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Abstract 

      Tuberculosis  (TB) is a chronic disease caused by Mycobacterium 

tuberculosis. The appearance of multidrug-resistant strains of 

Mycobacterium tuberculosis (M.tb) has led to an urgent search for 

new and effective anti-TB drugs. Isoniazid remains the main and 

most effective component of all the multiple therapeutic regimens 

recommended by the World Health Organization. 

      In this work number of computer programs were used, such as 

ACD/Labs , MOE and SPSS. From previously published article , (21 

compounds) of  N-substituted -2-isonicotinoyl hydrazine 

carboxamide derivatives were divided into two groups, training set 

(15 compounds) and a test set(6 compounds) ,one of  them was 

excluded).  The biological activity (MIC) of data set  was converted to 

logarithmic scale (pMIC) .The biological activity was correlated   

with  selected descriptors were chosen  according to correlation 

matrix to  create a (QSAR) models. The models were used in  study 

the relationship between structure and effectiveness by using the 

(MOE) program by (PLS) method. A number of equations were 

obtained in 2D ,3D and (2D+3D) dimensionals. The validity of the 

equations was confirmed by using the internal and  external 

validation in addition to multiple  linear regression  (MLR) statistical 

analysis method to increase the strength and robustness of the 

equations. The equations  were used  to predicted the  biological 

activity of data set  compounds. 

      The best equations in the (2D) dimensional with value of 

correlation coefficient  R2 = 0.87. Also based on internal validation    

by using the training set (LOO, leave-one-out) method was obtained  

value  Q2 =0.73  and the external investigation was conducted using 

the test set  the  value was R2pred= 0.70  and the equation is 

  pMIC=8.00423-0.24582chiov-0.00617slog_VSA9-0.35165kier2 , 



 

V 
 

And also the equation with a correlation coefficient R2=0.84, 

Q2=0.70, R2pred=0.71  

 pMIC=6.07370+0.10173kierA3-0.70720chi1v-0.21145logp(o/w) 

      The best equation in the (3D) dimensional has the highest 

correlation coefficient  R2 =0.96 values of Q2= 0.9 and R2pred= 0.70  

according to the equation 

 pMIC=10.25002-0.01536ASA-1.15755E_oop-2.58249npr1. 

In addition  to in (2D+3D) dimensional 

pMIC=7.5644-1.1662E_oop-0.0103ASA-0.2475logp(o/w) 

           with correlation coefficient  R2=0.93 ,Q2=0.89  and R2pred=0.73 

      The Fifty eight new compounds were  designed , the four 

equations were applied on the new designed compounds (58) of  N-

substituted -2-isonicotinoyl hydrazine carboxamide to predict the  

biological activity values ( pMIC) for them  and compared to 

biological activity  of Isoniazid (INH) pMIC = -0.3  . The compounds 

(XXIX, XXX, XXXII,XLI, XLIX) were showed  biological activity values 

close to the biological activity value of  Isoniazid (INH). 

    The molecular docking  was applied on the compounds of the data 

set and the 58 new designed compounds with (4TRO) protein. 4TRO 

protein was obtained from the Protein Data Bank (PDB) ,the 

designed compounds that were showed more interaction  with 

4TRO (VII, VIII XLVII, XXXVII, XL, LI,LII). 
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 الخلاصة

أدى ظهور  .Mycobacterium tuberculosis هو مرض مزمن ينتج عن (TB) السل

إلى البحث العاجل عن أدوية  (Mtb) سلالات مقاومة للأدوية المتعددة من المتفطرة السلية

هو المكون الرئيسي والأكثر فعالية لجميع  يظل أيزونيازيد..  السلجديدة وفعالة لمكافحة 

 .الأنظمة العلاجية المتعددة التي أوصت بها منظمة الصحة العالمية

  ,MOE,SPSS( ACD/Labs) مثلتم استخدام عدد من برامج الكمبيوتر  الدراسةفي هذه 

-N-substituted -2 (مركب 12)ها بياناتمجموعة  ,من ورقه منشوره مسبقا 

isonicotinoyl hydrazine carboxamide  مجموعتين , مجموعة تدريب قسم إلي

تم تحويل النشاط (. مركبات , تم استبعاد أحدها  6)ومجموعة اختبار ( مركب  21)

, وتم ربط النشاط  (pMIC) لمجموعة البيانات إلى مقياس لوغاريثمي (MIC) البيولوجي

استخدمت .  (QSAR)نشاء نماذج البيولوجي بمعاملات محددة وفقًا لمصفوفة الارتباط لإ

.   (PLS)بطريقة (MOE) باستخدام برنامج والفعالية  البنيةالنماذج في دراسة العلاقة بين 

( ثلاثية+ ثنائية )تم الحصول على عدد من المعادلات بأبعاد ثنائية وثلاثية الأبعاد و

التحقيق الداخلي والداخلي و  تم التأكد من صحة المعادلات باستخدام طريقة. الأبعاد

. لزيادة قوة ومتانة المعادلات (MLR) طريقه التحليل الإحصائي للانحدار الخطي المتعدد

 .تم استخدام المعادلات للتنبؤ بالنشاط البيولوجي لمركبات مجموعة البيانات

 78.0=(R2)ذات قيمه  معامل ارتباط  (2D  dimensionl) المعادلات في البعد  أفضل

-LOO, leave-one) مجموعة التدريب بطريقه  باستخدامعلي قيم التحقق الداخلي  ئاً وبنا

out)    0.73وجدت قيمة = Q2  التحقيق الخارجي  باستخدام مجموعة   وأجرى

 ختبار وحسبت قيمهلإا

  7807 =  R2
pred هي والمعادلة 

pMIC=8.00423-0.24582chiov-0.00617slog_VSA9-0.35165kier2 , 

R2=0.84 ,7807 =   Q27802  =R2 ذات معامل الارتباط   المعادلة أيضاو 
pred 

PMIC=6.07370+0.10173kierA3-0.70720chi1v-0.21145logp(o/w) 

  78.6 ( R2)=ذات اعلي معامل ارتباط  3D dimensionl))معادله في البعد  وأفضل

 وقيم 

 78.2  =Q2    7807و=R2
pred    للمعادلةوفقا 

pMIC=10.25002-0.01536ASA-1.15755E_oop-2.58249npr1 

 (D+3D1) الأبعادفي  المعادلة  بالإضافة إلى

pMIC=7.5644-1.1662E_oop-0.0103ASA-0.2475logp(o/w) 

R2 = 0.93  ,  =0.73 Q2   ,R2 مع معامل الارتباط
pred = 0.89 
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-1-المستبدلة  -N من( .1)على المركبات المصممة الجديدة   معادلات الأربعتم تطبيق 

isonicotinoyl hydrazine carboxamide  للتنبؤ بقيم النشاط البيولوجي (pMIC) 

أظهرت .  pMIC = -0.3. (INH) لها ومقارنتها بالنشاط البيولوجي لـ أيزونيازيد

قيم نشاط قريبة من قيمة النشاط البيولوجي  XXXII XXX  ,XLI  , (XXLIX)المركبات

تم تطبيق الالتحام الجزيئي على مركبات مجموعة البيانات  (INH) للإيزونيازيد

من بنك بيانات  4TRO تم الحصول على بروتين 4ببروتين الجديدة المصممةوالمركبات 

  4TRO , وهذه هي  المركبات المصممة التي أظهرت تفاعلًا أكبر مع (PDB) البروتين

(VII, VIII, XLVII, XXXVII, XL, LI,LII). 
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1.1.Computational Chemistry: 

     Computational Chemistry is a science  with  applications  in  most  areas  

of   chemistry, biochemistry and material sciences. 

It employed tools that have been developed during  years to model a wide 

variety of chemical processes, ranging from very accurate studies of small 

molecules in the gas phase to complex simulations of macromolecular 

systems, crystals and solutions. Different theoretical methods are used in 

different types of applications. Small molecules are treated using 

sophisticated and very accurate models of the Schrodinger equation. Larger 

molecules are treated with more approximate methods, like density 

functional theory. Effects of a solvent or a crystal environment can be 

modeled using reaction-field Hamiltonians and model potentials. 

Macromolecular systems are treated at an even simpler level, where only a 

‘‘reactive center’’ is studied by Quantum Chemistry while the surroundings 

are modeled by classical mechanics Monte-Carlo (MC) or molecular 

dynamics (MD) .(Jensen,2007) 

      Computational Chemistry also called molecular modeling , the two 

terms mean about the same thing is a set of techniques for investigating 

chemical problems on a computer. (Lewars, 2011) 

     As one of the most active fields, the development of Computational 

Chemistry can not only analyze the experimental data but also predict ideal 

model complexes to inspire synthetic chemists. (Luo and  Zheng, 2021) 

     With the exponential increase in data to be analysed, obtained through 

the introduction of automated whole genome and protein sequencing 

techniques, the field of bioinformatics rapidly emerged with  the pioneering 

laborious mapping and comparison of protein and gene sequences in 

molecular biology, via an intense phase, which to a large extent can be 

viewed as ‘database mining’ and the development of efficient computer 

based algorithms, into a science of its own, reached a high level of maturity 

and sophistication. Tools in bioinformatics are used with great success in 

structural biology, Computational Chemistry, genetics, molecular biology, 

the pharmaceutical industry, pharmacology and more.( Genheden et 

al.,2017) 

1.2.Molecular modeling: 

     Molecular modeling (MM) is one of the fastest growing fields in science. 

It may vary from building and visualizing simple molecules in three 
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dimensions (3D) to performing complex computer simulations on large 

proteins and nanostructures. MM is a collection of computer-based 

techniques for driving, representing and manipulating the structures and 

reactions of molecules, and the properties are dependent on these 3D 

structures. The techniques in MM cover several issues among them 

Computational Chemistry, drug design, computational biology, 

nanostructures, and material science. 

      It is found that the issue drug design is an interactive topic in MM and 

contribute to drug discovery both in academia and in industry. Computer-

aided and structure-based drug design relies on knowledge of the 3D 

structure of the biological target. Drug design is an  iterative process that 

begins when a compound is identified to display an interesting biological 

profile and ends when its activity profile and the chemical synthesis are 

optimized. MM permeates all aspects of drug design. Scientists have used 

computer models of new chemical entities to help define activity profiles, 

geometries, and relativities. Three stages of drug discovery can be achieved 

by MM: virtual screening, hit-to-lead optimization and lead optimization of 

other pharmaceutical properties while maintaining affinity. (Pimentel et 

al.,2013)                                    

1.3 Molecular docking: 

     Pharmaceutical research has successfully incorporated a wealth of 

molecular modeling methods, within a variety of drug discovery programs, 

to study complex biological and chemical systems. The integration of 

computational and experimental strategies has been of great value in the 

identification and development of novel promising compounds. Broadly 

used in modern drug design, molecular docking methods explore the ligand 

conformations adopted within the binding or the  sites of macromolecular 

targets. This approach also estimates the ligand-receptor binding free energy 

by evaluating critical phenomena involved in the intermolecular recognition 

process. Active site as a variety of docking algorithms are available, an 

understanding of the advantages and limitations of each method is of 

fundamental importance in the development of effective strategies and the 

generation of relevant results. (Ferreira et al.,2015) 

      One method for exploring the interactions between a ligand and a 

protein is to synthesize the  ligand, co-crystallize it with   the  protein and 

then try to obtain an  X-raystructure of the complex. Although both 
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synthesis and crystallography can sometimes be quite unpredictable and 

time-consuming, the method may be viable for small collections of ligands. 

If synthesis or crystallization fails, or if the aim is to screen many ligands for 

binding to the protein, computational molecular docking is often the method 

of first choice, and has become popular within both academia and industry. 

Furthermore, docking can be valuable when forming hypotheses  regarding 

the way a ligand binds to the protein, or for modeling parts of the ligand 

whose structure or conformation when bound have not been successfully 

determined by crystallography. More than 60 docking programs are used, 

which 10 of them are roughly widely used . Docking requires a 3D structure 

of the protein as input. Typically, the software will generate 3D 

conformations of the ligands and optimize their interactions with the protein 

by computing the binding affinity scoring  between the two. In most docking 

programs used, the ligand is treated as a flexible structure but the 

conformation of the protein is treated as being mostly rigid, and water 

molecules are typically not -considered at all. Obviously, both of these 

approximations constitute major simplifications of the real environment in 

which ligands and proteins interact. Still they are useful because of the 

immense amount of computation that would be necessary to accurately 

model the effects of water and protein flexibility – imagine the difficulty of 

modeling a lock and key that are constantly changing shape, in aqueous 

solution, and trying to measure the interactions between the two. 

     However, this simplifications are thought to be the two most important 

reasons why docking fails to correctly predict the affinity of a ligand for a 

protein, and the position  of the  ligand  upon binding. (Andersson ,2010) 

      Molecular  docking   leads  to   discovery  of  therapeutic drugs through  

multiple ways that include: 

I.  Identification of potential target. 

II. Screening of potent drugs as activators or inhibitors against certain 

diseases . 

III. Designing of novel drugs by lead optimization  

IV. Prediction of binding mode and nature of active site  

V. Synthesis of chemical compounds with less time consumption.(Tripathi 

and  Misra,2017) 
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1.4 Conformational of  protein and ligand 

      The design of  docking programs only considered  ligand  flexibility  but 

was able to achieve certain degree of success in their results. Other studies  

took into account receptor flexibility and allowed adjustment of the protein 

conformation to accommodate more ligand motions at the binding site. 

However, modeling the receptor as flexible during docking increases the 

degree of freedom exponentially, which challenges the search ability of 

docking programs. Existing flexible-receptor protein–ligand docking 

programs can be grouped into three categories: (a) Soft-docking methods 

that modify the potential energy function to allow a closer approach between 

ligand and receptor such that small side-chain conformational changes is 

mimicked.  

(b) Ensemble docking methods, that generate a set of receptor 

conformations as receptor candidates to simulate the protein conformational 

changes caused by binding the ligand into  the pocket. 

(c) Induced-fit docking methods , where both receptor and ligand 

conformations are dynamic during the docking process. (Wong  et al., 2021) 

      The most active area of theoretical research using molecular orbital 

theory has been in the prediction of the preferred conformation of 

molecules. Most molecules exist in multiple conformations. The preferred 

conformation of a molecule is a structural characteristic feature that arises as 

a response to the force of attraction and repulsion. The shape should be 

considered primarily in determining the interaction of the molecule with the 

receptor. The minimization energy is a function of bond angles, bond 

lengths, torsion angles and non-covalent interactions. By varying these 

parameters in a systematic way and calculating the total energy as a sum of 

orbital energies,  can determine a minimum energy structure.( 

Nadendla,2004) 

1.5 Quantitative Structure Activity Relationship (QSAR) : 

     Quantitative Structure Activity Relationship (QSAR) are mathematical 

models that seek to predict complicated physicochemical /biological 

properties of chemicals from their simpler experimental or calculated 

properties. 

     QSAR has emerged and has evolved trying to fulfill the medicinal 

chemist’s need and desire to predict biological response. It found its way 
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into the practice of agro chemistry, pharmaceutical chemistry, and 

eventually most divisions  of chemistry. ( Muhammad et al.,2019) 

     A QSAR attempts to find consistent relationships between the variations 

in the values of molecular properties and the biological activity for a series 

of compounds so that these rules  can be used to evaluate new chemical 

entities. A QSAR generally takes the form of a linear equation : 

 Biological activity = Constant   + (C1. P1) +  )C2 . P2) + (C3.P3)
 + 

 …, 

where the parameters P1 through Pn are computed for each molecule in the 

series and the coefficients C1through Cn are calculated by fitting variations 

in the parameters and the biological activity. (Patel et al.,2014 ) 

    Computer-Aided Drug Design (CADD) involved widely employed 

computational approaches to discover and design new bioactive compounds. 

As examples of CADD techniques molecular docking, molecular dynamics 

(MD) simulations, pharmacophore modeling, similarity analysis, 

quantitative structure–activity relationship (QSAR) analysis, and machine 

learning (ML) techniques. (Serafim et al., 2021) 

     Advances in computing power have enabled development of software 

which allows simulation of the drug-receptor binding processes, a subset of 

computer-aided drug design (CADD) also referred to as virtual screening, 

with tremendous benefits to drug discovery efficiency (Kiriiri et al., 2020). 

     There are several Quantitative Structure-Activity Relationship (QSAR) 

methods to assist in the design of compounds for medicinal use. Owing to 

the different QSAR methodologies, deciding which QSAR method to use 

depends on the composition of system of interest and the desired 

results.(Esposito et al.,2004) 

     Based on chemometric methods, sometimes QSAR methods are also 

classified  depending upon the type of correlation technique employed to 

establish a relationship between structural properties and biological activity. 

This includes linear methods including linear regression (LR), multiple 

linear regression (MLR), partial least squares(PLS), and principal 

component analysis/regression (PCA/PCR). Non-linear methods consist of 

artificial neural networks (ANN), k-nearest neighbors (kNN), and Bayesian 

neural nets .( Patel et al.,2014) 

     The QSAR models were developed by a combination of genetic 

algorithms with multiple linear regression (GA-MLR) methods to  

investigate the correlation between the activity and descriptors . (Setiawan et 

al.,2021) 
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     The ability of accurate predictions of biological response (biological 

activity/property/toxicity) of a given chemical makes the quantitative 

structure‐activity/property/toxicity relationship (QSAR/QSPR/QSTR) 

models unique among the in silico tools. In addition, experimental data of 

selected species can also be used as an independent variable along with 

other structural as well as physicochemical variables to predict the response 

for different species formulating quantitative activity–activity relationship 

(QAAR)/quantitative structure–activity–activity relationship (QSAAR) 

approach. Irrespective of the models type, the developed models quality, and 

reliability need to be checked through multiple classical stringent validation 

metrics. Among the validation metrics, error-based metrics are more 

significant as the basic idea of a good predictive model is to improve the 

predictions  quality by lowering the predicted residuals for new query 

compounds.( Gajewicz-Skretna et al., 2021) 

     QSAR is the final result of computational processes that start with a 

suitable description of molecular structure and ends with some inference, 

hypothesis, and predictions on the behavior of molecules in environmental, 

physicochemical and biological system under analysis. The final outputs of 

QSAR computations are set of mathematical equations relating chemical 

structure to biological activity. Multivariate QSAR analysis employs all the 

molecular descriptors from various representations of a molecule (1D, 2D 

and 3D representation) dimensional to compute a model, in a search for the 

best descriptors valid for the property in analysis. The development of 

QSAR approaches drastically  evolved and several multidimensional QSAR 

congeners(e.g., 4D-, 5D, and 6D-QSAR approaches) dimensional were 

introduced . (Minovski and Novič ,2017) 

     The success of any quantitative structure–activity relationship model 

depends on the accuracy of the input data, selection of appropriate 

descriptors. Validation is a crucial aspect of QSAR modeling. (Veerasamy   

et 

 al .,2011) 

     QSAR methodologies have the potential of decreasing substantially the 

time and effort required for the discovery of new medicines . The QSAR 

analysis employs statistical methods to derive quantitative mathematical 

relationship between chemical structure and biological activity. The process 

of QSAR modeling can be divided into three stages, development, model 

validation and application . ( Muhammad et al.,2019) 
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1.5.1  Importance of validation of QSAR models: 

    Validation of QSAR is the most important parts in QSAR. The QSAR 

models can lead to false prediction of  biological activity if the developed 

QSAR model is not validated. So validation of QSAR models, after model 

development, is most important part in QSAR studies. (Veerasamy et al., 

2011) 

1.5.1.1  Internal model validation: 

      The Leave-one-out (LOO), and Leave-More-out (LMO) cross-validation 

procedures are used for internal validation.  (Setiawan et al., 2021) 

      A necessary condition for the validity of a regression model is that the 

multiple correlation coefficient R
2
 is as close as possible to one and the 

standard error of the estimate s is small. However, this condition, which 

measures how well the model is able to mathematically reproduce the end 

point data of the training set, is an insufficient condition for model 

robustness and validity, as it do not express the ability of the model to make 

reliable predictions on new data. A necessary approach is to   apply various 

cross-validations . Cross-validation refers to the use of one or more 

statistical techniques for internal validation in which different proportions of 

chemicals are omitted from the training set such as Leave-one-out (LOO), 

Leave-More-out (LMO) and bootstrapping and iteratively put in test set. 

QSAR is developed on the basis of the data of the remaining chemicals, and 

then used to make predictions for the chemicals that were omitted .This 

procedure is repeated a number of times, so that a number of statistics can 

be derived from the comparison of predicted data with the known data. 

Cross-validation techniques allow the assessment of the internal prediction 

power and  robustness of the model. (Gramatica , 2013) 

      A cross-validated correlation coefficient R
2
 (Q

2
 ). Frequently, Q

2
 is used 

as a criterion of both robustness and predictive ability of the model. Many 

authors consider high Q
2
 (for instance, Q

2
> 0.5) as an indicator or even as 

the ultimate proof of the high predictive power of the QSAR model.  

(Veerasamy et al .,2011) 

1.5.1.2  External model validation 

      Indeed, it is important to emphasize that the true predictive power of a  
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QSAR model can be established only through model validation procedure 

which consists of prediction of activities of compounds which were not 

included in model building, i.e., compounds in the test set. In contrast to the 

test set, compounds used for model building constitute the training set. In 

many QSAR studies multiple models are built and from the best  models are 

selected, which are defined as those based on the prediction statistics for the 

test set. Thus, the test set is actually used to select models. This use of the 

test set for model selection practically negates the consideration of such 

routine as an adequate external model validation. In fact, it does not 

guarantee at all that models selected in this way will make accurate 

predictions if used for chemical database mining i.e. predicting activities of 

compounds in truly external database, to simulate the use of QSAR models 

for database mining, a so called external evaluation set is employed. It 

should consist of compounds with known activities that are not included in 

either training or test sets. External evaluation set can be selected randomly 

from the entire initial dataset. In general, the size of the external evaluation 

set should be about 15%–20% of the entire dataset. The remaining part of 

the dataset is called modeling set that can be divided into training and test 

sets . (Tropsha, 2010). 

     The use of internal versus external validation has been a matter of great 

debate . One group of QSAR workers supports internal validation, while the 

other group considers that internal validation is not a sufficient test for 

checking robustness of the models and external validation must be done.  

The major group of supporters of internal validation, are of the opinion that 

cross-validation is able to assess the model fit and to check whether the 

predictions will carry over to fresh data not used in the model fitting 

exercise. They have argued that when the sample size is small, holding a 

portion of it back for testing is wasteful and it is much better to use 

“computationally more burdensome” leave-one-out cross-validation. 

     The value of r
2

m(test) should be greater than 0.5 for an acceptable model. 

(Pratim Roy et al.,2009) 

1.5.2   Fit of  the Model: 

 

      Fit of the QSAR models can be determined by the method root-mean 

squared error (RMSE). These method are used to decide if the model 

possesses the predictive quality reflected in the R
2
. The use of RMSE shows 
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the error between the mean of the experimental values and predicted 

activities. 

    For good predictive model the RMSE values should be <0.3. These 

method of error checking can also be used to aid in creating models and are 

especially useful in creating and validating models for nonlinear data sets, 

such as those created with Artificial Neural Network (ANN). 

     However, excellent values of R
2
, RMSE are not sufficient indicators of 

model validity. Thus, alternative parameters must be provided to indicate the 

predictive ability of models. In principle, two reasonable approaches of 

validation can be envisaged one based on prediction and the other based on 

the fit of the predictor variables to rearranged response variables. 

(Veerasamy et al .,2011) 

1.5.3.Applicability domain of  QSAR: 

     The application of QSAR models depends on statistical significance and 

predictive ability of the models. The prediction of a modeled response using 

QSAR is valid only if the compound being predicted is within the 

applicability domain of the model. The applicability domain is a theoretical 

region of the chemical space, defined by the model descriptors and modeled 

response and thus by the nature of the training set molecules. It is possible to 

check whether a new chemical lies within applicability domain using the 

leverage approach. A compound will be considered outside the applicability 

domain when the leverage values is higher than the critical value of 3p/n, 

where p is the number of model variables plus 1 and n is the number of 

objects used to develop the model. ( Muhammad et al.,2019) 

1.6.Heterocyclic: 

      Usually  heterocyclic compound, also called a heterocycle, as any of a 

class of organic compounds whose molecules contain one or more rings of 

atoms with at least one atom (the heteroatom) being an element other  than 

carbon, most  frequently oxygen, nitrogen, or sulfur . Although heterocyclic 

compounds may be inorganic, most contain within the ring structure at least 

one atom of carbon, and one or more elements such as sulfur, oxygen, or 

nitrogen. Since non-carbons are usually considered to have replaced carbon 

atoms, they are called heteroatoms. The structures may consist of either 

aromatic or non-aromatic rings. Heterocyclic derivatives, can be divided 
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into two broad area which are aromatic and non-aromatic. ( Alvárez‐Builla, 

and Barluenga, 2011) 

     The reasons for utlizing   heterocycles  are able to get involved in an 

extraordinarily wide range of reaction  types. Depending on the pH of the 

medium, they may behave as acids or bases, forming anions or cations. 

Some interact readily with electrophilic reagents, others with nucleophiles, 

yet others with both. Some are easily oxidized, but resist reduction, while 

others can be readily hydrogenated but are stable toward the action of 

oxidizing agents. Many natural drugs such as papaverine, theobromine, 

quinine, emetine, theophylline, atropine, procaine, codeine, reserpine and 

morphine are heterocycles. Almost all the compounds we know as synthetic 

drugs such as diazepam, chlorpromazine, isoniazid, metronidazole, 

azidothymidine, barbiturates, antipyrine, captopril and methotrexate are also 

heterocycles. Some dyes (e.g. mauveine), luminophores, (e.g. acridine 

orange), pesticides (e.g. diazinon) and herbicides (e.g. paraquat) are also 

heterocyclic in nature. All these natural and synthetic heterocyclic 

compounds can and do participate in chemical reactions in the human body. 

(Dua et al., 2011) 

 

 

 

 
     Pyridine                  dihydro                   tetrahydro                  piperidine 

 

Figure (1.1) Simple heterocycle. 

 

1.6.1 Naming simple monocyclic compounds: 

     The names are derived from the following four rules: 

1. The heteroatom is given a name and is used as a prefix: N, aza-; O, oxa-; 

S, thia-; P, phospha-; As, arsa-; Si, sila-; Se, selena-, B, bora, and so on. The 

“a” ending is dropped if the next syllable starts with a vowel. Thus “aza-

irine” is properly written “azirine.” 

N N
H

N
H

N
H

N
H

N
H
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2. Ring size is designated by stems that follow the prefix: 3-atoms,- ir-; 4-

atoms, -et-; 5-atoms, -ol-; 6-atoms, -in-; 7-atoms, -ep-; 8-atoms, -oc-; 9-

atoms, -on-; and so on. 

3. If fully unsaturated, the name is concluded with a suffix for ring size: 3-

atoms, -ene (except -ine- for N); 4-, 5-, and 6-atoms, -e; 7-, 8-, and 9- atoms, 

-ine. 

4. If fully saturated, the suffix is -ane for all ring sizes, except for N, which 

uses -idine for rings of 3-, 4-, or 5-atoms, and for 6- atoms, a prefix of 

hexahydro- is used. Also, the name oxane, not oxinane, is used for the 6-

membered ring with O present. Other exceptions exist for P, As, and B 

rings, but they will not be given here. ( Quin and Tyrell ,2010) 

1.6.2.Naming the rings with  more than one heteroatom:  

     It consider the common case where more than one heteroatom is present 

in the ring. The usual rules for stems to indicate prefixes for the various 

heteroatoms. They are listed in the following order of priorities, derived 

from the main groups of the Periodic System, and then within each group by 

increasing atomic number: 

 Group I (O>S>Se>Te)>Group II (N>P>As)>Group III (Si>Ge)>. This 

listing can be simplified greatly by taking out the most commonly found 

heteroatoms in their order, which gives O>S>N>P. Each heteroatom is then 

given a number as found in the ring, with that of highest priority given 

position 1. 

 A saturated heteroatom with an extra-hydrogen attached is given priority 

over an unsaturated form of the same atom, as in 1H-1,3-diazole  

 The numbers are grouped together in front of the heteroatom listings (thus, 

1,3-oxazole, not 1-oxa-3-azole). 

 The heteroatom prefixes follow the numbers in the priorities given 

previously.) • 

 Punctuation is important; in the examples to follow, a comma separates the 

numbers and a dash separates the numbers from the heteroatom prefixes. 

 A slight modification is used when two vowels adjoin; one is deleted, as in 

the listing for “oxaaza,” which becomes simply “oxaza.” 

As for monohetero systems, substituents on the ring are listed alphabetically 

with a ring atom number for each (not grouped together). ( Quin and Tyrell 

,2010) 
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Figure(1.2) Some  naming of  multi heteroatom systems 

 

1.6.3.Classification of heterocyclic compounds: 
 

     The Heterocycles as pyridine, thiophene, pyrrole, and furan being fused 

to benzene rings led to the development of quinoline, benzothiophene, 

indole, and benzofuran, respectively. However, fusion of two benzene rings 

developed a third large class of compounds, including acridine, 

dibenzothiophene, carbazole, and dibenzofuran. . The most common 

heterocycles are those having five- or six-membered rings and containing 

heteroatoms of nitrogen (N), oxygen (O), or sulfur (S).(Mandour et al., 

2020)  

      Based on these rules, conjugated heterocyclic compounds containing 

(4n+2)π electrons are aromatic(hence referred to as hetero aromatics in 

order to be able to recognize their heterocyclic and aromatic nature while 

those containing 4nπ electrons cannot be aromatic even though they may be 

cyclic, planar and conjugated and are said to be anti- aromatic as 

delocalization of their π-electrons will instead lead to destabilization. By 

definition an aromatic compound is a planar ring of atoms linked by 

alternate single and double bonds. Delocalization of the π electrons of 

aromatic systems is a major contribution to the stabilization of these 

molecules and yield properties that are characteristic of aromaticity such as 

diamagnetic ring current. The Huckel molecular orbital theory is often used 

to express the relationship between a molecular orbital description of the 

structure and aromaticity. 

     There are three criteria used for evaluating aromaticity and include: 
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a) Energy data indicating thermodynamic stabilization or destabilization. 

b) Structural data that relate to bond lengths indicating delocalized 

structures. 

c) Electronic properties which are; energy levels, electron distribution, and 

polarizability. 

     These include the response of electrons to a magnetic field. Magnetic 

susceptibility measurements or NMR spectroscopy (in which aromatic 

compounds exhibit a diamagnetic ring Current) could be used as important 

experimental tools for assessing or observing aromaticity . pyridine, pyrrole 

and thiophene are all aromatic.( Dze et al.,2020) 
 

1.7.Isoniazid: 

      Isoniazid, also named as isonicotinylhydrazide (INH), is a hydrazide 

compound derived from isonicotinic acid compound (pyridine-4-carboxylic 

acid ), and is one of the first-line drugs for tuberculosis. INH enables KatG 

to form the INH-nicotinamide adenine dinucleotide (NAD) adduct. This 

adduct inhibits the acyl carrier protein (ACP) and InhA reductase, resulting 

in the synthesis of type II fatty acids, which in turn will synthesize mycolic 

acid, causing cell death.( Ruswanto et al.,2019).  

1.7.1.Isoniazid Synthesis: 

       Isoniazid is prepared through the reaction of 4-cyanopyridine and 

hydrazine hydrate in an aqueous alkaline medium at 100C under reflux for 7 

hours with subsequently crystallization in ethanol, thereby leading to the 

desired compound with 62% of yield . (Fernandes et al., 2017) 

 

          
                                                                                            Isoniazid   

 

Figure (1.3) Synthesis of isoniazid 
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1.7.2.Biological  properties: 

      Oral, intravenous and intramuscular are routes of administration for 

isoniazid, but the most common is the oral  route. Isoniazid is promptly 

absorbed after oral  administration  and  reaches the peak of seric 

concentrations in 0.5–2 hours within 100% of  bioavailability in the most of 

the cases .Co-administration of isoniazid with food significantly reduces its 

bioavailability. Moreover, there is evidence that suggest that  HIV-positive 

patients may exhibit poor absorption of isoniazid. 

Isoniazid is widely distributed throughout body fluids and tissues, with a 

volume of distribution of approximately 61% of body weight and its plasma 

protein binding is very  low. Acetylation is the main metabolic 

transformation that occurs with isoniazid. Specifically, this metabolic 

process is strongly influenced by genetic aspects. The predominant liver 

metabolism  justify the high risk of hepatotoxicity, especially for those TB-

patients using an association with  rifampicin.  The elimination half-life of 

isoniazid and its metabolites is 0.5 to 4 hours and their main  elimination 

route is through the kidney, with 75% to 96% of the drug and metabolites 

excreted in urine within 24 hours . 

Upon  absorption,  isoniazid  is  metabolized  invivo  and  leads to the 

formation  of  several metabolites, namely acetylisoniazid, isonicotinic acid, 

isonicotinamide, monoacetylhydrazine and diacetylhydrazine . Therefore, it 

is important the simultaneous detection of these metabolites through the 

analytical methods. (Fernandes et al., 2017) 

 

                
 

Figure (1.4) Principal metabolites of isoniazid detected by analytical 

methods. 
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metabolites of isoniazid,   especially acetylisoniazid and isonicotinic acid, 

which are the acetylated and hydrolyzed metabolites respectively in  

Figure(1.4) 

1.8 Aims and objectives of the study: 

 Development QSAR(Quantitative Structure-Activity Relationship) model  

by using ACD/Labs, MOE, SPSS(software program) and data set  to predict 

the biological activity of some designed derivatives compounds in (2D,3D 

and 2D+3D ) dimensionals.  

 Applying the molecular docking study on  data set and  designed derivatives  

with 4TRO receptor. 

 Selecting some of  designed derivative compounds  and data set , which  

have more interaction with  the receptor  and higher biological activity  to 

discuss . 
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2. Materials and Methods  

2.1 Materials 

2.1.1 MOE 2009.10: 

      Molecular operating environment (Version 10) is a drug discovery 

software platform that integrates visualization, modeling  and  simulations,  

as  well  as methodology development, in one package. MOE scientific 

applications are used by biologists, medicinal chemistry and computational 

chemists in pharmaceutical, biotechnology and academic research. 

Main applications area in MOE include structure-based design, fragment–

based design, pharmacophore discovery, medicinal chemistry applications , 

biologics applications, protein and antibody modeling, molecular modeling 

and simulations ,chemo informatics and QSAR. 

2.1.2 ACD/ labs program: 

    ACD/Labs ( Version 14.01 ) is a two-dimensional structure drawing 

program primarily designed for organic molecules. Although the drawing 

mode is essentially a two-dimensional drawing routine, it is also possible to 

rotate the molecule in three dimensions. The program automatically keeps 

track of the number of  hydrogens  bonded to each atom.  

2.1.3 SPSS program: 

        SPSS (Version 16.020 ) is a software package used for interactive ,or 

batched, statistical and statistical analysis. Can be used to perform data entry  

and to create tables and graphs. SPSS  is allowing ordinary researchers to do 

their own statistical analysis and handling complex data manipulations and 

analysis. 

 

2.1.4 Data set: 

 

    Twenty one(21) compounds of N-substituted-2-

Isonicotinoylhyrazinecarboxmides derivative  were taken from the 

literatures  which are given in table 1(Rychtarčíková et al., 2014).The 

minimum inhibitory concentration (MIC) values were converted to the 

logarithmic scale (pMIC values)to ensure normal distribution in statistical 

analyses, and these were used as the dependent variable in the QSAR 

analyses. 
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2.2. Methods: 

2.2.1 QSAR data set analysis:  

      For the development of the model, the 21compounds N-substituted-2-

Isonicotinoylhyrazinecarboxmides derivative gathered from  (Rychtarčíková 

et al., 2014)   used in the  study were divided into training and test set .The 

training set is used in model construction  and in internal validation while 

the test set for external validation. 

The(21)compounds were divided randomly into the training set (15 

compounds) and the test set (6 compounds) were showed  in table (2-1) ,(2-

2) respectively and one compound  was excluded from the test set to make 

the result of the validation more accurate . All compounds were sketched by 

ACD/Labs, some descriptors were calculated by using MOE2009 software 

,the descriptors should be correlated to each other  according to the matrix 

relationship  must be less than 50. The MIC value of the data set is 

converted to a logarithmic scale with the aim that the range of MIC values 

between compounds does not differ significantly, and the distribution of 

MIC values is getting better . The training set compounds were analyzed 

statistically to produce the QSAR models by using  partial least  square 

method ( PLS). The values of three physicochemical parameters were 

selected  as independent variables while biological activity (PMIC) as 

dependent variable to generated  the models in(2D and 3D) (2D,3D and 

2D+3D)  dimensional ,The expected biological activity values were 

calculated from the derived equation in (2D,3D and 2D+3D) for the data set 

showed also in  table (2-1)(2-2) for training  set and test set respectively . 

 

Table (2-1) Training set  compounds of N-substituted-2-Isonicotinoyl 

hydrazine carboxmides derivative , ,observed MIC,observed pMIC 

,Predicted  pMIC  in( 2D ,3D and  (2D+3D) ) , residuals and descriptors in 

(2D and3D) dimensional 

 

 

 

 

 

 

 



 

2. 
 

 

Compound 3a 3b 3c 3d 3i 3j 3k 3l 

 

R1 
-H -H -H -H -H -H -Br -F 

R2 -H -H -H -H -H -H -H -H 

R3 
-

Methyl 

-iso 

Propyl 

-tret 

-butyl 
-octyl -OMe -CF3 -Br -Br 

R4 -H -H -H -H -H -H -H -H 

R5 -H -H -H -H -H -H -H -H 

Observed  MIC 62.5 16 8 1 32 62.5 8 62.5 

pMIC 1.796 1.204 0.903 0.000 1.505 1.796 0.903 1.796 

Predicted  pMIC 

Model  1 (2D) 
2.0295 1.1235 0.8402 0.6868 1.8336 1.639 0.917 1.499 

Predicted  pMIC 

Model  5 (2D) 
1.932 1.1381 0.8701 0.6674 1.9500 1.6367 0.7922 1.4248 

Predicted  pMIC 

Model  6 (3D) 
1.815 1.181 0.900 0.593 1.623 1.680 0.783 1.701 

pMIC Predicted  

Model  11 (2D+3D) 
1.8156 1.1817 0.9000 0.5932 1.7018 1.6235 0.7838 1.6235 

Residual  model  1 -0.2335 0.0805 0.0628 -0.0848 -0.3285 0.157 -0.014 0.297 

Residual  model  5 -0.136 0.0659 0.0329 -0.6674 -0.4449 0.1593 0.1108 0.3712 

Residual  model  6 0.0196 0.0222 0.0029 0.0087 0.0941 0.1159 0.1192 -0.1185 

Residual  model  11 -0.0466 0.0223 0.003 -0.593 -0.1968 0.1725 0.1192 0.1725 

Slog P_VSA9 (2D) 4.9.55 .79.39 1..94. 4.9.55 719... 3195.. 11.94. .39477 

Kier2(2D) .9555 .9777 .9.9. 1993. .9.9. .9.9. .94.4 .94.4 

chi0v(2D) 10.88 12.45 13.38 13.00 11.29 11.51 13.73 12.14 

LogP(o/w) (2D) 1.2200 2.0650 2.4210 2.5790 0.8780 1.8568 2.5530 1.9080 

KierA3  (2D) 3.4764 3.9753 4.2123 4.7075 3.7118 4.0890 59.... 79..7. 

chi1v  (2D) 5.9900 6.9334 7.2400 7.5507 6.1024 6.3070 397393 .94333 

E_oop (3D) 0.0485 0.0417 0.0403 0.0422 0.1421 0.0534 0.3904 0.0452 

ASA (3D) 510.44 567.58 586.48 536.48 534.98 536.70 551.89 551.89 

npr1 (3D) 0.207 0.116 0.103 0.207 0.098 0.106 0.207 0.098 
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Compound 
3m 3o 3q 3r 3s 3t 3u 

R1 
-Br -H -H -H -H -H -Cl 

R2 
-H -Cl CF3 CF3 -H -Cl -H 

R3 
-F -H -Br -F -Br -Cl -Cl 

R4 
-H -H -H -H -H -H -H 

R5 
-H -H -H -H -H -H -Cl 

Observed  MIC 
16 62.5 8 32 62.5 32 4 

pMIC 
1.204 1.796 0.903 1.505 1.796 1.505 0.602 

Predicted  pMIC 

Model  1 (2D) 

1.4990 1.7450 0.8289 1.4101 1.4990 1.4099 0.8538 

Predicted  pMIC 

Model  5 (2D) 

1.4248 1.7386 0.8848 1.5231 1.4248 1.430 0.9776 

Predicted  pMIC 

Model  6 (3D) 

1.101 1.906 1.011 1.512 1.788 1.4588 0.7571 

pMIC Predicted  

Model  11 (2D+3D) 

1.1018 1.9060 1.0113 1.9080 1.7881 1.4588 0.7572 

Residual  model  1 
-0.295 0.051 0.0741 0.095 0.297 0.0952 0.2518 

Residual  model  5 
-0.2208 0.0574 0.0182 -0.018 0.3712 0.0751 -0.3756 

Residual  model  6 
0.1021 -0.1100 -0.1083 -0.0077 0.0078 0.0461 -0.1551 

Residual  model  11 
0.1022 -0.11 -0.1083 -0.403 0.0079 0.0462 -0.1552 

Slog P_VSA9 (2D) 
87.533 80.727 117.45 86.459 87.533 104.91 144.06 

Kier2(2D) 
8.585 8.585 9.087 9.087 8.585 8.585 8.740 

chi0v(2D) 
12.147 11.317 13.403 11.817 12.147 12.072 13.129 

LogP(o/w) (2D) 
1.9080 1.7020 2.6898 2.0448 1.9080 2.2170 2.7680 

KierA3  (2D) 
3.9938 3.7651 4.6728 4.0971 3.9938 4.3874 4.4900 

chi1v  (2D) 
6.5777 6.1626 7.2056 6.4126 6.5777 6.5346 7.0242 

E_oop (3D) 
0.4618 0.0389 0.0640 0.0627 0.0372 0.0461 0.5060 

ASA (3D) 
518.86 506.69 561.37 543.47 525.00 527.51 548.58 

npr1 (3D) 
0.248 0.1995 0.2094 0.1223 0.1369 0.2455 0.1857 

 

Table (2-2) Test set compounds of  N-substituted-2-Isonicotinoyl hydrazine 

carboxmides derivative , observed MIC, observed pMIC ,Predicted  PMIC  

in (2D , 3D and (2D+3D) ),  residuals ,descriptors in (2D and 3D) 

dimensional 
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Compound 

 

 
3e 3f 3h 3n 3p 

R1 
-H -H -H -H -H 

R2 
-H -H -H -Cl -CF3 

R3 
-n-butyl -pentyl -hexyl -Cl -Cl 

R4 
-H -H -H -H -H 

R5 
-H -H -H -H -H 

Observed  MIC 
4 32 32 125 32 

pMIC 
0.602 1.505 1.505 2.0978 1.505 

Predicted  pMIC 

Model  1 (2D) 0.2304 -0.2299 -1.1608 1.4100 1.0750 

Predicted  pMIC 

Model  5 (2D) 0.2757 -0.1169 -0.8937 1.4159 1.1983 

Predicted  pMIC 

Model  6 (3D) 1.1334 -0.440 -1.375 -1.577 1.315 

pMIC Predicted  Model  11 

(2D+3D) 0.2377 -0.2631 -1.1273 1.5465 1.1924 

Residual  model  1 
0.3716 1.735 2.6659 0.6878 0.4301 

Residual  model  5 
0.3263 1.622 2.3988 0.6819 0.3068 

Residual  model  6 
0.4686 1.9451 2.8801 3.6748 0.1901 

Residual  model  11 
0.3643 1.7681 2.6323 0.5513 0.3126 

Slog P_VSA9 (2D) 
11.583 12.398 14.057 8.585 9.087 

Kier2(2D) 
59.94 59.94 59.94 104.91 110.64 

chi0v(2D) 
13.71 14.41 15.83 12.07 12.57 

LogP(o/w) (2D) 
3.0210 3.4630 4.3470 2.1410 2.4838 

KierA3  (2D) 
5.2514 5.7868 6.9405 4.1331 4.4446 

Chi1v  (2D) 
8.0507 8.8807 9.5507 6.5406 6.7906 

E_oop (3D) 
327.37 345.87 382.25 270.37 281.87 

ASA (3D) 
636.14 674.48 737.13 530.52 555.09 

npr1 (3D) 
0.1138 0.1088 0.0972 0.1856 0.1344 
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2.2.2 The validation of QSAR models: 

N-substituted-2-Isonicotinoyl hydrazine carboxamides derivative 

compounds were modeled by using two-dimensional and three dimensional,  

the parameters were calculated by using  MOE 2009 software.  

The QSAR model was generated by the PLS method based on electronic 

parameters  this method refers to the dependent variable y (biological 

activity) with a number of independent variables x (electronic descriptors) 

using linear regression, the QSAR  internally validating by calculating  R
2
 

,Q
2
, as well as externally by calculating  R

2
pred  to give models robustness  

all that was aided by MOE software. Moreover, MLR  linear regression 

method estimates the values of the regression coefficients by applying some 

statistical parameters such as R
2
, standard estimation of error (SEE), F-ratio 

between the variance of prediction and observation  activity  and p-value all 

using  SPSS software. 

 

2.2.3 The molecular modeling design : 

     58 new compounds of N-substituted-2-Isonicotinoyl hydrazine 

carboxamides derivatives were modeled using ACD/Labs in table(2-3) .The 

selected parameters in the development of( QSAR) modeling were 

calculated for the 58 compounds. 

 

2.2.4 The application of QSAR models: 

     The obtained models of QSAR  were applied on  the new designed 

compounds predicted the biological activity of the new compounds  ,2D-

QASR , 3D-QSAR, or (2D+3D QSAR ) models can be used to calculate the 

biological activity  after  validation of the  models internally and externally. 

  

 

Table(2-3) The designed new   N-substituted-2-Isonicotinoyl hydrazine 

carboxmides derivatives and descriptors 
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No Comp 

-ound 

R1 R2 R3 R4 

 

R5 

 

chi0v 

2D

Kier2 

2D

SlogP 

_VSA9 

2D

Logp 

(o/w) 

2D 

khierA

3 

2D 

chi1v 

2D 

ASA 

3D 

E-oop 

3D 

npr1 

3D 

1 I -H -H -Cl H -H 1.9.. .1999 9391.. 515.1 1.857 3.804 1.514 0.0385 0.174

. II -H -H OH

CH3 NH
-

 

-H -H 1.9.. .1999 9391.. 571.5 6.864 4.574 0.414 0.1111 0.175

7 III -Br -H -H -H -H 119.5 9555. 3.9437 526.7 6.478 3.800 1.718 0.0179 0.117 



5 IV -

NH2 

-H -H -H -H 19954 9555. 9734.. 512.5 5.784 3.152 0.248 0.0421 0.193

4 V -H -H -OH -H -H 1997. 9555. ...719 507.4 5.713 3.476 0.614 0.0175 0.058

. VI -H -H -Br -H -H 119.5 9555. 3.9437 530.5 6.472 4.047 1.720 0.1884 0.114

3 VII -OH -H -OH -H -H 199.. 94.4. 739194 0.341 3.496 

 

519.5 5.853 0.2712 0.067

. VIII -OH -H -OH -H -OH 1199. 9359. .5.975 514.5 5.994 3.557 0.068 0.0213 0.083

. IX -H -OH -H -H -H 1997. 9555. 505.5 5.713 3.476 0.651 ...719 0.0168 0.066

19 X -Cl -H -Cl -H -H 1.9.. 94.4. .19.914 538.2 1.415 4.133 2.141 0.3740 0.074

11 XI -H -H OH CH2

-

 
-H -H 119.5 .9.9. ...79. 530.6 2.015 3.711 0.400 0.0211 0.055

.1 XII -H -H OH
CH2

-

 
-H -H 1.9.4 .1993 ...79. 594.6 7.159 4.707 0.930 0.0187 0.071

17 XIII -H -Br -H -Cl -H 17911 94.4. ..19.9 554.0 6.949 4.645 2.423 0.0146 0.107

15 XIV -H -

NH2 

-H -NH2 -H 1191. 94.4. ...79. 523.4 5.978 3.478 0.311- 0.2073 0.176

14 XV -H -

NH2 

-H -H -H 199.. 9555. ...79. 516.1 5.778 3.359 0.287 0.0194 0.066

.1 XVI -H -H -NH2 -H -H 199.. 9555. ...79. 507.3 5.778 3.359 0.250 0.1267 0.187

13 XVII -H -

NO2 

-H -Cl -H 1.959 9535. 79919. 550.9 6.556 4.294 1.560 0.0899 0.210

.1 XVIII -H -H O

C
-

CH3 

-

H 

-

H 

..119 9777. ..4391 546.2 6.444 3.767 0.775 0.2056 0.120

.1 XIX -H -H CH3 CH2

-

 
-H -H 1193. .9.9. ..4391 547.2 6.550 3.711 1.695 0.1987 0.127

9. XX -H -H CH2

-
CH3

 
-H -H 1.949 ...9. ..4391 579.2 7.050 4.212 2.137 0.0196 0.062

1. XXI -H -H CH3
O

-

 
-H -H 1.9.9 ...9. ..4391 553.7 6.689 4.212 1.219 0.1939 0.162

.. XXII -H -H O
-

CH3 
-H -H 1.9.1 .1993 ..4391 599.9 1.080 4.707 1.833 0.0423 0.160

7. XXIII -H -H O
-CH3

 -H -H 179.1 .1194 ..4391 617.1 0.688 5.251 2.275 0.0178 0.055

5. XXIV -H -H 
C

-

O

Br 

-H -H 1.9.. 9777. .9.1.. 555.2 6.926 4.322 1.705 0.0774 0.116

4. XXV -H -H 

O
CH2

-

CH3

O 

-H -H 17911 199.3 ..4391 588.0 7.040 5.005 0.989 0.2001 0.133

.. XXVI -H -H O

C
-

OH 

-H -H 11955 9777. ...79. 532.1 6.167 3.767 0.599 0.2090 0.127

3. XXVII -H -H NH2

NH CH2

-

 

-H -H 119.. ...9. ...79. 549.6 6.485 4.212 0.177- 0.0703 0.197

.. XXVII

I 

-H -H 
Br O

CH2

-

 

-H -H 179.3 .1993 .9.1.. 607.3 7.809 5.349 1.882 0.1770 0.159

.. XXIX -H -H 
CH3

O CH2

-

O

 

-H -H 1594. 1.954 ..4391 637.7 8.101 5.790 1.906 0.0603 0.171

79 XXX -H -H 
 

-H -H 149.. .1.97 .9.1.. 683.1 8.809 6.493 2.214 0.0839 0.071

71 XXXI -H -H 
F

O
CH2

-

 
-H -H 1.9.. .1194 ...7.9 604.4 7.188 5.202 1.217 0.2168 0.172

.7 XXXII -H -H 
Cl O

CH2

-

 
-H -H 1595. .1.97 79919. 660.9 8.222 6.193 2.008 0.0216 0.057

 

Br O
CH2

-
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No Comp 

-ound 

R1 R2 R3 R4 

 

R5 

 

chi0v 

2D

Kier2 

2D

SlogP 

_VSA9 

2D

Logp 

(o/w) 

2D 

khierA

3 

2D 

Chi1v 

2D 

ASA 

3D 

E-oop 

3D 

npr1 

3D 

77 XXXII

I 

-H -H 
C

-

O 

-H -H 1597. 119.4 ...79. 634.1 8.104 4.106 2.437 0.2074 0.110

75 XXXI

V 

-H -H O

C
-

F 

-H -H 11973 9777. ...7.9 522.6 6.133 3.728 1.060 0.0926 0.172

74 XXXV -H -H 
NH2 O

CH2

-

 

-H -H 1.95. .1993 ...79. 583.8 6.829 4.707 0.206 0.2016 0.130

.7 XXXV

I 

-H -H 
F O

CH2

-

 
-H -H 17939 .1.97 ...7.9 638.2 7.688 5.735 1.569 0.0248 0.052

73 XXXV

II

-H -H NH2 CH2

-

 
-H -H 1.99. ...9. ...79. 570.7 6.751 4.212 0.266 0.2216 0.124

.7 XXXV

III

-H -H 
 

-H -H 17953 .1997 ...79. 610.6 7.650 3.800 2.882 0.0205 0.045

.7 XXXI

X 

-H -H -NO2 -H -H 11974 9777. ...79. 525.5 6.078 3.740 0.857 0.0528 0.169

59 XL -H -H 
CH3 O CH2

-

O O

 

-H -H 1599. 11934 ..4391 644.5 7.513 5.541 0.928 0.0291 0.052

51 XLI -H -H C
-

S

 

-H -H 149.. 19975 .9945. 662.4 9.917 3.996 3.463 0.1870 0.100

.5 XLII -H -H C
-

NH

 

-H -H 149.7 19975 99351. 669.4 8.892 3.737 2.518 0.0242 0.039

57 XLIII -H -H 

OH
NH

-

O

 

-H -H 1.9.4 199.3 ...79. 578.3 6.864 4.870 0.074 0.2763 0.164

55 XLIV -H -H NH2

CH2

-

O 
-H -H 17919 199.3 ...79. 603.7 7.326 4.971 0.307- 0.0172 0.062

54 XLV -H -H 
O

C
-

CH3

CH3

NH2 

-H -H 1594. 11959 ...79. 612.1 8.054 4.763 1.167 0.1890 0.173

.5 XLVI -H -H OO

NH2

-CH2

OHOH 

-H -H 1593. 11911 99415. 638.5 0.892 5.754 0.658- 0.0210 0.073

53 XLVII -H -H OH
C

-

OO

NH2

 
-H -H 1593. 11911 .99415. 530.3 8.255 5.768 0.111- 0.5533 0.424

.5 XLVIII -H -H SH
C

-

O

NH2

 

-H -H 159.9 ..199 9..79. 647.5 7.923 4.856 0.305 0.0291 0.070

.5 XLIX -H -H N
NH

C
-

O

NH2

 

-H -H 1495. 1.915 9..79. 677.7 8.932 5.084 0.410- 0.3037 0.203

49 L -H -H 
C

-N

N

NH2

OH

 

-H -H 15935 11959 ...79. 652.3 8.161 4.490 0.706- 0.0385 0.049

41 LI -H -H 
NH

N

N

C
-

N 

-H -H 1.957 ...9. ...79. 563.9 1.492 8.084 0.437 0.0166 0.044

.4 LII -H -H 
C

-NH2

NH2

OH

OH 

-H -H 149.1 11997 ...7.9 667.0 8.341 3.927 0.015 0.054 0.1187

47 LIII -H -H 
C

-

O

OH

F

 
-H -H 1493. ..1.9 ...7.9 685.3 8.801 4.993 2.835 0.1056 0.116

45 LIV -CN -H -NH2 -H -SH 1.935 9535. ...79. 572.7 6.756 3.696 0.469 0.5082 0.123

44 LV -CN -H -NH2 -H  1197.



9777. 9734.. 553.0 6.169 3.342 0.055- 0.0122 0.090

.4 LVI -F -H -F -H -F 11991 9359. .935.. 506.4 5.890 3.4472 1.451 0.0152 0.083

43 LVII -H -Br 

CH3

CH3

S
-

 

-H 

 

-H 1.957 11943 3..9..1 698.2 9.458 4.853 3.760 0.0905 0.206

.4 LVIII -H -Cl 

NH
-

OH

O

 

-Cl -H 1.993 .1791 .1959.1 713.7 10.18 6.189 2.979 0.5401 0.094 
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2.2.5 Docking: 

2.2.5.1 Protein preparation: 

      The energy minimized  and  docking studies  by using AutoDock Tools 

MOE (2009.10) software crystal structure of (4TRO) protein receptor of 

mycobacterium tuberculosis from PDB ( Protein data bank) the charges 

were added to the protein molecule followed by addition of polar hydrogen 

atoms and saved the charged protein molecule after removed of unwanted 

molecules as water molecule  and kept all unique ligands in the protein and 

save in  pdb format. Enoyl-ACP reductase of Mycobacterium tuberculosis 

(PDB: 4TRO) implicated in the biosynthesis of mycolic acids, essential 

constituents of the mycobacterial cell wall. This enzyme is considered as a 

promising target for the discovery of novel antitubercular drugs ,  The 

protein 4tro are obtained from PDB(Protein Data Bank ) was showed in 

figure (2.1) below  in pdb form before prepare it. 

The figure (2.2) were showed clear image to the receptor that used in 

docking ,and  all the unique ligands  are appeared in the  three 

dimensional(3D) after prepared by using MOE program. 

 

 
Figure (2.1) The receptor 4TRO in (PDB) form. 
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Figure  (2.2) The receptor in moe  form (3D)dimensional 

 

2.2.5.2  Preparation of the ligands: 

    The Designed 58 new  derivatives compounds were used as  ligands and 

sketched by using ACD/Labs software .Table (2-3) 

   The energy of  the new compounds    were minimized by using MOE 

2009.10 software and saved in (mdb) file .All  the biological activity of 

ligands  were  predicted  then were performed the  molecular docking for 

them. 
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3. Results and discussion: 

3.1  Modeling Out Put: 

3.1.1 Development of QSAR models : 

      The training set compounds were analyzed statistically to produce the 

QSAR model by using  partial least  square method ( PLS)  in  MOE 

program, while the test set compounds were used to validate the QSAR 

model that generated by the training set. 

     The two groups of data were showed in tables (2-1),( 2-2 ). QSAR model  

development  depends on biological activity  of training set. These two 

groups were correlated with different three descriptors in (2D, 3D and 

2D+3D)  dimensionals.  The descriptors were selected  according to the 

correlation matrix ,the relationship  must be 50 or less than 50 to be used in 

the QSAR models .The selected descriptors in (2D) dimensional ,chi0v, 

slogp_VSA9, keir2, kierA3, chi1v, BCUT_SMR_1 ,SMR_VSA7,balabanJ 

and logp(o/w).In (3D) dimensional ASA, E_oop , npr1 , vol  , std_dim , 

E_tor  . 

The best QSAR  models were used to predict the biological activity of the 

new derivatives in (2D) two dimensional and in (3D)three dimensional. 

Noticeable that the biological activity (experimental and predicting)  values 

are close to each other in  the  (2D) two dimensional and in (3D)three 

dimensional  .table (3-1)(3-2) respectively 

Log P(o/w) describe the molecular dimensions and hydrophobicity, 

respectively, for successful binding with the substrate. Log P(o/w) is the log 

value of the octanol/water partition coefficient.(Cotua et al .,2021)  

chi1v, which is a topological descriptor related to molecular shape. (Bernal 

and Schmidt, 2019) Second kappa shape index: (n-1)
2
 / m

2
 

KierA3: Third alpha modified shape index .(Sakagami et al., 2015).Is 

topological descriptors .The KierA3 descriptor describes shape of the 

molecules with third alpha shape index. It calculated by (s-1)(s-3)2 /p3 2 for 

odd n and (s-3)(s-2)2 /p3 2 for even n, where s = n+a. However, Kier and 

Hall kappa molecular shape indices compare the minimal and maximal 

molecular graphs and are intended to capture different aspects of molecular 

shape.( Moorthy et al., 2014) 

Balaban J , which is a topological descriptor. ( Roy and Ghosh,2010) 

SMR: SMR is the molecular refractivity obtained from an atomic 

contribution model. Weight is the molecular. ( Marighetti,2019). 
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slogp-VSA9,VSA-SMR1: SLOGPVSA9 measure the total surface area for 

logP atomic contributions . (Rosas-jimenez et al., 2020) 

The nature and calculation of van der Waals surface area (VSA) descriptors 

is well. The VSA-type descriptors are based on the van der Waals surface 

area (VSA). The VSA for each atom in a molecule is obtained from the 

surface area of the atom, . . The calculation of the descriptors occurs in two 

steps: Firstly, the VSA for each atom of a molecule is calculated. The 

calculated atomic VSAs are successively combined with physicochemical 

properties as molar refractivity (MR), lipophilicity (logP). (Marighetti,2019)  

BCUT-SMR1: For BCUT descriptors, the Burden matrix is defined  as an 

adjacency  matrix where the diagonal elements are selected atomic 

properties and the o-diagonal elements Bij , only for adjacent atoms, take 

the value of  π-1/2, where π is the conventional bond order. Remaining 

elements take the arbitrary value of 0.001. The matrix eigen values are 

calculated and the smallest, second, third, and largest eigen values are used 

as descriptors The GCUT descriptors differ to BCUT descriptors only for 

the definition of the used matrix. For calculation of GCUT descriptors, the 

values of off-diagonal entries are calculated as d-1/2, where d is the graph 

distance between the two atoms. MOE uses as atomic properties for the 

matrix diagonal the PEOE partial charges, the atomic contribution to logP 

and the molar refractivity (both calculated using the Wildman and Crippen 

SlogP/SMR methods .( Marighetti,2019) 

std-dim3,dens,ASA, Vol: These descriptors are correlated with the 

molecular conformation and are useful to describe dimensional parameters 

(like volume and surface) of molecules.  

The van der Waals surface area is calculated as the sum of the atomic van 

der Waals surface areas not included in other atoms. Analogously, the van 

der Waals volume is calculated as the volume included in the van der Waals 

surface area.  

The value of globularity indicates how is the molecule in the bulk extended.  

Std_dim3 : Descriptor type  is shape definition and Standard dimension 

.(Cotua et al.,2021) 

ASA: The solvent-Accessible Surface Area (ASA) is one such descriptor 

which measures the exposure of a residue to solvent (water) in its folded 

state .(Hanson et al., 2019): 
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VOL: The values of molecular volume and   name it Vw (w as Van der 

Waals).(Laffort ,2020) 

E_tor: Torsion (proper and improper) potential energy .(Sakagami et al., 

2015) 

      A correlation matrix is a table showing correlation coefficients between 

variables. Each cell in the table shows the correlation between two variables 

. A correlation matrix help in selected the variables which used to   build the 

QSAR model. If the relationship between the two variables is less than 50,it 

will be a better choice. 

Figures (3-1) ,(3-2) elucidate the correlation coefficients between variables 

which used in build the QSAR models in 2D and 3D respectively . 

 

 

Figure( 3.1)  Correlation matrix of training set compounds in ( 2D) two 

dimensional 
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Figure (3.2) Correlation matrix of training set compounds in (3D)three 

dimensional 

The models of (QSAR) : 

   QSAR model of  training data was reported in  (Table 3-1) and  (Table3-2) 

based on  dependent variable correlated  with different three descriptors 

(physicochemical parameters) independent,  in (2D) and (3D)  to get the  

equation  of  linear  correlation . The best equations models of QSAR  linear 

regression as follows  below in table (3-3) in 2D dimensional  and in 3D 

dimensional .For good predictive model the .RMSE values should be < 0.3, 

from model (1) (6), respectively=  (0.155, 0.084)  that indicate they are 

good models. 

 

Table (3-1)  Equations of QSAR model (in 2D dimensional) ,correlation 

coefficient(R
2
) and root mean square error(RMSE) 

No. 

Equation 

Equation R2 RMSE 

Model 1 

 

PMIC=8.04413-0.24582chi0v-

0.00617slogp_VSA9-0.35165kier2 

0.87098 0.15561 

Model 2 

 

PMIC=5.53099+0.11200kierA3-

0.83579chi1v-2.05772BCUT_SMR_1 

0.86930 0.15662 

Model 3 PMIC=6.50454-0.13405kierA3-

0.67353chi1v-0.00216SMR_VSA7 

0.8585 0.16505 

Model 4 PMIC=9.37683+0.11316khierA3-

0.89950chi1v-1.51282balabanJ 

0.85414 0.16546 

Model 5 

 

PMIC=6.07370+0.10173kierA3-

0.70720chi1v-0.21145logp(o/w) 

0.84600 0.17001 
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Table (3-2)  Equations of QSAR model (in 3D and 2D+3D 

dimensional),correlation coefficient(R
2
)and root mean square error(RMSE) 

No. Equation Equation R2 RMSE 

Model 6 PMIC=10.25002-0.01536ASA-

1.15755E_oop-2.58249npr1 

0.96017 0.08646 

Model 7  PMIC=7.65042-0.02349vol-

4.14115npr1+0.92373std_dim 

0.94135 0.10492 

Model 8 PMIC=7.75149-0.00340ASA-

1.26587E_oop-0.01587vol 

0.92318 0.12007 

Model 9 PMIC=7.80302-0.01221ASA-

2.34721E_oop+0.04596E_tor 

0.92213 0.12089 

Model10 PMIC=7.16302-

0.02082vol+0.10694std_dim3-

1.15447E_oop 

0.92188 0.12108 

Model 11 PMIC=7.5644-1.1662E_oop-0.0103ASA-

0.2475logp(o/w) 

0.9340 0.1109 

R-squared (R
2
) is a statistical measure of how close the data are to the fitted 

regression line. 

3.1.2  Validation and statistical analysis of QSAR models: 

       The QSAR models were validated internally and externally  to 

determine how good models in predict the anti-tuberculosis activity of the  

N-Substituted 2-Isonicotinoylhydrazinecarboxamides derivatives. MLR 

statistical validation for searching the best model was obtained by 

calculation for three equation in (2D) , three equation in (3D) and one 

equation in (2D+3D)   . QSAR model acceptance criteria of Golbraikh and 

Tropsha’s Model is chosen with higher values of R
2
, R

2
test and Q

2
cv (Chtita 

et al ., 2021) 

     QSAR model is considered predictive if  R
2
> 0.6. It consider the main R

2
 

of  correlation coefficient  the  figure (3.3),(3.6),(3.9)  and  (3.12) explain 

that in (2D, 3D and (2D+3D)) = 0.87, 0.84 ,0.96 and 0.93 respectively . 

Internal validation (Q
2
LOO (Leaving-One-Out)),LOO cross-validation 

coefficient , R
2
 cross validation )or Q

2
> 0.5 value indicate excellent 

predictive quality of the developed QSAR models using as internal 

validation . A high value of this statistical characteristic of  the Q
2 

 in 

figure (3.4) ,(3.7),(3.10) and (3.14) from (2D, 3D and (2D+3D)) = 0.73, 

0.70, 0.91 and 0.89 respectively so could  used to predict the biological 
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activity of new designed N-Substituted 2-

Isonicotinoylhydrazinecarboxamides derivatives compounds . 

Internal validation take place,  the   difference between Q
2
 and R

2 
 should be 

less than 0.3 ,which  means model is strong, so the value from Figure (3.6), 

(3.7) Q
2
, R

2
 in (3D) respectively 0.91, 0.96  the value of subtracting them 

equals 0.05 so it is considered good model.  . 

-Model (6) was correlated with different molecular descriptors ,(npr1) 

number of molecule ,(E-oop) out- of- plane energy and  water accessible 

surface areas (SAS) consider to the matrix correlation coefficient .  

External  validation  was used in order to determine the predictive ability of 

the developed models as judged by its application on test set ,figure (3.5) 

,(3.8),(3.11) and (3.14)  respectively showed  that  R
2
pred = 0.76,0.70 ,0.70 

and 0.73 from 2D,3D and (2D +3D) ,it means  the quality of  judgment is 

good, from models ( 1),(5), (6)  and (11) 

    The low values of RMSE indicate that the developed QSAR model is 

stable for predicting unknown compounds (Edache et al.,2015), as 

mentioned above in tables (3.1) and (3.2)   

 

               
             Figure (3.3) The predicted pMIC versus observed   pMIC of Training set in 

(2D) dimensional (Model 1)    

 

             
         Figure (3.4) The predicted pMIC versus observed pMIC of training set  cross 

validation in (2D)dimensional (Model 1) 
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Figure (3.5) The predicted pMIC versus  observed   pMIC of test set compound in 

(2D)dimensional (Model 1) 

 

                          

    Figure (3.6)The predicted pMIC versus observed  pMIC of training set  compound in  ( 

2D)dimensional (Model 5) 

 

                     
      Figure (3.7)The predicted pMIC versus observed pMIC of training set  cross validation 

in (2D)dimensional  (Model 5) 

 

                     
Figure (3.8)The predicted pMIC versus observed  pMIC of test Set compound    

in(2D)dimensional (Model 5) 
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              Figure (3.9) The predicted pMIC  versus observed pMIC of Training set in 

(3D)dimensional (Model 6) 

 

 

 

 

 

 

 

 

 

          Figure (3.10) The predicted pMIC versus observed pMIC values   of training set  cross 

validation in (3D)dimensional (Model 6) 

 

 

 

 

 

 

 

          Figure (3.11) The predicted pMIC versus observed  pMIC of test Set compound    

in(3D)dimensional (Model 6) 

                      
             Figure(3.12) The predicted pMIC  versus observed pMIC of Training set in 

(2D+3D)dimensional (Model 11) 
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Figure (3.13) The predicted pMIC versus observed pMIC of training set  cross 

validation in (2D+3D)dimensional (Model 11) 

 

               
Figure (3.14) The predicted pMIC versus observed  pMIC of test Set compound    

in(2D+3D)dimensional (Model 11) 

 

 

Multiple linear regressions (MLR) method used as  statistical technique in 

QSAR analysis  by using SPSS program . MLR methodis applied  for 

modeling linear Relationship between a dependent variable Y(biological 

activity )and  independent variables X( 3 descriptors)to providing the 

statistical parameters as standard error of estimate (SEE) ,P value  andFisher 

statistic (F) ,that give the model more emphasis . The standard error of 

estimate (SEE < 0.3) represents an absolute measure of prediction accuracy. 

Fischer’s value (F) or the Fisher ratio, reflects the ratio of the variance 

explained by the model and the variance due to the error in the regression. 

High values of the F-test indicate that the model is statistically significant 

the model (6) record best value of F=88 with  R
2
 =0.96.The p value is the 

statistical confidence level for evidence for the null hypothesis, which 

should not exceed more than 0.05 (p < 0.05).( Hajalsiddig et al.,2020) 

Table (3.3) clarify that obviously ,take equation (6) as example p =0.00 ,  

F=88.390, SEE= 0.100 they are fair enough values as results. 
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Table (3-3)  The statistical parameters for equation1,2,3 from (2D) , 6,7,8 

from(3D)and 11 from (2D+3D) 

 

No. 

Equation 

Training 

Set 

 Test 

  set 

R
2
 Q

2 
R

2
 

predicted 

 RMSE SEE F-value P-value 

1 15 5 0.8709 0.7314 0.7045 0.1556 0.1817 24.753 0.00 

2 15 5 0.8693 0.7379 0.7669 0.1566 0.1828 24.388 0.00 

5 15 5 0.8460 0.7014 0.7196 0.1700 0.1980 20.165 0.00 

6 15 5 0.9601 0.9136 0.7027 0.0864 0.1009 88.390 0.00 

7 15 5 0.9413 0.8687 0.7533 0.1049 0.1217 59.597 0.00 

8 15 5 0.9231 0.8528 0.7438 0.1200 0.1409 43.570 0.00 

11 15 5 0.9340 0.8969 0.7307 0.1109 0.1296 52.222 0.00 

   R
2
,R

2
 predicted ,RMSE, Q

2
,  were calculated by using MOE 2009.10 software program. 

    SEE,F,P were calculated by using SPSS software program. 

 

3.1.3    Application  of  QSAR models in 2D and 3D : 

 

       The most important result  of  (QSAR) models was predicted  the 

biological activity of  designed compounds  by using QSAR models.  The 

biological activity were calculated in the (2D and 3D ) dimensional  using 

MOE program . It is noticeable that the  values of calculated biological 

activity in( 2D and 3D) dimensional are closed to each other .  The best 

models  (model 1 in 2D ,model 6 in 3D )was applied on the  new designed 

compounds (58 compounds)on table(3-4) . Based on the models was used, 

The best results of biological activity for compounds 

(XXIX,XXX,XXXII,XXXIII,XLI,XLII,XLVI,XLVII,LII,LIII,LVII,LVIII) 

comparison  to recorded  value  by isoniazid (-0.3), (the MIC  value of 

isoniazid converted to  pMIC to facilitate comparison )   all results were 

recorded   in table (3-4). 

 

Table(3-4) The new designed N-Substituted 2-Isonicotinoyl hydrazine 

carboxamides derivatives compounds Predicated biological activity in( 

2D,3D and 2D+3D )  and the descriptors Values (2D,3D dimensionals )  

 

 

 

 

 

N

O NH
NH

O

NH

R R
2

R
4

R
1

R
3
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No 1 2 3 4 5 6 7 8 

Compound I II III IV V VI VII VIII 

R1 -H -H -Br -NH2 -H -H -OH -OH 

R2 -H -H -H -H -H -H -H -H 

R3 
-Cl 

OH

CH3 NH
-

 

-H -H -OH -Br -OH -OH 

R4 -H -H -H -H -H -H -H -H 

R5 -H -H -H -H -H -H -H -OH 

Predicted  

pMIC 

Model  1 (2D) 

1.9.4
 

1.085 1.714 2.322 2.338 1.714 2.166 1.988 

Predicted  

pMIC 

Model  5 (2D) 

19.431 1.5971 1.5158 2.2510 2.2568 1.5449 2.2174 2.1821 

Predicted  

PMIC 

Model  6 (3D) 

1.8413 0.8884 1.8342 2.0870 2.2819 1.5870 1.7785 2.1052 

PMIC 

Predicted  

Model  11 

(2D+3D) 

1.8280 1.4283 1.3014 2.2986 2.2189 1.6574 2.2046 2.2045 

Slog P_VSA9 

(2D) 

..9391 ..9391 72.573 29.375 31.862 72.573 37.105 2.349 

Kier2(2D) 
1999.4 1999.4 8.444 8.444 8.444 8.444 8.585 8.740 

chi0v(2D) 
1.9.. 1.9.. 11.84 10.4599 10.32 11.84 10.69 11.06 

LogP(o/w) 

(2D) 

194159 995159 1.7180 0.2480 0.6140 1.720 0.3410 0.0680 

KierA3  (2D) 
79.955 594353 3.8001 3.1524 3.4764 3.0472 3.4966 3.5572 

chi1v  (2D) 
19.431 .9..57 6.4780 5.7847 5.7136 6.4720 5.8539 5.9942 

E_oop (3D) 
0.0385 0.1111 0.0179 0.0766 0.0175 1.1884 0.2712 0.0213 

ASA (3D) 
515.1 571.5 526.7 498.246

1 

507.4 530.5 519.5 514.5 

npr1 (3D) 
19.431 0.175 0.117 1.0656 0.058 0.114 0.067 0.083 
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No 
9 10 11 12 13 14 15 16 

Compound 
IX X XI XII XIII XIV XV XVI 

R1 
-H -Cl -H -H -H -H -H -H 

R2 
-OH -H -H -H -Br -NH2 -NH2 -H 

R3 
-H -Cl OH CH2

-

 

OH
CH2

-

 

-H -H -H -NH2 

R4 
-H -H -H -H -Cl -NH2 -H -H 

R5 
-H -H -H -H -H -H -H -H 

Predicted  

pMIC 

Model  1 (2D) 

2.338 1.388 1.894 0.994 1.130 2.132 2.305 2.305 

Predicted  

pMIC 

Model  5 (2D) 

2.249 1.4159 2.0105 1.2925 1.1191 2.2657 2.2680 2.2758 

Predicted  

pMIC 

Model  6 (3D) 

2.2933 1.356 1.9310 0.9087 1.4449 1.5113 2.1256 1.8261 

PMIC 

Predicted  

Model  11 

(2D+3D) 

2.2897 1.0643 1.9679 1.1954 1.2993 2.2474 2.3060 2.2503 

Slog P_VSA9 

(2D) 

31.862 102.159 23.862 23.862 108.96 23.862 23.862 23.862 

Kier2(2D) 
8.444 8.585 9.209 10.78 8.585 8.585 8.444 8.444 

chi0v(2D) 
10.32 12.22 11.24 12.65 13.11 11.16 10.66 

 

10.66 

LogP(o/w) 

(2D) 

0.6510 2.1410 0.4000 0.9300 2.4230 -

0.3110 

0.2870 0.2500 

KierA3  (2D) 
3.4764 4.1331 3.7118 4.7075 4.6455 3.4788 3.3590 3.3590 

chi1v  (2D) 
5.7136 1.4159 2.0125 7.1598 6.9496 5.9781 5.7787 6.5564 

E_oop (3D) 
0.0168 0.374 0.0211 0.0187 0.0146 0.2073 0.0194 0.1267 

ASA (3D) 
505.5 538.2 530.6 594.6 554.0 523.4 516.1 507.3 

npr1 (3D) 
0.066 0.074 0.055 0.071 0.107 0.176 0.066 0.187 
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No 
17 18 19 20 21 22 23 

Compound 
XVII XVIII XIX XX XXI XXII XXIII 

R1 
-H -H -H -H -H -H -H 

R2 
-NO2 -H -H -H -H -H -H 

R3 

 

-H 

O

C
-

CH3

 

CH3 CH2

-

 CH2

-
CH3

 
CH3

O
-

 

O
-

CH3  
O

-CH3

 

R4 
-Cl -H -H -H -H -H -H 

R5 
-H -H -H -H -H -H -H 

Predicted  pMIC 

Model  1 (2D) 

1.272 1.459 1.552 1.105 1.178 

 

0.726 0.269 

Predicted  pMIC 

Model  5 (2D) 

1.5440 1.7358 1.4602 1.0641 1.5134 1.0803 0.6885 

Predicted  pMIC 

Model  6 (3D) 

1.1373 1.3091 1.2827 1.1684 1.0993 0.5714 0.6044 

PMIC Predicted  

Model 

  11 (2D+3D) 

1.5210 1.6484 1.4900 1.1413 1.3737 0.8841 0.4545 

Slog P_VSA9 (2D) 
63.010 57.188 57.188 57.188 57.188 57.188 57.188 

Kier2(2D) 
9.474 9.333 9.209 9.988 9.988 10.78 11.583 

chi0v(2D) 
12.40 11.99 11.79 12.50 12.20 12.91 13.61 

LogP(o/w) (2D) 
1.5600 0.7750 1.6950 2.1370 1.2190 1.8330 2.2750 

KierA3  (2D) 
4.2946 3.7679 3.7118 4.2126 4.2126 4.7075 5.2514 

chi1v  (2D) 
6.5564 6.4442 6.5507 7.0507 6.6899 7.1899 7.6899 

E_oop (3D) 
0.0899 0.2056 0.1987 0.0196 0.1939 0.0423 0.0178 

ASA (3D) 
550.9 546.2 547.2 579.2 553.7 599.9 617.1 

npr1 (3D) 
0.210 0.120 0.127 0.062 0.162 0.160 0.055 
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No 
24 25 26 27 28 29 30 

Compound 
XXIV XXV XXVI XXVII XXVIII XXIX XXX 

R1 
-H -H -H -H -H -H -H 

R2 
-H -H -H -H -H -H -H 

R3 
C

-

O

Br 
O

CH2

-

CH3

O

 

O

C
-

OH 

NH2

NH CH2

-

 Br O

CH2

-

 
CH3

O CH2

-

O

 
 

R4 
-H -H -H -H -H -H -H 

R5 
-H -H -H -H -H -H -H 

Predicted  pMIC 

Model  1 (2D) 

1.144 0.644 1.801 1.510 0.411 -0.2602 -0.505 

Predicted  pMIC 

Model  5 (2D) 

1.2547 1.3948 1.9685 1.9529 0.6969 0.5306 0.0359 

Predicted  pMIC 

Model  6 (3D) 

1.3291 0.6395 1.5022 1.2157 0.3022 -0.0596 -0.5249 

PMIC Predicted  

Model  11 

(2D+3D) 

1.3494 1.1676 1.8467 1.7612 0.7624 0.2784 -0.0617 

Slog P_VSA9 

(2D) 

69.816 57.188 23.862 23.862 69.816 57.188 69.816 

Kier2(2D) 
9.333 10.871 9.333 9.9881 10.78 12.45 12.398 

chi0v(2D) 
12.96 13.11 11.44 11.69 13.87 14.52 15.29 

LogP(o/w) (2D) 
1.7050 0.9890 0.5990 -0.1770 1.8820 1.9060 2.2140 

KierA3  (2D) 
4.3224 5.0058 3.7679 4.2126 5.3492 5.7904 6.4932 

chi1v  (2D) 
6.9261 7.0405 6.1678 6.4858 7.8097 8.1012 8.8097 

E_oop (3D) 
0.0774 0.2001 0.2090 0.0703 0.1770 0.0603 0.0839 

ASA (3D) 
555.2 588.0 532.1 549.6 607.3 637.7 683.1 

npr1 (3D) 
0.116 0.133 0.127 0.197 0.159 0.171 0.071 

 

 

 

Br O
CH2
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No 
31 32 33 34 35 36 37 

Compound 
XXXI XXXII XXXIII XXXIV XXXV XXXVI XXXVII 

R1 
-H -H -H -H -H -H -H 

R2 
-H -H -H -H -H -H -H 

R3 
F

O
CH2

-

 Cl O
CH2

-

 C
-

O

 

O

C
-

F 
NH2 O

CH2

-

 
F O

CH2

-

 
NH2 CH2

-

 

R4 
-H -H -H -H -H -H -H 

R5 
-H -H -H -H -H -H -H 

Predicted  pMIC 

Model  1 (2D) 

0.536 0.259 0.403 1.726 1.036 0.075 1.414 

Predicted  pMIC 

Model  5 (2D) 

1.2811 0.4640 0.2444 1.8914 1.6794 0.8883 1.6711 

Predicted  pMIC 

Model  6 (3D) 

0.2690 -0.0772 -0.0172 1.6667 0.7100 0.2824 0.9033 

PMIC Predicted  

Model  11 

(2D+3D) 

1.0135 0.2293 0.3335 1.7912 1.4075 0.5007 1.6331 

Slog P_VSA9 

(2D) 

38.822 63.010 23.862 38.822 23.862 38.822 23.862 

Kier2(2D) 
11.583 12.398 11.253 9.333 10.78 12.398 9.988 

chi0v(2D) 
12.99 14.46 14.38 11.37 12.48 13.70 12.08 

LogP(o/w) (2D) 
1.2170 2.0080 2.4370 1.0600 0.2060 1.5690 0.2660 

KierA3  (2D) 
5.2026 

 

6.1934 4.1066 3.7281 4.7075 5.7356 4.2126 

chi1v  (2D) 
7.1882 8.2227 8.1048 6.1331 6.8292 7.6882 6.7518 

E_oop (3D) 
0.2168 0.0216 0.2074 0.0926 0.2016 0.0248 0.2216 

ASA (3D) 
604.4 660.9 634.1 522.6 583.8 638.2 570.7 

npr1 (3D) 
0.172 

 

0.057 0.110 0.172 0.130 0.052 0.124 
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No 
38 39 40 41 42 43 44 

Compound 
XXXVIII XXXIX XL XLI XLII XLIII XLIV 

R1 
-H -H -H -H -H -H -H 

R2 
-H -H -H -H -H -H -H 

R3  
NO2 

CH3 O CH2

-

O O

 

C
-

S

 

C
-

NH

 
OH

NH
-

O

 

NH2

CH2

-

O  

R4 
-H -H -H -H -H -H -H 

R5 
-H -H -H -H -H -H -H 

Predicted  pMIC 

Model  1 (2D) 

0.939 1.824 0.110 0.076 0.285 0.963 0.852 

Predicted  pMIC 

Model  5 (2D) 

0.4403 1.9741 1.1276 -1.2655 -0.3671 1.6916 1.4630 

Predicted  pMIC 

Model  6 (3D) 

0.7283 1.6773 0.1792 -0.4028 -0.1650 0.6215 0.7931 

PMIC Predicted  

Model  11 

(2D+3D) 

0.5985 1.8591 0.7612 -0.2787 0.0138 1.5488 1.3689 

Slog P_VSA9 

(2D) 

23.862 23.862 57.188 90.548 60.741 23.862 23.862 

Kier2(2D) 
10.364 9.333 11.755 10.346 10.346 10.871 10.871 

chi0v(2D) 
13.47 11.35 14.02 15.96 15.23 12.65 13.10 

LogP(o/w) (2D) 
2.8820 0.8570 0.9280 3.4630 2.5180 0.0740 -0.3070 

KierA3  (2D) 
3.8005 3.7408 5.5416 3.9964 3.7377 4.8701 4.9714 

chi1v  (2D) 
7.6507 6.0788 7.5136 

 

9.9172 8.8923 6.8749 7.3265 

E_oop (3D) 
0.0205 0.0528 0.0291 0.1870 0.0242 0.2763 0.0172 

ASA (3D) 
610.6 525.5 644.5 662.4 669.4 578.3 603.7 

npr1 (3D) 
0.045 0.169 0.052 0.100 0.039 0.164 0.062 
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No 
45 46 47 48 49 50 51 

Compound 
XLV XLVI XLVII XLVIII XLIX L LI 

R1 
-H -H -H -H -H -H -H 

R2 
-H -H -H -H -H -H -H 

R3 
O

C
-

CH3

CH3

NH2  

OO

NH2

-CH2

OHOH  

OH
C

-

OO

NH2

 

SH
C

-

O

NH2

 

N
NH

C
-

O

NH2

 
C

-N

N

NH2

OH

 

NH
N

N

C
-

N  

R4 
-H -H -H -H -H -H -H 

R5 
-H -H -H -H -H -H -H 

Predicted  pMIC 

Model  1 (2D) 

0.300 -0.042 -0.042 0.543 -0.173 0.261 1.454 

Predicted  pMIC 

Model  5 (2D) 

0.6155 0.8922 0.8455 0.9000 0.3605 0.9083 1.4922 

Predicted  pMIC 

Model  6 (3D) 

0.1794 0.2259 0.3668 0.0862 -1.0397 0.0554 1.4527 

PMIC Predicted  

Model  11 

(2D+3D) 

0.6721 0.8171 0.6946 1.0995 0.5725 1.0346 1.6038 

Slog P_VSA9 

(2D) 

23.862 90.514 90.514 23.860 23.860 23.862 23.862 

Kier2(2D) 
11.407 11.111 11.111 10.982 12.142 11.407 9.629 

chi0v(2D) 
14.58 14.72 14.72 14.20 15.46 14.74 12.43 

LogP(o/w) (2D) 
1.167 -0.6580 -0.1110 0.3050 -0.4100 -0.7065 0.4370 

KierA3  (2D) 
4.7632 5.7543 5.7680 4.8562 5.0845 4.4904 3.0841 

chi1v  (2D) 
8.0542 0.8922 8.2557 7.9231 8.9326 8.1612 1.4922 

E_oop (3D) 
0.0205 0.0528 0.5533 0.0291 0.3037 0.0385 0.0166 

ASA (3D) 
612.1 638.5 530.3 647.5 677.7 652.3 563.9 

npr1 (3D) 
0.173 0.073 0.424 0.070 0.203 0.049 0.044 
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No 
52 53 54 55 56 57 58 

Compound 
LII LIII LIV LV LVI LVII LVIII 

R1 
-H -H -CN -CN -F -H -H 

R2 
-H -H -H -H -H -Br -Cl 

R3 
C

-NH2

NH2

OH

OH  

 

C
-

O

OH

F

 

-NH -NH -F 

CH3

CH3

S
-

 NH
-

OH

O

 

R4 
-H -H -H -H -H -H -Cl 

R5 
-H -H -SH -H -F -H -H 

Predicted  pMIC 

Model  1 (2D) 

0.175 -0.394 1.431 

 

1.795 1.838 -1.597 -1.683 

Predicted  pMIC 

Model  5 (2D) 

0.3727 -0.2424 1.5724 2.062 1.9519 -0,9169 -1.1310 

Predicted  Pmic 

Model  6 (3D) 

-0.2759 -0.7012 0.7186 1.0860 2.2373 -1.1154 -1.5826 

PMIC Predicted  

Model  11 

(2D+3D) 

0.1886 -0.1957 1.1747 1.7504 2.1111 -0.3365 -0.2366 

Slog P_VSA9 

(2D) 

39.862 38.822 23.862 29.375 68.742 168.687 104.916 

Kier2(2D) 
11.039 12.296 9.474 9.333 8.740 11.571 13.185 

chi0v(2D) 
15.21 15.76 12.74 11.32 11.01 18.43 18.07 

LogP(o/w) (2D) 
9510.0 2.8350 0.4690 -0.0550 1.451 3.760 2.979 

KierA3  (2D) 
3.9272 4.9939 3.6969 3.3415 3.4472 4.8536 6.1892 

chi1v  (2D) 
8.3419 8.8019 6.7565 6.1690 5.8903 9.4588 10.1872 

E_oop (3D) 
0.1187 0.1056 0.5082 0.0122 0.0152 0.0905 0.5401 

ASA (3D) 
667.0 685.3 572.7 553.0 506.4 698.2 713.7 

npr1 (3D) 
0.054 0.116 0.123 0.090 0.083 0.206 0.094 

 

3.2   Docking study: 

       The docking process carried out  by MOE program . The outcome 

docking  presented (2D) forms  in the appendix  for data set from figure 

(4.1) to (4.21),isoniazid (4.22) and designed compounds (4.23) to (4.80)  .   

   Molecular docking was used  to predict the binding of  ligands ( data set 

,isoniazid  and the new designed  derivatives )to the target 4TRO protein . 

Characteristics of the bindings  were tabled  in  table (3-5) for  the data set 

and isoniazid.Designed compounds  were explained in table (3-6).  From the 

result of docking ,the  best  compound have more interaction (VIII) from 
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designed compounds  ,the best compounds have the lowest energy less than 

-22 and at least one interaction ,compounds (3f ,3c)from dat sata ,from the 

new designed derivatives  are ( XII, XXIII, XXIX, XXX, XXXIII, XL, XLI, 

XLII, XLVII,  LII, LIII, LVII ) .  

     The binding  affinity for the data set ranging from (-14.8731 to -24.0150) 

kcal/mol  while the binding  affinity for  the designed compounds   rang  

from  (-15. 7981to -28.1695) kcal/mol. 

    The  docking  score  correlated to the potency of inhibitors ,the lowest 

docking  score  was shown most potent   inhibitor ,while the high  docking  

score   was shown least  potent inhibitor. The lowest docking  score was 

performed by LIII = -28.1695 kcal/mol with one interaction Gly96 

  and the highest  docking  score was tabled by  compound  (XXVII) = -

15.7981 kcal/mol  with two interaction Val65, Phe41 .The isoniazid  

binding affinity values = -10.5989 kcal/mol 

     The new compounds were docked into active site of 4TRO were revealed 

the most residues (Phe41, Val65, Gly96, Gly14, Ser94)  in the protein 

ligand interactions . 

The isoniazid  was  showed three interactions hydrogen  bond  with the 

receptor (4TRO) . 

Table (3-5):The Interaction between the data  set with (4TRO) protein 

active sides receptor: 
  

NO 

Compound 

S Bond 

energy 

(kcal/mol) 

Hydrogen 

bond 

length(Å) 

Interaction of 

amino acid 

Type of  

inter action 

3a -18.3771 2.19 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

3b -17.8684 - - No interaction 

3c -23.0513 2.12 

2.09 

Gly96 

Ser94 

H-bond acceptor 

H-bond acceptor 

3d -20.2616 - Phe41 π -π bond 

3e -20.7632 - Phe41 π -π bond 

3f -24.0150 2.13 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

3g -21.3515 - Phe41 π -π bond 

3h -21.6033 2.18 Lys118 

Lys118 

H-bond acceptor 

π –cation bond 

3i -19.1373 2.23 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

3j -18. 4892 2.20 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

 



 

41 
 

NO 

Compound 

S Bond 

energy 

(kcal/mol) 

Hydrogen 

bond 

length(Å) 

Interaction of 

amino acid 

Type of  

inter action 

3k -19.3499 2.17 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

3l -18.3147 - Phe41 π-π bond 

3m -20.4081 2.13 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

3n -18.9593 2.18 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

3o -19.0347 - Phe41 π-π bond 

3p -17.4867 - - No interaction 

3q -14.8731 - - No interaction 

3r -20.5348 2.10 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

3s -18.1753 - - No interaction 

3t -17.9677 2.06 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

3u -18.5850 - - No interaction 

INH -10.5989 1.77 

2.65 

2.04 

Ser94 

Ser94 

Gly14 

 

H-bond acceptor 

H-bond acceptor 

H-bond acceptor 

 

 

Table (3-6):The Interaction between the designing set with 4TRO protein 

active sides receptor 

No Compound 

 

S  Bond 

Energy 

(kcal/mol) 

Hydrogen 

bond 

length(Å) 

Interaction of 

amino acid 

Type of  

inter action 

1 I -18.8351 - - No interaction 

. II -22.8545 2.07 Gly14 H-bond acceptor 

7 III -19.8033 2.15 

- 

Val65 

Phe41 

H-bond donor 

 π -π bond 

5 IV -17.9148 2.93 

2.26 

- 

Ser94 

Val65 

Phe41 

H-bond acceptor 

H-bond donor 

π -π bond 

4 V -19.9600 - Phe41 π -π bond 

. VI -19.7667 2.02 Gly14 H-bond acceptor 

3 VII -19.8196 1.97 Gly96 H-bond acceptor 

. VIII 

 

 

 

 

 

-20.1462 2.78 

1.88 

2.05 

2.15 

- 

Gly14 

Ser94 

Gly96 

IIe21 

Phe41 

H-bond acceptor 

H-bond acceptor 

H-bond acceptor 

H-bond donor 

π -π bond 
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No Compound 

 

S Bond 

Energy 

(kcal/mol) 

Hydrogen 

bond 

length(Å) 

Interaction of 

amino acid 

Type of  

inter action 

. IX -21.9676 2.13 

- 

Val56  

Phe41 

H-bond donor 

π -π bond 

19 X -18.7306 - 

 

- No interaction 

 

11 XI -21.6312 - - No interaction 

1. XII -.1.7491 2.17 

2.06 

Gly96 

Gly192 

H-bond acceptor 

H-bond acceptor 

17 XIII -18.3127 2.05 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

15 XIV -17.0935 2.14 

- 

Lys118 

Phe97 

H-bond acceptor 

 π -π bond 

14 XV -20.6654 2.14 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

1. XVI -17.6141 2.07 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

13 XVII -20.6676 2.17 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

1. XVIII -22.2965 - - No interaction 

1. XIX -18.7245 - - No interaction 

.9 XX -19.6942 2.03 Gly96 H-bond acceptor 

.1 XXI -19.6494 - Phe41 π -π bond 

.. XXII -20.1904 -  - No interaction 

.7 XXIII -23.4673 2.22 Ser94 H-bond acceptor 

.5 XXIV -.9..94. - - No interaction 

.4 XXV -20.3092 2.03 Gly14 

Phe41 

H-bond acceptor 

 

.. XXVI -18.5326 - Phe41 π -π bond 

.3 XXVII -15.7981 2.21 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

.. XXVIII -19.1809 - - No interaction 

.. XXIX -23.4358 2.10 

2.05 

IIe194 

Ser94 

H-bond donor 

H-bond acceptor 

79 XXX -25.0724 2.02 

- 

Gly14 

Phe41 

H-bond acceptor 

π -π bond 

71 XXXI -.9.1683 2.02 

- 

Gly14 

Phe41 

H-bond acceptor 

π -π bond 

7. XXXII -22.4081 2.19 Gly14 H-bond acceptor 

77 XXXIII -24.2295 2.10 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

75 XXXIV -19.1542 2.09 

2.75 

- 

Thr196 

Asp64 

Phe41 

H-bond acceptor 

H-bond donor 

π -π bond 
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No Compound 

 

S Bond 

Energy 

(kcal/mol) 

Hydrogen 

bond 

length(Å) 

Interaction of 

amino acid 

Type of  

inter action 

74 XXXV -21.4784 2.12 

- 

Lys165 

Phe149 

H-bond acceptor 

π -π bond 

7. XXXVI -23.7257 1.97 

- 

Gly96 

Phe41 

H-bond acceptor 

π -π bond 

73 XXXVII -19.7007 2.13 

2.19 

2.14 

Gly96 

Gly14 

Ser94 

H-bond acceptor 

H-bond acceptor 

H-bond acceptor 

7. XXXVIII -21.4714 - Phe41 π -π bond 

7. XXXIX -19.0195 2.11 

- 

Thr196 

Phe41 

H-bond acceptor 

π -π bond 

59 XL -23.0472 2.12 

2.14 

- 

Gly96 

Val65 

Phe41 

H-bond acceptor 

 H-bond donor 

π -π bond 

51 XLI -26.0837 2.17 

- 

Val65 

Phe41 

H-bond donor  

π -π bond 

5. XLII -26.7429 2.09 

- 

Val65 

Phe41 

H-bond donor 

π -π bond 

57 XLIII -22.4260 2.00 

- 

Ser94 

Phe41 

H-bond acceptor 

π -π bond 

55 XLIV -21.8662 - Phe41 π -π bond 

54 XLV -22.6569 3.22 

- 

Lys165 

Phe41 

H-bond acceptor 

π -π bond 

5. XLVI -22.2708  -25.8519 2.10 Ser94 H-bond acceptor 

47 XLVII -24.1621 2.11 

1.88 

- 

Lys118 

Asp42 

Phe97 

H-bond acceptor H-bond 

donor 

π -π bond 

58 XLVIII -22.4548 2.12 Gly96 H-bond acceptor 

 

59 XLIX -21.3022 - Phe41 π -π bond 

 

50 L -25.1195 - - No interaction 

 

41 LI -19.5723 2.08 

2.01 

2.24 

Gly96  

Ser94 

Gly14 

H-bond acceptor 

H-bond acceptor 

H-bond acceptor 

42 LII -25.5646 2.29 

2.04 

2.27 

1.93 

Ser94  

Ser94  

IIe194 

IIe194 

H-bond acceptor 

H-bond acceptor 

H-bond donor 

H-bond donor 

43 LIII -28.1695 2.25 Gly96 H-bond acceptor 
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No Compound 

 

S Bond 

Energy 

(kcal/mol) 

Hydrogen 

bond 

length(Å) 

Interaction of 

amino acid 

Type of  

inter action 

44 LIV -20.4511 2.19 

- 

Gly14 

Phe41 

H-bond acceptor 

π -π bond 

45 LV -17.1932 2.08 Gly14 H-bond acceptor 

46 LVI -19.2803 - Phe41 π -π bond 

47 LVII -25.9896 2.27 Ser94 H-bond acceptor 

 

48 LVIII -26.3585 - - No interaction 

 

    It was found that most of the interactions  are between the receptor and  

nitrogen of pyridine ,ring of pyridine which existing in data set   with Val65, 

Phe41of protein receptors   to give hydrogen bond and  π – π bond 

respectively . All data set showed  lower energy than that tabled by 

isoniazid . 

compounds ( 3d,3h) were selected  according to the low pMIC ,low energy 

in  their interaction with receptor. 

 The compound (3d) exhibited binding free energy -20.2616 Kcal/mol ,and 

(3d ) forming   one π interaction. 

The  π – π interactions between pyridine ring in compound  (3d)  with   

phe41 phenyl ring. Figure(3.15) 

 

 

 
Figure (3.15) The interaction between the compound 3d 

and  receptor in( 2D -3D) dimensional 

 

 

 
The distinguished of  the two compounds (3d ,3h)  , a hydrocarbon chain 

present in site (4) as substitutes 
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compound (3h)has a binding affinity of  -20.2616 Kcal/mol ,and (3h)  

formed   one H- bond and one π –cation bond interaction.  

The H-bond between O oxygen  of carbonyl in (3h) with N of amino group 

in   Lys118 the bond length was 2.18 Å    . 

The  π – cation  interactions between  pyridine  ring  in compound  (3h)  

with   Lys118   amino acid  . Figure(3.16) 

 

 
Figure (3.16) The interaction between the compound( 3h )and  receptor in  

( 2D -3D) dimensional 

 

      Most of the designed compounds were showed  more  interactions with  

the amino acid residues  (Phe41, Val65 ,Gly96, Gly14, Ser94) ,  and less 

interaction  with (Asp64, Phe97, lle194, Lys118 ,Lys165, Thr196, lle21 , 

lle95).There are similarities between the  compounds (XXX,XXXI,XXXII) 

in the interaction and energy, also  compounds (XLI,XLII). 

The   compound (VIII)  exhibited  binding affinity of -20.1462  Kcal/mol 

and formed 4 H-bond interactions and one  π Interaction. 

H-bond  between OH group  in  VIII compound and amino group in (lle21) , 

the bond length was 2.15 Å, H bond between H of hydroxyl group  in VIII 

and O oxygen  of carbonyl in (ser94) the bond length was 1.88 Å   ,H bond 

between H  hydrogen of hydroxyl  in  VIII  compound  and O oxygen  of 

carbonyl in Gly14 the bond length 2.79 Å, H bond between O oxygen  of 

carbonyl in compound VIII and amino group  in Gly96 the length bond 2.05 

Å ,finally  the  π – π interactions between pyridine ring and (Phy41) in 

phenyl ring : in Figure 3.17 
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Figure( 3.17)  The interaction between the compound VIII 

and  receptor 4TRO  in( 2D -3D) dimensional 

 

compound (VII)exhibited  binding free energy    -25.0724  Kcal/mol and 

forming  H-bond interaction and one  π Interaction. 

The  amino group   in  XXX compound  interacted  with O oxygen  of 

carbonyl   in Gly14viaH bond, the bond length was 2.02 Å ,    also formed  

π – π interactions between  pyridine ring in compound VII with  phe41 

phenyl ring . Figure (3.18) 

 

 

 
Figure (3.18)  The interaction between the compound XXX 

and  receptor  4TRO  in( 2D -3D) dimensional 

 

 

 

 

    

Compounds  (XXX,XXXI) are similar in contained halogen group 

,and showed the same interacted with the receptor. 
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 The binding free energy was tabled  for the  compound (XXXIII) -24.2295  

Kcal/mol and forming  H-bond interactions and one  π Interaction. 

Two H-bond  between N nitrogen  of  pyridine in XXXIII compound  and 

amino group of Val65 the bond length was 2.10 Å ,  the  π – π interaction  

between pyridine  ring in compound XXXIII with  phe41 phenyl ring . 

Figure( 3.19) 

 

 
Figure (3.19) The interaction between the compound XXXIII 

and  receptor  4TRO  in( 2D -3D) dimensional 

The  compound (XLII)formed  H-bond interactions and one  π Interaction 

with binding free energy -26.7429 Kcal/mol . 

      The  H bond between N of pyridine ring group in XLII with backbone of  

amino group Val65 viahydrogen bond , the bond length was 2.09 Å and  the  

π – π interactions  between pyridine  ring in compound XLII with    phe41 

phenyl group. Figure( 3.20) 

 

 
Figure (3.20)  The interaction between the compound XLII 

and  receptor 4TRO   in( 2D -3D) dimensional 
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 The binding free energy tabled  for the  compound (XLVII)  -24.1621 

Kcal/mol and formed  2H-bond interactions and one  π Interaction. 

Two H-bond  between H of   hydroxyl group   in XLVII  compound and O  

oxygen of carboxylic  in  Asp42 , the bond length was 1.88 Å, H bond 

between O oxygen of  carbonyl  in XLVII and amino group in Lys118  the 

bond length was 2.11 Å and  the  π – π interactions between phenyl  ring in 

compound XLVII with  phe97 phenyl ring . Figure (3.21) 

 

 
Figure (3.21)  The interaction between the compound XLVII 

and  receptor in( 2D -3D) dimensional 

 

 

 

 

 

 

    Compound (LII) exhibited  with binding affinity   -21.1446  Kcal/mol  

,and showed the occurrence 2 H-bond interaction and one  π Interaction. 

The  H-bond  between amino group in LII compound and O oxygen of  

carbonyl  in Ser94 , the bond length was 2.29 Å , The  amino group in LII 

compound mediated hydrogen bond with O oxygen of  carbonyl in Ser94 , 

the bond length was 2.04 Å . H bond formation occurred between hydroxyl  

Compounds (XLI, XLII) involve in consist heterocyclic (fused ring) at 

the    site (4)  of N-substituted -2-isonicotinoyl hydrazine carboxamide  

derivatives  were  showed  interactions  with (Val65,Phe41) residue. 

Compound (XLVII)  distinguished by the presence of two carbonyl 

group,one amino group and one hydroxyl group , carponyl and hydroxyl 

group that  formed bonds with the receptor. 
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group in LII and amino group in IIe194 the bond length was 1.93 Å ,also 

formed H bond between hydroxyl group in LII and O oxygen of  carbonyl in 

lle194 residue the bond length was 2.27 Å . Compound(LII)  was showed  

three H  bond  interactions  and was not showed any pi bond.figure  ( 3.22) 

 

 
Figure (3.22) The interaction between the compound LII 

and  receptor in( 2D -3D) dimensional 

 

 

        Compound (LIII)   formed one H-bond interaction with  binding free 

energy   -28.1695  Kcal/mol . 

 H hydrogen of amino group in LIII compound via  H-bond interacted  with    

O  oxygen of carbonyl  in Gly96, the bond length was 2.25 Å. Figure( 3.23) 

 

 

 
 

Figure (3.23) The interaction between the compound LIII 

and  receptor in( 2D -3D) dimensional 
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   The binding free energy was revealed for the  compound (LVII) -25.9896  

Kcal/mol and  which formed  one  H-bond interaction. 

H-bond  between  amino group  in LVII compound with  O oxygen of 

carbonyl  Ser94 residue , the bond length was 2.27 Å . Figure( 3.24) 

 

 
Figure (3.24) The interaction between the compound LVII 

and  receptor in( 2D -3D) dimensional 
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4. Conclusion and recommendation 

 In the search for effective and selective antituberculosis  agents, series of N-

Substituted- 2-Isonicotinoylhydrazinecarboxamides  derivatives were 

studied and modeled. The 3D-QSAR models presented here, are powerful 

enough to suggest improvement in N-substituted -2-isonicotinoyl hydrazine 

carboxamide  derivatives 

 3D - QSAR approaches was superior on  2D-QSAR in modeling  according 

to  this  research. By combining  3D-QSAR and molecular docking studies 

are good approach of design N-substituted -2-isonicotinoyl hydrazine 

carboxamide  derivatives anti agents  .  

 The three modeled that applied in the designed new N-substituted -2-

isonicotinoyl hydrazine carboxamide  derivatives compounds, the 

compounds (XXIX, XXX, XXXII,XLI, XLIX)  that revealed low  pMIC 

when  model (5) was used (that contain log p(o/w) reverse model 6 and 

model 1 in 3D  and 2D respectively which showed high pMIC. Furthermore 

(LVII,LVIII) were revealed low pMIC  when models (1,6) are used ,the rest 

of designed compounds showed similar values with used models 1,6 and 5 

(which contain log p(o/w)). 

 All the new  designed  N-substituted -2-isonicotinoyl hydrazine 

carboxamides derivatives sketched by ACD lab software , In addition were 

characterized and evaluated  by MOE 2009.10 and SPSS  software.  

 The new designed compounds were  indicated molecular docking or 

receptor- ligand  interference , compounds ( XII, XXIII, XXIX, XXX, 

XXXIII, XL, XLI, XLII, XLVII, LII, LIII, LVII ) were showed  interaction 

,good biological activity and low energy. Some of this compound as 

(XXIX,XXXIII ,XLVII, LIII)   contained  carbonyl group ,and compound  

(XI, XLVII , LII,LIII) consiste of  hydroxyl  group .In addition to 

compounds(XLVII, LII,XLII) involve  amino group ,also some of this 

compound contain of halogens or sulfur.    

 Compound(VIII) was showed more interactions , low energy ; however, 

high pMIC . 

 Applying modeling techniques in addition the tools that use in modeling  as 

software programs, could be useful for chemists. considered the study  

computer aided methods as potential and complex tools that may serve as 

valuable partnership with wet lab experiments and may provide a rational 

aid to minimize the cost and time of research. 
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 Recommended reviewing and study the (VIII ,XII, XXIII, XXIX, XXX, 

XXXIII, XL, XLI, XLII, XLVII, LII, LIII, LVII ) compounds in a broad and 

comprehensive manner according to their biological activity and  docking 

study  . 

 Application of silico ADMET prediction for characteristic compounds, In 

the search for design and discovery of anti-tuberculosis drugs, ADMET 

(absorption, distribution, metabolism, excretion and toxicity) is a 

prerequisite. On account, the properties of the molecule play an important 

role in the initial clinical stage. It is necessary to predict the ADMET 

properties of compounds designed to ensure drug adaptability to the human 

body in advance, which include absorption in the human intestine, the 

blood-brain barrier and penetration into the central nervous system. 

Metabolism refers to the chemical and biological transformation of drugs in 

the body, the total chain, the toxicity level of drugs and molecules The 

admetSAR online web servers and ADME Tlab are used to predict the 

ADMET properties of the newly designed compounds. 

 Some of  QSAR models can be used in the two dimensional or the three 

dimensional  to  design more N-substituted -2-isonicotinoyl hydrazine 

carboxamide derivatives to search and design anti-tuberculosis drugs 

according to the results later. 
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Appendixes 

 

 

Figure (4.1) The interactions between the ligand (3a) and the 

4TRO  receptor  active side 

 

Figure (4.2) The interactions between the ligand (3b) and the 

4TRO  receptor active side 

 

Figure (4.3) The interactions between the ligand (3c) and the 

4TRO  receptor active side 
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Figure (4.4) The interactions between the ligand (3d ) and the 

4TRO  receptor active side 

 

 

Figure (4.5) The interactions between the ligand (3e) and the 

4TRO  receptor active side 

 

 

Figure (4.6) The interactions between the ligand (3f) and the 

4TRO  receptor  active side 
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Figure (4.7) The interactions between the ligand (3g) and the 

4TRO  receptor  active side 

 

 

Figure (4.8) The interactions between the ligand (3h) and the 

4TRO  receptor  active side 

 

 

Figure (4.9) The interactions between the ligand (3i) and the 

4TRO  receptor  active side 
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Figure (4.10) The interactions between the ligand (3j) and the 

4TRO receptor active side 

 

 

Figure (4.11) The interactions between the ligand (3k) and the 

4TRO  receptor active side 

 

 

Figure (4.12) The interactions between the ligand (3l) and the 

4TRO  receptor  active side 
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Figure (4.13) The interactions between the ligand (3m) and the 

4TRO receptor active side 

 

 

Figure (4.14) The interactions between the ligand (3n) and the 

4TRO  receptor active side 

 

Figure (4.15)  The interactions between the ligand (3o) and the 

4TRO  receptor active side 
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Figure (4.16) The interactions between the ligand (3p) and the 

4TRO  receptor active side 

 

Figure (4.17) The interactions between the ligand (3q) and the 

4TRO receptor active side 

 

Figure (4.18) The interactions between the ligand (3r ) and the 

4TRO receptor active side 
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Figure (4.19) The interactions between the ligand (3s) and the 

4TRO  receptor active side 

 

 

Figure (4.20) The interactions between the ligand (3t) and the 

4TRO  protein active side 

 
Figure (4.21) The interactions between the ligand (3u ) and the 

4TRO  receptor  active side 
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Figure (4.22) The interactions between the ligand (Isoniazid) and the 

4TRO  receptor active side 

 

 

 

Figure (4.23) The interactions between the ligand (compound I) and the 

4TRO  protein active side 

 

 

Figure (4.24) The interactions between the ligand (compound II) and the 

4TRO  receptor active side 
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Figure (4.25) The interactions between the ligand (compound III) and the 

4TRO  receptor active side 

 

 
Figure (4.26) The interactions between the ligand (compound IV) and the 

4TRO  receptor  active side 

 




Figure (4.27) The interactions between the ligand (compound V)and the 

4TRO  receptor active side 
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Figure (4.28) The interactions between the ligand (compound VI) and the 

4TRO receptor  active side 

 






Figure (4.29) The interactions between the ligand (compound VII) and the 

4TRO  receptor  active sid 

 

 

Figure (4.30) The interactions between the ligand (compound VIII) and the 

4TRO  receptor active side 
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 Figure (4.31) The interactions between the ligand (compound IX) and the 

4TRO  receptor  active side 

 


Figure (4.32) The interactions between the ligand (compound X) and the 

4TRO  receptor  active side 






Figure (4.33) The interactions between the ligand (compound XI) and the 

4TRO  receptor  active side 
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Figure (4.34) The interactions between the ligand (compound XII) and the 

4TRO  receptor  active side 

 




Figure (4.35) The interactions between the ligand (compound XIII) and the 

4TRO  receptor  active side 

 

 

Figure (4.36) The interactions between the ligand (compound XIV ) and the 

4TRO  receptor active side 
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Figure (4.37) The interactions between the ligand (compound XV) and the 

4TRO  receptor  active side 

 

 

Figure (4.38) The interactions between the ligand (compound XVI) and the 

4TRO  receptor  active side 




Figure (4.39) The interactions between the ligand (compound XVII) and the 

4TRO  receptor active side 
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Figure (4.40) The interactions between the ligand (compound XVIII) and 

the 4TRO  receptor active side 

 

 

    Figure (4.41) The interactions between the ligand (compound XIX ) and 

the 4TRO  receptor active side 




  Figure (4.42) The interactions between the ligand (compound XX) and the 

4TRO  receptor  active side 
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 Figure (4.43) The interactions between the ligand (compound XXI) and the 

4TRO  receptor  active side 

 


Figure (4.44) The interactions between the ligand (compound XXII) and the 

4TRO  receptor  active side 



 

Figure (4.45) The interactions between the ligand (compound XXIII) and 

the 4TRO  receptor  active side 
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 Figure (4.46) The interactions between the ligand (compound XXIV) and 

the 4TRO  receptor  active side 

 


Figure (4.47) The interactions between the ligand (compound XXV) and 

the 4TRO  receptor  active side 

 


Figure (4.48) The interactions between the ligand (compound XXVI) and 

the 4TRO  receptor  active side 
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Figure (4.49) The interactions between the ligand (compound XXVII) and 

the 4TRO  receptor  active side 

 




Figure (4.50)  The interactions between the ligand (compound XXVIII) and 

the 4TRO  receptor active side 

 


Figure (4. 51) The interactions between the ligand (compound XXIX) and 

the 4TRO  receptor  active side 
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Figure (4.52) The interactions between the ligand (compound XXX) and 

the 4TRO  receptor active side 

 




Figure (4.53) The interactions between the ligand (compound XXXI) and 

the 4TRO  receptor active side 

 


Figure  (4.54) The interactions between the ligand (compound XXXII) and 

the 4TRO  receptor  active side 
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Figure (4.55) The interactions between the ligand (compound XXXIII) and 

the 4TRO  receptor  active side 




Figure  (4.56) The interactions between the ligand (compound XXXIV) and 

the 4TRO  receptor active side 

 

Figure (4.57) The interactions between the ligand (compound XXXV) and 

the 4TRO  protein active side 
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Figure (4.58) The interactions between the ligand (compound XXXVI) and 

the 4TRO  receptor  active side 




Figure (4.59) The interactions between the ligand (compoundXXXVII) and 

the 4TRO  receptor  active side 



 

Figure (4.60) The interactions between the ligand (compound XXXVIII) 

and the 4TRO  receptor active side 
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Figure (4.61) The interactions between the ligand (compound XXXIX) and 

the 4TRO  receptor  active side 






Figure (4.62) The interactions between the ligand (compound XL) and the 

4TRO  receptor  active side 


Figure (4.63) The interactions between the ligand (compound XLI) and the 

4TRO  receptor  active side 
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Figure (4.64) The interactions between the ligand (compound XLII) and the 

4TRO  receptor  active side 




Figure (4.65) The interactions between the ligand (compound XLIII) and 

the 4TRO  receptor  active side 

 
 

Figure (4.66) The interactions between the ligand (compound XLIV) and 

the 4TRO  receptor  active side 
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Figure (4.67) The interactions between the ligand (compound XLV) and the 

4TRO  receptor  active side 

 

Figure (4.68) The interactions between the ligand (compound XLVI) and 

the 4TRO  receptor active side 

 

Figure (4.69) The interactions between the ligand (compound XLVII) and 

the 4TRO  receptor  active side 
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Figure (4.70) The interactions between the ligand (compound XLVIII) and 

the 4TRO  receptor  active side 

 

Figure  (4.71) The interactions between the ligand (compound XLIX) and 

the 4TRO  receptor  active side 

 

 

Figure (4.72) The interactions between the ligand (compound L) and the 

4TRO  receptor  active side 
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Figure (4.73) The interactions between the ligand (compound LI) and the 

4TRO  receptor active side 

 

 

Figure (4.74) The interactions between the ligand (compound LII) and the 

4TRO  receptor  active side 

 

 

Figure (4.75) The interactions between the ligand (compound LIII) and the 

4TRO  receptor active side 



 

.0 
 

 

Figure (4.76) The interactions between the ligand (compound LIV) and the 

4TRO  receptor  active side 

 

Figure (4.77) The interactions between the ligand (compound LV) and the 

4TRO  receptor  active side 

 

 

Figure  (4.78) The interactions between the ligand (compound LVI) and the 

4TRO  receptor  active side 
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Figure  (4.79) The interactions between the ligand (compound LVII) and 

the 4TRO  receptor  active side 

 

 

Figure  (4.80) The interactions between the ligand (compound LVIII) and 

the 4TRO  receptor active side 

 

 

 

 

 

 

 

 

 

 

 

 

 


