
Sudan University of Science and Technology

College of Engineering

School of Electronic Engineering

Enhancing The Efficiency of

Agriculture by using Image Processing

and Drones

A Research Submitted in Partial fulfillment for the requirements of the

Degree of B.Eng. (Honors) in Electronic Engineering

Prepared By:
1- Abubakr Mahdi Abdallah

2- Esraa Alnour Zakaria

3- Hiba Al-Daer Ibrahim

4- Motaz Khogali Alsaied

Supervisor By:
 Dr. Hisham Ahmed Ali Ahmed

March 2022

I

 الإستهلال

II

DEDICATION

First of all, we would like to dedicate this unpretentious effort

To our Almighty GOD who gave us strength and knowledge.

To Our Parents Who have an endless presence and for the

never-ending love and encouragement.

To Our brothers and sisters Who sustained us in our life and

still.

To Our teachers Who lighted candles in our ways and provided

us with the light of knowledge.

And of course, to our beloved supervisor Dr. Hisham Ahmed Who

was the perfect mentor for us.

Finally, our best friends and Our Classmates

Researchers…

III

ACKNOWLEDGMENTS

Thanking Allah before and after.

First and foremost; the greatest thanking to our teachers for their

continuous support... and for their great efforts, they were the best guide

and monitor...

Finally; thank our colleagues and workers at the College of

Engineering for their cooperation...

IV

ABSTRACT

Agriculture is an important factor for the development of any

country, in addition to providing foodstuffs, agriculture is a primary

source of raw materials that are used in several industries, a term known

as smart agriculture has recently appeared where technology and modern

techniques are used to better plan and manage crops. The research focuses

on discovering one of the most dangerous cotton diseases, angular spot

disease. which is also known as bacterial blight. It can cause production

losses of up to 10% of the crop. The drone is used to take pictures of the

agricultural field. It is a mechanical vehicle with four arms, and in each

arm, a motor is connected to a propeller. Two of the propellers rotate

clockwise, while the other two spin counterclockwise. Based on the

images taken by the drone, the technique of filtering neural networks is

convolutional Neural Network (CNN), which is used to detect the disease

by performing operations on the images. This research contributed to

helping to enhance the efficiency of cotton production by classifying the

images taken by the drones into healthy images or bacterial blight

diseases, training a CNN model using the data set that contains images of

diseased and healthy cotton and we obtained an accuracy of 97.2% and

thus is successfully classify the cotton images into diseased and healthy

and return them to a map showing disease prevalence.

V

مستخلص ال

إلى جانب توفير المواد الغذائية تعُتبر الزراعة ،الزراعة تعُدّ عاملاً مهمّاً لتطوّر أيّ بلد

 ةظهر مؤخر مصطلح يعرف بالزراع،مصدراً أساسياً للمواد الخام التي تدخل في عدةّ صناعات

 . فضلأبشكل المحاصيل ةدارإلتخطيط و ةحيث يتم استخدام التكنولوجيا والتقنيات الحديث ة الذكي

مراض القطن وهو مرض التبقع الزاوي. ويعرف أيضاً أخطر أحد أكتشاف ابحث على اليركز و

 . % من المحصول10بإسم مرض اللفحة البكتيرية . ويمكن أن يسبب خسائر في الإنتاج تصل إلى

ذرع وهي عباره عن مركبة ميكانيكية لها أربعة أ يللحقل الزراع خذ صوراستخدام الدرون لأتم

في اتجاه عقارب الساعة، بينما المراوحوفي كل ذراع محرك متصل به مروحة. يدور اثنان من

على الصور المأخوذة بواسطة الدرون استناداً .يدور الآخران في الاتجاه المعاكس لعقارب الساعة

العصبية تقنية استخدمت أن)التلافيفية الشبكات أن بإجراء يف(سي وذلك المرض اكتشاف

تعزيز كفاءة إنتاج محصول القطن وذلك في ةالمساعد ساهم في البحث هذا .عمليات على الصور

 باللفحة البكتريا, مرض وا سليمةتصنيف الصور التي التقطتها الطائرات بدون طيار إلى صور ب

إن نموذجتدريب إن على صاب سي تحتوي التي البيانات مريضة القطنور ستخدام مجموعة

قدرها دقة إلى مر97.2وصحية وحصلنا على القطن تم تصنيف صور وبذلك وسليم ض ي٪

 بنجاح وإعادتها إلى خريطة توضح انتشار المرض.

VI

Table of Contents
 I .. الإستهلال

Dedication .. II

Acknowledgments ... III

Abstract ... IV

 V .. المستخلص

Table of Contents .. VI

List of Tables ... IX

List of Figures .. X

List of Symbols ... XII

List of Abbreviations.. XIV

CHAPTER ONE .. 1

Introduction ... 1

1.1 Preface ... 1

1.2 Problem statement .. 1

1.3 Proposed solution .. 2

1.4 Research Aim and Objectives ... 2

1.5 Methodology .. 2

1.6 Project Layout .. 3

CHAPTER TWO .. 4

Background and related work ... 4

2.1 Background .. 4

2.1.1 Computer Vision .. 4

2.1.2 Machine Learning (ML) .. 4

2.1.3 Neural Networks (NN) .. 8

2.2 Deep Learning .. 11

2.2.2 Convolutional Neural Networks (CNNs) ... 12

2.2.3 GPU .. 16

2.2.4 TensorFlow (TF) .. 16

2.2.5 RCNN Family ... 17

2.2.6 You Only Look Once (YOLO) ... 17

2.3 Drone Hardware ... 18

2.4 Software tools .. 28

2.4.1 Arduino IDE .. 28

VII

2.4.2 Mission Planner .. 28

2.4.3 PyCharm IDE ... 28

2.5 Drone Movement and Control ... 28

2.5.1 Drone Movement ... 28

2.5.2 Drone structure .. 29

2.5.3 Drone mechanism .. 30

2.5.4 Equations of Motion .. 30

2.5.5 Drone maneuverability .. 31

2.5.6 Proportional Integral Derivative (PID) ... 32

2.6 Related work .. 33

CHAPTER THREE .. 36

Methodology ... 36

3.1.1 Software system ... 37

3.1.2 Method Overview .. 37

3.1.3 Building of the Dataset... 37

3.1.4 Bacterial blight ... 38

3.1.5 Preprocessing of Images .. 40

3.1.6 Neural Network Design .. 40

3.1.7 Training the model ... 42

3.1.8 Interface: .. 43

3.1.9 processing Image ... 47

3.1.10 Locate the image in the field.. 47

3.1.11 Preparing for the field map .. 47

3.2 Hardware design .. 47

3.3 Design of quadcopter ... 47

CHAPTER FOUR ... 56

RESULT and DISCUSSION .. 56

4.1 Model training results .. 56

4.2 Loss Graphs .. 57

4.3 Accuracy graph ... 57

4.4 Simple test example ... 58

4.5 Result of the quadcopter ... 59

4.6 CNN model result in real data .. 60

CHAPTER FIVE ... 62

Conclusion and Recommendation .. 62

VIII

5.1 CONCLUSION .. 62

5.2 RECOMMENDATION .. 62

Reference ... 63

Appendix .. A

Appendix A Webpage .. A

Appendix A 1 Result.ts .. A

Appendix A 2 Result.html ... E

Appendix A 3 Map.ts ..F

Appendix A 4 Map.html ... M

Appendix B Python CNN model ... N

Appendix B 1 Train.py ... N

Appendix B 2 App.py ... R

IX

List of Tables

TABLE NO TITLE

PAGE

Table 3-1: dataset .. 40

X

List of Figures

FIGURE NO. TITLE PAGE

Figure 2-1: Gradient Descent .. 6

Figure 2-2: Biological neuron and its Equivalent ANN 9

Figure 2-3: Computation of one-layer NN output 10

Figure 2-4: Multiple Layers NN ... 10

Figure 2-5: DNN Structure ... 11

Figure 2-6: 3D convolution ... 13

Figure 2-7: CNN ... 15

Figure 2-8: Quadcopter frame ... 19

Figure 2-9: Arduino UNO Microcontroller Board 20

Figure 2-10:30A Brushless ESC ... 21

Figure 2-11:3S LiPo Battery ... 22

Figure 2-12: A2212/13T 1000 KV BLDC (Brushless DC Motor) 23

Figure 2-13:Power distribution board ... 24

Figure 2-14: 10x4.5 fixed-pitch, Carbon fiber Propeller 24

Figure 2-15:sky remote control ... 25

Figure 2-16: GPS module ... 26

Figure 2-17: Ardupilot Mega .. 27

Figure 2-18: ESP32 Camera ... 27

Figure 2-19: Basic Flight movements of a Quadcopter 29

Figure 2-20: Quadcopter Axis ... 29

Figure 2-21: Quadcopter Mechanism ... 30

Figure 2-22: Quadcopter Roll, Pitch, and Yaw....................................... 32

Figure 2-23: Proportional Integral Derivative (PID) Block Diagram. ... 33

Figure 3-1: System Example ... 36

Figure 3-2: software system block diagram .. 37

Figure 3-3: Bacterial blight ... 38

Figure 3-4: folders contain the diseased and healthy images 39

Figure 3-5: three sets test set and training set validation set 39

Figure 3-6: Deep neural network .. 41

Figure 3-7: 14th epoch .. 42

Figure 3-8: 91th epoch .. 43

Figure 3-9: 100th epoch .. 43

Figure 3-10: accuracy and loss .. 43

Figure 3-11: flowchart predicting ... 44

XI

Figure 3-12: home page layout ... 45

Figure 3-13: selecting images for predicting .. 45

Figure 3-14: hardware system block diagram ... 48

Figure 3-15: ESCs and PDB ... 48

Figure 3-16: APM 2.8 Pins Configurations .. 49

Figure 3-17: ESCs connection to Ardupilot Output and Receiver Channel

Input .. 50

Figure 3-18: Mission Planner Setup Page ... 51

Figure 3-19: Radio Calibration Tab .. 52

Figure 3-20: Transmitter Calibration .. 53

Figure 3-21: Transmitter Calibration Data ... 53

Figure 3-22: Accel Calibration ... 54

Figure 3-23: connect the ESP32 to the Arduino 55

Figure 4-1: we can see that we obtained a good fitting curve up to around

90 epochs which .. 57

Figure 4-2: model accuracy ... 58

Figure 4-3: Simple test example ... 58

Figure 4-4: assemble the quadcopter .. 59

Figure 4-5: testing images ... 60

Figure 4-6: show disease image steed in map ... 61

Figure 4-7: final result ... 61

XII

List of Symbols

symbols meaning

a lift slope

A propeller disk area

Ac fuselage area

Au Operational time (autonomy)

b thrust facto

Bw propulsion group bandwidth

c propeller chord

C propulsion group cost factor

Cbat battery capacity

Cd drag coefficient at 70% radial station

𝐶𝐻 hub force coefficient

𝐶𝑄 drag coefficient

𝐶𝑅𝑚 rolling moment coefficient

𝐶𝑇 thrust coefficient

d drag factor

g acceleration due to gravity

h vertical distance: Propeller center to Cog

H hub force

i motor current

𝐼𝑥𝑥,𝑦𝑦,𝑧𝑧 inertia moments

𝐽𝑚 motor inertia

𝐽𝑟 total rotor inertia is seen by the motor

𝑘𝑒 motor electrical constant

𝑘𝑚 motor torque constant

l horizontal distance: propeller center to Cog

m overall mass

𝑚𝑎𝑓 airframe mass

𝑚𝑎𝑣 avionics mass

𝑚𝑏𝑎𝑡𝑎𝑣
 avionics’ battery mass

𝑚ℎ𝑒𝑙 helicopter mass

𝑚𝑝𝑔 propulsion group mass

𝑀𝐵𝐴𝑇𝑚𝑎𝑥
 maximum battery mass possible

𝑀𝑀𝐴𝑋𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
 maximum mass one motor can lift

𝑀𝑀𝐴𝑋𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑
 requested mass for one motor to lift

n number of propellers

𝑃𝑎𝑣 avionics’ power consumption

XIII

𝑃𝑒𝑙 electrical power

𝑃𝑖𝑛 gearbox input power

𝑃𝑜𝑢𝑡 gearbox output power

Q drag moment

𝑄𝑝𝑔 propulsion group quality factor

𝑄𝑖𝑛 design quality index

r gearbox reduction ratio

R rotation matrix

𝑅𝑟𝑎𝑑 rotor radius

𝑅𝑚𝑜𝑡 motor internal resistance

𝑅𝑚 rolling moment

T thrust force

𝑇𝑤 propulsion group thrust/weight ratio

u motor input

U control inputs

V body linear speed

x, y, z position in body coordinate frame

X, Y, Z position in earth coordinate frame

β thrust/weight ratio

ζ position vector

η gearbox efficiency

𝜂𝑚 motor efficiency

θ pitch angle

𝜃0 pitch of incidence

𝜃𝑡𝑤 twist pitch

λ inflow ratio

μ rotor advance ratio

ѵ speed vector

ρ air density

𝑄𝑒𝑞𝑢 percentage of time in equilibrium

σ solidity ratio

τ motor time-constant

𝜏𝑎 torque in body coordinate frame

𝜏𝑑 motor load

𝜏𝑚 motor torque

υ induced velocity

Φ roll angle

ѱ yaw angle

ѡ body angular rate

ѡ𝑚 motor angular rate

ῼ propeller angular rate

ῼ𝑟 overall residual propeller angular speeds

XIV

List of Abbreviations
Abbreviations Meaning

AC alternating current

ANNs artificial neural networks

APM Ardupilot Mega

BEC Battery Eliminator Circuit

CCW counterclockwise

CH channel

CNN Convolutional Neural Network

COM port communication port

CPU central processing unit

CSS Cascading Style Sheets

CW clockwise

DC direct current

DNNs deep neural networks

EMF Electromotive Force

ESC Electronic Speed Controllers

FETs Field-effect transistors

FPV first-person view

GND Ground

GPS Global Positioning System

GPU Graphics Processing Unit

HTML Hypertext Markup Language

Hz hertz

ICSP In-Circuit Serial Programming

IDE integrated development environment

IMU Inertial Measurement Unit

IOU Intersection over Union

IP Internet Protocol

LiPo Lithium Polymer

MHz megahertz

ML Machine Learning

MLPs multilayer perceptron’s

Ni-Cd nickel–cadmium battery

NiMH nickel metal hydride battery

NMS Non-Maximum Suppression

NN Neural network

PCB printed circuit board

PDB power distribution board

PID Proportional Integral Derivative

PWM Pulse Width Modulation

R-CNN Region-Based Convolutional Neural Network

RPM Revolutions per minute

XV

RPN Region Proposal Network

SDKs Software Development Kit

SSD Single Shot Detector

TF TensorFlow

TL Transfer Learning

UAV unmanned aerial vehicle

USB universal serial bus

VCC Common Collector Voltage

YOLO You Only Look Once

1

CHAPTER ONE

INTRODUCTION

1.1 Preface

Cotton is one of the most important crops grown in Sudan, as it is

one of the most important industrial export crops. Industrially, cotton is

used in the textile industry, while cottonseeds are an important source of

oils and their residues are used to make feed.

Sudanese cotton has high quality and great historical fame, and to

preserve the crop and increase its productivity, it must be protected from

diseases and pests.

Bacterial blight is one of the most common diseases affecting

cotton. Bacterial blight with angular, moist, waxy spots with a red to

brown border on leaves, stems, and roses. Bacterial blight is one of the

most dangerous bacteria found on cotton and causes losses and reduces

the productivity of fields. Now, with the spread of technology in

agriculture, the development of agricultural methods, the use of drones,

and the frequent use of them in our daily life after it was a monopoly of

military facilities, we see widespread use of this technology in agriculture.

The use of this technology in agriculture can lead to development

in the agricultural field and reduce the spread of diseases that can be

combated with this modern technology, which contributes to increasing

crop productivity.

1.2 Problem statement

Bacterial blight is one of the most dangerous diseases that affect the

cotton crop its infestation leads to a decrease in the product as a result of

2

the affected leaves falling, the rotting of the nut, and the low degree of

cotton as a result of its discoloration and discoloration.

1.3 Proposed solution

By use drones to take pictures from the field and analyze them later

using digital image processing to detect the disease and collect enough

information about it such as the extent of the disease and the identification

of the affected area.

1.4 Research Aim and Objectives

Aim:

Design a drone for cotton disease diagnosis using image processing

and machine learning.

Objectives of this work was to:

• Reduce the losses in cotton productivity caused by bacterial

blight to the least possible and save time and effort.

• Develop agriculture using drones and new technologies.

• Develop an algorithm to perform image processing on crop

digital images.

1.5 Methodology

The project consists of two parts, software, and hardware.

In the hardware part, the drone is designed and connect the

components with the Ardupilot and connect the camera with the Arduino.

 The software part, consists of two parts, a part for programming the

drones, and the other part for machine learning and image processing, in

which data is collected, and model training.

3

1.6 Project Layout

This project consists of five chapters:

Chapter One gives an introduction about the principles of the

project, motivation.

Chapter Two discusses the background of computer vision, history

of computer vision, machine learning, the components of drones, drone

movement, and the software used.

The other section is related work

Chapter Three describes the system block diagram, hardware design

for drones, and Software design for drone and machine learning.

Chapter Four discusses the results of simulation and

implementation for the project.

Chapter Five explains the conclusion and the future ideas that can

be performed.

4

CHAPTER TWO

BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Computer Vision

Computer vision is a field of artificial intelligence that trains

computers to interpret and understand the visual world. Using digital

images from cameras and videos and deep learning models, machines can

accurately identify and classify objects — and then react to what they

“see.” [1]

2.1.2 Machine Learning (ML)

2.1.2.1 Machine Learning Overview

Machine Learning (ML) recently had breakthroughs in so many

diverse areas due to the explosion in the availability of data, significant

improvements in ML techniques, and advancement in computing

capabilities. Machine learning is concerned with constructing computer

programs that improve automatically with experience.

In traditional programming inputs and programs are given to the

computer to find the output, but in ML the computer has the inputs and

outputs, and the task is to find the relationship between them or to learn

how it can reach the output given so many examples.

A computer program is said to learn from experience E concerning

some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E[2, 3] For

example in the cat dog classification problem, the task T is to tell whether

the image is for a dog or a cat, the performance measure P is the percent

of images correctly classified, and the training experience E is a database

5

of images with given classifications. When the ML sees more images, it

gets more experience, if the performance measure improves with more

experience, that means the model is learning.

2.1.2.2 Machine Learning Components

ML algorithm components are a model, a dataset, an optimization

algorithm, and a cost function. Most ML algorithms involve optimization

of some sort. Optimization refers to the task of either minimizing or

maximizing some function f(x) by altering x. Most optimization problems

are usually phrased in terms of minimizing f(x). In that case, f(x) is called

the loss function or the cost function. The derivative is useful in the task

of minimizing a function f(x). We can reduce f(x) by moving x in small

steps with the opposite sign of the derivative.

This technique is called gradient descent. Gradient descent is an

iterative algorithm that starts from a random point on a function and

travels down its slope in steps until it reaches the lowest point of that

function. The following figure shows an illustration of how this technique

can minimize a function; we take f(x) =
1

2
𝑥2 as an example.

For a cost function f(x) depending on a parameter x, the

optimization is performed by updating x using this formula: 𝑥 0

 = 𝑥 − (τ ∗

𝑑(𝑓(𝑥))

𝑑𝑥
), where 𝑥 0

 is the new value of the parameter x, and 𝜏 is the learning

rate, which is a tuning parameter in the optimization algorithm that

determines the step size at each iteration while moving towards a

minimum of the loss function. When the training dataset is labeled (each

example has a label or a target value) this is called Supervised Learning,

and it’s called Unsupervised Learning when the dataset is unlabeled. The

most common form of ML is supervised learning.[4]

Figure 2-1: shows the Gradient Descent.

6

Figure 2-1: Gradient Descent

2.1.2.3 Unsupervised Learning

Unsupervised Learning algorithms experience a dataset containing

many features, then learn useful properties of the structure of this dataset

only from the experienced features, no supervision signal is given. The

distinction between supervised and unsupervised learning is not formally

and rigidly defined because there is no objective test to determine whether

a value is a feature or a target provided by a supervisor. But informally

unsupervised learning refers to most attempts to extract information from

a distribution that does not require human labor to annotate examples.[5]

Density estimation, clustering data into groups of related examples,

learning to draw samples from a distribution, or denoise data from some

distribution are all examples of unsupervised learning problems. K-means

clustering is one of the simplest and most popular unsupervised machine

learning algorithms. The objective of the k-means clustering merely is

grouping similar data points together and discovering underlying patterns,

which can be achieved by looking for a fixed number (k) of clusters in a

dataset. A cluster refers to a collection of data points aggregated together

because of certain similarities. The k-means algorithm identifies the k

number of centroids (centers of the clusters). It then allocates every data

7

point to the nearest cluster while keeping the centroids as small as

possible.

2.1.2.4 Supervised Learning

Supervised machine learning is the search for algorithms that reason

from externally supplied instances to produce general hypotheses, which

then make predictions about future cases[6]. Supervised Learning

algorithms experience a dataset containing features, but each example is

associated with a label or a target. So given a training set of examples of

inputs x and outputs y, the goal of supervised learning is to predict the

right output y from data x that is not known before, based on earlier known

data. Formally, the goal is to approximate the mapping function from

inputs to outputs y = f(x). Supervised Learning can be divided into two

categories of problems, classification, and regression. Both problems have

as a goal the construction of a model that can predict the value of the

output y from the input x value; the difference is the fact that the output y

value is numerical for regression and categorical for classification. The

goal in classification is to take an input vector x and to assign it to one of

K discrete classes 𝑐𝑘where 𝑘 = 1,2, … . 𝑘In the most common scenario,

the classes are taken to be disjoint, so that each input is assigned to one

and only one class. The input space is thereby divided into decision

regions whose boundaries are called decision boundaries or decision

surfaces. When there are only two categories, it’s called binary

classification, an example of this is the cat-dog classification problem. The

goal of regression is to predict the value of one or more continuous target

variables t given the value of a D-dimensional vector x of input variables,

and polynomial curve fitting is an example[7].

8

2.1.2.5 Machine Learning Metrics

Various metrics are proposed to evaluate ML model performance in

different applications. Looking to a single metric may be tricky and may

not give you the whole picture of the problem, then a group of metrics will

be needed to have a concrete evaluation of the model. Rather than

accuracy, performance in ML is measured using other concepts, precision,

and recall.

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

true predicted data

total data
 (1)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑌 𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑌 𝑒𝑠
 (2)

recall =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
=

𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑌 𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑢𝑙𝑦
 (3)

Where:

TP: Actual class is YES (1), and the prediction is YES (1).

TN: Actual class is NO (0), and the prediction is NO (0).

FP: Actual class is NO (0), and the prediction is YES (1).

FN: Actual class is YES (1), and the prediction is NO (0).

2.1.3 Neural Networks (NN)

2.1.3.1 Neural Network Overview

Neural network (NN) learning methods provide a robust approach

to approximate real-valued, discrete-valued, and vector-valued target

functions. Neural networks are among the most effective learning methods

currently known for certain types of problems, such as learning to interpret

complex real-world sensor data [1]. Neural networks have generated a lot

of excitement in ML research and industry, which results in breakthroughs

in computer vision, speech recognition, and text processing.

A standard neural network consists of many simple connected

processors called neurons, each producing a sequence of real-valued

activations. Input neurons get activated through sensors perceiving the

9

environment; other neurons get activated through weighted connections

from previously active neurons. NN learning is about finding weights that

make the NN exhibit desired behavior. Depending on the problem and

how the neurons are connected, such behavior may require long causal

chains of computational stages, where each stage transforms (often in a

non-linear way) the aggregate activation of the network[8].

The study of artificial neural networks (ANNs) has been inspired in

part by the observation that biological learning systems are built of very

complex webs of interconnected neurons. In a rough analogy, artificial

neural networks are built out of a densely interconnected set of simple

units, where each unit takes several real-valued inputs (possibly the

outputs of other units) and produces a single real-valued output, which

may become the input to many other units[2].

 Figure 2-2 shows the biological neuron and the equivalent ANN.

Figure 2-2: Biological neuron and its Equivalent ANN

2.1.3.2 Structure of Neural Network

The basic unit of computation in NN is the neuron, which is

sometimes called a node or unit. The neuron receives input from an

external source or another neuron and computes an output. Each input to

the neuron has an associated weight w assigned based on the relative

importance of this input. Additionally, there is another input 1 with weight

b called the bias. The neuron computes the weighted sum of its inputs and

then applies an activation function f to the result.

10

A neural network is formed in layers; each layer consists of multiple

neurons. A neural network layer could be an input layer, an output layer,

or a hidden layer. Input neurons receive information from an external

source and pass them to hidden neurons. No computation is performed in

input neurons. Output neurons are responsible for computations and

transferring outputs from the network to the outside world. Hidden

neurons have no direct connection with the outside world. They perform

computations and transfer information from previous neurons to the later

ones.

Figure 2-3: shows the computation of one-layer NN output.

Figure 2-3: Computation of one-layer NN output

They are called hidden layers because the training data does not

show the desired output for each of these layers, Instead, the learning

algorithm must decide how to use these layers to the best implementation

of an approximation of the mapping function[5].

Figure 2-4: shows the multiple layers NN

Figure 2-4: Multiple Layers NN

11

2.1.3.3 Activation Function

The Activation function adds non-linearity to neuron output, which

is important because most of the real-world data is non-linear, and we want

neurons to learn this non-linear behavior. The most popular activation

functions used in neural networks are sigmoid, tanh, ReLU, and Leaky

ReLU. In multi-class classification tasks in NN, the SoftMax function is

used in the final layer (the output layer).

2.2 Deep Learning

2.2.1.1 Deep Learning Overview

A neural network that has only one hidden layer is called a shallow

neural network, and those with more hidden layers are called deep neural

networks (DNNs). From here, the term deep learning exists. Modern deep

learning provides a compelling framework for supervised learning. By

adding more layers and more units within a layer, a deep network can

represent functions of increasing complexity. Most tasks that consist of

mapping an input vector to an output vector, and that are easy for a person

to do rapidly, can be accomplished via deep learning, given sufficiently

large models and sufficiently large datasets of labeled training

examples[5]. Figure 2-5 shows the structure of the DNN.

Figure 2-5: DNN Structure

12

2.2.1.2 Feedforward Neural Networks

Feedforward neural networks, or multilayer perceptron’s (MLPs),

are the quintessential deep learning models. The goal of a feedforward

network is to approximate some function f_. For example, for a classifier,

y = f_(x) maps an input x to a category y. A feedforward network defines

a mapping y = f (x; W, b) and learns the value of the parameters W and b

that result in the best function approximation.

These models are called feedforward because information flows

through the function being evaluated from x, through the intermediate

computations used to define f, and finally to the output y. There are no

feedback connections in which outputs of the model are fed back into itself

[3]. These feedback connections exist in Recurrent Neural networks.

2.2.2 Convolutional Neural Networks (CNNs)

2.2.2.1 CNN Overview

The Convolutional Neural Network (CNN) is one of the most

notable deep learning approaches where multiple layers are trained

robustly. It has been found highly effective and is also the most commonly

used in diverse computer vision applications[9].

Dense layer or fully connected layer learns global patterns in their

input feature space, but convolutional layers learn local patterns.

Convolution learns different features from the input image, so the output

of a convolutional layer is called a feature map. Feature maps have two

spatial axes (height and width) as well as a depth axis (also called the

channels axis). Properties of CNN[10]:

• Learned patterns by CNN are translation-invariant.

• They can learn spatial hierarchies of patterns.

• the Reduced number of parameters.

13

2.2.2.2 Convolutional Layers

Generally, CNN consists of three main neural layers, which are

convolutional, pooling, and fully connected. The convolutional layer

consists of various kernels or filters, of the same size. These filters are

applied to (convolved with) the input image and the intermediate feature

maps. In CNN's the filter or the kernel is mostly a 3D tensor of size k x k

x c, where k is an integer and is usually a small number, like 3 or 5. And

c is the number of channels of the input image or feature map. For an input

image I with size w x h x c, and a filter K with size k x k x c, the output

feature map S is evaluated by:

𝑠(𝑖, 𝑗) = (𝐼 ∗ 𝑘)(𝑖 ∗ 𝑗) = ∑ ∑ ∑ 𝐼

𝑛

(𝑚, 𝑛, 𝑞)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑞)

𝑚

𝑞

 (4)

The output size will be (𝑤 − 𝑘 + 1)𝑥(ℎ − 𝑘 + 1) 𝑥 𝑛, where n is

the number of applied filters. This convolutional layer has 𝑘. 𝑘. 𝑐. 𝑛 + 𝑛

parameters. The 𝑘. 𝑘. 𝑐. 𝑛 parameters are for the filter’s weights, and the n

parameters are for the biases, one with each filter.

Figure 2-6: shows the operation for one filter.

Figure 2-6: 3D convolution

14

The Convolutional layer has four hyperparameters, the size of the

filter, the number of filters, the stride, and the padding. The stride is the

number of rows or columns the filter is shifted by at each step. When using

a stride s, the output size will be:

[
𝑤 − 𝑘

𝑠
+ 1] 𝑋 [

ℎ − 𝑘

𝑠
+ 1] 𝑥 𝑛 (5)

The padding is to add a border to the input. Padding is applied to

keep information in borders and to avoid dimension reduction. When

padding is used input width and height are increased by 2p where p is the

border size. The most commonly used padding is Zero Padding.

2.2.2.3 Pooling Layers

The pooling layer follows the convolutional layer and is used to

down sample feature maps to reduce network parameters. Like

convolutional layers, pooling layers are translation-invariant because their

computations take neighboring pixels into account. Max pooling and

average pooling are the most commonly used strategies. Pooling layers

have no parameters to learn, so they are fixed functions. For w x h x c

input, and a p x p pooling with stride s, the output size will be:

[
𝑤−𝑝

𝑠
+ 1] 𝑋 [

ℎ−𝑝

𝑠
+ 1] 𝑋 𝑐 (6)]

Pooling does not affect the number of channels because it is applied

to each channel of the input independently. Feature maps resulting from

convolution and pooling layers are flattened to a 1D feature vector, to get

into fully connected layers that perform like a traditional neural network.

Figure 2-7: shows the CNN poling layers.

15

Figure 2-7: CNN

2.2.2.4 CNN Overfitting

Since there are a large number of parameters in deep NN, the

network tends to overfit the training data, which was discussed in section

(2.2).

In CNN, we can avoid overfitting by applying:

1-Batch normalization: which normalizes the mean and variance of

the output activations from a CNN layer to follow a unit Gaussian

distribution. It proves to be very useful for the efficient training of a deep

network because it reduces the internal covariance shift of the layer

activations[2].

2-DropOut: refers to dropping out units in a neural network. By

dropping a unit out, we mean temporarily removing it from the network,

along with all its incoming and outgoing connections. The choice of which

units to drop is random[11].

3-Data Augmentation: It’s a very effective way of enhancing the

generalization power of CNN models. Especially for cases where the

number of training examples is relatively low. It is often utilized to

generate additional data without introducing extra labeling costs by

performing operations like scaling, cropping, rotating, horizontal

reflections, or altering the RGB values of the training images. Besides

overfitting, CNNs also face vanishing gradients of earlier layers, with the

network depth increasing. This is solved by adding a skipped path or a

shortcut to the main path in the network, which is called a residual

connection[12].

16

2.2.2.5 Transfer Learning

For a model to get sufficient accuracy, it requires a lot of training

data and computational power. One way to short-cut this process is to re-

use weights from pre-trained models that were developed for another task

or dataset where the input is the same, but the target may be different. This

process is called Transfer Learning (TL). The re-used weights may be used

for specific layers as the starting point for the training process. Transfer

learning decreases the training time for a neural network model and can

also reduce the generalization error. The reason behind using weights from

trained models is that when a network is trained on images, the first layers

tend to learn general features (i.e., edges, corners, and lines) which occur

regardless of the dataset used. Transfer learning may be followed by a

fine-tuning process to train the network well on the new dataset.

2.2.3 GPU

Graphics Processing Unit (GPU) is a processor in graphics cards,

similar to a computer’s CPU. GPU is designed specifically for performing

complex mathematical and geometric calculations. Some of the fastest

GPUs have more transistors than the average CPU. GPUs can process data

several orders of magnitude faster than a CPU, due to the massive

parallelism. So, they are best suited for repetitive and highly-parallel

computing tasks, which makes the GPU the appropriate device in deep

learning tasks (GPU is considered as the heart of Deep Learning).

2.2.4 TensorFlow (TF)

TF is an open-source software library for numerical computation

using data flow graphs, initially developed by Google Brain Team, to

conduct machine learning and deep neural networks research. TensorFlow

provides an extensive set of functions and classes that simplify building

advanced models from scratch.

17

Generally, TensorFlow can be thought of as a programming system

in which computations are represented as graphs. Nodes in the graph

represent mathematical operations, and the edges represent

multidimensional data arrays (tensors) communicated between them.

Some of the properties of TensorFlow are:

1. TF provides an accessible and readable syntax.

2. TF provides more flexibility. Thus, new functionalities can be defined.

3. TF offers great debugging tools.

4. Scalability and Pipelining.

2.2.5 RCNN Family

The R-CNN or Region-Based Convolutional Neural Network

object detection approach uses the selective search algorithm[13]. to

generate category-independent region proposals that define the set of

candidate detections and then feed them into a detector composed of a

feature extractor and a classifier[14]. R-CNN had many improvements

that reduced its running time, which introduced Fast RCNN[15]. and then

Faster R-CNN[16].

Faster R-CNN introduced Region Proposal Network (RPN) that

shares full-image convolutional features with the detection network, thus

enabling nearly cost-free region proposals. The output of the RPN predicts

k proposals at each location, called anchors. Anchors cover different

scales and aspect ratios. Using RPNs enables a unified, deep-learning-

based object detection system that runs at near-real-time frame rates with

competitive accuracy.

2.2.6 You Only Look Once (YOLO)

In the YOLO method, there is a single convolutional network,

which simultaneously predicts multiple bounding boxes and class

probabilities for those boxes. YOLO system divides the input image into

18

an SS grid; each grid cell is responsible for detecting the object having its

center in it. YOLO trains on full images and directly optimizes detection

performance. This unified model is extremely fast since YOLO frames

detection as a regression problem. Unlike sliding window and region-

proposal-based techniques, YOLO sees the entire image during training

and test time, so it implicitly encodes contextual information about classes

as well as their appearance. YOLO makes a smaller number of background

errors compared to other methods because they can’t see the border

context. Since YOLO is highly generalizable, it is less likely to break

down when applied to new domains or unexpected inputs[17].

2.3 Drone Hardware

A drone is a flying robot that can be remotely controlled or fly

autonomously using software-controlled flight plans in its embedded

systems, that work in conjunction with onboard sensors and a global

positioning system (GPS).

The drone has a small, powerful computer (Ardupilot Mega)

responsible for controlling other components of the drone:

2.3.1.1 Frame

The frame is the structure that holds all the components together.

One of the most important parts of the quadcopter is its frame because it

supports motors and other electronics and prevents them from vibrations.

You have to be very precise while making it. They need to be designed to

be strong but also lightweight.

https://internetofthingsagenda.techtarget.com/definition/embedded-system
https://internetofthingsagenda.techtarget.com/definition/embedded-system
https://whatis.techtarget.com/definition/sensor
https://searchmobilecomputing.techtarget.com/definition/Global-Positioning-System

19

 Figure 2-8 shows: the quadcopter frame

Figure 2-8: Quadcopter frame

2.3.1.2 The Microcontroller – Arduino Uno

Arduino Uno is a microcontroller board based on the ATmega328P

It has 14 digital input/output pins (of which 6 can be used as PWM

outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB connection, a

power jack, an ICSP header, and a reset button.

It contains everything needed to support the microcontroller; simply

connect it to a computer with a USB cable or power it with an AC-to-DC

adapter or battery to get started. "Uno" means one in Italian and was

chosen to mark the release of Arduino Software (IDE) 1.0. The Uno board

and version 1.0 of Arduino Software (IDE) were the reference versions of

Arduino, The Uno board is the first in a series of USB Arduino boards,

and the reference model for the Arduino platform; for an extensive list of

current, past or outdated boards see the Arduino index of boards.

20

 Figure 2-9 Shows: Arduino Uno [18]

Figure 2-9: Arduino UNO Microcontroller Board

2.3.1.3 Electronic Speed Controllers (ESC)

An electronic speed control or ESC is a circuit with the purpose to

control an electric motor's speed, its direction, and possibly also to act as

a dynamic brake in some cases. ESCs are often used on electrically

powered brushless motors essentially providing an electronically

generated three-phase electric power, with a low voltage source.

An ESC interprets control information in a way that varies the

switching rate of a network of field-effect transistors (FETs), not as

mechanical motion as would be the case of a servo. The quick switching

of the transistors is what causes the motor itself to emanate its

characteristic high-pitched whine, which is especially noticeable at lower

speeds. It also allows much smoother and more precise variation of motor

speeds in a far more efficient manner than the mechanical type with a

resistive coil and moving arm once in common use.

The ESC generally accepts a nominal 50 Hz Pulse Width

Modulation (PWM) servo input signal whose pulse width varies from 1ms

to 2ms. When supplied with a 1ms width pulse at 50 Hz, the ESC responds

by turning off the DC motor attached to its output. A 1.5ms pulse-width

21

input signal results in a 50% duty cycle output signal that drives the motor

at approximately 50% speed. When presented with a 2.0ms input signal,

the motor runs at full speed due to the 100% duty cycle (on constantly)

output.

The correct phase varies with the motor rotation, controlled and

monitored by the ESC. The orientation of the motor is determined by the

back EMF (Electromotive Force). The back EMF is the voltage induced

in a motor wire by the magnet spinning past its internal coils. Finally, a

PID algorithm in the controller adjusts the PWM to maintain a constant

RPM.

 Reversing the motor's direction may also be accomplished by

switching any two of the three leads from the ESC to the motor.

Ideally, the ESC controller should be paired to the motor and

rotorcraft with the, Figure 2-10 Shows: ESC, following considerations:

1. Temperature and thermal characteristics.

2. Max Current output and Impendence.

3. Needs to be Equipped with a BEC (Battery Eliminator Circuit) to

eliminate the need for a second battery.

4. Size and Weight properties.

5. Magnet Rating [19]

Figure 2-10:30A Brushless ESC

22

Additionally, the speed controller has fixed throttle settings so that

the "stop" and "full throttle” points of all the various modes can be cut

through cleanly. The controller produces audible beeps to assist in

navigating through the program modes and troubleshooting logs.

2.3.1.4 The Battery Pack

Lithium Polymer (LiPo) cells are one of the newest and most

revolutionary battery cells Available. LiPo cells maintain a more

consistent voltage over the discharge curve when compared to Ni-Cd or

NiMH cells. The higher nominal voltage of a single LiPo cell (3.7V vs.

1.2V for a typically Ni-Cd or NiMH cell); making it possible to have an

equivalent or even higher total nominal voltage in a much smaller package

LiPo cells typically offer very high capacity for their weight, delivering

upwards of twice the capacity for ½ the weight of comparable NiMH cells,

Figure 2-11: Shows LiPo Battery.

Figure 2-11:3S LiPo Battery

2.3.1.5 The Brushless Motors

The drone has four Brushless DC motors attached to a propeller.

The Brushless motor differs from the conventional Brushed DC Motors in

23

their concept essentially in that the commutation of the input voltage

applied to the armature's circuit is done electronically, whereas in the

latter, by a mechanical brush. As with any rotating mechanical device, it

suffers wear during operation, and as a consequence, it has a shorter

nominal lifetime than the newer Brushless motors.

Despite the extra complexity in its electronic switching circuit, the

brushless design offers several advantages over its counterpart, to name a

few: higher torque/weight ratio, less operational noise, longer lifetime,

less generation of electromagnetic interference, and much more power per

volume. Virtually limited only by its inherent heat generation, whose

transfer to the outer environment usually occurs by conduction, Figure 2-

12: Shows brushless motor [20]

Figure 2-12: A2212/13T 1000 KV BLDC (Brushless DC Motor)

2.3.1.6 power distribution board (PDB)

PDB’s essentially distributed the power from the battery to the

drone ESC. But the technology has improved so much in recent days that

PDBs also distribute power to some other peripherals such as FPV Video

Transmitters, FPV Cameras, and the Quadcopter Flight Controller itself.

Some modern FCs have integrated PDBs, are limited by space, and can

24

only accommodate so much that they do not do a very good job at filtering

the voltage spikes from the insane current draws from our quads [21] The

Figure 2-13: shows the power distribution board.

Figure 2-13:Power distribution board

2.3.1.7 Propellers

A propeller is a set of rotating blades designed to convert the power

(torque) of the Engine into thrust.

The Quadrotor consists of four propellers coupled to the brushless

motor. Among These four propellers, two are clockwise and the remaining

two are counterclockwise. Clockwise and anticlockwise propellers cancel

their torque from each other.

Propellers are specified by their diameter and pitch. The propeller

used is 1045 Fixed-pitch, symmetric, tapered Normal Rotation Carbon

Fiber Propeller.

 figure 2-14: shows the carbon fiber propeller

Figure 2-14: 10x4.5 fixed-pitch, Carbon fiber Propeller

25

2.3.1.8 FLY SKY FS CT6B

The 2.4 GHz antenna is pretty standard fare, folding 90 degrees (via

a 45-degree intermediate step) for storage, Figure 2-15 Shows: the remote

control [22]

Figure 2-15:sky remote control

2.3.1.9 NEO-8N APM GPS

NEO-M8 modules utilize concurrent reception of up to three GNSS

systems (GPS/Galileo together with Bei Dou or GLONASS), recognize

multiple constellations simultaneously, and provide outstanding

positioning accuracy in scenarios where urban canyon or weak signals are

involved. For even better and faster positioning improvement, the NEO-

M8 series supports the augmentation of QZSS, GAGAN, and IMES

together with WAAS, EGNOS, and MSAS. The NEO-M8 series also

supports message integrity protection, geofencing, and spoofing detection

with configurable interface settings to easily fit customer applications.

The NEO‑M8M is optimized for cost-sensitive applications, while

NEO-M8N and NEO-M8Q provide the best performance. The future-

proof NEO-M8N and NEO-M8J include an internal flash that allows

future firmware updates. This makes NEO-M8N and NEO-M8J perfectly

suited to industrial and automotive applications.

26

 Figure2-16: show that the GPS module [23]

Figure 2-16: GPS module

2.3.1.10 Ardupilot Mega

(APM) is a professional quality IMU autopilot that is based on the

Arduino Mega platform. This autopilot can control fixed-wing aircraft,

multi-rotor helicopters, as well as traditional helicopters. It is a full

autopilot capable of autonomous stabilization, way-point-based

navigation, and two-way telemetry with Xbee wireless modules.

Supporting 8 RC channels with 4 serial ports. ArduPilot Mega consists of

the main processor board (the red one above) and the IMU shield which

fits above or below it.

27

Figure 2-17 shows the Ardupilot [24]

Figure 2-17: Ardupilot Mega

2.3.1.11 ESP32-CAM

ESP32-CAM is a low-cost development board with a WIFI camera.

It allows creating IP camera projects for video streaming with different

resolutions. ESP32-CAM has a built-in PCB antenna.

The figure 2-18:below shows the ESP32 Camera [25]

Figure 2-18: ESP32 Camera

28

2.4 Software tools

2.4.1 Arduino IDE

The open-source Arduino Software (IDE) makes it easy to write

code and upload it to the board. This software can be used with any

Arduino board [26].

2.4.2 Mission Planner

Mission Planner is a ground control station for Plane, Copter, and

Rover. It is compatible with Windows only. Mission Planner can be used

as a configuration utility or as a dynamic control supplement for your

autonomous vehicle [27].

2.4.3 PyCharm IDE

PyCharm is an integrated development environment (IDE) used in

computer programming, specifically for the Python programming

language. It is developed by the Czech company JetBrains It provides code

analysis, a graphical debugger, an integrated unit tester [28].

2.5 Drone Movement and Control

2.5.1 Drone Movement

The basic idea of the movement of the Drone is shown in the

following figure. It can be seen from the figure that the Drone is simple in

mechanical design compared to helicopters. Movement in the horizontal

frame is achieved by tilting the platform whereas vertical movement is

achieved by changing the total thrust of the motors. But Drone arise certain

difficulties with the control design [29].

Figure 2-19: shows the drone movement.

29

Figure 2-19: Basic Flight movements of a Quadcopter

2.5.2 Drone structure

The quadcopter has six degrees of freedom. This means that six

variables are needed to express its position and orientation in space (x, y,

z, φ, θ and ψ). The x, y, and z variables represent the distances of the

quadcopter's center of mass along the x, y, and z axes respectively from a

fixed reference frame. The other three variables are the three Euler angles

which represent the quadcopter orientation. (φ) is the angle about the x-

axis and is called roll angle, (θ) is the angle about the y-axis and is called

pitch angle and (ψ) is the angle about the z-axis and is called yaw angle,

Figure 2-20 Shows: quadcopter axis.

Figure 2-20: Quadcopter Axis

30

2.5.3 Drone mechanism

Each rotor produces both lift and torque about its center of rotation,

as well as drag opposite to the vehicle's direction of flight. Lift is the force

that directly opposes the weight of a quadcopter and holds the drone in the

air. Lift is generated by every part of the quadcopter, but most of the lift

on a normal airliner is generated by drone motors. Quadcopters generally

have two rotors spinning clockwise (CW) and two counterclockwise

(CCW). The spinning of the quadcopter propeller blades pushes air down.

All forces come in pairs (Newton’s Third Law), which means for every

action force there is an equal in size and opposite in direction reaction

force. Therefore, as the rotor pushes down on the air, the air pushes up on

the rotor.

Figure 2-21: shows the quadcopter mechanism.

Figure 2-21: Quadcopter Mechanism

2.5.4 Equations of Motion

1- Rolling Moments:

-equation explains the Body gyro effect

𝜃˙𝜓˙(𝐼𝑦𝑦 − 𝐼𝑧𝑧)
- equation (2.2) explains the rolling moment due to forward flight

(−1)𝑖+1 ∑ 𝑅𝑚𝑥𝑖
4
𝑖=1

- equation (2.3) explains the propeller gyro effect 𝐽𝑟𝜃˙Ω𝑟

- hub moment due to sideward flight ℎ ∑ 𝐻𝑦𝑖
4
𝑖=1

31

- roll actuators action l(−𝑇2 + 𝑇4)

2- Pitching Moments:

- Body gyro effect 𝜑˙𝜓˙(𝐼𝑧𝑧 − 𝐼𝑥𝑥)

- rolling moment due to forward flight ℎ(∑ 𝐻𝑥𝑖
4
𝑖=1)

- propeller gyro effect 𝐽𝑟𝜑˙Ω𝑟

- hub moment due to sideward flight (−1)𝑖+1 ∑ 𝑅𝑚𝑦𝑖
4
𝑖=1

- pitch actuators action 𝑙(𝑇1 − 𝑇3)

3- Yawing Moments:

- body gyro effect 𝜃˙𝜑˙(𝐼𝑥𝑥 − 𝐼𝑦𝑦)
- hub force unbalance in forward flight 𝒍(𝑯𝒙𝟐 − 𝑯𝒙𝟒)

- inertial counter-torque 𝐽𝑟Ω˙ 𝑟
- hub force unbalance in sideward flight 𝒍(−𝑯𝒚𝟏 + 𝑯𝒚𝟑)

- counter-torque unbalance (−1)𝑖 ∑ 𝑄𝑖
4
𝑖=1 [30]

2.5.5 Drone maneuverability

Drone rotate and move along the three principal axes; one running

forward to back, another running right to left, and one running up and

down. By rotating or tilting along these different axes, an aircraft can move

forward or backward, left or right, or simply rotate in place.

Pitch: is the backward and forward movement of the drone. To pitch

up the front two propellers, the RPM increased by receiving a signal from

the control device to increase lift while decreasing lift of the two rear props

and reducing lift, causing the nose to lift up while the quadcopter

maintains altitude. To pitch down, the front propeller's speed is being sped

down to reduce lift and speed on the rear propellers to increase the lift.

Roll: is the right or left movement of the drone. To roll right RPM

keeps increasing on the left propellers and decreasing on the right ones,

and the same opposite function when the drone trying to roll left.

Yaw: is simply defined as the rotation left or right of a quadcopter

concerning the center axis, yaw refers to the movement of the drone

32

clockwise or counterclockwise. A quadcopter’s yaw is controlled by

manipulating the reactive torque effect that each propeller has on frame-

the very same effect that must be canceled by control surfaces in airplanes

and helicopters.

Figure 2-22: shows the Drone maneuverability.

Figure 2-22: Quadcopter Roll, Pitch, and Yaw

2.5.6 Proportional Integral Derivative (PID)

A PID controller is a feedback control algorithm widely used in

industrial control systems. A PID controller calculates the error value

which is the difference between a measured process variable and the

desired setpoint, the controller attempts to minimize the error by adjusting

the process. It’s part of a flight controller software that reads the data from

sensors and calculates how fast the motors should spin to retain the desired

rotation speed of the aircraft. The goal of the PID controller is to correct

the error, the difference between a measured value (gyro sensor

measurement), and the desired setpoint (the desired rotation speed). The

error can be minimized by adjusting the control inputs in every loop,

which is the speed of the motors.

The figure 2-23: shows the PID block diagram.

33

Figure 2-23: Proportional Integral Derivative (PID) Block Diagram.

There are three gains values in a PID controller, they are the ‘P’

term, ‘I’ the term, and ‘D’ term:

“P Gain” looks at the present error – the further it is from the set-

point, the harder it pushes.

“D Gain” is a prediction of future errors, it looks at how fast you

are approaching a set-point and counteracts P when it is getting close to

minimize overshoot

“I Gain” is the accumulation of past errors, it looks at forces that

happen over time; for example, if a quad constantly drifts away from a set-

point due to wind, it will spool up motors to counteract it[31]

2.6 Related work

This set of experiments was designed to understand if the neural

network actually learns the “notion” of plant diseases, or if it is just

learning the inherent biases in the dataset. Using the deep convolutional

neural network architecture, we trained a model on images of plant leaves

to classify both crop species and the presence and identity of disease on

images that the model had not seen before. Within the Plant Village data

34

set of 54,306 images containing 38 classes of 14 crop species and 26

diseases (or absence thereof), this goal has been achieved as demonstrated

by the top accuracy of 99.35%. Thus, without any feature engineering, the

model correctly classifies crop and disease from 38 possible classes in 993

out of 1000 images. Importantly, while the training of the model takes a

lot of time (multiple hours on a high-performance GPU cluster computer),

the classification itself is very fast (less than a second on a CPU), and can

thus easily be implemented on a smartphone. This presents a clear path

toward smartphone-assisted crop disease diagnosis on a massive global

scale [3]

This paper introduced the basic general principles used in designing

a quadcopter UAV, which has wide applicability in modern agriculture.

Quadcopter-collected color images are excellent for providing a gross

picture of general field health and problems. The use of drones for

surveillance of greenhouses can increase crop yields by minimizing the

cost of traveling on very large areas and remediation the issues identified.

Also, drones coupled with smart sensors can be developed to be an

effective tool for the future.

The main goal is to achieve a stable flight of the quadcopter, and

this is done using a linear PID control strategy.

The attitude and altitude stabilization system are composed of PIDs

that are responsible for keeping the quadcopter in a desired angular state

while keeping its altitude The PID controller uses a feedback loop to

control the rotor angular speed output of the vehicle. Within this loop, the

controller uses a combination of the previous output, the current error, and

the previous two errors to estimate what adjustments must be made to

reach or maintain the desired output. Using the aerial footage taken by

drones, farmers can get some useful information about crops, as follows:

may reveal patterns of irrigation or soil and fungal infestations that are not

35

visible to the naked eye; the combination of multispectral images, infrared

or visible, can create an image of crop that emphasizes healthy plants and

those in need; by monitoring the crop at regular intervals, animations can

be created, images that show changes over time, revealing problem areas

or opportunities to better crop management [32]

We used the Ionic for the reason is the background support that

works above Cordova to build hybrid applications. It allows to

development of the application interface that can be compared as it were

Web pages, i.e., using HTML, CSS, and JavaScript. and these

Applications run inside the WebView of the original application.

Ionic Framework - is an open-source framework in Code that must

be written once and executed on it Many mobile devices can work on

different types of operating systems [33] where the ionic provides the

Cordova tool and Capacitor is a cross-platform native runtime that makes

it easy to build modern web apps that run natively on iOS, Android, and

the Web. Representing the next evolution of Hybrid apps, Capacitor

creates Web Native apps, providing a modern native container approach

for teams who want to build web-first without sacrificing full access to

native SDKs when they need it [34]

The proposed system helps in the identification of plant disease and

provides remedies that can be used as a defense mechanism against the

disease. using convolution neural network (CNN)over a proper dataset. a

prototype drone was also designed which can be used for live coverage of

large agricultural fields to which a high-resolution camera is attached

capturing plants images. The goal was to reduce the attack of pests also

provide a remedy for the disease that is detected [35]

36

CHAPTER THREE

METHODOLOGY

The objectives of this research study are to reduce losses in cotton

productivity resulting from bacterial blight to the least possible, a disease

also known as angular spot disease in cotton. It is one of the important

cotton diseases with global spread and can cause production losses of up

to 10% of the crops. The research also aims to develop modern agriculture

with new techniques and raise the level of Sudanese agriculture to keep

pace with global agriculture. We used drones that save effort and time for

farmers, especially when the areas are large. We used digital image

processing technology to analyze images taken by drones that show the

extent of plant health. This chapter is an overview Detailed on the work

performed on the project, which can be divided into software system parts,

UAV movement, and control functions, it consists of hardware design and

software design

Figure 3-1: shows system example.

Figure 3-1: System Example

37

3.1.1 Software system

The object detection process consists of Data Collection, Data

Augmentation Operations, Preprocessing, Building the CNN model,

Training the model, and Postprocessing Operations.

3.1.2 Method Overview

The software of building the dataset of CNN model classification

dieses, preprocessing of images, Building the CNN model, and training

the model, building the neural network layers, the second section is

Interface show the Result of Processed image.

Figure 3-2: show the software of the system block diagram.

Figure 3-2: software system block diagram

3.1.3 Building of the Dataset

To train a deep learning network for our research problem, a dataset

of diseased and healthy cotton leaf images had to be acquired the dataset

was put together by downloading diseased cotton images on the internet

from various sources Cotton plants are affected by diseases caused by,

bacteria, and viruses and to damage by parasitic worms and physiological

disturbances also classified as diseases. Cotton is threatened by different

types of diseases, such as Bacterial blight. We have limited our study to

38

only one main disease because of time constraints. A brief description of

the disease is as follows:

3.1.4 Bacterial blight

It is the most devastating cotton crop disease. Cotton bacterial blight

is caused by a bacterial called Xanthomonas citric subs malvaceous which

survives in infected crop debris and seeds. It starts as an angular, waxy,

and water-soaked leaf spot with a red to brown border on leaves, stems,

and bolls. As the plant grows, the spots gradually turn into brown necrotic

areas. If these diseases are left untreated, they will kill the plant. However,

if they are diagnosed early, they can be treated, and the crop can be saved.

The third category of classification is healthy cotton leaves to allow the

model to tell the difference between a healthy and diseased cotton leaf.

Figure 3-3: shows the spread of bacterial blight disease

Figure 3-3: Bacterial blight

3.1.4.1 Dataset Annotation

After downloading the images, you must remove the duplicates and

make sure that each image is placed in the appropriate file. The healthy

image in the file. The healthy images (name) and the bacteria-infected

images are in the bacteria-infected im age file. The step is very important

39

and it must be ensured that it is obtained in the correct image to obtain

Excellent training results.

Figure 3-4 shows the folders containing the diseased and healthy

images.

Figure 3-4: folders contain the diseased and healthy images

3.1.4.2 Dataset Division

To train and test the model, three separate data sets are required. In

the process, the home picture group together in the previous section is

divided into the following groups:

1- Training set: It is the set that is used to train the model to know its

hidden features such as weights and biases.

2- Validation set: The validation set is used to evaluate the model.

These include among others the learning rate, batch size, and

several epochs.

3- Test set: This set is used when the training phase is completed to

evaluate the performance and accuracy of the final trained model.

Figure 3-5: shows the three sets test set and training set validation

set

Figure 3-5: three sets test set and training set validation set

40

3.1.5 Preprocessing of Images

The next stage after building the dataset was the preprocessing of

the images. This process is very important in deep learning to ensure that

training data is standardized before it is fed into a training model. For

example, images must be resized to match the input size required by the

network.

3.1.5.1 Data Augmentation

To enrich the data set, several techniques were used to increase the

number and diversity of images available in the data sets. Enhanced

images increase the network's opportunity to learn more features and be

able to accurately distinguish one category from another (Net Image

Classification).

3.1.5.2 Dataset composition

Table 3-1: shows the division of the original images in the data into

three different sections: training, validity, and testing for each

classification of healthy and sick patients to be detected.

Table 3-1: dataset

Class Original
images

Original

and
augmented

images

Training
images

Validation
images

Test
images

Healthy

leaves
256 3870 3096 387 387

Bacterial

Blight
430 5982 4785 598 598

3.1.6 Neural Network Design

After the images are acquired and preprocessed, the next step is to

design and train a model on those images.

41

3.1.6.1 Process Parameters

To begin model development, there are design options that must be

considered. The main factor is the choice of architecture for the model.

Using the architecture developed by the open-source "Indiana production"

for educational purposes, it was possible to achieve high accuracy (98%)

on the cotton crop. For this reason, "Indiana production" was selected as

the preferred architectural design for this research. We use this

architecture as a feature extractor but modify and tune it to support our

disease class.

3.1.6.2 Model Design

We used the layers in the "Indiana production" as a feature

extraction component. The "Indiana production" model was loaded

without the classifier part of the model and changed a new Dense and

Output layer to result in 2 classes altered for the requirements of our new

dataset to predict the probability for 2 classes.

Figure 3-6: shows the block diagram design CNN model.

Figure 3-6: Deep neural network

The block diagram was drawn using lucid.app [36]. All code was

42

written in the Python programming language. For the implementation of

the deep neural network, Keras [37] library a python-based deep

Learning library was used. Keras library runs on TensorFlow [38]

backend. It was chosen as the backend for Keras because it offers high-

performance numerical computations. The full code is attached in the

appendix section of this report. Keras implementation workflow was as

follows:

1- Import the libraries in Keras

2- -parameters the dataset

3- change new layers on the output of the model

4- Train the new layers on your dataset

3.1.7 Training the model

Using Article developed By Indian AI Production Access the

directory where mounted project the script to run the training of the model

"train.py".

3.1.7.1 Training of Neural Network:

All experiments in this section for the training of neural networks

were run on Intel Core i3 11th generation, with 8GB RAM.

3.1.7.2 Train Run

A-Train run was done on the model with the model run with an

initial batch size of 32 meaning that 32 image samples are used to train the

network each time. 100 epochs were set for the initial run and a learning

rate of 0.0001 was configured.

The results of the first run are as shown below in Figure 3-7 and the

accuracy at the end of the 14th epoch was 79%.

Figure 3-7: 14th epoch

An accuracy of 97.2% was realized at the end of the 91th epoch.

43

 Figure 3-8: shows the last accuracy improve.

Figure 3-8: 91th epoch

The accuracy didn't increase after that in the 100th epoch as shown

in Figure 3-9.

Figure 3-9: 100th epoch

Figure 3-10: shows the accuracy and loss result in training.

Figure 3-10: accuracy and loss

3.1.8 Interface:

A simple web interface for displaying the results of the image

processing process. It was designed on the ionic framework. It contains

two pages, a page for uploading the images to be analyzed, and a page for

displaying the results of the analysis., Figure 3-11 show the flowchart of

the full system from the start point to combine processed image to map in

their locations.

44

Figure 3-11: shows the interface flowchart.

Figure 3-11: flowchart predicting

45

The main page of the interface: Figure 3-12 at the bottom display

the home page layout of the interface

Figure 3-12: home page layout

After selecting the images to be analyzed, they are sent to the CNN

model code that was, Figure 3-13 at the bottom display the steps to upload

images.

Figure 3-13: selecting images for predicting

46

3.1.8.1 main function of this web page

The main function of this web page is to classify cotton diseases, so

a JavaScript function was developed to send images to our model

developed in the previous section (python code)

Appendix B 2, the flowing code is JavaScript code contain function send

images
1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

 processImages () {//called we click on process button

 this.files.forEach ((file, i) => {//loop in all images selected

 this.postfile(file, 'predict','', async (result)=> {//send the image to CNN model to predict

 let img = await this.getBase64(file)//convert image encode to base64

 this.markers.data.push({//preparing map markers in place of each image

 image: img, //set image (base64)

 location: this.locations[i], //set coordinates to marker

 status: result.status//the status is the result coming from CNN model is the either healthy or disease

 })

 if (i=== this.files.length -1){//check if this last image

 alert('Processing End Open Map to Show Result') //alert user to go map to see the result

}})})}

3.1.8.2 main function back end

is the code for receiving image analysis from the interface

1

2

3

4

5

6

7

8

def predict():

 if request.method == 'POST':# form request method

 file = request.files['image'] # fet input

 filename = file.filename # saving file name

 file_path = os.path.join('static/user uploaded', filename) # save the image in uploaded files

 file.save(file_path) # save image

 pred, output_result pred_cot_dieas(cott_plant=file_path)#fuction pred_cot_dieas will fine out in appendix

 return {'status': output_result, 'pred': pred} # response to interface with predicted status of image

47

3.1.9 processing Image

predictions that the model has made for the test data, we can use the

predict function. The predict function will give an array with 2 numbers.

The array index with the highest number represents the model prediction.

The sum of the array equals 1 (since each number is a probability). find

out the code in the appendix.

3.1.10 Locate the image in the field

In this step, the images are collected with the map at the location

they were taken from the drones stored in the locations located in the file

name in formula "lat, log.png"

3.1.11 Preparing for the field map

• We declare the application as HTML5 using the HTML

declaration.

• We create a div element named "map" to hold the map.

• We define a JavaScript function that creates a map in the div.

• We load the Maps JavaScript API using a script tag [39]

3.2 Hardware design

3.3 Design of quadcopter

The system model is separated into two parts: the electrical part

which consists of Ardupilot, electronic speed controller, Lithium Polymer

battery, brushless DC motor, propellers, transmitter and receiver, Arduino

Uno, and ESP 32 camera.

 And the mechanical parts consist of frame, arms and propellers

Figure 3-14: shows the block diagram of the system model

48

Figure 3-14: hardware system block diagram

3.3.1.1 Drone assembly

The first step of assembling a drone is building a frame or choosing

the proper type of manufactured carbon fiber frame as mentioned earlier

because it can hold much weight more than plastic, and the carbon fiber

substance of itself has lightweight.

The second step is to connect both the positive and negative of the

motor speed controller with the positive and negative of the PDB and the

same process is done on the other ESC.

Figure 3-15: shows connecting the electronic speed controller to the

power distribution

Figure 3-15: ESCs and PDB

49

ECSs connections to the motors:

For Clockwise two motors:

• Connect the VCC of ESC with the VCC of the motor.

• Connect the GND of ESC with the GND of the motor.

• Connect PWM/Signal of ESC with Signal/PWM of the

motor.

For Counter-Clock wise two motors just swap any two wires:

• Connect the VCC of ESC with GND of motor

• Connect the GND of ESC with the VCC of the motor.

• Connect PWM/Signal of ESC with Signal/PWM of motor

Quadcopter controller (Ardupilot) attached on the main base of the

drone with Ardupilot input pins (1-5) are connected with the Fly Sky

FSiA6 receiver channel input pins (CH1-CH5) via jumper wires (Female

to Female).

Now ESC connections with Ardupilot flight controller as follows:

Figure 3-16: shows the Ardupilot mega pins.

Figure 3-16: APM 2.8 Pins Configurations

• Connect the ESC-1 Pin with Ardupilot Output Pin - 1.

50

• Connect the ESC-2 Pin with Ardupilot Output Pin - 2.

• Connect the ESC-3 Pin with Ardupilot Output Pin - 3.

• Connect the ESC-4 Pin with Ardupilot Output Pin - 4.

Figure 3-17: shows ESCs and Receiver connect to the ardupilot.

Figure 3-17: ESCs connection to Ardupilot Output and Receiver Channel

Input

3.3.1.2 Programming Flight Controller

Mission Planner is a ground control station for Plane, Copter, and

Rover. It is compatible with Windows only. Mission Planner can be used

as a configuration utility or as a dynamic control supplement for

autonomous vehicles.

Mission Planner contains many features as:

• Load the firmware (the software) into the autopilot board that

controls the vehicle.

• Setup, configure, and tune vehicles for optimum performance.

3.3.1.3 Installing and Configuration

Once the ground station is installed on the computer, the autopilot

is being connected using the micro-USB cable. Windows should

automatically detect and install the correct driver software.

51

The COM port drop-down on the upper-right corner of the screen

AUTO option is selected or a specific port for the type of the connected

board. The Baud rate is set to 115200 as shown.

On the Mission Planner’s SETUP | Install Firmware screen, an

appropriate icon that matches the quadcopter frame is selected Next it will

detect the board type that is being used. After all, goes well the firmware

will be successfully uploaded to the board.

Figure 3-18: shows the mission planner setup.

Figure 3-18: Mission Planner Setup Page

Radio Control Calibration involves capturing each RC input

channel’s minimum, maximum, and “trim” values so that Ardupilot can

correctly interpret the input. To setup transmitter:

• Ensure the battery is disconnected

• Connect RC transmitter to the Ardupilot

• Turn on RC transmitter

• Connect the autopilot to the PC using a USB cable

• On the Mission Planner press the “Connect” button and open

Mission

52

• Planner’s INITIAL SETUP | Mandatory Hardware | Radio

Calibration screen

• Some green bars should appear showing the Ardupilot is

receiving input from the Transmitter/Receiver

Figure 3-19: shows the radio calibration.

Figure 3-19: Radio Calibration Tab

• Calibration:

• Open Mission Planner’s INITIAL SETUP | Mandatory

Hardware | Radio Calibration screen

• Click on the green “Calibrate Radio” button on the bottom

right

• Press “OK”, when prompted to check the radio control

equipment, is on, the battery is not connected, and propellers

are not attached.

• Move the transmitter’s control sticks, knobs, and switches to

their limits.

Red lines will appear across the calibration bars to show minimum

and maximum values are seen so far.

Figure 3-20: shows the transmitter calibration.

53

Figure 3-20: Transmitter Calibration

• Select Click when Done.

• A window will appear with the prompt, “Ensure all your sticks

are

• centered and the throttle is down and clicks ok to continue”.

Move the throttle to zero and press “OK”.

• Mission Planner will show a summary of the calibration data.

Normal

values are around 1015 for minimums and 2013 for

maximums

Figure 3-21: shows transmitter values.

Figure 3-21: Transmitter Calibration Data

54

For accelerometer calibration:

• Under Setup | Mandatory Hardware, select Accel Calibration

from the left side menu

Figure 3-22: shows the accel calibration process.

Figure 3-22: Accel Calibration

• Click Calibrate Accel to start the calibration

• Mission Planner will prompt to place the vehicle in each

calibration position. Press any key to indicate that the autopilot

is in position and then proceed to the next orientation.

• The calibration positions are: level, on the right side, left side,

nose down, nose up, and on its back.

• Proceed through the required positions, using the (Click when

Done) button after each position is reached.

• When completed the calibration process, Mission Planner will

display “Calibration Successful!” as shown below.

55

3.3.1.4 Installing the camera

The ESP32-CAM board already contains the camera module, and

microSD card slot in addition to this, we used a microSD card to save the

video

connect the ESP32 to the Arduino:

• connect the ground of the Arduino with the reset pin in

Arduino.

• connect 5v pin in Arduino with the 5v pin in ESP32.

• connect the ground in the Arduino with the ground in the

Esp32.

• connect the RX pin in the Arduino with the U0R in The

ESP32.

• connect the TX pin in the Arduino with the U0T in The

ESP32.

• connect GIPO pins and ground pins in the ESP32.

Figure 3-23: shows Connecting the camera to the Arduino.

Figure 3-23: connect the ESP32 to the Arduino

56

CHAPTER FOUR

RESULT AND DISCUSSION

This section presents all the results of our dissertation of all the

work carried out in the previous section.

4.1 Model training results

The results presented in this section are related to the training of our

deep learning model with the collected image dataset. As mentioned in the

previous chapter, we developed a cotton crop disease identification model

based on transfer learning. " ndianaiproduction" was used as a feature

extractor and a change, a new Dense and Output layer to result in 2 classes

were changed or the requirements of our research problem.

Our dataset was split into three subsets namely training set,

validation set, and test set. During the training process, our model was

periodically evaluated using the validation set.

 The model autotunes some of the parameters based on the periodic

evaluation results on the validation set. The final evaluation of the model

after the training phase has been completed was carried out using the

training set. This is the most important step to get the working accuracy

and generalizability of our model. Matplotlib in Keras was used to plot the

training and validation losses vs epochs and training and validation

accuracies vs epochs after the training process was completed.

57

4.2 Loss Graphs

The figure 4-1: shows the loss graphs of the training process.

Figure 4-1: we can see that we obtained a good fitting curve up to around

90 epochs which

Is identified by a training and validation loss that decreases to a

point of stability with a minimal generalization gap between the two

values. The performance of the model on the validation dataset began to

degrade after 90 epochs, so the training process was stopped. Before 90

epochs, the model has low variance and generalizes the data well. Further

training from this point increased the variance of the model which means

the model is no longer learning but overfitting or memorizing the data.

4.3 Accuracy graph

After fine-tuning the parameters of the model and several training

iterations, an average overall accuracy of about 97.2% was achieved as

observed from Figure 4-2: Overall, this model was able to generalize our

data. The accuracy increased gradually until it converged at an average of

97.2%.

58

Figure 4-2: model accuracy

4.4 Simple test example

A random test was carried out on the model using an image that the

model had not seen before. Figure 4-3 shows how the model was able to

correctly predict the disease.

Figure 4-3: Simple test example

59

4.5 Result of the quadcopter

In this part, we will talk about the result of the operation of the

quadcopter, which is the result of a failed take-off and a problem with the

elements. Having assembled the components of the quadcopter, as

mentioned in the previous chapter, in position X, we came to the

following: the inability of the quadcopter to take off was the weight of the

hull. During our experiment with fans, we found that the fans are larger

than the frame can handle, the frame size is 380mm, the maximum it can

handle is 9 inches, our fans are 10 inches, we cut the fans with our own

hands to solve this problem. While attempting to take off, the quadcopter

flipped over and one of the fans broke. We addressed this issue with a

poster, and after the last experience and references to all sanitary settings

and proper installation of propellers and motors, we came to the following:

Maintenance of the quadcopter is balancing on.

Figure 4-4: Shows the result of the quadcopter.

Figure 4-4: assemble the quadcopter

60

4.6 CNN model result in real data

After training CNN, it was used to analyze standard images) Test

image from the dataset (To fully experiment with the system, the images

used in Figure 4-5 appear, the coordinates of the site to be transferred in

the name of the image file are placed in the name of the image file for use

in determining the location of the images in the map, the coordinates taken

from the task plan to determine the field area to be examined. The images

are a mixture of healthy and sick plants to illustrate how the CNN model

works. The images were marked by yellow icons indicating the affected

plant and green icons indicating the healthy plant.

Figure 4-5: testing images

When clicking on the icon, the real images taken by Arduino

61

 Figure 4-6 shows: Real image from Arduino

Figure 4-6: show disease image steed in map

Figure 4-7: shows the images were distinguished by yellow icons

indicating the affected plant and green icons indicating the healthy plant.

The icon site represents the coordinates of the plant with GPS

Figure 4-7: final result

62

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

We designed a system that develops an identification model for one

of the cotton paper diseases using drones and digital image processing

technology.

With this work, we will have reduced the losses in cotton

productivity resulting from bacterial blight to the least possible, and we

will have developed modern agriculture with new techniques and raised

the level of Sudanese agriculture to keep pace with global agriculture.

5.2 RECOMMENDATION

Drones provide updated high-resolution data and images for many

different purposes. These features can be taken advantage of by

developing our research, as it can discover more than one disease by

adding evidence for the diseases to be discovered, or by making drones

help in treating sick plants by carrying pollen, or adding to the drone the

task of knowing the terrain before Agriculture and whether the land is

decertified, or the drone can be working autonomously.

Further, this can be done in a much more enhanced way by

combining classification/detection systems within the drone control

systems using a microprocessor. Which will lead to reducing effort and

cost.

63

REFERENCE

[1] t. w. t. s. https://www.sas.com/en_us/insights/analytics/computer-

vision.html#:~:text=Computer%20vision%20is%20a%20field, 4/10/2021.

[2] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, "A guide to

convolutional neural networks for computer vision," Synthesis Lectures on

Computer Vision, vol. 8, no. 1, pp. 1-207, 2018.

[3] S. P. Mohanty, D. P. Hughes, and M. Salathé, "Using deep learning for image-

based plant disease detection," Frontiers in plant science, vol. 7, p. 1419, 2016.

[4] Y. Bengio, Y. Lecun, and G. Hinton, "Deep learning for AI," Communications

of the ACM, vol. 64, no. 7, pp. 58-65, 2021.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[6] I. G. Maglogiannis, Emerging artificial intelligence applications in computer

engineering: real word ai systems with applications in ehealth, hci,

information retrieval and pervasive technologies. Ios Press, 2007.

[7] C. M. Bishop, "Pattern recognition," Machine learning, vol. 128, no. 9, 2006.

[8] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural

networks, vol. 61, pp. 85-117, 2015.

[9] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, "Deep learning

for visual understanding: A review," Neurocomputing, vol. 187, pp. 27-48,

2016.

[10] F. Chollet, Deep Learning mit Python und Keras: Das Praxis-Handbuch vom

Entwickler der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG, 2018.

[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

"Dropout: a simple way to prevent neural networks from overfitting," The

journal of machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014.

[12] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image

recognition," in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770-778.

[13] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, "Selective

search for object recognition," International journal of computer vision, vol.

104, no. 2, pp. 154-171, 2013.

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for

accurate object detection and semantic segmentation," in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2014, pp. 580-

587.

[15] R. Girshick, "Fast r-cnn," in Proceedings of the IEEE international conference

on computer vision, 2015, pp. 1440-1448.

[16] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object

detection with region proposal networks," Advances in neural information

processing systems, vol. 28, pp. 91-99, 2015.

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once:

Unified, real-time object detection," in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 779-788.

[18] https://www.arduino.cc/en/software, 4/2/2022.

[19]

 https://www.optimusdigital.ro/index.php?controller=attachment&id_a

ttachment=451, 4/2/2022.

[20] https://www.rhydolabz.com/documents/26/BLDC_A2212_13T.pdf, 1/3/2022.

[21] https://dronenodes.com/pdb-power-distribution-board/, 6/3/2022.

https://www.sas.com/en_us/insights/analytics/computer-vision.html#:~:text=Computer%20vision%20is%20a%20field
https://www.sas.com/en_us/insights/analytics/computer-vision.html#:~:text=Computer%20vision%20is%20a%20field
https://www.arduino.cc/en/software
https://www.optimusdigital.ro/index.php?controller=attachment&id_attachment=451
https://www.optimusdigital.ro/index.php?controller=attachment&id_attachment=451
https://www.rhydolabz.com/documents/26/BLDC_A2212_13T.pdf
https://dronenodes.com/pdb-power-distribution-board/

64

[22] https://tamiyabase.com/articles/55-reviews/190-review-flysky-fs-ct6b-fs-r6b-

2-4ghz-stick-radio-combo, 9/302022.

[23] https://www.u-blox.com/en/docs/UBX-15031086, 7/3/2022.

[24] https://www.ardupilot.co.uk, 4/2/2022.

[25] https://www.olimex.com/Products/IoT/ESP32/ESP32-CAM/, 4/2/2022.

[26] https://www.arduino.cc/en/software, 6/3/2022.

[27] https://ardupilot.org/planner/docs/mission-planner-overview.html, 6/3/2022.

[28] https://www.jetbrains.com/pycharm/, 6/3/2022.

[29] S. Bouabdallah, "Design and control of quadrotors with application to

autonomous flying," Epfl, 2007.

[30] S. Bouabdallah and R. Siegwart, "Full control of a quadrotor," in 2007

IEEE/RSJ international conference on intelligent robots and systems, 2007:

Ieee, pp. 153-158.

[31] M. B. T. Khalid, M. M. E.-M. A. Abbas, M. E. E.-d. Mohammed, S. A. S. M.

Ahmed, and G. M. Superviser, "Farm Mapping Using Quadcopter," Sudan

University Of Science & Technology, 2020.

[32] G. Ipate, G. Voicu, and I. Dinu, "Research on the use of drones in precision

agriculture," University Politehnica of Bucharest Bulletin Series, vol. 77, no.

4, pp. 1-12, 2015.

[33] P. Chaudhary, "Ionic Framework," International Research Journal of

Engineering and Technology, vol. 5, no. 05, pp. 3181-3185, 2018.

[34] https://capacitorjs.com/docs, 9/3/2022.

[35] M. SIMRAN M, "Leaf-Disease-Detection using Python (Open CV)," 2020.

[36] A. Sharma, B. Kochar, N. Joshi, and V. Kumar, "Breast Cancer Detection

Using Deep Learning and Machine Learning: A Comparative Analysis," in

International Conference on Innovative Computing and Communications,

2021: Springer, pp. 503-514.

[37] F. Chollet, "Keras: The python deep learning library, Keras," IoKeras. io, 2015.

[38] M. Abadi et al., "TensorFlow: Large-scale machine learning on heterogeneous

systems," ed, 2015.

[39] https://developers.google.com/maps/documentation/javascript/overview,

9/3/2022.

https://tamiyabase.com/articles/55-reviews/190-review-flysky-fs-ct6b-fs-r6b-2-4ghz-stick-radio-combo
https://tamiyabase.com/articles/55-reviews/190-review-flysky-fs-ct6b-fs-r6b-2-4ghz-stick-radio-combo
https://www.u-blox.com/en/docs/UBX-15031086
https://www.ardupilot.co.uk/
https://www.olimex.com/Products/IoT/ESP32/ESP32-CAM/
https://www.arduino.cc/en/software
https://ardupilot.org/planner/docs/mission-planner-overview.html
https://www.jetbrains.com/pycharm/
https://capacitorjs.com/docs
https://developers.google.com/maps/documentation/javascript/overview

A

APPENDIX

Appendix A Webpage

Appendix A 1 Result.ts

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

import { Component, OnInit } from '@angular/core';

import { HttpClient, HttpHeaders , HttpRequest } from '@angular/common/http';

import {DataMarkers} from "../../providers/dataMarkers";

let satedImages = false;

interface location{

 lat: any;

 log: any;

}

@Component({

 selector: 'page-result',

 templateUrl: 'result.html',

 styleUrls: ['./result.scss'],

})

export class ResultPage implements OnInit {

 // Gets a reference to the list element

 segment = '0';

 files: File[] = [];

 rows: any[] = [];

 cols: any[] = [];

 locations: location[] = [];

 constructor(

 public http: HttpClient ,

 public markers: DataMarkers

) { }

 ngOnInit() {

B

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 }

 getBase64(file): Promise<string> {

 return new Promise((resolve) => {

 var reader = new FileReader();

 reader.readAsDataURL(file);

 reader.onload = function () {

 resolve(reader.result as string);

 };

 reader.onerror = function (error) {

 console.log('Error: ', error);

 };

 })

 }

 setSegemtnt(activeIndex: Promise<number>) {

 activeIndex.then((idnex) => {

 this.segment = idnex + '';

 if (idnex === 1){

 (document.getElementsByClassName('map-Result')[0] as HTMLElement).focus();

 }

 });

 }

 num(segment: string): number {

 return parseFloat(segment);

 }

 onSelect(event): void {

 console.log(event);

 if (event.addedFiles.length > 0){

 satedImages = true;

 this.files.push(...event.addedFiles);

 this.files.forEach((file, i) => {//loop in images i is the index of the image

 //locations array contains coordinates for every image

C

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 this.locations.push(//add location coordinates

 {

 //The file name contains the coordinates, latitude and longitude, taken from the GPS

 lat: file.name.split(',',2) [0],// set latitude

 log: file.name.split(',',2) [1],// set longitude

 },)

 })

 this.files.forEach((file,i) => {

 //locations array contains coordinates for avery image

 this.locations.push(

 {

 //The file name contains the coordinates, length and width, taken from the GPS

 lat: file.name.split(',',2)[0],

 log: file.name.split(',',2)[1],

 },

)

 })

 }

 }

 processImages(){

 this.files.forEach((file,i) => {

 this.postFile(file,'predict','',async (result) => {

 let img = await this.getBase64(file)

 this.markers.data.push({

 image: img,

 location: this.locations[i],

 status: result.status

 })

 if (i=== this.files.length -1){

 alert('Processing End Open Map To Show Result')

 }

D

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

 })

 })

 }

 postFile(file: File,urlSuffix: string, name: string, callback): void{

 const endpoint = urlSuffix;

 const formData: FormData = new FormData();

 formData.append("image", file);

 this.makeAPICallForFileUpload(endpoint , formData, callback);

 }

 makeAPICallForFileUpload(urlSuffix, params, callback: (response) => void): any {

 let URL_API = "http://127.0.0.1:5000/" + urlSuffix;

 return this.http.post(URL_API, params).subscribe(

 response => {

 callback(response);

 },

);

 }

 onRemove(event): void {

 console.log(event);

 this.files.splice(this.files.indexOf(event), 1);

 if (this.files.length === 0){

 satedImages = false;

 }

 }

}

E

Appendix A 2 Result.html

<ion-header translucent="true">

 <ion-toolbar>

 <ion-title>Home</ion-title>

 </ion-toolbar>

 <ion-toolbar>

 <ion-title>Load Images</ion-title>

 </ion-toolbar>

</ion-header>

<ion-content fullscreen="true">

 <div>

 <ngx-dropzone name="files[]" id="Images" aria-describedby="Images" aria-label="Images" aria-
labelledby="Images" accept="image/*" [expandable]="true" [maxFileSize]="1024*1024*10"
(change)="onSelect($event)">

 <ngx-dropzone-label>Select Images .. Taking from Drone </ngx-dropzone-label>

 <ngx-dropzone-image-preview [removable]="true" (removed)="onRemove(f)" ngProjectAs="ngx-dropzone-
preview" *ngFor="let f of files" [file]="f"></ngx-dropzone-image-preview>

 </ngx-dropzone>

 <ion-button expand="full" (ionClick)="processImages()">Process Images</ion-button>

 </div>

</ion-content>

F

Appendix A 3 Map.ts

1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

import { Component, ElementRef, Inject, ViewChild, AfterViewInit } from '@angular/core';

import { ConferenceData } from '../../providers/conference-data';

import { Platform } from '@ionic/angular';

import [20] from '@angular/common';

import { darkStyle } from './map-dark-style';

import {DataMarkers} from "../../providers/dataMarkers";

@Component({

 selector: 'page-map',

 templateUrl: 'map.html',

 styleUrls: ['./map.scss']

})

export class MapPage implements AfterViewInit {

 @ViewChild('mapCanvas', { static: true }) mapElement: ElementRef;

 constructor(

 @Inject(DOCUMENT) private doc: Document,

 public confData: ConferenceData,

 public platform: Platform,

 public markers: DataMarkers

) {}

 async ngAfterViewInit() {

 const appEl = this.doc.querySelector('ion-app');

 let isDark = false;

 let style = [];

 if (appEl.classList.contains('dark-theme')) {

 style = darkStyle;

 }

 const googleMaps = await getGoogleMaps(

 'AIzaSyBXdJogECiKximzAZjSpVoFGyNVVFz2yCM'

);

G

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 let map;

 this.confData.getMap().subscribe((mapData: any) => {

 const mapEle = this.mapElement.nativeElement;

 map = new googleMaps.Map(mapEle, {

 lat: 14.3118986,

 lng: 33.2081465,

 center: mapData.find((d: any) => d.center),

 zoom: 100,

 mapTypeId: "satellite",

 mapTypeControlOptions: {

 mapTypeIds: ["satellite"],

 },

 styles: style

 });

 const drawingManager = new googleMaps.drawing.DrawingManager({

 drawingMode: googleMaps.drawing.OverlayType.MARKER,

 drawingControl: true,

 drawingControlOptions: {

 position: googleMaps.ControlPosition.TOP_CENTER,

 drawingModes: [

 // googleMaps.drawing.OverlayType.MARKER,

 // googleMaps.drawing.OverlayType.CIRCLE,

 googleMaps.drawing.OverlayType.POLYGON,

 // googleMaps.drawing.OverlayType.POLYLINE,

 googleMaps.drawing.OverlayType.RECTANGLE,

],

 },

 markerOptions: {

 icon: "https://developers.google.com/maps/documentation/javascript/examples/full/images/beachflag.png",

 },

 circleOptions: {

H

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 fillColor: "#ffff00",

 fillOpacity: 1,

 strokeWeight: 5,

 clickable: false,

 editable: true,

 zIndex: 1,

 },

 });

 drawingManager.setMap(map);

 googleMaps.event.addListener(drawingManager, 'overlaycomplete', function(event) {

 console.log(event);

 if (event.type == 'rectangle') {

 let bounds = event.overlay.getBounds();

 let start = bounds.getNorthEast();

 let end = bounds.getSouthWest();

 let center = bounds.getCenter();

 let dis = haversine_distance(start,end)

 dvideRectuangle(bounds,googleMaps,map);

 }else if (event.type === 'polygon'){

 let locations = event.overlay.getPath().getArray();

 console.log(locations);

 locations.forEach((loc,i) => {

 console.log('point '+ (i + 1) +' lat = ' + loc.lat() + ' lng = ' + loc.lng())

 let dis;

 if (i === 0){

 dis = haversine_distance(locations[i],locations[locations.length - 1])

 }else {

 dis = haversine_distance(locations[i],locations[i-1])

 }

 console.log(dis)

 })

I

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

 let area = googleMaps.geometry.spherical.computeArea(event.overlay.getPath());

 console.log('area = ' + area)

 }

 });

 mapData.forEach((markerData: any) => {

 if(this.markers.data.length > 0){

 this.markers.data.forEach((marker,i) => {

 const infoWindow = new googleMaps.InfoWindow({

 content: `<h5 class="`+marker.status+`">${marker.status}</h5>`

 });

 addMarker({

 name: marker.status,

 lat: parseFloat(marker.location.lat),

 lng: parseFloat(marker.location.log),

 center: i===0

 },googleMaps,map,infoWindow)

 })

 }

 });

 googleMaps.event.addListenerOnce(map, 'idle', () => {

 mapEle.classList.add('show-map');

 });

 });

 const observer = new MutationObserver((mutations) => {

 mutations.forEach((mutation) => {

 if (mutation.attributeName === 'class') {

 const el = mutation.target as HTMLElement;

 isDark = el.classList.contains('dark-theme');

 if (map && isDark) {

 map.setOptions({styles: darkStyle});

J

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

 } else if (map) {

 map.setOptions({styles: []});

 }

 }

 });

 });

 observer.observe(appEl, {

 attributes: true

 });

 }

}

function getGoogleMaps(apiKey: string): Promise<any> {

 const win = window as any;

 const googleModule = win.google;

 if (googleModule && googleModule.maps) {

 return Promise.resolve(googleModule.maps);

 }

 return new Promise((resolve, reject) => {

 const script = document.createElement('script');

 script.src = `https://maps.googleapis.com/maps/api/js?key=${apiKey}&libraries=drawing&v=3.31`;

 script.async = true;

 script.defer = true;

 document.body.appendChild(script);

 script.onload = () => {

 const googleModule2 = win.google;

 if (googleModule2 && googleModule2.maps) {

 resolve(googleModule2.maps);

 } else {

 reject('google maps not available');

 }

K

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

 };

 });

}

function haversine_distance(mk1, mk2) {

 console.log(mk1,mk2)

 var R = 3958.8; // Radius of the Earth in miles

 var rlat1 = mk1.lat() * (Math.PI/180); // Convert degrees to radians

 var rlat2 = mk2.lat() * (Math.PI/180); // Convert degrees to radians

 var difflat = rlat2-rlat1; // Radian difference (latitudes)

 var difflon = (mk2.lng()-mk1.lng()) * (Math.PI/180); // Radian difference (longitudes)

 var d = 2 * R * Math.asin(Math.sqrt(Math.sin(difflat/2)*Math.sin(difflat/2)+Math.cos(rlat1)*Math.cos(rlat2)*Math.sin(difflon/2)*Math.sin(difflon/2)));

 return d;

}

function dvideRectuangle(bounds,googleMaps,map){

 var southWest = bounds.getSouthWest();

 var northEast = bounds.getNorthEast();

 console.log(bounds);

 var numberOfParts = 4;

 var tileWidth = (northEast.lng() - southWest.lng()) / numberOfParts;

 var tileHeight = (northEast.lat() - southWest.lat()) / numberOfParts;

 for (var x = 0; x < numberOfParts; x++) {

 for (var y = 0; y < numberOfParts; y++) {

 var areaBounds = {

 north: southWest.lat() + (tileHeight * (y+1)),

 south: southWest.lat() + (tileHeight * y),

 east: southWest.lng() + (tileWidth * (x+1)),

 west: southWest.lng() + (tileWidth * x)

 };

 // console.log("Point : " + x + " , " + y + " = "+ "\n"

L

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

 // + "north:" + southWest.lat() + "+" + (tileHeight * (y+1)) + " " + areaBounds.north + "\n"

 // + "south:" + southWest.lat() + "+" + (tileHeight * y) + " " + areaBounds.south + "\n"

 // + "east:" + southWest.lng() + "+" + (tileWidth * (x+1)) + " " + areaBounds.east + "\n"

 // + "west:" + southWest.lng() + "+" + (tileWidth * x) + " " + areaBounds.west)

 var area = new googleMaps.Rectangle({

 strokeColor: '#42a5a5',

 strokeWeight: 2,

 map: map,

 bounds: areaBounds

 });

 let Center = area.bounds.getCenter()

 console.log(Center.lat() + "," + Center.lng() + ".png")

 }

 }

}

function addMarker(markerData: marker,googleMaps, map,infoWindow) {

 const marker = new googleMaps.Marker({

 position: markerData,

 map,

 title: markerData.name,

 icon: markerData.name === 'diseased'?'assets/img/deisae.png':'assets/img/helthy.png'

 });

 marker.addListener('click', () => {

 infoWindow.open(map, marker);

 });

}

interface marker{

 "name": string,

 "lat": number,

 "lng": number,

 "center": boolean

}

M

Appendix A 4 Map.html

<ion-header>

 <ion-toolbar>

 <ion-buttons slot="start">

 <ion-menu-button></ion-menu-button>

 </ion-buttons>

 <ion-title>Map</ion-title>

 </ion-toolbar>

</ion-header>

<ion-content>

 <div #mapCanvas class="map-canvas"></div>

</ion-content>

N

Appendix B Python CNN model

Appendix B 1 Train.py

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

import libraries

import keras

from keras.preprocessing.image import ImageDataGenerator

from keras.optimizers import Adam

from keras.callbacks import ModelCheckpoint

import matplotlib.pyplot as plt

print(keras.__version__)

train_data_path = "./dataset/training_set"

validation_data_path = "./dataset/val"

learning_rate = 0.0001

batch_size = 32

epochs = 100

def plotImages(images_arr):

 fig, axes = plt.subplots(1, 5, figsize=(20, 20))

 axes = axes.flatten()

 for img, ax in zip(images_arr, axes):

 ax.imshow(img)

 plt.tight_layout()

 plt.show()

this is the augmentation configuration we will use for training

It generate more images using below parameters

training_datagen = ImageDataGenerator(rescale=1. / 255,

 rotation_range=40,

O

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 width_shift_range=0.2,

 height_shift_range=0.2,

 shear_range=0.2,

 zoom_range=0.2,

 horizontal_flip=True,

 fill_mode='nearest')

this is a generator that will read pictures found in

at train_data_path, and indefinitely generate

batches of augmented image data

training_data = training_datagen.flow_from_directory(train_data_path, # this is the target directory

 target_size=(150, 150), # all images will be resized to 150x150

 batch_size=batch_size,

 class_mode='binary') # since we use binary_crossentropy loss, we need
binary labels

print(len(training_data))

print(training_data.class_indices)

this is the augmentation configuration we will use for validation:

only rescaling

valid_datagen = ImageDataGenerator(rescale=1. / 255)

this is a similar generator, for validation data

valid_data = valid_datagen.flow_from_directory(validation_data_path,

 target_size=(150, 150),

 batch_size=batch_size,

 class_mode='binary')

print(len(valid_data))

images = [training_data[0][0][0] for i in range(5)]

plotImages(images)

model_path = './modal/ModalForSearch.h5'

checkpoint = ModelCheckpoint(model_path, monitor='val_accuracy', verbose=1, save_best_only=True,
mode='max')

P

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

callbacks_list = [checkpoint]

Building cnn model

cnn_model = keras.models.Sequential([

 keras.layers.Conv2D(filters=32, kernel_size=3, input_shape=[150, 150, 3]),

 keras.layers.MaxPooling2D(pool_size=(2, 2)),

 keras.layers.Conv2D(filters=64, kernel_size=3),

 keras.layers.MaxPooling2D(pool_size=(2, 2)),

 keras.layers.Conv2D(filters=128, kernel_size=3),

 keras.layers.MaxPooling2D(pool_size=(2, 2)),

 keras.layers.Conv2D(filters=256, kernel_size=3),

 keras.layers.MaxPooling2D(pool_size=(2, 2)),

 keras.layers.Dropout(0.5),

 keras.layers.Flatten(), # neural network beulding

 keras.layers.Dense(units=128, activation='relu'), # input layers

 keras.layers.Dropout(0.1),

 keras.layers.Dense(units=256, activation='relu'),

 keras.layers.Dropout(0.25),

 keras.layers.Dense(units=2, activation='softmax') # output layer

])

compile cnn model

cnn_model.compile(optimizer=Adam(lr=learning_rate), loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

cnn_model.summary()

keras.utils.plot_model(cnn_model, to_file="my_model.png", show_shapes=True)

train cnn model

trainedModel = cnn_model.fit(training_data,

 epochs=100,

 verbose=1,

 validation_data=valid_data,

 callbacks=callbacks_list) # time start 16.06

Q

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

from keras.models import save_model

model = save_model(cnn_model, model_path) # saving model to './modal/ModalForSearch.h5'

summarize history for accuracy

plt.plot(trainedModel.history['accuracy'])

plt.plot(trainedModel.history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

summarize history for loss

plt.plot(trainedModel.history['loss'])

plt.plot(trainedModel.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

print(trainedModel.history)

R

Appendix B 2 App.py

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Import necessary libraries

from flask import Flask, render_template, request

from flask_cors import CORS, cross_origin

import numpy as np

import os

from keras.preprocessing.image import load_img

from keras.preprocessing.image import img_to_array

from keras.models import load_model

from keras.utils.vis_utils import plot_model

load model

from werkzeug.datastructures import FileStorage

model = load_model("model/ModalForSearch.h5")

plot_model(model, to_file='model_plot.png', show_layer_names=True)

def pred_cot_dieas(cott_plant):

 img = load_img(cott_plant, target_size=(150, 150))

 img = img_to_array(img) / 255

 img = np.expand_dims(img, axis=0)

 result = model.predict(img).round(3)

 pred = np.argmax(result) # get the index of max value

 # return pred

 # # {'diseased cotton plant': 0, 'fresh cotton plant': 1}

 if pred == 0:

 return " diseased cotton plant", 'disease_plant.html' # if index 0 burned leaf

 else:

 return "healthy cotton plant", 'healthy_plant.html' # if index 3

------------>>pred_cot_dieas<<--end

S

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Create flask instance

app = Flask(__name__)

cors = CORS(app)

app.config['CORS_HEADERS'] = 'Content-Type'

render index.html page

@app.route("/", methods=['GET', 'POST'])

def home():

 return render_template('index.html')

 # Python3 code here creating class

class predResult:

 def __init__(self, file_path, pred):

 self.file_path = file_path

 self.pred = pred

get input image from client then predict class and render respective .html page for solution

@app.route("/predict", methods=['GET', 'POST'])

@cross_origin()

def predict():

 file_Results = []

 if request.method == 'POST':

 print('started')

 file = request.files['files[]'] # fet input

 filename = file.filename

 print("@@ Input posted = ", filename)

 file_path = os.path.join('static/user uploaded', filename)

T

65

66

67

68

69

70

71

72

73

74

 file.save(file_path)

 print("@@ Predicting class......")

 pred, output_page = pred_cot_dieas(cott_plant=file_path)

 return render_template(output_page, pred_output=pred, user_image=file_path)

For local system & cloud

if __name__ == "__main__":

 app.run(threaded=False,)

