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ABSTRACT 

Agriculture is an important factor for the development of any 

country, in addition to providing foodstuffs, agriculture is a primary 

source of raw materials that are used in several industries, a term known 

as smart agriculture has recently appeared where technology and modern 

techniques are used to better plan and manage crops. The research focuses 

on discovering one of the most dangerous cotton diseases, angular spot 

disease. which is also known as bacterial blight. It can cause production 

losses of up to 10% of the crop. The drone is used to take pictures of the 

agricultural field. It is a mechanical vehicle with four arms, and in each 

arm, a motor is connected to a propeller. Two of the propellers rotate 

clockwise, while the other two spin counterclockwise. Based on the 

images taken by the drone, the technique of filtering neural networks is 

convolutional Neural Network (CNN), which is used to detect the disease 

by performing operations on the images. This research contributed to 

helping to enhance the efficiency of cotton production by classifying the 

images taken by the drones into healthy images or bacterial blight 

diseases, training a CNN model using the data set that contains images of 

diseased and healthy cotton and we obtained an accuracy of 97.2% and 

thus is successfully classify the cotton images into diseased and healthy 

and return them to a map showing disease prevalence.   
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مستخلص ال  

إلى جانب توفير المواد الغذائية تعُتبر الزراعة    ،الزراعة تعُدّ عاملاً مهمّاً لتطوّر أيّ بلد 

 ةظهر مؤخر مصطلح  يعرف بالزراع،مصدراً أساسياً للمواد الخام التي تدخل في عدةّ صناعات 

  .   فضلأبشكل  المحاصيل    ةدارإلتخطيط و  ةحيث يتم استخدام التكنولوجيا والتقنيات الحديث ة  الذكي

مراض القطن وهو مرض التبقع الزاوي. ويعرف أيضاً أخطر  أحد  أكتشاف  ابحث على  اليركز    و

 . % من المحصول10بإسم مرض اللفحة البكتيرية . ويمكن أن يسبب خسائر في الإنتاج تصل إلى  

ذرع وهي عباره عن مركبة ميكانيكية لها أربعة أ يللحقل الزراع خذ صوراستخدام الدرون لأتم 

في اتجاه عقارب الساعة، بينما   المراوحوفي كل ذراع محرك متصل به مروحة. يدور اثنان من 

على الصور المأخوذة بواسطة الدرون   استناداً  .يدور الآخران في الاتجاه المعاكس لعقارب الساعة

العصبية  تقنية  استخدمت   أن)التلافيفية  الشبكات  أن  بإجراء   يف(  سي  وذلك  المرض  اكتشاف 

تعزيز كفاءة إنتاج محصول القطن وذلك في    ةالمساعد ساهم في  البحث    هذا  .عمليات على الصور

  باللفحة البكتريا, مرض  وا سليمةتصنيف الصور التي التقطتها الطائرات بدون طيار إلى صور ب

إن  نموذجتدريب   إن  على صاب   سي  تحتوي  التي  البيانات  مريضة   القطنور  ستخدام مجموعة 

قدرها   دقة  إلى مر97.2وصحية وحصلنا على  القطن  تم  تصنيف صور  وبذلك    وسليم ض  ي٪ 

  بنجاح وإعادتها إلى خريطة توضح انتشار المرض.
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CHAPTER ONE  

INTRODUCTION 

1.1      Preface 

Cotton is one of the most important crops grown in Sudan, as it is 

one of the most important industrial export crops. Industrially, cotton is 

used in the textile industry, while cottonseeds are an important source of 

oils and their residues are used to make feed. 

Sudanese cotton has high quality and great historical fame, and to 

preserve the crop and increase its productivity, it must be protected from 

diseases and pests. 

Bacterial blight is one of the most common diseases affecting 

cotton. Bacterial blight with angular, moist, waxy spots with a red to 

brown border on leaves, stems, and roses. Bacterial blight is one of the 

most dangerous bacteria found on cotton and causes losses and reduces 

the productivity of fields. Now, with the spread of technology in 

agriculture, the development of agricultural methods, the use of drones, 

and the frequent use of them in our daily life after it was a monopoly of 

military facilities, we see widespread use of this technology in agriculture. 

The use of this technology in agriculture can lead to development 

in the agricultural field and reduce the spread of diseases that can be 

combated with this modern technology, which contributes to increasing 

crop productivity. 

1.2      Problem statement 

Bacterial blight is one of the most dangerous diseases that affect the 

cotton crop its infestation leads to a decrease in the product as a result of 
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the affected leaves falling, the rotting of the nut, and the low degree of 

cotton as a result of its discoloration and discoloration. 

1.3      Proposed solution 

By use drones to take pictures from the field and analyze them later 

using digital image processing to detect the disease and collect enough 

information about it such as the extent of the disease and the identification 

of the affected area. 

1.4      Research Aim and Objectives 

Aim: 

Design a drone for cotton disease diagnosis using image processing 

and machine learning. 

Objectives of this work was to: 

•  Reduce the losses in cotton productivity caused by bacterial 

blight to the least possible and save time and effort. 

• Develop agriculture using drones and new technologies. 

• Develop an algorithm to perform image processing on crop 

digital images. 

1.5      Methodology 

The project consists of two parts, software, and hardware. 

In the hardware  part, the drone is designed and connect the 

components with the Ardupilot and connect the camera with the Arduino. 

 The software part, consists of two parts, a part for programming the 

drones, and the other part for machine learning and image processing, in 

which data is collected, and model training.  
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1.6      Project Layout 

This project consists of five chapters:  

Chapter One gives an introduction about the principles of the 

project, motivation.  

Chapter Two discusses the background of computer vision, history 

of computer vision, machine learning, the components of drones, drone 

movement, and the software used. 

The other section is related work 

Chapter Three describes the system block diagram, hardware design 

for drones, and Software design for drone and machine learning. 

Chapter Four discusses the results of simulation and 

implementation for the project.  

Chapter Five explains the conclusion and the future ideas that can 

be performed.  
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CHAPTER TWO  

BACKGROUND AND RELATED WORK 

2.1      Background 

2.1.1 Computer Vision 

Computer vision is a field of artificial intelligence that trains 

computers to interpret and understand the visual world. Using digital 

images from cameras and videos and deep learning models, machines can 

accurately identify and classify objects — and then react to what they 

“see.” [1] 

2.1.2 Machine Learning (ML) 

2.1.2.1 Machine Learning Overview 

Machine Learning (ML) recently had breakthroughs in so many 

diverse areas due to the explosion in the availability of data, significant 

improvements in ML techniques, and advancement in computing 

capabilities. Machine learning is concerned with constructing computer 

programs that improve automatically with experience.  

In traditional programming inputs and programs are given to the 

computer to find the output, but in ML the computer has the inputs and 

outputs, and the task is to find the relationship between them or to learn 

how it can reach the output given so many examples. 

A computer program is said to learn from experience E concerning 

some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E[2, 3] For 

example in the cat dog classification problem, the task T is to tell whether 

the image is for a dog or a cat, the performance measure P is the percent 

of images correctly classified, and the training experience E is a database 
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of images with given classifications. When the ML sees more images, it 

gets more experience, if the performance measure improves with more 

experience, that means the model is learning. 

2.1.2.2 Machine Learning Components 

ML algorithm components are a model, a dataset, an optimization 

algorithm, and a cost function. Most ML algorithms involve optimization 

of some sort. Optimization refers to the task of either minimizing or 

maximizing some function f(x) by altering x. Most optimization problems 

are usually phrased in terms of minimizing f(x). In that case, f(x) is called 

the loss function or the cost function. The derivative is useful in the task 

of minimizing a function f(x). We can reduce f(x) by moving x in small 

steps with the opposite sign of the derivative.  

This technique is called gradient descent. Gradient descent is an 

iterative algorithm that starts from a random point on a function and 

travels down its slope in steps until it reaches the lowest point of that 

function. The following figure shows an illustration of how this technique 

can minimize a function; we take f(x) = 
1

2
𝑥2 as an example. 

For a cost function f(x) depending on a parameter x, the 

optimization is performed by updating x using this formula: 𝑥 0

 = 𝑥 − (τ ∗

𝑑(𝑓(𝑥))

𝑑𝑥
 ), where 𝑥 0

 is the new value of the parameter x, and 𝜏 is the learning 

rate, which is a tuning parameter in the optimization algorithm that 

determines the step size at each iteration while moving towards a 

minimum of the loss function. When the training dataset is labeled (each 

example has a label or a target value) this is called Supervised Learning, 

and it’s called Unsupervised Learning when the dataset is unlabeled. The 

most common form of ML is supervised learning.[4] 

Figure 2-1: shows the Gradient Descent. 
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Figure 2-1: Gradient Descent 

2.1.2.3 Unsupervised Learning 

Unsupervised Learning algorithms experience a dataset containing 

many features, then learn useful properties of the structure of this dataset 

only from the experienced features, no supervision signal is given. The 

distinction between supervised and unsupervised learning is not formally 

and rigidly defined because there is no objective test to determine whether 

a value is a feature or a target provided by a supervisor. But informally 

unsupervised learning refers to most attempts to extract information from 

a distribution that does not require human labor to annotate examples.[5] 

Density estimation, clustering data into groups of related examples, 

learning to draw samples from a distribution, or denoise data from some 

distribution are all examples of unsupervised learning problems. K-means 

clustering is one of the simplest and most popular unsupervised machine 

learning algorithms. The objective of the k-means clustering merely is 

grouping similar data points together and discovering underlying patterns, 

which can be achieved by looking for a fixed number (k) of clusters in a 

dataset. A cluster refers to a collection of data points aggregated together 

because of certain similarities. The k-means algorithm identifies the k 

number of centroids (centers of the clusters). It then allocates every data 
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point to the nearest cluster while keeping the centroids as small as 

possible. 

2.1.2.4 Supervised Learning 

Supervised machine learning is the search for algorithms that reason 

from externally supplied instances to produce general hypotheses, which 

then make predictions about future cases[6]. Supervised Learning 

algorithms experience a dataset containing features, but each example is 

associated with a label or a target. So given a training set of examples of 

inputs x and outputs y, the goal of supervised learning is to predict the 

right output y from data x that is not known before, based on earlier known 

data. Formally, the goal is to approximate the mapping function from 

inputs to outputs y = f(x). Supervised Learning can be divided into two 

categories of problems, classification, and regression. Both problems have 

as a goal the construction of a model that can predict the value of the 

output y from the input x value; the difference is the fact that the output y 

value is numerical for regression and categorical for classification. The 

goal in classification is to take an input vector x and to assign it to one of 

K discrete classes 𝑐𝑘where 𝑘 = 1,2, … . 𝑘In the most common scenario, 

the classes are taken to be disjoint, so that each input is assigned to one 

and only one class. The input space is thereby divided into decision 

regions whose boundaries are called decision boundaries or decision 

surfaces. When there are only two categories, it’s called binary 

classification, an example of this is the cat-dog classification problem. The 

goal of regression is to predict the value of one or more continuous target 

variables t given the value of a D-dimensional vector x of input variables, 

and polynomial curve fitting is an example[7].  
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2.1.2.5 Machine Learning Metrics 

Various metrics are proposed to evaluate ML model performance in 

different applications. Looking to a single metric may be tricky and may 

not give you the whole picture of the problem, then a group of metrics will 

be needed to have a concrete evaluation of the model. Rather than 

accuracy, performance in ML is measured using other concepts, precision, 

and recall. 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

true predicted data

total data
                                  (1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑌 𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑌 𝑒𝑠
           (2) 

recall =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
=

𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑌 𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑙𝑦
                  (3) 

Where: 

TP: Actual class is YES (1), and the prediction is YES (1). 

TN: Actual class is NO (0), and the prediction is NO (0). 

FP: Actual class is NO (0), and the prediction is YES (1). 

FN: Actual class is YES (1), and the prediction is NO (0). 

2.1.3 Neural Networks (NN) 

2.1.3.1 Neural Network Overview 

Neural network (NN) learning methods provide a robust approach 

to approximate real-valued, discrete-valued, and vector-valued target 

functions. Neural networks are among the most effective learning methods 

currently known for certain types of problems, such as learning to interpret 

complex real-world sensor data [1]. Neural networks have generated a lot 

of excitement in ML research and industry, which results in breakthroughs 

in computer vision, speech recognition, and text processing. 

A standard neural network consists of many simple connected 

processors called neurons, each producing a sequence of real-valued 

activations. Input neurons get activated through sensors perceiving the 
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environment; other neurons get activated through weighted connections 

from previously active neurons. NN learning is about finding weights that 

make the NN exhibit desired behavior. Depending on the problem and 

how the neurons are connected, such behavior may require long causal 

chains of computational stages, where each stage transforms (often in a 

non-linear way) the aggregate activation of the network[8]. 

The study of artificial neural networks (ANNs) has been inspired in 

part by the observation that biological learning systems are built of very 

complex webs of interconnected neurons. In a rough analogy, artificial 

neural networks are built out of a densely interconnected set of simple 

units, where each unit takes several real-valued inputs (possibly the 

outputs of other units) and produces a single real-valued output, which 

may become the input to many other units[2]. 

 Figure 2-2 shows the biological neuron and the equivalent ANN. 

 

Figure 2-2: Biological neuron and its Equivalent ANN 

2.1.3.2 Structure of Neural Network 

The basic unit of computation in NN is the neuron, which is 

sometimes called a node or unit. The neuron receives input from an 

external source or another neuron and computes an output. Each input to 

the neuron has an associated weight w assigned based on the relative 

importance of this input. Additionally, there is another input 1 with weight 

b called the bias. The neuron computes the weighted sum of its inputs and 

then applies an activation function f to the result. 
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A neural network is formed in layers; each layer consists of multiple 

neurons. A neural network layer could be an input layer, an output layer, 

or a hidden layer. Input neurons receive information from an external 

source and pass them to hidden neurons. No computation is performed in 

input neurons. Output neurons are responsible for computations and 

transferring outputs from the network to the outside world. Hidden 

neurons have no direct connection with the outside world. They perform 

computations and transfer information from previous neurons to the later 

ones. 

Figure 2-3: shows the computation of one-layer NN output. 

 

Figure 2-3: Computation of one-layer NN output 

They are called hidden layers because the training data does not 

show the desired output for each of these layers, Instead, the learning 

algorithm must decide how to use these layers to the best implementation 

of an approximation of the mapping function[5]. 

Figure 2-4: shows the multiple layers NN 

 

Figure 2-4: Multiple Layers NN 
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2.1.3.3 Activation Function 

The Activation function adds non-linearity to neuron output, which 

is important because most of the real-world data is non-linear, and we want 

neurons to learn this non-linear behavior. The most popular activation 

functions used in neural networks are sigmoid, tanh, ReLU, and Leaky 

ReLU. In multi-class classification tasks in NN, the SoftMax function is 

used in the final layer (the output layer). 

2.2      Deep Learning 

2.2.1.1 Deep Learning Overview 

A neural network that has only one hidden layer is called a shallow 

neural network, and those with more hidden layers are called deep neural 

networks (DNNs). From here, the term deep learning exists. Modern deep 

learning provides a compelling framework for supervised learning. By 

adding more layers and more units within a layer, a deep network can 

represent functions of increasing complexity. Most tasks that consist of 

mapping an input vector to an output vector, and that are easy for a person 

to do rapidly, can be accomplished via deep learning, given sufficiently 

large models and sufficiently large datasets of labeled training 

examples[5]. Figure 2-5 shows the structure of the DNN. 

 

Figure 2-5: DNN Structure 
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2.2.1.2 Feedforward Neural Networks 

Feedforward neural networks, or multilayer perceptron’s (MLPs), 

are the quintessential deep learning models. The goal of a feedforward 

network is to approximate some function f_. For example, for a classifier, 

y = f_(x) maps an input x to a category y. A feedforward network defines 

a mapping y = f (x; W, b) and learns the value of the parameters W and b 

that result in the best function approximation.  

These models are called feedforward because information flows 

through the function being evaluated from x, through the intermediate 

computations used to define f, and finally to the output y. There are no 

feedback connections in which outputs of the model are fed back into itself 

[3]. These feedback connections exist in Recurrent Neural networks. 

2.2.2 Convolutional Neural Networks (CNNs) 

2.2.2.1 CNN Overview 

The Convolutional Neural Network (CNN) is one of the most 

notable deep learning approaches where multiple layers are trained 

robustly. It has been found highly effective and is also the most commonly 

used in diverse computer vision applications[9]. 

Dense layer or fully connected layer learns global patterns in their 

input feature space, but convolutional layers learn local patterns. 

Convolution learns different features from the input image, so the output 

of a convolutional layer is called a feature map. Feature maps have two 

spatial axes (height and width) as well as a depth axis (also called the 

channels axis). Properties of CNN[10]: 

• Learned patterns by CNN are translation-invariant. 

• They can learn spatial hierarchies of patterns. 

• the Reduced number of parameters. 
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2.2.2.2 Convolutional Layers 

Generally, CNN consists of three main neural layers, which are 

convolutional, pooling, and fully connected. The convolutional layer 

consists of various kernels or filters, of the same size. These filters are 

applied to (convolved with) the input image and the intermediate feature 

maps. In CNN's the filter or the kernel is mostly a 3D tensor of size k x k 

x c, where k is an integer and is usually a small number, like 3 or 5. And 

c is the number of channels of the input image or feature map. For an input 

image I with size w x h x c, and a filter K with size k x k x c, the output 

feature map S is evaluated by: 

𝑠(𝑖, 𝑗) = (𝐼 ∗ 𝑘)(𝑖 ∗ 𝑗) = ∑ ∑ ∑ 𝐼

𝑛

(𝑚, 𝑛, 𝑞)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑞)

𝑚

 

𝑞

     (4) 

The output size will be (𝑤 − 𝑘 + 1)𝑥(ℎ − 𝑘 + 1) 𝑥 𝑛, where n is 

the number of applied filters. This convolutional layer has 𝑘. 𝑘. 𝑐. 𝑛 + 𝑛 

parameters. The 𝑘. 𝑘. 𝑐. 𝑛 parameters are for the filter’s weights, and the n 

parameters are for the biases, one with each filter. 

Figure 2-6: shows the operation for one filter. 

 

Figure 2-6: 3D convolution 
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The Convolutional layer has four hyperparameters, the size of the 

filter, the number of filters, the stride, and the padding. The stride is the 

number of rows or columns the filter is shifted by at each step. When using 

a stride s, the output size will be: 

[
𝑤 − 𝑘

𝑠
+ 1] 𝑋 [

ℎ − 𝑘

𝑠
+ 1] 𝑥 𝑛                                                                     (5) 

The padding is to add a border to the input. Padding is applied to 

keep information in borders and to avoid dimension reduction. When 

padding is used input width and height are increased by 2p where p is the 

border size. The most commonly used padding is Zero Padding. 

2.2.2.3 Pooling Layers 

The pooling layer follows the convolutional layer and is used to 

down sample feature maps to reduce network parameters. Like 

convolutional layers, pooling layers are translation-invariant because their 

computations take neighboring pixels into account. Max pooling and 

average pooling are the most commonly used strategies. Pooling layers 

have no parameters to learn, so they are fixed functions. For w x h x c 

input, and a p x p pooling with stride s, the output size will be: 

[
𝑤−𝑝

𝑠
+ 1] 𝑋 [

ℎ−𝑝

𝑠
+ 1] 𝑋 𝑐                                                                  (6)] 

Pooling does not affect the number of channels because it is applied 

to each channel of the input independently. Feature maps resulting from 

convolution and pooling layers are flattened to a 1D feature vector, to get 

into fully connected layers that perform like a traditional neural network. 

Figure 2-7: shows the CNN poling layers. 
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Figure 2-7: CNN 

2.2.2.4 CNN Overfitting 

Since there are a large number of parameters in deep NN, the 

network tends to overfit the training data, which was discussed in section 

(2.2). 

In CNN, we can avoid overfitting by applying: 

1-Batch normalization: which normalizes the mean and variance of 

the output activations from a CNN layer to follow a unit Gaussian 

distribution. It proves to be very useful for the efficient training of a deep 

network because it reduces the internal covariance shift of the layer 

activations[2]. 

2-DropOut: refers to dropping out units in a neural network. By 

dropping a unit out, we mean temporarily removing it from the network, 

along with all its incoming and outgoing connections. The choice of which 

units to drop is random[11]. 

3-Data Augmentation: It’s a very effective way of enhancing the 

generalization power of CNN models. Especially for cases where the 

number of training examples is relatively low. It is often utilized to 

generate additional data without introducing extra labeling costs by 

performing operations like scaling, cropping, rotating, horizontal 

reflections, or altering the RGB values of the training images. Besides 

overfitting, CNNs also face vanishing gradients of earlier layers, with the 

network depth increasing. This is solved by adding a skipped path or a 

shortcut to the main path in the network, which is called a residual 

connection[12]. 
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2.2.2.5 Transfer Learning 

For a model to get sufficient accuracy, it requires a lot of training 

data and computational power. One way to short-cut this process is to re-

use weights from pre-trained models that were developed for another task 

or dataset where the input is the same, but the target may be different. This 

process is called Transfer Learning (TL). The re-used weights may be used 

for specific layers as the starting point for the training process. Transfer 

learning decreases the training time for a neural network model and can 

also reduce the generalization error. The reason behind using weights from 

trained models is that when a network is trained on images, the first layers 

tend to learn general features (i.e., edges, corners, and lines) which occur 

regardless of the dataset used. Transfer learning may be followed by a 

fine-tuning process to train the network well on the new dataset. 

2.2.3 GPU 

Graphics Processing Unit (GPU) is a processor in graphics cards, 

similar to a computer’s CPU. GPU is designed specifically for performing 

complex mathematical and geometric calculations. Some of the fastest 

GPUs have more transistors than the average CPU. GPUs can process data 

several orders of magnitude faster than a CPU, due to the massive 

parallelism. So, they are best suited for repetitive and highly-parallel 

computing tasks, which makes the GPU the appropriate device in deep 

learning tasks (GPU is considered as the heart of Deep Learning). 

2.2.4 TensorFlow (TF) 

TF is an open-source software library for numerical computation 

using data flow graphs, initially developed by Google Brain Team, to 

conduct machine learning and deep neural networks research. TensorFlow 

provides an extensive set of functions and classes that simplify building 

advanced models from scratch. 
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Generally, TensorFlow can be thought of as a programming system 

in which computations are represented as graphs. Nodes in the graph 

represent mathematical operations, and the edges represent 

multidimensional data arrays (tensors) communicated between them. 

Some of the properties of TensorFlow are: 

1. TF provides an accessible and readable syntax. 

2. TF provides more flexibility. Thus, new functionalities can be defined. 

3. TF offers great debugging tools. 

4. Scalability and Pipelining. 

2.2.5 RCNN Family 

The R-CNN or Region-Based Convolutional Neural Network 

object detection approach uses the selective search algorithm[13]. to 

generate category-independent region proposals that define the set of 

candidate detections and then feed them into a detector composed of a 

feature extractor and a classifier[14]. R-CNN had many improvements 

that reduced its running time, which introduced Fast RCNN[15]. and then 

Faster R-CNN[16]. 

Faster R-CNN introduced Region Proposal Network (RPN) that 

shares full-image convolutional features with the detection network, thus 

enabling nearly cost-free region proposals. The output of the RPN predicts 

k proposals at each location, called anchors. Anchors cover different 

scales and aspect ratios. Using RPNs enables a unified, deep-learning-

based object detection system that runs at near-real-time frame rates with 

competitive accuracy. 

2.2.6 You Only Look Once (YOLO) 

In the YOLO method, there is a single convolutional network, 

which simultaneously predicts multiple bounding boxes and class 

probabilities for those boxes. YOLO system divides the input image into 
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an SS grid; each grid cell is responsible for detecting the object having its 

center in it. YOLO trains on full images and directly optimizes detection 

performance. This unified model is extremely fast since YOLO frames 

detection as a regression problem. Unlike sliding window and region-

proposal-based techniques, YOLO sees the entire image during training 

and test time, so it implicitly encodes contextual information about classes 

as well as their appearance. YOLO makes a smaller number of background 

errors compared to other methods because they can’t see the border 

context. Since YOLO is highly generalizable, it is less likely to break 

down when applied to new domains or unexpected inputs[17]. 

2.3 Drone Hardware 

A drone is a flying robot that can be remotely controlled or fly 

autonomously using software-controlled flight plans in its embedded 

systems, that work in conjunction with onboard sensors and a global 

positioning system (GPS). 

The drone has a small, powerful computer (Ardupilot Mega) 

responsible for controlling other components of the drone: 

2.3.1.1 Frame 

The frame is the structure that holds all the components together. 

One of the most important parts of the quadcopter is its frame because it 

supports motors and other electronics and prevents them from vibrations. 

You have to be very precise while making it. They need to be designed to 

be strong but also lightweight.  

https://internetofthingsagenda.techtarget.com/definition/embedded-system
https://internetofthingsagenda.techtarget.com/definition/embedded-system
https://whatis.techtarget.com/definition/sensor
https://searchmobilecomputing.techtarget.com/definition/Global-Positioning-System
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 Figure 2-8 shows: the quadcopter frame 

 

Figure 2-8: Quadcopter frame 

2.3.1.2 The Microcontroller – Arduino Uno  

Arduino Uno is a microcontroller board based on the ATmega328P 

It has 14 digital input/output pins (of which 6 can be used as PWM 

outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB connection, a 

power jack, an ICSP header, and a reset button. 

It contains everything needed to support the microcontroller; simply 

connect it to a computer with a USB cable or power it with an AC-to-DC 

adapter or battery to get started. "Uno" means one in Italian and was 

chosen to mark the release of Arduino Software (IDE) 1.0. The Uno board 

and version 1.0 of Arduino Software (IDE) were the reference versions of 

Arduino, The Uno board is the first in a series of USB Arduino boards, 

and the reference model for the Arduino platform; for an extensive list of 

current, past or outdated boards see the Arduino index of boards.  
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 Figure 2-9 Shows: Arduino Uno [18] 

 

Figure 2-9: Arduino UNO Microcontroller Board 

2.3.1.3 Electronic Speed Controllers (ESC) 

An electronic speed control or ESC is a circuit with the purpose to 

control an electric motor's speed, its direction, and possibly also to act as 

a dynamic brake in some cases. ESCs are often used on electrically 

powered brushless motors essentially providing an electronically 

generated three-phase electric power, with a low voltage source.  

An ESC interprets control information in a way that varies the 

switching rate of a network of field-effect transistors (FETs), not as 

mechanical motion as would be the case of a servo. The quick switching 

of the transistors is what causes the motor itself to emanate its 

characteristic high-pitched whine, which is especially noticeable at lower 

speeds. It also allows much smoother and more precise variation of motor 

speeds in a far more efficient manner than the mechanical type with a 

resistive coil and moving arm once in common use.   

The ESC generally accepts a nominal 50 Hz Pulse Width 

Modulation (PWM) servo input signal whose pulse width varies from 1ms 

to 2ms. When supplied with a 1ms width pulse at 50 Hz, the ESC responds 

by turning off the DC motor attached to its output. A 1.5ms pulse-width 
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input signal results in a 50% duty cycle output signal that drives the motor 

at approximately 50% speed. When presented with a 2.0ms input signal, 

the motor runs at full speed due to the 100% duty cycle (on constantly) 

output.   

The correct phase varies with the motor rotation, controlled and 

monitored by the ESC.  The orientation of the motor is determined by the 

back EMF (Electromotive Force). The back EMF is the voltage induced 

in a motor wire by the magnet spinning past its internal coils. Finally, a 

PID algorithm in the controller adjusts the PWM to maintain a constant 

RPM.   

 Reversing the motor's direction may also be accomplished by 

switching any two of the three leads from the ESC to the motor.  

Ideally, the ESC controller should be paired to the motor and 

rotorcraft with the, Figure 2-10 Shows: ESC, following considerations:  

1. Temperature and thermal characteristics.   

2. Max Current output and Impendence.   

3. Needs to be Equipped with a BEC (Battery Eliminator Circuit) to 

eliminate the need for a second battery.    

4. Size and Weight properties.    

5. Magnet Rating [19] 

 

Figure 2-10:30A Brushless ESC 
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Additionally, the speed controller has fixed throttle settings so that 

the "stop" and "full throttle” points of all the various modes can be cut 

through cleanly. The controller produces audible beeps to assist in 

navigating through the program modes and troubleshooting logs.  

 

2.3.1.4 The Battery Pack 

Lithium Polymer (LiPo) cells are one of the newest and most 

revolutionary battery cells Available. LiPo cells maintain a more 

consistent voltage over the discharge curve when compared to Ni-Cd or 

NiMH cells. The higher nominal voltage of a single LiPo cell (3.7V vs. 

1.2V for a typically Ni-Cd or NiMH cell); making it possible to have an 

equivalent or even higher total nominal voltage in a much smaller package 

LiPo cells typically offer very high capacity for their weight, delivering 

upwards of twice the capacity for ½ the weight of comparable NiMH cells, 

Figure 2-11: Shows LiPo Battery. 

 

Figure 2-11:3S LiPo Battery 

2.3.1.5 The Brushless Motors 

The drone has four Brushless DC motors attached to a propeller. 

The Brushless motor differs from the conventional Brushed DC Motors in 
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their concept essentially in that the commutation of the input voltage 

applied to the armature's circuit is done electronically, whereas in the 

latter, by a mechanical brush. As with any rotating mechanical device, it 

suffers wear during operation, and as a consequence, it has a shorter 

nominal lifetime than the newer Brushless motors. 

Despite the extra complexity in its electronic switching circuit, the 

brushless design offers several advantages over its counterpart, to name a 

few: higher torque/weight ratio, less operational noise, longer lifetime, 

less generation of electromagnetic interference, and much more power per 

volume. Virtually limited only by its inherent heat generation, whose 

transfer to the outer environment usually occurs by conduction, Figure 2-

12: Shows brushless motor [20] 

 

Figure 2-12: A2212/13T 1000 KV BLDC (Brushless DC Motor) 

2.3.1.6 power distribution board (PDB) 

PDB’s essentially distributed the power from the battery to the 

drone ESC. But the technology has improved so much in recent days that 

PDBs also distribute power to some other peripherals such as FPV Video 

Transmitters, FPV Cameras, and the Quadcopter Flight Controller itself. 

Some modern FCs have integrated PDBs, are limited by space, and can 
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only accommodate so much that they do not do a very good job at filtering 

the voltage spikes from the insane current draws from our quads [21] The 

Figure 2-13: shows the power distribution board. 

 

Figure 2-13:Power distribution board 

2.3.1.7 Propellers 

A propeller is a set of rotating blades designed to convert the power 

(torque) of the Engine into thrust.   

The Quadrotor consists of four propellers coupled to the brushless 

motor. Among These four propellers, two are clockwise and the remaining 

two are counterclockwise. Clockwise and anticlockwise propellers cancel 

their torque from each other.   

Propellers are specified by their diameter and pitch.  The propeller 

used is 1045 Fixed-pitch, symmetric, tapered Normal Rotation Carbon 

Fiber Propeller. 

 figure 2-14: shows the carbon fiber propeller 

 

Figure 2-14: 10x4.5 fixed-pitch, Carbon fiber Propeller  
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2.3.1.8 FLY SKY FS CT6B 

The 2.4 GHz antenna is pretty standard fare, folding 90 degrees (via 

a 45-degree intermediate step) for storage, Figure 2-15 Shows: the remote 

control [22] 

 

Figure 2-15:sky remote control 

2.3.1.9 NEO-8N APM GPS 

NEO-M8 modules utilize concurrent reception of up to three GNSS 

systems (GPS/Galileo together with Bei Dou or GLONASS), recognize 

multiple constellations simultaneously, and provide outstanding 

positioning accuracy in scenarios where urban canyon or weak signals are 

involved. For even better and faster positioning improvement, the NEO-

M8 series supports the augmentation of QZSS, GAGAN, and IMES 

together with WAAS, EGNOS, and MSAS. The NEO-M8 series also 

supports message integrity protection, geofencing, and spoofing detection 

with configurable interface settings to easily fit customer applications. 

The NEO‑M8M is optimized for cost-sensitive applications, while 

NEO-M8N and NEO-M8Q provide the best performance. The future-

proof NEO-M8N and NEO-M8J include an internal flash that allows 

future firmware updates. This makes NEO-M8N and NEO-M8J perfectly 

suited to industrial and automotive applications.  
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 Figure2-16: show that the GPS module [23] 

 

Figure 2-16: GPS module 

2.3.1.10 Ardupilot Mega 

(APM) is a professional quality IMU autopilot that is based on the 

Arduino Mega platform.  This autopilot can control fixed-wing aircraft, 

multi-rotor helicopters, as well as traditional helicopters.  It is a full 

autopilot capable of autonomous stabilization, way-point-based 

navigation, and two-way telemetry with Xbee wireless modules.  

Supporting 8 RC channels with 4 serial ports.  ArduPilot Mega consists of 

the main processor board (the red one above) and the IMU shield which 

fits above or below it.   
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Figure 2-17 shows the Ardupilot [24] 

 

Figure 2-17: Ardupilot Mega 

2.3.1.11 ESP32-CAM 

ESP32-CAM is a low-cost development board with a WIFI camera. 

It allows creating IP camera projects for video streaming with different 

resolutions. ESP32-CAM has a built-in PCB antenna. 

The figure 2-18:below shows the ESP32 Camera [25] 

 

Figure 2-18: ESP32 Camera 
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2.4      Software tools  

2.4.1 Arduino IDE 

The open-source Arduino Software (IDE) makes it easy to write 

code and upload it to the board. This software can be used with any 

Arduino board [26]. 

2.4.2 Mission Planner 

Mission Planner is a ground control station for Plane, Copter, and 

Rover. It is compatible with Windows only. Mission Planner can be used 

as a configuration utility or as a dynamic control supplement for your 

autonomous vehicle [27]. 

 

2.4.3 PyCharm IDE  

PyCharm is an integrated development environment (IDE) used in 

computer programming, specifically for the Python programming 

language. It is developed by the Czech company JetBrains It provides code 

analysis, a graphical debugger, an integrated unit tester [28]. 

2.5      Drone Movement and Control 

2.5.1 Drone Movement 

The basic idea of the movement of the Drone is shown in the 

following figure. It can be seen from the figure that the Drone is simple in 

mechanical design compared to helicopters. Movement in the horizontal 

frame is achieved by tilting the platform whereas vertical movement is 

achieved by changing the total thrust of the motors. But Drone arise certain 

difficulties with the control design [29]. 

Figure 2-19: shows the drone movement. 
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Figure 2-19: Basic Flight movements of a Quadcopter 

2.5.2 Drone structure 

The quadcopter has six degrees of freedom. This means that six 

variables are needed to express its position and orientation in space (x, y, 

z, φ, θ and ψ). The x, y, and z variables represent the distances of the 

quadcopter's center of mass along the x, y, and z axes respectively from a 

fixed reference frame. The other three variables are the three Euler angles 

which represent the quadcopter orientation. (φ) is the angle about the x-

axis and is called roll angle, (θ) is the angle about the y-axis and is called 

pitch angle and (ψ) is the angle about the z-axis and is called yaw angle, 

Figure 2-20 Shows: quadcopter axis. 

 

Figure 2-20: Quadcopter Axis 
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2.5.3 Drone mechanism 

Each rotor produces both lift and torque about its center of rotation, 

as well as drag opposite to the vehicle's direction of flight. Lift is the force 

that directly opposes the weight of a quadcopter and holds the drone in the 

air. Lift is generated by every part of the quadcopter, but most of the lift 

on a normal airliner is generated by drone motors. Quadcopters generally 

have two rotors spinning clockwise (CW) and two counterclockwise 

(CCW). The spinning of the quadcopter propeller blades pushes air down. 

All forces come in pairs (Newton’s Third Law), which means for every 

action force there is an equal in size and opposite in direction reaction 

force. Therefore, as the rotor pushes down on the air, the air pushes up on 

the rotor. 

Figure 2-21: shows the quadcopter mechanism. 

 

Figure 2-21: Quadcopter Mechanism 

2.5.4 Equations of Motion 

1- Rolling Moments: 

-equation explains the Body gyro effect 

𝜃˙𝜓˙(𝐼𝑦𝑦 −  𝐼𝑧𝑧)                            
- equation (2.2) explains the rolling moment due to forward flight  

(−1)𝑖+1 ∑ 𝑅𝑚𝑥𝑖   
4
𝑖=1                                                                  

- equation (2.3) explains the propeller gyro effect   𝐽𝑟𝜃˙Ω𝑟  

- hub moment due to sideward flight ℎ ∑ 𝐻𝑦𝑖
4
𝑖=1  
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- roll actuators action l(−𝑇2  +  𝑇4)  

2- Pitching Moments: 

- Body gyro effect  𝜑˙𝜓˙(𝐼𝑧𝑧 −  𝐼𝑥𝑥)  

- rolling moment due to forward flight  ℎ(∑ 𝐻𝑥𝑖
4
𝑖=1 ) 

- propeller gyro effect  𝐽𝑟𝜑˙Ω𝑟  

- hub moment due to sideward flight (−1)𝑖+1 ∑ 𝑅𝑚𝑦𝑖
4
𝑖=1  

- pitch actuators action   𝑙(𝑇1  −  𝑇3)  

3- Yawing Moments: 

- body gyro effect  𝜃˙𝜑˙(𝐼𝑥𝑥 −  𝐼𝑦𝑦) 
- hub force unbalance in forward flight  𝒍(𝑯𝒙𝟐  −  𝑯𝒙𝟒) 

- inertial counter-torque  𝐽𝑟Ω˙ 𝑟 
- hub force unbalance in sideward flight  𝒍(−𝑯𝒚𝟏  +  𝑯𝒚𝟑) 

- counter-torque unbalance  (−1)𝑖 ∑ 𝑄𝑖
4
𝑖=1  [30] 

2.5.5 Drone maneuverability 

Drone rotate and move along the three principal axes; one running 

forward to back, another running right to left, and one running up and 

down. By rotating or tilting along these different axes, an aircraft can move 

forward or backward, left or right, or simply rotate in place. 

Pitch: is the backward and forward movement of the drone. To pitch 

up the front two propellers, the RPM increased by receiving a signal from 

the control device to increase lift while decreasing lift of the two rear props 

and reducing lift, causing the nose to lift up while the quadcopter 

maintains altitude. To pitch down, the front propeller's speed is being sped 

down to reduce lift and speed on the rear propellers to increase the lift. 

Roll: is the right or left movement of the drone. To roll right RPM 

keeps increasing on the left propellers and decreasing on the right ones, 

and the same opposite function when the drone trying to roll left. 

Yaw: is simply defined as the rotation left or right of a quadcopter 

concerning the center axis, yaw refers to the movement of the drone 
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clockwise or counterclockwise. A quadcopter’s yaw is controlled by 

manipulating the reactive torque effect that each propeller has on frame-

the very same effect that must be canceled by control surfaces in airplanes 

and helicopters. 

Figure 2-22: shows the Drone maneuverability. 

 

Figure 2-22: Quadcopter Roll, Pitch, and Yaw 

2.5.6 Proportional Integral Derivative (PID) 

A PID controller is a feedback control algorithm widely used in 

industrial control systems. A PID controller calculates the error value 

which is the difference between a measured process variable and the 

desired setpoint, the controller attempts to minimize the error by adjusting 

the process. It’s part of a flight controller software that reads the data from 

sensors and calculates how fast the motors should spin to retain the desired 

rotation speed of the aircraft. The goal of the PID controller is to correct 

the error, the difference between a measured value (gyro sensor 

measurement), and the desired setpoint (the desired rotation speed). The 

error can be minimized by adjusting the control inputs in every loop, 

which is the speed of the motors. 

The figure 2-23: shows the PID block diagram. 



33 
 

 

Figure 2-23: Proportional Integral Derivative (PID) Block Diagram. 

There are three gains values in a PID controller, they are the ‘P’ 

term, ‘I’ the term, and ‘D’ term: 

“P Gain” looks at the present error – the further it is from the set-

point, the harder it pushes. 

“D Gain” is a prediction of future errors, it looks at how fast you 

are approaching a set-point and counteracts P when it is getting close to 

minimize overshoot 

“I Gain” is the accumulation of past errors, it looks at forces that 

happen over time; for example, if a quad constantly drifts away from a set-

point due to wind, it will spool up motors to counteract it[31] 

2.6      Related work 

This set of experiments was designed to understand if the neural 

network actually learns the “notion” of plant diseases, or if it is just 

learning the inherent biases in the dataset. Using the deep convolutional 

neural network architecture, we trained a model on images of plant leaves 

to classify both crop species and the presence and identity of disease on 

images that the model had not seen before. Within the Plant Village data 



34 
 

set of 54,306 images containing 38 classes of 14 crop species and 26 

diseases (or absence thereof), this goal has been achieved as demonstrated 

by the top accuracy of 99.35%. Thus, without any feature engineering, the 

model correctly classifies crop and disease from 38 possible classes in 993 

out of 1000 images. Importantly, while the training of the model takes a 

lot of time (multiple hours on a high-performance GPU cluster computer), 

the classification itself is very fast (less than a second on a CPU), and can 

thus easily be implemented on a smartphone. This presents a clear path 

toward smartphone-assisted crop disease diagnosis on a massive global 

scale [3] 

This paper introduced the basic general principles used in designing 

a quadcopter UAV, which has wide applicability in modern agriculture. 

Quadcopter-collected color images are excellent for providing a gross 

picture of general field health and problems. The use of drones for 

surveillance of greenhouses can increase crop yields by minimizing the 

cost of traveling on very large areas and remediation the issues identified. 

Also, drones coupled with smart sensors can be developed to be an 

effective tool for the future.  

The main goal is to achieve a stable flight of the quadcopter, and 

this is done using a linear PID control strategy.  

The attitude and altitude stabilization system are composed of PIDs 

that are responsible for keeping the quadcopter in a desired angular state 

while keeping its altitude The PID controller uses a feedback loop to 

control the rotor angular speed output of the vehicle. Within this loop, the 

controller uses a combination of the previous output, the current error, and 

the previous two errors to estimate what adjustments must be made to 

reach or maintain the desired output. Using the aerial footage taken by 

drones, farmers can get some useful information about crops, as follows: 

may reveal patterns of irrigation or soil and fungal infestations that are not 
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visible to the naked eye; the combination of multispectral images, infrared 

or visible, can create an image of crop that emphasizes healthy plants and 

those in need; by monitoring the crop at regular intervals, animations can 

be created, images that show changes over time, revealing problem areas 

or opportunities to better crop management [32] 

We used the Ionic for the reason is the background support that 

works above Cordova to build hybrid applications. It allows to 

development of the application interface that can be compared as it were 

Web pages, i.e., using HTML, CSS, and JavaScript. and these 

Applications run inside the WebView of the original application.  

Ionic Framework - is an open-source framework in Code that must 

be written once and executed on it Many mobile devices can work on 

different types of operating systems [33] where the ionic provides the 

Cordova tool and Capacitor is a cross-platform native runtime that makes 

it easy to build modern web apps that run natively on iOS, Android, and 

the Web. Representing the next evolution of Hybrid apps, Capacitor 

creates Web Native apps, providing a modern native container approach 

for teams who want to build web-first without sacrificing full access to 

native SDKs when they need it [34] 

The proposed system helps in the identification of plant disease and 

provides remedies that can be used as a defense mechanism against the 

disease. using convolution neural network (CNN)over a proper dataset. a 

prototype drone was also designed which can be used for live coverage of 

large agricultural fields to which a high-resolution camera is attached 

capturing plants images. The goal was to reduce the attack of pests also 

provide a remedy for the disease that is detected [35] 
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CHAPTER THREE  

METHODOLOGY 

The objectives of this research study are to reduce losses in cotton 

productivity resulting from bacterial blight to the least possible, a disease 

also known as angular spot disease in cotton. It is one of the important 

cotton diseases with global spread and can cause production losses of up 

to 10% of the crops. The research also aims to develop modern agriculture 

with new techniques and raise the level of Sudanese agriculture to keep 

pace with global agriculture. We used drones that save effort and time for 

farmers, especially when the areas are large. We used digital image 

processing technology to analyze images taken by drones that show the 

extent of plant health. This chapter is an overview Detailed on the work 

performed on the project, which can be divided into software system parts, 

UAV movement, and control functions, it consists of hardware design and 

software design 

Figure 3-1: shows system example. 

 

Figure 3-1: System Example 
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3.1.1 Software system 

The object detection process consists of Data Collection, Data 

Augmentation Operations, Preprocessing, Building the CNN model, 

Training the model, and Postprocessing Operations. 

3.1.2 Method Overview 

The software of building the dataset of CNN model classification 

dieses, preprocessing of images, Building the CNN model, and training 

the model, building the neural network layers, the second section is 

Interface show the Result of Processed image. 

Figure 3-2: show the software of the system block diagram. 

 

Figure 3-2: software system block diagram 

3.1.3 Building of the Dataset 

To train a deep learning network for our research problem, a dataset 

of diseased and healthy cotton leaf images had to be acquired the dataset 

was put together by downloading diseased cotton images on the internet 

from various sources Cotton plants are affected by diseases caused by, 

bacteria, and viruses and to damage by parasitic worms and physiological 

disturbances also classified as diseases. Cotton is threatened by different 

types of diseases, such as Bacterial blight. We have limited our study to 
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only one main disease because of time constraints. A brief description of 

the disease is as follows: 

3.1.4 Bacterial blight 

It is the most devastating cotton crop disease. Cotton bacterial blight 

is caused by a bacterial called Xanthomonas citric subs malvaceous which 

survives in infected crop debris and seeds. It starts as an angular, waxy, 

and water-soaked leaf spot with a red to brown border on leaves, stems, 

and bolls. As the plant grows, the spots gradually turn into brown necrotic 

areas. If these diseases are left untreated, they will kill the plant. However, 

if they are diagnosed early, they can be treated, and the crop can be saved. 

The third category of classification is healthy cotton leaves to allow the 

model to tell the difference between a healthy and diseased cotton leaf. 

Figure 3-3: shows the spread of bacterial blight disease 

 

Figure 3-3: Bacterial blight 

3.1.4.1 Dataset Annotation 

After downloading the images, you must remove the duplicates and 

make sure that each image is placed in the appropriate file. The healthy 

image in the file. The healthy images (name) and the bacteria-infected 

images are in the bacteria-infected im age file. The step is very important 
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and it must be ensured that it is obtained in the correct image to obtain 

Excellent training results. 

Figure 3-4 shows the folders containing the diseased and healthy 

images.  

 

Figure 3-4: folders contain the diseased and healthy images 

3.1.4.2 Dataset Division 

To train and test the model, three separate data sets are required. In 

the process, the home picture group together in the previous section is 

divided into the following groups: 

1- Training set: It is the set that is used to train the model to know its 

hidden features such as weights and biases. 

2- Validation set: The validation set is used to evaluate the model. 

These include among others the learning rate, batch size, and 

several epochs. 

3- Test set: This set is used when the training phase is completed to 

evaluate the performance and accuracy of the final trained model.  

Figure 3-5: shows the three sets test set and training set validation 

set 

 

Figure 3-5: three sets test set and training set validation set  
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3.1.5 Preprocessing of Images 

The next stage after building the dataset was the preprocessing of 

the images. This process is very important in deep learning to ensure that 

training data is standardized before it is fed into a training model. For 

example, images must be resized to match the input size required by the 

network. 

3.1.5.1 Data Augmentation 

To enrich the data set, several techniques were used to increase the 

number and diversity of images available in the data sets. Enhanced 

images increase the network's opportunity to learn more features and be 

able to accurately distinguish one category from another (Net Image 

Classification). 

3.1.5.2 Dataset composition 

Table 3-1: shows the division of the original images in the data into 

three different sections: training, validity, and testing for each 

classification of healthy and sick patients to be detected. 

Table 3-1: dataset 

Class  Original 
images 

Original 

and 
augmented 

images 

Training 
images 

Validation 
images 

Test 
images 

Healthy 

leaves  
256  3870  3096  387  387 

Bacterial 

Blight  
430  5982  4785  598  598 

3.1.6 Neural Network Design 

After the images are acquired and preprocessed, the next step is to 

design and train a model on those images. 
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3.1.6.1 Process Parameters 

To begin model development, there are design options that must be 

considered. The main factor is the choice of architecture for the model. 

Using the architecture developed by the open-source "Indiana production" 

for educational purposes, it was possible to achieve high accuracy (98%) 

on the cotton crop. For this reason, "Indiana production" was selected as 

the preferred architectural design for this research. We use this 

architecture as a feature extractor but modify and tune it to support our 

disease class. 

3.1.6.2 Model Design 

We used the layers in the "Indiana production" as a feature 

extraction component. The "Indiana production" model was loaded 

without the classifier part of the model and changed a new Dense and 

Output layer to result in 2 classes altered for the requirements of our new 

dataset to predict the probability for 2 classes. 

Figure 3-6: shows the block diagram design CNN model. 

 

Figure 3-6: Deep neural network 

The block diagram was drawn using lucid.app [36]. All code was 
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written in the Python programming language. For the implementation of 

the deep neural network, Keras [37] library a python-based deep 

Learning library was used. Keras library runs on TensorFlow [38] 

backend. It was chosen as the backend for Keras because it offers high-

performance numerical computations. The full code is attached in the 

appendix section of this report. Keras implementation workflow was as 

follows: 

1-  Import the libraries in Keras 

2- -parameters the dataset 

3- change new layers on the output of the model 

4- Train the new layers on your dataset 

3.1.7 Training the model 

Using Article developed By Indian AI Production Access the 

directory where mounted project the script to run the training of the model 

"train.py". 

3.1.7.1 Training of Neural Network: 

All experiments in this section for the training of neural networks 

were run on Intel Core i3 11th generation, with 8GB RAM. 

3.1.7.2 Train Run 

A-Train run was done on the model with the model run with an 

initial batch size of 32 meaning that 32 image samples are used to train the 

network each time. 100 epochs were set for the initial run and a learning 

rate of 0.0001 was configured. 

The results of the first run are as shown below in Figure 3-7 and the 

accuracy at the end of the 14th   epoch was 79%. 

 

Figure 3-7: 14th epoch 

An accuracy of 97.2% was realized at the end of the 91th epoch.  
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 Figure 3-8: shows the last accuracy improve. 

 

Figure 3-8: 91th epoch 

The accuracy didn't increase after that in the 100th epoch as shown 

in Figure 3-9. 

 

Figure 3-9: 100th epoch 

Figure 3-10: shows the accuracy and loss result in training. 

 

Figure 3-10: accuracy and loss 

3.1.8 Interface: 

A simple web interface for displaying the results of the image 

processing process. It was designed on the ionic framework. It contains 

two pages, a page for uploading the images to be analyzed, and a page for 

displaying the results of the analysis., Figure 3-11 show the flowchart of 

the full system from the start point to combine processed image to map in 

their locations.  
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Figure 3-11: shows the interface flowchart. 

 

Figure 3-11: flowchart predicting  
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The main page of the interface: Figure 3-12 at the bottom display 

the home page layout of the interface 

 

Figure 3-12: home page layout 

After selecting the images to be analyzed, they are sent to the CNN 

model code that was, Figure 3-13 at the bottom display the steps to upload 

images. 

 

Figure 3-13: selecting images for predicting 
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3.1.8.1 main function of this web page 

The main function of this web page is to classify cotton diseases, so 

a JavaScript function was developed to send images to our model 

developed in the previous section (python code) 

Appendix B 2, the flowing code is JavaScript code contain function send 

images 
1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

 processImages () {//called we click on process button 

    this.files.forEach ( (file, i) => {//loop in all images selected 

     this.postfile(file, 'predict','', async (result)=> {//send the image to CNN model to predict  

        let img = await this.getBase64(file)//convert image encode to base64 

        this.markers.data.push({//preparing map markers in place of each image 

          image: img, //set image (base64) 

          location: this.locations[i], //set coordinates to marker  

          status: result.status//the status is the result coming from CNN model is the either healthy or disease   

        }) 

        if (i=== this.files.length -1){//check if this last image 

          alert('Processing End Open Map to Show Result') //alert user to go map to see the result 

}})})} 

3.1.8.2 main function back end 

is the code for receiving image analysis from the interface 

1 

2 

3 

4 

5 

6 

7 

8 

def predict(): 

 if request.method == 'POST':# form request method 

        file = request.files['image']  # fet input 

        filename = file.filename # saving file name 

        file_path = os.path.join('static/user uploaded', filename) # save the image in uploaded files 

        file.save(file_path) # save image 

        pred, output_result pred_cot_dieas(cott_plant=file_path)#fuction pred_cot_dieas will fine out in appendix   

        return {'status': output_result, 'pred': pred} # response to interface with predicted status of image  
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3.1.9 processing Image 

predictions that the model has made for the test data, we can use the 

predict function. The predict function will give an array with 2 numbers. 

The array index with the highest number represents the model prediction. 

The sum of the array equals 1 (since each number is a probability). find 

out the code in the appendix. 

3.1.10 Locate the image in the field 

In this step, the images are collected with the map at the location 

they were taken from the drones stored in the locations located in the file 

name in formula "lat, log.png" 

3.1.11 Preparing for the field map 

• We declare the application as HTML5 using the HTML 

declaration. 

• We create a div element named "map" to hold the map. 

• We define a JavaScript function that creates a map in the div. 

• We load the Maps JavaScript API using a script tag [39] 

3.2      Hardware design 

3.3      Design of quadcopter 

The system model is separated into two parts: the electrical part 

which consists of Ardupilot, electronic speed controller, Lithium Polymer 

battery, brushless DC motor, propellers, transmitter and receiver, Arduino 

Uno, and ESP 32 camera. 

 And the mechanical parts consist of frame, arms and propellers 

Figure 3-14: shows the block diagram of the system model 
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Figure 3-14: hardware system block diagram 

3.3.1.1 Drone assembly 

The first step of assembling a drone is building a frame or choosing 

the proper type of manufactured carbon fiber frame as mentioned earlier 

because it can hold much weight more than plastic, and the carbon fiber 

substance of itself has lightweight. 

The second step is to connect both the positive and negative of the 

motor speed controller with the positive and negative of the PDB and the 

same process is done on the other ESC. 

Figure 3-15: shows connecting the electronic speed controller to the 

power distribution 

 

Figure 3-15: ESCs and PDB 
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ECSs connections to the motors: 

For Clockwise two motors: 

• Connect the VCC of ESC with the VCC of the motor. 

•   Connect the GND of ESC with the GND of the motor. 

• Connect PWM/Signal of ESC with Signal/PWM of the 

motor. 

For Counter-Clock wise two motors just swap any two wires: 

• Connect the VCC of ESC with GND of motor 

• Connect the GND of ESC with the VCC of the motor. 

• Connect PWM/Signal of ESC with Signal/PWM of motor 

Quadcopter controller (Ardupilot) attached on the main base of the 

drone with Ardupilot input pins (1-5) are connected with the Fly Sky 

FSiA6 receiver channel input pins (CH1-CH5) via jumper wires (Female 

to Female). 

Now ESC connections with Ardupilot flight controller as follows: 

Figure 3-16: shows the Ardupilot mega pins. 

 

Figure 3-16: APM 2.8 Pins Configurations 

• Connect the ESC-1 Pin with Ardupilot Output Pin - 1. 
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• Connect the ESC-2 Pin with Ardupilot Output Pin - 2. 

• Connect the ESC-3 Pin with Ardupilot Output Pin - 3. 

• Connect the ESC-4 Pin with Ardupilot Output Pin - 4. 

Figure 3-17: shows ESCs and Receiver connect to the ardupilot. 

 

Figure 3-17: ESCs connection to Ardupilot Output and Receiver Channel 

Input 

3.3.1.2 Programming Flight Controller 

Mission Planner is a ground control station for Plane, Copter, and 

Rover. It is compatible with Windows only. Mission Planner can be used 

as a configuration utility or as a dynamic control supplement for 

autonomous vehicles. 

Mission Planner contains many features as: 

• Load the firmware (the software) into the autopilot board that 

controls the vehicle. 

• Setup, configure, and tune vehicles for optimum performance. 

3.3.1.3 Installing and Configuration 

Once the ground station is installed on the computer, the autopilot 

is being connected using the micro-USB cable. Windows should 

automatically detect and install the correct driver software. 
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The COM port drop-down on the upper-right corner of the screen 

AUTO option is selected or a specific port for the type of the connected 

board. The Baud rate is set to 115200 as shown. 

On the Mission Planner’s SETUP | Install Firmware screen, an 

appropriate icon that matches the quadcopter frame is selected Next it will 

detect the board type that is being used. After all, goes well the firmware 

will be successfully uploaded to the board. 

Figure 3-18: shows the mission planner setup. 

 

Figure 3-18: Mission Planner Setup Page 

Radio Control Calibration involves capturing each RC input 

channel’s minimum, maximum, and “trim” values so that Ardupilot can 

correctly interpret the input. To setup transmitter: 

• Ensure the battery is disconnected 

• Connect RC transmitter to the Ardupilot 

• Turn on RC transmitter 

• Connect the autopilot to the PC using a USB cable 

• On the Mission Planner press the “Connect” button and open 

Mission 
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• Planner’s INITIAL SETUP | Mandatory Hardware | Radio 

Calibration screen 

• Some green bars should appear showing the Ardupilot is 

receiving input from the Transmitter/Receiver 

Figure 3-19: shows the radio calibration. 

 

Figure 3-19: Radio Calibration Tab 

• Calibration: 

• Open Mission Planner’s INITIAL SETUP | Mandatory 

Hardware | Radio Calibration screen 

• Click on the green “Calibrate Radio” button on the bottom 

right 

• Press “OK”, when prompted to check the radio control 

equipment, is on, the battery is not connected, and propellers 

are not attached. 

• Move the transmitter’s control sticks, knobs, and switches to 

their limits. 

Red lines will appear across the calibration bars to show minimum 

and maximum values are seen so far. 

Figure 3-20: shows the transmitter calibration. 
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Figure 3-20: Transmitter Calibration 

• Select Click when Done. 

• A window will appear with the prompt, “Ensure all your sticks 

are 

• centered and the throttle is down and clicks ok to continue”. 

Move the throttle to zero and press “OK”. 

• Mission Planner will show a summary of the calibration data. 

Normal 

values are around 1015 for minimums and 2013 for 

maximums 

Figure 3-21: shows transmitter values.  

 

Figure 3-21: Transmitter Calibration Data 
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For accelerometer calibration: 

• Under Setup | Mandatory Hardware, select Accel Calibration 

from the left side menu 

Figure 3-22: shows the accel calibration process. 

 

Figure 3-22: Accel Calibration 

• Click Calibrate Accel to start the calibration 

• Mission Planner will prompt to place the vehicle in each 

calibration position. Press any key to indicate that the autopilot 

is in position and then proceed to the next orientation. 

• The calibration positions are: level, on the right side, left side, 

nose down, nose up, and on its back. 

• Proceed through the required positions, using the (Click when 

Done) button after each position is reached. 

• When completed the calibration process, Mission Planner will 

display “Calibration Successful!” as shown below.  
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3.3.1.4 Installing the camera 

The ESP32-CAM board already contains the camera module, and 

microSD card slot in addition to this, we used a microSD card to save the 

video 

connect the ESP32 to the Arduino: 

• connect the ground of the Arduino with the reset pin in 

Arduino. 

• connect 5v pin in Arduino with the 5v pin in ESP32. 

• connect the ground in the Arduino with the ground in the 

Esp32. 

• connect the RX pin in the Arduino with the U0R in The 

ESP32. 

• connect the TX pin in the Arduino with the U0T in The 

ESP32. 

• connect GIPO pins and ground pins in the ESP32. 

Figure 3-23: shows Connecting the camera to the Arduino. 

 

Figure 3-23: connect the ESP32 to the Arduino  
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CHAPTER FOUR  

RESULT AND DISCUSSION  

This section presents all the results of our dissertation of all the 

work carried out in the previous section. 

4.1      Model training results 

The results presented in this section are related to the training of our 

deep learning model with the collected image dataset. As mentioned in the 

previous chapter, we developed a cotton crop disease identification model 

based on transfer learning. " ndianaiproduction" was used as a feature 

extractor and a change, a new Dense and Output layer to result in 2 classes 

were changed or the requirements of our research problem. 

Our dataset was split into three subsets namely training set, 

validation set, and test set. During the training process, our model was 

periodically evaluated using the validation set. 

 The model autotunes some of the parameters based on the periodic 

evaluation results on the validation set. The final evaluation of the model 

after the training phase has been completed was carried out using the 

training set. This is the most important step to get the working accuracy 

and generalizability of our model. Matplotlib in Keras was used to plot the 

training and validation losses vs epochs and training and validation 

accuracies vs epochs after the training process was completed.  
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4.2      Loss Graphs 

The figure 4-1: shows the loss graphs of the training process. 

 

Figure 4-1: we can see that we obtained a good fitting curve up to around 

90 epochs which 

Is identified by a training and validation loss that decreases to a 

point of stability with a minimal generalization gap between the two 

values. The performance of the model on the validation dataset began to 

degrade after 90 epochs, so the training process was stopped. Before 90 

epochs, the model has low variance and generalizes the data well. Further 

training from this point increased the variance of the model which means 

the model is no longer learning but overfitting or memorizing the data. 

4.3      Accuracy graph 

After fine-tuning the parameters of the model and several training 

iterations, an average overall accuracy of about 97.2% was achieved as 

observed from Figure 4-2: Overall, this model was able to generalize our 

data. The accuracy increased gradually until it converged at an average of 

97.2%. 
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Figure 4-2: model accuracy 

4.4      Simple test example 

A random test was carried out on the model using an image that the 

model had not seen before. Figure 4-3 shows how the model was able to 

correctly predict the disease. 

 

Figure 4-3: Simple test example 
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4.5      Result of the quadcopter 

In this part, we will talk about the result of the operation of the 

quadcopter, which is the result of a failed take-off and a problem with the 

elements. Having assembled the components of the quadcopter, as 

mentioned in the previous chapter, in position X, we came to the 

following: the inability of the quadcopter to take off was the weight of the 

hull. During our experiment with fans, we found that the fans are larger 

than the frame can handle, the frame size is 380mm, the maximum it can 

handle is 9 inches, our fans are 10 inches, we cut the fans with our own 

hands to solve this problem. While attempting to take off, the quadcopter 

flipped over and one of the fans broke. We addressed this issue with a 

poster, and after the last experience and references to all sanitary settings 

and proper installation of propellers and motors, we came to the following: 

Maintenance of the quadcopter is balancing on. 

Figure 4-4: Shows the result of the quadcopter. 

 

Figure 4-4: assemble the quadcopter 
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4.6      CNN model result in real data 

After training CNN, it was used to analyze standard images) Test 

image from the dataset (To fully experiment with the system, the images 

used in Figure 4-5 appear, the coordinates of the site to be transferred in 

the name of the image file are placed in the name of the image file for use 

in determining the location of the images in the map, the coordinates taken 

from the task plan to determine the field area to be examined. The images 

are a mixture of healthy and sick plants to illustrate how the CNN model 

works. The images were marked by yellow icons indicating the affected 

plant and green icons indicating the healthy plant. 

 

Figure 4-5: testing images 

When clicking on the icon, the real images taken by Arduino  
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 Figure 4-6 shows: Real image from Arduino  

 

Figure 4-6: show disease image steed in map 

Figure 4-7: shows the images were distinguished by yellow icons 

indicating the affected plant and green icons indicating the healthy plant. 

The icon site represents the coordinates of the plant with GPS 

 

Figure 4-7: final result 
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CHAPTER FIVE  

CONCLUSION AND RECOMMENDATION 

5.1      CONCLUSION 

We designed a system that develops an identification model for one 

of the cotton paper diseases using drones and digital image processing 

technology. 

With this work, we will have reduced the losses in cotton 

productivity resulting from bacterial blight to the least possible, and we 

will have developed modern agriculture with new techniques and raised 

the level of Sudanese agriculture to keep pace with global agriculture. 

5.2      RECOMMENDATION 

Drones provide updated high-resolution data and images for many 

different purposes. These features can be taken advantage of by 

developing our research, as it can discover more than one disease by 

adding evidence for the diseases to be discovered, or by making drones 

help in treating sick plants by carrying pollen, or adding to the drone the 

task of knowing the terrain before Agriculture and whether the land is 

decertified, or the drone can be working autonomously. 

Further, this can be done in a much more enhanced way by 

combining classification/detection systems within the drone control 

systems using a microprocessor. Which will lead to reducing effort and 

cost. 
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APPENDIX 

Appendix A   Webpage 

Appendix A 1   Result.ts 
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import { Component, OnInit } from '@angular/core'; 

import { HttpClient, HttpHeaders , HttpRequest } from '@angular/common/http'; 

import {DataMarkers} from "../../providers/dataMarkers"; 

let satedImages = false; 

interface location{ 

  lat: any; 

  log: any; 

} 

@Component({ 

  selector: 'page-result', 

  templateUrl: 'result.html', 

  styleUrls: ['./result.scss'], 

}) 

export class ResultPage implements OnInit { 

  // Gets a reference to the list element 

  segment = '0'; 

  files: File[] = []; 

  rows: any[] = []; 

  cols: any[] = []; 

  locations: location[] = []; 

 

  constructor( 

    public http: HttpClient , 

    public markers: DataMarkers 

  ) { } 

 

  ngOnInit() { 
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  } 

 

 

  getBase64(file): Promise<string> { 

    return new Promise((resolve) => { 

      var reader = new FileReader(); 

      reader.readAsDataURL(file); 

      reader.onload = function () { 

        resolve(reader.result as string); 

      }; 

      reader.onerror = function (error) { 

        console.log('Error: ', error); 

      }; 

    }) 

  } 

  setSegemtnt(activeIndex: Promise<number>) { 

    activeIndex.then((idnex) => { 

      this.segment = idnex + ''; 

      if (idnex === 1){ 

        (document.getElementsByClassName('map-Result')[0] as HTMLElement).focus(); 

      } 

    }); 

  } 

  num(segment: string): number { 

    return parseFloat(segment); 

  } 

  onSelect(event): void { 

    console.log(event); 

    if (event.addedFiles.length > 0){ 

      satedImages = true; 

      this.files.push(...event.addedFiles); 

      this.files.forEach((file, i) => {//loop in images i is the index of the image 

        //locations array contains coordinates for every image 
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        this.locations.push( //add location coordinates 

          { 

            //The file name contains the coordinates, latitude and longitude, taken from the GPS 

            lat: file.name.split(',',2) [0],// set latitude 

            log: file.name.split(',',2) [1],// set longitude 

          },) 

      }) 

 

      this.files.forEach((file,i) => { 

        //locations array contains coordinates for avery image 

        this.locations.push( 

          { 

            //The file name contains the coordinates, length and width, taken from the GPS 

            lat: file.name.split(',',2)[0], 

            log: file.name.split(',',2)[1], 

          }, 

        ) 

      }) 

    } 

 

  } 

  processImages(){ 

    this.files.forEach(  (file,i) => { 

      this.postFile(file,'predict','',async (result) => { 

        let img = await this.getBase64(file) 

        this.markers.data.push({ 

          image: img, 

          location: this.locations[i], 

          status: result.status 

        }) 

        if (i=== this.files.length -1){ 

          alert('Processing End Open Map To Show Result') 

        } 
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      }) 

    }) 

  } 

 

  postFile(file: File,urlSuffix: string, name: string, callback): void{ 

    const endpoint = urlSuffix; 

    const formData: FormData = new FormData(); 

    formData.append("image", file); 

    this.makeAPICallForFileUpload(endpoint , formData, callback); 

  } 

  makeAPICallForFileUpload(urlSuffix, params, callback: (response) => void): any { 

 

    let URL_API = "http://127.0.0.1:5000/" + urlSuffix; 

    return this.http.post(URL_API, params).subscribe( 

      response => { 

        callback(response); 

      }, 

    ); 

  } 

  onRemove(event): void { 

    console.log(event); 

    this.files.splice(this.files.indexOf(event), 1); 

    if (this.files.length === 0){ 

      satedImages = false; 

    } 

  } 

} 
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Appendix A 2   Result.html 

 

<ion-header translucent="true"> 

  <ion-toolbar> 

    <ion-title>Home</ion-title> 

  </ion-toolbar> 

  <ion-toolbar> 

      <ion-title>Load Images</ion-title> 

  </ion-toolbar> 

</ion-header> 

<ion-content fullscreen="true"> 

  <div> 

    <ngx-dropzone name="files[]" id="Images" aria-describedby="Images" aria-label="Images" aria-
labelledby="Images" accept="image/*" [expandable]="true" [maxFileSize]="1024*1024*10" 
(change)="onSelect($event)"> 

      <ngx-dropzone-label>Select Images .. Taking from Drone  </ngx-dropzone-label> 

      <ngx-dropzone-image-preview [removable]="true" (removed)="onRemove(f)" ngProjectAs="ngx-dropzone-
preview" *ngFor="let f of files" [file]="f"></ngx-dropzone-image-preview> 

    </ngx-dropzone> 

    <ion-button expand="full" (ionClick)="processImages()">Process Images</ion-button> 

  </div> 

</ion-content>
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Appendix A 3   Map.ts 
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import { Component, ElementRef, Inject, ViewChild, AfterViewInit } from '@angular/core'; 

import { ConferenceData } from '../../providers/conference-data'; 

import { Platform } from '@ionic/angular'; 

import [20] from '@angular/common'; 

import { darkStyle } from './map-dark-style'; 

import {DataMarkers} from "../../providers/dataMarkers"; 

@Component({ 

  selector: 'page-map', 

  templateUrl: 'map.html', 

  styleUrls: ['./map.scss'] 

}) 

export class MapPage implements AfterViewInit { 

  @ViewChild('mapCanvas', { static: true }) mapElement: ElementRef; 

 

  constructor( 

    @Inject(DOCUMENT) private doc: Document, 

    public confData: ConferenceData, 

    public platform: Platform, 

    public markers: DataMarkers 

  ) {} 

  async ngAfterViewInit() { 

    const appEl = this.doc.querySelector('ion-app'); 

    let isDark = false; 

    let style = []; 

    if (appEl.classList.contains('dark-theme')) { 

      style = darkStyle; 

    } 

    const googleMaps = await getGoogleMaps( 

      'AIzaSyBXdJogECiKximzAZjSpVoFGyNVVFz2yCM' 

    ); 
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    let map; 

 

    this.confData.getMap().subscribe((mapData: any) => { 

      const mapEle = this.mapElement.nativeElement; 

 

      map = new googleMaps.Map(mapEle, { 

        lat: 14.3118986, 

        lng: 33.2081465, 

        center: mapData.find((d: any) => d.center), 

        zoom: 100, 

        mapTypeId: "satellite", 

        mapTypeControlOptions: { 

          mapTypeIds: ["satellite"], 

        }, 

        styles: style 

      }); 

      const drawingManager = new googleMaps.drawing.DrawingManager({ 

        drawingMode: googleMaps.drawing.OverlayType.MARKER, 

        drawingControl: true, 

        drawingControlOptions: { 

          position: googleMaps.ControlPosition.TOP_CENTER, 

          drawingModes: [ 

            // googleMaps.drawing.OverlayType.MARKER, 

            // googleMaps.drawing.OverlayType.CIRCLE, 

            googleMaps.drawing.OverlayType.POLYGON, 

            // googleMaps.drawing.OverlayType.POLYLINE, 

            googleMaps.drawing.OverlayType.RECTANGLE, 

          ], 

        }, 

        markerOptions: { 

          icon: "https://developers.google.com/maps/documentation/javascript/examples/full/images/beachflag.png", 

        }, 

        circleOptions: { 
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          fillColor: "#ffff00", 

          fillOpacity: 1, 

          strokeWeight: 5, 

          clickable: false, 

          editable: true, 

          zIndex: 1, 

        }, 

      }); 

 

      drawingManager.setMap(map); 

 

      googleMaps.event.addListener(drawingManager, 'overlaycomplete', function(event) { 

        console.log(event); 

        if (event.type == 'rectangle') { 

          let bounds = event.overlay.getBounds(); 

          let start = bounds.getNorthEast(); 

          let end = bounds.getSouthWest(); 

          let center = bounds.getCenter(); 

          let dis = haversine_distance(start,end) 

          dvideRectuangle(bounds,googleMaps,map); 

        }else if (event.type === 'polygon'){ 

          let locations = event.overlay.getPath().getArray(); 

          console.log(locations); 

          locations.forEach((loc,i) => { 

            console.log('point '+ (i + 1) +' lat = ' + loc.lat() + ' lng = ' + loc.lng()) 

            let dis; 

            if (i === 0){ 

              dis = haversine_distance(locations[i],locations[locations.length - 1]) 

            }else { 

              dis = haversine_distance(locations[i],locations[i-1]) 

            } 

            console.log(dis) 

          }) 
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          let area = googleMaps.geometry.spherical.computeArea(event.overlay.getPath()); 

          console.log('area = ' + area) 

        } 

      }); 

 

      mapData.forEach((markerData: any) => { 

        if(this.markers.data.length > 0){ 

          this.markers.data.forEach((marker,i) => { 

            const infoWindow = new googleMaps.InfoWindow({ 

              content: `<h5 class="`+marker.status+`">${marker.status}</h5><img class="image-map" src="`+ marker.image+`" alt="">` 

            }); 

            addMarker({ 

              name: marker.status, 

              lat: parseFloat(marker.location.lat), 

              lng: parseFloat(marker.location.log), 

              center: i===0 

            },googleMaps,map,infoWindow) 

          }) 

        } 

      }); 

 

      googleMaps.event.addListenerOnce(map, 'idle', () => { 

        mapEle.classList.add('show-map'); 

      }); 

    }); 

 

    const observer = new MutationObserver((mutations) => { 

      mutations.forEach((mutation) => { 

        if (mutation.attributeName === 'class') { 

          const el = mutation.target as HTMLElement; 

          isDark = el.classList.contains('dark-theme'); 

          if (map && isDark) { 

            map.setOptions({styles: darkStyle}); 
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          } else if (map) { 

            map.setOptions({styles: []}); 

          } 

        } 

      }); 

    }); 

    observer.observe(appEl, { 

      attributes: true 

    }); 

 

  } 

} 

 

function getGoogleMaps(apiKey: string): Promise<any> { 

  const win = window as any; 

  const googleModule = win.google; 

  if (googleModule && googleModule.maps) { 

    return Promise.resolve(googleModule.maps); 

  } 

 

  return new Promise((resolve, reject) => { 

    const script = document.createElement('script'); 

    script.src = `https://maps.googleapis.com/maps/api/js?key=${apiKey}&libraries=drawing&v=3.31`; 

    script.async = true; 

    script.defer = true; 

    document.body.appendChild(script); 

    script.onload = () => { 

      const googleModule2 = win.google; 

      if (googleModule2 && googleModule2.maps) { 

        resolve(googleModule2.maps); 

      } else { 

        reject('google maps not available'); 

      } 
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    }; 

  }); 

} 

 

function haversine_distance(mk1, mk2) { 

  console.log(mk1,mk2) 

  var R = 3958.8; // Radius of the Earth in miles 

  var rlat1 = mk1.lat() * (Math.PI/180); // Convert degrees to radians 

  var rlat2 = mk2.lat() * (Math.PI/180); // Convert degrees to radians 

  var difflat = rlat2-rlat1; // Radian difference (latitudes) 

  var difflon = (mk2.lng()-mk1.lng()) * (Math.PI/180); // Radian difference (longitudes) 

 

  var d = 2 * R * Math.asin(Math.sqrt(Math.sin(difflat/2)*Math.sin(difflat/2)+Math.cos(rlat1)*Math.cos(rlat2)*Math.sin(difflon/2)*Math.sin(difflon/2))); 

  return d; 

} 

 

function dvideRectuangle(bounds,googleMaps,map){ 

  var southWest = bounds.getSouthWest(); 

  var northEast = bounds.getNorthEast(); 

  console.log(bounds); 

  var numberOfParts = 4; 

 

  var tileWidth = (northEast.lng() - southWest.lng()) / numberOfParts; 

  var tileHeight = (northEast.lat() - southWest.lat()) / numberOfParts; 

  for (var x = 0; x < numberOfParts; x++) { 

    for (var y = 0; y < numberOfParts; y++) { 

      var areaBounds = { 

        north: southWest.lat() + (tileHeight * (y+1)), 

        south: southWest.lat() + (tileHeight * y), 

        east: southWest.lng() + (tileWidth * (x+1)), 

        west: southWest.lng() + (tileWidth * x) 

      }; 

      // console.log("Point : " + x + " , "  + y + " = "+ "\n" 
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      //   + "north:" + southWest.lat() + "+" + (tileHeight * (y+1)) +  " " + areaBounds.north  + "\n" 

      //  + "south:" + southWest.lat() + "+" + (tileHeight * y) + " " + areaBounds.south + "\n" 

      //   +  "east:" + southWest.lng() + "+" + (tileWidth * (x+1)) + " " + areaBounds.east + "\n" 

      //   + "west:" + southWest.lng() + "+" + (tileWidth * x)  + " " + areaBounds.west) 

      var area = new googleMaps.Rectangle({ 

        strokeColor: '#42a5a5', 

        strokeWeight: 2, 

        map: map, 

        bounds: areaBounds 

 

      }); 

      let Center = area.bounds.getCenter() 

      console.log(Center.lat() + "," + Center.lng() + ".png") 

    } 

  } 

} 

function addMarker(markerData: marker,googleMaps, map,infoWindow) { 

  const marker = new googleMaps.Marker({ 

    position: markerData, 

    map, 

    title: markerData.name, 

    icon: markerData.name === 'diseased'?'assets/img/deisae.png':'assets/img/helthy.png' 

  }); 

  marker.addListener('click', () => { 

    infoWindow.open(map, marker); 

  }); 

} 

interface marker{ 

  "name": string, 

  "lat": number, 

  "lng": number, 

  "center": boolean 

} 
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Appendix A 4   Map.html 

<ion-header> 

  <ion-toolbar> 

    <ion-buttons slot="start"> 

      <ion-menu-button></ion-menu-button> 

    </ion-buttons> 

    <ion-title>Map</ion-title> 

  </ion-toolbar> 

</ion-header> 

 

<ion-content> 

  <div #mapCanvas class="map-canvas"></div> 

</ion-content> 
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Appendix B  Python CNN model 

Appendix B 1  Train.py 
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# import libraries 

import keras 

from keras.preprocessing.image import ImageDataGenerator 

from keras.optimizers import Adam 

from keras.callbacks import ModelCheckpoint 

import matplotlib.pyplot as plt 

 

print(keras.__version__) 

 

train_data_path = "./dataset/training_set" 

validation_data_path = "./dataset/val" 

learning_rate = 0.0001 

batch_size = 32 

epochs = 100 

 

 

def plotImages(images_arr): 

    fig, axes = plt.subplots(1, 5, figsize=(20, 20)) 

    axes = axes.flatten() 

    for img, ax in zip(images_arr, axes): 

        ax.imshow(img) 

    plt.tight_layout() 

    plt.show() 

 

 

# this is the augmentation configuration we will use for training 

# It generate more images using below parameters 

training_datagen = ImageDataGenerator(rescale=1. / 255, 

                                      rotation_range=40, 
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                                      width_shift_range=0.2, 

                                      height_shift_range=0.2, 

                                      shear_range=0.2, 

                                      zoom_range=0.2, 

                                      horizontal_flip=True, 

                                      fill_mode='nearest') 

 

# this is a generator that will read pictures found in 

# at train_data_path, and indefinitely generate 

# batches of augmented image data 

training_data = training_datagen.flow_from_directory(train_data_path,  # this is the target directory 

                                                     target_size=(150, 150),  # all images will be resized to 150x150 

                                                     batch_size=batch_size, 

                                                     class_mode='binary')  # since we use binary_crossentropy loss, we need 
binary labels 

print(len(training_data)) 

print(training_data.class_indices) 

 

# this is the augmentation configuration we will use for validation: 

# only rescaling 

valid_datagen = ImageDataGenerator(rescale=1. / 255) 

 

# this is a similar generator, for validation data 

valid_data = valid_datagen.flow_from_directory(validation_data_path, 

                                               target_size=(150, 150), 

                                               batch_size=batch_size, 

                                               class_mode='binary') 

print(len(valid_data)) 

images = [training_data[0][0][0] for i in range(5)] 

plotImages(images) 

 

model_path = './modal/ModalForSearch.h5' 

checkpoint = ModelCheckpoint(model_path, monitor='val_accuracy', verbose=1, save_best_only=True, 
mode='max') 
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callbacks_list = [checkpoint] 

 

# Building cnn model 

cnn_model = keras.models.Sequential([ 

    keras.layers.Conv2D(filters=32, kernel_size=3, input_shape=[150, 150, 3]), 

    keras.layers.MaxPooling2D(pool_size=(2, 2)), 

    keras.layers.Conv2D(filters=64, kernel_size=3), 

    keras.layers.MaxPooling2D(pool_size=(2, 2)), 

    keras.layers.Conv2D(filters=128, kernel_size=3), 

    keras.layers.MaxPooling2D(pool_size=(2, 2)), 

    keras.layers.Conv2D(filters=256, kernel_size=3), 

    keras.layers.MaxPooling2D(pool_size=(2, 2)), 

 

    keras.layers.Dropout(0.5), 

    keras.layers.Flatten(),  # neural network beulding 

    keras.layers.Dense(units=128, activation='relu'),  # input layers 

    keras.layers.Dropout(0.1), 

    keras.layers.Dense(units=256, activation='relu'), 

    keras.layers.Dropout(0.25), 

    keras.layers.Dense(units=2, activation='softmax')  # output layer 

]) 

 

# compile cnn model 

cnn_model.compile(optimizer=Adam(lr=learning_rate), loss='sparse_categorical_crossentropy', 
metrics=['accuracy']) 

cnn_model.summary() 

keras.utils.plot_model(cnn_model, to_file="my_model.png", show_shapes=True) 

# train cnn model 

trainedModel = cnn_model.fit(training_data, 

                             epochs=100, 

                             verbose=1, 

                             validation_data=valid_data, 

                             callbacks=callbacks_list)  # time start 16.06 
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from keras.models import save_model 

 

model = save_model(cnn_model, model_path)  # saving model to './modal/ModalForSearch.h5' 

# # summarize history for accuracy 

plt.plot(trainedModel.history['accuracy']) 

plt.plot(trainedModel.history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'test'], loc='upper left') 

plt.show() 

# summarize history for loss 

plt.plot(trainedModel.history['loss']) 

plt.plot(trainedModel.history['val_loss']) 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'test'], loc='upper left') 

plt.show() 

# 

print(trainedModel.history) 
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# Import necessary libraries 

from flask import Flask, render_template, request 

from flask_cors import CORS, cross_origin 

import numpy as np 

import os 

from keras.preprocessing.image import load_img 

from keras.preprocessing.image import img_to_array 

from keras.models import load_model 

from keras.utils.vis_utils import plot_model 

 

# load model 

# from werkzeug.datastructures import FileStorage 

 

model = load_model("model/ModalForSearch.h5") 

plot_model(model, to_file='model_plot.png',  show_layer_names=True) 

 

def pred_cot_dieas(cott_plant): 

    img = load_img(cott_plant, target_size=(150, 150)) 

    img = img_to_array(img) / 255 

    img = np.expand_dims(img, axis=0) 

    result = model.predict(img).round(3) 

    pred = np.argmax(result)  # get the index of max value 

    # return pred 

    # # {'diseased cotton plant': 0,  'fresh cotton plant': 1} 

    if pred == 0: 

        return " diseased cotton plant", 'disease_plant.html'  # if index 0 burned leaf 

    else: 

        return "healthy cotton plant", 'healthy_plant.html'  # if index 3 

 

 

# ------------>>pred_cot_dieas<<--end 
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# Create flask instance 

app = Flask(__name__) 

cors = CORS(app) 

app.config['CORS_HEADERS'] = 'Content-Type' 

 

# render index.html page 

@app.route("/", methods=['GET', 'POST']) 

def home(): 

    return render_template('index.html') 

 

    # Python3 code here creating class 

 

 

class predResult: 

    def __init__(self, file_path, pred): 

        self.file_path = file_path 

        self.pred = pred 

 

 

# get input image from client then predict class and render respective .html page for solution 

@app.route("/predict", methods=['GET', 'POST']) 

@cross_origin() 

def predict(): 

    file_Results = [] 

    if request.method == 'POST': 

        print('started') 

        file = request.files['files[]']  # fet input 

        filename = file.filename 

        print("@@ Input posted = ", filename) 

 

        file_path = os.path.join('static/user uploaded', filename) 
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        file.save(file_path) 

 

        print("@@ Predicting class......") 

        pred, output_page = pred_cot_dieas(cott_plant=file_path) 

        return render_template(output_page, pred_output=pred, user_image=file_path) 

 

 

# For local system & cloud 

if __name__ == "__main__": 

    app.run(threaded=False, ) 

 


