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Abstract 

 The Jenson operator inequality and for spectral order with 

submajorization, transformations on the set of all 𝑛-dimensional 

subspaces of a Hilbert space, orthogonality and in metric-projective 

geometry are discussed. The complete positivity of Rieffel deformation 

quantization by actions of the Euclidean space and nuclear Weyl 

algebra are presented. The Fuglede-Kadison and Hadamard 

determinants and inequalities with determinants of perturbed positive 

matrices and extensions in operators on Hilbert space are characterized. 

We show the isometries and the geometric version of Wigner theorem 

on Grassmann spaces and for Hilbert Grassmannians. We investigate 

𝐶∗-completion, the DFR-algebra and the convergent star products for 

the projective limits of Hilbert spaces. 

 

 

  



IV 

 الخلاصة
 

لرتبة الطيفية مع التخصص الجزئي اقمنا بمناقشة متباينة مؤثر جنسون و

لفضاء هلبرت والتعامدية  𝑛 –والتحويلات على فئة الفضاءات الجزئية ذات البعد 

بواسطة  ميم تشوه ريفلكة التامة لتيالمترية. تم تقديم الموجي –وفي هندسة الأسقاط 

 الأفعال للفضاء الأقليدي وجبر ويل النووي. تم تشخيص متباينات ومحددات فيقليد

ة الأرتجاج والتمديدات في بصفوفات الموجميسون وهادامارد مع محددات الدكا –

المؤثرات على فضاء هلبرت. قمنا بتوضيح الايزوميتريس والاصدارة الهندسية 

 ∗𝐶 –راسمان هلبرت. تم تقصي تمام غراسمان وغر على فضاءات نلمبرهنة ويغ

 المتقارب لنهايات الاسقاط لفضاءات هلبرت. نجمالضرب  وحاصل  DFR –وجبر 
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Introduction 

We establish what we consider to be the definitive versions of Jensen 

operator inequality and Jensen trace inequality for real functions defined on an 

interval. This is accomplished by the introduction of genuine non-commutative 

convex combinations of operators, as opposed to the contractions considered in 

earlier versions of the theory, [10] & [4]. For 𝐴 be a 𝐶∗-algebra and 𝜑 ∶  𝐴 →

 𝐿(𝐻) be a positive unital map. Then, for a convex function 𝑓 ∶  𝐼 →  𝑅 defined 

on some open interval and a self-adjoint element 𝑎 ∈ 𝐴 whose spectrum lies in I 

, we obtain a Jensen-type inequality 𝑓 (𝜑(𝑎)) ≤ 𝜑(𝑓 (𝑎)) where ≤ denotes an 

operator preorder (usual order, spectral preorder, majorization) and depends on 

the class of convex functions considered, i.e., monotone convex or arbitrary 

convex functions.  

Wigner classical theorem on symmetry transformations plays a 

fundamental role in quantum mechanics. It can be formulated, for example, in the 

following way: Every bijective transformation on the set 𝐿 of all 1-dimensional 

subspaces of a Hilbert space 𝐻 which preserves the angle between the elements 

of 𝐿 is induced by either a unitary or an antiunitary operator on 𝐻. In an 𝑛-

dimensional projective space with a polarity two k-subspaces are ortho-adjacent 

if they are adjacent and one intersects the polar of the other.  

We consider 𝐶∗-algebraic deformations by actions of ℝ𝑑 à la Rieffel and 

show that every state of the undeformed algebra can be deformed into a state of 

the deformed algebra in the sense of a continuous field of states. A bilinear form 

on a possibly graded vector space V defines a graded Poisson structure on its 

graded symmetric algebra together with a star product quantizing it. This gives a 

model for the Weyl algebra in an algebraic framework, only requiring a field of 

characteristic zero. When passing to ℝ or ℂ one wants to add more: the 

convergence of the star product should be controlled for a large completion of the 

symmetric algebra. Assuming that the underlying vector space carries a locally 

convex topology and the bilinear form is continuous, we establish a locally 

convex topology on the Weyl algebra such that the star product becomes 

continuous. 

We review the definition of determinants for finite von Neumann algebras, 

due to Fuglede and Kadison [Fuglede B, Kadison R (1952)], and a generalization 

for appropriate groups of invertible elements in Banach algebras, from a paper by 

Skandalis and the author (1984). We show two inequalities regarding the ratio 

det(𝐴 +  𝐷)/ det 𝐴 of the determinant of a positive-definite matrix 𝐴 and the 

determinant of its perturbation 𝐴 +  𝐷. A generalization of classical determinant 
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inequalities like Hadamard inequality and Fischer’s inequality is studied. For a 

version of the inequalities originally proved by Arveson for positive operators in 

von Neumann algebras with a tracial state, we give a different proof. We also 

improve and generalize to the setting of finite von Neumann algebras, some 

‘Fischer-type’ inequalities by Matic for determinants of perturbed positive-

definite matrices.  

Botelho, Jamison, and Moln´ar have recently described the general form of 

surjective isometries of Grassmann spaces on complex Hilbert spaces under 

certain dimensionality assumptions. We provide a new approach to this problem 

which enables us first, to give a shorter proof and second, to remove 

dimensionality constraints completely. In one of the low dimensional cases, 

which was not covered by Botelho, Jamison, and Molnar, an exceptional 

possibility occurs. As a byproduct, we are able to handle the real case as well. 

Furthermore, in finite dimensions we remove the surectivity assumption. Wigner 

celebrated theorem, which is particularly important in the mathematical 

foundations of quantum mechanics, states that every bijective transformation on 

the set of all rank-one projections of a complex Hilbert space which preserves the 

transition probability is induced by a unitary or an antiunitary operator. This vital 

theorem has been generalised in various ways by several scientists. In 2001, 

Molnár provided a natural generalisation, namely, he provided a characterisation 

of (not necessarily bijective) maps which act on the Grassmann space of all rank-

n projections and leave the system of Jordan principal angles invariant (see [34] 

and [259]). For 𝐻 be a complex Hilbert space of dimension not less than 3 and let 

𝒢𝑘(𝐻) be the Grassmannian formed by k-dimensional subspaces of H. Suppose 

that dim 𝐻 ≥  2𝑘 >  2. We show that the transformations of 𝒢𝑘(𝐻) induced by 

linear or conjugate-linear isometries can be characterized as transformations 

preserving some of principal angles (corresponding to the orthogonality, 

adjacency and orthoadjacency relations).  

We present the construction of a general family of 𝐶∗- algebras which 

includes, as a special case, the “quantum spacetime algebra” introduced by 

Doplicher, Fredenhagen, and Roberts. It is based on an extension of the notion of 

𝐶∗-completion from algebras to bundles of algebras, compatible with the usual 

𝐶∗-completion of the appropriate algebras of sections, combined with a novel 

definition for the algebra of the canonical commutation relations using Rieffel’s 

theory of strict deformation quantization. Given a locally convex vector space 

with a topology induced by Hilbert seminorms and a continuous bilinear form on 

it we construct a topology on its symmetric algebra such that the usual star 

product of exponential type becomes continuous.  
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Chapter 1 

Jenson Operator Inequality 

 

We show how this relates to the pinching inequality of Davis [5], and how Jensen 

trace inequality generalizes to 𝐶∗−algebras. Some extensions of Jensen’s-type inequalities 

to the multi-variable case are considered. 

Section (1.1): Jensen Operator Inequality 

If f is a continuous, real function on some interval I in ℝ, we can use spectral theory 

to define an operator function  

𝑓:𝔹(ℌ)𝑠𝑎
𝐼 → 𝔹(ℌ)𝑠𝑎     where     𝑓(𝑥) = ∫  𝑓(𝜆)𝑑𝐸𝑥(𝜆).              (1) 

Here 𝔹(ℌ)𝑠𝑎
𝐼  denotes the convex set of self-adjoint operators on the Hilbert space ℌ with 

spectra in I, and 𝐸𝑥 denotes the spectral measure of x. It is somewhat dangerous to use the 

same symbol for the two rather different functions, but the usage is sanctified by time. 

Whenever necessary we shall try to distinguish between the two by referring either to the 

function f or to the operator function f. As pointed out by C. Davis in [4] a general operator 

function 𝐹:𝔹(ℌ)𝑠𝑎
𝐼 → 𝔹(ℌ) arises from a spectral function, i.e. 𝐹(𝑥) = 𝑓(𝑥), if and only if 

for every unitary u  

𝐹(𝑢∗𝑥𝑢) = 𝑢∗𝐹(𝑥)𝑢       and    𝐹 (
𝑦 0
0 𝑧

) = (
𝐹(𝑦) 0

0 𝐹(𝑧)
)           (2) 

for every operator 𝑥 = 𝑦 + 𝑧 that decomposes in block form by multiplication by a 

projection p in its commutant. (We do not demand that p and 1 − 𝑝 are equivalent.) There 

is a slight ambiguity in this statement – easily compensated for by its versatility – since by 

F(y) we really mean F evaluated at y, but now regarded as an operator function on 𝔹(𝑝ℌ)𝑠𝑎
𝐼 . 

We demand that 𝑝𝐹(𝑦 + 𝑧) = 𝐹(𝑦 + 𝑧)𝑝 and that it is independent of z. Thus, 𝑝𝐹(𝑦 + 𝑧) =

𝑝𝐹(𝑦 + 𝑠(1 − 𝑝)) for some, hence any scalar s in I. (Davis tacitly assumes that 0 ∈ 𝐼 and 

takes 𝑠 = 0.)  

A continuous function 𝑓: 𝐼 → ℝ is said to be operator convex if  

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)                       (3) 
for each λ in [0, 1] and every pair of self-adjoint operators x, y on an infinite dimensional 

Hilbert space ℌ with spectra in I. The function is said to be matrix convex of order n if the 

same conditions are satisfied for operators on a Hilbert space of finite dimension n. It is well 

known, cf. [4] that a function is operator convex if and only if it is matrix convex of arbitrary 

orders.  

Just because the function f is convex there is no guarantee that the operator function f is 

convex. In fact, as shown by Bendat and Sherman in [4], f is operator convex on the interval 

]-1, 1[ if and only if it has a (unique) representation  

𝑓(𝑡) = 𝛽0 + 𝛽1𝑡 +
1

2
𝛽2∫  

1

−1

𝑡2(1 − 𝛼𝑡)−1𝑑µ(𝛼),                       (4) 

for 𝛽2 ≥ 0 and some probability measure µ on [−1, 1]. 𝑓 must be analytic with 𝑓(0) =
𝛽0, 𝑓

′(0) = 𝛽1 and 𝑓′′(0) = 𝛽2. Lowner’s theory of operator monotonicity can be found in 

[11].  

An unexpected phenomenon turns up in relation with convexity in 𝔹(ℌ)𝑠𝑎. If (𝑎1, . . . , 𝑎𝑛) 
is an n−tuple of operators with ∑  𝑛

𝑘=1 𝑎𝑘
∗𝑎𝑘 = 1, we may think of the element ∑  𝑛

𝑘=1 𝑎𝑘
∗𝑥𝑘𝑎𝑘 

as a non-commutative convex combination of the n−tuple (𝑥1, . . . , 𝑥𝑛) in 𝔹(ℌ)𝑠𝑎. The 
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remarkable fact is that when f is an operator convex function, then the operator function f 

respects this new structure in the sense that we have the Jensen operator inequality: 

𝑓 (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑥𝑘𝑎𝑘) ≤ ∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑓(𝑥𝑘)𝑎𝑘.                              (5) 

This result was found in [8], and used to give a review of Lowner’s and Bendat-Sherman’s 

theory of operator monotone and operator convex functions in [11]. We must admit that we 

unfortunately proved and used the contractive form 𝑓(𝑎∗𝑥𝑎) ≤ 𝑎∗𝑓(𝑥)𝑎 for 𝑎∗𝑎 ≤ 1, this 

being the seemingly most attractive version at the time. This necessitated the further 

conditions that 0 ∈ 𝐼 and 𝑓(0) ≤ 0, conditions that have haunted the theory since then. The 

Jensen inequality for a normal trace on a von Neumann algebra, now for an arbitrary convex 

function f, was found by Brown and Kosaki in [4], still in the contractive version.  

We rectify our omissions and prove the full Jensen inequality, both with and without a trace.  

Corollary (1.1.1)[1]: Let f be a convex, continuous function defined on an interval I, and 

suppose that 0 ∈ 𝐼 and 𝑓(0) ≤ 0. Then for all natural numbers m and n we have the 

inequality (7) for every n−tuple (𝑥1, . . . , 𝑥𝑛) of self-adjoint 𝑚 ×𝑚 matrices with spectra 

contained in I and every n−tuple (𝑎1, . . . , 𝑎𝑛) of 𝑚 ×𝑚 matrices with ∑  𝑛
𝑘=1 𝑎𝑘

∗𝑎𝑘 ≤ 1. 

Remark (1.1.2)[1]: Let n=1 in (7). If f is convex, 0∈I and f(0)≤0 we have  

𝑇𝑟 (𝑓(𝑎∗𝑥𝑎)) ≤ 𝑇𝑟(𝑎∗𝑓(𝑥)𝑎)                                   (6) 
for every self-adjoint 𝑚 ×𝑚 matrix x with spectrum in I and every 𝑚 ×𝑚 contractive 

matrix a. This is Jensen’s trace inequality (for matrices) of Brown and Kosaki [4].  

This inequality alone is not sufficient to ensure convexity of f, even if 𝑚 > 1 (unless 𝑓(0) =
0 is specified in advance). For 𝑛 > 1 the inequality gives convexity of f as we see from 

Theorem (1.1.7). In each case we must assume that 0 ∈ 𝐼, otherwise the inequality does not 

make sense. This fact, together with the irrelevant information about 𝑓(0), makes the 

contractive versions of Jensen’s inequality less desirable. When we eventually pass to the 

theory of several variables, cf. [11], the contractive versions mean that 0 belongs to the cube 

where f is defined, so that part of the coordinate axes must belong to the domain of definition 

for f, and on these we must assume that 𝑓 ≤ 0.  

If the trace τ is unbounded, but lower semi-continuous and densely defined, the 

inequality (9) is still valid if 𝑓 ≥ 0, although now some of the numbers may be infinite.  

An n−tuple 𝑎 = (𝑎1, . . . , 𝑎𝑛) of operators in 𝔹(ℌ) is called a contractive column 

(respectively a unital column) if ∑  𝑛
𝑘=1 𝑎𝑘

∗𝑎𝑘 ≤ 1 (respectively ∑  𝑛
𝑘=1 𝑎𝑘

∗𝑎𝑘 = 1). 

Contractive rows and unital rows are defined analogously by the conditions ∑  𝑛
𝑘=1 𝑎𝑘𝑎𝑘

∗ ≤
1 and ∑  𝑛

𝑘=1 𝑎𝑘𝑎𝑘
∗ = 1. We say that 𝑎 = (𝑎1, . . . , 𝑎𝑛) is a unitary column if there is a unitary 

𝑛 × 𝑛 operator matrix 𝑈 = (𝑢𝑖𝑗), one of whose columns is (𝑎1, . . . , 𝑎𝑛). Thus, 𝑢𝑖𝑗 = 𝑎𝑖 for 

some j and all i. Unitary rows are defined analogously, cf. [1] Note that an n−tuple 
(𝑎1, . . . , 𝑎𝑛) is a contractive/unital/unitary row if and only if the adjoint tuple (𝑎1

∗ , . . . , 𝑎𝑛
∗ ) 

is a contractive/unital/unitary column. Even for a finite-dimensional Hilbert space ℌ it may 

happen that an n−tuple 𝑎 is a unitary (unital or contractive) column in 𝔹(ℌ), while 𝑎 is not 

a unitary (unital or contractive) row in 𝔹(ℌ). Evidently every unitary column is also a unital 

column (and similarly every unitary row is a unital row). On the other hand, if (𝑠1, . . . , 𝑠𝑛) 
is an n−tuple of co-isometries such that ∑  𝑛

𝑘=1 𝑠𝑘
∗𝑠𝑘 = 1 (these are the canonical generators 

for the Cuntz algebra 𝒪𝑛), then we have a simple example of a unital column that is not 

unitary. If we insist that a unital column of elements in a unital 𝐶∗−algebra 𝒜 should be 

called a unitary column only if we can choose the unitary in 𝕄𝑛(𝒜), then already for 𝒜 
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commutative, viz. 𝒜 = 𝐶(𝕊5), we have a unital 3−column that is not a unitary column in 

𝕄3(𝒜), cf. [18].  

Given a unital column (𝑎1, . . . , 𝑎𝑛) we may regard it as an isometry 𝑎:ℌ → ℌ𝑛, where ℌ𝑛 =

⊕𝑖=1
𝑛 ℌ. Better still we may regard it as a partial isometry 𝑉:ℌ𝑛 → ℌ𝑛, where 𝑉|ℌ𝑛−1 = 0. 

Evidently the column is unitary precisely when V extends to a unitary operator on ℌ𝑛, and 

this happens if and only if the index of V is 0, in the generalized sense that dim ker 𝑉∗ =
(𝑛 − 1)dim ℌ. Here 𝑉∗(𝜉1, . . . , 𝜉𝑛) = 𝑎1

∗𝜉1 +⋯+ 𝑎𝑛
∗ 𝜉𝑛 in ℌ. It follows from [1] that this 

holds if just one of the operators 𝑎𝑖 has (generalized) index zero, since in this case 𝑎𝑖 =
𝑢|𝑎𝑖| for some unitary u on ℌ. We are then reduced to the situation where one of the 

operators, say 𝑎𝑛, is positive, so that with 𝑏 = (𝑎1, . . . , 𝑎𝑛−1) we can extend V to the unitary 

operator  

𝑈 = ((1 − 𝑏(𝑏)
∗
)
1
2 𝑏

−(𝑏)
∗

𝑎𝑛

).                                         (7) 

It follows that every contractive n−column can be enlarged to a unitary (n+1)– column 

simply by setting 𝑎𝑛+1 = (1 − ∑  𝑛
𝑘=1 𝑎𝑘

∗𝑎𝑘)
1

2. In particular, every unital n−column can be 

enlarged to a unitary (n+1)−column with 𝑎𝑛+1 = 0. As usual we shall refer to this as a 

unitary dilation of the unital (or contractive) column.  

It may sometimes be desirable to know exactly the terms in a unitary dilation of some 

unital column 𝑎 = (𝑎1, . . . , 𝑎𝑛). If n=1, so that 𝑎 = 𝑎 for some isometry a, the canonical 

dilation is given by a 2 × 2−matrix U having (𝑎, 0) as the second column. For a general 

unital n−column we may regard it as an isometry 𝑎: ℌ → ℌ𝑛, and the unitary dilation 𝑈𝑛 on 

ℌ⊕ℌ𝑛 then has the same form as U; in fact  

𝑈 = (
1 − 𝑎𝑎∗ 𝑎
−𝑎∗ 0

)        and     𝑈𝑛 = (
𝑝 𝑎

−(𝑎)
∗
0
),                   (8) 

where 𝑝 = 1 − 𝑎(𝑎)
∗
 is the 𝑛 × 𝑛 projection in ℌ𝑛 with 𝑝𝑖𝑖 = 1 − 𝑎𝑖𝑎𝑖

∗ and 𝑝𝑖𝑗 = −𝑎𝑖𝑎𝑗
∗ 

for 𝑖 ≠ 𝑗. Thus, the canonical dilation of (𝑎1, . . . , 𝑎𝑛) has the form: 

𝑈𝑛 =

(

 
 

1 − 𝑎1𝑎1
∗ −𝑎1𝑎2

∗ . . . −𝑎1𝑎𝑚
∗ 𝑎1

−𝑎2𝑎1
∗ 1 − 𝑎2𝑎2

∗  . . . −𝑎2𝑎𝑛
∗ 𝑎2

⋮ ⋮  ⋮ ⋮
−𝑎𝑛𝑎1

∗ −𝑎𝑛𝑎2
∗  . . . 1 − 𝑎𝑛𝑎𝑛

∗ 𝑎𝑛
−𝑎1

∗ −𝑎2
∗  . . . −𝑎𝑛

∗ 0 )

 
 
                 (9) 

As seen from (7), the formula for the canonical dilation of a contractive column is only 

marginally more complicated, cf. [1] 

Lemma (1.1.3)[1]: Define the unitary matrix 𝐸 = 𝑑𝑖𝑎𝑔(𝜃, 𝜃2, . . . , 𝜃𝑛−1, 1) in 𝕄𝑛(ℂ) ⊂

𝔹(ℌ𝑛), where 𝜃 = exp (2𝜋 𝑖/𝑛). Then for each element 𝐴 = (𝑎𝑖𝑗) in 𝔹(ℌ𝑛) we have  

1

𝑛
∑  

𝑛

𝑘=1

𝐸−𝑘𝐴𝐸𝑘 = 𝑑𝑖𝑎𝑔 (𝑎11, 𝑎22, . . . , 𝑎𝑛𝑛).                   (10) 

Proof. By computation  

(
1

𝑛
∑  

𝑛

𝑘=1

𝐸−𝑘𝐴𝐸𝑘)

𝑖𝑗

=
1

𝑛
∑  

𝑛

𝑘=1

(𝜃𝑗−𝑖)
𝑘
𝑎𝑖𝑗 ,                     (11) 

and this sum is zero if 𝑖 ≠ 𝑗, otherwise it is 𝑎𝑖𝑖. 
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Corollary (1.1.4)[1]: Let P denote the projection in 𝕄𝑛(ℂ) given by 𝑃𝑖𝑗 = 𝑛
−1 for all i and 

j, so that P is the projection of rank one on the subspace spanned by the vector 𝜉1 +· · · +𝜉𝑛 

in ℂ𝑛, where 𝜉1, . . . , 𝜉𝑛 are the standard basis vectors. Then with E as in Lemma (1.1.3) we 

obtain the pairwise orthogonal projections 𝑃𝑘 = 𝐸
−𝑘𝑃 𝐸𝑘, for 1 ≤ 𝑘 ≤ 𝑛, with ∑  𝑛

𝑘=1 𝑃𝑘 =
1.  

Proof. (Cf. [8]) Evidently each 𝑃𝑘 is a projection of rank one. Moreover, by Lemma (1.1.3),  

∑ 

𝑛

𝑘=1

𝑃𝑘 =∑  

𝑛

𝑘=1

𝐸−𝑘𝑃 𝐸𝑘 = 𝑛   𝑑𝑖𝑎𝑔(𝑛−1, . . . , 𝑛−1) = 1,               (12) 

from which it also follows that the projections are pairwise orthogonal,  

Theorem (1.1.5)[1]:  
For a continuous function f defined on an interval I the following conditions are equivalent: 

(i) f is operator convex. 

(ii) For each natural number n we have the inequality  

𝑓 (∑ 

𝑛

𝑖=1

𝑎𝑖
∗𝑥𝑖𝑎𝑖) ≤∑ 

𝑛

𝑖=1

𝑎𝑖
∗𝑓(𝑥𝑖)𝑎𝑖                                         (13) 

for every n−tuple (𝑥1, . . . , 𝑥𝑛) of bounded, self-adjoint operators on an arbitrary Hilbert 

space ℌ with spectra contained in I and every n−tuple (𝑎1, . . . , 𝑎𝑛) of operators on ℌ with 

∑  𝑛
𝑘=1 𝑎𝑘

∗𝑎𝑘 = 1. 

(iii) 𝑓(𝑣∗𝑥𝑣) ≤ 𝑣∗𝑓(𝑥)𝑣 for each isometry v on an infinite-dimensional Hilbert 

space ℌ and every self-adjoint operator x with spectrum in I. 

(vi)𝑝𝑓(𝑝𝑥𝑝 + 𝑠(1 − 𝑝))𝑝 ≤ 𝑝𝑓(𝑥)𝑝 for each projection p on an infinite-dimensional 

Hilbert space ℌ, every self-adjoint operator x with spectrum in I and every s in I.  

Proof. (i) ⇒ (ii) Assume that we are given a unitary n−column (𝑎1, . . . , 𝑎𝑛), and choose a 

unitary 𝑈𝑛 = (𝑢𝑖𝑗) in 𝔹(ℌ𝑛) such that 𝑢𝑘𝑛 = 𝑎𝑘. Let 𝐸 = 𝑑𝑖𝑎𝑔 (𝜃, 𝜃2, . . . , 1) as in Lemma 

(1.1.3) and put 𝑋 = 𝑑𝑖𝑎𝑔(𝑥1, . . . , 𝑥𝑛), both regarded as elements in 𝔹(ℌ𝑛). Using Lemma 

(1.1.3) and the operator convexity of f we then get the desired inequality: 

𝑓 (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑥𝑘𝑎𝑘) = 𝑓((𝑈𝑛

∗𝑋𝑈𝑛)𝑛𝑛) = 𝑓 ((∑  

𝑛

𝑘=1

1

𝑛
𝐸−𝑘𝑈𝑛

∗𝑋𝑈𝑛𝐸
𝑘)

𝑛𝑛

)

= (𝑓 (∑  

𝑛

𝑘=1

1

𝑛
𝐸−𝑘𝑈𝑛

∗𝑋𝑈𝑛𝐸
𝑘))

𝑛𝑛

≤ (
1

𝑛
∑  

𝑛

𝑘=1

𝑓(𝐸−𝑘𝑈𝑛
∗𝑋𝑈𝑛𝐸

𝑘))

𝑛𝑛

= (
1

𝑛
∑  

𝑛

𝑘=1

𝐸−𝑘𝑈𝑛
∗  𝑓(𝑋)𝑈𝑛𝐸

𝑘)

𝑛𝑛

= (𝑈𝑛
∗𝑓(𝑋)𝑈𝑛)𝑛𝑛 =∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑓(𝑥𝑘)𝑎𝑘. 

Note that for the second equality we use that 𝑓(𝑦𝑛) = (𝑓( 𝑑𝑖𝑎𝑔 (𝑦1, . . . , 𝑦𝑛)))
𝑛𝑛

 because 

𝑓(𝑑𝑖𝑎𝑔 (𝑦1, . . . , 𝑦𝑛)) = 𝑑𝑖𝑎𝑔(𝑓(𝑦1), . . . , 𝑓(𝑦𝑛)). 
In the general case where the column is just unital, we enlarge it to the unitary (n+1)−column 
(𝑎1, . . . , 𝑎𝑛, 0) and choose 𝑥𝑛+1 arbitrarily, but with spectrum in  

I. By the first part of the proof we therefore have  

𝑓 (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑥𝑘𝑎𝑘) = 𝑓 (∑  

𝑛+1

𝑘=1

𝑎𝑘
∗𝑥𝑘𝑎𝑘) ≤ ∑  

𝑛+1

𝑘=1

𝑎𝑘
∗𝑓(𝑥𝑘)𝑎𝑘 
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=∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑓(𝑥𝑘)𝑎𝑘.                                                         (14) 

(ii) ⇒ (iii) is trivial.  

(iii) ⇒ (iv) Take any self-adjoint operator x with spectrum in I and let p be an infinite-

dimensional projection. Then we can find an isometry v (i.e. 𝑣 ∗ 𝑣 = 1) such that 𝑝 = 𝑣𝑣∗ 
. By assumption 𝑓(𝑣∗𝑥𝑣) ≤ 𝑣∗𝑓(𝑥)𝑣, whence also  

𝑣𝑓(𝑣∗𝑥𝑣)𝑣∗ ≤ 𝑣𝑣∗𝑓(𝑥)𝑣𝑣∗ = 𝑝𝑓(𝑥)𝑝.                    (15) 
For any monomial 𝑔(𝑡) = 𝑡𝑚 and any s in I we have  

𝑝𝑣𝑔(𝑣∗𝑥𝑣)𝑣∗𝑝 = 𝑝𝑣(𝑣∗𝑥𝑣)𝑚𝑣∗𝑝 = 𝑝(𝑣𝑣∗𝑥𝑣𝑣∗)𝑚𝑝 = 𝑝𝑔(𝑝𝑥𝑝)𝑝 

= 𝑝𝑔(𝑝𝑥𝑝 + 𝑠(1 − 𝑝))𝑝.                                                          (16) 
Since f is continuous, it can be approximated by polynomials on compact subsets of I, and 

therefore also 𝑝𝑣𝑓(𝑣∗𝑥𝑣)𝑣∗𝑝 = 𝑝𝑓(𝑝𝑥𝑝 + 𝑠(1 − 𝑝))𝑝. Combined with (14) this gives the 

pinching inequality  

𝑝𝑓(𝑝𝑥𝑝 + 𝑠(1 − 𝑝))𝑝 ≤ 𝑝𝑓(𝑥)𝑝.                             (17) 
If p is a projection of finite rank we can define the infinite dimensional projection 𝑞 = 𝑝⊗
1∞ on ℌ∞. Similarly we let 𝑦 = 𝑥 ⊗ 1∞ for any given self-adjoint operator x with spectrum 

in I. Since 𝑓(𝑎) ⊗ 1∞ = 𝑓(𝑎 ⊗ 1∞) for any operator a we get by (17) that  

𝑝𝑓(𝑝𝑥𝑝 + 𝑠(1 − 𝑝))𝑝⊗ 1∞ = 𝑞𝑓(𝑞𝑦𝑞 + 𝑠(1 − 𝑞))𝑞 ≤ 𝑞𝑓(𝑦)𝑞 

= 𝑝𝑓(𝑥)𝑝 ⊗ 1∞,                                                    (18) 
which shows that (17) is valid also for projections of finite rank.  

(iv) ⇒ (1) Given self-adjoint operators x and y with spectra in I and λ in [0, 1], define the 

three elements  

𝑋 = (
𝑥 0
0 𝑦

) , 𝑈 = (
𝜆
1
2 (1 − 𝜆)

1
2

−(1 − 𝜆)
1
2 𝜆

1
2

) , 𝑃 = (
1 0
0 0

)       (19) 

in 𝔹(ℌ2). Then for some s in I we have by the pinching inequality in (iv) that  

𝑃𝑓(𝑃 𝑈∗𝑋𝑈𝑃 + 𝑠(1 − 𝑃))𝑃 ≤ 𝑃 𝑓(𝑈∗𝑋𝑈)𝑃 = 𝑃 𝑈∗𝑓(𝑋)𝑈𝑃.        (20) 
Since  

𝑈∗𝑋𝑈 = (
𝜆𝑥 + (1 − 𝜆)𝑦 (𝜆 − 𝜆2)

1
2(𝑦 − 𝑥)

(𝜆 − 𝜆2)
1
2(𝑦 − 𝑥) 𝜆𝑦 + (1 − 𝜆)𝑥

),                 (21) 

it follows that 

(
𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) 0

0 0
) = 𝑃 𝑓(𝑃 𝑈∗𝑋𝑈𝑃 + 𝑠(1 − 𝑃))𝑃 ≤ 𝑃 𝑈∗ (

𝑓(𝑥) 0

0 𝑓(𝑦)
)𝑈𝑃

= (
𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) 0

0 0
) . (25) 

Corollary (1.1.6)[1]:  

Let f be a continuous function defined on an interval I and suppose that 0∈I. Then f is 

operator convex and f(0)≤0 if and only if for some, hence every natural number n, the 

inequality (13) is valid for every n−tuple (𝑥1, . . . , 𝑥𝑛) of bounded, self-adjoint operators on 

a Hilbert space ℌ with spectra contained in I, and every n−tuple (𝑎1, . . . , 𝑎𝑛) of operators on 

ℌ with ∑  𝑛
𝑘=1 𝑎𝑘

∗𝑎𝑘 ≤ 1.  

Setting n=1 we see that f is operator convex on an interval I containing 0 with f(0)≤0 if and 

only if  

𝑓(𝑎∗𝑥𝑎) ≤ 𝑎∗𝑓(𝑥)𝑎                                                   (22) 
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for every self-adjoint x with spectrum in I and every contraction a. This is the original Jensen 

operator inequality from [11].  

Proof . If ∑  𝑛
𝑘=1 𝑎𝑘

∗𝑎𝑘 = 𝑏 ≤ 1, put 𝑎𝑛+1 = (1 − 𝑏)
1

2. Then we have a unital (n+1)−tuple, 

so with 𝑥𝑛+1 = 0 we get  

𝑓 (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑥𝑘𝑎𝑘) = 𝑓 (∑  

𝑛+1

𝑘=1

 𝑎𝑘
∗𝑥𝑘𝑎𝑘) ≤ ∑  

𝑛+1

𝑘=1

𝑎𝑘
∗  𝑓(𝑥𝑘)𝑎𝑘

=∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑓(𝑥𝑘)𝑎𝑘 + 𝑎𝑛+1

∗ 𝑓(0)𝑎𝑛+1 ≤∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑓(𝑥𝑘)𝑎𝑘.  (26) 

Conversely, if (13) is satisfied for all contractive n−tuples, then – a fortiori – it holds for 

unital n−tuples, so f is operator convex; and with 𝑎 = 𝑥 = 0 we see that 𝑓(0) ≤ 0 ·  𝑓(0) ·
 0 = 0. 

Theorem (1.1.7)[1]:  
Let f be a continuous function defined on an interval I and let m and n be natural numbers. 

If f is convex we then have the inequality  

𝑇𝑟(𝑓 (∑ 

𝑛

𝑖=1

𝑎𝑖
∗𝑥𝑖𝑎𝑖)) ≤ 𝑇𝑟 (∑ 

𝑛

𝑖=1

𝑎𝑖
∗𝑓(𝑥𝑖)𝑎𝑖)                       (23) 

for every n−tuple (𝑥1, . . . , 𝑥𝑛) of self-adjoint 𝑚 ×𝑚 matrices with spectra contained in I 

and every n−tuple (𝑎1, . . . , 𝑎𝑛) of 𝑚 ×𝑚 matrices with ∑  𝑛
𝑘=1 𝑎𝑘

∗𝑎𝑘 = 1. 

Conversely, if the inequality (23) is satisfied for some n and m, where n>1, then f is convex. 

Proof. Let 𝑥𝑘 = ∑  𝑠𝑝(𝑥𝑘) 𝜆𝐸𝑘(𝜆) denote the spectral resolution of 𝑥𝑘 for 1 ≤ 𝑘 ≤ 𝑛. Thus, 

𝐸𝑘(𝜆) is the spectral projection of 𝑥𝑘 on the eigenspace corresponding to λ if λ is an 

eigenvalue for 𝑥𝑘; otherwise 𝐸𝑘(𝜆) = 0. For each unit vector ξ in ℂ𝑚 define the (atomic) 

probability measure  

µ𝜉(𝑆) = (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝐸𝑘(𝑆)𝑎𝑘𝜉|𝜉) = ∑  

𝑛

𝑘=1

(𝐸𝑘(𝑆)𝑎𝑘𝜉|𝑎𝑘𝜉)          (24) 

for any (Borel) set S in ℝ. Note now that if 𝑦 = ∑  𝑛
𝑘=1 𝑎𝑘

∗𝑥𝑘𝑎𝑘 then 

(𝑦𝜉|𝜉) = (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑥𝑘𝑎𝑘𝜉|𝜉) = (∑  

𝑛

𝑘=1

∑  

𝑠𝑝(𝑥𝑘)

𝜆𝐸𝑘(𝜆)𝑎𝑘𝜉|𝑎𝑘𝜉) 

= ∫  𝜆 𝑑µ𝜉(𝜆).                                                (25) 

If a unit vector ξ is an eigenvector for y, then the corresponding eigenvalue is (𝑦𝜉|𝜉), and ξ 

is also an eigenvector for f(y) with correponding eigenvalue (𝑓(𝑦)𝜉|𝜉) = 𝑓((𝑦𝜉|𝜉)). In this 

case we therefore have  

(𝑓 (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑥𝑘𝑎𝑘)𝜉|𝜉) = (𝑓(𝑦)𝜉|𝜉) = 𝑓((𝑦𝜉|𝜉)) = 𝑓 (∫  𝜆 𝑑µ𝜉(𝜆)) 

≤ ∫  𝑓(𝜆)𝑑µ𝜉(𝜆) = ∑  

𝑛

𝑘=1

( ∑  

𝑠𝑝(𝑥𝑘)

𝑓(𝜆)𝐸𝑘(𝜆)𝑎𝑘𝜉|𝑎𝑘𝜉) 
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=∑  

𝑛

𝑘=1

(𝑎𝑘
∗𝑓(𝑥𝑘)𝑎𝑘𝜉|𝜉),                                             (26) 

where we used (25) and the convexity of f – in form of the usual Jensen inequality – to get 

the inequality in (26). The result in (23) now follows by summing over an orthonormal basis 

of eigenvectors for y.  

Conversely, if (23) holds for some pair of natural numbers n, m, where 𝑛 > 1, then taking 

𝑎𝑖 = 0 for 𝑖 ≥ 2 we see that the inequality holds for n=2. Given s, t in I and λ in [0, 1] we 

define 𝑥 = 𝑠1𝑚 and 𝑦 = 𝑡1𝑚 in 𝕄𝑚(ℂ). Then with 𝑎 = 𝜆
1

21𝑚 and 𝑏 = (1 − 𝜆)
1

21𝑚 we get 

by (23) that  

𝑚𝑓(𝜆𝑥 + (1 − 𝜆)𝑡) = 𝑇𝑟(𝑓(𝜆𝑥 + (1 − 𝜆)𝑡)1𝑚) = 𝑇𝑟(𝑓(𝑎
∗𝑥𝑎 + 𝑏∗𝑦𝑏)) 

≤ 𝑇𝑟(𝑎∗𝑓(𝑥)𝑎 + 𝑏∗𝑓(𝑦)𝑏) = 𝑇𝑟 ((𝜆𝑓(𝑠) + (1 − 𝜆)𝑓(𝑡))1𝑚) 

= 𝑚(𝜆𝑓(𝑠) + (1 − 𝜆)𝑓(𝑡)),                           (27) 
which shows that f is convex.  

Let 𝒜 be a 𝐶∗−algebra of operators on some Hilbert space ℌ and T a locally compact 

Hausdorff space. We say that a family (𝑎𝑡)𝑡∈𝑇 of operators in the multiplier algebra 𝑀(𝒜) 
of 𝒜, i.e. the 𝐶∗−algebra {𝑎 ∈ 𝔹(ℌ) |∀𝑥 ∈ 𝒜: 𝑥𝑎 + 𝑎𝑥 ∈ 𝒜}, is a continuous field, if the 

function 𝑡 → 𝑎𝑡 is norm continuous. If µ is a Radon measure on T and the function 𝑡 → ‖𝑎𝑡‖ 

is integrable, we can then form the Bochner integral ∫  
𝑇
𝑎𝑡 𝑑µ(𝑡), which is the unique 

element in 𝑀(𝒜) such that  

𝜑(∫ 
𝑇

𝑎𝑡 𝑑µ(𝑡)) = ∫ 
𝑇

𝜑(𝑎𝑡)𝑑µ(𝑡)      𝜑 ∈ 𝒜
∗.                      (28) 

If all the 𝑎𝑡’s belong to 𝒜 then also ∫  
𝑇
𝑎𝑡𝑑µ(𝑡) belongs to 𝒜. If (𝑎𝑡

∗ 𝑎𝑡)𝑡∈𝑇 is integrable 

with integral 1 we say that (𝑎𝑡)𝑡∈𝑇 is a unital column field.  

The transition from sums to continuous fields is prompted by the nature of the proof of 

Theorem (1.1.8), we can easily verify that also Theorem (1.1.5) is valid for continuous 

fields. We finally note that the restriction to continuous fields is handy, but not necessary. 

In [11] we shall generalize the setting to arbitrary weak* measurable fields.  

The centralizer of a positive functional 𝜑 on a 𝐶∗−algebra 𝒜 is the closed ∗−subspace 

𝒜𝜑 = {𝑦 ∈ 𝒜 |∀𝑥 ∈ 𝒜 ∶ 𝜑(𝑥𝑦) = 𝜑(𝑦𝑥)}. In general this is not an algebra, but if 

𝑦1, . . . , 𝑦𝑛 are pairwise commuting, self-adjoint elements in 𝒜𝜑 then the 𝐶∗−algebra they 

generate is contained in 𝒜𝜑. Evidently the size of 𝒜𝜑 measures the extent to which 𝜑 is a 

trace. The fact we shall utilize is that even if an element x is outside 𝒜𝜑 the functional will 

behave ”trace-like” on the subspace spanned by 𝒜𝜑𝑥𝒜𝜑.  

If 𝜑 is unbounded, but lower semi-continuous on 𝒜+ and finite on the minimal dense ideal 

𝐾(𝒜) of 𝒜, we define 𝒜𝜑 = {𝑦 ∈ 𝒜 | ∀𝑥 ∈ 𝐾(𝒜):𝜑(𝑥𝑦) = 𝜑(𝑦𝑥)} .  
Theorem (1.1.8)[1]: Let (𝑥𝑡)𝑡∈𝑇 be a bounded, continuous field on a locally compact 

Hausdorff space T consisting of self-adjoint elements in a 𝐶∗−algebra 𝒜 with 𝑠𝑝(𝑥𝑡) ⊂ 𝐼. 
Furthermore, let (𝑎𝑡)𝑡∈𝑇 be a unital column field in 𝑀(𝒜) with respect to some Radon 

measure µ on T. Then for each continuous, convex function f defined on I and every positive 

functional φ that contains the element 𝑦 = ∫  
𝑇
𝑎𝑡
∗𝑥𝑡𝑎𝑡𝑑µ(𝑡) in its centralizer 𝒜𝜑, i.e. 

𝜑(𝑥𝑦) = 𝜑(𝑦𝑥) for all x in 𝒜, we have the inequality: 
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𝜑(𝑓 (∫ 
𝑇

𝑎𝑡
∗𝑥𝑡𝑎𝑡 𝑑µ(𝑡))) ≤ 𝜑(∫ 

𝑇

𝑎𝑡
∗𝑓(𝑥𝑡)𝑎𝑡𝑑µ(𝑡)).             (29) 

If φ is unbounded, but lower semi-continuous on 𝒜+ and finite on the minimal dense ideal 

𝐾(𝒜) of 𝒜, the result still holds if 𝑓 ≥ 0, even though the function may now attain infinite 

values.  

Proof. Let 𝐶 = 𝐶𝑜(𝑆) denote the commutative 𝐶∗−subalgebra of 𝒜 generated by y, and let 

µ𝜑 be the finite Radon measure on the locally compact Hausdorff space S defined, via the 

Riesz representation theorem, by  

∫ 
𝑆

𝑧(𝑠)𝑑µ𝜑(𝑠) = 𝜑(𝑧)               𝑧 ∈ 𝐶 = 𝐶𝑜(𝑆).                   (30) 

Since for all (𝑥, 𝑧) in 𝑀(𝒜)+  ×  𝐶+ we have 𝜑(𝑥𝑧) = 𝜑 (𝑧
1

2𝑥𝑧
1

2) it follows that  

0 ≤ 𝜑(𝑥𝑧) ≤ ‖𝑥‖𝜑(𝑧).                                         (31) 
Consequently the functional 𝑧 → 𝜑(𝑥𝑧) on C defines a Radon measure on S dominated by 

a multible of µ𝜑, hence determined by a unique element Φ(x) in 𝐿µ𝜑
∞ (𝑆). By linearization 

this defines a conditional expectation 𝜑:𝑀(𝒜) → 𝐿µ𝜑
∞ (𝑆) (i.e. a positive, unital module 

map) such that  

∫ 
𝑆

𝑧(𝑠)𝛷(𝑥)(𝑠)𝑑µ𝜑(𝑠) = 𝜑(𝑧𝑥), 𝑧 ∈ 𝐶       𝑥 ∈ 𝑀(𝒜).            (32) 

Inherent in this formulation is the fact that if 𝑧 ∈ 𝐶 = 𝐶𝑜(𝑆), then Φ(z) is the natural image 

of z in 𝐿µ𝜑
∞ (𝑆). In particular, 𝑧(𝑠) = 𝛷(𝑧)(𝑠) for almost all s in S.  

Observe now that since the 𝐶∗−algebra 𝐶𝑜(𝐼) is separable, we can for almost every s in S 

define a Radon measure µ𝑠 on I by  

∫ 
𝐼

𝑔(𝜆)𝑑µ𝑠(𝜆) = 𝛷 (∫ 
𝑇

𝑎𝑡
∗𝑔(𝑥𝑡)𝑎𝑡𝑑µ(𝑡)) (𝑠)      𝑔 ∈ 𝐶(𝐼).           (33) 

As ∫  
𝑇
𝑎𝑡
∗ 𝑎𝑡𝑑µ(𝑡) = 1, this is actually a probability measure. If we take 𝑔(𝜆) = 𝜆, then  

∫ 
𝐼

𝜆 𝑑µ𝑠(𝜆) = 𝛷 (∫ 
𝑇

𝑎𝑡
∗𝑥𝑡𝑎𝑡𝑑µ(𝑡)) (𝑠) = 𝛷(𝑦)(𝑠) = 𝑦(𝑠).          (34) 

Since 𝑦 ∈ 𝐶 we get by (34) and (33) – using also the convexity of f in form of the standard 

Jensen inequality – that  

𝑓(𝑦)(𝑠) = 𝑓(𝑦(𝑠)) = 𝑓 (∫ 
𝐼

𝜆 𝑑µ𝑠(𝜆)) ≤ ∫  𝑓(𝜆)𝑑µ𝑠(𝜆) 

= 𝛷 (∫  𝑎𝑡
∗𝑓(𝑥𝑡)𝑎𝑡𝑑µ(𝑡)) (𝑠).                                (35) 

Integrating over s, using (32), now gives the desired result: 

𝜑(𝑓(𝑦)) = ∫ 
𝑆

𝑓(𝑦)(𝑠)𝑑µ𝜑(𝑠) ≤ ∫ 
𝑆

𝛷(∫ 
𝑇

𝑎𝑡
∗𝑓(𝑥𝑡)𝑎𝑡𝑑µ(𝑡)) (𝑠)𝑑µ𝜑(𝑠) 

= ∫ 
𝑇

∫ 
𝑆

𝛷(𝑎𝑡
∗𝑓(𝑥𝑡)𝑎𝑡)(𝑠)𝑑µ𝜑(𝑠)𝑑µ(𝑡) = ∫ 

𝑇

𝜑(𝑎𝑡
∗𝑓(𝑥𝑡)𝑎𝑡)𝑑µ(𝑡) 
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= 𝜑(∫ 
𝑇

𝑎𝑡
∗𝑓(𝑥𝑡)𝑎𝑡𝑑µ(𝑡)).                (36) 

Having proved the finite case, let us now assume that φ is unbounded, but lower semi-

continuous on 𝒜+ and finite on the minimal dense ideal 𝐾(𝒜) of 𝒜. This – by definition – 

means that 𝜑(𝑥) < ∞ if 𝑥 ∈ 𝒜+ and 𝑥 = 𝑥𝑒 for some e in 𝒜+, because 𝐾(𝒜) is the 

hereditary ∗−subalgebra of 𝒜 generated by such elements, cf. [18]. Restricting φ to C we 

therefore obtain a unique Radon measure µ𝜑 on S such that  

∫ 
𝑆

𝑧(𝑡)𝑑µ𝜑(𝑡) = 𝜑(𝑧)         𝑦 ∈ 𝐶.                                 (37) 

Inspection of the proof above now shows that the Jensen trace inequality still holds if only 

𝑓 ≥ 0, even though ∞ may now occur in the inequality. 

Theorem (1.1.9)[1]:  

Let f be a convex, continuous function defined on an interval I and let 𝒜 be a 𝐶∗−algebra 

with a finite trace τ. Then the inequality  

𝜏 (𝑓 (∑ 

𝑛

𝑖=1

𝑎𝑖
∗𝑥𝑖𝑎𝑖)) ≤ 𝜏 (∑ 

𝑛

𝑖=1

𝑎𝑖
∗𝑓(𝑥𝑖)𝑎𝑖)  

is valid for every n−tuple (𝑥1, . . . , 𝑥𝑛) of self-adjoint elements in 𝒜 with spectra contained 

in I and every n−tuple (𝑎1, . . . , 𝑎𝑛) in 𝒜 with ∑  𝑛
𝑘=1 𝑎𝑘

∗𝑎𝑘 = 1. 

Corollary (1.1.10)[288]: Define the unitary matrix 𝐸 = diag(𝜃, 𝜃2, . . . , 𝜃𝑛−1, 1) in 

𝕄𝑛(ℂ) ⊂ 𝔹(ℌ
𝑛), where 𝜃 = exp (2𝜋 𝑖/𝑛). Then for each element 𝐴𝑟 = (𝑎𝑖𝑗

𝑟 ) in 𝔹(ℌ𝑛) we 

have  

1

𝑛
∑∑ 

𝑟

𝑛

𝑘=1

𝐸−𝑘𝐴𝑟𝐸
𝑘 =∑ 

𝑟

diag (𝑎11
𝑟 , 𝑎22

𝑟 , . . . , 𝑎𝑛𝑛
𝑟 ).                   (38) 

Proof. By computation  

(
1

𝑛
∑∑ 

𝑟

𝑛

𝑘=1

𝐸−𝑘𝐴𝑟𝐸
𝑘)

𝑖𝑗

=
1

𝑛
∑∑ 

𝑟

𝑛

𝑘=1

(𝜃𝑗−𝑖)
𝑘
𝑎𝑖𝑗
𝑟 ,                     (39) 

and this sum is zero if 𝑖 ≠ 𝑗, otherwise it is 𝑎𝑖𝑖
𝑟 . 

Corollary (1.1.11)[288]: Let 𝑃2 denote the projection in 𝕄𝑛(ℂ) given by 𝑃𝑖𝑗
2 = 𝑛−1 for all 

i and j, so that 𝑃2 is the projection of rank one on the subspace spanned by the vector 𝜉1 +·
 · · +𝜉𝑛 in ℂ𝑛, where 𝜉1, . . . , 𝜉𝑛 are the standard basis vectors. Then with E as in Corollary 

(1.1.10) we obtain the pairwise orthogonal projections 𝑃𝑘
2 = 𝐸−𝑘𝑃2 𝐸𝑘, for 1 ≤ 𝑘 ≤ 𝑛, with 

∑  𝑛
𝑘=1 𝑃𝑘

2 = 1.  

Proof. (Cf. [8]) Evidently each 𝑃𝑘
2 is a projection of rank one. Moreover, by Corollary 

(1.1.10),  

∑ 

𝑛

𝑘=1

𝑃𝑘
2 =∑  

𝑛

𝑘=1

𝐸−𝑘𝑃2 𝐸𝑘 = 𝑛   diag(𝑛−1, . . . , 𝑛−1) = 1,               (40) 

from which it also follows that the projections are pairwise orthogonal. 

Corollary (1.1.12)[288]: (Jensen’s Operator Inequality).  

For a continuous functions 𝑓𝑟 defined on an interval I the following conditions are 

equivalent: 

(i) 𝑓𝑟 is operator convex. 
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(ii) For each natural number n we have the inequality  

∑ 

𝑟

𝑓𝑟 (∑ 

𝑛

𝑖=1

𝑎𝑖
∗𝑟𝑥𝑖𝑎𝑖

𝑟) ≤∑∑ 

𝑟

𝑛

𝑖=1

𝑎𝑖
∗𝑟𝑓𝑟(𝑥𝑖)𝑎𝑖

𝑟                                         (41) 

for every 𝑛−tuple (𝑥1, . . . , 𝑥𝑛) of bounded, self-adjoint operators on an arbitrary Hilbert 

space ℌ with spectra contained in I and every 𝑛−tuple (𝑎1
𝑟 , . . . , 𝑎𝑛

𝑟) of operators on ℌ with 

∑ ∑  𝑟
𝑛
𝑘=1 𝑎𝑘

∗𝑟𝑎𝑘
𝑟 = 1. 

(iii) ∑  𝑟 𝑓𝑟(𝑣
∗𝑥𝑣) ≤ ∑  𝑟 𝑣

∗𝑓𝑟(𝑥)𝑣 for each isometry 𝑣 on an infinite-dimensional 

Hilbert space ℌ and every self-adjoint operator 𝑥 with spectrum in I. 

(vi) ∑  𝑟 𝑝
2𝑓𝑟(𝑝

2𝑥𝑝2 + 𝑠(1 − 𝑝2))𝑝2 ≤ ∑  𝑟 𝑝
2𝑓𝑟(𝑥)𝑝

2 for each projection 𝑝2 on an 

infinite-dimensional Hilbert space ℌ, every self-adjoint operator 𝑥 with spectrum in I 

and every s in I.  

Proof. (i) ⇒ (ii) Assume that we are given a unitary n−column (𝑎1
𝑟 , . . . , 𝑎𝑛

𝑟), and choose a 

unitary 𝑈𝑛
𝑟 = (𝑢𝑖𝑗

𝑟 ) in 𝔹(ℌ𝑛) such that 𝑢𝑘𝑛
𝑟 = 𝑎𝑘

𝑟 . Let 𝐸 = diag (𝜃, 𝜃2, . . . , 1) as in 

Corollary (1.1.10) and put 𝑋 = diag(𝑥1, . . . , 𝑥𝑛), both regarded as elements in 𝔹(ℌ𝑛). Using 

Corollary (1.1.10) and the operator convexity of 𝑓𝑟 we then get the desired inequality: 

∑ 

𝑟

𝑓𝑟 (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑟𝑥𝑘𝑎𝑘

𝑟) =∑ 

𝑟

𝑓𝑟((𝑈𝑛
∗𝑟𝑋𝑈𝑛

𝑟)𝑛𝑛) =∑ 

𝑟

𝑓𝑟 ((∑  

𝑛

𝑘=1

1

𝑛
𝐸−𝑘𝑈𝑛

∗𝑟𝑋𝑈𝑛
𝑟𝐸𝑘)

𝑛𝑛

)

= (∑ 

𝑟

𝑓𝑟 (∑  

𝑛

𝑘=1

1

𝑛
𝐸−𝑘𝑈𝑛

∗𝑟𝑋𝑈𝑛
𝑟𝐸𝑘))

𝑛𝑛

 

≤∑ 

𝑟

(
1

𝑛
∑  

𝑛

𝑘=1

𝑓𝑟(𝐸
−𝑘𝑈𝑛

∗𝑟𝑋𝑈𝑛
𝑟𝐸𝑘))

𝑛𝑛

= (
1

𝑛
∑∑ 

𝑟

𝑛

𝑘=1

𝐸−𝑘𝑈𝑛
∗𝑟  𝑓𝑟(𝑋)𝑈𝑛

𝑟𝐸𝑘)

𝑛𝑛

=∑ 

𝑟

(𝑈𝑛
∗𝑟𝑓𝑟(𝑋)𝑈𝑛

𝑟)𝑛𝑛 =∑∑ 

𝑟

𝑛

𝑘=1

𝑎𝑘
∗𝑟𝑓𝑟(𝑥𝑘)𝑎𝑘

𝑟 .                                      (42) 

Note that for the second equality we use that 𝑓𝑟(𝑦𝑛) = (𝑓𝑟( diag (𝑦1, . . . , 𝑦𝑛)))
𝑛𝑛

 because 

𝑓𝑟(diag (𝑦1, . . . , 𝑦𝑛)) = diag(𝑓𝑟(𝑦1), . . . , 𝑓𝑟(𝑦𝑛)). 
In the general case where the column is just unital, we enlarge it to the unitary (𝑛 +
1)−column (𝑎1

𝑟 , . . . , 𝑎𝑛
𝑟 , 0) and choose 𝑥𝑛+1 arbitrarily, but with spectrum in I. By the first 

part of the proof we therefore have  

∑ 

𝑟

𝑓𝑟 (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑟𝑥𝑘𝑎𝑘

𝑟) =∑ 

𝑟

𝑓𝑟 (∑  

𝑛+1

𝑘=1

𝑎𝑘
∗𝑟𝑥𝑘𝑎𝑘

𝑟) ≤ ∑∑ 

𝑟

𝑛+1

𝑘=1

𝑎𝑘
∗𝑟𝑓𝑟(𝑥𝑘)𝑎𝑘

𝑟

=∑∑ 

𝑟

𝑛

𝑘=1

𝑎𝑘
∗𝑟𝑓𝑟(𝑥𝑘)𝑎𝑘

𝑟 .                                                                                   (43) 

(ii) ⇒ (iii) is trivial.  

(iii) ⇒ (iv) Take any self-adjoint operator 𝑥 with spectrum in I and let 𝑝2 be an infinite-

dimensional projection. Then we can find an isometry 𝑣 (i.e. 𝑣∗𝑣 = 1) such that 𝑝2 = 𝑣𝑣∗. 
By assumption ∑  𝑟 𝑓𝑟(𝑣

∗𝑥𝑣) ≤ ∑  𝑟 𝑣
∗𝑓𝑟(𝑥)𝑣, whence also  
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∑ 

𝑟

𝑣𝑓𝑟(𝑣
∗𝑥𝑣)𝑣∗ ≤∑ 

𝑟

𝑣𝑣∗𝑓𝑟(𝑥)𝑣𝑣
∗ =∑ 

𝑟

𝑝2𝑓𝑟(𝑥)𝑝
2.                    (44) 

For any monomial 𝑔(𝑡) = 𝑡𝑚 and any 𝑠 in I we have  

∑ 

𝑟

𝑝2𝑣𝑔(𝑣∗𝑥𝑣)𝑣∗𝑝2 =∑ 

𝑟

𝑝2𝑣(𝑣∗𝑥𝑣)𝑚𝑣∗𝑝2 =∑ 

𝑟

𝑝2(𝑣𝑣∗𝑥𝑣𝑣∗)𝑚𝑝2

=∑ 

𝑟

𝑝2𝑔(𝑝2𝑥𝑝2)𝑝2

=∑ 

𝑟

𝑝2𝑔(𝑝2𝑥𝑝2 + 𝑠(1 − 𝑝2))𝑝2.                                                               (45) 

Since 𝑓𝑟 is continuous, it can be approximated by polynomials on compact subsets of I, and 

therefore also ∑  𝑟 𝑝
2𝑣𝑓𝑟(𝑣

∗𝑥𝑣)𝑣∗𝑝2 = ∑  𝑟 𝑝
2𝑓𝑟(𝑝

2𝑥𝑝2 + 𝑠(1 − 𝑝2))𝑝2. Combined with 

(43) this gives the pinching inequality  

∑ 

𝑟

𝑝2𝑓𝑟(𝑝
2𝑥𝑝2 + 𝑠(1 − 𝑝2))𝑝2 ≤∑ 

𝑟

𝑝2𝑓𝑟(𝑥)𝑝
2.                             (46) 

If 𝑝2 is a projection of finite rank we can define the infinite dimensional projection 𝑞2 =
𝑝2⊗1∞ on ℌ∞. Similarly we let 𝑦 = 𝑥 ⊗ 1∞ for any given self-adjoint operator 𝑥 with 

spectrum in I. Since 𝑓𝑟(𝑎
𝑟)⊗ 1∞ = 𝑓𝑟(𝑎

𝑟⊗1∞) for any operator 𝑎𝑟 we get by (46) that  

∑ 

𝑟

𝑝2𝑓𝑟(𝑝
2𝑥𝑝2 + 𝑠(1 − 𝑝2))𝑝2⊗1∞ =∑ 

𝑟

𝑞2𝑓𝑟(𝑞
2𝑦𝑞2 + 𝑠(1 − 𝑞2))𝑞2

≤∑ 

𝑟

𝑞2𝑓𝑟(𝑦)𝑞
2 =∑ 

𝑟

𝑝2𝑓𝑟(𝑥)𝑝
2⊗1∞,                                              (47) 

which shows that (46) is valid also for projections of finite rank.  

(iv) ⇒ (1) Given self-adjoint operators 𝑥 and 𝑦 with spectra in I and 𝜆𝑟 in [0, 1], define the 

three elements  

𝑋 = (
𝑥 0
0 𝑦

) , 𝑈𝑟 = (
𝜆𝑟

1
2 (1 − 𝜆𝑟)

1
2

−(1 − 𝜆𝑟)
1
2 𝜆𝑟

1
2

) , 𝑃2 = (
1 0
0 0

)       (48) 

in 𝔹(ℌ2). Then for some s in I we have by the pinching inequality in (iv) that  

∑ 

𝑟

𝑃2𝑓𝑟(𝑃
2 𝑈∗𝑟𝑋𝑈𝑟𝑃2 + 𝑠(1 − 𝑃2))𝑃2 ≤∑ 

𝑟

𝑃2 𝑓𝑟(𝑈
∗𝑟𝑋𝑈𝑟)𝑃2

=∑ 

𝑟

𝑃2 𝑈∗𝑟𝑓𝑟(𝑋)𝑈
𝑟𝑃2.                                                                         (49) 

Since  

𝑈∗𝑟𝑋𝑈𝑟 = (
𝜆𝑟𝑥 + (1 − 𝜆𝑟)𝑦 (𝜆𝑟 − 𝜆𝑟

2)
1
2(𝑦 − 𝑥)

(𝜆𝑟 − 𝜆𝑟
2)
1
2(𝑦 − 𝑥) 𝜆𝑟𝑦 + (1 − 𝜆𝑟)𝑥

),                 (50) 

it follows that 
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∑ 

𝑟

(
𝑓𝑟(𝜆𝑟𝑥 + (1 − 𝜆𝑟)𝑦) 0

0 0
) =∑ 

𝑟

𝑃2 𝑓𝑟(𝑃
2 𝑈∗𝑟𝑋𝑈𝑟𝑃2 + 𝑠(1 − 𝑃2))𝑃2

≤∑ 

𝑟

𝑃2 𝑈∗𝑟 (
𝑓𝑟(𝑥) 0

0 𝑓𝑟(𝑦)
)𝑈𝑟𝑃2

=∑ 

𝑟

(
𝜆𝑟𝑓𝑟(𝑥) + (1 − 𝜆𝑟)𝑓𝑟(𝑦) 0

0 0
).                                                (51) 

Corollary (1.1.13)[288]: (Contractive Version). Let 𝑓𝑟 be a continuous functions defined 

on an interval I and suppose that 0∈I. Then 𝑓𝑟 is operator convex and 𝑓𝑟(0) ≤ 0 if and only 

if for some, hence every natural number n, the inequality (41) is valid for every 𝑛−tuple 

(𝑥1, . . . , 𝑥𝑛) of bounded, self-adjoint operators on a Hilbert space ℌ with spectra contained 

in I, and every 𝑛−tuple (𝑎1
𝑟 , . . . , 𝑎𝑛

𝑟) of operators on ℌ with ∑ ∑  𝑟
𝑛
𝑘=1 𝑎𝑘

∗𝑟𝑎𝑘
𝑟 ≤ 1.  

Setting 𝑛 = 1 we see that 𝑓𝑟 is operator convex on an interval I containing 0 with 

𝑓𝑟(0) ≤ 0 if and only if  

∑ 

𝑟

𝑓𝑟(𝑎
∗𝑟𝑥𝑎𝑟) ≤∑ 

𝑟

𝑎∗𝑟𝑓𝑟(𝑥)𝑎
𝑟                                                   (52) 

for every self-adjoint 𝑥 with spectrum in I and every contraction 𝑎𝑟. This is the original 

Jensen operator inequality from [10] (see [22]).  

Proof. If ∑  𝑛
𝑘=1 𝑎𝑘

∗𝑟𝑎𝑘
𝑟 = 𝑏𝑟 ≤ 1, put 𝑎𝑛+1

𝑟 = (1 − 𝑏𝑟)
1

2. Then we have a unital (n+1)−tuple, 

so with 𝑥𝑛+1 = 0 we get  

∑ 

𝑟

𝑓𝑟 (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑟𝑥𝑘𝑎𝑘

𝑟) =∑ 

𝑟

𝑓𝑟 (∑  

𝑛+1

𝑘=1

 𝑎𝑘
∗𝑟𝑥𝑘𝑎𝑘

𝑟) ≤ ∑∑ 

𝑟

𝑛+1

𝑘=1

𝑎𝑘
∗𝑟  𝑓𝑟(𝑥𝑘)𝑎𝑘

𝑟

=∑∑ 

𝑟

𝑛

𝑘=1

𝑎𝑘
∗𝑟𝑓𝑟(𝑥𝑘)𝑎𝑘

𝑟 +∑ 

𝑟

𝑎𝑛+1
∗𝑟 𝑓𝑟(0)𝑎𝑛+1

𝑟 ≤∑∑ 

𝑟

𝑛

𝑘=1

𝑎𝑘
∗𝑟𝑓𝑟(𝑥𝑘)𝑎𝑘

𝑟 .  (53) 

Conversely, if (41) is satisfied for all contractive n−tuples, then – a fortiori – it holds for 

unital n−tuples, so 𝑓𝑟 is operator convex; and with 𝑎𝑟 = 𝑥 = 0 we see that 𝑓𝑟(0) ≤ 0 ·
 𝑓𝑟(0) ·  0 = 0. 

Corollary (1.1.14)[288]: (Jensen’s Trace Inequality).  

Let 𝑓𝑟 be a continuous functions defined on an interval I and let m and n be natural numbers. 

If 𝑓𝑟 is convex we then have the inequality  

𝑇𝑟(∑ 

𝑟

𝑓𝑟 (∑ 

𝑛

𝑖=1

𝑎𝑖
∗𝑟𝑥𝑖𝑎𝑖

𝑟)) ≤ 𝑇𝑟 (∑∑ 

𝑟

𝑛

𝑖=1

𝑎𝑖
∗𝑟𝑓𝑟(𝑥𝑖)𝑎𝑖

𝑟)                       (54) 

for every n−tuple (𝑥1, . . . , 𝑥𝑛) of self-adjoint 𝑚 ×𝑚 matrices with spectra contained in I 

and every n−tuple (𝑎1
𝑟 , . . . , 𝑎𝑛

𝑟) of 𝑚 ×𝑚 matrices with ∑ ∑  𝑟
𝑛
𝑘=1 𝑎𝑘

∗𝑟𝑎𝑘
𝑟 = 1. 

Proof. Let 𝑥𝑘 = ∑ ∑  𝑟sp(𝑥𝑘) 𝜆𝑟𝐸𝑘(𝜆𝑟) denote the spectral resolution of 𝑥𝑘 for 1 ≤ 𝑘 ≤ 𝑛. 

Thus, 𝐸𝑘(𝜆𝑟) is the spectral projection of 𝑥𝑘 on the eigenspace corresponding to 𝜆𝑟 if 𝜆𝑟 is 

an eigenvalue for 𝑥𝑘; otherwise 𝐸𝑘(𝜆𝑟) = 0. For each unit vector ξ in ℂ𝑚 define the (atomic) 

probability measure  

µ𝜉(𝑆) = (∑∑ 

𝑟

𝑛

𝑘=1

𝑎𝑘
∗𝑟𝐸𝑘(𝑆)𝑎𝑘

𝑟𝜉|𝜉) = ∑∑ 

𝑟

𝑛

𝑘=1

(𝐸𝑘(𝑆)𝑎𝑘
𝑟𝜉|𝑎𝑘

𝑟𝜉)          (55) 

for any (Borel) set S in ℝ. Note now that if 𝑦 = ∑ ∑  𝑟
𝑛
𝑘=1 𝑎𝑘

∗𝑟𝑥𝑘𝑎𝑘
𝑟  then 



13 

(𝑦𝜉|𝜉) = (∑∑ 

𝑟

𝑛

𝑘=1

𝑎𝑘
∗𝑟𝑥𝑘𝑎𝑘

𝑟𝜉|𝜉) = (∑  

𝑛

𝑘=1

∑ ∑ 

𝑟sp(𝑥𝑘)

𝜆𝑟𝐸𝑘(𝜆𝑟)𝑎𝑘
𝑟𝜉|𝑎𝑘

𝑟𝜉)

= ∫∑ 

𝑟

𝜆𝑟  𝑑µ𝜉(𝜆𝑟).                                                                                  (56) 

If a unit vector 𝜉 is an eigenvector for 𝑦, then the corresponding eigenvalue is (𝑦𝜉|𝜉), and 

𝜉 is also an eigenvector for 𝑓𝑟(𝑦) with correponding eigenvalue ∑  𝑟 (𝑓𝑟(𝑦)𝜉|𝜉) =
∑  𝑟 𝑓𝑟((𝑦𝜉|𝜉)). In this case we therefore have  

∑ 

𝑟

(𝑓𝑟 (∑  

𝑛

𝑘=1

𝑎𝑘
∗𝑟𝑥𝑘𝑎𝑘

𝑟)𝜉|𝜉) =∑ 

𝑟

(𝑓𝑟(𝑦)𝜉|𝜉) =∑ 

𝑟

𝑓𝑟((𝑦𝜉|𝜉))

=∑ 

𝑟

𝑓𝑟 (∫  𝜆𝑟  𝑑µ𝜉(𝜆𝑟)) ≤ ∫∑ 

𝑟

𝑓𝑟(𝜆𝑟)𝑑µ𝜉(𝜆𝑟)

= ∑  

𝑛

𝑘=1

( ∑ ∑ 

𝑟sp(𝑥𝑘)

𝑓𝑟(𝜆𝑟)𝐸𝑘(𝜆𝑟)𝑎𝑘
𝑟𝜉|𝑎𝑘

𝑟𝜉)

=∑∑ 

𝑟

𝑛

𝑘=1

(𝑎𝑘
∗𝑟𝑓𝑟(𝑥𝑘)𝑎𝑘

𝑟𝜉|𝜉),                                                             (57) 

where we used (56) and the convexity of 𝑓𝑟 – in form of the usual Jensen inequality – to get 

the inequality in (57). The result in (54) now follows by summing over an orthonormal basis 

of eigenvectors for 𝑦.  

Conversely, if (54) holds for some pair of natural numbers n, m, where 𝑛 > 1, then taking 

𝑎𝑖
𝑟 = 0 for 𝑖 ≥ 2 we see that the inequality holds for n=2. Given 𝑠, 𝑡 in I and 𝜆𝑟 in [0, 1] we 

define 𝑥 = 𝑠1𝑚 and 𝑦 = 𝑡1𝑚 in 𝕄𝑚(ℂ). Then with 𝑎𝑟 = 𝜆𝑟

1

21𝑚 and 𝑏𝑟 = (1 − 𝜆𝑟)
1

21𝑚 we 

get by (54) that  

∑ 

𝑟

𝑚𝑓𝑟(𝜆𝑟𝑥 + (1 − 𝜆𝑟)𝑡) =∑ 

𝑟

𝑇𝑟(𝑓𝑟(𝜆𝑟𝑥 + (1 − 𝜆𝑟)𝑡)1𝑚)

=∑ 

𝑟

𝑇𝑟(𝑓𝑟(𝑎
∗𝑟𝑥𝑎𝑟 + 𝑏∗𝑟𝑦𝑏𝑟)) ≤∑ 

𝑟

𝑇𝑟(𝑎∗𝑟𝑓𝑟(𝑥)𝑎
𝑟 + 𝑏∗𝑟𝑓𝑟(𝑦)𝑏

𝑟)

=∑ 

𝑟

𝑇𝑟 ((𝜆𝑟𝑓𝑟(𝑠) + (1 − 𝜆𝑟)𝑓𝑟(𝑡))1𝑚)

=∑ 

𝑟

𝑚(𝜆𝑟𝑓𝑟(𝑠) + (1 − 𝜆𝑟)𝑓𝑟(𝑡)),                                                                 (58) 

which shows that 𝑓𝑟 is convex.  

Corollary (1.1.15)[288]: Let (𝑥𝑡)𝑡∈𝑇 be a bounded, continuous field on a locally compact 

Hausdorff space T consisting of self-adjoint elements in a 𝐶∗−algebra 𝒜 with sp(𝑥𝑡) ⊂ 𝐼. 
Furthermore, let (𝑎𝑡

𝑟)𝑡∈𝑇 be a unital column field in 𝑀(𝒜) with respect to some Radon 

measure µ on T. Then for each continuous, convex functions 𝑓𝑟 defined on I and every 

positive functional 𝜑 that contains the element 𝑦 = ∫ ∑  𝑟𝑇
𝑎𝑡
∗𝑟𝑥𝑡𝑎𝑡

𝑟𝑑µ(𝑡) in its centralizer 

𝒜𝜑, i.e. 𝜑(𝑥𝑦) = 𝜑(𝑦𝑥) for all 𝑥 in 𝒜, we have the inequality: 
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𝜑(∑ 

𝑟

𝑓𝑟 (∫ 
𝑇

𝑎𝑡
∗𝑟𝑥𝑡𝑎𝑡

𝑟  𝑑µ(𝑡))) ≤ 𝜑(∫∑ 

𝑟𝑇

𝑎𝑡
∗𝑟𝑓𝑟(𝑥𝑡)𝑎𝑡

𝑟𝑑µ(𝑡)).             (59) 

If φ is unbounded, but lower semi-continuous on 𝒜+ and finite on the minimal dense ideal 

𝐾(𝒜) of 𝒜, the result still holds if 𝑓𝑟 ≥ 0, even though the function may now attain infinite 

values.  

Proof. Let 𝐶 = 𝐶𝑜(𝑆) denote the commutative 𝐶∗−subalgebra of 𝒜 generated by 𝑦, and let 

µ𝜑 be the finite Radon measure on the locally compact Hausdorff space S defined, via the 

Riesz representation theorem, by  

∫ 
𝑆

𝑧(𝑠)𝑑µ𝜑(𝑠) = 𝜑(𝑧)               𝑧 ∈ 𝐶 = 𝐶𝑜(𝑆).                   (60) 

Since for all (𝑥, 𝑧) in 𝑀(𝒜)+  ×  𝐶+ we have 𝜑(𝑥𝑧) = 𝜑 (𝑧
1

2𝑥𝑧
1

2) it follows that  

0 ≤ 𝜑(𝑥𝑧) ≤ ‖𝑥‖𝜑(𝑧).                                         (61) 
Consequently the functional 𝑧 → 𝜑(𝑥𝑧) on C defines a Radon measure on S dominated by 

a multible of µ𝜑, hence determined by a unique element Φ(x) in 𝐿µ𝜑
∞ (𝑆). By linearization 

this defines a conditional expectation 𝜑:𝑀(𝒜) → 𝐿µ𝜑
∞ (𝑆) (i.e. a positive, unital module 

map) such that  

∫ 
𝑆

𝑧(𝑠)𝛷(𝑥)(𝑠)𝑑µ𝜑(𝑠) = 𝜑(𝑧𝑥), 𝑧 ∈ 𝐶       𝑥 ∈ 𝑀(𝒜).            (62) 

Inherent in this formulation is the fact that if 𝑧 ∈ 𝐶 = 𝐶𝑜(𝑆), then Φ(z) is the natural image 

of z in 𝐿µ𝜑
∞ (𝑆). In particular, 𝑧(𝑠) = 𝛷(𝑧)(𝑠) for almost all s in S.  

Observe now that since the 𝐶∗−algebra 𝐶𝑜(𝐼) is separable, we can for almost every s in S 

define a Radon measure µ𝑠 on I by  

∫∑ 

𝑟𝐼

𝑔(𝜆𝑟)𝑑µ𝑠(𝜆𝑟) = 𝛷(∫∑ 

𝑟𝑇

𝑎𝑡
∗𝑟𝑔(𝑥𝑡)𝑎𝑡

𝑟𝑑µ(𝑡)) (𝑠)      𝑔 ∈ 𝐶(𝐼).           (63) 

As ∫ ∑  𝑟𝑇
𝑎𝑡
∗𝑟  𝑎𝑡

𝑟𝑑µ(𝑡) = 1, this is actually a probability measure. If we take 𝑔(𝜆𝑟) = 𝜆𝑟, 

then  

∫∑ 

𝑟𝐼

𝜆𝑟  𝑑µ𝑠(𝜆𝑟) = 𝛷(∫∑ 

𝑟𝑇

𝑎𝑡
∗𝑟𝑥𝑡𝑎𝑡

𝑟𝑑µ(𝑡)) (𝑠) = 𝛷(𝑦)(𝑠) = 𝑦(𝑠).          (64) 

Since 𝑦 ∈ 𝐶 we get by (64) and (63) – using also the convexity of 𝑓𝑟 in form of the standard 

Jensen inequality – that  

∑ 

𝑟

𝑓𝑟(𝑦)(𝑠) =∑ 

𝑟

𝑓𝑟(𝑦(𝑠)) =∑ 

𝑟

𝑓𝑟 (∫ 
𝐼

𝜆𝑟  𝑑µ𝑠(𝜆𝑟)) ≤ ∫∑ 

𝑟

𝑓𝑟(𝜆𝑟)𝑑µ𝑠(𝜆𝑟)

= 𝛷(∫∑ 

𝑟

𝑎𝑡
∗𝑟𝑓𝑟(𝑥𝑡)𝑎𝑡

𝑟𝑑µ(𝑡)) (𝑠).                                                         (65) 

Integrating over s, using (62), now gives the desired result: 
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∑ 

𝑟

𝜑(𝑓𝑟(𝑦)) = ∫∑ 

𝑟𝑆

𝑓𝑟(𝑦)(𝑠)𝑑µ𝜑(𝑠) ≤ ∫ 
𝑆

𝛷(∫∑ 

𝑟𝑇

𝑎𝑡
∗𝑟𝑓𝑟(𝑥𝑡)𝑎𝑡

𝑟𝑑µ(𝑡)) (𝑠)𝑑µ𝜑(𝑠)

= ∫ 
𝑇

∫∑𝛷(𝑎𝑡
∗𝑟𝑓𝑟(𝑥𝑡)𝑎𝑡

𝑟)(𝑠)𝑑µ𝜑(𝑠)𝑑µ(𝑡)

𝑟𝑆

= ∫∑𝜑(𝑎𝑡
∗𝑟𝑓𝑟(𝑥𝑡)𝑎𝑡

𝑟)𝑑µ(𝑡)

𝑟𝑇

= 𝜑(∫∑𝑎𝑡
∗𝑟𝑓𝑟(𝑥𝑡)𝑎𝑡

𝑟𝑑µ(𝑡)

𝑟𝑇

).                                                                    (66) 

Having proved the finite case, let us now assume that 𝜑 is unbounded, but lower semi-

continuous on 𝒜+ and finite on the minimal dense ideal 𝐾(𝒜) of 𝒜. This – by definition – 

means that 𝜑(𝑥) < ∞ if 𝑥 ∈ 𝒜+ and 𝑥 = 𝑥𝑒 for some e in 𝒜+, because 𝐾(𝒜) is the 

hereditary ∗−subalgebra of 𝒜 generated by such elements, cf. [18]. Restricting φ to C we 

therefore obtain a unique Radon measure µ𝜑 on S such that  

∫ 
𝑆

𝑧(𝑡)𝑑µ𝜑(𝑡) = 𝜑(𝑧)         𝑦 ∈ 𝐶.                                 (67) 

Inspection of the proof above now shows that the Jensen trace inequality still holds if only 

𝑓𝑟 ≥ 0, even though ∞ may now occur in the inequality. 

Corollary (1.1.16)[288]: (Jensen’s Trace Inequality for 𝐶∗−Algebras).  

Let 𝑓𝑟 be a convex, continuous functions defined on an interval I and let 𝒜 be a 𝐶∗−algebra 

with a finite trace τ. Then the inequality  

𝜏 (∑ 

𝑟

𝑓𝑟 (∑ 

𝑛

𝑖=1

𝑎𝑖
∗𝑟𝑥𝑖𝑎𝑖

𝑟)) ≤ 𝜏 (∑∑ 

𝑟

𝑛

𝑖=1

𝑎𝑖
∗𝑟𝑓𝑟(𝑥𝑖)𝑎𝑖

𝑟)   

is valid for every n−tuple (𝑥1, . . . , 𝑥𝑛) of self-adjoint elements in 𝒜 with spectra contained 

in I and every n−tuple (𝑎1
𝑟 , . . . , 𝑎𝑛

𝑟) in 𝒜 with ∑ ∑  𝑟
𝑛
𝑘=1 𝑎𝑘

∗𝑟𝑎𝑘
𝑟 = 1. 

Proof. Evidently this (like Corollary (1.1.14)) is a special case of Corollary (1.1.15), where 

the continuous field is replaced by a finite sum and the functional φ is a trace, so that 𝒜𝜑 =
𝒜. 

Section (1.2): Spectral Order and Submajorization 

Jensen’s inequality is the continuous version of the usual definition of convex 

function and it can be stated in the following way: let 𝐼 be an open interval and 𝑓: 𝐼 → ℝ a 

convex map. Then, for every probability space (𝑋, 𝑃) and every integrable map 𝑔: 𝑋 → 𝐼, 

𝑓 (∫ 𝑔
𝑋

𝑑𝑃) ≤ ∫ 𝑓
𝑋

o𝑔𝑑𝑃. 

the context of 𝐶∗‐algebras the simplest generalization of Jensen’s inequality can be made by 

taking a state (ℓ and a selfadjoint element 𝑎 of a 𝐶∗‐algebra 𝐴 such that 𝜎(𝑎) ⊆ 𝐼. In this 

case, 

𝑓(𝜙(𝑎)) ≤ 𝜙(𝑓(𝑎)) ,                                                       (68) 

because the state 𝜙 restricted to the 𝐶∗‐algebra generated by 𝑎 can be represented as an 

integral with respect to a probability measure. If one replaces 𝜙 by a unital positive map 

between two 𝐶∗‐algebras, inequality (68) is only true for operator convex functions 𝑓, as 

one can prove from the well‐known characterizations of operator convexity (see [26], [27], 

[29], [1]), using the Stinespring’s theorems. Previous works on the matter, such as Brown‐
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Kosaki [4] and Hansen‐Pedersen [1] suggest the idea of studying Jensen’s type inequalities 

with respect to other preorders, such as the spectral order and submajorization  in order to 

consider convex (but not operator convex) functions. 

We study different Jensen’s type inequalities for a positive (unital) map between two 𝐶∗‐
algebras, with respect to the above mentioned preorders. We mention the main results, 

which are stated. Let 𝐴, ℬ be unital 𝐶∗‐algebras, 𝜑:𝐴 → ℬ a positive unital map, 𝑓 a convex 

function defined on an open interval 𝐼 and 𝑎 ∈ 𝐴, such that 𝑎 = 𝑎∗ and 𝜎(𝑎) ⊆ 𝐼. 

(i) If 𝑓 is monotone and ℬ is a von Neumann algebra, then 

𝑓(𝜑(𝑎)) ≤ 𝜑(𝑓(𝑎)) (spectral preorder). 

(ii) If ℬ is abelian or, more generally, if 𝜑(𝑓(𝑎)) and 𝜑(𝑎) commute, then 

(iii) If ℬ a finite factor, then 𝑓(𝜑(𝑎)) <𝑤 𝜑(𝑓(𝑎)) (submajorization). 

𝑓(𝜑(𝑎)) ≤ 𝜑(𝑓(𝑎)) . 

We remark that all these inequalities still hold for contractive positive maps, under the 

assumption that 0 ∈ 𝐼 and 𝑓(0) ≤ 0 we briefly describe the multi‐variable functional 

calculus and obtain similar results to those by using essentially the same techniques. we 

apply the results obtained to the finite dimensional case, where there exist fairly simple 

expressions for the spectral preorder and for the submajorization. Several results were 

included in a Los Alamos preprint version in 2004 (see [23]). Since then, some related 

results have appeared; for example [24], which has some overlap with or [29], [32], where 

our results for finite factors are applied. 

For𝐴 be a 𝐶∗‐algebra. 𝐴𝑠𝑎 denotes the real vector space of selfadjoint elements of 𝐴, 

𝐴+ the cone of positive elements, G1(𝐴) the group of invertible elements of 𝐴 and 𝑈(𝐴) its 

unitary group. We also assume that all the 𝐶∗‐algebras in consideration are unital. Given a 

Hilbert space ℋ, we denote by 𝐿(ℋ) the algebra of all bounded linear operators on ℋ. The 

range of 𝑐 ∈ 𝐿(ℋ) will be denoted by (𝑐) , its null space by ker𝑐 and its spectrum by 𝜎(𝑐) 

. If 𝑝, 𝑞 ∈ 𝐿(ℋ) are orthogonal projections, we denote by 𝑝 ∧ 𝑞 (respectively 𝑝 ∨ 𝑞) the 

orthogonal projection onto of their ranges (respectively the closed subspace generated by 

their ranges). 

In what follows 𝐸𝑎[𝐼] denotes the spectral projection of a self‐adjoint operator 𝑎 in a 

von Neumann algebra 𝐴, corresponding to a (Borel) subset 𝐼 ⊆ ℝ. Let us recall the notion 

of spectral preorder. 

Definition (1.2.1)[22]: Let 𝐴 be a von Neumann algebra. Given 𝑎, 𝑏 ∈ 𝐴𝑠𝑎 , we say that 

𝑎 < 𝑏 ∼ if 𝐸𝑎[(𝛼,+∞)] is equivalent, in the sense of Murray‐von Neumann, to a 

subprojection of 𝐸𝑏[(𝛼, +∞)] for every real number 𝛼. 
In finite factors the following result can be proved (see [4], [32]). 

Proposition (1.2.2)[22]: Let 𝐴 be a finite factor, with normalized trace tr. Given a, 𝑏 ∈ 𝒜𝑠𝑎, 

the following conditions are equivalent: 

(i) 𝑎 ≾ 𝑏. 

(ii) tr(𝑓(𝑎)) ≤ tr(𝑓(𝑏)) for every continuous increasing function 𝑓 defined on an interval 

containing both 𝜎(𝑎) and 𝜎(𝑏) . 

(iii) There exists a sequence {𝑢𝑛} in 𝒰(𝒜) such that 𝑢𝑛𝑏𝑢𝑛
∗𝑛 → ∞⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑐 and 𝑐 ≥ 𝑎. 
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Finally, Eizaburo Kamei defined the notion of majorization and submajorization in finite 

factors (see [31]): 

Definition (1.2.3)[22]: Let 𝒜 be a finite factor with normalized trace tr. Given 𝑎, 𝑏 ∈ 𝒜𝑠𝑎 

, we say that 𝑎 is submajorized by 𝑏, and denote 𝑎 <𝑤 𝑏, if the inequality 

∫ 𝑒𝑎

𝛼

0

(𝑡)𝑑𝑡 ≤ 𝑙𝛼𝑏(𝑡)𝑑𝑡0𝑒 

holds for every real number 𝛼, where 𝑒𝑐(𝑡) =  inf {𝛾: tr(𝐸𝑐[(𝛾,∞)]) ≤ 𝑡} for 𝑐 ∈ 𝒜𝑠𝑎. An 

equivalent condition (see [30]) is that 

 sup {tr(𝑎𝑝): 𝑝 ∈ 𝒫𝑘} ≤  sup {tr(𝑏𝑝): 𝑝 ∈ 𝒫𝑘} , 0 ≤ 𝑘 ≤ 1, 

where 𝒫𝑘 ={𝑝 ∈ 𝒜𝑠𝑎: 𝑝
2 = 𝑝 and tr 𝑝 = 𝑘}. We say that 𝑎 is majorized by 𝑏 (and denote 

𝑎 < 𝑏) if 𝑎 <𝑤 𝑏 and tr(𝑎) = tr(𝑏) . 
The following characterization of submajorization also appears in [31]. 

Proposition (1.2.4)[22]: Let 𝐴 be a finite factor with normalized trace tr. Given , 𝑏 ∈ 𝒜𝑠𝑎, 

the following conditions are equivalent: 

(i) 𝑎 <𝑤 𝑏. 

(ii) tr(𝑔(𝑎)) ≤ tr(𝑔(𝑏)) for every non‐decreasing convexfunction 𝑔 defined on an interval 

containing both 𝜎(𝑎) and 𝜎(𝑏) . 

Throughout 𝜑 is a positive unital map from a 𝐶∗‐algebra 𝐴 to another 𝐶∗‐algebra ℬ, 

𝑓 ∶  𝐼 → ℝ is a convex function defined on an open interval 𝐼 and 𝑎 ∈ 𝒜𝑠𝑎 whose spectrum 

lies in 𝐼. Note that the spectrum of 𝜑(𝑎) is also contained in 𝐼. As we mentioned we cannot 

expect a Jensen’s type inequality of the form 

𝑓(𝜑(𝑎)) ≤ 𝜑(𝑓(𝑎))                         (69) 

for an arbitrary convex function 𝑓 without other assumptions. This is the reason why, in 

order to study inequalities similar to (ii) for different subsets of convex functions, we shall 

use the spectral and submajorization (pre)orders, or we shall change the hypothesis made 

over ℬ. Although most of the inequalities considered involve unital positive maps, similar 

results can be obtained for contractive positive maps by adding some extra hypothesis on 𝑓. 
We shall consider monotone convex and concave functions. The following result, due 

to Brown and Kosaki [4], indicates that the appropriate order relation for this class of 

functions is the spectral preorder. Let 𝒜 be a semi‐finite von Neumann algebra, and let 𝑣 ∈

𝒜 be a contraction; then, for every positive operator 𝑎 ∈ 𝒜 and every continuous monotone 

convex function 𝑓 defined in [0,+∞) such that 𝑓(0) = 0, it holds that 

𝑣∗𝑓(𝑎)𝑣 ≾ 𝑓(𝑣∗𝑎𝑣) . 
The following statement is an analogue of Brown and Kosaki’s result, in terms of positive 

unital maps and monotone convex functions. The proof we give below follows essentially 

the same lines as that in [4]. 

Theorem (1.2.5)[22]: If ℬ is a von Neumann algebra, and 𝑓 is monotone convex, then 

𝑓(𝜑(𝑎)) ≾ 𝜑(𝑓(𝑎)) .                                             (70) 

Proof. Given 𝛼 ∈ ℝ, denote by {𝑓 > 𝛼} = {𝑡 ∈ ℝ: 𝑓(𝑡) > 𝛼}. We shall prove that there 

exists a projection 𝑞𝛼 ∈ 𝐴 such that 

𝐸𝑓(𝜑(𝑎))[(𝛼,+∞)] = 𝐸𝜑(𝑎)[{𝑓 > 𝛼}] ∼ 𝑞𝛼 ≤ 𝐸𝜑(𝑓(𝑎))[(𝛼, +∞)]. 
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We claim that 𝐸𝜑(𝑎)[{𝑓 > 𝛼}] ∧ 𝐸𝜑(𝑓(𝑎))[(−∞, 𝛼]] = 0. Consider a unit vector 𝜂 ∈

𝑅(𝐸𝜑(𝑎)[{𝑓 > 𝛼}]) . Since 𝑓 is monotone we have that 𝛼 < 𝑓(〈𝜑(𝑎)𝜂, 𝜂〉) and, using 

Jensen’s inequality for states, Eq. (68), we get 𝛼 < 〈𝜑(𝑓(𝑎))𝜂, 𝜂〉. On the other hand, if 𝜉 ∈

𝑅(𝐸𝜑(𝑓(𝑎))[(−∞,𝛼]]) is a unit vector, then ≥ 〈𝜑(𝑓(𝑎))𝜉 , 𝜉〉. So, using Kaplansky’s 

formula, we have 

𝐸𝑓(𝜑(𝑎))[(𝛼,+∞)] = 𝐸𝑓(𝜑(𝑎))[(𝛼, +∞)] − (𝐸𝑓(𝜑(𝑎))[(𝛼, +∞)] ∧ 𝐸𝜑(𝑓(𝑎))[(−∞, 𝛼]]) 

∼ (𝐸𝑓(𝜑(𝑎))[(𝛼,+∞)] ∨ 𝐸𝜑(𝑓(𝑎))[(−∞,𝛼]]) − 𝐸𝜑(𝑓(𝑎))[(−∞, 𝛼]] 

≤ 𝐼 − 𝐸𝜑(𝑓(𝑎))[(−∞, 𝛼]] = 𝐸𝜑(𝑓(𝑎))[(𝛼, +∞)].  

If 𝜑(𝑎) and 𝜑(𝑓(𝑎)) are compact operators and 𝑓(0) = 0, Theorem (1.2.5) can be 

rephrased in terms of the following interpretation of the spectral order: 

Proposition (1.2.6)[22]: Let ℋ be a Hilbert space. Let a, 𝑏 ∈ 𝐿(ℋ)+𝑏𝑒 compact operators, 

and {𝜆𝑛}𝑛≤𝑁 (respectively {𝜇𝑛}𝑛≤𝑀) the decreasing sequence of positive eigenvalues of 𝑎 

(respectively 𝑏), counted with multiplicity (𝑁,𝑀 ∈ ℕU{∞}) . Suppose that 𝑎 ≾ 𝑏. Then 

(i) 𝜆𝑚 ≤ 𝜇𝑚 for every 𝑚 ≤  min {𝑁,𝑀}. 

(ii) There exists a partial isometry 𝑢 ∈ 𝐿(ℋ) with initial space 𝑅(𝑎) such that, if 𝑐 =

𝑢𝑎𝑢∗, 𝑐 ≤ 𝑏 and 𝑐𝑏 = 𝑏𝑐. 

Moreover, if  dim (ℋ) < ∞, then (ii) holds for 𝑎, 𝑏 ∈ 𝐿(ℋ)𝑠𝑎, for some 𝑢 ∈ 𝑢(ℋ) . 

Proof. Given 𝛼 > 0, let 𝑛𝛼 =  max {𝑚 ≤ 𝑁: 𝜆𝑚 > 𝛼} and 𝑚𝛼 =  max {𝑚 ≤ 𝑀: 𝜇𝑚 > 𝛼} 

(we take 𝑛𝛼 = 0 if 𝛼 ≥ ‖𝑎‖ and similarly for 𝑚𝛼). By hypothesis 

𝑛𝛼 = tr𝐸𝑎[(𝛼,+∞)] ≤ tr𝐸𝑏[(𝛼,+∞)] = 𝑚𝛼 . 
Taking 𝛼 = 𝜆𝑚 − 𝜀 (for every 0 < 𝜀 < 𝜆𝑚), one deduces that 𝜆𝑚 ≤ 𝜇𝑚. Let {𝜉𝑛}𝑛≤𝑁 be an 

orthonormal basis of 𝑅(𝑎) of eigenvectors associated to the sequence {𝜆𝑛}𝑛≤𝑁 of 𝑎. Define 

in a similar way, {𝜂𝑚}𝑚≤𝑀 associated to {𝜇𝑚}𝑚≤𝑀 for 𝑏. Consider the isometry 𝑢: 𝑅(𝑎) →

𝑅(𝑏), given by (𝜉𝑛) = 𝜂𝑛 , 𝑛 ≤ 𝑁, and extend 𝑢 to a partial isometry with ker𝑢 =kera. Let 

𝑐 = 𝑢𝑎𝑢∗. Then 𝑐𝑏 = 𝑏𝑐 and 𝑐 ≤ 𝑏, since {𝜂𝑚}𝑚≤𝑁 is an orthonormal basis of 𝑅(𝑐) of 

eigenvectors associated to {𝜆𝑛}𝑛≤𝑁. If  dim ℋ = 𝑛 < ∞ and  , 𝑏 ∈ 𝐿(ℋ)𝑠𝑎 , we can include 

the eventual nonpositive eigenvalues to the previous argument, getting orthonormal basis of 

ℋ, so that 𝑢 becomes unitary.  

Example (1.2.7)[22]: Let 𝐵 = {𝜉𝑛}𝑛∈ℕ be an orthonormal basis of the separable Hilbert 

space ℋ and let 𝑏 ∈ 𝐿(ℋ)+ be the diagonal operator (w.r. t. 𝐵) with diagonal {2−𝑛}𝑛∈ℕ. If 

𝑠 is the backward shift (w.r. t. 𝐵), let 𝑎 = 𝑠∗𝑏𝑠, i.e. 𝑎𝜉1 = 0 and 𝑎𝜉𝑛 = 2
𝑛−1𝜉𝑛 for 𝑛 ≥ 2. 

Then, 𝑎 ≺ 𝑏 ∼ because tr[𝐸𝑎(𝜆,∞)] = tr[𝐸𝑏(𝜆,∞)] for every 𝜆 ≥ 0. Suppose that there 

exists an isometry 𝑣 ∈ 𝐿(ℋ) such that 𝑣∗𝑏𝑣 ≥ 𝑎. Then 

(𝑏𝑣(𝜉2), 𝑣(𝜉2)) ≥ {𝑎(𝜉2), 𝑎(𝜉2)) =
1

2
 ⇒  v(𝜉2) = 𝜉1. 

Similarly, using that 𝑣 is an isometry, it can proved that 𝑣(𝜉𝑛) = 𝜉𝑛−1 for every 𝑛 ≥ 2. 

Therefore, 𝑣 = 𝑠 which is not an isometry. 

The following example, due to J.S. Aujla and 𝛤. C. Silva [25], shows that Theorem 

(1.2.5) may be false if the function 𝑓 is not monotone. 

Example (1.2.8)[22]: Consider the positive map 𝜑:ℳ4 →ℳ2 given by 
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𝜑 (
𝐴11 𝐴12
𝐴21 𝐴22

) =
𝐴11 + 𝐴22

2
. 

Take 𝑓(𝑡) = |𝑡| and let 𝐴 be the following matrix 

𝐴 =  

Then 

𝜑(𝑓(𝐴)) = (
3/2 1/2
1/2 1/2

)  and f(𝜑(𝐴)) = (
1/√2 0

0 1/√2
). 

Therefore 

𝑟𝑎𝑛𝑘 (𝐸𝜑(𝑓(𝐴))[(0.5, +∞)]) = 1 < 2 =  𝑟𝑎𝑛𝑘 (𝐸𝑓(𝜑(𝐴))[(0.5,+∞)]) . 

A Jensen’s type inequality holds with respect to the usual order for every convex function, 

if the map 𝜑 takes values in a commutative algebra ℬ. 

Proposition (1.2.9)[22]: If ℬ is abelian, then (𝜑(𝑎)) ≤ 𝜑(𝑓(𝑎)) . 

Proof. For every character 𝛤 of the algebra 𝐵, 𝛤 ∘ 𝜑 is a state over the 𝐶∗‐algebra 𝐴. Thus, 

using Eq. (i) (Jensen’s inequality for states), (𝑓(𝜑(𝑎))) = 𝑓 (𝛤(𝜑(𝑎))) ≤ 𝛤 (𝜑(𝑓(𝑎))) .  

Now, we shall prove a Jensen inequality for arbitrary convex functions, with respect to the 

submajorization (pre)order. 

Lemma (1.2.10)[22]: Let tr be a trace defined on ℬ, and let 𝑏 ∈ ℬ. Then, there exist a Borel 

measure 𝜇 defined on 𝛼(𝑏) and a positive unital linear map 𝛹:ℬ → 𝐿∞(𝜎(𝑏), 𝜇) such that: 

(i) (𝑓(𝑏)) = 𝑓 for 𝑒𝑣𝑒𝑟𝑦 𝑓 ∈ 𝐶(𝜎(𝑏)) . 

(ii) tr(𝑥) = ∫ 𝛹
𝜎(𝑏)

(𝑥)(𝑡)𝑑𝜇(𝑡) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ ℬ. 

Proof. First of all, note that for every continuous function 𝑔 defined on the spectrum of 𝑏, 

the map 

𝑔 → tr(𝑔(𝑏)) 

is a bounded linear functional on 𝐶(𝜎(𝑏)) . Therefore, by the Riesz’s representation 

theorem, there exists a Borel measure 𝜇 defined on the Borel subsets of (𝑏) , such that for 

every continuous function 𝑔 on 𝜎(𝑏) , 

tr(𝑔(𝑏)) = ∫ 𝑔
𝜎(𝑏)

(𝑡)𝑑𝜇(𝑡) . 

Now, given 𝑥 ∈ ℬ+, define the following functional on 𝐶(𝜎(𝑏)) : 

𝑔 → tr(𝑥𝑔(𝑏)) . 

Since for every 𝑦 ∈ ℬ+, tr(𝑥𝑦) = tr(𝑦1/2𝑥𝑦1/2) ≤ ‖𝑥‖tr(𝑦) , this functional is not only 

bounded but also dominated by the functional defined before. So, there exists an element ℎ𝑋 

of 𝐿∞(𝜎(𝑏), 𝜇) such that, for every ∈ 𝐶(𝜎(𝑏)) , 

tr(𝑥𝑔(𝑏)) = ∫ 𝑔
𝜎(𝑏)

(𝑡)ℎ𝑥(𝑡)𝑑𝜇(𝑡) . 

The map ↦ ℎ𝑥 , extended by linearization, defines a positive unital linear map 𝛹:ℬ →

𝐿∞(𝜎(𝑏), 𝜇) which satisfies conditions (i) and (ii) because 
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tr(𝑓(𝑏)𝑔(𝑏)) = tr(𝑓𝑔(𝑏)) = ∫ 𝑔
𝛼(𝑏)

(𝑡)𝑓(𝑡)𝑑𝜇(𝑡) 𝑎𝑛𝑑 

tr(𝑥) = tr(𝑥1(𝑏)) = ∫ 1
𝜎(𝑏)

𝛹(𝑥)(𝑡)𝑑𝜇(𝑡) = ∫ 𝛹
𝜎(𝑏)

(𝑥)(𝑡)𝑑𝜇(𝑡) .  

Theorem (1.2.11)[22]: Suppose that ℬ is a finite factor. Then 

In order to prove this theorem, we need the following lemma. 

𝑓(𝜑(𝑎)) <𝑤 𝜑(𝑓(𝑎)) .                                                   (71) 

Proof. By Proposition (1.2.4), it is enough to prove that 

tr [𝑔 (𝑓(𝜑(𝑎)))] ≤ tr [𝑔 (𝜑(𝑓(𝑎)))] 

for every non‐decreasing convex function 𝑔 such that 𝑔 (𝑓(𝜑(𝑎))) and 𝑔 (𝜑(𝑓(𝑎))) are 

well defined. Fix such a function 𝑔. Let 𝛹:ℬ → 𝐿∞(𝜎(𝑏), 𝜇) be the positive unital linear 

map given by Lemma (1.2.10) for = 𝜑(𝑎) . Define the map 

𝛷:𝐶(𝜎(𝑎)) → 𝐿∞(𝜎(𝑏), 𝜇) 𝑏𝑦 𝛷(ℎ) = 𝛹 (𝜑(ℎ(𝑎))) . 

Then, 𝛷 is bounded, unital and positive. Moreover, given ℎ ∈ 𝐶(𝜎(𝑎)) , 

tr (𝜑(ℎ(𝑎))) = ∫ 𝛹
𝜎(𝑏)

(𝜑(ℎ(𝑎))) (𝑡)𝑑𝜇(𝑡) = ∫ 𝛷
𝜎(𝑏)

(ℎ)(𝑡)𝑑𝜇(𝑡) . 

Then, using Proposition (1.2.9) and the fact that 𝑔 is non‐decreasing, 

tr(𝑔[𝑓(𝜑(𝑎))]) = tr(𝑔o𝑓(𝑏)) = ∫ 𝑔
𝜎(𝑏)

o𝑓(𝑡)𝑑𝜇(𝑡) = ∫ 𝑔
𝜎(𝑏)

[𝑓(𝛷(𝐼𝑑))] 𝑑𝜇(𝑡) 

≤ ∫ 𝑔
𝜎(𝑏)

[𝛷(𝑓)(𝑡)]𝑑𝜇(𝑡) = ∫ 𝑔
𝜎(𝑏)

[𝛹 (𝜑(𝑓(𝑎))) (𝑡)] 𝑑𝜇(𝑡) 

≤ ∫ 𝛹
𝜎(𝑏)

(𝑔[𝜑(𝑓(𝑎))])(𝑡)𝑑𝜇(𝑡) = tr(𝑔[𝜑(𝑓(𝑎))]) , 

which completes the proof.  

Remark (1.2.12)[22]: Let 𝐶 ⊆ 𝐵 be 𝐶∗‐algebras. A conditional expectation 8: 𝐵 → 𝐶 is a 

positive 𝐶‐linear projection from ℬ onto 𝐶 of norm 1. The centralizer of 8 is the 𝐶∗‐

subalgebra of ℬ defined by ℬℰ = {𝑏 ∈ 𝐵: ℰ(𝑏𝑎) = ℰ(𝑎𝑏), ∀𝑎 ∈ ℬ}. Following similar 

ideas as those in Lemma (1.2.10) and the proof of Theorem (1.2.11) it can be proved that, if 

𝜑(𝑎) belongs to ℬℰ , then 

ℰ(𝑔[𝑓(𝜑(𝑎))]) ≤ ℰ(𝑔[𝜑(𝑓(𝑎))])                          (72) 

for every non‐decreasing convex function 𝑔: 𝐽 → ℝ defined on some open interval 𝐽 such 

that 𝑓(𝐼) ⊆ 𝐽. This fact is similar to Hansen and Pedersen’s results obtained in [1]. 

We shall be concetned with the restatement, in the multi‐variable context, of several 

results obtained for related results, see [30], [33]. 

Let 𝒜 be a unital 𝐶∗‐algebra and let 𝑎1 , … , 𝑎𝑛 be mutually commuting elements of 

𝒜𝑠𝑎. If ℬ = 𝐶∗(𝑎1, … , 𝑎𝑛) denotes the unital 𝐶∗‐subalgebra of 𝒜 generated by these 

elements, then 𝐵 is abelian. So there exists a compact Hausdorff space 𝑋 such that 𝐵is ∗‐

isomorphic to (𝑋) . Actually 𝑋 is (up to homeomorphism) the space of characters of ℬ. 
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Recall that in the case of one operator ∈ 𝒜𝑠𝑎 , 𝑋 is homeomorphic to 𝜎(𝑎) . In general, 

characters of the algebra ℬ are associated in a continuous and injective way to 𝑛‐tuples 

(𝜆1 , 𝜆𝑛) ∈ ∏ 𝜎𝑛
𝑖=1 (𝑎𝑖) by the correspondence ↦ (𝛾(𝑎1), … , 𝛾(𝑎𝑛)) . Thus 𝑋 is 

homeomorphic to its image under this map, which we calljoint spectrum and denote 

(𝑎1, … , 𝑎𝑛) . 

Let ∈ 𝐶(𝜎(𝑎1, … , 𝑎𝑛)) . Denote by (𝑎1, … , 𝑎𝑛) ∈ 𝐶
∗(𝑎1, … , 𝑎𝑛) , the element that 

corresponds to 𝑓 by the above ∗‐isomorphism. Note that by Tietze’s extension theorem we 

can consider functions defined on ∏ 𝜎𝑛
𝑖=1 (𝑎𝑖) ⊆ ℝ

𝑛 without loss of generality. Therefore 

the association 𝑓 ↦ 𝑓(𝑎1 , 𝑎𝑛) is a ∗‐homomorphism from 𝐶(∏ 𝜎𝑛
𝑖=1 (𝑎𝑖)) onto ℬ, which 

generalizes the functional calculus of one variable.  𝐶∗‐algebras and 𝜑:𝐴 → 𝐵 is a positive 

unital map. We fix 𝑈, an open convex subset of ℝ𝑛 , a convex function 𝑓:𝑈 → ℝ and a 

mutually commuting 𝑛‐tuple a = (𝑎1, … , 𝑎𝑛) ∈ 𝐴𝑠𝑎
𝑛  such that ∏ 𝜎𝑛

𝑖=1 (𝑎𝑖) ⊆ 𝑈. We denote 

�⃗� (a) = (𝜑(𝑎1), … , 𝜑(𝑎𝑛)) . 

Theorem (1.2.13)[22]: Suppose that 𝜑(𝑓(a)), 𝜑(𝑎1) , 𝜑(𝑎𝑛) are also mutually commuting. 

Then 

𝑓(𝜑(𝑎1), … , 𝜑(𝑎𝑛)) = 𝑓(�⃗� (a)) ≤ 𝜑(𝑓(a)) = 𝜑(𝑓(𝑎1, … , 𝑎𝑛)) .   (73) 

Moreover, if 0⃗ = (0,… , 0) ∈ 𝑈 and 𝑓(0⃗ ) ≤ 0 then Eq. (73) holds even if 𝜑 is positive 

contractive. 

Proof. Denote by ℬ̂the abelian 𝐶∗‐subalgebra of 𝐵 generated by 𝜑(𝑎1) , … , 𝜑(𝑎𝑛) and 

(𝑓(a)) . On the other hand, let {𝑓𝑖}𝑖≥1 be the linear functions given Since 𝑓 ≥ 𝑓𝑖(𝑖 ≥ 1) we 

have that 𝑓(a) ≥ 𝑓𝑖(a) and therefore 

𝜑(𝑓(a)) ≥ 𝜑(𝑓𝑖(a)) = 𝑓𝑖(�⃗� (a)) ,                         (74) 

where the last equality holds because 𝑓𝑖 is linear. As 𝑓𝑖(�⃗� (a)) ∈ ℬ̂ for every 𝑖 ≥ 1 and also 

𝜑(𝑓(a)) ∈ ℬ,̂  which is abelian, 

𝜑(𝑓(a)) ≥ max
l≤i≤n

  𝑓𝑖(�⃗� (a)) = (max
l≤i≤n

  𝑓𝑖) (�⃗� (a)) . 

Now, since max1≤𝑖≤𝑛𝑓𝑖 → 𝑛 → ∞⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑓 uniformly on compact sets, we can deduce from Dini’s 

theorem that (𝑓(a)) ≥ 𝑓(𝜑(a)) . If 𝜑 is contractive and 𝑓(0) ≤ 0, the functions 𝑓𝑖 also 

satisfy that 𝑓𝑖(0) ≤ 0 and we can replace Eq. (74) by 𝜑(𝑓(a)) ≥ 𝜑(𝑓𝑖(𝑎)) ≥ 𝑓𝑖(𝜑(𝑎)) . 

Then we can repeat the same argument to get the desired inequality.  

The following results are the multi‐variable versions of Lemma (1.2.10), Remark (1.2.12) 

and Theorem (1.2.11). The proofs of those results were chosen in such a way that they still 

hold in the multi‐variable case without substantial differences. 

Lemma (1.2.14)[22]: Let 𝜙 be a state defined on ℬ, and let b = (𝑏1, … , 𝑏𝑛) ∈ (ℬ
𝜙)
𝑛

 be an 

𝑛‐tuple with mutually commuting entries. Then, there exist a Borel measure 𝜇 defined on 𝐾 

: = 𝜎(b) and a positive unital linear map 𝛹:ℬ → 𝐿∞(𝐾, 𝜇) such that: 

(i) 𝛹(𝑓(b)) = 𝑓 for every 𝑓 ∈ 𝐶(𝐾) . 

(ii) 𝜙(𝑥) = ∫ 𝛹
𝐾

(𝑥)(𝑡)𝑑𝜇(𝑡) for every 𝑥 ∈ ℬ. 

Theorem (1.2.15)[22]: Let ℰ: 𝐵 → 𝐶 be a conditional expectation onto the 𝐶∗‐subalgebra 

C. If (a1) , … , 𝜑(𝑎𝑛) ∈ ℬ
ℰ and are mutually commuting, then 
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ℰ(𝑔[𝑓(�⃗� (a))]) ≤ ℰ(𝑔[𝜑(𝑓(a))])                         (75) 

for every convex increasing map 𝑔: 𝐽 → ℝ such that 𝑓(𝐼) ⊆ 𝐽. 

Theorem (1.2.16)[22]: If ℬ is a finite factor and (𝑎1) , … , 𝜑(𝑎𝑛) are mutually commuting, 

then 𝑓(�⃗� (a)) <𝑤 𝜑(𝑓(a)) . 

we rewrite the already obtained Jensen’s inequalities in the finite dimensional case. 

We use the notations ℳ𝑛 = 𝐿(ℂ
𝑛) , ℳ𝑛

𝑠𝑎 for the space of selfadjoint matrices, ℳ𝑛
+ for the 

cone of positive matrices and 𝒰(𝑛) the unitary group of ℳ𝑛. Given ∈ ℳ𝑛
𝑠𝑎 , by means of 

𝜆(𝐴) = (𝜆1(𝐴),… , 𝜆𝑛(𝐴)) we denote the eigenvalues of 𝐴 counted with multiplicity and 

arranged in non‐increasing order. Now, we recall the aspect of the spectral preorder and 

majorization in ℳ𝑛
𝑠𝑎 

(i) By Proposition (1.2.6), the following conditions are equivalent 

(a) 𝐴 ≾ 𝐵. 

(b) There is 𝑈 ∈ 𝑢(𝑛) such that (𝑈𝐴𝑈∗)𝐵 = 𝐵(𝑈𝐴𝑈∗) and 𝑈𝐴𝑈∗ ≤ 𝐵. 

(c) 𝜆𝑗(𝐴) ≤ 𝜆𝑖(𝐵)(1 ≤ 𝑖 ≤ 𝑛) . 

(ii) Straightforward calculations showthat,given aselfadjoint matrix C, the functions 

𝑒𝐶(𝑡) considered in the definition of majorization satisfy that 𝑒𝐶(𝑡) = 𝜆𝑘(𝐶) for 
𝑘−1

𝑛
≤ 𝑡 <

𝑘

𝑛
 , 1 ≤ 𝑘 ≤ 𝑛. Therefore, 𝐴 <𝑤 𝐵 if and only if 𝜆(𝐴) <𝑤 𝜆(𝐵) (as vectors). 

We summarize the different versions, in this setting, of Jensen’s inequality obtained  

Proposition (1.2.17)[22]: Let 𝐴 be an unital 𝐶∗‐algebra and 𝜑:𝒜 →ℳ𝑛 a positive unital 

map. Suppose that 𝑎 ∈ 𝒜𝑠𝑎 and  : 𝐼 → ℝ is afunction with 𝜎(𝑎) ⊆ 𝐼. 

(i) If 𝑓 is monotone convex, 𝜆𝑖 (𝑓(𝜑(𝑎))) ≤ 𝜆𝑖 (𝜑(𝑓(𝑎))) , for 1 ≤ 𝑖 ≤ 𝑛. 

(ii) If 𝑓 is convex, ∑ 𝜆𝑗
𝑘
𝑖=1 (𝑓(𝜑(𝑎))) ≤ ∑ 𝜆𝑖

𝑘
𝑖=1 (𝜑(𝑓(𝑎))) , 1 ≤ 𝑘 ≤ 𝑛. 

If 0 ∈ 𝐼 and 𝑓(0) ≤ 0 the above inequalities also hold for contractive positive maps. 

Example (1.2.18)[22]: Given two 𝑛 × 𝑛 matrices 𝐴 = (𝑎𝑖𝑗) and = (𝑏𝑖𝑗) , we denote 𝐴 ∘

𝐵 = (𝑎𝑖𝑗𝑏𝑖𝑗) their Schur’s product. It is a well‐known fact that the map 𝐴 ↦ 𝐴 ∘ 𝐵 is 

completely positive for each positive matrix 𝐵, and if we further assume that 𝐼 ∘ 𝐵 = 𝐼 then 

it is also unital. So the above inequalities can be rewritten taking 𝜑:ℳ𝑛 →ℳ𝑛 given by 

𝜑(𝐴) = 𝐴 ∘ 𝐵 where 𝐵 satisfies the mentioned properties (see also [24]). 

Example (1.2.19)[22]: Let 𝐴 ⊆ 𝐿(ℋ) be a 𝐶∗‐algebra. Take 𝜑:𝐴𝑟 →ℳ𝑛 given by 

(𝐴1, … , 𝐴𝑟) = ∑ 𝑊𝑖
∗𝑟

𝑖=1 𝐴𝑖𝑊𝑖 , where 𝑊1 , … . ,𝑊𝑟 ∈ 𝐿(ℂ
𝑛,ℋ) are bounded operators such 

that ∑ 𝑊𝑖
∗𝑟

𝑖=1 𝑊𝑖 = 𝐼. Since this map is positive, one can apply Proposition (1.2.17) to get 

new versions of the inequalities appearing in [27], [1].  
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Chapter 2 

Transformations and Orthogonality of Subspaces 

We extend Wigner result from the 1-dimensional case to the case of n-dimensional 

subspaces of 𝐻 with 𝑛 ∈ ℕ fixed. We show that this relation on the set of all non-isotropic 

k-subspaces can be used as a single primitive notion for metric-projective geometry 

provided that the polarity is not symplectic and 𝑛 ≠ 2𝑘 +  1. 

Section (2.1): Set of all 𝒏-Dimensional Subspaces of a Hilbert Space Preserving 

Principal Angles 

For 𝐻 be a (real or complex) Hilbert space and denote 𝐵(𝐻) the algebra of all bounded 

linear operators on 𝐻. By a projection we mean a self-adjoint idempotent in 𝐵(𝐻). For any 

𝑛 ∈ ℕ, 𝑃𝑛(𝐻) denotes the set of all rank-𝑛 projections on 𝐻, and 𝑃∞(𝐻) stands for the set of 

all infinite rank projections. Clearly, 𝑃𝑛(𝐻) can be identified with the set of all 𝑛-

dimensional subspaces of 𝐻. Wigner’s theorem describes the bijective trans-formations on 

the set ℒ of all 1-dimensional subspaces of H which preserve the angle between the elements 

of ℒ. It seems to be a very natural problem to try to extend this result from the 1-dimensional 

case to the case of higher dimensional subspaces (in [44], [45], [46] we have presented 

several other generalizations of Wigner’s theorem for different structures). But what about 

the angle between two higher dimensional subspaces of 𝐻? The most adequate concept of 

angles is that of the so-called principal angles (or canonical angles, in a different 

terminology). This concept is a generalization of the usual notion of angles between 1-

dimensional subspaces and reads as follows. If 𝑃,𝑄 are finite dimensional projections, then 

the principal angles between them (or, equivalently, between their ranges as subspaces) is 

defined as the arccos of the square root of the eigenvalues (counted according multiplicity) 

of the positive (self-adjoint) finite rank operator 𝑄𝑃 𝑄 (see, for example, [26] or [40]). We 

remark that this concept of angles was motivated by [36] of Jordan and it has serious 

applications in statistics, for example (see the canonical correlation theory of Hotelling [37], 

and also see the introduction of [42]). The system of all principal angles between 𝑃 an𝑑 𝑄 

is denoted by ∠(𝑃, 𝑄). Thus, we have the desired concept of angles between finite rank 

projections. But in what follows we would like to extend Wigner’s theorem also for the case 

of infinite rank projections. Therefore, we need the concept of principal angles also between 

infinite rank projections. Using deep concepts of operator theory (like scalar-valued spectral 

measure and multiplicity function) this could be carried out, but in order to formulate a 

Wigner-type result we need only the equality of angles. Hence, we can avoid these 

complications saying that for arbitrary projections 𝑃, 𝑄, 𝑃′, 𝑄′ on H we have ∠(𝑃, 𝑄) =
∠(𝑃′, 𝑄′) if and only if the positive operators QP Q and 𝑄′𝑃′𝑄′ are unitarily equivalent. 

This obviously generalizes the equality of principal angles between pairs of finite rank 

projection. 

Keeping in mind the formulation of Wigner’s theorem given we are now in a position to 

formulate the main result which, we believe, also has physical interpretation.  

Theorem (2.1.1)[34]: Let 𝑛 ∈ ℕ. Let H be a real or complex Hilbert space with dim 𝐻 ≥ 𝑛. 

Suppose that 𝜙:𝑃𝑛(𝐻) → 𝑃𝑛(𝐻) is a transformation with the property that  

∠(𝜙(𝑃),𝜙(𝑄)) = ∠(𝑃, 𝑄)                 (𝑃, 𝑄 ∈ 𝑃𝑛(𝐻)). 
If n=1 or 𝑛 ≠ 𝑑𝑖𝑚 𝐻/2, then there exists a linear or conjugate-linear isometry V on H such 

that  

𝜙(𝑃) = 𝑉 𝑃 𝑉∗         (𝑃 ∈ 𝑃𝑛(𝐻)). 
If H is infinite dimensional, the transformation 𝜙:𝑃∞(𝐻) → 𝑃∞(𝐻) satisfies  
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∠(ϕ(P), ϕ(Q)) = ∠(P, Q)      (P, Q ∈ P∞(H)), 
and ϕ is surjective, then there exists a unitary or antiunitary operator U on H such that  

𝜙(𝑃) = 𝑈𝑃 𝑈∗                    (𝑃 ∈ 𝑃∞(𝐻)). 
As one can suspect from the formulation of our main result, there is a system of exceptional 

cases, namely, when we have dim H = 2n, n > 1. we show that in those cases there do exist 

transformations on 𝑃𝑛(𝐻) which preserve the principal angles but cannot be written in the 

form appearing in Theorem (2.1.1) above.  

We devoted to the proof of Theorem (2.1.1). In fact, this will follow from the 

statements below.  

The idea of the proof can be summarized in a single sentence as follows. We extend our 

transformation from 𝑃𝑛(𝐻) to a Jordan homomorphism of the algebra F(H) of all finite rank 

operators on H which preserves the rank-1 operators. Fortunately, those maps turn to have 

a form and using this we can achieve the desired conclusion. On the other hand, quite 

unfortunately, we have to work hard to carry out all the details of the proof that we are just 

going to begin.  

Let H be a real or complex Hilbert space and let n ∈ ℕ. Since our statement obviously holds 

when dim H=n, hence we suppose that 𝑑𝑖𝑚 𝐻 > n. Let tr be the usual trace functional on 

operators. The ideal of all finite rank operators in B(H) is denoted by F(H). Clearly, every 

element of 𝐹(𝐻) has a finite trace. We denote by 𝐹𝑠(𝐻) the set of all self-adjoint elements 

of F(H).  

We begin with two key lemmas. In order to understand why we consider the property (1) in 

Lemma (2.1.2), we note that if ∠(𝑃, 𝑄) = ∠(𝑃′, 𝑄′) for some finite rank projections 

P, Q, P′, Q′, then, by definition, the positive operators QP Q and Q′P′Q′ are unitarily 

equivalent. This implies that tr QP Q = tr Q′P′Q′ . But, by the properties of the trace, we 

have tr QP Q = tr P QQ = tr P Q and, similarly, tr Q′P ′Q′ = tr P′Q′. So, if our 

transformation preserves the principal angles between projections, then it necessarily 

preserves the trace of the product of the projections in question. This justifies the condition 

(1) in the next lemma.  

Lemma (2.1.2)[34]: Let 𝒫 be any set of finite rank projections on H. If 𝜙:𝒫 → 𝒫 is a 

transformation with the property that  

𝑡𝑟 𝜙(𝑃)𝜙(𝑄) = 𝑡𝑟 𝑃 𝑄          (𝑃, 𝑄 ∈ 𝒫),                           (1) 
then ϕ has a unique real-linear extension Φ onto the real-linear span 𝑠𝑝𝑎𝑛ℝ𝒫 of 𝒫. The 

transformation Φ is injective, preserves the trace and satisfies  

𝑡𝑟 𝛷(𝐴)𝛷(𝐵) = 𝑡𝑟 𝐴𝐵            (𝐴, 𝐵 ∈ 𝑠𝑝𝑎𝑛ℝ𝒫).                 (2) 
Proof. For any finite sets {𝜆𝑖} ⊂ ℝ and {𝑃𝑖} ⊂ 𝒫 we define  

𝛷(∑ 

𝑖

𝜆𝑖𝑃𝑖) =∑ 

𝑖

𝜆𝑖𝜙(𝑃𝑖). 

We have to show that Φ is well-defined. If ∑  𝑖 𝜆𝑖𝑃𝑖 = ∑  𝑘 µ𝑘𝑄𝑘, where {µ𝑘} ⊂ ℝ and 
{𝑄𝑘} ⊂ 𝒫 are finite subsets, then for any 𝑅 ∈ 𝒫 we compute  
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𝑡𝑟 (∑ 

𝑖

𝜆𝑖𝜙(𝑃𝑖)𝜙(𝑅)) =∑ 

𝑖

𝜆𝑖𝑡𝑟(𝜙(𝑃𝑖)𝜙(𝑅)) =∑ 

𝑖

𝜆𝑖  𝑡𝑟(𝑃𝑖𝑅) = 𝑡𝑟 (∑ 

𝑖

𝜆𝑖𝑃𝑖𝑅)

= 𝑡𝑟 (∑ 

𝑘

µ𝑘𝑄𝑘𝑅) =∑ 

𝑘

µ𝑘𝑡𝑟(𝑄𝑘𝑅) =∑ 

𝑘

µ𝑘 𝑡𝑟(𝜙(𝑄𝑘)𝜙(𝑅))

= 𝑡𝑟 (∑ 

𝑘

µ𝑘𝜙(𝑄𝑘)𝜙(𝑅)). 

Therefore, we have  

𝑡𝑟 ((∑ 

𝑖

𝜆𝑖𝜙(𝑃𝑖) −∑ 

𝑘

µ𝑘𝜙(𝑄𝑘))𝜙(𝑅)) = 0 

for every 𝑅 ∈ 𝒫. By the linearity of the trace functional it follows that we have similar 

equality if we replace 𝜙(𝑅) by any finite linear combination of 𝜙(𝑅)’s. This gives us that  

𝑡𝑟 ((∑ 

𝑖

𝜆𝑖𝜙(𝑃𝑖) −∑ 

𝑘

µ𝑘𝜙(𝑄𝑘))(∑ 

𝑖

𝜆𝑖𝜙(𝑃𝑖) −∑ 

𝑘

µ𝑘𝜙(𝑄𝑘))) = 0. 

The operator (∑  𝑖 𝜆𝑖𝜙(𝑃𝑖) − ∑  𝑘 µ𝑘𝜙(𝑄𝑘))
2
, being the square of a self-adjoint operator, is 

positive. Since its trace is zero, we obtain that  

(∑ 

𝑖

𝜆𝑖𝜙(𝑃𝑖) −∑ 

𝑘

µ𝑘𝜙(𝑄𝑘))

2

= 0 

which plainly implies that  

∑ 

𝑖

𝜆𝑖𝜙(𝑃𝑖) −∑ 

𝑘

µ𝑘𝜙(𝑄𝑘) = 0. 

This shows that Φ is well-defined. The real-linearity of Φ now follows from the definition. 

The uniqueness of Φ is also trivial to see. From (1) we immediately obtain (2). One can 

introduce an inner product on 𝐹𝑠(𝐻) by the formula  

〈𝐴, 𝐵〉 = 𝑡𝑟 𝐴𝐵               (𝐴, 𝐵 ∈ 𝐹𝑠(𝐻)) 
(the norm induced by this inner product is called the Hilbert-Schmidt norm). The equality 

(2) shows that Φ is an isometry with respect to this norm. Thus, Φ is injective. It follows 

from (1) that  

𝑡𝑟 𝜙(𝑃) = 𝑡𝑟 𝜙(𝑃)2 = 𝑡𝑟 𝑃2 = 𝑡𝑟 𝑃          (𝑃 ∈ 𝒫) 
which clearly implies that  

𝑡𝑟 𝛷(𝐴) = 𝑡𝑟 𝐴             (𝐴 ∈ 𝑠𝑝𝑎𝑛ℝ𝒫). 
This completes the proof of the lemma.  
In what follows we need the concept of Jordan homomorphisms. If 𝒜 and ℬ are algebras, 

then a linear transformation 𝛹:𝒜 → ℛ is called a Jordan homomorphism if it satisfies  

𝛹(𝐴2) = 𝛹(𝐴)2           (𝐴 ∈ 𝒜), 
or, equivalently, if  

𝛹(𝐴𝐵 + 𝐵𝐴) = 𝛹(𝐴)𝛹(𝐵) + 𝛹(𝐵)𝛹(𝐴)             (𝐴, 𝐵 ∈ 𝒜). 
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Two projections P, Q on H are said to be orthogonal if 𝑃 𝑄 = 𝑄𝑃 = 0 (this means that the 

ranges of P and Q are orthogonal to each other). In this case we write 𝑃 ⊥ 𝑄. We denote 

𝑃 ≤ 𝑄 if 𝑃 𝑄 = 𝑄𝑃 = 𝑃 (this means that the range of P is included in the range of Q). In 

what follows, we shall use the following useful notation. If 𝑥, 𝑦 ∈ 𝐻, then 𝑥 ⊗ 𝑦 stands for 

the operator defined by  

(𝑥 ⊗ 𝑦)𝑧 = 〈𝑧, 𝑦〉𝑥            (𝑧 ∈ 𝐻). 
Lemma (2.1.3)[34]: Let 𝛷: 𝐹𝑠(𝐻) → 𝐹𝑠(𝐻) be a real-linear transformation which preserves 

the rank-1 projections and the orthogonality between them. Then there is an either linear or 

conjugate-linear isometry V on H such that  

𝛷(𝐴) = 𝑉 𝐴𝑉∗              (𝐴 ∈ 𝐹𝑠(𝐻)). 
Proof. Since every finite-rank projection is the finite sum of pairwise orthogonal rank-1 

projections, it is obvious that Φ preserves the finite-rank projections. It follows from [35] 

and the spectral theorem that Φ is a Jordan homomorphism (we note that [35] is about self-

adjoint operators on finite dimensional complex Hilbert spaces, but the same argument 

applies for 𝐹𝑠(𝐻) even if it is infinite dimensional and/or real).  

We next prove that Φ can be extended to a Jordan homomorphism of F(H). To see this, first 

suppose that H is complex and consider the transformation �̃�: 𝐹(𝐻) → 𝐹(𝐻) defined by  

�̃�(𝐴 + 𝑖𝐵) = 𝛷(𝐴) + 𝑖𝛷(𝐵)              (𝐴, 𝐵 ∈ 𝐹𝑠(𝐻)). 

It is easy to see that Φ is a linear transformation which satisfies �̃�(𝑇2) =

�̃�(𝑇)2(𝑇 ∈ 𝐹(𝐻)). This shows that �̃� is a Jordan homomorphism.  

If H is real, then the situation is not so simple, but we can apply a deep algebraic result of 

Martindale as follows (cf. the proof of [43]). Consider the unitalized algebra 𝐹(𝐻)⊕ ℝ𝐼 
(We have to add the identity only when H is infinite dimensional). Defining 𝛷(𝐼) = 𝐼, we 

can extend Φ to the set of all symmetric elements of the enlarged algebra in an obvious way. 

Now we are in a position to apply the results in [41] on the extendability of Jordan 

homomorphisms defined on the set of symmetric elements of a ring with involution. in [41] 

Jordan homomorphism means an additive map Ψ which, besides (𝑠2) = 𝛹(𝑠)2, also 

satisfies 𝛹(𝑠𝑡𝑠) = 𝛹(𝑠)𝛹(𝑡)𝛹(𝑠). But if the ring in question is 2-torsion free (in particular, 

if it is an algebra), this second equality follows from the first one (see, for example, the proof 

of [48]). The statements [41] in the case when dim H≥3 and [41] if dim H=2 imply that Φ 

can be uniquely extended to an associative homomorphism of 𝐹(𝐻)⊕ℝ𝐼 into itself. To be 

honest, since the results of Martindale concern rings and hence linearity does not appear, we 

could guarantee only the additivity of the extension of Φ. However, the construction in [41] 

shows that in the case of algebras, linear Jordan homomorphisms have linear extensions. 

In every case we have a Jordan homomorphism of F(H) extending Φ. We use the same 

symbol Φ for the extension as well.  

As F(H) is a locally matrix ring (every finite subset of F(H) can be included in a subalgebra 

of F(H) which is isomorphic to a full matrix algebra), it follows from a classical result of 

Jacobson and Rickart [39] that Φ can be written as 𝛷 = 𝛷1 +𝛷2, where 𝛷1 is a 

homomorphism and 𝛷2 is an antihomomorphism. Let P be a rank-1 projection on H. Since 

𝛷(𝑃) is also rank-1, we obtain that one of the idempotents 𝛷1(𝑃),𝛷2(𝑃) is zero. Since 

𝐹(𝐻) is a simple ring, it is easy to see that this implies that either 𝛷1 or 𝛷2 is identically 

zero, that is, Φ is either a homomorphism or an antihomomorphism of F(H). We can assume 

that Φ is a homomorphism. Since the kernel of Φ is an ideal in F(H) and F(H) is simple, we 

obtain that Φ is injective.  
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We show that Φ preserves the rank-1 operators. Let 𝐴 ∈ 𝐹(𝐻) be of rank 1. Then there is a 

rank-1 projection P such that P A=A. We have Φ(A)=Φ(P A)=Φ(P)Φ(A) which proves that 

Φ(A) is of rank at most 1. Since Φ is injective, we obtain that the rank of Φ(A) is exactly 1. 

From the conditions of the lemma it follows that ϕ sends rank-2 projections to rank-2 

projections. Therefore, the range of Φ contains an operator with rank greater than 1. We 

now refer to Hou’s work [38] on the form of linear rank preservers on operator algebras. It 

follows from the argument leading to [38] that either there are linear operators T, S on H 

such that Φ is of the form  

𝛷(𝑥 ⊗ 𝑦) = (𝑇𝑥)⊗ (𝑆𝑦)     (𝑥, 𝑦 ∈ 𝐻) 
or there are conjugate-linear operators 𝑇′ , 𝑆′ on H such that Φ is of the form  

𝛷(𝑥 ⊗ 𝑦) = (𝑆′𝑦)⊗ (𝑇′𝑥)                  (𝑥, 𝑦 ∈ 𝐻).               (3) 
Suppose that we have the first possibility. By the multiplicativity of Φ we obtain that  

〈𝑢, 𝑦〉𝑇𝑥 ⊗ 𝑆𝑣 = 〈𝑢, 𝑦〉𝛷(𝑥 ⊗ 𝑣) = 𝛷(𝑥 ⊗ 𝑦 · 𝑢 ⊗ 𝑣) 
= 𝛷(𝑥 ⊗ 𝑦)𝛷(𝑢 ⊗ 𝑣 ) = 〈𝑇 𝑢, 𝑆𝑦〉𝑇𝑥 ⊗ 𝑆𝑣.               (4) 

This gives us that 〈𝑇 𝑢, 𝑆𝑦〉 = 〈𝑢, 𝑦〉 for every 𝑢, 𝑦 ∈ 𝐻. On the other hand, since Φ sends 

rank-1 projections to rank-1 projections, we obtain that for every unit vector 𝑥 ∈ 𝐻 we have 

𝑇𝑥 = 𝑆𝑥. These imply that T=S is an isometry and with the notation V=T=S we have  

𝛷(𝐴) = 𝑉 𝐴𝑉∗ 
for every 𝐴 ∈ 𝐹𝑠(𝐻). 
We show that the possibility (3) cannot occur. In fact, similarly to (4) we have  

〈𝑢, 𝑦〉𝑆′𝑣 ⊗ 𝑇′𝑥 = 〈𝑆′𝑣, 𝑇′𝑥〉𝑆′𝑦⊗ 𝑇′𝑢                  (𝑥, 𝑦, 𝑢, 𝑣 ∈ 𝐻). 
Fixing unit vectors 𝑥 = 𝑦 = 𝑢 in H and considering the operators above at 𝑇′𝑥, we find that  

𝑆′𝑣 = 〈𝑆′𝑣, 𝑇′𝑥〉〈𝑇′𝑥, 𝑇′𝑢〉𝑆′𝑦 

giving us that 𝑆′ is of rank 1. Since Φ sends rank-2 projections to rank-2 projections, we 

arrive at a contradiction. This completes the proof of the lemma.  
We present a new proof of the nonsurjective version of Wigner’s theorem which is 

equivalent to the statement of Theorem (2.1.1) in the case when n=1. For another proof see 

[49].  

To begin, observe that if P, Q are finite rank projections such that 𝑡𝑟 𝑃 𝑄 = 0, then we have 

𝑡𝑟(𝑃 𝑄)∗𝑃𝑄 = 𝑡𝑟 𝑄𝑃𝑄 = 𝑡𝑟 𝑃 𝑄𝑄 = 𝑡𝑟 𝑃 𝑄 = 0 which implies that (𝑃 𝑄)∗(𝑃 𝑄) = 0. 

This gives us that 𝑃 𝑄 = 0 = 𝑄𝑃. Therefore, P is orthogonal to Q if and only if 𝑡𝑟 𝑃 𝑄 = 0. 

Theorem (2.1.4)[34]: Let 𝜙:𝑃1(𝐻) → 𝑃1(𝐻) be a transformation with the property that  

𝑡𝑟 𝜙(𝑃)𝜙(𝑄) = 𝑡𝑟 𝑃 𝑄 (𝑃, 𝑄 ∈ 𝑃1(𝐻)).                                     (5) 
Then there is an either linear or conjugate-linear isometry V on H such that  

𝜙(𝑃) = 𝑉 𝑃 𝑉∗                         (𝑃 ∈ 𝑃1(𝐻)). 
As for the cases when n>1 we need the following lemma. Recall that we have previously 

supposed that dim H>n. 

Lemma (2.1.5)[34]: Let 1 < 𝑛 ∈ ℕ. Then 𝑠𝑝𝑎𝑛ℝ𝑃𝑛(𝐻) coincides with 𝐹𝑠(𝐻). 
Proof. Since the real-linear span of 𝑃1(𝐻) is 𝐹𝑠(𝐻), it is sufficient to show that every rank-

1 projection is a real-linear combination of rank-n projections. To see this, choose 

orthonormal vectors 𝑒1, . . . , 𝑒𝑛+1 in H. Let 𝐸 = 𝑒1⊗𝑒1+. . . +𝑒𝑛 + 1⊗ 𝑒𝑛+1 and define  

𝑃𝑘 = 𝐸 − 𝑒𝑘⊗𝑒𝑘             (𝑘 = 1, . . . , 𝑛 + 1). 
Clearly, every 𝑃𝑘 can be represented by 𝑎(𝑛 + 1) × (𝑛 + 1) diagonal matrix whose 

diagonal entries are all 1’s with the exception of the 𝑘𝑡ℎ one which is 0. The equation  

𝜆1𝑃1+. . . +𝜆𝑛+1𝑃𝑛+1 = 𝑒1⊗𝑒1 
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gives rise to a system of linear equations with unknown scalars 𝜆1, . . . , 𝜆𝑛+1. The matrix of 

this system of equations is an (𝑛 + 1) × (𝑛 + 1) matrix whose diagonal consists of 0’s and 

its off-diagonal entries are all 1’s. It is easy to see that this matrix is nonsingular, and hence 

𝑒1⊗𝑒1 (and, similarly, every other 𝑒𝑘⊗𝑒𝑘) is a real-linear combination of 𝑃1, . . . , 𝑃𝑛+1. 

This completes the proof. 
We continue with a technical lemma.  

Lemma (2.1.6)[34]: Let P, Q be projections on H. If QP Q is a projection, then there are 

pairwise orthogonal projections 𝑅, 𝑅′, 𝑅′′ such that = 𝑅 + 𝑅′, 𝑄 = 𝑅 + 𝑅′′ . In particular, 

we obtain that QP Q is a projection if and only if 𝑃𝑄 = 𝑄𝑃. 

Proof. Let R=QP Q. Since R is a projection whose range is contained in the range of Q, it 

follows that 𝑅′′ = 𝑄 − 𝑅 is a projection which is orthogonal to R.  

If x is a unit vector in the range of R, then we have ‖𝑄𝑃 𝑄𝑥‖ = 1. Since 𝑃 𝑄𝑥 is a vector 

whose norm is at most 1 and its image under the projection Q has norm 1, we obtain that 

𝑃 𝑄𝑥 is a unit vector in the range of Q. Similarly, we obtain that Qx is a unit vector in the 

range of P and, finally, that x is a unit vector in the range of Q. Therefore, x belongs to the 

range of P and Q. Since x was arbitrary, we can infer that the range of R is included in the 

range of P. Thus, we obtain that 𝑅′ = 𝑃 − 𝑅 is a projection which is orthogonal to R.  

Next, using the obvious relations  

𝑃 𝑅 = 𝑅𝑃 = 𝑅,𝑄𝑅 = 𝑅𝑄 = 𝑅 
we deduce 

(𝑄 − 𝑅)(𝑃 − 𝑅)(𝑄 − 𝑅) = 𝑄𝑃 𝑄 − 𝑄𝑃 𝑅 − 𝑄𝑅𝑄 + 𝑄𝑅 − 𝑅𝑃 𝑄 + 𝑅𝑃 𝑅 + 𝑅𝑄 − 𝑅 

= 𝑅 − 𝑅 − 𝑅 + 𝑅 − 𝑅 + 𝑅 + 𝑅 − 𝑅 = 0.                              (6) 
Since 𝐴∗𝐴 = 0 implies 𝐴 = 0 for any 𝐴 ∈ 𝐵(𝐻), we obtain from (6) that 𝑅′𝑅′′ =
(𝑃 − 𝑅)(𝑄 − 𝑅) = 0.  

The second part of the assertion is now easy to check. 
We next prove the assertion of Theorem (2.1.1) in the case when 1 < 𝑛 ∈ ℕ and H is infinite 

dimensional. 

Theorem (2.1.7)[34]: Suppose 1 < 𝑛 ∈ ℕ and H is infinite dimensional. If 𝜙:𝑃𝑛(𝐻) →
𝑃𝑛(𝐻) is a transformation such that  

∠(𝜙(𝑃),𝜙(𝑄)) = ∠(𝑃, 𝑄)(𝑃, 𝑄 ∈ 𝑃𝑛(𝐻)), 
then there exists a linear or conjugate-linear isometry V on H such that  

𝜙(𝑃) = 𝑉 𝑃 𝑉∗                   (𝑃 ∈ 𝑃𝑛(𝐻)). 
Proof. By Lemma (2.1.2) and Lemma (2.1.5), ϕ can be uniquely extended to an injective 

real-linear transformation Φ on 𝐹𝑠(𝐻). The main point of the proof is to show that Φ 

preserves the rank-1 projections. In order to verify this, just as in the proof of Lemma (2.1.5), 

we consider orthonormal vectors 𝑒1, . . . , 𝑒𝑛+1 in H, define 𝐸 = 𝑒1⊗ 𝑒1+. . . +𝑒𝑛+1⊗𝑒𝑛+1 

and set  

𝑃𝑘 = 𝐸 − 𝑒𝑘⊗𝑒𝑘                 (𝑘 = 1, . . . , 𝑛 + 1). 
We show that the ranges of all 𝑃𝑘

′ = 𝜙(𝑃𝑘)’𝑠 can be jointly included in an (n+1)-dimensional 

subspace of H. To see this, we first recall that Φ has the property that  

𝑡𝑟 𝛷(𝐴)𝛷(𝐵) = 𝑡𝑟 𝐴𝐵 (𝐴, 𝐵 ∈ 𝐹𝑠(𝐻)) 
(see Lemma (2.1.2)). Next we have the following property of Φ: if P, Q are orthogonal rank-

1 projections, then 𝛷(𝑃)𝛷(𝑄) = 0. Indeed, if P, Q are orthogonal, then we can include them 

into two orthogonal rank-(n+ 1) projections. Now, referring to the construction given in 

Lemma (2.1.5) and having in mind that Φ preserves the orthogonality between rank-n 

projections, we obtain that 𝛷(𝑃)𝛷(𝑄) = 0. (Clearly, the same argument works if dim 𝐻 ≥
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2(𝑛 + 1).) Since the rank-n projections 𝑃𝑘 are commuting, by the preserving property of ϕ 

and Lemma (2.1.6), it follows that the projections 𝛷(𝑃𝑘) are also commuting. It is well-

known that any finite commuting family of operators in 𝐹𝑠(𝐻) can be diagonalized by the 

same unitary transformation (or, in the real case, by the same orthogonal transformation). 

Therefore, if we resctrict Φ onto the real-linear subspace in 𝐹𝑠(𝐻) generated by 𝑃1, . . . , 𝑃𝑛+1, 

then it can be identified with a real-linear operator from ℝ𝑛+1 to ℝ𝑚 for some 𝑚 ∈ ℕ. 

Clearly, this restriction of Φ can be represented by an 𝑚× (𝑛 + 1) real matrix 𝑇 = (𝑡𝑖𝑗). 

We examine how the properties of Φ are reflected in those of the matrix T. First, Φ is trace 

preserving. This gives us that for every 𝜆 ∈ ℝ𝑛+1 the sums of the coordinates of the vectors 

𝑇 𝜆 and 𝜆 are the same. This easily implies that the sum of the entries of T lying in a fixed 

column is always 1. As we have already noted, 𝛷(𝑒𝑖⊗𝑒𝑖)𝛷(𝑒𝑗⊗𝑒𝑗) = 0 holds for every 

𝑖 ≠ 𝑗. For the matrix T this means that the coordinatewise product of any two columns of T 

is zero. Consequently in every row of T there is at most one nonzero entry. Since Φ sends 

rank-n projections to rank-n projections, we see that this possibly nonzero entry is 

necessarily 1. So, every row contains at most one 1 and all the other entries in that row are 

0’s. Since the sum of the elements in every column is 1, we have that in every column there 

is exactly one 1 and all the other entries are 0’s in that column. These now easily imply that 

if 𝜆 ∈ ℝ𝑛+1 is such that its coordinates are all 0’s with the exception of one which is 1, then 

𝑇 𝜆 is of the same kind. What concerns Φ, this means that Φ sends every 𝑒𝑘⊗
𝑒𝑘(𝑘 = 1, . . . , 𝑛 + 1) to a rank-1 projection.  

So, we obtain that Φ preserves the rank-1 projections and the orthogonality between them. 

Now, by Lemma (2.1.3) we conclude the proof. 
We turn to the case when H is finite dimensional.  

Theorem (2.1.8)[34]: Suppose 1 < 𝑛 ∈ ℕ, H is finite dimensional and 𝑛 ≠ 𝑑𝑖𝑚 𝐻/2. If 

𝜙:𝑃𝑛(𝐻) → 𝑃𝑛(𝐻) satisfies  

∠(𝜙(𝑃),𝜙(𝑄)) = ∠(𝑃, 𝑄)                 (𝑃, 𝑄 ∈ 𝑃𝑛(𝐻)), 
then there exists a unitary or antiunitary operator U on H such that  

𝜙(𝑃) = 𝑈𝑃 𝑈∗                 (𝑃 ∈ 𝑃∞(𝐻)).                              (7) 
Proof. First suppose that 𝑑𝑖𝑚 𝐻 = 2𝑑, 1 < 𝑑 ∈ ℕ. If 𝑛 = 1, . . . , 𝑑 − 1, then we can apply 

the method followed in the proof of Theorem (2.1.7) concerning the infinite dimensional 

case. If 𝑛 = 𝑑 + 1, . . . , 2𝑑 − 1, then consider the transformation 𝜓: 𝑃 ⟼  𝐼 − 𝜙(𝐼 − 𝑃) on 

𝑃2𝑑−𝑛(𝐻). We learn from [40] that if ∠(𝑃, 𝑄) = ∠(𝑃′, 𝑄′), then there exists a unitary 

operator U such that 𝑈𝑃 𝑈∗ = 𝑃′ and 𝑈𝑄𝑈∗ = 𝑄′. It follows from the preserving property 

of ϕ that for any P, 𝑄 ∈ 𝑃2𝑑−𝑛(𝐻) we have  

𝜙(𝐼 − 𝑃) = 𝑈(𝐼 − 𝑃)𝑈∗, 𝜙(𝐼 − 𝑄) = 𝑈(𝐼 − 𝑄)𝑈∗ 
for some unitary operator U on H. This gives us that  

∠(𝜓(𝑃),𝜓(𝑄)) = ∠(𝑈𝑃 𝑈∗, 𝑈𝑄𝑈∗) = ∠(𝑃, 𝑄). 
In that way we can reduce the problem to the previous case. So, there is an either unitary or 

antiunitary operator U on H such that  

𝜓(𝑃) = 𝑈𝑃 𝑈∗                     (𝑃 ∈ 𝑃2𝑑−𝑛(𝐻)). 
It follows that 𝜙(𝐼 − 𝑃) = 𝐼 − 𝜓(𝑃) = 𝐼 − 𝑈𝑃 𝑈∗ = 𝑈(𝐼 − 𝑃)𝑈∗, and hence we have the 

result for the considered case.  

Next suppose that 𝑑𝑖𝑚 𝐻 = 2𝑑 + 1, 𝑑 ∈ ℕ. If 𝑛 = 1, . . . , 𝑑 − 1, then once again we can 

apply the method followed in the proof of Theorem (2.1.7). If 𝑛 = 𝑑 +  2, . . . , 2𝑑 +  1, then 

using the ’dual method’ that we have applied right above we can reduce the problem to the 
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previous case. If 𝑛 = 𝑑, consider a fixed rank-d projection 𝑃0. Clearly, if P is any rank-d 

projection orthogonal to 𝑃0, then the rank-d projection 𝜙(𝑃) is orthogonal to 𝜙(𝑃0). 
Therefore, ϕ induces a transformation 𝜙0 between d+1-dimensional spaces (namely, 

between the orthogonal complement of the range of 𝑃0 and that of the range of 𝜙(𝑃0)) which 

preserves the principal angles between the rank-d projections. Our ’dual method’ and the 

result concerning 1-dimensional subspaces lead us to the conslusion that the linear extension 

of 𝜙0 maps rank-1 projections to rank-1 projections and preserves the orthogonality between 

them. This implies that the same holds true for our original transformation ϕ. Just as before, 

using Lemma (2.1.2) and Lemma (2.1.3) we can conclude the proof. In the remaining case 

n=d+1 we apply the ’dual method’ once again. 

We now show that the case when 1 < 𝑛 ∈ ℕ, 𝑛 = 𝑑𝑖𝑚 𝐻/2 is really exceptional. To see 

this, consider the transformation 𝜙:𝑃 ⟼ 𝐼 − 𝑃 on 𝑃𝑛(𝐻). This maps 𝑃𝑛(𝐻) into itself and 

preserves the principal angles. As for the complex case, the preserving property follows 

from [26] while in the real case it was proved already by Jordan in [36] (see [47], p. 310). 

We suppose that the transformation ϕ can be written in the form (7). Pick a rank-1 projection 

Q on H. We know that it is a real linear combination of some 𝑃1, . . . , 𝑃𝑛+1 ∈ 𝑃𝑛(𝐻). It would 

follow from (7) that considering the same linear combination of 𝜙(𝑃1), . . . , 𝜙(𝑃𝑛+1), it is a 

rank-1 projection as well. But due to the definition of ϕ, we get that this linear combination 

is a constant minus Q. By the trace preserving property we obtain that this constant is 1/n. 

Since n>1, the operator (1/𝑛)𝐼 − 𝑄 is obviously not a projection. Therefore, we have 

arrived at a contradiction. This shows that the transformation above can not be written in 

the form (7).  

It would be a nice result if one could prove that in the present case (i.e., when 1 < 𝑛, 𝑛 =
𝑑𝑖𝑚 𝐻/2) up to unitary-antiunitary equivalence, there are exactly two transformations on 

𝑃𝑛(𝐻) preserving principal angles, namely, 𝑃 ⟼ 𝑃 and 𝑃 ⟼ 𝐼 − 𝑃. 

We now turn to our statement concerning infinite rank projections. In the proof we shall use 

the following simple lemma. If 𝐴 ∈ 𝐵(𝐻), then denote by rng A the range of A.  

Lemma (2.1.9)[34]: Let H be an infinite dimensional Hilbert space. Suppose P, Q are 

projections on H with the property that for any projection R with finite corank we have 

RP=P R if and only if RQ=QR. Then either P=Q or P=I-Q.  

Proof. Let R be any projection on H commuting with P. By Lemma (2.1.6), it is easy to see 

that we can choose a monotone decreasing net (𝑅𝛼) of projections with finite corank such 

that (𝑅𝛼) converges weakly to R and 𝑅𝛼 commutes with P for every α. Since 𝑅𝛼 commutes 

with Q for every α, we obtain that R commutes with Q. Interchanging the role of P and Q, 

we obtain that any projection commutes with P if and only if it commutes with Q.  

Let x be any unit vector from the range of P. Consider 𝑅 = 𝑥 ⊗ 𝑥. Since R commutes with 

P, it must commute with Q as well. By Lemma (2.1.6) we obtain that x belongs either to the 

range of Q or to its orthogonal complement. It follows that either 𝑑(𝑥, 𝑟𝑛𝑔 𝑄) = 0, or 

𝑑(𝑥, 𝑟𝑛𝑔 𝑄) = 1. Since the set of all unit vectors in the range of P is connected and the 

distance function is continuous, we get that either every unit vector in rng P belongs to rng 

Q or every unit vector in rng P belongs to (𝑟𝑛𝑔 𝑄)⊥. Interchanging the role of P and Q, we 

find that either 𝑟𝑛𝑔 𝑃 = 𝑟𝑛𝑔 𝑄 or 𝑟𝑛𝑔 𝑃 = (𝑟𝑛𝑔 𝑄)⊥. This gives us that either P=Q or P=I-

Q.  

Theorem (2.1.10)[34]: Let H be an infinite dimensional Hilbert space. Suppose that 

𝜙:𝑃∞(𝐻) → 𝑃∞(𝐻) is a surjective transformation with the property that  

∠(𝜙(𝑃),𝜙(𝑄)) = ∠(𝑃, 𝑄)                  (𝑃, 𝑄 ∈ 𝑃∞(𝐻)). 
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Then there exists a unitary or antiunitary operator U on H such that  

𝜙(𝑃) = 𝑈𝑃 𝑈∗                    (𝑃 ∈ 𝑃∞(𝐻)). 
Proof. We first prove that ϕ is injective. If 𝑃, 𝑃′ ∈ 𝑃∞(𝐻) and 𝜙(𝑃) = 𝜙(𝑃′), then by the 

preserving property of ϕ we have ∠(𝑃, 𝑄) = ∠(𝑃′, 𝑄)(𝑄 ∈ 𝑃∞(𝐻)). (8) Putting 𝑄 = 𝐼, we 

see that P is unitarily equivalent to 𝑃′. We distiguish two cases. First, let P be of infinite 

corank. By (8), we deduce that for every 𝑄 ∈ 𝑃∞(𝐻) we have 𝑄 ⊥ 𝑃 if and only if 𝑄 ⊥ 𝑃′. 
This gives us that 𝑃 = 𝑃′. As the second possibility, let P be of finite corank. Then 𝑃, 𝑃′ can 

be written in the form 𝑃 = 𝐼 − 𝑃0 and 𝑃′ = 𝐼 − 𝑃0
′, where, by the equivalence of 𝑃, 𝑃′, the 

projections 𝑃0 and 𝑃0
′ have finite and equal rank. Let 𝑄0 be any finite rank projection on H. 

It follows from  

∠(𝐼 − 𝑃0, 𝐼 − 𝑄0) = ∠(𝐼 − 𝑃0
′ , 𝐼 − 𝑄0) 

that there is a unitary operator W on H such that  

𝑊(𝐼 − 𝑄0)(𝐼 − 𝑃0)(𝐼 − 𝑄0)𝑊
∗ = (𝐼 − 𝑄0)(𝐼 − 𝑃0

′)(𝐼 − 𝑄0). 
This implies that  

𝑊(−𝑄0 − 𝑃0 + 𝑃0𝑄0 + 𝑄0𝑃0 − 𝑄0𝑃0𝑄0)𝑊
∗ = −𝑄0 − 𝑃0

′ + 𝑃0
′𝑄0 + 𝑄0𝑃0

′ − 𝑄0𝑃0
′𝑄0. 

Taking traces, by the equality of the rank of 𝑃0 and 𝑃0
′, we obtain that  

𝑡𝑟 𝑃0𝑄0 = 𝑡𝑟 𝑃0
′𝑄0.                                                 (9) 

Since this holds for every finite rank projection 𝑄0 on H, it follows that 𝑃0 = 𝑃0
′ and hence 

we have = 𝑃′. This proves the injectivity of ϕ.  

Let 𝑃 ∈ 𝑃∞(𝐻) be of infinite corank. Then there is a projection 𝑄 ∈ 𝑃∞(𝐻) such that 𝑄 ⊥
𝑃. By the preserving property of ϕ, this implies that 𝜙(𝑄) ⊥ 𝜙(𝑃) which means that 𝜙(𝑃) 
is of infinite corank. One can similarly prove that if 𝜙(𝑃) is of infinite corank, then the same 

must hold for P. This yields that 𝑃 ∈ 𝑃∞(𝐻) is of finite corank if and only if so is ϕ(P).  

Denote by 𝑃𝑓(𝐻) the set of all finite rank projections on H. It follows that the transformation 

𝜓:𝑃𝑓(𝐻) → 𝑃𝑓(𝐻) defined by  

𝜓(𝑃) = 𝐼 − 𝜙(𝐼 − 𝑃)                        (𝑃 ∈ 𝑃𝑓(𝐻)) 

is well-defined and bijective. Since 𝜙(𝐼 − 𝑃) is unitarily equivalent to 𝐼 − 𝑃 for every 𝑃 ∈

𝑃𝑓(𝐻) (this is because ∠(𝜙(𝐼 − 𝑃),𝜙(𝐼 − 𝑃)) = ∠(𝐼 − 𝑃, 𝐼 − 𝑃)) , it follows that ψ is rank 

preserving.  

We next show that  

𝑡𝑟 𝜓(𝑃)𝜓(𝑄) = 𝑡𝑟 𝑃 𝑄                   (𝑃, 𝑄 ∈ 𝑃𝑓(𝐻)).                       (10) 

This can be done following the argument leading to (9). In fact, by the preserving property 

of ϕ there is a unitary operator W on H such that  

𝑊(𝐼 − 𝜓(𝑄))(𝐼 − 𝜓(𝑃))(𝐼 − 𝜓(𝑄))𝑊∗ = (𝐼 − 𝑄)(𝐼 − 𝑃)(𝐼 − 𝑄). 
This gives us that  

𝑊(−𝜓(𝑄) − 𝜓(𝑃) + 𝜓(𝑃)𝜓(𝑄) + 𝜓(𝑄)𝜓(𝑃) − 𝜓(𝑄)𝜓(𝑃)𝜓(𝑄))𝑊∗

= −𝑄 − 𝑃 + 𝑃 𝑄 + 𝑄𝑃 − 𝑄𝑃 𝑄. 
Taking traces on both sides and referring to the rank preserving property of ψ, we obtain 

(10). According to Lemma (2.1.2), let 𝛹:𝐹𝑠(𝐻) → 𝐹𝑠(𝐻) denote the unique real-linear 

extension of ψ onto 𝑠𝑝𝑎𝑛ℝ𝑃𝑓(𝐻) = 𝐹𝑠(𝐻). We know that Ψ is injective. Since 𝑃𝑓 (𝐻) is in 

the range of Ψ, we obtain that Ψ is surjective as well. It is easy to see that Lemma (2.1.3) 

can be applied and we infer that there exists an either unitary or antiunitary operator U on 

H such that  

𝛹(𝐴) = 𝑈𝐴𝑈∗                   (𝐴 ∈ 𝐹𝑠(𝐻)). 
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Therefore, we have  

𝜙(𝑃) = 𝑈𝑃 𝑈∗ 
for every projection 𝑃 ∈ 𝑃∞(𝐻) with finite corank. It remains to prove that the same holds 

true for every 𝑃 ∈ 𝑃∞(𝐻) with infinite corank as well. This could be quite easy to show if 

we know that ϕ preserves the order between the elements of 𝑃∞(𝐻). But this property is far 

away from being easy to verify. So we choose a different approach to attack the problem.  

Let 𝑃 ∈ 𝑃∞(𝐻) be a projection of infinite corank. By the preserving property of ϕ we see 

that for every 𝑄 ∈ 𝑃∞(𝐻) the operator 𝜙(𝑄)𝜙(𝑃)𝜙(𝑄) is a projection if and if QP Q is a 

projection. By Lemma (2.1.6), this means that 𝜙(𝑄) commutes with ϕ(P) if and only if Q 

commutes with P. Therefore, for any 𝑄 ∈ 𝑃∞(𝐻) of finite corank, we obtain that Q 

commutes with 𝑈∗𝜙(𝑃)𝑈 (this is equivalent to that 𝜙(𝑄) = 𝑈𝑄𝑈∗ commutes with 𝜙(𝑃)) 
if and only if Q commutes with P.  

By Lemma (2.1.9) we have two possibilities, namely, either 𝑈∗𝜙(𝑃)𝑈 = 𝑃 or 𝑈∗𝜙(𝑃)𝑈 =
𝐼 − 𝑃. Suppose that 𝑈∗𝜙(𝑃)𝑈 = 𝐼 − 𝑃. Consider a complete orthonormal basis 

𝑒0, 𝑒𝛾(𝛾 ∈ 𝛤) in the range of P and, similarly, choose a complete orthonormal basis 

𝑓0, 𝑓𝛿(𝛿 ∈ ∆) in the range of 𝐼 − 𝑃. Pick nonzero scalars λ, µ with the property that |𝜆|2 +
|µ|2 = 1 and |𝜆| ≠ |µ|. Define  

𝑄 = (𝜆𝑒0 + µ𝑓0) ⊗ (𝜆𝑒0 + µ𝑓0) + ∑ 

𝛾

𝑒𝛾⊗𝑒𝛾 + ∑ 

𝛿

𝑓𝛿⊗𝑓𝛿 . 

Clearly, Q is of finite corank (in fact, its corank is 1). Since 𝜙(𝑄)𝜙(𝑃)𝜙(𝑄) =
𝑈𝑄𝑈∗𝜙(𝑃)𝑈𝑄𝑈∗ is unitarily equivalent to QPQ, it follows that the spectrum of 

𝑄𝑈∗𝜙(𝑃)𝑈𝑄 is equal to the spectrum of QPQ. This gives us that the spectrum of 𝑄(𝐼 −
𝑃)𝑄 is equal to the spectrum of QPQ. By the construction of Q this means that  

{0, 1, |µ|2} = {0, 1, |𝜆|2} 
which is an obvious contradiction. Consequently, we have 𝑈∗𝜙(𝑃)𝑈 = 𝑃, that is, 𝜙(𝑃) =
𝑈𝑃 𝑈∗. Thus, we have proved that this latter equality holds for every 𝑃 ∈ 𝑃∞(𝐻) and the 

proof is complete. 

Section (2.2): Metric-Projective Geometry 

The idea of ortho-adjacency relation is taken from [68] and [58]. Given a linear space 

with an orthogonality relation defined on its line-set, two lines are called ortho-adjacent if 

they are concurrent and orthogonal. In [58] Havlicek proves that ortho-adjacency preserving 

transformations of elliptic spaces with dimensions other than 3 are induced by 

orthogonality-preserving collineations. Later, in [60], he completes his result for 3- 

dimensional spaces. A similar result for symplectic spaces is also due to Havlicek in [59] 

and for hyperbolic spaces is due to List in [64]. Orthogonality-preserving transformations 

on lines of Euclidean spaces are extensively investigated in [51], [52], [53], [54] as well as 

in [63], [69]. For hyperbolic spaces see [65], [66], [67].  

In [68] ortho-adjacency is treated more generally as a relation on all k-subspaces, not only 

on lines, of an Euclidean space. It is proved there that ortho-adjacency-preserving 

transformations on k-subspaces are induced by orthogonality-preserving collineations of the 

underlying n-dimensional Euclidean space where 𝑘 + 2 ≤ 𝑛. In other words orthoadjacency 

on k-subspaces can be used as a single primitive notion for at least (𝑘 + 2)-dimensional 

Euclidean geometry.  

We generalize results of [58], [59] and [64] by taking ortho-adjacency on k-subspaces as it 

was done in [68] and by unified reasoning for elliptic, symplectic and hyperbolic geometry. 

An elliptic space is similar to an Euclidean space in that there are no isotropic subspaces. 
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This is false in general and when we deal with a metric-projective space we restrict our 

ortho-adjacency to non-isotropic k-subspaces. The methods we use are similar to those used 

in [68]. 

We prove the following theorem:  

Theorem (2.2.1)[50]: Let 〈𝑆, ℒ〉 be an abstract desarguesian projective space of finite 

dimension n equipped with a polarity π which is neither symplectic nor a pseudo-polarity 

and let k be such that 0 ≤ 𝑘 ≤ 𝑛 − 1.  

If 𝑛 ≠ 2𝑘 + 1, then the ortho-adjacency relation on the set of all non-isotropic ksubspaces 

can be used as a single primitive notion for the n-dimensional metric-projective geometry 

〈𝑆, ℒ, ⊥〉 where ⊥ is the perpendicularity of lines given by π.  

In Chow style (cf. [55], [57]) this theorem would read as follows:  

Theorem (2.2.2)[50]: Under the assumptions of (2.2.1), every bijective transformation of 

non-isotropic k-subspaces preserving ortho-adjacency in both directions is induced by a 

collineation of 〈𝑆, ℒ〉 that preserves perpendicularity of lines given by π.  

For 𝔓 = 〈𝑆, ℒ〉 be an abstract desarguesian projective space of finite dimension n and 

let π be a polarity on 𝔓. In terms of linear algebra 𝔓 corresponds to a projective space over 

a left vector space of dimension 𝑛 + 1 over a division ring and the polarity π corresponds to 

a non-degenerate reflexive sesqui-linear form.  

The polarity π maps any point 𝑢 ∈ 𝑆 to a hyperplane 𝑈 = 𝑢𝜋 of 𝔓, it also maps U to the 

same point u. We call u the pole of U, and we call U the polar hyperplane of u. If u, w are 

points such that ∈ 𝑤𝜋, then we say that u and w are conjugate points. The points 𝑢 ∈ 𝑆 with 

𝑢 ∈ 𝑢𝜋 are called absolute (or self-conjugate) and they form the absolute space with respect 

to the polarity π (absolute space is sometimes called quadric); the other points are called 

regular. A subspace U of 𝔓 is absolute (or totally isotropic) if 𝑢 ∈ 𝑤𝜋 for all 𝑢, 𝑤 ∈ 𝑈. If U 

is a subspace of 𝔓 we denote by 𝑈𝜋 the ∩𝑢∈𝑈 𝑢
𝜋; so U is absolute iff 𝑈 ⊆ 𝑈𝜋. 

The incidence structure whose points are the absolute points of 𝔓 and whose lines are 

absolute lines of 𝔓 is a polar space. For a complete survey on polarities, their connections 

with polar spaces and reflexive sesqui-linear forms see [56].  

Now, we fix a natural number k such that 0 ≤ 𝑘 ≤ 𝑛 − 1. By ℘𝑘 we denote the set of all k-

dimensional subspaces of 𝔓. The meet of subspaces U, W of 𝔓 is 𝑈 ∩𝑊 and the join, i.e. 

the meet of all subspaces containing them, is 𝑈 ⊔𝑊. So 〈℘,∩,⊔〉 is a projective lattice, 

where ℘ is the set of all subspaces of 𝔓. 

In geometries whose lattices of subspaces are not modular (e.g. affine lattices) it makes 

sense to distinguish two adjacency relations of k-subspaces (like in [68]) as two k-subspaces 

can have a common (k+1)-subspace that covers them and they need not to share 𝑎 (𝑘 − 1)-
subspace. In a projective space, whose lattice is modular, for 𝑈,𝑊 ∈ ℘𝑘 we have 𝑑𝑖𝑚(𝑈 ∩
𝑊) = 𝑘 −𝑚 iff 𝑑𝑖𝑚(𝑈 ⊔𝑊) = 𝑘 +𝑚. So, we simply call U, W adjacent and write  

𝑈 ∼ 𝑊     iff    𝑑𝑖𝑚(𝑈 ∩𝑊) = 𝑘 − 1.                              (11) 
Note that adjacent implies distinct, so our adjacency relation is not reflexive.  

It is well known that for 1 ≤ 𝑘 ≤ 𝑛 − 2 maximal ∼-cliques fall into two classes: stars and 

tops. A star of k-subspaces is simply the set of all k-subspaces containing some (k-1)-

subspace — the vertex of the star, and a top is the set of all k-subspaces in some (k+1)-

subspace — the base of the top.  

Let 𝑈,𝑊 ∈ ℘𝑘. We say that U intersects orthogonally W, or they are ortho-adjacent, and 

write  

𝑈 ⊥
∼
𝑊     𝑖𝑓𝑓    𝑈 ∼ 𝑊      and    𝑈 ∩𝑊𝜋 ≠ ∅.                  (12) 
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Again, let us stress that ortho-adjacent subspaces must be distinct, as adjacency is involved.  

From the above definition it is not obvious that ortho-adjacency is symmetric and the next 

proposition addresses that problem.  

Proposition (2.2.3)[50]: The relation ⊥
∼

 is symmetric.  

Proof. Let 𝑈,𝑊 ∈ ℘𝑘. Assume that 𝑈 ⊥
∼
𝑊. By (12) there is ∈ 𝑈 ∩𝑊𝜋. Note that 𝑊 ⊆ 𝑥𝜋 

and 𝑈𝜋 ⊆ 𝑥𝜋. Hence 𝑊 ⊔𝑈𝜋 ⊆ 𝑥𝜋, but 𝑑𝑖𝑚(𝑥𝜋) = 𝑛 − 1 and 𝑑𝑖𝑚(𝑊 ⊔ 𝑈𝜋) = 𝑛 − 𝑘 −
1 + 𝑘 − 𝑑𝑖𝑚(𝑊 ∩ 𝑈𝜋) which yields that 0 ≤ 𝑑𝑖𝑚(𝑊 ∩ 𝑈𝜋). This means that 𝑊 ∩𝑈𝜋 ≠
∅ and by (12) we get 𝑊 ⊥

∼
𝑈. 

The radical of a subspace U is the subspace 𝑎𝑑(𝑈) = 𝑈 ∩ 𝑈𝜋. We call a subspace U non-

isotropic if 𝑅𝑎𝑑(𝑈) = ∅ and it is isotropic if 𝑅𝑎𝑑(𝑈) ≠ ∅ (cf. [20]). Let  

𝑆 = {𝑈 ∈ ℘: 𝑅𝑎𝑑(𝑈) = ∅}, 
and let 𝑆𝑘  be the subset of S of k-subspaces. Recall that 𝑆0 is the set of all regular points of 

𝔓, i.e. those off the quadric induced by π. Note that if π is elliptic, then 𝑆𝑘 = ℘𝑘, while if π 

is symplectic, then 𝑆𝑘 = ∅ for 𝑘 = 0, 2, 4, … An isotropic line L can be either a tangent line 

to the quadric or a generator of the quadric. Then, respectively Rad(L) is the point of 

tangency or L is absolute. The symplectic case is exceptional in that 𝑅𝑎𝑑(𝐿) ≠ ∅ implies 

that the line L is already totally isotropic (cf. [59]).  

Lemma (2.2.4)[50]: If the polarity π is symplectic and 𝑈,𝑊 ∈ ℘𝑘 with 𝑈 ⊥
∼
𝑊, then 

𝑅𝑎𝑑(𝑈) ≠ ∅ or 𝑅𝑎𝑑(𝑊) ≠ ∅. 

Proof. Let 𝑥 ∈ 𝑈 ∩𝑊𝜋 by (12). If 𝑥 ∈ 𝑊, then already 𝑅𝑎𝑑(𝑊) ≠ ∅. So, assume that 𝑥 ∉
𝑊. Trivially, 𝑈 ∩𝑊 ⊆ 𝑊 and thus 𝑊𝜋 ⊆ (𝑈 ∩𝑊)𝜋 which means that ∈ (𝑈 ∩𝑊)𝜋. Since 

𝑈 ∩𝑊 is a hyperplane in U we have 𝑈 = (𝑈 ∩𝑊) ⊔ 𝑥 and 𝑈𝜋 = (𝑈 ∩𝑊)𝜋 ∩ 𝑥𝜋. The 

polarity is symplectic, so 𝑥 ∈ 𝑥𝜋, and finally 𝑥 ∈ 𝑈𝜋 which means that 𝑅𝑎𝑑(𝑈) ≠ ∅. 

A subspace U is non-isotropic iff 𝑈𝜋 is non-isotropic. This follows immediately from the 

fact that 𝑅𝑎𝑑(𝑈𝜋) = 𝑈𝜋 ∩ (𝑈𝜋)𝜋 = 𝑈𝜋 ∩ 𝑈 = 𝑅𝑎𝑑(𝑈). Let us write down more 

properties of the radical and non-isotropic subspaces that will be used later.  

Lemma (2.2.5)[50]: Let 𝑈 ∈ ℘𝑘 and 𝑚 = 𝑑𝑖𝑚(𝑅𝑎𝑑(𝑈)). 
(i) If Z is a maximal non-isotropic subspace with 𝑍 ⊆ 𝑈, then 𝑑𝑖𝑚(𝑍) = 𝑘 −𝑚 − 1. 

(ii) If Y is a minimal non-isotropic subspace with 𝑈 ⊆ 𝑌, then 𝑑𝑖𝑚(𝑌) = 𝑘 +𝑚 + 1. 

(iii) There are 𝑍 ∈ 𝑆𝑘−𝑚−1 and 𝑌 ∈ 𝑆𝑘+𝑚+1 such that 𝑍 ⊆ 𝑈 ⊆ 𝑌. 

Proof. (i) Obviously 𝑈𝜋 ⊆ 𝑍𝜋 as 𝑍 ⊆ 𝑈. Hence  

𝑍 ∩ 𝑅𝑎𝑑(𝑈) = 𝑍 ∩ 𝑈 ∩ 𝑈𝜋 = 𝑍 ∩ 𝑈𝜋 ⊆ 𝑅𝑎𝑑(𝑍) = ∅. 
Since Z is maximal in U, it is a complement of 𝑅𝑎𝑑(𝑈) in U, and thus its dimension is 𝑘 −
𝑚 − 1. 

(ii) Note that 𝑌𝜋 is a maximal non-isotropic subspace with 𝑌𝜋 ⊆ 𝑈𝜋. So, by (i) we get 

𝑑𝑖𝑚(𝑌) = 𝑛 − 𝑑𝑖𝑚(𝑌𝜋) − 1 = 𝑛 − (𝑑𝑖𝑚(𝑈𝜋) − 𝑚 − 1) − 1 = 𝑘 +𝑚 + 1. 

(iii) Take Z a complement of Rad(U) in U. Then 𝑈 = 𝑍 ⊔ 𝑅𝑎𝑑(𝑈) and hence 𝑈𝜋 = 𝑍𝜋 ∩
(𝑈𝜋 ⊔ 𝑈) ⊇ 𝑅𝑎𝑑(𝑍). This yields that 𝑅𝑎𝑑(𝑍) ⊆ 𝑍 ∩ 𝑈𝜋 = 𝑍 ∩ 𝑈 ∩ 𝑈𝜋 = 𝑍 ∩ 𝑅𝑎𝑑(𝑈) =
∅. 

By what we have just proved there is 𝑍 ∈ 𝑆𝑛−𝑘−𝑚−2 such that ⊆ 𝑈𝜋. Now, let us take 𝑌 =
𝑍𝜋. Clearly 𝑈 ⊆ 𝑌 , 𝑌 is non-isotropic and 𝑑𝑖𝑚(𝑌) = 𝑘 +𝑚 + 1. 
We say that a line K is perpendicular to a line L and write  

𝐾 ⊥ 𝐿              𝑖𝑓𝑓 𝐾 ∩ 𝐿 ≠ ∅         𝑎𝑛𝑑        𝐾 ∩ 𝐿𝜋 ≠ ∅.              (13) 
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That way we get the metric-projective space 〈𝑆, ℒ, ⊥〉 (cf. [62] for dimensions 2, 3). We 

reconstruct 〈𝑆, ℒ, ⊥〉 in the structure 〈𝑆𝑘, ⊥
∼
〉. For k=1 and a hyperbolic polarity π the result 

is already known (cf. [64], [65], [66], [67]) as well as for an elliptic polarity (cf. [58]) and 

for a symplectic polarity (cf. [59]).  

The first question that we are asking is: what are the cliques of ∼ ⊥ on non-isotropic 

subspaces? 

We assume that ⊥
∼
⊆ 𝑆𝑘 × 𝑆𝑘. According to (2.2.4) this relation is empty for 

symplectic polarities, so the claims of (2.2.1) and (2.2.2) are false for them. If π is a 

pseudopolarity, i.e. π corresponds to a symmetric bilinear form and the ground field is of 

characteristic 2, then the quadric induced by π is a hyperplane (cf. [61]). To avoid these 

inconveniences, in particular, to ensure that each non-isotropic line contains a regular point 

and each regular point is on a non-isotropic line, we assume further that the polarity π is not 

symplectic and is not a pseudo-polarity 

When we deal with non-isotropic subspaces the adjacency relation ∼ says nothing but the 

dimension of the meet and join of subspaces. For this reason we need two more specific 

relations. Let 𝑈,𝑊 ∈ 𝑆𝑘. Then U, W are meet-adjacent, in symbols  

𝑈 ∼− 𝑊            𝑖𝑓𝑓      𝑈 ∩𝑊 ∈ 𝑆𝑘−1,                             (14) 
and they are join-adjacent,  

𝑈 ∼+ 𝑊       𝑖𝑓𝑓     𝑈 ⊔𝑊 ∈ 𝑆𝑘+1.                                  (15) 
Trivially  

𝑖𝑓    𝑈 ∼− 𝑊      𝑜𝑟      𝑈 ∼+ 𝑊,      𝑡ℎ𝑒𝑛    𝑈 ∼ 𝑊.            (16) 
Lemma (2.2.6)[50]: Let 𝑈1, 𝑈2 ∈ 𝑆𝑘. 

(i) If 𝑈1 ∼
− 𝑈2, then there is 𝑌 ∈ 𝑆𝑚 such that 𝑈1, 𝑈2 ⊂ 𝑌 and 𝑚 ≤ 𝑘 + 2.  

(ii) If 𝑈1 ∼
+ 𝑈2, then there is 𝑍 ∈ 𝑆𝑚 such that 𝑍 ⊂ 𝑈1, 𝑈2 and 𝑘 − 2 ≤ 𝑚.  

Proof. (i) Set 𝐵 = 𝑈1 ⊔ 𝑈2. By (16) B is a (k+1)-subspace but we do not know if it is non-

isotropic. If it is take Y=B. Otherwise, note that U1 is a maximal nonisotropic subspace in 

B which by (2.2.5)(i) gives that 𝑑𝑖𝑚(𝑅𝑎𝑑(𝐵)) = 0. By (2.2.5)(iii) there is 𝑌 ∈ 𝑆𝑘+1+1 such 

that 𝐵 ⊂ 𝑌.  

(ii) If 𝑈1 ∼
+ 𝑈2, then 𝑈1

𝜋 ∼− 𝑈2
𝜋 and we are through by (i).  

The connection between the two new adjacency relations and ortho-adjacency is as follows.  

Lemma (2.2.7)[50]: If 𝑈,𝑊 ∈ 𝑆𝑘 and 𝑈 ⊥
∼
𝑊, then 𝑈 ∼− 𝑊 and 𝑈 ∼+ 𝑊. 

Proof. (i) Set 𝐻:= 𝑈 ∩𝑊. By (14) assume to the contrary that there is 𝑥 ∈ 𝐻 ∩ 𝐻𝜋.  

Let 𝑢 ∈ 𝑈 ∩𝑊𝜋 by (12). Note that 𝑢 ∉ 𝐻 as otherwise we would have 𝑢 ∈ 𝑊 and thus ∈
𝑊 ∩𝑊𝜋. Hence 𝑈 = 𝐻 ⊔ 𝑢 which implies that 𝑈𝜋 = 𝐻𝜋 ∩ 𝑢𝜋. Since 𝑊 ⊆ 𝑢𝜋 we have 

𝑥 ∈ 𝐻 ⊆ 𝑊 ⊆ 𝑢𝜋. In consequence 𝑥 ∈ 𝑈𝜋 which gives that 𝑥 ∈ 𝑈 ∩ 𝑈𝜋 as 𝑥 ∈ 𝐻 ⊆ 𝑈. A 

contradiction arises because 𝑈 ∈ 𝑆. 

(ii) Now, set 𝐵:= 𝑈 ⊔𝑊 and by (15) assume to the contrary that there is 𝑥 ∈ 𝐵 ∩ 𝐵𝜋.  

Let 𝑢 ∈ 𝑈 ∩𝑊𝜋 and 𝑤 ∈ 𝑊 ∩ 𝑈𝜋 by (12). Hence note that 𝑢𝜋 ∩ 𝐵 = 𝑊 and 𝑤𝜋 ∩ 𝐵 = 𝑈 

as both left hand sides are hyperplanes in B. Since 𝐵 ⊆ 𝑥𝜋 we get 𝑢,𝑤 ∈ 𝑥𝜋 and thus 𝑥 ∈
𝑢𝜋 ∩ 𝑤𝜋 ∩ 𝐵 = 𝑈 ∩𝑊. This contradicts that both U and W are non-isotropic as 𝑥 ∈ 𝐵𝜋 =
𝑈𝜋 ∩𝑊𝜋. 
When we deal with a binary relation it is convenient to know the cliques of that relation. As 

in graph theory a subset K of 𝑆𝑘 is called an ortho-clique, or an ⊥
∼

-clique, if 𝑈 ∼⊥ W for all 

distinct 𝑈,𝑊 ∈ 𝐾. Before we give an account on the cliques we need to put down two 

technical facts.  
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Lemma (2.2.8)[50]: If U is a non-isotropic subspace and u is a regular point in 𝑈𝜋, then 

𝑈 ⊔ 𝑢 is non-isotropic. 

Proof. Given 𝑊:= 𝑈 ⊔ 𝑢 we obtain 𝑊𝜋 = 𝑈𝜋 ∩ 𝑢𝜋 and by modularity 𝑊 ∩𝑈𝜋 = (𝑢 ⊔
𝑈) ∩ 𝑈𝜋 = 𝑢 ⊔ (𝑈 ∩ 𝑈𝜋) = 𝑢. Therefore 𝑊 ∩𝑊𝜋 = 𝑊 ∩𝑈𝜋 ∩ 𝑢𝜋 = 𝑢 ∩ 𝑢𝜋 = ∅. 
Lemma (2.2.9)[50]: If U is a non-isotropic subspace and u is a regular point in U, then 𝑢𝜋 ∩
𝑈 is non-isotropic.  

Proof. By modularity (𝑢𝜋 ∩ 𝑈) ∩ (𝑢 ⊔ 𝑈𝜋) = 𝑢𝜋 ∩ [𝑢 ⊔ (𝑈 ∩ 𝑈𝜋)] = 𝑢𝜋 ∩ 𝑢 = ∅. 

According to (12) maximal ⊥
∼

-cliques are subsets of maximal ∼-cliques, i.e. stars or tops. 

This suggests that we also have two types of ortho-cliques.  

Proposition (2.2.10)[50]: A set K is a maximal ortho-clique iff  

(i) 𝑘 ≤ 𝑛 − 2 and there is 𝐻 ∈ 𝑆𝑘−1 such that 

𝐾 = {𝐻 ⊔ 𝑢: 𝑢 ∈ 𝑎 maximal self − polar simplex in 𝐻𝜋}, 
(ii) 1 ≤ 𝑘 and there is 𝐵 ∈ 𝑆𝑘+1 such that  

𝐾 = {𝑢𝜋 ∩ 𝐵: 𝑢 ∈ 𝑎 maximal self − polar simplex in 𝐵}. 
Proof. Verification that the set of the form (i) or (ii) is a maximal ortho-clique is fairly easy 

with the use of (2.2.7), (2.2.8), and (2.2.9). So, assume that K is a maximal ortho-clique. If 

K is a subset of a star then we get the Case (i), otherwise we get the Case (ii).  

Case (i). For 𝑘 = 𝑛 − 1 the clique K is not maximal as it is contained in the clique of the 

form (ii) with 𝐵 = 𝑆. Hence the assumption 𝑘 ≤ 𝑛 − 2. By (2.2.7), we have some 𝐻 ∈ 𝑆𝑘−1 

contained in all the elements of K. Let 𝑈 ∈ 𝐾. We will show that |𝑈 ∩ 𝐻𝜋| = 1. So, assume 

to the contrary that 𝑎, 𝑏 ∈ 𝑈 ∩ 𝐻𝜋 and 𝑎 ≠ 𝑏. The line 𝑙: = 𝑎, 𝑏 lies in 𝑈 ∩ 𝐻𝜋 and thus l 

meets H as H is a hyperplane in U. This is however impossible as 𝐻 ∩ 𝐻𝜋 = ∅ by (2.2.7).  

In consequence, for every 𝑈 ∈ 𝐾 there is a unique 𝑢 ∈ 𝐻𝜋 with 𝑈 = 𝐻 ⊔ 𝑢. Let E be the set 

of all such points u, i.e.  

𝐸:= {𝑢 ∈ 𝐻𝜋: 𝐻 ⊔ 𝑢 ∈ 𝐾}. 
We will show that E is the simplex we are looking for. First of all, note that E is maximal in 

that 〈𝐸〉 = 𝐻𝜋 since K is maximal.  

Let us fix some 𝑢 ∈ 𝐸 for a moment and let 𝑈 = 𝐻 ⊔ 𝑢. Note that 𝑈 ∈ 𝐾. Now take 𝑤 ∈
𝐸\{𝑢}. Set 𝑊:= 𝐻 ⊔𝑤. It is clear that 𝑊 ∈ 𝐾, so 𝑊 ⊥

∼
𝑈. By (12) there is 𝑥 ∈ 𝑊 ∩ 𝑈𝜋. 

Since 𝑈𝜋 ⊂ 𝐻𝜋 we have 𝑥 ∈ 𝑊 ∩𝐻𝜋 and thus 𝑥 = 𝑤. Therefore 𝑤 ∈ 𝑈𝜋. We have actually 

shown that  

𝐸\{𝑢} ⊆ 𝑢𝜋       for all    𝑢 ∈ 𝐸, 
which means that E is self-polar.  

Suppose that 𝑢 ∈ 𝑢𝜋. Then we have 𝐸 ⊆ 𝑢𝜋 and consequently 𝐻𝜋 = 〈𝐸〉 ⊆ 𝑢𝜋 which 

means that 𝑢 ∈ 𝐻. Hence 𝑢 ∈ 𝐻 ∩ 𝐻𝜋 which contradicts the fact that H is non-isotropic. 

Now, observe that 〈𝐸\{𝑢}〉 ⊆ 𝑢𝜋 which implies that 〈𝑢 ∉\ {𝑢}〉 as otherwise we would have 

𝑢 ∈ 𝑢𝜋 which is impossible. Hence E is a simplex.  

Case (ii). If k=0, then the clique K is not maximal as it is contained in the clique of the form 

(i) with 𝐻 = ∅. This justifies the assumption 1 ≤ 𝑘. The polarity π is a duality in that it 

reverses the inclusion ⊆ and thus it determines a bijection from 𝑆𝑘 onto 𝑆𝑛−𝑘−1 which 

preserves ortho-adjacency in both directions and which maps stars onto tops and vice versa. 

Therefore the proof in this case runs dually to the Case (i). 
We will call ortho-cliques of type (i) ortho-stars and those of type (ii) ortho-tops. As it is 

seen in (2.2.10), to each ortho-star K we can uniquely assign its vertex (bottom) 𝐻 = 𝑏(𝐾) ∈
𝑆𝑘−1. Similarly, to each ortho-top K we can uniquely assign its base (top) 𝐵 = 𝑡(𝐾) ∈ 𝑆𝑘+1. 
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If K is a maximal ortho-star, then |𝐾| = 𝑑𝑖𝑚(𝐻𝜋) + 1 for some 𝐻 ∈ 𝑆𝑘−1, and if K is a 

maximal ortho-top, then |𝐾| = 𝑑𝑖𝑚(𝐵) + 1 for some 𝐵 ∈ 𝑆𝑘+1. Finally  

𝐾 = {
𝑛 − 𝑘 + 1, 𝑖𝑓 𝐾 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑜𝑟𝑡ℎ𝑜 − 𝑠𝑡𝑎𝑟,
𝑘 + 2, 𝑖𝑓 𝐾 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑜𝑟𝑡ℎ𝑜 − 𝑡𝑜𝑝.

            (17) 

That way we can distinguish the type of a maximal ortho-clique in 〈𝑆𝑘, ⊥
∼
〉 provided that 𝑛 −

𝑘 + 1 ≠ 𝑘 + 2, that is when  

𝑛 ≠ 2𝑘 + 1. 
Fact (2.2.11)[50]: Three non-isotropic and pairwise orthogonally intersecting k-subspaces 

determine the type of a maximal ortho-clique containing them.  

With (2.2.11) in mind, for 𝑈1, 𝑈2, 𝑈3 ∈ 𝑆𝑘 we introduce two relations:  

∆−(𝑈1, 𝑈2, 𝑈3):⟺ 𝑈1, 𝑈2, 𝑈3 are pairwise distinct in an ortho-star,      (18) 

∆+(𝑈1, 𝑈2, 𝑈3):⟺ 𝑈1, 𝑈2, 𝑈3 are pairwise distinct in an ortho-top.       (19) 

We are now able to express meet-adjacency and join-adjacency on non-isotropic subspaces 

strictly in terms of ortho-adjacency.  

Proposition (2.2.12)[50]: Let 𝑈1, 𝑈2 ∈ 𝑆𝑘. If 𝑘 ≤ 𝑛 − 4, then 𝑈1 ∼
− 𝑈2⟺ 

𝑈1 ≠ 𝑈2 ∧ ∃𝑊1,𝑊2 ∈ 𝑆𝑘[∆
−(𝑊1,𝑊2, 𝑈1) ∧ ∆

−(𝑊1,𝑊2, 𝑈2)].            (20) 
If 3 ≤ 𝑘, then 𝑈1 ∼

+ 𝑈2⟺  

𝑈1 ≠ 𝑈2 ∧ ∃𝑊1,𝑊2 ∈ 𝑆𝑘[∆
+(𝑊1,𝑊2, 𝑈1) ∧ ∆

+(𝑊1,𝑊2, 𝑈2)].           (21) 
Proof. Assume that 𝑘 ≤ 𝑛 − 4. The right-to-left implication is evident. So take 𝐻 = 𝑈1 ∩
𝑈2. By definition of meet-adjacency H is non-isotropic. Set 𝐵 = 𝑈1 ⊔ 𝑈2. In view of 

(2.2.10)(i) we are looking for two conjugate regular points 𝑤1, 𝑤2 in 𝐻𝜋 such that 𝑤1, 𝑤2 ∈
𝑈1
𝜋 ∩ 𝑈2

𝜋 = 𝐵𝜋. By (2.2.6)(i) consider 𝑌 ∈ 𝑆𝑚 such that 𝐵 ⊆ 𝑌 and 𝑚 = 𝑘 + 1 or 𝑚 = 𝑘 +
2. Note that 𝑑𝑖𝑚(𝑌𝜋) = 𝑛 −𝑚 − 1. By our assumption 1 ≤ 𝑛 − 𝑘 − 3 which means that 

1 ≤ 𝑛 −𝑚 − 1 for both possible values of m. So, 𝑌𝜋 is non-isotropic and it is at least a line. 

Since 𝑌𝜋 ⊆ 𝐵𝜋 we can always find required points 𝑤1, 𝑤2 in 𝑌𝜋. 

The other part of the proof runs dually. 

We will try to reconstruct 〈𝑆𝑘−1, ⊥
∼
〉 in 〈𝑆𝑘, ⊥

∼
〉. First we define the incidence relation ⊂⊆

 𝑆𝑘−1 × 𝑆𝑘. 

Proposition (2.2.13)[50]: Let K be a maximal ortho-star and 𝐻 = 𝑏(𝐾). Then  

𝐻 ⊂ 𝑈 ⟺ ∀𝑊 ∈ 𝐾[𝑊 = 𝑈 ∨𝑊 ∼−𝑈].                       (22) 
Proof. ⇒: If 𝑊 ∈ 𝐾, then 𝐻 ⊂ 𝑈, W and hence 𝑈 = 𝑊 or 𝑈 ∼− 𝑊. 

⇐: If 𝑈 ∈ 𝐾, then our claim is evident. So, assume that 𝑈 ∉ 𝐾. Note that |𝐾| ≥ 3 by 

(2.2.10). This let us take pairwise distinct 𝑈1, 𝑈2, 𝑈3 ∈ 𝐾. They are pairwise adjacent and 

thus they belong to a bundle of subspaces, not a pencil in the Grassmann space associated 

with P. Since 𝑈 ∼ 𝑈1, 𝑈2, 𝑈3, we are done. 
Consider the following relation. Two ortho-stars 𝐾1, 𝐾2 are said to be related, which is 

written 𝐾1 ≈ 𝐾2, iff 𝑏(𝐾1) = 𝑏(𝐾2). We will show that this relation can be expressed within 

〈𝑆𝑘, ⊥
∼
〉. 

Proposition (2.2.14)[50]: Let 𝐾𝑖 be a maximal ortho-star and 𝐻𝑖 = 𝑏(𝐾𝑖) for 𝑖 = 1, 2. Then  

𝐻1 = 𝐻2⟺ ∀𝑈 ∈ 𝑆𝑘[𝐻1 ⊂ 𝑈 ⟺ 𝐻2 ⊂ 𝑈].                        (23) 
We can identify the elements of 𝑆𝑘−1 with the equivalence classes of ortho-stars under the 

relation ≈. Moreover, two distinct 𝐻1, 𝐻2 ∈ 𝑆𝑘−1 are adjacent (or collinear in the sense of 

incidence ⊂) if there is 𝑈 ∈ 𝑆𝑘 such that 𝐻1, 𝐻2 ⊂ 𝑈. By (2.2.13) this can be worded purely 

in terms of 〈𝑆𝑘, ⊥
∼
〉. That way we have the incidence structure  

〈𝑆𝑘−1, 𝑆𝑘, ⊂〉 
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defined in 〈𝑆𝑘, ⊥
∼
〉. What is still missing is ortho-adjacency on 𝑆𝑘−1. To solve the issue we 

need some technical fact.  

Lemma (2.2.15)[50]: For 𝑈,𝑊 ∈ 𝑆𝑘, if 𝑈 ⊥
∼
𝑊, then |𝑈 ∩𝑊𝜋| = 1. 

Proof. In view of (22) assume on the contrary that there are distinct 𝑎, 𝑏 ∈ 𝑈 ∩𝑊𝜋, so we 

have a line 𝑎, 𝑏̅̅ ̅̅̅ that entirely lies in both U and 𝑊𝜋. By (22) and (21) 𝐻:= 𝑈 ∩𝑊 is a 

hyperplane in U. Therefore the line 𝑎, 𝑏̅̅ ̅̅̅ shares at least a point, say c, with H. So 𝑐 ∈ 𝑊 as 

𝐻 ⊂ 𝑊, and 𝑐 ∈ 𝑊𝜋 as 𝑎, 𝑏̅̅ ̅̅̅ ⊆ 𝑊𝜋, which contradicts the fact that W is non-isotropic. 

Proposition (2.2.16)[50]: If 1 ≤ 𝑘 and 𝐻1, 𝐻2 ∈ 𝑆𝑘−1, then 𝐻1 ⊥
∼
𝐻2⟺ 

∃𝑈1, 𝑈2, 𝑈3 ∈ 𝑆𝑘[∆
+(𝑈1, 𝑈2, 𝑈3) ∧ 𝐻1 ⊂ 𝑈2, 𝑈3 ∧ 𝐻2 ⊂ 𝑈1, 𝑈3].       (24) 

Proof. ⇒: Let 𝑈3: = 𝐻1 ⊔ 𝐻2. By (2.2.7) we have 𝑈3 ∈ 𝑆𝑘. Take a regular point 𝑥 ∈ 𝑈3
𝜋. In 

view of (2.2.8) the subspaces 𝑈1: = 𝐻2 ⊔ 𝑥, 𝑈2: = 𝐻1 ⊔ 𝑥 are non-isotropic. It is easy to 

verify that they satisfy the right-hand side of (24).  

⇐:We have 𝐻1 = 𝑈2 ∩ 𝑈3 and 𝐻2 = 𝑈1 ∩ 𝑈3. Set 𝐵 = 𝑈1 ⊔ 𝑈2 ⊔ 𝑈3. By assumptions 

𝑈1, 𝑈2, 𝑈3 form an ortho-top, so 𝐵 ∈ 𝑆𝑘+1. It is clear that 𝐻1 ∩ 𝐻2 = 𝑈1 ∩ 𝑈2 ∩ 𝑈3, and thus 

𝐻1 ∼ 𝐻2. By (2.2.15) we have two points 𝑎 ∈ 𝑈1
𝜋 ∩ 𝑈2 and 𝑏 ∈ 𝑈3

𝜋 ∩ 𝑈2. Observe that 𝑎 ≠
𝑏 as otherwise we would have 𝑎 ∈ 𝐵 ∩ 𝐵𝜋 = ∅. Take the line 𝐿:= 𝑎, 𝑏̅̅ ̅̅̅. Note that 𝐿 ⊆ 𝑈1

𝜋 ⊔
𝑈3
𝜋 = 𝐻2

𝜋 and 𝐿 ⊆ 𝑈2. Since 𝐻1 is a hyperplane in 𝑈2, the line L meets 𝐻1, and thus 𝐻1 ∩
𝐻2
𝜋 ≠ ∅ which completes the proof. 

To summarize what we have done so far observe that in (2.2.13) and (2.2.14) maximal 

orthostars are involved, so by (2.2.10) we have to assume that 𝑘 ≤ 𝑛 − 2. Considering 

(2.2.16) we need 1 ≤ 𝑘. By (2.2.12) meet-adjacency ∼− can be defined only if 𝑘 ≤ 𝑛 − 4.  

Proposition (2.2.17)[50]: If 1 ≤ 𝑘 ≤ 𝑛 − 4, then the structure  

〈𝑆𝑘−1, 𝑆𝑘 , ⊂, ⊥
∼
𝑘−1〉 

can be defined in 〈𝑆𝑘 , ⊥
∼
〉. 

With a dual reasoning we get  

Proposition (2.2.18)[50]: If 3 ≤ 𝑘 ≤ 𝑛 − 2, then the structure  

〈𝑆𝑘+1, 𝑆𝑘 , ⊃, ⊥
∼
𝑘−1〉 

can be defined in 〈𝑆𝑘 , ⊥
∼
〉.  

If 1 ≤ 𝑘 ≤ 𝑛 − 4, then applying (2.2.17) we get the structure 〈𝑆0, 𝑆1, ⊂, ⊥
∼
〉. If 3 ≤ 𝑘 ≤ 𝑛 −

2, then applying (2.2.18) we get 〈𝑆𝑛−1, 𝑆𝑛−2, ⊃, ⊥
∼
〉 which is the dual to the previous one. In 

the elliptic case this is actually what we need, that is 〈𝑆, ℒ, ⊥〉 the underlying metric-

projective space. Otherwise, we need to go through to get the same result.  

What is left are the following three cases:  

(i) 𝑘 = 0, 

(ii) 𝑘 = 𝑛 − 1,  

(iii) 𝑘 < 3 and 𝑛 < 𝑘 + 4. 

Considering that 𝔙 is self-dual via polarity π and that 2𝑘 ≠ 𝑛 − 1 we can restrict ourselves 

to 2𝑘 < 𝑛 − 1. Accordingly, there are two specific cases left to investigate:  

(i) 𝑘 = 0, 

(ii) 𝑘 = 1 and 𝑛 = 4. 

Here we deal with the structure of conjugacy on regular points. Every non-isotropic line 

𝐿 ∈ 𝑆1 contains two distinct conjugate regular points 𝑢1, 𝑢2. These two points can be 
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completed to a maximal self-polar simplex of regular points 𝑢1, . . . 𝑢𝑛+1 in 𝔙. Note that 𝑢𝑖
𝜋 

is a non-isotropic hyperplane and hence  

𝐿 = ⋂  

𝑖=3,...,𝑛+1

𝑢𝑖
𝜋 . 

This way we have defined 〈𝑆0, 𝑆1, ⊂, ⊥
∼
〉 and can move  

For a triangle ∆ in 〈𝑆0, 𝑆1, ⊂, ⊥
∼
〉 with the sides 𝐿1, 𝐿2, 𝐿3 we define the set  

𝛱0(∆) = {𝑢 ∈ 𝑆0: (∃𝐿 ∈ 𝑆1)(∃𝑤1, 𝑤2 ∈ 𝑆0) 

[𝑢, 𝑤1, 𝑤2 ∈ 𝐿 ∧ 𝑤1 ≠ 𝑤2 ∧ ∨𝑖,𝑗=1,2,3,𝑖≠𝑗 (𝑤1 ∈ 𝐿𝑖 ∧ 𝑤2 ∈ 𝐿𝑗)].                            (25) 

Clearly 𝛱0(∆) is contained in a projective plane 𝛱 ∈ ℘2 which contains the vertices of ∆, 

and 𝑅𝑎𝑑(𝛱) is at most a point (i.e. it is a point or the plane Π is non-isotropic).  

It can be computed1 that for every projective plane 𝛱 ∈ ℘2 with 𝑑𝑖𝑚(𝑅𝑎𝑑(𝛱)) ≤ 0 there 

is a triangle ∆ such that 𝛱0(∆) is the set 𝑆0(𝛱) of all regular points on Π. Then the set  

𝛱1(∆) = {𝐿 ∈ 𝑆1: |𝐿 ∩ 𝛱0(∆)| ≥ 2}                         (26) 
is the set 𝑆1(𝛱) of all non-isotropic lines on Π. Two non-isotropic lines are coplanar if they 

both are in one set of the form 𝛱1(∆). That way we get the following lemma.  

Lemma (2.2.19)[50]: The family  

𝑆2̅
0 = {𝑆0(𝛱): 𝛱 ∈ ℘2, 𝑑𝑖𝑚(𝑅𝑎𝑑(𝛱)) ≤ 0} 

of point-subplanes of all projective planes whose radicals are at most a point, the family  

𝑆2̅
1 = {𝑆1(𝛱): 𝛱 ∈ ℘2, 𝑑𝑖𝑚(𝑅𝑎𝑑(𝛱)) ≤ 0} 

of analogous line-subplanes as well as the adjacency ∼ on the set 𝑆1 is definable in terms of 

〈𝑆0, 𝑆1, ⊂, ⊥
∼
〉.  

Next is a star of non-isotropic lines through a regular point 𝑎 ∈ 𝑆0, i.e. the set  

𝑆(𝑎) = {𝐿 ∈ 𝑆1: 𝑎 ∈ 𝐿}.                                                (27) 
Now consider the following relation. Let 𝐿1, 𝐿2, 𝐿3 ∈ 𝑆1, then 𝛻(𝐿1, 𝐿2, 𝐿3):⟺  

∼ (𝐿1, 𝐿2, 𝐿3) ∧ ∄𝑎 ∈ 𝑆0[𝐿1, 𝐿2, 𝐿3 ∈ 𝑆(𝑎)] ∧ ∄𝑈 ∈ 𝑆2̅
1[𝐿1, 𝐿2, 𝐿3 ∈ 𝑈]    (28) 

The relation 𝛻(𝐿1, 𝐿2, 𝐿3) means that the lines 𝐿1, 𝐿2, 𝐿3 go through some absolute point p 

and they are non-coplanar. Note by definition (28) that the lines 𝐿1, 𝐿2, 𝐿3 are pairwise 

adjacent, so they form a triangle or a pencil (possibly flat). Suppose that 𝐿1, 𝐿2, 𝐿3 lie on a 

plane 𝛱 ∈ ℘2. Then 𝑑𝑖𝑚(𝑅𝑎𝑑(𝛱)) ≤ 0, and hence 𝐿1, 𝐿2, 𝐿2 ∈ 𝑆1(𝛱) ∈ 𝑆2̅
1 , which 

contradicts (28). So, the lines 𝐿1, 𝐿2, 𝐿3 go through some point p, which by (28) is absolute.  

Every star S(a) of non-isotropic lines, as defined in (27), can be identified with a regular 

point a and every set of non-isotropic lines L such that 𝐿 ∼− 𝐿1, 𝐿2, 𝐿3 for some 𝐿1, 𝐿2, 𝐿3 ∈
𝑆1 with 𝛻(𝐿1, 𝐿2, 𝐿3) can be identified with the absolute point of lines 𝐿1, 𝐿2, 𝐿3. That way 

we have reinterpreted the point-set S of the underlying projective space 𝔙.  

The idea we use to reinterpret isotropic lines is that each line in ℒ, no matter if nonisotropic 

or isotropic, lies on at least two non-isotropic planes. Such a non-isotropic plane can be 

identified with a non-isotropic triangle i.e. with three pairwise adjacent nonisotropic lines 

that do not go through a point, formally  

𝑀(𝐿1, 𝐿2, 𝐿3):⟺∼ (𝐿1, 𝐿2, 𝐿3) ∧ ∄𝑝 ∈ 𝑆[𝑝 ∈ 𝐿1, 𝐿2, 𝐿3].               (29) 
Two such triangles determine two distinct planes if two of the all six of their sides are skew. 

This allows to define the collinearity relation L for all the points in S, namely for 𝑝1, 𝑝2, 𝑝3 ∈
𝑆  

𝐿(𝑝1, 𝑝2, 𝑝3) ⟺≠ (𝑝1, 𝑝2, 𝑝3) ∧ ∃𝐿1, 𝐾1, 𝐿2, 𝐾2, 𝐿3, 𝐾3 
∈ 𝑆1[𝑝1 ∈ 𝐿1, 𝐾1 ∧ 𝑝2 ∈ 𝐿2, 𝐾2 ∧ 𝑝3 ∈ 𝐿3, 𝐾3 ∧ ∆(𝐿1, 𝐿2, 𝐿3) ∧ ∆(𝐾1, 𝐾2, 𝐾3) ∧ 𝐿1 ≁ 𝐾2]. (30) 
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That way we have all the underlying metric-projective space 〈𝑆, ℒ, ⊥〉 reconstructed in the 

structure 〈𝑆0, 𝑆1, ⊂, ⊥
∼
〉.  

This is a structure of ortho-adjacency on lines in a 4-dimensional projective space. 

From (2.2.10) maximal ortho-stars are 4-element sets and maximal ortho-tops are 3-element 

sets.  

Let 𝑈1, 𝑈2,𝑊1,𝑊2 be non-isotropic lines such that 𝑈1 ≠ 𝑈2, ∆
−(𝑊1,𝑊2, 𝑈1) and 

∆−(𝑊1,𝑊2, 𝑈2) (i.e. the right hand side of (30) holds). Trivially 𝑈1 ∼
− 𝑈2. But by (2.2.10) 

there is a regular point H and conjugate regular points 𝑤1, 𝑤2 ∈ 𝐻
𝜋 such that 𝑊𝑖 = 𝐻 ⊔ 𝑤𝑖. 

The key observation is that 𝑈1 ⊔ 𝑈2 = 𝑤1
𝜋 ∩ 𝑤2

𝜋 which means that 𝑈1 ∼
+ 𝑈2 as 𝑤1

𝜋 , 𝑤2
𝜋 are 

non-isotropic meet-adjacent hyperplanes. Therefore, all non-isotropic lines U with 

∆−(𝑊1,𝑊2, 𝑈) for fixed non-isotropic lines 𝑊1,𝑊2 such that 𝑊1 ⊥
∼
𝑊2 form a regular 

pencil, i.e.  

𝑝(𝐻, 𝐵):= {𝑈 ∈ 𝑆1: 𝐻 ⊂ 𝑈 ⊂ 𝐵} = {𝑈 ∈ 𝑆1: ∆
−(𝑊1,𝑊2, 𝑈)}, 

where 𝐻 = 𝑊1 ∩𝑊2 and 𝐵 = (𝑊1 ∩𝑊2) ⊔ (𝑊1 ⊔𝑊2)
𝜋. Indeed, 𝑊1 ⊔𝑊2 is a 

nonisotropic plane and thus 𝐿:= (𝑊1 ⊔𝑊2)
𝜋 is a non-isotropic line with the property that 

for all 𝑢 ∈ 𝐿 we have on the one hand ∆−(𝑊1,𝑊2, 𝐻 ⊔ 𝑢) and on the other 𝐻 ⊂ 𝐻 ⊔ 𝑢 ⊂
𝐵. 

Let us write 𝐿(𝑈1, 𝑈2, 𝑈3) iff 𝑈1, 𝑈2, 𝑈3 are non-isotropic lines in one regular pencil. Using 

this new relation we define incidence between regular points and non-isotropic lines. Let ℛ 

be the set of so defined regular pencils and let 𝔅 be the partial linear space 𝔅 = 〈𝑆1, ℛ〉. If 
lines 𝐿1, 𝐿2, 𝐿3 are the vertices of a triangle in 𝔅 then either  

(a) they lie on a non-isotropic plane Π, or  

(b) they are in a star S(a) of non-isotropic lines through a regular point a.  

Both cases there are non-isotropic lines 𝑀1, 𝑀2, 𝑀3 which are the vertices of a triangle ∆ in 

𝔅 such that 𝐿1, 𝐿2, 𝐿3 ∈ 𝛱0(∆); here 𝛱0(∆) is defined in 𝔅 by the formula analogous to (25) 

with points interpreted as the points of 𝔅 and lines interpreted as the lines of 𝔅 i.e. as regular 

pencils. Moreover, in case (a), 𝛱0(∆) = 𝑆1(𝛱) and in case (b), the set of the elements of 

𝛱0(∆) with a π is 𝑆0(𝛤), where Γ is a plane in 𝑎𝜋 such that 𝑑𝑖𝑚(𝑅𝑎𝑑(𝛤)) ≤ 0. We call 

such a triangle ∆ a spanning triangle; this property can be characterized in the language of 

𝔅. In case (a), however, there is a triple of lines 𝐾1, 𝐾2, 𝐾3 ∈ 𝛱0(∆) with ∆+(𝐾1, 𝐾2, 𝐾3) and 

there is no such a triple in case (b).  

Assume (b); then every 𝑋 ∈ 𝛱0(∆) goes through a. Let 𝑞 ∈ ℛ be arbitrary and let a be the 

vertex of q. Next, let 𝐿1, 𝐿2 ∈ 𝑞 with 𝐿1 ⊥ 𝐿2. Consider arbitrary 𝐿 ∈ 𝑆(𝑎) such that 𝐿 ∉ 𝑞. 

Then the points 𝐿 ∩ 𝑎𝜋 , 𝐿1 ∩ 𝑎
𝜋, and 𝐿2 ∩ 𝑎

𝜋 are on a plane Γ in a π with 𝑑𝑖𝑚(𝑅𝑎𝑑(𝛤)) ≤
0. Thus there are 𝑀1, 𝑀2,𝑀3 ∈ 𝑆(𝑎) which are the vertices of a triangle ∆ in 𝔅 such that 

𝐿, 𝐿1, 𝐿2 ∈ 𝛱0(∆) and the elements of 𝛱0(∆) and 𝑎𝜋 is 𝑆0(𝛤). In symbols, our considerations 

can be summarized as follows:  

𝑎 ∈ 𝐿 ⟺ 𝐿 ∈ 𝑞 ∨ (∃∆)(∃𝐿1, 𝐿2 ∈ 𝑞) [∆ is a spanning triangle in 𝔅 ∧ 𝐿1 ≠ 𝐿2 ∧ 𝐿, 𝐿1, 𝐿2
∈ 𝛱0 (∆) ∧ ∄𝐾1, 𝐾2, 𝐾3[𝐾1, 𝐾2, 𝐾3 ∈ 𝛱0(∆) ∧ ∆

+(𝐾1, 𝐾2, 𝐾3)]. (21) 
That way we have defined the stars S(a) of non-isotropic lines, where a is a regular point, 

and thus we have reinterpreted 〈𝑆0, 𝑆1, ⊂, ⊥
∼
〉, so we can move  

The case considered  was the missing one to have the underlying metric-projective space 

〈𝑆, ℒ, ⊥〉 reconstructed in the structure 〈𝑆𝑘, ⊥
∼
〉 and to prove our theorem.  



41 

In this case not all automorphisms of 〈𝑆𝑘, ⊥
∼
〉 are induced by automorphisms of 

〈𝑆, ℒ, 𝜋𝑖〉 (or equivalently of 〈𝑆, ℒ, ⊥
∼
〉). 

Proposition (2.2.20)[50]: If n=2k +1, then the polarity π is an automorphism of 〈𝑆𝑘, ⊥
∼
〉 

which maps ortho-stars onto ortho-tops and vice versa.  

Proof. The polarity π reverses the inclusion, i.e. for 𝑈,𝑊 ∈ ℘ such that 𝑈 ⊆ 𝑊 we have 

𝑊𝜋 ⊆ 𝑈𝜋. Let 𝑈,𝑊 ∈ 𝑆𝑘 such that 𝑈 ⊥
∼
𝑊. Then 𝑈 ∩𝑊 is a hyperplane in both U and W, 

so 𝑈𝜋 and 𝑊𝜋 are hyperplanes in (𝑈 ∩𝑊)𝜋. Moreover, 𝑈 ∩𝑊𝜋 ≠ ∅, as in (22), implies 

that 𝑈𝜋 ∩ (𝑊𝜋)𝜋 = 𝑈𝜋 ∩𝑊 ≠ ∅ which suffices to state that π preserves ortho-adjacency 

⊥
∼

 and thus, it is an automorphism of 〈𝑆𝑘, ⊥
∼
〉.  

The polarity π also maps 𝑆𝑘−1 onto 𝑆𝑘+1 and vice versa. By (2.2.10) we are done. 
What it all means is that the assertions of (2.2.1) and (2.2.2) are false when 𝑛 = 2𝑘 + 1. If 

that would be the case, the notion of a point would be definable and thus preserved by 

automorphisms of ⊥
∼

. As in the case of polar geometry one can expect that a weaker 

condition holds: given an automorphism f of 〈𝑆𝑘 , ⊥
∼
〉 either f or fπ is determined by an 

automorphism of 〈𝑆, ℒ, ⊥〉. In the hyperbolic and elliptic case 〈𝑆𝑘, ⊥
∼
〉 is a Plücker space, i.e. 

it is connected. If this is also true in general then we can use the argument that involves 

chains of intersecting ortho-cliques as bijective transformations of 𝑆𝑘 which preserve the 

ortho-adjacency map intersecting ortho-cliques of the same type to ortho-cliques of the same 

type. We leave it as an open question whether this form of the Chow theorem holds for 𝑛 =
2𝑘 + 1. 
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Chapter 3 

Complete Positivity and Nuclear 

 

We show that the construction is explicit and involves a convolution operator with a 

particular Gauß function. We show that the completion contains many interesting functions 

like exponentials. The star product is shown to converge absolutely and provides an entire 

deformation. We show that the completion has an absolute Schauder basis whenever V has 

an absolute Schauder basis. Moreover, the Weyl algebra is nuclear iff V is nuclear. We 

discuss functoriality, translational symmetries, and equivalences of the construction. We 

show how the Peierls bracket in classical field theory on a globally hyperbolic spacetime 

can be used to obtain a local net of Weyl algebras. 

Section (3.1): Rieffel Deformation Quantization by Actions of ℝ𝑑  

In deformation quantization  [72] the transition from classical mechanics to quantum 

mechanics is obtained as an associative deformation of the classical observable algebra, 

modelled by a certain class of functions on the classical phase space. In formal deformation 

quantization this is accomplished by constructing a new associative product, the star 

product, as a formal power series with formal parameter ℎ. While this theory is by now very 

well understood, see  [74],  [84],  [85],  [87],  [89],  [95] for existence and classification 

results, and  [100] for a gentle introduction, from a physicist’s perspective the formal 

character of the star products is still not satisfying: ℎ is not a formal parameter after all, 

whence at the end of the day, some sort of “convergence” in ℎ is needed. 

Attacking the convergence problem of the formal series seems to be complicated though in 

examples this can be done  [73]. More successful are approaches that are intrinsically non‐

formal like the Berezin‐Toeplitz inspired quantizations  [75],  [80],  [81],  [82],  [83] or 

Rieffel’s approach using oscillatory integrals based on group actions of R𝑑 In this version  

[96], the starting point is a C∗‐algebra 𝔄 endowed with an isometric, strongly continuous 

action b y∗‐automorphisms by some finite‐dimensional vector space 𝑉. Out of this and the 

choice of a symplectic form on 𝑉, Rieffel constructs a deformation of 𝔄 in the sense of a 

continuous field of C∗‐algebras, the field parameter being ℎ. While the construction is very 

general, there are yet many examples of Poisson manifolds which can be deformation 

quantized this way. In this framework of strict deformations many results have been 

obtained, most notably  [92],  [94]. 

While the above constructions deal with the observable algebra, for a physically complete 

description of quantization also the states have to be taken into account. In both approaches, 

the appropriate notion of states is that of positive linear functionals on the observable 

algebras. While for C∗‐algebras this is of course a well‐known concept, also in the formal 

deformation quantization this leads to a physically reasonable definition incorporating a 

reasonable representation theory; see, e.g.,  [76],  [78],  [99]. 

A fundamental question is whether a given classical state arises as the classical limit of a 

quantum state. In formal deformation quantization there is a general and affirmative answer 

to this question  [77],  [79]. In the strict approaches, Landsman discussed this in  [91] for a 

certain class of examples: the appropriate notion of classical limit and deformation of states 

is that of a continuous field of states with respect to a given continuous field of C∗‐algebras. 
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His construction is based on particular ∗‐representations and certain coherent states and their 

Wigner functions. Landsman uses continuous fields of states in his discussion of the Born 

rule  [93]. 

We consider Rieffel’s deformation by actions of R𝑑 in general and prove that every state of 

the undeformed algebra can be deformed into a continuous field of states for the field of 

deformed algebras. We give an explicit construction including a detailed study of the 

asymptotics of the deformed states for ℎ → 0; see also  [88]. It turns out that the asymptotic 

expansion coincides in a very precise sense with the formal deformations obtained in  [77]. 

We recall Rieffel’s deformation in the Fréchet algebraic framework and define an operator 

𝑆ℎ being the “convolution” with a GauB function. The precise form of 𝑆ℎ resembles the 

Wigner functions Landsman used, however now 𝑆ℎ is defined directly on the algebra. The 

asymptotics of 𝑆ℎ for ℎ → 0+ is studied in detail. We show that 𝑆ℎ maps squares 𝑎∗ ⋆ℎ 𝑎 of 

the deformed algebra to positive elements of the undeformed algebra. This allows to define 

a positive functional 𝜔ℎ = 𝜔 ∘ 𝑆ℎ of the deformed algebra for every positive functional 𝜔 

of the undeformed algebra. A detailed asymptotic expansion is obtained as well. We devoted 

to the more particular case of a C∗‐algebra deformation. Here we show that the operator 𝑆ℎ 

is also continuous in the C∗‐topology of the deformed algebra whence it extends to the C∗‐

algebraic completion. Finally, We show that the positive functionals {𝜔ℎ}ℎ≥0 indeed form 

a continuous field of states. 

Denotes a Fréchet∗‐algebra endowed with a strongly continuous action 𝛼 by ∗‐

homomorphisms of a finite‐dimensional vector space 𝑉 which we assume without restriction 

to be even dimensional. Moreover, one requires that there is a system of seminorms ‖ ⋅ ‖𝑘 

defining the topology of 𝒜 such that with respect to these seminorms the action is isomemc. 

By 𝒜∞ ⊆ 𝒜 we denote the subspace of smooth vectors in 𝒜 with respect to 𝛼. It is well 

known that 𝒜∞ is a dense ∗‐subalgebra of 𝒜. Moreover, 𝒜∞ carries a finer topology 

making it into a Fréchet algebra, too. A system of seminorms defining the topology is 

explicitly given by 

‖𝑎‖𝑘,𝜇 = sup
|β|≤μ

  ‖𝜕𝛽𝑎‖𝑘 , 

where using multi‐index notation 𝜕𝛽 𝑎 denotes the derivative of 𝛼𝑢(𝑎) with respect to 𝑢 at 

𝑢 = 0; see, e.g.,  [98] for more background on smooth vectors. 

In a next step one chooses a non‐degenerate bilinear anti‐symmetric form 𝜃 on 𝑉 and ℎ >

0. Then Rieffel showed in  [96] that 

𝑎 ⋆ℎ 𝑏 =
1

(𝜋ℎ)2𝑛
∫ 𝛼𝑢
𝑉×𝑉

(𝑎)𝛼𝑣(𝑏)e
2i
ℎ
𝜃(𝑢,𝑣)d(𝑢, 𝑣) ,   (1) 

which is defined for 𝑎 , 𝑏 ∈ 𝐴∞, yields a well‐defined associative product such that ⋆ℎ is 

still continuous with respect to the 𝒜∞‐topology. Moreover, the original ∗‐involution of 

𝒜∞ is still a∗‐involution with respect to ⋆ℎ. The precise definition of the integral in an 

oscillatory sense is sophisticated and can be found in Rieffel’s booklet  [96]. Note that we 

have to choose a normalization for the Haar measure on 𝑉 in (1). We shall also make use of 

linear coordinates denoted by 𝑣 = 𝑢𝑗𝑒𝑗 in the sequel. 

Definition (3.1.1)[71]: Let 𝑔: 𝑉 × 𝑉 → R be a positive definite inner product on 𝑉. Then 

the linear operator 𝑆𝑔:𝒜 → 𝒜 is defined by 
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𝑆𝑔(𝑎) = ∫ e−𝑔(𝑢,𝑢)

𝑉

𝛼𝑢(𝑎)d𝑢.                         (2) 

Thanks to the fast decay of the Gau13 function and the fact that the action 𝛼 is isometric, 

the definition of 𝑆𝑔 in (2) as an improper Riemann integral is possible. More general, we 

need the following construction: let 𝐵(𝑉,𝒜) denote the 𝒜‐valued functions on 𝑉 such that 

sup𝑣∈𝑉‖𝑓(𝑣)‖𝑘 < ∞ for all 𝑘, i.e., the bounded functions with respect to the seminorms ‖ ⋅

‖𝑘 of 𝜗{. Then we define 

�̃�𝑔𝑓 = ∫ e−𝑔(𝑢,𝑢)

𝑉

𝑓(𝑢)d𝑢 

for ∈ 𝐵(𝑉,𝒜) . Again, a naive definition of the integral is possible. Finally, let 𝐶𝑢
0(𝑉,𝒜) 

be the uniformly continuous functions in 𝐵(𝑉, 𝐴) and let 𝐶𝑢
∞(𝑉, 𝐴) be the smooth functions 

with all partial derivatives in 𝐶𝑢
0(𝑉,𝒜) . Clearly, the spaces 𝐶𝑢

0(𝑉,𝒜) as well as 𝐶𝑢
∞(𝑉, 𝐴) 

are equipped with a natural Fréchet topology by taking the  sup ‐norm over 𝑉 of seminorms 

of the values of the (derivatives of the) functions. Then the following Proposition lists some 

properties of 𝑆𝑔 and �̃�𝑔: 

Proposition (3.1.2)  [71]: 

(i) The operator 𝑆𝑔:𝒜 → 𝒜 is continuous. 

(ii) We have 𝑆𝑔(𝒜
∞) ⊆ 𝒜∞ and 𝑆𝑔:𝒜

∞ → 𝒜∞ is continuous, too. 

(iii) The restriction of �̃�𝑔 to 𝐶𝑢
0(𝑉,𝒜) and 𝐶𝑢

∞(V,𝒜) is continuous in the respective 

topologies. 

(iv) The restriction of �̃�𝑔 to 𝐶𝑢
0(𝑉, 𝐴∞) and 𝐶𝑢

∞(𝑉 ,𝒜
∞) takes values in 𝐴∞ and is again 

continuous. 

Proof. The first two statements can be recovered from the third and fourth by considering 

the function 𝑓(𝑢) = 𝛼𝑢(𝑎) for 𝑎 ∈ 𝐴 or 𝑎 ∈ 𝒜∞, respectively: as the action is isometric we 

have 𝑓 ∈ 𝐶𝑢
0(𝑉, 𝐴) and 𝐶u

∞(𝑉, 𝐴∞) , respectively. The continuity statements in the third and 

fourth part are then a straightforward estimate.  

In a next step we want to understand the asymptotics of the operator 𝑆𝑔. To this end we 

rescale the inner product by ℎ > 0 and consider the normalized GauB function 

𝐺ℎ(𝑢) =
√ det 𝐺

(𝜋ℎ)𝑛
e−
𝑔(𝑢,𝑢)
ℎ                                   (3) 

where  det 𝐺 > 0 is the determinant of 𝑔 with respect to the Haar measure on 𝑉 and 2𝑛 =

 dim 𝑉. The normalization constant is chosen such that the integral of 𝐺ℎ is 1. For a fixed 

choice of 𝑔 we consider the operator 

𝑆ℎ(𝑎) = ∫ 𝐺ℎ
𝑉

(𝑢)𝛼𝑢(𝑎)d𝑢.                    (4) 

Lemma (3.1.3) [71]: For every 𝑎 ∈ 𝒜 we have lim
ℎ↘0
𝑆ℎ (𝑎) = 𝑎 in the topology of 𝐴. 

Moreover, for every 𝑎 ∈ 𝒜∞ we have 

lim
ℎ↘0
𝑆ℎ (𝑎) = 𝑎                                 (5) 

and 
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d

dℎ
(𝑆ℎ𝑎) = 𝑆ℎ  (

1

4
△𝑔 𝑎) ,                         (6) 

both with respect to the topology of 𝒜∞ where 

△𝑔 𝑎 =∑(𝐺−1)𝑖𝑗

𝑖,𝑗

𝜕2

𝜕𝑢𝑖𝜕𝑢𝑗
𝛼𝑢(𝑎)|𝑢=0 

is the Laplacian with respect to the inner product g and the action α viewed as continuous 

operator on 𝒜∞. The operator △g does not depend on the choice of linear coordinates. 

Proof. By substitution 𝑢 → √ℎ𝑢 we have 

𝑆ℎ(𝑎) =
√ det 𝐺

𝜋𝑛
∫ e−𝑔(𝑢,𝑢)

𝑉

𝛼√ℎ𝑢(𝑎)d𝑢. 

To exchange the order of integration and lim
ℎ↘0

 we consider 

‖∫ e−𝑔(𝑢,𝑢)

𝑉

(𝛼√ℎ𝑢(𝑎) − 𝑎)d𝑢‖𝑘,𝜇 

≤ ∫ e−𝑔(𝑢,𝑢)

𝐾

‖𝛼√ℎ𝑢(𝑎) − 𝑎‖𝑘,𝜇d𝑢 + ∫ e−𝑔(u,𝑢)

𝑉\𝐾

‖𝛼√ℎu(𝑎) − 𝑎‖𝑘,𝜇d𝑢, 

where 𝐾 denotes a compact set in 𝑉. For ℎ ↘ 0 the function 𝛼ℎ(𝑎): 𝑢 ↦ 𝛼√ℎ𝑢(𝑎) converges 

uniformly to the constant function 𝑢 ↦ 𝑎 on every compact set in 𝑉. Furthermore, since 𝛼 

is isometric, the estimate ‖𝛼√ℎ𝑢(𝑎) − 𝑎‖𝑘,𝜇 ≤ 2‖𝑎‖𝑘,𝜇 holds for all 𝑢 ∈ 𝑉. Thus, choosing 

𝐾 large enough makes the second term small, independently of ℎ. Afterwards, choosing ℎ 

small brings the first term for the fixed 𝐾 below every positive bound. By the choice of the 

normalization constant in front of the GauB function this shows (5). The case for 𝑎 ∈ 𝒜 is 

analogous. For the last statement we first note that for a fixed 𝑎 the differentiation in 𝑉‐

directions is a limit in 𝐶𝑢
∞(𝑉𝜗t

∞) . By the linearity and continuity of �̃�𝑔 as in Proposition 

(3.1.2) we can thus exchange differentiation and the integral. This gives 

d

dℎ
𝑆ℎ𝑎 =

d

dℎ
∫

√ det 𝐺

𝜋𝑛𝑉

e−𝑔(𝑢,𝑢)𝛼√ℎ𝑢(𝑎)d𝑢 

=
√ det 𝐺

𝜋𝑛
∫ e−𝑔(𝑢,u)

𝑉

∑
𝑢𝑖

2√ℎ
𝑖

𝜕

𝜕𝑢𝑖
𝛼𝑢(𝑎)|√ℎ𝑢d𝑢 

= −
1

4√ℎ

√ det 𝐺

𝜋𝑛
∫ ∑(𝐺−1)𝑖𝑗

𝑖,𝑗𝑉

𝜕

𝜕𝑢𝑗
e−𝑔(𝑢,𝑢)

𝜕

𝜕𝑢𝑖
𝛼𝑢(𝑎)|√ℎ𝑢d𝑢 

=
1

4

√ det 𝐺

𝜋𝑛
e−𝑔(𝑢,u)(𝐺−1)𝑖𝑗

𝜕2

𝜕𝑢𝑖𝜕𝑢𝑗
𝛼𝑢(𝑎)|√ℎ𝑢d𝑢 

=
1

4

√ det 𝐺

𝜋𝑛
e−𝑔(𝑢,𝑢)𝛼√ℎ𝑢 ((𝐺

−1)𝑖𝑗
𝜕2

𝜕𝑣𝑖𝜕𝑣𝑗
𝛼𝑣(𝑎)|𝑣=0) d𝑢, 

where we have used an integration by parts as well as the fact that 𝛼 is an action. Note that 

the operator △𝑔 is well defined on 𝒜∞. This completes the proof.  



46 

Since with 𝑎 ∈ 𝒜∞ we also have △𝑔 𝑎 ∈ 𝒜
∞, the iteration of (6) immediately yields the 

following statement: 

Theorem (3.1.4)[71] The operator 𝑆ℎ:𝒜
∞ → 𝒜∞ has the formal asymptotic expansion 

𝑆ℎ ≃ ℎ ↘ 0e
ℎ
4
𝛥𝑔 

with respect to the topology of 𝒜∞. 

This means that the asymptotic expansion of 𝑆ℎ corresponds to the formal equivalence 

transformation leading from the Weyl star product to the Wick product; see, e.g.,  [100], eq. 

(3). 

Recall that a functional 𝜔:𝒜 → ℂ is called positive if for all 𝑎 ∈ 𝒜 we have 

𝜔(𝑎∗𝑎) > 0. 

While this is a purely algebraic definition, for a topological algebra 𝒜 we require 

furthermore that co is continuous. An algebra element 𝑎 ∈ 𝒜 is called positive if 𝜔(𝑎) ≥ 0 

for all (continuous) positive functionals 𝜔. The positive algebra elements will be denoted 

by 𝒜+. Note that for general ∗‐algebras a definition of positivity like 𝑎 = 𝑏∗𝑏 will not lead 

to a reasonable notion of positive elements due to the lack of a functional calculus. Note 

also that the above definition coincides with the usual definition of positive elements in the 

case of a C∗‐algebra. There are even more sophisticated notions of positivity, e.g., for 𝑂∗‐
algebras; see the discussion in  [97]. However, for our purposes the above definition will be 

sufficient as for C∗‐algebras positive functionals are always continuous. 

Now we can use the operator 𝑆ℎ to deform a positive functional of 𝒜 into a positive 

functional with respect to ⋆ℎ. To this end we observe the following lemma: 

Lemma (3.1.5) [71]: For 𝑎 ∈ 𝒜∞ we have 

𝑆ℎ(𝑎
∗ ⋆ℎ 𝑎) 

=
1

(𝜋ℎ)2𝑛
∫ e−

1
ℎ
𝑔(𝑣,𝑣)

𝑉×𝑉

𝛼𝑣(𝑎
∗)e−

1
ℎ
𝑔(𝑤,𝑤)𝛼𝑤(𝑎)e

2
ℎ
(𝑔(𝑣,𝑤)+i𝜃(𝑣,𝑤))d𝑣 𝑑𝑤. 

 

Proof. The proof is a straightforward computation using the fact that 𝛼 is an action as well 

as a linear change of coordinates and a Fourier transform of the GauB function. 

In the particular case that 𝑔 and 𝜃 are compatible, i.e., 𝑔 (𝑢, 𝑣) = 𝜃(𝑢 , Jv) with a complex 

structure 𝐽, the combination ℎ (𝑢, 𝑣) = 𝑔(𝑢, 𝑣) + i𝜃(𝑢, 𝑣) is known to be a Hermitian 

metric on the complex vector space (𝑉, 𝐽) . In this case there exists a symplectic basis 

{𝑒1, . . . , 𝑒𝑛, 𝑓1, , 𝑓𝑛} of 𝑉 with coordinates 𝑞𝑖 and 𝑝𝑖  and there exist complex coordinates 𝑧𝑖 =

𝑞𝑖 + i𝑝𝑖 and 𝑧
𝑗
= 𝑞𝑖 − i𝑝𝑖 such that 

𝑔(𝑢, 𝑢) =∑𝑧𝑢
𝑖

𝑖

𝑧𝑢
𝑖
= ‖𝑧𝑢‖

2 𝑎𝑛𝑑 ℎ(𝑣,𝑤) =∑𝑧𝑣
𝑖

𝑖

𝑧𝑤
𝑖  . 

From now on we assume that 𝑔 is compatible with 𝜃. Using these coordinates, the above 

integral can be rewritten as 

𝑆ℎ(𝑎
∗ ⋆ℎ 𝑎) =

1

(𝜋ℎ)2𝑛
∫ e−

1
ℎ
‖𝑧𝑣‖

2

𝑉×𝑉

𝛼𝑣(𝑎
∗)e−

1
ℎ
‖𝑧𝑤‖

2

𝛼𝑤(𝑎)e
2
ℎ
𝑧𝑣⋅𝑧𝑤d𝑣 𝑑𝑤. (7) 

Lemma (3.1.6) [71]: For 𝑎 ∈ 𝒜∞ we have 



47 

𝑆ℎ(𝑎
∗ ⋆ℎ 𝑎) =∑

2|𝐿|

𝐿!
𝐿≥0

𝑎𝐿
∗𝑎𝐿                                     (8) 

with respect to the 𝒜∞‐topology, where for a multi‐index 𝐿 = (𝑙1 , 𝑙𝑛) one defines 

𝑎𝐿 =
1

𝜋𝑛
∫ e−‖𝑧𝑣‖

2

𝑉

𝑧𝑣
𝐿𝛼√ћ𝑣(𝑎)d𝑣. 

Proof. First note that rescaling the variables in (7) by √ℎ allows to get rid of the negative 

powers of ℎ. Then (8) is obtained from expanding the exponential function e2𝑧𝑣⋅𝑧𝑤 into the 

Taylor series and exchanging summation and integration. The fact that the latter exchange 

of limits is allowed follows from a similar argument as in the proof of Lemma (3.1.3): First 

we split the integration into two parts, one over a compact subset 𝐾 ⊆ 𝑉 and the other over 

𝑉\𝐾. On 𝐾 the Taylor expansion converges uniformly including all derivatives. Outside 𝐾, 

the GauB function decays fast enough to over‐compensate the exponential increase. Thus 

first choosing 𝐾 large enough to make the second integral small then using the uniform 

convergence gives the result. Note that the convergence is in the sense of 𝒜∞.  

Theorem (3.1.7) [71]: Let 𝑔 be a compatible positive definite inner product and 𝑆ℎ the 

corresponding operator as in (4). 

(i) For every continuous positive linearfunctional 𝜔:𝒜 → ℂ the functional 

𝜔ℎ = 𝜔 ∘ 𝑆ℎ:𝒜
∞ → ℂ 

is positive and continuous in the 𝒜∞‐topology. 

(ii) For every 𝑎 ∈ 𝒜∞ we have 

𝑆ℎ(𝑎
∗ ⋆ℎ 𝑎) ∈ 𝒜

+. 
Proof. Let 𝜔:𝒜 → ℂ be positive and continuous. Since the topology of 𝒜∞ is finer than 

the original one, it follows that 𝜔:𝒜∞ → ℂ is still continuous. Therefore 𝜔(𝑆ℎ(𝑎
∗ ⋆ℎ 𝑎)) ≥

0 follows immediately from (8) and the continuity of co. Moreover, since 𝑆ℎ is continuous 

the first part follows. Thus the second part is clear. 

Corollary (3.1.8) [71]: Let 𝜔:𝒜 → ℂ be a positive and continuous linear functional. Then 

on 𝒜∞, 𝜔ℎ = 𝜔 ∘ 𝑆ℎ has the asymptotic expansion 

𝜔ℎ ≃ ℎ ↘ 0∑
1

𝑟!

∞

𝑟=0

(
ℎ

4
)
𝑟

𝜔 ∘ 𝛥𝑔
𝑟  

in the 𝒜∞‐topology. 

In a next step we want to apply Theorem (3.1.7) to the more particular case of a C∗‐

algebraic deformation. Let 𝔄 be a unital C∗‐algebra endowed with an isometric and strongly 

continuous action of 𝑉 b y∗‐automorphisms. Then Rieffel has shown how to construct a C∗‐

norm on the Fréchet∗‐algebra (ℎ) = (𝔄∞,⋆ℎ ,∗) . In general, 𝐴(ℎ) is not complete. The norm 

completion of 𝒜(ℎ) will then be denoted by (ℎ) . We briefly recall the construction of the 

C∗‐norm on (ℎ) . Let 𝑆(𝑉, 𝔄) ⊆ 𝐶𝑢
∞(𝑉, 𝔄) be the subset of functions which are still in 

𝐶𝑢
∞(𝑉, 2I) when multiplied by arbitrary polynomials on 𝑉. For 𝑓, 𝑔 ∈ 𝑆(𝑉,𝔄) one defines 

the?J‐valued inner product 

〈𝑓, 𝑔〉 = ∫ 𝑓
𝑉

(𝑣)∗𝑔(𝑣)d𝑣, 
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which makes 𝑆(𝑉,𝔄) into a pre‐Hilbert right?J‐module; see, e.g.,  [90] for details on Hilbert 

modules. In particular, by 

‖𝑓‖𝑆 = √‖〈𝑓, 𝑓)‖ 

one obtains a norm on 𝑆(𝑉, 𝔄) , where the norm on the right‐hand side is the C∗‐norm of 𝔄. 

Using this norm, Rieffel showed that for every 𝐹 ∈ 𝐶𝑢
∞(𝑉, 𝔄) the operator 

𝐹 ⋆ℎ∶  𝑆(𝑉, 𝔄) ∋ 𝑓 ↦ 𝐹 ⋆ℎ 𝑓 ∈ 𝑆(𝑉,𝔄) 
is continuous with respect to ‖ ⋅ ‖𝑆 and adjointable with adjoint given by 𝐹∗ ⋆ℎ Since for 

𝑎 ∈ 𝔄∞ the function 𝑢 ↦ 𝛼𝑢(𝑎) is in 𝐶u
∞(𝑉, 𝔄) we obtain an induced operator on the pre‐

Hilbert module 𝛼(𝑎) ⋆ℎ . which is continuous and adjointable. A final computation then 

shows that 𝑎 ↦ 𝛼(𝑎) ⋆ℎ is a∗‐homomorphism with respect to the deformed product ⋆ℎ of 

𝔄∞. This allows to define 

‖𝑎‖ℎ = ‖𝛼(𝑎) ⋆ℎ . ‖, 
where on the right‐hand side we use the operator norm. Since it is well known that the 

continuous and adjointable operators on a (pre‐)Hilbert module constitute a C∗‐algebra, 

Rieffel arrives at a C∗‐norm ‖ ⋅ ‖ℎ for 𝒜(ℎ) . 

We want to show that the operator 𝑆ℎ being defined only on 𝒜(ℎ) is also continuous in the 

C∗‐norm and thus extends to (ℎ) . To show the continuity of 𝑆ℎ we will need the following 

lemma that shows that there is a star root of the Gau13 function. 

Lemma (3.1.9) [71]: Let 𝐺ℎ be the normalized Gaufl function as in (3) used to define the 

operator 𝑆ℎ. Then we have 

𝐺ℎ ⋆ 𝐺ℎ =
1

(2𝜋ℎ)𝑛
1

√ det 𝐺
𝐺ℎ . 

Proof. The proof is a straightforward and well‐known computation; see, e.g.,  [87], □ From 

equation (8) and the trivial fact that √ det 𝐺𝑎𝐿=0 = 𝑆ℎ(𝑎) we obtain the following 

statement: 

Lemma (3.1.10)  [71]. For 𝑎 ∈ 𝒜∞ we have 

𝑆ℎ(𝑎
∗ ⋆ℎ 𝑎) =

1

 det 𝐺
𝑆ℎ(𝑎

∗)𝑆ℎ(𝑎) + 𝑏, 

where 𝑏 ∈ 𝒜+ is positive. 

Theorem (3.1.11) [71]: Let (𝔄,⋅, ‖ ⋅ ‖) be a 𝐶∗‐algebra with isometric and strongly 

continuous action 𝛼 of 𝑉 and let 𝒜(ℎ) = (𝔄∞,⋆ℎ , ‖ ⋅ ‖ℎ) be the Rieffel deformed 𝑝𝑟𝑒 − 𝐶∗− 

algebra. Then the operator 

𝑆ℎ: 𝑠𝐴 (ℎ) → 𝔄 

is a continuous operator in the 𝐶∗‐norms of 𝒜(ℎ) and 𝔄. 

Proof. Since  is a 𝐶∗‐algebra, we have ‖𝑆ℎ𝑎‖
2 = ‖(𝑆ℎ𝑎)

∗(𝑆ℎ𝑎)‖. From Lemma (3.1.10) it 

follows that (𝑆ℎ𝑎)
∗(𝑆ℎ𝑎) <  det (𝐺)𝑆ℎ(𝑎

∗ ⋆ℎ 𝑎) in the sense of positive elements in 2I. 

From this it follows that the same holds for the norms, i.e., ‖(𝑆ℎ𝑎)
∗(𝑆ℎ𝑎)‖ ≤

 det (𝐺)‖𝑆ℎ(𝑎
∗ ⋆ℎ 𝑎)‖. In order to compute the last norm we need the following fact that 

∫ 𝑓
𝑉

⋆ℎ 𝑔 = ∫ 𝑓
𝑉

𝑔                              (9) 
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for all 𝑓, 𝑔 ∈ 𝑆(𝑉,𝔄) ; see  [96], Lemma 3.8. Moreover, due to the fast decay of functions 

in (𝑉, 𝔄) , eq. (9) still holds if one of them is in 𝐶𝑢
∞(𝑉, 𝔄) . Using this and Lemma (3.1.9) 

we find 

‖𝑆ℎ(𝑎
∗ ⋆ℎ 𝑎)‖ =  det (𝐺)‖∫ (𝐺ℎ ⋆ℎ 𝛼(𝑎

∗ ⋆ℎ 𝑎))
𝑉

(𝑢)d𝑢‖ 

= (2𝜋ℎ)𝑛( det (𝐺))
3
2‖∫ (𝐺ℎ ⋆ℎ 𝐺ℎ ⋆ℎ 𝛼(𝑎

∗ ⋆ℎ 𝑎))
𝑉

(𝑢)d𝑢‖ 

= (2𝜋ℎ)𝑛( det (𝐺))
3
2‖∫ (𝐺ℎ ⋆ℎ 𝛼(𝑎)

∗ ⋆ℎ 𝛼(𝑎) ⋆ℎ 𝐺ℎ)
𝑉

(𝑢)d𝑢‖ 

= (2𝜋ℎ)𝑛( det (𝐺))
3
2‖{𝛼(𝑎) ⋆ℎ 𝐺ℎ , 𝛼(𝑎) ⋆ℎ 𝐺ℎ)‖ 

≤ (2𝜋ℎ)𝑛( det (𝐺))
3
2‖𝐺ℎ‖𝑆

2‖𝑎‖ℎ
2 , 

by observing that 𝐺ℎ is central for the undeformed pointwise product of 𝐶𝑢
∞(𝑉, 𝔄) . Thus 

we have the desired continuity 

‖𝑆ℎ𝑎‖
2 ≤ (2𝜋ℎ)𝑛( det (𝐺))

3
2‖𝐺ℎ‖𝑆

2‖𝑎‖ℎ
2 .                   (10) 

Corollary (3.1.12) [71]: Let 𝜔:𝔄 → ℂ be a positive linear functional of the undeformed 𝐶∗‐

algebra. Then 𝜔ℎ = 𝜔 ∘ 𝑆ℎ:𝒜(ℎ) → ℂ is continuous with respect to ‖ ⋅ ‖ℎ and extends to 

a positive linearfunctional 𝜔ℎ: 𝔄(ℎ) → ℂ. 
Thus we have constructed for every classical state co a corresponding quantum state using 

the operator 𝑆ℎ. We shall also use the symbol 

𝑆ℎ: 𝔄(ℎ) → 𝔄 

for the extension of the operator 𝑆ℎ to the completions in the corresponding C∗‐topologies. 

In a last step we want to discuss in which sense 𝜔ℎ can be considered as a deformation 

of 𝜔: clearly we have 𝜔(𝑎) = lim
ℎ↘0
𝜔ℎ (𝑎) pointwise for every 𝑎 ∈ 𝒜∞ but we want to show 

some continuity properties beyond that trivial observation. 

One of the main results in Rieffel’s work  [96] is that the deformed C∗‐algebras {𝔄(ℎ)}ℎ≥0 

actually yield a continuous field in the sense of Dixmier  [86]: Recall that a continuous field 

structure on a collection {𝔄(ℎ)}ℎ≥0 of C∗‐algebras consists in the choice of continuous s 

𝛤 ⊆ ∏ 𝔄ℎ≥0 (ℎ) subject to the following technical conditions: 𝛤 is a∗‐algebra with respect 

to the pointwise product and for each fixed ℎ the set of possible values {𝑎(ℎ)}𝑎∈𝛤 ⊆ 𝔄(ℎ) 

is dense. For unital C∗‐algebras, we require that the unit ℎ ↦ I(ℎ) = I𝔄(ℎ) be always in 𝛤. 

Moreover, the function ℎ ↦ ‖𝑎(ℎ)‖ℎ is continuous for all 𝑎 ∈ 𝛤. Finally, if an arbitrary  

𝑏 ∈ ∏ 𝔄ℎ≥0 (ℎ) can locally be approximated uniformly by continuous it is already 

continuous itself, i.e., if 𝑏 is a  such that for all 𝜀 > 0 and all ℎ0 there exists an open 

neighborhood 𝑈 ⊆ [0,∞) of ℎ0 and a continuous  𝑎 ∈ 𝛤 such that ‖𝑎(ℎ) − 𝑏(ℎ)‖ℎ ≤ 𝜀 

uniformly for all ℎ ∈ 𝑈, then 𝑏 ∈ 𝛤. It follows that 𝛤 necessanly contains 𝐶0(R0
+) . 

In the case of the Rieffel deformation the ∗‐algebra of continuous sections 𝛤 can be obtained 

from the “constant” sections 𝑎(ℎ) = 𝑎 ∈ 𝔄∞. In detail, one has the following (technical) 

characterization: 
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Proposition (3.1.13) [71]: Let 𝐴(ℎ) = (𝔄∞,⋆ℎ , ‖ ⋅ ‖ℎ) be the Rieffel deformed 𝑝𝑟𝑒 − 𝐶∗− 

algebras and let {𝔄(ℎ)}ℎ≥0 be the corresponding field of 𝐶∗‐algebras. Moreover, let 

𝛤 = {𝑏 ∈∏𝔄

ℎ≥0

(ℎ)|∀𝜀 > 0∀ℎ0 > 0∃𝑈(ℎ0)∃𝑎 ∈ 𝛤0∀ℎ ∈ 𝑈(ℎ0) ∶ 

‖𝑏(ℎ) − 𝑎(ℎ)‖ℎ ≤ 𝜀} 

be the set of sections generated by the set 𝛤0 of sections. Then for all three choices, (i) 𝛤0 =

𝔄∞, 

(ii) 𝛤0 = 𝐶
0(R0

+) ⊗ 𝔄∞, 

(iii) 𝛤0 is the ∗‐algebra generated by the vector space 𝐶0(R0
+) ⊗ 𝔄∞ with respect to ⋆ℎ , 

the set 𝛤 is the same and defines the structure of a continuous field. 

In other words, the ∗‐algebra 𝛤 of continuous sections yields the smallest continuous field 

built on the collection {𝔄(ℎ)}ℎ≥0 which contains the constant sections 𝑎: ℎ ↦ 𝑎(ℎ) = 𝑎 ∈

𝔄∞. The second choice of 𝛤0 is the smallest 𝐶0(R0
+)‐module, while the last choice 

corresponds to the smallest ∗‐algebra containing?J∞ and 𝐶0(R0
+) . In the following we shall 

always refer to this continuous field structure 𝛤. 

We want to show that the set of states 𝜔ℎ = 𝜔 ∘ 𝑆ℎ , where 𝜔:𝔄 → ℂ is a classical state, 

form a continuous field of states in the following sense, 

Definition (3.1.14)  [71]: A continuous field of states on a continuous field of C∗‐algebras 

({𝔄(ℎ)}ℎ≥0, 𝛤) is a family of states 𝜔ℎ on 𝔄(ℎ) such that 

ℎ ↦ 𝜔ℎ(𝑎(ℎ)) 

is continuous for every continuous  𝑎 ∈ 𝛤. 

Lemma (3.1.15) [71]: If 𝑎 ∈ 𝛤 is a continuous section, then the map ℝ0
+ ∋ ℎ ↦ 𝑆ℎ𝑎(ℎ) ∈

𝔄 is continuous in the (undeformed) 𝐶∗‐norm of 𝔄. 

Proof. Note that here we use the extension of 𝑆ℎ to the completion? 𝔄 . Moreover, by 

Proposition (3.1.13) we can approximate 𝑎 by sections in 𝛤0 = 𝐶
0(ℝ0

+) ⊗ 𝔄∞. First, we 

show the continuity at ℎ ≠ 0: 

‖𝑆ℎ𝑎(ℎ) − 𝑆ℎ′𝑎(ℎ
′)‖ ≤ ‖𝑆ℎ𝑎(ℎ) − 𝑆ℎ𝑎(ℎ

′)‖ + ‖𝑆ℎ𝑎(ℎ
′) − 𝑆ℎ′𝑎(ℎ

′)‖ 

= ‖𝑆ℎ(𝑎(ℎ) − 𝑎𝛥ℎ(ℎ))‖ + ‖(𝑆ℎ − 𝑆ℎ′)(𝑎(ℎ
′))‖ 

≤ 𝑐(ℎ)‖𝑎(ℎ) − 𝑎𝛥ℎ(ℎ)‖ℎ + ‖(𝑆ℎ − 𝑆ℎ′)(𝑎(ℎ
′))‖. 

Here 𝑎𝛥ℎ(ℎ) = 𝑎(ℎ +△ ℎ) with △ ℎ = ℎ′ − ℎ and 𝑐(ℎ) is the constant from the estimate 

(10). It is now easy to see that the  𝑎𝛥ℎ is approximated by sections of the form ∑ 𝜏𝛥ℎ𝑛 𝑓𝑛𝑎𝑛 

, where (𝜏𝛥ℎ𝑓𝑛)(ℎ) = 𝑓𝑛(ℎ +△ ℎ) . Thus 𝑎𝛥ℎ is still in 𝛤 and approximates 𝑎 for △ ℎ → 0. 

Hence the first term becomes small for ℎ′ → ℎ. The second term requires more attention. 

We can approximate 𝑎 by sections of the form ∑ 𝑓𝑛𝑛 𝑎𝑛 ∈ 𝛤0 with a finite sum and 𝑓𝑛 ∈

𝐶0(ℝ0
+) and 𝑎𝑛 ∈ 𝔄

∞. Then we have 

‖(𝑆ℎ − 𝑆ℎ′)(𝑎(ℎ
′))‖ ≤ ‖𝑆ℎ (𝑎(ℎ

′) −∑𝑓𝑛 (ℎ
′)𝑎𝑛)‖ 

+‖(𝑆ℎ − 𝑆ℎ′) (∑𝑓𝑛 (ℎ
′)𝑎𝑛)‖ + ‖𝑆ℎ′ (𝑎(ℎ

′) −∑𝑓𝑛 (ℎ
′)𝑎𝑛)‖ 



51 

≤ 𝑐(ℎ)‖𝑎𝛥ℎ(ℎ) −∑𝜏𝛥ℎ 𝑓𝑛(ℎ)𝑎𝑛‖ℎ 

+‖∑𝑓𝑛 (ℎ
′)𝑎𝑛‖∫ |𝐺ℎ(𝑢) − 𝐺ℎ′(𝑢)|d𝑢 

+𝑐(ℎ′)‖𝑎(ℎ′) −∑𝑓𝑛 (ℎ
′)𝑎𝑛‖ℎ′ . 

The constants 𝑐(ℎ) and 𝑐(ℎ′) are bounded in a small neighborhood of ℎ ≠ 0. Since the 

functions 𝑓𝑛 are continuous, ‖∑ 𝑓𝑛 (ℎ
′)𝑎𝑛‖ is bounded on a neighborhood. The other 

factors become smaller than any 𝜀 > 0 for ℎ′ → ℎ. This shows the continuity at ℎ ≠ 0. For 

the continuity at 0 we have with 𝑆0 = id: 

‖𝑆ℎ(𝑎(ℎ)) − 𝑆0(𝑎(0))‖ ≤ ‖𝑆ℎ (𝑎(ℎ) − 𝑆ℎ(𝑎(0))) ‖ + ‖𝑆ℎ(𝑎(0)) − 𝑎(0)‖. 

The first term gives 

‖∫ 𝐺ℎ (𝑢)𝛼𝑢(𝑎(ℎ) − 𝑎(0))d𝑢‖ ≤ ‖𝑎(ℎ) − 𝑎(0)‖∫ 𝐺ℎ (𝑢)d𝑢 

= ‖𝑎(ℎ) − 𝑎(0)‖, 
since the Gau13 function is normalized and 𝛼 is isometric. Now 𝑎(ℎ) = 𝑎ℎ(0) 

approximates 𝑎(0) in a neighborhood of zero whence this contribution becomes small for 

ℎ ↘ 0. The second term becomes small thanks to the asymptotics from Lemma (3.1.3) in the 

topology of 𝔄. This shows the continuity at 0, too.  

From this lemma we immediately obtain the main result: 

Theorem (3.1.16) [71]: For every classical state 𝜔:𝔄 → ℂ andfor every continuous  𝑎 ∈ 𝛤 

the map 

ℎ ↦ 𝜔(𝑆ℎ(𝑎(ℎ))) = 𝜔ℎ(𝑎(ℎ)) 

is continuous. Hence {𝜔ℎ}ℎ≥0 is a continuous field of states with 𝜔0 = 𝜔. 

Section (3.2): A Nuclear Weyl Algebra 

The Weyl algebra as the mathematical habitat of the canonical commutation relations 

has many incarnations and variants: in a purely algebraic definition it is the universal unital 

associative algebra generated by a vector space 𝑉 subject to the commutation relations 𝑣𝑤 −

𝑤𝑣 = 𝛬(𝑣,𝑤)1 where 𝛬 is a symplectic form on 𝑉 and 𝑣, 𝑤 ∈ 𝑉. For 𝑉 = 𝕂 2 with basis 

q, p and the standard symplectic form, the canonical commutation relations take the familiar 

form 

qp − pq = 1.                                                (11) 
Typically, some scalar prefactor in front of ]⌊ is incorporated. When working over the 

complex numbers, a C∗‐algebraic version of the canonical commutation relations is defined 

by formally exponentiating the generators from 𝑉 and using the resulting commutation 

relations from (11) with iћ in front of ]⌊ for the exponentials. It results in a universal C∗‐
algebra generated by the exponentials subject to the commutation relations. This version of 

the Weyl algebra is most common in the axiomatic approaches to quantum field theory and 

quantum mechanics. An alternative construction of a Weyl algebra in a 𝐶∗‐algebraic 
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framework has been proposed and studied in  [102] based on resolvents instead of 

exponentials. In  [103] the C∗‐algebraic Weyl algebra was shown to be a strict deformation 

quantization of a certain Poisson algebra which consists of certain “bounded” elements in 

contrast to the “unbounded” generators from 𝑉 itself, ultimately leading to a continuous 

field of C∗‐algebras. 

The two principle versions ofthe Weyl algebra differ very much in their behavior. While the 

C∗‐algebraic formulation has a strong analytic structure, the algebraic version based on the 

canonical commutation relations does not allow for an obvious topology: in fact, it can easily 

be proven that any submultiplicative seminorm on the Weyl algebra generated by q and p 

with commutation relations (11) necessarily vanishes. In particular, there will be no 

structure of a normed algebra possible. 

We provide a reasonable topology for the algebraic Weyl algebra making the product 

continuous. Starting point will be a general locally convex topology on 𝑉, where we also 

allow for a graded vector space and a graded version of the canonical commutation relations, 

i.e. we treat the Weyl algebra and the Clifford algebra on the same footing. The algebraic 

version of the Weyl algebra will be realized by means of a deformation quantization  [72] 

of the symmetric algebra S⋅(𝑉) encoded in a star product. The idea is to treat the Poisson 

bracket arising from the bilinear form 𝛬 as a constant Poisson bracket and use the Weyl‐
Moyal star product quantizing it. From a deformation quantization point ofview this is a 

very trivial situation, though we of course allow for an infinite‐dimensional vector space 𝑉, 

see  [100] for a gentle introduction to deformation quantization. The bilinear form 𝛬 will 

not be required to be antisymmetric or non‐degenerate. However, we need some analytic 

properties. For convenience, we require 𝛬 to be continuous, a quite strong assumption in 

infinite dimensions. Many interesting examples fulfill this requirement. In particular, for a 

finite‐dimensional space 𝑉 this is always the case. 

On the tensor algebra T⋅(𝑉) and hence on the symmetric algebra S⋅(𝑉) there is of course an 

abundance of locally convex topologies which all induce the projective topology on each 

𝑉⊗𝑛. The two extreme cases are the direct sum topology and the Cartesian product topology. 

The direct sum topology for the Weyl algebra with finitely many generators was used in  

[104] to study bivariant 𝐾‐theory. In  [105] a slightly coarser topology on S⋅ (𝒮(ℝ𝑑)) than 

the direct sum topology was studied in quantum field theories, where 𝒮(ℝ𝑑) is the usual 

Schwartz space. It turns out that this topology makes S⋅ (𝒮(ℝ𝑑)) a topological algebra, too. 

However, for our purposes, this topology is still too fine. Interesting new phenomena are 

found in  [106] for formal star products in the case the underlying locally convex space 𝑉 is 

a Hilbert space. For the class of functions considered, the classification program shows 

much richer behavior than in the well‐known finite‐dimensional case. However, the required 

Hilbert‐Schmidt property will differ from the requirements we state. 

The first main result is that we can define a new locally convex topology on the tensor 

algebra T⋅(𝑉) and hence also on the symmetric algebra S⋅(𝑉) , quite explicitly by means of 

seminorms controlling the growth of the coefficients 𝑎𝑛 ∈ S
𝑛(𝑉) , in such a way that the 

star product is continuous. The completion of S⋅(𝑉) with respect to this locally convex 

topology will contain many interesting entire functions like exponentials of elements in 𝑉. 
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It turns out that even more is true: the star product converges absolutely and provides an 

entire deformation in the sense of  [107]. In fact, we have two versions of this construction 

depending on a real parameter 𝑅 ≥
1

2
 leading to a Weyl algebra 𝑊𝑅(𝑉) and a projective limit 

𝑊𝑅−(𝑉) for 𝑅 >
1

2
. Both share many properties but differ in others. 

If the underlying vector space 𝑉 has an absolute Schauder basis we prove that the 

corresponding Weyl algebra also has an absolute Schauder basis. The second main result is 

that the Weyl algebra W𝑅(𝑉) is nuclear whenever we started with a nuclear 𝑉. This is of 

course a very desirable property and shows that the Weyl algebra enjoys some good 

properties. If 𝑉 is even strongly nuclear then the second version W𝑅−(𝑉) gives a strongly 

nuclear Weyl algebra. In the case where 𝑉 is finite‐dimensional, we have both for trivial 

reasons: an absolute Schauder basis of 𝑉 and strong nuclearity. Thus in this case the 

corresponding Weyl algebra turns out to be a (strongly) nuclear algebra with an absolute 

Schauder basis. In fact, we can show even more: the underlying locally convex space is a 

particular Köthe space which can explicitly be described. 

The construction depends functorially on the data V and Λ as well as on a parameter 𝑅 

which controls the coarseness of the topology. The particular value 𝑅 =
1

2
  seems to be 

distinguished as it is the limit case for which the product is continuous. For  the second 

variant of our construction, the case 𝑅 = 1 is distinguished as this is the limit case where 

the exponentials are part of the completion. 

We show that the topological dual 𝑉′ acts on the Weyl algebra by translations. These 

automorphisms are even inner if the element in 𝑉′ is in the image of the canonical map 𝑉 →

𝑉′ induced by the antisymmetric part of 𝛬: here we show that the exponential series of 

elements in 𝑉 are contained in the Weyl algebra 𝑊𝑅(𝑉) , provided 𝑅 < 1, and in W𝑅−(𝑉) 

for 𝑅 ≤ 1. Since the Weyl algebra does not allow for a general holomorphic calculus, this 

is a nontrivial statement and puts heuristic formulas for the star‐exponential on a solid 

ground. In particular, these exponentials are also the generators of the C∗‐algebraic version 

of the Weyl algebra, showing that there is still a close relation. However, it does not seem 

to be easy to make the transition to the 𝐶∗‐algebraic world more explicitly. 

For a finite‐dimensional even vector space 𝑉, we relate our general construction to the 

following two earlier versions of the Weyl algebra: first we show that for a suitable choice 

of the parameters and the Poisson structure the Weyl algebra discussed in  [108] coincides 

with 𝑊𝑅(𝑉) . Second, we show that the results from  [109],  [73] yield the second version 

W𝑅−(𝑉) for the particular value 𝑅 = 1. This way, we have now a clear picture on the relation 

between the two approaches. 

We apply our general construction to an example from (quantum) field theory. We consider 

a linear field equation on a globally hyperbolic spacetime manifold. The Green operators of 

the normally hyperbolic differential operator encoding the field equation define a Poisson 

bracket, the so‐called Peierls bracket. We show the relevant continuity properties in order 

to apply the construction of the Weyl algebra to this particular Poisson bracket. It is shown 

that the resulting Poisson algebra and Weyl algebra relate to the canonical Poisson algebra 

and Weyl algebra on the initial data of the field equation. The result will be a local net of 

Poisson algebras or Weyl algebras obeying a version of the Haag‐Kastler axioms including 
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the time‐slice axiom. On one hand this is a very particular case ofthe Peierls bracket 

discussed in  [110], on the other hand, we provide a simple quantum theory with honestly 

converging star product in this situation thereby going beyond the formal star products as 

discussed in  [111],  [112]. It would be very interesting to see how the much more general 

(and non‐constant) Poisson structures in  [110] can be deformation quantized with a 

convergent star product. 

In finite dimensions it is always possible to choose a compatible almost complex structure 

for a given symplectic Poisson structure. Such a choice gives a star product ofWick type 

where the symmetric part of 𝛬 now consists of a suitable multiple of the compatible positive 

definite inner product. The Wick product enjoys the additional feature of being a positive 

deformation  [77]. In particular, the evaluation functionals at the points of the dual will 

become positive linear functionals on the Wick algebra. In  [73] the corresponding GNS 

construction was investigated in detail and yields the usual Bargmann‐Fock space 

representation for the canonical commutation relations. The case of a Hilbert space of 

arbitrary dimension will be the natural generalization for this. In general, the existence of a 

compatible almost complex structure having good continuity properties is far from being 

obvious. ∙ Closely related will be the question what the states of the locally convex Weyl 

algebra will be in general. While this question might be quite hard to attack in full generality, 

the more particular case of the Weyl algebra arising from the Peierls bracket will be already 

very interesting: here one has certain candidates of the so‐called Hadamard states from 

(quantum) field theory. It would be interesting to see whether and how they can be matched 

with compatible almost complex structures and evaluations at points in the dual. 

∙ In infinite dimensions there are important examples of bilinear forms which are not 

continuous but only separately continuous. It would be interesting to extend our analysis to 

this situation as well in such a way that one obtains a separately continuous star product. 

Yet another scenario would be to investigate a bornological version of the Weyl algebra 

construction: many bilinear forms turn out to be compatible with naturally defined 

bornologies rather than locally convex topologies. Thus a bornological star product would 

be very desirable and has the potential to cover many more examples not yet available with 

our present construction. A good starting point might be  [113],  [114]. 

∙ Finally, already in finite dimensions it will be very challenging to go beyond the 

geometrically trivial case of constant Poisson structures. One possible strategy is to use the 

completed nuclear Weyl algebra build on each tangent space of a symplectic manifold. This 

leads to a Weyl algebra bundle, now in our convergent setting. In a second step one should 

try to understand how the Fedosov construction  [87] of a formal star product can be 

transferred to this convergent setting provided the curvature and its covariant derivatives of 

a suitably chosen symplectic connection satisfy certain (still to be found) bounds. 

We recall some well‐known algebraic facts on constant Poisson structures and their 

deformation quantizations. Contains the core results. We first construct several systems of 

seminorms on the tensor algebra and investigate the continuity properties ofthe tensor 

product with respect to them. The continuity ofthe Poisson bracket is then established but 

the continuity of the star product requires a suitable projective limit construction in addition. 

The resulting systems of seminorms are still described explicitly. This way, we arrive at our 
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definition of the Weyl algebra and show that it yields a locally convex algebra We prove 

that the star product converges absolutely, provides an entire deformation, and enjoys good 

reality properties we show two main results: first that if 𝑉 has an absolute Schauder basis 

the Weyl algebra also has an absolute Schauder basis. Second, we prove that the Weyl 

algebra is (strongly) nuclear iff 𝑉 is (strongly) nuclear. devoted to various symmetries and 

equivalences. We prove that the algebraic symmetries can be cast into the realm of the 

locally convex Weyl algebra, too, and yield a good functoriality of the construction. If the 

convergence parameter 𝑅 is less than 1 then translations are shown to act by inner 

automorphisms. We show that the isomorphism class of the Weyl algebra only depends on 

the antisymmetric part ofthe bilinear form 𝛬. Finally, we relate our construction to the one 

from  [108] in Proposition (3.2.58) as well as to the version from  [73],  [109] The final and 

quite large contains a first nontrivial example: the canonical and covariant Poisson structures 

arising in noninteracting field theories on globally hyperbolic spacetimes. We recall the 

necessary preliminaries to define and compare the two Poisson structures in detail. The 

continuity properties of both allow to apply our general construction of the Weyl algebra, 

leading to a detailed description As a first application we show that both on the classical 

side as well as on the quantum side the construction leads to a local net of observables 

satisfying the time‐slice axiom. 

Let 𝕂 be a field of characteristic 0 and let 𝑉 be a 𝕂 ‐vector space. 

In order to treat the symmetric and the Grassmann algebra on the same footing, we 

assume that 𝑉 = 𝑉0⊕𝑉1 is ℤ2− graded. In many applications, 𝑉 is even Z‐graded and the 

induced ℤ2‐grading is then given by the even and the odd part of V. A vector 𝑣 ∈ 𝑉0 is called 

homogeneous of parity 0 while a vector in 𝑉1 is called homogeneous of parity 1. 

We denote the parity of the vector 𝑣 with the same symbol 𝑣 ∈ ℤ2 and we also shall 

refer to even and odd parity. We will make use of the Koszul sign rule, i.e. if two things with 

parities 𝑎, 𝑏 ∈ ℤ2 are exchanged this gives an extra sign (−1)𝑎𝑏. The homogeneous 

components of 𝑣 ∈ 𝑉 will be denoted by 𝑣 = 𝑣0 + 𝑣1. 

We will need the following signs for symmetrization. For homogeneous vectors 𝑣1 , , 𝑣𝑛 ∈

𝑉 and a permutation 𝜎 ∈ S𝑛 one defines the sign 

sign(𝑣1, , 𝑣𝑛; 𝜎) =∏

𝑖<𝑗

𝜎(𝑖) + (−1)𝑣𝜎(𝑖)𝑣𝜎(j)𝜎(𝑖)

𝑖 + (−1)𝑣𝑖𝑣𝑗𝑗
.            (12) 

Then sign(𝑣1, , 𝑣𝑛; 𝜎) = 1 if all the 𝑣1 , , 𝑣𝑛 are even and sign(𝑣1, , 𝑣𝑛; 𝜎) = sign(𝜎) is the 

usual signum of the permutation for all 𝑣1 , , 𝑣𝑛 odd. It is then straightforward to check that 

(𝑣1⊗⋯⊗𝑣𝑛) ⊲ 𝜎 = sign(𝑣1, , 𝑣𝑛; 𝜎)𝑣𝜎(1)⊗⋯⊗𝑣𝜎(𝑛)   (13) 

extends to a well‐defined right action of S𝑛 on 𝑉⊗𝑛. We use this right action to define the 

symmetrization operator 

𝒮𝑛: 𝑉
⊗𝑛 ∋ 𝑣 ↦ 𝒮𝑛(𝑣) =

1

𝑛!
∑ 𝑣

𝜎∈S𝑛

⊲ 𝜎 ∈ 𝑉⊗𝑛.              (14) 

One has s𝑡𝜄Os𝑙1 = 𝒮𝑛 since (13) is an action. In the case where 𝑉 = 𝑉0, the operator 𝒮𝑛 is 

the usual total symmetrization, if 𝑉 = 𝑉1 we get the total antisymmetrization operator. 
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For later use it will be advantageous to define the symmetric algebra not as a quotient algebra 

of the tensor algebra but as a subspace with a new product. Thus we set 

S𝑛(𝑉) = im𝒮𝑛 ⊆ 𝑉
⊗𝑛 𝑎𝑛𝑑 S0(𝑉) = 𝑘.                          (15)  

The elements in S𝑛(𝑉) consist of the symmetric, i.e. invariant tensors with respect to the 

action (13). Moreover, we set 

S⋅(𝑉) =⨁Sn
∞

𝑛=0

(𝑉) ⊆ T⋅(𝑉) =⨁𝑉⊗n
∞

↑𝑙=0

.                       (16) 

Alternatively, we can use the idempotent 𝑠 =⊕n=0
∞ s𝑛 where s0 = id and get S⋅(𝑉) = 𝑖𝑚𝒮𝑛. 

Next we define the symmetric tensor product 𝜇: S⋅(𝑉)⊗ S⋅(𝑉) → S⋅(𝑉) of 𝑣, 𝑤 ∈ S⋅(𝑉) as 

usual by 

Most of the time we shall omit the symbol 𝜇 for products. Then the following statement is 

well‐known: 

𝑣𝑤 = 𝜇(𝑣 ⊗𝑤) = 𝒮(𝑣 ⊗𝑤) .                             (17) 

Lemma (3.2.1) [101]: The symmemc tensor product turns S⋅(𝑉) into an associative 

commutative unital algebra freely generated by 𝑉. 

Moreover, it is z‐graded with respect to the tensor degree. Note however, that we do not use 

this degree for sign purposes at all. Freely generated means that a homogeneous map 𝜑:𝑉 →

𝐴 of parity 0 into another associative ℤ2‐graded commutative unital algebra 𝐴 has a unique 

extension 𝛷: S⋅(𝑉) → 𝐴 as unital algebra homomorphism. 

Beside the symmetric algebra we will also need tensor products of algebras. Thus let 𝐴 and 

′𝐵 be two associative ℤ2‐graded algebras. On their tensor product 𝐴⊗ ′B a new product is 

defined by linear extension of 

(𝑎 ⊗ 𝑏)(𝑎’ ⊗ 𝑏′) = (−1)𝑏𝑎
′
𝑎𝑎′⊗𝑏𝑏′,            (18) 

where 0, 𝑎′ ∈ 𝐴 and 𝑏, 𝑏′ ∈ ′B are homogeneous elements. This turns 𝐴⊗ ′𝐵 again into an 

associative ℤ2‐graded algebra. Finally, we recall that the I〈oszul sign rule also applies to 

tensor products of maps and evaluations, i.e. for homogeneous maps 𝜑: 𝑉 → 𝑊 and 𝜓: �̃� →

�̃� we define their tensor product 𝜑⊗𝜓: 𝑉 ⊗ �̃� → 𝑊⊗ �̃� by 

is called a multiderivation if for each argument it satisfies the Leibniz rule 

(𝜑 ⊗𝜓)(𝑣 ⊗𝑤) = (−1)𝜓𝑣𝜑(𝑣)⊗ 𝜓(𝑤)                             (19) 
on homogeneous vectors and extend linearly. 

𝑃: S⋅(𝑉) × × S⋅(𝑉) → S⋅(𝑉)                                (20) 
Recall that a homogeneous multilinear map of parity 0 

𝑃(𝑣1, … , 𝑣𝑘−1, 𝑣𝑘𝑣𝑘
′ , 𝑣𝑘+1, 𝑣t1) 

= (−1)(𝑣1+⋯+𝑣𝑘−1)𝑣𝑘𝑈𝑘𝑃(𝑣1, , 𝑣𝑘
′ , , 𝑣𝑛) 

+(−1)𝑣𝑘
′ (𝑣𝑘+1+⋯+𝑣n)𝑃(𝑣1, … . . , 𝑣𝑘, … . . , 𝑣𝑛)𝑣𝑘

′  ,                        (21) 

where we follow again the Koszul sign rule. Note that if one 𝑣𝑖 is a constant, i.e. 𝑣𝑖 ∈ S
0(𝑉) 

, then 𝑃(𝑣1, , 𝑣n) = 0. Since 𝑉 generates S⋅(𝑉) , a multiderivation is uniquely determined 

by its values on 𝑉 × × 𝑉. Conversely, any multilinear homogeneous map 𝑉 × × 𝑉 → S⋅(𝑉) 

of parity 0 extends to a multiderivation since 𝑉 generates S⋅(𝑉) freely. Though one can also 

consider odd multiderivations, 

For later estimates, we will need the following more explicit form of this extension for the 

particular case of a bilinear homogeneous map 
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𝛬: 𝑉 × 𝑉 → k = S0(𝑉)                                     (22) 
of parity 0. To this end we first define the linear map 

𝑃𝛬: S
⋅(𝑉)⊗ S⋅(𝑉) → S∗−1(𝑉)⊗ S∗−1(𝑉)                     (23) 

to be the linear extension of  

𝑃𝛬(𝑣1…𝑣𝑛⊗𝑤1⋯𝑤𝑚)    

=∑∑𝑘

𝑚

ℓ=1

𝑙𝑙

𝑘=1

− (1)(vk+1+⋯+𝑣𝑛)+𝑤ℓ(𝑤ℓ+⋯+𝑤ℓ−1)Λ(𝑣𝑘, 𝑤ℓ)𝑣1. . .∧
𝑘 . . . 𝑣𝑛⊗𝑤1 . . .∧ ℓ . . . 𝑤𝑚.  (24) 

The requirement on the Z‐grading implies that 𝑃𝛬 vanishes on tensors of the form ]⌊⊗ 𝑤 or 

𝑣 ⊗]⌊. 

First note that 𝛬 is of parity 0 and thus 𝛬(𝑣𝑘, 𝑤ℓ) is only nontrivial if 𝑣𝑘 and 𝑤ℓ have the 

same parity. Hence we can exchange the parities 𝑣𝑘 and 𝑤ℓ in the above sign. Second, note 

that the map 𝑃𝛬 is indeed well‐defined since the right hand side is totally symmetric in 𝑣1 , 

, 𝑣𝑛 and in 𝑤1 , , 𝑤𝑚. With respect to the algebra structure (18) of S⋅(𝑉)⊗ S⋅(𝑉) we can 

characterize the map 𝑃𝛬 now as follows: 

Lemma (3.2.2) [101]: The map 𝑃𝛬 is the unique map with 

(i) 𝑃𝛬(𝑣 ⊗𝑤) = 𝛬(𝑣,𝑤)1⊗ n for all 𝑣, 𝑤 ∈ 𝑉, 

(ii) 𝑃𝛬(𝑣 ⊗𝑤𝑢) = 𝑃𝛬(𝑣 ⊗𝑤)(1⊗ 𝑢) + (−1)𝑤𝑣(I ⊗ 𝑤)𝑃𝛬(𝑣 ⊗ 𝑢) for all 𝑣, 𝑤, 𝑢 ∈

S⋅(𝑉) ,  

(iii) 𝑃𝛬(𝑣𝑤⊗ 𝑢) = (𝑣 ⊗]⌊)𝑃𝛬(𝑤⊗ 𝑢) + (−1)𝑤𝑢𝑃𝛬(𝑣 ⊗ 𝑢)(1⊗𝑤) for all 𝑣, 𝑤, 𝑢 ∈

S⋅(𝑉) . 

Note that the two Leibniz rules imply 𝑃𝛬(𝑣 ⊗ n) = 0 = 𝑃𝛬(]⌊⊗ 𝑣) for all ∈ S⋅(𝑉) . 

In order to rewrite the Leibniz rules for 𝑃𝛬 in a more conceptual way, we have to introduce 

the canonical flip operator 𝜏𝑉𝑊: 𝑉 ⊗𝑊 → 𝑊⊗𝑉 for ℤ2‐graded vector spaces 𝑉 and 𝑊 

by 

𝜏𝑉𝑁(𝑣 ⊗𝑤) = (−1)𝑣𝑤𝑤⊗ 𝑣                        (25) 
on homogeneous elements and linear extension to all tensors. We usually write 𝜏 if the 

reference to the underlying vector spaces is clear. Using 𝜏 we define the operators 

𝑃𝛬
12, 𝑃𝛬

23, 𝑃𝛬
13: S⋅(𝑉)⊗ S⋅(𝑉)⊗ S⋅(𝑉) → S⋅(𝑉)⊗ S⋅(𝑉)⊗ S⋅(𝑉)  (26) 

on the triple tensor product by 

𝑃𝛬
12 = 𝑃𝛬⊗ id, 𝑃𝛬

23 = id⊗ 𝑃𝛬 , 𝑎𝑛𝑑 𝑃𝛬
13 

= (id⊗ 𝜏)o(𝑃𝛬⊗ id)o(id⊗ 𝜏) .                                     (27) 
These operators have again parity 0 and change the tensor degrees by (−1,−1, 0), 
(0,−1,−1) , and by (−1, 0,−1) , respectively. 

Lemma (3.2.3) [101]: The Leibniz rules for 𝑃𝛬 can be written as 

𝑃𝛬o(𝜇 ⊗ id) = (𝜇 ⊗ id)o(𝑃𝛬
13 + 𝑃𝛬

23)                           (28) 
and 

𝑃𝛬o(id⊗ 𝜇) = (id⊗ 𝜇)o(𝑃𝛬
12 + 𝑃𝛬

13) .                     (29) 

Analogously, we have similar Leibniz rules for the operators 𝑃𝛬
12, 𝑃𝛬

23, and 𝑃𝛬
13 which show 

that they will be uniquely determined by their values on generators of S⋅(𝑉)⊗ S⋅(𝑉)⊗

S⋅(𝑉) . Hence the products 𝑃𝛬
12o𝑃𝛬

23 etc. will be uniquely determined by their values on 

quadratic expressions in the generators. This will allow for a rather straightforward 

computation leading to the following obsen ation: 
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Lemma (3.2.4) [101]: The operators 𝑃𝛬
12, 𝑃𝛬

23, and 𝑃𝛬
13 commute pairwise. 

This lemma together with the Leibniz rule in the form of Lemma (3.2.3) gives immediately 

the following result, see e.g.  [100] for a detailed proof: 

Proposition (3.2.5) [101]: On S⋅(𝑉)[[𝑣]] one obrains a ℤ2‐graded associarive k[[𝑣]]‐

bilinear mulriplicarion by 

𝑣 ⋆𝑣𝛬 𝑤 = 𝜇oe
𝑣𝑃𝛬(𝑣 ⊗𝑤) ,                    (30) 

where all 𝕂‐multilinear maps are extended to be k[[𝑣]]‐mulrilinear as usual. 

Proposition (3.2.6) [101]: Let 𝐴 be an associative ℤ2‐graded commutative algebra and let 

⋆ be a formal associative deformation of it such that (𝐴[[𝑣]],⋆) is still ℤ2‐graded. Then the 

first order of the ⋆‐commutator defmes a Poisson bracket on 𝐴. 

We always take the ℤ2‐graded commutators and Poisson brackets. In our example, this leads 

to the following Poisson bracket: 

Corollary (3.2.7) [101]: Let 𝛬 be as above and set 𝑃𝛬
opp

= 𝜏o𝑃𝛬o𝜏. Then 

{𝑣, 𝑤}𝛬 = 𝜇o(𝑃𝛬 − 𝑃𝛬
opp
)(𝑎 ⊗ 𝑏)                                (31) 

defines a Poisson bracket for S⋅(𝑉) . 

Alternatively, we can also consider the symmetric and antisymmetr 𝑐 part 

𝛬± =
1

2
(𝛬 ± 𝛬0𝜏)                                               (32) 

of 𝛬 such that 𝛬 = 𝛬+ + 𝛬−. Then we note that with 𝛬opp = 𝛬0𝜏 we have 

𝑃𝛬opp = 𝑃𝛬
opp
                                                    (33) 

and thus 

𝑃𝛬 − 𝑃𝛬
opp

= 2𝑃𝛬−.                                              (34) 

Thus {𝑣, 𝑤}𝛬 = 2𝜇o𝑃𝛬−(𝑣 ⊗𝑤) depends only on the antisymmetric part. The star product 

⋆ in (30) depends on 𝛬 and not just on 𝛬−. It is this Poisson bracket for which ⋆𝑣𝛬 provides 

a formal deformation quantization. 

In general, one requires only a formal star product but since our Poisson bracket is rather 

particular, we can sharpen the deformation result as follows: 

Corollary (3.2.8) [101]: The product ⋆𝑣𝛬 𝑟𝑒𝑠𝑚𝑐[𝑠 to S⋅(𝑉)[𝑣] which becomes an 

associarive ℤ2‐graded algebra over k[𝑣]. 

For 𝑣, 𝑤 ∈ S⋅(𝑉) we have 𝑃𝛬
𝑛(𝑣 ⊗𝑤) = 0 as soon as 𝑛 ∈ N0 is larger than the maximal 

symmetric degree in 𝑣 or 𝑤. It follows that in S⋅(𝑉)[𝑣] we can replace the formal parameter 

𝑣 by any element of k and get a well‐defined associative multiplication from ⋆𝑣𝛬. 

Also the following result is well‐known and obtained from an easy induction: the elements 

of 𝑉 generate S⋅(𝑉)[𝑣] with respect to ⋆𝑣𝛬: 

Corollary (3.2.9) [101]: The k[𝑣]‐algebra S⋅(𝑉)[𝑣] is generated by 𝑉. 

The symmetric algebra S⋅(𝑉) can be interpreted as the polynomials on the “predual” 

of 𝑉, which, of course, needs not to exist in in finite dimensions. Alternatively, S⋅(𝑉) injects 

as a subalgebra into the polynomials Pol⋅(𝑉∗) on the dual of 𝑉. We use this heuristic point 

of view now to establish some symmetries of {. , }𝛬 and ⋆𝑣𝛬 which justify the term 

“constant” Poisson structure. 

Let 𝜙 ∈ 𝑉∗ be an even linear functional, i.e. 𝜙 ∈ 𝑉0
∗, then the linear map 𝑣 ↦ 𝑣 + 𝜙(𝑣)1 is 

even, too, and thus it extends uniquely to a unital algebra homomorphism 𝜏𝜙
∗ : T⋅(𝑉) →
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T⋅(𝑉) . Clearly, the symmetry properties of the tensors in T⋅(𝑉) are preserved by 𝜏𝜙
∗  and 

thus it restricts to a unital algebra homomorphism 

𝜏𝜙
∗ : S⋅(𝑉) → S⋅(𝑉) ,                                      (35) 

now with respect to the symmetric tensor product. One has 𝜏0
∗ = id and 𝜏𝜙

∗ 𝜏𝜓
∗ = 𝜏𝜙+𝜓

∗  for 

all , 𝜓 ∈ 𝑉0
∗. Thus we get an action of the abelian group 𝑉0

∗ on S⋅(𝑉) by automorphisms. In 

the interpretation of polynomials these automorphisms correspond to pull‐backs with 

translations via 𝜙, hence the above notation. 

The other important symmetry emerges from the endomorphisms of 𝑉 itself. Let 𝐴: 𝑉 → 𝑉 

be an even linear map and denote the extension as unital algebra homomorphism again by 

: S⋅(𝑉) → S⋅(𝑉) . This yields an embedding of End0(𝑉) into the unital algebra 

endomorphisms of S⋅(𝑉) . In particular, we get a group homomorphism of GL0(𝑉) into 

Aut0(S
⋅(𝑉)) . For 𝐴 ∈ GL0(𝑉) and 𝜙 ∈ 𝑉0

∗ we have the relation 𝐴−1𝜏𝜙
∗ 𝐴𝑣 = 𝜏𝐴∗𝜙

∗ 𝑣 for the 

generators 𝑣 ∈ 𝑉 and hence also in general 

𝐴−1𝜏𝜙
∗ 𝐴 = 𝜏𝐴∗𝜙.                               (36) 

This gives an action of the semidirect product GL0(𝑉) ⋉ 𝑉
∗ on S⋅(𝑉) via unital algebra 

automorphisms. 

For the bilinear map 𝛬 we consider the group of invertible even endomorphisms of 𝑉 

preserving it and denote this group by 

Aut(V, 𝛬) = {𝐴 ∈ GL0(𝑉)|𝛬(𝐴𝑣, 𝐴𝑤) = 𝛬(𝑣,𝑤) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑤 ∈ 𝑉}.        (37) 

Note that such an automorphism preserves 𝛬+ and 𝛬‐separately. However, 𝛬− and 𝛬+ might 

have a larger invariance group than Aut(V, 𝛬). 

Lemma (3.2.10) [101]: The subgroup Aut(𝑉, 𝛬) ⋉ 𝑉∗𝑎𝑐𝑡𝑠 on S⋅(𝑉) as automorphisms of 

{. , }𝛬 and ⋆. 

Proof. First consider ∈ Aut(𝑉, 𝛬) . Then on generators one sees that 𝑃𝛬o(𝐴⊗ 𝐴) =
(𝐴⊗ 𝐴)o𝑃𝛬, which therefore holds in general. From this we see that 𝐴 is an automorphism 

of both, the Poisson bracket and the star product. Analogously, for 𝜙 ∈ 𝑉0
∗ one checks first 

on generators and then in general that 𝑃𝛬o(𝜏𝜙
∗ ⊗ 𝜏𝜙

∗ ) = (𝜏𝜙
∗ ⊗ 𝜏𝜙

∗ )o𝑃𝛬. □ 

In this sense, both the Poisson bracket and the star product are constant, i.e. translation‐
invariant. 

In the next step we discuss to what extend the automorphisms are inner. We consider only 

the infinitesimal picture as the integrated version will require analytic tools. The bilinear 

form 𝛬 induces a linear map into the dual 𝑉∗. We need the antisymmetric part 𝛬− of 𝛬 as it 

appears also in the Poisson bracket (31). This defines an even linear map 

#: 𝑉 ∋ 𝑣 ↦ 𝑣# = 𝛬−(𝑣,⋅) ∈ 𝑉
∗                                           (38) 

Lemma (3.2.11) [101]: Let 𝜙 ∈ 𝑉∗ be homogeneous and denote by 𝑋𝜙: S
⋅(𝑉) → S⋅(𝑉) the 

homogeneous derivation extending 𝜙: 𝑉 → k. 

(i) 𝑋𝜙 is a Poisson denvation of parity 𝜙, i.e. we have 

𝑋𝜙{𝑎, 𝑏}𝛬 = {𝑋𝜙(𝑎), 𝑏}𝛬
+ (−1)𝜙𝑎{𝑎, 𝑋𝜙(𝑏)}𝛬

            (39) 

for all homogeneous 𝑎, 𝑏 ∈ S⋅(𝑉) . 

(ii) 𝑋𝜙 is inner iff 𝜙 ∈ im#. In this 𝑐𝑎𝑠𝑒𝑋𝜙 = {𝑣,⋅}𝛬 for any 𝑣 ∈ 𝑉 with 2𝑣# = 𝜙. 

(iii) 𝑋𝜙 is a derivation of ⋆𝑣𝛬, i.e. we have 
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𝑋𝜙(𝑎 ⋆𝑣𝛬 𝑏) = 𝑋𝜙(𝑎) ⋆𝑣𝛬 𝑏 + (−1)
𝜙𝑎𝑎 ⋆𝑣𝛬 𝑋𝜙(𝑏)                (40) 

for all homogeneous 𝑎, 𝑏 ∈ S⋅(𝑉) . 

(iv) 𝑋𝜙 is a quasi‐inner derivation of ⋆𝑣𝛬, i.e. 𝑋𝜙 =
1

𝑣
[𝑎,⋅]⋆𝑣𝛬 for some 𝑎 ∈ S⋅(𝑉)[[𝑣]], iff 

𝜙 ∈ im#. In this case 𝑎 = 𝑣 ∈ 𝑉 with 2𝑣# = 𝜙 will do thejob. 

Proof. Consider an even linear map 𝑃: S⋅(𝑉)⊗ S⋅(𝑉) → S⋅(𝑉)⊗ S⋅(𝑉) satisfying the 

Leibniz rules from Lemma (3.2.2)(ii) and (iii), and let 𝑋 be any homogeneous derivation of 

either even or odd parity. Then we claim that the operator 

𝐷 = 𝑃o(𝑋⊗ id + id⊗ 𝑋) − (𝑋 ⊗ id + id⊗ 𝑋)o𝑃 

satisfies the Leibniz rules 

𝐷(𝑎𝑏 ⊗ 𝑐) = (−1)𝑏𝑐𝐷(𝑎 ⊗ 𝑐)(𝑏 ⊗]⌊) + (−1)𝑋𝑎(𝑎 ⊗]⌊)𝐷(𝑏 ⊗ 𝑐) 
and 

𝐷(𝑎 ⊗ 𝑏𝑐) = 𝐷(𝑎 ⊗ 𝑏)(1⊗ 𝑐) + (−1)(𝑋+𝑎)𝑏(1⊗ 𝑏)𝐷(𝑎 ⊗ 𝑐) 
for all homogeneous 𝑎, 𝑏, 𝑐 ∈ S⋅(𝑉) . This is a simple verification and does not use that 𝑃 

is (anti‐) symmetric. In our case, we conclude that 𝐷 is uniquely determined by its values 

on the generators of S⋅(𝑉)⊗ S⋅(𝑉) . For 𝑃 = 𝑃𝛬 and 𝑋 = 𝑋𝜙 it is easy to check that 𝐷 = 0 

on generators and thus 𝑃𝛬 and (𝑋𝜙⊗ id + id⊗ 𝑋𝜙) commute. But this implies the first as 

well as the third part. Now consider 𝜙 ∈ im#, i.e. there is a 𝑣 ∈ 𝑉 with 𝜙 = 2𝛬−(𝑣,⋅) . In 

this case we get for 𝑤 ∈ 𝑉 

{𝑣, 𝑤}𝛬 = 𝛬(𝑣,𝑤)1 − (−1)
𝑣𝑤𝛬(𝑤, 𝑣)1 = 2𝛬−(𝑣, 𝑤)1 = 𝜙(𝑤)1 = 𝑋𝜙(𝑤) . 

Since the derivation 𝑋𝜙 is determined by its values on generators this implies 𝑋𝜙 = {𝑣,⋅}𝛬. 

For the converse, assume that 𝑋(ℓ = {𝑣,⋅}𝛬 for some 𝑣 ∈ S⋅(𝑉) which we write as 𝑣 = ∑ 𝑣n𝑛  

with 𝑣𝑛 ∈ S
𝑛(𝑉) . Then for 𝑤 ∈ 𝑉 we have {𝑣n, 𝑤}𝛬 ∈ S

𝑛−1(𝑉) while 𝑋ℓ(𝑤) ∈ S
0(𝑉) . 

Thus we necessarily have 𝑋𝜙(𝑤) = {𝑣1, 𝑤}𝛬, i.e. the higher order terms in 𝑣 are not 

necessary. But then 𝑋𝜙 = {𝑣1, }𝛬 follows, proving 𝜙 = 2𝑣1
#. The fourth part is similar, since 

for 𝑣 ∈ 𝑉 we have 𝑣 ⋆𝑣𝛬 𝑎 = 𝑣𝑎 + 𝑣𝜇0𝑃𝛬(𝑣 ⊗ 𝑎) without higher order terms. Thus 

[𝑣, 𝑎]⋆ = 𝑣{𝑣, 𝑎}𝛬 and we can argue as in the second part. □ 

We can extend the results of Lemma (3.2.10) in the following way: suppose we have 

two vector spaces 𝑉 and 𝑊 with two bilinear forms 𝛬𝑉 and 𝛬𝑊 on them. Then an even linear 

map 𝐴: 𝑉 → 𝑊 is called a Poisson map if 

𝛬𝑊(𝐴(𝑣), 𝐴(𝑣
′)) = 𝛬𝑉(𝑣, 𝑣

′)                                  (41) 

for all 𝑣, 𝑣′ ∈ 𝑉. The induced map 𝐴: S⋅(𝑉) → S⋅(𝑊) is then easily shown to satisfy 

𝑃𝛬𝑊o(𝐴⊗ 𝐴) = (𝐴⊗ 𝐴)o𝑃𝛬𝑉 , generalizing the computation in the proof of Lemma 

(3.2.10) slightly. From this we see that 𝐴 is a homomorphism of Poisson algebras and star 

product algebras. Thus we arrive at the following simple functoriality statement: 

Proposition (3.2.12) [101]: The constnuction of {. , }𝛬 and ⋆𝑣𝛬 is funcronal with respect to 

Poisson maps. 

We now discuss how we can change the star product by changing the symmetr 𝑐 part 𝛬+ of 

𝛬 as in (32). Symmetry means that 𝛬+(𝑣, 𝑤) = (−1)
𝑣𝑤𝛬+(𝑤, 𝑣) for homogeneous 

elements in 𝑉. 
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Let 𝑔: 𝑉 × 𝑉 → k be another symmetric and even bilinear form, which we can think ofas a 

ℤ2‐graded version ofan inner product. We define now a second order Laplacian” associated 

to 𝑔 as follows. For homogeneous vectors 𝑣1 , , 𝑣n ∈ 𝑉 we set 

𝛥𝑔(𝑣1⋯𝑣𝑛) =∑

𝑖<𝑗

(−1)vi (v1+···+vi−1)  

(−1)vj (v1+···+vi−1+vi+1+···vj−1) g(vi, vj)v1… .∧
𝑖 … ∧ 𝑗…𝑣𝑛,      (42) 

and extend this again by linearity to an operator 

𝛥𝑔: S
∗(𝑉) → S∗−2(𝑉) .                             (43) 

Note that 𝛥𝑔 has even parity since 𝑔 vanishes on vectors of different parities. This is no 

longer a derivation but a second order differential operator. We have the following “Leibniz 

rule” for 𝛥𝑔: 

Lemma (3.2.13) [101]: The operator 𝛥𝑔 sarisfies 

𝛥𝑔0𝜇 = 𝜇o(𝛥𝑔⊗ id + 𝑃𝑔 + id⊗ 𝛥𝑔) .                         (44) 

Lemma (3.2.14) [101]: Let 𝛬, 𝛬′, 𝑔: 𝑉 × 𝑉 → 𝕂    be even bilinear maps and let 𝑔 be 

symmetric. Then the operators 𝛥𝑔⊗ id, id ⊗ 𝛥𝑔, 𝑃𝛬, and 𝑃𝛬′ commute pairwise. 

Proof. Again, onejust checks this on 𝑣1⋯𝑣𝑛⊗𝑤1⋯𝑤𝑚 for homogeneous vectors 𝑣1 ,⋯, 

𝑣𝑛, 𝑤1 , ⋯, 𝑤𝑚 ∈ 𝑉 which is a lengthy but straightforward computation.  

We use these commutation relations now to prove the following equivalence statement: the 

isomorphism class of the deformation depends only on the antisymmetric part of 𝛬. 

Proposition (3.2.15) [101]: Let 𝛬, 𝛬′ : 𝑉 × 𝑉 → 𝕂 be two even bilinear forms on 𝑉 such 

that their antisymmetric parts 𝛬− = 𝛬−
′  coincide. Then the corresponding star products ⋆𝑣𝛬 

and ⋆𝑣𝛬′ are equivalent via the equivalence transformation 

e𝑣𝛥𝑔(𝑎 ⋆𝑣𝛬 𝑏) = (e
𝑣𝛥𝑔𝑎) ⋆𝑣𝛬′ (e

𝑣𝛥𝑔𝑏)                     (45) 

for all 𝑎, 𝑏 ∈ S⋅(𝑉)[[𝑣]] where 𝑔 = 𝛬′ − 𝛬 = 𝛬+
′ − 𝛬+. 

Proof. The proof is now fairly easy. Analogously to  [100] we have 

e𝑣𝛥𝑔(𝑎 ⋆𝑣𝛬 𝑏) = e
𝑣𝛥𝑔o𝜇oe𝑣𝑃𝛬(𝑎 ⊗ 𝑏) 

= 𝜇oe𝑣(𝛥𝑔⊗id+𝑃𝑔+id⊗𝛥𝑔)oe𝑣𝑃𝛬(𝑎 ⊗ 𝑏) 

= 𝜇oe𝑣(𝑃𝛬+𝑃𝑔)o(e𝑣𝛥𝑔⊗e𝑣𝛥𝑔)(𝑎 ⊗ 𝑏) 

= 𝜇oe𝑣𝑃𝛬′o(e𝑣𝛥𝑔𝑎 ⊗ e𝑣𝛥𝑔𝑏) , 

since 𝑃𝛬 + 𝑃𝑔 = 𝑃𝛬+𝑔 and since 𝛬 + 𝑔 = 𝛬′. Note that 𝑔 is indeed symmetric. □ 

We establish a locally convex topology on S⋅(𝑉) for which the formal star product, 

after substituting the formal parameter by a real or complex number 𝑧, will be continuous. 

Starting point is a locally convex topology on 𝑉, which we will assume to be Hausdorff, and 

a continuity assumption on 𝛬. From now on the field of scalars K is either ℝ or ℂ. 

For 𝑉 be now a real or complex ℤ2‐graded Hausdorff locally convex vector space. 

We require that the grading is comparible with the topological structure, i.e. the projections 

onto the even and odd parts in 𝑉 = 𝑉0⊕𝑉1 are continuous. Thus we have for every 

continuous seminorm p on 𝑉 another continuous seminorm q with p(𝑣0) , p(𝑣1) ≤ q(𝑣) 

for all 𝑣 ∈ 𝑉. This implies that the even and odd parts of 𝑉 constitute complementary closed 

subspaces. 
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In principle, there are many interesting locally convex topologies on S⋅(𝑉) induced by the 

one on 𝑉. We shall construct now a rather particular one. 

First we will endow the tensor products 𝑉⊗𝑛 with the 𝜋‐topology. Recall that for seminorms 

p1 , , p𝑛 on 𝑉 one defines the seminorm p1⊗⋯⊗p𝑛 on 𝑉⊗𝑛 by 

(p1⊗⋯⊗p𝑛)(𝑣) 

=  inf {∑p1
𝑖

(𝑣𝑖
(1))⋯p𝑛(𝑣𝑖

(𝑛))|𝑣 =∑𝑣𝑖
(1)

𝑖

⊗⋯⊗ 𝑣𝑖
(𝑛)} ,                       (46) 

where the infimum is taken over all possibilities to write the tensor 𝑣 as a linear combination 

of elementary (i.e. factorizing) tensors. One has (p1⊗⋯⊗p𝑛) ⊗ (q1⊗⋯⊗q𝑚) =

p1⊗⋯⊗p𝑛⊗q1⊗⋯⊗q𝑚 and on factorizing tensors one gets (p1⊗⋯⊗p𝑛)(𝑣1⊗

⋯⊗𝑣𝑛) = p1(𝑣1)⋯p𝑛(𝑣𝑛) . We shall use the abbreviation p𝑛 = p⊗⋯⊗p for 𝑛 copies 

ofthe same seminorm p, where by definition p0 is the usual absolute value on 𝕂. 

The 𝜋‐topology on 𝑉⊗𝑛 is obtained by taking all seminorms of the form p1⊗⋯⊗p𝑛 with 

p1 , , p𝑛 being continuous seminorms on 𝑉. Equivalently, one can take all p𝑛 with p being 

a continuous seminorm on 𝑉. Analogously, one defines the 𝜋‐topology for the tensor 

products of different locally convex spaces. We denote the tensor product endowed with the 

𝜋‐topology by ⊗𝜋. It is clear that the induced ℤ2‐grading of 𝑉⊗𝑛 is again compatible with 

the 𝜋‐topology. More explicitly, we have the following statement: 

Lemma (3.2.16) [101]: Let p be a continuous seminorm on 𝑉 and choose a continuous 

seminorm q such that p(𝑣0) , p(𝑣1) ≤ q(𝑣) . Then for all 𝑣 ∈ 𝑉⊗𝑛 one has 

p𝑛(𝑣0), p
𝑛(𝑣1) ≤ q

𝑛(𝑣) .                          (47) 
For concrete estimates the following simple lemma is useful: it suffices to check estimates 

on factorizing tensors only: 

Lemma (3.2.17) [101]: Let 𝑉1 , , 𝑉𝑛, 𝑊 be vectorspaces and let 𝜑:𝑉1 ×⋯× 𝑉𝑛 → 𝑊 be an 

𝑛‐linear map, identified with a linear map 𝜑:𝑉1⊗⋯⊗𝑉𝑛 → 𝑊 as usual. If p1 , , p𝑛, q are 

seminorms on 𝑉1 , , 𝑉𝑛, 𝑊, respecrively, such [hatfor all 𝑣1 ∈ 𝑉1 , , 𝑣𝑛 ∈ 𝑉𝑛 one has 

q (𝜑(𝑣1, , 𝑣𝑛)) ≤ p1(𝑣1)⋯p𝑛(𝑣𝑛) ,                    (48) 

then one has for all 𝑣 ∈ 𝑉1⊗⋯⊗𝑉𝑛 

q(𝜑(𝑣)) ≤ (p1⊗⋯⊗p𝑛)(𝑣) .                                (49) 

Since we view the symmetric powers S𝑛(𝑉) as subspace of 𝑉⊗𝑛 we can inherit the 𝜋‐

topology also for S𝑛(𝑉) , indicated by S𝜋
𝑛(𝑉) . Then we get the following simple properties 

of the symmetric tensor product: 

Lemma (3.2.18) [101]: Let 𝑛, 𝑚 ∈ ℕ0 and let p be a continuous seminorm on 𝑉. 

(i) The symmetr zer Sn: 𝑉
⊗𝜋1 → 𝑉⊗𝜋n is continuous and for all 𝑣 ∈ 𝑉⊗𝜋n one has 

p𝑛(𝒮𝑛(𝑣)) ≤ p
𝑛(𝑣) .                                    (50) 

(ii) S𝜋
𝑛(𝑉) ⊆ 𝑉⊗𝜋𝑛 is a closed subspace. 

(iii) For 𝑣 ∈ S𝑛(𝑉) and 𝑤 ∈ S𝑚(𝑉) one has 

p𝑛+𝑚(𝑣𝑤) ≤ p𝑛(𝑣)p𝑚(𝑤) .                                   (51) 
Proof. The first part is clear for factorizing tensors and hence Lemma (3.2.17) applies. The 

second follows as S𝑛(𝑉) = ker(id − 𝒮𝑛) by definition. The third is clear from the definition 

and from (50).  
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On the tensor algebra T⋅(𝑉) there are at least two canonical locally convex topologies: the 

Cartesian product topology inherited from ∏∞𝑛=0 𝑉⊗𝜋𝑛 and the direct sum topology which 

is the inductive limit topology of the finite direct sums. While the first is very coarse, the 

second is very fine. Both of them induce the 𝜋‐topology on each subspace 𝑉⊗𝑛. We are now 

searching for something in between. 

We fix a parameter 𝑅 ∈ ℝ and consider for a given continuous seminorm p on 𝑉 the new 

seminorm 

p𝑅(𝑣) = ∑p𝑛
∞

𝑛=0

(𝑣𝑛)𝑛!
𝑅                                (52) 

on the tensor algebra T⋅(𝑉) , where we write 𝑣 = ∑ 𝑣n
∞
𝑛=0  as the sum of its components with 

fixed tensor degree 𝑣𝑛 ∈ 𝑉
⊗𝜄. Analogously, we define 

p𝑅,∞(𝑣) = sup
𝑛∈ℕ0

  {p𝑛(𝑣𝑛)𝑛!
𝑅}.                              (53) 

In principle, we have also ℓp‐versions for all p ∈ [1,∞), but the above two extreme cases 

will suffice for the following. 

The seminorms control the growth of the contributions p𝑛(𝑣𝑛) for 𝑛 → ∞ compared to a 

power of 𝑛! which we can view as weights from a weighted counting measure. The choice 

of the factorials as weights will become clear later. We list some first elementary properties 

of these seminorms. 

Proof. The parts (ii), (iii), and (iv) are clear. Also the first estimate in (i) is obvious. For the 

second, we note 

Lemma (3.2.19) [101]: Let p and q be seminorms on 𝑉 and 𝑅, 𝑅′ ∈ R. 

(i) One has for all 𝑣 ∈ T⋅(𝑉) 

p𝑅,∞(𝑣) ≤ p𝑅(𝑣) ≤ 2(2p)𝑅,∞(𝑣) .                               (54) 

(ii) Both seminorms p𝑅 and p𝑅,∞𝑟𝑒𝑠𝑡𝑟 ⋅ 𝑐𝑡 to 𝑛!𝑅 p𝑛 on 𝑉⊗𝑛. 

(iii) If q ≤ p then q𝑅 ≤ p𝑅 . 

(iv) If 𝑅′ > 𝑅 then p𝑅(𝑣) ≤ p𝑅′(v) for all ∈ T∗(𝑉) . 

p𝑅(𝑣) = ∑p𝑛
∞

𝑛=0

(𝑣𝑛)7𝑙!𝑅 =∑2𝑛
∞

𝑛=0

p𝑛(𝑣𝑛) ↑ 𝜄!
𝑅
1

2𝑙𝑙
≤ sup
𝑛∈𝑁0

  2𝑛p𝑛(𝑣𝑛)𝑛!
𝑅′∑

1

2𝑛

∞

𝑛=0

 

which is the second estimate in (54).  

The seemingly trivial first part will have an important consequence later when we discuss 

the nuclearity properties of the Weyl algebra. 

We can use now all the seminorms p𝑅 for a fixed 𝑅 to define a new locally convex topology 

on the tensor algebra. In particular, the lemma shows that we can safely restrict to the 

seminorms of the type p𝑅 as long as we take all continuous seminorms on 𝑉. It is clear from 

an analogous estimate that also the ℓp‐versions would not yield anything new. 

Definition (3.2.20) [101]: Let 𝑅 ∈ ℝ. Then T𝑅
∗(𝑉) is the tensor algebra of 𝑉 equipped with 

the locally convex topology determined by all the seminorms p𝑅 with p running through all 

continuous seminorms on 𝑉. 

In the following, we will mainly be interested in the case of positive 𝑅 where we have a 

decay of the numbers p𝑛(𝑣𝑛) . 

(i) The tensor product is continuous on T𝑅
∗(𝑉) . More precisely, one has 
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Lemma (3.2.21) [101]: (i) Let 𝑅′ > 𝑅 ≥ 0. 

p𝑅(𝑣 ⊗ 𝑤) ≤ (2𝑅p)𝑅(𝑣)(2
𝑅p)𝑅(𝑤)                            (55) 

for all 𝑣, 𝑤 ∈ T𝑅
∗(𝑉) . 

(ii) For all 𝑛 ∈ ℕ0 the projections and the inclusions 

T𝑅
∗(𝑉) → 𝑉⊗𝜋𝑛 → T𝑅

∗(𝑉)                                           (56) 
are continuous. 

(iii) The completion T̂𝑅
∗(𝑉) of T𝑅

∗(𝑉) can explicitly be descnbed by 

T̂𝑅
∗(𝑉) = {𝑣 = ∑𝑣𝑛

∞

𝑛=0

|p𝑅(𝑣) < ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝}  ⊆∐𝑉⊗𝜋𝑛

∞

𝑛=0

∧,   (57) 

where p runs through all continuous seminorms of 𝑉 and we extend p𝑅 to the Cartesian 

product by allowing the value +∞ as usual. 

(iv) We have a continuous inclusion 

T∗̂𝑅 , (𝑉) → T̂
∗
𝑅(𝑉) .                                       (58) 

(v) The ℤ2‐grading of T𝑅
∗(𝑉) is conrinuous. More explicirly, if p and q are conrinuous 

seminorms with p(𝑣0) , p(𝑣1) ≤ q(𝑣) for all 𝑣 ∈ 𝑉 then we have 

p𝑅(𝑣0), p𝑅(𝑣1) ≤ q𝑅(𝑣)                              (59) 
for all 𝑣 ∈ T𝑅

∗(𝑉) . 
Proof. The first part is a simple estimate; we have 

p𝑅(𝑣 ⊗𝑤) = ∑p𝑘
∞

𝑘=0

( ∑ 𝑣𝑛
𝑛+𝑚=𝑘

⊗𝑤𝑚)𝑘!
𝑅 

≤∑ ∑ p𝑛

n+𝑚=𝑘

∞

𝑘=0

(𝑣𝑛)p
𝑚(𝑤𝑚)(𝑛 +𝑚)!

𝑅 

≤∑∑ pn
∞

𝑚=0

∞

𝑛=0

(𝑣𝑛)p
𝑚(𝑤𝑚)2

ℝn2ℝ𝑚𝑛!ℝm!ℝ 

= (2ℝp)ℝ(𝑣) (2
ℝp)ℝ(𝑤) , 

where we used (𝑛 +𝑚) ! ≤ 2𝑛+𝑚𝑛!𝑚!. Since with p also 2𝑅p is a continuous seminorm 

on 𝑉, the continuity of⊗follows. The second and third parts are standard, here we use the 

completed 𝜋‐tensor product 𝑉⊗𝜋𝑛 ∧ to achieve completeness at every fixed 𝑛 ∈ ℕ0. The 

fourth part is a consequence of Lemma (3.2.19), (iv). The last part follows from 

Lemma (3.2.16).  

Remark (3.2.22) [101]: The case 𝑅 = 0 gives a well‐known topology on T⋅(𝑉) which 

becomes the free locally multiplicatively convex unital algebra generated by 𝑉 as discussed 

e.g. by Cuntz in  [116]. For 𝑅 > 0 the completion T∗̂𝑅(𝑉) behaves differently: it does not 

even have an entire holomorphic calculus. To see this take the entire function 

𝑓𝜀(𝑧) = ∑
𝑍𝑛

𝑛!𝜀

∞

𝑛=0

                                            (60) 
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for a parameter 𝜀 > 0. If 𝑅 > 𝜀 then for every nonzero 𝑣 ∈ 𝑉 the series 𝑓𝜀(𝑣) does not 

converge in T̂∗𝑅(𝑉) . In particular, the tensor algebra T𝑅
∗(𝑉) can not be locally 

multiplicatively convex unless 𝑅 = 0. 

We have an analogous statement for the symmetric algebra. We equip S⋅(𝑉) with the 

induced topology from T𝑅
∗(𝑉) and denote it by S𝑅

∗ (𝑉) . From (50) we get immediately 

𝑝𝑅(𝒮(𝑣)) ≤ p𝑅(𝑣) ,                                             (61) 

which implies the continuity statement 

p𝑅(𝑣𝑤) ≤ (2
𝑅p)𝑅(𝑣)(2

𝑅p)𝑅(𝑤)                                  (62) 
for all 𝑣, 𝑤 ∈ S⋅(𝑉) . This shows that S𝑅

∗ (𝑉) becomes a locally convex algebra, too. Again, 

it will be locally multiplicatively convex only for 𝑅 = 0 in which case it is the free locally 

multiplicatively convex commutative unital algebra generated by 𝑉. The completion of 

S𝑅
∗ (𝑉) can be described analogously to (57). We also have the continuous inclusions 

Ŝ∗𝑅 , (𝑉) → Ŝ
∗
𝑅(𝑉)                                   (63) 

for 𝑅′ > 𝑅. Finally, we have the continuous projections and inclusions 

S𝑅
∗  (𝑉) → S𝜋

𝑛(𝑉) → S𝑅
∗ (𝑉)                           (64) 

for all 𝑛 ∈ ℕ0. Thus it makes sense to speak of the n‐th component 𝑣𝑛 of a vector 𝑣 ∈

S∗̂𝑅(𝑉) even after the completion. In fact, it is easy to see that the series of components 

𝑣 = ∑𝑣𝑛

∞

𝑛=0

                                               (65) 

converges to 𝑣 ∈ S∗̂𝑅(𝑉) , even absolutely. 

To get rid of the somehow arbitrary parameter 𝑅 we can pass to the projective limit 𝑅 → ∞. 

The resulting locally convex algebras will be denoted by 

T∗̂∞(𝑉) = 𝑝𝑟𝑜𝑗 lim
𝑅→∞

T∗̂𝑅  (𝑉) 𝑎𝑛𝑑 Ŝ∞
∗ (𝑉) = 𝑝𝑟𝑜𝑗 lim

𝑅→∞
Ŝ𝑅
∗ (𝑉) (66) 

in the symmetric case. We have a more explicit description of T̂∞
∗  (𝑉) and Ŝ∞

∗ (𝑉) as 

consisting of those formal series 𝑣 = ∑ 𝑣𝑛
∞
𝑛=0  with 𝑣𝑛 ∈ 𝑉

⊗𝜋
∗ 𝑛 ∧ or 𝑣𝑛 ∈ Ŝ𝜋

𝑛(𝑉) , 

respectively, such that p𝑅(𝑣) < ∞ for all 𝑅 ≥ 0 and for all continuous seminorms p on 𝑉. 

Note that these completions will be rather small as we require a rather strong decay of the 

coefficients 𝑣𝑛.  

We consider an even bilinear form 𝛬: 𝑉 × 𝑉 → 𝕂 which we require to be continuous. 

Thus there exists a continuous seminorm p on 𝑉 such that 

|𝛬(𝑣, 𝑤)| ≤ p(𝑣)p(𝑤)                                  (67) 
for all 𝑣, 𝑤 ∈ 𝑉. Note that we require continuity and not just separate continuity. Note also, 

that if p satisfies (67) then we also have the estimates 

|𝛬±(𝑣, 𝑤)| ≤ p(𝑣)p(𝑤) ,                      (68) 

showing the continuity of the antisymmetric and symmetric parts of 𝛬. The continuity of 𝛬 

implies the continuity of the operator 𝑃𝛬 when restricted to fixed symmetric degrees: 

Lemma (3.2.23) [101]: Let p be a continuous seminorm of V satisfying (67) . Then for all 

𝑢 ∈ S𝑛(𝑉)⊗ S𝑚(𝑉) one has 

(p𝑛−1⊗p𝑚−1)(𝑃𝛬(𝑢)) ≤ 𝑛𝑚p
𝑛+𝑚(𝑢) .                       (69) 

The same estimate holds for 𝑃𝛬±. 
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Proof. We work on the whole tensor algebra first. Thus consider homogeneous vectors 𝑣1 , 

, 𝑣𝑛 and 𝑤1 , , 𝑤𝑚 ∈ 𝑉 and define �̃�𝛬: T
⋅(𝑉)⊗ T⋅(𝑉) → T⋅(𝑉)⊗ T⋅(𝑉) by the linear 

extension of 

�̃�𝛬(𝑣1⊗⋯⊗𝑣𝑛⊗𝑤1⊗⋯⊗𝑤𝑚) 

=∑∑

𝑚

ℓ=1

𝑛

𝑘=1

(−1)vk (vk+1+···+vn) (−1) wℓ (w1+···+wℓ−1) 𝐴(𝑣𝑘, 𝑤ℓ)𝑣1  ⊗⋅ ⋅ ⋅ ∧ . . .⊗ 𝑣𝑛⊗𝑤1  ⊗⋅ ⋅ ⋅ 

∧ . . .⊗ 𝑤𝑚. 

Then we have 𝑃𝛬o(𝒮𝑛⊗𝒮𝑚) = (𝒮𝑛−1⊗𝒮𝑚−1)°�̃�𝛬. For general tensors of arbitrary degree 

this yields 

𝑃𝛬o (𝒮 ⊗ 𝒮)  =  (𝒮 ⊗ 𝒮) °�̃�𝛬.                                      (∗)  
For homogeneous vectors we get now the estimate 

(p𝑛−1⊗p𝑚−1) (�̃�𝛬(𝑣1⊗⋯⊗𝑣𝑛⊗𝑤1⊗⋯⊗𝑤𝑚)) 

≤∑∑|

𝑚

ℓ=1

𝑛

𝑘=1

𝛬(𝑣𝑘, 𝑤ℓ)|p(𝑣1)  ∧ ⋯p(𝑣𝑛)p(𝑤1)𝑘…∧⋯p(𝑤𝑚)ℓ 

≤ 𝑛𝑚p(𝑣1)⋯p(𝑣n)p(𝑤1)⋯p(𝑤𝑚) 

= 𝑛𝑚(p𝑛⊗p𝑚)(𝑣1⊗⋯⊗𝑣𝑛⊗𝑤1⊗⋯⊗𝑤𝑚) . 
By Lemma (3.2.17) we conclude that for all 𝑢 ∈ T𝑛(𝑉)⊗ T𝑚(𝑉) we have 

(p𝑛−1⊗p𝑚−1) (�̃�𝛬(𝑢)) ≤ 𝑛𝑚(p
𝑛⊗p𝑚)(𝑢) . 

Finally, for 𝑢 ∈ S𝑛(𝑉)⊗ S𝑚(𝑉) we have (𝒮s𝑛⊗𝒮𝑚)(𝑢) = 𝑢 and thus by (∗) and (50) 

(p𝑛−1⊗p𝑚−1)(𝑃𝛬(𝑢)) = (p
𝑛−1⊗p𝑚−1)(𝑃𝛬(@𝑛⊗𝒮𝑚)(𝑢)) 

= (p𝑛−1⊗p𝑚−1) ((𝒮𝑛−1⊗𝒮𝑚−1)�̃�𝛬(𝑢)) 

≤ (p𝑛−1⊗p𝑚−1) (�̃�𝛬(𝑢)) 

≤ 𝑛𝑚(p𝑛⊗p𝑚)(𝑢) . 
The last statement follows from (68).  

In fact, this estimate just reflects the fact that 𝑃𝛬 is a biderivation. If 𝛬 is nontrivial then it 

cannot be improved in general. It implies immediately the continuity of the Poisson bracket 

{. , }𝛬: 

Proposition (3.2.24) [101]: Let 𝛬 be continuous. Then the Poisson bracket {., }𝛬 is 

continuous on S𝑅
∗ (𝑉) for every 𝑅 ≥ 0. More precisely, for 𝑣, 𝑤 ∈ S𝑅

∗ (𝑉) and any continuous 

seminorm p on 𝑉 with (67) we have a constant 𝑐 > 0 such that 

p𝑅({𝑣, 𝑤}𝛬) ≤ (2
𝑅+1p)𝑅 (𝑣)(2

𝑅+1p)𝑅(𝑤) .               (70) 

Proof. Let 𝑣, 𝑤 ∈ S𝑅
∗  (𝑉) with components 𝑣 = ∑ 𝑣n𝑛  and 𝑤 = ∑ 𝑤𝑚𝑚  as usual. Then we 

have for a seminorm p satisfying (67) 

p𝑅({𝑣, 𝑤}𝛬) = ∑p𝑘
∞

𝑘=0

( ∑ {𝑣𝑛, 𝑤𝑚}𝛬
𝑛+𝑚−2=𝑘

)𝑘!𝑅 

≤∑ ∑ p𝑛+𝑚−2

𝑛+𝑚−2=𝑘

∞

𝑘=0

(2𝜇o𝑝𝛬−(𝑣𝑛⊗𝑤𝑚))𝑘!
𝑅 
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≤∑ ∑ 2

𝑛+𝑚−2=𝑘

∞

𝑘=0

𝑛𝑚p𝑛(𝑣𝑛)p
𝑚(𝑤𝑚)(𝑛 +𝑚 − 2)!

𝑅 

≤ ∑ 2

∞

𝑛,𝑚=0

𝑛𝑚2(n+𝑚)𝑅p𝑛(𝑣𝑛)p
𝑚(𝑤𝑚)𝑛!

𝑅𝑚!𝑅 

≤ 𝑐 ∑ 2(𝑛+𝑚)(𝑅+1)
∞

𝑛,𝑚=0

p𝑛(𝑣𝑛)p
𝑚(𝑤𝑚)𝑛!

𝑅𝑚!𝑅 , 

where we have used Lemma (3.2.23) for 𝛬− and the standard estimate (𝑟𝑖 + 𝑚)! ≤

2𝑛+𝑚𝑛!𝑚!.  
In this sense, S𝑅

∗ (𝑉) becomes a locally convex Poisson algebra for every 𝑅 ≥ 0. In 

particular, the Poisson bracket extends to the completion Ŝ𝑅
∗ (𝑉) and still obeys the continuity 

estimate (70) as well as the algebraic properties of a Poisson bracket. However, for the star 

product the situation is more complicated: first we note that thanks to Corollary (3.2.8) we 

can use the formal star product to get a well‐defined non‐formal star product ⋆𝑧𝛬 by 

replacing 𝑣 with some real or complex number 𝑧 ∈ 𝕂, depending on our choice of the 

underlying field. We fix 𝑧 in the following and consider the dependence of ⋆𝑧𝛬 on 𝑧 later in 

The next lemma provides the key estimate for all continuity properties of ⋆𝑧𝛬: the main point 

is that we have to limit the range of the possible values of 𝑅: 

Lemma (3.2.25) [101]: Let 𝑅 ≥
1

2
. Then there exist constants 𝑐, 𝑐′ > 0 such rhat for all 𝑎, 

𝑏 ∈ S⋅(𝑉) and all seminorms p with (67) we have 

p𝑅(𝑎 ⋆𝑧𝛬 𝑏) ≤ 𝑐
′(𝑐p)𝑅(𝑎)(𝑐p)𝑅(𝑏) .                 (71) 

Proof. Let 𝑎, 𝑏 ∈ S⋅(𝑉) be given and denote by 𝑎𝑛, 𝑏𝑚 their homogeneous parts with respect 

to the tensor degree as usual. We have to distinguish several cases ofthe parameters. The 

non‐trivial case is for 
1

2
≤ 𝑅 ≤ 1 and |𝑧| ≥ 1, where we estimate 

p𝑅(𝑎 ⋆𝑧𝛬 𝑏) ≤ ∑
|𝑧|𝑘

𝑘!

∞

𝑘=0

p𝑅 (𝜇o𝑃𝛬
𝑘(𝑎 ⊗ 𝑏)) 

≤∑
|𝑧|𝑘

𝑘!

∞

𝑘=0

∑ (𝑛 +𝑚 − 2𝑘)

𝑘≤𝑛,𝑚

!𝑅 p𝑛+𝑚−2𝑘 (𝜇o𝑃𝛬
𝑘(𝑎𝑛⊗𝑏𝑚)) 

(𝑎)
≤
∑
|𝑧|𝑘

𝑘!

∞

𝑘=0

∑ (𝑛 +𝑚 − 2𝑘)

𝑘≤𝑛,𝑚

!𝑅
𝑛!

(𝑛 − 𝑘)!

𝑚!

(𝑚 − 𝑘)!
p𝑛(𝑎𝑛)p

𝑚(𝑏𝑚) 

(𝑏)
≤
∑ ∑

|𝑧|𝑘2𝑅(𝑛+𝑚−2𝑘)

𝑘!
𝑘≤𝑛,𝑚

∞

𝑘=0

𝑛!1−𝑅

(𝑛 − 𝑘)!1−𝑅
𝑚!1−𝑅

(𝑚 − 𝑘)!1−𝑅
𝑛!𝑅 p𝑛(𝑎𝑛)𝑚!

𝑅 p𝑚(𝑏𝑚) 

(𝑐)
≤
∑ ∑

|𝑧|𝑘2𝑅(𝑛+𝑚−2𝑘)

𝑘!
𝑘≤𝑛,𝑚

∞

𝑘=0

2(1−𝑅)𝑛2(1−𝑅)𝑚𝑘!2(1−𝑅) 𝑛!𝑅 p𝑛(𝑎𝑛)𝑚!
𝑅 p𝑚(𝑏𝑚) 
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(𝑑)
≤
∑ ∑

1

|𝑧|𝑘𝑘!2𝑅−1 22𝑅𝑘
𝑘≤𝑛,𝑚

∞

𝑘=0

𝑛!𝑅 (2|𝑧|)𝑛p𝑛(𝑎𝑛)𝑚!
𝑅 (2|𝑧|)𝑚p𝑚(𝑏𝑚) 

(𝑒)
≤
(∑

1

|𝑧|𝑘𝑘!2𝑅−1 22𝑅𝑘

∞

𝑘=0

)(∑𝑛

∞

n=0

!𝑅 (2|𝑧|)𝑛pl1(𝑎𝑛))(∑ 𝑚

∞

𝑚=0

!𝑅 (2|𝑧|)𝑚p𝑚(𝑏𝑚)) 

= 𝑐′(2|𝑧|p)𝑅(𝑎)(2|𝑧|p)𝑅(𝑏) 

where in (a) we used 𝑘‐times the estimate from Lemma (3.2.25), in (b) we used 

(𝑛 +𝑚 − 2𝑘) ! ≤ 2𝑛+𝑚−2𝑘(𝑛 − 𝑘)! (𝑚 − 𝑘) !, in (c) we used 𝑛! ≤ 2𝑛(𝑛 − 𝑘)! 𝑘! and 

𝑚! ≤ 2𝑚(𝑚 − 𝑘)! 𝑘! together with the assumption 𝑅 ≤ 1, in (d) we use |𝑧| ≥ 1 as well as 

𝑘 ≤ 𝑛, 𝑚, 

and finally, in (e) we note that the series over k converges to a constant thanks to 𝑅 ≥
1

2
 

while the remaining series over 𝑛 and 𝑚 give the seminorm (2|𝑧|𝑝)𝑅 for the rescaled 

seminorm 2|𝑧|𝑝. If instead |𝑧|  <  1 then we continue instead of (𝑑) by 

p𝑅(𝑎 ⋆𝑧𝛬 𝑏) ≤ ⋯ .
(𝑑′)
≤
(∑

|𝑧|𝑘2−2𝑅𝑘

𝑘!2𝑅−1

∞

𝑘=0

) (2p)𝑅(𝑎)(2p)𝑅(𝑏) , 

where the series over 𝑘 always converges since 𝑅 ≥
1

2
 and |𝑧| < 1. Finally, if 𝑅 > 1 then 

we continue instead of (c) with 

p𝑅(𝑎 ⋆𝑍𝛬 𝑏) ≤ ⋯ .
(𝑐′)
≤
∑ ∑

|𝑧|𝑘2−2𝑅𝑘

𝑘!
𝑘≤𝑛,𝑚

∞

𝑘=0

𝑛!𝑅 2𝑅𝑛p𝑛(𝑎𝑛)𝑚!
𝑅 2𝑅𝑚p𝑚(𝑏𝑚) 

≤ (∑
|𝑧|𝑘2−2𝑅𝑘

𝑘!

∞

𝑘=0

) (2𝑅p)𝑅(𝑎)(2
𝑅p)𝑅(𝑏) , 

where again the series over 𝑘 converges. In total, we always get an estimate for all 𝑅 ≥
1

2
 

and all 𝑧 as claimed.  

Remark (3.2.26) [101]: We also note that the limiting case 𝑅 =
1

2
 is sharp in the following 

sense: consider the most simple nontrivial situation 𝑉 = ℝ2 with basis vectors 𝑞 and 𝑝 as 

well as the bilinear form 𝛬std(𝑝, 𝑞) = 1 and zero for the other combinations. The 

corresponding Poisson bracket is the canonical Poisson bracket and the star product is the 

standard-ordered star product if we take 𝑧 =
ℎ

𝑖
 , see e.g.  [100]. Identifying elements in 

𝑆∗ (ℝ2 ) with polynomials in q and p we have the more explicit formula 

𝑓 ⋆std 𝑔 = ∑
(−iћ)𝑘

𝑘!

∞

𝑘=0

𝜕𝑘𝑓

𝜕𝑝𝑘
𝜕𝑘𝑔

𝜕𝑞𝑘
.                         (72) 

Using again the function 𝑓𝜀 from (60) we see that 𝑓𝜀(𝑞) and 𝑓𝜀(𝑝) belong to Ŝ𝑅
∗ (ℝ2) as soon 

as 𝑅 < 𝜀. However, for the star product we get (formally) 

𝑓𝜀(𝑝) ⋆std 𝑓𝜀(𝑞) = ∑
(−iћ)𝑘

𝑘!
𝑛,𝑚,𝑘≤𝑚,𝑛

𝑛!1−𝜀

(𝑛 − 𝑘)!

𝑛!1−𝜀

(𝑛 − 𝑘)!
𝑞𝑛−𝑘𝑝𝑛−𝑘 . (73) 
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Since the projection Ŝ𝑅
∗ (𝑉) → S𝜋

𝑛(𝑉) is continuous for all 𝑅 ≥ 0 we consider the coefficient 

of (73) in S0(𝑉) which is obtained for 𝑛 = 𝑚 = 𝑘, i.e. 

This clearly diverges for 𝜀 <
1

2
 unless ћ = 0. Thus for 𝑅 <

1

2
 we cannot expect a continuous 

star product. 

∑
(−iћ)ℓ

ℓ!

∞

ℓ=0

ℓ!1−𝜀 ℓ!1−𝜀 =∑(−iћ)ℓ
∞

ℓ=0

ℓ!1−2𝜀              (74) 

The estimate from Lemma (3.2.25) shows that the star product will be continuous for the 

topology of S𝑅
∗ (𝑉) provided the parameter ℝ satisfies R≥

1

2t
.This will motivate  the 

following definition of the Weyl algebra.. However, we will also give an alternative 

definition for later use, where we want to compare with the results from  [73],  [109]. 

Definition (3.2.27) [101]: For 𝑅 ∈ ℝ we endow S𝑅
∗ (𝑉) with the product ⋆𝑧𝛬 and call the 

resulting algebra the Weyl algebra 𝑊𝑅(𝑉,⋆𝑧𝛬) . Moreover, for 𝑅 >
1

2
 we set 

W𝑅−(𝑉) = 𝑝𝑟𝑜𝑗 lim
𝜀→0
S𝑅−𝜀
∗ (𝑉)                          (75) 

and endow 𝑊𝑅−(𝑉) with the Weyl product ⋆𝑧𝛬, too. 

This way, we arrive at two possible definitions of the Weyl algebra. The projective limit can 

be made more explicitly, since the underlying vector space is always the same: we use all 

seminorms p𝑅−𝜀 for 𝜀 > 0 and p a continuous seminorm on 𝑉 for W𝑅−(𝑉) and have 

𝑊𝑅−(𝑉) = S
⋅(𝑉) as a linear space as before. It will turn out that this projective limit enjoys 

some more interesting properties when it comes to strong nuclearity. 

The completion Ŵ𝑅(𝑉) will be given as those formal series 𝑣 = ∑ 𝑣𝑛
∞
𝑛=0  with 𝑣𝑛 ∈ Ŝ𝜋

𝑛(𝑉) 

such that all seminorms p𝑅(𝑣) are finite for all continuous seminorms p on 𝑉. 

Correspondingly, for the completion of the projective limit we have to have finite 

seminorms p𝑅−𝜀(𝑣) for all 𝜀 > 0 and all continuous seminorms p on 𝑉. 

A last option is to take the projective limit 𝑅 → ∞. Most of the following statements will 

therefore also be available for the case 𝑅 = ∞. However, we will not be too much interested 

in this case as the completion �̂� ∞(𝑉) = Ŝ∞
∗ (𝑉) is rather small. 

We start now to collect some basic features of 𝑊𝑅−(𝑉) . From Lemma (3.2.19) we 

get immediately the following statement: 

Lemma (3.2.28) [101]: Let 𝑅′ ≥ 𝑅 ≥ 0. 

(i) For all 𝑛 ∈ ℕ0 the induced topology on S𝑛(𝑉) ⊆ 𝑊𝑅−(𝑉) is the 𝜋‐topology. 

(ii) The projection and the inclusion maps 

W𝑅−(𝑉) → S𝜋
𝑛(𝑉) → W𝑅−(𝑉)                               (76) 

are continuous for all 𝑛 ∈ ℕ0. 

(iii) The inclusion 𝑚𝑎𝑝𝑊𝑅−(𝑉) → W𝑅−(𝑉) is continuous. 

(iv) The ℤ2‐grading is continuous for W𝑅−(𝑉) . 

The analogous statements for W𝑅(𝑉) hold for trivial reasons: we have discussed them 

already for the symmetric algebra S𝑅
∗ (𝑉) . 

This lemma has the important consequence that also after completion of W𝑅−(𝑉) to ŵ𝑅−(𝑉) 

we can speak of the n‐th component 𝑎𝑛 ∈ Ŝ𝜋
𝑛(𝑉) of an element 𝑎 ∈ Ŵ 𝑅−(𝑉) in a 
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meaningful way. 𝑎 can be expressed as a convergent series in its components of fixed tensor 

degree: 

Lemma (3.2.29) [101]: Let 𝑅 ∈ ℝ and let 𝑎 ∈ Ŵ 𝑅−(𝑉) with components 𝑎𝑛 ∈ Ŝ𝜋
n(𝑉) for 

𝑛 ∈ N0. Then 

𝑎 = ∑𝑎n

∞

n=0

                                      (77) 

converges absolutely. 

Proof. Identifying 𝑎n ∈ Ŝ𝜋
𝑙1(𝑉) with its image in �̂�𝑅−(𝑉) we get for every continuous 

seminorm p on 𝑉 the equation 

p𝑅−𝜀(𝑎) = ∑p𝑛
∞

𝑛=0

(𝑎𝑛)𝑛!
𝑅−𝜀 =∑p𝑅−𝜀

∞

𝑛=0

(𝑎𝑛) , 

from which the statement follows immediately.  

In particular, the direct sum ⊕𝑛=0
∞ Ŝ𝜋

𝑛(𝑉) of the completed symmetric 𝜋‐tensor powers of 𝑉 

is sequentially dense in Ŵ𝑅−(𝑉) . Again, this statement is also true for the case �̂�𝑅(𝑉) , see 

(65). 

The first main result is now that W𝑅(𝑉,⋆𝑧𝛬) as well as 𝑊𝑅−(𝑉,⋆𝑧𝛬) are indeed locally convex 

algebras provided 𝑅 is suitably chosen: 

Theorem (3.2.30) [101]: Let 𝑅 ≥
1

2
. The Weyl algebra W𝑅(𝑉,⋆𝑧𝛬) is a locally convex 

algebra. Moreover, W𝑅−(𝑉,⋆𝑧𝛬) is a locally convex algebra for 𝑅 >
1

2
. J𝑛 both cases, the 

Weyl algebra is first countable iff  𝑉 is first countable. 

Proof. The continuity of the product for W𝑅(𝑉) is just Lemma (3.2.29).This gives also the 

continuity in the case of W𝑅−.(𝑉) . Note that we need 𝑅 >
1

2,)
 for the second case A locally 

convex space 𝑉 is the fist countable iff we can choose sequence of continuous semi norms 

p(1) ≤ p(2) ≤ ⋯ such that for every other continuous seminorm 𝑞 on𝑉 we have some 𝑛 ∈

ℕ with q ≤ p(𝑛). Then Lemma (3.2.19) shows that the seminorms p𝑅
(n)

 will do the job for 

𝑊𝑅(𝑉)  while for W𝑅−(𝑉) we can take the seminorms (p(𝑛))
𝑅−

1

𝑛

 to determine the topology. 

The converse is obvious from Lemma (3.2.28)(i).  

As a first application we show that in the completion Ŵ 𝑅(𝑉) we have exponentials 

of every vector in 𝑉, provided 𝑅 is small enough: 

Proposition (3.2.31) [101]: Assume 𝑉0 ≠ {0}. 

(i) One has  exp (𝑣) ∈ Ŵ𝑅(𝑉) for every non‐zero 𝑣 ∈ 𝑉 iff 𝑅 < 1. 

(ii) Let 𝑅 < 1 and 𝑣 ∈ 𝑉. The map 𝕂 ∋ 𝑟 ↦  exp ([𝑣) ∈ Ŵ 𝑅(𝑉) is real‐analytic in the case 

𝕂 = ℝ with radius of convergence ∞ and entire in the case 𝕂 = ℂ. The Taylor sense 

converges absolutely. 

Proof. Let 𝑣 ∈ 𝑉0 be non‐zero and choose a seminorm p with p(𝑣) > 1 which is possible 

thanks to the Hausdorff property and by an appropriate rescaling of 𝑣. Then p𝑛(𝑣𝑛) =

(p(𝑣))
𝑛

 since 𝑣 ⊗⋯⊗ 𝑣 = 𝑣⋯𝑣 in this case. The exponential series therefore gives 
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p𝑅( exp (𝑣)) = ∑
p𝑛(𝑣𝑛)

𝑛!

∞

𝑛=0

𝑛!𝑅 = ∑(p(𝑣))
𝑛

∞

𝑛=0

𝑛!𝑅−1, 

which converges iff 𝑅 < 1, showing the first part. The second part is clear from Lemma 

(3.2.29) since the homogeneous components of  exp (𝑡𝑣) are given by 
𝑡𝑛𝑣𝑣

𝑛!
. □ 

We have established the continuity of ⋆𝑍𝛬 on W𝑅(𝑉) and thus we can conclude that 

⋆𝑧𝛬 has a unique extension to a continuous product ⋆𝑧𝛬 on the completion Ŵ 𝑅(𝑉) . We 

shall now re‐interpret the proof of Lemma (3.2.25) to get the more specific statement that 

also the formula for ⋆𝑧𝛬 stays valid: 

Proposition (3.2.32) [101]: Let 𝑅 ≥
1

2
 and let 𝑎, 𝑏 ∈ Ŵ 𝑅(𝑉,⋆𝑧𝛬) . Then 

𝑎 ⋆𝑧𝛬 𝑏 = 𝜇oe
𝑧𝑃𝛬(𝑎 ⊗ 𝑏) = ∑

𝑍𝑘

𝑘!

∞

𝑘=0

𝜇o𝑃𝛬
𝑘(𝑎 ⊗ 𝑏)             (78) 

converges absolutely in Ŵ𝑅(𝑉) . The same statement holds for the projective limit version 

Ŵ 𝑅−(𝑉,⋆𝑧𝛬) and 𝑅 >
1

2
. 

Proof. We have to show that for all seminorms  𝑝𝑅 of the defining system of se minorms 

the series∑
|𝑧|𝑘

𝑎𝑘𝑖1
∞
𝑘=0 𝑝𝑅 (𝜇𝑜𝑃𝛬

𝑘(𝑎 ⊗ 𝑏)) converges. But this was exactly what we did in the 

proof of Lemma (3.2.25). The projective limit case is analogous. 

This proposition also allows us to discuss the dependence on the deformation parameter 𝑧: 

here we have the best possible scenario. In the real case, 𝑧 ∈ ℝ, we have a real‐analytic 

dependence on 𝑧 in 𝑎 ⋆𝑧𝛬 𝑏 with an explicit Taylor expansion around 𝑧 = 0 given by the 

absolutely convergent series (78). In the complex case, 𝑧 ∈ ℂ, we have an entire dependence, 

again by (78). Note that it is important for such statements that the topology of the Weyl 

algebra is actually independent of 𝑧. Holomorphic deformations were introduced and studied 

in detail in  [107], mainly in the context of Hopfalgebra deformations. 

Proposition (3.2.33) [101]: 𝐿𝑒f𝑅 ≥
1

2
. 

(i) If K = ℝ then for every 𝑎, 𝑏 ∈ Ŵ𝑅(𝑉,⋆𝑧𝛬) the map 

ℝ ∋ 𝑧 ↦ 𝑎 ⋆𝑧𝛬 𝑏 ∈ �̂�𝑅(𝑉,⋆𝑧𝛬)                          (79) 
is real‐analytic with Taylor expansion around 𝑧 = 0 given by (78). 

(ii) If K = (D then for every 𝑎, 𝑏 ∈ Ŵ 𝑅(𝑉,⋆𝑍𝛬) the map 

ℂ ∋ 𝑧 ↦ 𝑎 ⋆𝑍𝛬 𝑏 ∈ �̂�𝑅(𝑉,⋆𝑧𝛬)                           (80) 
is holomorphic (even entire) with Taylor expansion around 𝑧 = 0 given by (78). The 

collection of Weyl algebras {Ŵ𝑅(𝑉,⋆𝑍𝛬)}𝑍∈c provides a holomorphic (even entire) 

deformation of �̂�𝑅(𝑉, 𝜇) , where 𝜇 =⋆𝑧𝛬 |𝑧=0 is the symmemc tensor product. 

We treated the real and complex cases on equal footing. However, for applications in 

physics one typically needs an additional structure, both for the classical Poisson algebra as 

well as for the quantum algebra: a reality structure in the form of a∗‐involution. 

The following two structures are well‐known to be equivalent. We recall their relation in 

order to establish some notation: either we can start with a real vector space 𝑉ℝ and 

complexify it to 𝑉ℂ = 𝑉ℝ⊗ℂ. This gives us an antilinear 



72 

involutive automorphism of 𝑉ℂ, the complex conjugation, denoted by 𝑣ℝ⊗𝑧 ↦ 𝑣ℝ⊗𝑧 =

𝑣ℝ⊗𝑧 for 𝑣ℝ ∈ 𝑉ℝ and 𝑧 ∈ ℂ. We can recover 𝑉ℝ as the real subspace of 𝑉ℂ of those vectors 

𝑣 ∈ 𝑉ℂ with 𝑣 = 𝑣. Or, equivalently, we can start with a complex vector space 𝑉ℂ and an 

antilinear involutive automorphism, still denoted by 𝑣 ↦ 𝑣. Then 𝑉ℂ ≅ 𝑉ℝ⊗ℂ with 𝑉1R 

consisting again of the real vectors in 𝑉(D. In this situation the symmetric algebra S⋅(𝑉ℂ) is 

a∗‐algebra with respect to the complex conjugation, i.e. we have for homogeneous 𝑎, 𝑏 ∈

S⋅(𝑉ℂ) 
where in the second equation we use the commutativity of the symmetric tensor product. 

𝑎𝑏 = (−1)𝑎𝑏𝑏𝑎 = 𝑎𝑏,                                  (81) 
If in addition 𝑉ℝ is locally convex we can extend a continuous seminorm plR on 𝑉ℝ to a 

seminorm Pℂ on 𝑉ℂ by setting pℂ(𝑣 ⊗ 𝑧) = |𝑧|pℝ(𝑣) . This makes 𝑉ℂ is a locally convex 

space such that the complex conjugation is continuous. In fact, pℂ(𝑣) = pℂ(𝑣). (𝑣) =
1

2
(q(𝑣) + q(𝑣))for the seminorms of the form 𝑝ℂ. Conversely, if 𝑉ℂ is a locally convex 

complex vector space with a continuous complex conjugation then for every continuous 

seminorm 𝑞 also p(v) =
1

2
 (𝑞(𝑣)  +  𝑞(𝑣)) is continuous, now satisfying  is continuous,now 

satisfyin 𝑝(v) = P(𝑣) Clearly, these seminorms still determine the topology of 𝑉ℂ. Finally, 

for 𝑝ℝ  =  𝑝|
 
𝑉ℝ we get (𝑝ℝ)ℂ  =  𝑝. Thus also in the locally convex situation the two 

structures are equivalent. 

Now let 𝑉ℝ be a real locally convex vector space and set 𝑉 = 𝑉ℂ = 𝑉ℝ⊗ℂ, always endowed 

with the above locally convex topology and the canonical complex conjugation. 

Lemma (3.2.34) [101]: Let 𝑅 ∈ ℝ and let p be a continuous seminorm on 𝑉 with p(𝑣) =

p(𝑣) . Then 

p𝑅(𝑎) = p𝑅(𝑎)                                             (82) 
for all 𝑎 ∈ S⋅(𝑉) . Thus the complex conjugation extends to a continuous antilinear 

involutive endomorphism of Ŵ𝑅(𝑉) . 

For a continuous C‐bilinear form 𝛬: 𝑉 × 𝑉 → (D we define 𝛬: 𝑉 × 𝑉 → ℂ by 

𝛬(𝑣, 𝑤) = 𝛬(𝑣,𝑤)                                                 (83) 

as usual, and set  Re (𝛬) =
1

2
(𝛬 + 𝛬) as well as 1m(𝛬) =

1

2i
(𝛬 − 𝛬) . Then 𝛬,  Re (𝛬) , 

and 1m(𝛬) are again continuous C‐bilinear forms. 

In view of applications in quantum physics we rescale our deformation parameter 𝑧 ∈ ℂ to 

𝑧 =
iћ

2
 and consider only real (or even positive) values for ћ. Thus the star product becomes 

The next result clarifies under which conditions the complex conjugation is a∗‐involution 

for ⋆iћ
2
𝛬

: 

Proposition (3.2.35) [101]: Let 𝑅 ≥
1

2
 and ћ ∈ ℝ\{0}. Then the following statements are 

equivalent: 

(i) The complex conjugation is 𝑎∗‐involution with respect to ⋆iћ
2
𝛬

, i.e. we have for 

homogeneous 𝑎, 𝑏 ∈ Ŵ𝑅 (𝑉,⋆iћ
2
𝛬
) 
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𝑎 ⋆iћ
2
𝛬
𝑏 = 𝜇oe

iћ
2
𝛬(𝑎 ⊗ 𝑏)  .                                  (84) 

𝑎 ⋆iћ
2
𝛬
𝑏 = (−1)𝑎𝑏𝑏 ⋆iћ

2
𝛬
𝑎.                             (85) 

(ii) 𝛬+ = −𝛬+𝑎𝑛𝑑 𝛬− = 𝛬−. 

(iii) 𝛬+ = −𝛬+𝑎𝑛𝑑 Ŵ𝑅(𝑉) is a Poisson∗‐algebra in the sense that for all 𝑎, 𝑏 ∈ Ŵ𝑅(𝑉) 

{𝑎, 𝑏}𝛬 = {𝑎, 𝑏}𝛬.                               (86) 

Proof. First we note that by continuity it suffices to work on W𝑅 (𝑉,⋆iћ
2
𝛬
) instead ofthe 

completion. Suppose (i) and consider homogeneous , 𝑣, 𝑤 ∈ 𝑉. Then 

0 = 𝑣 ⋆iћ
2
𝛬
𝑤 − (−1)𝑣𝑤𝑤 ⋆iћ

2
𝛬
𝑣 

= −
iћ

2
(𝛬(𝑣,𝑤) + (−1)𝑣𝑤𝛬(𝑤, 𝑣)) 

= −
iћ

2
(𝛬+(𝑣, 𝑤) + 𝛬+(𝑤, 𝑣) + 𝛬−(𝑣, 𝑤) − 𝛬−(𝑤, 𝑣)) , 

since the star product gives only the zeroth and first order terms and 𝛬+ is symmetric while 

𝛬− is antisymmetric. Now 𝛬+ + 𝛬+ is still symmetric and 𝛬− − 𝛬− is still antisymmetric. 

Hence their contributions have to vanish separately which implies (ii). Next, assume (ii). 

Then 

𝑃𝛬±(𝑎 ⊗ 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∓𝑃𝛬±(𝑎 ⊗ 𝑏)                             (∗∗) 

follows immediately. For the symmetric tensor product 𝜇 we have 𝜇(𝑎 ⊗ 𝑏) = 𝜇(𝑎 ⊗ 𝑏) 

which combines to give (iii) at once. Conversely, (iii) implies (ii) by evaluating on , 𝑤 ∈ 𝑉. 

Finally, assume (ii). In general the (anti‐)symmetiv of 𝛬 ± implies 

𝑃𝛬± = ±𝜏o𝑃𝛬±o𝜏,                                       (∗∗) 

as this follows either by a direct computation or by verifying the Leibniz rules for 𝜏o𝑃𝛬±o𝜏 

and then applying the uniqueness result from Lemma (3.2.2). Combining now (∗) and (∗∗) 

with the commutativity 𝜇 = 𝜇0𝜏 of the symmetric tensor product gives (i) by a computation 

analogously to  [100].  

Thus we need a real Poisson bracket to start the deformation and an imaginary symmetric 

part 𝛬+ in the star product ⋆iℎ
2
𝛬

 to have the complex conjugation a s∗‐involution. In this case 

Ŵ 𝑅 (𝑉,⋆iℎ
2
𝛬
) is a locally convex ∗‐algebra. 

We collect some additional properties of the Weyl algebra W𝑅(𝑉,⋆𝑧𝛬) which are 

inherited from 𝑉. 

Suppose that 𝑉 has an absolute Schauder basis, i.e. there exists a linearly independent 

set {𝑒𝑖}𝑖∈𝐼, ofvectors in 𝑉 together with continuous coefficient functionals {𝜙𝑖}
𝑖∈𝐼

 in 𝑉′ such 

that 𝜙𝑖(𝑒𝑗) = 𝛿𝑗
𝑖 for 𝑖, 𝑗 ∈ 𝐼 and 

𝑣 =∑𝜙𝑖

𝑖∈𝐼

(𝑣)𝑒𝑖                                          (87) 
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converges. For an absolute Schauder basis one requires that for all continuous seminorms p 

on 𝑉 there exists a continuous seminorm q such that 

∑|

𝑖∈I

𝜙𝑖(𝑣)|p(𝑒𝑖) ≤ q(𝑣)                                      (88) 

for all 𝑣 ∈ 𝑉, i.e. the series in (87) converges absolutely for all continuous seminorms and 

can be estimated by a continuous seminorm. In particular, at most countably many 

contributions 𝜙𝑖(𝑣)p(𝑒𝑖) can be different from 0 for a given 𝑣 ∈ 𝑉. Typically, 𝐽 will be 

countable itself. In the following we assume to have such an absolute Schauder basis {𝑒𝑖}𝑖∈𝐼, 

for 𝑉 with coefficient functionals {𝜙𝑖}
𝑖∈𝐼
,. 

The projective topology on 𝑉⊗𝑛 is known to be compatible with absolute Schauder bases. 

We have the following lemma: 

Lemma (3.2.36) [101]: The vecrors {𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛}𝑖1,…,𝑖𝑛∈𝐼
 form an absolute Schauder 

basis for 𝑉⊗𝜋𝑛 with coefficienr functionals {𝜙𝑖1⊗⊗𝜙𝑖𝑛}𝑖1,…,𝑖𝑛∈𝐼. If p and q are continuous 

seminorms on 𝑉 with (88) then one has for all 𝑣 ∈ 𝑉⊗𝜋𝑛 

∑ |

𝑖1,…,𝑖𝑛∈I

(𝜙𝑖1⊗⋯⊗𝜙𝑖𝑛)(𝑣)|p𝑛(𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛) ≤ q
†𝑙(𝑣) .    (89) 

In a next step we consider the whole tensor algebra T𝑅
∗(𝑉) endowed with the topology from 

Definition (3.2.20) for some fixed 𝑅 ≥ 0. We claim that the collection {𝑒𝑖1⊗⋯⊗

𝑒𝑖𝑛}↑𝜄∈N0,𝑖1,…,𝑖𝑛∈𝐼
, provides an absolute Schauder basis for T𝑅

∗(𝑉) with corresponding 

coefficient functionals {𝜙𝑖1⊗⋯⊗𝜙𝑖𝑛}
𝑛∈N0,𝑖1,…,𝑖𝑛∈𝐼

 Here for 𝑛 = 0 we take the standard 

basis vector 1 ∈ K with the corresponding coefficient functional. First we note that the linear 

functionals 𝜙𝑖1⊗⋯⊗𝜙𝑖𝑛 are continuous on 𝑇𝑅
⋅ (𝑉) when they are extended by 0 to the 

tensor degrees different from 𝑛. Moreover, we have 

p𝑅(𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛) = p
𝑛(𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛)𝑛!

𝑅                     (90) 

by Lemma (3.2.19)(ii). This results in the following statement: 

Lemma (3.2.37) [101]: The vectors {𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛}n∈N0,𝑖1,…,𝑖𝑛∈
, form an absolute 

Schauder basis for T𝑅
∗(𝑉) with coefficient functionals {𝜙𝑖1⊗⋯⊗𝜙𝑖𝑛}

𝑛∈N0,𝑖1,…,𝑖𝑛∈𝐼
. If p 

and q are continuous seminorms on 𝑉 with (88) then one has for all 𝑣 ∈ T𝑅
∗(𝑉) 

∑ ∑ |

𝑖1,…,𝑖𝑛∈f

∞

𝑛=0

(𝜙𝑗1⊗⋯⊗𝜙𝑖𝑛)(𝑣)|p𝑅(𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛) ≤ q𝑅(𝑣) .          (91) 

Remark (3.2.38) [101]: We note that an absolute Schauder basis stays an absolute Schauder 

basis after completion, see  [117]. 

The absolute Schauder basis descends now to the symmetric algebra by symmetrizing. If 

𝑣 ∈ S⋅(𝑉) then we have 𝑣 = 𝒮𝑣 with the continuous symmetrization map from (61). 

Applying𝒮 twice, this shows the convergence 
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𝑣 = ∑ ∑ (𝜙𝑖1⋯𝜙𝑖𝑛)

𝑖1,…,𝑖𝑛∈1

∞

𝑛=0

(𝑣)𝑒𝑖1⋯𝑒𝑖𝑛                        (92) 

for all 𝑣 ∈ S𝑅(𝑉) , where 𝜙𝑖1⋯𝜙𝑖𝑛 = (𝜙𝑖1⊗⋯⊗𝜙𝑖𝑛). Moreover, using again 𝑣 = 𝒮𝑣 

we get from the estimate (61) and (91) the estimate 

∑ ∑ |

𝑖1,…,𝑖𝑛∈f

∞

𝑛=0

(𝜙𝑖1⋯𝜙𝑖n)(𝑣)|p𝑅(𝑒𝑖1⋯𝑒𝑖𝑛) ≤ q𝑅(𝑣) .                (93) 

So we have all we need for an absolute Schauder basis except that the symmetrizations 

𝑒𝑖1⋯𝑒𝑖n will no longer be linearly independent: some of them will be zero if they contain 

twice the same odd vector and some of them will differ by signs. So we only have to single 

out a maximal linearly independent subset, the choice of which might be personal taste: 

Proposition (3.2.39) [101]: Let 𝑅 ≥ 0 and let {𝑒𝑖}𝑖∈𝐼, be an absolute Schauder basis of 𝑉 

of homogeneous vectors with coefficient functionals {𝜙𝑖}
𝑖∈J

. Then any choice of a maximal 

linearly independent subset of {𝑒𝑖1⋯𝑒𝑖𝑛}𝑛∈]N0,𝑖1,…,𝑖𝑛∈J
 will give an absolute Schauder basis 

of S𝑅
∗ (𝑉) and of 𝑊𝑅−(𝑉) with coefficient functionals given by the corresponding subset of 

{𝜙𝑖1⋯𝜙𝑖n}
𝑛∈]N0,𝑖1,…,𝑖n∈

,. One has the estimate (93) whenever p and q satisfy (88). 

Having an absolute Schauder basis is a very strong property for a locally convex space. In 

fact, they are completely known: after completion one obtains a Köthe (sequence) space 

where the index set for the “sequences” is 𝐼, see e.g.  [117] for a detailed description. The 

Köthe matrix 𝐾𝑉 of 𝑉 is obtained from 𝐾𝑉 = (𝜆𝑖,p) with 𝜆𝑖,p = p(𝑒𝑖) where 𝑖 ∈ 𝐼 and p 

ranges over a defining system of continuous seminorms of 𝑉. Thus the corresponding Köthe 

matrix of the tensor algebra T𝑅
∗(𝑉) is given by 𝐾T𝑅∗ (𝑉) = (𝜆(n,𝑖1,…,𝑖𝑛),p) with 

𝜆(𝑛,𝑖1,…,𝑖𝑛),p = 𝑛!
𝑅 𝜆𝑖1,p⋯𝜆𝑖𝑛,p.                     (94) 

Thus we have an explicit description in terms of the Köthe matrix of 𝑉. Analogously, one 

can proceed for the Weyl algebra W𝑅(𝑉) . For Köthe spaces many properties are (easily) 

encoded in their Köthe matrix, so we see here that the appearance of 𝑛!𝑅 will play a 

prominent role when passing from 𝑉 to T𝑅
∗(𝑉) or 𝑊𝑅(𝑉) . 

We discuss nuclearity properties of the Weyl algebra 𝑊𝑅(𝑉) originating from those 

of 𝑉: since 𝑉 ⊆ W𝑅(𝑉) is a closed subspace inheriting the original topology from the one 

of 𝑊𝑅(𝑉) , we see that nuclearity of 𝑊𝑅(𝑉) implies the nuclearity of 𝑉. The aim of this to 

show the converse. 

To this end, it will be convenient to work with the tensor algebra T𝑅
∗(𝑉) instead of the 

symmetric algebra S𝑅
∗ (𝑉) since we do not have to take care of the combinatorics of 

symmetrization. 

Let 𝑈 ⊆ 𝑉 be a subspace and denote by {𝑈〉 ⊆ T⋅(𝑉) the two‐sided ideal generated by 𝑈. 

Then the quotient algebra T⋅(𝑉)/{𝑈〉 is still ℤ‐graded by the tensor degree since 𝑈 has 

homogeneous generators of tensor degree one. The map 

𝜄: T⋅(𝑉)/〈𝑈) → T⋅(𝑉/𝑈)                                 (95) 
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determined by 𝜄([𝑣1⊗⋯⊗𝑣𝑛]) = [𝑣1] ⊗⋯⊗ [𝑣𝑛] turns out to be an isomorphism 

ofgraded algebras. We shall now show that 𝑙 also respects the seminorms p𝑅. First recall 

that for a seminorm p on 𝑉 one defines a seminorm [p] on 𝑉/𝑈 by 

[p]([𝑣]) =  inf {p(𝑣 + 𝑢)|𝑢 ∈ 𝑈}.                        (96) 
Then the locally convex quotient topology on 𝑉/𝑈 is obtained from all the seminorms [p] 

where p runs through all the continuous seminorms of 𝑉. 

Lemma (3.2.40) [101]: Let 𝑢 ⊆ 𝑉 be a subspace and let p be a seminorm on V. Then for 

all 𝑅 ∈ ℝ one has 

[p𝑅] = [p]𝑅0𝜄.                                  (97) 

Proof. Let {𝑈)𝑛 = ∑ 𝑉𝑛
ℓ=1 ⊗⋯⊗𝑈⊗⋯⊗𝑉 ⊆ 𝑉⊗𝑛 with 𝑈 being at the ℓ ‐th position. 

This is the n‐th homogeneous part of 〈𝑈). Then 𝑉⊗𝑛/{𝑈〉𝑛 gives the n‐th homogeneous part 

of the graded algebra T⋅(𝑉)/{𝑈〉. For a seminorm p on 𝑉 and the induced isomorphism 𝜄 

restricted to 𝑉⊗𝑛/〈𝑈〉𝑛 a simple argument shows 

[p𝑛] = [p]𝑛0𝜄. 
From this, (97) follows at once.  

This simple lemma has an important consequence which we formulate in two ways: 

Corollary (3.2.41) [101]: Let 𝑈 ⊆ 𝑉 be a subspace and 𝑅 ∈ ℝ. 
(i) The isomorphism (95) induces an isomorphism 

𝜄: T𝑅
∗(𝑉)/〈𝑈) → T𝑅

∗(𝑉/𝑈)                                    (98) 
of locally convex algebras if the left hand side as well as 𝑉/𝑈 carry the locally convex 

quotient topologies. 

(ii) The isomorphism (95) induces an isomorphism 

𝜄: T𝑅−
∗ (𝑉)/(𝑈〉 → T𝑅−

∗ (𝑉/𝑈)                                 (99) 
of locally convex algebras. 

Proof. For the second part, we note that the seminorms [p𝑅−𝜀,1] and [p]𝑅−𝜀,1 for 𝜀 > 0 and 

p a continuous seminorm on 𝑉 constitute a defining system of seminorms for the projective 

limit topologies.  

We now assume that 𝑉 is nuclear. There are many equivalent ways to characterize 

nuclearity, see e.g.  [117], we shall use the following very basic one: for a given continuous 

seminorm p on 𝑉 we consider 𝑉/ kerp with the quotient seminorm [p]. This is now a normed 

space as we have divided by kerp. Thus we can complete 𝑉/ kerp to a Banach space denoted 

by 𝑉p. Then 𝑉 is called nuclear if for everv continuous seminorm p there is a another 

continuous seminorm q ≥ p such that the canonical map 𝑖qp: 𝑉q → 𝑉p is a nuclear map. This 

means that there are vectors 𝑒𝑖 ∈ 𝑉p and continuous linear functionals 𝜀𝑖 ∈ 𝑉q
′ such that 

𝜄qp(𝑣) =∑𝜀𝑖
∞

𝑖=1

(𝑣)𝑒𝑖  𝑤𝑖𝑡ℎ ∑‖

∞

𝑖=1

𝜀𝑖‖q‖𝑒𝑖‖p < ∞,          (100)  

where we use the notation ‖ ⋅ ‖p = [p] for the Banach norms on 𝑉p and 

‖𝜀𝑗‖q = sup
𝑣≠0
   
𝜀𝑖(𝑣)

‖𝑣‖q
                        (101) 

  
denotes the functional norm as usual. The following lemma is well‐known: 
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Lemma (3.2.42) [101]: Let (𝑉, ‖ ⋅ ‖) be a Banach space and let 𝜙1 , , 𝜙𝑛 ∈ 𝑉
′. Then 𝜙1⊗

⋯⊗𝜙𝑛 ∈ (𝑉
⊗𝜋𝑛)

′
 with 

||𝜑1⨂ . . .⨂ 𝜑𝑛|| = ||𝜑1||. . ||𝜑𝑛||,                      (102) 

where on 𝑉⊗𝜋𝑛 we use the norm ‖ ⋅ ‖ ⊗⋯⊗ ‖ ⋅ ‖ as usual. 

The next lemma shows how kerp ⊆ 𝑉 is related to icer p𝑅 ⊆ 𝑇𝑅
⋅ (𝑉) . 

Lemma (3.2.43) [101]: Let 𝑅 ∈ ℝ and let p be a continuous seminorm on V. Then 

〈kerp) = kerp𝑅 .                                       (103) 

Proof. Since [p] is a norm on 𝑉/kerp, also [p]𝑛 is a norm on (𝑉/ ker 𝑝)⊗𝑛. It follows that 

[p]𝑅,1 is a norm on T⋅(𝑉/kerp) as well, implying that [p𝑅] is a norm on T(𝑉)/〈kerp) 

according to Lemma (3.2.40). Thus [𝑣] ∈ kerp𝑅 iff [p𝑅]([𝑣]) = 0 iff  ∈ {kerp) . □ 

The following lemma is the key to understand nuclearity: 

Lemma (3.2.44) [101]: Let p ≤ q be continuous seminorms such that the canonical map 

𝜄qp: 𝑉q → 𝑉p has a nuclear representation 

𝜄q,p =∑𝜀𝑖
∞

𝑖=1

⊗𝑒𝑖                              (104) 

with 𝜀𝑖 ∈ 𝑉′q and 𝑒𝑗 ∈ 𝑉p. Then there is a constant 𝑐 > 0 such that the canonical map 

𝜄(𝑐q)𝑅,p𝑅: T𝑅
∗(𝑉)(𝑐q)𝑅 → T𝑅

∗(𝑉)p𝑅                             (105) 

has the nuclear representation 

𝑙(𝑐q)𝑅,p𝑅 = ∑ ∑ (𝜀𝑖1⊗⋯⊗ 𝜀𝑖𝑛)

∞

𝑖1,…,𝑖𝑛=1

∞

𝑛=0

⊗ (𝑒𝑖1⊗⋯⊗ 𝑒𝑖n)   (106) 

Proof. By rescaling the seminorm q we can achieve that the numerical value 

𝑥 =∑‖

∞

𝑖=1

𝜀𝑖‖q‖𝑒𝑖‖p < 1                                       (∗)  

of the convergence condition in (100) is not only finite but actually as small as we need: 

rescaling of q by c shrinks the value of (∗) by 
1

𝑐
 since we need the dual norm ∥ · ∥𝑞 . Thus 

we may assume (∗) without restriction defining the possibly necessary rescaling factor 𝑐. 

Next we note that (T𝑅
∗(𝑉))

q𝑅
 is the Banach space completion of T𝑅

∗(𝑉)/kerq𝑅 ≅

T𝑅
∗(𝑉/kerq) with respect to the norm [q𝑅] = [qR] °ι, according to Lemma (3.2.40), and 

analogously for (T𝑅
∗(𝑉))

p𝑅
. In this sense we have 𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛 ∈ (T𝑅

∗(𝑉))
p𝑅

 as well as 

𝜀𝑖1⊗⋯⊗ 𝜀𝑖𝑛 ∈ ((T𝑅
∗(𝑉))

q𝑅
)
′
. For the norms of these vectors and linear functionals we 

have 

p𝑅(𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛) = 𝑛!
𝑅 [p]𝑛(𝑒𝑖1⊗⋯⊗ 𝑒𝑖n) = 𝑛!

𝑅 ‖𝑒𝑖1‖p…… ‖𝑒𝑖𝑛‖p 

and 

‖𝜀𝑖1⊗⋯⊗ 𝜀𝑖𝑛‖q𝑅 =
1

𝑛!𝑅
‖𝜀𝑖1⊗⋯⊗ 𝜀𝑖𝑛‖q𝑛 =

1

𝑛!𝑅
‖𝜀𝑖1‖q ‖𝜀

𝑖𝑛‖q. 

Again, due to dualizing, the prefactor 𝑛!𝑅 appears now in the denominator. Combining these 

results we have 
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∑ ∑ ‖

∞

𝑖1,…,𝑖𝑛=0

∞

𝑛=0

𝜀𝑖1⊗⋯⊗ 𝜀𝑖𝑛‖q𝑅p𝑅(𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛) = ∑𝑥𝑛
∞

𝑛=0

< ∞, 

since we arranged 𝑥 < 1. Finally, it is clear that(106) holds before the completion and thus 

also afterwards by continuity.  

Theorem (3.2.45) [101]: Let 𝑅 ≥ 0. Then the following statements are equivalent: 

(i) 𝑉 is nuclear. 

(ii) T𝑅
∗(𝑉) is nuclear.  

(iii) 𝑊𝑅(𝑉) is nuclear. 

Proof. We consider the tensor algebra T𝑅
∗(𝑉) . Then W𝑅(𝑉) = S𝑅

∗ (𝑉) is a closed subspace 

of T𝑅
∗(𝑉) and 𝑉 is a closed subspace of W𝑅(V) . Hence it will sumce to show that T𝑅

∗(𝑉) is 

nuclear whenever 𝑉 is nuclear. Since the topology ofT𝑅
∗(𝑉) is determined by all the 

seminorms p𝑅, Lemma (3.2.44) gives us the nuclear representation of 𝑙(𝑐q)𝑅,p𝑅 whenever we 

have one for 𝑖q,p. Hence T𝑅,1
∗ (𝑉) is nuclear.  

For the projective limit version W𝑅−(𝑉) we can argue either along the same line of proof as 

above or use the above result and rely on the general fact that projective limits of nuclear 

spaces are again nuclear. However, the following statement is less obvious and shines some 

new light on the projective version of the Weyl algebra: 

Theorem (3.2.46) [101]: Let 𝑅 ≥ 0. Then the following statements are equivalent: 

(i) 𝑉 is strongly nuclear. 

(ii) T𝑅−(𝑉) is strongly nuclear.  

(iii) 𝑊𝑅−(𝑉) is strongly nuclear. 

Proof. Again, since closed subspaces inherit strong nuclearity, we only have to show the 

implication (i) ⇒ (ii) . Thus let p be a continuous seminorm on 𝑉 with a matching 

continuous seminorm q such that (100) holds with 

for all 𝛼 > 0. Now we have to take q𝑅−𝜀′ for p𝑅−𝜀 with some 0 < 𝜀′ < 𝜀. Then the series 

𝑥(𝛼) =∑‖

∞

𝑖=1

𝜀𝑖‖q
𝛼‖𝑒𝑖‖p

𝛼 < ∞ 

∑ ∑ (‖𝜀𝑖1⊗⋯⊗ 𝜀𝑖𝑛‖q
𝑅−𝜀′
p𝑅−𝜀(𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑛))

𝛼
∞

𝑖1,…,𝑖𝑛=0

∞

𝑛=0

= ∑
1

𝑛!𝛼(𝜀−𝜀
′)

∞

𝑛=0

𝑥(𝛼)𝛼 

still converges for all 𝛼 > 0 showing the strong nuclearity of T𝑅−(𝑉) . □ 

Note that it is crucial to have some (small) inverse power of 𝑛! at hand: without this option 

we cannot succeed in showing the strong nuclearity as we need the 𝛼‐summability for all 

𝛼 > 0. Thus, concerning strong nuclearity, the projective limit version 𝑊𝑅−(𝑉) turns out to 

behave nicer than the more direct version 𝑊𝑅(𝑉) . 

Example (3.2.47). For 𝑉 finite‐dimensional we get a strongly nuclear Weyl algebra 

W𝑅−(𝑉,⋆𝑧𝛬) . Here we can either use the above theorem since 𝑉 being finite‐dimensional is 

strongly nuclear, or we can rely on the explicit description of 𝑉 and hence of W𝑅−(𝑉,⋆𝑧𝛬) 

as a Köthe space: since for a finite‐dimensional vector space it suffices to take a single norm, 

the Köthe matrix is finite and hence its entries are bounded, say by 𝑐 > 0. Thus the Köthe 

matrix (94) has entries bounded by 𝑐𝑛𝑛!𝑅−𝜀 where 𝜀 > 0. To this result one can apply the 
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Grothendieck‐Pietsch criterion and conclude strong nuclearity directly, see  [117]. For a 

finite‐dimensional 𝑉 the Weyl algebra Y′𝑅(𝑉,⋆𝑧𝛬) is still a nuclear space. 

We discuss how the algebraic symmetries and equivalences translate into our locally 

convex framework. 

Suppose that 𝑉 and 𝑊 are two ℤ2‐graded locally convex Hausdorff spaces and let 

𝛬𝑉 and 𝛬𝑊 be continuous even bilinear forms on 𝑉 and 𝑊, respectively. We want to extend 

the functoriality statement from Proposition (3.2.12). The following estimates are obvious: 

Lemma (3.2.48) [101]: Let 𝐴: 𝑉 → 𝑊 be an even linear map and let p and q be seminorms 

on 𝑉 and 𝑊 such that q(𝐴(𝑣)) ≤ p(𝑣) for all 𝑣 ∈ 𝑉. Then 

q𝑅(𝐴(𝑣)) ≤ p𝑅(𝑣)                            (107)  

for all 𝑣 ∈ T⋅(𝑉) . 

Proof. We clearly have q𝑛 (𝐴⊗𝑛(𝑣)) ≤ p𝑛(𝑣) for all ∈ T𝑛(𝑉) . From this, (107) is clear 

by the definition of p𝑅 .  

Proposition (3.2.49) [101]: Let 𝑅 ≥
1

2
 and 𝑧 ∈ ℂ. Then the Weyl algebra Y′𝑅(𝑉,⋆𝑧𝛬) as well 

as its completion Ŵ𝑅(𝑉,⋆𝑧𝛬) depend functonally on (𝑉, 𝛬) with respect to continuous 

Poisson maps. 

In particular, the continuous Poisson automorphisms in 𝐴𝑢𝑡 (𝑉, 𝛬) act on the Weyl algebra 

W𝑅(𝑉,⋆𝑧𝛬) as well as on its completion  Ŵ 𝑅 . (𝑉,⋆𝑧𝛬) by continuous automorphisms. The 

analogous statement holds for the projective version W𝑅−(𝑉,⋆𝑧𝛬) 

We investigate the action of the translations by linear forms on 𝑉 as done 

algebraically in (35). We discuss the continuity of the translations 𝜏𝜙
∗  in two ways: first 

directly for a general even continuous 𝜙 ∈ 𝑉′ and second for a 𝜙 in the image of # from 

(38): since 𝛬 is continuous, an element 𝜙 ∈ im# ⊆ 𝑉∗ is clearly continuous as well. In this 

more special situation we show a much stronger statement, namely that 𝜏𝜙
∗  is an inner 

automorphism. 

We start with the following basic estimate for the continuity of the translation operators 𝜏𝜙
∗ : 

Lemma (3.2.50) [101]: Let 𝜙 ∈ 𝑉′ be even and let p be a continuous seminorm on 𝑉 such 

that |𝜙(𝑣)| ≤ p(𝑣) for all 𝑣 ∈ 𝑉. Then for 𝑅 ≥ 0 we have for all 𝑣 ∈ T𝑅(𝑉) 

p𝑅(𝜏𝜙
∗ 𝑣) ≤ (2p)𝑅(𝑣) .                         (108) 

Proof. We write 𝑣 = ∑ 𝑣𝑛
∞
𝑛=0 ∈ T⋅(𝑉) with its homogeneous components 𝑣𝑛 ∈ 𝑉

⊗𝑛, all of 

which are zero except finitely many. Moreover, we write 

𝑣𝑛 =∑𝑣𝑖
(1)

𝑖

⊗⋯⊗𝑣𝑖
(𝑛)
                              (∗) 

as usual. Then the homomorphism property of 𝜏𝜙
∗  gives 

𝜏𝜙
∗ 𝑣 = ∑∑(𝑣𝑖

(1)
+ 𝜙 (𝑣𝑖

(1)
) I)

𝑖

∞

𝑛=0

⊗⋯⊗ (𝑣𝑖
(𝑛)
+ 𝜙(𝑣𝑖

(𝑛)
) 1) . 

For every 𝑛 we get now various contributions in all tensor degrees 𝑘 ≤ 𝑛. The contributions 

in the tensor degree 𝑘 consist of linear combinations ofa choice of 𝑘 vectors among the 𝑣𝑖
(1)
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, , 𝑣𝑖
(𝑛)

, taking their tensor product, applying 𝜙 to the remaining 𝑛 − 𝑘 vectors, and 

multiplying everything together in the end. For a fixed index 𝑖 there are (
n
𝑘
) possibilities to 

distribute 𝑛 − 𝑘 copies of 𝜙 to the 𝑛 vectors 𝑣𝑖
(1)

 , , 𝑣𝑖
(𝑛)

. Finally, using the estimate 

|𝜙(𝑤)| ≤ p(𝑤) for all 𝑤 ∈ 𝑉 we obtain that the contributions to p𝑅 from these terms can 

be estimated by 

p𝑅 ((𝑣𝑖
(1)
+ 𝜙(𝑣𝑖

(1)
 ) 1)⊗⋯⊗ (𝑣𝑖

(𝑛)
+ 𝜙(𝑣𝑖

(𝑛)
) 1))

≤ ∑

n

𝑘=0

 (
𝑛
𝑘
)  𝑘!𝑅 p (𝑣𝑖

(1)
)⋯p (𝑣𝑖

(𝑛)
) . 

In total, we get the estimate 

p𝑅(𝜏𝜙
∗ 𝑣) ≤ ∑∑∑

𝑛

𝑘=0𝑖

∞

𝑛=0

 (
𝑛
𝑘
)  𝑘!𝑅 p (𝑣𝑖

(1)

 
)⋯p (𝑣𝑖

(n)

 
)

≤ ∑∑2𝑛

𝑖

∞

𝑛=0

𝑛!𝑅 p (𝑣𝑖
(1)

 
)⋯p (𝑣𝑖

(n)

 
) . 

Since the decomposition (∗) was arbitrary, we can take the infimum over all such 

decompositions resulting in (108).  

From this estimate we get immediately the following continuity statements: 

Proposition (3.2.51) [101]: Let 𝜙 ∈ 𝑉′ be an even continuous linear functional and let 𝑅 ≥

0. 

(i) The algebra automorphism 𝜏𝜙
∗ : T𝑅

∗(𝑉) → T𝑅
∗(𝑉) is continuous. 

(ii)For 𝑅 ≥
1

2
 , the algebra automorphism𝜏𝜙

∗ :W𝑅(𝑉,⋆𝑧𝛬) → W𝑅(𝑉,⋆𝑧𝛬)is continuous. 

(iii)For 𝑅 >
1

2
, the algebra automorphism 𝜏𝜙

∗ :W𝑅(𝑉,⋆𝑧𝛬) → W𝑅(𝑉,⋆𝑧𝛬) is continuous. 

In particular, 𝜏𝜙
∗  extends in all three cases to the corresponding completions and yields a 

continuous automorphism for the completions, too. 

In a next step we want to understand which of the 𝜏𝜙
∗  are inner automorphisms. This is a 

well‐known statement: if the linear functional 𝜙 is in the image of # then 𝜏∗ is inner via the 

star‐exponential of a pre‐image of 𝜙 with respect to #. Also the heuristic formula for the 

star‐exponential is foliose. Our main point here is that we have an analytic framework where 

the star‐exponential actually makes sense: this is in so far nontrivial as we know that the 

canonical commutation relations do not allow for a general entire calculus. Thus the 

existence of an exponential has to be shown by hand. 

It will be crucial to have 𝑅 ≤ 1 in view of Proposition (3.2.31). We start with some basic 

properties of the exponential series: 

Lemma (3.2.52) [101]: Let 𝑅 < 1 and 𝑤 ∈ 𝑉0 be an even vector. 

(i) For all 𝑣 ∈ 𝑉 we have 

 exp (𝑤) ⋆𝑧𝛬 𝑣 =  exp (𝑤)(𝑣 + 𝑧𝛬(𝑤, 𝑣)) ,               (109) 

and 

𝑣 ⋆𝑧𝛬  exp (𝑤) =  exp (𝑤)(𝑣 + 𝑧𝛬(𝑣,𝑤)) .                    (110) 
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(ii) For all t ∈ K one has 

d

d𝑟
et𝑤+

r2𝑧

2
𝛬(𝑤,𝑤)1 = et𝑤+

r2𝑧

2
𝛬(𝑤,𝑤)1 ⋆𝑧𝛬 𝑤 = 𝑤 ⋆𝑧𝛬 e

t𝑤+
t2𝑧
2
𝛬(𝑤,𝑤)1(111) 

(iii) The star‐exponential series for 𝑤 ∈ 𝑉 converges absolutely in 𝑊𝑅(𝑉,⋆𝑧𝛬) and 

Exp⋆𝑧𝛬(tw) = ∑
𝑟𝑛

𝑛!

∞

𝑛=0

𝑤 ⋆𝑧𝛬 ⋯⋆𝑧𝛬 𝑤 = e
t𝑤+

r2𝑧

2
𝛬(𝑤,𝑤)1          (112) 

Proof. We use the continuity of ⋆𝑧𝛬 and the (absolute) convergence of the exponential series 

to get 

exp (𝑤) ⋆𝑧𝛬 𝑣 = ∑
1

𝑛!

∞

𝑛=0

𝑤𝑛 ⋆𝑧𝛬 𝑣 

=∑
1

𝑛!

∞

𝑛=0

(𝑤n𝑣 + 𝑧𝜇o𝑃𝛬(𝑤
n⊗𝑣) + 0) 

= ∑
1

𝑛!

∞

𝑛=0

(𝑤n𝑣 + 𝑛𝑧𝑤𝑛−1𝛬(𝑤, 𝑣)) 

=  exp (𝑤)(𝑣 + 𝑧𝛬(𝑤, 𝑣)) , 

since 𝜇o𝑃𝛬(. , v) is a derivation of the undeformed symmetric tensor product and 𝑤 is even. 

The second equation is analogous .For the second part.we first note that 𝑡 ↦

 exp (t𝑤 +
r2𝑍

2P
𝛬(𝑤,𝑤)1)is real –analytic (entire in the case 𝕂 = ℂ) with convergent 

Taylor expansion around 0 for all 𝑡 ∈ 𝕂 thanks to Proposition (3.2.31)(ii). We compute the 

derivative 

d

d𝑡
et𝑤+

r2𝑧
2
𝛬(𝑤,𝑤)1 = et𝑤+

r2𝑧
2
𝛬(𝑤,𝑤)1(𝑤 + 𝑧𝛬(𝑡𝑤,𝑤)) = ef𝑤+

r2𝑧

2
𝛬(𝑤,𝑤)1 ⋆𝑧𝛬 𝑤, 

using the first part and the fact that 𝛬(𝑤,𝑤)]⌊ is central. Analogously, we can write 𝑤 ⋆𝑧𝛬 

in front. This shows the second part. Together, this gives 

d

d𝑡
|𝑡=0e

f𝑤+
r2𝑧

2
𝛬(𝑤,𝑤)1 = 𝑤 ⋆𝑧𝛬 ⋯⋆𝑧𝛬 𝑤 

for the Taylor coefficients of the real‐analytic (entire) function f ↦ e𝑡𝑤+
r2𝑍

2
𝛬(𝑤,𝑤)1

. Since its 

Taylor series converges absolutely, the last part follows. □ 

The following statement is now an easy computation: 

Proposition (3.2.53) [101]: Let 𝑅 < 1 and let 𝜙 ∈ 𝑉′ be even. If 𝜙 is in the image of J then 

𝜏𝜙
∗ 𝑖𝑠 an inner automorphism of Ŵ 𝑅(𝑉,⋆𝑧𝛬) for all 𝑧 ≠ 0. In fact, 

𝜏𝜙
∗ (𝑎) = Exp⋆𝑧𝛬(𝑤) ⋆𝑧𝛬 𝑎 ⋆𝑧𝛬 Exp(−𝑤)                 (113) 

for all 𝑎 ∈ �̂�𝑅(𝑉,⋆𝑧𝛬) where 𝑤 ∈ 𝑉0 is such that 2𝑧𝑤# = 𝜙. 

Proof. First we note that the star‐exponential function gives a one‐parameter group of 

invertible elements in Ŵ𝑅(𝑉,⋆𝑧𝛬) with respect to the star product ⋆𝑧𝛬. This is clear from the 

absolute convergence ofthe star‐exponential series. Thus the right hand side of(113) defines 

an inner automorphism of the Weyl algebra. Now consider 𝑣 ∈ 𝑉. Using Lemma (3.2.52) 

we compute for 𝑣 ∈ 𝑉 
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d

d𝑟
Exp⋆𝑧𝛬(t𝑤) ⋆𝑧𝛬 𝑣 ⋆𝑍𝛬 Exp⋆𝑧𝛬(−𝑡𝑤)

= Exp⋆𝑧𝛬(t𝑤) ⋆𝑧𝛬 (𝑤 ⋆𝑍𝛬 𝑣 − 𝑣 ⋆𝑧𝛬 𝑤) ⋆𝑍𝛬 Exp⋆𝑧𝛬(−t𝑤) 

= Exp⋆𝑧𝛬(t𝑤) ⋆𝑧𝛬 (𝑧𝛬(𝑤, 𝑣)1 − 𝑧𝛬(𝑣,𝑊)1)) ⋆𝑧𝛬 Exp⋆𝑧𝛬(−t𝑤) 

= 2𝑧𝛬−(𝑤, 𝑣)1, 

where we use that Exp⋆𝑧𝛬(−f𝑤) is the ⋆𝑧𝛬‐inverse of Exp⋆𝑧𝛬 (tw). On the other hand, 𝑟 ↦

𝜏f𝜙
∗ (𝑣) = 𝑣 + f𝜙(𝑣)]⌊ has the derivative 

d

d𝑡
𝜏f𝜙
∗ (𝑣) = 𝜙(𝑣)1. 

Thus taking 𝑤 such that 2𝑤𝛬−(𝑤, ) = 𝜙, i.e. 2𝑧𝑤# = 𝜙, shows (113) for 𝑎 = 𝑣. Now both 

sides are automorphisms and hence both sides coincide on al1 ⋆𝑧𝛬‐polynomials in elements 

from 𝑉. But 𝑉 together with 1 generates 𝑊𝑅(𝑉,⋆𝑧𝛬) according to Corollary (3.2.9). Thus the 

two automorphisms coincide on W𝑅(𝑉,⋆𝑧𝛬) . Since both are continuous, they also coincide 

on the completion Ŵ𝑅(𝑉,⋆𝑧𝛬) .  

We have seen that the same antisymmetric part 𝛬− yields equivalent deformations, 

no matter what the symmetric part 𝛬+ of 𝛬 is. We extend this now to the analytic framework. 

The following lemma shows the continuity of the equivalence transformation from 

Proposition (3.2.15): 

Lemma (3.2.54) [101]: Let 𝑔: 𝑉 × 𝑉 → 𝕂 be an even symmetr 𝑐 bilinearform. Let 𝑅 ≥
1

2
 

and let p be a seminorrrg on 𝑉 with 

|𝑔(𝑣, 𝑤)| ≤ p(𝑣)p(𝑤)                                (114) 
for all 𝑣, 𝑤 ∈ 𝑉. Then we have for all 𝑎 ∈ S⋅(𝑉) 

p𝑅(𝛥𝑔𝑎) ≤ (2p)𝑅(𝑎) .                                   (115) 

Moreover, there are constants 𝑐, 𝑐′ > 0 with 

p(e𝑡𝛥𝑔𝑎) ≤ 𝑐′(𝑐p)𝑅(𝑎) .                              (116) 
Proof. First we extend the operator 𝛥𝑔 to the whole tensor algebra T⋅(𝑉) as usual by setting 

�̃�𝑔(𝑣1⊗⋯⊗𝑣𝑛)

=∑(1)𝑣1(+𝑣+⋯𝑣𝑖−1)

𝑖<𝑗

(−1)𝑣𝑗(𝑣1+⋯+𝑣𝑖−1+⋯.+𝑣𝑖−1 )𝑔(𝑣𝑗 , 𝑣𝑗)𝑣1⊗∧
𝑖  . . .∧𝑗  . . .

⊗ 𝑣𝑛 

on factorizing homogeneous tensor and extending linearly. Then we have 

𝒮°�̃�𝑔 = 𝛥𝑔°𝒮                                                                        (∗) 

as already for 𝑃𝛬. With an analogous estimate as for the Poisson bracket we get 

p𝑛−2 (�̃�𝑔(𝑣1⊗⋯⊗𝑣𝑛)) ≤∑|

𝑖<𝑗

𝑔(𝑣𝑖 , 𝑣𝑗)|p(𝑣1)  ∧ 𝑖 . . .∧ ⋯p(𝑣𝑛)𝑗

≤
𝑛(𝑛 − 1)

2
p(𝑣1)⋯p(𝑣𝑛) . 

This implies for all 𝑎𝑛 ∈ T
𝑛(𝑉) the estimate 

p𝑛−2(�̃�𝑔𝑎𝑛) ≤
𝑛(𝑛 − 1)

2
pn(𝑎𝑛) . 
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Thanks to (∗) we get the same estimate for 𝑎n ∈ S
𝑛(𝑉) and 𝛥𝑔 in place of �̃�𝑔. By induction 

this results in 

p𝑛−2𝑘(𝛥𝑔
𝑘𝑎𝑛) ≤

𝑛!

2𝑘(𝑛 − 2𝑘)!
p𝑛(𝑎𝑛)                          (∗∗)  

as long as 𝑛 − 2𝑘 ≥ 0 and 𝛥𝑔
k𝑎𝑛 = 0 for 2𝑘 > 𝑛. This gives 

p𝑅(𝛥𝑔𝑎) = ∑(𝑛 − 2)

∞

𝑛=2

!𝑅 p𝑛−2(𝛥𝑔𝑎𝑛) 

≤∑(𝑛 − 2)

∞

𝑛=2

!𝑅
𝑛(𝑛 − 1)

2
p𝑛(𝑎𝑛) ≤ ∑𝑛

∞

𝑛=0

!𝑅 2𝑛p𝑛(𝑎𝑛) , 

which is the first estimate (115). For the second we have to be slightly more efficient with 

the estimates as a simple iteration of(115) would not suffice. We have for |f| ≥ 1 

p𝑅(e
t𝛥𝑔𝑎)  ≤  ∑

|r|𝑘

𝑘!

∞

𝑘=0

p𝑅(𝛥𝑔
𝑘𝑎) 

≤ ∑
|𝑟|k

𝑘!

∞

𝑛,𝑘=0

p𝑅(𝛥g
𝑘𝑎𝑛) 

(∗∗)
≤
 𝑛, 𝑘 = 0 ∑

|𝑡|𝑘

𝑘!

∞

𝑛≥2𝑘

(𝑛 − 2𝑘)!𝑅
𝑛!

2𝑘(𝑛 − 2𝑘)!
p𝑛(𝑎1𝑙) 

=  𝑛, 𝑘 = 0 ∑
|𝑟|𝑘

2𝑘𝑘!

∞

𝑛≥2𝑘

(
𝑛!

(↑ 1 − 2𝑘)!
)
1−𝑅

𝑛!𝑅 p𝑛(𝑎𝑛) 

(𝑎 )
≤
 𝑛, 𝑘 = 0 ∑

22𝑘(1−𝑅)|f|𝑘

2𝑘

∞

𝑛≥2𝑘

1

𝑘!1−2(1−𝑅)
𝑛!𝑅 2np𝑛(𝑎n) 

(𝑏)
≤
 𝑛, 𝑘 = 0 ∑

1

|𝑟|𝑘𝑘!2𝑅−1

∞

𝑛≥2𝑘

𝑛!𝑅 (2|f|)𝑛pn(𝑎𝑛) 

≤ (∑
1

|𝑡|k𝑘!2𝑅−1

∞

𝑘=0

) (2|𝑡|p)𝑅(𝑎𝑛) , 

where in (a) we use 𝑛! ≤ 2𝑛(𝑛 − 2𝑘)! (2𝑘) ! and (2𝑘) ! ≤ 𝑘!2 22𝑘, and in (b) we use the 

assumption |f| ≥ 1 as well as 𝑘 ≤ 2𝑘 ≤ 𝑛 and 𝑅 ≥
1

2
. If instead |𝑡| < 1 then we proceed in 

(b) by 

p𝑅(e
f𝛥𝑔𝑎) ≤ ⋯

(𝑏′)
≤
(∑

|𝑟|𝑘

𝑘!2𝑅−1

∞

𝑘=0

) (2p)𝑅(𝑎𝑛) . 

In both cases the series over k converges as long as 𝑅 ≥
1

2
 and yield constants c ′ as required 

for the estimate (116). The constant c can be taken as the largest of the numbers 2|𝑡| and 2.  

We see that the idea of this estimate is rather similar to the one in Lemma (3.2.25). These 

estimates provide now the key to establish the equivalences also in the analytic framework: 
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Proposition (3.2.55) [101]: Let 𝑅 ≥
1

2
 and let 𝛬, 𝛬′ : 𝑉 × 𝑉 → K be even continuous 

bilinearforms such that their antisymmetr 𝑐 parts coincide. Then the Weyl algebras 

Ŵ𝑅(𝑉,⋆𝑧𝛬) and Ŵ𝑅(𝑉,⋆𝑧𝛬′) are isomorphic via the continuous equivalence rransformation 

e𝑧𝛥𝑔(𝑎 ⋆𝑧𝛬 𝑏) = (e
𝑧𝛥𝑔𝑎) ⋆𝑧𝛬′ (e

𝑧𝛥𝑔𝑏) ,                  (117) 

where 𝑔 = 𝛬′ − 𝛬 = 𝛬+
′ − 𝛬+𝑎𝑛𝑑 𝑎, 𝑏 ∈ �̂�𝑅(𝑉). . 

Proof. First we note that the continuity of 𝛬 and 𝛬′ implies the continuity of 𝑔. Moreover, 

to test the continuity of the map e𝑧𝛥𝑔 it clearly suffices to consider only those seminorms 

p𝑅 of�̂�𝑅(𝑉,⋆𝑧𝛬) with p being a seminorm such that (114) holds. Thus we can apply Lemma 

(3.2.54) to conclude that e𝑧𝛥𝑔 is continuous on 𝑊𝑅(𝑉,⋆𝑧𝛬) and hence extends to a 

continuous endomorphism of �̂� 𝑅(𝑉,⋆𝑧𝛬) as well. Then the relation (117) holds for all 𝑎, 

𝑏 ∈ W𝑅(𝑉,⋆𝑧𝛬) by Proposition (3.2.15) and hence for all 0, 𝑏 ∈ Ŵ 𝑅(𝑉,⋆𝑧𝛬) by continuity. 

Finally, for a fixed 𝑎 ∈ �̂�𝑅(𝑉,⋆𝑧𝛬) the exponential series 

e𝑡𝛥𝑔𝑎 = ∑
𝑟𝑘

𝑘!

∞

𝑘=0

𝛥𝑔
𝑘𝑎 

converges absolutely in the topology of t𝑅𝑒𝑗𝑒𝑐𝑡̂
𝑅(𝑉,⋆𝑧𝛬) . Indeed, this follows from the 

estimate in the proof of Lemma (3.2.54). Thus for 𝑧, 𝑤 ∈ 𝕂 we get e𝑧𝛥𝑔oe𝑤𝛥𝑔 = e(𝑧+𝑤)𝛥𝑔 

at once. This shows that e𝑧𝛥𝑔 is indeed invertible and hence a continuous isomorphism with 

continuous inverse e−𝑧𝛥𝑔 .  

In the finite‐dimensional case the situation is very simple: first we note that there is 

only one Hausdorff locally convex topology on 𝑉 and all bilinear maps are continuous. In 

this situation we get a defining system of continuous seminorms for the topology of 𝑊𝑅(𝑉) 

and W𝑅−(𝑉) very easily: 

Lemma (3.2.56) [101]: Let 𝑉 befinite‐dimensional 𝑐𝑚d let p be a norm on V. Then the 

nonns {(𝑐p)𝑅}𝑐>0 yield a defining system of seminorms for W𝑅(𝑉) . 

Proof. Let q be an arbitrary seminorm on 𝑉. Then there is a constant 𝑐 > 0 with q ≤ 𝑐p 

since p is a norm and we are in finite dimensions. Then we have q𝑛 ≤ 𝑐𝑛pn. Hence we also 

get q𝑅 ≤ (𝑐p)ℝ from which the claim follows.  

Lemma (3.2.57) [101]: Let 𝑉 be finite‐dimensional and let p be a norm on V. Then the 

norms {p𝑅−𝜀}𝜀>0 yield a defining system of seminorms for 𝑊𝑅−(𝑉) . 

Proof. Here we do not even need the multiples of p. As before, for a given seminorm q on 

𝑉 there is a constant 𝑐 > 0 with q ≤ cp and hence q𝑛 ≤ 𝑐𝑛pn. Now fix 𝜀′ > 0 with 𝜀′ < 𝜀 

and let C > 0 be a constant such that 𝑐𝑙1 ≤ C𝑛!𝜀−𝜀
′
 for all 𝑛 ∈ ℕ. Then we have 

q𝑅−𝜀(𝑎) = ∑𝑛

∞

𝑛=0

!𝑅−𝜀 q𝑛(𝑎𝑛) ≤ ∑𝑛

∞

𝑛=0

!𝑅−𝜀 𝑐np𝑛(𝑎𝑛) ≤ C∑𝑛

∞

n=0

!𝑅−𝜀
′
p𝑛(𝑎𝑛)

= Cp𝑅−𝜀′(𝑎) . 

This shows that we can estimate every seminorm of the form q𝑅−𝜀 by a suitable p𝑅−𝜀′ .  

Let 𝑉 = 𝑉0⊕𝑉1 be finite‐dimensional and real. Moreover, let 𝛬: 𝑉 × 𝑉 → ℝ be 

antisymmetric and even. Then 𝛬 = 𝛬0 + 𝛬1 with 

𝛬0: 𝑉0 × 𝑉0 → ℝ 𝑎𝑛𝑑 𝛬1: 𝑉1 × 𝑉1 → ℝ,                        (118) 
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such that 𝛬0 is an antisymmetric bilinear form on 𝑉0 and 𝛬1 is a symmetric bilinear form on 

𝑉1. By the linear Darboux Theorem we can find a basis q1 , , q𝑑 , p1 , , p𝑑 , 𝑐1 , , 𝑐𝑘 of 𝑉0 

such that the only nontrivial pairing is 

𝛬0(q𝑖 , p𝑗) = 𝛿𝑖𝑗 = −𝛬0(p𝑗 , q𝑖) .                         (119) 

For the odd part, we can find a basis 𝑒1 , , 𝑒𝑟 , 𝑓1 , , 𝑓𝑠, 𝑥1 , , 𝑥r with the only nontrivial 

pairings 

𝛬1(𝑒𝑖 , 𝑒𝑗) = 𝛿𝑖𝑗  𝑎𝑛𝑑 𝛬1(𝑓i, 𝑓𝑗) = −𝛿𝑖𝑗 .                       (120) 

Here  dim 𝑉0 = 2𝑑 + 𝑘 and  dim 𝑉1 = 𝑟 + 𝑠 + 𝑟. Then 𝛬0 is symplectic iff 𝑘 = 0 and 𝛬1 

is an (indefinite) inner product iff f = 0, its signature is then given by (𝑟, 𝑠) . If we use 𝛬 

directly for building the star product ⋆𝑧𝛬 in this case then we obtain the usual Weyl‐Moyal 

star product for the even part and a Clifford multiplication for the odd part. Thus the numbers 

𝑑, 𝑘, 𝑟, 𝑠, f encode the isomorphism class of 𝑊𝑅(𝑉,⋆𝑧𝛬) as well as those of 𝑊𝑅−(𝑉,⋆𝑧𝛬) in 

the finite‐dimensional case. The complex case is analogous. 

We now use this simple classification to compare our general construction with a previous 

construction in finite dimensions: first we want to relate our construction to the one of  [108], 

where the Weyl‐Moyal type star product was considered, i.e. no symmetric contribution to 

the symplectic antisymmetric part 𝛬. 
In the approach of  [108], the relevant topology on the complexified symmetric algebra 

S⋅(𝑉ℝ) ⊗ ℂ = ℂ[𝑧1 , , 𝑧𝑑 , 𝑧
1
 , , 𝑧

𝑑
] over 𝑉ℝ = ℝ

2𝑑 is obtained as follows. For a parameter 

0 < 𝑝 ≤ 2 the topology is defined by the seminorms 

‖𝑎‖𝑝,𝑠 = sup
𝑋∈ℂ2𝑑  

 {|𝑎(𝑥)|e−𝑠|𝑥|
𝑝
},                             (121) 

where we denote by 𝑥 ∈ ℂ2𝑑 a point in the complexified vector space and use the obvious 

extension of 𝑎 ∈ S⋅(𝑉ℝ) ⊗ ℂ as a function (polynomial) on ℂ2𝑑. Moreover, |𝑥| denotes the 

euclidean norm ofx. Then the locally convex topology used is the one determined by all the 

seminorms ‖ ⋅ ‖𝑝,𝑠 for all 𝑠 > 0. In fact, in  [108] only the case of 𝑑 = 1 is considered, but 

it is clear that everything can be done in higher (finite) dimensions as well. The following 

proposition clarifies the relation between the two approaches, the proof of which is 

implicitly contained already in  [108]. 

Proposition (3.2.58) [101]: Let 0 < 𝑝 ≤ 2. Then the locally convex topology on S⋅(𝑉JR) ⊗

ℂ induced by the seminorms ‖ ⋅ ‖𝑝,𝑠 for 𝑠 > 0 coincides with the topology of S𝑅
∗ (𝑉ℝ)⊗ ℂ if 

we set 𝑅 =
1

𝑝
. 

Proof. We have to find mutual estimates for the two families of seminorms. We begin with 

some preparatory material. In view of Lemma (3.2.56) we are free to chose the following 

ℓ1‐like norm 

p(𝑎) =∑|

𝛼

𝑎𝛼|                                         (122) 

with respect to the canonical basis 𝑒1 , , 𝑒2𝑑on ℝ21⊗ℂ. The reason to chose this 𝑃1‐norm 

is that it behaves most nicely for the tensor product. We write a polynomial as 
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𝑎 = ∑ ∑ 𝑎𝛼1…𝛼𝑛

2𝑑

𝛼1,…,𝛼𝑛=1

∞

𝑛=0

𝑥𝛼1⋯𝑥𝛼𝑛 ,                            (123) 

where 𝑥𝛼 are the coordinate functions in 𝑥 = ∑ 𝑥𝛼𝑎 𝑒𝛼. The components 𝑎𝛼1…𝛼n are totally 

symmetric. For the seminorm p𝑛 of the homogeneous part 𝑎𝑛 of 𝑎 of degree 𝑛 we get 

p𝑛(𝑎𝑛) = ∑ |

2𝑑

𝛼1,…,𝛼𝑛=1

𝑎𝛼1…𝛼n|.                                   (∗) 

For a homogeneous monomial we estimate the seminorm ‖ ⋅ ‖𝑝,𝑠, yielding 

sup
𝑋∈ℂ2𝑑  

 {||𝑥𝛼1⋯x𝛼𝑛|e
−𝑠|𝑥|𝑝} ≤ |𝑥|𝑡𝑙e−𝑠|𝑥|

𝑝
≤ (

𝑛

𝑠𝑝
)

𝑛
𝑝
e
−
𝑛
𝑝 , .                              (∗∗) 

by explicitly computing the maximum value of the scalar function 𝑔(𝑟) = 𝑟𝑛e−𝑠𝑟
𝑝
 for 𝑟 ≥

0, see also  [108]. With this preparation and noting 𝑛𝑛 ≤
1

e
𝑛! e𝑛 we get 

‖𝑎‖𝑝,𝑠 ≤∑ ∑ |

2𝑑

𝛼1,…,𝛼𝑛=0

∞

𝑛=0

𝑎𝛼1…𝛼𝑛|‖𝑥𝛼1⋯𝑥𝛼𝑛‖𝑝,𝑠
(∗),(∗∗)

 

≤ ∑p𝑛
∞

𝑛=0

(𝑎𝑛) (
𝑛

𝑠𝑝
)

𝑛
𝑝
e
−
𝑛
𝑝 ≤∑p𝑛

∞

𝑛=0

(𝑎𝑛)𝑛!
1
𝑝 𝑐𝑛 

where 𝑐 = (
𝑝

𝑠
)

1

𝑝
. This gives the estimate ‖𝑎‖𝑝,𝑠 ≤ (𝑐p)1

𝑝

(𝑎) . For the converse estimate we 

first note that we can apply the (multi‐variable) Cauchy formula for the polynomial 𝑎. This 

gives an estimate for the Taylor coefficients following  [108]: first we have for a fixed 𝑟 >

0 the estimate 

∑ |

2𝑑

𝛼1,…,𝛼𝑛=1

𝑎𝛼1…𝛼𝑛| ≤
1

𝑟𝑛
e𝑠𝑟

𝑝
‖𝑎‖𝑝,𝑠. 

Using the minimum value (𝑠𝑝)𝑛𝑛
−
𝑛

𝑝e
𝑛

𝑝 of the scalar function 𝑟−𝑛e𝑠r
𝑝
 this gives for a fixed 

𝑠 > 0 and 𝑅 =
1

𝑝
 the estimate 

(𝑐p)𝑅(𝑎) = ∑ ∑ |

2𝑑

𝛼1,…,𝛼𝑛=1

∞

𝑛=0

𝑎𝛼1…𝛼𝑛|𝑛!
𝑅 𝑐𝑛 

≤∑𝑛

∞

𝑛=0

!𝑅
1

𝑟𝑛
e𝑠r

𝑝
‖𝑎‖𝑝,𝑠𝑐

𝑛 

≤∑𝑛

∞

𝑛=0

!𝑅 (𝑠𝑝)𝑛𝑛
−
𝑛
𝑝e
n
𝑝‖𝑎‖𝑝,𝑠𝑐

𝑛 

≤∑e𝑅
∞

𝑛=0

𝑛𝑅𝑛𝑅𝑛𝑛−𝑅𝑛(𝑠𝑝)𝑛e𝑛𝑅‖𝑎‖𝑝,𝑠𝑐
𝑛 
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= ∑e𝑅
∞

𝑛=0

𝑛𝑅(𝑠𝑝𝑐√𝐸
𝑝
)
𝑛
‖𝑎‖𝑝,𝑠. 

Now choosing 𝑠 > 0 sufficiently small such that 𝑠𝑝𝑐 √e
𝑝
< 1 gives a converging series over 

𝑛 and hence a suitable constant 𝑐′ > 0 with (𝑐p)𝑅(𝑎) ≤ 𝑐
′‖𝑎‖𝑝,𝑠 for 𝑅 =

1

𝑝
 and the above 

chosen 𝑠. Thus the two topologies coincide.  

The second situation which we shall relate our general Weyl algebra 𝑊𝑅(𝑉) to is the 

convergent Wick star product as in  [73],  [109]. Here we are again in the real symplectic 

situation with 𝑉ℝ = ℝ
2𝑑 and its canonical symplectic form. Using the same notation as 

above, the Wick star product 

𝑓 ⋆Wick 𝑔 = ∑
(2ћ)|𝑁|

𝑁!

∞

𝑁=0

𝜕|𝑁⌊𝑓

𝜕𝑧𝑁
𝜕|𝑁|𝑔

𝜕𝑧
𝑁                                 (124) 

 

from  [73],  [109] can then be written as ⋆Wick=⋆iℎ
2
𝛬

 with 𝛬 given by 

𝛬 (𝑧𝑘, 𝑧
ℓ
) =

4

i
𝛿𝑘𝑝,                                                                 (125) 

and all other pairings trivial. In  [109] it was shown that the previously constructed locally 

convex topology for the Wick star product from  [73] can be described as follows: write 0 ∈

S⋅(𝑉) as a Taylor polynomial 

𝑎 = ∑ 𝑎𝐼𝐽

∞

.𝐼𝐽=0

𝑧I  𝑧_𝐽

I! 𝐽!
.                                              (126) 

Then the defining system of seminorms is given by 

‖𝑎‖𝜀 = sup
𝐼.𝐽
 
|𝑎J𝐽|

|I + 𝐽|!𝜀
 ,                                (127) 

where 𝜀 > 0. With other words, the Taylor coefficients 𝑎𝐽 have sub‐factorial growth with 

respect to the multiindices 𝐼 and 𝐽. Note that in  [109] an addition factor (2ћ)|f|+N| is present 

in the denominator in (126). But clearly such an exponential contribution will not change 

the sub‐factorial growth properties at all. Therefore the seminorms (127) give the same 

topology as the one in  [109]. 

Proposition (3.2.59) [101]: The locally convex topology on S⋅(𝑉) induced by 𝑟ℎ𝑒 

seminorms {‖ ⋅ ‖𝜀}𝜀>0 coincides with the topology of the Weyl algebra W𝑅−(𝑉) for 𝑅 = 1. 
Proof. To get the combinatorics of the Taylor and tensor coefficients right, we note that for 

a homogeneous 𝑎𝑛 ∈ S
𝑛(𝑉) ⊆ T𝑛(𝑉) written as in (123) we have 

𝑎f𝐽
𝐼! 𝐽!

= ∑ 𝑎𝛼1…𝛼𝑛
𝛼∈(f𝑗)

, 

where the summation runs over all those 𝑛‐tuples 𝛼 = (𝛼1, , 𝛼𝑛) containing 𝑖1 times the 

index 1, , 𝑖𝑑 times the index 𝑑, 𝑗1 times the index 1 , , and 𝑗𝑑 times the index 𝑑. Since the 

coefficients are totally symmetric we get 
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|𝑎1𝐽|

I! 𝐽!
= ∑ |

𝛼∈(J𝐽)

𝑎𝛼1…𝛼𝑛|.                        (∗) 

The first estimate we need is now 

‖𝑎‖𝜀 = sup
𝐼.𝐽
 
|𝑎J𝐽|

|𝐼 + 𝐽|!𝜀
 

= sup
𝑛
 
1

𝑛!𝜀
+= sup

𝐼.𝐽
|𝐼+𝑗|=𝑛

 ∑ |

𝛼∈(f𝐽)

𝑎𝛼1…𝛼𝑛|I! 𝐽! 

≤∑
1

𝑛!𝜀

∞

𝑛=0

∑ |

𝛼1,…,𝛼𝑛

𝑎𝛼1…𝛼𝑛|𝑛! 

= p1−𝜀(𝑎) , 
where p is again the norm (122). For the other direction we take the same norm p and choose 

again a 0 < 𝜀′ < 𝜀. Then 

p1−𝜀(𝑎) = ∑𝑛

∞

𝑛=0

!1−𝜀 ∑ |

𝛼1,…,𝛼n

𝑎𝛼1…𝛼𝑛| 

= ∑𝑛

∞

𝑛=0

!1−𝜀 ∑
|𝑎J𝐽|

𝐼𝑣𝐽!
|J+𝐽I=𝑛

 

≤∑𝑛

∞

𝑛=0

!1−𝜀 ∑
‖𝑎||𝜀′𝑛!

𝜀′

I! 𝐽!
|1+𝐽I=𝑛

 

= ‖𝑎‖𝜀′∑
(2𝑑)t𝑙

𝑛!𝜀−𝜀

∞

𝑛=0

, 

which gives an estimate p𝑅−𝜀(𝑎) ≤ 𝑐‖𝑎‖𝜀′ with 𝑐 being the above convergent series. Since 

by Lemma (3.2.57) it suffices to consider one norm p for 𝑉, this finishes the proof.  

We discuss a first example in infinite dimensions: the Poisson bracket and the 

corresponding Weyl algebra underlying a free, i.e. linear, field theory. Our main focus here 

is the precise definition of the relevant locally convex topologies as well as the global 

aspects of the construction. One has essentially two possibilities for the Poisson structure: 

the canonical Poisson structure built on a Hamiltonian formulation using the initial value 

problem and the covariant Poisson structure, also called the Peierls bracket, built on a 

Lagrangian approach. In the following, we will exclusively work in the smooth category, all 

manifolds and bundles will be 𝒞∞. 
The material on the Cauchy problem on globally hyperbolic spacetimes is standard and can 

be found e.g. in [120]. The comparison of the canonical and the covariant Poisson brackets 

is was taken from  [121]. For a much more far‐reaching discussion of the Peierls bracket 

including also non‐linear field equations see [110]: in fact, it would be a very interesting 

project to combine the results from  [110] on the classical side with the nuclear Weyl algebra 

quantization to obtain the corresponding quantum side. 
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We consider an 𝑛‐dimensional connected Lorentz manifold (𝑀, 𝑔) with a Lorentz 

metric 𝑔 of signature (+,−, , ‐ ) . The important concept we need is the causal structure: first 

we require that (𝑀, 𝑔) is time‐orientable and time‐oriented. Then one defines the causal 

future 𝐽𝑀
+(𝑝) of a point 𝑝 ∈ 𝑀 to be the set of those points which can be reached by a future 

directed causal curve. Analogously, 𝐽𝑀
−(𝑝) denotes the causal past of 𝑝. For two points 𝑝, 

𝑞 ∈ 𝑀 one defines the diamond JM (𝑝, 𝑞) = 𝐽𝑀
+(𝑝)n𝐽𝑀

−(𝑞) . For an arbitrary subset 𝐴 ⊆ 𝑀 

we set 

𝐽𝑀
±(𝐴) =⋃

𝑝∈𝐴

𝐽𝑀
±(𝐴) 𝑎𝑛𝑑 𝐽𝑀(𝐴) = 𝐽𝑀

+(𝐴)U𝐽𝑀
−(𝐴) .               (128) 

A time‐oriented Lorentz manifold is called globally hyperbolic if it is causal, i.e. there are 

no closed causal loops, and if all diamonds are compact. A first consequence is that𝐽𝑀
±(𝑝) 

is always a closed subset of 𝑀. In the following we always assume that (𝑀, 𝑔) is globally 

hyperbolic. A celebrated theorem of Bernal and Sánchez, refining a topological statement 

of Geroch, states that this is equivalent to the existence of a smooth spacelike Cauchy surface 

𝜄: 𝛴 → 𝑀                                                     (129) 
together with a smooth Cauchy temporal function f ∈ 𝒞∞(𝑀) , i.e. the gradient of f is future 

directed and time‐like everywhere and the level sets of f are smooth spacelike Cauchy 

surfaces for all times. Moreover, 𝑀 is diffeomorphic to the product manifold 𝛤t × 𝛴 with 

the metric being 

𝑔 = 𝛽d𝑡2 − 𝑔𝑡 ,                                          (130) 
where 𝛽 ∈ 𝒞∞(𝛤t × 𝛴) is positive and 𝑔f is a Riemannian metric on 𝛴 smoothly depending 

on 𝑟. Finally, the Cauchy temporal function f can be chosen in such a way that 𝛴 is the f = 0 

level set. For a detailed discussion see the review  [122]. 

Since 𝑀 is diffeomorphic to]ℝ × 𝛴 we get a global vector field 
𝜕

𝜕𝑡
 on 𝑀. Normalizing this 

to a unit vector field gives 

n =
1

√𝛽

𝜕

𝜕𝑟
∈ 𝛤∞(𝑇𝑀) ,                                    (131) 

which is a future‐directed time‐like unit vector field such that it is normal to every level 

surface of the Cauchy temporal function. In particular 𝑙#tt ∈ 𝛤∞(𝑇𝑀𝛴) will be normal to 

the Cauchy surface 𝛴. Here 𝑇𝑀𝛴 = 𝜄
#𝑇𝑀 is the restriction (pullback via 𝜄) of the tangent 

bundle to 𝛴 and 𝜄#n = 𝑛|𝛴 is the pull‐back of 𝑎 to 𝛴. 

The fields we are interested in will be modeled by of a vector bundle over 𝑀: we require the 

vector bundle 𝐸 → 𝑀 to be real and equipped with a fiber metric ℎ, not necessarily positive 

definite but non‐degenerate. The dynamics of the field is now governed by a second order 

differential operator 𝐷 ∈ DiffOp2(𝐸) with the following property: there is a metric 

connection 𝛻𝐸 for (𝐸, ℎ) and a zeroth order differential operator 𝐵 ∈ DiffOp0(𝐸) =

𝛤∞(End(𝐸)) such that 

𝐷 = □𝛻 + 𝐵,                                                       (132) 

where □𝛻 denotes the d’Alembert operator obtained from 𝛻𝐸 and pairing with the metric 𝑔. 

In particular, 𝐷 is normally hyperbolic. Conversely, note that for a normally hyperbolic 

differential operator there is a unique connection 𝛻𝐸 and a unique 𝐵 ∈ 𝛤∞(End(𝐸)) such 
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that (132) holds, see e.g.  [120]. Thus the only additional requirement we need is that 𝛻𝐸 is 

also metric with respect to ℎ. 

Let 𝜇𝑔 ∈ 𝛤
∞(|𝛬𝑛|𝑇∗𝑀) be the canonical metric density induced by 𝑔 which we shall use 

for various integrations over 𝑀. First we can use 𝜇𝑔 to define the rranspose of a differential 

operator 𝐷 ∈ 𝐷𝑖𝑓𝑓𝑂𝑝∗ (𝐸) to be the unique differential operator 𝐷T ∈ 𝐷𝑖𝑓𝑓𝑂𝑝∗ (𝐸∗) such 

that 

∫ (𝐷T𝜙)
𝑀

⋅ 𝑢𝜇𝑔 = ∫ 𝜙
𝑀

. (𝐷𝑢) 𝜇𝑔                             (133)  

for all 𝜙 ∈ 𝛤∞(𝐸∗) and 𝑢 ∈ 𝛤∞(𝐸) , at least one of them having compact support. Here. 

means pointwise natural pairing. 

Note that 𝐷T depends on the choice of 𝜇𝑔 and has the same order as 𝐷. Taking into account 

also the fiber metric ℎ we can define the adjoint of 𝐷 to be the unique differential operator 

𝐷∗ ∈ DiffOp ⋅ (𝐸) , again of the same order as 𝐷, such that 

∫ ℎ
𝑀

(𝐷∗𝑢, 𝑣)𝜇𝑔 = ∫ ℎ
𝑀

(𝑢, 𝐷𝑣)𝜇𝑔                       (134) 

for 𝑢, 𝑣 ∈ 𝛤∞(𝐸) , at least one of them having compact support. Denoting the musical 

isomorphisms induced by ℎ by #: 𝐸∗ → 𝐸 and b: 𝐸 → 𝐸∗ as usual, we get 𝐷∗𝑢 = (𝐷T𝑢⊳)# 

for ∈ 𝛤∞(𝐸) . 

This allows us now to formulate the last requirement on 𝐷 = □𝛻 + 𝐵, namely we need 𝐷 to 

be a symmetr 𝑐 operator, i.e. 

𝐷∗ = 𝐷.                                               (135) 

Since the connection 𝛻𝐸 is required to be metric, it is easy to see that (135) is equivalent to 

𝐵∗ = 𝐵. 
Let 𝐷 be a normally hyperbolic differential operator as before. Then the wave 

equation we are interested in is simply given by 

𝐷𝑢 = 0                                                    (136) 
for a 𝑢 of 𝐸. Depending on the regularity of 𝑢 we can interpret (136) as a pointwise equation 

or as an equation in a distributional sense. Dualizing, we have the corresponding wave 

equation 

𝐷T𝜙 = 0                                                 (137) 
for a 𝜙 of the dual bundle 𝐸∗. 

Under our general assumption that (𝑀, g) is globally hyperbolic we have the existence and 

uniqueness of advanced and retarded Green operators 

𝐺𝑀
±: 𝛤0

∞(𝐸) → 𝛤∞(𝐸)                                    (138) 

for 𝐷. This means that there are unique, linear, and continuous maps 𝐺𝑀
± such that 

𝐷𝐺𝑀
± = id𝛤0∞(𝐸) = 𝐺𝑀

±𝐷|𝛤0∞(𝐸)                        (139) 

and 

𝑠𝑢𝑝𝑝 𝐺𝑀
± ⊆ 𝐽𝑀

±(𝑠𝑢𝑝𝑝 𝑢)                                                   (140)  

for all 𝑢 ∈ 𝛤0
∞(𝐸) . The continuity refers to the usual L𝐹 and Fréchet topologies of 𝛤0

∞(𝐸) 

and 𝛤∞(𝐸) , respectively. Using the volume density 𝜇𝑔 we can identify the distributional  

𝛤−∞(𝐸∗) with the dual 𝛤0
∞(𝐸)′ and 𝛤0

−∞(𝐸∗) becomes identified with the dual 𝛤∞(𝐸)′. 
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We need the following space: Let 𝐾 ⊆ 𝑀 be compact. Then denote by 𝛤𝐽𝑀(𝐾)
∞ (𝐸) those in 

𝛤∞(𝐸) with 𝑠𝑢𝑝𝑝 𝑢 ⊆ 𝐽𝑀(𝐾) . Since on a globally hyperbolic spacetime 𝐽𝑀(𝐾) is a closed 

subset, 𝛤𝐽𝑀(𝐾)
∞ (𝐸) ⊆ 𝛤∞(𝐸) is a closed subspace and hence a Fréchet space itself. For 𝐾 ⊆

𝐾′ we have 𝛤𝐽𝑀(𝐾)
∞ (𝐸) ⊆ 𝛤𝐽𝑀(𝐾)

∞ , (𝐸) and the thereby induced topology on 𝛤𝐽𝑀(𝐾)
∞ (𝐸) coincides 

with the original. Hence we can consider the inductive limit 

𝛤sc
∞(𝐸) = ⋃  

𝑘⊆𝑀
𝐾compact

𝛤𝐽𝑀(𝐾)
∞ (𝐸)                         (141) 

of those smooth of 𝐸 which have compact support in spacelike directions. It is a strict 

inductive limit, and since we can exhaust 𝑀 with a sequence of compact subsets, it is a 

countable strict inductive limit, endowing 𝛤sc
∞(𝐸) with a LF topology. The continuity 

statement (138) can then be sharpened to the statement that 

𝐺𝑀
±: 𝛤0

∞(𝐸) → 𝛤sc
∞(𝐸)                                  (142) 

is continuous. In fact, this follows in a straightforward manner from the continuity of (138) 

and the causality condition (140). 

We consider now the propagator which is defined by 

𝐺𝑀 = 𝐺𝑀
+ − 𝐺𝑀

− : 𝛤0
∞(𝐸) → 𝛤sc

∞(𝐸) ,                                      (143) 
for which one has the following crucial properties: the sequence 

0 → 𝛤0
∞(𝐸) →𝐷 𝛤0

∞(𝐸) →𝐺𝑀 𝛤sc
∞(𝐸) →𝐷 𝛤sc

∞(𝐸)                 (144) 
of continuous linear maps is exact. Note that the exactness relies crucially on the assumption 

that (𝑀, 𝑔) is globally hyperbolic. 

The Green operators can now be used to give a solution to the Cauchy problem of the wave 

equation (136). For the time 𝑟 = 0 level surface 𝛴 we want to specify initial conditions 𝑢0, 

𝑢0 ∈ 𝛤0
∞(𝐸𝛴) . Then we want to find a section 𝑢 ∈ 𝛤∞(𝐸) with 

𝐷𝑢 = 0, 𝜄#𝑢 = 𝑢0, 𝑎𝑛𝑑 𝜄
#𝛻t↓
𝐸𝑢 = 𝑢0.                   (145) 

A core result in the globally hyperbolic case is that this is indeed a well‐posed Cauchy 

problem: for any (𝑢0, 𝑢0) we have a unique solution 𝑢 of the Cauchy problem (145) such 

that the map 

𝛤0
∞(𝐸𝛴) ⊕ 𝛤0

∞(𝐸𝛴) ∋ (𝑢0, �̇�0) ↦ 𝑢 ∈ 𝛤sc
∞(𝐸)                   (146) 

is continuous and 𝑠𝑢𝑝𝑝 𝑢 ⊆ 𝐽𝑀(𝑠𝑢𝑝𝑝 𝑢0𝑠𝑢𝑝𝑝 ⊔ �̇�0) . Moreover, this solution 𝑢 can be 

characterized by the formula 

∫ 𝜙
𝑀

⋅ 𝑢𝜇𝑔 = ∫ (𝑙?f(𝛻tt
𝐸𝐹𝑀(𝜙)) ⋅ 𝑢0 − 𝜄

#(𝐹𝑀(𝜙)) ⋅ �̇�0)
𝛴

𝜇𝛴 ,      (147) 

where 𝐹𝑀 is the propagator of 𝐷T and 𝜙 ∈ 𝛤0
∞(𝐸∗) . The density 𝜇𝛴 is the one induced by 

𝜇𝑔.  

Since we assume that 𝐷∗ = 𝐷 we have a last property of the Green operators, namely 

(𝐺𝑀
±)
∗
= 𝐺𝑀

∓  𝑎𝑛𝑑 𝐺𝑀
∗ = −𝐺𝑀.                     (148) 

This antisymmetry of the propagator will play a crucial role in the definition of the covariant 

Poisson bracket. Moreover, for all 𝜙 ∈ 𝛤0
∞(𝐸∗) we have 

𝐺𝑀
±(𝜙#) = (𝐹𝑀

±(𝜙))
#
                            (149) 
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The results and their proofs as well as many more additional features of the Cauchy problem 

of the wave equation on a globally hyperbolic spacetime can be found in [120], [121]. 

The canonical i.e. Hamiltonian approach uses an algebra of functions on the initial 

data, which constitute the classical phase space 

𝒫𝛴) = 𝛤0
∞(𝐸𝛴)⊕ 𝛤0

∞(𝐸𝛴) .                        (150) 

We view ′𝑦𝛴 as symplectic vector space via the symplectic form 

𝜔𝛴((𝑢0, �̇�0), (𝑣0, �̇�0)) = ∫ (ℎ𝛴(𝑢0, �̇�0) − ℎ𝛴(�̇�0, 𝑣0))
𝛴

𝜇𝛴 ,       (151) 

where ℎ𝛴 is the restriction of ℎ to 𝐸|𝛴. We have the following basic result: 

Lemma (3.2.60) [101]: The two‐form 𝜔𝛴 on 𝒫𝛴
2 is antisymmetr 𝑐, non‐degenerate, and 

continuous. 

Proof. The non‐degeneracy and the antisymmetry are clear. For the continuity we can rely 

on several standard arguments: first we note that every vector bundle can be written as a 

subbundle of a suitable trivial vector bundle 𝛴 ×]ℝ𝑁. This gives an identification 𝛤0
∞(𝐸𝛴) ⊆

𝛤0
∞(𝛴 × ℝ𝑁) as a closed embedded subspace. We can extend ℎ𝛴 in some way to a smooth 

fiber metric on the trivial bundle and this way, 𝜔𝛴 is just the restriction of the corresponding 

symplectic form on 𝛤∞(𝛴 × 𝛤t𝑁) . Thus it suffices to consider a trivial bundle from the 

beginning. There we have 𝛤0
∞(𝛴 × 𝛤t𝑁) ≅ 𝒞0

∞(𝛴)𝑁. Thus we have to show the continuity 

of a bilinear map of the form 

𝒞0
∞(𝛴)𝑁 × 𝒞0

∞(𝛴)𝑁 ∋ ((𝑢𝑖), (𝑣𝑖)) ↦ ∑ 𝑢𝑖

𝑁

𝑖�̇�=1

𝐻𝑖𝑗𝑣𝑗 ∈ 𝒞0
∞(𝛴) ,    (∗) 

where 𝐻𝑖𝑗 ∈ 𝒞
∞(𝛴) . But since the multiplication of compactly supported smooth functions 

is continuous (and not just separately continuous) the continuity of (∗) follows. The final 

integration needed for (151) is continuous as well. □ 

It is obvious that 𝜔𝛴 is separately continuous, however, we are interested in 

continuity. In the case where 𝛴 is compact, this would follow directly from separate 

continuity as then 𝛤0
∞(𝐸𝛴) = 𝛤

∞(𝐸𝛴) is a Fréchet space. The case of a non‐compact 𝛴 is of 

interest, too. 

We look at certain polynomial functions on 𝒫𝛴
  and endow them with the Poisson 

bracket originating from 𝒫′𝛴. It turns out that the symmetric algebra over the dual 𝒫𝐸
  will 

be too big and problematic when it comes to the comparison with the covariant Poisson 

structure. Hence we decide here for a rather small piece of all polynomials, namely for the 

symmetric algebra over 

𝑉𝛴 = 𝛤0
∞(𝐸𝛴

∗)⊕ 𝛤0
∞(𝐸𝛴

∗) .                                    (152) 

Using the density 𝜇𝛴 we can indeed pair elements from 𝑉𝛴 with points in: 𝒫𝛴: 

Lemma (3.2.61) [101]: The integration 

(𝜙0, �̇�0)(𝑢0, �̇�0) = ∫ (𝜙0 ⋅ 𝑢0 + �̇�0 ⋅ �̇�0)
𝛴

𝜇𝛴               (153) 

provides a continuous bilinear pairing beDwee𝑉𝛴 and P𝛴
 . 

The proof of the continuity is analogous to the one in Lemma (3.2.60). In particular, we can 

view points in 𝑃𝛴
  as elements of the dual of 𝑉𝛴 and vice versa. 
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Lemma (3.2.62) [101]: The symplectic form 𝜔𝛴 induces a non‐degenerate antisymmetr 𝑐 
continuous bilinear form 

𝛬𝛴: 𝑉𝛴 × 𝑉𝛴 → ℝ                              (154) 
explicitly given by 

𝛬𝛴 ((𝜙0, �̇�0), (𝜓0, �̇�0)) = ∫ (ℎ𝛴
−1(𝜙0, �̇�0) − ℎ𝛴

−1(�̇�0, 𝜓0))
𝛴

𝜇𝛴.     (155) 

Here ℎ𝛴
−1 stands for the induced fiber metric on 𝐸𝛴

∗ and the Poisson bracket is determined 

by 𝜔𝛴 in the sense that the Hamiltonian vector field of the linear function (𝜙0, �̇�0) on ′J) 𝛴 

is determined via 𝜔𝛴 and the Poisson bracket is determined by the Hamiltonian vector field 

as usual. 

We can now use the Poisson bracket {. , }𝛬𝛴  for the symmetric algebra S⋅(𝑉𝛴) as described 

together with its quantization given by the star product ⋆ 𝛴 =⋆iћ
2
𝛬𝛴

 for the corresponding 

nuclear Weyl algebra W𝑅(𝑉𝛴⊗ (D) . This will be the canonically quantized model of our 

Hamiltonian picture of the field theory. Since we started with a real vector bundle, the 

resulting Weyl algebra carries the complex conjugation a s∗‐involution. We only described 

the kinematic part, the field equation did not yet enter at all. 

As the covariant “phase space” we take simply all possible field configurations on the 

spacetime, i.e. 

𝓅 cov) = 𝛤sc
∞(𝐸) ,                                          (156) 

whether or not they satisfy the wave equation. This will not be a symplectic vector space in 

any reasonable sense as 𝓅 cov) contains all the unwanted field configurations as well. This 

is perhaps the surprising observation, the symmetric algebra over its dual allows for a 

Poisson bracket: again, we take only a small part of the dual, namely 𝛤0
∞(𝐸∗) , where we 

evaluate 𝜙 ∈ 𝛤0
∞(𝐸∗) on 𝑢 ∈ 𝛤sc

∞(𝐸) by means ofthe integration with respect to 𝜇𝑔 as usual. 

As before, we denote this integration simply by (𝑢) . 

The Poisson bracket will then be determined by a bilinear form on 𝛤0
∞(𝐸∗) as before. Using 

the propagator 𝐹𝑀 of 𝐷T we define 

𝛬cov(𝜙, 𝜓) = ∫ ℎ−1

𝑀

(𝐹𝑀(𝜙),𝜓)𝜇𝑔.                     (157) 

Note that the compact support of 𝜓 makes this integration well‐defined. We have the 

following property: 

Lemma (3.2.63) [101]: The bilinear form 𝛬cov: 𝛤0
∞(𝐸∗) × 𝛤0

∞(𝐸∗) → R is antisymmetric 

and continuous. 

Proof. The antisymmetry is clear since 𝐷T is symmetric and hence (148) applies also to 𝐹𝑀. 

The continuity is slightly more involved: first we note that 𝐹𝑀: 𝛤0
∞(𝐸∗) → 𝛤∞(𝐸∗) is 

continuous by the continuity of the Green operators 𝐹𝑀
±. Next, we use the fact that the 

inclusion 𝛤∞(𝐸∗) → 𝛤0
∞(𝐸∗)′ given by the integration with respect to 𝜇𝑔 using ℎ−1 is also 

continuous where we equip the dual 𝛤0
∞(𝐸∗)′ with the strong topology. This shows that the 

corresponding “musical” homomorphism 

#cov: 𝛤0
∞(𝐸∗) ∋ 𝜙 ↦ 𝛬cov(𝜙,⋅) ∈ 𝛤0

∞(𝐸∗)′ 
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is continuous with respect to the L𝐹 and the strong topology, respectively. Hence the Kernel 

Theorem for the nuclear space 𝛤0
∞(𝐸∗) states that 𝛬cov(. , ) is a distribution on the Cartesian 

product, or, equivalently, a continuous bilinear map, see e.g.  [117].  

Definition (3.2.64)[101]: The covariant Poisson algebra for 𝐷 is the symmetric algebra 

S⋅(𝑉cov) , where 𝑉cov = 𝛤0
∞(𝐸∗) , with the constant Poisson bracket {. , }cov coming from 

𝛬cov. 
This is indeed a Poisson algebra with a continuous Poisson bracket ifwe endow it with one 

of the topologies discussed see Proposition (3.2.24). A first and heuristic appearance of this 

Poisson bracket in a very particular case seems to be  [123]. 

From our general theory we know that the corresponding covenant Weyl algebra 

W𝑅(𝑉cov⊗ℂ,⋆cov) with the covariant star product ⋆cov=⋆iћ
2
𝛬cov

 is a nuclear ∗‐algebra with 

respect to the complex conjugation, where as usual 𝑅 ≥
1

2
. 

We note that 𝛬cov is now degenerate. We can determine its degeneracy space explicitly  

[121]: 

Lemma (3.2.65) [101]: Let ∈ 𝛤0
∞(𝐸∗) . Then the following statements are equivalent: (i) 𝜙 

is a Casimir element of S⋅(𝑉cov) , i.e. {𝜙,⋅}cov = 0. 

(ii) 𝜙 vanishes on solutions 𝑢 ∈ 𝛤sc
∞(𝐸) , i.e. we hove 

∫ 𝜙
𝑀

⋅ 𝑢𝜇𝑔 = 0 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝐷𝑢 = 0.                             (158)  

(iii) 𝜙 ∈ ker𝐹𝑀 . 

Proof. Assume {𝜙,⋅}cov = 0 then we have 0 = {𝜙, 𝜓}cov = ∫ ℎ−1
𝑀

 (𝐹𝑀(𝜙),𝜓)𝜇𝑔 for all ∈

𝛤0
∞(𝐸∗) . Since ℎ−1 is nondegenerate this implies 𝐹𝑀(𝜙) = 0. Next, assume 𝐹𝑀(𝜙) = 0. 

Then we icnow 𝜙 = 𝐷T𝜒 for some 𝑋 ∈ 𝛤0
∞(𝐸∗) by (144) applied to 𝐷T. Thus (158) follows 

by the definition of 𝐷T as in (133). Finally, assume (158) and let 𝜓 ∈ 𝛤0
∞(𝐸∗) be arbitraiv. 

Then (𝐹𝑀(𝜓))
#
= 𝐺𝑀(𝜓

Q) by (149) and it solves the wave equation 𝐷𝐺𝑀(𝜓
Q) = 0 by 

(144). Thus {𝜙, 𝜓}cov = 0 follows. Since S⋅(𝑉cov) is generated by 𝑉cov and {𝜙,⋅}cov is a 

derivation, {𝜙,⋅}cov = 0 follows. □ 

Since the elements of ker𝐹𝑀 ⊆ 𝛤0
∞(𝐸∗) are Casimir elements, the ideal they generate inside 

S⋅(𝑉cov) is a Poisson ideal. It turns out that it is even a two‐sided ideal with respect to ⋆cov: 

Lemma (3.2.66) [101]: Let 〈ker𝐹𝑀) ⊆ S⋅(𝑉cov) be the ideal generated by ker𝐹𝑀 with 

respect to the symmetr 𝑐 tensor product. Then we have: 

(i) {ker𝐹𝑀〉 is a Poisson ideal with respect to {. , }cov. 

(ii) {ker𝐹𝑀〉 ⊗ ℂ ⊆ W𝑅(𝑉cov⊗ℂ) is 𝑎∗‐ideal for ⋆cov, in fact generated by ker𝐹𝑀 . 

Proof. The first part is clear by Lemma (3.2.65)(i). Now let 𝛷 ∈ W𝑅(𝑉cov⊗ℂ) be an 

arbitrary tensor and let ∈ 𝛤0
∞(𝐸∗) . Then we have 

𝛷 ⋆cov 𝜙 = 𝛷𝜙 +
iћ

2
{𝛷,𝜙}cov 𝑎𝑛𝑑 𝜙 ⋆cov 𝛷 = 𝛷𝜙 +

iћ

2
{𝜙,𝛷}cov , 

since 𝜙 has tensor degree 1 and hence the higher order contributions in ⋆cov all vanish. Thus 

for 𝜙 ∈ 1 < er𝐹𝑀 we get 𝛷 ⋆cov 𝜙 = 𝛷𝜙 = 𝜙 ⋆cov 𝛷. But this shows that 

{ker𝐹𝑀) ⊗ ℂ = W𝑅(𝑉cov⊗ℂ) ⋆cov ker𝐹𝑀 ⋆covW𝑅(𝑉COV⊗ℂ) . 

Since ker𝐹𝑀 consists of real sections, it is clear that 〈ker𝐹𝑀〉 ⊗ ℂ is a∗‐ideal.  
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We relate the two Poisson algebras S⋅(𝑉𝛴) and S⋅(𝑉cov) . In view of (147) it is 

reasonable to relate a section 𝜙 ∈ 𝛤0
∞(𝐸∗) to sections 𝜙0, �̇�0 ∈ 𝛤0

∞(𝐸𝛴
∗) by defining 

𝜙0 = 𝜄
# (𝛻n

𝐸∗𝐹𝑀(𝜙))  𝑎𝑛𝑑 �̇�0 = −𝜄
#(𝐹𝑀(𝜙)) ,               (159)  

thereby defining a linear map 

𝜚𝛴: 𝛤0
∞(𝐸∗) ∋ 𝜙 ↦ (𝜙0, �̇�0) ∈ 𝛤0

∞(𝐸𝛴
∗)⊕ 𝛤0

∞(𝐸𝛴
∗) ,       (160) 

with 𝜙0, �̇�0 given as in (159). This map 𝑄𝛴 has the following property: 

Lemma (3.2.67) [101]: The map 𝑄𝛴 is conrinuous and for all solurions 𝑢 ∈ 𝛤sc
∞(𝐸) of 𝑟ℎ𝑒 

wave equarion wirh inirial condirions 𝑢0, �̇�0 we have 

𝜙(𝑢) = 𝜚𝛴(𝜙)(𝑢0, �̇�0) .                        (161) 
Proof. The propagator 𝐹𝑀 gives a continuous map into 𝛤sc

∞(𝐸∗) and the covariant derivative 

is clearly continuous, too, mapping 𝛤sc
∞(𝐸∗) into 𝛤sc

∞(𝐸∗) . For every compact subset 𝐾 ⊆ 𝛴 

the restriction 

𝑙#: 𝛤𝐽𝑀(𝐾)
∞ (𝐸∗) → 𝛤𝐾

∞(𝐸𝛴
∗) 

is a continuous map between Fréchet spaces. But then also 𝑙#: 𝛤sc
∞(𝐸∗) → 𝛤0

∞(𝐸𝛴
∗) is 

continuous by the universal property of LF topologies. This shows the continuity of 𝑄𝛴, the 

equality in (161) isjust (147). □ 

Since S⋅(𝑉cov) is freely generated by 𝑉cov we get a unique unital algebra homomorphism 

extending 𝑄𝛴 which we still denote by the same symbol 

𝜚𝛴: S
⋅(𝑉cov) → S

⋅(𝑉𝛴) .                                          (162) 
Since (160) is continuous, also (162) is continuous as a linear map from S𝑅

∗ (𝑉cov) to S𝑅(𝑉𝛴) 
by Lemma (3.2.48). Moreover, we have 

𝛷(𝑢) = 𝜚𝛴(𝛷)(𝑢0, �̇�0)                             (163) 
for all 𝛷 ∈ S⋅(𝑉cov) and all solutions 𝑢 ∈ 𝛤sc

∞(𝐸) of the wave equation 𝐷𝑢 = 0 with initial 

conditions (𝑢0, �̇�0) . This is clear since evaluation of an element in the symmetric algebra 

on a point is a homomorphism and 𝑄𝛴 is a homomorphism as well. Since we only have to 

check the equality of two homomorphisms on generators, (161) is all we need to conclude 

(163). 

Lemma (3.2.68) [101]: The algebra homomorphism 𝑄𝛴 is a Poisson morphism as well as a 

continuous∗‐algebra homomorphism 

𝜚𝛴:W𝑅(𝑉cov⊗ℂ,⋆cov) → W𝑅(𝑉𝛴⊗ℂ,⋆ 𝛴) .                    (164) 
Proof. Thanks to Propositions (3.2.12) and (3.2.49) we only have to show that (160) is a 

Poisson map. Thus let 𝜙, 𝜓 ∈ 𝛤0
∞(𝐸∗) be given and let (𝜙0, �̇�0) = 𝜚𝛴(𝜙) as well as 

(𝜓0, �̇�0) = 𝜚𝛴(𝜓) be their images in 𝑉𝛴 under 𝑄𝛴. Consider now 𝑢 = (𝐹𝑀𝜓)
# = 𝐺𝑀(𝜓

#) ∈

𝛤sc
∞(𝐸) which is a solution of the wave equation 𝐷𝑢 = 0 with initial conditions 𝑢0 = 𝜄

#𝑢 =

𝜄#(𝐹𝑀(𝜓))
#
 and �̇�0 = 𝜄

#(𝛻t↓
𝐸𝑢) = 𝜄# (𝛻tt

𝐸∗𝐹𝑀(𝜓))
#
. Here we use that 𝛻𝐸 is metric and hence 

compatible with the musical isomorphism # induced by ℎ. Now we have 

𝛬𝛴 ((𝜙0, �̇�0), (𝜓0, �̇�0))  

=  −∫ ((𝜄#𝛻n
𝐸∗𝐹𝑀(𝜙)) ⋅ − (𝜄

#𝐹𝑀(𝜙))
#

⏟        
𝑢0

(𝜄#𝐹𝑀(𝜙)) ⋅ (𝜄
#𝛻n
𝐸∗𝐹𝑀(𝜙))

#

⏟          
𝑢0

)
∑

𝜇𝛴 
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= −∫ 𝜙
𝑀

⋅ 𝑢𝜇𝑔 

= −∫ ℎ−1

𝑀

(𝜙, 𝐹𝑀(𝜓))𝜇𝑔 

= 𝛬cov(𝜙, 𝜓) . 
Clearly, 𝑄𝛴 is real and hence commutes with the complex conjugation. □ 

Lemma (3.2.69) [101]: The kernel of 𝑄𝛴 coincides with the Poisson ideal generated by 

ker𝐹𝑀 which consists of those elements in S⋅(𝑉cov) which vanish on all solutions. 

Proof. Clearly, the kernel of 𝑄𝛴|𝑉cov is given by 1 < er𝐹𝑀  by Lemma (3.2.65). This implies 

ker𝜚𝛴 = {ker𝐹𝑀) in general. The second statement then follows from (163) at once. □ 

This statement has a very natural physical interpretation: ifwe view  , 𝛹 ∈ S⋅(𝑉cov) as 

observables ofthe field theory, their expectation values for a given field configuration are 

just the evaluations 𝛷(𝑢) , 𝛹(𝑢) ∈ ℝ, where 𝑢 ∈ 𝛤sc
∞(𝐸) . But since physically only those 

𝑢 ∈ 𝛤sc
∞(𝐸) occur which also satisfy the wave equation 𝐷𝑢 = 0, we have to identify the 

observables 𝛷 and 𝛹 as soon as they coincide on the solutions. This is the case iff 𝛷 −𝛹 ∈
〈𝑘𝑒𝑟 𝐹𝑀〉. 

Lemma (3.2.70) [101]: The homomorphism 𝑄𝛴 is surjective. 

Proof. Let 𝜙0, �̇�0 ∈ 𝛤0
∞(𝐸𝛴

∗) be given. Then there is a (unique) solution 𝛷 ∈ 𝛤sc
∞(𝐸∗) of the 

wave equation 𝐷T𝛷 = 0 with the initial conditions 

𝑙#𝛷 = −�̇�0 𝑎𝑛𝑑 𝜄
#𝛻n
𝐸∗𝛷 = 𝜙0, 

since 𝐷T is normally hyperbolic as well. By (144) for 𝐷T and 𝐹𝑀 we know that 𝛷 = 𝐹𝑀𝜙 

for some ∈ 𝛤0
∞(𝐸∗) . Then 𝜚𝛴(𝜙) = (𝜙0, �̇�0) follows.  

We can collect now the above results in the following statement leading to the comparison 

between the covariant and the canonical Poisson bracket and their Weyl algebras, see  [121] 

for the classical part: 

Theorem (3.2.71) [101]:𝐹𝑖𝑥𝑅 ≥
1

2
. 𝐿𝑒𝑡(𝑀, 𝑔) be globally hyperbolic space time and let 

𝐸 → 𝑀 be a real vector bundle with fiber metric ℎ and metric connection ∇𝐸 . Moreover, let 

𝐷 = □𝛻 + 𝐵 wirh 𝐵 = 𝐵∗ ∈ 𝛤∞(End(𝐸)) be a symmetric normally hyperbolic differential 

operator on 𝐸 and denote by 𝐹𝑀 the propagator of its adjoint 𝐷∗. Finally, let 𝜄: 𝛴 → 𝑀 be a 

smooth spacelike Cauchy surface. 

(i) The following subspaces of S⋅(𝑉cov) coincide: 

∙ The vanishing ideal of the solutions of the wave function 𝐷𝑢 = 0. 

∙ The Poisson ideal generated by the Casimir elements 𝜙 ∈ 𝑉cov. 

∙ The ideal 〈icer𝐹𝑀). 

∙ The kernel of the Poisson homomorphism 𝜚𝛴: S
⋅(𝑉cov) → S

⋅(𝑉𝛴) . 

(ii) The locally convex quotient Poisson algebra S𝑅
∗ (𝑉cov)/{i < er𝐹𝑀〉 is canonically 

isomorphic to the Poisson algebra S𝑅
∗ (𝑉cov/ker𝐹𝑀) , with the Poisson bracket coming from 

(157) defined on classes. 

(iii) The Poisson homomorphism 𝑄𝛴 induces a continuous Poisson isomorphism 

𝑄𝛴: S𝑅
∗ (𝑉cov)/{ke𝑟𝐹𝑀) → S𝑅

∗ (𝑉𝛴) .                   (165) 
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(iv) The locally convex quotient ∗‐algebra W𝑅(𝑉cov⊗ℂ,⋆cov)/(〈ker𝐹𝑀〉 ⊗ ℂ) i𝑠∗‐

isomorphic to the Weyl algebra W𝑅((𝑉cov/ker𝐹𝑀) ⊗ ℂ, ⋆cov) with ⋆cov coming from the 

Poisson bracket (157) of 𝑉cov/1 < er𝐹𝑀. 

(v) The∗‐homomorphism 𝑄𝛴 induces a continuous∗‐isomorphism 

𝑄𝛴:𝑊𝑅(𝑉cov⊗ℂ,⋆cov)/({ker𝐹𝑀〉 ⊗ ℂ) → W𝑅(𝑉𝛴⊗ (D,⋆𝛴) .    (166) 
Proof. The only things left to prove are the continuity statements with respect to the quotient 

topologies. But these follow from the general situation discussed in Lemma (3.2.40) and 

Corollary (3.2.41).  
We collect some further properties of the covariant Poisson bracket and its Weyl 

algebra quantization as required by the Haag‐Kastler approach to (quantum) field theory  

[124]: locality and the time‐slice axiom. 

Let 𝑈 ⊆ 𝑀 be a non‐empty open subset. Then we denote by �̃�c1(𝑈) ⊆ S
⋅(𝑉cov) the unital 

Poisson subalgebra generated by those 𝜙 ∈ 𝛤0
∞(𝐸∗) with supp 𝜙 ⊆ 𝑈. Analogously, we 

define Ã(𝑈) ⊆ 𝑊𝑅(𝑉cov⊗ℂ,⋆cov) to be the unital∗‐subalgebra generated by those 𝜙 ∈

𝛤0
∞(𝐸∗) with 𝑠𝑢𝑝𝑝 𝜙𝑠 ⊆ 𝑈. For 𝑈 = ∅ we set �̃�c1(∅) = ℂ]⌊=Ã (∅) . Finally, we set 𝐴c1(𝑈) 

and 𝐴(𝑈) for the images of �̃�c1(𝑈) and �̃�(𝑈) in the quotients S⋅(𝑉cov)/〈ker𝐹𝑀) and 

W𝑅(𝑉cov⊗ℂ,⋆cov)/({ker𝐹𝑀〉 ⊗ ℂ), respectively. Clearly, 𝐴c1(𝑀) and 𝐴(𝑀) yield again 

everything. Then the following properties are obvious from the causal properties of𝐹𝑀: 

Proposition (3.2.72)[101]: Let 𝑢, 𝑢′ ⊆ 𝑀 be open subsets of 𝑀. 
{𝐴c1(𝑈), 𝐴c1(𝑈

′)}cov = 0 𝑎𝑛𝑑 [𝐴(𝑈), 𝐴(𝑈
′)]⋆cov = 0        (167) 

whenever 𝑈 and 𝑈′ are spacelike.  

(ii) For 𝑈 ⊆ 𝑈′ we have 

𝐴𝑐𝑙(𝑈) ⊆ 𝐴cl(𝑈
′) 𝑎𝑛𝑑 𝐴(𝑈) ⊆ 𝐴(𝑈′) .               (168) 

(iii) We have 

⋃  

𝑈⊆𝑀 𝑜𝑝𝑒𝑛

Acl = Acl(M)  and   ⋃  

𝑈⊆𝑀 𝑜𝑝𝑒𝑛

A = A (M).         (169) 

Proof. For 𝜑, 𝜓 ∈ 𝛤0
∞(𝐸∗) we clearly have {𝜑, 𝜓}cov = 0 = [𝜑,𝜓]⋆cov whenever 𝑈 and 𝑈′ 

are spacelike and 𝑠𝑢𝑝𝑝 𝐹𝑀(𝜙) ⊆ 𝐽𝑀(𝑠𝑢𝑝𝑝𝜙) ⊆ 𝐽𝑀(𝑈) Which does not intersect U’.Then 

the Leibniz rule shows (167) in general. Then t.The remaining statements are clear . 

The time‐slice axiom requires that a small neighborhood of a Cauchy surface contains 

already all the information about the observables. In our framework, this can be formulated 

as follows: 

Proposition (3.2.73) [101]: Let 𝜄: 𝛴 → 𝑀 ≅ ℝ × 𝛴 be a smooth Cauchy surface and let 𝜀 >

0. Then 

𝐴c1(𝛴𝜀) = 𝐴c1(𝑀) 𝑎𝑛𝑑 𝐴(𝛴𝜀) = 𝐴(𝑀) ,                       (170) 
where 𝛴𝜀 = (−𝜀, 𝜀) × 𝛴 is the 𝜀‐time slice around 𝛴. 

Proof. First we note that 𝛴𝜀 is a globally hyperbolic spacetime by its own and the inclusion 

𝛴𝜀 ⊆ 𝑀 is causally compatible, i.e. we have𝐽𝛴𝜀
± (𝑝) = 𝐽𝑀

±(𝑝)n𝛴𝜀 for all 𝑝 ∈ 𝛴𝜀. Restricting 

𝐷 and 𝐷T to 𝛴𝜀 gives globally hyperbolic differential operators with Green operators 𝐺𝛴𝜀
±  

and 𝐹𝛴𝜀
±  , respectively. By the uniqueness ofthe Green operators we have for 𝜙 ∈ 𝛤0

∞(𝐸∗|𝛴𝜀) 

the equality 
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𝐹𝛴𝜀
±(𝜙) = 𝐹𝑀

±(𝜙)|𝛴𝜀 . 

Thus the covariant Poisson bracket for S⋅ (𝛤0
∞(𝐸∗|𝛴𝜀)) is the restriction of the one from 

S⋅(𝛤0
∞(𝐸∗)) to the subalgebra S⋅ (𝛤0

∞(𝐸∗|𝛴𝜀)) . Next, let 𝜙 ∈ 𝛤0
∞(𝐸∗|𝛴𝜀) be given. Then in 

the condition 𝜙(𝑢) = 0 only 𝑢|𝛴𝜀 enters. This shows that also the kernels of𝐹𝑀 and 𝐹𝛴𝜀 

correspond, i.e. we have 

𝑘𝑒𝑟 𝐹𝛴𝜀 =  𝑘𝑒𝑟 (𝐹𝑀|𝛤0∞(𝐸∗|𝛴𝜀)
) . 

Putting this together we conclude that the two isomorphisms 𝑄𝛴 with respect to the Cauchy 

surface 𝛴, once sitting inside 𝑀 and the other time sitting inside (−𝜀, 𝜀) × 𝛴, give the desired 

isomorphism needed for (170).  

For more information on the locality properties and the time‐slice axiom of quantum field 

theories on globally hyperbolic space times see [125],  [110],  [126] as well as  [120], where 

the C∗‐algebraic version and the functorial aspects of the above construction are discussed 

in detail. 
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Chapter 4 

Inequalities and Extensions to Operators on a Hilbert Space 

 

We show that after some discussion of K-theory and Whitehead torsion, we indicate 

the relevance of these determinants to the study of 𝐿2-torsion in topology. We study the 

perturbations that happen when positive matrices are added to diagonal blocks of the original 

matrix. We show that the perturbations are added to the inverses of the matrices. We show 

that a conceptual framework is established for viewing these inequalities as manifestations 

of Jensen’s inequality in conjunction with the theory of operator monotone and operator 

convex functions on [0,∞). We place emphasis on documenting necessary and sufficient 

conditions for equality to hold. 

Section (4.1): Fuglede–Kadison Determinant 

For ℛ be a ring with unit. For an integer 𝑛 ≥ 1, denote by M𝑛(ℛ) the ring of 𝑛-by- 𝑛 

matrices over ℛ and by GL𝑛(ℛ) its group of units. ℛ∗ stands for GL1(ℛ). 
Suppose ℛ is commutative. The determinant 

det:M𝑛(ℛ) → ℛ                                                                      (1) 
is defined by a well-known explicit formula, a polynomial in the matrix entries. It is alternate 

multilinear in the columns of the matrix and normalized by det (1𝑛) = 1; when ℛ is a field, 

these properties constitute an equivalent definition, as was lectured on by Weierstrass and 

Kronecker (probably) in the 1860s and published much later ([128]). 

For 𝑥, 𝑦 ∈ M𝑛(ℛ), we have det (𝑥𝑦) = det (𝑥)det (𝑦). For 𝑥 ∈ M𝑛(ℛ) with det (𝑥) 
invertible, an explicit formula shows that 𝑥 itself is invertible, so that det (𝑥) ∈ ℛ∗ if and 

only if 𝑥 ∈ GL𝑛(ℛ). The restriction 

GL𝑛(ℛ) → ℛ
∗,  𝑥 ↦ det 𝑥                                                        (2) 

is a group homomorphism. 

Suppose that ℛ is the field C of complex numbers. The basic property of determinants 

that we wish to point out is the relation 

det (exp 𝑦) = exp (trace (𝑦))  for all 𝑦 ∈ M𝑛(𝐂).                            (3) 
Some expository books present this as a very basic formula ([129]); it reappears below as 

(20). It can also be written as 

det (𝑥) = exp (trace (log 𝑥)) for appropriate 𝑥 ∈ GL𝑛(𝐂).              (4) 
"Appropriate" can mean several things. If ∥ 𝑥 − 1 ∥< 1, then log 𝑥 can be defined by the 

convergent series 

log 𝑥 = log (1 + (𝑥 − 1)) = ∑  

∞

𝑘=1

(−1)𝑘−1

𝑘
(𝑥 − 1)𝑘. 

If 𝑥 is conjugate to a diagonal matrix, then log 𝑥 can be defined component-wise (in pedantic 

terms, this is functional calculus, justified by the spectral theorem). In [131], note that the 

indeterminacy in the choice of the logarithm of a complex number is swallowed by the 

exponential, because exp 2𝜋𝑖 = 1 

Let 𝑥 ∈ GL𝑛(𝐂). Because the group is connected, we can choose a piecewise smooth path 

𝜉: [0,1] → GL𝑛(𝐂) from 1 to 𝑥. Because log 𝜉(𝛼) is a primitive of 𝜉(𝛼)𝜉(𝛼)−1𝑑𝛼, it follows 

from [131] that 

det(𝑥) =
!
exp∫  

1

0

trace(𝜉(𝛼)𝜉(𝛼)−1)𝑑𝛼.                            (5) 
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This is our motivating formula, and in particular for (18). 

The sign =
!
 stands for a genuine equality, but indicates that some comment is in order. 

A priori, the integral depends on the choice of 𝜉, and we have also to worry about the 

determination of log 𝜉(𝛼). As there is locally no obstruction to choosing a continuous 

determination of the primitive log 𝜉(𝛼) of 𝜉(𝛼)𝜉(𝛼)−1𝑑𝛼, the integral is invariant under 

small changes of the path (with fixed ends) and therefore depends only on the homotopy 

class of 𝜉, so that it is defined modulo its values on (homotopy classes of) closed loops. The 

fundamental group 𝜋1(GL𝑛(𝐂)) is infinite cyclic, generated by the homotopy class of 

𝜉0: [0,1] → GL𝑛(𝐂),  𝛼 ↦ (
𝑒2𝜋𝑖𝛼 0
0 1𝑛−1

), 

and we have ∫
0

1
 trace (�̇�0(𝛼)𝜉0(𝛼)

−1)𝑑𝛼 = 2𝜋𝑖. Consequently, the integral in the right-

hand side of [132] is defined modulo 2𝜋𝑖𝐙, so that the right-hand side itself is well defined. 

(This is repeated in the proof of Lemma (4.1.10).) 

Because a connected group is generated by each neighborhood of the identity, there exist 

𝑥1, … , 𝑥𝑘 ∈ GL𝑛(𝐂) such that 𝑥 = 𝑥1⋯𝑥𝑘 and ∥∥𝑥𝑗 − 1∥∥ < 1 for 𝑗 = 1,… , 𝑘, and one can 

choose 

𝜉(𝛼) = exp (𝛼(log 𝑥1))⋯exp (𝛼(log 𝑥𝑘)). 
A short computation with this 𝜉 gives 

exp ∫  
1

0

trace (�̇�(𝛼)𝜉(𝛼)−1)𝑑𝛼 = exp (trace (log 𝑥1))⋯exp (trace (log 𝑥𝑘)) 

and it is now obvious that [131] implies [132]. 

Determinants arise naturally with linear systems of equations, first with ℛ = 𝐑 and 

more recently also with ℛ = 𝐂. They have a prehistory in Chinese mathematics from the 

second century B.C. (3). In modern Europe, there has been an early contribution by Leibniz 

in 1693†, unpublished until 1850. Gabriel Cramer wrote an influential book, published in 

1750 . Major mathematicians who have written about determinants include Bézout, 

Vandermonde, Laplace, Lagrange, Gauss, Cauchy, Jacobi, Sylvester, Cayley, and others. 

The connection between determinants of matrices in 𝑀3(𝐑) and volumes of parallelepipeds 

is often attribued to Lagrange (1773). We mention an amazing book on the history of 

determinants, [131]: four volumes, altogether more than 2,000 pages, an ancestor of the 

Mathematical Reviews, for one subject, covering the period 1693-1900. 

There is an extension of [128] to a skew-field 𝑘 by Dieudonné, where the range of the 

mapping det defined on M𝑛(𝑘) is (𝑘∗/𝐷𝑘∗) ⊔ {0}, where the notation “𝐷𝛤” denotes the 

group of commutators of a group 𝛤 (see [132] and [133], and also [134] for a discussion of 

when 𝑘 is the skew field of Hamilton quaternions). The theory of determinants, in the case 

of a noncommutative ring ℛ, has motivated a lot of work, in particular by Gelfand and 

coauthors since the early 1990s (8). We also mention a version for supermathematics due to 

Berezin ([136] and [137]), as well as "quantum determinants", of interest in low-dimensional 

topology (see, for example, [138]). 

The notion of determinants extends to matrices over a ring without unit (by "adjoining a unit 

to the ring"). In particular, in functional analysis, there is a standard notion of determinants 

that appears in the theory of Fredholm integral equations, for example for operators on a 

Hilbert space of the form 1 + 𝑥, where 𝑥 is the "trace class" (12,13). 
The oldest occurrence I know of exp 𝑦 or log 𝑥, including the notation, defined by the 

familiar power series in the matrix 𝑦 or 𝑥 − 1, in [141]; see also [142]. However, 
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exponentials of linear differential operators appear also early in Lie theory, see for example 

[143] and [144], even if Lie never uses a notation like exp 𝑋 (unlike Poincaré) (see his 𝑒𝛼𝑋 

in [145]). 

There is a related and rather old formula known as the "Abel-Liouville-Jacobi-Ostrogradskii 

identity". Consider a homogeneous linear differential equation of the first order 𝑦′(𝑡) =
𝐴(𝑡)𝑦(𝑡), for an unknown function 𝑦: [𝑡0, 𝑡1] → 𝐑

𝑛. The columns of a set of 𝑛 linearly 

independent solutions constitute the Wronskian matrix 𝑊(𝑡). It is quite elementary (at least 

nowadays!) to show that 𝑊′(𝑡) = 𝐴(𝑡)𝑊(𝑡), hence 
𝑑

𝑑𝑡
det 𝑊(𝑡) = trace (𝐴(𝑡))det 𝑊(𝑡), 

and therefore 

det𝑊(𝑡) = det𝑊(𝑡0) exp(∫  
𝑡

𝑡0

  trace(𝐴(𝑠)) 𝑑𝑠), 

a close cousin of (5). The name of this identity refers to Abel (1827, case 𝑛 = 2 ), Liouville 

(19), Ostrogradskii (1838), and Jacobi (1845). This was pointed out to me by Gerhard 

Wanner ([147]); also, Philippe Henry showed me this identity on the last five lines of [148] 

(which does not contain references to previous work). 

Finally, a few words are necessary about the authors of the 1952 paper alluded to in 

our title. Bent Fuglede is a Danish mathematician born in 1925. He has been working on 

mathematical analysis; he is also known for a book on Harmonic Maps Between Riemannian 

Polyhedra (coauthor Jim Eells, preface by Misha Gromov). Richard Kadison is an American 

mathematician, born in this same year, 1925. He is known for his many contributions to 

operator algebras; his "global vision of the field was certainly essential for my own 

development" (words of Alain Connes, when Kadison was awarded the Steele Prize in 1999 

for Lifetime Achievement, [149]) 
We a review of von Neumann algebras based on three types of examples, an 

exposition of the original Fuglede– Kadison idea, we stress the difference between the 

complex-valued standard determinant and the real-valued Fuglede-Kadison determinant, 

and a review of some notions of 𝐾-theory. We expose the main variations of our title: 

determinants defined for connected groups of invertible elements in complex Banach 

algebras. We end by recalling a few facts about Whitehead torsion, with values in Wh(Γ), 
which is a quotient of the group 𝐾1 of a group algebra 𝐙[Γ], and by alluding to 𝐿2-torsion, 

which is defined in terms of (a variant of) the Fuglede-Kadison determinant. 

In a series of papers from 1936 to 1949 , Francis Joseph Murray and John von 

Neumann founded the theory of von Neumann (in their terminology "rings of operators"), 

which are complex ∗-algebras representable by unital weakly closed ∗-subalgebras of some 

ℒ(ℋ ), the algebra of all bounded operators on a complex Hilbert space ℋ. 

We first give three examples of pairs (𝒩, 𝜏), with 𝒩 a finite von Neumann algebra and 𝜏 a 

finite trace on it. We then recall some general facts and define a few terms, such as "finite 

von Neumann algebra", "finite trace", and "factor of type II1 ". 

Example (4.1.1)[127]: (factors of type 𝐈𝒏)[127]: For any 𝑛 ≥ 1, the matrix algebra M𝑛(𝐂) 
is a finite von Neumann algebra known as a factor of type I𝑛. The involution is given by 

(𝑥∗)𝑗,𝑘 = 𝑥𝑘,𝑗̅̅ ̅̅ ̅. The linear form 𝑥 ↦
1

𝑛
∑𝑗=1
𝑛  𝑥𝑗,𝑗  is the (unique) normalized trace on M𝑛(𝐂 ). 

Example (4.1.2)[127]: (Abelian von Neumann Algebras)[127]: Let 𝑍 be a locally 

compact space and 𝜈 be a positive Radon measure on 𝑍. The space 𝐿∞(𝑍, 𝜈) of complex-

valued functions on 𝑍 that are measurable and 𝜈-essentially bounded (modulo equality 
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locally 𝜈-almost everywhere) is an abelian von Neumann algebra. The involution is given 

by 𝑓∗(𝑧) = 𝑓(𝑧)̅̅ ̅̅ ̅̅ . Any abelian von Neumann algebra is of this form. 

If 𝜈 is a probability measure, the linear form 𝜏𝜈: 𝑓 ↦ ∫𝑍  𝑓(𝑧)𝑑𝜈(𝑧) is a trace on 𝐿∞(𝑍, 𝜈), 

normalized in the sense 𝜏𝜈(1) = 1. 

Example (4.1.3)[127]: (Group von Neumann Algebra)[127]: Let Γ be a group. The 

Hilbert space ℓ2(Γ) has a scalar product, denoted by (⋅∣⋅), and a canonical orthonormal basis 

(𝛿𝛾)𝛾∈Γ, where 𝛿𝛾(𝑥) is 1 if 𝑥 = 𝛾 and 0 otherwise. The left-regular representation 𝜆 of Γ 

on ℓ2(Γ) is defined by (𝜆(𝛾)𝜉)(𝑥) = 𝜉(𝛾−1𝑥) for all 𝛾, 𝑥 ∈ Γ and 𝜉 ∈ ℓ2(Γ). 
The von Neumann algebra 𝒩(Γ) of Γ is the weak closure in ℒ(ℓ2(Γ)) of the set of 𝐂-linear 

combinations ∑𝛾∈Γ
finite 

 𝑧𝛾𝜆(𝛾); it is a finite von Neumann algebra. The involution is given by 

(𝑧𝛾𝜆(𝛾))
∗
= 𝑧�̅�𝜆(𝛾

−1). There is a canonical trace, given by 𝑥 ↦ ⟨𝑥𝛿1 ∣ 𝛿1⟩, which extends 

∑𝛾∈Γ
finite 

 𝑧𝛾𝜆(𝛾) ↦ 𝑧1. 

Moreover, 𝒩(Γ) is a factor of type II1 if and only if Γ is icc  ‡ (this is lemma 5.3.4 in [150]; 

see also [151]). 

In 1952, Fuglede and Kadison defined their determinant 

det𝜏
𝐹𝐾: {

GL1(𝒩) → 𝐑+
∗

𝑥 ↦ exp(𝜏 (log ((𝑥∗𝑥)
1
2)))

,                             (6) 

which is a partial analog of [129]. The number det𝜏
𝐹𝐾 (𝑥) is well defined by functional 

calculus, and most of the work in [160] is to show that det  𝜏
𝐹𝐾 is a homomorphism of groups. 

For the definition given below, it will be the opposite: some work to show that the definition 

makes sense, but a very short proof to show it defines a group homomorphism. 

In the original paper, 𝒩 is a factor of type II1, and 𝜏 is its unique trace with 𝜏(1) = 1; but 

everything carries over to the case of a von Neumann algebra and a normalized trace ([151]). 

Besides being a group homomorphism, det  𝜏
𝐹𝐾 has the following properties: 

 det𝜏
𝐹𝐾 (𝑒𝑦) = |𝑒𝜏(𝑦)| = 𝑒Re (𝜏(𝑦)) for all 𝑦 ∈ 𝒩 and in particular det𝜏

𝐹𝐾  (𝜆1) = |𝜆| for 

all 𝜆 ∈ 𝐂, 

 det𝜏
𝐹𝐾 (𝑥) = det𝜏

𝐹𝐾  ((𝑥∗𝑥)
1

2) for all 𝑥 ∈ GL1(𝒩) and in particular det𝜏
𝐹𝐾  (𝑥) = 1 for 

all 𝑥 ∈ U1(𝒩). 
For a ∗-ring ℛ with unit, U1(ℛ) denotes its unitary group, defined to be {𝑥 ∈ 𝑅 ∣ 𝑥∗𝑥 =
𝑥𝑥∗ = 1}. 
Instead of [𝟔], we could equally view det𝜏

𝐹𝐾 as a family of homomorphisms GL𝑛(𝒩) →
𝐑+
∗ , one for each 𝑛 ≥ 1; if the traces on the M𝑛(𝒩)s are normalized by 𝜏(1𝑛) = 𝑛, we have 

det𝜏
𝐹𝐾 (𝜆1𝑛) = |𝜆|

𝑛. More generally, for any projection 𝑒 ∈ M𝑛(𝒩), we have a von 

Neumann algebra M𝑒(𝒩):= 𝑒M𝑛(𝒩)𝑒 and a Fuglede-Kadison determinant 

det𝜏
𝐹𝐾: GL𝑒(𝒩) → 𝐑+

∗  defined on its group of units. 

There are extensions of det𝜏
𝐹𝐾 to noninvertible elements, but this raises some problems and 

technical difficulties. Two extensions are discussed in [160]: the "algebraic extension" for 

which the determinant vanishes on singular elements (this is not mentioned again) and the 

"analytic extension" that relies on (6), in which one should understand 

det𝜏
𝐹𝐾 (𝑥) = exp (𝜏 (log ((𝑥∗𝑥)

1
2))) = exp ∫  

sp((𝑥+𝑥)
1
2)

ln 𝜆𝑑𝜏(𝐸𝜆), (7) 
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where (𝐸𝜆)𝜆∈sp ((𝑥∗𝑥)1/2) denotes the spectral resolution of (𝑥∗𝑥)1/2; of course exp (−∞) =

0. (Note that we write "log" for logarithms of matrices and operators and "ln" for logarithms 

of numbers.) For example, if 𝑥 is such that there exists a projection 𝑒 with 𝑥 = 𝑥(1 − 𝑒) 
and 𝜏(𝑒) > 0, we have det𝜏

𝐹𝐾  (𝑥) = 0. For all 𝑥, 𝑦 ∈ 𝒩, we have 

det𝜏
𝐹𝐾 ((𝑥∗𝑥)1/2) = lim

𝜖→0+
 det𝜏

𝐹𝐾  ((𝑥∗𝑥)1/2 + 𝜖1)

det𝜏
𝐹𝐾 (𝑥)det𝜏

𝐹𝐾  (𝑦) = det𝜏
𝐹𝐾 (𝑥𝑦)

 

(see [160]). However, an element 𝑥 with det𝜏
𝐹𝐾 (𝑥) ≠ 0 need not be invertible, and no 

extension 𝒩 → 𝐑+of the mapping det𝜏
𝐹𝐾 of [𝟔] is norm continuous ([160]). 

We discuss another extension det𝜏
𝐹𝐾𝐿 to singular elements. 

More generally, det𝜏
𝐹𝐾 (𝑥) can be defined for 𝑥 as an operator "affiliated" to 𝒩, and also for 

traces that are semifinite rather than finite as above. See [161]-[166], among others. We do 

not comment further on this part of the theory. 

Example (4.1.4)[127]: [Fuglede-Kadison determinant for M𝑛(C)]. Let 𝒩 = M𝑛(𝐂) be the 

factor of type I𝑛, as in Example (4.1.1) , let det be the usual determinant, and let 𝜏: 𝑥 ↦
1

𝑛
∑𝑗=1
𝑛  𝑥𝑗,𝑗 be the trace normalized by 𝜏(1𝑛) = 1. Then 

det𝜏
𝐹𝐾  (𝑥) = |det (𝑥)|

1
𝑛 = (det ((𝑥 ∗ 𝑥)

1
2))

1
𝑛
                              (8) 

for all 𝑥 ∈ M𝑛(𝐂). 
Example (4.1.5)[127]: (Fuglede-Kadison Determinant for Abelian von Neumann 

Algebras). Let 𝐿∞(𝑍, 𝜈) and 𝜏𝜈 be as in Example (4.1.2) , with 𝜈 a probability measure. The 

corresponding Fuglede-Kadison determinant is given by 

det𝜏
𝐹𝐾  (𝑓) = exp ∫ 

𝑍

ln |𝑓(𝑧)|𝑑𝜇(𝑧) ∈ 𝐑+.                            (9) 

In [136], observe that ln |𝑓(𝑧)| is bounded above on 𝑍, because |𝑓(𝑧)| ≤∥ 𝑓 ∥∞< ∞ for 𝜈-

almost all 𝑧. However, |𝑓(𝑧)| need not be bounded away from 0 , so that ln |𝑓(𝑧)| = −∞ 

occurs. If the value of the integral is −∞, then det𝜏
𝐹𝐾  (𝑓) = exp (−∞) = 0. 

Consider an integer 𝑑 ≥ 1 and the von Neumann algebra 𝒩(𝐙𝑑) of the free abelian group 

of rank 𝑑. Fourier transform provides an isomorphism of von Neumann algebras 

𝒩(𝐙𝑑) ⟶
≈
L∞(𝑇𝑑 , 𝜈), 𝑥 ↦ �̂�, 

where 𝜈 denotes the normalized Haar measure on the 𝑑-dimensional torus 𝑇𝑑. Moreover, 

the composition of this isomorphism with the trace 𝜏𝜈 of Example (4.1.2) is the canonical 

trace on 𝒩(𝐙𝑑), in the sense of Example (4.1.3). 

Example (4.1.6)[127]: (Fuglede-Kadison Determinant and Mahler Measure)[127]: Let 

𝑥 be a finite linear combination ∑
𝑛∈ℤ𝑑
finite 

 𝑧𝑛𝜆(𝑛) ∈ 𝒩(𝐙
𝑑), so that �̂� ∈ 𝐿∞(𝑇𝑑 , 𝜈) is a 

trigonometric polynomial. Then the 𝜏𝜈-Fuglede-Kadison determinant of 𝑥 is given by the 

exponential Mahler measure of �̂� : 

det𝜏𝜈
𝐹𝐾  (𝑥) = 𝑀(�̂�):= exp ∫  

𝑇𝑑
ln |�̂�(𝑧)|𝑑𝜈(𝑧). 

In the one-dimensional case (𝑑 = 1), if 

�̂�(𝑧) = 𝑎0 + 𝑎1𝑧 +⋯+ 𝑎𝑠𝑧
𝑠 = 𝑎𝑠∏ 

𝑠

𝑗=1

(𝑧 − 𝜉𝑗), with 𝑎0𝑎𝑠 ≠ 0, 

a computation shows that 
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∫ 
𝑇

ln |�̂�(𝑧)|𝑑𝜈(𝑧) = ∫  
1

0

ln |�̂�(𝑒2𝜋𝑖𝛼)|𝑑𝛼 = ln |𝑎𝑠| +∑  

𝑠

𝑗=1

max  {1, |𝜉𝑗|} 

([167]). 

Mahler measures occur in particular as entropies of 𝐙𝑑-actions by automorphisms of 

compact groups. More precisely, for 𝑥 ∈ 𝐙[𝐙𝑑], which can be viewed as the inverse Fourier 

transform of a trigonometric polynomial, the group 𝐙𝑑 acts naturally on the quotient 

𝐙[𝐙𝑑]/(𝑥) of the group ring by the principal ideal (𝑥) and hence on the Pontryagin dual 

(𝐙[𝐙𝑑]/(𝑥))∧ of this countable abelian group, which is a compact abelian group. For 

example, if 𝑥(𝑧) = 1 + 𝑧 − 𝑧2 ∈ 𝐙[𝑧, 𝑧−1] ≈ 𝐙[𝐙], then (𝐙[𝐙]/(𝑥)) ≈ 𝑇2, and the 

corresponding action of the generator of 𝐙 on 𝑇2 is described by the matrix (
0 1
1 1

) ([167]). 

Every action of 𝐙𝑑 by automorphisms of a compact abelian group arises as above from some 

𝑥 ∈ 𝐙[𝐙𝑑]. More on this is found in [167], [169], and [170]. 

The logarithm of the Fuglede-Kadison determinant occurs also in the definition of a "tree 

entropy", namely in the asymptotics of the number of spanning trees in large graphs (44,45). 

It is natural to ask why ℝ+
∗  appears on the right-hand side of [133], even though 𝒩 is 

a complex algebra, for example a 𝐼𝐼1-factor, whereas 𝐶∗ appears on the right-hand side of 

[132] when 𝒩 = M𝑛(𝐂). 
This is not due to some shortsightedness of Fuglede and Kadison. Indeed, for 𝒩 a factor of 

type II1, it has been shown that the FugledeKadison determinant provides an isomorphism 

from the abelianized group GL1(𝒩)/𝐷GL1(𝒩) onto 𝐑+
∗ . We have the following: 

Proposition (4.1.7)[127]: (Properties of Operators with Trivial Fuglede-Kadison 

Determinant in a Factor of Type II1). Let 𝒩 be a factor of type II1. 

i) Any element in U1(𝒩) is a product of finitely many multiplicative commutators of unitary 

elements. 

ii) The kernel SL1(𝒩) of the homomorphism [133] coincides with the group of commutators 

of GL1(𝒩). 
Property 𝑖 is due to Broise (46). It is moreover known that any proper normal subgroup of 

U1(𝒩) is contained in its center, which is {𝜆 id |𝜆 ∈ 𝐂∗, |𝜆 ∣= 1} ≈ 𝐑/𝐙, ([174]); this 

sharpens an earlier result on the classification of norm-closed normal subgroups of 𝑈1(𝒩) 
([175]). 

Property 𝑖𝑖 is from [159]. It follows that the quotient of SL1(𝒩) by its center [which is the 

same as the center of 𝑈1(𝒩)] is simple, as an abstract group ([176]). 

As a kind of answer to our motivating question, we see below that, when the Fuglede-

Kadison definition is adapted to a separable Banach algebra, the right-hand side of the 

homomorphism analogous to [133] is necessarily a quotient of the additive group 𝐶 by a 

countable subgroup. For example, when 𝐴 = M𝑛(𝐂), this quotient is 𝐂/2𝑖𝜋𝐙exp (⋅) ≈ 𝐂∗; see 

Corollary (4.1.13). On the contrary, when 𝐴 is a I1-factor (not separable as a Banach 

algebra), this quotient is 𝐂/2𝑖𝜋𝐑exp (Re(⋅))𝐑+
∗ ; see Corollary (4.1.14). The case of a separable 

Banach algebra can sometimes be seen as providing an interpolation between the two 

previous cases;. 

Let ℛ be a ring, say with unit to simplify several small technical points. We first recall 

one definition of the abelian group 𝐾0(ℛ) of K-theory. 

We have a nested sequence of rings of matrices and (nonunital) ring homomorphisms 
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ℛ = M1(ℛ) ⊂ ⋯ ⊂ M𝑛(ℛ) ⊂ M𝑛+1(ℛ) ⊂ ⋯ ⊂ M∞(ℛ):=⋃  

𝑛≥1

M𝑛(ℛ), (10) 

where the inclusions at finite stages are given by 𝑥 ↦ (
𝑥 0
0 0

). 

An idempotent in M∞(ℛ) is an element 𝑒 such that 𝑒2 = 𝑒. Two idempotents 𝑒, 𝑓 ∈ 𝑀∞(ℛ) 
are equivalent if there exist 𝑛 ≥ 1 and 𝑢 ∈ GL𝑛(ℛ) such that 𝑒, 𝑓 ∈ M𝑛(ℛ) and 𝑓 = 𝑢−1𝑒𝑢. 

Define an addition on equivalence classes of idempotents, by 

 (class of 𝑒 ∈ M𝑘(ℛ)) + ( class of 𝑓 ∈ Mℓ(ℛ)) =  class of 𝑒 ⊕ 𝑓 ∈ M𝑘+ℓ(ℛ), (11) 

where 𝑒 ⊕ 𝑓 denotes the matrix (
𝑒 0
0 𝑓

). Two idempotents 𝑒, 𝑓 ∈ M∞(ℛ) are stably 

equivalent if there exists an idempotent 𝑔 such that the classes of 𝑒 ⊕ 𝑔 and 𝑓 ⊕ 𝑔 are 

equivalent; we denote by [𝑒] the stable equivalence class of an idempotent 𝑒. The set of 

stable equivalence classes of idempotents, with the addition defined by [𝑒] + [𝑓]:= [𝑒 ⊕
𝑓], is a semigroup. The Grothendieck group 𝐾0(ℛ) of this semigroup is the set of formal 

differences [𝑒] − [𝑒′], up to the equivalence defined by [𝑒] − [𝑒′] ∼ [𝑓] − [𝑓′] if [𝑒] +
[𝑓′] = [𝑒′] + [𝑓]. 
Note that 𝐾0 is a functor: To any (unital) ring homomorphism ℛ → ℛ′ corresponds a natural 

homomorphism 𝐾0(ℛ) → 𝐾0(ℛ
′) of abelian groups. Note also the isomorphism 

𝐾0(M𝑛(ℛ)) ≈ 𝐾0(ℛ), which is a straightforward consequence of the definition and of the 

isomorphisms M𝑘(M𝑛(ℛ)) ≈ M𝑘𝑛(ℛ). 
[To an idempotent 𝑒 ∈ M∞(ℛ) is associated an ℛ-linear mapping ℛ𝑛 → ℛ𝑛 for 𝑛 large 

enough, of which the image is a projective ℛ-module of finite rank. From this it can be 

checked that the definition of 𝐾0(ℛ) given above coincides with another standard definition, 

in terms of projective modules of finite rank. Details are in [177]. 

Rather than a general ring ℛ, consider now the case of a complex Banach algebra 𝐴 

with unit. For each 𝑛 ≥ 1, the matrix algebra M𝑛(𝐴) is again a Banach algebra, for some 

appropriate norm, and we can furnish M∞(𝐴) with the inductive limit topology. The 

following is rather easy to check (e.g., [178]): Two idempotents 𝑒, 𝑓 ∈ M∞(𝐴) are 

equivalent if and only if there exists a continuous path 

[0,1] → { idempotents of M∞(𝐴)}, 𝛼 ↦ 𝑒𝛼 

such that 𝑒0 = 𝑒 and 𝑒1 = 𝑓. This has the following consequence: 

Proposition (4.1.8)[127]: If the Banach algebra 𝐴 is separable, the abelian group 𝐾0(𝐴) is 

countable. 

Proposition (4.1.9)[127]: If 𝒩 is a factor of type II1, then 𝐾0(𝒩) ≈ 𝐑 is uncountable. 

Indeed, if 𝜏 denotes the canonical trace on 𝒩, the mapping that associates to the class of a 

self-adjoint idempotent e in 𝒩 its von Neumann dimension 𝜏(𝑒) ∈ [0,1] extends to an 

isomorphism 𝐾0(𝒩) ⟶
≈
𝐑. 

On the proof: This follows from the "comparison of projections" in von Neumann algebras 

([151]). 

For historical indications on the early connections between K-theory and operator algebras, 

which go back to the mid-1960s, see [179]. 

For any ring ℛ with unit, we have a nested sequence of group homomorphisms 

ℛ∗ = GL1(ℛ) ⊂ ⋯ ⊂ GL𝑛(ℛ) ⊂ GL𝑛+1(ℛ) ⊂ ⋯ ⊂ GL∞(ℛ):=⋃  

𝑛≥1

GL𝑛(ℛ), (12) 

where the inclusions at finite stages are given by 𝑥 ↦ (
𝑥 0
0 1

). 
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By definition, 

𝐾1(ℛ) = GL∞(ℛ)/𝐷GL∞(ℛ)                                             (13) 
is an abelian group, usually written additively. Note that 𝐾1 is a functor from rings to abelian 

groups. 

For a commutative ring ℛ, the classical determinant provides a homomorphism 𝐾1(ℛ) →
ℛ∗; it is an isomorphism in several important cases, for example when ℛ is a field or the 

ring of integers in a finite extension of 𝐐 ([180]). In general ( ℛ commutative or not), the 

association of an element in 𝐾1(ℛ) to a matrix in GL∞(ℛ) can be viewed as a kind of 

determinant or rather of a log of a determinant because 𝐾1(ℛ) is written additively. 

Accordingly, the torsion defined in [151] below can be viewed as an alternating sum of logs 

of determinants; we recall this when defining the 𝐿2-torsion in (29). 
Let ℛ be, again, an arbitrary ring with unit. The reduced 𝐾1-group is the quotient 𝐾‾1(ℛ) of 

𝐾1(ℛ) by the image of the natural homomorphism {1,−1} ⊂ GL1(ℛ) ⊂ GL∞(ℛ) →
𝐾1(ℛ). 
In the case that ℛ = 𝐙[Γ] is the integral group ring of a group Γ, the Whitehead group 𝑊ℎ(Γ) 
is the cokernel 𝐾1(𝐙[Γ])/⟨±1, Γ⟩ of the natural homomorphism Γ ⊂ GL1(𝐙[Γ]) →
𝐾1(𝐙[Γ]) → 𝐾‾1(𝐙[Γ]). 
When Γ is finitely presented, there is a different (but equivalent) definition of Wh(Γ), with 

geometric content. In short, let 𝐿 be a connected finite CW complex with 𝜋1(𝐿) = Γ. One 

defines a group Wh(𝐿) of appropriate equivalence classes of pairs (𝐾, 𝐿), with 𝐾 a finite 

CW complex containing 𝐿 in such a way that the inclusion 𝐿 ⊂ 𝐾 is a homotopy 

equivalence. The unit is represented by pairs 𝐿 ⊂ 𝐾 for which the inclusion is a simple 

homotopy equivalence. It can be shown that the functors 𝐿 → Wh(𝐿) and 𝐿 → Wh(𝜋1(𝐿)) 
are naturally equivalent ([181]). 

Examples are Wh(Z𝑑) = 0 for free abelian groups Z𝑑 and Wh(𝐹𝑑) = 0 for free groups 𝐹𝑑. 

For finite cyclic groups, Wh (Z/𝑞Z) is a free abelian group of finite rank for all 𝑞 ≥ 1 and 

is the group {0} if and only if 𝑞 ∈ {1,2,3,4,6}. 
See [180]-[184]. 

For 𝐴 be a Banach algebra with unit. For each 𝑛 ≥ 1, the group GL𝑛(𝐴) is an open 

subset of the Banach space M𝑛(𝐴), and the induced topology makes it a topological group. 

The group GL∞(𝐴) of [139] is also a topological group, for the inductive limit topology; 

we denote by GL∞
0 (𝐴) its connected component. 

It is a simple consequence of the classical "Whitehead lemma" that, for any Banach algebra, 

the group 𝐷GL∞(𝐴) is perfect and coincides with 𝐷GL∞
0 (𝐴); see, for example, [185], 

appendix. In particular, 𝐷GL∞(𝐴) ⊂ GL∞
0 (𝐴), so that the quotient group 

𝐾1
top 
(𝐴):= 𝜋0(GL∞(𝐴)) = GL∞(𝐴)/GL∞

0 (𝐴)                          (14) 

is commutative. Note that GL1(𝐴)/GL1
0(𝐴) need not be commutative (59), even if its image 

in GL∞(𝐴)/GL∞
0 (𝐴) is always commutative. 

Moreover, we have a natural quotient homomorphism 

GL∞(𝐴)/𝐷GL∞
0 (𝐴) = 𝐾1(𝐴) → 𝐾1

top 
(𝐴) = GL∞(𝐴)/GL∞

0 (𝐴),             (15) 
which is surjective. It is an isomorphism if and only if the group GL∞

0 (𝐴) is perfect; this is 

the case if 𝐴 is an infinite simple C∗-algebra, for example if 𝐴 is one of the Cuntz algebras 

𝑂𝑛 briefly mentioned below. 

If the Banach algebra 𝐴 is separable, the group 𝐾1
top 
(𝐴) is countable (compare with 

Proposition (4.1.8)).  
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To an idempotent 𝑒 ∈ M𝑛(𝐴), we can associate the loop 

𝜉𝑒: {
[0,1]  → GL𝑛(𝐴) ⊂ GL∞(𝐴)

𝛼  ↦ exp(2𝜋𝑖𝛼𝑒) = exp(2𝜋𝑖𝛼) 𝑒 + (1 − 𝑒);
             (16) 

note that 𝜉𝑒(0) = 𝜉𝑒(1) = 1. If two idempotents 𝑒 and 𝑓 have the same image in 𝐾0(𝐴), it 
is easy to check that 𝜉𝑒 and 𝜉𝑓 are homotopic loops. It is a fundamental fact, which is a form 

of Bott periodicity, that the assignment 𝑒 ↦ 𝜉𝑒 extends to a group isomorphism 

𝐾0(𝐴) ⟶
≈
𝜋1(GL∞

0 (𝐴))                                                    (17) 

([187]). The terminology is due to a generalization of [144]: 𝐾𝑖
top 
(𝐴) ≈ 𝐾𝑖+2

top 
(𝐴) for any 

integer 𝑖 ≥ 0; by definition, 𝐾𝑖
top
(𝐴) = 𝜋𝑖−1(GL∞(𝐴)), for all 𝑖 ≥ 1, and 𝐾0

top 
(𝐴) =

𝐾0(𝐴). 
Let 𝐴 = 𝒞(𝑇) be the Banach algebra of continuous functions on a compact space 𝑇. 

Then 𝐾0(𝐴) = 𝐾
0(𝑇) and 𝐾1

top 
(𝐴) = 𝐾1(𝑇), where 𝐾0(𝑇) and 𝐾1(𝑇) stand for the 

(Grothendieck)-Atiyah-Hirzebruch-Bott K-theory groups of the topological space 𝑇, 

defined in terms of complex vector bundles. For example, if 𝑇 is a sphere, we have 

𝐾0(𝒞(𝐒
2𝑚))  ≈ 𝐙2,  𝐾1

top 
(𝒞(𝐒2𝑚)) = 0,

𝐾0(𝒞(𝐒
2𝑚+1))  ≈ 𝐙, 𝐾1

top
(𝒞(𝐒2𝑚+1)) ≈ 𝐙,

 

for all 𝑚 ≥ 0. If 𝑇 is a compact 𝐶𝑊 complex without cells of odd dimension, then 

𝐾1
top 
(𝒞(𝑇)) = 0. 

Let 𝐴 be an AF algebra, namely a 𝐶∗-algebra that contains a nested sequence 𝐴1 ⊂ ⋯ ⊂
𝐴𝑛 ⊂ 𝐴𝑛+1 ⊂ ⋯ of finite-dimensional sub-C algebras with ⋃𝑛>1  𝐴𝑛 dense in 𝐴. Then 𝐾0(𝐴) 

is rather well understood, and 𝐾1
top 
(𝐴) = 0. The group 𝐾0(𝐴) is the basic ingredient in 

Elliott's classification of AF algebras, from the 1970s; this was the beginning of a long and 

rich story, with numerous offspring ([178], [188] and [189]). A particular case is the so-

called CAR algebra, or C∗-algebra of the canonical anticommutation relations, or UHF 

algebra of type (2𝑖) in [170]: It is the C∗-closure of the limit of the inductive system of finite 

matrix algebras 

𝐂 ⊂ ⋯ ⊂ M2𝑛(𝐂) ⊂ M2𝑛+1(𝐂) ⊂ ⋯, 

where the inclusions are given by 𝑥 ↦ (
𝑥 0
0 𝑥

). For this, 

𝐾0(𝐶𝐴𝑅) = 𝐙[1/2] and 𝐾1
top
(𝐶𝐴𝑅) = 0 

(for 𝐾1 of 𝐶𝐴𝑅 and a few other AF algebras). 

The Jiang-Su algebra 𝒵 is a simple infinite-dimensional C∗-algebra with unit that plays an 

important role in Elliott's classification program of 𝐶∗-algebras. It has the same 𝐾-theory as 

𝐂(64). 
The reduced C∗-algebra of a group Γ is the norm-closure 𝐶𝜆

∗(Γ) of the algebra 

{∑𝛾∈Γ
finite 

 𝑧𝛾𝜆(𝛾)}, see Example (4.1.3), in the algebra of all bounded operators on ℓ2(Γ). For 

the free groups 𝐹𝑑 (nonabelian free groups if ≥ 2 ), we have (65) 

𝐾0(𝐶𝜆
∗(𝐹𝑑)) ≈ 𝐙 and 𝐾1

top 
(𝐶𝜆
∗(𝐹𝑑)) ≈ 𝐙

𝑑 . 

For a so-called irrational rotation C∗-algebra 𝐴𝜃, generated by two unitaries 𝑢, 𝑣 satisfying 

the relation 𝑢𝑣 = 𝑒2𝜋𝑖𝜃𝑣𝑢, where 𝜃 ∈ [0,1] with 𝜃 ∉ 𝐐, we have (66) 

𝐾0(𝐴𝜃) ≈ 𝐙
2 and 𝐾1

top (𝐴𝜃) ≈ 𝐙
2. 
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For the infinite Cuntz algebras 𝑂𝑛, generated by 𝑛 ≥ 2 elements 𝑠1, … , 𝑠𝑛 satisfying 𝑠𝑗
∗𝑠𝑘 =

𝛿𝑗,𝑘 and ∑𝑗=1
𝑛  𝑠𝑗𝑠𝑗

∗ = 1, we have (67) 

𝐾0(𝑂𝑛) ≈ 𝐙/(𝑛 − 1)𝐙 and 𝐾1
top (𝑂𝑛) = 0. 

For 𝒩 a factor of type II1, we have 

𝐾0(𝒩) ≈ 𝐑 and 𝐾1(𝒩) = 𝐑+
∗ . 

For 𝐾0, see Proposition (4.1.9); for 𝐾1, see [159], already cited for Proposition (4.1.7).ii. 

More generally, for 𝒩 a von Neumann algebra of type II  1, with center denoted by 𝒵, we 

have 

𝐾0(𝒩) ≈ {𝑧 ∈ 𝒵 ∣ 𝑧
∗ = 𝑧}, 

where the right-hand side is viewed as a group for the addition, and 

𝐾1(𝒩) ≈ {𝑧 ∈ 𝒵 ∣ 𝑧 ≥ 𝜖 > 0} (𝜖 depends on 𝑧), 
where the right-hand side is viewed as a group for the multiplication; see [175] or [168]. For 

any von Neumann algebra 𝒩 

𝐾1
top 
(𝒩) = 0, 

because GL𝑛(𝒩) is connected for all 𝑛 ≥ 1; indeed, by polar decomposition and functional 

calculus, any 𝑥 ∈ GL𝑛(𝒩) is of the form exp (𝑎) exp (𝑖𝑏), with 𝑎, 𝑏 self-adjoint in M𝑛(𝒩), 
so that 𝑥 is connected to 1 by the path 𝛼 ↦ exp (𝛼𝑎)exp (𝑖𝛼𝑏).  

If 𝒩 is a factor of type II1, the isomorphism [144] of Bott periodicity shows that 

𝜋1(GL∞(𝒩)) ≈ 𝐾0(𝒩) ≈ 𝐑. 
Thus, by Bott periodicity, 

𝜋2𝑗(GL∞(𝒩)) = 0 and 𝜋2𝑗+1(GL∞(𝒩)) ≈ 𝐑 

for all 𝑗 ≥ 0. 

For 𝜋1, it is known more precisely that 𝜋1(GL𝑛(𝒩)) ≈ 𝐑 and that the embedding of 

GL𝑛(𝒩) into GL𝑛+1(𝒩) induces the identity on 𝜋1, for all 𝑛 ≥ 1(69,70). Note that, still 

for the norm topology, polar decomposition shows that the unitary group U1(𝒩) is a 

deformation retract of GL1 (𝒩); in particular, we have also 𝜋1(U1(𝒩)) ≈ 𝐑. 

For the strong topology, the situation is quite different; indeed, for "many" I1-factors, for 

example for those associated to infinite amenable icc groups or to nonabelian free groups, 

it is known that the group 𝑈1(𝒩)
strong topology  is contractible (71). 

Most can be found in [179]. For other expositions of part of what follows, see [180]. 

Let 𝐴 be a complex Banach algebra (with unit, again for reasons of simplicity), 𝐸 be a 

Banach space, and 𝜏: 𝐴 → 𝐸 be a continuous linear map that is tracial, namely such that 

𝜏(𝑦𝑥) = 𝜏(𝑥𝑦) for all 𝑥, 𝑦 ∈ 𝐴. Then 𝜏 extends to a continuous linear map M∞(𝐴) → 𝐸, 

defined by 𝑥 ↦ ∑𝑗≥1  𝜏(𝑥𝑗,𝑗), and again denoted by 𝜏. If 𝑒, 𝑓 ∈ M∞(𝐴) are equivalent 

idempotents, we have 𝜏(𝑒) = 𝜏(𝑓); it follows that 𝜏 induces a homomorphism of abelian 

groups 

𝜏:𝐾0(𝐴) → 𝐸,  [𝑒] ↦ 𝜏(𝑒). 
For example, if 𝐴 = 𝐂 and 𝜏: 𝐂 → 𝐂 is the identity, the stable equivalence class of an 

idempotent 𝑒 ∈ M𝑛(𝐂) is precisely described by the dimension of the image Im (𝑒) ⊂ 𝐂𝑛, 

so that 𝐾0(𝐂) ≈ 𝐙, and the image of 𝜏 is the subgroup 𝐙 of the additive group 𝐂. 

For a piecewise differentiable path 𝜉: [𝛼1, 𝛼2] → GL∞
0 (𝐴), we define 

Δ̃𝜏(𝜉) =
1

2𝜋𝑖
𝜏 (∫  

𝛼2

𝛼1

  𝜉(𝛼)𝜉(𝛼)−1𝑑𝛼) =
1

2𝜋𝑖
∫  
𝛼2

𝛼1

𝜏(𝜉(𝛼)𝜉(𝛼)−1)𝑑𝛼. (18) 
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(If 𝑋 is a compact space, for example if 𝑋 = [𝛼1, 𝛼2] ⊂ 𝐑, the image of a continuous map 

𝑋 → GL∞
0 (𝐴) is inside GL𝑛(𝐴), and therefore in the Banach space M𝑛(𝐴), for 𝑛 large 

enough; the integral can therefore be defined naively as a limit of Riemann sums.) 

The normalization in [145] is such that, if 𝐴 = 𝐂 and 𝜏 = id, the loop defined by 𝜉0(𝛼) =
exp (2𝜋𝑖𝛼) for 𝛼 ∈ [0,1] gives rise to Δ̃𝜏(𝜉0) = 1. 

Lemma (4.1.10)[127]: Let 𝐴 be a complex Banach algebra with unit, 𝐸 be a Banach space, 

𝜏: 𝐴 → 𝐸 be a tracial continuous linear map, and 

Δ̃𝜏: { paths in GL∞
0 (𝐴) as above } → 𝐸 

be the mapping defined by [145]. 

i) If 𝜉 is the pointwise product of two paths 𝜉1, 𝜉2 from [𝛼1, 𝛼2] to GL∞
0 (𝐴), then Δ̃𝜏(𝜉) =

Δ̃𝜏(𝜉1) + Δ̃𝜏(𝜉2). 

ii) If ∥ 𝜉(𝛼) − 1 ∥< 1 for all 𝛼 ∈ [𝛼1, 𝛼2], then 𝜏(�̇�(𝛼)𝜉(𝛼)−1) d 𝛼 has a primitive 

𝜏(log 𝜉(𝛼)), so that 

2𝜋𝑖Δ̃𝜏(𝜉) = 𝜏(log 𝜉(𝛼2)) − 𝜏(log 𝜉(𝛼1)). 

iii) Δ̃𝜏(𝜉) depends only on the homotopy class of 𝜉. 

iv) Let 𝑒 ∈ M∞(𝐴) be an idempotent and let 𝜉𝑒 be the loop defined as in [143]; then 

Δ̃𝜏(𝜉𝑒) = 𝜏(𝑒) ∈ 𝐸. 
Sketch of proof: Claim 𝑖 follows from the computation 

Δ̃𝜏(𝜉1𝜉2)  =
1

2𝜋𝑖
∫  
𝛼2

𝛼1

 𝜏 ((�̇�1(𝛼)𝜉2(𝛼) + 𝜉1(𝛼)�̇�2(𝛼))𝜉2(𝛼)
−1𝜉1(𝛼)

−1) 𝑑𝛼

 =
1

2𝜋𝑖
∫  
𝛼2

𝛼1

 𝜏(𝜉1(𝛼)𝜉1(𝛼)
−1)𝑑𝛼 +

1

2𝜋𝑖
∫  
𝛼2

𝛼1

 𝜏(𝜉1(𝛼)𝜉2(𝛼)𝜉2(𝛼)
−1𝜉1(𝛼)

−1)𝑑𝛼

 = Δ̃𝜏(𝜉1) + Δ̃𝜏(𝜉2).

 

Claims ii and iii are straightforward. Claim iv follows again from an easy computation.  

Definition (4.1.11)[127]: Let 𝐴 be a complex Banach algebra with unit, 𝐸 be a Banach 

space, and 𝜏: 𝐴 → 𝐸 be a tracial continuous linear map. Define 

Δ𝜏: GL∞
0 (𝐴) → 𝐸/𝜏(𝐾0(𝐴))                                       (19) 

to be the mapping that associates to an element 𝑥 in the domain the class modulo 𝜏(𝐾0(𝐴)) 

of Δ̃𝜏(𝜉), where 𝜉 is any piecewise differentiable path in GL∞
0 (𝐴) from 1 to 𝑥. 

Theorem (4.1.12)[127]: Let the notation be as above. 

i) The mapping Δ𝜏 of [146] is a homomorphism of groups, with image 𝜏(𝐴)/𝜏(𝐾0(𝐴)); in 

particular Δ𝜏 is surjective if 𝜏 is surjective. 

ii) Δ𝜏(𝑒
𝑦) is the class of 𝜏(𝑦) modulo 𝜏(𝐾0(𝐴)) for all 𝑦 ∈ M∞(𝐴). 

Corollary (4.1.13)[127]: If 𝜏: 𝐴 → 𝐂 is a trace such that 𝜏(𝐾0(𝐴)) = 𝐙, then 

exp (2𝜋𝑖Δ𝜏): GL∞
0 (𝐴) → 𝐂∗ 

is a homomorphism of groups, and 

exp (2𝜋𝑖Δ𝜏)(𝑒
𝑦) = 𝑒𝜏(𝑦)                                       (20) 

for all 𝑦 ∈ M∞(𝐴). Compare with [130]. 

In particular, if 𝐴 = 𝐂 and if 𝜏 is the identity, then exp (2𝑖𝜋Δ𝜏) is the usual determinant on 

GL∞(𝐂). 
Corollary (4.1.14)[127]: If 𝒩 is a factor of type II1 and 𝜏 its canonical trace, then 

𝜏(𝐾0(𝒩)) = 𝐑, 

exp (Re(2𝜋𝑖Δ𝜏)): GL∞(𝒩) → 𝐑+
∗                                        (21) 
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is a surjective homomorphism of groups, and its restriction to GL1(𝒩) is the Fuglede-

Kadison determinant. 

If 𝐴 is a separable Banach algebra given with a trace 𝜏†† then the range of Δ𝜏 is the quotient 

of 𝐶 by a countable group, by Proposition (4.1.8) . Suppose that 𝐴 is a C∗-algebra with unit, 

that 𝜏 is a faithful tracial continuous linear form on 𝐴 that is factorial, and that the GNS 

representation associated to 𝜏 provides an embedding 𝐴 → 𝒩 into a factor of type II1, where 

𝜏 on 𝐴 is the restriction of the canonical trace on 𝒩. 

Let 𝐴 be a complex Banach algebra. Denote by 𝐸𝑢 the Banach space quotient of 𝐴 by 

the closed linear span of the commutators [𝑥, 𝑦] = 𝑥𝑦 − 𝑥𝑦, 𝑥, 𝑦 ∈ 𝐴; thus 𝐸𝑢 = 𝐴/[𝐴, 𝐴]̅̅ ̅̅ ̅̅ ̅. 
The canonical projection 𝜏𝑢: 𝐴 → 𝐸𝑢 is the universal tracial continuous linear map on 𝐴. In 

some cases, the space 𝐸𝑢 has been characterized: For a finite von Neumann algebra 𝒩 with 

center 𝒵, the universal trace (as defined in [151]) induces an isomorphism 𝐸𝑢 ≈ 𝒵 ([159]). 

Information on 𝐸𝑢 for stable C∗-algebras and simple AFC∗-algebras can be found in [181] 

and [182]. 

To the universal 𝜏𝑢 corresponds the universal determinant 

Δ𝑢: GL∞
0 (𝐴) → 𝐸𝑢/𝜏𝑢(𝐾0(𝐴)). 

Observe that any tracial linear map 𝜏: 𝐴 → C is the composition 𝜎𝜏𝑢 of the universal 𝜏𝑢 with 

a continuous linear form 𝜎 on 𝐸𝑢. We have 

𝐷GL∞
0 (𝐴) ⊂

(1)

ker (Δ𝑢) ⊂
(2)

⋂  

𝜎∈(𝐸𝑢)
∗

ker (Δ𝜎𝜏𝑢) ⊂ GL∞
0 (𝐴).             (22) 

Both ⊂
(1)

 and ⊂
(2)

 can be strict inclusions, but ⊂
(2)

 is always an equality if 𝐴 is separable. The 

last but one term on the right need not be closed in GL∞
0 (𝐴). For all this, see [179]. 

We agree that the universal determinant is sharp if the inclusions ⊂
(1)

 and ⊂
(2)

 are equalities, 

equivalently if the natural mapping from the kernel GL∞
0 (𝐴)/𝐷GL∞

0 (𝐴) of [142] to 

𝐸𝑢/𝜏𝑢(𝐾0(𝐴)) is an isomorphism. 

If 𝐴 is a simple AFC∗-algebra with unit, its universal determinant is sharp. More precisely, 

if 𝐴 is an AFalgebra with unit, GL(𝐴) is connected for all 𝑛 ≥ 1 and 𝑎 fortiori so is GL∞(𝐴). If 
𝐴 is moreover simple, then 

𝐷GL𝑛(𝐴) = ker (Δ𝑢: GL𝑛(𝐴) → 𝐸𝑢/𝜏𝑢(𝐾0(𝐴))) 

for all 𝑛 ≥ 1, and a similar equality holds for U𝑛(𝐴) and 𝐷U𝑛(𝐴) ([183], theorem I and 

proposition 6.7). If 𝐴 is a simple C∗-algebra with unit that is infinite, there are no traces on 

𝐴 (75), and therefore no Δ𝜏, and GL𝑛
0 (𝐴) is a perfect group ([183]). 

Moreover, if 𝐺 is one of these groups, the quotient of 𝐷𝐺 by its center is a simple group 

(58). 

We follow [183]. 

Let ℛ be a ring; we assume that free ℛ-modules of different finite ranks are not 

isomorphic. Let 𝐹 be a free ℛ-module of finite rank, say 𝑛; let 𝑎 = (𝑎1, … , 𝑎𝑛) and 𝑏 =
(𝑏1, … , 𝑏𝑛) be two bases of 𝐹. There is a matrix 𝑥 ∈ GL𝑛(ℛ) such that 𝑎𝑗 = ∑𝑘=1

𝑛  𝑥𝑗,𝑘𝑏𝑘 , 

and therefore a class of 𝑥 in 𝐾‾1(ℛ), denoted by [𝑏/𝑎] 
Let 

𝐶: 0 → 𝐶𝑛 ⟶
𝑑𝑛
𝐶𝑛−1 ⟶

𝑑𝑛−1
⋯⟶

𝑑2
𝐶1⟶

𝑑1
𝐶0⟶

𝑑0
0                   (23) 
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be a chain complex of free ℛ-modules of finite ranks such that the homology groups 𝐻𝑖 are 

also free ℛ-modules (the latter is automatic if 𝐻𝑖 = 0, a case of interest in topology). 

Suppose that, for each 𝑖, there is given a basis 𝑐𝑖 of 𝐶𝑖 and a basis ℎ𝑖 of 𝐻𝑖 (the latter is 

automatic if 𝐻𝑖 = 0). 

Assume, first, that each boundary submodule 𝐵𝑖 is also free, with a basis 𝑏𝑖. Using the 

inclusions 0 ⊂ 𝐵𝑖 ⊂ 𝑍𝑖 ⊂ 𝐶𝑖 and the isomorphisms 𝑍𝑖/𝐵𝑖 ≈ 𝐻𝑖 , 𝐶𝑖/𝑍𝑖 ≈ 𝐵𝑖−1, there is a 

natural way to define (up to some choices) a second basis of 𝐶𝑖, denoted by 𝑏𝑖ℎ𝑖𝑏𝑖−1. By 

definition, the torsion of 𝐶, given together with the basis 𝑐𝑖 and ℎ𝑖, is the element  ## 

𝜏(𝐶) =∑  

𝑛

𝑖=0

(−1)𝑖 [
𝑏𝑖ℎ𝑖𝑏𝑖−1
𝑐𝑖

] ∈ 𝐾‾1(ℛ).                          (24) 

It can be shown to be independent of the other choices made to define 𝑏𝑖ℎ𝑖𝑏𝑖−1; in particular, 

the signs (−1)𝑖 are crucial for 𝜏(𝐶) to be independent of the choices of the basis 𝑏𝑖 s. 
In the case that the hypothesis on 𝐵𝑖 being free is not fulfilled, it is easy to check that the 

𝐵𝑖 s are stably free, and there is a natural way to extend the definition of 𝜏(𝐶). This can be 

read in [183]. (An ℛ-module 𝐴 is stably free if there exists a free ℛ-module 𝐹 such that 

𝐴⊕ 𝐹 is free.) 

Suppose now that 𝐶 is acyclic, namely that 𝐻∗(𝐶) = 0. There exists a chain contraction, 

namely a degree-one morphism 𝛿: 𝐶 → 𝐶 such that 𝛿𝑑 + 𝑑𝛿 = 1, and therefore an 

isomorphism 

𝑑 + 𝛿|odd : 𝐶odd = 𝐶1⊕𝐶3⊕⋯ → 𝐶even = 𝐶0⊕𝐶2⊕⋯. (25) 

Because 𝐶odd  and 𝐶even  have bases (from the 𝑐𝑖 s), this isomorphism defines an element in 

𝐾‾1(ℛ); we have 

𝜏(𝐶) =  class of 𝑑 + 𝛿|odd  in 𝐾‾1(ℛ)                                       (26) 

([181]). Formula [153] is sometimes better suited than [151]. 

Consider a pair (𝐾, 𝐿) consisting of a finite connected CW complex 𝐾 and a 

subcomplex 𝐿 that is a deformation retract of 𝐾; set Γ = 𝜋1(𝐿) ≈ 𝜋1(𝐾). For a CW pair 

(𝑋, 𝑌), consider the complex that defines cellular homology theory, with groups 

𝐶𝑖
CW(𝑋, 𝑌) = 𝐻𝑖

sing 
(|𝑋𝑖⋃𝑌|, |𝑋𝑖−1⋃𝑌|); here, 𝐻𝑖

sing 
 denotes singular homology with trivial 

coefficients 𝐙, and |𝑋𝑖⋃𝑌| denotes the space underlying the union of the ith skeleton of 𝑋 

with 𝑌. If �̃� and �̃� denote the universal covers of 𝐿 and 𝐾, the groups 𝐶𝑖
𝐶𝑊(�̃�, �̃�) are naturally 

free 𝐙[Γ]-modules; moreover, they have free bases as soon as a choice has been made of 

one oriented cell in �̃� above each oriented cell in 𝐾. For each of these choices, and the 

corresponding basis, we have a torsion element 𝜏 (𝐶CW(𝐾, 𝐿)+choices ) ∈ 𝐾‾1(𝐙[Γ]). To 

obtain an element independent of these choices, it suffices to consider the quotient Wh(Γ) =
𝐾1(𝐙[Γ])/⟨{1,−1}, Γ⟩. The class 

𝜏(𝐾, 𝐿) ∈ Wh(Γ) 

of 𝜏 (𝐶CW(𝐾, 𝐿)+choices ) is the Whitehead torsion of the pair (𝐾, 𝐿). In 1966, it was known 

to be combinatorially invariant (namely invariant by subdivision of CW pairs); more on this 

is in [183]. Since then, it has been shown to be a topological invariant of the pair (|K|,|L|) 

(77); this was a spectacular success of infinite-dimensional topology (manifolds modeled 

on the Hilbert cube and all that). 

An h-cobordism is a triad (𝑊;𝑀,𝑀′) where 𝑊 is a smooth manifold whose boundary 

is the disjoint union 𝑀 ⊔𝑀′ of two closed submanifolds, such that both 𝑀 and 𝑀′ are 
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deformation retracts of 𝑊. Products 𝑊 = 𝑀 × [0,1] provide trivial examples; in [185], 

there is a nontrivial example of an h-cobordism (𝑊, 𝐿 × 𝐒4, 𝐿′ × 𝐒4), with 𝐿 and 𝐿′ two 

three-dimensional lens manifolds that are homotopically equivalent but not homeomorphic. 

By a 1965 result of Stallings ([183]): 

 If dim 𝑀 ≥ 5, any 𝜏

∈ Wh (𝜋1(𝑀)) is of the form 𝜏(𝑊,𝑀) for some h-cobordism (𝑊;𝑀,𝑀′).  
Together with the s-cobordism theorem (below), this implies: 

For two h-cobordisms (𝑊1;𝑀,𝑀1), (𝑊2;𝑀,𝑀2) such that 𝜏(𝑊1, 𝑀) = 𝜏(𝑊2, 𝑀), there 

exists a diffeomorphism 𝑊1 → 𝑊2 that preserves 𝑀. 

An h-cobordism gives rise to a chain complex and a torsion invariant 𝜏(𝑊,𝑀) ∈
Wh(𝜋1(𝑀)). Here is the basic s-cobordism theorem of Barden, Mazur, and Stallings (79): 

If dim 𝑊 ≥ 6, then 𝑊 is diffeomorphic to the product 𝑀 × [0,1] if and only if 𝜏(𝑊,𝑀) =
0 ∈ Wh (𝜋1(𝑀)). 

In particular, if 𝑀 is simply connected, then 𝑊 is always diffeomorphic to 𝑀 × [0,1]; this 

is the ℎ-cobordism theorem of [187]. 

For example, if Σ is a homotopy sphere of dimension 𝑛 ≥ 6, if 𝑊 is the complement in Σ of 

two open discs with disjoint closures, and if 𝑆0, 𝑆1 are the boundaries of these discs (they 

are standard spheres), then (𝑊; 𝑆0, 𝑆1) is an h-cobordism, and 𝑊 is diffeomorphic to 𝑆𝑛−1 ×
[0,1]. It follows that Σ is diffeomorphic to a manifold obtained by gluing together the 

boundaries of two closed 𝑛-balls under a suitable diffeomorphism and that Σ is 

homeomorphic to the standard 𝑛-sphere; the last conclusion is still true in dimension 𝑛 = 5. 

This is the generalized Poincaré conjecture in large dimensions, established in the early 

1960s. The first proof was that of Smale ([188] and [187]); very soon after, there were other 

proofs of other formulations of the Poincaré conjecture, logically independent of Smale's 

proof but inspired by his work, by Stallings (for 𝑛 ≥ 7 ) and Zeeman (for 𝑛 ≥ 5 ). The other 

dimensions were settled much later: by Freedman in 1982 for 𝑛 = 4 and by Perelman in 

2003 for 𝑛 = 3. 

Because 𝐾1 is a functor, any linear representation ℎ: Γ → GL𝑘(𝐑) provides a ring 

homomorphism 𝐙[Γ] → M𝑘(𝐑) and therefore a morphism of abelian groups 

𝐾1(𝐙[Γ]) → 𝐾1(M𝑘(𝐑)) = 𝐾1(𝐑) ≈ 𝐑
∗, 

where ≈ is induced by the determinant GL∞(𝐑) ⟶
 det 

𝐑∗, and also a morphism 𝐾‾1(𝐙[Γ]) →
𝐾‾1(𝐑) ≈ 𝐑+

∗ . When the representation is orthogonal, ℎ: Γ → 𝑂(𝑘), this induces a morphism 

of abelian groups Wh (Γ) → 𝐑+
∗ . 

For a complex of 𝐙[Γ]-modules 𝐶 with torsion 𝜏(𝐶) ∈ 𝐾‾1(𝐙[Γ]), the image of 𝜏(𝐶) is the 

Reidemeister torsion 𝜏ℎ(𝐶) ∈ 𝐑+
∗ , which is a real number [in fact, 𝜏ℎ(𝐶) may be well 

defined even in cases where 𝜏(𝐶) is not]. This is the basic invariant in important work by 

Reidemeister, Franz, and de Rham (earliest papers published in 1935). 

Given a Riemannian manifold 𝑀 and an orthogonal representation ℎ: 𝜋1(𝑀) → 𝑂(𝑘) of its 

fundamental group, one defines a complex 𝐶 of differential forms with values in a bundle 

associated with ℎ. Under appropriate hypotheses, one has a famous analytical expression of 

the Reidemeister-Franz-de Rham torsion and an equality 
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𝜏ℎ(𝐶)  =
1

2
∑  

𝑛

𝑘=0

  (−1)𝑘ln det (𝑑𝑘
∗𝑑𝑘)

 =
1

2
∑  

𝑛

𝑘=0

  (−1)𝑘kln det (𝑑𝑘
∗𝑑𝑘 + 𝑑𝑘+1𝑑𝑘+1

∗ )

                      (27) 

Let 𝒩 be a finite von Neumann algebra and let 𝜏:𝒩 → 𝐂 be a finite trace. For 𝑥 ∈ 𝒩, let 

(𝐸𝜆)𝜆≥0 denote the spectral resolution of (𝑥∗𝑥)
1

2. Define 

det𝜏
𝐹𝐾𝐿 (𝑥) = {

exp lim
𝜖→0+

 ∫  
∞

𝜖

  ln(𝜆)𝑑𝜏(𝐸𝜆)  if lim
𝜖→0+

 ∫  
∞

𝜖

 ⋯ > −∞,

0  otherwise. 

(28) 

It is immediate that det𝜏
𝐹𝐾𝐿 (𝑥) = det𝜏

𝐹𝐾 (𝑥) when 𝑥 is invertible, but the equality does not 

hold in general (det  𝜏
𝐹𝐾(𝑥) is as in [134]). For example, if 𝑥 ∈ GL1(𝒩), and 𝑋 = (

𝑥 0
0 0

) ∈

M2(𝒩), we have 

0 = det𝜏
𝐹𝐾 (𝑋) ≠ det𝜏

𝐹𝐾𝐿 (𝑋) = det𝜏
𝐹𝐾𝐿 (𝑥) = det𝜏

𝐹𝐾  (𝑥) > 0. 
The main properties of det𝜏

𝐹𝐾𝐿, including 

det𝜏
𝐹𝐾𝐿 (𝑥𝑦) = det𝜏

𝐹𝐾𝐿 (𝑥)det𝜏
𝐹𝐾𝐿 (𝑦) for 𝑥, 𝑦

∈ 𝒩 such that 𝑥 is injective and 𝑦 has dense image,  

are given in [168]. 

Since Atiyah's work on the 𝐿2-index theorem (83), we know that (complexes of) 𝒩-

modules are relevant in topology, say for 𝒩 =𝒩(Γ) and for Γ the fundamental group of 

the relevant space. Let 𝒩 and 𝜏 be as above. Let 

𝐶: 0 ⟶
𝑑𝑛+1

𝐶𝑛⟶
𝑑𝑛
𝐶𝑛−1 ⟶

𝑑𝑛−1
⋯⟶

𝑑2
𝐶1⟶

𝑑1
𝐶0⟶

𝑑0
0 

be a finite complex of 𝒩-modules, with appropriate finiteness conditions on the modules 

(they should be projective of finite type), with a condition of acyclicity on the homology 

(the image of 𝑑𝑗 should be dense in the kernel of 𝑑𝑗−1 for all 𝑗), and with a nondegeneracy 

condition on the differentials 𝑑𝑗 (which should be of "determinant class", namely 

det𝜏
𝐹𝐾𝐿 (𝑑𝑗

∗𝑑𝑗) should be as in the first case of [155]). The 𝐿2-torsion of 𝐶 is defined to be 

𝜌(2)(𝐶) = ∑  

𝑛

𝑘=0

(−1)𝑘ln det𝜏
𝐹𝐾𝐿 ((𝑑𝑗

∗𝑑𝑗)
1
2) ∈ {−∞} ⊔ 𝐑             (29) 

(compare with [154]). There is an 𝐿2-analog of [153]. 

𝐿2-torsion, and related notions, have properties that parallel those of classical torsions, in 

particular of Whitehead torsion, and seem to be relevant for geometric problems, e.g., for 

understanding volumes of hyperbolic manifolds of odd dimensions. We refer (once more) 

to [168]. 

It is tempting to ask whether (or even speculate that!) modules over reduced C∗-

algebras 𝐴 = 𝐶
red 

∗ (Γ) and refinements Δ𝜏
(𝐴)

 will be relevant one time or another, rather than 

modules over 𝒩(Γ) and Fuglede-Kadison determinants det de𝜏
𝐹𝐾  (⋅). 

Section (4.2): Determinants of Perturbed Positive Matrices and Linear Algebra 

Given 𝑘 complex square matrices 𝐵1, . . , 𝐵𝑘 of format 𝑛1 × 𝑛1, 𝑛2 × 𝑛2, . . , 𝑛𝑘 × 𝑛𝑘 , 

let us denote by diag (B1, . , 𝐵𝑘) the matrix of the format (𝑛1 +⋅⋅ +𝑛𝑘) × (𝑛1 +⋅⋅ +𝑛𝑘) 

whose main diagonal blocks are 𝐵1, . . , 𝐵𝑘 and all other entries are 0. In other words: 
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𝑑𝑖𝑎𝑔 (B1, 𝐵𝑘) = [

𝐵1 0 ⋯
0 𝐵2 ⋯
0
0

0
0

⋱
⋯

   

0
0
0
𝐵𝑘

]. 

Given two vectors 𝑢, 𝑣 ∈ ℂ𝑘 such that 𝑢 = 〈𝑢1, 𝑢𝑘〉 and = 〈𝑣1, 𝑣𝑘〉, we define their inner 

product 〈𝑢, 𝑣〉 = ∑ 𝑢𝑖
𝑘
𝑖=1 𝑣𝑖. For a complex 𝑛 ×𝑚 matrix 𝑅, we use 𝑅∗ to denote its adjoint 

matrix. In other words, 𝑅∗ is the transpose of the complex conjugate of 𝑅, and for 𝑢 ∈ ℂ𝑛 

and 𝑣 ∈ ℂ𝑚 the following is satisfied: 〈Ru, 𝑣〉 = 〈𝑢, 𝑅∗𝑣〉. A square matrix 𝐴 is self‐adjoint 

if 𝐴∗ = 𝐴. 

The self‐adjoint matrix 𝐴 of format 𝑛 × 𝑛 is called positive (or positive definite) if 〈Ax, 𝑥〉 >

0 for each non‐zero vector 𝑥 ∈ ℂ𝑛. If the strict inequality is replaced by ≥, the matrix is 

called non‐negative (or positive semi‐definite). If 𝐴 and 𝐵 are two square matrices of the 

same format, we will write 𝐴 ≥ 𝐵 (resp. 𝐴 > 𝐵) if 𝐴 − 𝐵 ≥ 0 (resp. 𝐴 − 𝐵 > 0) . 

For 𝑛 ∈ ℕ we will denote by 𝐼𝑛 the 𝑛 × 𝑛 identity matrix. The subscript 𝑛 will be omitted 

when there is no danger of ambiguity. 

We will prove the following two inequalities regarding positive matrices with complex 

entries. 

The two inequalities presented have the flavor of Fischer’s determinantal inequality, 

although in (30) the sign is reversed. An inequality related to our results, which features 

quotients of perturbed matrices, has been established previously  [219]. For refinements of 

Fischer‐type inequalities with singular values, see  [215] and  [216]. After taking the 

logarithms of left and right sides of the inequality (31), one obtains 

𝜙(𝐶, diag(𝐷1, 𝐷2)) ≤ 𝜙(𝐶1, 𝐷1) + 𝜙(𝐶2, 𝐷2) , 

where (𝑋, 𝑌) =  log  det (𝑋 + 𝑌) −  log  det (𝑋) . Similar inequalities are known to hold 

for concave functions 𝜙, and such results can be found in  [213]. 

The proof of the first theorem relies on Lemma (4.2.7) which is established using 

Grothendieck’s determinantal inequality. The lemma implies that the function 𝑈 ↦

 det (𝑈 + 𝐷)/ det (𝑈) is operator‐decreasing. Several results about operator‐monotone 

functions are available in  [218]. Generalizations and improvements of Grothendieck’s 

inequality have been established in  [214] and  [222] and they have been used in the past to 

prove results regarding block matrices. 

The inequality (31) can be used to establish super‐additivity for functions of diffusions in 

random environments. We consider one‐dimensional Brownian motion 𝑍, and let 𝑊 be 

another Brownian motion independent on 𝑍. Define 

𝑓(𝑡) =  log 𝔼 [ exp (−∫ |
𝑡

0

𝑊(𝑍(𝑠))|2𝑑𝑠)],                  (30) 

where E denotes the expected value with respect to the Brownian motion 𝑊. We will now 

illustrate that 𝑓(𝑡1 + 𝑡2) ≥ 𝑓(𝑡1) + 𝑓(𝑡2) is a special case of the inequality (31). Assume 

that 0 = 𝑠0 < 𝑠1 < ⋯ < 𝑠𝑛 = 𝑡1 is the partition of the interval [0, 𝑡1] into 𝑛 sub‐intervals 

of length 𝜆1. Similarly, let 𝑡1 = 𝑠𝑛 < 𝑠𝑛+1 < ⋯ < 𝑠𝑛+𝑚 = 𝑡1 + 𝑡2 be the partition of the 

interval [𝑡1, 𝑡1 + 𝑡2] into 𝑚 intervals of length 𝜆2. Let us denote 

𝑊𝑖 = 𝑊(𝑍(𝑠𝑖)) , 

�⃗⃗� 1 = 〈𝑊1,𝑊𝑛〉, 
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�⃗⃗� 2 = 〈𝑊𝑛+1, … ,𝑊𝑛+𝑚〉, 𝑎𝑛𝑑 

�⃗⃗� = 〈𝑊1, … ,𝑊𝑛+𝑚〉. 

Then ∑ |𝑛
𝑖=1 𝑊𝑖|

2𝜆1 = 〈𝜆1𝐼�⃗⃗� 1, �⃗⃗� 1〉, ∑ |𝑛+𝑚
𝑖=𝑛+1 𝑊𝑖|

2𝜆2 = 〈𝜆2𝐼�⃗⃗� 2, �⃗⃗� 2〉, and 

∑|

𝑛

𝑖=1

𝑊𝑖|
2𝜆1 + ∑ |

𝑛+𝑚

𝑖=𝑛+1

𝑊𝑖|
2𝜆2 = 〈diag(𝜆1𝐼𝑛, 𝜆2𝐼𝑚)�⃗⃗� , �⃗⃗�  〉. 

If we fix the Brownian motion 𝑍, then [𝑊(𝑍(𝑠1)),… ,𝑊(𝑍(𝑠2))] is a multivariate Gaussian 

random variable and as such it has a covariance matrix 𝐶. Denote by 𝐶1 and 𝐶2 the 

covariance matrices of [𝑊(𝑍(𝑠1)),… ,𝑊(𝑍(𝑠𝑛))] and [𝑊(𝑍(𝑠𝑛+1)),… ,𝑊(𝑍(𝑠𝑛+𝑚))]. 

Then 𝐶1 and 𝐶2 are the diagonal blocks of 𝐶. Moreover, 

𝔼[ exp (−〈𝜆1𝐼
 �⃗⃗� 1, �⃗⃗� 1〉)] =

1

𝑀√ det 𝐶1
∫ 𝑒−〈�⃗⃗� 1�⃗⃗� 1〉−

1
2
〈𝐶1�⃗⃗� 1,�⃗⃗� 1〉 𝜆1𝑑�⃗⃗� 1 

=
1

𝑀√ det 𝐶1
∫ 𝑒−〈(𝐶1

−1+𝜆1𝐼)𝑤1⃗⃗ ⃗⃗  ⃗,𝑤1⃗⃗ ⃗⃗  ⃗〉 𝑑�⃗⃗� 1 

=
√det  𝐶1

−1

√det (𝐶1
−1 + 𝜆1𝐼)

, 

where 𝑀 is a normalizing constant. We obtain similar equalities for the quantities 

E[ exp (−〈𝜆2𝐼�⃗⃗� 2, �⃗⃗� 2〉)] and E[ exp (−〈diag(𝜆1𝐼𝑛, 𝜆2𝐼𝑚)�⃗⃗� , �⃗⃗� 〉)]. The inequality (31) 

implies that 

 log 𝔼[ exp (−〈diag(𝜆1𝐼𝑛, 𝜆2𝐼𝑚)�⃗⃗� , �⃗⃗� 〉)] 

≥  log 𝔼[ exp (−〈𝜆1I�⃗⃗� 1, �⃗⃗� 1〉)] +  log 𝔼[ exp (−〈𝜆2I�⃗⃗� 2, �⃗⃗� 2〉)]. 
Taking the limit as 𝜆1, 𝜆2 → 0 we obtain (𝑡1 + 𝑡2) ≥ 𝑓(𝑡1) + 𝑓(𝑡2) . 
This technique is potentially useful for establishing large deviations for random processes 

with drifts. Sub‐additive properties are known to hold for killed Brownian motions in 

random environments  [223],  [224]. However, in the case of drifts introduced to random 

diffusions, no analogous results have yet been established. If a drift is assumed to be a 

multivariate Gaussian process, a possible approach is to express the large deviation 

probabilities in terms of determinants. However, there is still work to be done to transform 

the general case of sub‐additive inequalities into the language of their covariance matrices  

[221]. 

We will start with listing the known theorems that we will use to establish the 

inequalities. For the derivations of the results presented, the reader is referred to  [220]. 

Theorem (4.2.1) [212]: If 𝐴 and 𝐵 are non‐negative matrices such that 𝐴 ≥ 𝐵 then  det 𝐴 ≥

 det  B. If both of them are invertible then 𝐴−1 ≤ 𝐵−1 

Theorem (4.2.2) [212]: Let 𝐴 and 𝐷 be square 𝑛 × 𝑛 and 𝑚 ×𝑚 matrices respectively. 

Assume that 𝐵 and 𝐶 are matrices of the formats 𝑛 ×𝑚 and 𝑚 × 𝑛 and assume that 𝐴 and 

𝑆𝐴 = 𝐷 − 𝐶𝐴
−1𝐵 are invertible. Then 

[
A 𝐵
𝐶 𝐷

]
−1

= [
𝐴−1 + 𝐴−1𝐵𝑆𝐴

−1𝐶𝐴−1 −𝐴−1𝐵𝑆𝐴
−1

−𝑆𝐴
−1𝐶𝐴−1 𝑆𝐴

−1 ]. 

Similarly, if 𝐷 and 𝑆𝐷 = 𝐴 − 𝐵𝐷
−1𝐶 are invertible, then 
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[
A 𝐵
𝐶 𝐷

]
−1

= [
𝑆𝐷
−1 −𝑆𝐷

−1𝐵𝐷−1

−𝐷−1𝐶𝑆𝐷
−1 𝐷−1 + 𝐷−1𝐶𝑆𝐷

−1𝐵𝐷−1
]. 

The matrices 𝑆𝐴 and 𝑆𝐷 are called Schur complements of 𝐴 and 𝐷. 
The following two consequences of the previous result are known as Woodbury’s matrix 

identity and Fischer’s inequality. 

Theorem (4.2.3) [212]: Let 𝐴, 𝐵, 𝐶, 𝐷, 𝑆𝐴, 𝑆𝐷 be as in Theorem (4.2.2). Then 

(𝐴 − 𝐵𝐷−1𝐶)−1 = 𝐴−1 + 𝐴−1𝐵𝑆𝐴
−1𝐶𝐴−1 

provided that the inverses are defined. Moreover if the matrix 𝑀 = {
𝐴𝐵
𝐶𝐷
} is positive, then 

𝑆𝐴 and 𝑆𝐷 are positive. 

Theorem (4.2.4) [212]: Let 𝐴, 𝐵, 𝐶, 𝐷, 𝑆𝐴, 𝑆𝐷 be as in Theorem (4.2.2). Let 𝑀 = {
𝐴 𝐵
𝐶 𝐷

}. 

Then 

 det 𝑀 =  det 𝐴 ⋅  det 𝑆𝐴. 
If the matrix 𝑀 is positive then  det 𝑆𝐴 ≤  det 𝐷, and  det 𝑀 ≤  det 𝐴 ⋅  det 𝐷. 

Theorem (4.2.5) [212]: If 𝐴 and 𝐵 are non‐negative symmetric matrices of the format 𝑛 ×

𝑛 and I the 𝑛 × 𝑛 identity matrix then 

 det (𝐼 + 𝐴 + 𝐵) ≤  det (𝐼 + 𝐴) det (𝐼 + 𝐵) .                (31) 
We will start by proving Theorem (4.2.6) since it is easier to prove than Theorem 

(4.2.8). 

Theorem (4.2.6) [212]: Assume that 𝑘 ∈ ℕ and that 𝑛1, 𝑛𝑘 are positive integers. Assume 

that (𝐶𝑖)𝑖=1
𝑘  and (𝐷𝑖)𝑖=1

𝑘  are two sequences of positive matrices such that for each 𝑖 ∈
{1,2, , 𝑘} the matrices 𝐶𝑖 and 𝐷𝑖 are of format 𝑛𝑖 × 𝑛𝑖. Assume that 𝐶 is a positive matrix 

such that the diagonal blocks of 𝐶−1 are 𝐶1
−1, 𝐶𝑘

−1 The following inequality holds: 

 det (𝐶 + diag(𝐷1, … , 𝐷𝑘))

 det 𝐶
≤
 det (𝐶1 + 𝐷1)

 det 𝐶1
…
 det (𝐶𝑘 + 𝐷𝑘)

 det 𝐶𝑘
.             (31) 

Proof. Let us denote 𝐵𝑖 = 𝐶𝑖
−1 for 𝑖 ∈ {1,2, 𝑘} and 𝐵 = 𝐶−1. Using the multiplicative 

property of determinants we transform the inequality (31) into equivalent one: 

 det (𝐼 + 𝐵 𝑑𝑖𝑎𝑔(𝐷1 , 𝐷𝑘))  ≤  𝑑𝑒𝑡 (𝐼 + 𝐵1𝐷1)⋯  det (𝐼 + 𝐵𝑘𝐷𝑘) .   (32) 
Since the matrices 𝐷1, … , 𝐷𝑘 are positive we have that each of them has a square root. In 

other words, for each 𝑖, there exists a unique positive matrix √𝐷𝑖 that commutes with 𝐷𝑖 and 

satisfies 𝐷𝑖 = √𝐷𝑖 ⋅ √𝐷𝑖. Clearly, the matrix diag (√𝐷1, … ,√𝐷𝑘) is the square root of diag 

(D1, … , 𝐷𝑘) . 

Applying Sylvester’s determinant identity  det (𝐼 + 𝑋𝑌) =  det (𝐼 + 𝑌𝑋) to the matrices 

𝑋 = 𝐵√diag(𝐷1, … , 𝐷𝑘) and = √diag(𝐷1, … , 𝐷𝑘) we transform the left‐hand side of (32) 

into: 

 det (𝐼 + 𝐵diag(𝐷1, … , 𝐷𝑘)) 

=  det (𝐼 + diag(√𝐷1 , … ,√𝐷𝑘) ⋅ 𝐵 ⋅ diag(√𝐷1, … ,√𝐷𝑘)) . 

Similarly, the right‐hand side of (32) is: 

 det (𝐼 + 𝐵1𝐷1)⋯  det (𝐼 + 𝐵𝑘𝐷𝑘) 

=  det (𝐼 + √𝐷1𝐵1√𝐷1)… (𝐼 + √𝐷𝑘𝐵𝑘√𝐷𝑘) . 
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We will use the induction on 𝑘 to prove the inequality (32). Let us start with 𝑘 = 2 and 

assume that 𝐵 = {
𝐵1 𝑅
𝑅∗ 𝐵2

} for an 𝑛1 × 𝑛2 matrix 𝑅. Elementary calculations imply: 

 det (𝐼 +  𝑑𝑖𝑎𝑔 (√𝐷1, √𝐷2) ⋅ 𝐵 ⋅  𝑑𝑖𝑎𝑔 (√𝐷1, √𝐷2)) 

=  det [
𝐼 + √𝐷1𝐵1√𝐷1√𝐷1𝑅√𝐷2

√𝐷1𝑅
∗√𝐷1𝐼 + √𝐷2𝐵2√𝐷2

]. 

We can now use Theorem (4.2.4) to conclude that 

 det (𝐼 + diag(√𝐷1, √𝐷2) ⋅ 𝐵 ⋅ diag(√𝐷1, √𝐷2)) 

≤  det (𝐼 + √𝐷1𝐵1√𝐷1) ⋅  det (𝐼 + √𝐷2𝐵2√𝐷2) 

=  det (𝐼 + 𝐷1𝐵1) ⋅  det (𝐼 + 𝐷2𝐵2) . 
Therefore the inequality (32) is established for 𝑘 = 2. 

Assume now that 𝑘 ≥ 3 and that the inequality (32) is true for 𝑘 − 1. Assume that 𝐷1, … , 𝐷𝑘, 

and 𝐵1, … , 𝐵𝑘 are positive matrices of formats 𝑛1 × 𝑛1, … , 𝑛𝑘 × 𝑛𝑘. Assume that 𝐵2
′  is the 

sub‐matrix of the matrix 𝐵 obtained by removing the first 𝑛1 rows and first 𝑛1 columns. 

According to the induction hypothesis we have 

 det (𝐼 + 𝐵2
′  𝑑𝑖𝑎𝑔(𝐷2 , … , 𝐷𝑘))  ≤  𝑑𝑒𝑡 (𝐼 + 𝐵2𝐷2)⋯  det (𝐼 + 𝐵𝑘𝐷𝑘) .   (33) 

We denote 𝐷2
′  = diag (𝐷2, … , 𝐷𝑘) . Then we can write diag (D1, … , 𝐷𝑘) = diag(𝐷1, 𝐷2

′). 

Applying the inequality (32) with 𝑘 = 2 we obtain 

 det (𝐼 + 𝐵diag(𝐷1, 𝐷2
′)) ≤  det (𝐼 + 𝐵1𝐷1) ⋅  det (𝐼 + 𝐵2

′𝐷2
′) .   (34) 

The inequalities (33) and (34) together imply the inequality (32). This completes the proof 

of Theorem (4.2.6). 
In order to prove Theorem (4.2.8) we will need the following lemma. 

Lemma (4.2.7) [212]: Assume that 𝑈 ≥ 𝑉 and 𝐷 are 𝑛 × 𝑛 non‐negative matrices such that 

𝑈 and 𝑉 are invertible. Then the following inequality holds: 

 det (𝑉 + 𝐷)

 det 𝑉
≥
 det (𝑈 + 𝐷)

 det 𝑈
. 

Proof. The matrix 𝑉−1 is positive and as such it has a positive square root. Let us denote it 

by 𝑉−
1

2. Assume that 𝑈 = 𝑉 +𝑊 for some non‐negative matrix 𝑊. The required inequality 

is equivalent to 

 det (𝑉 +𝑊) det (𝑉 + 𝐷) ≥  det 𝑉 ⋅  det (𝑉 +𝑊 + 𝐷) . 
In our next step we multiply both left and right side of the previous inequality by 

[ det (𝑉−
1

2)]
4

: 

 det (𝑉−
1
2)  det (𝑉 +𝑊) det (𝑉−

1
2) ⋅  det (𝑉−

1
2)  det (𝑉 + 𝐷) det (𝑉−

1
2) 

≥  det (𝑉−
1
2)  det (𝑉 +𝑊 + 𝐷) det (𝑉−

1
2) . 

The last inequality is equivalent to: 

 det (𝐼 + 𝑉−
1
2𝑊𝑉−

1
2) ⋅  det (𝐼 + 𝑉−

1
2𝐷𝑉−

1
2) 

≥  det (𝐼 + 𝑉−
1
2𝑊𝑉−

1
2 + 𝑉−

1
2𝐷𝑉−

1
2) . 
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The last inequality follows when we apply (31) to the positive definite matrices 𝐴 =

𝑉−
1

2𝑊𝑉−
1

2 and 𝐵 = 𝑉−
1

2𝐷𝑉−
1

2.  

Theorem (4.2.8) [212]: Assume that 𝑘 ∈ ℕ and that 𝑛1, 𝑛𝑘 are positive integers. Assume 

that (𝐶𝑖)𝑖=1
𝑘  and (𝐷𝑖)𝑖=1

𝑘  are two sequences of positive matrices such that for each 𝑖 ∈
{1,2, … , 𝑘} the matrices 𝐶𝑖 and 𝐷𝑖 are of format 𝑛𝑖 × 𝑛𝑖. Assume that 𝐶 is a positive matrix 

whose diagonal blocks are 𝐶1, … , 𝐶𝑘. The following inequality holds: 

 det (𝐶 + diag(𝐷1, … , 𝐷𝑘))

 det 𝐶
≥
 det (𝐶1 + 𝐷1)

 det 𝐶1
…
 det (𝐶𝑘 + 𝐷𝑘)

 det 𝐶𝑘
.        (35) 

Proof. We will first prove the theorem for the case 𝑘 = 2. Assume that 𝐶 = {
𝐶1 𝑅
𝑅∗ 𝐶2

} for 

some matrix 𝑅 of the format 𝑛1 × 𝑛2. From Theorem (4.2.4) we conclude that the required 

inequality is equivalent to 

 det (𝐶1 + 𝐷1) det [(𝐶2 + 𝐷2) − 𝑅
∗(𝐶1 + 𝐷1)

−1𝑅]

 det 𝐶1 det (𝐶2 − 𝑅
∗𝐶1
−1𝑅)

 

≥
 det (𝐶1 + 𝐷1) ⋅  det (𝐶2 + 𝐷2)

 det 𝐶1 ⋅  det 𝐶2
. 

This inequality can be re‐written as 

 det [(𝐶2 + 𝐷2) − 𝑅
∗(𝐶1 + 𝐷1)

−1𝑅]

 det (𝐶2 + 𝐷2)
≥
 det (𝐶2 − 𝑅

∗𝐶1
−1𝑅)

 det 𝐶2
. 

Let us denote 𝑉 = 𝐶2 − 𝑅
∗(𝐶1 + 𝐷1)

−1𝑅. We can prove that 𝑉 > 0 by applying Theorem 

(4.2.3) to the matrix �̃� = {
𝐶1 + 𝐷1 𝑅
𝑅∗ 𝐶2

}. The theorem requires the positivity of �̃�, and this 

is satisfied since �̃� = 𝐶 + diag(𝐷1, 0) . Let 𝑈 = 𝐶2. Moreover, 𝑈 − 𝑉 = 𝑅∗(𝐶1 +

𝐷1)
−1𝑅 ≥ 0, therefore we can apply Lemma (4.2.7) to matrices 𝑈 and 𝑉 to obtain: 

 det [(𝐶2 + 𝐷2) − 𝑅
∗(𝐶1 + 𝐷1)

−1𝑅]

 det (𝐶2 + 𝐷2)
≥
 det [𝐶2 − 𝑅

∗(𝐶1 + 𝐷1)
−1𝑅]

 det 𝐶2
. 

From 𝐶1 + 𝐷1 ≥ 𝐶1 we have (𝐶1 + 𝐷1)
−1 ≤ 𝐶1

−1. Therefore 

𝑅∗(𝐶1 + 𝐷1)
−1𝑅 ≤ 𝑅∗𝐶1

−1𝑅, 𝑎𝑛𝑑 

𝐶2 − 𝑅
∗(𝐶1 + 𝐷1)

−1𝑅 ≥ 𝐶2 − 𝑅
∗𝐶1
−1𝑅. 

det (𝐶2 − 𝑅
∗(𝐶1 + 𝐷1)

−1𝑅) ≥  det (𝐶2 − 𝑅
∗𝐶1
−1𝑅) 

Theorem (4.2.1) now implies 

which completes the proof of Theorem (4.2.8) when 𝑘 = 2. 

We will use induction to finish the proof for general 𝑘 ∈ ℕ. Assume that 𝑘 ≥ 3 and that the 

statement is true for 𝑘 − 1. We will now prove the inequality for matrices 𝐶1, … , 𝐶𝑘 , 

𝐷1, … , 𝐷𝑘. Let us denote by 𝐶2
′  the sub‐matrix of the matrix 𝐶 obtained by removing its first 

𝑛1 rows and first 𝑛1 columns. The matrix 𝐶 can be regarded as a block matrix with diagonal 

blocks 𝐶1 and 𝐶2
′ . Similarly, for 𝐷2

′ = diag(𝐷2 , … , 𝐷𝑘) we have that diag (D1, … , 𝐷𝑘) =

diag(𝐷1, … , 𝐷2
′) . Using the induction hypothesis we obtain 

 det (𝐶2
′ + diag(𝐷2, … , 𝐷𝑘))

 det 𝐶2
′ ≥

 det (𝐶2 + 𝐷2)

 det 𝐶2
…
 det (𝐶𝑘 + 𝐷𝑘)

 det 𝐶𝑘
.   (36) 

Using the inequality established for 𝑘 = 2 we conclude 
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 det (𝐶 + diag(𝐷1, … , 𝐷𝑘))

 det 𝐶
=
 det (𝐶 + diag(𝐷1, 𝐷2

′))

 det 𝐶
 

≥
 det (𝐶1 + 𝐷1)

 det 𝐶1
⋅
 det (𝐶2

′ + 𝐷2
′)

 det 𝐶2
′ .   (37) 

The inequalities (36) and (37) imply the desired result. 

we will show that neither of the above inequalities can be generalized to allow for 

diag (D1, … , 𝐷𝑘) to be replaced by an arbitrary positive matrix whose diagonal blocks are 

𝐷1, … , 𝐷𝑘. We first present an example that illustrates the case in which the reverse 

inequality occurs in (35) under previously mentioned generalization. Take 

𝐶 = [
10 2
2 5

]  𝑎𝑛𝑑 𝐷 = [
2 1
1 1

]. 

Then 𝐶1 = 10, 𝐶2 = 5, 𝐷1 = 2, 𝐷2 = 1 and a simple calculation shows that the left‐hand 

side of (35) corresponds to 

 det (𝐶 + 𝐷)

 det 𝐶
=
63

46
, 

while the right‐hand side is 

 det (𝐶1 + 𝐷1)

 det 𝐶1
.
 det (𝐶2 + 𝐷2)

 det 𝐶2
=
72

50
=
36

25
>
63

46
. 

To see a counter‐example to (31) if we allow for diag (D1, … , 𝐷𝑘) to be replaced by general 

𝐷, we consider 

𝐶 = [
2 −2
2 4

]  𝑎𝑛𝑑 𝐷 = [
1 1
1 2

]. 

We now have 𝐷1 = 1 and 𝐷2 = 2. In order to determine 𝐶1 and 𝐶2 we first find 

𝐶−1 = [
1
1

2
1

2

1

2

] 

which implies that 𝐶1 = 1 and 𝐶2 = 2. It is now easy to find that the left‐hand side of (31) 

corresponds to 

 det (𝐶 + 𝐷)

 det 𝐶
=
17

4
> 4 =

 det (𝐶1 + 𝐷1)

 det 𝐶1
⋅
 det (𝐶2 + 𝐷2)

 det 𝐶2
. 

Thus, the inequality (31) does not always hold if the matrix diag (D1, … , 𝐷𝑘) is replaced 

with a positive matrix 𝐷 of a more general form. 

Section (4.3): The Hadamard Determinant Inequality on Hilbert Space 

Many applications of determinants in mathematical analysis are based on the 

geometric interpretation of the determinant of a square matrix as the (signed) volume of an 

𝑛‐parallelepiped with sides as the column vectors of the matrix. The change‐of‐variables 

formula in multidimensional integration involves the determinant of the Jacobian matrix. 

The study of estimates for the determinant of a matrix in terms of determinants of its 

principal submatrices is often useful as information about compressions of a matrix 𝐴 to 

certain subspaces (i.e. PAP for a projection 𝑃) may be more readily available. An element 

of 𝑀𝑛(ℂ) , the set of complex 𝑛 × 𝑛 matrices, is said to be positive semidefinite if it is 

Hermitian with non‐negative eigenvalues, and positive‐definite if it is positive‐semidefinite 

with strictly positive eigenvalues. Let 𝐴 be a positive‐definite matrix with (𝑖, 𝑗)th entry 
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denoted by 𝑎𝑖𝑗. Hadamard’s inequality ( [229]) states that the determinant of a positive‐

definite matrix is less than or equal to the product of the diagonal entries of the matrix i.e. 

 det 𝐴 ≤ ∐ 𝑎𝑖𝑖
𝑛
𝑖=1 . Further, equality holds if and only if 𝐴 is a diagonal matrix. As a 

corollary, which is usually referred to by the same name, we get that the absolute value of 

the determinant of a square matrix is less than or equal to the product of the Euclidean norm 

of its column vectors (or alternatively, row vectors). In the case of real matrices, the 

inequality conveys the geometrically intuitive idea that an 𝑛‐parallelepiped with prescribed 

lengths of sides has largest volume if and only if the sides are mutually orthogonal. An 

important application of this inequality to the theory of integral equations is in proving 

convergence results in classical Fredholm theory  [233]. More generally, a similar 

inequality, known as Fischer’s inequality ( [228]), holds if one considers the principal 

diagonal blocks of a positive‐definite matrix in block form. Hadamard’s inequality is a 

corollary of Fischer’s inequality by considering blocks of size 1 × 1. 

For 𝑛 ∈ ℕ, we denote the indexing set {1, 2, , 𝑛} by 〈𝑛〉. In Fischer’s inequality below, for 

an 𝑛 × 𝑛 matrix 𝐴 and 𝛼 ⊆ 〈𝑛〉, the principal submatrix of 𝐴 from rows and columns indexed 

by 𝛼 is denoted by 𝐴[𝛼]. 

Theorem (4.3.1) [225]: Let 𝐴 be a positive‐definite matrix in 𝑀𝑛(ℂ) . Let 𝛼𝑖 ⊆ 〈𝑛〉 for 𝑖 ∈

〈𝑘〉 such that 𝛼𝑖n𝛼𝑗 =⊗ 𝑓𝑜𝑟 𝑖, 𝑗 ∈ 〈𝑘〉, 𝑖 ≠ 𝑗. Then 

 det (𝐴[U𝑖=1
𝑘 𝛼𝑖]) ≤∏ det 

𝑘

𝑖=1

(𝐴[𝛼𝑖]) 

with equality if and only if 𝐴[U𝑖=1
𝑘 𝛼𝑖] = Pdiag (𝐴[𝛼1],⋯ , 𝐴[𝛼𝑘])𝑃

−1 for some permutation 

matrix 𝑃. 

We have that the determinant of a positive‐definite matrix (in block form) is less than 

or equal to the product of the determinants of its principal diagonal blocks, with equality if 

and only if the entries outside the principal diagonal blocks are all 0. We state an application 

of this result to information theory. For a multivariate normal random variable 

(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) with mean 0, covariance matrix 𝛴 and hence density 

𝑓(x) =
1

(2𝜋)𝑛/2 det (𝛴)1/2
 exp (−

1

2
x𝑇𝛴−1x) , x ∈ ℝ𝑛, 

the Shannon entropy is given by, 

ℎ (𝑋1, ⋯ , 𝑋𝑛) = −∫ 𝑓
ℝ𝑛

 log 𝑓𝑑x =
1

2
 ln ((2𝜋𝑒)𝑛 det (𝛴)) . 

Fischer’s inequality conveys the sub‐additivity of entropy in the case of normal random 

variables i.e. if the collection of normal random variables 𝑋1, ⋅⋅⋅ , 𝑋𝑛 is partitioned into 

disjoint subcollections, the sum of the entropies of the subcollections is bigger than the 

entropy of the whole collection, with equality if and only if the subcollections are mutually 

independent. 

In  [162], Arveson obtains a generalized version of Hadamard’s inequality for von Neumann 

algebras with a tracial state 𝜏, involving the Fuglede‐Kadison determinant denoted by △, 

which we paraphrase below. 

Theorem (4.3.2) [225]: Let 𝛷 be a 𝜏‐preserving conditional expectation on a von Neumann 

subalgebra 𝒮 of a von Neumann algebra ℛ. Then 
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△ (𝐴) ≤△ (𝛷(𝐴)) , 

for every positive 𝐴 in ℛ. 
Theorem (4.3.22) along gives us a proof of the above theorem which is different from 

the one in  [162]. We make the additional assumptions of faithfulness of the tracial state 𝜏 

and regularity of the positive operator 𝐴 unless stated otherwise. Note that the first 

assumption necessitates the finiteness of the von Neumann algebra ℛ. The new proof has 

the added advantage of directly yielding the conditions under which equality holds, given 

by △ (𝐴) =△ (𝛷(𝐴)) ⇔ 𝛷(𝐴) = 𝐴. In Theorem (4.3.24), using this equality condition we 

are able to prove that 𝛷(𝐴−1) = 𝛷(𝐴)−1 if and only if 𝛷(𝐴) = 𝐴 which is somewhat 

surprising as the statement itself has no direct reference to △. Our investigation reveals that 

this offers a small glimpse of a bigger picture. For instance, in Theorem (4.3.28), we prove 

that if 𝑓 is a non‐constant positive‐valued operator monotone function on (0,∞), △

(𝑓(𝐴)) ≤△ (𝑓(𝛷(𝐴))) with equality if and only if 𝛷(𝐴) = 𝐴. In fact, the result still holds 

for singular positive operators 𝐴 and positive‐valued operator monotone functions on [0,∞) 

but the simple form of the equality condition is rendered ineffective in this scenario. Further 

in Theorem (4.3.34), for a trace‐preserving unital positive map  Φ: ℛ → ℛ and a continuous 

 log ‐convex function 𝑓, we see that △ (𝑓(𝛷(𝐴))) ≤△ (𝑓(𝐴)) . As a corollary [Corollary 

(4.3.35)], we obtain a version of Theorem (4.3.2) for tracepreserving unital positive maps. 

In  [201], Matic proves two inequalities, in the vein of Fischer’s inequality, for the ratio 
 det (𝐴+𝐷)

 det 𝐴
 a to study the change in the determinant of a positive-definite matrix A perturbed 

by positive‐definite block diagonal matrix D. For 𝑘 ∈ ℕ, let 𝑛, 𝑛1, ⋅⋅⋅ , 𝑛𝑘 be positive integers 

such that 𝑛 = 𝑛1 +⋯+ 𝑛𝑘. For 𝑖 ∈ 〈𝑘〉, if 𝐴𝑖 is in 𝑀𝑛𝑖(ℂ) , we define an 𝑛 × 𝑛 matrix diag 

(𝐴1, ⋯ , 𝐴𝑘) by, 

𝑑𝑖𝑎𝑔 (𝐴1, ⋯ , 𝐴𝑘): = [

𝐴1 0 ⋯
0 𝐴2 ⋯
0
0

0
⋯

⋱
0

   

0
0
0
𝐴𝑘

] 

We recall the two main inequalities from  [201]. 

Theorem (4.3.3) [225]: For each 𝑖 ∈ 〈𝑘〉, let 𝐶𝑖 , 𝐷𝑖 be positive‐definite matrices in 𝑀𝑛𝑖(ℂ). 

Let 𝐶 be a positive‐definite matrix in block form in 𝑀𝑛(ℂ) with principal diagonal blocks 

given by 𝐶1, 𝐶2, ⋅⋅⋅ , 𝐶𝑘. Then the following inequality holds, 

 det (𝐶 + diag(𝐷1,⋯ , 𝐷𝑘))

 det (𝐶)
≥
 det (𝐶1 + 𝐷1)

 det (𝐶1)
⋯
 det (𝐶𝑘 + 𝐷𝑘)

 det (𝐶𝑘)
.   (38) 

As an application of the general framework developed, we view the above inequalities as 

manifestations of Jensen’s inequality in the context of conditional expectations on a finite 

von Neumann algebra for the choice of the operator monotone function (1 +
1

𝑥
)
−1

 on 

(0,∞). Theorem (4.3.3) and Theorem (4.3.38) may be considered as specific cases of 

Theorem (4.3.4) and Corollary (4.3.5) respectively, which we state below. Not only does 

this provide us more insight but it also helps us directly identify the conditions under which 

equality holds. These equality conditions were not considered in  [201]. In the two results 
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mentioned below, ℛ is a finite von Neumann algebra with a faithful normal tracial state 𝜏 

and 𝛷 is a 𝜏‐preserving conditional expectation onto the von Neumann subalgebra 𝒮 of ℛ. 

Theorem (4.3.4) [225]: For a regular positive operator 𝐴 in ℛ, and a positive operator 𝐵 in 

𝒮, the following inequality 10𝑜𝑙𝑑𝑠 : 
△ (𝛷(𝐴) + 𝐵))

△ (𝛷(𝐴))
≤
△ (𝐴 + 𝐵)

△ (𝐴)
.                          (39) 

If 𝐵 is regular, equality holds if and only if 𝛷(𝐴) = 𝐴 i.e. 𝐴 ∈ 𝒮. 

Corollary (4.3.5) [225]: For a regular positive operator 𝐴 in ℛ, and a positive operator 𝐵 

in 𝒮, the following inequality Holds : 

△ (𝐴 + 𝐵)

△ (𝐴)
≤
△ (𝛷(𝐴−1)−1 + 𝐵)

△ (𝛷(𝐴−1)−1)
,   (40) 

with equality if and only if 𝐵
1

2𝐴−1𝐵
1

2 ∈ 𝒮. In particular, if 𝐵 is regular, equality holds in (40) 

if and only if 𝐴 ∈ 𝒮. 
We note some improvements to Theorem (4.3.3) and Theorem (4.3.38) obtained from these 

generalizations. The inequalities (38) and (60) still hold if the matrices 𝐷1, ⋅⋅⋅ , 𝐷𝑘 are 

positive semidefinite. If the matrices 𝐷1, ⋅⋅⋅ , 𝐷𝑘 are positive‐definite, equality holds in (38) 

and (60) if and only if 𝐶 = diag(𝐶1, ⋯ , 𝐶𝑘) i.e. 𝐶 is in block diagonal form. If the matrices 

𝐷1, ⋅⋅⋅ , 𝐷𝑘 are positive‐semidefinite and 𝐷 : =diag (𝐷1, ⋯ , 𝐷𝑘) , equality holds in inequality 

(60) if and only if 𝐷
1

2𝐶−1𝐷
1

2 is in block diagonal form. Note that when 𝐷 is positive‐definite, 

𝐷
1

2𝐶−1𝐷
1

2 is in block diagonal form if and only if 𝐶 is in block diagonal form. Substantially 

more effort goes into proving Theorem (4.3.4) as compared to Corollary (4.3.5). 

A lot has been said in the literature about operator theoretic versions of Jensen’s 

inequality. For instance, using results by Davis ( [5]), Choi ( [227]), we obtain a general 

operator theoretic version of Jensen’s inequality involving operator convex functions and 

unital positive maps between 𝐶∗‐algebras. For a continuous function 𝑓 on an interval 𝐼 ⊆

ℝ, if 𝑓(∑ 𝐴𝑖
𝑘
𝑖=1 𝑇𝑖𝐴𝑖

∗) ≤ ∑ 𝐴𝑖
𝑘
𝑖=1 𝑓(𝑇𝑖)𝐴𝑖

∗, for self‐adjoint operators 𝑇1, ⋅⋅⋅ , 𝑇𝑘 on an infinite 

dimensional Hilbert space ℋ with spectra in 𝐼, and operators 𝐴1, ⋅⋅⋅ 𝐴𝑘 on ℋ such that 

∑ 𝐴𝑖
𝑘
𝑖=1 𝐴𝑖

∗ = 𝐼, we say that 𝑓 is operator 𝐶∗‐convex. In  [1], Hansen and Pedersen prove the 

equivalence of the class of operator convex functions on an interval 𝐼 and the class of 

operator 𝐶∗‐convex functions on 𝐼. 
We setup the background for our discussion. We offer a primer on the theory of von 

Neumann algebras, the Fuglede‐Kadison determinant, conditional expectations on von 

Neumann algebras, and the theory of operator convex and operator monotone functions on 

[0,∞). We collect some technical lemmas. The crux of the discussion where extensions of 

Hadamard’s inequality involving the Fuglede‐Kadison determinant are proved. we discuss 

applications of the results derived and obtain the aforementioned inequalities as special 

cases. 

The space 𝐵(ℋ) may be considered as a Banach algebra with the operator norm, and 

multiplication given by composition of operators. In addition, with the adjoint operation as 

involution (𝑇 → 𝑇∗) , it is also a 𝐶∗‐algebra. All norm‐closed ∗‐subalgebras of 𝐵(ℋ) are 

also 𝐶∗‐algebras. A positive linear functional 𝛽 on a unital 𝐶∗‐algebra is said to be a state if 
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𝜌(𝐼) = 1. A state 𝜌 is said to be faithful if 𝜌(𝐴∗𝐴) = 0 if and only if 𝐴 = 0. There are 

several interesting topologies on 𝐵(ℋ) coarser than the norm topology. Two important ones 

are the weak‐operator topology, which is the coarsest topology such that for any vectors 𝑥, 

𝑦 in ℋ the functional 𝜌𝑥,𝑦 : ℛ(ℋ) → ℂ defined by 𝜌𝑥,𝑦(𝑇) = 〈Tx, 𝑦〉 is continuous, and the 

strong‐operator topology, which is the coarsest topology such that for any vector 𝑥 in ℛ(ℋ) 

the map 𝑤𝑥 : ℛ(ℋ) → ℂ defined by 𝑤𝑥(𝑇) = 𝑇𝑥 is norm‐continuous. The commutant of a 

non‐empty subset ℱ of ℛ(ℋ) is defined as ℱ′ : = {𝑇 ∶  𝐴𝑇 = 𝑇𝐴, ∀𝐴 ∈ ℱ}. Before we 

define von Neumann algebras, we recall the von Neumann double commutant theorem ( 

[238]) to put the algebraic and analytic aspects of von Neumann algebras into perspective, 

the commutant being an algebraic object, and the topologies considered determining the 

analytic aspect. 

Theorem (4.3.6) [225]: Let 𝔄 be a self‐adjoint subalgebra of 𝐵(ℋ) containing the identity 

operator. Then the following are equivalent: 

(i) 𝔄 is weak‐operator closed, 

(ii) 𝔄 is strong‐operator closed, 

(iii) (𝔄′)′ = 𝔄. 

Definition (4.3.7) [225]: A von Neumann algebra is a self‐adjoint subalgebra of 𝐵(ℋ) 
containing the identity operator which is closed under the weak operator topology. 

The inspiration to study von Neumann algebras comes from, amongst other things, the study 

of group representations on infinite‐dimensional Hilbert spaces. They were introduced in  

[231] by Murray and von Neumann, as rings of operators. Von Neumann algebras have 

plenty of projections, in the sense that, the set of linear combinations of projections in a von 

Neumann algebra ℛ is norm‐dense in ℛ. This is clear from the spectral theorem for self‐

adjoint operators and the observation that any operator 𝑇 can be written as a linear 

combination of self‐adjoint operators (𝑇 =
𝑇+𝑇∗

2
+ i

𝑇−𝑇∗

2i
. ) 

In a bid to classify von Neumann algebras, Murray and von Neumann developed the 

comparison theory of projections. Two projections 𝐸, 𝐹 in ℛ are said to be equivalent if 

there is an operator 𝑉 ∈ ℛ such that 𝑉𝑉∗ = 𝐸 and 𝑉∗𝑉 = 𝐹, and such a 𝑉 is called a partial 

isometry. In general, it is possible to have equivalent projections 𝐸, 𝐹 such that 𝐸 ≤ 𝐹 and 

𝐸 ≠ 𝐹. If ℛ does not allow for such occurrences, it is said to be a finite von Neumann 

algebra. Alternatively, the characterizing property for a finite von Neumann algebra is that 

every isometry is a unitary operator i.e. for 𝑉 ∈ ℛ if 𝑉∗𝑉 = 𝐼, then 𝑉𝑉∗ = 𝐼. A major part 

of their study involved classifying the so‐called factors, which are von Neumann algebras 

with trivial center, the set of scalar multiples of the identity. In a nutshell, factors may be 

thought of as building blocks of von Neumann algebras, and finite factors may be thought 

of as building blocks of finite von Neumann algebras. Finite factors come in two flavors: 

the finite‐dimensional kind, given by 𝑀𝑛(ℂ), 𝑛 ∈ ℕ, and the infinite‐dimensional kind, the 

𝐼𝐼1 factors. A characterizing property of a finite factor is the existence of a unique faithful 

normal tracial state i.e. a linear functional 𝜏 satisfying the following conditions : (i) 𝜏(𝐴𝐵) =

𝜏(𝐵𝐴) for all 𝐴, 𝐵 ∈ ℛ, (ii) 𝜏(𝐼) = 1, (iii) (faithfulness) 𝜏(𝐴∗𝐴) = 0 if and only if 𝐴 = 0, 

and (iv) (normality) for an increasing sequence of projections {𝐸𝑛} we have 𝜏(sup𝑛∈ℕ𝐸𝑛) =
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sup𝑛∈ℕ𝜏(𝐸𝑛) . A von Neumann algebra ℛ has a faithful normal tracial state if and only if 

ℛ is finite. See  [13] for a fuller discussion of this topic. 

In  [160], for a finite factor ℳ with the unique faithful normal tracial state 𝜏, Fuglede 

and Kadison define the notion of a determinant on 𝐺𝐿1(ℳ) , the set of regular operators in 

ℳ, in the following manner: 

△:𝐺𝐿1(ℳ) → ℝ+, 

△ (𝐴) =  exp (𝜏 ( log (𝐴∗𝐴)
1
2)) . 

That △ makes sense is a consequence of the continuous functional calculus. Several 

properties of △ are studied in  [160] and a major portion of the effort goes in proving that it 

is a group homomorphism. Further, it is proved that for any ‘reasonable’ determinant theory, 

the determinant of an operator with a non‐trivial nullspace must vanish. But in general, there 

can be other extensions of the definition to singular operators with trivial nullspace. Two 

such extensions are mentioned; the algebraic extension defines the determinant to be zero 

for all singular operators in ℳ, whereas the analytic extension uses the spectral 

decomposition of (𝐴∗𝐴)
1

2 (= ∫ 𝜆 𝑑𝐸𝜆) to define △ (𝐴) : =  exp (∫  log 𝜆𝑑𝜏(𝐸𝜆)) with 

the understanding that △ (𝐴) = 0 if ∫  log 𝜆𝑑𝜏(𝐸𝜆) = −∞. 

Although originally in  [160], the Fuglede‐Kadison determinant is defined for finite 

factors, the discussion carries over to the case of a von Neumann algebra with a tracial state 

𝜏. Our primary interest is in the case when the tracial state 𝜏 is faithful and thus, ℛ is finite. 

As our results are true for any choice of a faithful normal tracial state, the dependence of △ 

on 𝜏 will be suppressed in the notation. See  [127] for a masterful account of the Fuglede‐
Kadison determinant (and its variants) by de la Harpe. 

Note that (v) follows from the fact that  log  is an operator monotone function on 

(0,∞) , (thus,  log 𝐴 ≤  log 𝐵) and by the faithfulness of the tracial state, we have that △
(𝐴) =△ (𝐵) ⇔ 𝜏( log 𝐴) = 𝜏( log 𝐵) ⇔ 𝜏( log 𝐵 −  log 𝐴) = 0 ⇔  log 𝐴 =  log 𝐵 ⇔
𝐴 = 𝐵. We will have more to say about operator monotone functions. 

Example (4.3.8) [225]: Let us denote the usual determinant function on 𝑀𝑛(ℂ) by det, and 

the normalized trace on 𝑀𝑛(ℂ) by tr, defined as the average of the diagonal entries of the 

matrix. Later when we want to emphasize 𝑛, we will denote the determinant, normalized 

trace on 𝑀𝑛(ℂ) by detn, trn, respectively. For a matrix 𝐴 in 𝑀𝑛(ℂ) , if 𝜆1, ⋅⋅⋅ , 𝜆𝑛 are the 

eigenvalues of the positive‐definite matrix (𝐴∗𝐴)
1

2 (counted with multiplicity), we have that, 

tr ( log (𝐴∗𝐴)
1
2) =

 log 𝜆1 +⋯+  log 𝜆𝑛
𝑛

=  log (√𝜆1𝜆𝑛
𝑛

) =  log (√( det (𝐴∗𝐴)
1
2)

𝑛

) 

Thus we see that for the type 𝐼𝑛 factor 𝑀𝑛(ℂ)(𝑛 ∈ ℕ) , we have the following relationship 

between △ and  det  : 

△ (𝐴) = √( det (𝐴∗𝐴)
1
2)

𝑛

= √| det 𝐴|
𝑛

,   (41) 

for any 𝐴 in 𝑀𝑛(ℂ) . 
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Let ℛ denote a von Neumann algebra with identity 𝐼. Let 𝒮 denote a von Neumann 

subalgebra of ℛ. Then a map  Φ: ℛ → 𝒮 is said to be a conditional expectation from ℛ onto 

𝒮 if it satisfies the following : 

(i) 𝛷 is linear, positive and 𝛷(𝐼) = 𝐼, 

(ii) 𝛷(𝑆1𝑅𝑆2) = 𝑆1𝛷(𝑅)𝑆2 for 𝑅 in ℛ, and 𝑆1, 𝑆2 in 𝒮. 

From (ii), we have that 𝛷(𝑇) = 𝑇 if and only if 𝑇 is in 𝒮. 

For a finite von Neumann algebra ℛ with a faithful normal tracial state 𝜏, a map 𝛷 : ℛ → ℛ 

is said to be 𝜏‐preserving or trace‐preserving if 𝜏(𝛷(𝐴)) = 𝜏(𝐴) for 𝐴 in ℛ. We are 

primarily interested in trace‐preserving conditional expectations on finite von Neumann 

algebras. 

Example (4.3.9) [225]: Let 𝐷𝑛(ℂ) denote the subalgebra of 𝑀𝑛(ℂ) consisting of diagonal 

matrices. Define a map  : 𝑀𝑛(ℂ) → 𝐷𝑛(ℂ) by 𝛷(𝐴) : = diag(𝑎11, ⋯ , 𝑎𝑛𝑛) . The map 𝛷 is 

a trace preserving conditional expectation from the finite von Neumann algebra 𝑀𝑛(ℂ) onto 

𝐷𝑛(ℂ) . 

Example (4.3.10) [225] Let 𝑛 = 𝑛1 +⋯+ 𝑛𝑘, where 𝑛, 𝑛1, ⋅⋅⋅ , 𝑛𝑘 ∈ ℕ. Note that for 

matrices 𝐴1, ⋅⋅⋅ , 𝐴𝑘 in 𝑀𝑛1(ℂ) , ⋅⋅⋅ , 𝑀𝑛𝑘(ℂ) respectively, we may construct a matrix 𝐴 in 

𝑀𝑛(ℂ) with these matrices as the principal diagonal blocks and 0’s elsewhere, i.e. 𝐴 : =diag 

(𝐴1, ⋯ , 𝐴𝑘) . In this manner, one may consider the matrix algebra 𝑀𝑛1(ℂ)⊕⋯⊕𝑀𝑛𝑘(ℂ) 

as a subalgebra of 𝑀𝑛(ℂ) with the same identity. Consider the map  : 𝑀𝑛(ℂ) → 𝑀𝑛1(ℂ)⊕

⋯⊕𝑀𝑛𝑘(ℂ) , defined by 𝛷(𝐴) = 𝐴11⊕⋯⊕𝐴𝑘𝑘  where 𝐴𝑖𝑖’s are the principal 𝑛𝑖 × 𝑛𝑖 

diagonal blocks of 𝐴. It is left to the reader to check that 𝛷 is a trace‐preserving conditional 

expectation from 𝑀𝑛(ℂ) onto 𝑀𝑛1(ℂ)⊕⋯⊕𝑀𝑛𝑘(ℂ) . 

A positive linear map  Ψ: ℛ → ℛ is said to be 𝑛‐positive (for 𝑛 ∈ ℕ) if 𝛹⊗ 𝐼𝑛 : ℛ⊗

𝑀𝑛(ℂ) → ℛ⊗𝑀𝑛(ℂ) is positive. Further if 𝛹 is 𝑛‐positive for all 𝑛 in ℕ, we say that 𝛹 is 

completely positive. We mention without proof the following two theorems about 

conditional expectations on finite von Neumann algebras that play a fundamental role  

Theorem (4.3.11) [225]: Let ℛ be a finite von Neumann algebra with a faithful normal 

tracial state 𝜏 and 𝒮 be a von Neumann subalgebra of ℛ. Then there is a unique map  : ℛ →

𝒮 such that 𝜏(𝛷(𝑅)𝑆) = 𝜏(𝑅𝑆) for 𝑅 ∈ ℛ, 𝑆 ∈ 𝒮, and such a map 𝛷 is a trace‐preserving 

normal conditional expectation from ℛ onto 𝒮. 

Theorem (4.3.12) ( [232]) [225]: Let ℛ be a finite von Neumann algebra with a faithful 

normal tracial state 𝜏 and 𝒮 be a von Neumann subalgebra of ℛ. Then the trace‐preserving 

normal conditional expectation from ℛ onto 𝒮 is a completely positive map. 

A continuous function 𝑓 defined on the interval 𝛤 ⊆ ℝ is said to be operator 

monotone if for self‐adjoint operators 𝐴, 𝐵 on an infinite‐dimensional Hilbert space ℋ, with 

spectra in 𝛤, such that 𝐴 ≤ 𝐵, we have that 𝑓(𝐴) ≤ 𝑓(𝐵) . For positive operators 𝐴, 𝐵 with 

𝐴 ≤ 𝐵 it is not necessarily true that 𝐴2 ≤ 𝐵2 But for 0 < 𝑟 ≤ 1, the Löwner‐Heinz 

inequality states that 𝐴𝑟 ≤ 𝐵𝑟 for 0 < 𝑟 ≤ 1. Thus 𝑥𝑟 is an operator monotone function on 

[0,∞) for 0 < 𝑟 ≤ 1. Other examples include  log (1 + 𝑥) on [0,∞),  log 𝑥 on (0,∞) . In 

his seminal  [14], Löwner studied operator monotone functions in detail establishing their 

relationship with a class of analytic functions called Pick functions. We state an integral 

representation of operator monotone functions on [0,∞) (cf.   [238]). 
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Theorem (4.3.13) [225]: A continuous real‐valued function 𝑓 on [0,∞) is operator 

monotone if and only if there is a finite positive measure 𝜇 on (0,∞) such that 

𝑓(𝑡) = 𝑎 + 𝑏𝑡 + ∫
(𝜆 + 1)𝑡

𝜆 + 𝑡

∞

0

𝑑𝜇(𝜆), 𝑡 ∈ [0,∞) , 

for some real number 𝑎, and 𝑏 ≥ 0. 
The concept of operator monotonicity is closely related to operator convex functions which 

were studied by Kraus ( [15]). Let 𝑓 be a continuous function on the interval 𝛤 ⊆ ℝ. We say 

that 𝑓 is operator convex if (𝜆𝐴 + (1 − 𝜆)𝐵) ≤ 𝜆𝑓(𝐴) + (1 − 𝜆)𝑓(𝐵) , for each 𝜆 in [0,1], 

and self‐adjoint operators 𝐴, 𝐵 on an infinite‐dimensional Hilbert space ℋ with spectra in 

𝛤. We state an integral representation of operator convex functions on [0,∞) for which 

𝑓′(0+) exists, which may be derived from Theorem (4.3.13) above and [11, Theorem 

(4.3.8)]. 

Theorem (4.3.14) [225]: A continuous real‐valued function 𝑓 on [0,∞) such that 𝑓′(0+) 

exists is operator convex if and only if there is a finite positive measure 𝜇 on (0,∞) such 

that 

𝑓(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 +∫
(𝜆 + 1)𝑡2

𝜆 + 𝑡

∞

0

𝑑𝜇(𝜆), 𝑡 ∈ [0,∞) , 

for some real numbers 𝑎, 𝑏, and 𝑐 ≥ 0. 
we gather a collection of disparate results which serve us well  

Definition (4.3.15) [225]: A real‐valued convex function on the interval [𝑎, 𝑏] ⊆ ℝ is said 

to be strictly convex if for 𝑥, 𝑦 ∈ [𝑎, 𝑏] such that 𝑓 (
𝑥+𝑦

2
) =

𝑓(𝑥)+𝑓(𝑦)

2
, we must have 𝑥 = 𝑦. 

Lemma (4.3.16) [225]: For a convex function 𝑓 on the real interval [𝑎, 𝑏] and a probability 

measure 𝜇 on a compact subset 𝑆 of [𝑎, 𝑏], we have the following inequality, 

𝑓 (∫ 𝜆
𝑆

𝑑𝜇(𝜆)) ≤ ∫ 𝑓
𝑆

(𝜆)𝑑𝜇(𝜆) . 

Further if 𝑓 is strictly convex, then equality holds if and only if 𝜇 is supported on a point 

𝑖. 𝑒. 𝜇 is a Dirac measure. 

Lemma (4.3.17) [225]: Let 𝔄 be a unital 𝐶∗‐algebra and 𝜌 be a state on 𝔄. For a continuous 

convex function 𝑓 on a real interval [𝑎, 𝑏] and a self‐adjoint operator 𝐴 in 𝔄 with spectrum 

in [𝑎, 𝑏], we have the following inequality, 

𝑓(𝜌(𝐴)) ≤ 𝜌(𝑓(𝐴)) . 

Further if 𝜌 is faithful and 𝑓 is strictly convex, then equality holds if and only if 𝐴 is a scalar 

multiple of the identity. 

Proof. The unital 𝐶∗‐algebra generated by 𝐴 is ∗‐isomorphic to 𝐶(𝜎(𝐴)) and henceforth 

referred to interchangeably. Note that the restriction of 𝜌 to 𝐶(𝜎(𝐴)) is also a state, and 

faithful if 𝜌 is faithful. By the Riesz representation theorem, there is a probability measure 

𝜇 on 𝜎(𝐴) such that for any continuous function 𝑓 on (𝐴) , we have that 𝜌(𝑓(𝐴)) =

∫ 𝑓
𝜎(𝐴)

(𝜆)𝑑𝜇(𝜆) . Note that on the compact subset 𝜎(𝐴) of [𝑎, 𝑏], by Jensen’s inequality, 
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𝑓(𝜌(𝐴)) = 𝑓 (∫ 𝜆
𝜎(𝐴)

𝑑𝜇(𝜆)) ≤ ∫ 𝑓
𝜎(𝐴)

(𝜆)𝑑𝜇(𝜆) = 𝜌(𝑓(𝐴)) . 

If 𝑓 is strictly convex, equality holds if and only if 𝜇 is a Dirac measure, say, supported on 

𝜆′ ∈ [𝑎, 𝑏]. In addition if 𝜌 is a faithful state, then 𝜇 is a Dirac measure supported on {𝜆′} if 

and only if 𝜎(𝐴) = {𝜆′} ⇔ 𝐴 = 𝜆′𝐼.  

Lemma (4.3.18) [225]: For a finite von Neumann algebra ℛ with a tracial state 𝜏 and a 

positive operator 𝐴 in ℛ, we have the following inequality, 

△ (𝐴) ≤ 𝜏(𝐴) .                                         (42) 
If 𝐴 is a regular positive operator and 𝜏 is faithful, equality holds if and only if 𝐴 is a positive 

scalar multiple of the identity 𝐼. 

Proof. We first prove the inequality for a regular positive operator 𝐴 in ℛ. Note that the 

spectrum of 𝐴 is contained in [‖𝐴−1‖−1, ‖𝐴‖]. The function‐  log 𝑥 defined on 

[‖𝐴−1‖−1, ‖𝐴‖] is strictly convex as the second derivative is 
1

𝑥2
 which is strictly positive on 

[‖𝐴−1‖−1, ‖𝐴‖]. From Lemma (4.3.17) for −log, we have that ‐  log 𝜏(𝐴) ≤ 𝜏(− log 𝐴) ⇒

𝜏( log 𝐴) ≤  log 𝜏(𝐴) ⇒ △ (𝐴) =  exp (𝜏( log 𝐴)) ≤  exp ( log 𝜏(𝐴)) = 𝜏(𝐴) , and if 𝜏 is 

faithful, equality holds if and only if 𝐴 is a positive scalar multiple of the identity. 

We next prove the inequality for a singular positive operator A. For 𝜀 > 0, note that 𝐴 + 𝜀𝐼 

is a regular positive operator. Thus we have that △ (𝐴 + 𝜀𝐼) ≤ 𝜏(𝐴 + 𝜀𝐼) . Using the norm‐

continuity of 𝜏, and taking the limits as 𝜀 → 0+, we get that △ (𝐴) ≤ 𝜏(𝐴) .  

In this paragraph, we set up the notation to be used in the proof of Lemma (4.3.19). Let ℛ 

be a von Neumann algebra, acting on the Hilbert space ℋ, with a tracial state 𝜏. For the von 

Neumann algebra 𝑀2(ℛ) ≅ ℛ ⊗𝑀2(ℂ) (acting on ℋ⊕ℋ), we are interested in the tracial 

state on 𝑀2(ℛ) given by 𝜏2 = 𝜏 ⊗ tr2 i.e. for an operator 𝐴 in 𝑀2(ℛ), 𝜏2(𝐴) =
𝜏(𝐴11)+𝜏(𝐴22)

2
 

where 𝐴𝑖𝑗 ∈ ℛ(1 ≤ 𝑖, 𝑗 ≤ 2) denotes the (𝑖, 𝑗)th entry of 𝐴. We denote the Fuglede‐

Kadison determinant on 𝑀2(ℛ) corresponding to 𝜏 ⊗ tr2 by △2. For operators 𝐴1, 𝐴2 in 

ℛ, we define 

𝑑𝑖𝑎𝑔 (𝐴1, 𝐴2): = [
𝐴1 0
0 𝐴2

] ∈ 𝑀2(ℛ) . 

Lemma (4.3.19) [225]: Let ℛ be a von Neumann algebra with a tracial state 𝜏. For 

operators 𝐴, 𝐵 in ℛ, we have that △ (𝐼 + 𝐴𝐵) =△ (𝐼 + 𝐵𝐴) . 

Proof. For a unital ring 𝑅 with multiplicative identity 1 and an element 𝑥 in 𝑀2(𝑅) , we 

have that 

[
1 0
𝑥 1

] [
1 0
−𝑥 12

]  = [
1 0
0 1

] [
1 𝑥
0 1

] [
1 −𝑥
0 1

]  = [
1 0
0 1

] 

Thus the operators 

[
𝐼 0
−𝐵 𝐼

] , [
𝐼 𝐴
0 𝐼

]  ∈ 𝑀2(ℛ) 

are regular and their Fuglede‐Kadison determinant is strictly positive. Using the 

multiplicativity of △2, the algebraic identity given below 

[
𝐼 𝐴
−𝐵 𝐼

]  =  [
𝐼 0
−𝐵 𝐼

] [
𝐼 0
0 𝐼 + 𝐵𝐴

] [
𝐼 𝐴
0 𝐼

] 
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= [
𝐼 𝐴
0 𝐼

] [
𝐼 + 𝐴𝐵 0
0 𝐼

] [
𝐼 0
−𝐵 𝐼

], 

we conclude that △ (𝐼 + 𝐴𝐵) =△ (𝐼 + 𝐵𝐴) .  

In Lemma (4.3.20) below, we adapt in  [226] which involves positive‐definite matrices to 

the context of positive operators on a Hilbert space by mimicking the algebraic trick used 

therein. 

Lemma (4.3.20) [225]: Let 𝐴, 𝐶 be positive operators in 𝐵(ℋ) with 𝐴 being regular. Let 𝐵 

be an operator in ℛ(ℋ) . Then the self‐adjoint operator, 

P:= [
𝐴 𝐵
𝐵∗ 𝐶

] 

in ℛ(ℋ⊕ℋ) is positive if and only if  the Schur complement 𝐶 − 𝐵∗𝐴−1𝐵 is positive. 

Proof. Consider the operator in ℛ(ℋ⊕ℋ) given by, 

𝑋 ∶= [
𝐼 0

−𝐵∗𝐴−1 𝐼
] 

As X is regular, P is positive if and only if 𝑋𝑃𝑋∗ is positive. A straight forward matrix 

computation shows that 

XPX∗ = [
𝐴 0
0 𝐶 − 𝐵∗𝐴−1𝐵

]. 

Thus, P is positive ⇔ XPX∗ is positive ⇔ 𝐶 − 𝐵∗𝐴−1𝐵 is positive.  

We paraphrase Proposition (4.3.21) from   [234] below without proof. 

Theorem (4.3.21) [225]: Let 𝔄, B be unital 𝐶∗‐algebras, such that B is abelian, and let  

Φ: 𝔄 → B be a unital positive map. Let 𝑓 be a real‐valued continuous convex function 

defined on the interval [𝑎, 𝑏]. For a self‐adjoint operator 𝐴 of 𝔄 whose spectrum is 

contained in [𝑎, 𝑏], we have the following inequality: 

𝑓(𝛷(𝐴)) ≤ 𝛷(𝑓(𝐴)) .                       (43) 

ℛ will denote a finite von Neumann algebra acting on the Hilbert space ℋ with identity 𝐼 

and a faithful normal tracial state 𝜏, 𝒮 will denote a von Neumann subalgebra of ℛ, and 𝛷 

will denote a 𝜏‐preserving conditional expectation from ℛ onto 𝒮. Note that for 𝐴 in ℛ, if 

𝜀𝐼 ≤ 𝐴, then 𝜀𝐼 ≤ 𝛷(𝐴) . As a consequence, if 𝐴 is a positive regular operator, 𝛷(𝐴) is also 

positive and regular. 

Theorem (4.3.22) [225]: For any regular positive operator 𝐴 in ℛ, we have that 

△ (𝛷(𝐴−1)−1) ≤△ (𝐴) ≤△ (𝛷(𝐴)) .                      (44) 

with equality on either side if and only if 𝛷(𝐴) = 𝐴 i.e 𝐴 ∈ 𝒮. If 𝐴 is positive (but not 

necessarily regular), one still has the inequality on the right i.e. △ (𝐴) ≤△ (𝛷(𝐴)) . 

Proof. Let 𝐴 be a regular positive operator in ℛ. As 𝛷(𝐴)−1 is in 𝒮, using Lemma (4.3.18) 

for the regular positive operator 𝛷(𝐴)−
1

2𝐴𝛷(𝐴)−
1

2, and keeping in mind the trace‐preserving 

nature of 𝛷, we note that, 

△ (𝛷(𝐴)−
1
2𝐴𝛷(𝐴)−

1
2) ≤ 𝜏 (𝛷(𝐴)−

1
2𝐴𝛷(𝐴)−

1
2) = 𝜏(𝐴𝛷(𝐴)−1) 

= 𝜏(𝛷(𝐴𝛷(𝐴)−1)) = 𝜏(𝛷(𝐴)𝛷(𝐴)−1) 

= 𝜏(𝐼) = 1, 

with equality if and only if 𝛷(𝐴)−
1

2𝐴𝛷(𝐴)−
1

2 = 𝐼 ⇔ 𝛷(𝐴) = 𝐴. 

Using the multiplicativity of △, we prove the desired inequality below. 
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△ (𝛷(𝐴)−
1
2𝐴𝛷(𝐴)−

1
2) ≤ 1 

⇒△ (𝛷(𝐴))
−
1
2 △ (𝐴) △ (𝛷(𝐴))

−
1
2 ≤ 1 

⇒△ (𝐴) ≤△ (𝛷(𝐴))
1
2 △ (𝛷(𝐴))

1
2 =△ (𝛷(𝐴)) ,                      (45) 

with equality if and only if 𝛷(𝐴) = 𝐴. Using the inequalityjust proved for the regular 

positive operator 𝐴−1, we have △ (𝐴−1) ≤△ (𝛷(𝐴−1)) ⇔△ (𝛷(𝐴−1)−1) ≤△ (𝐴) , with 

equality if and only if 𝛷(𝐴−1) = 𝐴−1 Note that 𝛷(𝐴−1) = 𝐴−1 ⇔ 𝐴−1 ∈ 𝒮 ⇔ 𝐴 ∈ 𝒮 ⇔

𝛷(𝐴) = 𝐴. 
Let 𝜀 > 0. If 𝐴 is positive but not necessarily regular, applying inequality (45) to the regular 

operator 𝐴 + 𝜀𝐼 yields the following inequality 

△ (𝐴 + 𝜀𝐼) ≤△ (𝛷(𝐴 + 𝜀𝐼)) =△ (𝛷(𝐴) + 𝜀𝐼) . 

Taking the limit as 𝜀 → 0+, we see that △ (𝐴) ≤△ (𝛷(𝐴)) . 

Corollary (4.3.23) [225]: For a regular positive operator 𝐴 in ℛ, and a positive operator 

𝐵 in 𝒮, the following inequality holds : 

△ (𝐴 + 𝐵)

△ (𝐴)
≤
△ (𝛷(𝐴−1)−1 + 𝐵)

△ (𝛷(𝐴−1)−1)
,                 (46) 

with equality if and only if 𝐵
1

2𝐴−1𝐵
1

2 ∈ 𝒮. In particular, if 𝐵 is regular, equality holds in (46) 

if and only if 𝐴 ∈ 𝒮. 

Proof. Using the multiplicativity of △ and Lemma (4.3.19), we can rewrite both sides of 

the inequality in the following manner: 

△ (𝐴 + 𝐵)

△ (𝐴)
=△ (𝐼 + 𝐴−1𝐵) =△ (𝐼 + 𝐵

1
2𝐴−1𝐵

1
2) , 

△ (𝛷(𝐴−1)−1 + 𝐵)

△ (𝛷(𝐴−1)−1)
=△ (𝐼 + 𝛷(𝐴−1)𝐵) =△ (𝐼 + 𝐵

1
2𝛷(𝐴−1)𝐵

1
2) . 

Note that 𝑋 : = 𝐵
1

2𝐴−1𝐵
1

2 is a positive operator and thus 𝐼 + 𝑋 is a regular positive operator. 

As 𝐵
1

2 is in 𝒮, 𝛷(𝑋) = 𝐵
1

2𝛷(𝐴−1)𝐵
1

2. From Theorem (4.3.22), we have that 

△ (𝐼 + 𝑋) ≤△ (𝛷(𝐼 + 𝑋)) =△ (𝐼 + 𝛷(𝑋)) 

with equality if and only if 𝐼 + 𝑋 = 𝛷(𝐼 + 𝑋) ⇔ 𝛷(𝑋) = 𝑋 ⇔ 𝐵
1

2𝐴−1𝐵
1

2 ∈ 𝒮. If 𝐵 is 

regular, 𝐵
1

2𝐴−1𝐵
1

2 ∈ 𝒮 ⇔ 𝐴−1 ∈ 𝒮 ⇔ 𝐴 ∈ 𝒮. 

Theorem (4.3.24) [225]: For a self‐adjoint operator 𝐴 in ℛ, we have the following 

inequality : 

𝛷(𝐴)2 ≤ 𝛷(𝐴2) .                                  (47) 
If 𝐴 is positive and regular, we have that 

𝛷(𝐴)−1 ≤ 𝛷(𝐴−1) .                             (48) 
Further, in inequalities (47) and (48) , equality holds if and only if 𝛷(𝐴) = 𝐴 i.e. 𝐴 ∈ 𝒮 (for 

the 𝐴 under consideration). 

Proof. As 𝛷 is a positive map, note that 𝛷(𝐴) is self‐adjoint and hence, so is 𝛷(𝐴) − 𝐴. We 

have (𝛷(𝐴) − 𝐴)2 ≥ 0 and thus, 

0 ≤ 𝛷((𝛷(𝐴) − 𝐴)2) = 𝛷(𝛷(𝐴)2 −𝛷(𝐴)𝐴 − 𝐴𝛷(𝐴) + 𝐴2) = 𝛷(𝐴2) − 𝛷(𝐴)2 
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Above we used the fact that (𝐴𝛷(𝐴)) = 𝛷(𝐴)𝛷(𝐴) = 𝛷(𝛷(𝐴)𝐴) . This proves the 

inequality (47). In this case, equality holds if and only if 𝛷((𝛷(𝐴) − 𝐴)2) = 0. From the 

faithfulness and positivity of the tracial state, and trace‐preserving nature of the conditional 

expectation, we get that equality holds if and only if 𝜏(𝛷(𝛷(𝐴) − 𝐴)2)) = 𝜏((𝛷(𝐴) − 𝐴)2)) 

= 0 ⇔ (𝛷(𝐴) − 𝐴)2 = 0 ⇔ 𝛷(𝐴) = 𝐴. This completes the proof of inequality (47). 

We next prove inequality (48). From Theorem (4.3.12), as 𝛷 is a completely positive map, 

the map ⊗ 𝐼2 : ℛ⊗𝑀2(ℂ) → 𝒮 ⊗𝑀2(ℂ) is a positive map. Applying 𝛷⊗ 𝐼2 to the 

positive operator, 

[
𝐴 𝐼
𝐼 𝐴−1

]  ∈ ℛ ⊗𝑀2(ℂ) , 

we conclude that 

[
𝜑(𝐴) 𝐼

𝐼 𝜑(𝐴−1)
] ∈ 𝒮 ⊗𝑀2(ℂ) 

is a positive operator. Using Lemma (4.3.20), we conclude that (𝐴)−1 ≤ 𝛷(𝐴−1) . 

We then investigate conditions under which equality holds. If 𝛷(𝐴) = 𝐴 for a regular 

positive operator 𝐴 in ℛ, we have that 𝐴 ∈ 𝒮 ⇒ 𝐴−1 ∈ 𝒮 ⇒ 𝛷(𝐴−1) = 𝐴−1 = 𝛷(𝐴)−1 

Conversely, if 𝛷(𝐴−1) = 𝛷(𝐴)−1, using (44), we see that, 

1

△ (𝛷(𝐴))
≤

1

△ (𝐴)
=△ (𝐴−1) ≤△ (𝛷(𝐴−1)) =△ (𝛷(𝐴)−1) =

1

△ (𝛷(𝐴))
. 

Thus △ (𝐴)−1 =△ (𝛷(𝐴))
−1
⇒△ (𝛷(𝐴)) =△ (𝐴) . From the equality condition in 

Theorem (4.3.22), we conclude that 𝛷(𝐴) = 𝐴.  

Corollary (4.3.25) [225]: For a positive operator 𝐴 in ℛ and 𝜆 > 0, the following 

inequalities hold: 

(i) 𝛷(𝐴(𝜆𝐼 + 𝐴)−1) ≤ 𝛷(𝐴)(𝜆𝐼 + 𝛷(𝐴))
−1
, 

(ii) 𝛷(𝐴)2(𝜆𝐼 + 𝛷(𝐴))
−1
≤ 𝛷(𝐴2(𝜆𝐼 + 𝐴)−1) 

In both inequalities, equality holds if and only if 𝛷(𝐴) = 𝐴 i.e. 𝐴 ∈ 𝒮. 
Proof. These inequalities follow from Theorem (4.3.24), after noting the following algebraic 

identitites : 

𝑋(𝜆𝐼 + 𝑋)−1 = 𝐼 − 𝜆𝐼(𝜆𝐼 + 𝑋)−1, 

𝑋2(𝜆𝐼 + 𝑋)−1 = 𝑋 − 𝜆𝐼 + 𝜆2𝐼(𝜆𝐼 + 𝑋)−1 

Theorem (4.3.26) [225]: Let 𝑓 be an operator monotone function defined on the interval 

[0,∞). Then for a regular positive operator 𝐴, we have the following 𝑖𝑖2equality : 

𝛷(𝑓(𝐴)) ≤ 𝑓(𝛷(𝐴)) ,                                   (49) 

with equality if and only if either 𝑓 is linear with positive slope or 𝛷(𝐴) = 𝐴. 

Proof. Let 𝑓 be operator monotone. From Theorem (4.3.13), we have a finite positive 

measure 𝜇 on (0,∞) and real numbers 𝑎, 𝑏 with 𝑏 ≥ 0, such that 

𝑓(𝑡) = 𝑎 + 𝑏𝑡 + ∫
(𝜆 + 1)𝑡

𝜆 + 𝑡

∞

0

𝑑𝜇(𝜆) . 

Consider the continuous family of operators H(𝜆):= 𝛷((𝜆 + 1)𝐴(𝜆𝐼 + 𝐴)−1) − (𝜆 +

1)𝛷(𝐴)(𝜆𝐼 + 𝛷(𝐴))−1 parametrized by ∈ (0,∞) . Note that as 𝐴 is regular, H(0) is well‐

defined and equal to 0. By Corollary (4.3.25) (i), we have that the family H consists of 
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positive operators and H(𝜆) = 0 for some 𝜆 ∈ (0,∞) if and only if 𝛷(𝐴) = 𝐴. We get the 

desired inequality below, 

𝛷(𝑓(𝐴)) − 𝑓(𝛷(𝐴)) = ∫ H
∞

0

(𝜆)𝑑𝜇(𝜆) ≥ 0. 

The next step is to find necessary and sufficient conditions for equality in (49). Note that for 

any continuous function 𝑓 on [0,∞), if 𝐴 is in 𝒮, then 𝑓(𝐴) is also in 𝒮. Thus 𝛷(𝐴) = 𝐴 

implies that (𝑓(𝐴)) = 𝑓(𝐴) = 𝑓(𝛷(𝐴)) . Also if 𝑓 is linear, clearly (𝛷(𝐴)) = 𝛷(𝑓(𝐴)) . 

If 𝑓(𝛷(𝐴)) = 𝛷(𝑓(𝐴)) and 𝛷(𝐴) ≠ 𝐴, from the equality condition in Corollary (4.3.25), 

we conclude that H(𝜆′) ≠ 0 for any 𝜆′ ∈ (0,∞) . For a vector 𝑥 in ℋ, one may define a 

positive continuous function ℎ𝑥 on (0,∞) by ℎ𝑥(𝜆) = 〈H(𝜆)𝑥, 𝑥〉. Note that for each 𝜆′ in 

(0,∞) , there is a vector 𝑥𝜆′ such that ℎ𝑥𝜆 , (𝜆
′) > 0 and thus a neighborhood 𝑁𝜆′  of 𝜆′ where 

ℎ𝑥𝜆, is strictly positive. As ∫ ℎ𝑥
∞

0
(𝜆)𝑑𝜇(𝜆) = 0 for all vectors 𝑥 in ℋ, in particular, we 

have that ∫ ℎ𝑥𝜆
∞

0
, (𝜆)𝑑𝜇(𝜆) = 0. We conclude that 𝜇 is not supported on 𝑁𝜆′  for any 𝜆′ in 

(0,∞) and thus 𝑓(𝑡) = 𝑎 + 𝑏𝑡. Hence if 𝑓(𝛷(𝐴)) = 𝛷(𝑓(𝐴)) and 𝛷(𝐴) ≠ 𝐴, we have that 

𝑓 must be a linear function with positive slope. 

Theorem (4.3.27) [225]: Let 𝑓 be an operator convex function defined on the interval 

[0,∞). Then for a regular positive operator 𝐴 in ℛ, we have the following inequality: 

𝑓(𝛷(𝐴)) ≤ 𝛷(𝑓(𝐴)) ,                               (50) 

with equality if and only if either 𝑓 is linear, or 𝛷(𝐴) = 𝐴 i.e. 𝐴 ∈ 𝒮. 

Proof. Let 𝑓 be operator convex and assume that 𝑓′(0+) exists. From Theorem (4.3.14), we 

have a finite positive measure 𝜇 on [0,∞) and real numbers 𝑎, 𝑏, 𝑐 with 𝑐 non‐negative, 

such that 

𝑓(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 +∫
(𝜆 + 1)𝑡2

𝜆 + 𝑡

∞

0

𝑑𝜇(𝜆) . 

Using Corollary (4.3.25) (ii) and inequality (47), we may essentially mimic the proof in 

Theorem (4.3.26) adapting it to the case of operator convex functions. What deserves 

mention is the disappearance of the quadratic term 𝑐𝑥2 in the equality case. We start with 

the assumption that 𝛷(𝐴) ≠ 𝐴. Since (𝑓(𝐴)) = 𝑓(𝛷(𝐴)) , we must have 𝑐𝛷(𝐴2) =

𝑐𝛷(𝐴)2 as 〈(𝑐𝛷(𝐴2) − 𝑐𝛷(𝐴)2)𝑥, 𝑥〉 = 0 for all 𝑥 in ℋ. Thus, from the equality condition 

in Theorem (4.3.24), we see that 𝑐 = 0. The rest of the proof for the equality case is similar 

to the case of operator monotone functions. We conclude that if 𝑓(𝛷(𝐴)) = 𝛷(𝑓(𝐴)) and 

𝛷(𝐴) ≠ 𝐴, 𝑓 must be a linear function. 

Finally we get rid of the assumption of existence of 𝑓′(0+) . Let 𝜀 > 0 be such that 

𝜀𝐼 ≤ 𝐴 and define a function 𝑔 on [0,∞) by 𝑔(𝑥):= 𝑓 (𝑥 +
𝜀

2
).Note that 𝑔 is an operator 

convex function on [0,∞) and 𝑔’(0) = 𝑓’ (
𝜀

2
) exists. For the regular positve operator 𝐴𝜖: =

𝐴 −
ϵ

2
𝐼, we conclude that 𝑔(𝛷(𝐴𝜀)) ≤ 𝛷(𝑔(𝐴𝜀)) ⇒ 𝑓(𝛷(𝐴)) = 𝑓 (𝛷(𝐴𝜀) +

𝜀

2
𝐼) ≤

𝛷(𝑓 (𝐴𝜀 +
𝜀

2
𝐼) = 𝛷(𝑓(𝐴))with equality if and only if either 𝑔 is linear or 𝛷(𝐴𝜀) =

𝐴𝜀𝑖. 𝑒. 𝑓 is linear or 𝛷(𝐴) = 𝐴. 
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The inequalities in Theorem (4.3.26), Theorem (4.3.27) involve similar‐looking quantities, 

the direction is reversed. 

Theorem (4.3.28) [225]: Let  𝑓:(0,∞) → (0,∞) be a non‐constant operator monotone 

function. Then for a regular positive operator 𝐴 in ℛ, we have the following inequality, 

△ (𝑓(𝐴)) ≤△ (𝑓(𝛷(𝐴)) ,                          (51) 

with equality if and only if 𝛷(𝐴) = 𝐴 i.e. 𝐴 ∈ 𝒮. 

Proof. As  log  is an operator monotone function on (0,∞) , we observe that  log 𝑓 is also 

operator monotone on (0,∞) . As the exponential function is not operator monotone, note 

that  log 𝑓 is not linear. Thus from Theorem (4.3.26), we have that 

𝛷( log 𝑓(𝐴)) ≤  log 𝑓(𝛷(𝐴))) , 

with equality if and only if 𝛷(𝐴) = 𝐴. As 𝜏 is a faithful state, using the trace‐preserving 

nature of 𝛷, we have 

𝜏 (𝛷( log 𝑓(𝐴))) = 𝜏( log 𝑓(𝐴)) ≤ 𝜏 ( log 𝑓(𝛷(𝐴))) , 

and equality holds if and only if 𝛷(𝐴) = 𝐴. Applying the exponential function, which is 

strictly increasing, to both sides of the inequality, we get the desired inequality with equality 

if and only if 𝛷(𝐴) = 𝐴.  

Corollary (4.3.29) [225]: For a regular positive operator 𝐴 in ℛ, we have that 

△ (𝐼 + 𝛷(𝐴)−1) ≤△ (𝐼 + 𝐴−1) ,                               (52) 
with equality if and only if 𝛷(𝐴) = 𝐴 i.e. 𝐴 ∈ 𝒮. 

Theorem (4.3.30) [225]: For a regular positive operator 𝐴 in ℛ, and a positive operator 𝐵 

in 𝒮, the following inequality holds : 

△ (𝛷(𝐴) + 𝐵))

△ (𝛷(𝐴))
≤
△ (𝐴 + 𝐵)

△ (𝐴)
                         (53) 

If 𝐵 is regular, equality holds if and only if 𝛷(𝐴) = 𝐴 i.e. 𝐴 ∈ 𝒮. 

(Note that when 𝐵 = 0, equality holds for any regular positive operator A. This illustrates 

that when 𝐵 is not regular, the characterizing conditions for equality may not be as simple 

in form.) 

Proof. As 𝐴 is regular, there is an 𝜀 > 0 such that 𝜀𝐼 ≤ 𝐴. First we prove the inequality for 

the regular operators 𝐴𝜀: = 𝐴 −
𝜀

2
𝐼, 𝐵𝜀𝑗: = 𝐵 +

𝜀

2
𝐼. We observe that 

𝜀:

2
𝐼 ≤ 𝛷(𝐴𝜀𝑗), 

𝜀

2
𝐼 ≤ 𝐵𝜀 

as a result of which 𝛷(𝐴𝜀), 𝐵𝜀 are also regular. Using the multiplicativity of △, we can 

rewrite both sides of the inequality in the following manner : 

△ (𝐴𝜀: + 𝐵𝜀:)

△ (𝐴6)
=△ (𝐼 + 𝐵

1
𝜀2𝐴𝜀

−1𝐵
1
𝜀2) , 

△ (𝛷(𝐴𝜀) + 𝐵𝜀)

△ (𝛷(𝐴𝜀))
=△ (𝐼 + 𝐵

1
𝜀2𝛷(𝐴𝜀)

−1𝐵
1
𝜀2) . 

Note that 𝑋 : = 𝐵𝜀
−
1

2𝐴𝜀𝐵𝜀
−
1

2 is a regular positive operator. As 𝐵𝜀
−
1

2 is in 𝒮, 𝛷(𝑋) =

𝐵𝜀
−
1

2𝛷(𝐴𝜀)𝐵𝜀
−
1

2 From Corollary (4.3.28), 

△ (𝐼 + 𝛷(𝑋)−1) ≤△ (𝐼 + 𝑋−1) . 
which proves the inequality for 𝐴𝜀 , 𝐵𝜀. Note that 𝛷(𝐴) + 𝐵 = 𝛷(𝐴𝜀) + 𝐵𝜀 and 𝐴 + 𝐵 =

𝐴𝜀 + 𝐵𝜀 . Thus we have that 
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△ (𝛷(𝐴) + 𝐵)

△ (𝛷(𝐴𝜀))
≤
△ (𝐴 + 𝐵)

△ (𝐴𝜀)
. 

Taking the limit as 𝜀 → 0+, we get the required inequality. 

If 𝐵 is regular, then we may directly follow the above steps without performing the 

perturbative step of defining 𝐴𝜀 , 𝐵𝜀 and instead defining  : = 𝐵−
1

2𝐴𝐵−
1

2. Noting that 𝐵−
1

2 is 

in 𝒮 and using the equality condition in Corollary (4.3.29), we see that equality holds if and 

only if 𝛷(𝑋) = 𝑋 ⇔ 𝐵−
1

2𝛷(𝐴)𝐵−
1

2 = 𝛷 (𝐵−
1

2𝐴𝐵−
1

2) = 𝐵−
1

2𝐴𝐵−
1

2 ⇔ 𝛷(𝐴) = 𝐴. 

Remark (4.3.31) [225]: The following generalized form of inequality (53), 

△ (𝛷(𝐴) + 𝛷(𝐵))

△ (𝛷(𝐴))
=
△ (𝛷(𝐴 + 𝐵))

△ (𝛷(𝐴))
≤
△ (𝐴 + 𝐵)

△ (𝐴)
            (54) 

does not hold for an arbitrary choice of positive operators 𝐴, 𝐵 in ℛ with 𝐴 being regular. 

From Theorem (4.3.22), we have that △ (𝐼 + 𝐵) ≤△ (𝛷(𝐼 + 𝐵)) =△ (𝐼 + 𝛷(𝐵)) with 

equality if and only if 𝛷(𝐼 + 𝐵) = 𝐼 + 𝐵 i.e. 𝛷(𝐵) = 𝐵. So inequality (54) is clearly untrue 

if 𝐴 = 𝐼 and 𝐵 is not in 𝒮 i.e. 𝛷(𝐵) ≠ 𝐵.  

In the remaining portion we establish versions of some of the inequalities proved above, in 

a more general setting. Broadly speaking, conditional expectations on ℛ are replaced by the 

more general unital positive maps on ℛ, again denoted by 𝛷. For a detailed study of positive 

linear maps between operator algebras, we direct the reader to  [234] (see also  [235]). By 

the Kadison‐Schwarz inequality ( [230]), inequality (47) still holds in this context. In 

addition, if 𝛷 were a unital 2‐positive map, then the proof for inequality (48) in Theorem 

(4.3.24) goes through. The map  : ℛ → ℛ is said to be 𝜏‐preserving or trace‐preserving if 

𝜏(𝑋) = 𝜏(𝛷(𝑋)) for all 𝑋 in ℛ. A careful scrutiny would reveal that for 𝛷 a trace‐preserving 

unital 2‐positive map, the determinant inequalities (51), (52) are still valid. We mention the 

appropriate version of the result for unital 2‐positive maps below. The trade‐off for this level 

of generality is that we are unable to find straightforward conditions for equality. 

Theorem (4.3.32) [225]: Let  Φ: ℛ → ℛ be a unital 2‐positive map which is 𝜏‐preserving 

and 𝐴 be a regular positive operator in ℛ. For a positive‐valued operator monotone function 

𝑓 on (0,∞) , we have the following inequality: 

△ (𝑓(𝐴)) ≤△ (𝑓(𝛷(𝐴))) . 

In addition to the preceding comments, we also explore another direction of generalization 

below. We first prove a convexity inequality as a form of Jensen’s inequality. Although the 

basic idea is contained in the proof of   [234], we adapt the relevant parts to our discussion 

for the sake of clarity and continuity. 

Proposition (4.3.33) [225]: Let  Φ: ℛ → ℛ be a unital positive map. Let 𝑓 be a real‐valued 

continuous convex function defined on the interval [𝑎, 𝑏] ⊆ ℝ. Then for every self‐adjoint 

operator 𝐴 in ℛ with spectrum in [𝑎, 𝑏], 𝛷(𝐴) also has spectrum in [𝑎, 𝑏] and we have the 

following inequality : 

𝜏 (𝑓(𝛷(𝐴))) ≤ 𝜏 (𝛷(𝑓(𝐴))) . 
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Proof. As the spectrum of 𝐴 is contained in [𝑎, 𝑏], we note that 𝑎𝐼 ≤ 𝐴 ≤ 𝑏𝐼. Since 𝛷 is a 

unital positive map, we conclude that 𝑎𝐼 = 𝛷(𝑎𝐼) ≤ 𝛷(𝐴) ≤ 𝛷(𝑏𝐼) = 𝑏𝐼. Thus 𝛷(𝐴) also 

has spectrum in [𝑎, 𝑏]. 

Let 𝒜 be a masa of ℛ containing (𝐴) . By Theorem (4.3.12), there is a unique 

tracepreserving conditional expectation  Ψ: ℛ → 𝒜. Note that 𝛹 ∘ 𝛷 is a unital positive map 

into a commutative von Neumann algebra 𝒜, and (𝛹 ∘ 𝛷)(𝐴) = 𝛷(𝐴) . From Theorem 

(4.3.21), we have that 

𝑓(𝛷(𝐴)) = 𝑓((𝛹 ∘ 𝛷)(𝐴)) ≤ (𝛹 ∘ 𝛷)(𝑓(𝐴)) . 

Using the positivity of the trace and trace‐preserving nature of 𝛹, we conclude that 

𝜏(𝑓(𝛷(𝐴)) ≤ 𝜏 (𝛹 (𝛷(𝑓(𝐴)))) = 𝜏 (𝛷(𝑓(𝐴))) . 

Theorem (4.3.34) [225]: Let  𝛷: ℛ → ℛ be a trace‐preserving unital positive map. Let 𝑓 be 

a continuous positive function defined on the interval [𝑎, 𝑏] ⊆ ℝ such that log 𝑓 is convex 

(in other words, 𝑓 is log‐convex). Then for every positive operator 𝐴 in ℛ, we have the 

following inequality: 

△ (𝑓(𝛷(𝐴)) ≤△ (𝑓(𝐴))                                 (55) 

Proof. Using Proposition (4.3.33), from the convexity of  log 𝑓 and trace‐preserving nature 

of 𝛷, we observe that, 

𝜏 ( log 𝑓(𝛷(𝐴))) ≤ 𝜏 (𝛷( log 𝑓(𝐴))) = 𝜏( log 𝑓(𝐴)) . 

Thus △ (𝑓(𝛷(𝐴))) =  exp (𝜏 ( log 𝑓(𝛷(𝐴)))) ≤  exp (𝜏( log 𝑓(𝐴))) =△ (𝑓(𝐴)) .  

Corollary (4.3.35) [225]: Let  Φ: ℛ → ℛ be a trace‐preserving unital positive map. Then 

for every positive operator 𝐴 in ℛ, we have the following inequality: 

△ (𝐴) ≤△ (𝛷(𝐴))                                    (56) 

Further, if 𝐴 is also regular, then we have that 

△ (𝛷(𝐴−1)−1) ≤△ (𝐴)                             (57) 

Proof. For 𝑏 > 𝜀 > 0, the function 𝑓: [𝜀, 𝑏] → ℝ defined by 𝑓(𝑥) =
1

𝑥
, is a  log ‐convex 

function. From Theorem (4.3.34), for a regular positive operator 𝐴 with spectrum in [𝜀, 𝑏], 
we have that 

△ (𝛷(𝐴)−1) ≤△ (𝐴−1) . 
Thus using the multiplicativity of the Fuglede‐Kadison determinant, we conclude that 

△ (𝐴) ≤△ (𝛷(𝐴)) . 

If 𝐴 is any positive operator (not necessarily regular), applying the inequality to the regular 

positive operator 𝐴 + 𝜀𝐼 (for 𝜀 > 0), we note that △ (𝐴 + 𝜀𝐼) ≤△ (𝛷(𝐴 + 𝜀𝐼)) =△

(𝛷(𝐴) + 𝜀𝐼) . Keeping in mind that △ is a continuous function on ℛ, and taking the limit 

as 𝜀 → 0+, we note that △ (𝐴) ≤△ (𝛷(𝐴)) for all positive operators 𝐴 in ℛ. 

If 𝐴 is regular, then by the inequality proved above △ (𝐴−1) ≤△ (𝛷(𝐴−1)) . Using the 

multiplicativity of △, we conclude that 

△ (𝛷(𝐴−1)−1) ≤△ (𝐴) . 
Corollary (4.3.36) [225]: Let  Φ: ℛ → ℛ be a trace‐preserving unital positive map. Then 

for every regular positive operator 𝐴 in ℛ, we have that 
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△ (𝐼 + 𝛷(𝐴)−1) ≤△ (𝐼 + 𝐴−1) .                  (58) 
Proof. As 𝐴 is a regular positive operator, there is an 𝜀 > 0 such that 𝜀𝐼 ≤ 𝐴. For 𝑏 > 𝜀 >

0,the function f: [𝜀, 𝑏] → ℝ defined by 𝑓(𝑥) =
𝑥+1

𝑥
= 1 +

1

𝑥
 is a log -convex function as the 

second derivative of log (
𝑥+1

t𝑥
) =  log (𝑥 + .1) −  log is 

1

𝑥2
−

1

𝑥

(𝑥+1)2
 which is greater than 

0.The required inequality is just inequality (55) for 𝑓 considered above. 

Corollary (4.3.37) [225]: Let  Φ: ℛ → ℛ be a 𝑡𝜏a𝑐e‐preserving unital positive map. For 

positive operators 𝐴, 𝐵 in ℛ with 𝐴 being regular, the following inequality holds : 

△ (𝐴 + 𝐵)

△ (𝐴)
≤
△ (𝛷(𝐴) + 𝛷(𝐵))

△ (𝛷(𝐴−1)−1)
                 (59) 

Proof. Using Corollary (4.3.35), we observe that the following inequalities hold, 

△ (𝐴 + 𝐵) ≤△ (𝛷(𝐴 + 𝐵)) =△ (𝛷(𝐴) + 𝛷(𝐵)) , 
1

△ (𝐴)
=△ (𝐴−1) ≤△ (𝛷(𝐴−1)) =

1

△ (𝛷(𝐴−1)−1)
. 

Multiplying both the inequalities gives us (59).  

Here we make the appropriate choices of the finite von Neumann algebra ℛ, the von 

Neumann subalgebra 𝒮 of ℛ, and the trace‐preserving conditional expectation 𝛷, to obtain 

the inequalities mentioned. We also provide several subtle improvements to Theorem (4.3.3) 

and Theorem (4.3.38). 

We follow the notation in Example (4.3.9). Let ℛ = 𝑀𝑛(ℂ) , 𝒮 = 𝐷𝑛(ℂ) , and 𝛷 : 

ℛ → 𝒮 be given by 𝛷(𝐴) : = diag(𝑎11, ⋯ , 𝑎𝑛𝑛) . For a positive‐definite matrix 𝐴, we have 

from Theorem (4.3.22) that √ det 𝐴
𝑛

=△ (𝐴) ≤△ (𝛷(𝐴)) = √𝑎11𝑎𝑛𝑛
𝑛 . Taking 𝑛th powers 

on both sides, we obtain Hadamard’s inequality, and equality holds if and only if 𝛷(𝐴) = 𝐴 

i.e. 𝐴 is a diagonal matrix. 

For the remaining three inequalities, we are in the setting of Example (4.3.10). Let ℛ =

𝑀𝑛(ℂ), 𝒮 = 𝑀𝑛1(ℂ)⊕⋯⊕𝑀𝑛𝑘(ℂ) , and  Φ: ℛ → 𝒮 be given by 𝛷(𝐴) =

diag(𝐴11, ⋯ , 𝐴𝑘𝑘) . 

For a positive‐definite matrix 𝐴, we have from Theorem (4.3.22) that  det 𝐴 =△

(𝐴)𝑛 ≤△ (𝛷(𝐴))
𝑛
=  det (diag(𝐴11, ⋯ , 𝐴𝑘𝑘)) = ( det 𝐴11)⋯ ( det 𝐴𝑘𝑘) . This gives us 

Fischer’s inequality, and equality holds if and only if 𝛷(𝐴) = 𝐴 i.e. 𝐴 is a block diagonal 

matrix. 

Consider a positive‐definite matrix 𝐶 in 𝑀𝑛(ℂ) , and a positive‐definite matrix 

𝐷 =diag (𝐷1, ⋯ , 𝐷𝑘) in 𝑀𝑛1(ℂ)⊕⋯⊕𝑀𝑛𝑘(ℂ) . Let the principal diagonal blocks of 𝐶 

be denoted by 𝐶1, ⋅⋅⋅ , 𝐶𝑘. We observe that, 

 det (𝐶1 + 𝐷1)

 det (𝐶1)
…
 det (𝐶𝑘 + 𝐷𝑘)

 det (𝐶𝑘)
=
 det (diag(𝐶1 + 𝐷1, ⋯ . ’𝐶𝑘 + 𝐷𝑘))

 det (diag(𝐶1,⋅⋅, 𝐶𝑘))

=
 det (𝛷(𝐶) + 𝐷)

 det (𝛷(𝐶))
. 

Thus, from Theorem (4.3.30), we have that, 
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 det (𝛷(𝐶) + 𝐷)

 det (𝛷(𝐶))
= (

△ (𝛷(𝐶) + 𝐷)

△ (𝛷(𝐶))
)

𝑛

≤ (
△ (𝐶 + 𝐷)

△ (𝐶)
)

𝑛

=
 det (𝐶 + 𝐷)

 det (𝐶)
. 

This proves Theorem (4.3.3) and equality holds if and only if 𝛷(𝐶) = 𝐶 i.e. 𝐶 is in block 

diagonal form. If 𝐷 is positive‐semidefinite, the inequality still holds but the equality 

condition may not be applicable as noted in the parenthetical remark following the statement 

of Theorem (4.3.30). 

Theorem (4.3.38) [225]: For each 𝑖 ∈ 〈𝑘〉, let 𝐶𝑖 , 𝐷𝑖 be positive‐definite matrices in 𝑀𝑛𝑖(ℂ) 

. Let 𝐶 be a positive‐definite matrix in block form in 𝑀𝑛(ℂ) such that the principal diagonal 

blocks of 𝐶−1 (in block form) is given by 𝐶1
−1, 𝐶2

−1, ⋅⋅⋅ , 𝐶𝑘
−1 Then the following inequality 

holds, 

 det (𝐶 + diag(𝐷1,⋯ , 𝐷𝑘))

 det (𝐶)
≤
 det (𝐶1 + 𝐷1)

 det (𝐶1)
⋯
 det (𝐶𝑘 + 𝐷𝑘)

 det (𝐶𝑘)
.   (60) 

Proof . Consider a positive‐definite matrix 𝐶 in 𝑀𝑛(ℂ) , and a positive‐semidefinite matrix 

𝐷 = diag (𝐷1, ⋯ , 𝐷𝑘) in 𝑀𝑛1(ℂ)⊕ ⋅⋅⋅ ⊕𝑀𝑛𝑘(ℂ) . Let 𝐶1, ⋅⋅⋅ , 𝐶𝑘 be positive‐definite 

matrices such that the principal diagonal blocks of 𝐶−1 are given by 𝐶1
−1, ⋅⋅⋅ , 𝐶𝑘

−1; in other 

words, 𝛷(𝐶−1) = diag(𝐶1
−1, ⋯ , 𝐶𝑘

−1) or 𝛷(𝐶−1)−1 = diag (𝐶1, ⋯ , 𝐶𝑘) . We observe that, 

 det (𝐶1 + 𝐷1)

 det (𝐶1)
…
 det (𝐶𝑘 + 𝐷𝑘)

 det (𝐶𝑘)
=
 det (diag(𝐶1 + 𝐷1, … , 𝐶𝑘 + 𝐷𝑘))

 det (diag(𝐶1, … , 𝐶𝑘))

=
 det (𝛷(𝐶−1)−1 + 𝐷)

 det (𝛷(𝐶−1)−1)
. 

Thus, from Corollary (4.3.23), we have that, 

 det (𝛷(𝐶−1)−1 + 𝐷)

 det (𝛷(𝐶−1)−1)
= (

△ (𝛷(𝐶−1)−1 + 𝐷)

△ (𝛷(𝐶−1)−1)
)

𝑛

≥ (
△ (𝐶 + 𝐷)

△ (𝐶)
)

𝑛

=
 det (𝐶 + 𝐷)

 det (𝐶)
. 

This proves Theorem (4.3.38) and equality holds if and only if 𝐷
1

2𝐶−1𝐷
1

2 is in block diagonal 

form i.e. 𝐷
1

2𝐶−1𝐷
1

2 is in 𝑀𝑛1(ℂ)⊕⋯⊕𝑀𝑛𝑘(ℂ). 
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Chapter 5 

Isometries and Geometric Version 

 

A variety of tools is used, such as topological, geometrical and linear algebra 

techniques. The famous two projections theorem for two finite rank projections will be re-

proven using linear algebraic methods. A theorem of Gyory and on orthogonality preservers 

on Grassmann spaces will be strengthened as well. This latter result will be obtained by 

using Chow’s fundamental theorem of geometry of Grassmannians. We give a very natural 

joint generalisation of Wigner’s and Molnár’s theorems, namely, we show a characterisation 

of all (not necessarily bijective) transformations on the Grassmann space which fix the 

quantity Tr P Q (i.e. the sum of the squares of cosines of principal angles) for every pair of 

rank-n projections P and Q. We get the following: if the dimension of 𝐻 is finite and greater 

than 2𝑘, then every transformation of 𝒢𝑘(𝐻) preserving the orthogonality relation in both 

directions is a bijection induced by a unitary or anti-unitary operator. 

Section (5.1): Grassmann Spaces  

The form of (surjective) isometries of linear normed spaces is an area of functional 

analysis. A theorem of Mazur and Ulam states that every surjective isometry between two 

real normed spaces is automatically an affine map, i.e. a composition of a linear map and a 

translation by a vector. Therefore if the spaces are isomorphic as metric spaces, then they 

are also isomorphic as vector spaces. Another classical example of this is the famous 

Banach‐Stone theorem which describes surjective linear isometries between Banach spaces 

𝐶(𝑋) and 𝐶(𝑌) of continuous functions over compact Hausdorff spaces 𝑋 and 𝑌. An 

immediate consequence of this result is that the existence of a metric isomorphism between 

𝐶(𝑋) and 𝐶(𝑌) implies the topological equivalence of the underlying spaces 𝑋 and 𝑌. The 

non‐commutative extension of this theorem was provided by Kadison, who in particular 

showed that surjective linear isometries between 𝐶∗‐algebras are closely related to algebra 

isomorphisms. See  [244],  [244] for more results in this direction. 

Isometries of non‐linear spaces are also very important in functional analysis. The famous 

Wigner’s theorem, playing an important role in the probabilistic aspects of quantum 

mechanics, can be interpreted as a structural result for isometries of a certain non‐linear 

space. Let 𝐻 be a complex (or real) Hilbert space. In quantum physics the Grassmann space 

𝑃1(𝐻) of all rank‐one (orthogonal) projections is used to represent the set of pure states of 

the quantum system, and the quantity tr (𝑃𝑄) is the so‐called transition probability between 

two pure states. Wigner’s theorem describes those transformations of 𝑃1(𝐻) which preserve 

the transition probability. The conclusion is that these transformations are induced by linear 

or conjugate‐linear isometries of 𝐻. One can easily obtain the following equation: ‖𝑃 −

𝑄‖ = √1 − tr𝑃𝑄(𝑃, 𝑄 ∈ 𝑃1(𝐻)) , where ‖ ⋅ ‖ denotes the operator norm. The metric on 

𝑃1(𝐻) (or on any other subset of projections) which is induced by the operator norm is 

usually called the gap metric. Therefore, Wigner’s theorem characterizes isometries of 

𝑃1(𝐻) with respect to the gap metric, and in fact it states that these maps are induced by 

isometries of the underlying space 𝐻. we note that in its original version, Wigner’s theorem 

describes surjective mappings of this kind, but as was shown later in several the above 

conclusion holds for non‐surjective transformations as well. The gap metric was introduced 
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and investigated by Sz.‐Nagy and independently by Krein and Krasnoselski under the name 

“ aperture” It has a wide range of applications from pure mathematics to engineering. One 

can easily find several references demonstrating this broad applicability, among others, we 

list the following fields: perturbation theory of linear operators, perturbation analysis of 

invariant subspaces, optimization, robust control, multi‐variable control, system 

identification and signal processing. 

Since Wigner’s theorem quite a lot of attention has been paid to the study of isometries of 

non‐linear spaces. Here, we are interested in the description of surjective isometries on the 

Grassmann space 𝑃𝑛(𝐻) of all rank 𝑛 projections with respect to the gap metric (𝑛 ∈ ℕ) . 

In  [247], Molnár characterized (not necessarily surjective) transformations of 𝑃𝑛(𝐻) which 

preserve the complete system of the so‐called principal angles. These transformations are 

implemented by an isometry of 𝐻. The notion of principal angles was first investigated by 

Jordan, and has a wide range of applications such as in mathematical statistics, geometry, 

etc. We recall that the sines of the non‐zero principal angles are exactly the non‐zero singular 

values of the operator 𝑃 − 𝑄, each of them counted twice (see e.g. (ii) of  [245]). This further 

implies that the quantity ‖𝑃 − 𝑄‖ is the sine of the largest principal angle. Recently, 

Botelho, Jamison, and Molnár have obtained a characterization of surjective isometries of 

𝑃𝑛(𝐻) with respect to the gap metric for complex Hilbert spaces 𝐻 under the dimensionality 

constraint  dim 𝐻 ≥ 4𝑛 ( [241]). Their approach was to apply a non‐commutative Mazur‐
Ulam type result on the local algebraic behaviour of surjective isometries between 

substructures of metric groups. Then they proved that such a mapping preserves 

orthogonality in both directions, and finally they applied a theorem of Györy and Šemrl ( 

[246],  [247]), which contains some dimensionality constraint, too. 

We provide a completely different approach to Botelho‐Jamison‐Molnár’s generalization of 

Wigner’s theorem. We will remove the dimensionality assumption, and in finite dimensions 

we are able to drop the surjectivity condition. As a byproduct, we are also able to handle the 

real case. Furthermore, an additional possibility occurs in the case when  dim 𝐻 = 2𝑛, 
which was not covered in  [241]. 

We state the main result on isometries of the Grassmannians. 

In the case when  dim 𝐻 = 2𝑛, we have either (1), or the following additional 

possibility occurs: 

𝜑(𝑃) = 𝑈(𝐼 − 𝑃)𝑈∗(𝑃 ∈ 𝑃𝑛(𝐻)) .                           (1) 

If  dim 𝐻 < ∞, then we have the above conclusion without assuming surjectivity. 

whenever we say a projection we automatically mean an orthogonal projection. We will 

consider two arbitrary projections 𝑃 and 𝑄, and we will investigate the set 𝑀(𝑃,𝑄) which 

consists of those projections whose distance to both 𝑃 and 𝑄 is less than or if 𝑃 and 𝑄 are 

orthogonal  

. This will imply that orthogonality is preserved in both directions by 𝜑. In the case when 

dim 𝐻 >  2𝑛 the proof is completed by a straightforward application of our second main 

result stated below. In the case when  dim 𝐻 = 2𝑛, the orthogonality preservers can behave 

badly. So, in this special case another approach is needed. It is based on a theorem of Blunck 

and Havlicek on complementarity preservers. 

We consider a manifold, we always mean a topological manifold without boundary. 
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Now, we state our improvement of the theorem of Györy and Šemrl. 

We will first prove several lemmas concerning the properties of the above mentioned 

set (𝑃, 𝑄) . We also include a proof of the well‐known two projections theorem in the case 

when the projections are both from 𝑃𝑛(𝐻) . is devoted to the proofs of Theorems (5.1.9) 

and (5.1.8). 
We will often use matrix representation of operators. In all such cases the matrices 

and the block‐matrix forms are written with respect to an orthonormal system or an 

orthogonal decomposition, respectively. By Diag (. . .) we will denote a (block‐)diagonal 

matrix. In our first lemma we consider the operator norm of certain two by two matrices. 

Furthermore, in both cases equality holds if and only if 𝛼 = −
1

2
. 

Lemma (5.1.1) [239]: We have 

‖ [

1

2

1

2
1

2
𝛼

] ‖ ≥
1

√2
 𝑎𝑛𝑑 ‖ [

1

2
−
1

2

−
1

2
𝛼

] ‖ ≥
1

√2
 (−

1

2
≤ 𝛼 ≤

1

2
) . 

Proof. The proof of the two cases are almost identical, so we will only deal with the first 

one. If we set 𝐴𝛼 = [

1

2

1

2
1

2
𝛼
] with − 

1

2
≤ 𝛼 ≤

1

2
, then clearly, 

1

2
+ 𝛼 = tr𝐴𝛼 ≥ 0 𝑎𝑛𝑑 

𝛼

2
−
1

4
=  det 𝐴𝛼 ≤ 0.                       (2) 

Since 𝐴𝛼 is hermitian in the complex case and symmetric in the real case, we have ‖𝐴𝛼‖ =

 max {|𝑡1|, |𝑡2|}, where 𝑡1, 𝑡2 are the (possibly equal) eigenvalues of 𝐴𝛼. Because of (2) we 

get 

𝑓(𝛼) = 2‖𝐴𝛼‖ = 2 max {|𝑡1|, |𝑡2|} = 𝑡1 + 𝑡2 + |𝑡1 − 𝑡2| 

= tr𝐴𝛼 +√(tr𝐴𝛼)
2 − 4 det 𝐴𝛼 = 𝛼 +

1

2
+ √𝛼2 − 𝛼 +

5

4
. 

Since 𝑓(−1/2) = √2, and 

𝑓′(𝛼) = 1 +
−1 + 2𝛼

2√
5
4
− 𝛼 + 𝛼2

> 0 (𝛼 ∈ [−
1

2
,
1

2
]) , 

we easily complete the proof. 

The set of bounded linear operators acting on 𝐻 is denoted by (𝐻) . For any two projections 

𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) we define the following set: 

𝑀(𝑃, 𝑄) = {𝑅 ∈ 𝑃𝑛(𝐻) ∶  ‖𝑅 − 𝑃‖ ≤
1

√2
 𝑎𝑛𝑑 ‖𝑅 − 𝑄‖ ≤

1

√2
}. 

This set will play an important role. If 𝐴 ⊂ 𝐻 is a set, then 𝐴⊥ and span 𝐴 denote the set of 

all vectors which are orthogonal to every element of 𝐴, and the (not necessarily closed) 

linear manifold generated by 𝐴, respectively. We will give a useful description of the set 

𝑀(𝑃,𝑄) when ‖𝑃 − 𝑄‖ = 1. 

Lemma (5.1.2) [239]: Let 𝐻 be a real or complex Hilbert space, 𝑛 a positive integer, and 

𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) such that ‖𝑃 − 𝑄‖ = 1. Then for every 𝑅 ∈ 𝑀(𝑃, 𝑄) there exist an 
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orthogonal decomposition 𝐻 = 𝐻1⊕𝐻2 with  dim 𝐻1 = 2 and an orthonormal basis 

{𝑒1, 𝑒2} in 𝐻1, such that with respect to this decomposition and this orthonormal basis the 

projections 𝑃, 𝑄, 𝑅 have the following matrix representations: 

𝑃 = [
[
1 0
0 0

] 0

0 𝑃1
] 𝑄 = [

[
0 0
0 1

] 0

0 𝑄1
] , 𝑎𝑛𝑑 𝑅 =

[
 
 
 
 
[

1

2

1

2
1

2
 
1

2

] 0

0 𝑅1]
 
 
 
 

 

 where 𝑃1, 𝑄1, 𝑅1 ∈ 𝑃𝑛−1 (𝐻2). 

Proof. In both, the real and the complex case, we have 1 = ‖𝑃 − 𝑄‖ =  max {|〈(𝑃 −

𝑄)𝑥, 𝑥〉| ∶  𝑥 ∈ 𝐻, ‖𝑥‖ = 1}. Since 𝑃 and 𝑄 are projections we know that 

0 ≤  〈𝑃𝑥, 𝑥〉, 〈𝑄𝑥, 𝑥〉 ≤ 1 

holds for every unit vector 𝑥 ∈ 𝐻. Thus, after interchanging 𝑃 and 𝑄, if necessary, we may 

assume that there exists 𝑒1 ∈ 𝐻 such that ‖𝑒1‖ = 1, 〈𝑃𝑒1, 𝑒1〉 = 1 and 〈𝑄𝑒1, 𝑒1〉 = 0. It 

follows that 𝑃𝑒1 = 𝑒1 and 𝑄𝑒1 = 0. Since 𝑃 and 𝑄 are projections, their matrix 

representations with respect to the orthogonal decomposition 𝐻 = span {𝑒1} ⊕ 𝑒1
⊥ are 

𝑃 = [
1 0
0 𝑃2

]  𝑎𝑛𝑑 𝑄 = [
0 0
0 𝑄2

] 

for some projections 𝑃2, 𝑄2 acting on 𝑒1
⊥. The corresponding matrix representation of the 

projection 𝑅 is 

𝑅 = [
𝑟l 𝑥∗

𝑥 𝑅2
], 

where 𝑟1 is a real number, 𝑥 a vector from 𝑒1
⊥, and 𝑅2 ∈ 𝐵(𝑒1

⊥) . From 𝑅2 = 𝑅, 
1

√2
≥ ‖𝑅 − 𝑄‖ = ‖ [

𝑟l 𝑥∗

𝑥 𝑅2 − 𝑄2
] ‖, 

and 

1

√2
≥ ‖𝑅 − 𝑃‖ = ‖ [

𝑟l − 1 𝑥∗

𝑥 𝑅2 − 𝑃2
] ‖ 

the following equalities and inequalities can be obtained: 

𝑟1
2 + ‖𝑥‖2 = 𝑟1, √𝑟1

2 + ‖𝑥‖2 ≤
1

√2
, 𝑎𝑛𝑑 √(𝑟1 − 1)

2 + ‖𝑥‖2 ≤
1

√2
. 

These readily imply 𝑟1 =
1

2
= ‖𝑥‖. Setting 𝑒2 = 2𝑥, the matrix representations of 𝑃, 𝑄, 𝑅 

with respect to the orthogonal decomposition 𝐻 = span {𝑒1} ⊕ span {𝑒2} ⊕ {𝑒1, 𝑒2}
⊥ are 

𝑃 = [
1 0 0
0 𝑝2 𝑦∗

0 𝑦 𝑃1

] 𝑄 = [
0 0 0
0 𝑞2 𝑤∗

0 𝑤 𝑄1

]  𝑎𝑛𝑑 𝑅 =

[
 
 
 
 
1

2

1

2
0

1

2
𝑟2 𝑧∗

0 𝑧 𝑅1]
 
 
 
 

, 

for some 𝑝2, 𝑞2, 𝑟2 ∈ [0,1], 𝑦, 𝑤, 𝑧 ∈ {𝑒1, 𝑒2}
⊥, and some 𝑃1, 𝑄1, 𝑅1 ∈ 𝐵({𝑒1, 𝑒2}

⊥) . It 

follows from 𝑅2 = 𝑅 that 𝑟2 =
1

2
 and 𝑧 = 0. 

Let 𝑆 ∈ 𝐵(𝐻) be the projection onto the two‐dimensional subspace {𝑒1, 𝑒2}. From 

‖𝑆(𝑅 − 𝑄)𝑆‖ ≤
1

√2
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we conclude that 

‖ [ 
1

2
− 𝑞2

1

2
] ‖ ≤

1

√2
, 

and hence, by Lemma (5.1.1), we have 𝑞2 = 1. But then 𝑄 ≤ 𝐼 yields that 𝑤 = 0. Thus, 𝑄 

is of the desired form, and in exactly the same way we see that also 𝑃 is of the form as 

described in the conclusion of the lemma. 

We note that so far we have not proven that 𝑀(𝑃,𝑄) is non‐empty. We only showed that if 

‖𝑃 − 𝑄‖ = 1 and ∈ 𝑀(𝑃, 𝑄) , then we have the conclusion of Lemma (5.1.2). 

In what follows, 𝑢𝑟 will denote either the unitary group on the 𝑟‐dimensional complex 

Hilbert space, or the orthogonal group on the 𝑟‐dimensional real Hilbert space. The symbols 

𝐼𝑟 and 0𝑟 will denote the 𝑟 by 𝑟 identity and zero matrices, respectively. 

Corollary (5.1.3) [239]: Let 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) such that ‖𝑃 − 𝑄‖ = 1. Then there exists a 

number 1 ≤ 𝑟 ≤ 𝑛 such that 

𝑃 = [
𝐼𝑟 0 0
0 0 0
0 0 𝑃1

] 𝑎𝑛𝑑 𝑄 = [
0 0 0
0 𝐼𝑟 0
0 0 𝑄1

]                     (3) 

with respect to an orthogonal decomposition 𝐻 = 𝐻1⊕𝐻2⊕𝐻3,  dim 𝐻1 =  dim 𝐻2 = 𝑟, 

and 𝑃1, 𝑄1 ∈ 𝑃𝑛−𝑟(𝐻3), ‖𝑃1 − 𝑄1‖ < 1 (in the case when 𝑟 = 𝑛 we have 𝑃1 = 𝑄1 = 0). 

Moreover, in this case 𝑀(𝑃, 𝑄) is the set of all projections of the form 

[
 
 
 
 
1

2
𝐼𝑟

1

2
𝑈 0

1

2
𝑈∗

1

2
𝐼𝑟 0

0 0 𝑅4]
 
 
 
 

                                              (4) 

where 𝑈 ∈ 𝑢𝑟 , 𝑅1 ∈ 𝑃𝑛−𝑟(𝐻3), ‖𝑅1 − 𝑃1‖ ≤
1

√2
, and ‖𝑅1 − 𝑄1‖ ≤

1

√2
. 

Proof. We begin with verifying (3). After interchanging 𝑃 and 𝑄 if necessary, we may use 

exactly the same arguments as at the beginning of the proof of 

Lemma (5.1.2) to conclude that 𝑃 and 𝑄 are unitary (orthogonal) similar to 

[
1 0
0 𝑃2

]  𝑎𝑛𝑑 [
0 0
0 𝑄2

] , 

where 𝑃2 and 𝑄2 are projections of rank 𝑛 − 1 and 𝑛, respectively. It follows that there exists 

a unit vector from the Im 𝑄2 ∩ Ker𝑃2. In other words, 𝑃 and 𝑄 are unitary (orthogonal) 

similar to 

[
1 0 0
0 0 0
0 0 𝑃3

]  𝑎𝑛𝑑 [
0 0 0
0 1 0
0 0 𝑄3

] 

where 𝑃3 and 𝑄3 are projections both of rank 𝑛 − 1. Now, we apply the inductive approach 

to obtain (3). 

Next, let 𝑅 be of the form (4). An easy calculation shows that ∈ 𝑃𝑛(𝐻) . We observe that 

the upper‐left two by two corners of 𝑃 − 𝑅 and 𝑄 − 𝑅 are 
1

√2
 multiples of unitary 

(orthogonal) operators. Therefore 𝑅 is indeed in (𝑃, 𝑄) . We consider a projection ∈

𝑀(𝑃, 𝑄) . Then, by Lemma (5.1.2) there exists a unitary (orthogonal) operator 𝑈 such that 
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𝑃 = 𝑈 [
[
1 0
0 0

] 0

0 𝑃′
]𝑈∗, 𝑄 = 𝑈 [

 [
0 0
0 1

] 0

0 𝑄′
]𝑈∗, 

and 

𝑅 = 𝑈

[
 
 
 
 
[

1

2

1

2
1

2

1

2

] 0

0 𝑅′]
 
 
 
 

𝑈∗, 

where 𝑃′, 𝑄′, 𝑅′ are projections of rank 𝑛 − 1. We also have ‖𝑅′ − 𝑃′‖ ≤
1

√2
 and ‖𝑅′ −

𝑄′‖ ≤
1

√2
. If ‖𝑃′ − 𝑄′‖ < 1 we stop here. Otherwise we apply Lemma (5.1.2) once again, 

this time for projections 𝑃′, 𝑄′, and 𝑅′ ∈ 𝑀(𝑃′, 𝑄′) . Inductively we arrive at 

𝑃 = 𝑉 𝐷𝑖𝑎𝑔 ([
1 0
0 0

] , … , [
1 0
0 0

] , 𝑃′′)𝑉∗, 

𝑄 = 𝑉 𝐷𝑖𝑎𝑔 ([
0 0
0 1

] , … , [
0 0
0 1

] , 𝑄′′)𝑉∗, 

𝑅 = 𝑉 𝐷𝑖𝑎𝑔 ([

1

2

1

2
1

2

1

2

] ,… , [

1

2

1

2
1

2

1

2

] , 𝑅′′)𝑉∗, 

for some unitary (orthogonal) operator 𝑉 and some projections 𝑃′′, 𝑄′′, 𝑅′′ with ‖𝑃′′ −

𝑄′′‖ < 1 and 𝑅′′ ∈ 𝑀(𝑃′′, 𝑄′′) . Let 𝑘 denote the number of two by two diagonal blocks 

appearing in the above matrix representations of , 𝑄, and 𝑅. After rearranging the first 2𝑘 

elements of the orthonormal basis of 𝐻 we get 

𝑃 = [
𝐼𝑟 0 0
0 0 0
0 0 𝑃1

]  = 𝑊 [
𝐼𝑘 0 0
0 0 0
0 0 𝑃′′

] 𝑊∗,                                   (5) 

𝑄 = [
0 0 0
0 𝐼𝑟 0
0 0 𝑄1

]  = 𝑊 [

0 0 0
0 𝐼𝑘 0

0 0 𝑄′′
]𝑊∗,                                    (6) 

and 

𝑅 = 𝑊

[
 
 
 
 
1

2
𝐼𝑘

1

2
𝐼𝑘 0

1

2
𝐼𝑘

1

2
𝐼𝑘 0

0 0 𝑅′′]
 
 
 
 

 𝑊∗                               (7) 

for some unitary (orthogonal) operator 𝑊. One has to be careful when reading the above 

three equations. Namely, the block matrix representations of operators on the left sides of 

equations correspond to the direct sum decomposition 𝐻 = 𝐻1⊕𝐻2⊕𝐻3, while the block 

matrix representations of the same operators on the right sides correspond to some possibly 

different direct sum decomposition of the underlying space. But already in the next step we 

will show that 𝑘 = 𝑟, and then (after changing 𝑊, if necessary) we may, and we will assume 

that the two decompositions coincide. 

From (5) and (6) we infer 
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[

𝐼𝑟 0 0
0 −𝐼𝑟 0
0 0 𝑃1 − 𝑄1

]  = 𝑊 [

𝐼𝑘 0 0
0 −𝐼𝑘 0

0 0 𝑃′′ − 𝑄′′
]𝑊∗ 

Comparing the eigenspaces of the two sides and taking into account that the right‐bottom 

corners have norm less than 1, we conclude that 𝑘 = 𝑟. fur‐thermore, the representation of 

𝑊 with respect to the decomposition 𝐻 = 𝐻1⊕𝐻2⊕𝐻3 is 

𝑊 = [

𝑊1 0 0
0 𝑊2 0
0 0 𝑊3

]. 

Finally, from (7), an easy calculation gives us (4) with 𝑈 = 𝑊1𝑊2
∗ ∈ 𝑢𝑟 and 𝑅1 =

𝑊3𝑅
′′𝑊3

∗ ∈ 𝑃𝑛−𝑟(𝐻3) . This completes the proof. 

We still do not know whether the phenomena 𝑀(𝑃,𝑄) = (𝑙⌋ can happen or not. Non‐

emptiness of (𝑃, 𝑄) , for arbitrary 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) , is a consequence of the two projections 

theorem, which we will prove after the following corollary. However, if 𝑃 and 𝑄 are 

orthogonal projections, then we do know that 𝑀(𝑃,𝑄) ≠ (𝑙⌋, which is stated below. 

Let 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) be orthogonal projections, that is, 𝑃𝑄 = 0, or equivalently, 𝑄𝑃 = 0, 

which is equivalent to  Im 𝑃 ⊥  Im 𝑄. Then with respect to the orthogonal decomposition 

𝐻 =  Im 𝑃 ⊕  Im 𝑄 ⊕𝐻0 the projections 𝑃, 𝑄 have the following matrix representations: 

𝑃 = [
𝐼𝑛 0 0
0 0 0
0 0 0

] 𝑎𝑛𝑑 𝑄 = [
0 0 0
0 𝐼𝑛 0
0 0 0

].                       (8) 

Corollary (5.1.4) [239]: Let 𝐻 be a complex or real Hilbert space, 𝑛 a positive integer, and 

𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) projections given by (8). Then 

𝑀(𝑃,𝑄) =

{
 
 

 
 

[
 
 
 
 
1

2
𝐼𝑛

1

2
𝑈 0

1

2
𝑈∗

1

2
𝐼𝑛 0

0 0 0]
 
 
 
 

: 𝑈 ∈ 𝒰𝑛

}
 
 

 
 

. 

In particular, 𝑀(𝑃,𝑄) is a compact manifold. 

Proof. The first part is a direct consequence of the previous statement, while the second part 

of the conclusion follows from the well‐known facts that both the orthogonal and unitary 

groups are compact manifolds. 

The following lemma is known as the two projections theorem (see  [242],  [245]) in the 

special case when 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) and ‖𝑃 − 𝑄‖ < 1. We give a proof here. The case of the 

two projections theorem in which the latter inequality is dropped can be obtained by 

combining the following lemma and Corollary (5.1.3). 

Lemma (5.1.5) [239]: Let 𝑃, 𝑄 be projections of rank 𝑛 acting on a Hilbert space 𝐻. Assume 

that ‖𝑃 − 𝑄‖ < 1. Denote the dimension of  Im 𝑃 ∩  Im 𝑄 by (0 ≤ 𝑝 ≤ 𝑛) . Then 𝑃 and 𝑄 

are unitary (orthogonal) similar to operators 

[
𝐼𝑝 0 0

0 𝐸 0
0 0 0

] 𝑎𝑛𝑑 [
𝐼𝑝 0 0

0 𝐹 0
0 0 0

], 

where 𝐸 and 𝐹 are 2(𝑛 − 𝑝) × 2(𝑛 − 𝑝) matrices given by 

𝐸 =  𝐷𝑖𝑎𝑔 ( [
1 0
0 0

] , … , [
1 0
0 0

]) 
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and 

𝐹 =  𝐷𝑖𝑎𝑔 

(

 

[
 
 
 dj √dj(1 − 𝑑𝑗)

√dj(1 − 𝑑𝑗) 1 − dj ]
 
 
 

∶  1 ≤ 𝑗 ≤ 𝑛 − 𝑝

)

  ,  

with 0 < 𝑑1, … , 𝑑𝑛−𝑝 < 1. 

Proof. We set 𝐻1 =  Im 𝑃 ∩  Im 𝑄 and 𝐻2 = 𝐻1
⊥. With respect to the orthogonal 

decomposition 𝐻 = 𝐻1⊕𝐻2 we have 

𝑃 = [
𝐼𝑝 0

0 𝑃1
]  𝑎𝑛𝑑 𝑄 = [

𝐼𝑝 0

0 𝑄1
] , 

where 𝑃1 and 𝑄1 are projections of rank 𝑛 − 𝑝. The subspace 𝐻2 is the orthogonal sum of 

𝐻3 =  Im 𝑃1 and 𝐻4 = Ker𝑃1. With respect to the decomposition 𝐻 = 𝐻1⊕𝐻3⊕𝐻4 the 

projections 𝑃 and 𝑄 have the following matrix representations: 

𝑃 = [

𝐼𝑝 0 0

0 𝐼𝑛−𝑝 0

0 0 0

]   𝑎𝑛𝑑   𝑄 = [

𝐼𝑝 0 0

0 𝐷1 𝐷2
0 𝐷2

∗ 𝐷3

]. 

After applying unitary (orthogonal) similarity, if necessary, we may assume with no loss of 

generality that 𝐷1 is diagonal, 𝐷1 = Diag (𝑑1, … , 𝑑𝑛−𝑝) . Moreover, the rank of the 

submatrix [𝐷2
∗𝐷3] is at most 𝑛 − 𝑝, and therefore, the subspace 𝐻4 can be decomposed into 

an orthogonal sum of two subspaces, the first one being of dimension at most 𝑛 − 𝑝, such 

that the corresponding matrix representations of 𝑃 and 𝑄 are 

𝑃 = [

𝐼𝑝 0 0

0 𝐼𝑛−𝑝 0

0
0

0
0

0
0

    

0
0
0
0

]    𝑎𝑛𝑑  𝑄 = [

𝐼𝑝 0 0

0 𝐷1 𝐸2
0
0

𝐸2
∗

0
𝐸3
0

    

0
0
0
0

]. 

Since 𝑄 is a projection, we have 0 ≤ 𝐷1 ≤ 𝐼𝑛−𝑝, and because ‖𝐼𝑛−𝑝 − 𝐷1‖ ≤ ‖𝑃 − 𝑄‖ < 1 

we conclude that 0 < 𝑑1, … , 𝑑𝑛−𝑝 ≤ 1. Actually, we have 0 < 𝑑1, … , 𝑑𝑛−𝑝 < 1, since 

otherwise, one of 𝑑1, … , 𝑑𝑛−𝑝, say 𝑑1, would be equal to 1, and then since 𝑄 is a projection, 

the first row of 𝐸2 and the first column of 𝐸2
∗ would be zero yielding that 

 dim ( Im 𝑃 ∩  Im 𝑄) ≥ 𝑝 + 1, a contradiction. The size of the matrix 𝐸2 is (𝑛 − 𝑝) × 𝑘 

with 𝑘 ≤ 𝑛 − 𝑝. We claim that actually we have 𝑘 = 𝑛 − 𝑝. For if this was not true, it would 

follow from 𝑄2 = 𝑄 that 

𝐷1
2 + 𝐸2𝐸2

∗ = 𝐷1,                                   (9) 

and consequently, the diagonal matrix 𝐷1 − 𝐷1
2 would not be of full rank, which is a 

contradiction. 

We can now apply the polar decomposition 𝐸2 = 𝑃𝑈, where 𝑈 is unitary (orthogonal) and 

𝑃 is positive semidefinite. Applying unitary (orthogonal) similarity once more, we can 

assume that already 𝐸2 is positive. But then (9) yields that 𝐸2 is the unique positive square 

root of the diagonal matrix 𝐷1 − 𝐷1
2. It follows that 

𝐸2 =  𝐷𝑖𝑎𝑔 (√𝑑1(1 − 𝑑1), … ,√𝑑𝑛−𝑝(1 − 𝑑𝑛−𝑝)) , 

And then trivially 
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𝐸3 =  𝐷𝑖𝑎𝑔 (1 − 𝑑1, … , 1 − 𝑑𝑛−𝑝) . 

We complete the proof by rearranging the orthonormal basis of 𝐻. 
The general case of the two projections theorem, i.e. when we have two finite rank 

projections with possibly different ranks, could be obtained from the above 

Lemma, Corollary (5.1.3), and some elementary facts concerning two projections.We 

consider the rank one projections 

𝑆 = [
1 0
0 0

]  𝑎𝑛𝑑 𝑇(𝑑) = [
d √d(1 − d)

√d(1 − d) 1 − d
] (0 ≤ 𝑑 ≤ 1) . 

Some easy computations give us the following equalities and inequalities: 

‖𝑆 − 𝑇(1/2)‖ =
1

√2
, ‖𝑇(𝑑) − 𝑇(1/2)‖ =

√1 − 2√(1 − 𝑑)𝑑

√2
≤
1

√2
, (10) 

‖𝑆 − 𝑇 ((1 + √𝑑)/2) ‖ = ‖𝑇(𝑑) − 𝑇 ((1 + √𝑑)/2) ‖ =
√2 − 2√𝑑

2
≤
1

√2
. (11) 

If we combine (10) (or (11)) with the two projections theorem, then we obtain that 𝑀(𝑃,𝑄) 

is indeed non‐empty for every two 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) . We point out that if 0 ≤ 𝑑 < 1, then there 

exists a positive number 𝜀 such that we have 

‖𝑆 − 𝑇(1/2 − 𝜀̃)‖ >
1

√2
 𝑎𝑛𝑑 ‖𝑇(𝑑) − 𝑇(1/2 − 𝜀̃)‖ <

1

√2
(0 < 𝜀̃ < 𝜀) . (12) 

This could be verified by straightforward calculations. 

Next, as a counterpart to Corollary (5.1.4), we have the following statement. 

Corollary (5.1.6) [239]: Let 𝐻 be a complex or real Hilbert space, 𝑛 a positive integer, 

2𝑛 ≤  dim 𝐻, and 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) . Assume that ‖𝑃 − 𝑄‖ = 1 and that 𝑃 and 𝑄 are not 

orthogonal. Then 𝑀(𝑃, 𝑄) is not a compact manifold. Moreover, when 𝐻 is of infinite 

dimension, then 𝑀(𝑃,𝑄) is not even a compact set. 

Proof. According to Corollary (5.1.3) we may, and we will assume that 𝑃 and 𝑄 are of the 

form (3). We need to prove that the set 𝑀(𝑃,𝑄) in (4) is not a compact manifold. 

Using Lemma (5.1.5) and (11) it is straightforward to find 

𝑅 =

[
 
 
 
 
1

2
𝐼𝑟

1

2
𝑈1 0

1

2
𝑈1
∗
1

2
𝐼𝑟 0

0 0 𝑅1]
 
 
 
 

 ∈ 𝑀(𝑃, 𝑄) 

with ‖𝑅1 − 𝑃1‖ <
1

√2
 and ‖𝑅1 − 𝑄1‖ <

1

√2
. 

Hence, there exists a positive real number 𝜀 such that the set 𝑢𝜀 consisting of all projections 

of the form 

[
 
 
 
 
1

2
𝐼𝑟

1

2
𝑉 0

1

2
𝑉∗

1

2
𝐼𝑟 0

0 0 𝑆]
 
 
 
 

, 
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where 𝑉 ∈ 𝑢𝑟 with ‖𝑉 − 𝑈1‖ < 𝜀 and 𝑆 ∈ 𝑃𝑛−𝑟(𝐻3) with ‖𝑆 − 𝑅1‖ < 𝜀, is an open subset 

of 𝑀(𝑃,𝑄) . In particular, if  dim 𝐻 = ∞, then 𝑀(𝑃,𝑄) is not compact at all. 

We assume from now on that 𝐻 is finite‐dimensional. Assume also that 𝑀(𝑃,𝑄) is a 

compact manifold. Having these assumptions we need to arrive at a contradiction. 

In both the real and the complex cases, the topological spaces 𝑢𝑟 and 𝑃𝑛−𝑟(𝐻3) are compact 

manifolds. Denote their dimensions by 𝑞1 and 𝑞2, respectively (the exact values of 𝑞1 and 

𝑞2 are well‐known, but not important here). We set 

𝑆 =

{
 
 

 
 

[
 
 
 
 
1

2
𝐼𝑟

1

2
𝑈 0

1

2
𝑈∗

1

2
𝐼𝑟 0

0 0 𝐿]
 
 
 
 

𝑈 ∈ 𝒰𝑟 , 𝐿 ∈ 𝑃𝑛−𝑟(𝐻3) 

}
 
 

 
 

.                  (13) 

Then 𝑀(𝑃,𝑄) ⊂ 𝑆 and 𝑆 is a compact manifold of dimension 𝑞1 + 𝑞2. Using the fact that 

𝑢𝜀 is an open neighbourhood of 𝑅 in 𝑀(𝑃, 𝑄) as well as in 𝑆 we conclude that the dimension 

of 𝑀(𝑃,𝑄) is equal to 𝑞1 + 𝑞2. 
Using Lemma (5.1.5) and (10), we can find 

𝑇 =

[
 
 
 
 
1

2
𝐼𝑟

1

2
𝑊 0

1

2
𝑊∗

1

2
𝐼𝑟 0

0 0 𝑇1]
 
 
 
 

∈ 𝑀(𝑃, 𝑄)𝑇1 

such that ‖𝑇1 − 𝑃1‖ <
1

√2
 and ‖𝑇1 − 𝑄1‖ =

1

√2
. Moreover, by (12), it is possible to find in 

an arbitrary neighbourhood of 𝑇1 ∈ 𝑃𝑛−𝑟(𝐻3) of a projection 𝑇2 ∈ 𝑃𝑛−𝑟(𝐻3)such that ||𝑇2 −

𝑄1‖ >
1

√2
 and ||𝑇2 − 𝑃1‖ <

1

√2
. 

Finally, the inclusion of 𝑀(𝑃,𝑄) into 𝑆 is a continuous injective map. The invariance 

of domain theorem states that any injective and continuous map between manifolds of the 

same dimensions is automatically an open map. Applying this theorem, we conclude that 

𝑀(𝑃,𝑄) must be an open subset of 𝑆, contradicting the fact that 𝑇 ∈ 𝑀(𝑃, 𝑄) . Therefore 

𝑀(𝑃,𝑄) is not a compact manifold. 

In the proof of our main results is Chow’s fundamental theorem of geometry of Grassmann 

spaces  [243]. we prefer to speak of (orthogonal) projections rather than of subspaces. But 

if we apply the obvious identification, where a subspace of dimension 𝑛 is identified with a 

projection of rank 𝑛 whose image is this subspace, then we arrive at the following definition 

of adjacency of two projections of rank 𝑛: projections 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) are said to be adjacent 

if and only if  dim ( Im 𝑃 +  Im 𝑄) = 𝑛 + 1 which is equivalent to  dim ( Im 𝑃 ∩  Im 𝑄) =

𝑛 − 1. 
By the two projections theorem we easily conclude that 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) are adjacent if and 

only if they are unitary (orthogonal) similar to operators of the following form: 

𝑃 = [

𝐼𝑛−1 0 0

0 [
1 0
0 0

] 0

0 0 0

]                                     (14) 

and 
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𝑄 =

[
 
 
 
 
𝐼𝑛−1 0 0

0 [
𝑑 √𝑑(1 − 𝑑)

√𝑑(1 − 𝑑) 1 − 𝑑
] 0

0 0 0]
 
 
 
 

                             (15) 

for some real 𝑑, 0 ≤ 𝑑 < 1. Equivalently, we can say that 𝑃 and 𝑄 are adjacent if and only 

if rank (𝑃 − 𝑄) = 2. 

A semi‐linear map is an additive map 𝐴:𝐻 → 𝐻 such that there exists a field automorphism 

𝜎: ℂ → ℂ (𝜎:ℝ → ℝ in the real case) which satisfies 𝐴(𝜆𝑥) = 𝜎(𝜆)𝑥 for every vector 𝑥 ∈

𝐻 and every number 𝜆. In the case of real numbers, the only automorphism is the identity, 

therefore every semi‐linear map is linear. In the case of complex numbers, two trivial 

automorphisms are the identity and the conjugation, but there are several other 

automorphisms. The above mentioned Chow’s theorem states that if 2𝑛 + 1 ≤  dim 𝐻 <

∞, and we have a bijective map 𝜑:𝑃𝑛(𝐻) → 𝑃𝑛(𝐻) which preserves adjacency in both 

directions, i.e. 

𝑟𝑎𝑛𝑘 (𝑃 − 𝑄) = 2 ⇔  𝑟𝑎𝑛𝑘 (𝜑(𝑃) − 𝜑(𝑄)) = 2(𝑃, 𝑄 ∈ 𝑃𝑛(𝐻)) , 

then there exists a bijective semi‐linear transformation 𝐴:𝐻 → 𝐻 such that we have 

 Im 𝜑(𝑃) = 𝐴( Im 𝑃) (𝑃 ∈ 𝑃𝑛(𝐻)) .                       (16) 

If  dim 𝐻 = 2𝑛, then either (16) holds, or we have 

 Im 𝜑(𝑃) = (𝐴( Im 𝑃))
⊥
 (𝑃 ∈ 𝑃𝑛(𝐻)) .                       (17) 

For a subset 𝒜 ⊂ 𝑃𝑛(𝐻) we define the following set 

𝒜T = {𝑄 ∈ 𝑃𝑛(𝐻) ∶  𝑄𝑃 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃 ∈ 𝒜}. 

The last lemma characterizes adjacency of two 𝑛‐rank projections with the help of 

orthogonality. 

Lemma (5.1.7) [239]: Let 𝑛 ≥ 2 and  dim 𝐻 ≥ 2𝑛 + 1. For 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻), 𝑃 ≠ 𝑄, the 

following conditions are equivalent: 

𝑃 and 𝑄 are adjacent; 

for every 𝑅 ∈ 𝑃𝑛(𝐻)\{𝑃, 𝑄}
T the set ({𝑅}U{𝑃, 𝑄}T)T contains at most one projection. 

Proof. Assume first that 𝑃 and 𝑄 are adjacent. Then there is no loss of generality in assuming 

that they are of the form (14) and (15) with respect to some orthogonal decomposition 𝐻 =

𝐻1⊕𝐻2⊕𝐻3. It follows that {𝑃, 𝑄}T is the set of all rank 𝑛 projections of the form 

[
0𝑛−1 0 0
0 02 0
0 0 ∗

]. 

Note that the size of the bottom‐right corner is at least 𝑛 × 𝑛, and therefore, {𝑃, 𝑄}T is not 

empty. 

Hence, if 𝑇 ∈ ({𝑃, 𝑄}T)T, then Ker𝑇 contains 𝐻3. We fix an arbitrary 𝑅 ∈ 𝑃𝑛(𝐻)\{𝑃, 𝑄}
T 

and assume that 𝑇 ∈ ({𝑅}U{𝑃, 𝑄}T)T. Clearly, there exist a non‐zero vector 𝑥12 ∈ 𝐻1⊕𝐻2 

and another (possibly zero) one 𝑥3 ∈ 𝐻3 such that  𝑥:= 𝑥12⊕𝑥3 ∈  Im 𝑅 ⊂ Ker𝑇. 

Therefore, we obtain Ker𝑇 = span {𝑥12} ⊕ 𝐻3, and conclude that either ({𝑅}U{𝑃, 𝑄}T)T is 

empty, or it contains only one projection, whose range is (span {𝑥12} ⊕ 𝐻3)
⊥. 

We consider now the case when 𝑃 and 𝑄 are not adjacent. Denote 𝑊 =  Im 𝑃 +  Im 𝑄. Then 

{𝑃, 𝑄}T is either empty and in this case it is trivial to complete the proof; or it is the set of 
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all projections of rank 𝑛 whose matrix representation with respect to the orthogonal 

decomposition 𝐻 = 𝑊⊕𝑊⊥ is of the form 

[
0 0
0 ∗

]. 

Choose 

𝑅 = [
𝐸l 0
0 𝑅1

], 

with 𝐸1 ∈ 𝑃1(𝑊) and 𝑅1 ∈ 𝑃𝑛−1(𝑊
⊥) . Using the fact that  dim 𝑊 ≥ 𝑛 + 2, we easily 

conclude that the set ({𝑅} ∪ {𝑃, 𝑄}T)T contains infinitely many rank 𝑛 projections. 

Now, we have the follow results. 

Theorem (5.1.8) [239]: Let 𝐻 be a complex (real) Hilbert space and 𝑛 a positive integer 

such that 2𝑛 <  dim 𝐻 is satisfied. Assume that a surjective map 𝜑: 𝑃𝑛(𝐻) → 𝑃𝑛(𝐻) 
preserves orthogonality in both directions. Then there exists either a unitary or an 

antiunitary operator (orthogonal operator) 𝑈 on 𝐻 such that 

𝜑(𝑃) = 𝑈𝑃𝑈∗ (𝑃 ∈ 𝑃𝑛(𝐻)) . 

In order to prove this result, we will apply Chow’s fundamental theorem of geometry of 

Grassmann spaces. 

Proof. The infinite dimensional case was covered in  [246],  [247]. So we may assume that 

2𝑛 + 1 ≤  dim 𝐻 < oo is satisfied. We would like to show that 𝜑 (which is onto) is a 

bijective map which preserves adjacency in both directions. Assume first that we have 

𝜑(𝑃) = 𝜑(𝑄) . Then 𝑅 ∈ 𝑃𝑛(𝐻) is orthogonal to 𝑃 if and only if 𝜑(𝑅) is orthogonal to 

𝜑(𝑃) = 𝜑(𝑄) which is equivalent to the orthogonality of 𝑅 and 𝑄. It follows easily that 

𝑃 = 𝑄. Hence, 𝜑 is injective, and hence bijective. 

Now, by Lemma (5.1.7), we easily conclude that 𝜑 preserves adjacency in both directions. 

Therefore it follows from Chow’s theorem that 𝜑 has the form of (16) with some semi‐linear 

mapping 𝐴:𝐻 → 𝐻. Let 𝑥 and 𝑦 be two non‐zero orthogonal vectors in 𝐻. We consider two 

projections 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) such that we have 𝑃𝑥 = 𝑥, 𝑃𝑦 = 0, 𝑄𝑥 = 0, 𝑄𝑦 = 𝑦 and 𝑃𝑄 =

0. Therefore 𝐴𝑥 and 𝐴𝑦 are also orthogonal. Similarly, we can conclude that if 𝐴𝑥 and 𝐴𝑦 

are orthogonal, then 𝑥 and 𝑦 has to be orthogonal as well. An easy application of Uhlhorn’s 

theorem  [249] (or  [248] together with Wigner’s theorem) gives that 𝐴 is a non‐zero scalar 

multiple of a unitary or an antiunitary transformation (orthogonal in the real case). Clearly, 

we can choose 𝐴 to be unitary or antiunitary (or orthogonal in the real case). Finally, using 

the fact that 𝑃 ∈ 𝑃𝑛(𝐻) implies 𝑈𝑃𝑈∗ ∈ 𝑃𝑛(𝐻) with  Im (𝑈𝑃𝑈∗) = 𝑈( Im 𝑃) , our proof is 

done. 

If  dim 𝐻 = 2𝑛, then we call two projections 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) complementary if  Im 𝑃 +

 Im 𝑄 = 𝐻 is fulfilled. 

Theorem (5.1.9) [239]: Let 𝐻 be a complex (real) Hilbert space and 𝑛 a positive integer, 

𝑛 <  dim  H. Assume that a surjective map 𝜑: 𝑃𝑛(𝐻) → 𝑃𝑛(𝐻) is an isometry with respect 

to the gap metric. If  dim 𝐻 ≠ 2𝑛, then there exists either a unitary or an antiunitary 

operator (orthogonal operator) 𝑈 on 𝐻 such that 𝜑 is of the following form: 

𝜑(𝑃) = 𝑈𝑃𝑈∗ (𝑃 ∈ 𝑃𝑛(𝐻)) .                                    (18) 

Proof. The case when 𝑛 = 1 is the classical version of Wigner’s theorem, so we will assume 

𝑛 ≥ 2 throughout the proof. 
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First, assume that  dim 𝐻 < ∞ is satisfied. On one hand, since 𝑃𝑛(𝐻) is a compact manifold, 

its image is also compact. On the other hand, the domain invariance theorem ensures that 

 Im 𝜑 is open as well. Since 𝑃𝑛(𝐻) is connected, we conclude the bijectivity of 𝜑. Therefore 

the surjectivity assumption is indeed disposable in the finite dimensional cases. 

Second, obviously 𝜑 is a homeomorphism with respect to the topology induced by the gap 

metric. We also have 

𝜑(𝑀(𝑃, 𝑄)) = 𝑀(𝜑(𝑃), 𝜑(𝑄)) .                                 (19) 

If  dim 𝐻 = ∞, then by Corollaries (5.1.4) and (5.1.6), the projections 𝑃 and 𝑄 are 

orthogonal if and only if 𝑀(𝑃, 𝑄) is compact. Therefore the map 𝜑 preserves orthogonality 

in both directions, and the Györy‐Šemrl theorem completes the proof of this case. 

Next, we assume 2𝑛 ≤  dim 𝐻 < ∞, and we show that 𝜑 preserves orthogonality in both 

directions. Let us assume the contrary, i.e. we either have 𝑃, 𝑄 with 𝑃 ⊥ 𝑄 but their images 

are not orthogonal; or 𝑃, 𝑄 are not orthogonal but (𝑃) ⊥ 𝜑(𝑄) . Since 𝜑−1 is also a 

surjective isometry, it is enough to consider the second possibility. Then 𝑀(𝜑(𝑃),𝜑(𝑄)) is 

a compact manifold, but 𝑀(𝑃,𝑄) is not, which contradicts (19) and the fact that both 𝜑 and 

𝜑−1 are continuous. 

Clearly, Theorem (5.1.8) completes the proof in the case when 2𝑛 <  dim 𝐻 < ∞. Next, let 

us suppose that  dim 𝐻 = 2𝑛. By the two projections theorem we conclude that any two 

elements 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) are complementary if and only if ‖(𝐼 − 𝑃) − 𝑄‖ < 1. But this is 

equivalent to ‖𝜑(𝐼 − 𝑃) − 𝜑(𝑄)‖ = ‖(𝐼 − 𝜑(𝑃)) − 𝜑(𝑄)‖ < 1, which is satisfied if and 

only if 𝜑(𝑃) and 𝜑(𝑄) are complementary. Hence 𝜑 preserves complementarity in both 

directions, and a straightforward application of  [240] completes the proof of this case. 

It remains to consider the case when 𝑛 < 𝑑 : =  dim 𝐻 < 2𝑛 case. Since ‖𝑃 − 𝑄‖ =

‖(𝐼 − 𝑃) − (𝐼 − 𝑄)‖(𝑃, 𝑄 ∈ 𝑃𝑛(𝐻)) , the map �̃�: 𝑃𝑑−𝑛(𝐻) → 𝑃𝑑−𝑛(𝐻), �̃�(𝐼 − 𝑃) = 𝐼 −

𝜑(𝑃)(𝑃 ∈ 𝑃𝑛(𝐻)) is also an isometry, but on the Grassmann space 𝑃𝑑−𝑛(𝐻) . Because of 

1 ≤ 2(𝑑 − 𝑛) < 𝑑, we obtain that 𝜑 is of the form (18). 

Section (5.2): Wigner Theorem on Grassmann Spaces 

For 𝐻 be a complex Hilbert space and 𝐼 stand for the identity operator. If 𝑛 is a 

positive integer, then we denote the set of all rank‐n (self‐adjoint) projections by 𝑃𝑛(𝐻) . 

This space can be naturally identified with the Grassmann space of all 𝑛‐dimensional 

subspaces of 𝐻 using the map 𝑃 ↦  Im 𝑃. In case when 𝑛 = 1, we get the usual projective 

space that represents the set of all pure states of a quantum system. For 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) let us 

call the quantity Tr 𝑃𝑄 the transition probability between the two projections. If 𝑛 = 1, then 

this is a commonly used notion in quantum mechanics, furthermore, Tr 𝑃𝑄 = cos2𝜗 where 

𝜗 is the angle between  Im 𝑃 and  Im 𝑄. Wigner’s theorem characterises symmetry 

transformations of 𝑃1(𝐻) that respect the transition probability, or equivalently, that leave 

the angle invariant. However, this theorem can be significantly improved, namely, we can 

drop the bijectivity assumption and have a similar conclusion. 

Theorem (5.2.1)[250]: Let 𝜑:𝑃1(𝐻) → 𝑃1(𝐻) be 𝑎 (not necessarily bijective) 

transformation which satisfies 

𝑇𝑟 𝜑(𝑃)𝜑(𝑄) = 𝑇𝑟𝑃𝑄 (𝑃, 𝑄 ∈ 𝑃1(𝐻)) . 

Then 𝜑 is induced by either a linear or a conjugate‐linear isometry 𝑉:𝐻 → 𝐻, 𝑖. 𝑒. 
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𝜑(𝑃) = 𝑉𝑃𝑉∗ (𝑃 ∈ 𝑃1(𝐻)) . 

The above result is commonly referred to as the optimal version of Wigner’s theorem. 

Various generalisations of this essential result have been provided, see [241],  [251],  [252],  

[239],  [246],  [45]−[18],  [259],  [261]− [262]. This short note is particularly concerned 

with Molnár’s generalisation which we explain now. Assume that 𝑛 > 1 and 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) 

, then the principal angles between 𝑃 and 𝑄 are the arcuscosines of the 𝑛 largest singular 

values of 𝑃𝑄 (  [249],  [40]). The system of all principal angles is denoted by ∠(𝑃, 𝑄) : =

(𝜗1, … 𝜗𝑛) where 
𝜋

2
≥ 𝜗1 ≥ 𝜗2 ≥ ⋯ ≥ 𝜗𝑛 ≥ 0. The origin of the notion goes back to 

Jordan’s work  [36] and has serious applications, see e.g.  [253],  [255],  [256],  [260], [27]. 

Molnár proved the following. 

Theorem (5.2.2)[250]: Let  dim 𝐻 > 𝑛 ≥ 2 and 𝜑: 𝑃𝑛(𝐻) → 𝑃𝑛(𝐻) be 𝑎 (not necessarily 

bijective) transformation that satisfies 

∠(𝜑(𝑃), 𝜑(𝑄)) = ∠(𝑃, 𝑄) (𝑃, 𝑄 ∈ 𝑃𝑛(𝐻)) .                   (20) 

Then either 𝜑 is induced by a linear or a conjugate‐linear isometry 𝑉:𝐻 → 𝐻, 𝑖. 𝑒. 

𝜑(𝑃) = 𝑉𝑃𝑉∗           (𝑃 ∈ 𝑃𝑛(𝐻)) , 

or we have  dim 𝐻 = 2𝑛 and 

𝜑(𝑃) = 𝐼 − 𝑉𝑃𝑉 ∗ (𝑃 ∈ 𝑃𝑛(𝐻)) . 

Molnár’s original desire was to prove a more general result. Namely, note that by the two 

projections theorem ( [242],  [245],  [239]) we have Tr 𝑃𝑄 = ∑ cos2𝑛
𝑗=1 𝜗𝑗, therefore if 𝜑 

satisfies (20), then it automatically preservers the transition probability as well (see (21) 

below). Actually, in the first few steps of the proof of Theorem (5.2.2) Molnár used only 

this weaker property, although, there is a point where the methods start to heavily rely on 

(20). 

We provide this missing result which is stated below, and hence giving a very natural joint 

generalisation of the Wigner and Molnár theorems. 

Theorem (5.2.3)[250]: Let  dim 𝐻 > 𝑛 ≥ 2 and 𝜙:𝑃𝑛(𝐻) → 𝑃𝑛(𝐻) be 𝑎 (not necessarily 

bijective) map which preserves the transition probability, that is 

𝑇𝑟 𝜙(𝑃)𝜙(𝑄) = Tr𝑃𝑄   (𝑃, 𝑄 ∈ 𝑃𝑛(𝐻)) .                      (21) 

Then either 𝜙 is induced by a linear or conjugate‐linear isometry 𝑉:𝐻 → 𝐻, 𝑖. 𝑒. 

𝜙(𝑃) = 𝑉𝑃𝑉∗     (𝑃 ∈ 𝑃𝑛(𝐻)) ,                               (22) 

 

or we have  dim 𝐻 = 2𝑛 and 

𝜙(𝑃) = 𝐼 − 𝑉𝑃𝑉∗        (𝑃 ∈ 𝑃𝑛(𝐻)) .                              (23) 

We point out that all the above three theorems hold for real Hilbert spaces as well and their 

proofs are almost the same, even simpler, as in the complex case. We present the proof of 

the Main Theorem (5.2.3)  

We note that (21) is equivalent to the following property 

‖𝜙(𝑃) − 𝜙(𝑄)‖𝐻𝑆 = ‖𝑃 − 𝑄‖𝐻𝑆 (𝑃, 𝑄 ∈ 𝑃𝑛(𝐻)) ,             (24) 

where ‖ ‖𝐻𝑆 denotes the Hilbert‐Schmidt norm. Therefore our result describes the general 

form of not necessarily surjective isometries of the Grassmannian with respect to this special 

norm. [241],  [239] have been published about the same problem for the case of the operator 
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norm. However, the characterisation of non‐bijective isometries of 𝑃𝑛(𝐻) with respect to 

the operator norm is still an open problem in the case when  dim 𝐻 = ∞. We hope that the 

proof gives some additional insight into that problem as well. 

Let 𝐹𝑠(𝐻) be the set of all finite‐rank self‐adjoint operators on 𝐻. We begin with 

stating a lemma which is a trivial consequence of  [258] and [17], and which was crucial in 

[17], as well as here. 

Lemma (5.2.4)[250]: If 𝜙 satisfies the conditions of Main Theorem (5.2.3), then it has a 

unique real‐linear extension 𝛷:𝐹𝑠(𝐻) → 𝐹𝑠(𝐻) which is injective and satisfies 

𝑇𝑟 𝛷(𝐴)𝛷(𝐵) = 𝑇𝑟 𝐴𝐵 (𝐴, 𝐵 ∈ 𝐹𝑠(𝐻)) .                    (25) 

An immediate consequence of Lemma (5.2.4) is that if dim 𝐻 < ∞, then 𝛷 is a 

homeomorphism, moreover, by the domain invariance theorem 𝜙 is a homeomorphism as 

well. We call two rank‐n projections 𝑃 and 𝑄 adjacent if dim (Im 𝑃 ∩  Im 𝑄) = 𝑛 − 1, or 

equivalently, if rank (𝑃 − 𝑄) = 2, and in this case we use the notation 𝑃 ∼ 𝑎𝑄. Note that 

𝑃 ∼ 𝑎𝑄 implies 𝑃 ≠ 𝑄. It is apparent by the two projections theorem that 𝑃 ∼ 𝑎𝑄 if and 

only if ∠(𝑃, 𝑄) contains exactly one non‐zero angle. 

Here we will utilise the following special case of Chow’s fundamental theorem of 

geometry of Grassmann spaces. 

Theorem (5.2.5)[250]: Let dim 𝐻 = 2𝑛 and 𝜑: 𝑃𝑛(𝐻) → 𝑃𝑛(𝐻) be a continuous bijection 

which preserves adjacency in both directions, 𝑖. 𝑒. 

𝜑(𝑃) ∼𝑎 𝜑(𝑄) ⇔ 𝑃 ∼𝑎 𝑄 (𝑃, 𝑄 ∈ 𝑃𝑛(𝐻)) . 

Then there exists a linear or conjugate‐linear bijection 𝐴:𝐻 → 𝐻 such that either 

Im 𝜑(𝑃) = 𝐴( Im 𝑃) (𝑃 ∈ 𝑃𝑛(𝐻)) ,                          (26) 

or 

Im 𝜑(𝑃) = (𝐴( Im 𝑃))
⊥
 (𝑃 ∈ 𝑃𝑛(𝐻)) .                    (27) 

In the general version of Chow’s theorem continuity is not assumed, however, then 𝐴 can 

be a non‐continuous semilinear bijection as well. That version also covers the 2𝑛 <

 dim 𝐻 < ∞ case where the conclusion (27) is of course excluded. 

We call 𝑃 and 𝑄 ∈ 𝑃𝑛(𝐻) orthogonal adjacent if 𝑃 ∼𝑎 𝑄 and 𝜗1 =
𝜋

2
, in notation 𝑃 ∼⊥𝑎 𝑄. 

Similarly, 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) are said to be non‐orthogonal adjacent if 𝑃 ∼𝑎 𝑄 and 𝜗1 <
𝜋

2
, in 

notation 𝑃7 ∼ 𝑄L𝑎. For any 𝑘 ∈ ℕ, subspace 𝑀, and 𝑃, 𝑄 ∈ 𝑃𝑘(𝑀) we define the set 

𝐴𝑃,𝑄
(𝑘)
= {𝑅 ∈ 𝑃𝑘(𝑀): 𝑃 + 𝑄 − 𝑅 ∈ 𝑃𝑘(𝑀)}. 

We will show that 𝜙 preserves non‐orthogonal adjacency in both directions in which the 

following topological characterisation of the relation ∼𝑎 plays a crucial role. 

Lemma (5.2.6)[250]: Suppose that 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) . Then 𝐴𝑃,𝑄
(𝑛)

 is 𝑎 one‐dimensional (real) 

manifold if and only if 𝑃 ∼𝑎 𝑄𝑋. 

Proof. Clearly, we have 𝒜𝑃,𝑃
(𝑛)
= {𝑃}, therefore from now on we may assume that 𝑃 ≠ 𝑄. 

Let us first investigate the case when 𝑃 ∼𝑎 𝑄. Then 𝑃 and 𝑄 can be represented by the 

following block‐matrices with respect to the orthogonal decomposition 𝐻 = 𝑀1⊕𝑀2⊕

𝑀3 where 𝑀1 =  Im 𝑃 ∩  Im 𝑄, 𝑀1⊕𝑀2 =  Im 𝑃 +  Im 𝑄,  dim 𝑀1 =  dim 𝑀3 = 𝑛 −

1, dim 𝑀2 = 2 and p, q ∈ 𝑃1(𝑀2): 
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𝑃 = (
𝐼𝑛−1 0
0 𝑝
0 0

   
0
0
0𝑛−1

)    𝑎𝑛𝑑   𝑄 = (
𝐼𝑛−1 0
0 𝑞
0 0

   
0
0
0𝑛−1

). 

Suppose that 𝑅 ∈ 𝒜𝑃,𝑄
(𝑛)

 and set = 𝑃 + 𝑄 − 𝑅 ∈ 𝑃𝑛(𝐻) . Since we have 

‖𝑅𝑥‖2 + ‖𝑆𝑥‖2 = 〈(𝑅 + 𝑆)𝑥, 𝑥〉 = 〈(𝑃 + 𝑄)𝑥, 𝑥〉 = 2‖𝑥‖2 (𝑥 ∈ 𝑀1) 
and 

‖𝑅𝑥‖2 + ‖𝑆𝑥‖2 = 〈(𝑅 + 𝑆)𝑥, 𝑥〉 = 〈(𝑃 + 𝑄)𝑥, 𝑥〉 = 0 (𝑥 ∈ 𝑀3) , 
we immediately infer 𝑀1 ⊆  Im 𝑅 ∩  Im 𝑆 and 𝑀3 ⊆ ker𝑅 ∩ ker𝑆. Thus the block‐matrix 

representations of 𝑅 and 𝑆 in the decomposition 𝐻 = 𝑀1⊕𝑀2⊕𝑀3 are 

𝑅 = (
𝐼𝑛−1 0
0 𝑡
0 0

   
0
0
0𝑛−1

)    𝑎𝑛𝑑   𝑆 = (
𝐼𝑛−1 0
0 𝑠
0 0

   
0
0
0𝑛−1

), 

where t, 𝑠 ∈ 𝑃1(𝑀2) , whence we easily conclude the following: 

𝒜𝑃,𝑄
(𝑛)
= {(

𝐼𝑛−1 0
0 𝑡
0 0

   
0
0
0𝑛−1

)   ∶ t ∈ 𝒜p,q
(1)
} 

In particular, 𝐴𝑃,𝑄
(𝑛)

 and 𝐴p,q
(1)

 are homeomorphic. 

Next, we investigate the set 𝐴p,q
(1)

, where p ≠ q. We shall represent elements of 𝐹𝑆(𝑀2) by 

2 × 2 Hermitian matrices. If p + q = 𝐼2, i.e. 𝑃⊥𝑎 ∼ 𝑄, then obviously 𝐴p,q
(1)
= 𝑃1(M2), hence 

𝐴𝑃,𝑄
(𝑛)

 is a two‐dimensional manifold. Suppose that p + q ≠ 𝐼2, i.e. 𝑃 ∼𝐿𝑎 𝑄, then applying 

unitary similarity we may assume without loss of generality that p + q = (
𝑠 0  
0 2 − 𝑠  

) 

where 0 < 𝑠 < 1. Since for any t ∈ 𝑃1(𝑀2) we have Tr (p + q − c) = 1, we infer that t ∈

𝐴p,q
(1)

 if and only if p + q − t is singular. But this holds exactly when 𝐼2 − (p + q)
−1t is 

singular, that is equivalent to Tr (p + q)−1𝑡 = 1, since (p + q)−1t is of rank one. Therefore 

an Hermitian 2 × 2 matrix 𝐴 = (
𝑎11 𝑎l2
𝑎21 𝑎22

) belongs to 𝒜p,q
(1)

 if and only if 𝑇𝑟 𝐴 =  𝑎11  +

 𝑎22  =  1, 𝑇𝑟 (𝑝 +  𝑞)
−1𝐴 =

𝑎11

𝑠
 +

𝑎22

2−𝑠
=  1 and 𝐴 is of rank 1. Observe that the two 

equations immediately yield 𝑎11 = and 𝑎22 =
2−𝑠

2
, and since 𝐴 has rank one, we also obtain 

𝑎12 = 𝑎21 =
√(2−𝑠)𝑠

2
𝑒𝑖𝑡 with a real number 𝑡. This implies that 𝐴p,q

(1)
 is a one‐dimensional 

manifold, and therefore so is 𝐴𝑃,𝑄
(𝑛)
. 

Finally, let us suppose that 𝑃 ≠ 𝑄 and 𝑃 ≁𝑎 𝑄. Then there is an orthogonal decomposition 

𝐻 = 𝐻1⊕ ⊕𝐻𝑛 such that  dim 𝐻𝑗 = 2 for every 𝑗 and that we have the following block‐

diagonal representations where p𝑗 , q𝑗 ∈ 𝑃1(𝑀𝑗)(𝑗 = 1,…𝑛) : 

𝑃 = (

𝑝1 0 ⋯
0 𝑝2 ⋯
⋮
0

⋮
0

⋱
⋯

   

0
0
⋮
𝑝𝑛

)     𝑎𝑛𝑑 𝑄 = (

𝑞1 0 ⋯
0 𝑞2 ⋯
⋮
0

⋮
0

⋱
⋯

   

0
0
⋮
𝑞𝑛

) 

Observe that p𝑗 ≠ q𝑗 holds for at least two indices and that we obviously have 
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{(

𝑡1 0 ⋯
0 𝑡2 ⋯
⋮
0

⋮
0

⋱
⋯

   

0
0
⋮
𝑡𝑛

) ∶ t𝑗 ∈ 𝒜p𝑗,q𝑗

(1)
}  ⊂ 𝒜𝑃,𝑄

(𝑛)
. 

Since the left‐hand side is a manifold of dimension at least two, the right‐hand side cannot 

be a one‐dimensional manifold, which completes the proof.  

Utilising Molnár’s lemma we easily obtain the following property: 

𝜙 (𝒜𝑃,𝑄
(𝑛)
) = 𝛷 (𝒜𝑃,𝑄

(𝑛)
) = 𝒜𝛷(𝑃),𝛷(𝑄)

(𝑛)
= 𝒜𝜙(𝑃),𝜙(𝑄)

(𝑛)
 (𝑃, 𝑄 ∈ 𝑃𝑛(𝐻)) . 

Since 𝜙 is a homeomorphism, we infer the following equivalence‐chain: 

𝑃 ∼𝐿𝑎 𝑄 ⇔ 𝒜𝑃,𝑄
(𝑛)

 is a one‐dimensional manifold 

⇔𝒜𝜙(𝑃),𝜙(𝑄)
(𝑛)

 is a one‐dimensional manifold ⇔ 𝜙(𝑃) ∼𝑎 𝜙(𝑄), 

i.e. 𝜙 preserves non‐orthogonal adjacency in both directions. The lower semicontinuity of 

the rank on 𝐹𝑠(𝐻) yields the following for every ∈ 𝑃𝑛(𝐻) : 
{𝑅 ∈ 𝑃𝑛(𝐻): 𝑃𝑋 ∼

𝑎 𝑅}− = {𝑃} ∪ {𝑅 ∈ 𝑃𝑛(𝐻): 𝑃 ∼
𝑎 𝑅} 

where. − denotes the closure. Therefore, since 𝜙 is a homeomorphism, it preserves 

adjacency in both directions, which implies that 𝜙 satisfies either (26) or (27). Finally, by 

(21) the map 𝐴 preserves orthogonality, and thus 𝐴 must be a scalar multiple of a unitary or 

an antiunitary operator which completes the proof of the present case. 

We make an important observation here. Clearly, every rank‐one projection p ∈ 𝑃1(𝐻) can 

be expressed as a real‐linear combination of 𝑛 + 1 rank‐n projections ( [258]), moreover, if 

this linear combination is p = ∑ 𝑡𝑗
𝑛+1
𝑗=1 𝑃𝑗, then taking the trace of both sides gives ∑ 𝑡𝑗

𝑛+1
𝑗=1 =

1

𝑛
. Therefore, in case of (23) we have 

𝛷(p) = ∑𝑡𝑗

𝑛+1

𝑗=1

𝛷(𝑃𝑗) = 𝑉(∑𝑡𝑗

𝑛+1

𝑗=1

(𝐼2𝑛 − 𝑃𝑗))𝑉
∗ =

1

𝑛
𝐼2𝑛 − 𝑉p𝑉

∗(p ∈ 𝑃1(𝐻)) , 

and similarly, in case of (22) we obtain 𝛷(p) = 𝑉p𝑉∗ for every p ∈ 𝑃1(𝐻) . 

By the following three properties it is apparent that the case of  dim 𝐻 < 2𝑛 follows 

from the  dim 𝐻 > 2𝑛 case: 𝑃 ∈ 𝑃𝑛(𝐻) holds if and only if −𝑃 ∈ 𝑃 dim 𝐻−𝑛(𝐻) , we have 

Tr (𝐼 − 𝑃)(𝐼 − 𝑄) =  dim 𝐻 − 2𝑛 + Tr𝑃𝑄 for every 𝑃, 𝑄 ∈ 𝑃𝑛(𝐻) , and the following map 

preserves the transition probability: 

𝜓:𝑃 dim 𝐻−𝑛(𝐻) → 𝑃 dim 𝐻−𝑛(𝐻),𝜓(�̃�) = 𝐼 − 𝜙(𝐼 − �̃�) (�̃� ∈ 𝑃 dim 𝐻−𝑛(𝐻)) . 

Next, assume that  dim 𝐻 > 2𝑛 and fix two orthogonal rank‐n projections 𝑃 and 𝑄. By (21) 

we obtain that 𝜙(𝑃) and (ℓ(𝑄) are orthogonal as well, and since for any 𝑅 ∈ 𝑃𝑛(𝐻) we have 

𝑅 ≤ 𝑃 + 𝑄 if and only if 𝑅 ∈ 𝐴𝑃,𝑄
(𝑛)

, we easily conclude 𝜙(𝑅) ≤ 𝜙(𝑃) + 𝜙(𝑄) . By the 

observation following the 2𝑛‐dimensional case we get either (p) ∈ 𝑃1(𝐻)(p ∈ 𝑃1(𝐻) , p ≤

𝑃 + 𝑄) , or  Im 𝛷(p) =  Im (ℓ(𝑃)⊕  Im 𝜙(𝑄)(p ∈ 𝑃1(𝐻), p ≤ 𝑃 + 𝑄) . Assume for a 

moment that the second possibility holds. If we replace in the above method 𝑄 by another 

𝑄′ ∈ 𝑃𝑛(𝐻) that is still orthogonal to 𝑃, then we easily obtain  Im 𝛷(p) =  Im 𝜙(𝑃)⊕

 Im 𝜙(𝑄′)(p ∈ 𝑃1(𝐻), p ≤ 𝑃 + 𝑄
′) , since we obviously cannot have 𝛷(p) ∈ 𝑃1(𝐻) for any 

p ∈ 𝑃1(𝐻), p ≤ 𝑃. In particular, we obtain 𝛷(𝑃1(𝐻))n𝑃1(𝐻) = ∅, whence we infer that 
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 Im 𝜙(𝑃)⊕  Im 𝜙(𝑄) must be the same subspace for every orthogonal pair 𝑃 and 𝑄, from 

which we conclude  Im 𝛷(𝐴) ⊆  Im 𝜙(𝑃)⊕  Im 𝜙(𝑄)(𝐴 ∈ 𝐹𝑠(𝐻)) that contradicts to the 

injectivity of 𝛷. Therefore we must have (𝑃1(𝐻)) ⊂ 𝑃1(𝐻) , and finally, (25), Theorem 

(5.2.1) and the linearity of 𝛷 imply (22). 

Section (5.3): Wigner Theorem for Hilbert Grassmannians 

For 𝐻 be a complex Hilbert space of dimension not less than 3. There is a natural one‐

to‐one correspondence between closed subspaces of 𝐻 and projections, i.e. self‐adjoint 

idempotents in the algebra of all bounded linear operators on 𝐻. Denote by 𝒢𝑘(𝐻) the 

Grassmannian formed by all 𝑘‐dimensional subspaces of 𝐻, i.e. all projections of rank 𝑘. 

In quantum mechanics, projections of rank 1 are identified with so‐called pure states. The 

transition probability Tr(𝑃, 𝑃′) for two pure states 𝑃, 𝑃′ ∈ 𝒢1(𝐻) is equal to |〈𝑥, 𝑥′〉|2, 

where 𝑥 ∈ 𝑃 and 𝑥′ ∈ 𝑃′ are unit vectors. In other words, the transition probability is cos2𝜃, 

where 𝜃 is the angle between 𝑃 and 𝑃′. By classical Wigner’s theorem, every bijective 

transformation of 𝒢1(𝐻) preserving the transition probability is induced by a unitary or anti‐

unitary operator on 𝐻. This statement plays an important role in the mathematical 

foundations of quantum mechanics. 

It was observed by Uhlhorn in [249] that the same holds for bijective transformations of 

𝑔1(𝐻) preserving the orthogonality relations in both directions (this fact is a simple 

consequence of the Fundamental Theorem of Projective Geometry). Since the transition 

probability is zero if and only if the corresponding pure states are orthogonal, classical 

Wigner’s theorem is contained in Uhlhorn’s result. 

This statement was extended to other Grassmannians. Györy [246] and Šemrl [247] (see 

also [239]) proved independently that every bijective transformation of 𝒢𝑘(𝐻) preserving 

the orthogonality relation in both directions is induced by a unitary or anti‐unitary operator 

on 𝐻 under the assumption that  dim 𝐻 > 2𝑘 (if  dim 𝐻 = 2𝑘, then for every 𝑋 ∈ 𝒢𝑘(𝐻) 

the orthogonal complement 𝑋⊥ is the unique element of 𝑔𝑘(𝐻) orthogonal to 𝑋 and such 

transformations might be wild). It was noted in [247] that there are non‐bijective 

transformations of 𝒢𝑘(𝐻) preserving the orthogonality relation in both directions which 

cannot be obtained from linear or conjugate‐linear isometries. 

We show that this happens only in the infinite‐dimensional case. In other words, if the 

dimension of 𝐻 is finite, then every (not necessarily bijective) transformation of 𝒢𝑘(𝐻) 
preserving the orthogonality relation in both directions is a bijection induced by a unitary or 

anti‐unitary operator on 𝐻 (as above, we assume that  dim 𝐻 > 2𝑘). The proof of this 

statement is based on a modification of Molnár’s result [34], [259] (see also [258]) which 

will be described below. 

There is a non‐bijective version of Wigner’s theorem which states that every transformation 

of 𝒢1(𝐻) preserving the transition probability is induced by a linear or conjugate‐linear 

isometry on 𝐻 (see, for example, [254]). In [34], [259] Molnár proposed the following 

extension of this statement: every transformation of 𝒢𝑘(𝐻) preserving all principal angles 

between subspaces is induced by a linear or conjugate‐linear isometry on 𝐻 or  dim 𝐻 = 2𝑘 

and it is the composition of the transformation induced by an isometry and the 

orthocomplementation. Gehér [250] obtained the same result for transformations of 𝒢𝑘(𝐻) 
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preserving the transition probability (the transition probability is defined as the sum of 

squares of cosines for all principal angles). 

We show that the transformations of 𝒢𝑘(𝐻)( dim 𝐻 ≥ 2𝑘 > 2) induced by linear or 

conjugate‐linear isometries can be characterized as transformations preserving some of 

principal angles corresponding to the orthogonality, adjacency and ortho‐adjacency 

relations. To prove this statement we use a modification of methods from [268]. 

For 𝑋 be a set and let 𝑅 ⊂ 𝑋 × 𝑋 be a relation on 𝑋. We write 𝑥𝑅𝑦 if (𝑥, 𝑦) ∈ 𝑅. A 

transformation  : 𝑋 → 𝑋 is said to be 𝑅 preserving if for all 𝑥, 𝑦 ∈ 𝑋 we have 

𝑥𝑅𝑦 ⇒ 𝑓(𝑥)𝑅𝑓(𝑦) ; 

𝑥𝑅𝑦 ⇔ 𝑓(𝑥)𝑅𝑓(𝑦) 
in the case when 

for all 𝑥, 𝑦 ∈ 𝑋, we say that 𝑓 is 𝑅 preserving in both directions. 

The principal angles 0 ≤ 𝜃1 ≤ ⋯ ≤ 𝜃𝑘 ≤ 𝜋/2 between 𝑘‐dimensional subspaces 𝑋, 𝑌 ⊂ 𝐻 

are defined as follows. Let 𝜃1 be the minimal value of  arccos (|〈𝑥, 𝑦〉|) for unit vectors ∈

𝑋, 𝑦 ∈ 𝑌, and let 𝑥1 ∈ 𝑋, 𝑦1 ∈ 𝑌 be unit vectors realizing this minimum. For 𝑖 ≥ 2 the 

principal angle 𝜃𝑖 and unit vectors 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 are defined recursively, i.e. 𝜃𝑖 is the 

minimal value of  arccos (|〈𝑥, 𝑦〉|) for unit vectors 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 orthogonal to 𝑥1, …, 

𝑥𝑖−1 and 𝑦1, … , 𝑦𝑖−1 (respectively), and 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 are unit vectors satisfying the latter 

conditions and realizing this minimum. 

Two elements of 𝒢𝑘(𝐻) are orthogonal if and only if all principal angles between them are 

equal to 𝜋/2. We will always suppose that  dim 𝐻 ≥ 2𝑘 (otherwise, 𝒢𝑘(𝐻) does not contain 

orthogonal elements). 

Two elements of 𝒢𝑘(𝐻) are called adjacent if their is (𝑘 − 1)‐dimensional, in other words, 

only one of the principal angles between them is non‐zero. Two adjacent elements of 𝒢𝑘(𝐻) 

are said to be ortho‐adjacent if the unique non‐zero principal angle between them is equal 

to 𝜋/2. 

Theorem (5.3.1)[265]: Suppose that  dim 𝐻 > 2𝑘 > 2. Let 𝑓 be an orthogonality 

preserving transformation of 𝒢𝑘(𝐻) which satisfies one of the following additional 

conditions: 

Then 𝑓 is induced by a linear or conjugate‐linear isometry on 𝐻. 

(A) 𝑓 is adjacency preserving, 

(OA) 𝑓 is an ortho‐adjacency preserving injection. 

We use Theorem (5.3.1) to prove the following. 

Theorem (5.3.2)[265]: If the dimension of 𝐻 is finite and greater than 2𝑘, then every 

transformation of 𝒢𝑘(𝐻) preserving the orthogonality relation in both directions is a 

bijection induced by a unitary or anti‐unitary operator on 𝐻. 

For the case when  dim 𝐻 = 2𝑘, we can prove only the following weak version of Theorem 

(5.3.1). 

Proposition (5.3.3)[265]: Suppose that  dim 𝐻 = 2𝑘 > 2. Let 𝑓 be an orthogonality 

preserving transformation of 𝒢𝑘(𝐻) which preserves the adjacency relation in both 

directions. Then 𝑓 is a bijection induced by a unitary or anti‐unitary operator on 𝐻. 
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The Grassmann graph 𝛤𝑘(𝐻) is the graph whose vertex set is 𝒢𝑘(𝐻) and whose edges 

are pairs of adjacent elements. The case when 𝑘 = 1 is trivial (any two distinct elements of 

𝒢1(𝐻) are adjacent) and we suppose that 𝑘 > 1. 

For a subspace 𝑆 of dimension not greater than 𝑘 we denote by [𝑆〉𝑘 the set of all 𝑘‐

dimensional subspaces containing 𝑆; this set is called a star if  dim 𝑆 = 𝑘 − 1. If 𝑈 is a 

subspace whose dimension is not less than 𝑘, then we write 〈𝑈]𝑘 for the set of all 𝑘‐

dimensional subspaces contained in 𝑈; we say that this is a top if  dim 𝑈 = 𝑘 + 1. 
A clique in a graph is a set formed by mutually adjacent vertices. It is clear that stars and 

tops are cliques in 𝛤𝑘(𝐻) . Conversely, every maximal clique of 𝛤𝑘(𝐻) is a star or a top (see, 

for example, [268]). 

Two closed subspaces 𝑋, 𝑌 ⊂ 𝐻 are called compatible if there are mutually orthogonal 

closed subspaces 𝑋′, 𝑌′, 𝑍 such that 

𝑋 = 𝑋′ + 𝑍 and 𝑌 = 𝑌′ + 𝑍. 
Two closed subspaces of 𝐻 are compatible if and only if there is an orthonormal basis of 𝐻 

such that these subspaces are spanned by subsets of this basis. Two elements of 𝒢𝑘(𝐻) are 

ortho‐adjacent if they are adjacent and compatible. 

A subset of 𝒢𝑘(𝐻) is called compatible if any two distinct elements from this subset are 

compatible. Every maximal compatible subset of 𝒢𝑘(𝐻) is an orthogonal apartment, i.e. it 

consists of all 𝑘‐dimensional subspaces spanned by subsets of a certain orthonormal basis 

for 𝐻[12]. Compatible subsets of cliques are formed by mutually ortho‐adjacent elements. 

Lemma (5.3.4)[265]: Every maximal compatible subset of a top contains precisely 𝑘 + 1 

elements. Every maximal compatible subset of a star contains precisely 𝑛 − 𝑘 + 1 elements 

if  dim 𝐻 = 𝑛 is finite, and it is infinite if 𝐻 is infinite‐dimensional. 

The distance 𝑑(𝑣,𝑤) between two vertices 𝑣 and 𝑤 in a connected graph is the smallest 

number of edges in a path connecting these vertices. Every path from 𝑣 to 𝑤 formed by 

𝑑(𝑣,𝑤) edges is called a geodesic. The Grassmann graph 𝛤𝑘(𝐻) is connected and the 

distance 𝑑(𝑋, 𝑌) between 𝑋, 𝑌 ∈ 𝒢𝑘(𝐻) in this graph is equal to − dim (𝑋 ∩ 𝑌) . So, we 

have 𝑑(𝑋, 𝑌) = 𝑘 if and only if 𝑿 ∩ 𝒀 = 0. In particular, the distance between two 

orthogonal elements of 𝒢𝑘(𝐻) is equal to 𝑘. 

Lemma (5.3.5)[265]: If 𝑋, 𝑋1, … , 𝑋𝑖−1, 𝑌 is a geodesic in the graph 𝛤𝑘(𝐻) , then 

𝑋 ∩ 𝑌 ⊂ 𝑋 ∩ 𝑋𝑖−1 ⊂ ⋯ ⊂ 𝑋 ∩ 𝑋1 

and 

𝑋 ∩ 𝑌 ⊂ 𝑋 ∩ 𝑋1 ⊂ ⋯ ⊂ 𝑋 ∩ 𝑋i−1. 

Proof. First, we show that 𝑥 ∩ 𝑌 is contained in 𝑥 ∩ 𝑥𝑗 for every 𝑗 ∈ {1, … , 𝑖 − 1}. Since , 

𝑋1,…, 𝑋𝑖−1, 𝑌 is a geodesic, we have 𝑑(𝑋, 𝑌) = 𝑖 and 

𝑑(𝑋, 𝑋𝑗) = 𝑗, 𝑑(𝑋𝑗 , 𝑌) = 𝑖 − 𝑗. 

Then 

 dim (𝑋 ∩ 𝑥𝑗) = 𝑘 − 𝑗 𝑎𝑛𝑑  𝑑𝑖𝑚 (𝑌 ∩ 𝑥𝑗) = 𝑘 − 𝑖 + 𝑗. 

If 𝑋 ∩ Xj does not contain 𝑋 ∩ 𝑌, then the dimension of the of these subspaces is less than 

 dim (𝑋 ∩ 𝑌) = 𝑘 − 𝑖. This means that (𝑋 ∩ 𝑋𝑗)\𝑌 contains a collection of 𝑖 − 𝑗 + 1 

linearly independent vectors. Then 

 dim 𝑋𝑗 ≥ 𝑖 − 𝑗 + 1 +  dim (𝑌 ∩ 𝑋𝑗) = (𝑖 − 𝑗 + 1) + (𝑘 − 𝑖 + 𝑗) = 𝑘 + 1 
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which is impossible. So, every 𝑋 ∩ 𝑋𝑗 contains 𝑋 ∩ 𝑌. 

Applying the same arguments to the geodesic 𝑋, 𝑋1, … , 𝑋𝑗 with 𝑗 ≤ 𝑖 − 1, we establish that 

𝑋 ∩ 𝑋𝑗 is contained in 𝑋 ∩ 𝑋𝑙 for every 𝑙 < 𝑗. 

To prove the second chain of inclusions, we consider the reversed geodesic 𝑌, 𝑋𝑖−1, …, 𝑋1, 

X.  

We will use the following characterization of the compatibility relation in terms of 

orthogonality and adjacency. 

Lemma (5.3.6)[265]: Every geodesic in 𝛤𝑘(𝐻) joining orthogonal elements consists of 

mutually compatible elements. Any two compatible 𝑋, 𝑌 ∈ 𝒢𝑘(𝐻) are contained in a certain 

geodesic of 𝛤𝑘(𝐻) connecting 𝑋 with an element orthogonal to 𝑋. 

Proof. If 𝑋 and 𝑌 are orthogonal elements of 𝑔𝑘(𝐻) and 𝑋, 𝑋1, …, 𝑋𝑘−1, 𝑌 is a geodesic of 

𝛤𝑘(𝐻) , then for every 𝑖 ∈ {1,… , 𝑘 − 1} we have 

 dim (𝑋 ∩ 𝑋𝑖) = 𝑘 − 𝑖 𝑎𝑛𝑑  dim (𝑌 ∩ 𝑋𝑖) = 𝑖. 
This means that 𝑋𝑖 is the orthogonal sum of 𝑋 ∩ 𝑋𝑖 and 𝑌 ∩ 𝑋𝑖, i.e. 𝑋𝑖 is compatible to both 

𝑋 and 𝑌. If 𝑖, 𝑗 ∈ {1,… , 𝑘 − 1} and 𝑖 < 𝑗, then 𝑋 ∩ 𝑋𝑗 is contained in 𝑥 ∩ 𝑥𝑖, and 𝑌 ∩ 𝑋𝑖 is 

contained in 𝑌 ∩ 𝑋𝑗 by Lemma (5.3.5). Therefore, 𝑋𝑖 and 𝑋𝑗 are compatible. 

Consider compatible 𝑋, 𝑌 ∈ 𝒢𝑘(𝐻) . We take 𝑍 ∈ 𝒢𝑘(𝐻) intersecting 𝑌 precisely in 

(𝑋 ∩ 𝑌)⊥ ∩ 𝑌 and orthogonal to 𝑋. Then 𝑋, 𝑌, 𝑍 are mutually compatible and there is an 

orthogonal apartment containing them. This apartment contains a geodesic joining 𝑋 with 𝑍 

and passing through Y.  

A mapping 𝐿:𝐻 → 𝐻 is said to be a semilinear operator if 

𝐿(𝑥 + 𝑦) = 𝐿(𝑥) + 𝐿(𝑦) 
for all 𝑥, 𝑦 ∈ 𝐻 and there is an endomorphism 𝜎 of the field ℂ such that 

𝐿(𝑎𝑥) = 𝜎(𝑎)𝐿(𝑥) 
for all 𝑎 ∈ ℂ and all 𝑥 ∈ 𝐻. If an endomorphism of the field ℂ is continuous, then it is the 

identity or the conjugation. Non‐continuous endomorphisms of ℂ exist. If a semilinear 

operator is bounded, then the associated endomorphism of ℂ is continuous, and the operator 

is linear or conjugate‐linear. 

Every injective semilinear operator on 𝐻 induces a transformation of 𝒢1(𝐻) and every non‐
zero scalar multiple of this operator defines the same transformation. We will need the 

following consequence of the Fundamental Theorem of Projective Geometry [266], [267]. 

Fact (5.3.7)[265]: Let 𝑓 be an injective transformation of 𝒢1(𝐻) . If for every 𝑈 ∈ 𝒢2(𝐻) 

there is 𝑈′ ∈ 𝒢2(𝐻) such that 

𝑓(〈𝑈]1) ⊂ 〈𝑈
′]1 

and there is no 2‐dimensional subspace containing all elements from the image of 𝑓, then 𝑓 

is induced by an injective semilinear operator on 𝐻. Such operator is unique up to a non‐
zero scalar multiple. 

Lemma (5.3.8)[265]: If an injective semilinear operator on 𝐻 sends orthogonal vectors to 

orthogonal vectors, then it is a non‐zero scalar multiple of a linear or conjugate‐linear 

isometry. 
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Proof. Let 𝐿 be a semilinear operator on 𝐻 sending orthogonal vectors to orthogonal vectors. 

If 𝑥, 𝑦 ∈ 𝐻 are orthogonal unit vectors, then 𝑥 + 𝑦, 𝑥 − 𝑦 are orthogonal. Since 𝐿(𝑥), 𝐿(𝑦) 

and 𝐿(𝑥) + 𝐿(𝑦), 𝐿(𝑥) − 𝐿(𝑦) are pairs of orthogonal vectors, we have 

||𝐿(𝑥)|| = ||𝐿(𝑦)||. 
If unit vectors 𝑥, 𝑦 ∈ 𝐻 are non‐orthogonal, then we choose a unit vector 𝑧 orthogonal to 

both 𝑥, 𝑦 (this is possible, since  dim 𝐻 ≥ 3 by our assumption) and get 

||𝐿(𝑥)|| = ||𝐿(𝑧)|| = ||𝐿(𝑦)||. 
So, the function 𝑥 → ||𝐿(𝑥)|| is constant on the set of unit vectors which means that 𝐿 is 

bounded, i.e. 𝐿 is linear or conjugate‐linear. 

If {𝑒𝑖}𝑖∈𝐼 is an orthonormal basis of 𝐻, then there is an orthonormal basis {eí}i∈I of 𝐿(𝐻) 

such that 𝐿(𝑒𝑖) = 𝑎𝑖𝑒𝑖
′ for non‐zero scalars 𝑎𝑖 ∈ ℂ. It was established above that |𝑎𝑖| = |𝑎𝑗| 

for any pair 𝑖, 𝑗 ∈ 𝐼. Then there is a positive real number 𝑏 such that 𝑎𝑖 = 𝑏𝑏𝑖 and |𝑏𝑖| = 1 

for every 𝑖 ∈ 𝐼. The linear or conjugate‐linear operator transferring every 𝑒𝑖 to 𝑏𝑖𝑒𝑖
′ is an 

isometry. We have 𝐿 = 𝑏𝐿′, where 𝐿′ is one of these operators.  

Let 𝑓 be an orthogonality preserving transformation of 𝒢𝑘(𝐻) and 𝑘 > 1. 

Suppose that  dim 𝐻 > 2𝑘 and 𝑓 is adjacency preserving. 

Lemma (5.3.9)[265]: The transformation 𝑓 is ortho‐adjacency preserving. 

Proof. If 𝑋, 𝑌 ∈ 𝒢𝑘(𝐻) are ortho‐adjacent, then 𝑓(𝑋), 𝑓(𝑌) are adjacent and we need to 

show that they are compatible. By Lemma (5.3.6), 𝑋 and 𝑌 are contained in a certain 

geodesic 𝛾 of 𝛤𝑘(𝐻) which connects 𝑋 with an element 𝑍 ∈ 𝒢𝑘(𝐻) orthogonal to 𝑋. Since 

𝑓 is adjacency preserving, 𝑓(𝛾) is a path in 𝛤𝑘(𝐻) . The elements 𝑋 and 𝑍 are orthogonal, 

and the same holds for 𝑓(𝑋) and (𝑍) . Then 

𝑑(𝑋, 𝑍) = 𝑑(𝑓(𝑋), 𝑓(𝑍)) = 𝑘 

which implies that 𝑓(𝛾) is a geodesic in 𝛤𝑘(𝐻) connecting 𝑓(𝑋) with 𝑓(𝑍) and containing 

𝑓(𝑌) . Since 𝑓(𝑋) and 𝑓(𝑍) are orthogonal, Lemma (5.3.6) gives the claim.  

Lemma (5.3.10)[265]: For every star 𝑆 ⊂ 𝒢𝑘(𝐻) there is the unique star containing (𝑆) . 

Proof. Since 𝑓 is adjacency preserving, 𝑓(𝑆) is a clique in 𝛤𝑘(𝐻) (not necessarily maximal), 

and it is contained in a certain maximal clique (a star or a top). Let 𝒳 be a maximal 

compatible subset of 𝑆. By Lemma (5.3.9), 𝑓(𝒳) is a compatible subset in a star or a top. 

Note that 𝒳 and 𝑓(𝒳) are of the same cardinality. 

Lemma (5.3.4) shows that 𝑓(𝒳) cannot be contained in a top (since  dim 𝐻 > 2𝑘). 

Therefore, 𝑓(𝑆) is a subset in a star. The intersection of two distinct stars contains at most 

one element. This means that there is the unique star containing (𝑆) .  

Therefore, 𝑓 induces a transformation 𝑓𝑘−1 of 𝒢𝑘−1(𝐻) such that 

𝑓([𝑆〉𝑘) ⊂ [𝑓𝑘−1(𝑆)〉𝑘 

for every 𝑆 ∈ 𝒢𝑘−1(𝐻) . Then 

𝑓𝑘−1(〈𝑋]𝑘−1) ⊂ 〈𝑓(𝑋)]𝑘−1 

for every 𝑋 ∈ 𝒢𝑘(𝐻) . 

Lemma (5.3.11)[265]: The transformation 𝑓𝑘−1 is orthogonality preserving. 

Proof. If 𝑋 and 𝑌 are orthogonal elements of 𝒢𝑘−1(𝐻) , then there exist orthogonal 𝑋′, 𝑌′ ∈

𝒢𝑘(𝐻) containing 𝑋 and 𝑌, respectively. We have 

𝑓𝑘−1(𝑋) ⊂ 𝑓(𝑋
′), 𝑓𝑘−1(𝑌) ⊂ 𝑓(𝑌

′) 𝑎𝑛𝑑 𝑓(𝑋′) ⊥ 𝑓(𝑌′) 
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which implies that 𝑓𝑘−1(𝑋) and 𝑓𝑘−1(𝑌) are orthogonal.  

Lemma (5.3.12)[265]: The following assertions are fulfilled: 

(i) If 𝑋, 𝑌 ∈ 𝒢𝑘−1(𝐻) are adjacent, then 𝑓𝑘−1(𝑋) and 𝑓𝑘−1(𝑌) are adjacent or 𝑓𝑘−1(𝑋) =

𝑓𝑘−1(𝑌) . 

(ii) 𝑓𝑘−1 is ortho‐adjacency preserving. 

Proof. The statements are trivial for 𝑘 = 2. Indeed, any two distinct elements of 𝒢1(𝐻) are 

adjacent, and elements of 𝒢1(𝐻) are ortho‐adjacent if they are orthogonal. Consider the case 

when 𝑘 > 2. 

(i) If 𝑋, 𝑌 ∈ 𝒢𝑘−1(𝐻) are adjacent, then the corresponding stars [𝑋〉𝑘 and [𝑌〉𝑘 have a non‐

empty intersection. The transformation 𝑓 sends these stars to subsets of the same star or 

subsets of distinct stars with a non‐empty intersection. This gives the claim. 

(ii) By (i), 𝑓𝑘−1 sends every path in 𝛤𝑘−1(𝐻) to a path (possibly of shorter length). So, the 

proof of this statement is similar to the proof of Lemma (5.3.9).  

In the case when 𝑘 ≥ 3, we use Lemma (5.3.12) and arguments from the proof of Lemma 

(5.3.10) to show that for every star 𝑆 ⊂ 𝒢𝑘−1(𝐻) there is the unique star containing 𝑓𝑘−1(𝑆) 
. 

Step by step, we construct a sequence = 𝑓𝑘 , 𝑓𝑘−1, … , 𝑓1, where every 𝑓𝑖 is an orthogonality 

and ortho‐adjacency preserving transformation of 𝒢𝑖(𝐻) . If 𝑖 ≥ 2, then we have 

𝑓𝑖([𝑌〉𝑖) ⊂ [𝑓𝑖−1(𝑌)〉𝑖 

for every 𝑌 ∈ 𝒢𝑖−1(𝐻) and 

𝑓𝑖−1(〈𝑋]𝑖−1) ⊂ 〈𝑓(𝑋)]𝑖−1 

for every 𝑋 ∈ 𝒢𝑖(𝐻) . This implies that 

𝑓1(〈𝑋]1) ⊂ 〈𝑓(𝑋)]1 𝑖𝑓 𝑋 ∈ 𝒢𝑘(𝐻) .                (28) 
Lemma (5.3.13)[265]: The transformation 𝑓1 is injective. 

Proof. For any distinct 𝑃, 𝑄 ∈ 𝒢1(𝐻) there exist mutually orthogonal 𝑃1,… , 𝑃𝑘−1 ∈ 𝒢1(𝐻) 

which are orthogonal to both 𝑃, 𝑄. Consider the 𝑘‐dimensional subspaces 

𝑋 = 𝑃1 +⋯+ 𝑃𝑘−1 + 𝑃 𝑎𝑛𝑑 𝑌 = 𝑃1 +⋯+ 𝑃𝑘−1 + 𝑄. 
Since 𝑓1(𝑃1) , 𝑓1(𝑃𝑘−1), 𝑓1(𝑃) are mutually orthogonal, (28) implies that 

𝑓(𝑋) = 𝑓1(𝑃1) + ⋯+ 𝑓1(𝑃𝑘−1) + 𝑓1(𝑃) . 
Similarly, we establish that 

𝑓(𝑌) = 𝑓1(𝑃1) + ⋯+ 𝑓1(𝑃𝑘−1) + 𝑓1(𝑄) . 
The equality 𝑓1(𝑃) = 𝑓1(𝑄) implies that (𝑋) = 𝑓(𝑌) . On the other hand, 𝑋 and 𝑌 are 

adjacent and the same holds for 𝑓(𝑋) and (𝑌) .  

So, 𝑓1 is an orthogonality preserving injective transformation of 𝒢1(𝐻) such that 

𝑓1(〈𝑌]1) ⊂ 〈𝑓2(𝑌)]1 

for every 𝑌 ∈ 𝒢2(𝐻) . This means that 𝑓1 satisfies the conditions of the Fundamental 

Theorem of Projective Geometry (Fact (5.3.7)), i.e. 𝑓1 is induced by an injective semilinear 

operator on 𝐻. This operator sends orthogonal vectors to orthogonal vectors and Lemma 

(5.3.8) implies that it is a non‐zero scalar multiple of a linear or conjugate‐linear isometry. 

Using (28), we show that this isometry induces 𝑓. 

Suppose that  dim 𝐻 > 2𝑘 and 𝑓 is an ortho‐adjacency preserving injection. By the 

required statement is a direct consequence of the following. 

Lemma (5.3.14)[265]: The transformation 𝑓 is adjacency preserving. 
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Proof. If 𝑋, 𝑌 ∈ 𝒢𝑘(𝐻) are adjacent, then  dim (𝑋 + 𝑌) = 𝑘 + 1 and we have 

 dim (𝑋 + 𝑌)⊥ ≥ 2 (since  dim 𝐻 > 2𝑘 > 2) . This implies the existence of orthogonal 𝑃, 

𝑄 ∈ 𝒢1(𝐻) contained in (𝑋 + 𝑌)⊥. We take 

𝑋′ = (𝑋 ∩ 𝑌) + 𝑃 𝑎𝑛𝑑 𝑌′ = (𝑋 ∩ 𝑌) + 𝑄. 
Then 𝑋, 𝑋′, 𝑌′ are mutually ortho‐adjacent and the same holds for 𝑌, 𝑋′, 𝑌′. Let 𝒳 be a 

maximal compatible subset of the star [X ∩ 𝑌〉𝑘 containing 𝑋, 𝑋′, 𝑌′. Then 𝑓(𝒳) is a 

compatible subset in a star or a top. Since  dim 𝐻 > 2𝑘, Lemma (5.3.4) implies that 𝑓(𝒳) 

cannot be contained in a top, i.e. it is a subset of a star. This means that 𝑓(𝑋) contains the 

(𝑘 − 1)‐dimensional subspace (𝑋′) ∩ 𝑓(𝑌′) . Similarly, we show that this subspace is 

contained in (𝑌) . Since 𝑓 is injective, 𝑓(𝑋) and 𝑓(𝑌) are adjacent.  

Suppose that  dim 𝐻 = 2𝑘 and 𝑓 preserves the adjacency relation in both directions. 

By [268], for every star 𝑆 ⊂ 𝒢𝑘(𝐻) there is the unique maximal clique (a star or a top) 

containing (𝑆) , and one of the following possibilities is realized: 

(S) all stars go to subsets of stars, 

(T) all stars go to subsets of tops. 

In the case (S), 𝑓 is induced by a unitary or anti‐unitary operator on 𝐻 (arguments from In 

the case (T), we consider the composition of 𝑓 and the orthocomplementation. This 

transformation satisfies (S), i.e. it is induced by a unitary or anti‐unitary operator. This gives 

the claim. 

For 𝑓 be a transformation of 𝒢𝑘(𝐻) preserving the orthogonality relation in both 

directions. We suppose that  dim 𝐻 = 𝑛 is finite and greater than 2𝑘. 

Lemma (5.3.15)[265]: The transformation 𝑓 is injective. 

Proof. For distinct 𝑋, 𝑌 ∈ 𝒢𝑘(𝐻) we take 𝑍 ∈ 𝒢𝑘(𝐻) orthogonal to 𝑋 and non‐orthogonal 

to 𝑌. Then 𝑓(𝑍) is orthogonal to 𝑓(𝑋) and non‐orthogonal to (𝑌) . This implies that 𝑓(𝑋) 

and 𝑓(𝑌) are distinct.  

Consider the case when 𝑘 = 1. For every 𝑈 ∈ 𝒢2(𝐻) we take mutually orthogonal 

𝑄1, … , 𝑄𝑛−2 ∈ 𝑔1(𝐻) contained in 𝑈⊥. If 𝑃 ∈ 〈𝑈]1, then 𝑓(𝑃) is contained in the orthogonal 

complement of the (𝑛 − 2)‐dimensional subspace 𝑓(𝑄1) + ⋯+ 𝑓(𝑄𝑛−2) . Therefore, 𝑓 

satisfies the conditions of the Fundamental Theorem of Projective Geometry (Fact (5.3.7)). 

Since 𝐻 is finite‐dimensional, Lemma (5.3.8) shows that 𝑓 is induced by a unitary or anti‐
unitary operator. 

From this moment we will suppose that 𝑘 > 1. 

Lemma (5.3.16)[265]: Let 𝑋1, … , 𝑋𝑖 , 𝑌 be mutually distinct elements of 𝒢𝑘(𝐻) such that 𝑌 

is not contained in the subspace 𝑋1 +⋯+ 𝑋𝑖 and 

 dim (𝑋1 +⋯+ 𝑋𝑖) ≤ 𝑛 − 𝑘.                                (29) 
Then 𝑓(𝑌) is not contained in (𝑋1) + ⋯+ 𝑓(𝑋𝑖) . 

Proof. The condition (29) implies the existence of elements of 𝒢𝑘(𝐻) orthogonal to 𝑋1 +

⋯+ 𝑋𝑖. Since 𝑌 is not contained in 𝑋1 +⋯+ 𝑋𝑖, there is 𝑍 ∈ 𝒢𝑘(𝐻) orthogonal to 𝑋1 +

⋯+ 𝑋𝑖 and non‐orthogonal to 𝑌. Then 𝑓(𝑍) is orthogonal to 𝑓(𝑋1) + ⋯+ 𝑓(𝑋𝑖) and non‐

orthogonal to 𝑓(𝑌) which means that 𝑓(𝑌) is not contained in (𝑋1) + ⋯+ 𝑓(𝑋𝑖) .  

Lemma (5.3.17)[265]: The transformation 𝑓 is adjacency preserving. 

Proof. Let 𝑋 and 𝑌 be adjacent elements of 𝒢𝑘(𝐻) . Consider a sequence 𝑋0, 𝑋1, …, 𝑋𝑛−2𝑘 

of elements from 𝑄𝑘(𝐻) such that 𝑋0 = 𝑋, 𝑋1 = 𝑌 and 
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 dim (𝑋0 + 𝑋1 +⋯+ 𝑋𝑗) = 𝑘 + 𝑗 

for every 𝑗 ∈ {1,… , 𝑛 − 2𝑘}. Then 𝑋𝑗 is not contained in 𝑋0 +⋯+ 𝑋𝑗−1. We have 𝑘 + 𝑗 ≤

𝑛 − 𝑘 for every 𝑗 ∈ {1,… , 𝑛 − 2𝑘} and Lemma (5.3.16) implies that 

𝑓(𝑋𝑗) ⊄ 𝑓(𝑋0) + ⋯+ 𝑓(𝑋𝑗−1) . 

Therefore, 

 dim (𝑓(𝑋0) + 𝑓(𝑋1) + ⋯+ 𝑓(𝑋𝑛−2𝑘)) ≥  dim (𝑓(𝑋0) + 𝑓(𝑋1)) + 𝑛 − 2𝑘 − 1.   (30) 

If 𝑓(𝑋) = 𝑓(𝑋0) and 𝑓(𝑌) = 𝑓(𝑋1) are not adjacent, then 

dim(𝑓(𝑋0) + 𝑓(𝑋1)) > 𝑘 + 1 

and (30) shows that 

dim (𝑓(𝑋0) + 𝑓(𝑋1) + ⋯+ 𝑓(𝑋𝑛−2𝑘)) > 𝑛 − 𝑘. 

In this case, there is no element of 𝒢𝑘(𝐻) orthogonal to all (𝑋𝑗) . On the other hand, the 

equality 

dim(𝑋0  +  𝑋1  + ···  + 𝑋𝑛−2𝑘) =  𝑛 −  𝑘 

implies the existence of 𝑍 ∈  𝒢𝑘(𝐻) orthogonal to all 𝑋𝑗 . Then 𝑓(𝑍) is orthogonal to every 

𝑓(𝑋𝑗). This contradiction shows that 𝑓(𝑋) and 𝑓(𝑌) are adjacent. 

The statement is a consequence of Lemma (5.3.17) and Theorem (5.3.1). 
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Chapter 6 

𝑪∗-Completions and Convergent Star Products 

 

We show when taking the 𝐶∗-algebra of continuous sections vanishing at infinity, we 

arrive at a functor associating a 𝐶∗-algebra to any Poisson vector bundle and recover the 

original DFR-algebra as a particular example. We show that many properties of the resulting 

locally convex algebra are explained. We compare this approach to various other discussions 

of convergent star products in finite and infinite dimensions. We pay special attention to the 

case of a Hilbert space and to nuclear spaces. 

Section (6.1): The DFR-Algebra 

Doplicher, Fredenhagen, and Roberts (DFR) have introduced a special 𝐶∗‐algebra to 

provide a model for spacetime in which localization of events can no longer be performed 

with arbitrary precision: they refer to it as a model of “quantum spacetime apart from being 

beautifully motivated, their construction admits a mathematically simple (re)formulation: it 

starts from a symplectic form on Minkowski space and considers the corresponding 

canonical commutation relations (CCRs), which can be viewed as a representation of a well‐

known finite‐dimensional nilpotent Lie algebra, the Heisenberg (Lie) algebra. The CCRs 

appear in Weyl form, i.e., through an irreducible, strongly continuous, unitary representation 

of the corresponding Heisenberg (Lie) group‐which, according to the well‐known von 

Neumann theorem, is unique up to unitary equivalence. That representation is then used to 

define a 𝐶∗‐algebra that we propose to call the Heisenberg 𝐶∗‐algebra, related to the original 

representation through Weyl quantization, that is, via the Weyl‐Moyal star product. 

The main novelty in the DFR construction is that the underlying symplectic form is treated 

as a variable. In this way, one is able to reconcile the construction with the principle of 

relativistic invariance: since Minkowski space ℝ1,3 has no distinguished symplectic 

structure, the only way out is to consider, simultaneously, all possible symplectic structures 

on Minkowski space that can be obtained from a fixed one, that is, its orbit 𝛴 under the 

action of the Lorentz group. This orbit turns out to be isomorphic to 𝑇𝑆2 × ℤ2, thus 

explaining the origin of the extra dimensions that appear in this approach. (In passing, we 

note that the factor ℤ2 comes from the fact that we are dealing with the full Lorentz group; 

it would be absent if we dropped (separate) invariance under parity 𝑃 or time reversal 𝑇. 

Also, the generic feature that any deformation quantization of the function algebra over 

Minkowski space must contain, within its classical limit, some kind of extra factor has been 

noted and emphasized.) 

Assuming the symplectic form to vary over the orbit 𝛴 of some fixed representative 

produces notjust a single Heisenberg 𝐶∗‐algebra but an entire 𝐶∗‐bundle over this orbit, with 

the Heisenberg 𝐶∗‐algebra for the chosen representative as typical fiber. The continuous 

sections of that 𝐶∗‐bundle vanishing at infinity then define a “section” 𝐶∗‐algebra, which 

carries a natural action of the Lorentz group induced from its natural action on the 

underlying bundle of 𝐶∗‐algebras (which moves base points as well as fibers). Besides, this 

“section” 𝐶∗‐algebra is also a 𝐶∗‐module over the “scalar” 𝐶∗‐algebra 𝐶0(𝛴) of continuous 

functions on 𝛴 vanishing at infinity. In the special case considered by DFR, the underlying 

𝐶∗‐bundle turns out to be globally trivial, which in view of von Neumann’s theorem implies 
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a classification result on irreducible as well as on Lorentz covariant representations of the 

DFR‐algebra. 

In retrospect, it is clear that when formulated in this geometrically inspired language, the 

results yearn for generalization‐ even if only for purely mathematical reasons. 

From a more physical side, one of the original motivations for the present work was an idea 

of Barata, who proposed to look for a clearer geometrical interpretation of the classical limit 

of the DFR‐algebra in terms of coherent states, as developed by Hepp.15 This led the second 

to investigate possible generalizations of the DFR construction to other vector spaces than 

four‐dimensional Minkowski space and other Lie groups than the Lorentz group in four 

dimensions. As it turned out, the crucial mathematical input for the construction of the DFR‐

algebra is a certain symplectic vector bundle over the orbit 𝛴, namely, the trivial vector 

bundle 𝛴 × ℝ1,3 equipped with the “tautological” symplectic structure, which on the fiber 

over a point (𝐽⋅ ∈ 𝛴 is just (𝐽⋅ itself. Here, we show how, following an approach similar to 

the one, one can generalize this construction to any Poisson vector bundle, without 

supposing homogeneity under some group action or nondegeneracy of the Poisson tensor. 

The basic idea of the procedure is to use the given Poisson structure to first construct a 

bundle of Fréchet∗‐algebras over the same base space whose fibers are certain function 

spaces over the corresponding fibers of the original vector bundle, the product in each fiber 

being the Weyl‐Moyal star product given by the Poisson tensor there: the DFR‐algebra is 

then obtained as the 𝐶∗‐completion algebra of this Fréchet∗‐algebra bundle. However, a 

geometrically more appealing interpretation would be algebra of some 𝐶∗‐bundle, which 

should be obtained directly from the underlying Fréchet∗‐algebra bundle by a process of 𝐶∗‐

completion. The concept of a 𝐶∗‐completion at the level of bundles is novel, and one of the 

main goals we achieve is to develop this new theory to the point needed and then apply it to 

the situation at hand. 

We gather a few known facts about the construction of 𝐶∗‐completions of a given ∗‐algebra: 

provided that such completions exist at all, they can be controlled in terms of the 

corresponding universal enveloping 𝐶∗‐algebra, which in particular provides a criterion for 

deciding whether such a completion is unique. 

We notice that when the given ∗‐algebra is embedded into some 𝐶∗‐algebra as a spectrally 

invariant subalgebra, then that 𝐶∗‐algebra is in fact its universal enveloping 𝐶∗‐algebra. 

We propose a new definition of “the 𝐶∗‐ algebra of the canonical commutation relations” 

(for systems with a finite number of degrees of freedom) which we propose to call the 

Heisenberg 𝐶∗‐algebra: it comes in two variants, namely, a nonunital one, 𝜀𝜎, and a unital 

one, ⊂ 𝐻𝜎, obtained as the unique 𝐶∗‐completions of certain Fréchet∗‐ algebras 𝑆𝜎 and 𝐵𝜎, 

respectively. These are simply the usual Fréchet spaces 𝑆 of rapidly decreasing smooth 

functions and ℬ of totally bounded smooth functions (= bounded smooth functions with 

bounded partial derivatives) on a given finite‐dimensional vector space, equipped with the 

Weyl‐Moyal star product induced by a‐possibly degenerate‐bivector 𝜎, whose definition, in 

the unital case, requires the use of oscillatory integrals as developed in Rieffel’s theory of 

strict deformation quantization. The main advantage of this definition as compared to others 

is that the representation theory of these 𝐶∗‐algebras corresponds precisely to the 
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representation theory of the Heisenberg group: as a result of uniqueness of the 𝐶∗‐
completion, there is no need to restrict to a subclass of “regular” representations. 

We begin by introducing the concept of a bundle of locally convex ∗‐algebras, which 

contains that of a 𝐶∗‐bundle as a special case, and following the approach of Dixmier, Fell 

and other we show how the topology of the total space of any such bundle is tied to its 

algebra of continuous. Next, we pass to the 𝐶∗ setting, where we explore the notion of a 

𝐶0(𝑋)‐algebra (X being some fixed locally compact topological space). At first sight, this 

appears to generalize the natural module structure algebra of a 𝐶∗‐bundle over 𝑋, but 

according representation theorem [33], it actually provides a necessary and sufficient 

condition for a 𝐶∗‐ algebra to algebra of a 𝐶∗‐bundle over 𝑋. Here, we formulate a somewhat 

strengthened version of that theorem which establishes a categorical equivalence between 

𝐶∗‐bundles over 𝑋 and 𝐶0(𝑋)‐algebras. Finally, we introduce the (apparently novel) concept 

of 𝐶∗‐completion of a bundle of locally convex ∗‐algebras and show that, using this 

(essentially fiberwise) definition and imposing appropriate conditions on the behavior of 

sections at infinity, the two processes of completion and of passing to section algebras 

commute: the 𝐶∗‐completion of the algebra of continuous sections with compact support of 

a bundle of locally convex ∗‐algebras is naturally isomorphic to the algebra of continuous 

sections vanishing at infinity of its 𝐶∗‐completion. 

We combine the methods developed construct, from an arbitrary Poisson vector bundle 𝐸 

over an arbitrary manifold 𝑋, with Poisson tensor 𝑎 ⋅, two bundles of Fréchet∗‐algebras over 

𝑋, ℰ(𝐸, σ) and 𝐵(𝐸, σ) , as well as two 𝐶∗‐bundles over 𝑋, 𝜀(𝐸, σ) and ⊂ 𝐻(𝐸, σ) , the latter 

being the 𝐶∗‐completions of the former with respect to the 𝐶∗ fiber norms induced by the 

unique 𝐶∗‐norms on each fiber, according to the prescriptions of We propose to refer to 

these 𝐶∗‐bundles as DFR‐bundles and to the corresponding algebras as DFR‐algebras, since 

we show that the original DFR‐algebra can be recovered as a special case, by an appropriate 

and natural choice of Poisson vector bundle. Moreover, that construction can be applied 

fiberwise to the tangent spaces of any Lorentzian manifold to define a functor from the 

category of Lorentzian manifolds (of fixed dimension) to that of 𝐶∗‐algebras which might 

serve as a starting point for a notion of “locally covariant quantum spacetime. 

The overall picture that emerges is that the constructions presented establish a systematic 

method for producing a vast class of examples of 𝐶∗‐algebras provided with additional 

ingredients that are tied up with structures from classical differential geometry and/or 

topology in a functorial manner. To what extent this new class of examples can be put to 

good use remains to be seen. But we believe that even the original question of how to define 

the classical limit of the DFR‐algebra, or more generally how to handle its space of states, 

will be deeply influenced by the generalization presented here, which is of independent 

mathematical interest. 

We want to discuss the question of existence and uniqueness of the 𝐶∗‐completion of 

a ∗‐algebra (possibly equipped with some appropriate locally convex topology of its own), 

which is closely related to the concept of a spectrally invariant subalgebra, as well as the 

issue of continuity of the inversion map on the group of invertible elements. 

We begin by recalling a general and well‐known strategy for producing 𝐶∗‐norms on ∗‐

algebras. It starts from the observation that given any ∗‐algebra 𝐵 and any ∗‐representation 
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𝑝 of 𝐵 on a Hilbert space ℌ𝛽, we can define a 𝐶∗‐seminorm ‖. ‖𝑝 on 𝐵 by taking the operator 

norm in 𝐵(ℌ𝛽) , i.e., by setting, for any 𝑏 ∈ 𝐵, 

‖𝑏‖𝑝 = ‖𝑝(𝑏)‖.                                    (1) 

Obviously, this will be a 𝐶∗‐norm if and only if 𝑝 is faithful. More generally, given any set 

𝑅 of ∗‐representations of 𝐵 such that, for any 𝑏 ∈ 𝐵, {‖𝑝(𝑏)‖|𝑝 ∈ 𝑅} is a bounded subset 

of ℝ, setting 

‖𝑏‖𝑅 = sup
p∈R

  ‖𝑏‖𝑝                                        (2) 

will define a 𝐶∗‐seminorm on 𝐵, which is even a 𝐶∗‐norm as soon as the set 𝑅 separates 𝐵 

(i.e., for any 𝑏 ∈ 𝐵\{0}, there exists 𝑝 ∈ 𝑅 such that 𝑝(𝑏) ≠ 0). Taking into account that 

every 𝐶∗‐seminorm 𝑠 on 𝐵 is the operator norm for some ∗‐representation of 𝐵 (this follows 

from applying the Gelfand‐Naimark theorem [25] to the 𝐶∗‐completion of 𝐵/ker𝑠, together 

with the fact that every faithful 𝐶∗‐algebra representation is automatically isometric [25]), 

we can take 𝑅 to be the set Rep (B) of al1 ∗‐representations of 𝐵 (up to equivalence) to 

obtain a 𝐶∗‐seminorm on 𝐵 which is larger than any other one, provided that, for any 𝑏 ∈ 𝐵, 

sup
p∈Rep(B)

  ‖𝑏‖𝑝 < ∞.                                        (3) 

Moreover, when Rep (B) separates 𝐵, we obtain the well‐known maximal 𝐶∗‐norm on 𝐵, 

which gives rise to the minimal 𝐶∗‐completion of 𝐵, also denoted by 𝐶∗(𝐵) and called the 

universal enveloping 𝐶∗‐algebra of 𝐵 because it satisfies the following universal property: 

for every 𝐶∗‐algebra 𝐶, every ∗‐algebra homomorphism from 𝐵 to 𝐶 extends uniquely to a 

𝐶∗‐algebra homomorphism from 𝐶∗(𝐵) to 𝐶. 

Next, given a ∗‐algebra 𝐵 embedded in some 𝐶∗‐algebra 𝐴 as a dense ∗‐subalgebra, one 

method for guaranteeing existence of the universal enveloping 𝐶∗‐algebra relies on the 

concept of spectral invariance, which is defined as follows: 𝐵 is said to be spectrally 

invariant in 𝐴 if, for every element 𝑏 of 𝐵, its spectrum in 𝐴, σ𝐴(𝑏) , is the same as its 

spectrum in 𝐵, 𝜎𝐵
∨(𝑏) . Note that, in general, (σ𝐴(𝑏) ⊂ σ𝐵(𝑏) , i.e., the spectrum shrinks 

under the inclusion of 𝐵 into 𝐴, so only the opposite inclusion is a nontrivial condition. 

(Actually, the spectrum shrinks under any morphism. To see this, suppose that 𝐴 and 𝐵 are 

any two ∗‐algebras and  𝜑: 𝐵 → 𝐴 is any ∗‐algebra homomorphism. If , 𝐵, and 𝜑 are unital 

it suffices to note that 𝜆 ∉ σ𝐵(𝑏) means that 𝜆1𝐵 − 𝑏 has an inverse in 𝐵 whose image under 

𝜑 serves as an inverse of 𝜆1𝐴 − 𝜑(𝑏) in 𝐴, so 𝜆 ∉ 𝜎𝐴(ℓ(𝑏)) . If 𝐴, 𝐵, and 𝜑 are nonunital, 

we can apply the same argument, with 𝜆 ≠ 0, to their unitizations Ã, �̃�, and �̃�. At any rate, 

we conclude that, for any 𝑏 in 𝐵, cσ𝐴(𝜑(𝑏)) ⊂ (σ𝐵(𝑏). ) Returning to the situation where 

𝐵 is a spectrally invariant dense ∗‐subalgebra of a 𝐶∗‐algebra 𝐴, we may conclude that, for 

any self‐adjoint element 𝑏 of 𝐵, 

sup
p∈Rep(B)

  ‖𝑏‖𝑝 ≤ 𝑟(𝑏) , 

where 𝑟(𝑏) denotes the spectral radius of 𝑏 in 𝐵, which by hypothesis coincides with its 

spectral radius in 𝐴 and hence (for self‐adjoint b) also with its 𝐶∗‐norm in 𝐴. But this means 

that the 𝐶∗‐norm in 𝐴 is in fact the maximal 𝐶∗‐norm and hence that the 𝐶∗‐algebra 𝐴 is 

precisely the universal enveloping 𝐶∗‐algebra of : 𝐴 = 𝐶∗(𝐵) . 
As an example showing the usefulness of this concept, we note the following. 
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Theorem (6.1.1)[270]: Let 𝐴 be 𝑎 (nonunital) 𝐶∗‐algebra, equipped with the standard 

partial ordering induced by the cone 𝐴+of positive elements, and let 𝐵 be a spectrally 

invariant ∗‐subalgebra of 𝐴. Then 𝐴 admits an approximate identity consisting of elements 

of 𝐵, i.e., a directed set (𝑒𝜆)𝜆∈𝛬 of elements 𝑒𝜆 of 𝐵 such that, in 𝐴, 𝑒𝜆 ≥ 0, ‖𝑒𝜆‖ ≤ 1, 𝑒𝜆 ≤

𝑒𝜇 if 𝜆 ≤ 𝜇 and, for every 𝑎 ∈ 𝐴, lim
𝜆
𝑒𝜆 𝑎 = 𝑎 = lim

𝜆
𝑎 𝑒𝑗 . 

The proof is an easy adaptation of that of a similar theorem due to Inoue, of locally 𝐶∗‐
algebras, see [12]; we note here that the version given above can also be generalized to 

locally 𝐶∗‐algebras without additional effort. The main difference is that we assume 𝐵 to 

bejust a dense ∗‐subalgebra, rather than a dense ∗‐ideal, and spectral invariance turns out to 

be the crucial ingredient to make the proof work. 

Once the existence of the universal enveloping 𝐶∗‐algebra 𝐶∗(𝐵) of 𝐵 is settled‐ usually by 

realizing it explicitly as a spectrally invariant ∗‐subalgebra of a given 𝐶∗‐algebra 𝐴 −we 

can address the question of classifying all possible 𝐶∗‐norms on 𝐵. Making use of the fact 

that, in this situation, any 𝐶∗‐norm on 𝐵 can be uniquely extended to a 𝐶∗‐seminorm on 𝐴 

whose kernel is a closed ∗‐ideal in 𝐴 that has trivial intersection with 𝐵, it follows that if we 

can determine what are the closed ∗‐ideals in 𝐴 and prove that none of them intersects 𝐵 

trivially, then we can conclude that 𝐵 admits one and only one 𝐶∗‐norm. 

Finally, it is worth noting that in many cases of interest, 𝐵 will not be merely a ∗‐algebra 

but will come equipped with a (locally convex) topology of its own, with respect to which 

it is complete. We have the following result. 

Proposition (6.1.2)[270]: Let 𝐵 be a Fréchet∗‐algebra, i. e., 𝑎 ∗‐algebra which is also a 

Fréchet space such that multiplication and involution are continuous, and assume that 𝐵 is 

continuously embedded in some 𝐶∗‐algebra 𝐴 as a spectrally invariant ∗‐subalgebra. Then 

the group 𝐺𝐵 of invertible elements of 𝐵 is open and the inversion map 

𝐺𝐵  →  𝐺𝐵 

𝑏 ↦  𝑏−1 

is continuous not only in the induced 𝐶∗‐topology but also in the Fréchet topology. 

Proof. The statement of this proposition is well‐known for the 𝐶∗‐topology, but that it also 

holds for the finer Fréchet topology is far from obvious, as can be inferred from the extensive 

discussion of concepts related to this question that can be found in the literature, such as that 

of Q‐algebras” and of “topological algebras with inverses see [12] and [271] Spectral 

invariance guarantees that 𝐺𝐵 is equal to 𝐵⋂  𝐺𝐴, i.e., it is the inverse image of 𝐺𝐴, which 

is open in 𝐴, under the inclusion map 𝐵 ↔ 𝐴, which by hypothesis is continuous. Continuity 

of the inversion map then follows from the Arens‐Banach theorem [271] or from a more 

general direct argument. 

Let 𝑉 be a Poisson vector space, i.e., a real vector space of dimension 𝑛, say, equipped 

with a fixed bivector σ of rank 2𝑟; in other words, the dual 𝑉∗ of 𝑉 is a presymplectic vector 

space. (We emphasize that we do not require 0− to be nondegenerate.) It gives rise to an 

(𝑛 + 1)‐dimensional Lie algebra 𝔥0− which is a one‐dimensional central extension of the 

abelian Lie algebra 𝑉∗ defined by the cocycle σ and will be called the Heisenberg algebra 

or, more precisely, Heisenberg Lie algebra (associated to 𝑉∗ and σ) : as a vector space, 

𝔥σ = 𝑉
∗⊕ℝ, with commutator given by 
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[(𝜉, 𝜆), (𝜂, 𝜇)] = (0, 𝜎(𝜉, 𝜂))        𝑓𝑜𝑟 𝜉, 𝜂 ∈ 𝑉∗, 𝜆, 𝜇 ∈ ℝ.      (4) 

Associated with this Lie algebra is the Heisenberg group or, more precisely, Heisenberg Lie 

group, 𝐻𝜎: as a manifold, 𝐻𝜎 ⋅= 𝑉
∗ ×ℝ, with product given by 

(𝜉, 𝜆)(𝜂, 𝜇) = (𝜉 + 𝜂, 𝜆 + 𝜇 −
1

2
𝜎(𝜉, 𝜂))  𝑓𝑜𝑟 𝜉, 𝜂 ∈ 𝑉∗, 𝜆, 𝜇 ∈ ℝ.   (5) 

We shall discuss various forms of giving a precise mathematical meaning to the concept of 

a representation of the canonical commutation relations defined by 𝜎. From the very 

beginning, we shall restrict ourselves to representations that can be brought into Weyl form, 

i.e., that correspond to strongly continuous unitary representations 𝜋 of the Heisenberg 

group 𝐻𝑜−: abbreviating 𝜋(𝜉, 0) to 𝜋(𝜉) , these relations can be written in the form 

𝜋(𝜉)𝜋(𝜂) = 𝑒−
𝑖
2
𝜎(𝜉,𝜂)𝜋(𝜉 + 𝜂) .                      (6) 

At the infinitesimal level, they correspond to representations �̇� of the Heisenberg algebra 

𝔥𝜎. which are often called “regular”: according to Nelson’s theorem these are precisely the 

representations of 𝔥𝜎 by essentially skew adjoint operators on a common dense invariant 

domain of analytic vectors. use these representations of the canonical commutation relations 

to construct what we shall call the Heisenberg 𝐶∗‐algebra: This algebra comes in two 

versions, namely, a nonunital one and a unital one, denoted here by 𝜀𝜎. and by 𝐶𝐻𝜎 ⋅, 
respectively: as it turns out, the latter is simply the multiplier algebra of the former. We 

emphasize that our construction differs substantially from previous ones that can be found 

in the literature, such as the Weyl algebra or the resolvent algebra: both of those use the 

method of constructing a 𝐶∗‐algebra from an appropriate set of generators and relations. 

Instead, we focus on certain Fréchet∗‐algebras that play a central role in Rieffel’s theory of 

strict deformation quantization and show that each of these admits a unique 𝐶∗‐norm, so it 

has a unique 𝐶∗‐completion. 

we given any (finite‐dimensional) real vector space 𝑊, say, we denote by 𝑆(𝑊) the 

Schwartz space of rapidly decreasing smooth functions on 𝑊 and by ℬ(𝑊) the space of 

totally bounded smooth functions on W. (A smooth function is said to be totally bounded if 

it is bounded and so are all of its partial derivatives.) 

To begin with, we want to briefly recall how one can use the bivector σ to introduce a new 

product on the space 𝑆(𝑉) which is a deformation of the standard pointwise product, 

commonly known as the Weyl‐Moyal star product and will then comment on how that 

deformed product can be extended to the space ℬ(𝑉) . 

Given any strongly continuous unitary representation 𝜋 of the Heisenberg group 𝐻𝜎 on some 

Hilbert space ℌ𝜋, we can construct a continuous linear map 

𝑊𝜋: 𝑆(𝑉) → ℬ(ℌ𝜋)                                                  (7) 

𝑓 ↦  𝑊𝜋𝑓 

from 𝑆(𝑉) to the space of bounded linear operators on ℌ𝜋, called the Weyl quantization 

map, by setting 

𝑊𝜋𝑓 = ∫ 𝑑
𝑉∗

𝜉𝑓(𝜉)𝜋(𝜉) ,                              (8) 

which is to be compared with 
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𝑓(𝑥) = ∫ 𝑑
𝑉∗

𝜉𝑓(𝜉)𝑒𝑖〈𝜉,𝑥〉,                                    (9) 

where 𝑓 is the inverse Fourier transform of 𝑓, 

𝑓(𝜉) ≡ (𝐹−1𝑓)(𝜉) =
1

(2𝜋)𝑛
∫ 𝑑
𝑉

𝑥𝑓(𝑥)𝑒−𝑖〈𝜉,𝑥〉.   (10) 

Note that Equation (8) should be understood as stating that, for every vector 𝜓 in ℌ𝜋, we 

have 

(𝑊𝜋𝑓)𝜓 = ∫ 𝑑
𝑉∗

𝜉𝑓(𝜉)𝜋(𝜉)𝜓, 

since it is this integral that makes sense as soon as 𝜋 is strongly continuous; then it is obvious 

that 𝑊𝜋𝑓 ∈ 𝐵(ℌ𝜋) , with ‖𝑊𝜋𝑓‖ ≤ ‖𝑓‖1, where ‖. ‖1 is the 𝐿1‐norm on 𝑆(𝑉∗) which, as 

shown in the Appendix (see Equation (A2)), can be estimated in terms of a suitable Schwartz 

seminorm of 𝑓, 

‖𝑊𝜋𝑓‖ ≤ ‖𝑓‖1 ≤ (2𝜋)
𝑛 ∑ sup

x∈V
  

|𝛼|,|𝛽|≤2𝑛

|𝑥𝛼𝜕𝛽𝑓(𝑥)|.           (11) 

Moreover, an explicit calculation shows that, independently of the choice of 𝜋, we have, for 

𝑓, 𝑔 ∈ 𝑆(𝑉) , 

𝑊𝜋𝑓𝑊𝜋𝑔 = 𝑊𝜋(𝑓 ⋆𝜎 𝑔) ,                                              (12) 
where ⋆𝜎 denotes the Weyl‐Moyal star product of 𝑓 and 𝑔, which is given by any one of the 

following two twisted convolution integrals: 

(𝑓 ⋆𝜎 𝑔)(𝑥) = ∫ 𝑑
𝑉∗

𝜉𝑒𝑖〈𝜉,𝑥〉∫ 𝑑
𝑉∗

𝜂𝑓(𝜂)𝑔(𝜉 − 𝜂)𝑒
𝑖
2
𝜎(𝜉,𝜂), (13) 

(𝑓 ⋆𝜎 𝑔)(𝑥) = ∫ 𝑑
𝑉∗

𝜉𝑒𝑖〈𝜉,𝑥〉∫ 𝑑
𝑉∗

𝜂𝑓(𝜉 − 𝜂)�̌�(𝜂)𝑒−
𝑖
2
𝜎(𝜉,𝜂). (14) 

The proof is a simple computation (we omit the 𝜓), 

𝑊𝜋𝑓𝑊𝜋𝑔 = ∫ 𝑑
𝑉∗

𝜂∫ 𝑑
𝑉∗

𝜁𝑓(𝜂)�̌�(𝜁)𝜋(𝜂)𝜋(𝜁) 

= ∫ 𝑑
𝑉∗

𝜂∫ 𝑑
𝑉∗

𝜁𝑓(𝜂)�̌�(𝜁)𝑒−
𝑖
2
𝑜−(𝜂,𝜁)𝜋(𝜂 + 𝜁) 

= ∫ 𝑑
𝑉∗

𝜂∫ 𝑑
𝑉∗

𝜉𝑓(𝜂)�̌�(𝜉 − 𝜂)𝑒−
𝑖
2
𝑜−(𝜂,𝜉)𝜋(𝜉) 

= ∫ 𝑑
𝑉∗

𝜉 ∫ 𝑑
𝑉∗

𝜂𝑓(𝜂)�̌�(𝜉 − 𝜂)𝑒
𝑖
2
𝑜−(𝜉,𝜂)𝜋(𝜉) 

= ∫ 𝑑
𝑉∗

𝜉𝐹−1(𝑓 ⋆𝜎 𝑔)(𝜉)𝜋(𝜉) 

= 𝑊𝜋(𝑓 ⋆𝜎 𝑔) . 
For the sake of comparison, we note an alternative form of this product using the “musical 

homomorphism” # : 𝑉∗ → 𝑉 induced by (𝐽⋅ (i.e., 〈𝜉, 𝜎#𝜂〉 = σ(𝜂, 𝜉)) , we get 
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(𝑓 ⋆σ 𝑔)(𝑥) = ∫ 𝑑
𝑉∗

𝜉𝑒𝑖〈𝜉,𝑥〉∫ 𝑑
𝑉∗

𝜂𝑓(𝜂)�̌�(𝜉 − 𝜂)𝑒−
𝑖
2
〈𝜉,σ#𝜂〉

 

= ∫ 𝑑
𝑉∗

𝜂∫ 𝑑
𝑉∗

𝜉′𝑓(𝜂)�̌�(𝜉′)𝑒
𝑖(𝜉′+𝜂,𝑥−

1
2
𝑜−#𝜂)

 

= ∫ 𝑑
𝑉∗

𝜂𝑓(𝜂)𝑔 (𝑥 −
1

2
σ#𝜂) 𝑒𝑖〈𝜂,𝑥〉 

=
1

(2𝜋)𝑛
∫ 𝑑
𝑉∗

𝜂∫ 𝑑
𝑉

𝑤𝑓(𝑤)𝑔 (𝑥 −
1

2
σ#𝜂) 𝑒𝑖〈𝜂,𝑥−𝑤〉, 

and similarly 

(𝑓 ⋆σ 𝑔)(𝑥) = ∫ 𝑑
𝑉∗

𝜉𝑒𝑖〈𝜉,𝑥〉∫ 𝑑
𝑉∗

𝜂𝑓(𝜉 − 𝜂)�̌�(𝜂)𝑒
𝑖
2
〈𝜉,σ#𝜂〉

 

= ∫ 𝑑
𝑉∗

𝜂∫ 𝑑
𝑉∗

𝜉′𝑓(𝜉′)�̌�(𝜂)𝑒𝑖〈𝜉
′+𝜂,𝑥+

1
2
σ#𝜂〉

 

= ∫ 𝑑
𝑉∗

𝜂𝑓 (𝑥 +
1

2
𝜎#𝜂) �̌�(𝜂)𝑒𝑖〈𝜂,𝑥〉 

=
1

(2𝜋)𝑛
∫ 𝑑
𝑉∗

𝜂∫ 𝑑
𝑉

𝑤𝑓 (𝑥 +
1

2
σ#𝜂) 𝑔(𝑤)𝑒𝑖〈𝜂,𝑥−𝑤〉, 

i.e., after a change of variables 𝑤 → 𝑢 = 𝑤 − 𝑥, 𝜂 → 𝜉 = 𝜂/2𝜋 in the first case and 𝑤 →

𝑣 = 𝑤 − 𝑥, 𝜂 → 𝜉 = −𝜂/2𝜋 in the second case, 

(𝑓 ⋆σ 𝑔)(𝑥) = ∫ 𝑑
𝑉∗

𝜉 ∫ 𝑑
𝑉

𝑢𝑓(𝑥 + 𝑢)𝑔(𝑥 − 𝜋(𝐽#𝜉)𝑒−2𝜋𝑖〈𝜉,𝑢〉,   (15) 

(𝑓 ⋆σ 𝑔)(𝑥) = ∫ 𝑑
𝑉∗

𝜉 ∫ 𝑑
𝑉

𝑣𝑓(𝑥 − 𝜋σ#𝑔)𝑔(𝑥 + 𝑣)𝑒2𝜋𝑖〈𝜉𝑈〉.   (16) 

The Weyl‐Moyal star product is iointly) continuous with respect to the standard Fréchet 

topology on 𝑆(𝑉) (this is well known and is also an immediate consequence of Proposition 

(6.1.17) in the Appendix). It follows that, with respect to the Weyl‐Moyal star product, 

together with the standard involution of pointwise complex conjugation and the standard 

Fréchet topology, the space 𝑆(𝑉) becomes a Fréchet∗‐algebra, which we shall denote by 

𝑆𝑂− and call the Heisenberg‐Schwartz algebra (with respect to σ#) . 

Dealing with the Weyl‐Moyal star product between two functions in (𝑉) , rather than 𝑆(𝑉) 
, is substantially more complicated. In this case, its definition is based on Equation (15) or 

Equation (16), whose rhs has to be interpreted as an oscillatory integral on 𝑉∗ × 𝑉. 

Fortunately, all of the necessary analytic tools have been provided by Rieffe1 (with the 

identification = −𝜋σ#) , so we may just state, as one of the results, that with respect to the 

Weyl‐Moyal star product, together with the standard involution of pointwise complex 

conjugation and the standard Fréchet topology, the space 𝐵(𝑉) becomes a Fréchet∗‐algebra, 

which we shall denote by 𝐵σ. and propose to call the Heisenberg‐Rieffel algebra (with 

respect to σ). 

We note in passing that both algebras are noncommutative when 𝑟 ≠ 0, but their deviation 

from commutativity is explicitly controlled by a simple formula, 
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𝑔 ⋆σ 𝑓 = 𝑓 ⋆−σ 𝑔.                                           (17) 
Retutning to explicit integral formulas, we note next that an intermediate situation, which 

will be of particular interest in what follows, occurs when one factor belongs to 𝐵(𝑉) while 

the other belongs to (𝑉) , since as the above calculation has shown, we have 

(𝑓 ⋆σ 𝑔)(𝑥) = ∫  
𝑉∗
𝑑𝜉𝑓(𝜉)𝑔 (𝑥 −

1

2
σ⋕𝜉) 𝑒𝑖〈𝜉,𝑥〉,       (18) 

and similarly, 

(𝑓 ⋆σ 𝑔)(𝑥) = ∫ 𝑑
𝑉∗

𝜉𝑓 (𝑥 +
1

2
σ#𝜉) �̌�(𝜉)𝑒𝑖〈𝜉,𝑥〉. (19) 

Note that the expression in Equation (18) makes sense when 𝑓 ∈ 𝑆(𝑉), 𝑔 ∈ 𝐵(𝑉) and 

similarly, the the expression in Equation (19) makes sense when 𝑓 ∈ 𝐵(𝑉), 𝑔 ∈ 𝑆(𝑉) : both 

are then ordinary integrals that become iterated integrals when the expression (10) for the 

inverse Fourier transform is written out explicitly. (Obviously, the two formulae can be 

converted into each other by means of Equation (17).) Moreover, it follows from elementary 

estimates which can be found in the Appendix (see Proposition (6.1.17)) that, in either case, 

⋆σ⋅ 𝑔 ∈ 𝑆(𝑉) , and the linear operators 

𝐿σ𝑓: 𝑆σ → 𝑆σ                                              (20) 

ℎ ↦  𝑓 ⋆σ ℎ 

of left translation by 𝑓 ∈ 𝐵σ and 

𝑅σ𝑔:  𝑆σ → 𝑆σ 

ℎ → ℎ ⋆σ 𝑔                                                  (21) 
of right translation by 𝑔 ∈ 𝐵σ are continuous in the Schwartz topology. In particular, 𝑆𝑂− is 

a ∗‐ideal in 𝐸σ (but neither closed nor dense); see [31] for more details. Thus we get a ∗‐
homomorphism 

𝐵σ  →  𝑀(𝑆σ) 

𝑓 ↦  (𝐿σ𝑓, 𝑅σ𝑓)                                        (22) 
which provides an embedding of 𝐵σ into what might be called the multiplier algebra 𝑀(𝑆σ) 

of 𝑆σ. However, we have refrained from using this terminology since there is no established 

definition of the concept of multiplier algebra beyond the realm of Banach algebras: there 

are “a priori” many possible candidates for its locally convex topology. (This is of course a 

generic statement: it does not exclude the existence of special cases where the “most natural” 

ones among these topologies coincide, as happens in the case of 𝑀(𝑆σ) when 𝑎. is 

nondegenerate. Of course, this ambiguity will no longer be a problem as soon as we pass to 

the 𝐶∗‐completions. 

The Fréchet algebras 𝑆σ and 𝐵σ both admit various norms. The naive choice would 

be the standard  sup  norm, but this is a 𝐶∗‐norm for the usual pointwise product, not for the 

Weyl‐Moyal star product. Hence the first question is whether there exist 𝐶∗‐norms on 𝑆σ 

and on 𝐵σ at all. Fortunately, the answer is affirmative: it suffices to take the operator norm 

in the regular representation. Consider the ∗‐representation 

𝐿σ: 𝑆σ  →  𝐵(𝐿
2(𝑉)) 

𝑓 ↦  𝐿σ𝑓                                               (23) 
of 𝑆𝜎, which extends to a ∗‐representation 
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𝐿σ: 𝐵σ  →  𝐵(𝐿
2(𝑉)) 

𝑓 → 𝐿𝜎𝑓                                                  (24) 

of 𝐵𝜎, both defined by taking the operator 𝐿(𝐽 ⋅ 𝑓 : 𝐿2(𝑉) → 𝐿2(𝑉) to be the unique 

continuous linear extension of the operator 𝐿𝜎𝑓 : 𝑆(𝑉) → 𝑆(𝑉) of Equation (20). Similarly, 

we may also consider the (anti‐)∗‐representation 

𝑅𝜎: 𝑆𝜎  →  𝐵(𝐿
2(𝑉)) 

𝑔 ↦  𝑅𝜎𝑔                                          (25) 
 

of 𝑆𝜎, which extends to an (anti‐)∗‐representation 

𝑅𝜎: 𝐵𝜎  →  𝐵(𝐿
2(𝑉)) 

𝑔 → 𝑅𝜎𝑔                                              (26) 

of 𝐵𝜎, both defined by taking the operator 𝑅𝜎𝑔 : 𝐿2(𝑉) → 𝐿2(𝑉) to be the unique continuous 

linear extension of the operator 𝑅𝜎𝑔 : 𝑆(𝑉) → 𝑆(𝑉) of Equation (21). Obviously, any 𝐿𝑜−𝑓 

commutes with any 𝑅𝜎𝑔: this is nothing but associativity of the star product. This 

construction presupposes that the operators 𝐿𝜎𝑓 of Equation (20) (and analogously, the 

operators 𝑅𝜎𝑔 of Equation (21)) are continuous not only in the Schwartz topology but also 

in the 𝐿2‐norm. We need to show that the linear maps 𝐿𝜎 in Equations (23) and (24) (and 

analogously, the linear maps 𝑅𝜎 in Equations (25) and (26)) are continuous with respect to 

the appropriate topologies. And finally, we want these continuity properties to hold locally 

uniformly when we vary 𝜎 ⋅. Fortunately, all these statements can be derived from a single 

estimate, as we explain in what follows. 

First, consider the case when 𝑓 belongs to (𝑉) : then we can rewrite Equation (18) in the 

form of Equation (8), since 

𝐿𝜎𝑓 = ∫ 𝑑
𝑉∗

𝜉𝑓(𝜉)𝜋reg(𝜉) ,                   (27) 

where 𝜋reg is the regular representation of the Heisenberg group 𝐻𝜎, that is, the strongly 

continuous unitary representation of 𝐻𝜎 on the Hilbert space 𝐿2(𝑉) defined by setting 

(𝜋reg(𝜉)𝜓)(𝑥) = 𝑒𝑖〈𝜉,𝑥〉𝜓(𝑥 −
1

2
𝜎#𝜉) ,         (28) 

i.e., 𝜋reg(𝜉) is the operator of translation by − 
1

2
𝜎#𝜉 followed by that of multiplication with 

the phase function 𝑒𝑖〈𝜉,.〉. As before, it follows that 𝐿𝜎𝑓 ∈ 𝐵(𝐿
2(𝑉)) , with ‖𝐿𝜎𝑓‖ ≤ ‖𝑓‖1, 

where ‖. ‖1 is the 𝐿1‐norm on 𝑆(𝑉∗) which, as shown in the Appendix (see Equation (A2)), 

can be estimated in terms of a suitable Schwartz seminorm of 𝑓, 

‖𝐿𝜎𝑓‖ ≤ ‖𝑓‖1 ≤ (2𝜋)
𝑛 ∑ sup

x∈V
  

|𝛼|,|𝛽|≤2𝑛

|𝑥𝛼𝜕𝛽𝑓(𝑥)|.   (29) 

To handle the case when 𝑓 belongs to (𝑉) , we need a better estimate. Fortunately, we can 

resort to a famous theorem from the theory of pseudo‐differential operators, known as the 

Calderón‐Vaillancourt in the version we need here, which deals with a very special symbol 

class (since the function space 𝐵 coincides with Hörmander’s symbol class space 𝑆00
0 ) but 
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on the other hand requires an improvement of the pertinent estimate, taken from it states 

that, given any totally bounded smooth function 𝑎 on 𝑉 × 𝑉∗, setting 

(𝐴𝑢)(𝑥) = ∫ 𝑑
𝑉∗

𝜉𝑎(𝑥, 𝜉)�̌�(𝜉)𝑒𝑖〈𝜉,𝑥〉 𝑓𝑜𝑟 𝑢 ∈ 𝑆(𝑉) 

defines, by continuous linear extension, a bounded linear operator on 𝐿2(𝑉) with operator 

norm 

‖𝐴‖ ≤ 𝐶 ∑ sup
x∈V,ξ∈Vn

  

|𝛼|,|𝛽|≤𝑛

|𝜕𝑥,𝛼𝜕𝜉,𝛽𝑎(𝑥, 𝜉)|, 

where 𝐶 is a combinatorial constant depending only on the dimension 𝑛 of 𝑉. Applying this 

result to the operator 𝐿𝜎𝑓 defined by Equations (19) and (20), we see that for every 𝑓 in 

𝐸(𝑉), 𝐿𝜎𝑓 is a bounded linear operator on 𝐿2(𝑉) whose operator norm satisfies an estimate 

of the form 

‖𝐿𝜎𝑓‖ ≤ |𝑃(𝜎
∨)| ∑ sup

x∈V
  

|𝛼|≤𝑛

|𝜕𝛼𝑓(𝑥)|,                   (30) 

where 𝑃(𝜎) is a polynomial of degree ≤ 𝑛 in 𝜎 whose coefficients are combinatorial 

constants depending only on the dimension 𝑛 of 𝑉. 

From these results, it follows that we can define a 𝐶∗‐norm on 𝑆𝜎 as well as on 𝐵𝑂− by 

setting 

‖𝑓‖ = ‖𝐿𝜎𝑓‖.                                 (31) 
That this is really a norm and not just a seminorm is due to the fact that the left regular 

representation is faithful. Namely, given ∈ ℬ(𝑉), 𝑓 ≠ 0, and any point 𝑥 in 𝑉 such that 

𝑓(𝑥) ≠ 0, take 𝑔 ∈ 𝑆(𝑉) such that �̌� ∈ 𝑆(𝑉∗) becomes 

�̌�(𝜉) = 𝑓 (𝑥 +
1

2
𝜎#𝜉) 𝑒

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 −𝑖〈𝜉,𝑥〉𝑒−𝑞(𝜉), 

where 𝑞 is any positive definite quadratic form on 𝑉∗; then by Equation (19), (𝑓 ⋆𝜎 𝑔)(𝑥) 

is equal to the 𝐿2‐norm of the function 𝜉 ↦ 𝑓 (𝑥 +
1

2
𝜎#𝜉) with respect to the Gaussian 

measure 𝑒−𝑞(𝜉)𝑑𝜉 on 𝑉∗ and hence is > 0, since this function is smooth and ≠ 0 at 𝜉 = 0, 

so 𝐿𝜎𝑓 ⋅ 𝑔 ≠ 0 and hence 𝐿𝜎𝑓 ≠ 0. 

The completions of 𝑆𝜎 and of 𝐸𝐶𝛤 with respect to this 𝐶∗‐norm will be denoted by 𝜀𝜎 and 

by ℋ𝜎 ⋅, respectively, and will be referred to as Heisenberg 𝐶∗‐algebras: more precisely, 

𝜀𝜎. is the nonunital Heisenberg 𝐶∗‐algebra while ℋ𝜎 is the unital Heisenberg 𝐶∗‐

algebra (with respect to 𝜎) . (We admit that using the symbol 𝜀 with this meaning may be a 

bit confusing because 𝜀𝜎. has nothing to do with the Schwartz space 𝜀(𝑉) of arbitrary 

smooth functions on 𝑉: after all, when 𝜎 is nondegenerate, 𝜀𝜎 will be isomorphic to the 

algebra of compact operators on the Hilbert space 𝐿2(𝑉𝐿) , where 𝑉𝐿 is some lagrangian 

subspace of 𝑉. Still, we have decided to adopt this notation because of the connection, 

explained below, with the DFR‐algebra, which was called 𝜀 and also because the space 

𝜀(𝑉) will play no role except for an intermediate argument in the Appendix.) Obviously, the 

estimate (29) and the (much better) estimate (30) imply that the natural Fréchet topologies 
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on 𝑆𝜎 and on 𝐵𝜎. are finer than the 𝐶∗‐topologies induced by their embeddings into 𝜀𝜎 and 

ℋ𝜎, respectively. Moreover, by construction, the (faithful)∗‐representations (23) and (24) 

extend to (faithful) 𝐶∗‐representations of 𝜀𝜎 and of ℋ𝜎, respectively, for which we 

maintain the same notation, writing 

𝐿𝜎 ⋅ : 𝜀𝜎  →  𝐵(𝐿
2(𝑉))                              (32) 

𝑓 ↦  𝐿𝜎𝑓 

and 

𝐿𝜎: ℋ𝜎  →  𝐵(𝐿
2(𝑉)), 

𝑓 ↦  𝐿𝜎𝑓                                                   (33) 

respectively. It is also clear that the embedding of 𝑆𝜎 into 𝐵𝜎 (as a ∗‐ideal) extends 

canonically to an embedding of 𝜀𝜎. into 𝐻𝑐𝜏 (as a ∗‐ideal) and similarly that the embedding 

of Equation (22) extends canonically to an embedding of (ℋ𝜎 into the multiplier algebra 

𝑀(𝜀𝜎) of 𝜀𝜎, which we shall write in a form analogous to Equation (22), 

ℋ𝜎  →  𝑀(𝜀𝜎)𝑓 ↦  (𝐿𝜎 ⋅ 𝑓, 𝑅𝜎 ⋅ 𝑓) .                  (34) 

The (faithful) 𝐶∗‐representation of 𝜀𝜎. in Equation (32) is nondegenerate. (To explain this 

statement, recall that a ∗‐representation of a ∗‐ algebra 𝐴 by bounded operators on a 

Hilbert space ℌ is called nondegenerate if the subspace generated by vectors of the form 

𝜋(𝑎)𝜓, where 𝑎 ∈ 𝐴 and 𝜓 ∈ ℌ, is dense in ℌ, or equivalently, if there is no nonzero vector 

in ℌ that is annihilated by all elements of 𝐴. Obviously, if 𝐴 has a unit, every (unital)∗‐

representation of 𝐴 is nondegenerate. Also, irreducible ∗‐representations and, more 

generally, cyclic ∗‐representations are always nondegenerate. In the situation of interest 

here, the statement follows easily from the existence of approximate identities in the 

Heisenberg‐Schwartz algebra 𝑆𝜎 ⋅, as formulated in Proposition (6.1.18) of the Appendix: 

given any 𝐿2‐function 𝜓 ∈ 𝐿2(𝑉) , it suffices to approximate it in 𝐿2‐norm by some 

Schwartz function 𝑓 ∈ 𝑆(𝑉) and then approximate that, in the Schwartz space topology and 

hence also in 𝐿2‐norm, by some Schwartz function of the form 𝑋𝑘 ⋆𝜎 𝑓, where X𝑘 ∈ 𝑆(𝑉).) 

This property of nondegeneracy is important here because it implies that the (faithful) 𝐶∗‐

representation of 𝜀𝜎 in Equation (32) extends uniquely to a (faithful) 𝐶∗‐representation 

𝐿𝜎: 𝑀(𝜀𝜎)  →  𝐵(𝐿
2(𝑉))                          (35) 

𝑚 ↦ 𝐿𝜎𝑚 

of the multiplier algebra 𝑀(𝜀𝜎) of 𝜀𝜎 .: for later use, let us quickly recall how to construct 

this extension. Writing elements of 𝑀(𝜀𝜎) as pairs 𝑚 = (𝑚𝐿, 𝑚𝑅) , where 𝑚𝐿 ∈ 𝐿(𝜀𝜎) is a 

left multiplier (𝑚𝐿(𝑓 ⋆𝜎 𝑔) = 𝑚𝐿(𝑓) ⋆𝜎 𝑔) and 𝑚𝑅 ∈ 𝐿(𝜀𝜎 . ) is a right multiplier 

(𝑚𝑅(𝑓 ⋆𝜎 𝑔) = 𝑓 ⋆𝜎 𝑚𝑅(𝑔)) , related by the condition that 𝑓 ⋆𝜎 𝑚𝐿(𝑔) = 𝑚𝑅(𝑓) ⋆𝜎 𝑔, 

and using the fact that the representation 𝐿𝜎 in Equation (32) is nondegenerate, which means 

that the subspace of 𝐿2(𝑉) generated by vectors of the form 𝐿𝜎𝑓 ⋅ 𝜓 with 𝑓 ∈ 𝜀𝜎 and 𝜓 ∈

𝐿2(𝑉) (or even 𝜓 ∈ 𝑆(𝑉)) is dense in 𝐿2(𝑉) , the operator 𝐿𝜎𝑚 ∈ 𝐵(𝐿
2(𝑉)) is defined by 

𝐿𝜎 ⋅ 𝑚 ⋅ (𝐿𝜎 ⋅ 𝑓 ⋅ 𝜓) = 𝐿𝜎 ⋅ (𝑚𝐿(𝑓)) ⋅ 𝜓.           (36) 

That this is well‐defined follows from the fact that 𝜀𝜎 is an essential ∗‐ideal in (𝜀𝜎) , i.e., 

a ∗‐ideal that has nontrivial with any nontrivial ∗‐ideal in 𝑀(𝜀(𝑓) . Moreover, it follows that, 
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just like any 𝐿𝜎 ⋅ 𝑓 (originally for 𝑓 ∈ 𝑆𝜎 but then, by continuity, also for 𝑓 ∈ 𝜀𝜎), any 𝐿𝑂−𝑚 

also commutes with any 𝑅𝜎𝑔 (originally for 𝑔 ∈ 𝑆𝜎 but then, by continuity, also for 𝑔 ∈

𝜀𝜎), 

(𝐿𝜎𝑚𝑅𝜎𝑔) ⋅ (𝐿𝜎𝑓 ⋅ 𝜓) = (𝐿𝜎𝑚𝑅𝜎𝑔) ⋅ (𝑓 ⋆𝜎 𝜓) = 𝐿𝜎𝑚 ⋅ ((𝑓 ⋆𝜎 𝜓) ⋆𝜎 𝑔) 

= 𝐿𝜎𝑚 ⋅ (𝑓 ⋆𝜎 . (𝜓 ⋆𝜎⋅ 𝑔)) = 𝐿𝜎 ⋅ 𝑚 ⋅ (𝐿𝜎𝑓 ⋅ (𝜓 ⋆𝜎 𝑔)) 

= (𝐿𝜎 ⋅ (𝑚𝐿(𝑓))𝑅𝜎 ⋅ 𝑔) ⋅ 𝜓 = (𝑅𝜎 ⋅ 𝑔𝐿𝜎 ⋅ (𝑚𝐿(𝑓))) ⋅ 𝜓 

= (𝑅𝜎 − 𝑔𝐿𝜎𝑚) ⋅ (𝐿𝜎𝑓 ⋅ 𝜓) . 
Finally, we see that with this construction, the representation (33) becomes simply the 

composition of the representation (35) with the embedding (34). 

Having settled the question of existence of a 𝐶∗‐norm on the Fréchet∗‐algebras 𝑆𝜎 

and 𝐵𝜎 , we want to address the question of its uniqueness. We follow the script laid which 

turns out to work perfectly for the Heisenberg‐Schwartz and Heisenberg‐Rieffel algebras. 

The first step will be to prove the following fact. 

Theorem (6.1.3)[270]: The Heisenberg‐Schwartz and Heisenberg‐Rieffel algebras, 𝑆𝜎 and 

𝐵𝜎, are spectrally invariant in their respective 𝐶∗‐completions, 𝜀𝜎 and ℋ𝜎, as defined 

above. Therefore, 𝜀𝜎 and ℋ𝜎 
 𝑎𝑟𝑒 the universal enveloping 𝐶∗‐algebras of the Heisenberg‐

Schwartz algebra 𝑆𝜎𝑎𝑛𝑑 of the Heisenberg‐Rieffel algebra 𝐸𝜎, respectively. 

The assertion of Theorem (6.1.3) is known to hold in the commutative case, i.e., when 𝜎 =

0 [14] and also when 𝜎 is nondegenerate [13], but for the general deformed algebras, it does 

not seem to have been stated explicitly anywhere in the literature: in what follows, we shall 

give a different and direct proof in which the rank of 𝜎. plays no role. 

Proof. The proof will be based on the main theorem which can be formulated as follows. 

To begin with, let 𝛺 denote the standard symplectic form on the doubled space 𝑉 ⊕ 𝑉∗, 
defined by 

Ω ((𝑥, 𝜉), (𝑦, 𝜂)   =  𝜉(𝑦)  −  𝜂(𝑥)                           (37) 
let 𝐻𝛺 denote the corresponding Heisenberg group (which has nothing to do with the 

Heisenberg group 𝐻𝜎 considered before), and consider the corresponding strongly 

continuous unitary representation 

𝑊𝛺: 𝐻𝛺 → 𝑈(𝐿
2(𝑉))                       (38) 

of 𝐻𝛺 on 𝐿2(𝑉) , explicitly given by 

(𝑊𝛺(𝑥, 𝜉, 𝜆)𝜓)(𝑧) = 𝑒
−𝑖〈𝜉,𝑧−

1
2
𝑥〉+𝑖𝜆𝜓(𝑧 − 𝑥) .             (39) 

Next, consider the continuous isometric representation 

Ad(𝑊𝛺):𝐻𝛺 → Aut (𝐵(𝐿
2(𝑉)))                       (40) 

of 𝐻𝛺 on 𝐵(𝐿2(𝑉)) obtained from it by taking the adjoint action (i.e., for 𝑇 ∈ 𝐵(𝐿2(𝑉)) , 

we have Ad(𝑊𝛺)(ℎ)𝑇 = 𝑊𝛺(ℎ)𝑇𝑊𝛺(ℎ)
−1). Then given an operator ∈ 𝐵(𝐿2(𝑉)) , we say 

that it is Heisenberg‐smooth if it is a smooth vector with respect to this representation, i.e., 

if the function 

𝐻𝛺  →  𝐵(𝐿
2(𝑉)) 

(𝑥, 𝜉, 𝜆)  ↦  𝑊𝛺(𝑥, 𝜉, 𝜆)𝑇𝑊𝛺(𝑥, 𝜉, 𝜆)
−1 
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is smooth. Now the main theorem states that an operator 𝑇 ∈ 𝐵(𝐿2(𝑉)) is of the form 𝐿𝜎𝑓 

(see Equations (19), (20), and (24)), with 𝑓 ∈ 𝐵𝜎, if and only if it is Heisenberg‐smooth and 

commutes with all operators of the form 𝑅𝐶𝛤𝑔 (see Equations (18), (21), and (26)), where 

𝑔 ∈ 𝐵𝜎. (or equivalently, 𝑔 ∈ 𝑆𝜎). This fact, applied in both directions, will enable us to 

complete the proof, as follows. 

Suppose first that 𝑓 ∈ ℬ𝜎 . is invertible in ℋ𝜎. Then the operator 𝐿𝜎 ⋅ 𝑓 ∈ 𝐵(𝐿
2(𝑉)) is 

Heisenberg smooth and commutes with all operators of the form 𝑅𝜎 ⋅ 𝑔, where 𝑔 ∈ 𝑆𝜎. But 

this implies that the inverse operator (𝐿𝜎𝑓)
−1 ∈ 𝐵(𝐿2(𝑉)) is also Heisenberg‐smooth, since 

𝑊𝛺(𝑥, 𝜉, 𝜇)(𝐿𝜎𝑓)
−1𝑊𝛺(𝑥, 𝜉, 𝜇)

−1 = (𝑊𝛺(𝑥, 𝜉, 𝜇)𝐿𝑜−𝑓𝑊𝛺(𝑥, 𝜉, 𝜇)
−1)−1 

and since inversion of bounded linear operators is a smooth map, and that it also commutes 

with all operators of the form 𝑅𝜎 ⋅ 𝑔, where 𝑔 ∈ 𝑆𝜎 ⋅. Thus it follows that (𝐿𝜎𝑓)
−1 is of the 

form 𝐿𝜎𝑔 for some 𝑔 ∈ 𝐵𝜎, showing that 𝐵𝜎 is spectrally invariant in ℋ𝜎. To prove that, 

similarly, 𝑆𝜎 is spectrally invariant in 𝜀𝜎, consider the unitizations �̃�𝜎 of 𝑆𝜎 (still contained 

in 𝐵𝜎) and 𝜀�̃� of 𝜀𝜎 (still contained in ℋ𝜎), and suppose 𝑓 ∈ 𝑆𝜎. to be such that 𝜆1 + 𝑓 ∈ �̃�𝜎 

is invertible in 𝜀�̃� (note that this implies 𝜆 ≠ 0). Then, as we have already shown, 

(𝜆1 + 𝐿𝜎𝑓)
−1 is of the form 𝐿𝜎ℎ for some ℎ ∈ 𝐵𝜎 ⋅, which we can rewrite in the form ℎ =

𝜆−11 + 𝑔 with 𝑔 ∈ 𝐵𝜎 ⋅, implying 

1 = (𝜆1 + 𝑓) ⋆𝜎 (𝜆
−11 + 𝑔) = 1 + 𝜆−1𝑓 + 𝜆𝑔 + 𝑓 ⋆𝜎⋅ 𝑔 

𝑔 = −𝜆−2𝑓 − 𝜆−1𝑓 ⋆𝜎⋅ 𝑔. 

But 𝑆𝜎 is an ideal in 𝐵𝜎 ⋅, so it follows that 𝑔 ∈ 𝑆𝜎 and hence 𝜆−11 + 𝑔 ∈ �̃�𝜎 . 
and thus 

The same techniques can be used to prove the following interesting and useful theorem 

about the relation between 𝜀𝐶𝑇 and ℋ𝜎 . 

Theorem (6.1.4)[270]: The 𝐶∗‐algebra ℋ𝜎. is the multiplier algebra of the 𝐶∗‐algebra 𝜀𝜎 , 

ℋ𝜎 = 𝑀(ℇ𝜎) ,                                         (41) 
and in fact it is a von Neumann algebra. 

Proof. What needs to be shown is that the embedding (34) is in fact an isomorphism. To this 

end, let 𝑅 be the subspace of 𝐵(𝐿2(𝑉)) consisting of right translations by elements of 𝑆𝜎 , 

𝑅 = {𝑅𝜎(𝑔)|𝑔 ∈ 𝑆𝜎}. 
What will be of interest here is its commutant 𝑅′, which is a closed subspace (and in fact 

even a von Neumann subalgebra) of 𝐵(𝐿2(𝑉)) . As has been shown at the end B, the 

representation (35) maps 𝑀(𝜀𝑂−) into 𝑅′. On the other hand, the relation 

𝑊𝛺(𝑥, 𝜉, 𝜆)𝑅𝜎(𝑔)𝑊𝛺(𝑥, 𝜉, 𝜆)
−1 = 𝑅𝜎 (𝑊𝛺 (𝑥 +

1

2
𝜎#𝜉, 0,0)𝑔)   (42) 

shows that 𝑅 is an invariant subspace for the representation Ad(𝑊𝛺) of 𝐻𝛺 on 𝐵(𝐿2(𝑉)) 

(see Equation (40)); hence so is 𝑅′. Therefore, the main theorem can be reformulated as the 

statement that the image of 𝐵𝜎 under the representation (24) is precisely the subspace of 

smooth vectors for the representation Ad(𝑊𝛺) of 𝐻𝛺 on 𝑅′ obtained by restriction, and hence 

it is dense in 𝑅′. It follows that the image of 𝑐𝐻𝑜− under the representation (33) is precisely 

𝑅′, a von Neumann algebra. 

For the second step, we use a result that is of independent interest, namely, the fact that, as 

shown in [31], the Heisenberg 𝐶∗‐algebra 𝜀𝜎. is isomorphic to the algebra of continuous 
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functions, vanishing at infinity, on a certain subspace 𝑉0 of 𝑉 (dual to ker𝜎) and taking 

values in the algebra 𝒦 of compact linear operators in a separable Hilbert space, which can 

also be written as a 𝐶∗‐ algebra tensor product, 

𝜀𝜎 ≅ 𝐶0(𝑉0, 𝒦) ≅ 𝐶0(𝑉0) ⊗𝒦.                   (43) 

To see this explicitly, we first recall the “musical homomorphism” (𝜎  # ∶  𝑉∗ → 𝑉 induced 

by 𝑎. (i.e., 〈𝜉, 𝜎#𝜂〉 = 𝜎 ⋅ (𝜂, 𝜉)) whose image is a subspace of 𝑉 that we shall denote by 𝑊: 

it is precisely the annihilator of the kernel of (𝜎 in 𝑉∗, 

𝑊 = im𝜎# = (ker𝜎)⊥,                                 (44) 

and it carries a symplectic form, denoted by 𝑜𝑗 and defined by (𝑣((𝜎#𝜉, (𝜎#𝜂) = 𝜎(𝜉, 𝜂) . 

Now choosing a subspace 𝑉0 of 𝑉 complementary to 𝑊, we get a direct decomposition 

𝑉 = 𝑉0⊕𝑊.                                      (45) 
Taking the corresponding annihilators, we also get a direct decomposition for the dual, 

𝑉∗ = 𝑉0
∗⊕𝑊∗, 𝑤ℎ𝑒𝑟𝑒 𝑉0

∗ = 𝑊⊥ = ker𝜎 𝑎𝑛𝑑 𝑊∗ = 𝑉0
⊥.   (46) 

Of course, 𝑊∗ also carries a symplectic form, again denoted by 𝑤, which is simply the 

resmction of 𝜎 to this subspace, on which it is nondegenerate. Now according to the 

Schwartz nuclear theorem, we have 

𝑆(𝑉) ≅ 𝑆(𝑉0) ⊗ 𝑆(𝑊) ,                                   (47) 
and similarly 

𝑆(𝑉∗) ≅ 𝑆(𝑉0
∗)⊗ 𝑆(𝑊∗) ,                            (48) 

and it is clear that the Fourier transform ℱ ∶  𝑆(𝑉) → 𝑆(𝑉∗) is the tensor product of the 

Fourier transforms ℱ ∶  𝑆(𝑉0) → 𝑆(𝑉0
∗) and ℱ ∶  𝑆(𝑊) → 𝑆(𝑊∗) . Hence looking at the 

definition of the Weyl‐Moyal star product, we see that the tensor products in Equations (47) 

and (48) are in fact tensor products of algebras, i. e., 

𝑆σ ≅ 𝑆0⊗𝑆𝑤 ,                              (49) 
where 𝑆0 is the commutative algebra of Schwartz test functions (𝑆(𝑉0) with the ordinary 

pointwise product or 𝑆(𝑉0
∗) with the ordinary convolution product) while 𝑆𝑤 is the 

Heisenberg‐Schwartz algebra associated with the nondegenerate 2‐form w. Taking the 

universal 𝐶∗‐completions, we get 

𝜀σ ≅ 𝜀0⊗ 𝜀𝑤.                      (50) 
But obviously, 𝜀0 ≅ 𝐶0(𝑉0) ≅ 𝐶0(𝑉0

∗) , and it is well known that 𝜀𝑤 ≅ 𝒦. 
In passing, we note that the tensor product in Equations (43) and (50) is the tensor product 

of 𝐶∗‐algebras and as such is unique (there is only one 𝐶∗‐norm on the algebraic tensor 

product) since one of the factors is nuclear (in fact, both of them are; see [25]). 

To complete the argument, we make use of the fact that any ideal in 𝜀σ is of the form 

{(ℓ ∈ 𝐶0(𝑉0, 𝒦)|𝜑|𝐹 = 0}, 
or equivalently, 

{𝑓 ∈ 𝐶0(𝑉0)|𝑓|𝐹 = 0}⊗𝒦, 
where 𝐹 is a closed subset of the space 𝑉0. (That these are in fact all ideals in 𝜀σ is a special 

case of a much more general statement, whose formulation and proof can be found in [279], 

together with the fact that 𝒦 is simple.) But obviously, each of these ideals has nontrivial 

with the Heisenberg‐Schwartz algebra. 
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Finally, we can extend the conclusion from 𝜀σ. to ′ℋσ: since the latter is the multiplier 

algebra of the former, any nontrivial ideal of ℋσ intersects 𝜀σ in a nontrivial ideal of 𝜀σ, 

which in turn has nontrivial with 𝑆σ. and hence with 𝐵σ ⋅⋅ 
Summarizing, we have proved 

Theorem (6.1.5)[270]: The Heisenberg‐Schwartz algebra 𝑆σ and the Heisenberg‐Rieffel 

algebra 𝐵σ each admit one and only one 𝐶∗‐norm, and hence the Heisenberg 𝐶∗‐algebras 

𝜀σ. andℋσ. are their unique 𝐶∗‐completions. 

Returning to the situation discussed at the beginning assume we are given any 

strongly continuous unitary representation 𝜋 of the Heisenberg group 𝐻σ. Then Weyl 

quantization produces a ∗‐representation 𝑊𝜋 of the Heisenberg‐Schwartz algebra 𝑆σ, 

defined according to Equations (7) and (8), which according to Equation (11) is continuous 

with respect to the Schwartz topology. But in fact it is also continuous with respect to the 

𝐶∗‐topology since that is defined by the maximal 𝐶∗‐norm on 𝑆σ which is an upper bound 

for all 𝐶∗‐seminorms on 𝑆σ, including the operator seminorm for 𝑊𝜋, and therefore 𝑊𝜋 

extends uniquely to a 𝐶∗‐representation of the nonunital Heisenberg 𝐶∗‐algebra 𝜀σ which 

will again be denoted by 𝑊𝜋. Moreover, we have 

Lemma (6.1.6)[270]: Given any strongly continuous unitary representation 𝜋 of the 

Heisenberg group 𝐻σ, the resulting ∗‐representation 𝑊𝜋 of the Heisenberg‐Schwartz 

algebra 𝑆σ, and hence also of the Heisenberg 𝐶∗‐algebra 𝜀σ, is nondegenerate. 

Proof. Given any vector 𝜓 in the Hilbert space ℌ of the representations 𝜋 and 𝑊𝜋 and any 

𝜀 > 0, strong continuity of 𝜋 implies the existence of an open neighborhood 𝑈∗ of 0 in 𝑉∗ 
such that 

‖𝜋(𝜉)𝜓 − 𝜓‖ < 𝜀 𝑓𝑜𝑟 𝜉 ∈ 𝑈∗, 

since 𝜋(0) = 1. Now choose 𝑓 ∈ 𝑆(𝑉) such that 𝑓 ∈ 𝑆(𝑉∗) is nonnegative, with integral 

normalized to 1, and has compact support contained in 𝑈∗. Then 

‖(𝑊𝜋𝑓)𝜓 − 𝜓‖ = ‖∫ 𝑑
𝑉∗

𝜉𝑓(𝜉)𝜋(𝜉)𝜓 − 𝜓‖ ≤ ∫ 𝑑
𝑉∗

𝜉𝑓(𝜉)‖𝜋(𝜉)𝜓 − 𝜓‖ < 𝜀. 

As a result, these ∗‐representations extend to (unital) ∗‐representations of the Heisenberg‐

Rieffel algebra 𝐵σ and of the unital Heisenberg 𝐶∗‐algebra ℋσ, respectively, which will 

again be denoted by 𝑊𝜋 . 

Conversely, given any nondegenerate 𝐶∗‐representation 𝑊 of 𝜀σ, we can extend it uniquely 

to a (unital) 𝐶∗‐representation of 𝐻σ ⋅, again denoted by 𝑊, which restricts to a unitary 

representation 𝜋𝑊 of 𝐻σ defined according to 

𝜋𝑊(𝜉) = 𝑊(𝑒𝜉) ,                                (51) 

where 𝑒𝜉 ∈ 𝐵σ denotes the phase function given by 𝑒𝜉(𝑢) = 𝑒
𝑖〈𝜉,𝑣〉. To show that 𝜋𝑊 is 

automatically strongly continuous, we note that, according to Equations (9) and (19), we 

have, for any 𝑓 ∈ 𝑆σ ⋅, 

(𝑒𝜉 ⋆σ 𝑓)(𝑥) = 𝑒
𝑖〈𝜉,𝑥〉𝑓 (𝑥 −

1

2
σ#𝜉) , 

so 𝑒𝜉 ⋆σ 𝑓 converges to 𝑓 as 𝜉 tends to zero, in the Schwartz topology and hence also in the 

𝐶∗‐topology. Now since 𝑊 is supposed to be nondegenerate and 𝑆σ is dense in 𝜀σ, every 

vector in ℌ𝑊 can be approximated by vectors of the form 𝑊(𝑓)𝜓, where 𝑓 ∈ 𝑆σ and 𝜓 ∈
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ℌ𝑊. But on such vectors, we have strong continuity, since for any 𝑓 ∈ 𝑆σ and any 𝜓 ∈ ℌ𝑊, 

𝜋𝑊(𝜉)𝑊(𝑓)𝜓 = 𝑊(𝑒𝜉 ⋆σ 𝑓)𝜓 tends to 𝑊(𝑓)𝜓 as 𝜉 tends to zero. 

Finally, it is easy to see that composing the two operations of passing (a) from a strongly 

continuous unitary representation 𝜋 of 𝐻σ. to a nondegenerate 𝐶∗‐representation 𝑊𝜋 of 𝜀σ 

and (b) from a nondegenerate 𝐶∗‐representation 𝑊 of 𝜀σ to a strongly continuous unitary 

representation 𝜋𝑊 of 𝐻σ, in any order, reproduces the original representation, so we have 

proved. 

Theorem (6.1.7)[270]: There is a bijective correspondence between the strongly continuous 

unitary representations of the Heisenberg group 𝐻σ and the nondegenerate 

𝐶∗‐representations of the nonunital Heisenberg 𝐶∗‐algebra 𝜀σ. Moreover, this 

correspondence takes irreducible representations to irreducible representations. 

As a corollary, we can state a classification theorem for irreducible representations which is 

based on one of von Neumann’s famous theorems, according to which there is a unique such 

representation, generally known as the Schrödinger representation of the canonical 

commutation relations, provided that σ is nondegenerate. To handle the degenerate case, 

i.e., when σ has a nontrivial null space, denoted by ker σ, we use the same trick as above: 

choose a subspace 𝑊∗ of 𝑉∗ complementary to kerσ (see Equation (46)), so that the 

restriction 𝑤 of σ to 𝑊∗ ×𝑊∗ is nondegenerate, and introduce the corresponding 

Heisenberg algebra 𝔥w = 𝑊
∗⊕ℝ and Heisenberg group 𝐻w = 𝑊

∗ ×ℝ to decompose the 

original ones into the direct sum 𝔥σ = kerσ⊕ 𝔥𝑤 of two commuting ideals and 𝐻σ =

kerσ × 𝐻w of two commuting normal subgroups. (As is common practice in the abelian 

case, we consider the same vector space kerσ as an abelian Lie algebra in the first case and 

as an additively written abelian Lie group in the second case, so that the exponential map 

becomes the identity.) It follows that every (strongly continuous unitary) representation of 

𝐻𝑤 is the tensor product of a (strongly continuous unitary) representation of kerσ and a 

(strongly continuous unitary) representation of 𝐻𝑤, where the first is irreducible if and only 

if each of the last two is irreducible. Now since kerσ is abelian, its irreducible 

representations are one‐dimensional and given by their character, which proves the 

following. 

Theorem (6.1.8)[270]: With the notation above, the strongly continuous, unitary, 

irreducible representations of the Heisenberg group 𝐻σ, or equivalently, the irreducible 

representations of the nonunital Heisenberg 𝐶∗‐algebra 𝜀σ., are classified by their highest 

weight, which is a vector 𝑢 in 𝑉, or more precisely, its class [𝑢] in the quotient space 

𝑉/(kerσ)⊥, such that 

𝜋[𝑣](𝜉, 𝜂) = 𝑒
𝑖〈𝜉,𝑣〉𝜋𝑤(𝜂)𝑓𝑜𝑟 𝜉 ∈ kerσ, 𝜂 ∈ 𝐻𝑤 , 

where 𝜋𝑤 is of course the Schrödinger representation of 𝐻𝜔. 
 

We point out that the correspondence of Theorem (6.1.7) does not hold when we replace 𝜀σ. 

by ℋσ, simply because ℋσ admits 𝐶∗‐representations whose restriction to 𝜀σ. is trivial: just 

consider any representation of the corona algebra ℋσ ⋅/𝜀σ.. That is why it is important to 

consider not only ℋσ but also 𝜀σ. 

We would like to comment on the difference between our definition of the Heisenberg 𝐶∗‐

algebra and others that can be found ‐ more specifically, the Weyl algebra 𝛥(𝑉∗, (𝑟) of Refs 
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22 and 23 and the resolvent algebra ℛ(𝑉∗, 𝜎 ⋅) these are defined as the universal enveloping 

𝐶∗‐algebras of the ∗‐algebra 𝛥(𝑉∗, 𝜎 ⋅) generated by the phase functions 𝑒𝜉 and of the ∗‐

algebra ℛ0(𝑉
∗, σ) generated by the resolvent functions 𝑅𝜉, respectively, where 𝑒𝜉(𝑢) =

𝑒𝑖〈𝜉𝑈〉, as before, and similarly, 𝑅𝜉(𝑣) = (𝑖 − 〈𝜉, 𝑢〉)
−1. 

The main problem with these constructions is that the resulting 𝐶∗‐algebras are, in a certain 

sense, “too small as indicated by the fact that they accommodate lots of “purely algebraic” 

representations and one has to restrict to a suitable class of “regular” representations in order 

to establish a bijective correspondence with the usual representations of the CCRs: 

nonregular representations do not even allow to define the “infinitesimal” operators that 

would be candidates for satisfying the CCRs. Moreover, the choice of the respective 

generating ∗‐subalgebras 𝛥(𝑉∗, σ) and ℛ0(𝑉
∗, σ) is to a certain extent arbitrary, and even 

though they admit maximal 𝐶∗‐norms, they do not in general admit a unique 𝐶∗‐norm. What 

is remarkable about the extensions proposed here, using the larger 𝐶∗‐ algebras 𝜀σ. or 𝐻σ, 

together with the larger generating ∗‐subalgebras 𝑆σ. or 𝐵σ, is that this procedure eliminates 

the unwanted representations (whose inclusion would invalidate the analogue of Theorem 

(6.1.8) classifying the irreducible representations) as well as the ambiguity in the choice of 

𝐶∗‐norm. 

On the other hand, it must be emphasized that our approach is restricted to the case of finite‐
dimensional Poisson vector spaces (quantum mechanics): the question of whether, and how, 

it is possible to extend it to infinite‐dimensional situations (quantum field theory) is 

presently completely open. 

we want to introduce concepts that will allow us to extend the process of 𝐶∗‐

completion of ∗‐algebras discussed to bundles of ∗‐algebras. 

Assume that (𝑉𝑋)𝑥∈𝑋 is a family of sets indexed by the points 𝑥 of some other set 𝑋. Then 

we may introduce the set 𝑉 defined as their disjoint union, 

𝑉 =⋃

∙

𝑥∈𝑋  

𝑉𝑥,                                        (52) 

together with the surjective map 𝑝: 𝑉 → 𝑋 that takes 𝑉𝑋 to 𝑥: this defines a “bundle ” with 

total space 𝑉, base space 𝑋, and projection 𝑝, with 𝑉𝑥 = 𝑝
−1(𝑥) as the fiber over the point 

𝑥. The question is what additional conditions should be imposed on this kind of structure in 

order to allow us to remove the quotation marks on the expression “bundle.” For example, 

in of topology, it is usually required that both 𝑉 and 𝑋 should be topological spaces and that 

𝑝 should be continuous and open. Similarly, of differential geometry, one requires that, in 

addition, both 𝑉 and 𝑋 should be manifolds and that 𝑝 should be a submersion. Of course, 

special care must be taken when these manifolds are infinite‐dimensional, since dealing with 

these is a rather touchy business; in particular, the standard theory that works in of  Banach 

spaces and manifolds, for which we may refer to does not apply to more generally locally 

convex spaces and manifolds, for which one must resort to more sophisticated techniques 

such as the“convenient calculus” developed. 

A central role is played by the condition of local triviality, which requires the existence of 

a fixed topological space or of a fixed manifold 𝑉0, called the typical fiber, and of some 

covering of the base space by open subsets such that for each one of them, say 𝑈, the subset 
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𝑝−1(𝑈) of the total space is homeomorphic (in the case of topological spaces) or 

diffeomorphic (in the case of manifolds) to the cartesian product 𝑈 × 𝑉0: in this case, one 

says that 𝑉 is a fiber bundle over 𝑋 and refers to the afore‐mentioned homeomorphisms or 

diffeomorphisms as local trivializations. When 𝑉0 and each of the fibers 𝑉𝑋(𝑥 ∈ 𝑋) come 

with a certain (fixed) type of additional structure and local trivializations can be found which 

preserve that structure, an appropriate reference is incorporated into the terminology: for 

example, one says that 𝑉 is a vector bundle over 𝑋 when 𝑉0 and each of the fibers 𝑉𝑥(𝑥 ∈ 𝑋) 
are vector spaces and local trivializations can be chosen to be fiberwise linear. Thus the 

standard terminology used in topology and differential geometry suggests that fiber bundles, 

vector bundles, etc. ‐ and in particular, 𝐶∗‐algebra bundles‐ should be locally trivial. 

Definition (6.1.9)[270]: Abundle of locallyconvex∗‐algebras over a locally compact 

topological space 𝑋 is a topological space 𝒜 together with a surjective continuous and open 

map 𝑝:𝒜 → 𝑋, equipped with the following structures: (a) operations of fiberwise addition, 

scalar multiplication, multiplication and involution that turn each fiber 𝒜𝑥 = 𝑝
−1(𝑥) into 

𝑎 ∗‐algebra and are such that the corresponding maps 

𝒜 ×𝑥 𝒜 → 𝒜ℂ ×𝒜 →  𝒜 

(𝑎1, 𝑎2)  ↦  𝑎1 + 𝑎2 (𝜆, 𝑎)  ↦  𝜆𝑎 

and 

𝒜 ×𝑥 𝒜 →  𝒜𝒜 →  𝒜 

(𝑎1, 𝑎2)  ↦  𝑎1𝑎2 𝑎 ↦  𝑎
∗ 

where 𝒜 ×𝑋 𝒜 = {(𝑎1, 𝑎2) ∈ 𝒜 ×𝒜|𝑝(𝑎1) = 𝑝(𝑎2)} is the fiber product of 𝒜with itself 

over 𝑋, are continuous, and (b) a directed set 𝛴 of nonnegative functions 𝑠 : 𝒜 → ℝ  which, 

at every point 𝑥 in 𝑋, provides a directed set 𝛴𝑥 = {𝑠|𝒜𝑥|𝑠 ∈ 𝛴} of seminorms on the fiber 

𝒜𝑥 = 𝑝
−1(𝑥) turning it into a locally convex ∗‐algebra; we shall refer to thefunctions 𝑠 in 

𝛴 as fiber seminorms on 𝒜. Moreover, when each of these fiber seminorms is either 

continuous or else just upper semicontinuous, and when taken together they satisfy the 

additional continuity condition that any net (𝑎𝑖)𝑖∈𝐼 in 𝒜such that 𝑠(𝑎𝑗) → 0 for every 𝑠 ∈

𝛴 and 𝑝(𝑎𝑖) → 𝑥 for some 𝑥 ∈ 𝑋 actually converges to 0𝑥 ∈ 𝒜𝑥, then we say that 𝒜is either 

a continuous or else an upper semicontinuous bundle of locally convex ∗‐algebras, 

respectively. Finally, we shall say that such a bundle 𝒜is unital if all of its fibers 𝒜𝑥 are ∗‐
algebras with unit and, in addition,  

𝑋 →  𝒜 

𝑥 ↦  1𝑥 

is continuous. Special cases are 

∙ 𝒜 is a bundle of Fréchet ∗‐algebras if 𝛴 is countable and each fiber is complete in the 

induced topology: in this case, 𝛴 can (and will) be arranged in the form of an increasing 

sequence. 

∙ 𝒜is a bundle of Banach ∗‐algebras if 𝛴 is finite and each fiber is complete in the induced 

topology: in this case, 𝛴 can (and will) be replaced by a singlefunction ‖. ‖ : 𝒜 → ℝ, called 

the fiber norm, which induces a Banach ∗‐algebra norm on each fiber. 

∙ 𝒜is a bundle of 𝐶∗‐algebras, or simply 𝐶∗‐bundle, if it is a bundle of Banach ∗‐algebras 

whose fiber norm induces a 𝐶∗‐norm on each fiber. 
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We remark that, in this definition, the condition on the index set 𝛴 to be directed refers to 

the natural order on the set of all nonnegative functions on 𝒜, defined pointwise. Also, a 

simple generalization of an argument that can be found in [33] shows that it is sufficient to 

require that scalar multiplication should be continuous in the second variable, i.e., for each 

𝜆 ∈ ℂ, the map 𝒜 → 𝒜, 𝑎 → 𝜆𝑎 is continuous: this condition is often easier to check in 

practice, but it already impliesjoint continuity. 

It may be worthwhile to stress that, according to the convention adopted, bundles of ∗‐

algebras over 𝑋 need not be locally trivial and hence the property of local triviality‐ either 

in the sense of topology when 𝑋 is a topological space (continuous transition functions) or 

in the sense of differential geometry when 𝑋 is a manifold (smooth transition functions)‐ 
will have to be stated explicitly when it is satisfied and relevant. 

We note that a first version of this definition was formulated by Dixmier, through his notion 

of a “continuous field of 𝐶∗‐algebras Somewhat later, Fell introduced the concept of a 

continuous 𝐶∗‐bundle (see, e.g., [279]), providing an (ultimately) equivalent but intuitively 

more appealing approach. Finally, it was observed that most of the important results 

continue to hold with almost no changes for upper semicontinuous 𝐶∗‐bundles, the main 

difference being that in this case, the total space 𝒜 may fail to be Hausdorff. The extension 

proposed here, to bundles whose fibers are more general locally convex ∗‐algebras (of 

various types), seems natural and will be useful for what follows. 

The additional continuity condition formulated in the above definition guarantees that the 

topology on the total space 𝒜is uniquely determined by the set of fiber seminorms 𝛴; this 

follows directly from the following generalization of a theorem of Fell. 

Theorem (6.1.10)[270]: Assume that (𝒜𝑋)𝑥∈𝑋 is a family of ∗‐algebras indexed by the 

points 𝑥 of a locally compact topological space 𝑋, and consider the disjoint union 

𝒜 =⋃ 

∙

𝑥∈𝑋

𝒜𝑋                                         (53)  

as a “bundle ” over 𝑋 (in the purely set‐theoretical sense). Assumefurther that 𝛴 is a directed 

set of fiber seminorms on 𝒜[ turning each fiber 𝒜𝑋 of 𝒜into a locally convex ∗‐algebra 

(Fréchet 

∗‐algebra/ Banach ∗ −𝑎𝑙𝑔𝑒𝑏𝑟𝑎/𝐶∗‐algebra) and that 𝛤 is 𝑎 ∗‐algebra of this “bundle,” 

satisfying the following properties. 

(a) For each 𝜙 ∈ 𝛤 and each fiber seminorm 𝑠 ∈ 𝛴, thefunction 𝑋 → ℝc, 𝑥 ↦ 𝑠(𝜙(𝑥)) is 

upper semicontinuous (or continuous). 

(b) For each point 𝑥 in 𝑋, 𝑡ℎ𝑒 ∗‐subalgebra 𝛤𝑥 = {𝜙(𝑥)|𝜙 ∈ 𝛤} of 𝒜𝑥 is dense in 𝒜𝑋. 

Then there is a unique topology on 𝒜 turning it into an upper semicontinuous (or 

continuous) bundle of locally convex ∗‐algebras (Fréchet∗‐algebras/Banach∗‐algebras/C∗‐

algebras) over 𝑋, respectively, such that 𝛤 becomes 𝑎 ∗‐subalgebra of 𝑡ℎ𝑒 ∗‐algebra 

𝛤(𝑋,𝒜) of all continuous of 𝒜[. 
Similar statements can be found, e.g., in (for continuous bundles of Banach spaces) and in 

(for upper semicontinuous bundles of 𝐶∗‐algebras), but the proof is easily adapted to the 

more general situation considered here; in particular, a basis of the desired topology on 𝒜is 

given by the subsets 
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𝑊(𝜙,𝑈, 𝑠, 𝜀) = {𝑎 ∈ 𝒜|𝑝(𝑎) ∈ 𝑈, 𝑠 (𝑎 − 𝜙(𝑝(𝑎))) < 𝜀}, 

where 𝑝:𝒜 → 𝑋 is the bundle projection, 𝜙 ∈ 𝛤, 𝑈 is an open subset of 𝑋, 𝑠 ∈ 𝛴 and 𝜀 > 0. 
Whatever may be the specific class of bundles considered, the notion of morphism between 

them is the natural one. 

Definition (6.1.11)[270]: Given two bundles of locally convex ∗‐algebras 𝒜and ℬ over 

locally compact topological spaces 𝑋 and 𝑌, respectively, a bundle morphism from 𝒜to ℬ 

is a continuous map 𝜑 : 𝒜 → ℬ which is fiber preserving in the sense that there exists 𝑎 

(necessarily unique) continuous map ℓ̌ : 𝑋 → y such that the following diagram commutes, 

𝒜 →𝜑 𝐵 

𝒜 ↓  �̌�  ↓ 𝑝ℬ 

𝑋 → Y 

and such that for every point 𝑥 in 𝑋, the restriction (ℓ𝑥 : 𝒜𝑋 → 𝐸(�̌�(𝑥) of 𝜑 to the fiber over 

𝑥 is a homomorphism of locally convex ∗‐algebras. When Y = 𝑋 and �̌� is the identity, we 

say that 𝜑 is 

strict(over 𝑋). 

Theorem (6.1.10) above already makes it clear that an important object associated with any 

upper semicontinuous bundle 𝒜of locally convex ∗‐algebras over 𝑋 is the space 𝛤(𝑋,𝒜) 

of all continuous of 𝒜 which, when equipped with the usual pointwise defined operations 

of addition, scalar multiplication, multiplication and involution, is easily seen to become 

a ∗‐algebra. Moreover, given a directed set 𝛴 of fiber seminorms 𝑠 on ffl that generates its 

topology, as explained above, we obtain a directed set of seminorms ‖. ‖𝑠,𝐾 on 𝛤(𝑋,𝒜) by 

taking the usual  sup  seminorms over compact subsets 𝐾 of 𝑋, 

‖𝜙‖𝑠,𝐾 = sup
𝑥∈𝐾

  𝑠(𝜙(𝑥))𝑓𝑜𝑟 𝜙 ∈ 𝛤(𝑋,𝒜) ,           (54) 

turning 𝛤(𝑋,𝒜) into a locally convex ∗‐algebra with respect to what we may continue to 

call the topology of uniform convergence on compact subsets. Over and above that, 𝛤(𝑋,𝒜) 

carries two important additional structures. The first is that 𝛤(𝑋,𝒜) is a module over the 

locally convex ∗‐algebra 𝐶(𝑋) of continuous functions on 𝑋, as expressed by the 

compatibility conditions 

𝑓(𝜙1𝜙2) = (𝑓𝜙1)𝜙2 = 𝜙1(𝑓𝜙2) , (𝑓𝜙)
∗ = 𝑓𝜙∗, 

‖𝑓𝜙‖𝑠,𝐾 ≤ ‖𝑓‖𝐾‖𝜙‖𝑠,𝐾                                             (55) 

𝑓𝑜𝑟 𝑓 ∈ 𝐶(𝑋),𝜙, 𝜙1, 𝜙2 ∈ 𝛤(𝑋,𝒜) . 
The second additional structure is that 𝛤(𝑋,𝒜) comes equipped with a family (𝛿𝑥)𝑥∈𝑋, 

indexed by the points 𝑥 of the base space 𝑋, of continuous homomorphisms of locally 

convex ∗‐algebras, the evaluation maps 

→  𝒜t𝑥 ↦  𝜙(𝑥) 

𝛿𝑥: 𝛤(𝑋, 𝑣)  →  𝒜𝑥                                           (56) 

𝜙 ↦  𝜙(𝑥) 
Obviously, when 𝑋 is compact, we can omit the reference to compact subsets since then 

𝐶(𝑋) comes with the natural  sup  norm while every fiber seminorm 𝑠 on 𝒜will generate a 

seminorm ‖. ‖𝑠 on 𝛤(𝑋, 𝒜) by taking the  sup  over all of 𝑋; the resulting topology is simply 

that of uniform convergence on all of 𝑋. On the other hand, when 𝑋 is locally compact but 
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not compact, the situation is a bit more complicated since we have to worry about the 

behavior of functions at infinity. One way to deal with this issue consists in restricting to 

the algebras 𝐶0(𝑋) of continuous functions on 𝑋 and 𝛤0(𝑋,𝒜) of continuous sections of 

𝒜that vanish at infinity (in the usual sense that 𝑓 ∈ 𝐶(𝑋) belongs to 𝐶0(𝑋) and 𝜙 ∈ 𝛤(𝑋, 

𝒜) belongs to 𝛤0(𝑋,𝒜) if for each 𝜀 > 0 and, in the second case, each 𝑠 ∈ 𝛴, there exists a 

compact subset 𝐾 of 𝑋 such that |𝑓(𝑥)| < 𝜀 and 𝑠(𝜙(𝑥)) < 𝜀 whenever 𝑥 ∉ 𝐾): as in the 

compact case, these are locally convex ∗‐algebras with respect to the topology of uniform 

convergence on all of 𝑋 and the latter is a module over the former, with the same 

compatibility conditions and the same evaluation maps as before (see Equations (55) and 

(56)). Moreover, we have a condition of nondegeneracy, which is necessary since we are 

now dealing with nonum tal ∗‐algebras: it states that the ∗‐ideal generated by elements of 

the form 𝑓𝜙, with 𝑓 ∈ 𝐶0(𝑋) and 𝜙 ∈ 𝛤0(𝑋,𝒜) , should be the entire algebra 𝛤0(𝑋, 𝒜). (this 

condition can equally well be formulated in the compact case but is then trivially satisfied 

since the condition of vanishing at infinity is then void and so we can identify 𝐶0(𝑋) with 

𝐶(𝑋) , which has a unit, and 𝛤0(𝑋,𝒜) with 𝛤(𝑋,𝒜).) An alternative choice would be to 

consider the (larger) algebras 𝐶𝑏(𝑋) of bounded continuous functions on 𝑋 and 𝛤𝑏(𝑋,𝒜) of 

bounded continuous sections of 𝒜 (in the obvious sense that 𝜙 ∈ 𝛤(𝑋,𝒜) is bounded if and 

only if its composition with each fiber seminorm 𝑠 ∈ 𝛴 is bounded), again with the topology 

of uniform convergence on all of 𝑋, which has the advantage that 𝐶𝑏(𝑋) is unital. In fact, 

both 𝐶0(𝑋) and 𝐶𝑏(𝑋) are 𝐶∗‐algebras, and the latter is the multiplier algebra of the former, 

𝐶𝑏(𝑋) = 𝑀(𝐶0(𝑋)) .                                                           (57) 

All these constructions of section algebras become particularly useful when we start out 

from an upper semicontinuous 𝐶∗‐bundle 𝒜over 𝑋. In that case, 𝛤0(𝑋,𝒜) and 𝛤𝑏(𝑋,𝒜) will 

both be 𝐶∗‐algebras (which coincide among themselves and with 𝛤(𝑋,𝒜) when 𝑋 is 

compact), and the aforementioned structure of 𝛤0(𝑋,𝒜) as a 𝐶0(𝑋)‐module can be 

reintetpreted as providing a 𝐶∗‐algebra homomorphism 𝛷 : 𝐶0(𝑋) → 𝑍 (𝑀(𝛤0(𝑋,𝒜))) , 

where 𝑀(𝛤0(𝑋,𝒜)) is the multiplier algebra of 𝛤0(𝑋,𝒜) and 𝑍 (𝑀(𝛤0(𝑋,𝒜))) its center. 

algebra 𝛤0(𝑋,𝒜) is a 𝐶0(𝑋)‐algebra in the sense of Kasparov. 

Definition (6.1.12)[270]: Given a locally compact topological space 𝑋, a 𝐶0(𝑋)‐algebra is 

a 𝐶∗‐algebra 𝐴 equipped with a 𝐶∗‐algebra homomorphism 

𝛷:𝐶0(𝑋) → 𝑍(𝑀(𝐴))                            (58) 

which is nondegenerate, i.e., such that the ∗‐ideal generated by elements of the form 𝑓𝑎, 

with 𝑓 ∈ 𝐶0(𝑋) and 𝑎 ∈ 𝐴, is the entire algebra A. (We shall simply write 𝑓𝑎, instead of 

𝛷(𝑓)(𝑎) , whenever convenient.) 

Note that the nondegeneracy condition imposed in Definition (6.1.12) above means that 𝛷 

extends uniquely to a 𝐶∗‐algebra homomorphism 

𝛷:𝐶𝑏(𝑋) → 𝑍(𝑀(𝐴))                            (59) 

i.e., 𝐶0(𝑋)‐algebras are automatically also 𝐶𝑏(𝑋)‐algebras. However, not every 𝐶𝑏(𝑋)‐

algebra is also a 𝐶0(𝑋)‐algebra, since the nondegeneracy condition may fail: an obvious 

example is provided by 𝐶𝑏(𝑋) itself, which is trivially a module over 𝐶𝑏(𝑋) itself and hence 

also over 𝐶0(𝑋) but, as such, is degenerate; in fact, in this case the ∗‐ideal mentioned in 
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Definition (6.1.12) above is 𝐶0(𝑋) and not all of 𝐶𝑏(𝑋) . At any rate, of the present the 

extension of the module structure from 𝐶0(𝑋) to 𝐶𝑏(𝑋) will not play any significant role. 

The notion of a 𝐶0(𝑋)‐algebra homomorphism is, once again, the natural one: it is a ∗‐

algebra homomorphism which is also a homomorphism of 𝐶0(𝑋)‐modules. 

With these concepts at our disposal, we can now think of the process of passing from bundles 

to their section algebras as afunctor. The version of interest here is the following: given any 

locally compact topological space 𝑋, we have a corresponding section algebra functor 

𝛤0(𝑋,⋅): Cus
∗ Bun(𝑋) → C0(𝑋)Alg                          (60) 

from the category Cus
∗ Bun(𝑋) of upper semicontinuous 𝐶∗‐bundles over 𝑋, whose 

morphisms are the strict bundle morphisms over 𝑋, to the category C0(𝑋)Alg of 𝐶0(𝑋)‐

algebras, whose morphisms are the 𝐶0(𝑋)‐algebra homomorphisms. Indeed, it is clear that 

given any strict bundle morphism 𝜑 ∶  𝒜 → ℬ between upper semicontinuous 𝐶∗‐bundles 

𝒜and ℬ over 𝑋, pushing forward sections with 𝜑 provides a corresponding 𝐶0(𝑋)‐algebra 

homomorphism 𝛤0(𝑋, 𝜑) : 𝛤0(𝑋,𝒜) → 𝛤0(𝑋, ℬ) .  
Conversely, we can construct a sectional representation functor 

SR(𝑋,⋅): C0(𝑋)Alg → Cus
∗ Bun(𝑋)                          (61) 

as follows. First, given any 𝐶0(𝑋)‐algebra 𝐴, we define SR(X, 𝐴), as a “bundle” over 𝑋 (in 

the purely set‐theoretical sense), by writing 

SR(𝑋, 𝐴) =⋃ 

∙

𝑥∈𝑋

𝑆𝑅(𝑋, 𝐴)𝑋                                 (62) 

where the fiber SR (X, 𝐴)𝑥 over any point 𝑥 in 𝑋 is defined by 

SR(𝑋, 𝐴)𝑋 = 𝐴/𝛷(𝐼𝑥)𝐴,𝑤ℎ𝑒𝑟𝑒 𝐼𝑥 = {𝑓 ∈ 𝐶0(𝑋)|𝑓(𝑥) = 0}.   (63) 
The structure of SR(𝑋, 𝐴) as a 𝐶∗‐bundle is then determined by the construction described 

in Theorem (6.1.10) above, specialized to the case of 𝐶∗‐bundles and with 

𝛤 = {𝜙𝑎|𝑎 ∈ 𝐴} 𝑤ℎ𝑒𝑟𝑒 𝜙𝑎(𝑥) = 𝑎 + 𝛷(𝐼𝑥)𝐴 ∈ 𝐴/𝛷(𝐼𝑥)𝐴,              (64) 
since this space 𝛤 satisfies the two conditions of Theorem (6.1.10) (condition (b) is obvious 

and condition (a) is shown in [33]). Second, given any homomorphism 𝜑𝑋 : 𝐴 → 𝐵 between 

𝐶0(𝑋)‐algebras 𝐴 and 𝐵, passing to quotients provides a corresponding strict bundle 

morphism SR(𝑋, 𝜑𝑋) : SR(X, 𝐴) → SR(𝑋, 𝐵) . 
The construction outlined in the previous paragraph is actually the central point in the proof 

of a famous theorem in the field, generally known as the sectional representation theorem, 

which asserts that every 𝐶0(𝑋)‐algebra 𝐴 can be obtained as the section algebra 𝛤0(𝑋,𝒜) 

of an appropriate upper semicontinuous 𝐶∗‐bundle 𝒜over 𝑋; for an explicit statement with 

a complete proof, see [33]. Here, we state a strengthened version of this theorem, which 

extends it to an equivalence of categories [21]. 

Theorem (6.1.13) [270]: Given a locally compact topological space 𝑋, the functors 𝛤0(𝑋,⋅) 

and SR(X, ⋅) establish an equivalence between the categories Cus
∗ Bun(𝑋) and C0(𝑋)Alg. 

Proof. Explicitly, the statement of the theorem means that, for any upper semicontinuous 

𝐶∗‐bundle 𝒜over 𝑋, there is a strict bundle isomorphism 𝒜 ≅ SR(𝑋, 𝛤0(𝑋,𝒜)) which 

behaves naturally under strict bundle morphisms, and similarly that, for any 𝐶0(𝑋)‐algebra 

𝐴, there is a 𝐶0(𝑋)‐algebra isomorphism 𝐴 ≅ 𝛤0(𝑋, SR(𝑋, 𝐴)) which behaves naturally 

under 𝐶0(𝑋)‐algebra homomorphisms. The existence of the second of these isomorphisms 
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is precisely the content of the traditional formulation of the sectional representation theorem 

[33], whereas the first is constructed similarly. Namely, given any upper semicontinuous 

𝐶∗‐bundle 𝒜 over 𝑋, note that, for any point 𝑥 in 𝑋, we have 

𝛷(𝐼𝑥)𝛤0(𝑋,𝒜) = {𝜙 ∈ 𝛤0(𝑋,𝒜)|𝜙(𝑥) = 0} 
since the inclusion ⊂ is trivial and the inclusion ⊃ follows from a standard argument: given 

𝜙 ∈ 𝛤0(𝑋,𝒜) and any 𝜀 > 0, there are an open neighborhood 𝑈 of 𝑥 with compact closure 

𝑈 and a compact subset 𝐾 containing it such that the function 𝑥 ↦ ‖𝜙(𝑥)‖𝑥 is < 𝜀 in 𝑈 

(since it vanishes at 𝑥 and the 𝐶∗ fiber norm on 𝒜is upper semicontinuous) as well as outside 

of 𝐾 (since 𝜙 vanishes 

at infinity), so applying Urysohn’s lemma we can find a function 𝑓 ∈ 𝐶𝑐(𝑋) with 0 ≤ 𝑓 ≤

1 which is ≡ 0 outside of 𝑈 but satisfies 𝑓(𝑥) = 1 and combine it with another function 

𝑔 ∈ 𝐶0(𝑋) with 0 ≤ 𝑓 ≤ 1 which is ≡ 1 on 𝐾 to get a function (1 − 𝑓)𝑔 ∈ 𝐶0(𝑋) which is 

≡ 1 on 𝐾\𝑈 but vanishes at 𝑥 and from that deduce that the  sup  norm of 𝜙 − (1 − 𝑓)𝑔𝜙 

is < 𝜀. Therefore, for any point 𝑥 in 𝑋, we get a 𝐶∗‐algebra isomorphism 

SR(𝑋, 𝛤0(𝑋,𝒜))𝑥 ≅ 𝒜𝑋 

which provides the desired bundle isomorphism as 𝑥 varies over the base space 𝑋. 

An interesting question would be to fully incorporate the notions of pull‐back and of change 

of base ring into this picture. On the one hand, given any proper continuous map  𝑓: 𝑋 → Y 

between locally compact topological spaces 𝑋 and 𝑌, we can define a corresponding pull‐
backfunctor 

𝑓∗: Cus
∗ Bun(Y) → Cus

∗ Bun(𝑋) ,                (65) 
associating to each upper semicontinuous 𝐶∗‐bundle 𝐵 over Y its pull‐back via 𝑓, which is 

an upper semicontinuous 𝐶∗‐ bundle 𝑓∗𝐸 over 𝑋, fiberwise defined by (𝑓∗ℬ)𝑋 = 𝐵𝑓(𝑥), and 

associating to each strict bundle morphism ℓ : 𝐵 → 𝐵′ over Y its pull‐back via 𝑓, which is a 

strict bundle morphism 𝑓∗𝜑 : 𝑓∗𝐸 → 𝑓∗𝐵′ over 𝑋, fiberwise defined by 𝑓∗ℓ|(𝑓∗𝐵)𝑥 =

ℓ|𝐵𝑓(𝑥). On the other hand, given any proper continuous map  𝑓: 𝑋 → Y between locally 

compact topological spaces 𝑋 and Y, we can define a corresponding change of base 

ringfunctor 

𝑓#: C0(𝑋)Alg → C0(Y)Alg,                        (66) 
associating to each 𝐶0(𝑋)‐algebra 𝐴 a 𝐶0(Y)‐algebra 𝑓#𝐴 which as a 𝐶∗‐algebra is equal to 

𝐴 but with a modified module structure, defining multiplication with functions in 𝐶0(Y) to 

be given by multiplication with the corresponding functions in 𝐶0(𝑋) obtained by pull‐back 

via 𝑓, and associating to each 𝐶0(𝑋)‐algebra homomorphism 𝜑𝑋: 𝐴 → 𝐴
′ a 𝐶0(Y)‐algebra 

homomorphism 𝑓#𝜑𝑋 : 𝑓#𝐴 → 𝑓#𝐴
′ which as a 𝐶∗‐algebra homomorphism is equal to ϕ𝑋 

but is now linear with respect to the modified module structure. It should be noted that these 

two functors do not translate into each other under the equivalence established by the 

sectional representation theorem because, they go in opposite directions and the first 

preserves the fibers while changing the section algebras whereas the second preserves the 

section algebras while changing the fibers. Indeed, for any upper semicontinuous 𝐶∗‐bundle 

ℬ over Y, composition of sections with 𝑓 induces a 𝐶∗‐algebra homomorphism 

𝑓∗: 𝛤0(Y, 𝐵) → 𝛤0(𝑋, 𝑓
∗𝐵)                    (67) 
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which, in general, is far from being an isomorphism since it may have a nontrivial kernel 

(consisting of sections of ℬ over Y that vanish on the image of f) as well as a nontrivial 

image (consisting of sections of 𝑓∗ℬ over 𝑋 that are constant along the level sets of 𝑓). 

Similarly, given any 𝐶0(𝑋)‐algebra 𝐴 and using 𝑓 to also consider it as a 𝐶0(𝑌)‐algebra 𝑓#𝐴, 

we can apply the respective sectional representation functors to introduce the corresponding 

𝐶∗‐bundles 𝒜 = SR(𝑋, 𝐴) over 𝑋 and 𝑓#𝒜 = SR(Y, 𝑓#𝐴) over 𝑌, so that 𝐴 ≅ 𝛤0(𝑋,𝒜) and 

𝑓#𝐴 ≅ 𝛤0(Y, 𝑓#𝒜) : then we find that the fibers of 𝑓#𝒜are related to the fibers of 𝒜by 

(( 𝑓#𝒜)𝑦  ≅  𝛤( 𝑓
−1 (𝑦),𝒜.                       (68) 

We are now ready to address the central point of this section, namely, the construction of 

the 𝐶∗‐completion at the level of bundles and its relation with the 𝐶∗‐completion at the level 

of the corresponding section algebras. To this end, suppose that 𝑋 is a locally compact 

topological space and 𝒜 is a bundle of locally convex ∗‐algebras over 𝑋, with bundle 

projection 𝑝:𝒜 → 𝑋 and with respect to some directed set 𝛴 of fiber seminorms on 𝒜, as 

in Definition (6.1.9) above. Suppose furthermore that we are given a function ‖. ‖ : 𝒜 → ℝ 

which is a 𝐶∗ fiber norm (in the sense of inducing a 𝐶∗‐norm on each fiber of 𝒜). From 

these data, we can construct a “fiberwise 𝐶∗‐completion” 𝒜− of 𝒜 by taking, for every 

point 𝑥 of 𝑋, the completion 𝒜𝑋 of 𝒜𝑥 with respect to the 𝐶∗‐norm ‖. ‖𝑥 to obtain a family 

(𝒜𝑥
−)𝑥∈𝑋 of 𝐶∗‐algebras and consider the disjoint union 

�̅� =⋃ 

∙

𝑥∈𝑋

𝒜𝑥                     (69) 

as a “bundle” of 𝐶∗‐algebras over 𝑋 (in the purely set‐theoretical sense); obviously, 𝒜 ⊂ �̅� 

and the original bundle projection 𝑝:𝒜 → 𝑋 is simply the restriction of the bundle 

projection 𝑝: �̅� → 𝑋. In order to control the topological aspects involved in this 

construction, we have to impose additional hypotheses. We shall assume that 𝒜is an upper 

semicontinuous bundle of locally convex ∗‐algebras over 𝑋, as in Definition (6.1.9) above, 

and that ‖. ‖ is locally bounded by 𝛴, i.e., for every point 𝑥 of 𝑋 there exist a neighborhood 

𝑈𝑋 of 𝑥, a fiber seminorm 𝑠 belonging to 𝛴 and a constant 𝐶 > 0 such that ‖𝑎‖ ≤ 𝐶𝑠(𝑎) for 

𝑎 ∈ 𝑝−1(𝑈𝑥) . We show that, under these circumstances, 𝑅𝑒𝑗𝑒𝑐𝑡− admits a unique topology 

turning it into an upper semicontinuous 𝐶∗‐bundle over 𝑋 such that the space of its 

continuous sections vanishing at infinity is the completion of the space of continuous 

sections of compact support of 𝑅𝑒𝑗𝑒𝑐𝑡 with respect to the  sup  norm induced by the 𝐶∗ fiber 

norm ‖. ‖: this will provide us with a natural and concrete example of the abstract sectional 

representation theorem. 

To do so, note first that since the fiber norm ‖. ‖ is locally bounded by the seminorms in 𝛴 

which are upper semicontinuous, and since 𝑋 is locally compact, it follows that, given any 

continuous section 𝜙 of 𝑅𝑒𝑗𝑒𝑐𝑡, the function 𝑥 ↦ ‖𝜙(𝑥)‖𝑋 on 𝑋 is locally bounded and 

hence bounded on compact subsets of 𝑋, so for each compactly supported continuous 

section 𝜙 of 𝒜, ‖𝜙‖∞ = sup𝑥∈𝑋‖𝜙(𝑥)‖𝑥 exists. It is then clear that ‖. ‖∞ defines a 𝐶∗‐

norm on 𝛤𝑐(𝑋,𝒜) : let 𝛤𝑐(𝑋,𝒜) be the corresponding 𝐶∗‐completion. Next, note that 

𝛤𝑐(𝑋,𝒜) is also a module over 𝐶0(𝑋) , and hence so is 𝛤𝑐(𝑋,𝒜) (since multiplication is 

obviously a continuous bilinear map with respect to the pertinent 𝐶∗‐norms); moreover, we 

have the equality 𝐶0(𝑋)𝛤𝑐(𝑋,𝒜) = 𝛤𝑐(𝑋,𝒜) , since any 𝜙 ∈ 𝛤𝑐(𝑋,𝒜) can be written in the 
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form 𝑓𝜙 for some 𝑓 ∈ 𝐶0(𝑋) (it suffices to choose 𝑓 to be equal to 1 on the support of 𝜙, 

using Urysohn’s lemma), so 𝛤𝑐(𝑋,𝒜) is in fact a 𝐶0(𝑋)‐algebra. Therefore, by the 

construction of the sectional representation functor, we have 

�̅� = SR(𝑋, 𝛤𝑐(𝑋,𝒜)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) . 

In particular, 𝑅𝑒𝑗𝑒𝑐𝑡− admits a unique topology turning it into an upper semicontinuous 𝐶∗‐

bundle over 𝑋 such that continuous sections of compact support of 𝒜 become continuous 

sections of compact support of �̅�, since the space 𝛤𝑐(𝑋,𝒜) satisfies the two conditions of 

Theorem (6.1.10) (condition (b) is obvious and condition (a) is stated in [33]). In fact, it 

follows from the construction of the topology on �̅� in the proof of Theorem (6.1.10) that 

the inclusion 𝒜 ⊂ �̅� is continuous, since if 𝑈 is a sufficiently small open subset of 𝑋 such 

that ‖𝑎‖ ≤ 𝐶𝑠(𝑎) for 𝑎 ∈ 𝑝−1(𝑈) with some fiber seminorm 𝑠 ∈ 𝛴 and some constant 𝐶 >

0, we have, for any 𝜙 ∈ 𝛤𝑐(𝑋,𝒜) , 

𝑊𝒜(𝜙, 𝑈, 𝑠, 𝜀/𝐶) ⊂ 𝑊𝒜̅(𝜙, 𝑈, ‖. ‖, 𝜀)⋂ 𝒜, 

and 𝑊𝒜(𝜙, 𝑈, 𝑠, 𝜀/𝐶) is open in 𝒜 since 𝜙 is continuous and 𝑠 is upper semicontinuous; 

this fact also implies that the original 𝐶∗ fiber norm ‖. ‖ on 𝒜, just like its extension to the 

𝐶∗ fiber norm (also denoted by ‖. ‖) on �̅�, is automatically upper semicontinuous; 

moreover, 𝒜 is dense in �̅�(simply because, by construction, every fiber 𝒜𝑋 of 𝒜 is dense 

in the corresponding fiber �̅�𝑋
  of �̅�). All of this justifies calling �̅� the fiberwise 𝐶∗‐

completion of 𝑅𝑒𝑗𝑒𝑐𝑡 with respect to the given 𝐶∗ fiber norm. And finally, it is clear that, 

by construction, the section algebra 𝛤0(𝑋, �̅�) is the 𝐶∗‐completion of the section algebra 

𝛤𝑐(𝑋,𝒜) with respect to the  sup  norm ‖. ‖∞. 

Theorem (6.1.14)[270]: Given a locally compact topological space 𝑋, let 𝒜 be an upper 

semicontinuous bundle of locally convex ∗‐algebras over 𝑋, with respect to some directed 

set 𝛴 of fiber seminorms, let ‖. ‖ be a 𝐶∗𝑓𝑖𝑏𝑒𝑟 norm on 𝒜 which is locally bounded with 

respect to 𝛴 and let �̅� be the corresponding fiberwise 𝐶∗‐completion of 𝒜. Then there is a 

unique topology on �̅� ([turning it into an upper semicontinuous 𝐶∗‐bundle over 𝑋 such that 

the 𝐶∗‐completion of the section algebra 𝛤𝑐(𝑋,𝒜) with respect to the sup norm ‖. ‖∞ is the 

section algebra 𝛤0(𝑋, �̅�) , 

𝛤𝑐(𝑋,𝒜)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝛤0(𝑋, �̅�) .                                      (70) 
Regarding universal properties of such 𝐶∗‐completions at the level of bundles and of their 

section algebras, it is now easy to see that these depend essentially on whether the 

corresponding universal properties hold fiberwise, at the level of algebras, provided we take 

into account that when dealing with the section algebras, we must work in the category of 

𝐶0(𝑋)‐algebras rather than just 𝐶∗‐algebras. More specifically, under the same hypotheses 

as before (namely, that 𝒜 is an upper semicontinuous bundle of locally convex ∗‐algebras 

over 𝑋 and ‖. ‖ is a locally bounded 𝐶∗ fiber norm on 𝒜), we can guarantee the following. 

∙ Universality implies universality. If, for every point 𝑥 of 𝑋, ‖. ‖𝑥 is the maximal 𝐶∗‐norm 

on 𝒜𝑥, then ‖. ‖ is the maximal 𝐶∗ fiber norm on 𝒜 and we can refer to �̅� as the minimal 

𝐶∗‐completion or universal enveloping 𝐶∗‐bundle of 𝒜. Moreover, 𝛤0(𝑋, �̅�) will under 

these circumstances be the universal enveloping 𝐶0(𝑋)‐algebra of 𝛤𝑐(𝑋, 𝒜). 



188 

∙ Uniqueness implies uniqueness. If, for every point 𝑥 of 𝑋, 𝒜𝑥 admits a unique 𝐶∗‐norm 

and hence a unique 𝐶∗‐algebra completion, then 𝒜 admits a unique 𝐶∗ fiber norm and hence 

a unique 𝐶∗‐bundle completion. Moreover, 𝛤0(𝑋, �̅�) will under these circumstances be the 

unique 𝐶0(𝑋)‐completion of 𝛤𝑐(𝑋,𝒜) . 

Let (𝐸, 𝜎 ⋅) be a Poisson vector bundle with base manifold 𝑋, i.e., 𝐸 is a (smooth) 

real vector bundle of fiber dimension 𝑛, say, over a (smooth) manifold 𝑋, with typical fiber 

]E, equipped with a fixed (smooth) bivector field 𝑐r; in other words, the dual 𝐸∗ of 𝐸 is a 

(smooth) presymplectic vector bundle. (Again, we emphasize that we do not require σ to be 

nondegenerate or even to have constant rank.) Then it is clear that we can apply all the 

constructions to each fiber. The question to be addressed is how, using the methods outlined 

the results can be glued together along the base manifold 𝑋 and to describe the resulting 

global objects. Starting with the collection of Heisenberg algebras 𝔥𝜎(𝑥)(𝑥 ∈ 𝑋) , we note 

first of all that these fit together into a (smooth) real vector bundle over 𝑋, which is just the 

direct sum of 𝐸∗ and the trivial line bundle 𝑋 × ℝ over 𝑋. The nontrivial part is the 

commutator, which is defined by Equation (4) applied to each fiber, turning this vector 

bundle into a totally intransitive Lie algebroid [20] which we shall call the Heisenberg 

algebroid associated to (𝐸, 𝑎 ⋅) and denote by 𝔥(𝐸, σ) : it will even be a Lie algebra bundle 

[20] if and only if (𝜏 has constant rank. spaces of sections (with certain regularity properties) 

of 𝔥(𝐸, 𝜎) will then form (infinite‐dimensional) Lie algebras with respect to the (pointwise 

defined) commutator, but the correct choice of regularity conditions is a question of 

functional analytic nature to be dictated by the problem at hand. 

Similarly, considering the collection of Heisenberg groups 𝐻𝜎(𝑥)(𝑥 ∈ 𝑋) , we note that these 

fit together into a (smooth) real fiber bundle over 𝑋, which is just the fiber product of 𝐸∗ 

and the trivial line bundle 𝑋 × ℝ. Again, the nontrivial part is the product, which is defined 

by Equation (5) applied to each fiber, turning this fiber bundle into a totally intransitive Lie 

groupoid [20] which we shall call the Heisenberg groupoid associated to (𝐸, 𝜎) and denote 

by 𝐻(𝐸, σ) : it will even be a Lie group bundle [20] if and only if (𝜏 has constant rank. And 

again, spaces of sections (with certain regularity properties) of 𝐻(𝐸, 𝜎) will form (infinite‐
dimensional) Lie groups with respect to the (pointwise defined) product, but the correct 

choice of regularity conditions is a question of functional analytic nature to be dictated by 

the problem at hand. 

An analogous strategy can be applied to the collection of Heisenberg 𝐶∗‐algebras 𝜀σ(𝑥) and 

𝐻𝜎(𝑥)
𝑡 (𝑥 ∈ 𝑋) , but the details are somewhat intricate since the fibers are now (infinite‐

dimensional) 𝐶∗‐algebras which may depend on the base point in a discontinuous way, since 

the rank of σ is allowed to jump. Still, there remains the question whether we can fit the 

collections of Heisenberg 𝐶∗‐algebras 𝜀𝜎(𝑋) an d𝑐𝐻𝜎(𝑥) into 𝐶∗‐bundles over 𝑋 which are at 

least upper semicontinuous. 

The basic idea that allows us to bypass all these difficulties is to introduce two smooth vector 

bundles over 𝑋, denoted in what follows by 𝑆(𝐸) and by 𝐵(𝐸) , whose fibers are just the 

Fréchet spaces of Schwartz functions and of totally bounded smooth functions on the fibers 

of the original 
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vector bundle 𝐸, respectively, i.e., 𝑆(𝐸)𝑋 = 𝑆(𝐸𝑥) and 𝐵(𝐸)𝑥 = 𝐵(𝐸𝑋) : note that choosing 

any system of local trivializations of the original vector bundle 𝐸 will give rise to induced 

systems of local trivializations which, together with an adequate partition of unity, can be 

used to provide appropriate systems of fiber seminorms, both for 𝑆(𝐸) and for 𝐵(𝐸) . 

Moreover, we use the Poisson bivector field 𝜎. to introduce a fiberwise Weyl‐Moyal star 

product on these vector bundles which, when combined with the standard fiberwise 

involution, will turn them into continuous bundles of Fréchet∗‐algebras, denoted here by 

𝑆(𝐸, 𝜎) and by 𝐵(𝐸, σ) , respectively. (Continuity of the Weyl‐Moyal star product again 

follows from the estimate of Proposition (6.1.17) in the Appendix, in the case of 𝑆, and from 

[31], in the case of 𝐵.) We stress that even though both are locally trivial (and smooth) as 

vector bundles over 𝑋, they will fail to be locally trivial as Fréchet∗‐algebra bundles‐unless 

σ has constant rank: this is exactly the same situation as for the fiberwise commutator in the 

Heisenberg algebroid or the fiberwise product in the Heisenberg groupoid. 

The next step consists in gathering the 𝐶∗‐norms on the fibers of these two bundles, as 

defined, to construct 𝐶∗‐fiber norms on each of them which, due to the estimate (30), are 

locally bounded. Therefore, as seen, they admit 𝐶∗‐completions which we call the DFR‐

bundles, here denoted by 𝜀(𝐸, 𝜎) and by 𝐻(𝐸, 𝜎) , respectively; thus 

ℰ(𝐸, 𝜎) = 𝑆(𝐸, 𝜎)̅̅ ̅̅ ̅̅ ̅̅ ̅,    ℋ(E, σ) = 𝐵(𝐸, 𝜎).                (71) 
algebras are then called the DFR‐algebras. 

We stress that this is a canonical construction because the Heisenberg 𝐶∗‐algebras are the 

universal enveloping 𝐶∗‐algebras associated to the Heisenberg‐Schwartz and Heisenberg‐

Rieffel algebras, and even more than that, they are their only 𝐶∗‐completions, so that 

according to the results obtained the same goes for the corresponding bundles and section 

algebras: the DFR‐bundles are the universal enveloping 𝐶∗‐bundles of the corresponding 

Fréchet∗‐algebra bundles introduced above, and even more than that, they are their only 𝐶∗‐

completions, and an analogous statement holds for the DFR‐algebras as “the” 𝐶∗‐
completions of the corresponding. 

When 𝜎   is nondegenerate, all these constructions can be drastically simplified; in particular, 

the DFR‐bundles 𝜀(𝐸, σ) and 𝐻(𝐸, σ) can be obtained much more directly from the principal 

bundle of symplectic frames for 𝐸 as associated bundles, and the former becomes identical 

with the Weyl bundle as constructed. 

An important special case of the general construction outlined occurs when the 

underlying manifold 𝑋 and Poisson vector bundle (𝐸, σ) are homogeneous. More 

specifically, assume that 𝐺 is a Lie group which acts properly on 𝑋 as well as on 𝐸 and such 

that σ is 𝐺‐invariant: this means that writing 

𝐺 × 𝑋 →  𝑋
(𝑔, 𝑥)  ↦  𝑔 ⋅ 𝑥

      and       
 𝐺 × 𝐸 →  𝐸
(𝑔, 𝑢) →   𝑔 ⋅ 𝑢

                   (72) 

for the respective actions, where the latter is linear along the fibers and hence induces an 

action 

𝐺 ×∧2 𝐸 → ∧2 𝐸 

(𝑔, 𝑢)  ↦  𝑔 ⋅ 𝑢                                                 (73) 
we should have 

σ(𝑔 ⋅ 𝑥) = 𝑔 ⋅ 𝜎(𝑥)     for   𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋,                     (74) 
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Moreover, we shall assume that the action of 𝐺 on the base manifold 𝑋 is transitive. Then, 

choosing a reference point 𝑥0 in 𝑋 and denoting by 𝐻 its stability group in 𝐺, by E the fiber 

of 𝐸 over 𝑥0 and by 𝜎0 the value of the bivector field σ at 𝑥0, we can identify: 𝑋 with the 

homogeneous space 𝐺/𝐻, 𝐸 with the vector bundle 𝐺 ×𝐻 𝔼 associated to 𝐺 (viewed as a 

principal 𝐻‐bundle over 𝐺/𝐻) and to the representation of 𝐻 on E obtained from the action 

of 𝐺 on 𝔼 by appropriate restriction, and 𝜎 with the bivector field obtained from 𝜎0 by the 

association process. Explicitly, for example, we identify the left coset 𝑔𝐻 ∈ 𝐺/𝐻 with the 

point 𝑔 ⋅ 𝑥0 ∈ 𝑋 and, for any 𝑢0 ∈ 𝔼, the equivalence class [𝑔, 𝑢0] = [𝑔ℎ, ℎ
−1 ⋅ 𝑢0] ∈

𝐺 ×𝐻 𝔼 with the vector 𝑔 ⋅ 𝑢0 ∈ 𝔼. As a result, we see that if the representation of 𝐻on 𝔼 

extends to a representation of 𝐺, then the associated bundle 𝐺 ×𝐻 𝔼 is globally trivial: an 

explicit trivialization is given by 

𝐺 ×𝐻 𝔼 → 𝐺/𝐻 × 𝔼 

[𝑔, 𝑢0] = [𝑔ℎ, ℎ
−1, 𝑢0] ↦  (𝑔𝐻, 𝑔

−1 ⋅ 𝑢0) .                      (75) 
𝐺‐invariance combined with transitivity implies that σ has constant rank and hence the 

Heisenberg algebroid becomes a Lie algebra bundle, the Heisenberg groupoid becomes a 

Lie group bundle and the DFR‐bundles 𝜀(𝐸, σ) and ⊂ 𝐻(𝐸, 𝜎 ⋅) become locally trivial (and 

smooth) 𝐶∗‐bundles. Moreover, if the representation of 𝐻on]B extends to a representation 

of 𝐺, all these bundles will even be globally trivial. 

To recover the original DFR‐model, consider four‐dimensional Minkowski space ℝ1,3, 

which has the Lorentz group 𝑂(1, 3) as its isometry group, and choose any symplectic form 

on ℝ1,3, say the one defined by the matrix {
0 12
−12 0

}. Let σ0 be the corresponding Poisson 

tensor and 𝐻 be its stability group under the action of 𝑂(1, 3). Then we may recover the 

space 𝛴 from the original as the quotient space 𝑂(1,3)/𝐻. Moreover, the vector bundle 

𝑂(1,3) ×𝐻 ℝ
1,3 associated to the canonical principal 𝐻‐bundle 𝑂(1,3) over 𝛴 and the 

defining representation of 𝐻 ⊂ 𝑂(1,3) on ℝ1,3 carries a canonical Poisson structure defined 

by using the action of 𝑂(1,3) to transport the Poisson tensor σ0 at the distinguished point 

0 ∈ 𝛴 (i.e., [1] ∈ 𝑂(1,3)/𝐻) to all other points of 𝛴. According to the previous discussion, 

the resulting DFR‐bundles will be globally trivial, and so we have 

𝜀(𝑂(1,3) ×𝐻 ℝ
1,3, σ) ≅ 𝛴 × 𝐾 𝑎𝑛𝑑 𝐻(𝑂(1,3) ×𝐻 ℝ

1,3, σ) ≅ 𝛴 × ℬ.   (76) 
Moreover, the corresponding DFR‐algebra 

𝛤0(𝜀(𝑂(1,3) ×𝐻 ℝ
1,3, σ)) 

will then be the same as the one originally defined 

We can extend the construction above to obtain a 𝐶∗‐bundle over an arbitrary 

spacetime whose fibers are isomorphic to the original DFR‐algebra. Let (𝑀, 𝑔) be an 𝑛‐

dimensional Lorentz manifold with orthonormal frame bundle (𝑀, 𝑔) . Also, let σ0 be a 

fixed bivector on ℝ𝑛 and 𝛴 its orbit under the action of the Lorentz group (1, 𝑛 − 1) . 

Consider the associated fiber bundle 

𝛴(𝑀) = 𝑂(𝑀, 𝑔) ×𝑂(1,𝑛−1) 𝛴 

over 𝑀, whose bundle projection we shall denote by 𝜋. Using 𝜋 to pull back the tangent 

bundle 𝑇𝑀 of 𝑀 to (𝑀) , we obtain a vector bundle 𝜋∗𝑇𝑀 over 𝛴(𝑀) which carries a 

canonical bivector field σ defined by the original bivector 𝜎0. Then the section algebra 
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𝛤0(𝛴(𝑀), 𝜀(𝜋
∗𝑇𝑀, 𝜎)) 

of the resulting DFR‐bundle 𝜀(𝜋∗𝑇𝑀, 𝜎) is not only a 𝐶0(𝛴(𝑀))‐algebra but, using the 

bundle projection 𝜋, it also becomes a 𝐶0(𝑀)‐algebra and hence can be regarded as the 

section algebra of a 𝐶∗‐bundle over 𝑀. Refining the discussion. 

𝛤0 (𝛴(𝑀)𝑚, 𝜀(𝑂(𝑇𝑚𝑀,𝑔𝑚) × 𝑇𝑚𝐻𝑚
𝑀,𝜎𝑚)) .                  (77) 

In analogy with the term “quantum spacetime” employed by designate the original DFR‐

algebra, we suggest to refer to the functor that to each Lorentz manifold (𝑀, 𝑔) associates 

the section algebra 𝛤0(𝛴(𝑀), 𝜀(𝜋
∗𝑇𝑀, 𝜎)) as “locally covariant quantum spacetime. 

Our first goal when starting this investigation was to find an appropriate mathematical 

setting for geometrical generalizations of the DFR‐model−a model for “quantum spacetime” 

which grew out of the attempt to avoid the conflict between the classical idea of sharp 

localization of events (ideally, at points of spacetime) and the creation of black hole regions 

and horizons by the concentration of energy and momentum needed to achieve such a sharp 

localization, according to the Heisenberg uncertainty relations. To begin with, this required 

translating the Heisenberg uncertainty relations into the realm of 𝐶∗‐algebra theory in such 

a way as to maintain complete control over the dependence on the underlying 

(pre)symplectic form: a problem that we found can be completely solved within Rieffel’s 

theory of strict deformation quantization, leading to a new construction of “the 𝐶∗‐algebra 

of the canonical commutation relations” which is an alternative to existing ones such as the 

Weyl algebra or the resolvent algebra. 

The other main ingredient that had to be incorporated and further developed was the 

general theory of bundles of locally convex ∗‐algebras and, in particular, how the process 

of 𝐶∗‐completion of ∗‐algebras at the level of fibers relates to that at the level of section 

algebras. The main outcome here is the definition of a novel procedure of 𝐶∗‐completion, 

now at the level of bundles, which to each bundle of locally convex ∗‐algebras, equipped 

with a locally bounded 𝐶∗ fiber seminorm, associates a 𝐶∗‐bundle over the same base space 

such that, at the level of ∗‐algebras, the fibers of the latter are the 𝐶∗‐completions of the 

fibers of the former and, with appropriate falloff conditions at infinity, the 𝐶∗‐algebra of 

continuous sections of the latter is the 𝐶∗‐completion of the ∗‐algebra of continuous sections 

of the former. Combining these two ingredients, we arrive at a generalization of the 

mathematical construction underlying the DFR‐model which, among other things, can be 

applied in any dimension and in curved spacetime. 

It should perhaps be emphasized at this point that it is not clear how much of the original 

physical motivation behind the DFR‐model carries over to our mathematical generalization. 

However, we believe our construction to be of interest in its own right, as a tool to generate 

a nontrivial class of 𝐶∗‐bundles (the DFR‐ bundles), each of which can be obtained as the 

(in this case, unique) 𝐶∗‐completion of a concrete bundle of Fréchet∗‐algebras that is 

canonically constructed from a given finite‐dimensional Poisson vector bundle and, as a 

bundle of Fréchet spaces, is locally trivial and even smooth. This whole process can be 

generalized even further by considering other methods to generate 𝐶∗‐algebras from an 

appropriate class of vector spaces (to replace the passage from pre‐symplectic vector spaces 

to Heisenberg 𝐶∗‐algebras) which satisfy continuity conditions in such a way as to allow for 
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a lift from vector spaces and 𝐶∗‐algebras to vector bundles and 𝐶∗‐bundles, in the spirit of 

the functor lifting. 

The construction of the aforementioned bundle of Fréchet∗‐algebras gains additional 

importance when one considers the necessity of identifying further geometrical structures 

on the “noncommutative spaces” that the DFR‐algebras are supposed to emulate. A first step 

in this direction is to look at the general definition of smooth subalgebras of 𝐶∗‐algebras, as 

discussed. Using the results from it to show that the Heisenberg‐Schwartz and Heisenberg‐

Rieffel algebras are smooth subalgebras of their respective 𝐶∗‐completions and with a little 

further effort one can also show that the same holds for the algebras of smooth sections of 

the corresponding bundles of Fréchet∗‐algebras (with regard to their smooth structure as 

vector bundles). Another application of our construction of the DFR‐bundles is that it 

provides nontrivial examples of locally 𝐶∗ −algebras namely, by considering the algebras 

of continuous local sections of our bundles. The concept of locally 𝐶∗‐algebras is of 

particular importance for handling noncompact spaces and is encountered naturally when 

dealing with sheaves of algebras, so prominent in topology and geometry. A collection of 

new results in this direction, related to what has been done here, can be found. 

We are fully aware of the fact that all these questions are predominantly of mathematical 

nature: the physical interpretation is quite another matter. But to a certain extent this applies 

even to the original DFR‐model, since it is not clear how to extend the interpretation of the 

commutation relations postulated in terms of uncertainty relations, to other spacetime 

manifolds, or even to Minkowski space in dimensions ≠ 4. In addition, it should not be 

forgotten that, even classically, spacetime coordinates are not observables: this means that 

the basic axiom of algebraic quantum field theory according to which observables should 

be described by (local) algebras of a certain kind (such as 𝐶∗‐algebras or von Neumann 

algebras) does not at all imply that in quantum gravity one should replace classical 

spacetime coordinate functions by noncommuting operators. To us, the basic question seems 

to be: How can we formulate spacetime uncertainty relations, in the sense of obstructions 

to the possibility of localizing events with arbitrary precision, in terms of observables? That 

of course stirs up the question: How do we actually measure the geometry of spacetime when 

quantum effects become strong? 

We establish a couple of useful results on the Weyl‐Moyal star product, beginning 

with an estimate for the Schwartz seminorms of the product 𝑓 ⋆(𝐽⋅ 𝑔 of two functions 𝑓 and 

𝑔 in 𝐵(𝑉) when at least one of them belongs to (𝑉) , in terms of the pertinent seminorms of 

the factors; as shown this implies a corresponding estimate for the 𝐶∗‐norm on 𝐵(𝑉) . Such 

estimates can be found in [31], but we also need some information on how the constants 

involved in these estimates depend on the Poisson tensor σ, and that part of the required 

information is not provided there. In a second part, we shall discuss the issue of approximate 

identities for the Heisenberg‐Schwartz algebra (noting that for the Heisenberg Rieffel 

algebra, this would be a pointless exercise since that already has a unit, namely, the constant 

function 1). 

For simplicity, we shall work in coordinates, so we choose a basis {𝑒1, … , 𝑒𝑛} of 𝑉 and 

introduce the corresponding dual basis {𝑒1, … , 𝑒𝑛} of 𝑉∗, expanding vectors 𝑥 in 𝑉 and 
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covectors 𝜉 in 𝑉∗ according to 𝑥 = 𝑥𝑗𝑒𝑗, 𝜉 = 𝜉𝑗𝑒
𝑗 and the bivector 0− according to 

(𝜏(𝜉, 𝜂) = 𝜎𝑘𝑙𝜉𝑘𝜉𝑙; then 

𝜂𝑗 = (𝜎
⋕𝜉) = 〈𝜂, 𝜎⋕𝜉〉 = 𝜎(𝜉, 𝜂) = 𝜎𝑘𝑗𝜉𝑘𝜂𝑗 

implies that (𝜎⋕𝜉)𝑗 = 𝜎𝑘𝑗𝜉𝑘. Moreover, using multiindex notation, we can define the 

topologies of 𝑆(𝑉) and of 𝐵(𝑉) in terms of the Schwartz seminorms 𝑠𝑝,𝑞 (for 𝑆(𝑉)) and 𝑠0,𝑞 

(for 𝐵(𝑉)), defined by 

𝑠𝑝,𝑞(𝑓) = ∑ sup
x∈V

  

|𝛼|≤𝑝,|𝛽|≤𝑞

|𝑥𝛼𝜕𝛽𝑓(𝑥)|.              (78) 

To begin with, we note the following explicit estimate for the 𝐿1‐norm of the (inverse) 

Fourier transform 𝑓 of a Schwartz function 𝑓 in terms of an appropriate Schwartz seminorm, 

‖𝑓‖1 ≤ (2𝜋)
𝑛𝑠2𝑛,2𝑛(𝑓) 𝑓𝑜𝑟 𝑓 ∈ 𝑆(𝑉) .                         (79) 

Proof. 

‖ℱ′−′𝑓‖1 = ∫ 𝑑
𝑉∗

𝜉|(ℱ−1𝑓)(𝜉)| 

= ∫
𝑑𝜉1

1 + 𝜉1
2  
𝑑𝜉𝑛
1 + 𝜉𝑛

2
|(1 + 𝜉1

2)… (1 + 𝜉𝑛
2)(ℱ−1𝑓)(𝜉)| 

≤ 𝜋𝑛 sup
𝜉∈𝑉∗

  | (ℱ−1 ((1 − 𝜕𝑥1
2 )… (1 − 𝜕𝑥𝑛

2 )𝑓)) (𝜉)| 

≤
1

2𝑛
∫ 𝑑
𝑉

𝑥| ((1 − 𝜕𝑥1
2 )… (1 − 𝜕𝑥𝑛

2 )𝑓) (𝑥)| 

=
1

2𝑛
∫

𝑑𝑥1

1 + (𝑥1)2
…

𝑑𝑥𝑛

1 + (𝑥𝑛)2
|(1 + (𝑥1)2)… (1 + (𝑥𝑛)2) 

((1 − 𝜕𝑥1
2 )… (1 − 𝜕𝑥𝑛

2 )𝑓) (𝑥)| 

≤ (2𝜋)𝑛𝑠2𝑛,2𝑛(𝑓) . 

Now from Equation (19), we conclude that 

sup
𝑥∈𝑉

  |(𝑓 ⋆σ 𝑔)(𝑥)| ≤ sup
𝑥∈𝑉

  |𝑓(𝑥)|∫ 𝑑
𝑉∗

𝜉|�̌�(𝜉)| 𝑓𝑜𝑟 𝑓 ∈ ℬ(𝑉), 𝑔 ∈ 𝑆(𝑉) , 

and hence Equation (A2) gives the following estimate: 

𝑠0,0(𝑓 ⋆σ 𝑔) ≤ (2𝜋)
𝑛𝑠0,0(𝑓)𝑠2𝑛,2𝑛(𝑔) 𝑓𝑜𝑟 𝑓 ∈ ℬ(𝑉), 𝑔 ∈ 𝑆(𝑉) .   (80) 

In order to generalize this inequality to higher order Schwartz seminorms, we need the 

following facts. 

Lemma (6.1.15)[270]: For 𝑓 ∈ ℬ(𝑉) and ∈ 𝑆(𝑉) , we have the Leibniz rule 

𝜕

𝜕𝑥𝑗
(𝑓 ⋆σ 𝑔) =

𝜕𝑓

𝜕𝑥𝑗
⋆σ 𝑔 + 𝑓 ⋆σ

𝜕𝑔

𝜕𝑥𝑗
, 

and therefore the higher order Leibniz rule 

𝜕𝛼(𝑓 ⋆σ 𝑔) = ∑

𝛽≤𝛼

 (
𝛼
𝛽) 𝜕𝛽𝑓 ⋆σ 𝜕𝛼−𝛽𝑔. 

Proof. Simply differentiate Equation (19) under the integral sign. 
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Lemma (6.1.16)[270]: For 𝑓 ∈ 𝐵(𝑉) and ∈ 𝑆(𝑉) , we have 

x𝑗(𝑓 ⋆σ 𝑔) = 𝑓 ⋆σ 𝑥
𝑗𝑔 + 𝛻σ

𝑗
𝑓 ⋆σ 𝑔, 

and therefore 

x𝛼(𝑓 ⋆σ 𝑔) = ∑

𝛽≤𝛼

 (
𝛼
𝛽) 𝛻σ

𝛼−𝛽
𝑓 ⋆(𝑓 x

𝛽𝑔, 

where 𝛻𝑂− denotes the (pre‐)symplectic gradient, defined by 

𝛻σ
𝑗
ℎ =

𝑖

2
σ𝑗𝑘

𝜕ℎ

𝜕𝑥𝑘
 

and 𝛻σ
𝛼 = ∏  𝑛

𝑗=1 (𝛻σ
𝑗
)
𝛼𝑗
. 

Proof. For 𝑓 ∈ ℬ(𝑉) and ∈ 𝑆(𝑉) , we have, according to Equation (19), 

(𝑓 ⋆σ 𝑥
𝑗𝑔)(𝑥) = ∫ 𝑑

𝑉∗
𝜉𝑓 (𝑥 +

1

2
σ#𝜉) (ℱ−1(𝑥𝑗𝑔)) (𝜉)𝑒𝑖〈𝜉,𝑥〉 

= 𝑖∫ 𝑑
𝑉∗

𝜉𝑓(𝑥 +
1

2
σ#𝜉)

𝜕�̌�

𝜕𝜉𝑗
(𝜉)𝑒𝑖〈𝜉,𝑥〉 

= −𝑖∫ 𝑑
𝑉∗

𝜉((
𝜕

𝜕𝜉𝑗
𝑓 (𝑥 +

1

2
𝜎#𝜉)) �̌�(𝜉)𝑒𝑖〈𝜉,𝑥〉 

+𝑓 (𝑥 +
1

2
σ#𝜉)𝑔(𝜉)

𝜕

𝜕𝜉𝑗
𝑒𝑖〈𝜉,𝑥〉) 

=
𝑖

2
σ𝑘𝑗∫ 𝑑

𝑉∗
𝜉
𝜕𝑓

𝜕𝑥𝑘
(𝑥 +

1

2
σ#𝜉) �̌�(𝜉)𝑒𝑖〈𝜉,𝑥〉 + 𝑥𝑗(𝑓 ⋆σ 𝑔)(𝑥) 

= −(𝛻σ
𝑗
𝑓 ⋆σ 𝑔)(𝑥) + 𝑥

𝑗(𝑓 ⋆σ 𝑔)(𝑥) . 

Combining these two lemmas gives the formula 

𝑥𝛼𝜕𝛽(𝑓 ⋆σ 𝑔) = ∑  

𝛾≤𝛼,𝛿≤𝛽

 (
𝛼
𝛾) (

𝛽
𝛿
) (𝛻σ

𝛼.−𝛾
𝜕𝛽−𝛿𝑓 ⋆σ x

𝛾𝜕𝛿𝑔)            (81) 

𝑓𝑜𝑟 𝑓 ∈ ℬ(𝑉), 𝑔 ∈ 𝑆(𝑉) . 

Taking the  sup  norm (which is just 𝑠0,0) and applying the definition of the seminorms 𝑠𝑝,𝑞 

together with the estimate (A3) established above, we arrive at the following. 

Proposition (6.1.17)[270]: For any two natural numbers , 𝑞, there exists a polynomial 𝑃𝑝,𝑞 

of degree 𝑝 in the matrix elements of σ, with coefficients that depend only on 𝑛, 𝑝, and 𝑞, 

such that the following estimate holds: 

𝑠𝑝,𝑞(𝑓 ⋆(𝑇 𝑔) ≤ |𝑃𝑝,𝑞((σ)|𝑠0,𝑝+𝑞(𝑓)𝑠𝑝+2𝑛,𝑞+2𝑛(𝑔) 

𝑓𝑜𝑟 𝑓 ∈ ℬ(𝑉), 𝑔 ∈ 𝑆(𝑉) .                                     (82) 
With these formulas and estimates at our disposal, we can address the issue of constructing 

approximate identities for the Heisenberg‐Schwartz algebra 𝑆σ. The fact that this is a ∗‐

subalgebra (and even a ∗‐ideal) of the Heisenberg‐Rieffel algebra ℬσ. which does have a 

unit, namely, the constant function 1, indicates that we should look for sequences (𝑋𝑘)𝑘∈ℕ 

of Schwartz functions 𝑋𝑘 ∈ 𝑆σ which converge to 1 in some appropriate sense: without loss 

of generality, we may assume these functions to be real‐valued and to satisfy 0 ≤ 𝑋𝑘 ≤ 1. 
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Thus we expect that 𝑋𝑘 → 1 and 𝜕𝛼𝑋𝑘 → 0 for 𝛼 ≠ 0 (or equivalently, 𝜕𝛼(1 − 𝑋𝑘) → 0 for 

all 𝛼) as 𝑘 → ∞, but this convergence can at best hold uniformly on compact subsets of V. 

(Typically, we may even take (𝑋𝑘)𝑘∈ℕ to be a sequence of test functions X𝑘 ∈ 𝒟(𝑉) that is 

monotonically increasing and converges to 1 in 𝜀(𝑉) . Note, however, that this sequence 

does not converge to 1 in the space 𝑆(𝑉) and not even in the space ℬ(𝑉) , since the function 

1 does not go to 0 at infinity: convergence is only uniform on compact subsets but not on 

the entire space.) Still, it turns out that any such sequence yields an approximate identity for 

the Heisenberg‐Schwartz algebra—provided we also require the partial derivatives 

𝜕𝛼(1 − 𝑋𝑘) to be uniformly bounded in 𝑘, for all 𝛼. 

Proposition (6.1.18)[270]: Let (𝑋𝑘)𝑘∈ℕ be a sequence of Schwartz functions 𝑋𝑘 ∈ 𝑆(𝑉) 

satisfying 0 ≤ 𝑋𝑘 ≤ 1 which is bounded in the Fréchet space ℬ(𝑉) and converges to 1 in 

the Fréchet space (𝑉) , that is, in the topology of uniform convergence of all derivatives on 

compact subsets. Then (𝑋𝑘)𝑘∈ℕ is an approximate identity in the Heisenberg‐Schwartz 

algebra 𝑆σ, 𝑖. 𝑒., for any 𝑓 ∈ 𝑆σ, we have that 𝑋𝑘 ⋆σ 𝑓 → 𝑓 in 𝑆σ ⋅, as 𝑘 → ∞. 

Proof. Fixing 𝑓 ∈ 𝑆𝜎. and 𝑝, 𝑞 ∈ ℕ, we have the following estimate: 

𝑠𝑝,𝑞(𝑋𝑘 ⋆σ 𝑓 − 𝑓) ≤ 𝐶0 max
|𝛼|,|𝛾|≤𝑝
|𝛽|,|𝛿|≤𝑞

  sup
𝑥∈𝑉

  |(𝛻σ
𝛼𝜕𝛽(1 − X𝑘) ⋆σ x

𝛾𝜕𝛿𝑓)(𝑥)|, 

where 

𝐶0 = ∑ ∑  

𝛾≤𝛼,𝛿≤𝛽|𝛼|≤𝑝,|𝛽|≤𝑞

 (
𝛼
𝛾) (

𝛽
𝛿
), 

which follows directly from Equation (A4) after some relabeling. Now given 𝜀 > 0, we shall 

split this  sup  norm into two parts. First, we use that the functions 𝑋𝑘, and hence also the 

functions 

𝛻𝜎
𝛼𝜕𝛽(1 − X𝑘) , form a bounded subset of 𝐵𝜎, while the 𝑥𝛾𝜕𝛿𝑓 are fixed functions in 𝑆𝜎, to 

conclude that there exists a compact subset 𝐾 of 𝑉 such that, for all |𝛼|, |𝛾| ≤ 𝑝 and |𝛽|, 

|𝛿| ≤ 𝑞, 

sup
𝑥∉𝐾

  |(𝛻𝜎
𝛼𝜕𝛽(1 − 𝑥𝑘

 ) ⋆𝜎 x
𝛾𝜕𝛿𝑓)(𝑥)| <

∈

𝐶0
. 

Indeed, we may apply Equations (A3) and (A4) to show that the Schwartz functions 

(1 + |x|2)(𝛻𝜎
𝛼𝜕𝛽(1 − 𝑋𝑘) ⋆𝜎 𝑥

𝛾𝜕𝛿𝑓) on 𝑉 are uniformly bounded in 𝑘 (as well as in all 

other parameters), so the Schwartz functions 𝛻𝜎
𝛼𝜕𝛽(1 − 𝑋𝑘) ⋆(𝑇 𝑥

𝛾𝜕𝛿𝑓 on 𝑉 vanish at 

infinity uniformly in 𝑘 (as well as in all other parameters). Next, we set 

𝐶1 = max
|𝑎|≤𝑝|𝐵|≤𝑞

  𝑠0,0 (𝛻𝜎
𝛼𝜕𝛽(1 − X𝑘)) , 𝐶2 = max

|𝑦|≤𝑝,|𝒮|≤𝑞  
  ‖ℱ−1(𝑥𝛾𝜕𝛿𝑓)‖1 

and introduce a compact subset 𝐾∗ of 𝑉∗ such that, for all |𝛾| ≤ 𝑝 and |𝛿| ≤ 𝑞, 

∫ 𝑑
𝑉∗\𝐾∗

𝜉|ℱ−1(𝑥𝛾𝜕𝛿𝑓)(𝜉)| <
𝜖

2𝐶0𝐶1
. 

Now let 𝐿 = 𝐾 +
1

2
𝜎#𝐾∗, which is again a compact subset of 𝑉, and finally use the uniform 

convergence of the functions 1 − 𝑋𝑘 and their derivatives on 𝐿 to infer that there exists 𝑘0 ∈

ℕ such that, for 𝑘 ≥ 𝑘0 and all |𝛼| ≤ 𝑝 and |𝛽| ≤ 𝑞, 
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sup
𝑦∈𝐿

  | (𝛻𝜎
𝛼𝜕𝛽(1 − 𝑋𝑘)) (𝑦)| <

𝜖

2𝐶0𝐶2
 

Then it follows from Equation (19) that, for 𝑘 ≥ 𝑘0 and all |𝛼|, |𝛾| ≤ 𝑝 and |𝛽|, |𝛿| ≤ 𝑞, 

sup
𝑥∈𝐾

  |(𝛻𝑂−
𝛼 𝜕𝛽(1 − 𝑋𝑘) ⋆𝜎 𝑥

𝛾𝛾𝜕𝛿𝑓)(𝑥)|

≤ |∫ 𝑑
𝑉∗\𝐾∗

𝜉 (𝛻𝜎 
𝛼𝜕𝛽(1 − 𝑋𝑘)) (𝑥 +

1

2
𝜎#𝜉) (ℱ−1(x𝛾𝜕𝛿𝑓))(𝜉)𝑒

𝑖〈𝜉,𝑥〉| 

+|∫ 𝑑
𝐾∗

𝜉 (𝛻𝜎 
𝛼𝜕𝛽(1 − 𝑋𝑘)) (𝑥 +

1

2
𝜎# 𝜉) (ℱ−1(𝑥𝛾𝜕𝛿𝑓))(𝜉)𝑒

𝑖〈𝜉,𝑥〉| 

≤ 𝑠0,0 (𝛻𝜎
𝛼𝜕𝛽(1 − 𝑋𝑘))∫ 𝑑

𝑉∗\𝐾∗
𝜉|(ℱ−1(𝑥𝛾𝜕𝛿𝑓))(𝜉)| 

+sup
𝑦∈𝐿

  | (𝛻𝜎
𝛼𝜕𝛽(1 − 𝑋𝑘)) (𝑦)|∫ 𝑑

𝑉∗
𝜉|ℱ−1(x𝛾𝜕𝛿𝑓)(𝜉)| 

<
𝜖

𝐶0
 

It may be worthwhile to emphasize that this construction provides an entire class of 

approximate identities for the Heisenberg‐Schwartz algebra but no bounded ones: the 𝜆𝛾𝑘 

are uniformly bounded in 𝑘 only in 𝐵𝑜− but not in 𝑆𝑜−. This is unavoidable since it is in fact 

not difficult to prove that the Heisenberg‐Schwartz algebra does not admit any bounded 

approximate identities, but we shall not pursue the matter any further since we do not need 

this fact in the present . 

Section (6.2): Projective Limits of Hilbert Spaces 

The canonical commutation relations 

𝑄𝑃 − 𝑃𝑄 = iℎ 

are the paradigm of quantum physics. They indicate the transition from formerly 

commutative algebras of observables in classical mechanics to now non‐commutative 

algebras, those generated by the fundamental variables of position Q and momentum P. 

While this basic form of the commutation relations is entirely algebraic, the need of physics 

is to have some more analytic framework. Traditionally, one views Q and P as (necessarily 

unbounded) self‐adjoint operators on a Hilbert space. Then the commutation relation 

becomes immediately much more touchy as one has to take care of domains. The reasonable 

way to handle these difficulties is to use the Schrödinger representation which leads to a 

strongly continuous representation of the Heisenberg group. This way, the commutation 

relations encode an integration problem, namely from the infinitesimal picture of a Lie 

algebra representation by unbounded operators to the global picture of a group 

representation by unitary operators. 

While this is all well‐understood, things become more interesting in infinite dimensions: 

here one still has canonical commutation relations now based on a symplectic (or better: 

Poisson) structure on a vector space V. Physically, infinite dimensions correspond to a field 

theory with infinitely many degrees of freedom instead of a mechanical system. Then, 

algebraically, the commutation relations can be realized as a star product for the symmetric 

algebra over this vector space, see [72] where the basic notions of deformation quantization 
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have been introduced as well as e.g. [108], [100], [287] for introductions. However, beyond 

the algebraic questions one is again interested in an analytic context: it turns out that now 

things are much more involved. First, there is no longer an essentially unique way to 

represent the canonical commutation relations by operators, a classical result which can be 

stated in many ways. One way to approach this non‐uniqueness is now to focus first on the 

algebraic part and discuss the whole representation theory of this quantum algebra. To make 

this possible one has to go beyond the symmetric algebra and incorporate suitable 

completions instead. 

Based on a 𝐶∗‐algebraic formulation there are (at least) two approaches available. The 

classical one is to take formal exponentials of the unbounded quantities and implement a 

𝐶∗‐norm for the algebra they generate, see [284]. An alternative was proposed by taking 

formal resolvents and the 𝐶∗‐algebra they generate [102]. These two approaches can be 

formulated in arbitrary dimensions and are used extensively in quantum field theory. 

Only for finite dimensions there is a third 𝐶∗‐algebraic way based on (strict) deformation 

quantization in the framework of Rieffel [96], see also [282], [270] for some more recent 

development: here one constructs a rather large 𝐶∗‐algebra by deforming the bounded 

continuous functions on the underlying symplectic vector space. The deformation is based 

on certain oscillatory integrals which is the reason that this approach, though extremely 

appealing and powerful, will be restricted to finite dimensions. In such finite‐dimensional 

situations one has even ways to go beyond the flat situation and include also much more 

non‐trivial geometries of the underlying geometric system, see e.g. [281]. 

While the 𝐶∗‐algebraic approaches are very successful in many aspects, some questions 

seem to be hard to answer within this framework: from a deformation quantization point of 

view it is not completely obvious in which sense these algebras provide deformations of 

their classical counterparts, see, [103]. Closely related is the question of how one can get 

back the analogs of the classically unbounded quantities like polynomials on the symplectic 

vector space: in the quantum case they can not be elements of any 𝐶∗‐algebra and thus they 

have to be recovered in certain well‐behaved representations as unbounded operators on the 

representation space. This raises the question whether they can acquire some intrinsic 

meaning, independent of a chosen representation. In particular, all the 𝐶∗‐algebraic 

constructions completely ignore possible additional structures on the underlying vector 

space 𝑉, like e.g. a given topology. This seems both from the purely mathematical but also 

from the physical point of view rather unpleasant. 

In [101] a first step was taken to overcome some of these difficulties: instead of considering 

a 𝐶∗‐algebraic construction, the polynomials, modeled as the symmetric algebra, were kept 

and quantized by means of a star product directly. Now the additional feature is that a given 

locally convex topology on the underlying vector space 𝑉 induces a specific locally convex 

topology on the symmetric algebra 𝑆⋅(𝑉) in such a way that the star product becomes 

continuous. Necessarily, there will be no nontrivial sub‐multiplicative seminorms, making 

the whole locally convex algebra quite non‐trivial. It was then shown that in the completion 

the star product is a convergent series in the deformation parameter ℎ. This construction has 

good functorial properties and works for every locally convex space 𝑉 with continuous 

constant Poisson structure. The basic feature was that on a fixed symmetric power 𝑆𝑘(𝑉) 
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the projective locally convex topology was chosen. In finite dimensions this construction 

reproduces earlier versions [108], [119] of convergence results for the particular case of the 

Weyl‐Moyal star product. 

We want to adapt the construction of [101] to the more particular case of a projective limit 

of (pre‐) Hilbert spaces, i.e. a locally convex space where the topology is determined by 

Hilbert seminorms coming from (not necessarily non‐degenerate) positive inner products. 

The major difference is now that for each fixed symmetric power 𝑆𝑘(𝑉) we have another 

choice of the topology, namely the one by extending the inner products first and taking the 

corresponding Hilbert seminorms afterwards. In general, this is coarser than the projective 

one and thus yields a larger and hence more interesting completion. We then use a star 

product coming from an arbitrary continuous bilinear form on 𝑉, thereby allowing for 

various other orderings beside the usual Weyl symmetrization. We are able to determine 

many features of this new algebra hosting the canonical commutation relations in arbitrary 

dimensions, including the convergence of the star product and an explicit description of the 

completion as certain analytic functions on the topological dual. 

We outline the construction of the star product and the relevant topology. Since the star 

product is the usual one of exponential type on a vector space 

we can be brief here. The topological properties are discussed in some detail, in particular 

as they differ at certain points significantly from [101]. After the necessary but technical 

estimates this results in the construction of the locally convex algebra in Theorem (6.2.13). 

contains various properties of the star product algebra. First we show that a continuous 

antilinear involution on 𝑉 extends to a continuous ∗‐involution on the algebra. Then we are 

able to characterize the topology by some very simple conditions in Theorem (6.2.18), a 

feature which is absent in the case of [101]. The discussion of equivalences between 

different star products becomes now more involved as not all continuous symmetric bilinear 

forms give rise to equivalences as that was the case in [101]. Now in Theorem (6.2.23) we 

have to add a Hilbert‐Schmidt condition similar to the one of Dito in [106]. In Theorem 

(6.2.39) we are able to characterize the completed star product algebra as certain analytic 

functions on the topological dual. This will later be used to make contact to the more 

particular situation considered in [106]. In Theorem (6.2.44) we show the existence of many 

positive linear functionals provided the Poisson tensor allows for a compatible positive 

bilinear form of Hilbert‐Schmidt type. Since the algebra is (necessarily) not locally 

multiplicatively convex, we have no general entire calculus. However, we can show that for 

elements of degree one, i.e. vectors in 𝑉, the star exponential series converges absolutely. 

This is no longer true for quadratic elements, i.e. elements in 𝑆2(𝑉) . However, we are able 

to show that in all GNS representations with respect to continuous positive linear functionals 

all elements up to quadratic ones yield essentially self‐adjoint operators in Theorem (6.2.53). 

Here our topology is used in an essential way. The statement can be seen as a representation‐
independent version of Nelson’s theorem, as it holds for arbitrary such GNS representations. 

Finally, contains a discussion of two particular cases of interest: First, we consider the case 

that 𝑉 is not just a projective limit of Hilbert spaces but a Hilbert space directly. In this case, 

Dito discussed formal star products of exponential type and their formal equivalence in 

[106]. We can show that his algebra of functions contains our algebra, where the star product 
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converges nicely, as a subalgebra. We extend Dito’s results form the formal power series 

context to a convergent one. In fact, we show a rather strong continuity with respect to the 

deformation parameter in Theorem (6.2.54). 

The second case is a nuclear space 𝑉. It is well‐known that any (complete) nuclear space 

can be seen as a projective limit of Hilbert spaces, see e.g. [117]. We prove that in this case 

our construction coincides with the previous one of [101] as for nuclear spaces the two 

competing notions of topological tensor products we use coincide. This way we can transfer 

the abstract characterization of the topology to the case of nuclear spaces in [101], a result 

which was missing in that approach. The important benefit from the projective Hilbert space 

point of view is now that we can show the existence of sufficiently many continuous positive 

linear functionals: an element in the completed ∗‐algebra is zero iff all continuous positive 

functionals on it vanish. It follows that the resulting ∗‐algebra has a faithful ∗‐representation 

on a pre‐Hilbert space, i.e. it is ∗‐semisimple in the sense of [97]. 

For a set 𝑋 and 𝑘 ∈ N0 we define 𝑋𝑘 as the set of all functions from {1, . . . , 𝑘} (or the 

empty set if 𝑘 = 0) to 𝑋 and usually put the parameter in the index, i.e. {1, , 𝑘} ∋ 𝑖 ↦ 𝑓𝑖 ∈

𝑋 for 𝑓 ∈ 𝑋𝑘. Let 𝑉 be a vector space and 𝑘 ∈ M0, then we write 𝑇alg
𝑘 (𝑉) for the space of 

degree 𝑘‐tensors over 𝑉 and 𝒯g
∗(𝑉) : =⊕𝑘∈N0 𝑇alg

𝑘 (𝑉) for the vector space underlying the 

tensor algebra. For 𝑥 ∈ 𝑉𝑘 we define the projections on the tensors of degree 𝑘 by 〈⋅

〉𝑘: 𝑇alg
∗ (𝑉) → 𝑇alg

𝑘 (𝑉) . Let 𝔖𝑘 ⊆ {1, , 𝑘}
𝑘 be the symmetric group of degree 𝑘 (in the case 

𝑘 = 0 this is 𝔖0 = {id∅}), then 𝔖𝑘 acts linearly on 𝑇alg
𝑘 (𝑉) from the right via 

(𝑥1⊗⋯⊗𝑥𝑘)
𝜎 : = 𝑥𝜎(1)⊗⋯⊗𝑥𝜎(𝑘). This allows us to define the symmetrisation 

operators 𝒮𝑘: 𝑇alg
𝑘 (𝑉) → 𝑇alg

𝑘 (𝑉) by 𝑋 ↦ 𝒮𝑘(𝑋) : =
1

𝑘!
∑ 𝑋𝜎𝜎∈𝔖𝑘

 and 𝒮 ⋅ : 𝒯alg
∗ (𝑉) → 𝒯alg

∗ (𝑉) 

by 𝑋 ↦ 𝒮 ⋅(𝑋) : = ∑ 𝒮𝑘𝑘∈ℕ0
(〈𝑋〉𝑘) . These are projectors on subspaces of 𝑇alg

𝑘 (𝑉) and 

𝑇alg
∗ (𝑉) which we will denote by 𝑆alg

𝑘 (𝑉) and 𝑆alg
∗ (𝑉) . 

We will always denote an algebra as a pair (V, o) of a vector space 𝑉 and a multiplication 0, 
because we will discuss different products on the same vector space. 

As we want to construct a similar algebra like in [101], but by using Hilbert tensor 

products instead of projective tensor products, we have to restrict our attention to locally 

convex spaces whose topology is given by Hilbert seminorms. 

For 𝑉 be a locally convex space, then a positive Hermitian form on 𝑉 is a sesquilinear 

Hermitian and positive semi‐definite form 〈⋅ | ⋅〉𝛼: 𝑉 × 𝑉 → ℂ (antilinear in the first, linear 

in the second argument). By ℐ𝑉 we denote the set of all continuous positive Hermitian forms 

on 𝑉 and we will distinguish different positive Hermitian forms by a lowercase greek 

subscript. Out of 𝑝, 𝑞 ≥ 0 and 〈⋅ | ⋅〉𝛼 , 〈⋅ | ⋅〉𝛽 ∈ ℐ𝑉 we get a new continuous positive 

Hermitian form 〈⋅ | ⋅〉𝑝𝛼+𝑞𝛽 : = 𝑝〈⋅ | ⋅〉𝛼 + 𝑞〈⋅ | ⋅〉𝛽 . 

Every 〈⋅ | ⋅〉𝑐𝑦 ∈ ℐ𝑉  yields a continuous Hilbert seminorm on 𝑉, defined as ‖𝑣‖𝛼 : =

√〈𝑣|𝑣〉𝛼 for all 𝑣 ∈ 𝑉. The set of all continuous Hilbert seminorms on 𝑉 will be denoted by 

𝒫𝑉. Note that ‖ ⋅ ‖𝑝𝛼+𝑞𝛽 = (𝑞‖ ⋅ ‖𝛼
2 + 𝑝‖ ⋅ ‖𝛽

2 )
1/2

 and that 𝒫𝑉 with the usual partial 

ordering of seminorms (i.e. by pointwise comparison) is an upwards directed poset and that 

there is a one‐to‐one correspondence between ℐ𝑉 and 𝒫𝑉 due to the polarisation identity. 
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In the following we will always assume that 𝑉 is a Hausdorff locally convex space whose 

topology is given by its continuous Hilbert seminorms (hilbertisable” in the language of 

[117]), i.e. we assume that 𝒫𝑉 is cofinal in the upwards directed set of all continuous 

seminorms on 𝑉. Important examples of such spaces are (pre‐) Hilbert spaces and nuclear 

spaces (see [117]) and, in general, all projective limits of pre‐Hilbert spaces in the category 

of locally convex spaces. 

Analogous to [101], we extend all Hilbert seminorms from 𝑉 to 𝒯alg
∗ (𝑉) with the 

difference that we first extend the 〈⋅ | ⋅〉𝛼 and reconstruct the seminorms out of these 

extensions: 

Definition (6.2.1)[280]: For every continuous positive Hermitian form 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 we 

define the sesquilinear extension 〈⋅ | ⋅〉𝛼
∗  : 𝒯alg

∗ (𝑉) ×  𝒯alg
∗ (𝑉) → ℂ 

(𝑋, 𝑌) ↦ 〈𝑋|𝑌〉𝛼 ∶= ∑〈

∞

𝑘=0

〈𝑋〉𝑘|〈𝑌〉𝑘〉𝛼 ,            (83) 

where 

〈𝑥1⊗…⊗𝑥𝑘|𝑦1⊗…⊗ 𝑦𝑘〉𝛼
∗ ∶= 𝑘!∏〈

𝑘

𝑚=1

𝑥𝑚|𝑦𝑚〉𝛼   (84) 

for all 𝑘 ∈ N0 and all 𝑥, 𝑦 ∈ 𝑉𝑘. 

It is well‐known that this is a positive Hermitian form on all homogeneous tensor spaces 

and then it is clear that 〈⋅ | ⋅〉𝛼
∗  is a positive Hermitian form on 𝒯alg

∗ (𝑉) . We write ‖ ⋅ ‖𝛼 for 

the resulting seminorm on 𝒯alg
∗  (𝑉) and 𝑇 ⋅(𝑉) for the locally convex space of 𝒯alg

∗ (𝑉) with 

the topology defined by the extensions of all ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉. Analogously, we write 𝒯𝑘(𝑉), 

𝑆𝑘(𝑉) and 𝑆⋅(𝑉) for the subspaces 𝒯alg
𝑘 (𝑉), 𝑆alg

𝑘 (𝑉) and 𝑆alg(𝑉) with the subspace topology. 

Note that ‖ ⋅ ‖𝛼 ≤ ‖ ⋅ ‖𝛽 holds if and only if ‖ ⋅ ‖𝛼 ≤ ‖ ⋅ ‖𝛽. Note that, in general, for a 

fixed tensor degree the resulting topology on 𝑇𝑘(𝑉) is not the projective topology used in 

The factor 𝑘! in (84) for the extensions of positive Hermitian forms corresponds roughly to 

the factor (𝑛!)𝑅 for 𝑅 = 1/2 in [101] for the extensions of seminorms (where 𝑅 = 1/2 

yields the coarsest topology for which the continuity of the star product could be shown in 

[101]). We are only interested in this special case because of the characterization . 

The following is an easy consequence of the definition of the topology on 𝑇 ⋅(𝑉) : 

Proposition (6.2.2)[280]: 𝒯∗(𝑉) is Hausdorff and is metrizable if and only if 𝑉 is 

metrizable. 

For working with these extensions of not necessarily positive definite positive Hermitian 

forms, the following technical lemma will be helpful: 

Lemma (6.2.3)[280]: Let 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 , 𝑘 ∈ ℕ and 𝑋 ∈ 𝑇𝑘(𝑉) be given. Then 𝑋 can be 

expressed as 𝑋 = 𝑋0 + �̃� with tensors 𝑋0, �̃� ∈ 𝑇
𝑘(𝑉) that have the following properties: 

𝑖. ) One has ‖𝑋0‖𝛼
∗ = 0 and there exists a finite (possibly empty) set 𝐴 and tuples 𝑥𝑎 ∈ 𝑉

𝑘 

for all 𝑎 ∈ 𝐴 that fulfil 𝛤I𝑛=1
𝑘 ‖𝑥𝑎,𝑛‖𝛼

∗ = 0 and 𝑋0 = ∑ 𝑥𝑎,1𝑎∈𝐴 ⊗ ⊗𝑥𝑎,𝑘 . 

ii.) There exist a 𝑑 ∈ N0 and a 〈⋅ | ⋅〉𝛼‐orthonormal tuple 𝑒 ∈ 𝑉𝑑 as well as complex 

coefficients 𝑋𝑎
′
, such that 
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�̃� = ∑ 𝑋𝑎
′

𝑎∈{1,…,𝑑}𝑘

𝑒𝑎1′ ⊗…⊗ 𝑒𝑎𝑘
′  𝑎𝑛𝑑 ‖𝑋‖𝛼

∗2 

= ‖�̃�‖𝛼
∗2 = 𝑘! ∑ |

𝑎∈{1,…,𝑑}𝑘

𝑋𝑎
′
|2                                                      (85) 

Proof.: We can express 𝑋 as a finite sum of simple tensors, 𝑋 = ∑ 𝑥𝑏,1
 
𝑏∈𝐵 ⊗⋯⊗ 𝑥𝑏,𝑘 

with a finite set 𝐵 and vectors 𝑥𝑏,𝑖 ∈ 𝑉. Let 

𝑉𝑋: =  𝑠𝑝𝑎𝑛 {𝑥𝑏,𝑖|𝑏 ∈ 𝐵, 𝑖 ∈ {1, . . . , 𝑘}}  𝑎𝑛𝑑 𝑉𝑋0: = {𝑣 ∈ 𝑉𝑋|‖𝑣‖a = 0}. 

Construct a complementary linear subspace 𝑉𝑋− of 𝑉𝑋0 in 𝑉𝑋, then we can also assume 

without loss of generality that 𝑥𝑏,𝑖 ∈ 𝑉𝑋0U𝑉𝑋− for all 𝑏 ∈ 𝐵 and 𝑖 ∈ {1, 𝑘}. Note that 𝑉𝑋, 𝑉𝑋0 

and 𝑉𝑋− are all finite dimensional. Now define 𝐴 : = {𝑎 ∈ 𝐵|∃𝑛∈{1,…,𝑘}: 𝑥𝑎,𝑛 ∈ 𝑉𝑋0} and 𝑋0 

: = ∑ 𝑥𝑎,1𝑎∈𝐴 ⊗⋯⊗𝑥𝑎,𝑘 , then ∏  𝑛=1
𝑘

‖𝑥𝑎,𝑛‖𝛼 = 0 by construction and so ‖𝑋0‖𝛼
∗ = 0 and 

‖𝑋 − 𝑋0‖𝛼
∗ = ‖𝑋‖𝛼

∗ . Restricted to 𝑉𝑋−, the positive Hermitian form 〈⋅ | ⋅〉𝛼 is even positive 

definite, i.e. an inner product. Let 𝑑 : =  dim (𝑉𝑋−) and 𝑒 ∈ 𝑉𝑑 be an 〈⋅ | ⋅〉𝛼‐orthonormal 

base of 𝑉𝑋−. Define �̃�: = 𝑋 − 𝑋0, then �̃� = ∑ 𝑋𝑎
′

𝑎′∈{1,…..𝑑} 𝑒𝑎1′ ⊗⋯⊗ 𝑒𝑎𝑘
′  with complex 

coefficients 𝑋𝑎
′
 and 

‖𝑋‖𝛼
∗2 = ‖�̃�‖𝛼

∗2 = ∑ |

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑎
′
|2‖𝑒𝑎1′ ⊗⋅⋅⋅⊗ 𝑒𝑎𝑘

′ ‖𝛼
∗2 = ∑ |

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑎
′
|2𝑘 !. 

On the locally convex space 𝒯 ⋅(𝑉) , the tensor product is indeed continuous and (𝑇 ⋅(𝑉),⊗) 
is a locally convex algebra. In order to see this, we are going to prove the continuity of the 

following function: 

Definition (6.2.4)[280]: We define the map 𝜇⊗: 𝑇
⋅(𝑉)⊗𝜋 𝑇

⋅(𝑉) → 7⋅(𝑉) by 

𝑋⊗𝜋 𝑌 ↦ 𝜇 ⊗ (𝑋⊗𝜋 𝑌) ∶= 𝑋 ⊗ 𝑌.   (86) 
Algebraically, 𝜇 ⊗ is of course just the product of the tensor algebra. The emphasize lies 

here on the topologies involved: ⊗𝜋 denotes the projective tensor product. We recall that 

the topology on 𝑇⋅(𝑉)⊗𝜋 𝑇
⋅(𝑉) is described by the seminorms ‖ ⋅

‖𝛼⊗𝜋𝛽
∗ : 𝑇 ⋅(𝑉)⊗𝜋 𝑇

⋅(𝑉) → [0, ∞[ 

𝑍 ↦ ‖𝑍‖𝛼⊗𝜋𝛽
∗ : =  inf ∑‖

𝑖∈𝐼

𝑋𝑖‖𝛼
∗ ‖𝑌𝑖‖𝛽

∗ ,    (87) 

where the infimum runs over all possibilities to express 𝑍 as a sum 𝑍 = ∑ 𝑋𝑖𝑖∈𝐼 ⊗𝜋 𝑌𝑖 

indexed by a finite set 𝐼 and ‖ ⋅ ‖𝛼
∗ , ‖ ⋅ ‖𝛽

∗  run over all extensions of continuous Hilbert 

seminorms on 𝑉. The only property of the projective tensor product relevant for our 

purposes is the following lemma, which is a direct result of the definition of the seminorms 

‖ ⋅ ‖𝛼⊗𝜋𝛽
∗ : 

Lemma (6.2.5)[280]: Let 𝑊 be a locally convex space, 𝑝 a continuous seminorm on 𝑊 and 

‖ ⋅ ‖𝛼 , ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉 . Let 𝛷:𝑇 ⋅(𝑉)⊗𝜋 𝑇
⋅(𝑉) → 𝑊 be a linear map. Then the two statements 

𝑖. )𝑝(𝛷(𝑋 ⊗𝜋 𝑌)) ≤ ‖𝑋‖𝛼
∗ ‖𝑌‖𝛽

∗ ^∗  for all 𝑋, 𝑌 ∈ 𝑇 ⋅(𝑉) 



202 

𝑖𝑖. )𝑝(𝛷(𝑍)) ≤ ‖𝑍‖𝛼⊗𝜋𝛽
∗  for all 𝑍 ∈ 𝑇 ⋅(𝑉)⊗𝜋 𝑇

⋅(𝑉) 

are equivalent. Continuity of the bilinear map 𝑇 ⋅(𝑉) × 𝒯(𝑉) ∋ (𝑋, 𝑌) ↦ 𝛷(𝑋 ⊗𝜋 𝑌) ∈ 𝑊 

is therefore equivalent to continuity of 𝛷. 

Proposition (6.2.6)[280]: The linear map 𝜇 ⊗ is continuous and the estimate 

‖𝜇⊗(𝑍)‖𝛾
∗ ≤ ‖𝑍‖2𝛾⊗𝜋2𝛾

∗                                    (88) 

holds for all 𝑍 ∈ 𝑇 ⋅(𝑉) ⊗𝜋 𝑇
⋅(𝑉) and all ‖ ⋅ ‖𝛾 ∈ 𝒫𝑉. Moreover, all 𝑋 ∈ 𝑇𝑘(𝑉) and 𝑌 ∈

𝑇ℓ(𝑉) with 𝑘, ℓ ∈ M0 fulfil for all ‖ ⋅ ‖𝛾 ∈ 𝒫𝑉 the estimate 

‖𝜇 ⊗ (𝑋⊗𝜋 𝑌)‖𝛾
∗ ≤ (

𝑘 + ℓ
𝑘
)

1
2
‖𝑋‖𝛾‖𝑌‖𝛾

∗ .                        (89) 

Proof.: Let 𝑋 ∈ 𝑇𝑘(𝑉) and 𝑌 ∈ 𝑇ℓ(𝑉) with 𝑘, ℓ ∈ M0 be given. Then 

‖𝑋⊗ 𝑌‖𝛾
∗ = √〈𝑋⊗ 𝑌|𝑋 ⊗ 𝑌〉𝛾

∗ = (
𝑘 + ℓ
𝑘
)

1
2
‖𝑋‖𝛾

∗‖𝑌‖𝛾
∗  

holds. It now follows for all 𝑋, 𝑌 ∈ 𝑇⋅(𝑉) that 

‖𝑋 ⊗ 𝑌‖𝛾’
∗2 = ∑ ‖

∞

𝑚=0

〈𝑋 ⊗ 𝑌〉𝑚‖𝛾’
∗2 

≤ ∑ (∑‖

𝑚

𝑛=0

〈𝑋〉𝑚−𝑛⊗ 〈𝑌〉𝑛‖𝛾
∗)

2∞

𝑚=0

 

= ∑ (∑  

𝑚

𝑛=0

(
𝑚
𝑛
)
1

2
‖〈𝑋〉𝑚−𝑛‖𝛾

∗‖〈𝑌〉𝑛‖𝛾
∗)

2∞

𝑚=0

 

= ∑ (∑( (
𝑚
𝑛
)
1

2𝑚
)

1
2

𝑚

𝑛=0

‖〈𝑋〉𝑚−𝑛‖2𝛾
∗ ‖〈𝑌〉𝑛‖2𝛾

∗ )

2
∞

𝑚=0

 

cs ≤ ∑  

∞

𝑚=0

(∑  

𝑚

𝑛=0

(
𝑚
𝑛
)
1

2𝑚
)(∑‖

𝑚

𝑛=0

〈𝑋〉𝑚−𝑛‖2𝛾
∗2‖〈𝑌〉𝑛‖2𝛾

∗2) 

= ‖𝑋‖2𝛾
∗2‖𝑌‖2𝛾

∗2 , 

by the Cauchy‐Schwarz (CS) inequality.  

The star product will be defined on the symmetric tensor algebra with undeformed 

product 𝑋 ∨ 𝑌 : = 𝒮 ⋅(𝑋 ⊗ 𝑌) for 𝑋, 𝑌 ∈ 𝑆⋅(𝑉) , which is indeed continuous: 

Proposition (6.2.7)[280]: The symmetrisation operator is continuous and fulfils ‖𝒮 ⋅𝑋‖𝛾
∗ ≤

‖𝑋‖𝛾
∗  for all 𝑋 ∈ 𝑇 ⋅(𝑉) and ‖ ⋅ ‖𝛾 ∈ 𝒫𝑉 . 

Proof.: From Definition (6.2.1) it is clear that 〈𝑋𝜎|𝑌𝜎〉𝛾 = 〈𝑋|𝑌〉𝛾 for all 𝑘 ∈ N0, 𝑋, 𝑌 ∈

𝑇𝑘(𝑉) and 𝜎 ∈ 𝔖𝑘 , because this holds for all simple tensors and because both sides are 

(anti‐)linear in 𝑋 and 𝑌. Therefore ‖𝑋𝜎‖𝛾 = ‖𝑋‖𝛾 and ‖𝒮𝑘𝑋‖𝛾 ≤ ‖𝑋‖𝛾 and we get the 

desired estimate 

‖𝒮 ⋅𝑋‖𝛾
∗2 =∑  

∞

𝑘=0

‖𝒮𝑘〈𝑋〉𝑘‖𝛾
∗2 
≤∑

∞

𝑘=0

‖〈𝑋〉𝑘‖𝛾
2 = ‖𝑋‖𝛾

∗2 

on 𝑇 ⋅(𝑉) .  
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Analogously to 𝜇 ⊗ we define the linear map 𝜇𝑅𝑒𝑗𝑒𝑐𝑡 : = 𝒮
⋅0𝜇⊗: 𝑇

⋅(𝑉)⊗𝜋 𝑇
⋅(𝑉) → 𝒯(𝑉) 

. Then the restriction of 𝜇V to 𝑆⋅(𝑉) describes the symmetric tensor product V and 

Propositions (6.2.6) and (6.2.7) yield: 

Corollary (6.2.8)[280]: The linear map 𝜇𝑅𝑒𝑗𝑒𝑐𝑡 is continuous and the estimate ‖𝜇V(𝑍)‖𝛾 ≤

‖𝑍‖2𝛾⊗𝜋2𝛾 holds for all 𝑍 ∈ 7⋅(𝑉)⊗𝜋 𝑇
⋅(𝑉) and all ‖ ⋅ ‖𝛾 ∈ 𝒫𝑉 . 

The following star product is based on a bilinear form and generalizes the usual 

exponential‐type star products like the Weyl‐Moyal or Wick star product, see e.g. [100], to 

arbitrary dimensions: 

Definition (6.2.9)[280]: For every continuous bilinear form 𝛬 on 𝑉 we define the product 

𝜇⋆𝛬 : 𝑇⋅(𝑉)⊗𝜋 𝒯(𝑉) → 𝑇
⋅(𝑉) by 

𝑋⊗𝜋 𝑌 ↦ 𝜇⋆𝛬(𝑋 ⊗𝜋 𝑌) ∶=∑
1

𝑡!

∞

𝑡=0

𝜇V((P𝛬)
𝑡(𝑋 ⊗𝜋 𝑌)) ,   (90) 

where the linear map P𝛬: 𝑇
⋅(𝑉)⊗𝜋 𝑇

⋅(𝑉) → 𝒯−1(𝑉)⊗𝜋 7
−1(𝑉) is given on factorizing 

tensors of degree 𝑘, ℓ ∈ M by 

P𝛬((𝑥1⊗ ⋅ ⋅ ⋅ ⊗ 𝑥𝑘) ⊗𝜋 (𝑦1⊗ ⋅ ⋅ ⋅ ⊗ 𝑦ℓ)) 

: = 𝑘ℓ𝛬(𝑥𝑘 , 𝑦1)(𝑥1⊗ ⋅ ⋅ ⋅ ⊗ 𝑥𝑘−1) ⊗𝜋 (𝑦2⊗ ⋅ ⋅ ⋅ ⊗ 𝑦ℓ)               (91)  

for all 𝑥 ∈ 𝑉𝑘 and 𝑦 ∈ 𝑉ℓ. Moreover, we define the product ⋆𝛬 on 𝑆⋅(𝑉) as the bilinear map 

described by the restriction of 𝜇⋆𝛬 to 𝑆⋅(𝑉) . 

Note that these definitions of P𝛬 and ⋆𝛬 coincide (algebraically) on 𝑆⋅(𝑉) with the ones in 

[101], evaluated at a fixed value for 𝑙 ↗ in the truely (not graded) symmetric case 𝑉 = 𝑉0. 

Note that with our convention the deformation parameter ℎ is already part of 𝛬. 

We prove the continuity of ⋆𝛬. Therefore we note that continuity of 𝛬 means that there exist 

‖ ⋅ ‖𝛼 , ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉 such that |𝛬(𝑣,𝑤)| ≤ ‖𝑣‖𝛼‖𝑤‖𝛽 holds for all , 𝑤 ∈ 𝑉. So the set 

𝒫𝑉,𝛬 : ={‖ ⋅ ‖𝛾 ∈ 𝒫𝑉||𝛬(𝑣,𝑤)| ≤ ‖𝑣‖𝛾‖𝑤‖𝛾 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑤 ∈ 𝑉}   (92) 

contains at least all continuous Hilbert seminorms on 𝑉 that dominate ‖ ⋅ ‖𝛼+𝛽. Thus this 

set is cofinal in 𝒫𝑉 . 

Lemma (6.2.10)[280]: Let 𝛬 be a continuous bilinear form on 𝑉, let ‖ ⋅ ‖𝛼 , ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉,𝛬 

as well as 𝑘, ℓ ∈ N0 and 𝑋 ∈ 𝑇𝑘(𝑉), 𝑌 ∈ 𝑇ℓ(𝑉) be given. Then 

‖P𝛬(𝑋 ⊗𝜋 𝑌)‖𝛼⊗𝜋𝛽 ≤ √𝑘ℓ‖𝑋‖𝛼‖𝑌‖𝛽 .           (93) 

Proof.: If 𝑘 = 0 or ℓ = 0 this is clearly true, so assume 𝑘, ℓ ∈ ℕ. We use Lemma (6.2.3) to 

construct 𝑋0 = ∑ 𝑥𝑎,1𝑎∈𝐴 ⊗⋯⊗𝑥𝑎,𝑘 and �̃� = ∑ 𝑋𝑎
′

𝑎′∈{1,…,𝑒}𝑘 𝑒𝑎1′ ⊗⋯⊗ 𝑒𝑎𝑘
′  with 

respect to 〈⋅ | ⋅〉𝛼 as well as 𝑌0 = ∑ 𝑦𝑏,1𝑏∈𝐵 ⊗⋯⊗𝑦𝑏,ℓ and �̃� = ∑ 𝑌𝑏
′

𝑏′∈{1,…,𝑑}ℓ  𝑓𝑏1′ ⊗

⋯⊗𝑓𝑏ℓ′ with respect to 〈⋅ | ⋅〉𝛽. Then 

‖P𝛬 ((𝑋0 + �̃�)⊗𝜋 (𝑌0 + �̃�)) ‖𝛼⊗𝜋𝛽 ≤ ‖P𝛬(�̃� ⊗𝜋 �̃�)‖𝛼⊗𝜋𝛽 , 

because 

‖P𝛬 ((𝜉1⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑘) ⊗𝜋 (𝜂1⊗ ⋅ ⋅ ⋅ ⊗ 𝜂ℓ))‖𝛼⊗𝜋𝛽
∗

= 𝑘ℓ|𝛬(𝜉𝑘 , 𝜂1)|‖𝜉1⊗⋅ ⋅ ⋅⊗ 𝜉𝑘−1‖𝛼
∗ ‖𝜂2⊗⋅ ⋅ ⋅⊗ 𝜂ℓ‖𝛽

∗ , = 0 

for all 𝜉 ∈ 𝑉𝑘, 𝜂 ∈ 𝑉ℓ for which there is at least one 𝑚 ∈ {1, . . . , 𝑘} with ‖𝜉𝑚‖𝛼 = 0 or one 

𝑛 ∈ {1, . . . , ℓ} with ‖𝜂𝑛‖𝛽 = 0. On the subspaces 𝑉𝑋− = span {𝑒1, . . . , 𝑒𝑐} and VỸ=span{fl, 
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. . . , 𝑓𝑑} of 𝑉, the bilinear form 𝛬 is described by a matrix 𝛺 ∈ ℂ𝑐×𝑑 with entries 𝛺𝑔ℎ =

𝛬(𝑒𝑔, 𝑓ℎ) . By using a singular value decomposition we can even assume without loss of 

generality that all off‐diagonal entries of 𝛺 vanish. We also note that |𝛺𝑔𝑔| = |𝛬(𝑒𝑔, 𝑓𝑔)| ≤

‖𝑒𝑔‖𝛼‖𝑓𝑔‖𝛽 ≤ 1. This gives the desired estimate 

‖P𝛬(𝑋 ⊗𝜋 𝑌)‖𝛼⊗𝜋𝛽
∗  

≤ ‖P𝛬(�̃� ⊗𝜋 �̃�)‖𝛼⊗𝜋𝛽
∗  

= ‖ ∑ ∑ 𝑋𝑎
′

𝑏′∈{1….𝑑}ℓ𝑎′∈{1….𝑒}𝑘

𝑌𝑏
′
P𝛬  ((𝑒𝑎1,⊗⋅ ⋅ ⋅⊗ 𝑒𝑎𝑘 , ) ⊗𝜋  (𝑓𝑏í ⊗⋅ ⋅ ⋅⊗ 𝑓𝑏𝑝 , )) ‖𝛼⊗𝜋𝛽

∗  

= 𝑘ℓ‖ ∑ ∑ 𝑋(�̃�
′,𝑟)

𝑎
′
∈{1,…,𝑐}𝑘−1

𝑎
′
∈{1,…,𝑐}ℓ−1

 min {𝑐,𝑑}

𝑟=1

𝑌
(𝑟,𝑏

′
)
𝛺𝑟𝑟�̃�

′

∈ {1,… , 𝑑}ℓ−1  (𝑒ãí ⊗⋯⊗ 𝑒
𝑎𝑘−1
′ )⊗𝜋  (𝑓𝑏í  ⊗⋯⊗ 𝑓

𝑏ℓ−1
′ ) ‖𝛼⊗𝜋𝛽

∗  

≤ 𝑘ℓ ∑ ‖

 min {𝑐,𝑑}

𝑟=1

∑ 𝑋
(𝑎
′
,𝑟)

𝑎
′
∈{1,…,𝑐}𝑘−1

𝑒ãí ⊗ ⊗ 𝑒�̃�𝑘−1
′ ‖𝛼

∗ ‖ ∑ 𝑌(𝑟,�̃�
′)

�̃�′∈{1,…,𝑑}ℓ−1

𝑓𝑏 ̃ í ⊗⋯

⊗ 𝑓
𝑏ℓ−1
′ ‖𝛽

∗  

cs
≤
√𝑘ℓ‖𝑋‖𝛼

∗ ‖𝑌‖𝛽
∗ , 

where we have used in the last line after applying the Cauchy‐Schwarz inequality that 

∑ ‖

 min {𝑐,𝑑}

𝑟=1

∑ 𝑋

𝑎
′
∈{1,…,𝑐}𝑘−1

(ã’, 𝑟) 𝑒ãí ⊗ ⊗ 𝑒�̃�𝑘−1
′ ‖𝛼

∗2 = ∑ ∑ |

𝑎
′
∈{1,…,𝑐}𝑘−1

 min {𝑐,𝑑}

𝑟=1

𝑋(�̃�
′,𝑟)|2(𝑘 − 1)! 

≤
1

𝑘
‖𝑋‖𝛼

∗2 

and analogously for 𝑌.  

Proposition (6.2.11)[280]: Let 𝛬 be a continuous bilinear form on 𝑉, then the function P𝛬 

is continuous and fulfils the estimate 

‖(P𝛬)
𝑡(𝑍)‖𝛼⊗𝜋𝛽

∗ ≤
𝑐

𝑐 − 1

𝑡!

𝑐𝑡
‖𝑍‖2𝑐𝛼⊗𝜋2𝑐𝛽

∗            (94) 

for all 𝑐 > 1, all 𝑡 ∈ M0, all seminorms ‖ ⋅ ‖𝛼 , ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉,𝛬, and all 𝑍 ∈ 𝑇⋅(𝑉)⊗𝜋 𝑇
⋅(𝑉) 

. 

𝐏roof: Let 𝑋, 𝑌 ∈ 𝑇 ⋅(𝑉) be given, then the previous Lemma (6.2.10) together with Lemma 

(6.2.5) yields 

‖(P𝛬)
𝑡(𝑋 ⊗𝜋 𝑌)‖𝛼⊗𝜋𝛽

∗ ≤ ∑ ‖

∞

𝑘,ℓ=0

(P𝛬)
𝑡(〈𝑋〉𝑘+𝑡⊗𝜋 〈𝑌〉ℓ+𝑡)‖𝛼⊗𝜋𝛽

∗  

≤ 𝑡! ∑

∞

𝑘,ℓ=0

 (𝑘|+𝑡𝑡) 
1

2
 (𝑝|+𝑡𝑡) 

1

2
‖〈𝑋〉𝑘+𝑡‖𝛼

∗ ‖〈𝑌〉ℓ+𝑡‖𝛽
∗  
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≤ 𝑡! ∑ ‖

∞

𝑘,ℓ=0

〈𝑋〉𝑘+𝑡‖2𝛼
∗ ‖〈𝑌〉ℓ+𝑡‖2𝛽

∗  

=
𝑡!

𝑐𝑡
∑

1

√𝑐
𝑘+ℓ

∞

𝑘,ℓ=0

‖〈𝑋〉𝑘+𝑡‖2𝑐𝛼
∗ ‖〈𝑌〉ℓ+𝑡‖2𝑐𝛽

∗  

cs ≤
𝑡!

𝑐𝑡
(∑

1

𝑐𝑘+ℓ

∞

𝑘,ℓ=0

)

1
2

(∑ ‖

∞

𝑘,ℓ=0

〈𝑋〉𝑘+𝑡‖2𝑐𝛼
∗2 ‖〈𝑌〉ℓ+𝑡‖2𝑐𝛽

∗2 )

1
2

 

≤
𝑐

𝑐 − 1

𝑡!

𝑐𝑡
‖𝑋‖2𝑐𝛼

∗ ‖𝑌‖2𝑐𝛽
∗ . □ 

Lemma (6.2.12)[280]: Let 𝛬 be a continuous bilinear form on 𝑉, then 𝜇⋆𝛬 is continuous 

and, given 𝑅 > 1/2, the estimate 

‖𝜇⋆𝑧𝛬(𝑍)‖𝛾
∗ ≤∑

1

𝑡!

∞

𝑡=0

‖𝜇∨((P𝑧𝛬)
𝑡(𝑍))‖𝛾

∗ ≤
4𝑅

2𝑅 − 1
‖𝑍‖8𝑅𝛾⊗𝜋8𝑅𝛾

∗    (95) 

holds for all ‖ ⋅ ‖𝛾 ∈ 𝒫𝑉,𝛬, all 𝑍 ∈ 𝑇⋅(𝑉)⊗𝜋 7
⋅(𝑉) and all 𝑧 ∈ C𝑖 with |𝑧| ≤ 𝑅. 

Proof.: The first estimate is just the triangle‐inequality. By combining Corollary (6.2.8) and 

Proposition (6.2.11) with 𝑐 = 2𝑅 we get the second estimate 

∑
1

𝑡!

∞

𝑡=0

‖𝜇∨((P𝑧𝛬)
𝑡(𝑍))‖𝛾

∗ ≤∑
|𝑧|𝑡

𝑡!

∞

𝑡=0

‖(P𝛬)
𝑡(𝑍)‖2𝛾⊗𝜋2𝛾

∙  

≤
2𝑅

2𝑅 − 1
∑

1

2𝑡

∞

𝑡=0

‖𝑍‖8𝑅𝛾⊗𝜋8𝑅𝛾 

=
4𝑅

2𝑅 − 1
‖𝑍‖8𝑅𝛾⊗𝜋8𝑅𝛾. □ 

This estimate immediately leads to: 

Theorem (6.2.13)[280]: Let 𝛬 be a continuous bilinear form on 𝑉, then the product ⋆𝛬 is 

continuous and (𝑆⋅(𝑉),⋆𝛬) is a locally convex algebra. Moreover, for fixed tensors 𝑋, 𝑌 

from the completion 𝑆⋅(𝑉)cp1, the product 𝑋 ⋆𝑧𝛬 𝑌 converges absolutely and locally 

uniformly in 𝑧 ∈ ℂ and thus depends holomorphically on 𝑧. 

Note that the above estimate also shows that (𝑆⋅(𝑉),⋆𝑧𝛬) describes a holomorphic 

deformation (as in [107]) of the locally convex algebra (𝑆⋅(𝑉),∨) . However, in the 

following we will examine the star product for fixed values of both 𝛬 and 𝑧 and therefore 

can absorb the deformation parameter 𝑧 in the bilinear form 𝛬. 

we want to examine some properties of the products ⋆𝛬, namely how the topology on 

𝑆⋅(𝑉) can be characterized by demanding that certain algebraic operations are continuous, 

which products are equivalent, how to transform 𝑆⋅(𝑉) to a space of complex functions, the 

existence of continuous positive linear functionals and whether or not some exponentials of 

elements in 𝑆⋅(𝑉) exist and which elements are represented by essentially self‐adjoint 

operators via GNS construction. At some points we will also work with the completion 

𝑆⋅(𝑉)cp1 of 𝑆⋅(𝑉) and therefore note that the previous constructions and results extend to 

𝑆⋅(𝑉)cp1 by continuity. 
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We show that the topology on 𝑆⋅(𝑉) that was defined in a rather unmotivated way 

is— under some additional assumptions— the coarsest possible one. We want to express 

the extensions of positive Hermitian forms with the help of suitable star products. Due to 

the sesquilinearity of positive Hermitian forms, this is only possible if we also have an 

antilinear structure on 𝑆⋅(𝑉) , so we construct a∗‐involution. 

There is clearly one and only one possibility to extend an antilinear involution − on 𝑉 to a 

∗‐involutio n∗: 𝑇 ⋅(𝑉) → 𝑇 ⋅(𝑉) on the tensor algebra over 𝑉, namely by (𝑥1⊗⋯⊗𝑥𝑘)
∗ 

: = 𝑥𝑘⊗⋯⊗𝑥1 for all 𝑘 ∈ M and 𝑥 ∈ 𝑉𝑘 and antilinear extension. Its restriction to 𝑆⋅(𝑉) 

gives a∗‐involution on (𝑆⋅(𝑉),∨) . 

Proposition (6.2.14)[280]: Let . ̅ be a continuous antilinear involution on 𝑉, then the 

induced∗‐involution on 7⋅(𝑉) is also continuous. 

Proof: For〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉  define the continuous positive Hermitian form 𝑉2 ∋ (𝑣,𝑤) ↦

〈𝑣|𝑤〉𝛼∗ : = 〈𝑣|𝑤〉𝛼. Then 〈𝑋∗|𝑌∗〉𝛼 = 〈𝑋|𝑌〉𝛼∗ and in particular ‖𝑋∗‖𝛼 = ‖𝑋‖𝛼∗ for all 𝑋, 

𝑌 ∈ 𝑇⋅(𝑉) because this is clearly true for simple tensors and because both sides are (anti‐

)linear in 𝑋 and Y. □ 

For certain bilinear forms 𝛬 on 𝑉 we can also show that ∗ is a ∗‐involution of ⋆𝛬, which is 

of course not a new result: 

Definition (6.2.15)[280]: Let .:̅ 𝑉 → 𝑉 be a continuous antilinear involution on V. For every 

continuous bilinear form 𝛬: 𝑉 × 𝑉 → ℂ t𝑣𝑒 define its conjugate 𝛬∗ by 𝛬∗(𝑣, 𝑤) : = 𝛬(𝑤, 𝑣) 

, which is again a continuous bilinear form on V. We say that 𝛬 is Hermitian if 𝛬 = 𝛬∗ 
holds. 

Note that the bilinear form (𝑣, 𝑤) ↦ 𝛬(𝑣,𝑤) is Hermitian if and only if the sesquilinear 

form (𝑣, 𝑤) ↦ 𝛬(𝑣,𝑤) is Hermitian. The typical example of a complex vector space 𝑉 with 

antilinear involutio n− is that 𝑉 = 𝑊⊗ (D is the complexification of a real vector space 𝑊 

with the canonical involution 𝑤⊗ 𝜆 : = 𝑤 ⊗ 𝜆. In this case, every bilinear form 𝛬 on 𝑉 is 

fixed by two bilinear forms 𝛬𝑟 , 𝛬𝑖:𝑊 ×𝑊 → ℝ, the restriction of the real‐ and imaginary 

part of 𝛬 to the real subspace 𝑊 ≅ 𝑊⊗1 of 𝑉, and 𝛬 is Hermitian if and only if 𝛬𝑟 is 

symmetric and 𝛬𝑖 antisymmetric. Similarly to [101] we get: 

Proposition (6.2.16)[280]: Let .:̅ 𝑉 → 𝑉 be a continuous antilinear involution and 𝛬 a 

continuous bilinear form on V. Then (𝑋 ⋆𝛬 𝑌)
∗ = 𝑌∗ ⋆𝛬∗ 𝑋

∗ holds for all 𝑋, 𝑌 ∈ 𝑆⋅(𝑉) . 

Consequently, if 𝛬 is Hermitian, then (𝑆⋅(𝑉),⋆𝛬,∗) is a locally convex ∗‐algebra. 

Proof: The identitie s∗o𝒮 ⋅ = 𝒮 ⋅0∗ and ∗ 0𝜇 ⊗= 𝜇 ⊗ 0𝜏o(∗⊗𝜋
∗ ), with 

𝜏: 𝑇 ⋅(𝑉)⊗𝜋 𝑇
⋅(𝑉) → 7⋅(𝑉)⊗𝜋 𝑇

⋅(𝑉) defined as 𝜏(𝑋 ⊗𝜋 𝑌) : = 𝑌 ⊗𝜋 𝑋, can easily be 

checked on simple tensors, so ∗o 𝜇∨ = 𝜇∨0𝜏o(⊗𝜋
∗ ) . Combining this with 𝜏o(∗⊗𝜋

∗ ) oP𝛬 =

P𝛬 ∗ 0𝜏o(
∗⊗𝜋

∗ ) on symmetric tensors, which again can easily be checked on simple 

symmetric tensors, yields the desired result.  

Lemma (6.2.17)[280]: Let . ̅ ∶ 𝑉 → 𝑉 be a continuous antilinear involution. For every 〈⋅ | ⋅

〉𝛼 ∈ ℐ𝑉 we define a continuous bilinear form 𝛬𝛼 on 𝑉 by 𝛬𝛼(𝑣, 𝑤) : = 〈𝑣|𝑤〉𝛼 for all , 𝑤 ∈

𝑉, then 𝛬𝛼 is Hermitian and the identities 

∑
1

𝑡!

∞

𝑡=0

𝜇 ⊗ ((P𝛬𝛼)
𝑡
(〈𝑋∗〉𝑡⊗𝜋 〈𝑌〉𝑡)) = 〈𝑋|𝑌〉𝛼

∗        (96) 

and 
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〈𝜇⋆𝛬𝛼
(𝑋∗⊗𝜋 𝑌)〉0 = 〈𝑋|𝑌〉𝛼

∗                     (97) 

hold for all 𝑋, 𝑌 ∈ 𝑇∗(𝑉) . 

Proof: Clearly, 𝛬𝛼 is Hermitian because 〈⋅ | ⋅〉𝛼 is Hermitian. Then (97) follows directly 

from (96) because of the grading of 𝜇⋁ and P𝛬𝛼 .  For proving (96) it is sufficient to check it 

for factorizing tensors of the same degree, because both sides are (anti‐)linear in 𝑋 and 𝑌 

and vanish if 𝑋 and 𝑌 are homogeneous of different degree. If 𝑋 and 𝑌 are of degree 0 then 

(96) is clearly fulfiled. Otherwise we get 

1

𝑘!
𝜇 ⊗ ((P𝛬𝛼)

𝑘
((𝑥1⊗ ⋅⋅⋅ ⊗ 𝑥𝑘)

∗⊗𝜋 (𝑦1⊗ ⋅⋅⋅ ⊗ 𝑦𝑘))) 

=
1

𝑘!
𝜇 ⊗ ((P𝛬𝛼)

𝑘
((𝑥𝑘⊗ ⋅⋅⋅ ⊗ 𝑥1) ⊗𝜋 (𝑦1⊗ ⋅⋅⋅ ⊗ 𝑦𝑘))) 

=
1

𝑘!
𝜇 ⊗ ((1⊗𝜋 1)(𝑘!)

2∏𝛬𝛼

𝑘

𝑚=1

(𝑥𝑚, 𝑦𝑚)) 

= 𝑘!∏𝛬𝛼

𝑘

𝑚=1

(𝑥𝑚, 𝑦𝑚) 

= 𝑘!∏〈

𝑘

𝑚=1

𝑥𝑚|𝑦𝑚〉𝛼 

= 〈𝑥1⊗⋅ ⋅ ⋅⊗ 𝑥𝑘|𝑦1⊗⋅ ⋅ ⋅⊗ 𝑦𝑘〉𝛼
∗ . □ 

Theorem (6.2.18)[280]: The topology on 𝑆∗(𝑉) is the coarsest locally convex one that 

makes all star products ⋆𝛬 for all continuous and Hermitian bilinear forms 𝛬 on 𝑉 as well 

as the ∗‐involution and the projection 〈⋅〉0 onto the scalars continuous. In addition we have 

for all 𝑋, 𝑌 ∈ 𝑆∗(𝑉) and all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 

〈𝑋∗ ⋆𝛬𝛼 𝑌〉0 = 〈𝑋|𝑌〉𝛼
∗ ,                      (98) 

with 𝛬𝛼 as in Lemma (6.2.17). 

Proof.: We have already shown the continuity of the star product and of the ∗‐involution, 

the continuity of 〈⋅〉0 is clear. Conversely, if these three functions are continuous, their 

compositions yield the extensions of all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 which then have to be continuous. Then 

(97) gives (98) for symmetric tensors 𝑋 and Y. □ 

Next we want to examine the usual equivalence transformations between star 

products, given by exponentials of a Laplace operator (see [101] for the algebraic 

background). 

Definition (6.2.19)[280]: Let 𝑏: 𝑉 × 𝑉 → ℂ be a symmetric bilinear form on 𝑉, i.e. 

𝑏(𝑣,𝑤) = 𝑏(𝑤, 𝑣) for all 𝑣, 𝑤 ∈ 𝑉. Then we define the Laplace operator △𝑏: 𝑇
⋅(𝑉) →

𝑇−2(𝑉) as the linear map given on simple tensors of degree 𝑘 ∈ M\{1} by 

△𝑏  (𝑥1⊗ ⋅ ⋅ ⋅ ⊗ 𝑥𝑘) ∶=
𝑘(𝑘 − 1)

2
𝑏(𝑥1, 𝑥2)𝑥3⊗⋅ ⋅ ⋅⊗ 𝑥𝑘.   (99) 

Note that △𝑏 can be restricted to symmetric tensors on which it coincides with the Laplace 

operator from [101]. However, there is no need for △𝑏 to be continuous even if 𝑏 is 

continuous, because the Hilbert tensor product in general does not allow the extension of all 

continuous multilinear forms. 
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Note that this is very different from the approach taken in [101] where the projective tensor 

product was used: this guaranteed the continuity of the Laplace operator directly for all 

continuous bilinear forms. 

For the restriction of △𝑏 to 𝑆2(𝑉) , continuity is equivalent to the existence of a ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 

that fulfils | △𝑏 𝑋| ≤ ‖𝑋‖𝛼 for all 𝑋 ∈ 𝑆2(𝑉) . This motivates the following: 

Definition (6.2.20)[280]: A bilinear form of Hilbert‐Schmidt type on 𝑉 is a bilinear form 

𝑏: 𝑉 × 𝑉 → C𝑖 for which there is a seminorm ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 such that the following two 

conditions are fulfiled: 

𝑖. ) If ‖𝑣‖𝛼 = 0 or ‖𝑤‖𝛼 = 0 for vectors , 𝑤 ∈ 𝑉, then 𝑏(𝑣,𝑤) = 0. 

ii.) For every tuple of 〈⋅ | ⋅〉𝛼‐orthonormal vectors ∈ 𝑉𝑑 , 𝑑 ∈ N, the estimate 

∑ |

𝑑

𝑖,𝑗=1

𝑏(𝑒𝑖 , 𝑒𝑗)|
2 ≤ 1                            (100) 

holds. 

For such a bilinear form of Hilbert‐Schmidt type 𝑏 we define 𝒫𝑉,𝑏,𝐻𝑆 as the set of all ‖ ⋅

‖𝛼 ∈ 𝒫𝑉 that fulfil these two conditions. 

We can characterize the bilinear forms of Hilbert‐Schmidt type in the following way: 

Proposition (6.2.21)[280]: Let 𝑏 be a symmetric bilinear form on 𝑉 and ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉, then 

the following two statements are equivalent: 

𝑖. ) The bilinear form 𝑏 is of Hilbert‐Schmidt type and ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏,𝐻𝑆 . 

𝑖𝑖. ) The estimate | △𝑏 𝑋| ≤ 2
−1/2‖𝑋‖𝛼 holds for all ∈ 𝑆2(𝑉) . 

Moreover, if this holds then ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏 and 𝑏 is continuous. 

Proof.: If the first point holds, let 𝑋 ∈ 𝑇2(𝑉) be given. Construct 𝑋0 = ∑ 𝑥𝑎,1𝑎∈𝐴 ⊗𝑥𝑎,2 

and �̃� = ∑ 𝑋𝑎1
′ ,𝑎2

′𝑑
𝑎1
′ ,𝑎2

′=1 𝑒𝑎1′ ⊗𝑒𝑎2′ ∈ 𝑇
2(𝑉) like in Lemma (6.2.3). Then 𝑏(𝑥𝑎,1, 𝑥𝑎,2) = 0 

for all 𝑎 ∈ 𝐴 because ‖𝑥𝑎,1‖𝛼 = 0 or ‖𝑥𝑎,2‖𝛼 = 0. Moreover, 

| △𝑏 𝑋| ≤ | ∑ 𝑋𝑎1
′ ,𝑎2

′

𝑑

𝑎1
′ ,𝑎2

′=1

𝑏(𝑒𝑎1′ , 𝑒𝑎2′ )| 

cs ≤ ( ∑ |

𝑑

𝑎1
′ ,𝑎2

′=1

𝑋𝑎1
′ ,𝑎2

′
|2)

1
2

( ∑ |

𝑑

𝑎1
′ ,𝑎2

′=1

𝑏(𝑒𝑎1′ , 𝑒𝑎2′ )|
2)

1
2

 

≤
1

√2
‖𝑋‖𝛼

∗  

shows that the second point holds. Conversely, from the second point we get |𝑏(𝑣, 𝑤)| =

| △𝑏 (𝑣 ∨ 𝑤)| ≤ 2
−1/2‖𝑣 ∨ 𝑤‖𝛼 ≤ ‖𝑣‖𝛼‖𝑤‖𝛼 for all , 𝑤 ∈ 𝑉. Hence ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏, the 

bilinear form 𝑏 is continuous, and 𝑏(𝑣,𝑤) = 0 if one of 𝑣 or 𝑤 is in the kernel of ‖ ⋅ ‖𝛼. 

Moreover, given an 〈⋅ | ⋅〉𝛼‐orthonormal set of vectors ∈ 𝑉𝑑 , 𝑑 ∈ M, we define 𝑋 : =

∑ 𝑏(𝑒𝑖 , 𝑒𝑗)
𝑑
𝑗=1 𝑒𝑖⊗𝑒𝑗 ∈ 𝑆

2(𝑉) and get 
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0 ≤ ∑ |

𝑑

𝑖,𝑗=1

𝑏(𝑒𝑖 , 𝑒𝑗)|
2 = | △𝑏 𝑋| ≤

1

√2
‖𝑋‖𝛼

∗ = (∑ |

𝑑

𝑖.𝑗=1

𝑏(𝑒𝑖 , 𝑒𝑗)|
2)

1
2

 

which implies ∑ |𝑑
𝑗=1 𝑏(𝑒𝑖, 𝑒𝑗)|

2 ≤ 1. □ 

Note that this also implies that for a bilinear form of Hilbert‐Schmidt type 𝑏, the set 𝒫𝑉,𝑏,𝐻𝑆 

is cofinal in 𝒫𝑉, because if ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏,𝐻𝑆 , ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉 and ‖ ⋅ ‖𝛽 ≥ ‖ ⋅ ‖𝛼, then | △𝑏 𝑋| ≤

2−
1

2 ‖𝑋‖𝛼
∗ ≤ 2−

1

2‖𝑋‖𝛽
∗  and so ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉,𝑏,𝐻𝑆 . 

As a consequence of the above characterization we see that a symmetric bilinear form 𝑏 on 

𝑉 has to be of Hilbert‐Schmidt type if we want △𝑏 to be continuous. We are going to show 

now that this is also sufficient: 

Proposition (6.2.22)[280]: Let 𝑏 be a symmetric bilinear form of Hilbert‐Schmidt type on 

𝑉, then the Laplace operator △𝑏 is continuous and fulfils the estimate 

‖(△𝑏)
𝑡𝑋‖𝛼

∗ ≤
√(2𝑡)!

(2𝑟)𝑡
‖𝑋‖2𝑟𝛼

∗                               (101) 

for all 𝑋 ∈ 𝑇∗(𝑉), 𝑡 ∈ M0, 𝑟 ≥ 1, and all ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏,𝐻𝑆. 

Proof.: First, let ∈ 7𝑘(𝑉), 𝑘 ≥ 2, and ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏,𝐻𝑆 be given. Construct 𝑋0 =

∑ 𝑥𝑎,1𝑎∈𝐴 ⊗ . . . ⊗𝑥𝑎,𝑘 and �̃� = ∑ 𝑋𝑎
′

𝑎′∈{1…..𝑑}𝑘 𝑒𝑎1′ ⊗⋯⊗ 𝑒𝑎𝑘
′  like in Lemma (6.2.3). 

Then again 

‖ △𝑏 𝑋0‖𝛼
∗ ≤

𝑘(𝑘 − 1)√(𝑘 − 2)!

2
∑ |

𝑎∈𝐴

𝑏(𝑥𝑎1 , 𝑥𝑎2)|∐‖

𝑘

𝑚=3

𝑥𝑎𝑚‖𝛼 = 0 

shows that ‖ △𝑏 𝑋‖𝛼
∗ ≤ ‖△𝑏 �̃�‖𝛼

∗ . 𝐹or�̃� we get: 

‖ △𝑏 �̃�‖𝛼
∗2 = ‖

𝑘(𝑘 − 1)

2
∑ 𝑋𝑎

′

𝑎′∈{1,…,𝑑}𝑘

𝑏(𝑒𝑎1′ , 𝑒𝑎2′ )𝑒𝑎3′ ⊗⋯⊗ 𝑒𝑎𝑘
′ ‖𝛼
∗2 

=
𝑘2(𝑘 − 1)2

4
∑ ‖

𝑎
′
∈{1,…,𝑑}𝑘−2

∑ 𝑋
(𝑔,ℎ,𝑎

′
)

𝑑

𝑔,ℎ=1

𝑏 (𝑒𝑔, 𝑒ℎ)𝑒ãí ⊗⋅⋅⋅ ⊗ 𝑒�̃�𝑘−2‖𝛼
∗2 

=
𝑘2(𝑘 − 1)2

4
∑ |

𝑎
′
∈{1,…,𝑑}𝑘−2

∑ 𝑋(𝑔,ℎ,�̃�
′)

𝑑

𝑔,ℎ=1

𝑏(𝑒𝑔, 𝑒ℎ)|
2(𝑘 − 2)! 

≤
𝑘(𝑘 − 1)𝑘!

4
 ã’ ∑ ( ∑ |

𝑑

𝑔,ℎ=1

𝑋(𝑔,ℎ,�̃�
′)||𝑏(𝑒𝑔, 𝑒ℎ)|)

2

∈{1,…,𝑑}𝑘−2

 

cs ≤
𝑘(𝑘 − 1)𝑘!

4
∑ ( ∑ |

𝑑

𝑔,ℎ=1

𝑋(𝑔,ℎ,�̃�
′)|2)

𝑎
′
∈{1,…,𝑑}𝑘−2

( ∑ |

𝑑

𝑔,ℎ=1

𝑏(𝑒𝑔, 𝑒ℎ)|
2) 

≤
𝑘(𝑘 − 1)𝑘!

4
∑ ,

𝑎′∈{1,…𝑑}𝑘

|𝑋𝑎
′
|2 
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=
𝑘(𝑘 − 1)

4
‖𝑋‖𝛼

∗2 

Using this we get 

‖(△𝑏)
𝑡𝑋‖𝛼

∗2 = ∑ ‖

∞

𝑘=2𝑡

(△𝑏)
𝑡〈𝑋〉𝑘‖𝛼

∗2 

≤ ∑

∞

𝑘=2𝑡

 (
𝑘
2𝑡
) 
(2𝑡)!

4𝑡
‖〈𝑋〉𝑘‖𝛼

∗2 

≤
(2𝑡)!

4𝑡
∑

1

𝑟𝑘

∞

𝑘=2𝑡

‖〈𝑋〉𝑘‖2𝑟𝛼
∗2  

≤
(2𝑡)!

(2𝑟)2𝑡
‖𝑋‖2𝑟𝛼

∗2  

for arbitrary 𝑋 ∈ 𝑇⋅(𝑉) and 𝑡 ∈ N. Finally, the estimate (101) also holds in the case 𝑡 = 0.  

Theorem (6.2.23)[280]: Let 𝑏 be a symmetric bilinear form on 𝑉, then the linear operator 

e△𝑏 = ∑
1

𝑡!
∞
𝑡=0 (△𝑏)

𝑡 as well as its restriction to 𝑆∗(𝑉) are continuous if and only if 𝑏 is of 

Hilbert‐Schmidt type. In this case 

e△𝑏(𝑋 ⋆𝛬 𝑌) = (e
△𝑏𝑋) ⋆𝛬+𝑏 (e

△𝑏𝑌)           (102) 

holds for all 𝑋, 𝑌 ∈ 𝑆⋅(𝑉) and all continuous bilinear forms 𝛬 on V. Hence e△𝑏 describes 

an isomorphism of the locally convex algebras (𝑆⋅(𝑉),⋆𝛬) and (𝑆⋅(𝑉),⋆𝛬+𝑏) . Moreover, for 

fixed 𝑋 ∈ 𝑆⋅(𝑉)cp1, the series e𝑧△𝑏𝑋 converges absolutely and locally uniformly in 𝑧 ∈ Ci 

and thus depends holomorphically on 𝑧. 

Proof.: As | △𝑏 𝑋| ≤ ‖e
△𝑏𝑋‖𝛼

∗  holds for all ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 and all ∈ 𝑆2(𝑉) , it follows from 

Proposition (6.2.21) that continuity of the restriction of e△𝑏  to 𝑆∗(𝑉) implies that 𝑏 is of 

Hilbert‐Schmidt type. Conversely, for all ∈ 𝑇 ⋅(𝑉) , all 𝛼 ∈ 𝒫𝑉,𝑏,𝐻𝑆, and 𝑟 > 1, the estimate 

‖e𝑧△𝑏𝑋‖𝛼 ≤∑
1

𝑡!

∞

𝑡=0

‖(𝑧 △𝑏)
𝑡(𝑋)‖𝛼 ≤∑

|𝑧|𝑡

(4𝑟)𝑡

∞

𝑡=0

 (
2𝑡
𝑡
) 
1

2
‖𝑋‖4𝑟𝛼

∗ ≤∑
1

2𝑡

∞

𝑡=0

‖𝑋‖4𝑟𝛼
∗

= 2‖𝑋‖4𝑟𝛼
∗  

holds for all 𝑧 ∈ ℂ with |𝑧| ≤ 𝑟 due to the previous Proposition (6.2.22) if 𝑏 is of Hilbert‐

Schmidt type, which proves the continuity of e𝑧△𝑏 for all 𝑧 ∈ ℂ as well as the absolute and 

locally uniform convergence of the series e𝑧△𝑏𝑋. The algebraic relation (102) is well‐

known, see e.g. [101]. Finally, as e△𝑏  is invertible with inverse e−△𝑏, and because △𝑏 and 

thus e△𝑏  map symmetric tensors to symmetric ones, we conclude that the restriction of e△𝑏 

to 𝑆∗(𝑉) is an isomorphism of the locally convex algebras (𝑆∗(𝑉),⋆𝛬) and (𝑆∗(𝑉),⋆𝛬+𝑏) .  

We construct an isomorphism of the undeformed ∗‐algebra (𝑆∗(𝑉),∨,∗) to a ∗‐algebra 

of smooth functions by a construction similar to the Gel’fand transformation of commutative 

𝐶∗‐algebras. 

Let  . ̅ be a continuous antilinear involution on 𝑉. We write 𝑉ℎ for the real linear subspace 

of 𝑉 consisting of Hermitian elements, i.e. 

𝑉ℎ ∶= {𝑣 ∈ 𝑉|𝑣 = 𝑣}.                                 (103) 
The inner products compatible with the involution are denoted by 
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ℐ𝑉,ℎ ∶= {〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉|〈𝑣|𝑤〉𝛼 = 〈𝑣|𝑤〉𝛼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑤 ∈ 𝑉}.          (104) 

Moreover, we write 𝑉′ for the topological dual space of 𝑉 and 𝑉ℎ
′ again for the real linear 

subspace of 𝑉′ consisting of Hermitian elements, i.e. 

𝑉ℎ
′ ∶= {𝜌 ∈ 𝑉′|𝜌(𝑣) = 𝜌(𝑣) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉                  (105) 

Finally, recall that a subset 𝐵 ⊆ 𝑉ℎ
′ is bounded (with respect to the equicontinuous 

bornology) if there exists a 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ such that |𝑝(𝑣)| ≤ ‖𝑣‖𝛼 holds for all 𝑣 ∈ 𝑉 and 

all 𝑝 ∈ 𝐵. This also gives a notion of boundedness of functions from or to 𝑉ℎ
′: A (multi‐

)linear function is bounded if it maps bounded sets to bounded ones. 

Note that one can identify 𝑉ℎ
′ with the topological dual of 𝑉ℎ and ℐ𝑉,ℎ with the set of 

continuous positive bilinear forms on 𝑉ℎ. Moreover, ℐ𝑉,ℎ is cofinal in ℐ𝑉: every 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 

is dominated by 𝑉2 ∋ (𝑣,𝑤) ↦ 〈𝑣|𝑤〉𝛼 + 〈𝑣|𝑤〉𝛼 ∈ C𝑗. 

Definition (6.2.24)[280]: Let  . ̅ be a continuous antilinear involution on 𝑉 and 𝜌 ∈ 𝑉ℎ
′, then 

we define the derivative in direction of 𝜌 as the linear map 𝐷𝜌: 𝑇
∗(𝑉) → 𝑇∗−1(𝑉) by 

𝑥1⊗⋅ ⋅ ⋅⊗ 𝑥𝑘 ↦ 𝐷𝜌 (𝑥1⊗ ⋅ ⋅ ⋅ ⊗ 𝑥𝑘) ∶= 𝑘𝜌(𝑥𝑘)𝑥1⊗⋅ ⋅ ⋅⊗ 𝑥𝑘−1   (106) 

for all 𝑘 ∈ M and all 𝑥 ∈ 𝑉𝑘. Next, we define the translation by 𝑝 as the linear map 

𝜏𝜌
∗ ∶=∑

1

𝑡!

∞

𝑡=0

(𝐷𝜌)
𝑡
: 𝒯∗(𝑉) → 𝒯∗(𝑉) ,                  (107) 

and the evaluation at 𝜌 by 

𝛿𝜌: = 〈⋅〉0 ∘ 𝜏𝜌
∗: 𝑇∗(𝑉) → ℂ.                              (108) 

Finally, for 𝑘 ∈ N and 𝜌1, . . . , 𝜌𝑘 ∈ 𝑉ℎ we set 𝐷𝛽1⋯,𝛽𝑘
(𝑘)

 : = 𝐷𝛽1⋯𝐷𝜌𝑘: 𝑇
∗(𝑉) → 𝑇∗−𝑘(𝑉) . 

Note that 𝜏𝑝
∗  is well‐defined because for every 𝑋 ∈ 𝑇∗(𝑉) only finitely many terms 

contribute to the infinite series 𝜏𝜌
∗𝑋 = ∑

1

𝑡!
∞
𝑡=0 (𝐷𝜌) (

𝑡 𝑋). Note also that 𝐷𝜌 and consequently 

also 𝜏𝜌
∗ can be restricted to endomorphisms of 𝑆⋅(𝑉) . Moreover, this restriction of 𝐷𝜌 is a 

∗‐derivation of all the ∗‐algebras (𝑆∗(𝑉),⋆𝛬,∗) for all continuous Hermitian bilinear forms 

𝛬 on 𝑉 (see [101], the compatibility with the ∗‐involution is clear), so that 𝜏𝜌
∗ turns out to be 

a unital ∗‐automorphism of these ∗‐algebras. 

Lemma (6.2.25)[280]: Let . ̅be a continuous antilinear involution on 𝑉 and , 𝜎 ∈ 𝑉ℎ
′. Then 

(𝐷𝜌𝐷𝜎 − 𝐷𝜎𝐷𝛽)(𝑋) = (𝜏𝑝
∗𝐷𝜎 − 𝐷𝜎𝜏𝜌

∗)(𝑋) = (𝜏𝑝
∗𝜏𝜎
∗ − 𝜏𝜎

∗𝜏𝑝
∗)(𝑋) = 0   (109) 

holds for all 𝑋 ∈ 𝑆∗(𝑉) . 

Proof.: It is sufficient to show that (𝐷𝜌𝐷𝜎 − 𝐷𝜎𝐷𝜌)(𝑋) = 0 for all ∈ 𝑆∗(𝑉) , which clearly 

holds if 𝑋 is a homogeneous factorizing symmetric tensor and so holds for all 𝑋 ∈ 𝑆∗(𝑉) by 

linearity.  

Lemma (6.2.26)[280]: Let . ̅be a continuous antilinear involution on 𝑉 and 𝜌 ∈ 𝑉ℎ
′. Then 

𝐷𝜌, 𝜏𝑝
∗  and 𝛿𝜌 are all continuous. Moreover, if ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 fulfils |𝜌(𝑣)| ≤ ‖𝑣‖𝛼, then the 

estimates 

‖(𝐷𝑝)
𝑡
𝑋‖𝛼

∗ ≤ √𝑡!‖𝑋‖2𝛼
∗                              (110) 

and 
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‖𝜏𝑝
∗(𝑋)‖𝛼

∗ ≤∑
1

𝑡!

∞

𝑡=0

‖ (𝐷𝜌)
𝑡′

𝑋‖𝛼
∗ ≤

2

√2 − 1
‖𝑋‖2𝛼

∗                 (111) 

hold for all 𝑋 ∈ 7∗(𝑉) and all 𝑡 ∈ M0. 

Proof Let ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 be given such that |𝜌(𝑣)| ≤ ‖𝑣‖𝛼 holds for all 𝑣 ∈ 𝑉. For all 𝑑 ∈ M0 

and all 〈⋅ | ⋅〉𝛼‐orthonormal 𝑒 ∈ 𝑉𝑑 we then get 

∑|

𝑑

𝑖=1

𝜌(𝑒𝑖)|
2𝑑 = 𝜌(∑𝑒𝑖

𝑑

𝑖=1

𝑝(𝑒𝑖))𝑑 ≤ ‖∑𝑒𝑖

𝑑

𝑖=1

𝜌(𝑒𝑖)‖𝛼 = (∑|

𝑑

𝑖=1

𝜌(𝑒𝑖)|
2)

1
2

𝑑 

𝑖 = 1 𝑖 = 1 𝑖 = 1 

hence ∑ |𝑑
𝑖=1 𝜌(𝑒𝑖)|

2 ≤ 1. Given 𝑘 ∈ M and a tensor ∈ 𝑇𝑘(𝑉) , then we construct 𝑋0 =

∑ 𝑥𝑎,1𝑎∈𝐴 ⊗ . . . ⊗𝑥𝑎,𝑘 and �̃� = ∑ 𝑋𝑎
′

𝑎′∈{1…..𝑑}𝑘 𝑒𝑎1′ ⊗⋯⊗ 𝑒𝑎𝑘
′  like in Lemma (6.2.3). 

Then we have ‖𝐷𝜌𝑋0‖𝛼
∗ = 0 because 

‖𝐷𝜌 (𝑥𝑎,1⊗ ⋅ ⋅ ⋅ ⊗ 𝑥𝑎,𝑘)‖𝛼
∗ = 𝑘|𝑝(𝑥𝑎,𝑘)|‖𝑥𝑎,1⊗⋅ ⋅ ⋅⊗ 𝑥𝑎,𝑘−1‖𝛼

∗

≤ 𝑘√(𝑘 − 1)!∐ ‖

𝑘

𝑚=1

𝑥𝑎,𝑚‖𝛼 = 0 

holds for all 𝑎 ∈ 𝐴. Consequently ‖𝐷𝜌𝑋‖𝛼 ≤ ‖𝐷𝜌�̃�‖𝛼 and we get 

‖𝐷𝜌𝑋‖𝛼
∗2 ≤ ‖𝐷𝜌�̃�‖𝛼

∗2 = ‖ ∑ 𝑋𝑎
′

𝑎′∈{1,…,𝑑}𝑘

𝐷𝜌 (𝑒𝑎1′ ⊗⋯⊗ 𝑒𝑎𝑘
′ ) ‖𝛼

∗2 

= 𝑘2 ã’ ∑ ‖

∈{1,…,𝑑}𝑘−1

∑𝑋

𝑑

𝑔=1

(ã’, 𝑔)𝜌(𝑒𝑔)𝑒𝑎  í ⊗⋯⊗ 𝑒
𝑎𝑘−1
′ ‖𝛼

∗2., 

≤ 𝑘2(𝑘 − 1)!  ã’ ∑ (∑ |

𝑑

𝑔=1

𝑋(ã′’𝑔)||𝜌(𝑒𝑔)|)

2

∈{1,…,𝑑}𝑘−1

 

𝑐𝑠
≤
𝑘2(𝑘 − 1)! ∑ (∑ |

𝑑

𝑔=1

𝑋(�̃�
′,𝑔)|2)

𝑎
′
∈{1,…,𝑑}𝑘−1

(∑ |

𝑑

𝑔=1

𝑝(𝑒𝑔)|
2) 

≤ 𝑘2(𝑘 − 1)! ∑ |

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑎
′
|2 

= 𝑘‖𝑋‖𝛼
∗2 

Using this we can derive the estimate (110), which also proves the continuity of 𝐷𝜌: If 𝑡 =

0, then this is clearly fulfiled. Otherwise, let 𝑋 ∈ 𝑇 ⋅(𝑉) be given, then 

‖(𝐷𝜌)
𝑡
𝑋‖𝛼

∗2 =∑‖

∞

𝑘=𝑡

(𝐷𝜌)
𝑡
〈𝑋〉𝑘‖𝛼

∗2 ≤ 𝑡!∑

∞

𝑘=𝑡

 (
𝑘
𝑡
) ‖〈𝑋〉𝑘‖𝛼

∗2 ≤ 𝑡!∑‖

∞

𝑘=𝑡

〈𝑋〉𝑘‖2𝛼
∗2

≤ 𝑡! ‖𝑋‖2𝛼
∗2 . 



213 

𝐹rom this we can now also deduce the estimate (111), which then shows continuity of 𝜏𝛽
∗  

and of 𝛿𝜌 = 〈⋅〉0 ∘ 𝜏𝜌
∗: The first inequality is just the triangle inequality and for the second 

we use that 𝑡! ≥ 2𝑡−1 for all 𝑡 ∈ M0, so 

∑
1

𝑡!

∞

𝑡=0

‖(𝐷𝜌)
𝑡
𝑋‖𝛼

∗ ≤∑
1

√𝑡!

∞

𝑡=0

‖𝑋‖2𝛼
∗ ≤ √2∑

1

√2
𝑡

∞

𝑡=0

‖𝑋‖2𝛼
∗ ≤

2

√2 − 1
‖𝑋‖2𝛼

∗ . 

Proposition (6.2.27)[280]: Let . ̅be a continuous antilinear involution on 𝑉, then the set of 

all continuous unital∗‐homomorphisms from (𝑆∗(𝑉)cp1,∨,∗) to ℂ is {𝛿𝑝|𝜌 ∈ 𝑉ℎ
′} (strictly 

speaking, the continuous extensions to 𝑆⋅(𝑉)cp1 of the restrictions of 𝛿𝜌 to 𝑆∗(𝑉)). 

Proof On the one hand, every such 𝛿𝜌 is a continuous unital ∗‐homomorphism, because 〈⋅〉0 

and 𝜏𝜌
∗ are. On the other hand, if 𝜑: (𝑆⋅(𝑉)cp1,∨,∗) → ℂ is a continuous unital ∗‐

homomorphism, then 𝑉 ∋ 𝑣 ↦ 𝑝(𝑣) : = 𝜑(𝑣) ∈ ℂ is an element of 𝑉ℎ
′ and fulfils 𝛿𝜌 = 𝜑 

because the unital ∗‐algebra (𝑆∗(𝑉),∨,∗) is generated by 𝑉 and because 𝑆∗(𝑉) is dense in 

its completion. □ 

Let 𝛷 : = {𝛿𝛽|𝜌 ∈ 𝑉ℎ
′} be the set of all continuous unital ∗‐homomorphisms from 

(𝑆∗(𝑉)cp1,∨,∗) to ℂ and ℂ𝛷 the unital ∗‐algebra of all functions from 𝛷 to Ci with the 

pointwise operations, then the Gel’fand‐transformation is usually defined as the unital ∗

−homomorphism−: (𝑆∗(𝑉)cp1,∨,∗) → ℂ𝛷, 𝑋 ↦ 𝑋 with 𝑋(𝜑) : = 𝜑(𝑋) for all 𝜑 ∈ 𝛷. This 

is a natural way to transform an abstract commutative unital locally convex ∗‐algebras to 

a∗‐algebra of complex‐valued functions. For our purposes, however, it will be more 

convenient to identify 𝛷 with 𝑉ℎ
′ like in the previous Proposition (6.2.27): 

Definition (6.2.28)[280]: Let . ̅ be a continuous antilinear involution on 𝑉 and 𝑋 ∈

𝑆∗(𝑉)cp1, then we define the function �̂�: 𝑉ℎ
′ → C𝑖 by 

𝑝 ↦ �̂�(𝑝) ∶= 𝛿𝜌(𝑋) .                    (112) 

In the following we will show that this construction yields an isomorphism between 

(𝑆∗(𝑉)cp1,∨,∗) and a unital ∗‐algebra of certain functions on 𝑉ℎ
′: 

Definition (6.2.29)[280]: Let 𝑓: 𝑉ℎ
′ → C𝑖 be a function. For 𝜌, 𝜎 ∈ 𝑉ℎ

′ we denote by 

(�̂�𝑝𝑓)(𝜎) ∶=
d

d𝑡
|𝑡=0𝑓(𝜎 + 𝑡𝑝)                                   (113) 

(if it exists) the directional derivative of 𝑓 at 𝜎 in direction 𝜌. If the directional derivative 

of 𝑓 in direction 𝜌 exists at all 𝜎 ∈ 𝑉ℎ, then we denote by �̂�𝑝𝑓: 𝑉ℎ
′ → C𝑖 the function 𝜎 ↦

(�̂�𝜌𝑓)(𝜎) . In this case we can also examine directional derivatives of �̂�𝜌𝑓 and define the 

iterated directional derivative 

�̂�𝜌
(𝑘)
𝑓 ∶= �̂�𝜌1⋯�̂�𝜌𝑘𝑓                                                      (114) 

(if it exists) for 𝑘 ∈ N and 𝜌 ∈ (𝑉ℎ
′)𝑘. For 𝑘 = 0 we define �̂�(0)𝑓 : = 𝑓. Moreover, we say 

that 𝑓 is smooth if all iterated directional derivatives �̂�𝜌
(𝑘)
𝑓 exist for all 𝑘 ∈ M0 and all 𝑝 ∈

(𝑉ℎ
′)𝑘 and describe a bounded symmetric multilinear form (𝑉ℎ

′)𝑘 ∋ 𝜌 ↦ (�̂�𝜌
(𝑘)
𝑓) (𝜎) ∈ C𝑖 

for all 𝜎 ∈ 𝑉ℎ
′. Finally, we write 𝒞∞(𝑉ℎ

′) for the unital ∗‐algebra of all smooth functions on 

𝑉ℎ
′. 
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Note that this notion of smoothness is rather weak, we do not even demand that a smooth 

function is continuous (we did not even endow 𝑉ℎ
′ with a topology). For example, every 

bounded linear functional on 𝑉ℎ
′ is smooth. 

Proposition (6.2.30)[280]: Let . ̅ be a continuous antilinear involution on 𝑉 and 𝑋 ∈

𝑆∗(𝑉)cp1. Then �̂�: 𝑉ℎ
′ → ℂ is smooth and 

�̂�𝑝
(𝑘)
�̂� = 𝐷𝛽

(𝑘)
𝑋                                (115) 

holds for all 𝑘 ∈ M0 and all 𝜌 ∈ (𝑉ℎ
′)𝑘. 

Proof. Let 𝑋 ∈ 𝑆∗(𝑉)cp1 be given. As the exponential series 𝜏𝑡𝜌
∗ (𝑋) is absolutely 

convergent by 

Lemma (6.2.26), it follows that 
d

d𝑡
|𝑡=0𝜏𝑡𝜌

∗ (𝑋) = 𝐷𝜌(𝑋) for all 𝑝 ∈ 𝑉ℎ
′ and so we conclude 

that 

(�̂�𝜌�̂�)(𝜎) =
d

d𝑡
|𝑡=0𝛿𝜎+𝑡𝜌(𝑋) = 〈𝜏𝜎

∗ (
d

d𝑡
|𝑡=0𝜏𝑡𝜌

∗ (𝑋))〉0 = 〈𝜏𝜎
∗ (𝐷𝜌(𝑋))〉0 = 𝐷𝜌(𝑋)(𝜎) 

holds for all 𝑝, 𝜎 ∈ 𝑉ℎ
′, which proves (115) in the case 𝑘 = 1. We see that �̂�𝜌 for all 𝜌 ∈ 𝑉ℎ

′ 

is an endomorphism of the vector space {�̂�|𝑋 ∈ 𝑆⋅(𝑉)cp1}, so all iterated directional 

derivatives of such an �̂� exist. By induction it is now easy to see that (115) holds for arbitrary 

𝑘 ∈ M0. Moreover, 𝐷𝜌𝐷𝜌′𝑋 = 𝐷𝜌′𝐷𝜌𝑋 holds for all 𝜌, 𝜌′ ∈ 𝑉ℎ
′ and all 𝑋 ∈ 𝑆∗(𝑉)cp1 by 

Lemmas (6.2.25) and (6.2.26). Together with (115) this shows that directional derivatives 

on �̂� commute. Finally, the multilinear form (𝑉ℎ
′)𝑘 ∋ 𝑝 ↦ (�̂�𝑝

(𝑘)
�̂�) (𝜎) ∈ C𝑖 is bounded for 

all 𝜎 ∈ 𝑉ℎ
′: It is sufficient to show this for 𝜎 = 0, because 𝜏𝜎

∗  is a continuous automorphism 

of 𝑆∗(𝑉) and commutes with 𝐷𝜌
(𝑘)

. If 𝑝 ∈ (𝑉ℎ
′)𝑘 fulfils |𝜌𝑖(𝑣)| ≤ ‖𝑣‖𝛼

∗  for all 𝑖 ∈ {1, , 𝑘}, 

all 𝑣 ∈ 𝑉 and one ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉, then we have ‖𝐷𝛽1⋯𝐷𝜌𝑘𝑋‖𝛼
∗ ≤ ‖𝑋‖2𝑘𝛼 due to 

Lemma (6.2.26), which is an upper bound of (�̂�𝜌
(𝑘)
�̂�) (0) . 

Let − be a continuous antilinear involution on 𝑉 and let 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ be given, then the 

degeneracy space of the inner product 〈⋅ | ⋅〉𝛼 is 

kerℎ‖ ⋅ ‖𝛼 ∶= {𝑣 ∈ 𝑉ℎ|‖𝑣‖𝛼 = 0}.                              (116) 
Thus we get a well‐defined non‐degenerate positive bilinear form on the real vector space 

𝑉ℎ/kerℎ‖ ⋅ ‖𝛼 . We write 𝑉ℎ,𝛼
cp1

 for the completion of this space to a real Hilbert space with 

inner product 〈⋅ | ⋅〉𝛼 and define the linear map . b𝛼 from 𝑉ℎ,𝛼
cp1

 to 𝑉ℎ
′ as 

𝑣b𝛼(𝑤) ∶= 〈𝑣|𝑤〉𝛼                                        (117) 

for all 𝑣 ∈ 𝑉ℎ,𝛼
cp1

 and all 𝑤 ∈ 𝑉. Note that . b𝛼: 𝑉ℎ,𝛼
cp1
→ 𝑉ℎ

′ is a bounded linear map due to the 

Cauchy‐Schwarz inequality. Analogously, we define 

ker‖ ⋅ ‖𝛼
∗ ∶= {𝑋 ∈ 𝑇∗(𝑉)|‖𝑋‖𝛼

∗ = 0},                      (118) 

and denote by 𝑇∗(𝑉)𝛼
cp1

 the completion of the complex vector space 𝜏aig(𝑉)/ker‖ ⋅ ‖𝛼 to a 

complex Hilbert space with inner product 〈⋅ | ⋅〉𝛼. Then 𝑆∗(𝑉)𝛼
cp1

 becomes the linear 

subspace of (equivalence classes of) symmetric tensors, which is closed because 𝒮 ⋅ extends 

to a continuous endomorphism of 𝑇∗(𝑉)𝛼
cp1

 by Proposition (6.2.7). 
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Moreover, for all 〈⋅ | ⋅〉𝛼 , 〈⋅ | ⋅〉𝛽 ∈ ℐ𝑉,ℎ with 〈⋅ | ⋅〉𝛽 ≤ 〈⋅ | ⋅〉𝛼, the linear map 

id7∙(𝑉): 7
∗(𝑉) → 𝑇∗(𝑉) extends to continuous linear maps 𝜄∞𝛼: 𝑇

∗(𝑉)cp1 → 𝑇∗(𝑉)𝛼
cp1

 and 

𝜄𝛼𝛽: 𝑇
∗(𝑉)𝛼

cp1
→ 𝑇∗(𝑉)𝛽

cp1
, such that 𝜄𝛼𝛽0𝜄∞𝛼 = 𝜄∞𝛽 and 𝜄𝛽𝛾0𝜄𝛼𝛽 = 𝜄𝛼𝛾 hold for all 〈⋅ | ⋅〉𝛼 , 

〈⋅ | ⋅〉𝛽 , 〈⋅ | ⋅〉𝛾 ∈ ℐ𝑉,ℎ with 〈⋅ | ⋅〉𝛾 ≤ 〈⋅ | ⋅〉𝛽 ≤ 〈⋅ | ⋅〉𝛼. This way, 𝑇∗(𝑉)cp1 is realized as the 

projective limit of the Hilbert spaces 𝑇∗(𝑉)𝛼
cp1

 and similarly, 𝑆∗(𝑉)cp1 as the projective 

limit of the closed linear subspaces 𝑆∗(𝑉)𝛼
cp1

 

Lemma (6.2.31)[280]: Let . ̅be a continuous antilinear involution on 𝑉 and ∈ 𝒞∞(𝑉ℎ
′) . 

Given 𝜌 ∈ 𝑉ℎ
′ and 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ such that |𝜌(𝑣)| ≤ ‖𝑣‖𝛼 holds for all 𝑣 ∈ 𝑉, then 

�̂�𝜌𝑓 =∑𝜌

𝑖∈𝐼

(𝑒𝑖)�̂�𝑒𝑖
b𝛼𝑓                              (119) 

holds for every Hilbert basis 𝑒 ∈ (𝑉ℎ,𝛼
cp1
)
𝐼
 of 𝑉ℎ,𝛼

cp1
 indexed by a set 𝐼. 

Proof As 𝑓 is smooth, the function 𝑉ℎ
′ ∋ 𝜎 ↦ �̂�𝜎𝑓 ∈ ℂ is bounded, which implies that its 

restriction to the dual space of 𝑉ℎ,𝛼
cp1

 is continuous with respect to the Hilbert space topology 

on (the dual of) 𝑉ℎ,𝛼
cp1

. As 𝜌 = ∑ 𝑒𝑖
b𝛼

𝑖∈𝐼 𝜌(𝑒𝑖) with respect to this topology, it follows that 

�̂�𝑝𝑓 = ∑ 𝜌𝑖∈𝐼 (𝑒𝑖)�̂�𝑒𝑖
b𝛼𝑓. □ 

Definition (6.2.32) [280]: 𝐿𝑒𝑡 − be a continuous antilinear involution on V. We say that a 

function 𝑓: 𝑉ℎ
′ → ℂ is analytic of Hilbert‐Schmidt type, if it is smooth and additionally fulfils 

the condition that for all 𝜎, 𝜎′ ∈ 𝑉ℎ
′ and all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ there exists a 𝐶𝜎,𝜎′,𝛼 ∈ ℝ such that 

∑
1

𝑘!

∞

𝑘=0

∑|

𝑖∈𝐼𝑘

(�̂�
(𝑒𝑖1
b𝛼 ,…,𝑒𝑖𝑘

b𝛼)

(𝑘)
𝑓) (𝜉)|2 ≤ 𝐶𝜎,𝜎′,𝛼                (120) 

holds for one Hilbert base 𝑒 ∈ (𝑉ℎ,𝛼
cp1
)
𝐼
 of 𝑉ℎ,𝛼

cp1
 indexed by a set I and every 𝜉 from the line‐

segment between 𝜎 and 𝜎′, i.e. every 𝜉 = 𝜆𝜎 + (1 − 𝜆)𝜎′ with 𝜆 ∈ [0,1]. We write 

𝒞𝑤𝐻𝑆(𝑉ℎ
′) for the set of all complex functions on 𝑉ℎ

′ that are analytic of Hilbert‐Schmidt 

type. 

Here and elsewhere a sum over an uncountable Hilbert basis is understood in the usual sense: 

only countably many terms in the sum are non‐zero. 

This definition is independent of the choice of the Hilbert basis due to Lemma (6.2.31) and 

𝒞𝑤𝐻𝑆(𝑉ℎ
′) is a complex vector space. It is not too hard to check that 𝒞0⊃𝐻𝑆(𝑉ℎ

′) is even a 

unital ∗‐subalgebra of 𝒞∞(𝑉ℎ
′) . However, we will indirectly prove this later on. Calling the 

functions in 𝒞𝑤𝐻𝑆(𝑉ℎ
′) analytic is justified thanks to the following statement: 

Proposition (6.2.33)[280]: Let . ̅be a continuous antilinear involution on 𝑉 and 𝑓: 𝑉ℎ
′ → ℂ 

analytic of Hilbert‐Schmidt type with (�̂�𝜌
(𝑘)
𝑓) (0) = 0 for all 𝑘 ∈ N0 and all 𝜌 ∈ (𝑉ℎ

′)𝑘. 

Then 𝑓 = 0. 

𝐏roof: Given 𝜎 ∈ 𝑉ℎ
′, then define the smooth function 𝑔:ℝ → ℂ by 𝑡 ↦ 𝑔(𝑡) : = 𝑓(𝑡𝜎) . 

We write 𝑔(𝑘)(𝑡) for the k‐th derivative of 𝑔 at 𝑡. Then there exists a 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ that 

fulfils |𝜎(𝑣)| ≤ ‖𝑣‖𝛼 for all 𝑣 ∈ 𝑉, and consequently 𝜎 = 𝐿/𝑒b𝛼 with a normalized 𝑒 ∈

𝑉ℎ,𝛼
cp1

 and 𝑢 ∈ [0,1] by the Fréchet‐Riesz theorem. Therefore, 
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(∑
1

𝑘!

∞

𝑘=0

|𝑔(𝑘)(𝑡)|)

2

𝐶𝑆
≤
∑

1

𝑘!

∞

𝑘=0

∑
1

ℓ!

∞

ℓ=0

|𝑔(ℓ)(𝑡)|2 

≤ e∑
v2𝑝

ℓ!

∞

ℓ=0

| (�̂�
(𝑒b𝛼 ,…,𝑒b𝛼)

(ℓ)
𝑓) (𝑡𝜎)|2 ≤ e𝐶−2𝜎,2𝜎,𝛼 

holds for all 𝑡 ∈ [−2,2] with a constant 𝐶−2𝜎,2𝜎,𝛼 ∈ ℝ, which shows that 𝑔 is an analytic 

function on ] − 2,2[. As 𝑔(𝑘)(0) = 0 for all 𝑘 ∈ M0 this implies 𝑓(𝜎) = 𝑔(1) = 0. □ 

Note that one can derive even better estimates for the derivatives of 𝑔. This shows that 

condition (120) is even stronger than just analyticity. As an example, consider 𝑉 = ℂ , 𝑉ℎ
′ =

ℝ, then the function ℝ ∋ 𝑥 ↦  exp (𝑥2) ∈ ℂ is not analytic of Hilbert‐Schmidt type. 

Definition (6.2.34)[280]: Let . ̅be a continuous antilinear involution on 𝑉 and let 𝑓, 𝑔: 𝑉ℎ
′ →

C𝑖 be analytic of Hilbert‐Schmidt type as well as 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ. Because of the estimate (120) 

we can define a function ≪ 𝑓|𝑔 ≫𝛼
∗  : 𝑉ℎ

′ → ℂ by 

𝜌 ↦≪ 𝑓|𝑔 ≫𝛼
∗ (𝜌) ∶= ∑

1

𝑘!

∞

𝑘=0

∑

𝑖∈𝐼𝑘

(�̂�
𝑒𝑖
b𝛼

(𝑘)
𝑓) (𝑝)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
(�̂�

𝑒𝑖
b𝛼

(𝑘)
𝑔) (𝜌) ,        (121) 

where 𝑒 ∈ (𝑉ℎ,𝛼
cp1
)
𝐼
 is an arbitrary Hilbert base of 𝑉ℎ,𝛼

cp1
 indexed by a set 𝐼. 

Note that ≪ 𝑓|𝑔 ≫𝛼
∗  does not depend on the choice of this Hilbert base due to Lemma 

(6.2.31). Essentially, ≪ 𝑓|𝑔 ≫𝛼
∗ (𝜌) is a weighted ℓ2‐inner product (yet not necessarily 

positive‐definite) of all partial derivatives of 𝑓 and 𝑔 at 𝜌 in directions described by (the 

dual of) a〈⋅ | ⋅〉𝛼‐Hilbert base. Note that the analyticity condition (120) for a function 𝑓 is 

equivalent to demanding that ≪ 𝑓|𝑓 ≫𝛼
∗ (𝜉) exists for all 𝜉 ∈ 𝑉ℎ

′ and all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ and 

is uniformly bounded on line segments in 𝑉ℎ
′. 

Lemma (6.2.35)[280]: Let . ̅be a continuous antilinear involution on V. Let 𝑘 ∈ N and 𝑥 ∈

(𝑉ℎ)
𝑘 as well as 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ be given. Then 

(�̂�
𝑥b𝛼
(𝑘)
�̂�) (0) = 〈𝐷

𝑥b𝛼
(𝑘)
𝑌〉0 = 〈𝑥1⊗⋯⊗𝑥𝑘|𝑌〉𝛼

∗                 (122) 

holds for all 𝑌 ∈ 𝑆∗(𝑉)cp1. 
Proof The first identity is just Proposition (6.2.30), and for the second one it is sufficient to 

show that 〈𝐷
𝑥b𝛼
(𝑘)
𝑌〉0 = 〈𝑥1⊗⋯⊗𝑥𝑘|𝑌〉𝛼

∗  holds for all factorizing tensors 𝑌 of degree 𝑘, 

because both sides of this equation vanish on homogeneous tensors of different degree and 

are linear and continuous in 𝑌 by Lemma (6.2.26). However, it is an immediate consequence 

of the definitions of 𝐷, ⋅ b𝛼, and 〈⋅ | ⋅〉𝛼
∗  that 

〈𝐷
(𝑥1
b𝛼 ,…,𝑥𝑘

b𝛼)

(𝑘)
𝑦1⊗⋯⊗𝑦𝑘〉0 = 𝑘!∏〈

𝑘

𝑚=1

𝑥𝑚|𝑦𝑚〉𝛼 = 〈𝑥1⊗… ⊗ 𝑥𝑘|𝑦1⊗… . .⊗ 𝑦𝑘〉𝛼
∗  

holds for all 𝑦1, 𝑦𝑘 ∈ 𝑉.  

Proposition (6.2.36)[280]: Let . ̅be a continuous antilinear involution on 𝑉, then 

≪ �̂�|�̂� ≫𝛼
∗ (𝜌) = 〈𝜏𝜌

∗𝑋|𝜏𝜌
∗𝑌〉𝛼

∗ = 𝑋 ∗ ⋆𝛬𝛼
̂ 𝑌(𝜌)                (123) 

holds for all 𝑋, 𝑌 ∈ 𝑆⋅(𝑉)cp1, all 𝜌 ∈ 𝑉ℎ
′, and all 〈⋅ | ⋅〉0𝑗 ∈ ℐ𝑉,ℎ, where 𝛬𝛼: 𝑉 × 𝑉 → Ci is 

the continuous bilinear form defined by 𝛬𝛼(𝑣, 𝑤) : = 〈𝑣|𝑤〉𝛼 . 
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𝐏roof: Let 𝑋, 𝑌 ∈ 𝑆∗(𝑉)cp1, 𝑝 ∈ 𝑉ℎ
′ and 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ be given. Let 𝑒 ∈ (𝑉ℎ,𝛼

cp1
)
𝐼
 be a Hilbert 

base of 𝑉ℎ,𝛼
cp1

 indexed by a set 𝐼. Then 

≪ �̂�|�̂� ≫𝛼
∗ (𝜌) = ∑

1

𝑘!

∞

𝑘=0

∑(�̂�
𝑒𝑖
b𝛼

(𝑘)
�̂�)

𝑖∈𝐼𝑘

(𝑝) (�̂�
𝑒𝑖
b𝛼

(𝑘)
�̂�) (𝜌) 

=∑
1

𝑘!

∞

𝑘=0

∑〈

𝑖∈𝐼𝑘

𝐷
𝑒𝑖
b𝛼

(𝑘)
𝜏𝜌
∗𝑋〉0〈𝐷

𝑒𝑖
b𝛼

(𝑘)
𝜏𝜌
∗𝑌〉0 

=∑∑
1

𝑘!
𝑖∈𝐼𝑘

∞

𝑘=0

〈𝜏𝜌
∗𝑋|𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑘〉𝛼

∗ 〈𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑘|𝜏𝜌
∗𝑌〉𝛼

∗  

= 〈𝜏𝜌
∗𝑋|𝜏𝑝

∗𝑌〉𝛼
∗  

holds by Proposition (6.2.30) and Lemma (6.2.25) as well as the previous Lemma (6.2.35) 

and the fact that the tensors (𝑘!)1/2𝑒𝑖1⊗ ⊗𝑒𝑖𝑘 for all 𝑘 ∈ M0 and 𝑖 ∈ 𝐼𝑘 form a Hilbert 

base of 𝒯∗(𝑉)𝛼
cp1

 The second identity is a direct consequence of Theorem (6.2.18) because 

𝜏𝜌
∗ is a unital ∗‐automorphism of ⋆𝛬𝛼. Indeed, we have 

〈𝜏𝜌
∗𝑋|𝜏𝜌

∗𝑌〉𝛼
∗ = 〈(𝜏𝜌

∗𝑋)
∗
⋆𝛬𝛼 (𝜏𝜌

∗𝑌)〉0 = 〈𝜏𝜌
∗(𝑋∗ ⋆𝛬𝛼 𝑌)〉0 = 𝑋 

∗ ⋆𝛬𝛼
̂ 𝑌(𝜌) . □ 

Corollary (6.2.37)[280]: Let . ̅be a continuous antilinear involution on 𝑉 and 𝑋 ∈ 𝑆∗(𝑉)cp1, 

then �̂� ∈ 𝒞(′𝐽𝐻𝑆(𝑉ℎ
′) . 

Proof The function �̂� is smooth by Proposition (6.2.30). By the previous Proposition 

(6.2.36), we have 

∑
1

𝑘!

∞

𝑘=0

∑|

𝑖∈𝐼𝑘

(�̂�
𝑒𝑖
b𝛼

(𝑘)
�̂�) (𝜉)|2 =≪ �̂�|�̂� ≫𝛼

∗ (𝜉) = 𝑋 ∗ ⋆𝛬𝛼
̂ 𝑋(𝜉) 

for all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ, which is finite and depends smoothly on 𝜉 ∈ 𝑉ℎ
′ by Proposition (6.2.30) 

again. Therefore it is uniformly bounded on line segments. □ 

Lemma (6.2.38)[280]: Let . ̅be a continuous antilinear involution on 𝑉 and 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ. 

For every 𝑓 ∈ 𝒞0⊃𝐻𝑆(𝑉ℎ
′) there exists an 𝑋𝑓 ∈ 𝑆

⋅(𝑉)cp1 that fulfils ≪ 𝑓|𝑓 ≫𝛼
∗ (0) =≪

�̂�𝑓|�̂�𝑓 ≫𝛼
∗ (0)𝑎𝑛𝑑 ≪ 𝑓|�̂� ≫𝛼

∗ (0) =≪ �̂�𝑓|�̂� ≫𝛼
∗ (0) for all 𝑌 ∈ 𝑆⋅(𝑉)cp1 and all 〈⋅ | ⋅〉𝛼 ∈

ℐ𝑉,ℎ . 

Proof For every 𝛼 ∈ ℐ𝑉,ℎ construct 𝑋𝑓,𝛼 ∈ 𝑆
∗(𝑉)𝛼

cp1
 as 

𝑋𝑓,𝛼: = ∑
1

𝑘!

∞

𝑘=0

∑𝑒𝑖1
𝑖∈𝐼𝑘

⊗⋯⊗ 𝑒𝑖𝑘 (�̂�𝑒𝑖
b𝛼

(𝑘)
𝑓) (0) ∈ 𝑆𝑣(𝑉)𝛼

cp1
, 

where 𝑒 ∈ (𝑉ℎ,𝛼
cp1
)
𝐼
 is a Hilbert base of 𝑉ℎ,𝛼

cp1
 indexed by a set 𝐼. This infinite sum 𝑋𝑓,𝛼 indeed 

lies in 𝑆∗(𝑉)𝛼
cp1

 and fulfils 〈𝑋𝑓,𝛼|𝑋𝑓,𝛼〉𝛼
∗ =≪ 𝑓|𝑓 ≫𝛼

∗ (0) , because (�̂�
𝑒𝑖
〉𝛼

(𝑘)
𝑓) (0) is invariant 

under permutations of the 𝑒𝑖1, . . . , 𝑒𝑖𝑘 due to the smoothness of 𝑓 and because 

∑ ∑
1

𝑘! ℓ!
𝐼𝑘,𝑖′∈𝐼ℓ

∞

𝑘,ℓ=0𝑖∈

〈𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑘 (�̂�𝑒𝑖
b𝛼

(𝑘)
𝑓) (0)| 𝑒𝑖í ⊗⋅⋅⋅ ⊗ 𝑒𝑖𝑝′ (�̂�𝑒𝑖

b𝛼

(ℓ)
𝑓) (0)〉𝛼

∗  



218 

=∑∑
1

𝑘!
𝑖∈𝐼𝑘

∞

𝑘=0

| (�̂�
𝑒𝑖
b𝛼

(𝑘)
𝑓) (0)|2 

=≪ 𝑓|𝑓 ≫𝛼
∗ (0) . 

Moreover, for all 𝑌 ∈ 𝑆⋅(𝑉)cp1 the identity 

≪ 𝑓|�̂� ≫𝛼
∗ (0) = ∑

1

𝑘!

∞

𝑘=0

∑(�̂�
𝑒𝑖
b𝛼

(𝑘)
𝑓)

𝑖∈𝐼𝑘

(0) (�̂�
𝑒𝑖
b𝛼

(𝑘)
�̂�) (0) 

=∑
1

𝑘!

∞

𝑘=0

∑〈

𝑖∈𝐼𝑘

𝑋𝑓,𝛼|𝑒𝑖1⊗ ⊗ 𝑒𝑖𝑘〉𝛼
∗ 〈𝑒𝑖1⊗ ⊗ 𝑒𝑖𝑘|𝑌〉𝛼

∗ = 〈𝑋𝑓,0𝑖|𝑌〉𝛼
∗  

holds due to the construction of 𝑋𝑓,𝛼 and Lemma (6.2.35) and because the tensors 

(𝑘!)1/2𝑒𝑖1⊗ ⊗𝑒𝑖𝑘 for all 𝑘 ∈ M0 and all 𝑖 ∈ 𝐼𝑘 are a Hilbert base of 𝑇∗(𝑉)𝛼
cp1

 

Next, let 〈⋅ | ⋅〉𝛽 ∈ ℐ𝑉,ℎ with 〈⋅ | ⋅〉𝛽 ≤ 〈⋅ | ⋅〉𝛼 and a Hilbert basis 𝑑 ∈ (𝑉ℎ,𝛽
cp1
)
𝐽
 of 𝑉ℎ,𝛽

cp1
 

indexed by a set 𝐽 be given. Using the explicit formulas and the identity 

(�̂�
𝑑𝑗
b𝛽

(𝑘)
𝑓) (0) =

1

𝑘!
∑ (�̂�

𝑒𝑖
b𝛼

(𝑘)
𝑓)

𝑖∈𝐼𝑘

(0)〈𝑑𝑗1⊗⋯⊗𝑑𝑗𝑘|𝜄𝛼𝛽(𝑒𝑖1⊗ ⊗ 𝑒𝑖𝑘)〉𝛽
∗  

from Lemma (6.2.31) one can now calculate that 

𝜄𝛼𝛽(𝑋𝑓,𝛼) = ∑
1

𝑘!

∞

𝑘=0

∑𝜄𝛼𝛽
𝑖∈𝐼𝑘

(𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑘) (�̂�𝑒𝑖
b𝛼

(𝑘)
𝑓) (0) 

=∑
1

(𝑘!)2

∞

𝑘=0

∑∑𝑑𝑗1
𝑗∈𝐽𝑘𝑖∈𝐼𝑘

⊗⋯⊗𝑑𝑗𝑘〈𝑑𝑗1⊗⋯⊗𝑑𝑗𝑘|𝜄𝛼𝛽  (𝑒𝑖1⊗ ⊗ 𝑒𝑖𝑘)〉𝛽
∗ (�̂�

𝑒𝑖
b𝛼

(𝑘)
𝑓) (0) 

=∑
1

𝑘!

∞

𝑘=0

∑ 𝑑𝑗1
𝑗∈𝐽𝑘

⊗ ⊗ 𝑑𝑗𝑘 (�̂�
𝑑𝑗
b𝛽

(𝑘)
𝑓) (0) 

= 𝑋𝑓,𝛽 . 

As 𝑆∗(𝑉)cp1 is the projective limit of the Hilbert spaces 𝑆∗(𝑉)𝛼
cp1

, this implies that there 

exists a unique 𝑋𝑓 ∈ 𝑆
∗(𝑉)cp1 that fulfils 𝜄∞𝛼(𝑋𝑓) = 𝑋𝑓,𝛼 for all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ. 

Consequently and with the help of Proposition (6.2.36), 

≪ �̂�𝑓|�̂� ≫𝛼
∗ (0) = 〈𝑋𝑓|𝑌〉𝛼

∗ = 〈𝜄∞𝛼(𝑋𝑓)|𝑌〉𝛼
∗ = 〈𝑋𝑓,𝛼|𝑌〉𝛼

∗ =≪ 𝑓|�̂� ≫𝛼
∗ (0) 

holds for all 𝑌 ∈ 𝑆⋅(𝑉)cp1 and all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ, and similarly, 

≪ �̂�𝑓|�̂�𝑓 ≫𝛼
∗ (0) = 〈𝑋𝑓|𝑋𝑓〉𝛼

∗ = 〈𝜄∞𝛼(𝑋𝑓)|𝜄∞𝛼(𝑋𝑓)〉𝛼
∗ = 〈𝑋𝑓,𝛼|𝑋𝑓,𝛼〉𝛼

∗ =≪ 𝑓|𝑓 ≫𝛼
∗ (0) .  

After this preparation we are now able to identify the image of the Gel’fand transformation 

explicitly: 

Theorem (6.2.39)[280]: Let .̅ be a continuous antilinear involution on 𝑉, then the Gelfand 

transformation ∧: (𝑆∗(𝑉)cp1,∨,∗) → 𝒞(′)𝐻𝑆(𝑉ℎ
′) is an isomorphism of unital∗‐algebras. 

Proof Let 𝑋 ∈ 𝑆∗(𝑉)cp1 be given, then �̂� ∈ 𝒞( 𝐻𝑤𝑆(𝑉ℎ
′) by Corollary (6.2.37). The Gelfand 

transformation is a unital ∗‐homomorphism onto its image by construction and injective 
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because �̂� = 0 implies 〈𝑋|𝑋〉𝛼
∗ =≪ �̂�|�̂� ≫𝛼

∗ (0) = 0 for all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ by Proposition 

(6.2.36), hence 𝑋 = 0. It only remains to show that ∧ is surjective, so let 𝑓 ∈ 𝒞(′𝐽𝐻𝑆(𝑉ℎ
′) be 

given. Construct 𝑋𝑓 ∈ 𝑆
∗(𝑉)cp1 like in the previous Lemma (6.2.38), then 

≪ 𝑓 − �̂�𝑓|𝑓 − �̂�𝑓 ≫𝛼
∗ (0) =≪ 𝑓|𝑓 ≫𝛼

∗ (0)−≪ 𝑓|�̂�𝑓 ≫𝛼
∗ (0)−≪ �̂�𝑓|𝑓 ≫𝛼

∗ (0)+

≪ �̂�𝑓|�̂�𝑓 ≫𝛼
∗ (0) 

=≪ 𝑓|𝑓 ≫𝑎
∗ (0)−≪ �̂�𝑓|�̂�𝑓 ≫𝛼

∗ (0)−≪ �̂�𝑓|�̂�𝑓 ≫𝛼
∗ (0)+≪ �̂�𝑓|�̂�𝑓 ≫𝛼

∗ (0) 

= 0 

holds for all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ, hence 𝑓 = �̂�𝑓 due to Proposition (6.2.33). □ 

Remark (6.2.40)[280]: Let . ̅be a continuous antilinear involution on V. For a continuous 

bilinear form 𝛬 on 𝑉 the identity 

P𝛬(𝑋 ⊗𝜋 𝑌) = ∑ 𝛬

𝑖,𝑖′∈𝐼

(𝑒𝑖 , 𝑒𝑖′) (𝐷𝑒𝑖
b𝛼𝑋⊗𝜋 𝐷𝑒𝑖

b𝛼 , 𝑌)          (124) 

holds for all 𝑋, 𝑌 ∈ 𝑆∗(𝑉) and every 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ for which ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝛬 and for every 

Hilbert base 𝑒 ∈ (𝑉ℎ,𝛼
cp1
)
𝐼
 indexed by a set 𝐼. Thus 

�̂� ⋆�̂� �̂�: = 𝑋 ⋆𝛬 �̂� = 𝜇

(

 
 
∑
1

𝑡!

∞

𝑡=0

(∑𝛬

𝑖,𝑖∈𝐼

(𝑒𝑖 , 𝑒𝑖′) (�̂�𝑒𝑖
b𝛼 ⊗ �̂�

𝑒𝑖
b𝛼 , ))

𝑡

. (�̂� ⊗ �̂�)

)

 
 

 

with 𝜇: 𝒞∞(𝑉ℎ
′)⊗ 𝒞∞(𝑉ℎ

′) → 𝒞∞(𝑉ℎ
′) the pointwise product is the usual exponential star 

product on 𝒞𝛼)𝐻𝑆(𝑉ℎ
′) . Moreover, if 𝒜 ⊆ 𝒞∞(𝑉ℎ

′) is any unital ∗‐subalgebra on which all 

such products ⋆�̂� for all continuous Hermitian bilinear forms 𝛬 on 𝑉 converge, then 𝒜 ⊆

𝒞(′𝐽𝐻𝑆(𝑉ℎ
′) , because analogous to Proposition (6.2.36), every 𝑓 ∈ 𝒜 fulfils ≪ 𝑓|𝑓 ≫𝛼

∗=

𝑓∗𝑓 ∈ 𝒜 ⊆ 𝒞∞(𝑉ℎ
′) for all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉ℎ with corresponding continuous Hermitian bilinear 

form 𝑉2 ∋ (𝑣, 𝑤) ↦ 𝛬𝛼(𝑣, 𝑤) : = 〈𝑣|𝑤〉𝛼 ∈ ℂ. This is of course just our Theorem (6.2.18) 

again. 

Recall that a linear functional 𝑤: 𝑆∗(𝑉) → (D is said to be positive for ⋆𝛬 if 

𝑤(𝑋∗ ⋆𝛬 𝑋) ≥ 0 holds for all ∈ 𝑆∗(𝑉) . Such positive linear functionals yield important 

information about the representation theory of a∗‐algebra, e.g. there exists a faithful ∗‐
representation as adjointable operators on a preHilbert space if and only if the positive linear 

functionals are point‐separating, see [97]. we will determine the obstructions for the 

existence of continuous positive linear functionals. First, we need the following lemma 

which allows us to apply an argument similar to the one used in [77] in the formal case: 

Lemma (6.2.41)[280]: Let  . ̅𝑏𝑒 a continuous antilinear involution of 𝑉 and 𝛬 a continuous 

Hermitian bilinear form on 𝑉 such that 𝛬(𝑣, 𝑣) ≥ 0 holds for all 𝑣 ∈ 𝑉. Then for all 𝑋 ∈

𝑆∗(𝑉) and all 𝑡 ∈ M0 there exist 𝑛 ∈ N and 𝑋1, . . . , 𝑋𝑛 ∈ 𝑆
⋅(𝑉) such that 

(P𝛬)
𝑡(𝑋∗⊗𝜋 𝑋) =∑𝑋𝑖

∗

𝑛

𝑖=1

⊗𝜋 𝑋𝑖 .               (125) 

Proof This is trivial for scalar 𝑋 as well as for 𝑡 = 0 and for the remaining cases it is 

sufficient to consider 𝑡 = 1, the others then follow by induction. So let 𝑘 ∈ N and 𝑋 ∈
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𝑆𝑘(𝑉) be given. Expand 𝑋 as 𝑋 = ∑ 𝑥𝑗,1
𝑚
𝑗=1 ∨ ⋯∨ 𝑥𝑗,𝑘 with 𝑚 ∈ N and vectors 𝑥1,1, , 𝑥𝑚,𝑘 ∈

𝑉. Then 

P𝛬(𝑋
∗⊗𝜋 𝑋)

= ∑ ∑ 𝛬

𝑘

ℓ′,ℓ=1

𝑚

𝑗′,𝑗=1

(𝑥𝑗 , , ℓ’, 𝑥𝑗,ℓ)(𝑥𝑗,1 ∨ ⋅ ⋅ ⋅ 𝑥𝑗′,ℓ′̂ . . .∨ 𝑥𝑗,𝑘)
∗
⊗𝜋 (𝑥𝑗,1 ∨ ⋅ ⋅ ⋅  𝑥𝑗′,ℓ′̂. . .

∨ 𝑥𝑗,𝑘) , 

where ∧ denotes omission of a vector in the product. The complex 𝑚𝑘 ×  𝑚𝑘 ‐matrix with 

entries 𝛬(𝑥𝑗′,ℓ̅̅ ̅̅ ̅, , 𝑥𝑗,ℓ) is positive semi‐definite due to the positivity condition on 𝛬, which 

implies that it has a Hermitian square root 𝑅 ∈ ℂ𝑚𝑘×𝑚𝑘 that fulfils 𝛬(𝑥𝑗′,ℓ′ , 𝑥𝑗,𝑙) =

∑ ∑ 𝑅(𝑝,𝑞),(𝑗′,ℓ′)
𝑘
𝑞=1

𝑚
𝑝=1 𝑅(𝑝,𝑞),(𝑗,ℓ) for all 𝑗, 𝑗′ ∈ {1, ,𝑚} and ℓ, ℓ′ ∈ {1, 𝑘}. Consequently, 

P𝛬(𝑋
∗⊗𝜋 𝑋) = 

= ∑  

𝑚,𝑘

𝑝,𝑞=1

 ( ∑ 𝑅(𝑝,𝑞),(𝑗′,ℓ)

𝑚,𝑘

𝑗,ℓ′=1

 (𝑥𝑗,1 ∨ ⋅ ⋅ ⋅ 𝑥𝑗′,ℓ′̂ . . .∨ 𝑥𝑗′,𝑘)
∗
)⊗𝜋 (∑ 𝑅(𝑝,𝑞),(𝑗,ℓ)

𝑚,𝑘

𝑗,ℓ=1

(𝑥𝑗,1

∨ 𝑥𝑗,ℓ′̂ ⋯∨ 𝑥𝑗,𝑘)) 

holds which proves the lemma.  

Proposition (6.2.42)[280]: Let . ̅be a continuous antilinear involution of 𝑉 and 𝛬, 𝛬′ as well 

as 𝑏 three continuous Hermitian bilinear forms on 𝑉 such that 𝑏 is symmetric and of Hilbert‐

Schmidt type and such that 𝛬′(𝑣, 𝑣) + 𝑏(𝑣, 𝑣) ≥ 0 holds for all 𝑣 ∈ 𝑉. Given a continuous 

linear functional 𝑤 on 𝑆⋅(𝑉) that is positive for ⋆𝛬, define (𝑣𝑧𝑏: 𝑆
∗(𝑉) → (D as 

𝑋 ↦ 𝑤𝑧𝑏(𝑋) ∶= 𝑤(e
𝑧△𝑏𝑋)                                   (126) 

for all 𝑧 ∈ ℝ. Then 𝛼𝑗𝑧𝑏 is a continuous linear functional and positive for ⋆𝛬+𝑧𝛬′ . 

Proof: It follows from Theorem (6.2.23) that 𝑤𝑧𝑏 is continuous, and given ∈ 𝑆∗(𝑉) , then 

𝑤 (e𝑧△𝑏(𝑋∗ ⋆𝛬+𝑧𝛬′ 𝑋)) = 𝑤 ((e
𝑧△𝑏𝑋)

∗
⋆𝛬+𝑧(𝛬′+𝑏) (e

𝑧△𝑏𝑋)) 

= ∑
1

𝑠! 𝑡!

∞

𝑠,𝑡=0

(𝜆) (𝜇∨ ((P𝛬)
𝑠(P𝑧(𝛬′+𝑏))

𝑡
((e𝑧△𝑏𝑋)

∗
⊗𝜋 (e

𝑧△𝑏𝑋)))) 

=∑
1

𝑡!

∞

𝑡=0

𝑤(𝜇⋆𝛬 ((P𝑧(𝛬′+𝑏))
𝑡
((e𝑧△𝑏𝑋)

∗
⊗𝜋 (e

𝑧△𝑏𝑋)))) ≥ 0 

holds because P𝛬 and P𝑧(𝛬′+𝑏′) commute on symmetric tensors and because of Lemma 

(6.2.41). □ 

Note that Theorem (6.2.23) also shows that 𝑤𝑧𝑏 depends holomorphically on 𝑧 ∈ ℂ in so far 

as (D ∋ 𝑧 ↦ 𝑤𝑧𝑏(𝑋) ∈ (D is holomorphic for all ∈ 𝑆∗(𝑉) . This is the analog of statements 

in [91], [283] in the Rieffel setting. 

Proposition (6.2.43)[280]: Let . ̅ be a continuous antilinear involution of 𝑉 and 𝛬 a 

continuous Hermitian bilinear forms on V. If there exists a continuous linear functional (𝜆) 

on 𝑆∗(𝑉) that is positive for ⋆𝛬 and fulfils (𝑣(1) = 1, then the bilinear form 𝑉2 ∋ (𝑣,𝑤) ↦
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𝑏, (𝑣, 𝑤) : = 𝑤(𝑣 ∨ 𝑤) ∈ ℂ is symmetric, Hermitian, of Hilbert‐Schmidt type and fulfils 

𝛬(𝑣, 𝑣) + 𝑏𝑤(𝑣, 𝑣) ≥ 0 for all 𝑣 ∈ 𝑉. 

Proof. It follows immediately from the construction of 𝑏𝑤 that this bilinear form is 

symmetric and it is Hermitian because 𝑏𝑤(𝑣, 𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  w(𝑣 ∨ 𝑤)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑏𝑤(𝑤 ∨ 𝑣)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑏𝑤(𝑤, 𝑣)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

holds for all , 𝑤 ∈ 𝑉. Continuity of (𝑣 especially implies that there exists a 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 such 

that |(𝑣(𝑋)| ≤ 2−
1

2‖𝑋‖𝛼
∗   holds for all 𝑤 ∈ 𝑆2(𝑉) , hence 𝑏𝑤 is of Hilbert‐Schmidt type by 

Proposition3.8and because △𝑏𝜔 𝑋 = 𝑤(𝑋) for 𝑋 ∈ 𝑆2(𝑉) . Finally, 0 ≤ 𝛼𝑗(𝑣
∗ ⋆𝛬 𝑣) =

𝛬(𝑣, 𝑣) + 𝑏𝑤(𝑣, 𝑣) holds due to the positivity of 𝑤. □ 

Theorem (6.2.44)[280]: Let  . ̅be a continuous antilinear involution of 𝑉 and 𝛬 a continuous 

Hermitian bilinear forms on V. Assume 𝑉 ≠ {0}. There exists a non‐zero continuous positive 

linear functional on (𝑆∗(𝑉),⋆𝛬,∗) if and only if there exists a symmetric and hermitian 

bilinear form of HilbertSchmidt type 𝑏 on 𝑉 such that 𝛬(𝑣, 𝑣) + 𝑏(𝑣, 𝑣) ≥ 0 holds for all 

𝑣 ∈ 𝑉. In this case, the continuous positive linear functionals on (𝑆∗(𝑉),⋆𝛬,∗) are point‐

separating, i.e. their common kernel is {0}. 

Proof If there exists a non‐zero continuous positive linear functional 𝑤 on (𝑆∗(𝑉),⋆𝛬,∗) , 

then 𝑤(1) ≠ 0 due to the Cauchy‐Schwarz identity and we can rescale 𝑤 such that 𝛼𝑗(1) =

1. Then the previous Proposition (6.2.43) shows the existence of such a bilinear form 𝑏. 

Conversely, if such a bilinear form 𝑏 exists, then Proposition (6.2.42) shows that all 

continuous linear functionals on 𝑆⋅(𝑉) that are positive for V can be deformed to continuous 

linear functionals that are positive for ⋆𝛬 by taking the pull‐back with e△𝑏. As e△𝑏 is 

invertible, it only remains to show that that the continuous positive linear functionals on 

(𝑆⋅(𝑉),∨∗) are point‐separating. This is an immediate consequence of Theorem (6.2.39), 

which especially shows that the evaluation functionals 𝛿𝛽 with 𝜌 ∈ 𝑉ℎ
′ are point‐separating.  

Having a topology on the symmetric tensor algebra allows us to ask whether or not 

some exponentials (with respect to the undeformed or deformed products) exist in the 

completion, i.e. we want to discuss for which tensors 𝑋 ∈ 𝑆∗(𝑉)cp1 the series exp⋆𝛬(𝑋) ∶=

∑
1

𝑛!
∞
𝑛=0 𝑋⋆𝛬𝑛 converges, where 𝑋⋆𝛬𝑛 denotes the n‐th power of 𝑋 with respect to the product 

⋆𝛬 for a continuous bilinear form 𝛬 on 𝑉. Note that since the algebra is (necessarily) not 

locally multiplicatively convex, this is a non‐trivial question. This also allows to give a 

sufficient criterium for a GNS representation of a Hermitian algebra element to be 

essentially self‐adjoint. 

Definition (6.2.45)[280]: For 𝑘 ∈ N0 we define 

𝑆(𝑘)(𝑉) ∶=⨁𝑆ℓ
𝑘

ℓ=0

(𝑉) ,                                 (127) 

and write 𝑆(𝑘)(𝑉)cp1 for the closure of 𝑆(𝑘)(𝑉) in 𝑆⋅(𝑉)cp1. 
Lemma (6.2.46)[280]: One has 

(
𝑚
ℓ
) (
𝑚 − 𝑃 +𝑡
𝑡

) ≤  (
ℓ + 𝑡
𝑡
) (
𝑘(𝑛 + 1)

𝑘
)          (128) 

for all 𝑘, 𝑛 ∈ N0, 𝑚 ∈ {0, 𝑘𝑛}, 𝑡 ∈ {0, . . . , 𝑘}, and all ℓ ∈ {0, min {𝑚, 𝑘 − 𝑡}}. 

Lemma (6.2.47)[280]: Let 𝛬 be a continuous bilinear form on V. Let 𝑘, 𝑛 ∈ N0 and 𝑋1, 

𝑋𝑛 ∈ 𝑆
(𝑘)(𝑉)cp1 be given. Then the estimates 
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‖〈𝑋1 ⋆𝛬 . . .⋆𝛬 𝑋𝑛〉𝑚‖𝛼
∗ ≤ (

(𝑘𝑛)!

(𝑘!)𝑛
)

1
2

(2e2)𝑘𝑛‖𝑋1‖𝛼
∗ ⋯‖𝑋𝑛‖𝛼

∗     (129) 

and 

‖𝑋1 ⋆𝛬 . . .⋆𝛬 𝑋𝑛‖𝛼
∗ ≤ (

(𝑘𝑛)!

(𝑘!)𝑛
)

1
2

(2e3)𝑘𝑛‖𝑋1‖𝛼
∗  ‖𝑋𝑛‖𝛼

∗    (130) 

hold for all 𝑚 ∈ {0, . . . , 𝑘𝑛} and all ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝛬. 

Proof. The first estimate implies the second, because ‖𝑋1 ⋆𝛬 ⋆𝛬 𝑋𝑛‖𝛼
∗  has at most (1 + 𝑘𝑛) 

nonvanishing homogeneous components, namely those of degree 𝑚 ∈ {0, . . . , 𝑘𝑛}, and 

(1 + 𝑘𝑛) ≤ e𝑘𝑛. We will prove the first estimate by induction over 𝑛: If 𝑛 = 0 or 𝑛 = 1, 

then the estimate is clearly fulfiled for all possible 𝑘 and 𝑚, and if it holds for one 𝑛 ∈ N, 

then 

‖〈𝑋1 ⋆𝛬 . . .⋆𝛬 𝑋𝑛+1〉𝑚‖𝛼
∗  

≤∑
1

𝑡!

𝑘

𝑡=0

‖〈𝜇𝑅𝑒𝑗𝑒𝑐𝑡 ((P𝛬)
𝑡( (𝑋1 ⋆𝛬 . . .⋆𝛬 𝑋𝑛) ⊗𝜋 𝑋𝑛+1))〉𝑚‖𝛼

∗  

≤∑ 

𝑘

𝑡=0

∑  

min(𝑚,𝑘−1)

ℓ=0

1

𝑡!
‖𝜇∨ ((P𝛬)

𝑡(〈𝑋1 ⋆𝛬 . . .⋆𝛬 𝑋𝑛〉𝑚−ℓ+𝑡⊗𝜋 〈𝑋𝑛+1〉ℓ+𝑡))‖𝛼
∗  

≤∑ ∑
1

𝑡!

 min {𝑚,𝑘−𝑡}

ℓ=0

𝑘

𝑡=0

 (
𝑚
ℓ
)

1
2
‖(P𝛬) (

𝑡 〈𝑋1 ⋆𝛬 .⋆𝛬 𝑋𝑛〉𝑚−ℓ+𝑡⊗𝜋 〈𝑋𝑛+1〉ℓ+𝑡)‖𝛼⊗𝜋𝛼 

≤∑ ∑

 min {𝑚,𝑘−𝑡}

ℓ=0

𝑘

𝑡=0

 (
𝑚
ℓ
)

1
2
 (
𝑚 − ℓ +𝑡
𝑡

)

1
2
 (
ℓ +𝑡
𝑡

)

1
2
‖〈𝑋1 ⋆𝛬⋆𝛬 𝑋𝑛〉𝑚−ℓ+𝑡‖𝛼‖〈𝑋𝑛+1〉ℓ+𝑡‖𝛼

∗  

≤∑ ∑

 min {𝑚,𝑘−𝑡}

ℓ=0

𝑘

𝑡=0

 (
ℓ +𝑡
𝑡

) (
 k(n + 1)
 𝑘

)

1
2
‖〈𝑋1 ⋆𝛬⋆𝛬 𝑋𝑛〉𝑚−ℓ+𝑡‖𝛼‖〈𝑋𝑛+1〉ℓ+𝑡‖𝛼

∗  

≤∑ ∑

 min {𝑚,𝑘−𝑡}

ℓ=0

𝑘

𝑡=0

 (
ℓ +𝑡
𝑡

) (

  
k(n + 1)

(𝐾!)𝑛+1
 )

1
2

(2e2)𝑘𝑛‖𝑋1‖𝛼‖𝑋𝑛‖𝛼‖𝑋𝑛+1‖𝛼
∗  

=∑ ∑

 min {𝑚,𝑘−𝑡}

ℓ=0

𝑘

𝑡=0

 (𝑝|+𝑡𝑡) (
(𝑘(𝑛 + 1))!

(𝑘!)𝑛+1
)

1
2

(2e2)𝑘𝑛‖𝑋1‖𝛼
∗  . . . ‖𝑋𝑛+1‖𝛼

∗  

≤ (
(𝑘(𝑛 + 1))!

(𝑘!)𝑛+1
)

1
2

(2e2)𝑘(𝑛+1)‖𝑋1‖𝛼
∗ . . . ‖𝑋𝑛+1‖𝛼

∗  

holds due to the grading of 𝜇∨ and P𝛬, the estimates from Propositions (6.2.6) as well as 

(6.2.7) and Lemma (6.2.10) for 𝜇∨ and P𝛬, and the previous Lemma (6.2.46).  

Proposition (6.2.48)[280]: Let 𝛬 be a continuous bilinear form on 𝑉, then exp⋆𝛬 (v) is 

absolutely convergent and 



223 

exp⋆𝛬  (𝑣) = ∑
𝑣⋆𝛬𝑛

𝑛!

∞

𝑛=0

= e
1
2
𝛬(𝑣,𝑣)expV(𝑣)              (131) 

holds for all 𝑣 ∈ 𝑉. Moreover, 

expV(𝑣)  ⋆𝛬 expV(𝑤) = e
𝛬(𝑣,𝑤)expV(𝑣 + 𝑤)                 (132) 

and 

〈exp∨(𝑣)|exp∨(𝑤)〉𝛼
∗ = e〈𝑣|𝑤〉𝛼                         (133) 

hold for all 𝑣, 𝑤 ∈ 𝑉 and all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 . Finally, expV(𝑣)
∗ = exp∨(𝑣) for all 𝑣 ∈ 𝑉 if 𝑉 

is equipped with a continuous antilinear involutio 𝑛− 

Proof The existence and absolute convergence of ⋆𝛬 ‐exponentials of vectors follows 

directly from the previous Lemma (6.2.47) with 𝑘 = 1 and 𝑋1 = ⋯ = 𝑋𝑛 = 𝑣: 

∑
‖𝑣⋆𝛬𝑛‖𝛼

∗

𝑛!

∞

𝑛=0

≤∑
(4e3‖𝑣||𝛼)

𝑛

√𝑛!

∞

𝑛=0

1

2𝑛
≤ cs(∑

(4e3‖𝑣‖𝛼)
2𝑛

𝑛!

∞

𝑛=0

)

1
2

(∑
1

4𝑛

∞

𝑛=0

)

1
2

< ∞ 

The explicit formula can then be derived like in [101]. We just note that 

P𝛬(expV(𝑣) ⊗𝜋 expV(𝑤)) = ∑ P𝛬

∞

𝑘,ℓ=0

(
𝑣∨𝑘

𝑘!
⊗𝜋

𝑤∨ℓ

ℓ!
) 

= 𝛬(𝑣,𝑤) ∑
𝑘𝑣∨(𝑘−1)

𝑘!

∞

𝑘,ℓ=1

⊗𝜋

𝑝𝑤∨(ℓ−1)

ℓ!
 

and so 

expV(𝑣)  ⋆𝛬 expV(𝑤) =∑
1

𝑡!

∞

𝑡=0

𝜇∨ ((P𝛬)
𝑡(expV(𝑣) ⊗𝜋 expV(𝑤)))

= e𝛬(𝑣,𝑤)exp∨(𝑣) ∨ exp∨(𝑤) . 
The remaining two identities are the results of straightforward calculations. 

We show that there exists a dense ∗‐subalgebra consisting of uniformly bounded elements: 

Definition (6.2.49)[280]: Let . ̅be a continuous antilinear involution on V. We define the 

linear subspace 

𝑆per
∗ (𝑉) ∶=  𝑠𝑝𝑎𝑛 {𝑒𝑥𝑝𝑉(𝑖𝑣)  ∈ 𝑆∗(𝑉)cp1|𝑣 ∈ V 𝑎𝑛𝑑 𝑣 = 𝑣}     (134) 

of 𝑆∗(𝑉)cp1. 

Proposition (6.2.50)[280]: Let . ̅be a continuous antilinear involution on V. Then 𝑆per
∗ (𝑉) 

is a dense ∗‐subalgebra of (𝑆∗(𝑉)cp1∗ ⋆𝛬, ) with respect to all products ⋆𝛬 for all continuous 

bilinear Hermitian forms 𝛬 on 𝑉 and 

‖𝑋‖∞,𝛬 ∶=  sup √𝑤(𝑋
∗ ⋆𝛬 𝑋) < ∞                       (135) 

holds for all 𝑋 ∈ 𝑆per(𝑉) , where the supremum runs over all continuous positive linear 

functionals 𝑤 on (𝑆⋅(𝑉),⋆𝛬,∗) that are normalized to 𝑤(1) = 1. 

Proof. Proposition (6.2.48) shows that 𝑆per
∗ (𝑉) is a∗‐subalgebra of 𝑆∗(𝑉)cp1 with respect to 

all products ⋆𝛬 for all continuous bilinear Hermitian forms 𝛬 on 𝑉. As 

−i
d

d𝑧
|𝑧=0expV(i𝑧𝑣) = 𝑣 for all 𝑣 ∈ 𝑉 with 𝑣 = 𝑣 we see that the closure of the subalgebra 
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𝑆per
∗ (𝑉) contains 𝑉, hence 𝑆∗(𝑉) which is (as a unital algebra) generated by 𝑉, and so the 

closure of 𝑆per
∗ (𝑉) coincides with 𝑆∗(𝑉)cp1. 

As 𝑆per
∗ (𝑉) is spanned by exponentials and (𝑣(expV(i𝑣)

∗ ⋆𝛬 exp∨(i𝑣)) =

e𝛬(𝑣,𝑣)(𝑣(expV(0)) = e
𝛬(𝑣,𝑣) holds for all positive linear functionals w on (𝑆∗(𝑉),⋆𝛬,∗) that 

are normalized to (𝑣(1) = 1 by Proposition (6.2.48), it follows that ‖𝑋‖∞,𝛬 < ∞ for all 𝑋 ∈

𝑆per
∗ (𝑉) . 

Note that one can show that ‖ ⋅ ‖∞,𝛬 is a 𝐶∗‐norm on (𝑆⋅(𝑉),⋆𝛬,∗) if the continuous positive 

linear functionals are point‐separating. In contrast to the existence of exponential of vectors, 

we get strict constraints on the existence of exponentials of quadratic elements: 

Proposition (6.2.51)[280]: Let . ̅be a continuous antilinear involution on V. Then there is 

no locally convex topology 𝜏 on 𝑆alg
∗ (𝑉) with the property that any (undeformed) exponential 

exp∨(𝑋) = ∑
𝑋∨𝑛

𝑛!
∞
𝑛=0  of any 𝑋 ∈ 𝑆2(𝑉)\{0} exists in the completion of 𝑆alg

∗ (𝑉) under 𝜏 and 

such that all the products ⋆𝛬 for all continuous Hermitian bilinear forms 𝛬 on 𝑉 as well as 

the ∗‐involution and the projection 〈⋅〉0 on the scalars are continuous. 

Proof. Analogously to the Proof of Theorem (6.2.18) we see that, if all the products ⋆𝛬 for 

all continuous Hermitian bilinear forms 𝛬 on 𝑉 as well as the ∗‐involution and the projection 

〈⋅〉0 on the scalars are continuous, then all the extended positive Hermitian forms 〈⋅ | ⋅〉𝛼
∗  for 

all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 would have to be continuous and thus extend to the completion of 𝑆alg
∗ (𝑉) . 

Now let 𝑋 ∈ 𝑆2(𝑉)\{0} be given. There exist 𝑘 ∈ M and 𝑥 ∈ 𝑉𝑘 such that 𝑥1, . . . , 𝑥𝑘 are 

linearly independent and 𝑋 = ∑ ∑ �̃�𝑖𝑗𝑘
𝑗=1

𝑘
𝑖=1 𝑥𝑖 ∨ 𝑥𝑗 with complex coefficients �̃�𝑖𝑗. If there 

exists an 𝑖 ∈ {1, 𝑘} such that �̃�𝑖𝑖 ≠ 0, then we can assume without loss of generality that 

𝑖 = 1 and �̃�11 = 1 and define a continuous positive Hermitian form on 𝑉 by 〈𝑣|𝑤〉(𝑣 : =

𝑤(𝑉)𝑎) (𝑤) , where 𝑐 ⊃: 𝑉 → ℂ is 

a continuous linear form on 𝑉 that satisfies 𝑤(𝑥1) = 1 and 𝑤(𝑥𝑖) = 0 for 𝑖 ∈ {2, 𝑘}. 

Otherwise we can assume without loss of generality that �̃�11 = �̃�22 = 0 and �̃�12 = 1 and 

define a continuous positive Hermitian form on 𝑉 by 〈𝑣|𝑤〉(𝑣 : = (𝑣(𝑣)
𝑇
(𝑣(𝑤) , where 

(𝑣: 𝑉 → ℂ2 is a continuous linear map that satisfies 𝑤(𝑥1) = (
1
0
) 𝛼𝑗(𝑥2) = (

0
1
) and 

𝛼𝑗(𝑥𝑖) = 0 for 𝑖 ∈ {3, , 𝑘}. 

In the first case, this results in 〈𝑋∨𝑛|𝑋∨𝑛〉𝐽(𝑗 = (2𝑛)! and in the second, 〈𝑋∨𝑛|𝑋∨𝑛〉(𝑣 =

(𝑛!)2. So ∑
𝑋∨𝑛

𝑛!
∞
𝑛=0  cannot converge in the completion of 𝑆alg(𝑉) because 

〈∑
𝑋∨𝑛

𝑛!

𝑁

𝑛=0

|∑
𝑋∨𝑛

𝑛!

𝑁

𝑛=0

〉w
∗ ≥∑1

𝑁

𝑛=0

→ 
𝑁  ∞
→  ∞.  

A similar result has already been obtained by Omori, Maeda, Miyazaki and Yoshioka in the 

2‐dimensional case in [108], where they show that associativity of the Moyal‐product breaks 

down on exponentials of quadratic functions. Note that the above proposition does not 

exclude the possibility that exponentials of some quadratic functions exist if one only 

demands that some special deformations are continuous. 
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Even though exponentials of non‐trivial tensors of degree 2 are not contained in 𝑆∗(𝑉)cp1, 
the continuous positive linear functionals are in some sense “analytic” for such tensors: 

Proposition (6.2.52)[280]: Let . ̅ be a continuous antilinear involution on 𝑉 and 𝛬 a 

continuous Hermitian bilinear form on V. Let 𝑤: 𝑆∗(𝑉)cp1 → ℂ be a continuous linear 

functional on 𝑆∗(𝑉)cp1 that is positive with respect to ⋆𝛬. Then for all 𝑋 ∈ 𝑆(2)(𝑉)cp1 there 

exists an 𝜀 > 0 such that 

∑
𝜀𝑛𝑤((𝑋⋆𝛬𝑛)∗ ⋆𝛬 𝑋

⋆𝛬𝑛)
1
2

𝑛!

∞

𝑛=0

< ∞             (136) 

holds. 

𝐏roof: The seminorm 𝑆∗(𝑉)cp1 ∋ 𝑌 ↦ 𝛼𝐽(𝑌∗ ⋆𝛬 𝑌)
1/2 ∈ [0, ∞[ is continuous by 

construction, so there exist 𝐶 > 0 and ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 such that 𝑤(𝑌∗ ⋆𝛬 𝑌)
1/2 ≤ 𝐶‖𝑌‖𝛼

∗  holds 

for all 𝑌 ∈ 𝑆∗(𝑉)cp1. We can even assume without loss of generality that ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝛬. Now 

choose 𝜀 > 0 with 𝜀(8e6‖𝑋‖𝛼
∗ ) ≤ 1, then Lemma (6.2.47) in the case 𝑘 = 2 and 𝑋1 = ⋯ =

𝑋𝑛 = 𝑋 shows that 

∑
𝜀𝑛(𝑣((𝑋⋆𝛬𝑛)∗ ⋆𝛬 𝑋

⋆𝛬𝑛)
1
2

𝑛!

∞

𝑛=0

≤ 𝐶∑
𝜀𝑛‖𝑋⋆𝛬𝑛‖𝛼

∗

𝑛!

∞

𝑛=0

 

≤ 𝐶∑
√(2𝑛)!

√2
3𝑛
𝑛!

∞

𝑛=0

 

≤ 𝐶∑
1

√2
𝑛

∞

𝑛=0

 

=
𝐶√2

√2 − 1
.  

It is an immediate consequence of this proposition that Hermitian tensors of grade at most 

2 are represented by essentially self‐adjoint operators in every GNS representation 

corresponding to a continuous positive linear functional (𝜆) . Recall that for a∗‐algebra 𝒜 

with a positive linear functional (𝐽 ⊃:𝒜 → ℂ, the GNS representation of 𝒜 associated to w 

is the unital ∗‐homomorphism 𝜋(𝑣:𝒜 → Adj(𝒜/ℐ𝛼𝐽) into the adjointable endomorphisms 

on the pre‐Hilbert space ℎ𝛼𝑗 = 𝒜/ℐ(𝜆) with inner product 〈⋅ | ⋅〉(𝜆), where ℐ0⊃ =

{𝑎 ∈ 𝒜|𝑤(𝑎∗𝑎) = 0} and 〈[𝑎]|[𝑏]〉(𝑣 = 𝑤(𝑎
∗𝑏) for all [𝑎], [𝑏] ∈ ℎ(𝑣 with representatives 

𝑎, 𝑏 ∈ 𝒜. 
Theorem (6.2.53)[280]: Let . ̅  be a continuous antilinear involution on 𝑉 and 𝛬 a 

continuous Hermitian bilinear form on V. Let 𝑤: 𝑆∗(𝑉)cp1 → ℂ be a continuous linear 

functional on 𝑆⋅(𝑉)cp1 that is positive with respect to ⋆𝛬. Then for 𝑋∗ = 𝑋 ∈ 𝑆(2)(𝑉)cp1 all 

vectors in the 𝐺𝑁𝑆 pre‐Hilbert space ℋ𝛼′ are analytic for 𝜋𝛼)(𝑋) which is therefore 

essentially self‐adjoint. 

Proof It is clear from the construction of the GNS representation that 𝜋𝑤)(𝑋) is a symmetric 

operator on ℎ𝜔 = 𝑆
∗(𝑉)cp1/ℐ𝜔 and by Nelson’s theorem, see e.g. [286], it is sufficient to 

show that all vectors [𝑌] ∈ ℋ(𝑣 are analytic for 𝜋(′𝐽(𝑋):From 
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〈𝜋(𝑣(𝑋)
𝑛[𝑌]|𝜋(𝑗𝐽(𝑋)

𝑛[𝑌]〉(𝑣 = (𝐽 ⊃ ((𝑋
⋆𝛬𝑛 ⋆𝛬 𝑌)

∗ ⋆𝛬 (𝑋
⋆𝛬𝑛 ⋆𝛬 𝑌))

= (𝑣(𝑌∗ ⋆𝛬 (𝑋
⋆𝛬𝑛)∗ ⋆𝛬 𝑋

⋆𝛬𝑛 ⋆𝛬 𝑌) 
it follows that analyticity of the vector [𝑌] is equivalent to the analyticity of the continuous 

positive linear functional 𝑆∗(𝑉)cp1 ∋ 𝑍 ↦ 𝑤𝑌(𝑍) ∶= 𝑤(𝑌
∗ ⋆𝛬 𝑍 ⋆𝛬 𝑌) ∈ ℂ in the sense of 

the previous Proposition (6.2.52).  

Finally we want to discuss two special cases that have appeared in the literature 

before, namely that 𝑉 is a Hilbert space and that 𝑉 is a nuclear space. 

Assume that 𝑉 is a (complex) Hilbert space with inner product 〈⋅ | ⋅〉1. We note that 

in this case 𝑆∗(𝑉) is not a pre‐Hilbert space but only a countable projective limit of pre‐

Hilbert spaces, because the extensions 〈⋅ | ⋅〉𝛼
∗  of the (equivalent) inner products 〈⋅ | ⋅〉𝛼 : =

𝛼〈⋅ | ⋅〉1 for 𝛼 ∈] 0, ∞[ are not equivalent. If 𝑉 is a Hilbert space, then its topological dual 

and, more generally, all spaces of bounded multilinear functionals on 𝑉 are Banach spaces. 

This allows a more detailed analysis of the continuity of functions in 𝒞𝛼)𝐻𝑆(𝑉ℎ
′) and of the 

dependence of the product ⋆𝛬 on ∈ 𝔅𝑖l(𝑉) . 

Theorem (6.2.54)[280]: Let 𝑉 be 𝑎 (complex) Hilbert space with inner product 〈⋅ | ⋅〉1 and 

unit ball 𝑈 ⊆ 𝑉 and let B𝑖l(𝑉) be the Banach space of all continuous bilinear forms on 𝑉 

with norm ‖𝛬‖ : = sup𝑣,𝑤∈𝑈|𝛬(𝑣,𝑤)|. Then the map B𝑖l(𝑉) × 𝑆∗(𝑉)cp1 × 𝑆∗(𝑉)cp1 →

𝑆∗(𝑉)cp1 
(𝛬, 𝑋, 𝑌) ↦ 𝑋 ⋆𝛬 𝑌                                      (137) 

is continuous. 

𝐏roof: Note that for a Hilbert space 𝑉, the continuous inner products 〈⋅ | ⋅〉𝜆 with 𝜆 > 0 are 

cofinal in ℐ𝑉. Now let 𝛬 ∈ B𝑖l(𝑉), 𝑋, 𝑌 ∈ 𝑆∗(𝑉)cp1 and 𝜀 > 0 be given, then 

‖𝑋′ ⋆𝛬′ 𝑌
′ − 𝑋 ⋆𝛬 𝑌‖𝜆 ≤ ‖𝑋

′ ⋆𝛬′ 𝑌
′ − 𝑋 ⋆𝛬′ 𝑌‖𝜆 + ‖𝑋 ⋆𝛬′ 𝑌 − 𝑋 ⋆𝛬 𝑌‖𝜆 

holds for all 𝜆 > 0 and all 𝛬′ ∈ B𝑖1(𝑉) as well as all 𝑋′, 𝑌′ ∈ 𝑆⋅(𝑉)cp1. Moreover, 

‖𝑋′ ⋆𝛬′ 𝑌
′ − 𝑋 ⋆𝛬′ 𝑌‖𝜆 ≤ ‖(𝑋’ − 𝑋) ⋆𝛬′ 𝑌

′‖𝜆 + ‖𝑋 ⋆𝛬′ (𝑌
′ − 𝑌)‖𝜆 

≤ 4‖𝑋’ − 𝑋‖8𝜆
∗ ‖𝑌′‖8𝜆

∗ + 4‖𝑋‖8𝜆
∗ ‖𝑌′ − 𝑌‖8𝜆

∗  

holds for all 𝑋′, 𝑌′ ∈ 𝑆∗(𝑉)cp1 as well as all 𝜆 > 0 and all 𝛬′ ∈ B𝑖1(𝑉) such that ‖ ⋅ ‖𝜆 ∈

𝒫𝑉,𝛬′ by Lemma (6.2.12). One can check on factorizing symmetric tensors that P𝛬 and P𝛬′−𝛬 

commute and by using that 

𝑋 ⋆𝛬′ 𝑌 =∑
1

𝑡!

∞

𝑡=0

𝜇∨ ((P𝛬+(𝛬′−𝛬))
𝑡′

(𝑋 ⊗𝜋 𝑌)) 

= ∑
1

𝑡! 𝑠!

∞

𝑡,𝑠=0

𝜇∨((P𝛬)
𝑡(P𝛬′−𝛬)

𝑠(𝑋 ⊗𝜋 𝑌)) 

=∑
1

𝑠!

∞

𝑠=0

𝜇⋆𝛬((P𝛬′−𝛬)
𝑠(𝑋 ⊗𝜋 𝑌)) , 

it follows that 

‖𝑋 ⋆𝛬′ 𝑌 − 𝑋 ⋆𝛬 𝑌‖𝜆 ≤∑
1

𝜌𝑠𝑠!

∞

𝑠=1

‖𝜇⋆𝛬 ((P𝜌(𝛬′−𝛬))
𝑠
(𝑋 ⊗𝜋 𝑌))‖𝜆

∗  
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≤ 4∑
1

𝑝𝑠𝑠!

∞

𝑠=1

‖(P𝜌(𝛬′−𝛬))
𝑠
(𝑋 ⊗𝜋 𝑌)‖8𝜆⊗𝜋8𝜆

∗  

≤ 8∑
1

(2𝜌)𝑠

∞

𝑠=1

‖𝑋‖32𝜆
∗ ‖𝑌‖32𝜆

∗  

=
8

2𝑝 − 1
‖𝑋‖32𝜆

∗ ‖𝑌‖32𝜆
∗  

holds for all 𝜌 >
1

2
, 𝜆 > 0, and all 𝛬′ ∈ Bi𝑙(𝑉) if ‖ ⋅ ‖𝜆 ∈ 𝒫𝑉,𝛬 ∩ 𝒫𝑉,𝜌(N−𝛬) by Lemma 

(6.2.12) and Proposition (6.2.11) with 𝑐 = 2. 

Assume that 𝜆 ≥ 1 + ||𝛬|| andchoose 𝑝 >
1

2
 such that

8

2𝜌−1,d||
‖𝑋||32𝜆

∗ ||𝑌‖32𝜆
∗ ≤

𝜀

3,‖
. 

Then‖ ⋅ ‖𝜆 ∈  𝒫𝑉,𝛬 ∩ 𝒫𝑉,𝜌(𝛬−𝛬)for all 𝛬’ ∈ 𝐵𝑖𝑙(𝑉)with ‖𝛬’ − 𝛬|| ≤
1

𝜌
and ||𝑋’ ⋆𝛬, 𝑌’ −

𝑋 ⋆𝛬 𝑌 ||𝜆 holds for all these 𝛬′ and all 𝑋′, 𝑌′ ∈ 𝑆∗⋅(𝑉)cp1 with ‖𝑋′ − 𝑋‖8𝜆
∗ ≤

𝜀/(12 + 12‖𝑌‖8𝜆) and ‖𝑌′ − 𝑌‖8𝜆 ≤  min {1, 𝜀/(12 + 12‖𝑋‖8𝜆)}. This proves 

continuity of ⋆ at (𝛬, 𝑋, 𝑌) . □ 

Theorem (6.2.55)[280]: Let 𝑉 be 𝑎 (complex) Hilbert space with inner product 〈⋅ | ⋅〉1 and 

a continuous antilinear involutio 𝑛− that fulfils 〈𝑣|𝑤〉1 = 〈𝑣|𝑤〉1 for all , 𝑤 ∈ 𝑉, then 

�̂�: 𝑉ℎ
′ → ℂ is smooth in the Fréchet sense for all 𝑋 ∈ 𝑆∗(𝑉)cp1. 

Proof. By the Fréchet‐Riesz theorem we can identify 𝑉ℎ
′ with 𝑉ℎ by means of the antilinear 

map . b:𝑉ℎ → 𝑉ℎ. As the translations 𝜏∗ are automorphisms of 𝑆∗(𝑉)cp1, it is sufficient to 

show that �̂� is smooth at 0 ∈ 𝑉ℎ
′. So let 𝐾 ∈ M0 and 𝑟 ∈ 𝑉ℎ be given with 𝑟 ≠ 0 and ‖𝑟‖1 ≤

1. We have already seen in Proposition (6.2.30) that all directional derivatives of �̂� exist 

and form bounded symmetric multilinear maps (𝑉ℎ
′)𝑘 ∋ 𝜌 ↦ (�̂�𝜌

(𝑘)
�̂�) (0) ∈ (D. These 

maps are indeed the derivatives of �̂� in the Fréchet sense due to the analyticity of �̂�: Define 

�̂� : = 𝑟/‖𝑟‖1, then due to Proposition (6.2.30) and Lemma (6.2.26) the estimate 

1

‖𝑟‖1
𝐾+1 |�̂�(𝑟

b) −∑
1

𝑘!

𝐾

𝑘=0

(�̂�
(𝑟b,…,𝑟b)

(𝑘)
�̂�) (0)| =

1

‖𝑟‖1
𝐾+1 |〈𝜏𝑟b

∗ (𝑋) −∑
1

𝑘!

𝐾

𝑘=0

(𝐷𝑟b)
𝑘
𝑋〉0| 

=
1

‖𝑟‖1
𝐾+1 |〈 ∑

1

𝑘!

∞

𝑘=𝐾+1

(𝐷𝑟b)
𝑘
𝑋〉0| 

≤ |〈 ∑
1

𝑘!

∞

𝑘=𝐾+1

(𝐷�̂�b)
𝑘
𝑋〉0| 

≤ ∑
1

𝑘!

∞

𝑘=𝐾+1

‖(𝐷�̂�b)
𝑘
𝑋‖

1

∗

 

≤ ∑
1

√𝑘!

∞

𝑘=𝐾+1

‖𝑋‖2
∗  

with 𝐶 = ∑
1

√𝑘!𝑘=𝐾+1 < ∞ holds uniformly for all 𝑟 ≠ 0 with ‖𝑟‖1 ≤ 1.  
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The formal deformation quantization of a Hilbert space in a very similar setting has already 

been examined in [106] by Dito. There the formal deformations of exponential type of a 

certain algebra ℱ𝐻𝑆 of smooth functions on a Hilbert space ℋ was constructed. ℱ𝐻𝑆 consists 

of all smooth (in the Fréchet sense) functions 𝑓 whose derivatives fulfil the additional 

condition that for all 𝜎 ∈ ℋ 

𝑘! ≪ 𝑓|𝑓 ≫𝑘 (𝜎):= ∑ |

𝑖∈𝐼𝑘

(�̂�
(𝑒𝑖1 ,…,𝑒𝑖𝑘)

(𝑘)
𝑓) (𝜎)|2 < ∞       (138) 

holds and depends continuously on 𝜎 for one (hence all) Hilbert base 𝑒 ∈ ℋ𝐼 of ℋ indexed 

by a set I. In this case ≪ 𝑓|𝑓 ≫𝑘∈ ℱ𝐻𝑆 holds. 

The convergent deformations discussed and the formal deformations discussed by Dito in 

[106] are very much analogous: In both cases it is necessary to restrict the construction to a 

subalgebra of all smooth functions, ℱ𝐻𝑆 or 𝒞0⊃𝐻𝑆(𝑉ℎ
′) , where the additional requirement is 

that all the derivatives of fixed order (in the formal case) or of all orders (in the convergent 

case) at every point 𝜎 obey a Hilbert‐Schmidt condition and that the square of the 

corresponding Hilbert‐Schmidt norms, ≪ 𝑓|𝑓 ≫𝑘 (𝜎) or ≪ 𝑓|𝑓 ≫∗ (𝜎) , respectively, 

depend in a sufficiently nice way on 𝜎 such that one can prove that ≪ 𝑓|𝑓 ≫𝑘 and ≪

𝑓|𝑓 ≫∗ are again elements of ℱ𝐻𝑆 or 𝒞𝑤𝑛𝑠(𝑉ℎ
′) (see the Proof of Proposition (6.2.17) in 

[106] and our Proposition (6.2.36)). Moreover, the results concerning equivalence of the 

deformations are similar: In [106] it is shown that two (formal) deformations are equivalent 

if and only if they differ by bilinear forms of Hilbert‐Schmidt type, while our Theorem 

(6.2.23) shows that the corresponding equivalence transformations are continuous if and 

only if they are generated by bilinear forms of Hilbert‐Schmidt type. 

We conclude with a short discussion of the case that 𝑉 is nuclear. It is well known 

that the topology of a nuclear space can be described by continuous Hilbert seminorms. 

Moreover, the topology of the Hilbert tensor product on 𝑆𝑘(𝑉) coincides with the topology 

of the projective tensor product which was examined in [101]. However, for the comparison 

of the topologies on 𝑆∗(𝑉) we have to be more careful: Let ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 be given. Define the 

seminorm ‖ ⋅ ‖𝛼,pr
∗  as 

‖𝑋‖𝛼,pr
∗ ∶= |〈𝑋〉0| +∑√𝑘!

∞

𝑘=1

 inf ∑∏‖

𝑘

𝑚=1𝑖∈𝐼

𝑥𝑖,𝑚‖𝛼                    (139) 

for all 𝑋 ∈ 𝜏aig(𝑉) , where the infimum runs over all possibilities to express 〈𝑋〉𝑘 as a finite 

sum of factorizing tensors, i.e. as 〈𝑋〉𝑘 = ∑ 𝑥𝑖,1
𝑑
𝑖=1 ⊗ ⊗𝑥𝑖,𝑘 with 𝑥𝑖 ∈ 𝑉

𝑘. 

Lemma (6.2.56)[280]: One has the estimate 

‖𝑋‖𝛼
∗ ≤ ‖𝑋‖𝛼,pr

∗                                            (140) 

for all 𝑋 ∈ 𝜏ai
∗  g(𝑉) . Moreover, if there is a ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉 , ‖ ⋅ ‖𝛽 ≥ ‖ ⋅ ‖𝛼, such that for every 

〈⋅ | ⋅〉𝛽− orthonormal 𝑒 ∈ 𝑉𝑑 and all 𝑑 ∈ M the estimate ∑ ‖𝑑
𝑖=1 𝑒𝑖‖𝛼

2 ≤ 1 holds, then 

‖𝑋‖𝛼,pr
∗ ≤ ‖𝑋‖𝛽

∗                                (141) 

for all 𝑋 ∈ 𝜏aig(𝑉) . 

Proof. Let 𝑋 ∈ 𝜏aig(𝑉) be given, then ‖𝑋‖𝛼
∗ ≤ ∑ ‖∞

𝑘−0 〈𝑋〉𝑘‖𝛼
∗  and ‖𝑋‖𝛼,pr

∗ =

∑ ‖∞
𝑘−0 〈𝑋〉𝑘‖𝛼,pr

∗  Thus it is sufficient for the first estimate to show that ‖〈𝑋〉𝑘‖𝛼
∗ ≤
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‖〈𝑋〉𝑘‖𝛼,pr
∗  for all 𝑘 ∈ M0. 𝐹ix𝑘 ∈ N0 and assume that 〈𝑋〉𝑘 = ∑ 𝑥𝑖,1𝑖∈𝐼 ⊗⋯⊗𝑥𝑖,𝑘 with 

𝑥𝑖 ∈ 𝑉
𝑘. Then 

‖〈𝑋〉𝑘‖𝛼
∗ ≤∑‖

𝑖∈𝐼

𝑥𝑖,1⊗⋅ ⋅ ⋅⊗ 𝑥𝑖,𝑘‖𝛼
∗ = √𝑘!∑𝛤

𝑖∈𝐼

I𝑚=1
𝑘 ‖𝑥𝑖,𝑚‖𝛼

  

shows that ‖〈𝑋〉𝑘‖𝛼
∗ ≤ ‖〈𝑋〉𝑘‖𝛼,pr

∗ , hence ‖𝑋‖𝛼
∗ ≤ ‖𝑋‖𝛼,pr

∗ . For the second estimate, let ‖ ⋅

‖𝛽 with the stated properties and 𝑋 ∈ 𝑇alg
𝑘 (𝑉) be given. Use Lemma (6.2.3) to construct 

𝑋0 = ∑ 𝑥𝑎,1𝑎∈𝐴 ⊗⋯⊗𝑥𝑎,𝑘 and �̃� = ∑ 𝑋𝑎
′

𝑎′∈(1…..𝑑) 𝑒𝑎1′ ⊗ ⊗ 𝑒𝑎𝑘
′  with 𝑒 ∈ 𝑉𝑘 

orthonormal with respect to 〈⋅ | ⋅〉𝛽. Clearly ‖𝑋0‖𝛼,pr
∗ = 0 and so 

‖𝑋‖𝛼,pr
∗ ≤ ‖�̃�‖𝛼,pr

∗  

≤ √𝑘! ∑ |

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑎
′
|∐ ‖

𝑘

𝑚=1

𝑒𝑎𝑚′ ‖𝛼 

≤ cs(𝑘!( ∑ |

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑎
′
|2)( ∑ ,

𝑎′∈{1,…𝑑}𝑘

∐‖

𝑘

𝑚=1

𝑒𝑎𝑚′ ‖𝛼
2))

1
2

 

≤ (𝑘!( ∑ |

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑎
′
|2)(∑‖

𝑑

𝑖=1

𝑒𝑖‖𝛼
2)

𝑘

)

1
2

 

≤ ‖𝑋‖𝛽
∗ .  

Proposition (6.2.57)[280]: Let 𝑉 be a nuclear space, then the topology on 𝑆⋅(𝑉) coincides 

with the one constructed for 𝑅 =
1

2
. 

Proof.: This is a direct consequence of the preceeding lemma because the locally convex 

topology constructed in [101] for 𝑅 =
1

2
 is the one defined by the seminorms ‖ ⋅ ‖𝛼,pr for all 

‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 and because in a nuclear space, such seminorms ‖ ⋅ ‖𝛽 as required in the lemma 

exist for all ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 , see e.g. [285] or also [117].  

From [101] we get: 

Corollary (6.2.58)[280]: Let 𝑉 be a nuclear space, then 𝑆⋅(𝑉) is nuclear. 

And conversely, our Theorem (6.2.18) implies: 

Corollary (6.2.59)[280]: Let 𝑉 be a nuclear space, then the 𝑅 =
1

2
 topology constructed in 

[101] is the coarsest one possible under the conditions of Theorem (6.2.18) in the truely (not 

graded) symmetric case. 

As all continuous bilinear forms on a nuclear space 𝑉 are automatically of Hilbert‐Schmidt 

type (see [117] or use [285]), we also see that the equivalence transformations e△𝑏  are 

continuous for all continuous symmetric bilinear forms 𝑏 on 𝑉, which corresponds to [101]. 

Our discussion of translations and evaluation functionals then shows the existence of point‐
separating many positive linear functionals on the deformed algebras: 
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Theorem (6.2.60)[280]: Let 𝑉 be a Hausdorff nuclear space 𝑎𝑛𝑑 − a continuous antilinear 

involution of 𝑉 as well as 𝛬 a continuous Hermitian bilinear form on 𝑉, then there exist 

point‐separating many continuous positive linear functionals of (𝑆⋅(𝑉),⋆𝛬,∗) . 

𝐏roof: Choose some 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ such that ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝛬 and define a bilinear form 𝑏 on 

𝑉 by 𝑏(𝑣, 𝑤) : = 〈𝑣|𝑤〉𝛼 for all , 𝑤 ∈ 𝑉. Then 𝑏 is continuous and Hermitian by construction 

and symmetric due to the compatibility of 〈⋅ | ⋅〉𝛼with −. Moreover, 𝛬(𝑣, 𝑣) ≤ ‖𝑣‖𝛼‖𝑣‖𝛼 =

‖𝑣‖𝛼
2 = 〈𝑣|𝑣〉𝛼 = 𝑏(𝑣, 𝑣) holds for all 𝑣 ∈ 𝑉 and 𝑏 is of Hilbert‐Schmidt type because 

every continuous bilinear form on a nuclear space is of Hilbert‐Schmidt type (again, see 

[117] or use [285]). Because of this, Theorem (6.2.44) applies. 

Corollary (6.2.61)[288]: Let 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 , 𝑘 ∈ ℕ and 𝑋𝑗 ∈ 𝑇
𝑘(𝑉) be given. Then 𝑋𝑗 can be 

expressed as 𝑋𝑗 = (𝑋𝑗)0 + �̃�𝑗 with tensors (𝑋𝑗)0, �̃�𝑗 ∈ 𝑇
𝑘(𝑉) that have the following 

properties: 

𝑖. ) One has ∑  𝑗 ‖(𝑋𝑗)0‖𝛼
∗ = 0 and there exists a finite (possibly empty) set 𝐴 and tuples 

𝑥𝑎
𝑟 ∈ 𝑉𝑘 for all 𝑎 ∈ 𝐴 that fulfil ∑  𝑟 ∏  𝑘

𝑛=1 ‖𝑥𝑎,𝑛
𝑟 ‖𝛼

 = 0 and (𝑋𝑗)0 = ∑ ∑  𝑟 𝑥𝑎,1
𝑟

𝑎∈𝐴 ⊗ ⊗

𝑥𝑎,𝑘
𝑟 . 

ii.) There exist a 𝑑 ∈ N0 and a 〈⋅ | ⋅〉𝛼‐orthonormal tuple 𝑒 ∈ 𝑉𝑑 as well as complex 

coefficients 𝑋𝑗
𝑎′, such that 

  �̃�𝑗 = ∑ ∑ 

𝑗

𝑋𝑗
𝑎′

𝑎∈{1,…,𝑑}𝑘

𝑒𝑎1′ ⊗…⊗ 𝑒𝑎𝑘
′  𝑎𝑛𝑑 ∑  

𝑗

‖𝑋𝑗‖𝛼
∗2
=∑ 

𝑗

‖�̃�𝑗‖𝛼
∗2

 

= 𝑘! ∑ ∑ 

𝑗

|

𝑎∈{1,…,𝑑}𝑘

𝑋𝑗
𝑎′|2                                                                               (142) 

Proof: We can express 𝑋𝑗 as a finite sum of simple tensors, 𝑋𝑗 = ∑ ∑  𝑟 𝑥𝑏,1
𝑟 

𝑏∈𝐵 ⊗⋯⊗𝑥𝑏,𝑘
𝑟  

with a finite set 𝐵 and vectors 𝑥𝑏,𝑖
𝑟 ∈ 𝑉. Let 

𝑉𝑋𝑗: =  𝑠𝑝𝑎𝑛 {𝑥𝑏,𝑖
r |𝑏 ∈ 𝐵, 𝑖 ∈ {1, . . . , 𝑘}}  𝑎𝑛𝑑 𝑉(𝑋𝑗)0

: = {𝑣𝑟 ∈ 𝑉𝑋𝑗|‖𝑣
𝑟‖a = 0}. 

Construct a complementary linear subspace 𝑉𝑋𝑗
− of 𝑉(𝑋𝑗)0

 in 𝑉𝑋𝑗, then we can also assume 

without loss of generality that 𝑥𝑏,𝑖
𝑟 ∈ 𝑉(𝑋𝑗)0

U𝑉𝑋𝑗
− for all 𝑏 ∈ 𝐵 and 𝑖 ∈ {1,⋯ , 𝑘}. Note that 

𝑉𝑋𝑗 , 𝑉(𝑋𝑗)0 and 𝑉𝑋𝑗
− are all finitedimensional. Now define 𝐴 : = {𝑎 ∈ 𝐵|∃𝑛∈{1,…,𝑘}: 𝑥𝑎,𝑛

𝑟 ∈

𝑉(𝑋𝑗)0} and (𝑋𝑗)0 : =
∑ ∑  𝑟 𝑥𝑎,1

𝑟
𝑎∈𝐴 ⊗⋯⊗𝑥𝑎,𝑘

𝑟 , then ∑  𝑟 ∏  𝑛=1
𝑘

‖𝑥𝑎,𝑛
𝑟 ‖𝛼 = 0 by 

construction and so ∑  𝑗 ‖(𝑋𝑗)0‖𝛼
∗ = 0 and ∑  𝑗 ‖𝑋𝑗 − (𝑋𝑗)0‖𝛼

∗ = ∑  𝑗 ‖𝑋𝑗‖𝛼
∗ . Restricted to 

𝑉𝑋𝑗
−, the positive Hermitian form 〈⋅ | ⋅〉𝛼 is even positive definite, i.e. an inner product. Let 

𝑑 : =  dim (𝑉𝑋𝑗
−) and 𝑒 ∈ 𝑉𝑑 be an 〈⋅ | ⋅〉𝛼‐orthonormal base of 𝑉𝑋𝑗

−. Define 𝑋�̃�: = 𝑋𝑗 −

(𝑋𝑗)0, then 𝑋�̃� = ∑ ∑  𝑗 𝑋𝑗
𝑎′

𝑎′∈{1,…,𝑑} 𝑒𝑎1′ ⊗⋯⊗ 𝑒𝑎𝑘
′  with complex coefficients 𝑋𝑗

𝑎′ and 
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∑ 

𝑗

‖𝑋𝑗‖𝛼
∗2 =∑ 

𝑗

‖𝑋�̃�‖𝛼
∗2 = ∑ ∑ 

𝑗

|

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑗
𝑎′|2‖𝑒𝑎1′ ⊗⋅⋅⋅⊗ 𝑒𝑎𝑘

′ ‖𝛼
∗2

= ∑ ∑ 

𝑗

|

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑗
𝑎′|2𝑘 !. 

Corollary (6.2.62)[288]: (see [280])  The linear map 𝜇 ⊗ is continuous and the estimate 

‖∑ 

𝑗

𝜇⊗(𝑍𝑗)‖𝛾
∗ ≤∑ 

𝑗

‖𝑍𝑗‖2𝛾⊗𝜋2𝛾
∗                                    (143) 

holds for all 𝑍𝑗 ∈ 𝑇
⋅(𝑉)⊗𝜋 𝑇

⋅(𝑉) and all ‖ ⋅ ‖𝛾 ∈ 𝒫𝑉. Moreover, all 𝑋𝑗 ∈ 𝑇
𝑘(𝑉) and 𝑌𝑗 ∈

𝑇ℓ(𝑉) with 𝑘, ℓ ∈ M0 fulfil for all ‖ ⋅ ‖𝛾 ∈ 𝒫𝑉 the estimate 

‖∑ 

𝑗

𝜇 ⊗ (𝑋𝑗⊗𝜋 𝑌𝑗)‖𝛾
∗ ≤ (

𝑘 + ℓ
𝑘
)

1
2
∑ 

𝑗

‖𝑋𝑗‖𝛾‖𝑌𝑗‖𝛾
∗ .                         (144) 

Proof: Let 𝑋𝑗 ∈ 𝑇
𝑘(𝑉) and 𝑌𝑗 ∈ 𝑇

ℓ(𝑉) with 𝑘, ℓ ∈ M0 be given. Then 

∑ 

𝑗

‖𝑋𝑗⊗𝑌𝑗‖𝛾
∗ =∑ 

𝑗

√〈𝑋𝑗⊗𝑌𝑗|𝑋𝑗⊗𝑌𝑗〉𝛾
∗ = (

𝑘 + ℓ
𝑘
)

1
2
‖∑ 

𝑗

𝑋𝑗‖𝛾
∗‖𝑌𝑗‖𝛾

∗  

holds. It now follows for all 𝑋𝑗 , 𝑌𝑗 ∈ 𝑇
⋅(𝑉) that 

∑ 

𝑗

‖𝑋𝑗⊗𝑌𝑗‖𝛾’
∗2 = ∑∑ 

𝑗

‖

∞

𝑚=0

〈𝑋𝑗⊗𝑌𝑗〉𝑚‖𝛾’
∗2                                                  

                         ≤ ∑∑ 

𝑗

(∑‖

𝑚

𝑛=0

〈𝑋𝑗〉𝑚−𝑛⊗ 〈𝑌𝑗〉𝑛‖𝛾
∗)

2∞

𝑚=0

                    

                    = ∑∑ 

𝑗

(∑  

𝑚

𝑛=0

(
𝑚
𝑛
)
1

2
‖〈𝑋𝑗〉𝑚−𝑛‖𝛾

∗‖〈𝑌𝑗〉𝑛‖𝛾
∗)

2∞

𝑚=0

 

                                    = ∑∑ 

𝑗

(∑( (
𝑚
𝑛
)
1

2𝑚
)

1
2

𝑚

𝑛=0

‖〈𝑋𝑗〉𝑚−𝑛‖2𝛾
∗ ‖〈𝑌𝑗〉𝑛‖2𝛾

∗ )

2
∞

𝑚=0

 

                        ≤
𝑐𝑠 ∑  

∞

𝑚=0

(∑  

𝑚

𝑛=0

(
𝑚
𝑛
)
1

2𝑚
)(∑∑ 

𝑗

‖

𝑚

𝑛=0

〈𝑋𝑗〉𝑚−𝑛‖2𝛾
∗2‖〈𝑌𝑗〉𝑛‖2𝛾

∗2) 

=∑ 

𝑗

‖𝑋𝑗‖2𝛾
∗2‖𝑌𝑗‖2𝛾

∗2 ,                                              

by the Cauchy‐Schwarz (CS) inequality.  

Corollary (6.2.63)[288]: The symmetrisation operator is continuous and fulfils 

∑  𝑗 ‖𝒮
⋅𝑋𝑗‖𝛾

∗ ≤ ∑  𝑗 ‖𝑋𝑗‖𝛾
∗  for all 𝑋𝑗 ∈ 𝑇

⋅(𝑉) and ‖ ⋅ ‖𝛾 ∈ 𝒫𝑉 . 

Proof: From Definition (6.2.1) it is clear that ∑  𝑗 〈𝑋j
𝜎|𝑌𝑗

𝜎〉𝛾 = ∑  𝑗 〈𝑋𝑗|𝑌𝑗〉𝛾 for all 𝑘 ∈ N0, 

𝑋𝑗 , 𝑌𝑗 ∈ 𝑇
𝑘(𝑉) and 𝜎 ∈ 𝔖𝑘 , because this holds for all simple tensors and because both sides 
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are (anti‐)linear in 𝑋𝑗 and 𝑌𝑗 . Therefore ‖𝑋𝑗
𝜎‖𝛾 = ‖𝑋𝑗‖𝛾 and ‖∑  𝑗 𝒮

𝑘𝑋𝑗‖𝛾 ≤ ∑  𝑗 ‖𝑋𝑗‖𝛾 and 

we get the desired estimate 

∑ 

𝑗

‖𝒮 ⋅𝑋𝑗‖

𝛾

∗2 

=∑  ∑ 

𝑗

∞

𝑘=0

‖𝒮𝑘〈𝑋𝑗〉𝑘‖𝛾
∗2 
≤∑∑ 

𝑗

∞

𝑘=0

‖〈𝑋𝑗〉𝑘‖𝛾
2
=∑ 

𝑗

‖𝑋𝑗‖

𝛾

∗2

 

on 𝑇 ⋅(𝑉) .  

Analogously to 𝜇 ⊗ we define the linear map 𝜇𝑅𝑒𝑗𝑒𝑐𝑡 : = 𝒮
⋅0𝜇⊗: 𝑇

⋅(𝑉)⊗𝜋 𝑇
⋅(𝑉) → 𝒯(𝑉) 

. Then the restriction of 𝜇V to 𝑆⋅(𝑉) describes the symmetric tensor product V and 

Corollaries (6.2.62) and (6.2.63) yield: 

Corollary (6.2.64)[288]: [280] Let 𝛬 be a continuous bilinear form on 𝑉, let ‖ ⋅ ‖𝛼 , ‖ ⋅ ‖𝛽 ∈

𝒫𝑉,𝛬 as well as 𝑘, ℓ ∈ N0 and 𝑋𝑗 ∈ 𝑇
𝑘(𝑉), 𝑌𝑗 ∈ 𝑇

ℓ(𝑉) be given. Then 

‖∑ 

𝑗

P𝛬(𝑋𝑗⊗𝜋 𝑌𝑗)‖𝛼⊗𝜋𝛽 ≤ √𝑘ℓ∑ 

𝑗

‖𝑋𝑗‖𝛼‖𝑌𝑗‖𝛽 .                          (145) 

Proof: If 𝑘 = 0 or ℓ = 0 this is clearly true, so assume 𝑘, ℓ ∈ IN. We use Corollary (6.2.61) 

to construct (𝑋𝑗)0 = ∑ ∑  𝑟 𝑥𝑎,1
𝑟

𝑎∈𝐴 ⊗⋯⊗𝑥𝑎,𝑘
𝑟  and 𝑋�̃� = ∑ ∑  𝑗 𝑋𝑗

𝑎′

𝑎′∈{1,…,𝑒}𝑘 𝑒𝑎1′ ⊗⋯⊗

𝑒𝑎𝑘
′  with respect to 〈⋅ | ⋅〉𝛼 as well as (𝑌𝑗)0 = ∑ ∑  𝑟 𝑦𝑏,1

𝑟
𝑏∈𝐵 ⊗⋯⊗𝑦𝑏,ℓ

𝑟  and 𝑌�̃� =

∑ ∑  𝑗 𝑌𝑗
𝑏′

𝑏′∈{1,…,𝑑}ℓ  𝑓𝑏1′
 ⊗… ⊗ 𝑓𝑏ℓ′ with respect to 〈⋅ | ⋅〉𝛽. Then 

‖∑ 

𝑗

P𝛬 (((𝑋𝑗)0 + 𝑋�̃�) ⊗𝜋 ((𝑌𝑗)0 + 𝑌�̃�)) ‖𝛼⊗𝜋𝛽 ≤∑ 

𝑗

‖P𝛬(𝑋�̃�⊗𝜋 𝑌�̃�)‖𝛼⊗𝜋𝛽 , 

because 

∑ 

𝑟

‖P𝛬 ((𝜉1
𝑟⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝑘

𝑟) ⊗𝜋 (𝜂1
𝑟⊗ ⋅ ⋅ ⋅ ⊗ 𝜂ℓ

𝑟))‖𝛼⊗𝜋𝛽
∗

= 𝑘ℓ∑ 

𝑟

|𝛬(𝜉𝑘
𝑟 , 𝜂1

𝑟)|‖𝜉1
𝑟⊗⋅ ⋅ ⋅⊗ 𝜉𝑘−1

𝑟 ‖𝛼
∗ ‖𝜂2

𝑟⊗⋅ ⋅ ⋅⊗ 𝜂ℓ
𝑟‖𝛽
∗ , = 0 

for all 𝜉𝑟 ∈ 𝑉𝑘, 𝜂𝑟 ∈ 𝑉ℓ for which there is at least one 𝑚 ∈ {1, . . . , 𝑘} with ∑  𝑟 ‖𝜉𝑚
𝑟 ‖𝛼 = 0 

or one 𝑛 ∈ {1, . . . , ℓ} with ‖𝜂𝑛
𝑟‖𝛽 = 0. On the subspaces 𝑉𝑋𝑗

− = span {𝑒1, . . . , 𝑒𝑐} and 

VỸ=span{fl, . . . , 𝑓𝑑} of 𝑉, the bilinear form 𝛬 is described by a matrix 𝛺 ∈ ℂ𝑐×𝑑 with 

entries 𝛺𝑔ℎ = 𝛬(𝑒𝑔, 𝑓ℎ) . By using a singular value decomposition we can even assume 

without loss of generality that all off‐diagonal entries of 𝛺 vanish. We also note that |𝛺𝑔𝑔| =

|𝛬(𝑒𝑔, 𝑓𝑔)| ≤ ‖𝑒𝑔‖𝛼‖𝑓𝑔‖𝛽 ≤ 1. This gives the desired estimate 

‖∑ 

𝑗

P𝛬(𝑋𝑗⊗𝜋 𝑌𝑗)‖𝛼⊗𝜋𝛽
∗ ≤∑ 

𝑗

‖P𝛬(𝑋�̃�⊗𝜋 𝑌�̃�)‖𝛼⊗𝜋𝛽
∗  

= ‖ ∑ ∑ ∑ 

𝑗

𝑋𝑗
𝑎′

𝑏′∈{1….𝑑}ℓ𝑎′∈{1….𝑒}𝑘

(𝑌𝑗)
𝑏′P𝛬  ((𝑒𝑎1′ ⊗⋅ ⋅ ⋅⊗ 𝑒𝑎𝑘

′ )⊗𝜋  (𝑓𝑏1′ ⊗⋅ ⋅ ⋅

⊗ 𝑓𝑏𝑝 , )) ‖𝛼⊗𝜋𝛽
∗  
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= 𝑘ℓ‖ ∑ ∑ ∑ 

𝑗

𝑋𝑗
(�̃�′,𝑟)

𝑎
′
∈{1,…,𝑐}𝑘−1

𝑎
′
∈{1,…,𝑐}ℓ−1

 min {𝑐,𝑑}

𝑟=1

𝑌𝑗
(𝑟,𝑏

′
)
𝛺𝑟𝑟 (𝑒�̃�1′ ⊗⋅ ⋅ ⋅⊗ 𝑒�̃�𝑘−1

′ ) ⊗𝜋 (𝑓�̃�1′ ⊗⋅ ⋅ ⋅

⊗ 𝑓�̃�ℓ−)||𝛼⊗𝜋𝛽
∗  

 

≤ 𝑘ℓ ∑ ‖

 min {𝑐,𝑑}

𝑟=1

∑ ∑ 

𝑗

𝑋
𝑗

(𝑎
′
,𝑟)

𝑎
′
∈{1,…,𝑐}𝑘−1

𝑒ãí ⊗ …⊗ 𝑒�̃�𝑘−1
′ ‖𝛼

∗ ‖ ∑ 𝑌𝑗
(𝑟,�̃�′)

�̃�′∈{1,…,𝑑}ℓ−1

𝑓
𝑏1
′̃ ⊗⋯

⊗ 𝑓�̃�ℓ−1′ ‖𝛽
∗  

 
 ≤
𝑐𝑠√𝑘ℓ∑ 

𝑗

‖𝑋𝑗‖𝛼
∗ ‖𝑌𝑗‖𝛽

∗ ,                                                                            

where we have used in the last line after applying the Cauchy‐Schwarz inequality that 

∑ ‖

 min {𝑐,𝑑}

𝑟=1

∑ ∑ 

𝑗

𝑋𝑗

𝑎
′
∈{1,…,𝑐}𝑘−1

(ã’, 𝑟)𝑒ã1′ ⊗…⊗ 𝑒�̃�𝑘−1
′ ‖𝛼

∗2 

= ∑ ∑ ∑ 

𝑗

|

𝑎
′
∈{1,…,𝑐}𝑘−1

 min {𝑐,𝑑}

𝑟=1

𝑋𝑗
(�̃�′,𝑟)

|2(𝑘 − 1)! 

≤
1

𝑘
∑ 

𝑗

‖𝑋𝑗‖𝛼
∗2                                                        

and analogously for 𝑌𝑗.  

Corollary (6.2.65)[288]:. [280] Let 𝛬 be a continuous bilinear form on 𝑉, then the function 

P𝛬 is continuous and fulfils the estimate 

‖∑ 

𝑗

(P𝛬)
𝑡(𝑍𝑗)‖𝛼⊗𝜋𝛽

∗ ≤
𝑐

𝑐 − 1

𝑡!

𝑐𝑡
‖∑ 

𝑗

||𝑍𝑗||2𝑐𝛼⊗𝜋2𝑐𝛽
∗                   (146) 

for all 𝑐 > 1, all 𝑡 ∈ M0, all seminorms ‖ ⋅ ‖𝛼 , ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉,𝛬, and all 𝑍𝑗 ∈ 𝑇
⋅(𝑉)⊗𝜋 𝑇

⋅(𝑉). 

Proof: Let 𝑋𝑗 , 𝑌𝑗 ∈ 𝑇
⋅(𝑉) be given, then the previous Corollary (6.2.64) together with 

Lemma (6.2.5) yields 

‖∑ 

𝑗

(P𝛬)
𝑡(𝑋𝑗⊗𝜋 𝑌𝑗)‖𝛼⊗𝜋𝛽

∗ ≤ ∑ ∑ 

𝑗

‖

∞

𝑘,ℓ=0

(P𝛬)
𝑡(〈𝑋𝑗〉𝑘+𝑡⊗𝜋 〈𝑌𝑗〉ℓ+𝑡)‖𝛼⊗𝜋𝛽

∗  

≤ 𝑡! ∑ (
𝑘 + 𝑡
𝑡
)

∞

𝑘,ℓ=0

1
2

(
ℓ + 𝑡
𝑡
)

1
2
∑ 

𝑗

 ‖〈𝑋𝑗〉𝑘+𝑡‖𝛼
∗ ‖〈𝑌𝑗〉ℓ+𝑡‖𝛽

∗  

≤ 𝑡! ∑ ∑ 

𝑗

‖

∞

𝑘,ℓ=0

〈𝑋𝑗〉𝑘+𝑡‖2𝛼
∗ ‖〈𝑌𝑗〉ℓ+𝑡‖2𝛽

∗                                 
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=
𝑡!

𝑐𝑡
∑

1

√𝑐
𝑘+ℓ

∞

𝑘,ℓ=0

∑ 

𝑗

‖〈𝑋𝑗〉𝑘+𝑡‖2𝑐𝛼
∗ ‖〈𝑌𝑗〉ℓ+𝑡‖2𝑐𝛽

∗                  

      ≤
𝑐𝑠
𝑡!

𝑐𝑡
(∑

1

𝑐𝑘+ℓ

∞

𝑘,ℓ=0

)

1
2

(∑ ∑ 

𝑗

‖

∞

𝑘,ℓ=0

〈𝑋𝑗〉𝑘+𝑡‖2𝑐𝛼
∗2 ‖〈𝑌𝑗〉ℓ+𝑡‖2𝑐𝛽

∗2 )

1
2

 

≤
𝑐

𝑐 − 1

𝑡!

𝑐𝑡
∑ 

𝑗

‖𝑋𝑗‖2𝑐𝛼
∗ ‖𝑌𝑗‖2𝑐𝛽

∗ .                                             

Corollary (6.2.66)[288]:. [280] Let 𝛬 be a continuous bilinear form on 𝑉, then 𝜇⋆𝛬 is 

continuous and, given 𝑅 > 1/2, the estimate 

‖∑ 

𝑗

𝜇⋆𝑧𝑟𝛬(𝑍𝑗)‖𝛾
∗ ≤∑

1

𝑡!

∞

𝑡=0

‖∑ 

𝑗

𝜇∨ ((P𝑧𝑟𝛬)
𝑡(𝑍𝑗)) ‖𝛾

∗

≤
4𝑅

2𝑅 − 1
∑ 

𝑗

‖𝑍𝑗‖8𝑅𝛾⊗𝜋8𝑅𝛾
∗                                                            (147) 

holds for all ‖ ⋅ ‖𝛾 ∈ 𝒫𝑉,𝛬, all 𝑍𝑗 ∈ 𝑇
⋅(𝑉)⊗𝜋 T

⋅(𝑉) and all 𝑧𝑟 ∈ ℂ with |𝑧𝑟| ≤ 𝑅. 

Proof: The first estimate is just the triangle‐inequality. By combining Corollary (6.2.8) and 

Corollary (6.2.65) with 𝑐 = 2𝑅 we get the second estimate 

∑
1

𝑡!

∞

𝑡=0

‖∑ 

𝑗

𝜇∨ ((P𝑧𝑟𝛬)
𝑡(𝑍𝑗)) ‖𝛾

∗ ≤∑∑ 

𝑗

∞

𝑡=0

‖ (P𝛬)
𝑡(𝑍𝑗)‖2𝛾⊗𝜋2𝛾

∙                 

                                                       ≤
2𝑅

2𝑅 − 1
∑∑ 

𝑗

1

2𝑡

∞

𝑡=0

‖𝑍𝑗‖8𝑅𝛾⊗𝜋8𝑅𝛾    

                                         =
4𝑅

2𝑅 − 1
∑ 

𝑗

‖𝑍𝑗‖8𝑅𝛾⊗𝜋8𝑅𝛾. 

Corollary (6.2.67)[288]:. [280] Let . ̅be a continuous antilinear involution on 𝑉, then the 

induced∗‐involution on 𝑇 ⋅(𝑉) is also continuous. 

Proof: For〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉  define the continuous positive Hermitian form 𝑉2 ∋ (𝑣𝑟 , 𝑤𝑟) ↦

〈𝑣𝑟|𝑤𝑟〉𝛼∗ : = 〈𝑣
𝑟|𝑤𝑟〉𝛼. Then ∑  𝑗 〈𝑋j

∗|𝑌𝑗
∗〉𝛼 = ∑  𝑗 〈𝑋𝑗|𝑌𝑗〉𝛼∗ and in particular ‖𝑋𝑗

∗‖𝛼 =

‖𝑋𝑗‖𝛼∗ for all 𝑋𝑗 , 𝑌𝑗 ∈ 𝑇
⋅(𝑉) because this is clearly true for simple tensors and because both 

sides are (anti‐)linear in 𝑋𝑗 and Y.  

Corollary (6.2.68)[288]:. Let .:̅ 𝑉 → 𝑉 be a continuous antilinear involution and 𝛬 a 

continuous bilinear form on V. Then ∑  𝑗 (𝑋𝑗  ⋆𝛬 𝑌𝑗)
∗
= ∑  𝑗 𝑌𝑗

∗ ⋆𝛬∗ 𝑋𝑗
∗ holds for all 𝑋𝑗 , 𝑌𝑗 ∈

𝑆⋅(𝑉) . Consequently, if 𝛬 is Hermitian, then (𝑆⋅(𝑉),⋆𝛬,∗) is a locally convex ∗‐algebra. 

Proof: The identitie s∗o𝒮 ⋅ = 𝒮 ⋅0∗ and ∗ 0𝜇 ⊗= 𝜇 ⊗ 0𝜏o(∗⊗𝜋
∗ ), with 

𝜏: 𝑇 ⋅(𝑉)⊗𝜋 𝑇
⋅(𝑉) → 𝑇⋅(𝑉)⊗𝜋 𝑇

⋅(𝑉) defined as ∑  𝑗 𝜏(𝑋𝑗⊗𝜋 𝑌𝑗) : = ∑  𝑗 𝑌𝑗⊗𝜋 𝑋𝑗, can 

easily be checked on simple tensors, so ∗o 𝜇∨ = 𝜇∨0𝜏o(⊗𝜋
∗ ) . Combining this with 𝜏o(∗⊗𝜋

∗ ) 

oP𝛬 = P𝛬 ∗ 0𝜏o(
∗⊗𝜋

∗ ) on symmetric tensors, which again can easily be checked on simple 

symmetric tensors, yields the desired result.  
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Corollary (6.2.69)[288]:. [280] Let . ̅ ∶ 𝑉 → 𝑉 be a continuous antilinear involution. For 

every 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉  we define a continuous bilinear form 𝛬𝛼 on 𝑉 by ∑  𝑟 𝛬𝛼(𝑣
𝑟 , 𝑤𝑟) : =

∑  𝑟 〈𝑣
𝑟|𝑤𝑟〉𝛼 for all , 𝑣𝑟 , 𝑤𝑟 ∈ 𝑉, then 𝛬𝛼 is Hermitian and the identities 

∑
1

𝑡!

∞

𝑡=0

𝜇 ⊗∑ 

𝑗

((P𝛬𝛼)
𝑡
(〈𝑋𝑗

∗〉𝑡⊗𝜋 〈𝑌𝑗〉𝑡)) =∑ 

𝑗

〈𝑋𝑗|𝑌𝑗〉𝛼
∗                  (148) 

and 

                                   ∑  

𝑗

〈𝜇⋆𝛬𝛼(𝑋𝑗
∗⊗𝜋 𝑌𝑗)〉0 =∑ 

𝑗

〈𝑋𝑗|𝑌𝑗〉𝛼
∗                            (149) 

hold for all 𝑋𝑗 , 𝑌𝑗 ∈ 𝑇
∗(𝑉) . 

Proof: Clearly, 𝛬𝛼 is Hermitian because 〈⋅ | ⋅〉𝛼 is Hermitian. Then (149) follows directly 

from (148) because of the grading of 𝜇⋁ and P𝛬𝛼 . For proving (148) it is sufficient to check 

it for factorizing tensors of the same degree, because both sides are (anti‐)linear in 𝑋𝑗 and 𝑌𝑗 

and vanish if 𝑋𝑗 and 𝑌𝑗 are homogeneous of different degree. If 𝑋𝑗 and 𝑌𝑗 are of degree 0 

then (148) is clearly fulfiled. Otherwise we get 

1

𝑘!
𝜇 ⊗∑ 

𝑟

((P𝛬𝛼)
𝑘
((𝑥1

𝑟⊗ ⋅⋅⋅ ⊗ 𝑥𝑘
𝑟)∗⊗𝜋 (𝑦1

𝑟⊗ ⋅⋅⋅ ⊗ 𝑦𝑘
𝑟))) 

=∑ 

𝑟

1

𝑘!
𝜇 ⊗ ((P𝛬𝛼)

𝑘
((𝑥𝑘

𝑟̅̅ ̅ ⊗ ⋅⋅⋅ ⊗ 𝑥1
𝑟̅̅ ̅) ⊗𝜋 (𝑦1

𝑟⊗ ⋅⋅⋅ ⊗ 𝑦𝑘
𝑟))) 

=∑ 

𝑟

1

𝑘!
𝜇 ⊗ ((1⊗𝜋 1)(𝑘!)

2∏𝛬𝛼

𝑘

𝑚=1

(𝑥𝑚
𝑟
 
, 𝑦𝑚
𝑟 ))                        

=∑ 

𝑟

𝑘!∏𝛬𝛼

𝑘

𝑚=1

(𝑥𝑚
𝑟
 
, 𝑦𝑚
𝑟 )                                                                   

=∑ 

𝑟

𝑘!∏〈

𝑘

𝑚=1

𝑥𝑚
r |𝑦𝑚

𝑟 〉𝛼                                                                       

=∑ 

𝑟

〈𝑥1
𝑟⊗⋅ ⋅ ⋅⊗ 𝑥𝑘

r|𝑦1
𝑟⊗⋅ ⋅ ⋅⊗ 𝑦𝑘

𝑟〉𝛼
∗ .                                       

Corollary (6.2.70)[288]:. [280] The topology on 𝑆∗(𝑉) is the coarsest locally convex one 

that makes all star products ⋆𝛬 for all continuous and Hermitian bilinear forms 𝛬 on 𝑉 as 

well as the ∗‐involution and the projection 〈⋅〉0 onto the scalars continuous. In addition we 

have for all 𝑋𝑗 , 𝑌𝑗 ∈ 𝑆
∗(𝑉) and all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 

∑ 

𝑗

〈𝑋𝑗
∗ ⋆𝛬𝛼 𝑌𝑗〉0 =∑ 

𝑗

〈𝑋𝑗|𝑌𝑗〉𝛼
∗ ,                                  (150) 

with 𝛬𝛼 as in Corollary (6.2.69). 

Proof: We have already shown the continuity of the series of star product and of the ∗‐

involution, the continuity of 〈⋅〉0 is clear. Conversely, if these three functions are continuous, 

their compositions yield the extensions of all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 which then have to be continuous. 

Then (149) gives (150) for symmetric tensors 𝑋𝑗 and 𝑌𝑗. 
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Corollary (6.2.71)[288]:. Let 𝑏 be a symmetric bilinear form on 𝑉 and ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉, then 

the following two statements are equivalent: 

𝑖. ) The bilinear form 𝑏 is of Hilbert‐Schmidt type and ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏,𝐻𝑆 . 

𝑖𝑖. ) The estimate | ∑  𝑗 △𝑏 𝑋𝑗| ≤ 2
−1/2 ∑  𝑗 ‖𝑋𝑗‖𝛼 holds for all 𝑋𝑗 ∈ 𝑆

2(𝑉) . 

Moreover, if this holds then ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏 and 𝑏 is continuous. 

Proof: If the first point holds, let 𝑋𝑗 ∈ 𝑇
2(𝑉) be given. Construct (𝑋𝑗)0 = ∑ ∑  𝑟 𝑥𝑎,1

𝑟
𝑎∈𝐴 ⊗

𝑥𝑎,2
𝑟  and 𝑋�̃� = ∑ ∑  𝑗 𝑋𝑗

𝑎1
′ ,𝑎2

′
𝑑
𝑎1
′ ,𝑎2

′=1 𝑒𝑎1′ ⊗𝑒𝑎2′ ∈ 𝑇
2(𝑉) like in Corollary (6.2.61). Then 

∑  𝑟 𝑏(𝑥𝑎,1
𝑟 , 𝑥𝑎,2

𝑟 ) = 0 for all 𝑎 ∈ 𝐴 because ∑  𝑟 ‖𝑥𝑎,1
𝑟 ‖𝛼 = 0 or ∑  𝑟 ‖𝑥𝑎,2

𝑟 ‖𝛼 = 0. Moreover, 

|∑  

𝑗

△𝑏 𝑋𝑗| ≤ | ∑ ∑ 

𝑗

𝑋𝑗
𝑎1
′ ,𝑎2

′
𝑑

𝑎1
′ ,𝑎2

′=1

𝑏(𝑒𝑎1′ , 𝑒𝑎2′ )| 

 ≤
𝑐𝑠 ∑ 

𝑗

( ∑ |

𝑑

𝑎1
′ ,𝑎2

′=1

𝑋𝑗
𝑎1
′ ,𝑎2

′

|2)

1
2

( ∑ |

𝑑

𝑎1
′ ,𝑎2

′=1

𝑏(𝑒𝑎1′ , 𝑒𝑎2′ )|
2)

1
2

 

≤
1

√2
∑ 

𝑗

‖𝑋𝑗‖𝛼
∗                                                                       

shows that the second point holds. Conversely, from the second point we get 

∑  𝑟 |𝑏(𝑣
𝑟 , 𝑤𝑟)| = ∑  𝑟 | △𝑏 (𝑣

𝑟 ∨ 𝑤𝑟)| ≤ 2−1/2 ∑  𝑟 ‖𝑣
𝑟 ∨ 𝑤𝑟‖𝛼 ≤ ∑  𝑟 ‖𝑣

𝑟‖𝛼‖𝑤
𝑟‖𝛼 for 

all 𝑣𝑟 , 𝑤𝑟 ∈ 𝑉. Hence ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏, the bilinear form 𝑏 is continuous, and ∑  𝑟 𝑏(𝑣
𝑟 , 𝑤𝑟) =

0 if one of 𝑣𝑟 or 𝑤𝑟 is in the kernel of ‖ ⋅ ‖𝛼. Moreover, given an 〈⋅ | ⋅〉𝛼‐orthonormal set of 

vectors ∈ 𝑉𝑑 , 𝑑 ∈ M, we define 𝑋𝑗 : = ∑ 𝑏(𝑒𝑖 , 𝑒𝑗)
𝑑
𝑗=1 𝑒𝑖⊗𝑒𝑗 ∈ 𝑆

2(𝑉) and get 

0 ≤ ∑ |

𝑑

𝑖,𝑗=1

𝑏(𝑒𝑖 , 𝑒𝑗)|
2 = |∑ 

𝑗

△𝑏 𝑋𝑗| ≤
1

√2
∑ 

𝑗

‖𝑋𝑗‖𝛼
∗ = (∑ |

𝑑

𝑖.𝑗=1

𝑏(𝑒𝑖 , 𝑒𝑗)|
2)

1
2

 

which implies ∑ |𝑑
𝑗=1 𝑏(𝑒𝑖, 𝑒𝑗)|

2 ≤ 1.  

Note that this also implies that for a bilinear form of Hilbert‐Schmidt type 𝑏, the set 𝒫𝑉,𝑏,𝐻𝑆 

is cofinal in 𝒫𝑉, because if ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏,𝐻𝑆 , ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉 and ‖ ⋅ ‖𝛽 ≥ ‖ ⋅ ‖𝛼, then | △𝑏 𝑋𝑗| ≤

2−
1

2 ‖𝑋𝑗‖𝛼
∗ ≤ 2−

1

2‖∑  𝑗 ||𝑋𝑗|| 𝛽
∗  and so ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉,𝑏,𝐻𝑆 . 

Corollary (6.2.72)[288]:. Let 𝑏 be a symmetric bilinear form of Hilbert‐Schmidt type on 𝑉, 

then the Laplace operator △𝑏 is continuous and fulfils the estimate 

‖∑ 

𝑗

(△𝑏)
𝑡𝑋𝑗‖𝛼

∗ ≤
√(2𝑡)!

(2𝑟)𝑡
‖∑ 

𝑗

||𝑋𝑗||2𝑟𝛼
∗                               (151) 

for all 𝑋𝑗 ∈ 𝑇
∗(𝑉), 𝑡 ∈ M0, 𝑟 ≥ 1, and all ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏,𝐻𝑆. 

Proof: First, let 𝑋𝑗 ∈ 𝒯
𝑘(𝑉), 𝑘 ≥ 2, and ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝑏,𝐻𝑆 be given. Construct (𝑋𝑗)0 =

∑ ∑  𝑗 𝑥𝑎,1
𝑟

𝑎∈𝐴 ⊗ . . . ⊗𝑥𝑎,𝑘
𝑟  and 𝑋�̃� = ∑ 𝑋𝑗

𝑎′

𝑎′∈{1…..𝑑}𝑘 𝑒𝑎1′ ⊗⋯⊗ 𝑒𝑎𝑘
′  like in Corollary 

(6.2.61). Then again 
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‖∑ 

𝑗

△𝑏 (𝑋𝑗)0‖𝛼
∗ ≤

𝑘(𝑘 − 1)√(𝑘 − 2)!

2
∑∑ 

𝑟

|

𝑎∈𝐴

𝑏(𝑥𝑎1
𝑟 , 𝑥𝑎2

𝑟 )|∐ ‖

𝑘

𝑚=3

𝑥𝑎𝑚
𝑟 ‖𝛼 = 0 

shows that ‖∑  𝑗 △𝑏 𝑋𝑗‖𝛼
∗ ≤ ∑  𝑗 ‖ △𝑏 𝑋�̃�‖𝛼

∗ . 𝐹or𝑋�̃� we get: 

∑ 

𝑗

‖ △𝑏 𝑋�̃�‖𝛼
∗2 

= ‖
𝑘(𝑘 − 1)

2
∑ ∑ 

𝑗

𝑋𝑗
𝑎′

𝑎′∈{1,…,𝑑}𝑘

𝑏(𝑒𝑎1′ , 𝑒𝑎2′ )𝑒𝑎3′ ⊗⋯⊗ 𝑒𝑎𝑘
′ ‖𝛼
∗2                          

  =
𝑘2(𝑘 − 1)2

4
∑ ‖

𝑎
′
∈{1,…,𝑑}𝑘−2

∑ ∑ 

𝑗

𝑋
𝑗

(𝑔,ℎ,𝑎
′
)

𝑑

𝑔,ℎ=1

𝑏 (𝑒𝑔, 𝑒ℎ)𝑒ãí ⊗⋅⋅⋅ ⊗ 𝑒�̃�𝑘−2‖𝛼
∗2 

=
𝑘2(𝑘 − 1)2

4
∑ |

𝑎
′
∈{1,…,𝑑}𝑘−2

∑ ∑ 

𝑗

𝑋𝑗
(𝑔,ℎ,�̃�′)

𝑑

𝑔,ℎ=1

𝑏(𝑒𝑔, 𝑒ℎ)|
2(𝑘 − 2)!                     

≤
𝑘(𝑘 − 1)𝑘!

4
 ã’ ∑ ( ∑ ∑ 

𝑗

|

𝑑

𝑔,ℎ=1

𝑋j
(𝑔,ℎ,�̃�′)

||𝑏(𝑒𝑔, 𝑒ℎ)|)

2

 

∈{1,…,𝑑}𝑘−2

                         

 ≤
𝑐𝑠
𝑘(𝑘 − 1)𝑘!

4
∑ ( ∑ ∑ 

𝑗

|

𝑑

𝑔,ℎ=1

𝑋𝑗
(𝑔,ℎ,�̃�′)

|2)

𝑎
′
∈{1,…,𝑑}𝑘−2

( ∑ |

𝑑

𝑔,ℎ=1

𝑏(𝑒𝑔, 𝑒ℎ)|
2)      

≤
𝑘(𝑘 − 1)𝑘!

4
∑ ∑ 

𝑗𝑎′∈{1,…𝑑}𝑘

|𝑋𝑗
𝑎′|2                          

=
𝑘(𝑘 − 1)

4
∑ 

𝑗

‖𝑋𝑗‖𝛼
∗2                                             

Using this we get 

‖∑ 

𝑗

(△𝑏)
𝑡𝑋𝑗‖𝛼

∗2 = ∑ ∑ 

𝑗

‖

∞

𝑘=2𝑡

(△𝑏)
𝑡〈𝑋𝑗〉𝑘‖𝛼

∗2 

≤ ∑ ∑ 

𝑗

∞

𝑘=2𝑡

 (
𝑘
2𝑡
) 
(2𝑡)!

4𝑡
‖〈𝑋𝑗〉𝑘‖𝛼

∗2 

≤
(2𝑡)!

4𝑡
∑∑ 

𝑗

1

𝑟𝑘

∞

𝑘=2𝑡

‖〈𝑋𝑗〉𝑘‖2𝑟𝛼
∗2     

≤
(2𝑡)!

(2𝑟)2𝑡
∑ 

𝑗

‖𝑋𝑗‖2𝑟𝛼
∗2                       

for arbitrary 𝑋𝑗 ∈ 𝑇
⋅(𝑉) and 𝑡 ∈ N. Finally, the estimate (151) also holds in the case 𝑡 = 0.  
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Corollary (6.2.73)[288]: [280] Let 𝑏 be a symmetric bilinear form on 𝑉, then the linear 

operator e△𝑏 = ∑
1

𝑡!
∞
𝑡=0 (△𝑏)

𝑡 as well as its restriction to 𝑆∗(𝑉) are continuous if and only 

if 𝑏 is of Hilbert‐Schmidt type. In this case 

∑ 

𝑗

e△𝑏(𝑋𝑗 ⋆𝛬 𝑌𝑗) = (e
△𝑏𝑋𝑗) ⋆𝛬+𝑏 (e

△𝑏𝑌𝑗)                       (152) 

holds for all 𝑋𝑗 , 𝑌𝑗 ∈ 𝑆
⋅(𝑉) and all continuous bilinear forms 𝛬 on V. Hence e△𝑏  describes 

an isomorphism of the locally convex algebras (𝑆⋅(𝑉),⋆𝛬) and (𝑆⋅(𝑉),⋆𝛬+𝑏) . Moreover, for 

fixed 𝑋𝑗 ∈ 𝑆
⋅(𝑉)cpl, the series e𝑧

𝑟△𝑏𝑋𝑗 converges absolutely and locally uniformly in 𝑧𝑟 ∈ 

Ci and thus depends holomorphically on 𝑧𝑟 . 

Proof: As | △𝑏 𝑋𝑗| ≤ ‖e
△𝑏𝑋𝑗‖𝛼

∗  holds for all ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 and all 𝑋𝑗 ∈ 𝑆
2(𝑉) , it follows 

from Corollary (6.2.71) that continuity of the restriction of e△𝑏  to 𝑆∗(𝑉) implies that 𝑏 is of 

Hilbert‐Schmidt type. Conversely, for all 𝑋𝑗 ∈ 𝑇
⋅(𝑉) , all 𝛼 ∈ 𝒫𝑉,𝑏,𝐻𝑆, and 𝑟 > 1, the 

estimate 

‖∑ 

𝑟

e𝑧
𝑟△𝑏𝑋𝑗‖𝛼 ≤∑∑ 

𝑗

1

𝑡!

∞

𝑡=0

‖(𝑧𝑟 △𝑏)
𝑡(𝑋𝑗)‖𝛼

≤∑∑ 

𝑗

|𝑧𝑟|𝑡

(4𝑟)𝑡

∞

𝑡=0

 (
2𝑡
𝑡
) 
1

2
‖||𝑋𝑗||4𝑟𝛼

∗ ≤∑∑ 

𝑗

1

2𝑡

∞

𝑡=0

‖ ||𝑋𝑗||4𝑟𝛼
∗

= 2∑ 

𝑗

‖𝑋𝑗‖4𝑟𝛼
∗  

holds for all 𝑧𝑟 ∈ ℂ with |𝑧𝑟| ≤ 𝑟 due to the previous Corollary (6.2.72) if 𝑏 is of Hilbert‐

Schmidt type, which proves the continuity of e𝑧
𝑟△𝑏 for all 𝑧𝑟 ∈ ℂ as well as the absolute 

and locally uniform convergence of the series e𝑧
𝑟△𝑏𝑋𝑗. The algebraic relation (152) is well‐

known, see e.g. [101]. Finally, as e△𝑏  is invertible with inverse e−△𝑏, and because △𝑏 and 

thus e△𝑏  map symmetric tensors to symmetric ones, we conclude that the restriction of e△𝑏 

to 𝑆∗(𝑉) is an isomorphism of the locally convex algebras (𝑆∗(𝑉),⋆𝛬) and (𝑆∗(𝑉),⋆𝛬+𝑏) .  

Corollary (6.2.74)[288]:. [280] Let . ̅be a continuous antilinear involution on 𝑉 and , 𝜎 ∈

𝑉ℎ
′. Then 

∑ 

𝑗

(𝐷𝜌𝐷𝜎 − 𝐷𝜎𝐷𝛽)(𝑋𝑗) =∑ 

𝑗

(𝜏𝑝
∗𝐷𝜎 − 𝐷𝜎𝜏𝜌

∗)(𝑋𝑗)                                              

=∑ 

𝑗

(𝜏𝑝
∗𝜏𝜎
∗ − 𝜏𝜎

∗𝜏𝑝
∗)(𝑋𝑗) = 0                           (153) 

holds for all 𝑋𝑗 ∈ 𝑆
∗(𝑉) . 

Proof: It is sufficient to show that ∑  𝑗 (𝐷𝜌𝐷𝜎 − 𝐷𝜎𝐷𝜌)(𝑋𝑗) = 0 for all 𝑋𝑗 ∈ 𝑆
∗(𝑉) , which 

clearly holds if 𝑋𝑗 is a homogeneous factorizing symmetric tensor and so holds for all 𝑋𝑗 ∈

𝑆∗(𝑉) by linearity.  

Corollary (6.2.75)[288]:. [280] Let . ̅be a continuous antilinear involution on 𝑉 and 𝜌 ∈

𝑉ℎ
′. Then 𝐷𝜌, 𝜏𝑝

∗  and 𝛿𝜌 are all continuous. Moreover, if ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 fulfils ∑  𝑟 |𝜌(𝑣
𝑟)| ≤

∑  𝑟 ‖𝑣
𝑟‖𝛼, then the estimates 
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‖∑ 

𝑗

(𝐷𝑝)
𝑡
𝑋𝑗‖𝛼

∗ ≤ √𝑡!‖∑ 

𝑗

||𝑋𝑗||2𝛼
∗                                    (154) 

and 

‖∑ 

𝑗

𝜏𝑝
∗(𝑋𝑗)‖𝛼

∗ ≤∑∑ 

𝑗

1

𝑡′!

∞

𝑡=0

‖ ||(𝐷𝜌)
𝑡′

𝑋𝑗||𝛼
∗ ≤

2

√2 − 1
∑ 

𝑗

‖𝑋𝑗‖2𝛼
∗                (155) 

hold for all 𝑋𝑗 ∈ 𝒮
∗(𝑉) and all 𝑡 ∈ M0. 

Proof: Let ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 be given such that ∑  𝑟 |𝜌(𝑣
𝑟)| ≤ ∑  𝑟 ‖𝑣

𝑟‖𝛼 holds for all 𝑣𝑟 ∈ 𝑉. 

For all 𝑑 ∈ M0 and all 〈⋅ | ⋅〉𝛼‐orthonormal 𝑒 ∈ 𝑉𝑑 we then get 

∑|

𝑑

𝑖=1

𝜌(𝑒𝑖)|
2𝑑 = 𝜌(∑𝑒𝑖

𝑑

𝑖=1

𝑝(𝑒𝑖))𝑑 ≤ ‖∑𝑒𝑖

𝑑

𝑖=1

𝜌(𝑒𝑖)‖𝛼 = (∑|

𝑑

𝑖=1

𝜌(𝑒𝑖)|
2)

1
2

 

hence ∑ |𝑑
𝑖=1 𝜌(𝑒𝑖)|

2 ≤ 1. Given 𝑘 ∈ M and a tensor 𝑋𝑗 ∈ 𝑇
𝑘(𝑉) , then we construct (𝑋𝑗)0 =

∑ ∑  𝑟 𝑥𝑎,1
𝑟

𝑎∈𝐴 ⊗…⊗𝑥𝑎,𝑘
𝑟  and 𝑋�̃� = ∑ ∑  𝑗 𝑋𝑗

𝑎′

𝑎′∈{1…..𝑑}𝑘 𝑒𝑎1′ ⊗⋯⊗ 𝑒𝑎𝑘
′  like in Corollary 

(6.2.61). Then we have ∑  𝑗 ‖𝐷𝜌(𝑋𝑗)0‖𝛼
∗ = 0 because 

∑ 

𝑟

‖𝐷𝜌 (𝑥𝑎,1
𝑟 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑥𝑎,𝑘

𝑟 )‖𝛼
∗ = 𝑘∑ 

𝑟

|𝑝(𝑥𝑎,𝑘
𝑟 )|‖𝑥𝑎,1

𝑟 ⊗⋅ ⋅ ⋅⊗ 𝑥𝑎,𝑘−1
𝑟 ‖𝛼

∗

≤ 𝑘√(𝑘 − 1)!∑ 

𝑟

∏‖

𝑘

𝑚=1

𝑥𝑎,𝑚
𝑟 ‖𝛼 = 0 

holds for all 𝑎 ∈ 𝐴. Consequently ‖∑  𝑗 𝐷𝜌𝑋𝑗‖𝛼 ≤ ∑  𝑗 ‖𝐷𝜌𝑋�̃�‖𝛼 and we get 

‖∑ 

𝑗

𝐷𝜌𝑋𝑗‖𝛼
∗2 ≤∑ 

𝑗

‖𝐷𝜌𝑋�̃�‖𝛼
∗2 = ‖ ∑ ∑ 

𝑗

𝑋𝑗
𝑎′

𝑎′∈{1,…,𝑑}𝑘

𝐷𝜌 (𝑒𝑎1′ ⊗⋯⊗ 𝑒𝑎𝑘
′ ) ‖𝛼

∗2     

          = 𝑘2 ã’ ∑ ‖

∈{1,…,𝑑}𝑘−1

∑∑ 

𝑗

𝑋𝑗

𝑑

𝑔=1

(ã’, 𝑔)𝜌(𝑒𝑔)𝑒𝑎  í ⊗⋯⊗ 𝑒
𝑎𝑘−1
′ ‖𝛼

∗2., 

≤ 𝑘2(𝑘 − 1)!  ã’ ∑ (∑∑ 

𝑗

|

𝑑

𝑔=1

𝑋𝑗(ã′’𝑔)||𝜌(𝑒𝑔)|)

2

    

∈{1,…,𝑑}𝑘−1

 

      
𝑐𝑠
≤
𝑘2(𝑘 − 1)! ∑ ∑ 

𝑗

(∑ |

𝑑

𝑔=1

𝑋𝑗
(�̃�′,𝑔)

|2)

𝑎
′
∈{1,…,𝑑}𝑘−1

(∑ |

𝑑

𝑔=1

𝑝(𝑒𝑔)|
2) 

≤ 𝑘2(𝑘 − 1)! ∑ ∑ 

𝑗

|

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑗
𝑎′|2                                              

= 𝑘∑ 

𝑗

‖𝑋𝑗‖𝛼
∗2 

Using this we can derive the estimate (154), which also proves the continuity of 𝐷𝜌: If 𝑡 =

0, then this is clearly fulfiled. Otherwise, let 𝑋𝑗 ∈ 𝑇
⋅(𝑉) be given, then 
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‖∑ 

𝑗

(𝐷𝜌)
𝑡

𝑋𝑗‖𝛼
∗2 =∑∑ 

𝑗

‖

∞

𝑘=𝑡

(𝐷𝜌)
𝑡
〈𝑋𝑗〉𝑘‖𝛼

∗2 ≤ 𝑡!∑∑ 

𝑗

∞

𝑘=𝑡

 (
𝑘
𝑡
) ‖〈𝑋𝑗〉𝑘‖𝛼

∗2 

     ≤ 𝑡!∑∑ 

𝑗

‖

∞

𝑘=𝑡

〈𝑋𝑗〉𝑘‖2𝛼
∗2 ≤ 𝑡!∑ 

𝑗

‖𝑋𝑗‖2𝛼
∗2 . 

From this we can now also deduce the estimate (155), which then shows continuity of 𝜏𝛽
∗  

and of 𝛿𝜌 = 〈⋅〉0 ∘ 𝜏𝜌
∗: The first inequality is just the triangle inequality and for the second 

we use that 𝑡! ≥ 2𝑡−1 for all 𝑡 ∈ M0, so 

∑
1

𝑡!

∞

𝑡=0

||∑  

𝑗

(𝐷𝜌)
𝑡

𝑋𝑗||𝛼
∗ ≤∑∑ 

𝑗

1

√𝑡!

∞

𝑡=0

||𝑋𝑗||2𝛼
∗ ≤ √2∑∑ 

𝑗

1

√2
𝑡

∞

𝑡=0

||𝑋𝑗||2𝛼
∗

≤
2

√2 − 1
∑ 

𝑗

||𝑋𝑗||2𝛼
∗ . 

Corollary (6.2.76)[288]:. [280] Let . ̅be a continuous antilinear involution on 𝑉, then the 

set of all continuous unital∗‐homomorphisms from (𝑆∗(𝑉)cpl,∨,∗) to ℂ is {𝛿𝑝|𝜌 ∈ 𝑉ℎ
′} 

(strictly speaking, the continuous extensions to 𝑆⋅(𝑉)cpl of the restrictions of 𝛿𝜌 to 𝑆∗(𝑉)). 

Proof: On the one hand, every such 𝛿𝜌 is a continuous unital ∗‐homomorphism, because 〈⋅

〉0 and 𝜏𝜌
∗ are. On the other hand, if 𝜑: (𝑆⋅(𝑉)cpl,∨,∗) → ℂ is a continuous unital ∗‐

homomorphism, then 𝑉 ∋ 𝑣𝑟 ↦ 𝑝(𝑣𝑟) : = 𝜑(𝑣𝑟) ∈ ℂ is an element of 𝑉ℎ
′ and fulfils 𝛿𝜌 =

𝜑 because the unital ∗‐algebra (𝑆∗(𝑉),∨,∗) is generated by 𝑉 and because 𝑆∗(𝑉) is dense in 

its completion.  

Let 𝛷 : = {𝛿𝛽|𝜌 ∈ 𝑉ℎ
′} be the set of all continuous unital ∗‐homomorphisms from 

(𝑆∗(𝑉)cpl,∨,∗) to ℂ and ℂ𝛷 the unital ∗‐algebra of all functions from 𝛷 to ℂ with the 

pointwise operations, then the Gel’fand‐transformation is usually defined as the unital ∗

−homomorphism−: (𝑆∗(𝑉)cpl,∨,∗) → ℂ𝛷, 𝑋𝑗 ↦ 𝑋𝑗 with 𝑋𝑗(𝜑) : = 𝜑(𝑋𝑗) for all 𝜑 ∈ 𝛷. 

This is a natural way to transform an abstract commutative unital locally convex ∗‐algebras 

to a∗‐algebra of complex‐valued functions. For our purposes, however, it will be more 

convenient to identify 𝛷 with 𝑉ℎ
′ like in the previous Corollary (6.2.76): 

Corollary (6.2.77)[288]:. [280] Let . ̅be a continuous antilinear involution on 𝑉 and 𝑋𝑗 ∈

𝑆∗(𝑉)cpl. Then 𝑋�̂�: 𝑉ℎ
′ → ℂ is smooth and 

∑ 

𝑗

�̂�𝑝
(𝑘)
𝑋�̂� =∑ 

𝑗

𝐷𝛽
(𝑘)
𝑋𝑗                                               (156) 

holds for all 𝑘 ∈ M0 and all 𝜌 ∈ (𝑉ℎ
′)𝑘. 

Proof: Let 𝑋𝑗 ∈ 𝑆
∗(𝑉)cpl be given. As the exponential series 𝜏𝑡𝜌

∗ (𝑋𝑗) is absolutely 

convergent by 

Corollary (6.2.75), it follows that 
d

d𝑡
|𝑡=0𝜏𝑡𝜌

∗ (𝑋𝑗) = 𝐷𝜌(𝑋𝑗) for all 𝑝 ∈ 𝑉ℎ
′ and so we 

conclude that 
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∑ 

𝑗

(�̂�𝜌𝑋�̂�)(𝜎) =∑ 

𝑗

d

d𝑡
|𝑡=0𝛿𝜎+𝑡𝜌(𝑋𝑗) =∑ 

𝑗

〈𝜏𝜎
∗ (
d

d𝑡
|𝑡=0𝜏𝑡𝜌

∗ (𝑋𝑗))〉0

=∑ 

𝑗

〈𝜏𝜎
∗ (𝐷𝜌(𝑋𝑗))〉0 =∑ 

𝑗

𝐷𝜌(𝑋𝑗)̂ (𝜎) 

holds for all 𝑝, 𝜎 ∈ 𝑉ℎ
′, which proves (156) in the case 𝑘 = 1. We see that �̂�𝜌 for all 𝜌 ∈ 𝑉ℎ

′ 

is an endomorphism of the vector space {𝑋�̂�|𝑋𝑗 ∈ 𝑆
⋅(𝑉)cpl}, so all iterated directional 

derivatives of such an 𝑋�̂� exist. By induction it is now easy to see that (156) holds for 

arbitrary 𝑘 ∈ M0. Moreover, ∑  𝑗 𝐷𝜌𝐷𝜌′𝑋𝑗 = ∑  𝑗 𝐷𝜌′𝐷𝜌𝑋𝑗 holds for all 𝜌, 𝜌′ ∈ 𝑉ℎ
′ and all 

𝑋𝑗 ∈ 𝑆
∗(𝑉)cpl by Corollaries (6.2.74) and (6.2.75). Together with (156) this shows that 

directional derivatives on 𝑋�̂� commute. Finally, the multilinear form (𝑉ℎ
′)𝑘 ∋ 𝑝 ↦

(�̂�𝑝
(𝑘)
𝑋�̂�) (𝜎) ∈ ℂ is bounded for all 𝜎 ∈ 𝑉ℎ

′: It is sufficient to show this for 𝜎 = 0, because 

𝜏𝜎
∗  is a continuous automorphism of 𝑆∗(𝑉) and commutes with 𝐷𝜌

(𝑘)
. If 𝑝 ∈ (𝑉ℎ

′)𝑘 fulfils 

| ∑  𝑟 𝜌𝑖(𝑣
𝑟)| ≤ ∑  𝑟 ‖𝑣

𝑟‖𝛼
∗  for all 𝑖 ∈ {1, , 𝑘}, all 𝑣𝑟 ∈ 𝑉 and one ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉, then we have 

‖∑  𝑗 𝐷𝛽1⋯𝐷𝜌𝑘𝑋𝑗‖𝛼
∗ ≤ ∑  𝑗 ‖𝑋𝑗‖2𝑘𝛼 due to Corollary (6.2.75), which is an upper bound of 

(�̂�𝜌
(𝑘)
𝑋�̂�) (0) .  

Let − be a continuous antilinear involution on 𝑉 and let 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ be given, then the 

degeneracy space of the inner product 〈⋅ | ⋅〉𝛼 is 

kerℎ‖ ⋅ ‖𝛼 ∶= {𝑣
𝑟 ∈ 𝑉ℎ|‖𝑣

𝑟‖𝛼 = 0}.                              (157) 
Thus we get a well‐defined non‐degenerate positive bilinear form on the real vector space 

𝑉ℎ/kerℎ‖ ⋅ ‖𝛼 . We write 𝑉ℎ,𝛼
cpl

 for the completion of this space to a real Hilbert space with 

inner product 〈⋅ | ⋅〉𝛼 and define the linear map . b𝛼 from 𝑉ℎ,𝛼
cpl

 to 𝑉ℎ
′ as 

(𝑣𝑟)b𝛼(𝑤𝑟) ∶= 〈𝑣𝑟|𝑤𝑟〉𝛼                                        (158) 

for all 𝑣𝑟 ∈ 𝑉ℎ,𝛼
cpl

 and all 𝑤𝑟 ∈ 𝑉. Note that . b𝛼: 𝑉ℎ,𝛼
cpl
→ 𝑉ℎ

′ is a bounded linear map due to 

the Cauchy‐Schwarz inequality. Analogously, we define 

ker‖ ⋅ ‖𝛼
∗ ∶= {𝑋𝑗 ∈ 𝑇

∗(𝑉)|‖𝑋𝑗‖𝛼
∗ = 0},                               (159) 

and denote by 𝑇∗(𝑉)𝛼
cpl

 the completion of the complex vector space 𝜏aig(𝑉)/ker‖ ⋅ ‖𝛼 to a 

complex Hilbert space with inner product 〈⋅ | ⋅〉𝛼. Then 𝑆∗(𝑉)𝛼
cpl

 becomes the linear 

subspace of (equivalence classes of) symmetric tensors, which is closed because 𝒮 ⋅ extends 

to a continuous endomorphism of 𝑇∗(𝑉)𝛼
cpl

 by Corollary (6.2.63). 

Moreover, for all 〈⋅ | ⋅〉𝛼 , 〈⋅ | ⋅〉𝛽 ∈ ℐ𝑉,ℎ with 〈⋅ | ⋅〉𝛽 ≤ 〈⋅ | ⋅〉𝛼, the linear map 

id𝑇∙(𝑉): 𝑇
∗(𝑉) → 𝑇∗(𝑉) extends to continuous linear maps 𝜄∞𝛼: 𝑇

∗(𝑉)cpl → 𝑇∗(𝑉)𝛼
cpl

 and 

𝜄𝛼𝛽: 𝑇
∗(𝑉)𝛼

cpl
→ 𝑇∗(𝑉)𝛽

cpl
, such that 𝜄𝛼𝛽0𝜄∞𝛼 = 𝜄∞𝛽 and 𝜄𝛽𝛾0𝜄𝛼𝛽 = 𝜄𝛼𝛾 hold for all 〈⋅ | ⋅〉𝛼 , 

〈⋅ | ⋅〉𝛽 , 〈⋅ | ⋅〉𝛾 ∈ ℐ𝑉,ℎ with 〈⋅ | ⋅〉𝛾 ≤ 〈⋅ | ⋅〉𝛽 ≤ 〈⋅ | ⋅〉𝛼. This way, 𝑇∗(𝑉)cpl is realized as the 

projective limit of the Hilbert spaces 𝑇∗(𝑉)𝛼
cpl

 and similarly, 𝑆∗(𝑉)cpl as the projective limit 

of the closed linear subspaces 𝑆∗(𝑉)𝛼
cpl
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Corollary (6.2.78)[288]: [280] Let . ̅be a continuous antilinear involution on 𝑉 and 𝑓𝑗 ∈

𝒞∞(𝑉ℎ
′) . Given 𝜌 ∈ 𝑉ℎ

′ and 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ such that | ∑  𝑟 𝜌(𝑣
𝑟)| ≤ ∑  𝑟 ‖𝑣

𝑟‖𝛼 holds for all 

𝑣𝑟 ∈ 𝑉, then 

�̂�𝜌(∑ 

𝑗

𝑓j) =∑∑ 

𝑗

𝜌

𝑖∈𝐼

(𝑒𝑖)�̂�𝑒𝑖
b𝛼𝑓j                                        (160) 

holds for every Hilbert basis 𝑒 ∈ (𝑉ℎ,𝛼
cpl
)
𝐼
 of 𝑉ℎ,𝛼

cpl
 indexed by a set 𝐼. 

Proof: As 𝑓j is smooth, the function 𝑉ℎ
′ ∋ 𝜎 ↦ �̂�𝜎𝑓j ∈ ℂ is bounded, which implies that its 

restriction to the dual space of 𝑉ℎ,𝛼
cpl

 is continuous with respect to the Hilbert space topology 

on (the dual of) 𝑉ℎ,𝛼
cpl

. As 𝜌 = ∑ 𝑒𝑖
b𝛼

𝑖∈𝐼 𝜌(𝑒𝑖) with respect to this topology, it follows that 

�̂�𝑝𝑓j = ∑ ∑  𝑗 𝜌𝑖∈𝐼 (𝑒𝑖)�̂�𝑒𝑖
b𝛼𝑓j.  

Corollary (6.2.79)[288]: Let . ̅be a continuous antilinear involution on 𝑉 and 𝑓j: 𝑉ℎ
′ → ℂ 

analytic of Hilbert‐Schmidt type with ∑  𝑗 (�̂�𝜌
(𝑘)
𝑓j) (0) = 0 for all 𝑘 ∈ N0 and all 𝜌 ∈ (𝑉ℎ

′)𝑘. 

Then 𝑓j = 0. 

Proof: Given 𝜎 ∈ 𝑉ℎ
′, then define the smooth function 𝑔j: ℝ → ℂ by 𝑡 ↦ 𝑔j(𝑡) : = 𝑓j(𝑡𝜎) . 

We write 𝑔𝑗
(𝑘)(𝑡) for the k‐th derivative of 𝑔j at 𝑡. Then there exists a 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ that 

fulfils ∑  𝑟 |𝜎(𝑣
𝑟)| ≤ ∑  𝑟 ‖𝑣

𝑟‖𝛼 for all 𝑣𝑟 ∈ 𝑉, and consequently 𝜎 = 𝐿/𝑒b𝛼 with a 

normalized 𝑒 ∈ 𝑉ℎ,𝛼
cpl

 and 𝑢 ∈ [0,1] by the Fréchet‐Riesz theorem. Therefore, 

(∑∑ 

𝑗

1

𝑘!

∞

𝑘=0

|𝑔𝑗
(𝑘)(𝑡)|)

2

𝐶𝑆
≤
∑

1

𝑘!

∞

𝑘=0

∑∑ 

𝑗

1

ℓ!

∞

ℓ=0

|𝑔𝑗
(ℓ)(𝑡)|2

≤ e∑
v2𝑝

ℓ!

∞

ℓ=0

|∑  

𝑗

(�̂�
(𝑒b𝛼 ,…,𝑒b𝛼)

(ℓ)
𝑓j) (𝑡𝜎)|

2 ≤ e𝐶−2𝜎,2𝜎,𝛼 

holds for all 𝑡 ∈ [−2,2] with a constant 𝐶−2𝜎,2𝜎,𝛼 ∈ ℝ, which shows that 𝑔j is an analytic 

function on ] − 2,2[. As ∑  𝑗 𝑔𝑗
(𝑘)(0) = 0 for all 𝑘 ∈ M0 this implies 𝑓j(𝜎) = 𝑔j(1) = 0.  

Note that one can derive even better estimates for the derivatives of 𝑔j. This shows that 

condition (120) is even stronger than just analyticity. As an example, consider 𝑉 = ℂ , 𝑉ℎ
′ =

ℝ, then the function ℝ ∋ 𝑥𝑟 ↦  exp ((𝑥𝑟)2) ∈ ℂ is not analytic of Hilbert‐Schmidt type. 

Corollary (6.2.80)[288]: [280] Let . ̅be a continuous antilinear involution on V. Let 𝑘 ∈ N 

and 𝑥𝑟 ∈ (𝑉ℎ)
𝑘 as well as 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ be given. Then 

∑ 

𝑗

(�̂�
(𝑥𝑟)b𝛼
(𝑘)

𝑌�̂�) (0) =∑ 

𝑗

〈𝐷
(𝑥𝑟)b𝛼
(𝑘)

𝑌𝑗〉0 = 〈𝑥1
𝑟⊗⋯⊗𝑥𝑘

r|𝑌𝑗〉𝛼
∗                 (161) 

holds for all 𝑌𝑗 ∈ 𝑆
∗(𝑉)cpl. 

Proof: The first identity is just Corollary (6.2.77), and for the second one it is sufficient to 

show that ∑  𝑗 〈𝐷(𝑥𝑟)b𝛼
(𝑘)

𝑌𝑗〉0 = ∑  𝑟 〈𝑥1
𝑟⊗⋯⊗𝑥𝑘

r|𝑌𝑗〉𝛼
∗  holds for all factorizing tensors 𝑌𝑗 of 

degree 𝑘, because both sides of this equation vanish on homogeneous tensors of different 
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degree and are linear and continuous in 𝑌𝑗 by Corollary (6.2.75). However, it is an immediate 

consequence of the definitions of 𝐷, ⋅ b𝛼, and 〈⋅ | ⋅〉𝛼
∗  that 

∑ 

𝑟

〈𝐷
((𝑥1

𝑟) 
b𝛼 ,…,(𝑥𝑘

𝑟)
 

b𝛼)

(𝑘)
𝑦1
𝑟⊗⋯⊗𝑦𝑘

𝑟〉0 = 𝑘!∑ 

𝑟

∏〈

𝑘

𝑚=1

𝑥𝑚
r |𝑦𝑚

𝑟 〉𝛼

=∑ 

𝑟

〈𝑥1
𝑟⊗… ⊗ 𝑥𝑘

r|𝑦1
𝑟⊗… . .⊗ 𝑦𝑘

𝑟〉𝛼
∗  

holds for all 𝑦1
𝑟 , 𝑦𝑘

𝑟 ∈ 𝑉.  

Corollary (6.2.81)[288]: [280] Let . ̅be a continuous antilinear involution on 𝑉, then 

∑ 

𝑗

≪ 𝑋�̂�|𝑌�̂� ≫𝛼
∗ (𝜌) =∑ 

𝑗

〈𝜏𝜌
∗𝑋𝑗|𝜏𝜌

∗𝑌𝑗〉𝛼
∗ =∑ 

𝑗

𝑋𝑗 
∗ ⋆𝛬𝛼

̂
𝑌𝑗(𝜌)                (162) 

holds for all 𝑋𝑗 , 𝑌𝑗 ∈ 𝑆
⋅(𝑉)cpl, all 𝜌 ∈ 𝑉ℎ

′, and all 〈⋅ | ⋅〉0𝑗 ∈ ℐ𝑉,ℎ, where 𝛬𝛼: 𝑉 × 𝑉 → ℂ is 

the continuous bilinear form defined by ∑  𝑟 𝛬𝛼(𝑣
𝑟 , 𝑤𝑟) : = ∑  𝑟 〈𝑣

𝑟|𝑤𝑟〉𝛼 . 

Proof: Let 𝑋𝑗 , 𝑌𝑗 ∈ 𝑆
∗(𝑉)cpl, 𝑝 ∈ 𝑉ℎ

′ and 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ be given. Let 𝑒 ∈ (𝑉ℎ,𝛼
cpl
)
𝐼
 be a 

Hilbert base of 𝑉ℎ,𝛼
cpl

 indexed by a set 𝐼. Then 

∑ 

𝑗

≪ 𝑋�̂�|𝑌�̂� ≫𝛼
∗ (𝜌) = ∑

1

𝑘!

∞

𝑘=0

∑∑ 

𝑗

(�̂�
𝑒𝑖
b𝛼

(𝑘)
𝑋�̂�)

𝑖∈𝐼𝑘

(𝑝) (�̂�
𝑒𝑖
b𝛼

(𝑘)
𝑌�̂�) (𝜌) 

                                = ∑
1

𝑘!

∞

𝑘=0

∑∑ 

𝑗

〈

𝑖∈𝐼𝑘

𝐷
𝑒𝑖
b𝛼

(𝑘)
𝜏𝜌
∗𝑋𝑗〉0〈𝐷

𝑒𝑖
b𝛼

(𝑘)
𝜏𝜌
∗𝑌𝑗〉0 

                         = ∑∑∑ 

𝑗

1

𝑘!
𝑖∈𝐼𝑘

∞

𝑘=0

〈𝜏𝜌
∗𝑋𝑗|𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑘〉𝛼

∗ 〈𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑘|𝜏𝜌
∗𝑌𝑗〉𝛼

∗  

=∑ 

𝑗

〈𝜏𝜌
∗𝑋𝑗|𝜏𝑝

∗𝑌𝑗〉𝛼
∗              

holds by Corollary (6.2.77) and Corollary (6.2.74) as well as the previous Corollary (6.2.80) 

and the fact that the tensors (𝑘!)1/2𝑒𝑖1⊗ ⊗𝑒𝑖𝑘 for all 𝑘 ∈ M0 and 𝑖 ∈ 𝐼𝑘 form a Hilbert 

base of 𝒯∗(𝑉)𝛼
cpl

 The second identity is a direct consequence of Corollary (6.2.70) because 

𝜏𝜌
∗ is a unital ∗‐automorphism of ⋆𝛬𝛼. Indeed, we have 

∑ 

𝑗

〈𝜏𝜌
∗𝑋𝑗|𝜏𝜌

∗𝑌𝑗〉𝛼
∗ =∑ 

𝑗

〈(𝜏𝜌
∗𝑋𝑗)

∗
⋆𝛬𝛼 (𝜏𝜌

∗𝑌𝑗)〉0 =∑ 

𝑗

〈𝜏𝜌
∗(𝑋𝑗

∗ ⋆𝛬𝛼 𝑌𝑗)〉0

=∑ 

𝑗

𝑋𝑗 
∗ ⋆𝛬𝛼
̂ 𝑌𝑗(𝜌) .  

Corollary (6.2.82)[288]: [280] Let . ̅be a continuous antilinear involution on 𝑉 and 𝑋𝑗 ∈

𝑆∗(𝑉)cpl, then 𝑋�̂� ∈ 𝒞
(′𝐽𝐻𝑆(𝑉ℎ

′) . 

Proof: The function 𝑋�̂� is smooth by Corollary (6.2.77). By the previous Corollary (6.2.81), 

we have 
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∑
1

𝑘!

∞

𝑘=0

∑∑ 

𝑗

|

𝑖∈𝐼𝑘

(�̂�
𝑒𝑖
b𝛼

(𝑘)
𝑋�̂�) (𝜉

𝑟)|2 =∑ 

𝑗

≪ 𝑋�̂�|𝑋�̂� ≫𝛼
∗ (𝜉𝑟) =∑ 

𝑗

𝑋𝑗 
∗ ⋆𝛬𝛼
̂ 𝑋𝑗(𝜉

𝑟) 

for all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ, which is finite and depends smoothly on 𝜉𝑟 ∈ 𝑉ℎ
′ by Corollary (6.2.77) 

again. Therefore it is uniformly bounded on line segments.  

Corollary (6.2.83)[288]: [280] Let . ̅be a continuous antilinear involution on 𝑉 and 〈⋅ | ⋅

〉𝛼 ∈ ℐ𝑉,ℎ. For every 𝑓j ∈ 𝒞
0⊃𝐻𝑆(𝑉ℎ

′) there exists an (𝑋𝑗)𝑓j ∈ 𝑆
⋅(𝑉)cpl that fulfils ∑  𝑗 ≪

𝑓j |𝑓j ≫𝛼
∗ (0) = ∑  𝑗 ≪ (𝑋𝑗)̂ 𝑓j| (𝑋𝑗)

̂
𝑓j ≫𝛼

∗ (0)𝑎𝑛𝑑 ∑  𝑗 ≪ 𝑓j |𝑌�̂� ≫𝛼
∗ (0) = ∑  𝑗 ≪

(𝑋𝑗)̂ 𝑓j| 𝑌�̂� ≫𝛼
∗ (0) for all 𝑌𝑗 ∈ 𝑆

⋅(𝑉)cpl and all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ . 

Proof: For every 𝛼 ∈ ℐ𝑉,ℎ construct (𝑋𝑗)𝑓j,𝛼 ∈ 𝑆
∗(𝑉)𝛼

cpl
 as 

(𝑋𝑗)𝑓j,𝛼: = ∑
1

𝑘!

∞

𝑘=0

∑∑ 

𝑗

𝑒𝑖1
𝑖∈𝐼𝑘

⊗⋯⊗ 𝑒𝑖𝑘 (�̂�𝑒𝑖
b𝛼

(𝑘)
𝑓j) (0) ∈ 𝑆

𝑣𝑟(𝑉)𝛼
cpl
, 

where 𝑒 ∈ (𝑉ℎ,𝛼
cpl
)
𝐼
 is a Hilbert base of 𝑉ℎ,𝛼

cpl
 indexed by a set 𝐼. This infinite sum (𝑋𝑗)𝑓j,𝛼 

indeed lies in 𝑆∗(𝑉)𝛼
cpl

 and fulfils ∑  𝑗 〈(𝑋𝑗)𝑓j,𝛼 |(𝑋𝑗)𝑓j,𝛼〉𝛼
∗ = ∑  𝑗 ≪ 𝑓j| 𝑓j ≫𝛼

∗ (0) , because 

(�̂�
𝑒𝑖
〉𝛼

(𝑘)
𝑓j) (0) is invariant under permutations of the 𝑒𝑖1, . . . , 𝑒𝑖𝑘 due to the smoothness of 𝑓j 

and because 

∑ ∑ ∑ 

𝑗

1

𝑘! ℓ!
𝐼𝑘,𝑖′∈𝐼ℓ

∞

𝑘,ℓ=0𝑖∈

〈𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑘 (�̂�𝑒𝑖
b𝛼

(𝑘)
𝑓j) (0)| 𝑒𝑖í ⊗⋅⋅⋅ ⊗ 𝑒𝑖𝑝′ (�̂�𝑒𝑖

b𝛼

(ℓ)
𝑓j) (0)〉𝛼

∗  

=∑∑∑ 

𝑗

1

𝑘!
𝑖∈𝐼𝑘

∞

𝑘=0

| (�̂�
𝑒𝑖
b𝛼

(𝑘)
𝑓j) (0)|

2 

=∑ 

𝑗

≪ 𝑓j|𝑓j ≫𝛼
∗ (0) .                    

Moreover, for all 𝑌𝑗 ∈ 𝑆
⋅(𝑉)cpl the identity 

∑ 

𝑗

≪ 𝑓j|𝑌�̂� ≫𝛼
∗ (0) = ∑

1

𝑘!

∞

𝑘=0

∑∑ 

𝑗

(�̂�
𝑒𝑖
b𝛼

(𝑘)
𝑓j)

𝑖∈𝐼𝑘

(0) (�̂�
𝑒𝑖
b𝛼

(𝑘)
𝑌�̂�) (0) 

                    = ∑
1

𝑘!

∞

𝑘=0

∑∑ 

𝑗

〈

𝑖∈𝐼𝑘

(𝑋𝑗)𝑓j,𝛼|𝑒𝑖1⊗ ⊗ 𝑒𝑖𝑘〉𝛼
∗ 〈𝑒𝑖1⊗ ⊗ 𝑒𝑖𝑘|𝑌𝑗〉𝛼

∗

=∑ 

𝑗

〈(𝑋𝑗)𝑓j,0𝑖|𝑌𝑗〉𝛼
∗  

holds due to the construction of (𝑋𝑗)𝑓j,𝛼 and Corollary (6.2.80) and because the tensors 

(𝑘!)1/2𝑒𝑖1⊗ ⊗𝑒𝑖𝑘 for all 𝑘 ∈ M0 and all 𝑖 ∈ 𝐼𝑘 are a Hilbert base of 𝑇∗(𝑉)𝛼
cpl

 

Next, let 〈⋅ | ⋅〉𝛽 ∈ ℐ𝑉,ℎ with 〈⋅ | ⋅〉𝛽 ≤ 〈⋅ | ⋅〉𝛼 and a Hilbert basis 𝑑 ∈ (𝑉ℎ,𝛽
cpl
)
𝐽
 of 𝑉ℎ,𝛽

cpl
 indexed 

by a set 𝐽 be given. Using the explicit formulas and the identity 
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∑ 

𝑗

(�̂�
𝑑𝑗
b𝛽

(𝑘)
𝑓j) (0) =

1

𝑘!
∑∑ 

𝑗

(�̂�
𝑒𝑖
b𝛼

(𝑘)
𝑓j)

𝑖∈𝐼𝑘

(0)〈𝑑𝑗1⊗⋯⊗𝑑𝑗𝑘|𝜄𝛼𝛽(𝑒𝑖1⊗ ⊗ 𝑒𝑖𝑘)〉𝛽
∗  

from Corollary (6.2.78) one can now calculate that 

∑ 

𝑗

𝜄𝛼𝛽 ((𝑋𝑗)𝑓j,𝛼) = ∑
1

𝑘!

∞

𝑘=0

∑∑ 

𝑗

𝜄𝛼𝛽
𝑖∈𝐼𝑘

(𝑒𝑖1⊗⋯⊗ 𝑒𝑖𝑘) (�̂�𝑒𝑖
b𝛼

(𝑘)
𝑓j) (0) 

                    = ∑
1

(𝑘!)2

∞

𝑘=0

∑∑∑ 

𝑗

𝑑𝑗1
𝑗∈𝐽𝑘𝑖∈𝐼𝑘

⊗⋯⊗𝑑𝑗𝑘〈𝑑𝑗1⊗⋯

⊗𝑑𝑗𝑘|𝜄𝛼𝛽  (𝑒𝑖1⊗ ⊗ 𝑒𝑖𝑘)〉𝛽
∗ (�̂�

𝑒𝑖
b𝛼

(𝑘)
𝑓j) (0) 

             = ∑
1

𝑘!

∞

𝑘=0

∑∑ 

𝑗

𝑑𝑗1
𝑗∈𝐽𝑘

⊗ ⊗ 𝑑𝑗𝑘 (�̂�
𝑑𝑗
b𝛽

(𝑘)
𝑓j) (0) 

= (𝑋𝑗)𝑓j,𝛽 .                                               

As 𝑆∗(𝑉)cpl is the projective limit of the Hilbert spaces 𝑆∗(𝑉)𝛼
cpl

, this implies that there 

exists a unique (𝑋𝑗)𝑓j ∈ 𝑆
∗(𝑉)cpl that fulfils 𝜄∞𝛼 ((𝑋𝑗)𝑓j) = (𝑋𝑗)𝑓j,𝛼 for all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ. 

Consequently and with the help of Corollary (6.2.81), 

∑ 

𝑗

≪ (𝑋𝑗)
̂

𝑓j
|𝑌�̂� ≫𝛼

∗ (0) =∑ 

𝑗

〈(𝑋𝑗)𝑓j
|𝑌𝑗〉𝛼

∗ =∑ 

𝑗

〈𝜄∞𝛼 ((𝑋𝑗)𝑓j
) |𝑌𝑗〉𝛼

∗

=∑ 

𝑗

〈(𝑋𝑗)𝑓j,𝛼
|𝑌𝑗〉𝛼

∗ =∑ 

𝑗

≪ 𝑓j|𝑌�̂� ≫𝛼
∗ (0) 

holds for all 𝑌𝑗 ∈ 𝑆
⋅(𝑉)cpl and all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ, and similarly, 

∑ 

𝑗

≪ (𝑋𝑗)
̂

𝑓j
|(𝑋𝑗)
̂

𝑓j
≫𝛼
∗ (0) =∑ 

𝑗

〈(𝑋𝑗)𝑓j
|(𝑋𝑗)𝑓j

〉𝛼
∗

=∑ 

𝑗

〈𝜄∞𝛼 ((𝑋𝑗)𝑓j
) |𝜄∞𝛼 ((𝑋𝑗)𝑓j

)〉𝛼
∗ =∑ 

𝑗

〈(𝑋𝑗)𝑓j,𝛼
|(𝑋𝑗)𝑓j,𝛼

〉𝛼
∗ =∑ 

𝑗

≪ 𝑓j|𝑓j ≫𝛼
∗ (0) .  

Corollary (6.2.84)[288]: Let .̅ be a continuous antilinear involution on 𝑉, then the Gel’fand 

transformation ∧: (𝑆∗(𝑉)cpl,∨,∗) → 𝒞(′)𝐻𝑆(𝑉ℎ
′) is an isomorphism of unital∗‐algebras. 

Proof: Let 𝑋𝑗 ∈ 𝑆
∗(𝑉)cpl be given, then 𝑋�̂� ∈ 𝒞

( 𝐻𝑤𝑆(𝑉ℎ
′) by Corollary (6.2.82). The 

Gel’fand transformation is a unital ∗‐homomorphism onto its image by construction and 

injective because 𝑋�̂� = 0 implies ∑  𝑗 〈𝑋𝑗|𝑋𝑗〉𝛼
∗ = ∑  𝑗 ≪ 𝑋�̂�|𝑋�̂� ≫𝛼

∗ (0) = 0 for all 〈⋅ | ⋅〉𝛼 ∈

ℐ𝑉,ℎ by Corollary (6.2.81), hence 𝑋𝑗 = 0. It only remains to show that ∧ is surjective, so let 

𝑓j ∈ 𝒞
(′𝐽𝐻𝑆(𝑉ℎ

′) be given. Construct (𝑋𝑗)𝑓j ∈ 𝑆
∗(𝑉)cpl like in the previous Corollary 

(6.2.83), then 
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∑ 

𝑗

≪ 𝑓j − (𝑋𝑗)
̂

𝑓j
|𝑓j − (𝑋𝑗)

̂
𝑓j
≫𝛼
∗ (0) =∑ 

𝑗

≪ 𝑓j|𝑓j ≫𝛼
∗ (0) −∑ 

𝑗

≪ 𝑓j|(𝑋𝑗)
̂

𝑓j
≫𝛼
∗ (0) −∑ 

𝑗

≪ (𝑋𝑗)
̂

𝑓j
|𝑓j ≫𝛼

∗ (0) +∑ 

𝑗

≪ (𝑋𝑗)̂ 𝑓j|(𝑋𝑗)
̂

𝑓j ≫𝛼
∗ (0) 

=∑ 

𝑗

≪ 𝑓j|𝑓j ≫𝑎
∗ (0) −∑ 

𝑗

≪ (𝑋𝑗)
̂

𝑓j
|(𝑋𝑗)
̂

𝑓j
≫𝛼
∗ (0) −∑ 

𝑗

≪ (𝑋𝑗)
̂

𝑓j
|(𝑋𝑗)
̂

𝑓j
≫𝛼
∗ (0) +∑ 

𝑗

≪ (𝑋𝑗)
̂

𝑓j
|(𝑋𝑗)̂ 𝑓j ≫𝛼

∗ (0) 

= 0 

holds for all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ, hence 𝑓j = (𝑋𝑗)̂ 𝑓j due to Corollary (6.2.79).  

Corollary (6.2.85)[288]: Let  . ̅𝑏𝑒 a continuous antilinear involution of 𝑉 and 𝛬 a 

continuous Hermitian bilinear form on 𝑉 such that ∑  𝑟 𝛬(𝑣
𝑟 , 𝑣𝑟) ≥ 0 holds for all 𝑣𝑟 ∈ 𝑉. 

Then for all 𝑋𝑗 ∈ 𝑆
∗(𝑉) and all 𝑡 ∈ M0 there exist 𝑛 ∈ N and (𝑋𝑗)1, . . . , (𝑋𝑗)𝑛 ∈ 𝑆

⋅(𝑉) 

such that 

∑ 

𝑗

(P𝛬)
𝑡(𝑋𝑗

∗⊗𝜋 𝑋𝑗) =∑∑ 

𝑗

(𝑋𝑗)𝑖
∗

𝑛

𝑖=1

⊗𝜋 (𝑋𝑗)𝑖 .               (163) 

Proof: This is trivial for scalar 𝑋𝑗 as well as for 𝑡 = 0 and for the remaining cases it is 

sufficient to consider 𝑡 = 1, the others then follow by induction. So let 𝑘 ∈ N and 𝑋𝑗 ∈

𝑆𝑘(𝑉) be given. Expand 𝑋𝑗 as 𝑋𝑗 = ∑ ∑  𝑟 𝑥𝑗,1
𝑟𝑚

𝑗=1 ∨ ⋯∨ 𝑥𝑗,𝑘
𝑟  with 𝑚 ∈ N and vectors 𝑥1,1

𝑟 , , 

𝑥𝑚,𝑘
𝑟 ∈ 𝑉. Then 

∑ 

𝑗

P𝛬(𝑋𝑗
∗⊗𝜋 𝑋𝑗)

= ∑ ∑ ∑ 

𝑟

𝛬

𝑘

ℓ′,ℓ=1

𝑚

𝑗′,𝑗=1

(𝑥𝑗
𝑟 , , ℓ’, 𝑥𝑗,ℓ

𝑟 )(𝑥𝑗,1
𝑟 ∨ ⋅ ⋅ ⋅ 𝑥𝑗′,ℓ′

�̂�  . . .∨ 𝑥𝑗,𝑘
𝑟 )

∗
⊗𝜋 (𝑥𝑗,1

𝑟 ∨ ⋅ ⋅ 

⋅  𝑥𝑗′,ℓ′
�̂� . . .∨ 𝑥𝑗,𝑘

𝑟 ) , 

where ∧ denotes omission of a vector in the product. The complex 𝑚𝑘 ×  𝑚𝑘 ‐matrix with 

entries 𝛬(𝑥𝑗′,ℓ
𝑟̅̅ ̅̅ ̅, , 𝑥𝑗,ℓ

𝑟 ) is positive semi‐definite due to the positivity condition on 𝛬, which 

implies that it has a Hermitian square root 𝑅 ∈ ℂ𝑚𝑘×𝑚𝑘 that fulfils 𝛬 (𝑥𝑗′,ℓ′
𝑟 , 𝑥𝑗,𝑙

𝑟 ) =

∑ ∑ 𝑅(𝑝,𝑞),(𝑗′,ℓ′)
𝑘
𝑞=1

𝑚
𝑝=1 𝑅(𝑝,𝑞),(𝑗,ℓ) for all 𝑗, 𝑗′ ∈ {1, ,𝑚} and ℓ, ℓ′ ∈ {1, 𝑘}. Consequently, 
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∑ 

𝑗

P𝛬(𝑋𝑗
∗⊗𝜋 𝑋𝑗)

= ∑  ∑ 

𝑟

𝑚,𝑘

𝑝,𝑞=1

 ( ∑ 𝑅(𝑝,𝑞),(𝑗′,ℓ)

𝑚,𝑘

𝑗,ℓ′=1

 (𝑥𝑗,1
𝑟 ∨ ⋅ ⋅ ⋅ 𝑥𝑗′,ℓ′

�̂�  . . .

∨ 𝑥𝑗′,𝑘
𝑟 )

∗
)⊗𝜋 (∑ 𝑅(𝑝,𝑞),(𝑗,ℓ)

𝑚,𝑘

𝑗,ℓ=1

(𝑥𝑗,1
𝑟 ∨ 𝑥𝑗,ℓ′

�̂� ⋯∨ 𝑥𝑗,𝑘
𝑟 )) 

holds which proves the lemma.  

Corollary (6.2.86)[288]: [280] Let . ̅be a continuous antilinear involution of 𝑉 and 𝛬, 𝛬′ as 

well as 𝑏 three continuous Hermitian bilinear forms on 𝑉 such that 𝑏 is symmetric and of 

Hilbert‐Schmidt type and such that 𝛬′(𝑣𝑟 , 𝑣𝑟) + 𝑏(𝑣𝑟 , 𝑣𝑟) ≥ 0 holds for all 𝑣𝑟 ∈ 𝑉. Given 

a continuous linear functional 𝑤𝑟 on 𝑆⋅(𝑉) that is positive for ⋆𝛬, define (𝑣𝑧𝑟𝑏
r : 𝑆∗(𝑉) → D 

as 

𝑋𝑗 ↦ (𝑤
𝑟)𝑧𝑟𝑏(𝑋𝑗) ∶= 𝑤

𝑟(e𝑧
𝑟△𝑏𝑋𝑗)                                   (164) 

for all 𝑧𝑟 ∈ ℝ. Then 𝛼𝑗𝑧𝑟𝑏 is a continuous linear functional and positive for ⋆𝛬+𝑧𝑟𝛬′ . 

Proof: It follows from Corollary (6.2.73) that (𝑤𝑟)𝑧𝑟𝑏 is continuous, and given 𝑋𝑗 ∈ 𝑆
∗(𝑉) 

, then 

∑ 

𝑗

∑ 

𝑟

𝑤𝑟 (e𝑧
𝑟△𝑏(𝑋𝑗

∗ ⋆𝛬+𝑧𝑟𝛬′ 𝑋𝑗)) =∑ 

𝑗

∑ 

𝑟

𝑤𝑟 ((e𝑧
𝑟△𝑏𝑋𝑗)

∗
⋆𝛬+𝑧𝑟(𝛬′+𝑏) (e

𝑧𝑟△𝑏𝑋𝑗)) 

= ∑ ∑ 

𝑗

∑ 

𝑟

1

𝑠! 𝑡!

∞

𝑠,𝑡=0

(𝜆) (𝜇∨ ((P𝛬)
𝑠(P𝑧𝑟(𝛬′+𝑏))

𝑡
((e𝑧

𝑟△𝑏𝑋𝑗)
∗
⊗𝜋 (e

𝑧𝑟△𝑏𝑋𝑗)))) 

=∑∑ 

𝑗

∑ 

𝑟

1

𝑡!

∞

𝑡=0

𝑤𝑟 (𝜇⋆𝛬 ((P𝑧𝑟(𝛬′+𝑏))
𝑡
((e𝑧

𝑟△𝑏𝑋𝑗)
∗
⊗𝜋 (e

𝑧𝑟△𝑏𝑋𝑗)))) ≥ 0 

holds because P𝛬 and P𝑧𝑟(𝛬′+𝑏′) commute on symmetric tensors and because of Corollary 

(6.2.85).  

Note that Corollary (6.2.73) also shows that (𝑤𝑟)𝑧𝑟𝑏 depends holomorphically on 𝑧𝑟 ∈ ℂ in 

so far as (D ∋ 𝑧𝑟 ↦ (𝑤𝑟)𝑧𝑟𝑏(𝑋𝑗) ∈ (D is holomorphic for all 𝑋𝑗 ∈ 𝑆
∗(𝑉) . This is the analog 

of statements in [12, 13] in the Rieffel setting. 

Corollary (6.2.87)[288]: [280] Let . ̅be a continuous antilinear involution of 𝑉 and 𝛬 a 

continuous Hermitian bilinear forms on V. If there exists a continuous linear functional (𝜆) 

on 𝑆∗(𝑉) that is positive for ⋆𝛬 and fulfils (𝑣𝑟(1) = 1, then the bilinear form 𝑉2 ∋
(𝑣𝑟 , 𝑤𝑟) ↦ 𝑏, (𝑣𝑟 , 𝑤𝑟) : = 𝑤𝑟(𝑣𝑟 ∨ 𝑤𝑟) ∈ ℂ is symmetric, Hermitian, of Hilbert‐Schmidt 

type and fulfils ∑  𝑟 𝛬(𝑣
𝑟 , 𝑣𝑟) + ∑  𝑟 𝑏𝑤𝑟(𝑣

𝑟 , 𝑣𝑟) ≥ 0 for all 𝑣𝑟 ∈ 𝑉. 

Proof: It follows immediately from the construction of 𝑏𝑤𝑟 that this bilinear form is 

symmetric and it is Hermitian because ∑  𝑟 𝑏𝑤𝑟(𝑣
𝑟 , 𝑤𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑  𝑟  w(𝑣

𝑟 ∨ 𝑤𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

∑  𝑟 𝑏𝑤𝑟(𝑤
𝑟 ∨ 𝑣𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑  𝑟 𝑏𝑤𝑟(𝑤

𝑟 , 𝑣𝑟)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 holds for all , 𝑤𝑟 ∈ 𝑉. Continuity of 𝑤𝑟 especially 

implies that there exists a 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 such that ∑  𝑟 |(𝑤
𝑟(𝑋𝑗)| ≤ 2

−
1

2∑  𝑗 ‖𝑋𝑗‖𝛼
∗   holds for 
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all 𝑋𝑗 ∈ 𝑆
2(𝑉) , hence 𝑏𝑤𝑟 is of Hilbert‐Schmidt type by Corollary (6.2.87) and because 

∑  𝑗 ∑  𝑟 △𝑏𝜔𝑟 𝑋𝑗 = ∑  𝑗 ∑  𝑟 𝑤
𝑟(𝑋𝑗) for 𝑋𝑗 ∈ 𝑆

2(𝑉) . Finally, 0 ≤ ∑  𝑟 𝑤
𝑟((𝑣𝑟)∗ ⋆𝛬 𝑣

𝑟) =

∑  𝑟 𝛬(𝑣
𝑟 , 𝑣𝑟) + ∑  𝑟 𝑏𝑤𝑟(𝑣

𝑟 , 𝑣𝑟) holds due to the positivity of 𝑤𝑟 .  

Corollary (6.2.88)[288]: [280] Let  . ̅be a continuous antilinear involution of 𝑉 and 𝛬 a 

continuous Hermitian bilinear forms on V. Assume 𝑉 ≠ {0}. There exists a non‐zero 

continuous positive linear functional on (𝑆∗(𝑉),⋆𝛬,∗) if and only if there exists a symmetric 

and hermitian bilinear form of HilbertSchmidt type 𝑏 on 𝑉 such that ∑  𝑟 𝛬(𝑣
𝑟 , 𝑣𝑟) +

∑  𝑟 𝑏(𝑣
𝑟 , 𝑣𝑟) ≥ 0 holds for all 𝑣𝑟 ∈ 𝑉. In this case, the continuous positive linear 

functionals on (𝑆∗(𝑉),⋆𝛬,∗) are point‐separating, i.e. their common kernel is {0}. 

Proof: If there exists a non‐zero continuous positive linear functional 𝑤𝑟 on (𝑆∗(𝑉),⋆𝛬,∗) , 

then 𝑤𝑟(1) ≠ 0 due to the Cauchy‐Schwarz identity and we can rescale 𝑤𝑟 such that 

𝛼𝑗(1) = 1. Then the previous Corollary (6.2.87) shows the existence of such a bilinear form 

𝑏. Conversely, if such a bilinear form 𝑏 exists, then Corollary (6.2.86) shows that all 

continuous linear functionals on 𝑆⋅(𝑉) that are positive for V can be deformed to continuous 

linear functionals that are positive for ⋆𝛬 by taking the pull‐back with e△𝑏. As e△𝑏 is 

invertible, it only remains to show that that the continuous positive linear functionals on 

(𝑆⋅(𝑉),∨∗) are point‐separating. This is an immediate consequence of Corollary (6.2.84), 

which especially shows that the evaluation functionals 𝛿𝛽 with 𝜌 ∈ 𝑉ℎ
′ are point‐separating.  

Corollary (6.2.89)[288]: [280] Let 𝛬 be a continuous bilinear form on V. Let 𝑘, 𝑛 ∈ N0 and 

(𝑋𝑗)1, (𝑋𝑗)𝑛 ∈ 𝑆
(𝑘)(𝑉)cpl be given. Then the estimates 

‖∑ 

𝑗

〈(𝑋𝑗)1 ⋆𝛬 . . .⋆𝛬 (𝑋𝑗)𝑛〉𝑚‖𝛼
∗ ≤ (

(𝑘𝑛)!

(𝑘!)𝑛
)

1
2

(2e2)𝑘𝑛∑ 

𝑗

‖(𝑋𝑗)1‖𝛼
∗ ⋯‖(𝑋𝑗)𝑛‖𝛼

∗      (165) 

and 

||∑  

𝑗

(𝑋𝑗)1 ⋆𝛬 . . .⋆𝛬 (𝑋𝑗)𝑛||𝛼
∗ ≤ (

(𝑘𝑛)!

(𝑘!)𝑛
)

1
2

(2e3)𝑘𝑛∑ ||

𝑗

(𝑋𝑗)1||𝛼
∗  . . . ||(𝑋𝑗)𝑛||𝛼

∗        (166) 

hold for all 𝑚 ∈ {0, . . . , 𝑘𝑛} and all ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝛬. 

Proof: The first estimate implies the second, because ‖(𝑋𝑗)1 ⋆𝛬 ⋆𝛬 (𝑋𝑗)𝑛‖𝛼
∗  has at most 

(1 + 𝑘𝑛) nonvanishing homogeneous components, namely those of degree 𝑚 ∈ {0, . . . , 𝑘𝑛}, 

and (1 + 𝑘𝑛) ≤ e𝑘𝑛. We will prove the first estimate by induction over 𝑛: If 𝑛 = 0 or 𝑛 =

1, then the estimate is clearly fulfiled for all possible 𝑘 and 𝑚, and if it holds for one 𝑛 ∈ N, 

then 

‖∑ 

𝑗

〈(𝑋𝑗)1 ⋆𝛬 . . .⋆𝛬 (𝑋𝑗)𝑛+1〉𝑚‖𝛼
∗  

≤∑
1

𝑡!

𝑘

𝑡=0

∑ 

𝑗

‖〈𝜇𝑅𝑒𝑗𝑒𝑐𝑡  ((P𝛬)
𝑡( ((𝑋𝑗)1 ⋆𝛬 . . .⋆𝛬 (𝑋𝑗)𝑛) ⊗𝜋 (𝑋𝑗)𝑛+1))〉𝑚‖𝛼

∗  

≤∑ 

𝑘

𝑡=0

∑ ∑ 

𝑗

 

min(𝑚,𝑘−1)

ℓ=0

1

𝑡!
‖𝜇∨  ((P𝛬)

𝑡(〈(𝑋𝑗)1 ⋆𝛬 . . .⋆𝛬 (𝑋𝑗)𝑛〉𝑚−ℓ+𝑡⊗𝜋 〈(𝑋𝑗)𝑛+1〉ℓ+𝑡)) ‖𝛼
∗  
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≤∑ ∑ ∑ 

𝑗

1

𝑡!

 min {𝑚,𝑘−𝑡}

ℓ=0

𝑘

𝑡=0

 (
𝑚
ℓ
)

1
2
‖(P𝛬) (

𝑡 〈(𝑋𝑗)1 ⋆𝛬 .⋆𝛬 (𝑋𝑗)𝑛〉𝑚−ℓ+𝑡⊗𝜋 〈(𝑋𝑗)𝑛+1〉ℓ+𝑡)‖𝛼⊗𝜋𝛼 

≤∑ ∑ ∑ 

𝑗

 min {𝑚,𝑘−𝑡}

ℓ=0

𝑘

𝑡=0

 (
𝑚
ℓ
)

1
2
 (
𝑚 − ℓ + 𝑡

𝑡
)

1
2
 (
ℓ + 𝑡
𝑡
)

1
2
‖〈(𝑋𝑗)1 ⋆𝛬⋆𝛬 (𝑋𝑗)𝑛〉𝑚−ℓ+𝑡‖𝛼‖〈(𝑋𝑗)𝑛+1〉ℓ+𝑡‖𝛼

∗  

≤∑ ∑ ∑ 

𝑗

 min {𝑚,𝑘−𝑡}

ℓ=0

𝑘

𝑡=0

 (
ℓ + 𝑡
𝑡
) (
 k(n + 1)
 𝑘

)

1
2
‖〈(𝑋𝑗)1 ⋆𝛬⋆𝛬 (𝑋𝑗)𝑛〉𝑚−ℓ+𝑡‖𝛼‖〈(𝑋𝑗)𝑛+1〉ℓ+𝑡‖𝛼

∗  

≤∑ ∑ ∑ 

𝑗

 min {𝑚,𝑘−𝑡}

ℓ=0

𝑘

𝑡=0

 (
ℓ + 𝑡
𝑡
) (

  
k(n + 1)

(𝐾!)𝑛+1
 )

1
2

(2e2)𝑘𝑛‖(𝑋𝑗)1‖𝛼‖(𝑋𝑗)𝑛‖𝛼‖(𝑋𝑗)𝑛+1‖𝛼
∗  

=∑ ∑ ∑ 

𝑗

 min {𝑚,𝑘−𝑡}

ℓ=0

𝑘

𝑡=0

 (
ℓ + 𝑡
𝑡
) (
(𝑘(𝑛 + 1))!

(𝑘!)𝑛+1
)

1
2

(2e2)𝑘𝑛‖(𝑋𝑗)1‖𝛼
∗  . . . ‖(𝑋𝑗)𝑛+1‖𝛼

∗  

≤ (
(𝑘(𝑛 + 1))!

(𝑘!)𝑛+1
)

1
2

∑ 

𝑗

(2e2)𝑘(𝑛+1)‖(𝑋𝑗)1‖𝛼
∗ . . . ‖(𝑋𝑗)𝑛+1‖𝛼

∗  

holds due to the grading of 𝜇∨ and P𝛬, the estimates from Corollaries (6.2.62) as well as 

(6.2.63) and Corollary (6.2.64) for 𝜇∨ and P𝛬, and the previous Lemma (6.2.46).  

Corollary (6.2.90)[288]: [280] Let 𝛬 be a continuous bilinear form on 𝑉, then exp⋆𝛬 (𝑣𝑟) is 

absolutely convergent and 

∑ 

𝑟

exp⋆𝛬  (𝑣
𝑟) = ∑∑ 

𝑟

(𝑣𝑟)⋆𝛬𝑛

𝑛!

∞

𝑛=0

=∑ 

𝑟

e
1
2
𝛬(𝑣𝑟,𝑣𝑟)expV(𝑣

𝑟)              (167) 

holds for all 𝑣𝑟 ∈ 𝑉. Moreover, 

∑ 

𝑟

exp∨(𝑣
𝑟)  ⋆𝛬 exp∨(𝑤

𝑟) =∑ 

𝑟

e𝛬(𝑣
𝑟,𝑤𝑟)exp∨(𝑣

𝑟 +𝑤𝑟)                 (168) 

and 

∑ 

𝑟

〈exp∨(𝑣
𝑟)|exp∨(𝑤

𝑟)〉𝛼
∗ =∑ 

𝑟

e〈𝑣
𝑟|𝑤𝑟〉𝛼                         (169) 

hold for all 𝑣𝑟 , 𝑤𝑟 ∈ 𝑉 and all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉. Finally, ∑  𝑟 exp∨(𝑣
𝑟)∗ = ∑  𝑟 exp∨(𝑣

𝑟) for all 

𝑣𝑟 ∈ 𝑉 if 𝑉 is equipped with a continuous antilinear involutio 𝑛− 

Proof: The existence and absolute convergence of ⋆𝛬 ‐exponentials of vectors follows 

directly from the previous Corollary (6.2.89) with 𝑘 = 1 and (𝑋𝑗)1 = ⋯ = (𝑋𝑗)𝑛 = 𝑣
𝑟: 

∑∑ 

𝑟

‖(𝑣𝑟)⋆𝛬𝑛‖𝛼
∗

𝑛!

∞

𝑛=0

≤∑∑ 

𝑟

(4e3‖𝑣𝑟||𝛼)
𝑛

√𝑛!

∞

𝑛=0

1

2𝑛
 ≤
𝑐𝑠 (∑∑ 

𝑟

(4e3‖𝑣𝑟‖𝛼)
2𝑛

𝑛!

∞

𝑛=0

)

1
2

(∑
1

4𝑛

∞

𝑛=0

)

1
2

< ∞ 

The explicit formula can then be derived like in [23, Lem. 5.5]. For (168) we just note that 
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∑ 

𝑟

P𝛬(exp∨(𝑣
𝑟)⊗𝜋 exp∨(𝑤

𝑟)) = ∑ ∑ 

𝑟

P𝛬

∞

𝑘,ℓ=0

(
(𝑣𝑟)∨𝑘

𝑘!
⊗𝜋

(𝑤𝑟)∨ℓ

ℓ!
) 

=∑ 

𝑟

𝛬(𝑣𝑟 , 𝑤𝑟) ∑
𝑘(𝑣𝑟)∨(𝑘−1)

𝑘!

∞

𝑘,ℓ=1

⊗𝜋

ℓ(𝑤𝑟)∨(ℓ−1)

ℓ!
 

and so 

∑ 

𝑟

exp∨(𝑣
𝑟)  ⋆𝛬 exp∨(𝑤

𝑟) =∑∑ 

𝑟

1

𝑡!

∞

𝑡=0

𝜇∨ ((P𝛬)
𝑡(exp∨(𝑣

𝑟) ⊗𝜋 exp∨(𝑤
𝑟)))

=∑ 

𝑟

e𝛬(𝑣
𝑟,𝑤𝑟)exp∨(𝑣

𝑟) ∨ exp∨(𝑤
𝑟) . 

The remaining two identities are the results of straightforward calculations. 

Corollary (6.2.91)[288]: Let . ̅be a continuous antilinear involution on V. Then 𝑆per
∗ (𝑉) is 

a dense ∗‐subalgebra of (𝑆∗(𝑉)cpl∗ ⋆𝛬, ) with respect to all products ⋆𝛬 for all continuous 

bilinear Hermitian forms 𝛬 on 𝑉 and 

‖𝑋𝑗‖∞,𝛬 ∶=  sup ∑  

𝑗

√𝑤𝑟(𝑋𝑗
∗ ⋆𝛬 𝑋𝑗) < ∞                       (170) 

holds for all 𝑋𝑗 ∈ 𝑆per(𝑉) , where the supremum runs over all continuous positive linear 

functionals 𝑤𝑟 on (𝑆⋅(𝑉),⋆𝛬,∗) that are normalized to 𝑤𝑟(1) = 1. 

Proof: Corollary (6.2.90) shows that 𝑆per
∗ (𝑉) is a∗‐subalgebra of 𝑆∗(𝑉)cpl with respect to 

all products ⋆𝛬 for all continuous bilinear Hermitian forms 𝛬 on 𝑉. As ∑  𝑟 −

i
d

d𝑧𝑟
|𝑧𝑟=0exp∨(i𝑧

𝑟𝑣𝑟) = ∑  𝑟 𝑣
𝑟 for all 𝑣𝑟 ∈ 𝑉 with 𝑣𝑟 = 𝑣𝑟 we see that the closure of the 

subalgebra 𝑆per
∗ (𝑉) contains 𝑉, hence 𝑆∗(𝑉) which is (as a unital algebra) generated by 𝑉, 

and so the closure of 𝑆per
∗ (𝑉) coincides with 𝑆∗(𝑉)cpl. 

As 𝑆per
∗ (𝑉) is spanned by exponentials and ∑  𝑟 (𝑤

𝑟(exp∨(i𝑣
𝑟)∗ ⋆𝛬 exp∨(i𝑣

𝑟)) =

∑  𝑟 e
𝛬(𝑣𝑟,𝑣𝑟)(𝑤𝑟(exp∨(0)) = ∑  𝑟 e

𝛬(𝑣𝑟,𝑣𝑟) holds for all positive linear functionals w on 

(𝑆∗(𝑉),⋆𝛬,∗) that are normalized to (𝑣𝑟(1) = 1 by Corollary (6.2.90), it follows that 

∑  𝑗 ‖𝑋𝑗‖∞,𝛬 < ∞ for all 𝑋𝑗 ∈ 𝑆per
∗ (𝑉) .  

Corollary (6.2.92)[288]: Let . ̅be a continuous antilinear involution on V. Then there is no 

locally convex topology 𝜏 on 𝑆alg
∗ (𝑉) with the property that any (undeformed) exponential 

∑  𝑗 exp∨(𝑋𝑗) = ∑ ∑  𝑗
𝑋𝑗
∨𝑛

𝑛!
∞
𝑛=0  of any 𝑋𝑗 ∈ 𝑆

2(𝑉)\{0} exists in the completion of 𝑆alg
∗ (𝑉) 

under 𝜏 and such that all the products ⋆𝛬 for all continuous Hermitian bilinear forms 𝛬 on 

𝑉 as well as the ∗‐involution and the projection 〈⋅〉0 on the scalars are continuous. 

Proof: Analogously to the proof of Corollary (6.2.70) we see that, if all the products ⋆𝛬 for 

all continuous Hermitian bilinear forms 𝛬 on 𝑉 as well as the ∗‐involution and the projection 

〈⋅〉0 on the scalars are continuous, then all the extended positive Hermitian forms 〈⋅ | ⋅〉𝛼
∗  for 

all 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉 would have to be continuous and thus extend to the completion of 𝑆alg
∗ (𝑉) . 

Now let 𝑋𝑗 ∈ 𝑆
2(𝑉)\{0} be given. There exist 𝑘 ∈ M and 𝑥𝑟 ∈ 𝑉𝑘 such that 𝑥1

𝑟, . . . , 𝑥𝑘
𝑟 are 

linearly independent and 𝑋𝑗 = ∑ ∑ ∑  𝑗 �̃�𝑗
𝑖𝑗𝑘

𝑗=1
𝑘
𝑖=1 𝑥𝑖

𝑟 ∨ 𝑥𝑗
𝑟 with complex coefficients �̃�𝑗

𝑖𝑗
. If 
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there exists an 𝑖 ∈ {1, 𝑘} such that �̃�𝑗
𝑖𝑖 ≠ 0, then we can assume without loss of generality 

that 𝑖 = 1 and �̃�j
11 = 1 and define a continuous positive Hermitian form on 𝑉 by 

∑  𝑟 〈𝑣
𝑟|𝑤𝑟〉wr : = ∑  𝑟 𝑤

𝑟(𝑣𝑟)𝑤𝑟(𝑤𝑟), where 𝑤𝑟 ⊃:𝑉 → ℂ is a continuous linear form on 

𝑉 that satisfies 𝑤𝑟(𝑥1
𝑟) = 1 and 𝑤𝑟(𝑥𝑖

𝑟) = 0 for 𝑖 ∈ {2, 𝑘}. Otherwise we can assume 

without loss of generality that �̃�j
11 = �̃�j

22 = 0 and �̃�j
12 = 1 and define a continuous positive 

Hermitian form on 𝑉 by ∑  𝑟 〈𝑣
𝑟|𝑤𝑟〉wr ∶= ∑  𝑟 w

r(𝑣𝑟)
𝑇
𝑤𝑟(𝑤𝑟) , where wr: 𝑉 → ℂ2 is a 

continuous linear map that satisfies ∑  𝑟 𝑤
𝑟(𝑥1

𝑟) = (
1
0
) ∑  𝑟 𝑤

𝑟(𝑥2
𝑟) = (

0
1
) and 

∑  𝑟 𝑤
𝑟(𝑥𝑖

𝑟) = 0 for 𝑖 ∈ {3, , 𝑘}. 

In the first case, this results in 〈𝑋j
∨𝑛|𝑋𝑗

∨𝑛〉𝐽
∗ = (2𝑛)! and in the second, 

∑  𝑟 ∑  𝑗 〈𝑋j
∨𝑛|𝑋𝑗

∨𝑛〉wr = (𝑛!)
2. So ∑

𝑋𝑗
∨𝑛

𝑛!
∞
𝑛=0  cannot converge in the completion of 𝑆alg(𝑉) 

because 

∑ 

𝑗

〈∑
𝑋𝑗
∨𝑛

𝑛!

𝑁

𝑛=0

|∑
𝑋𝑗
∨𝑛

𝑛!

𝑁

𝑛=0

〉w
∗ ≥∑1

𝑁

𝑛=0

→ 
𝑁  ∞
→  ∞.  

A similar result has already been obtained by Omori, Maeda, Miyazaki and Yoshioka in the 

2‐dimensional case in [108], where they show that associativity of the Moyal‐product breaks 

down on exponentials of quadratic functions. Note that the above proposition does not 

exclude the possibility that exponentials of some quadratic functions exist if one only 

demands that some special deformations are continuous. 

Even though exponentials of non‐trivial tensors of degree 2 are not contained in 𝑆∗(𝑉)cpl, 
the continuous positive linear functionals are in some sense “analytic” for such tensors: 

Corollary (6.2.93)[288]: [280] Let . ̅be a continuous antilinear involution on 𝑉 and 𝛬 a 

continuous Hermitian bilinear form on V. Let 𝑤𝑟: 𝑆∗(𝑉)cpl → ℂ be a continuous linear 

functional on 𝑆∗(𝑉)cpl that is positive with respect to ⋆𝛬. Then for all 𝑋𝑗 ∈ 𝑆
(2)(𝑉)cpl there 

exists an 𝜀 > 0 such that 

∑∑ 

𝑟

∑ 

𝑗

𝜀𝑛𝑤𝑟((𝑋𝑗
⋆𝛬𝑛)

∗
⋆𝛬 𝑋𝑗

⋆𝛬𝑛)
1
2

𝑛!

∞

𝑛=0

< ∞             (171) 

holds. 

Proof: The seminorm 𝑆∗(𝑉)cpl ∋ 𝑌𝑗 ↦ 𝑤
𝑟(𝑌𝑗

∗ ⋆𝛬 𝑌𝑗)
1/2
∈ [0, ∞[ is continuous by 

construction, so there exist 𝐶 > 0 and ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 such that ∑  𝑟 ∑  𝑗 𝑤
𝑟(𝑌𝑗

∗ ⋆𝛬 𝑌𝑗)
1/2
≤

𝐶 ∑  𝑗 ‖𝑌𝑗‖𝛼
∗  holds for all 𝑌𝑗 ∈ 𝑆

∗(𝑉)cpl. We can even assume without loss of generality that 

‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝛬. Now choose 𝜀 > 0 with ∑  𝑗 𝜀(8e
6‖𝑋𝑗‖𝛼

∗ ) ≤ 1, then Corollary (6.2.89) in the 

case 𝑘 = 2 and (𝑋𝑗)1 = ⋯ = (𝑋𝑗)𝑛 = 𝑋𝑗 shows that 

∑∑ 

𝑟

∑ 

𝑗

𝜀𝑛(𝑤𝑟((𝑋𝑗
⋆𝛬𝑛)

∗
⋆𝛬 𝑋𝑗

⋆𝛬𝑛)
1
2

𝑛!

∞

𝑛=0

≤ 𝐶∑∑ 

𝑗

𝜀𝑛‖𝑋𝑗
⋆𝛬𝑛‖𝛼

∗

𝑛!

∞

𝑛=0
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≤ 𝐶∑
√(2𝑛)!

√2
3𝑛
𝑛!

∞

𝑛=0

 

≤ 𝐶∑
1

√2
𝑛

∞

𝑛=0

 

=
𝐶√2

√2 − 1
.  

It is an immediate consequence of this proposition that Hermitian tensors of grade at most 

2 are represented by essentially self‐adjoint operators in every GNS representation 

corresponding to a continuous positive linear functional 𝑤𝑟 . Recall that for a∗‐algebra 𝒜 

with a positive linear functional 𝑤𝑟:𝒜 → ℂ, the GNS representation of 𝒜 associated to wr 

is the unital ∗‐homomorphism 𝜋wr:𝒜 → Adj(𝒜/ℐ𝑤𝑟) into the adjointable endomorphisms 

on the pre‐Hilbert space ℋ𝑤𝑟 = 𝒜/ℐwr with inner product 〈⋅ | ⋅〉wr, where ℐ𝑤𝑟 =
{𝑎 ∈ 𝒜|𝑤𝑟(𝑎∗𝑎) = 0} and 〈[𝑎]|[𝑏]〉wr = 𝑤

𝑟(𝑎∗𝑏) for all [𝑎], [𝑏] ∈ ℋ𝑤𝑟  with 

representatives 𝑎, 𝑏 ∈ 𝒜. 

Corollary (6.2.94)[288]: [280] Let . ̅  be a continuous antilinear involution on 𝑉 and 𝛬 a 

continuous Hermitian bilinear form on V. Let 𝑤𝑟: 𝑆∗(𝑉)cpl → ℂ be a continuous linear 

functional on 𝑆⋅(𝑉)cpl that is positive with respect to ⋆𝛬. Then for 𝑋j
∗ = 𝑋𝑗 ∈ 𝑆

(2)(𝑉)cpl all 

vectors in the 𝐺𝑁𝑆 pre‐Hilbert space ℋ𝑤
𝑟  are analytic for 𝜋𝑤𝑟(𝑋𝑗) which is therefore 

essentially self‐adjoint. 

Proof: It is clear from the construction of the GNS representation that 𝜋𝑤𝑟(𝑋𝑗) is a 

symmetric operator on ℋ𝑤𝑟 = 𝑆
∗(𝑉)cpl/ℐ𝜔𝑟 and by Nelson’s theorem, see e.g. [286], it is 

sufficient to show that all vectors [𝑌𝑗] ∈ ℋwr are analytic for 𝜋w(𝑋𝑗):From 

∑ 

𝑟

∑ 

𝑗

〈𝜋wr(𝑋𝑗)
𝑛
[𝑌𝑗]|𝜋wr𝐽(𝑋𝑗)

𝑛
[𝑌𝑗]〉wr =∑ 

𝑟

∑ 

𝑗

𝑤𝑟 ((𝑋𝑗
⋆𝛬𝑛 ⋆𝛬 𝑌𝑗)

∗
⋆𝛬 (𝑋𝑗

⋆𝛬𝑛 ⋆𝛬 𝑌𝑗))

=∑ 

𝑟

∑𝑤𝑟  

𝑗

(𝑌𝑗
∗ ⋆𝛬 (𝑋𝑗

⋆𝛬𝑛)
∗
⋆𝛬 𝑋𝑗

⋆𝛬𝑛 ⋆𝛬 𝑌𝑗) 

it follows that analyticity of the vector [𝑌𝑗] is equivalent to the analyticity of the continuous 

positive linear functional 𝑆∗(𝑉)cpl ∋ 𝑍𝑗 ↦ (𝑤
𝑟)𝑌𝑗(𝑍𝑗) ∶= 𝑤

𝑟(𝑌𝑗
∗ ⋆𝛬 𝑍𝑗 ⋆𝛬 𝑌𝑗) ∈ ℂ in the 

sense of the previous Corollary (6.2.93).  

Corollary (6.2.95)[288]: [280] Let 𝑉 be 𝑎 (complex) Hilbert space with inner product 〈⋅ | ⋅

〉1 and unit ball 𝑈 ⊆ 𝑉 and let B𝑖l(𝑉) be the Banach space of all continuous bilinear forms 

on 𝑉 with norm ‖𝛬‖ : = sup𝑣𝑟,𝑤𝑟∈𝑈|𝛬(𝑣
𝑟 , 𝑤𝑟)|. Then the map B𝑖l(𝑉) × 𝑆∗(𝑉)cpl ×

𝑆∗(𝑉)cpl → 𝑆∗(𝑉)cpl 

(𝛬, 𝑋𝑗 , 𝑌𝑗) ↦ 𝑋𝑗 ⋆𝛬 𝑌𝑗                                       (172) 

is continuous. 

Proof: Note that for a Hilbert space 𝑉, the continuous inner products 〈⋅ | ⋅〉𝜆 with 𝜆 > 0 are 

cofinal in ℐ𝑉. Now let 𝛬 ∈ B𝑖l(𝑉), 𝑋𝑗 , 𝑌𝑗 ∈ 𝑆
∗(𝑉)cpl and 𝜀 > 0 be given, then 
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∑ 

𝑗

‖𝑋𝑗
′ ⋆𝛬′ 𝑌𝑗

′ − 𝑋𝑗 ⋆𝛬 𝑌𝑗‖𝜆

≤∑ 

𝑗

‖𝑋𝑗
′ ⋆𝛬′ 𝑌𝑗

′ − 𝑋𝑗 ⋆𝛬′ 𝑌𝑗‖𝜆 +∑ 

𝑗

‖𝑋𝑗 ⋆𝛬′ 𝑌𝑗 − 𝑋𝑗 ⋆𝛬 𝑌𝑗‖𝜆 

holds for all 𝜆 > 0 and all 𝛬′ ∈ B𝑖1(𝑉) as well as all 𝑋𝑗
′, 𝑌𝑗

′ ∈ 𝑆⋅(𝑉)cpl. Moreover, 

∑ 

𝑗

‖𝑋𝑗
′ ⋆𝛬′ 𝑌𝑗

′ − 𝑋𝑗 ⋆𝛬′ 𝑌𝑗‖𝜆 ≤∑ 

𝑗

‖(𝑋𝑗
′ − 𝑋𝑗) ⋆𝛬′ 𝑌𝑗

′‖𝜆 +∑ 

𝑗

‖𝑋𝑗 ⋆𝛬′ (𝑌𝑗
′ − 𝑌𝑗)‖𝜆 

≤ 4∑ 

𝑗

‖𝑋𝑗
′ − 𝑋𝑗‖8𝜆

∗ ‖𝑌𝑗
′‖8𝜆
∗ + 4∑ 

𝑗

‖𝑋𝑗‖8𝜆
∗ ‖𝑌𝑗

′ − 𝑌𝑗‖8𝜆
∗  

holds for all 𝑋𝑗
′, 𝑌𝑗

′ ∈ 𝑆∗(𝑉)cpl as well as all 𝜆 > 0 and all 𝛬′ ∈ B𝑖1(𝑉) such that ‖ ⋅ ‖𝜆 ∈

𝒫𝑉,𝛬′ by Corollary (6.2.66). One can check on factorizing symmetric tensors that P𝛬 and 

P𝛬′−𝛬 commute and by using that 

∑ 

𝑗

𝑋𝑗 ⋆𝛬′ 𝑌𝑗 =∑∑ 

𝑗

1

𝑡!

∞

𝑡=0

𝜇∨ ((P𝛬+(𝛬′−𝛬))
𝑡′

(𝑋𝑗⊗𝜋 𝑌𝑗)) 

= ∑ ∑ 

𝑗

1

𝑡! 𝑠!

∞

𝑡,𝑠=0

𝜇∨ ((P𝛬)
𝑡(P𝛬′−𝛬)

𝑠(𝑋𝑗⊗𝜋 𝑌𝑗)) 

=∑∑ 

𝑗

1

𝑠!

∞

𝑠=0

𝜇⋆𝛬 ((P𝛬′−𝛬)
𝑠(𝑋𝑗⊗𝜋 𝑌𝑗)) , 

it follows that 

∑ 

𝑗

‖𝑋𝑗 ⋆𝛬′ 𝑌𝑗 − 𝑋𝑗 ⋆𝛬 𝑌𝑗‖𝜆 ≤∑∑ 

𝑗

1

𝜌𝑠𝑠!

∞

𝑠=1

‖𝜇⋆𝛬 ((P𝜌(𝛬′−𝛬))
𝑠
(𝑋𝑗⊗𝜋 𝑌𝑗)) ‖𝜆

∗  

≤ 4∑∑ 

𝑗

1

𝑝𝑠𝑠!

∞

𝑠=1

‖(P𝜌(𝛬′−𝛬))
𝑠
(𝑋𝑗⊗𝜋 𝑌𝑗)‖8𝜆⊗𝜋8𝜆

∗  

≤ 8∑∑ 

𝑗

1

(2𝜌)𝑠

∞

𝑠=1

‖𝑋𝑗‖32𝜆
∗ ‖𝑌𝑗‖32𝜆

∗  

=
8

2𝑝 − 1
∑ 

𝑗

‖𝑋𝑗‖32𝜆
∗ ‖𝑌𝑗‖32𝜆

∗  

holds for all 𝜌 >
1

2
, 𝜆 > 0, and all 𝛬′ ∈ Bi𝑙(𝑉) if ‖ ⋅ ‖𝜆 ∈ 𝒫𝑉,𝛬 ∩ 𝒫𝑉,𝜌(Λ′−𝛬) by Corollary 

(6.2.66) and Corollary (6.2.65) with 𝑐 = 2. 

Assume that 𝜆 ≥ 1 + ||𝛬|| and choose 𝜌 >
1

2
 such that 

8

2𝜌−1
∑  𝑗 ‖𝑋𝑗||32𝜆

∗ ||𝑌𝑗‖32𝜆
∗ ≤

𝜀

3,‖
. Then 

‖ ⋅ ‖𝜆 ∈  𝒫𝑉,𝛬 ∩ 𝒫𝑉,𝜌(𝛬−𝛬)for all 𝛬’ ∈ 𝐵𝑖𝑙(𝑉) with ‖𝛬′ − 𝛬|| ≤
1

𝜌
 and ∑  𝑗 ||𝑋𝑗

′ ⋆𝛬, 𝑌𝑗 ’ −

𝑋𝑗 ⋆𝛬 𝑌𝑗 ||
𝜆
≤ 𝜖  holds for all these 𝛬′ and all 𝑋𝑗

′, 𝑌𝑗
′ ∈ 𝑆∗⋅(𝑉)cpl with ∑  𝑗 ‖𝑋𝑗

′ − 𝑋𝑗‖8𝜆
∗ ≤
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∑  𝑗 𝜀/(12 + 12‖𝑌𝑗‖8𝜆) and ∑  𝑗 ‖𝑌𝑗
′ − 𝑌𝑗𝑌𝑗‖8𝜆 ≤  min∑  𝑗  {1, 𝜀/(12 + 12‖𝑋𝑗‖8𝜆)}. This 

proves continuity of ⋆ at (𝛬, 𝑋𝑗 , 𝑌𝑗) .  

Corollary (6.2.96)[288]: [280] Let 𝑉 be 𝑎 (complex) Hilbert space with inner product 〈⋅ | ⋅

〉1 and a continuous antilinear involutio 𝑛− that fulfils ∑  𝑟 〈𝑣
𝑟|𝑤𝑟〉1 = ∑  𝑟 〈𝑣

𝑟|𝑤𝑟〉1 for all 

𝑣𝑟 , 𝑤𝑟 ∈ 𝑉, then 𝑋�̂�: 𝑉ℎ
′ → ℂ is smooth in the Fréchet sense for all 𝑋𝑗 ∈ 𝑆

∗(𝑉)cpl. 

Proof: By the Fréchet‐Riesz theorem we can identify 𝑉ℎ
′ with 𝑉ℎ by means of the antilinear 

map . b:𝑉ℎ → 𝑉ℎ. As the translations 𝜏∗ are automorphisms of 𝑆∗(𝑉)cpl, it is sufficient to 

show that 𝑋�̂� is smooth at 0 ∈ 𝑉ℎ
′. So let 𝐾 ∈ M0 and 𝑟 ∈ 𝑉ℎ be given with 𝑟 ≠ 0 and ‖𝑟‖1 ≤

1. We have already seen in Corollary (6.2.77) that all directional derivatives of 𝑋�̂� exist and 

form bounded symmetric multilinear maps (𝑉ℎ
′)𝑘 ∋ 𝜌 ↦ (�̂�𝜌

(𝑘)
𝑋�̂�) (0) ∈ (D. These maps 

are indeed the derivatives of 𝑋�̂� in the Fréchet sense due to the analyticity of 𝑋�̂�: Define �̂� 

: = 𝑟/‖𝑟‖1, then due to Corollary (6.2.77) and Corollary (6.2.75) the estimate 

1

‖𝑟‖1
𝐾+1∑ 

𝑗

|𝑋�̂�(𝑟
b) −∑

1

𝑘!

𝐾

𝑘=0

(�̂�
(𝑟b,…,𝑟b)

(𝑘)
𝑋�̂�) (0)|

=
1

‖𝑟‖1
𝐾+1∑ 

𝑗

|〈𝜏
𝑟b
∗ (𝑋𝑗) −∑

1

𝑘!

𝐾

𝑘=0

(𝐷𝑟b)
𝑘
𝑋𝑗〉0| 

=
1

‖𝑟‖1
𝐾+1 |∑  

𝑗

〈 ∑
1

𝑘!

∞

𝑘=𝐾+1

(𝐷𝑟b)
𝑘
𝑋𝑗〉0| ≤∑ 

𝑗

|〈 ∑
1

𝑘!

∞

𝑘=𝐾+1

(𝐷�̂�b)
𝑘
𝑋𝑗〉0| 

≤ ∑ ∑ 

𝑗

1

𝑘!

∞

𝑘=𝐾+1

‖(𝐷�̂�b)
𝑘
𝑋𝑗‖

1

∗

≤ ∑ ∑ 

𝑗

1

√𝑘!

∞

𝑘=𝐾+1

‖𝑋𝑗‖2
∗ ≤ 𝐶∑‖𝑋𝑗‖2

∗  

𝑗

 

with 𝐶 = ∑
1

√𝑘!𝑘=𝐾+1 < ∞ holds uniformly for all 𝑟 ≠ 0 with ‖𝑟‖1 ≤ 1.  

The formal deformation quantization of a Hilbert space in a very similar setting has already 

been examined in [106] by Dito. There the formal deformations of exponential type of a 

certain algebra ℱ𝐻𝑆 of smooth functions on a Hilbert space ℋ was constructed. More 

precisely, ℱ𝐻𝑆 consists of all smooth (in the Fréchet sense) functions 𝑓j𝑓j whose derivatives 

fulfil the additional condition that for all 𝜎 ∈ ℋ 

𝑘!∑ 

𝑗

≪ 𝑓j|𝑓j ≫
𝑘 (𝜎):= ∑∑ 

𝑗

|

𝑖∈𝐼𝑘

(�̂�
(𝑒𝑖1 ,…,𝑒𝑖𝑘)

(𝑘)
𝑓j) (𝜎)|

2 < ∞       (173) 

holds and depends continuously on 𝜎 for one (hence all) Hilbert base 𝑒 ∈ ℋ𝐼 of ℋ indexed 

by a set I. In this case ≪ 𝑓j|𝑓j ≫
𝑘∈ ℱ𝐻𝑆 holds. 

Corollary (6.2.97)[288]: [280] One has the estimate 

‖∑ 

𝑗

𝑋𝑗‖𝛼
∗ ≤∑ 

𝑗

‖𝑋𝑗‖𝛼,pr
∗                                            (174) 

for all 𝑋𝑗 ∈ 𝜏ai
∗  g(𝑉) . Moreover, if there is a ‖ ⋅ ‖𝛽 ∈ 𝒫𝑉 , ‖ ⋅ ‖𝛽 ≥ ‖ ⋅ ‖𝛼, such that for every 

〈⋅ | ⋅〉𝛽− orthonormal 𝑒 ∈ 𝑉𝑑 and all 𝑑 ∈ M the estimate ∑ ‖𝑑
𝑖=1 𝑒𝑖‖𝛼

2 ≤ 1 holds, then 
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‖∑ 

𝑗

𝑋𝑗‖𝛼,pr
∗ ≤∑ 

𝑗

‖𝑋𝑗‖𝛽
∗                                (175) 

for all 𝑋𝑗 ∈ 𝒯alg
∗ (𝑉) . 

Proof: Let 𝑋𝑗 ∈ 𝒯alg
∗ (𝑉) be given, then ‖∑  𝑗 𝑋𝑗‖𝛼

∗ ≤ ∑ ∑  𝑗 ‖
∞
𝑘−0 〈𝑋𝑗〉𝑘‖𝛼

∗  and 

∑  𝑗 ‖𝑋𝑗‖𝛼,pr
∗ = ∑ ∑  𝑗 ‖

∞
𝑘−0 〈𝑋𝑗〉𝑘‖𝛼,pr

∗  Thus it is sufficient for the first estimate to show that 

‖∑  𝑗 〈𝑋𝑗〉𝑘‖𝛼
∗ ≤ ∑  𝑗 ‖〈𝑋𝑗〉𝑘‖𝛼,pr

∗  for all 𝑘 ∈ M0. 𝐹ix 𝑘 ∈ ℕ0 and assume that ∑  𝑗 〈𝑋𝑗〉𝑘 =

∑ ∑  𝑟 𝑥𝑖,1
𝑟

𝑖∈𝐼 ⊗⋯⊗𝑥𝑖,𝑘
𝑟  with 𝑥𝑖

𝑟 ∈ 𝑉𝑘. Then 

‖∑ 

𝑗

〈𝑋𝑗〉𝑘‖𝛼
∗ ≤∑∑ 

𝑟

‖

𝑖∈𝐼

𝑥𝑖,1
𝑟 ⊗⋅ ⋅ ⋅⊗ 𝑥𝑖,𝑘

𝑟 ‖𝛼
∗ = √𝑘!∑∑ 

𝑟𝑖∈𝐼

∏ 

𝑘

𝑚=1

‖𝑥𝑖,𝑚
𝑟 ‖𝛼

  

shows that ‖∑  𝑗 〈𝑋𝑗〉𝑘‖𝛼
∗ ≤ ∑  𝑗 ‖〈𝑋𝑗〉𝑘‖𝛼,pr

∗ , hence ‖∑  𝑗 𝑋𝑗‖𝛼
∗ ≤ ∑  𝑗 ‖𝑋𝑗‖𝛼,pr

∗ . For the 

second estimate, let ‖ ⋅ ‖𝛽 with the stated properties and 𝑋𝑗 ∈ 𝒯alg
k (𝑉) be given. Use 

Corollary (6.2.61) to construct ∑  𝑗 (𝑋𝑗)0 = ∑ ∑  𝑟 𝑥𝑎,1
𝑟

𝑎∈𝐴 ⊗⋯⊗𝑥𝑎,𝑘
𝑟  and ∑  𝑗 𝑋�̃� =

∑ ∑  𝑗 𝑋𝑗
𝑎′

𝑎′∈(1…..𝑑) 𝑒𝑎1′ ⊗ ⊗𝑒𝑎𝑘
′  with 𝑒 ∈ 𝑉𝑘 orthonormal with respect to 〈⋅ | ⋅〉𝛽. Clearly 

∑  𝑗 ‖(𝑋𝑗)0‖𝛼,pr
∗ = 0 and so 

‖∑ 

𝑗

𝑋𝑗‖𝛼,pr
∗ ≤∑ 

𝑗

‖𝑋�̃�‖𝛼,pr
∗  

≤ √𝑘! ∑ ∑ 

𝑗

|

𝑎′∈{1,…,𝑑}𝑘

𝑋j
𝑎′|∏  ||

𝑘

𝑚=1

𝑒𝑎𝑚′ ||𝛼 

 ≤
𝑐𝑠∑ 

𝑗

(𝑘!( ∑ |

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑗
𝑎′|2)( ∑ ,

𝑎′∈{1,…𝑑}𝑘

∐‖

𝑘

𝑚=1

𝑒𝑎𝑚′ ‖𝛼
2))

1
2

 

≤∑ 

𝑗

(𝑘!( ∑ |

𝑎′∈{1,…,𝑑}𝑘

𝑋𝑗
𝑎′|2)(∑‖

𝑑

𝑖=1

𝑒𝑖‖𝛼
2)

𝑘

)

1
2

 

≤∑ 

𝑗

‖𝑋𝑗‖𝛽
∗ .  

Corollary (6.2.98)[288]: [280] Let 𝑉 be a nuclear space, then the topology on 𝑆⋅(𝑉) 

coincides with the one constructed for 𝑅 =
1

2
. 

Proof: This is a direct consequence of the preceeding lemma because the locally convex 

topology constructed in [101] for 𝑅 =
1

2
 is the one defined by the seminorms ‖ ⋅ ‖𝛼,pr for all 

‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 and because in a nuclear space, such seminorms ‖ ⋅ ‖𝛽 as required in the lemma 

exist for all ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉 , see e.g. [285] or also [117].  

From[101] we get: 
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Corollary (6.2.99)[288]: Let 𝑉 be a Hausdorff nuclear space 𝑎𝑛𝑑 − a continuous antilinear 

involution of 𝑉 as well as 𝛬 a continuous Hermitian bilinear form on 𝑉, then there exist 

point‐separating many continuous positive linear functionals of (𝑆⋅(𝑉),⋆𝛬,∗) . 

Proof: Choose some 〈⋅ | ⋅〉𝛼 ∈ ℐ𝑉,ℎ such that ‖ ⋅ ‖𝛼 ∈ 𝒫𝑉,𝛬 and define a bilinear form 𝑏 on 

𝑉 by ∑  𝑟 𝑏(𝑣
𝑟 , 𝑤𝑟) : = ∑  𝑟 〈𝑣

𝑟|𝑤𝑟〉𝛼 for all  𝑣𝑟 , 𝑤𝑟 ∈ 𝑉. Then 𝑏 is continuous and 

Hermitian by construction and symmetric due to the compatibility of 〈⋅ | ⋅〉𝛼with −. 

Moreover, ∑  𝑟 𝛬(𝑣
𝑟 , 𝑣𝑟) ≤ ∑  𝑟 ‖𝑣

𝑟‖𝛼‖𝑣
𝑟‖𝛼 = ∑  𝑟 ‖𝑣

𝑟‖𝛼
2 = ∑  𝑟 〈𝑣

𝑟|𝑣𝑟〉𝛼 =

∑  𝑟 𝑏(𝑣
𝑟 , 𝑣𝑟) holds for all 𝑣𝑟 ∈ 𝑉 and 𝑏 is of Hilbert‐Schmidt type because every 

continuous bilinear form on a nuclear space is of Hilbert‐Schmidt type (again, see [117] or 

use [285]). Because of this, Corollary (6.2.88) applies. 
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List of Symbols 

 

Symbol  Page 

𝑠𝑎: self-adjoint 1 

Tr: trace 2 

⨁: Direct sum 3 

dim: dimension 3 

ker: kernel  3 

diag: diagonal 3 

⨂: tensor product 5 

𝑠𝑝: spectrum 7 

𝐿𝜇(𝜑)
∞ : essential Lebesgue space 8 

inf: infimum 17 

sup: supremum 17 

max: maximum 18 

𝐿 
∞: essential Lebesgue space 20 

ran: range 30 

Rad: Radial 34 

det: determinant 44 

𝑊𝑅(𝑉): Weyl algebra 53 

im: imaginary 56 

Pol: Polynomial 59 

End: Endomorphism 59 

Aut: Automorphism 59 

ℓ𝑝: Lebesgue space of sequences  63 

proj: projection 65 

Re: Real 72 

supp: support 91 

cov: covariant 93 

ℓ2: Hilbert space of sequences 102 

FK: Fuglede and Kadison 103 

𝐿2: Hilbert space 107 

top: Topology 107 

DFR: Doplicher-Fredenhagen-Roberts 164 

CCRs: Canonical commutation relations 164 

Rep: Repressentation 167 

Reg: Regular 173 

US: Upper semicontmipus 186 

Alg: Algebra  186 

SR: Sectional representation 186 

𝐿1: Lebesgue on the real line 195 

cs: Cauchy-Schwarz 205 

 

 

  



258 

References 

[1] Frank Hansen, Gert K. Pedersen, Jensen’s operator inequality, Bull. London Math. 

Soc. 35 (2003) 553–564. 

[2]  Huzihiro Araki & Frank Hansen, Jensen’s operator inequality for functions of 

several variables, Proceedings of the American Mathematical Society 128 (2000), 

2075–2084. 

[3]  Julius Bendat & Seymour Sherman, Monotone and convex operator functions, 

Transactions of the American Mathematical Society 79 (1955), 58–71. 

[4]  Lawrence G. Brown & Hideki Kosaki, Jensen’s inequality in semi-finite von 

Neumann algebras, Journal of Operator Theory 23 (1990), 3–19. 

[5]  Chandler Davis, A Schwarz inequality for convex operator functions, Proceedings 

of the American Mathematical Society 8 (1957), 42–44. 

[6]  Chandler Davis, Notions generalizing convexity for functions on spaces of 

matrices, “Proceedings of Symposia in Pure Mathematics” 7, American 

Mathematical Society, 1963, pp. 187–201. 

[7]  Frank Hansen, An operator inequality, Mathematische Annalen 246 (1980), 249–

250. 

[8]  Frank Hansen, Operator inequalities associated with Jensen’s inequality, “Survey 

on Classical Inequalities”, editor T.M. Rasselas, Kluwer Academic Publishers, 

2000, pp. 67–98. 

[9]  Frank Hansen, Operator monotone functions of several variables, Mathematical 

Inequalities & Applications (to appear). 

[10]  Frank Hansen & Gert K. Pedersen, Jensen’s inequality for operators and L¨owner’s 

theorem, Mathematische Annalen 258 (1982), 229–241. 

[11]  Frank Hansen, Gert K. Pedersen, Jensen’s trace inequality in several variables, 

Internat. J. Math. 14 (2003) 667–681. 

[12]  Erhard Heinz, Beitr¨age zur St¨orungstheorie der Spektralzerlegung, 

Mathematische Annalen 123 (1951), 415–438. 

[13]  Richard V. Kadison & John R. Ringrose, “Fundamentals of the Theory of Operator 

Algebras”, vol I-II, Academic Press, San Diego, 1986 (Reprinted by AMS in 1997). 

[14]  Fritz Kraus, ¨ Uber konvexe Matrixfunktionen, Mathematische Zeitschrift 41 

(1936), 18-42. 

[15]  Karl L¨owner, ¨ Uber monotone Matrixfunktionen, Mathematische Zeitschrift 38 

(1934), 177-216. 

[16]  Elliott H. Lieb & Gert K. Pedersen, Multivariable convex trace functions, Reviews 

in Mathematical Physics, to appear. 

[17]  Masanori Ohya & D´enes Petz, “Quantum Entropy and its Use”, Texts and 

Monographs in Physics, Springer Verlag, Heidelberg, 1993. 

[18]  Gert K. Pedersen, “C_−Algebras and their Automorphism Groups”, LMS 

Monographs 14, Academic Press, San Diego, 1979. 

[19]  Gert K. Pedersen, Extreme n−tuples of elements in C_−algebras, Bulletin of the 

London Mathematical Society 19 (1987), 264–270. 

[20]  D´enes Petz, Spectral scale of self-adjoint operators and trace inequalities, Journal 

of Mathematical Analysis and Applications 109 (1985), 74–82. 

[21]  Shˆoichirˆo Sakai, “ C_−Algebras and W_−Algebras”, Springer Verlag, 

Heidelberg, 1971, reprinted 1997. 



259 

[22] J. Antezana, P. Massey, D. Stojanoff; Jensen’s inequality for spectral order and 

submajorization, J. Math. Anal. Appl. 331 (2007), no. 1, 297-307. 

[23]  J. Antezana, P. Massey, D. Stojanoff, Jensen’s inequality and majorization, 

preprint, arXiv.org: math.FA/0411442. 

[24]  J.S. Aujla, J.C. Bourin, Eigenvalues inequalities for convex and log-convex 

functions, Linear Algebra Appl., in press (see arXiv.org: math.OA/0601757). 

[25]  J.S. Aujla, F.C. Silva, Weak majorization inequalities and convex functions, 

Linear Algebra Appl. 369 (2003) 217–233. 

[26]  R. Bhatia, Matrix Analysis, Springer-Verlag, Berlin, Heidelberg, New York, 1997. 

[27] C. Davis, Notions generalizing convexity for functions defined on spaces of 

matrices, in: Proc. Sympos. Pure Math., vol. VII, 1963, pp. 187–201. 

[28]  D.R. Farenick, S.M. Manjegani, Young’s inequality in operator algebras, J. 

Ramanujan Math. Soc. 20 (2) (2005) 107–124. 

[29]  D.R. Farenick, F. Zhou, Jensen’s inequality relative to matrix-valued measures, J. 

Math. Anal. Appl., in press. 

[30]  R.V. Kadison, Non-commutative conditional expectations and their applications, 

in: Operator Algebras, Quantization and Non-commutative Geometry, in: 

Contemp. Math., vol. 365, Amer. Math. Soc., 2004, pp. 143–179. 

[31]  E. Kamei, Majorization in finite factors, Math. Japonica 28 (4) (1983) 495–499. 

[32]  P. Massey, Refinements of spectral resolutions and modelling of operators in II1 

factors, J. Operator Theory, in press. 

[33]  G.K. Pedersen, Convex trace functions of several variables on C∗-algebras, J. 

Operator Theory 50 (2003) 157–167. 

[34] L. Moln´ar, Transformations on the set of all n-dimensional subspaces of a Hilbert 

space preserving principal angles, Comm. Math. Phys. 217 (2001), 409–421. 

[35] Breˇsar, M., ˇ Semrl, P.: Mappings which preserve idempotents, local 

automorpisms, and local derivations. Canad. J. Math. 45, 483–496 (1993) 

[36]  Jordan, C.: Essai sur la g´eom´etrie ´a n dimensions. Bull. Soc. Math. France 3, 

103–174 (1875) 

[37]  Hotelling, H.: Relations between two set of variates. Biometrika 28, 321-377 

(1935) 

[38]  Hou, J.C.: Rank-preserving linear maps on B(X). Sci. China Ser. A 32, 929–940 

(1989) 

[39]  Jacobson, N., Rickart, C.: Jordan homomorphisms of rings. Trans. Amer. Math. 

Soc. 69, 479–502 (1950) 

[40]  Kirillov, A.A., Gvishiani, A.D.: Theorems and Problems in Functional Analysis. 

Springer-Verlag, 1982 

[41]  Martindale, W.S.: Jordan homomorphisms of the symmetric elements of a ring 

with involution. J. Algebra 5, 232–249 (1967) 

[42]  Miao, J., Ben-Israel, A.: On principal angles between subspaces in Rn. Linear 

Algebra Appl. 171 81–98 (1992) 

[43]  Moln´ar, L.: An algebraic approach to Wigner’s unitary-antiunitary theorem. J. 

Austral. Math. Soc. 65, 354–369 (1998) 

[44]  Moln´ar, L.: A generalization of Wigner’s unitary-antiunitary theorem to Hilbert 

modules. J. Math. Phys. 40, 5544–5554 (1999) 

[45]  Moln´ar, L.: Generalization of Wigner’s unitary-antiunitary theorem for indefinite 

inner product spaces. Commun. Math. Phys. 201, 785–791 (2000) 



260 

[46]  Moln´ar, L.: A Wigner-type theorem on symmetry transformations in type II 

factors. Int. J. Theor. Phys. to appear 

[47]  Paige, C.C., Wei, M.: History and generality of the CS decomposition. Linear 

Algebra Appl. 208/209, 303-326 (1994) 

[48]  Palmer, T.W.: Banach Algebras and The General Theory of *-Algebras, Vol. I. 

Cam- bridge University Press, 1994 

[49]  Sharma, C.S., Almeida, D.F.: A direct proof of Wigner’s theorem on maps which 

preserve transition probabilities between pure states of quantum systems. Ann. 

Phys. 197, 300–309 (1990) 

[50] K. Prażmowski, M. Żynel, Orthogonality of subspaces in metric-projective 

geometry, Adv. Geom. 11 (2011) 103–116. 

[51]  W. Benz, Geometrische Transformationen. Bibliographisches Institut, Mannheim 

1992. MR1183223 (93i:51002) Zbl 0754.51005 

[52]  W. Benz, E. M. Schröder, Bestimmung der orthogonalitätstreuen Permutationen 

euklidischer Räume. Geom. Dedicata 21 (1986), 265–276. MR867160 

(87m:51040) Zbl 0605.51003 

[53]  H. Brauner, Über die von Kollineationen projektiver Räume induzierten 

Geradenabbildungen. Sitz. Ber. Österr. Akad. Wiss., Math.-Natur. Kl. Sitzungsber. 

II 197 no. 4–7 (1988), 327–332. Zbl 0668.51002 

[54]  H. Brauner, Eine Kennzeichnung der Ähnlichkeiten affiner Räume mit definiter 

Orthogonalitätsstruktur. Geom. Dedicata 29 (1989), 45–51. MR989186 

(90c:51003) Zbl 0677.51012 

[55]  W.-L. Chow, On the geometry of algebraic homogeneous spaces, Ann. Math. 50 

(1949), 32-67. 

[56]  A. M. Cohen, Point-line spaces related to buildings. In: Handbook of incidence 

geometry, 647–737, North-Holland 1995. MR1360727 (96k:51009) Zbl 

0829.51004 

[57]  J. A. Dieudonné, La géométrie des groupes classiques. Springer 1971. 

MR0310083 (46 #9186) Zbl 0221.20056 

[58]  H. Havlicek, On Plücker transformations of generalized elliptic spaces. Rend. Mat. 

Appl. (7) 15 (1995), 39–56. MR1330178 (96f:51006) Zbl 0828.51005 

[59]  H. Havlicek, Symplectic Plücker transformations. Math. Pannon. 6 (1995), 145–

153. MR1331651 (96c:51006) Zbl 0829.51002 

[60]  H. Havlicek, A characteristic property of elliptic Plücker transformations. J. 

Geom. 58 (1997), 106–116. MR1434183 (97m:51013) Zbl 0881.51019 

[61]  J. W. P. Hirschfeld, Projective geometries over finite fields. Oxford Univ. Press 

1998. MR1612570 (99b:51006) Zbl 0899.51002 

[62]  M. Kordos, Podstawy geometrii rzutowej i rzutowo-metrycznej, volume 57 of 

Biblioteka Matematyczna [Mathematics Library]. Pa´nstwowe Wydawnictwo 

Naukowe (PWN), Warsaw 1984. MR783251 (86k:51003) Zbl 0638.51001 

[63]  R. Kramer, The undefinability of intersection from perpendicularity in the three-

dimensional Euclidean geometry of lines. Geom. Dedicata 46 (1993), 207–210. 

MR1218316 (94a:51029) Zbl 0778.51007 

[64]  K. List, On orthogonality-preserving Plücker transformations of hyperbolic 

spaces. Abh. Math. Sem. Univ. Hamburg 70 (2000), 63–75. MR1809534 

(2001j:51015) Zbl 1002.51009 



261 

[65]  V. Pambuccian, Aufbau der hyperbolischen Geometrie aus dem 

Geradenorthogonalitätsbegriff. Acta Math. Hungar. 101 (2003), 51–61. 

MR2011461 (2004h:51024) Zbl 1048.51013 

[66]  V. Pambuccian, Hyperbolic geometry in terms of point-reflections or of line-

orthogonality. Math. Pannon. 15 (2004), 241–258. MR2098678 (2005f:51021) Zbl 

1075.51005 

[67]  V. Pambuccian, K. Pra˙zmowski, K. Sakowicz, Defining co-punctuality in terms 

of lineorthogonality in plane hyperbolic geometry. Acta Math. Hungar. 109 (2005), 

289–293. MR2191300 (2007e:51024) Zbl 1100.51012 

[68]  M. Pra˙zmowska, K. Pra˙zmowski, M. ˙ Zynel, Euclidean geometry of 

orthogonality of subspaces. Aequationes Math. 76 (2008), 151–167. MR2443467 

Zbl 1158.51005 

[69]  W. Schwabhäuser, L. W. Szczerba, Relations on lines as primitive notions for 

Euclidean geometry. Fund. Math. 82 (1974/75), 347–355. MR0360247 (50 

#12697) Zbl 0296.50001 

[70]  F. D. Veldkamp, Polar geometry. I–IV, V. Nederl. Akad. Wetensch. Proc. Ser. A 

62; 63 = Indag. Math. 21 (1959), 512–551 22 (1959), 207–212. MR0125472 (23 

#A2773) Zbl 0090.11902 

[71] Daniel Kaschek, Nikolai Neumaier, and StefanWaldmann, Complete positivity of 

Rieffel’s deformation quantization by actions of Rd, J. Noncommut. Geom. 3 

(2009), 361–375. 

[72]  F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz, and D. Sternheimer, 

Deformation theory and quantization. I. Deformations of symplectic structures. 

Ann. Phys. 111 (1978), 61–110; Deformation theory and quantization. II. Physical 

applications. ibid. 111 (1978), 111–151. Zbl 0377.53024 MR 0496157; Zbl 

0377.53025 MR 0496158 

[73]  S. Beiser, H. Römer, and S. Waldmann, Convergence of the Wick star product. 

Comm. Math. Phys. 272 (2007), 25–52. Zbl 05237981 MR 2291800 

[74]  M. Bertelson, M. Cahen, and S. Gutt, Equivalence of star products. Classical 

Quantum Gravity 14 (1997), A93–A107. Zbl 0881.58021 MR 1691889 

[75]  M. Bordemann, E. Meinrenken, and M. Schlichenmaier, Toeplitz quantization of 

Kähler manifolds and gl.N /, N ! 1limits. Comm. Math. Phys. 165 (1994), 281–296. 

Zbl 0813.58026 MR 1301849 

[76]  M. Bordemann and S. Waldmann, Formal GNS construction and states in 

deformation quantization. Comm. Math. Phys. 195 (1998), 549–583. Zbl 

0989.53057 MR 1641003 

[77]  H. Bursztyn and S. Waldmann, On positive deformations of _-algebras. In 

Conférence Moshé Flato 1999 (Dijon).Vol. II , Math. Phys. Stud. 22, Kluwer Acad. 

Publ., Dordrecht 2000, 69–80. Zbl 0979.53098 MR 1805905 

[78]  H. Bursztyn and S. Waldmann, Completely positive inner products and strong 

Morita equivalence. Pacific J. Math. 222 (2005), 201–236. Zbl 1111.53071 MR 

2225070 

[79]  H. Bursztyn and S.Waldmann, Hermitian star products are completely positive 

deformations. Lett. Math. Phys. 72 (2005), 143–152. Zbl 1081.53078 MR 2154860 

[80]  M. Cahen, S. Gutt, and J. Rawnsley, Quantization of Kähler manifolds I: geometric 

interpretation of Berezin’s quantization. J. Geom. Phys. 7 (1990), 45–62. Zbl 

0719.53044 MR 1094730 



262 

[81]  M. Cahen, S. Gutt, and J. Rawnsley, Quantization of Kähler manifolds. II. Trans. 

Amer. Math. Soc. 337 (1993), 73–98. Zbl 0788.53062 MR 1179394 

[82]  M. Cahen, S. Gutt, and J. Rawnsley, Quantization of Kähler manifolds. III. Lett. 

Math. Phys. 30 (1994), 291–305. Zbl 0826.53052 MR 1271090 

[83]  M. Cahen, S. Gutt, and J. Rawnsley, Quantization of Kähler manifolds. IV. Lett. 

Math. Phys. 34 (1995), 159–168. Zbl 0831.58026 MR 1335583 

[84]  P. Deligne, Déformations de l’algèbre des fonctions d’une variété symplectique: 

comparaison entre Fedosov et De Wilde, Lecomte. Selecta Math. (N.S.) 1 (1995), 

667–697. Zbl 0852.58033 MR 1383583 

[85]  M. DeWilde and P. B. A. Lecomte, Existence of star-products and of formal 

deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. 

Math. Phys. 7 (1983), 487–496. Zbl 0526.58023 MR 728644 

[86]  J. Dixmier, C_-algebras. North-Holland Math. Library 15, North-Holland 

Publishing Co., Amsterdam 1977. Zbl 0372.46058 MR 0458185 

[87]  B. V. Fedosov, Deformation quantization and index theory. Math. Top. 9, 

Akademie Verlag, Berlin 1996. Zbl 0867.58061 MR 1376365 

[88]  D. Kaschek, Nichtperturbative Deformationstheorie physikalischer Zustände. 

Master thesis, Fakultät für Mathematik und Physik, Physikalisches Institut, Albert-

Ludwigs- Universität Freiburg, Freiburg 2008. 

[89]  M. Kontsevich, Deformation quantization of Poisson manifolds. Lett. Math. Phys. 

66 (2003), 157–216. Zbl 1058.53065 MR 2062626 

[90]  E. C. Lance, Hilbert C_-modules. London Math. Soc. Lecture Note Ser. 210, 

Cambridge University Press, Cambridge 1995. Zbl 0822.46080 MR 1325694 

[91]  N. P. Landsman, Deformations of algebras of observables and the classical limit 

of quantum mechanics. Rev. Math. Phys. 5 (1993), 775–806. Zbl 0801.46094 MR 

1253735 

[92]  N. P. Landsman, Mathematical topics between classical and quantum mechanics. 

Springer Monogr. Math., Springer-Verlag, NewYork 1998. Zbl 0923.00008 MR 

1662141 

[93]  N. P. Landsman, Macroscopic observables and the Born rule, I. Long run 

frequencies. Rev. Math. Phys. 20 (2008), 1173–1190. Zbl 1157.81304 MR 

2466813 

[94]  T. Natsume, R. Nest, and I. Peter, Strict quantizations of symplectic manifolds. 

Lett. Math. Phys. 66 (2003), 73–89. Zbl 1064.53062 MR 2064593 

[95]  R. Nest and B. Tsygan, Algebraic index theorem. Comm. Math. Phys. 172 (1995), 

223–262. Zbl 0887.58050 MR 1350407 

[96]  M. A. Rieffel, Deformation quantization for actions of Rd . Mem. Amer. Math. 

Soc. 106 (1993), no. 506. Zbl 0798.46053 MR 1184061 

[97]  K. Schmüdgen, Unbounded operator algebras and representation theory. Oper. 

Theory Adv. Appl. 37, Birkhäuser Verlag, Basel 1990. Zbl 0697.47048 MR 

1056697 

[98]  M. E. Taylor, Noncommutative harmonic analysis. Math. Surveys Monogr. 22, 

Amer. Math. Soc., Providence, RI, 1986. Zbl 0604.43001 MR 0852988 

[99]  S. Waldmann, States and representations in deformation quantization. Rev. Math. 

Phys. 17 (2005), 15–75. Zbl 1138.53316 MR 2130623 

[100]  S. Waldmann, Poisson-Geometrie und Deformations quantisierung. Springer-

Verlag, Berlin 2007. Zbl 1139.53001 



263 

[101] Waldmann, S.: A nuclear Weyl algebra. J. Geom. Phys. 81 (2014), 10–46. 

[102] D. Buchholz, H. Grundling, The resolvent algebra: a new approach to canonical 

quantum systems, J. Funct. Anal. 254 (11) (2008) 2725–2779. 

[103] E. Binz, R. Honegger, A. Rieckers, Field-theoretic Weyl quantization as a strict 

and continuous deformation quantization, Ann. Henri Poincaré 5 (2004) 327–346.  

[104] J. Cuntz, Bivariant K-theory and the Weyl algebra, K-Theory 35 (2005) 93–137. 

[105] H.J. Borchers, J. Yngvason, Necessary and sufficient conditions for integral 

representations of Wightman functionals at Schwinger points, Comm. Math. Phys. 

47 (3) (1976) 197–213. 

[106]  G. Dito, Deformation quantization on a Hilbert space, in: Y. Maeda, N. Tose, N. 

Miyazaki, S. Watamura, D. Sternheimer (Eds.), Noncommutative Geometry and 

Physics, World Scientific, Singapore, 2005, pp. 139–157. Proceedings of the CEO 

International Workshop. 

[107]  M.J. Pflaum, M. Schottenloher, Holomorphic deformation of Hopf algebras and 

applications to quantum groups, J. Geom. Phys. 28 (1998) 31–44. 

[108]  H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Deformation quantization of 

Fréchet–Poisson algebras: convergence of the Moyal product, in: G. Dito, D. 

Sternheimer (Eds.), Conférence Moshé Flato, 1999, pp. 233–245. Quantization, 

Deformations, and Symmetries . 

[109]  S. Beiser, S. Waldmann, Fréchet algebraic deformation quantization of the 

Poincaré disk, J. Reine Angew. Math. (2011) 57. in press. Preprint 

arXiv:1108.2004. 

 (73) 

[110]  R. Brunetti, K. Fredenhagen, P.L. Ribeiro, Algebraic Structure of Classical Field 

Theory I: Kinematics and Linearized Dynamics for Real Scalar Fields, 2012, p. 53. 

Preprint arXiv:1209.2148. 

[111]  M. Dütsch, K. Fredenhagen, Algebraic quantum field theory, perturbation theory, 

and the loop expansion, Comm. Math. Phys. 219 (2001) 5–30. 

[112]  M. Dütsch, K. Fredenhagen, Perturbative algebraic field theory, and deformation 

quantization, Field Inst. Commun. 30 (2001) 151–160. 

[113] C. Voigt, Bornological quantum groups, Pacific J. Math. 235 (1) (2008) 93–135. 

[114]  R. Meyer, Smooth group representations on bornological vector spaces, Bull. Sci. 

Math. 128 (2) (2004) 127–166. 

[115] M. Gerstenhaber, On the deformation of rings and algebras III, Ann. of Math. 88 

(1968) 1–34. 

[116]  J. Cuntz, Bivariante K-Theorie für lokalkonvexe Algebren und der Chern–

Connes–Charakter, Doc. Math. 2 (1997) 139–182. 

[117]  H. Jarchow, Locally Convex Spaces, B.G. Teubner, Stuttdart, 1981. 

[118]  H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Star exponential functions for 

quadratic forms and polar elements, Contemp. Math. 315 (2002) 25–38. 

[119]  H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Orderings and non-formal 

deformation quantization, Lett. Math. Phys. 82 (2007) 153–175. 

[120]  C. Bنr, N. Ginoux, F. Pfنffle, Wave equations on Lorentzian manifolds and 

quantization, in: ESI Lectures in Mathematics and Physics, European Mathematical 

Society (EMS), Zürich, 2007. 



264 

[121]  S. Waldmann, Geometric Wave Equations, 2012, p. 279 + vi, Lecture Notes for 

the Lecture ‘Wellengleichgungen auf Raumzeiten’ held in Freiburg in 2008/2009 

and 2009. Preprint arXiv:1208.4706. 

[122]  E. Minguzzi, M. Sلnchez, The causal hierarchy of spacetimes, in: D.V. 

Alekseevsky, H. Baum (Eds.), Recent Developments in Pseudo-Riemannian 

Geometry, in: ESI Lectures in Mathematics and Physics, European Mathematical 

Society (EMS), Zürich, 2008, pp. 299–358. 

[123]  R.E. Peierls, The commutation laws of relativistic field theory, Proc. R. Soc. A 

214 (1952) 143–157. 

[124]  R. Haag, Local Quantum Physics, second ed., Springer-Verlag, Berlin, 

Heidelberg, New York, 1993. 

[125]  S. Hollands, R.M. Wald, Axiomatic quantum field theory in curved spacetime, 

Comm. Math. Phys. 293 (1) (2010) 85–125. 

[126]  R. Brunetti, K. Fredenhagen, R. Verch, The generally covariant locality 

principle—a new paradigm for local quantum field theory, Comm. Math. Phys. 237 

(2003) 31–68. 

[127] P. de la Harpe; Fuglede-Kadison determinant: theme and variations, Proc. Natl. 

Acad. Sci. USA, Vol. 110, No. 40 (2013), 15864-15877. 

[128]  Kronecker L (1903) Vorlesungen über die Theorie der Determinanten, Erster Band 

(Teubner). 

[129]  Arnold V (1973) Ordinary Differential Equations (MIT Press, Cambridge, MA). 

[130]  The MacTutor History of Mathematics Archive (1996) Matrices and 

Determinants. Available at http://www-history.mcs.standrews. 

ac.uk/HistTopics/Matrices_and_determinants.html. Accessed June 10, 2013. 

[131]  Muir T (1906, 1911, 1920, 1923) Theory of Determinants in the Historical Order 

of development (Macmillan, New York), Vols 1–4; reprinted (1960) and enlarged 

by Metzler WH (Dover, New York), Vols 1 and 2. 

[132]  Dieudonné J (1943) Les déterminants sur un corps non commutatif. Bull Soc Math 

Fr 71:27–45. 

[133]  Artin E (1957) Geometric Algebra (Interscience Publishers, Inc., New York). 

[134]  Aslaksen H (1996) Quaternionic determinants. Math Intelligencer 18(3):57–65. 

[135]  Gelfand I, Gelfand S, Retakh V, Wilson RL (2005) Quasi determinants. Adv Math 

193(1):56–141. 

[136]  Berezin F (1979) The mathematical basis of supersymmetric field theories. Sov J 

Nuclear Phys 29:857–866. 

[137]  Manin Y (1988) Gauge Field Theory and Complex Geometry, Grundlehren der 

Mathematischen Wissenschaften (Springer, Berlin), Vol 289. 

[138]  Kh’yunkh V, Lê TTQ (2007) The colored Jones polynomial and the Kashaev 

invariant. J Math Sci (N. Y.) 146(1):5490–5504. 

[139]  Grothendieck A (1956) La théorie de Fredholm. Bull Soc Math France 84:319–

384. 

[140]  Simon B (1979) Trace Ideals and Their Applications, London Math Soc Lecture 

Notes (Cambridge Univ Press, Cambridge, UK), Vol 35; reprinted (2005) (Am 

Math Soc, Providence, RI), Ed 2. 

[141]  Metzler WH (1892) On the roots of matrices. Am J Math 14(4): 326–377. 

[142]  von Neumann J (1929) Über die analytischen Eigenschaften von Gruppen linearer 

Transformationen und ihrer Darstellungen. Math Zeitschr 30:3–42; reprinted in 

http://www-history.mcs.standrews/


265 

von Neumann J (1961) Collected Works, Vol. 1 (Pergamon Press, Oxford), pp 509–

548. 

[143]  Lie S (1888) (unter Mitwirkung von Dr Friedrich Engel) Theorie der 

Transformationsgruppen, erster Abschnitt (Teubner, Leipzig, Germany). 

[144]  Hawkins T (2000) Emergence of the Theory of Lie Groups, an Essay in the History 

of Mathematics 1869–1926 (Springer, New York). 

[145]  Poincaré H (1899) Sur les groupes continus. Camb Philos Trans 18:220–255. 

[146]  Liouville J (1838) Sur la théorie de la variation des constants arbitraires. J Math 

Pure Appl 3:342–349. 

[147]  Hairer E, Nørsett SP, Wanner G (1993) Solving Ordinary Differential Equations I 

(Springer, Berlin), 2nd revised Ed. 

[148]  Darboux G (1890) Sur les systèmes formés d’équations linéaires à une seule 

variable indépendante. C R Acad Sci Paris 90:524–526, 596–598. 

[149]  American Mathematics Society (1999) 1999 Steele prizes. Notices Am Math Soc 

46(4):457–462. 

[150]  Murray FJ, von Neumann J (1943) On rings of operators, III. Ann Math 44:716–

808; reprinted in von Neumann J (1961) Collected Works (Pergamon Press, New 

York), Vol III, pp 229–321. 

[151]  Dixmier J (1957) [Les algèbres d’opérateurs dans l’espace Hilbertien (algèbres de 

von Neumann)](Gauthier—Villars, Paris); reprinted (1969), Ed 2; preface trans 

Lance EC (1981) [von Neumann algebras] (North–Holland, Amsterdam). French. 

[152]  Thoma E (1964) Über unitäre Darstellungen abzählbarer, diskreter Gruppen. Math 

Ann 153:111–138. 

[153]  Kaniuth E (1969) Der Typ der regulären Darstellung diskreter Gruppen. Math Ann 

182:334–339. 

[154]  Kaplansky I (1951) Group algebras in the large. Tohoku Math J 3:249–256. 

[155]  Newman MF (1960) On a class of nilpotent groups. Proc Lond Math Soc 3:365–

375. 

[156] 29 Kaniuth E (1970) A theorem on discrete groups and some consequences of 

Kazdan’s thesis. J Funct Anal 6:203–207. 

[157]  de la Harpe P (1995) Operator algebras, free groups and other groups. Recent 

advances in operator algebras (Orléans 1992), Astérisque 232:121–153. 

[158]  Grothendieck A (1957) Un résultat sur le dual d’une C* algèbre. J Math Pures 

Appl (9) 36, 97–108. 

[159]  Fack T, de la Harpe P (1980) Sommes de commutateurs dans les algèbres de von 

Neumann finies continues. Ann Inst Fourier 30(3): 49–73. 

[160]  Fuglede B, Kadison R (1952) Determinant theory in finite factors. Ann Math 

55:520–530. 

[161]  Grothendieck A (1995) Réarrangements de fonctions et inégalités de convexité 

dans les algèbres de von Neumann munies d’une trace. Séminaire Bourbaki, 

Exposé 113, mars 1955 (Soc Math France, Paris), Vol 3, pp 127–139. 

[162]  Arveson W (1967) Analyticity in operator algebras. Am J Math 89:578–642. 

[163]  Fack T (1982) Sur la notion de valeur caractéristique. J Operator Theory 7(2):307–

333. 

[164]  Fack T (1983) Proof of the conjecture of A. Grothendieck on the Fuglede-Kadison 

determinant. J Funct Anal 50:215–228. 



266 

[165]  Brown LG (1986) Lidskii’s theorem in the type II case. Geometric methods in 

operator algebras (Kyoto, 1983), Pitman Res Notes Math Ser, eds Araki H, Effros 

EG (Harlow, Essex), Vol 123, pp 1–35. 

[166]  Haagerup U, Schultz H (2009) Invariant subspaces for operators in a general II1-

factor. Publ Math Inst Hautes Études Sci 109:19–111. 

[167]  Schmidt K (1995) Dynamical Systems of Algebraic Origin (Birkhäuser, Basel, 

Switzerland). 

[168]  Lück W (2002) L2-invariants: Theory and applications to geometry and K-theory. 

Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer, Berlin), Vol 44. 

[169]  Lind D, Schmidt K, Ward T (1990) Mahler measure and entropy for commuting 

automorphisms of compact groups. Inventiones Math 101:553–629. 

[170]  Deninger C (2006) Fuglede-Kadison determinants and entropy for actions of 

discrete amenable groups. J Am Math Soc 19:737–758. 

[171]  Lyons R (2005) Asymptotic enumeration of spanning trees. Combin Probab 

Comput 14:491–522. 

[172]  Lyons R (2010) Identities and inequalities for tree entropy. Combin Probab 

Comput 19:303–313. 

[173]  Broise M (1967) Commutateurs dans le groupe unitaire d’un facteur. J Math Pure 

Appl 46:299–312. 

[174]  de la Harpe P (1979) Simplicity of the projective unitary groups defined by simple 

factors. Commentarii Math Helv 54:334–345. 

[175]  Kadison R (1952) Infinite unitary groups. Trans Am Math Soc 72:386–399. 

[176]  Lanski C (1970) The group of units of a simple ring. II. J Algebra 16:108–128. 

[177]  Rosenberg J (1994) Algebraic K-Theory and Its Applications (Springer, New 

York). 

[178]  Blackadar B (1986) K-Theory for Operator Algebras, MSRI Publication 5 

(Springer, New York); reprinted (1998) (Cambridge Univ Press, Cambridge, UK), 

2nd Ed. 

[179]  Rosenberg J (2005) Comparison between algebraic and topological K-theory for 

Banach and C*-spaces. Handbook of K-Theory, eds Friedlander E, Grayson D 

(Springer, Berlin), Vol 2, pp 843–874. 

[180]  Milnor J (1971) Introduction to Algebraic K-Theory (Princeton Univ Press, 

Princeton). 

[181]  Cohen MM (1973) A Course in Simple Homotopy Theory (Springer, New York). 

[182]  de Rham G, Maumary S, Kervaire M (1967) Torsion et Type Simple d’Homotopie, 

Lecture Notes in Math (Springer, Berlin), Vol 48. 

[183]  Milnor J (1966) Whitehead torsion. Bull Am Math Soc 72:358–426. 

[184]  Turaev V (2001) Introduction to Combinatorial Torsions, Lectures in 

Mathematics, ETH Zürich 1999 (Birkhäuser, Basel, Switzerland). 

[185]  de la Harpe P, Skandalis G (1985) Sur la simplicité essentielle du groupe des 

inversibles et du groupe unitaire dans une C*-algèbre simple. J Funct Anal 63:354–

378. 

[186]  Yuen Y (1973) Groups of invertible elements of Banach algebras. Bull Am Math 

Soc 79:82–84. 

[187]  Karoubi M (1978) K-Theory, an Introduction, Grundlehren der mathematischen 

Wissenschaften (Springer, Berlin), Vol 226. 



267 

[188]  Rørdam M (2002) Classification of nuclear, simple C*-algebras. In Rørdam and 

Størmer E (2002) Classification of nuclear C*-algebras. Entropy in operator 

algebras, Encyclopaedia of Mathematical Sciences 126, Springer-Verlag, Berlin, 

pp 1–145. 

[189]  Elliott GA, Toms AS (2008) Regularity properties in the classification program 

for separable amenable C*-algebras. Bull Am Math Soc 45:229–245. 

[190]  Glimm JG (1960) On a certain class of operator algebras. Trans Am Math Soc 

95:318–340. 

[191]  Jiang X, Su H (1999) On a simple unital projectionless C*-algebra. Am J Math 

121:359–413. 

[192]  Pimsner M, Voiculescu D (1982) K-groups of reduced crossed products by free 

groups. J Operator Theory 8(1):131–156. 

[193]  Pimsner M, Voiculescu D (1980) Exact sequences for K-groups and Ext-groups of 

certain cross-product C*-algebras. J Operator Theory 4(1):93–118. 

[194]  Cuntz J (1981) K-theory for certain C*-algebras. Ann Math Second Series 

113(1):181–197. 

[195]  Lück W, Rørdam M (1993) Algebraic K-theory of von Neumann algebras. K-

Theory 7:517–536. 

[196]  Araki H, Bae Smith M-s, Smith L (1971) On the homotopical significance of the 

type of von Neumann algebra factors. Commun Math Phys 22:71–88. 

[197]  Handelman D (1978) Ko of von Neumann and AF C* algebras. Q J Math Oxf 

29:427–441. 

[198]  Popa S, TakesakiM(1993) The topological structure of the unitary and 

automorphism groups of a factor. Comm Math Phys 155(1):93–101. 

[199]  de la Harpe P, Skandalis G (1984) Déterminant associé à une trace sur une algèbre 

de Banach. Ann Inst Fourier 34(1):241–260. 

[200]  Carey AL, Farber MS, Mathai V (1997) Determinant lines, von Neumann algebras 

and L2 torsion. J reine angew Math 484:153–181. 

[201]  Cuntz J, Pedersen G (1979) Equivalence and traces on C*-algebras. J Funct Anal 

33(2):135–164. 

[202]  Fack T (1982) Finite sums of commutators in C*-algebras. Ann Inst Fourier 

32(1):129–137. 

[203]  de la Harpe P, Skandalis G (1984) Produits finis de commutateurs dans les C*-

algèbres. Ann Inst Fourier 34(4): 169–202. 

[204]  Chapman TA (1974) Topological invariance of Whitehead torsion Am J Math 

96(3):488–497. 

[205]  Milnor J (1961) Two complexes which are homeomorphic but combinatorially 

distinct. Ann Math 74:575–590. 

[206]  Kervaire M (1965) Le théorème de Barden-Mazur-Stallings.Commentarii Math 

Helv 40:31–42. 

[207]  Smale S (1962) On the structure of manifolds. Am J Math 84:387–399. 

[208]  Smale S (1961) Generalized Poincaré’s conjecture in dimensions greater than four. 

Ann Math 74:391–406. 

[209]  Ray DB, Singer IM (1971) R-torsion and the Laplacian on Riemannian manifolds. 

Adv Math 7:145–210. 



268 

[210]  Atiyah M (1976) Elliptic operators, discrete groups and von Neumann algebras. 

Colloque Analyse et Topologie; en l’honneur de Henri Cartan (17–20 Juin 1974 à 

Orsay). Astérisque 32–33: 43–72. 

[211]  Milnor J (2011) Differential topology forty-six years after. Notices Am Math Soc 

58(6):804–809. 

[212] I. Matic; Inequalities with determinants of perturbed positive matrices, Linear 

Algebra and its Applications, Volume 449 (2014), 166-174. 

[213]  J.S. Aujla, J.-C. Bourin, Eigenvalue inequalities for convex and log-convex 

functions, Linear Algebra Appl. 424 (1) (2007) 25–35. 

[214]  J.-C. Bourin, E.-Y. Lee, M. Lin, Positive matrices partitioned into a small number 

of Hermitian blocks, Linear Algebra Appl. 438 (5) (2013) 2591–2598. 

[215]  S. Drury, M. Lin, Reversed Fischer determinantal inequalities, to appear in Linear 

Multilinear Algebra, http://dx.doi.org/10.1080/03081087.2013.804919. 

[216]  X. Fu, C. He, On some Fischer-type determinantal inequalities for accretive–

dissipative matrices, J. Inequal. Appl. 2013 (2013) 316. 

[217]  A. Grothendieck, Rárrangements de functions et inégalités de convexité dans le 

algèbres de von Neumann d’une trace (mimeographed notes), in: Séminaire 

Bourbaki, 1955, pp. 113.01–113.13. 

[218]  F. Hansen, WYD-like skew information measures, J. Stat. Phys. 151 (5) (2013) 

974–979. 

[219]  M. Lin, A Lewent type determinantal inequality, Taiwanese J. Math. 17 (4) (2013) 

1303–1309. 

[220] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990. 

[221] I. Matic, Large deviations for processes in random environments with jumps, 

Electron. J. Probab. 16 (87) (2011) 2406–2438. 

[222] E. Seiler, B. Simon, An inequality among determinants, Proc. Natl. Acad. Sci. USA 

72 (9) (1975) 3277–3278. 

[223]  A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer 

Monogr. Math., 1998. 

[224] M.P.W. Zerner, Directional decay of the Green’s function for a random 

nonnegative potential on Zd, Ann. Appl. Probab. 8 (1997) 246–280. 

[225] Soumyashant Nayak, The Hadamard Determinant Inequality - Extensions to 

Operators on a Hilbert Space, Preprint submitted to Elsevier October 18, 2017. 

[226] R. Bhatia; Positive Definite Matrices, Princeton Univ. Press, Princeton, 2007. 

[227] M. D. Choi; A Schwarz inequality for positive linear maps on C∗-algebras,, Illinois 

J. Math., 18 (1974), 565-574. 

[228]  E. Fischer; ¨ Uber den Hadamardschen Determinentsatz, Arch. Math. u. Phys. (3), 

13 (1907), 32-40. 

[229] J. Hadamard; R´esolution d’une question relative aux determinants , Bull. des 

sciences math. (17)(1893), 240-246. 

[230] R. Kadison; A Generalized Schwarz Inequality and Algebraic Invariants for 

Operator Algebras, Annals of Mathematics, Second Series, Vol. 56, No. 3 (1952), 

494-503. 

[231] F. J. Murray, J. von Neumann; On rings of operators, Ann. Math. (2), 37(1) (1936), 

116-229. 

[232]  M. Nakumara, M. Takesaki, H. Umegaki; A remark on the expectations of operator 

algebras, Kodai Math. Sem. Rep., Volume 12, Number 2 (1960), 82-90. 

http://dx.doi.org/10.1080/03081087.2013.804919


269 

[233]  F. Smithies; Integral Equations, Cambridge Tracts in Mathematics and 

Mathematical Physics, No. 49, Cambridge University Press, London, (1958). 

[234]  E. Stormer; Positive linear maps of operator algebras, Acta Mathematica, 110(1) 

(1963), 233-278. 

[235]  E. Stormer; Positive linear maps of operator algebras, Springer Monographs in 

Mathematics, Springer (2013), ISBN-13: 978-3642429132. 

[236]  J. Tomiyama, On the projection of norm one in W∗-algebras, Proc. Japan Acad. 

Volume 33, Number 10 (1957), 608-612. 

[237]  H. Umegaki; Conditional expectation in an operator algebra, Tˆohoku Math. J. (2) 

Volume 6, Number 2-3 (1954), 177-181. 

[238]  J. von Neumann; Zur algebra der funktionaloperationen und theorie der normalen 

operatoren, Math. Ann. 102 (1930), 370-427. 

[239] G.P. Gehér, P. Šemrl, Isometries of Grassmann spaces, J. Funct. Anal. 270 (2016) 

1585–1601. 

[240]  A. Blunck and H. Havlicek, On bijections that preserve complementarity of 

subspaces, Discrete Math. 301 (2005), 46–56. 

[241]  F. Botelho, J. Jamison, and L. Moln´ar, Surjective isometries on Grassmann 

spaces, J. Funct. Anal. 265 (2013), 2226-2238. 

[242]  A. B¨ottcher and I.M. Spitkovsky, A gentle guide to the basics of two projections 

theory, Linear Algebra Appl. 432 (2010), 1412–1459. 

[243] R.J. Fleming and J.E. Jamison, Isometries on Banach Spaces: Function Spaces, 

Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 

129, Boca Raton, FL, 2003. 

[244]  R.J. Fleming and J.E. Jamison, Isometries on Banach Spaces: Function Spaces 

Vol. 2.: Vector-valued Function Spaces, Chapman & Hall/CRC Monographs and 

Surveys in Pure and Applied Mathematics, 138, Boca Raton, FL, 2008. 

[245]  A. Gal´antai, Subspaces, angles and pairs of orthogonal projections, Linear 

Multilinear Algebra 56 (2008), 227–260. 

[246]  M. Gy¨ory, Transformations on the set of all n-dimensional subspaces of a Hilbert 

space preserving orthogonality, Publ. Math. Debrecen 65 (2004), 233-242. 

[247] P. ˇ Semrl, Orthogonality preserving transformations on the set of n-dimensional 

subspaces of a Hilbert space, Illinois J. Math. 48 (2004), 567–573. 

[248]  P. ˇ Semrl, Applying projective geometry to transformations on rank one 

idempotents, J. Funct. Anal. 210 (2004), 248–257. 

[249]  U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, 

Ark. Fysik 23 (1963), 307–340. 

[250] G.P. Gehér, Wigner’s theorem on Grassmann spaces, J. Funct. Anal. 273 (9) (2017) 

2994–3001. 

[251]  L. Bracci, G. Morchio, F. Strocchi, Wigner’s theorem on symmetries in indefinite 

metric spaces, Comm. Math. Phys. 41 (1975) 289–299. 

[252]  G. Chevalier, Wigner’s theorem and its generalizations, in: Handbook of Quantum 

Logic and Quan-tum Structures, Elsevier Sci. B.V., Amsterdam, 2007, pp.429–

475. 

[253] K. De Cock, B. De Moor, Subspace angles between ARMA models, Systems 

Control Lett. 46 (2002) 265–270. 

[254] Gy.P. Gehér, An elementary proof for the non-bijective version of Wigner’s 

theorem, Phys. Lett. A 378 (2014) 2054–2057. 



270 

[255] T.T. Georgiou, M.C. Smith, Optimal robustness in the gap metric, IEEE Trans. 

Automat. Control 35 (1990) 673–686. 

[256] H. Hotelling, Relations between two sets of variates, Biometrika 28 (1935) 321–

377. 

[257] L. Molnár, Orthogonality preserving transformations on indefinite inner product 

spaces: generaliza-tion of Uhlhorn’s version of Wigner’s theorem, J. Funct. Anal. 

194 (2002) 248–262. 

[258] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear 

Operators and on Function Spaces, Lecture Notes in Math., vol.1895, Springer-

Verlag, Berlin, 2007. 

[259] L. Molnár, Maps on the n-dimensional subspaces of a Hilbert space preserving 

principal angles, Proc. Amer. Math. Soc. 136 (2008) 3205–3209. 

[260] L. Qiu, Y. Zhang, C.-K. Li, Unitarily invariant metrics on the Grassmann space, 

SIAM J. Matrix Anal. Appl. 27 (2005) 507–531 (electronic). 

[261] P. Šemrl, Generalized symmetry transformations on quaternionic indefinite inner 

product spaces: an extension of quaternionic version of Wigner’s theorem, Comm. 

Math. Phys. 242 (2003) 579–584. 

[262] P. Šemrl, Maps on idempotent matrices over division rings, J. Algebra 298 (2006) 

142–187. 

[263] P. Van Overschee, B. De Moor, Subspace Identification for Linear Systems: 

Theory–Imple-mentation–Applications, Kluwer Academic, Boston, 1996. 

[264]  E.P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der 

Atomspektrum, Fredrik Vieweg und Sohn, 1931. 

[265] Mark Pankov, Geometric version of Wigner’s theorem for Hilbert Grassmannians, 

J. Math. Anal. Appl. 459 (2018) 135–144. 

[266] C.A. Faure, A. Frölicher, Morphisms of projective geometries and semilinear 

maps, Geom. Dedicata 53 (3) (1994) 237–262. 

[267]  H. Havlicek, A generalization of Brauner’s theorem on linear mappings, Mitt. 

Math. Sem. Univ. Giessen 215 (1994) 27–41. 

[268]  M. Pankov, Geometry of Semilinear Embeddings: Relations to Graphs and Codes, 

World Scientific, 2015. 

[269]  M. Pankov, Orthogonal apartments in Hilbert Grassmanians, Linear Algebra Appl. 

506 (2016) 168–182. 

[270] Michael Forger, and Daniel V. Paulino, C∗-completions and the DFR-algebra, 

JOURNAL OF MATHEMATICAL PHYSICS 57, 023517 (2016). 

[271]  Balachandran, V. K., Topological Algebras, North-Holland Mathematical Studies 

Vol. 185 (North-Holland, Amsterdam, 2000). 

[272]  Bhatt, S. J., Inoue, A., and Ogi, H., “Differential structures in C∗-algebras,” J. 

Oper. Theory 66, 301–334 (2011). 

[273]  Blackadar, B. and Cuntz, J., “Differential Banach algebra norms and smooth 

subalgebras of C∗-algebras,” J. Oper. Theory 26, 255–282 (1991). 

[274]  Calderon, A. P. and Vaillancourt, R., “On the boundedness of pseudo-differential 

operators,” J. Math. Soc. Jpn. 23, 374–378 (1971). 

[275]  Cordes, H. O., “On compactness of commutators of multiplications and 

convolutions, and boundedness of pseudodifferential operators,” J. Funct. Anal. 18, 

115–131 (1975). 

[276]  Dixmier, J., C*-Algebras (North-Holland, Amsterdam, 1977). 



271 

[277]  Doplicher, S., Fredenhagen, K., and Roberts, J. E., “The quantum structure of 

spacetime at the Planck scale and quantum fields,” Commun. Math. Phys. 172, 

187–220 (1995); e-print arXiv:hep-th/0303037. 

[278]  Dubois-Violette, M., Madore, J., and Kerner, R., “Shadow of noncommutativity,” 

J. Math. Phys. 39, 730–738 (1998). 

[279] Fell, J. M. G. and Doran, R. S., Representations of *-Algebras, Locally Compact 

Groups and Banach *-Algebraic Bundles, Basic Representation Theory of Groups 

and Algebras (Academic Press, San Diego, 1988), Vol. 1. 

[280] Matthias Sch  ِ tz∗, Stefan Waldmann§, Convergent Star Products for Projective 

Limits of Hilbert Spaces, April 2017. 

[281]  Bieliavsky, P., Gayral, V.: Deformation Quantization for Actions of Kنhlerian Lie 

Groups, vol. 236.1115 in Memoirs of the American Mathematical Society. 

American Mathematical Society, Providence, RI, 2015. 

[282] Dubois-Violette, M., Kriegl, A., Maeda, Y., Michor, P.: Smooth ∗-Algebras. In: 

Maeda, Y., Watamura, S. (eds.): Noncommutative Geometry and String Theory, 

vol. 144 in Prog. Theo. Phys. Suppl., 54–78. Yukawa Institute for Theoretical 

Physics, 2001. Proceedings of the International Workshop on Noncommutative 

Geometry and String Theory. 3 

[283] Lechner, G., Waldmann, S.: Strict deformation quantization of locally convex 

algebras and modules. J. Geom. Phys. 99 (2016), 111–144. 24 

[284] Manuceau, J.: C∗-Algèbre de relations de commutation. Ann. Inst. H. Poincaré Sér. 

A 8 (1968), 139–161. 

[285] Meise, R., Vogt, D.: Einführung in die Funktionalanalysis. Vieweg-Verlag, 

Braunschweig, Wiesbaden, 1992. 

[286] Schmüdgen, K.: Unbounded Self-adjoint Operators on Hilbert Space, vol. 265 in 

Graduate Texts in Mathematics. Springer-Verlag, Heidelberg, Berlin, New York, 

2012.  

[287] Weinstein, A.: Deformation Quantization. Astérisque 227 (1995), Exp. No. 789, 5, 

389–409. Séminaire Bourbaki, Vol. 1993/94. 

[288] Shawgy Hussein and Hajir Abdalsalam, Hadamard Determinant Inequality with 

Wigner Theorem and Convergent Star Products on Hilbert Spaces, Ph.D. Thesis 

Sudan University of Science and Technology, Sudan (2035). 


