
  

1 
 

 

     

 

A proposed Framework for Versions Control using 

Abstract Syntax Tree Analysis 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements of 

M.Sc. In Computer Science 

 

 

Prepared by:  

Salma Ali Zain Elabden 

Supervisor: 

Dr. Ahmed Mohamed Elsawi   

 

 

 

November 2019 

 

 

 Sudan University of Science and Technology  

College of graduate studies 

 
 



  

ii 
 

DEDICATION 

 

To the meaning of love, affection and dedication 

To my parents (Ali - Afaf) 

 

To the husband Muhannad who helped me and encouraged me to achieve my dreams 

To my lovely kids who suffered with me (Reem - Ahmed - Adham) 

 

Thank you all 

 

 

 

  



  

iii 
 

ACKNOWLEDGEMENTS 

 

Praise is to Allah, Lord of the Worlds, the Merciful, thanks in the first and 

last to Allah. 

I would like to express my deep appreciation and thanks to Dr. Ahmed 

Mohamed El Sawy, who supervised this research and assisted me with his 

knowledge and valuable observations and his encouragement to me. 

I also extend my sincere thanks and gratitude to my husband, Muhannad 

Abdul Rahman, for his support and encouragement and assistance. 

I would also like to thank 

 Mr. Ahmed Bashir. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

iv 
 

ABSTRACT 

As a result of increased competition and customer expectations many companies 

such as Google and Facebook have embraced rapid development. In rapid 

development methodologies such as scrum, several releases are launched before 

the final delivery of the product. Each particular time period is called Sprint. 

When the developer or the tester needs to revert to a particular version, they find 

it difficult to do so. This research provides a proposed framework with the aim of 

analyzing the different versions and finding the difference between them in terms 

of classes, functions and variables. This framework designed this framework 

using the Abstract Syntax Tree Analysis to analyze the versions, then compare 

and extract a report to help the developer determine the required version. The 

results show that the a proposed framework takes a times less than one hundredth 

and four tenth Millisecond to compare two files and find the difference between 

them, and less than 5870 Millisecond to compare two versions. The framework 

performance is evaluated by comparison with tools (JAPICC, CodeCompre). The 

performance evaluation was conducted using three small projects (as a case 

study). When comparing two files, the results showed that the CodeCompre is 

better than the framework. The CodeCompre compares the entire file, compared 

to the framework, which compares only the names of functions and variables. 

The main conclusion is that the framework showed good results in finding the 

difference between versions in terms of classes, functions and variables 

compared to the JAPICC tool. The contribution and importance of this study is 

that the framework can be used by companies that adopt Scrum methodology to 

compare versions. 

 

 

 

 

 

 



  

v 
 

 المستخلص

وفلاي  بلاوا التيلاويم تبنلات ثييلام ملان الالامثات ميلال جوجلال  العملاء  وتوقعات المنافسة لزيادة نتيجة 

تسلاييم النهلاا   الالاصلادامات قبلال  ايلاء  العديلاد ملان في منهجيلاات التيلاويم ميلال سلاثموم يلاتم. السميع

 إصلادام إللا  العلاودة المختبلام أو الميلاوم يحتلااج عنلادما ليمنتج . ثل فتمة زمنية معينة تسمي سلابمنت.

الاصلالالادامات مقتلالالامح بهلالالادل تحييلالالال  هلالالا.ا البحلالالاث  ايلالالاام يقلالالادمبلالالا.لا.  القيلالالاام فلالالاي صلالالاعوبة يجلالالاد ، معينلالالاة

 ةاجم  باستخدام ه.ا الايام . صممتغيماتالمختيفة وايجاد الفم  بينها من حيث  الف ات والدوال والم

لمسلالااعدة الميلالاوم فلالاي تحديلالاد  متحييلالال البنيلالاة المجلالامدة لتحييلالال الاصلالادامات يلالام مقامنتهلالاا واسلالاتخماج تقميلالا

 م لاة وامبعلاة عالام ميلاي يانيلاةياخ. زمن اقل ملان  المقتمح الايامتبين النتا ج ان  الاصدامة المييوبة.

ادا   يلاتم تقيلايميانيلاة لمقامنلاة اصلادامين. ميلاي   5870ملان  اقلالميفلاين وايجلااد الفلام  بينهلاا و  في مقامنة

 عمييلالالاة تقيلالالايم الادا (. اجميلالالات JAPICC, CodeCompare) ملالالاع الادواتبمقامنتلالالا   الايلالالاام

 .عنلالالاد مقامنلالالاة ميفلالالاين ااهلالالامت النتلالالاا ج ان الاداةحالة( دماسلالالاةثيلالالاءث مالالالااميع صلالالاغيمة ) باسلالالاتخدام

CodeCompare  مقامنلاة بالايلاام اللا.ق يقلاامن فقلاي  الميلالالاداة تقامن ثامل  .افضل من الايام

الايلالاام المقتلالامح افضلالال عنلالاد مقامنلالاة اصلالادامين يمثنلالا  مقامنلالاة ثلالال الميفلالاات .اسلالاما  اللالادوال والمتغيلالامات 

 فقلالاي. اللالادوال والف لالاات JAPICCداخلالال الاصلالادامات ملالان حيلالاث اللالادوال والمتغيلالامات بينملالاا تقلالاامن الاداة 

ي ايجاد الفلام  بلاين الاصلادامات ملان حيلاث الف لاات ف جيدةااهم نتا ج  يامالإالاستنتاج الم يس  ان  

مسلااهمة واهميلالاة هلالا.ة الدماسلاة ان  الايلالاام يمثلالان . JAPICCمقامنلالاة بلالاالاداة  عنلاد واللادوال والمتغيلالامات

 سثموم لمقامنة الاصدامات . ان يستخدم من قبل الامثات التي تتبع منهجية



  

vi 
 

TABLE OF CONTENTS 

 

TITLE PAGE 

TITLE i 

DEDICATION    ii 

ACKNOWLEDGMENTS   iii 

ABSTRACT    iv 

 v المستخلص

TABLE OF CONTENTS   vi 

LIST OF TABLES    viii 

LIST OF FIGURES    ix 

ABBREVIATION xi 

CHAPTER ONE 1 

1.1  Research Problem Background    1 

1.2 Research Problem Statement    3 

1.3 Research hypotheses 4 

1.4 Research Importance 4 

1.5  Research Objectives   4 

1.6  Research Methodology     4 

1.7 Research Scope   5 

1.8 Contributions of the Research 5 

1.9  Thesis Organization    5 

1.10 Summary Chapter One 6 

CHAPTER TWO 7 

2.1 Introduction 7 

2.2 Software Testing 7 

2.3 Software testing techniques 8 

2.3.1 Software Testing Strategies 8 

2.3.2 Software Testing Methodologies 10 

2.4 Static Analysis 14 

2.5 Rapid Application Development 16 

2.6 Rapid Application Development & Testing Software 17 

2.7 Scrum 18 



  

vii 
 

 

 

 

 

 

 

 

2.8  Sprint 20 

2.9 Abstract Syntax Trees 21 

2.10    Gum Tree 22 

2.11    Spoon Library 22 

2.12 Java API Compliance Checker (JAPICC)  24 

2.13 Code Compare Tool 26 

2.14 WinMerge 31 

2.15 Summary Of Chapter Two 33 

CHAPTER THREE 34 

3.1 Introduction 34 

3.2      The Proposed Framework 34 

CHAPTER FOUR 37 

4.1       Case Study Gum Tree 37 

4.2        Case Study(args4j V.2.0.22, V.2.0.23) 45 

4.3  Case Study(GumTree) 49 

4.4  Case Study(akka actor) 54 

CHAPTER FIVE 56 

Discussion of the results 56 

CONCLUSION AND FUTURE WORK 57 

REFERENCES 58 



  

viii 
 

List of Tables 

 

Table 2.1: A comparison between Software Testing Techniques 15 

Table 2.2: A comparison between Agile and Waterfall model 23 

Table 2.3: A comparison between development methodologies 24 

Table 2.4: The relationship between the testing and the different 

development methodology 

25 

Table 2.5: A comparison between  tools 32 

Table 3.1: represent proposed framework 35 

Table 4.1: Phases for finding the difference between versions  37 

Table 4.2: Description of the datasets 38 

Table 4.3: shows the number of deletions and addition in the file versions 39 

Table 4.4: Shows the parsing time and comparison time in Milli Second. 40 

Table 4.5: shows the number of deletions and addition in the versions 42 

Table 4.6: Shows the parsing time and comparison time 43 

Table 4.7: the dataset and tools used in the experiment 44 

Table 4.8: The results obtained by comparing the performance of the tool 

with the framework 

47 

Table 4.9: Description of the datasets 54 

Table 4.10: The result obtained by JAPICC and framework on dataset 

(versions) 

55 

  



  

ix 
 

List of Figure 

 

Figure 1.1: Research Methodology 5 

Figure 2.1 Types the Software Testing Strategies 8 

Figure 2.2 Software Testing Methodologies 10 

Figure 2.3 Type of White Box Testing 11 

Figure 2.4 Type of Black Box Testing 

Figure 2.5: Phases in the James Martin approach to RAD 

Figure 2.6 Benefits of agile methods 

13 

17 

18 

Figure 2.7 scrum Processes 19 

Figure 2.8 sprint activities 

Figure 2.9: shows the development phases of Extreme programming 

Figure 2.10: Kanban characteristics  

Figure 2.11: shows the development stages of Waterfall model 

Figure 2.12: Gum Tree mapping 

20 

21 

22 

22 

28 

Figure 2.13 Spoons a Metamodel structural part  30 

Figure 3.1 represent the proposed framework 36 

Figure 4.1 Show the steps to calculate differences between versions 37 

Figure 4.2: shows the number of deletions and addition in the file 

versions 

39 

Figure 4.3: shows the parsing time and comparison time 

Figure 4.4: The Framework Report 

Figure 4.5: The Framework Report(counter of classes, methods and 

variables) 

40 

41 

41 

Figure 4.6: shows the additions or deletion in version 42 

Figure 4.7: shows the number of deletions and addition in the versions 43 

Figure 4.8: The result obtained by JACCI tool  45 

Figure 4.9: The result obtained by framework(names of classes) 

Figure 4.10: The result obtained by framework (names of functions) 

Figure 4.11:The result obtained by framework(names of variables) 

Figure 4.12: Comparison the results of the JAPICC tool with the 

framework results 

Figure 4.13: The main Screen of CodeCompare Tool 

46 

46 

47 

48 

 

49 



  

x 
 

Figure 4.14: The result obtained by framework 

Figure 4.15: The result obtained by CodeCompare Tool 

50 

50 

Figure 4.16: The result obtained by CodeCompare Tool 

Figure 4.17: The result obtained by Framework  

Figure 4.18: The result obtained by CodeCompare tool 

51 

52 

53 

Figure 4.19: The result obtained by the framework.  

Figure4.20: The result obtained by JAPICC and framework on dataset 

(versions). 

53 

55 

 



  

xi 
 

Abbreviation 

 

Abbreviation     Meaning 

RAD Rapid Applications Development 

CVS Concurrent Versioning System 

SVN Subversion 

AST Abstract Syntax Tree 

GT GumTree 

JAPICC Java API Compliance Checker 

XML Extensible Markup Language  

JOSN JavaScript Object Notation 

RTED Robust Tree Edit Distance 

JDT Java development tools  

JAVAC Java programming language compiler 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html


  

1 
 

Chapter One 

1.1 Introduction:- 

 With the evolution of the software industry, several methodologies have 

emerged to rapid release with shorter delivery times such as agile and scrum [1], 

so new features can be launched within weeks or days instead of several months 

[2]. 

There are several reasons that led software companies to adopt rapid 

development in their product development such as rapid response to frequent 

changes in technology and the labor market [3], increase competition and 

customer expectations, meet changing market demands [4], providing good and 

cheap products to customers [5] and traditional methods are no longer suitable 

for the development of modern systems requiring customer participation [6]. 

Large companies such as Google and Facebook used rapid development, 

enabling them to get feedback from the customer faster but reduced testing 

time[2].  Increasing competitive pressures on companies makes them undertake 

projects that are necessary for their survival [3]. Firefox has adopted rapid 

release to be able to compete with Chrome already adopted it [1]. 
 

Rapid Applications Development is a life cycle to accelerate software 

development, improve quality and reduce cost and they consist of several 

techniques including Scrum, Flex, Extreme Programming and others [8]. 

Scrum is a framework for dealing with changing requirements and aims 

to deliver products faster [7], and is based on the participation of customers and 

enables them to change their requirements during development [8]. 

The change of requirements can be during any stage of rapid 

development. The change occurs as a result of four reasons to meet the needs of 

outside the company, adding new features, as a result of the new technical 

demands, or as a result of learning by individuals or groups [3]. 

Scrum is consists of three stages is the pre-game, development and post-

game, in the development phase the system is being developed in sprints [6]. 



  

2 
 

Sprint is a set of repetitive cycles where new features are added to the 

features included in the previous design [8]. It’s a fixed period of time, ranging 

from 1-4 weeks [6].    

Scrums encourage team work and communicate actively [9], the team 

has been working on several versions in the same sprint [10]. 

The versions are managed by versions control system such as concurrent 

versioning system (CVS) and Subversion (SVN) [12].  

Svn tortoise is an open source system that is used to store files in a 

repository that allows scanning and restoring your old versions and managing 

them with source code. It’s systems to facilitate collaborative work and code 

sharing and provide information about the development process [12], these 

repository are often very large [8].  

In scrum it is difficult for beginner developers, testers and new members 

to complete their tasks when they cannot completely understand the project [13], 

so the developers who use rapid development tend to include more comments in 

the source code in order to explanation [13]. 

The testing is the hardest part in Scrum [14], and because of the extra 

pressure to finish software development on time, and that project managers are 

likely to reduce their testing activities [19]. 

The testers have no knowledge of the source code and do not care about 

taking part in the development process since the collection of requirements [16].   

Static test is designed to examine the source code in the early stages and 

minimize errors [17].It’s the software is tested without executing the code. Like 

Reviews, check syntax, Static analysis, etc. [18]  

Static Analysis is the process of examining the software without the 

actual executing the programs, [12] and there are several techniques for static 

analysis from the matching of the strings until the matching of the graphic. [23] 



  

3 
 

The matching techniques that can be used for software version merging, 

program difference, regression testing, and multi-version program analyses.[12] 

Abstract syntax tree is a tree representation of the abstract syntactic 

structure of source code. [20] 

Neamtiu built an algorithm that tracks simple changes to variables, types 

and functions based on abstract syntax tree representation. [20] Abstract syntax 

trees are also used in analyzing source code. 

1.1. Research Problem Statement : 

 In rapid applications development many versions are released before 

delivery of the product when completed. When the developer or tester needs to 

get back to a specific version, the tester finds it difficult to do so because the 

search manually is expensive. So we need a framework to test the different 

versions and explain the differences between them in terms of classes, functions, 

variables and get a detailed report on their contents. All the studies that have 

been reviewed find the difference between two files and not two versions of the 

same project, so this framework was developed [21] [22]. 

  



  

4 
 

1.2. Hypotheses of Research: 

 This framework enables us to test different versions and determine the 

differences between them in terms of classes, functions and variables and extract 

a report on their contents. 

This framework can facilitate the developer's decision to return to the 

appropriate version. 

1.3.  Importance of the Research: 

          Through this framework, the versions identified by the tester are tested to 

determine the differences in the programming codes, in term classes and details of 

each class in the project to make the appropriate decision to copy the appropriate 

version and then continue to test it. 

1.4.  Objectives of the Research:  

     The study aims to develop a framework that: 

 Tests the different versions of the software repositories. 

 Extract a report of each program's information and program details. 

 Facilitates the decision of the tester, to determine the version to be referred to at the 

time, during rapid development 

1.6 Research Methodology: 

 This research contains two phases. Firstly determine the problem, gathering 

data related to the research (data, tools, Algorithms, etc.) and clarify the objectives of 

the research. Secondly design the framework to achieve the objectives of research, 

determine the characteristics and advantages of the research. Provide 

recommendations. 

 

 

 



  

5 
 

 

Figure 1.1: Research Methodology 

 

1.7.  Scope of the Research: 

 The approach we follow can be treated as static testing (static 

analysis).The static analysis by using abstract syntax tree to test rapid 

application development 

1.8. Contributions of the Research: 

 This research provides one major contribution as well as other related 

contribution: First, a framework to testing the different versions and extract a report 

of each program's information to find appropriate version for tester. Second, save 

effort in accessing the right version. 

1.9.  Thesis Organization: 

This   research has organized into Seven Chapters as following:- 

Chapter one: 

 Research problem background, research problem, research importance, 

research objectives, and research hypotheses, research methodology, research 

scope, contributions of research, thesis organization, summary chapter one. 

Methodology 

Gathering  tool and 
data 

Design the 
framework  

Provide 
recommendations 

Define the problem 
Define the 
objectives 



  

6 
 

Chapter two: 

 Introduction, software testing, software testing techniques, static testing, 

static analysis, abstract syntax tree, Rapid Applications Development, scrum, 

sprint algorithms and tools used in this research. 

Chapter three: 

      Methodology  

Chapter four: 

      Validation and Evaluation 

Chapter five:- 

 Discussion of the results 

Chapter six:- 

 Conclusion and future work. 

1.10 Summary: 

 In the rapid development methodologies such as the framework of the 

scrum contains many different versions of the source code related to the project. 

The release of each period of time called sprint and managed by a special 

repository to control and facilitate the collective programming.  

 When you need to go back to a particular version, the developer finds it 

difficult to do so. This framework has been developed to help the developer or 

tester find the required version 

  



7 
 

Chapter Two 

Literature Review 

 

2.1 Introduction: 

 That many organizations spend 40% of their resources on software testing [19], 

the testing software used to check for errors to prevent software failure [24].   

That it includes many techniques such as black box testing, white box testing 

box and others. The testing process is validation and verification [25]. It is a way to 

ensure the quality of the software [9]. 

That Scrum helps to improve the practice of testing by detecting any obstacles or 

impediments [26]. Rapid test does not just mean the test is fast but is done according to 

plan [27]. The test is done during development not end delivery of the product at an 

early stage, ensures the early detection of errors and defects [9]. 

2.2 Software Testing: 

 Software testing is an important method for evaluating software quality and 

achieving a higher level of reliability [24]. It is a broad term to include a wide range of 

different activities, from testing a small piece of software instructions (unit testing) to 

checking a large information system [25]. 

It is to monitor the software system to verify its validity, whether acting as 

intended [28]. It as a process to implement a program or application for the purpose of 

finding errors during implementation [29].  

The test is included at each stage of the software development cycle [25], and 

the test may take a long time but helps to ensure quality and meet user expectations [9].   

In some rapid development methodologies, developers may be uncomfortable to 

write tests cases before actually writing the program [11]. 

 



  

8 
 

 

2.3 Software testing techniques: 

2.3.1 Software Testing Strategies 

   The Software Testing Strategies integrates several software test case  design  

technique  into  a  well-planned  series  of  steps that  result  in  successful  testing  of  

software [31]. 

The Software Testing Strategies involves four main testes as shown in Figure 2.1. 

 

Figure 2.1: Types the Software Testing Strategies [31]. 

Unit Testing: 

 Unit testing is the testing of the smallest unit in the program, such as procedures, 

interfaces, functions, and classes [29]. It’s a test at the lower levels and requires less 

effort to detect errors [24]. 

Unit testing is the test that is done at the lowest level of the basic components of 

the program [31]. 

Integration testing: 

Integration testing is the test that is done when two or more modules are 

combined is often done on the interfaces between the components, to make sure that the 

work is done correctly [31]. 

Unit Testing 

Integration 
testing 

System 
testing 

Acceptance 
testing  

System as whole 

Individual component 

Component Group 

System as whole_ 

Customer 

requirement 



  

9 
 

    Integration testing is the integration of modules and tests these together [25]. It as the 

test between all component interfaces and the larger structure of quality assessment 

[28].  

System testing: 

System testing, it's a series of tests to make sure that the system works properly 

and is capable of performing the required functions [29]. 

System test is the total quality test of the system and the functional and non-

functional specifications such as safety, reliability and maintainability [31]. 

Acceptance testing: 

Acceptance testing is the test that is done when the product is delivered to 

customers by the developer to make sure that the system works [31].  The purpose is to 

give confidence that the system works to find errors [25]. 

  



  

10 
 

2.3.2 Software Testing Methodologies: 

 

 There are following methodologies for software testing as shown in Figure 2.2 

 

 

Figure 2.2: Software Testing Methodologies [31] 

White box testing: 

 White box testing is a test technique based on the internal components of the 

system [29]. The one who tests must have a good knowledge of programming languages 

and techniques like desk checking, code review, formal inspections, loop testing, 

control flow testing and others as shown in Figure 2.3 [25].   

The test on the internal structure of the code and the programmer must have full 

knowledge of the structure of the program [31]. 

 

 

 

So
ft

w
ar

e
 T

e
st

in
g 

M
et

h
o

d
o

lo
gi

e
sa

 

White Box Testing 

Black box testing 

Grey Box Testing 



  

11 
 

 

 

Figure 2.3 Types of white box testing [25] 

 

Desk Checking: 

 Desk Checking is the test that is performed on the source code and the 

programmer must have knowledge of the programming language [32], and is a manual 

method checking programs and usually using a paper and pen to record the result of the 

program [29]. 

Formal Inspections: 

Is the method of finding errors of instructions and detecting faults and violations 

[29], and is a formal and economical way to find code and design errors [32]. 

  

White Box Testing 

Desk Checking 

Code Walkthrough 

Formal Inspections 

Loop Testing 

Data Flow testing 

Control Flow Testing 

Basis Path Testing 



  

12 
 

Control flow testing: 

Control flow testing is a test technology that is applied to programming to show 

how many programs have been tested [29], it is a basic technology that is applied to all 

programs [32]. 

Control flow testing is a structural test that uses the control flow in the program's 

form [32]. 

Basis Path Testing: 

Measurement to illustrate a basic set of implementation paths [29]. It’s used to 

test each path [32]. 

Loop Testing: 

The test focuses on the validity of loop construction, and knows if the loop could 

end successfully [32]. 

Data Flow testing: 

Is a test to know how to define or use program variables [32].  Its test uses 

control flow graph technology [29]. 

Black box testing: 

Black Box Testing is a test technique without looking at its internal components 

[25]. It’s a technique to ensure that all the information that the system needs is 

acceptable and provides the right output [29]. 

        Black Box Testing is a test that is based on a set of expected input and output 

[32]. Figure 2.4 shows the main types of black box testing such as all pair testing, 

fuzzing, boundary value analysis, and others. 

 

 

 



  

13 
 

 

 

Figure 2.4 Types of black box testing [25] 

 

Equivalence Partitioning: 

 This test divides the field of entry into the equivalence partitioning from which 

to derive the test cases [32]. This method helps to reduce the number of test cases [29]. 

Boundary Value Analysis: 

Is the test that focuses on the maximum and minimum limits, error values and 

model values [32], or the limits where there is a possibility that the system will   

fail[29]. 

Fuzzing: 

It depends on feeding the random input of the application using incorrect or 

damaged data [32]. A technology developed by Barton miller in 1989 [29]. 

Black box testing 

All Pair Testing 

Orthogonal  
Array  Testing 

Cause-Effect  
Graph 

Fuzzing 

Boundary 
Value Analysis 

Equivalence 
Partitioning 

Equivalence 
Partitioning 



  

14 
 

Orthogonal Array Testing:   

The test that is done when the input field is very small [32], and helps to reduce 

test groups [29]. 

Cause-Effect Graph: 

Is a technique that creates a graph of input [29].  A relationship is created 

between the effect and its causes [32]. 

Gray Box Testing: 

Gray box testing is a test that combines the benefits of black and white [32]. It’s 

a test with limited knowledge of the inner workings of the application as well as the 

fundamental aspects of the system. It uses algorithms and internal data structures less 

than white [29]. 

Static Testing: 

Static testing is often implied to check the source code or translators or Check 

syntax, data flow [18]. It is a set of methods used to determine software quality without 

reference to actual implementation, such as code inspection, analysis symbolic, and 

static program analysis [24].  It is an analysis of the source code to detect possible 

defects [33] 

Dynamic testing: 

Dynamic testing is the use of a variety of methods to ensure the quality of software 

during the actual implementation of the program with real data [24]. It started before the 

program was 100% completed in order to test separate jobs or modules [18]. 

2.4 Static Analysis:  

 Static analysis and the process of checking the source code without executing the 

actual program [9]. It is an introduction to the compiler optimization [34]. 

 Static analysis is a test of the source code and knowledge of all possible causes of 

behavior that may arise at the time of execution. It is an accurate description of the 

behavior of the program regardless of input or operational environment [35]. Static 



  

15 
 

analysis is used to identify problems in code, including potential errors and unnecessary 

complexity [23].  Static analysis works by building the program's status model and then 

determining how the program interacts with this situation [35]. 

 

Table 2.1: A comparison between Software Testing Techniques: 

software testing 

techniques 

Strengths 

 

Weaknesses 

 

 

 

White box 

testing 

 The test can be started before GUI 

work.  

 Accurate testing, help improve the 

code work. 

  Help the tester to remove the extra 

instruction lines. 

  Help the tester to know the type of 

test input because he has 

knowledge of the internal coding. 

 The programmer needs very 

good programming languages.  

 Requires resources and 

knowledge of the internal 

structure.  

 Is a costly test.  

 It is difficult to test large 

systems.  

 Generate test cases in the 

programming languages . 

 

 

 

Black box testing 

 Reproducible test.  

 It is used in the operating 

environment. 

 Suitable for large systems. 

 Does not require the tester to have 

knowledge of programming 

languages. 

 The user is involved in the 

development of tests. 

 The tests are used several times. 

Examines the functions without 

knowledge of the internal 

implementation. 

 The generation of cases depends on 

requirements and design 

specifications. 

 

 If the requirements are unclear it 

may be difficult to generate test 

cases. 

 Repeat tests may occur  

 Some tests are not performed. 

 The system failures are unlikely 

to be found. 

 

Gray Box 

Testing 

• Combines the benefits of black 

and white. 

•  Experimental scenarios designed 

by it; needs partial knowledge of 

internal work. 

 

• Test coverage is limited 

because there is no access to 

the source code;  

• There may be over-testing 

cases and many paths are not 

yet tested. 

 

 

Unit testing 

 Executed by the application 

developer. 

 a little cost 

  Part of the system is tested 

without waiting for other parts. 

  Simple test due to small units. 

 Time consumes. 

 The difficulty of generating 

good test cases. 

 



  

16 
 

 

Integration 

testing 

 

• All interfaces are tested 

between all units. 

•  Tested on pre-tested modules. 

 

• It is late after merging units with 

each other. 

• Difficulty planning errors. 

 

 

 

 

System testing 

• Does not require knowledge of 

interior design or coding. 

• The whole system is tested. 

• Ensures that functional 

specifications are met. 

• It consumes a lot of time 

because the whole system is 

tested. 

• Its inputs are all software 

components. 

 

 

 

 

 

 

Static testing 

• Implementation of the test does not 

depend on the actual 

implementation. 

• The test is implicit. 

• Includes the hard test verification. 

• Helps to improve quality. 

• Uses mutation testing to detect 

errors. 

• Can be done before the product is 

completed 100%. 

  

• Tools may need to check the 

source code. 

• Need to know the programming 

languages. 

• Sometimes the static test cannot 

be separated from the dynamic 

test. 

 

 

2.5 Rapid application development: 

     Rapid application development is a life cycle used for software development, 

providing us with fast and high-quality development. It is a process that accelerates the 

software development cycle and includes four phases, requirements planning phase, 

user design phase, Construction phase, cutover phases as shown in Figure 2.5. That the 

objective of rapid application development is to engage customers in system 

development. [8]  

As the Ed Yourdon says, Information technology is consumer goods, because 

developers also have to adopt modern methods to meet user requests such as rapid 

application development, that the rapid development methodologies focus on code work 

such as implementation and testing, adding that the test is done in a repetitive manner, it 

is cheap and easy [8]. 



  

17 
 

 

 

 

 

 

 

 

 

Figure 2.5: Phases in the James Martin approach to RAD[8] 

2.6 Agile Software Development: 

       The  Agile  software  development  embodies  several  methodologies including  

Extreme  Programming,  Scrum,  Kanban,  Lean,  FDD (Feature-Driven  

Development),  Crystal,  DSDM  (Dynamic  Systems Development Method). 

 

        Agile is software development methodology that works to deliver the product 

repeatedly and gradually to the customer based on collaborative efforts between the 

team and customer, enhance the team spirit, produces releases at frequent intervals 

from one to six weeks and encourages rapid and flexible response to change. Figure 

2.6 illustrates the benefits of agile methodology [39] [40] [43]. 

 

 

Requirement 

planning 

Cutover 

User Design Construction 



  

18 
 

 

Figure 2.6 Benefits of agile methods [40] 

 

2.7 Scrum: 

 Scrum is a modern and comprehensive product development methodology [8], 

the customers are included in product development and that users can change their 

requirements from Scrum [37], It consists of three stages is the pre-game, development 

and post-game as shown in figure 2.7[6].  

 This approach involves the participation of many customers; it is suitable for 

small and medium enterprises and the term Scrum is derived from rugby game [8]. 

 The Scrum helps in improving engineering practices, because it contains 

administrative activities aimed at identifying deficiencies or impediments to the 

development process [15]. 

 Scrum includes early customer participation and products are issued repetitively 

way, so the development process is flexible and responsive to the changing market 

situation [19]. That requirements gathered in the form of stories and the most important 

Benefits 
of Agile 

Methods 

Frequent 
Delivery 

Flexibility 

Customer 
Satifaction 

Improved 
Productivity 

Better 
Software 
Quality 



  

19 
 

way is to communicate face to face with the client. Frequent meetings with the client 

help to define requirements more clearly and accurately [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Scrum Processes [6]. 

Scrum Roles:  

Product Owner: 

 The product owner is responsible for both functional and non-functional 

requirements and determines their priorities in the product backlog [38]. 

The product owner is responsible for determining which features to perform in 

each sprint priority is given to the implementation of properties in the product backlog 

[11]. 

Scrum Master: 

The Scrum Master is an administrative role, who is responsible for 

implementing scrum as planned [44]. He is responsible for guiding and helping the 

scrum team in correct understanding the using scrum [6]. 

Sprint 

Planning 

High Level 

Design Standards 

Conventions 

Technology 

Resources 

Architecture 

Architecture 

Product  

Backlog  

List 

Sprint 

Backlog 

Analysis 

Design 

Evolution 

Testing 

Delivery 

New product 

Increment 

Documentation 

System 

Testing 

Integration 

Final 

release 

PRE GAME PHASE POST GAME PHASE 

DEVELOPMENT PHASE 

 



  

20 
 

The Scrum Master ensures scrum practices until the end of the project [11]. 

Team Scrum:  

A team that has the power to make decisions and organize itself to achieve the 

goals of each sprint [11]. Responsible for the creation of publications in a gradual way 

and identify tasks related to the product backlog [18]. 

Customers: 

Customers involved in tasks related to product backlog of the system to be 

developed. And identify the requirements and objectives [9]. 

2.8 Sprint :  

 The sprint is a set of development activities conducted over a period of time, 

usually from one to four weeks as shown in Figure 2.8.  [8].  

 The sprint is an iterative course, where a job is being developed or improved with new 

additions [6]. 

The sprint is a small sessions, where new features are added, ranging from 3 to 

4 weeks [19]. 

 

 

 

 

Figure 2.8 sprint activities [13] 

 

 

24 Hour 

30 Days 

Product Backlog Sprint Backlog Sprint  
Working increment 

software 



  

21 
 

Product Backlog: 

 An ordered list of work to be done to create the product and run by the product 

owner [11]. The list contains all the requirements that arise by the customer and sales 

department, and this list is constantly updated [47]. 

Sprint Review: 

    A period of time in which the scrum team and stakeholders review the product 

produced by each sprint. Evaluation of product increasing and planning for future 

activities [6].  

2.9 Extreme programming: 

Extreme programming is one of agile methods of software development, which aims to 

interact with customer during development and improve software quality. 

It consists of the six phases, shown in Figure 2.9. It takes into consideration software 

development in the sense of writing all programs first [39] [40]. 

 

 

Figure 2.9: shows the development phases of Extreme programming [40] 

 

Story Cards 

Planning 
Game 

Pair 
Programming 

Unit Testing 

Acceptance 
Testing 

Small 
Releases 

Story 

Cards 



  

22 
 

2.10 Kanban: 

Kanban is methodology for visualizing work progress visually with Kanban board. 

It based on work scheduling to facilitate the delivery of the product on the time. 

Kanban methodology is characteristics (simplicity, visualization, adaptability, 

Kanban board Figure 2.10 shows these characteristics [42]. 

 

Figure 2.10: Kanban characteristics [42] 

2.11 Waterfall model: 

The waterfall is sequential development model; progress is made in the form of 

successive phases. The transition to the next stages does not take place before the 

completion of the previous stage, meaning if the requirements are not clear, the 

transition does not take place to the design stage [30]. Figure 2.10 shows the 

development stages in waterfall model. 

 

Figure 2.11: shows the development stages of Waterfall model [30] 

visualization simplicity adaptability 
kanban 
board 

Analysis 

Design 

Development 

Testing 

Implementation 

Maintenance 



  

23 
 

Table 2.2: A comparison between Agile and Waterfall model: 

 
 

Agile 
Waterfall model 

 

 

 

Advantages 

• The change is 

welcomed at any time 

• Simplicity 

• Adaptable  

• Keeping pace with 

change  

• Excellent features and 

good design  

• Encourages 

cooperation between 

team and members. 

• Easy to use and 

understand. 

• Documents 

availability.  

• Preferably for small 

projects and clear 

requirement.  

• The steps are being 

completed 

sequentially.  

 

 

 

Dis Advantages 

• It uses simple 

documentation. 

•  Not suitable for 

developing larges 

system (suitable for 

devolving small and 

medium system)  

• The commitment may 

be insufficient for 

developers. 

•  The team should be 

knowledgeable. 

 

• The change in 

requirements during 

the development 

process affects the 

development of the 

product. 

• Any new addition to 

the requirements 

increases the cost of 

project.  

• Not all problems that 

are identified at 

specific stage are 

solved at the same 

stage. 

 

 



  

24 
 

Table 2.3: A comparison between development methodologies: 

 AGILE SCRUM XP KANBAN RAD WATERF

ALL 

Time period for  

one iteration 

 

1-6 weeks 2-4 weeks 1-6 weeks Time taken  

From the start  

of work until  

Bug fix is live. 

2-4 weeks >four 

weeks 

Project Size  Small and 

medium. 

Projects 

Small  

Projects. 

Small  

Projects. 

All types 

of 

projects. 

All types of 

projects. 

Approach of  

Development 

Iterative 

and 

incrementa

l 

Iterative 

and 

incrementa

l 

Iterative 

and 

incrementa

l 

Incremental  Time 

schedules 

and 

sequential 

Team Sizes 7+/-2 7+/-2 <20 - 7+/-2 >15 

Project 

Coordinator 

Team 

Master 

Scrum 

Master 

XP Coach Team Work Team 

Work 

owner 

Product Delivery Continuous 

Delivery 

Delivery 

as per 

Time 

boxed  

Sprints 

Continuou

s Delivery 

Continuous 

Delivery 

Continuo

us 

Delivery 

Implementa

tion of 

entire 

system on 

the time.  

Team  

Communication 

Informal Informal 

face  

to face 

Informal Informal face  

to face 

Informal Formal 

Based on  

documentat

ion 

 

2.12 Rapid Application Development & Software Testing: 

   Rapid application development testing activities are not considered a separate stage 

they are an essential part of coding. The test depends on the collaboration of the 

developer team, the tester and the client to establish test cases [9]. 

In Test-driven Development, the tests are written before the code is written and 

the testers may be unfamiliar with it [7]. In extreme programming, the test is a separate 



  

25 
 

stage and the test cases are written before the actual execution of the jobs, and are done 

automatically. The tests are written by customers. The test is performed continuously 

after each issue is delivered [44]. 

In the scrum the test is performed during the creation of the product at the end of 

each sprint, all previous and subsequent tests are run when a new job is added, the 

acceptance and regression test is also performed [7]. 

Agile development delivers tested software at frequent intervals, increasing 

customer confidence.  In addition, the use of test-based development helps to find and 

repair defects, reuse the code better and improve quality. The practice of testing 

throughout the life of the product in agile requires testers throughout the project, which 

contributes to increasing its cost [44]. 

Table 2.4: The relation between the testing and the rapid development 

Methodology:- 

Methodology Advantages of  relation Disadvantages of  relation 

 

 

 

 

Scrum 

• Defects are identified at an early stage 

(development stage). 

• Client participation in developing test 

scenarios.  

• Scrum is used for automatic testing 

because the steps are repeated in the 

event of any change in the system (every 

sprint). 

• Ability to repeat old test sequences on 

new software releases. 

• Because Sprint is a short period of 

time that does not have sufficient 

time for testing.  

• It is a challenge for testers who are 

used traditional approach. 

• When stories change; it is a 

problem for the testers  

• The testing process is expensive. 

 

 

Extreme 

programming 

• In the frequency the test is run (unit test)  

• Functional tests and many tests are 

performed before product delivery  

•  Client participation in test design. 

• Test quality for the existence of pair 

programming. 

• Versions are subject to a comprehensive 

test 

• The testing process is expensive 

because it is done repetitively  

• The test requires knowledge of   

programming skills. 



  

26 
 

 

2.13 Related studies: 

2.13.1 Abstract Syntax Tree: 

 

Abstract syntax tree picks up the basic components with the deletion of unnecessary 

grammatical input such as whitespace or comments, to make the program easy to read 

[46].  

Abstract syntax tree is data structures are derived from source code that breaks a 

syntactic construct into a tree; each node represents a correct grammatical structure, the 

piece of code [21]. 

Abstract syntax tree is a tree classified and arranged from the root and each node 

has a string value [22]. 

 

 

 

• The program is tested continuously. 

Dynamic 

Systems 

Development 

Method 

• The test is mainly done in the interation 

phase   

• Testing is not a separate stage. 

• When the requirements change, 

the test conditions change as 

well 

• Time consumes. 

 

Feature Driven 

Development 

• When a set of features is completed, it 

is tested (unit test) 

• The client, developer and tester 

involved in the development of tests. 

• Is challenge for the testers if the 

requirements are not properly 

understood. 

 

 

 

 

KANBAN 

• Testing is performed continuously upon 

completion of development by experts 

• Errors are corrected in each repeat and 

get a clean code. 

• Direct tests are performed by all team 

members. 

 

• The test should be easy and 

reusable 

• It should be understood by all 

team members. 



  

27 
 

2.13.2 Gum Tree 

 It’s complete framework to calculate the difference between two abstract syntax 

trees. It includes possibilities such as: 

 Converting a source code into a language-agnostic tree  

 Export the produced trees in various formats 

 Compute the differences between the abstract syntax trees  

 Export the differences between the trees in various formats 

 Visualize the differences between the trees graphically 

Before going into it must be defined some terms: 

T is a tree made up of a set of nodes and T has a root symbolized by the root (T) 

symbol. Each node t € T has sequence of children (children (t)). 

Each node has a value, value (t) = v and a label, label (t) =l. 

The Gum tree aims to calculate a series of edit action such as (adds, delete, 

update, move). Gum tree to compute the mappings between two abstract syntax trees is 

composed of two successive phases: 

Top-down Phase: 

Search for the largest number of similar sub-trees between T1 and T2 and then 

add them to an index list called height-indexed priority list and contain a series of nodes 

by reducing the height and the list is handled by a set of data structure such as (pop, 

push, peekMax, open) [22]. 

To handle the previous list, we use the dice function (measure the ratio of 

common descendants between two nodes given a set of mappings) to sort the larger 

mapping from minHeight and place it in the mapping set [22]. 

 

 

 

 



  

28 
 

 

 

 

 

 

  

Figure 2.12: Gum Tree Mapping [22]. 

Algorithm 1: The algorithm of the top-down phase 

 

Data: A source tree T1 and a destination tree T2, a minimum 

height minHeight, two empty height-indexed priority 

lists L1 and L2, an empty list A of candidate 

mappings, and an empty set of mappings M 

Result: The set of mappings M 

1.  push(root(T1), L1); 

2. push(root(T2), L2); 

3.  while min(peekMax(L1), peek Max(L2)) > minHeight do 

4.     if peekMax(L1) 6 = peekMax(L2) then 

5.           if peekMax(L1) > peekMax(L2) then 

6.                foreach t ∈ pop(L1) do open(t, L1); 

7.           else 

8.               foreach t ∈ pop(L2) do open(t, L2); 

9.     else 

10.            H1 ← pop(L1); 

11.            H2 ← pop(L2); 

12.            foreach (t1, t2) ∈ H1 × H2 do 

13.                   if isomorphic(t1, t2) then 

14.                          if ∃tx ∈ T2 | isomorphic(t1, tx) ∧ tx 6 = t2  

               or ∃tx ∈ T1 | isomorphic(tx, t2) ∧ tx 6 = t1 

              then 

15.                                 add(A, (t1, t2)); 

16.                           else 

Parser 

file1.java 

file2.java 

AST1 

AST2 

Mapping

s 

Output 

AST2 

Actions 

Insert 

Move 

Delete 

Update 

AST1 



  

29 
 

17.                                add all pairs of isomorphic nodes of s(t1) 

                               and s(t2) to M; 

18.             foreach t1 ∈ H1 | (t1, tx) 6∈ A ∪ M do open(t1, L1); 

19.             foreach t2 ∈ H2 | (tx, t2) 6∈ A ∪ M do open(t2, L2); 

20. sort (t1, t2) ∈ A using dice(parent(t1), parent(t2), M); 

21. while size(A) > 0 do 

22.       (t1, t2) ← remove(A, 0); 

23.       add all pairs of isomorphic nodes of s(t1) and s(t2) to M; 

24.       A ← A \ {(t1, tx) ∈ A}; 

25.        A ← A \ {(tx, t2) ∈ A} 

 

Bottom-up Phase: 

 We take the mapping from the previous stage (top-down phase) as inputs. Then 

we look for container mapping that is created when the two nodes have the largest 

number of matched descendants. In container mapping, we look for recovery mapping 

between strings that are still not identical to the mapping nodes. 

For each non-leaf node T1 we extract the candidate list in T2; the node c belongs 

to T2 if it is not identical, but it has some matching descendants and then we apply the 

function to search for extra assignments between T1 and T2 and we remove their 

matching descendants [22]. 

Algorithm 2: The algorithm of the bottom-up phase. 

 

Data: Two trees T1 and T2, a set M of mappings (resulting 

from the top-down phase), a threshold minDice and a 

maximum tree size maxSize 

Result: The set of mappings M. 

a foreach t1 ∈ T1 | t1 is not matched ∧ t1 has matched 

children, in post-order do 

b     t2 ← candidate(t1, M); 

c     if  t2≠ null and dice(t1, t2, M) > minDice then 

d  

e            M ← M ∪ (t1, t2); 

f            if max(|s(t1)|, |s(t2)|) < maxSize then 

g                   R ← opt(t1, t2); 

h                   foreach (ta, tb) ∈ R do 

i                   if ta, tb 

not already mapped and 

label(ta) = label(tb) then 

                                      M ← M ∪ (ta, tb); 

 



  

30 
 

The Gum Tree output  is in the form of an XML(Extensible Markup Language ) 

file or a JOSN (JavaScript Object Notation) file, which is the difference between the 

two files in terms of addition or deletion or modification of the nodes, but cannot find 

the difference between them in terms of nodes move and to evaluate the performance of 

the algorithm used manual evaluation, and the performance of the Gum Tree algorithm 

compared with the diff tool, and applied to real data, using 144 different scenarios for 

manual performance and 12792 for automatic evaluation. They found that the algorithm 

is more accurate than the related works but does not work on the moving nodes [22]. 

2.13.3 Spoon Library: 

Spoon is an open source tool that enables you to convert and analyze source code and 

access all elements of the program (class, variable, method, annotation, and enum 

declarations) whether for reading or modifying [45]. It breaks code up into a meta-

model consisting of three parts: structural part, code part, and references part.  

Figure 2.13 shows the structural part [45], The CT mean compile time. 

The spoon tool focuses on the model, which was designed on sun JAVAC, and provides 

complete instructions for software, quick fix errors. Provides developers with a way to 

query the code in one line of code and also a graphical interface to see the abstract 

syntax tree a spoon of the program under analysis [45]. 

 

 

  

 

 

     

 

 

 

Figure 2.13 Spoons a Metamodel structural part [45] 

CTField CTSimple Type 

CTVariable 

CTElement 

CT Annotation CTEexcutable CTParameter 

CTNum CT Annotation Type CTType CTMethod CTConstruer 

CTInterface CTClass 



  

31 
 

2.13.4 TypeV Tool:- 

      A tool for analyzing and visualizing source code by tracking the differences between 

abstract syntax trees and using the spoon tool to represent the source code to abstract 

syntax tree the differences were calculated by gum tree algorithm.  

TypeV enables you to track developer contributions in the repository and also displays a 

timeline that is a graph showing the project log. All previous studies find the difference 

between two files and not the difference between two versions of the same project [21]. 

2.13.5 Java API Compliance Checker (JAPICC): 

 A tool is open source for checking backward binary/source compatibility of a 

Java library API. The tool checks classes declarations of previous and later versions and 

analyzes changes that may break compatibility: removed methods, removed class, added 

methods, etc. The tool is intended for developers of software libraries and Linux 

maintainers who are interested in ensuring backward compatibility [48]. 

 

2.13.6 Code Compare Tool:- 

Code Compare is a free tool to compare and merge differing files and folders. It 

can integrate with all popular source control systems such as SVN, Git, and 

others. Code Compare is shipped both as a standalone file diff tool and a Visual Studio 

extension [49]. 

2.14 WinMerge: 

WinMerge is open source tool for compare both folders and files, presenting differences 

in a visual text format that is easy to understand and handle [50]. 

2.14.1 Static Analysis Framework: 

 

The static analysis framework is framework to analyze and evaluate students programs 

and measure their quality based on the standards of software engineering, but can only 

analyze small programs written in Java [23]. 

 



  

32 
 

Table 2.5: A comparison between tools: 

 GumTree Spoon tool CodeCo

mpare 

tool 

JAPIC

C tool 

TypeV 

Conversion to 

abstract syntax 

trees 

Yes by  using the 

Eclipse JDT parser 

to java,  Mozilla 

Rhino parser to 

JavaScript, Fast R 

parser to R and 

Coccinelle parser to 

C. 

Yes by  

using the 

Eclipse JDT 

parser 

No - Yes by  

using 

Spoon tool 

Comparison 

two versions 

No No No Yes No 

Comparison 

two files 

Yes Yes Yes No Yes 

Open Source Yes Yes Yes Yes Yes 

Languages 

supported  

 

Java, JavaScript, R 

and C. 

Java Java, 

JavaScript

, php, and 

C. 

Java, C Java 

 

 

 

 

 

 

 

 

 

 



  

33 
 

2.15 Summary: 

 There are several test methods, including white box testing and black box 

testing; the first is to test the internal components and the second to test the functions of 

the system. 

The test levels are the unit test, which is test part of the system, for example a 

new function. Integration testing when merging units with each other. The test that is 

for the system as a whole is the system test. 

The static test is performed without the actual implementation of the system and 

is used in this research. 

There are many methodologies that may be used when testing software such as 

rapid application development and scrum. 

This chapter also talked about several tools and algorithms such as spoon, 

CodeCompre and Gum Tree etc. [45][22] 



  

34 
 

Chapter Three 

3. Research Methodology 

  

3.1  Introduction: 

 A review of previous literature has been conducted. We have found that rapid 

release such as scrum is a framework for software development and many releases are 

released before the final product is delivered within a certain period called sprint[8][19]. 

The scrum allows changing requirements during system development as a result 

of customer feedback [7]. When a developer or tester needs to return to a specific 

version, it is difficult to do so because there are many previous versions in the 

repository.   

This framework can extract a report that is the difference between two versions 

of the same project in terms of classes, functions, variables that exist in the present 

version and not in the previous version, or a report about a specific version. 

3.2 The Proposed Framework: 

By collecting data from previous studies, we found to resolve the research problem, it 

must follow these phases: 

 

 

 

 

 

 

 



  

35 
 

Table 3.1: represent proposed framework 

Numbers 

of  

Phases 

The Phase Describe the phase 

1 

 

Choose  language 

to write research: 

 

Analyzing source code is popular research topic and 

the Java language was chosen for study because of its 

popularity and availability of tools [21] [20] [22]. 

Development Framework by using: 

• Net Beans is open-source integrated 

development environment for developing with 

JAVA, C ++, etc. 

• Java Development Kit (JDK) is a software 

development environment used for developing  

Java  applications. 

 

2 Selected Versions  Versions are selected from the repositories by the 

developer 

3 Convert The 

Source Code to 

abstract syntax 

tree 

Versions are represented, to abstract syntax tree 

before change and after change (using the Eclipse 

JDT parser, spoon tool) [45] [21]. 

4 Calculate 

difference 

between two 

abstract syntax 

trees 

Gum Tree is an algorithm to calculate differences 

between abstract syntax trees established by spoon. 

 

5 Validation and 

Evaluation. 

  The selected tools for evaluation:- 

• Code Compare tool 

• JAPICC tool 

 

 

 



  

36 
 

 

 

   

 

 

 

 

 

 

 

Figure 3.1 represent the proposed framework 

 

 

 

 

 

 

 

 

 

 

 

Start 

 

Selected versions 

by developer  

 

Version1(file1, 

file2,………, filen) 

Parser 

Result and 

Discussion 

 

  

Evaluation 

 

 

Extra 

report 
End 

 

Version2(file1, 

file2,………, filen) 

AST1 

AST2 

Calculate 

difference 

between 

two abstract 

syntax trees  



  

37 
 

Chapter Four 

Validation and Evaluation 

 

Validation: 

 This section presents the results obtained by using a framework with a case study 

(versions of gum tree).  This was done by comparing the:- 

 files 

 versions  

The process of finding the difference between the versions involves four main 

phases shown in Figure 4.1. The table 4.1 explains the four steps: 

 

 

 
 

 

Figure 4.1:  Steps to calculate the differences between versions 

 

Table 4.1: Phases for finding the difference between versions:- 

Firstly: The two versions will be selected from the repository. 

Secondly: Convert each version to abstract syntax trees. 

Thirdly:  Compare abstract syntax trees 

Fourthly: The results are presented through the framework. 

 

4.1  Case Study Gum Tree:   

     We are selected versions of the Gum Tree as case study because is open source, an 

availability of versions and documents, written in java and represent real data. 

 

select 
versions 

convert to 
abstract 

syntax tree s 

Find 
Difference 

Extact 
Report 



  

38 
 

Table 4.2: Description of the datasets: 

Size of Version 

 

Number Files Number of Version  

 

 

Name of Version 

 

 

2, 86 MB 

 

  

193 

 

V.1.0.0 

 

 

GumTree 1.0.0 

 

1,12 MB 184 V.2.0.0 GumTree2.0.0 

70,1 MB 264 - GumTree-develop 

70,4 MB 244 V.2.1.1 GumTree.2.1.1 

144.8 885  Total 

 

a. Compare Two Files: 

 A comparison was made between four randomly selected samples from the Gum 

Tree versions in terms of classes, functions and variables names within the program file. 

Each sample is a pair of files (a file from the previous version with another file from the 

latest version). 

      The following table shows the number of differences between a file from the 

previous version (number of deletions from functions or variables) and a file from the 

latest version (the number of added from functions or variables). 

 

 

 

 

 

 

 



  

39 
 

Table 4.3: the number of deletions and addition in the file versions:- 

 

N

o 

 

File name 

Previous Version Latest Version 

Function

s  

Variable

s 

Function

s  

Variable

s 

1 GumTree2.0.0\AbstractTree.jav

a 

GumTree2.1.1\AbstractTree.jav

a 

 

10 

 

2 

 

4 

 

0 

2 GumTree2.0.0\TreeUtils.java 

GumTree2.1.1\TreeUtils.java 

 

3 

 

2 

 

0 

 

0 

3 GumTree2.0.0\MapTree.java 

GumTree2.1.1\MapTree.java 

 

0 

 

0 

 

3 

 

 

0 

 

From the previous table we note the new functions have not been added to some of the 

files, where the number of additions is zero and another a large number of functions has 

been removed from them, such as the number 10. 

 

Figure 4.2: The number of deletions and addition in the file versions 

0

1

2

3

4

5

6

7

8

9

10

File 1 File 2 File 3

Deletions Functions

Deletions Variables

Additions Functions

Additions Variables



  

40 
 

      The following table shows the time required by the files to convert to an abstract 

syntax tree and the time to compare the abstract syntax trees to find the difference 

between them in Milli Second. 

Table 4.4: Shows the parsing time and comparison time in Milli Second. 

 

 

Comparison 

Time 

 

Parse Time of 

Latest File 

 

Parse Time of 

Previous File 

 

File Name 

 

No 

 

114 

 

328 

 

235 

GumTree2.0.0\AbstractTree.java 

GumTree2.1.1\AbstractTree.java 

1 

 

 

62 

 

124 

 

94 

GumTree2.0.0\MapTree.java 

GumTree2.1.1\MapTree.java 

2 

 

70 

 

335 

 

504 

GumTree2.0.0\TreeUtils.java 

GumTree2.1.1\ TreeUtils.java 

3 

  

From the table we find that the time required by the framework to convert the file to 

abstract syntax tree is less than 504 Milli second and also to compare the Abstract 

syntax trees is less than 114 Milli second.  

 

Figure 4.3: Shows the parsing time and Comparison time 

 

0

100

200

300

400

500

600

File1 File2 File3

Ti
m

e
 in

 m
ill

e
 S

e
co

n
d

 

Parse Time of Previous File

Parse Time of Latest File

Comparison Time



  

41 
 

b. Compare Versions: 

 The parsing of all the files within each version to abstract syntax trees and 

compare with the extracted abstract syntax trees from the latest version files, and the 

outputs is two reports: 

 The first report shows the classes, methods and variables that were removed 

from the previous version and are not included in the latest version. 

 The second report shows the classes, methods and variables that were added 

in the latest version and are not included in the previous version. 

 

Figure 4.4: The Framework Report 

 

 

Figure 4.5: The Framework Report(counter of classes, methods and variables) 



  

42 
 

The following table shows the adjustments that were made by comparing every two 

versions of GumTree, whether additions in the latest version or deletion from the 

previous version. 

Table 4.5: shows the number of deletions and addition in the versions 

 

No 

 

Name of 

Version 

 

 

Previous Version Latest Version 

Deletions 

Classes 

Deletions 

Functions  
Deletions 

Variables 
Addition 

Classes 

Addition 

Functions  
Addition 

Variables 

1 GumTree 1.0.0, 

GumTree2.0.0 

 

 

0 

 

0 

 

15 

 

15 

 

22 

 

40 

2 GumTree2.0.0, 

GumTree.2.1.1 

 

 

7 

 

31 

 

41 

 

34 

 

117 

 

66 

3  

GumTree.2.1.1, 

GumTree-

develop 

 

71 

 

1626 

 

1316 

 

45 

 

245 

 

110 

 

 

 Figure 4.6: Shows the number of deletions and addition in the versions 

 

 

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

GumTree 1.0.0,
GumTree2.0.0

GumTree2.0.0,
GumTree.2.1.1

GumTree.2.1.1,
GumTree-
develop

Number of difference between versions 

Deletions Functions

Deletions Classes

Deletions Variables

Addition classes

Addition Function

Addition varibles



  

43 
 

Table 4.6: Shows the parsing time and comparison time 

 

 

Comparison Time 

 

Parse Time of 

Latest Version 

 

Parse Time of 

Previous 

Version 

 

Name of Versions 

5870 2846 12029 

 

 

 

GumTree 1.0.0, GumTree2.0.0 

 

670 6450 7078 GumTree2.0.0, GumTree.2.1.1 

 

390 6348 7415 GumTree.2.1.1, GumTree-

develop 

    

 

 From the above table we find that the time required by the framework to convert 

the version to abstract syntax tree is (12029, 2846, 7078, 6450, 7415, 6348) Milli 

second and also to compare the abstract syntax trees is (5870, 670, 390) Milli second. 

 

Figure 4.7: Shows the parsing time and Comparison

0

2000

4000

6000

8000

10000

12000

14000

GumTree 1.0.0,
GumTree2.0.0

GumTree2.0.0,
GumTree.2.1.1

GumTree.2.1.1,
GumTree-
develop

Ti
m

e 
in

 m
ill

e 
se

co
n

d
 

Performance time in mille second between parsing Version to AST 
and Compare AST  

Parse Time of
Previous Version

Parse Time of
Latest Version

Comparison Time



  

44 
 

Evaluation: 

There are many tools to find the difference between two files as described in 

chapter two such as CodeCompre tool. In the evaluation process, two tools 

(CodeCompre, JAPICC) were selected to test their performance and compare with the 

performance of the framework. 

Three open source projects were used in the evaluation as a case study and are 

shown in Table 5.1. These projects were selected because they represent real data  

The evaluation is done in LAPTOP: MSI, CPU: Intel (R) Atom (TM) CPU 

N455 @ 1.66 - 1.67GHz, RAM: 2.00 GB, OS type: 32-bit and OS: Windows. 

  Table 4.7: the dataset and tools used in the experiment 

Comparison type 

 

Tools Data 

 

Compare Two Files 

 

Code Compare 

 

Versions of GumTree 

(V.1.0.0,V.2.0.0,V.2.1.1) 

 

 

Compare Two Versions 

 

 

JAPICC 

args4j (V.2.0.16, V.2.0.22, 

V.2.0.23) 

 

Versions of akka (V2.5.18 , 

V2.5.19 , V2.5.20 ,V2.5.22) 

 

 

 

 

 

 

 

 

 

 



  

45 
 

4.2 Case Study(args4j V.2.0.22, V.2.0.23): 

 

 In this paragraph we would like to test the performance of the framework with 

the JAPICC tool. We choose the args4j library for manual evaluation of document 

availability. It is an open source library and its small size represents real data. We 

compared the two versions (args4j-2.0.22, args4j-2.0.23) using a framework and 

JAPICC tool and obtained the results shown in the figures below: 

 

 

Figure 4.8: The result obtained by JACCI tool  

 

  



  

46 
 

 

Figure 4.9: The result obtained by framework(names of classes) 

 

 

 

Figure 4.10: The result obtained by framework (names of functions) 

 



  

47 
 

 

Figure 4.11:The result obtained by framework(names of variables) 

We note from the results extracted by the framework and the JAPICC tool shown in 

figures 4.8 - 4.9 – 4.10 that one file was deleted from version args4j-2.0.22 which is 

Map Setter and five files were added in version args4j-2.0.23 which is ArrayField 

Setter, Sub Comm and Handler, Sub Comm and Test, Sub Command and Sub 

Commands. For function deleted from version args4j-2.0.22, the framework has 

identified three deleted functions. The JAPICC tool has five deleted functions. As for 

the added functions in version (args4j-2.0.23) 27 functions have been identified in the 

framework, and 21 functions are in the JAPICC tool. 

The framework can find deleted and added variables as shown in Figure 4.11 

Table 4.8: The results obtained by comparing the performance of the tool with the 

framework 

Number 

of 

Version 

Tool 

 

Framework 

Added 

Classes 

Removed 

Method 

Removed 

Classes 

Added 

method 

Added 

Classes 

Removed 

method 

Removed 

Classes 

Added 

Method 

args4j-

2.0.22 ,

args4j-

2.0.23 

 

5 

 

 

5 

 

1 

 

21 

 

5 

 

3 

 

1 

 

27 

 



  

48 
 

 

 

 

 

 

Figure 4.12: Comparison the results of the JAPICC tool with the framework 

results. 

  

42% 

42% 

8% 

8% 

Comparison 

Added classes(Fremework)

Added classes(Tool)

Removed classes(Fremework)

Removed classes(Fremework)

48% 

38% 

5% 

9% 

Comparison 

Added Methods(Fremework)

Added Methods(Tool)

Removed Methods(Fremework)

Removed Methods(tool)



  

49 
 

4.3  Case Study (Gum Tree): 

 The Code Compare was selected because it can compare two files. The 

experiment is based on a manual evaluation to calculate the differences between two 

files by the framework and Code Compare. 

In the experiment, we used three versions of gum tree as a dataset for a real open 

source project. 

Both of the Code Compare and the framework highlight the deleted lines from 

the left file, or those added to the right file as it is shown in Figure 5.2. 

 

Figure 4.13: The main Screen of CodeCompare Tool  

 To compare the results, we extracted the changes by comparing previous and the 

latest versions .We found each file contains at least five changes. 

 

 

 

 



  

50 
 

Firstly: Two files were selected from two different versions(gumtree-2.0.0 , gumtree-

2.1.1 randomly have the same name, it is the (client) and we did not find a difference 

between the two files by using the framework or CodeCompre Tool. 

 

Figure 4.14: The result obtained by framework 

 

 

Figure 4.15: The result obtained by CodeCompare Tool 



  

51 
 

Secondly:  A comparison between two samples selected randomly from the versions of 

Gum Tree in terms of the names of classes, functions and variables by CodeCompare 

tool and framework. Each sample is a pair of files one file from the previous 

version(gumtree-2.0.0) with another file from the latest version( gumtree-2.1.1). 

a The first sample: the MapTree file was chosen from two versions(gumtree-

2.0.0, gumtree-2.1.1),Figure 4.16 shows the differences that were found in the 

CodeCompare tool, and Figure 4.17 shows the differences that were found in the 

framework, namely the functions(putTrees(), putTree(), contains()). 

 

Figure 4.16: The result obtained by CodeCompare Tool 

 



  

52 
 

 

 

Figure 4.17: The result obtained by Framework  

 

b The second sample, the Tree Utils file was chosen from the two versions(gumtree-

2.0.0, gumtree-2.1.1) , Figure 4.18 shows the differences that were found with the 

Code Compare tool, namely the deletion of functions (remove Mapped(), remove 

Completely Mapped(), remove Matched()) from version gumtree-2.0.0 . Figure 

4.19 shows the differences that were found in the framework, namely the function 

(remove Mapped(), remove Completely Mapped(), remove Matched()) and the 

variables (t, trit). 

 



  

53 
 

 

Figure 4.18: The result obtained by CodeCompare tool 

 

 

 

Figure 4.19: The result obtained by the framework 

  

 

 

 



  

54 
 

4.4  Case Study(akka actor): 

We found in the previous section that the tool CodeCompre can only compare two files; 

to compare two versions we used the JAPICC tool.  

        As a case study, we used the akkaactor library because it is an open source library 

written in Java and for the availability of documents. 

Table 4.9: Description of the datasets: 

Size of Version 

 

Number of File Number of 

Version 

Name of Version 

36,2 MB 3040 2.5.18 akka-2.5.18 

36, 9 MB 3142 2.5.19 akka-2.5.19 

37, 4 MB 3190 2.5.20 akka-2.5.20 

38,1 MB 3273 2.5.22 akka-2.5.22 

221,9 18,825  Total 

 

 The following table shows the difference between the versions by using the 

framework and the tool; where the framework compares in terms of classes, functions 

and variables. 

We find that there is a difference in the number of changes extracted from the 

versions by framework or tool because the tool compares only the classes and functions 

 

 

 

 



  

55 
 

Table 4.10: The result obtained by JAPICC and framework on dataset (versions) 

 Tool Framework 

Number of 

Version 

deletions additions Deletions Additions 

Akka-2.5.18 7 12 6 98 

Akka-2.5.19 117 39 145 16 

Akka-2.5.20 53 4 82 40 

Akka-2.5.22 136 62 57 111 

 

 

Figure 4.20: The result obtained by JAPICC and framework on dataset (versions). 

Summary: 

The framework performance validation section explains that it was able to find the 

difference between two versions in terms of classes, functions and variables, taking less 

than 114 Milli seconds in comparing files and less than 5870 Milli seconds in comparing 

versions. 

 

 

Akka-2.5.18 Akka-2.5.19 Akka-2.5.20 Akka-2.5.22

7 

117 

53 

136 

12 

39 

4 

62 

6 

145 

82 

57 

89 

16 

40 

23 

deletions additions deletions2 Additions2



  

56 
 

Chapter Five 

Discussion of the results 

       When comparing the performance of the framework with CodeCompare tool, it was 

found that the CodeCompare tool is better than framework it compares the whole files, 

even white spaces, but extracts a lot of changes inside the file. The framework compares 

only the functions and variables in the file 

 When comparing two versions, the difference between them was found in 

terms of classes, functions and variables, but it took more time when converting files to 

Abstract syntax trees, but sometimes it is difficult to compare it since the changes 

extracted from the version are 1,626. 

 The results show that a framework is better in finding the functions. The 

framework gave 48% in finding the added functions and 5% in finding the deleted 

functions. The tool showed 38% in finding the added functions and 9% in finding the 

deleted functions. The framework is distinct from the tool; it can find added and deleted 

variables. 

 The performance test when making comparison between two versions shows 

that the framework is better than the tool in finding functions, while for the classes 

showed similar percentages. 

 

 

 

 

 

 

 

 



  

57 
 

Conclusion: 

This study provides proposed framework to find the difference between the versions by 

using the abstract syntax tree analysis algorithm in terms of classes, functions and 

variables.  

We evaluated the performance of the framework by comparing it with the tools 

(Code Compre, JAPICC). The Code Compare tool is better because it compares the whole 

file, even white spaces, and the framework only compares the names of functions and 

variables. 

When comparing two versions, the framework showed good results compared to the 

JAPICC tool. In addition, the framework can compare deleted and added variables, but 

tool cannot do so.   

 

Future work: 

 Adding the possibility to compare versions written in other languages such as C, 

php.  

 Using of another algorithm to compare versions such as changedisiller 

algorithm.  

 Develop the framework so that it can compare as many versions such as three or 

more versions. 

 

. 

 

 

 

  



  

58 
 

REFERENCES 

 

[1] A. Silva, G. Carneiro, A. Paula, M. Monteiro, F.  Abreu, “Agility and Quality 

Attributes in Open Source Software Projects Release Practices,” in 2016 10th 

International Conference on the Quality of Information and Communications 

Technology (QUATIC), 2016, pp. 107–112. 

[2] M. Mäntylä, B. Adams, F. Khomh, E. Engström and K. Petersen, “On rapid releases 

and software testing: a case study and a semi-systematic literature review,” Empir 

Software Eng, vol. 20, no. 5, pp. 1384–1425, Oct. 2015. 

[3] A. Elhady, H. Abushama, “RACI Scrum Model For Controlling of Change User 

Requirement In Software Projects,” vol. 4, no. 1, p. 8, 2015.  

[4] Y. Tseng, C. Lin, “Enhancing enterprise agility by deploying agile drivers, 

capabilities and providers,” Information Sciences, vol. 181, no. 17, pp. 3693–3708, 

Sep. 2011. 

 

[5]  P. Wang, “Toward developing agility evaluation of mass customization systems 

using 2-tuple linguistic computing” Expert Systems with Applications, 36(2), 

pp.3439-3447. 2009. 

[6] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta, “Agile Software Development 

Methods: Review and Analysis,” Sep. 2017. 

[7] M. Tomanek, T. Klima, “Penetration Testing in Agile Software Development 

Projects,” IJCIS, vol. 5, no. 1, pp. 01–07, Mar. 2015. 

[8] 

 

R. Naz, M. Khan, “Rapid Applications Development Techniques : A Critical 

Review,” International Journal of Software Engineering and Its Applications, vol. 9, 

no. 11, pp. 163–176. 

[9] C. Gil, J. DIAZ, A. HOZ and R. MORALES, "Agile testing practices in software 

quality: State of the art review.” Journal of Theoretical and Applied Information 

Technology 92.1 (2016): 28. 

[10] M. Viljan, N. Zabkar, “Measurement repository for Scrum-based software 

development process.” Conference on computer Engineering and Application (CEA, 

08) Acapulco, Mexico. 2008. 



  

59 
 

[11] V.  Vithana, “Scrum Requirements Engineering Practices and Challenges in Offshore 

Software Development,” International Journal of Computer Applications, vol. 116, 

pp. 0975 –8887, Apr. 2015. 

 

[12] G. Canfora, L. Cerulo and M.  Penta, “Identifying Changed Source Code Lines from 

Version Repositories,” in Fourth International Workshop on Mining Software 

Repositories (MSR’07:ICSE Workshops 2007), 2007, pp. 14–14. 

[13] 

 

A. Sharma, M.  Enhancing Q. Bali, “Comparative Study on Software Development 

Methods: Agile vs. Scrum.”, 2017. 

 

[14] P. Gregory, L.  Sharp, H.  Deshpande, “The challenges that challenge: Engaging with 

agile practitioners’ concerns.” Information and Software Technology 77 (2016): 92-

104. 

[15] 

 

 

K. Schwaber, “SCRUM Development Process,” in Business Object Design and 

Implementation, 1997, pp. 117–134. 

 

[16] K.  Rao,  A. Sastri, “Overcoming Testing Challenges in Project Life Cycle using Risk 

Based Validation Approach,” vol. 3, no. 3, p. 8, 2011. 

 

[17] H.  Dar, M.  Ali and J. Shaikh, “INFLUENCE OF STATIC TESTING IN AGILE 

DEVELOPMENT: A CASE FROM PAKISTAN SOFTWARE MARKET,” p. 4, 

2014. 

[18] T. Monika, “Review on Structural Software Testing Coverage Approaches,” 2017. 

 

[19] F. Musfira, M. Shakir and F. Munsifa, “Analysis of software testing challenges in Sri 

Lankan context,” Dec. 2016. 

 

[20]  I. Neamtiu, J. Foster and M. Hicks, “Understanding Source Code Evolution Using 

Abstract Syntax Tree Matching,” in Proceedings of the 2005 International Workshop 

on Mining Software Repositories, New York, NY, USA, 2005, pp. 1–5. 

[21] M. Feist, E.  Santos, I. Watts, A.  Hindle, “Visualizing Project Evolution through 

Abstract Syntax Tree Analysis.“ Software Visualization (VISSOFT), 2016 IEEE 

Working Conference on. IEEE, 2016. 



  

60 
 

[22] J. Falleri, F. Morandat, X. Blanc, M. Martinez and M. Monperrus, “Fine-grained and 

accurate source code differencing,” presented at the Proceedings of the 29th 

ACM/IEEE international conference on Automated software engineering, 2014, pp. 

313–324. 

[23]    N. Truong, P. Roe and P. Bancroft, “Static Analysis of Students’ Java Programs,” in 

Proceedings of the Sixth Australasian Conference on Computing Education - Volume 

30, Darlinghurst, Australia, Australia, 2004, pp. 317–325. 

[24]   L. Lu, “Software testing techniques.” Institute for software research international 

Carnegie mellon university Pittsburgh, PA 15232.1-19 (2001): 19. 

[25] M. Kumar, S. Manish, S. Singh, R. Dwivedi. “A Comparative Study of Black Box 

Testing and White Box Testing Techniques.” International Journal of Advance 

Research in Computer Science and Management Studies , 2015 

[26] E. Collins, A. DiasNeto, F. Lucena, “Strategies for agile software testing automation: 

An industrial experience.” Computer Software and Applications Conference 

Workshops (COMPSACW), IEEE, 2012. 

[27]  P. Nidagundi, L. Novickis. “Introducing lean canvas model adaptation in the scrum 

software testing.”Procedia Computer Science 104, 2017, pp. 97-103. 

[28] A. Bertolino, “Software testing research: Achievements, challenges, dreams.” Future 

of Software Engineering. IEEE Computer Society, 2007. 

[29] S. Jan, S. Shah, Z. Johar, Y. Shah, F. Khan, “An Innovative Approach to Investigate 

Various Software Testing Techniques and Strategies,” p. 9 

[30] M. Murugaiyan, “ WATEERFALLVs V-MODEL Vs AGILE: A COMPARATIVE 

STUDY ON SDLC”   International Journal of Information Technology and Business 

Management , vol. 2, No. 1, June. 2012. 

 

[31] R. Chauhan, I. Singh. “Latest research and development on Software Testing 

Techniques and Tools” International Journal of Current Engineering and 

Technology, 2014.. 

[32] A. Bansal, “Comparative Study of Software Testing Techniques,” Computer 

Science& Engg., Maharshi Dayanand University, India, vol. 3, no. 6, pp. 579–584, 

Jun. 2014. 

[33] B. Hailpern, P. Santhanam, “Software debugging, testing, and verification,” IBM 

Systems Journal, vol. 41, no. 1, pp. 4–12, 2002. 



  

61 
 

[34] A. Zeller, “Program analysis: A hierarchy.” Proceedings of the ICSE Workshop on 

Dynamic Analysis (WODA 2003). 2003. 

[35] M. Ernst, “Static and dynamic analysis: Synergy and duality.” WODA 2003: ICSE 

Workshop on Dynamic Analysis. 2003. 

[36] N. Truong, P. Roe, P. Bancroft, “Static Analysis of Students’ Java Programs,” in 

Proceedings of the Sixth Australasian Conference on Computing Education - Volume 

30, Darlinghurst, Australia, Australia, 2004, pp. 317–325. 

. 2015. 

[37] R. Löffler, B. Güldali, and S. Geisen, “Towards Model-based Acceptance Testing for 

Scrum,” Softwaretechnik-Trends, vol. 30, 2010. 

[38] Y. Higo, A. Ohtani, and S. Kusumoto, “Generating Simpler AST Edit Scripts by 

Considering Copy-and-paste,” in Proceedings of the 32Nd IEEE/ACM International 

Conference on Automated Software Engineering, Piscataway, NJ, USA, 2017, pp. 

532–542. 

[39] K. Pathak, A. Saha, “Review of agile software development 

methodologies.” International Journal of Advanced Research in Computer Science 

and Software Engineering 3.2 (2013).  

[40] G. Matharu, H. Singh and P.  Upadhyay, “Empirical study of agile software 

development methodologies: A comparative analysis.” ACM SIGSOFT Software 

Engineering Notes 40.1 (2015): 1-6.  

[41]   S. Balaji, M. Murugaiyan. “Waterfall vs. V-Model vs. Agile: A comparative study 

on SDLC.” International Journal of Information Technology and Business 

Management2.1 (2012): 26-30.  

[42] A.  Ovais, J. Markkula, M. Oivo, “Kanban in software development: A systematic 

literature review.” 2013 39th Euromicro conference on software engineering and 

advanced applications. IEEE, 2013. . 

  

[43]  M. STOICA, M.  MIRCEA, “Software Development: Agile vs. Traditional”  

Informatica Economicăvol. 17, no. 4, 2013. 

[44] H. Flora, S. Chande, “A Systematic Study on Agile Software Development 

Methodologies and Practices,” (IJCSIT) International Journal of Computer Science 

and Information Technologies, vol. 5 (3), pp. 3626–3637, 2014. 

 



  

62 
 

  

[45] R. Pawlak, M.  Monperrus, L. Seinturier, “Spoon: A library for implementing 

analyses and transformations of java source code.” Software: Practice and 

Experience 46.9 pp. 1155-1179, 2016. 

[46] J. Jones, “Abstract syntax tree implementation idioms.” Proceedings of the 10th 

conference on pattern languages of programs (plop2003). 2003. 

[47] A.  Mukker, A.  Mishra, and L. Singh, “Enhancing Quality in Scrum Software 

Projects,” vol. 3, no. 4, p. 7, 2014. 

 

[48] https://lvc.github.io/japi-compliance-checker/ 

 

[49] 
https://www.devart.com/codecompare 

 [50] https://winmerge.org/ 

https://www.devart.com/codecompare
https://winmerge.org/


  

63 
 

 APPENDIX  

 
 

The main Screen of Framework 

 

The result obtained by framework (parses time and compare time) 

 

 



  

64 
 

 

 

 

 

     The result obtained by framework (counter of classes, methods and variables) 

 

The result obtained by framework (parses time and compare time) 

The result obtained by framework (parses time and compare time) 
 


