the no-overlap condition. Conversely, suppose that ∑ ߤ ቀ߮( ܶ) ∩

߮( ܶ)ቁ = 0 for any ݅ ≠ ݆. Then 

0 =  ߤ ቀ߮( ܶ) ∩ ߮( ܶ)ቁ =   ߤ ൬߮
ିଵ ቀ߮( ܶ) ∩ ߮( ܶ)ቁ൰

ே

ୀଵ

. 

In particular, we have 

0 =  ߤ ൬߮
ିଵ ቀ߮( ܶ) ∩ ߮( ܶ)ቁ൰ =  ߤ ൬ ܶ ∩ ߮

ିଵ ቀ߮( ܶ)ቁ൰ 

                          =  ߤ ൬߮
ିଵ ቀ߮( ܶ)ቁ൰. 

Hence, we complete the proof.  
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Corollary (6.3.25)[439]: Let {߮(ݔ)}ୀଵ
ே  be an open and bijective mapping IFS in ℝௗ 

satisfying the SOSC and let ܶ   be its attractor. Let ߤ be the invariant measure with respect 
to the IFS and a probability weight ܲ = ୀଵ{}

ே . Then 
(i) ∑ ))ߤ ܶ)ூ) = ூܲ for ܫ ∈ ே߆

∗ ; 
(ii) Let ݂ ∈ )ଵܮ ܶ, ܫ and (ߤ ∈ ே߆

∗ . Then 

න  ݂ ∘ ߮ூ
ିଵ(ݔ)݀ߤ

 

( ೝ்)

= ூܲ න  ݂ ߤ݀ 
 

ೝ்

; 

(iii) Let ݂ ∈ )ଵܮ ܶ, ܫ and (ߤ ∈ ே߆
∗ . Then 

න  ݂ ∘ ߮ூ(ݔ)݀ߤ
 

ೝ்

= ூܲ
ିଵ න  ݂ ߤ݀ 

 

( ೝ்)

. 

Proof. (i) For ܫ = ݅ଵ݅ଶ · · ·  ݅ ∈ ே߆
  and ݊ ≥ 1, we have 

 ൫ߤ ܶ  ൯ூ
=   ߤ ቀ߮

ିଵ൫ ܶ  ൯ூ
ቁ

ே

ୀଵ

=  ߤ ൬߮
ିଵ ቀ߮భ ∘ ߮మ ∘· · · ∘ ߮

( ܶ)ቁ൰. 

Note that ∑ ߮
ିଵ ቀ߮భ ∘ ߮మ ∘· · · ∘ ߮

( ܶ)ቁ ⊂ ∑ ߮
ିଵ ∘ ߮భ

( ܶ). By Theorem (6.3.4) and 
by induction, we have 

 ൫ߤ ܶ ൯ூ
=  భ ߤ ቀ߮మ ∘· · · ∘ ߮

( ܶ)ቁ =  భ మ · · · )ߤ ܶ) = ூܲ. 
(ii) By (10) we have 

න  ݂ ∘ ߮ூ
ିଵ ߤ݀(ݔ)

 

( ೝ்)

=  

ே

ୀଵ

න  ߯൫ ೝ்  ൯ூ
൫߮(ݔ)൯ ݂ ∘ ߮

ିଵ ∘ ߮షభ
ିଵ ∘· · · 

∘ ߮మ
ିଵ ቀ߮భ

ିଵ ∘ ߮(ݔ)ቁ  ,ߤ݀
where ߯ா(ݔ) is the characteristic function of ܧ ⊂ ℝௗ . Note that ߯ ൫ ೝ் ൯

൫߮(ݔ)൯ = 1 if and 

only if ݔ ∈ ߮
ିଵ ∘ ൫߮భ ∘ ߮మ ∘· · ·  ߮ ൯( ܶ). Then, by Theorem (6.3.4) again, 

න  ݂ ∘ ߮ூ
ିଵ(ݔ)݀ߤ

 

( ೝ்)

= భ න  ߯ఝభ
షభ( ೝ்)

(ݔ) ݂ ∘ ߮
ିଵ ∘ ߮షభ

ିଵ ∘· · · ∘ ߮మ
ିଵ(ݔ)݀ߤ 

= మభ · · ·   න  ߯ఝ
షభ∘ఝషభ

షభ ∘···∘ఝభ
షభ( ೝ்)

            ߤ݀(ݔ)݂ (ݔ)

=  ூܲ න  ݂ ߤ݀(ݔ)
 

ೝ்

.                         

(iii) Firstly, 

ூܲ
ିଵ න  ݂(ݔ) (ݔ)ߤ݀

 

( ೝ்)

= ூܲ
ିଵ න  ݂ ∘ ߮ூ ∘ ߮ூ

ିଵ(ݔ)݀(ݔ)ߤ
 

( ೝ்)

. 

Secondly, by (ii), we get 

ூܲ
ିଵ න  ݂ ∘ ߮ூ ∘ ߮ூ

ିଵ(ݔ)݀(ݔ)ߤ
 

( ೝ்)

= න  ݂ ∘ ߮ூ(ݔ)݀(ݔ)ߤ
 

( ೝ்)

. 
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Hence, the assertion (iii) follows. 
Corollary (6.3.26)[439]: Let {߮(ݔ)}ୀଵ

ே  be an open and bijective mapping IFS satisfying 
the SOSC and let ܶ  be its attractor. Let ߤ be the invariant measure with respect to the 
IFS and a positive probability weight ܲ = ୀଵ{}

ே . Suppose that the (ܧ)௸ೝ  is a Fourier 
frame with lower and upper bounds ܣ and ܣ + ߝ)ߝ ≥  Then .(

(i) For ܫ ∈ ே߆
 , ݊ ≥ 1, ߤ ∘ ߮ூ is a Fourier frame spectral measure with lower and upper 

bounds ܣ ூܲ and (ܣ + (ߝ ூܲ respectively, i.e., 

ܣ ூܲ ቛ ݂ቛ
ఓ∘ఝ

ଶ
≤  ห〈 ݂ , ఒ݁〉ఓ∘ఝห

ଶ

ఒ∈௸ೝ

 

(ii) For ܫ ∈ ே߆
 , ݊ ≥ 1, ߤ ∘ ߮ூ is a Fourier frame spectral measure with lower and 

upper bounds ூܲ
ିଵܣ and ூܲ

ିଵ(ܣ +  ,.respectively, i.e (ߝ

ܣ ூܲ
ିଵ ቛ ݂ቛ

ఓ∘ఝ
షభ

ଶ
≤  ቚ〈 ݂, ఒ݁〉ఓ∘ఝ

షభቚ
ଶ

ఒ∈௸ೝ

                        

≤ ܣ) + (ߝ ூܲ
ିଵ ቛ ݂ቛ

ఓ∘ఝ
షభ

ଶ
, ∀ ݂ ∈ )ܮ ܶ , ߤ ∘ ߮ூ

ିଵ); 

where ∑( ܶ)ூ = ∑ ߮ூ( ܶ). 
Proof. Observe that 

〈 ݂ , ఒ݁〉ఓ∘ఝ = න  ݂(ݔ) ݁ଶగ〈ఒ,௫〉݀ߤ ∘ ߮ூ(ݔ)
 

ೝ்

                     

                              = න  ݂ ൫߮ூ
ିଵ(ݔ)൯݁ଶగ〈ఒ,ఝ

షభ(௫)〉݀(ݔ)ߤ
 

( ೝ்)

        

= ூܲ න  ݂(ݔ) ݁ଶగ〈ఒ,௫〉݀(ݔ)ߤ
 

ೝ்

 (by Theorem (6.3.8)(ii)) 

= ூܲ ቀ〈 ݂ , ఒ݁〉௨ቁ
 
                  

and by similar calculations, 

ቛ ݂ቛ
ఓ∘ఝ

ଶ
= ூܲ ቛ ݂ቛ

ఓ

ଶ
. 

Then (i) follows. To prove (ii), similarly, we have ∑〈 ݂ , ఒ݁〉ఓ∘ఝ
షభ = ∑ ூܲ

ିଵ〈߯( ೝ்) ݂ , ఒ݁〉ఓ 

and ฮ∑ ݂ฮ
ఓ∘ఝ

షభ
ଶ = ூܲ

ିଵ ∑ฮ߯( ೝ்) ݂ฮ
ఓ
ଶ . Then (ii) follows.  

Corollary (6.3.27)[439]: With the same hypotheses given in Theorem (6.3.9) and in 
addition, we assume that ߮(ݔ) = ܴ(ݔ + ݀) is a contracting affine mapping for 1 ≤
 ݅ ≤  ܰ. Then 

ܣ ூܲ
ିଵ ≤   ቚߤ ቀܴூ

ೝ்(ߣ − ቁቚ(ݔ
ଶ

ఒ∈௸ೝ

≤ ܣ) + (ߝ ூܲ
ିଵ, for ܫ ∈ ே߆

∗  and ݔ ∈ ℝௗ . 

Proof. Recall ߮ூ(ݔ) = ߮భ ∘ ߮మ ∘· · · ∘ ߮
(ݔ)Thus ߮ூ .(ݔ) = ܴூ(ݔ + ݀ூ) where ܴூ =

ܴభܴమ · · ·  ܴ , ݀ூ = ݀ + ܴ
ିଵ݀షభ + · · ·  +ܴ

ିଵܴషభ
ିଵ · · · ܴమ

ିଵ݀భ and ߮ூ
ିଵ(ݔ) =

ܴூ
ିଵݔ − ݀ூ . Choose ݂(ݔ) = ݁௬(ݔ) = ݁ିଶగ〈௬,௫〉 for ݕ ∈ ℝௗ . Then 



262 

〈݁௬, ఒ݁〉ఓ∘ఝ
షభ = න  ݁ଶగ〈ఒି௬,௫〉 ߤ݀  ∘ ߮ூ

ିଵ(ݔ)
 

( ೝ்)

 

      = න  ݁ଶగ〈ఒି௬,ఝ(௫)〉 ߤ݀ 
 

ೝ்

 

                                     = ݁ଶగ〈ఒି௬,ோௗ〉 න  ݁ଶగ〈ோ
ೝ (ఒି௬),௫〉 (ݔ)ߤ݀

 

ೝ் 

 

                      = ݁ଶగ〈ఒି௬,ோௗ〉̂ߤ ቀ ቀܴூ
ೝ்(ݕ −  ቁቁ(ߣ

and ฮ݁௬ฮ
ఓ∘ఝ

షభ
ଶ

= 1. Hence, the assertion follows by Theorem (6.3.9)(ii). 

Corollary (6.3.28)[439]: Let Φ = {߮(ݔ) = ݔ)ܳߩ + ݀)}ୀଵ
ே  be a self-similar IFS 

satisfying the OSC. Let ߤ =  ః, be the self-similar measure with respect to the IFS andߤ
a positive probability weight ܲ = ୀଵ{}

ே . Suppose that ߉  is a Bessel set or sequence 
 for ߤ. Then 

(iii) dim(∑ (߉  ≤ dimு(∑ ܶ), where ܶ is the self-similar set or sequence; 
(iv) if there exists a Bessel set or sequence ߉ such that dim(∑ (߉ = dimு(∑ ܶ) =

 then all ,ݏ = ߩ
௦ , where ݏ is the self-similar dimension. 

Proof. It is known that dimு(∑ ܶ) =  by Schief [437]. We first prove (i). And (ii) ݏ
follows easily. 

Since ̂(0)ߤ = 1, there exist ߜ > 0 such that 

|̂ߤ(ߦ)|ଶ ≥
1
2

, for |ߦ|  ≤  .ߜ 

Let  be an integer such that ߩ୫ୟ୶
 : = max

ଵஸஸே
ߩ

 ≤  Suppose that there exists ݅ such that .ߜ 
 ≠ ߩ

௦ . Then there exists ݇ such that  > ߩ
௦  by ∑ 

ே
ୀଵ = ∑ ߩ

௦ே
ୀଵ = 1. Choose ߝ > 0 

satisfying  ≥ (1 + ߩ(ߝ
௦ . Let ℎ > 1 be arbitral, then there exists a natural number ݊ 

satisfying that ߩ
ିାଵ ≤ ℎ < ߩ

ି. For any ߣ ∈ ߉ ∩ ,ݔ)ܤ  ℎ), we have ߣ − ∋ ݔ ,0)ܤ  ℎ) 
and thus 

൫ߩܳ
ೝ்൯

ା
ߣ) − (ݔ ∈ ,൫0ܤ ߩ

ାℎ൯ ⊂ ,0)ܤ  .(ߜ
Consequently, 


#൫߉ ∩ ,ݔ)ܤ ℎ)൯

2
≤   ቚ̂ߤ ൬൫ߩܳ

ೝ்൯
ା

ߣ) − ൰ቚ(ݔ
ଶ

ఒ∈௸ೝ∩(௫,)

                            

≤   ቚ̂ߤ ൬൫ߩܳ
ೝ்൯

ା
ߣ) − ൰ቚ(ݔ

ଶ

ఒ∈௸ೝ

 (by Corollary (6.3.10)) 

  ≤ ܤ
ି(ା) ≤ ܤ

ି(1 + ߩି(ߝ
ି௦ .     

Hence, we obtain that 


#൫߉ ∩ ,ݔ)ܤ ℎ)൯
ℎ௦ା୪୬(ଵାఌ)/ ୪୬ ఘೖ

≤ ܤ2 
ି (1 + ߩି(ߝ

ି௦

ℎ௦ା୪୬(ଵାఌ)/ ୪୬ ఘೖ
≤ ܤ

ିߩ
ି௦ , 

where the second inequality follows from ℎ ≥ ߩ
ିାଵ and ݏ + ln(1 + (ߝ / ln ߩ ≥ 0 

(since  ≥ (1 + ߩ(ߝ
௦). 

Therefore 
/௦ା୪୬(ଵାఌ)ܤ ୪୬ ఘೖ

ା (߉) ≤ ܤ2 
ିߩ

ି௦ and dim  ߉ ≤ ݏ + ln(1 + (ߝ / ln ߩ <  .ݏ
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Clearly, when all  = ߩ
௦, then dim(∑ (߉ ≤ ߝ by the same idea (choose ݏ = 0 in the 

previous proof) and (i) follows. Then (ii) follows easily by (i).  
Corollary (6.3.29)[439]: Let ߉ = ୀ{ߣ}

ஶ  be a Bessel set or sequence  of ߤ with 
compact support in [−ܲ, ܲ]ௗ  and Bessel bound (ܣ + ܮ If there exists .(ߝ  such that 
ߣ| − |ߛ ≤ ܮ   for ݊ ≥ 0, then ߁ = ୀ{ߛ}

ஶ  is also a Bessel set or sequence of ߤ with a 
Bessel bound (ܣ + ௗ(ଶగೝ)మାௗమ݁(ߝ . 
Proof. It is sufficient to show that all ߛ = ቀߛଵ

(), . . . , ௗߛ
()ቁ differs ߣ = ቀߣଵ

() , . . . , ௗߣ
()ቁ 

only on the first component, and the statement follows by induction on the number of 
components. 

It is easy to see that 

 ห〈 ݂(ݔ), ݁ିଶగఊ·௫〉ห
ଶஶ

ୀ

=  ห〈 ݂(ݔ), ݁ଶగ(ఊିఒ)·௫, ݁ିଶగఒ·௫〉ห
ଶஶ

ୀ

                     

                                    =   ฬ〈 ݂(ݔ), ݁ଶగቀఊభ
()ିఒభ

()ቁ·௫, ݁ିଶగఒ·௫〉ฬ
ଶஶ

ୀ

 

=  ተተ
൬2݅ߨ ቀߛଵ

() − ଵߣ
()ቁ൰



݇! 〈 ݂(ݔ)ݔଵ
 , ݁ିଶగఒ·௫〉

ஶ

ୀ

ተተ

ଶ
ஶ

ୀ

 

                                            ≤   
ଶ(ܮߨ2)

݇!

ஶ

ୀ


ห〈 ݂(ݔ)ݔଵ

 , ݁ିଶగఒ·௫〉ห
ଶ

݇!

ஶ

ୀ

ஶ

ୀ

 

                     ≤   ݁ (ଶగೝ)మ 
ܣ) + ฮ(ߝ ݂(ݔ)ݔଵ

ฮଶ

݇!

ஶ

ୀ

 

               ≤ ܣ) + (ߝ  ݁(ଶగೝ)మାమ ‖ ݂‖ଶ, 
where we have used Cauchy-Schwarz inequality at the fourth line above. Hence, the 
assertion follows. 
Corollary (6.3.30)[439]: Let ߤ be a Bessel measure with a Bessel set or sequence ߉ , 
Bessel bound ܣ + ,ܲ−] and support in ߝ ܲ]ௗ. Then, for any ߝ ≥ 0, 

 max
‖௫‖ஸ(ଵାఌ)

ݔ)ߤ̂| + ଶ|(ߣ

ఒ∈௸ೝ

≤ ܣ) +  ௗ൫ଶగ(ଵାఌ)൯మାௗమ݁(ߝ

Proof. Since ̂ߤ(ߦ) is a continuous function in ℝௗ, then, for each ߣ ∈  , there exists߉
(1 +  ఒ such that(ߝ

max
‖௫‖ஸଵାఌ

+ ݔ)ߤ̂| |(ߣ  = 1))ߤ̂| +  |(ఒ(ߝ

and |ߣ − (1 + |ఒ(ߝ ≤ (1 + According to Lemma (6.3.14), {(1 .(ߝ + ఒ}ఒ∈௸ೝ(ߝ  is also a 
frame spectrum of ߤ. Then 

 max
‖௫‖ஸ(ଵାఌ)

ݔ)ߤ̂| + ଶ|(ߣ

ఒ∈௸ೝ

=  1))ߤ̂| + ఒ)|ଶ(ߝ

ఒ∈௸ೝ

 ≤ ܣ) + ௗ൫ଶగ(ଵାఌ)൯మାௗమ݁(ߝ . 

Corollary (6.3.31)[439]: Let Φ = {߮(ݔ) = ݔ)ܣ + ݀)}ୀଵ
ே  be a self-similar IFS 

satisfying the OSC. Let ߤ =  , be the self-similar measure with respect to the IFS andߤ
a positive probability weight ܲ = ୀଵ{}

ே . Suppose that ߉ is a frame spectrum of ߤ. If 
there exist a constant ܮ  and ܫ ∈ ே߆

  such that 
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sup
ఒ∈௸ೝ

inf
ఊ∈௸ೝ

ฮܣூ
ೝ்ߣ − ฮߛ  ≤   ܮ . 

Then dim(∑ (߉ = dimு(∑ ܶ) = ூ if and only if ݏ = ூߩ
௦, where ܶ is the self-similar 

set or sequence, ݏ is the self-similar dimension and ߩ  is the ratio of ܣ for 1 ≤ ݅ ≤ ܰ. 
Proof. The necessity follows by Theorem (6.3.13) (ii). We need to prove the sufficiency. 
Let the lower and upper frame bounds of the frame ܧ௸ೝ  are ܣ, ܣ +  respectively. It is ߝ
well known that ߉ is relative uniformly discrete and thus there exists unique ߚ ∈  ߉
dependent of ߣ such that ∑ฮܣூ

ೝ்ߣ − ฮߚ = inf
ఊ∈௸ೝ

∑ฮܣூ
ೝ்ߣ −  .ฮߛ

For any ߣ ∈ ߉ , we define two mappings ߮: ߉ → ߉  and ߰: ߉ → ,0)ܤ  ) byܮ
ฮܣூ

ೝ்ߣ − ฮ(ߣ)߮ = inf
ఊ∈௸ೝ

ฮܣூ
ೝ்ߣ − ฮߛ , (ߣ)߰ =  ூܣ

ೝ் ߣ −  .(ߣ)߮

Then 
 ூܣ

ೝ் ߣ = (ߣ)߮ +  (ߣ)߰
Iterating (17) ݊ times, we have 

 ூܣ
 ೝ் ߣ = ߮()(ߣ) + ߰(ߣ), 

Where ߰(ߣ) = ூܣ
ିଵ߰(ߣ) + ூܣ

ିଶ߰൫߮(ߣ)൯ + · · ·  + ߰ ቀ߮(ିଵ)(ߣ)ቁ. Then 

‖߰(ߣ)‖ ≤ ூܣ‖
ିଵ߰(ߣ)‖ + ฮܣூ

ିଶ߰൫߮(ߣ)൯ฮ + · · · + ቛ߰ ቀ߮(ିଵ)(ߣ)ቁቛ 

≤   ூߩ
ି ܮ

ିଵ

ୀ

≤ 
ܮ

1 − ூߩ
.                                          

If ߮()(ߣଵ) = ߮()(ߣଶ), by (18) one has ‖ߣଵ − ‖ଶߣ ≤ ∑ ଶೝ

ଵିఘ
ூߩ

ି. Then 

ߣ)# ∈ ߉ : ߮()(ߣ) = ߮()(ߣଵ), ଵߣ ∈ ߉ ≤ #  ൭߉ ∩ ܤ ൬ߣଵ,
ܮ2

1 − ூߩ
ூߩ

ି൰൱ 

       ≤ sup
௫∈ℝ

 # ൭߉ ∩ ܤ ൬ߣଵ,
ܮ2

1 − ூߩ
ூߩ

ି൰൱.  

For any ݊ ∈ ℤ, by Corollary (6.3.10), (18) and Lemma (6.3.15), we have 
ூܣ

ି ≤  ห̂ߤ൫ܣூ
 ೝ்ߣ൯ห

ଶ

ఒ∈௸ೝ

                                                     

=   ห̂ߤ൫ߣᇱ + ߰(ߣ)൯ห
ଶ

ఝ()(ఒ)ୀఒᇲ ,ఒ∈௸ೝఒᇲ∈௸ೝ

            

≤   max
‖௫‖ஸ∑ ೝ

ଵିఘ

ݔ)ߤ̂| + ᇱ)|ଶߣ

ఝ()(ఒ)ୀఒᇲఒᇲ∈௸ೝ

             

≤ sup
௫∈ℝ

 # ൭߉ ∩ ܤ ൬ݔ,
ܮ2

1 − ூߩ
ூߩ

ି൰൱  max
‖௫‖ஸ∑ ೝ

ଵିఘ

ݔ)ߤ̂| + ᇱ)|ଶߣ

ఒᇲ∈௸ೝ

 

                           ≤ ܣ) + ቀଶగ݁(ߝ ೝ
ଵିఘ

ቁ
మశುమ

sup
௫∈ℝ

 # ൭߉ ∩ ܤ ൬ݔ,
ܮ2

1 − ூߩ
ூߩ

ି൰൱ 

As ூ = ூߩ
௦ , one has 
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 ௦ܤ
ା(߉) = lim

→ஶ
sup
௫∈ℝ


#൫߉ ∩ ,ݔ)ܤ ℎ)൯

ℎ௦  

                               ≥  lim
→ஶ

sup 
sup
௫∈ℝ

#൫߉ ∩ ,ݔ)ܤ ℎ)൯
ℎ௦

ቀߩூ
ି ܮ2

1 − ூߩ
ቁ

௦  

                                  = 
ܣ

ܣ) + ቀଶగ݁(ߝ ೝ
ଵିఘ

ቁ
మశುమ

ቀ ܮ2
1 − ூߩ

ቁ
௦
. 

then dim(∑ (߉ ≥ ∑)Hence dim .ݏ (߉ =  .by Theorem (6.3.13) ݏ
Corollary (6.3.32)[439]: Let (ܾ, ܲ be admissible and let (ܦ =  ௗ∈ be a positive{ௗ}
probability weight. Then the self-similar measure ߤ =  ,, is a frame spectral measureߤ
if and only if ܲ is an equal probability weight. In the frame spectral case, there exists a 
frame spectrum ߉ such that 

dim ቀ ቁ߉ = dimு( ܶ (ܾ, ((ܦ = ݏ =
ln ܦ#
ln|ܾ| , 

where ܶ(ܾ,  .is the self-similar set or sequence   and s is the self-similar dimension (ܦ
Proof. By the hypotheses of Theorem (6.3.19) and according to Lemma (6.3.17) and 
Lemma (6.3.18), the first assertion follows. To show the second assertion, by Theorem 
(6.3.2), we need to find a frame spectrum ߉  such that dim(∑ (߉  ≥
dimு(∑ ܶ (ܾ,  .((ܦ

According to the basic facts given before Theorem (6.3.19), without loss of 
generality we assume that 0 ∈ ,ܦ gcd(ܦ − (ܦ = ᇱܦ Define .ݐ = ଵ

௧
 It is easy to check .ܦ

that (ܾିଵܦᇱ, ,ᇱܦis a compatible pair, and (ܾିଵ (ܵݐ ܵ∗) is also a compatible pair if ܵ∗ ≡
So we can choose ܵ∗ such that 0 .(ܾ mod) ܵݐ ∈ ܵ∗ and ܵ∗ ⊂ [2 − |ܾ|, |ܾ| − 2] and thus 
,ܾ)߉ ܵ∗) is a spectrum of ߤ,ᇲ  if |ܾ| > 2, which is equivalent to that ߉ ቀܾ, ଵ

௧
ܵ∗ቁ is a 

spectrum of ߤ,. 
Observe that dimு(∑ ܶ (ܾ, ((ܦ = ݏ = ୪୬ #

୪୬||  given by Schief [437]. The proof is 
divided into two cases as follows. 
Case I: Suppose |ܾ| = 2. Then #ܦ = 2 by the admissible property of (ܾ, ܦ# and (ܦ ≥
2. Notice that ߤଶ,{,ଵ} (resp. ିߤଶ,{,ଵ}) is the Lebesgue measure restriction on [0, 1] (resp. 
ቂ− ଶ

ଷ
, ଵ

ଷ
ቃ) and thus ൫ߤଶ,{,ଵ},ℤ൯ (resp. (ିߤଶ,{,ଵ},ℤ)) is a spectral pair. Then ቀߤ,{,ௗ}, ଵ

ௗ
ℤቁ is 

a spectral pair and dim
ଵ
ௗ

ℤ = 1 = dimு൫∑ ܶ (ܾ,  .൯(ܦ

Case II: Suppose |ܾ| > 2. We need to show that dim ൬∑ ߉ ቀܾ, ଵ
௧

ܵ∗ቁ൰ ≥ ୪୬ #
୪୬|| . By 

Theorem (6.3.16), it suffices to show that 
sup

ఒ∈௸ೝቀ,ଵ௧ௌ∗ቁ
inf

௦∈௸ೝቀ,ଵ௧ௌ∗ቁ
‖ܾିଵߣ − ‖ݏ < ∞ 

Since ∑ ,ܾ)߉ ܵ∗) = ܵ∗ +  ܾܵ∗ + · · · and 0 ∈ ܵ∗, then for any ߣ ∈ ∑ ߉ ቀܾ, ଵ
௧

ܵ∗ቁ we have 

ߣ = ଵ
௧

ଵݏ) + ଶݏܾ + · · ·  + ܾݏାଵ) for some ݏ ∈ ܵ∗, 1 ≤ ݅ ≤ ݇ + 1. This implies that 
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inf
௦∈௸ೝቀ,ଵ௧ௌ∗ቁ

‖ܾିଵߣ − ‖ݏ ≤ ฯܾିଵߣ −
1
ݐ

ଶݏ) + ଷݏܾ · · · +ܾିଵݏାଵ)ฯ ≤ ‖ܾିଵݏଵ‖ 

≤ |ܾ|ିଵ max
௦∈ௌ∗

|ݏ| ≤
|ܾ| − 2

|ܾ| .  

Hence (19) follows and we complete the proof. 

Corollary (6.3.33)[439]: Let ቄ߮(ݔ) = ଵ
ସ

ݔ) + ݅ − 1)ቅ
ୀଵ

ସ
 be an IFS generated by ܾ = 4 

and ܦ = {0, 1, 2, 3} and let ܲ = ቄ
ଶ

 , 
ଶ

, 
ଶ

, 
ଶ

ቅ be a probability weight ( + = ݍ   1, , ݍ >
0). Suppose ߤ =  ସ,{,ଵ,ଶ,ଷ}, is the self-similar measure with respect to the IFS and theߤ
probability weight. Then ߤ is a frame spectral measure if and only if  = ݍ = ଵ

ଶ
. 

Moreover, if  ≠  then ,ݍ
߉  =  {0, 2}  +  4{0, 2}  +  4ଶ{0, 2} + · · ·  (all finite sums) 

is a Bessel set or sequence  with dim(∑ (߉ = ଵ
ଶ

< dimு൫∑ ܶ (4, {0, 1, 2, 3})൯ = 1 for 
 .ߤ
Proof. Let ܾ = 4, = ܦ  {0, 1, 2, 3}. It is easy to see that (ܾିଵܦ,  is a compatible pair (ܦ
and thus (ܾ,  is a frame spectral ߤ ,is admissible. According to Theorem (6.3.19) (ܦ
measure if and only if  = ݍ = ଵ

ଶ
. 

Moreover, if  ≠  notice that ,ݍ
ସషೖ{,ଵ,ଶ,ଷ},ߜ = ସషೖ{,ଶ},{,}ߜ ∗  ,ସషೖ{,ଵ}ߜ

where ߜସషೖ{,ଵ,ଶ,ଷ}, = 
ଶ

൫ߜ + ସషೖ൯ߜ + 
ଶ

൫ߜଶ·ସషೖ + ସషೖ{,ଶ},{,}ߜ ଷ·ସషೖ൯ andߜ = ߜ +
 ଶ·ସషೖ. Then one hasߜݍ

= ߤ ସషభ{,ଵ,ଶ,ଷ},ߜ ∗ ସషమ{,ଵ,ଶ,ଷ},ߜ ∗ · · · 
= ସ,{,ଶ},{,}ߤ                  .ସ,{,ଵ}ߤ ∗

Since ߉ = {0, 2} +  4{0, 2} + · · · (all finite sum) is a spectrum for ߤସ,{,ଵ} [432], for any 
݂ ∈  we have ,(ܴ)ܥ

 ห〈 ݂ , ఒ݁〉ఓหଶ

ఒ∈௸ೝ

=  ቤඵ 〈 ݂(ݔ + ,(ݕ ݁ଶగఒ(௫ା௬)〉
ௗఓర,{బ,మ},{,}

ቤ(ݕ)ସ,{,ଵ}ߤ݀(ݔ)
ଶ

ఒ∈௸ೝ

 

                              =  ฬන 〈 ݂(ݔ + ,(ݕ ݁ଶగఒ௫〉ఓర,{బ,మ},{,} ݁ଶగఒ௬݀ߤସ,{,ଵ}(ݕ)ฬ
ଶ

ఒ∈௸ೝ

 

            = න  ቚ〈 ݂(ݔ + ,(ݕ ݁ଶగఒ௫〉ఓర,{బ,మ},{,}ቚ
ଶ

 (ݕ)ସ,{,ଵ}ߤ݀ 

           ≤ ඵ | ݂(ݔ + |(ݕ 
ଶ

 (ݕ)ସ,{,ଵ}ߤ݀(ݔ)ସ,{,ଶ},{,}ߤ݀

= ‖ ݂‖మ(ఓ) ,                                                      
where the third equality holds since ߉ is a spectrum for ߤସ,{,ଵ}. Hence, ߉ is a Bessel 
set or sequence  for ߤ. 

By Theorem (6.3.2), we have 

dim  ߉ ≤ dimு ቀ ܶ(4, {0, 1})ቁ =
1
2. 



267 

On the other hand, let (߉) = ∑ 4{0, 2}
ୀ . Then (߉) ⊆ ቂ0, ଶ

ଷ
(4ାଵ − 1)ቃ with 

∑ (߉)# = 2ାଵ. 
Thus, we have 

 ଵܤ
ଶ

ା(߉) = lim
→ஶ

sup
௫∈ℝ


#൫߉  ∩ ,ݔ)ܤ ℎ)൯

ℎ
ଵ
ଶ

 

                               ≥ lim
→ஶ


߉# ∩ ቀ− 2

3 4ାଵ, 2
3 4ାଵቁ

ቀ2
3 4ାଵቁ

ଵ
ଶ

 

                   ≥ lim
→ஶ

2ାଵ

ቀ2
3 4ାଵቁ

ଵ
ଶ

= ൬
3
2

൰
ଵ
ଶ

> 0. 

It follows that dim(∑(߉)) ≥ ଵ
ଶ
. Hence, dim(∑(߉)) = ଵ

ଶ
. 

Corollary (6.3.34)[439]: Let ߤ = ସ,{,ଶ} be the Cantor measure on ܶߤ = ܶ(4, {0, 2}) 
with equal weight. 

Let ,  be two different positive numbers satisfying ݍ + ݍ = 1 with  ≠  .ݍ
Suppose that ∑ (ܧ)ߥ = ∑ (ܧ)ߤ + ∑ ܧ)ߤݍ − 2) for any Borel set ܧ ⊂ ℝ, then ߥ is a 
non-spectral frame measure. 
Proof. It is easy to see that ߥ = ߤ ∗ ߟ where ߟ = ߜ +  is a spectral ߥ ଶ. Supposeߜݍ
measure with a spectrum ߉. Since (ܧ)௸ೝ  is an orthogonal family in ܮଶ(ߥ), by (20), one 
has (߉  − )\ {0}߉  ⊂ (ߥ̂)ܼ Note that .(ߥ̂)ܼ  = (ߤ̂)ܼ ∪  ,By a simple calculation .(ߟ̂)ܼ
we know ܼ(̂ߟ) = ∅. Then (߉ − )\{0}߉ ⊂ ೝ௸(ܧ) By (20) again, one sees that .(ߤ̂)ܼ  is 
an orthogonal family in ܮଶ(ߤ). By Lemma 2.2 in [420], ߉ must be not a spectrum of ߥ. 
This is a contradiction. Then ߥ is non-spectra. And by Theorem 5.1 in [430], one has ߥ is 
a frame measure. 
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List of Symbols 
 

Symbol Page 

dim             : dimension 1 

min           : minimum 1 

IFS            : iterated function system  1 

max           : maximum 4 

a. e.             : almost everywhere 5 

⨂               : Tensor product 6 

supp            : support  7 

ଵܮ  : Lebesgue integral on the Real line 9 

a. s.             : almost sure 11 

SSC             : strong separation condition 21 

OSC             : open set condition 21 

Bin             : Binomial 42 

 ଶ : Hilbert Space  45ܮ

mod             : module 59 

gcd             : greatest common divisor 68 

⊕              : Orthogonal Sum 83 

ܮ  : Dual of Lebesgue Space 90 

det           : determinant 96 

ess : essential  112 

p. c. f : post-critically finite 119 

diam             : diameter  155 

spt             : spectrum  171 

proj            : projection 172 

DC            : dimension conserving 180 
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Re           : Real 183 

arg           : argument 184 

dist            : distance 184 

inf             : infimum   195 

sup            : Supremum 198 

ord            : order 234 

SOSC            : strong open set condition 253 
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