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                                                Abstract 

 

     We perform complete group classification of the general 

class of quasilinear wave equations in two variables. This class 

may be seen as a generalization of the nonlinear d’Alembert, 

Liouville, sin/sinh-Gordon and Tzitzeica equations. We derive a 

number of new genuinely nonlinear invariant models with high 

symmetry properties. In particular, we obtain four classes of 

nonlinear wave equations that admit five-dimensional invariance 

groups. 
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 الخلاصة

 

قمنا بتنفيز تصنيف انزمشة انتامت نهعائهت انعامت نمعادلاث انمٌجت شبو انخطيت في متغيشيه. 

 sin/sinh-ىزه انعائهت قذ ينظش إنييا كتعميم نمعادلاث دنيمبيشث ًنيٌفيم ًجٌسدًن

ًتزيتزيكا. قمنا بإشتقاق عذد ننمارج غيش متغيشة غيش خطيت بصذق جذيذة مع خصائص 

متماثهت عانيت. بصفت خاصت قمنا بانحصٌل عهى أسبعت عائلاث نمعادلاث انمٌجت غيش 

 انخطيت انتي نيا قبٌل انزمش انلامتغيشة راث انبعذ انخامس.
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Chapter One 

Vector Fields and Integral Curves in    

 

 Introduction: 

    In this research we reviews a treatment of differential equations using 

methods from Lie group theory. Symmetry group methods are amongst 

the most powerful universal tools for the study of differential equation 

.There has been rapid progress on these methods over the last few 

decades. Methods and algorithms for classifying subalgebras of Lie 

algebras, new results on the structure and classification of abstract finite 

and infinite dimensional Lie algebra, and methods for solving group 

classification problems for differential equations greatly facilitated to 

systematically obtain exact analytic solutions by quadratures to ordinary 

differential equations and group-invariant solutions to partial differential 

equations and to identify equivalent equations. The application of Lie 

groups to differential equations has a long history. In the second half of 

the nineteenth century, Norwegian mathematician Sophus Lie (1842-

1899) introduced continuous groups of transformations , to give a unified 

and systematic theory for the study of properties of solutions of 

differential equations just like Evariste Galois’s (1811-1831) dream to 

solve algebraic equations by radicals, which led to the theory of 

Galois.The theory of Lie groups and algebras originated precisely in the 

context of differential equations. Over the years, these transformations 

evolved into the modern theory of abstract Lie groups and algebras.  

  As far as differential equations are concerned, the main observation was 

that much of the known solutions methods were actually specific cases of 

a general solution (general or particular solution) method based on the 
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invariance of a system of differential equations under a continuous group 

of transformations (called symmetry group of the system). 

     Symmetry group of a partial differential equation (PDE) can be used 

to reduce the number of independent variables, to transform known 

simple solutions to new solutions. For an ordinary differential equation 

(ODE), even reduction in order can be made. Under some special 

structure of the symmetry group, reduction can even go all the way down 

to an algebraic equation, from which general solution can be obtained. 

    The computation of the symmetry group of a system of differential 

equations can be computationally complicated, but nevertheless 

completely algorithmic. Computer algebra systems can automate most of 

the steps of the Lie symmetry algorithm. 

   It should be emphasized that applications of Lie group methods using 

classical group of point transformations are not only restricted to 

differential equations. They, and when applicable, their generalizations to 

higher order symmetries can be also be carried over to conservation laws, 

Hamiltonnian systems, difference and differential-difference equations, 

integro-differential equations, delay differential equations, fractional 

differential equations. 

   Basic ideas, definitions, theorems and results needed to be able to apply 

Lie group methods for solving differential equations are presented. Many 

examples with mathematical and physical applications are considered to 

illustrate applications to integration of (ODEs) by the method of 

reduction of order, construction of group- invariant solutions to PDEs, 

identification of equivalent equations based on the existence of 

isomorphic symmetry groups, generating new solutions from known 

ones. Group -classification problem and construction of invariant 

differential equations. 
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    Hyperbolic type second-order nonlinear PDEs in two equivalent 

variables play a fundamental role in modern mathematical physics. 

Equations of the type are utilized to describe various types of wave 

propagation. They are used in differential geometry, in various fields of 

hydrodynamics and gas dynamics, chemical technology, 

superconductivity, crystal dislocation to mention only a few applications 

areas. Surprising the list of equations utilized is rather narrow. In fact, it 

is comprised by the Liouville, sine/sinh-Gordan, Goursat, d’Alembert, 

and Tzitzeica equations and a couple of others. Popularity of these very 

models has a natural group-theoretical interpretation, namely, all of them 

have nontrivial Lie or Lie-  ̈       symmetry. By this very reason 

some of them are integrable by the inverse problem methods. 

    Knowing symmetry group of the equation under study provides us with 

the powerful equation exploration tool. So it is natural to attempt 

classifying a reasonable extensive class of nonlinear hyperbolic type 

PDEs into subclasses of equations enjoying the best symmetry properties. 

Saying reasonably extensive we mean this class should contain the above 

enumerated equations as for applications. The list of the so obtained 

invariant equations will contain candidates for realistic nonlinear 

mathematical models of the physical and chemical processes mentioned 

above. 

  The modern formulation of the problem of group classification of PDEs 

was suggested by Ovsyannikov, he developed a regular method (we will 

refer to it as the Lie-Ovsyannikov method) for classifying differential 

equations with nontrivial symmetry and performed complete group 

classification of the nonlinear heat conductivity equation. In a number of 

subsequent publication more general types of nonlinear heat equations 

were classified. 
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      However, even a very quick analysis of the research on group 

classification of PDEs reveals that an overwhelming majority of them 

deals with equations whose arbitrary elements (functions) depend on one 

variable only. The reason for this is that Lie-Ovsyannikov method 

becomes inefficient for PDEs containing arbitrary functions of several 

variables. To achieve a complete classification one either needs to specify 

the transformation group realization or restrict somehow an arbitrariness 

of the functions contained in the equation under study.           

     We have recently, developed an efficient approach enabling to 

overcome this difficulty for the low dimensional PDEs. Utilizing it we 

have derived the complete group classification of the general quasilinear 

heat conductivity equation in two independent variables. In this research 

we apply the approach in question to perform group classification of the 

most general quasilinear hyperbolic PDE in two independent variables. 
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(1-1) Vector Fields and Integral Curves: 

We begin with a brief review of some essential objects that will be 

employed throughout. Let   be a differentiable manifold of dimension  . 

a curve   at a point   of   is a differentiable map        where   

subinterval of    Such that  ( )         

A vector field   of the manifold   is a    section of     In other 

words a    mapping from   to    that assigns to each point   of   a 

vector in      In the local coordinate system   (       )      can 

be expressed as  

 | 

 ∑  

 

   

( )                                                                                       ( ) 

 where   ( )   
 ( )          

  An integral curve of the vector field at the point   is the curve        

whose tangent vector   ( ) coincides with   at the point    ( ) such 

that    ( )   |( ) for such      In the local representation of the curve 

  it amounts to saying that the curve satisfies an autonomous system of 

first order ordinary differential equations 

   
  

   ( ( ))             

                                                                                        ( ) 

      The existence and uniqueness theorem for systems of ODES ensures 

that there is a unique solution to the system with the initial data  ( )  

   (the Cauchy Problem). This gives rise to the existence of a unique 

maximal curve  ( ) passing through the point     ( )     We call 

such a maximal integral curve the flow of         ( ) an denote  

 (   ) with the basic properties  
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 (   )         (   (   ))   (     )    
 

 
 (   )   | (   ) 

    ( ) 

     For all sufficiently small         A more suggestive notation for the 

flow is  (   )     (  ) . The reason is simply that it satisfies the 

ordinary exponential rules. The second property implies that  (    )  

   (   ) or 

    (  )       (   ) . On can in finitesimally express the flow  

 

    (  )  

    |   (  )                                                                                     (4) 

  The flow    (  )  generated by the vector field   is sometimes called a 

one ----parameter group of transformations as it arises as the action of the 

Lie group R on the manifold  . 

  Conversely, given a flow with the first two properties of (3). We can 

reconstruct its generating vector field   by differentiating the flow: 

               |  
 

  
   (  ) |         . 

    The inverse process of constructing the flow is usually called 

exponentiation (or integration) of  . 

   Rectification of the vector field   in a neighborhood of a regular point ( 

a point   at which  |  dose not vanish) is always possible. 

Theorem (1.1.1):  

  If    is a regular point of  , then there exist local rectifying ( or 

straightening out) coordinates   (       ) near    such that       

generates the translational flow    (  )  (            ). 

(1-2) Differential Equations and their Symmetry Group: 

 We consider a system of      order differential equations   
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    (   
( ))    (     

     ( ))        

                       ( ) 

 where   (       )  
    (       )  

   (      ) are the 

independent and dependent variables, which form local coordinates on 

the space of independent and dependent variables              

The derivatives of   are denoted by      
   
 

   
⁄   where   

(       )  

                  is a symmetric multi- index of order 

      

   ( ) Denotes all partial derivatives of order    of the components     

    , which provide coordinates on the jet space   (   ( ))     . If 

there is a single independent and dependent variable, namely   

           then the system becomes a scalar ordinary differential 

equation. In that case, we simply write 

                                              (              )     

where                     ( ). 

The system      defined by a collection smooth functions   

(       ) can be identified with a variety    *(   ( ))    +  

contained in the      order jet space    with local coordinates (    ) 

has maximal rank 

                                                   (
   

   
 
   

    
)     

at each (   ( )) satisfying the system. 

  A classical symmetry group of (5) is a local group G of point 

transformations        a locally defined invertible map on the space of 

independent and dependent variables, mapping solutions of the system to 

solutions  
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  (     )    (   )  (  (   )   (   )  

   Such transformations act on solutions    ( ) bye mapping point 

wise their graphs. More precisely, if    *(   ( ))+ is the graph of 

 ( )  then the mapped graph will have the graph 

                              *(     (  )+       *  (   ( )+. 

Contact or generalized transformations where   depends on higher order 

derivatives will not be treaded here. 

Definition (1.2.1):  

   A local Lie group of point transformations G is called a symmetry 

group of the system of partial differential equations (5) if  ̂      is a 

solution whenever   is. 

  To find the symmetry group, prolonged transformation   ( )        

is required to preserve the differential structure of the equation manifold 

  . 

  In order to find the symmetry group Lie,s infinitesimal approach will be 

used. We need to use the prolongation tool for the group transformation 

and the vector field generating it. Let       (  ) be a one-parameter 

subgroup of the connected group G and let  

  ∑  

 

   

(   )   

 ∑  

 

   

(   )                                                       ( ) 

be the infinitesimal generator of   . The infinitesimal generator of the 

prolonged one-parameter subgroup   ( )   is defined to be the 

prolongation of the vector field  . 

 

 

 



9 
 

Definition (1.2.2):  

  The     prolongation   ( )  of    is a vector field on the      jet 

space    defined by  

  ( ) |(   ( ))

 
 

  
|     

( )  (   
( ))                                                   ( )  

For every  (   ( )     . 

If we integrate   ( )  we find the prolongation of the group action 

  ( )   on the space   . The prolonged vector field   ( )  has the form 

                            

  ( )  ∑   
 
       ∑ ∑   

 
    

 
                               ( ) 

where the coefficients   
 
 are given by the formula 

  
 
   (   ∑  

 

   

    )

 ∑  

 

   

                                                             ( ) 

 

where      
   

   
⁄         

     
   

⁄  and                 

  is the J-th total derivative operator. Here    is the total differentiation 

operator defined by  

   
 

   
 ∑∑      

 

 

   

 

     
  

    involves infinite summation, but its application to a particular 

differential function will only require finitely many terms of order 

        where n is the highest order derivative in the differential 
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function on which    acts. There is a useful recursive formula for the 

coefficients of the prolonged vector field in (8) 

  
   

     
 
 ∑(  

 

   

  )                                                              (  ) 

  If n-th prolongation is known, the (n+1)-th prolongation can be 

calculated by the formula (10). In particular, the coefficient of the first 

order derivatives   , in (8) are then given by  

                                 

  
       ∑ (  

 
     )                                       

 In the special case p=q=1, the recursion formula (10) simplifies to  

      
    (   ) 

( )      

                                                     (  ) 

the coefficients of the second prolongation of the vector field   

 (   )    (   )   corresponds to       with the convention 

     

       (   )       
      

  (   )    

         

the prolongations of vector fields sat isfy the linearity  

  ( )(     )

    ( )     ( )                                                  (  ) 

For constants a,b and the Lie algebra property  

  ( ),   -

 ,  ( )    ( ) -                                                                (  ) 

hence, the prolongation process defines a Lie algebra homomorphism 

from the space of vector felids    to the space of vector fields on    . if 

the vector fields   form a Lie algebra, then their prolongations realize an 

isomorphic Lie algebra of the vector fields on   . 
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   Example (1.2.1):  

   Let us consider the smooth projective vector field   

                                                                   

 generating the one-parameter local projective group 

  (   )  
 (     )  

 

    
   (     )  

 

    
  

whenever        the vector field   can be recovered by 

differentiating   (   ) at    .  

The first and second prolonged group transformations are derived by the 

usual chain rule of the ordinary derivatives: 

  ( )  (      )  (        
 )       

      (     ))  

and 

             ( )  (         )  (          (     ) (  

  )   ).  

 Applying definition 1-2 we find the prolonged vector fields  

  ( )    (     )          
( ) 

   (     )            (  ) 

    The following the theorem determines the Lie algebra of the symmetry 

group G and known as the infinitesimal criterion of invariance of (5). 

  Theorem (1.2.1): 

  A connected local group of transformations G is a symmetry group of 

the system   of (5) if and only if the      prolongation      

annihilates the system on solutions, namely 

  ( ) (  )         

                                                                          (  ) 

 whenever    ( ) is a solution to the system (5) for every infinitesimal 

generator       . 

 Eqs. (15) are known as the determining equations of the symmetry group 

for the system. They form a large over-determining linear system of 
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partial differential equations for the coefficients                . This 

criterion has been applied to many differential equations arising in 

different branches of mathematics, physics, and engineering to compute 

symmetry groups. The computation of symmetry group using the 

infinitesimal approach have been implemented in several computer 

algebra systems, such as mathematic, maple, reduced [6]. There are 

packages dedicated to the symmetry group calculations which make 

considerably easy the routine steps of finding the determining system and 

partial integration of them. 

    Some packages are capable of triangularize the over determined system 

using differential Gr bner basis method. Packages equipped with 

automatic integrators can usually fail to provide the general solution of 

the determining system depending on the complexity of the system.  

    There is an alternative formulation of the prolongation formula, which 

is useful in prolongation computations. This is requires the formalism of 

the evolutionary vector fields. Given the vector field   as in (1), we 

define the q-tuple  (   ( ))  (       ) defined by 

  (   
( ))    (   )  ∑  

 

   

(   )                 

   The functions    are called the characteristics of the vector field     

then, we have  

  
 
      ∑         

 

   

                  

                  (  ) 

and the      prolongation of   can be expressed as where  

 

  ( )    ( )   ∑     
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   ∑  (   
( ))   

 

   

       ( )   ∑∑  
 

 

   

          

obviously,    and their prolongations do not act on the independent 

variables     in terms of characteristics     the infinitesimal 

transformations can be written as  

  
           

          (  )  

Since        on solutions, we can replace the infinitesimal symmetry 

condition (15) by the simpler formula 

  ( )  |    

                                                                                         (  ) 

Example (1.2.2): 

   We show that the Laplace equation   (   )            in the 

plane is invariant under the symmetry group generated by the vector field 

 

  (   )  

  (   )                                                                        (  ) 

where    and   satisfy the Cauchy-Riemann equations          

     in other words     are harmonic functions and therefore   generates 

an infinite dimensional symmetry group of the two-dimensional Laplace 

equations.  

The second prolongation of   is 

  ( )                                 

the coefficients         are calculated from the general prolongation 

formula 

     (                         )  

     (                         )  
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   So from the Cauchy- Riemann equations we find that the infinitesimal 

criterion of invariance is satisfied  

  ( ) (  )                    

on the solution surface. The linearity of the equation implies that at also 

admits the additional trivial symmetries     and  (   )   with      

(one can multiply solutions by constants and add them). The symmetry 

condition then becomes 

  ( )(   )(  )             ( )(   )(  )        on solutions.   

Obviously, the second one is satisfied if   is an arbitrary harmonic 

function.  

 The special choice (   )  (         ) leads to the conformal 

invariance of the Laplace equation. The one-parameter conformal 

symmetry group corresponding to the vector field 

    (     )         is easily obtained solving the following 

complex initial value problem for   (     ) (more precisely, integrating 

the analytic vector field     ) 

  ̂

  
   

 
 (  

 
    

)          

with the condition   (     )   (   )        The flow is given by               

 ̂   

    
    | | 

(    )(     )
. 

    We separate the real and complex parts of    to obtain the following 

(well-defined) symmetry group    (   )(   ) 

 ̂  
   (     )

        (     )
     ̂

 
 

        (     )
                                                   (  ) 

possessing the invariant function  (   )   (     )    y-component 

of  (   ) satisfying  (     )   (   ) on   (   )    (   )⁄  is readily 

obtained by eliminating the group parameter   in (19). 

  It is a well-know fact that the inversion map  (   )  (     )  (   )  
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(   )    (                   ) is a discrete (not connected) 

symmetry, I.e. if  (   ) satisfies the Laplace equation, so dose  ((   

  )    (     )   )  We observe that the map ( ̂  ̂)   (   ) also 

provides the coordinates rectifying          . 

    Conjugating any symmetry of the equation by   will produce a new 

symmetry (a conformal mapping here). Indeed, the push forward    of the 

vector field     through   is   (   )   ̂ ̂   where tilde means that the 

vector field is written in the new coordinates. So    (   )(   ) can be 

recovered by conjugating the translational group along the          

         

   *   +(   )   (   )     *    +   (   )  

 Similarly, since 

  (   )   ̂ ̂    ̂ ̂  ̂  ( ̂   ̂ )  ̂                  by  , 

   *   +(   )   (   )     *    +   (   )  

  Generate another conformal transformation  

 ̂  
 

        (     
 

 ̂  
   (     )

        (     )
    (  )  

     The one-parameter group transformations generated by the elements of 

the abelian sub algebra *     +are conformal because they leave form 

invariant the planar metric: 

  ̂    ̂   (     )(       )  

for some function     (conformal factor). 

                                             (        (     ))   

 Note: that the inversion itself is also conformal mapping with 

                                      (     )    

    We conclude that action of this group on solutions states that   

 ( ̂  ̂) is also a solution, whenever  (   ) is solution to the Laplace 



16 
 

equation. For example, with the help of invariant    the radial solution 

 (   )     (     ) or the angular solution  (   )        (  ⁄ )  

among many others (homogeneous harmonics) can be happed to produce 

the new solutions 

     
     

        (     )
             

 

   (     )
  

      Adding to           sub algebras obtained by other choices (   )  

(   ) (   ) (   )  (    )     (   )  (   ) leading to the 

translational, rotational and dilatational invariance, in terms of vector 

fields,                                      respectively, 

we obtain the 6-dimensional Lie algebra of the conformal group 

    (  ) of the Euclidean plane   , isomorphic to   (   )  the Lorentz 

group of four-dimensional Minkowski space [7].   Obviously, the sub 

algebra spanned by *       + is conformal group is the two-dimensional 

analogue of the full conformal group in dimensions      Note that the 

full conformal group in the plane      is infinite-dimensional, with the 

Lie group   (   ) at its maximal finite-dimensional subgroup, because 

any analytic function       leads to a conformal transformation. 

 (            ( )         )  We have excluded the trivial symmetry 

algebra stemming from the linearity of the    . Their non-zero 

commutators satisfy 

 ,      -       ,    -          ,    -         ,     -  

,     -      

,     -   ,     -         ,      -       ,    -      ,     -

     

   A nonlinear variant of the Laplace equation, known as the conformal 

scalar curvature equation, or the elliptic Liouville,s equation, occurs in 
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the study of isothermal coordinates in differential geometry and has the 

form 

       

                                                                                         (  ) 

where K is constant (Gaussian curvature) . 

    The conformal symmetry structure of this equation on the (   )  

      is preserved. The vector field generating the symmetry group G of 

the equation is given by  

                                                    

where  (   )  (   ) satisfy the Cauchy-Riemann equations. For 

(   )  (         )      (     )             . 

 We solve the initial value problem   ̂   ⁄     ̂  ̂(     )   (   ) 

and find the transformation of u under the group action: 

 ̂(     )       (     )   (   )  (   )

         (  

   )                                                           (  ) 

  Application of the one-parameter transformation group defined by (19) 

and (22) to a solution  (   ) where the coordinates (   ) are written in 

terms of ( ̂  ̂) leads to the transformed new solution   (   ) (after the 

tildes are removed)  

  (   )        (      )   ( (      )  (   (  

   ))  (      )   )  

Note that  (     )   ( ̂  ̂  )    

   Remark (1.2.1):  

    The Laplace equation in    with     is invariant only under a finite 

dimensional conformal Lie symmetry group of    with dimension  
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( 
   )  (   )(   )   ⁄ consisting of the groups of translations, 

notations, dilation and conformal transformations (obtained by 

conjugating the n-components of the translational group via inversion 

 (   )  | |   ) on  
 

* +⁄   

    The linear wave equation           (   ) (   )       is 

invariant under a Lie point symmetry algebra isomorphic to the Lorentz 

group   (     )              ( 
   )  

(   )(   )
 
⁄      in 

a Minkowski space with an inderlying metric            
    

   
   

    The nonlinear wave (or Klein-Gordon) equation          ( ) is 

invariant under the Poincare P(1.1) of 1+1-dimensional MinKowski 

plane,  

for any  ( ) with       Its Lie symmetry algebra is generated by the 

translational and Lorenz vector fields 

                                 

    For two specific forms of  ( )  the symmetry algebra is larger. 

   The additional vector field for  

 ( )     
  is            

 

   
                      

 

 
   

for  ( )     
  . The linear case      is quite different, the 

symmetry group is the infinite-dimensional conformal group. 

(1-3) Differential Invariants: 

   Given a Lie algebra  , characterization of all invariant equations, 

equations that remain invariant under the symmetry group        

requires the notion of differential invariants, which are functions 

unaffected by the action of   on some manifold  . An ordinary invariant 

is a   ( (   )) function  (   ) on  (   )     which satisfies 

 (  (   )   (   ) for all group elements     and coordinates (   )  
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   Definition (1.3.1):  

  A differential invariant of order n of a connected transformation group   

is a differential function  (   ( )) on the jet space    

    ( ( ) (   ( ))             (   ( ))    . 

     An ordinary invariant is a differential invariant of order 0. The 

following infinitesimal invariance criterion for differential invariants 

serves to determine differential invariants of a given connected group 

transformations in a simple manner by just solving a system of linear first 

order     . 

    Proposition (1.3.1): 

   A differential invariant of order n of a connected group   if and only if 

it is annihilated by all the prolonged vector fields (infinitesimal 

generators) 

 ( )( )    ( ) ( )                                                                     (  ) 

For all    . 

 An function   is an ordinary invariant if and only if  ( )   . For a 

general vector field 

  ∑  ( )  

 

   

  

the coordinates    ( ) rectifying       are found by solving the first 

order partial differential equations  (  )        (  )       . So the 

new coordinates   ( ) are the functionally independent invariants of the 

one-parameter group generated by  . 

   Remark (1.3.1): 

   The dimension of the space    is          ( 
   

). The number of 

derivatives of order exactly   is given by                  

 ( 
     

). 
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  The number of functionally independent differential invariants of order 

  is equal to  

        (    

      )                                                                (  ) 

where    is the stabilizer subgroup (also called the isotropy group) of a 

generic point on   .            is the dimension of the orbit of G at 

a generic point. An equivalent formula for    is 

                  

where Z is the matrix of size         formed by the coefficients of the 

     prolongations   ( )(  )           of the basis vector fields 

        of Lie algebra   of the group   as rows 

   ∑    (   )    ∑    (   )   

 

   

 

   

                  

   The rank         is calculated at a generic point of   . For the special 

case of one independent and one dependent variable       we have  

          and the number of functionally independent invariants is 

        . 

   The set of      order differential invariants            of   will be 

denoted by   ( ). This set is an R-algebra. This means   ( ) is a vector 

space over the field R and satisfies the property that any arbitrary smooth 

function  (       ) of the set of differential invariants         is also a 

differential invariant, i,e.if              ( )       (       )  

  ( ). They also satisfy the inclusions 

  ( )    ( )     ( )    

the algebra     
   ( ) is called the algebra of differential invariants. 

   (1-4) Invariant Differentiation: 

      Lie [23, 22, 24] and Tresses [12] introduced the notation of 

“invariant” 
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 Differential operators to obtain(   )     order differential invariants 

for      order ones. This enables one to produce all the higher order 

functionally independent invariants by successive application of the 

invariant operators to lower order invariants. The situation is easier when 

there is only one dependent variable. Let the group   with the Lie algebra 

  act on the basic space     (    )     . 

    Proposition (1.4.1): 

    Suppose that  (   ( ) are functionally independent invariants, at least 

one of which has order exactly  . Then the ratio 
   

   
⁄  ( the Tresse 

derivatives ) is an (   )      order differential invariant. 

If  (   ( )) is any given differential invariant, then   (   )
     is an 

invariant differential operator so that iterating on   one can generate an 

hierarchy                of higher order differential invariants. 

If    (   )        (      ) are a complete set of functionally 

independent invariants of the first prolongation   ( )       they form the 

basis of   ( )          together with the derivatives     

   
   
⁄              generate a complete set of functionally 

independent invariants for the prolonged algebra   ( )( )        . 

They all satisfy the infinitesimal invariant condition   ( ) (   )    for 

a vector field    . 

     Theorem (1.4.1): 

      If the differential functions  

  (   
( ))   (   

( ))     (   
( ))    ( )     

form a set of functionally independent      order differential invariants 

of  , then a system of      order differential equations are invariant 

under   if and only if it can be written in terms of the differential 

invariants: 
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  (   
( ))    (          )     

                                                  (  ) 

  Invariant equations obtained in this way are called strongly invariant 

  ( )  (          )    is satisfied everywhere). 

     Example (1.4.1): 

        We find all second order equations invariant under the abelian 

subgroup of the projective group   (   ) generated by 

                                                                          . 

  From example (1.2) we know the following set of second order 

differential invariants  

   
 

 
                      

  The second prolongation of    is  

  ( )        (     )               

   Imposing the condition   ( )  ( )    and changing to the invariants 

as new coordinates we find that  (        ) satisfies 

  
 
  

   
      

  

   
    

    Solving this PDE by the method of characteristics, it follows that there 

are two independent invariants      
 
 ⁄            

   

  (     )
      

The most general equation can now be written as 

      (     )
  (

 

 
)                                                                       (  ) 

  Where G is an arbitrary function. 

  The rectifying coordinate for         ̂            
 
 ⁄  (an invariant) 

an     
 ⁄   In terms of        gets transformed to  ̂       The 

invariant equation corresponding to the abelian algebra *      + 
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(compare with the canonical realization      is a linear one  
  

   
⁄  

 ( ). We conclude that the same transformation linearizes Eq.(26). 

  If we replace                     this time  (        ) has to 

satisfy the zero-degree quasi-homogeneous function PDE 

(   )  
  

   
    

  

   
 (   )  

  

   
    

   Integrating the characteristic equations of this PDE we obtain the 

invariants     

 
(   )⁄

       

(   )
(   )⁄

                      

   and      
  . 

   In the former case, the invariant equation will have the form   

 ( )    

     (   )   ( )   (
 

 
)
 (   )

 ⁄ (     )   
   

   
  

    In this case, the algebra belongs to the nonabelian realization      for 

the specific choice of            It reduces to the celebrated 

Emden-Forwler equation. 

  In the latter case, we have the nonabelian algebra of linearly connected 

(or rank-one) vector fields with         which is the canonical form 

*      +  up to change of coordinates   
 
 ⁄         

 ⁄   The 

corresponding invariant equation is  

   (     )
  (

 

 
)  

Changing to new coordinates(r,s) linearizes this equation to  

   

   
  ( )
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    Example (1.4.2): 

     We know the vector fields             on   (   ) has the first 

order differential invariants     ⁄           which satisfy 

 ( )      ( ) ( )   . The tresse derivative     ⁄     (    ) give 

the second order differential invariant. We can take it as         ⁄  

     as it is needed on only up to functional independence. Iterating the 

tresse derivatives and multiplying by J we obtain the sequence of all other 

differential invariants as                    . 

   Determination of a complete set of functionally independent differential 

invariants (            ( )) allows us to construct classes of differential 

equations with a prescribed symmetry algebra g. 

   Example (1.4.3): 

    We construct all third order ODEs invariant under the solvable group 

 ( ) of rigid motions in the plane (isometries of the Euclidean space    ) 

of  ( ) algebra of symmetries composed of translations along x and y 

axes and planar rotations 

                            

with non-zero commutators 

,     -            ,     -       

  Prolongations of           do not alter their local form, but the third 

order prolongation of    is given by 

  ( )      (    
 )             (         

 )     

   We note that the Euclidean group  ( ) has no ordinary invariants on 

the space (   )(             )  nor differential invariant 

of the first order (         ) because the group acts transitively 

on (   ) and (      )  but there are differential invariants of order  . 

We can not use invariant differentiation process to find higher order ones. 

If  (            ) is differential invariant of order three of  ( )  then 
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  ( )  ( )      ( )  ( )      ( )  ( )   . From the first two 

equations, I must be independent of x and y coordinates, namely 

 (        ). We solve the characteristic system to find the two 

independent differential invariants, satisfying   ( )  ( )   . The 

characteristic system is given by 

   

    
  

   
     

 
   

         
   

       From the first characteristic equation, a second order invariant is 

  (    
 )   ⁄    (the curvature). The other one is obtained by 

replacing        (    
 )  ⁄   with k treated constant, in the last term 

and then integrating the first linear ODE 

   
   

 
   

    
         

    This provides as the differential invariant  (        )  (  

  
 )  

         so that         form a basis of third order invariants of 

 ( ) (a set of functionally independent invariants). The invariant equation 

now can be written as 

(    
 )        

    
  ( )  

where H is any smooth function of the curvature. 

     In view of proposition higher order differential invariants and 

invariant ODEs can be constructed using the tresse derivatives of 

       . For instance, the ratio      ⁄   gives a fourth order invariant. 
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Chapter two 

(2.1) Reduction of Order for Ordinary Differential Equations: 

 

Theorem (2.1.1): 

             Let the scalar ordinary differential equation 

 (   ( ))   (           )         
  

   
    

admit a one-parameter symmetry group G generated by    . All non 

tangential solutions 

(                                                  ) can be 

found by quadruture from the solutions to the reduced 

   (  )(   (   )⁄ )  

    Proof: if we introduce rectifying (canonical or normal) coordinates 

   (   ) and    (   ) in which   generates a group of translation 

          with the corresponding normal form  ̂    . Its 

prolongation   ( ) ̂     and therefore the derivatives in the new 

coordinates remain unchanged so that from the invariance condition (22) 

it follows that the equation in normal form should be independent of the 

variable s, but can depend on the derivatives. Therefore we have reduced 

our equation to one of order     (  )(        (   )⁄ )  for the 

derivative    ( )         ⁄ ( ). Once we know the solution of the 

reduced equation, the solution to the original one is obtained by a 

quadrature     ( )    

     The rectifying coordinates     are constructed as solutions of the 

partial differential equations ( )     ( )    . Note that the coordinate 

   is an invariant of  ( ) and     can be replaced by any arbitrary 

functions of   and  . 
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  For a first order equation     (   )  admitting the symmetry 

generated by    (   )    (   )  , the determining equation is  

        (     )     
                                                       (  ) 

  This equation admits the solution     . But the corresponding vector 

fields    (   )(    (   )  ) are everywhere tangential to solutions 

and do not serve our purpose for reduction because finding canonical 

coordinates equally require integrating the equation itself. Other than 

these trivial symmetries, the above determining equation can allow 

particular solutions for given F leading to one-parameter symmetry 

groups. Transforming to canonical coordinates reduces the equation to 

quadrature. It is quite straightforward to see that, if         the 

infinitesimal symmetry condition (27) can be re-expressed as  

   (  )         (   )  (    )    

implies the existence of an integrating factor  (   ) of the equation.  

In practice it is more feasible to solve the inverse problem of constructing 

the most general first order ODEs admitting a given group as a symmetry 

group. The same problem for higher order equations are equally useful. 

   Example (2.1.1): 

   We consider the following one-parameter local group of transformation 

(a special form of the so-called fiber-preserving transformation in which 

the changes in   are not affected by the dependent variable  ) 

  (   )         ̂   (   )        ̂   (   )                                                (  ) 

with the infinitesimal generator  

 

  ( )    ( )                                                                                      (  ) 

and its prolongation  

  ( )    ,    (    )  -     

   Solving the characteristic equation of the first order PDE   ( ) ( )    
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 ( )
 

  

 ( ) 
 

   

    (    )  
  

we find the first order fundamental invariants 

 (   )   ( )      (      )   ( )(      )     ( )

    8 ∫
 ( )

 ( )

 

  9  

    The corresponding ODE can be expressed in terms of invariants in the 

form  

 (   )              ( )  more precisely  

   
 ( )

 ( )
  

 ( ( ) )

 ( ) ( )
                                                                            (  ) 

where F and H are arbitrary functions of a single argument. In terms of 

the canonical coordinates it has the form, which is independent of s, 

  

  
  ( )       

  

  
         ∫

  

 ( )

 

                                                  (  ) 

  This means that Eq. (31) can be integrated by quadrature. This equation 

involves interesting types of ODEs like Abel’s equation of second type or 

Riccati equation, if we choose   arbitrary,      and  ( )       

    we have 

    
 

  
  

 

   
                          ( )    ( )  

with the one-parameter symmetry group generated by    ( )       

. In terms of r, s, it is reduced to the quadrature 

∫
   

       
      

where c is an integration constant. 

   The choice  ( )           leads to the Riccati equation 

    ( )    ( )   ( )                                                               (32) 

where  
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 ( )  
  

 
     ( )  

   

 
          ( )  

 

  
  

invariant under the symmetry             Its separable form in 

coordinates r,s is the following  

∫
  

        
      

    The particular choice         (constant) leads to the Reccati 

equation 

                    

Admitting the symmetry group (   )  (        ) generated by 

         . 

   Remark (2.1.1): 

       Lie showed that the Lie symmetry algebra the second order ODE can 

be of dimension              . The maximum dimension is attained if 

and only if can be mapped by a point transformation to the canonical 

linear equation        which admits a symmetry group isomorphic to 

the   (   ) group, acting as the group of projective transformations of 

the Euclidean plane with the coordinates (   ). Moreover, he classified 

equations with point symmetries into equivalence classes under the action 

of the infinite dimensional group Diff (2,C) of all local diffeomorphisms 

of a complex plane C. 

   Remark (2.1.2): 

   There are two isomorphism classes of two-dimensional Lie algebras 

exist (over R and over C). Each of them can be realized in two different, 

ways: 

                                                     

                                       (  )  

                                                     

                             (  ) 



31 
 

 In the terminology of Lie, for the realizations            the vector fields 

   and    are called linearly connected, for           `they are vector 

fields          are called linearly connected, for            they are 

called linearly unconnected. The invariant equations are     

 (  )          ( )         , and        
    (  ) and     

 ( )   for                respectively.  

  Any second order ODE with a symmetry group G of dimension   (a 

nonlinear second order ODE can be invariant at most under a three-

dimensional Lie group) can be integrated by two quadratures except for 

the rotation group   (   ) when          which has no two- 

dimensional  subgroup. In the latter case, there is method based on first 

integrals to find the general solution without integration. 

      The following theorem is useful when performing reductions. 

    Theorem (2.1.2): 

      Suppose  (   ( )    is an      order ODE with a symmetry 

group G. Let H be a one-parameter subgroup of G. then the ODE reduced 

by H,   ⁄ , admits the quotient group     
( )

 
⁄ , where     ( )  

*             + is the normalize subgroup of H in G, as a symmetry 

group ( often called inherited symmetry group of   ⁄ . 

  The normalize algebra in g of the sub algebra     is the maximal sub 

algebra satisfying  

      *    ,   -

  +                                                                              (  ) 

    Remark (2.1.3): 

    The normalize of a sub algebra     in the Lie algebra g of        

a basis*       + is easily obtained by solving a linear algebra problem. 

Let the subalgebra              be spanned by *       +. Now for 
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  ∑   
 
                           we impose that 

requirement (35) 

,    -  [∑       

 

   

]  ∑[     ]  

 

   

 

 ∑∑   
 

 

   

 

   

     ∑      

 

   

 

for some constants       Here   
  are the structure constants of g. This 

implies the following set of linear algebraic equations to be solved for the 

coefficients          

∑   
   

 

   

                                    

∑   
 

 

   

                       

   Remark (2.1.4): 

     If   is already and ideal of  , then                     then   is 

called self-normalizing. 

    Theorem (2.1.3): 

      Infinitesimally states that if the Lie symmetry algebra        has a 

basis        . Then the ODE reduced by    can be reduced one more if 

 ̂      *       + is chosen to satisfy , ̂    -      for some real 

constant k, meaning that    is an ideal (normal subalgebra) of  ̂ . One 

can reiterate this process to achieve a full reduction. 

    Theorem (2.1.4): 

    Applied to a two-parameter symmetry group with Lie algebra    being 

one of the isomorphy classes of Remark 2.2 and satisfying the 

commutation relation ,     -      ensures that given a second order 

ODE invariant under  . Reducing its order by one by the ideal (normal 
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subgroup)         will lead to a first order ODE inheriting the one-

parameter subgroup generated by    as a symmetry group. Note that the 

normalize of *  +    *     + an    belong to       ⁄ . This reduction 

procedure makes possible the integration of the ODE by two successive 

quadratures.  

      If the reduction is preformed in the reverse order, the reduced ODE 

will in general not inherit of the original equation, so we may not be able 

to complete the full integration.  

   Example (2.1.2): 

     The second order invariant equation with the same symmetry    

         the previous example can be expressed in terms of the 

second order invariants; r, w as defined in (30) and  

 (          )   ( ),       (     )   (      ) -            (  ) 

as  

     ( )    ( ) 

 
 (   )

   
                                                                    (  ) 

where 

 ( )     (     )          ( )     (      )            

    Elimination of   gives the relation  

 

 
(         )     ( )          ( )

  ( )  
 

 
  ( )  

 

 
 ( )               (  ) 

If               are chosen,    generates an inversional group and 

this equation simplifies to 

        (   )        
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   If we additionally ask the equation to be invariant under the scaling 

(   )  (      )     generated by              the following 

condition on H should be imposed 

(   )         (   )   

   Thus, if        is restricted to 

   (   ) (   )⁄  ̂( )           (   )⁄    

and to      ̂( )         

Choosing  ̂            (   ) (   )⁄      we obtain the 

special form of the famous Emden- Fowler equation 

       (   )                                                                   (  ) 

with a two- parameter symmetry group generated by the two-dimensional 

Lie algebra g of type      

                          
   

   
          ,     -       

   Theorem (2.1.5): 

    Guarantees that integration is completed using two quadratures by 

reductions in the order of    (an ideal of g) first and then   . We remark 

that apart from the special case             which is obtained for 

    from (39), there are only two other values of the exponent m in the 

equation           for which the symmetry algebra is a two-

dimensional (rank-two) none- abelian one. They are 

                  ⁄⁄ . For all values 

           *             ⁄⁄ +  the symmetry algebra is one-

dimensional and generated by the scaling symmetry       (  

 )   . 

  The case      gives the Ermakov-Pinney equation          with 

solution  
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   √                   which arises in many 

applications. This equation admits the   (   ) algebra as the symmetry 

algebra with the basis 

                 
 

 
                     

  Just as in the previous case, the choice          (   )     in    

of (37), combined with the scaling group generated by  

       
   

   
               

can be shown to produce the following integrable variant of the 

generalized Lane- Emden-Fowler equation 

    
 

 
                           

                                                        (  ) 

if the condition        (   )    is satisfied. The case when 

    (  (   ) (   )⁄ ) appeared in [8] as one of the reductions of 

a radially symmetric nonlinear porous- medium equation. A suitable basis 

of algebra in the case       is  

 ̂  (   )           ̂  (   )     
 

   
    

 

   
     

with commutation relation , ̂   ̂ -   ̂ (         )  In terms of 

canonical (or normal) coordinates 

  
     (   ) (   )⁄

   
                

    

   
  

we find the standard form of the corresponding equation 

    ( )    (   )  ( )  (   )   ( )  

being invariant under the algebra *          +. On solving by two 

quadratures, implicit solution of the original equation in obtained.  

   Another particular case where                leads to an 

  (   ) invariant equation. Symmetry vector fields for     are  
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          (   )                  
   

 
                 

and otherwise 

                        (   )                          

    This equation reduces to the standard Ermakov-pinney equation  

   ( )      ( )  by change of the independent variable,   

    (   )     ⁄  and              . 

    We can extract a similar integrable class from (37) by imposing 

invariance under a two-parameter symmetry group extended by        

To do this we require the commutation relation ,     -      to hold, 

which implies that              for some constant   and that     

(37) be autonomous. For this choice of     the right hand side of (37) is 

independent of  . The left hand side is also true if    (   )  ⁄  and 

           (   )                 The condition (38) is 

automatically satisfied. This gives us the integrable equation (a type of 

Emden-fowler equation known as force-free generalized Duffing 

oscillator) 

                  
 (   )

 
 

  
  (   )

 
                                            (  )  

with symmetry algebra generated by  

      (       )              

 
  

   
                                                        (  ) 

if   is eliminated between the coefficients p and q we find the 

integrability condition  

  
 (   )

(   ) 
       

                                                                                        (  ) 
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Under this condition, (41) passes the painlev’e test. 

      In terms of the canonical coordinates of    

 ̂                ̂               
   

   
           

  

   
  

Eq. (41) is reduced to    ̂   ̂ ⁄    ̂   which is invariant under the 

symmetry group generated by  

 ̂    ̂       ̂   ̂  ̂  
 

   
 ̂  ̂   

and can be integrated by two quadratures. 

  The travelling wave solutions of Fisher’s (also called Kolmogorov-

Petrovsky- Piscunov) equation satisfy the ODE[1] 

         (   )                                                                          (  ) 

      If we identify (44) with (41) we find                      and 

the integrablity condition imposes the constraint on the wave speed: 

    √ ⁄ . 

    The same type of solutions for the Newell-Whitehead-Segel equation 

satisfy 

         (    )                                                                           (  ) 

  The integrability condition (43) for                    then 

requires     √ ⁄ . Solutions are found in terms of Jacobi elliptic 

functions. 

   Surprisingly, the special case     of (41) turns up in seeking 

localized stationary solutions of the form  (   )        ( ) of the one-

dimensional nonlinear      ̈       equation with inhomogeneous 

nonlinearity  

         ( )   ( )| |              

where  ( ) is an external potential and  ( ) describes the spatial 

modulation of the nonlinearity (see for example [2]). For some special 



38 
 

choice of pairs (V,g), dictated by the presence of a Lie point symmetry, 

 ( ) satisfies 

               
   

    This equation is integrble if       ⁄ . 

  In Eqs. (44) and (45), there is no loss of generality in assuming      

because using discrete transformation       we can put       

     The case     (                )  of (41) is also known as 

the usual Duffing oscillator and under the condition   (  )⁄    its 

exact solutions can be found in terms of Jacobi elliptic functions from 

integrating the first integral (energy) 

  
 

 
 ̂   

 

 
 ̂  

 

 
     ,                    -  

   On the other hand, the case      (                 ) is 

recognized to be the celebrated Ermakov-Pinny equation 

                                                                                            (  ) 

    Its symmetry algebra (42) is extended by one additional element  

        (       )  

or in coordinates ( ̂  ̂)(                      )     the projective 

element  

 ̂   ̂   ̂   ̂ ̂  ̂   

    It is isomorphic to the   (   ) algebra. The general solution depending 

on two independent arbitrary constants is gives by  

                       (      )      

   In order obtain another interesting subclass integrable by quadratures, 

we now let Eq. (37) be invariant under the scaling transformation 

generated by         equivalently choosing  (   )         

where A,B are arbitrary constants, then we obtain the variable coefficient 

linear invariant equation 

     ̂( )    ̂( )                                                                              (  ) 
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 ̂( )     (       )      ̂( )

    (           )             (  ) 

Eliminating   results in the relation 

(         )      ( )   (     )

                                            (  ) 

where  ( ) is the (semi)-invariant of (47), namely 

 ( )   ̂( )  
 

 
 ̂ ( )  

 

 
 ̂( )   

     Eq. (49) is related to the Ermakov-Pinney equation 

     ( )   
  

 
    

by the transformation      and to the linear equation 

                 

by differentiation. 

    Eq. (47) admits a symmetry group isomorphic to the   (   ) group 

(the projective group of the plane (   )  preserving the straight lines in 

the (   ) plane as the symmetry group and can be integrated by 

quadratures using the two-parameter abelian subgroup generated by 

*     +  Passing to the canonical coordinates r and s to the constant 

coefficient linear equation 

   ( )     ( )    ( )

                                                                           (  ) 

preserving the homogeneity property in r (invariance under the scaling 

   )  

  In the special case of the inversional group ((        )  the 

corresponding invariant ODE becomes 

    
 

  
   

    

  
 

                                                                                 (  ) 
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 Its normal form easy to obtain from the relation (49) as 

     ( )    

 ( )   
  

   
         { 

 

  
}                                  (  ) 

   Then, we have     ⁄          ⁄ , and we can easily solve (50) to 

find the general solution of (51)  

 ( )   [     ( 
  
 
)

      ( 
  

 
)]                                                         (  ) 

where    (   )  ⁄             are the real roots of the 

characteristic equation            If the discriminant   is zero or 

negative, the solution should be modified appropriately.  

   Alternatively, we can use the differential invariant approach. By means 

of the differential invariant   
  

 ⁄    
 ⁄         

( )
           we 

can express (52) as a Riccati equation 

  

  
    

  

   
  

which inherits the symmetry  ̂       (     )    Using the 

canonical coordinates    (    )     
 ⁄  satisfying  ̂ ( )  

   ̂ ( )     it can be written as a separable equation, invariant under the 

group of transformations (   )  (     )  

  

  
 
  

 
    

with solution  ( )   
 ⁄      0

 

 
(    )1  Finally, from the relation, 

by integration 
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we recover the general solution (53), after some manipulation with the 

arbitrary constants.  

   The following equation arises in the integrability analysis of the 

variable coefficient Basener-Ross model [9] 

   ( )   ( )        ( )

  
           

 (     ) 
                                               (  ) 

where   is a certain constant. The relation (49) for the choice       

    ⁄  (          
 ⁄ ) and  

  
 

 
(      ) 

gives precisely  ( ) as above. One can check that 

    ( ) (   
 

 
   ) 

generates one-parameter symmetry group of (54). So we have ( )  

  ( )  ⁄  , 

 ( )     ⁄   ( )    (     )      ( )   ( )   In canonical 

coordinates (   )   satisfies the constant coefficient equation (ODE) (50) 

   ( )    ( )  
 

  
 ( )     

  Solving this equation and changing to (   ) coordinates we obtain the 

general solution  

 ( )      ⁄ [  (     )  ⁄    (     )  ⁄ ]  

   In general, gives  ( )      one can solve (49) for  ( ) and thus 

construct an invariant equation of the form (47) with symmetry   

          

 ( ) is found from solving  ̂( )         ( )  (    )  ⁄ . If  ( ) is 

substituted into  ̂( ) of (48) it follows that  ̂   ( ) as expected. 

Solution is readily obtained by transforming into the constant coefficient 
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linear equation (50) by the transformation  ( )  

√    , (  ⁄ ) - ( ). 

     The knowledge of invariance of an      order ODE under an r-

parameter symmetry group can be useful in reducing in order more than 

once. But the full reduction to an equation of order     can only be 

guaranteed if the symmetry group is solvable.  

   A Lie algebra g is solvable if the derived series defined recursively by 

the chain of sub algebras 

   ( )   ( )   ( )    ( )

 [ (   )  (   )]                                        (  ) 

terminates, namely there exists     such that  ( )   . The algebra of 

commutators     ( )  ,   - is called the derived algebra. For the 

solvable algebra     * + holds. 

   Theorem (2.1.6): 

   Let   (   ( ))    be an n-th order ODE. If  (   ( ))    admits a 

solvable r-parameter group of symmetries G such that, then the general 

solution of the equation can be found by quadratures from the general 

solution of an (n-r) –th order reduced ODE   ⁄ . In particular, if the ODE 

admits a solvable n-parameter group of symmetries, then the general 

solutions can be found by quadratures alone. 

    A solvable three-dimensional Lie algebra g always contains a two-

dimensional abelian ideal, which is unique up to conjugacy under inner 

automorphisms unless g is abelian or nilpotent. An integration strategy 

for an ODE with a three-parameter solvable symmetry group is to first 

reduce the equation by this two-dimensional ideal and then to use the 

remaining symmetry to complete the integration by quadratures. 
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    Example (2.1.3): 

        We turn to Eq. (26). As this equation admits a three-dimensional 

solvable algebra    ( ) as the symmetry algebra we can integrate it by 

three consecutive quadratures. The derived series of   is  

     *     +                                      
    ( )  * +  

    The third order differential invariants of the ideal *     +           

      
 ( )      ⁄      ⁄   in the terms of which Eq.(26) reduces 

to the first order ODE 

(    )  ( )        ( )          

 (    )   ⁄                                  (  ) 

  This equation should retain the final (inherited) symmetry     which, in 

terms of      has the reduced from (from restriction of 

  ( )          coordinates)  

 ̂  (    )         

the coordinates   (    )   ⁄              retifies the vector field 

 ̂      In terms of     (56) becomes a separable equation 

  

  
   ( )                                                                                                      (  ) 

with implicit solution  ̂( )                          

 (     )  which is invariant under the translational group *     + and 

can be integrated by two further quadratures. 

    The special case                    (    
 )   (     )  

  

with the additional symmetry             Form (57), the solution of 

reduced equation is      
    and with the original variables, it is the 

second order ODE (    
 )   ⁄         *         +. 

For      the solutions are curves with the constant curvature   
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    The family of circles with radius   
   (    )

  (    )
    

    In 

this case the equation admits two further additional symmetries    

(     )         and          (     )  . The maximal 

symmetry algebra of the equation is the six-dimensional Lorentz algebra 

  (   ). 

  When      the corresponding second order ODE can be integrated 

using two-parameter translational group. More conveniently, a parametric 

solution can be produced by the introduction of the parametrization 

          in the form  

 ( )     
   (          )      ( )     

   (          )      

  To see what happens when the symmetry group is not solvable we 

consider the following example of a third-order ODE, known as the 

Schwarzian equation,  

  
  

 
 

 
(
  
  
)
 

  ( )                                                                                                (  )  

where F is any function of its argument, admitting the nonsolvable 

symmetry group   (   )  with Lie algebra having the basis 

                         

                                                                             (  ) 

The corresponding Lie group   (   ) is the group of linear fractional 

transformations 

(   )  (  
    

    
)     .

     
       

/    (   )  

    The expression on the left-hand side of (58) is called the Schwarzian 

derivative of   with respect to   and is denoted by the symbol *   +. It is 

invariant under the   ̈     transformation in 

  *(    ) (    )  ⁄ +  *   +        (a unique differential 

invariant of order   of the algebra (59)). A two- dimensional solvable 
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subalgebra    generated by *     + can be used to reduce the equation to 

one of first order. The second-order differential invariants of 

                   ⁄ , in terms of which the reduced equation 

becomes 

  

  
 
 

 
    ( )  

which is recognized as a Riccati equation. This equation does not inherit 

the symmetry    of the original equation. Indeed, the reduced vector field 

 ̂  in terms of the invariants         nonlocal (the so-called exponential 

vector field) 

 ̂    ∫       

  On the other hand, the well-known Hopf-cole transformation   

  
  ( )

 ( )
 

(         ) linearizes to 

    
 ( )

 
 

                                                                                                          (  ) 

       Let         be two independent solutions of (60). Then, we have 

  ⁄   ∫         where   is the (constant) Wronskian of   and 

 , (we can put     by scaling  ) and c is an arbitrary constant, that 

can be absorbed to   so that we can put c=0 without loss of generality. 

The solution y can now be expressed as a ratio     ⁄  of two linearly 

independent solutions to (60). 

   When  ( )    (known as the Kummer-Schwarz equation; this 

equation is also encountered in the study of geodesic curves in spaces of 

constant curvature), the symmetry algebra g becomes     

            and has a direct-sum structure  

    (   )    (   ) spanned by the vector fields (59) and  
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                                                                                       (  ) 

    The symmetry group is then a linear functional group of both         

coordinates. The corresponding solution is the linear fractional (or 

  ̈    ) transformation in     (    ) ( ⁄    )           . 

    (2-2) Integration of Ordinary Differential Equations: 

    Lie made the remarkable observation that virtually all the classical 

methods for solving specific types of ordinary differential equations 

(separable, homogeneous, exact, etc.) are particular examples of a general 

method for integrating ordinary differential equations that admit a group 

of symmetries. In particular, knowledge of a one-parameter group of 

symmetries of an ordinary differential equation allows us to reduce its 

order by one. Before beginning, though, we must remark that the method 

cannot be used to find every solution to the equation. 

   Definition (2.2.1):  

   Let v be a vector field on the space of independent and dependent 

variables. A function    ( ) is called nontangential provided v is 

nowhere tangent to the graph of  . 

   Theorem (2.2.1): 

     Let  (   ( ))    be an     order scalar ordinary differential 

equation admitting a regular one-parameter symmetry group G. Then all 

nontangential solutions can be found by quadrature from the solutions to 

an ordinary differential equation (  ⁄ )(   (   ))                , 

called the symmetry reduced equation. 

   Remark (2.2.1): 

   Note that a solution is everywhere tangential if and only if it is invariant 

under G, so the method will not, in particular, produce invariant solutions. 

However, in the scalar case, the graph of an invariant function must 
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locally coincide with a one-dimensional orbit of the group, and hence the 

invariant solutions can be determined by inspection, for applications to 

envelopes and separatrices. 

    Proof: Let us introduce rectifying coordinates    (   )   

 (   )  in terms of which the infinitesimal generator of G is the vertical 

translation field   . If v is not tangent to the graph   of a solution 

   ( )  then, in terms of the new     coordinates,   remains 

transverse, and therefore will locally coincide with the graph of a smooth 

function    ( ). In the new coordinates, the group transformations, 

and their prolongations, are simply given by translation       in the 

v coordinate alone, the derivative coordinate remaining fixed. (the 

infinitesimal form is  ( )         ) therefore the equation variety 

   { (   ( ))   }     is invariant if and only if it dose not depend 

on the variable v, and hence the equation is equivalent to one that dose 

not depend explicitly on v itself (although it dose depend on the 

derivatives of v with respect to y). Therefore, replacing           

reduces the equation to one of order            ( ), moreover, we 

recover the solution to our original equation by quadrature:   

  ( )  . 

    In particular, a first order equation     (   ) admitting a one-

parameter symmetry group can be solved by quadrature. However, the 

symmetry must be nontangential ; the trivial symmetries   

 (   )(    (   )  ) are everywhere tangential to solutions; 

moreover, the characteristic method for finding the rectifying coordinates 

of such a vector field is the essentially same problem of determining the 

must general symmetry group of the first order equation is some 

complicated than solving the equation itself, so we can only successfully 
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apply Lie’s method if, by inspection (perhaps motivated by geometry or 

physics), we can detect a relatively simple symmetry group. 

 Example (2.2.1): 

A classical example is provided by the homogeneous equation; 

  

  
      .

 

  
/  

which admits the scaling group (   )  (      ) with infinitesimal 

generator                   rectifying coordinates are given by 

     ⁄        , in terms of which the equation reduces to  

  

  
 

 

 ( )    
  

  This can clearly be integrated,    ( )  ∫  * ( )    +⁄   thereby 

defining u implicitly:       (   ⁄ )   (The reader might enjoy 

comparing this method with the one taught. In elementary ordinary 

differential equation texts for solving homogeneous equations). 

    In this case, the nontangentiality condition requires that     ⁄  

   ⁄   meaning that  ( )      and this method (and the standard one) 

break down at such singularities. In particular, the scale-invariant 

function      , which will be a solution provided  ( )      cannot 

be recovered by this approach, and constitutes a singular solution to the 

equation. 

   Example (2.2.2): 

      Consider the second order ordinary differential equation 

        
   

where   is a nonzero constant. The equation admits three obvious 

symmetries: a translation       in the independent variable, 

reflecting the fact that the equation is autonomous, and two independent 

scaling transformations (   )  (     )  To reduce with respect to the 

translation group, we set                           ⁄  
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 ⁄   and the equation reduces to a linear equation             

with solution                     or                  . 

The corresponding solution of above equation is then   (   

 ) (   )⁄          (    ). (Note that the translationally invariant 

solutions            are recovered as limiting cases of these 

solutions.)  

       Alternatively, if we use the scaling symmetry in u, then the 

appropriate coordinates are               in terms of which the 

equation becomes     (   )  
   which reduces to a homogeneous 

(separable) equation for     . The reader may enjoy seeing what 

happens if we reduce with respect to the other scaling symmetry      

instead.  

   Example (2.2.3): 

    Finally, consider a general homogeneous second order linear equation 

     ( )    ( )     

  This clearly admits the scaling symmetry generated by    . According 

to the general reduction procedure, as long as    , we can introduce the 

new variable         in terms of which the equation becomes     

  
   ( )    ( )     which is a first order Riccati equation for 

        ⁄ . We have thus recovered the well-known 

correspondence between second order linear equations and first order 

Riccati equations. 

    If a higher order equation admits several symmetries, then it may be 

reducible in order more than once. However, unless the symmetry group 

has additional structure, we may not be able to make a full reduction 

since the reduced equation. (On the other hand, they may admit additional 

symmetries not shared by the original system ) that is full details of the 

reduction techniques available. 
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   Theorem (2.2.2): 

    Suppose     is an     order ordinary differential equation admitting 

a symmetry group G. Let     be a one-parameter subgroup. Then the 

H-reduced equation     ⁄  admits the quotient group 

             *  ⁄         +⁄  is the normalize subgroup, as a 

symmetry group. 

    Proof: Let    (   )    (   ) be the rectifying coordinates for 

the infinitesimal generator      of the subgroup H. The original 

differential equation reduces to an (   )   order equation for      

 (      ). Consider an infinitesimal symmetry     of the original 

equation, which we re-express in terms of the rectifying coordinates: 

   (   )    (   )  . Clearly, the vector field   will induce a 

point symmetry of the reduced equation if and only if its first 

prolongation  ( )                can be reduced to a local vector 

field  ̃   (   )    (   )   depending on just y and w. This will 

happen if and only if          are independent of v. This occurs if and 

only if    ( )     for c constant. Since     , this condition is 

equivalent to the requirement that ,   -    . That       the 

subalgebra of g corresponding to the normalize subgroup     thereby 

completing the proof. 

   Example (2.2.4): 

     Consider a second order equation of the form        (     )  

which admits the two-parameter symmetry group (   )  (       ) 

with infinitesimal generators            . Since ,   -   , if we 

reduce with respect to w, then the resulting first order equation will retain 

a symmetry corresponding to v, and hence theorem 2-8 guarantees that it 

can be integrated.                            In this case, we set     ⁄    

      (     )  so that reduces to       (   )        This 
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equation admits a scaling symmetry generated by reduced vector field 

 ̃            which means that it is of homogeneous can be 

integrated. On the other hand, if we try to reduce the original equation 

with respect to v initially, using variables  ̃     ̃        reduces to a 

first order equation      ,   (     )- having no obvious 

symmetry. It is worth remarking that the latter equation can be solved-just 

reverse the procedure so as to replace it by the original second order 

equation, and use the first reduction method. 

    An r-dimensional Lie group G is called solvable if there exists a 

sequence of subgroups  * +                    such that 

each    is a normal subgroups of     . This is equivalent to the 

requirement that the corresponding subalgebras of g satisfy ,       -  

  . The ordinary differential equation admits a (sufficiently regular) r-

dimensional solvable symmetry group, then its solutions can be 

determined, by quadrature, from those to a reduced equation of order 

   . 

   Finally, it is worth reiterating the fact that not every integration method 

for ordinary differential equations is based on symmetry. Indeed, the 

equation appearing in provides a simple example of an equation with no 

symmetries, but which can, nevertheless, be explicitly solved. 

   (2-3) Characterization of Invariant Differential Equations: 

   One of the most important uses of differential invariants is the 

construction of general systems of differential equations (and variational 

problems) which admits a prescribed symmetry group. This is especially 

important in modern physical theories, where one begins by postulating 

the basic “symmetry group” of the theory, and then determines which 

field equations are admissible. The basic result that allows us to 

immediately write down the most general system of differential equations 

which is invariant under a prescribed transformation group is direct 
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corollary of characterizing invariant systems of algebraic equations. Note 

that this result is valid for both ordinary and partial differential equations. 

   Theorem (2.3.1): 

    Let G be a Lie group acting on E. Assume that the     prolongation of 

G acts regularly and has a complete set of functionally independent     

order differential invariants         on an open subset  ( )    . A 

system of     order differential equations admits G as a symmetry group 

if and only if, on  ( )  it can be rewritten in terms of the differential 

invariants: 

  (   
( ))    .  (   

( ))/      (   
( )))             

   Example (2.3.1): 

     Suppose we have just one independent variable and one dependent 

variable, and consider the usual rotation group   ( ) acting on     

 . There are two first order differential invariants-the radius   

√      and the angular invariant   (     ) (     )⁄ . 

Therefore, the most general first order ordinary differential equation 

admitting   ( ) as a symmetry group can be written in the form 

 (   )   . Solving for w, we deduce that the equation has the explicit 

form  

     

     
  .√     /               

    (√     )

    (√     )
  

    In terms of the polar coordinates      in above equation takes the 

separable form        ( ) and can thus be integrated. 

The most general second order differential equation admitting a rotational 

symmetry group can be written in the form  (     )            

(    
 )   ⁄     is the curvature. Solving for      we find 

    (    
 )  ⁄  (√      

     

     
)  
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  This second order equation can also be rewritten in terms of polar 

coordinates: 

     (      
 ) (     )      

       

Since the latter equation dose not explicitly depend on    it can be 

reduced to a first order equation by introducing the variable       ⁄ . 

   Example (2.3.2): 

   Let         and consider the action of the rotation group   ( ) 

acting on the independent variables     only. Every first order   ( )  

          partial differential equation has the form  (            

       )   . Similarly, every second order   ( )            partial 

differential equation can be written in terms of the second (and lower) 

order differential invariants  

                      

         (     )           

                      

   In particular, the rotational invariance of the Helmholtz equation 

follows from the identity 

                                     (   )       

    The construction theorem (2.9) suggests an alternative reduction 

method for ordinary differential equations invariant under a symmetry 

group. Under the assumptions of theorem 2.9, we can rewrite any     

order ordinary differential equation admitting and r parameter symmetry 

group in the form 

 (    
  

  
   

     

     
)     

involving only the two fundamental differential invariants:   

 (   ( ))    (   ( ))  which have orders                  

             is either intransitive, in which case      or pseudo-
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stabilizes, in which case      . Therefore, we have reduced the 

original     order differential equation to an (   )   order differential 

equation in the differential invariants. However, once we have solved 

above equation for    ( ), we then must solve an auxiliary     order 

differential equation 

 (   ( ))   [ (   ( ))]  

in order to recover u as a function of x, only involves the first differential 

invariant y, the Lie reduction method discussed above can be applied, 

although, unless the Lie group is solvable, we will not in general be able 

to integrate it by quadrature alone. 

    A particularly interesting class of applications is provided by the three 

inequivalent planar actions of the special linear group   ( )  All three 

actions are related via a process of prolongation and projection; this 

provides a ready means of simultaneously classifying and reducing the 

corresponding invariant ordinary differential equation admitting the 

symmetry group generated by         
    can be written in the form 

     

     
  4    

  

  
   

     

     
5  

where  

          
       

 
 
   
 

  
 

  

are the two fundamental differential invariants. Once we know the 

solution    ( ) by a pair of quadratures. The function  ( )  √   is 

a solution to the second order, homogeneous, linear      ̈       

equation 

   

   
 

 

 
 ( )     

We can recover  ( ) by a single quadrature: 
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∫
  ̃

 ( ̃) 
     

 

 

  Note that, according to the method of variation of parameters, if  ( ) is 

one solution to the linear ordinary differential equation, then a second, 

linearly independent solution, is given by 

 ( )   ( )∫
  ̃

 ( ̃) 

 

  

Comparing with  

∫
  ̃

 ( ̃) 
     

 

 

  And absorbing the integration constant, we conclude that the general 

solution to the invariant equation is given, parametrically, as a ratio 

   ( )  ( )⁄  of two arbitrary linearly independent solutions the linear 

     ̈       equation. The differential invariant s can be identified with 

the negative of the Schwarzian derivative of    ( )  therefore, our 

symmetry reduction, provides a direct proof of a classical theorem due to 

Schwarz. 

   Theorem (2.3.2): 

   The general solution to the Schwarzian equation 

       
 
 
   
 

  
 

  ̃( )  

has the form    ( )  ( )⁄   where  ( ) and  ( ) form two linearly 

independent, but otherwise arbitrary, solutions to the linear      ̈       

equation     
 

 
 ̃( )     Alternatively,        ⁄  is an arbitrary 

solution to the Riccati equation    
 

 
    ̃( ). 

   (2-4) Linearization of Partial Differential Equations: 

      Because of the preceding results, trivial linearizable ordinary 

differential equations are (as far as we know) uniquely characterized by 
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the property that they admit a symmetry group of the maximal, finite 

dimension. Symmetry groups can also be used effectively to characterize 

linearizable systems of partial differential equations. The key remark is 

that a linear system of partial differential equations  , -      where   is 

an      order linear differential operator, has (assuming the system is not 

over determined) an infinite-dimensional symmetry group since we can 

add any other solution to a given solution. The infinitesimal generators of 

the relevant infinite-dimensional symmetry group take the form 

   ∑  ( )
 

   

 

   

  

where   (  ( )     ( )) is any solution to the linear system 

 , -   .    Note that the vector fields above commute, and hence 

generate an infinite-dimensional abelian symmetry group. Assuming the 

system  , -    is locally solvable, the operators span a q-dimensional 

subspace, namely the space of vertical tangent directions in TE. Any 

equivalent system of partial differential equations must also admit such 

an infinite-dimensional symmetry group, and hence any system of partial 

differential equations which has only a finite-dimensional symmetry 

group is certainly not linearizable (at least by a local transformation). 

    Theorem (2.4.1): 

    Let  (   ( ))    be an     order system of q independent partial 

differential equations in     independent variables and q unknowns. If 

the system admits an infinite-dimensional abelian symmetry group, 

haveng q-dimensional orbits, and infinitesimal generators depending 

linearly on the general solution to an     order system of q independent 

linear partial differential equations  , -     then it can, by a change of 

variables, be mapped to an inhomogeneous form of the linear system 

 , -   . 
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     Proof: Any abelian transformation group with q-dimensional orbits 

can, through a change of variables, be mapped to a group generated by 

vector fields of the last equation. The additional hypothesis implies that 

the coefficient functions  ( ) form the general solution to linear     

order system of partial differential equations  , -   . Note that, in 

terms of the original coordinates, the generators take the form 

   ∑  (  (   )     (   ))   

 

   

 

 where the vector fields         are linearly independent, commute, and 

satisfy   ( 
 )               . Now, in the new coordinates, the system 

must be equivalent to the inhomogeneous form of the linear system. To 

see, it suffices to note that the only     order differential invariants of the 

infinite-dimensional group generated by the vector fields, are the 

components of  , - and the variables  . Therefore, any invariant system 

of differential equations must be isomorphic to one of the form 

 ( , -  )   . But, since the system consists of q independent 

equations, we can solve the system for the components of  , -  placing 

the system into the desired inhomogeneous form. 

    Example (2.4.1):  

    The nonlinear diffusion equation      
      admits the following six 

symmetry generators:  

                                    

               (       )                

as well as the infinite dimensional abelian subalgebra 

 (   )                                     

The hodograph transformation          to the (homogeneous) heat 

equation       . 
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Chapter three 

Group Classification of Invariant Solutions of Differential Equations 

 

   (3-1) Group Classification Problem: 

      When a system involves an arbitrary parameter or arbitrary function, 

the symmetry group can be have richer symmetry for certain specific 

forms of these arbitrary terms. The problem of identifying such arbitrary 

parameters or functions is known as the group classification problem. 

When there are only parameters or arbitrary functions of a single 

argument of independent or dependent variable then the problem is easily 

tackled solving the determining system where splitting is almost always 

possible. The arbitrary functions are found by solving an ODE(the so-

called classifying ODE). The situation becomes rather complicated when 

the system depends on arbitrary functions of more than one argument. In 

this case, the group classification problem is often solved by reducing it 

to the classification of realizations of low-dimensional abstract Lie 

algebras combined with the notion of equivalence group and the 

knowledge of abstract Lie theory. 

   Example (3.1.1): 

   A classification problem: we wish to determine all possible forms 

of  ( )  for which the following ODE allows a two-dimensional 

symmetry algebra: 

         ( )                                                                  (  )  

     Under the reflection       we have        so we can assume 

   . 

The special nonlinearity  ( )         is recognized as Duffing’s 

equation. 
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    The trivial case     is clearly integrable. It has the energy first 

integral  

 

 
     ( )                 ( )    ( )   

    The symmetry classification for     naturally characterizes all 

possible integrable cases.Eq. (62) arises in obtaining travelling- wave 

solutions of the nonlinear heat (diffusion) equation 

        ( )                                                                                    (  ) 

These are solutions of the form  (   )   ( )   (    )  being 

invariant under a combination of time and space translational symmetries. 

In what follows we take      

    We can put         scaling the independent variable        and 

redefining          . The equation is invariant under translation of   

that       generates a symmetry. For certain functions F, the symmetry 

group will be two-dimensional. The general symmetry algebra is 

generated by vector fields of the form 

   (   )    (   )    

   The second prolongation formula for vector field v is 

  ( )   (   )     (   )      (      )       (          )       

where  

                   
          

    Higher order prolongation coefficients can be calculated from the 

recursion formula  

      
              ( )  

or in terms of the characteristic  (      )        as 

     
          

    From the infinitesimal symmetry we find             on the 

solutions. 
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Replacing            ( ) and setting the coefficients of the derivative 

   equal to zero we obtain the determining system for the coefficients     

                                                                                         (  ) 

                                                                                                 (  ) 

   

                                                                                                                            (  ) 

    (      )         

                                                                          (  )  

differentiating twice the first two equations with respect to y and using 

the third one and the condition       (               ) we find  

                

  So we take    ( )        ( )   ( )  The determining 

equations are then reduced to solving the classifying ODE 

(    )   (     ) 

 (      )                                                 (  ) 

with the relation 

    (      )

                                                                                                 (  ) 

from which we have  

 

 
 

 
(    

  )                                                                                                  (  ) 

where   is a constant. 

        Now we shall require the equation under study be invariant under a 

two-dimensional symmetry algebra with commutation relations 

                                                               ,     -       

and       . The case     is abelian. 



62 
 

        

We shall find all possible forms of    that obey commuation relation and 

the corresponding   (not linear in y). The commutation relation implies 

that we must have  

                         

and then 

     
            

            
    

          (   )                     (   )     

  The classifying ODE then becomes 

(      ) 
  (       ) 

  (   )(      )                                       (  ) 

where          are constants. The relation (34) gives 

 ,    (   )  -     

     If     then b, c and d are arbitrary constants and F should be linear 

in y. this means the symmetry algebra should be nonabelian. 

     If                                     The ODE becomes now 

                                                      
 

 
               

which integrates to  ( )       
 

 
. The symmetry algebra spanned by 

        

    ,  

 
 

 
  -                                                                        (  ) 

Leaves invariant  

            
 

 
                                                                              (  ) 
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By scaling transformation   
 
  ⁄   followed by transformation 

      √  for      we can put              re spectively. 

Our respresentative equation simplifies to  

                                                                                               (  ) 

If     then we have         and 

(   )               
  
  
  

   The corresponding F and the symmetry algebra are given by 

   (   )                     ,   (   )  -  

     Now we let         If we  assume        from (34) we have  

   
   
   

    

If we put      
 (   )

 
      the ODE (36) can be written as  

(   )      
 (    )

(   ) 
(   )      

 
    

   
                                              (  ) 

       The solution of the ODE (40) is given by  

   (   )  
 (   )

(   ) 
(   )         

                                                      (  ) 

     The symmetry algebra is given by  

                ,   
   

 
(   )  -     

 
   

   
                                    (  ) 
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     Note that the above result also contains the sub case     (but not 

    )  

 By change of basis                                the 

commutation relation takes the standard form for a two-dimensional 

nonabelian algebra: ,     -     . 

 Is not changed by the linear transformation  ̂        The arbitrary 

coefficient F(y) gets changed into  ̂( ̂)    (
 ̂  

 
)   By a suitable choice 

of p and q we can set              

    The two-dimensional symmetry algebra makes of the original equation 

possible to quadratures by methods of differential invariants or canonical 

coordinates. We consider the case     with two-parameter symmetry 

group generated by 

               [   
   

 
   ]  

The function F in the invariant is given by  

 ( )     
(    

 
   

 
    

   
                                                                     (  )  

we start to reduce by the normal sub algebra    which, in terms of the 

coordinates 

              

    (   )  ⁄                                                                                  (  )  

has the canonical form  ̃       The transformed equation becomes  

                        

   

   
  

(    )
 

 0 
    

 
   ( )1  

                                                                        (  )  
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which retains the symmetry   . In terms of the invariants         

  
  ⁄  of   , it reduces to the first order ODE      ⁄     with solution 

                        (   )           otherwise. The 

general solution is obtained implicitly after a second quadrature from 

(    )⁄  
   ( )  The alterative ay is to integrate using the integrating 

factor     ( ). When        the solutions are obtained in terms of 

Jacobi elliptic functions or weiestrass   function, when     in terms of 

hyperelliptic integrals. 

  The case      is treated similarly. The canonical coordinates 

              maps Eq. (76) to    ( )      with symmetry 

*         +. The corresponding solution is given by  

      8
 √     *√   

 + 

    
    * √   

 +
9             

or 

    
 

 
  {      

 (√    
    )}                 

 

  Remark (3.1): 

  The special case                  ( )   (     )⁄⁄  of (78) 

deserves a special attention, because this relates, up to a scaling of y, to 

the travelling – wave solutions of Fisher’s equation (or nonlinear 

reaction-diffusion equation) 

         (   )                                                                               (  ) 

    This equation originated in 1936 to model the propagation of a gene in 

population. Notice that under the change of variable        the 

parameter a changes sign. The corresponding travelling- wave solutions 

are then reduced to integrating the second order        ( )    . The 



66 
 

general solution of this equation is    ( √ ⁄        )  where      

are arbitrary constants. Here  

 (       ) is weierstrass   function with invariants          .  

   Changing to the original variables using      
 
          ⁄  from 

(44), for       the solutions can be written as  

 ( )      ⁄  (
 

√ 
   ⁄        )                                                        (  ) 

   We note that   is an even function since             is arbitrary. 

They are doubly periodic with an infinite number of poles on the real 

axis. The solutions of biological interest are are obtained for     . 

Using the fact that  (     )      we find  

 ( )  [
 

√ 
      ⁄ ]

  

 

satisfying the boundary conditions 

       ( )                 ( )   ⁄ .     In [1], it was shown that 

for the special wave speed    √ ⁄ , for which the Fisher’s equation 

passed the necessary condition to be of painleve type, can be reduced to 

the canonical form         by a transformation of the both independent 

and dependent variables of the form  ( )   ( ) ( )    ( ) 

with        appropriately chosen.  

    Another context in which     appears is the study of travelling 

solutions of the two-dimensional Kortweg-de Vries-Burgers (   ) and 

Kadomtsev-petviashvili (   ) equations for the special quadratic 

nonlinearity F(u) [6]. 

    We recall that the case          ⁄  cotrresponds to the travelling 

wave solutions for the Newell-Whitehead- segel equation. The rectifying 

transformation is        ⁄                 ⁄  . 
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   (3-2) Group-Invariant Solutions: 

    One of the main applications of the notation of symmetry group to 

PDEs is to construct group-invariant solutions. Suppose that G is a 

symmetry group of the system (11). A solution    ( ) is called group-

invariant if                

   . This means that a group-invariant solution does not change under 

the symmetry group transformations. For example, if G is the group of 

rotations in the space of independent variables  , then a solution invariant 

under G well be a function of the radius alone in the form    (| |). 

Travelling wave solutions are solutions invariant under the group of 

translations. Self-similar (or similarity) solutions that frequently arise in 

applications correspond to scaling symmetries. 

   Theorem (3.2.1):  

     Suppose that the symmetry group G acts on the space of independent 

and dependent variables       and sweeps out generic orbits of 

dimension   and of codimension       (the number of functionally 

independent invariants of the group G). Then all the group-invariant 

solutions to     can be found by solving a reduced system of 

differential equations   ⁄    in   fewer independent variables.   

     For example, if we have a system of partial differential equations in 

two independent variables, then the solutions invariant under a one-

parameter symmetry group can all be found by integrating a system of 

ordinary differential equations. 

     Reduction in the number of independent variables will be possible if 

the orbit dimension   satisfies the inequality    . When      the 

reduced system   ⁄    is a system of algebraic equations, while if 

    there are no group-invariant solutions. In particular, if       

we have a system of ODEs. 
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     Let G be a local Lie group of transformations with infinitesimal 

generators          and the associated characteristics          Then a 

function is invariant under G if and only if it is a solution to the system of 

quasilinear first order partial differential equations characterizing the 

functions invariant under G 

    (   
( ))                          

                                                      (  ) 

    The group-invariant solution thus will satisfy both the original system 

together with the invariance constraints (83), which form an over 

determined system of PDEs. The method of system reduction consists of 

solving (83) in terms of invariant coordinates and substituting these into 

the original system. In the final stem all non-invariant coordinates will 

drop out of the resulting reduced system. What remains to derive group-

invariant solutions is to solve the reduced system depending on fewer 

independent variables. 

      Given a solution invariant under a subgroup   of the full symmetry 

group G of a system, it can be transformed to other group-invariant 

solutions by elements      not in the subgroup  . Two group-invariant 

solutions are called inequivalent if one can not be transformed to the 

other by some group transformation    . The corresponding reduced 

systems also have to be inquivalent. Two subgroups which are conjugate 

under the symmetry group G will produce equivalent reduced systems 

(systems connected with a transformation in the symmetry group). 

  Let    be a s-parameter subgroup. If    ( ) is solution invariant 

under   and     is any other group element, then the transformed 

function    ̂( )     ( ) is solution invariant under the conjugate 

subgroup   ( )         . 
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     For example, the stationary solutions    ( ) of an evolution 

equation such as head equation and     (Korteweg-de Vries) equation 

invariant under Galilean group    can be conjugated by the Galilean 

boosts         
    to map to travelling wave solutions    (    ) 

and vice versa. 

   So the collection of all group-invariant solutions are partitioned into 

equivalence classes. If   is the Lie algebra of G, we are interested in 

obtaining a representative list of subalgebras of   (also called an optimal 

system of subalgebras) such that every subalgebra of   is conjugated to 

precisely one algebra in the list and no two subalgebras in the list are 

conjugate. Two algebras          are conjugate under G if         . 

Consequently, the problem of classifying group-invariant solutions is 

completely tantamount to finding the optimal system of subalgebras.                  

When this task has been finished, it is sufficient to construct only group-

invariant solutions corresponding to these representative subalgebra in the 

list. All other solutions can be obtained by applying the symmetry 

transformations to the representative classes of solutions. 

     For a finite dimensional Lie algebra of dimension    this is in 

general a complicated problem. If   is a direct sum of two or more 

algebras, there is an algorithemic classification method, which is 

adaptation to Lie algebras of the Goursat’s method for direct products of 

discrete groups. When   is Levi de-composition of a semi-simple algebra 

and its radical (maximal solvable ideal).  

     In physical applications, one usually encounters with low-dimensional 

algebras as a symmetry algebras. In such cases, subalgebra classification 

problem is solved by using the adjoint transformations using the Baker-

Compbell-Housedorff formula (or the Lie series) 
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  (   (  ))     (  )     (   )     ,   -  
  

  
[  ,   -]  

  (  )  

where       and   is the group parameter. This series terminates or 

can be easily summed up when the vector field v is nilpotent element or 

generates a translation, rotation or scaling group. The basic idea is to take 

a general vector field         *       +       and to simplify it as 

much as possible using adjoint transformations. 

   Example (3.2.1):  

   We give an example of one-dimensional subalgebras for the simple 

algebra   (   ) with commutation relations 

,     -            ,     -              ,     -      

  Let                    (   )           using the formula 

(84) and the above commulation relations and summing infinite series in 

  we find  

  (   (   ))                       (   (   ))  

                

and from the linearity of the adjoint transformation 

     (   (   ))    
      

      
     

where 

  
                         

             
                 

  Note that   
     

     
     

    
    

                This means 

that the positive-definite function  ( )    
    

    
  is invariant under 

the corresponding adjoint transformation. It can be seen that   is an 

invariant of the full adjoint action:  (   ( ))   ( )     (   )  the 

Lie group of   (   )  If      we can choose   such that the coefficient 

  
  is zero. So we may assume that      and            . We 

further conjugate         (or apply an inner automorphism of the 

algebra) and find 
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     (   (   ))  (             )   (       

      )     

  Now we can arrange for   to be such that                 and 

hence   is conjugate to                        by scaling. The optimal 

system contains only one vector field   . 

 

    Example (3.2.2):  

           We consider the diffusion equation with constant drift b 

                                                                                          (  )  

     As this equation contains a parameter the structure of its symmetry 

group will crucially depend on the parameter. The problem of 

determination of all possible symmetries can be regarded as a group 

classification problem. Let the symmetry group of (85) be generated by 

the vector fields 

   (     )    (     )  

  (     )                                                           (  ) 

where the coefficients           will be determined from the invariance 

criterion (22). We need to know the second prolongation of v 

  ( )                           

  Applying the criterion to  (               )              

gives on solutions  

                    

where, from (23), in terms of the characteristic              

                                               
                   

and 
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    Eliminating     using     and splitting with respect to the 

derivatives           we find that                         

which mean    ( ), 

   (   )    (   )   (   ). Using this information and setting 

equal to zero the coefficients of          the determining system is 

simplified to 

      ̇             (       )                 

                       

                                                                (  ) 

     Solving from the first equation for   and using in the remaining first 

two equations we find  (   )   ( )√   ̇         ̇  (    )  

    ⁄ ( ̈     )   ,  

from which by integrating  

 (   )   
 

 
[  ̈   √  ̇  

(    ) 

√ 
]   ( )  

Substituting   in find final equation we find 

(    )(    )            ̈         ⃛           ̈    ̇

                                  (  ) 

The last two equations give  ( )     
              ( )  

    ⁄     

where             are the integration constants. The last equation in (87) 

decouples from the others, therefore we find that for any solution  (   ) 

of the (85), the vector field        gives rise to a symmetry. Which 

simply reflects  
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   ⁄  

    ⁄  

    

   

  

   

  

 

  

    ⁄  

    

  

   ⁄  

   

   ⁄  

  

    ⁄  

  

                                           

Table 1: Commutator Table 

 

  The superposition rule of the linear equations. Hereafter, we shall factor 

out this infinite-dimensional algebra. The constant    corresponds to the 

scaling symmetry       . This means we can multiply solutions by 

constants. There are two cases to consider 

    ⁄    ⁄  (   )   depends on four integration constants. The 

symmetry algebra    is four-dimensional. A suitable basis is given by  

                     

              (    )         

                                                       (  ) 

    ⁄      ⁄   (   )  We have  ( )        . The symmetry 

algebra    is six-dimensional. In this case, the basis (89) for     ⁄  is 

extended by two additional elements 

   √                 √                                                  (  ) 

and for     ⁄  by the following two 

   √    
 

 √ 
          

     √                                                      (  ) 

    is the center element of the symmetry algebra. 



74 
 

   From the commutator table (1) we are that the algebra    has the 

structure of a direct sum      (   ) *  +         (   )  

*        +  where as the algebra      (   )  ( )        ( )  

*        + is three-dimensional Heisenberg algebra with center   . The 

symmetry algebra    is isomorphic to the well-known symmetry algebra 

of the constant coefficient heat equation       . 

    The existence of such an isomorphism is a necessary (but not 

sufficient) condition for a point transformation   (     )  ( ̃  ̃  ̃) to 

exist, mapping equations into each other. Indeed, in the case of     ⁄   

where is a point transformation (not necessarily unique) 

    ̃   
 

 
     ̃  

 √ 

 
      ̃

 √    .
 

 
/                                                                  (  ) 

And 

     ̃   
 

 
      ̃  

 √ 

 
 

 ̃   √     .
 

 
/                                                       (  )  

if     ⁄   mapping (85) to the first canonical form  ̃ ̃   ̃ ̃ ̃  If 

    ⁄   a simple change of space variable  ̃   √  alone also does the 

job. 

  Let     ⁄ . The pushforwards  ̃    (  ) of the vector fields 

           of the algebra    via the map   are easily calculated: 

 ̃            
 

 
(     )     ̃   .    

 

 
  /  

 

 
 ̃   ̃ 

     

 ̃   .    
 

 
   /  

 ̃         ̃                                        (  ) 
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where all coordinates should be replaced by tildes (written in the new 

coordinates). The Lie algebra  ̃ spanned by * ̃ + is recognized to be the 

symmetry  algebra of         having the Levi decomposition  ̃  

* ̃   ̃   ̃ + * ̃   ̃   ̃ +    (   )  ( ). This can be verified by using 

the same steps of symmetry calculation done for Eq. (85). 

  For     ⁄   the pushforwards  ̃    (  ) of the vector fields      

          of the algebra    spanned by (89)-(90) via the map 

  (     )  (   √   ) are exactly the basis vectors of the heat equation 

algebra: 

 ̃         ̃       
 

 
    ̃            

 

 
(     )    

 ̃      ̃      
 

 
         

                                                           (  ) 

    The corresponding one-parameter symmetry groups are time 

translations, scaling      projective (or inversional) transformation, 

Galilei boosts, space translations and scaling in u, respectively. 

  In the case of   *  ⁄    ⁄ +  the equation transforms to the second 

canonical form 

 ̃ ̃   ̃ ̃ ̃  
 

 ̃ 
 ̃       

 
(    )(    )

 
                                                            (  ) 

via the transformation  

 ̃        ̃   √         (    )  ⁄  ̃  

   Admitting the symmetry algebra spanned by  

     ̃      ̃  ̃  
 ̃

 
  ̃  

    ̃   ̃   ̃ ̃  ̃  
 

 
( ̃    ̃) ̃  ̃      

  ̃  ̃                                                    (  ) 
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   We thus have given the identification of the symmetry algebras of two 

locally equivalent differential equations, (85) and       . In general, 

two ferential equation with a symmetry g is mapped to another one by a 

point transformation    then  ̃          is a symmetry of the second 

equation. 

  The well-known solutions of        can be mapped to solutions of 

(85) when     ⁄    ⁄ . We note that the equation is also invariant 

under the discrete group of time and space reflections: (     )  

(      ) (     )  (      ). 

     Symmetry group of the equation will now be used to derive explicit 

group invariant solutions. We illustrate how to construct group-invariant 

fundamental solution of (85) for any value of b using the most general 

element  

                       of the Lie algebra   . A fundamental 

solution  (     ) as distributions satisfies (85) with the initial condition  

       (     )   (   )        (   ) is Dirac distribution with 

singularity at  . The initial condition puts the following restriction on the 

coefficients 

 ( )         (   )         (   )    (   )

                                                      (  ) 

   These condition are satisfied by the vector field (a projective type 

symmetry)  

             (      )                                                  (  ) 

  The fundamental solution will be looked for as a solution invariant the 

symmetry group generated by (99). Its invariants are found by solving the 

invariance condition  (           )                   

   ⁄          , (   )  ⁄ -. 
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    The group-invariant solution has the form 

        { 
   

 
}  ( )  

        Substituting the above solution u into (85) we find that F satisfies  

               

    We note that this ODE is free the non-invariant coordinates. The 

solution F, which is bounded near zero is given by 

  (
 

 
)
(   )  ⁄

    ( √  )  

where    denotes the usually modified Bessel function of the first kind 

and order v. We recall the following asymptotic relations for small values 

of    

   
 

    
           

  

(  ) 
              

  We thus have constructed the following fundamental solution, up to a 

nonzero constant C. 

 (     )  
 

 
(
 

 
)

   
 

   { 
   

 
}     4

 √  

 
5  

    The value of C is determined from the normalization condition. 

   The special case     ⁄              ⁄  produces the elementary 

solution 

 (     )

 
 

√   
   { 

   

 
}      4

 √  

 
5                                                   (   ) 

     Translation along t gives the full heat kernel  (         )   (  

       ). 

Similarly, in the case     ⁄             ⁄    is again elementary 
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 (     )

 
 

√   
   { 

   

 
}     4

 √  

 
5                                                (   ) 

      Both fundamental solutions satisfy the normalization condition  

                                   ∫  (     )    
 

 
  

we remark that solutions (100)-(101) can be recovered using the 

transformations  

(92)-(93) and the separable solutions (solutions invariant under  ̃  

        a parameter) 

 ̃( ̃  ̃)      ̃ 8
    (√  ̃) 

     (√  ̃) 
 

of the heat equation  ̃ ̃   ̃ ̃ ̃. 

  In the case when     ⁄    ⁄   group-invariant solutions can be 

derived using the one dimensional subalgebras (an optimal system of 

subalgebras) of the algebra (89) 

                                         

                                                 (   ) 

  Now let as look at the action of subgroup, say    of (89), on the solution 

 (   )    *   + (   ). We find by exponentiating    the group action 

generated by    

 ̃ (   )

 (    )     {
   

    
}  (

 

(    ) 
 

 

    
)                              (   ) 

   Formula (103) states that if  (   ) is a solution of (85), then  ̃ (   ) is 

also a solution. Simple solutions like stationary (time-independent) 

solutions can be mapped to new solutions. A stationary solution  ( ) 

satisfies the linear ODE                 if    . They get mapped 

to the following new solutions, respectively: 
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  (   )  (    )     2
  

    
3 [     (    ) (   )    ] 

     

  (   )  (    )     2
   

    
3 6        

√ 

    
7      

             (   ) 

  The remaining symmetry group of translation in t and scaling in t and 

  (   )  ( (    )   ) can be applied to these solutions to obtain new 

ones depending on two more group parameters      (solutions invariant 

under the group   (   )). 

  (3-3) Linearization by Symmetry Structure: 

   We known that a linear differential equation or one that is linearizable 

by a point transformation admits an infinite-dimensional symmetry 

algebra. By checking the existence of such a symmetry structure we can 

construct linearizing transformations. A well-known example is the 

potential Burger’s equation 

         
 

                                                                                                          (   ) 

admitting the infinite-dimensional symmetry algebra generated by the 

vector fields 

                                          

                               (     )   

    (   )       

where   is a solution to the linear heat equation       . It is easy to see 

that the point transformation  ̃     maps the basis vector fields to (95) 

of the linear equation together with  ̃   (   )  ̃ and Eq. (105) to the 

linear heat equation  ̃   ̃   . The transformation      relates (105) 

to the usual Burger’s equation 

                                                                                                  (   ) 
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  So we have established the celebrated Cole-Hopf transformation 

  (    ̃)   ̃  ̃⁄  taking solutions of (106) to positive solutions of 

the heat equation. 

As well, for higher order PDEs, we can use the same method of looking 

at the maximal symmetry algebra (if possible) and constructing a 

linearizing transformation from its infinite-dimensional symmetry 

involving an arbitrary function as being solution to a linear PDE. 

    Example (3.3.1):  

     We consider a third order KdV-type evolution equation  

                                                                      
    

        The symmetry algebra is infinite-dimensional with basis elements  

                                                  (   )       

where   is any solution to the linear KdV equation        . The 

transformation  ̃     maps the symmetry algebra to that of the linear 

KdV equation  ̃   ̃     and hence the original equation to the linear 

one. 

    It may not always be practical to calculate the maximal infinite-

dimensional symmetry algebra by application of the Lie symmetry 

algorithm. When this is the case, it is usually useful to give some tests 

involving only certain finite-dimensional subalgebra of the maximal 

symmetry algebra. But, in this case, for PDEs the construction of 

linearizing transformation is a tricky task. 

   For ODEs, we already encountered such a test. It is sufficient to identify 

two-dimensional subalgebra equivalent to the canonical (abelian) forms 

     or      (nonabelian) as the eight-dimensional symmetry algebra of a 

linearizable second order ODE. Finding linearizing coordinates is 

immediate. A further example is the following second member of the 
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Riccati chain, known to linearizable to         by the Hopf-Cole 

transformation     ( )  ( )⁄ . 

    Example (3.3.2):       

    

 (   ( ))             

                                                                  (   )  

this equation admits a linearly connected (rank-one) nonabelian 2-

dimensional algebra spanned by 

                                                (   )            (   )  

 

 
.  

 

 
  /  

with commutation relation ,     -    . This is verified by noting  

  ( )  ( )    (     )   

and  

  ( )  ( )  
 

 
,   (     )   -   

then checking the infinitesimal invariance criterion (22). This knowledge 

ensures as that Eq. (107) has a eight-dimensional symmetry algebra and 

thus can be linearized. 

  A linearizing coordinate transformation    (   )    (   )  is 

found by solving the set of linear first order PDEs   ( )      ( )  

    ( )      ( )    as 

    
 

 
        

 

 
 
  

 
  

  Note that we simply have chosen r as joint invariant and    (   ). 

The transformed algebra is the canonical form       *      +. This 

transformation linearized Eq. (107) to    ( )   . This readily seen by 

calculating the following derivative and using the given equation: 

   

   
  

  (          )

(     )
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   We note that the full eight-dimensional symmetry algebra of the 

equation is isomorphic to that of the equation      . This is the   (   ) 

algebra generated by the vector fields 

                                                             

    The corresponding group is just the projective group SL(3,R) in the 

(   ) plane 

( ̃  ̃)      (   )  (
          
          

 
          
          

) 

with the condition 

|

          
          
          

|     

    The projective group   (   ) maps the family of straight lines (and 

also quadrics) onto themselves. Another interesting fact is that this group 

has the lowest order differential invariant starting at order 7.but obviously 

there are lower order relative differential invariants such as the second 

order one      ( ). This means that, for some differential function 

   ̃  ( ̃)      ( ) under the projective group. A differential function 

       is a relative differential invariant of order n of a Lie algebra g if 

for some differential function  (   ( )) 

  ( ) ( )   (   ( ))  

for every prolonged vector field   ( )   ( )   If       is a 

differential invariant of order n. The seventh order differential invariant 

can be expressed in terms of relative differential invariant. 
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Example (3.3.3):          

       ( )   
  
 

 
                                                                       (   ) 

where   is an arbitrary constant. This equation is invariant under the 

symmetry algebra represented by the vector fields 

              ( )   ( )      

where  ( ) satisfies the linear equation 

   ( )  (   ) ( )                                                                        (   ) 

          We note that under the condition (109) 

  ( )  ( )   (   )          (   )    ( )    

where               
 . The vector fields      ( ) reflect the 

linearity of the equation modulo a transformation. Indeed, the point 

transformation     (   )⁄            maps   ( )     ̃ ( )   ( )   

(preserving homogeneity in z) and the equation to the linear 

homogeneous one  

   (   ) ( )     

      If we extend Eq. (108) to  

    ( )   
  
 

 
  (   )                                                                   (   ) 

and impose invariance under   ( ) we find  (   )   ( )      . If 

    we go back to the case    . The resulting equation is 

nonhomogeneous linear one  

   (   ) ( )  (   ) ( )  

    (3-4) Lie’s Linearization Theorem: 

        This theorem states that for second-ordinary differential equations 

Eq.     (     ) with      is point equivalent to the trivial free-

particle equation      if and only if the following fourth-order tresses 

(absolute) invariants. 



84 
 

             

  ̃ 
       ̃        ̃                       

                                                                                                     (   )  

are identically zero. Here  ̃             is the truncation of the 

total derivative operator   . The first condition implies the   should be at 

most cubic in     . For example, any equation admitting a           

symmetry can be linearized if and only if it has the form 

       
  4  

  

  
5   

 (     )

    
                                            (   ) 

where           are arbitrary constants, it has been shown that an 

equivalence group transformation shifting only the parameter        

    can be used to put     by choosing the group parameter     . 

Such a transformation is given by  

 ̃  √   (    )         ̃      ⁄ (  
 

  
 )                               (   ) 

 

    So (112) has effectively been reduced to 

 ̃ ̃    ̃ 
   ̃                                                                                  (   ) 

      Moreover, a can be transformed to       by scaling     ( ). 

Two equivalent equations have isomorphic symmetry groups so that there 

should be a point transformation mapping the two Lie algebras an Eqs. 

(114) and      into each other. For the construction of such a map. An 

casier way of achieving linearization is by using a two-dimensional 

subalgebra of type             of its entire   (   ) symmetry algebra. It 

is given by  

   
 

 
  ̃          

 ̃

 ̃
  ̃  

    Suitable canonical coordinates are    ̃ (an invariant),    ̃  ⁄   

which maps the subalgebra to*      + and Eq. (114) to the linear 

equation    ( )   ̃ 
  ( ̃   ̃ ̃ )    . Consequently, the solution in 

tilde coordinates is  
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  ̃  
  

 
   4  

  

  
5     (  

 

  
 )        

which geometrically describes a family of ellipses or hyperbolas as its 

diseriminant       varies for             respectively. 

    Eq.of Example 3.3.2 with two-dimensional symmetry group generated 

by {          } of the type             (modulo a point 

transformation (   )  (         )) belongs to the class (112) with 

         or to (114) with      and hence once again its 

linearizability has been established. 

   In general, if the second order equation     (     ) is known to 

satisfy linearizability conditions (111), it is sufficient to pick a two-

dimensional intransitive subalgebra of type              (up to change of 

basis) of the   (   ) symmetry algebra to transform to linear equation.  

 Linearization criteria (111) for the ODE (110) is fulfilled if  (   ) 

satisfies the PDE 

                 

allowing the general solution    ( )    ( )         . The 

arbitrary function  ( ) can be put to zero by taking a linear combination 

with  ( ). For      we find    ( )        . Then, the vector 

fields  ( )   ( )     where   solves the linear ODE          is a 

symmetry because 

   ( ) ( )    ( )                    
   ( )      . 

It permits us to find the linearizing transformation     . The linearized 

ODE is 

         ( )   ( )   . 

   We comment that there are also similar tests for second order systems 

of ODEs, a general approach to linearizability can be found in the 

research. 
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Chapter Four 

Group Classification of Invariant  
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Chapter Four 

Group Classification of Invariant Solutions of Algebra 

 

   (4-1) Group Classification Algorithm:  

     While classifying a given class of differential equations into 

subclasses, one can use different classifying features, like linearity, order, 

the number of independent or dependent variables, atc. In group analysis 

of differential equations the principal classifying features are symmetry 

properties of equations under study. This means that classification objects 

are equations considered together with their symmetry groups. This point 

of view is based on the well-known fact that any PDE admits a (possibly 

trivial) Lie transformation group. And what is more, any transformation 

group corresponds to a class of PDEs, which are invariant under this 

group. So the problem of group classification of a class of PDEs reduces 

to describing all possible (inequivalent) pairs (PDE, maximal invariance 

group), where PDE should belong to the class of equations under 

consideration. 

     We perform group classification of the following class of quailinear 

wave equations: 

         (        )                                                                      (   ) 

 where F is an arbitrary smooth function,    (   ). Hereafter we adopt 

notations        ⁄         ⁄            ⁄       

  Our aim is describing all equations of the form (115) that admit 

nontrivial symmetry groups. 

   The challenge of this task is in the word all. If, for example, we 

somehow constrain the form of the invariance group to be found, then the 

classification problem simplifies enormously. A slightly more 

cumbersome (but still tractable with the standard Lie-Ovsyannikov 
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approach) is the problem of group classification of equation with arbitrary 

functions of, at most, one variable. 

    As equation invariant under similar Lie groups are identical within the 

group-theoretic framework, it makes sense to consider nonsimilar 

transformation groups only. The important example of similar Lie groups 

is provided by Lie transformation groups obtained one from another by a 

suitable change of variables. Consequently, equations obtained one from 

another by a change of variables have similar symmetry groups and 

cannot be distinguished within the group theoretical viewpoint. That is 

why, we perform group classification of (115) within a change of 

variables preserving the class of PDEs (115). 

     The problem of group classification of linear hyperbolic type equation 

     (   )    (   )    (   )                                         (   )  

with    (   ), was solved by Lie, in view of this fact, we consider 

only those equations of the form (115) which are not (locally) equivalent 

to the linear equation (116). 

   As we have already mentioned in the Introduction, the Lie- 

Ovsyannikov method of group classification of differential equations. 

Utilizing this method enabled solving the group classification problem for 

a number of important one-dimensional nonlinear wave equations: 

         ( )  

                                                              , ( )  -   

     (  )     

     (  )     (  )  

     (   ) 

      
        ( )  

     ( )   ( ( )  )   ( )    

    ( (   )  )   
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analysis of the above list shows the most of the all arbitrary elements 

(=arbitrary functions) depend on one variable. This not coincidental. As 

the already mentioned, the Lie- Ovsyannikov approach works smoothly 

for the case when the arbitrary elements are functions of one variable. 

The reason for this is that obtained system of determining equations is 

still over-determined. So it can be effectively solved within the same 

techniques used to compute maximal symmetry group of PDEs 

containing no arbitrary elements.  

   The situation becomes much more complicated for the case arbitrary 

elements are functions of two (or more) arguments. By this very reason 

the group classification of nonlinear wave equations, 

          (    )  

    , ( )    (   )-   

     (    )     (    )  

is not complete. 

    We suggest an efficient approach to the problem of group classification 

of low dimensional PDEs. This approach is based on the Lie-

Ovsyannikov infinitesimal method and classification results for abstract 

finite-dimensional Lie algebras. It enables as to obtain the complete 

solution of the group classification problem for the general heat equation 

with a nonlinear source 

         (        )  

  Later on, we perform complete group classification of the most general 

quasilinear evolution equation, 

    (        )     (        )  

      We utilize the above approach to obtain complete solution of the 

group classification problem of Eqs. (115). 

   Our algorithm of group classification of the class of PDEs (115) is 

implemented in the following three steps: 
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( ) Using the infinitesimal Lie method we derive the system of the 

determining equations for coefficients of the first-order operator that 

generates symmetry group of equation (115).  

  (Note that the determining equations which explicitly depend on the 

function F and is derivatives are called classifying equations.) Integrating 

equations that not depend on F we obtain the form of the most general 

infinitesimal operator admitting by Eqs. (115) under arbitrary F. Another 

task of this step is calculating the equivalence group   of the class of 

PDEs (115). 

(  )  We construct all realizations of Lie algebras    of the dimension 

    in the class operators obtained at the first step within the 

equivalence relation defined by transformations form the equivalence 

group  . Inserting the so obtained operators into classifying equations we 

select those realizations that can be symmetry algebras of a differential 

equation of the form (115). 

(   ) we compute all possible extensions of realizations constructed at the 

previous step to realizations of higher dimensional (   ) Lie algebras. 

Since extending symmetry algebras results in reducing arbitrariness of the 

function F, at some point this function will contain either arbitrary 

functions of at most one variable or arbitrary constants. At this point, we 

apply the standard classification method (which is due to Lie and 

Ovsyannikov) the derive the maximal symmetry group of the equation 

study. This completes group classification of (115). 

Performing the above enumerated steps yields the complete list of 

inequivalent equations of the form (115) together with their maximal (in 

Lie sense) symmetry algebras. 

  We say that the group classification problem is completely solved when 

it is proved that 
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(a) The constructed symmetry algebras are maximal invariance 

algebras of the equations under consideration; 

(b)  The list of invariant equations contains only inequivalent ones, 

namely, no equation can be transformed into another one from the list 

by atransformed into another one from the list by a transformation 

from the equivalence group  . 

 

   (4-2) Preliminary Group Classification of Eq. (115): 

  We look for the infinitesimal operator of symmetry group of equation 

(115) in the form 

   (     )    (     )     (     )                     (   ) 

where       are smooth functions defined on an open domain   of the 

space         of independent (117) generates one-parameter 

invariance group of (115) iff its coefficients         satisfy the equation 

(Lie’s invariance criterion) 

                         |(   )

                                   (   ) 

where 

     ( )      ( )      ( )  

 

     ( )      ( )      ( )  

 

      ( 
 )       ( )       ( )  

 

      ( 
 )       ( )       ( )  

 

and       are operators of total differentiation with respect the variables 

   . As customary, by writing (115) we mean that one needs to replace 

    and its differential consequences in (118). 
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 After a simple transformations algebra we reduce (118) to the form 

(1)                                                     

(2)                                                                                          

(119) 

(3)                                                        

(4)                                                                                   

,      -                   ,     (   

  )-       

 

  The first two groups of PDEs from (119) are to be used to derive the 

form of the most general infinitesimal operator admitted by (115). The 

remaining PDEs are classifying equations. 

   Theorem (4.2.1): 

  Provided          the maximal invariance group of equation (115) is 

generated by the following infinitesimal operator: 

  (     )    (     )   

 , ( )   (   )-                                    (   ) 

where         are real constants and    ( )    (   )   

 (        ) are functions obeying the constraint 

        
   

   
   

  

  
   (    )  (     )   (     )  

 (    )   (   
  

  
  (   )  )   

                                   (   ) 

   If    (     )    (     )        then the maximal invariance 

group of equation (115) is generated by infinitesimal operator (120), 

where         are real constants         are functions satisfying system 

of two equations 
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        (     )   (  

   )                                                       (   ) 

              (    ) 

 (     )   (     )   (    )    (      )  

 Next, if    (   )    (     )            then the infinitesimal 

operator of the invariance group of equation (115) reads as 

   (   )    (   )   ( (   )   (   ))    

where             are functions satisfying system of PDEs 

                      

                             

(       )           (     )          (    )  

 (      )     

  Finally, if    (     )        then the maximal invariance group of 

equation (115) reduces to the one of classifying equations of more 

specific forms, 

         (        )                                                             (   ) 

         (     )    (     )                                            (   ) 

     (   )    (     )                                          (   ) 

     (     )                                                                          (   ) 

  Note that condition      is essential, since otherwise (125) is locally 

equation (126). 

   Summing up, we conclude that the problem of group classification of 

(115) reduces to classifying more specific classes of PDEs (123)-(126).  

   First, we consider equations (124)-(126). 

   (4-3) Group Classification of Eq. (124): 

   According to theorem I invariance group of equation (124) is generated 

by infinitesimal operator (120). And what is more, the real constants 

        and functions         satisfy equation (122). System (122) is to 
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be used to specify both the form of functions     from (124) and 

functions     and constants         in (120). It is called the determining 

(sometimes classifying) equations. 

   Efficiency of the Lie method for calculation of maximal invariance 

group of PDE is essentially based on the fact that routinely system of 

determining equations is over-determined. This is clearly not the case, 

since we have only one equationfor four ( ) arbitrary functions and the 

three of the latter depend on two variables. By this very reason direct 

application of Lie approach in the ovsyannikov’s pint is not longer 

efficient when we attempt classifying PDEs with arbitrary functions of 

several variables. 

  Compute the equivalence group   of equation (124). This group is 

generated by invertible transformations the space V preserving the 

differential structure of equation (124). Saying it another way, group 

transformation from   

 ̅   (     )  ̅   (     )    (     ) 
 (     )̅̅ ̅̅ ̅̅ ̅̅

 (     )
    

should reduce (124) to equation of the same form 

   ̅     ̅̅̅̅   ̃(     ̅̅ ̅̅ ̅̅ ̅)  ̅   ̃(     ̅̅ ̅̅ ̅̅ ̅)  ̃    

with possibly different  ̃  ̃. 

     As proved by Ovsyannikov, it is possible to modify the Lie’s 

infinitesimal approach to calculate equivalence group in essentially same 

way as invariance group. We omit the simple intermediate calculations 

and present the final result. 

   Assertion 1: The maximal equivalence group   of Eq. (124) reads as  

 ̅         ̅              

  ( )   (   )                                  (   ) 

where                            are arbitrary smooth 

functions. 
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   This completes the first step of the algorithm. 

   (4-3-1) Preliminary Group Classification of Eq. (124): 

    First, we derive inequivalent classes of equations of the form (124) 

admitting one-parameter invariance groups. 

  Lemma (4.3.1): There exist transformations (127) that reduce operator 

(120) to one of the six possible forms, 

   (       )                   

      ( )                                                                   (   ) 

   ( )                  (   )                    

      Proof: Change of variables (127) reduces operator (120) to become 

 ̃   (     )     (     )  

 ,  (     )  (     )( 
     )   (  

  )-          (   ) 

If     in (120), then setting                     , and taking as 

   (   ) integrals of system of PDEs, 

  (     )        

  (     )    (     )        

we reduce (129) to the form 

 ̃   (   ̅̅̅ ̅̅     ̅̅̅ ̅̅ ̅)  

     Provided               we similarly obtain 

 ̃    ̅     ̅             ̅   ( ̅)             

   Next, if             in (120), then setting 

     
                    (   ) integrals of equation 

   
                    

we reduce operator (129) to become  ̃    ̅. 

     Finally, the case            gives rise to operators  ̃  

 ( ̅)     ̃   (   ̅̅ ̅̅ )  . 
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   Rewriting the above operators in the initial variables     completes the 

proof. 

    Theorem (4-3-1): 

    There are exactly five inequivalent equations of the form (124) that 

admit one-parameter transformation groups. Below we list these 

equations together with one-dimensional Lie algebras generating their 

invariance groups (note that we do not present the full form of invariant 

PDEs we just give the functions f and g), 

  
  〈       〉       ̃(   )  

      ̃(   )         ̃     

  
  〈      〉    ̃(   )       ̃(   )  

            ̃     

  
   〈    ( )   〉            | |   ̃(   )  

  (     )     | |        ̃(   )   | |           | |

   ̃(   )  

 

       (   )             

  
  〈  〉       ̃(   )  ̃     

  
  〈 ( )   〉            | |   ̃(   )      (     )     | | 

                                  (             ̃(   ))   | |    ̃(   )       

   Proof: If Eq. (124) admits a one-parameter invariance group, then it is 

generated by operator of the form(120). According to lemma 1. The later 

is equivalent to one of the six operators (128). That is why, all we need to 

do is integrate six systems of determining equations corresponding to 

operators (122). For the first five operators solutions of determining 

equations are easily shown to have the form given in the statement of the 

theorem. 
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  We consider in more detail the operator    (   )  . Determining 

Eqs. (122) for this operator reduce to the form 

                           

whence we get      . Consequently, the system of determining 

equations is incompatible and the corresponding invariant equation fails 

to exist. 

   Nonequivalence of the invariant equations follows from nonequivalence 

of the corresponding symmetry operators. 

      The theorem is proved. 

  Note that in the sequel we give the formulations of theorems omitting 

routine proofs. The detailed proofs of the most of the statements 

presented in the research can be found. 

   It is a common knowledge that there exist two inequivalent two-

dimensional solvable Lie algebras 

                                                    〈     〉 ,     -      

    〈     〉        ,     -      

    To construct all possible realizations of the above algebras we take as 

the first basis element one of the realizations of one-dimensional 

invariance algebras listed in lemma 1. The second operator is looked for 

in the generic form (120). 

      Algebra     : Let operator    be of the form        and operator    

read as (120). Then it follows form the relation ,     -            

         ,          . Consequently, we can choose basis 

elements of the algebra in question in the form 〈        (   

 ( ))   〉                . Provided m=0, the operator    

becomes  ( )  . It is straightforward to verify that this realization dose 

not satisfy the determining equations. Hence,      

   Making the change of variables 
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 ̅     ̅            ( ) 

reduces the basis operators in question to the form  ̅  ̅   ̅  ̅     . That 

is why we can restrict ore considerations to the realization 〈    

       〉. 

    The second determining equation from (122) takes the form      . 

Hence it follows that the realization under consideration dose not satisfy 

the determining equations. Consequently, the realization   
  cannot be 

extended to a realization of the two-dimensional algebra     . 

    Algebra     : If operator    is of the form          then it follows 

from ,     -     that                          . 

Next, if    reads as          then we get from ,     -     the 

erroneous equality    . 

  That is why, the only possible case is when 

   (      ( ))             , which gives rise to the 

following realization of the algebra       〈            〉.  

  This is indeed invariance algebra of an equation from the class (124) and 

the functions         read as          | |      ̃( )   

       | |      ̃( )    | |       ̃( )       . 

    Analysis of the remaining realizations of one-dimensional Lie algebras 

yields 10 inequivalent     -and     -invariant equations (see the 

assertions below). What is more, the obtained (two-dimensional) algebras 

are maximal symmetry agebras of the corresponding equations. 

   Theorem (4.3.2): 

    There are, at most, four inequivalent     -invariant nonlinear equations 

(124) . 

Below we list the realizations of      and the corresponding expressions 

for        . 
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(1)   〈    ( )   〉            | |  

  (     )     | |           | |    ̃( )       

(2)  〈     〉    ̃( )       ̃( )      ̃     

(3) 〈         〉    ̃( )      ( ) ̃( ) 

     (  )     ̃     

(4) 〈 ( )       
 

 
  ( ) ( )   〉              | |     

 ̃( )  

                    ∫       

   Theorem (4.3.3): 

     There exist, at most, six inequivalent     -invariant nonlinear equation 

(124).  Below we list the realizations of       and the corresponding 

expressions        . 

(1) 〈         
  | |    〉      (     | |   ̃( ))  

      (      | |    ̃( )  | |   (   )  | |   ̃( )  

(2) 〈          ( 
   )   〉              | |   ̃( )  

        | |  (        ̃( ))   | |    ̃( )  

            

(3) 〈               〉          ̃( )          ̃( )      

               ̃     

(4) 〈                   〉      (     ̃( ))  

     ,             ̃( )     (  ) ̃( )-  

             (   )         ̃     

(5) 〈    
    〉       | |   ̃( )       | |     | |(  

 ̃( )    ̃( )  

(6) 〈           〉       ̃( )       ̃( )  ̃     
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   (4-3-2) Completing Group Classification of Eq. (124): 

  As the invariant equations obtained in the previous subsection contain 

functions of, at most one variable, we can now apply the standard Lie-

ovsyannikov routine to complete the group classification of (124). We 

give the computation details for the case of the first     -invariant 

equation, the remaining cases are handled in similar way. 

 Setting            | |   (     )    | |          | |  

  ̃( )    ( )      we rewrite the first determining equation to 

become 

              | |

   (     )( 
    ) 

   | |         

             

As    ( )    ( )    (   )       , the above relation is 

equivalent to the following ones: 

                            (     )( 
    )   

If   is an arbitrary function, then                   and we 

get 〈    ( )   〉 as the maximal symmetry algebra. Hence, extension of 

the symmetry algebra is only possible when the function         is a 

(nonvanishing identically) solution of the equation 

(    )                     | |  | |     

 If      then at the expense of displacements by   we can get      so 

that             Integrating the remaining determining equations 

yields 

          | |       ,     | |  (   )   | |  

  -             

The maximal invariance algebra of the obtained equation is the three-

dimensional Lie algebra 〈   | |
            〉 isomorphic to     . 
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Next, if      then                . If this is the case, we 

have 

    | |   
 

 
    | |  

 

 
   | |              

     The maximal invariance algebra of the above equation reads as  

〈         ( 
 

 
 )    〉  

It is isomorphic to     . 

     Similarly, we prove that the list of inequivalent equations of the form 

(124) admitting three-dimensional symmetry algebras is exhausted by the 

equations given below. Note that the presented algebras are maximal. 

This means, in particular, that maximal symmetry algebra of Eq. (124) is, 

at most, three dimensional. 

    -invariant equations, 

(1)             | |  
 

 
    | |  

 

 
   | |    (  

 ) 〈         . 
 

 
 /    〉  

(2)          ,  | |   -   (   ⁄ ) ,(  | |     )-  

  (       ) 〈             . 
 

 
  /   〉  

    -invariant equations, 

(1)            ,   | |         -         | |  

(         )       | |  
 

 
         

 

 
 (  

 )           (         ) 〈         
         

(  ⁄ )     | |   〉  

    -invariant equations, 

(1)         | |     | |     (       ) 〈          

          〉  

(2)                   (   ) 〈                〉  
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(3)            ,    | |         -          | |  

   (       )   | |      ,(  ⁄ )     -  ,(  ⁄ )(  

 )      -(       ) 〈                

(  ⁄ )      〉  

    -invariant equations, 

(1)                  | |      ,     | |  

(   )   | |    -  (           ) 

〈   | |
            〉  

(2)            ,     | |         -   

         | |      ,           -   | |  

 

 
 (     )      

 

 
                (| |  

             ) 〈        | |
        

,  ⁄ (   )-      〉  

 This completes the group classification of nonlinear equations (124). 

   (4-3-3) Group Classification of Eq. (125): 

  Omitting calculation details we present below the determining equations 

for symmetry operators admitted by Eq. (125).  

   Assertion 2: The maximal invariance group of PDE (125) is generated 

by the infinitesimal operator: 

   ( )    ( )   , ( )   (   )-                        (   ) 

where             are smooth functions satisfying the conditions 

     ,       -              ,    -    

                                                                     (   ) 

   Assertion 3: The equivalence group   of (125) is formed by the 

following transformations of the space V: 

(1)  ̅   ( )     ̅   ( )       ( )   (   )              

(2)  ̅   ( )     ̅   ( )       

 ( ) (   )   (   )                     (   ) 



103 
 

 

 (   )     ( ∫ (   )  )        

As the direct verification shows, given arbitrary functions          it 

follows from (131) that          . So that in the generic case 

the maximal invariance group of (125) is the trivial group of identical 

transformations. 

We begin classification of (125) by constructing equations that admit 

one-dimensional symmetry algebras. The following assertions hold. 

  Lemma (4.3.3): There exist transformations (132) reducing operator 

(130) to one of the seven canonical forms given below 

                                 

                                             (   )  

 

            (   )                   

  Theorem (4.3.4): 

  There exist, at most, three inequivalent nonlinear equations (125) that 

admit one-dimensional invariance algebras the form of functions     and 

the corresponding symmetry algebras are given below: 

  
  〈       〉       ̃( )       (   )  

       ̃           

  
  〈  〉    ̃( )    ̃(   )  ̃     ̃      

  
  〈       〉      ̃( )       ̃(   )  

        ̃      

we proceed now to analyzing Eqs. (125) admitting two-dimensional 

symmetry algebras. 

   Theorem (4.3.5): 

   There exist, at most, three inequivalent nonlinear equations (125) that 

admit two-dimensional symmetry algebras, all of them being     -
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invariant equations. The forms of functions         and the 

corresponding realizations of the Lie algebra      read as  

    
  〈         

              〉   (   )  

  ,   (   ) -   (   )        

  |   |   | |   ̃( )  

 

   |   |  | |   ̃      

    
  〈         

         〉     (   )  

     ,     -       | |   | |   ̃( )  

  | |  | |    ̃      

    
  〈         

        〉  

  (  )  (    )(   )         (     ) ̃( )  

       (    )  ̃      

  Note that if the function  ̃ is arbitrary, then the invariance algebras 

given in the statement 0f the theorem (4-3-5) are maximal. 

 It turns out that the above theorems provide complete group 

classification of the class PDEs (125). Namely, the following assertion 

holds true. 

  Theorem (4.3.5): 

   A nonlinear equation (125) having nontrivial symmetry properties is 

equivalent to one of the equations listed in theorem (4-3-4) and (4-3-5). 

   (4-3-4) Group Classification of Eq. (126): 

 As earlier, we present the results of the first step of group classification 

algorithm skipping derivation details. 

  Assertion 4: Invariance group of equation (126) is generated by 

infinitesimal operator  
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 ( )    ( )   

(    (   ))                                         (   )  

where   is a constant         are functions satisfying the 

relation 

    ,       - 

     ,    -                                       (   ) 

   Assertion 5: Equivalence group   of the class of equations (126) is 

formed by the following transformations: 

(1)  ̅   ( )  ̅   ( )           (   )  

(2)  ̅   ( )      ̅   ( )       (   )       

          (   ) 

    Note that given an arbitrary function    it follows from (135) that 

                the group admitted is trivial. To obtain equations 

with nontrivial symmetry we need to specify properly the function  . To 

this end we perform classification of equations ander study admitting 

one-dimensional invariance algebras. The following assertions give 

exhaustive classification of those. 

   Lemma (4.3.4): there exist transformations from the group   (136) that 

reduce (134) to one of the four canonical forms, 

            (     )  
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Number         function                                    symmetry operator                                   type 

 

1                     ̃( )                                                                                                                  

                      ̃     

2                      ̃( )                                                                                                                     

                             ̃                                                                                                                                                                                          

3              (   )   ̃( )                                                                  

                 (   )   ̃                                          

4                         ̃( )                                                                                                 

                        ̃̈                                         

5              (   )   ̃( )                                                                                                    (   ) 

                   ̃                                                              

                                                                                        

6                   (    )                                                                                                         

                                                                                      ⁄   

7                | |    | |                                         ⁄                                                       

                                                        ⁄  

8                ̃( )  ̃                                                                                                      

9             | |                                       ⁄                                                         

                                                                                        

 

Table  2. Invariant Equations (126)   Invariance Algebra: 

                                             (     )   

 

         (   )       (   )  

    Theorem (4.3.6): 

     There exist exactly two nonlinear equations of the form (126) 

admitting one-dimensional invariance algebras. The corresponding 

expressions for function f and invariance algebras are given below. 

  
  〈          〉    (     )       ̃(   )  

 

                     ̃      
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  〈       〉   (     )       ̃(   )  

        ̃      

 

   Our analysis of Eqs. (126) admitting higher dimensional invariance 

algebras yields the following assertion. 

   Theorem (4.3.7): 

  The Liouville equation              has the highest symmetry 

among equations (126). Its maximal invariance algebra is infinite-

dimensional and is spanned by the following infinite set of basis 

operators: 

   ( )    ( )   (  ( ))    ( ))    

where h and g are arbitrary smooth functions. Next, there exist exactly 

nine inequivalent equations of the form (126), whose maximal invariance 

algebras have dimension higher that one. We give these equations and 

their invariance algebras in table 2. 
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Chapter Five 

Group Classification of Nonlinear Wave Equations 

 

    (5-1) Group Classification of Eq. (123): 

            The first step of the algorithm of group classification of (123), 

         (        )              

has been partially performed in see. It follows from theorem (4-1) that the 

invariance group of Eq. (123) is generated by infinitesimal operator 

(124). What is more, the real constants         and group of the class of 

equations (123) is formed by transformations (127).  

   With these facts in hand we can utilize results of group classification of 

Eq. (124) in order to classify Eq. (123). In particular, using lemma 1 and 

lemma 2, it is straightforward to verify that the following assertions hold 

true. 

   Theorem (5.1.1): 

   There are, at most, seven inequivalent classes of nonlinear equations 

(123) invariant under the one-dimensional Lie algebras. 

  Below we give the full list of the invariant equations and the 

corresponding invariance algebras, 

  
  〈       〉   

   (     )               

 

  
  〈      〉  (   )    (      )         

 

  
  〈  〉    (      )  

 

  
  〈  〉        (      )  

 

  
  〈    ( )   〉 (   )  
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           (  )              (     )  

 

                         | |  

 

  
  〈 ( )   〉 (   )  

           | |            | |

    (  )     | |    (     )  

              | |  

 

  
  〈 (   )  〉  (   )  

    (      )   (     )  

 

             

 Note that if the functions F and G are arbitrary, then the presented 

algebras are maximal (in Lie’s sense) symmetry algebras of the respective 

equations. 

   Theorem (5.1.2): 

   An equation of the form (123) cannot admit Lie algebra which has a 

subalgebra having nontrivial Livi factor. With account of the above facts 

we conclude that nonlinear equations (123) whose invariance algebras are 

two-dimensional solvable Lie algebras. 

  Below we present the list of invariant equations and the corresponding 

realizations of the two-dimensional invariance algebras. 

(1)     -invariant equations, 

 

    
  〈           〉        (   )  
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  〈         ( )  〉   (          )  

 

     ,   ((    )        )   (   )-  

 

             

 

    
  〈          〉   (   )     (   )  

 

                

 

               
  〈        ( )  〉  (        

      )   

 

                     (    )          (   )   

         

 

                               
  〈          〉  (   )  

 

                                (   )          

              

 

                                 
  〈     〉    (    )  

 

                             
  〈      〉          (   )   
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  〈    ( )  〉     (   )  

 

                                               (    )  

 

                                      
  〈     〉    (    )  

                           
   〈    ( )   〉      (   )  

 

                                    
    (   )  

 

                                              | |  

 

               
   〈    ( )     ( )   〉(        

       )  

 

                 | |            | | 

             

    (  )     | |                     | |   

                          (             )     (   )  

 

                                   | |       

 

                       
   〈    ( )     

    〉  (   )  

 

                    ,          (  ) -         

    (   )  

 

                           (       )  
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   〈 ( )     ( )   〉   (      

     )  

 

 

       
         

    ,           -    | |    (   )  

 

                     
   〈 ( )    ( )  〉   ( 

        )  

 

                      (      )  
            

 

(ІІ)     -invariant equations, 

             
  〈            〉  

                    | |          | |       (   )  

        

 

                                                       | |  

 

          
  〈          ( )  〉    (          )  

 

               (    )    (        )  

    (   )  

 

                           

 

               
  〈          ( 

   )   〉(   )  
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        | |          | |        | |

   (   )  

 

                                | |  

 

    
 

 〈        
  ( )  〉 (        

      )  

 

  ((    )                )   (   )  

 

                    
  

  
  

 

            
  〈               〉(   )  

 

                  (   )               

 

    
  〈                    〉 (       )  

 

              | |     (   )         

 

                 | |          | |
     

 

    
  〈    

    〉  

     | |     | |       | |    (   ) 

 

                               | |  
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  〈    

  ( )  〉   (   )  

 

              (        )   (   )         

 

                
  〈           〉          (     )  

 

                  
   〈                〉 (   )  

 

                | |     (   )   | |     | |       

 

                   
   〈    

   〉      (    )  

 

    
   〈           〉       (   )        

 

              
   〈    ( )     

(   )   〉(   )  

 

        (       (  )  (    ))         
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   In the above formulas G stands for an arbitrary smooth function. As 

customary, the prime denotes the derivatives of a function of one 

variable. 

   (5-2) Group Classification of the Equation              
  

 ( )    ( )   | |    (   ): 

      Before analyzing Eqs. (123) admitting algebras of the dimension 

higher than two we perform group classification of the equation 

             
   ( )    ( )    | |    (   )                (   ) 

   Here A(x), B(x), D(t,x) are arbitrary smooth functions. Note that the 

above class of PDEs contains    
                     . Importantly, 

class (137) contains a major part of equations of the form (123), whose 
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maximal symmetry algebras have dimension three or four. This fact is 

used to simplify group classification of Eqs. (123). 

   The complete account of the symmetry properties of PDE (137) is given 

the following assertions.  

    Lemma (5.2.1): 

    If A, B, and D are arbitrary, then the maximal invariance algebra of 

PDE (137) is the two-dimensional Lie algebra equivalent to     
   and 

(137) reduces to     
  -invariant equation.  

  Next, if the maximal symmetry algebra of an equation of the form (137) 

is three-dimensional (we denote it as   ), then this equation is equivalent 

to one of the following ones: 

( )               〈    ( )     ( )   〉  

                                          

               

(  )               〈 ( )     ( )        ( )   〉  

                         

      ,            -  

                              

                         

(   )      ( )                

( )           〈            | |
      〉  

        (   )      

( )           〈                | |  〉  

              

( )          〈        √| |    √| |   | |   〉  
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( )          
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   | |/     √| |   .
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(           ) 
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       √      
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( )            〈        | |
√     | |
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( )           〈        .√| |/
   

    .√| |/
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        (     )        
 

 
(   )      

( )              

〈        .√| |/
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         (     )  

        .  
 

 
(   ) /    √   (   )   

(  )           〈        .√| |/
     

    .√| |/
     

    〉  

        (     )           
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( )                 〈        
    〉  
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( )          

 〈          .
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(   ) /   〉  

          (  
 

 
)        √      

( )           

 〈  

        .
 

 
 /    .

 

 
  /       .

 

 
 /    .

 

 
  /   〉  

             .  
 

 
/        √      

    Theorem (5.2.3): 

   Equation              
  has the wides symmetry group amongst 

equations of the form (137). Its maxmal invariance algebra is the five-

dimensional Lie algebra, 

  
  〈                      〉  

there are no equations of the form (137) which are inequivalent to the 

above equation and admit invariance algebra of the dimension higher than 

four. Inequivalent equations (137) admitting four-dimensional algebras 

are listed below together with their symmetry algebras.  

( )     

( )              〈          (  )         (  )  〉  

                      

( )               〈           (  )        (  )  〉  

                 

( )                      〈           
     〉          

( )           〈       
        

     〉          

( )              〈        
     (  )     

     (  )  〉  

                 √     

( )              〈        
    (  )     

      (  )  〉  
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( )           〈          | |
 
 
      | |

 
 
     〉       

         
 

 
             √ 

 
    

( )          

 〈      

     √| |   (   | |)    √| |   (   | |)   〉  

             
 

 
      √  

 

 
  

(  )           〈               | |      〉            

(  )              〈           | |
          〉  

                  

(  )           〈           | |
 
 
(   )    | |

 
 
(   )    | |  〉  

         
 

 
(   )            

(  )              〈           | |
 
 
(     )    | |

 
 
(     )   〉  

                   
 

 
(   )           

  √(   )      

(  )          

 〈           | |
 
 
(   )   (   | |)    | |

 
 
(   )   (   | |)   〉  

               

          
 

 
(   )       √  

 

 
(   )   

(  )             



122 
 

( )            〈   
 

 
                        〉         

( )           〈   
 

 
                √| |    √| |  | |   〉  

         
 

 
     

( )          

 〈  

 , (   )-              ⁄  | |
 
 
      | |

 
 
     〉  

                    
 

 
      √

 

 
    

( )          

 〈   
 

 
    (      | | )      

      
      

     〉  

             

( )          

 〈   , (   )-              ⁄  √| |    (    | |)   √| |     (    | |)  〉  

             
 

 
       √  

 

 
  

( )              〈                           | |  〉  

           

( )             

 〈       (    | |)                 
     〉  

               

( )             

 〈   , (   )⁄ -                   | |
      〉  

                          

( )             

 〈   
 

 
       | |             

       
    | |   〉  

                   



123 
 

(  )           〈   ,  (   ) ⁄ -                
       

    | |   〉  

            
 

 
(   )            

(  )          

 〈          

 , (     )-       | |
 
 
(     )   | |

 
 
(     )   〉  

                    

                    
 

 
(   )       √(   )      

(  )           〈           , (   )⁄ -     | |     
      | |

      〉  

         (   )                 

(  )          

 〈          

 , (     )⁄ -       | |
 
 
(   )    (    | |)   | |

 
 
(   )    (    | |)  〉  

                        
 

 
(   )   

  √  
 

 
(   )   

(   )          

( )           〈      
 

 
               〉         

( )           〈             
         〉          

( )           

   〈                  (  )       (  )  〉  

                     

( )                 

 〈                  (  )         (  )  〉  

                     

( )           

   〈               . 
 

 
 /         . 

 

 
 /   〉  

         
 

 
  



124 
 

( )             
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(5-3) Nonlinear Equations (123) Invariant Under Three-Dimensional 

Lie Algebras: 

    Equations of the form (123) cannot be invariant under the algebra 

which is isomorphic to a Lie algebra with a nontrivial Levi ideal. That is 

why, to complete the second step of our classification algorithm it 

suffices to consider three-dimensional solvable real Lie algebras.  

   We begin by considering two decomposable three-dimensional solvable 

Lie algebras. 

   Note that while classifying invariant equations (123) we skip those 

belonging to the class (137), since the latter has already been analyzed. 

 

 (5-4) Invariance Under Decomposable Lie Algebras: 

  As                                to construct all realizations 

of      it suffices to compute all possible extensions of the (already 

known) realizations of the algebras      〈     〉 and      〈     〉. To 
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this end we need to supplement the latter by a basis operator    of the 

form (120) in order to satisfy the commutation relations 

,     -  ,     -                                                               (   ) 

  What is more, to simplify the form of    we may use those 

transformations from   that do not alter the remaining basis operators of 

the corresponding two-dimensional Lie algebras. 

   Calculation steps needed to extend      to a realization of     . 

  Consider the realization     
 . Upon checking commutation relation 

(138), where    is of form (120), we get 

       (   )                  

   Consequently,    is the linear combination of        namely,    

         which is impossible by the assumption that the algebra under 

study is three dimensional. Hence we conclude that the above realization 

of     
  cannot be extended to a realization of the algebra     . 

 Turn now to the realization     
 . Checking commutation relations (138), 

where      

is of form (120) yields the following realization of       

〈         ( )    ( )  〉             

where           however, the corresponding invariant equation 

(123) is linear. 

   Finally, consider the realization     
  . inserting its basis operators and 

the operator    of the form (120) into (138) and solving the obtained 

equations gives the following realization of       

〈         〉  

   Inserting the obtained coefficients for    into the classifying equation 

(121) we get invariant equation 

          ( )          

Where (to ensure nonlinearity) we need to have        
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      Similar analysis of the realizations     
 (             ) yields 

three new invariant equations. For two of thus obtained      

                    the corresponding three-dimensional algebras are 

maximal. The other two may admit four-dimensional invariance algebras 

provided arbitrary elements are properly specified. 

  Handing in a similar way the extensions of      up to realizations of      

gives 10 inequivalent nonlinear equations whose maximal invariance 

algebras are realizations of the three-dimensional algebra      and four 

inequivalent equations (123) whose maximal symmetry algebras are 

realizations of three-dimensional Lie algebras              . 

                                                                                                    

    
  〈         〉  

    ( )          

    
  〈    ( )    ( )  〉  
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(                       )  
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    (5-5) Invariance Under Nondecomposable Three-Dimensional 

Solvable Lie Algebras: 

    There exist seven nondecomposable three-dimensional solvable Lie 

algebras over the field of real numbers. All those algebras contain a 

subalgebra which is the two- dimensional Abelian ideal. 

    Consequently, we can use the results of classification of      

          equations in order to describe equations admitting 

nondecomposable three-dimensional solvable real Lie algebras. We 

remind that equations of the form (137) has already been analyzed and 

therefore are not considered in the sequel. Note that there are nonlinear 

PDEs of the considered form that admits four-dimensional invariance 

algebras. As four-dimensional algebras will be considered separately in 

the next section, we give below only those nonlinear invariant equations 

whose maximal symmetry algebras are three-dimensional 

nondecomposable solvable real Lie algebras. 
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      (5-6) Complete Group Classification of Eq. (123): 

    The aim of this section is finalizing group classification of (123). The 

majority of invariant equations obtained in the preceding section contain 

arbitrary functions of one variable. So that we can utilize the standard Lie 

–Ovsyannikov approach in order to complete their group classification. 

 

(I) Equations Depending on an Arbitrary Function of One 

Variable: 

   Note that equations belonging to the already investigated class of (137) 

are not considered. As our computations show, new results could be 

obtained for the equations. 

          ( )                                                           (   )   

 

         (  )                                                               (   )   

  Only, below we give (             ) the assertions describing 

their group properties. 

 

   Assertion 6: 

    Equation (139) admits wider symmetry group iff it is equivalent to 

the following equation: 

                    
      (      )                                          (   )      

The maximal invariance algebra of (141) is four-dimensional Lie algebra, 

                 〈                 〉  
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   Assertion 7: Equation (140) admits wider symmetry group iff it is 

equivalent to one of the following PDEs: 

                                                                                        (   ) 

           |  |                                                               (   )      

        |  |
                                                                    (   )   

  The maximal invariance algebras of the above equations are five-

dimensional solvable Lie algebras listed below, 

  
  〈                     (   )  〉  

  
  〈                     .   

 

 
   /   〉  

  
  〈                     

   

   
   〉  

   Analyzing the remaining equations containing arbitrary functions of one 

variable we come to conclusion that one of them can admit wider 

invariance groups iff either 

(1) It is equivalent to PDE of the form (   ) 

(2) It is equivalent to PDE of the form (   ) 

 To finalize the procedure of group classification of Eqs. (123) we need to 

consider invariant equations obtained in the preceding section that contain 

arbitrary functions of two variables. 

(II) Classification of Equations with Arbitrary Functions of Two 

Variables: 

   In the case under study the standard Lie-Ovsyannikov method is 

inefficient and we apply our classification algorithm. In order to do this 

we perform extension of three-dimensional solvable Lie algebras to all 

possible realizations of four-dimensional solvable Lie algebras. The next 

step will be to check which of the obtained realizations are symmetry 

algebras of nonlinear equations of the form (123). In what follows we use 

the results, where all inequivalent (within the action of inner 
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automorphism group) four- dimensional solvable abstract Lie algebras are 

given.  

  Here we summarize the obtained results as follows: 

(1) If the functions contained in the equations under study are 

arbitrary, then the corresponding realizations are their maximal 

invariance algebras, and 

(2) Except for Eq. (140), all the equations in question do not allow for 

extension of their symmetry. 

     Below we give the complete list of PDEs (123) invariant under four-

dimensional solvable Lie algebras that are obtained through group 

analysis of equations with arbitrary functions of two variables. 
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In the above formulas    ( ) is an arbitrary function satisfying the 

condition        . 

Concluding Remarks: 

    Let us briefly summarize the results obtained in this research. 

   We prove that the problem of group classification of the general 

quasilinear hyperbolic type equation (115) reduces to classifying 

equations of more specific forms, 

( )         (        )             

(  )         (     )    (     )       

(   )     (   )    (     )                

(  )     (     )              

     If we denote as    the set of PDEs (ii)-(iii), then the results of 

application of our algorithm for group classification of equations (i)-(iv) 

can be summarized as follows. 

(1) We perform complete group classification of the class   . We 

prove that the Liouville equation has the highest symmetry 

properties among equations from   . Next, we prove that the only 

equation belonging to this class and admitting the four-dimensional 

invariance algebra is the nonlinear d'Alembert equations. It is 

established that there are 12 inequivalent equations from    

invariant under three-dimensional Lie algebras. We give the lists of 

all inequivalent equations from    that admit one-and two-

dimensional symmetry algebras. 

(2) We have studied the structure of invariance algebras admitted by 

nonlinear equations from the class (1). It is proved, in particular, 

that their invariance algebras are necessary solvable. 

(3) We perform complete group classification of nonlinear equations 

from the class of PDEs (1). 
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We prove that the highest symmetry algebras admitted by those 

equations are five dimensional and construct all inequivalent 

classes of equations invariant with respect to five-dimensional Lie 

algebras. We also construct all inequivalent equations of the form 

(1) admitting one, two, three, and four-dimensional Lie algebras.  
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