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Abstract 

We study the 𝐶∗ − algebras 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑔𝑟𝑎𝑝ℎ𝑠 II simplicity results with a finite and an 

infinite projection and of labelled spaces and their diagonal C*-subalgebras. The group 

actions and the structure of Gauge-invariant ideals of labelled graph with nuclear dimension 

of 𝐶∗-algebras are dealt with. The applications and approximations of the complex 

symmetric operators and generators of 𝐶∗ − algebras are shown. The dixmier 

approximations theorem with property and symmetric amenability with tracial states for 

the  𝐶∗ − algebras are  discussed. 
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 الخلاصة

ت اللرسوم البيانية المسمي مع المسقط المنتهي واللانهائي وللفضاء II لنتائج البساطة -∗𝐶  جبرياتقمنا بدراسة 

 رسمليات اللامتغيرة للثاالم -تعاملنا مع اجراءات الزمرة وبناء مقياس  القطرية لها.  -∗𝐶والجبريات الجزئيةالمسمي 

والتقريبات لمؤثرات ومولدات موثرات التماثل  قمنا بتوضيح التطبيقات. -∗𝐶لجبريات النوويالبياني المسمي مع البعد 

ديكسمير مع الخاصية وقابلية التماثل مع حالات التتبع لاجل  تمت مناقشة مبرهنة تقريب. -∗𝐶لجبريات  المركبة

 .  -∗𝐶جبريات
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 Introduction 

 

    We show simplicity and pure infiniteness results for a certain class of labelled graph 𝐶∗‐
algebras. We show, by example, that this class of unital labelled graph 𝐶∗‐algebras is strictly 

larger than the class of unital graph 𝐶∗‐algebras.We introduce the notion of the action of a 

group on a labelled graph and the quotient object, also a labelled graph. 

   We study a few classes of Hilbert space operators whose matrix representations are 

complex symmetric with respect to a preferred orthonormal basis. The existence of this 

additional symmetry has notable implications and, in particular, it explains from a unifying 

point of view some classical results. A bounded linear operator 𝑇 on a complex Hilbert space 

ℋ is called complex symmetric if 𝑇 = 𝐶𝑇∗𝐶, where 𝐶 is a conjugation (an isometric, 

antilinear involution of ℋ). We show that 𝑇 = 𝐶𝐽|𝑇|, where 𝐽 is an auxiliary conjugation 

commuting with |𝑇| = √𝑇∗𝑇. 

    We give a complete and computationally simple description of the certain sets of any self-

adjoint element of a general von Neumann algebra ℛ. We answer the following question 

raised by Cuntz that can asimple 𝐶∗-algebras contain both a finite and an infinite projection. 

    We consider the gauge-invariant ideal structure of a 𝐶∗ −algebra 𝐶∗(𝐸, ℒ, 𝐵) associated 

to a set-finite, receiver set-finite and weakly left-resolving labelled space (𝐸, ℒ, 𝐵), where 

ℒ  is a labelling map assigning an alphabet to each edge of the directed graph 𝐸 with no 

sinks. It  is obtained that if an accommodating set 𝐵 is closed under relative complements, 

there is a one-to-one correspondence between the set of all hereditary saturated subsets of 

𝐵 and the gauge-invariant ideals of 𝐶∗(𝐸, ℒ, 𝐵). Motivated by Exel’s inverse semigroup 

approach to combinatorial C*-algebras. We construct a representation of the C*-algebra of 

a labelled space, inspired by how one might cut or glue labelled paths together, that proves 

that non-zero elements in the inverse semigroup correspond to non-zero elements in the C*-

algebra. 

     An operator 𝑇on a complex Hilbert space ℋis called a complex symmetric operator if 

there exists a conjugate-linear, isometric involution 𝐶:ℋ → ℋ so that 𝐶𝑇𝐶 = 𝑇∗.  We 

study the approximation of complex symmetric operators. By virtue of an intensive analysis 

of compact operators in singly generated 𝐶∗-algebras, we obtain a complete characterization 

of norm limits of complex symmetric operators and provide a classification of complex 

symmetric operators up to approximate unitary equivalence.  

    We give necessary and sufficient conditions for an essentially normal operator 𝑇 to have 

its 𝐶∗-algebra 𝐶∗(𝑇) generated by a complex symmetric operator. 

   We introduce the nuclear dimension of a 𝐶∗-algebra; this is a noncommutative version of 

topological covering dimension based on a modification of the earlier concept of 

decomposition rank. Our notion behaves well with respect to inductive limits, tensor 

products, hereditary subalgebras (hence ideals), quotients, and even extensions. It can be 

computed for many examples; in particular, it is finite for all 𝑈𝐶𝑇 Kirchberg algebras. In 

fact, all classes of nuclear 𝐶∗-algebras which have so far been successfully classified consist 
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of examples with finite nuclear dimension, and it turns out that finite nuclear dimension 

implies many properties relevant for the classification program. 

    We study some general properties of  tracial 𝐶∗-algebras. In the first part, we consider 

Dixmier type approximation theorem and characterize symmetric amenability for  𝐶∗-

algebras. In thesecond part, we consider continuous bundles of  tracial von Neumann 

algebras and classify some of them. It is shown that a unital 𝐶∗-algebra 𝐴 has the Dixmier 

property if and only if it is weakly central and satisfies certain tracial conditions. This 

generalises the Haagerup–Zsidó theorem for simple 𝐶∗-algebras. We also study a uniform 

version of the Dixmier property, as satisfied for example by von Neumann algebras and 

the reduced 𝐶∗-algebras of powers groups, but not by all 𝐶∗-algebras with the Dixmier 

property, and we obtain necessary and sufficient conditions for a simple unital 𝐶∗-algebra 

with unique tracial state to have this uniform property. 
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Chapter 1 

𝑪∗-Algebras of Labelled Graphs 

 

     We define a skew product labelled graph and use it to prove a version of the Gross‐
Tucker theorem for labelled graphs. We then apply these results to the 𝐶∗‐algebra associated 

to a labelled graph and provide some applications in non‐Abelian duality. 

Section (1.1): Simplicity Results 

        The first is to continue the development of the 𝐶∗‐algebras of labelled graphs begun in 

[3] and the second is to provide a tractable example which illustrates why they are worthy 

of further study. 

    A labelled graph is a directed graph 𝐸 in which the edges have been labelled by symbols 

coming from a countable alphabet. By considering the sequences of labels carried by the 𝑏𝑖‐
infinite paths in 𝐸 one obtains a shift space 𝑋; the labelled graph is then called a presentation 

of 𝑋. A directed graph is 𝑎 (trivial) example of a labelled graph, and the shift space it 

presents is a shift of finite type (see [13]). In [3] we showed how to associate a 𝐶∗‐algebra 

to a labelled space, which consists of a labelled graph together with a certain collection of 

subsets of vertices. By making suitable choices of the labelled spaces it was shown in [3, 

Proposition 5.1, Theorem 6.3] that the class of labelled graph 𝐶∗‐algebras includes graph 

𝐶∗‐algebras, the ultragraph 𝐶∗‐algebras of [21], [22] and the 𝐶∗‐algebras of shift spaces in 

the sense of [14], [4]. 

       We shall work almost exclusively with the labelled spaces which arise in connection 

with shift spaces. We shall be interested in identifying key properties of the labelled spaces 

which allow us to prove results about the simplicity and pure infiniteness of the associated 

𝐶∗‐algebra (see Theorem (1.1.20) and Theorem (1.1.24)). 

        The examples of labelled spaces that we have considered have turned out to have 𝐶∗‐
algebras isomorphic to the 𝐶∗‐algebra of the underlying directed graph (see [3, Theorem 

6.6]). We tum our attention to the question of whether the class of 𝐶∗‐algebras of labelled 

spaces that we are considering is strictly larger than the class of graph 𝐶∗‐algebras. We give 

presentations of the Dyck shifts 𝐷𝑁 and show that their associated 𝐶∗‐algebras cannot be 

unital graph 𝐶∗‐algebras. We present a labelled graph which presents an irreducible non‐
sofic shift, whose 𝐶∗‐algebra is simple and purely infinite. 

       The 𝐶∗‐algebras associated to shift spaces (see [7], [6], [14], [16], [5], [4], [2], [3] for 

example). A drawback to some of the approaches is that the canonical 𝐶∗‐algebra associated 

to an irreducible shift space is often not simple (see [3, Remark 6.10]). We believe that an 

equally valid way to study the 𝐶∗‐algebra associated to a shift space is to study the 𝐶∗‐
algebras of the various labelled graphs which present it. This belief is founded on the 

observation that the labelled graph (𝐸1, ℒ1) of  Examples (1.1.20) (i) is a presentation of an 

irreducible sofic shift (called the even shift) whose 𝐶∗‐algebra is simple (see [3, Remark 

6.10]) whereas the 𝐶∗‐algebra associated to the even shift in [4] is not simple. 

      The work of Matsumoto on symbolic matrix systems and their associated 𝜆‐graph 

systems gives us an important method for studying shift spaces using labelled graphs (see 

[18], [15], [16], [17] amongst others). However, we feel that there is an extra facility 

afforded by the approach. Whilst 𝜆‐graph systems are indeed labelled graphs, they are quite 

complicated. This makes them difficult to visualise; for instance the labelled graphs in 

Examples (1.1.20) (i) give rise to the same 𝐶∗‐algebras as the ones for the symbolic matrix 
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systems described on [16, p. 297]. Furthermore we believe that our presentations of the Dyck 

shifts in give us a more tractable way of studying them. Of equal importance is the fact that 

the labelled spaces are ideally suited to handle shift spaces over countably infinite alphabets. 

    We give an important embellishment to the treatment of labelled spaces in [3] by 

identifying the basic objects in a labelled space, which we call the generalised vertices. In 

Proposition (1.1.4) we establish concrete connections between the work and that of 

Matsumoto by showing how to associate a symbolic matrix system to a labelled graph. 

    We recall the definition of the 𝐶∗‐algebra of a labelled space from [3]. In Proposition 

(1.1.7) we give a new description of the canonical spanning set for a labelled graph 𝐶∗‐
algebra in terms of generalised vertices. Then in Proposition (1.1.8) we use this new 

description to show the relationship between the 𝐶∗‐algebra of a labelled graph and the 𝜆‐
graph 𝐶∗‐algebra of the associated symbolic matrix system. 

   We give a description of the 𝐴𝛤 core of a labelled graph 𝐶∗- algebra before moving on to 

prove the Cuntz‐Krieger uniqueness theorem. The central hypothesis to the Cuntz‐Krieger 

uniqueness theorem for labelled graphs is the notion of disagreeability, which replaces the 

aperiodicity hypothesis in the corresponding theorem for directed graphs (see [1, Theorem 

3.1]). 

     We give the simplicity and pure infiniteness results for labelled graph 𝐶∗‐algebras. To 

prove the simplicity result (Theorem (1.1.20)) we need a notion of cofinality appropriate for 

labelled graphs. The notion of cofinality for labelled graphs is much more subtle than that 

for directed graphs as many different infinite paths in the underlying directed graph can have 

the same labels. To prove the pure infiniteness result (Theorem (1.1.24)) we need to examine 

how periodic paths arise in labelled graphs. The situtation is much more complicated than 

for directed graphs since periodic points in the shift space associated to a labelled graph 

need not arise from a loop in the underlying directed graph. 

    We provide two new examples of labelled graphs to which our main results apply. We 

provide a labelled graph presentation of the Dyck shifts 𝐷𝑁. In Proposition (1.1.26) show 

that these presentations give rise to simple purely infinite labelled graph 𝐶∗‐algebras. We 

give a formula for the 𝐾‐theory of our labelled graph 𝐶∗‐algebras which demonstrates that 

the 𝐶∗‐algebras we associate to Dyck shifts cannot be isomorphic to graph 𝐶∗‐algebras. We 

provide a presentation of an interesting new irreducible non‐sofic shift whose labelled graph 

𝐶∗‐algebra is simple and purely infinite. 

    A directed graph 𝐸 consists of a quadruple (𝐸0, 𝐸1, 𝑟, 𝑠) where 𝐸0 and 𝐸1 are (not 

necessarily countable) sets of vertices and edges respectively and 𝑟, 𝑠 : 𝐸1 → 𝐸0 are maps 

giving the direction of each edge. A path 𝜆 = 𝑒1…𝑒𝑛 is a sequence of edges 𝑒𝑖  ∈ 𝐸
1 such 

that 𝑟(𝑒𝑖) = 𝑠(𝑒𝑖+1) for 𝑖 = 1 , . . . , 𝑛 − 1, we define 𝑠(𝜆) = 𝑠(𝑒1) and 𝑟(𝜆) = 𝑟(𝑒𝑛) . The 

collection of paths of length 𝑛 in 𝐸 is denoted 𝐸𝑛 and the collection of all finite paths in 𝐸 

by 𝐸∗, so that 𝐸∗ = ⋃ 𝐸𝑛 
𝑛≥0 . 

       A loop in 𝐸 is a path which begins and ends at the same vertex, that is 𝜆 ∈ 𝐸∗ with 𝑠(𝜆) 
= 𝑟(𝜆) . We say that 𝐸 is row‐finite if every vertex emits finitely many edges. The graph 𝐸 

is called transitive if given any pair of vertices, 𝑣 ∈ 𝐸0 there is a path 𝜆 ∈ 𝐸∗ with 𝑠(𝜆) = 𝑢 

and 𝑟(𝜆) = 𝑣. We denote the collection of all infinite paths in 𝐸 by 𝐸∞. 
    We will assume that our directed graphs 𝐸 are essential: all vertices emit and receive 

edges (i.e., 𝐸 has no sinks or sources). 
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    A labelled graph (𝐸, ℒ) over a countable alphabet 𝒜 consists of a directed graph 𝐸 

together with a labelling map ℒ : 𝐸1 → 𝒜. Without loss of generality we may assume that 

the map ℒ  is onto. 

    Let 𝒜∗ be the collection of all words in the symbols of 𝒜. The map ℒ extends naturally 

to a map ℒ : 𝐸𝑛 → 𝒜∗, where 𝑛 ≥ 1: for 𝜆 = 𝑒1…𝑒𝑛 ∈ 𝐸𝑛 put ℒ(𝜆) = ℒ(𝑒1)…ℒ(𝑒𝑛) ; in 

this case the path 𝜆 ∈ 𝐸𝑛 is said to be a representative of the labelled path ℒ(𝑒1)…ℒ(𝑒𝑛) .      
Let ℒ(𝐸𝑛) denote the collection of all labelled paths in (𝐸, ℒ) of length 𝑛 where we write 

|𝛼| = 𝑛 if  𝛼 ∈ ℒ(𝐸𝑛) . The set ℒ∗(𝐸) = ⋃ ℒ 
𝑛≥1 (𝐸𝑛) is the collection of all labelled paths 

in the labelled graph (𝐸, ℒ) . We may similarly extend ℒ to 𝐸∞. 
    The labelled graph (𝐸, ℒ) is left‐resolving if for all 𝑣 ∈ 𝐸0 the map ℒ : 𝑟−1(𝑣) → 𝒜 is 

injective. The left‐resolving condition ensures that for all 𝑣 ∈ 𝐸0 the labels {ℒ(𝑒) ∶  𝑟(𝑒)  =
 𝑣} of all incoming edges to 𝑣 are all different. For 𝛼 in ℒ∗(𝐸) we put 

𝑠ℒ(𝛼) = {𝑠(𝜆) ∈ 𝐸
0 ∶  ℒ(𝜆) = 𝛼} and 𝑟ℒ(𝛼) = {𝑟(𝜆) ∈ 𝐸

0 ∶  ℒ(𝜆) = 𝛼}, 

so that 𝑟ℒ , 𝑠ℒ : ℒ∗(𝐸) → 2𝐸
0
. We shall drop the subscript on 𝑟ℒ and 𝑠ℒ if the context in which 

it is being used is clear. 

    Let (𝐸, ℒ) be a labelled graph. For 𝐴 ⊆ 𝐸0 and 𝛼 ∈ ℒ∗(𝐸) the relative range of α with 

respect to 𝐴 is defined to be 

𝑟ℒ(𝐴, 𝛼) = {𝑟(𝜆) ∶ 𝜆 ∈ 𝐸
∗, ℒ(𝜆) = 𝛼, 𝑠(𝜆) ∈ 𝐴}. 

  A collection ℛ ⊆ 2𝐸
0
 of subsets of 𝐸0 is said to be closed under relative ranges for (𝐸, ℒ) 

if for all 𝐴 ∈ ℬ and 𝛼 ∈ ℒ∗(𝐸) we have (𝐴, 𝛼) ∈ ℬ. If ℛ is closed under relative ranges for 

(𝐸, ℒ) , contains 𝑟(𝛼) for 𝑎𝑙𝑙 𝛼 ∈ ℒ∗(𝐸) and is also closed under finite intersections and 

unions, then we say that ℛ is accommodating for (𝐸, ℒ) . 

    Let 𝒢0,− denote the smallest subset of 2𝐸
0
 which is accommodating for (𝐸, ℒ) . Since 

𝒢0,− is generated by a countable family of subsets of 𝐸0, under countable operations, it 

follows that 𝒢0,− is countable, even though 𝐸0 itself may be uncountable. Of course, 2𝐸
0
 is 

the largest accommodating collection of subsets for (𝐸, ℒ) . 
    A labelled space consists of a triple (𝐸, ℒ, ℬ) , where (𝐸, ℒ) is a labelled graph and ℬ is 

accommodating for (𝐸, ℒ) . 
     A labelled space (𝐸, ℒ, ℬ) is weakly left‐resolving if for every, 𝐵 ∈ ℬ and every 𝛼 ∈
ℒ∗(𝐸) we have (𝐴, 𝛼) ∩ 𝑟(𝐵, 𝛼) = 𝑟(𝐴 ∩ 𝐵, 𝛼) . 
    For ℓ ≥ 1 and 𝐴 ⊆ 𝐸0 let 𝐸ℓ𝐴 = {𝜆 ∈  𝐸ℓ ∶  𝑟(𝜆)  ∈ 𝐴} and 𝐴𝐸ℓ = {𝜆 ∈ 𝐸ℓ : 𝑠(𝜆) ∈ 𝐴}. 
The labelled space (𝐸, ℒ, ℛ) is receiver set‐finite if for all 𝐴 ∈ ℬ and all ℓ ≥ 1 the set ℒ(𝐸ℓ𝐴) 
: = {ℒ(𝜆) ∶  𝜆 ∈  𝐸ℓ𝐴} is finite. In particular, the labelled space (𝐸, ℒ, ℛ) is receiver set‐
finite if each 𝐴 ∈ ℛ receives only finitely labelled paths of length ℓ (even though 𝐴 may 

receive infinitely many paths of each length ℓ). More generally, for ℓ ≥ 1 and 𝐴 ⊆ 𝐸0 let 

ℒ(𝐸≤ℓ) = ⋃ ℒℓ
𝑗=1 (𝐸𝑗) and ℒ(𝐸≤ℓ𝐴) = ⋃ ℒℓ

𝑗=1 (𝐸𝑗𝐴) . 

    We say that the labelled space (𝐸, ℒ, ℬ) is set‐finite if for all 𝐴 ∈ ℬ the set ℒ(𝐴𝐸1) : =
{ℒ(𝜆) ∶  𝜆 ∈ 𝐴𝐸1} is finite. One may similarly define ℒ(𝐴𝐸𝑛) (note that ℒ(𝐴𝐸𝑛) was 

denoted 𝐿𝐴
𝑛  in [3]). 

   We shall focus exclusively on the (minimal) accommodating labelled space (𝐸, ℒ, 𝒢0,−) 
associated to a labelled graph (𝐸, ℒ) . We do this in order to relate our work to that of 

Matsumoto (see [14], [15], [16], [17], [18]). 

   We will assume that (𝐸, ℒ, 𝒢0,−) is receiver set‐finite, set‐finite and weakly leftresolving. 

For 𝑣 ∈ 𝐸0 and ℓ ≥ 1 let 
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𝛬ℓ(𝑣) = {𝜆 ∈ ℒ(𝐸
≤ℓ) ∶  𝑣 ∈ 𝑟(𝜆)} = ℒ(𝐸≤ℓ𝑣) . 

The relation ∼ℓ on 𝐸0 is defined by 𝑣 ∼ℓ 𝑤 if and only if 𝛬ℓ(𝑣) = 𝛬ℓ(𝑤) ; hence 𝑣 ∼ℓ 𝑤 if 

𝑣 and 𝑤 receive exactly the same labelled paths of length at most ℓ. Evidently ∼ℓ is an 

equivalence relation and we use [𝑣]ℓ to denote the equivalence class of  𝑣 ∈ 𝐸0. We call the 

[𝑣]ℓ  generalised vertices as they play the same role in labelled spaces as vertices in a 

directed graph. 

    Set 𝛺ℓ = 𝐸0/ ∼ℓ and 𝛺 be the disjoint union of the 𝛺ℓ for ℓ ≥ 1. If the alphabet 𝒜 is 

finite, then 𝛺ℓ is finite. If there is 𝐿 ≥ 1 such that 𝛺ℓ = 𝛺𝐿 for all ℓ ≥ 𝐿, then the underlying 

shift 𝑋𝐸,ℒ is a sofic shift (see [4], [13]). Conversely, if X is a sofic shift then every 

presentation (𝐸, ℒ) of the shift X has this property (see [13, Exercise )3.2.6(]). 

     For ℓ ≥ 1 let 𝒢ℓ
0,− ⊆ 𝒢0,− be the smallest subset of 2𝐸

0
 which contains 𝑟(𝜆) for all 𝜆 ∈

ℒ(𝐸≤ℓ) and is closed under finite intersections and unions. Evidently  𝒢ℓ
0,− ⊆ 𝒢ℓ+1

0,−
. We have 

𝒢0,− = ⋃ 𝒢ℓ
0,−∞

ℓ=1  For 𝑣 ∈ 𝐸0 and ℓ ≥ 1 , the equivalence class [𝑣]ℓ does not necessarily 

belong to 𝒢ℓ
0 however, as we shall see in Proposition (1.2.2) (i), [𝑣]ℓ may be expressed as a 

difference of elements of  𝒢ℓ
0,−

 First we need the following technical lemma. 

Lemma (1.1.1)[444]: Let (𝐸, ℒ, 𝒢0,−) be a labelled space, 𝑣 ∈ 𝐸0 and ℓ ≥ 1. 

(i)  The set 𝛬ℓ(v) is finite and 𝑋ℓ(v) : = ⋂ 𝑟 
𝜆∈𝛬ℓ(𝑣)

(𝜆) ∈ 𝒢ℓ
0,−

 Moreover [𝑣]ℓ ⊆ 𝑋ℓ(𝑣) 

. 

(ii)  The set of labelles 𝑌ℓ(𝑣) : = ⋃ 𝛬ℓ
 
𝑤∈𝑋ℓ(𝑣)

(𝑤)\𝛬ℓ(𝑣) is finite, and 𝑟(𝑌ℓ(𝑣)) ∈

𝒢ℓ
0,−

 

Proof. For the first statement let 𝐴 ∈ 𝒢0,− be such that 𝑣 ∈ 𝐴. Since (𝐸, ℒ, 𝒢0,−) is receiver 

set‐finite ℒ(𝐸𝑗𝑣) ⊆ ℒ(𝐸𝑗𝐴) is finite for all 𝑗 ≥ 1 and hence 𝛬ℓ(𝑣) = ⋃ ℒℓ
𝑗=1 (𝐸𝑗𝑣) is finite 

for all ℓ ≥ 1. It now follows that 𝑋ℓ(v) is a finite intersection of elements of 𝒢ℓ
0,−

 and hence 

𝑋ℓ(𝑣) ∈ 𝒢ℓ
0,−

 Since 𝑋ℓ(v) is the set of vertices which receive at least the same labelled paths 

as 𝑣 up to length ℓ we certainly have [𝑣]ℓ ⊆ 𝑋ℓ(𝑣) . 
    For the second statement observe that 𝑌ℓ(𝑣) = ℒ(𝐸

≤ℓ𝑋ℓ(𝑣))\𝛬ℓ(𝑣) . Since (𝐸, ℒ, 𝒢0,−) 
is receiver set‐finite and 𝑋ℓ(𝑣) ∈ 𝒢0,− the sets ℒ(𝐸≤ℓ𝑋ℓ(𝑣)) and 𝑌ℓ(𝑣) must be finite. Note 

that 𝑟(𝑌ℓ(𝑣)) = ⋃ 𝑟 
𝜇∈𝑌ℓ(𝑣)

(𝜇) belongs to 𝒢ℓ
0,−

 as it is a finite union of elements of 𝒢ℓ
0,−

 

The set 𝑌ℓ(𝑣) denotes the additional labelled paths of length at most ℓ received by those 

vertices which receive at least the same labelled paths as 𝑣 up to length ℓ. 
Proposition (1.1.2)[444]: Let (𝐸, ℒ, 𝒢0,−) be a labelled space, 𝑣 ∈ 𝐸0 and ℓ ≥ 1. 

(i)  We have [𝑣]ℓ = 𝑋ℓ(𝑣)\𝑟(𝑌ℓ(𝑣)) . 

(ii)  For every set 𝐴 ∈ 𝒢ℓ
0,−we can find vertices 𝑣1 , . . . , 𝑣𝑚 ∈ 𝐴 such that 𝐴 =

⋃ [𝑚
𝑖=1 𝑣𝑖]ℓ. 

(iii)  There are 𝑤1 , . . . , 𝑤𝑛 ∈ [𝑣]ℓ such that [𝑣]ℓ = ⋃ [𝑛
𝑖=1 𝑤𝑖]ℓ+1. 

Proof.  For the first statement observe that [𝑣]ℓ consists of those vertices which receive 

exactly the labelled paths from 𝛬ℓ(v) whereas other vertices in 𝑋ℓ(v) may receive more 

labelled paths. Hence, to form [𝑣]ℓ we remove those vertices from 𝑋ℓ(v) which receive 

different labelled paths of length ℓ from 𝑣 -these are precisely the vertices in (𝑌ℓ(𝑣)) . 

   Any 𝐴 ∈ 𝒢ℓ
0,−

 can be written as a finite union of elements of the form 𝐵𝑘  = ⋂ 𝑟𝑛
𝑖=1 (𝛽𝑖) 

where 𝛽𝑖 ∈ ℒ(𝐸≤ℓ) . If 𝑣1 ∈ 𝐵𝑘  then [𝑣1]ℓ ⊆ 𝐵𝑘  as 𝑣1 , and hence every vertex in [𝑣1]ℓ, 
must receive 𝛽1 , . . . , 𝛽𝑛 and so lie in 𝐵𝑘 . If 𝐵𝑘 ≠ [𝑣1]ℓ, there is 𝑣2 ∈ 𝐵𝑘  with 𝛬ℓ(𝑣1) ≠ 
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𝛬ℓ(𝑣2) . Again we have [𝑣2]ℓ ⊆ 𝐵𝑘 . Since (𝐸, ℒ, 𝒢0) is receiver set‐finite 𝐵𝑘  ∈ 𝒢ℓ
0,−

 receives 

only finitely many different labelled paths oflength at most ℓ. Hence there are vertices {𝑣𝑖 ∶
 1 ≤ 𝑖 ≤ 𝑚} in 𝐵𝑘  such that 𝐵𝑘 = ⋃ [𝑚

𝑖=1 𝑣𝑖]ℓ and our result is established. 

    For the final statement we observe that since 𝒢ℓ
0,− ⊆ 𝒢ℓ+1

0,−
 the first statement shows that 

[𝑣]ℓ may be written as a difference 𝐴\𝐵 of elements of  𝒢ℓ+1
0,−

. The result then follows by 

applying the second statement to 𝐴,𝐵 ∈ 𝒢ℓ+1
0,−

 and noting that the [𝑤𝑖]ℓ+1’s are disjoint. 

   Let (𝐸, ℒ) be a labelled graph. The subshift 𝑋𝐸  is defined by 𝑋𝐸  = {𝑥 ∈ (𝐸1)𝑍 : 𝑠(𝑥𝑖+1) =
𝑟(𝑥𝑖) for all  ∈ 𝑍}. The subshift (𝑋𝐸,ℒ, 𝜎) is defined by 

𝑋𝐸,ℒ ={𝑦 ∈ 𝒜𝑧 : there exists 𝑥 ∈ 𝑋𝐸 such that 𝑦𝑖  = ℒ(𝑥𝑖) for all  ∈ 𝑍}, 

where 𝜎 is the shift map 𝜎(𝑦)𝑖 = 𝑦𝑖+1 for 𝑖 ∈ 𝑍. The labelled graph (𝐸, ℒ) is said to be a 

presentation of the shift space 𝑋𝐸,ℒ with language ℒ∗(𝐸) . 

We are primarily interested in one‐sided shift spaces, namely 

𝑋𝐸,ℒ
+ ={𝑦 ∈ 𝒜𝑁 : there exists 𝑥 ∈ 𝐸∞ such that 𝑦𝑖 = ℒ(𝑥𝑖) for all  ∈ 𝑁} 

and we restrict the shift map to 𝑋𝐸,ℒ
+ . For an infinite labelled path 𝑥 ∈ 𝑋𝐸,ℒ

+  we define 𝑠ℒ(𝑥) 

to be the set of all 𝑣 ∈ 𝐸0 for which there is an infinite path �̂� ∈ 𝐸∞ with 𝑠 ∩ 𝑥 = 𝑣 and 

ℒ ∩ 𝑥 = 𝑥. The infinite path �̂� is said to be a representative of 𝑥. 
    An infinite labelled path 𝑥 ∈ 𝑋𝐸,ℒ

+  is periodic if 𝜎𝑛𝑥 = 𝑥 for some 𝑛 ≥ 1. A path which 

is not periodic is called aperiodic. 

Example (1.1.3)[444]: If 𝐸 is a directed graph then we may consider it as a labelled graph 

when endowed with the trivial labelling ℒ𝑡 . In this case 𝒢0,− consists of all finite subsets of 

𝐸0 (see [3, Examples 4.3(𝑖)]) and [𝑣]ℓ = {𝑣} for all ℓ ≥ 1. We shall identify ℒ𝑡
∗(𝐸) with 

𝐸∗ and 𝑋𝐸,ℒ𝑡
+  with 𝐸∞. 

   Essential symbolic matrix systems are defined in [16, §2]. To a left‐resolving labelled 

graph (𝐸, ℒ) over a finite alphabet we associate matrices (𝑀(𝐸)ℓ,ℓ+1, 𝐼(𝐸)ℓ,ℓ+1)ℓ≥1 as 

follows: For ℓ ≥ 1 , write 𝛺ℓ = {[𝑣𝑖]ℓ ∶  𝑖 =  1, . . . ,𝑚(ℓ)}, then 𝐼(𝐸)ℓ,ℓ+1 is a 𝑚(ℓ) ×

𝑚(ℓ + 1) matrix with entries 0, 1 determined by 

 𝐼(𝐸)ℓ,ℓ+1([𝑣𝑖]ℓ, [𝑤𝑗]ℓ+1) = {
1 𝑖𝑓 [𝑤𝑗]ℓ+1 𝑠𝑢𝑏𝑠𝑒𝑡𝑒𝑞[𝑣𝑖]ℓ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

     (1) 

The symbolic matrix 𝑀(𝐸)ℓ,ℓ+1 is the same size as 𝐼(𝐸)ℓ,ℓ+1 with entries determined as 

follows: For 𝑣 ∈ 𝐸0 let 〈𝑣}ℓ denote the collection of  labelled paths of length exactly ℓ which 

arrive at 𝑣. Since (𝐸, ℒ) is left‐resolving we may partition the set of labelled paths of length 

ℓ + 1 arriving at 𝑤 to write 〈𝑤}ℓ+1 as the disjoint union 

〈𝑤}ℓ+1 = ⋃ 〈𝑠(𝑒)〉ℓℒ(𝑒)

𝑒∈𝑟−1(𝑤)

, 

where 〈𝑠(𝑒)〉ℓℒ(𝑒) denotes the set of labelled paths of length ℓ + 1 formed by the 

juxtaposition of the symbol ℒ(𝑒) at the end of each labelled path in 〈𝑠(𝑒)〉ℓ. Since all vertices 

in [𝑣𝑖]ℓ and [𝑤𝑗]ℓ+1 receive the same labelled paths of length ℓ and ℓ + 1 respectively we 

may unambiguously define 

𝑀(𝐸)ℓ,ℓ+1([𝑣𝑖]ℓ, [𝑤𝑗]ℓ+1) = ∑ ℒ(𝑒)

𝑒∈𝑠−1(𝑣𝑖)∩𝑟
−1(𝑤𝑗)

       (2) 

where the right hand‐side is treated as a formal sum. 
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Proposition (1.1.4)[444]: Let (𝐸, ℒ) be a left‐resolving labelled graph over a finite alphabet. 

Then the matrices (𝑀(𝐸)ℓ,ℓ+1, 𝐼(𝐸)ℓ,ℓ+1)ℓ≥1 defined above form an essential symbolic 

matrix system.  

Proof. If suffices to check that the matrices (𝑀(𝐸)ℓ,ℓ+1, 𝐼(𝐸)ℓ,ℓ+1)ℓ≥1 satisfy the conditions 

on [16, p.290]: Since 𝐸 is essential it is straightforward to check from the definition of 

𝐼(𝐸)ℓ,ℓ+1 and 𝑀(𝐸)ℓ,ℓ+1 that conditions (1), (2), (2‐a), (2‐b), (3), (5‐i) and (5‐ii) are 

satisfied. It remains to check that for ℓ ≥ 1 we have  

𝑀(𝐸)ℓ,ℓ+1𝐼(𝐸)ℓ+1,ℓ+2 = 𝐼(𝐸)ℓ,ℓ+1𝑀(𝐸)ℓ+1,ℓ+2. 

For ℓ ≥ 1 we form the entry 𝑀(𝐸)ℓ,ℓ+1𝐼(𝐸)ℓ+1,ℓ+2([𝑢𝑖]ℓ, [𝑤𝑘]ℓ+1) as follows: For each 

[𝑣𝑗]ℓ+1 which receives an edge from [𝑢𝑖]ℓ, the entry is the formal sum of the labels received 

by the unique [𝑣𝑗]ℓ+1 of which [𝑤𝑘]ℓ+2 is a subset. In which case 

𝑀(𝐸)ℓ,ℓ+1𝐼(𝐸)ℓ+1,ℓ+2([𝑢𝑖]ℓ, [𝑤𝑘]ℓ+2) = ∑ ℒ(𝑒)

𝑒∈𝑠−1(𝑢𝑖)∩𝑟
−1(𝑤𝑘)

. 

     On the other hand, to form the entry 𝐼(𝐸)ℓ,ℓ+1𝑀(𝐸)ℓ+1,ℓ+2([𝑢𝑖]ℓ, [𝑤𝑘]ℓ+2) we take each 

[𝑣𝑗]ℓ+1 which is a subset of [𝑢𝑖]ℓ and then formally sum the labels of the edges to [𝑤𝑘]ℓ+1. 

In which case 

𝐼(𝐸)ℓ,ℓ+1𝑀(𝐸)ℓ+1,ℓ+2([𝑢𝑖]ℓ, [𝑤𝑘]ℓ+2) = ∑ ∑ ℒ(𝑒)

(𝑣𝑗)∩𝑟
−1(𝑤𝑘)[𝑣𝑗]ℓ+1⊆[𝑢𝑖]ℓ𝑒∈𝑠

−1

         

 

                                        = ∑ ℒ(𝑒)

𝑒∈𝑠−1(𝑢𝑖)∩𝑟
−1(𝑤𝑘)

. 

Hence for ℓ ≥ 1 we have 𝑀(𝐸)ℓ,ℓ+1𝐼(𝐸)ℓ+1,ℓ+2 = 𝐼(𝐸)ℓ,ℓ+1𝑀(𝐸)ℓ+1,ℓ+2 as required. 

   We recall from [3] the definition of the 𝐶∗‐algebra associated to the labelled space 

(𝐸, ℒ, 𝒢0,−). 
Definition (1.1.5)[444]: Let (𝐸, ℒ, 𝒢0,−) be a labelled space. A representation of (𝐸, ℒ, 𝒢0,−) 
consists of projections {𝑝𝐴 : 𝐴 ∈ 𝒢0} and partial isometries {𝑠𝑎 ∶  𝑎 ∈ 𝒜} with the properties 

that 

(i)  If  𝐴, 𝐵 ∈ 𝒢0,− then 𝑝𝐴𝑝𝐵 = 𝑝𝐴∩𝐵 and 𝑝𝐴∪𝐵 = 𝑝𝐴 + 𝑝𝐵  −𝑝𝐴∩𝐵, where 𝑝∅ = 0. 
(ii)  If 𝑎 ∈ 𝒜 and 𝐴 ∈ 𝒢0,− then 𝑝𝐴𝑠𝑎 = 𝑠𝑎𝑝𝑟(𝐴,𝑎). 

(iii)  If  𝑎, 𝑏 ∈ 𝒜 then 𝑠𝑎
∗𝑠𝑎 = 𝑝𝑟(𝑎) and  𝑠𝑎

∗𝑠𝑏 = 0 unless 𝑎 = 𝑏. 

(iv)  For 𝐴 ∈ 𝒢0,− we have 

𝑝𝐴 = ∑ 𝑠𝑎𝑝𝑟(𝐴,𝑎)𝑠𝑎
∗

𝑎∈ℒ(𝐴𝐸1)

.                                            (3) 

Definition (1.1.6)[444]: Let (𝐸, ℒ, 𝒢0,−) be a labelled space, then 𝐶∗(𝐸, ℒ, 𝒢0,−) is the 

universal 𝐶∗‐algebra generated by a representation of (𝐸, ℒ, 𝒢0,−) . 
  The universal property of 𝐶∗(𝐸, ℒ, 𝒢0,−) allows us to define a strongly continuous action 

𝑉 of 𝑇 on 𝐶∗(𝐸, ℒ, 𝒢0,−) called the gauge action (see [3, Section 5 As in [20, Proposition 

3.2] we denote by 𝛷 the conditional expectation of 𝐶∗(𝐸, ℒ, 𝒢0,−) onto the fixed point 

algebra 𝐶∗(𝐸, ℒ, 𝒢0,−)𝛾. If (𝐸, ℒ, 𝒢0,−) is a labelled space then by [3, Lemma 4.4] we have 

𝐶∗(𝐸, ℒ, 𝒢0,−) = 𝑠𝑝𝑎𝑛{𝑠𝛼𝑝𝐴𝑠𝛽
∗ ∶  𝛼, 𝛽 ∈ ℒ∗(𝐸) , 𝐴 ∈ 𝒢0,− 

Indeed, we can write down a more informative spanning set for  𝐶∗(𝐸, ℒ, 𝒢0,−) . 
Proposition (1.1.7)[444]: Let (𝐸, ℒ, 𝒢0,−) be a labelled space. Then 
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𝐶∗(𝐸, ℒ, 𝒢0,−)  = 𝑠𝑝𝑎𝑛{𝑠𝛼𝑝[𝑣]ℓ𝑠𝛽
∗ ∶  𝛼, 𝛽 ∈ ℒ∗(𝐸), [𝑣]ℓ ∈ 𝛺ℓ} 

Where 

𝑝[𝑣]ℓ ≔ 𝑝𝑋ℓ(𝑣) − 𝑝𝑟(𝑌ℓ(𝑣))𝑝𝑋ℓ(𝑣)
= ∑ 𝑠𝑎𝑝𝑟([𝑣]ℓ,𝑎)𝑠𝑎

∗

𝑎∈ℒ([𝑣]ℓ𝐸
1)

.        (4) 

Proof. The first assertion holds from repeated applications of Proposition (1.1.2). Applying 

(3) of Definition (1.1.1) we have 

𝑝[𝑣]ℓ = 𝑝𝑋𝑙(𝑣) − 𝑝𝑋ℓ(𝑣) ∩ 𝑟(𝑌ℓ(𝑣))

= ∑ 𝑠𝑎𝑝𝑟(𝑋ℓ(𝑣),𝑎)𝑠𝑂
∗

𝑎∈ℒ(𝑋ℓ(𝑣)𝐸
1)

− ∑ 𝑠𝑏𝑝𝑟(𝑋ℓ(𝑣)∩𝑟(𝑌ℓ(𝑣)),𝑏)𝑆𝑏
∗

𝑏∈ℒ(𝑋ℓ(𝑣)∩𝑟(𝑌ℓ(𝑣))𝐸
1)

. 

   In order to eliminate double counting of labels that are emitted by both 𝑋ℓ(v) and 𝑟(𝑌ℓ(𝑣)) 
we need to split ℒ(𝑋ℓ(𝑣)𝐸

1) into two disjoint parts (the labels that come only out of 𝑋ℓ(v) 

and those that come out of both 𝑋ℓ(v) and 𝑟(𝑌ℓ(𝑣))) to obtain 

𝑝[𝑣]ℓ = ∑ 𝑠𝑎𝑝𝑟(𝑋ℓ(𝑣),𝑎)𝑠𝑂
∗

𝑎∈ℒ(𝑋ℓ(𝑣)𝐸
1)\ℒ(𝑋ℓ(𝑣)\𝑟(𝑌𝑝(𝑣))𝐸

1)

+ ∑ 𝑠𝑏(𝑝𝑟(𝑋ℓ(𝑣),𝑏) − 𝑝𝑟(𝑋ℓ(𝑣)∩𝑟(𝑌ℓ(𝑣)),𝑏))𝑠𝑏
∗

𝑏∈ℒ(𝑋ℓ(𝑣)∩𝑟(𝑌ℓ(𝑣))𝐸
1)

. 

We may replace 𝑋ℓ(v) in the first sum by [𝑣]ℓ as the labels 𝑎 are emitted only by the vertices 

in [𝑣]ℓ and not by the vertices in 𝑋ℓ(𝑣) ∩ 𝑟(𝑌ℓ(𝑣)) . In the second sum the labels 𝑏 are 

emitted by both [𝑣]ℓ and 𝑋ℓ(𝑣) ∩ 𝑟(𝑌ℓ(𝑣)) , but we subtract the projections corresponding 

to the copies emitted by 𝑋ℓ(𝑣) ∩ 𝑟(𝑌ℓ(𝑣)) and so we have equation (4) as required. 

     Recall from Proposition (1.1.4) that to a labelled graph (𝐸, ℒ) over a finite al‐ phabet 𝒜 

we may associate an essential symbolic matrix system (𝑀(𝐸)ℓ,ℓ+1, 𝐼(𝐸)ℓ,ℓ+1)ℓ≥1. By [16, 

Proposition 2.1] there is a unique (up to isomorphism) 𝜆‐graph system 𝔏𝐸,ℒ associated to 

(𝑀(𝐸)ℓ,ℓ+1, 𝐼(𝐸)ℓ,ℓ+1)ℓ≥1. By [17, Theorem 3.6] one may associate a 𝐶∗‐algebra 𝜃𝔏𝐸,ℒ  to 

the 𝜆‐graph system 𝔏𝐸,ℒ which is the universal 𝐶∗‐algebra generated by partial isometries 

{𝑡𝑎 ∶  𝑎 ∈ 𝒜} and projections {𝐸𝑖
ℓ ∶  𝑖 = 1, . . . ,𝑚(ℓ)} satisfying relations 

∑ 𝑡𝑎𝑡𝑎
∗

𝑎∈𝒜

= 1                                                           (5) 

∑ 𝐸𝑖
ℓ

𝑚(ℓ)

𝑖=1

= 1,   𝐸𝑖
ℓ = ∑ 𝐼(𝐸)ℓ,ℓ+1(𝑖, 𝑗)𝐸𝑗

ℓ+1

𝑚(ℓ+1)

𝑗=1

   𝑓𝑜𝑟  𝑖 = 1,… ,𝑚(ℓ)    (6) 

𝑡𝑎𝑡𝑎
∗𝐸𝑖
ℓ = 𝐸𝑖

ℓ𝑡𝑎𝑡𝑎
∗    𝑓𝑜𝑟   𝑎 ∈ 𝒜  𝑎𝑛𝑑  𝑖 = 1,… ,𝑚(ℓ)          (7) 

𝑡𝑎
∗𝐸𝑖
ℓ𝑡𝑎 = ∑ 𝐴ℓ,ℓ+1(𝑖, 𝑎, 𝑗)𝐸𝑗

ℓ+1

𝑚(ℓ+1

𝑗=1

 𝑓𝑜𝑟  𝑎 ∈ 𝒜  𝑎𝑛𝑑  𝑖 = 1, … ,𝑚(ℓ) (8) 

where 𝐴ℓ,ℓ+1(𝑖, 𝑎, 𝑗) = 1 if 𝑎 occurs in the formal sum 𝑀(𝐸)ℓ,ℓ+1([𝑣𝑖]ℓ, [𝑣𝑗]ℓ+1) and is 0 

otherwise. 

Proposition (1.1.8)[444]: Let (𝐸, ℒ) be a left‐resolving labelled graph overa finite alphabet. 

Then we have 𝐶∗(𝐸, ℒ, 𝒢0,−) ≅ 𝜃𝔏𝐸ℒ  where 𝔏𝐸,ℒ is the 𝜆‐graph system associated to the 

symbolic matrix system (𝑀(𝐸)ℓ,ℓ+1, 𝐼(𝐸)ℓ,ℓ+1)ℓ≥1. 

Proof. By Proposition (1.1.7) the elements {𝑠𝑎 ∶  𝑎 ∈  𝒜} and {𝑝[𝑣𝑗]ℓ : 𝑖 = 1 , . . . , 𝑚(ℓ)} 

form a generating set for 𝐶∗(𝐸 , ℒ, 𝒢0 ) Let 𝑇𝑎 = 𝑠𝑎 and 𝐹𝑖
ℓ = 𝑝[𝑣𝑗]ℓ then {𝑇𝑎, 𝐹𝑖

ℓ} satisfy 
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relations (5)-(8) above. Hence by the universal property of 𝜃𝔏𝐸ℒ  there is a map 𝜋𝑇,𝐹 : 𝜃𝔏𝐸,ℒ  

→ 𝐶∗(𝐸, ℒ, 𝒢0) characterised by 𝜋𝑇,𝐹(𝑡𝑎) = 𝑇𝑎 and 𝜋𝑇,𝐹(𝐸𝑖
ℓ) = 𝐹𝑖

ℓ. 

     Let {𝑡𝑎 ∶  𝑎 ∈  𝒜} and {𝐸𝑖
ℓ ∶  𝑖 =  1, . . . ,𝑚(ℓ)} be generators for 𝜃𝔏𝐸ℒ . For 𝐴 ∈ 𝒢ℓ

0,−
 and 

𝑎 ∈ 𝒜 let 𝑃𝐴 = ∑ 𝐸𝑖
ℓ

𝑖:[𝑣]ℓ⊆𝐴  and 𝑆𝑎 = 𝑡𝑎. One checks that {𝑆𝑎 , 𝑃𝐴} is a representation of the 

labelled space (𝐸, ℒ, 𝒢0) By universality of 𝐶∗(𝐸, ℒ, 𝒢0) there is a map 𝜋𝑆,𝑃 : 

𝐶∗(𝐸, ℒ, 𝒢0,−) → 𝜃𝔏𝐸ℒ  characterised by 𝜋𝑆,𝑃(𝑠𝑎) = 𝑆𝑎 and 𝜋𝑆,𝑃(𝑝𝐴) = 𝑃𝐴. In particular, we 

have 𝜋𝑆,𝑃(𝑝[𝑣𝑗]ℓ) = 𝑃[𝑣𝑗]ℓ for all 𝑖 ∈ 1 , . . . , 𝑚(ℓ) . The result follows since 𝜋𝑇,𝐹 and 𝜋𝑆,𝑃 

are inverses of one another. 

We perform a detailed analysis of the AF core of  𝐶∗(𝐸, ℒ, 𝒢0,−). 
Definition (1.1.9)[444]: For 1 ≤ 𝑘 ≤ ℓ let 

ℱ𝑘(ℓ) = 𝑠𝑝𝑎𝑛{𝑠𝛼𝑝𝐴𝑠𝛽
∗  : 𝛼, 𝛽 ∈ ℒ(𝐸𝑘), 𝐴 ∈ 𝒢ℓ

0,−}. 

For ℓ ≥ 1 and [𝑣]ℓ ∈ 𝛺ℓ we have 𝑝[𝑣]ℓ ∈ ℱ
𝑘(ℓ) as 𝑋ℓ(v), 𝑟(𝑌ℓ(𝑣)) ∈ 𝒢ℓ

0,−
 by Lemma 

(1.1.1)(ii). 

Definition (1.1.10)[444]: For 1 ≤ 𝑘 ≤ ℓ and [𝑣]ℓ ∈ 𝛺ℓ let 

ℱ𝑘([𝑣]ℓ) = 𝑠𝑝𝑎𝑛{𝑠𝛼𝑝[𝑣]ℓ𝑠𝛽
∗ ∶ 𝛼, 𝛽 ∈ ℒ(𝐸𝑘)}. 

Proposition (1.1.11)[444]: For 1 ≤ 𝑘 ≤ ℓ we have 

(i)  ℱ𝑘(ℓ) ≅⊕[𝑣]ℓ ℱ
𝑘([𝑣]ℓ) , where each ℱ𝑘([𝑣]ℓ) is a finite‐dimensional matrix 

algebra. 

(ii)  For each 𝑣 ∈ 𝐸0 there are 𝑤1 , . . . , 𝑤𝑛 ∈ [𝑣]ℓ such that ℱ𝑘([𝑣]ℓ) = 

⊕𝑖=1
𝑛 ℱ𝑘([𝑤𝑖]ℓ+1) . Hence ℱ𝑘(ℓ) ⊆ ℱ𝑘(ℓ + 1) . 

(iii)  There is an embedding of ℱ𝑘(ℓ) into ℱ𝑘+1(ℓ + 1) . 
 Proof. For the first statement of (i), applying Proposition (1.1.2)(ii) shows that every 

element 𝑠𝛼𝑝𝐴𝑠𝛽
∗ ∈ ℱ𝑘(ℓ) can be written as a finite sum of elements of the form 𝑠𝛼𝑝[𝑣]ℓ𝑠𝛽

∗  

∈ ℱ𝑘([𝑣]ℓ) . The result follows as the summands in the decomposition are mutually 

orthogonal since |𝛼| = |𝛽| = 𝑘 and the equivalence classes [𝑣]ℓ are disjoint. For the second 

statement of (i) note that since [𝑣]ℓ can be written as the difference of two elements of 𝒢0,− 

it receives only finitely many different labelled paths of length 𝑘 and hence the set 

{𝑠𝛼𝑝[𝑣]ℓ𝑠𝛽
∗ ∶  |𝛼|  =  |𝛽|  = 𝑘} is finite. It is straight forward to show that the elements 

𝑠𝛼𝑝[𝑣]ℓ𝑠𝛽
∗  form a system of matrix units in ℱ𝑘([𝑣]ℓ) and the result follows. 

Part (ii) follows by Proposition (1.1.2) (iii). Part (iii) follows from Definition (1.1.5) (iv). 

Theorem (1.1.12)[444]: Let (𝐸, ℒ, 𝒢0,−) be a labelled space, then ℱ = ⋃ ℱ𝑘(ℓ)𝑘,ℓ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is an AF 

algebra with ℱ ≅ 𝐶∗ (𝐸, ℒ, 𝒢0,−)𝛾. 
Proof. The first statement follows from Proposition (1.1.11). The second statement follows 

by an argument similar to that of [1, Lemma 2.2]. 

   Recall from [11, §3] that the directed graph 𝐸 satisfies condition (L) if every loop has an 

exit; that is if 𝜆 ∈ 𝐸𝑛 is a loop, then there is some 1 ≤ 𝑖 ≤ 𝑛 such that the vertex 𝑟(𝜆𝑖) emits 

more than one edge. Condition (L) is the key hypothesis for the Cuntz‐Krieger uniqueness 

theorem for directed graphs (see [11, Theorem 3.7], [1, Theorem 3.1]). Since periodic paths 

in 𝐸∞ arise from loops in 𝐸, condition (L) guarantees that there are lots of paths in 𝐸∞ which 

are aperiodic. 

   We seek an analogue for condition (L) of labelled graphs which will allow us to prove a 

Cuntz‐Krieger uniqueness theorem for labelled graph 𝐶∗‐algebras. The correct analogue for 

condition (L) must ensure the existence of aperiodic paths in 𝑋𝐸,ℒ
+ . The two key difficulties 
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to overcome of labelled graphs are that we must accommodate the generalised vertices [𝑣]ℓ 
in a labelled graph and deal with the fact that a periodic path 𝑥 ∈ 𝑋𝐸,ℒ

+  need not arise from a 

loop in 𝐸. 
The following definition is inspired by [20, Lemma 3.7]. 

Definition (1.1.13)[444]: Let (𝐸, ℒ, 𝒢0,−) be a labelled space, [𝑣]ℓ ∈ 𝛺ℓ and 𝛼 ∈ ℒ∗(𝐸) be 

such that |𝛼| > 1 and 𝑠(𝛼) ∩ [𝑣]ℓ ≠ ∅. We say that 𝛼 is agreeable for [𝑣]ℓ if there are 𝛼′, 
𝛽, 𝑉 ∈ ℒ∗(𝐸) with |𝛽| = |𝛾| ≤ ℓ and 𝛼 = 𝛽𝛼′ = 𝛼′𝛾. Otherwise we say that 𝛼 is 

disagreeable for [𝑣]ℓ. 
    We say that [𝑣]ℓ is disagreeable if there is an 𝑁 > 0 such that for all 𝑛 > 𝑁 there is an 

𝛼 ∈ ℒ∗(𝐸) with |𝛼| ≥ 𝑛 that is disagreeable for [𝑣]ℓ. 
   The labelled space (𝐸, ℒ, 𝒢0,−) is disagreeable if for every 𝑣 ∈ 𝐸0 there is an 𝐿𝑣 > 0 such 

that [𝑣]ℓ is disagreeable for all ℓ > 𝐿𝑣. 
   The following Lemma shows that the notion of disagreeability reduces to condition (L) 

for directed graphs and so is the appropriate condition for us to use in our Cuntz‐Krieger 

uniqueness theorem and simplicity results. 

Lemma (1.1.14)[444]: The directed graph E satisfies condition (L) if and only if the labelled 

space (𝐸, ℒ, 𝒢0,−) is disagreeable. 

Proof. Suppose that 𝐸 satisfies condition (L). Observe that for all ℓ ≥ 1 and all 𝑣 ∈ 𝐸0 , [𝑣]ℓ 
= {𝑣}. We show that every 𝑣 ∈ 𝐸0 is disagreeable. Let 𝐿𝑣 = 1 , 𝑁 = 1 , fix 𝑛 > 𝑁 and ℓ > 

𝐿𝑣. If 𝑣 does not lie on a loop, then any path 𝛼 with |𝛼| ≥ 𝑛 is disagreeable for [𝑣]ℓ = {𝑣}. 
If 𝑣 does lie on a loop 𝛼 = 𝛼1…𝛼𝑚 , without loss of generality we may assume that 𝑠(𝛼) =
𝑣. Since 𝐸 satisfies condition (L) there is a path 𝛽 with 𝑠(𝛽) = 𝑣 and 𝛽|𝛽| ∉ {𝛼1, . . . , 𝛼𝑚}. 

The path 𝛼𝑛𝛽 has length ≥ 𝑛 and is disagreeable for [𝑣]ℓ. Suppose 𝐸 does not satisfy 

condition (L). Then there is a 𝑣 ∈ 𝐸0 and a simple loop 𝛼 with 𝑠(𝛼) = 𝑣 that has no exit.    

Let 𝑁 > 0. Then there is an 𝑛 such that |𝛼𝑛| > 𝑁. Suppose 𝑛 ≥ 2. We claim that 𝜆 = 𝛼𝑛 is 

agreeable for every ℓ > |𝛼|. Set 𝛽 = 𝑉 = 𝛼 and 𝜆′ = 𝛼𝑛−1. Since 𝜆 = 𝛽𝜆′ = 𝜆′𝛾 where 

|𝛽| = |𝛾| ≤ ℓ it follows that [𝑣]ℓ = {𝑣} is agreeable for ℓ. Since 𝛼𝑛 is the only path of 

length 𝑛|𝛼| emitted by 𝑣, it follows that 𝑣 is not disagreeable. Thus the labelled space 

(𝐸, ℒ, 𝒢0,−) is not disagreeable. 

Examples (1.1.15)[444]: (i) Recall from [3, Examples 3.3 (iii)] the labelled graphs 

 

 
are set‐finite, receiver set‐finite, left‐resolving presentations of the even shift. Consider 

(𝐸1, ℒ1) . We claim that (𝐸1 , ℒ1 , 𝒢1
0,−) is disagreeable. Now for all ℓ ≥ 1 we have [𝑢]ℓ = 
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{𝑢}. Let 𝐿𝑢 = 1 and 𝑁 = 3. Then for 𝑛 > 𝑁 the labelled path 𝛼𝑛 = 11𝑛0 satisfies |𝛼𝑛| =
𝑛 + 2 ≥ 𝑁 and 𝛼𝑛 is disagreeable for [𝑢]ℓ as its first and last symbols disagree. Also for all 

ℓ ≥ 1 we have [𝑣]ℓ = {𝑣}. If we let 𝑁 = 4 and 𝐿𝑣 = 1 , then for each 𝑛 > 𝑁 the path 𝛼𝑛 = 

02𝑛+11 satisfies |𝛼𝑛| = 2𝑛 + 2 ≥ 𝑛 and 𝛼𝑛 is disagreeable for [𝑣]ℓ as its first and last 

symbols disagree. Thus the labelled space (𝐸1, ℒ1, 𝒢1
0,−) is disagreeable and our claim is 

established. 

   Consider (𝐸2, ℒ2) . We claim that [𝑤]ℓ is agreeable for all ℓ ≥ 2. Now [𝑤]ℓ = {𝑤} for all 

ℓ ≥ 2, and any labelled path 𝛼 satisfying 𝑠(𝛼) ∩ [𝑤]ℓ ≠ ∅ must have the form 𝛼 = 0𝑛 for 

some 𝑛. But 𝛼 = 0𝑛 is agreeable for [𝑤]ℓ for all ℓ ≥ 2 whenever  ≥ ℓ + 1: set 𝛼′ = 0𝑛−ℓ, 

𝛽 = 𝑉 = 0. Thus (𝐸2, ℒ2, 𝒢2
0,−) is not disagreeable. 

(ii) Let 𝐺 be a group with a finite set of generators 𝑆 = {𝑔1, . . . , 𝑔𝑚}, such that 𝑔𝑖  ≠ 𝑔𝑗 for 𝑖 

≠ 𝑗. The (right) Cayley graph of 𝐺 with respect to 𝑆 is the essential row‐finite directed graph 

𝐸𝐺,𝑆 where 𝐸𝐺,𝑆
0  = 𝐺, 𝐸𝐺,𝑆

1  = 𝐺 × 𝑆 with range and source maps given by 𝑟 (ℎ, 𝑔𝑖) = ℎ𝑔𝑖  

and 𝑠(ℎ, 𝑔𝑖) = ℎ for 𝑖 = 1 , . . . , 𝑚. The map ℒ𝐺,𝑆(ℎ, 𝑔𝑖) = 𝑔𝑖 gives us a set‐finite, receiver 

set‐finite, labelled graph (𝐸𝐺,𝑆, ℒ𝐺,𝑆) . Since 𝐺 is cancelative it follows that (𝐸𝐺,𝑆, ℒ𝐺,𝑆) is 

leftresolving. As each vertex in 𝐸𝐺,𝑆 receives the same labelled paths it follows that [𝑔]ℓ =

𝐺 for all 𝑔 ∈ 𝐺 and ℓ ≥ 1 and so 𝒢𝐺’,,𝑆
0 = {∅, 𝐺}. Each 𝑔 ∈ 𝐺 emits the same 𝑚ℓ labelled 

paths of length ℓ. So if 𝑚 = |𝑆| > 1, it follows that for all [𝑔]ℓ = 𝐺 there is a disagreeable 

labelled path of length 𝑛 > 1 beginning at [𝑔]ℓ = 𝐺. Hence (𝐸𝐺,𝑆, ℒ𝐺,𝑆, 𝒢𝐺’,𝑆
0,−) is 

disagreeable. 

Theorem (1.1.16)[444]: Let (𝐸, ℒ, 𝒢0,−) be a disagreeable labelled space. If {𝑇𝛼, 𝑄𝐴} and 

{𝑆𝛼, 𝑃𝐴} are two representations of (𝐸, ℒ, 𝒢0) in which all the projections 𝑝𝐴 , 𝑃𝐴 are 

nonzero, then there is an isomorphism 𝜙 of 𝐶∗(𝑇𝛼, 𝑄𝐴) onto 𝐶∗ (𝑆𝛼 , 𝑃𝐴) such that 𝜙(𝑇𝛼) =
𝑆𝛼 and 𝜙(𝑄𝐴) = 𝑃𝐴. 
   To prove this theorem we show that the representations 𝜋𝑇,𝑄 and 𝜋𝑆,𝑃 of 𝐶∗(𝐸, ℒ, 𝒢0,−) 

are faithful. The required isomorphism will then be 𝜙 = 𝜋𝑆,𝑃 ∘ 𝜋𝑇,𝑄
−1 . The usual approach is 

to invoke symmetry and prove that 

(i) 𝜋𝑆,𝑃 is faithful on 𝐶∗(𝐸, ℒ, 𝒢0,−)𝛾 and 

(ii)  ‖𝜋𝑆,𝑃(𝛷(𝑎))‖ ≤ ‖𝜋𝑆,𝑃(𝑎)‖ for all 𝑎 ∈ 𝐶∗(𝐸, ℒ, 𝒢0,−) 
Part (i) is proved in [3, Theorem 5.3]. To prove (ii) we must do a little more work than is 

needed for graph 𝐶∗‐algebras because of the more complicated structure of 𝐶∗(𝐸, ℒ, 𝒢0,−)𝛾 

.Proof. Every element of 𝐶∗(𝐸, ℒ, 𝒢0,−) may be approximated by elements of the form 

𝑎 = ∑ 𝑐𝛼,[𝑤]ℓ,𝛽

 

(𝛼,[𝑤]ℓ,𝛽)∈𝐹

𝑠𝛼𝑝[𝑤]ℓ𝑠𝛽
∗  

where 𝐹 is finite, and so it is enough to prove (b) for such elements 𝑎. 
   Let 𝑘 =  max {|𝛼|, |𝛽| ∶  (𝛼, [𝑤]ℓ, 𝛽)  ∈  𝐹}. By Proposition (1.2.7) we may suppose 

(changing 𝐹 if necessary), that every (𝛼, [𝑤]ℓ, 𝛽) ∈ 𝐹 is such that min {|𝛼|, |𝛽| ∶
 (𝛼, [𝑤]ℓ, 𝛽)  ∈ 𝐹} = 𝑘. Let 𝑘 =  max {|𝛼| , |𝛽| : (𝛼, [𝑤]ℓ, 𝛽) ∈ 𝐹} and 𝐿 =  max {𝐿𝑤 ∶
 (𝛼, [𝑤]ℓ, 𝛽)  ∈  𝐹}. By Proposition (1.1.2)(iii) we may suppose (again changing 𝐹 if 

necessary, but not 𝑀 or k) that ℓ ≥  max {𝐿,𝑀 − 𝑘}. 
Since |𝛼| = |𝛽| implies that |𝛼| = 𝑘 we have 

𝛷(𝑎) = ∑ 𝑐𝛼,[𝑤]ℓ,𝛽

 

(𝛼,[𝑤]ℓ,𝛽)∈𝐹,|𝛼|=|𝛽|

𝑠𝛼𝑝[𝑤]𝑙𝑠𝛽
∗ ∈ ℱ𝑘(ℓ) 
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where 𝛷 is the conditional expectation of 𝐶∗(𝐸, ℒ, 𝒢0,−) onto 𝐶∗(𝐸 , ℒ, 𝒢0,−)𝛾. By 

Proposition (1.1.11) (i) ℱ𝑘(ℓ) decomposes as the 𝐶∗‐algebraic direct sum ⊕[𝑤]ℓ
ℱ𝑘([𝑤]ℓ) 

, so does its image under 𝜋𝑆,𝑃 , and there is a [𝑣]ℓ ∈ 𝛺ℓ such that ‖𝜋𝑆,𝑃(𝛷(𝑎))‖ is attained 

on  ℱ𝑘([𝑣]ℓ) . Let 𝐹[𝑣]ℓ denote the elements of 𝐹 of the form (𝛼, [𝑣]ℓ, 𝛽) , then we have 

‖𝜋𝑆,𝑃(𝛷(𝑎))‖ = ‖ ∑ 𝑐𝛼,[𝑣]ℓ,𝛽𝑆𝛼𝑃[𝑣]ℓ𝑆𝛽
∗

(𝛼,[𝑣]ℓ,𝛽)∈𝐹[𝑣]ℓ ,|𝛼|=|𝛽|

‖. 

We write 

             𝑏𝑣 = ∑ 𝑐𝛼,[𝑣]ℓ,𝛽𝑆𝛼𝑃[𝑣]ℓ𝑆𝛽
∗

(𝛼,[𝑣]ℓ,𝛽)∈𝐹[𝑣]ℓ ,|𝛼|=|𝛽|

 

and let 𝐺 = {𝛼 : either (𝛼, [𝑣]ℓ, 𝛽) ∈ 𝐹[𝑣]ℓ or (𝛽, [𝑣]ℓ, 𝛼) ∈ 𝐹[𝑣]ℓ with |𝛼| = |𝛽|}. Then 

𝑠𝑝𝑎𝑛{𝑆𝛼𝑃[𝑣]ℓ𝑆𝛽
∗ ∶  𝛼, 𝛽 ∈  𝐺} is a finite dimensional matrix algebra containing 𝑏𝑣 . 

   Since ℓ > 𝐿, [𝑣]ℓ is disagreeable. Hence there is an 𝑛 > 𝑀 and a 𝜆 with |𝜆| ≥ 𝑛 and [𝑣]ℓ ∩
𝑠(𝜆) ≠ ∅ which has no factorisation 𝜆 = 𝜆′𝜆′′ = 𝜆′′𝛾 for 𝜆′, 𝑉 ∈ ℒ ≤ (𝑀 − 𝑘)(𝐸) (as 𝑀 −
𝑘 ≤ ℓ). We claim that 

𝑄 = ∑𝑆𝑣𝜆

 

𝑣∈𝐺

𝑃𝑟([𝑣]ℓ𝜆,)𝑆𝑣𝜆
∗  

is such that 

   ‖𝑄𝜋𝑆,𝑃(𝛷(𝑎))𝑄‖ =  ‖𝜋𝑆,𝑃(𝛷(𝑎))‖,                              (9) 
and 

  𝑄𝑆𝛼𝑃[𝑣]ℓ𝑆𝛽
∗𝑄 = 0 𝑤ℎ𝑒𝑛 (𝛼, [𝑣]ℓ, 𝛽) ∈ 𝐹 𝑎𝑛𝑑 |𝛼| ≠ |𝛽|.        (10) 

The formula for 𝑄 can be made sense of by a calculation similar. A routine calculation 

verifies (9). 

    Now suppose that (𝛼, [𝑣]ℓ, 𝛽) ∈ 𝐹 satisfies |𝛼| ≠ |𝛽|. Either 𝛼 or 𝛽 has length 𝑘, say 

|𝛼| = 𝑘. As before, 𝑆𝑣𝜆
∗ 𝑆𝛼 is non‐zero if and only if 𝑣 = 𝛼. Thus 

𝑄𝑆𝛼𝑃[𝑣]ℓ𝑆𝛽
∗𝑄 =∑𝑆𝛼𝜆𝑃𝑟([𝑣]ℓ,𝜆)𝑆𝛼𝜆

∗ 𝑆𝛼𝑃[𝑣]ℓ𝑆𝛽
∗𝑆𝑣𝜆𝑃𝑟([𝑣]ℓ,𝜆)𝑆𝑣𝜆

∗

𝑣∈𝐺

=∑𝑆𝛼𝜆𝑃𝑟([𝑣]ℓ,𝜆)𝑆𝛽𝜆
∗ 𝑆𝑣𝜆𝑃𝑟([𝑣]ℓ,𝜆)𝑆𝑣𝜆

∗

𝑣∈𝐺

. 

For 𝑃𝑟([𝑣]ℓ,𝜆)𝑆𝛽𝜆
∗ 𝑆𝑣𝜆𝑃𝑟([𝑣]ℓ,𝜆) to be non‐zero 𝛽𝜆 must extend 𝑣𝜆, which implies that 𝛽𝜆 = 𝑣𝜆𝛾 

for some 𝑉. But then we have 𝛽 = 𝑣𝜆′ for some initial segment 𝜆′ of 𝜆 as |𝛽| > |𝑣|. Hence 

𝜆 = 𝜆′𝜆′′ which then implies that 𝜆 = 𝜆′′𝛾 as 

𝛽𝜆 = 𝑣𝜆′𝜆′′ = 𝑣𝜆𝛾 = 𝑣𝜆′𝜆′′𝛾 

and that |𝜆’| = |𝛾|. Since |𝛽| ≤ 𝑀 𝑎𝑛𝑑 |𝑣| = 𝑘 it follows that |𝜆’| ≤ 𝑀 − 𝑘 ≤ ℓ. Thus 𝜆 is 

agreeable for [𝑣]ℓ, a contradiction. Thus 𝑄𝑆𝛼𝑃[𝑣]ℓ𝑆𝛽
∗𝑄 = 0, and we have verified (10). 

The rest of the proof is now standard (see, for example, [20, p. 31]) 

    Recall from [10, Corollary 6.8] that a directed graph 𝐸 is cofinal if for all 𝑥 ∈ 𝐸∞ and 𝑣 

∈ 𝐸0 there is a path 𝜆 ∈ 𝐸∗ and 𝑁 ≥ 1 such that 𝑠(𝜆) = 𝑣 and 𝑟(𝜆) = 𝑟(𝑥𝑁) . Along with 

condition (L), cofinality is the key hypothesis in the simplicity results for directed graphs 

(see [10, Corollary 6.8], [1, Proposition 5.1]). 

   We seek an analogue for cofinality of labelled graphs which will allow us to prove a 

simplicity theorem for labelled graph 𝐶∗‐algebras. The two key difficulties to overcome of 
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labelled graphs are that we must accommodate the generalised vertices [𝑣]ℓ in a labelled 

graph and the fact that there may be many representatives of a given infinite labelled path 

𝑥 ∈ 𝑋𝐸,ℒ
+ . 

Definition (1.1.17)[444]: Let (𝐸, ℒ, 𝒢0,−)𝛾 be a labelled space and ℓ ≥ 1. We say that 

(𝐸, ℒ, 𝒢0,−)𝛾 is ℓ‐cofinal if for all 𝑥 ∈ 𝑋𝐸,ℒ
+ , [𝑣]ℓ ∈ 𝛺ℓ , and 𝑤 ∈ 𝑠(𝑥) there is an 𝑅(𝑤) ≥ ℓ, 

an 𝑁 ≥ 1 and a finite number of labelled paths 𝜆1 , . . . , 𝜆𝑚 such that for all 𝑑 ≥ 𝑅(𝑤) we 

have ⋃ 𝑟𝑚
𝑖=1 ([𝑣]ℓ, 𝜆𝑖) ⊆ 𝑟 ([𝑤]𝑑, xl. . . 𝑥𝑁). 

   We say that (𝐸, ℒ, 𝒢0,−)𝛾 is cofinal if  there is an  𝐿 > 0 such that (𝐸, ℒ, 𝒢0,−)𝛾 is ℓ‐cofinal 

for all ℓ > 𝐿. 
Examples (1.1.18)[444]: (i) Recall from Example (1.1.3) that a directed graph 𝐸 may be 

considered to be a labelled graph with the trivial labelling ℒ𝑡 . Let 𝐸 be a cofinal directed 

graph and fix 𝑣 ∈ 𝐸0, 𝑥 ∈ 𝐸∞. Since 𝑤 = 𝑠(𝑥) is the only vertex with 𝑟 (𝑤 , x1. . . 𝑥𝑛) ≠ ∅ 

for all 𝑛, we may put 𝑅(𝑤) = 1 and invoke cofinality of 𝐸 to get the required 𝑁 and 𝜆 so 

that ((𝐸, ℒ𝑡 , 𝒢
0,−)𝛾 is cofinal with 𝐿 = 1. Thus the definition of cofinality for labelled 

graphs reduces to the usual definition of cofinality for directed graphs. 

(ii) The labelled space (𝐸2 , ℒ2 , 𝒢2
0) of Example (1.1.15)(i) is not ℓ‐cofinal for ℓ ≥ 2, and 

so not cofinal. To see this, observe that [𝑤]ℓ = {𝑤} for ℓ ≥ 2 and there is no labelled path 

joining 𝑤 to the infinite path (100)∞. 
The following result will allow us to prove cofinality for many interesting examples. 

Lemma (1.1.19)[444]: Let (𝐸, ℒ, 𝒢0,−) be a labelled space. If 𝐸 is row‐finite, transitive and 

𝒢0,− contains {𝑣}  for all 𝑣 ∈ 𝐸0 then (𝐸, ℒ, 𝒢0,−) is cofinal with 𝐿 = 1. 
Proof. Let 𝑤 ∈ 𝐸0. Since {𝑤} ∈ 𝒢0,− there must be an 𝑅(𝑤) ≥ 1 such that [𝑤]𝑑 = {𝑤} for 

all ≥ 𝑅(𝑤) . 
   Let ℓ ≥ 1 and choose [𝑣]ℓ ∈ 𝛺ℓ. Let 𝑤 ∈ 𝐸0, and choose 𝑅(𝑤) as in the first paragraph. 

Let 𝑥 ∈ 𝑋𝐸,ℒ
+  be such that 𝑤 ∈ 𝑠(𝑥) . Let 𝑁 ≥ 1. Then as 𝐸 is row‐finite there are only 

finitely many paths 𝜇1 , . . . , 𝜇𝑚 in 𝐸 with 𝑠(𝜇𝑖) = 𝑤 and ℒ(𝜇𝑖) = 𝑥1…𝑥𝑁. By transitivity 

of 𝐸 there are paths 𝜆1 , . . . , 𝜆𝑚 ∈ 𝐸∗ with 𝑠(𝜆𝑖) = 𝑣 and 𝑟(𝜆𝑖) = 𝑟(𝜇𝑖) . Then 

⋃𝑟([𝑣]ℓ, ℒ(𝜆𝑖))

𝑚

𝑖=1

⊇ 𝑟([𝑤]𝑑, 𝑥1…𝑥𝑁) 

as required. Thus (𝐸, ℒ, 𝒢0,−) is cofinal with 𝐿 = 1. 
Theorem (1.1.20)[444]: Let (𝐸, ℒ, 𝒢0,−) be cofinal and disagreeable. Then 𝐶∗(𝐸, ℒ, 𝒢0,−) is 

simple. 

Proof. Since every ideal in a 𝐶∗‐algebra is the kernel of a representation, it suffices to prove 

that every non‐zero representation 𝜋𝑆,𝑃 of 𝐶∗(𝐸, ℒ, 𝒢0,−) is faithful. Suppose 𝜋𝑆,𝑃 is a non‐

zero representation of 𝐶∗(𝐸, ℒ, 𝒢0,−) If we have 𝑃[𝑣]ℓ = 0 for all 𝑣 ∈ 𝐸0 and ℓ ≥ 1 then 𝜋𝑆,𝑃 

= 0. Thus there is a 𝑤 ∈ 𝐸0 and a 𝑑 ≥ 1 with 𝑃[𝑤]𝑑 ≠ 0. Fix [𝑣]ℓ ∈ 𝛺ℓ. We aim to prove 

that 𝑃[𝑣]ℓ ≠ 0. Since [𝑤]𝑑 is the disjoint union of finitely many equivalence classes [𝑤𝑖]𝑘 

whenever 𝑘 ≥ 𝑑, for each 𝑘 there is an 𝑖 such that 𝑃[𝑤𝑖]𝑘 ≠ 0. So without loss of generality, 

for a given [𝑣]ℓ ∈ 𝛺ℓ, we may assume that 𝑑 ≥ 𝑅(𝑤) . 
Since (𝐸, ℒ, 𝒢0,−) is set‐finite we apply (4) of Proposition (1.1.7) to obtain 

𝑃[𝑤]𝑑 = ∑ 𝑆𝑥1

 

𝑥1∈ℒ([𝑤]𝑑𝐸
1)

𝑃𝑟([𝑤]𝑑,𝑥1)𝑆𝑥1
∗ . 
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Since the left‐hand side is nonzero it follows that 𝑆𝑥1𝑃𝑟([𝑤]𝑑,𝑥1)𝑆𝑥1
∗  ≠ 0 for some 𝑥1 ∈ 

ℒ([𝑤]𝑑𝐸
1) which implies that 𝑃𝑟([𝑤]𝑑,𝑥1) ≠ 0. Arguing as in the proof  of  Proposition 

(1.1.7) we have 

𝑃𝑟([𝑤]𝑑,𝑥1) = ∑ 𝑆𝑥2𝑃𝑟(𝑟([𝑤]𝑑,𝑥1),𝑥2)𝑆𝑥2
∗

𝑥2∈ℒ(𝑟([𝑤]𝑑,𝑥1)𝐸
1)

 

and so we may deduce that there is an 𝑥2 with 𝑃𝑟(𝑟([𝑤]𝑑,𝑥1),𝑥2) = 𝑃𝑟([𝑤]𝑑,𝑥1𝑥2) ≠ 0. 

Continuing in this way we produce 𝑥 = 𝑥1 𝑥2. . . ∈ 𝑋𝐸,ℒ
+  such that 𝑃𝑟([𝑤]𝑑,𝑥1…𝑥𝑛) ≠ 0 for all 

𝑛 ≥ 1. 
   Let ℓ ≥ 1 and [𝑣]ℓ ∈ 𝛺ℓ. Since 𝑑 > 𝑅(𝑤) , by cofinality, there are finitely many labelled 

paths 𝜆1 , . . . , 𝜆𝑚 and an 𝑁 ≥ 1 such that ⋃ 𝑟𝑚
𝑖=1  ([𝑣]ℓ, 𝜆𝑖) ⊇ 𝑟 ([𝑤]𝑑 , x1. . . 𝑥𝑁). Since 

𝑃𝑟([𝑤]𝑑,𝑥1,…,𝑥𝑁) ≠ 0 we must have 𝑃𝑟([𝑣]𝑙,𝜆𝑗) ≠ 0 for some  𝑖 ∈ {1, . . . , 𝑚}. Since 𝑟 

([𝑣]ℓ, 𝜆𝑖) ⊆ 𝑟(𝜆𝑖) it then follows that 𝑃𝑟(𝜆𝑖) ≠ 0 and hence 𝑆𝜆𝑖  ≠ 0. Since 𝑃[𝑣]ℓ =

∑ 𝑆𝜆𝑃𝑟([𝑣]ℓ,𝜆)𝑆𝜆
∗

𝜆∈ℒ   it then follows that 𝑃[𝑣]ℓ ≠ 0 as required. 

  Thus all the projections 𝑃[𝑣]ℓ are non‐zero and Theorem (1.1.20) implies that 𝜋𝑆,𝑃 is 

faithful, completing our proof. 

Examples (1.1.21)[444]: (i) The labelled space (𝐸1, ℒ1, 𝒢1
0,−) shown to be disagreeable in 

Examples (1.1.15)(i) is cofinal with 𝐿 = 1. This follows by Lemma (1.1.19) (i) since 𝐸1 is 

row‐finite, transitive and {𝑣} ∈ 𝒢1
0,−

 for all 𝑣 ∈ 𝐸1
0. Hence 𝐶∗(𝐸1 , ℒ1 , 𝒢1

0 ) is simple by 

Theorem (1.1.20). 

(ii) The labelled space (𝐸𝐺,𝑆, ℒ𝐺,𝑆, 𝒢𝐺’,𝑆
0,−) of Examples (1.1.18) (ii) is cofinal with 𝐿 = 1. To 

see this recall that [𝑔]ℓ = 𝐸𝐺,𝑆
0  = 𝐺 for all ℓ ≥ 1. Fix [𝑔]ℓ ∈ 𝛺ℓ and 𝑥 ∈ 𝑋𝐸𝐺𝑆,ℒ𝐺𝑆

+ . For ℎ ∈ 

𝐺, 𝑑 ≥ 𝑅(ℎ) = 1 and 𝑛 = 1 we have 𝑟 ([ℎ]𝑑, 𝑥1) = 𝐺. Let 𝜆1 be any element of 𝑆, then 

𝑟([𝑔]ℓ, 𝜆1) = 𝐺 = 𝑟 ([ℎ]𝑑, 𝑥1) . Hence 𝐶∗(𝐸𝐺,𝑆, ℒ𝐺,𝑆, 𝒢𝐺’,𝑆
0,−) is simple by Theorem (1.1.20). 

We now tum our attention to the question of pure infiniteness for simple labelled graph 𝐶∗‐
algebras. For graph 𝐶∗‐algebras the key hypotheses are condition (L) and every vertex 

connects to a loop (see [11, Theorem 3.9], [1, Proposition 5.4]). As we already have an 

analogue of condition (L), we must now seek to find a suitable replacement for the 

requirement that every vertex connects to a loop in the context of labelled graphs. Again, 

there are two difficulties to overcome: we must accommodate the generalised vertices [𝑣]ℓ 
in a labelled graph and find the correct analogue of a loop. 

Definitions (1.1.22)[444]: The labelled path 𝛼 is repeatable if 𝛼𝑛 ∈ ℒ∗(𝐸) for all 𝑛 ≥ 1. 

We say that every vertex connects to a repeatable labelled path if for every [𝑣]𝑚 ∈ 𝛺𝑚 there 

is a 𝑤 ∈ 𝐸0 , 𝐿(𝑤) ≥ 1 and labelled paths 𝛼, 𝛿 ∈ ℒ∗(𝐸) with 𝑤 ∈ 𝑟([𝑣]𝑚, 𝛿𝛼) such that 

[𝑤]ℓ ⊆ 𝑟([𝑤]ℓ, 𝛼) for all ℓ ≥ 𝐿(𝑤) 
The pure infiniteness result requires the following lemma whose proof follows along similar 

lines to that of [1, Lemma 5.4]. 

Lemma (1.1.23)[444]: Let (𝐸, ℒ, 𝒢0,−) be a labelled space, 𝑣 ∈ 𝐸0 and ℓ ≥ 1. Let 𝑡 be a 

positive element of  ℱ𝑘([𝑣]ℓ) . Then there is a projection 𝑟 in the 𝐶∗‐subalgebra of 

  ℱ𝑘([𝑣]ℓ) generated by t such that 𝑟𝑡𝑟 = ‖𝑡‖𝑟. 
Theorem (1.1.24)[444]: Let (𝐸, ℒ, 𝒢0,−) be cofinal and disagreeable. If every vertex 

connects to a repeatable labelled path then 𝐶∗(𝐸, ℒ, 𝒢0,−) is simple and purely infinite. 
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Proof.  We know that 𝐶∗(𝐸, ℒ, 𝒢0,−) is simple by Theorem (1.1.20). We show that every 

hereditary subalgebra 𝐴 of 𝐶∗(𝐸, ℒ, 𝒢0,−) contains an infinite projection; indeed we shall 

produce one which is dominated by a fixed positive element 𝑎 ∈ 𝐴 with ‖𝛷(𝑎)‖ = 1. 
By Proposition (1.1.7) we may choose a positive element ∈ 𝑠𝑝𝑎𝑛{𝑠𝛼𝑝[𝑣]ℓ𝑠𝛽

∗  : 𝛼, 𝛽 ∈ ℒ∗(𝐸) 

, [𝑣]ℓ ∈ 𝛺ℓ} such that ‖𝑎 − 𝑏‖ < 
1

4
. Suppose 𝑏 = ∑ 𝑠𝛼𝑝[𝑤]ℓ𝑠𝛽

∗
𝑐𝛼,[𝑤]ℓ,𝛽∈𝐹

 where 𝐹 is a finite 

subset of ℒ∗(𝐸) × 𝛺 × ℒ∗(𝐸) . The element 𝑏0 : = 𝛷(𝑏) is positive and satisfies ‖𝑏0‖ ≥ 
3

4
. 

Let 𝑘 =  max {|𝛼|, |𝛽| ∶  (𝛼, [𝑤]ℓ, 𝛽)  ∈  𝐹}. By repeatedly applying (4) we may 

suppose(changing 𝐹 ifnecessary) that  min {|𝛼|, |𝛽| ∶  (𝛼, [𝑤]ℓ, 𝛽)  ∈ 𝐹} = 𝑘. Let 𝑀 =
 max {|𝛼|, |𝛽| ∶  (𝛼, [𝑤]ℓ, 𝛽) ∈ 𝐹}, 𝐿𝐹 =  max {𝐿𝑤 : (𝛼, [𝑤]ℓ, 𝛽) ∈ 𝐹} and let 𝐿 be the 

smallest number such that (𝐸, ℒ, 𝒢0 ) is ℓ‐cofinal for all ℓ ≥ 𝐿. Then from Proposition 

(1.1.2) we may assume that 𝑏0 ∈ ⊕𝑤:(𝛼,[𝑤]ℓ,𝛽)∈𝐹 ℱ
𝑘([𝑤]𝑚) for some  ≥  max {𝐿, 𝐿𝐹 , 𝑀}. In 

fact, ‖𝑏0‖ must be attained in some sum and ℱ𝑘([𝑣]𝑚) . Let 𝑏1 be the component of 𝑏0 in 

ℱ𝑘([𝑣]𝑚) , and note that 𝑏1 ≥ 0 and ‖𝑏1‖ = ‖𝑏0‖. By Lemma (1.1.23) there is a projection 

𝑟 ∈ 𝐶∗(𝑏1) ⊆ ℱ
𝑘([𝑣]𝑚) such that 𝑟𝑏1𝑟 = ‖𝑏1‖𝑟. Since 𝑏1 is a finite sum of 𝑠𝛼𝑝[𝑣]𝑚𝑠𝛽

∗  we 

can write 𝑟 as a sum ∑𝑐𝛼𝛽𝑠𝛼𝑝[𝑣]𝑚𝑠𝛽
∗  over all pairs of paths in 

𝑆 = {𝛼 ∈ ℒ(𝐸𝑘): 𝑒𝑖𝑡ℎ𝑒𝑟 (𝛼, [𝑤]ℓ, 𝛽) ∈ 𝐹 𝑜𝑟 (𝛽, [𝑤]ℓ, 𝛼) ∈ 𝐹 𝑎𝑛𝑑 [𝑤]ℓ ⊆ 𝑟(𝛼)}. 

As 𝑚 ≥ 𝐿𝑣 , [𝑣]𝑚 is disagreeable and there is an 𝑛 > 𝑀 and a 𝜆 ∈ ℒ∗(𝐸) with |𝜆| ≥ 𝑛 which 

is disagreeable for [𝑣]𝑚. Since 𝑚 ≥ 𝑀 ≥ 𝑀 − 𝑘 as well we may employ the same argument 

as in the proof ofTheorem (1.1.16) to produce a projection 𝑄 ≔ ∑ 𝑠𝛾𝜆𝑝𝑟([𝑣]𝑚,𝜆)𝑠𝛾𝜆
∗

𝛾∈𝑆  such 

that 𝑄𝑠𝛼𝑝[𝑣]𝑚𝑠𝛽
∗𝑄 = 0 unless 

|𝛼| = |𝛽| = 𝑘 and [𝑣]𝑚 ⊆ 𝑟(𝛼) ∩ 𝑟(𝛽) . Since 𝑟 ∈ 𝐶∗(𝑏1) we have 

𝑟 =∑𝑐𝛼𝛽𝑠𝛼𝑝[𝑣]𝑚𝑠𝛽
∗ =∑𝑐𝛼𝛽𝑠𝛼(𝑠𝜆𝑝𝑟([𝑣]𝑚,𝜆)𝑠𝜆

∗ + (𝑝[𝑣]𝑚 − 𝑠𝜆𝑝𝑟([𝑣]𝑚,𝜆)𝑠𝜆
∗))𝑠𝛽

∗ ≥ 𝑄 

so that 

𝑄𝑏𝑄 = 𝑄𝑏0𝑄 = 𝑄𝑟𝑏1𝑟𝑄 = ‖𝑏1‖𝑟𝑄 = ‖𝑏0‖𝑄 ≥ 
3

4
𝑄. 

Since ‖𝑎 −𝑏‖ ≤ 
1

4
 we have 𝑄𝑎𝑄 ≥ 𝑄𝑏𝑄 − 

1

4
𝑄 ≥ 

1

2
𝑄 and so 𝑄𝑎𝑄 is invertible in 𝑄𝐶∗(𝐸, ℒ, 

𝜉0,− )𝑄. Let 𝑐 denote its inverse and put 𝑣 = 𝑐1/2𝑄𝑎1/2. Then 𝑣∗ = 𝑐1/2𝑄𝑎𝑄𝑐1/2 = 𝑄, and 

𝑣∗𝑣 = 𝑎1/2𝑄𝑐𝑄𝑎1/2 ≤ ‖𝑐‖𝑎 and so 𝑣∗𝑣 belongs to the hereditary subalgebra 𝐴. To finish, 

we must show that 𝑣∗𝑣 is an infinite projection. 

   We wish to find a labelled path 𝛽 with 𝑟 ([𝑣]𝑚, 𝛽) ≠ ∅ whose initial segment is 𝜆 and 

whose terminal segment is a repeatable labelled path. We choose 𝑥 ∈ 𝑟 ([𝑣]𝑚, 𝜆) . Then 

[𝑥]𝑚+|𝜆| ⊆ 𝑟([𝑣]𝑚, 𝜆) and by hypothesis [𝑥]𝑚+|𝜆| connects to a repeatable path: That is, 

there is a 𝑤 ∈ 𝐸0, 𝐿(𝑤) ≥ 1 and paths 𝛼, 𝛿 ∈ ℒ∗(𝐸) such that 𝑤 ∈ 𝑟 ([𝑥]𝑚+|𝜆|, 𝛿𝛼) , and 

[𝑤]𝑛 ⊆ 𝑟([𝑤]𝑛, 𝛼) for all 𝑛 ≥ 𝐿(𝑤) . The required path is 𝛽 = 𝜆𝛿𝛼. Let 𝑁 =

 max {𝐿𝑤 , 𝐿(𝑤)}. We claim that 𝑝[𝑤]𝑛  is an infinite projection for all 𝑛 ≥ 𝑁. As 𝑛 ≥ 𝐿(𝑤) 

, that we have 𝑟 ([𝑤]𝑛, 𝛼
𝑖) ≠ ∅, for 𝑖 ≥ 1. Moreover, as 𝑛 ≥ 𝐿𝑤 we know that [𝑤]𝑛 is 

disagreeable. Hence there must be a labelled path 𝑉 with [𝑤]𝑛 ∩ 𝑠(𝛾) ≠ ∅ and 𝑖 ≥ 1 with 

|𝛾| = |𝛼𝑖| , and 𝑉 ≠ 𝛼𝑖. We compute 

𝑝[𝑤]𝑛  ≤ 𝑠𝛼𝑖𝑝𝑟([𝑤]𝑛,𝛼𝑖)𝑠𝛼𝑗
∗  < 𝑠𝛼𝑖𝑝𝑟([𝑤]𝑛,𝛼𝑗)𝑠𝛼𝑗

∗ + 𝑠𝛾𝑝𝑟([𝑤]𝑛,𝛾)𝑠𝛾
∗ ≤ 𝑝[𝑤]𝑛  

and our claim is established. 

   We now demonstrate the existence of an infinite subprojection of 𝑄. If 𝜇 is any labelled 

path with |𝜇| = 𝑘 ≤ 𝑀 ≤ 𝑚 and 𝑟(𝜇) ∩ 𝑠(𝜆) ∩ [𝑣]𝑚 ≠ ∅ then for 𝑛 ≥ 𝑁 such that [𝑤]𝑛 ⊆



15 

 

𝑟([𝑣]𝑚, 𝜆𝛿𝛼) (note that such an 𝑛 exists as [𝑤]𝑛 ⊆ 𝑟([𝑣]𝑚, 𝜆𝛿𝛼) for all sufficiently large 

n) we have 

𝑝[𝑤]𝑛 = 𝑝[𝑤]𝑛𝑠𝜇𝜆𝛿𝛼
∗ 𝑠𝜇𝜆𝛿𝛼 ∼ 𝑠𝜇𝜆𝛿𝛼𝑝[𝑤]𝑛𝑠𝜇𝜆𝛿𝛼

∗ ≤ 𝑠𝜇𝜆𝑝
𝑟([𝑣]𝑚,𝜆)

𝑆𝜇𝜆
∗ . 

   Because the projection 𝑠𝜇𝜆𝑝𝑟([𝑣]𝑚,𝜆)𝑠𝜇𝜆
∗  is a minimal projection in the matrix algebra 

𝑠𝑝𝑎𝑛{𝑠𝜇𝜆𝑝𝑟([𝑣]𝑚,𝜆)𝑠𝑣𝜆
∗ ∶  𝜇, 𝑣 ∈ 𝑆}, it is equivalent to a subprojection of 𝑄. It follows that 𝑄 

is infinite, and, since 𝑄 = 𝑣𝑣∗ ∼ 𝑣∗𝑣 this completes the proof. 

Examples (1.1.25)[444]: (i) In the labelled space (𝐸1, ℒ1, 𝒢1
0,−) of Examples (1.1.15) (i) 

every vertex connects to the repeatable path 0. Since (𝐸1, ℒ1, 𝒢1
0,−) is cofinal and 

disagreeable, 𝐶∗(𝐸1, ℒ1, 𝒢1
0,−) is simple and purely infinite by Theorem (1.1.24). 

(ii) Suppose that, for a group 𝐺, the set 𝑆 contains (not necessarily distinct) elements 

𝑔1, … , 𝑔𝑛 such that 𝑔1…𝑔𝑛 = 1𝐺 . Then every vertex in the labelled graph (𝐸𝐺,𝑆, ℒ𝐺,𝑆) of 

Examples (1.1.15) (ii) connects to the repeatable labelled path 𝑔1…𝑔𝑛. If in addition we 

have |𝑆| > 1 , then by Examples (1.1.15) (ii) and Examples (1.1.21) (ii) (𝐸𝐺,𝑆, ℒ𝐺,𝑆, 𝒢𝐺’,,𝑆
0,− ) is 

cofinal and disagreeable and so 𝐶∗ (𝐸𝐺,𝑆, ℒ𝐺,𝑆, 𝒢𝐺’,,𝑆
0,− ) is simple and purely infinite by 

Theorem (1.1.24). 

   We associate a labelled graph to a Dyck shift in such a way that the resulting labelled 

space 𝐶∗‐algebra is simple and purely infinite. 

   First we recall the definition of the Dyck shift (see [19], [18]). Let 𝑁 ≥ 1 be a fixed 

positive integer. The Dyck shift 𝐷𝑁 has alphabet 𝒜 = {𝛼1, . . . , 𝛼𝑁, 𝛽1, . . . , 𝛽𝑁} where the 

symbols 𝛼𝑖 correspond to opening brackets of type 𝑖 and the symbols 𝛽𝑖 are their respective 

closing brackets. We say that a word 𝛾1…𝛾𝑛 ∈ 𝒜∗ is admissible if 𝛾1…𝛾𝑛 does not contain 

any substring 𝛼𝑖𝛽𝑗 with  ≠ 𝑗. Thus the language of the Dyck shift consists of all strings of 

properly matched brackets of types 𝛼1 , . . . 𝛼𝑁. 
The following algorithm gives a labelled graph presentation of a Dyck shift. 

i) Fix 𝑁 ≥ 1 and an alphabet {𝛼1, . . . , 𝛼𝑁, 𝛽1, . . . , 𝛽𝑁}. 
ii)  Draw an unrooted, infinite, directed tree in which every vertex receives one edge 

and emits 𝑁 edges (i.e. an 𝑁- ary tree). Label the 𝑁 branches from each node, 

working from left to right, by 𝛼1 , . . . , 𝛼𝑁. 
iii)  For each 𝑖 ∈ {1, . . . , 𝑁} and each edge 𝑒 labelled 𝛼𝑖 , draw an edge from 𝑟(𝑒) to 𝑠(𝑒) 

with label 𝛽𝑖 . 
The resulting labelled graph (𝐸𝑁, ℒ𝑁) is a left‐resolving labelled graph which presents the 

Dyck shift 𝐷𝑁. 
Examples (1.1.26)[444]: (a) Let 𝑁 = 1 and 𝒜 = {(, )}. The above algorithm gives the 

following labelled graph presentation of 𝐷1. 

 
   The above labelled graph is not the optimal presentation of 𝐷1 , as 𝐷1 has no constraints 

and so is the full shift on the symbols (and).  

(b) Let 𝑁 = 2 and let  𝒜 = {(, [, ), ]}. The above algorithm gives the following labelled 

graph presentation of 𝐷2. 
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We thank W. Krieger for pointing out that the above labelled graph is an asynchronizing 

Shannon graph of the Dyck shift (see [8]). 

Proposition (1.1.27)[444]: Let 𝑁 ≥ 1 and 𝒜 = {𝛼1, . . . , 𝛼𝑁, 𝛽1, . . . , 𝛽𝑁}. Then 

𝐶∗(𝐸𝑁, ℒ𝑁 , 𝒢𝑁
0,−) is simple and purely infinite. 

Proof. Let 𝛬ℓ = {𝜆1
ℓ , . . . , 𝜆𝑁ℓ

ℓ } be the labelled paths of length ℓ which consist of only 𝛼𝑖’s 

(opening braces), and let 𝑢↦ℓ = {𝜇1
ℓ, . . . , 𝜇

𝑁ℓ
ℓ } be the labelled paths of length ℓ which consist 

of only 𝛽𝑖’s (closing braces), organised in such a way that for all 𝑖 the word 𝜆𝑖
ℓ𝜇𝑖
ℓ belongs to 

the language of 𝐷𝑁. Since every vertex 𝑣 ∈ 𝐸𝑁
0  receives one opening brace and 𝑁 closing 

braces, it follows that 𝑣 receives a unique 𝜆𝑖
ℓ ∈ 𝛬ℓ one sees that 𝛺ℓ = {[𝑣𝑖

ℓ]ℓ : 𝑖 = 1 , . . . , 

𝑁ℓ} where 𝑣𝑖
ℓ is some vertex in 𝑟(𝜆𝑖

ℓ) . Moreover, every vertex 𝑣 ∈ 𝐸𝑁
0  emits exactly one 

closing brace (the closing version of the one it receives) and 𝑁 opening braces, so every 𝑣 

which receives 𝜆𝑖
ℓ also emits 𝜇𝑖

ℓ. 

For 1 ≤ 𝑖, 𝑗 ≤ 𝑁ℓ let 𝜇𝑖𝑗
ℓ  = 𝜇𝑖

ℓ𝜆𝑗
ℓ then 𝑠(𝜇𝑖𝑗

ℓ ) = [𝑣𝑖
ℓ]ℓ as the only vertices which emit 

𝜇𝑖
ℓ are those which receive 𝜆𝑖

ℓ. We have 𝑟(𝜇𝑖𝑗
ℓ ) = 𝑟(𝜆𝑗

ℓ) = [𝑣𝑗
ℓ]ℓ since every vertex in 𝐸𝑁

0  

(emits the labelled path 𝜆𝑖
ℓ and hence) receives a labelled path 𝜇𝑖

ℓ which originates from a 

vertex in [𝑣𝑖
ℓ]ℓ, that it 𝑟([𝑣𝑖

ℓ]ℓ, 𝜇𝑖
ℓ) = 𝐸𝑁

0 . 

     Fix ℓ ≥ 1 , [𝑣]ℓ ∈ 𝛺ℓ and  ∈ 𝑋𝐸𝑁,ℒ𝑁
+ . Without loss of generality suppose that [𝑣]ℓ = [𝑣1

ℓ]ℓ. 

Then by definition of the 𝜇𝑖𝑗
ℓ  we have 

⋃𝑟

𝑁ℓ

𝑗=1

([𝑣1
ℓ]ℓ, 𝜇1𝑗

ℓ ) = 𝐸𝑁
0  

and hence the labelled space (𝐸𝑁, ℒ𝑁, 𝒢𝑁
0,−) is cofinal with 𝐿 = 1. 

    We now show that (𝐸𝑁 , ℒ𝑁 , 𝒢𝑁
0,−) is disagreeable. For 𝑛 ≥ 1 , every vertex 𝑣 emits 

the labelled path 𝛼1
𝑛𝛽1 , which is disagreeable for [𝑣]ℓ. Hence [𝑣]ℓ is disagreeable for all ℓ 

≥ 1. It follows that 𝐶∗(𝐸𝑁, ℒ𝑁 , 𝒢𝑁
0,−) is simple by Theorem (1.2.20). 

   Since every vertex 𝑣 ∈ 𝐸𝑁
0  emits the repeatable labelled path 𝛼1𝛽1 it follows that every 

generalised vertex in (𝐸𝑁, ℒ𝑁, 𝒢𝑁
0,−) connects to a repeatable labelled path. Thus 

𝐶∗(𝐸𝑁, ℒ𝑁 , 𝒢𝑁
0,−) is purely infinite by Theorem (1.1.23). 

   where 𝐶(Ω, 𝑍) denotes the abelian group of all 𝑍‐valued continuous functions on the 

Cantor set Ω. Since the 𝐾‐theory of 𝐶∗(𝐸𝑁 , ℒ𝑁 , 𝒢𝑁
0,−) is not finitely generated it follows that 

𝐶∗(𝐸𝑁, ℒ𝑁 , 𝒢𝑁
0,−) cannot be isomorphic to a unital graph algebra (indeed 𝐶∗(𝐸𝑁, ℒ𝑁, 𝒢𝑁

0,−) is 

not semiprojective). 

     Note that the essential symbolic matrix system (𝑀(𝐸𝑁)ℓ,ℓ+1, 𝐼(𝐸𝑁)ℓ,ℓ+1)ℓ≥1 associated 

to (𝐸𝑁, ℒ𝑁 , 𝒢𝑁
0,−) is not the same as the one described in [9, Proposition 2.1]. In [9] the 𝜆‐

graphs associated to symbolic matrix systems are “upward directed” whereas in [16] they 

are “downward directed This results from the change of time direction mentioned on [9, p. 
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81]. Hence to form the appropriate “upward directed” versions for (𝐸𝑁, ℒ𝑁 , 𝒢𝑁
0,−) it would 

seem natural to reverse the arrows in 𝐸𝑁. 
   Consider the shift space 𝑋 over the alphabet 𝒜 = {𝑎, 𝑏, 𝑐} whose language consists of all 

words in {𝑎, 𝑏, 𝑐} such that the numbers of 𝑏’s and 𝑐’s occurring between any pair of 

consecutive 𝑎’s are equal. 

     Note that the shift 𝑋 is not sofic: suppose otherwise. Then there is a finite labelled graph 

(𝐸𝑋, ℒ𝑋) with |𝐸𝑋
0| = 𝑛 which presents 𝑋. Let 𝛼 be a path in (𝐸𝑋, ℒ𝑋) which presents 

𝑎𝑏2𝑛𝑐2𝑛𝑎. Then since the number of 𝑐’s in ℒ𝑋(𝛼) is greater than 𝑛, 𝛼 must contain a cycle 

𝜏 such that ℒ𝑋(𝜏) = 𝑐𝑚 for some 𝑚 ≤ 𝑛. Write  = 𝛼′𝜏𝛼′′. Then 𝛽 = 𝛼′𝜏2𝛼′′ is a path in 

𝐸𝑋
∗  which presents the forbidden word 𝑎𝑏2𝑛𝑐2𝑛+𝑚𝑎. 

The shift 𝑋 has the following labelled graph presentation (𝐸𝑋 , ℒ𝑋) : 

 
Since the graph 𝐸𝑋 is transitive, it is straightforward to check from the above presentation 

that 𝑋 is irreducible. 

   Since each vertex in 𝐸𝑋 to the right (resp. left) of 𝑣0 receives a unique labelled path of the 

form 𝑎𝑏𝑛 (resp. 𝑎𝑐𝑛) it follows that {𝑣} ∈ 𝒢0,− for all 𝑣 ∈ 𝐸𝑋
0. Since 𝐸𝑋 is row-finite it 

follows that (𝐸𝑋, ℒ𝑋 , 𝒢𝑋
0,−) is cofinal by Lemma (1.1.7). 

For 𝑛 ≥ 1 every 𝑣 ∈ 𝐸𝑋
0 emits the labelled path 𝑏𝑛𝑐, which is disagreeable for [𝑣]ℓ. Hence 

[𝑣]ℓ is disagreeable for all ℓ ≥ 1 and so 𝐶∗(𝐸𝑋 , ℒ𝑋 , 𝒢𝑋
0,−) is simple by Theorem (1.1.20). 

    Every 𝑣 ∈ 𝐸𝑋
0 emits the repeatable path 𝑏𝑐 and since 𝐸𝑋 is transitive, it follows that every 

generalised vertex connects to a repeatable path. Thus 𝐶∗(𝐸𝑋, ℒ𝑋, 𝒢𝑋
0,−)  is purely infinite by 

Theorem (1.1.23). 

 

Section (1.2): Group Actions  

    A labelled graph (𝐸, ℒ) is a directed graph 𝐸 = (𝐸0, 𝐸1, 𝑟, 𝑠) together with a function ℒ : 

𝐸1 → 𝒜 where 𝒜 is called the alphabet. Labelled graphs are a model for studying symbolic 

dynamical systems; the labelled path space is a shift space whose properties may be inferred 

from the labelled graph presentation (cf. [34]). Labelled graph algebras were introduced in 

[24], [25], their theory has been developed in [23], [29], [30] and has found applications in 

mirror quantum spheres in [38]. 

   We introduce the notion of a group action on a labelled graph and study the crossed 

products formed by the induced action on the associated 𝐶∗‐algebra. Before we do this, we 

update the definition of the 𝐶∗‐algebra associated to a labelled graph. In order to circumvent 

a technical error, we add a new condition to ensure that the resulting 𝐶∗‐algebra satisfies a 

version of the gauge‐invariant uniqueness theorem. Since a directed graph is a labelled graph 

where ℒ is injective, we will be generalizing a suite of results for directed graphs and their 

𝐶∗‐algebras (see [27], [33], [31]). This is not as straightforward as it may seem since two 

distinct edges may carry the same label, so new techniques will be needed to prove our 

results. 

   An action of a group 𝐺 on a labelled graph (𝐸, ℒ) is an action of 𝐺 on 𝐸 together with a 

compatible action of 𝐺 on 𝒜 so that we may sensibly define the quotient object (𝐸/𝐺, ℒ/𝐺) 
as a labelled graph. In [28], Gross and Tucker introduce the notion of a skew product graph 
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𝐸 ×𝑐 𝐺 formed from a map 𝑐: 𝐸1 → 𝐺 and show that 𝐺 acts freely on 𝐸 ×𝑐 𝐺 with quotient 

𝐸. The Gross‐Tucker theorem [28, Theorem 2.1.2] takes a free action of 𝐺 on 𝐸 and recovers 

(up to equivariant isomorphism) the original graph and action from the quotient graph 𝐸/𝐺.  

We describe a skew product construction for labelled graphs and prove a version of the 

Gross‐ Tucker theorem for free actions on labelled graphs (Theorem (1.2.25)). Since a group 

action on a labelled graph is a pair of compatible actions, a new approach is needed: In 

Definition (1.2.11), we define a skew product labelled graph (𝐸 ×𝑐 𝐺, ℒ𝑑) to be a skew‐
product graph 𝐸 ×𝑐 𝐺 together with a labelling ℒ𝑑 : (𝐸 ×𝑐 𝐺)

1 → 𝒜 × 𝐺 which is defined 

using a new function 𝑑: 𝐸1 → 𝐺. The purpose of the new function 𝑑 is to accommodate the 

possibility that two edges carry the same label. We discuss the importance of 𝑑. We then 

turn our attention to applications of the results on labelled graph actions to the 𝐶∗‐algebras, 

𝐶∗(𝐸, ℒ) we have associated to labelled graphs. A function 𝑐: 𝐸1 → 𝐺 on a directed graph 

gives rise to a coaction 𝛿 of 𝐺 on 𝐶∗(𝐸) such that 𝐶∗(𝐸) × 𝛿𝐺 ≅ 𝐶∗(𝐸 ×𝑐 𝐺) (cf. [31]). In 

Proposition (1.2.27), we show that a skew product labelled graph (𝐸 ×𝑐 𝐺, ℒ𝑑) gives rise to 

a coaction 𝛿 of 𝐺 on 𝐶∗(𝐸, ℒ) provided that 𝑐: 𝐸1 → 𝐺 is consistent with the labelling map 

ℒ : 𝐸1 → 𝒜. Then in Theorem (1.3.32) we show that 𝐶∗(𝐸, ℒ) × 𝛿𝐺 ≅ 𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) 
where 1: 𝐸1 → 𝐺 is given by 1(𝑒) = 1𝐺  for all 𝑒 ∈ 𝐸1. Since this isomorphism is 

equivariant for the dual action of 𝐺 on 𝐶∗(𝐸, ℒ) × 𝛿𝐺 and the action of 𝐺 on 𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) 
induced by left translation of 𝐺 on (𝐸 ×𝑐 𝐺, ℒ1) , Takai duality then gives us 

𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) ×𝜏,𝑟 𝐺 ≅ 𝐶
∗(𝐸, ℒ) ⊗𝒦(ℓ2(𝐺)) 

in Corollary (1.2.32). Indeed if 𝑑 is consistent with the labelling map ℒ : 𝐸1 → 𝒜, then 

𝐶∗(𝐸 ×𝑐 𝐺, ℒ𝑑) is equivariantly isomorphic to 𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) (see Proposition (1.2.29)). 

For a directed graph 𝐸, a function 𝑐: 𝐸1 → ℤ given by 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸1 gives rise to 

a skew product graph 𝐸 ×𝑐 𝐺 whose 𝐶∗‐algebra which is strongly Morita equivalent to the 

fixed point algebra 𝐶∗(𝐸)𝛾 for the gauge action. In the case of labelled graphs, if , 𝑑: 𝐸1 →
ℤ are given by 𝑐(𝑒) = 1, 𝑑(𝑒) = 0 for all 𝑒 ∈ 𝐸1, then 𝐶∗(𝐸 ×𝑐 𝐺, ℒ𝑑) is strongly Morita 

equivalent to 𝐶∗(𝐸, ℒ)𝛾 (see Theorem (1.2.34)). 

An action 𝛼 of 𝐺 on a directed graph 𝐸 induces an action of 𝐺 on 𝐶∗(𝐸) , moreover if the 

action is free, then using the Gross‐Tucker theorem we have 

𝐶∗(𝐸) ×𝛼,𝑟 𝐺 ≅ 𝐶
∗ (
𝐸

𝐺
)⊗𝒦(ℓ2(𝐺))                (11) 

by [33, Corollary 3.10]. We show that an action of 𝐺 on (𝐸, ℒ) induces an action of 𝐺 on 

𝐶∗(𝐸, ℒ) . If we wish to use the Gross‐Tucker theorem for labelled graphs to prove the 

labelled graph analog (1), we need to know when the maps , 𝑑: (𝐸/𝐺)1 → 𝐺 provided by 

Theorem (1.2.24) are consistent with the quotient labelling ℒ/𝐺. The answer to this question 

is provided by Theorem (1.2.37: It happens precisely when the action 𝛼 has a fundamental 

domain. Hence, if the free action of 𝐺 on (𝐸, ℒ) has a fundamental domain, then in Corollary 

(1.2.38). we show that 

𝐶∗(𝐸, ℒ) ×𝛼,𝑟 𝐺 ≅ 𝐶
∗(𝐸/𝐺, ℒ/𝐺) ⊗𝒦(ℓ2(𝐺)) . 

We begin with a collection of definitions, which are taken from [24]. A directed graph 𝐸 =
(𝐸0, 𝐸1, 𝑟, 𝑠) consists of a vertex set 𝐸0, an edge set 𝐸1, and range and source maps 𝑟, 𝑠: 
𝐸1 → 𝐸0. That 𝐸 is row‐finite and essential, that is 

𝑟−1(𝑣) ≠ ∅ and 1 ≤ #𝑠−1(𝑣) < ∞ 

for all 𝑣 ∈ 𝐸0. We let 𝐸𝑛 denote the set of paths of length 𝑛 and set 𝐸+ = ⋃ 𝐸𝑛 
𝑛≥1 .  
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Definition (1.2.1)[444]: A labelled graph (𝐸, ℒ) over an alphabet 𝒜 consists of a directed 

graph 𝐸 together with a labelling map ℒ : 𝐸1 → 𝒜. 
We may assume that ℒ : 𝐸1 → 𝒜 is surjective. Let 𝒜∗ be the collection of all words in the 

symbols of  𝒜. For 𝑛 ≥ 1, the map ℒ extends naturally to a map ℒ : 𝐸𝑛 → 𝒜∗: for 𝜆 =
𝜆1⋯𝜆𝑛 ∈ 𝐸

𝑛 we set ℒ(𝜆) = ℒ(𝜆1)⋯ℒ(𝜆𝑛) and we say that 𝜆 is a representative of the 

labelled path ℒ(𝜆) . Let ℒ(𝐸𝑛) denote the collection of all labelled paths in (𝐸, ℒ) of length 

𝑛. Then ℒ+(𝐸) = ⋃ ℒ 
𝑛≥1 (𝐸𝑛) denotes the collection of all labelled paths in (𝐸, ℒ) , that is 

all words in the alphabet 𝒜 which may be represented by paths in 𝐸.  
Examples (1.2.2)[444]: 

(a) Every directed graph 𝐸 gives rise to a labelled graph (𝐸, ℒ𝜏) over the alphabet 𝐸1 

where ℒ𝜏 : 𝐸
1 → 𝐸1 is the identity map. 

(b) The directed graph 𝐸 whose edges 𝑒, 𝑓, 𝑔 have been labelled using the alphabet {0, 

1} as shown below is an example of a labelled graph 

                              (𝐸, ℒ) : = 

 
Let (𝐸, ℒ) be a labelled graph. Then for 𝛽 ∈ ℒ+(𝐸) we set 

𝑟(𝛽) = {𝑟(𝜆): ℒ(𝜆) = 𝛽}, 𝑠(𝛽) = {𝑠(𝜆): ℒ(𝜆) = 𝛽}. 
For 𝐴 ⊆ 𝐸0 and  𝛽 ∈ ℒ+(𝐸) , the relative range of 𝛽 with respect to 𝐴 is 

𝑟(𝐴, 𝛽) = {𝑟(𝜆): 𝜆 ∈ 𝐸+, ℒ(𝜆) = 𝛽, 𝑠(𝜆) ∈ 𝐴}. 
The labelled graph (𝐸, ℒ) is left‐resolving, if for all 𝑣 ∈ 𝐸0 the map ℒ restricted to 𝑟−1(v) is 

injective. The labelled graph (𝐸, ℒ) is weakly left‐resolving if for all 𝐴, 𝐵 ⊆ 𝐸0 and 𝛽 ∈
ℒ+(𝐸) we have 

𝑟(𝐴 ∩ 𝐵, 𝛽) = 𝑟(𝐴, 𝛽) ∩ 𝑟(𝐵, 𝛽). 
   If (𝐸, ℒ) is left‐resolving, then it is weakly left‐resolving. Examples (1.2.2)(a) and (b) are 

examples of left‐resolving labelled graphs. 

 A collection 𝐵 ⊆ 2𝐸
0
 of subsets of 𝐸0 is closed under relative ranges for (𝐸, ℒ) if for all 

𝐴 ∈ 𝐵 and 𝛽 ∈ ℒ+(𝐸) we have 𝑟(𝐴, 𝛽) ∈ 𝐵. If 𝐵 is closed under relative ranges for (𝐸, ℒ) 
, contains 𝑟(𝛽) for all 𝛽 ∈ ℒ+(𝐸) and unions, then 𝐵 is accommodating for (𝐸, ℒ) and the 

triple (𝐸, ℒ, 𝐵) is called a labelled space. Let  ℰ0.− be the smallest accommodating collection 

of subsets of 𝐸0 for  (𝐸, ℒ) . 
Definition (1.2.3)[444]: For 𝐴 ⊆ 𝐸0 and 𝑛 ≥ 1, let ℒ𝐴

𝑛 : = {𝛽 ∈ ℒ(𝐸𝑛) : 𝐴 ∩ 𝑠(𝛽) ≠ ∅} 
denote those labelled paths of length 𝑛 whose source intersects 𝐴 nontrivially. 

Though 𝐸 is row finite it is possible for ℒ𝐴
1 to be infinite; for example if ℒ is trivial, then 

ℒ𝐸0
1 = 𝐸1, which is infinite if 𝐸1 is infinite. A labelled space (𝐸, ℒ, 𝐵) is set‐finite if ℒ𝐴

1 is 

finite for all 𝐴 ∈ 𝐵. The following definition is given in [24]. 

Definition (1.2.4)[444]: A representation of a weakly left‐resolving, set‐finite labelled space 

(𝐸, ℒ, 𝐵) consists of projections {𝑝𝐴: 𝐴 ∈ 𝐵} and partial isometries {𝑠𝑎: 𝑎 ∈ 𝒜} such that 

(i)  If 𝐴, 𝐵 ∈ 𝐵, then 𝑝𝐴𝑝𝐵  = 𝑝𝐴∩𝐵 and 𝑝𝐴∪𝐵 = 𝑝𝐴 + 𝑝𝐵 −𝑝𝐴∩𝐵, where 𝑝∅ = 0. 
(ii)  If 𝑎 ∈ 𝒜 and 𝐴 ∈ 𝐵, then 𝑝𝐴𝑠𝑎 = 𝑠𝑎𝑝𝑟(𝐴,𝑎). 

(iii)  If 𝑎, 𝑏 ∈ 𝒜, then 𝑠𝑎
∗𝑠𝑎 = 𝑝𝑟(𝑎) and 𝑠𝑎

∗𝑠𝑏 = 0 unless 𝑎 = 𝑏. 

(iv)  For 𝐴 ∈ 𝐵, we have 
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𝑝𝐴 = ∑ 𝑠𝑎

 

𝑎∈ℒ𝐴
1

𝑝
𝑟(𝐴,𝑎)𝒮𝑎

∗ . 

𝐶∗(𝐸, ℒ, 𝐵) is the universal 𝐶∗‐algebra generated by a representation of (𝐸, ℒ, 𝐵) . Let  𝛾 : 

𝕋 → 𝐴𝑢𝑡𝐶∗(𝐸, ℒ, 𝐵) be the gauge action determined by 

𝛾𝑧𝑝𝐴 = 𝑝𝐴, 𝛾𝑧𝑠𝑎 = 𝑧𝑠𝑎 for  𝐴 ∈ 𝐵, 𝑎 ∈ 𝒜. 
The problem in [24, Lemma 5.2(ii)] arises because, under the hypotheses on a labelled space 

used in [24], it is possible to have 𝐴 ⊋ 𝐵 ∈ 𝐵 with 𝑝𝐴 = 𝑝𝐵  in  𝐶∗(𝐸, ℒ, 𝐵) . To rectify this 

problem, we must assume that 𝐵 is closed under relative complements; that is if 𝐴, 𝐵 ∈ 𝐵 

are such that 𝐴 ⊋ 𝐵, then 𝐴\𝐵 ∈ 𝐵. If 𝐵 is closed under relative complements, then we also 

recover the formula in [25, Remark 3.5]. 

Before stating the Gauge Invariant Uniqueness theorem, we give a corrected version of [24, 

Lemma 5.2] using the new hypothesis. 

Lemma (1.2.4)[444]: Let (𝐸, ℒ, 𝐵) be a weakly left‐resolving, set‐finite labelled space 

where 𝐵 is closed under relative complements and {𝑠𝑎 , 𝑝𝐴} be a representation (𝐸, ℒ, 𝐵) . 
Let 𝑌 = {𝑠𝛼𝑖𝑝𝐴𝑖𝑠𝛽𝑖

∗ ∶  𝑖 = 1, . . . , 𝑁} be a set of partial isometries in 𝐶∗(𝐸, ℒ, 𝐵) which is 

closed under multiplication and taking adjoints. If 𝑞 is a minimal projection in 𝐶∗(𝑌) , then 

either 

(i)  𝑞 = 𝑠𝛼𝑖𝑝𝐴𝑖𝑠𝛼𝑖
∗  for some 1 ≤ 𝑖 ≤ 𝑁 

(ii)  𝑞 = 𝑠𝛼𝑖𝑝𝐴𝑖𝑠𝛼𝑖
∗ − 𝑞′ where 𝑞′ = ∑ 𝑠𝛼𝑘(𝑙)

𝑚
𝑙=1 𝑝𝐴𝑘(𝑙)𝑠𝛼𝑘(𝑙)

∗  and 1 ≤ 𝑖 ≤ 𝑁; more‐ over 

there is a nonzero 𝑟 = 𝑠𝛼𝑖𝛽𝑝𝑟(𝐴𝑖,𝛽)𝑠𝛼𝑖𝛽
∗  ∈ 𝐶∗(𝐸, ℒ, 𝐵) such that 𝑞′𝑟 = 0 and 𝑞 ≥

𝑟. 
Proof. By projection in 𝐶∗(𝑌) may be written as 

∑𝑠𝛼𝑖(𝑗)

𝑛

𝑗=1

𝑝𝐴𝑖(𝑗)𝑠𝛼𝑖(𝑗)
∗ −∑𝑠𝛼𝑘(𝑙)

𝑚

𝑙=1

𝑝𝐴𝑘(𝑙)𝑠𝛼𝑘(𝑙)
∗ , 

where the projections in each sum are mutually orthogonal and for each 𝑙 there is a unique 

𝑗 such that 𝑠𝛼𝑖(𝑗)𝑝𝐴𝑖(𝑗)𝑠𝛼𝑖(𝑗)
∗  ≥ 𝑠𝛼𝑘(𝑙)𝑝𝐴𝑘(𝑙)𝑠𝛼𝑘(𝑙)

∗ . 

If 𝑞 = ∑ 𝑠𝛼𝑖(𝑗)
𝑛
𝑗=1 𝑝𝐴𝑖(𝑗)𝑠𝛼𝑖(𝑗)

∗ − ∑ 𝑠𝛼𝑘(𝑙)
𝑚
𝑙=1 𝑝𝐴𝑘(𝑙)𝑠𝛼𝑘(𝑙)

∗  is a minimal projection in 𝐶∗(𝑌) , then 

we must have 𝑛 = 1. If  𝑚 = 0, then 𝑞 = 𝑠𝛼𝑖𝑝𝐴𝑖𝑠𝛼𝑖
∗  for some 1 ≤ 𝑖 ≤ 𝑁. If  𝑚 ≠ 0, then 

𝑞 = 𝑠𝛼𝑖𝑝𝐴𝑖𝑠𝛼𝑖
∗ −∑𝑠𝛼𝑘(ℓ)

𝑚

ℓ=1

𝑝𝐴𝑘(ℓ)𝑠𝛼𝑘(ℓ)
∗ , 

where 𝐴𝑖, 𝐴𝑘(ℓ) ∈ 𝐵 for 1 ≤ ℓ ≤ 𝑚. If we apply Definition (1.2.4) (iv), we may write 

𝑞 =∑𝑠𝛼𝑖𝛽𝑗

𝑛

𝑗=1

𝑝𝑟(𝐴𝑖,𝛽𝑗)𝛽𝑗𝑠𝛼𝑖
∗ −∑∑𝑠𝛼𝑘(ℓ)𝜅ℎ

𝑚

ℓ=1

𝑡

ℎ=1

𝑝
𝑟(𝐴𝑘(ℓ),𝜅ℎ)

𝒮𝛼𝑘(ℓ)𝜅ℎ
∗ , 

where all 𝛼𝑖𝛽𝑗 and 𝛼𝑘(ℓ)𝜅ℎ have the same length. Since 𝑞 is a nonzero projection there is 

1 ≤ 𝑗 ≤ 𝑛 and 𝐻𝑗 ⊆ {1, . . . , 𝑡} × {1, . . . , 𝑚} such that 𝛼𝑖𝛽𝑗 = 𝛼𝑘(ℓ)𝜅ℎ for all (ℎ, ℓ) ∈ 𝐻𝑗 and 

𝑌𝑗 ≔ ⋃ 𝑟(𝐴𝑘(ℓ), 𝜅ℎ) ⊊ 𝑟(𝐴𝑖 , 𝛽𝑗)

(ℎ,ℓ)∈𝐻𝑗

. 

Since 𝐵 is closed under finite unions we have 𝑌𝑗 ∈ 𝐵. Then for this 𝑗 define 𝑋𝑗 =

𝑟(𝐴𝑖 , 𝛽𝑗)\𝑌𝑗 ≠ ∅, then 𝑋𝑗 ∈ 𝐵 since 𝐵 is closed under relative complements. Hence, the 
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projection 𝑟 = 𝑠𝛼𝑖𝛽𝑗𝑝𝑋𝑗𝑠𝛼𝑖𝛽𝑗
∗  is nonzero and 𝑞 ≥ 𝑟 since  𝑋𝑗 ⊂ 𝑟(𝐴𝑖 , 𝛽𝑗) . If we set 𝑞′ =

𝑠𝛼𝑖𝑝𝐴𝑖𝑠𝛼𝑖
∗ − 𝑞, then since 𝑋𝑗 ∩ 𝑌𝑗 = ∅ we have 𝑞′𝑟 = 0 as required. 

Theorem (1.2.5)[444]: Let (𝐸, ℒ, 𝐵) be a weakly left‐resolving, set‐finite labelled space 

where B is closed under relative complements and {𝑆𝑎 , 𝑃𝐴} be a representation (𝐸, ℒ, 𝐵) on 

Hilbert space. Take  𝜋𝑆,𝑃 to be the representation of 𝐶∗(𝐸, ℒ, 𝐵) satisfying 𝜋𝑆,𝑃(𝑠𝑎) = 𝑆𝑎  

and 𝜋𝑆,𝑃(𝑝𝐴) = 𝑃𝐴. Suppose that 𝑃𝐴 ≠ 0 for all ∅ ≠ 𝐴 ∈ 𝐵 and that there is a strongly 

continuous action 𝛾′ of  𝕋 on 𝐶∗({𝑆𝑎 , 𝑃𝐴}) such that for all  𝑧 ∈ 𝕋, 𝛾𝑧
′ ∘ 𝜋𝑆,𝑃 = 𝜋𝑆,𝑃 ∘ 𝛾𝑧. 

Then 𝜋𝑆,𝑃 is faithful. 

Proof. The proof is the same as given in [24, Theorem 5.3], using Lemma (1.3.5) instead of 

[24, Lemma 5.2].  

Definition (1.2.6)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph, then 

we define ℰ(𝑟, ℒ) to be the smallest accommodating collection of subsets of 𝐸0 which is 

closed under relative complements. 

This remark motivates the following definition. 

Definition (1.2.7)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph. A 

Cuntz‐Krieger (𝐸, ℒ)‐family consists of commuting projections {𝑝𝑟(𝛽) ∶  𝛽 ∈ ℒ
+(𝐸)} and 

partial isometries {𝑠𝑎: 𝑎 ∈ 𝒜} with the properties that: 

(CKla) For all 𝛽, 𝜔 ∈ ℒ+(𝐸) , 𝑝𝑟(𝛽)𝑝𝑟(𝜔) = 0 if and only if 𝑟(𝛽) ∩ 𝑟(𝜔) = ∅. 

(CKlb) For all 𝛽, 𝜔, 𝜅 ∈ ℒ+(𝐸) , if  (𝛽) ∩ 𝑟(𝜔) = 𝑟(𝜅) , then 𝑝𝑟(𝛽)𝑝𝑟(𝜔) = 𝑝𝑟(𝜅), if  𝑟(𝛽) ∪

𝑟(𝜔) = 𝑟(𝜅) , then 𝑝𝑟(𝛽) +𝑝𝑟(𝜔) −𝑝𝑟(𝛽)𝑝𝑟(𝜔) = 𝑝𝑟(𝜅) and if 𝑟(𝛽) →⊃ 𝑟(𝜔) , then 𝑝𝑟(𝛽) −

𝑝𝑟(𝜔) ≠ 0. 

(CK2) If 𝑎 ∈ 𝒜 and  𝛽 ∈ ℒ+(𝐸) , then 𝑝𝑟(𝛽)𝑠𝑎 = 𝑠𝑎𝑝𝑟(𝛽𝑎). 

(CK3) If  𝑎, 𝑏 ∈ 𝒜, then 𝑠𝑎
∗𝑠𝑎 = 𝑝𝑟(𝑎) and 𝑠𝑎

∗𝑠𝑏 = 0 unless 𝑎 = 𝑏. 

(CK4) For 𝛽 ∈ ℒ+(𝐸) , if ℒ𝑟(𝛽)
1  is finite and nonempty, then we have 

𝑝𝑟(𝛽) = ∑ 𝑠𝑎𝑝𝑟(𝛽𝑎)𝑠𝑎
∗

𝑎∈ℒ𝑟(𝛽)
1

.                                        (12) 

Let 𝐶∗(𝐸, ℒ) be the universal 𝐶∗‐algebra generated by a Cuntz‐Krieger (𝐸, ℒ)‐family. 

Let  𝛾′ : 𝕋 → 𝐴𝑢𝑡𝐶∗(𝐸, ℒ) be the gauge action determined by 

𝛾𝑧
′𝑝𝑟(𝛽) = 𝑝𝑟(𝛽), 𝛾𝑧

′𝑠𝑎 = 𝑧𝑠𝑎 for  𝛽 ∈ ℒ+(𝐸) , 𝑎 ∈ 𝒜. 

Theorem (1.2.8)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph. Then 

𝐶∗(𝐸, ℒ) is isomorphic to  𝐶∗(𝐸, ℒ, ℰ(𝑟, ℒ); moreover 

𝐶∗(𝐸, ℒ) = 𝑠𝑝𝑎𝑛{𝑠𝛼𝑝𝐴𝑠𝛽
∗ : 𝛼, 𝛽 ∈ ℒ+(𝐸) , 𝐴 ∈ ℰ(𝑟, ℒ( 

Proof. Let {𝑠𝑎 , 𝑝𝑟(𝛽)} be a universal Cuntz‐Krieger (𝐸, ℒ)‐family and {𝑡𝑎, 𝑞𝐴} be a universal 

representation of the labelled space (𝐸, ℒ, ℰ(𝑟, ℒ))  For 𝑎 ∈ 𝒜, set 𝑇𝑎 = 𝑠𝑎. 
By (CKla), we may define 𝑄∅ = 0. For 𝛼, 𝛽 ∈ ℒ+(𝐸) , we may define 𝑄𝑟(𝛼)∩𝑟(𝛽) = 

𝑄𝑟(𝛼)𝑄𝑟(𝛽) and 𝑄𝑟(𝛼∪𝑟(𝛽) = 𝑄𝑟(𝛼) + 𝑄𝑟(𝛽) − 𝑄𝑟(𝛼)∩𝑟(𝛽) in 𝐶∗(𝐸, ℒ) . If (𝛼) ⊋ 𝑟(𝛽) , then 

we may define 𝑄𝑟(𝛼)\𝑟(𝛽) = 𝑄𝑟(𝛼) − 𝑄𝑟(𝛽) ≠ 0 in 𝐶∗(𝐸, ℒ) . By using the 

inclusion/exclusion law we may define 𝑄𝐴 in 𝐶∗(𝐸, ℒ) for all  𝐴 ∈ ℰ(𝑟, ℒ) . 
It is a routine calculation to show that {𝑇𝑎, 𝑄𝐴} is a representation of the labelled space 

(𝐸, ℒ, ℰ(𝑟, ℒ)) in 𝐶∗(𝐸, ℒ) . By the universal property of 𝐶∗(𝐸, ℒ, ℰ(𝑟, ℒ)) there exists a 

homomorphism  𝛷: 𝐶∗(𝐸, ℒ, ℰ(𝑟, ℒ)) → 𝐶∗(𝐸, ℒ) such that 𝛷(𝑡𝑎) = 𝑇𝑎 and 𝛷(𝑞𝐴) = 𝑄𝐴. 

It is straightforward to see that 𝛾𝑧
′ ∘ 𝛷 = 𝛷 ∘ 𝛾𝑧 for  𝑧 ∈ 𝕋. The first statement then follows 
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by Theorem (1.2.6), and the final statement follows by applying 𝛷 to an arbitrary element 

of 𝐶∗(𝐸, ℒ, ℰ(𝑟, ℒ)) (see [42, Lemma 4.4]). 

   We begin by defining what a labelled graph morphism is and use the definition to define 

a labelled graph automorphism. Then in Theorem (1.2.10). we show that a labelled graph 

automorphism of (𝐸, ℒ) induces an automorphism of 𝐶∗(𝐸, ℒ) . 
Definition (1.2.9)[444]: Let (𝐸, ℒ) and (𝐹,𝑀) be labelled graphs over alphabets 𝒜𝐸 and 

𝒜𝐹 respectively. A labelled graph morphism is a triple 𝜙:= (𝜙0, 𝜙1, 𝜙𝐴𝐸) : (𝐸, ℒ) → (𝐹,
𝑀) such that 

(i) for all 𝑒 ∈ 𝐸1 , we have 𝜙0(𝑟(𝑒)) = 𝑟(𝜙1(𝑒)) and 𝜙0(𝑠(𝑒)) = 𝑠(𝜙1(𝑒)) ; 
(ii)  𝜙𝐴𝐸 : 𝒜𝐸 → 𝒜𝐹 is a map such that  𝑀 ∘ 𝜙1 = 𝜙𝐴𝐸 ∘ ℒ. 

If the maps 𝜙0, 𝜙1, 𝜙𝐴𝐸 are bijective, then the triple 𝜙:= (𝜙0, 𝜙1, 𝜙𝐴𝐸) is called a labelled 

graph isomorphism. In the case that 𝐹 = 𝐸, 𝒜𝐸 = 𝒜𝐹 and ℒ =  𝑀, we call (𝜙0, 𝜙1, 𝜙𝐴) a 

labelled graph automorphism. 

For a labelled graph morphism = (𝜙0, 𝜙1, 𝜙𝐴𝐸) , we shall omit the super‐ scripts on 𝜙 when 

the context in which it is being used is clear. 

The set 𝐴𝑢𝑡(𝐸, ℒ) : ={𝜙: 𝜙 is a labelled graph automorphism of (𝐸, ℒ)} forms a group 

under composition. The following result follows easily from the universal definition of 

𝐶∗(𝐸, ℒ) . 
Theorem (1.2.01)[444]: Let 𝜙 be an automorphism of a weakly left‐resolving, set‐ finite 

labelled graph (𝐸, ℒ) and {𝑠𝑎 , 𝑝𝑟(𝛽)} be a universal Cuntz‐Krieger (𝐸, ℒ)-family. The maps 

𝑠𝑎 ↦ 𝑠𝜙(𝑎) and 𝑝𝑟(𝛽) ↦ 𝑝𝜙(𝑟(𝛽)) induce an automorphism of 𝐶∗(𝐸, ℒ) . 

We shall define a skew product labelled graph and define what it means for a group 

to act on a labelled graph. 

Definition (1.2.00)[444]: Let (𝐸, ℒ) be a labelled graph and let 𝑐, 𝑑: 𝐸1 → 𝐺 be functions. 

The skew product labelled graph (𝐸 ×𝑐 𝐺, ℒ𝑑) over alphabet 𝒜 × 𝐺 consists of the skew 

product graph (𝐸0 × 𝐺,𝐸1  × 𝐺, 𝑟𝑐 , 𝑠𝑐) where 

𝑟𝑐(𝑒, 𝑔) = (𝑟(𝑒), 𝑔𝑐(𝑒)) , 𝑠𝑐(𝑒, 𝑔) = (𝑠(𝑒), 𝑔) 
together with the labelling ℒ𝑑 : (𝐸 ×𝑐 𝐺)

1 → 𝒜 × 𝐺 given by ℒ𝑑(𝑒, 𝑔) : = (ℒ(𝑒), 𝑔𝑑(𝑒)) 
.Since the labels received by (𝑣, 𝑔) ∈ (𝐸 ×𝑐 𝐺)

0 are in one‐to‐one correspondence with the 

labels received by 𝑣 ∈ 𝐸0 it follows that if (𝐸, ℒ) is left‐ resolving, then so is (𝐸 ×𝑐 𝐺, ℒ𝑑) 
.Examples (1.2.12)[444]: For the labelled graph (𝐸, ℒ) of  Examples (1.2.2) (b) let 𝑐, 𝑑: 

𝐸1 → ℤ be given by 𝑐(𝑒) = 1 and 𝑑(𝑒) = 0 for all 𝑒 ∈ 𝐸1. Then 

   
    (𝑤, 0)           (𝑤, 1)        (𝑤, 2)                 (𝑤, 3) 

For 𝜇 ∈ 𝐸∗ the map (𝜇, 𝑔) ↦ 𝜇𝑔 identifies 𝐸∗ × 𝐺 with (𝐸 ×𝑐 𝐺)
∗ Then  for (𝜇, 𝑔) ∈

𝐸∗ × 𝐺 we have 

𝑠(𝜇, 𝑔) = (𝑠(𝜇), 𝑔) and 𝑟(𝜇, 𝑔) = (𝑟(𝜇), 𝑔𝑐(𝜇))                  (13) . 

Let (𝐸, ℒ) be a labelled graph over the alphabet  𝒜. A labelled graph action of 𝐺 on 

(𝐸, ℒ) is a triple ((𝐸, ℒ), 𝐺, 𝜙) where 𝜙: 𝐺 → 𝐴𝑢𝑡(𝐸, ℒ) is a group homomorphism. In 

particular, for all 𝑒 ∈ 𝐸1 and 𝑔 ∈ 𝐺 we have 
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   ℒ(𝜙𝑔(𝑒)) = 𝜙𝑔(ℒ(𝑒))                                           (14) . 

       If we ignore the label maps, a labelled graph action ((𝐸, ℒ), 𝐺, 𝜙) restricts to a graph 

action of 𝐺 on  𝐸; we denote this restricted action by (𝐸, 𝐺, 𝜙) . The labelled graph action 

((𝐸, ℒ), 𝐺, 𝛼) is free if 𝜙𝑔(𝑣) = 𝑣 for some 𝑣 ∈ 𝐸0, then 𝑔 = 1𝐺 and if 𝜙𝑔(𝑎) = 𝑎 some 

𝑎 ∈ 𝒜, then 𝑔 = 1𝐺 . 
    The following lemma shows that skew product labelled graphs provide a rich source of 

examples of free labelled graph actions.  

Lemma (1.2.14)[444]: Let (𝐸, ℒ) be a labelled graph, 𝑐, 𝑑: 𝐸1 → 𝐺 be functions and 

(𝐸 ×𝑐 𝐺, ℒ𝑑) be the associated skew product labelled graph. Then 

(i)  For (𝑥, ℎ) ∈ (𝐸 ×𝑐 𝐺)
𝑖, (𝑎, ℎ) ∈ 𝒜 × 𝐺, 𝑔 ∈ 𝐺 and 𝑖 = 0,1 let 𝜏𝑔

𝑖 (𝑥, ℎ) = 

(𝑥, 𝑔ℎ) and 𝜏𝑔
𝐴(𝑎, ℎ) = (𝑎, 𝑔ℎ) . Then 𝜏𝑔 = (𝜏𝑔

0, 𝜏𝑔
1, 𝜏𝑔

𝐴) is a labelled graph 

automorphism. 

(ii)  The map 𝜏 = (𝜏0, 𝜏1, 𝜏𝐴) : 𝐺 → 𝐴𝑢𝑡(𝐸 ×𝑐 𝐺, ℒ𝑑) defined by 𝑔 ↦ 𝜏𝑔 is a 

homomorphism. 

(iii)  The triple ((𝐸 ×𝑐 𝐺, ℒ𝑑), 𝐺, 𝜏) is a free labelled graph action. 

Definition (1.2.14)[444]: The map 𝜏 = (𝜏0, 𝜏1, 𝜏𝐴) : 𝐺 → 𝐴𝑢𝑡(𝐸 ×𝑐 𝐺, ℒ𝑑) as given in 

Lemma (1.2.13) (ii) is called the left labelled graph translation map, and the action 

((𝐸 ×𝑐 𝐺, ℒ𝑑), 𝐺, 𝜏) the left labelled graph translation action. 

   Two labelled graph actions ((𝐸, ℒ), 𝐺, 𝜙) and ((𝐹,ℳ), 𝐺, 𝜓) are isomorphic if there is a 

labelled graph isomorphism  : (𝐸, ℒ) → (𝐹,ℳ) which is equivariant in the sense that 𝜑 ∘
𝜙𝑔 = 𝜓𝑔 ∘ 𝜑 for all 𝑔 ∈ 𝐺. 

Theorem (1.2.15)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph, and 

((𝐸, ℒ), 𝐺, 𝛼) be a labelled graph action. Let {𝑠𝑎 , 𝑝𝑟(𝛽)} be a universal Cuntz‐Krieger (𝐸, ℒ)‐

family. Then for h ∈ G the maps 

𝛼ℎ𝑠𝑎 = 𝑠𝛼ℎ𝑎 and  𝛼ℎ𝑝𝑟(𝛽) = 𝑝𝛼ℎ𝑟(𝛽) 

determine an action of 𝐺 on 𝐶∗(𝐸, ℒ) . If ((𝐸, ℒ), 𝐺, 𝜙) and ((𝐹,𝑀), 𝐺,𝜓) are isomorphic 

then 𝐶∗(𝐸, ℒ) ×𝜙 𝐺 ≅ 𝐶
∗(𝐹,𝑀) ×𝜓 𝐺. 

Proof.  Follows by a straight forward application of Theorem (1.2.3) and the universal 

property of crossed products.  

     We prove a version of the Gross‐Tucker theorem for labelled graphs. For directed graphs, 

the Gross‐Tucker theorem says, that up to equivariant isomorphism, every free action 𝛼 of 

a group 𝐺 on a directed graph 𝐸 is a left translation automorphism 𝜏 on a skew product graph 

(𝐸/𝐺) ×𝑐 𝐺 built from the quotient graph 𝐸/𝐺.        

     We to prove a similar result for labelled graphs. The new ingredient is the map 𝑑: 𝐸1 →
𝐺 found in the definition of a skew product labelled graph for labelled graphs. Before giving 

the main result, Theorem (1.2.24). 

Definition (1.2.16)[444]: Let ((𝐸, ℒ), 𝐺, 𝛼) be a labelled graph action. For 𝑖 = 0, 1 and 𝑥 ∈
𝐸𝑖 let 𝐺𝑥:= {𝛼𝑔

𝑖 (𝑥) ∶  𝑔 ∈ 𝐺} and (𝐸/𝐺)𝑖 = {𝐺𝑥: 𝑥 ∈ 𝐸𝑖}. For 𝑎 ∈ 𝒜 let  

𝐺𝑎 = {𝛼𝑔
𝐴(𝑎): 𝑔 ∈ 𝐺} and 𝒜/𝐺 = {𝐺𝑎: 𝑎 ∈ 𝒜}. 

The proof of the following lemma is straightforward. 

Lemma (1.2.17)[444]: Let ((𝐸, ℒ), 𝐺, 𝛼) be a labelled graph action. The maps , 𝑠: (𝐸/𝐺)1 →
(𝐸/𝐺)0 given by 

𝑟(𝐺𝑒) = 𝐺𝑟(𝑒) and  𝑠(𝐺𝑒) = 𝐺𝑠(𝑒) for 𝐺𝑒 ∈ (𝐸/𝐺)1   (15) 
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and the map ℒ/𝐺: (𝐸/𝐺)1 → 𝒜/𝐺 given by (ℒ/𝐺)(𝐺𝑒) = 𝐺ℒ(𝑒) are well defined. 

Consequently, (𝐸/𝐺, ℒ/𝐺) is a labelled graph over the alphabet 𝒜/𝐺. The map 𝑞 =
(𝑞0, 𝑞1, 𝑞𝐴) : (𝐸, ℒ) → (𝐸/𝐺, ℒ/𝐺) given by 𝑞𝑖(𝑥) = 𝐺𝑥  for 𝑖 = 0, 1, 𝑥 ∈ 𝐸𝑖  and 𝑞𝐴(𝑎) =
𝐺𝑎 for 𝑎 ∈ 𝒜 is a surjective labelled graph morphism. 

Definition (1.2.18)[444]: Let ((𝐸, ℒ), 𝐺, 𝛼) be a labelled graph action. The quotient labelled 

graph (𝐸/𝐺, ℒ/𝐺) is the labelled graph described in Lemma (1.2.18), the map 𝑞: (𝐸, ℒ) →
(𝐸/𝐺, ℒ/𝐺) is the quotient labelled map. 

The following Proposition is an analog of [28, Theorem 2.2.1] whose proof is routine. 

Proposition (1.2.09)[444]: Let (𝐸, ℒ) be a labelled graph, 𝑐, 𝑑: 𝐸1 → 𝐺 be functions and 

(𝐸 ×𝑐 𝐺, ℒ𝑑) be the associated skew product labelled graph. Let ((𝐸 ×𝑐 𝐺, ℒ𝑑) , 𝐺, 𝜏) be 

the left labelled graph translation action. Then 

((𝐸 ×𝑐 𝐺)/𝐺, ℒ𝑑/𝐺) ≅ (𝐸, ℒ) . 
Examples (1.2.21)[444]: Recall the labelled graphs (𝐸, ℒ) and (𝐸 ×𝑐 ℤ, ℒ𝑑) from Example 

(1.2.12). For the left labelled graph translation action ((𝐸 ×𝑐 ℤ, ℒ𝑑), ℤ, 𝜏) , we have 

((𝐸 ×𝑐 ℤ)/ℤ, ℒ𝑑/ℤ) ≅ (𝐸, ℒ) by Proposition (1.2.20). 

The Gross‐Tucker theorem is a converse to Proposition (1.2.20). It states that if we have a 

free action of a group on a labelled graph, then we can recover the original graph from the 

quotient via a skew product. Recall the following definition for directed graphs. 

Definition (1.2.20)[444]: Let 𝐹, 𝐸 be directed graphs. A surjective graph morphism 𝑝: 𝐹 →
𝐸 has the unique path lifting property if given 𝑢 ∈ 𝐹0 and 𝑒 ∈ 𝐸1 with 𝑠(𝑒) = 𝑝0(𝑢) there 

is a unique edge 𝑓 ∈ 𝐹1 with 𝑠(𝑓) = 𝑢 and 𝑝1(𝑓) = 𝑒. 
Definition (1.2.22)[444]: Let ((𝐸, ℒ), 𝐺, 𝛼) be a labelled graph action and 𝑞 = (𝑞0, 𝑞1, 𝑞𝐴) 
: (𝐸, ℒ) → (𝐸/𝐺, ℒ/𝐺) be the quotient labelled map. A section for 𝑞𝑖 is a map 𝜂𝑖 : (𝐸/𝐺)𝑖 →
𝐸𝑖 for 𝑖 = 0,1 such that 𝑞𝑖 ∘ 𝜂𝑖 = 𝑖𝑑(𝐸/𝐺)𝑖. A section for 𝑞𝐴 is  𝜂𝐴: 𝒜/𝐺 → 𝒜 such that 

𝑞𝐴 ∘ 𝜂𝐴 = 𝑖𝑑𝐴/𝐺 . 

Lemma (1.2.24)[444]: Let (𝐸, 𝐺, 𝛼) be a graph action and 𝑞 = (𝑞0, 𝑞1) : 𝐸 → 𝐸/𝐺 be the 

quotient map. Given a section 𝜂0 for 𝑞0 there is a unique section η1 for q1 such that 

𝑠(𝜂1(𝐺𝑒)) = 𝜂0(𝑠(𝐺𝑒)) for all 𝑒 ∈ 𝐸1            (16) 

Proof. By the quotient map 𝑞: 𝐸 → 𝐸/𝐺 has the unique path lifting property. Hence if we 

fix 𝐺𝑣 ∈ (𝐸/𝐺)0, then for each 𝐺𝑒 ∈ (𝐸/𝐺)1 with 𝑠(𝐺𝑒) = 𝐺𝑣 there is a unique 𝑓 ∈ 𝐸1 

with 𝑞1(𝑓) = 𝐺𝑒 = 𝐺𝑓 and 𝑠(𝑓) = 𝜂0(𝐺𝑣). Put  𝜂1(𝐺𝑒) = 𝑓, then 𝜂1 : (𝐸/𝐺)1 → 𝐸1 is 

well defined and the source map on (𝐸/𝐺)1 is well defined. Since 𝑞1(𝜂1(𝐺𝑒)) = 𝑞1(𝑓) =
𝐺𝑒 it follows that 𝜂1 is a section satisfying (16). Uniqueness of 𝜂1 follows from the unique 

path lifting property of 𝑞. 
The following is a version of the Gross‐Tucker theorem (cf. [28, Theorem 2.2.2]) for 

labelled graphs. 

Theorem (1.2.24)[444]: Let ((𝐸, ℒ), 𝐺, 𝛼) be a free labelled graph action. Let 𝜂0, 𝜂𝐴 be 

sections for 𝑞0, 𝑞𝐴 respectively. There are functions , 𝑑: (𝐸/𝐺)1 → 𝐺 such that 

((𝐸, ℒ), 𝐺, 𝛼) is isomorphic to ((𝐸/𝐺 ×𝑐 𝐺, (ℒ/𝐺)𝑑), 𝐺, 𝜏) . 
Proof. Fix a section  𝜂0: (𝐸/𝐺)0 → 𝐸0 for 𝑞0. By Lemma (1.2.24), there is a section 𝜂1 for 

qlsatisfying (16). For 𝐺𝑒 ∈ (𝐸/𝐺)1 set 𝑓 = 𝜂1(𝐺𝑒), then 

𝑞0 (𝑟(𝜂1(𝐺𝑒))) = 𝑞0(𝑟(𝑓)) = 𝐺𝑟(𝑓) = 𝑟(𝐺𝑓) = 𝑟(𝐺𝑒) = 𝑞0 (𝜂0(𝑟(𝐺𝑒))). 

As (𝐸, 𝐺, 𝛼) is free, there is a unique ℎ ∈ 𝐺 such that 𝛼ℎ
0𝜂0(𝑟(𝐺𝑒)) = 𝑟(𝜂1(𝐺𝑒)) and we 

may set  𝑐(𝐺𝑒) = ℎ. Define  𝜙: 𝐸/𝐺 ×𝑐 𝐺 → 𝐸 by 
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𝜙𝑐
0(𝐺𝑣, 𝑔) = 𝛼𝑔

0𝜂0(𝐺𝑣)     𝑎𝑛𝑑   𝜙𝑐
1(𝐺𝑒, 𝑔) = 𝛼𝑔

1𝜂1(𝐺𝑒) 

for (𝐺𝑣, 𝑔) ∈ (𝐸/𝐺 ×𝑐 𝐺)
0 and (𝐺𝑒, 𝑔) ∈ (𝐸/𝐺 ×𝑐 𝐺)

1. One checks that  𝜙𝑐 : 

(𝐸/𝐺 ×𝑐 𝐺) → 𝐸 is an isomorphism of directed graphs. 

We claim that 𝜙𝑐 is equivariant. Notice that for all (𝐺𝑣, ℎ) ∈ (𝐸/𝐺 ×𝑐 𝐺)
0 and 𝑔 ∈ 𝐺 we 

have 

𝜙𝑐
0 (𝜏𝑔

0(𝐺𝑣, ℎ)) = 𝜙𝑐
0(𝐺𝑣, 𝑔ℎ) = 𝛼𝑔ℎ

0 𝜂0(𝐺𝑣) = 𝛼𝑔
0𝛼ℎ
0𝜂0(𝐺𝑣) = 𝛼𝑔

0𝜙𝑐
0(𝐺𝑣, ℎ) 

and so 𝜙𝑐
00𝜏𝑔

0 = 𝛼𝑔
00𝜙𝑐

0 for all 𝑔 ∈ 𝐺. The argument for 𝜙𝑐
1 is similar and the claim follows. 

    We now construct an equivariant bijection  𝜙𝑑
𝐴/𝐺×𝐺

: 𝒜/𝐺 × 𝐺 → 𝒜 which satisfies 

condition (b) of  Definition (1.2.10). Fix a section  𝜂𝐴: 𝒜/𝐺 → 𝒜  for  𝑞𝐴. 
We now define a map 𝑑: (𝐸/𝐺)1 → 𝐺. Fix 𝐺𝑒 ∈ (𝐸/𝐺)1 and set 𝑓 = 𝜂1(𝐺𝑒) so that 

𝑞1(𝑓) = 𝐺𝑒. Since 

𝑞𝐴𝜂𝐴 (ℒ/𝐺(𝐺𝑒)) = 𝑞𝐴𝜂𝐴(𝐺ℒ(𝑓)) = 𝑞𝐴ℒ𝜂1(𝐺𝑒) 

and the graph action ((𝐸, ℒ), 𝐺, 𝛼) is free, there is a unique 𝑘 ∈ 𝐺 such that 𝛼𝑘
𝐴𝜂𝐴 

((ℒ/𝐺)(𝐺𝑒)) = ℒ(𝜂1(𝐺𝑒)) and we may define 𝑑(𝐺𝑒) = 𝑘. The function 𝑑: (𝐸/𝐺)1 → 𝐺 

described in this way is such that 𝑑(𝐺𝑒) is the unique element of 𝐺 with the property that 

𝛼𝑑(𝐺𝑒)
𝐴 𝜂𝐴((ℒ/𝐺)(𝐺𝑒)) = ℒ(𝜂1(𝐺𝑒)).                            (17) 

For each (𝐺𝑎, 𝑔) ∈ 𝒜/𝐺 × 𝐺 we define 𝜙𝑑
𝐴/𝐺×𝐺

 : 𝒜/𝐺 × 𝐺 → 𝒜 by 𝜙𝑑
𝐴/𝐺×𝐺

(𝐺𝑎, 𝑔) =

𝛼𝑔
𝐴𝜂𝐴(𝐺𝑎). We claim that 𝜙𝑑

𝐴/𝐺×𝐺
 satisfies 𝜙𝑑

𝐴/𝐺×𝐺∘(ℒ/𝐺)𝑑 = ℒ ∘ 𝜙𝑐
1: By (17) for all (𝐺𝑒, 

ℎ) ∈ (𝐸/𝐺 ×𝑐 𝐺)
1 we have 

𝜙𝑑
𝐴/𝐺×𝐺∘(ℒ/𝐺)𝑑(𝐺𝑒, ℎ) = 𝛼ℎ

𝐴𝛼𝑑(𝐺𝑒)
𝐴 𝜂𝐴(ℒ/𝐺(𝐺𝑒)) 

                                                 = ℒ (𝛼ℎ
1𝜂1(𝐺𝑒)) = ℒ ∘ 𝜙𝑐

1(𝐺𝑒, ℎ) 
as required. 

It is straightforward to see that 𝜙𝑑
𝐴/𝐺×𝐺

 is bijective. To see that 𝜙𝑑
𝐴/𝐺×𝐺

 is equivariant notice 

that we have 

𝜙𝑑
𝐴/𝐺×𝐺

 (𝜏𝑔
𝐴/𝐺×𝐺

(𝐺𝑒, ℎ)) = 𝜙𝑑
𝐴/𝐺×𝐺

(𝐺𝑒, 𝑔ℎ) = 𝛼𝑔
𝐴𝛼ℎ

𝐴𝜂𝐴 (𝐺𝑒) 

                                                                         = 𝛼𝑔
𝐴𝜙𝑑

𝐴/𝐺×𝐺
 (𝐺𝑒, ℎ) 

for all (𝐺𝑒, ℎ) ∈ (𝐸/𝐺 × 𝐺)1 and 𝑔 ∈ 𝐺. Thus 𝜙𝑐,𝑑 = (𝜙𝑐
0, 𝜙𝑐

1, 𝜙𝑑
𝐴/𝐺×𝐺

) is the required 

labelled graph isomorphism. 

Example (1.2.25)[444]: Recall from Example (1.2.21) the labelled graph (𝐸 ×𝑐 ℤ, ℒ𝑑) has 

a free action of ℤ such that the quotient labelled graph is (𝐸, ℒ) . We use this example to 

illustrate the point made: 

Suppose we choose a section 𝜂0: 𝐸0 → (𝐸 ×𝑐 ℤ)
0 such that 𝜂0(𝑣) = (𝑣, 0) and 𝜂0(𝑤) =

(𝑤, 2) , then the section 𝜂1 : 𝐸1 → (𝐸 ×𝑐 ℤ)
1 as defined in Lemma (1.3.24) is given by 

𝜂1(𝑒) = (𝑒, 0) , 𝜂1(𝑓) = (𝑓, 0) , and 𝜂1(𝑔) = (𝑔, 2) whose image in (𝐸 ×𝑐 ℤ, ℒ𝑑) is as 

shown below. 
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                                  (𝑤, 0)  (𝑤, 1)(𝑣, 2) (𝑣, 3)(𝑤, 2) (𝑤, 3) 
Note that (𝑒) = 1, 𝑐(𝑓) = −1, and 𝑐(𝑔) = 3. 
Observe that 𝑓, 𝑔 ∈ 𝐸1 are such that ℒ(𝑓) = ℒ(𝑔) = 0 however, 

ℒ(𝜂1(𝑓)) = ℒ(𝑓, 0) = (0,0) ≠ (0,2) = ℒ(𝑔, 2) = ℒ(𝜂1(𝑔)) . 
The function 𝑑 accounts for this difference. By Equation (17), we have (𝑔) = 2, since 

𝛼2
𝐴(0,0) = (0,2) , whereas 𝑑(𝑓) = 0. Observe that 𝑑(𝑔) ≠ 𝑑(𝑓) even though  

ℒ(𝑔) = ℒ(𝑓) . 
    In [31] it is shown that a function 𝑐: 𝐸1 → 𝐺 induces a coaction 𝛿 of 𝐺 on the graph 

algebra 𝐶∗(𝐸) such that 𝐶∗(𝐸) × 𝛿𝐺 ≅ 𝐶∗(𝐸 ×𝑐 𝐺) . One should expect, therefore, that the 

functions , 𝑑: 𝐸1 → 𝐺 would induce a coaction 𝛿 of 𝐺 on 𝐶∗(𝐸, ℒ) such that 𝐶∗(𝐸, ℒ) ×
𝛿𝐺 ≅ 𝐶∗(𝐸 ×𝑐 𝐺, ℒ𝑑) . However in order to obtain such a result we must assume that both 

functions 𝑐, 𝑑 are label consistent (see Definition (1.2.27) below). For further information 

about coactions of discrete groups see [37], amongst others. 

Definition (1.2.26)[444]: Let (𝐸, ℒ) be a labelled graph over alphabet 𝒜. A function 𝑐: 𝐸1 

→ 𝐺 is label consistent if there is a function 𝐶: 𝒜 → 𝐺 such that 𝑐 = 𝐶 ∘ ℒ. 
For any labelled graph (𝐸, ℒ) the function 1: 𝐸1 → 𝐺 given by 1 (𝑒) = 1𝐺  for all 𝑒 ∈ 𝐸1 is 

label consistent. First, we show that if 𝑐 is label consistent then there is a coaction of 𝐺 on 

(𝐸, ℒ) . 
Proposition (1.2.27)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph, 

𝐺 be a discrete group, and 𝑐: 𝐸1 → 𝐺 be a label consistent function. Then there is a maximal 

normal coaction: 𝐶∗(𝐸, ℒ) → 𝐶∗(𝐸, ℒ) ⊗ 𝐶∗(𝐺) such that 

  𝛿(𝑠𝑎) = 𝑠𝑎⊗𝑢𝐶(𝑎) and 𝛿(𝑝𝑟(𝛽)) = 𝑝𝑟(𝛽)⊗𝑢1𝐺 ,      (18) 

where {𝑠𝑎 , 𝑝𝑟(𝛽)} is a universal Cuntz‐Krieger (𝐸, ℒ)‐family and {𝑢𝑔: 𝑔 ∈ 𝐺} are the 

canonical generators of 𝐶∗(𝐺) . 
Proof. The first part of the result follows by the same argument given in [31, Lemma 3.2]. 

That the coaction 𝛿 is normal and maximal follows by essentially the same arguments as the 

ones given in [27, Lemma 3.3] and [35, Theorem 7.1 (𝑣)]. 
The next result shows that if 𝑑 is label consistent then we may as well assume that 𝑑 = 1. 
Proposition (1.2.28)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph 

and 𝑐: 𝐸1 → 𝐺 a function. If 𝑑1, 𝑑2: 𝐸
1 → 𝐺 are label consistent functions, then 

((𝐸 ×𝑐 𝐺, ℒ𝑑1), 𝐺, 𝜏) ≅ ((𝐸 ×𝑐 𝐺, ℒ𝑑2), 𝐺, 𝜏) where 𝜏 is the left translation action. Hence, 

if 𝑑: 𝐸1 → 𝐺 is a label consistent function then there is an isomorphism from 

𝐶∗(𝐸 ×𝑐 𝐺, ℒ𝑑) to 𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) which is equivariant for the 𝐺‐action induced by 𝜏. 
Proof. For the first statement, let 𝜙𝑖 : (𝐸 ×𝑐 𝐺)

𝑖 → (𝐸 ×𝑐 𝐺)
𝑖 be the identity map for 𝑖 = 0, 

1 and define 𝜙𝐴×𝐺 : 𝒜 × 𝐺 → 𝒜 × 𝐺 by 

𝜙𝐴×𝐺(𝑎, 𝑔) = (𝑎, 𝑔𝐷1
−1(𝑎)𝐷2(𝑎)) . 

For (𝑒, 𝑔) ∈ (𝐸 ×𝑐 𝐺)
1, after a short calculation we have 

∅
𝐴×𝑐ℒ𝑑1(𝑒,𝑔)=(ℒ(𝑒), 𝑑2(𝑒)) = ℒ𝑑2(𝑒, 𝑔) . 

It is then straightforward to check that 𝜙 = (𝜙0, 𝜙1, 𝜙𝐴×𝐺) is a labelled graph isomorphism. 

Since for all ℎ ∈ 𝐺 we have 

𝜏ℎ(𝜙
𝐴×𝐺(𝑎, 𝑔)) = (𝑎, ℎ𝑔𝐷1

−1(𝑎)𝐷2(𝑎)) = 𝜙
𝐴×𝐺(𝜏ℎ(𝑎, 𝑔)) 

it follows that ((𝐸 ×𝑐 𝐺, ℒ𝑑1), 𝐺, 𝜏) ≅ ((𝐸 ×𝑐 𝐺, ℒ𝑑2), 𝐺, 𝜏) . 

The final statement follows from Theorem (1.2.16). 
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Next, we shall show that if 𝑑 = 1 then there is a natural identification ℒ1
+(𝐸 ×𝑐 𝐺) , the 

labelled path space of (𝐸 ×𝑐 𝐺, ℒ1) with ℒ+(𝐸) × 𝐺. 
Lemma (1.2.29)[444]: Let (𝐸, ℒ) be a labelled graph and 𝑐: 𝐸1 → 𝐺 label consistent. For 

𝜇 ∈ 𝐸+ and 𝑔 ∈ 𝐺 the map 

ℒ1(𝜇, 𝑔) ↦ (ℒ(𝜇), 𝑔) 
establishes a bijection from ℒ1

+(𝐸 ×𝑐 𝐺) to ℒ+(𝐸) × 𝐺. 
Proof. It follows that for 𝑛 ≥ 1 every path in (𝐸 ×𝑐 𝐺)

𝑛 has the form (𝜇, 𝑔) =
(𝜇1, 𝑔)(𝜇2, 𝑔𝑐(𝜇1))⋯ (𝜇𝑛, 𝑔𝑐(𝜇

′)) , for some 𝜇 ∈ 𝐸𝑛 and 𝑔 ∈ 𝐺. Then by definition we 

have 

   ℒ1(𝜇, 𝑔) = (ℒ(𝜇1), 𝑔)(ℒ(𝜇2), 𝑔𝑐(𝜇1))⋯(ℒ(𝜇𝑛), 𝑔𝑐(𝜇
′))      (19) 

If we define the right‐hand side of (19) to be (ℒ(𝜇), 𝑔) the result follows. 

The following lemma indicates the behavior of the range map under the identification of 

ℒ1
+(𝐸 ×𝑐 𝐺) with ℒ+(𝐸) × 𝐺. 

Lemma (1.2.30)[444]: Let (𝐸, ℒ) be a labelled graph and 𝑐: 𝐸1 → 𝐺 be a label consistent 

function. Let 𝑎 ∈ 𝒜, 𝛽 ∈ ℒ+(𝐸) , and  𝑔 ∈ 𝐺. Then under the identification of ℒ+(𝐸) × 𝐺 

with ℒ1
+(𝐸 ×𝑐 𝐺) we have 𝑟(𝛽, 𝑔) = (𝑟(𝛽), 𝑔𝐶(𝛽)) ∈ ℰ(𝑟, ℒ) × 𝐺. 

Proof. Observe that for  (𝛽, 𝑔) ∈ ℒ+(𝐸) × 𝐺, we have 

                               𝑟(𝛽, 𝑔) = {𝑟(𝜇, 𝑔): (𝜇, 𝑔) ∈ 𝐸∗ × 𝐺, ℒ(𝜇) = 𝛽} 

= {(𝑟(𝜇), 𝑔𝐶(𝛽)): ℒ(𝜇) = 𝛽}                                (20) 

since the function 𝑐: 𝐸1 → 𝐺 is label consistent. Hence, we may identify 𝑟(𝛽, 𝑔) with 

(𝑟(𝛽), 𝑔𝐶(𝛽)) ∈ ℰ(𝑟, ℒ) × 𝐺. 
    With the above identifications in mind, we turn our attention to the main resul. By 

Theorem (1.2.16) the left labelled graph translation action ((𝐸 ×𝑐 𝐺, ℒ1), 𝐺, 𝜏) defined in 

Definition (1.2.15) induces an action   𝜏: 𝐺 → Aut 𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) . When we identify 

ℒ1
+(𝐸 ×𝑐 𝐺) with ℒ+(𝐸) × 𝐺 this action may be described on the generators of 

𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) as follows: For ℎ, 𝑔 ∈ 𝐺, 𝑎 ∈ 𝒜, and 𝛽 ∈ ℒ+(𝐸) we have 

𝜏ℎ(𝑠(𝑎,𝑔)) = 𝑠(𝑎,ℎ𝑔) and 𝜏ℎ(𝑝(𝑟(𝛽), 𝑔)) = 𝑝(𝑟(𝛽),ℎ𝑔).                (21) 

The method of proof for the next result closely follows that of [31, Theorem 2.4], however 

we give some of the details as they rely heavily on the identification we made in Lemma 

(1.2.31). 

Theorem (1.2.31)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph. 

Suppose that 𝐺 is a discrete group,  𝑐: 𝐸1 → 𝐺 is a label consistent function, and 𝛿 is the 

coaction from Proposition (1.2.28). Let 𝑗𝐶∗(𝐸,ℒ), 𝑗𝐺 denote the canonical covariant 

homomorphisms of 𝐶∗(𝐸, ℒ) and 𝐶∗(𝐺) into 𝑀(𝐶∗(𝐸, ℒ) × 𝛿𝐺) and {𝑠(𝑎,𝑔), 𝑝(𝑟(𝛽), 𝑔)} be 

the canonical generating set of 𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) . Then the map 𝜙: 𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) →
𝐶∗(𝐸, ℒ) × 𝛿𝐺 given by 

𝜙(𝑠(𝑎,𝑔)) =𝑗𝐶∗(𝐸,ℒ) (𝑠𝑎)𝑗𝐺(𝜒𝐶(𝑎)−1) , 

𝜙(𝑝(𝑟(𝛽),𝑔)) = 𝑗𝐶∗(𝐸,ℒ)(𝑝𝑟(𝛽))𝑗𝐺(𝜒𝑔−1) 

is an isomorphism. 

proof. For each 𝑔 ∈ 𝐺, let 𝐶∗(𝐸, ℒ)𝑔 = {𝑏 ∈ 𝐶
∗(𝐸, ℒ) : 𝛿(𝑏) = 𝑏 ⊗ 𝑢𝑔} denote the 

corresponding spectral subspace; we write 𝑏𝑔 to denote a generic element of 𝐶∗(𝐸, ℒ)𝑔. 

Then 𝐶∗(𝐸, ℒ) × 𝛿𝐺  is densely spanned by the set {(𝑏𝑔, ℎ) : 𝑏𝑔 ∈ 𝐶
∗(𝐸, ℒ)𝑔 and  𝑔, ℎ ∈

𝐺}, and the algebraic operations are given on this set by 

(𝑏𝑔, 𝑥)(𝑏ℎ , 𝑦) = (𝑏𝑔𝑏ℎ, 𝑦) if  𝑦 = ℎ
−1𝑥 (and 0 if not), and 
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                                        (𝑏𝑔, 𝑥)
∗ = (𝑏𝑔

∗ , 𝑔𝑥) . 

   If (𝑗𝐶∗(𝐸,ℒ), 𝑗𝐺) denotes the canonical covariant homomorphism of 𝐶∗(𝐸, ℒ) into the 

multiplier algebra of 𝐶∗(𝐸, ℒ) × 𝛿𝐺, then (𝑏𝑔, 𝑥) is by definition (𝑗𝑐∗(𝑏𝑔)𝑗𝐺(𝜒{𝑥})) . 

Using Lemma (1.2.31), we may show that for (𝑎, 𝑔) ∈ 𝒜 × 𝐺, 𝛽 ∈ ℒ+(𝐸) and 𝑔 ∈ 𝐺 

𝑡(𝑎,𝑔) = (𝑠𝑎 , 𝐶(𝑎)
−1𝑔−1) and 𝑞(𝑟(𝛽),𝑔) = (𝑝𝑟(𝛽), 𝑔

−1) 

is a Cuntz‐Krieger (𝐸 ×𝑐 𝐺, ℒ1)‐family in 𝐶∗(𝐸, ℒ) × 𝛿𝐺. 
By universality of 𝐶∗ (𝐸 ×𝑐 𝐺, ℒ1) there is a homomorphism 𝜋𝑡,𝑞 from 𝐶∗ (𝐸 ×𝑐  𝐺, ℒ1) to 

𝐶∗(𝐸, ℒ) × 𝛿 𝐺 such that 𝜋𝑡,𝑞(𝑠(𝑎,𝑔)) = 𝑡(𝑎,𝑔) and 𝜋𝑡,𝑞(𝑝(𝑟(𝛽),𝑔)) = 𝑞(𝑟(𝛽),𝑔) which we may 

show is injective using the argument from [31, Theorem 2.4] and Theorem (1.2.6). 

    We show that 𝜋𝑡,𝑞 is surjective. That 𝐶∗(𝐸, ℒ) × 𝛿𝐺 is generated by (𝑠𝑎, 𝑔) and (𝑝𝑟(𝛽), ℎ). 

Since 𝜋𝑡,𝑞(−1 = 𝑡(𝑎,𝑔−1 − 1 = (𝑠𝑎 , 𝐶(𝑎)
−1𝐶(𝑎)𝑔) , and 𝜋𝑡,𝑞(𝑝(𝑟(𝛽),ℎ−1)) = (𝑝𝑟(𝛽), ℎ) we 

see that 𝜋𝑡,𝑞  is surjective. Hence, 𝜋𝑡,𝑞 is the desired isomorphism. 

    We need to check that 𝜋𝑡,𝑞 is equivariant for the 𝐺 actions, that is 𝜋𝑡,𝑞 ∘ 𝜏𝑔 = 𝛿�̂� ∘ 𝜋𝑡,𝑞 

for all 𝑔 ∈ 𝐺. It is enough to check on generators: Notice that for all 𝑠(𝑎,ℎ) ∈ 𝐶
∗(𝐸 ×𝑐 𝐺, ℒ1) 

𝜋𝑡,𝑞 ∘ 𝜏𝑔(𝑠(𝑎,ℎ)) = 𝜋𝑡,𝑞(𝑠(𝑎,𝑔ℎ)) = (𝑠𝑎 , 𝐶(𝑎)
−1ℎ−1𝑔−1) 

                                                            = 𝛿(𝑠𝑎 , 𝐶(𝑎)
−1ℎ−1) = 𝛿�̂� ∘ 𝜋𝑡,𝑞(𝑠(𝑎,ℎ)) 

and similarly 𝜋𝑡,𝑞0𝜏𝑔(𝑝(𝑟(𝛽),ℎ)) = 𝛿�̂� ∘ 𝜋𝑡,𝑞(𝑝(𝑟(𝛽),ℎ)) for 𝑝(𝑟(𝛽),ℎ) ∈ 𝐶
∗(𝐸 ×𝑐 𝐺, ℒ1) . 

    We claim that 𝜋𝑡,𝑞 is equivariant for the 𝕋 actions, that is  𝜋𝑡,𝑞 ∘ 𝛾𝑧 = (𝛾𝑧  × 𝐺) ∘ 𝜋𝑡,𝑞 for  

all 𝑧 ∈ 𝕋. It is enough to check this on generators: Notice that for all 𝑠(𝑎,ℎ) ∈ 𝐶
∗(𝐸 ×𝑐 𝐺, ℒ1) 

and 𝑧 ∈ 𝕋 we have 

𝜋𝑡,𝑞 ∘ 𝛾𝑧(𝑠(𝑎,ℎ)) = 𝜋𝑡,𝑞(𝑧𝑠(𝑎,ℎ)) = (𝑧𝑠𝑎 , 𝐶(𝑎)
−1ℎ−1) = (𝛾𝑧 × 𝐺)(𝑠𝑎, 𝐶(𝑎)

−1ℎ−1) 

                                      = (𝛾𝑧 × 𝛿𝐺) ∘ 𝜋𝑡,𝑞(𝑠(𝑎,ℎ)) . 

Similarly, 𝜋𝑡,𝑞 ∘ 𝛾𝑧(𝑝(𝑟(𝛽),ℎ)) = (𝛾𝑧 × 𝐺) ∘ 𝜋𝑡,𝑞(𝑝(𝑟(𝛽),ℎ)) for all 𝑝(𝑟(𝛽),ℎ) ∈

𝐶∗(𝐸 ×𝑐 𝐺, ℒ1). 
Corollary (1.2.32)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph. 

Suppose that 𝐺 is a discrete group,  𝑐: 𝐸1 → 𝐺 be a label consistent function, and τ the 

induced action of 𝐺 on 𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) . Then 

𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) ×𝜏,𝑟 𝐺 ≅ 𝐶
∗(𝐸, ℒ) ⊗𝒦(ℓ2(𝐺)) . 

Proof Since the isomorphism of 𝐶∗ (𝐸 ×𝑐 𝐺, ℒ1) with 𝐶∗(𝐸, ℒ) × 𝛿𝐺 is equivariant for the 

𝐺‐actions , 𝛿, respectively, it follows that 

𝐶∗(𝐸 ×𝑐 𝐺, ℒ1) ×𝜏,𝑟 𝐺 ≅ 𝐶
∗(𝐸, ℒ) × 𝛿𝐺 ×�̂�,𝑟 𝐺. 

Following the argument in [31, Corollary 2.5], Katayama’s duality theorem [32] gives us 

that 𝐶∗(𝐸, ℒ) × 𝛿𝐺 ×�̂�,𝑟 𝐺 is isomorphic to  𝐶∗(𝐸, ℒ) ⊗𝒦(ℓ2(𝐺)) , as required. 

In order to provide a version of Corollary (1.2.33) for group actions, we must first 

characterise when the functions 𝑐, 𝑑 in the Gross‐Tucker Theorem (1.2.25) are label 

consistent maps.  

    Recall from [37, p. 209] that a coaction 𝛿 of a discrete group 𝐺 on a 𝐶∗- algebra 𝐴 is 

saturated if for each 𝑠 ∈ 𝐺 we have 𝐴𝑠𝐴𝑠
∗ = 𝐴𝛿 where 𝐴𝑠 is the spectral subspace 𝐴𝑠 = {𝑏 ∈

𝐴 ∶  𝛿(𝑏) = 𝑏 ⊗ 𝑢𝑠} and 𝐴𝛿 is the fixed point algebra for 𝛿 

𝐴𝛿 ∶= {𝑏 ∈ 𝐴 ∶  𝛿(𝑎) = 𝑎 ⊗ 𝑢1𝐺}. 
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Lemma (1.2.33)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph and 

𝑐: 𝐸1 → ℤ  be given by 𝑐(𝑒) = 1 for all 𝑒 ∈ 𝐸1. Then the coaction δ of ℤ on 𝐶∗(𝐸, ℒ) 
induced by c is saturated. 

Proof. The coaction 𝛿 of  ℤ on 𝐶∗(𝐸, ℒ) defined in Proposition (1.2.28) is such that the fixed 

point algebra 𝐶∗(𝐸, ℒ)𝛿 is precisely the fixed point algebra 𝐶∗(𝐸, ℒ)𝛾 for the canonical 

gauge action of 𝕋 on 𝐶∗(𝐸, ℒ) by the Fourier transform (cf. [26, Corollary 4.9]). By an 

argument similar to that in [36, Section 2], we have 

𝐶∗(𝐸, ℒ)𝛾 = 𝑠𝑝𝑎𝑛{𝑠𝛼𝑝𝐴𝑠𝛽
∗: 𝛼, 𝛽 ∈ ℒ𝑛(𝐸) , 𝐴 ∈ ℰ(𝑟, ℒ) 

Since 𝐸 has no sinks it follows by a similar argument to that in [36, Lemma 4. 1.1] that 

𝐶∗(𝐸, ℒ) is saturated.  

Theorem (1.2.34)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph. 

Then 𝐶∗(𝐸, ℒ)𝛾 is strongly Morita equivalent to 𝐶∗(𝐸 ×𝑐 ℤ, ℒ1) where 𝑐: 𝐸1 → ℤ is given 

by 𝑐(𝑒) = 1  for all 𝑒 ∈ 𝐸1 

Proof. Since 𝑐 is label consistent it follows by Theorem (1.2.32) that 

𝐶∗(𝐸 ×𝑐 ℤ, ℒ1) ≅ 𝐶
∗(𝐸, ℒ) × 𝛿ℤ. 

By Lemma (1.2.34), the coaction is 𝛿 is saturated and since 𝐶∗(𝐸, ℒ)𝛿 ≅ 𝐶∗(𝐸, ℒ)𝛾 the 

result follows. 

   We examine conditions on the free labelled graph action ((𝐸, ℒ), 𝐺, 𝛼) which ensure that 

the functions 𝑐, 𝑑 from Theorem (1.2.25) are label consistent. 

   Recall that a fundamental domain for a graph action (𝐸, 𝐺, 𝛼) is a subset 𝑇 of 𝐸0 such that 

for every 𝑣 ∈ 𝐸0 there exists 𝑔 ∈ 𝐺 and a unique 𝑤 ∈ 𝑇 such that 𝑣 = 𝛼𝑔
0𝑤. Every free 

graph action has a fundamental domain. 

Definition (1.2.35)[444]: Let ((𝐸, ℒ), 𝐺, 𝛼) be a free labelled graph action. A fundamental 

domain for ((𝐸, ℒ), 𝐺, 𝛼) is a fundamental domain 𝑇 ⊆ 𝐸0 for the restricted graph action 

such that for every 𝑒, 𝑓 ∈ 𝐸1 we have 

(a) if (𝑒) , 𝑟(𝑓) ∈ 𝑇 and 𝐺ℒ(𝑒) = 𝐺ℒ(𝑓) , then ℒ(𝑒) = ℒ(𝑓) and 

(b) if (𝑒) , 𝑠(𝑓) ∈ 𝑇 and 𝐺ℒ(𝑒) = 𝐺ℒ(𝑓) , then ℒ(𝑒) = ℒ(𝑓) . 
We see that not every free action of a group on a labelled graph has a fundamental domain. 

Examples (1.2.36)[444]: 

(i)  Consider the following labelled graph 

(𝐸, ℒ): = 

 
The group ℤ acts freely on (𝐸, ℒ) by addition in the second coordinate of the vertices, edges 

and labels as indicated in the picture above; call this action  𝛼. Let 𝑇 = {(𝑣, 0) , (𝑤, 1)} then 

𝑇 is a fundamental domain for the restricted graph action (𝐸, ℤ, 𝛼) . However when 

considering the labelled graph action ((𝐸, ℒ), ℤ, 𝛼) the set 𝑇 does not satisfy Definition 

(1.2.36)(b). Consider the edges 𝑒, 𝑓 as shown above with ℒ(𝑒) = (1,3) and ℒ(𝑓) = (1,0) 
respectively. We have 𝑠(𝑒) = (𝑤, 1) ∈ 𝑇 and 𝑠(𝑓) = (𝑣, 0) ∈ 𝑇 and ℤℒ(𝑒) = ℤℒ(𝑓) =
{(1, 𝑛) ∶  𝑛 ∈ ℤ}, however ℒ(𝑒) = (1,3) ≠ (1,0) = ℒ(𝑓) . Indeed any fundamental domain 

for the restricted action (𝐸, ℤ, 𝛼) will also fail Definition (1.3.36)(b). 
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(ii)  Let , 𝑑: 𝐸1 → 𝐺 be label consistent functions and ((𝐸 ×𝑐 𝐺, ℒ𝑑), 𝐺, 𝜏) be the 

associated left labelled graph translation action. Then one checks that  

𝑇 = {(𝑣, 1𝐺): 𝑣 ∈ 𝐸
0} is a fundamental domain for ((𝐸 ×𝑐 𝐺, ℒ𝑑), 𝐺, 𝜏) . 

The following result shows that when we add the fundamental domain hypothesis to the free 

labelled graph action, the functions , 𝑑: (𝐸/𝐺)1 → 𝐺 in the labelled graph version of the 

Gross‐Tucker theorem (Theorem (1.3.25)) may be chosen to be label consistent. 

Theorem(1.2.37)[444]: Let ((𝐸, ℒ), 𝐺, 𝛼) be a free labelled graph action with a fundamental 

domain. Then there are label consistent functions, 𝑑: (𝐸/𝐺)1 → 𝐺 such that 

                                  ((𝐸, ℒ), 𝐺, 𝛼) ≅ ((𝐸/𝐺) ×𝑐 𝐺, (ℒ/𝐺)𝑑) , 𝐺, 𝜏). 
Proof. Let 𝑇 be a fundamental domain for ((𝐸, ℒ), 𝐺, 𝛼) . For every 𝐺𝑣 ∈ (𝐸/𝐺)0 there 

exists a unique 𝑤 ∈ 𝑇 such that 𝐺𝑤 = 𝐺𝑣. Hence, if we define 𝜂0(𝐺𝑣) = 𝑤, then 𝜂0 : 

(𝐸/𝐺)0 → 𝑇 is a section for 𝑞0. Then we may define 𝜂1, 𝑐, 𝑑, and 𝜂𝐴 as in Theorem (1.2.25). 

It suffices to show that 𝑐 and 𝑑 are label consistent. To see that 𝑑 is label consistent suppose 

𝐺𝑒, 𝐺𝑓 ∈ (𝐸/𝐺)1 are such that (ℒ/𝐺) (𝐺𝑒) = (ℒ/𝐺) (𝐺𝑓) = 𝐺𝑎 ∈ 𝒜/𝐺. Let = 𝜂𝐴(𝐺𝑎) ∈
𝒜, 𝑑(𝐺𝑒) = 𝑘 ∈ 𝐺, and 𝑑(𝐺𝑓) = 𝑙 ∈ 𝐺. Then by the definition of 𝑑 we have 

ℒ(𝜂1(𝐺𝑒)) = 𝛼𝑘
𝐴𝜂𝐴(ℒ/𝐺)(𝐺𝑒) = 𝛼𝑘

𝐴𝑏                (22) 

ℒ(𝜂1(𝐺𝑓)) = 𝛼𝑙
𝐴𝜂𝐴(ℒ/𝐺)(𝐺𝑓) = 𝛼𝑙

𝐴𝑏.               (23) 

This implies that 𝐺ℒ(𝜂1(𝐺𝑒)) = 𝐺𝑎 = 𝐺ℒ(𝜂1(𝐺𝑓)) and so ℒ(𝜂1(𝐺𝑒)) = ℒ(𝜂1(𝐺𝑓)) since 

𝑠(𝜂1(𝐺𝑒)), (𝜂1(𝐺𝑓)) ∈ 𝑇. From Equations (22) and (23) we have 𝛼𝑘
𝐴𝑏 = 𝛼𝑙

𝐴𝑏 and so 𝑘 = 𝑙 
since the 𝐺 action on 𝒜 is free. Therefore, 𝑑 is label consistent. 

To see that 𝑐 is label consistent suppose that 𝐺𝑒, 𝐺𝑓 ∈ (𝐸/𝐺)1 are such that (ℒ/𝐺)(𝐺𝑒) =
(ℒ/𝐺)(𝐺𝑓) = 𝐺𝑎 ∈ 𝒜/𝐺, say. Let 𝑏 = 𝜂𝐴(𝐺𝑎) ∈ 𝒜, 𝑐𝜂(𝐺𝑒) = 𝑘 ∈ 𝐺, and 𝑐(𝐺𝑓) = 𝑙 ∈

𝐺. Then by the definition of 𝑐 we have 

𝑟(𝜂1(𝐺𝑒)) = 𝛼𝑘
0𝜂0(𝑟(𝐺𝑒)),                                  (24) 

𝑟(𝜂1(𝐺𝑓)) = 𝛼𝑙
0𝜂0(𝑟(𝐺𝑓)).                                  (25) 

Then if we let 𝑒 = 𝛼−𝑘
1  (𝜂1(Ge)) and 𝑓 = 𝛼−𝑙

1 (𝜂1(Gf)) we have 𝑒, 𝑓 ∈ 𝐸1 with (𝑒) =
𝜂0(𝑟(𝐺𝑒)) , 𝑟(𝑓) = 𝜂0(𝑟(𝐺𝑓)) ∈ 𝑇 and 𝐺ℒ(𝑒) = 𝐺ℒ(𝑓) . Since 𝑇 is a fundamental 

domain, we have ℒ(𝑒) = ℒ(𝑓) and hence 𝛼−𝑘
𝐴 (ℒ (𝜂1(Ge))) = ℒ(𝑒) = ℒ(𝑓) = 𝛼−𝑙

𝐴 (ℒ 

(𝜂1(Gf))) . Since ℒ(𝜂1(Ge)) = ℒ(𝜂1 (Gf)) we can conclude that 𝑘 = 𝑙 as in the previous 

paragraph. Therefore, 𝑐 is label consistent and our result is established. 

Corollary (1.2.38)[444]: Let (𝐸, ℒ) be a weakly left‐resolving, set‐finite labelled graph. 

Suppose that ((𝐸, ℒ), 𝐺, 𝛼) is a free labelled graph action which admits a fundamental 

domain. Then 

𝐶∗(𝐸, ℒ) ×𝛼,𝑟 𝐺 ≅ 𝐶
∗(𝐸/𝐺, ℒ/𝐺) ⊗𝒦(ℓ2(𝐺)) . 

Proof. By Theorem (1.2.38), there are label consistent functions, 𝑑: 𝐸1/𝐺 → 𝐺 such that 

((𝐸, ℒ), 𝐺, 𝛼 𝐸/𝐺 ×𝑐 𝐺, (ℒ/𝐺)𝑑), 𝐺, 𝜏) , 
so we have 

𝐶∗(𝐸, ℒ) ×𝛼,𝑟 𝐺 ≅ 𝐶
∗(𝐸/𝐺 ×𝑐 𝐺, (ℒ/𝐺)𝑑)  ×𝜏,𝑟 𝐺. 

By Proposition (1.2.29) and Corollary (1.2.33), we have 

𝐶∗(𝐸/𝐺 ×𝑐 𝐺, (ℒ/𝐺)𝑑)  ×𝜏,𝑟 𝐺 ≅ 𝐶
∗(𝐸/𝐺 ×𝑐 𝐺, (ℒ/𝐺)1)  ×𝜏,𝑟 𝐺 

                                                      ≅ 𝐶∗(𝐸/𝐺, ℒ/𝐺) ⊗𝒦(ℓ2(𝐺)) 
which gives the desired result. 
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Chapter 2 

Complex Symmetric Operators 

 

We explore applications of this symmetry to Jordan canonical models, self‐ adjoint 

extensions of symmetric operators, rank‐one unitary perturbations of the compressed shift, 

Darlington synthesis and matrix‐valued inner functions, and free bounded analytic 

interpolation in the disk. We consider numerous examples, including the Poincaré-Neumann 

singular integral (bounded) operator and the Jordan model operator (compressed shift). The 

decomposition 𝑇 = 𝐶𝐽|𝑇| also extends to the class of unbounded 𝐶-selfadjoint operators, 

originally introduced by Glazman. It provides a method for estimating the norms of the 

resolvents of certain unbounded operators  

Section (2.1): Application in Complex Symmetric Operators   

    The simultaneous diagonalization and spectral analysis of two Hermitian forms goes back 

to the origins of Hilbert space theory and, in particular, to the spectral theorem for self‐
adjoint operators. Even today the language of forms is often used when dealing with 

unbounded operators (see [96, 18]). The similar theory for a Hermitian and a nondefinite 

sesquilinear form was motivated by the Hamiltonian mechanics of strings or continuous 

media models; from a mathematical point of view this theory leads to Hilbert spaces with a 

complex linear 𝐽‐involution and the associated theory of 𝐽 unitary and 𝐽‐contractive 

operators (see [75,96,56]) . Less studied, but not less important, is the simultaneous analysis 

of a pair consisting of a Hermitian form and a bilinear form; this framework has appeared 

quite early in function theory ([25,19,16]) , functional analysis ([57]) , and elasticity theory 

([77]). Some of the main results in this direction were estimates derived from variational 

principles for eigenvalues of symmetric matrices (such as Grunsky’s or Friedrichs’ 

inequalities). 

           We motivated by the observation that all scalar (Jordan) models in operator theory 

are complex symmetric with respect to a well‐chosen orthonormal basis; cf. [29,55]. Put 

into a pair of a Hermitian and a bilinear form, this remark reveals an extra symmetry of these 

model operators, shared rather surprisingly by quite a few other basic classes of operators 

such as normal, Hankel, compressed Toeplitz, and some Volterra operators. It is no accident 

that exactly this symmetry appears in one of Siegel’s matrix realizations of Cartan domains 

[15].  

        We consider a complex Hilbert space ℋ and an antilinear, isometric involution 𝐶 on 

it. A bounded linear operator 𝑇 is called 𝐶‐symmetric if 𝐶𝑇 = 𝑇∗𝐶. This is equivalent to the 

symmetry of 𝑇 with respect to the bilinear form [𝑓, 𝑔] = 〈𝑓, 𝐶𝑔〉. It is easy to show that there 

exists an orthonormal basis (𝑒𝑖)𝑖∈𝐼 of ℋ which is left invariant by 𝐶: 𝐶𝑒𝑖 = 𝑒𝑖. With respect 

to the basis (𝑒𝑖)𝑖∈𝐼 , 𝐶‐symmetry is simply complex symmetry of the associated matrix. 

Already at this general level the symmetry 𝐶𝑇 = 𝑇∗𝐶 has strong effects on the spectral 

picture of  𝑇; for instance, the generalized eigenspaces 𝐾𝑒𝑟(𝑇 − 𝜆)𝑝 and 𝐾𝑒𝑟(𝑇∗  − 𝜆)𝑝 are 

antilinearly isometrically isomorphic via 𝐶. Thus a Fredholm 𝐶‐symmetric operator has zero 

index. 

  The examples of 𝐶‐symmetric operators are numerous and quite diverse. Besides the 

expected normal operators, certain Volterra and Toeplitz operators are 𝐶‐symmetric. For 

example, consider a finite Toeplitz matrix with complex entries: 
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[

𝑎0 𝑎1 ⋯ 𝑎𝑛
𝑎−1 𝑎0 ⋯ 𝑎𝑛−1
⋮ ⋮  ⋮
𝑎−𝑛 𝑎−𝑛+1 ⋯ 𝑎0

] 

  The symmetry with respect to the second diagonal leaves this matrix invariant, and this is 

exactly the 𝐶‐symmetry noticed and exploited a long time ago by Schur and Takagi [16]. At 

the level of functional models, the symmetry 

𝑓 ↦ 𝐶𝑓: = 𝑓𝑧𝜑 

maps the standard model space ℋ𝜑 = 𝐻2⊖𝜑𝐻2 onto itself and makes the compression of 

the unilateral shift a 𝐶‐symmetric operator. Above 𝐻2 is the Hardy space of the disk and 𝜑 

is a nonconstant inner function. 

    The applications of 𝐶‐symmetry we discuss can be grouped into the following categories: 

extension and dilation results, rank one perturbations of Jordan operators, matrix‐valued 

inner functions and free interpolation theory in the disk. 

    The first three of these subjects are interconnected by a simple matrix completion 

observation. Namely, every 𝐶‐symmetric operator admits 𝐶‐symmetric extensions and 

dilations. At the level of real symmetric operators and their self‐adjoint extensions this 

remark goes back to von Neumann [57], and also explicitly appears in the computations of 

M.G. Krein [99]. The same phenomenon is present in Clark’s unitary perturbations of Jordan 

operators, or in the study of real Volterra operators pursued by the Ukrainian school, [97] 

and also [27,94,63,74]. It was this last group of researchers who investigated for the first 

time 𝐶‐symmetries of various linear systems appearing in mathematical physics or 

engineering. At the abstract level, we observe that every 𝐶‐symmetric contraction has a 𝐶‐
symmetric Sz.‐Nagy unitary dilation. 

    We also examine the canonical model spaces ℋ𝜑 and the compressed Toeplitz operators 

carried by them from the viewpoint of 𝐶‐symmetry. In particular, we show how to use 

Clark’s theory [49] to produce complex symmetric matrix realizations for Jordan operators. 

Also 𝐶‐symmetry turns out to be fundamental in understanding the structure of inner 2 × 2 

matrix‐valued functions in the disk. This subject is related to Darlington’s synthesis problem 

in systems theory, and our approach offers a concrete parametrization of all solutions to the 

scalar Darlington problem. 

    Is the classical free interpolation problem in the unit disk. For an interpolating Blaschke 

product 𝜑 and the associated involution 𝐶 on the model space ℋ𝜑, we show the identity 

between a Fourier type orthogonal decomposition with respect to the bilinear form [⋅,⋅]: =
〈⋅, 𝐶 ⋅〉: 

𝑓 = ∑
[𝑓, 𝑒𝑛]

[𝑒𝑛 , 𝑒𝑛]

∞

𝑛=1

𝑒𝑛 

for 𝑓 in ℋ𝜑 and the standard division and interpolation results. The novelty in the above 

representation formula is the orthogonality of  its terms with respect to the new bilinear 

form. 

  The last contains a couple of simple examples of quotients of Hilbert spaces of analytic 

functions defined on domains of   ℂ𝑛. They illustrate the possible complications arising from 

the generalization of the complex symmetry of Jordan operators to several complex 

variables. 
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     Let ℋ denote a separable Hilbert space and 𝐶 an isometric antilinear involution of  ℋ. 

By isometric we mean that 〈𝑓, 𝑔〉 = 〈𝐶𝑔, 𝐶𝑓〉 for all 𝑓, 𝑔 belonging to ℋ. 
A typical example of a symmetry 𝐶 as above is the complex conjugation of functions 

belonging to a Sobolev space of a domain in ℝ𝑛. Another example is the term by term 

complex conjugation 

𝐶(𝑧0, 𝑧1, 𝑧2, … ) = (𝑧0, 𝑧1, 𝑧2, … ) 
of a vector in 𝑙2(ℕ) . As proved below, this example is typical. 

Lemma (2.1.1)[445]: If 𝐶 is an isometric antilinear involution on the Hilbert space ℋ, then 

there exists an orthonormal basis 𝑒𝑛 such that 𝑒𝑛 = 𝐶𝑒𝑛 for all 𝑛. Each ℎ in  ℋ can be 

written uniquely in the form ℎ1 + 𝑖ℎ2 where ℎ1 = 𝐶ℎ1 and ℎ2 = 𝐶ℎ2. Moreover, ‖ℎ‖2 = 

‖ℎ1‖
2 + ‖ℎ2‖

2 

Proof. Let 𝑒𝑛 be an orthonormal basis for the real Hilbert subspace (𝐼 + 𝐶)ℋ of  ℋ. Hence 

every vector in (𝐼 + 𝐶)ℋ is of the form ∑ 𝑎𝑛
∞
𝑛=0 𝑒𝑛 where 𝑎𝑛 is a square‐summable 

sequence of real numbers. Noting the decomposition 

ℎ =  
1

2
(𝐼 + 𝐶)ℎ + 𝑖

1

2𝑖
(𝐼 − 𝐶)ℎ =  

1

2
(𝐼 + 𝐶)ℎ + 𝑖

1

2
(𝐼 + 𝐶)(−𝑖ℎ)       (1) 

we see that every ℎ in ℋ lies in the complex linear span of (𝐼 + 𝐶)ℋ and hence 𝑒𝑛 is an 

orthonormal basis for ℋ. The remainder of the proposition follows immediately from (1) 

and a straightforward computation using the isometric property of C.  

As a consequence of the preceding proposition, we will sometimes refer to 𝐶 as a 

conjugation operator. Although the existence of a self‐conjugate basis or 𝐶‐real basis is 

guaranteed by Lemma (2.1.1), it is sometimes difficult to explicitly describe one.  

Example (2.1.2)[445]: Consider the typical non-trivial invariant subspace for the backward 

shift operator on the classical Hardy space 𝐻2. It is well known (see [48] for example) that 

the proper, nontrivial invariant subspaces for the backward shift operator are precisely the 

subspaces 

ℋ𝜑 ∶= 𝐻
2⊖𝜑𝐻2                                                     (2) 

where 𝜑 is a nonconstant inner function. Since 

{𝑓𝑧𝜑, 𝑧ℎ}  = {𝜑ℎ, 𝑓} = 0 

and 

{𝑓𝑧𝜑, 𝜑ℎ} = {𝑧ℎ, 𝑓}  = 0 

for each 𝑓 in ℋ𝜑  and ℎ in 𝐻2, we see that 

𝐶𝑓:= 𝑓𝑧𝜑                                                                    (3) 

defines a conjugation operator on ℋ𝜑. In particular, we see that  𝑓𝑧𝜑, despite its appearance, 

is the boundary function for an 𝐻2 function. 

     Even at this basic level, 𝐶‐symmetry is a powerful concept. The decomposition (1) yields 

an explicit function‐theoretic characterization of ℋ𝜑 [59] and hence of functions which are 

pseudocontinuable of bounded type (see [52, 84]). By Lemma (2.1.1), it suffices to classify 

self‐conjugate functions. Suppose that 𝜁 is a point on 𝜕𝔻 such that 𝜑 has a nontangential 

limiting value at 𝜁 of unit modulus and 𝑐 is a unimodular constant satisfying 𝑐2 = 𝜁𝜑(𝜁) . 

By (3), a self‐conjugate function 𝑓 satisfies 𝑓 = 𝑓𝑧𝜑 a.e on 𝜕𝔻 and hence 𝑓(𝑧) =
𝑐𝑟(𝑧)𝐾𝜁(𝑧) where 

𝐾𝜁(𝑧) =
1 − 𝜑(𝜁)𝜑(𝑧)

1 − 𝜁𝑧
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and 𝑟(𝑧) is a function in the Smirnov class 𝑁+ whose boundary values are real 𝑎. 𝑒. on 𝜕𝔻. 

Such functions are described explicitly in [58, 61,72]. 

    We remark that some of this can be generalized to the de Branges‐Rovnyak  setting, 

although we do not pursue that course in detail here. If 𝑏 is an extreme point of the unit ball 

of 𝐻∞ (that is, if  log (1 −  |𝑏(𝑒𝑖𝑡)|) is not integrable [53, Thm. 7.9]) and 𝜇𝑏 is the measure 

on 𝜕𝔻 whose Poisson integral is the real part of (1 + 𝑏)/(1 − 𝑏) , then one can define a 

conjugation operator on the associated de Branges‐Rovnyak space 𝐻(𝑏) that naturally 

corresponds to complex conjugation in 𝐿2(𝜇𝑏) [73, Sect. 9]. 

Example (2.1.3)[445]: Consider a bounded, positive continuous weight 𝜌 on the interval 

[−1, 1], symmetric with respect to the midpoint of the interval: 𝜌(𝑡) = 𝜌(−𝑡) for 𝑡 in [0,1]. 
Let 𝑃𝑛 be the associated orthogonal polynomials, normalized by the conditions 

∫ 𝑃𝑛

1

−1

(𝑡)2𝜌(𝑡)𝑑𝑡 = 1, lim
𝑥→∞

𝑃𝑛 (𝑥)/𝑥
𝑛 = 1. 

Due to their uniqueness, these polynomials have real coefficients and satisfy 

𝑃𝑛(−𝑡) = (−1)
𝑛𝑃𝑛(𝑡) 

for all 𝑡. Thus, 

𝑒𝑛(𝑡) = 𝑖
𝑛𝑃𝑛(𝑡) 

for 𝑛 ≥ 0 is a 𝐶‐real basis for 𝐿2([−1,1], 𝜌𝑑𝑡) with respect to the symmetry 𝐶𝑓(𝑡): =

𝑓(−𝑡). 
   Let us assume now that ℋ is a reproducing kernel Hilbert space (of scalar‐valued 

functions) on a space 𝑋. If ℋ is endowed with an isometric conjugation operator 𝐶, then 

𝐶𝑓(𝑤) = {𝐶𝑓, 𝐾𝑤} = {𝐶𝐾𝑤, 𝑓} 
for 𝑓 in ℋ. Therefore the conjugate kernel 𝑄𝑤 : = 𝐶𝐾𝑤 reproduces the values of 𝐶𝑓(𝑤) via 

the formula (𝑤) = {𝑄𝑤 , 𝑓}. This is to be expected, since 𝑓 ↦ 𝐶𝑓(𝑤) is a bounded antilinear 

functional on ℋ. 

While the reproducing kernel is antisymmetric (𝐾𝑤(𝑧) = 𝐾𝑧(𝑤) for all 𝑧, 𝑤 in ) , the 

conjugate kernel 𝑄𝑤 is symmetric in 𝑧 and 𝑤: 

𝑄𝑤(𝑧) = {𝐶𝐾𝑤 , 𝐾𝑧} = {𝐶𝐾𝑧 , 𝐾𝑤} = 𝑄𝑧(𝑤). 
Indeed, if 𝑒𝑛 is a 𝐶‐real basis, then 

𝑄𝑤(𝑧) = ∑ 𝑒𝑛

∞

𝑛=1

(𝑧)𝑒𝑛(𝑤) 

for all 𝑧, 𝑤 in 𝑋. This follows from the well‐known formula 

𝐾𝑤(𝑧) = ∑ 𝑒𝑛

∞

𝑛=1

(𝑧)𝑒𝑛(𝑤) 

which holds for any orthonormal basis 𝑒𝑛. 
Example (2.1.4)[445]: Let us return to the subspace ℋ𝜑 and the conjugation operator 𝐶 of 

Example (2.1.2) The reproducing kernel of ℋ𝜑 is 

𝐾𝑤(𝑧) =
1 − 𝜑(𝑤)𝜑(𝑧)

1 − 𝑤𝑧
                                              (4) 

where 𝑧, 𝑤 belong to the unit disk 𝔻. The corresponding conjugate kernel is 

𝑄𝑤(𝑧) =  
𝜑(𝑧) − 𝜑(𝑤)

𝑧 − 𝑤
.                                            (5) 

We will refer to these two functions often in the following pages. 
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Each conjugation operator 𝐶 is equivalent, via the Riesz representation theorem, to a 

symmetric bilinear form 

[𝑓, 𝑔]: = 〈𝑓, 𝐶𝑔〉                                                      (6) 
defined for 𝑓, 𝑔 in ℋ. This form is nondegenerate and isometric, in the sense that 

 sup |[𝑓, 𝑔]|  =  ‖𝑓‖ 

for all 𝑓 in ℋ. Conversely, if a nondegenerate, bilinear, symmetric, and isometric form  

[⋅,⋅ ] is given, then there exists an isometric antilinear operator 𝐶 on ℋ satisfying (6). Since 

‖𝐶𝑓‖ = ‖𝑓‖ we infer that 

〈𝑓, 𝑓〉 = 〈𝐶𝑓, 𝐶𝑓〉 = [𝐶𝑓, 𝑓] =  [𝑓, 𝐶𝑓]  = 〈𝑓, 𝐶2𝑓〉, 
hence 𝐶2 = 𝐼 and 𝐶 is a conjugation operator. 

The main object of study is a linear (usually bounded) operator 𝑇 acting on a separable, 

complex Hilbert space ℋ and satisfying 

𝐶𝑇 = 𝑇∗𝐶, 
Where 𝐶 is a conjugation operator on ℋ. We say then that 𝑇 is 𝐶‐symmetric and refer to 

(ℋ, 𝑇, 𝐶) as a 𝐶‐symmetric triple. 

For a fixed 𝐶, we consider the set 

𝐶𝑜 ∶= {𝑇 ∈ 𝐵(ℋ): 𝐶𝑇 = 𝑇∗𝐶}                        (7) 
of all 𝐶‐symmetric operators. Clearly, 𝐶𝑜 is a ∗‐closed linear manifold in 𝐵(ℋ) containing 

the identity. It is a small exercise to check that 𝐶𝑜 is closed in the norm, weak operator, and 

strong operator topologies and that the adjoint is continuous on 𝐶𝑜 with respect to all three 

topologies. 

The next proposition contains a few remarks based on the definition of C‐ symmetry.  

  Proposition (2.1.5)[445]: Let (ℋ, 𝑇, 𝐶) be a 𝐶‐symmetric triple. Then: 

(i) 𝑇 is left invertible if and only if  𝑇 is right invertible. If  𝑇−1 exists, then 𝑇−1 is 

also 𝐶‐symmetric. 

(ii) 𝐾𝑒𝑟𝑇 is trivial if and only if  Ran 𝑇 is dense in ℋ. 
(iii)  If  𝑇 is Fredholm, then ind 𝑇 = 0. 

(iv)  𝑝(𝑇) is 𝐶‐symmetric for any polynomial 𝑝(𝑧) . 
(v)  For each 𝜆 and 𝑛 ≥ 0, the map 𝐶 establishes an antilinear isometric isomorphism 

between 𝐾𝑒𝑟(𝑇 − 𝜆𝐼)𝑛 and 𝐾𝑒𝑟(𝑇∗ − 𝜆𝐼)𝑛 . 
    The preceding proposition has several immediate spectral consequences. The last 

statement implies that the point spectra of 𝑇 and 𝑇∗ correspond under complex conjugation. 

Since 𝐶 is isometric, the same correspondence holds for the approximate point spectra of 𝑇 

and 𝑇∗, as well as other spectral structures. 

    We first examine a few examples of 𝐶‐symmetric matrices. We will later examine more 

sophisticated examples of 𝐶‐symmetric operators and then the present finiterank examples 

will be instructive. 

Example (2.1.6)[445]: One of the simplest, and perhaps most important, families of C‐ 
symmetric operators are the finite Jordan blocks. Let 𝜆 be a complex number and consider 

the Jordan block 𝐽𝑛(𝜆) of order 𝑛 corresponding to 𝜆. In other words, 

𝐽𝑛(𝜆) ∶=  

(

  
 

𝜆 1 ⋮ ⋮ ⋮ ⋮
⋮ 𝜆 1 ⋮ ⋮ ⋮
⋮
⋮
⋮
⋮

⋮
⋮
⋮
⋮

𝜆 ⋮ ⋮ ⋮
⋮ ⋱ ⋮ ⋮
⋮ ⋮ 𝜆 1
⋮ ⋮ ⋮ 𝜆)
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If 𝐶𝑛 denotes the isometric antilinear operator 

𝐶𝑛(𝑧1, 𝑧2, … , 𝑧𝑛): = (𝑧𝑛, … , 𝑧2, 𝑧1)                             (8) 
on ℂ𝑛, then one readily computes that (ℂ𝑛 , 𝐽𝑛(𝜆), 𝐶𝑛) is a 𝐶𝑛‐symmetric triple for any 𝜆. In 

particular, the operators 𝐽𝑛(𝜆) for 𝜆 ∈ ℂ are simultaneously 𝐶𝑛− symmetric. Since a direct 

sum of finite rank Jordan blocks is clearly 𝐶‐symmetric, any operator on a finite dimensional 

space is similar to a 𝐶‐symmetric operator (see [56,68]). 

   The proper notion of equivalence for 𝐶‐symmetric operators, or more appropriately 𝐶‐
symmetric triples, is unitary equivalence. Given a 𝐶‐symmetric triple (ℋ1, 𝑇1, 𝐶1) and a 

unitary operator 𝑈 : ℋ1 → ℋ2, we obtain a new 𝐶‐symmetric triple (ℋ2 , 𝑇2, 𝐶2) where 𝑇2 
= 𝑈𝑇1𝑈

∗ and 𝐶2 = 𝑈𝐶1𝑈
∗ Indeed, since 𝐶1𝑇1 = 𝑇1

∗𝐶1, we see that 

𝐶2𝑇2 = (𝑈𝐶1𝑈
∗)(𝑈𝑇1𝑈

∗) = (𝑈𝑇1
∗𝑈∗)(𝑈𝐶1𝑈

∗) = 𝑇2
∗𝐶2. 

We say that two triples (ℋ1, 𝑇1, 𝐶1) and (ℋ2 , 𝑇2, 𝐶2) are equivalent if there exists a unitary 

operator 𝑈:ℋ1 → ℋ2 such that 𝑇2 = 𝑈𝑇1𝑈
∗ and 𝐶2 = 𝑈𝑇1𝑈

∗ This is clearly an equivalence 

relation. 

Example (2.1.7)[445]: For any complex number 𝑎 the matrix 

𝑇 = (
1 𝑎
0 0

)  

defines a 𝐶‐symmetric operator on ℂ2. By performing a unitary change of coordinates, we 

may assume that 𝑎 is real. Since 𝐶 must map the one‐dimensional eigenspaces of 𝑇 

corresponding to the eigenvalues 0 and 1 onto the corresponding eigenspaces of  𝑇∗, one 

can readily verify that (ℂ2, 𝑇, 𝐶) is a 𝐶‐symmetric triple where 

𝐶 (
𝑧1
𝑧2
) =

(

 
 

1

√1 + 𝑎2

𝑎

√1 + 𝑎2

𝑎

√1 + 𝑎2
−

1

√1 + 𝑎2)

 
 
(
𝑧1
𝑧2
). 

Example (2.1.8)[445]: All 2 × 2 complex matrices define 𝐶‐symmetric operators on ℂ2, 

with a proper choice of the 𝐶‐symmetry. By unitary equivalence, it suffices to consider 

upper triangular 2 × 2 matrices. Since 𝑇 − 𝜆𝐼 is 𝐶‐symmetric if and only if 𝑇 is, we need 

only appeal to Example (2.1.7) to draw the desired conclusion. 

Example (2.1.9)[445]: The preceding example indicates that we must look to 3 × 3 

matrices to find the simplest operators that are not 𝐶‐symmetric. The matrix 

𝑇 = (
1 𝑎 0
0 0 𝑏
0 0 1

) 

is 𝐶‐symmetric if and only if |𝑎| = |𝑏|. If |𝑎| = |𝑏|, then 𝑇 is unitarily equivalent to 

        (
1 𝑎 0
0 0 𝑎
0 0 1

) 

which is 𝐶‐symmetric with respect to 𝐶(𝑧1, 𝑧2, 𝑧3) = (𝑧3, 𝑧2, 𝑧1) . 
   Now suppose that |𝑎| ≠ |𝑏| and observe that 𝑇 has eigenvalues 0, 1, 1 but does not have 

two linearly independent eigenvectors corresponding to the eigenvalue 1. To see that 𝑇 is 

not 𝐶‐symmetric, note that 

|〈𝑒0, 𝑒1〉| ≠  |〈𝑓1, 𝑓0〉| 
whenever 𝑒0, 𝑒1 and 𝑓0, 𝑓1 are unit eigenvectors (corresponding to the eigenvalues 0 and 1, 

respectively) for 𝑇 and 𝜏∗, respectively. Take, for instance, 
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𝑒0 =  

(

 
 
−
𝑎

𝑠
1

𝑠
0 )

 
 
 , 𝑒1  =  (

1
0
0
),    𝑓0 =  

(

 
 

0
1

𝑡

−
�̅�

𝑡)

 
 
 , 𝑓1  =  (

0
0
1
), 

where 𝑠 = √1 + |𝑎|2 and 𝑡 = √1 + |𝑏|2. 
    The preceding example shows that not all finite rank operators are 𝐶‐symmetric. A 

geometric explanation lies in the fact that the angles between the eigenspaces of a 𝐶‐
symmetric operator 𝑇 must coincide (via 𝐶) with the complex conjugates of the 

corresponding angles between the eigenspaces of  𝑇∗ This does not occur for general finite 

rank 𝑇. 
    We can characterize 𝐶‐symmetric operators in terms of certain matrix representations. 

Let (ℋ, 𝑇, 𝐶) be a 𝐶‐symmetric triple and let 𝑒𝑛 be the orthonormal basis for ℋ provided 

by Lemma (2.1.1) with respect to the basis 𝑒𝑛, the matrix associated to 𝑇 is complex 

symmetric: { 𝑇𝑒𝑛, 𝑒𝑚} = {𝑇𝑒𝑚, 𝑒𝑛} for all 𝑛, 𝑚. Indeed, this follows from a straightforward 

computation based on the equation 𝐶𝑇 = 𝑇∗𝐶 and the isometric property of  𝐶: 

〈𝑇𝑒𝑛 , 𝑒𝑚〉 = 〈𝐶𝑒𝑚, 𝐶𝑇𝑒𝑛〉  = 〈𝑒𝑚, 𝑇
∗𝐶𝑒𝑛〉 = 〈𝑇𝑒𝑚, 𝐶𝑒𝑛〉 = 〈𝑇𝑒𝑚, 𝑒𝑛〉. 

Thus we have proved the following proposition. 

Proposition (2.1.10)[445]: Let 𝑇 be a bounded linear operator on a Hilbert space ℋ. The 

following conditions are equivalent: 

(i)  𝑇 is 𝐶‐symmetric for an isometric antilinear involution 𝐶. 
(ii)  There exists an isometric, symmetric bilinear form [𝑓, 𝑔] on ℋ with respect to 

which 𝑇 is symmetric. 

(iii)  There exists an orthonormal basis of ℋ with respect to which 𝑇 has a symmetric 

matrix representation. 

  Before proceeding to our next example, we briefly remark that the set 𝐶𝑜 defined by (7) is 

not closed under multiplication except in the trivial case where ℋ and 𝐶 are simultaneously 

unitarily equivalent to ℂ and complex conjugation, respectively. Indeed, it is easy to find 

complex symmetric 2 × 2 matrices whose product is not complex symmetric. 

Example (2.1.11)[445]: Hankel operators are 𝐶‐symmetric operators since every Hankel 

matrix is complex symmetric. For instance, the Carleman operator 

(𝛤𝑓)(𝑥) = ∫
𝑓(𝑦)

𝑥 + 𝑦

∞

0

𝑑𝑦 

On 𝐿2(0,∞) is 𝐶‐symmetric since it can be represented as a Hankel matrix with respect to 

a certain orthonormal basis [75, p. 55]. 

Example (2.1.12)[445]: As a simple example, consider the Jordan block  𝐽 : = 𝐽3(𝜆) of order 

3 acting on ℂ3. That is, 

𝐽 =  (
𝜆 1 0
0 𝜆 1
0 0 𝜆

) 

The vectors 𝑒1 =
1

√2
(1,0,1), 𝑒2 =

1

√2
(𝑖, 0, −𝑖), and 𝑒3 = (0,1,0) are orthonormal and self‐

conjugate with respect to the symmetry 

𝐶(𝑧1, 𝑧2, 𝑧3): = (𝑧3, 𝑧2, 𝑧1). 
The matrix for 𝐽 with respect to the basis {𝑒1, 𝑒2, 𝑒3} is the matrix 
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(

 
 
 
 
𝜆 0

1

√2

0 𝜆
−𝑖

√2
1

√2

−𝑖

√2
𝜆
)

 
 
 
 

 

which is complex symmetric, as expected. Similar results hold of course for Jordan blocks 

of higher order. 

Example (2.1.13)[445]: A Toeplitz matrix of  finite order 𝑛 defines a 𝐶‐symmetric operator 

on ℂ𝑛. Indeed we have 𝐶𝑛𝑇 = 𝑇∗𝐶𝑛 where 𝐶𝑛 denotes the involution (8) on ℂ𝑛. Toeplitz 

operators on 𝐻2 are in general not 𝐶‐symmetric, although their compressions to coinvariant 

subspaces for the unilateral shift are . 

One of the oldest and most important results about complex symmetric matrices is the 

following theorem (originating in the work of Takagi [89] and reproved in different contexts 

at least by Schur, Hua, Siegel and Jacobson; see the comments in [68]) . The infinite 

dimensional proof below is a simple adaptation of Siegel’s proof, [87, Lemma 1]. 

Theorem (2.1.14)[445]: (Takagi Factorization). Let 𝑇 = 𝑇𝑡 be a symmetric matrix 

representation of a 𝐶‐symmetric operator. There exists a unitary matrix 𝑈 and a normal and 

symmetric matrix 𝑁 (with respect to the same basis), such that 

𝑇 = 𝑈𝑁𝑈𝑡  

Proof. Note that 𝑇𝑇 = 𝑇𝑇∗ is a self‐adjoint matrix, therefore there exists a unitary 𝑈 and a 

real symmetric matrix 𝑆 such that 𝑇𝑇 = 𝑈𝑆𝑈∗ Then note that 𝑇𝑇 = 𝑈𝑆𝑈𝑡  and that the 

matrix 𝑁 = 𝑈∗𝑇𝑈 is normal (𝑁𝑁∗  = 𝑁∗𝑁 =  𝑆) and symmetric (𝑁 =  𝑁𝑡) . Thus 𝑇 = 

𝑈𝑁𝑈𝑡  as stated. In the case of finite matrices, 𝑁 can be further diagonalized by a real 

orthogonal matrix 𝑂: 𝑁 = 𝑂𝐷𝑂𝑡; see [68].  

In a similar spirit, we have the following theorem: 

Theorem (2.1.15)[445]: If 𝑇 is a 𝐶‐symmetric operator, then the antilinear operator 𝐶𝑇 

commutes with the spectral measure of  𝑇∗𝑇. In other words, if 𝐸 = 𝐸𝑇∗𝑇 denotes the 

spectral measure of  𝑇∗𝑇, then 

𝐶𝑇𝐸(𝜎) = 𝐸(𝜎)𝐶𝑇 

for every Borel subset 𝜎 of  [0,∞). 

Proof. 𝐶𝑇 commutes with 𝑇∗𝑇 since (𝐶𝑇)2 = 𝑇∗𝑇. Thus 𝐶𝑇 commutes with 𝑝(𝑇∗𝑇) for 

any polynomial 𝑝(𝑥) with real coefficients and hence with each (𝜎).  
Equivalently, one can also say that the antilinear operator 𝑇𝐶 commutes with the spectral 

measure of  𝑇𝑇∗. 
is Siegel’s correspondent of the unit ball, and 

𝐻(𝐶) = {𝑇 ∈ 𝐶𝑜 ∶   Im 𝑇 > 0} 
of the upper half‐plane; see [15] or [58]. 

The connection between the homogeneous complex structure of 𝐻(𝐶) and similar 

matrix realizations of symmetric domains and operator theory was long ago established and 

exploited by Potapov, Krein, Livsic and their followers; see for instance [97,99,56]. Within 

our framework we mention only that a self‐adjoint 𝐶‐symmetric operator 𝐴 (bounded or not) 

has a resolvent 𝑅(𝑧) = (𝐴 − 𝑧)−1 defined in the upper half‐plane, and with values in (𝐶) : 
𝐶(𝐴 − 𝑧)−1  = (𝐴 − 𝑧)−1𝐶, 

and 
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1

2𝑖
[(𝐴 − 𝑧)−1 − (𝐴 − 𝑧)−1] = (𝐴 − 𝑧)−1

𝑧 − 𝑧

2𝑖
(𝐴 − 𝑧)−1 > 0, Im 𝑧 > 0. 

The homogeneous structure of 𝐻(𝐶) can lead, as in the cases studied by the above, to 

canonical representations of such resolvent functions. We do not follow this direction here. 

 Is to provide a series of (quite distinct) examples of 𝐶‐symmetric operators. 

The building blocks (that is orthogonal summands) of any normal operator are the 

multiplication operators 𝑀𝑧 on a Lebesgue space 𝐿2(𝜇) of a planar, positive Borel measure 

𝜇 with compact support. It is clear that complex conjugation 𝐶𝑓 = 𝑓 is isometric and that 

𝐶𝑀𝑧 = 𝑀𝑧
∗𝐶. 

  Subnormal operators are not in general 𝐶‐symmetric, due to the fact that they tend to have 

nonzero Fredholm index on some part of their spectrum (see [69]). For instance, the 

unilateral shift represented as the multiplication operator 𝑀𝑧 on the Hardy space 𝐻2 of the 

disk cannot be 𝐶‐symmetric, as was already clear from Proposition (2.1.5) The same 

conclusion obviously applies to the Bergman shift operator 𝑀𝑧 with respect to any bounded 

planar domain. 

Recall that 𝑢 ⊗ 𝑣 denotes the rank‐ one operator (𝑢 ⊗ 𝑣)𝑓 : = {𝑓, 𝑣}𝑢 and that any rank‐
one operator on ℋ has such a representation. 

Lemma (2.1.16)[445]: The operator 𝑇 = 𝑢 ⊗ 𝑣 satisfies 𝐶𝑇 = 𝑇∗𝐶 if and only if 𝑇 is a 

constant multiple of 𝑢 ⊗ 𝐶𝑢. 
Proof. Indeed, it is easy to see that 𝐶(𝑢 ⊗ 𝑣) = (𝐶𝑢 ⊗ 𝐶𝑣)𝐶 since 

𝐶{𝑓, 𝑣}𝑢 = {𝑣, 𝑓}𝐶𝑢 = {𝐶𝑓, 𝐶𝑣}𝐶𝑢 

 

for all 𝑓, 𝑢, 𝑣 ∈ ℋ. Now (𝑢 ⊗ 𝑣)∗ = 𝑣 ⊗ 𝑢 and hence 

                                              𝐶(𝑢 ⊗ 𝑣) = (𝑢 ⊗ 𝑣)∗𝐶 

if and only if 𝑣 ⊗ 𝑢 = 𝐶𝑢 ⊗ 𝐶𝑣.  
Passing now to compact operators, it is easy to construct 𝐶‐symmetric ones. For instance, if 

𝑢𝑛 is a sequence of unit vectors in ℋ and 𝑎𝑛 is an absolutely summable sequence of scalars, 

then the operator 

𝑇 = ∑𝑎𝑛

∞

𝑛=1

(𝑢𝑛⊗𝐶𝑢𝑛) 

is bounded and satisfies 𝐶𝑇 = 𝑇∗𝐶. Under certain circumstances, we can use Theorem 

(2.1.15) to obtain a similar decomposition of a compact 𝐶‐symmetric operator. Consider the 

following example. 

Example (2.1.17)[445]: If 𝑇 is a compact 𝐶‐symmetric operator such that 𝑇𝑇∗ is injective 

and has simple spectrum, then we may write 

𝑇𝑇∗ = ∑ 𝑐𝑛

∞

𝑛=1

(𝑢𝑛⊗𝑢𝑛), 

where the 𝑐𝑛 are distinct positive constants tending to 0 and the vectors 𝑢𝑛 form an 

orthonormal basis of the underlying Hilbert space. By Theorem (2.1.15), the one‐ 
dimensional eigenspaces of  𝑇𝑇∗ are fixed by the antilinear operator 𝑇𝐶 and hence there 

exist complex constants 𝑎𝑛 such that 

𝑇𝐶𝑢𝑛 = 𝑎𝑛𝑢𝑛 , 𝑛 ≥ 1. 
Since 𝐶𝑢𝑛  = 𝑇𝑇

∗𝑢𝑛 = 𝑐𝑛𝑢𝑛, we see that |𝑎𝑛|
2 = 𝑐𝑛. This yields the decomposition 
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𝑇 = ∑𝑎𝑛

∞

𝑛=1

(𝑢𝑛⊗𝐶𝑢𝑛) 

of the operator 𝑇. Convergence is assured by the orthonormality of the vectors 𝑢𝑛 and by 

the fact that the coefficients 𝑎𝑛 tend to 0. 
    We leave it to make the appropriate modifications in the case where 𝑇𝑇∗ does not have 

simple spectrum. 

  It is worth mentioning at this point Hamburger’s example of a compact operator 𝐾, with a 

complete system of root vectors, such that 𝐾∗ does not have a complete system of root 

vectors [95]. Thus, 𝐾 can not be similar to a 𝐶‐symmetric operator. 

 Consider the simplest Volterra operator 

𝑉𝑓(𝑥) = ∫ 𝑓
𝑥

0

(𝑡)𝑑𝑡 

on 𝐿2[0,1]. The involution 𝐶𝑓(𝑡) : = 𝑓(1 − 𝑡) is a conjugation operator and a 

straightforward computation shows that 𝑉 is 𝐶‐symmetric. 

We can treat more general Volterra type operators. Let ℒ be an auxiliary Hilbert space with 

an antilinear, isometric involution 𝐽, and let 𝐴: [0, 1] → 𝐵(ℒ) be an essentially bounded, 

measurable, operator‐valued function, with values in 𝐽𝑜: 

𝐴(𝑡)𝐽 = 𝐽𝐴(𝑡)∗, 𝑡 ∈ [0, 1], 𝑎. 𝑒. 
On the vector‐valued Lebesgue space ℋ = 𝐿2[0, 1]⨂̂ℒ we define the involution 

(𝐶𝑓)(𝑡) = 𝐽(𝑓(1 − 𝑡 𝑓 ∈ ℋ, 𝑡 ∈  [0,1]. 
A straightforward computation shows that the Volterra type operator 

𝑉𝑓(𝑡) = ∫ 𝐴
𝑡

0

(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠, 𝑓 ∈ ℋ, 

satisfies the 𝐶‐symmetry relation 𝐶𝑉 = 𝑉∗𝐶. 
To give a numerical example, on 𝐿2[0, 1], we consider the Abel‐Liouville potentials: 

(𝐽𝛼𝑓)(𝑡) =
1

𝛤(𝛼)
∫ (
𝑡

0

𝑡 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠, 𝛼 > 0. 

    They are simultaneously 𝐶‐symmetric with respect to the symmetry 𝐶𝑓(𝑡) = 𝑓(1 − 𝑡). 
Volterra operators 𝑉 of real type (that is, satisfying 𝐶𝑉 = 𝑉𝐶) were extensively studied by 

the Ukrainian school; see [97]. It is interesting to note that the canonical models for these 

real operators involve only the pointwise involution (𝐶𝑓)(𝑡) = 𝑓(𝑡), but not the argument 

inversion (𝑡 ↦ 1 − 𝑡) we had above. 

   We maintain the notation of Example (2.1.2) and freely identity functions in 𝐻2 with their 

boundary values on the unit circle. In particular, recall the definitions (2) and (3) of the 

Hilbert space ℋ𝜑  and conjugation operator 𝐶, respectively. 

For a nonconstant function 𝑢 belonging to 𝐿∞, the Toeplitz operator with symbol 𝑢 is the 

operator on 𝐻2 given by 

𝑇𝑢𝑓: = 𝑃(𝑢𝑓) 
where 𝑃 denotes the orthogonal projection from 𝐿2 onto 𝐻2. It is well known that 𝑇𝑢

∗ = 𝑇𝑢 

for each 𝑢 in 𝐿∞. For a nonconstant inner function 𝜑, the compression of 𝑇𝑢 to ℋ𝜑 is the 

operator 

𝑇𝑢 ∶= 𝑃𝜑𝑇𝑢𝑃𝜑 
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where 𝑃𝜑 denotes the orthogonal projection from 𝐻2 onto ℋ𝜑. These operators are 

simultaneously 𝐶‐symmetric. 

Proposition (2.1.18)[445]: If 𝜑 is a nonconstant inner function, then (ℋ𝜑, 𝑇𝑢, 𝐶) is a C‐ 

symmetric triple for each u belonging to 𝐿∞. 
Proof. If 𝑓 and 𝑔 belong to  ℋ𝜑, then 

〈𝐶𝑇𝑢𝑓, 𝑔〉  =  〈𝐶𝑔, 𝑇𝑢𝑓〉 = 〈𝐶𝑔, 𝑃𝜑𝑇𝑢𝑃𝜑𝑓〉 

                     =  〈𝑃𝜑𝐶𝑔, 𝑇𝑢𝑓〉 =  〈𝐶𝑔, 𝑃(𝑢𝑓)〉 

          =  〈𝑃𝐶𝑔, 𝑢𝑓〉 = 〈𝐶𝑔, 𝑢𝑓〉 

              =  〈𝑔𝑧𝜑, 𝑢𝑓〉  = 〈𝑓𝑧𝜑, 𝑢𝑔〉 
               =  〈𝐶𝑓, 𝑢𝑔〉 = 〈𝑃𝑃𝜑𝐶𝑓, 𝑢𝑔〉 

                          =  〈𝑃𝜑𝐶𝑓, 𝑇𝑢𝑔〉  = 〈𝐶𝑓, 𝑃𝜑𝑇𝑢𝑃𝜑𝑔〉 

               =  〈𝐶𝑓, 𝑇𝑢𝑔〉  = 〈𝑇𝑢
∗𝐶𝑓, 𝑔〉. 

Hence 𝐶𝑇𝑢 = 𝑇𝑢
∗𝐶 as desired. 

    The compression of the unilateral shift to ℋ𝜑  (known as a standard model operator or 

Jordan operator) is 𝐶‐symmetric (see [57, Lemma 9.2]. 

If ℎ belongs to 𝐻∞, then several well‐known classical results (see, [29, 55]) follow from the 

fact that the compression 𝑇ℎ of the multiplication operator 𝑇ℎ (on 𝐻2) is 𝐶‐symmetric.  The 

correspondence between portions of the spectra of a 𝐶‐symmetric operator and its adjoint 

discussed after Proposition (2.1.5) apply immediately to the operators 𝑇ℎ and  𝑇ℎ
∗. This is in 

stark contrast to the (uncompressed) operators 𝑇ℎ and 𝑇ℎ
∗ on  𝐻2. In general, the spectra of 

𝑇ℎ and 𝑇ℎ
∗ are structurally quite different. For example, if ℎ is nonconstant, then 𝑇ℎ has 

empty point spectrum whereas the point spectrum of 𝑇ℎ
∗ contains ℎ(𝔻). 

    Compared to the dilation and extension theory in spaces with an indefinite metric (see, 

[29]), the analogous results for 𝐶‐symmetric operators are much simpler. We consider only 

two illustrative situations. 

    Let 𝑆:𝒟 → ℋ be a densely defined, closed graph symmetric operator. Recall von‐
Neumann’s criterion for the existence of a self‐adjoint extension of 𝑆: If there exists an 

antilinear involution 𝐶 : 𝒟 → 𝒟 such that 𝐶𝑆 = 𝑆𝐶, then the defect numbers of 𝑆 are equal, 

hence at least one self‐adjoint extension of 𝑆 exists; see [57 and [18, 17]. 

    The special case of an isometric involution 𝐶, actually considered by von Neumann 

([57],p.101) is interesting for us, because among all self‐adjoint extensions, only part of 

them turn out to be 𝐶‐symmetric. These operators, and extensions, were called real by von 

Neumann. 

Proposition (2.1.19)[445]: Let  S: 𝒟 → ℋ be a closed graph, densely defined symmetric 

operator and assume that there exists an antilinear, isometric involution 𝐶:ℋ → ℋ mapping 

𝒟 into itself and satisfying the symmetry relation 𝑆𝐶 = 𝐶𝑆. Then the 𝐶‐symmetric self‐
adjoint extensions 𝐴 (𝑖. 𝑒. 𝐴 =  𝐶𝐴𝐶) of 𝑆 are parametrized by all isometric maps 

𝑉:𝐾𝑒𝑟(𝑆∗ − 𝑖) → 𝐾𝑒𝑟(𝑆∗ + 𝑖) satisfying 𝑉∗𝐶 = 𝐶𝑉. 
Proof. Indeed, the involution 𝐶 maps the defect space 𝐾𝑒𝑟(𝑆∗ − 𝑖) into (𝑆∗ + 𝑖) . Let A be 

a 𝐶‐symmetric self‐adjoint extension of 𝑆 corresponding to the isometry 𝑉:𝐾𝑒𝑟 (𝑆∗  − 𝑖) → 

𝐾𝑒𝑟(𝑆∗  + 𝑖) ; see for instance ⌊81⌋. Then the graph of  𝐴 consists of Graph (𝑆) ⊕ {(𝑓, 𝑉𝑓) 
: 𝑓 ∈ 𝐾𝑒𝑟(𝑆∗ − 𝑖 and 𝐴𝑓 = 𝑖𝑓, 𝐴𝑉𝑓 = −𝑖𝑉𝑓. Since the domain of 𝐴 is invariant under 𝐶 

we infer (𝐶𝑉𝑓, 𝐶𝑓) =(𝑔, Vg) for some 𝑔 ∈ 𝐾𝑒𝑟(𝑆∗ − 𝑖) . In other words, 𝑉∗𝐶 = 𝐶𝑉. □ 
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The case of defect indices (1, 1) is simple, for any self‐adjoint extension of 𝑆 is 𝐶‐symmetric, 

due to the observation 𝐶(𝑒𝑖𝑡) = 𝑒−𝑖𝑡𝐶 for any real parameter 𝑡. For higher defect indices, 

however, not all self‐adjoint extensions are 𝐶‐symmetric. 

    We investigated the change acquired in the spectrum of an unbounded 𝐶‐symmetric 

operator 𝑆 (i.e. 𝑆 ⊂ 𝐶𝑆∗𝐶) when completed to one of its C‐self‐adjoint extensions 𝑆 (i.e. 𝑆 

⊂ 𝑆 and 𝑆 = 𝐶𝑆𝐶). Interestingly enough, these observations apply to SturmLiouville 

operators of  the form −𝑢′′ +𝑞(𝑥)𝑢, 𝑢 ∈ 𝐿2(−∞,∞) , where 𝑞(𝑥) is a nonreal potential [94, 

Sect. 23‐34]. 

We turn now to a 𝐶‐symmetric contractive operator 𝑇 ∈ 𝐵(ℋ) . The defect spaces of 𝑇 are 

𝒟+ = Ran (𝐼 − 𝑇∗𝑇)1/2, 𝒟− = Ran (𝐼 − 𝑇𝑇∗)1/2, 
where Ran 𝐴 denotes the norm closure of the range of the operator 𝐴. If 𝐶𝑇 = 𝑇∗𝐶, then 

𝐶𝑇∗𝑇 = 𝑇𝑇∗𝐶 and hence 

𝐶(𝐼 − 𝑇∗𝑇)1/2 = (𝐼 − 𝑇𝑇∗)1/2𝐶. 
In particular, this shows that 

𝐶:𝒟+  → 𝒟− 

is an isometric antilinear map. 

Thus a 𝐶‐symmetric contraction must have equal dimensional defect spaces. The Sz.‐Nagy 

minimal unitary dilation 𝑈 of 𝑇 can be constructed as an infinite matrix (see [16]) as recalled 

below. 

Let 

𝒦 = ⋯⊕𝒟−⊕𝒟−⊕ℋ⊕𝒟+⊕𝒟+… 

be a direct sum Hilbert space with ℋ on the 0‐th position (marked below in bold face 

characters). Let  T: 𝒦 → 𝒦 be the operator explicitly defined by 

𝑈(… , 𝑥−2, 𝑥−1, 𝑥0, 𝑥1, 𝑥2, … ) = (… , 𝑥−3, 𝑥−2, (𝐼 − 𝑇𝑇
∗)1/2𝑥−1 + 𝑇𝑥0, −𝑇

∗𝑥−1 + (𝐼 −
𝑇∗𝑇)1/2𝑥0, 𝑥1, . . 
It is easy to prove that 𝑈 is a unitary operator which dilates 𝑇, in the sense that {𝑈𝑛𝑥0, 𝑥0} 
= {𝑇𝑛𝑥0, 𝑥0}, 𝑛 ∈ ℕ, where 𝑥0 is a vector supported by the 0‐th position. 

        We define the isometric antilinear involution 𝐶 : 𝒦 → 𝒦 by the formula 

𝐶(… , 𝑥−2, 𝑥−1, 𝑥0, 𝑥1, 𝑥2, … ) = (. . . , 𝐶𝑥2, 𝐶𝑥1, 𝐶𝑥0, 𝐶𝑥−1, 𝐶𝑥−2, . .) 
A straightforward computation shows that 𝑈𝐶𝑈 = 𝐶 and hence 𝑈 is 𝐶‐symmetric. In 

conclusion we have proved the following result. 

Theorem (2.1.20)[445]: Let 𝑇 be a 𝐶‐symmetric contraction. The map 𝐶 extends to an 

antilinear, isometric involution 𝐶 on the space of the unitary dilation 𝑈 of  𝑇, such that  

𝐶𝑈 = 𝑈∗𝐶. 
As an almost tautological example we consider the following typical analysis of a self‐
adjoint extension of defect indices (1,1). 

Example (2.1.21)[445]: Let 𝑠0, 𝑠1, . . . be an indeterminate moment sequence of a 

probability measure on the line. Let ℋ be the completion of the space of polynomials ℂ[𝑥] 
in the norm given by the associated positive definite Hankel matrix 

‖∑ 𝑐𝑘

𝑛

𝑘=0

𝑥𝑘‖2 = ∑ 𝑠𝑘+𝑙

𝑛

𝑘,𝑙=0

𝑐𝑘𝑐𝑙. 

Let 𝑃𝑘(𝑥) be the associated orthogonal polynomials, normalized by the condition ‖𝑃𝑘‖ = 1 

and the leading term of each 𝑃𝑘 is positive. In this way ℋ can be identified with 𝑙2(ℕ) . 
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These orthogonal polynomials have real coefficients, hence they are invariant under the 

involution (𝐶𝑞)(𝑥) = 𝑞(𝑥) for 𝑥 in ℝ. 
   The unbounded operator of multiplication by the variable 𝑥 can be represented by a Jacobi 

matrix 𝐽, formally symmetric in the norm of ℋ. By considering 𝐽 on its maximal domain of 

definition 𝒟 we obtain a closed graph, symmetric operator with defect indices (1, 1) (due to 

the fact the problem is indeterminate). For all details see [76,99]. 

Obviously, the 𝐶‐symmetry relation 𝐶𝐽 = 𝐽∗𝐶 = 𝐽𝐶 holds on 𝒟. The self‐ adjoint extensions 

of 𝐽 are parametrized by a complex number 𝛼 of modulus one and can explicitly be given as 

follows. Fix an arbitrary nonreal complex number 𝜆 and consider the vector 𝛱𝜆 = 

(𝑃0(𝜆), 𝑃1(𝜆),… ) ∈ 𝐾𝑒𝑟(𝐽∗  −  𝜆) . This vector belongs to 𝑙2(ℕ) by the indeterminate 

nature of the moment sequence. Define 𝑃𝜆 = 𝛱𝜆/‖𝛱𝜆‖. Then the rank‐one operator 𝑃𝜆⊗
𝐶𝑃𝜆 = 𝑃𝜆〉𝐶𝑃𝜆 satisfies 

[𝑃𝜆⊗𝐶𝑃𝜆](𝑃0(𝜆), 𝑃1(𝜆), … ) =  𝐶(𝑃0(𝜆), 𝑃1(𝜆), … ) =  (𝑃0(𝜆), 𝑃1(𝜆), … ) 

              = (𝑃0(𝜆), 𝑃1(𝜆),… ), 

and thus it maps the defect space 𝐾𝑒𝑟(𝐽∗ − 𝜆) isometrically onto 𝐾𝑒𝑟(𝐽∗ − 𝜆) . 
Thus all self‐adjoint extensions of the Jacobi matrix 𝐽 can be described, on the enlarged 

domain of definition 𝒟 + ℂ𝛱𝜆, as 

𝑆𝛼 = 𝐽 + 𝛼(𝑃𝜆⊗𝐶𝑃𝜆)                                            (9) 
for |𝛼| = 1. A direct computation, or the proposition above, shows that the family 𝑆𝛼 is 

simultaneously 𝐶‐symmetric. 

The compressions of the unilateral shift onto its coinvariant subspaces ℋ𝜑  from the 

viewpoint of 𝐶‐symmetry. Maintaining the conventions and notation of Examples (2.1.2) 

and (2.1.4), we show here that the rank‐one unitary perturbations of the compressed 

unilateral shift considered by Clark [26] are jointly 𝐶‐symmetric with respect to the 

symmetry (3). Indeed, we consider a slight generalization at little extra expense. 

For 𝜆 in the unit disk define 

𝑏𝜆(𝑧): =  
𝑧 − 𝜆

1 − 𝜆𝑧
                                                (10) 

and consider the operator 

                       𝑆𝜆 ∶= 𝑃𝜑𝑇𝑏𝜆𝑃𝜑 

on  ℋ𝜑. Hence 𝑆𝜆 is simply the compression to ℋ𝜑 of the multiplication operator (on 𝐻2) 

with symbol 𝑏𝜆. The case 𝜆 = 0 corresponds to the compression of the unilateral shift. 

Proposition (2.1.18) tells us that the operators 𝑆𝜆 are jointly 𝐶‐symmetric. The following 

lemma is a generalization of Clark’s initial observation and is phrased in terms of the 

conjugation operator 𝐶. Recall the formulas (4) and (5) for the functions 𝐾𝜆 and 𝑄𝜆 described 

in Example (2.1.4).  
Lemma (2.1.22)[445]: For each 𝜆 in 𝐷, the following statements hold: 

(a) 𝑆𝜆𝑓 = 𝑏𝜆𝑓 if and only if 𝑓 is orthogonal to 𝑄𝜆. 
(b)  𝑆𝜆

∗𝑓 = 𝑓/𝑏𝜆 if and only if 𝑓 is orthogonal to 𝐾𝜆. 
Proof. Clearly, 𝑆𝜆

∗𝑓 = 𝑓/𝑏𝜆 if and only if 𝑓/𝑏𝜆 belongs to 𝐻2. This happens if and only if 

𝑓(𝜆) = 0, or equivalently, if and only if {𝑓, 𝐾𝜆} = 0. By the preceding, 𝑆𝜆
∗𝐶𝑓 = (𝐶𝑓)/𝑏𝜆 if 

and only if {𝐶𝑓, 𝐾𝜆} = 0, or equivalently, if and only if 𝑓 is orthogonal to  𝑄𝜆 = 𝐶𝐾𝜆. Since 

𝐶𝑆𝜆 = 𝑆𝜆
∗𝐶, this implies that 𝑆𝜆𝑓 = 𝐶[𝐶𝑓/𝑏𝜆] = 𝑏𝜆𝑓 if and only if 𝑓 is orthogonal to 𝑄𝜆. 
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At this point it is convenient to introduce the normalized kernel functions 𝑘𝜆 and 𝑞𝜆 defined 

by 

𝑘𝜆 ∶=  
𝐾𝜆
‖𝐾𝜆‖

, 𝑞𝜆 ∶=  
𝑄𝜆
‖𝑄𝜆‖

.                                            (11) 

For each 𝛼 of unit modulus, the operator 

𝑈𝜆,𝛼 ∶= 𝑆𝜆[𝐼 − (𝑞𝜆⊗𝑞𝜆)] + 𝛼(𝑘𝜆⊗𝑞𝜆)                 (12) 

is unitary by the preceding proposition. Moreover, it is a rank‐one perturbation of 𝑆𝜆 since 

𝑈𝜆,𝛼 = 𝑆𝜆 + (𝛼 + 𝜑(𝜆))(𝑘𝜆⊗𝐶𝑘𝜆)                       (13) 

as a straightforward computation shows. The proof that the 𝑈𝜆,𝛼 are the only rank‐ one 

unitary perturbations of 𝑆𝜆 is a straightforward generalization of the original proof [26]. 

      The interest in these perturbations stems from the fact that they are jointly 𝐶‐symmetric. 

The following proposition follows immediately from Proposition (2.1.18) and Lemma 

(2.1.16). 

Proposition (2.1.23)[445]: If 𝜑 is a nonconstant inner function, then the operators 𝑈𝜆,𝛼 are 

jointly 𝐶‐symmetric. That is, (ℋ𝜑, 𝑈𝜆,𝛼, C) is a 𝐶‐symmetric triple for each |𝜆| < 1 and each 

|𝛼| = 1. 
By (13) we have 

𝑈𝜆,𝛼𝑓 = 𝑆𝜆𝑓 + (𝛼 + 𝜑(𝜆))𝐶𝑓(𝜆)
1 − |𝜆|2

1 − |𝜑(𝜆)|2
𝐾𝜆          (14) 

for each 𝑓 in ℋ𝜑 . Thus the antilinear operator 𝐶 plays a hidden role in the structure of the 

𝑈𝜆,𝛼, so the rank‐one perturbing operator involves the twisted point evaluation 𝑓 ↦ 𝐶𝑓(𝜆). 

Under certain circumstances we can explicitly furnish a self‐conjugate orthonormal basis 𝑒𝑛 

for ℋ𝜑. Although the existence of such a basis is guaranteed by Lemma (2.1.1) we are 

interested here in producing them for the purpose of computing the corresponding matrix 

representation of the compressed shift operator 𝑆:= 𝑆0. 
     Let 𝛼 be a unimodular constant and consider the unitary operator 𝑈𝛼 : = 𝑈0,𝛼. It was 

shown in [26, Lemma 3.1] that a complex number 𝜁 is an eigenvalue of 𝑈𝛼 if and only if 𝜑 

has a finite angular derivative 𝜑′(𝜁) at 𝜁 (note that |𝜁| = 1 since 𝑈𝛼 is unitary) and 𝜑(𝜁) =
𝛽 where the unimodular constant 𝛽 is defined by 

𝛽:=
𝛼 + 𝜑(0)

1 + 𝜑(0)𝛼
.                                                    (15) 

     The corresponding unit eigenvector will be 𝑘𝜁, where the definition (11) of 𝑘𝜁 is 

extended to include unimodular 𝜁 in the obvious way. Although the finiteness of the angular 

derivative is not explicit in [26], it is easily seen to be equivalent to the condition above (see 

[82, p. 367] or [41] ). 
    Let 𝜁𝑛 denote an enumeration of the (at most countably many) eigenvalues of 𝑈𝛼. Clark 

showed that if the operator 𝑈𝛼 has pure point spectrum, then the corresponding eigenvectors 

𝑘𝑛 : = 𝑘𝜁𝑛  of  𝑈𝛼 form an orthonormal basis for ℋ𝜑 . This occurs [49, Theorem 7.1] if the 

set of points on the unit circle at which 𝜑 does not have a finite angular derivative is 

countable. For example, the eigenvectors of 𝑈𝛼 span ℋ𝜑 if 𝜑 is a Blaschke product whose 

zeros cluster only on a countable set or if 𝜑 is a singular inner function such that the closure 

of the support of the associated singular measure is countable. In such cases the modulus 

|𝜑′(𝜁𝑛)| of the angular derivative of 𝜑 at 𝜁𝑛 is finite and equals ‖𝐾𝑛‖
2 where 𝐾𝑛 : = 𝐾𝜁𝑛 . 
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    Suppose now that 𝜑 is an inner function and |𝛼| = 1 such that the corresponding operator 

𝑈𝛼 has pure point spectrum {𝜁1, 𝜁2, … } and fix 𝑡𝑛 for 𝑛 = 0, 1, 2, . . . such that 𝑒𝑖𝑡0 = 𝛽 

and 𝜁𝑛 = 𝑒𝑖𝑡𝑛 for each 𝑛 ≥ 1. The preceding discussion tells us that the functions 𝑘𝑛 form 

an orthonormal basis for ℋ𝜑. Multiplying the 𝑘𝑛 by suitable unimodular constants yields a 

self‐conjugate orthonormal basis 𝑒𝑛 defined by 

𝑒𝑛 ∶= 𝑒
𝑖
2
(𝑡0−𝑡𝑛)𝑘𝑛 

with respect to which each 𝑓 in ℋ𝜑 enjoys the expansion 

𝑓(𝑧) = ∑
𝑒
𝑖
2
(𝑡𝑛−𝑡0)

√|𝜑′(𝜁𝑛)|

∞

𝑛=1

𝑓(𝜁𝑛)𝑒𝑛(𝑧). 

Whence we obtain the inner product formula 

                                                〈𝑓, 𝑔〉 = ∑
𝑓(𝜁𝑛)𝑔(𝜁𝑛)

|𝜑′(𝜁𝑛)|

∞

𝑛=1

 

for 𝑓, 𝑔 in ℋ𝜑. Since 𝐶 is simply the complex conjugation with respect to the basis 𝑒𝑛, we 

see that 

                                            𝛷𝑓:=  (
𝑒
𝑖
2(𝑡𝑛−𝑡0)

√|𝜑′(𝜁𝑛)|
𝑓(𝜁𝑛))𝑛=1

∞  

is an isometric isomorphism of  ℋ𝜑 onto a certain weighted 𝑙2 space such that 

                                      𝛷(𝐶𝑓) = 𝛷𝑓, 𝑓 ∈ ℋ𝜑 . 

If the sequence 𝑤𝑛/√|𝜑
′(𝜁𝑛)| is square‐summable, then there exists a function 𝑓 in ℋ𝜑  

whose nontangential limiting values at the points 𝜁𝑛 interpolate the values 𝑤𝑛 . 
   We now explicitly compute the matrix representation of the compressed shift operator 𝑆 

with respect to the basis 𝑒𝑛. In particular, we will see that the matrix ({𝑆𝑒𝑛, 𝑒𝑚〉)𝑛,𝑚=1
∞  is 

complex symmetric (as expected) and, moreover, that the entries are related to the 

eigenvalues 𝜁𝑛 in a simple way. By (14) we have 

𝑆𝑒𝑛 = 𝜁𝑛𝑒𝑛 − 𝑒𝑛(0)
𝛼 + 𝜑(0)

1 − |𝜑(0)|2
𝐾0 

where we used the fact that 𝑒𝑛 are self‐conjugate eigenvectors for 𝑈𝛼. Thus 

     {𝑆𝑒𝑛 , 𝑒𝑚}  =  𝜁𝑛〈𝑒𝑛 , 𝑒𝑚〉 + 𝑒𝑛(0)
𝛼 + 𝜑(0)

1 − |𝜑(0)|2
〈𝐾0, 𝑒𝑚〉 =  𝜁𝑛𝛿𝑛𝑚 + 𝑒𝑛(0)𝑒𝑚(0)

𝛼 + 𝜑(0)

1 − |𝜑(0)|2

= 𝜁𝑛𝛿𝑛𝑚 +
𝑒
𝑖
2
(𝑡𝑛−𝑡0)+(𝑡𝑚−𝑡0)

||𝐾𝑛‖||𝐾𝑚||
(1 − 𝛽𝜑(0))2

𝛼 + 𝜑(0)

(1 − |𝜑(0)|2)

=  𝜁𝑛𝛿𝑛𝑚 +
𝜁
1
𝑛2𝜁

1
𝑚2

|𝜑′(𝜁𝑛)|
1
2| 𝜑′(𝜁𝑚)|

1
2

(1 − 𝛽𝜑(0))2(𝛼 + 𝜑(0))

(1 − |𝜑(0)|2)
.                          (16) 

     Here 𝛿𝑛𝑚 denotes the Kronecker 𝛿‐function and the square roots of 𝜁𝑛 and 𝜁𝑚 are defined 

in the obvious way. From this calculation we observe that {𝑆𝑒𝑛, 𝑒𝑚〉 = {𝑆𝑒𝑚, 𝑒𝑛} for all 𝑛, 
𝑚 and hence the matrix for 𝑆 with respect to the basis 𝑒𝑛 is complex symmetric. The matrix 

representations of the unitary operator 𝑈𝛼 and the perturbing operator are evident in (16). 

Summing up, we have proved the following result. 
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Theorem (2.1.24)[445]: Let 𝜑 be a nonconstant inner function (on the unit disk) and let 𝑆 

be the standard Jordan operator (the compressed shift) on the model space ℋ𝜑  : = 𝐻2⊖

𝜑𝐻2 If the rank‐one unitary perturbation 𝑈𝛼 of  𝑆 has pure point spectrum {𝜁𝑛;  𝑛 ≥ 1}, then 

there exists an orthonormal basis 𝑒𝑛 of eigenvectors for 𝑈𝛼 such that 

(i)  𝐶𝑒𝑛 = 𝑒𝑛 for all 𝑛 ≥ 1 where 𝐶𝑓 : = 𝑓𝑧𝜑. 
(ii)  The matrix of 𝑆 with respect to the basis 𝑒𝑛 is complex symmetric and has the 

form (16). 

In the case 𝜑(0) = 0 our computation reduces to 

{𝑆𝑒𝑛 , 𝑒𝑚〉 = 𝜁𝑛𝛿𝑛𝑚 + 𝛼
𝜁
1
𝑛2𝜁

1
𝑚2

|𝜑′(𝜁𝑛)|
1
2|𝜑′(𝜁𝑚)|

1
2

. 

We relate the 𝐶‐symmetry 𝐶𝑓 = 𝑓𝑧𝜑 on the model space ℋ𝜑 : = 𝐻2⊖𝜑𝐻2 to the inner‐

outer factorization of functions 𝑓 in ℋ𝜑 . In terms of boundary functions ℋ𝜑 we have 

ℋ𝜑 = 𝐻
2 ∩ 𝜑𝑧𝐻2 

and hence the following easy lemma. 

Lemma (2.1.25)[445]: Two functions 𝑓 and 𝑔 in 𝐻2 satisfy = 𝑓𝑧𝜑 𝑎. 𝑒. on 𝜕𝐷 if and only 

if 𝑓 and 𝑔 belong to ℋ𝜑 and 𝐶𝑓 = 𝑔. 

Suppose now that 𝑓 belongs to ℋ𝜑. Since the functions 𝑓 and 𝐶𝑓 have the same modulus 

𝑎. 𝑒. on 𝜕𝔻, they share the same outer factor, say 𝐹. We may therefore write 𝑓 = 𝐼𝑓𝐹 and 

𝐶𝑓 = 𝐼𝐶𝑓𝐹 where 𝐼𝑓 and 𝐼𝐶𝑓 denote the inner factors of 𝑓 and 𝐶𝑓, respectively. 

𝐼𝑓𝐼𝐶𝑓𝐹 = 𝐹𝑧𝜑 

𝑎. 𝑒. on 𝜕𝐷. This shows that 𝐹 belongs to ℋ𝜑 and satisfies 𝐶𝐹 = 𝐼𝑓𝐼𝐶𝑓𝐹. More‐over, the 

inner function 𝐼𝑓𝐼𝐶𝑓 depends only upon 𝐹 and 𝜑 and not on the particular pair of conjugate 

functions 𝑓, 𝐶𝑓 with common outer factor 𝐹. We call the inner function 𝐼𝑓𝐼𝐶𝑓 the associated 

inner function of 𝐹 (with respect to 𝜑) and denote it ℐ𝐹. The functions 𝑓 = 𝐼𝑓𝐹 in ℋ𝜑 with 

outer factor 𝐹 are precisely those functions whose inner factors 𝐼𝑓 divide ℐ𝐹. This yields the 

following lemma. 

Lemma (2.1.26)[445]: For any outer function 𝐹 in ℋ𝜑 there exists a unique inner function 

ℐ𝐹 such that ℐ𝐹𝐹 = 𝐹𝑧𝜑 𝑎. 𝑒. on 𝜕𝐷. If I is an inner function, then if  belongs to ℋ𝜑 if and 

only if  I divides ℐ𝐹 . 
Example (2.1.27)[445]: Fix a nonconstant inner function 𝜑 and consider the kernel 

functions 𝐾𝜆 and 𝑄𝜆 = 𝐶𝐾𝜆 defined by (4) and (5). The associated inner function for 𝐾𝜆 is 

the inner factor 

ℐ𝐾𝜆  =  
𝑏𝜑(𝜆)(𝜑(𝑧))

𝑏𝜆(𝑧)
 

of 𝑄𝜆. Here 𝑏𝜑(𝜆) and 𝑏𝜆 are Möbius transformations defined by (10). 

To sum up, a function 𝑓 belonging to ℋ𝜑 possesses the representations 

(i)  𝑓 = 𝐼𝑓𝐹 where 𝐹 is outer, 𝐼𝑓 is the inner factor of 𝑓, and  𝐼𝑓|ℐ𝐹 . 

(ii)  𝑓 = 𝑓1 + 𝑖𝑓2 where 𝐶𝑓𝑘 = 𝑓𝑘 for 𝑘 = 1, 2. 

In light of the fact that |𝑓|2 = |𝑓1|
2 + |𝑓2|

2 𝑎. 𝑒. on 𝜕𝔻, it is not difficult to pass from one 

representation to the other. 
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We consider below the structure of the 𝑁‐dimensional model space ℋ𝜑 corresponding to a 

finite Blaschke product 

𝜑(𝑧) =∏
𝑧 − 𝜆𝑛

1 − 𝜆𝑛𝑧

𝑁

𝑛=1

 

with 𝑁 (not necessarily distinct) zeroes 𝜆𝑛. In particular, we make extensive use of the 

bilinear form [⋅, ⋅] arising from the conjugation operator 𝐶𝑓 = 𝑓𝑧𝜑 on ℋ𝜑. Select any 𝑤 in 

the closed unit disk such that the equation 𝜑(𝑧) = 𝑤 has 𝑁 distinct solutions 𝑧1, . . . , 𝑧𝑁. 

The 𝑁 functions 𝑄𝑛(𝑧) : = 𝑄𝑧𝑛(𝑧) defined by (5) are pairwise orthogonal with respect to 

the bilinear form [⋅, ⋅]: 

[𝑄𝑛 , 𝑄𝑚] = {
𝜑′(𝑧𝑛), 𝑛 = 𝑚,
0, 𝑛 ≠ 𝑚,

                             (17) 

and are linearly independent since 𝜑′(𝑧𝑛) ≠ 0 for all 𝑛. Therefore, the 𝑄𝑛 form a basis for 

ℋ𝜑 . 

For any 𝑓 in ℋ𝜑  the well‐known interpolation formula 

𝑓(𝑧) = ∑
𝑓(𝑧𝑛)

𝜑(𝑧𝑛)

𝑁

𝑛=1

𝑄𝑛(𝑧) 

follows immediately from (17). The space ℋ𝜑  is essentially a weighted version of ℂ𝑛 

twisted by 𝐶: 

〈𝑓, 𝑔〉 = ∑
𝑓(𝑧𝑛)𝐶𝑔(𝑧𝑛)

𝜑(𝑧𝑛)

𝑁

𝑛=1

. 

With respect to the bilinear form [⋅,⋅] we have 

[𝑓, 𝑔] = ∑
𝑓(𝑧𝑛)𝑔(𝑧𝑛)

𝜑′(𝑧𝑛)

𝑁

𝑛=1

.                                   (18) 

We can make these computations more explicit. Each function 𝑓 belonging to ℋ𝜑 is of the 

form 𝑓 = 𝐹/𝑅 where 𝐹 is a polynomial of degree ≤ 𝑁 − 1 and 

𝑅(𝑧) = (1 − 𝜆1𝑧)⋯ (1 − 𝜆𝑁𝑧).                               (19)  

The conjugation operator on ℋ𝜑 is given by the formula 

𝐶(𝐹/𝑅) = 𝐹≠/𝑅.                                                           (20) 
where the polynomial 𝐹≠ is defined by 

𝐹≠(𝑧) = 𝑧𝑁−1𝐹(1/𝑧). 

Observe that 𝜑 = 𝑃/𝑅 where 𝑃 = 𝑧𝑁𝑅(1/𝑧) and then choose any 𝑤 in the closed unit disk 

such that the equation 

𝑃(𝑧) − 𝑤𝑅(𝑧) = 0 

has 𝑁 distinct solutions 𝑧1, . . . , 𝑧𝑁. In other words, select 𝑤 so that the level set 𝜑−1({𝑤}) 
contains 𝑁 distinct points. 

Letting 𝑓 = 𝐹/𝑅 and 𝑔 = 𝐺/𝑅 denote arbitrary functions in ℋ𝜑 we have by (18), 

[𝑓, 𝑔]  =  ∑
𝐹(𝑧𝑛)𝐺(𝑧𝑛)

△ (𝑧𝑛)

𝑁

𝑛=1

, 
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〈𝑓, 𝑔〉  =  ∑
𝐹(𝑧𝑛)𝐺

≠(𝑧𝑛)

△ (𝑧𝑛)

𝑁

𝑛=1

 

where the polynomial △ is defined by 

△= 𝑅𝑃′ − 𝑃𝑅′. 
    Note that in the above formulas, the products [𝑓, 𝑔] and {𝑓, 𝑔} are intrinsic, while the 

right‐hand sides depend on the chosen fibre of the function 𝜑. 
  This is again a classical and well charted territory which we touch upon only briefly. In 

this framework 𝐶‐symmetry is a unifying concept and transparent formalism. 

Let 𝜆𝑛 be a sequence of distinct points in the unit disk and define 

𝜑(𝑧) =∏
|𝜆𝑛|

𝜆𝑛

∞

𝑛=1

𝜆𝑛 − 𝑧

1 − 𝜆𝑛𝑧
. 

Since the 𝜆𝑛 are distinct, it follows that 𝜑′(𝜆𝑛) ≠ 0. 
Consider the unit vectors 𝑒𝑛 defined by 

𝑒𝑛  =  
𝑄𝑛
‖𝑄𝑛‖

=  (1 − |𝜆𝑛|
2)
1
2𝑄𝑛 

where 𝑄𝑛 : = 𝑄𝜆𝑛  is defined by (5). The 𝑒𝑛 are orthogonal with respect to the bilinear form 

[⋅,⋅] introduced since 

[𝑒𝑛 , 𝑒𝑚] = {
(1 − |𝜆𝑛|

2)𝜑′(𝜆𝑛) , 𝑛 = 𝑚,
0, 𝑛 ≠ 𝑚.

 

We are led therefore to the formal Fourier‐type expansion 

𝑓 = ∑
[𝑓, 𝑒𝑛]

[𝑒𝑛, 𝑒𝑛]

∞

𝑛=1

𝑒𝑛                                                 (21) 

whose convergent behavior (for all 𝑓 in ℋ𝜑) is naturally linked to the uniform boundedness 

from below of |[𝑒𝑛 , 𝑒𝑛]|. This is Carleson’s famous interpolation theorem. 

   Recall that a sequence 𝜆𝑛 in the unit disk is called uniformly separated if there exists a 

𝛿 > 0 such that the Carleson condition 

∏|

 

𝑘≠𝑛

𝜆𝑘 − 𝜆𝑛

1 − 𝜆𝑘𝜆𝑛
|  ≥ 𝛿                                      (22) 

holds for every 𝑛. Thus, according to our computations, this is equivalent to asserting that 

|[𝑒𝑛, 𝑒𝑛]|  ≥ 𝛿 

for all 𝑛. In other words, the unit vectors 𝑒𝑛 are not “asymptotically isotropic” with respect 

to the bilinear form [⋅,⋅]. 
Carleson’s interpolation theorem for 𝐻2 asserts that the operator 

𝑇𝑓:= 𝑓(𝜆𝑛)√1 − |𝜆𝑛|
2 

maps ℋ𝜑 onto 𝑙2 if and only if the sequence 𝜆𝑛 is uniformly separated. Since 𝑇𝑓 = [𝑓, 𝑒𝑛] 

for all 𝑛, the interpolation theorem implies the following result. 

Theorem (2.1.28)[445]: Let 𝜆𝑛 be a sequence of distinct points in the unit disk, let 𝜑 be the 

associated Blaschke product, and let 𝑒𝑛 be the normalized evaluation elements of the model 

space ℋ𝜑 : = 𝐻2⊖𝜑𝐻2: 

[𝑓, 𝑒𝑛]  = 𝑓(𝜆𝑛)√1 − |𝜆𝑛|
2. 

The [⋅,⋅]‐orthogonal series 
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𝑓 = ∑
[𝑓, 𝑒𝑛]

[𝑒𝑛 , 𝑒𝑛]

∞

𝑛=1

𝑒𝑛 

converges for every 𝑓 ∈ ℋ𝜑 if and only if there exists a positive constant 𝛿 satisfying: 

|[𝑒𝑛, 𝑒𝑛]| ≥ 𝛿 for 𝑛 ≥ 1. 
    This can be stated in terms of the theory of  Riesz bases. The functions 𝑒𝑛 form a Riesz 

basis for ℋ𝜑 if and only if the sequence 𝜆𝑛 is uniformly separated. From this point of view, 

𝑒𝑛
′ ∶=

𝐶𝑒𝑛
[𝑒𝑛 , 𝑒𝑛]

 

is a biorthogonal sequence to 𝑒𝑛. 
If the 𝜆𝑛 satisfy the Carleson condition, then each 𝑓 in ℋ𝜑 is given by the interpolation 

formula 

𝑓(𝑧) = ∑
𝑓(𝜆𝑛)

𝜑′(𝜆𝑛)

∞

𝑛=1

𝑄𝑛(𝑧)                                             (23) 

which converges in norm. This also gives the orthogonal projection from 𝐻2 onto ℋ𝜑 of 

any function interpolating the values 𝑓(𝜆𝑛) at the nodes 𝜆𝑛 . 
     As in the finite dimensional case, the inner product on ℋ𝜑 has a simple representation in 

terms of the conjugation operator 𝐶. In light of the interpolation formula (23) we have 

〈𝑓, 𝑔〉 = ∑
𝑓(𝜆𝑛)𝐶𝑔(𝜆𝑛)

𝜑′(𝜆𝑛)

∞

𝑛=1

                                          (24) 

for any 𝑓, 𝑔 in ℋ𝜑. The antilinearity in the second argument of the inner product on ℋ𝜑 is 

clearly reflected by the presence of the 𝐶 operator in the preceding formula. In some sense, 

there is an asymmetry in (24) that is unnecessary. We can easily remedy this by considering 

the bilinear form [⋅,⋅], with respect to which ℋ𝜑  is simply a weighted sequence space: 

[𝑓, 𝑔]  = ∑
𝑓(𝜆𝑛)𝑔(𝜆𝑛)

𝜑′(𝜆𝑛)

∞

𝑛=1

. 

Although the bilinear form is not positive definite, we still have 

𝑐1∑|

∞

𝑛=1

[𝑓, 𝑒𝑛]|
2  ≤  ‖𝑓‖2  ≤ 𝑐2∑|

∞

𝑛=1

[𝑓, 𝑒𝑛]|
2 

for some constants 𝑐1 and 𝑐2 since the 𝑒𝑛 form a Riesz basis for ℋ𝜑 . 

   We consider a basic matrix extension problem arising in electrical network theory from 

the viewpoint of 𝐶‐symmetry. We consider the scalar‐valued Darlington synthesis problem: 

Given a function 𝑎(𝑧) belonging to 𝐻2, do there exist functions 𝑏, 𝑐, and 𝑑 also belonging 

to 𝐻2 such that the matrix 

𝑈 =  (
𝑎 −𝑏
𝑐 𝑑

)                                                          (25) 

is unitary 𝑎. 𝑒. on the unit circle 𝜕𝔻? In other words, when can we extend the 1 × 1 matrix 

(a) to a 2 × 2 inner matrix? 

If a matrix 𝑈 of the form (25) is unitary 𝑎. 𝑒. on 𝜕𝔻, then its determinant  det 𝑈 is an inner 

function, say 𝜑. It turns out that the entries of 𝑈 (including 𝑎 itself) belong to ℋ𝑧𝜑, the 

backward shift invariant subspace of 𝐻2 generated by 𝜑. The following theorem from [59, 

60] gives the exact relationship between 𝑎 and  det 𝑈. 
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Theorem (2.1.29)[445]: If 𝜑 is a nonconstant inner function, then 𝑈 is unitary a. e on 𝜕𝔻 

and  det 𝑈 = 𝜑 if and only if: 

(i)  𝑎, 𝑏, 𝑐, 𝑑 belong to ℋ𝑧𝜑 : = 𝐻2⊖ 𝑧𝜑𝐻2 

(ii)  𝐶𝑎 = 𝑑 and 𝐶𝑏 = 𝑐. 
(iii)  |𝑎|2 + |𝑏|2 = 1 𝑎. 𝑒. on 𝜕𝔻. 

Here 𝐶 denotes the conjugation operator 𝐶𝑓 = 𝑓𝜑 on the model space ℋ𝑧𝜑 (see Examples 

(2.1.2),(2.1.4)). From the viewpoint of 𝐶‐symmetry, 2 × 2 matrix inner functions resemble 

quaternions of unit modulus, for 

𝑈 =  (
𝑎 −𝑏
𝐶𝑏 𝐶𝑎

)                                             (26) 

where |𝑎|2 + |𝑏|2 = 1 𝑎. 𝑒. on 𝜕𝔻. The connection between matrix inner functions and 𝐶‐
symmetry is not surprising. Indeed, the connection between the Darlington synthesis 

problem and the backward shift operator (via pseudocontinuations [84]) was noted by 

several authors [42, 50, 51]. 

   Note that ‖𝑎‖∞ ≤ 1 is necessary for the scalar‐valued Darlington synthesis problem with 

data 𝑎(𝑧) to have a solution. The following theorem (also from [59, 60]) is the key to our 

approach. 

Theorem (2.1.30)[445]: If the function 𝑎(𝑧) belongs to ℋ𝑧𝜑 for some nonconstant inner 

function 𝜑 and ‖𝑎‖∞ ≤ 1, then there exists a function 𝑏(𝑧) in ℋ𝑧𝜑 such that  

|𝑎|2 + |𝑏|2 = 1 𝑎. 𝑒. on 𝜕𝔻. 
Returning to Theorem (2.1.29), we may write 𝑎 = 𝐼𝑎𝐹, 𝐶𝑎 = 𝐼𝐶𝑎𝐹, 𝑏 = 𝐼𝑏𝐺, and 𝐶𝑏 = 𝐼𝐶𝑏𝐺 

where 𝐼𝑎, 𝐼𝐶𝑎, 𝐼𝑏, 𝐼𝐶𝑏 are inner functions and 𝐹 and 𝐺 are outer. With this notation we have 

𝜑 =  𝑎𝐶𝑎 + 𝑏𝐶𝑏                                                 (27) 
=  ℐ𝐹𝐹

2 + ℐ𝐺𝐺
2,                                             (28) 

where ℐ𝐹 and ℐ𝐺  denote the associated inner functions of 𝐹 and 𝐺, respectively. 

   Suppose that 𝑈 is a solution to the scalar‐valued Darlington synthesis problem with data 

(𝑧) . By Theorem (2.1.29),  det 𝑈 = 𝜑 is inner and 

𝑈 =  (
𝑎 −𝑏
𝐶𝑏 𝐶𝑎

) 

where 𝐶𝑎 and 𝐶𝑏 are the conjugates of 𝑎 and 𝑏 in ℋ𝑧𝜑. Observe that if 𝐼1 and 𝐼2 are any 

inner functions, then 

𝑈′ = (
𝑎 −𝐼1𝑏
𝐼2𝐶𝑏 𝐼1𝐼2𝐶𝑎

)                                               (29) 

is another solution and  det 𝑈 divides  det 𝑈′. 
    We say that a solution 𝑈 is primitive if the inner function 𝜑 =  det 𝑈 is the minimal inner 

function such that  det 𝑈 divides  det 𝑈′ for any other solution 𝑈′. This is equivalent to 

requiring that 𝜑 is the minimal inner function such that 𝑎 belongs to ℋ𝑧𝜑. Note also that 

every primitive solution shares the same determinant, up to a unimodular constant factor.      

We call such a 𝜑 a minimal determinant for the problem (with data 𝑎(𝑧)). Recall that Arov 

⌊43,44] considered a related concept in his classification of minimal 𝐷‐representations in 

the operator‐valued case (which clearly covers the scalar case). Our techniques in the scalar 

case, however, are completely different, since we have available the concept of determinants 

and C‐ symmetry. The following easy proposition is from [60]. 
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Proposition (2.1.31)[445]: Fix a minimal determinant 𝜑 corresponding to the data (𝑧) . If 
𝑈′ is any solution, then 𝑈′ can be obtained via (29) from a primitive solution 𝑈 with 

 det 𝑈 = 𝜑. 
A complete collection of primitive solutions sharing the same minimal determinant is called 

a primitive solution set. Fix a minimal determinant 𝜑 to our problem. We wish now to 

describe all solutions 𝑈 with determinant 𝜑. By condition (iii) of Theorem (2.1.29), we may 

identify each solution with the inner factor of the upper‐left corner (𝑧) . This inner factor 

must be a divisor of ℐ𝐺  (which is determined by (28)) and hence there is a bijective 

correspondence between a primitive solution set and the inner divisors of  ℐ𝐺. 
Example (2.1.32)[445]: 𝐼𝑓 ℐ𝐺 is constant, then each primitive solution set consists of 

precisely one solution and all possible solutions can be constructed via (29) from a single 

primitive solution. This is the case for the data 𝑎 = 
1

2
 (1 + 𝜑) where 𝜑 is an inner function. 

The minimal determinant is 𝜑 and the corresponding 𝑏 is given by 𝑏 = 
1

2𝑖
(1 − 𝜑) . 

Example (2.1.33)[445]: If ℐ𝐺  is the square of an inner function, then symmetric primitive 

solutions exist. By a symmetric solution, we mean here a solution 𝑈 such that 𝑈 = 𝑈𝑡 where 

𝑈𝑡 denotes the transpose of 𝑈. Observe that if ℐ𝐺  = 𝐼2 where 𝐼 is an inner function, then the 

function 𝑏 = 𝐼𝐺 belongs to ℋ𝑧𝜑 and 𝐶𝑏 = 𝑏. Using (29) with 𝐼1 = −𝑖 and 𝐼2 = 𝑖 gives the 

symmetric solution 

(
𝑎 𝑖𝑏
𝑖𝑏 𝐶𝑎

) . 

We sketch now an approach (see [22]) to the Darlington problem for rational data based on 

𝐶‐symmetry. Given a rational function 𝑎(𝑧) (not a finite Blaschke product) in 𝐻∞ satisfying 

‖𝑎‖∞ ≤ 1, we may write 𝑎 = 𝑃/𝑅 where 𝑃(𝑧) is a polynomial relatively prime to a 

polynomial 𝑅(𝑧) of the form (19). We consider only the case  deg 𝑃 ≤  deg 𝑅 here, the 

other case is similar. 

The data 𝑎(𝑧) belongs to ℋ𝑧𝜑 where 𝜑 denotes the finite Blaschke product 

𝜑(𝑧) =∏
𝑧 − 𝜆𝑘

1 − 𝜆𝑘𝑧

𝑁

𝑘=1

. 

      We will easily verify that the finite Blaschke product 𝜑 is the minimal determinant 

corresponding to 𝑎(𝑧) and that the 𝐶 operator on ℋ𝑧𝜑 assumes the form 𝐶(𝐹/𝑅) = 𝐹≠/𝑅 

where # = 𝑧𝑁𝐹(1/𝑧). In particular, we have 𝜑 = 𝑅≠/𝑅 since 1 and 𝜑 are conjugate 

functions in ℋ𝑧𝜑. 

By Theorem (2.1.29) and (27) we seek solutions 𝑈 of the form 

𝑈 =  (
𝑎 −𝑏
𝐶𝑏 𝐶𝑎

) 

where 𝜑 = 𝑎𝐶𝑎 + 𝑏𝐶𝑏. Let us write 𝑏 = 𝐼𝑏𝐺 and 𝐶𝑏 = 𝐼𝐶𝑏𝐺 where 𝐼𝑏 and 𝐼𝐶𝑏 are inner and 

𝐺 denotes the common outer factor of 𝑏 and 𝐶𝑏. (27) and (28) imply that 

ℐ𝐺𝐺
2 = 𝐼𝑏𝐼𝐶𝑏𝐺

2 = 𝑏𝐶𝑏 =  
𝑅≠𝑅 − 𝑃≠𝑃

𝑅2
             (30) 

where ℐ𝐺  denotes the associated inner function for 𝐺. 
Since 𝐺 belongs to ℋ𝑧𝜑, we have 𝐺 = 𝑆/𝑅 where 𝑆(𝑧) is a polynomial of degree ≤ 𝑛. Since 

𝐺(𝑧) and 𝑅(𝑧) are outer, the polynomial 𝑆(𝑧) is also outer and thus (30) reduces to 

ℐ𝐺𝑆
2 = 𝑅#𝑅 − 𝑃#𝑃 

where ℐ𝐺  is a finite Blaschke product (possibly constant). On 𝜕𝔻 we have 
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𝑅≠𝑅 − 𝑃≠𝑃

𝑅2
 = 𝜑(1 − |𝑎|2) 

and hence the roots of 𝑅≠𝑅 − 𝑃≠𝑃 which lie on 𝜕𝔻 are exactly the points at which |𝑎| = 1. 

Since the zeroes of 𝑅≠𝑅 − 𝑃≠𝑃 occur in pairs symmetric with respect to 𝜕𝔻, the number of 

zeros of ℐ𝐺  (counted according to multiplicity) depends on the degree of 𝑅≠𝑅 − 𝑃≠𝑃 and 

the number of times (according to multiplicity) that the data function 𝑎(𝑧) assumes its 

maximum possible modulus of one on 𝜕𝔻. The number of solutions in a primitive solution 

set, therefore, depends on how many times the data 𝑎(𝑧) assumes extreme values. Since the 

Schur‐Cohn algorithm [32] can detect the number of zeroes of a polynomial inside the disk, 

on its boundary, and outside, we can in principle find the number of solutions in a primitive 

solution set without explicitly finding the roots of polynomials. 

    We may factor 𝑅≠𝑅 − 𝑃≠𝑃 into inner and outer factors without necessarily knowing its 

zeroes, obtaining 𝑆2 and hence 𝑆. This yields the (possibly identical) solutions 

(
𝑃/𝑅 −𝑆/𝑅

𝑆≠/𝑅 𝑃≠/𝑅
) and (

𝑃/𝑅 −𝑆≠/𝑅

𝑆/𝑅 𝑃≠/𝑅
) 

to our problem. 

Since 𝐺 = 𝑆/𝑅 is an outer function in ℋ𝑧𝜑, we have 

𝐺 = ℐ𝐺𝐺 =  
𝑆≠

𝑅
 

and therefore the desired inner function ℐ𝐺  is given by ℐ𝐺  = 𝑆≠/𝑆. Since 𝑆 is outer, the 

zeroes of  ℐ𝐺 are precisely the zeros of 𝑆≠ lying in the open unit disk. Once these zeroes 

have been found, we can complete our primitive solution set since these solutions can be 

identified with the functions 

𝑏(𝑧) = 𝐼𝑏𝐺 = 𝐼𝑏𝑆𝑅
 

where 𝐼𝑏 is an inner divisor of ℐ𝐺 . This yields the following procedure. 

Suppose that we are given a rational function (not a finite Blaschke product) 𝑎(𝑧) satisfying 

‖𝑎‖∞ ≤ 1. 
(i) Write 𝑎(𝑧) = 𝑃(𝑧)/𝑅(𝑧) where 𝑅(𝑧) has constant term 1 and 𝑃(𝑧) is relatively 

prime to (𝑧) . Let the degrees of 𝑃 and 𝑅 be denoted 𝑚 and 𝑛, respectively. 

(ii) If 𝑚 ≤ 𝑛, then form the polynomial 𝑅≠𝑅 − 𝑃≠𝑃 (of degree at most 2𝑛) using the 

definition 𝐹≠(𝑧) = 𝑧𝑛𝐹(1/𝑧) for polynomials 𝐹(𝑧) of degree ≤ 𝑛. 
(a) The outer factor of 𝑅≠𝑅 − 𝑃≠𝑃 is a polynomial 𝑆2 of degree ≤ 2𝑛. The matrices 

 

(
𝑃/𝑅 −𝑆/𝑅

𝑆≠/𝑅 𝑃≠/𝑅
) and (

𝑃/𝑅 −𝑆≠/𝑅

𝑆/𝑅 𝑃≠/𝑅
) 

are primitive solutions with determinant 𝜑 = 𝑅≠/𝑅. 
(b) Find the roots of the polynomial 

𝑆′: =
𝑆≠

𝑔𝑐𝑑(𝑆, 𝑆#)
 

(of degree 𝑁 ≤ 𝑛). These zeroes all lie inside the unit disk. 

 

(c) For each subset {𝜔1, . . . , 𝜔𝑘} of the roots of 𝑆′ such that 𝑘 ≤ 𝐿
𝑁

2
⌋, 
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𝑇(𝑧) = 𝑆(𝑧)∏
𝑧 − 𝜔𝑗

1 − 𝜔𝑗𝒵

𝑘

𝑗=1

 

is a polynomial of degree 𝑁 − 𝑘  yielding the primitive solutions  

(𝜏#/𝑅𝑃/𝑅 𝑃≠/𝑅 − 𝑇/𝑅) and (
𝑃/𝑅 −𝑇≠/𝑅

𝑇/𝑅 𝑃≠/𝑅
) . 

This yields a complete set of primitive solutions with determinant 𝜑. 
(iii) If  𝑚 > 𝑛, then form the polynomial 𝑅≠𝑅 − 𝑃≠𝑃 (of degree at most 2𝑚) 

using the definition 𝐹≠(𝑧) = 𝑧𝑚𝐹(1/𝑧) for polynomials 𝐹(𝑧) of degree ≤ 𝑚. Proceed as 

in the previous case. 

    We now briefly consider invariant subspaces of 𝐶‐symmetric operators. In particular, we 

are primarily interested in subspaces that are simultaneously invariant under a 𝐶‐symmetric 

operator 𝑇 and the underlying involution 𝐶. 
Proposition (2.1.34)[445]: Let (ℋ, 𝑇, 𝐶) denote a 𝐶‐symmetric triple. 

(i) ℳ is 𝐶‐invariant if and only if ℳ⊥ is 𝐶‐invariant. 

(ii)  If ℳ is a subspace of ℋ that is invariant under 𝐶 and 𝑇, then ℳ reduces 𝑇. 

(iii)  ℳ reduces 𝑇 if and only if 𝐶ℳ reduces 𝑇. 
(iv)  If ℳ is a 𝐶 invariant subspace 𝑜𝑓 ℋ and 𝑃 denotes the orthogonal projection 

from ℋ onto ℳ, then the compression 𝐴 = 𝑃𝑇𝑃 of  𝑇 to ℳ satisfies 𝐶𝐴 = 𝐴∗𝐶. 
Example (2.1.35)[445]: Consider the 𝐶‐symmetric triple (ℂ𝑛, 𝐽𝑛(𝜆), 𝐶) of Example (2.1.2) 

There are no proper, nontrivial subspaces of ℂ𝑛 that are simultaneously invariant for both 

the Jordan block 𝐽 : = 𝐽𝑛(𝜆) and the involution 𝐶. If ℳ is a nontrivial subspace of ℂ𝑛 which 

is 𝐽‐invariant, then it must contain the vector (1, 0,… , 0) . However, 𝐶(1,0, … , 0) =
(0,… , 0,1) and inductively one can see that if ℳ is also 𝐶‐invariant, then ℳ must be all of 

ℂ𝑛. 
Example (2.1.36)[445]: Consider the 𝐶‐symmetric triple (𝐿2[0,1], 𝑉, 𝐶) It is well known 

that the only invariant subspaces for the Volterra integration operator are the subspaces 

𝜒[0, 𝐿2𝑎)
 [0, 1] where 𝑎 ∈ [0, 1] and 𝜒[0,𝑎) denotes the characteristic function of the interval 

[0, 𝑎). It is clear that there are no proper, nontrivial V‐ invariant subspaces of 𝐿2[0, 1] that 

are also 𝐶‐invariant. 

Example (2.1.37)[445]: We return to the notation of Example (2.1.2) There are no proper 

nontrivial subspaces of  ℋ𝜑 which are invariant under both 𝐶 and the backward shift 

operator 𝐵. Restricted to ℋ𝜑 , 𝐵 is simply the compression to ℋ𝜑 of the Toeplitz operator 

𝑇𝑧 and hence, by Proposition (2.1.18) 𝐵 is 𝐶‐symmetric. Suppose that ℳ is a subspace of 

ℋ𝜑 that is invariant for both 𝐵 and 𝐶. Without loss of generality, there exists a function 𝑓 

in ℳ with a nonconstant outer factor, say 𝐹. The function 𝑔 : = 𝐹 + 𝐶𝐹 belongs to ℳ and 

satisfies  𝐶𝑔 = 𝑔. Since 𝐹 and 𝐶𝐹 share the same outer factor, namely 𝐹, the function 𝑔 

itself is outer. However, a self‐ conjugate outer function in ℋ𝜑 must generate ℋ𝜑 by a 

proposition in [21] (which is a simple restatement of [14, Theorem 3.1.5] in terms of 

conjugation operators). 

     Despite these examples, there are many 𝐶‐symmetric triples (ℋ, 𝑇, 𝐶) such that ℋ has 

subspaces that are invariant for both 𝑇 and 𝐶. If the matrix representation for 𝑇 with respect 

to the basis 𝑒𝑛 furnished by Lemma (2.1.1) has a diagonal block, then 𝑇 clearly has a 

subspace that is simultaneously invariant for 𝑇 and 𝐶. Finally, we note in passing that 
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Theorem (2.1.15) immediately implies that the antilinear operators 𝐶𝑇 and 𝑇𝐶 always admit 

nontrivial invariant subspaces. 

    With the analogue of Jordan operators in several complex variables and, in particular, the 

question whether they can still be C‐ symmetric. The following observation can produce 

many examples of product C‐ symmetric operators. 

Lemma (2.1.38)[445]: Let (ℋ1, 𝑇1, 𝐶1) and (ℋ2, 𝑇2, 𝐶2) be 𝐶‐symmetric triples. Then the 

hilbertian tensor product (ℋ1⊗ℋ2 , 𝑇1⊗𝑇2, 𝐶1⊗𝐶2) is also a 𝐶‐symmetric triple. 

  However, the general picture on an analytic model space on the polydisk is more involved. 

To start with such a product example, let 

𝛷(𝑧1, 𝑧2, … , 𝑧𝑛) = 𝜑1(𝑧1)𝜑2(𝑧2). . . 𝜑𝑛(𝑧𝑛) 
be a product of inner functions in the respective variables. The function 𝛷 is inner in the 

polydisk and a standard algebraic argument shows that 

𝒦1  = 𝐻
2(𝐷𝑛) ⊖ ∑ 𝜑𝑘

𝑛
𝑘=1 𝐻2(𝐷𝑛) ≅ ⨂ (𝑛

𝑘=1 𝐻
2⊖𝜑𝑘𝐻

2) . 
The associated product conjugation on this space is 

𝐶𝑓(𝑧) = 𝜑1(𝑧1). . . 𝜑𝑛(𝑧𝑛)[𝑧1. . . 𝑧𝑛𝑓(𝑧)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 
as a direct computation can also verify that 𝐶𝑓 is jointly analytic and orthogonal to 

∑ 𝜑𝑘
n
k=1 𝐻2(Dn). Let 𝑓 ∈ 𝐶(𝐷𝑛) be a continuous function and let 𝑇𝑓 be the Toeplitz operator 

with symbol 𝑓 compressed to the space 𝒦1. Since the function 𝑓 is approximable in the 

uniform norm by real analytic monomials, the above lemma implies 𝐶𝑇𝑓 = 𝑇𝑓
∗𝐶. 

We consider the model space 𝒦2 = 𝐻
2(𝐷2) ⊖ 𝑧1𝑧2𝐻

2(D2). The orthogonal 

decomposition 

𝐻2(𝐷2) ⊖ 𝑧1𝑧2𝐻
2(𝐷2) ≅ 𝐻2(𝐷1) ⊕ 𝑧2𝐻

2(D2), 

holds, where the subscripts indicate the corresponding variable. Thus the compressed 

Toeplitz operator 𝑇𝑧1  is unitarily equivalent to the standard unilateral shift 𝑇𝑧 and therefore 

has nontrivial Fredholm index. Consequently, the model space 𝒦2 cannot carry an 

involution 𝐶 with respect to which the respective Jordan operators are 𝐶‐symmetric. 

One may ask what properties distinguish the quotient analytic modules 𝒦1 and 𝒦2 so that 

the compressed Toeplitz operators are 𝐶‐symmetric on one, but not on the other. 

Section (2.2):   Advanced Application in Complex Symmetric Operators   

       In his consideration of the classical Carath�́�odory-Fej𝑒′r problem in function theory, 

Takagi [887] observed the relevance of the antilinear eigenvalue problem Tx = λ�̅�, where 

T is an n × n symmetric complex  matrix and x denotes complex  conjugation of a vector 

x in 𝕔𝑛. He noted that this equation implies that  𝑇∗Tx = |𝜆|2x and hence that |λ| is an 

eigenvalue of | 𝑇 |  =  √𝑇∗𝑇. This observation has many consequences, for example a 

formula for ‖𝑇‖  which does not explicitly involve the computation of  | T |: 

‖𝑇‖ = 𝑠𝑢𝑝{𝜎 ≥ 0 ∶ (∃𝑥 ∈ 𝕔𝑛)((𝑥 ≠ 0)⋀(𝑇𝑥 = 𝜎�̅�))}. 

We consider Takagi’s antilinear eigenproblem in a much more general setting. 

     We now pass to a separable complex Hilbert space ℋ which carries a 

conjugation C. Specifically, C is an antilinear operator ℋ which is involutive 

(C2 = I) and isometric, meaning that (x, y) = (Cy, Cx) holds for all x, y in ℋ .  

A bounded operator T: ℋ →ℋ is called C-symmetric if T =  C𝑇∗C and 

complex symmetric if it is C-symmetric with respect to some conjugate-on 𝐶. 

      In particular, an  n× n matrix T  is symmetric  if and only if   T = C𝑇∗C where C 

denotes the standard conjugation C(𝑧1, 𝑧2,..., 𝑧𝑛) = (𝑧1̅, 𝑧2̅,..., 𝑧𝑛̅̅ ̅) on 𝕔𝑛. Thus 
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⊂ 

|  | | | 

complex symmetric operators generalize the notion of complex symmetric matrices. 

In fact, T is C-symmetric if and only if it has a symmetric matrix representation with 

respect to an orthonormal basis whose elements are fixed by C. 

    The class of complex symmetric operators is surprisingly large. It includes all 

normal operators, Hankel operators, compressed Toeplitz operators (including finite 

Toeplitz matrices and the compressed shift), and many standard integral operators 

such as the Volterra operator [61]. Somewhat confusingly, the unbounded analogues 

of C-symmetric operators are sometimes referred to as J-selfadjoint, although 

neither concept should be confused with the notion of J-selfadjointness arising in the 

theory of  Krein spaces (where J is a linear involution). 

    Analyze the structure of complex symmetric operators beyondTakagi’s 

decomposition. We prove, for example, that a bounded C-symmetric operator T 

factors as T = CJ | 𝑇 | ,where J is an auxiliary conjugation which commutes with | 𝑇 | 
. This can be viewed as a generalization of a theorem of Godic and Lucenko which 

states that every unitary operator 𝑈 on ℋ decomposes as the product U = CJ of two 

conjugations [894]. We use the decomposition T =  CJ | 𝑇 |  to attack Takagi’s 

antilinear eigenvalue problem in a more general setting. 

   Glazman pioneered the study of unbounded complex symmetric operators [190, 

191] and proved  that a parallel to von Neumann’s theory of selfadjoint extensions 

of  a symmetric operator exists.  Specifically, one says that a closed-graph, 

denselydefined, unbounded operator T is C-symmetric if   T ⊂  C𝑇
∗ 
C  and C-

selfadjoint if  T = C𝑇∗C  .  In concrete applications, C  is typically of the form 

|𝐶𝑓|(x) =  𝑓(𝑥)̅̅ ̅̅ ̅̅   or [𝐶𝑓 ](𝑥)   =  𝑓(−𝑥)̅̅ ̅̅ ̅̅ ̅̅  on an appropriate 𝐿2 space. Since Glazman’s 

time, his fundamental ideas have been applied to several classes of differential 

operators (see [67, 899, 889]). Moreover, the complex scaling technique, a standard 

tool in the theory of Schrödinger operators, naturally leads to the consideration of C-

selfadjoint operators [66]. 

    We show that every unbounded C-selfadjoint operator T with zero in its resolvent 

admits a decomposition of the form T = CJ |𝑇| , where |𝑇| is positive and selfadjoint 

(in the usual sense) and J is a conjugation strongly commuting with |𝑇| This 

establishes a direct connection between C-selfadjoint and operators and leads to a 

new method of estimating the norm of C-selfadjoint operators with compact 

resolvent. 

    If 𝑇 is an unbounded C-selfadjoint operator which has compact resolvent at zero,  

then there exists an orthonormal basis 𝑢n of   ℋ consisting of solutions to the 

antilinear eigenvalue problem 𝑇𝑓 =  𝜎𝐶𝑓 (𝑓𝑜𝑟 𝜎 ≥ 0). Moreover, we have the 

formula 

 

‖𝑇‖ = sup{𝜎 ≥ 0: (∃𝑓 ∈ ℋ)((𝑓 ≠ 0)⋀(𝑇𝑓 = 𝜎𝐶𝑓))}. 

 On the other hand, the linear eigenvalue problem 𝑇𝑓 =  𝜆𝑓 (𝑓𝑜𝑟 𝜆 𝑖𝑛 𝐶) for the same 

operator does not in general produce an orthonormal system of eigenfunctions, nor a 

complete system of them (see [193, 195]). Several applications of this approach, dealing 

with Schr�̈�dinger operators with spectral gaps and the scaled Hamiltonians appearing in the 

problem of resonances, can be found in [69]. 

    We deal with the abstract structure of complex symmetric operators and briefly 

explores several basic examples.  We discuss Jordan model operators (compressed 
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shifts) and their rank-one unitary perturbations. We devoted to applications to 

unbounded operators. 

   We first review a beautiful, yet little-known, result of Godiˇc and Lucenko 

(Theorem (2.2.1)) on the structure of unitary operators before proving a broad 

generalization (Theorem (2.2.7)) of their theorem to the class of all complex 

symmetric operators. The remainder is devoted to various examples and applications.      

It is well-known  that  any  planar  rotation can be obtained as the product of two 

reflections. The following theorem of Godi�̌�  and  Lucenko  [192]  generalizes  this  

simple  geometric  notion  and  provides  an interesting perspective on the structure 

of unitary operators: 

Theorem  (2.2.1)[446]:  (Godic-Lucenko).  If  𝑈  is  a  unitary  operator  on  a  Hilbert  

space  ℋ, then there exist conjugations C and J on  ℋ such that 𝑈 =  𝐶𝐽. 
   This theorem is remarkable, for it states that all unitary operators (on a fixed Hilbert 

space ℋ ) can be constructed using essentially the same antilinear operator. Indeed, 

any conjugation on ℋ can be represented as entry-by-entry complex conjugation 

with respect to a certain orthonormal basis (i.e. can be represented as the canonical 

conjugation on an appropriate l2-space). In this sense, the conjugations 𝐶 𝑎𝑛𝑑 𝐽 in 

Theorem (2.2.1) are essentially  identical  objects.  Thus  the fine structure  of unitary 

operators arises entirely in how two copies of the same object are put together. The 

converse of Theorem (2.2.1) is also true: 

Lemma (2.2.2)[ 446]: If 𝐶 𝑎𝑛𝑑 𝐽 are conjugations on a Hilbert space ℋ , then 𝑈 =
 𝐶𝐽 is a unitary operator. Moreover, 𝑈 is both C-symmetric and J-symmetric. 

Proof. If 𝑈  =  𝐶𝐽, then (by  the isometric property of 𝐶  𝑎𝑛𝑑 𝐽) it follows 

that 〈𝑓, 𝑈∗𝑔〉  =    〈𝑈𝑓, 𝑔〉    =    〈𝐶𝐽𝑓, 𝑔〉    =    〈𝐶𝑔, 𝐽𝑓〉   =   〈 𝑓, 𝐽𝐶𝑔〉  for all f, 𝑔  

in  ℋ . Thus 𝑈∗= JC from which 𝐶𝑈 =  𝑈∗𝐶 and 𝐽𝑈 =  𝑈∗𝐽 both follow.   

Example (2.2.3)[ 446]:   Let 𝑈: ℂn → ℂn be a unitary  operator  with  n  (necessarily 

unimodular) eigenvalues 𝜉1,𝜉2,….,𝜉𝑛 and corresponding orthonormal eigenvectors 

e1, e2,... , e𝑛.   If  𝐶  and  𝐽   are  defined  by  setting  𝐶ek=  ξke𝑘 and  Je𝑘 = e𝑘  for 

𝑘 =  1, 2, . . . , 𝑛 and extending antilinearly to all of  ℂn, then clearly 𝑈 =  𝐶𝐽. By 

introducing offsetting unimodular parameters in the definitions of  𝐶  𝑎𝑛𝑑  𝐽, one 

sees that the Godic-Lucenko decomposition of 𝑈  is not unique. 

Example(2.2.4)[446]: If U denote the unitary operator [𝑈𝑓 ](𝑒𝑖𝜃) =

 𝑒𝑖𝜃𝑓 (𝑒𝑖𝜃)𝑜𝑛 𝐿2(𝜕𝔻, µ), 𝑡ℎ𝑒𝑛 𝑈 = 𝐶𝐽 𝑤ℎ𝑒𝑟𝑒 

 [𝐶𝑓](𝑒𝑖𝜃) = 𝑒
1
2𝜃𝑓 (𝑒𝑖𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅, [𝐽𝑓](𝑒𝑖𝜃) =  𝑒−

1
2𝜃𝑓 (𝑒𝑖𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

for all f in 𝐿2(𝜕𝔻, µ). Clearly, the proof of Theorem (2.2.1) follows from the spectral 

theorem and this simple example. 

Example (2.2.5)[ 446]:   Let  ℋ = 𝐿2(ℝ, 𝑑𝑥) and let 

               

[𝐹𝑓](𝝃) =
1

√2𝜋
∫ 𝑒−𝑖𝝃

ℝ

𝑓(𝑥)𝑑𝑥 

 

denote the Fourier transform of a function f in 𝐿2(ℝ). Complex conjugation 
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| | 

| | 

| | 

[𝐽𝑓](𝑥)  =  𝑓(𝑥)̅̅ ̅̅ ̅̅  satisfies 𝐽ℱ∗=𝐽ℱ, whence ℱ is a 𝐽-symmetric unitary operator. 

Thus 𝐶 = ℱ 𝐽 is another conjugation operator on  𝐿2(ℝ). The Fourier transform is 

thus the product of two simple conjugations: 𝐶 is a complex conjugation in the 

frequency domain and J is a complex conjugation in the state space domain. 

Example (2.2.6)[ 446]:   Let  ℋ = 𝐿2(ℝ, 𝑑𝑥) and let 

[𝐽 𝑓](𝑥) = 𝑝. 𝑣.
1

𝜋𝑖
 ∫

𝑓(𝑦)

𝑦 − 𝑥𝑅

 

denote the (self-adjoint) Hilbert transform of a function 𝑓 in 𝐿2(ℝ). One can verify 

that 𝐻 is C-symmetric with respect to the conjugation [𝐶𝑓](𝑥)  =  𝑓 (−𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ on   

𝐿2(ℝ) and that the conjugation 𝐽 is given by 
 

[𝐽 𝑓](𝑥) = 𝑝. 𝑣.
−1

𝜋𝑖
 ∫

𝑓(𝑦)̅̅ ̅̅ ̅̅

𝑦 + 𝑥𝑅

 

Surprisingly, Theorem (2.2.1) has a natural generalization to the entire class of 

complex symmetric operators. We discuss this result below. 

     Recall that the polar decomposition  𝑇 = 𝑈|𝑇| of an operator 𝑇 expresses 𝑇 

uniquely as the product of a positive operator  |𝑇| = √𝑇∗𝑇 and a partial isometry 𝑈  

that satisfies ker 𝑇 =  𝑘𝑒𝑟 𝑈 =  𝑘𝑒𝑟 |𝑇| and that maps the initial space (ker |𝑇|) ⊥ 

onto the final space cl(𝑟𝑎𝑛 𝑇 ), the closure of the range of  𝑇 . 
    If  𝑇 is a C-symmetric operator, then it turns out that the partial isometry 𝑈 is also 

𝐶-symmetric (for the same 𝐶). Furthermore, 𝑈 can be written as the product 𝑈 =
 𝐶𝐽 of the original conjugation 𝐶 and a partial conjugation  𝐽 which commutes with   

|𝑇| . In the case where T is unitary, this decomposition reduces to the Godic- Lucenko 

decomposition for unitary operators. 

      We say that an antilinear operator 𝐽 is a partial conjugation if 𝐽 restricts to a 

conjugation on (ker 𝐽)⊥  (having values in the same space). In particular, the linear 

operator 𝐽2 is the orthogonal projection onto the closed subspace ran 𝐽= (ker 𝐽)⊥ . 

Note that a partial conjugation 𝐽 can always be extended to a conjugation 𝐽 𝐽 ̅on the 

entire space  ℋ by forming the internal direct sum 𝐽 ̅  =  𝐽 ⊕ 𝐽 where 𝐽 is any partial 

conjugation with support ker 𝐽. 
Theorem (2.2.7)[ 446]:   If  𝑇 =  𝑈|𝑇| is the polar decomposition of a C-symmetric 

operator 𝑇, then 𝑇 = 𝐶𝐽|𝑇|  where 𝐽 is a partial conjugation, supported on 

𝑐𝐽(𝑟𝑎𝑛|𝑇|), which |𝑇| = √𝑇∗𝑇 commutes  with.  In  particular,  the  partial  isometry  

𝑈  is  C-symmetric and factors as  𝑈 =  𝐶𝐽. 
Proof. Write the polar decomposition 𝑇 =  𝑈 |𝑇| of  T and note that 

𝑇 = 𝐶𝑇∗𝐶 = 𝐶 |𝑇|𝑈∗𝐶 =  𝐶(𝑈∗𝑈 )|𝑇|𝑈∗𝐶 = (𝐶𝑈∗𝐶)(𝐶𝑈  |𝑇|𝑈∗𝐶)            (31) 
since 𝑈∗𝑈 is the orthogonal projection onto  cl(ran |𝑇| ). Setting  𝑊 =  𝐶𝑈∗𝐶, it 

follows that  𝑊∗ =  𝐶𝑈𝐶 and hence 𝑊𝑊∗𝑊 = 𝑊  

since 𝑈∗𝑈𝑈∗  =  𝑈∗. Thus W is a partial isometry. Since 𝐴  𝐶𝑈 𝑇 𝑈∗𝐶 is clearly 

positive, if we can show that  ker 𝐴 = ker𝑊 𝑘𝑒𝑟 𝑇 , then the uniqueness of the 

factors in the polar decomposition of T will allow us to conclude that 𝑊 =  𝑈 and 

𝐴 =  |𝑇| . 
Since 𝑈 and 𝑈∗ have cl(ran|𝑇|) as their initial and final spaces, respectively, it 

follows that ker 𝑊 =  𝑘𝑒𝑟 𝐴 =  𝑘𝑒𝑟 𝑈∗𝐶. We claim that 𝑘𝑒𝑟 𝑇 =
 𝑘𝑒𝑟 𝑈∗𝐶. Clearly 𝑘𝑒𝑟 𝑈∗ 𝐶 ⊆  𝑘𝑒𝑟 𝑇 by (31). Conversely, if 𝑇𝑓 =  0, then (31) 
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˜ 

˜ 

›
→ 

| | 

implies that |𝑇|𝑈∗𝐶𝑓 = 0. Since the final space of 𝑈∗ is c(ran |𝑇| ),  we must  have 

𝑈∗ Cf =  0 and hence  𝑘𝑒𝑟 𝑇 = 𝑘𝑒𝑟 𝑈∗ 𝐶. This proves that  𝑈 =  𝑊 𝑎𝑛𝑑 |𝑇| =  𝐴. 

   The equality 𝑈 =  𝐶𝑈∗ 𝐶 shows that 𝑈 is C-symmetric. Writing  𝐽 =  𝐶𝑈 =
 𝑈∗ 𝐶, we see that 𝐽2  =  (𝑈∗ 𝐶)(𝐶𝑈 )  =  𝑈∗ 𝑈 , the orthogonal projection onto 

cl(ran |T |). Since 𝐶𝑈 |𝑇|𝑈∗𝐶 =  |𝑇|, it follows that 𝐽|𝑇||𝐽 =  |𝑇| and hence 

𝐽|𝑇 |  =  |𝑇|𝐽. 
   From  𝐽 =  𝐶𝑈 ,  it follows that ker 𝐽 =  𝑘𝑒𝑟 𝑈  =  𝑘𝑒𝑟|𝑇| =  (𝑐𝑙(𝑟𝑎𝑛 |𝑇|))⊥.  

Since  𝐽 =  𝑈∗𝐶, it follows that ran 𝐽 =  𝑟𝑎𝑛 𝑈∗ =  𝑐𝑙(𝑟𝑎𝑛 |𝑇|). Finally, J is clearly 

isometric on cl(ran  |𝑇|) since CU is isometric there. Thus J is a partial conjugation 

supported on  cl(ran  |𝑇|) which commutes with  |𝑇|.This concludes the proof.       

Theorem (2.2.7) provides a simple scheme for constructing complex symmetric 

operators. Fix a conjugation C, then select a positive bounded operator A and a 

conjugation 𝐽 commuting with it. Many such 𝐽 exist, for they can be obtained from 

the spectral representation of A as a multiplication operator on a direct sum of  

Lebesgue spaces.   It is  easy  to verify  that the  𝑇  =   𝐶𝐽𝐴  is  C-symmetric   and 

satisfies  |𝑇| =  𝐴. Finally, we  remark that given two  conjugations C  and Cj, the  

map 𝑇 ↦ �̀�𝐶𝑇 establishes a bijection between the class of C-symmetric and Cj- 

symmetric operators. 

   Using Theorem (2.2.7), we can also obtain several strong statements about 

complex symmetric operators. For instance, it turns out that the partial isometry in 

the polar decomposition of T can always be extended to a unitary operator: 

 Corollary (2.2.8)[ 446]:   If  𝑇  is a C-symmetric operator, then T =  W|𝑇|  where 

W is a C-symmetric unitary operator.  

Proof. If 𝑐𝑙(𝑟𝑎𝑛 |𝑇 |) = ℋ, then 𝐽 is a conjugation on all of ℋ and 𝑈  = 𝐶𝐽 is already a C-

symmetric unitary operator. Otherwise, write 𝑇 = 𝐶𝐽|𝑇 | and extend 𝐽 to a conjugation 𝐽 ̅on 

all of  ℋ using the remarks preceding Theorem (2.2.7). By Lemma (2.2.2), the operator 

𝑊 ⇒  𝐶𝐽 ̅ is C-symmetric and unitary. 

Corollary (2.2.9)[ 446]:   If 𝑇 is a complex symmetric operator, then 𝑇 is invertible if and 

only  if  its  modulus  |𝑇| = (𝑇∗𝑇 )1/2  is  invertible.  

Proof.  This follows immediately from the preceding corollary.  

Corollary (2.2.10)[ 446]:   If 𝑇 is a complex symmetric operator, then 𝑇∗ 𝑇 and 𝑇𝑇∗ are 

unitarily equivalent. 

Proof. If 𝑇 is C-symmetric, then write 𝑇 =  𝐶𝐽 |𝑇| where, without loss of generality, we 

assume that 𝐽 is a conjugation on all of  ℋ . Since 𝐽 commutes with |𝑇| , it also commutes 

with |𝑇|2 = 𝑇∗T . Therefore 𝐶𝐽(𝑇∗𝑇 )  =  𝐶𝑇∗𝑇𝐽 =  𝑇𝐶𝑇𝐽 =  (𝑇𝑇∗)𝐶𝐽. By Lemma (2.2.2), 

𝐶𝐽 is unitary and thus 𝑇∗𝑇  and 𝑇𝑇∗ are unitarily equivalent. 

 The unitary equivalence of 𝑇∗𝑇 and 𝑇𝑇∗ is necessary, but not sufficient to imply the 

existence of a conjugation C  with respect to which T  is C-symmetric.  Indeed, if  𝑇  is any 

operator on a finite dimensional Hilbert  space, then √𝑇∗𝑇 and √𝑇𝑇∗ are unitarily 

equivalent. Nevertheless, there exist operators on ℂ3  which fail to be C-symmetric for any 

choice of a conjugation C (see [98]). 

   In the infinite-dimensional setting, it is easily seen that the preceding three corollaries are 
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not true without the assumption that 𝑇 is complex symmetric. Indeed, the unilateral shift 

provides immediate counterexamples to all three such assertions. The unilateral shift forms 

the basis of the following example:  

Example (2.2.11)[ 446]:   Let 𝑆 denote the unilateral shift 𝑆(𝑎0, 𝑎1, . . . )  =  (0, 𝑎0, 𝑎1, . . . ) 
on ℋ = 𝜄2(ℕ) both 𝑆 and its adjoint S∗ (𝑎0, 𝑎1.. .) = (𝑎1, 𝑎2,.. .) commute with the canonical 

conjugation 𝐶(𝑎0, 𝑎1,.. .) = (𝑎0̅̅ ̅, 𝑎1̅̅ ̅,.. .) on  ℋ. The operator 𝑇 =  S∗  ⊕  𝑆 
on ℋ ⊕ ℋ is C-symmetric with respect to the conjugation 

𝐶 = (
0 𝐶
𝐶 0

) 

on  ℋ ⊕ ℋ, and a computation shows that 

(
S∗ 0
0 𝑆

)
⏟    

𝑇

= (
0 𝐶
𝐶 0

)
⏟    

𝐶

(
0 𝐶𝑆
𝐶S∗ 0

)
⏟      

ℐ

(
𝑃 0
0 1

)
⏟    

|𝑇|

 

where P denotes the orthogonal projection P (𝑎0, 𝑎1, 𝑎2,.. .) = (0, 𝑎1, 𝑎2,.. .). In 

particular, the partial isometry 𝑢 =  𝐶 ℐ in the polar decomposition of 𝒯 is simply 

 𝒯 itself. It is easy to check that ℐ is a partial conjugation supported on ran |T| 

commuting with |T |  =  𝑃 ⊕  𝐼. In fact, 

ℐ (
𝑎0, 𝑎1, … .
𝑏0, 𝑏1, … .

) = (
0, �̅�0, �̅�1, … .
�̅�1, �̅�2, �̅�3, … .

) 

From here it is easy to see how to extend ℐ to a conjugation ℐ̅ on all of ℋ ⊕ ℋ: 

ℐ̅ (
𝑎0, 𝑎1, … .
𝑏0, 𝑏1, … .

) = (
0, �̅�0, �̅�1, … .
�̅�1, �̅�2, �̅�3, … .

) 

Moreover, the operator 𝑊 = 𝐶ℐ̅ 

 from Corollary (2.2.8)  is clearly unitary: 

𝑊(
𝑎0, 𝑎1, … .
𝑏0, 𝑏1, … .

) = (
𝑎0, 𝑏0, 𝑏1, … .
𝑎1, 𝑎2, 𝑎3, … .

) 

Using the decomposition 𝑇 =  𝐶𝐽 |𝑇| of Theorem (2.2.7), one can prove many results about 

compact C-symmetric operators. For instance, the following theorem shows that they have 

special singular-value (or Schmidt) decompositions. Without loss of generality, we 

consider the case dim ℋ =  ∞. 

Theorem (2.2.12)[ 446]:   Every compact C-symmetric operator 𝑇 is of the for 

T = ∑𝜎𝑛(𝐶𝑒𝑛⊗ 𝑒𝑛)

∞

𝑛=0

                                      (32)  

 

where the en are certain orthonormal eigenvectors of  |𝑇| = √𝑇∗𝑇 and the σn  are the  

nonzero  eigenvalues  of  |𝑇|,  repeated  according  to  multiplicity. 

Proof. Since 𝑇 is compact, the mutually orthogonal eigenspaces 𝜀𝑛 of |𝑇| 
corresponding to the distinct nonzero eigenvalues 𝜆𝑛 are finite dimensional, say of 

dimension dn. Let  0 ≤  𝑛 <  𝑁 , where N is finite if T  is of finite rank, or set 
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◦ 

𝑁 =  ∞ otherwise.  By Theorem (2.2.7), we  may  write 𝐶𝑇 =  𝐽|𝑇| where J  is a 

partial conjugation supported on cl(ran |T |) commuting with |T |. In particular, J 

restricts to a conjugation on each spectral subspace 𝜀𝑛 of |𝑇 | and hence (see [98, 

Lemma (2.2.2)] or [91, p.94]) there exists an orthonormal basis 𝑢𝑛1,  𝑢𝑛2, . . . ,  𝑢𝑛𝑑𝑛for 

𝐸𝑛 which is fixed by J. In other words, we have CTunk = λnunk for k = 1, 2,... , 

dn which shows that the operator 

 

𝑇 − ∑ 𝜆𝑛

𝑁−1

𝑛=0

∑ (𝐶𝑢𝑛𝑘⊗𝑢𝑛𝑘)
𝑑𝑛

𝑘=1
                          (33) 

vanishes on cl(ran T ) = (ker |𝑇| )⊥. Since ker T = ker |𝑇| , it follows that  (33) 

vanishes identically. Convergence is guaranteed since the unk are orthonormal and  λn 

tends to 0. The desired representation (32) follows upon a suitable relabeling of 

terms. 

Corollary (2.2.13)[ 446]:   If T is a compact C-symmetric operator, then 

‖𝑇‖ = sup{𝜎 ≥ 0: (∃𝑓)((𝑓 ≠ 0)⋀(𝑇𝑓 = 𝜎𝐶𝑓))}. 
A famous theorem of Adamyan, Arov, and Krein (AAK) states that if  𝑇  is 

compact Hankel operator, then its singular values σ0, σ1,.. .,  repeated according to 

multiplicity, are given by 

𝜎𝑛 =
𝑖𝑛𝑓     ‖𝑇 − 𝑇′‖

𝑟𝑎𝑛𝑘 𝑇′ = 𝑛
 𝑇′Hankel

 

An analogous theorem holds for the class of C-symmetric operators: 

Theorem (2.2.14)[ 446]:   (C-symmetric AAK). If T is a compact C-symmetric 

operator with singular values σ0, σ1,… ., repeated according to multiplicity, then 

𝜎𝑛 =

𝑖𝑛𝑓     ‖𝑇 − 𝑇′‖

𝑟𝑎𝑛𝑘 𝑇′ = 𝑛
 𝑇′ 𝐶 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

 

Proof . Write  𝑇 = 𝐶𝐽|𝑇|  by Theorem (2.2.7), and using the method of   proof  of  Theorem 

(2.2.12), write 𝑇 = ∑ 𝜎𝑘𝑒𝑘⊗ 𝑒𝑘
∞
𝑘=0   where 𝐽𝑒𝑘 = 𝑒𝑘  for all 𝑘. Let  𝐴 = 0 and 𝐴 =

∑ 𝜎𝑘(𝑒𝑒⊗ 𝑒𝑘)
∞
𝑘=0  for n≥ 1 and note that 𝑇′ = 𝐶𝐽𝐴𝑛 satisfies 

‖𝑇 − 𝑇′‖ = ‖𝐶𝐽|𝑇| − 𝐶𝐽𝐴𝑛‖ = ‖𝐶𝐽|𝑇| − 𝐴𝑛‖ = ‖|𝑇| − 𝐴𝑛‖ = 𝜎𝑛 

The operator 𝑇′ has rank n and (since J commutes with An ) is C-symmetric by  the 

comments following Theorem (2.2.7). 

    Among the simplest examples of compact complex symmetric operators are 

certain integral operators. If (𝑋, µ) is  a σ-finite measure space  (with µ real-valued),  

then a set function Φ is called   a measure-preserving symmetry of X if 𝜇 ° ∅ = 𝜇 

and  ∅2 = 𝐼.  With a slight  abuse of  notation, each measure-preserving symmetry Φ 

provides a conjugation on 𝐿2(𝑋, 𝜇) via the formula [𝐶𝑓] = 𝑓(∅(𝑥))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The proof of  

the following lemma is straightforward. 

Lemma (2.2.15)[ 446]:   A bounded integral operator of the form 
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[𝑇𝑓] = ∫ 𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝜇(𝑦)
𝑥

 

on 𝐿2(𝑋, 𝜇) is C-symmetric with respect to [C f ](x) = 𝑓 (𝛷(𝑥))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  if and only if the kernel 

satisfies 𝐾(∅𝑥, ∅𝑦) = 𝑘(𝑦, 𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥, 𝑦 ∈ 𝑋.   

      The Volterra operator illustrates many of the concepts developed above. More- over, it 

demonstrates how the C-symmetry of an integral operator is related to functional equations 

satisfied by its kernel and the measure theoretic symmetries  the underlying measure space. It 

also illustrates the special singular value decomposition (Theorem (2.2.12)) of a compact 

complex symmetric operator and its relationship to the double Fourier expansion of the 

integral kernel. A more traditional analysis of the Volterra operator can be found in [104, 

Problem 188].  

Example (2.2.16)[ 446]:   Consider the Volterra integration operator 

[𝑇𝑓](𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0

 

On  𝐿2[0,1] ,which is C-symmetric with respect to  [𝐶𝑓](𝑥) = 𝑓(1 − 𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (see [98]). 

Indeed, Lemma (2.2.15)  says that we can read this directly from the functional 

equation 𝐾(𝑥, 𝑦) = 𝑘(1 − 𝑦, 1 − 𝑥), satisfied by the integral kernel, the 

characteristic function of the triangle {(x, y) : 0 ≤ y ≤ x ≤ 1}. 

Since ker T is obviously trivial, by Theorem (2.2.7)  we may write 𝑇 =  𝐶𝐽|𝑇 | where 

J  is a conjugation on 𝐿2[0,1] which commutes with |𝑇 | and its spectral projections. 

Since each spectral subspace of |𝑇| has an orthonormal basis fixed by J, to 

diagonalize |𝑇| we consider the antilinear equation |𝑇|𝑓 = 𝜎𝐽𝑓, where 𝜎 ≥ 0. In 

light of the decomposition 𝑇 = 𝐶𝐽|𝑇|, this is equivalent to 𝑇𝑓 = 𝜎𝐶𝑓: 

 

  ∫ 𝑓(𝑦)𝑑𝑦 = 𝜎𝑓(1 − 𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑦

0

                      (34)

The preceding equation yields the boundary condition f (1) = 0. Dierentiation of (34) 

yields 𝑓(𝑥) = −𝜎𝑓′(1 − 𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and hence (after back-substitution) 

 ∫ 𝑓(𝑦)𝑑𝑦    
𝑥

0
= −𝜎2𝑓′̀ (𝑥)                               (35)  

giving the second boundary condition 𝑓′(0) = 0. Dierentiation of (35) provides the second 

order boundary value problem 

𝑓′′ +
1

𝜎2
 𝑓 = 0, 𝑓(1) = 0, 𝑓′(0) = 0. 

    Solving the boundary value problem yields 𝜎𝑛 = [(𝑛 +
1

2
)𝜋]−1 of |𝑇| and the associated 

normalized eigenfunctions √2 𝑐𝑜𝑠 (𝑛 + 
1

2

 
) 𝜋𝑥 ( 𝑤ℎere 𝑛 ≥ 0).  To  satisfy (34), we  

multiply  these  eigenfunctions  by  suitable  unimodular constants,  obtaining  the unit 

eigenfunctions 𝑒𝑛(𝑥)  =  𝑖
𝑛√2 cos(𝑛 + 

1

2

 
)𝜋𝑥  of  |𝑇|, all of which are fixed by the 𝐽 

conjugation.

Applying C, we obtain [𝐶𝑒𝑛](𝑥)  =  (−𝑖)
𝑛√2 sin(𝑛 + 

1

2

 
)𝜋𝑥  and hence (by theorem (2.2.12)) 

The singular value decomposition 



2 

 

. 

a 
a 

a 

𝑇 =∑
2

(𝑛 +
1
2
)
[sin (𝜋 (𝑛 +

1

2
)𝑥)⊗ 𝑐𝑜𝑠 (𝜋 (𝑛 +

1

2
)𝑥)]                (36) 

∞

𝑛=0
 

of the Volterra operator. From (36), we immediately read the numerical quantities ǁ T ǁ = 

2/π and tr 𝑇∗𝑇 =  1/2. Writing (36) explicitly, we find that 

[𝑇𝑓](𝑥) = ∫ [ ∑
2

(𝑛 + 
1

2

 
) 𝜋

∞

𝑛=0

[𝑠in(𝜋(𝑛 +  1
 
)𝑥)cos (𝜋(𝑛 +  

1

2

 
)𝑥)]

1

0

f(y)dy 

 

            the term in brackets being a double Fourier expansion of the Volterra kernel The 

next example is slightly more involved, dealing with the classical two dimensional version of 

the double layer potential, written in complex coordina

In the potential theory of a simply connected planar domain Ω with piecewise smooth 

boundary, the operator 

𝑇Ω 𝑓(𝑧) =
1

𝜋
∫
𝑓(𝑤)𝑑𝐴(𝑤)

(�̅� − 𝑧̅)2

.

Ω

 

defined for 𝑓 in 𝐿2(Ω, 𝑑𝐴),  plays a significant role ([114]). Here 𝑑𝐴 stands for area 

measure and the integral is taken as a Cauchy principal value. If [𝐶𝑓](𝑧)  =  𝑓 (𝑧)̅̅ ̅̅ ̅̅ ̅̅   
denotes complex conjugation of a function  𝑓 of   𝐿2(Ω)  (we henceforth suppress 

the dA), then clearly 𝑇Ω is a C-symmetric operator. 

    The case Ω = ℂ  is particularly important. Some simple manipulations with single 

and double layer potentials carried by 𝜕Ω  (or any closed curve) reveal that C 𝑇𝕔 is a 

conjugation on 𝐿2(ℂ)  [114]. Returning to our formalism, we infer that 𝑇ℂ
∗𝑇𝕔  =

 C𝑇𝕔C𝑇𝕔   =  I. In other words, TC is a C-symmetric unitary operator. We may 

therefore write 𝑇𝕔  =  CJ, where the conjugation 

                                          [𝐽𝑓](𝑧)= 
1

𝜋
∫
𝑓(𝑤)̅̅ ̅̅ ̅̅ ̅𝑑𝐴(𝑤)

(�̅�−�̅�)2
.

Ω
 

on 𝐿2(ℂ) is called by Schiffer the Hilbert transform of  𝑓f . 
In general, 𝑇Ω  is a compression of 𝑇𝕔 to the subspace 𝐿2(Ω)  of  𝐿2(ℂ).  Indeed,  if 

PΩ denotes the orthogonal projection from of  L2(ℂ).  onto 𝐿2(Ω)  : 

    𝑝Ω 𝑓(𝑧) = {
𝑓(𝑧),                  𝑧 ∈ Ω

0             ,       𝑧 ∈ ℂ Ω⁄  
 

 then 𝑇Ω = 𝑃Ω𝑇𝕔𝑃Ω (with a slight abuse of notation). Moreover, the commutativity of 

C and 𝑃Ω implies that 𝑇Ω is a C-symmetric operator. 

   𝐿𝑒𝑡 𝐿2(Ω) 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝐵𝑒𝑟𝑔𝑚𝑎𝑛 𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 Ω , 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 
holomorphic functions in 𝐿2(Ω), and let 𝑃 denote the orthogonal projection of 

𝐿2(Ω) ,onto 𝐿2(Ω) ,otherwise known as the Bergman projection. A short computation 

shows that �́�= CPC is the orthogonal projection onto the subspace 𝐶𝐿2(Ω) which 

consists of all anti -analytic functions in 𝐿2(Ω). 

      It turns out that the operator 𝑇 = 𝑃 ́ 𝑇Ω𝑃 , which one can regard as an operator 

from 𝐿𝑎
2 (Ω) to C𝐿𝑎

2  (Ω), is C-symmetric: 

𝐶𝑇 =  𝐶(𝑃 ́ 𝑇Ω𝑃 )  =  𝐶(𝐶𝑃𝐶)𝑇Ω𝑃  =  𝑃𝐶𝑇Ω𝑃  =  𝑃𝑇Ω
∗ 𝐶𝑃  =  (𝑃𝑇

Ω
∗ 𝑃 ́ )𝐶 =  𝑇∗𝐶. 

Using the C-symmetry of  𝑃 ́ 𝑇Ω𝑃 , we obtain the following Hilbert variant of a series 



63 

 

a 

( ) g − g 

−→ 

of observations due to Bergman and Schiffer: 

Theorem (2.2.17)[446]: If Ω is a bounded planar domain with 𝐶2 boundary, then there 

exists an orthonormal basis (𝑢𝑛)𝑛=0
∞  of the Bergman space 𝐿𝑎

2 (Ω) and a sequence (𝜎𝑛)𝑛=0
∞  

of positive numbers such that:   

1

𝜋
∫

𝑢𝑛(𝑤)𝑑𝐴(𝑤)

(�̅� − 𝑧̅)2Ω

= 𝜎𝑛𝑢𝑛(𝑧)̅̅ ̅̅ ̅̅ ̅                                     (37) 

 

for all z in Ω. 

Proof. The operator 𝑇Ω is compact (see [92], specifically the analysis of the L-kernel) and 

hence so is 𝑇 =  �́� 𝑇Ω𝑃 . Since T is supported on 𝐿2(Ω), the result follows from Theorem 

(2.2.12).  

   The values 𝜎𝑛 for which (37) is solvable are known as the Fredholm eigenvalues of 

Ω, and the associated eigenfunctions un (canonically attached by (37) to any bounded 

planar domain) are remarkable in many respects. For instance they simultaneously 

diagonalize the Bergman kernel KΩ and the L-kernel 𝐿(Ω) of the domain: 

𝐾𝛺(𝑧, 𝑤) = −
2

𝜋
 
𝜕2𝐺(𝑧, 𝑤)

𝜕𝑧𝜕𝑤
=∑ 𝑢𝑛

∞

𝑛=0
(z)𝑢𝑛(w)̅̅ ̅̅ ̅̅ ̅̅  , z, w ∈ 𝛺, 

and 

𝐿Ω(𝑧,𝑤)  =  −
2

𝜋

𝜕2𝐺(𝑧, 𝑤)

𝜕𝑧𝜕𝑤
= ∑𝜎𝑛𝑢𝑛(𝑧)𝑢𝑛(𝑤), 𝑧, 𝑤 ∈  𝛺,

∞

𝑛=0

 

where 𝐺(𝑧,𝑤) is the Green function of 𝛺 (see [92, 114]). 

As an extended example, we briefly discuss the decompositions T = CJ |𝑇 |(of  

Theorem (2.2.7))  for the  standard  Jordan  model operators and  consider  the  Godič- 

Lucenko decompositions (Theorem (2.2.1)) of their rank-one unitary perturbations. 

Complete details, including all computations, can be found in [97]. 

  We work here in the Hardy space 𝐻2 of the unit disk 𝔻, and we freely identify 

functions in 𝐻2 with their nontangential boundary values which exist a.e. on the unit 

circle ∂ 𝔻. Most of the following preliminary material can be found in [95, 107] or the 

more specialized [108]. 

  The interest lies in the so-called model spaces 𝐻2⊖  𝜑𝐻2, where 𝜑 denotes a 

nonconstant inner function. There is a natural interplay between function theory and 

operator theory on the spaces 𝐻2⊖  𝜑𝐻2  for they are examples of reproducing 

kernel Hilbert spaces.  Indeed, it is not hard to derive from the standard properties of  

the  Szeg𝑜̈ kernel  𝑒𝜆(𝑧)  =   (1 −   �̅�𝑧)
−1   and  the  definition  of  𝐻2⊖  𝜑𝐻2 that  

the formula 𝑓 (𝜆)   =    〈𝑓,𝐾𝜆〉  holds  for every 𝑓 in 𝐻2⊖  𝜑𝐻2.  Here 𝐾𝜆 

denotes  the reproducing kernel 

𝐾𝜆(𝑧) =
1 − ∅(𝜆)∅(𝑧)

1 − 𝜆𝑧̅̅̅
                                              (38) 

For 𝐻2⊖  𝜑𝐻2 

  Recall that Toeplitz operator  with symbol  u in 𝐿∞ (∂ 𝔻) is the operator 𝑇𝑢 :𝐻2⟶ 𝐻2 
defined by 𝑇𝑢𝑓 =  𝑃 (𝑢𝑓 ) where P denotes the orthogonal projection from 𝐿2 onto 𝐻2. 

Also recall that the adjoint of a Toeplitz operator is given by the simple formula Tu∗ = Tu . 



64 

 

   A compressed Toeplitz operator is an operator of the form 𝑃𝜑𝑇𝑢𝑃𝜑 where 𝑇𝑢 is a 

standard Toeplitz operator and 𝑃𝜑 Toeplitz operator and 𝑃𝜑 denotes the orthogonal 

projection from 𝐻2 onto 𝐻2⊖  𝜑𝐻2. With a slight abuse of notation, we will regard 

compressed Toeplitz operators as operators acting on the space  𝐻2⊖  𝜑𝐻2, rather than 𝐻2 

itself.  It   turns  out that  compressed  Toeplitz operators are complex symmetric operators 

with respect to the conjugation 

[𝐶𝑓](𝑧)  =  𝑓𝑧𝜑                                                         (39) 

on 𝐻2⊖  𝜑𝐻2 [97, 98]: 

 If 𝜑 is a nonconstant inner function and u belongs  to L∞(∂𝔻), then  the 

compressed Toeplitz operator 𝑃𝜑𝑇𝑢𝑃𝜑 is C-symmetric with respect to the 

conjugation (39) on  𝐻2⊖  𝜑𝐻2. 

  Although 𝑓𝑧𝜑̅̅̅̅ ̅̅  does not at  first appear to be the boundary function of an analytic 

function, let alone one in 𝐻2⊖  𝜑𝐻2, it is not hard to verify. Indeed, it succes to 

check  that  both  (𝐶𝑓, 𝑧ℎ̅̅ ̅)  and   (𝐶𝑓, 𝜑 ℎ )  vanish  whenever  f  belongs  to  𝐻2⊖
 𝜑𝐻2.and h belongs to  𝐻2. 

     We obtain the refined polar decomposition for the compressed shift (or Jordan operator) 

guaranteed by Theorem (2.2.7) In fact, we are able to consider a slight generalization of the 

Jordan model operator with little additional effort. 

In our computations, we will make frequent use of disk automorphisms and we adopt the 

following notation. For each 𝑤 in 𝐷, we let 𝑏𝑤 denote the function 

𝑏𝑤(𝑧) =
𝑧 − 𝑤

1 − 𝑤𝑧
.                                                         (40) 

We also require the reproducing kernels 𝐾𝑤 (38) and their conjugates under (39) : 

[𝐶𝐾𝑤](𝑧)  =
𝜑(𝑧) − 𝜑(𝑤)

𝑧 − 𝑤
.                                          (41) 

Furthermore, we frequently refer to the normalized kernel functions 𝑘𝑤 = 𝐾𝑤/‖𝐾𝑤‖ For 

each 𝜆 in  𝔻, we consider the compression 

𝑆𝜆𝑓 = 𝑃𝜑(𝜆𝜆𝑓)                                                   (42) 

of the analytic Toeplitz operator 𝑇𝑏𝜆 to ℋ𝜑. The operators 𝑆𝜆 are simple generalizations of 

the compressed shift  𝑆0𝑓 = 𝑃𝜑(𝑧𝑓) . We also remark that 𝑆𝜆
∗𝑓 = 𝑃𝜑(𝑏𝜆𝑓) and that the 

operators 𝑆𝜆 are 𝐶‐symmetric with respect to (39). 

    We explicitly describe the factorization 𝑆𝜆 = 𝐶𝐽𝜆|𝑆𝜆| of these operators. We first require 

several computational lemmas, the first of which generalizes [94, Lem. 2.1]. Detailed proofs 

can be found in [97]. 

Lemma (2.2.18)[ 446]:   𝑆𝜆
∗𝑓 = 𝑓/𝑏𝜆 if and only if 𝑓 is orthogonal to 𝑘𝜆. 𝑆𝜆𝑓 = 𝑏𝜆𝑓 if and 

only if 𝑓 is orthogonal to 𝐶𝑘𝜆. 
To find the modulus |𝑆𝜆| of  𝑆𝜆, we need only describe the positive operator 𝑆𝜆

∗𝑆𝜆. By Lemma 

(2.2.12)  it follows that if 𝑓 is orthogonal to 𝐶𝑘𝜆, then 𝑆𝜆
∗𝑆𝜆𝑓 = 𝑆𝜆

∗(𝑏𝜆𝑓) = 𝑓. Hence |𝑆𝜆| 
restricts to the identity operator on the orthocomplement of the one  dimensional subspace 

spanned by the function 𝐶𝑘𝜆. This tells us, for example, that |𝑆𝜆| maps the function 𝐶𝑘𝜆 

onto a nonnegative constant multiple of itself. In fact: 

Lemma (2.2.19)[ 446]:   𝑆𝜆𝐶𝑘𝜆 = −𝜑(𝜆)𝑘𝜆 and hence |𝑆𝜆|𝐶𝑘𝜆 = |𝜑(𝜆)|𝐶𝑘𝜆. 
Summing up, the modulus |𝑆𝜆| of 𝑆𝜆 is given by: 

|𝑆𝜆| =  [𝐼 − (𝐶𝑘𝜆⊗𝐶𝑘𝜆)] + |𝜑(𝜆)|(𝐶𝑘𝜆⊗𝐶𝑘𝜆).                (43) 



65 

 

In light of (43) and Lemma (2.2.18)  we assume that 𝜑(𝜆) ≠ 0 since otherwise the polar 

decomposition of 𝑆𝜆 is already evident. Indeed, if 𝜑(𝜆) = 0, then 𝑘𝑒𝑟𝑆𝜆 equals the one‐
dimensional subspace spanned by 𝐶𝑘𝜆 and the operator 𝑆𝜆 acts isometrically (multiplication 

by 𝑏𝜆) on the  and the  operator  acts isometrically (multiplication by) on the 

orthocomplement of  this subspace. 

We may write 𝑆𝜆 = 𝐶𝐽𝜆|𝑆𝜆| where 𝐽𝜆 is a partial conjugation supported on cl(ran |𝑆𝜆|) = 

𝐻2⊖𝜑𝐻2 which commutes with |𝑆𝜆|. In particular, we see that the assumption that 𝜑(𝜆) 
≠ 0 implies that  𝐽𝜆 is a conjugation on all of  𝐻2⊖𝜑𝐻2. To find  𝐽𝜆, we write 

𝐽𝜆|𝑆𝜆| = 𝐶𝑆𝜆                                                   (44) 
and compute the action of 𝐽𝜆 on the spectral subspaces of |𝑆𝜆|. 
     If 𝑓 is orthogonal to  𝐶𝑘𝜆, then |𝑆𝜆|𝑓 = 𝑓 by (43) and hence 𝐽𝜆𝑓 = 𝐶𝑆𝜆𝑓 = 𝐶(𝑏𝜆𝑓) by 

(44) and Lemma (2.2.18) Since 𝜑(𝜆) ≠ 0 we have 

|𝜑(𝜆)|𝐽(𝐶𝑘𝜆) = 𝐽|𝑆𝜆|(𝐶𝑘𝜆) = 𝐶(𝑆𝜆𝐶𝑘𝜆) = −𝜑(𝜆)𝐶𝑘𝜆, 
the two equalities following from (44) and Lemma (2.2.19) respectively. Putting these 

calculations together, we have the following explicit formula for  𝐽𝜆: 

𝐽𝜆𝑓 = {
𝐶(𝑏𝜆𝑓) , 𝑓 ⊥ 𝐶𝑘𝜆,

𝛼𝐶𝑘𝜆, 𝑓 = 𝐶𝑘𝜆
                            (45) 

where 𝛼 = −𝜑(𝜆)/|𝜑(𝜆)|. 
    We can now compute the partial isometry 𝑈𝜆 = 𝐶𝐽𝜆 in the polar decomposition of 𝑆𝜆 

using (45). By our assumption that 𝜑(𝜆) ≠ 0, 𝑈𝜆 is actually unitary, since 𝐶 and 𝐽𝜆 are both 

conjugations on 𝐻2⊖𝜑𝐻2. Applying 𝐶 to (45) yields 

𝑈𝜆𝑓 = {
𝑏𝜆𝑓, 𝑓 ⊥ 𝐶𝑘𝜆,

𝛼𝑘𝜆, 𝑓 = 𝐶𝑘𝜆,
 

and hence (using Lemma (2.2.18) 𝑈𝜆 is given by the formula 

𝑈𝜆 = 𝑆𝜆[𝐼 − (𝐶𝑘𝜆⊗𝐶𝑘𝜆)] + 𝛼(𝑘𝜆⊗𝐶𝑘𝜆).                      (46) 
   We can see directly that 𝑈𝜆 is 𝐶‐symmetric, for a short computation shows that 𝑈𝜆 is a 

rank‐one 𝐶‐symmetric unitary perturbation of  𝑆𝜆: 

𝑈𝜆 = 𝑆𝜆 + (𝛼 + 𝜑(𝜆))(𝑘𝜆⊗𝐶𝑘𝜆).                 (47) 
We summarize our results in the following theorem: 

Theorem (2.2.20)[ 446]:   Let 𝜑 be a nonconstant inner function and let 𝜆 be a point in 𝔻 

such that 𝜑(𝜆) ≠ 0. The polar decomposition of the compressed Toeplitz operator 𝑆𝜆𝑓 = 

𝑃𝜑(𝑏𝜆𝑓) is given by 𝑆𝜆 = 𝑈𝜆|𝑆𝜆| where 𝑈𝜆 is the 𝐶‐symmetric unitary operator (47) and 

|𝑆𝜆| is given by (43). Moreover, 𝑈𝜆 = 𝐶𝐽𝜆 where the conjugation 𝐽𝜆 is given by (45). 

    The operator 𝑈𝜆 defined by (47) is not the only rank‐one 𝐶‐symmetric unitary 

perturbation of  𝑆𝜆. Indeed, for any unimodular constant 𝛼, the operator 

𝑈𝜆,𝛼 = 𝑆𝜆 + (𝛼 + 𝜑(𝜆))(𝑘𝜆⊗𝐶𝑘𝜆)                       (48) 

is 𝐶‐symmetric and unitary, regardless of whether the inner function 𝜑 vanishes at 𝜆. This 

can be seen by expressing 𝑈𝜆,𝛼 in a form analogous to (46) and applying the lemmas of the 

preceding. 

    We refer to operators of the form (48) as generalized Aleksandrov‐Clark operators due 

to their similarity to the operators considered by Clark in [94] and later by A. B. 

   Aleksandrov and others (see (49) for background). That each 𝑈𝜆,𝛼 has the Godič‐Lucenko 

decomposition 

𝑈𝜆,𝛼 = 𝐶𝐽𝜆,𝛼 

where the conjugation 𝐽𝜆,𝛼 is given by 
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𝐽𝜆,𝛼𝑓 = {
𝐶(𝑏𝜆𝑓) , 𝑓 ⊥ 𝐶𝑘𝜆,

𝛼𝐶𝑘𝜆, 𝑓 = 𝐶𝑘𝜆,
                                    (49) 

the parameter 𝛼 now being allowed to vary over the unit circle. This decomposition makes 

it easy to compute the eigenvalues and eigenvectors (if any) of each 𝑈𝜆,𝛼. A function 𝑓 is an 

eigenvector of 𝑈𝜆,𝛼 corresponding to the (necessarily unimod‐ ular) eigenvalue 𝜉 if and only 

if 

𝐽𝜆,𝛼𝑓 = 𝜉𝐶𝑓.                                                        (50) 

In light of the explicit formula (49) for  𝐽𝜆,𝛼, we take the orthogonal decomposition of 𝑓 

with respect to the one‐dimensional subspace spanned by 𝐶𝑘𝜆. After possibly multiplying 

by a constant, we may assume that 𝑓 is of the form 𝑓 = 𝑔 + 𝐶𝐾𝜆 where 𝑔 is orthogonal to 

𝐶𝐾𝜆. Substituting this into (50) we deduce that 

𝐽𝜆(𝑔 + 𝐶𝐾𝜆) = 𝜉(𝐶𝑔 + 𝐾𝜆) 
By (49), this can be written 

𝐶(𝑏𝜆𝑔) + 𝛼𝐶𝐾𝜆 = 𝜉𝐶𝑔 + 𝜉𝐾𝜆. 
Applying 𝐶 to the equation and solving for 𝑔 gives us 

𝑔 =  
𝜉𝐶𝐾𝜆 − 𝛼𝐾𝜆
𝑏𝜆 − 𝜉

. 

Using the explicit formulas (38) and [101] for 𝐾𝜆 and 𝐶𝑘𝜆 we find (see [97]) that 𝑓 is a 

constant multiple of the function 

𝑓𝜉(𝑧): =
1 − 𝑏−𝜑(𝜆)(𝛼)𝜑(𝑧)

1 − 𝑏−𝜆(𝜉)𝑧
                               (51) 

  where 𝑏𝑤 denotes the generic disk automorphism (40). Conversely, we see that if 𝜉 is a 

unimodular constant such that 𝑓𝜉 belongs to 𝐻2, then 𝑓𝜉 is an eigenvector of 𝑈𝜆,𝛼 

corresponding to the eigenvalue 𝜉. Moreover, the computation above shows that the 

eigenspaces of 𝑈𝜆,𝛼 are one‐dimensional. 

      A necessary condition for a function of the form (51) to belong to 𝐻2 is that 𝜑 have the 

nontangential limiting value 𝑏−𝜑(𝜆)(𝛼) at the point 𝑏−𝜆(𝜉) . In other words, the condition 

𝜑(
𝜉 + 𝜆

1 + 𝜆𝜉
) =  

𝛼 + 𝜑(𝜆)

1 + 𝜑(𝜆)𝛼
                                    (52) 

is necessary for 𝑓𝜉 to be an eigenvector of 𝑈𝜆,𝛼 corresponding to the eigenvalue 𝜉. In general, 

this condition is not sufficient and we must examine the angular derivative (most easily via 

the local Dirichlet integral (52) of 𝜑 at the point 𝑏−𝜆(𝜉). We do not wish to pursue the 

function theoretic details here and simply remark that [112 generalizes , Thm. 3.2]. 

The following lemma shows that we may select a unit vector, fixed by 𝐶, from each of the 

(necessarily one‐dimensional) eigenspaces of 𝑈𝜆,𝛼: 

Lemma (2.2.21)[ 446]:   If  𝑇 is a normal 𝐶‐symmetric operator, then the eigenspaces of  𝑇 

are fixed by 𝐶. 

Proof.  By normality, 𝑇𝑓 = 𝜆𝑓 implies that 𝑇∗𝑓 = 𝜆𝑓. Applying 𝐶 to the preceding gives 

𝑇(𝐶𝑓) = 𝜆(𝐶𝑓) and thus the eigenspaces of  𝑇 are invariant under C.  

In summary, if 𝜆 and 𝛼 are values (in 𝔻 and on  𝜕𝔻, respectively) such that the operator 

𝑈𝜆,𝛼 has a pure point spectrum, then we can construct an orthonormal basis of 𝐻2⊖𝜑𝐻2 

consisting of self‐conjugate vectors. In particular, the matrix representation of any 𝐶‐
symmetric operator with respect to such a basis will be symmetric. Conditions which ensure 
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that  𝑈𝜆,𝛼 has a pure point spectrum can be obtained by suitably generalizing several 

theorems in [94]. 

    Let  𝑇:𝒟(𝑇) → ℋ be a closed graph, densely defined linear operator acting on a complex 

Hilbert space ℋ and let 𝐶 be a conjugation on  ℋ. Such an operator is called 𝐶‐symmetric 

if 𝑇 ⊂ 𝐶𝑇∗𝐶 or, equivalently, if 

〈𝐶𝑇𝑓, 𝑔〉 =  〈𝐶𝑇𝑔, 𝑓〉                                          (53) 
for all 𝑓, 𝑔 in 𝒟(𝑇) . We say that an operator 𝑇 is 𝐶‐selfadjoint if 𝑇 = 𝐶𝑇∗𝐶 (in particular, 

a bounded 𝐶‐symmetric operator is 𝐶‐selfadjoint). Unbounded C‐ selfadjoint operators are 

sometimes called 𝐽‐selfadjoint, although this should not be confused with the notion of 𝐽‐
selfadjointness in the theory of Krein spaces. 

     In contrast to the classical extension theory of von Neumann, it turns out that a 𝐶‐
symmetric operator always has a 𝐶‐selfadjoint extension [100,101] (see also [96,110] . 

Indeed, the maximal antilinear symmetric operators 𝑆 (in the sense that {𝑆𝑓, 𝑔} = {𝑆𝑔, 𝑓} 
for all 𝑓, 𝑔 in 𝒟(𝑆)) produce 𝐶‐selfadjoint operators 𝐶𝑆. Because of this, we use the term 

complex symmetric operator freely in both the bounded and unbounded situations when we 

are not explicit about the conjugation 𝐶. Much of this theory was developed by Glazman, 

whose early book [101] remains unsurpassed for its depth and elegance. 

    In concrete applications, 𝐶 is typically derived from complex conjugation on an 

appropriate 𝐿2 space over a domain in ℝ𝑛 and 𝑇 is a particular non‐selfadjoint differential 

operator. For instance, the articles [96,110] contain a careful analysis and parametrization 

of boundary conditions for Sturm‐Liouville type operators with complex potentials which 

define 𝐶‐selfadjoint operators. Such operators also arise in studies related to Dirac‐type 

operators The complex scaling technique, 𝑎 standard tool in the theory of Schrödinger 

operators, also leads to the consideration of 𝐶‐selfadjoint operators [99] and the related class 

of 𝐶‐unitary operators [113]. 
A useful criterion for 𝐶‐selfadjointness can be deduced from the equality 

𝒟(𝐶𝑇∗𝐶) = 𝒟(𝑇) ⊕ {𝑓 ∈ 𝒟(𝑇∗𝐶𝑇∗𝐶) ∶  𝑇∗𝐶𝑇∗𝐶𝑓 + 𝑓 = 0} 
(see[110]). A different criterion goes back to Zhikhar [116]: if the 𝐶‐symmetric operator 𝑇 

satisfies  ℋ = (𝑇 − 𝑧𝐼)𝒟(𝑇) for some complex number 𝑧, then 𝑇 is 𝐶‐selfadjoint. The 

resolvent set of  𝑇 consists of exactly the points 𝑧 fulfilling the latter condition. We denote 

the inverse to the right by (𝑇 − 𝑧𝐼)−1 and note that it is a bounded linear operator defined 

on all of  ℋ. 
    Unlike their selfadjoint counter parts, unbounded 𝐶‐selfadjoint operators do not, in 

general, possess a spectral resolution and fine functional calculus. When an unbounded 𝐶‐
selfadjoint operator has a compact resolvent, a canonically associated antilinear eigenvalue 

problem always has a complete set of mutually orthogonal eigenfunctions. 

Theorem (2.2.22)[ 446]:   If  T: 𝒟 → ℋ is an unbounded 𝐶‐selfadjoint operator with 

compact resolvent (𝑇 − 𝑧𝐼)−1 for some complex number 𝑧, then there exists an orthonormal 

basis 𝑢0, 𝑢1, . . . of  ℋ consisting of solutions of the antilinear eigenvalue problem: 

(𝑇 − 𝑧𝐼)𝑢𝑛 = 𝜎𝑛𝐶𝑢𝑛                             (54) 
where 𝜎0, 𝜎1, . . . is an increasing sequence of positive numbers tending to ∞. 
Proof. For 𝑓, 𝑔 in 𝒟(𝑇) we have {𝐶(𝑇 − 𝑧𝐼)𝑓, 𝑔〉 = {𝐶(𝑇 − 𝑧𝐼)𝑔, 𝑓〉. Let 𝑆 denote the 

compact operator (𝑇 − 𝑧𝐼)−1 and let 𝑓 = 𝑆𝑥 and  𝑔 = 𝑆𝑦. Since {𝐶𝑥, 𝑆𝑦} = {𝐶𝑦, 𝑆𝑥} for all 

𝑥, 𝑦, 𝑆 is a compact 𝐶‐symmetric operator. By Theorem (2.2.12)  there exists an orthonormal 
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basis 𝑢𝑛 of ℋ such that 𝑆𝐶𝑢𝑛 = 𝜎𝑛
−1𝑢𝑛 for all 𝑛, where 𝜎𝑛

−1 is a decreasing sequence of 

positive numbers tending to zero. Since each 𝑢𝑛 belongs to ran 𝐴 = 𝒟(𝑇) , we apply  

 𝑇 − 𝑧𝐼 to both sides of the preceding equation and the desired result follows.  

We note several useful corollaries of the preceding theorem: 

Corollary (2.2.23)[ 446]:   If  𝑇: 𝒟 → ℋ is an unbounded 𝐶‐selfadjoint operator with 

compact resolvent at 𝑧 = 0, then a vector 𝑓 = ∑ 𝑎𝑛
∞
𝑛=0 𝑢𝑛 in ℋ belongs to 𝒟(𝑇) if  and 

only if   ∑ 𝜎𝑛
2∞

𝑛=0 |𝑎𝑛|
2 < ∞. 

Corollary (2.2.24)[ 446]:   Under the conditions of Theorem (2.2.22) 

‖(𝑇 − 𝑧𝐼)−1‖  =  
1

𝜎0
.                                          (55) 

In the spirit of Theorem (2.2.22) we have the following 𝐶‐selfadjointness criterion: 

Theorem (2.2.25)[ 446]:  Let  T: 𝒟(𝑇) → ℋ be a closed, densely defined, 𝐶‐symmetric 

operator. If there exists a complete system of vectors 𝑢𝑛 in 𝒟(𝑇) and an increasing positive 

sequence 𝜎𝑛 tending to infinity satisfying 𝑇𝑢𝑛 = 𝜎𝑛𝐶𝑢𝑛 for all 𝑛, then 𝑇 is 𝐶‐selfadjoint. 

Proof. Since 𝑇 is 𝐶‐symmetric, 𝜎𝑗{𝑢𝑗 , 𝑢𝑘〉 = {CTuj, 𝑢𝑘〉 = {CT𝑢𝑘, 𝑢𝑗〉 = 𝜎𝑘{𝑢𝑘 , 𝑢𝑗〉 and 

hence 𝑢𝑗 ⊥ 𝑢𝑘 whenever 𝜎𝑗 ≠ 𝜎𝑘. In the case of higher multiplicities, say 𝜎𝑛 = 𝜎𝑛+1 = ⋯ =

𝜎𝑛+𝑝, we may assume that the vectors 𝑢𝑛, . . . , 𝑢𝑛+𝑝 are mutually orthogonal. Indeed, if 

these vectors were not orthogonal, we could simply replace them with an orthonormal basis 

for the real vector space generated by  𝑢𝑛, . . . , 𝑢𝑛+𝑝. We can therefore assume that 𝑢𝑛, and 

hence 𝐶𝑢𝑛, form orthonormal bases of  ℋ. Let 𝑓 = ∑ 𝑎𝑗
∞
𝑗=0 𝐶𝑢𝑗 represent an arbitrary vector 

in ℋ. For each finite 𝑛, the vector 𝑓𝑛 = ∑ 𝑎𝑗
𝑛
𝑗=0 𝜎𝑗

−1𝑢𝑗 belongs to 𝒟(𝑇) by Corollary (2.2.23)   

and satisfies 𝑇𝑓𝑛 = ∑ 𝑎𝑗
𝑛
𝑗=0 𝐶𝑢𝑗. Since the graph of 𝑇 is closed, it is not hard to see that 

 𝑇: 𝒟(𝑇) → ℋ is surjective. According to the criterion of [116],  𝑇 is 𝐶‐selfadjoint.  

     We can generalize the refined polar decomposition 𝑇 = 𝐶𝐽|𝑇| of Theorem (2.2.7)  to the 

case of unbounded 𝐶‐selfadjoint operators, modulo several minor modifications. 

Theorem (2.2.26)[ 446]:   If  𝑇 is a 𝐶‐selfadjoint operator with zero in its resolvent, then 𝑇 

= 𝐶𝐽|𝑇| where |𝑇| is a positive operator (in the von Neumann sense) satisfying 𝒟(|𝑇|) =
𝒟(𝑇) and 𝐽 is a conjugation on ℋ which strongly commutes with |𝑇|. Conversely, any 

operator of the form described above is C‐selfadjoint. 

Proof.  If  𝑇 is a 𝐶‐selfadjoint operator with zero in its resolvent, then 𝑇:𝒟(𝑇) → ℋ is 

surjective and we let 𝑅∗  : ℋ → ℋ denote the bounded right inverse (the resolvent at 0) of 

𝑇. Since  ℋ = 𝒟(𝑇) , we use the fact that 𝑇𝑅 = 𝐼 and (53) to conclude that {𝐶𝑓, 𝑅𝑔〉 = 

{CTRf, 𝑅𝑔〉 = {CTRg, 𝑅𝑓〉 = {𝐶𝑔, 𝑅𝑓〉 for all 𝑓, 𝑔 in  ℋ. This implies that {𝑅∗𝐶𝑓, 𝑔〉 = 

{𝐶𝑅𝑓, 𝑔〉 for all 𝑓, 𝑔 in ℋ and hence 𝑅 is a bounded 𝐶‐symmetric operator. In particular, 

𝑅∗ is a bounded 𝐶‐symmetric operator that is injective and has dense range. 

     Let 𝑅∗ = 𝐶𝐽|𝑅∗| be the decomposition of 𝑅∗ guaranteed by Theorem (2.2.7)  where 

without loss of generality we assume 𝐽 is a conjugation on all of ℋ which commutes with 

|𝑅∗|. Taking the adjoint of this equation and substituting it into the equation 𝑇𝑅 = 𝐼, we see 

that 𝑇|𝑅∗|𝐽𝐶 = 𝐼 and hence 𝑇|𝑅∗| = 𝐶𝐽. We read from here that |𝑅∗|ℋ = 𝒟(𝑇) and hence 

the unbounded positive operator |𝑅∗|−1 has the same domain as 𝑇. This implies that 𝐽𝐶𝑇|𝑅∗| 
= 𝐼, or equivalently, 𝐽𝐶𝑇 = |𝑅∗|−1 as unbounded operators. This yields the decomposition 

𝑇 = 𝐶𝐽|𝑇| where the positive self‐adjoint operator |𝑇| is defined to be |𝑅∗|−1.  
Regarding the terminology of Theorem (2.2.26)  we say that 𝐽 strongly commutes with |𝑇| 
if 𝐽 commutes with the spectral measure of |𝑇|. Equivalently, we could say that 𝐽 commutes 
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with the bounded selfadjoint operator |𝑇|−1. Also observe that the operator 𝑈 = 𝐶𝐽 in 

Theorem (2.2.26)   is a unitary 𝐶‐symmetric operator. 

    Although we do not pursue this direction further, we remark that Theorem (2.2.26)   can 

be used to characterize the 𝐶‐selfadjoint extensions of an arbitrary 𝐶‐symmetric operator. 

Example (2.2.27)[ 446]:   Using the techniques above, we briefly discuss a simple example 

of a first order differential operator with a nonselfadjoint two point boundary condition. 

More sophisticated examples and applications to quantum systems are explored in [99].  
Given the following example. 

Let 𝑞(𝑥) be a real valued, continuous, even function on [−1, 1] and let 𝛼 be a nonzero 

complex number satisfying  |𝛼| < 1. For a small parameter  𝜀 > 0, we define the operator 

[𝑇𝛼𝑓](𝑥) = −𝑖𝑓
′(𝑥) + 𝜀𝑞(𝑥)𝑓(𝑥)                      (56) 

with domain 

𝒟(𝑇𝛼) = {𝑓 ∈ 𝐿
2[−1, 1] ∶  𝑓′ ∈ 𝐿2[−1, 1], 𝑓(1) = 𝛼𝑓(−1)}. 

Clearly 𝑇𝛼 is a closed operator and 𝒟(𝑇𝛼) is dense in 𝐿2[−1, 1]. 

If 𝐶 denotes the conjugation [Cu] (𝑥) = 𝑢(−𝑥) on  𝐿2[−1, 1], then it follows that that 

nonselfadjoint operator 𝑇𝛼 satisfies 𝑇𝛼 = 𝐶𝑇1/𝛼𝐶. A short computation shows that 𝑇𝛼
∗ =

𝑇1/𝛼 and hence 𝑇𝛼 is a 𝐶‐selfadjoint operator. 

In the case 𝜀 = 0, we have 𝑇𝛼𝑓 = −𝑖𝑓′ and we can explicitly compute the resolvent 𝑅𝛼 of 

𝑇𝛼 at  𝑧 = 0: 

[𝑅𝛼
−1𝑓](𝑥) = 𝑖 ∫ 𝑓

𝑥

−1

(𝑡)𝑑𝑡 +
𝑖

𝛼 − 1
∫ 𝑓
1

−1

(𝑡)𝑑𝑡, 

for 𝑓 in 𝐿2[−1, 1]. In particular, 𝒟(𝑇𝛼) = 𝑅𝛼
−1𝐿2[−1, 1] and 𝑇𝛼𝑅𝛼 = 𝐼. According to 

Theorem (2.2.22)   the antilinear problem 

−𝑖𝑓′(𝑥) = 𝜎𝑓(−𝑥), 𝑓 ∈ 𝒟(𝑇𝛼)                                (57) 
admits nontrivial solutions for certain positive 𝜎𝑛 tending to ∞. Moreover, the solutions 𝑢0, 
𝑢1, . . . can be chosen to form a complete orthonormal system in 𝐿2[−1, 1]. Taking another 

derivative in (57) and using back‐substitution (see also Example [96], we find that the 𝑢𝑛 

are solutions to 𝑓′′ + 𝜎𝑛
2𝑓 = 0, and thus 

𝑢𝑛(𝑥) = 𝑎𝑛𝑒
𝑖𝜎𝑛𝑥 + 𝑏𝑛𝑒

−𝑖𝜎𝑛𝑥 

for certain constants 𝑎𝑛 and 𝑏𝑛. The boundary condition 𝑢𝑛(1) = 𝛼𝑢𝑛(−1) shows that 

𝑎𝑛𝑏𝑛 ≠ 0 for all . 
Returning to the original first order antilinear equation (57), we see that 

𝜎𝑛𝑎𝑛𝑒
𝑖𝜎𝑛𝑥 − 𝜎𝑛𝑏𝑛𝑒

−𝑖𝜎𝑛𝑥 = 𝜎𝑛𝑎𝑛𝑒
𝑖𝜎𝑛𝑥 + 𝜎𝑛𝑏𝑛𝑒

−𝑖𝜎𝑛𝑥, 

whence 𝑎𝑛 = 𝑎𝑛 and 𝑏𝑛 = −𝑏𝑛. Multiplying 𝑢𝑛 by a suitable real constant, we obtain the 

(nonnormalized) eigenfunctions 

𝑈𝑛(𝑥) = 𝑒
𝑖𝜎𝑛𝑥 + 𝑖𝛾𝑛𝑒

−𝑖𝜎𝑛𝑥, 
where 𝛾𝑛 belongs to ℝ\{0}. Moreover, the boundary condition 𝑈𝑛(1) = 𝛼𝑈𝑛(−1) yields 

the equation 

𝑒𝑖𝜎𝑛 + 𝑖𝛾𝑛𝑒
−𝑖𝜎𝑛  = 𝛼[𝑒−𝑖𝜎𝑛 + 𝑖𝛾𝑛𝑒

𝑖𝜎𝑛], 
which implies that 

𝑒2𝑖𝜎𝑛 =
𝛼 − 𝑖𝛾𝑛
1 − 𝑖𝛾𝑛𝛼

 

The image of the real line under the linear fractional transformation 



70 

 

𝐺(𝑧) =  
𝛼 − 𝑖𝑧

1 − 𝑖𝑧𝛼
 

is either a circle or a line which intersects the unit circle at exactly two points since |𝐺(0)| 
= |𝛼| < 1 and |𝐺(∞)| = |1/𝛼| > 1. In fact, the solutions 𝛾0 and 𝛾1 to |𝐺(𝑧)| = 1 can be 

given in closed form: 

2 Im 𝛼 ± √1 − 2 Re 𝛼2 + |𝛼|2. 

1 − |𝛼|2 
   We may assume, after a possible relabeling, that the principal arguments 𝜎0 and 𝜎1 
satisfying 𝑒2𝑖𝜎0  = 𝐺(𝛾0) and  𝑒2𝑖𝜎1  = 𝐺(𝛾1) satisfy 0 < 𝜎0 < 𝜎1 < 𝜋. 
Retracing our steps, we have: 

𝜎2𝑛  =  𝜎0 + 𝑛𝜋, 
𝜎2𝑛+1  =  𝜎1 + 𝑛𝜋 

for 𝑛 ≥ 0. The associated (nonnormalized) eigenfunctions are: 

     𝑈2𝑛(𝑥)  =  𝑒
𝑖(𝜎0+𝑛𝜋)𝑥 + 𝑖𝛾0𝑒

−𝑖(𝜎0+𝑛𝜋)𝑥 , 
𝑈2𝑛+1(𝑥)  =  𝑒

𝑖(𝜎1+𝑛𝜋)𝑥 + 𝑖𝛾1𝑒
−𝑖(𝜎1+𝑛𝜋)𝑥 

Using Corollary (2.2.24) we obtain the norm of the resolvent at  𝑧 = 0: 

‖𝑅𝛼‖  =
1

𝜎0
 . 

A familiar argument in perturbation theory shows that for 𝜀‖𝑞‖∞ < ‖𝑅𝛼‖ the original 

operator (56) still has 𝑧 = 0 in its resolvent, and that a similar antilinear spectral picture 

holds. For instance, an estimate of ‖𝑇𝛼
−1‖ is easily within reach. 
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Chapter 3 

A Simple 𝑪∗-Algebras 

 

We present the Dixmier approximation theorem and study the simple 𝐶∗-algebra with its 

characterizations of a finite and infinite projection. 

Section (3.1): The Dixmier  Approximation Theorem 

    Suppose that ℛ is a von Neumann algebra, acting on a Hilbert space 𝒦, with centre 𝓆 and 

unitary group 𝒰. For each 𝐴 in  ℛ, let 𝑢ℛ(𝐴) be the subset {𝑈𝐴𝑈∗: 𝑈 ∈ 𝒰} of ℛ, and write 

𝑐𝑜ℛ(𝐴) for the convex hull of 𝑢ℛ(𝐴). The norm closure 𝑐𝑜ℛ(𝐴)
=  of   𝑐𝑜ℛ(𝐴), and the 

weak-operator closure 𝑐𝑜ℛ(𝐴)
−, are again subsets of ℛ, since ℛ is closed in both the norm 

and weak-operator topologies. 

   The Dixmier approximation theorem [118] asserts that 𝑐𝑜ℛ(𝐴)
= meets 𝓆. This theorem 

has many applications; as a first example, we mention its use in relating the structure of 

norm-closed two-sided ideals in ℛ to the much simpler structure of norm-closed ideals in 

 𝓆. For some of the applications, it is necessary to have more detailed information about the 

nature of the intersection 𝑐𝑜ℛ(𝐴)
=  ∩ 𝓆 . The single most important result, on this topic, 

concerns finite von Neumann algebras; when ℛ is finite, 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 consists of just one 

point, for each 𝐴 in ℛ. This deep result is more or less equivalent to the existence of the 

centre-valued trace 𝜏: ℛ → 𝓆 on ℛ; the unique element of 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 is 𝜏(𝐴). For all this 

material, we see [119, Chapitre 3, §§5,8]. In the case of a countably decomposable Type III 

von Neumann algebra, 𝑐𝑜ℛ(𝐴)
= contains a non-zero element of 𝓆 whenever 𝐴 is a non-zero 

element of ℛ [457, Lemma 1]. For a countably decomposable Type III factor, this had been 

proved earlier, and 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 had been described completely for self-adjoint elements 𝐴 

of ℛ [460, 𝑝. 133, Lemma 15(b), 𝑝. 136, Corollary 16]; the methods used in [460] extend 

routinely to the case of Type III algebras. These results on the Type III case have been used 

in a variety of ways in the study of derivations of operator algebras [121,122,458]. 

   There is some interest in studying also the intersection 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆. For a finite von 

Neumann algebra ℛ, it follows easily, from weak-operator continuity on bounded sets of 

the centre-valued trace 𝜏: ℛ → 𝓆, that 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆 consists of the single point 𝜏(𝐴). In the 

case of an infinite factor ℛ, the set 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆 has been described [117, Theorem 3] in 

terms of the numerical range of 𝐴 (when ℛ is Type III) or the essential numerical range 

(when ℛ is Type 𝐼∞ or 𝐼𝐼∞). This approach has been generalized by Halpern [120, Theorems 

4.12, 4.16], who introduces certain concepts of ‘essential central range’, and uses them to 

describe both 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆 and 𝑐𝑜ℛ(𝐴)

= ∩ 𝓆 for an arbitrary element 𝐴 of a properly 

infinite von Neumann algebra ℛ. As a consequence of these results, he shows [120, 

Corollaries 4.14, 4.17] that 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 is weak-operator closed, and coincides with 

𝑐𝑜ℛ(𝐴)
− ∩ 𝓆 when ℛ is countably decomposable. 

We give a complete and computationally simple description of the sets 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 

and 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆 where 𝐴 is any self-adjoint element of a general von Neumann algebra ℛ. 

Both sets are ‘closed intervals’ in the partially ordered Banach space 𝓆ℎ of self-adjoint 

elements of 𝓆; that is, there exist elements 𝐶1
𝑛, 𝐶2

𝑛, 𝐶1
𝑤, 𝐶2

𝑤, of 𝓆ℎ (the superscripts 𝑛 and 𝑤 

stand for ‘norm’ and ‘weak-operator’) such that 

𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 = {𝐶 ∈ 𝓆ℎ: 𝐶1

𝑛 ≤ 𝐶 ≤ 𝐶2
𝑛}, 

𝑐𝑜ℛ(𝐴)
− ∩ 𝓆 =  {𝐶 ∈ 𝓆ℎ: 𝐶1

𝑤 ≤ 𝐶 ≤ 𝐶2
𝑤}. 

We determine the ‘endpoints’, 𝐶1
𝑛, 𝐶2

𝑛, 𝐶1
𝑤, 𝐶2

𝑤, by specifying their spectral resolutions in 

terms of the spectral resolution of the self-adjoint operator 𝐴. The fact that 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆 is 
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a closed interval is elementary; the fact that 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 is a closed interval is less obvious, 

but is nevertheless a simple consequence of [120, Corollary 4.14]. Both these results are 

included, along with other preliminary material. The main thrust of the argument is 

concerned with the determination of the endpoints of the intervals; almost as a byproduct, it 

turns out that the results just described can all be established without appeal to [120]. 

    We have already noted that the two sets 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 and 𝑐𝑜ℛ(𝐴)

− ∩ 𝓆 coincide when 

ℛ is countably decomposable. In fact, this property (whether required for all 𝐴 in ℛ, or just 

for self-adjoint elements) is characteristic of a slightly larger class of von Neumann algebras, 

described in Theorem (3.1.8). 

    The results are specialized to the factor case; in this situation, most of the results are 

known, or only marginally original. We also discuss some rather fragmented results about 

the intersection  𝑐𝑜ℛ(𝐴)
− ∩ 𝓆, where 𝑢ℛ(𝐴)

− denotes the weak-operator closure of 𝑢ℛ(𝐴). 
    We denote by 𝐵(𝒦) the von Neumann algebra of all bounded linear operators acting on 

the Hilbert space 𝒦. When 𝒳 ⊆ 𝒦 and 𝒴 ⊆ (𝒦), we write [𝒳] for the norm-closed 

subspace of 𝒦 generated by 𝒳, 𝑐𝑜 𝒴 for the convex hull of 𝒴,𝒴= for the norm closure of 

𝒴,𝒴− for the weak-operator closure of  𝒴, and 𝒴′ for the commutant of 𝒴. 

    Suppose that ℛ is a von Neumann algebra with centre  𝒴. We write ℛ+ for the positive 

cone in ℛ, and (ℛ)𝑟 for the closed ball in ℛ with centre 0 and radius 𝑟. We adopt the 

standard notations concerning the comparison of projections in ℛ (note, however, that, in 

contrast with [119], we use the symbol ≾ for ‘weaker than or equivalent to’, and reserve < 

for ‘weaker than and not equivalent to’). The central carrier of a projection 𝐸 in ℛ is denoted 

by 𝐶𝐸. The comparison theorem, applied to the projections 𝐸 and 𝐼, implies that there is a 

projection 𝑃 in 𝓆 such that 𝑃𝐸 ~ 𝑃 and 𝑃1𝐸 ≺ 𝑃1 whenever 𝑃1 is a non-zero central 

subprojection of 𝐼 − 𝑃. Also, there is a projection 𝒬 in 𝓆 such that the projection (𝐼 − 𝒬)𝐸 

in ℛ is finite, and  𝒬1𝐸 is infinite for every non-zero central subprojection 𝒬1 of 𝒬. Of 

course, 𝐸 is infinite if and only if  𝒬 ≠ 0, and is properly infinite if and only if 𝒬 = 𝐶𝐸 ≠ 0. 

The sets 𝑢ℛ(𝐴), 𝑐𝑜ℛ(𝐴), 𝑐𝑜ℛ(𝐴)
=, and 𝑐𝑜ℛ(𝐴)

−, associated with an element 𝐴 of ℛ, have 

already been defined. Clearly, 

𝑢ℛ(𝐴) ⊆ 𝑐𝑜ℛ(𝐴) ⊆ 𝑐𝑜ℛ(𝐴)
= ⊆ 𝑐𝑜ℛ(𝐴)

− ⊆ (ℛ)‖𝐴‖; 

so all these sets are bounded, and 𝑐𝑜ℛ(𝐴)
− is weak-operator compact. If 𝐴 is self-adjoint, 

or positive, the same is true of each element of 𝑐𝑜ℛ(𝐴)
−. If 𝐴 lies in a norm-closed two-

sided ideal 𝒥 in ℛ, then 𝑐𝑜ℛ(𝐴)
=  ⊆ 𝒥. If 𝑃1 and 𝑃2 are projections with sum 𝐼 in the centre 

𝓆 of  ℛ, then 

𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 = {𝐶1 + 𝐶2: 𝐶𝑗 ∈ 𝑐𝑜ℛ𝑃𝑗(𝐴𝑃𝑗)

= ∩ 𝓆𝑃𝑗 , (𝑗 = 1,2)}, 

and there is an analogous result for 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆. By taking for 𝑃1 the largest projection in 

𝓆 that is finite in  ℛ, most questions concerning 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 and 𝑐𝑜ℛ(𝐴)

− ∩ 𝓆 can be 

treated by considering separately the two cases in which ℛ is either finite, or properly 

infinite. 

Proposition (3.1.1)[447]: Suppose that 𝒜 is an abelian von Neumann algebra, 𝒜ℎ is the 

real Banach space consisting of all self-adjoint elements of 𝒜, and the usual lattice 

operations in 𝒜ℎ are denoted by ∧,∨ . Let 𝒦 be a norm-closed convex subset of 𝒜ℎ with 

the following property: if  𝐾1, . . . , 𝐾𝑛 ∈ 𝒦, and 𝑃1, . . . , 𝑃𝑛are projections in 𝒜 with sum 𝐼, 
then 𝐾1𝑃1+ . . . +𝐾𝑛𝑃𝑛 ∈ 𝒦. Then 

(i) if 𝐶1, 𝐶2 ∈ 𝒦, then 𝐶1 ∧ 𝐶2, 𝐶1 ∨ 𝐶2 ∈ 𝒦; 

(ii)  if 𝐶1, 𝐶2 ∈ 𝒦,𝐶 ∈ 𝒜ℎ, and 𝐶1 ≤ 𝐶 ≤ 𝐶2, then 𝐶 ∈ 𝒦; 

(iii)  if  𝒦 is weak-operator compact, there exist 𝐶1 and 𝐶2 in 𝒜ℎ such that 

𝒦 = {𝐶𝒜ℎ: 𝐶1 ≤ 𝐶 ≤ 𝐶2}. 
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Proof, (i) Let {𝐸𝜆} be the spectral resolution of the self-adjoint operator 𝐶1 − 𝐶2 in  𝒜. Then 

𝐸𝜆 ∈ 𝒜 for all real 𝜆; in particular, 𝑃1, 𝑃2 ∈ 𝒜 (and 𝑃1 + 𝑃2 = 𝐼), where 𝑃1 is 𝐸0 and 𝑃2 is 

𝐼 − 𝐸0. Since 

𝐶1 ∧ 𝐶2 = 𝐶1𝑃1 + 𝐶2𝑃2, 𝐶1 ∨ 𝐶2 = 𝐶2𝑃1 + 𝐶1𝑃2, 
it now follows from the stated property of 𝒦 that 𝐶1 ∧ 𝐶2, 𝐶1 ∨ 𝐶2 ∈ 𝒦. 

(ii) There is a ∗-isomorphism from 𝒜 onto the 𝐶∗-algebra 𝐶(𝑋) of all complex-valued 

continuous functions on an extremely disconnected compact Hausdorff space 𝑋 (see, for 

example, [459, p. 310, Theorem 5.2.1]). We adopt the convention that an element of 𝒜 is 

denoted by a capital letter and its representing function in 𝐶(𝑋) is denoted by the 

corresponding small letter. We write 𝒦0 for the norm-closed convex subset {𝑘: 𝐾 ∈ 𝒦} of 

𝐶(𝑋). We have to prove that  𝑐 ∈ 𝒦0; to this end, it suffices to show that for each 𝜀(> 0), 
there is an element 𝑐0 of 𝒦0 such that ‖𝑐 − 𝑐0‖ ≤ 𝜀. 
Given any 𝑥 in 𝑋, we have 𝑐1(𝑥) ≤ 𝑐(𝑥) ≤ 𝑐2(𝑥). For a suitably chosen convex 

combination 𝑘𝑥 of 𝑐1 and 𝑐2, 𝑘𝑥 ∈ 𝒦0 and   𝑘𝑥(𝑥) = 𝑐(𝑥). The open set 

{𝑦 ∈ 𝑋: |𝑐(𝑦) − 𝑘𝑥(𝑦)| < 𝜀} 
has closure a clopen set 𝑉𝑥 such that 𝑥 ∈ 𝑉𝑥 and 

|𝑐(𝑦) − 𝑘𝑥(𝑦)| ≤ 𝜀            (𝑦 ∈ 𝑉𝑥). 
The clopen covering {𝑉𝑥: 𝑥 ∈ 𝑋)  of 𝑋 has a finite subcovering {𝑉𝑥(1), . . . , 𝑉𝑥(𝑛)}. For 𝑗 =

1, . . . , 𝑛, write 𝑘𝑗 for 𝑘𝑥(𝑗), let 𝑊𝑗 be the clopen set 

𝑉𝑥(𝑗)/⋃𝑉𝑥(𝑟)

𝑗−1

𝑟=1

, 

and let 𝑝𝑗 be the characteristic function of 𝑊𝑗. Then 𝑋 is the disjoint union of 𝑊1, . . . , 𝑊𝑛 , 

and 𝑘1, . . . , 𝑘𝑛 ∈ 𝒦0; so 𝑃1, . . . , 𝑃𝑛 are projections in 𝒜 with sum 𝐼, and 𝐾1, . . . , 𝐾𝑛 ∈ 𝒦. 

Thus  𝐾1𝑃1 +⋯+𝐾𝑛𝑃𝑛 ∈ 𝒦, and 𝑘1𝑝1  + ⋯ + 𝑘𝑛𝑝𝑛 is an element 𝐶0 of  𝒦0. For each 𝑦 in 

𝑋, 𝑦 ∈ 𝑊𝑗(⊆ 𝑉𝑥(𝑗))) for some 𝑗 in {1, . . . , 𝑛}, and 

|𝑐(𝑦) − 𝑐0(𝑦)| = |𝑐(𝑦) − 𝑘𝑗(𝑦)| = |𝑐(𝑦) − 𝑘𝑥(𝑗)(𝑦)| ≤ 𝜀. 

Thus ‖𝑐 − 𝑐0‖ ≤ 𝜀. 
(iii) Suppose that 𝒦 is weak-operator compact (and, hence, bounded), and let ≤ denote the 

usual partial order relation on  𝒜ℎ. With this ordering, and indexed by   itself, 𝒦 is a 

bounded increasing net in 𝒜ℎ and is therefore strong-operator (hence, also, weak-operator) 

convergent to an element 𝐶2 of 𝒜ℎ which is the least upper bound of 𝒦 in  𝒜ℎ. Since the 

set 𝒦 is weak-operator closed, 𝐶2 ∈ 𝒦. Similarly, by considering 𝒦 with the ordering ≥, it 

follows that 𝒦 has a greatest lower bound 𝐶1 in 𝒜ℎ, and 𝐶1 ∈ 𝒦. Since 𝐶1, 𝐶2 ∈ 𝒦 and 

𝐶1 ≤ 𝐶 ≤ 𝐶2 for each 𝐶 in 𝒦, it now follows from (ii) that 𝒦 = {𝐶 ∈ 𝒜ℎ: 𝐶1 ≤ 𝐶 ≤ 𝐶2}. 
Suppose that ℛ is a von Neumann algebra with centre 𝓆 and unitary group 𝒰. We denote 

by 𝒟 the set of all mappings 𝛼:ℛ → ℛ that can be defined by an equation of the form 

𝛼(𝐴) =∑𝑎𝑗𝑈𝑗𝐴𝑈𝑗
∗

𝑛

𝑗=1

            (𝐴 ∈ ℛ), 

where 𝑈1, . . . , 𝑈𝑛 ∈ 𝒰 and 𝑎1, . . . , 𝑎𝑛 are positive real numbers with sum 1. Thus, when 𝐴 ∈
ℛ, we have 

𝑐𝑜ℛ(𝐴) = {𝛼(𝐴): 𝛼 ∈ 𝒟}. 
A straightforward calculation shows that the composite mapping 𝛼 ∘ 𝛽 lies in 𝒟 whenever 

𝛼, 𝛽 ∈ 𝒟. Each 𝛼 in 𝒟 is a positive (hence, hermitian) norm-decreasing linear mapping, and 

is continuous with respect to the weak-operator or strong-operator topology (as well as the 

norm topology). 
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From the properties just noted, it follows that each of the sets 𝑐𝑜ℛ(𝐴), 𝑐𝑜ℛ(𝐴)
=, and 

𝑐𝑜ℛ(𝐴)
− (where 𝐴 ∈ ℛ) is invariant under all the mappings in 𝒟. Moreover, 

𝑐𝑜ℛ(𝐵) ⊆ 𝑐𝑜ℛ(𝐴)               𝑖𝑓 𝐵 ∈ 𝑐𝑜ℛ(𝐴), 
𝑐𝑜ℛ(𝐵)

= ⊆ 𝑐𝑜ℛ(𝐴) 
=              𝑖𝑓 𝐵 ∈ 𝑐𝑜ℛ(𝐴)

=, 
𝑐𝑜ℛ(𝐵)

− ⊆ 𝑐𝑜ℛ(𝐴)
−               𝑖𝑓 𝐵 ∈ 𝑐𝑜ℛ(𝐴)

−. 
Finally, we observe that 𝛼(𝐴𝐶) = 𝛼(𝐴)𝐶 when 𝛼 ∈ 𝒟,𝐴 ∈ ℛ, and 𝐶 ∈ 𝓆, and that 

𝓆 = {𝐴 ∈ ℛ: 𝛼(𝐴) =  𝐴 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝛼 𝑖𝑛 𝒟}. 
Lemma (3.1.2)[447]: Suppose that ℛ is a von Neumann algebra with centre 𝓆 and 𝑃1, . . . , 𝑃𝑛  

are projections in 𝓆 with sum 𝐼. 
(i) If 𝛼1, . . . , 𝛼𝑛 ∈ 𝒟, there is an element 𝛼 of 𝒟 such that 

𝛼(𝐴) = 𝛼1(𝐴)𝑃1 +⋯+ 𝛼𝑛(𝐴)𝑃𝑛      (𝐴 ∈ ℛ). 
(ii)  If 𝐴 ∈ ℛ and 𝐵1, . . . , 𝐵𝑛 ∈ 𝑐𝑜ℛ(𝐴)

= , then 

𝐵1𝑃1 + . . . +𝐵𝑛𝑃𝑛 ∈ 𝑐𝑜ℛ(𝐴)
=. 

(iii)  If 𝐴 ∈ ℛ and 𝐵1, . . . , 𝐵𝑛 ∈ 𝑐𝑜ℛ(𝐴)
−, then 

𝐵1𝑃1 +⋯+ 𝐵𝑛𝑃𝑛 ∈ 𝑐𝑜ℛ(𝐴)
−. 

(iv)  If 𝐴 ∈ ℛ and 𝐶1, . . . , 𝐶𝑛 ∈ 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆, then 

𝐶1𝑃1+ . . . +𝐶𝑛𝑃𝑛 ∈ 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆. 

(v)  If 𝐴 ∈ ℛ and 𝐶1, . . . , 𝐶𝑛 ∈ 𝑐𝑜(𝐴)
− ∩ 𝓆, then 

𝐶1𝑃1+ . . . +𝐶𝑛𝑃𝑛 ∈ 𝑐𝑜(𝐴)
− ∩ 𝓆. 

Proof, (i) We  show first that, if 𝑃 is a projection in 𝓆 and 𝛽 ∈ 𝒟, there is an  𝛽𝑃 element in 

𝒟 such that 

𝛽𝑃(𝐴) = 𝛽(𝐴)𝑃 + 𝐴(𝐼 − 𝑃)              (𝐴 ∈ ℛ). 
To this end, we may suppose that 

𝛽(𝐴) =∑𝑎𝑗𝑈𝑗𝐴𝑈𝑗
∗

𝑘

𝑗=1

       (𝐴 ∈ ℛ), 

where 𝑈1, . . . , 𝑈𝑘 ∈ 𝒰 and 𝑎1, . . . , 𝑎𝑘 are positive real numbers with sum 1. It suffices to 

define 

𝛽𝑃(𝐴) =∑𝑎𝑗𝑉𝑗𝐴𝑉𝑗
∗

𝑘

𝑗=1

       (𝐴 ∈ ℛ), 

where, for 𝑗 = 1, . . . , 𝑘, 𝑉𝑗 is the unitary operator 𝑃𝑈𝑗 + 𝐼 − 𝑃. 

From the preceding paragraph, we can define 𝛽1, . . . , 𝛽𝑛 in 𝒟 by 

𝛽𝑗(𝐴) = 𝛼𝑗(𝐴)𝑃𝑗 + 𝐴(𝐼 − 𝑃𝑗)            (𝐴 ∈ ℛ). 

For 𝑗 = 1, . . . , 𝑛, the subspace ℛ𝑃𝑗 of  ℛ is invariant under each of the mappings 𝛽1, . . . , 𝛽𝑛; 

moreover, 𝛽𝑗|ℛ𝑃𝑗 = 𝛼𝑗|ℛ𝑃𝑗, and  𝛽𝑘|ℛ𝑃𝑗 is the identity mapping on ℛ𝑃𝑗 when 𝑘 ≠ 𝑗 . With 

𝛼 the element  𝛽1, 𝛽2, … , 𝛽𝑛, of  𝒟, 𝛼|ℛ𝑃𝑗 = 𝛼𝑗| ℛ𝑃𝑗(𝑗 = 1, . . . , 𝑛). Thus 

𝛼(𝐴) =∑𝛼(𝐴𝑃𝑗)

𝑛

𝑗=1

 = ∑𝛼𝑗(𝐴𝑃𝑗)

𝑛

𝑗=1

=∑𝛼𝑗(𝐴)𝑃𝑗

𝑛

𝑗=1

. 

 (ii),(iii) In the argument that follows, topological terms can be interpreted as relating to the 

norm topology on m (to prove (ii)) or the weak-operator topology (to prove (iii)). 

     Let 𝑁 be a convex neighbourhood of 0 in  ℛ. For each 𝑗 = 1, . . . , 𝑛, 𝐵𝑗 lies in the closure 

of the set 𝑐𝑜ℛ(𝐴) (=  {𝛼(𝐴): 𝛼 ∈ 𝒟}), and the mapping 𝑅 → 𝑅𝑃𝑗: ℛ → ℛ is continuous. 

Hence there exists 𝛼𝑗 in 𝒟 such that [𝛼𝑗(𝐴) − 𝐵𝑗]𝑃𝑗 ∈ 𝑛
−1𝑁. From the convexity of  𝑁, it 

follows that 
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∑[𝛼𝑗(𝐴) − 𝐵𝑗]

𝑛

𝑗=1

𝑃𝑗 ∈ 𝑁; 

that is, 𝛼(𝐴) − (𝐵1𝑃1+. . . + 𝐵𝑛𝑃𝑛) ∈ 𝑁, where 𝛼 (in 𝒟) is defined as in (i). Hence 

𝐵1𝑃1+. . . +𝐵𝑛𝑃𝑛 lies in the closure  of  𝑐𝑜ℛ(𝐴). 
(iv),(v) These assertions are immediate consequences of (ii) and (iii), respectively. 

Corollary (3.1.3)[447]: Suppose that ℛ is a von Neumann algebra with centre 𝓆, that 𝐴 =
𝐴∗ ∈  ℛ, and that 𝒦 is either 𝑐𝑜ℛ(𝐴)

= ∩ 𝓆  or  𝑐𝑜ℛ(𝐴)
− ∩ 𝓆. 

(i) If  𝐶1, 𝐶3 ∈ 𝒦, 𝐶 = 𝐶
∗ ∈ 𝓆, and 𝐶1 < 𝐶 < 𝐶2, then 𝐶 ∈ 𝒦. 

(ii)  There exist self-adjoint elements 𝐶1 and 𝐶2 of 𝓆 such that 

𝒦 = {𝐶 ∈ 𝓆: 𝐶 = 𝐶∗, 𝐶 ≤ 𝐶 ≤ 𝐶2}. 
Proof, (i) Both 𝑐𝑜ℛ(𝐴)

= ∩ 𝓆 and 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆 are norm-closed convex subsets of 𝓆ℎ (the 

partially ordered Banach space consisting of all self-adjoint elements of the abelian von 

Neumann algebra 𝓆). By Lemma (3.1.2) iv),(v), they both have the additional property 

required of the norm-closed convex set 𝒦 occurring in Proposition (3.1.1). The stated result 

now follows from Proposition (3.1.1) (ii). 

(ii) The set 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 is weak-operator closed (by [120, Corollary 4.14]), and the same 

is true of 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆, so the stated result follows from Proposition (3.1.1) (iii).  In 

obtaining our main results, we appeal to part (i) of Corollary (3.1.3), but not to part (ii). 

Accordingly, our proof of these main results does not depend on [120] (and is, in fact, quite 

elementary). It is for this reason that Corollary (3.1.3) has been set out in two parts, even 

though the first is subsumed in the second. 

    Suppose that ℛ is a von Neumann algebra with centre 𝓆. We begin with two lemmas that 

provide information about the sets 𝑐𝑜ℛ(𝐸)
= ∩ 𝓆 and 𝑐𝑜ℛ(𝐸)

− ∩ 𝓆, respectively, when 𝐸 is 

a projection in ℛ. With the aid of these lemmas, we then give a complete description of 

𝑐𝑜ℛ(𝐸)
= ∩ 𝓆 and 𝑐𝑜ℛ(𝐸)

− ∩ 𝓆, where 𝐴 is any self-adjoint element of ℛ. Finally, we 

characterize those von Neumann algebras ℛ with the property that 𝑐𝑜ℛ(𝐸)
= ∩ 𝓆 coincides 

with 𝑐𝑜ℛ(𝐸)
− ∩ 𝓆 for each (self-adjoint) 𝐴 in ℛ. It suffices to consider the case in which ℛ 

is properly infinite. 

Lemma (3.1.4)[ 447]: Suppose that ℛ is a properly infinite von Neumann algebra with 

centre 𝓆, that 𝐸 is a projection in ℛ, and that 𝑃 is a projection in 𝓆. 

(i) If  𝑃𝐸~𝑃, then 𝑃 ∈ 𝑐𝑜ℛ(𝑃𝐸)
=. 

(ii)  If 𝒬𝐸 ≺ 𝒬 whenever 𝒬 is a projection in 𝓆 and 0 < 𝒬 ≤ 𝑃, then 𝑐𝑜ℛ(𝑃𝐸)
= ∩

𝓆 = {0}. 
Proof, (i) We may assume that 𝑃 ≠ 0. From this, 𝑃 is a properly infinite projection, and so 

is 𝑃𝐸 since 𝑃𝐸~𝑃. It follows that, for each positive integer 𝑛, there exist projections 

𝐹0, 𝐸1, . . . , 𝐸𝑛 in ℛ such that 

𝑃~𝑃𝐸 = 𝐹0 + 𝐸1+ . . . +𝐸𝑛~𝐹0~𝐸1~. . . ∼ 𝐸𝑛 . 
Let 𝐸0 = 𝐹0 + (𝑃 − 𝑃𝐸). Then 

𝑃𝐸 = (𝑝 − 𝐸0) + 𝐹0 ≥ 𝑃 − 𝐸0. 
Also, 𝑃~𝐹0 ≤ 𝐸0 ≤ 𝑃, whence 𝐸0~ 𝑃, and 

𝑃 = 𝐸0 + 𝐸1+ . . . +𝐸𝑛~𝐸0~ 𝐸1~. . . ∼ 𝐸𝑛. 
For each 𝑗 = 1, . . . , 𝑛 there is a partial isometry 𝑉𝑗 in  ℛ, with 𝐸0 and 𝐸𝑗 as initial and final 

projection, respectively. Define unitary operators 𝑈0 , 𝑈1, . . . , 𝑈𝑛 in ℛ, and 𝛼 in 𝒟, by 

𝑈0 = 𝐼,      𝑈𝑗 = 𝑉𝑗 + 𝑉𝑗
∗ + 𝐼 − 𝐸0 − 𝐸𝑗        (𝑗 = 1, … , 𝑛), 
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𝛼(𝐴) =
1

𝑛 + 1
∑𝑈𝑗𝐴𝑈𝑗

∗

𝑛

𝑗=0

        (𝐴 ∈ ℛ). 

Then 

𝑃 = 𝛼(𝑃) ≥ 𝛼(𝑃𝐸) ≥ 𝛼(𝑃 − 𝐸0) = 𝑃 − 𝛼(𝐸0) 

= 𝑃 −
1

𝑛 + 1
∑𝑈𝑗𝐸0𝑈𝑗

∗

𝑛

𝑗=0

 

                   = 𝑃 −
1

𝑛 + 1
∑𝐸𝑗

𝑛

𝑗=0

= (1 −
1

𝑛 + 1
)𝑃,  

and 

0 ≤ 𝑃 − 𝛼(𝑃𝐸) ≤ (𝑛 + 1)−1𝑃. 
Thus  ‖𝑃 − 𝛼(𝑃𝐸)‖ ≤ (𝑛 + 1)−1. Since we can find such an element 𝛼 in 𝒟, corresponding 

to any choice of the positive integer 𝑛, it follows that 𝑃 ∈ 𝑐𝑜ℛ(𝑃𝐸)
=. 

(ii) Under the conditions stated in (ii), we have 𝒬(𝑃𝐸) ≺ 𝒬 for every non-zero projection 𝒬 

in 𝓆. From [259, Corollary 2.2], 𝑃𝐸 lies in  𝐽({0}), the largest norm-closed two-sided ideal 

in ℛ that has intersection {0} with 𝓆. Accordingly, 

𝑐𝑜ℛ(𝑃𝐸)
=  ⊆ 𝑗({0}), 𝑐𝑜ℛ(𝑃𝐸)

= ∩ 𝓆 ⊆ 𝐽({0}) ∩ 𝓆 = {0}, 
and thus 𝑐𝑜ℛ(𝑃𝐸)

= ∩ 𝓆 = {0}. 
Lemma (3.1.5)[447]: Suppose that ℛ is a properly infinite von Neumann algebra with 

centre 𝓆, and that 𝐸 is a projection in ℛ. 

(i) If 𝐸 is properly infinite, 𝐶𝐸 ∈ 𝑐𝑜ℛ(𝐸)
−. 

(ii)  If 𝐸 is finite, 𝑐𝑜ℛ(𝐸)
− ∩ 𝓆 = {0}. 

Proof, (i) Suppose that 𝐸 is properly infinite, and let ℰ be the set of all projections 𝐹 in ℛ 

such that 𝐹~𝐸 ≤ 𝐹. When 𝐹 ∈ ℰ, 𝐹 is a properly infinite projection in ℛ (since 𝐹~𝐸); so 𝐸 

is a projection, equivalent to the unit 𝐹, in a properly infinite von Neumann algebra 𝐹ℛ𝐹. 

From Lemma (3.1.4) (i), 𝐹 ∈ 𝑐𝑜𝐹ℛ𝐹(𝐸)
=. Now each unitary element 𝑉 of 𝐹ℛ𝐹 extends to 

a unitary element 𝑈(= 𝑉 + 𝐼 − 𝐹) of  ℛ, and 𝑉𝐸𝑉∗ = 𝑈𝐸𝑈∗. It follows that 

𝐹 ∈ 𝑐𝑜𝐹ℛ𝐹(𝐸)
= ⊆ 𝑐𝑜ℛ(𝐸)

= ⊆ 𝑐𝑜ℛ(𝐸)
−. 

Thus ℰ ⊆ 𝑐𝑜ℛ(𝐸)
−. 

    It now suffices to show that 𝐶𝐸 ∈ ℰ
−. We prove this by showing that, given any finite set 

{𝑥1, . . . , 𝑥𝑛} of vectors, there is an element 𝐹 of  ℰ such that 𝐹𝑥𝑗 = 𝐶𝐸𝑋𝑗  (𝑗 = 1, . . . , 𝑛). To 

this end, let 𝐺 be the projection whose range is the closure of the linear subspace 

{𝐴1
′𝐶𝐸𝑥1+ . . . +𝐴𝑛

′ 𝐶𝐸𝑥𝑛: 𝐴1
′ , . . . , 𝐴𝑛

′ ∈ ℛ′}. 
Since the range of 𝐺 is generated by the action of ℛ′ on a finite set of vectors, 𝐺 is a 

countably decomposable projection in ℛ. Also, 𝐺 ≤ 𝐶𝐸, and the range of 𝐺 contains 

𝐶𝐸𝑥1, . . . , 𝐶𝐸𝑥𝑛. Thus 𝐸 ∨ 𝐺 is a projection 𝐹0 in ℛ, and 

𝐸 ≤ 𝐹0 ≤ 𝐶𝐸, 𝐹0𝑥𝑗 = 𝐶𝐸𝑥𝑗      (𝑗 = 1, . . . , 𝑛). 

By [887, 𝑝. 299, Corollaire 5], 𝐺 ≲ 𝐸. Also, since the projection 𝐸 in ℛ is properly infinite, 

we have 𝐸 = 𝐸1 + 𝐸2~ 𝐸1~ 𝐸2 for suitable projections 𝐸1 and 𝐸2 in  ℛ. Since 

𝐹0 − 𝐸 = 𝐸 ∨ 𝐺 − 𝐸~ 𝐺 − 𝐸 ∧ 𝐺 ≤ 𝐺 ≲ 𝐸~𝐸1 
and 

𝐹0 = (𝐹0 − 𝐸) + 𝐸 ≲ 𝐸1 + 𝐸2 = 𝐸 ≤ 𝐹0, 
it follows that 𝐹0~ 𝐸 ≤ 𝐹0. This completes the proof of (i), with 𝐹0 the required element 𝐹 

of ℰ. 
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(ii) Suppose that 𝐸 is a finite projection in ℛ, and 0 ≠ 𝐶 ∈ 𝑐𝑜ℛ(𝐸)
− ∩ 𝓆 ; we shall in due 

course obtain a contradiction.  

Since 0 ≤ 𝐸 ≤ 𝐶𝐸 , we have 0 ≤ 𝐶 ≤ 𝐶𝐸. From this, and since 0 ≠ 𝐶 ∈ 𝓆, there is a non-

zero projection 𝑃1 in 𝓆 and a positive real number 𝑐 such that 

𝑐𝑃1 ≤ 𝐶, 𝑃1 ≤ 𝐶𝐸. 
Since 𝑃1 is the central carrier of the finite projection 𝑃1𝐸 in ℛ, the von Neumann algebra 

ℛ𝑃1 is semi-finite. By [886, 𝑝. 99, Proposition 9] there is a faithful normal semifinite trace 

𝜏 on (ℛ𝑃1)
+. There is an element 𝐹 of (ℛ𝑃1)

+ such that 0 < 𝐹 ≤ 𝑃1𝐸 and 𝜏(𝐹) < ∞; upon 

replacing 𝐹 by an appropriately chosen spectral projection of 𝐹, we may assume that 𝐹 is a 

projection. Let {𝐹1, . . . , 𝐹𝑘} be a (necessarily finite) maximal orthogonal family of 

subprojections of 𝑃1𝐸 in ℛ, each equivalent to 𝐹. With 𝐹0 defined as 𝑃1𝐸 − ∑ 𝐹𝑗
𝑘
𝑗=1  it 

follows from the maximality assumption that 𝐹 ⋠ 𝐹0. By the comparison theorem, there is 

a projection 𝑃 in 𝓆 such that 0 < 𝑃 ≤ 𝑃1 and 𝑃𝐹0 ≲ 𝑃𝐹. Thus 

𝑇(𝑃𝐹0) ≤ 𝜏(𝑃𝐹) = 𝜏(𝑃𝐹𝑗) ≤ 𝜏(𝐹) < ∞      (𝑗 = 1, … , 𝑛), 

and 

𝜏(𝑃𝐸) =∑𝜏(𝑃𝐹𝑗)

𝑛

𝑗=0

< ∞. 

    Let 𝒦 be the set {𝐴 ∈ ℛ+: 𝜏(𝑃𝐴) ≤ 𝜏(𝑃𝐸)}. Then 𝒦 is convex, contains  𝐸, and is 

invariant under the mapping 𝐴 → 𝑈𝐴𝑈∗: ℛ → ℛ, for each unitary operator 𝑈 in ℛ. 

Moreover, 𝒦 is weak-operator closed; for there is a family {𝑥𝑎: 𝑎 ∈ 𝔸} of  vectors such that 

𝜏(𝐴) = ∑〈𝐴𝑥𝑎 , 𝑥𝑎〉

𝑎∈𝐴

         (𝐴 ∈ ℛ+) 

[886, 𝑝. 85, Corollaire], and 𝒦 is the intersection of the weak-operator closed sets 

{𝐴 ∈ ℛ+:∑〈𝑃𝐴𝑥𝑎 , 𝑥𝑎〉

𝑎∈𝐹

≤ 𝜏(𝑃𝐸)}. 

associated with arbitrary finite subsets 𝔽 of 𝔸. From the properties of  𝒦 just noted, it 

follows that 𝑐𝑜ℛ(𝐸)
− ⊆ 𝒦; in particular, 𝐶 ∈ 𝒦. Accordingly, 

𝜏(𝑃) = 𝜏(𝑃𝑃1) ≤ 𝑐
−1𝜏(𝑃𝐶) ≤ 𝑐−1𝜏(𝑃𝐸) < ∞, 

and this gives a contradiction since 𝑃 is an infinite projection in ℛ and 𝜏 is a faithful trace 

on  ℛ+. It follows that 𝑐𝑜ℛ(𝐸)
− ∩ 𝓆 = {0}. 

Theorem (3.1.6)[447]: Suppose that ℛ is a prbperly infinite von Neumann algebra with 

centre 𝓆, that 𝐴 = 𝐴∗ ∈ ℛ, and that {𝐸𝜆} is the spectral resolution of 𝐴. For each real number 

𝜆, define projections 𝐹𝜆
𝑛 and 𝐺𝜆

𝑛 in 𝓆 by 

𝐹𝜆
𝑛 =⋀𝑃𝜇

𝑛

𝜇>𝜆

, 𝐺𝜆
𝑛 =⋀(𝐼 − 𝒬𝜇

𝑛)

𝜇>𝜆

, 

Where  𝑃𝜆
𝑛 and  𝒬𝜆

𝑛 are the largest projections in  𝓆 such that 𝑃𝜆
𝑛𝐸𝜆~ 𝑃𝜆

𝑛 and  𝒬𝜆
𝑛(𝐼 −

𝐸𝜆)~𝒬𝜆
𝑛. Then {𝐹𝜆

𝑛} and {𝐺𝜆
𝑛} are the spectral resolutions of two self-adjoint elements of  𝓆, 

𝐶𝑚𝑖𝑛
𝑛  and 𝐶𝑚𝑎𝑥

𝑛 , respectively; moreover, 𝐶𝑚𝑖𝑛
𝑚 ≤ 𝐶𝑚𝑎𝑥

𝑛 , and 

𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 = {𝐶 ∈ 𝓆: 𝐶 = 𝐶∗, 𝐶𝑚𝑖𝑛

𝑛 ≤ 𝐶 ≤ 𝐶𝑚𝑎𝑥
𝑛 }. 

Proof. The superscript ‘𝑛’ (for ‘norm’), occurring on the symbols  𝐹𝜆
𝑛 , 𝐺𝜆

𝑛, 𝑃𝜆
𝑛 , 𝒬𝜆

𝑛, 𝐶𝑚𝑖𝑛
𝑛 , and 

𝐶𝑚𝑎𝑥
𝑛 , has been introduced only to distinguish these operators from similar ones that arise in 

the description (see Theorem (3.1.7)) of 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆; it will be omitted, throughout the 

proof of the present theorem. 

When  𝜆 ≤ 𝜇, we have 

𝑃𝜆~ 𝑃𝜆𝐸𝜆 ≤ 𝑃𝜆𝐸𝜇 ≤ 𝑃𝜆, 
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𝒬𝜇~𝒬𝜇(𝐼 − 𝐸𝜇) ≤ 𝒬𝜇(𝐼 − 𝐸𝜆) ≤ 𝒬𝜇 , 

and thus 𝑃𝜆𝐸𝜇~𝑃𝜆 and 𝒬𝜇(𝐼 − 𝐸𝜆) ~ 𝒬𝜇. It now follows, from the maximality property in 

the definitions of 𝑃𝜇 and 𝒬𝜆, that 𝑃𝜆 ≤ 𝑃𝜇 and 𝒬𝜇 ≤ 𝒬𝜆; so 

𝑃𝜆 ≤ 𝑃𝜇 ,       𝐼 − 𝒬𝜆 ≤ 𝐼 − 𝒬𝜇 when   𝜆 ≤ 𝜇.                          (1) 

When 𝜆 < − ‖𝐴‖,𝐸𝜆 = 0; so 𝑃𝜆 = 0 and 𝒬𝜆 = 𝐼. When 𝜆 ≥ ‖𝐴‖, 𝐸𝜆 = 𝐼; so 𝑃𝜆 = 𝐼 and 

𝒬𝜆 = 0. Thus 

𝑃𝜆 = 𝐼 − 𝒬𝜆 = 0     (𝜆 < −‖𝐴‖),                                               (2) 
𝑝𝜆 = 𝐼 − 𝒬𝜆 = 𝐼        (𝜆 > ‖𝐴‖).                                                 (3) 

From (1), (2), and (3), the families {𝑃𝜆} and {𝐼 − 𝒬𝜆} of projections in 𝓆 have all the 

properties, except strong-operator continuity on the right, that characterize the spectral 

resolutions of bounded self-adjoint operators. Upon replacing 𝑃𝜆 and 𝐼 − 𝒬𝜆 by their 

(strong-operator) limits on the right, 𝐹𝜆 and 𝐺𝜆, respectively, we obtain the spectral 

resolutions {𝐹𝜆 } and {𝐺𝜆} of two self-adjoint elements of 𝓆, 

𝐶𝑚𝑖𝑛 = ∫𝜆𝑑𝐹𝜆
ℝ

,       𝐶𝑚𝑎𝑥 = ∫𝜆𝑑𝐺𝜆
ℝ

.                                   (4) 

From Lemma (3.1.4) (i), together with the defining property of 𝑃𝜆 and  𝒬𝜆, 

𝑃𝜆 ∈ 𝑐𝑜ℛ(𝑃𝜆𝐸𝜆)
=,    𝒬𝜆 ∈ 𝑐𝑜ℛ(𝒬𝜆 − 𝒬𝜆𝐸 𝜆)

=.                          (5) 
Since 𝛼(𝑃𝜆 − 𝑃𝜆𝐸𝜆) = 𝑃𝜆 − 𝛼(𝑃𝜆𝐸𝜆) for each 𝛼 in  𝒟, it follows easily that 

 𝑃𝜆 ∈ 𝑐𝑜ℛ(𝑃𝜆 − 𝑃𝜆𝐸𝜆)
= = {𝑃𝜆 − 𝐵:𝐵 𝑐𝑜ℛ(𝑃𝜆𝐸𝜆)

=}. 
From this and the corresponding result with 𝒬𝜆 in place of  𝑃𝜆, together with (5), we obtain 

0 ∈ 𝑐𝑜ℛ(𝑃𝜆 − 𝑃𝜆𝐸𝜆)
=, 0 ∈ 𝑐𝑜ℛ(𝒬𝜆𝐸𝜆).                                         (6) 

From the maximality property in the definitions of 𝑃𝜆 and 𝒬𝜆, we have 𝑃𝐸𝜆 ≺ 𝑃 and 𝒬(𝐼 −
𝐸𝜆) ≺ 𝒬 whenever 𝑃 and 𝒬 are projections in  𝓆 such that 0 < 𝑃 ≤ 𝐼 − 𝑃𝜆 and 0 < 𝒬 ≤ 𝐼 −
𝒬𝜆. This, together with Lemma (3.1.4) (ii), implies that 

𝑐𝑜ℛ((𝐼 − 𝑃𝜆)𝐸𝜆)
= ∩ 𝓆 = {0},   𝑐𝑜ℛ((𝐼 − 𝒬𝜆)(𝐼 − 𝐸𝜆))

= ∩ 𝓆 = {0}.  (7) 
Suppose that 𝐶 ∈ 𝑐𝑜ℛ(𝐴)

= ∩ 𝓆. Given any positive real number 𝜀, we can choose 𝛼0 in 𝒟 

so that ‖𝐶 − 𝛼0(𝐴)‖ < 𝜀. For each real number 𝜆, 

𝐴 ≥ 𝜆(𝐼 − 𝐸𝜆) − ‖𝐴‖ 𝐸𝜆 = 𝜆𝐼 − (‖𝐴‖ + 𝜆)𝐸𝜆, 
and hence 𝛼0(𝐴) ≥ 𝜆𝐼 − (‖𝐴‖ + 𝜆)𝛼0(𝐸𝜆). It follows that 

𝐶 ≥ 𝛼0(𝐴) − 𝜀𝐼 ≥ (𝜆 − 𝜀)𝐼 − (‖𝐴‖ + 𝜆)𝛼0(𝐸𝜆), 
and that 

𝐶(𝐼 − 𝑃𝜆) ≥ (𝜆 − 𝜀)(𝐼 − 𝑃𝜆) − (‖𝐴‖ + 𝜆)𝛼0((𝐼 − 𝑃𝜆)𝐸𝜆).  

Upon applying an arbitrary element 𝛽 of  𝒟 to this last inequality, we obtain 

𝐶(𝐼 − 𝑃𝜆) ≥ (𝜆 − 𝜀)(𝐼 − 𝑃𝜆) − (‖𝐴‖ + 𝜆)𝛽𝛼0((𝐼 − 𝑃𝜆)𝐸𝜆).       (8) 
Since 

𝜙 ≠ 𝑐𝑜ℛ(𝛼0((𝐼 − 𝑃𝜆)𝐸𝜆))
= ∩ 𝓆 ⊆ 𝑐𝑜ℛ((𝐼 − 𝑃𝜆)𝐸𝜆)

= ∩ 𝓆, 
it follows from (7) that 𝑐𝑜ℛ(𝛼0((𝐼 − 𝑃𝜆)𝐸𝜆))

= ∩ 𝓆 = {0}. Hence the last term on the right-

hand side of (8) can be made arbitrarily small in norm by appropriate choice of 𝛽 in  𝒟. 

Thus 𝐶(𝐼 − 𝑃𝜆) ≥ (𝜆 − 𝜀)(𝐼 − 𝑃𝜆); since this has been proved for every positive 𝜀, 
𝐶(𝐼 − 𝑃𝜆) ≥ 𝜆(𝐼 − 𝑃𝜆)       (𝜆 ∈ ℝ). 

Since 𝐹𝜇 ≥ 𝐹𝜆 ≥ 𝑃𝜆 when 𝜇 > 𝜆, we obtain 

𝐶(𝐹𝜇 − 𝐹𝜆) ≥ 𝜆(𝐹𝜇 − 𝐹𝜆)    (𝜆, 𝜇 ∈ ℝ, 𝜆 < 𝜇) 

upon multiplying the previous inequality by 𝐹𝜇 − 𝐹𝜆. It follows that, for any real numbers 

𝜆0, 𝜆1, . . . , 𝜆𝑚 such that  𝜆0 < −‖𝐴‖, 𝜆𝑚 ≥ ‖𝐴‖, and 𝜆0 < 𝜆1 < . . . < 𝜆𝑚 , 
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𝐶 =∑𝐶(𝐹𝜆𝑗 − 𝐹𝜆𝑗−1)

𝑚

𝑗=1

≥∑𝜆𝑗−1 (𝐹𝜆𝑗 − 𝐹𝜆𝑗−1)

𝑚

𝑗=1

. 

Hence 𝐶 > ∫𝑑𝐹𝜆; so we have shown that 

𝐶 ≤ 𝐶𝑚𝑖𝑛      (𝐶 ∈ 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆).                                   (9) 

An argument very similar to the one set out in the preceding paragraph shows that 

𝐶 ≤ 𝐶𝑚𝑎𝑥       (𝐶 ∈ 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆).                                 (10) 

Given 𝐶 in 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 and 𝜀(> 0), we again choose 𝛼0 in 𝒟 so that ‖𝐶 − 𝛼0(𝐴)‖ < 𝜀. 

From the inequalities 

𝐴 ≤ 𝑣𝐸𝑣 + ‖𝐴‖(𝐼 − 𝐸𝑣) ≤ 𝑣𝐼 + (‖𝐴‖ − 𝑣)(𝐼 − 𝐸𝑣), 
we deduce (corresponding to (8)) that 

𝐶(𝐼 − 𝒬𝑣) ≤ (𝑣 + 𝜀) (𝐼 − 𝒬𝑣) + (‖𝐴‖ − 𝑣)𝛽𝛼0((𝐼 − 𝒬𝑣)(𝐼 − 𝐸𝑣)) 
for all 𝑣 in ℝ and 𝛽 in 𝒟. With 𝑣 fixed for the time being, it follows from (7) that the second 

term on the right-hand side of the last inequality can be made arbitrarily small in norm by 

an appropriate choice of 𝛽 in 𝒟. Thus 

𝐶(𝐼 − 𝒬𝑣) ≤ (𝑣 + 𝜀)(𝐼 − 𝒬𝑣). 
When first 𝜀 ↓ 0 and then 𝑣 ↓ 𝜇, we obtain 𝐶𝐺𝜇 ≤ 𝜇𝐺𝜇, and this leads easily to a proof of 

(10). 

So far, we have constructed the elements 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 of  𝓆 from their spectral resolutions, 

and proved that 

𝐶𝑚𝑖𝑛 ≤ 𝐶 ≤ 𝐶𝑚𝑎𝑥 
for each 𝐶 in 𝑐𝑜ℛ(𝐴)

= ∩ 𝓆. In order to complete the proof of the theorem, we have to show 

that 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 contains each self-adjoint 𝐶 in 𝓆 such that  𝐶𝑚𝑖𝑛 ≤ 𝐶 ≤ 𝐶𝑚𝑎𝑥. To this 

end, it suffices (Corollary (3.1.3) (i)) to prove that 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 lie in 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆. 

Given real numbers 𝜇, 𝜀(> 0), choose 𝑣 so that 𝜇 < 𝑣 < 𝜇 +
1

2
𝜀. We have already noted 

that 

𝐴 ≤ 𝑣𝐼 + (‖𝐴‖ − 𝑣)(𝐼 − 𝐸𝑣), 
so 

𝑃𝑣𝐴 ≤ 𝑣𝑃𝑣 + (‖𝐴‖ − 𝑣)(𝑃𝑣 − 𝑃𝑣𝐸𝑣).                                   (11) 
From (6), we can choose 𝛼0 in 𝒟 so that 

‖(‖𝐴‖ − 𝑣)𝛼0(𝑃𝑣 − 𝑃𝑣𝐸𝑣)‖ <
1

2
𝜀. 

It now follows from (11) that 

𝛼0(𝑃𝑣𝐴) ≤ 𝑣𝑃𝑣 + (‖𝐴‖ − 𝑣)𝛼0(𝑃𝑣 − 𝑃𝑣𝐸𝑣) 

≤ (𝜇 +
1

2
𝜀) 𝑃𝑣 + (‖𝐴‖ − 𝑣)𝛼0(𝑃𝑣 − 𝑃𝑣𝐸𝑣)𝑃𝑣 

≤ (𝜇 + 𝜀)𝑃𝑣 . 
Since  𝜇 < 𝑣, we have 𝐹𝜇 < 𝑃𝑣; so, upon multiplying the last inequality by 𝐹𝜇, we obtain 

𝛼0(𝐹𝜇𝐴) ≤ (𝜇 + 𝜀)𝐹𝜇 .                                           (12) 

Accordingly, we have shown that if 𝜇 ∈ ℝ  and  𝜀 > 0, there exists 𝛼0 in 𝒟 such that (12) 

is satisfied. 

Let 𝜆0, . . . , 𝜆𝑚 be real numbers such that 

𝜆0 < −‖𝐴‖ ,      𝜆𝑚 ≥ ‖ 𝐴 ‖, 𝜆0 < 𝜆1 < . . . < 𝜆𝑚, 
And  𝜆𝑗 − 𝜆𝑗−1 < 𝜀(𝑗 = 1, . . . , 𝑚). From the preceding paragraph, we can choose 𝛼1, . . . , 𝛼𝑚 

in 𝒟 so that 

𝛼𝑗 (𝐹𝜆𝑗𝐴) ≤ (𝜆𝑗 + 𝜀)𝐹𝜆𝑗      (𝑗 = 1,… ,𝑚). 
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Upon multiplying this inequality by 𝐼 − 𝐹𝜆𝑗−1 , and then summing the resulting inequality 

over  𝑗 = 1, . . . ,𝑚, we obtain 

∑𝛼𝑗 ((𝐹𝜆𝑗 − 𝐹𝜆𝑗−1)𝐴)

𝑚

𝑗=1

≤∑(𝜆𝑗 + 𝜀) (𝐹𝜆𝑗 − 𝐹𝜆𝑗−1)

𝑚

𝑗=1

 

=∑𝜆𝑗 (𝐹𝜆𝑗 − 𝐹𝜆𝑗−1)

𝑚

𝑗=1

+ 𝜀𝐼 

                                                         ≤ 𝐶𝑚𝑖𝑛 + 2𝜀𝐼. 
Since the projections 𝐹𝜆𝑗 − 𝐹𝜆𝑗−1(𝑗 = 1, . . . , 𝑚) lie in 𝓆 and have sum 𝐼, it follows from 

Lemma (3.1.2) (i) that the operator on the left-hand end of the last chain of inequalities has 

the form 𝛼(𝐴), for some 𝛼 in 𝒟. Since 𝛼(𝐴) ≤ 𝐶𝑚𝑖𝑛 + 2𝜀𝐼, it follows that 𝛽𝛼(𝐴) ≤ 𝐶𝑚𝑖𝑛 +
2𝜀𝐼 for each 𝛽 in 𝒟, and hence that 𝐵 ≤ 𝐶𝑚𝑖𝑛 + 2𝜀𝐼 for each 𝐵 in 𝑐𝑜ℛ(𝛼(𝐴))

=. In particular, 

we can take for 𝐵 an element 𝐶0 of  𝑐𝑜ℛ(𝛼(𝐴))
= ∩ 𝓆; then, 𝐶0 ∈ 𝑐𝑜ℛ(𝐴)

= ∩ 𝓆, 𝐶0 ≤
𝐶𝑚𝑖𝑛 + 2𝜀𝐼, and 𝐶𝑚𝑖𝑛 ≤ 𝐶0 by (9). These inequalities entail 

‖𝐶𝑚𝑖𝑛 − 𝐶0‖ ≤ 2𝜀. 
Since 𝐶𝑚𝑖𝑛 can be approximated arbitrarily closely in norm by elements of the normclosed 

set 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆, it follows that 𝐶𝑚𝑖𝑛 ∈ 𝑐𝑜ℛ(𝐴)

= ∩ 𝓆.  

A similar argument shows that 𝐶𝑚𝑎𝑥 ∈ 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 (and so completes the proof of the 

theorem). We have already noted that 

𝐴 ≥ 𝜆𝐼 − (‖𝐴‖ + 𝜆)𝐸𝜆, 
and from this 

𝒬𝜆𝐴 ≥ 𝜆𝒬𝜆 − (‖𝐴‖ + 𝜆)𝒬𝜆𝐸𝜆. 
From (6), we can choose 𝛼0 in 𝒟 so that 

‖(‖𝐴‖ + 𝜆)𝛼0(𝒬𝜆𝐸𝜆)‖ < 𝜀. 
It then follows that 𝛼0(𝒬𝜆𝐴) ≥ (𝜆 − 𝜀)𝒬𝜆. Upon multiplying this last inequality by 𝐼 −
𝐺𝜆(≤ 𝒬𝜆, because 𝐼 − 𝒬𝜆 ≤ 𝐺𝜆 from the definition of 𝐺𝜆), we obtain 

𝛼0((𝐼 − 𝐺𝜆)𝐴) ≥ (𝜆 − 𝜀)(𝐼 − 𝐺𝜆).                                   (13) 
Accordingly, we have shown that if 𝜆 ∈ ℝ  and  𝜀 > 0, there exists 𝛼0 in 𝒟 such that (13) 

is satisfied. An argument similar to that of the preceding paragraph now completes the proof 

that 𝐶𝑚𝑎𝑥 ∈ 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆. 

Theorem (3.1.7)[447]: Suppose that ℛ is a properly infinite von Neumann algebra with 

centre  𝓆, 𝐴 = 𝐴∗ ∈ ℛ, and {𝐸𝜆} is the spectral resolution of 𝐴. For each real number 𝜆, 

define projections 𝐹𝜆
𝑤 and 𝐺𝜆

𝑤 in 𝓆 by 

𝐹𝜆
𝑤 =⋀𝑃𝜇

𝑤

𝜇>𝜆

, 𝐺𝜆
𝑤 =⋀(𝐼 − 𝒬𝜇

𝑤)

𝜇>𝜆

, 

Where  𝐼 − 𝑃𝜆
𝑤  and 𝐼 − 𝒬𝜆

𝑤 are the largest projections in 𝓆 such that the projections (𝐼 −
𝑃𝜆
𝑤)𝐸𝜆 and (𝐼 − 𝒬𝜆

𝑤)(𝐼 − 𝐸𝜆) in ℛ are finite. Then {𝐹𝜆
𝑤} and {𝐺𝜆

𝑤} are the spectral 

resolutions of two self-adjoint elements of 𝓆, 𝐶𝑚𝑖𝑛
𝑤  and 𝐶𝑚𝑎𝑥

𝑤 , respectively; moreover, 

𝐶𝑚𝑖𝑛
𝑤 ≤ 𝐶𝑚𝑎𝑥

𝑤  , and 

𝑐𝑜ℛ(𝐴)
− ∩ 𝓆 = {𝐶 ∈ 𝓆: 𝐶 = 𝐶∗, 𝐶𝑚𝑖𝑛

𝑤 ≤ 𝐶 ≤ 𝐶𝑚𝑎𝑥
𝑤 }. 

Proof. In its broad structure, the proof is similar to (but a little simpler than) that of Theorem 

(3.1.6) Throughout the argument, we shall omit the superscript ‘𝑤’ (for ‘weakoperator’) 

occurring on the symbols 𝐹𝜆
𝑤 , 𝐺𝜆

𝑤, 𝑃𝜆
𝑤 , 𝒬𝜆

𝑤, 𝐶𝑚𝑖𝑛
𝑤 , and  𝐶𝑚𝑎𝑥

𝑤 . 

When  𝜆 ≤ 𝜇, we have 

(𝐼 − 𝑃𝜇)𝐸𝜆 ≤ (𝐼 − 𝑃𝜇)𝐸𝜇     𝑎𝑛𝑑      (𝐼 − 𝒬𝜆)(𝐼 − 𝐸𝜇) ≤ (𝐼 − 𝒬𝜆)(𝐼 − 𝐸𝜆), 
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 and the projections on the right-hand sides of these two inequalities are finite in ℛ ; so (𝐼 −
𝑃𝜇)𝐸𝜆 and (𝐼 − 𝒬𝜆)(𝐼 − 𝐸𝜇) are finite projections in ℛ. It now follows, from the maximality 

property in the definitions of  𝐼 − 𝑃𝜆 and 𝐼 − 𝒬𝜇, that 𝐼 − 𝑃𝜇 ≤ 𝐼 − 𝑃𝜆 and 𝐼 − 𝒬𝜆 ≤ 𝐼 − 𝒬𝜇 . 

Thus 

 𝑃𝜆 ≤ 𝑃𝜇 ,     𝐼 − 𝒬𝜆 ≤ 𝐼 − 𝒬𝜇 , when   𝜆 ≤ 𝜇                              (14). 

When 𝜆 < −‖𝐴‖, 𝐸𝜆is 0; so 𝐼 − 𝑃𝜆 is 𝐼 and (since ℛ is properly infinite) 𝐼 − 𝒬𝜆 is 0. When 

𝜆 ≥ ‖𝐴‖,𝐸𝜆 is 𝐼; so 𝐼 − 𝑃𝜆 is 0 (because ℛ is properly infinite) and 𝐼 − 𝒬𝜆 is 𝐼. Thus 

𝑃𝜆 = 𝐼 − 𝒬𝜆 = 0       (𝜆 < −‖𝐴‖ ),                              (15) 
𝑝𝜆 = 𝐼 − 𝒬𝜆 = 𝐼   (𝜆 ≥ ‖𝑋‖).                                       (16)  

The argument used at the corresponding stage of the proof of  Theorem  (3.1.6) now shows 

that {𝐹𝜆} and {𝐺𝜆} are the spectral resolutions of two self-adjoint elements of 𝓆, 

𝐶𝑚𝑖𝑛  = ∫𝜆𝑑𝐹𝜆
ℝ

,     𝐶𝑚𝑎𝑥 = ∫𝜆𝑑𝐺𝜆
ℝ

.                              (17) 

It is apparent from the defining properties of 𝑃𝜆 and 𝒬𝜆 that the projections (𝐼 − 𝑃𝜆)𝐸𝜆, (𝐼 −
𝒬𝜆)(𝐼 − 𝐸𝜆) in ℛ are finite, but that 𝑃𝜆𝐸𝜆 (unless 𝑃𝜆 = 0) and 𝒬𝜆(𝐼 − 𝐸𝜆) (unless 𝒬𝜆 = 0) 

are properly infinite, and have central carriers 𝑃𝜆 and 𝒬𝜆, respectively. From Lemma (3.1.5) 

(i), 

𝑃𝜆 ∈ 𝑐𝑜ℛ(𝑃𝜆, 𝐸𝜆)
−,      𝒬𝜆 ∈ 𝑐𝑜ℛ(𝒬𝜆 − 𝒬𝜆𝐸𝜆)

−;                 (18) 
so 

0 ∈ 𝑐𝑜ℛ(𝑃𝜆 − 𝑃𝜆𝐸𝜆)
−,      0 ∈ 𝑐𝑜ℛ(𝒬𝜆𝐸𝜆)

−.                        (19) 
From Lemma (3.1.5) (ii), 

𝑐𝑜ℛ((𝐼 − 𝑃𝜆)𝐸𝜆)
= ∩ 𝓆 = {0}, 𝑐𝑜ℛ((𝐼 − 𝒬𝜆)(𝐼 − 𝐸𝜆))

−
∩ 𝓆 = {0}.   (20) 

Suppose that 𝐶 ∈ 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆. There is a net {𝛼𝑗} in 𝒟 such that 𝛼𝑗(𝐴) → 𝐶 (in the weak-

operator topology). For each real 𝜆 we have 𝐴 ≥ 𝜆𝐼 − (‖𝐴‖ + 𝜆)𝐸𝜆, whence 

𝐴(𝐼 − 𝑃𝜆) ≥ 𝜆(𝐼 − 𝑃𝜆) − (‖𝐴‖ + 𝜆)(𝐼 − 𝑃𝜆)𝐸𝜆 
and 

𝛼𝑗(𝐴)(𝐼 − 𝑃𝜆) ≥ 𝜆(𝐼 − 𝑃𝜆) − (‖𝐴‖ + 𝜆)𝛼𝑗((𝐼 − 𝑃𝜆)𝐸𝜆).   (21) 

Since 𝑐𝑜ℛ((𝐼 − 𝑃𝜆)𝐸𝜆)
− is weak-operator compact, we may assume (upon replacing {𝛼𝑗} 

by a suitable subnet) that {𝛼𝑗((𝐼 − 𝑃𝜆)𝐸𝜆)} is weak-operator convergent to an element 𝐵 of 

𝑐𝑜ℛ((𝐼 − 𝑃𝜆)𝐸𝜆)
−.  Upon taking limits in (21), we obtain 

𝐶(𝐼 − 𝑃𝜆) ≥ 𝜆(𝐼 − 𝑃𝜆) − (‖𝐴‖ + 𝜆)𝐵, 
and thus 

𝐶(𝐼 − 𝑃𝜆) ≥ 𝜆(𝐼 − 𝑃𝜆) − (‖𝐴‖ + 𝜆)𝛽(𝐵)(𝛽 ∈ 𝒟).         (22) 
Since 𝐵 ∈ 𝑐𝑜ℛ((𝐼 − 𝑃𝜆)𝐸𝜆)

−, it results from (20) that 

𝜙 ≠ 𝑐𝑜ℛ(𝐵)
− ∩ 𝓆 ⊆ 𝑐𝑜ℛ((𝐼 − 𝑃𝜆)𝐸𝜆)

− ∩ 𝓆 = {0}; 
so there is a net {𝛽𝑘} in 𝒟 such that 𝛽𝑘(𝐵) → 0. Upon writing 𝛽𝑘 for 𝛽 in (22), and taking 

limits over 𝑘, we obtain 

𝐶(𝐼 − 𝑃𝜆) ≥ 𝜆(𝐼 − 𝑃𝜆). 
We can now deduce that 

𝐶 ≥ 𝐶𝑚𝑖𝑛(𝐶 ∈ 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆).                              (23) 

An argument very similar to the one set out in the preceding paragraph shows that 

𝐶 ≥ 𝐶𝑚𝑎𝑥(𝐶 ∈ 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆).                              (24) 

Corresponding to (21) and (22), we have the inequalities 

𝛼𝑗(𝐴)(𝐼 − 𝒬𝑣) ≤ 𝑣(𝐼 − 𝒬𝑣) + (‖𝐴‖ − 𝑣)𝛼𝑗(𝐼 − 𝒬𝑣)(𝐼 − 𝐸𝑣)), 

𝐶(𝐼 − 𝒬𝑣) ≤ 𝑣(𝐼 − 𝒬) + (‖𝐴‖ − 𝑣)𝛽(𝐵) (𝛽 ∈ 𝒟), 
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where 𝐵 is some element of 𝑐𝑜ℛ((𝐼 − 𝒬𝑣)(𝐼 − 𝐸𝑣))
−. It follows from (20) that  𝑐𝑜ℛ(𝐵)

− ∩
𝓆 = {0}; so by taking limits in the last inequality, as 𝛽 runs through an appropriate net in 

𝒟, we have 

𝐶(𝐼 − 𝒬𝑣) ≤ 𝑣(𝐼 − 𝒬𝑣). 
When 𝑣 ↓ 𝜇, we obtain 𝐶𝐺𝜇 ≤ 𝜇𝐺𝜇, and this leads easily to a proof of (24). 

So far, we have constructed the elements 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 of  𝓆  from their spectral 

resolutions, and proved that 

𝐶𝑚𝑖𝑛 ≤ 𝐶 ≤ 𝐶𝑚𝑎𝑥     (𝐶 ∈ 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆). 

It remains to show that 𝑐𝑜ℛ(𝐴) ∩ 𝓆 contains each self-adjoint 𝐶 in 𝓆 such that 𝐶𝑚𝑖𝑛 ≤ 𝐶 ≤
𝐶𝑚𝑎𝑥. From Corollary (3.1.3) (i), it suffices to prove that 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 lie in 𝑐𝑜ℛ(𝐴)

− ∩
𝓆. 

For each real 𝑣, it follows from (25) (in the proof of Theorem (2.1.7)) that 

𝛼(𝐴)𝑃𝑣 ≤ 𝑣𝑃𝑣 + (‖𝐴‖ − 𝑣)𝛼(𝑃𝑣 − 𝑃𝑣𝐸𝑣)     (𝛼 ∈ 𝒟).               (25) 
By (19), there is a net {𝛼𝑗} in 𝒟 such that 𝛼𝑗(𝑃𝑣 − 𝑃𝑣𝐸𝑣) → 0 in the weak-operator topology. 

Since 𝑐𝑜ℛ(𝐴)
− is compact, we may assume also (upon replacing {𝛼𝑗} by an appropriate 

subnet) that {𝛼𝑗(𝐴)} is weak-operator convergent to an element 𝐵𝑣 of  𝑐𝑜ℛ(𝐴)
−. By-writing 

𝛼𝑗 in place of 𝛼 in (25), and taking limits over 𝑗, we obtain  𝐵𝑣𝑃𝑣 ≤ 𝑣𝑃𝑣. 

     Given 𝜆 in ℝ, we note that 𝐹𝜆 ≤ 𝑃𝑣 and thus 𝐵𝑣𝐹𝜆 ≤ 𝑣𝐹𝜆, whenever  𝑣 > 𝜆. The family 

{𝐵𝑣: 𝑣 > 𝜆} is a net in 𝑐𝑜ℛ(𝐴)
− (with the indices 𝑣 directed downward), and so has a subnet 

convergent to an element 𝐴𝜆 of   𝑐𝑜ℛ(𝐴)
−. By taking limits over this subnet, in the relation 

𝐵𝑣𝐹𝜆 ≤ 𝑣𝐹𝜆, we obtain 𝐴𝜆𝐹𝜆 ≤ 𝜆𝐹𝜆. 

Let 𝜆0, . . . , 𝜆𝑚 be real numbers such that 

𝜆0 < − ‖𝐴‖,          𝜆𝑚 ≥ ‖𝐴‖, 𝜆0 < 𝜆1 < . . . < 𝜆𝑚, 
and 𝜆𝑗 − 𝜆𝑗−1 < 𝜀 (𝑗 = 1, . . . , 𝑚). From the preceding paragraph, we can choose 𝐴1, . . . , 𝐴𝑚 

in 𝑐𝑜ℛ(𝐴)
− so that  𝐴𝑗𝐹𝜆𝑗 ≤ 𝜆𝑗𝐹𝜆𝑗 . Multiplication by 𝐼 − 𝐹𝜆𝑗−1 , followed by summation  

over  𝑗 = 1, . . . ,𝑚, gives 

∑𝐴𝑗(𝐹𝜆𝑗 − 𝐹𝜆𝑗−1)

𝑚

𝑗=1

≤∑𝜆𝑗(𝐹𝜆𝑗 − 𝐹𝜆𝑗−1)

𝑚

𝑗=1

≤ 𝐶𝑚𝑖𝑛 + 𝜀𝐼. 

From Lemma (3.1.2) (iii), the operator on the left-hand side of this chain of inequalities is 

an element 𝐴0 of  𝑐𝑜ℛ(𝐴)
−. Choose 𝐶0 in  𝑐𝑜ℛ(𝐴0)

−1 ∩ 𝓆. Then 𝐶0 ∈ 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆, 𝐶𝑚𝑖𝑛 ≤

𝐶0 by (23), and 𝐶0 ≤ 𝐶𝑚𝑖𝑛 + 𝜀𝐼 since  𝐴0 < 𝐶𝑚𝑖𝑛 + 𝜀𝐼; so ‖𝐶𝑚𝑖𝑛 − 𝐶0‖ < 𝜀. Since 𝐶𝑚𝑖𝑛 

can be approximated, arbitrarily closely in norm, by elements of the (weak-operator, hence 

norm-) closed set 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆, it now follows that 𝐶𝑚𝑖𝑛 ∈ 𝑐𝑜ℛ(𝐴)

− ∩ 𝓆. 

A similar (but slightly simpler) argument shows that  𝐶𝑚𝑎𝑥 ∈ 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆. In place of (25) 

we have the inequality 

𝛼(𝐴)𝒬𝜆 ≥ 𝜆𝒬𝜆 − (‖𝐴‖ + 𝜆)𝛼(𝒬𝜆𝐸𝜆)    (𝛼 ∈ 𝒟).            (26) 
From this, together with (19), we can deduce that 𝐴𝜆𝒬𝜆 ≥ 𝜆𝒬𝜆 for some 𝐴𝜆 in 𝑐𝑜ℛ(𝐴)

−. 

Since 𝐼 − 𝐺𝜆 ≤ 𝒬𝜆 (because 𝐼 − 𝒬𝜆 ≤ 𝐺𝜆 from the definition of 𝐺𝜆), it now follows that 

𝐴𝜆(𝐼 − 𝐺𝜆) ≥ 𝜆(𝐼 − 𝐺𝜆).  
An argument similar to that of the preceding paragraph now completes the proof  that 

𝐶𝑚𝑎𝑥 ∈ 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆. 

For this purpose, let 𝑃 be the largest projection in 𝓆 such that the von Neumann algebra ℛ𝑃 

is finite, and let 𝜏 be the centre-valued trace on ℛ𝑃. It has already been noted that the sets 

𝑐𝑜ℛ𝑃(𝐴𝑃)
= ∩ 𝓆𝑃 and 𝑐𝑜ℛ𝑃(𝐴𝑃)

− ∩ 𝓆𝑃 both consist of the single point 𝜏(𝐴𝑃); for example, 

this is a consequence of the norm continuity, and strong operator continuity on bounded 

sets, of 𝜏. If  𝑃 ≠ 𝐼, the von Neumann algebra ℛ(𝐼 − 𝑃) is properly infinite, and so the sets 
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𝑐𝑜ℛ(𝐼−𝑃)(𝐴(𝐼 − 𝑃))
=,     𝑐𝑜ℛ(𝐼−𝑃)(𝐴(𝐼 − 𝑃))

−,    

intersect ℓ(𝐼 − 𝑃) in closed intervals, [𝐶𝑚𝑖𝑛
𝑛 , 𝐶𝑚𝑎𝑥

𝑛 ] and [𝐶𝑚𝑖𝑛
𝑤 , 𝐶𝑚𝑎𝑥

𝑤 ], respectively, the 

endpoints being determined as in Theorems (3.1.7) and (3.1.8). It now suffices to define 

𝐶1
𝑛 = 𝜏(𝐴𝑃) + 𝐶𝑚𝑖𝑛

𝑛 ,      𝐶2
𝑛 = 𝜏(𝐴𝑃) + 𝐶𝑚𝑎𝑥

𝑛 , 
𝐶1
𝑛 = 𝜏(𝐴𝑃) + 𝐶𝑚𝑖𝑛

𝑛 ,      𝐶2
𝑛 = 𝜏(𝐴𝑃) + 𝐶𝑚𝑎𝑥

𝑛 . 
The inequalities 𝐶1

𝑤 ≤ 𝐶1
𝑛, 𝐶2

𝑛 ≤ 𝐶2
𝑤 follow from the inclusion 

𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 ⊆ 𝑐𝑜ℛ(𝐴)

− ∩ 𝓆. 
by Lemma (3.1.4) (ii) (with 𝑃 = 𝐼) and Lemma (3.1.5)  (i). Thus 

𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 ≠ 𝑐𝑜ℛ(𝐴)

− ∩ 𝓆.  
Theorems (3.1.8)[447]: If ℛ is a von Neumann algebra with centre 𝓆, the following four 

conditions are equivalent: 

(i) each projection 𝑃 in 𝓆 that is countably decomposable relative to 𝓆 is countably 

decomposable relative to ℛ; 

(ii)  𝐸~𝐶𝐸 for each properly infinite projection 𝐸 in ℛ; 

(iii)  𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 = 𝑐𝑜ℛ(𝐴)

− ∩ 𝓆 for each self-adjoint element 𝐴 of ℛ; 

(iv)  𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 = 𝑐𝑜ℛ(𝐴)

= ∩ 𝓆 for each 𝐴 in ℛ. 

Proof. We prove the equivalence of the first three conditions without appeal to [120], and 

then make use of [120, Corollaries 4.14 and 4.17] in showing that these three conditions are 

equivalent to (iv). Upon expressing ℛ as the direct sum of a finite von Neumann algebra 

and a properly infinite von Neumann algebra, it suffices to consider the two summands 

separately. In the case of a finite von Neumann algebra, Condition (i) is satisfied by [119, 

p. 99, Proposition 9 (ii)], Condition (ii) is satisfied vacuously, and Conditions (iii) and (iv) 

are satisfied because 𝑐𝑜ℛ(𝐴)
= and 𝑐𝑜ℛ(𝐴)

− both meet 𝓆 at just one point, the (centrevalued) 

trace of 𝐴. We therefore assume henceforth that ℛ is properly infinite. 

     Suppose that Condition (i) is satisfied. If 𝐸 is a properly infinite projection in ℛ, let {𝑃𝑗} 

be an orthogonal family of non-zero projections in 𝓆, each cyclic in 𝓆, with sum 𝐶𝐸. For 

each index 𝐽, 𝑃𝑗𝐸 is a properly infinite projection in ℛ, with central carrier 𝑃𝑗 that is 

countably decomposable (in 𝓆, and hence, by (i), in ℛ). From [119, 𝑝. 299, Corollaire 5], 

𝑃𝑗𝐸~𝑃𝑗; so 

𝐸 = 𝐶𝐸𝐸 =∑𝑃𝑗𝐸 ~∑𝑃𝑗 = 𝐶𝐸 . 

Hence (i) implies (ii).  

    We prove next that (ii) implies (i). To this end, suppose that Condition (ii) is satisfied, 

and that 𝑃 is a projection in 𝓆 and countably decomposable relative to 𝓆. We have to show 

that 𝑃 is countably decomposable relative to ℛ. From [119, 𝑝. 19, Corollaire], the abelian 

von Neumann algebra 𝓆𝑃 has a separating vector 𝑥; so 𝑃 has range [𝓆′𝑥], and 𝑃 = 𝐶𝐸, 

where 𝐸 is the cyclic projection in ℛ with range [ℛ′𝑥]. By the comparison theorem, applied 

to the projections 𝐸(≤ 𝑃) and 𝑃, there is a projection 𝒬 in 𝓆 such that 𝒬 ≤ 𝑃, 𝒬𝐸~𝒬, and 

𝑃1𝐸 ≺ 𝑃1 whenever 𝑃1 is a projection in 𝓆 and 0 < 𝑃1 ≤ 𝑃 − 𝒬. From this last condition, 

(𝑃 − 𝒬)𝐸 is finite; for otherwise, 𝑃1𝐸 is properly infinite for some non-zero central 

subprojection 𝑃1 of 𝑃 − 𝒬, and 𝑃1𝐸~𝐶𝑃,𝐸 = 𝑃1 by (ii), contradicting the final assertion of 

the preceding sentence. Since 𝒬𝐸(≤ 𝐸) is cyclic (and, hence, countably decomposable) in 

ℛ, the same is true of 𝒬(~𝒬𝐸). 
     In order to complete the proof that (ii) implies (i), it now remains to show that 𝑃 − 𝒬 is 

countably decomposable relative to ℛ. Since 𝑃 − 𝒬 is the central carrier of the finite 

projection (𝑃 − 𝒬)𝐸, the von Neumann algebra ℛ(𝑃 − 𝒬) is semi-finite (as well as properly 

infinite). It follows (for example, as a consequence of [119, 𝑝. 218, Corollaire 2] that there 
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is an orthogonal family {𝒬𝑗} of projections in 𝓆 with sum 𝑃 − 𝒬, each 𝒬𝑗 being itself the 

sum of a (necessarily infinite) orthogonal family of projections in ℛ each equivalent to the 

finite projection 𝒬𝑗𝐸. Since 𝑃 − 𝒬 is countably decomposable relative to 𝓆, the family {𝒬𝑗} 

is countable, and it suffices to prove that each 𝒬𝑗is countably decomposable in ℛ. Now 𝒬𝑗 

has the form  ∑𝐹𝑘, where {𝐹𝑘} is an infinite orthogonal family of projections in ℛ each 

equivalent to 𝒬𝑗𝐸. For each 𝑘, 𝐹𝑘  is countably decomposable in ℛ (since 𝐹𝑘 ≾ 𝐸). If 𝐺 is 

the sum of a countably infinite subfamily of {𝐹𝑘}, then 𝐺 is a properly infinite countably 

decomposable projection in  

ℛ, and 

𝐶𝐺 = 𝐶𝐹𝑘 = 𝐶𝒬𝑗𝐸 = 𝒬𝑗𝐶𝐸 = 𝒬𝑗. 

By Condition (ii),  𝒬𝑗~𝐺, and therefore 𝒬𝑗 is countably decomposable in ℛ. This completes 

the proof that (ii) implies (i). 

We prove next that (ii) implies (iii). Suppose that ℛ (still assumed properly infinite) satisfies 

Condition (ii). Let {𝐸𝜆} be the spectral resolution of a self-adjoint element 𝐴 of  ℛ, and 

define central projections 𝑃𝜆
𝑛 , 𝒬𝜆

𝑛, 𝑃𝜆
𝑤 , 𝒬𝜆

𝑤 as in Theorems (3.1.6) and (3.1.7). Since 

𝑃𝜆
𝑛𝐸𝜆~ 𝑃𝜆

𝑛 and 𝑃𝜆
𝑛 is properly infinite, the projection 𝑃𝜆

𝑛𝐸𝜆 in ℛ is properly infinite and has 

central carrier 𝑃𝜆
𝑛. At  the same time, (𝐼 − 𝑃𝜆

𝑤)𝐸𝜆 is finite. Thus, 𝑃𝜆
𝑛(𝐼 − 𝑃𝜆

𝑤) = 0, and 𝑃𝜆
𝑛 ≤

𝑃𝜆
𝑤. On the other hand, the definition of 𝑃𝜆

𝑤 implies that 𝑃𝜆
𝑤𝐸𝜆 is properly infinite and has 

central carrier 𝑃𝜆
𝑤; so 𝑃𝜆

𝑤𝐸𝜆~𝑃𝜆
𝑤, by (ii). Since 𝑃𝜆

𝑛 is the largest central projection such that 

𝑃𝜆
𝑛𝐸𝜆~𝑃𝜆

𝑛, we have 𝑃𝜆
𝑤 ≤ 𝑃𝜆

𝑛. 

     We have now proved that 𝑃𝜆
𝑛 = 𝑃𝜆

𝑤, and a similar argument shows that 𝒬𝜆
𝑛 = 𝒬𝜆

𝑤. It 

follows (with the notation introduced in Theorems (3.1.6) and (3.1.7)) that 𝐹𝜆
𝑛 = 𝐹𝜆

𝑤 , 𝐺𝜆
𝑛, =

𝐺𝜆
𝑤, 𝐶𝑚𝑖𝑛

𝑛 = 𝐶𝑚𝑖𝑛
𝑤 , and 𝐶𝑚𝑎𝑥

𝑛 = 𝐶𝑚𝑎𝑥
𝑤 ; so 

𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 = [𝐶𝑚𝑖𝑛

𝑛 , 𝐶𝑚𝑎𝑥
𝑛 ] = [𝐶𝑚𝑖𝑛

𝑤 , 𝐶𝑚𝑎𝑥
𝑤 ] = 𝑐𝑜ℛ(𝐴)

− ∩ 𝓆. 
This completes the proof that (ii) implies (iii). 

    Now, suppose that (iii) is satisfied, and let 𝐸 be a properly infinite projection in  ℛ. From 

Lemma (3.1.5) (i), 𝐶𝐸 ∈ 𝑐𝑜ℛ(𝐸)
− ∩ 𝓆 ; so by (iii), 

 𝐶𝐸 ∈ 𝑐𝑜ℛ(𝐸)
= ∩ 𝓆.                                                  (27) 

    We have to show that 𝐸~𝐶𝐸. If this is not so, it follows from the comparison theorem that 

there is a projection 𝑃 in 𝓆 such that 0 < 𝑃 ≤ 𝐶𝐸, and such that 𝒬𝐸 ≺ 𝒬 whenever 𝒬 is a 

projection in 𝓆 and 0 < 𝒬 ≤ 𝑃. From (27), 

0 ≠ 𝑃 ∈ 𝑐𝑜ℛ(𝑃𝐸)
= ∩ 𝓆, 

and this contradicts the conclusion of Lemma (3.1.4) (ii). Hence 𝐸~𝐶𝐸 (and (iii) implies 

(ii)). 

So far, we have proved the equivalence of Conditions (i), (ii), and (iii). It is apparent that 

(iv) implies (iii); so it now suffices to show that (i) implies (iv). Suppose, then, that (i) is 

satisfied. Given 𝐴 in ℛ and 𝐶 in 𝑐𝑜ℛ(𝐴)
− ∩ 𝓆, we have to show that 𝐶 ∈ 𝑐𝑜ℛ(𝐴)

= ∩ 𝓆 . Let 

{𝑃𝑗} be an orthogonal family of cyclic projections in 𝓆, with sum 𝐼. The finite subsums of 

∑𝑃𝑗, form an increasing net {𝒬𝑘} of projections in 𝓆, strong-operator convergent to 𝐼, in 

which every 𝒬𝑘 is countably decomposable (in 𝓆, and hence, by (i), in ℛ). For each index 

𝑘, 

𝐶𝒬𝑘 ∈ 𝑐𝑜ℛ𝒬𝑘(𝐴𝒬𝑘)
− ∩ 𝓆𝒬𝑘 , 

and since ℛ𝒬𝑘is countably decomposable, it follows from [120, Corollary 4.17] that 

𝐶𝒬𝑘 ∈ 𝑐𝑜ℛ𝒬𝑘(𝐴𝒬𝑘)
= ∩ 𝓆𝒬𝑘 . 

If 𝐶0 is any element of 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆, it now follows that 

𝐶 + (𝐶0 − 𝐶)(𝐼 − 𝒬𝑘) = 𝐶𝒬𝑘 + 𝐶0(𝐼 − 𝒬𝑘) ∈ 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆. 
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Upon taking limits as 𝒬𝑘 ↑ 𝐼, and using the fact [120, Corollary 4.14] that 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 is 

weak-operator closed, we deduce that 𝐶 ∈ 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆. Thus (i) implies (iv).  𝐴 von 

Neumann algebra that satisfies the first (and, hence, all four) of the conditions set out in 

Theorem (3.1.8) is said to be countably decomposable over its centre (see [119, p. 138, 

Exercise 5]). 

     Suppose that ℛ is a factor, and write 𝓆 for the centre {𝑐𝐼: 𝑐 ∈ ℂ} of ℛ. If 𝐴 is a selfadjoint 

element of ℛ, each of the sets 𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 and 𝑐𝑜ℛ(𝐴)

− ∩ 𝓆 is a bounded closed convex 

subset of the one-dimensional real Banach space 𝓆ℎ(= {𝑟𝐼: 𝑟 ∈ ℝ}); so there are bounded 

closed intervals [𝑎𝑛 , 𝑏𝑛] and [𝑎𝑤 , 𝑏𝑤] such that 

𝑐𝑜ℛ(𝐴)
= ∩ 𝓆 = {𝑟𝐼: 𝑟 ∈ [𝑎𝑛 , 𝑏𝑛]},                               (28) 

𝑐𝑜ℛ(𝐴)
− ∩ 𝓆 = {𝑟𝐼: 𝑟 ∈ [𝑎𝑤 , 𝑏𝑤]}.                              (29) 

In the notation, 

𝐶1
𝑛 = 𝑎𝑛𝐼, 𝐶2

𝑛 = 𝑏𝑛𝐼, 𝐶1
𝑤 = 𝑎𝑤𝐼, 𝐶2

𝑤 = 𝑏𝑤𝐼. 
In the factor case, is to provide a method of determining  𝑎𝑛 , 𝑏𝑛 , 𝑎𝑤 , 𝑏𝑤 . 

If ℛ is a finite factor, 𝑎𝑛 = 𝑏𝑛 = 𝑎𝑤 = 𝑏𝑤 = 𝜏(𝐴), where 𝜏 is the unique tracial state of  ℛ. 

Suppose next that ℛ is an infinite factor, and that {𝐸𝜆} is the spectral resolution of the self-

adjoint element 𝐴 of  ℛ. Since 0 and 𝐼 are the only projections in 𝓆, the definitions of 𝑃𝜆
𝑛 

and 𝒬𝜆
𝑛, as set out in Theorem (3.1.6), can be reformulated as follows: 

𝑃𝜆
𝑛 = {

0     𝑖𝑓𝐸𝜆 ≺ 𝐼,

𝐼     𝑖𝑓 𝐸𝜆~𝐼,
           𝑄𝜆

𝑛 = {
0     𝑖𝑓𝐼 − 𝐸𝜆 ≺ 𝐼,

𝐼    𝑖𝑓 𝐼 − 𝐸𝜆 ∼ 𝐼.
 

From this, 𝐶𝑚𝑖𝑛
𝑛 = 𝑎𝑛𝐼 and 𝐶𝑚𝑎𝑥

𝑛 = 𝑏𝑛𝐼, where 

𝑎𝑛 = sup{𝜆 ∈ ℝ: 𝐸𝜆 ≺ 𝐼},      𝑏𝑛 = inf{𝜆 ∈ ℝ: 𝐼 − 𝐸𝜆 ≺ 𝐼}.        (30) 
In a similar way, it follows from Theorem (3.1.7) that 𝐶𝑚𝑖𝑛

𝑤 = 𝑎𝑤𝐼 and 𝐶𝑚𝑎𝑥
𝑤 = 𝑏𝑤𝐼, where 

𝑎𝑤 = sup{𝜆 ∈ ℝ: 𝐸𝜆 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒} ,    𝑏𝑤 = inf{𝜆 ∈ ℝ: 𝐼 − 𝐸𝜆 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒} .       (31) 
    If  ℛ is a countably decomposable Type III factor, each non-zero projection 𝐸 in ℛ is 

infinite, and satisfies 𝐸~𝐼 by [119, 𝑝. 299, Corollaire]. In this case, it follows from (30) and 

(31) that 
𝑎𝑛 = 𝑎𝑤 = sup {𝜆 ∈ ℝ: 𝐸𝜆 = 0}, 
𝑏𝑛 = 𝑏𝑤 = inf {𝜆 ∈ ℝ: 𝐸𝜆 = 𝐼}. 

Thus [𝑎𝑛, 𝑏𝑛] and (𝑎𝑤 , 𝑏𝑤] both coincide with the smallest interval containing the spectrum, 

𝑠𝑝(𝐴), of 𝐴 [461, 𝑝. 136, Corollary 16]. 

Now suppose that ℛ is a factor of Type III but is not countably decomposable. Since each 

non-zero projection in ℛ is infinite, the reasoning of the preceding paragraph still applies to 

show that [𝑎𝑤 , 𝑏𝑤] is the smallest interval that contains  𝑠𝑝(𝐴). Since ℛ is not countably 

decomposable, it has (non-zero) proper norm-closed two-sided ideals (for example, the set 

of all operators in ℛ having countably decomposable range projections), and among these 

ideals is a greatest one, 𝒥 [119, 𝑝. 256, Corollaire 3]. Moreover, a projection 𝐸 in ℛ lies in 

𝒥 if and only if 𝐸 ≺ 𝐼 (see, for example, [460, Corollary 2.2]). Thus (30) can be rewritten 

in the form 
𝑎𝑛 = sup{𝜆 ∈ ℝ: 𝜑(𝐸𝜆) = 0} , 𝑏𝑛 = inf {𝜆 ∈ ℝ:𝜑(𝐸𝜆) = 𝐼} , 

where 𝜑:ℛ → ℛ/𝒥 is the quotient mapping. From this, it is not difficult to deduce that 

[𝑎𝑛 , 𝑏𝑛] is the smallest interval that contains 𝑠𝑝((𝜑(𝐴)). It should be noted that the results 

described in this paragraph (and the next one) relate to [117, Lemma 8] and (conceptually) 

to [120, Theorems 4.12, 4.16]. 

     Finally, suppose that ℛ is a factor of Type 𝐼∞ or  𝐼𝐼∞. Among the (non-zero) proper 

norm-closed two-sided ideals in ℛ, there is a smallest 𝒥1 and a largest 𝒥2. The ideal 𝒥1 is 

the norm-closure of the set of all operators in ℛ with finite range projections. 𝐴 projection 
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𝐸 lies in 𝒥1 if and only if 𝐸 is finite, and in 𝒥2 if and only if 𝐸 ≺ 𝐼. Moreover, 𝒥1 = 𝒥2 if 
and only if ℛ is countably decomposable. Let 𝜑𝑗: ℛ → ℛ/𝒥𝑗 be the quotient mapping, for 

𝑗 = 1,2. By the type of reasoning used in the previous paragraph, we can show that [𝑎𝑛 , 𝑏𝑛] 
is the smallest interval containing 𝑠𝑝(𝜑2(𝐴)), and that [𝑎𝑤 , 𝑏𝑤] is the smallest interval 

containing 𝑠𝑃(𝜑1(𝐴)). 
    Given an element 𝐴 of a von Neumann algebra ℛ, we have studied the norm-closed 

convex hull 𝑐𝑜ℛ(𝐴)
= and the weak-operator closed convex hull 𝑐𝑜ℛ(𝐴)

− of the set 

{𝑈𝐴𝑈∗: 𝑈 ∈ 𝒰} (= 𝑢ℛ(𝐴)), where 𝒰 is the unitary group of ℛ . We now consider, briefly, 

the weak-operator closure 𝑢ℛ(𝐴)
− of 𝑢ℛ(𝐴). It is shown in [462, Corollary 2] that, if ℛ is 

a properly infinite von Neumann algebra with centre 𝓆, then 𝑢ℛ(𝐴)
− meets 𝓆, and the weak-

operator closed convex hull of 𝑢ℛ(𝐴)
− ∩ 𝓆 is 𝑐𝑜ℛ(𝐴)

− ∩ 𝓆. The fact that 𝑢ℛ(𝐴)
− meets 𝓆 

can be deduced also, in the case of an infinite factor, from [117, Lemma 4]. It is of interest 

to ask [461, Problem] whether 𝑢ℛ(𝐴)
− ∩ 𝓆 is already convex. Another fragment of 

information concerning 𝑢ℛ(𝐴)
−, this time in the case of certain factors ℛ of Type II1  is 

given in Proposition (3.1.9) below. 

   Suppose that 𝐺 is a discrete group with unit element 𝑒, in which each element other than 

𝑒 has an infinite conjugacy class. For each 𝑔 in 𝐺, we denote by 𝐿𝑔 the unitary operator 

acting on the Hilbert space 𝑙2(𝐺), defined by 

(𝐿𝑔𝑥)(ℎ) = 𝑥(𝑔
−1ℎ) (𝑥 ∈ 𝑙2(𝐺), ℎ ∈ 𝐺). 

The weak-operator closed linear span of the set {𝐿𝑔: 𝑔 ∈ 𝐺) is a factor 𝒴𝐺  of Type II1 acting 

on  𝑙2(𝐺). If 𝑥𝑔 (in 𝑙2(𝐺)) is defined by 

𝑥𝑔(𝑔) = 1, 𝑥𝑔(ℎ) = 0    (ℎ ∈ 𝐺, ℎ ≠ 𝑔), 

then {𝑥𝑔: 𝑔 ∈ 𝐺} is an orthonormal basis of 𝑙2(𝐺) and each 𝑥𝑔 is a separating and generating 

trace vector for 𝒴𝐺 . Each element 𝐴 in 𝒴𝐺  is the operator of left convolution by an element 

𝑤(= 𝐴𝑥𝑒) of 𝑙2(𝐺); that is, 

(𝐴𝑥)(ℎ) = (𝑤 ∗ 𝑥)(ℎ) =  ∑𝑤(ℎ𝑔−1)𝑥(𝑔)

𝑔∈𝐺

 (𝑥 ∈ 𝑙2(𝐺), ℎ ∈ 𝐺). 

For these facts, see [119, 𝑝. 282]. 

The following result was observed during the collaborative investigation that led to the joint 

[475].  

Proposition (3.1.9)[447]: There is a net {𝑔𝑗} of elements of 𝐺 such that 

lim
𝑗
𝐿𝑔𝑗
∗ 𝐴𝐿𝑔𝑗 = 𝜏(𝐴)𝐼 

(in the weak-operator topology) for each 𝐴 in 𝒴𝐺 , where 𝜏 is the unique tracial state of 𝒴𝐺 . 

If the group 𝐺 is countable, the net {𝑔𝑗} can be a sequence.  

Proof. The inner automorphisms of 𝐺, restricted to the set 𝐺\{𝑒}, form a group Π of 

permutations of 𝐺\{𝑒}, and each element of 𝐺\{𝑒} has an infinite orbit under the action of 

Π. Given any finite subset 𝑆 of 𝐺\{𝑒}, it follows from [456, Corollary 3.2] that 𝑆 ∩
𝑔𝑠𝑆𝑔𝑠

−1 = ∅, for some element 𝑔𝑠 of 𝐺. When the finite subsets 𝑆 of 𝐺\{𝑒} are directed by 

inclusion, {𝑔𝑠} becomes a net of elements of 𝐺. 

Suppose that  𝐴 ∈ 𝒴𝐺 , and let 𝑤 = 𝐴𝑥𝑒. Given 𝑔, ℎ, 𝑘 in  𝐺, note that 

〈𝐿𝑘
∗ 𝐴𝐿𝑘𝑥𝑔, 𝑥ℎ〉 = 〈𝐴𝐿𝑘𝑥𝑔, 𝐿𝑘𝑥ℎ〉 = 〈𝐴𝑥𝑘𝑔, 𝑥𝑘ℎ〉 

= (𝐴𝑥𝑘𝑞)(𝑘ℎ) = (𝑤 ∗ 𝑥𝑘𝑔)(𝑘ℎ), 

and hence that 

〈𝐿𝑘
∗ 𝐴𝐿𝑘𝑥𝑔, 𝑥ℎ〉 = 𝑤(𝑘ℎ𝑔

−1𝑘−1)          (𝑔, ℎ, 𝑘 ∈ 𝐺).         (32) 

Suppose that 𝑔 ≠ ℎ. Given 𝐸(> 0), let 𝑆𝜀 be the finite subset 
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{ℎ𝑔−1} ∪ {𝑔1 ∈ 𝐺\{𝑒}: |𝑤(𝑔1)| ≥ 𝜀} 
of 𝐺\{𝑒}. If 𝑆 is a finite subset of 𝐺\{𝑒} and contains 𝑆𝜀 , then 

𝑔𝑠ℎ𝑔
−1𝑔𝑠

−1 ∈ 𝑔𝑠𝑆𝑔𝑠
−1 ⊆ 𝐺\({𝑒} ∪ 𝑆) ⊆ 𝐺\({𝑒} ∪ 𝑆𝜀), 

and thus |𝑤(𝑔𝑠ℎ𝑔
−1𝑔𝑠

−1)| < 𝜀; so, by (32), 

|〈𝐿𝑔𝑠
∗ 𝐴𝐿𝑔𝑠𝑥𝑔, 𝑥ℎ〉| < 𝜀         (𝑆 ⊇ 𝑆𝜀). 

This shows that 

lim
𝑠
〈𝐿𝑔𝑠
∗ 𝐴𝐿𝑔𝑠𝑥𝑔, 𝑥ℎ〉 = 0    (𝑔, ℎ ∈ 𝐺, 𝑔 ≠ ℎ).                  (33) 

At the same time, it follows from (32) that 

〈𝐿𝑔𝑠
∗ 𝐴𝐿𝑔𝑠𝑥𝑔, 𝑥𝑔〉 = 𝑤(𝑒) = 𝜏(𝐴), 

and hence that 

 lim
𝑠
〈𝐿𝑔𝑠
∗ 𝐴𝐿𝑔𝑠𝑥𝑔, 𝑥𝑔〉 = 𝜏(𝐴).                                        (34) 

Since the net {𝐿𝑔𝑠
∗ 𝐴𝐿𝑔𝑠} in 𝒴𝐺  is bounded, and {𝑥𝑔: 𝑔 ∈ 𝐺} is an orthonormal basis of the 

Hilbert space on which 𝒴𝐺  acts, it follows from (33) and (34) that this net is weak-operator 

convergent to 𝜏(𝐴)𝐼. 
     If the group 𝐺 is countable, then 𝐺\{𝑒} is the union of an increasing sequence 

{𝑆1, 𝑆2, 𝑆3, . . . } of finite sets. Let {𝑔1, 𝑔2, 𝑔3, … } be the sequence in 𝐺 defined by 𝑔𝑗 = 𝑔𝑆𝑗 . 

Then {𝑔𝑗} is a (cofinal) subnet of {𝑔𝑆}; so {𝐿𝑔𝑗
∗ 𝐴𝐿𝑔𝑗} is a subnet of {𝐿𝑔𝑠

∗ 𝐴𝐿𝑔𝑗}, and is 

therefore weak-operator convergent to 𝜏(𝐴)𝐼.  
Section (3.2): A Finite and an Infinite Projection 

The first interesting class of simple 𝐶∗-algebras (not counting the simple von Neumann 

algebras) were the 𝑈𝐻𝐹-algebras, also called Glimm algebras, constructed by Glimm in 

1959 [822]. Several other classes of simple 𝐶∗-algebras were found over the following 25 

years including the (simple) 𝐴𝐹-algebras, the irrational rotation 𝐶∗-algebras, the free group 

𝐶∗-algebras 𝐶𝑟𝑒𝑑
∗ (𝐹𝑛) (and other reduced group 𝐶∗-algebras), the Cuntz algebras 𝑂𝑛 and the 

Cuntz-Krieger algebras 𝑂𝐴 , 𝐶
∗-algebras arising from minimal dynamical systems and from 

foliations, and certain inductive limit 𝐶∗-algebras, among many other examples. Parallel 

with the appearance of these examples of simple 𝐶∗-algebras it was asked if there is a 

classification for simple 𝐶∗-algebras similar to the classification of von Neumann factors 

into types. Inspired by work of Dixmier in the 1960's, Cuntz studied this and related 

questions about the structure of simple 𝐶∗-algebras in  [879], [876] and [875]. 

A von Neumann algebra is simple precisely when it is either a factor of type 𝐼𝑛 for 

𝑛 < ∞ (in which case it is isomorphic to 𝑀𝑛(𝐶)), a factor of type 𝐼𝐼1, or a separable factor 

of type III. This leads to the question if (non-type I) simple 𝐶∗-algebras can be divided into 

two subclasses, one that resembles type 𝐼𝐼1 factors and another that resembles type III 

factors. 𝐴 𝐼𝐼1 factor is an infinite-dimensional factor in which all projections are finite (in 

the sense of Murray-von Neumann's comparison theory for projections), and  𝐼𝐼1 factors 

have a unique trace. 𝐴 factor is of type III if all its non-zero projections are infinite, and type 

III factors admit no traces. Cuntz asked in [876] if each simple 𝐶∗-algebra similarly must 

have the property that its (non-zero) projections either all are finite or all are infinite. Or can 

a simple 𝐶∗-algebra contain both a (non-zero) finite and an infinite projection? We answer 

the latter question in the affirmative. In other words, we exhibit a simple (non-type 𝐼) 𝐶∗-
algebra that neither corresponds to a type 𝐼𝐼1 or to a type III factor. 

It was shown in the early 1980's that simple 𝐶∗-algebras, in contrast to von Neumann 

factors, can fail to have non-trivial projections. Blackadar [845] and Connes [872] found 

examples of unital, simple 𝐶∗-algebras with no projections other than 0 and 1 −before it 

was shown that 𝐶𝑟𝑒𝑑
∗  (𝐹2) is a simple unital 𝐶∗-algebra with no non-trivial projections. 
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Simple 𝐶∗-algebras can fail to have projections in a more severe way: Blackadar found in 

[849] an example of a stably projectionless simple 𝐶∗-algebra. (𝐴 𝐶∗-algebra 𝐴 is stably 

projectionless if 0 is the only projection in  𝐴⨂𝑘.) Blackadar and Cuntz proved in [879] that 

every stably projectionless simple 𝐶∗-algebra is finite in the sense of admitting a (densely 

defined) quasitrace. (Every quasitrace on an exact 𝐶∗-algebra extends to a trace as shown 

by Haagerup [827] (and Kirchberg [821]).) These results lead to the dichotomy for a simple 

𝐶∗-algebra 𝐴: Either 𝐴 admits a (densely defined) quasitrace (in which case 𝐴 is stably 

finite), or 𝐴 is stably infinite, i.e., 𝐴⨂𝐾 contains an infinite projection. 

Cuntz defined in [871] a simple 𝐶∗-algebra to be purely infinite if all its non-zero 

hereditary sub-𝐶∗-algebras contain an infinite projection. Cuntz showed in [877] that his 

algebras 𝑂𝑛, 2 ≤ 𝑛 ≤ ∞, are simple and purely infinite. The separable, nuclear, simple, 

purely infinite 𝐶∗-algebras are classified up to isomorphism by 𝐾- or 𝐾𝐾-theory by the 

spectacular theorem of Kirchberg [826], [879] and Phillips [875]. This result has made it an 

important question to decide which simple 𝐶∗-algebras are purely infinite. We show here 

that not all stably infinite simple 𝐶∗-algebras 𝐴 are purely infinite. 

Villadsen [897] was the first to show that the 𝐾0-group of a simple 𝐶∗-algebra need 

not be weakly unperforated; Villadsen [894] also showed that a unital, finite, simple 𝐶∗-
algebra can have stable rank different from one thus answering in the negative two long-

standing open questions for simple 𝐶∗-algebras. 

If 𝐵 is a unital, simple 𝐶∗-algebra with an infinite and a non-zero finite projection, 

then its semigroup of Murray−von Neumann equivalence classes of projections must fail to 

be weakly unperforated (see Question (3.2.35)). It is therefore no surprise that Villadsen's 

ideas play a crucial role in this article. The article is also a continuation of the work by the 

author in [876] and [899] where it is shown that one can find a 𝐶∗-algebra 𝐴 such that 𝑀2(𝐴) 
is stable but 𝐴 is not stable; and, related to this, one can find a (non-simple) unital 𝐶∗-algebra 

𝐵 such that 𝐵 is finite and 𝑀2(𝐵) is properly infinite. We show here (Theorem (3.2.16)) that 

one can make this example simple by passing to a suitable inductive limit. 

In ∮ 6 (added March 2002) an example is given of a crossed product 𝐶∗-algebra 

𝐷 ⋊𝛼 𝑍, where 𝐷 is an inductive limit of type 𝐼 𝐶∗-algebras, such that 𝐷 ⋊𝛼 𝑍 is simple and 

contains an infinite and a non-zero finite projection. This new example is nuclear and 

separable. It shows that simple 𝐶∗-algebras with this rather pathological behavior can arise 

from a quite natural setting. It shows that Elliott's classification conjecture (in its present 

formulation) does not hold (cf. Corollary (3.2.36)); and it also serves as an example of a 

separable nuclear simple 𝐶∗-algebra that is tensorially prime (cf. Corollary (3.2.33)). 

    𝐴 projection 𝑝 in a 𝐶∗-algebra 𝐴 is called infinite if it is equivalent (in the sense of Murray 

and von Neumann) to a proper subprojection of itself; and 𝑝 is said to be finite otherwise. If 

𝑝 is non-zero and if there are mutually orthogonal subprojections  𝑝1 and 𝑝2 of 𝑝 such that 

𝑝~𝑝1~𝑝2, then 𝑝 is properly infinite. 𝐴 unital 𝐶∗-algebra is said to be properly infinite if its 

unit is a properly infinite projection. 

If 𝑝 and 𝑞 are projections in  𝐴, then let 𝑝⨁𝑞 denote the projection diag(𝑝, 𝑞) in 

𝑀2(𝐴). Two projections 𝑝 ∈ 𝑀𝑛(𝐴) and 𝑞 ∈ 𝑀𝑚(𝐴) can be compared as follows: Write 

𝑝 ∼ 𝑞 if there exists 𝑣 in 𝑀𝑚,𝑛(𝐴) such that 𝑣∗𝑣 = 𝑝 and 𝑣𝑣∗ = 𝑞, and write 𝑝 ≲ 𝑞 if 𝑝 is 

equivalent (in this sense) to a subprojection of 𝑞. 

Where some well-known properties of properly infinite projections are recorded, 𝑂∞ 

denotes the Cuntz algebra generated by infinitely many isometries with pairwise orthogonal 

range projections, and ℰ2 is the Cuntz-Toeplitz algebra generated by two isometries with 

orthogonal range projections [877].  
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Proposition (3.2.1)[448]: The following five conditions are equivalent for every non-zero 

projection 𝑝 in a 𝐶∗-algebra 𝐴: 

(i)  𝑝 is properly infinite; 

(ii)  𝑝⨁𝑝 ≾ 𝑝; 

(iii)  there is a unital ∗-homomorphism ℰ2⟶ 𝑝𝐴𝑝; 

(iv) there is a unital ∗-homomorphism  𝒪∞ → 𝑝𝐴𝑝; 

(v)  for every closed two-sided ideal 𝐼 in 𝐴, either 𝑝 ∈ 𝐼 or 𝑝 + 𝐼 is infinite in 𝐴/𝐼. 
The equivalences between (i), (ii) and (iii) are trivial. The equivalence between (iii) and 

(iv) follows from the fact that there are unital embeddings ℰ2 → 𝒪∞and 𝒪∞ → ℰ2. The 

equivalence between (i) and (v) is proved in [878, Corollary 3.15]; a result that extends 

Cuntz’ important observation from [879] that every infinite projection in a simple 𝐶∗-
algebra is properly infinite. 

We shall use the following two well-known results about properly infinite projections. 

Lemma (3.2.2)[448]: Let 𝑝 and 𝑞 be projections in a 𝐶∗-algebra 𝐴. Suppose that 𝑝 is 

properly infinite. Then 𝑞 ≾ 𝑝 if and only if 𝑞 belongs to the closed two-sided ideal in 𝐴 

generated by  𝑝. 

Proof. If 𝑞 ≲ 𝑝, then, by definition, 𝑞~𝑞0 ≤ 𝑝 for some projection 𝑞0 in 𝐴. This entails that 

𝑞 belongs to the ideal generated by  𝑝. Conversely, if 𝑞 belongs to the ideal generated by  𝑝, 

then 𝑞 ≲ ⨁𝑗=1
𝑛 𝑝 for some 𝑛 (cf. [894, Exercise 4.8]), and ⨁𝑗=1

𝑛 𝑃 ≲ 𝑃 if 𝑝 is properly 

infinite by iterated applications of Proposition (3.2.1) (ii).  

Proposition (3.2.3)[448]: Let 𝐵 be the inductive limit of  a sequence 𝐵1 → 𝐵2 → 𝐵3 → ⋯ of 

unital 𝐶∗-algebras with unital connecting maps. Then 𝐵 is properly infinite if and only if 𝐵𝑛 

is properly infinite for all 𝑛 larger than some 𝑛0. 

Proof. If 𝐵𝑛 is properly infinite for some 𝑛, then there are unital ∗-homomorphisms ℰ2 →
𝐵𝑛 → 𝐵, and hence 𝐵 is properly infinite. Conversely, if 𝐵 is properly infinite, then there is 

a unital ∗-homomorphism ℰ2 → 𝐵. The 𝐶∗-algebra ℰ2is semiprojective, as shown by 

Blackadar in [841]. By semiprojectivity (see again [841]), the unital ∗-homomorphism ℰ2 →
𝐵 lifts to a unital ∗-homomorphism ℰ2 → ∏ 𝐵𝑛

∞
𝑛=𝑛0

 for some 𝑛0. This shows that 𝐵𝑛 is 

properly infinite for all 𝑛 ≥ 𝑛0.  

   We consider here complex vector bundles over the sphere 𝑆2 and over finite products of 

spheres, (𝑆2)𝑛. 

For each 𝑘 ≤ 𝑛, let 𝜋𝑘: (𝑆
2)𝑛 → 𝑆2 denote the 𝑘th coordinate mapping, and let 

𝜚𝑚,𝑛: (𝑆
2)𝑚 → (𝑆2)𝑛 be given by 

    𝜚𝑚,𝑛(𝑥1, 𝑥2, . . . , 𝑥𝑚) = (𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ (𝑆
2)𝑚,    (35) 

when 𝑚 ≥ 𝑛. 

    Whenever 𝑓: 𝑋 → 𝑌 is a continuous map and 𝜉 is a 𝑘-dimensional complex vector bundle 

over 𝑌, let 𝑓∗(𝜉) denote the vector bundle over 𝑋 induced by 𝑓. Let 𝑒(𝜉) ∈ 𝐻2𝑘(𝑌, 𝑍) 
denote the Euler class of  𝜉. Denote also by 𝑓∗ the induced map 𝐻∗(𝑌, 𝑍) → 𝐻∗(𝑋, 𝑍). By 

functoriality of the Euler class we have 𝑓∗(𝑒(𝜉)) = 𝑒(𝑓∗(𝜉)). 
For any vector bundle 𝜉 over (𝑆2)𝑛 and for every 𝑚 ≥ 𝑛 we have a vector bundle 

𝜉′ = 𝜚𝑚,𝑛
∗ (𝜉) over (𝑆2)𝑚. It follows from the Kunneth Theorem (see [877, Theorem A6]) 

that the map 

𝜚𝑚,𝑛
∗ : 𝐻∗((𝑆2)𝑛, 𝑍) → 𝐻∗((𝑆2)𝑚, 𝑍) 

is injective; so if 𝑒(𝜉) is non-zero, then so is 𝑒(𝜉′). The main concern with vector bundles 

will be whether or not they have non-zero Euler class, and from that point of view it does 

not matter if we replace the base space (𝑆2)𝑛 with (𝑆2)𝑚 for some  𝑚 ≥ 𝑛. 



 

90 

 

    We remind of some properties of the Euler class for complex vector bundles 𝜉1, 𝜉2, . . . , 𝜉𝑛 

over a base space 𝑋. First of all we have the product formula (see [877, Property 9.6]): 

     𝑒(𝜉1⨁𝜉2⨁⋯⨁𝜉𝑛): 𝑒(𝜉1). 𝑒(𝜉2) ∙. . .∙ 𝑒(𝜉𝑛).                    (36) 
Let 𝜃 denote the trivial complex line bundle over  𝑋. The Euler class of 𝜃 is zero; and so it 

follows from the product formula that 𝑒(𝜉) = 0 whenever 𝜉 is a complex vector bundle that 

dominates 𝜃 in the sense that 𝜉 ≅ 𝜃⨁𝜂 for some complex vector bundle  𝜂. 

Combining the formula 

𝑐ℎ(𝜉) = 1 + 𝑒(𝜉) +
1

2
𝑒(𝜉)2 +

1

6
𝑒(𝜉)3+ . . . , 

that relates the Chern character and the Euler class of a complex line bundle 𝜉(see 877, 

Problem 16-B]), with the fact that the Chern character is multiplicative, yields the formula 

 𝑒(𝜉1⨂ 𝜉2⨂. . . ⨂𝜉𝑛) = 𝑒(𝜉1) + 𝑒(𝜉2)+. . . +𝑒(𝜉𝑛),                    (37) 
that holds for all complex line bundles 𝜉1, . . . , 𝜉𝑛 over 𝑋.  

Let 𝜁 be a complex line bundle over 𝑆2 such that its Euler class 𝑒(𝜁), which is an 

element in 𝐻2(𝑆2, 𝑍), is non-zero. (Any such line bundle will do, but we may take to be the 

Hopf bundle over 𝑆2.) For each natural number 𝑛 and for each lion-empty, finite subset 𝐼 =
{𝑛1, 𝑛2, . . . , 𝑛𝑘} of 𝑁 define complex line bundles 𝜁𝑛 and 𝜁1 over (𝑆2)𝑚 (for all 𝑚 ≥ 𝑛  and 

𝑚 ≥ max {𝑛1, . . . , 𝑛𝑘}, respectively) by 

   𝜁𝑛 = 𝜋𝑛
∗(𝜁),     𝜁𝐼 = 𝜁𝑛1⨂𝜁𝑛2⨂⋯⨂𝜁𝑛𝑘 ,                    (38) 

where, as above, 𝜋𝑛: (𝑆
2)𝑚 → 𝑆2 is the nth coordinate map. The Euler classes (in 

𝐻2((𝑆2)𝑚, 𝑍)) of these line bundles are by functoriality and equation (3.3) given by 

                                               𝑒(𝜁𝑛) = 𝜋𝑛
∗(𝑒(𝜁)),                                 (39) 

                       𝑒(𝜁𝐼) = 𝜋𝑛1
∗ (𝑒(𝜁)) + 𝜋𝑛2

∗ (𝑒(𝜁))+. . . +𝜋𝑛𝑘
∗ (𝑒(𝜁)).           (40) 

Lemma (3.2.4)[448]: For each 𝑛 and for each 𝑚 ≥ 𝑛 there is a complex line bundle 𝜂𝑛 over 

(𝑆2) 𝑚 such that 𝜁𝑛⨁𝜁𝑛 ≅ 𝜃⨁𝜂𝑛. 

Proof. Since 

𝑑𝑖𝑚(𝜁⨁𝜁) = 2 > 1 ≥
1

2
(𝑑𝑖𝑚(𝑆2) − 1), 

it follows from [829, 9.1.2] that there is a complex vector bundle 𝜂 over 𝑆2 of dimension 

𝑑𝑖𝑚(𝜂) = 2 − 1 = 1 such that 𝜁⨁𝜁 ≅ 𝜃⨁𝜂. We conclude that 

𝜁𝑛⨁𝜁𝑛 =  𝜋𝑛
∗(𝜁⨁𝜁) ≅ 𝜋𝑛

∗(𝜃⨁𝜂) = 𝜃⨁𝜋𝑛
∗(𝜂). 

Proposition (3.2.5)[448]: Let 𝐼1, 𝐼2, . . . , 𝐼𝑚 be non-empty, finite subsets of 𝑁. The following 

three conditions are equivalent: 

(i)  𝑒(𝜁𝐼1⨁𝜁𝐼2⨁. . .⨁𝜁𝐼𝑚) ≠ 0; 

(ii)  for all subsets 𝐹 of {1,2, . . . ,𝑚} we have |⋃ 𝐼𝑗𝑗∈𝑝 | ≥ |𝐹|; 

(iii)  There exists a matching 𝑡1 ∈ 𝐼1, 𝑡2 ∈ 𝐼2, . . . , 𝑡𝑚 ∈ 𝐼𝑚 (i.e., the elements 𝑡1, . . . , 𝑡𝑚 

are pairwise distinct). 

Proof. Choose 𝑁 large enough so that each 𝜁𝐼𝑗  is a vector bundle over  (𝑆2)𝑁. 

(ii)⟺(iii) is the Marriage Theorem (see any textbook on combinatorics). 

(i)⇒(ii). Assume that |⋃ 𝐼𝑗𝑗∈𝐹 | < |𝐹| for some (necessarily non-empty) subset 𝐹 =

{ 𝑗1, 𝑗2, . . . , 𝑗𝑘}  of  {1,2 . . . . , 𝑚}, and write 

𝐽 ≝⋃𝐼𝑗
𝑗∈𝐹

= {𝑛1, 𝑛2, . . . , 𝑛𝐼}. 

Let 𝜚: (𝑆2)𝑁 → (𝑆2)𝑙 be given by  𝜚(𝑥) = (𝜋𝑛1(𝑥), 𝜋𝑛2(𝑥), . . . , 𝜋𝑛𝑙(𝑥)). Then 

𝜉 ≝ 𝜁𝐼𝑗1⨁𝜁𝐼𝑗2⨁⋯⨁𝜁𝐼𝑗𝑘
= 𝜚∗(𝜂) 
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for some 𝑘-dimensional vector bundle 𝜂 over (𝑆2)𝑙. Now, 𝑒(𝜂) belongs to 𝐻2𝑘((𝑆2)𝑙, 𝑍), 
and 𝐻2𝑘((𝑆2)𝐼 , 𝑍) = 0 because 2𝑘 > 2𝑙. Hence 𝑒(𝜉) = 𝜚∗(𝑒(𝜂)) = 0, so by the product 

formula (2) we get 

𝑒(𝜁𝐼1⨁𝜁𝐼2⨁. . . ⨁𝜁𝐼𝑚) = 𝑒(𝜉).∏𝑒(𝜁𝐼𝑗)

𝑗∉𝐹

= 0. 

(iii)⇒(i). Put 

𝑥𝑗 = 𝜋𝑗
∗(𝑒(𝜁)) ∈ 𝐻2((𝑆2)𝑁, 𝑍), 𝑗 = 1, 2, . . . , 𝑁. 

The element 

𝑧 = 𝑥1 ∙ 𝑥2 ∙. . . 𝑥𝑁 ∈ 𝐻
2𝑁((𝑆2)𝑁, 𝑍) 

is non-zero by the Kunneth Theorem [877, Theorem A6]. Using that  𝑥𝑖
2 = 0 and that 𝑥𝑖𝑥𝑗 =

𝑥𝑗𝑥𝑖 for all 𝑖, 𝑗 it follows that if 𝑖1, 𝑖2,⋯ , 𝑁 belong to  {1, 2 , . . . , 𝑁}, then 

𝑥𝑖1 ∙ 𝑥𝑖2 ∙. . .∙ 𝑥𝑖𝑁 = {
𝑧,        𝑖𝑓 𝑖1, . . . , 𝑖𝑁 𝑎𝑟𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡,
0           , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                     

                    (41) 

Now, by (36) and (40), 

𝑒(𝜁𝐼1⨁𝜁𝐼2⨁. . .⨁𝜁𝐼𝑚) = 𝑒(𝜁𝐼1) ∙ 𝑒(𝜁𝐼2) ∙ … ∙ 𝑒(𝜁𝐼𝑚) 

= (∑𝜋𝑖
∗(𝑒(𝜁))

𝑖∈𝐼1

) ∙  (∑𝜋𝑖
∗(𝑒(𝜁))

𝑖∈𝐼2

) ∙ … ∙ (∑ 𝜋𝑖
∗(𝑒(𝜁))

𝑖∈𝐼𝑚

) 

= (∑𝑥𝑖
𝑖∈𝐼1

) ∙ (∑𝑥𝑖
𝑖∈𝐼2

) ∙ … ∙ (∑ 𝑥𝑖
𝑖∈𝐼𝑚

) 

= ∑ 𝑥𝑖1 ∙ 𝑥𝑖2 ∙. . .∙ 𝑥𝑖𝑚
(𝑖1 ,...,𝑖𝑚)∈𝐼1×…×𝐼𝑚

. 

Assume that (iii) holds, and write 

{1, 2, . . . , 𝑁}\{𝑡1, 𝑡2, . . . , 𝑡𝑚} = {𝑠1, 𝑠2, . . . , 𝑆𝑁−𝑚}. 
      Let 𝑘 denote the number of permutations 𝜎 on {1,2, . . . , 𝑚} such that 𝑡𝜎(𝑗) ∈ 𝐼𝑗 for 𝑗 =

1, 2 , . . . , 𝑚 . The identity permutation has this property, so 𝑘 ≥ 1. The formula for 

𝑒(𝜁𝐼1⨁…⨁𝜁𝐼𝑚) above and equation (28) yield 

𝑒(𝜁𝐼1⨁𝜁𝐼2⨁. . . ⨁𝜁𝐼𝑚) ⋅ 𝑥𝑆1 ∙ 𝑥𝑆2 ∙. . .∙ 𝑥𝑆𝑁−𝑚 = 𝑘𝑧 ≠ 0. 

It follows that 𝑒(𝜁𝐼1⨁…⨁𝜁𝐼𝑚) ≠ 0 as desired. 

    There is a well-known one-to-one correspondence between isomorphism classes of 

complex vector bundles over a compact Hausdorff space 𝑋 and Murray−von Neumann 

equivalence classes of projections in matrix algebras over 𝐶(𝑋) (and in 𝐶(𝑋)⨂𝐾). The 

vector bundle corresponding to a projection 𝑝 in 𝑀𝑛(𝐶(𝑋)) = 𝐶(𝑋,𝑀𝑛(𝐶)) is 

𝜉𝑝 = {(𝑥, 𝑣): 𝑥 ∈ 𝑋, 𝑣 ∈ 𝑝(𝑥)(𝐶
𝑛)} 

(equipped with the topology given from the natural inclusion 𝜉𝑝 ⊆ 𝑋 × 𝐶
𝑛), so that the fibre 

(𝜉𝑝)𝑥 over 𝑥 ∈ 𝑋 is the range of the projection 𝑝(𝑥). If 𝑝 and 𝑞 are two projections in 

𝐶(𝑋)⨂𝐾, then 𝜉𝑝 ≅ 𝜉𝑞 if and only if 𝑝~𝑞. It follows from Swan’s theorem, which to each 

complex vector bundle 𝜉 gives a complex vector 𝜂 bundle 𝜂 such that 𝜉⨁𝜂 is isomorphic to 

the trivial 𝑛-dimensional complex vector bundle over 𝑋 for some 𝑛, that every complex 

vector bundle is isomorphic to 𝜉𝑝 for some projection 𝑝 in 𝑀𝑛(𝐶(𝑋)) for some 𝑛. 

View each matrix algebra 𝑀𝑛(𝐶) as a sub-𝐶∗-algebra of 𝐾 via the embeddings 

𝐶 ↪ 𝑀2(𝐶) ↪ 𝑀3(𝐶) ↪ . . . ↪ 𝐾, 
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where 𝑀𝑛(𝐶) is mapped into the upper left corner of 𝑀𝑛+1(𝐶). Identify 𝐶(𝑋, 𝐾) with 

𝐶(𝑋)⨂𝐾 and identify 𝐶(𝑋,𝑀𝑛(𝐶)) with  𝐶(𝑋)⨂𝑀𝑛(𝐶). 
     We picked a non-trivial complex line bundle 𝜁 over 𝑆2 (which could be the Hopf bundle). 

This line bundle 𝜁 corresponds to a projection 𝑝 in some matrix algebra over 𝐶(𝑆2), and, as 

is well known, such a projection 𝑝 can be found in 𝑀2(𝐶(𝑆
2)) = 𝐶(𝑆2, 𝑀2). (The projection 

𝑝 ∈ 𝑀2(𝑆
2, 𝑀2) corresponding to the Hopf bundle is in operator algebra texts often referred 

to as the Bott projection.) Put 

𝑍 =∏𝑆2
∞

𝑛=1

. 

Let 𝜋𝑛: 𝑍 → 𝑆
2 be the nth coordinate map, and let 𝜚∞,𝑛: 𝑍 → (𝑆

2)𝑛 be given by 

𝜚∞,𝑛(𝑥1, 𝑥2, 𝑥3, … ) = (𝑥1, 𝑥2, … , 𝑥𝑛),    (𝑥1, 𝑥2, 𝑥3, … ) ∈ 𝑍 

With �̂�𝑛: 𝐶((𝑆
2)𝑛) → 𝐶((𝑆2)𝑛+1) being the ∗-homomorphism induced by the map 𝜚𝑛 =

𝜚𝑛+1,𝑛 defined in (35) we obtain that 𝐶(𝑍) is the inductive limit 

𝑐(𝑆2)
 �̂�1 
→ 𝐶((𝑆2)2)

 �̂�2 
→ 𝐶((𝑆2) 3)

 �̂�3  
→   . . .⟶ 𝐶(𝑧) 

with inductive limit maps �̂�∞,𝑛: 𝐶((𝑆
2)𝑛) → 𝐶(𝑍).   

For 𝑛 in 𝑁 and for each non-empty finite subset 𝐼 = {𝑛1, 𝑛2, . . . , 𝑛𝑘} of 𝑁, let 𝑃𝑛 and 𝑃𝐼 be 

the projections in 𝐶(𝑍)⨂𝐾 = 𝐶(𝑍, 𝐾) given by 

𝑃𝑛(𝑥) = 𝑝(𝑥𝑛),                                                                           (42) 

      𝑃𝐼(𝑥) = 𝑝(𝑥𝑛1)⨂𝑝(𝑥𝑛2)⨂…⨂𝑝(𝑥𝑛𝑘) 

                                                        = 𝑝𝑛1(𝑥)⨂𝑝𝑛2(𝑥)⨂…⨂𝑝𝑛𝑘(𝑥),                                     (43) 

for all 𝑥 = (𝑥1, 𝑥2, . . . ) ∈ 𝑍 (identifying 𝑀2 and 𝑀2⨂𝑀2⨂…⨂𝑀2, respectively, with sub- 

𝐶∗-algebras of  𝐾). 

    We shall now make use of the multiplier algebra, 𝑀(𝐶(𝑍)⨂𝐾), of 𝐶(𝑍)⨂𝐾 = 𝐶(𝑍, 𝐾). 
We can identify this multiplier algebra with the set of  all bounded functions 𝑓: 𝑍 → 𝐵(𝐻) 
for which 𝑓 and 𝑓∗ are continuous, when  𝐵(𝐻), the bounded operators on the Hilbert space 

𝐻 on which 𝐾 acts, is given the strong operator topology. 

    It is convenient to have a convention for adding finitely or infinitely many projections in 

𝑀(𝐶(𝑍)⨂𝐾) or more generally in  𝑀(𝐴), where 𝐴 is any stable 𝐶∗-algebra a convention 

that extends the notion of forming direct sums of projections discussed . 

Assuming that 𝐴 is a stable 𝐶∗-algebra, so that 𝐴 = 𝐴0⨂𝐾 for some 𝐶∗-algebra 𝐴0, 
then we can take a sequence {𝑇𝑗}𝑗=1

∞  of isometries in 𝐶⨂𝐵(𝐻) ⊆ 𝑀(𝐴0⨂𝐾) = 𝑀(𝐴) such 

that 1 = ∑ 𝑇𝑗𝑇𝑗
∗∞

𝑗=1  in the strict topology. (Notice that 1 is a properly infinite projection in 

𝑀(𝐴). ) For any sequence 𝑞1, 𝑞2, … of projections in 𝐴 and for any sequence 𝑄1, 𝑄2 , … of 

projections in  𝑀(𝐴), define 

                                    𝑞1⨁𝑞2⨁. . . ⨁𝑞𝑛 = ∑ 𝑇𝑗𝑞𝑗𝑇𝑗
∗𝑛

𝑗=1 ∈ 𝐴,                                             (44) 

                                      ⨁ 𝑞𝑗
∞
𝑗=1 = ∑ 𝑇𝑗𝑞𝑗𝑇𝑗

∗∞
𝑗=1 ∈ 𝑀(𝐴),                                                   (45) 

                                𝑄1⨁𝑄2⨁. . .⨁𝑄𝑛 = ∑ 𝑇𝑗𝑄𝑗𝑇𝑗
∗𝑛

𝑗=1 ∈ 𝑀(𝐴),                                        (46) 

                                              ⨁𝑗=1
∞ 𝑄𝑗 = ∑ 𝑇𝑗𝑄𝑗𝑇𝑗

∗∞
𝑗=1 ∈ 𝑀(𝐴).                                          (47) 

Observe that 𝑞𝑗
′ = 𝑇𝑗𝑞𝑗𝑇𝑗

∗~𝑞𝑗 , that the projections 𝑞1
′ , 𝑞2

′ , … are mutually orthogonal, and 

that the sum ∑ 𝑞𝑗
′∞

𝑗=1  is strictly convergent. The projections in (44)-(47) are, up to unitary 

equivalence in  𝑀(𝐴), independent of the choice of isometries {𝑇𝑗}𝑗=1
∞ . Indeed, if {𝑅𝑗}𝑗=1

∞  is 

another sequence of isometries in 𝑀(𝐴) with 1 = 𝑅𝑗𝑅𝑗
∗ then 𝑈 = ∑ 𝑅𝑗𝑇𝑗

∗∞
𝑗=1  is a unitary 

element in 𝑀(𝐴) and 
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∑𝑅𝑗𝑋𝑗𝑅𝑗
∗

∞

𝑗=1

=  𝑈 (∑𝑇𝑗𝑋𝑗𝑇𝑗
∗

∞

𝑗=1

)𝑈∗  

for any bounded sequence {𝑋𝑗}𝑗=1
∞  in 𝑀(𝐴). It follows in particular that 

                                        ⊕𝑗=1
∞ 𝑞𝑗~ ⊕𝑗=1

∞ 𝑞𝜎(𝑗)                                            (48) 

for every permutation 𝜎 on 𝑁. 

The correspondence between projections and vector bundles is given by the mapping 

𝑝 ⟼ 𝜉𝑝 defined at the beginning of this section. By identifying the projections 

𝑝𝑛, 𝑝𝐼 , 𝑝𝐼1 , ⋯ , 𝑝𝐼𝑘  with projections in 𝐶((𝑆2)𝑁)⨂𝐾, where 𝑁 is any integer large enough to 

ensure that these projections belong to the image of 

�̂�∞,𝑁⨂𝑖𝑑𝐾: 𝐶((𝑆
2)𝑁)⨂ 𝐾 → 𝐶(𝑍)⨂𝐾, 

we can take the base space to be (𝑆2)𝑁. 

Lemma (3.2.6)[ 448]: Let 𝜁𝑛and 𝜁𝐼 be the complex line bundles defined in (38). 

(i)  The vector bundle 𝜁𝑛 corresponds to 𝑝𝑛 for each 𝑛 in  𝑁. 

(ii)  The vector bundle 𝜁𝐼 corresponds to 𝑝𝐼  for each non-empty finite subset 𝐼 of  𝑁. 

(iii)  The vector bundle 𝜁𝐼1⨁𝜁𝐼2⨁. . . ⨁𝜁𝐼𝑘corresponds to 𝑝𝐼1⨁𝑝𝐼2⨁⋯⨁𝑝𝐼𝑘  whenever 

𝐼1, . . . , 𝐼𝑘 are non-empty finite subsets of  𝑁. 

Proof. (i) Since 𝑝 corresponds to 𝜁, 𝑝𝑛 = 𝑝 ∘ 𝜋𝑛 corresponds to 𝜁𝑛 = 𝜋𝑛
∗(𝜁), where 

𝜋𝑛: (𝑆
2)𝑁 → 𝑆2 is the nth coordinate map. 

(ii) Write  𝐼 = {𝑛1, 𝑛2, . . . , 𝑛𝑘}. We shall here view 𝑝𝑛, as a projection in 𝐶((𝑆2)𝑁, 𝑀2) and 

𝑝𝑙 as a projection in 𝐶((𝑆2)𝑁,𝑀2⨂⋯⨂𝑀2) By (i), 𝜁𝑛 is the complex line bundle over 

(𝑆2)𝑁 whose fibre over 𝑥 ∈ (𝑆2)𝑁 is equal to 𝑝𝑛 , (𝑥)(𝐶
2). The fibre of tile complex line 

bundle 𝜁𝐼 = 𝜁𝑛1⨂⋯⨂𝜁𝑛𝑘 over 𝑥 ∈ (𝑆2)𝑁  is by definition 

(𝜁𝐼)𝑥 = (𝜁𝑛1)𝑥⨂(𝜁𝑛2)𝑥
⨂⋯⨂(𝜁𝑛1)𝑥

 

                                      = 𝑝𝑛1(𝑥)(𝐶
2)⨂𝑝𝑛2(𝑥)(𝐶

2)⨂⋯⨂𝑝𝑛𝑘(𝑥)(𝐶
2) 

     = 𝑝𝐼(𝑥)(𝐶
2⨂𝐶2⨂⋯⨂𝐶2). 

This shows that 𝜁𝐼 corresponds to  𝑃𝐼. 
(iii) This follows from (ii) and additivity of the map 𝑝 ⟼ 𝜉𝑝.  

The next three lemmas are formulated for an arbitrary stable 𝐶∗-algebra 𝐴 and its multiplier 

algebra  𝑀(𝐴), but they shall primarily be used in the case where 𝐴 = 𝐶(𝑍)⨂𝐾. 

The lemma below is a trivial, but much used, generalization of (48): 

Lemma (3.2.7)[448]: Let 𝐴 be a stable 𝐶∗-algebra, and let 𝑞1, 𝑞2, . .. and 𝑟1, 𝑟2, … be two 

sequences of projections in 𝐴. Assume that there is a permutation 𝜎 on 𝑁 such that 𝑞𝑗 ≲

𝑟𝜎(𝑗) and 𝑞𝑗~𝑟𝜎(𝑗), respectively, in 𝐴 for all 𝑗 in 𝑁. Then ⊕𝑗=1
∞ 𝑞𝑗 ≲⊕𝑗=1

∞ 𝑟𝑗 and 

⊕𝑗=1
∞ 𝑞𝑗~⊕𝑗=1

∞ 𝑟𝑗, respectively, in  𝑀(𝐴). 

   An element in a 𝐶∗-algebra 𝐴 is said to be full in 𝐴 if it is not contained in any proper 

closed two-sided ideal of 𝐴. 

Lemma (3.2.8)[448]: Let 𝐴 be a stable 𝐶∗-algebra. The following three conditions are 

equivalent for all projections 𝑄 in 𝑀(𝐴): 
(i)  𝑄~𝐼; 
(ii)  𝑄 is properly infinite and full in 𝑀(𝐴); 
(iii)  𝐼 ≲ 𝑄. 

Proof. (i)⟹(iii) is trivial. Assume that  𝐼 ≲ 𝑄. Then 𝑄 is full in 𝑀(𝐴) (the closed two-sided 

ideal in 𝑀(𝐴) generated by 𝑄 contains 1 and hence all of   𝑀(𝐴)). It was noted above (44) 

that 1 is properly infinite in 𝑀(𝐴), and so 𝑄⨁𝑄 ≤ 1⨁1 ≲ 1 ≲ 𝑄 whence 𝑄 is properly 
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infinite; cf. Proposition (3.2.1). This proves (iii)⟹(ii). Assume finally that 𝑄 is properly 

infinite and full in  𝑀(𝐴). Since 𝐾0(𝑀(𝐴)) = 0 (see [129, Proposition 12.2.1]) the two 

projections 𝑄 and 1 represent the same element in 𝐾0(𝑀(𝐴)); and since these two 

projections both are properly infinite and full they must be Murray-von Neumann equivalent 

(see [138, w or [162, Exercise 4.9 (iii)]), i.e., 𝑄~𝐼.  
Lemma (3.2.9)[448]: Let 𝐴 be a stable 𝐶∗-algebra and let 𝑞, 𝑞1, 𝑞2, … be projections in 𝐴. 

If 𝑞 ≲⊕𝑗=1
∞ 𝑞𝑗 in  𝑀(𝐴), then 𝑞 ≲ 𝑞1⨁𝑞2⨁⋯⨁𝑞𝑘 in 𝐴 for some 𝑘. 

Proof. We have ⊕𝑗=1
∞ 𝑞𝑗 = ∑ 𝑞𝑗

′∞
𝑗=1 (= 𝑄) for some strictly summable sequence of 

mutually orthogonal projections 𝑞1
′ , 𝑞2

′ , … in 𝐴 with  𝑞𝑗
′~𝑞𝑗 . By the assumption that 𝑞 ≲ 𝑄 

there is a partial isometry 𝑣 in 𝑀(𝐴) such that 𝑣𝑣∗ = 𝑞 and  𝑣∗𝑣 ≤ 𝑄. As 𝑣 = 𝑞𝑣, 𝑣 belongs 

to 𝐴, and by the strict convergence of the sum 𝑄 = ∑ 𝑞𝑗
∞
𝑗=1  there is 𝑘 such that 

‖𝑣 − 𝑣∑𝑞𝑗
′

𝑘

𝑗=1

‖ <
1

2
. 

Put 𝑥 = 𝑣 ∑ 𝑞𝑗
′𝑘

𝑗=1 . Then 𝑥𝑥∗ ≤ 𝑞, 𝑥∗𝑥 ≤ 𝑞1
′+. . . +𝑞𝑘

′  and ‖𝑥𝑥∗ − 𝑞‖ < 1. This shows that 

𝑥𝑥∗ is invertible in 𝑞𝐴𝑞 with inverse (𝑥𝑥∗)−1. Put 𝑢 = (𝑥𝑥∗)−1 2⁄ 𝑥. Then 𝑢𝑢∗ = 𝑞 and 

𝑢∗𝑢 ≤ 𝑞1
′ +⋯+ 𝑞𝑘

′ , whence 𝑞 ≲ 𝑞1⨁. . . ⨁𝑞𝑘 . 
     Let 𝑔 be a constant 1-dimensional projection in 𝐶(𝑍,𝐾) = 𝐶(𝑍)⨂𝐾 (that corresponds 

to the trivial complex line bundle 𝜃 over   𝑋). 

Proposition (3.2.10)[448]: Let 𝐼1, 𝐼2, … be a sequence of non-empty, finite subsets of  𝑁. 

Put 

𝑄 =⊕𝑗=1
∞ 𝑝𝐼𝑗 ∈ 𝑀(𝐶(𝑍)⨂𝐾).  

(i)  If |⋃ 𝐼𝑗𝑗∈𝐹 | ≥ |𝐹| for all finite subsets 𝐹 of  𝑁, then 𝑔 ⋠ 𝑄 and 𝑄 is not properly 

infinite. 

(ii)  𝑔 ≾ 𝑃𝑛⨁𝑃𝑛  for every natural number 𝑛. 

(iii)  If infinitely many of the sets  𝐼1, 𝐼2, … are singletons, then 𝑄⨁𝑄 is properly infinite 

and 𝑄⨁𝑄 ∼ 1 in  𝑀(𝐶(𝑍)⨂𝐾). 
Proof. (i) We show first that 𝑔 ⋠ 𝑄 in 𝑀(𝐶(𝑍)⨂𝐾) Indeed, assume to the contrary that 

𝑔 ≲ 𝑄. Then 

                                              𝑔 ≲ 𝑃𝐼1⨁𝑃𝐼2⨁…⨁𝑃𝐼𝑘                                     (49) 

in 𝐶(𝑍)⨁𝐾 for some 𝑘 by Lemma (3.2.9). As noted earlier, 𝐶(𝑍)⨂𝐾 is an inductive limit 

𝐶(𝑆2)⨂𝐾
�̂�1⨂𝑖𝑑𝐾
→     𝐶((𝑆2)2)⨂𝐾⨂

�̂�2⨂𝑖𝑑𝐾
→     𝐶((𝑆2)3)⨂𝐾 ⟶ . . .⟶ 𝐶(𝑍)⨂𝐾. 

Take 𝑁 such that all projections appearing in (49) belong to the image of 

�̂�∞,𝑛⨂𝑖𝑑𝐾: 𝐶((𝑆
2)𝑛)⨂𝐾 ⟶ 𝐶(𝑍)⨂𝐾 

whenever 𝑛 ≥ 𝑁. Use a standard inductive limit argument to see that (49) holds relatively 

to 𝐶((𝑆2)𝑛)⨂𝐾 for some large enough 𝑛 ≥ 𝑁. In the language of vector bundles over 

(𝑆2)𝑛, (49) and Lemma (3.2.6) imply that 

                                             𝜃⨁𝜂 ≅ 𝜁𝐼1⨁𝜁𝐼2⨁. . . ⨁𝜁𝐼𝑘                                         (50) 

for some vector bundle 𝜂 over (𝑆2)𝑛. Now, (50) and (79) imply that 𝑒(𝜁𝐼1⨁. . . ⨁𝜁𝐼𝑘) = 0, 

in contradiction with Proposition (3.2.5) and the assumption on the sets 𝐼𝑗. 

    The projection 𝑃𝐼1  is a full element in 𝐶(𝑍)⨂𝐾 and 𝑝𝐼1 ≤ 𝑄. Hence 𝑔 belongs to the ideal 

generated by 𝑄. It now follows from Lemma (3.2.2) and from the fact that 𝑔 ⋠ 𝑄 that 𝑄 

cannot be properly infinite. 

(ii) follows from Lemma (3.2.4) and Lemma (3.2.6). 
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(iii) The unit 1 of 𝑀(𝐶(𝑍)⨂𝐾) can be written as a strictly convergent sum 1 = ∑ 𝑔𝑗
∞
𝑗=1 , 

where 𝑔𝑗~𝑔 for all   𝑗. Let Γ denote the infinite subset of 𝑁 consisting of those 𝑗 for which 

𝐼𝑗 is a singleton. By Lemma (3.2.7) and (ii) we get 

1~⊕𝑗=1
∞ 𝑔 ≲⊕𝑗∈Γ (𝑝𝐼𝑗⨁𝑝𝐼𝑗) ≲ ⊕𝑗=1

∞ (𝑝𝐼𝑗⨁𝑝𝐼𝑗) ~ 𝑄 ⊕ 𝑄. 

Lemma (3.2.8) now tells us that 𝑄 ⊕ 𝑄 is properly infinite and that 𝑄⨁𝑄 ∼ 1.  
We construct here a simple, unital 𝐶∗-algebra that contains a finite and an infinite projection; 

thus proving one of our main results: Theorem (3.2.16) below. 

Let again 𝑍 denote the infinite product space ∏ 𝑆2∞
𝑗=1  Set 𝐴 = 𝐶(𝑍)⨂𝐾 = 𝐶(𝑍, 𝐾); recall 

that 𝑀(𝐴) denotes the multiplier algebra of 𝐴 and that it can be identified with the set of 

bounded ∗-strongly continuous functions 𝑓: 𝑍 → 𝐵(𝐻). 
Choose an injective function 𝑣: 𝑍 × 𝑁 → 𝑁. Choose points 𝑐𝑗,𝑖 ∈ 𝑆

2 for all 𝑗, 𝑖 ∈ 𝑁 with 𝑗 ≥

𝑖 such that 

                                 {(𝑐𝑗,1, 𝑐𝑗,2, . . . , 𝑐𝑗,𝑛)|𝑗 ≥ 𝑛}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑆2 × 𝑆2 × …× 𝑆2             (51) 

for every natural number 𝑛. Set 

    𝐼𝑗 = {𝑣(𝑗, 1), 𝑣(𝑗, 2), . . . , 𝑣(𝑗, 𝑗)}                        (52)  

for 𝑗 ∈ 𝑁. 

Define ∗-homomorphisms 𝜑𝑗: 𝐴 → 𝐴 for all integers 𝑗 as follows. For 𝑗 ≤ 0, set 

  𝜑𝑗(𝑓)(𝑥) = 𝑓(𝑥𝑣(𝑗,1), 𝑥𝑣(𝑗,2), 𝑥𝑣(𝑗,3), . . . ), 𝑓 ∈ 𝐴, 𝑥 = (𝑥1, 𝑥2, . . . ) ∈ 𝑍.    (53) 

Let 𝑃𝑛 and 𝑃𝐼 be the projections in 𝐴 = 𝐶(𝑍, 𝐾) defined in (42) and (43). Choose an 

isomorphism 𝜏: 𝐾⨂𝐾 → 𝐾  For  𝑓 in 𝐴, 𝑥 = (𝑥1, 𝑥2, . . . ) in 𝑍 and 𝑗 ≥ 𝐼 define 

  𝜑𝑗(𝑓)(𝑋): 𝜏 (𝑓(𝑒𝑗,1, . . . , 𝐶𝑗,𝑗, 𝑥𝑣(𝑗,𝑗+1), 𝑥𝑣(𝑗,𝑗+2), . . . )⨂𝑝𝐼𝑗(𝑥)).      (54) 

Choose a sequence { 𝑆𝑗}𝑗=−∞
∞  of  isometries in 𝑀(𝐴) such that  ∑ 𝑆𝑗𝑆𝑗

∗∞
𝑗=−∞ = 1 with the 

sum being strictly convergent. Define a ∗-homomorphism 𝜓:𝐴 → 𝑀(𝐴) by 

                                         𝜓(𝑓) = ∑ 𝑆𝑗𝜑𝑗(𝑓)𝑆𝑗
∗∞

𝑗=−∞ ,     𝑓 ∈ 𝐴.                         (55) 

Lemma (3.2.11)[448]: Let {𝑒𝑛}𝑛=1
∞  be an increasing approximate unit for 𝐴. Then 

{𝜓(𝑒𝑛)}𝑛=1
∞  converges strictly to a projection  𝐹 ∈ 𝑀(𝐴), and 𝐹 is equivalent to the identity 

1 in 𝑀(𝐴). 
Proof. If  𝜓(𝑒𝑛) converges strictly to 𝐹 ∈ 𝑀(𝐴) for some approximate unit {𝑒𝑛} for  𝐴, then 

this conclusion will hold for all approximate units for 𝐴. We can therefore take {𝑒𝑛}𝑛=1
∞  to 

be the approximate unit given by 𝑒𝑛(𝑥) = �̂�𝑛 where {�̂�𝑛}𝑛=1
∞  is an increasing approximate 

unit for  𝐾. 

    We show first that {𝜑𝑗(𝑒𝑛)}𝑛=1
∞  converges strictly to a projection 𝐹𝑗  in 𝑀(𝐴) for each 𝑗 ∈

𝑍. Indeed, since 𝜑𝑗(𝑒𝑛) = 𝑒𝑛 when 𝑗 ≤ 0 it follows that 𝜑𝑗(𝑒𝑛) → 1 strictly; and so 𝐹𝑗 = 𝐼 

when 𝑗 ≤ 0. Consider next the case 𝑗 ≥ 𝐼. Here we have 𝜑𝑗(𝑒𝑛)(𝑥) = 𝜏(�̂�𝑛⨂𝑃𝐼𝑗(𝑥)). 

    Extend 𝜏: 𝐾⨂𝐾 → 𝐾 to a strongly continuous unital ∗-homomorphism 𝜏̅: 𝐵(𝐻 ⊗ 𝐻) →
𝐵(𝐻) and define 𝐹𝑗 in 𝑀(𝐴) by 𝐹𝑗(𝑥) = 𝜏̅(1⨂𝑝𝐼𝑗(𝑥)) for 𝑥 ∈ 𝑍. Then 𝐹𝑗 is a projection and 

{𝜑𝑗(𝑒𝑛)}𝑛=1
∞  converges strictly to 𝐹𝑗 . 

Now, 

𝜓(𝑒𝑛) = ∑ 𝑆𝑗𝜑𝑗(𝑒𝑛)𝑆𝑗
∗

∞

𝑗=−∞

𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦
→     
𝑛 → ∞

∑ 𝑆𝑗𝐹𝑗𝑆𝑗
∗

∞

𝑗=−∞

≝ 𝐹 ∈ 𝑀(𝐴). 

As 𝐼 = 𝐹0~𝑆0𝐹0𝑆0
∗ ≤ 𝐹 it follows from Lemma (3.2.8) that 𝐹~1 in  𝑀(𝐴). 

Take an isometry 𝑇 in 𝑀(𝐴) with 𝑇𝑇∗ = 𝐹 (where 𝐹 is as in Lemma (3.2.11)). Define 

                              𝜑(𝑓) = 𝑇∗𝜓(𝑓)𝑇 = ∑ 𝑇∗𝑆𝑗𝜑𝑗(𝑓)𝑆𝑗
∗𝑇∞

𝑗=−∞ ,    𝑓 ∈ 𝐴.    (56) 
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Then 𝜑: 𝐴 → 𝑀(𝐴) is a ∗-homomorphism that maps an approximate unit for 𝐴 into a 

sequence in 𝑀(𝐴) that converges strictly to the identity in 𝑀(𝐴) (by Lemma (3.2.11) and 

the choice of 𝑇). It follows from [154, Proposition 2.5] that 𝜑 extends to a unital *- 

homomorphism �̅�:𝑀(𝐴) → 𝑀(𝐴). 
     We collect below some properties of the ∗-homomorphisms 𝜑 and �̅�. A subset of a 𝐶∗-
algebra 𝐴 is called full in 𝐴 if it is not contained in any proper closed two-sided ideal in  𝐴. 
Proposition (3.2.12)[448]: Let 𝑝1 be the projection in 𝐴 defined in (42), and let 𝑔 be a 

constant 1-dimensional projection in 𝐴 = 𝐶( 𝑍, 𝐾). 
(i)  𝜑(𝑔)~1 in 𝑀(𝐴), and 𝜑(𝑓) is full in 𝑀(𝐴) for every full element 𝑓 in 𝐴. 

(ii)  If 𝑓 is a non-zero element in .𝑀(𝐴), then �̅�(𝑓) does not belong to 𝐴, and 𝐴�̅�(𝑓) 
is full in 𝐴. 

(iii)  If 𝑓 is a non-zero element in  𝑀(𝐴), then 𝐴�̅�𝑘(𝑓) is full in 𝐴 for every 𝑘 ∈ 𝑁. 

(iv)  None of the projections �̅�𝑘(𝑝1), 𝑘 ∈ 𝑁, are properly infinite in 𝑀(𝐴). 
It follows immediately from (ii) that �̅� and 𝜑 are injective, �̅�(𝑀(𝐴)) ∩ 𝐴 = {0} and  

𝜑(𝐴) ∩ 𝐴 = {0}. 
Is divided into a few lemmas, the first of which (included for emphasis) is standard 

and follows from the fact that any closed two-sided ideal in 𝐶(𝑍,𝐾) is equal to 𝐶0(𝑈,𝐾) for 

some open subset 𝑈 of  𝑍. 

Lemma (3.2.13)[ 448]: Let 𝑓 be an element in 𝐴 = 𝐶(𝑍,𝐾). Then 𝑓 is full in 𝐴 if and only 

if 𝑓(𝑥) ≠ 0 for all  𝑥 ∈ 𝑍. 

Proof. Observe first that 𝜑𝑗(𝑔) = 𝑔 for every  𝑗 ≤ 0. Accordingly, 

1~⨁𝑔

0

𝑗=−∞

~ ∑ 𝑇∗𝑆𝑗𝜑𝑗(𝑔)𝑆𝑗
∗𝑇

0

𝑗=−∞

≤ 𝜑(𝑔) 𝑖𝑛 𝑀(𝐴). 

This and Lemma (3.2.8) imply that 𝜑(𝑔)~1 and that 𝜑(𝑔) is full in 𝑀(𝐴). If 𝑓 is any full 

element in 𝐴, then the closed two-sided ideal generated by 𝜑(𝑓) contains 𝜑(𝑔) and therefore 

all of 𝑀(𝐴). This proves the second claim in (i).  

Proof. Take a non-zero element 𝑓 in 𝑀(𝐴). There is an element a in 𝐴 such that  𝑎𝑓 ≠ 0. 

The two claims in (ii) will clearly follow if we can show that �̅�(𝑎𝑓) ∉ 𝐴 and that 𝐴�̅�(𝑎𝑓) 
is full in 𝐴, and we can therefore, upon replacing 𝑓 by 𝑎𝑓, assume that 𝑓 is a non-zero 

element in 𝐴 = 𝐶(𝑍, 𝐾). 
There are 𝛿 > 0, 𝑟 ∈ 𝑁 and non-empty open subsets 𝑈1, . . . , 𝑈𝑟  of  𝑆2 such that 

                       𝑥 ∈ 𝑈1 × 𝑈2 ×. . .× 𝑈𝑟 × 𝑆
2 × 𝑆2 ×. . .⟹ ‖𝑓(𝑥)‖ ≥ 𝛿.   (57) 

Use (44) to find an infinite set 𝐴 of integers 𝑗 ≥ 𝑟 such that 

                    (𝐶𝑗,1, 𝐶𝑗,2, . . . , 𝐶𝑗,𝑟) ∈ 𝑈1 × 𝑈2 × . . .× 𝑈𝑟  for all 𝑗 ∈ 𝐴.        (58) 

It follows from Lemma (3.2.13), (56), (57) and (58) that ‖𝜑𝑗(𝑓)‖ ≥ 𝛿 and 𝜑𝑗(𝑓) is full in 

𝐴 for every 𝑗 in the infinite set Λ. This entails that 𝜑(𝑓) = ∑ 𝑇∗𝑆𝑗𝜑𝑗(𝑓)𝑆𝑗
∗𝑇∞

𝑗=−∞  does not 

belong to 𝐴. (𝐴 strictly convergent sum ∑ 𝑎𝑗
∞
𝑗=−∞  of pairwise orthogonal elements from 𝐴 

belongs to 𝐴 if and only if lim
𝑗→±∞

‖𝑎𝑗‖ = 0. ) The closed two-sided ideal in 𝐴 generated by 

𝐴𝜑(𝑓) contains the full element 𝜑𝑗(𝑓) = 𝑆𝑗
∗𝑇𝜑(𝑓)𝑇∗𝑆𝑗 and therefore all of 𝐴 (for 

each− and hence at least one −𝑗 in 𝐴).  

Proof. This follows from injectivity of  �̅�. 

We proceed to prove Proposition (3.2.12) (iv). 

Lemma (3.2.14)[448]: Let 𝐽 be a finite subset of 𝑁, and 𝑗 an integer. Then 𝜑𝑗(𝑝.𝐽)~𝑝𝑐𝑟𝑗(𝐽)’ 

where 
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                  𝛼𝑗(𝐽) = {
𝑣(𝑗, 𝐽),                               𝑗 ≤ 0,
𝑣(𝑗, 𝐽\{12,… , 𝑗}) ∪ 𝐼𝑗,    𝑗 ≥ 1.

                   (59)  

We have in particular that 𝑣(𝑗, 𝐽) ⊆ 𝛼𝑗(𝐽) for all finite subsets 𝐽 of 𝑁 and for all 𝑗 ∈ 𝑍. 

Proof. Write 𝐽 = {𝑡1, 𝑡2, . . . , 𝑡𝑘}, where 𝑡1 < 𝑡2 <. . . < 𝑡𝑘 . We consider first the case where 

𝑗 ≤ 0. Then 

                             𝜑𝑗(𝑝𝑗)(𝑥) = 𝑝𝐽(𝑥𝑣(𝑗,1) , 𝑥𝑣(𝑗,2), 𝑥𝑣(𝑗,3), . . . ) 

             = 𝑝(𝑥𝑣(𝑗,𝑡1))⨂𝑝(𝑥𝑣(𝑗,𝑡2))⨂⋯⨁𝑝(𝑥𝑣(𝑗,𝑡𝑘)) 

                                    = 𝑝𝑣(𝑗,𝑡1)(𝑥)⨂𝑝𝑣(𝑗,𝑡2)(𝑥)⨂⋯⨂𝑝𝑣(𝑗,𝑡𝑘)(𝑥) =  𝑝𝑣(𝑗,𝐽)(𝑥), 

as desired.  

Suppose next that 𝑗 ≥ 1, and put 𝑞(𝑥) = 𝑝𝑗(𝑐𝑗,1, . . . , 𝑐𝑗,𝑗, 𝑥𝑣(𝑗,𝑗+1), 𝑥𝑣(𝑗,𝑗+2), . . . ). Then 

𝜑𝑗(𝑝𝑗)(𝑥) = 𝜏(𝑞(𝑥)⨂𝑝𝐼𝑗(𝑥)) Suppose that 1 ≤ 𝑗 < 𝑡𝑘 and let 𝑚 be such that 𝑡𝑚−1 ≤ 𝑗 <

𝑡𝑚 (with the convention 𝑡0 = 0). Then 

𝑞(𝑥) = 𝑝(𝑐𝑗,𝑡1)⨂⋯⨂𝑝(𝑐𝑗,𝑡𝑚−1)⨂𝑝(𝑥𝑣(𝑗,𝑡𝑚))⨂. . . ⨂𝑝(𝑥𝑣(𝑗,𝑡𝑘)) 

          = 𝑝(𝑐𝑗,𝑡1)⨂⋯⨂𝑝(𝑐𝑗,𝑡𝑚−1)⨂𝑝𝑣(𝑗,𝑡𝑚)(𝑥)⨂. . . ⨂𝑝𝑣(𝑗,𝑡𝑘)(𝑥) 

                                   = 𝑝(𝑐𝑗,𝑡1)⨂⋯⨂𝑝(𝑐𝑗,𝑡𝑚−1)⨂𝑃𝑣(𝑗,𝐽\ {1,2 .....𝑗})(𝑥). 

Thus 𝑞~𝑝𝑣(𝑗,𝐽\ {1,2 .....𝑗}), which shows that 𝜑𝑗(𝑝𝐽) is equivalent to the projection defined by 

𝑥 ⟼ 𝜏 (𝑝𝑣(𝑗,𝐽 {1,2 …..𝑗})(𝑥)⨂𝑝𝐼𝑗(𝑥)) , 

and this projection is equivalent to 𝑝𝑣(𝑗,𝐽\ {1,2 .....𝑗})∪𝐼𝑗 . If 𝑗 ≥ 𝑡𝑘 , then 𝐽\{1, 2 . . . . , 𝑗} = 𝜙 and 

𝑞(𝑥) = 𝑝(𝑐𝑗,𝑡1)⨂⋯⨂𝑝(𝑐𝑗,𝑡𝑘), i.e., 𝑞 is a constant projection. In this case, 𝜑𝑗(𝑝𝐽)~𝑝𝐼𝑗 , thus 

affirming the first claim of the lemma. 

The last claim follows from the definition of the sets 𝐼𝑗 in (51).  

Lemma (3.2.15)[448]: Let 𝐽1, 𝐽2, … be finite subsets of 𝑁. Put 𝑄 =⊕𝑖=1
∞ 𝑝𝐽1 ∈ 𝑀(𝐴). Then 

�̅�(𝑄)~⨁⨁𝑝𝛼𝑗(𝐽𝑖)

∞

𝑗=−∞

∞

𝑖=1

, 

where 𝛼𝑗 is as defined in (58). Moreover, if |𝑈𝑖∈𝐹 𝐽𝑖| ≥ |𝐹| for all finite subsets F of 𝑁 then  

|𝑈(𝑗,𝑖)∈𝐺𝛼𝑗(𝐽𝑖)| ≥ |𝐺| for all finite subsets 𝐺 of  𝑍 × 𝑁. 

Proof. By (11), 𝑄 = 𝑇𝑖𝑝𝑗𝑖𝑇𝑖
∗; and because �̅� is strictly continuous we get 

�̅�(𝑄) =∑�̅�(𝑇𝑖)𝜑(𝑝𝐽𝑖)�̅�(𝑇𝑖)
∗

∞

𝑖=1

~⨁𝜑(𝑝𝐽𝑖)

∞

𝑖=1

~⨁⨁𝜑𝑗(𝑝𝐽𝑖)

∞

𝑗=−∞

∞

𝑖=1

~⨁⨁𝑝𝛼𝑗(𝐽𝑖)

∞

𝑗=−∞

∞

𝑖=1

, 

where the first equivalence is proved below (10)−(13), and the last equivalence follows 

from Lemma (3.2.14). 

     By the Marriage Theorem we can find natural numbers 𝑡𝑖 ∈ 𝐽𝑖 such that {𝑡𝑖}𝑖∈𝑁 are 

mutually distinct. Set 𝑠𝑗,𝑖 = 𝑣(𝑗, 𝑡𝑖). Then 𝑠𝑗,𝑖 belongs to 𝛼𝑗(𝐽𝑖) by Lemma (3.2.14), and 

{𝑠𝑗,𝑖}(𝑗,𝑖)∈𝑍×𝑁 are mutually distinct because 𝑣 is injective and the 𝑡𝑖’s are mutually distinct. 

This proves the second claim of the lemma.  

Proof of Proposition (3.2.11) (iv). Put 𝑄0 = 𝑝1 and put 𝑄𝑛 = �̅�
𝑛(𝑄0). We must show that 

none of the projections 𝑄𝑛 , 𝑛 ≥ 0, are properly infinite. It is clear that 𝑄0 is finite, and hence 

not properly infinite.  

Use Lemmas (3.2.14) and (3.2.15) to see that 

𝑄1 = ∑ 𝑇∗𝑆𝑗𝜑𝑗(𝑝1)𝑆𝑗
∗𝑇

∞

𝑗=−∞

~⨁𝜑𝑗

∞

𝑗=−∞

(𝑝1)~⨁𝑝𝑣(𝑗,1)

0

𝑗=−∞

⊕⨁𝑝𝐼𝑗

∞

𝑗=1

=⨁𝑝𝐽𝑖

∞

𝑗=−∞

, 
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where 𝐽𝑗 = {𝑣(𝑗, 1)} for 𝑗 ≤ 0 and 𝐽𝑗 = 𝐼𝑗 for 𝑗 ≥ 1. It is easily seen that the sequence of 

sets {𝐽𝑗}𝑗=−∞
∞  satisfies the condition |𝑈𝑗∈𝐹 𝐽𝑗| ≥ |𝐹| for all finite subsets 𝐹 of 𝑍. Hence 𝑄1 

is not properly infinite by Proposition (3.2.10) (i). 

The claim that 𝑄𝑛 is not properly infinite for all 𝑛 follows by induction using Lemma 

(3.2.15) and Proposition (3.2.10) (i).  

Theorem (3.2.16)[448]: Consider the inductive limit 𝐵 of the sequence 

𝑀(𝐶(𝑍)⨁𝐾)
  �̅�  
→ 𝑀(𝐶(𝑍)⨂𝐾)

  �̅�  
→ 𝑀(𝐶(𝑍)⨁𝐾)

  �̅�  
→ …⟶ 𝐵. 

Then 𝐵 has the following properties: 

(i)  𝐵 is unital and simple. 

(ii)  The unit of 𝐵 is infinite. 

(iii)  𝐵 contains a non-zero finite projection. 

(iv)  𝐾0(𝐵) = 0 and   𝐾1(𝐵) = 0. 

Proof. (i) 𝐵 is unital being the inductive limit of a sequence of unital 𝐶∗-algebras with unital 

connecting maps. 

    Write again 𝐴 for 𝐶(𝑍)⨂𝐾, and let �̅�∞,𝑛:𝑀(𝐴) → 𝐵 be the inductive limit map from the 

nth copy of 𝑀(𝐴) into 𝐵. Let 𝐿 be a non-zero closed two sided ideal in 𝐵, and set 

𝐿𝑛 = �̅�∞,𝑛
−1 (𝐿) ⊲ 𝑀(𝐴). 

Then 𝐿𝑛 is non-zero for some 𝑛. Since 𝐴 is an essential ideal in 𝑀(𝐴), also 𝐴⋂𝐿𝑛 is non-

zero. 

Take a non-zero element 𝑒 in 𝐴 ∩ 𝐿𝑛. Then �̅�(𝑒) belongs to 𝐿𝑛+1, hence 𝐴�̅�(𝑒) ⊆ 𝐿𝑛+1, 
and so it follows from Proposition (3.212) (ii) that 𝐴 ⊆ 𝐿𝑛+1. Take now a full element 𝑓 in 

𝐴 ⊆ 𝐿𝑛+1. Then �̅�(𝑓) belongs to  𝐿𝑛+2. It follows from Proposition (3.2.12) (i) that �̅�(𝑓) is 

full in 𝑀(𝐴) and therefore  𝐿𝑛+2 = 𝑀(𝐴). Hence 𝐿 = 𝐵, and this shows that 𝐵 is simple. 

(ii) This is clear because the unit of 𝑀(𝐴) is infinite. 

(iii) As in the proof of Proposition (3.2.12) (iv), set 𝑄0 = 𝑝1 and 𝑄𝑛 = �̅�
𝑛(𝑄0) for 𝑛 ≥ 1. 

Put 𝑄 = �̅�∞,0(𝑄0) ∈ 𝐵. It is shown in Proposition (3.2.12) (ii) that �̅� is injective, which 

implies that �̅�∞,0 is injective, and hence 𝑄 is non-zero. We show next that 𝑄 is finite. 

Assume that 𝑄 were infinite. Then 𝑄 is properly infinite by Cuntz’ result (see Proposition 

(3.2.1)) because 𝐵 is simple. Applying Proposition (3.2.3) to the sequence 

𝑄0𝑀(𝐴)𝑄0
  𝜆0  
→  𝑄1𝑀(𝐴)𝑄1

  𝜆1 
→ 𝑄2𝑀(𝐴)𝑄2⟶. . .⟶ 𝑄𝐵𝑄,  

with the unital connecting maps 𝜆𝑗 = �̅�|𝑄𝑗𝑀(𝐴)𝑄𝑗 , we obtain that 𝑄𝑛 is properly infinite for 

all sufficiently large 𝑛. But this contradicts Proposition (3.2.12) (iv). 

(iv) This follows from the fact that the multiplier algebra of a stable 𝐶∗-algebra has trivial 

𝐾-theory (see [129, Proposition 12.2.1]).  

    It follows from Proposition (3.2.10) (ii) and Proposition (3.2.14) (i) that the finite 

projection 𝑄 in 𝐵 (found in part (iii) above) satisfies 

𝑄 ⊕ 𝑄~�̅�∞,0(𝑄0⊕𝑄0) = �̅�∞,0(𝑝1⊕𝑝1) ≳ �̅�∞,0(𝑔) = �̅�∞,1(𝜑(𝑔))~1, 

whence 𝑄⨁𝑄~1 by Lemma (3.2.8). In other words, the corner 𝐶∗-algebra 𝑄𝐵𝑄 is unital, 

finite and simple, and 𝑀2(𝑄𝐵𝑄) ≅ 𝐵 is infinite. 

The 𝐶∗-algebra 𝐵 from Theorem (3.2.16) is not separable and not exact. To see the latter, 

note that 𝐵(𝐻), the bounded operators on a separable, infinite-dimensional Hilbert space 𝐻, 

can be embedded into 𝑀(𝐴) = 𝑀(𝐶(𝑍)⨁𝐾) and hence into 𝐵. As 𝐵(𝐻) is non-exact (see 

Wassermann [163, 2.5.4]) it follows from Kirchberg’s result that exactness passes to sub-

𝐶∗-algebras (see [163, 2.5.2]) that 𝐵 is non-exact. We use the lemma below from [125] to 

construct a non-exact separable example. 
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Lemma (3.2.17) [448]: Let 𝐵 be a simple 𝐶∗-algebra and let 𝑋 be a countable subset of  𝐵. 

It follows that 𝐵 has a separable, simple sub-𝐶∗-algebra 𝐵0 that contains 𝑋. 

Corollary (3.2.18)[448]: There exists a unital, separable, non-exact, simple 𝐶∗-algebra 𝐵0 

such that 𝐵0 contains an infinite and a non-zero finite projection. 

Proof. Let 𝑠 be a non-unitary isometry in 𝐵 and let 𝑞 be a non-zero finite projection in 𝐵. 

The universal 𝐶∗-algebra, 𝐶∗(𝐹2), generated by two unitaries is separable and non-exact 

(see Wassermann [163, Corollary 3.7]). It admits an embedding into 𝑀(𝐶(𝑍)⨁𝐾) and 

hence into 𝐵. Let 𝑢, 𝑣 ∈ 𝐵 be the images of the two (canonical) unitary generators in 𝐶∗(𝐹2). 
Use Lemma (3.2.17) to find a separable, simple, and unital 𝐶∗-algebra 𝐵0 that contains 

{𝑢, 𝑣, 𝑠, 𝑞}. 
    Then 𝐵0 is infinite because it contains the non-unitary isometry 𝑠; and it contains the 

finite projection 𝑞. Finally, 𝐵0 is non-exact because it contains the non-exact sub-𝐶∗-algebra 

𝐶∗(𝑢, 𝑣) ≅ 𝐶∗(𝐹2). 
We show here that an elaboration of the construction yields a nuclear and separable example 

of a simple 𝐶∗-algebra with a finite and an infinite projection. 

The construction requires that we make a specific choice for the injective map 𝑣: 𝑍 × 𝑁 ⟶
𝑁. 

Let {Λ𝑟}𝑟=0
∞  be a partition of the set 𝑁 such that Λ0 = {1} and such that Λ𝑟 is infinite for 

each 𝑟 ≥ 1. For each 𝑟 ≥ 1 choose an injective map 𝛾𝑟 : 𝑍 × Λ𝑟−1 → Λ𝑟 and define 𝑣: 𝑍 ×
𝑁 → 𝑁 by 

𝑣(𝑗, 𝑡) = 𝛾𝑟(𝑗, 𝑡),     𝑟 ∈ 𝑁, 𝑡 ∈ Λ𝑟−1, 𝑗 ∈ 𝑍.               (60) 
Observe that 

                                          𝑡 ∈ Λ𝑟 ⟺ 𝑣(𝑗, 𝑡) ∈ Λ𝑟+1, 𝑗 ∈ 𝑍.                              (61) 
To see that v is injective assume that 𝑣(𝑗, 𝑡) = 𝑣(𝑖, 𝑠). Then 𝑣(𝑗, 𝑡) = 𝑣(𝑖, 𝑠) ∈ Λ𝑟 for some 

𝑟 ≥ 1. Therefore both 𝑠 and 𝑡 belong to   Λ𝑟−1. Now, 𝛾𝑟(𝑗, 𝑡) = 𝑣(𝑗, 𝑡) = 𝑣(𝑖, 𝑠) = 𝛾𝑟(𝑖, 𝑠), 
which entails that (𝑗, 𝑡) = (𝑖, 𝑠) by injectivity of   𝛾𝑟 . 

     Let 𝛼𝑗 be as defined in Lemma (3.2.14) (with respect to the new choice of  𝑣). Let Γ0 ⊆

𝑃(𝑁) be the family containing the one set {1}, and set 

Γ𝑛+1 = { 𝛼𝑗(𝐼)|𝐼 ∈ Γ𝑛, 𝑗 ∈ 𝑍} ⊆ 𝑃(𝑁) 

for 𝑛 ≥ 0. Set Γ = ⋃ Γ𝑛
∞
𝑛=0 . Observe that each 𝐼 ∈ 𝐹 is a finite subset of  𝑁. 

Put 𝑄0 = 𝑝1 ∈ 𝐴 (cf. (42)) and put 𝑄𝑛 = �̅�
𝑛(𝑄0) ∈ 𝑀(𝐴) (where �̅� is the endomorphism 

on 𝑀(𝐴) defined above Proposition (3.2,12)). It then follows by induction from Lemma 

(3.2.15) that 

                                              𝑄𝑛~⨁𝐼∈Γ𝑛𝑝𝐼 ,    𝑛 ≥ 0,                                            (62) 

when 𝑝𝐼 ∈ 𝐴 is as defined in (42). 

Lemma (3.2.19)[448]: There is an injective function 𝑡: Γ → 𝑁 such that 𝑡(𝐼) ∈ 𝐼 for all 𝐼 ∈
Γ. It follows in particular that 

 |⋃𝐼

𝐼∈𝐹

| ≥ |𝐹| 

for all finite subsets 𝐹 of  Γ. 

Proof. Define t recursively on each Γ𝑛 as follows. For 𝑛 = 0 we set 𝑡({1}) = 1. Assume 

that 𝑡 has been defined on 𝐹𝑛−1 for some 𝑛 ≥ 1. Then define 𝑡 on Γ𝑛 by 𝑡(𝛼𝑗(𝐼)) =

𝑣(𝑗, 𝑡(𝐼)) for 𝐼 ∈ Γ𝑛−1 and 𝑗 ∈ 𝑍. It follows from Lemma (3.2.4) that 

𝑡(𝐼) ∈ 𝐼 ⟹ 𝑡 (𝛼𝑗(𝐼)) ∈ 𝛼𝑗(𝐼), 𝐼 ∈ Γ , 𝑗 ∈ 𝑍. 

It therefore follows by induction that 𝑡(𝐼) ∈ 𝐼 for all  𝐼 ∈ 𝐹. 
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We show next that 𝑡(𝐼) ∈ Λ𝑛 if  𝐼 ∈ Γ𝑛. This is clear for  𝑛 = 0. Let 𝑛 ≥ 1 and let 𝐼 ∈ Γ𝑛 be 

given. Then 𝐼 = 𝛼𝑗(𝐼′) for some 𝐼′ ∈ Γ𝑛−1 and some 𝑗 ∈ 𝑍. It follows that 𝑡(𝐼) =

𝑡(𝛼𝑗(𝐼′)) = 𝑣(𝑗, 𝑡(𝐼′)). Hence 𝑡(𝐼) ∈ Λ𝑛 if  𝑡(𝐼′) ∈ Λ𝑛−1, cf. (60). Now the claim follows 

by induction on  𝑛.   

     We proceed to show that 𝑡 is injective. If 𝐼, 𝐽 ∈ Γ are such that 𝑡(𝐼) = 𝑡(𝐽), then 𝑡(𝐼) =
𝑡(𝐽) ∈ Λ𝑛 for some 𝑛, whence 𝐼, 𝐽 both belong to Γ𝑛. It therefore suffices to show that 𝑡|𝛤𝑛 

is injective for each 𝑛. We prove this by induction on  𝑛. It is trivial that 𝑡|𝛤0  is injective. 

Assume that 𝑡|𝛤𝑛−1 , is injective for some 𝑛 ≥ 1. Let 𝐼, 𝐽 ∈ 𝛤𝑛  be such that 𝑡(𝐼) = 𝑡(𝐽). Then 

𝐼 = 𝛼𝑖(𝐼′) and 𝐽 = 𝛼𝑗(𝐽′) for some 𝑖, 𝑗 ∈ 𝑍 and some 𝐼′, 𝐽′ ∈ 𝛤𝑛−1, and 

𝑣( 𝑖, 𝑡(𝐼′)) = 𝑡(𝛼𝑖(𝐼′)) = 𝑡(𝐼) = 𝑡(𝐽) = 𝑡(𝛼𝑗(𝐽′)) = 𝑣(𝑗, 𝑡(𝐽′)). 

Since 𝑣 is injective we deduce that 𝑖 = 𝑗 and  𝑡(𝐼′) = 𝑡(𝐽′). By injectivity  of 𝑡|𝛤𝑛−1  we 

obtain 𝐼′ = 𝐽′, and this proves that 𝐼 = 𝐽. It has now been shown that 𝑡|𝛤𝑛is injective, and the 

induction step is complete.  

    Let 𝑔 ∈ 𝐴 = 𝐶(𝑍, 𝐾) be a constant 1-dimensional projection, and let 𝑄𝑛 be as defined 

above (62). 

Lemma (3.2.20)[448]: For each natural number 𝑚 we have 

𝑔 ⋠ 𝑄0⨁𝑄1⨁⋯⨁𝑄𝑚 𝑖𝑛 𝑀(𝐴). 
Proof. From (28) (and Lemma (3.2.7)) we deduce that 

𝑄0⨁𝑄1⨁⋯⨁𝑄𝑚 ∼ ⊕𝐼∈𝛤0∪...∪𝛤𝑛 𝑝𝐼 . 

The claim of the lemma now follows from Proposition (3.2.9) (i) together with Lemma 

(3.2.19). 

As in Theorem (3.2.16) consider the inductive limit 

                               𝑀(𝐴)
  �̅�  
→ 𝑀(𝐴)

  �̅�  
→ 𝑀(𝐴)

  �̅�  
→  . . .⟶ 𝐵,                      (63) 

where 𝐴 = 𝐶(𝑍)⨂𝐾 Let 𝜇∞,𝑛:𝑀(𝐴) → 𝐵 be the inductive limit map (from the 𝑛th copy of 

𝑀(𝐴)) for 𝑛 ≥ 0, and let 𝜇𝑚,𝑛:𝑀(𝐴) → 𝑀(𝐴) be the connecting map from the 𝑛th copy of 

𝑀(𝐴) to the mth copy of 𝑀(𝐴) for 𝑛 < 𝑚, i.e., 𝜇𝑚,𝑛 = �̅�
𝑚−𝑛. The endomorphism �̅� on 

𝑀(𝐴) extends to an automorphism 𝛼 on 𝐵 that satisfies 𝛼(𝜇∞,𝑛(𝑥)) = 𝜇∞,𝑛(�̅�(𝑥)) for 𝑥 ∈

𝑀(𝐴) and all 𝑛 ∈ 𝑁. (The inverse of 𝛼 is on the dense subset  ⋃ 𝜇∞,𝑛(𝑀(𝐴))
∞
𝑛=0  of 𝐵 given 

by 𝛼−1(𝜇∞,𝑛(𝑥)) = 𝜇∞,𝑛+1(𝑥). ) 

Put 𝐴0 = 𝜇∞,0(𝐴) ⊆ 𝐵, put 𝐴𝑛 = 𝛼
𝑛(𝐴0) ⊆ 𝐵 for all 𝑛 ∈ 𝑍, and put 

 𝐷𝑛 = 𝐶
∗(𝐴−𝑛, 𝐴−𝑛+1, . . . , 𝐴0, . . . , 𝐴𝑛−1, 𝐴𝑛),   𝐷 = ⋃ 𝐷𝑛

∞
𝑛=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ .       (64) 

It is shown in Lemma (3.2.24) below that each 𝐷𝑛 is a type 𝐼 𝐶∗-algebra, and so the 𝐶∗- 
algebra 𝐷 is an inductive limit of type 𝐼 algebras. In particular, 𝐷 is nuclear and belongs to 

the 𝑈𝐶𝑇 class 𝑁. Moreover, 𝐷 is 𝛼-invariant (by construction). Observe that 𝐴𝑚−𝑛 =
𝜇∞,𝑛(�̅�

𝑚(𝐴)) for all non-negative integers 𝑚 and  𝑛. 

Put 𝑄 = 𝜇∞,𝑛(𝑝1)(= 𝜇∞,𝑛(𝑄𝑛)) in 𝐷 ⊆ 𝐵, and, as above, let 𝑔 ∈ 𝐴 = 𝐶(𝑍, 𝐾) be a constant 

1-dimensional projection.  

Lemma (3.2.21)[448]: The following two relations hold in 𝐷 and in 𝐵: 

(i)  𝜇∞,0(𝑔) ≲ 𝑄⨁𝑄; 

(ii)  𝜇∞,0(𝑔) ⋠⊕𝑗=−𝑁
𝑁 𝛼𝑗(𝑄) for all natural numbers 𝑁. 

Proof. (i) follows immediately from Proposition (3.2.10) (ii). 

(ii) Assume, to reach a contradiction, that 𝜇∞,0(𝑔) ≲ ∑ 𝛼𝑗(𝑄)𝑁
𝑗=−𝑁  in 𝐵 (or in 𝐷) for some 

𝑁 ∈ 𝑁. For 𝑗 ≥ −𝑁 we have 

𝛼𝑗(𝑄) = 𝛼𝑗(𝜇∞,0(𝑄0)) = 𝛼
𝑗(𝜇∞,𝑁(�̅�

𝑁(𝑄0))) = 𝜇∞,𝑁(�̅�
𝑁+𝑗(𝑄0)). 

The relation 𝜇∞,0(𝑔) ≲ ∑ 𝛼𝑗(𝑄)𝑁
𝑗=−𝑁  can therefore be rewritten as 



 

101 

 

𝜇∞,𝑁(�̅�
𝑁(𝑔)) ≲⨁𝜇∞,𝑁

2𝑁

𝑗=0

(�̅�𝑗(𝑄0))   𝑖𝑛  𝐵. 

By a standard property of inductive limits this entails that 

𝜇𝑀,𝑁(�̅�
𝑁(𝑔)) ≲⨁𝜇𝑀,𝑁

2𝑁

𝑗=0

(�̅�𝑗(𝑄0))   𝑖𝑛  𝑀(𝐴) 

for some 𝑀 ≥ 𝑁, or, equivalently, 

�̅�𝑀(𝑔) ≲⨁�̅�𝑗+𝑀−𝑁
2𝑁

𝑗=0

(𝑄0) = ⨁ �̅�𝑗
𝑁+𝑀

𝑗=𝑀−𝑁

(𝑄0) =⨁𝑄𝑗

𝑁+𝑀

𝑗=𝑀𝑁

≲⨁𝑄𝑗

𝑁+𝑀

𝑗=0

𝑖𝑛 𝑀(𝐴) 

Use now that 𝑔 ≲ �̅�𝑀(𝑔) (which holds because 𝜑𝑗(𝑔) = 𝑔 for  𝑗 ≤ 0, cf. (62)) to conclude 

that 𝑔 ≲ ⨁ 𝑄𝑗
𝑁+𝑀
𝑗=0  in 𝑀(𝐴), in contradiction with Lemma (3.2.20).  

   Let 𝐶 be an arbitrary unital 𝐶∗-algebra and let 𝛾 be an automorphism on 𝐶. 

Let 𝐾 denote the compact operators on 𝑙2(𝑍) and let {𝑒𝑖,𝑗}𝑖,𝑗∈𝑧 be a set of matrix units for 𝐾 

Define a unital injective ∗-homomorphism 𝜓: 𝐶 → 𝑀(𝐶⨂𝐾) and a unitary 𝑈 ∈ 𝑀(𝐶⨂𝐾) 
by 

𝜓(𝑐) =∑ 𝛾𝑛(𝑐)⨂𝑒𝑛,𝑛
𝑛∈𝑍

    𝑈 = ∑ 𝐼⨂𝑒𝑛,𝑛+1
𝑛∈𝑍

,   𝑐 ∈ 𝐶, 

(the sums converge strictly in 𝑀(𝐶⨂𝐾)) It is easily seen that 

𝑈𝜓(𝑐)𝑈∗ = 𝜓(𝛾(𝑐)),   𝑐 ∈ 𝐶, 

so that 𝜓 extends to a representation �̃�: 𝐶 ⋉𝛾 𝑍 ⟶ 𝑀(𝐶⨂𝐾) The following standard 

argument shows that the representation �̃� is faithful. 

Put 𝑉𝑡 = ∑ 𝐼⨂𝑡−𝑛𝑒𝑛,𝑛𝑛∈𝑍 ∈ 𝑀(𝐶⨂𝐾) for  𝑡 ∈ 𝑇, and check that 𝑉𝑡  is a unitary element that 

satisfies 𝑉𝑡𝜓(𝑐)𝑉𝑡
∗ = 𝜓(𝑐) and 𝑉𝑡𝑈𝑉𝑡

∗ = 𝑡𝑈 for all 𝑡 ∈ 𝑇. Let 𝐸: 𝐶 ⋉𝛾 𝑍 → 𝐶 be the 

canonical faithful conditional expectation, and define 𝐹: 𝐼𝑚(�̃�) → 𝐼𝑚(�̃�) by 𝐹(𝑥) =

∫ 𝑉𝑡𝑥𝑉𝑡
∗𝑑𝑡

𝑇
. Then 𝐹((�̃�(𝑥)) = 𝜓(𝐸(𝑥)) for all 𝑥 ∈ 𝐶 ⋉𝛾 𝑍. Now, if �̃�(𝑥) = 0 for some 

positive element 𝑥 in 𝐶 ⋉𝛾 𝑍, then 𝜓(𝐸(𝑥)) = 𝐹(�̃�(𝑥)) = 0, whence 𝐸(𝑥) = 0 (by 

injectivity of 𝜓 and 𝑥 = 0 (because 𝐸 is faithful).  

Lemma (3.2.22)[448]: Let 𝐶 be a unital 𝐶∗-algebra and let 𝛾 be an automorphism on 𝐶. 

Suppose that 𝑝 and 𝑞 are projections in 𝐶 such that 

(i)  𝑝 ≲⊕𝑗=1
𝑚 𝑞 in 𝐶 for some natural number 𝑚, and 

(ii)  𝑝 ⋠⊕𝑗=−𝑁
𝑁 𝛾𝑗(𝑞) for all natural numbers 𝑁. 

Then 𝑞 is not properly infinite in  𝐶 ⋊𝛾 𝑍. 

Proof. It suffices to show that 𝜓(𝑞) is not properly infinite in   𝑀(𝐶⨂𝐾). Assume, to reach 

a contradiction, that 𝜓(𝑞) is properly infinite in 𝑀(𝐶⨂𝐾).Then ⊕𝑗=1
𝑚 𝜓(𝑞) ≲ 𝜓(𝑞) by 

Proposition (3.2.1). As  𝑞⨂𝑒0,0 ≤ 𝜓(𝑞) we can use (i) to obtain 

𝑝⨂𝑒0,0 ≲⊕𝑗=1
𝑚 𝑞⨂𝑒0,0 ≤⊕𝑗=1

𝑚 𝜓(𝑞) ≲ 𝜓(𝑞) = ∑ 𝛾𝑗(𝑞)⨂𝑒𝑗,𝑗

∞

𝑗=−∞

 

in 𝑀(𝐶⨂𝐾) By Lemma (3.2.9) this entails that 

𝑝⨂𝑒0,0 ≲ ∑ 𝛾𝑗(𝑞)⨂𝑒𝑗,𝑗

∞

𝑗=−∞

 𝑖𝑛   𝐶⨂𝐾 
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for some 𝑁 ∈ 𝑁, or, equivalently, that 𝑝 ≾⊕𝑗=−𝑁
𝑁 𝛾𝑗(𝑞 ) in 𝐶, in contradiction with 

assumption (ii).  

Returning now to our specific 𝐶∗-algebra 𝐵 from (3.2.22), Lemmas (3.2.21) and Lemma 

(3.2.22) imply: 

Lemma (3.2.23)[448]: The projection 𝑄 = 𝜇∞,0(𝑝1) is not properly infinite in 𝐵 ⋉𝛼 𝑍. 

Lemma (3.2.24)[448]: The 𝐶∗-algebra 𝐷𝑛 = 𝐶
∗(𝐴−𝑛, 𝐴−𝑛+1, . . . , 𝐴0, . . . , 𝐴𝑛) is of  type 𝐼 

for each 𝑛 ∈ 𝑁. 

Proof. Note first that 

        𝐴𝑛𝐴𝑚 ⊆ 𝐴min{𝑛,𝑚},       𝑛, 𝑚 ∈ 𝑍.                             (65) 

Indeed, we can assume without loss of generality that 𝑛 ≤ 𝑚, and then deduce 

                       𝐴𝑛𝐴𝑚 = 𝛼
𝑛(𝜇∞,0(𝐴�̅�

𝑚−𝑛(𝐴))) ⊆ 𝛼𝑛(𝜇∞,0(𝐴)) = 𝐴𝑛. 

Since 𝐴 ∩ �̅�𝑚−𝑛(𝐴) = {0} when 𝑛 < 𝑚, cf. Proposition (3.2.12) (ii), it follows also that 

𝐴𝑛 ∩ 𝐴𝑚 = {0},      𝑛 ≠ 𝑚.                                    (66) 
Use (31) to see that the 𝐶∗-algebra 𝐷𝑚,𝑛 generated by 𝐴𝑚, 𝐴𝑚+1, . . . , 𝐴𝑛, for 𝑚 ≤ 𝑛, is equal 

to 

     𝐷𝑚,𝑛 = 𝐴𝑚 + 𝐴𝑚+1+. . . +𝐴𝑛−1 + 𝐴𝑛.               (67) 

(To see that the right-hand side of (67) is norm closed, use successively the fact that if 𝐸 is 

a 𝐶∗-algebra, 𝐼 is a closed two-sided ideal in  𝐸, and 𝐹 is a sub-𝐶∗-algebra of 𝐸, then 𝐼 + 𝐹 

is a sub 𝐶∗-algebra of 𝐸.) It follows from (65), (66) and (67) that we have a decomposition 

series 

0 ⊲ 𝐴−𝑛 ⊲ 𝐷−𝑛,−𝑛+1 ⊲ 𝐷−𝑛,−𝑛+2 ⊲ . . . ⊲ 𝐷−𝑛,𝑛−1 ⊲ 𝐷−𝑛,𝑛 = 𝐷𝑛 

for 𝐷𝑛 and that each successive quotient is isomorphic to 𝐴 = 𝐶(𝑍)⨂𝐾 This proves that 𝐷𝑛 

is a type 𝐼 𝐶∗-algebra.  

Lemma (3.2.25)[448]: The crossed product 𝐶∗-algebra 𝐷 ⋊𝛼 𝑍 contains an infinite 

projection and a non-zero projection which is not properly infinite. The 𝐶∗-algebra 𝐷 has 

no nontrivial 𝛼𝑛-invariant closed two-sided ideal for any non-zero integer 𝑛. 

Proof. The projection 𝑄 = 𝜇∞,0(𝑝1) belongs to 𝐴0 = 𝜇∞,0(𝐴) ⊆ 𝐷, and it is non-zero 

because 𝜇∞,0 is injective (which again is because �̅� is injective). We have 𝐷 ⊆ 𝐵 and hence 

𝑄 ∈ 𝐷 ⋊𝛼 𝑍 ⊆ 𝐵 ⋊𝛼 𝑍. 
Since 𝑄 is not properly infinite in 𝐵 ⋊𝛼 𝑍 (by Lemma (3.2.25)) it follows that 𝑄 is not 

properly infinite in 𝐷 ⋊𝛼 𝑍. 

Put 𝑝 = 𝜇∞,0(𝑔) ∈ 𝐴0 ⊆ 𝐷, where 𝑔 is  a constant 1-dimensional projection in 𝐴 =

𝐶(𝑍,𝐾). We have 

𝑔 = 𝜑0(𝑔)~ 𝑆0𝜑0(𝑔)𝑆0
∗ < ∑ 𝑆𝑗𝜑𝑗(𝑔)𝑆𝑗

∗

∞

𝑗=−∞

= �̅�(𝑔), 

cf. (19). Hence 𝑃 = 𝜇∞,0(𝑔) is equivalent to a proper subprojection of 𝜇∞,0(�̅�(𝑔)). As 

𝜇∞,0(�̅�(𝑔)) = 𝛼(𝜇∞,0(𝑔))~𝑃 in 𝐷 ⋊𝛼 𝑍 we conclude that 𝑃 is an infinite projection in 

𝐷 ⋊𝛼 𝑍. 

Suppose that 𝑛 is a non-zero integer (that we can take to be positive) and that 𝐼 is a non-zero 

closed two-sided 𝛼𝑛-invariant ideal in 𝐷. Then 𝐼 ∩ 𝐷𝑘𝑛 is non-zero for some natural number 

𝑘, cf. (92). As 𝐼 is 𝛼𝑛-invariant, 𝐼 ∩ 𝛼𝑘𝑛(𝐷𝑘𝑛) is non-zero, and 

𝑎𝑘𝑛(𝐷𝑘𝑛) = 𝐶
∗(𝐴0, 𝐴1, . . . , 𝐴2𝑘𝑛) = 𝜇∞,0(𝐶

∗(𝐴, �̅�(𝐴), . . . , �̅�2𝑘𝑛(𝐴))). 

Because 𝐴0 = 𝜇∞,0(𝐴) is an essential ideal in 𝛼𝑘𝑛(𝐷𝑘𝑛) it follows that 𝐼 ∩ 𝐴0 is non-zero. 

Take a non-zero element 𝑓 in 𝐼 ∩ 𝐴0, and write 𝑓 = 𝜇∞,0(𝑓0) for some non-zero element 𝑓0 

in 𝐴. Use Proposition (3.2.12) (iii) to conclude that 
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𝐴−𝑚𝑓 = 𝜇∞,𝑚(𝐴�̅�
𝑚(𝑓0))  

is full in 𝜇∞,𝑚(𝐴) = 𝐴−𝑚, and hence that 𝐴−𝑚 ⊆ 𝐼, for every natural number 𝑚. Since 𝐼 is 

𝛼𝑛-invariant, 𝐴−𝑚+𝑟𝑛 = 𝛼
𝑟𝑛(𝐴−𝑚) ⊆ 𝐼 for all 𝑚 ∈ 𝑁 and all 𝑟 ∈ 𝑍. This shows that 𝐴𝑚 ⊆

𝐼 for all 𝑚, which finally entails that 𝐼 = 𝐷.  
We remind the notion of properly outer automorphism introduced by Elliott in [128]: 

Definition (3.2.26)[448]: An automorphism 𝛾 on a 𝐶∗-algebra 𝐸 is called properly outer if 

for every non-zero 𝛾-invariant closed two-sided ideal 𝐼 of 𝐸 and for every unitary 𝑢 in 𝑀(𝐼) 
one has ‖𝛾|𝐼 − 𝐴𝑑𝑢‖ = 2 (the norm is the operator norm). 

    In [879, Theorem 6.6] eleven conditions on an automorphism 𝛾 that all are equivalent to 

𝛾 being properly outer. We shall use the following sufficient (but not necessary) condition 

for being properly outer: If 𝐸 has no non-trivial 𝛾-invariant ideals and if 𝛾(𝑝) ≁ 𝑝 for some 

projection 𝑝 in 𝐸, then 𝛾 is properly outer. To see this, note first that 𝑝~𝑢𝑝𝑢∗ = (𝐴𝑑𝑢)(𝑝) 
for every unitary 𝑢 in 𝑀(𝐸) (the equivalence holds relatively to 𝐸). We therefore have 

𝛾(𝑝) ≁ (𝐴𝑑𝑢)(𝑝), whence ‖𝛾(𝑝) − (𝐴𝑑𝑢)(𝑝)‖ = 1. This shows that ‖𝛾 − 𝐴𝑑𝑢‖ ≥ 1 for 

all unitaries 𝑢 in 𝑀(𝐸), whence 𝛾 is properly outer (by (ii)⟺(iii) of [879, Theorem 6.6]). 

(One can argue along another line by taking an approximate unit {𝑒𝜆} for 𝐸, such that 

𝑒𝜆 ≥ 𝑝 for all 𝜆, and set 𝑥𝜆 = 2𝑝 − 𝑒𝜆. Then 𝑥𝜆 is a contraction in 𝐸 for all 𝜆, and one can 

check that lim
𝜆→∞

‖𝛾(𝑥𝜆) − (𝐴𝑑𝑢)(𝑥𝜆)‖ = 2, thus showing directly that ‖𝛾 −  𝐴𝑑 𝑢‖ = 2 for 

all unitaries 𝑢 in 𝑀(𝐸) whenever 𝛾(𝑝) ≁ 𝑝 for some projection 𝑝 in 𝐸.) 

More generally, 𝛾 is properly outer if for each non-zero 𝛾-invariant ideal 𝐼 of 𝐸 there is a 

projection 𝑝 in 𝐼 such that   𝛾(𝑝) ≁ 𝑝. 

Lemma (3.2.27) [448]: The automorphism 𝛼𝑛 on 𝐷 is property outer for all non-zero 

integers 𝑛. 

Proof. We know from Lemma (3.2.25) that 𝐷 has no 𝛼𝑛-invariant ideals (when 𝑛 ≠ 0), so 

the lemma will follow from the claim (verified below) that 𝛼𝑛(𝑄) ≁ 𝑄 for all 𝑛 ≠ 0 (where 

𝑄 is as in Lemma (3.2.21)). 

Assume, to reach a contradiction, that 𝛼𝑛(𝑄)~𝑄 for some non-zero integer 𝑛 (that we can 

take to be positive). Then, by Lemma (3.2.21) (i), 

𝜇∞,0(𝑔) ≲ 𝑄⨁𝑄 ~ 𝑄⨁𝛼
𝑛(𝑄) ≲⊕𝑗=0

𝑛 𝛼𝑗(𝑄)𝑖𝑛 𝐷, 

in contradiction with Lemma (3.2.21) (ii). 

We now have to prove the main result: 

Theorem (3.2.28)[448]: There is a separable 𝐶∗-algebra 𝐷 and an automorphism 𝛼 on 𝐷 

such that 

(i)  𝐷 is an inductive limit of type 𝐼 𝐶∗-algebras; 

(ii)  𝐷 ⋊𝛼 𝑍 is simple and contains an infinite and a non-zero finite projection; 

(iii)  𝐷 ⋊𝛼 𝑍  is  nuclear and belongs to the 𝑈𝐶𝑇 class 𝑁. 

Proof. Let 𝐷 be the 𝐶∗-algebra and let 𝛼 the automorphism on 𝐷 defined in (and above) 

(30). Since 𝐷 is the union of an increasing sequence of sub- 𝐶∗-algebras 𝐷𝑛 (cf. (92)) and 

each 𝐷𝑛 is of type 𝐼 (by Lemma (3.2.24)), we conclude that 𝐷 is an inductive limit of type 

𝐼 𝐶∗-algebras, and hence that the crossed product 𝐷 ⋊𝛼 𝑍 is nuclear, separable and belongs 

to the 𝑈𝐶𝑇 class 𝑁. 

Since 𝐷 has no non-trivial 𝛼-invariant ideals (by Lemma (3.2.25)) and 𝛼𝑛 is properly 

outer for all 𝑛 ≠ 0 (by Lemma (3.2.27)), it follows from Olesen and Pedersen [879, 

Theorem 7.2] (a result that extends results from Elliott [828] and Kishimoto [877]) that 

𝐷 ⋊𝛼 𝑍 is simple. By simplicity of  𝐷 ⋊𝛼 𝑍, the (non-zero) projection 𝑄, which in Lemma 

(3.2.25) is proved to be not properly infinite, must be finite in 𝐷 ⋊𝛼 𝑍, cf. Proposition 
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(3.2.1). The existence of  an infinite projection in 𝐷 ⋊𝛼 𝑍 follows from Lemma (3.2.25), 

and this completes the proof.  

We begin by listing some corollaries to Theorems (3.2.16) and (3.2.28). 

Corollary (3.2.29)[448]: There is a nuclear, unital, separable, infinite, simple 𝐶∗-algebra 𝐴 

in the 𝑈𝐶𝑇 class 𝑁 such that 𝐴 is not purely infinite. 

Proof. Take the 𝐶∗-algebra 𝐷 ⋊𝛼 𝑍 from Theorem (3.2.28), and take a properly infinite 

projection 𝑝 and a non-zero finite projection 𝑞 in that 𝐶∗-algebra. Then 𝑞~𝑞0 ≤ 𝑝 for some 

projection 𝑞0 in 𝐷 ⋊𝛼 𝑍 by Lemma (3.2.2). Hence 𝐴 = 𝑝(𝐷 ⋊𝛼 𝑍)𝑝 is infinite; and 𝐴 is not 

purely infinite because it contains the non-zero finite projection 𝑞0. 

Corollary (3.2.30)[448]: There is a nuclear, unital, separable, finite, simple 𝐶∗-algebra 𝐴 

that is not stably finite, and hence does not admit a tracial state (nor a non-zero quasitrace). 

Proof. Take the 𝐶∗-algebra 𝐸 = 𝐷 ⋊𝛼 𝑍 from Theorem (3.2.28) and a non-zero finite 

projection 𝑞 in 𝐸. Put 𝐴 = 𝑞𝐸𝑞. Then 𝐴 is finite, simple and unital. Since 𝐴⨂𝐾 ≅ 𝐸⨂𝐾 we 

conclude that 𝐴⨂𝐾 (and hence 𝑀𝑛(𝐴) for some large enough 𝑛) contains an infinite 

projection, so 𝐴 is not stably finite. 
Every simple, infinite 𝐶∗-algebra is properly infinite, so 𝑀𝑛(𝐴) is properly infinite. 

No properly infinite 𝐶∗-algebra can admit a non-zero trace (or a quasitrace), so 𝑀𝑛(𝐴), and 

hence 𝐴, do not admit a tracial state (nor a non-zero quasitrace). 

     𝐴 𝐶∗-algebra 𝐴 is said to have the cancellation property if the implication 

               𝑝⨁𝑟~𝑞⨁𝑟 ⟹  𝑝~𝑞                                                (68) 
holds for all projections 𝑝, 𝑞, 𝑟 in 𝐴⨂𝐾 It is known that all 𝐶∗-algebras of stable rank one 

have the cancellation property and that no infinite 𝐶∗-algebra has the cancellation property. 

There is no example of a stably finite, simple 𝐶∗-algebra which is known not to have the 

cancellation property (but Villadsen’s 𝐶∗-algebras from [897] are candidates). 𝐴 𝐶∗-algebra 

𝐴 is said to have the weak cancellation property if (61) holds for those projections 𝑝, 𝑞, 𝑟 in 

𝐴⨂𝐾 where 𝑝 and 𝑞 generate the same ideal of  𝐴. 

Corollary (3.2.31)[448]: There is a nuclear, unital, separable, simple 𝐶∗-algebra 𝐴 that does 

not have the weak cancellation property. 

Proof. And take a non-zero finite projection 𝑞 in 𝐴. 

Since 𝐴 is properly infinite, we can find isometries 𝑠1, 𝑠2 in 𝐴 with orthogonal range 

projections; cf. Proposition (3.2.1). Put 𝑝 = 𝑠1𝑞𝑠1
∗(1 − 𝑆1𝑆1

∗). Then 𝑝 is infinite because 

𝑠2𝑠2
∗ ≤ 𝑝, and so 𝑝 ≁ 𝑞 (because 𝑞 is finite). On the other hand, 𝑞 and 𝑝 generate the same 

ideal of 𝐴 −namely 𝐴 itself−and 

𝑝⨁1 = (𝑠1𝑞𝑠1
∗ + (1 − 𝑠1𝑠1

∗))⨁1~𝑠1𝑞𝑠1
∗⨁(1 − 𝑠1𝑠1

∗)⨁𝑠1𝑠1
∗~𝑞⨁1. 

It was shown in [874, Theorem (5.3.18)] that the following implications hold for any 

separable 𝐶∗-algebra 𝐴 and for any free filter 𝜔 on 𝑁: 

𝐴 is purely infinite ⟹ 𝐴 is weakly purely infinite 

⇔ 𝐴𝜔 is traceless 

⟹ 𝐴 is traceless, 

and the first three properties are equivalent for all simple 𝐶∗-algebras 𝐴. (𝐴 𝐶∗-algebra is 

here said to be traceless if no algebraic ideal in 𝐴 admits a non-zero quasitrace. See [152] 

for the definition of being weakly purely infinite.) It was not known in [152] if the reverse 

of the third implication holds (for simple or for non-simple 𝐶∗-algebras), but we can now 

answer this in the negative: 

Corollary (3.2.32)[448]: Let 𝜔 be any free filter on 𝑁. There is a nuclear, unital, separable, 

simple 𝐶∗-algebra 𝐴 which is traceless, but where 𝑙∞(𝐴) and 𝐴𝜔 admit non-zero quasitraces 

defined on some (possibly non-dense) algebraic ideal. 
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Proof. Then 𝐴 is algebraically simple and 𝐴 admits no (everywhere defined) non-zero 

quasitrace. Hence 𝐴 is traceless in the sense of [152].  

Because 𝐴 is simple and not purely infinite, 𝐴𝜔 cannot be traceless. Since 𝐴𝜔 is a quotient 

of 𝑙∞(𝐴), the latter 𝐶∗-algebra cannot be traceless either. 

    Kirchberg has shown in [150] (see also [161, Theorem 4.1.10]) that every exact simple 

𝐶∗-algebra which is tensorially non-prime (i.e., is isomorphic to a tensor product 𝐷1⨂𝐷2, 
where 𝐷1 and 𝐷2 both are simple non-type 𝐼 𝐶∗-algebras) is either stably finite or purely 

infinite. Liming 𝐺𝑒 has proved in [143] that the 𝐼𝐼1-factor ℒ(𝐹2) is (tensorially) prime (in 

the sense of von Neumann algebras), and it follows easily from this result that the 𝐶∗-algebra 

𝐶𝑟𝑒𝑑
∗ (𝐹2) is tensorially prime. We can now exhibit a simple, nuclear 𝐶∗-algebra that is 

tensorially prime: 

Corollary (3.2.33)[448]: The 𝐶∗-algebra 𝐷 ⋊𝛼 𝑍 from Theorem (3.2.28) is simple, 

separable, nuclear and tensorially prime, and so is 𝑝(𝐷 ⋊𝛼 𝑍)𝑝 for every non-zero 

projection 𝑝 in 𝐷 ⋊𝛼 𝑍. 

Proof. The 𝐶∗-algebra 𝐷 ⋊𝛼 𝑍 is simple, separable, nuclear; cf. Theorem (3.2.28). It is not 

stably finite because it contains an infinite projection, and it is not purely infinite because it 

contains a non-zero finite projection. The (unital) 𝐶∗-algebra 𝑝(𝐷 ⋊𝛼 𝑍)𝑝 is stably 

isomorphic to 𝐷 ⋊𝛼 𝑍 and is hence also simple, separable, nuclear, and neither stably finite 

nor purely infinite. It therefore follows from Kirchberg’s theorem (quoted above) that these 

𝐶∗-algebras must be tensorially prime.  

Villadsen’s 𝐶∗-algebras from [162] and [163] are, besides being simple and nuclear, 

probably also tensorially prime Jiang and Su have in [147] found a non-type 𝐼, unital, simple 

𝐶∗-algebra 𝑍 for which 𝐴 ≅ 𝐴⨂𝑍 is known to hold for a large class of well-behaved simple 

𝐶∗-algebras 𝐴, such as for example the irrational rotation 𝐶∗-algebras and more generally 

all 𝐶∗-algebras that are covered by a classification theorem (cf. [142] or [161]). Such 𝐶∗-
algebras 𝐴 are therefore not tensorially prime. 

     The real rank of the 𝐶∗-algebras found in Theorems (3.2.16) and (3.2.28) have not been 

determined, but we guess that they have real 𝑟𝑎𝑛𝑘 ≥ 1. That leaves open the following 

question: 

Question (3.2.34)[448]: Does there exist a (separable) unital, simple 𝐶∗-algebra 𝐴 such that 

𝐴 contains an infinite and a non-zero finite projection, and such that: 

(i) 𝐴 is of real rank zero? 

(ii) 𝐴 is both nuclear and of real rank zero? 

It appears to be difficult (if not impossible) to construct simple 𝐶∗-algebras of real rank zero 

that exhibit bad comparison properties; below. 

George Elliott suggested the following:  

Question (3.2.35)[448]: Does there exist a (separable), (nuclear), unital, simple 𝐶∗-algebra 

𝐴 such that all non-zero projections in 𝐴 are infinite but 𝐴 is not purely infinite? 

If Question (3.2.35) has affirmative answer, and 𝐴 is a unital, simple 𝐶∗-algebra whose non-

zero projections are infinite and 𝐴 is not purely infinite, then the real rank of 𝐴 cannot be 

zero. Indeed, a simple 𝐶∗-algebra is purely infinite if and only if it has real rank zero and all 

its non-zero projections are infinite. 
for every natural number 𝑛. But [1] ≰ [𝑒] because 𝑒 is finite and 1 is infinite. 

This shows that if 𝐴 is a simple 𝐶∗-algebra with a finite and an infinite projection, 

then the semigroup 𝐷(𝐴) of Murray−von Neumann equivalence classes of projections in 

𝐴⨂𝐾 is not weakly unperforated. 

    (An ordered abelian semigroup (𝑆, +,≤) is said to be weakly unperforated if 
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                      𝑛𝑔 < 𝑛ℎ ⟹ 𝑔 ≤ ℎ, for all 𝑔, ℎ ∈ 𝑆 and all 𝑛 ∈ 𝑁. 
The order structure on 𝐷(𝐴) is the algebraic order given by 𝑔 ≤ ℎ if and only if ℎ = 𝑔 + 𝑓 

for some 𝑓 in 𝐷(𝐴).) 
In [163] that 𝐾0(𝐴), and also the semigroup  𝐷(𝐴), of a simple, stably finite 𝐶∗-

algebra 𝐴 can fail to be weakly unperforated. The present is a natural continuation of 

Villadsen’s work to the stably infinite case. 

For (𝑆, +) be an abelian semigroup with a zero-element 0. An element 𝑔 ∈ 𝑆 is called 

infinite if 𝑔 + 𝑥 = 𝑔 for some non-zero 𝑥 ∈ 𝑆, and 𝑔 is called finite otherwise. The sets of 

finite and infinite elements in 𝑆 are denoted by 𝑆𝑓𝑖𝑛 and 𝑆𝑖𝑛𝑓, respectively. One has 𝑆 =

𝑆𝑓𝑖𝑛∐ 𝑆𝑖𝑛𝑓 and 𝑆 + 𝑆𝑖𝑛𝑓 ⊆ 𝑆𝑖𝑛𝑓, but the sum of two finite elements can be infinite. 

It is standard and easy to see that the finite and infinite elements in the semigroup 

𝐷(𝐴) are given by 

                             𝐷𝑓𝑖𝑛(𝐴) = {[𝑓]: 𝑓 is a finite projection in 𝐴⨂𝐾}, 

                             𝐷𝑖𝑛𝑓(𝐴) = {[𝑓]: 𝑓 is an infinite projection in 𝐴⨂𝐾}. 

If 𝐴 is a simple 𝐶∗-algebra that contains an infinite projection, then the Grothendieck 

𝑚𝑎𝑝 𝛾: 𝐷(𝐴) → 𝐾0(𝐴) restricts to an isomorphism 𝐷𝑖𝑛𝑓(𝐴) → 𝐾0(𝐴) as shown by   

Cuntz in [871, ∮ 1]. We can therefore identify 𝐷𝑖𝑛𝑓(𝐴) with 𝐾0(𝐴), in which case we can 

write 

𝐷(𝐴) = 𝐷𝑓𝑖𝑛(𝐴)∐𝐾0(𝐴). 

Note that [0] belongs to 𝐷𝑓𝑖𝑛(𝐴), and that 𝐷𝑓𝑖𝑛(𝐴) = {[0]} if and only if all non-zero 

projections in 𝐴⨂𝐾 are infinite. One can therefore detect the existence of non-zero finite 

elements in 𝐴⨂𝐾 from the semigroup 𝐷(𝐴); and 𝐾0(𝐴) contains all information about 𝐷(𝐴) 
if and only if all non-zero projections in 𝐴⨂𝐾 are infinite. 

When 𝐴 is simple and contains both infinite and non-zero finite projections, then 

𝐷𝑓𝑖𝑛(𝐴) can be very complicated and large. One can show that 𝐷𝑓𝑖𝑛(𝐵) is uncountable, 

when 𝐵 is as in Theorem (3.2.16). We have no description of 𝐷(𝐴), when 𝐴 = 𝐷 ⋊𝛼 𝑍 from 

Theorem (3.2.28). 

That if 𝐴 is simple and if 𝑔 is a non-zero element in 𝐷𝑓𝑖𝑛(𝐴), then 𝑛𝑔 ∈ 𝐷𝑖𝑛𝑓(𝐴) for some 

𝑛 ∈ 𝑁. In other words, 𝐷𝑖𝑛𝑓(𝐴) eventually absorbs all non-zero elements in 𝐷(𝐴). 

The example found in Theorem (3.2.28) provides a counterexample to Elliott’s classification 

conjecture (see for example [20]) as it is formulated (by the author) in [898, ∮ 2.2]. The 

conjecture asserts that 

                (𝐾0(𝐴), 𝐾0(𝐴)
+, [1𝐴]0, 𝐾1(𝐴), 𝑇(𝐴), 𝑟𝐴: 𝑇(𝐴) → 𝑆(𝐾0(𝐴)))         (69) 

is a complete invariant for unital, separable, nuclear, simple 𝐶∗-algebras. If 𝐴 is stably 

infinite (i.e., if 𝐴⨂𝐾 contains an infinite projection), then 𝐾0(𝐴)
+ = 𝐾0(𝐴) and 𝑇(𝐴) = ∅. 

The Elliott invariant for unital, simple, stably infinite 𝐶∗-algebras therefore degenerates to 

the triple (𝐾0(𝐴), [1𝐴]0, 𝐾1(𝐴)). (We say that (𝐾0(𝐴), [1𝐴]0, 𝐾1(𝐴)) ≅ (𝐺0, 𝑔0, 𝐺1) if there 

are group isomorphisms 𝛼0: 𝐾0(𝐴) → 𝐺0 and 𝛼1: 𝐾1(𝐴) → 𝐺1 such that 𝛼0([1𝐴]0) = 𝑔0. ) 
Corollary (3.2.36)[448]: There are two non-isomorphic nuclear, unital, separable, simple, 

stably infinite 𝐶∗-algebras 𝐴 and 𝐵 (both in the 𝑈𝐶𝑇 class 𝑁) such that 

(𝐾0(𝐴), [1𝐴]0, 𝐾1(𝐴)) ≅ (𝐾0(𝐵), [1𝐵]0, 𝐾1(𝐵)). 
Proof. Take the 𝐶∗-algebra 𝐴 from Corollary (3.1.29). It follows from [871, Theorem 3.6] 

that there is a nuclear, unital, separable, simple, purely infinite 𝐶∗-algebra 𝐵 in the 𝑈𝐶𝑇 

class 𝑁 such that 

(𝐾0(𝐴), [1𝐴]0, 𝐾1(𝐴)) ≅ (𝐾0(𝐵), [1𝐵]0, 𝐾1(𝐵)). 
Since 𝐵 is purely infinite and 𝐴 is not purely infinite, we have 𝐴 ≇ 𝐵. 
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One can amend the Elliott invariant by replacing the triple (𝐾0(𝐴), 𝐾0(𝐴)
+, [1𝐴]0) 

(for a unital 𝐶∗-algebra 𝐴) with the pair (𝐷(𝐴), [1𝐴]), above, where 𝐷(𝐴) carries the 

structure of a semigroup. In the unital, stably infinite case, the amended invariant will then 

become (𝐷(𝐴), [1𝐴], 𝐾1(𝐴)). (Since 𝐾0(𝐴) is the Grothendieck group of 𝐷(𝐴), and 𝐾0(𝐴)
+ 

and [1𝐴]0 are the images of 𝐷(𝐴) and [1𝐴], respectively, under the Grothendieck map 

𝛾: 𝐷(𝐴) → 𝐾0(𝐴), one can recover (𝐾0(𝐴), 𝐾0(𝐴)
+, [1𝐴]0) from (𝐷(𝐴), [1𝐴]): ) 

The invariant (𝐷(𝐴), [1𝐴]) can detect if 𝐴 has a non-zero finite projection, cf. The 

triples (𝐷(𝐴), [1𝐴], 𝐾1(𝐴)) and (𝐷(𝐵), [1𝐵], 𝐾1(𝐵)) are therefore nonisomorphic, when 𝐴 

and 𝐵 are as in Corollary (3.1.36). We have no example to show that (𝐷(𝐴), [1𝐴], 𝐾1(𝐴)) is 

not a complete invariant for nuclear, unital, simple, separable, stably infinite 𝐶∗-algebras. 

On the other hand, there is no evidence to suggest that (𝐷(𝐴), [1𝐴], 𝐾1(𝐴)) indeed is a 

complete invariant for this class of 𝐶∗-algebras. 

The Elliott conjecture can also be amended by restricting the class of 𝐶∗-algebras that 

are to be classified. One possibility is to consider only those unital, separable, nuclear, 

simple 𝐶∗-algebras 𝐴 for which 𝐴 ≅ 𝐴⨂𝑍 where 𝑍 is the Jiang-Su algebra (see the comment 

below Corollary (3.2.33)). It seems plausible that the Elliott invariant (35) actually is a 

complete invariant for this class of 𝐶∗-algebras; and one could hope that the condition 𝐴 ≅
𝐴⨂𝑍 has an alternative intrinsic equivalent formulation, for example in terms of the 

existence of sufficiently many central sequences. 
with non-zero index map 𝛿: 𝐾1(𝐶(𝑆

3)) → 𝐾0(𝐾). Then 𝐴 is finite and 𝑀2(𝐴) is infinite. 

The proof uses that any isometry or co-isometry 𝑠 in 𝐴 (or in a matrix algebra over 

𝐴) is mapped to a unitary element 𝑢 in (a matrix algebra over) 𝐶(𝑆3); and every unitary 𝑢 

in 𝑀𝑛(𝐶(𝑆
3)) lifts to an isometry or a co-isometry 𝑠 in 𝑀𝑛(𝐴). Moreover, the isometry or 

co-isometry 𝑠 is non-unitary if and only if the unitary element 𝑢 has non-zero index. The 

unitary group of 𝐶(𝑆3) is connected, so all unitaries here have zero index. Hence 𝐴 contains 

no non-unitary isometry, so 𝐴 is finite. By construction of the extension, the generator of 

𝐾1(𝐶(𝑆
3)), which is a unitary element in 𝑀2(𝐶(𝑆

3)), has non-zero index, and so it lifts to 

a non-unitary isometry or co-isometry in 𝑀2(𝐴), whence 𝑀2(𝐴) is infinite.   

  The 𝐶∗-algebra 𝑀2(𝐴) is not properly infinite since the quotient, 𝑀2(𝐴)/𝑀2(𝐸) ≅
𝑀2(𝐶(𝑆

3)), is finite. 

An example of a unital, finite, (non-simple) 𝐶∗-algebra 𝐴 such that 𝑀2(𝐴) is properly 

infinite was found in [899]. 
is an inductive limit with unital connecting maps, and that 𝐵 is a simple 𝐶∗-algebra such 

that 𝐵 is finite and 𝑀2(𝐵) is infinite. Then 𝑀2(𝐵) is properly infinite, and it follows from 

Proposition (3.2.3) that 𝐵𝑛 is finite and 𝑀2(𝐵𝑛) is properly infinite for all sufficiently large 

𝑛. It is therefore not possible to construct an example of a simple 𝐶∗-algebra, which is finite, 

but not stably finite, by taking an inductive limit of 𝐶∗-algebras arising as in the example 

described. 
   Such that 𝜑1(𝑒) is a finite projection in 𝑀2(𝐵) whenever 𝑒 is a 1-dimensional projection 

in 𝑀2(𝐶). 
The existence of 𝐵 (already obtained in the non-simple case in [899]) shows that the 

image of 𝑒 in the universal unital free product 𝐶∗-algebra 𝑀2(𝐶) ∗ 𝒪∞ is not properly 

infinite. 

It is tempting to turn this around and seek a simple 𝐶∗-algebra 𝐴 with a finite and an 

infinite projection by defining 𝐴 to be a suitable free product of 𝑀2(𝐶) and 𝒪∞. However, 

the universal unital free product 𝑀2(𝐶) ∗ 𝒪∞ is not simple. The reduced free product 𝐶∗-
algebra 
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(𝐴, 𝜚) = (𝑀2(𝐶), 𝜚1) ∗ (𝒪∞, 𝜚2), 
with respect to faithful states 𝜚1 and 𝜚2, is simple (at least for many choices of the states 𝜚1 
and 𝜚2, see for example [842]) and properly infinite, but no non-zero projection 𝑒 in 𝑀2(𝐶) 
is finite in 𝐴. The Cuntz algebra 𝒪∞ contains a sequence of non-zero mutually orthogonal 

projections, and it therefore contains a projection 𝑓 with 𝜚2(𝑓) < 𝜚1(𝑒). Now, 𝑒 and 𝑓 are 

free with respect to the state 𝜚 and 𝜚(𝑓) < 𝜚(𝑒). This implies that 𝑓 ≲ 𝑒 (see [847]), and 

therefore 𝑒 must be infinite.  

In [829] that reduced free product 𝐶∗-algebras often have weakly unperforated 𝐾0-

groups, which is another reason why this class of 𝐶∗-algebras is unlikely to provide an 

example of a simple 𝐶∗-algebra with finite and infinite projections. 

We conclude by remarking that ring theorists for a long time have known about finite 

simple rings that are not stably finite: 

An example of a unital, simple ring which is weakly finite but not weakly 2-finite was 

constructed by 𝑃.𝑀. Cohn as follows: 

Take natural numbers 2 ≤ 𝑚 < 𝑛 and consider the universal ring 𝑉𝑚,𝑛 generated by 

2𝑚𝑛 elements {𝑥𝑖𝑗} and {𝑦𝑗}, 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛, satisfying the relations 𝑋𝑌 =

𝐼𝑚 and 𝑌𝑋 = 𝐼𝑛, where 𝑋 = (𝑥𝑖𝑗) ∈ 𝑀𝑚,𝑛(𝑅), 𝑌 = (𝑦𝑖𝑗) ∈ 𝑀𝑛,𝑚(𝑅), and 𝐼𝑚 and 𝐼𝑛 are the 

units of the matrix rings 𝑀𝑚(𝑅) and 𝑀𝑛(𝑅). The rings 𝑀𝑚(𝑉𝑚,𝑛) and 𝑀𝑛(𝑌𝑚,𝑛) are 

isomorphic, and 𝑀𝑛(𝑉𝑚,𝑛) is not weakly finite. Therefore 𝑀𝑚(𝑉𝑚,𝑛) is not weakly finite. In 

other words, 𝑉𝑚,𝑛 is not weakly 𝑚-finite. 

  It is shown by Cohn in [877, Theorem 2.11.1] that 𝑉𝑚,𝑛 is a so-called (𝑚 − 1) − 𝑓𝑖𝑟, 

and hence a 1 − 𝑓𝑖𝑟; and a ring is a 1 − 𝑓𝑖𝑟 if and only if it is an integral domain (i.e., if it 

has no non-zero zero-divisors). Cohn proved in [874] that every integral domain embeds 

into a simple integral domain. In particular, 𝑉𝑚,𝑛 is a subring of a simple integral domain 

𝑅𝑚,𝑛 whenever 2 ≤ 𝑚 < 𝑛. Now, 𝑅𝑚,𝑛 is weakly finite (an integral domain has no 

idempotents other than 0 and 1, and must hence be weakly finite), and 𝑅𝑚,𝑛 is not weakly 

𝑚-finite (because it contains 𝑉𝑚,𝑛). 

This example cannot in any obvious way be carried over to 𝐶∗-algebras, first of all 

because no 𝐶∗-algebra other than 𝐶 is an integral domain.  
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Chapter 4 
Labelled Graph 𝑪∗-algebras of  Labelled Spaces 

 

We introduce a quotient labelled space (𝐸, ℒ, [𝐵]𝑅) arising from an equivalence relation 

~𝑅  on 𝐵 and show the existence of the 𝐶∗ −algebra  𝐶∗(𝐸, ℒ, [𝐵]𝑅) generated by a universal 

representation of (𝐸, ℒ, [𝐵]𝑅).  We give necessary and sufficient conditions for simplicity of 

certain labelled graph 𝐶∗ −algebras. We also show that the spectrum of it diagonal C*-

subalgebra is homeomorphic to the tight spectrum of the inverse semigroup associated with 

the labelled space. 

Section (4.1): The Structure of  Gauge-Invariant Ideals 

In [899], Bates and Pask introduced a class of  𝐶∗ −algebras associated to labelled graphs. 

Their motivation was to simultaneously generalize ultragraph 𝐶∗ −algebras [856,819] and 

the shift space 𝐶∗ −algebras [866,177]. A labelled graph 𝐶∗ −algebra  𝐶∗(𝐸, ℒ, 𝐵) is the 

universal 𝐶∗ −algebra generated by a family of partial isometries 𝑠𝑎  indexed by labels a and 

projections 𝑝𝐴  indexed by vertex subsets 𝐴 in an accommodating set 𝐵 satisfying certain 

conditions. By definition 𝐶∗(𝐸, ℒ, 𝐵) depends on the choice of an accommodating set 𝐵 as 

well as a labelled graph (𝐸, ℒ), where ℒ is a labelling map assigning a label to each edge of 

𝐸. An accommodating set 𝐵 is a collection of vertex subsets (𝐵 ⊂ 2𝐸
0
 ) containing the 

ranges of all labelled paths which is closed under finite unions, finite intersections, and 

relative ranges. Among accommodating sets of a labelled graph (𝐸, ℒ), the smallest one 𝜀0,− 

was mainly dealt with in [167] under the assumptions that (𝐸, ℒ) is essential (𝐸 has no sinks 

and no sources), set-finite and receiver set-finite (every 𝐴 ∈ 𝜀0,−)emits and receives only 

finitely many labelled edges). Some conditions on (𝐸, ℒ, 𝜀0,−) were investigated to explore 

the simplicity of 𝐶∗(𝐸, ℒ, 𝜀0,−) in [167]. Since the accommodating set 𝜀0,−is not closed 

under relative complements in general, it may not contain generalized vertices [𝑣 ]𝑙 
despite the fact that these generalized vertices were used effectively in [167] as the canonical 

spanning set of labelled graph 𝐶∗ −algebras 𝐶∗(𝐸, ℒ, 𝜀0,−). We  consider an alternative of 

𝜀0,− in [171], that is, the smallest accommodating set 𝜀 which is closed under relative 

complements (or equivalently, the smallest accommodating set containing all generalized 

vertices). It was then proven that if 𝐶∗(𝐸, ℒ, ℇ) is simple, (𝐸, ℒ, ℇ) is strongly cofinal [171, 

Theorem 3.8] and if in addition {𝑣}  ∈ ℇ for every vertex 𝑣 ∈  𝐸0, the labelled space 

(𝐸, ℒ, ℇ) is disagreeable [171 , Theorem 3.14]. Furthermore, a slight modification of the 

proof of Theorem 6.4 in [167], shows that if (𝐸, ℒ, ℇ) is strongly cofinal and disagreeable, 

the 𝐶∗ −algebra 𝐶∗(𝐸, ℒ, ℇ) is simple [171, Theorem 3.16].Even when ℇ0,− ≠ ℇ if both 

(𝐸, ℒ, ℇ0,−) and (𝐸, ℒ, ℇ) are weakly left-resolving, 𝐶∗(𝐸, ℒ, ℇ0,−) ≅ 𝐶∗(𝐸, ℒ, ℇ) (Corollary 

(4.1.18)). 

By the universal property, 𝐶∗(𝐸, ℒ, 𝐵) admits the gauge action of the unit circle. As for 

the gauge-invariant ideal structure of graph 𝐶∗ −algebras, it is known [165] that the set of 

gaugeinvariant ideals I of a row-finite graph 𝐶∗ −algebra 𝐶∗(𝐸)  = 𝐶∗(𝑠𝑒 , 𝑝𝑣) is in bijective 

correspondence with the set of hereditary saturated vertex subsets 𝐻 in such a way that 𝐼 is 

the ideal generated by the projections 𝑝𝑣, 𝑣 ∈ 𝐻. By an ideal we always mean a closed two-

sided one. 𝐴 more general description on the gauge-invariant ideal structure of an arbitrary 

graph 𝐶∗ −algebra is obtained in [164]. Also, for the class of ultragraph 𝐶∗ −algebras [179] 

which contains all graph algebras (see [174,175,164,165] among others) and Exel  Laca 
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algebras [170], the structure of gauge-invariant ideals was described via a one-to-one 

correspondence with the set of admissible pairs of the ultragraph [173] using the results 

known for the 𝐶∗ −algebras of topological graphs and topological quivers [172,178]. 

 We analyze the structure of gauge-invariant ideals of a labelled graph 𝐶∗ −algebra 

𝐶∗(𝐸, ℒ, 𝐵) when 𝐸 has no sinks and (𝐸, ℒ, 𝐵) is a set−finite, receiver set-finite and weakly 

left−resolving labelled space such that 𝐵 is closed under relative complements. One might 

expect that a one-to-one correspondence like the correspondence mentioned above for graph 

𝐶∗ −algebras could be easily established by similar arguments used in the proofs for graph 

𝐶∗ −algebras as done in [165]. But an essential difficulty lies in the fact that the quotient 

algebra 𝐶∗(𝐸, ℒ, 𝐵)/𝐼 by a gauge-invariant ideal 𝐼 is not known to be realized as a labelled 

graph 𝐶∗ −algebra. So we introduce a notion of quotient labelled space (𝐸, ℒ, [𝐵]𝑅) which 

is similar to a labelled space but with the equivalence classes [𝐵]𝑅 of an equivalence relation 

~𝑅 on 𝐵 in place of 𝐵 in the labelled space (𝐸, ℒ, 𝐵). Then in Theorem (4.1.14) we associate 

a universal 𝐶∗ −algebra 𝐶∗(𝐸, ℒ, [𝐵]𝑅) to a quotient labelled space and prove that every 

𝐶∗ −algebra 𝐶∗(𝐸, ℒ, [𝐵]𝑅) of a quotient labelled space is isomorphic to a quotient algebra 

𝐶∗(𝐸, ℒ, 𝐵 ) 𝐼⁄  by a gauge-invariant ideal  𝐼 of 𝐶∗(𝐸, ℒ, 𝐵)  in Corollary (4.1.8) which 

follows from the gauge-invariant uniqueness theorem (Theorem (4.1.17)) for the 

𝐶∗ −algebras of quotient labelled spaces. It is obtained that if I is a gauge-invariant ideal of 

𝐶∗(𝐸, ℒ, 𝐵), the quotient algebra 𝐶∗(𝐸, ℒ, 𝐵)/𝐼 is isomorphic to a 𝐶∗ −algebra 

𝐶∗(𝐸, ℒ, [𝐵]𝑅) associated to certain quotient labelled space. We then apply these 

isomorphism relations to obtain the main result (Theorem 4.1.21) that there exists a one-

toone correspondence between the set of hereditary saturated subsets 𝐻 (which we shall 

define) of 𝐵 and the set of gauge-invariant ideals 𝐼𝐻  of 𝐶∗(𝐸, ℒ, 𝐵).  

  Returning to the labelled spaces   (𝐸, ℒ, ℇ) and the simplicity of 𝐶∗(𝐸, ℒ, ℇ), we consider 

a labelled graph (𝐸, ℒ) such that for each 𝑣 ∈  𝐸0, a generalized vertex [𝑣]𝑙 is a finite set 

for some  𝑙. For the merged labelled graph (𝐹, ℒ𝐹 ) (Definition (4.1.22)) of (𝐸, ℒ), we show 

that ℱ  has the property that every set of single vertex belongs to ℱ and 𝐶∗(𝐸, ℒ, ℇ) ≅

𝐶∗(𝐹, ℒ𝐹  , ℱ) (Theorem (4.1.30)). It is shown that  (𝐹, ℒ𝐹  , ℱ) is strongly cofinal 

(respectively, disagreeable) if and only if (𝐹, ℒ , ℇ) is strongly cofinal (respectively, 

disagreeable) (Theorem (4.1.31)). This then proves that if (𝐹, ℒ , ℇ)is a labelled space such 

that for each 𝑣 ∈  𝐸0 , a generalized vertex [𝑣]𝑙  is finite for some 𝑙, then 𝐶∗(𝐸, ℒ, ℇ) is 

simple if and only if (𝐸, ℒ, ℇ) is strongly cofinal and disagreeable (Corollary (4.1.32)). 

We use the notational conventions of [174] for graphs and graph 𝐶∗ −algebras and of 

[167] for labelled spaces and their 𝐶∗ −algebras. 𝐴 directed graph is a quadruple 𝐸 =
 (𝐸0, 𝐸1, 𝑟, 𝑠) consisting of a countable set of vertices 𝐸0 , a countable set of edges 𝐸1,and 

the range, source maps 𝑟𝐸, 𝑠𝐸 ∶ 𝐸
1 → 𝐸0  (we often write 𝑟 and 𝑠 for 𝑟𝐸  and 𝑠𝐸 , respectively). 

By 𝐸𝑛  we denote the set of all finite paths 𝜆 =  𝜆1  · · · 𝜆𝑛  of  length 𝑛 ( |𝜆| = 𝑛) (𝜆𝑖  ∈
 𝐸1, 𝑟(𝜆𝑖)  =  𝑠(𝜆𝑖+1),(1 ≤  𝑖 ≤ 𝑛 − 1) and use the notation 𝐸≤𝑛 ≔ ⋃ 𝐸𝑖𝑛

𝑖=1  and 𝐸≥𝑛 ≔

⋃ 𝐸𝑖∞
𝑖=1 𝑠 naturally extend to 𝐸≥𝑛. If a sequence of edges 𝜆𝑖 ∈ 𝐸

1(𝑖 ≥
1) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑟 (𝜆𝑖) = 𝑠(𝜆𝑖+1), one obtains an infinite path 𝜆1𝜆2𝜆3  · · · with the source 

𝑠(𝜆1𝜆2𝜆3  · · ·) ∶=  𝑠(𝜆1). 𝐸
∞ denotes the set of   all infinite paths. 

A labelled graph (𝐸, ℒ) over a countable alphabet 𝐴 consists of a directed graph 𝐸 and a 

labelling map 𝐿 ∶  𝐸1  →  𝐴. We assume that ℒ  is onto. Let 𝐴∗ and 𝐴∞be the sets of all finite 

sequences (of length greater than or equal to 1) and infinite sequences, respectively. Then 

ℒ(𝜆) ≔ ℒ(𝜆1)⋯ℒ(𝜆𝑛) ∈ 𝐴
∗𝑖𝑓 𝜆 = 𝜆1⋯𝜆𝑛 ∈ 𝐸

𝑛 , 𝑎𝑛𝑑 ℒ(𝛿) ≔ ℒ(𝛿1)ℒ(𝛿2)⋯ ∈
ℒ(𝐸∞) ⊂ 𝐴∞ 𝑖𝑓 𝛿 = 𝛿1𝛿2⋯ ∈ 𝐸

∞.  



 

111 

 

We use the notation ℒ∗(𝐸) ≔ ℒ(𝐸≥1).The range 𝑟(𝛼)and source r(α)of a 1abelleb path 𝛼 ∈
ℒ∗(𝐸) are subsets of 𝐸0 defined by 

𝑟(𝛼) = {𝑟(𝜆): 𝜆 ∈ 𝐸≥1, ℒ(𝜆) = 𝛼}, 
𝑠(𝛼) = {𝑠(𝜆): 𝜆 ∈ 𝐸≥1, ℒ(𝜆) = 𝛼}. 

The relative range of 𝛼 ∈  ℒ∗(𝐸) with respect to 𝐴 ⊂  2𝐸
0  is defined to be 

𝑟(𝐴, 𝛼) = {𝑟(𝜆): 𝜆 ∈ 𝐸≥1, ℒ(𝜆) = 𝛼 , 𝑠(𝜆) ∈ 𝐴}. 

If 𝐵 ⊂  2𝐸
0  is a collection of subsets of 𝐸0 such that 𝑟(𝐴, 𝛼) ∈ 𝐵 whenever 𝐴 ∈ 𝐵 and 𝛼 ∈

 ℒ∗(𝐸), 𝐵   is said to be closed under relative ranges for (E, ℒ). We call B an accommodating 

set for (E, ℒ) if it is closed under relative ranges, finite intersections and unions and contains 

r(α) for all α ∈  ℒ∗(E). If B is accommodating for (E, ℒ), the triple (E, ℒ, B) is called a 

labelled space. A labelled space   (E, ℒ, B) is weakly left-resolving if 

𝑟(𝐴, 𝛼)  ∩  𝑟(𝐵, 𝛼)  =  𝑟(𝐴 ∩  𝐵, 𝛼) 
for all 𝐴, 𝐵 ∈ 𝐵 and 𝛼 ∈  ℒ∗(𝐸). 

For 𝐴, 𝐵 ∈ 2𝐸
0
and 𝑛 ≥ 1, let 

𝐴𝐸𝑛 = {𝜆 ∈ 𝐸𝑛: 𝑠(𝜆) ∈ 𝐴} 𝐸𝑛𝐵 = {𝜆 ∈ 𝐸𝑛: 𝑟(𝜆) ∈ 𝐵}, 
and AEnB = AEn ∩ EnB.. We write Env for En{v } and vEn for {v }En, and will use the 

notation AE≥kand vE∞ which should have obvious meaning. A labelled space (E, ℒ, B) is 

said to be set-finite (receiver set-finite, respectively) if for every A ∈ B the set ℒ(AE1) 
(ℒ(E1A), respectively) is finite. 

We assume that 𝐸 has no sinks, that is |𝑠−1(𝑣)| > 0 for all 𝑣 ∈  𝐸0. 
Definition (4.1.1)[449]: (See [166, Definition 4.1].) Let (𝐸, ℒ, 𝐵) be a weakly left-resolving 

labelled space. A representation of (E, ℒ, B) consists of projections {pA ∶  A ∈ B} and partial 

isometries {𝑠𝑎 ∶  𝑎 ∈  𝐴} such that for 𝐴,𝐵 ∈ 𝐵 and 𝑎, 𝑏 ∈ 𝐴, 
(i) 𝑃∅ = 0, 𝑃𝐴𝑃𝐵 = 𝑃𝐴 ∩ 𝐵, 𝑎𝑛𝑑 𝑝𝐴 ∪ 𝐵 = 𝑝𝐴 + 𝑝𝐵 − 𝑝𝐴∩𝐵, 
(ii)  𝑃𝐴𝑆𝑎 =  𝑠𝑎 Pr(𝐴,𝑎),  

(iii) 𝑠𝑎
∗𝑠𝑎 =  𝑝𝑟(𝑎)and  𝑠𝑎

∗𝑠𝑎 = 0 unless 𝑎 = 𝑏, 

(iv)  for 𝐴 ∈ 𝐵,  if ℒ(𝐴𝐸1) is finite and nonempty, then 

𝑃𝐴 = ∑ 𝑠𝑎
𝑎∈ℒ(𝐴𝐸1)

𝑃𝑟(𝐴,𝑎)𝑠𝑎
∗ . 

Remark (4.1.2)[ 449]: It is known [166, Theorem 4.5] that if (𝐸, ℒ, 𝐵) is a weakly left-

resolving labelled space, there exists a 𝐶∗ −algebra 𝐶∗(𝐸, ℒ, 𝐵) generated by a universal 

representation {𝑠𝑎, 𝑃𝐴} of (𝐸, ℒ, 𝐵). In this case, we simply write 𝐶∗(𝐸, ℒ, 𝐵)  = 𝐶∗(𝑠𝑎, 𝑃𝐴) 
and call , labelled graph 𝐶∗ −algebra of a labelled space(𝐸, ℒ, 𝐵)Furthermore, 𝑠𝑎 ≠ 0 and 

𝑝𝐴 ≠ 0 for 𝑎 ∈ 𝐴 and 𝐴 ∈ 𝐵, 𝐴 ≠ ∅ . Note also that𝑠𝛼𝑝𝐴𝑠𝛽
∗ ≠ 0 if and only if 𝐴 ∩ 𝑟(𝛼) ∩

𝑟(𝛽) ≠ ∅. If we assume that   (𝐸, ℒ, 𝐵) is set-finite, by [166, Lemma 4.4] and Definition 

(4.1.1)(iv) it follows that 
𝑃𝐴 = ∑ 𝑠𝜎𝜎∈ℒ(𝐴𝐸𝑛) 𝑃𝑟(𝐴,𝜎)𝑠𝜎

∗ . for 𝐴 ∈ 𝐵,   𝑛 ≥ 1              (1) 

and 

𝐶∗(𝐸, ℒ, 𝐵) = span{𝑠𝛼𝑝𝐴𝑠𝛽
∗ : 𝛼, 𝛽 ∈ ℒ∗(𝐸), 𝐴 ∈ 𝐵}.            (2) 

By the universal property of 𝐶∗(𝐸, ℒ, 𝐵)𝐶∗(𝑠𝑎 , 𝑝𝐴), there exists a strongly continuous 

action 𝛾 ∶ 𝕋 → Aut (𝐶∗(𝐸, ℒ, 𝐵)), called the gauge action, such that γz(sa)  =  zsa and 

γz(pA)  =  pA. We have the following gauge-invariant uniqueness theorem for labelled 

graph 𝐶∗ −algebras 𝐶∗(𝐸, ℒ, 𝐵) 
Theorem (4.1.3)[449]: (See [166, Theorem 5.3].) Let (E, ℒ, B) be a weakly left-resolving 

labelled space and let {Sa, PA } be a representation of (E, ℒ, B) on Hilbert space. Take πS,P to 

be the representation of C∗(E, ℒ, B) satisfying πS,P (sa)  =  Sa and πS,P (pA) =  PA.  Suppose 
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that each PA is nonzero whenever A ≠ ∅, and that there is a strongly continuous action β of 

𝕋 on C∗(Sa, PA) such that for all z ∈  𝕋,  βz  ∘ πS,P = πS,P ∘  γz. Then πS,P is faithful. 

For 𝑣, 𝑤 ∈ 𝐸0, we writev ∼l w ℒ(E≤lw) as in [167]. Then ∼l is an equivalence relation 

on E0. The equivalence class[v]l of v is called a generalized vertex. Let Ωl(E) ∶=
 E0 ~l⁄ . For k >  l and v ∈  E0, [v]k  ⊂  [v]l is obvious and   [v]l = ⋃ [vi]l+1

m
i=1 for some 

vertices v1, . . . , vm  ∈  [v]l [171, Proposition 2.4]. 

From now on we assume that our labelled space (𝐸, ℒ, 𝐵) is set-finite and receiver set-

finite for any accommodating set 𝐵. 
  Let ℇ0,− be the smallest accommodating set for (𝐸, ℒ). Then ℇ0,−  consists of the sets of 

the form ⋃ ⋂ 𝑟𝑛
𝑖=1

𝑚
𝑘=1 (𝛽𝑖,𝑘)𝛽𝑖,𝑘 ∈ ℒ

∗(𝐸), as mentioned in [171, Remark 2.1], and is 

contained 

in every accommodating set 𝐵 for (𝐸, ℒ). Let ℇ be the smallest one among the 

accommodating 

sets 𝐵 for   (𝐸, ℒ) such that 𝐴\ 𝐵 ∈ 𝐵 whenever 𝐴, 𝐵 ∈ 𝐵. Then ℇ contains all generalized 

vertices [𝑣]𝑙 since every [𝑣]𝑙 is the relative complement of sets in ℇ0,−. More precisely, 

[𝑣]𝑙 = 𝑋𝑙(𝑣) \ 𝑟(𝑌𝑙(𝑣)), where 𝑋𝑙(𝑣) ≔ ⋂ 𝑟(𝛼) 
𝛼∈ℒ(𝐸≤𝑙𝑣)  and 𝑌𝑙(𝑣)⋃ ℒ(𝐸≤𝑙 

𝑤∈𝑌𝑙(𝑣)
𝑤) ∖

ℒ(𝐸≤𝑙𝑣) [167, Proposition 2.4]. If ℇ is weakly left-resolving then 

ℇ = {⋃ [𝑣𝑖
𝑛
𝑖=1 ]𝑙𝑖: 𝑣𝑖 ∈ 𝐸

0, 𝑙𝑖 ≥ 1, 𝑛 ≥ 1}                       (3) 

(see [171, Proposition 3.4]). 

Let 𝐵1 and 𝐵2 be two accommodating sets for (𝐸, ℒ) such that 𝐵1 ⊂  𝐵2. If 𝐶
∗(𝐸, ℒ, 𝐵1)  =

 𝐶∗(𝑡𝑎 , 𝑞𝐴) and 𝐶∗(𝐸, ℒ, 𝐵2) =  𝐶
∗(𝑠𝑎, 𝑝𝐴), since {𝑠𝑎 , 𝑝𝐴 ∶  𝑎 ∈  𝐴, 𝐴 ∈  𝐵1} is a 

representation of   (𝐸, ℒ, 𝐵1), by the universal property of 𝐶∗(𝐸, ℒ, 𝐵1) there exists a ∗
 −homomorphism 𝜄 ∶ 𝐶∗(𝐸, ℒ, 𝐵1) → 𝐶

∗(𝐸, ℒ, 𝐵2), such that 𝜄(𝑡𝑎)  =  𝑠𝑎  and 𝑞𝐴  = 𝑃𝐴 for 

𝑎 ∈  𝐴, 𝐴 ∈  𝐵1. Let 𝛼 and  𝛽  be the gauge actions of 𝕋  on , 𝐶∗(𝐸, ℒ, 𝐵1) and , 

𝐶∗(𝐸, ℒ, 𝐵2), respectively. Then 𝜄 ∘  𝛼𝑧  =  𝛽𝑧  ∘  𝜄 for 𝑧 ∈ 𝕋 and  𝜄(𝑞𝐴)  =  𝑝𝐴  ≠  0 for 𝐴 ∈
 𝐵1, hence by Theorem (4.1.3). 

Proposition (4.1.4)[449]: Let B1 ⊂ B2be two accommodating sets for a labelled graph 

(E, ℒ) such that (E, ℒ, Bi) is weakly left-resolving for i = 1,2. If  C∗(E, ℒ, B1)  =  C
∗(ta, qA) 

and C∗(E, ℒ, B2)  =  C
∗(sa, pB), the homomorphism ι ∶  C∗(E, ℒ, B1)  →  C

∗(E, ℒ, B2) such 

that ι(ta)  =  sa and ι(qA) =  pA is injective. 

Corollary(4.1.5)[449]: Let  (E, ℒ, ℇ0,−) and (E, ℒ, ℇ) be weakly left-resolving 

C∗(E, ℒ, ℇ0,−) ≅ C∗(E, ℒ, ℇ) labelled spaces. Then 

Proof. Let C∗(E, ℒ, ℇ0,−)  = C∗(sa, pA) and C∗(E, ℒ, ℇ)  =  C∗(ta, qB), a ∈  A, A ∈

ℇ0,−, B ∈  ℇ. Then the map ι ∶  C∗(E, ℒ, ℇ0,−)  →  C∗(E, ℒ, ℇ) such that ι(sa)  =  ta and 

ι(pA) = qA, 𝐴 ∈  ℇ
0,−, is an isomorphism by Proposition (4.1.4). For any [𝑣]𝑙  ∈  ℰ, there 

are two sets 𝐴, 𝐵 ∈ ℰ0,−such that [𝑣]𝑙  =  𝐴\𝐵. Since 𝐴 = (𝐴 \ 𝐵) ∪ (𝐴 ∩ 𝐵) and 

𝐴 \ 𝐵, 𝐴 ∩ 𝐵 ∈  ℰ, we have 𝑞𝐴 =  𝑞𝐴\𝐵 + 𝑞𝐴∩𝐵 and so 

𝑞[𝑣]𝑙 = 𝑞𝐴∖𝐵 = 𝑞𝐴 − 𝑞𝐴∩𝐵 = 𝜄(𝐶
∗(𝐸, ℒ, ℰ0,−)). 

Hence 𝜄 is surjective by (3).  

We assume that every labelled space (𝐸, ℒ, 𝐵) is weakly left-resolving and 𝐵 is closed under 

relative complements. 

Definition (4.1.6)[449]: Let (𝐸, ℒ, 𝐵) be a labelled space and ~𝑅 an equivalence relation 

on 𝐵. Denote the equivalence class of 𝐴 ∈ 𝐵 by [𝐴] (or [𝐴]𝑅  in case we need to specify the 

relation. ~𝑅) and let 

𝐴𝑅 ≔ {𝑎 ∈ 𝐴: [𝑟(𝑎)] ≠ [∅]}. 
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If the following operations ∪,∩, and \, 
[𝐴] ∪ [𝐵 ]: = [𝐴 ∪  𝐵 ], [𝐴] ∩ [𝐵 ]: = [𝐴 ∩  𝐵 ], [𝐴] ∖ [𝐵 ]: = [𝐴 ∖  𝐵 ] 

are well-defined on the equivalence classes [𝐵]𝑅: = {[𝐴]: 𝐴 ∈ 𝐵}, and if the relative range, 

𝑟([𝐴], 𝛼) ≔ [𝑟(𝐴, 𝛼)], 
Is Awell-defined for   [𝐴] ∈ [𝐵]𝑅, 𝛼 ∈ 𝐶

∗(𝐸) ∩ (𝐴𝑅)
∗  so that 𝑟([𝐴], 𝛼) = [∅]  for all 𝛼 ∈

𝐶∗(𝐸) ∩ (𝐴𝑅)
∗ implies [𝐴] = [∅] we call a triple (𝐸, ℒ, [𝐵]𝑅)a quotient labelled space of 

(𝐸, ℒ, [𝐵]𝑅)([A],α) = [∅]𝛼 ∈ (𝐸, 𝐿 ∗ 𝐿(𝐸, 𝐵)  ∩). 
     Note weakly that left-resolving 𝑟(∗ ([∅]𝛼) ∩  𝐴 = 𝑅[∅]. If and r ([𝐴], 𝛼)[𝐴 ∩ 𝑟([𝐵] =
, 𝛼)[∅] =whenever ([𝐴] ∩ [𝐵𝐴], 𝛼) = 𝑟([𝐴] ∩ [𝐵], 𝛼) holds for all [𝐴], [𝐵] ∈ [𝐵]𝑅) is and 

𝛼 ℒ∗(𝐸) ∩ (𝐴𝑅)
∗. 

A labelled space itself is a quotient labelled space with the relation of equality and 𝐴𝑅 =
𝐴. For a nontrivial and important example of quotient labelled spaces, see Proposition 

(4.1.10) below. 

 In a similar way to Definition (4.1.1), we define a representation of a quotient labelled 

space as follows. 

Definition (4.1.7)[449]: Let (𝐸, : ℒ, [𝐵]𝑅) be a weakly left-resolving quotient labelled space 

of labelled space (𝐸, ℒ, 𝐵). A representation of (𝐸, : ℒ, [𝐵]𝑅) consists of projections 

{ 𝑝[𝐴]: [𝐴]  ∈  [𝐵]𝑅} and partial isometries  {𝑠𝑎: 𝑎 ∈  𝐴𝑅} subject to the relations:  

(i)  𝑝[∅] =  0,  𝑝[𝐴]𝑝[𝐵]  =   𝑝[𝐴]∩[𝐵], and  𝑝[𝐴]∪[𝐵] = 𝑝[𝐴] + 𝑝[𝐵] −  𝑝[𝐴]∩[𝐵], 

(ii)   𝑝[𝐴]𝑠𝑎 = 𝑠𝑎 𝑝𝑟([𝐴],𝑎), 

(iii) 𝑠𝑎
∗𝑠𝑎 =  𝑝[𝑟(𝑎)]  and 𝑠𝑎

∗𝑠𝑏 = 0 unless 𝑎 =  𝑏, 

(iv) for [𝐴] ∈ [𝐵]𝑅, if ℒ([𝐴]𝐸1) ∩ 𝐴𝑅is nonempty, then 

 𝑝[𝐴] = ∑ 𝑠𝑎 𝑝𝑟([𝐴],𝑎)𝑠𝑎∗ .
𝑎∈ℒ([𝐴]𝐸1)∩𝐴𝑅

 

The sum  𝑝[𝐴] = ∑ 𝑠𝑎 𝑝𝑟([𝐴],𝑎)𝑠𝑎∗𝑎∈ℒ([𝐴]𝐸1)∩𝐴𝑅  of Definition (4.1.8)  (iv) exists since 

𝑠𝑎 𝑝𝑟([𝐴],𝑎)𝑠𝑎∗=0 for all but finitely many 𝑎 ∈ ℒ([𝐴]𝐸1) ∩ 𝐴𝑅. In fact, if [𝐴] = [𝐴′] and 𝑎 ∈

ℒ(𝐴𝐸1)\ℒ(𝐴′𝐸
1
),  then from 𝑟([𝐴], 𝑎) = 𝑟([𝐴′], 𝑎) we must have [𝑟(𝐴, 𝑎)] =

[𝑟(𝐴′, 𝑎)] = [∅]  and hence 𝑝𝑟([𝐴],𝑎) = 0.Thus  𝑠𝑎 𝑝𝑟([𝐴],𝑎)𝑠𝑎
∗ ≠ 0 is possible only when 

𝑎 ∈ ⋂ ℒ(𝐴′𝐸1)[𝐴′]=[𝐴] , but the set ⋂ ℒ(𝐴′𝐸1)[𝐴′]=[𝐴]   is finite since we assume that 

(𝐸, ℒ, 𝐵) is set-finite. 

Definition (4.1.8)[449]: Let 𝐻 be a subset of an accommodating set 𝐵.  𝐻 is said to be 

hereditary if 𝐻 satisfies the following: 

(i) 𝑟(𝐴, 𝛼) ∈ 𝐻 for all 𝐴 ∈ 𝐻,𝛼 ∈ ℒ∗(𝐸), 
(ii) 𝐴 ∪ 𝐵 ∈ 𝐻 For all 𝐴, 𝐵 ∈ 𝐻, 

(iii)  if 𝐴 ∈  𝐻 and  𝐵 ∈  𝐵 with 𝐵 ⊂  𝐴, then 𝐵 ∈  𝐻. 

and 𝐵 ∈  𝐵 since 𝐴 \ 𝐵 ⊂  𝐴 ∈  𝐻 and 𝐴\𝐵 ∈  𝐵. A hereditary subset 𝐻 of 𝐵 is called 

saturated if  for any 𝐴 ∈  𝐵, {𝑟(𝐴, 𝑎): 𝑎 ∈  𝐴} ⊂  𝐻 implies that 𝐴 ∈  𝐻. We write 𝐻 for 

the smallest hereditary saturated set containing 𝐻. 

Lemma (4.1.9)[449]: Let I be a nonzero ideal in C∗(E, ℒ, B)  = C∗(sa, pA). Then the set 

𝐻𝐼 ∶= {𝐴 ∈  𝐵 ∶  𝑝𝐴  ∈  𝐼 } 
is hereditary and saturated. If I is gauge-invariant, HI ≠ {∅}. 
Proof. To show that 𝐻𝐼  is hereditary, let 𝐴 ∈ 𝐻𝐼.Then  𝑝𝐴𝑠𝑎 = 𝑠𝑎 𝑝𝑟(𝐴,𝑎) = 𝑠𝑎

∗𝑠𝑎
  𝑝𝑟(𝐴,𝑎) ∈

𝐼 and 𝑟(𝐴, 𝑎) ∈ 𝐻𝐼 for all 𝑎 ∈ 𝐴.  A1so if 𝐴,𝐵 ∈ 𝐻𝐼 , 𝑃𝐴∪𝐵 = 𝑃𝐴 + 𝑝𝐵 − 𝑝𝐴𝑝𝐵a)  is  in 𝐼, that 

is 𝐴 ∪ 𝐵 ∈ 𝐻𝐼 . If 𝐴 ∈ 𝐻𝐼  and 𝐵 ∈ 𝐵, with 𝐵 ⊂ 𝐴, then 𝑝𝐵 = 𝑝𝐴∩𝐵 = 𝑝𝐴𝑝𝐵 ∈ 𝐼 and 𝐵 ∈ 𝐻𝐼 .
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Now let 𝐴 ∈ 𝐵 and 𝑟(𝐴, 𝑎) ∈ 𝐻𝐼 for All 𝑎 ∈ 𝐴.  Then the projection 𝑝𝐴 = ∑ 𝑠𝑎𝑎∈ℒ(𝐴𝐸1) ×

𝑝𝑟(𝐴,𝑎)𝑠𝑎
∗  belongs to 𝐼, that is, 𝐴 ∈ 𝐻𝐼  for all a ∈ A. and the hereditary set 𝐻𝐼  is saturated  

Finally, suppose that 𝐼 is a gauge-invariant ideal of  𝐶∗(𝐸, ℒ, 𝐵). such that 𝐻𝐼 = {∅}.If 𝜋 ∶
 𝐶∗(𝐸, ℒ, 𝐵) 𝐶∗(𝐸, ℒ, 𝐵 ) 𝐼⁄   is the quotient ∗ −homomorphism {𝜋(𝑝𝐴), 𝜋(𝑠𝑎)}  is a 

representation 𝐶∗(𝐸, ℒ, 𝐵) such that the projections 𝜋(𝑝𝐴) are nonzero for 𝐴 ≠ ∅ and the 

action 𝛾′on 𝐶∗(𝐸, ℒ, 𝐵 ) 𝐼⁄  induced By the gauge action𝛾   on 𝐶∗(𝐸, ℒ, 𝐵) satisfies 𝛾′ ∘ 𝜋 =
𝜋 ∘ 𝛾 (note that 𝛾𝑧(𝐼) ⊂ 𝐼).by Theorem (4.1.3) 𝜋  is faithful, which is a contradiction.  

Proposition (4.1.10)[449]: Let I be a nonzero gauge-invariant ideal of C∗(E, ℒ, B) . Then 

the relation 

A ∼I B ⇐⇒ A ∪  W =  B ∪  W for some W ∈  HI 
defines an equivalence relation ∼I

 on B such that (E, ℒ, [B]I) is a weakly left-resolving 

quotient labelled space of (E, ℒ, B). 
Proof. Clearly  ∼𝐼  is reflexive and symmetric. It is transitive since 

𝐴 ∼𝐼  𝐵 and 𝐵 ∼𝐼  𝐶 

⇒ 𝐴 ∪  𝑊 =  𝐵 ∪  𝑊 and 𝐵 ∪  𝑉 =  𝐶 ∪  𝑉 for some 𝑊,𝑉 ∈  𝐻𝐼 
⇒ 𝐴 ∪  (𝑊 ∪  𝑉)  =  𝐶 ∪  (𝑊 ∪  𝑉) 
⇒ 𝐴 ∼𝐼  𝐶 because 𝑊 ∪  𝑉 ∈  𝐻𝐼. 

To see that we have well-defined operations ∪, ∩  and on [𝐵]𝐼 , let [𝐴] = [𝐴′] and [𝐵] =
[𝐵′] .Choose 𝑊,𝑉 ∈  𝐻𝐼 such that 𝐴 ∪  𝑊 =  𝐴′ ∪  𝑊 and 𝐵 ∪  𝑉 =  𝐵′ ∪  𝑉. Then 

                   (𝐴 ∪ 𝐵) ∪ ( 𝑊 ∪ 𝑉) = (𝐴′ ∪ 𝐵′) ∪ ( 𝑊 ∪  𝑉), 
     (𝐴 ∩  𝐵) ∪ ( 𝑊 ∪  𝑉) = (𝐴 ∪ ( 𝑊 ∪  𝑉) ) ∩ (𝐵 ∪ ( 𝑊 ∪  𝑉)) 
                                                 = (𝐴′ ∪ ( 𝑊 ∪  𝑉) ) ∩ (𝐵′ ∪ ( 𝑊 ∪  𝑉)) 

                                                     = (𝐴′ ∩  𝐵′) ∪ ( 𝑊 ∪  𝑉), 
                                         (𝐴 \ 𝐵) ∪ ( 𝑊 ∪  𝑉) = (𝐴′ \ 𝐵′) ∪ ( 𝑊 ∪  𝑉). 
Thus [𝐴] ∪ [𝐵] = [𝐴′] ∪ [𝐵′], [𝐴] ∩ [𝐵] = [𝐴′] ∩ [𝐵′], and [𝐴]\[𝐵] = [𝐴′]\[𝐵′]. 

We claim that [𝑟(𝐴, 𝛼)] = [𝑟(𝐴′, 𝛼)] for [𝐴′] and 𝛼 ∈ ℒ∗(𝐸) ∩ 𝐴𝐼
∗ where 𝐴𝐼 = {𝑎 ∈

𝐴: [𝑟(𝑎)] ≠ [∅] = {𝑎 ∈ 𝐴: 𝑝𝑟(𝑎) ∉ 𝐼}. Let 𝐴 ∪𝑊 = 𝐴′ ∪𝑊 for 𝑊 ∈ 𝐻𝐼 .Then 𝑟(𝐴, 𝛼) ∪

𝑟(𝑊, 𝛼) = 𝑟(𝐴 ∪𝑊,𝛼) = 𝑟(𝐴′ ∪𝑊,𝛼) = 𝑟(𝐴′, 𝛼) ∪ 𝑟(𝑊, 𝛼).Since 𝑟(𝑊, 𝛼) ∈ 𝐻𝐼 
we have [𝑟(𝐴, 𝛼) = [∅] and see that the relative ranges 𝑟([𝐴], 𝛼) are well-defined. 

If 𝑟([𝐴], 𝛼)  =  [∅] for all 𝛼 ∈ ℒ∗(𝐸) ∩  𝐴𝐼
∗ , then 𝑟(𝐴, 𝑎)  ∈  𝐻𝐼 for all 𝑎 ∈ 𝐴𝐼 . Since 

𝑟(𝐴, 𝑎)  ∈ 𝐻𝐼 for all 𝑎 ∉ 𝐴𝐼  and 𝐻𝐼  is saturated, 𝐴 ∈ 𝐻𝐼 , that is, [𝐴] = [∅] follows. 

Finally, [𝐵]𝐼 is weakly left-resolving since 𝑟([𝐴], 𝛼) ∩ 𝑟([𝐵], 𝛼) = [𝑟([𝐴], 𝛼)] ∩
[𝑟([𝐵], 𝛼)] = [𝑟(𝐴, 𝛼) ∩ 𝑟(∩ 𝐵, 𝛼)] = [𝑟(𝐴 ∩ 𝐵, 𝛼)] = 𝑟([𝐴 ∩ 𝐵], 𝛼) = 𝑟([𝐴] ∩ [𝐵], 𝛼). 
Lemma (4.1.11)[449]: Let H be a hereditary  subset of B. and Then the ideal IH of 

C∗(E, ℒ, B) generated by the projections {pA: A ∈ H} is gauge-invariant and 

𝐼𝐻 = 𝐼�̅� = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑠𝛼𝑝𝐴𝑠𝛽; 𝛼, 𝛽 ∈ ℒ
∗(𝐸), 𝐴 ∈ 𝐻}. 

Proof. By 𝐻𝐼𝐻  = {𝐴 ∈ 𝜀̅ ∶ 𝑃𝐴 ∈ 𝐼𝐻 } is a hereditary saturated subset of  𝐵, and 𝐻 ⊂  𝐻𝐼𝐻   . 

It is easy to see that 𝐽 ∶= 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑠𝛼𝑝𝐴𝑠𝛽; 𝛼, 𝛽 ∈ ℒ
∗(𝐸), 𝐴 ∈ 𝐻} is a gauge-invariant ideal of 

ℒ∗(𝐸, ℒ, 𝐵) such that 𝐽 ⊂  𝐼𝐻 . But 𝐽 contains the generators {𝑝𝐴: 𝐴 ∈ 𝐻} of  𝐼�̅�  by 

Definition  (4.1.8) (iv). Hence 𝐼�̅� ⊂  𝐽 . 
Let (𝐸, ℒ, [ℬ ]𝑅) be a quotient labelled space. In a similar way as in [166], we set 

[ℬ ]𝑅
∗
 
= (𝐸, ℒ, (𝒜𝑅)

∗)⋃[ℬ ]𝑅
 
 
 and extend 𝑟, 𝑠 to [ℬ ]𝑅

 
 
 be𝑟([𝐴]) = [𝐴]  and 𝑠[𝐴] =

[𝐴]  𝑓𝑜𝑟 [𝐴]  ∈  [ℬ ]𝑅 Also put 𝑠[𝐴]  =  𝑝[𝐴] so that 𝑠𝛽 is defined for all   𝛽 ∈  [ℬ]𝑅
∗ . The 

following lemma can be proved by the same arguments in [166, Lemma 4.4]. 

Lemma (4.1.12)[449]: Let (𝐸, ℒ, [ℬ ]𝑅)be a weakly left-resolving quotient labelled space 

and {𝑠𝑎 , 𝑝[𝐴]} a representation of (𝐸, ℒ, [ℬ ]𝑅). Then any nonzero products of 𝑠𝑎 , 𝑝[𝐴], and 
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𝑠𝛽
∗  can be written as a finite linear combination of elements of the form 𝑠𝑎𝑝[𝐴]𝑠𝛽

∗ for some 

𝐴 ∈ [ℬ ]𝑅and 𝛼, 𝛽 ∈  [ℬ]𝑅
∗  with [𝐴]  ⊂  [𝑟(𝛼)  ∩  𝑟(𝛽)] ≠ [∅]. Moreover we have the 

following:  

 

(𝑠𝛼𝑝[𝐴]𝑠𝛽
∗)(𝑠𝛾𝑝[𝐵]𝑠𝛿

∗) =

{
 
 

 
 
𝑠𝛼𝛾′𝑝𝑟([𝐴],𝛾′)∩[𝐵]𝑠𝛿

∗ , 𝑖𝑓𝛾 = 𝛽𝛾′

𝑠𝛼𝑝[𝐴] ∩ 𝑟([𝐵]𝛽
′)𝑠𝛿𝛽′

∗ , 𝑖𝑓𝛽 = 𝛽𝛽′

𝑠𝛼𝑝[𝐴] ∩ [𝐵]𝑠𝛿𝛽′
∗ 𝑖𝑓𝛽 = 𝛽𝛾,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  

Theorem (4.1.13)[449]: Let (𝐸, 𝐿, 𝐵) be a labelled space and 𝐼 be a nonzero gauge-invariant 

ideal of  𝐶∗(𝐸, 𝐿, 𝐵). Then there exists a 𝐶∗ −algebra 𝐶∗(𝐸, 𝐿, [𝐵]𝐼) generated by a universal 

representation {𝑡𝑎, 𝑝[𝐴]} of (𝐸, 𝐿, [𝐵]𝐼 ). Furthermore 𝑝[𝐴] ≠ 0 for [𝐴]  ≠ [∅] and 𝑡𝑎 ≠ 0 

for ∈ 𝐴𝐼  .. 
Proof. The existence of the 𝐶∗ −algebra 𝐶∗ (𝐸, ℒ, [𝐵]𝐼) with the desired universal property 

can be shown by the same argument in the first part of the proof of [166, Theorem 4.5], and 

here we show the second assertion of our theorem. If  𝐶∗ (𝐸, ℒ, 𝐵)  = 𝐶∗ (𝑠𝑎, 𝑝𝐴), it is easy 

to see that {𝑠𝑎 +  𝐼, 𝑝𝐴 +  𝐼 ∶  𝑎 ∈  𝐴𝐼 , [𝐴]  ∈  [𝐵]𝐼} is a representation of 𝐶∗(𝐸, ℒ, [𝐵]𝐼), 
hence there is a ∗ −homomorphism 𝜓: 𝐶∗(𝐸, ℒ, [𝐵]𝐼) → 𝐶

∗(𝐸, ℒ, 𝐵)/𝐼 such that  

𝜓(𝑡𝑎) = 𝑠𝑎 +  𝐼, 𝜓(𝑝[𝐴]) =  𝑝𝐴 +  𝐼. 

If  𝜓(𝑝[𝐴])  =  𝑝𝐴 + 𝐼 = 𝐼, then  𝑝𝐴 ∈  𝐼 and it follows
 
that 𝐴 ∈ 𝐴𝐼, that is, [𝐴] = [∅]. Thus 

if [𝐴] ≠ [∅]𝑡ℎ𝑒𝑛  𝜓(𝑝[𝐴])  ≠ 𝐼 , and so 𝑝[𝐴] ≠  0. If 𝜓(𝑡𝑎)  =  𝑠𝑎 +  𝐼 = 𝐼 , then 𝑠𝑎
∗𝑠𝑎 +

 𝐼 = 𝑝𝑟(𝑎) + 𝐼 = 𝐼 , and so [𝑟(𝑎)] = [∅], that is, 𝑎 ∉  𝐴𝐼 . Thus if 𝑎 ∈  𝐴𝐼 , then 𝜓(𝑡𝑎)  ≠
 𝐼 , hence 𝑡𝑎 ≠ 0. 
     The following theorem together with Theorem (4.1.18) shows that the 𝐶∗ −algebra 

𝐶∗(𝐸, ℒ, [𝐵]𝑅) of a weakly left-resolving quotient labelled space (𝐸, ℒ, [𝐵]𝑅) is always 

isomorphic to a 𝐶∗ −algebra 𝐶∗(𝐸, ℒ, [𝐵]𝐼 ) for some gauge invariant ideal I of 𝐶∗(𝐸, ℒ, 𝐵) 
(Corollary 4.1.19). 

Theorem (4.1.14)[449]: Let (E, ℒ, [B]R) be a weakly left-resolving quotient labelled space 

of (E, ℒ, B). Then there exists a C∗ −algebra C∗(E, ℒ, [B ]R) generated by a universal. 

Representation Moreover the ideal {tb, q[A]} of (𝐸, ℒ, [𝐵]𝑅) such that q[A] ≠ 0 for [A] ≠ [∅] 

and tb  ≠ 0 for b ∈  AR. Moreover the ideal I of C∗(E, ℒ, B) =  C∗(sa, pA) generated by the 

projections pA, [A] = [∅], is gauge-invariant and there exists a surjective ∗
−homomorphism 

𝜙: 𝐶∗(𝐸, ℒ, |𝐵|𝑅) → 𝐶
∗(𝐸, ℒ, 𝐵 ) 𝐼⁄  

such that 𝜙(𝑡𝑏)  = 𝑠𝑏 + 𝐼 and 𝜙(𝑞[𝐴]) = 𝑝𝐴 + 𝐼. 

Proof. One can show the existence of 𝐶∗(𝐸, ℒ, [ℬ ]𝑅) with the, universal, property as usual. 

[𝐴]) ∈  [ℬ ]𝑅. Let 𝐶∗ (𝐸, ℒ, ℬ) = 𝐶∗(𝑠𝑎 , 𝑝𝐴), 𝑎 ∈  𝒜, 𝐴 ∈  𝐵, 𝑎𝑛𝑑 𝑙𝑒𝑡 𝐶
∗(𝑡𝑏𝑞[𝐴]), 𝑏 ∈

𝐴𝑅 , [𝐴] ∈ [ℬ ]𝑅. It is almost obvious that the ideal I generated by the projections 𝑝𝐴,[𝐴] =
[∅] , is gauge-invariant. 

Now we show that 𝒜𝑅 = 𝒜1 (recall 𝒜𝑅 = {𝑎 ∈  𝒜: [𝑟(𝑎)] ≠ [∅]} and 𝒜𝐼 ≔ {𝑎 ∈

𝒜: [𝑟(𝑎)]𝐼 ≠ [∅]𝐼} = {𝑎 ∈  𝒜: 𝑃𝑟(𝑎) ∉ 𝐼}) 

𝐴𝐼  ⊂  𝐴𝑅 follows from the fact that 𝑃𝑟(𝑎) ∈ 𝐼 whenever [𝑟(𝑎)][ ∅] ] by definition of  𝐼 To 

prove the reverse inclusion, we first show that 

𝑝𝐴 ∉  𝐼 when
  
[𝐴] ≠ [∅]                                (4) 

then, since 𝑎 ∈  𝐴𝑅 if and only if [𝑟(𝑎)] ≠ [∅]
 
, by (4) 𝑎 ∈ 𝐴𝑅 implies 𝑃𝑟(𝑎) ∉ 𝐼, thus 𝑎 ∈

𝐴𝐼. To prove (4), we suppose [𝐴] ≠ [∅] and 𝑝𝐴 ∈ 𝐼  It is not hard to see from (2) that the 
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span of elements of the form 𝑠𝛼𝑝𝐵𝑠𝛽
∗  , [𝐵 ]  =  [∅] , is dense in 𝐼. So we can find 𝑐𝑖  ∈

 𝕔,  𝛼𝑖, 𝛽𝑖  ∈ ℒ
∗(𝐸), and  𝐵𝑖 ∈ ℬ with [𝐵𝑖] = [∅] and 𝐵𝑖 ⊂ 𝑟(𝛼𝑖) ∩ 𝑟(𝛼𝑖) for 𝑖 =

1,⋯ , 𝑛 such that 

        1 > ‖𝑝𝐴 −∑𝑐𝑖

𝑁

𝑖=1

𝑠𝛼𝑖𝑝𝐵𝑖𝑠𝛽𝑖
∗ ‖. 

Using (1) we may assume that the lengths |𝛼𝑖|,1 ≤ 𝑖 ≤ 𝑛 are all equal to, say 𝑙, and write 

𝑝𝐴    as a finite sum 

𝑝𝐴 = ∑ 𝑠𝛾
|𝑟|=𝜄

𝑝𝑟(𝑎,𝛾)𝑠𝛾
∗. 

Since [𝐴] ≠ [∅] there exists a 𝛾0 such that |𝛾0| = 𝜄  and  [𝑟(𝐴, 𝛾0)] ≠
[∅] Then  𝑟(𝐴, 𝛾0)⋃ 𝐵𝑖

𝑛
𝑖=1 ≠ ∅ and we have the following contradiction, 

                                             1 > ‖𝑝𝐴 −∑ 

𝑛

𝑖=1

𝑐𝑖𝑠𝛼𝑖𝑝𝐵𝑖𝑠𝛽𝑖
∗ ‖ 

                                                = ‖∑ 𝑠𝛾
|𝑟|=𝜄

𝑝𝑟(𝑎,𝛾)𝑠𝛾
∗ −∑ 

𝑛

𝑖=1

𝑐𝑖𝑠𝛼𝑖𝑝𝐵𝑖𝑠𝛽𝑖
∗ ‖ 

                       ≥ ‖𝑠𝛾0
∗ (∑ 𝑠𝛾

|𝑟|=𝜄

𝑝𝑟(𝑎,𝛾)𝑠𝛾
∗) 𝑠𝛾0

∗ − 𝑠𝛾0
∗ (∑ 

𝑛

𝑖=1

𝑐𝑖𝑠𝛼𝑖𝑝𝐵𝑖𝑠𝛽𝑖
∗ ) 𝑠𝛾0

∗ ‖ 

                    = ‖𝑝𝑟(𝐴,𝛾0)(⋃ 𝐵𝑖𝑖∈Λ )(𝑝𝑟(𝐴,𝛾0) − ∑ 𝑐𝑖𝑝𝐵𝑖𝑠𝛽𝑖
∗

𝑖∈Λ 𝑠𝛾0)‖ 

                              ≥ ‖𝑝𝑟(𝐴,𝛾0) ∖ (⋃ 𝐵𝑖
𝑖∈Λ

) (𝑝𝑟(𝐴,𝛾0) −∑𝑐𝑖𝑝𝐵𝑖𝑠𝛽𝑖
∗

𝑖∈Λ

𝑠𝛾0)‖ 

                                     = ‖𝑝𝑟(𝐴,𝛾0) ∖ (⋃ 𝐵𝑖𝑖∈Λ )‖ 

                                                = 1. 
Defined Set 𝑇𝑎: = 𝑠𝑎 + 𝐼 and 𝑄[𝐴] ∶=  𝑝𝐴 +  𝐼  for 𝑎 ∈ 𝐴𝑅(= 𝐴𝐼) and [𝐴] ∈ [𝐵]𝑅. Here 

𝑄[𝐴] is well defined since 𝑝𝐴 − 𝑝𝐵 ∈ 𝐼  whenever [𝐴] = [𝐵]. In fact, since [𝐴] = [𝐵] 
implies [𝐴\𝐵] = [𝐴]\[𝐵] =  [∅] = [𝐵\𝐴], we have 𝑝𝐴\𝐵, 𝑝𝐵\𝐴 ∈ 𝐼 , hence 𝑝𝐴 − 𝑝𝐵 =

 (𝑝𝐴\𝐵 + 𝑝𝐴∩𝐵) − (𝑝𝐵\𝐴 + 𝑝𝐴∩𝐵)  =  𝑝𝐴\𝐵  − 𝑝𝐵\𝐴 ∈ 𝐼 . Note that 𝑄[∅]  =  𝑝∅ + 𝐼 = 𝐼 and 

𝑄[𝐴]𝑄[𝐵]  =  (𝑝𝐴  +  𝐼)(𝑝𝐵  +  𝐼)  =  𝑝𝐴𝑝𝐵  +  𝐼 =  𝑝𝐴∩𝐵  +  𝐼 =  𝑄[𝐴∩𝐵]  =  𝑄[𝐴]∩[𝐵]. 

Similarly, 𝑄[𝐴]∩[𝐵]  =  𝑄[𝐴]  +  𝑄[𝐵]  −  𝑄[𝐴]∩[𝐵] Also (iii), (iv) of Definition (4.1.8)  can be 

easily shown to hold. Thus { 𝑇𝑎, 𝑄[𝐴] } is a representation of (𝐸, ℒ, [𝐵 ]𝑅), and by the 

universal property 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 ∗ −ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 

𝜙: 𝐶∗(𝐸, ℒ, [𝐵 ]𝑅) ⟶ 𝐶∗(𝐸, ℒ, [𝐵 ] )/𝐼 
such that 𝜙(𝑡𝑎)  =  𝑇𝑎 = 𝑠𝑎 + 𝐼 and 𝜑(𝑞[𝐴])  =  𝑄[𝐴]  =  𝑝𝐴 + 𝐼 for 𝑎 ∈  𝐴𝑅 and [𝐴]  ∈

 [𝐵]𝑅. Since𝐶∗(𝐸, ℒ, 𝐵)/𝐼 is generated by  

{𝑠𝑎 + 𝐼, 𝑝𝐴 + 𝐼 ∶  𝑎 ∈  𝐴𝐼 , [𝐴]  ≠ [∅]} 
and 𝐴𝐼 = 𝐴𝑅, it follows that 𝜌 is surjective. 

If [𝐴]  ≠ [∅], by (4) 𝑝𝐴/∈ 𝐼 , hence 𝜙(𝑞[𝐴])  =  𝑝𝐴 +  𝐼 ≠ 𝐼 . Thus 𝑞[𝐴]  ≠ 0. If 𝑏 ∈

 𝐴𝑅 ,namely [𝑟(𝑏)]  ≠ [∅], then 𝜙(𝑡𝑏
∗𝑡𝑏)  =  𝑠𝑏

∗𝑠𝑏 + 𝐼 𝑝𝑟(𝑏) + 𝐼 ≠  𝐼 again by (4). Hence 

𝑡𝑏 ≠  0 𝑖𝑛  𝐶∗(𝐸, ℒ, [𝐵]𝑅). 
Definition (4.1.15)[449]: We call the 𝐶∗ −algebra 𝐶∗(𝐸, 𝐿, [𝐵]𝑅) of Theorem (4.1.14) the 

quotient labelled graph 𝐶∗ −algebra. 
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By the universal property, it follows that every quotient labelled graph 𝐶∗ −algebra 

𝐶∗(𝐸, 𝐿, [𝐵]𝑅) = 𝐶
∗(𝑠𝑎 , 𝑝[𝐴]) admits the gauge action 𝛾 of  𝕋 such that 

𝛾𝑧(𝑠𝑎) =  𝑧𝑠𝑎           𝑎𝑛𝑑           𝛾𝑧(𝑝[𝐴])  = 𝑝[𝐴] 

for 𝑎 ∈ 𝐴𝑅  and [𝐴] ∈ [𝐵]𝑅 . 
The gauge-invariant uniqueness theorem for quotient labelled graph 𝐶∗ −algebras can be 

proved by the same arguments used in the proof of [166, Theorem 5.3] for the 𝐶∗ −algebras 

of labelled spaces. But we give a sketch of the proof with some minor corrections to the 

proof of [166, Lemma 5.2] and [166, Theorem 5.3] 

Lemma (4.1.16)[449]: Let (E, ℒ, [B]R) be a weakly left-resolving quotient labelled space of 

a labelled space (E, ℒ, B), {sa, p[A]} a representation of (E, L, [B]R), and Y =

 {𝑠𝛼𝑖𝑝[𝐴𝑖]𝑠𝛽𝑖
∗ : 𝑖 =  1, . . . , 𝑁} be a set of partial isometries in 𝐶∗(𝐸, ℒ, [𝐵]𝑅) which is closed 

under multiplication and taking adjoints. Then any minimal projection of 𝐶∗(𝑌) that is either  

(i)  𝑞 =  𝑠𝛼𝑖𝑝[𝐴𝑖]𝑠𝛼𝑖
∗  for some 1 ≥ 𝑖 ≥ 𝑁; 

(ii)  𝑞 =  𝑠𝛼𝑖𝑝[𝐴𝑖]𝑠𝛼𝑖
∗ − 𝑞′,where 𝑞′ = ∑ 𝑠𝛼𝑘(𝐼)

𝑚
𝑙=1 𝑝[𝐴𝑘(𝑙)]𝑠𝛼𝑘(𝑙)

∗  and 1 ≤ 𝑖 ≤ 𝑁; moreover 

there is nonzero 𝑟 = 𝑠𝛼𝑖𝛽𝑝[𝑟(𝐴𝑖,𝛽)]𝑠𝛼𝑖𝛽
∗ ∈ 𝐶∗(𝐸, ℒ, [𝐵]𝑅) such that 𝑞′𝑟 = 0 and 𝑞 ≥

𝑟. 
.Proof. A minimal projection of the finite dimensional 𝐶∗ −algebra 𝐶∗(𝑌) is unitarily 

equivalent to a projection of the form 

∑𝑠𝛼𝑖(𝑗)

𝑛

𝑗=1

𝑝[𝐴𝑖(𝑗)]𝑠𝛼𝑖(𝑗)
∗ −∑𝑠𝛼𝑘(𝑙)𝑝[𝐴𝑘(𝑙)]𝑠𝛼𝑘(𝑙)

∗

𝑚

𝑙=1

 

where the projections in each sum are mutually orthogonal and for each l there is a unique j 

such that𝑠𝛼𝑖(𝑗)𝑝[𝐴𝑖(𝑗)]𝑠𝛼𝑖(𝑗)
∗ ≥ 𝑠𝛼𝑘(𝑙)𝑝[𝐴𝑘(𝑙)]𝑠𝛼𝑘(𝑙)

∗ . Then the same argument of the proof of [166, 

Lemma 5.2] proves the assertion.  

Theorem (4.1.17)[449]: Let (𝐸, ℒ, [𝐵]𝑅) be a weakly left-resolving quotient labelled space 

and 𝐶∗(𝐸, ℒ, [𝐵]𝑅) = 𝐶
∗ (𝑆𝑎 , 𝑝[𝐴]).  𝐿𝑒𝑡 {𝑆𝑎 , 𝑝[𝐴]} be a representation of (𝐸, ℒ, [𝐵]𝑅)  such 

that each 𝑝[𝐴]  ≠ 0 whenever [𝐴]  ≠ [∅] and 𝑆𝑎  ≠ 0 whenever [𝑟(𝑎)]  ≠ [∅]. If  

𝜋𝑆,𝑃: 𝐶
∗(𝐸, ℒ, [𝐵]𝑅) → 𝐶

∗(𝑆𝑎 , 𝑃[𝐴]) is the homomorphism satisfying 

𝜋𝑆,𝑃 (𝑠𝑎)  = 𝑠𝑎 , 𝜋𝑆,𝑃 (𝑝[𝐴])  =  𝑃[𝐴] 

and if there is a strongly continuous action 𝛽 of 𝕋  on 𝐶∗(𝑆𝑎 , 𝑃[𝐴]) such that 𝛽𝑧 ∘ 𝜋 = 𝜋 ∘

 𝛾𝑧 , then 𝜋𝑆,𝑃 is faithful 

.Proof. It is standard (for example, see the proof of [166, Theorem 5.3]) to show that the 

fixed point algebra 𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾   is equal to 

span{𝑠𝛼𝑝[𝐴]𝑠𝛽
∗: 𝛼, 𝛽 ∈ ℒ∗(𝐸) ∩ (𝐴𝑅)

∗, |𝛼| = |𝛽|, 𝑎𝑛𝑑 [𝐴] ∈ [𝐵]𝑅}. 

Note that 𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾 is an AF algebra. In fact, if 𝑌 is a finite subset of 

𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾 ,each element 𝑦 ∈ 𝑌 can be approximated by linear combinations of 

𝑠𝛼𝑝[𝐴]𝑠𝛽
∗  with |𝛼| = |𝛽|, hence we may assume that 𝑌 = {𝑠𝛼𝑖𝑝[𝐴𝑖]𝑠𝛽𝑖

∗ : |𝛼𝑖|  =  |𝛽𝑖|, 𝑖 =

1, . . . , 𝑁}. Using Lemma (4.1.13), we may also assume that 𝑌 is closed under multiplication 

and taking adjoints, so that 𝐶∗(𝑌 )  = 𝑠𝑝𝑎𝑛(𝑌) is finite dimensional. Thus 𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾 

is an AF algebra. Now we show that 𝜋 ∶=  𝜋𝑆,𝑃 is faithful on 𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾.. Let {𝑌𝑛: 𝑛 ≥

1} be an increasing family of finite subsets of 𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾  which are closed under 

multiplication and taking adjoints such that 𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾 = ⋃𝐶∗(𝑌𝑛). Suppose 𝜋 is not 

faithful on 𝐶∗(𝑌𝑛) for some 𝑌𝑛 =  {𝑠𝛼𝑖𝑝[𝐴𝑖]𝑠𝛽𝑖
∗ ∶  𝑖 = 1, . . . , 𝑁(𝑛)} . Since 𝐶∗(𝑌𝑛)is finite 

dimensional, the kernel of 𝜋 |𝐶∗(𝑌𝑛) has a minimal projection. By Lemma (4.1.17), each 



 

118 

 

minimal projection
 
in the kernel of 𝜋 |𝐶∗(𝑌𝑛)is unitarily equivalent to a projection which is 

either 

 𝑞 =  𝑠𝛼𝑖𝑝[𝐴𝑖]𝑠𝛽𝑖
∗ (1 ≤ 𝑖 ≤ 𝑁(𝑛)) or 𝑞 = 𝑠𝛼𝑖𝑝[𝐴𝑖]𝑠𝛽𝑖

∗ − 𝑞′, 𝑞′ = ∑ 𝑠𝛼𝑖(𝑘)𝑝[𝐴𝑖(𝑘)]𝑠𝛽𝑖(𝑘)
∗𝑚

𝑘=1 (1 ≤

 𝑖 ≤ 𝑁(𝑛)). As in the proof of Theorem (4.1.3)[166, Theorem 5.3], one obtains 𝜋(𝑞) = 0 

in either case. Then 𝜋(𝑢𝑞𝑢
∗) = 0 for any unitary 𝑢 ∈ 𝐶∗(𝑌𝑛), namely 𝜋 maps every 

minimal projection to a nonzero element and hence is faithful on 𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾. 

Therefore we conclude that 𝜋 is faithful by [168, Lemma 2.2] since the following holds: 

For 𝑎 ∈ 𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾 , 

‖↑ 𝜋 (∫𝛾𝑧(𝑎)𝑑𝑧

 

𝕋

)‖ ≤ ∫‖𝜋(𝛾𝑧(𝑎))‖𝑑𝑧

 

𝕋

= ∫‖𝛽𝑧(𝜋(𝑎))‖𝑑𝑧

 

𝕋

= ‖𝜋(𝑎)‖. 

Corollary (4.1.18)[449]: Let (E, ℒ, [B]R) be a weakly left-resolving quotient labelled space 

of (E, ℒ, B) and let C∗(E, ℒ, [B]R) = C
∗(tb, q[A]). If C∗(E, ℒ, B)  = C∗(sa, pA) and I is the 

ideal generated by the projections pA, [A] = [∅] , there is a ∗ −isomorphism 

𝜙: 𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾 → 𝐶∗(𝐸, ℒ, 𝐵 ) 𝐼⁄  

such that ϕ(tb) = sb + I, ϕ(q[A]) = PA + I for b ∈ AR(= AI), [A] ∈ [B]R. 

Proof. By Theorem (4.1.15) ,we have a surjective ∗ −homomorphism φ with the desired 

properties except injectivity. But it is injective by the gauge-invariant uniqueness theorem 

sinc 𝜙(𝑞[𝐴]) = 𝑃𝐴 + 𝐼 is nonzero for [𝐴] ∈ [𝐵]𝑅, [𝐴] ≠ [∅] 𝑏𝑦 (4), and 𝛽𝑧 ∘  𝜑 =  𝜑 ∘

 𝛾𝑧  𝑓𝑜𝑟 𝑧 ∈ 𝕋, all the gauge action on 𝐶∗(𝐸, 𝐿, 𝐵)/𝐼 induced by the gauge action on 

𝐶∗(𝐸, ℒ, 𝐵) and 𝛾 is the gauge action on 𝐶∗(𝐸, ℒ, [𝐵]𝑅)
𝛾 . 

  Recall that for a labelled space (𝐸, ℒ, 𝐵) and a hereditary saturated subset 𝐻 of 𝐵, 𝐼𝐻 

denotes the ideal of 𝐶∗(𝐸, ℒ, 𝐵) generated by the projections 𝑝𝐴, 𝐴 ∈  𝐻 (see Lemma 

(4.1.12)). 

Lemma (4.1.19)[449]: Let (E, ℒ, B) be a labelled space. Then the map  H ⟼ IH is an 

inclusion preserving injection from the set of nonempty hereditary saturated subsets of B 

into the set of nonzero gauge-invariant ideals of  C∗(E, ℒ, B). 
Proof. Clearly the map is inclusion preserving. For injectivity, we show that the composition 

of  𝐻 ⟼ 𝐼𝐻  and  𝐼 ⟼ 𝐻𝐼 is the identity on the set of hereditary saturated subsets of 𝐵, that 

is, we show that 𝐻𝐼𝐻 = 𝐻 . From the easy fact that 𝐼𝐻𝐽 ⊂  𝐽 holds for any ideal  𝐽, we see 

with 𝐽 = 𝐼𝐻 that 𝐼(𝐻𝐼𝐻)
⊂ 𝐼𝐻 , which then shows 𝐻𝐼𝐻 ⊂  𝐻. Since 𝐻 ⊂ 𝐻𝐼𝐻is rather obvious, 

we have  𝐻𝐼𝐻 =  𝐻. 

Theorem (4.1.20)[449]: Let (E, ℒ, B) be a labelled space. Then every nonzero gauge-

invariant ideal I of  C∗(E, ℒ, B)  is of  the form I = IH for the hereditary saturated subset H =
{A ∈ B: pA ∈ I} of B, and there exists an isomorphism of C∗(E, ℒ, [B]I) onto the quotient 

algebra )/I. Moreover the map H ⟼ IH  gives an inclusion preserving bijection between 

the nonempty hereditary saturated subsets of B and the nonzero gauge-invariant ideals of 

C∗(E, ℒ, B). 
Proof. Let 𝐼 be a nonzero gauge-invariant ideal of 𝐶∗(𝐸, ℒ, 𝐵) = 𝐶∗(𝑠𝑎 , 𝑝𝑣) and ∼ 𝐼 the 

equivalence relation on 𝐵 defined by 

𝐴 ∼𝐼 𝐵 ⟺ 𝐴 ∪𝑊 = 𝐵 ∪𝑊 for some 𝑊 ∈ 𝐻, 
where 𝐻 ∶=  𝐻𝐼 =  {𝐴 ∈  𝐵 ∶  𝑝𝐴 ∈ 𝐼 } is the hereditary saturated subset of 𝐵 Lemma 

(4.1.10). Then (𝐸, ℒ, [𝐵]𝐼) is a weakly left-resolving quotient labelled space by Proposition 

(4.1.11) and we see from the proof of Theorem (4.1.14) that there exists a surjective ∗
 −homomorphism 

𝜓 ∶  𝐶∗(𝐸, ℒ, [𝐵]𝐼) → 𝐶
∗(𝐸, ℒ, 𝐵)/𝐼 
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such that.𝜓(𝑡𝑏) = 𝑠𝑏 + 𝐼, 𝜓(𝑞[𝐴]) = 𝑝𝐴 + 𝐼 𝑓𝑜𝑟 𝑏 ∈ 𝐴𝐼 , [𝐴] ∈ [𝐵]𝐼 . Moreover 𝑝𝐴 +  𝐼 ≠  𝐼 

and 𝑠𝑏 + 𝐼 ≠  𝐼. By applying the gauge-invariant uniqueness theorem (Theorem 4.1.18), we 

see that is an isomorphism. On the other hand, the ideal 𝐼𝐻(⊂ 𝐼) 𝑜𝑓 𝐶
∗(𝐸, ℒ, 𝐵) generated 

by the projections 𝑝𝐴 ∈ 𝐼 is gauge-invariant and 𝐴𝐼 = 𝐴𝐼𝐻  since 

[𝐴] = [∅] ⟺ 𝑝𝐴 ∈  𝐼𝐻 ⟺ 𝑝𝐴 ∈  𝐼. 
By Corollary (4.1.19) with ∼𝐼 in place of  ∼𝑅, we have a ∗ − isomorphism 

𝜙 ∶  𝐶∗(𝐸, ℒ, [𝐵]𝐼) → 𝐶
∗(𝐸, ℒ, 𝐵)/𝐼𝐻 

such that, 𝜙(𝑞[𝐴]) = 𝑝𝐴 + 𝐼𝐻, 𝜙(𝑡𝑏) = 𝑠𝑏 + 𝐼𝐻, 𝑓𝑜𝑟 𝑏 ∈ 𝐴𝐼 𝑎𝑛𝑑 [𝐴] ∈ [𝐵]𝐼 .where 

𝐶∗(𝐸, ℒ, [𝐵]𝐼)  = 𝐶
∗(𝑡𝑏 , 𝑞[𝐴]). Then the composition of 𝜙−1 and 𝜓, 

𝜓 ∘  𝜙−1: 𝐶∗(𝐸, ℒ, 𝐵)/𝐼𝐻 → 𝐶
∗(𝐸, ℒ, 𝐵)/𝐼 

is a ∗ −isomorphism such that 

𝜓 ∘  𝜙−1(𝑝𝐴 + 𝐼𝐻)  = 𝑝𝐴 +  𝐼, 𝜓 ∘  𝜙
−1(𝑠𝑎 + 𝐼𝐻 )  = 𝑠𝑎 + 𝐼, 

which shows 𝐼 = 𝐼𝐻 . Finally Lemma (4.1.20) completes the proof.  

Example (4.1.21)[449]: (See [167, Example 7.2].) If (𝐸, 𝐿) is the following labelled graph 

 
then  𝐶∗(𝐸, ℒ, ℰ0,−) ≅ 𝐶∗(𝐸, ℒ, ℰ̅  ) by Corollary (4.1.8) while 

 

ℰ0,− = {𝐸0}⋃{𝐴 ⊂ 𝐸0: 𝐴is finite, }, 

ℰ = ℰ0,−⋃{𝐴 ⊂ 𝐸0: 𝐸0 ∖ 𝐴 is finite, }. 
Theorem (6.4) of [167] states that if (𝐸, ℒ, ℰ0,−) is cofinal and disagreeable, then 

𝐶∗(𝐸, ℒ, ℰ0,−)  is simple, but there was a mistake in the (first paragraph of the) proof and it 

turns out that 

if 𝐶∗(𝐸, ℒ, ℰ)  is simple then (𝐸, ℒ, ℰ) is strongly cofinal ([171, Theorem 3.8], (see also 

Remark 3.15 of [171]). Thus 𝐶∗(𝐸, ℒ, ℰ) is not simple since (𝐸, ℒ, ℰ)   is not strongly cofinal 

(see where we will consider the simplicity of 𝐶∗(𝐸, ℒ, ℰ)). Let 𝐼  be the gauge-invariant 

ideal of   corresponding to the hereditary saturated set . 

𝐻 =  {𝐴 ⊂ 𝐸0: 𝐴 is finite}. Then [ℰ]𝐼  =  {[𝐸
0], [∅]} and 𝐴𝐼 =  {𝑏, 𝑐}. Let 

 𝐶∗(𝐸, 𝐿, [ℰ]𝐼 )  =  𝐶
∗(𝑝[𝐸0], 𝑠𝑏, 𝑠𝑐). Since 𝑠𝑏

∗ 𝑠𝑏 = 𝑝[𝑟(𝑏)]  =  𝑝[𝐸0]  = 𝑠𝑐
∗ 𝑠𝑐 , 𝑠𝑏

∗ 𝑠𝑐 =

 0, 𝑝[𝐸0]𝑠𝑏  = 𝑠𝑏𝑝𝑟([𝐸0],𝑏) =  𝑠𝑏𝑝[𝐸0], and similarly 𝑝[𝐸0]𝑠𝑐 = 𝑠𝑐𝑝[𝐸0], 𝐶
∗(𝐸, ℒ, [ℰ]𝐼) is the 

universal 𝐶∗ −algebra generated by two isometries with orthogonal ranges with the unit 

𝑝[𝐸0]. Therefore 𝐶∗(𝐸, ℒ, [ℰ]𝐼) is isomorphic to the Cuntz algebra 𝒪2 and by Theorem 

(4.1.21), we have 𝐶∗(𝐸, ℒ, ℰ)/𝐼 ≅ 𝒪2 . (For the ideal I, see [171, Remark 3.7].) 

  We consider labelled spaces (𝐸, ℒ, ℰ) such that for every 𝑣 ∈  𝐸0 , [𝑣]𝑙  is finite for some 

𝑙 ≥ 1 and using their merged labelled graphs we provide an equivalent condition for 

the  𝐶∗ −algebra 𝐶∗(𝐸, ℒ, ℰ) to be simple. 

Definition (4.1.22)[449]: Let (𝐸, ℒ𝐸 , ℰ) be a labelled space. Then 𝑣 ∼  𝑤 if and only if 

[𝑣]𝑙 = [𝑤]𝑙 for all 𝑙 ≥ 1 defines an equivalence relation ∼ on 𝐸0. Let [𝑣]∞ denote the 

equivalence class {𝑤 ∈ 𝐸0: 𝑤 ∼ 𝑣} of  𝑣 and let
 

𝐹0 ≔ 𝐸0 ~⁄ = {[𝑣]∞: 𝑣 ∈ 𝐸
0}. 

· · · · · · ,• • • • • • • b b bb b b 

c c c c cc 

a

v 0 v1 v − 1 v − 2 v 2 
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If 𝜆 ∈  𝐸1 is an edge such that 𝑠(𝜆) ∈  [𝑣]∞, 𝑟(𝜆)  ∈ [𝑤]∞, then draw an edge 𝑒𝜆 from 

[𝑣]∞ to [𝑤]∞ and label 𝑒𝜆 with ℒ𝐹(𝑒𝜆) ∶=  ℒ𝐸(𝜆). 𝐼𝑓 𝜆1, 𝜆2  ∈ 𝐸
1 are edges with 𝑠(𝜆𝑖)  ∈

 [𝑣]∞, 𝑟(𝜆𝑖)  ∈  [𝑤]∞, 𝑖 = 1, 2, and ℒ𝐹(𝜆1)  = ℒ𝑒(𝜆2), we identify 𝑒𝜆1  with 𝑒𝜆2 . Then 𝐹 =

 (𝐹0, 𝐹1 ∶=  {𝑒𝜆: 𝜆 ∈ 𝐸
1}) is a graph with the range, source maps given by 𝑟(𝑒𝜆) ∶=

 [𝑟(𝜆)]∞, 𝑠(𝑒𝜆) ∶=  [𝑠(𝜆)]∞, respectively. We call (𝐹, ℒ𝐹) the merged labelled graph of 

(𝐸, ℒ𝐸) (cf. [179]). 

Example (4.1.23)[449]: Consider the following labelled graphs: 

                                                     0             0          1 

 (𝐸1, ℒ1)  

                                                               1 

                                                  0          1            0 

  (𝐸2, ℒ2)  

1 

                                                   0   1 

(𝐹, ℒ𝐹)  

Note that ℰ𝑖 = {∅, {𝑣1, 𝑣2}} and {𝑣𝑗}/∈  ℰ𝑗 for 𝑖, 𝑗 = 1, 2 while {𝑣}  ∈  ℱ for 𝑣 ∈

 𝐹0. (𝐹, ℒ𝐹) is the merged labelled graph of (𝐸𝑖  , ℒ𝑖) with 𝑣 =  [𝑣1]∞ = [𝑣2]∞. The 

𝐶∗ −algebras 𝐶∗(𝐸𝑖  , ℒ𝑖 , ℰ𝑖 ), 𝑖 = 1, 2, and 𝐶∗(𝐹 , ℒ𝐹 , ℱ) are all isomorphic to the Cuntz 

algebra 𝒪2. 
Example (4.1.24)[449]: The labelled graph (𝐹 , ℒ𝐹) shown below is the merged labelled 

graph of (𝐸 , ℒ𝐸) with 𝑣0 = [𝑢0]∞  = [𝑤0]∞, and obviously 𝐶∗(𝐸, ℒ𝐸 , ℰ) is isomorphic to 

𝐶∗(𝐹, ℒ𝐹 , ℱ). 

(𝐸 , ℒ𝐸) 

   
 

 

(𝐸 , ℒ𝐹) 
                                       0          2                        v3 

  

Example (4.1.25)[449]: Consider the labelled graph (𝐸, ℒ: = ℒ𝐸). 

(𝐸, ℒ)  

The merged labelled graph (𝐹, ℒ𝐹) of (𝐸, ℒ) is as follows. 

(𝐹, ℒ𝐹) , 

where 𝑒𝜆1 = 𝑒𝜆2 , 𝑒𝜆3 = 𝑒𝜆4 ,  𝑒𝜆5 = 𝑒𝜆6 , [𝑣𝑖]∞ = {𝑣1, 𝑣2} , and [𝑤𝑖]∞ = {𝑤1, 𝑤2} , 𝑖 = 1,2. 

• •

  v 1 v 2

 

• •

  v 1 v 2

 

•

  v 

• 

• 

• • • 

w 0  

u 0  

v 1 v 2 v 3 

0  

0  

1  

2  

3 4 · · ·

  

• 

• 

• 

• 

•

  

• u 1 

v 1 

v 2 

w 1 

w 2 

u 2 

L (λ 1 ) =  1 

L (λ 2 ) = 1 

L (λ 3 ) = 2 

L (λ 4 ) = 2 

L (λ 5 ) = 3

 

L (λ 6 ) = 3

 

   ·

  

· · · · · 

• • • 3 4 
v 0 v 1 v 2 
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Definition (4.1.26)[449]:  be Let (𝐹, ℒ𝐹) the merged labelled graph of (𝐸, ℒ𝐸). For 𝐴 ⊂
𝐸0, 𝐵 ⊂ 𝐹0, we define [𝐴]∞ ⊂ 𝐹

0, �̂� ⊂ 𝐸0  by 

[𝐴]∞ ≔ {[𝑣]∞: 𝑣 ∈ 𝐴}, �̂� ≔ {𝑣: [𝑣]∞ ∈ 𝐵}. 
Note that [𝐴1 ∩ 𝐴2]∞ ⊂  [𝐴1]∞ ∩ [𝐴2]∞ and [𝐴1 ∪ 𝐴2]∞ = [𝐴1]∞  ∪ [𝐴2]∞ hold 

whenever 𝐴1, 𝐴2 ⊂ 𝐸
0. For 𝐴 ⊂  𝐸0 and 𝐵 ⊂   𝐹0, it is easy to see that  

𝐴 ⊂ [𝐴]∞̂ and 𝐵 = [�̂�]∞.                                        (5) 

Lemma (4.1.27)[449]: Let (𝐸, ℒ𝐸 , ℰ) be a labelled space such that [𝑣]∞ ∈ ℰ for all 𝑣 ∈
 𝐸0 and let (𝐹, ℒ𝐹) be the merged labelled graph of (𝐸, ℒ𝐸). Then 

ℒ𝐸([𝑢]∞𝐸
𝑘[𝑣]∞)                                                     (6) 

for all 𝑘 ≥ 1 𝑎𝑛𝑑 𝑢, 𝑣 ∈ 𝐸0. Moreover we have the following: 

 

(i)  𝑟(𝛼)  = 𝑟𝐹(𝛼)̂ and [𝑟(𝛼)]∞ = 𝑟𝐹(𝛼) for 𝛼 ∈ ℒ∗(𝐸). 

(ii)  𝑠(𝛼)  ⊂ 𝑠𝐹(𝛼) ̂ and [𝑠(𝛼)]∞ = 𝑠𝐹(𝛼) for 𝛼 ∈ ℒ∗(𝐸).  
(iii)  [[𝑣]𝑙]∞  = [[𝑣]∞]𝑙 for 𝑣 ∈ 𝐸0 , 𝑙 ≥ 1. 

(iv) [𝐴 ∩ 𝐵]∞ = [𝐴]∞ ∩ [𝐵]∞ for 𝐴, 𝐵 ∈ ℰ. 

(v)  𝐴 = [𝐴]∞̂ and [𝐴]∞ ∈ ℱ for 𝐴 ∈ ℰ. 
 

Proof. For simplicity of notation, we write ℒ for ℒ𝐸
 omitting the subscript 𝐸. Note that 

each  [𝑢]∞ ∈ 𝐹
0 is also a subset of 𝐸0 so that an expression like [𝑢]∞ 𝐸

𝑘 has obvious 

meaning. Since ℒ([𝑢]∞𝐸
𝑘𝑣) ⊂ ℒ𝐹([𝑢]∞𝐹

𝑘[𝑢]∞) is clear, we only need to show the reverse 

inclusion for (6) when 𝑘 ≥ 1. 
    Let 𝑘 = 1. If 𝑒𝜆 ∈  [𝑢]∞𝐹

1[𝑣]∞ and 𝐿(𝑒𝜆) = 𝛼, 𝜆 ∈ 𝐸
1 is an edge such that 𝑠(𝜆) ∈

[𝑢]∞, 𝑟(𝜆) ∈ [𝑣]∞ and ℒ(𝜆) = 𝛼. Since [𝑣]∞ =  [𝑟(𝜆)]∞, there exists an edge 𝜆′ ∈ 𝐸1 with 

𝑟(𝜆′) = 𝑣 and ℒ(𝜆′)  =  𝛼. We claim that [𝑠(𝜆′)]∞ =  [𝑠(𝜆)]∞. Since [𝑠(𝜆)]∞ ∈ ℰ (ii), 

𝑟(𝜆) ∈ 𝑟([𝑠(𝜆)]∞, 𝛼)  ∈ ℰ hence [𝑟(𝜆)]∞ ⊂  𝑟([𝑠(𝜆)]∞, 𝛼). Similarly, 𝑣 =  𝑟(𝜆′) ∈

𝑟([𝑠(𝜆)]∞, 𝛼)  ∈ ℰ implies that [𝑣]∞  ⊂  𝑟([𝑠(𝜆
′)]∞, 𝛼). Suppose [𝑠(𝜆)]∞ ≠ [𝑠(𝜆′)]∞. 

Then [𝑠(𝜆)]∞  ∩  [𝑠(𝜆
′)]∞ =  ∅  (ii) since (𝐸, ℒ, ℰ) is weakly left-resolving, [𝑣]∞ =

 [𝑟(𝜆)]∞ ⊂  𝑟([𝑠(𝜆)]∞, 𝛼)  ∩  𝑟([𝑠(𝜆
′)]∞, 𝛼)  = 𝑟([𝑠(𝜆)]∞ ∩ [𝑠(𝜆

′)]∞, 𝛼) = ∅, a 

contradiction. Thus [𝑠(𝜆)]∞ =  [𝑠(𝜆
′)]∞, namely 𝑠(𝜆′)  ∈  [𝑢]∞, and we have 

 

ℒ([𝑢]∞𝐸
1𝑣) = ℒ𝐹([𝑢]∞𝐸

1[𝑣]∞)                  . (7) 

 

Now let 𝑘 = 2 and 𝑒𝜆1𝑒𝜆2 ∈ 𝐹
2 be a path with [𝑢]∞ ∶=  𝑠𝐹(𝑒𝜆1), [𝑤]∞: = 𝑟𝐹(𝑒𝜆1)  =

𝑠𝐹(𝑒𝜆2), [𝑣]∞: = 𝑟𝐹(𝑒𝜆2), and ℒ𝐹(𝑒𝜆1𝑒𝜆2)  =  𝛼1𝛼2. Then  by (7) 𝜆1
′ , 𝜆2

′ ∈ 𝐸1, there exist 

                         
 𝑠(𝜆2

′ ) ∈ [𝑤]∞, 𝑟(𝜆2
′ ) = 𝑣, ℒ(𝜆2

′ ) = 𝛼2,

𝑠(𝜆1
′ ) ∈ [𝑢]∞, 𝑟(𝜆1

′ ) = 𝑠(𝜆2
′ ), ℒ(𝜆1

′ ) = 𝛼1.
. 

Then 𝜆 = 𝜆1
′ 𝜆2
′ ∈ [𝑢]∞𝐸

2𝑣  is a path with 𝑒𝜆1′ 𝑒𝜆2′ = 𝑒𝜆1
 𝑒𝜆1 .Thus ℒ([𝑢]∞𝐸

2𝑣)  =

ℒ𝐹([𝑢]∞𝐸
2[𝑣]∞). For 𝑘 ≥ 3, one can repeat the process inductively. Moreover (6) implies 

that 

ℒ(𝐸𝑘𝑣) = ℒ𝐹(𝐹
𝑘[𝑣]∞), 𝑘 ≥ 1.                       (8) 

(i) To show 𝑟(𝛼)  = 𝑟𝐹(𝛼)̂ for 𝛼 ∈ ℒ∗(𝐸), let 𝑣 ∈ 𝑟(𝛼). Then there exists 𝜆 ∈ 𝐸≥1 such that 

r (𝜆) = 𝑣 and ℒ(𝜆) = 𝛼. The edge 𝑒𝜆 ∈  𝐸
≥1 has the range vertex 𝑟(𝑒𝜆)  =  [𝑣]∞ and the 

label  ℒ𝐹(𝑒𝜆)  =  𝛼. Hence [𝑣]∞ ∈  𝑟𝐹(𝛼), namely 𝑣 ∈ 𝑟𝐹(𝛼)̂. Conversely, if 𝑣 ∈ 𝑟𝐹(𝛼)̂, that 

is, [𝑣]∞ ∈  𝑟𝐹(𝛼) by (8), there is a path 𝜆 ∈  𝐸≥1 with ℒ(𝜆) =  𝛼, 𝑟(𝜆) = 𝑣. Hence 𝑣 ∈

𝑟(𝛼). Also, by (5) wehave [𝑟(𝛼)]∞ =  [𝑟(𝛼)̂]∞  =  𝑟𝐹(𝛼). 



 

122 

 

(ii) Since 𝑠(𝛼)  ⊂ 𝑟𝐹(𝛼)̂ is clear, we have [𝑠(𝛼)]∞ ⊂ [𝑠𝐹(𝛼)̂]∞ =  𝑠𝐹(𝛼) by (5). Also (6) 

shows that [𝑠(𝛼)]∞ ⊃ 𝑠𝐹(𝛼). 
(ii) The equality [[𝑣]𝑙]∞  = [[𝑣]∞]𝑙 follows from 

𝑤 ∈ [𝑣]𝑙 ⟺ [𝑤]𝑙 = [𝑣]𝑙  

   ⟺ ℒ(𝐸≤𝑙𝑤) = ℒ(𝐸≤𝑙𝑤)   
   ⟺ ℒ𝐹(𝐸

≤𝑙[𝑤]∞) = ℒ𝐹(𝐸
≤𝑙[𝑣]∞)(𝑏𝑦(8)) 

   ⟺ [𝑤]∞ ∈ [[𝑣]∞]𝑙 . 
(iv) It suffices to show that [𝐴]∞ ∩ [𝐵]∞ ⊂ [𝐴 ∩ 𝐵]∞. Let [𝑣1]∞ = [𝑣2]∞ ∈ [𝐴]∞ ∩

[𝐵]∞ for some 𝑣1 ∈  𝐴, 𝑣2 ∈ 𝐵. Since 𝐴, 𝐵 ∈ ℰ, there exists 𝑙 ≥ 1 such that [𝑣1]∞ ⊂
 [𝑣1]𝑙  ⊂ 𝐴 and [𝑣2]∞ ⊂ [𝑣2]𝑙  ⊂ 𝐵 Hence [𝑣1]𝑙 = [𝑣2]𝑙 and so 𝑣1 ∈ 𝐴 ∩ 𝐵 and 

[𝑣1]∞  ∈  [𝐴 ∩ 𝐵]∞ (v) 𝐴 ⊂ [𝐴]∞̂ is clear. If 𝑣 ∈ [𝐴]∞̂, [𝑣]∞ ∈  [𝐴]∞ and so [𝑣]∞  =
 [𝑤]∞ for some 𝑤 ∈ 𝐴. 

     Writing 𝐴 =  ⋃ [𝑤𝑗]𝑙
 
𝑗 ∈  ℰ, we have 𝑤 ∈  [𝑤𝑗]𝑙 for some 𝑗 , then 𝑣 ∈ [𝑤𝑗]𝑙 ⊂  𝐴 

because ∼𝑤∼𝑙  𝑤𝑗 . By (iii) we also have 

[𝐴]∞ = [⋃[𝑤𝑗]𝑙
𝑗

]

∞

=⋃[[𝑤𝑗]𝑙]∞
𝑗  

=⋃[[𝑤𝑗]∞]𝑙
𝑗

∈ ℱ. 

Proposition (4.1.28)[449]: Let (𝐸, 𝐿, ℰ) be a labelled space such that [𝑣]∞ ∈  ℰ for all 𝑣 ∈

𝐸0. Then the map 𝐴 ⟼ [𝐴]∞: ℰ → ℱ is bijective and 

[𝑟(𝐴, 𝛼)]∞ = 𝑟𝐹([𝐴]∞, 𝛼) 

holds for 𝐴 ∈ ℰ, 𝛼 ∈ ℒ∗(𝐸). 

Proof. To show that the map is surjective, let 𝐵 = ⋃ [[𝑣𝑗]∞]𝑙𝑗 . Then by Lemma (4.1.27) ( 

iii), 

�̂� = {𝑣: [𝑣]∞ ∈⋃ [[𝑣𝑗]∞
]
𝑙𝑗
} = {𝑣: [𝑣]∞ ∈⋃ [[𝑣𝑗]𝑙

]
∞𝑗
} =⋃ [𝑣𝑗]𝑙𝑗

∈ ℰ 

and 𝐵 =  [�̂�]∞ by (5). For injectivity, let [𝐴1]∞ =  [𝐴2]∞, 𝐴1, 𝐴1 ∈  ℰ. Then by Lemma 

(4.1.27)(v), 𝐴1 = [𝐴1]∞̂ = [𝐴2]∞̂  = 𝐴2. 

      Now we show that [𝑟(𝐴, 𝛼)]∞ =  𝑟𝐹([𝐴]∞, 𝛼) for 𝐴 ∈ ℰ, 𝛼 ∈ ℒ∗(𝐸). 
Clearly [𝑟(𝐴, 𝛼)]∞  ⊂  𝑟𝐹([𝐴]∞, 𝛼) holds. If [𝑣]∞  ∈  𝑟𝐹([𝐴]∞, 𝛼), there exists a path 𝑒𝜆1 · ·

 · 𝑒𝜆𝑛 ∈  𝐹
𝑛 with rF (𝑒𝜆1 · · · 𝑒𝜆𝑛)  =  [𝑣]∞. Let [𝑢]∞ ∶=  𝑠𝐹(𝑒𝜆1 · · · 𝑒𝜆𝑛  ), [𝑢]∞ ∈  [𝐴]∞, and 

𝛼 = ℒ𝐹 (𝑒𝜆1 · · · 𝑒𝜆𝑛). We may assume that 𝑢 ∈ 𝐴 since [𝑢]∞ =  [𝑢
′]∞ for some 𝑢′ ∈ 𝐴. By 

(6), we can find a path 𝜆 ∈  𝐸𝑛 with 𝑟(𝜆)  =  𝑣, 𝑠(𝜆) ∈  [𝑢]∞(⊂ 𝐴), and ℒ(𝜆)  =  𝛼. Thus 

𝑣 ∈  𝑟([𝑢]∞, 𝛼)  ⊂ 𝑟(𝐴, 𝛼)(  ℰ). Then [𝑣]∞ ⊂ 𝑟(𝐴, 𝛼) and we conclude that [𝑣]∞ ⊂
 𝑟(𝐴, 𝛼) and we conclude that [𝑣]∞ ∈ [𝑟(𝐴, 𝛼)]∞ . 

Clearly the merged labelled space (𝐹, ℒ, ℱ) has no sinks since we assume that (𝐸, ℒ, ℰ) has 

no sinks. Besides, (𝐹, ℒ, ℱ) has the following properties. 

Proposition (4.1.29)[449]: Let (𝐸, ℒ, ℰ) be a labelled space such that [𝑣]∞ ∈ ℰ for all 𝑣 ∈

𝐸0. Then the merged labelled space (𝐹, ℒ, ℱ) is set-finite and receiver set-finite, respectively 

if and only if (𝐸, ℒ, ℰ)  is set-finite and receiver set-finite, respectively. Moreover (𝐹, ℒ, ℱ)  

is weakly leftresolving whenever (𝐹, ℒ, ℱ) is weakly left−resolving.  

Proof. By Lemma (4.1.27), we know that 𝐴 ⟼ [𝐴]∞ ∶ ℰ → ℱ forms a bijection. From the 

following 
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ℒ(𝐸𝑙𝐴) =⋃ℒ(𝐸𝑙𝐴)

𝑣∈𝐴

=⋃ℒ𝐹(𝐹
𝑙[𝑣]∞)

𝑣∈𝐴

 

⋃ ℒ𝐹(𝐹
𝑙[𝑣]∞)

[𝑣]∞∈[𝐴]∞

 

                                                                ℒ𝐹(𝐹
𝑙[𝑣]∞) 

we have that (𝐸, ℒ, ℰ) is receiver set-finite if and only if (𝐸, ℒ, ℰ) is receiver set-finite. Since 

[𝑟(𝐴, 𝛼)]∞ =  𝑟𝐹([𝐴]∞, 𝛼) for all 𝛼 ∈ ℒ∗(𝐸) (Proposition 4.1.30) 

ℒ𝐹([𝐴]∞𝐹
1) = {𝑎 ∈ 𝐴: 𝑟𝐹([𝐴]∞, 𝑎) ≠ ∅} 

                      = {𝑎 ∈ 𝐴: [𝑟(𝐴, 𝑎)]∞ ≠ ∅} 
                                                                      = ℒ(𝐴𝐸1), 

which proves the equivalence of set-finiteness of (𝐸, ℒ, ℰ) and (𝐹, ℒ, ℱ). 

Since (𝐸, ℒ, ℰ)  is weakly left-resolving, by Lemma (4.1.27) (iv) and Proposition (4.1.30), 

we have 

𝑟(𝐴, 𝛼) ∩ 𝑟(𝐵, 𝛼)  =  𝑟(𝐴 ∩ 𝐵, 𝛼) 
                       ⟺ [𝑟(𝐴, 𝛼) ∩ 𝑟(𝐵, 𝛼)]∞ = [𝑟(𝐴 ∩ 𝐵, 𝛼)]∞   

         ⟺ 𝑟𝐹([𝐴]∞, 𝛼)⋂𝑟𝐹([𝐵]∞, 𝛼) = 𝑟𝐹([𝐴]∞⋂[𝐵]∞, 𝛼). 

Thus (𝐹, ℒ, ℱ) is weakly left−resolving.  

Theorem (4.1.30)[449]: Let (𝐸, ℒ, ℰ) be a labelled space such that [𝑣]∞ ∈ ℰ for all 𝑣 ∈

 𝐸0, and let (𝐹, ℒ) the merged labelled graph of (𝐸, ℒ). Then {[𝑣]∞}  ∈ ℱ for every vertex 

[𝑣]∞ ∈  𝐹
0 and  

𝐶∗(𝐸, ℒ, ℰ) ≅  𝐶∗(𝐸, ℒ, ℱ). 

Proof. For 𝑣 ∈  𝐸0, with 𝐴 ∶=  [𝑣]∞ ∈ ℰ, we have [𝐴]∞ ∈  ℱ by Proposition (4.1.28). 

But [𝐴]∞ = {[𝑣]∞}.  
   Let 𝐶∗(𝐸, ℒ, ℰ)  =  𝐶∗(𝑝𝐴, 𝑠𝑎) and 𝐶∗(𝐹, ℒ𝐹 , ℱ)  =  𝐶

∗(𝑞[𝐴]∞, 𝑡𝑎).  Then {𝑃𝐴 ∶=

𝑞[𝐴]∞: 𝐴 ∈  ℰ}  ∪  {𝑆𝑎 ∶=  𝑡𝑎: 𝑎 ∈ 𝐴} is a representation of (𝐸, ℒ, ℰ): 

(i) If 𝐴,𝐵 ∈ ℰ, then 𝑃𝐴𝑃𝐵  =  𝑞[𝐴]∞𝑞[𝐵]∞ =  𝑞[𝐴]∞∩[𝐵]∞  =  𝑞[𝐴∩𝐵]∞ =  𝑃𝐴∩𝐵 𝑎𝑛𝑑 𝑃𝐴∪𝐵  = 

𝑞[𝐴∪𝐵]∞ =  𝑞[𝐴]∞∪[𝐵]∞  =  𝑞[𝐴]∞+𝑞[𝐵]∞ − 𝑞[𝐴∩𝐵]∞ =  𝑃𝐴 + 𝑃𝐵 − 𝑃𝐴∩𝐵, where 𝑃∅ = 𝑞∅ = 0. 

 

(ii) If 𝐴 ∈  ℰ and 𝑎 ∈ 𝐴, then 𝑃𝐴𝑆𝑎 =  𝑞[𝐴]∞𝑡𝑎 = 𝑡𝑎𝑞𝑟𝐹([𝐴]∞,𝑎)  =  𝑡𝑎𝑞[𝑟(𝐴,𝑎)]∞ = 𝑆𝑎𝑃𝑟(𝐴,𝑎). 

(iii)  If 𝑎, 𝑏 ∈  𝐴, 𝑆𝑎
∗𝑆𝑎 = 𝑡𝑎

∗𝑡𝑎 =  𝑞𝑟𝐹(𝑎)  =  𝑞[𝑟(𝑎)]∞ =  𝑃𝑟(𝑎) and 𝑆𝑎
∗𝑆𝑏 = 𝑡𝑎

∗𝑡𝑏 = 0 unless 

𝑎 = 𝑏. 

(iv) For 𝐴 ∈ ℰ, 

𝑃𝐴 = 𝑞[𝐴]∞ = ∑ 𝑡𝑎
𝑎∈ℒ𝐹([𝐴]∞𝐹

1)

𝑞𝑟𝐹([𝐴]∞,𝑎)𝑡𝑎
∗  

   = ∑ 𝑡𝑎
𝑎∈ℒ(𝐴𝐸1)

𝑞[𝑟(𝐴,𝑎)]∞𝑡𝑎
∗ 

= ∑ 𝑆𝑎
𝑎∈ℒ(𝐴𝐸1)

𝑃𝑟(𝐴,𝑎)𝑆𝑎
∗ . 
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Thus there exists a surjective ∗-homomorphism 𝛷 ∶  𝐶∗ (𝐸, ℒ, ℰ) →  𝐶∗ (𝐹, ℒ, ℱ)  such 

that 𝛷(𝑝𝐴)  =  𝑞[𝐴]∞  and  𝛷(𝑠𝑎) = 𝑡𝑎 for 𝐴 ∈ ℰ, 𝑎  𝐴. By Theorem (4.1.3), Φ  is an 

isomorphism.  

   Recall [126,130] that a labelled space (𝐸, ℒ, ℰ) is disagreeable if for each [𝑣]𝑙 , there exists 

an 𝑁 ≥ 1 such that for all 𝑛 ≥ 𝑁 there is a labelled path 𝛼 ∈ ℒ([𝑣]𝑙𝐸
≥𝑛 that is not 

agreeable, that is, not of the form 𝛼 = 𝛽𝛼′ = 𝛼′𝛾 for some 𝛼′, 𝛽, 𝛾 ∈ ℒ(𝐸≥𝑛) with |𝛽| =
|𝛾 | ≤  𝑙. Also (𝐸, ℒ, 𝐵) is strongly cofinal [171] if for all 𝑥 ∈ ℒ(𝐸∞), 𝑤 ∈  𝑠(𝑥), and 

[𝑣]𝑙 ∈  𝛺𝑙(𝐸), there are 𝑁 ≥ 1 and a finite number of labelled paths 𝜆1, . . . , 𝜆𝑚 such that 

 

 

𝑟([𝑤]1, 𝑥1⋯𝑥𝑁) ⊂⋃𝑟([𝑤]1, 𝜆𝑖)

𝑚

𝑖=1

. 

Theorem (4.1.31)[449]: Let (E, ℒ, ℰ) be a labelled space such that if v ∈  E0, [v]l is finite 

for some l ≥ 1,  and let (F, ℒF) be the merged labelled graph of (E, ℒ). Then we have the 

following: 

Proof. First note that [𝑣]∞(∈ ℰ) is a finite set for each 𝑣 ∈ 𝐸0. 

(i) Suppose (𝐸, ℒ, ℰ) is strongly cofinal and let 𝑥 =  𝑥1𝑥2  · · · ∈  ℒ𝐹(𝐹
∞), [𝑢0]∞ ∈  𝑠𝐹(𝑥) 

and [[𝑣]∞]𝑙  ∈ 𝛺𝑙(𝐹). Fix [𝑢𝑖  ]∞ ∈  𝑟𝐹(𝑥𝑖) for each 𝑖. Then 𝑥1 · · ·  𝑥𝑖 ∈ ℒ([𝑢0]∞𝐹
𝑖 [𝑢𝑖]∞)  

for 𝑖 ≥ 1. Since ℒ([𝑢0]∞𝐸
𝑖𝑢𝑖)  = ℒ𝐹([𝑢0]∞𝐹

𝑖  [𝑢0]∞) (𝑏𝑦 (6)), 𝑥1 · · ·  𝑥1([𝑢0]∞𝐸
𝑖𝑢𝑖) for 

all 𝑖 ≥ 1. Then the finite set [𝑢0]∞ must have a vertex 𝑢0
′ ∈ [𝑢0]∞such that 𝑥1  · · ·  𝑥𝑖 ∈

ℒ(𝑢0𝐸
𝑖𝑢𝑖) for infinitely many 𝑖’𝑠, which means that 𝑥 ∈ ℒ(𝑢0

′  𝐸∞).  Since (𝐸, ℒ, ℰ) is 

strongly cofinal, there exists an 𝑁 ≥ 1 and a finite number of labelled paths 𝜆1, . . . , 𝜆𝑚 ∈
ℒ(𝐸≥1) such that 𝑟([𝑢0

′ ]1, 𝑥1 · · · 𝑥𝑁)  ⊂ ⋃ 𝑟([𝑣]𝑙, 𝜆𝑗)
𝑚
𝑗=1   Then [𝑟([𝑢0

′ ]1, 𝑥1 · · ·  𝑥𝑁)]∞ ⊂

 [⋃ 𝑟([𝑣]𝑙, 𝜆𝑗 )]∞
𝑚
𝑗=1  ,that is, 

 

𝑟𝐹([[𝑢0
′ ]1]∞, 𝑥1⋯𝑥𝑁) ⊂⋃𝑟𝐹([[𝑣]𝑙]∞, 𝜆𝑗)

𝑚

𝑗=1

=⋃𝑟𝐹([[𝑣]∞]𝑙, 𝜆𝑗)

𝑚

𝑗=1

, 

and we see that (𝐹, ℒ𝐹  , ℱ) is strongly cofinal. 

Conversely, assuming that (𝐹, ℒ𝐹  , ℱ)  is strongly cofinal, if 𝑥 ∈  ℒ(𝐸∞) is an infinite 

labelled path with 𝑢 ∈ 𝑠(𝑥) and [𝑣]𝑙 ∈ 𝛺𝑙(𝐸), clearly 𝑥 ∈ ℒ𝐹([𝑢]∞𝐹
∞) and so there exist 

an 𝑁 ≥ 1 and a finite number of labelled paths 𝜆1,⋯ , 𝜆𝑚 ∈ ℒ𝐹(𝐹
≥1)  such that 

𝑟𝐹([[𝑢]∞]1, 𝑥1⋯𝑥𝑁) ⊂⋃𝑟𝐹([[𝑣]∞]𝑙, 𝜆𝑗)

𝑚

𝑗=1

. 

Hence, we have [𝑟([𝑢]1, 𝑥1 · · ·  𝑥𝑁)]∞ ⊂  [⋃  𝑟([𝑣]𝑙, 𝜆𝑗)]∞ 
𝑚
𝑗=1 by Proposition 

(4.1.26). Then Lemma (4.1.27) (v) shows that 𝑟([𝑢]1, 𝑥1 · · ·  𝑥𝑁)  ⊂ ⋃  𝑟([𝑣]𝑙 , 𝜆𝑗) 
𝑚
𝑗=1  and 

so (𝐸, ℒ, ℰ) is strongly cofinal. 

 (ii) Note that for each 𝑣 ∈  𝐸0, there is an 𝑙𝑣 with [𝑣]𝑙𝑣  =  [𝑣]𝑘 for all 𝑘 ≥ 𝑙𝑣. Thus by 

[171, Proposition 3.9] we see that (𝐸, ℒ, ℰ) is disagreeable if and only if [𝑣]𝑘 is disagreeable 
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for 𝑘 ≥ 𝑙𝑣 Now let 𝑣 ∈  𝐸0 and 𝑙 ∶= 𝑙𝑣 . Then [𝑣]𝑙 is the union of finitely many equivalence 

classes [𝑣]∞ of 𝑣 ∈ [𝑣]𝑙 . From (6), we have 

             ℒ([𝑣]𝑙𝐸
𝑛) = ⋃ ℒ([𝑣′]∞𝐸

𝑛)

𝑣′∈[𝑣]𝑙

 

  = ⋃ ℒ([𝑣′]∞𝐸
𝑛𝑤)

𝑣′∈[𝑣]𝑙,𝑤∈𝐸
0

 

                         = ⋃ ℒ𝐹([𝑣
′]∞𝐸

𝑛[𝑤]∞)

[𝑣′]∞∈[[𝑣]𝑙]∞,[𝑤]∞∈𝐹
0

 

= ⋃ ℒ𝐹([𝑣
′]∞𝐸

𝑛)

[𝑣′]∞∈[[𝑣]∞]𝑙

 

                               = ℒ𝐹([𝑣]∞]𝑙𝐸
𝑛), 

which shows the assertion.  

It is known that if 𝐶∗(𝐸, ℒ, ℰ) is simple, (𝐸, ℒ, ℰ) is strongly cofinal [171, Theorem 3.8] and 

if, in addition, {𝑣} ∈ ℇ for all 𝑣 ∈  𝐸0, (𝐸, ℒ, ℇ) is disagreeable [171, Theorem 3.14]. Also 

if (𝐸, ℒ, ℇ) is strongly cofinal and disagreeable,   𝐶∗(𝐸, ℒ, ℇ) is simple by [171, Theorem 

3.16]. Therefore by Theorem (4.1.31) and Theorem (4.1.31) we have the following 

corollary. 

Corollary (4.1.32)[449]: Let (E, ℒ, ℇ) be a set-finite, receiver set-finite, and weakly left-

resolving labelled space such that for each v ∈  E0, [v]l is finite for some l ≥ 1.. Then 

C∗(E, ℒ, ℇ) is simple if and only if (E, ℒ, ℇ) is strongly cofinal and disagreeable.  

Section (4.2): The Diagonal 𝑪∗-Subalgebras 

Many 𝐶∗-algebras are defined in terms of partial isometries and relations. The motivation 

for these relations often comes from a kind of combinatorial object such as a graph [190] or 

a 0-1 matrix [186]. A set of partial isometries in a 𝐶∗ −algebra is generally not closed under 

multiplication; however, in the examples cited above, one can find an inverse semigroup of 

partial isometries in the 𝐶∗-algebra. In [167], Exel found a topological space on which this 

inverse semigroup acts, the tight spectrum, and by constructing the 𝐶∗-algebra of the 

groupoid of germs of this action, we arrive at the original 𝐶∗-algebra. 

Among the combinatorial objects mentioned above are labelled spaces, which were 

introduced by Bates and Pask in [182]. The 𝐶∗-algebras associated with labelled spaces 

generalize several others such as graph algebras, ultragraph algebras and 

Carlsen–Matsumoto algebras [182]. These 𝐶∗-algebras were further studied in 

[181,183,184,188,189]. It is interesting to notice that the definition given in [182] was later 

changed in [181] because certain projections in the 𝐶∗-algebra could turn out to be zero 

when it was desired for them not to be. 

  In [185], applied Exel’s construction [187] to an inverse semigroup defined from a 

labelled space with multiplication inspired by the relations defining the 𝐶∗-algebra of the 

labelled space. The tight spectrum was characterized in Theorem 6.7 of [185]. In the 

particular case of a labelled space defined from a graph as in [182],  found [185, Proposition 

6.9] that the tight spectrum is homeomorphic to the boundary path space of the underlying 

graph (studied by Webster in [192]). 
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Webster shows that the boundary path space of a graph is the spectrum of a certain 

commutative 𝐶∗-subalgebra of the graph 𝐶∗-algebra called the diagonal 𝐶∗-subalgebra 

[192]. There is a natural generalization of the diagonal 𝐶∗-subalgebra in the case of labelled 

spaces. By comparing it with the case of graphs, one would expect the spectrum of this new 

diagonal 𝐶∗-subalgebra to be the tight spectrum found by [185]. We show that this is actually 

the case. 

  We present the definition of the 𝐶∗ −algebra associated with a labelled space and some 

of its properties. A rather technical one that prepares for the building of a representation of 

our new version of the 𝐶∗-algebra. The representation is constructed, we show that non-

zero elements in the inverse semigroup correspond to non-zero elements in the 𝐶∗-algebra. 

The diagonal 𝐶∗-subalgebra is homeomorphic to the tight spectrum of the inverse 

semigroup. 

  We give an example to show that the new definition gives a non-trivial quotient of the 

𝐶∗ −algebra defined in the preprint of [181].We begin by techniques developed in [185] . 

    A (directed) graph ℰ =  (ℰ0, ℰ1, 𝑟, 𝑠) consists of non-empty sets ℰ0 (of vertices), ℰ1 (of 

edges), and range and source functions 𝑟, 𝑠 ∶ ℰ1 → ℰ0. 
We say that 𝑣 ∈ ℰ0 is a source if 𝑟−1(𝑣)  =  ∅, a sink if 𝑠−1(𝑣)  =  ∅ and an infinite 

emitter if 𝑠−1(𝑣) is an infinite set. Also, 𝑣 is singular if it is either a sink or an infinite 

emitter, and regular otherwise. 

  A path  of  length 𝑛 on a graph ℰ is a sequence 𝜆 =  𝜆1𝜆2  ⋯ 𝜆𝑛 of edges such that 

𝑟(𝜆𝑖)  =  𝑠(𝜆𝑖+1) for all 𝑖 =  1,⋯ , 𝑛 − 1. We write |𝜆| =  𝑛 for the length of 𝜆 and regard 

vertices as paths of length 0.  ℰ𝑛  stands for the set of all paths of length 𝑛 and ℰ∗  =
 ⋃ ℰ𝑛 𝑛≥0 . We extend the range and source maps to ℰ∗  by defining 𝑠(𝜆)  =  𝑠(𝜆1) and 

𝑟(𝜆)  =  𝑟(𝜆1) if 𝑛 ≥ 2 and 𝑠(𝑣) = 𝑣 =  𝑟(𝑣) for 𝑛 = 0. Similarly, we define a path of 

infinite length (or an infinite path) as an infinite sequence 𝜆 =  𝜆1𝜆2  ⋯ of edges such that 

𝑟(𝜆𝑖)  =  𝑠(𝜆𝑖+1) for all 𝑖 ≥ 1; for such a path, we write |𝜆| = ∞. The set of all infinite 

paths will be denoted by ℰ∞. 
      A labelled graph consists of a graph ℰ together with a surjective labelling map ℒ: ℰ1 →
𝐴, where A is a fixed non-empty set, called an alphabet. Elements of 𝐴 are called letters. 

The set of all finite words over 𝐴, together with the empty word 𝜔, is denoted by 𝐴∗,and 

𝐴∞ stands for the set of all infinite words over 𝐴.  
     A labelled graph is said to be left-resolving if for each 𝑣 ∈ ℰ0 the restriction of  ℒ to 

𝑟−1(𝑣) is injective. 

The labelling map ℒ can be used to produce labelling maps  ℒ: ℰ𝑛  → 𝐴∗ for all 𝑛 ≥ 1, 
via ℒ(𝜆)  =  ℒ(𝜆1) . . . ℒ(𝜆𝑛); similarly, it also gives rise to a map ℒ: ℰ𝑛  → 𝐴∞ in the 

obvious fashion. Using these maps, the elements of ℒ𝑛 =  ℒ(ℰ𝑛) are the labelled paths of 

length 𝑛 and the elements of ℒ∞ =  ℒ(ℰ∞) are the labelled paths of infinite length. We set 

ℒ≥1 =  ⋃ ℒ𝑛 𝑛≥1 , ℒ∗ = {𝜔} ∪ ℒ≥1, and ℒ≤∞ = ℒ∗ =∪ ℒ∞. 
For a subset 𝐴 of  ℰ0, let 

ℒ(𝐴ℰ1)  =  {ℒ(𝑒) | 𝑒 ∈ ℰ1 and 𝑠(𝑒) ∈ 𝐴}.                   (1) 

If 𝛼 is a labelled path, a path 𝜆 on the graph such that ℒ(𝜆) = 𝛼 is called a representative 

of 𝛼. The length of 𝛼, denoted by |𝛼|, is the length of any one of its representatives. By 

definition, 𝜔 is also a labelled path, with |𝜔|  =  0. If 1 ≤  𝑖 ≤  𝑗 ≤ |𝛼|, let 𝛼𝑖,𝑗  =

𝛼𝑖𝛼𝑖+1⋯𝛼𝑗  if 𝑗 < ∞ and 𝛼𝑖,𝑗  = 𝛼𝑖𝛼𝑖+1⋯ if  𝑗 = ∞. If  𝑗 <  𝑖 set  𝛼𝑖,𝑗 = 𝜔. 
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 We say that a labelled path 𝛼 is a beginning of a labelled path 𝛽 if 𝛽 =  𝛼𝛽′  for some 

labelled path 𝛽′; also, 𝛼 and 𝛽 are comparable if either one is a beginning of the other. 

For 𝛼 ∈ ℒ∗ and 𝐴 ∈ 𝒫(ℰ0) (where 𝒫(ℰ0) denotes the power set of ℰ0), the relative range 

of 𝛼 with respect to 𝐴, denoted by 𝑟(𝐴, 𝛼), is the set 

𝑟(𝐴, 𝛼) =  {𝑟(𝜆)|𝜆 ∈ ℰ∗, ℒ(𝜆) =  𝛼, 𝑠(𝜆)  ∈  𝐴} 
if 𝛼 ∈ ℒ≥1 and 𝑟(𝐴,𝜔) = 𝐴 if  𝛼 = 𝜔. The range of  𝛼, denoted by 𝑟(𝛼), is the set 

𝑟(𝛼)  =  𝑟(ℰ0, 𝛼). 
For 𝛼 ∈ ℒ≥1  we also define the source of  𝛼 as the set 

𝑠(𝛼)  =  {𝑠(𝜆)  ∈ ℰ0|ℒ(𝜆)  =  𝛼}. 
It follows that 𝑟(𝜔) = ℰ0 and, if 𝛼 ∈ ℒ≥1, then 𝑟(𝛼)  =  {𝑟(𝜆)  ∈ ℰ0 | ℒ(𝜆)  =  𝛼}. The 

definitions above give maps 𝑠 ∶ ℒ≥1 → 𝒫(ℰ0)  and  𝑟 ∶  ℒ∗  → 𝒫(ℰ0) . Also, if 𝛼, 𝛽 ∈ ℒ∗ 

are such that 𝛼𝛽 ∈ ℒ∗then 𝑟(𝑟(𝐴, 𝛼), 𝛽)  = 𝑟(𝐴, 𝛼𝛽). Furthermore, for 𝐴, 𝐵 ∈ 𝒫(ℰ0)  and 

𝛼 ∈ ℒ∗, it holds that 𝑟(𝐴 ∪ 𝐵, 𝛼)  =  𝑟(𝐴, 𝛼)  ∪ 𝑟(𝐵, 𝛼). Finally, observe that for 𝐴 ∈
𝒫(ℰ0) one has ℒ(𝐴ℰ0)  =  {𝑎 𝐴 | 𝑟(𝐴, 𝑎)  = ∅}. 

A labelled space is a triple (ℰ, ℒ, 𝐵) where (ℰ, ℒ) is a labelled graph and 𝐵 is a family of 

subsets of ℰ0 that is accommodating for (ℰ, ℒ) ; that is, 𝐵 is closed under finite intersections 

and finite unions, contains all 𝑟(𝛼) for 𝛼 ∈ ℒ≥1, and is closed under relative ranges, that is, 

𝑟(𝐴, 𝛼)  ∈ 𝐵 for all 𝐴 ∈ 𝐵 and all 𝛼 ∈ ℒ∗. 
  We say that a labelled space (ℰ, ℒ, 𝐵) is weakly left-resolving if for all 𝐴, 𝐵 ∈ 𝐵 and all 

𝛼 ∈ ℒ≥1 we have 𝑟(𝐴 ∩  𝐵, 𝛼)  =  𝑟(𝐴, 𝛼)  ∩  𝑟(𝐵, 𝛼). 
For a given 𝛼 ∈ ℒ∗,let 

𝐵𝛼  =  𝐵 ∩ 𝒫(𝑟(𝛼)). 

    If 𝐵 is closed under relative complements, then the set 𝐵𝛼  is a Boolean algebra for each 

𝛼 ∈ ℒ≥1, and 𝐵𝑤 = 𝐵 is a generalized Boolean algebra as in [191]. By Stone duality there 

is a topological space associated with each 𝐵𝛼  with 𝛼 ∈ ℒ∗which we denote by 

𝑋𝛼 ,consisting of the set of ultrafilters in 𝐵𝛼. 
By a filter in a partially ordered set 𝑃 with least element 0 we mean a subset 𝜉 of 𝑃 such 

that 

  (𝑖)     0 ∉  𝜉; 
  (𝑖𝑖)  if 𝑥 ∈  𝜉 and 𝑥 ≤  𝑦, then 𝑦 ∈  𝜉; 

         (𝑖𝑖𝑖)  if 𝑥, 𝑦 ∈  𝜉, there exists 𝑧 ∈  𝜉 such that 𝑧 ≤  𝑥 and 𝑧 ≤  𝑦. 
If 𝑃 is a (meet) semilattice, condition (iii) may be replaced by 𝑥 ∧  𝑦 ∈ 𝜉 if 𝑥, 𝑦 ∈  𝜉. 

An ultrafilter is a filter which is not properly contained in any filter. 

For a given 𝑥 ∈  𝑃, define 

↑ 𝑥 =  {𝑦 ∈ 𝑃 | 𝑥 ≤  𝑦}    ,   ↓ 𝑥 =  {𝑦 ∈  𝑃 | 𝑦 ≤  𝑥}, 
and for subsets 𝑋, 𝑌 of  𝑃 define 

↑ 𝑋 =  ⋃ ↑ 𝑥 =  {𝑦 ∈  𝑃 | 𝑥 ≤  𝑦𝑥∈𝑋  for some 𝑥 ∈  𝑋}, 
and ↑𝑌 𝑋 =  𝑌 ∩↑ 𝑋; the sets ↑𝑌 𝑥, ↓𝑌 𝑥, ↓ 𝑋 and ↓𝑌 𝑋 are defined analogously. 

From now on, 𝐸 denotes a semilattice with 0. 
Proposition (4.2.1)[450]: ([187], Lemma 12.3). Let 𝐸 be a semilattice with 0. 𝐴 filter 𝜉 in 

𝐸 is an ultrafilter if and only if 

{𝑦 ∈  𝐸 | 𝑦 ∧  𝑥 ≠ 0 ∀𝑥 ∈  𝜉} ⊆  𝜉. 
A character of 𝐸 is a non-zero function 𝜙 from 𝐸 to the Boolean algebra {0, 1} such that 

(a) 𝜙(0) = 0 ; 
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(b) 𝜙(𝑥 ∧ 𝑦) = 𝜙(𝑥) ∧ 𝜙(𝑦), for all 𝑥, 𝑦 ∈  𝐸. 
The set of all characters of 𝐸 is denoted by �̂�0 and we endow �̂�0 with the topology of 

pointwise convergence. 

 Given 𝑥 ∈  𝐸, a set 𝑍 ⊆ ↓ 𝑥 is a cover for 𝑥 if for all non-zero 𝑦 ∈ ↓ 𝑥, there exists 𝑧 ∈
𝑍 such that 𝑧 ∧  𝑦 ≠ 0. 

A character 𝜙 of 𝐸 is tight if for every 𝑥 ∈ 𝐸 and every finite cover 𝑍 for 𝑥, we have 

⋁𝜙(𝑧)  = 𝜙(𝑥).

𝑧∈𝑍

 

The set of all tight characters of 𝐸 is denoted by �̂�𝑡𝑖𝑔ℎ𝑡, and called the tight 

spectrum of 𝐸. We can associate each filter 𝜉 in a semilattice 𝐸 with a character 

𝜙𝜉 of 𝐸 given by 

𝜙𝜉(𝑥)  = {
1, if 𝑥 ∈ 𝜉,
0, otherwise.

 

Conversely, when 𝜙 is a character, 𝜉𝜙 =  {𝑥 ∈ 𝐸 |𝜙(𝑥) = 1} is a filter in 𝐸. There is thus a 

bijection between �̂�0 and the set of filters in E. We denote by �̂�∞the set of all characters 𝜙 

of 𝐸 such that 𝜉𝜙  is an ultrafilter, and a filter 𝜉 in 𝐸 is said to be tight if 𝜙𝜉  is a tight character. 

It is a fact that every ultrafilter is a tight filter ([187], Proposition 12.7), and that �̂�𝑡𝑖𝑔ℎ𝑡  
is the closure of �̂�∞ in �̂�0 ([187], Theorem 12.9). 

For a given labelled space (ℰ, ℒ, 𝐵) that is weakly left-resolving, consider the set 

𝑆 =  {(𝛼, 𝐴, 𝛽) | 𝛼, 𝛽 ∈ ℒ∗ and 𝐴 ∈ 𝐵𝛼 ∩ 𝐵𝛽  with 𝐴 ≠ ∅} ∪ {0}. 

A binary operation on 𝑆 is defined as follows: 𝑠 ·  0 = 0 ·  𝑠 = 0 for all 𝑠 ∈ 𝑆 and, given 

𝑠 = (𝛼, 𝐴, 𝛽) and 𝑡 = (𝛾, 𝐵, 𝛿) in 𝑆, 
 

𝑠. 𝑡 = {

(𝛼𝛾′, 𝑟(𝐴, 𝛾′) ∩ 𝐵, 𝛿), if 𝛾 =  𝛽𝛾′ and 𝑟(𝐴, 𝛾′)  ∩  𝐵 ≠ ∅,

(𝛼, 𝐴 ∩ 𝑟(𝐵, 𝛽′), 𝛿𝛽′), if 𝛽 =  𝛾𝛽′ and 𝐴 ∩  𝑟(𝐵, 𝛽′) ≠ ∅
0, otherwise.

 

  If for a given 𝑠 =  (𝛼, 𝐴, 𝛽)  ∈  𝑆 we define 𝑠∗  =  (𝛽, 𝐴, 𝛼), then the set 𝑆, endowed with 

the operation above, is an inverse semigroup with zero element 0 ([185], Proposition 3.4), 

whose set of idempotents is 

𝐸(𝑆)  =  {(𝛼, 𝐴, 𝛼) | 𝛼 ∈ ℒ∗ and 𝐴 ∈ 𝐵𝛼} ∪ {0}. 
The natural order in the semilattice 𝐸(𝑆) is described in the next proposition. 

Proposition (4.2.2)[450]: ([817] Proposition 4.1). Let 𝑝 =  (𝛼, 𝐴, 𝛼) and 𝑞 =  (𝛽, 𝐵, 𝛽) be 

non-zero elements in 𝐸(𝑆).  
Then 𝑝 ≤  𝑞 if and only if 𝛼 =  𝛽𝛼′ and 𝐴 ⊆ 𝑟(𝐵, 𝛼′). 

Filters in 𝐸(𝑆) are classified in two types: a filter 𝜉 in 𝐸(𝑆) is of finite type if there exists a 

word 𝛼 ∈ ℒ∗ such that (𝛼, 𝐴, 𝛼)  ∈  𝜉 for some 𝐴 ∈ 𝐵𝛼  and 𝛼 has the largest length among 

all 𝛽 such that (𝛽, 𝐵, 𝛽)  ∈  𝜉 for some 𝐵 ∈ 𝐵𝛽 . If 𝜉 is not of finite type, then we say it is 

of infinite type. 

  Let 𝜉 be a filter in 𝐸(𝑆) and 𝑝 =  (𝛼, 𝐴, 𝛼) and 𝑞 =  (𝛽, 𝐵, 𝛽) in 𝜉. Since 𝜉 is a filter, 

then 𝑝𝑞 ≠ 0; hence, 𝛼 and 𝛽 are comparable. This says the words of any two elements in a 

filter are comparable; in particular, for a filter of finite type there is a unique word with 

largest length associated with it as above. 
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 There is a bijective correspondence between the set of filters of finite type in E(S) and the 

set of pairs (𝛼, 𝐹) where 𝛼 ∈ ℒ∗ and 𝐹 is a filter in 𝐵𝛼, given by the following two results. 

Proposition (4.2.3)[450]: ([817] Proposition 4.3). Let 𝛼 ∈ ℒ∗ and 𝐹 be a filter in 𝐵𝛼. Then 

                   𝜉 = ⋃ ↑𝐴∈𝐹 (𝛼, 𝐴, 𝛼)  
=  {(𝛼1,𝑖, 𝐴, 𝛼1,𝑖)  ∈  𝐸(𝑆) | 0 ≤  𝑖 ≤ |𝛼| 𝑎𝑛𝑑 𝑟(𝐴, 𝛼𝑖+1,|𝛼|)  ∈ 𝐹} 

Is  a filter of  finite type in 𝐸(𝑆), with largest  word 𝛼. 

Proposition (4.2.4)[450]: ([817] Proposition 4.4). Let 𝜉 be a filter in of finite type in 𝐸(𝑆) 
with largest word 𝛼, and set 

𝐹 =  {𝐴 ∈ 𝐵| (𝛼, 𝐴, 𝛼)  ∈  𝜉}. 
Then 𝐹 is a filter in 𝐵𝛼  and 

𝜉 =⋃ ↑

𝐴∈𝐹

(𝛼, 𝐴, 𝛼). 

The situation for filters of infinite type is a bit more involved, for there is no word with 

largest length in this case: let 𝛼 ∈ ℒ∞and {𝐹𝑛}𝑛≥0 be a family such that 𝐹𝑛 is a filter in 𝐵𝛼1,𝑛  

for every 𝑛 >  0 and 𝐹0 is either a filter in 𝐵 or  𝐹0  =  ∅. The family {𝐹𝑛}𝑛≥0  is said to be 

admissible for 𝛼 if 

𝐹𝑛  ⊆ {𝐴 ∈ 𝐵𝛼1,𝑛 | 𝑟(𝐴, 𝛼n+1)  ∈ 𝐹𝑛+1} 

for all 𝑛 ≥  0, and is said to be complete for 𝛼 if 
𝐹𝑛  =  {𝐴 ∈ 𝐵𝛼1,𝑛|  𝑟(𝐴, 𝛼n+1)  ∈ 𝐹𝑛+1} 

for all 𝑛 ≥  0. 

   Note that any filter 𝐹𝑛 in a complete family completely determines all filters that come 

before it in the sequence. In fact, it can be shown that {𝐹𝑛}𝑛≥0  is complete for 𝛼 if and only 

if 

𝐹𝑛  =  {𝐴 ∈ 𝐵𝛼1,𝑛|  𝑟(𝐴, 𝛼n+1,m)  ∈ 𝐹𝑚} 

for all 𝑛 ≥  0 and all 𝑚 >  𝑛 ([815], Lemma 4.6). 

The following two results give a bijective correspondence between the set of filters of 

infinite type in 𝐸(𝑆) and the set of pairs (𝛼, {𝐹𝑛}𝑛≥0), where 𝛼 ∈ ℒ∞and {𝐹𝑛}𝑛≥0 is a 

complete family for 𝛼. 

Proposition (4.2.5)[450]: ([815], Proposition 4.7). Let 𝛼 ∈ ℒ∞, {𝐹𝑛}𝑛≥0 be an admissible 

family for 𝛼 and define 

𝜉 =⋃⋃ ↑

𝐴∈𝐹𝑛

(𝛼1,𝑛, 𝐴, 𝛼1,𝑛)

∞

𝑛=0

. 

Then 𝜉 is a filter in 𝐸(𝑆). 
Proposition (4.2.6)[450]: ([817], Proposition 4.8). Let 𝜉 be a filter of infinite type in 𝐸(𝑆). 
Then there exists 𝛼 ∈ ℒ∞such that every 𝑝 ∈  𝜉 can be written as 𝑝 =  (𝛼1,𝑛, 𝐴, 𝛼1,𝑛)  for 

some 𝑛 ≥  0 and some 𝐴 ∈ 𝐵1,𝑛. Moreover, if  we define for each 𝑛 ≥  0, 

𝐹𝑛  =  {𝐴 ∈ 𝐵| (𝛼1,𝑛, 𝐴, 𝛼1,𝑛)  ∈  𝜉}, 

then  {𝐹𝑛}𝑛≥0  is a complete family for 𝛼. 

Admissible families can be completed, in the following sense: if 𝛼 ∈ ℒ∗ and {𝐹𝑛}𝑛≥0 is 

an admissible family for 𝛼, then there is a complete family for 𝛼, say {𝐹𝑛}𝑛≥0, such that 

𝐹𝑛 ⊆ 𝐹𝑛, for all 𝑛 ≥  0 and both (𝛼, {𝐹𝑛}𝑛≥0) and (𝛼, {�̅�𝑛}𝑛≥0) generate the same filter in 

𝐸(𝑆) ([817], Proposition 4.11). 
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One can also talk of admissible and complete families for a labelled path 𝛼 of finite 

length: the definition is the same, only with a finite family {𝐹𝑛}0≤𝑛≤|𝛼| satisfying the above-

mentioned conditions. Note then that 𝐹|𝛼| determines completely all other filters in the 

family. 

Proposition (4.2.7)[450]: ([815], Proposition 4.12). Let ξ be a filter of finite type in E(S) 
and (α, F) be its associated pair. For each n ∈ {0, 1, . . . , |α|}, define 

𝐹𝑛  =  {𝐴 ∈ 𝐵| (𝛼1,𝑛, 𝐴, 𝛼1,𝑛)  ∈  𝜉}. 

Then 𝐹|𝛼| =  𝐹 and {𝐹𝑛}0≤𝑛≤|𝛼| is a complete family for 𝛼. 

We can thus bring about a common description for filters of finite and infinite type, 

summarized in the following theorem. 

Theorem (4.2.8)[450]: ([815], Theorem 4.13). Let (E, ℒ, B) be a labelled space which is 

weakly left-resolving, and let S be its associated inverse semigroup. Then there is a bijective 

correspondence between filters in E(𝑆) and pairs (α, {Fn}0≤n≤|α|), where α ∈ ℒ≤∞ and 

{Fn}0≤n≤|α| is a complete family for α (understanding that 0 ≤ n ≤ |α| means 0 ≤  n <  ∞ 

when α ∈ ℒ∞). 

   We may occasionally denote a filter 𝜉 in 𝐸(𝑆) with associated labelled path 𝛼 ∈ ℒ≤∞ by 

𝜉α to stress the word 𝛼; in addition, the filters in the complete family associated with 𝜉α will 

be denoted by 𝜉𝑛
𝛼 (𝑜𝑟𝜉𝑛 when there is no risk of confusion about the associated word). 

Specifically, 

𝜉𝑛
𝛼 = {𝐴 ∈ 𝐵| (𝛼1,𝑛, 𝐴, 𝛼1,𝑛)  ∈ 𝜉 

𝛼} 

and the family {𝜉𝑛
𝛼}0≤𝑛≤|𝛼|  satisfies 

𝜉𝑛
𝛼 = {𝐴 ∈ 𝐵𝛼1,𝑛|𝑟(𝐴, 𝛼n+1+m)  ∈ 𝜉𝑚

𝛼 } 

for all 0 ≤  𝑛 <  𝑚 ≤ |𝛼|. 
In what follows, F denotes the set of all filters in 𝐸(𝑆) and 𝐹𝛼  stands for the subset of 𝐹 of 

those filters whose associated word is 𝛼 ∈ ℒ≤∞. 
The following is a complete description of the ultrafilters in 𝐸(𝑆). 

Theorem (4.2.9)[450]: ([815], Theorem 5.10). Let (E, ℒ, B) be a labelled space which is 

weakly left-resolving, and let S be its associated inverse semigroup. Then the ultrafilters in 

E(S) are: 

i. The filters of finite type  ξαsuch that ξ|α| is an ultrafilter in Bα and for each b ∈ A 

there exists A ∈  ξ|α| such that r(A, b)  =  ∅. 

ii. The filters of infinite type ξα such that the family {ξn}n≥0 is maximal among all 

complete families for α (that is, if  {ξn}n≥0 is a complete family for α such that ξn ⊆
ℱn for all n ≥  0, then ξn  =  Fn for all n ≥  0). 

Suppose in addition that the accommodating family B is closed under relative 

complements. Then (ii) can be replaced with (ii) The filters of infinite type ξα such 

that ξn is an ultrafilter for every n >  0 and ξ0 is either an ultrafilter or the empty set. 

 Let T be the set of all tight filters in 𝐸(𝑆), endowed with the topology induced from 

the topology of pointwise convergence of  characters, via the bijection between tight 

characters and tight filters given at the end  . Note then that T is (homeomorphic to) 

the tight spectrum of 𝐸(𝑆), and will be treated as such. 

For each 𝛼 ∈ ℒ∗ recall from the end that 

𝑋𝛼  =  {𝐹 ⊆ 𝐵𝛼 |𝐹 𝑖𝑠 𝑎𝑛 𝑢𝑙𝑡𝑟𝑎𝑓𝑖𝑙𝑡𝑒𝑟 𝑖𝑛 𝐵𝛼}. 
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Also, define 

𝑋∝
𝑠𝑖𝑛𝑘 = {ℱ ∈ 𝑋𝛼 ∥ ∀𝑏 ∈ 𝐴, ∃𝐴 ∈ ℱ 𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡 𝑟(𝑎, 𝑏) = ∅} 

Suppose the accommodating family 𝐵  to be closed under relative complements. In this case, 

for every 𝛼, 𝛽 ∈ ℒ≥1 such that 𝛼𝛽 ∈ ℒ≥1, the relative range map 𝑟(·, 𝛽) ∶  𝐵𝛼 −→ 𝐵𝛼𝛽 is 

a morphism of  Boolean algebras and, therefore, we have its dual morphism 

𝑓𝛼[𝛽] ∶  𝑋𝛼𝛽  −→  𝑋𝛼  

given by 𝑓𝛼[𝛽](𝐹)  =  {𝐴 ∈ 𝐵𝛼  | 𝑟(𝐴, 𝛽)  ∈ 𝐹}. When 𝛼 =  𝜔, if 𝐹 ∈ 𝐵𝛽  then 

{𝐴 ∈ 𝐵|𝑟(𝐴, 𝛽) ∈ 𝑓} either an ultrafilter in 𝐵 =  𝐵𝜔  or the empty set, and we can therefore 

consider 𝑓𝜔[𝛽] : 𝑋𝛽  −→  𝑋𝜔  ∪ {∅}. 

Employing this new notation, if  𝜉𝛼  is a filter in 𝐸(𝑆) and 0 ≤  𝑚 <  𝑛 ≤ |𝛼|, then 𝜉𝑚  =
 𝑓𝛼1,𝑚[𝛼𝑚+1,𝑛](𝜉𝑛). 

If we endow the sets 𝑋𝛼  with the topology given by the convergence of filters stated at the 

end (this is the pointwise convergence of characters), it is clear that the functions 𝑓𝛼[𝛽] are 

continuous. Furthermore, it is easy to see that 𝑓𝛼[𝛽𝑦]= 𝑓𝛼[𝛽]◦ 𝑓𝛼𝛽[𝛾]. 

Under the hypothesis of 𝐵 being closed under relative complements, the only tight filters 

of infinite type in 𝐸(𝑆) are the ultrafilters of infinite type ([185], Corollary 6.2). The next 

result classifies the tight filters of finite type. 

Proposition (4.2.10)[450]: ([185], Proposition 6.4). Suppose the accommodating family B 

to be closed under relative complements and let ξ∝ be a filter of finite type. Then  ξ∝ is 

a tight filter if and only if  ξ| α| is an ultrafilter and at least one of the following conditions 

hold: 

(a) There is a net {f ⋋}⋋∈Λ ⊆ X∝
sink converging to ξ| α|. 

(b) There is a net {(tλ, Fλ)}λ∈Λ, where tλ is a letter in A and Fλ ∈  Xαtλ for each λ ∈ 

Λ, such that {fα[tλ](Fλ)}λ∈Λ converges to ξ|α| and {tλ}λ converges to infinity (that 

is, for every b ∈  A there is λb  ∈  Λ  with tλ  ≠ b for all λ ≥  λb). 
There is a more algebraic description for the tight filters in 𝐸(𝑆), given by the following 

theorem. 

Theorem (4.2.11)[450]: ([185], Theorem 6.7). Let (ε, ℒ, ℬ ) be a labelled space which is 

weakly left-resolving and whose accommodating family ℬ is closed under relative 

complements, and let S be its associated inverse semigroup.  

 Then the tight filters in E(S) are: 

(i) The ultrafilters of infinite type. 

(ii) The filters of finite type ξα  such that ξ| α| is an ultrafilter in Bα and for each A ∈ 

ξ| α| at least one of the following conditions hold: 

(a) ℒ(Aε1) is infinite. 

(b) There exists B ∈ Bα  such that ∅ ≠ B ⊆ A ∩ εsink.
0   

Finally, the next result shows the relation between the tight spectrum 𝑇 and the boundary 

path space of a directed graph (see also [185], Example 6.8). 

Proposition (4.2.12)[450]: ([185], Proposition 6.9). Let (ℇ, ℒ) be a left-resolving labelled 

graph such that ℇ0 is a finite set and let B =  P(ℇ0). Then the tight spectrum T of the 

labelled space (ε, ℒ, ℬ ) is homeomorphic to the boundary path space ∂E of the graph ℇ . 

We present the 𝐶∗-algebra associated with a labelled space, following [181]. 
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Definition (4.2.13)[450]: ([181], Definition 2.1). Let (𝜀, ℒ, ℬ )be a weakly left-resolving 

labelled space. The 𝐶∗-algebra associated with (𝜀, ℒ, ℬ ), denoted by 𝐶∗ (𝜀, ℒ, ℬ ), is the 

universal 𝐶∗-algebra generated by projections {𝑝𝐴 | 𝐴 ∈ 𝐵} and partial isometries 

{𝑠𝑎 | 𝑎 ∈ 𝐴} subject to the relations 

(i) 𝑝𝐴∩𝐵 = 𝑝𝐴𝑝𝐵 , 𝑝𝐴∪𝐵 = 𝑝𝐴  + 𝑝𝐵  − 𝑝𝐴∩𝐵 𝑎𝑛𝑑 𝑝∅ =  0, for every 𝐴, 𝐵 ∈ 𝐵; 

(ii)  𝑝𝐴𝑠𝑎 = 𝑠𝑎𝑝𝑟(𝐴,𝑎), for every 𝐴 ∈ 𝐵 and 𝑎 ∈ 𝐴; 

(iii)   𝑠𝑎
∗𝑠𝑎  =  𝑝𝑟(𝑎) and 𝑠𝑏

∗𝑠𝑎  =  0 if b ≠a, for every 𝑎, 𝑏 ∈ 𝐴; 

(iv)   For every 𝐴 ∈ 𝐵 for which 0 <  #ℒ(𝐴𝜀1)  <  ∞ and there does not exist 𝐵 ∈ 𝐵 such 

that ∅ ≠ 𝐵 ⊆ 𝐴 ∩ 𝜀𝑠𝑖𝑛𝑘
0 , 

𝑝𝐴 = ∑ 𝑠𝑎𝑝𝑟(𝐴,𝑎)𝑠𝑎
∗

∝∈ℒ(𝐴ℰ1)

 

In [181, Remark 2.4], Bates, Pask and Carlsen observed that this definition would lead to 

zero vertex projections for sinks. Therefore, they proposed a new definition modifying item 

(iv). In a preprint version of [181], they proposed  

When we begun, the published version of [181] containing Definition (4.2.13) was not yet 

available and, indeed, one of the goals was to point out that Definition (4.2.13) of the 𝐶∗-
algebra associated with a labelled space is more adequate than the previously given 

definitions. Item (iv) looks like the relation n ∑ 𝑠𝑖 𝑠𝑖
∗𝑛

𝑖=1 =  1 in the Cuntz algebra 𝒪𝑛. To 

classify a definition as adequate or inadequate is sometimes difficult  what would the criteria 

be? In [187], Exel applied the theory of tight filters associated with inverse semigroups to 

show that several 𝐶∗-algebras obtained from combinatorial objects created since the Cuntz 

algebras are, in fact, 𝐶∗-algebras of inverse semigroups acting on their tight spectra. We 

believe this establishes a good criterion to choose the adequate definition for the 𝐶∗-algebra 

of a labelled space, and we expected Definition (4.2.13) to be the adequate one, due to item 

(ii)(b) of Theorem (4.2.11). After the first preprint, Carlsen pointed out to us that our 

expected definition was indeed equivalent to the one present in the published version of 

[181]. We present an example that shows Definition (4.2.13) is different from that in the 

preprint version of [181]. 

 Now, we develop some basic properties of 𝐶∗ (𝜀, ℒ, ℬ ); most of these were already 

discussed by Bates and Pask in [182]. 

  Let (E,L,B) be a weakly left-resolving labelled space and consider its 𝐶∗-algebra 

𝐶∗(𝜀, ℒ, ℬ )For each word 𝛼 =  𝑎1𝑎2  ··· 𝑎𝑛 , define 𝑠𝛼  =  𝑠𝑎1𝑠𝑎2  ··· 𝑠𝑎𝑛 ; we also set 𝑠𝜔  =

 1, where 𝜔 is the empty word. 

Proposition (4.2.14)[450]: The following properties are valid in 𝐶∗(𝜀, ℒ, ℬ ). 
(i)  If α ∈  C∗, then sα  =  0. 
(ii)  pAsα  = sapr(A,a), for every A ∈ B and α ∈ C∗. 

(iii)   sα
∗ sα = pr(α) and  sβ

∗sα = 0 and α are not comparable, for every α, β ∈ ℒ≥1. 

(iv)  For every α∈ ℒ≥1sα is a partial isometry. 

(v)  Let α, β ∈ C∗ and A ∈ B. If s∝pAsβ
∗ ≠ 0, then A ∩ r(α) ∩  r(β)  = ∅ and s∝pAsβ

∗ =

s∝pA∩r(∝)∩r(β)sβ
∗ . 

(vi) Let α, β, γ, δ ∈ ℒ∗, A ∈ Bα  ∩ Bβ and B ∈ Bγ  ∩ Bδ.  

Then 

 



 

133 

 

(𝑠∝𝑝𝐴𝑠𝛽
∗)(𝑠𝛾𝑝𝐵𝑠𝛿

∗) = {

𝑠𝛼𝛾,𝑝𝑟(𝐴,�̀�)∩𝐵𝑠𝛿,
∗          𝑖𝑓𝛾 = 𝛽�̀�

𝑠𝛼 ,𝑝𝐴∩𝑟(𝐵,�̀�)𝑠𝛿𝛽  ̀
∗       𝑖𝑓𝛽 = 𝛾�̀� 

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

In particular , 𝑠∝𝑝𝐴𝑠𝛽
∗   is a partial isometry. 

(vii)  Every non-zero finite product of terms of types 𝑠𝑎, 𝑝𝐵  and 𝑠𝑏
∗

 can be written as 

𝑠∝𝑝𝐴𝑠𝛽
∗ , where 𝐴 ∈ 𝐵𝛼 ∩ 𝐵𝛽 . 

(viii) 𝐶∗(𝜀, ℒ, ℬ ) = 𝑠𝑝𝑎𝑛{𝑠∝𝑝𝐴𝑠𝛽
∗|𝛼, 𝛽 ∈ℒ∗ and  𝐵𝛼  ∩ 𝐵𝛽}. 

(ix) The elements of the form 𝑠∝𝑝𝐴𝑠𝛼
∗ , where 𝛼 ∈ ℒ∗ ,are commuting projections. 

Furthermore, 

(𝑠∝𝑝𝐴𝑠𝛼
∗)(𝑠𝛽𝑝𝐵𝑠𝛽

∗) = {

𝑠𝛽𝑝𝑟(𝐴,𝛽)𝑠𝛽,
∗          𝑖𝑓𝛽 = 𝛼�̀�

𝑠𝛼 ,𝑝𝐴∩𝑟(𝐵,�̀�)𝑠𝛼
∗       𝑖𝑓𝛼 = 𝛾�̀� 

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Proof. 

(i) If 𝛼 =  𝑎1𝑎2  ··· 𝑎𝑛  ∉  ℒ
∗, then 𝑟(··· 𝑟(𝑟( 𝑎1), 𝑎2)  ··· , 𝑎𝑛)  =  ∅. Therefore, by using 

that 𝑠𝑎1 is a partial isometry and items (i), (ii) and (iii) of Definition (4.2.13), we have 

 

𝑠𝛼  =  𝑠𝑎1𝑠𝑎2  ··· 𝑠𝑎𝑛  =  𝑠𝑎1𝑝𝑟(𝑎1)𝑠𝑎2  ··· 𝑠𝑎𝑛  =  𝑠𝑎1𝑠𝑎2 ··· 𝑠𝑎𝑛𝑝𝑟(··· 𝑟(𝑟(𝑎1), 𝑎2) ···

 , 𝑎𝑛)  =  0.  
(ii)  This is clear from item (ii) of  Definition (4.2.13). 

(iii) The first equality follows by induction using that 𝑠𝑎
∗𝑏𝑠𝑎𝑏 = 𝑠𝑏

∗𝑠𝑎
∗𝑠𝑎 𝑠𝑏 = 𝑠𝑏

∗𝑝𝑟(𝑎)𝑠𝑏 =

𝑠𝑏
∗𝑠𝑏𝑝𝑟(𝑟(𝑎),𝑏) = 𝑝𝑟(𝑏)𝑝𝑟(𝑟(𝑎),𝑏) = 𝑝𝑟(𝑟(𝑎),𝑏) = 𝑝𝑟(𝑎𝑏). To see the second one, suppose 

𝛼, 𝛽 ∈ ℒ≥1 are not comparable, that is, there are �̀�,  �̀�  ∈ ℒ∗ an𝑑 𝑎, 𝑏 ∈ 𝐴 with 𝑎 ≠ 𝑏 

such that 𝛼 =  𝛾𝑎�̀� and 𝛽 =  𝛾𝑏�́�. Therefore, 

𝑠𝛽
∗𝑠𝛼 = (𝑠𝛾𝑠𝑏𝑠�́�)

∗
(𝑠𝛾𝑠𝑎𝑠�́�) = 𝑠𝛽

∗𝑠𝑏
∗𝑠𝛾
∗𝑠𝛾𝑠𝑎𝑠�́� = 𝑠�́�𝑠𝑏

∗𝑝𝑟(𝛾)𝑠𝑎𝑠�́� 

                                  = 𝑠�́�
∗𝑠𝑏
∗𝑠𝑎𝑝𝑟(𝑟(𝛾),𝑎)𝑠�́� = 0 

since 𝑠𝑏
∗𝑠𝑎 = 0 

(iv) It follows by the previous item, since 𝑠𝛼
∗𝑠𝛼 is a projection. 

(v) Since 𝑠∝𝑝𝐴𝑠𝛽
∗ = 𝑠∝𝑝𝑟(𝛼)𝑝𝐴𝑝𝑟(𝛽)𝑠𝛽

∗ = 𝑠∝𝑝𝑟(𝛼)∩𝐴∩𝑟(𝛽)𝑠𝛽
∗ , then   

𝑟(𝛼) ∩  𝐴 ∩  𝑟(𝛽) ≠ ∅  if  𝑠∝𝑝𝐴𝑠𝛽
∗ ≠ 0. 

(vi)  If 𝛽 and 𝛾 are not comparable, then (𝑠∝𝑝𝐴𝑠𝛽
∗)(𝑠𝛾𝑝𝐴𝑠𝛿

∗) = 0, by item (iii). Now, 

suppose 𝛾 = 𝛽�́� (the other case is similar and both cases coincide if 𝛽 =  𝛾). Then 

(𝑠∝𝑝𝐴𝑠𝛽
∗)(𝑠𝛾𝑝𝐵𝑠𝛿

∗) = 𝑠𝛼𝑝𝐴𝑠𝛽
∗𝑠𝛽𝑠�́�𝑝𝐵𝑠𝛿

∗ = 𝑠𝛼𝑝𝐴𝑝𝑟(𝛽)𝑠�́�𝑝𝐵𝑠𝛿
∗ = 𝑠𝛼𝑝𝐴𝑠�́�𝑝𝐵𝑠𝛿

∗ 

                                                 = 𝑠𝛼𝑠�́�𝑝𝑟(𝐴,�́�)𝑝𝐵𝑠𝛼�́�𝑝𝑟(𝐴,�́�)∩𝐵𝑠𝛿
∗ . 

Applying this product rule, we see that 𝑠𝛼𝑝𝐴𝑠𝛽
∗ is a partial isometry, since 

(𝑠𝛼𝑝𝐴𝑠𝛽
∗)(𝑠𝛼𝑝𝐴𝑠𝛽

∗)
∗
(𝑠𝛼𝑝𝐴𝑠𝛽

∗) = (𝑠∝𝑝𝐴𝑠𝛽
∗)(𝑠𝛽𝑝𝐴𝑠𝛼

∗)(𝑠𝛼𝑝𝐴𝑠𝛽
∗) = (𝑠𝛼𝑝𝐴𝑠𝛼

∗)(𝑠𝛼𝑝𝐴𝑠𝛽
∗)  

                                                             = 𝑠𝛼𝑝𝐴𝑠𝛽
∗ . 

Consider a non-zero product as in the statement. If we have a 𝑠𝑏
∗on the left of a 𝑠𝑎, we must 

have 𝑎 =  𝑏, since the product is non-zero. In this case, we can replace 𝑠𝑎
∗𝑠𝑎  by 𝑝𝑟(𝑎). If we 

have 𝑝𝐵  on the left of a 𝑠𝑎, we can replace 𝑝𝐵𝑠𝑎 by 𝑠𝑎𝑝𝑟(𝐵,𝑎). Similarly, we can replace  
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𝑠𝑏
∗ 𝑝𝐵  by  𝑠𝑎𝑝𝑟(𝐵,𝑎) . Applying these replacements whenever possible, we end up with a 

product like 

𝑠𝑎1𝑠𝑎2 ··· 𝑠𝑎𝑛𝑝𝐵1𝑝𝐵2 ··· 𝑝𝐵𝑚𝑠𝑏𝑘
∗ 𝑠𝑏𝑘−1

∗ ⋯𝑠𝑏1
∗ . 

Taking 𝛼 =  𝑎1𝑎2 ··· 𝑎𝑛 , 𝐴 = 𝐵1 ∩···∩ 𝐵𝑚  and 𝛽 = 𝑏1𝑏2 ··· 𝑏𝑘 , the product reduces 

to 𝑠𝛼𝑝𝐴𝑠𝛽
∗  and, by item (v), we can suppose 𝐴 ∈ 𝐵𝛼 ∩ 𝐵𝛽 . 

(vii) Immediate from the previous item. 

(viii) Applying item (vi) to the product (𝑠𝛼𝑝𝐴𝑠𝛼
∗)(𝑠𝛽𝑝𝐴𝑠𝛽

∗), we obtain 

(𝑠𝛼𝑝𝐴𝑠𝛼
∗)(𝑠𝛽𝑝𝐴𝑠𝛽

∗), {

𝑠𝛽𝑝𝑟(𝐴,𝛽′)∩𝐵𝑠𝛽
∗ , 𝑖𝑓 𝛽 = 𝛼𝛽′,

𝑠𝛼𝑝𝑟(𝐴,𝛼′)∩𝐵𝑠𝛼∗ , 𝑖𝑓 𝛼 = 𝛽𝛼′,

0, otherwise.

 

Interchanging 𝛼 and 𝐴 with 𝛽 and 𝐵, it is clear that 𝑠𝛼𝑝𝐴𝑠𝛼
∗  commutes with 𝑠𝛽𝑝𝐴𝑠𝛽

∗ . 

Finally, taking 𝛽 = 𝛼 and 𝐵 = 𝐴, we see that 𝑠𝛼𝑝𝐴𝑠𝛼
∗

 is a projection.  

Consider the subset 𝑅 = {𝑠𝛼𝑝𝐴𝑠𝛽
∗}𝛼, 𝛽 ∈ ℒ∗ and 𝐴 ∈ 𝛽𝛼  ∩ 𝛽𝛽} 𝑜𝑓 𝐶

∗(ℰ, ℒ, ℬ). 

Properties (𝑣) to (𝑣𝑖𝑖𝑖) from the  previous proposition say that 𝑅 is a semigroup whose 

linear span is dense  in 𝐶∗(ℰ, ℒ, ℬ). The inverse  semigroup was defined based on 𝑅, but 

they might not be isomorphic: two idempotents of 𝑆 may give the same element in the  𝐶∗-
algebra, as in Example (4.2.42) (there, triples of the form (𝑎𝑛 ,  ℰ0, 𝑎𝑛) are all different for 

𝑛 ≥  1, but 𝑠𝑎𝑛𝑝ℰ0𝑠𝑎𝑛
∗ =  1  for all 𝑛 ≥  1). 

Definition (4.2.15)[450]: Let (ℰ, ℒ, ℬ) be a weakly left-resolving labelled space. The 

diagonal C∗-algebra associated with (ℰ, ℒ, ℬ) denoted by Δ(ℰ, ℒ, ℬ), is the C∗-subalgebra of 

C∗(ℰ, ℒ, ℬ)  generated by the elements sαpAsα
∗ ,  that is, 

𝛥(ℰ, ℒ, ℬ) = 𝐶∗({𝑠𝛼𝑝𝐴𝑠𝛼
∗ |𝛼 ∈ ℒ∗ 𝑎𝑛𝑑 𝐴 ∈ ℬ𝛼}). 

By item (ix) of Proposition (4.2.12), 𝛥(ℰ, ℒ, ℬ)is an abelian 𝐶∗-algebra generated by 

commuting projections and 

 𝛥(ℰ, ℒ, ℬ) = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑠𝛼𝑝𝐴𝑠𝛼
∗}|𝛼 ∈ ℒ∗ 𝑎𝑛𝑑 𝐴 ∈ ℬ𝛼}. 

We define functions that are going to be used later on to construct a representation of 

𝐶∗(ℰ, ℒ, ℬ).  These  functions generalize two operations that can easily be done with paths 

on a graph ℰ ∶ gluing paths, that is, given 𝜇 and 𝜈 paths on ℰ such that 𝑟(𝜇)  =  𝑠(𝜈), it is 

easy to see that 𝜇𝜈 is a new path on ℰ; and cutting paths, that is, given a path 𝜇𝜈 on ℰ then 

𝜈 is also a path on the graph. 

 In the labelled spaces, we have an extra layer of complexity because filters in 𝐸(𝑆) are 

described not only by a labelled path but also by a complete family of filters associated with 

it, as in Theorem (4.2.8). When we cut or glue labelled paths, the Boolean algebras where 

the filters lie change because they depend on the labelled path. We also note that, since we 

are only interested in tight filters in 𝐸(𝑆), the families considered below will consist only of 

ultrafilters. 

  Let us begin with the problem of describing new filters by gluing labelled paths. Consider 

composable labelled paths 𝛼 ∈ ℒ≥1 𝑎𝑛𝑑 𝛽 ∈ ℒ∗, and an ultrafilter ℱ ∈  𝑋𝛽; a simple way 

to produce a subset 𝒥 of ℬ𝛼𝛽   from ℱ is by cutting the elements of  ℱ by 𝑟(𝛼𝛽), that is, 

ℐ =  {𝐶 ∩  𝑟(𝛼𝛽) | 𝐶 ∈ ℱ}. 
It may be the case, however, that 𝐶 ∩  𝑟(𝛼𝛽)  =  ∅ for some 𝐶 ∈ ℱ. Since (𝛼𝛽) ∈ ℬ𝛽, 

by Proposition(4.2.1) and using the fact that ℱ is an ultrafilter it can be seen that the 

intersections 𝐶 ∩ 𝑟(𝛼𝛽) are non-empty for all 𝐶 ∈ ℱ if and only if 𝑟(𝛼𝛽)  ∈ ℱ. The 
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following simple result is useful for the present argument, and a proof is included for 

convenience. 

Lemma (4.2.16)[450]: Given E a meet semilattice with 0, y ∈  E and ℱ an ultrafilter in E, 
consider 

𝒥 =  {𝑥 ∧  𝑦 | 𝑥 ∈ ℱ}. 
Then 𝒥 is an ultrafilter in  ↓ 𝑦 if and only if  𝑦 ∈ ℱ. 

Proof. Clearly 𝒥 ⊆↓ 𝑦 and  𝒥  is closed by finite meets. Proposition (4.2.1) ensures 𝑦 ∈ ℱ 

if and only if 𝑥 ∧ 𝑦 ≠ 0 for all 𝑥 ∈ ℱ, and so if  𝑦 ∉ ℱ one sees already that  𝒥 is not a 

filter. 

   Suppose then that 𝑦 ∈ ℱ. Given 𝑥 ∈ 𝐹 and 𝑧 ∈↓ 𝑦 such that  𝑥 ∧  𝑦 ≤  𝒵, since ℱ is a 

filter it follows that 𝑥 ∧  𝑦 ∈ ℱ and thus 𝒵 ∈ ℱ, whence  𝒵 =  𝒵 ∧  𝑦 ∈ 𝒥, showing 𝒥  is 

a filter. 

  To show 𝒥  is an ultrafilter, let 𝒵 ∈↓ 𝑦 be such that 𝒵 ∧ 𝑢 ≠ 0 for all 𝑢 ∈ 𝒥. Given that 

𝒵 =  𝑦 ∧ 𝒵 one has 

𝑥 ∧  𝒵 =  𝑥 ∧ (𝑦 ∧  𝒵)  =  (𝑥 ∧  𝑦)  ∧  𝒵 ≠ 0 

for all 𝑥 ∈ ℱ, hence 𝒵 ∈ ℱ since ℱ is an ultrafilter; but then 𝒵 =  𝒵 ∧  𝑦 ∈ 𝒥, and the 

result follows.  

Lemma (4.2.17)[450]: Let 𝛼 ∈ ℒ≥1 and 𝛽 ∈ ℒ∗ be such that 𝛼𝛽 ∈ ℒ≥1, let ℱ ∈  𝑋𝛽, and 

consider 

𝒥 =  {𝐶 ∩  𝑟(𝛼𝛽) | 𝐶 ∈ ℱ}. 
Then 𝒥 ∈  𝑋𝛼𝛽  if and only if  𝑟(𝛼𝛽)  ∈ ℱ. 

Proof. Follows immediately from Lemma (4.2.1), with 𝐸 =  ℬ𝛽  and 𝑦 =  𝑟(𝛼𝛽) (note that 

↓ 𝑟(𝛼𝛽) = ℬ𝛼𝛽). 

For labelled paths 𝛼 ∈ ℒ≥1 and 𝛽 ∈ ℒ∗ such that 𝛼𝛽 ∈ ℒ≥1, denote by 𝑋(𝛼)𝛽 the set of 

ultrafilters in  𝐵𝛽  that give rise, via cut down by 𝑟(𝛼𝛽), to ultrafilters in 𝐵𝛼𝛽. More precisely, 

using Lemma (4.2.17), 

𝑋(𝛼)𝛽 =  {ℱ ∈  𝑋 𝛽| 𝑟(𝛼𝛽)  ∈ ℱ}. 

There is thus a map 𝑔(𝛼)𝛽 ∶  𝑋(𝛼)𝛽 →  𝑋𝛼𝛽, that associates to each ultrafilter ℱ ∈ 

𝑋(𝛼)𝛽,the ultrafilter in 𝐵𝛼𝛽  given by  

𝑔(𝛼)𝛽(𝐹)  =  {𝐶 ∩  𝑟(𝛼𝛽) | 𝐶 ∈ ℱ}. 

Also, for 𝛼 =  𝜔 define  𝑋(𝜔)𝛽  =  𝑋𝛽     and let  𝑔(𝜔)𝛽   denote the identity function on 𝑋𝛽 . 

The following lemmas describe properties of these sets and maps, and how they behave 

with respect to the maps  𝑓𝛼[𝛽] ∶  𝑋𝛼𝛽  →  𝑋𝛼  between ultrafilter spaces. 

Lemma (4.2.18)[450]:  Let 𝛼 ∈ ℒ≥1 and  𝛽, 𝛾 ∈ ℒ∗ with 𝛼𝛽𝛾 ∈ ℒ≥1  be given. Then 

(i)  𝑓𝛽[𝛾](𝑋(𝛼)𝛽𝛾)  ⊆  𝑋(𝛼)𝛽; 

(ii)  𝑓−1𝛽[𝛾](𝑋(𝛼)𝛽𝛾)  ⊆  𝑋(𝛼)𝛽𝛾;  

Proof. To prove (𝑖), given ℱ ′  ∈  𝑋(𝛼)𝛽𝛾, one has 𝑟(𝛼𝛽𝛾) ∈ ℱ ′ and also 

𝑓𝛽[𝑟](ℱ
′) = {𝐶 ∈ ℬ𝛽|𝑟(𝐶, 𝛾) ∈ ℱ

′ }. 

Since 𝑟(𝛼𝛽)  ∈ ℬ𝛽  and 𝑟(𝑟(𝛼𝛽), 𝛾)  =  𝑟(𝛼𝛽𝛾) ∈ ℱ ′, it follows that (𝛼𝛽) ∈ 𝑓𝛽[𝑟](ℱ
′) ) and 

therefore 𝑓𝛽[𝑟](ℱ
′) ∈ 𝑋(𝛼)𝛽 . 

As for (ii), if  ℱ ′ ∈ 𝑓−1
𝛽[𝛾]
(𝑋(𝛼)𝛽)  then 𝑓𝛽[𝑟](ℱ

′) ∈ 𝑋(𝛼)𝛽, and thus 𝑟(𝛼𝛽) ∈

{𝐶 ∈ ℬ𝛽|𝑟(𝐶, 𝛾) ∈ ℱ
′ }. This gives 
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𝑟(𝛼𝛽𝛾)  =  𝑟(𝑟(𝛼𝛽), 𝛾)  ∈ ℱ ′, 
whence ℱ ′ ∈ 𝑋(𝛼)𝛽𝛾. 

Lemma (4.2.19)[450]: Let 𝛼 ∈ ℒ≥1 and 𝛽, 𝛾 ∈ ℒ∗ with 𝛼𝛽𝛾 ∈ ℒ≥1 be given. Then, 

(i) 𝑋(𝛼𝛽)𝛾  ⊆  𝑋(𝛽)𝛾; 

(ii) 𝑔(𝛽)𝛾(𝑋(𝛼𝛽)𝛾)  ⊆  𝑋(𝛼)𝛽𝛾; 

(iii) 𝐼𝑓 ℱ ∈  𝑋(𝛼𝛽)𝛾, then 

𝑔(𝛼𝛽)𝛾(ℱ)  =  𝑔 (𝛼)𝛽𝛾𝜊 𝑔(𝛽)𝛾(ℱ). 

(iv)  Suppose the labelled space (ℰ, ℒ, ℬ) is weakly left-resolving. Then, the following 

diagram is commutative: 

 

 

 

 

 

Proof. If ℱ ∈  𝑋(𝛼𝛽)𝛾  then 𝑟(𝛼𝛽𝛾)  ∈ ℱ and, since ℱ is a filter in 𝐵𝛾, the fact that 

𝑟(𝛼𝛽𝛾)  ⊆  𝑟(𝛽𝛾) gives 𝑟(𝛽𝛾) ∈ ℱ, whence ℱ ∈  𝑋(𝛽)𝛾; this proves (𝑖). Also, 

𝑟(𝛼𝛽𝛾)  =  𝑟(𝛼𝛽𝛾)  ∩  𝑟(𝛽𝛾)  ∈ {𝐶 ∩  𝑟(𝛽𝛾) | 𝐶 ∈ ℱ}  =  𝑔(𝛽)𝛾(ℱ), 

From where (ii) follows. It is clear that 

𝑔(𝛼)𝛽𝛾 𝜊 𝑔(𝛽)𝛾(ℱ)  =  𝑔(𝛼)𝛽𝛾({ 𝐶 ∩  𝑟(𝛽𝛾) | 𝐶 ∈ ℱ}) 

                                                                  =  {(𝐶 ∩  𝑟(𝛽𝛾))  ∩  𝑟(𝛼𝛽𝛾) | 𝐶 ∈ ℱ} 
                                                       =  {𝐶 ∩  𝑟(𝛼𝛽𝛾) | 𝐶 ∈ ℱ}  =  𝑔(𝛼𝛽)𝛾(ℱ), 

which is (iii). As for (iv), Lemma (4.2.17) ensures 𝑓𝛽[𝛾] maps 𝑋(𝛼)𝛽𝛾 into 𝑋(𝛼)𝛽. If ℱ ∈ 

𝑋(𝛼)𝛽𝛾, then 

(𝑔(𝛼)𝛽 𝜊 𝑓𝛽[𝛾])(ℱ)  =  {𝐶 ∩  𝑟(𝛼𝛽) | 𝐶 ∈ ℬ𝛽  𝑎𝑛𝑑 𝑟(𝐶, 𝛾)  ∈ ℱ} 

and 

(𝑓𝛼𝛽[𝛾] 𝜊 𝑔(𝛼)𝛽𝛾)(ℱ)  =  {𝐷 ∈ ℬ𝛼𝛽  | 𝑟(𝐷, 𝛾)  ∈  𝑔(𝛼)𝛽𝛾(ℱ)}. 

Given 𝐶 ∈ ℬ𝛽  such that 𝑟(𝐶, 𝛾)  ∈ ℱ, note that 𝐶 ∩  𝑟(𝛼𝛽)  ∈ ℬ𝛼𝛽  and that 

𝑟(𝐶 ∩  𝑟(𝛼𝛽), 𝛾)  =  𝑟(𝐶, 𝛾)  ∩  𝑟(𝛼𝛽𝛾)  ∈  𝑔(𝛼)𝛽𝛾(ℱ), 

using the weakly left-resolving hypothesis; therefore 

(𝑔(𝛼)𝛽  𝜊 𝑓𝛽[𝛾])(ℱ)  ⊆  (𝑓 𝛼𝛽[𝛾] 𝜊 𝑔(𝛼)𝛽𝛾)(ℱ), 

And since both terms are ultrafilters, equality follows.   

Lemma (4.2.20)[450]: Let 𝛼 ∈ ℒ≥1 and 𝛽 ∈ ℒ∗ be  such 

that  𝛼𝛽 ∈ ℒ≥1 . Then,. 

(i)  𝑔(𝛼)𝛽(𝑋(𝛼)𝛽  → 𝑋𝛽
𝑠𝑖𝑛𝑘

    
) ⊆ 𝑋𝛼𝛽

𝑠𝑖𝑛𝑘  

(ii) 𝑔(𝛼)𝛽 ∶  𝑋(𝛼)𝛽  →  𝑋𝛼𝛽  𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 

(iii) 𝑋(𝛼)𝛽  is an open  subset of  𝑋𝛽. 

Proof. Given  ℱ ∈ 𝑋(𝛼)𝛽 ∩ 𝑋𝛽
𝑠𝑖𝑛𝑘

  , for each 𝑎 ∈  𝒜 there is a 𝐷 ∈  ℱ with (𝐷, 𝑎) =  ∅; 

consequently,  

𝐷 ∩  𝑟(𝛼𝛽)  ∈  𝑔(𝛼)𝛽(ℱ) is such that 𝑟(𝐷 ∩  𝑟(𝛼𝛽), 𝑎)  =  ∅, hence 𝑔(𝛼)𝛽(ℱ)  ∈ 𝑋𝛼𝛽
𝑠𝑖𝑛𝑘 , 

proving ( i ). 

X ( α ) βγ 
g ( α ) βγ  

f β [ γ ] 

X αβγ  

f αβ [ γ ]

 
X ( α ) β g ( α ) β X αβ .
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To prove (ii), consider a net {ℱ𝜆} 𝜆 ⊆ 𝑋(𝛼)𝛽   that converges to ℱ ∈  𝑋(𝛼)𝛽. For an arbitrary 

𝐷 ∈  𝑔(𝛼)𝛽(ℱ) say 𝐷 =  𝐶 ∩  𝑟(𝛼𝛽) for some 𝐶 ∈ ℱ, the convergence above ensures 

there is 𝜆0 such that 𝜆 ≥  𝜆0 implies 𝐶 ∈ ℱ𝜆, and therefore 𝐷 =  𝐶 ∩ 𝑟(𝛼𝛽)  ∈  𝑔(𝛼)𝛽(ℱ𝜆). 

If on the other hand 𝐷 ∈ 𝐵𝛼𝛽\𝑔(𝛼)𝛽(ℱ), using that 𝑔(𝛼)𝛽(ℱ) is an ultrafilter there must 

be an element of it that does not intersect 𝐷, that is, there is 𝐶 ∈ ℱ such that 𝐷 ∩ (𝐶 ∩
𝑟(𝛼𝛽))  =  ∅, by Proposition (4.2.1). Since 𝐵𝛼𝛽  ⊆ ℬ𝛽  one has 𝐷 ∈ ℬ𝛽  and from 𝐷 =  𝐷 ∩

𝑟(𝛼𝛽) it can be concluded that 𝐷 ∩ 𝐶 =  (𝐷 ∩ 𝑟(𝛼𝛽) ∩ 𝐶 =  ∅, and thus 𝐷 ∉ ℱ , again by 

Proposition (4.2.1) and using that ℱ is an ultrafilter. That means that there must be an index 

𝜆 such that 𝜆 ≥  𝜆′  implies 𝐷 ∉ ℱ𝜆, ensuring the existence of an element 𝐶𝜆 ∈ ℱ𝜆  with 𝐷 ∩

𝐶𝜆 =  ∅ for each such 𝜆; the element 𝐶𝜆 ∩ 𝑟(𝛼𝛽)  ∈  𝑔(𝛼)𝛽(ℱ𝜆 ) satisfies 

𝐷 ∩ (𝐶𝜆  ∩  𝑟(𝛼𝛽))  =  ∅, 
from where it can be established that 𝐷 ∉ 𝑔(𝛼)𝛽(ℱ𝜆) for all 𝜆 ≥ 𝜆′. This concludes the proof 

that 𝑔(𝛼)𝛽(ℱ𝜆) converges to 𝑔(𝛼)𝛽(ℱ ) and that 𝑔(𝛼)𝛽 is therefore a continuous map. 

As for (iii), suppose ℱ ∈  𝑋(𝛼)𝛽 and {ℱ𝜆}𝜆  ⊆  𝑋𝛽  is a net that converges to ℱ. Since 

𝑟(𝛼𝛽)  ∈ ℱ, the pointwise convergence says there is an index 𝜆0 such that 𝜆 ≥ 𝜆0 implies 

𝑟(𝛼𝛽)  ∈ ℱ𝜆, and thus ℱ𝜆 ∈  𝑋(𝛼)𝛽, whence 𝑋(𝛼)𝛽  is open.  

Let us proceed with the problem of describing new filters by cutting labelled paths. 

Consider composable labelled paths 𝛼 ∈  ℒ≥1 and 𝛽 ∈  ℒ∗, and an ultrafilter  ℱ ∈ 𝑋𝛼𝛽. 

Note that ℱ ⊆ ℬ𝛼𝛽  ⊆ ℬ𝛽 , but ℱ may not be a filter in ℬ𝛽 , for ℬ𝛽  may contain elements 

above agiven element of  ℱ that are not in ℬ𝛼𝛽. If we add to ℱ these elements, however, the 

resulting set is an ultrafilter in ℬ𝛽 , as the following result shows. 

Proposition (4.2.21)[450]: Let α ∈ ℒ≥1and β ∈ ℒ∗ be such that αβ ∈ ℒ≥1, and ℱ ∈  Xαβ. 

Then ↑ ℱℬβ
 ∈  X(α)β. 

Proof. Suppose 𝐶 ∈ ℬ𝛽  satisfies 𝐶 ∩  𝐵 = ∅ for all 𝐵 ∈↑ ℬ𝛽ℱ; in particular, 𝐶 ∩ 𝐵 ≠ ∅ 

for all 𝐵 ∈ ℱ. Note that 𝑟(𝛼𝛽)  ∈ ℱ (since 𝐹 ∈  𝑋𝛼𝛽), so for any given 𝐵 ∈ ℱ one has 𝐵 ∩

 𝑟(𝛼𝛽)  =  𝐵, which in turn gives, for the element (𝐶 ∩  𝑟(𝛼𝛽)) ∈↓ 𝑟(𝛼𝛽)  =  𝐵𝛼𝛽 , 

(𝐶 ∩  𝑟(𝛼𝛽))  ∩  𝐵 =  𝐶 ∩  (𝑟(𝛼𝛽)  ∩  𝐵)  =  𝐶 ∩  𝐵 ≠ ∅. 
F is an ultrafilter, so 𝐶 ∩  𝑟(𝛼𝛽)  ∈ 𝐹 and thus 𝐶 ∈↑ 𝐵𝛽(𝐶 ∩  𝑟(𝛼𝛽))  ⊆↑ 𝐵𝛽𝐹. 

Proposition (4.2.1) now ensures that ↑ 𝐵𝛽𝐹 ∈  𝑋𝛽, and clearly 𝑟(𝛼𝛽)  ∈↑ 𝐵𝛽𝐹, proving ↑

𝐵𝛽𝐹 ∈  𝑋(𝛼)𝛽  as desired.  

Proposition (4.2.21) gives rise to a function ℎ[𝛼]𝛽 ∶  𝑋𝛼𝛽  →  𝑋(𝛼)𝛽  that associates to each 

ultrafilter 𝐹 ∈  𝑋𝛼𝛽 , the ultrafilter in 𝐵𝛽  given by 

ℎ[𝛼]𝛽(𝐹)  = ↑ 𝐵𝛽𝐹. 

The following lemmas describe some of the properties of the maps. 

Lemma (4.2.22)[450]: Let α ∈ ℒ≥1 and β, γ ∈ ℒ∗ with αβγ  ∈ ℒ
≥1 

be given. Then, 

(i) ℎ[𝛽]𝛾 ° ℎ[𝛼]𝛽𝛾  =  ℎ[𝛼𝛽]𝛾. 

(ii) The following diagram is commutative: 
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𝐹 ∈  𝑋𝛼𝛽𝛾, since 𝐹 ⊆↑𝐵𝛽𝛾 𝐹 one obtains Proof. For a given 

ℎ[𝛼𝛽]𝛾(𝐹)  = ↑𝐵𝛾 𝐹 ⊆↑𝐵𝛾  (↑𝐵𝛽𝛾 𝐹)  =  ℎ[𝛽]𝛾 ° ℎ[𝛼]𝛽𝛾(𝐹), 

which implies these are equal since they are both ultrafilters in 𝐵𝛾. This proves (i). As for 

(ii), first observe that Lemma (4.2.18).(i) says the arrow on the right of  the diagram makes 

sense. If  𝐹 ∈ 𝑋𝛼𝛽𝛾  then 

ℎ[𝛼]𝛽 ° 𝑓𝛼𝛽[𝛾](𝐹)  =  {𝐷 ∈ 𝐵𝛽 |∃𝐶 ∈ 𝐵𝛼𝛽 𝑤𝑖𝑡ℎ 𝑟(𝐶, 𝛾)  ∈ 𝐹 𝑎𝑛𝑑 𝐶 ⊆  𝐷}. 

For a given 𝐷 ∈  ℎ[𝛼]𝛽 ° 𝑓𝛼𝛽[𝛾](𝐹), if 𝐶 ∈ 𝐵𝛼𝛽  is as above then 𝑟(𝐶, 𝛾)  ⊆ 𝑟(𝐷, 𝛾) ∈ 𝐵𝛽𝛾, so 

that 

𝑟(𝐷, 𝛾) ∈↑𝐵𝛽𝛾 𝑟(𝐶, 𝛾) ⊆↑𝐵𝛽𝛾  𝐹 =  ℎ[𝛼]𝛽𝛾(𝐹), 

and therefore 𝐷 ∈  𝑓𝛽[𝛾] °ℎ[𝛼]𝛽𝛾(𝐹). The result now follows since both 𝑓𝛽[𝛾] °ℎ[𝛼]𝛽𝛾(𝐹) and 

ℎ[𝛼]𝛽 °𝑓𝛼𝛽[𝛾](𝐹) are ultrafilters in  𝐵𝛽 

Lemma (4.2.23)[450]: Let 𝛼 ∈ ℒ≥1 and 𝛽 ∈ ℒ∗ be such that 𝛼𝛽 ∈ ℒ≥1. Then, 

(i) The functions ℎ[𝛼]𝛽 ∶  𝑋𝛼𝛽  →  𝑋(𝛼)𝛽   and  𝑔(𝛼)𝛽 ∶  𝑋(𝛼)𝛽  →  𝑋𝛼𝛽  are mutual inverses. 

(ii) ℎ[𝛼]𝛽(𝑋𝛼𝛽
𝑠𝑖𝑛𝑘)  ⊆  𝑋𝛽

𝑠𝑖𝑛𝑘 . 

(iii) ℎ[𝛼]𝛽 ∶  𝑋𝛼𝛽  −→  𝑋(𝛼)𝛽 is continuous. 

Proof. To prove (i), if 𝐹 ∈  𝑋(𝛼)𝛽  then  ℎ[𝛼]𝛽  ∘  𝑔(𝛼)𝛽(𝐹) is an ultrafilter in 𝐵𝛽; also, for 

each 𝐶 ∈ 𝐹 one has 𝐶 ∈↑𝐵𝛽  ∩ 𝑟(𝛼𝛽)  ⊆  ℎ[𝛼]𝛽  ∘ 𝑔(𝛼)𝛽(𝐹), which shows that 𝐹 ⊆ ℎ[𝛼]𝛽  ∘

𝑔(𝛼)𝛽(𝐹), hence they are equal. On the other hand if 𝐹 ∈  𝑋𝛼𝛽 , then 

𝑔(𝛼)𝛽  ∘  ℎ[𝛼]𝛽(𝐹)  =  {𝐷 ∩  𝑟(𝛼𝛽) | 𝐷 ∈ 𝐵𝛽  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∃𝐶 ∈ 𝐹 𝑤𝑖𝑡ℎ 𝐶 ⊆  𝐷}. 

Given 𝐶 ∈ ℱ, from 𝐵𝛼𝛽  ⊆ ℬ𝛽  it can be seen that 𝐶 =  𝐶 ∩ 𝑟(𝛼𝛽) and thus 𝐶 ∈ 

𝑔(𝛼)𝛽  𝜊 ℎ[𝛼]𝛽(ℱ), establishing ℱ ⊆  𝑔(𝛼)𝛽 𝜊 ℎ[𝛼]𝛽(ℱ) and again equality follows. 

Now, let us prove (ii): suppose ℱ ∈ 𝑋𝛼𝛽
𝑠𝑖𝑛𝑘; then, for each 𝑎 ∈ 𝒜 there exists 𝐷 ∈ ℱ such 

that 𝑟(𝐷, 𝑎)  =  ∅. Since 𝐷 ∈ ℱ ⊆↑ℬ𝛽 ℱ = ℎ[𝛼]𝛽(ℱ) it can be concluded that for each 𝑎 ∈

𝒜 there exists 𝐷 ∈  ℎ[𝛼]𝛽(ℱ) such that 𝑟(𝐷, 𝑎)  =  ∅, which means ℎ[𝛼]𝛽(ℱ) ∈ 𝑋𝛽
𝑠𝑖𝑛𝑘  as 

desired. 

As for (iii), consider a net {ℱ𝜆}𝜆 ⊆  𝑋𝛼𝛽  that converges to ℱ ∈  𝑋𝛼𝛽 , and let 𝐷 ∈ ℬ𝛽  be 

arbitrary. If 𝐷 ∈  ℎ[𝛼]𝛽(ℱ) then there exists 𝐶 ∈ ℱ such that 𝐶 ⊆  𝐷. The convergence of 

the ℱ𝜆 say then that there is an index 𝜆0 such that 𝜆 ≥  𝜆0  implies 𝐶 ∈ ℱ𝜆, and hence 

𝐷 ∈↑ℬ𝛽 𝐶 ⊆↑ℬ𝛽 ℱ𝜆 = ℎ[𝛼]𝛽(ℱ𝜆). 

On the other hand, if 𝐷 ∈ ℬ𝛽\ℎ[𝛼]𝛽(ℱ) then there exists 𝐶 ∈  ℎ[𝛼]𝛽(ℱ) such that 𝐶 ∩  𝐷 =

 ∅, by Proposition (4.2.1). What has been just shown above says there exists 𝜆0 such that 

𝜆 ≥  𝜆0 implies 𝐶 ∈  ℎ[𝛼]𝛽(ℱ𝜆),.and again Proposition (4.2.1) can be used to ensure 𝜆 ≥

 𝜆0implies 𝐷 ∈ ℎ𝛽\ℎ[𝛼]𝛽(ℱ𝜆); it then follows that the net {ℎ[𝛼]𝛽(ℱ𝜆)}𝜆 converges to 

ℎ[𝛼]𝛽(ℱ ) hence ℎ[𝛼]𝛽 is continuous.  

The functions above can be used to produce tools for working with filters in 𝐸(𝑆). Let us 

begin with a function for gluing  labelled paths to a filter 𝜉 in 𝐸(𝑆). Given labelled paths 

X αβγ 
h [ α ] βγ  

f αβ [ γ ] 

X ( α ) βγ  

f β [ γ ]  

X αβ 
h [ α ] β  X ( α ) β .
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𝛼 ∈  ℒ≥1 and 𝛽 ∈  ℒ≤∞  such that 𝛼𝛽 ∈ ℒ≤∞, the problem is to construct a complete family 

of ultrafilters for 𝛼𝛽 starting from a complete family of 

ultrafilters for 𝛽. Roughly, one begins with the complete family for 𝛽, say {ℱ𝑛}𝑛 with 0 ≤
 𝑛 ≤ |𝛽|, cuts each ultrafilter ℱ𝑛 by the range of 𝛼𝛽1,𝑛, and adds new ultrafilters at the 

beginning of the family, one for each 𝛼1,𝑖, 0 ≤  𝑖 ≤ |𝛼|, to obtain a complete family 

{𝒥𝑖}𝑖  for  𝛼𝛽 (remembering that, if the resulting family is to be complete, we have no real 

choice as to which filters to add at the beginning of the family). 

We consider first the case 𝛽 =  𝜔. In this case the complete family {ℱ𝑛}𝑛 for ω consists 

of  a single filter  ℱ0 ⊆ 𝐵. Define 
ℐ |𝛼| =  {𝐶 ∩  𝑟(𝛼) | 𝐶 ∈ ℱ0}  =  𝑔(𝛼)𝜔(ℱ0) 

and, for 0 ≤  𝑖 <  |𝛼|, set 

𝒥𝑖  =  {𝐷 ∈ ℬ𝛼1,𝑖 | 𝑟(𝐷, 𝛼𝑖+1,|𝛼|)  ∈ ℐ |𝛼|}  =  𝑓𝛼1,𝑖[𝛼𝑖+1,|𝛼|](ℐ |𝛼||). 

Under a suitable condition on the filter ℱ0 (Proposition (4.1.1) (i) below), the family 

{𝒥𝑖}𝑖 obtained is a complete family for 𝛼 =  𝛼𝜔. 
  Now, for the case where 𝛽 ≠ 𝜔: the ultrafilter ℱ1  ∈  𝑋𝛽1  is translated  |α|  units to create 

the ultrafilter  

    ℐ|𝛼|+1  ∈  𝑋𝛼𝛽1, given by 

    ℐ|𝛼|+1 = {𝐶 ∩  𝑟(𝛼𝛽1) | 𝐶 ∈ ℱ1}  =  𝑔(𝛼)𝛽1(ℱ1). 

More generally, for 1 ≤  𝑛 ≤ |𝛽| (𝑜𝑟 𝑛 <  |𝛽| if  β is infinite) one defines 

    ℐ|𝛼|+1 = {𝐶 ∩  𝑟(𝛼𝛽1,𝑛) | 𝐶 ∈ ℱ𝑛}  =  𝑔(𝛼)𝛽1,𝑛(ℱ𝑛). 

that is, ℱ𝑛+1, ∈  𝑋(𝛼)𝛽1,𝑛+1. 

Also, for 0 ≤  𝑖 ≤ |𝛼|, define 

𝒥𝑖  =  𝑓𝛼1,𝑖[𝛼𝑖+1,|𝛼| 𝛽1](𝒥|𝛼|+1) 

           =  {𝐷 ∈ 𝐵 𝛼1,𝑖| 𝑟(𝐷, 𝛼𝑖+1,|𝛼|𝛽1)  ∈ 𝒥|𝛼|+1}. 

Proposition (4.2.24)[450]: Suppose the labelled space (ℰ, ℒ, 𝐵) is weakly left-resolving, 

and let 𝛼 ∈ ℒ≥1. 
(i) If ℱ0 ∈  X(α)ω, then {𝒥i}i, 0 ≤ i ≤ |α| as above is a complete family of ultrafilters for 

α. 
(ii) If β ∈ ℒ≥1\{ω} is such that αβ ∈ ℒ≥1 and {ℱn}n is a complete family of ultrafilters for 

β such that ℱ1 ∈  X(α)β1 , then {𝒥i}i as above is a complete family of ultrafilters for αβ. 

Proof. The proofs of both items are similar. We prove (ii): for 0 ≤  𝑖 <  |𝛼|, 

𝒥𝑖 =  𝑓𝛼1𝑖[𝛼𝑖+1,|𝛼|𝛽1](𝒥|𝛼|+1) 

= 𝑓𝛼1,𝑖[𝛼𝑖+1] ∘ 𝑓𝛼1,𝑖+1[𝛼𝑖+2,|𝛼|𝛽1](𝒥|𝛼|+1) = 𝑓𝛼1,𝑖[𝛼𝑖+1](𝒥𝑖+1), 

and additionally 𝒥| 𝛼|   = 𝑓𝛼[𝛽1](𝒥| 𝛼|+1) by definition. On the other hand for 𝑖 >  |𝛼|, say 

𝑖 =  |𝛼|  + 𝑛 for 𝑛 ≥  1, the definitions above coupled with Lemma (4.2.19).(iv) and the 

fact the family {ℱ𝑛}𝑛 is complete for 𝛽 give 

𝒥𝑖 =  𝑔(𝛼)𝛽1,𝑛(ℱ𝑛) =  𝑔(𝛼)𝛽1,𝑛(𝑓𝛽1,𝑛[𝛽𝑛+1](𝒥𝑖+1)), 

= 𝑓𝛼𝛽1,𝑛[𝛽𝑛+1] ∘  𝑔(𝛼)𝛽1+1𝑛 (ℱ𝑛+1) =  𝑓𝛼)𝛽1,𝑛(𝑓𝛼𝛽1,𝑛[𝛽𝑛+1](𝒥𝑖+1), 

and thus the family {𝒥𝑖}𝑖 is complete for 𝛼𝛽, as claimed.  

Continuing the discussion above, let us now concentrate on the tight filters in 𝐸(𝑆): for 

𝛽 ∈ ℒ≤∞ let 𝑇(𝛼)𝛽   denote the subset of 𝑇𝛽  given by 
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𝑇(𝛼)𝛽 = {𝜉 ∈ 𝑇𝛽 | 𝜉0  ∈  𝑋(𝛼)𝜔}. 

Observe that, for 𝛽 = 𝜔, 𝜉0  ∈  𝑋(𝛼)𝜔  is equivalent to 𝜉1  ∈  𝑋(𝛼)𝛽1 and 𝑟(𝛼)  ∈  𝜉0 is 

equivalent to 𝑟(𝛼𝛽1)  ∈ 𝜉1. 
For a given tight filter 𝜉 ∈ 𝑇(𝛼)𝛽, Proposition (4.2.24) says the complete family {𝜉𝑛}𝑛 for 

𝛽 gives rise to a complete family {𝒥𝑖}𝑖 of ultrafilters for 𝛼𝛽, and therefore to a filter 𝜂 ∈
𝐹𝛼𝛽  associated with this family.  

The purpose of the next theorem is to show this resulting filter is also tight. 

Theorem (4.2.25)[450]: Suppose the labelled space (ℰ, ℒ, 𝐵) is weakly weakly left-

resolving, that 𝐵 is closed under relative complements, and let 𝛼 ∈ ℒ≥1 and 𝛽 ∈ ℒ≥1 be 

such that 𝛼 𝛽 ∈ ℒ≤∞ If 𝜉 ∈ 𝑇(𝛼)𝛽  and {𝒥𝑖}𝑖  is the complete family for 𝛼𝛽 constructed as 

above from {𝜉𝑛}𝑛 , then the filter 𝜂 ∈ 𝐹𝛼𝛽  associated with {𝒥𝑖}𝑖 is tight. 

Proof. Suppose first that 𝛽 ∈ ℒ∞. In this case {𝜉𝑛}𝑛is a complete family of ultrafilters for 

𝛽 (by Theorems (4.2.11).(i) and (4.2.12).(ii)’), and 𝜉1  ∈  𝑋(𝛼)𝛽1  since 𝜉 ∈  𝑇(𝛼)𝛽 

Proposition (4.2.24) then says the family {𝒥𝑖}𝑖  constructed from {𝜉𝑛}𝑛 is a complete family 

of ultrafilters for 𝛼𝛽, and thus the filter 𝜂 ∈ 𝐹𝛼𝛽   associated with this family is tight, again 

by Theorems (4.2.11).(i) and (4.2.12).( ii)’. 

Next, suppose 𝛽 ∈ ℒ∗; from Proposition (4.2.10), 𝜉 may be of one of two kinds of tight 

filters, and we consider each in turn: for the first kind, there exists a net {ℱ𝜆}𝜆 that converges 

to 𝜉| 𝛽|  ∈  𝑋(𝛼)𝛽. The set 𝑋(𝛼)𝛽  is open in 𝑋𝛽  by Lemma (4.2.18).(iii), so there is an index 

𝜆0 such that 𝜆 ≥ 𝜆0 implies  ℱ𝜆 ∈  𝑋(𝛼)𝛽.  Now {𝑔(𝛼)𝛽(ℱ𝜆)}𝜆≥𝜆0  is a net in 𝑋𝛼𝛽
𝑠𝑖𝑛𝑘  due to 

Lemma (4.2.20).(i), and it converges to  𝒥|𝛼𝛽|  = 𝑔(𝛼)𝛽(𝜉|𝛽|), by the continuity of 𝑔(𝛼)𝛽  

established with Lemma (4.2.20).(ii), whence 𝜂 is tight. 

For the second kind, there is a net {(𝑡𝜆, ℱ𝜆)}𝜆 with 𝑡𝜆 ∈ 𝐴 and ℱ𝜆 ∈  𝑋𝛽𝑡𝜆  for all 𝜆 such 

that {𝑡𝜆}𝜆 converges to infinity in 𝐴 and {𝑓𝛽[𝑡𝜆](ℱ𝜆)}𝜆 converges to 𝜉|𝛽| in 𝑋𝛽 . Again there 

is an index 𝜆0 such that 𝜆 ≥ 𝜆0 implies {𝑓𝛽[𝑡𝜆](ℱ𝜆) ∈  𝑋(𝛼)𝛽, and for these 𝜆 one must then 

have ℱ𝜆 ∈  𝑋(𝛼)𝛽𝑡𝜆 , by Lemma (4.2.18). The net {𝑔(𝛼)𝛽𝑡𝜆(ℱ𝜆)}𝜆≥𝜆0satisfies, as given by 

Lemma (4.2.19).( iv), 

𝑓𝛼𝛽[𝑡𝜆](𝑔(𝛼)𝛽𝑡𝜆(ℱ𝜆)) =  𝑔(𝛼)𝛽(𝑓𝛼𝛽[𝑡𝜆](ℱ𝜆)), 

and this converges to 𝑔(𝛼)𝛽(𝜉|𝛽|)  =  𝒥|𝛼𝛽|, again showing that 𝜂 is tight, for {𝑡𝜆}𝜆0still 

converges to infinity  

in 𝐴.  
Under the hypotheses of  Theorem (4.2.25) above, it is then possible to define a function 

𝐺(𝛼)𝛽 ∶  𝑇(𝛼)𝛽⟶ 𝑇𝛼𝛽 

taking a tight filter 𝜉 ∈ 𝑇(𝛼)𝛽  to the tight filter 𝜂 ∈  𝑇𝛼𝛽 given by the theorem. Also, for 

𝛼 =  𝜔 define 𝑇(𝜔)𝛽  = 𝑇𝛽  and let 𝐺(𝜔)𝛽  be the identity function on 𝑇𝛽. 

Lemma (4.2.26)[450]: Suppose the labelled space (ℰ, ℒ, 𝐵) is weakly left-resolving, that 𝐵 

is closed under relative complements, and let 𝛼, 𝛽 ∈ ℒ≥1 and 𝛾 ∈ ℒ≤∞ with 𝛼𝛽𝛾  ∈ ℒ
≤∞be 

given. Then, 

(i) 𝑇(𝛼𝛽)𝛾  ⊆ 𝑇(𝛽)𝛾; 

(ii) 𝐺(𝛼𝛽)𝛾  =  𝐺(𝛼)𝛽𝛾 𝐺(𝛽)𝛾 . 
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Proof. For (i), Lemma (4.2.19) (i) states 𝑋(𝛼𝛽)𝛾1  ⊆  𝑋(𝛽)𝛾1 , at once giving 𝑇(𝛼𝛽)𝛾  ⊆ 𝑇(𝛽)𝛾. 

As for (ii), consider an arbitrary 𝜉 ∈ 𝑇(𝛼𝛽)𝛾 , and let 𝜂 =  𝐺(𝛼𝛽)𝛾(𝜉), 𝜎 =  𝐺(𝛽)𝛾(𝜉) and 

𝜌 =  𝐺(𝛼)𝛽𝛾(𝜎);  𝜂 and 𝜌 are both tight filters in 𝐵𝛼𝛽𝛾. For any given 𝑛 ≥  1, note that 

𝜂| 𝛼𝛽|+𝑛  =  𝑔(𝛼𝛽)𝛾1,𝑛(𝜉𝑛)  =  𝑔(𝛼)𝛽𝛾1,𝑛 ∘ 𝑔(𝛽)𝛾1,𝑛(𝜉𝑛) 

=  𝑔(𝛼)𝛽𝛾1,𝑛(𝜎|𝛽|+𝑛)  =  𝜌|𝛼|+|𝛽|+𝑛  =  𝜌|𝛼𝛽|+𝑛, 

and from this one sees that 𝜂 and 𝜌 are associated with the same complete family of 

ultrafilters (remember, each ultrafilter in a complete family determines uniquely the ones 

preceding it). This means 𝜂 =  𝜌, and (ii) follows.  

Next is a function for removing labelled paths from a filter 𝜉 ∈  𝐸(𝑆). The problem now 

is to construct, from a complete family of ultrafilters for 𝛼𝛽, a new complete family of 

ultrafilters for 𝛽. This is achieved with the following result. 

Lemma (4.2.27)[450]: Let 𝛼 ∈ ℒ≥1 and 𝛽 ∈ ℒ≤∞ be such that 𝛼𝛽 ∈ ℒ≤∞ If  {ℱ𝑛}𝑛 is a 

complete family of ultrafilters for 𝛼𝛽, then 

{ℎ[𝛼]𝛽1,𝑛(ℱ|𝛼|+𝑛)}𝑛 

is a complete family of ultrafilters for 𝛽. 
Proof. If  𝛽 =  𝜔 then ℎ[𝛼]𝜔(ℱ|𝛼|)  ∈  𝑋(𝛼)𝜔  ⊆  𝑋𝜔 , so there is nothing to do. Suppose then 

𝛽 ≠ 𝜔; for any given 𝑛 ≥  1, from Lemma (4.2.22).(ii) one has 

                          ℎ[𝛼]𝛽1,𝑛(ℱ|𝛼|+𝑛)  = ℎ[𝛼]𝛽1,𝑛(𝑓𝛼𝛽1,𝑛[𝛽𝑛+1](ℱ|𝛼|+𝑛+1)) 

                                                          =  𝑓𝛽1,𝑛[𝛽𝑛+1 ∘ ℎ[𝛼]𝛽1,𝑛+1(ℱ|𝛼|+𝑛+1), 

which is precisely the desired completeness.  

Theorem (4.2.28)[450]: Suppose that the labelled space (ℰ, ℒ, B) is weakly left-resolving, 

that B is closed under relative complements, and let α ∈ ℒ≥1 and β ∈ ℒ≤∞ be such that 

αβ ∈ ℒ≤∞. If ξ ∈ Tαβ, then the filter η ∈ Fβ associated with the complete family 

{h[α]β1,n(ξn+|α|)}n for β is a tight filter. 

Proof. Again the proof is split into cases, using Theorem (4.2.11) and Proposition (4.2.10). 

Begin with the case 𝛽 ∈ ℒ∞, so that 𝜉 is an ultrafilter of infinite type; Lemma (4.2.27) says 

the family {ℎ[𝛼]𝛽1,𝑛(𝜉𝑛+|𝛼|)}𝑛 of ultrafilters is indeed complete for 𝛽, hence the filter 𝜂 ∈

𝐹𝛽  associated with it is an ultrafilter and thus tight. 

  Next, consideris 𝛽 ∈ ℒ∗ continuous,and and preserves suppose  theresinks  existsby a net 

{ℱ𝜆}𝜆 ⊆ 𝑋𝛼𝛽
𝑠𝑖𝑛𝑘  Lemma (4.2.22), meaning that that  h converges  to ℱ|𝛼𝛽| ∈ 𝑋𝛼𝛽 .The 

Map ℎ[𝛼 ]𝛽   that converges to ℎ[𝛼]𝛽(𝜉|𝛼𝛽|), implying in turn that η is tight. 

Finally, suppose that 𝛽 ∈ ℒ∗ and that there exists a net {(𝑡𝜆, ℱ𝜆)}𝜆 with 𝑡𝜆 ∈ 𝐴 and ℱ𝜆 ∈
 𝑋𝛼𝛽𝑡𝜆  for all 𝜆 such that {𝑡𝜆}𝜆 converges to infinity in 𝐴 and {𝑓𝛼𝛽[𝑡𝜆](ℱ𝜆)}𝜆 converges to 

𝜉|𝛼𝛽| in 𝑋𝛼𝛽 . The commutativity of the diagram in Lemma (4.2.22).(ii) ensures that 

ℎ[𝛼]𝛽(𝑓𝛼𝛽[𝑡𝜆](ℱ𝜆))  =  𝑓𝛽[𝑡𝜆](ℎ[𝛼]𝛽𝑡𝜆(ℱ𝜆)), 

and from here it can be seen, using the continuity of ℎ[𝛼]𝛽, that the net {(𝑡𝜆, ℎ[𝛼]𝛽𝑡𝜆(ℱ𝜆))}𝜆 

is such that {𝑡𝜆}𝜆  converges to infinity in 𝐴 and the net {𝑓𝛽[𝑡𝜆](ℎ[𝛼]𝛽𝑡𝜆(ℱ𝜆))}𝜆 in 𝑋𝛽  

converges to ℎ[𝛼]𝛽(𝜉|𝛼𝛽|), whence 𝜂 is tight.  

 Under the hypotheses of Theorem (4.2.28) one can therefore define a function𝐻[𝛼]𝛽 ∶

 𝑇𝛼𝛽  ⟶ 𝑇(𝛼)𝛽 by  𝐻[𝛼]𝛽(𝜉
𝛼𝛽)  =  𝜂𝛽  where, for all 𝑛 with 0 ≤  𝑛 ≤ |𝛽|, 

𝜂𝑛
𝛽
= ℎ[𝛼]𝛽1,𝑛(𝜉𝑛+|𝛼|) ∈ 𝑋(𝛼)𝛽1,𝑛. 
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For 𝛼 =  𝜔 define 𝐻[𝜔]𝛽  to be the identity function over 𝑇𝛽. 

Lemma (4.2.29)[450]: Suppose the labelled space (ℰ, ℒ, 𝛽) is weakly left-resolving, that 𝛽 

is closed under relative complements, and let α, β ∈ ℒ≥1 and γ ∈ ℒ≤∞  with αβγ ∈ ℒ≤∞ be 

given. Then 

𝐻[𝛽]𝛾  ∘  𝐻[𝛼]𝛽𝛾  =  𝐻[𝛼𝛽]𝛾. 

Proof. Immediate from Lemma (4.2.22) 

Theorem (4.2.30)[450]: Suppose the labelled space (ℰ, ℒ, 𝛽) is weakly left-resolving, that 

B is closed under relative complements, and let α ∈ ℒ≥1 and β ∈ ℒ≤∞ be such that αβ ∈
ℒ≤∞ . Then H[α]β  ∘ G[α]β and G(αβ)  ∘ H[α]β are the identity maps over T(α)β and 

Tαβ, respectively. 

Proof. We consider the case 𝛽 ≠ 𝜔, as the case 𝛽 =  𝜔 is analogous. Let 𝜉 ∈ 𝑇(𝛼)𝛽  be 

arbitrary, and denote 𝜎𝛼𝛽  =  𝐺(𝛼)𝛽(𝜉), 𝜂
𝛽  =  𝐻[𝛼]𝛽(𝜎). For any given integer 𝑛 with 1 ≤

 𝑛 ≤ |𝛽| (note that ξ0  may be empty), 

𝜂𝑛  =  ℎ[𝛼]𝛽1,𝑛(𝜎𝑛+|𝛼|)  =  ℎ[𝛼]𝛽1,𝑛(𝑔(𝛼)𝛽1,𝑛(𝜉𝑛))  = 𝜉𝑛 , 

as a consequence of Lemma (4.2.23).(i), giving immediately 𝜂 =  𝜉, from where it can be 

concluded that 𝐻[𝛼]𝛽  ∘ 𝐺[𝛼]𝛽 is the identity map over 𝑇(𝛼)𝛽. 

On the other hand, begin with an arbitrary 𝜉 ∈ 𝑇𝛼𝛽 and let 𝜂𝛽  =  𝐻[𝛼]𝛽(𝜉), 𝜎
𝛼𝛽  =

𝐺[𝛼]𝛽(𝜂). If 𝑛 is an integer with 1 ≤  𝑛 ≤ |𝛽| then 

𝜎𝑛+|𝛼|  =  𝑔(𝛼)𝛽1,𝑛(𝜂𝑛)  =  𝑔(𝛼)𝛽1,𝑛(ℎ[𝛼]𝛽1,𝑛(𝜉𝑛+|𝛼|))  =  𝜉𝑛+|𝛼|, 

again from Lemma (4.2.23).(i), giving 𝜎𝑛+|𝛼|  =  𝜉𝑛+|𝛼| and thus 𝜎 =  𝜉 (for 𝜎1+|𝛼|  =

 𝜉1+|𝛼| implies 𝜎𝑖  =  𝜉𝑖  for all 𝑖 ≤ |𝛼|), that is, 𝐺(𝛼𝛽)  ∘ 𝐻[𝛼]𝛽 is the identity map over 𝑇𝛼𝛽. 

Let (ℰ, ℒ, 𝐵) be a weakly left-resolving labelled space such that 𝐵 is closed under relative 

complements, and let 𝑆 be its inverse semigroup. The goal is to build a representation of 

𝐶∗(ℰ, ℒ, 𝐵) that shows that an element 𝑠𝛼𝑝𝐴𝑠𝛽
∗ ∈ 𝐶∗(ℰ, ℒ, 𝐵)is non-zero whenever 

(𝛼, 𝐴, 𝛽)  ∈  𝑆 \{0}.  
To achieve this goal, we make use of the functions 𝐺 and 𝐻 defined. 

Let ℋ = ℓ2(𝑇). We make an abuse of notation in that 𝜉 represents both an element of 𝑇 

and of  ℋ. For each 𝐴 ∈ 𝐵, define 

ℋ𝐴  = span{𝜉 ∈ 𝑇|(𝜔, 𝐴, 𝜔)  ∈  𝜉}  = span{𝜉 ∈ 𝑇|𝐴 ∈  𝜉0}. 
Also, for 𝑎 ∈ 𝐴, define  

ℋ𝑎 = span{𝜉
𝛼  ∈ 𝑇|𝛼1  =  𝑎}. 

For a given 𝐴 ∈ ℬ, let 𝑃𝐴 ∈ 𝐵(ℋ) be the orthogonal projection onto ℋ𝐴; additionally, for 

𝑎 ∈ 𝒜, we can use Theorem (4.2.30) to define a partial isometry 𝑆𝑎  ∈ ℬ(ℋ) with initial 

space ℋ𝑟(𝑎) and final space ℋ𝑎, given by 𝑆𝑎 (𝜉
𝛽)  =  𝐺(𝑎)𝛽(𝜉), for all 𝜉 =  𝜉𝛽 ∈ 𝐻𝑟(𝑎). It 

follows that 𝑆𝑎
∗  is given by 𝑆𝑎

∗(𝜉𝑎𝛽) = 𝐻[𝑎]𝛽,( 𝜉) for all 𝜉 =  𝜉𝑎𝛽  ∈ ℋ𝑎 . If  =  𝛼1  ··· 𝛼𝑛 ∈

ℒ≥1, 𝑠𝑒𝑡 𝑆𝛼  =  𝑆𝛼1  ··· 𝑆𝛼𝑛. 

Proposition (4.2.31)[450]: The family {PA, Sa} satisfies the relations defining C∗(ℰ, ℒ, ℬ) in 

Definition (4.2.13). 

Proof. Note that ℋ∅  =  {0} since (ω, ∅, ω)  ∉  ξ and therefore (ω, ∅, ω)  ∉ ξ for all ξ ∈  T. 

It follows that  

𝑃 ∅ =  0. 
Now, for 𝐴,𝐵 ∈ ℬ and 𝜉 ∈ 𝑇 
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𝑃𝐴𝑃𝐵(𝜉)  =  [𝐴 ∈  𝜉0  ∧ 𝐵 ∈  𝜉0]𝜉  =  [𝐴 ∩  𝐵 ∈   𝜉0]𝜉  =  𝑃𝐴∩𝐵(𝜉) 

where [ ] represents the boolean function that returns 1 if the argument is true and 0 

otherwise; and the second equality follows from  𝜉0being a filter. Also, using that  𝜉0 is an 

ultrafilter and therefore a prime filter, we have 

                  𝑃𝐴∪𝐵(𝜉)  =  [𝐴 ∪  𝐵 ∈   𝜉0]𝜉 

                                   =  ([𝐴 ∈   𝜉0]  +  [𝐵 ∈   𝜉0]  −  [𝐴 ∩  𝐵 ∈  𝜉0]) 𝜉  

                                   =  (𝑃𝐴  +  𝑃𝐵  −  𝑃𝐴∩𝐵)(𝜉). 
Let 𝑎, 𝑏 ∈ 𝒜. It is easy to see that 𝑆𝑎

∗𝑆𝑎
 = 𝑃𝑟(𝑎) and 𝑆𝑎

∗𝑆𝑏
 =  0 𝑖𝑓 𝑎 ≠ 𝑏. We check that 

𝑃𝐴𝑆𝑎
  =  𝑆𝑎

 𝑃𝑟(𝐴,𝑎). 

On one hand 

𝑃𝐴𝑆𝑎
 (𝜉𝛽)  = 𝑃𝐴([𝑟(𝑎)  ∈  𝜉0]𝐺(𝑎)𝛽(𝜉

𝛽)) 

                                       =  [𝐴 ∈  𝐺(𝑎)𝛽(𝜉
𝛽)0  ∧  𝑟(𝑎)  ∈   𝜉0]𝐺(𝑎)𝛽(𝜉

𝛽). 

On the other hand 

𝑆𝑎
 𝑃𝑟(𝐴,𝑎)(𝜉

𝛽)  =  𝑆𝑎
 ([𝑟(𝐴, 𝑎)  ∈   𝜉0]𝜉

𝛽)  =  [𝑟(𝐴, 𝑎)  ∈   𝜉0]𝐺(𝑎)𝛽(𝜉
𝛽) 

where the last equality makes sense since 𝑟(𝐴, 𝑎)  ⊆  𝑟(𝑎). If 𝑟(𝑎)  ∉   𝜉0 then 𝑟(𝐴, 𝑎)  ∉
  𝜉0, so that both expressions above are zero. Suppose then that 𝑟(𝑎)  ∈   𝜉0. We have that   

(𝐺(𝑎)𝛽(𝜉
𝛽))1  =  𝑔(𝑎)𝜔( 𝜉0); hence, 

𝐴 ∈   (𝐺(𝑎)𝛽(𝜉
𝛽)) 0⇔  𝑟(𝐴, 𝑎)  ∈   (𝐺(𝑎)𝛽(𝜉

𝛽))1  ⇔ ∃𝐶 ∈   𝜉0 ∶  𝑟(𝐴, 𝑎)  =  𝐶 ∩  𝑟(𝑎), 

so that 

[𝑟(𝐴, 𝑎)  ∈   𝜉0]  =  [𝐴 ∈  𝐺(𝑎)𝛽(𝜉
𝛽)0  ∧  𝑟(𝑎)  ∈   𝜉0] 

and 𝑃𝐴𝑆𝑎  = 𝑆𝑎𝑃𝑟(𝐴,𝑎). 

For the last relation, let 𝐴 ∈ 𝐵 be such that 0 <  #𝐿(𝐴ℰ1)  <  ∞, and such that there is no 

𝐶 ∈ ℬ such that ∅ ≠ 𝐶 ⊆ 𝐴 ∩ ℰ𝑠𝑖𝑛𝑘
0  

. We need to verify that 

𝑃𝐴  = ∑ 𝑆𝑎𝑃𝑟(𝐴,𝑎)

        

𝑎∈ℒ(𝐴ℰ1)

 𝑆𝑎
∗ 

              = 𝑃𝐴 ∑ 𝑆𝑎𝑆𝑎
∗ 

𝑎∈ℒ(𝐴ℰ1) .  

Since ℋ𝑎 and ℋ𝑏 are orthogonal if 𝑎 = 𝑏, the rightmost sum above is a sum of orthogonal 

projections  

and therefore a  projection itself. It is then sufficient to show that 𝐻𝐴 ⊆ ⨁ℒ(𝐴ℰ1) 𝐻𝑎. Suppose 

that 𝜉𝛽 ∈ 𝐻𝐴, that is, 𝜉𝛽 ∈ 𝑇  is such that (𝜔, 𝐴, 𝜔)  ∈ 𝜉. That 𝛽 = 𝜔follows from the above 

condition on 𝐴 and Theorem (4.2.11). Now, (𝜔, 𝐴, 𝜔)  ∈  𝜉 is equivalent to 𝐴 ∈  𝜉0, and in 

this case 𝛽 1 ∈ ℒ(𝐴ℰ
1) because 𝑟(𝐴,  𝛽1)  ∈  𝜉1 and 𝜉1 is a filter. Therefore, ℰ𝛽 ∈

⨁ℒ(𝐴ℰ1) 𝐻𝑎. 

Proposition (4.2.32)[450]: If (𝛼, 𝐴, 𝛽)  ∈  𝑆 \{0}, 𝑡ℎ𝑒𝑛 𝑆𝛼𝑃𝐴𝑆 𝛽
∗ ≠ 0 . 

Proof. Observe that if 𝛼 ∈ ℒ≥1   then for 𝜉 ∈ 𝑇 

𝑆𝛼(𝜉
𝛽)  =  𝑆𝛼1 ··· 𝑆𝛼𝛼(𝜉

𝛽)  =  [𝑟(𝛼)  ∈  𝜉0]𝐺(𝛼)𝛽(𝜉) 

and 

𝑆𝛼
∗ = 𝐻(𝛼)𝛽(𝜉). 

The above equalities are also true for 𝛼 =  𝜔 if we define 𝑆 𝜔 =  𝐼𝑑ℋ. 

Let (𝛼, 𝐴, 𝛽)  ∈  𝑆 be given so that ∅ ≠ 𝐴 ⊆  𝑟(𝛼) ∩  𝑟(𝛽). 
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Let us verify that 𝑆𝛼𝑃𝐴𝑆𝛽
∗ = 0.Since 𝐴 ≠ 0, the set 𝜂  =  {(𝜔, 𝐶,𝜔) | 𝐶 ∈↑𝐵 𝐴} is a filter 

in 𝐸(𝑆) and so it is contained in a ultrafilter 𝜂𝛾  in 𝐸(𝑆), which is also  element 𝑇. From 𝐴 ⊆

 𝑟(𝛽), it follows that 𝜉𝛽𝛾  =  𝐺(𝛽)𝛾(𝜂
𝛾) is well defined. Then 𝜂 =  𝐻[𝛽]𝛾(𝜉) and 𝐴 ∈

 𝐻[𝛽]𝛾(𝜉)0. It follows that 

𝑆𝛼𝑃𝐴𝑆𝛽
∗(𝜉) = 𝑆𝛼𝑃𝐴(𝐻[𝛽]𝛾(𝜉) 

   =  𝑆𝛼(𝜂) 
                 =  𝐺(𝛼)𝛾(𝜂) ≠ 0 

where the third equality follows from 𝐴 ⊆  𝑟(𝛼) so that 𝐺(𝛼)𝛾(𝜂) is a well defined element 

of  𝑇.   
Theorem (4.2.33)[450]: Let (ℰ, ℒ, 𝐵) be a weakly left-resolving labelled space whose 

accommodating family 𝐵 is closed under relative complements. There exists a 

representation of  𝐶∗(ℰ, ℒ, 𝐵) such that the image of 𝑆𝛼𝑃𝐴𝑆𝛽
∗ is not zero for all (𝛼, 𝐴, 𝛽)  ∈

 𝑆 \{0}. 
Let (ℰ, ℒ, 𝐵) be a weakly left-resolving labelled space such that 𝐵 is closed under relative 

complements, and let ∆:=  ∆(ℰ, ℒ, 𝐵) be the diagonal 𝐶∗ −subalgebra of 𝐶∗(ℰ, ℒ, 𝐵), as in 

Definitions (4.2.17) and (4.2.13). The spectrum of this 𝐶∗ −subalgebra, ∆̂, is homeomorphic 

to 𝑇.  

Proposition (4.2.34)[450]: For each , φ ∈ ∆̂, the set 

𝜉 =  {(𝛼, 𝐴, 𝛼) ∈ 𝐸(𝑆)|𝜑(𝑠𝛼𝑝𝐴𝑠𝛼
∗) = 1} 

is a tight filter. In particular, the map Φ: ∆̂→ 𝑇 given by 

Φ(𝜑)  =  {(𝛼, 𝐴, 𝛼) ∈ 𝐸(𝑆)|𝜑(𝑠𝛼𝑝𝐴𝑠𝛼
∗) = 1}  

is well defined. 

Proof. Observe that (𝛼, 𝐴, 𝛼)  ≤  (𝛽, 𝐵, 𝛽) in 𝐸(𝑆) if and only if 𝑠𝛼𝑝𝐴𝑠𝛼
∗ ≤ 𝑠𝛽𝑝𝐵𝑠𝛽

∗  in 

𝐶∗(ℰ, ℒ, 𝐵).Using that 𝜑 is a ∗−homomorphism, it then follows that 𝜉 is a filter in 𝐸(𝑆). We 

have to prove that 𝜉 is tight. Let 𝛼 be the labelled path associated with 𝜉. 
First, let us consider the case that 𝜉 is of infinite type. By Theorem (4.2.9), it is sufficient 

to show that 𝜉𝑛 is an ultrafilter in the Boolean algebra 𝐵𝛼1,𝑛  for each 𝑛 >  0. In order to 

establish this, observe that  

(𝛼1,𝑛, 𝑟(𝛼1,𝑛), 𝛼1,𝑛)  ∈  𝜉, so that 𝜑(𝑠𝛼1,𝑛𝑝𝑟(𝛼1,𝑛)𝑠𝛼1,𝑛)  = 1. If 𝐴 ∈ 𝐵𝛼1,𝑛 , then 𝑝𝑟(𝛼1,𝑛)  =

 𝑝𝐴  + 𝑝𝑟(𝛼1,𝑛)\𝐴. It follows that 

1 = 𝜑(𝑠𝛼1,𝑛𝑝𝑟(𝛼1,𝑛)𝑠𝛼1,𝑛)  =  𝜑(𝑠𝛼1,𝑛𝑝𝑟(𝛼1,𝑛)𝑠𝛼1,𝑛)  +  𝜑(𝑠𝛼1,𝑛𝑝𝑟(𝛼1,𝑛)\𝐴𝑠𝛼1,𝑛)  

and hence 𝜑 (𝑠𝛼1,𝑛𝑝𝑟(𝛼1,𝑛)\𝐴𝑠𝛼1,𝑛) = 1 or 𝜑(𝑠𝛼1,𝑛𝑝𝐴𝑠𝛼1,𝑛) = 1. That means that 𝐴 ∈  𝜉𝑛 or 

𝑝𝑟(𝛼1,𝑛)\𝐴 ∈ 𝜉𝑛 , that is, 𝜉𝑛 is an ultrafilter. 

For the case that 𝜉 is of finite type, we use (ii) of Theorem (4.2.11). If |𝛼|  >  0, the same 

argument as above shows that 𝜉|𝛼| is an ultrafilter. If  |𝛼|  =  0, suppose by contradiction 

that 𝜉0  is not an ultrafilter. Then there exists 𝐶 ∈ 𝐵 \𝜉0such that 𝐶 ∩  𝐴 ≠ ∅ for all 𝐴 ∈ 𝜉0. 
For a fixed 𝐴 ∈ 𝜉0. 

1 =  𝜑(𝑝𝐴)  =  𝜑(𝑝𝐴)\𝐶  + 𝑝𝐴∩𝐶)  =  𝜑( 𝜑𝑝𝐴\𝐶) +  𝜑(𝑝𝐴∩𝐶)  = 𝜑( 𝜑𝑝𝐴\𝐶), 

where the last equality holds because 𝐴 ∩  𝐶 ⊆  𝐶 ∈/ 𝜉0. Hence 𝐴 \ 𝐶 ∈ 𝜉0, but (𝐴 \ 𝐶) ∩
 𝐶 =  ∅ which is contradiction. So, in all cases, 𝜉|𝛼| is an ultrafilter     . Assume now that 𝜉 

is not tight; by (ii) of. Theorem (4.2.11)  there  exists  𝐴 ∈ 𝜉|𝛼| such that ℒ(𝐴ℰ1) is finite and 
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there  is no 𝐵 ∈ 𝐵𝛼 with ∅ ≠ 𝐵 ⊆ 𝐴 ∩ ℰ𝑠𝑖𝑛𝑘
0 . In particular 𝐴 ∩ ℰ𝑠𝑖𝑛𝑘

0 = ∅ so that ⋕
ℒ(𝐴ℰ1) > 0 and  

𝑝𝐴 = ∑ 𝑠𝑏𝑝𝑟(𝐴,𝑏)𝑠𝑏
∗

𝑏∈ℒ(𝐴ℰ1)

  

holds. Since (𝛼, 𝐴, 𝛼)  ∈  𝜉, 

𝜑(𝑠𝛼𝑝𝐴𝑠𝛼
∗) = ∑ 𝑠𝑏𝑝𝑟(𝐴,𝑏)𝑠𝜑(𝑠𝛼𝑠𝑏𝑝𝑟(𝐴,𝑏)𝑠𝑏

∗𝑠𝛼
∗)
 

 

𝑏∈ℒ(𝐴ℰ1)

, 

which implies that (𝛼𝑏, 𝑟(𝐴, 𝑏), 𝛼𝑏)  ∈  𝜉 for some 𝑏 ∈ ℒ(𝐴ℰ1); but this contradicts the fact 

that 𝛼 is the word associated to 𝜉. Therefore, 𝜉 is tight.  

To construct the inverse of 𝛷 from the above proposition, we have to show that if 𝜉 ∈ 𝑇 

then there exists an element 𝜑 ∈ ∆̂ such that 

𝜑(𝑠𝛼𝑝𝐴𝑠𝛼
∗) = [(𝛼, 𝐴, 𝛼)  ∈  𝜉]. 

We would like to simply extend the above expression linearly to span{𝑠𝛼𝑝𝐴𝑠𝛼
∗ |𝛼 ∈  ℒ∗ and 

𝐴 ∈ 𝐵𝛼} but, in doing so, care must be taken to ensure the result is indeed a well-defined 

linear map. In order to show that this can be done, and that the resulting map extends to an 

element of ∆̂ ,we control the norm of a finite linear combination on elements of the form 

𝑠𝛼𝑝𝐴𝑠𝛼
∗  by rewriting the sum as a finite linear combination of orthogonal projections. We 

follow some of the ideas of [162]. 

Lemma (4.2.35)[450]: Let F ⊆  E(S) \{0} be a finite set such that for all u, v ∈  F, uv =
 0, u ≤  v or  v ≤  u. For each u =  (α, A, α)  ∈  F, define 

qu
F = q(α,A,α)

F ≔ sαpAsα
∗ ∏ (sαpAsα

∗ − sβpBsβ
∗)

(β,B,β)∈F
(β,B,β)<(α,A,α)

. 

Then, for all u, v ∈  F with u ≠ v, the projections qu
F  and qv

F  are mutually orthogonal 

projections in span{sβpBsβ
∗(β, B, β)  ∈  F}. Also for (α, A, α)  ∈  F 

sαpAsα
∗ = ∑ qu

F
u∈F

u≤(α,A,α)

.                                 (2) 

Proof. For all 𝑢 ∈  𝐹, 𝑞𝑢
𝐹  is a product of commuting projections and therefore a projection 

in span{𝑠𝛽𝑝𝐵𝑠𝛽
∗  (𝛽, 𝐵, 𝛽)  ∈  𝐹}. Let 𝑢 =  (𝛼, 𝐴, 𝛼) and 𝑣 =  (𝛽, 𝐵, 𝛽) be elements of 𝐹 

such that 𝑢 ≠ 𝑣. If 𝑢𝑣 =  0, then 𝑠𝛼𝑝𝐴𝑠𝛼
∗𝑠𝛽𝑝𝐵𝑠𝛽

∗  =  0, so that 𝑞𝑢
𝐹𝑞𝑣
𝐹 =  0. If 𝑢 <  𝑣, then 

(𝑠𝛽𝑝𝐵𝑠𝛽
∗ − 𝑠𝛼𝑝𝐴𝑠𝛼

∗) is a factor of 𝑞𝑣
𝐹 . Since 𝑠𝛼𝑝𝐴𝑠𝛼

∗  is a factor of  𝑞𝑢
𝐹  and 𝑠𝛼𝑝𝐴𝑠𝛼

∗𝑠𝛽𝑝𝐵𝑠𝛽
∗ =

𝑠𝛼𝑝𝐴𝑠𝛼
∗ ,we have that 𝑞𝑢

𝐹𝑞𝑣
𝐹 =  0. The case 𝑣 <  𝑢 is analogous. 

To prove (2), we use induction on #𝐹. The result is immediate if #𝐹 =  1. Let 𝑛 >  1 and 

suppose that the result is true for all 𝐹 with #𝐹 <  𝑛. Let 𝐹 ⊆  𝐸(𝑆) be as in the hypothesis 

of the lemma, and with  #𝐹 =  𝑛. Chose a minimal element (𝛾, 𝐶, 𝛾) in 𝐹 and define 𝐺 =
 𝐹 \{(𝛾, 𝐶, 𝛾)}. Since (𝛾, 𝐶, 𝛾) is minimal in  F then 

∑ 𝑞𝒰
𝐹

 

 𝒰≤(𝛾,𝐶,𝛾)
𝒰∈𝐹

 =  𝑞(𝛾,𝐶,𝛾)=𝑆𝛾𝑃𝐶𝑆𝛾∗
𝐹 , 

that is, (2) holds for (𝛾, 𝐶, 𝛾). 
Observe that, for a given (𝛼, 𝐴, 𝛼)  ∈  𝐺, 
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𝑞(𝛼,𝐴,𝛼)
𝐹 = {

𝑞(𝛼,𝐴,𝛼)
𝐺 , 𝑖𝑓 ( 𝛼, 𝐴, 𝛼)(𝛾, 𝐶, 𝛾) = 0; 

𝑞(𝛼,𝐴,𝛼)
𝐺 − 𝑞

(𝛼,𝐴,𝛼)𝑆𝛾𝑃𝐶𝑆𝛾
∗
,

𝐺 𝑖𝑓 (𝛾, 𝐶, 𝛾)  ≤  (𝛼, 𝐴, 𝛼).
}    

Indeed, the above equality is trivially true if (𝛼, 𝐴, 𝛼)(𝛾, 𝐶, 𝛾)  =  0 and, in the case 

(𝛾, 𝐶, 𝛾)  ≤  (𝛼, 𝐴, 𝛼), it holds since 

𝑞(𝛼,𝐴,𝛼)
𝐹 = 𝑆𝛾𝑃𝐶𝑆𝛾

∗   ∏ (𝑆𝛼𝑃𝐴𝑆𝛼
∗ − 𝑆𝛽𝑃𝐴𝑆𝛽

∗)
 (𝛽,𝐵,𝛽)<(𝛼,𝐴,𝛼)
(𝛽,𝐵,𝛽)∈𝐹  

𝑆𝛼𝑃𝐴𝑆𝛼
∗  (𝑆𝛼𝑃𝐴𝑆𝛼

∗ − 𝑆𝛼𝑃𝐴𝑆𝛼
∗)  ∏ (𝑆𝛼𝑃𝐴𝑆𝛼

∗ − 𝑆𝛽𝑃𝐴𝑆𝛽
∗)

 (𝛽,𝐵,𝛽)<(𝛼,𝐴,𝛼)
(𝛽,𝐵,𝛽)∈𝐺  

 

= 𝑞(𝛼,𝐴,𝛼)
𝐺 − 𝑞

(𝛼,𝐴,𝛼)𝑆𝛼𝑃𝐴𝑆𝛼
∗

𝐺  

Now, if (𝛼, 𝐴, 𝛼)(𝛾, 𝐶, 𝛾)  =  0, then 

                      ∑ 𝑞𝑢
𝐹

𝑢∈𝐹
𝑢≤(𝛼,𝐴,𝛼 )

   = ∑ 𝑞𝑢
𝐺 =  𝑆𝛼𝑃𝐴𝑆𝛼

∗
,

𝑢∈𝐺
𝑢≤(𝛼,𝐴,𝛼 )

 

where the last equality follows from the induction hypothesis. If (𝛾, 𝐶, 𝛾)  ≤  (𝛼, 𝐴, 𝛼), then 

 ∑ 𝑞𝑢
𝐹

𝑢∈𝐹
𝑢≤(𝛼,𝐴,𝛼 )

   = 𝑠𝛾𝑝𝐶𝑠𝛾
∗ + ∑ 𝑞𝑢

𝐹
𝑢∈𝐺

𝑢≤(𝛼,𝐴,𝛼 )
  

                    = 𝑠𝛾𝑝𝐶𝑠𝛾
∗ + ∑ (𝑞𝑢

𝐺 − 𝑞𝑢
𝐺𝑠𝛾𝑝𝐶𝑠𝛾

∗)
𝑢∈𝐺

𝑢≤(𝛼,𝐴,𝛼 )

 

                                                                       = 𝑠𝛾𝑝𝐶𝑠𝛾
∗ + 𝑠𝛼𝑝𝐴𝑠𝛼

∗ − 𝑠𝛼𝑝𝐴𝑠𝛼
∗𝑠𝛾𝑝𝐶𝑠𝛾

∗ = 𝑠𝛼𝑝𝐴𝑠𝛼
∗ , 

where the second equality follows since 𝑞𝑢
𝐹  =  𝑞𝑢

𝐺 − 𝑞𝑢
𝐺𝑠𝛾𝑝𝐶𝑠𝛾

∗ even when 𝑢 ·  (𝛾, 𝐶, γ)  =

 0 and the third equality follows from the induction hypothesis. Thus, (2) holds.  

Lemma (4.2.36)[450]: For all finite F ⊆  E(S) \{0}, there exists F′ ⊆  E(S) \{0} such that 

F′ satisfies the hypothesis of Lemma (4.2.35) and the following conditions: 

(i)  for all (α, A, α)  ∈  F, there exist (α,  A1, α), . . . , (α,  An, α)  ∈  F′
 such that A is the 

union of  A1, . . . ,  An; 

(ii) the labelled paths that appear in elements of F′ are the same as those that appear in 

elements of F; 

(iii)  if (α, A, α), (α, B, α)  ∈  F′ and A ≠ B  then A ∩  B =  ∅. 
 

Proof. For each finite F ⊆  E(S) \{0}, define m =  max{|α| | (α, A, α)  ∈  F}.  
We prove the lemma by induction on m. If  m =  0, then  

F =  {(ω, B1, ω), . . . , (ω, Bl , ω)}. 
 Define 

𝐼 = {⋂𝐵𝑖
𝑖∈𝐼1

\⋂𝐵𝑗
𝑖∈𝐼2

|𝐼1  ∪ 𝐼2  =  {1, . . . , 𝑙}, 𝐼1  ∩ 𝐼2 =  ∅} \{∅} 

and 𝐹 =  {(𝜔, 𝐵, 𝜔) | 𝐵 ∈ 𝐼}. Clearly, 𝐹′ satisfies the conditions in the statement. 

For 𝑚 >  0, suppose that the result is true for all finite 𝐺 ⊆  𝐸(𝑆) with 𝑚𝑎𝑥{|𝛼| | 
(𝛼, 𝐴, 𝛼)  ∈  𝐺}  <  𝑚. Let us write 𝐹 =  𝐺1  ∪  𝐺2 where 𝐺1 =  {(𝛼, 𝐴, 𝛼)  ∈  𝐹 | |𝛼|  <
 𝑚} and 𝐺2  =  {(𝛼, 𝐴, 𝛼)  ∈  𝐹 | |𝛼|  =  𝑚}. By the induction hypothesis there exists 𝐺′1 

associated to 𝐺1 as in the statement. Denote by 𝐿2 the set of all 𝛼 ∈ ℒ∗ such that (𝛼, 𝐴, 𝛼)  ∈
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 𝐺2 for some 𝐴 ∈ 𝐵. Fix 𝛼 ∈  𝐿2, define 𝐽𝛼  =  {𝑟(𝐴, 𝛼′′)|(𝛼′, 𝐴, 𝛼′) ∈  𝐺′1  ∪  𝐺2  and 

𝛼′𝛼′′ = 𝛼}  
and consider 𝐼𝛼 constructed from 𝐽𝛼 as 𝐼 was constructed from {𝐵1, . . . , 𝐵𝑙} in the case 𝑚 =
 0. Finally, define 𝐹2

′ =∪𝛼 ∈ 𝐿2 {(𝛼, 𝐵, 𝛼)  ∈  𝐸(𝑆) | 𝐵 ∈ 𝐼𝛼} and 𝐹′ = 𝐺1
′  ∪  𝐹2

′  , observing 

that 0 ∉ 𝐹′. 
Let 𝑢 =  (𝛼, 𝐴, 𝛼) and 𝑣 =  (𝛽, 𝐵, 𝛽) be elements of 𝐹′. If 𝑢 and 𝑣 are both elements of 

either 𝐺1
′
 or both elements of 𝐹2

′  then, by the definitions of 𝐺1
′
  and 𝐹2

′, 𝑢 and 𝑣 are such that 

𝑢𝑣 =  0, 𝑢 ≤  𝑣 or 𝑣 ≤  𝑢. Suppose, then, that 𝑢 ∈ 𝐹2
′  and 𝑣 ∈ 𝐺1

′ so that |𝛽|  <  |𝛼|. If 𝛼 

and 𝛽 are not comparable then 𝑢𝑣 =  0. Otherwise, 𝛼 = 𝛽𝛼′ and, by the construction of 𝐼𝛼, 

𝐴 ⊆  𝑟(𝐵, 𝛼′) or 𝐴 ∩  𝑟(𝐵, 𝛼′) = ∅  (observe that 𝑟(𝐵, 𝛼′) ∈ 𝐽𝛼 In this case 𝑢 ≤  𝑣 or 

𝑢𝑣 =  0. 

The other conditions from the statement are easily verified. 

Lemma (4.2.37)[450]: Let 𝜉 ∈ 𝑇 and a finite 𝐹 ⊆  𝐸(𝑆) \{0} be such that 𝜉 ∩  𝐹 ≠ ∅ and 

for all 𝑢, 𝑣 ∈  𝐹, 𝑢𝑣 =  0, 𝑢 ≤  𝑣 or 𝑣 ≤  𝑢. Let also 𝑤 =  𝑚𝑖𝑛(𝜉 ∩  𝐹). Then there exists 

a non-zero 𝑧 ∈  𝐸(𝑆) such that 𝑧 ≤  𝑤 and 𝑧𝑢 =  0 for all 𝑢 ∈  𝐹 with 𝑢 <  𝑤. 

Proof. The result is trivial if  there is no 𝑢 ∈  𝐹 with 𝑢 <  𝑤 (take 𝑧 =  𝑤). Suppose, then, 

that there exists at least one such 𝑢. Let 𝛼 be the word associated to 𝜉. Since 𝑤 ∈  𝜉, 𝑤 =
 (𝛼1,𝑙, 𝐴, 𝛼1,𝑙) for some 𝑙 ≥  0 and 𝐴 ∈ 𝐵. We consider the cases given by Theorem 

(4.2.11). 

Case (i): 𝜉𝛼  is of infinite type. Let 𝑛 be the greatest of all lengths of labelled paths 𝛽 that 

appears in an element 𝑣 =  (𝛽, 𝐵, 𝛽)  ∈  𝐹 with 𝑣 <  𝑤 and observe that  𝚤 ≤ 𝑛. For an 

element 𝑢 ∈  𝐹 with 𝑢 <  𝑤 of the form 𝑢 =  (𝛼1,𝑚, 𝐵, 𝛼1,𝑚), we have that 𝑢 ∉  𝜉 and 

hence 𝑟(𝐵, 𝛼𝑚+1,𝑛 )  ∉  𝜉𝑛 since {𝜉𝑛}𝑛 is a complete family. Since 𝜉𝑛 is an ultrafilter, there 

exists 𝐶𝑢  ∈ 𝜉𝑛such that 𝐶𝑢  ∩  𝑟(𝐵, 𝛼𝑚+1,𝑛)  =  ∅. Let 𝐶 = ∩𝑢∈𝐹,𝑢<𝑤 𝐶𝑢  ∈ 𝜉𝑛and define 

𝑧 =  (𝛼1,𝑛, 𝐶 ∩  𝑟(𝐴, 𝛼𝑙+1,𝑛), 𝛼1,𝑛), which is non-zero because 𝐶 ∩  𝑟(𝐴, 𝛼𝑙+1,𝑛)  ∈ 𝜉𝑛. 

Then 𝑧 ≤  𝑤 and it is easily verified that 𝑧𝑢 =  0 for all 𝑢 ∈  𝐹 with 𝑢 <  𝑤. 

Case (ii): 𝜉𝛼   is of finite type. Using a similar argument as the previous case we find 𝐶 ∈
 𝜉|𝛼| such that for all 𝑢 ∈  𝐹 with 𝑢 <  𝑤 of the form = (𝛼1,𝑚, 𝐵, 𝛼1,𝑚), we have that 𝐶 ∩

 𝑟(𝐵, 𝛼𝑚+1,|𝛼|)  =  ∅. Define 𝐷 = 𝐶 ∩  𝑟(𝐴, 𝛼𝑙+1,|𝛼|)1 ∈ 𝜉|𝛼|. 

Case (ii)(a): ℒ(𝐷ℇ1) is infinite. Choose 𝑏 ∈  ℒ(𝐷ℇ1) be a letter that is different from 𝛽|𝛼|+1 

for all  labelled paths 𝛽 such that |𝛽| ≥  |𝛼| + 1 and that it appears in an element 𝑣 =
 (𝛽, 𝐵, 𝛽)  ∈  𝐹. Define 𝑧 =  (𝛼𝑏, 𝑟(𝐷, 𝑏), 𝛼𝑏). By construction this 𝑧 satisfies all of the 

conditions in the statement. 

Case (ii)(b): there exists 𝐺 ∈ 𝐵𝛼  such that ∅ ≠ 𝐺 ⊆ 𝐷 ∩ ℇ𝑠𝑖𝑛𝑘
0 . Define 𝑧 =  (𝛼, 𝐺, 𝛼) so 

that 𝑧 is non-zero and 𝑧 ≤  𝑤. Let 𝑢 =  (𝛽, 𝐵, 𝛽)  ∈  𝐹 be such that 𝑢 <  𝑤. If 𝛽 is not 

comparable with 𝛼 then it is immediate that 𝑧𝑢 =  0. If 𝛽 is a beginning of 𝛼 then 𝑧𝑢 =  0 

by the construction of 𝑧. Finally, if 𝛽 =  𝛼𝛾 for some 𝛾 ∈ ℒ≥1, i.e. 𝛾 ≠ 𝜔, then 𝑧𝑢 =  0 

because 𝑟(𝐺, 𝛾) = ∅ . 

Lemma (4.2.38)[450]: Let ξ ∈ T be given and let F ⊆  E(S) \{0} be a finite set. For each 

u ∈  F, let  λu ∈ ℂ \{0}.  
Then  
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| ∑ 𝜆𝑢
𝑢∈𝐹∩𝜉

| ≤ ‖ ∑ 𝜆(𝛼,𝐴,𝛼)𝑠𝛼𝑝𝐴𝑠𝛼∗

(𝛼,𝐴,𝛼)∈𝐹

‖ 

Proof. The result is trivial if 𝐹 ∩  𝜉 =  ∅, so suppose 𝐹 ∩  𝜉 ≠ ∅. Let 𝐹′ be the set 

constructed from 𝐹 as in Lemma (4.2.35). Observe that 𝐹′ ∩  𝜉 ≠ ∅; indeed, for a given 

(𝛼, 𝐴, 𝛼)  ∈  𝐹 ∩  𝜉 there exist (𝛼, 𝐵1, 𝛼), . . . , (𝛼, 𝐵𝑚, 𝛼) ∈ 𝐹′  that 𝐴 is the disjoint union of 

𝐵1, . . . , 𝐵𝑚. Since 𝐴 ∈  𝜉|𝛼| and 𝜉|𝛼| is a prime filter, there exists 𝑖0 ∈ {1, . . ., 𝑚} such that 

𝐵𝑖0 ∈  𝜉|𝛼|and therefore (𝛼, 𝐵𝑖0 , 𝛼) ∈ 𝐹′ ∩  𝜉. If follows that 𝐹′ ∩  𝜉 ≠ ∅, as claimed. 

For each (𝛾, 𝐶, 𝛾)  ∈  𝐹′ and (𝛼, 𝐴, 𝛼)  ∈  𝐹 with (𝛼, 𝐴, 𝛼)  ≥  (𝛾, 𝐶, 𝛾), define 

𝜂(𝛾,𝐶,𝛾),(𝛼,𝐴,𝛼)  = #{(𝛼, 𝐵, 𝛼)  ∈  𝐹′|(𝛼, 𝐴, 𝛼)  ≥  (𝛼, 𝐵, 𝛼)  ≥  (𝛾, 𝐶, 𝛾)}. 

Let us prove that 𝜂(𝛾,𝐶,𝛾),(𝛼,𝐴,𝛼)  ≤  1: let (𝛼, 𝐵, 𝛼), (𝛼, 𝐵′, 𝛼)  ∈  𝐹′ be such that (𝛼, 

𝐴, 𝛼)  ≥  (𝛼, 𝐵, 𝛼)  ≥  (𝛾, 𝐶, 𝛾) and (𝛼, 𝐴, 𝛼)  ≥  (𝛼, 𝐵′, 𝛼)  ≥  (𝛾, 𝐶, 𝛾). Then, in the 

semilattice 𝐸(𝑆), (𝛼, 𝐵, 𝛼)(𝛼, 𝐵′, 𝛼)  =  (𝛼, 𝐵 ∩  𝐵′, 𝛼)  ≥  (𝛾, 𝐶, 𝛾) ≠ 0 and hence 𝐵 ∩
𝐵′ ≠ ∅ . Therefore, by property (iii) of 𝐹′ in Lemma (4.2.35), we must have  

𝐵 = 𝐵′. It follows that 𝜂(𝛾,𝐶,𝛾),(𝛼,𝐴,𝛼)  ≤  1. 

Let 𝑤 = min(𝐹′ ∩ 𝜉). if (𝛼, 𝐵𝑖0 , 𝛼) is as in the first paragraph of the proof, then 𝑤 ≤

 (𝛼, 𝐵𝑖0 , 𝛼)  ≤  (𝛼, 𝐴, 𝛼) and so 𝜂𝑤,(𝛼,𝐴,𝛼) ≥  1, hence 𝜂𝑤,(𝛼,𝐴,𝛼)  =  1. 

Therefore, 

∑ 𝜆(𝛼,𝐴,𝛼)𝑠𝛼𝑝𝐴𝑠𝛼
∗  =
(1)

(𝛼,𝐴,𝛼)∈𝐹

∑ 𝜆(𝛼,𝐴,𝛼)𝑠𝛼

(

 ∑ 𝑝𝐵
(𝛼,𝐵,𝛼)∈𝐹′

𝐵⊆𝐴 )

 𝑠𝛼
∗

(𝛼,𝐴,𝛼)∈𝐹

 

                                     = ∑ 𝜆(𝛼,𝐴,𝛼)
(𝛼,𝐴,𝛼)∈𝐹

∑ 𝑠𝛼𝑝𝐵𝑠𝛼
∗

(𝛼,𝐵,𝛼)∈𝐹′

𝐵⊆𝐴

 

 =
                                                                                     (2)

∑ 𝜆(𝛼,𝐴,𝛼)
(𝛼,𝐴,𝛼)∈𝐹

∑

(

 
 

∑ 𝑞(𝛾,𝐶,𝛾)
𝐹′

(𝛾,𝐶,𝛾)∈𝐹′

(𝛾,𝐶,𝛾)≤(𝛼,𝐵,𝛼) )

 
 

(𝛼,𝐵,𝛼)∈𝐹′

𝐵⊆𝐴

 

    =
                                                                               (3)

∑ 𝜆(𝛼,𝐴,𝛼)
(𝛼,𝐴,𝛼)∈𝐹

∑ 𝜂(𝛾,𝐶,𝛾),(𝛼,𝐴,𝛼)𝑞(𝛾,𝐶,𝛾)
𝐹′

(𝛾,𝐶,𝛾)∈𝐹′

(𝛾,𝐶,𝛾)≤(𝛼,𝐵,𝛼)

 

 =
(4)

∑

(

 
 

∑ 𝜂(𝛾,𝐶,𝛾),(𝛼,𝐴,𝛼)𝜆(𝛼,𝐴,𝛼)
(𝛼,𝐵,𝛼)∈𝐹 

(𝛼,𝐵,𝛼)≤(𝛾,𝐶,𝛾) )

 
 
𝑞(𝛾,𝐶,𝛾)
𝐹′

(𝛾,𝐶,𝛾)∈𝐹′

 

The equalities above are justified as follows: (1) is a consequence of Lemma (4.2.35), (2) 

follows from Lemma (4.2.35), (3) is due to the definition of 𝜂(𝛾,𝐶,𝛾),(𝛼,𝐴,𝛼), and (4) is true 

since the sums on both sides are over all pairs (𝛼, 𝐴, 𝛼)  ∈  𝐹, (𝛾, 𝐶, 𝛾)  ∈  𝐹′ such that 

(𝛾, 𝐶, 𝛾)  ≤  (𝛼, 𝐴, 𝛼). 
Hence 
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‖ ∑ 𝜆(𝛼,𝐴,𝛼)𝑠𝛼𝑝𝐴𝑠𝛼
∗

(𝛼,𝐴,𝛼)∈𝐹

‖ = ‖
‖ ∑

(

 
 

∑ 𝜂(𝛾,𝐶,𝛾),(𝛼,𝐴,𝛼)𝜆(𝛼,𝐴,𝛼)
(𝛼,𝐵,𝛼)∈𝐹 

(𝛼,𝐵,𝛼)≤(𝛾,𝐶,𝛾) )

 
 
𝑞(𝛾,𝐶,𝛾)
𝐹′

(𝛾,𝐶,𝛾)∈𝐹′
‖
‖ 

                         =
(5)

max
(𝛾,𝐶,𝛾)∈𝐹′

𝑞(𝛾,𝐶,𝛾)
𝐹′ ≠0

|
| ∑ 𝜂(𝛾,𝐶,𝛾),(𝛼,𝐴,𝛼)𝜆(𝛼,𝐴,𝛼)

(𝛼,𝐵,𝛼)∈𝐹 

(𝛼,𝐵,𝛼)≥(𝛾,𝐶,𝛾)

|
| 

 =
                                                                    (6)

|| ∑ 𝜂𝑤,(𝛼,𝐴,𝛼)𝜆(𝛼,𝐴,𝛼)
(𝛼,𝐵,𝛼)∈𝐹 

(𝛼,𝐵,𝛼)≥𝑤

|| 

 =
                                                                   (7)

| ∑ 𝜂𝑤,(𝛼,𝐴,𝛼)𝜆(𝛼,𝐴,𝛼)
(𝛼,𝐵𝛼)∈𝐹∩𝜉  

 

| 

 =
                                                                 (8)

|∑ 𝜆(𝛼,𝐴,𝛼)(𝛼,𝐵𝛼)∈𝐹∩𝜉  
 

|, 

where (5) is due to the fact that the projections 𝑞(𝛾,𝐶,𝛾)
𝐹′   are pairwise orthogonal (Lemma 

(4.2.35)), (6), is true since 𝜉 is a filter and (8) is a consequence of 𝜂𝑤,(𝛼,𝐴,𝛼) = 1. 

Proposition (4.2.39)[450]: For each 𝜉 ∈  𝑇 there is a unique 𝜑 ∈ ∆̂  such that 

𝜑(𝑠𝛼𝑝𝐴𝑠𝛼
∗) = [(𝛼, 𝐴, 𝛼)  ∈  𝜉]  for all (𝛼, 𝐴, 𝛼)  ∈  𝐸(𝑆). 

Proof. An element 𝑥 ∈ span{𝑠𝛼𝑝𝐴𝑠𝛼
∗ |(𝛼, 𝐴, 𝛼)  ∈  𝐸(𝑆)} can be written as 

𝑥 = ∑ 𝜆(𝛼,𝐴,𝛼)𝑠𝛼𝑝𝐴𝑠𝛼
∗

(𝛼,𝐴,𝛼)∈𝐹

 

for some finite 𝐹 ⊆  𝐸(𝑆). By Lemma (4.2.39), 

𝜑(𝑥)  = ∑ 𝜆(𝛼,𝐴,𝛼)
(𝛼,𝐴,𝛼)∈𝐹∩𝜉 

 

 

gives a well defined continuous linear map from span
 
 {𝑠𝛼𝑝𝐴𝑠𝛼

∗ |(𝛼, 𝐴, 𝛼) ∈  𝐸(𝑆)} into ℂ.   

It is easily verified that 𝜑 preservers products so that it extends to an element 𝜑 ∈ ∆̂ that 

satisfies the equality from the statement. The uniqueness is immediate.    

Theorem (4.2.40)[450]: Let (𝐸, ℒ, 𝐵) be a weakly left-resolving labelled space such that 𝐵 

is closed under relative complements. Then, there exists a homeomorphism between 𝑇 and 

∆̂. 

Proof. Putting together Propositions (4.2.34) and (4.2.39), we have a bijection Φ: ∆̂→ 𝑇 

given by 

𝛷(𝜑) =  {(𝛼, 𝐴, 𝛼) ∈  𝐸(𝑆)|𝜑(𝑠𝛼𝑝𝐴𝑠𝛼
∗) = 1}. 

Since the topologies on ∆̂ and 𝑇 are both given by pointwise convergence, it follows that 𝛷 

is continuous. 𝐴 standard 𝜀/3 argument shows that 𝛷−1  is continuous.  

We present an example of a labelled space whose 𝐶∗ −algebra given by Definition 

(4.2.13) is a non-trivial quotient of the 𝐶∗ −algebra considered in a preprint of [181] (see 

Remark 4.2.14). To see this, we construct a representation of  the 𝐶∗ −algebra based on this 
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alternative definition such that the images of the generating projections and partial 

isometries do not satisfy the additional relations given in Definition (4.2.13). 

From now on, fix a labelled space (𝐸, ℒ, 𝐵) whose labelled graph is left-resolving. Let 𝑌 

be an infinite set such that #𝑌 ≥  𝑚𝑎𝑥{#𝜀0, #𝜀1}. For each 𝑒 ∈  𝜀1, let 𝐸𝑒  be a copy of 𝑌 

and, for each 𝑣 ∈ 𝜀0\𝜀𝑠𝑖𝑛𝑘
0  , let 𝐷𝑣  be also a copy of 𝑌 , so that all copies of 𝑌 are pairwise 

disjoint. For each 𝑣 ∈ 𝜀0\𝜀𝑠𝑖𝑛𝑘
0 , define1 𝐷𝑣 =⊔𝑒∈𝑠−1(𝑣) 𝐸𝑒. It is easy to see that the 𝐷𝑣vare 

pairwise disjoint. Now, for each 𝑒 ∈ 𝜀1, choose a bijection ℎ𝑒: 𝐷𝑟(𝑒) → 𝐸𝑒
2.For each letter 

𝑎 ∈ 𝐴, the union ∪𝑒∈ℒ−1(𝑎) 𝐷𝑟(𝑒)is disjoint, since the labelled graph is left-resolving. Thus, 

we can define a bijection ℎ𝑒:⊔𝑒∈ℒ−1(𝑎) 𝐷𝑟(𝑒) →⊔𝑒∈ℒ−1(𝑎) 𝐸𝑒 by gluing the functions ℎ𝑒, 

where ℒ(𝑒)  = 𝑎. Finally, set 𝑋 =⊔𝑣∈𝜀0 𝐷𝑣. 

 Consider the Hilbert space ℓ2(𝑋)𝑒 let {𝛿𝑥}𝑥∈𝑋 be its canonical basis. 

For each letter 𝑎 ∈ 𝐴, define 

𝑆𝑎: ℓ
2(𝑋) → ℓ2(𝑋) 

𝛿𝑥 ⟼ [𝑥 ∈⊔𝑒∈ℒ−1(𝑎) 𝐷𝑟(𝑒)]𝛿ℎ𝑎(𝑥). 

recalling that [ ] represents the boolean function that returns 1 if the argument is true and 0 

otherwise. In this way, 𝑆𝑎  is a partial isometry with ℓ2(⊔𝑒∈ℒ−1(𝑎) 𝐷𝑟(𝑒)) as its initial space 

and ℓ2(⊔𝑒∈ℒ−1(𝑎) 𝐸𝑒)  as its final space. 

For each 𝐴 ⊆ 𝜀0, define 

𝑃𝐴: ℓ
2(𝑋) → ℓ2(𝑋) 

𝛿𝑥 ⟼ [𝑥 ∈⊔𝑣∈𝐴 𝐷𝑣]𝛿𝑥. 

Thus, 𝑃𝐴 is the projection onto ℓ2(⊔𝑣∈𝐴 𝐷𝑣). 
Proposition (4.2.41)[450]: The operators {𝑆𝑎}𝑎∈𝐴 and {𝑃𝐴}𝐴∈𝐵 satisfy the conditions of 

Definition (4.2.13), replacing item (iv) with 

(iv) For every 𝐴 ∈ 𝐵 such that 0 <  #ℒ(𝐴𝜀1)  <  ∞ and 𝐴 ∩ 𝜀𝑠𝑖𝑛𝑘
0 = ∅ , 

𝑝𝐴  = ∑ 𝑠𝛼𝑝𝑟(𝐴,𝑎)𝑠𝛼
∗

a∈ℒ(𝐴𝜀1)

 

Proof. We already know that 𝑆𝑎  is a partial isometry and 𝑃𝐴 is a projection. We only show 

items (ii) and (iv), since (i) and (iii) are trivial. 

Observe that 

𝑃𝐴𝑆𝑎(𝛿𝑥) = [𝑥 ∈⊔𝑒∈ℒ−1(𝑎) 𝐷𝑟(𝑒)][ℎ𝑎(𝑥) ∈⊔𝑣∈𝐴 𝐷𝑣]𝛿ℎ𝑎(𝑥) 

and 

𝑆𝑎𝑃𝑟(𝐴,𝑎)(𝛿𝑥) = [𝑥 ∈⊔𝑣∈𝑟(𝐴,𝑎) 𝐷𝑣][𝑥 ∈⊔𝑒∈ℒ−1(𝑎) 𝐷𝑟(𝑒)]𝛿ℎ𝑎(𝑥) 

Thus, to see (ii), it suffices to show that [ℎ𝑎(𝑥) ∈⊔𝑣∈𝐴 𝐷𝑣] = [𝑥 ∈⊔𝑣∈𝑟(𝐴,𝑎) 𝐷𝑣] whenever 

[𝑥 ∈⊔𝑒∈ℒ−1(𝑎) 𝐷𝑟(𝑒)] = 1. Indeed, if 𝑥 ∈⊔𝑣∈𝑟(𝐴,𝑎) 𝐷𝑣, then there exists 𝑒 ∈ ℒ−1(𝑎)with 

𝑠(𝑒) ∈ 𝐴  such that 𝑥 ∈ 𝐷𝑟(𝑒). Therefore, ℎ𝑎(𝑥) ∈ 𝐸𝑒 ⊆ 𝐷𝑠(𝑒) ⊆⊔𝑣∈𝐴 𝐷𝑟(𝑒). On the other 

hand, since 𝑥 ∈⊔𝑒∈ℒ−1(𝑎) 𝐷𝑟(𝑒), then there exists 𝑒 ∈ ℒ−1(𝑎) such that 𝑥 ∈ 𝐷𝑟(𝑒)and, 

hence, ℎ𝑎(𝑥) ∈ 𝐸𝑒. Thus, if ℎ𝑎(𝑥) ∈⊔𝑣∈𝐴 𝐷𝑣, then 𝐸𝑒 ∈⊔𝑣∈𝐴 𝐷𝑣, which says that 𝑠(𝑒)  ∈
𝐴. In other words, 𝑟(𝑒)  ∈ 𝑟(𝐴, 𝑎), showing that 𝑥 ∈ 𝐷𝑟(𝑒) ⊆⊔𝑣∈𝑟(𝐴,𝑎) 𝐷𝑣. 

    Let 𝐴 ∈ 𝐵. be such that ℒ(𝐴𝜀1) is finite and  ∩ 𝜀𝑠𝑖𝑛𝑘
0 = ∅ . Now that (ii) has been 

established, proving  

(iv) is equivalent to showing that 𝑠𝑎𝑠𝑎
∗ and  𝑠𝑏𝑠𝑏

∗  are orthogonal projections for 𝑎, 𝑏 ∈ ℒ(𝐴𝜀1) 
with 𝑎 ≠ 𝑏, and 
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𝑃𝐴 ≤ ∑ 𝑠𝑎𝑠𝑎
∗

𝑎∈ℒ(𝐴𝜀1) . 

By item (iii), it is clear that 𝑠𝑎𝑠𝑎
∗ and 𝑠𝑏𝑠𝑏

∗  are orthogonal if 𝑎 ≠ 𝑏. The operator 𝑃𝐴 is the 

projection onto ℓ2(⊔𝑣∈𝐴 𝐷𝑣)and the operator ∑ 𝑠𝑎𝑠𝑎
∗

𝑎∈ℒ(𝐴𝜀1)
  is the projection onto 

ℓ2(⊔𝑎∈ℒ(𝐴𝜀1)⊔𝑒∈ℒ−1(𝑎) 𝐸𝑒) . Since 𝐴 ∩ 𝜀𝑠𝑖𝑛𝑘
0 = ∅, then ⊔𝑣∈𝐴 𝐷𝑣 =⊔𝑣∈𝐴⊔𝑒∈𝑠−1(𝑣) 𝐸𝑒  and it 

is clearly contained in ⊔𝑎∈ℒ(𝐴𝜀1)⊔𝑒∈ℒ−1(𝑎) 𝐸𝑒.  

Therefore, 

𝑃𝐴 ≤ ∑ 𝑠𝑎𝑠𝑎
∗

𝑎∈ℒ(𝐴𝜀1)

. 

This Proposition ensures that there exists a homomorphism from 𝐶∗(𝐸, ℒ, 𝐵) (with the 

alternative item (iv)) to 𝐵(ℓ2(𝑋)) which sends 𝑠𝑎  to 𝑆𝑎  and 𝑝𝐴  to 𝑃𝐴. To simplify the writing, 

we refer to Definition (4.2.13) with the alternative item (iv) as the alternative definition. 

Now, we are ready to see the promised example. 

Example (4.2.42)[ 450]: Consider the graph below. 

𝑒1 

 
𝑒2 

For each arrow, assign the label 𝑎 and consider the family 

𝐵 =  {∅, {𝑣1}, {𝑣2, 𝑣3}, {𝑣1, 𝑣2, 𝑣3}}, 
which is easily seen to be accommodating and closed under relative complements. 

The 𝐶∗ −algebra of this labelled space (under any of the two given definitions) is generated 

by four elements: 𝑠𝑎, 𝑝{𝑣1}, 𝑝{𝑣2,𝑣3} and 𝑝{𝑣1,𝑣2,𝑣3}. Clearly, using (i), (ii) and (iii), we see that 

                                                    𝑝{𝑣1} + 𝑝{𝑣2,𝑣3} = 𝑝{𝑣1,𝑣2,𝑣3} = 𝑠𝑎
∗𝑠𝑎 = 1. 

Observe that 𝐴 = {𝑣1, 𝑣2, 𝑣3}  does not satisfy 𝐴 ∩ 𝜀𝑠𝑖𝑛𝑘
0 = ∅, and there is no 𝐵 ∈ ℬ such 

that ∅ ≠ 𝐵 ⊆ 𝐴 ∩ 𝜀𝑠𝑖𝑛𝑘
0  . This means there is a relation in Definition (4.2.13) that does not 

appear in the alternative definition. 

Now, suppose we are under Definition (4.2.13). Since {𝑣1, 𝑣2, 𝑣3}satisfies the conditions 

of item (iv), we conclude that 𝑠𝑎𝑠𝑎
∗ = 1. Furthermore, {𝑣1}  =  𝑟({𝑣1, 𝑣2}, a), {𝑣2, 𝑣1}  =

 𝑟({𝑣1}, 𝑎) and {𝑣1, 𝑣2, 𝑣3}  =  𝑟({𝑣1, 𝑣2, 𝑣3}, 𝑎), which says that every set in ℬ  is the 

relative range (by a) of another set in ℬ. Thus, for every𝐴 ∈ ℬ, 𝑠𝑎𝑝𝐴  =  𝑝𝐵𝑠𝑎  for some 𝐵 ∈
ℬ. Therefore, every element of the form 𝑠𝛼𝑝𝐴𝑠𝛼

∗  is equal to 𝑝𝐵for some 𝐵 ∈ ℬ, from where 

we conclude that 𝑝{𝑣1}and 𝑝{𝑣2,𝑣3} generate 𝛥(𝜀, ℒ, ℬ). Hence, the spectrum of 𝛥(𝜀, ℒ, ℬ)is a 

set with two points. 

 This labelled space to obtain 𝑠𝑎𝑠𝑎
∗ = 𝑝{𝑣1,𝑣2} ≠ 𝑝{𝑣1,𝑣2,𝑣3} = 1. We see that 

𝑝{𝑣1}, 𝑝{𝑣2,𝑣3}, 𝑝{𝑣1,𝑣2,𝑣3} and 𝑠𝑎𝑠𝑎
∗

 are all different and non-zero. Therefore, in this case, the 

spectrum of 𝛥(𝜀, ℒ, ℬ) possesses more than two points. This shows that 𝐶∗(𝜀, ℒ, ℬ) given 

by Definition (4.2.13) is a non-trivial quotient of the 𝐶∗ −algebra given by the alternative 

definition. Furthermore, we conclude that the diagonal 𝐶∗ −algebras are different and, 

hence, the spectrum of the diagonal 𝐶∗ −algebra of the alternative definition is not 

homeomorphic to the tight spectrum of the inverse semigroup associated with the labelled 

space. 
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Chapter 5 
Approximation and 𝑪∗-Algebras 

 

     We give a general solution to the norm closure problem for complex symmetric 

operators. As an application, we provide a concrete description of partial isometries which 

are norm limits of complex symmetric operators. Also it is completely determined when 

𝐶∗(𝑇)  is ∗-isomorphic to a 𝐶∗-algebra singly generated by complex symmetric operators. 

These both depend only on the singular part of  𝑇. 

Section (5.1): Approximation of Complex Symmetric Operators  

[486], which provides a 𝐶∗-algebra approach to complex symmetric operators. We shall 

develop further some 𝐶∗-algebra techniques to solve in a general sense the norm closure 

problem for complex symmetric operators. The approach employs some classical results 

from the representation theory of 𝐶∗-algebras. 

     We let ℋ denote a separable, infinite dimensional complex Hilbert space endowed with 

the inner product 〈∙,∙〉. We always denote by 𝐵(ℋ) the collection of bounded linear operators 

on ℋ, and by 𝐾(ℋ) the ideal of compact operators on ℋ. For 𝐴 ∈ 𝐵(ℋ), we let 𝐶∗(𝐴) 
denote the 𝐶∗-algebra generated by 𝐴 and the identity operator. 

Definition (5.1.1)[451]: A map 𝐶 on ℋ is called a conjugation if 𝐶 is conjugate-linear, 𝐶2 =
𝐼 and 〈𝐶𝑥, 𝐶𝑦〉 = 〈𝑦, 𝑥〉 for all 𝑥, 𝑦 ∈ ℋ. 

Definition (5.1.2)[451]: An operator 𝑇 ∈ 𝐵(ℋ) is called a complex symmetric operator 

(𝐶𝑆𝑂) if there is a conjugation 𝐶 on ℋ such that 𝐶𝑇𝐶 = 𝑇∗. We denote by 𝑆(ℋ) the set of 

all 𝐶𝑆𝑂𝑠 on ℋ. 

    Note that an operator 𝑇 ∈ 𝐵(ℋ) is complex symmetric if and only if there exists an 

orthonormal basis (ONB, for short) {𝑒𝑛} of ℋ such that 〈𝑇𝑒𝑖  , 𝑒𝑗〉 = 〈𝑇𝑒𝑗 , 𝑒𝑖〉 for all  𝑖, 𝑗 , 

that is, 𝑇 admits a symmetric matrix representation with respect to {𝑒𝑛} (see [208, Lemma 

1]). Thus the notion of 𝐶𝑆𝑂 can be viewed as a generalization of symmetric matrix in the 

context of Hilbert space. 

   The general study of 𝐶𝑆𝑂𝑠 was initiated by Garcia and Putinar [208,209], and has many 

motivations in function theory, matrix analysis and other areas. Many significant results 

concerning 𝐶𝑆𝑂𝑠 have been obtained (see [197,211,213,214,218,230,232] ). 

In particular, it is worth mentioning that 𝐶𝑆𝑂𝑠 are closely related to the study of truncated 

Toeplitz operators, which was initiated in Sarason’s seminal [223] and has led to rapid 

progress in function-theoretic operator theory [196,198,199,215,216,225,226]. 

The reader is referred to [208,209] for more about 𝐶𝑆𝑂𝑠 and its connections to other 

subjects. 

We will concentrate on the following norm closure problem. 

Problem (5.1.3)[451]: Characterize the norm closure of the set 𝑆(ℋ). 
There are several motivations for us to study Problem (5.1.3). Firstly, although much 

attention has been paid to 𝐶𝑆𝑂𝑠, the internal structure of 𝐶𝑆𝑂𝑠 is still not well understood. 

In particular, Garcia posed many concrete questions concerning 𝐶𝑆𝑂𝑠 (see [210–212,217]). 

A basic problem is to give a characterization, in “simple terms”, of when an operator is 

complex symmetric. In a real sense such a characterization is very far from existing even in 

finite dimensional spaces. So people naturally restrict attention to special classes of 
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operators. In this aspect, partial isometries, weighted shifts and some other operators are 

studied [197,211,230,332]. Another alternative is to consider the approximation of 𝐶𝑆𝑂𝑠, 
that is, to characterize which operators are the norm limits of 𝐶𝑆𝑂𝑠. Maybe the answer is 

relatively easy to state. This may help to achieve a meaningful classification. In fact, 

Problem (5.1.3) has inspired many interesting results [213,214,219,220,230–232]. A 

classification of 𝐶𝑆𝑂𝑠 up to approximate unitary equivalence. Recall that two operators 

𝐴,𝐵 ∈ 𝐵(ℋ) are approximately unitarily equivalent if there exists a sequence {𝑈𝑛}𝑛=1
∞  of 

unitary operators such that 𝑈𝑛𝐴 − 𝐵𝑈𝑛 → 0 as 𝑛 → ∞ (see [204, page 57]). 

     The second motivation lies in connections between 𝐶𝑆𝑂𝑠 and anti-automorphisms of 

singly generated 𝐶∗-algebras. Recall that an anti-automorphism of a 𝐶∗-algebra 𝐴 is a vector 

space isomorphism 𝜑: 𝐴 → 𝐴 with 𝜑(𝑎∗) = 𝜑(𝑎)∗ and 𝜑(𝑎𝑏) = 𝜑(𝑏)𝜑(𝑎) for 𝑎, 𝑏 ∈ 𝐴. 

Anti-automorphisms play an important role in the study of the real structure of 𝐶∗-algebras 

[195,222,223,227,228]. It is not necessary that each 𝐶∗-algebra possesses an anti-

automorphism on it [200,201]. So a basic problem is to determine when a 𝐶∗-algebra 

possesses an anti-automorphism on it. 

Definition (5.1.4)[451]: We say that an operator 𝑇 ∈ 𝐵(𝐻) is 𝑔-normal if it satisfies 

‖𝑝(𝑇∗, 𝑇 )‖ = ‖𝑝(𝑇, 𝑇∗)‖ 
for any polynomial 𝑝(𝑧1, 𝑧2) in two free variables. Here 𝑝(𝑧1, 𝑧2) is obtained from 𝑝(𝑧1, 𝑧2) 
by conjugating each coefficient. 

The notion of 𝑔-normal operator was suggested in [217]. It is proved in [219] that (1) an 

operator 𝑇 ∈ 𝐵(ℋ) is 𝑔-normal if and only if there exists an antiautomorphism 𝜑 of  𝐶∗(𝑇 ) 
such that  ∅(𝑇) = 𝑇 , and (2) each operator in 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ is 𝑔-normal. Moreover each 𝐶∗-algebra 

generated by an operator in 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ possesses a real structure. This suggests a 𝐶∗-algebra 

approach to 𝐶𝑆𝑂𝑠 and its norm closure problem. 

     Another motivation of our study stems from some recent interest in the study of 𝑆(ℋ) 
itself as a subset of 𝐵(ℋ). In [210], Garcia showed that the set 𝑆(ℋ) is invariant under the 

Aluthge transform, an important transformation which originally arose in the study of 

hyponormal operators. In [211], Garcia and Wogen showed that 𝑆(ℋ) is not closed in the 

strong operator topology (SOT). In [213], Garcia and Poore proved that the sot closure of 

𝑆(ℋ) is 𝐵(ℋ). As for the norm topology, things become very complicated. 

     The norm closure problem for 𝐶𝑆𝑂𝑠 was posed and first studied by Garcia and Wogen 

[211]. In particular, they asked whether or not the set 𝑆(ℋ) is norm closed. Zhu et al. [231] 

answered this question negatively by proving that the Kakutani shift is not complex 

symmetric but belongs to 𝑆(ℋ). The proof there depends on a construction of finite-

dimensional truncated weighted shifts. Almost immediately, using the unilateral shift and 

its adjoint, Garcia and Poore [214] constructed another completely different operator in 

𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅\𝑆(ℋ). 
    Generalizing the Kakutani shift, Garcia and Poore [213] constructed some special 

weighted shifts, the so-called approximately Kakutani shifts. A unilateral weighted shift 𝑇 ∈
𝐵(ℋ) with positive weights {𝛼𝑘}𝑘=1

∞  is said to be approximately Kakutani if for each 𝑛 ≥ 1 

and 𝜀 > 0 there exists 𝑁 ∈ ℕ  such that 0 < 𝛼𝑁 < 𝜀 and 

1 ≤ 𝑘 ≤ 𝑛 ⟹ |𝛼𝑘 − 𝛼𝑁−𝑘| < 𝜀. 
It was proved that approximately Kakutani shifts are norm limits of 𝐶𝑆𝑂𝑠 [213, Theorem 

10]. Moreover they conjectured the converse also holds [213, Conjecture 1]. Guo et al. 
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provided a 𝐶∗-algebra approach to the norm closure problem for 𝐶𝑆𝑂𝑠, and gave a positive 

answer to the conjecture [219, Theorem 2.4]. In fact, more results were obtained there.  

    As observed in many significant results in operator theory, there is a subtle interplay 

between compact perturbation and approximation. In fact, in a large number of interesting 

cases, the norm closure of a subset ℰ of 𝐵(ℋ) is contained in the set of all compact 

perturbations of operators in ℰ. For example, an operator 𝑇 is a norm limit of triangular 

operators if and only if 𝑇 is a compact perturbation of triangular operators if and only if 

there exist triangular operators {𝑇𝑛}𝑛=1
∞  such that 𝑇𝑛 → 𝑇 and 𝑇𝑛 − 𝑇 is compact for each 

𝑛 ≥ 1 (see [221, Theorem 6.4]). This motivates the following definition. 
Definition (5.1.5)[451]: Let ℰ be a subset of 𝐵(ℋ). The compact closure of  ℰ, denoted by 

ℰ̅𝑐, is defined to be the set of all operators 𝐴 ∈ 𝐵(ℋ) satisfying: for any 𝜀 > 0, there exists 

𝐾 ∈ 𝐾(ℋ) with ‖𝐾‖ < 𝜀 such that 𝐴 + 𝐾 ∈ ℰ. 

It is clear that ℰ ⊂ ℰ̅𝑐 ⊂ ℰ̅ and ℰ̅𝑐 ⊂ [𝐸 + 𝐾(ℋ)]. Thus ℰ𝑐 can be viewed as the set of all 

small compact perturbations of operators in ℰ. 

Definition (5.1.6)[451]: Let 𝑇 ∈ 𝐵(ℋ). An operator 𝐴 ∈ 𝐵(ℋ) is called a transpose of  𝑇, 

if 𝐴 = 𝐶𝑇∗𝐶 for some conjugation 𝐶 on 𝐻. 

The notion “transpose” for operators is in fact a generalization of that for matrices. 

In general, an operator has more than one transpose [233, Example 2.2]. However, as 

indicated in [219], any two transposes of an operator are unitarily equivalent. We often write 

𝑇𝑡 to denote a transpose of  𝑇. In general, there is no ambiguity especially when we write 

𝑇 ≅ 𝑇𝑡 or 𝑇 ≅𝑎 𝑇
𝑡 . Here and in what follows, the notation ≅ denotes unitary equivalence, 

and ≅𝑎 denotes approximate unitary equivalence. 

Guo, Ji and Zhu obtained the following theorem which characterizes irreducible unilateral 

weighted shifts in 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅. 
Theorem (5.1.7)[451]: [219, Theorem 2.4] Let 𝑇 ∈ 𝐵(ℋ) be a unilateral weighted shift 

with positive weights. Then the following are equivalent: 

(i)  𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅; 
(ii)  𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅𝑐; 
(iii)  ∃ 𝐴 ∈ 𝑆(ℋ) such that 𝐴 ≅𝑎 𝑇 ; 

(iv) 𝑇 ≅𝑎 𝑇
∗; 

(v)  𝑇 is 𝑔-normal; 

(vi)  𝑇 is approximately Kakutani. 

Furthermore, Guo, Ji and Zhu gave a description of those operators 𝑇 in 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ satisfying 

𝐶∗(𝑇 ) ∩ 𝐾(ℋ) = {0}. 
Theorem (5.1.8)[451]: Let 𝑇 ∈ 𝐵(ℋ) and assume that 𝐶∗(𝑇) ∩ 𝐾(ℋ) = {0}. Then the 

following are equivalent: 

(i)  𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅; 
(ii)  𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅𝑐; 
(iii)  ∃ 𝐴 ∈ 𝑆(ℋ) such that 𝐴 ≅𝑎 𝑇; 

(iv) 𝑇 is 𝑔-normal; 

(v) 𝑇 ≅𝑎 𝑇
𝑡. 

All these results mentioned above suggest that the structure of the set 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ may admit some 

special form, and it needs and deserves much more study. On the other hand, these results 

suggest a 𝐶∗-algebra approach to 𝐶𝑆𝑂𝑠. By virtue of an intensive analysis of compact 
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operators in singly generated 𝐶∗-algebras, we employ the representation theory of 𝐶∗-
algebras to give a complete description of operators in 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅. 
As an application of  Theorem (5.1.30), we shall give a concrete description of partial 

isometries which are norm limits of 𝐶𝑆𝑂𝑠. In [211], Garcia and Wogen proved that a partial 

isometry 𝑇 is complex symmetric if and only if the compression of 𝑇 to its initial space is 

complex symmetric. We shall prove the following theorem, which can be viewed as an 

analogue of their result in the setting of approximation. 

Definition (5.1.9)[451]: Let 𝐴 ∈ 𝐵(ℋ1) and 𝐵 ∈ 𝐵(ℋ2). We write 𝐴 ⊴ 𝐵 if there is a ∗- 
homomorphism 𝜌 of 𝐶∗(𝐵) into 𝐶∗(𝐴) such that 𝜌(𝐵) = 𝐴; if, in addition, 𝜌 annihilates 

𝐶∗(𝐵) ∩ 𝐾(ℋ2), then we write 𝐴 ⊲ 𝐵.  

It is easy to see that 𝐴 ⊴ 𝐵 if and only if ‖𝑝(𝐴∗, 𝐴)‖ ≤ ‖𝑝(𝐵∗, 𝐵)‖ for any polynomial 

𝑝(𝑧1, 𝑧2) in two free variables 𝑧1, 𝑧2. 

Lemma (5.1.11)[451]: Let 𝑇 ∈ 𝐵(ℋ) and 𝑇 = 𝐴 ⊕ 𝐵, where 𝐴 ∈ 𝐵(ℋ1) and 𝐵 ∈ 𝐵(ℋ2). 
Assume that 𝐴 ⊲ 𝐵. Then 

𝐶∗(𝑇 ) ∩ 𝐾(ℋ) = {[
0 0
0 𝐾

]
ℋ1
ℋ2
: 𝐾 ∈ 𝐶∗(𝐵) ∩ 𝐾(ℋ2)} ; 

in particular, if 𝐶∗(𝑇 ) contains an operator of the form 𝑌1⊕𝑌2, where 𝑌1 ∈ 𝐵(ℋ1) and 

𝑌2 ∈ 𝐾(ℋ2), then 𝑌1 = 0. 

Proof. Assume that 𝐴 ⊴ 𝐵. Then, by definition, there is a ∗-homomorphism 𝜌 of  𝐶∗(𝐵) 
into 𝐶∗(𝐴) such that 𝜌(𝐵) = 𝐴. For a polynomial 𝑝(∙,∙) in two free variables, note that 

𝑝(𝑇∗, 𝑇) = [
𝑝(𝐴∗, 𝐴) 0

0 𝑝(𝐵∗, 𝐵)
 ] = [

𝜌(𝑝(𝐵∗, 𝐵)) 0

0 𝑝(𝐵∗, 𝐵)
] . 

It follows immediately that 

𝐶∗(𝑇 ) = {[
𝜌(𝑋) 0
0 𝑋

]
ℋ1
ℋ2
: 𝑋 ∈ 𝐶∗(𝐵)} . 

In view of this, the result follows readily. 

The following lemma is clear. 

Lemma (5.1.10)[451]: Let 𝐴,𝐵 and 𝐶 be three Hilbert space operators satisfying 𝐶 ⊲ 𝐵. 

Then (1) 𝐴 ⊴ 𝐵 if and only if 𝐴 ⊴ 𝐶 ⊕ 𝐵, (2) 𝐴 ⊲ 𝐵 if and only if 𝐴 ⊲ 𝐶 ⊕ 𝐵. 

Lemma (5.1.12)[451]: [497, Corollary 5.41] If 𝐴 is a 𝐶∗-subalgebra of 𝐵(ℋ) which 

contains 𝐾(ℋ) and 𝜌 is an irreducible representation of 𝐴 on some Hilbert space ℋ𝜌 such 

that 𝜌|𝐾(ℋ) is not zero, then there exists unitary 𝑈:ℋ → ℋ𝜌 such that 𝜌(𝑋) = 𝑈𝑋𝑈∗ for 

𝑋 ∈ 𝐴. 

Lemma (5.1.14)[451]: [492, Corollary II.5.5] Suppose 𝜌 is a non-degenerate representation 

of a separable 𝐶∗-subalgebra 𝐴 of 𝐵(ℋ) into 𝐵(ℋ𝜌) such that 𝜌(𝐴 ∩ 𝐾(ℋ)) = {0}. Then 

𝑖𝑑 ≅𝑎 𝑖𝑑 ⊕ 𝜌, where 𝑖𝑑 is the identity representation of 𝐴. 

    Let 𝑇 ∈ 𝐵(ℋ). If 𝜎 is a nonempty clopen subset of 𝜎(𝑇), then there exists an analytic 

Cauchy domain Ω such that 𝜎 ⊆ Ω and [𝜎(𝑇)\𝜎] ∩ Ω̅ = ∅. We let 𝐸(𝜎; 𝑇) denote the Riesz 

idempotent of 𝑇 corresponding to 𝜎 [248, page 2], that is, 

𝐸(𝜎 ; 𝑇) =
1

2𝜋𝑖
∫(𝜆 − 𝑇)−1𝑑𝜆

Γ

, 

where Γ = 𝜕Ω is positively oriented with respect to Ω in the sense of complex variable 

theory. If  𝑇 is self-adjoint, then it is obvious that 𝐸(𝜎; 𝑇) is an orthogonal projection. 
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Lemma (5.1.14)[451]: Let 𝑇 = 𝐴⊕ 𝐶 ⊕ 𝐵, where 𝐴 ∈ 𝐵(ℋ1), 𝐵 ∈ 𝐵(ℋ2) and 𝐶 ∈
𝐵(𝐻3). 

(i)  If 𝐴 ⋬ 𝐵, then 𝐶∗(𝑇 ) contains an operator 𝑍 of the form 

𝑍 = [
𝑋         
      𝑌    
           0

]

ℋ1
ℋ3
ℋ2

, 

where 𝑋 ≠ 0 and each omitted entry is 0. 

(ii)  If 𝐴 ⊴ 𝐵 but 𝐴 ⋪ 𝐵, then 𝐶∗(𝑇) contains an operator 𝑍 of the form 

𝑍 = [
𝑋         
      𝑌    
           𝐾

]

ℋ1
ℋ3
ℋ2

, 

where 𝑋 ≠ 0 and 𝐾 ∈ 𝐾(ℋ2). 
Proof. (i) If 𝐴 ⋬ 𝐵, then, by definitions, there exists a polynomial 𝑝(∙,∙) in two free variables 

such that ‖𝑝(𝐴∗, 𝐴)‖ > ‖𝑝(𝐵∗, 𝐵)‖. Denote 𝐷 = |𝑝(𝐴∗, 𝐴)|, 𝐸 = |𝑝(𝐶∗, 𝐶)| and 𝐹 =
|𝑝(𝐵∗, 𝐵)|. Then it follows that 

|𝑝(𝑇∗, 𝑇)| = [
𝐷         
      𝐸    
           𝐹

]

ℋ1
ℋ3
ℋ2

 

is a positive operator in 𝐶∗(𝑇 ) with ‖𝐷‖ > ‖𝐹‖. Set 𝛿 =
‖𝐷‖+‖𝐹‖

2
 and define 

ℎ(𝑡) = {
0,      0 ≤ 𝑡 ≤ 𝛿,
𝑡 −  𝛿     , 𝑡 > 𝛿.

 

Thus ℎ is continuous on [0, +∞) and one can see that ℎ(𝐷) ≠ 0 and ℎ(𝐹) = 0. 

Set 𝑋 = ℎ(𝐷), 𝑌 = ℎ(𝐸) and 𝑍 = ℎ(|𝑝(𝑇∗, 𝑇)|). Then 𝑍 = 𝑋 ⊕ 𝑌 ⊕ 0 ∈ 𝐶∗(𝑇 ) and 𝑋 ≠
0. 

(ii) Since 𝐴 ⊴ 𝐵, there is a ∗-homomorphism of 𝐶∗(𝐵) onto 𝐶∗(𝐴) such that 𝜌(𝐵) = 𝐴. It 

is easy to see that 𝜌(𝑝(𝐵∗, 𝐵)) = 𝑝(𝐴∗, 𝐴) for any polynomial 𝑝(⋅,⋅) in two free variables. 

By the hypothesis, there exists 𝐷 ∈ 𝐶∗(𝐵) ∩ 𝐾(ℋ2) such that 𝜌(𝐷) ≠ 0. So 𝐷 ≠ 0. 

Obviously, we can choose polynomials {𝑝𝑛(⋅,⋅)} in two free variables such that 𝑝𝑛(𝐵
∗, 𝐵) →

𝐷. Thus 
𝑝𝑛(𝐴

∗, 𝐴) = 𝜌(𝑝𝑛(𝐵
∗, 𝐵)) → 𝜌(𝐷). 

Hence |𝑝𝑛(𝐵
∗, 𝐵)| → |𝐷| and |𝑝𝑛(𝐴

∗, 𝐴)| → 𝜌(|𝐷|). Note that |𝜌(𝐷)| = 𝜌(|𝐷|). 

Since |𝐷| is compact, there exists 𝛿 <
‖𝜌(|𝐷|)‖

2
 such that 𝛿 ∉ 𝜎(|𝐷|). Noting that ‖𝜌(|𝐷|)‖ ≤

‖𝐷‖, we have 𝜎(|𝐷|) = 𝜎1 ∪ 𝜎2, where 𝜎1 ⊂ (−1, 𝛿) and ∅ ≠ 𝜎2 ⊂ (𝛿, ‖𝐷‖ + 1). 
Moreover, the Riesz idempotent of |𝐷| corresponding to 𝜎2, denoted by 𝐸(𝜎2; |𝐷|), is of 

finite rank and 𝐸(𝜎2; |𝐷|) ≠ 0. 

By the upper semi-continuity of spectra in approximation, there exists 𝑁 ∈ ℕ such that if 

𝑛 > 𝑁, then 𝜎(|𝑝𝑛(𝐵
∗, 𝐵)|) = 𝜎1

′ ∪ 𝜎2
′ with 𝜎1

′ ⊂ (−1, 𝛿) and 𝜎2 ⊂ (𝛿, ‖𝐷‖ + 1); 
moreover, 𝑟𝑎𝑛𝑘 𝐸(𝜎2

′ ;  |𝑝𝑛(𝐵
∗, 𝐵)|) = 𝑟𝑎𝑛𝑘 𝐸(𝜎2; |𝐷|) < ∞ (see [448, Corollary 1.6]). 

Also it can be required that ‖𝑝𝑛(𝐴
∗, 𝐴)‖ > 𝛿 for any 𝑛 > 𝑁. 

Define 

ℎ(𝑡) = {
0, 0 ≤  𝑡 ≤  𝛿,
𝑡 −  𝛿, 𝑡 >  𝛿.

 

Then ℎ is nonnegative and continuous on [0,+∞). Now fix an 𝑛 > 𝑁. Set 
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𝑋 = ℎ(|𝑝𝑛(𝐴
∗, 𝐴)|), 𝑌 = ℎ(|𝑝𝑛(𝐶

∗, 𝐶)|) and 𝐾 = ℎ(|𝑝𝑛(𝐵
∗, 𝐵)|). It is evident that 𝑋 ≠

0, 𝐾 ∈ 𝐾(𝐻2) and 𝑋 ⊕ 𝑌 ⊕𝐾 ∈ 𝐶∗(𝑇). This completes the proof. 

For convenience, we write 0ℋ to denote the sub-algebra {0} of 𝐵(ℋ). 
Lemma (5.1.15)[451]: Let 𝑇 = 𝐴⊕ 𝐶 ⊕ 𝐵, where 𝐴 ∈ 𝐵(ℋ1), 𝐵 ∈ 𝐵(ℋ2) and 𝐶 ∈
𝐵(ℋ3). If  𝐾(ℋ1) ⊕ 0𝐻3 ⊂ 𝐶

∗(𝐴 ⊕ 𝐶) and 𝐶∗(𝑇) contains an operator 𝑍 of the form 

𝑍 = [
𝑋         
      𝑌    
           0

]

ℋ1
ℋ3
ℋ2

, 

where 𝑋 ≠ 0, then 𝐾(ℋ1) ⊕ 0𝐻3⊕0ℋ2 ⊂ 𝐶
∗(𝑇). 

Proof. Arbitrarily choose two unit vectors 𝑒, 𝑓 ∈ ℋ1. It suffices to prove that 𝐶∗(𝑇 ) 
contains the operator 

𝑍 = [
𝑓⨂𝑒         
      0    
           0

]

ℋ1
ℋ3
ℋ2

. 

For convenience we denote 𝐷 = 𝐴⊕ 𝐶. Since 𝑋 ≠ 0, there exist nonzero vectors 𝑒0, 𝑓0 ∈
𝐻1 such that 𝑋𝑒0 = 𝑓0. On the other hand, noting that 𝐾(ℋ1) ⊕ 0𝐻1 ⊂ 𝐶

∗(𝐷), we can 

choose polynomials {𝑝𝑛(⋅,⋅)} and {𝑞𝑛(⋅,⋅)} in two free variables such that 

𝑝𝑛(𝐷
∗, 𝐷) ⟶ [𝑓 ⊗

𝑓0
‖𝑓0‖

2             

                               0

]
ℋ1
ℋ3

 

and 

𝑞𝑛(𝐷
∗, 𝐷)  ⟶ [

𝑒0⊗ 𝑒             
                           0

]
ℋ1
ℋ3
.  

It follows that 

𝑝𝑛(𝑇
∗, 𝑇)𝑍𝑞𝑛(𝑇

∗, 𝑇 ) ⟶ [
𝑓⨂𝑒             
          0        
                 0 

]

ℋ1
ℋ3
ℋ2

, 

which completes the proof.  

Lemma (5.1.16)[451]: Let 𝑇 ∈ 𝐵(ℋ). Assume that 𝑇 = ⊕𝑖=1
𝑛 𝑇𝑖 , where 𝑇𝑖 ∈ 𝐵(ℋ𝑖) and 

𝐾(ℋ𝑖) ⊂ 𝐶
∗(𝑇𝑖) for each 1 ≤ 𝑖 ≤ 𝑛 and 𝑇1 ⋬ 𝑇𝑗 whenever 𝑗 ≠ 1. If there exists 𝐾 =

⊕𝑖=1
𝑛 𝐾𝑖 ∈ 𝐶

∗(𝑇) ∩ 𝐾(ℋ) with 𝐾1 ≠ 0, then 

𝐾(ℋ1) ⊕ 0ℋ2⊕⋯⊕ 0ℋ𝑛 ⊂ 𝐶
∗(𝑇). 

Proof.  We shall proceed by induction on 𝑛. When 𝑛 = 1, the result is clear. 

Now assume that the result is true when 𝑛 ≤ 𝑘.We shall prove that the result holds when 

𝑛 = 𝑘 + 1. 

Since 𝑇1 ⋬ 𝑇𝑛, by Lemma (5.1.17)(i), 𝐶∗(𝑇) contains an operator 𝑋 = (⊕𝑖=1
𝑛−1 𝑋𝑖) ⊕ 0, 

where 𝑋𝑖 ∈ 𝐵(ℋ𝑖) for 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑋1 ≠ 0. Since ‖𝑋1‖ ∙  ‖𝐾1‖ ≠ 0, there exist 

nonzero vectors 𝑒𝑖 , 𝑓𝑖(𝑖 = 1, 2) such that 𝑋1𝑒1 = 𝑒2 and 𝐾1 𝑓1 = 𝑓2. 
   Noting that 𝑓1⊗ 𝑒2 ∈ 𝐶

∗(𝑇1) ∩ 𝐾(ℋ1), there exists a sequence {𝑝𝑛(∙,∙)}𝑛=1
∞  of  

polynomials in two free variables such that 𝑝𝑛(𝑇1
∗, 𝑇1) → 𝑓1⊗ 𝑒2; hence we have 

𝐾1 𝑝𝑛(𝑇1
∗, 𝑇1)𝑋1 → 𝐾1(𝑓1⊗ 𝑒2)𝑋1 ≠ 0. Then some 𝑛0 ∈ ℕ exists such that 

𝐾1𝑝𝑛0(𝑇1
∗, 𝑇1)𝑋1 ≠ 0. Set 𝐶𝑖 = 𝐾𝑖  𝑝𝑛0(𝑇𝑖

∗, 𝑇𝑖)𝑋𝑖 for each 1 ≤ 𝑖 ≤ 𝑛 − 1. Then 𝐶:=

𝐾𝑝𝑛0(𝑇
∗, 𝑇)𝑋 = (⊕𝑖=1

𝑛−1 𝐶𝑖) ⊕ 0 is a compact operator in 𝐶∗(𝑇) with 𝐶1 ≠ 0. 
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In particular, ⊕𝑖=1
𝑛−1 𝐶𝑖 is a compact operator in 𝐶∗(⊕𝑖=1

𝑛−1 𝑇𝑖) with 𝐶1 ≠ 0. By the induction 

hypothesis, we have 

𝐾(ℋ1) ⊕ 0ℋ2 ⊕⋯⊕ 0ℋ𝑛−1 ⊂ 𝐶
∗(⊕𝑖=1

𝑛−1 𝑇𝑖). 

Since we have proved that 𝐶∗(𝑇) contains 𝐶1⊕ (⊕𝑛=1
𝑛−1 𝐶𝑖) ⊕ 0 with 𝐶1 ≠ 0, the desired 

result follows immediately from Lemma (5.1.17). 

Given a set Γ, we write card Γ for the cardinality of Γ. For 𝑇 ∈ 𝐵(ℋ) and a cardinal 𝑛 with 

1 ≤ 𝑛 ≤ ℵ0, we let ℋ (𝑛) denote the direct sum of 𝑛 copies of ℋ and let 𝑇(𝑛) denote the 

direct sum of 𝑛 copies of  𝑇 , acting on ℋ(𝑛) (see [202, Definition 6.3]). For convenience, 

ℋ(ℵ0) and 𝑇(ℵ0) are denoted by ℋ(∞) and  𝑇(∞). 

Lemma (5.1.17)[451]: Let 𝑇 ∈ 𝐵(ℋ) and 𝑇 = ⊕𝑖∈𝛬 𝑇𝑖
(𝑛𝑖) , where 𝑇𝑖 ∈ 𝐵(ℋ𝑖) for each 𝑖 ∈

Λ . If there exists nonzero 𝐾 ∈ 𝐶∗(𝑇) ∩ 𝐾(ℋ) with = ⊕𝑖∈𝛬 𝐾𝑖
(𝑛𝑖) , then 𝐶∗(𝑇) contains 

nonzero 𝐶 ∈ 𝐶∗(𝑇) ∩ 𝐾(ℋ) with the form 𝐶 = ⊕𝑖∈𝛬 𝐶𝑖
(𝑛𝑖) satisfying 𝑐𝑎𝑟𝑑{𝑖 ∈ Λ: 𝐶𝑖 ≠

0} < ∞.  

Proof.  Without loss of generality, we may directly assume that 𝐾 is positive. Set 𝛿 =
‖𝐾‖

2
 

and define 

ℎ(𝑡) = {
0,                   0 ≤ 𝑡 < 𝛿,
𝑡 − 𝛿, 𝛿 ≤ 𝑡 ≤ ‖𝐾‖.

 

Then ℎ is a nonnegative, continuous function on [0, ‖𝐾‖]. Set 𝐶 = ℎ(𝐾) and 𝐶𝑖 = ℎ(𝐾𝑖) 

for each 𝑖 ∈ Λ . Then = ⊕𝑖∈Λ 𝐶𝑖
(𝑛𝑖) . It remains to show that 𝐶 satisfies all requirements. 

Noting that 𝐾 is compact and ℎ(0) = 0, we have 𝐶 ∈ 𝐶∗(𝑇) ∩ 𝐾(ℋ). Since 𝐾 is compact 

and 𝐾 ≠ 0, it immediately follows that  0 < 𝑐𝑎𝑟𝑑{𝑖 ∈ Λ: ‖𝐾𝑖‖ > 𝛿} < ∞. 

For each  , note that 𝐶𝑖 = ℎ(𝐾𝑖) ≠ 0 if and only if ‖𝐾𝑖‖ > 𝛿. Thus one can deduce that {𝑖 ∈
Λ: 𝐶𝑖 ≠ 0} is finite. This completes the proof.  

Corollary (5.1. 80 )[451]: Let 𝑇 ∈ 𝐵(ℋ) with 𝑇 = ⊕𝑖∈𝛬 𝑇𝑖 , where 𝑇𝑖 ∈ 𝐵(ℋ𝑖) is 

irreducible for each 𝑖 ∈ Λ  and 𝑇𝑖 ≇ 𝑇𝑗 whenever 𝑖 ≠ 𝑗 . If  𝐶∗(𝑇) ∩ 𝐾(ℋ) ≠ {0}, then there 

exists 𝑖0 ∈ Λ  such that 

𝐾(ℋ𝑖0) ⊕ 0𝐻𝑖0
⊥ ⊂ 𝐶∗(𝑇). 

Proof. By the hypothesis, we can choose a nonzero 𝐾 ∈ 𝐶∗(𝑇) ∩ 𝐾(ℋ). Since 𝑇 =
 ⊕𝑖∈𝛬 𝑇𝑖, 𝐾 can be written as 𝐾 = ⊕𝑖∈𝛬 𝐾𝑖  , where 𝐾𝑖 ∈ 𝐵(ℋ𝑖) for 𝑖 ∈ Λ . By Lemma 

(5.1.15), we may assume that Λ0: = {𝑖 ∈ Λ ∶ 𝐾𝑖 ≠ 0} is a finite set. 
Now fix an 𝑖0 ∈ Λ0. Set 𝐴 = 𝑇𝑖0 , 𝐶 = ⊕𝑖∈𝛬0\{𝑖0} 𝑇𝑖 and = ⊕𝑖∈𝛬\𝛬0 𝑇𝑖 . Then 𝑇 = 𝐴⊕ 𝐶 ⊕

𝐵. Denote ℋ𝐴 = ℋ𝑖0 ,  ℋ𝐶 = ⊕𝑖∈𝛬0\{𝑖0}ℋ𝑖  and  ℋ𝐵 = ⊕𝑖∈𝛬\𝛬0 ℋ𝑖. 

Claim 𝑇𝑖0 ⋬ 𝑇𝑖 for any 𝑖 ∈ Λ0 with 𝑖 ≠ 𝑖0. 

   In fact, if not, then there exists 𝑗 ∈ Λ0 with 𝑗 ≠ 𝑖0 such that 𝑇𝑖0 ≠ 𝑇𝑗. So there exists a ∗-

homomorphism 𝜌 of 𝐶∗(𝑇𝑗) onto 𝐶∗(𝑇𝑖0) such that (𝑇𝑗) = 𝑇𝑖0 . Then 𝜌 is an irreducible 

representation of 𝐶∗(𝑇𝑗). Noting that 𝐾𝑗 ∈ 𝐶
∗(𝑇𝑗) and 𝑇𝑗 is irreducible, we have 𝐾(ℋ𝑗) ⊂

𝐶∗(𝑇𝑗). On the other hand, since 𝐾𝑖0 ⊕𝐾𝑗 ∈ 𝐶
∗(𝑇𝑖0⊕𝑇𝑗), one can see that 𝐾𝑖0 = 𝜌(𝐾𝑗). It 

follows that 𝐾(ℋ𝑗) ⊈ 𝑘𝑒𝑟 𝜌. Then, by Lemma (5.1.14), 𝜌 is unitarily implemented, which 

implies that 𝑇𝑖0 ≅ 𝑇𝑗 , a contradiction. This proves the claim. 



 

159 

 

  Set 𝑆 = ⊕𝑖∈𝛬0 𝑇𝑖 . Then 𝑆 = 𝐴 ⊕ 𝐶 and, by the hypothesis, ⊕𝑖∈𝛬0 𝐾𝑖 is a compact 

operator in 𝐶∗(𝑆) with 𝐾1 ≠ 0. Since 𝑇𝑖0 ⋬ 𝑇𝑖 for any 𝑖 ∈ Λ0 with 𝑖 ≠ 𝑖0, it follows from 

Lemma (5.1.19) that 

𝐾(ℋ𝑖0)⊕ 0ℋ𝐶 ⊂ 𝐶
∗(𝑆). 

   Note that 𝐾 is an operator in 𝐶∗(𝑇) which can be written as 𝐾 = 𝑋⊕ 𝑌 ⊕ 0 with respect 

to the decomposition  ℋ = ℋ𝐴⊕ℋ𝐶 ⊕ℋ𝐵 , where 𝑋 ≠ 0. Hence the desired result 

follows immediately from Lemma (5.1.17). 

Corollary (5.1.09)[451]: Let 𝑇 ∈ 𝐵(ℋ) with 𝑇 = ⊕𝑖∈𝛬 𝑇𝑖
(𝑛𝑖) , where 𝑇𝑖 ∈ 𝐵(ℋ𝑖) is 

irreducible for each 𝑖 ∈ Λ  and 𝑇𝑖 ≇ 𝑇𝑗 whenever 𝑖 ≠ 𝑗 . If  𝐶∗(𝑇) ∩ 𝐾(ℋ) ≠ {0}, then there 

exists 𝑖 ∈ Λ such that  

{[𝑋
(𝑛𝑖)     
            0

]
ℋ𝑖
(𝑛𝑖)

ℋ⊖ℋ𝑖
(𝑛𝑖)
: 𝑋 ∈ 𝐾(ℋ𝑖)} ⊂ 𝐶

∗(𝑇) ∩ 𝐾(ℋ). 

Lemma (5.1.21)[451]: Let 𝑇 ∈ 𝐵(ℋ) with 𝑇 = 𝐴⊕ 𝐵, where 𝐴 ∈ 𝐵(ℋ1) and 𝐵 ∈ 𝐵(ℋ2). 
Assume that {𝐶𝑛}𝑛=1

∞  is a sequence of conjugations on ℋ such that 𝐶𝑛𝑇𝐶𝑛 → 𝑇
∗. If 𝑃 is the 

orthogonal projection of ℋ onto ℋ1 and (𝐼 − 𝑃)𝐶𝑛𝑃𝑥 → 0 for any 𝑥 ∈ ℋ, then 𝐴 is 𝑔-

normal. 

Proof.  For each 𝑛 ≥ 1, we may assume that 

𝐶𝑛 = [
𝐶1,1
𝑛 𝐶1,2

𝑛

𝐶2,1
𝑛 𝐶2,2

𝑛 ]
ℋ1
ℋ2
. 

By the hypothesis, we have 𝐶2,1
𝑛 → 0 for any 𝑥 ∈ ℋ1. 

Now fix a polynomial 𝑝(∙,∙) in two free variables. Assume that 

                  𝑝(𝑇∗, 𝑇) = [
𝑋 0
0 𝑌

]
ℋ1
ℋ2

  and  𝑝(𝑇, 𝑇∗) = [�̃� 0
0 �̃�

]
ℋ1
ℋ2

. 

Thus 𝑋 = 𝑝(𝐴∗, 𝐴) and �̃� = 𝑝(𝐴, 𝐴∗). For each 𝑛, a matrix multiplication shows that 

𝐶𝑛𝑝(𝑇
∗, 𝑇)𝐶𝑛 = [

𝐶1,1
𝑛 𝑋𝐶1,1

𝑛 + 𝐶1,2
𝑛 𝑌𝐶2,1

𝑛 ∗
∗ ∗

]
ℋ1
ℋ2
. 

Since 𝐶𝑛 𝑝(𝑇
∗, 𝑇)𝐶𝑛 → 𝑝(𝑇, 𝑇

∗), it follows that 

𝐶1,1
𝑛 𝑋𝐶1,1

𝑛 + 𝐶1,2
𝑛 𝑌𝐶2,1

𝑛 ⟶ �̃� 𝑎𝑠 𝑛 ⟶ ∞. 

For  𝑥 ∈ ℋ1, noting that ‖𝐶1,2
𝑛 𝑌𝐶2,1

𝑛 𝑥‖ ≤ ‖𝑌𝐶2,1
𝑛 𝑥‖ ⟶ 0, we have 𝐶1,1

𝑛 𝑋𝐶1,1
𝑛 𝑥 ⟶ �̃�𝑥. Thus 

‖�̃�‖ = lim
𝑛
‖𝐶1,1

𝑛 𝑋𝐶1,1
𝑛 𝑥‖ ≤ lim

𝑛
𝑠𝑢𝑝‖𝑋𝐶1,1

𝑛 𝑥‖ ≤ ‖𝑋‖ ∙  ‖𝑥‖. 

Thus we deduce that ‖�̃�‖ ≤ ‖𝑋‖, that is, ‖𝑝(𝐴, 𝐴∗)‖ ≤ ‖𝑝(𝐴∗, 𝐴)‖. By symmetry, we 

obtain ‖𝑝(𝐴, 𝐴∗)‖ = ‖𝑝(𝐴∗, 𝐴)‖, which implies that 𝐴 is 𝑔-normal.  

Lemma (5.1.20)[451]: [287, Proposition 2.4] If 𝑇 ∈ 𝐵(ℋ), then 𝑇 admits the 

decomposition 𝑇 = 𝑇0⨁(⊕𝑖∈Γ 𝑇𝑖), where 𝑇0 ∈ 𝐵(ℋ0) is completely reducible and 𝑇𝑖 ∈
𝐵(ℋ𝑖) is irreducible for all 𝑖 ∈ Γ. 

    Recall that an operator 𝑇 ∈ 𝐵(ℋ) is called completely reducible if 𝑇 has no nonzero 

minimal reducing subspace. Following Arveson [194], we let  ∑ 𝐴𝑖𝑖∈𝛬  denote the direct sum 

of a family {𝐴𝑖}𝑖∈𝛬 of  𝐶∗-algebras. Given a 𝐶∗-algebra 𝐴 of operators and 𝑛 with 1 ≤ 𝑛 ≤
ℵ0, we denote by 𝐴(𝑛) the 𝐶∗-algebra {𝐴(𝑛): 𝐴 ∈ 𝐴}. 
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Lemma (5.1.22)[451]: Let 𝑇 ∈ 𝐵(ℋ). If 𝐶∗(𝑇) ∩ 𝐾(ℋ) ≠ {0}, then 𝑇 is unitarily 

equivalent to an operator 𝐴 = 𝑇0⊕ (⊕𝑖∈𝛬 𝑇𝑖
(𝑛𝑖)), where 𝑇0 ∈ 𝐵(ℋ0), each 𝑇𝑖 ∈ 𝐵(ℋ𝑖) is 

irreducible with 𝐾(ℋ𝑖) ⊂ 𝐶
∗(𝑇𝑖) for  𝑖 ∈ Λ  and  𝑇𝑖 ≇ 𝑇𝑗 whenever 𝑖 ≠ 𝑗 ; moreover, 

𝐶∗(𝐴) ∩ 𝐾(ℋ̂) = 0ℋ0 ⊕∑ 𝐾(ℋ𝑖)
(𝑛𝑖)

𝑖∈𝛬 , where ℋ̂ = ℋ0⊕ (⊕𝑖∈𝛬ℋ𝑖
(𝑛𝑖)). 

Proof. The proof is omitted since it is a minor modification of [219, Corollary 5.5].  

The following result is a consequence of Voiculescu’s theorem [229]. (see [202, Theorem 

42.1] for a proof). 

Lemma (5.1.24)[451]: Each operator in 𝐵(ℋ) is approximately unitarily equivalent to a 

direct sum of irreducible operators. 

Corollary (5.1.24)[451]: Let 𝑇 ∈ 𝐵(ℋ). If 𝐶∗(𝑇) ∩ 𝐾(ℋ) = {0} and 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅, then 𝑇 is 

approximately unitarily equivalent to a direct sum of operators of the form 𝐴⊕ 𝐴𝑡, where 

𝐴 is irreducible. 

Proof Since 𝐶∗(𝑇) ∩ 𝐾(ℋ) = {0}, it follows from [202, Proposition 42.9] that 𝑇 ≅𝑎 𝑇 ⊕
𝑇 .By Theorem (5.1.8), 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ implies that 𝑇 ≅𝑎 𝑇

𝑡 .Hence we obtain 𝑇 ≅𝑎 𝑇 ⊕ 𝑇𝑡. 
On the other hand, by Lemma (5.1.27), there exists a family {𝐴𝑖}𝑖∈𝛬 of  irreducible operators 

such that 𝑇 ≅𝑎⊕𝑖∈𝛬 𝐴𝑖  . Therefore we obtain 

𝑇 ≅𝑎⊕𝑖∈𝛬 (𝐴𝑖⊕𝐴𝑖
𝑡), 

which completes the proof.  

We first give some auxiliary results. 

Lemma (5.1.25)[451]: Let 𝑃 ∈ 𝐵(ℋ) be a finite-rank projection and {𝐶𝑛}𝑛=1
∞  be a sequence 

of conjugations on ℋ so that {𝐶𝑛𝑃𝐶𝑛}𝑛=1
∞  converges to an operator 𝑄 ∈ 𝐵(ℋ). Then 𝑄 is a 

projection on ℋ with 𝑟𝑎𝑛𝑘 𝑃 = 𝑟𝑎𝑛𝑘 𝑄 and there exists a subsequence {𝑛𝑗}𝑛=1
∞  of ℕ such 

that for each 𝑥 ∈ 𝑟𝑎𝑛 𝑃 the sequence {𝐶𝑛𝑗𝑥}𝑗=1
∞  converges to a vector in 𝑟𝑎𝑛 𝑄. 

Proof. Since 𝑃 is a finite-rank projection, we may assume that 𝑟𝑎𝑛𝑘 𝑃 = 𝑚 and 𝑃 =
 ∑ 𝑒𝑖⊗ 𝑒𝑖
𝑚
𝑖=1  , where {𝑒𝑖}𝑖=1

∞  is an orthonormal subset of ℋ. First, it is evident that 𝑄 is a 

projection. By the hypothesis, 𝑙𝑖𝑚𝑛 𝐶𝑛𝑃𝐶𝑛 = 𝑄; by the lower semi-continuity of the rank 

in approximation (see [221, Proposition 1.12]), it follows that 

𝑟𝑎𝑛𝑘 𝑃 = lim
𝑛
𝑖𝑛𝑓 𝑟𝑎𝑛𝑘 𝐶𝑛𝑃𝐶𝑛 ≥ 𝑟𝑎𝑛𝑘 𝑄. 

  On the other hand, since 𝐶𝑛
2 = 𝐼 for any 𝑛, we have 𝑙𝑖𝑚𝑛 𝐶𝑛𝑄𝐶𝑛 = 𝑃; by the lower semi-

continuity of the rank in approximation again, we have 𝑟𝑎𝑛𝑘 𝑄 ≥ 𝑟𝑎𝑛𝑘 𝑃. So we obtain 

𝑟𝑎𝑛𝑘 𝑄 = 𝑟𝑎𝑛𝑘 𝑃. 

Now fix a 𝑘 with 1 ≤ 𝑘 ≤ 𝑚. By the hypothesis, 

                          ‖(𝐼 − 𝑄)𝐶𝑛𝑒𝑘‖ = 𝐶𝑛 𝑃𝑒𝑘 − 𝑄𝐶𝑛𝑒𝑘 → 0 𝑎𝑠 𝑛 → ∞.          (1) 

It follows that ‖𝑄𝐶𝑛𝑒𝑘‖ → 1. Since dim ran 𝑄 < ∞ and 𝑠𝑢𝑝𝑛‖𝑄𝐶𝑛𝑒𝑘‖ ≤ 1, there exists a 

subsequence {𝑛𝑗}𝑗=1
∞  of ℕ such that {𝑄𝐶𝑛𝑗𝑒𝑘}𝑗=1

∞  converges to a unit vector 𝑥𝑘 in ran 𝑄. In 

view of (1), it follows that 𝐶𝑛𝑗𝑃𝑒𝑘 = 𝐶𝑛𝑗𝑒𝑘 → 𝑥𝑘 as 𝑗 → ∞. 

In view of the above discussion, applying the diagonal process, we can find a subsequence, 

denoted by {𝑛𝑗}𝑗=1
∞  again, such that for each 1 ≤ 𝑘 ≤ 𝑚 we have 𝐶𝑛𝑗𝑒𝑘 → 𝑥𝑘  as 𝑗 →  ∞. 

Since {𝑒𝑘}𝑘=1
𝑚  is an ONB of ran 𝑃, it can be seen that {𝐶𝑛𝑗𝑥}𝑗=1

∞  converges to a vector in ran 

𝑄 for each 𝑥 ∈ 𝑟𝑎𝑛 𝑃.  

Definition (5.1.26)[451]: Let 𝑇 ∈ 𝐵(ℋ). Denote by ℋ𝑒  the closed linear span of the 

following set 
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{𝐾𝑥: 𝐾 ∈ 𝐶∗(𝑇) ∩ 𝐾(ℋ) 𝑎𝑛𝑑 𝑥 ∈ ℋ} 
and set ℋ𝑟 = ℋ ⊖ℋ𝑒. It is easy to see that ℋ𝑒 and ℋ𝑟  both reduce 𝑇. Denote 𝑇𝑒 = 𝑇 |ℋ𝑒 

and 𝑇𝑟 = 𝑇 |ℋ𝑟. 

The proof of the following lemma follows readily from Lemma (5.1.24). 

Lemma (5.1.27)[451]: Let 𝑇 ∈ 𝐵(ℋ). Then 𝐶∗(𝑇𝑒) ∩ 𝐾(ℋ𝑒) is non-degenerate and 

𝐶∗(𝑇) ∩ 𝐾(ℋ) = {[
 0 0
0 𝐾

]
ℋ𝑟
ℋ𝑒
: 𝐾 ∈ 𝐶∗(𝑇𝑒) ∩ 𝐾(ℋ𝑒)} . 

Theorem (5.1. 82 )[451]: If  𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅, then 𝑇𝑒 is a 𝐶𝑆𝑂. 

Proof. We may directly assume that 

𝑇 = 𝑇0⊕ (⊕𝑖∈𝛬  𝑇𝑖
(𝑛𝑖)) , 

where 𝑇0 ∈ 𝐵(ℋ0) and each 𝑇𝑖 ∈ 𝐵(ℋ𝑖) is irreducible for 𝑖 ∈ Λ. Moreover, we assume that 

                               𝐶∗(𝑇) ∩ 𝐾(ℋ) = 0𝐻0⊕∑ 𝐾(ℋ𝑖)
(𝑛𝑖)

𝑖∈𝛬 .                    (2) 

It is obvious that 𝑛𝑖 < ∞ for all 𝑖 ∈ 𝛬. Note that 𝑇𝑒 = ⊕𝑖∈𝛬 𝑇𝑖
(𝑛𝑖) and 𝐻𝑒 =⊕𝑖∈𝛬ℋ𝑖

(𝑛𝑖). 

   Since 𝑇 ∈ 𝑆(𝐻)̅̅ ̅̅ ̅̅ ̅, it follows from [487, Lemma 6] that there is a sequence {𝐶𝑛}𝑛=1
∞  of 

conjugations on ℋ such that 𝐶𝑛𝑇𝐶𝑛 → 𝑇
∗. Then it is easy to check that 𝐶𝑛 𝑝(𝑇

∗, 𝑇)𝐶𝑛 →
𝑝(𝑇, 𝑇∗) for each polynomial 𝑝(∙,∙) in two free variables. So 𝑙𝑖𝑚𝑛 𝐶𝑛𝑋𝐶𝑛 exists for each 

𝑋 ∈ 𝐶∗(𝑇 ). Define 𝜑(𝑋) = 𝑙𝑖𝑚𝑛 𝐶𝑛 𝑋
∗𝐶𝑛 for 𝑋 ∈ 𝐶∗(𝑇 ). Then 𝜑 is an anti-automorphism 

of 𝐶∗(𝑇) and 𝜑−1 = 𝜑.  

   In view of (2), we can choose a sequence {𝑃𝑛}𝑛=1
∞  of finite-rank projections in 𝐶∗(𝑇) ∩

𝐾(ℋ) with 𝑃𝑚 𝑃𝑙 = 0 whenever 𝑚 ≠ 𝑙 such that ⊕𝑛=1
∞ 𝑟𝑎𝑛 𝑃𝑛 = ℋ𝑒. For each 𝑘, denote 

𝑄𝑘 = 𝜙(𝑃𝑘), that is, 𝑄𝑘 = 𝑙𝑖𝑚𝑛 𝐶𝑛𝑃𝑘𝐶𝑛. By Lemma (5.1.27), each 𝑄𝑘 is a projection in 

𝐶∗(𝑇) with  𝑄𝑘 = 𝑟𝑎𝑛𝑘 𝑃𝑘 , and there is a subsequence {𝑛𝑗(𝑘)}𝑗=1
∞  of ℕ such that for each 

𝑥 ∈ 𝑟𝑎𝑛 𝑃𝑘 the sequence {𝐶𝑛𝑗(𝑘)𝑥}𝑗=1
∞  converges to a vector in 𝑟𝑎𝑛 𝑄𝑘  . Applying the 

diagonal process, we can choose a subsequence {𝑛𝑗} of ℕ such that for each 𝑥 ∈

 ∪𝑘=1
∞ 𝑟𝑎𝑛 𝑃𝑘 the sequence {𝐶𝑛𝑗𝑥}𝑗=1

∞  converges to a vector in ∪𝑘=1
∞ 𝑟𝑎𝑛 𝑄𝑘. 

    Noting that 𝑄𝑘 ∈ 𝐶
∗(𝑇) ∩ 𝐾(ℋ) and 𝑟𝑎𝑛 𝑄𝑘 ⊂ ℋ𝑒, we have found a subsequence {𝑛𝑗} 

of ℕ such that 𝑙𝑖𝑚 𝑗 𝐶𝑛𝑗𝑥 ∈ ℋ𝑒 for each  𝑥 ∈ ∪𝑘=1
∞ 𝑟𝑎𝑛 𝑃𝑘. Since each 𝐶𝑛𝑗 is isometric, one 

can easily see that 𝑙𝑖𝑚𝑗  𝐶𝑛𝑗𝑥 exists for each 𝑥 ∈ ⊕𝑘=1
∞ 𝑟𝑎𝑛 𝑃𝑘 = ℋ𝑒 and  𝑙𝑖𝑚𝑗  𝐶𝑛𝑗𝑥 ∈ ℋ𝑒 . 

For 𝑥 ∈ ℋ𝑒 , define 𝐸𝑥 = 𝑙𝑖𝑚𝑗  𝐶𝑛𝑗𝑥. Then, by the discussion above, the map 𝐸:ℋ𝑒 → ℋ𝑒 

is well defined. Since each 𝐶𝑛𝑗 is a conjugation, it is obvious that 𝐸 is isometric and 

conjugate-linear.We claim that 𝐸 is indeed a conjugation on ℋ𝑒. For fixed 𝑥 ∈ ℋ𝑒 , it 

suffices to check that 𝐸2𝑥 = 𝑥. In fact, 

‖𝐸2𝑥 − 𝑥‖ =  lim
𝑗
‖𝐶𝑛𝑗𝐸𝑥 − 𝑥‖ = lim𝑗

‖𝐶𝑛𝑗(𝐸𝑥 − 𝐶𝑛𝑗𝑥)‖ 

                                                  = lim
𝑗
‖𝐸𝑥 − 𝐶𝑛𝑗𝑥‖ = 0. 

Thus 𝐸 is a conjugation. 

     Now it remains to check that 𝐸𝑇𝑒 = 𝑇𝑒
∗𝐸. Given a vector 𝑦 ∈ ℋ𝑒 , we have 

𝐸𝑇𝑒𝑦 = lim
𝑗
𝐶𝑛𝑗𝑇𝑒𝑦 = lim𝑗

𝐶𝑛𝑗𝑇𝑦 

              = lim
𝑗
𝑇∗𝐶𝑛𝑗𝑦 = 𝑇

∗(lim
𝑗
𝐶𝑛𝑗𝑦) 

                                                               = 𝑇∗𝐸𝑦 = 𝑇𝑒
∗𝐸𝑦. 
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This shows that 𝐸𝑇𝑒 = 𝑇𝑒
∗𝐸. Therefore 𝑇𝑒 is a 𝐶𝑆𝑂.  

Corollary (5.1.29)[451]: Let 𝑇 ∈ 𝐵(ℋ). If  𝑇 = 𝑇𝑒, then 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ if and only if 𝑇 ∈
𝑆(ℋ). 
Now we can give a short proof of the following result which was first proved in [219, 

Theorem 2.8]. 

Corollary (5.1.31)[451]: Let 𝑇 ∈ 𝐵(ℋ) be essentially normal. Then 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ if and only 

if  𝑇 ∈ 𝑆(ℋ). 
Proof. It suffices to prove the necessity. Note that 𝑇 = 𝑇𝑟⊕𝑇𝑒 with respect to the 

decomposition ℋ = ℋ𝑟⊕ℋ𝑒 . Since 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅, it follows from Theorem (5.1.41) that 𝑇𝑒 
is a 𝐶𝑆𝑂. Note that 𝑇∗𝑇 − 𝑇𝑇∗ = (𝑇𝑟

∗ 𝑇𝑟 − 𝑇𝑟 𝑇𝑟
∗) ⊕ (𝑇𝑒

∗𝑇𝑒 − 𝑇𝑒𝑇𝑒
∗) is compact. Thus 

𝑟𝑎𝑛 (𝑇∗𝑇 − 𝑇𝑇∗) ⊂ ℋ𝑒, which implies that 𝑇𝑟
∗ 𝑇𝑟 − 𝑇𝑟𝑇𝑟

∗ = 0. Then 𝑇𝑟 is normal; 

furthermore, 𝑇 = 𝑇𝑟⊕𝑇𝑒 is a 𝐶𝑆𝑂. 

   Let 𝑆 denote the unilateral shift on ℋ. Recall that a Foguel operator is an operator on 

ℋ⊕ℋ of the form 

𝑅𝑇 = [
𝑆∗ 𝑇
0 𝑆

] , 

where 𝑇 ∈ 𝐵(ℋ). More generally, we refer to an operator of the form 

𝑅𝑇,𝑛 = [
(𝑆∗)𝑛 𝑇

0 𝑆𝑛
] , 

as a Foguel operator of order 𝑛. 

Corollary (5.1.30)[451]: Let 𝑅𝑇,𝑛 be a Foguel operator of order 𝑛, where 𝑇 ∈ 𝐵(ℋ) and 

𝑛 ∈ ℕ. Then 𝑅𝑇,𝑛 is a norm limit of 𝐶𝑆𝑂𝑠 if and only if 𝑅𝑇,𝑛 is a 𝐶𝑆𝑂. 

Proof. By Corollary (5.1.29), it suffices to prove that (𝑅𝑇,𝑛)𝑒 = 𝑅𝑇,𝑛, that is, ℋ(2) =

(𝐻(2))𝑒. 

For convenience, we write 

𝑅𝑇,𝑛 = [
(𝑆∗)𝑛 𝑇

0 𝑆𝑛
]
ℋ1
ℋ2
, 

where ℋ1 = ℋ2 = ℋ. Fix an 𝑚 ∈ ℕ. Denote 𝐴 = 𝑅𝑇,𝑛
𝑚 . Since 𝑅𝑇,𝑛 is a Fredholm operator, 

it follows that 𝐴 and 𝐴∗𝐴 are both Fredholm and 𝑘𝑒𝑟 𝐴 = 𝑘𝑒𝑟 𝐴∗𝐴. Since 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐴∗𝐴 <
∞, one can see that 𝑃𝑘𝑒𝑟 𝐴 = 𝑃𝑘𝑒𝑟 𝐴

∗𝐴 ∈ 𝐶∗(𝐴∗𝐴) ⊂ 𝐶∗(𝑅𝑇,𝑛). 

Then 𝑃𝑘𝑒𝑟𝐴 ∈ [𝐶
∗(𝑅𝑇,𝑛) ∩ 𝐾(ℋ

(2))]. Noting that ∨𝑚≥1 𝑘𝑒𝑟 𝑅𝑇,𝑛
𝑚 = ℋ1, we obtain ℋ1 ⊂

(ℋ(2))𝑒. 

Applying the above argument to 𝑅𝑇,𝑛
∗ , one can prove that ℋ2 ⊂ ℋ𝑒

(2)
. Thus ℋ(2) =

(ℋ(2))𝑒. This completes the proof.  
Lemma (5.1.32)[451]: Let 𝑇 ∈ 𝐵(ℋ). If 𝑇 can be written as a direct sum of some 

irreducible operators, then there exists no nonzero reducing subspace 𝑀 of  𝑇 such that 𝑇 |𝑀 

is completely reducible. 

Proof. Since 𝑇 can be written as a direct sum of some irreducible operators, it follows from 

[499, Theorem 3.1] that the commutant algebra {𝑇, 𝑇∗}′ is ∗-isomorphic to  ∑ 𝑀𝑛𝑖(ℂ)𝑖∈𝛬 , 

where 1 ≤ 𝑛𝑖 ≤ ∞ for each 𝑖 ∈ 𝛬. Thus each nonzero projection 𝑃 ∈ {𝑇, 𝑇∗}′ admits a 

nonzero minimal subprojection. Then each nonzero reducing reducing subspace 𝑀 of 𝑇 

contains a nonzero minimal reducing subspace of  𝑇. This completes the proof.  
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Proposition (5.1.34)[451]: If 𝑇 ∈ 𝑆(ℋ) and 𝑇 = 𝑇𝑒, then 𝑇 can be written as a direct sum 

of irreducible 𝐶𝑆𝑂𝑠 and operators of the form 𝐴⊕ 𝐴𝑡 , where 𝐴 is irreducible and not a 

𝐶𝑆𝑂. 

Proof. By [449, Theorem 1.6], 𝑇 can be written as a direct sum of completely reducible 

𝐶𝑆𝑂𝑠, irreducible 𝐶𝑆𝑂𝑠 and operators of the form 𝐴⊕ 𝐴𝑡 , where 𝐴 is irreducible and not 

a 𝐶𝑆𝑂. In view of Lemma (5.1.32), it suffices to prove that 𝑇 is a direct sum of irreducible 

operators. Since 𝑇 = 𝑇𝑒, by Lemma (5.1.22), 𝑇 can be written as a direct sum of irreducible 

operators. This completes the proof. 

Lemma (5.1.34)[451]: [497, page 793] If  𝑇 ∈ 𝐵(ℋ), then 𝑇 ⊕ 𝑇𝑡 is complex symmetric. 

Now we can give the Proof of Theorem (5.1.77). 

Theorem (5.1.45)[451]: Let 𝑇 ∈ 𝐵(ℋ). Then the following are equivalent: 

(i)  𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅; 
(ii)  𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅𝑐; 
(iii)  ∃ 𝑅 ∈ 𝑆(ℋ) such that 𝑇 ≅𝑎 𝑅; 

(iv)  𝑇 is approximately unitarily equivalent to an operator which can be written as a 

direct sum of irreducible 𝐶𝑆𝑂𝑠 and operators of the form 𝐴⊕ 𝐴𝑡 , where 𝐴 is 

irreducible and not a 𝐶𝑆𝑂. 

Proof of Theorem (5.1.45) The implication “(iv)⟹(iii)” follows from Lemma (5.1.34). By 

definitions, the implications “(iii)⟹(ii)⟹(i)” are obvious. It suffices to prove “(i) ⟹ (iv)”. 

“(i)⟹(iv)” 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ implies that any operator approximately unitarily equivalent to 𝑇 lies 

in 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅. Thus, in view of Lemma (5.1.23), we may directly assume that 𝑇 is a direct sum 

of irreducible operators. 

Note that 𝑇 = 𝑇𝑟⊕𝑇𝑒 with respect to the decomposition ℋ = ℋ𝑟⊕ℋ𝑒 . If 𝑇𝑒 or 𝑇𝑟 is 

absent, then, by Corollary (5.1.24) and Proposition (5.1.33), the result is clear. So we may 

assume that neither 𝑇𝑒 nor 𝑇𝑟 is absent. By Theorem (5.1.28), 𝑇𝑒 is a 𝐶𝑆𝑂. 

By Lemma (5.1.21), we may also assume that 𝑇𝑟 = 𝑇0⨁(⊕𝑖∈Λ 𝑇𝑖
(𝑛𝑖)), where 𝑇0 is 

completely reducible, each 𝑇𝑖 ∈ 𝐵(ℋ𝑖) is irreducible for 𝑖 ∈ Λ and 𝑇𝑖 ≇ 𝑇𝑗 whenever 𝑖 ≠ 𝑗 . 

Since 𝑇 is a direct sum of irreducible operators, it follows from Lemma (5.1.32) that 𝑇0 is 

absent. Thus  ℋ𝑟 = ⊕𝑖∈𝛬 ℋ𝑖
(𝑛𝑖) . Hence we have 

𝑇 = 𝑇𝑟⊕𝑇𝑒 = (⊕𝑖∈𝛬 𝑇𝑖
(𝑛𝑖)) ⊕ 𝑇𝑒 

with respect to the decomposition  ℋ = (⊕𝑖∈𝛬ℋ𝑖
(𝑛𝑖))⊕ℋ𝑒. 

Denote 𝛬2 = {𝑖 ∈ Λ ∶ 𝑇𝑖 ⊲ 𝑇𝑒} and Λ1 = Λ\Λ2. Set 

                                𝐴 =⊕𝑖∈𝛬1 𝑇𝑖
(𝑛𝑖) and 𝐵 =⊕𝑖∈𝛬2 𝑇𝑖

(𝑛𝑖). 

Denote ℋ𝐴 =⊕𝑖∈𝛬1
ℋ𝑖
(𝑛𝑖) and ℋ𝐵 = ⊕𝑖∈𝛬2

ℋ𝑖
(𝑛𝑖). Then 𝐴 ∈ 𝐵(ℋ𝐴) and 𝐵 ∈ 𝐵(ℋ𝐵). 

Moreover 𝑇𝑟 = 𝐴⊕ 𝐵 and 𝑇 = 𝐴⊕ 𝐵⊕ 𝑇𝑒. 
We give the rest of the proof by proving three claims. 

Claim (5.1.36)[451]: 𝐵 ⊕ 𝑇𝑒 ≅𝑎 𝑇𝑒. 

Since 𝑇𝑗 ⊲ 𝑇𝑒 for all 𝑗 ∈ Λ2 and  𝐵 =⊕𝑖∈𝛬2 𝑇𝑗
(𝑛𝑗)

, it follows that 𝐵 ⊲ 𝑇𝑒 and there exists a 

unital ∗-homomorphism 𝜌 of 𝐶∗(𝑇𝑒) into 𝐶∗(𝐵) such that 𝜌(𝑇𝑒) = 𝐵 and 𝜌 annihilates 

𝐶∗(𝑇𝑒) ∩ 𝐾(ℋ𝑒). Then, by Lemma (5.1.15), we obtain 𝑖𝑑 ≅𝑎 𝑖𝑑 ⊕ 𝜌, where 𝑖𝑑 is the 

identity representation of 𝐶∗(𝑇𝑒). It follows that 𝑇𝑒 ≅𝑎 𝑇𝑒⊕𝐵. 
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Claim (5.1.37)[451]: 𝐶∗(𝐴) ∩ 𝐾(ℋ𝐴) = {0}. 
For a proof  by contradiction, we assume that 𝐶∗(𝐴) ∩ 𝐾(ℋ𝐴) ≠ {0}. In view of 

Corollary (5.1.21), this implies that there exists 𝑗 ∈ Λ1 such that 

{[ 𝑋
(𝑛𝑗)      

               0
]

ℋ
𝑗

(𝑛𝑗)

ℋ𝐴⊖ℋ
𝑗

(𝑛𝑗)
: 𝑋 ∈ 𝐾(ℋ𝑗)} ⊂ 𝐶

∗(𝐴).  

Since 𝑇𝑗 ⋪ 𝑇𝑒, by Lemma (5.1.13), we have 𝑇𝑗 ⋪ 𝐵 ⊕ 𝑇𝑒. Now there are two possible cases. 

Case  𝑇𝑗 ⋬ 𝐵 ⊕ 𝑇𝑒. 

In this case, it follows from Lemma (5.1.16) (i) that there exists 𝑍 ∈ 𝐶∗(𝑇 ) with 

𝑍 = [
𝑋(𝑛𝑗)                

          𝑌         
                   0

]

ℋ
𝑗

(𝑛𝑗)

ℋ𝐴⊖ℋ
𝑗

(𝑛𝑗)

ℋ𝐵⊕ℋ𝑒

 

and 𝑋 ≠ 0. By Lemma (5.1.17), it follows that 𝐾(ℋ𝑗)
(𝑛𝑗)⊕0⊕ 0 ⊂ 𝐶∗(𝑇) ∩ 𝐾(ℋ) and 

ℋ
𝑗

(𝑛𝑗)
⊂ ℋ𝑒, which is absurd. 

Case  𝑇𝑗 ⊴ 𝐵 ⊕ 𝑇𝑒 and 𝑇𝑗 ⋪ 𝐵 ⊕ 𝑇𝑒. 

In this case, it follows from Lemma (5.1.16) (ii) that there exists 𝑍 ∈ 𝐶∗(𝑇) with 

𝑍 = [
𝑋(𝑛𝑗)                

          𝑌         
                   𝐾

]

ℋ
𝑗

(𝑛𝑗)

ℋ𝐴⊖ℋ
𝑗

(𝑛𝑗)

ℋ𝐵⊕ℋ𝑒

, 

where 𝑋 ≠ 0 and 𝐾 is compact acting on ℋ𝐵⊕ℋ𝑒 . Since 𝐵 ⊲ 𝑇𝑒, it follows from Lemma 

(5.1.12) that 𝐾 has the form 

𝐾 = [
0       
       𝐾

]
ℋ𝐵
ℋ𝑒
, 

where 𝐾 ∈ 𝐶∗(𝑇𝑒) ∩ 𝐾(ℋ𝑒). Then, by Lemma (5.1.29), 𝐶∗(𝑇) contains the element 

[
0               
       0       
               𝐾

]

ℋ𝐴
ℋ𝐵
ℋ𝑒

= [
0                      

          0         
                   𝐾

]

ℋ
𝑗

(𝑛𝑗)

ℋ𝐴 ⊖ℋ
𝑗

(𝑛𝑗)

ℋ𝐵 ⊕ℋ𝑒

. 

Therefore we deduce that 𝐶∗(𝑇) contains 

[
𝑋(𝑛𝑗)                

          𝑌         
                   0

] . 

One can prove that 𝐾(ℋ
𝑗

(𝑛𝑗)) ⊕ 0⊕ 0 ∈ 𝐶∗(𝑇) ∩ 𝐾(ℋ), a contradiction. 

Denote 𝐷 = 𝐴⊕ 𝑇𝑒 and  ℋ𝐷 = ℋ𝐴⊕ℋ𝑒 . Then 𝐷 ∈ 𝐵(ℋ𝐷). By Claim (5.1.38), 𝐶∗(𝐴) ∩
𝐾(ℋ𝐴) = {0}. One can see that 𝐷𝑒 = 𝑇𝑒. Denote by 𝑃𝑒 the orthogonal projection of  ℋ𝐷 

onto  ℋ𝑒. By Claim (5.1.37), we have 𝑇 = 𝐴⊕ 𝐵⊕ 𝑇𝑒 ≅𝑎 𝐴 ⊕ 𝑇𝑒 = 𝐷. 

So 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ implies that 𝐷 a norm limit of  𝐶𝑆𝑂𝑠. Hence we can choose a sequence {𝐶𝑛} 
of conjugations on ℋ𝐷 such that 𝐶𝑛𝐷𝐶𝑛 → 𝐷

∗. For 𝑅 ∈ 𝐶∗(𝐷), define 𝜑(𝑅) =
𝑙𝑖𝑚𝑛 𝐶𝑛 𝑅

∗𝐶𝑛. Then 𝜑 is an anti-automorphism of 𝐶∗(𝐷) and  𝜑−1 = 𝜑. By Lemma 
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(5.1.27), 𝑟𝑎𝑛𝑘 𝜑(𝑋) = 𝑟𝑎𝑛𝑘 𝑋 for all 𝑋 ∈ 𝐶∗(𝐷). So 𝜑(𝐶∗(𝐷) ∩ 𝐾(ℋ𝐷)) = 𝐶
∗(𝐷) ∩

𝐾(ℋ𝐷). 

    Since  ℋ𝐴 = ⊕𝑖∈𝛬1 ℋ𝑖
(𝑛𝑖), by Lemma (5.1.22), it suffices to prove for each 𝑖 ∈ 𝛬1 and 

each 𝑥 ∈ ℋ𝑖
(𝑛𝑖) that the sequence {𝑃𝑒𝐶𝑛𝑥} converges to 0. 

   Now fix an 𝑖0 ∈ 𝛬1. For convenience we may directly assume that 𝑛𝑖0 = 1. The proof for 

𝑛𝑖0 > 1 follows easily. Arbitrarily choose a vector 𝑓 ∈ ℋ𝑖0  . It suffices to prove that 

𝑃𝑒𝐶𝑛𝑓 → 0. 

Since 𝑇𝑖0 ⋪ 𝑇𝑒, using a similar argument as in the proof of Claim (5.1.38), one can check 

that 𝐶∗(𝐷) contains an operator 𝑍 of the form 

𝑍 = [
𝑋                  
          𝑌         
                   0

]

ℋ𝑖0
ℋ𝐴⊖ℋ𝑖0
ℋ𝑒

, 

where 𝑋 ≠ 0. Then there exist nonzero vectors 𝑔0 , 𝑓0 ∈ ℋ𝑖0  such that 𝑋𝑔0 = 𝑓0. Note that 

𝑇𝑖0  is irreducible. By the well-known Double Commutant Theorem, we can find a sequence 

{𝑝𝑘(∙,∙)} of polynomials in two free variables such that 

                                  𝑝𝑘(𝑇𝑖0
∗ , 𝑇𝑖0)

𝑆𝑂𝑇
→   

𝑓⊗𝑓0

‖𝑓0‖
2
 as 𝑘 → ∞.                                (3) 

Set 𝑍 = 𝜑(𝑍). For any  𝐾 ∈ 𝐶∗(𝐷) ∩ 𝐾(ℋ𝐷), since 𝐾(𝐼 − 𝑃𝑒) = 0, it follows that 𝐾 𝑍 = 0 

and 𝑍 𝜑(𝐾) = 𝜑(𝐾 𝑍) = 0. Noting that 𝜑(𝐶∗(𝐷) ∩ 𝐾(ℋ𝐷)) =  𝐶
∗(𝐷) ∩ 𝐾(ℋ𝐷), we 

obtain 𝑍𝑃𝑒 = 0. Thus 𝑍 admits the following matrix representation 

𝑍 = [
�̃�                  
          �̃�         
                   0

]

ℋ𝑖0
ℋ𝐴⊖ℋ𝑖0
ℋ𝑒

. 

For any 𝑘, we have 

lim
𝑛
𝐶𝑛 𝑝𝑘(𝐷

∗, 𝐷)𝑍𝐶𝑛 = lim
𝑛
(𝐶𝑛 𝑝𝑘(𝐷

∗, 𝐷)𝐶𝑛) ∙ (𝐶𝑛𝑍𝐶𝑛) 

                                                               = 𝑝𝑘(𝐷, 𝐷
∗)𝜑(𝑍∗) 

             = 𝑝𝑘(𝐷, 𝐷
∗)𝜑(𝑍)∗ 

            = 𝑝𝑘(𝐷, 𝐷
∗)(𝑍)∗. 

For each 𝑘, noting that 𝑃𝑒𝑝𝑘(𝐷,𝐷
∗)(𝑍)∗ = 0, we obtain 

‖𝑃𝑒𝐶𝑛 𝑝𝑘(𝐷
∗, 𝐷)𝑍‖ = ‖𝑃𝑒𝐶𝑛 𝑝𝑘(𝐷

∗, 𝐷)𝑍𝐶𝑛‖ ⟶ 0  
as 𝑛 → ∞. It follows that 

     lim
𝑛

𝑠𝑢𝑝‖𝑃𝑒𝐶𝑛 𝑓‖ = lim
𝑛
𝑠𝑢𝑝‖𝑃𝑒𝐶𝑛𝑓 − 𝑃𝑒𝐶𝑛 𝑝𝑘(𝐷

∗, 𝐷)𝑍𝑔0‖  

≤ ‖𝑓 − 𝑝𝑘(𝐷
∗, 𝐷) 𝑓0‖ 

= ‖𝑓 − 𝑝𝑘(𝑇𝑖0
∗ , 𝑇𝑖0) 𝑓0‖ 

for any 𝑘 ≥ 1. In view of (3), one can deduce that ‖𝑃𝑒𝐶𝑛 𝑓‖ → 0. 

It follows from Theorem (5.1.8) that 𝐴 is a norm limit of 𝐶𝑆𝑂𝑠. By Corollary (5.1.26), 𝐴 is 

approximately unitarily equivalent to an operator which can be written as a direct sum of 

irreducible 𝐶𝑆𝑂𝑠 and operators of the form 𝑅⊕ 𝑅𝑡 , where 𝑅 is irreducible and not a 𝐶𝑆𝑂. 

Note that 𝑇𝑒 is a 𝐶𝑆𝑂 and 𝐶∗(𝑇𝑒) ∩ 𝐾(ℋ𝑒) is non-degenerate. In view of Proposition 

(5.1.35) , 𝑇𝑒 can be written as a direct sum of irreducible 𝐶𝑆𝑂𝑠 and operators of the form 

𝑅 ⊕ 𝑅𝑡 , where 𝑅 is irreducible and not a 𝐶𝑆𝑂. Noting that 

𝑇 = 𝐴⊕ 𝐵⊕ 𝑇𝑒 ≅𝑎 𝐴⊕ 𝑇𝑒, 
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we conclude the proof. 

We first give some auxiliary results. 

Proposition (5.1.38)[451]: Let 𝑇 ∈ 𝐵(ℋ) have the form 

𝑇 = [
𝐴 0
0 0

]
ℋ1
ℋ2

 

relative to the decomposition ℋ = ℋ1⊕ℋ2, where 𝐴 ∈ 𝐵(ℋ1) satisfies 𝐶∗(𝐴) ∩
𝐾(ℋ1) = {0} and  𝑟𝑎𝑛 𝐴 + 𝑟𝑎𝑛 𝐴∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ℋ1. Then 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ if and only if 𝐴 is a norm limit 

of 𝐶𝑆𝑂𝑠. 
Proof. It is obvious that we need only prove the necessity. Since 𝐶∗(𝐴) ∩ 𝐾(ℋ1) = {0}, by 

Theorem (5.1.8), it suffices to prove that 𝐴 is 𝑔-normal. 

Since 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅, we can choose conjugations {𝐶𝑛}𝑛=1
∞  on ℋ such that 𝐶𝑛𝑇𝐶𝑛 → 𝑇

∗. For 

each 𝑛 ≥ 1, assume that 

𝐶𝑛 = [
𝐶1,1
𝑛 𝐶1,2

𝑛

𝐶2,1
𝑛 𝐶2,2

𝑛 ]
ℋ1
ℋ2
. 

By Lemma (5.1.22), we need only verify for each 𝑥 ∈ ℋ1 that 𝐶2,1
𝑛 𝑥 → 0. 

𝐴 direct matrix calculation shows that 

                      𝐶𝑛𝑇 − 𝑇
∗𝐶𝑛 = [

∗ ∗
𝐶2,1
𝑛 𝐴 ∗] and 𝐶𝑛𝑇

∗ − 𝑇𝐶𝑛 = [
∗ ∗

𝐶2,1
𝑛 𝐴∗ ∗].  

Since 𝐶𝑛𝑇 − 𝑇
∗𝐶𝑛 → 0  and  𝐶𝑛𝑇

∗ − 𝑇𝐶𝑛 → 0, we deduce that 𝐶2,1
𝑛 𝐴𝑥 → 0 and 𝐶2,1

𝑛 𝐴∗𝑥 →

0 for each 𝑥 ∈ ℋ1. Noting that 𝑟𝑎𝑛 𝐴 + 𝑟𝑎𝑛 𝐴∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ℋ1 and  𝑠𝑢𝑝𝑛‖𝐶2,1
𝑛 ‖ ≤ 1, one can see 

that 𝐶2,1
𝑛  𝑦 → 0 for each 𝑦 ∈ ℋ1. This completes the proof. 

 Lemma (5.1.49)[451]: Let 𝑇 ∈ 𝐵(ℋ) have the form 

𝑇 = [
𝐴 0
0 0

]
ℋ1
ℋ2

 

relative to the decomposition ℋ = ℋ1⊕ℋ2, where 𝐴 ∈ 𝐵(ℋ1) and 

𝑟𝑎𝑛 𝐴 + 𝑟𝑎𝑛 𝐴∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ℋ1. 
If 𝐶∗(𝑇) ∩ 𝐾(ℋ) = {0}, then 𝐶∗(𝐴) ∩ 𝐾(ℋ1) = {0}. 
Proof. For a proof by contradiction, we assume that 𝐶∗(𝐴) ∩ 𝐾(ℋ1)  ≠ {0}. Then, by 

Lemma (5.1.24), we may directly assume that 

𝐴 = [
𝐴1
(𝑛)

0

0 𝐴2
]
ℋ1,1
(𝑛)

ℋ1,2
, 

where ℋ1 = ℋ1,1
(𝑛)
⊕ℋ1,2,  𝐴𝑖 ∈ 𝐵(ℋ1,𝑖)(𝑖 = 1, 2), 𝑛 ∈ ℕ and 

𝐾(ℋ1,1)
(𝑛)⊕0𝐻1,2 ⊂ 𝐶

∗(𝐴). 

For convenience, we may directly assume that 𝑛 = 1. 

Case (5.1.41)[451]: ‖𝑝(𝐴1
∗ , 𝐴1)‖ ≤ |𝑝(0, 0)| for any polynomial 𝑝(∙,∙) in two free variables. 

In this case, it follows readily that ‖𝐴1
∗𝐴1‖ ≤ 0. So  𝐴1 = 0, contradicting the fact that 

𝑟𝑎𝑛 𝐴 + 𝑟𝑎𝑛 𝐴∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ℋ1. 

Case (5.1.40)[451]: There exists a polynomial 𝑝(∙,∙) in two free variables such that 

‖𝑝(𝐴1
∗ , 𝐴1)‖ >  |𝑝(0, 0)|. 

In this case, by Lemma (5.1.16) (i), 𝐶∗(𝑇) contains an operator of the form 

[
𝑋                 
        𝑌          
                  0

]

ℋ1,1
ℋ1,2
ℋ2

, 
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where 𝑋 ≠ 0. Note that 𝐾(ℋ1,1) ⊕ 0𝐻1,2 ⊂ 𝐶
∗(𝐴). Then it follows from Lemma (5.1.17) 

that 𝐾(ℋ1,1) ⊕ 0ℋ1,2⊕0𝐻2 ⊂ 𝐶
∗(𝑇), a contradiction. Therefore we conclude the proof.  

Lemma (5.1.42)[451]: Let 𝑇 ∈ 𝐵(ℋ) have the form 

𝑇 = [
𝐴 0
0 𝐵

]
ℋ𝐴
ℋ𝐵
,  

where ℋ𝐴⊕ℋ𝐵 = ℋ, 𝐴 ∈ 𝐵(ℋ𝐴) and 𝐵 ∈ 𝐵(ℋ𝐵). Assume that 𝐶∗(𝐵) ∩ 𝐾(ℋ𝐵) is non-

degenerate. Denote 𝑀 = 𝑟𝑎𝑛 𝐵 + 𝑟𝑎𝑛 𝐵∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . If 𝐴 ⊲ 𝐵, then 𝐴 ⊲ (𝐵|𝑀). 
Proof. It is obvious that 𝑀 reduces 𝐵. Denote 𝐵1 = 𝐵|𝑀. Then 𝑇 can be written as 

𝑇 = [
𝐴           
     0      
            𝐵1

]
ℋ𝐴

ℋ𝐵 ⊖𝑀
𝑀

. 

It suffices to prove 𝐴 ⊲ 𝐵1. 

Since 𝐶∗(𝐵) ∩ 𝐾(ℋ𝐵) is non-degenerate, we can see that dimℋ𝐵 ⊖𝑀 < ∞. We claim 

that 𝐴 ⊴ 𝐵1. In fact, if not, then there exists 𝑝(⋅,⋅) such that ‖𝑝(𝐴∗, 𝐴)‖ > ‖𝑝(𝐵1
∗, 𝐵1)‖. 

Since 

‖𝑝(𝐴∗, 𝐴)‖ ≤ ‖𝑝(𝐵∗, 𝐵)‖ = max {|𝑝(0, 0)|, ‖𝑝(𝐵1
∗, 𝐵1)‖}, 

we obtain ‖𝑝(𝐵1
∗, 𝐵1)‖ < ‖𝑝(𝐴

∗, 𝐴)‖ ≤ |𝑝(0, 0)|. Let 𝛿 be a positive number satisfying 

‖𝑝(𝐵1
∗, 𝐵1)‖ < 𝛿 < ‖𝑝(𝐴

∗, 𝐴)‖. Define 

𝑓(𝑡) = {
0, 0 ≤ 𝑡 ≤ 𝛿,
𝑡 −  𝛿, 𝑡 > 𝛿.

 

Then 𝑓(|𝑝(𝑇∗, 𝑇)|) ∈ 𝐶∗(𝑇 ) has the form of 

[
𝑋           
     𝑌      
            0

]
ℋ𝐴

ℋ𝐵 ⊖𝑀
𝑀

, 

where 𝑋 ≠ 0 and 𝑌 ≠ 0. Noting that dimℋ𝐵 ⊖𝑀 < ∞, 𝑌 is a nonzero compact operator 

and hence 𝑌 ⊕ 0 ∈ 𝐶∗(𝐵) ∩ 𝐾(ℋ𝐵). Since 𝐴 ⊲ 𝐵, it follows from Lemma (5.1.12) that 

𝑋 = 0, a contradiction. Thus we have proved that 𝐴 ⊴ 𝐵1. 

It remains to prove 𝐴 ⊲ 𝐵1. In fact, if not, then, by Lemma (5.1.16), 𝐶∗(𝑇) contains an 

operator of the form 

[
𝑋1           
     𝑌1      
            0

]
ℋ𝐴

ℋ𝐵⊖𝑀
𝑀

, 

where 𝑋1 ≠ 0 and 𝐾1 ∈ 𝐾(𝑀). Since dimℋ𝐵 ⊖𝑀 < ∞,𝑌1⊕𝐾1 ∈ 𝐶
∗(𝐵) is compact on 

ℋ𝐵 . Noting that 𝐴 ⊲ 𝐵, it follows from Lemma (5.1.12) that 𝑋1 = 0, a contradiction. This 

completes the proof.  

The following result extends [211, Lemma 1] in the sense of approximation.  

Theorem (5.1.44)[451]: Let 𝑇 ∈ 𝐵(ℋ) have the form 

𝑇 = [
𝑅 0
0 0

]
ℋ1
ℋ2
, 

where 𝑅 ∈ 𝐵(ℋ1). Then 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ if and only if 𝑅 is a norm limit of 𝐶𝑆𝑂𝑠. 
Proof. It is obvious that we need only prove the necessity. Assume that 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅. By 

Lemma (5.1.25), we may assume that 𝑅 is a direct sum of irreducible operators. Then, under 

this hypothesis, 𝑇 is also a direct sum of irreducible operators. Without loss of generality, 

we may also assume that 𝑟𝑎𝑛 𝑅 + 𝑟𝑎𝑛 𝑅∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ℋ1. It can be seen from the proof of “(i)⟹(iv)” 

in Theorem (5.1.9) that 𝑇 admits the following matrix representation 
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𝑇 = [
𝐴               
      𝐵        
              𝑇𝑒

]

ℋ𝐴
ℋ𝐵
ℋ𝑒

, 

where ℋ = ℋ𝐴⊕ℋ𝐵 ⊕ℋ𝑒 and 

(a) 𝐴 is a norm limit of 𝐶𝑆𝑂𝑠 and 𝐶∗(𝐴) ∩ 𝐾(ℋ𝐴) = {0}, 
(b) 𝑇𝑒 is a 𝐶𝑆𝑂, 𝑇𝑒 ≅𝑎 𝐵⊕ 𝑇𝑒, 𝐵 ⊲ 𝑇𝑒 and 𝐶∗(𝑇𝑒) ∩ 𝐾(ℋ𝑒) is non-degenerate, 

(c) if 𝑀1, 𝑀2, 𝑀3 are nonzero minimal reducing subspaces of 𝐴, 𝐵 and 𝑇𝑒 respectively, 

then any two of 𝐴|𝑀1  , 𝐵|𝑀2 and 𝑇𝑒|𝑀3 are not unitarily univalent. 

By condition (c), one can deduce that exactly one of the following three holds: 

ℋ2 ⊂ ℋ𝐴 , ℋ2 ⊂ ℋ𝐵  and  ℋ ⊂ ℋ𝑒. So the rest of the proof is divided into three cases. 

Case (5.1.44)[451]: ℋ2 ⊂ ℋ𝐴. In this case, we can write 

𝐴 = [
0         
       𝐴1

]
ℋ2

ℋ𝐴⊖ℋ2
. 

Since 𝑟𝑎𝑛 𝑅 + 𝑟𝑎𝑛 𝑅∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ℋ1, one can see 𝑟𝑎𝑛 𝐴1 + 𝑟𝑎𝑛 𝐴1
∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ℋ𝐴⊖ℋ2. By Lemma 

(5.1.40), 𝐶∗(𝐴1) contains no nonzero compact operator. Since 𝐴 is a norm limit of 𝐶𝑆𝑂𝑠, it 
follows from Proposition (5.1.39) that 𝐴1 is a norm limit of 𝐶𝑆𝑂𝑠. Note that  𝑅 = 𝐴1⊕
𝐵⊕ 𝑇𝑒 ≅𝑎 𝐴1⊕𝑇𝑒. Thus we deduce that 𝑅 is a norm limit of 𝐶𝑆𝑂𝑠. 
Case (5.1.45)[451]: ℋ ⊂ ℋ𝐵 . In this case, we can write 

𝐵 = [
0         
       𝐵1

]
ℋ2

ℋ𝐵 ⊖ℋ2
. 

Since 𝐵 ⊲ 𝑇𝑒, one can see 𝐵1 ⊲ 𝑇𝑒. Then, by Lemma (5.1.15), we obtain 𝐵1⊕𝑇𝑒 ≅𝑎 𝑇𝑒. 
Noting that 𝑅 = 𝐴⊕ 𝐵1⊕𝑇𝑒 ≅𝑎 𝐴 ⊕ 𝑇𝑒, we can deduce that 𝑅 is a norm limit of 𝐶𝑆𝑂𝑠. 
Case (5.1.46)[451]:  ℋ2 ⊂ ℋ𝑒. In this case, we can write 

𝑇𝑒 = [
0         
       𝑇1

]
ℋ2

ℋ𝑒⊖ℋ2
. 

Since 𝑇𝑒 is a 𝐶𝑆𝑂, it follows from [211, Lemma 1] that 𝑇1 is a 𝐶𝑆𝑂. Noting that 

𝑟𝑎𝑛 𝑅 + 𝑟𝑎𝑛 𝑅∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ℋ1, one can see 𝑟𝑎𝑛 𝑇1 + 𝑟𝑎𝑛 𝑇1
∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ℋ𝑒⊖ℋ2. 

Since 𝐶∗(𝑇𝑒) ∩ 𝐾(ℋ𝑒) is non-degenerate and  𝐵 ⊲ 𝑇𝑒, it follows from Lemma (5.1.43) that 

𝐵 ⊲ 𝑇1. By Lemma (5.1.15) ,we obtain 𝐵 ⊕ 𝑇1 ≅𝑎 𝑇1. Thus 𝑅 = 𝐴⊕ 𝐵⊕ 𝑇1 ≅𝑎 𝐴⊕ 𝑇1. 
Noting that 𝐴 is a limit of 𝐶𝑆𝑂𝑠 and 𝑇1 is a 𝐶𝑆𝑂, we deduce that 𝑅 is a norm limit of 𝐶𝑆𝑂𝑠. 
Thus we conclude the proof.  

Lemma (5.1.47)[451]: Let 𝑇, 𝑅 be two partial isometries on ℋ and 𝑇 ≅𝑎 𝑅. Denote by 𝐴1 
the compression of 𝑇 to (𝑘𝑒𝑟 𝑇)⊥, and by 𝐴2 the compression of 𝑅 to (𝑘𝑒𝑟 𝑅)⊥. Then 

𝐴1 ≅𝑎 𝐴2. 
Proof.  We first assume that 

𝑇 = [
𝐴1 0
𝐵1 0

] (𝑘𝑒𝑟𝑇)
⊥

𝑘𝑒𝑟 𝑇
    and   𝑅 = [

𝐴2 0
𝐵2 0

] (𝑘𝑒𝑟𝑅)
⊥

𝑘𝑒𝑟 𝑅
. 

Since 𝑇, 𝑅 are two partial isometries, it follows that 𝐴1
∗  𝐴1 + 𝐵1

∗ 𝐵1 = 𝐼1 and 𝐴2
∗𝐴2 +

𝐵2
∗𝐵2 = 𝐼2, where 𝐼1 is the identity operator on (𝑘𝑒𝑟 𝑇)⊥ and   𝐼2 is the identity operator on 

(𝑘𝑒𝑟 𝑅)⊥. Noting that 𝑇 ≅𝑎 𝑅, we can choose unitary operators {𝑈𝑛}𝑛=1
∞  on ℋ such that 

𝑇𝑈𝑛 − 𝑈𝑛𝑅 → 0 as 𝑛 → ∞. Without loss of generality, we assume that 

𝑈𝑛 = [
𝑈1,1
𝑛 𝑈1,2

𝑛

𝑈2,1
𝑛 𝑈2,2

𝑛 ] , 

where 
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𝑈1,1
𝑛 ∈ 𝐵((𝑘𝑒𝑟 𝑅)⊥, (𝑘𝑒𝑟 𝑇)⊥), 𝑈1,2

𝑛 ∈ 𝐵(𝑘𝑒𝑟 𝑅, (𝑘𝑒𝑟 𝑇 )⊥) 
and 

𝑈2,1
𝑛 ∈ 𝐵((𝑘𝑒𝑟 𝑅)⊥, 𝑘𝑒𝑟 𝑇), 𝑈2,2

𝑛 ∈ 𝐵(𝑘𝑒𝑟 𝑅, 𝑘𝑒𝑟 𝑇). 

A matrix computation shows that 

𝑇𝑈𝑛 − 𝑈𝑛𝑅 = [
∗ 𝐴1𝑈1,2

𝑛

∗ 𝐵1𝑈1,2
𝑛 ] . 

Thus 𝐴1𝑈1,2
𝑛 → 0 and 𝐵1𝑈1,2

𝑛 → 0 as 𝑛 → ∞. Noting that 

𝑈1,2
𝑛 = (𝐵1

∗ 𝐵1 + 𝐴1
∗  𝐴1)𝑈1,2

𝑛 = 𝐵1
∗ 𝐵1𝑈1,2

𝑛 + 𝐴1
∗  𝐴1𝑈1,2

𝑛 , 

we obtain 𝑈1,2
𝑛 → 0 as 𝑛 → ∞. 

Note that 

𝑅𝑈𝑛
∗ − 𝑈𝑛

∗  𝑇 = [
∗ 𝐴2(𝑈2,1

𝑛 )
∗

∗ 𝐵2(𝑈2,1
𝑛 )

∗] → 0  

as 𝑛 → ∞. Using a similar argument as above, one can prove that ‖𝑈2,1
𝑛 ‖ = ‖(𝑈2,1

𝑛 )∗‖ →

0 as 𝑛 → ∞. Since 𝑈𝑛
∗𝑈𝑛 = 𝐼 = 𝑈𝑛𝑈𝑛

∗ , we have 

               (𝑈1,1
𝑛 )∗𝑈1,1

𝑛 + (𝑈2,1
𝑛 )∗𝑈2,1

𝑛 = 𝐼2 and 𝑈1,1
𝑛 (𝑈1,1

𝑛 )∗ + 𝑈1,2
𝑛 (𝑈1,2

𝑛 )∗  = 𝐼1. 

It follows readily that 𝑈1,1
𝑛  is invertible for 𝑛 large enough and (𝑈1,1

𝑛 )∗𝑈1,1
𝑛 → 𝐼2. Hence 

|𝑈1,1
𝑛 | → 𝐼2 as 𝑛 → ∞. 

For each 𝑛 ≥ 1, assume that 𝑈1,1
𝑛 = 𝑉1,1

𝑛 |𝑈1,1
𝑛 | is the polar decomposition of 𝑈1,1

𝑛 , where 

𝑉1,1
𝑛 : (𝑘𝑒𝑟 𝑅)⊥ → (𝑘𝑒𝑟 𝑇)⊥ is a partial isometry. Then, by the discussion above, 𝑉1,1

𝑛  is 

invertible and hence unitary for 𝑛 large enough. Moreover, since |𝑈1,1
𝑛 | → 𝐼2, we deduce that 

‖𝑉1,1
𝑛 − 𝑈1,1

𝑛 ‖ → 0 as 𝑛 → ∞. 

Since 𝑇𝑈𝑛 − 𝑈𝑛 𝑅 → 0, a direct calculation shows that 

𝐴1𝑈1,1
𝑛 − 𝑈1,1

𝑛 𝐴2 − 𝑈1,2
𝑛 𝐵2⟶ 0. 

Noting that 𝑉1,1
𝑛 − 𝑈1,1

𝑛 → 0 and 𝑈1,2
𝑛 → 0 as 𝑛 → ∞, we deduce that 𝐴1𝑉1,1

𝑛 − 𝑉1,1
𝑛 𝐴2 → 0, 

that is,  𝐴1 ≅𝑎 𝐴2.  
Now we can give the Proof of Theorem (5.1.10). 

Theorem (5.1.48)[451]: Let 𝑇 ∈ 𝐵(ℋ) be a partial isometry. Denote by 𝐴 the compression 

of  𝑇 to its initial space. Then 𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅ if and only if 𝐴 is a norm limit of 𝐶𝑆𝑂𝑠. 
We let ℂ,ℝ and ℕ denote  the set of complex numbers, the set of real numbers and the set 

of positive integers respectively. Given 𝐴 ∈ 𝐵(ℋ), we let 𝜎(𝐴) and 𝜎𝑒(𝐴) denote the 

spectrum and the essential spectrum of  𝐴  respectively. Denote by 𝑘𝑒𝑟 𝐴 and ran 𝐴 the 

kernel of 𝐴 and the range of 𝐴 respectively. As usual, given two representations 𝜌1 and 𝜌2 

of a 𝐶∗-algebra, we write 𝜌1 ≅ 𝜌2(𝜌1 ≅𝑎 𝜌2) to denote that 𝜌1 and 𝜌2 are unitarily 

equivalent (approximately unitarily equivalent, respectively). 

Proof of Theorem (5.1.48) “⟹” Since  𝑇 ∈ 𝑆(ℋ)̅̅ ̅̅ ̅̅ ̅, it follows from Theorem (5.1.9) that 

there exists 𝐹 ∈ 𝑆(ℋ) such that 𝑇 ≅𝑎 𝐹. It is easy to check that 𝐹 is also a partial isometry. 

Denote by 𝐴1 the compression of 𝐹 to (𝑘𝑒𝑟 𝐹)⊥. By [211, Theorem 2], 𝐹 ∈ 𝑆(ℋ) implies 

that 𝐴1 is a 𝐶𝑆𝑂. Noting that 𝑇 ≅𝑎 𝐹, it follows from Lemma (5.1.49) that 𝐴 ≅𝑎 𝐴1. Thus 

𝐴 is a norm limit of 𝐶𝑆𝑂𝑠. 
“⟸” Since 𝐴 is a norm limit of 𝐶𝑆𝑂𝑠, there exists a 𝐶𝑆𝑂 𝐴1 on (𝑘𝑒𝑟 𝑇)⊥ such that 𝐴 ≅𝑎 𝐴1. 
We assume that 
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𝑇 = [
𝐴 0
𝐵 0

] (𝑘𝑒𝑟 𝑇)
⊥

𝑘𝑒𝑟 𝑇
 . 

Since 𝑇 is a partial isometry, it follows that 𝐴∗𝐴 + 𝐵∗ 𝐵 = 𝐼1 and hence |𝐵| = √𝐼1 − 𝐴
∗𝐴, 

where 𝐼1 is the identity operator on (𝑘𝑒𝑟 𝑇)⊥. The rest of the proof is divided into three 

cases. 

Case (5.1.49)[451]: 𝑑𝑖𝑚𝑘𝑒𝑟 𝐵 = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵∗. 
Assume that 𝐵 = 𝑉|𝐵| is the polar decomposition of 𝐵, where 𝑉: (𝑘𝑒𝑟 𝑇)⊥ → 𝑘𝑒𝑟 𝑇 is a 

partial isometry. Since 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵 = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵∗, we have dimker 𝑉 = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝑉∗. Then 

𝑉 can be extend to a unitary operator 𝑈: (𝑘𝑒𝑟 𝑇)⊥ → 𝑘𝑒𝑟 𝑇. Then 𝑈∗𝑉|𝐵| = |𝐵|. Define 

𝑊: (𝑘𝑒𝑟 𝑇)⊥⊕ (𝑘𝑒𝑟 𝑇)⊥⟶ 𝐻 as 𝑊 ∶ (𝑥, 𝑦) ⟶ 𝑥 + 𝑈𝑦. 
Thus 𝑊 is a unitary operator. A direct matrical calculation shows that 

𝑊∗𝑇𝑊 = [
𝐴 0
|𝐵| 0

] = [
 𝐴 0

√𝐼1 − 𝐴
∗𝐴 0

]
(𝑘𝑒𝑟 𝑇)⊥

(𝑘𝑒𝑟 𝑇)⊥
. 

Noting that 𝐴 ≅𝑎 𝐴1, it is easy to check that 

𝑊∗𝑇𝑊 ≅𝑎 [
 𝐴1 0

√𝐼1 − 𝐴1
∗𝐴1 0

] ≜ 𝐿.  

It is clear that 

𝐿∗𝐿 = [
𝐼1 0
0 0

]
(𝑘𝑒𝑟 𝑇)⊥

(𝑘𝑒𝑟 𝑇)⊥
. 

Thus 𝐿 is a partial isometry and the compression of 𝐿 to its initial space is 𝐴1. Since 𝐴1 is a 

𝐶𝑆𝑂, it follows from [211, Theorem 2] that 𝐿 is complex symmetric, and hence 𝑇 ∈ 𝑆(𝐻)̅̅ ̅̅ ̅̅ ̅. 
Case (5.1.50)[451]: 𝑑𝑖𝑚𝑘𝑒𝑟 𝐵 < 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵∗. 
Since 𝑘𝑒𝑟 𝐵∗ = 𝑘𝑒𝑟 𝑇 ⊖ 𝑟𝑎𝑛 𝐵̅̅ ̅̅ ̅̅ ̅̅ , there exists a subspace 𝑀 of 𝑘𝑒𝑟 𝑇 such that 𝑟𝑎𝑛 𝐵 ⊂ 𝑀 

and 𝑑𝑖𝑚 𝑀 ⊖ 𝑟𝑎𝑛 𝐵̅̅ ̅̅ ̅̅ ̅̅ = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵. Then 𝑇 admits the following matrix representation 

 
where 𝐵1 ∈ 𝐵((𝑘𝑒𝑟 𝑇)

⊥, 𝑀). Note that 𝑘𝑒𝑟 𝐵 =  𝑘𝑒𝑟 𝐵1 and 𝑟𝑎𝑛 𝐵 = 𝑟𝑎𝑛 𝐵1. We have 

𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵1 = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵 = 𝑑𝑖𝑚 𝑀 ⊖ 𝑟𝑎𝑛 𝐵̅̅ ̅̅ ̅̅ ̅̅  
= 𝑑𝑖𝑚 𝑀 ⊖ 𝑟𝑎𝑛 𝐵1̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵1

∗. 
Set 

𝐹 = [
𝐴 0
𝐵1 0

] (𝑘𝑒𝑟 𝑇)
⊥

𝑀
. 

One can check that 𝐹 is a partial isometry and (𝑘𝑒𝑟 𝐹)⊥ = (𝑘𝑒𝑟 𝑇)⊥. Noting that 𝐴 ≅𝑎 𝐴1 
and 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵1 = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵1

∗ , it can be seen from the argument in Case (5.1.49) that 𝐹 is 

a norm limit of 𝐶𝑆𝑂𝑠. Then it follows readily that 𝑇 ∈ 𝑆(𝐻)̅̅ ̅̅ ̅̅ ̅. 
Case (5.1.51)[451]: 𝑑𝑖𝑚𝑘𝑒𝑟 𝐵 > 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵∗. 
In this case, we can choose a Hilbert space 𝑀 such that 𝑑𝑖𝑚 𝑀 + 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵∗ = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵. 

Set 

 
Noting that 𝑘𝑒𝑟 𝐵2 = 𝑘𝑒𝑟 𝐵, 𝑟𝑎𝑛 𝐵2  = 𝑟𝑎𝑛 𝐵 and 𝑘𝑒𝑟 𝐵2

∗ = 𝑘𝑒𝑟 𝐵∗⊕𝑀, we obtain 
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𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵2
∗ = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵∗ + 𝑑𝑖𝑚 𝑀 = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵 = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵2. 

Obviously, 𝑅 is still a partial isometry and 𝐴 is the compression of 𝑅 to its initial space. 

Since 𝐴 ≅𝑎 𝐴1 and 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵2 = 𝑑𝑖𝑚 𝑘𝑒𝑟 𝐵2
∗ , it can be seen from the proof in Case 

(5.1.49) that 𝑅 is a norm limit of 𝐶𝑆𝑂𝑠. By Theorem (5.1.44), it follows that  𝑇 ∈ 𝑆(𝐻)̅̅ ̅̅ ̅̅ ̅. 
This completes the proof. 

Let 𝑇 ∈ 𝐵(𝐻). Assume that 𝑇 = 𝑈|𝑇| be the polar decomposition of 𝑇. Recall that the 

Aluthge transform of 𝑇 is defined to be the operator |𝑇|
1

2𝑈|𝑇|
1

2 (see [193]). 

Corollary (5.1.52)[451]: Let 𝑇 ∈ 𝐵(𝐻) be a partial isometry. Then 𝑇 ∈ 𝑆(𝐻)̅̅ ̅̅ ̅̅ ̅ if and only if 

the Aluthge transform of  𝑇 is a norm limit of 𝐶𝑆𝑂𝑠. 
Proof :  We first assume that 

𝑇 = [
𝐴 0
𝐵 0

]
(𝑘𝑒𝑟 𝑇)⊥

𝑘𝑒𝑟 𝑇
 . 

Then 

𝑇∗𝑇 = [
𝐴∗𝐴 + 𝐵∗𝐵 0

0 0
] = [

𝐼1 0
0 0

] , 

where 𝐼1 is the unit operator on 𝑘𝑒𝑟 𝑇. Since 𝑇 is a partial isometry, the Aluthge transform 

of  𝑇 is 

|𝑇|
1
2 𝑇 |𝑇|

1
2 = [

𝐴 0
0 0

]
(𝑘𝑒𝑟 𝑇)⊥

𝑘𝑒𝑟 𝑇
. 

In view of Theorems (5.1.44) and (5.1.10), the desired result follows readily.  

Section (5.2):   Complex Symmetric Generators 

ℋ(ℋ1, ℋ2,···, Ҡ 𝑒𝑡𝑐. ) will always denote a complex separable Hilbert space 

endowed with the inner product 〈·,·〉. We let 𝔅(ℋ) denote the algebra of all bounded linear 

operators on ℋ. For 𝑇 ∈ 𝔅(ℋ), we let 𝐶∗(𝑇) denote the 𝐶∗-algebra generated by 𝑇 and the 

identity 𝐼. If 𝒜 is a 𝐶∗-subalgebra of  𝔅(ℋ) and  𝒜 = 𝐶∗(𝑇)for some 𝑇 ∈ 𝔅(ℋ), then 𝑇 is 

called a generator of  𝒜. 

We are interested in 𝐶∗-algebras which are singly generated by complex symmetric 

operators.  

Definition (5.2.1)[452]: 𝐴 map 𝐶 on ℋ is called a conjugation if  𝐶 is conjugate-linear, 

𝐶2 = 𝐼 and 〈𝐶𝑥, 𝐶𝑦〉 = 〈𝑦, 𝑥〉 for all 𝑥, 𝑦 ∈ ℋ. 

Definition (5.2.2)[452]: An operator 𝑇 ∈ 𝔅(ℋ) is called a complex symmetric operator 

(𝐶𝑆𝑂 for short) if there exists a conjugation 𝐶 on ℋ so that 𝐶𝑇𝐶 = 𝑇∗. 
     𝐶𝑆𝑂𝑠 can be viewed as a generalization of symmetric matrices to the case of operators 

on Hilbert spaces. The general study of 𝐶𝑆𝑂𝑠 was initiated by Garcia, Putinar and Wogen 

in [245,246,248,249]. 𝐶𝑆𝑂𝑠 have many motivations in function theory, matrix analysis and 

other areas. In particular, 𝐶𝑆𝑂𝑠 are closely related to the study of truncated Toeplitz 

operators [247], which was initiated in Sarason’s seminal [259]. Recently, some interesting 

results concerning 𝐶𝑆𝑂𝑠 have been obtained (see [237,244,250–252,256,263,264]). 

    Since 𝐶𝑆𝑂𝑠 have certain nice structural properties, it is natural to explore the algebraic 

aspects of the theory of 𝐶𝑆𝑂𝑠. Recently certain connections between 𝐶𝑆𝑂𝑠 and 𝐶∗-algebras 

generated by them are established, and a 𝐶∗-algebraic approach has been developed to 

answer a number of open questions concerning 𝐶𝑆𝑂𝑠 (see [251,252,263]). This proves to 

be very fruitful. 
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       In [260], where many von Neumann algebras and 𝐶∗-algebras prove to have a single 

complex symmetric generator. We shall concentrate on those 𝐶∗-algebras singly generated 

by essentially normal operators, which have been the subject of much interest since the 

seminal [236]. 

First we are interested in the following question. 

Question (5.2.3)[452]: When does an essentially normal operator 𝑇 have 𝐶∗(𝑇)generated 

by a complex symmetric operator? 

There exist operators 𝑇 lying outside the class of 𝐶𝑆𝑂𝑠 such that 𝐶∗(𝑇) admits a 

complex symmetric generator (see Examples (5.2.11) and (5.2.42)). Hence the above 

question is natural and worth answering. 

  We give a complete answer to Question (5.2.3)(see Theorem (5.2.14)). We give a 

decomposition of  such operators. Our result shows that whether or not 𝐶∗(𝑇) has a complex 

symmetric generator depends heavily on the spectral picture of the restrictions of  𝑇 to its 

minimal reducing subspaces. The proof of our result depends on some approximation 

results, which are developed using tools from 𝐵𝐷𝐹 theory, Voiculescu’s theorem and 

noncommutative approximation theory of operators [472]. 

Two ∗-isomorphic 𝐶∗-algebras have the same algebraic properties. The following question 

arises naturally. 

Question (5.2.4)[452]: When is 𝐶∗(𝑇) ∗-isomorphic to a 𝐶∗-algebra singly generated by 

𝐶𝑆𝑂𝑠? 

      When 𝑇 is essentially normal, we give an answer to the above question (see Theorem 

(5.2.44)). In order to answer Question (5.2.4), we need to introduce an algebraic analogue 

of  𝐶𝑆𝑂𝑠. 
      Given a polynomial 𝑝(𝑧1, 𝑧2) in two free variables 𝑧1, 𝑧2, we let 𝑝(𝑧1, 𝑧2) denote the 

polynomial obtained from 𝑝(𝑧1, 𝑧2) by conjugating each coefficient. 

Definition (5.2.5)[452]: An operator 𝐴 ∈ 𝔅(ℋ) is said to be 𝑔-normal if it satisfies 

‖𝑝(𝐴∗, 𝐴)‖ = ‖𝑝(𝐴, 𝐴∗)‖  for any polynomial 𝑝(·,·) in two free variables. 

The above concept was inspired by Garica, Lutz and Timotin [427], and posed by Guo, Ji 

and the author [478]. It was proved that an operator 𝐴 is 𝑔-normal if and only if there is an 

anti-automorphism 𝜑 of 𝐶∗(𝐴) such that 𝜑(𝐴) = 𝐴 (see [478, Lem. 1.7]). 𝐺-normal 

operators, containing all 𝐶𝑆𝑂𝑠, play an important role in solving the norm closure problem 

for 𝐶𝑆𝑂𝑠 (see [478,497]). Obviously, 𝑔-normal elements in a 𝐶∗-algebra can be defined in 

the same manner as in Definition (5.2.5). 

    That an operator is 𝑔-normal if and only if it is algebraically equivalent to a 𝐶𝑆𝑂 (see 

Theorem (5.2.45)). Thus the notion of 𝑔-normal operator is a suitable algebraic analogue of 

𝐶𝑆𝑂𝑠. Recall that two operators 𝐴, B are algebraically equivalent (write 𝐴 ≈ 𝐵) if there is 

a ∗-isomorphism of 𝐶∗(𝐴) onto 𝐶∗(𝐵) which carries 𝐴 into 𝐵 

    We shall solve Question (5.2.3) in the irreducible case. We shall prove some 

approximation results and give necessary and sufficient conditions for an essentially normal 

operator to have a complex symmetric generator for its 𝐶∗-algebra. We study the algebraical 

equivalence of certain special operators and give a complete answer to Question (5.2.4) in 

the essentially normal case (see Theorem (5.2.44)).  

     For convenience, we write 𝐴 ∈ (𝑐𝑠) to denote that 𝐶∗(𝐴) admits a complex symmetric 

generator. 
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We shall use the 𝐵𝐷𝐹 Theorem to derive a necessary spectral condition for an 

essentially normal operator 𝑇 to satisfy 𝑇 ∈ (𝑐𝑠)(see Lemma (5.2.7)), and then prove that 

the spectral condition is also sufficient when 𝑇 is irreducible (see Theorem (5.2.8)). 

          ℂ and ℕ denote respectively the set of complex numbers and the set of natural 

numbers. In the following, unless otherwise stated, ℋ is always assumed to be a complex 

separable infinite-dimensional Hilbert space. We let  𝒦(ℋ) denote the ideal of compact 

operators in  𝔅(ℋ). 
    Let  𝑇 ∈ 𝔅(ℋ). We denote by 𝜎(𝑇) the spectrum of  𝑇. Denote by 𝑘𝑒𝑟𝑇 and 𝑟𝑎𝑛𝑇 the 

kernel of 𝑇 and the range of  𝑇 respectively. 𝑇 is called a semi-Fredholm operator, if 𝑟𝑎𝑛𝑇 

is closed and either dimker𝑇 or dimker 𝑇∗ is finite; in this case, 𝑖𝑛𝑑𝑇:= 𝑑𝑖𝑚𝑘𝑒𝑟𝑇 −
𝑑𝑖𝑚𝑘𝑒𝑟𝑇∗ is called the index of  𝑇. In particular, if −∞ < 𝑖𝑛𝑑𝑇 < ∞, then 𝑇 is called a 

Fredholm operator. The Wolf spectrum of  𝑇 and the essential spectrum of  𝑇 are defined 

respectively as 

                         𝜎𝑙𝑟𝑒(𝑇) ≔ {𝜆 ∈ ℂ: 𝑇 − 𝜆 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑒𝑚𝑖 − 𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚} 
and 

                              𝜎𝑒(𝑇): = {𝜆 ∈ ℂ: 𝑇 − 𝜆 𝑖𝑠 𝑛𝑜𝑡 𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚} 
The spectral picture of an operator 𝑇, denoted by 𝛬(𝑇), consists of the Wolf spectrum and 

the values of the index function off the Wolf spectrum. So two operators 𝐴, 𝐵 have the same 

spectral picture if and only if 𝜎𝑙𝑟𝑒(𝐴) = 𝜎𝑙𝑟𝑒(𝐵) and 𝑖𝑛𝑑(𝐴 − 𝜆) = 𝑖𝑛𝑑(𝐵 − 𝜆) for 𝜆 ∉
𝜎𝑙𝑟𝑒(𝐴). 
     Recall that an operator 𝑇 is essentially normal if  𝑇∗𝑇 − 𝑇𝑇∗ is compact. It is well known 

that 𝜎𝑙𝑟𝑒(𝑇) = 𝜎𝑒(𝑇) when 𝑇 is essentially normal. The classical 𝐵𝐷𝐹 Theorem classifies 

essentially normal operators up to unitary equivalence modulo compacts. 

Theorem (5.2.6)[452]: Let 𝐴, 𝐵 ∈ 𝔅(ℋ) be essentially normal. Then there exists 𝐾 ∈
𝒦(ℋ) such that 𝐴 ≅ 𝐵 + 𝐾 if and only if 𝛬(𝐴) = 𝛬(𝐵). 
Here and in what follows, ≅ denotes unitary equivalence. 

    Following Berg and Davidson [477], we say that an operator 𝑇 is almost normal if 𝑇 =
𝑁 + 𝐾 for some normal 𝑁 and some compact 𝐾. Then almost normal operators are always 

essentially normal. By Theorem (5.2.1), an essentially normal operator 𝐴 is almost normal 

if and only if 𝑖𝑛𝑑(𝐴 − 𝜆) = 0 for all 𝜆 ∉ 𝜎𝑒(𝐴). By the continuity of the index function, 

one can see that the class of almost normal operators on  ℋ is norm closed. 

Lemma (5.2.7)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. If 𝐶∗(𝑇) admits a complex 

symmetric generator, then 𝑇 is almost normal. 

Proof. Assume that 𝐴 ∈ 𝔅(ℋ) is complex symmetric and 𝐶∗(𝑇) = 𝐶∗(𝐴). Then there is a 

conjugation C on  ℋ such that 𝐶𝐴𝐶 = 𝐴∗. Then for each 𝜆 ∉ 𝜎𝑙𝑟𝑒(𝐴) one can check that 

                       𝑖𝑛𝑑 (𝐴 − 𝜆) = 𝑖𝑛𝑑 𝐶(𝐴 − 𝜆)𝐶 = 𝑖𝑛𝑑(𝐴 − 𝜆)∗ = −𝑖𝑛𝑑 (𝐴 − 𝜆). 
So 𝑖𝑛𝑑(𝐴 − 𝜆) = 0 for  𝜆 ∉ 𝜎𝑙𝑟𝑒(𝐴). On the other hand, since 𝑇 is essentially normal and 

𝐴 ∈ 𝐶∗(𝑇), it follows that 𝐴 is essentially normal. By the BDF Theorem, 𝐴 has the form 

“normal plus compact”. Since 𝑇 ∈ 𝐶∗(𝐴),  𝑇 is also of the form “normal plus compact”.  

Theorem (5.2.8)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. If 𝑇 is irreducible, then 𝑇 ∈
(𝑐𝑠) if and only if  𝑇 is almost normal. 

The proof of the preceding result depends on a key approximation result. 

Proposition (5.2.9)[452]: Given a normal operator 𝑇 ∈ 𝔅(ℋ)) and 𝜀 > 0, there exists 𝐾 ∈
𝒦(ℋ) with ‖𝐾‖ < 𝜀 such that 𝑇 + 𝐾 is an irreducible 𝐶𝑆𝑂. 
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Proof. By the Weyl–von Neumann Theorem, we may directly assume that 𝑇 is a diagonal 

operator with respect to some 𝑂𝑁𝐵  {𝑒𝑛}𝑛=1
∞ of  ℋ. Assume that {𝜆𝑛}𝑛=1

∞ are the eigenvalues 

of  𝑇 satisfying 𝑇𝑒𝑛 = 𝜆𝑛𝑒𝑛  for 𝑛 ≥ 1. For each 𝑛 ≥ 1, denote 𝑎𝑛 = 𝑅𝑒𝜆𝑛 and 𝑏𝑛 = 𝐼𝑚𝜆𝑛. 

Up to a small compact perturbation, we may assume that 𝑎𝑖 ≠ 𝑎𝑗 for 𝑖 ≠ 𝑗. Set 

𝐴 =∑𝑎𝑖𝑒𝑖⨂𝑒𝑖

∞

𝑖=1

,       𝐵 =∑𝑏𝑖𝑒𝑖⨂𝑒𝑖

∞

𝑖=1

. 

Then 𝑇 = 𝐴 + 𝑖𝐵. For  𝑖, 𝑗 ≥ 1, set 𝑑𝑖,𝑗 =
𝜀

2𝑖+𝑗
. Define a compact operator 𝐾1 ∈ 𝒦(ℋ) by 

𝐾1 =

[
 
 
 
𝑑1,1 𝑑1,2 𝑑1,3 ⋯

𝑑2,1 𝑑2,2 𝑑2,3 ⋯

𝑑3,1
⋮

𝑑3,2
⋮

𝑑3,3 ⋯

⋮ ⋱ ]
 
 
 𝑒1
𝑒2
𝑒3
⋮

. 

It is obvious that 𝐾1 ∈ 𝒦(ℋ) is self-adjoint and ‖𝐾1‖ < 2 (∑
𝜀

21+𝑛 
∞
𝑛=1 ) = 𝜀. Set 𝐾 = 𝑖𝐾1. 

Then it remains to check that  𝑇 + 𝐾  is an irreducible 𝐶𝑆𝑂. 

Note that 𝑇 + 𝐾 = 𝐴 + 𝑖𝐵1, where 𝐵1 = 𝐵 + 𝐾1. Then 𝐴, 𝐵1 are both self-adjoint. 

Assume that 𝑃 ∈ 𝔅(ℋ) is an orthogonal projection commuting with 𝑇 + 𝐾. It follows that 

𝑃𝐴 = 𝐴𝑃 and  𝑃𝐵1 = 𝐵1𝑃. 

Since 𝐴 = ∑ 𝑎𝑖𝑒𝑖 ⊗ 𝑒𝑖
∞
𝑖=1  and 𝑎𝑖 ≠ 𝑎𝑗 whenever 𝑖 ≠ 𝑗, it follows from 𝐴𝑃 = 𝑃𝐴  that 

𝑃2 = ∑ 𝜇𝑖𝑒𝑖⊗ 𝑒𝑖
∞
𝑖=1 , where 𝜇𝑖 = 0 or 𝜇𝑖 = 1 for each 𝑖 ≥ 1. On the other hand, for 𝑖, 𝑗 ≥ 1 

with 𝑖 ≠ 𝑗, we have  

〈𝑃𝐵1𝑒𝑗 , 𝑒𝑖〉 = 〈𝐵1𝑒𝑗, 𝑃𝑒𝑖〉 = 〈𝐵1𝑒𝑗 , 𝜇𝑖𝑒𝑖〉  = 𝜇𝑖〈𝐵𝑒𝑗, 𝑒𝑖〉 +  𝜇𝑖〈𝐾1𝑒𝑗, 𝑒𝑖〉 =  𝜇𝑖𝑑𝑖,𝑗 =
𝜇𝑖
2𝑖+𝑗

 

and  

〈𝐵1𝑃𝑒𝑗 , 𝑒𝑖〉 = 〈𝑃𝑒𝑗, 𝐵1𝑒𝑖〉 = 𝜇𝑗〈𝑒𝑗, 𝐵1𝑒𝑖〉  = 𝜇𝑗〈𝐵𝑒𝑗, 𝑒𝑖〉 + 𝜇𝑗〈𝐾1𝑒𝑗, 𝑒𝑖〉 = 𝜇𝑗𝑑𝑖,𝑗 =
𝜇𝑗

2𝑖+𝑗
. 

Since 𝑃𝐵1 = 𝐵1𝑃, it follows that 𝜇𝑖 = 𝜇𝑗. Then either 𝑃 = 0 or 𝑃 Is the identity operator 

on ℋ, which implies that 𝑇 + 𝐾 is irreducible. 

Now it remains to show that 𝑇 + 𝐾 is a 𝐶𝑆𝑂. In fact, if 𝐶 is the conjugation on ℋ 

defined by 𝐶𝑒𝑖 = 𝑒𝑖 for 𝑖 ≥ 1, then one can check that 𝐶(𝐴 + 𝐾)𝐶 = (𝐴 + 𝐾)∗. Since each 

of the operators 𝐴, 𝐵,𝐾1 admits a complex symmetric matrix representation with respect to 

the same ONB  {𝑒𝑛}, one can also see that 𝑇 + 𝐾 = 𝐴 + 𝑖(𝐵 + 𝐾1) is complex symmetric. 

We remark that the proof  of  Proposition (5.2.9) is inspired by the proof of Lemma 

(5.2.31) (see [254, Lem. 4.33]or [258]).  

Proof. The necessity follows from Lemma (5.2.7). 

“⟸”. Since 𝑇 is almost normal, there exist a normal operator 𝑁 and 𝐾 ∈ 𝒦(ℋ) so 

that 𝑇 = 𝑁 + 𝐾. By Proposition (5.2.9), we can find compact 𝐾0 such that 𝑅:= 𝑁 + 𝐾0 is 

an irreducible 𝐶𝑆𝑂. Since 𝑇, R are both irreducible and essentially normal, we have 

𝒦(ℋ) ⊂ 𝐶∗(𝑇) ∩ 𝐶∗(𝑅). It follows that  𝑇 − 𝑅 = 𝐾 − 0 ∈ 𝐶∗(𝑇) ∩ 𝐶∗(𝑅). Thus 𝐶∗(𝑇) =
𝐶∗(𝑅). This completes the proof.  

In general, the condition of  irreducibility in Theorem (5.2.8) can not be canceled. 

That is, the spectral condition “𝑖𝑛𝑑(𝑇 − 𝜆) = 0, ∀𝜆 ∉ 𝜎𝑒(𝑇)” is necessary and not sufficient 

for 𝑇 ∈ (𝑐𝑠). Before giving an example, we first introduce a useful result. 
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Recall that an operator 𝐴 is said to be abnormal if 𝐴  has no nonzero reducing 

subspace ℳ such that 𝐴|ℳ is normal. If an irreducible operator is not normal, then it is 

abnormal. Each Hilbert space operator  𝑇 admits the unique decomposition 

𝑇 = 𝑇𝑛𝑜𝑟⊕𝑇𝑎𝑏𝑛𝑜𝑟, 
where 𝑇𝑛𝑜𝑟 is normal and  𝑇𝑎𝑏𝑛𝑜𝑟 is abnormal. The operators 𝑇𝑛𝑜𝑟 and 𝑇𝑎𝑏𝑛𝑜𝑟 are called the 

normal part and the abnormal part of  𝑇 respectively. see [254, p. 116]. 

Lemma (5.2.10)[ 452]: ([251, Lem. 3.2]). An operator 𝑇 is complex symmetric if and only 

if  𝑇𝑎𝑏𝑛𝑜𝑟 is complex symmetric. 

Example (5.2.11)[452]: Let 𝑆 ∈ 𝔅(ℋ1) be the unilateral shift of multiplicity one and 𝑁 ∈
𝔅(ℋ2) be a normal operator with 𝜎(𝑁) = {𝜆 ∈ ℂ: |𝜆| ≤ 1}. Denote 𝑇 = 𝑁⊕ 𝑆. Then 𝑇 is 

essentially normal. Note that 𝜎𝑙𝑟𝑒(𝑁) = 𝜎(𝑁) ⊃ 𝜎(𝑆). Thus 𝜎(𝑇) = 𝜎𝑙𝑟𝑒(𝑇) and 𝑖𝑛𝑑(𝑇 −
𝜆) = 0 for 𝜆 ∉ 𝜎𝑙𝑟𝑒(𝑇). It follows from Theorem (5.2.1)that 𝑇 is almost normal. 

Now we shall show that 𝐶∗(𝑇) does not have a complex symmetric generator. For a 

proof  by contradiction, we assume that 𝐴 ∈ 𝔅(ℋ1⊕ℋ2) is a complex symmetric 

generator of 𝐶∗(𝑇). Obviously, 𝐴 can be written as 𝐴 = 𝐴1⊕𝐴2, where 𝐴𝑖 ∈ 𝔅(ℋ𝑖), 𝑖 =
1, 2. So 𝐶∗(𝐴1) = 𝐶

∗(𝑁) and 𝐶∗(𝐴2) = 𝐶
∗(𝑆). It follows immediately that 𝐴1 is normal, 

𝐴2 is irreducible and not normal. So 𝐴2 is abnormal. Hence 𝐴2 = 𝐴𝑛𝑜𝑟 and 𝐴2 = 𝐴𝑎𝑏𝑛𝑜𝑟. 
Since 𝐴 is complex symmetric, it follows from Lemma (5.2.10) that 2 is complex symmetric. 

Thus 𝐶∗(𝑆) has a complex symmetric generator 𝐴2
2. By Lemma (5.2.7), 𝑆 is almost normal. 

This is a contradiction, since 𝑆 is Fredholm and 𝑖𝑛𝑑 𝑆 = −1. 

  We shall characterize when an essentially normal operator has a complex symmetric 

generator for its 𝐶∗-algebra. To state our main result, we need several extra definitions. 

Definition (5.2.12)[452]: ([251, Def. 1.8]). Let 𝑇 ∈ 𝔅(ℋ). An operator 𝐴 ∈ 𝔅(ℋ) is called 

a transpose of  𝑇 if  𝐴 = 𝐶𝑇∗𝐶 for some conjugation 𝐶 on  ℋ. 

The concept “transpose” of an operator is in fact a generalization of that for matrices. 

By definition, an operator 𝑇 ∈ 𝔅(ℋ) is complex symmetric if and only if  𝑇 is a transpose 

of itself. In general, an operator has more than one transpose [262, Ex. 2.2]. However, one 

can check that any two transposes of an operator are unitarily equivalent ([251]). We often 

write 𝑇𝑡 to denote a transpose of  𝑇. In general, there is no ambiguity especially when we 

write 𝑇 ≅ 𝑇𝑡. It is easy to check that 𝜎(𝑇) = 𝜎(𝑇𝑡),  𝜎𝑙𝑟𝑒(𝑇) = 𝜎𝑙𝑟𝑒(𝑇
𝑡) and 𝑖𝑛𝑑(𝑇 − 𝜆) =

−𝑖𝑛𝑑(𝑇𝑡 − 𝜆)   for  𝜆 ∉ 𝜎𝑙𝑟𝑒(𝑇). 
If ℳ is a nonzero reducing subspace of 𝑇 ∈ 𝔅(ℋ) and 𝑇|ℳ is irreducible, then ℳ 

is called a minimal reducing subspace (m.r.s. for short) of 𝜆. Given an essentially normal 

operator 𝑇 ∈ 𝔅(ℋ), define  

ℋ𝑠 =⋁{ℳ ⊂ ℋ:ℳ is am. r. s. of  𝑇 and  𝑇|ℳ is notalmostnormal} , 

 where ∨ denotes closed linear span. It is obvious that ℋ𝑠 is either absent or a nonzero 

reducing subspace of  𝑇. Denote by 𝑇𝑠 the restriction of 𝑇 to  ℋ𝑠. We call 𝑇𝑠 the singular 

part of  𝑇. 

We say that two operators 𝐴, 𝐵 are disjoint if there exist no nonzero reducing subspace 

ℳ1of  𝐴 and nonzero reducing subspace ℳ2 of 𝐵 such that 𝐴|ℳ1
≅ 𝐵|ℳ2

. 

Definition (5.2.13)[452]: An essentially normal operator 𝑇 is called type 𝐶, if  𝑇 = 𝑇𝑠 and 

𝑇 is unitarily equivalent to an operator of the form 𝐴 ⊕ 𝐵, where (a) 𝐴,𝐵 ∈ 𝔅(ℋ) are 
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disjoint, (b) 𝐶∗(𝐴) ∩ 𝒦(𝐻) = 𝐶∗(𝐵) ∩𝒦(ℋ), and (c) there exists compact 𝐾 ∈ 𝐶∗(𝐴) 
such that 𝐴 + 𝐾 is a transpose of  𝐵 and 𝐶∗(𝐴 + 𝐾) ∩ 𝒦(ℋ) = 𝐶∗(𝐴) ∩𝒦(ℋ). 

One can check that if an essentially normal operator 𝑇 is of  type 𝐶, then 𝑇 is almost 

normal. In fact, by the discussion right after Definition (5.2.12), we have  

𝜎𝑒(𝑇) = 𝜎𝑒(𝐴) ∪ 𝜎𝑒(𝐵) = 𝜎𝑒(𝐴) 
and  

                   𝑖𝑛𝑑 (𝑇 − 𝜆) = 𝑖𝑛𝑑(𝐴 − 𝜆) + 𝑖𝑛𝑑(𝐵 − 𝜆) = 0 for all  𝜆 ∉ 𝜎𝑒(𝑇
2). 

By Theorem (5.2.6), 𝑇 is almost normal. 

Theorem (5.2.14)[452]: If  𝑇 ∈ 𝔅(ℋ) is essentially normal, then 𝑇 ∈ (𝑐𝑠) if and only if  𝑇𝑠 
is either absent or  of  type 𝐶. 

By Theorem (5.2.14), whether or not an essentially normal operator 𝑇 has a complex 

symmetric generator for its 𝐶∗-algebra depends only on the behavior of  𝑇𝑠. 
We give a concrete description of the essentially normal operators of type 𝐶. We first 

make some preparation. 

Let {𝒜𝑖}𝑖∈𝛤  be a family of 𝐶∗-algebras. We denote by ∏ 𝒜𝑖𝑖∈𝛤  the direct product of 

 {𝒜𝑖}𝑖∈𝛤, and by ⊕𝑖∈𝛤 𝒜𝑖 the direct sum of  {𝒜𝑖}𝑖∈𝛤. 

Let 𝐴 ∈ 𝔅(ℋ). We let 𝑊∗(𝐴) denote the von Neumann algebra generated by 𝐴. By 

the von Neu-mann Double Commutant Theorem, we have 𝑊∗(𝐴) = 𝐶∗(𝐴)′′. Here and in 

what follows, 𝒜′ denotes the commutant algebra of  𝒜.  See [240, Thm. 3.1] for a proof of 

the following result. 

Lemma (5.2.15)[452]: Let 𝑇 ∈ 𝔅(ℋ) and assume that 𝑇 =⊕𝑖∈𝛤 𝑇𝑖, where 𝑇𝑖 ∈ 𝔅(ℋ𝑖) is 

irreducible for 𝑖 ∈ 𝛤  and 𝑇𝑖 ≇ 𝑇𝑗 whenever 𝑖 ≠ 𝑗. Then  

𝐶∗(𝑇)′ =∏ℂ𝐼𝑖
𝑖∈𝛤

, 𝑊∗(𝑇) =∏𝔅(ℋ𝑖)

𝑖∈𝛤

, 

where 𝐼𝑖 is the identity operator on  ℋ𝑖 and  ℂ𝐼𝑖 = {𝜆𝐼𝑖: 𝜆 ∈ ℂ} for 𝑖 ∈ 𝛤.  

For convenience, we let 0ℋ denote the subalgebra {0} of  𝔅(ℋ). Given 𝑒, 𝑓 ∈ ℋ, the 

operator 𝑒 ⊗ 𝑓 is defined as (𝑒 ⊗ 𝑓)(𝑥) = 〈𝑥, 𝑓〉𝑒  for 𝑥 ∈ ℋ. 

Corollary (5.2.16)[ 452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal and 𝑇 = 𝑁⊕ (⊕𝑖=1
∞ 𝑇𝑖), 

where 

(i) 𝑁 ∈ 𝔅(ℋ0) is normal, 

(ii) 𝑇𝑖 ∈ 𝐵(ℋ𝑖) is irreducible and not normal for 𝑖 ≥ 1, and 

(iii) 𝑇𝑖 ≇ 𝑇𝑗 whenever 𝑖 ≠ 𝑗. 

Then 0ℋ0⊕ (⊕𝑖=1
∞ 𝒦(ℋ𝑖)) ⊂ 𝐶

∗(𝑇). Moreover, if 𝑁 is absent, then  

𝐶∗(𝑇) ∩ 𝒦(ℋ) =⊕𝑖=1
∞ 𝒦(ℋ𝑖). 

Proof. For any fixed 𝑖 ≥ 1 and fixed  𝑒, 𝑓 ∈ ℋ𝑖 , it suffices to prove that 𝑓 ⊗ 𝑒 ∈ 𝐶∗(𝑇). Set 

𝐾 = 𝑇∗𝑇 − 𝑇𝑇∗. By the hypothesis, we may assume 𝐾 = 0⊕ (⊕𝑗
∞ 𝐾𝑗), where 𝐾𝑗 ∈

𝒦(ℋ𝑗) for 𝑗 ≥ 1. It is obvious that 𝐾𝑗 ≠ 0 for all 𝑗 ≥ 1 since 𝑇𝑗 is not normal. There exist 

nonzero 𝑒1, 𝑓1 ∈ ℋ𝑖 such that 𝐾𝑖𝑒1 = 𝑓1. We may assume that  ‖𝑓1‖ = 1. 

Set 𝐴 =⊕𝑖=1
∞ 𝑇𝑗. Since each  𝑇𝑗 is irreducible and 𝑇𝑗1 ≇ 𝑇𝑗2   for  𝑗1 ≠ 𝑗2, it follows 

from Lemma (5.2.15) that each operator commuting with both 𝐴 and 𝐴∗ has the form 

⊕𝑗=1
∞ 𝜆𝑗𝐼𝑗, where 𝐼𝑗 is the identity operator on  ℋ𝑗. Moreover, we have 
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 𝑊∗(𝐴2) =∏𝔅(ℋ𝑗)

∞

𝑗=1

. 

So 𝑓 ⊗ 𝑒 ∈ 𝑊∗(𝐴) and, by the von Neumann Double Commutant Theorem, we have 𝑓 ⊗
𝑓1, 𝑒1⊗ 𝑒, 𝑓 ⊗ 𝑒 ∈ 𝐶∗(𝐴)̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝑂𝑇. Here SOT denotes the strong operator topology. Using the 

Kaplansky Density Theorem [238, Thm.I.7.3, Rem.I.7.4], we can choose polynomials {𝑝𝑁(·
,·)} and {𝑞𝑁(·,·)} in two free variables so that  

𝑝𝑛(𝐴
∗, 𝐴)

𝑆𝑂𝑇
→  𝑓 ⊗ 𝑓1, 𝑞𝑛(𝐴

∗, 𝐴)
𝑆𝑂𝑇
→  𝑒1⊗ 𝑒. 

Since ⊕𝑗=1
∞ 𝐾𝑗 is compact, we obtain 

 𝑝𝑛(𝐴
∗, 𝐴)(⊕𝑗=1

∞ 𝐾𝑗)𝑞𝑛(𝐴
∗, 𝐴)  

  ‖·‖  
→   𝑓 ⊗ 𝑒. 

Moreover, we obtain  

𝑝𝑛(𝑇
∗, 𝑇)𝐾𝑞𝑛(𝑇

∗, 𝑇) = [
0 0
0 𝑝𝑛(𝐴

∗, 𝐴)(⊕ 𝐾𝑖)𝑞𝑛(𝐴
∗, 𝐴)

]  
 ‖·‖ 
→  [

0 0
0 𝑓 ⊗ 𝑒

] , 

which completes the proof. 

Recall that an operator is said to be completely reducible if it does not admit any 

minimal reducing subspace [242]. 

Lemma (5.2.17)[452]: If an essentially normal operator 𝑇  is completely reducible, then 𝑇2 
is normal. 

Proof. Assume that  𝑇 ∈ 𝔅(ℋ). Since 𝑇 is completely reducible, by [242, Lem. 2.5], we 

have 𝐶∗(𝑇) ∩ 𝒦(ℋ) = {0}. Noting that 𝑇 is essentially normal, we obtain 𝑇∗𝑇 − 𝑇𝑇∗ ∈
𝐶∗(𝑇) ∩ 𝒦(ℋ). Thus 𝑇∗𝑇 − 𝑇𝑇∗ = 0.  

If 𝑑 is a cardinal number and  ℋ is a Hilbert space, let ℋ(𝑑)denote the direct sum of  

ℋ with itself  𝑑 times. If  𝐴 ∈ 𝔅(ℋ), 𝐴(𝑑) is the direct sum of 𝐴2 with itself 𝑑 times. 

Lemma (5.2.18)[452]: ([242, Prop. 2.4]). Each operator 𝑇 ∈ 𝔅(ℋ) is unitarily equivalent 

to an operator of the form  

𝑇0⊕ (⊕𝑖∈𝛤 𝑇𝑖
(𝑛𝑖)) , 

where 𝑇0 is completely reducible, each 𝑇𝑖 is irreducible and 𝑇𝑖 ≇ 𝑇𝑗 for 𝑖, 𝑗 ∈ 𝛤 with 𝑖 ≠ 𝑗. 

Lemma (5.2.19)[452]: [252, Prop. 2.3]. Let 𝑇 ∈ 𝔅(ℋ) and 𝑇 = 𝑇0⊕ (⊕𝑖∈𝛤 𝑇𝑖
(𝑛𝑖)), where 

𝑇0 is completely reducible, 𝑇𝑖 is irreducible and 1 ≤ 𝑛𝑖 ≤ ∞  for 𝑖 ∈ 𝛤; moreover, 𝑇𝑖 ≇ 𝑇𝑗 

whenever 𝑖, 𝑗 ∈ 𝛤 and 𝑖 ≠ 𝑗. Then each reducing subspace ℳ of 𝑇 has the form of  ℳ0⊕

(⊕𝑖∈𝛤ℳ𝑖), where ℳ0 is a reducing subspace of  𝑇0 and 𝑀𝑖 is a reducing subspace of  𝑇𝑖
(𝑛𝑖) 

for 𝑖 ∈ 𝛤. 

Lemma (5.2.20)[452]: ([252, Lem. 2.6]). Let 𝑇 = 𝐴(𝑛), where 𝐴 ∈ 𝔅(ℋ) is irreducible and 

1 ≤ 𝑛 ≤ ∞. If  ℳ is a nonzero reducing subspace of  𝑇, then 𝑇|ℳ ≅ 𝐴 if and only if  𝑇|ℳ 

is irreducible. 

Lemma (5.2.21)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. Then 𝑇𝑎𝑏𝑛𝑜𝑟 is unitarily 

equivalent to an operator of the form 

⊕𝑖∈𝛤 𝑇𝑖
(𝑛𝑖), 

where each  𝑇𝑖 is irreducible, not normal and 𝑇𝑖 ≇ 𝑇𝑗 for 𝑖, 𝑗 ∈ 𝛤 with 𝑖 ≠ 𝑗. Moreover, 𝑇𝑠 is 

the restriction of   𝑇𝑎𝑏𝑛𝑜𝑟 to a reducing subspace and 

𝑇𝑠 ≅⊕𝑖∈𝛤0
𝑇𝑖
(𝑛𝑖), 
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where 𝛤0 = {𝑖 ∈ 𝛤: 𝑇𝑖 is not almost normal}. 
Proof. By Lemma (5.2.18), 𝑇𝑎𝑏𝑛𝑜𝑟 is unitarily equivalent to an operator of the form  

𝑇0⊕ (⊕𝑖∈𝛤 𝑇𝑖
(𝑛𝑖)) , 

 where 𝑇0 ∈ 𝔅(ℋ0) is completely reducible, each 𝑇𝑖 ∈ 𝔅(ℋ𝑖) is irreducible and 𝑇𝑖 ≇ 𝑇𝑗 for 

 𝑖, 𝑗 ∈ 𝛤 with 𝑖 ≠ 𝑗. Note that 𝑇𝑖 is abnormal for 𝑖 ∈ 𝛤. Since 𝑇0 is completely reducible and 

essentially normal, it follows from Lemma (5.2.17) that 𝑇0 is normal. Note that 𝑇𝑎𝑏𝑛𝑜𝑟 is 

abnormal; so  𝑇0 is absent. Then 𝑇𝑎𝑏𝑛𝑜𝑟 ≅⊕𝑖∈𝛤 𝑇𝑖
(𝑛𝑖). For convenience we directly assume 

that  𝑇𝑎𝑏𝑛𝑜𝑟 =⊕𝑖∈𝛤 𝑇𝑖
(𝑛𝑖). Thus 

 𝑇 = 𝑇𝑛𝑜𝑟⊕ (⊕𝑖∈𝛤 𝑇𝑖
(𝑛𝑖)) . 

By definition, it is obvious that ⊕𝑖∈𝛤0 ℋ𝑖
(𝑛𝑖) ⊂ ℋ𝑠 . On the other hand, if ℳ is a m.r.s. 

of  𝑇 and  𝑇|ℳ is not almost normal, then, by Lemmas (5.2.19) and (5.2.20), there exists 

𝑖0 ∈ 𝛤 such that ℳ ⊂ ℋ
𝑖0

(𝑛𝑖0) and 𝑇|ℳ ≅ 𝑇𝑖0. So  𝑇𝑖0 is not almost normal and ℋ
𝑖0

(𝑛𝑖0) ⊂

 ⊕𝑖∈𝛤0
ℋ𝑖
(𝑛𝑖). Thus ℳ ⊂ ⊕𝑖∈𝛤0

ℋ𝑖
(𝑛𝑖). Furthermore we obtain ℋ𝑠 ⊂ ⊕𝑖∈𝛤0

ℋ𝑖
(𝑛𝑖). 

Therefore  ℋ𝑠 =⊕𝑖∈𝛤0 ℋ𝑖
(𝑛𝑖). 

Corollary (5.2.22)[452]: If  𝑇 ∈ 𝔅(ℋ) is essentially normal, then  𝑇 = 𝑇𝑠 if and only if 

 𝑇  is the direct sum of a family of essentially normal operators which are irreducible and 

not almost normal.  

Proposition (5.2.23)[452]: An essentially normal operator 𝑇 is of type 𝐶 if and only if  𝑇 is 

unitarily equivalent to an operator of the form  

⊕1≤𝑖<𝜐 (𝐴𝑖⨁𝐵𝑖)
(𝑛𝑖), 1 ≤ 𝑛𝑖 < ∞, 

where (i) 𝜐 ∈ ℕ or  𝜐 = ∞, {𝐴𝑖 , 𝐵𝑖: 1 ≤ 𝑖 < 𝜐} are irreducible and no two of them are 

unitarily equivalent, (ii) 𝐴𝑖 is not almost normal and there exists compact 𝐾𝑖 such that 𝐴𝑖 +
𝐾𝑖 is a transpose of  𝐵𝑖 for each 𝑖, and (iii) ‖𝐾𝑖‖ → 0 if  𝜐 = ∞. 

Proof.“⟸”. Assume that 𝐴𝑖 , 𝐵𝑖 ∈ 𝔅(ℋ𝑖) for 1 ≤ 𝑖 < 𝜐. Denote ℋ =⊕1≤𝑖<𝜐ℋ𝑖
(𝑛𝑖) and 

𝐴 =⊕1≤𝑖<𝜐  𝐴𝑖
(𝑛𝑖),       𝐵 =⊕1≤𝑖<𝜐 𝐵𝑖

(𝑛𝑖). 

Then 𝐴, 𝐵 ∈ 𝔅(ℋ) are essentially normal and 𝑇 ≅ 𝐴⊕ 𝐵. For convenience we directly 

assume that 𝑇 = 𝐴⊕ 𝐵 and  𝜐 = ∞. 

Since {𝐴𝑖, 𝐵𝑖: 1 ≤ 𝑖 < 𝜐} are irreducible, not normal and no two of them are unitarily 

equivalent, it follows from Corollary (5.2.16) that 

                    𝐶∗(𝐴) ∩ 𝒦(ℋ) =⊕1≤𝑖<𝜐 𝒦(ℋ𝑖)
(𝑛𝑖) = 𝐶∗(𝐵) ∩𝒦(ℋ).               (4)  

Moreover, if  ℳ is a m.r.s. of  𝑇, then, by Lemmas (5.2.19) and (5.2.20), there exists unique 

𝑖0 with 1 ≤ 𝑖0 < 𝜐 such that exactly one of  the following holds 

 𝑇|ℳ ≅ 𝐴𝑖0 , 𝑇|ℳ ≅ 𝐵𝑖0 . 

It follows that 𝐴, 𝐵 are disjoint; moreover, 𝑇|ℳ is not almost normal. Thus, by Corollary 

(5.2.22), 𝑇 = 𝑇𝑠. 
By statement (ii), for each 1 ≤ 𝑖 < 𝜐, we can find a conjugation 𝐶𝑖 on  ℋ𝑖 so that 

𝐴𝑖 + 𝐾𝑖 = 𝐶𝑖𝐵𝑖
∗𝐶𝑖. 

Set                                       𝐾 =⊕1≤𝑖<𝜐 𝐾𝑖
(𝑛𝑖), 𝐶 =⊕1≤𝑖<𝜐 𝐶𝑖

(𝑛𝑖). 

Then 𝐶 is a conjugation on ℋ and, by (4),  𝐾 ∈ 𝐶∗(𝐴) ∩𝒦(ℋ), since ‖𝐾𝑗‖ → 0; moreover,           

                                                                𝐶𝐵∗𝐶 = 𝐴 + 𝐾. 
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On the other hand, since {𝐵𝑖} are irreducible, not normal and no two of them are 

unitarily equivalent, so are {𝐴𝑖 + 𝐾𝑖}. It follows from Corollary (5.2.16) that  

𝐶∗(𝐴 + 𝐾) ∩𝒦(ℋ) =⊕1≤𝑖<𝜐 𝒦(ℋ𝑖)
(𝑛𝑖) = 𝐶∗(𝐴) ∩𝒦(ℋ). 

“⟹”. Now assume that 𝑇 = 𝑇𝑠 and  𝑇 = 𝐴 ⊕ 𝐵, where 𝐴, 𝐵 ∈ 𝔅(ℋ) satisfy 

conditions (a), (b) and (c) in Definition (5.2.13). Since  𝑇 = 𝑇𝑠, it follows that  𝐴 = 𝐴𝑠. 
Then, by Corollary (5.2.22), we may assume that 

 𝐴 = ⊕𝑖∈𝛤 𝐴𝑖
(𝑛𝑖), 1 ≤ 𝑛𝑖 < ∞, 

where each 𝐴𝑖 ∈ 𝔅(ℋ𝑖) is irreducible, not almost normal and 𝐴𝑖 ≇ 𝐴𝑗 whenever 𝑖 ≠ 𝑗. By 

Corollary (5.2.16), we have  

 𝐶∗(𝐴) ∩ 𝒦(ℋ) = ⊕𝑖∈𝛤 𝒦(ℋ𝑖)
(𝑛𝑖).  

Then 𝐾 can be written as  

𝐾 = ⊕𝑖∈𝛤 𝐾𝑖
(𝑛𝑖), 

where 𝐾𝑖 ∈ 𝒦(ℋ𝑖) for 𝑖 ∈ 𝛤, and ‖𝐾𝑖‖ → 0 if 𝛤 is infinite. Since 𝐶∗(𝐴) ∩ 𝒦(ℋ) =
𝐶∗(𝐴) ∩𝒦(ℋ) is an ideal of 𝐶∗(𝐵), 𝐵 can be written as 

  

𝐵 = ⊕𝑖∈𝛤 𝐸𝑖
(𝑛𝑖), 

moreover, this means that 𝒦(ℋ𝑖) ⊂ 𝐶
∗(𝐸𝑖),     𝐸𝑖 is irreducible and 𝐸𝑖 ≇ 𝐸𝑗 whenever 𝑖 ≠

𝑗. Since 𝐴, 𝐵 are disjoint, we deduce that no two of {𝐴𝑖,  𝐸𝑖 ∶ 𝑖 ∈ 𝛤} are unitarily equivalent. 

 That  𝐴 + 𝐾 =⊕𝑖∈𝛤 (𝐴𝑖 + 𝐾𝑖)
(𝑛𝑖) and 𝐶∗(𝐴 + 𝐾) ∩ 𝒦(ℋ) = 𝐶∗(𝐴) ∩ 𝒦(ℋ). As 

we have done to  𝐵, we can also deduce that {𝐴𝑖 + 𝐾𝑖} are irreducible and no two of them 

are unitarily equivalent. 

By the hypothesis, 𝐴 + 𝐾 is a transpose of 𝐵 Thus ⊕𝑖∈𝛤 (𝐴𝑖 + 𝐾𝑖)
(𝑛𝑖) and 

⊕𝑖∈𝛤 (𝐸𝑖
𝑡)(𝑛𝑖) are unitarily equivalent, and their m.r.s.’s correspond one to one. Then, by 

Lemmas (5.2.19) and (5.2.20), there exists a bijective map 𝜏: 𝛤 → 𝛤 such that 𝐴𝑖 + 𝐾𝑖 ≅
𝐸𝜏(𝑖)
𝑡  and 𝑛𝑖 = 𝑛𝜏(𝑖) for all 𝑖 ∈ 𝛤. For each 𝑖 ∈ 𝛤, set 𝐵𝑖 = 𝐸𝜏(𝑖). Then, up to unitary 

equivalence, 𝐴𝑖 + 𝐾𝑖 is a transpose of  𝐵𝑖 for each 𝑖 ∈ 𝛤.  

Lemma (5.2.24)[452]: Let ℋ =⊕𝑖∈𝛤ℋ𝑖 and 𝐴 ∈ 𝔅(ℋ) with  𝐴 =⊕𝑖∈𝛤 𝐴𝑖, where 𝐴𝑖 ∈
𝔅(ℋ𝑖) for 𝑖 ∈ 𝛤. If 𝐵 ∈ 𝔅(ℋ) and 𝐶∗(𝐴) = 𝐶∗(𝐵), then there exist 𝐵𝑖 ∈ 𝔅(ℋ𝑖), 𝑖 ∈ 𝛤, 
such that  𝐵 =⊕𝑖∈𝛤 𝐵𝑖  and 

(i) for any subset 𝛤0 of 𝛤, 𝐶∗(⊕𝑖∈𝛤0
𝐴𝑖) = 𝐶

∗(⊕𝑖∈𝛤0
𝐵𝑖), 

(ii) for each 𝑖 ∈ 𝛤, the reducing subspaces of 𝐴𝑖 coincide with that of  𝐵𝑖, 
(iii) for each 𝑖 ∈ 𝛤, 𝐴𝑖 is irreducible if and only if 𝐵𝑖 is irreducible, 

(iv) for any 𝑖, 𝑗 ∈ 𝛤, 𝐴𝑖 ≅ 𝐴𝑗 if and only if  𝐵𝑖 ≅ 𝐵𝑗. 

Proof. Since 𝐶∗(𝐴) = 𝐶∗(𝐵), it is clear that 𝐵2 has the form 𝐵 =⊕𝑖∈𝛤 𝐵𝑖, where 𝐵𝑖 ∈
𝔅(ℋ𝑖) for  𝑖 ∈ 𝛤. Statement (i) is also clear. 

(ii) By (i), we have 𝐶∗(𝐴𝑖) = 𝐶
∗(𝐵𝑖). Thus 𝐶∗(𝐴𝑖)

′ = 𝐶∗(𝐵𝑖)
′ and the assertion holds. 

(iii) This follows immediately from (ii). 

(iv) We directly assume 𝑖 ≠ 𝑗. By (i), we have 𝐶∗(𝐴𝑖⊕𝐴𝑗) = 𝐶
∗(𝐵𝑖⊕𝐵𝑗). If 𝐴𝑖 ≅ 𝐴𝑗, 

then there exists unitary operator 𝑈:ℋ𝑗 → ℋ𝑖 such that 𝐴𝑗 = 𝑈
∗𝐴𝑖𝑈. Then, for any 

polynomial 𝑝(·,·) in two free variables, we have 𝑝(𝐴𝑗
∗, 𝐴𝑗) = 𝑈

∗𝑝(𝐴𝑖
∗, 𝐴𝑖)𝑈. It follows 

immediately that each operator in 𝐶∗(𝐴𝑖⊕𝐴𝑗) has the form 𝑋 ⊕ 𝑈∗𝑋𝑈, where 𝑋 ∈ 𝐶∗(𝐴𝑖). 
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Sine 𝐵𝑖⊕𝐵𝑗 ∈ 𝐶
∗(𝐴𝑖⊕𝐴𝑗), we obtain 𝐵𝑗 = 𝑈

∗𝐵𝑖𝑈, that is, 𝐵𝑖 ≅ 𝐵𝑗. Thus  𝐴𝑖 ≅ 𝐴𝑗 

implies 𝐵𝑖 ≅ 𝐵𝑗. Likewise, one can see the converse. 

Lemma (5.2.25)[452]: Let 𝑇, 𝑅 ∈ 𝔅(ℋ) be essentially normal. If  𝐶∗(𝑇) = 𝐶∗(𝑅), then 

(i)  𝑇𝑠 is absent if and only if  𝑅𝑠 is absent, and 

(ii) 𝐶∗(𝑇𝑠) = 𝐶
∗(𝑅𝑠). 

Proof. In view of  Lemma (5.2.21), we may assume that  

 𝑇 = 𝑇𝑛𝑜𝑟 ⊕ (⊕𝑖∈𝛤 𝑇𝑖
(𝑛𝑖)) , 1 ≤ 𝑛𝑖 < ∞,  

where 𝑇𝑛𝑜𝑟 ∈ 𝔅(ℋ0),   𝑇𝑖 ∈ 𝔅(ℋ𝑖) is irreducible and not normal for 𝑖 ∈ 𝛤; moreover, 𝑇𝑖 ≇
𝑇𝑗 whenever 𝑖 ≠ 𝑗. Since 𝐶∗(𝑇) = 𝐶∗(𝑅), 𝑅 can be written as 

𝑅 = 𝑅0⊕ (⊕𝑖∈𝛤  𝑅𝑖
(𝑛𝑖)) , 

where 𝑅0 ∈ 𝔅(ℋ0) and 𝑅𝑖 ∈ 𝔅(ℋ𝑖) for 𝑖 ∈ 𝛤. Thus 𝐶∗(𝑅0) = 𝐶
∗(𝑇𝑛𝑜𝑟) and 𝐶∗(𝑅𝑖) =

𝐶∗(𝑇𝑖) for 𝑖 ∈ 𝛤. Then 𝑅0 is normal; moreover, by Lemma (5.2.24), each 𝑅𝑖 is irreducible, 

not normal and 𝑅𝑖 ≇ 𝑅𝑗whenever 𝑖 ≠ 𝑗. For each 𝑖 ∈ 𝛤, we note that 𝑅𝑖 is almost normal if 

and only if  𝑇𝑖 is almost normal. 

Denote 𝛤0 = {𝑖 ∈ 𝛤: 𝑇𝑖is notalmostnormal}. Then 𝛤0 = {𝑖 ∈ 𝛤: 𝑅𝑖 is notalmostnormal}. 
Thus, by Lemma (5.2.21),  

𝑇𝑠 = ⊕𝑖∈𝛤0 𝑇𝑖
(𝑛𝑖), 𝑅𝑠 = ⊕𝑖∈𝛤0 𝑅𝑖

(𝑛𝑖) . 

From 𝐶∗(𝑇) = 𝐶∗(𝑅), we deduce that 𝐶∗(𝑇𝑠) = 𝐶
∗(𝑅𝑠). This completes the proof.  

Lemma (5.2.26)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal and 𝑇 =⊕𝑖=1
∞ 𝐴𝑖, where 𝐴𝑖 ∈

𝔅(ℋ𝑖) for  𝑖 ≥ 1. Assume that 𝐵𝑖 ∈ 𝔅(ℋ𝑖) is a transpose of  𝐴𝑖 for 𝑖 ≥ 1. If 𝑝(𝑧1, 𝑧2) is a 

polynomial in two free variables, then there exists ⊕𝑖=1
∞ 𝐾𝑖 ∈ ⊕𝑖=1

∞ 𝒦(ℋ𝑖) such that 

𝑝(𝐵𝑖
∗, 𝐵𝑖) + 𝐾𝑖 is a transpose of 𝑝(𝐴𝑖

∗, 𝐴𝑖) for 𝑖 ≥ 1. 

Proof. By the hypothesis, there exist conjugations {𝐶𝑖}𝑖=1
∞  such that 𝐵𝑖 = 𝐶𝑖𝐴𝑖

∗𝐶𝑖, 𝑖 ≥ 1. Set 

 𝐸𝑖 = 𝐴𝑖
∗𝐴𝑖 − 𝐴𝑖𝐴𝑖

∗ for 𝑖 ≥ 1. Since 𝑇 is essentially normal, we have 𝑇∗𝑇 − 𝑇𝑇∗ =
⊕𝑖=1
∞  𝐸𝑖 ∈ 𝒦(ℋ). So  𝐸𝑖 ∈ 𝒦(ℋ𝑖) for 𝑖 ≥ 1 and ‖ 𝐸𝑖‖ → 0. 

For convenience, we assume that 𝑝(𝑧1, 𝑧2) = 𝑧1𝑧2𝑧1. The proof in general case is similar. 

Compute to see that  

𝐶𝑖𝑝(𝐴𝑖
∗, 𝐴𝑖)

∗𝐶𝑖 = 𝐶𝑖𝐴𝑖𝐴𝑖
∗ 𝐴𝑖𝐶𝑖 = 𝐵𝑖

∗𝐵𝑖𝐵𝑖
∗ 

                                                                  = 𝐵𝑖
∗(𝐵𝑖𝐵𝑖

∗)𝐵𝑖
∗ − 𝐵𝑖

∗(𝐵𝑖
∗𝐵𝑖)𝐵𝑖

∗ + 𝐵𝑖
∗(𝐵𝑖

∗𝐵𝑖)𝐵𝑖
∗ 

                                                                 = 𝐵𝑖
∗(𝐵𝑖𝐵𝑖

∗ − 𝐵𝑖
∗𝐵𝑖)𝐵𝑖

∗ + 𝑝(𝐵𝑖
∗, 𝐵𝑖)  

                                                                 = 𝐵𝑖
∗(𝐶𝑖 𝐸𝑖𝐶𝑖)𝐵𝑖

∗ + 𝑝(𝐵𝑖
∗, 𝐵𝑖). 

Set 𝐾𝑖 = 𝐵𝑖
∗(𝐶𝑖𝐸𝑖𝐶𝑖)𝐵𝑖

∗. So 𝐾𝑖 is compact and 𝑝(𝐵𝑖
∗, 𝐵𝑖) + 𝐾𝑖 is a transpose of 𝑝(𝐴𝑖

∗, 𝐴𝑖); 
moreover, we have 

 ‖𝐾𝑖‖ ≤ ‖𝐵𝑖‖ ·  ‖𝐸𝑖‖ = ‖𝐴𝑖‖ ·  ‖ 𝐸𝑖‖ ≤ ‖𝑇‖ ·  ‖ 𝐸𝑖‖ →  0. 
Hence  ⊕𝑖=1

∞ 𝐾𝑖 ∈ ⊕𝑖=1
∞ 𝒦(ℋ𝑖). This completes the proof.  

Proposition (5.2.27)[452]: Let 𝑇 ∈ 𝔅(ℋ)be essentially normal and  

𝑇 =⊕𝑗=1
∞ (𝐴𝑗⊕𝐵𝑗), 

where 𝐴𝑗, 𝐵𝑗 ∈ 𝔅(ℋ𝑗) and 𝐵𝑗 is a transpose of 𝐴𝑗 for 𝑗 ≥ 1. Then each operator 𝑅 ∈ 𝐶∗(𝑇) 

can be written as 𝑅 =⊕𝑖=1
∞ (𝐹𝑗⊕𝐺𝑗), where 𝐺𝑗 ∈ 𝔅(ℋ𝑗) is a compact perturbation of some 

transpose 𝐹𝑗
𝑡  of  𝐹𝑗

2 and ‖𝐺𝑗 − 𝐹𝑗
𝑡‖ → 0.  

Proof. Since 𝐵𝑗 is a transpose of 𝐴𝑗, there exists a conjugation 𝐶𝑗 such that 𝐵𝑗 = 𝐶𝑗𝐴𝑗
∗𝐶𝑗. 

Assume that {𝑝𝑛}𝑛=1
∞  are polynomials in two free variables and 𝑝𝑛(𝑇

∗, 𝑇) → 𝑅. Note that 
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⊕𝑗=1
∞ 𝐴𝑗 is essentially normal. Then, by Lemma (5.2.26), for each 𝑛 ≥ 1, there exist 

compact operators {𝐾𝑗,𝑛}𝑗≥1 such that  

𝑝𝑛(𝐵𝑗
∗, 𝐵𝑗) + 𝐾𝑗,𝑛 = 𝐶𝑗𝑝𝑛(𝐴𝑗

∗, 𝐴𝑗)
∗𝐶𝑗 

and ‖𝐾𝑗,𝑛‖ → 0 as 𝑗 → ∞. Then ⊕𝑗=1
∞ 𝐾𝑗,𝑛 is compact for each 𝑛 ≥ 1. 

Note that 𝑝𝑛(𝑇
∗, 𝑇) → 𝑅 as 𝑛 → ∞ and  

𝑝𝑛(𝑇
∗, 𝑇) =⊕𝑗=1

∞ (𝑝𝑛(𝐴𝑗
∗, 𝐴𝑗) ⊕ 𝑝𝑛(𝐵𝑗

∗, 𝐵𝑗)) , 𝑛 ≥  1. 

Then ⊕𝑗=1
∞ 𝑝𝑛(𝐴𝑗

∗, 𝐴𝑗) converges to an operator of the form ⊕𝑗=1
∞ 𝐹𝑗 and ⊕𝑗=1

∞ 𝑝𝑛(𝐵𝑗
∗, 𝐵𝑗) 

converges to an operator of the form ⊕𝑗=1
∞ 𝐺𝑗 as 𝑛 → ∞. Then 

 ⊕𝑗=1
∞ 𝐶𝑗𝑝𝑛(𝐴𝑗

∗, 𝐴𝑗)
∗𝐶𝑗⟶⊕𝑗=1

∞ 𝐶𝑗𝐹𝑗
∗𝐶𝑗. 

So, as 𝑛 → ∞, we have  

⊕𝑗=1
∞ 𝐾𝑗,𝑛 =⊕𝑗=1

∞ (𝐶𝑗𝑝𝑛(𝐴𝑗
∗, 𝐴𝑗)

∗𝐶𝑗 − 𝑝𝑛(𝐵𝑗
∗, 𝐵𝑗)) ⟶⊕𝑗=1

∞ (𝐶𝑗𝐹𝑗
∗𝐶𝑗 − 𝐺𝑗). 

For each 𝑛 ≥ 1, note that ⊕𝑗=1
∗ 𝐾𝑗,𝑛 is compact. Thus their norm limit ⊕𝑗=1

∞ (𝐶𝑗𝐹𝑗
∗𝐶𝑗 − 𝐺𝑗) 

is also compact. Hence 𝐶𝑗𝐹𝑗
∗𝐶𝑗 − 𝐺𝑗   is compact for each 𝑗 and ‖𝐶𝑗𝐹𝑗

∗𝐶𝑗 − 𝐺𝑗‖ → 0 as 𝑗 →

∞. Note that 𝑅 = 𝑙𝑖𝑚𝑛𝑝𝑛(𝑇
∗, 𝑇) =⊕𝑗=1

∞ (𝐹𝑗⊕𝐺𝑗). This completes the proof. 

Now we are going to give the proof for the necessity of Theorem (5.2.14). 

Proof for the necessity of Theorem (5.2.14) Assume that 𝑅 ∈ 𝔅(ℋ) is complex symmetric 

and 𝐶∗(𝑇) = 𝐶∗(𝑅). Also we assume that 𝑇𝑠 is not absent. Then, by Lemma (5.2.25), 𝑅𝑠 is 

not absent. Since 𝑇 is essentially normal, so is 𝑅. By Lemma (5.2.10), 𝑅𝑎𝑏𝑛𝑜𝑟 is complex 

symmetric. By [251, Thm. 2.8], 𝑅𝑎𝑏𝑛𝑜𝑟 is a direct sum of irreducible 𝐶𝑆𝑂𝑠 and operators 

with form of 𝑍 ⊕ 𝑍𝑡 , where 𝑍 is irreducible and not complex symmetric. Note that each 

essentially normal 𝐶𝑆𝑂 is almost normal. Then, up to unitary equivalence, we may assume 

that 

                    𝑅 = 𝑁⊕ (⊕𝑖∈𝛤1  𝑅𝑖
(𝑚𝑖))⊕ (⊕𝑗∈𝛤2 (𝐴𝑗⊕𝐵𝑗)

(𝑛𝑗)) ,             (5)  

where 

(i) 𝑁 = 𝑅𝑛𝑜𝑟   is normal, {𝑅𝑖, 𝐴𝑗, 𝐵𝑗: 𝑖 ∈ 𝛤1, 𝑗 ∈ 𝛤2} are irreducible operators and no 

two of them are unitarily equivalent; 

(ii)  each 𝑅𝑖 is almost normal and not normal; 

(iii)   𝐴𝑗 is not almost normal and 𝐵𝑗 is a transpose of  𝐴𝑗 for 𝑗 ∈ 𝛤2. 

Note that each of {𝑅𝑖 , 𝐴𝑗, 𝐵𝑗: 𝑖 ∈ 𝛤1, 𝑗 ∈ 𝛤2} is abnormal. Since 𝑅 is essentially normal, it 

follows that 1 ≤ 𝑚𝑖, 𝑛𝑗 < ∞ for all 𝑖, 𝑗.  

We assume that 𝑁 ∈ 𝔅(ℋ0), 𝑅𝑖 ∈ 𝔅(ℋ1,𝑖) and 𝐴𝑗, 𝐵𝑗 ∈ 𝔅(ℋ2,𝑗) for 𝑖 ∈ 𝛤1 and 𝑗 ∈ 𝛤2. 

Hence  

                ℋ = ℋ0⊕ (⊕𝑖∈𝛤1 ℋ1,𝑖
(𝑚𝑖)) ⊕ (⊕𝑗∈𝛤2 (ℋ2,𝑗⊕ℋ2,𝑗)

(𝑛𝑗)) .              (6) 

Since 𝐶∗(𝑇) = 𝐶∗(𝑅), in view of  Lemma (5.2.24), 𝑇 can be written as 

                      𝑇 = 𝐷 ⊕ (⊕𝑖∈𝛤1
𝐸𝑖
(𝑚𝑖)) ⊕ (⊕𝑗∈𝛤2

 (𝐹𝑗⊕  𝐺𝑗)
(𝑛𝑗))           (7)  

with respect to the decomposition (6); moreover, by statements (i)–(ii), we have 

(v) 𝐷 is normal, {𝐸𝑖 , 𝐹𝑗, 𝐺𝑗: 𝑖 ∈ 𝛤1 , 𝑗 ∈ 𝛤2} are irreducible operators and no two of them 

are unitarily equivalent; 

(vi) each 𝐸𝑖 is almost normal and not normal for 𝑖 ∈ 𝛤1; 

(vii) 𝐹𝑗 ,  𝐺𝑗 are essentially normal and not almost normal for 𝑗 ∈ 𝛤2. 
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By Lemma (5.2.21), we have 𝑇𝑠 =⊕𝑗∈𝛤2
(𝐹𝑗⊕𝐺𝑗)

(𝑛𝑗). On the other hand, note that  

⊕𝑗∈𝛤2
(𝐹𝑗⊕𝐺𝑗) ∈ 𝐶

∗(⊕𝑗∈𝛤2
(𝐴𝑗⊕𝐵𝑗)). 

It follows from Proposition (5.2.27) that 𝐺𝑗 is a compact perturbation of a transpose 𝐹𝑗
𝑡  of 

𝐹𝑗 for 𝑗 ∈ 𝛤2, and ‖𝐺𝑗 − 𝐹𝑗
𝑡‖ → 0 if 𝛤2 is infinite. By Proposition (5.2.23), 𝑇𝑠 is of type 𝐶. 

This proves the necessity.  

To give the proof for the sufficiency of Theorem (5.2.14), we need to prove several 

approximation results. 

Lemma (5.2.28)[452]: ([255, Lem.3.2.6]). Let 𝑇 ∈ 𝔅(ℋ) and suppose that ∅ ≠ 𝛥 ⊂
𝜎𝑙𝑟𝑒(𝐾). Then, given 𝜀 > 0, there exists a compact operator 𝐾 with ‖𝐾‖ < 𝜀 such that 

𝑇 + 𝐾 = [
𝑁 ∗
0 𝐴

]
ℋ1
ℋ2
, 

where 𝑁 is a diagonal normal operator of uniformly infinite multiplicity, 𝜎(𝑁) = 𝜎𝑙𝑟𝑒(𝑁) =
�̅�, 𝜎(𝑇) = 𝜎(𝐴) and 𝛬(𝑇) = 𝛬(𝐴). 
Corollary (5.2.29)[452]: Let 𝑇 ∈ 𝔅(ℋ) and suppose that 𝜆 ∈ 𝜎𝑙𝑟𝑒(𝑇). Then, given 𝜀 > 0, 

there exists a compact operator 𝐾 with ‖𝐾‖ < 𝜀 such that 

  

𝑇 + 𝐾 = [
𝜆 ∗
0 𝐴2

]
ℂ𝑒
{𝑒}⊥

, 

where 𝑒 ∈ ℋ is a unit vector and 𝐴 ∈ 𝐵({𝑒}⊥) satisfies 𝜎(𝑇) = 𝜎(𝐴). 
Proof. By Lemma (5.2.28), there exists 𝐾 ∈ 𝒦(ℋ) with ‖𝐾‖ < 𝜀 such that 

𝑇 + 𝐾 = [
𝜆𝐼1 ∗
0 𝐴0

]
ℋ1
ℋ2
, 

 where ℋ1⊕ℋ2 = ℋ, 𝑑𝑖𝑚ℋ1 = ∞, 𝐼1  is the identity operator on ℋ1and 𝐴0 ∈ 𝔅(ℋ2) 
satisfies 𝜎(𝐴0) = 𝜎(𝑇). Choose a unit vector 𝑒 ∈ ℋ1. Then 𝑇 + 𝐾 can be written as 

𝑇 + 𝐾 = [
𝜆 0 𝐸
0 𝜆𝐼2 𝐹
0 0 𝐴0

]
ℂ𝑒

ℋ1⊖ℂ𝑒
ℋ2

, 

where 𝐼2 is the identity operator on ℋ1⊖ℂ𝑒. Set 

𝐴 = [
𝜆𝐼2 𝐹
0 𝐴0

]
ℋ1⊖ℂ𝑒
ℋ2

. 

Since 𝜆 ∈ 𝜎(𝑇) = 𝜎(𝐴0), it follows that 𝜎(𝐴) = 𝜎(𝑇). Noting that 

 𝑇 + 𝐾 = [
𝜆 ∗
0 𝐴

]
ℂ𝑒

ℋ⊖ ℂ𝑒
, 

we conclude the proof.  

Given a subset 𝛥 of ℂ, we write iso𝛥  for the set of all isolated points of 𝛥. For 𝜆 ∈ 𝐶 and 

𝜀 > 0, denote 𝐵(𝜆, 𝜀) = {𝑧 ∈ ℂ: |𝑧 − 𝜆| < 𝜀}. 
Lemma (5.2.30)[452]: Let 𝐴,𝐵 ∈ 𝔅(ℋ). Assume that 𝜆 ∈ 𝑖𝑠𝑜 𝜎(𝐴) and 𝜆 ∉ 𝜎(𝐵). Then 

there exists 𝛿 > 0 such that 

 “𝐸, 𝐹 ∈ 𝔅(ℋ), ‖𝐸‖ < 𝛿, ‖𝐹‖ < 𝛿” ⟹ “𝜎(𝐴 + 𝐸)  ≠ 𝜎(𝐵 + 𝐹)”. 
Proof. Since 𝜆 ∈ 𝑖𝑠𝑜 𝜎(𝐴) and 𝜆 ∉ 𝜎(𝐵), there exists 𝜀 > 0 such that 𝐵(𝜆, 𝜀)− ∩ 𝜎(𝐴) =
{𝜆} and 𝐵(𝜆, 𝜀)− ∩ 𝜎(𝐵) = ∅. Then, by the upper semi-continuity of spectrum (see [254, 

Thm. 1.1]), there exists 𝛿 > 0 such that 

(i) 𝐵(𝜆, 𝜀)− ∩ 𝜎(𝐴 + 𝐸) ≠ ∅ for any 𝐸 ∈ 𝔅(ℋ) with ‖𝐸‖ < 𝛿, and 

(ii) 𝐵(𝜆, 𝜀)− ∩ 𝜎(𝐵 + 𝐹) = ∅ for any 𝐹 ∈ 𝔅(ℋ) with ‖𝐹‖ < 𝛿. 
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Hence we conclude the proof.  

In the preceding lemma, 𝐴, 𝐵 can be operators acting on different separable Hilbert 

spaces. 

Lemma (5.2.31)[452]: ([253]). Given 𝑇 ∈ 𝔅(ℋ) and 𝜀 > 0, there exists 𝐾 ∈ 𝒦(ℋ) with 

‖𝐾‖ < 𝜀 such that 𝑇 + 𝐾 is irreducible. 

Lemma (5.2.32)[452]: Let {𝐴𝑖}𝑖=1
𝑛  be operators on separate Hilbert spaces with pairwise 

distinct spectra. Then, given 𝐵 ∈ 𝔅(ℋ) and 𝜀 > 0, there exists 𝐾 ∈ 𝒦(ℋ) with ‖𝐾‖ < 𝜀 
such that 𝐴𝑛+1: = 𝐵 + 𝐾  is irreducible, and {𝜎(𝐴𝑖)}𝑖=1

𝑛+1 are pairwise distinct. 

Proof. Choose a point 𝜆0  in 𝜕𝜎(𝐵) ∩ 𝜎𝑙𝑟𝑒(𝐵). By Corollary (5.2.29), there exists compact 

𝐾0 with ‖𝐾0‖ <
𝜀

2
 such that  

𝐵 + 𝐾0 = [
𝜆0 𝐸
0 𝐵0

]
ℂ𝑒
{𝑒}⊥

, 

where 𝑒 ∈ ℋ is a unit vector and 𝜎(𝐵0) = 𝜎(𝐵). 
For given 𝜀 > 0, we can choose pairwise distinct points 𝜆1, 𝜆2,···, 𝜆𝑛+1 outside 𝜎(𝐵2) 

such that 𝑠𝑢𝑝1≤𝑖≤𝑛+1|𝜆𝑖 − 𝜆0| <
𝜀

4
. For each 1 ≤ 𝑖 ≤ 𝑛 + 1, set  

𝐵𝑖 = [
𝜆𝑖 𝐸
0 𝐵0

]
ℂ𝑒
{𝑒}⊥

. 

Then ‖𝐵 + 𝐾0 − 𝐵𝑖‖ <
𝜀

4
, ∈ 𝑖𝑠𝑜 𝜎(𝐵𝑖) and 𝜆𝑗 ∉ 𝜎(𝐵𝑖) whenever 𝑖 ≠ 𝑗. By Lemma 

(5.2.31), there exist compact operators 𝐹𝑖 with ‖𝐹𝑖‖ <
𝜀

4
  such that each 𝐵𝑖 + 𝐹𝑖 is 

irreducible; moreover, by Lemma (5.2.30), we may also assume that {𝜎(𝐵𝑖 + 𝐹𝑖)}𝑖=1
𝑛+1 are 

pairwise distinct. Then there exists some 𝑖0, 1 ≤ 𝑖0 ≤ 𝑛 + 1, such that 𝜎(𝐵𝑖0 + 𝐹𝑖0) ≠

𝜎(𝐴𝑗) for 1 ≤ 𝑗 ≤ 𝑛. Set 𝐾 = 𝐹𝑖0 + 𝐵𝑖0 − 𝐵 and 𝐴𝑛+1 = 𝐵 + 𝐾. Then 𝐴𝑛+1 = 𝐵𝑖0 + 𝐹𝑖0is 

irreducible. Noting that 𝐾 = 𝐹𝑖0 + 𝐵𝑖0 − (𝐵 + 𝐾0) + 𝐾0 is compact,  

‖𝐾‖ ≤ ‖𝐹𝑖0‖ + ‖𝐵𝑖0 − (𝐵 + 𝐾0)‖ + ‖𝐾0‖ < 𝜀 

and {𝜎(𝐴𝑖)}𝑖=1
𝑛+1 are pairwise distinct, we complete the proof. 

In view of Lemma (5.2.32), the following corollary is clear. 

Corollary (5.2.33)[452]: Given a sequence {𝐴𝑖}𝑖=1
∞  of operators and 𝜀 > 0, there exist 

compact operators {𝐾𝑖}𝑖=1
∞ with 

                                          𝑠𝑢𝑝𝑖  ‖𝐾𝑖‖ <  𝜀 and 𝑙𝑖𝑚𝑖  ‖𝐾𝑖‖ = 0 
such that each 𝐴𝑖 + 𝐾𝑖 is irreducible for 𝑖 ≥ 1 and {𝜎(𝐴𝑖 + 𝐾𝑖)}𝑖=1

∞  are pairwise distinct. 

Lemma (5.2.34)[452]: Let 𝑇 ∈ 𝔅(ℋ) be normal. Then, given 𝑛 ∈ ℕ and  𝜀 > 0, there exist 

irreducible 𝐶𝑆𝑂𝑠  𝑇1, 𝑇2,···, 𝑇𝑛 ∈ 𝔅(ℋ) with pairwise distinct spectra such that 𝑇𝑖 − 𝑇 ∈
𝒦(ℋ) and ‖𝑇𝑖 − 𝑇‖ < 𝜀 for all 1 ≤ 𝑖 ≤ 𝑛. 

Proof. Choose a point 𝜆 in 𝜕𝜎(𝑇) ∩ 𝜎𝑙𝑟𝑒(𝑇). By the classical Weyl–von Neumann Theorem, 

there exists compact 𝐾 with ‖𝐾‖ <
𝜀

2
 such that 

𝑇 + 𝐾 = [
𝜆 0
0 𝑁

]
ℂ𝑒
{𝑒}⊥

 , 

where 𝑒 ∈ ℋ is a unit vector, 𝑁 is normal and 𝜎(𝑁) = 𝜎(𝑇). 
For given 𝜀 > 0, we can choose pairwise distinct points 𝜆1, 𝜆2,···, 𝜆𝑛 outside 𝜎(𝑇) such that 

𝑠𝑢𝑝1≤𝑖≤𝑛|𝜆𝑖 − 𝜆0| <
𝜀

4
. For each 1 ≤ 𝑖 ≤ 𝑛, set 

𝐴𝑡 = [
𝜆𝑖  0
0 𝑁

]
ℂ𝑒
{𝑒}⊥

. 
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Then ‖𝑇 + 𝐾 − 𝐴𝑖‖ <
𝜀

4
, 𝜆𝑖 ∈ iso 𝜎(𝐴𝑖) and 𝜆𝑗 ∉ 𝜎(𝐴𝑖) whenever 𝑖 ≠ 𝑗. By Proposition 

(5.2.15), there exist compact operators 𝐹𝑖 with ‖𝐹𝑖‖ <
𝜀

4
  such that each  𝐴𝑖 + 𝐹𝑖 is 

irreducible and complex symmetric; moreover, by Lemma (5.2.30), it can be required that 

{𝜎(𝐴𝑖 + 𝐹𝑖)}𝑖=1
𝑛   are pairwise distinct. Set  𝑇𝑖 = 𝐴𝑖 + 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Then {𝑇𝑖: 1 ≤ 𝑖 ≤

𝑛} satisfy all requirements.  

Corollary (5.2.35)[452]: Let {𝑇𝑖}𝑖=1
∞  be normal operators on separable Hilbert spaces. Then, 

given 𝜀 > 0, there exist compact operators {𝐾𝑖}𝑖=1
∞  with 

𝑠𝑢𝑝𝑖  ‖𝐾𝑖‖ < 𝜀, lim
𝑖
‖𝐾𝑖‖ =  0  

 such that 

(i)  𝑇𝑖 + 𝐾𝑖 is complex symmetric and irreducible for 𝑖 ≥ 1, and 

(ii)  𝜎(𝑇𝑖 + 𝐾𝑖) ≠ 𝜎(𝑇𝑗 + 𝐾𝑗) whenever 𝑖 ≠ 𝑗.  

Proof. For convenience, we assume that 𝑇𝑖 ∈ 𝔅(ℋ𝑖) for 𝑖 ≥ 1. We shall construct {𝐾𝑖}𝑖=1
∞  

by induction. 

By Proposition (5.2.15), we can choose 𝐾1 ∈ 𝒦(ℋ1) with ‖𝐾1‖ < 𝜀 such that 𝑇1 +
𝐾1 is irreducible and complex symmetric. 

Now assume that we have chosen compact operators 𝐾𝑖 ∈ 𝒦(ℋ𝑖), 1 ≤ 𝑖 ≤ 𝑛, 

satisfying that (a) ‖𝐾𝑖‖ < 𝜀/𝑖 for 1 ≤ 𝑖 ≤ 𝑛, (b) 𝑇𝑖 + 𝐾𝑖   is complex symmetric and 

irreducible for 1 ≤ 𝑖 ≤ 𝑛, and (c) 𝜎(𝑇𝑖 + 𝐾𝑖) ≠ 𝜎(𝑇𝑗 + 𝐾𝑗) whenever 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛. We 

are going to choose 𝐾𝑛+1 ∈ 𝐾(𝐻𝑛+1) with ‖𝐾𝑛+1‖ < 𝜀/(𝑛 + 1) such that 𝑇𝑛+1 + 𝐾𝑛+1 is 

irreducible and complex symmetric; moreover, 𝜎(𝑇𝑖 + 𝐾𝑖) ≠ 𝜎(𝑇𝑛+1 + 𝐾𝑛+1) for  1 ≤ 𝑖 ≤
𝑛. 

By Lemma (5.2.34), we can find 𝐹1, 𝐹2,···, 𝐹𝑛+1 ∈ 𝒦(ℋ𝑛+1) with ‖𝐹𝑖‖ < 𝜀/(𝑛 + 1) 
such that 𝑇𝑛+1 + 𝐹𝑖 is irreducible and complex symmetric for 1 ≤ 𝑖 ≤ 𝑛 + 1; moreover, 

𝜎(𝑇𝑛+1 + 𝐹𝑖) ≠ 𝜎(𝑇𝑛+1 + 𝐹𝑗) whenever 𝑖 ≠ 𝑗. So some 𝑖0, 1 ≤ 𝑖0 ≤ 𝑛 + 1, exists such that 

𝜎(𝑇𝑛+1 + 𝐹𝑖0) ≠ 𝜎(𝑇𝑗 + 𝐾𝑗) for all 1 ≤ 𝑗 ≤ 𝑛. Set 𝐾𝑛+1 = 𝐹𝑖0. Then 𝐾𝑛+1 satisfies all 

requirements. By induction, this completes the proof.  

In [257], Huaxin Lin solved the problem that an approximate normal matrix is close 

to a normal matrix in the affirmative. As an application, he proved a conjecture of Berg 

[234], which implies the following result. 

Lemma (5.2.37)[452]: ([257, Thm. 4.4]). Let {𝑇𝑛}𝑛=1
∞  be a sequence of almost normal 

operators. Assume that 𝑠𝑢𝑝𝑛‖𝑇𝑛‖ < ∞ and ‖𝑇𝑛
∗𝑇𝑛 − 𝑇𝑛𝑇𝑛

∗‖ → 0 as 𝑛 → ∞. Then there 

exists a sequence {𝑁𝑛}𝑛=1
∞ of normal operators such that 𝑇𝑛 − 𝑁𝑛 is compact for 𝑛 ≥ 1 and 

‖𝑇𝑛 −𝑁𝑛‖ → 0. 

Proof for the sufficiency of Theorem (5.2.14): By the hypothesis, Lemma (5.2.21) and 

Proposition (5.2.23), we may assume that  

𝑇 = 𝑁⊕ (⊕𝑖∈𝛤1
𝑇𝑖
(𝑛𝑖)) ⊕ (⊕𝑖∈𝛤2

(𝐴𝑗⊕𝐵𝑗)
(𝑛𝑖)), 

where 

(i) 𝑁 is normal, {𝑇𝑖,  𝐴𝑗, 𝐵𝑗: 𝑖 ∈ 𝛤1, 𝑗 ∈ 𝛤2} are irreducible operators and no two of 

them are unitarily equivalent; 

(ii) 𝑇𝑖 is almost normal and not normal for 𝑖 ∈ 𝛤1; 

(iii)  𝐴𝑗 is not almost normal and there exists a compact operator 𝐾𝑗 such that 𝐵𝑗 + 𝐾𝑗 

is a transpose of  𝐴𝑗 for 𝑗 ∈ 𝛤2; 
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(iv)  1 ≤ 𝑛𝑖 ,  𝑛𝑗 < ∞  for all 𝑖 ∈ 𝛤1 and 𝑗 ∈ 𝛤2, and ‖𝐾𝑗‖ → 0 if  𝛤2 is infinite. 

Assume that 𝑁 ∈ 𝔅(ℋ0),  𝑇𝑖 ∈ 𝔅(ℋ1,𝑖) for  𝑖 ∈ 𝛤1 and 𝐴𝑗, 𝐵𝑗 ∈ 𝔅(ℋ2,𝑗) for 𝑗 ∈ 𝛤2. 

For convenience, we may directly assume that 𝛤1, 𝛤2 are countable and 𝑛𝑖 = 1 for all  𝑖 ∈
𝛤1 ∪ 𝛤2. The proof for the general case is similar. Then  

𝑇 = 𝑁⊕ (⊕𝑖=1
∞ 𝑇𝑖) ⊕ (⊕𝑗=1

∞ (𝐴𝑗⊕𝐵𝑗)) 

and  

                             ℋ = ℋ0⨁(⊕𝑖=1
∞ ℋ1,𝑖)⨁(⊕𝑗=1

∞ (ℋ2,𝑗⊕ℋ2,𝑗)).               (8) 

The rest of the proof is divided into three steps. 

Step 1.Compact perturbations of the operators {𝑇𝑖:  𝑖 ≥ 1}. 
Since  𝑇 is essentially normal, it follows that 𝑇∗𝑇 − 𝑇𝑇∗ ∈ 𝒦(ℋ) and hence 𝑇𝑖

∗𝑇𝑖 − 𝑇𝑖𝑇𝑖
∗ ∈

𝒦(ℋ1,𝑖) and ‖𝑇𝑖
∗𝑇𝑖 − 𝑇𝑖𝑇𝑖

∗‖ → 0. By Lemma (5.2.36), we can choose 𝐷1,𝑖 ∈ 𝒦(ℋ1,𝑖), 𝑖 ≥

1, so that ‖𝐷1,𝑖‖ → 0 and 𝑁𝑖 : = 𝑇𝑖 + 𝐷1,𝑖 is normal for all 𝑖 ≥ 1. By Corollary (5.2.35), there 

are compact operators 𝐷2,1 ∈ 𝐾(𝐻1,𝑖)(𝑖 ≥ 1) with ‖𝐷2,𝑖‖ → 0 such that 𝑆𝑖 ≔ 𝑁𝑖 + 𝐷2,𝑖 is 

irreducible, complex symmetric and  𝑆𝑖 ≇ 𝑆𝑗 whenever 𝑖 ≠ 𝑗. 

Set    𝐷𝑖 = 𝐷1,𝑖 + 𝐷2,𝑖 for 𝑖 ≥ 1. Then 𝑆𝑖 = 𝑇𝑖 +    𝐷𝑖 ,    𝐷𝑖 ∈ 𝒦(ℋ1,𝑖) and ‖   𝐷𝑖 ‖ → 0. 

From statement (ii), each 𝑇𝑖 acts on a space of dimension ≥ 2. Thus  𝑆𝑖 is almost normal and 

not normal. 

Step 2.Compact perturbations of the operators {𝐴𝑗 , 𝐵𝑗: 𝑗 ≥ 1}. 

For each 𝑗 ≥ 1, by the hypothesis, there exists a conjugation 𝐶𝑗 on ℋ2,𝑗 such that 𝐶𝑗𝐴𝑗
∗𝐶𝑗 =

𝐵𝑗 + 𝐾𝑗. Note that ‖𝐾𝑗‖ → 0. 

Since each 𝐴𝑗 is irreducible, it follows from Corollary (5.2.33) that we can find compact 

operators {𝐸𝑗}𝑗=1
∞  with ‖𝐸𝑗‖ → 0 such that 𝑅𝑗: = 𝐴𝑗 + 𝐸𝑗 is irreducible for all 𝑗 ≥ 1 and 

{𝜎(𝑅𝑗)}𝑗=1
∞  are pairwise distinct. 

For each  𝑗 ≥ 1, set 𝐺𝑗 = 𝐾𝑗 + 𝐶𝑗𝐸𝑗
∗𝐶𝑗. Then 𝐺𝑗 ∈ 𝒦(ℋ2,𝑗) and ‖𝐺𝑗‖ → 0. On the other 

hand, note that  

𝐶𝑗𝑅𝑗
∗𝐶𝑗 = 𝐶𝑗𝐴𝑗

∗𝐶𝑗 + 𝐶𝑗𝐸𝑗
∗ 𝐶𝑗 = 𝐵𝑗 + 𝐾𝑗 + 𝐶𝑗𝐸𝑗

∗𝐶𝑗 = 𝐵𝑗 + 𝐺𝑗 . 

Step 3.Construction and verification. 

Set 

𝑅 = 𝑁⨁(⊕𝑖=1
∞ 𝑆𝑖)⨁(⊕𝑗=1

∞ (𝑅𝑗⊕𝐶𝑗𝑅𝑗
∗𝐶𝑗)). 

By [252, Thm. 1.6] or [251, Lem. 3.6], 𝑅 is complex symmetric. Define 𝐾 ∈ 𝔅(ℋ) with 

respect to the decomposition (8) as 

                              𝐾 = 0⨁(⊕𝑖=1
∞ 𝐷𝑖)⨁ (⊕𝑗=1

∞ (𝐸𝑗⊕𝐺𝑗)).                          (9)  

Then 𝐾 is compact and one can check that  𝑅 = 𝑇 + 𝐾. Now it remains to prove 𝐶∗(𝑇) =
𝐶∗(𝑅). Clearly, we need only prove  𝐾 ∈ 𝐶∗(𝑇) ∩ 𝐶∗(𝑅). 

In view of (9), it suffices to prove that  

0ℋ0⨁(⨁𝒦 (ℋ1,𝑖)

∞

𝑖=1

)⨁(⨁(𝒦(ℋ2,𝑗) ⊕𝒦(ℋ2,𝑗)

∞

𝑗=1

) ⊂ 𝐶∗(𝑇) ∩ 𝐶∗(𝑅). 

By statements (i)–(iii), it follows from Corollary (5.2.16) that  
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0ℋ0⨁(⨁𝒦 (ℋ1,𝑖)

∞

𝑖=1

)⨁(⨁(𝒦(ℋ2,𝑗) ⊕𝒦(ℋ2,𝑗)

∞

𝑗=1

) ⊂  𝐶∗(𝑇). 

Since {𝑆𝑖 , 𝑅𝑖 , 𝐶𝑖𝑅𝑖
∗𝐶𝑖: 𝑖 ≥ 1} are irreducible and not normal, by Corollary (5.2.16), it suffices 

to prove that no two of them are unitarily equivalent. 

Noting that 𝜎(𝐶𝑖𝑅𝑖
∗𝐶𝑖) = 𝜎(𝑅𝑖) ≠ 𝜎(𝑅𝑗) = 𝜎(𝐶𝑗𝑅𝑗

∗𝐶𝑗) whenever 𝑖 ≠ 𝑗, we deduce 

that 𝑅𝑖 ≇ 𝑅𝑗,  𝑅𝑖 ≇ 𝐶𝑗𝑅𝑗
∗𝐶𝑗 and 𝐶𝑖𝑅𝑖

∗𝐶𝑖 ≇ 𝐶𝑗𝑅𝑗
∗𝐶𝑗 whenever 𝑖 ≠ 𝑗. On the other hand, note 

that  𝑅𝑗 is a compact perturbation of 𝐴𝑗 and  𝐴𝑗 is not almost normal for  𝑗 ≥ 1. Then, for 

each  𝑗 ≥ 1, we can choose 𝜆 ∈ 𝐶 such that 𝑅𝑗 − 𝜆  is Fredholm and 𝑖𝑛𝑑(𝑅𝑗 − 𝜆) ≠ 0. So 

𝑖𝑛𝑑 (𝑅𝑗 − 𝜆) = −𝑖𝑛𝑑 (𝑅𝑗 − 𝜆)
∗  

                                 = −𝑖𝑛𝑑 𝐶𝑗(𝑅𝑗 − 𝜆)
∗𝐶𝑗 

                                 = −𝑖𝑛𝑑 (𝐶𝑗𝑅𝑗
∗𝐶𝑗 − 𝜆), 

which implies that 𝑅𝑗 ≇ 𝐶𝑗𝑅𝑗
∗𝐶𝑗.  

By the preceding argument, 𝑆𝑖 ≇ 𝑆𝑗 whenever 𝑖 ≠ 𝑗. Since each of {𝑆𝑖: 𝑖 ≥ 1} is 

almost normal, we have 𝑆𝑖 ≇ 𝐶𝑗𝑅𝑗
∗𝐶𝑗 and 𝑆𝑖 ≇ 𝑅𝑗 for all 𝑖, 𝑗 ≥ 1. Hence we deduce that no 

two of {𝑆𝑖 , 𝑅𝑖 , 𝐶𝑖𝑅𝑖
∗ 𝐶𝑖:  𝑖 ≤ 1} are unitarily equivalent. This completes the proof. 

Corollary (5.2.37)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. If  the restriction of  𝑇 to its 

every reducing subspace is almost normal, then 𝑇 ∈ (𝑐𝑠). 
Corollary (5.2.38)[452]: Each compact operator has a complex symmetric generator for its 

𝐶∗-algebra. 

Proof. Assume that 𝑇 ∈ 𝔅(ℋ) is compact. Then the restrictions of  𝑇 to its minimal 

reducing subspaces are all compact and hence almost normal. Hence the result follows 

readily from Corollary (5.2.37).  

Corollary (5.2.39)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. If  𝑇𝑠  is not absent, then the 

following are equivalent: 

(i) 𝑇 ∈ (𝑐𝑠). 
(ii) 𝑇𝑎𝑏𝑛𝑜𝑟 ∈ (𝑐𝑠). 
(iii) 𝑇𝑠 ∈ (𝑐𝑠). 

Proof. Note that (𝑇𝑠)𝑠 = 𝑇𝑠 = (𝑇𝑎𝑏𝑛𝑜𝑟)𝑠. Then the result follows readily from Theorem 

(5.2.14).  

Corollary (5.2.40)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal and assume that 𝑇 = 𝑁⊕
𝐴(𝑛), where 1 ≤ 𝑛 < ∞, N is normal, 𝐴 is abnormal and irreducible. Then  𝑇 ∈ (𝑐𝑠) if  and 

only if  𝐴 is almost normal. 

Proof. If 𝐴 is almost normal, then 𝑇𝑠  is absent. By Theorem (5.2.14), we have 𝑇 ∈ (𝑐𝑠). If 
𝐴 is not almost normal, then 𝑇𝑠 = 𝐴

(𝑛) is not almost normal. So 𝑇𝑠 is not of type 𝐶. By 

Theorem (5.2.14), we have 𝑇 ∉ (𝑐𝑠).  
Using the above corollary, one can deduce immediately that the operator 𝑇 in 

Example (5.2.11) does not have a complex symmetric generator for its 𝐶∗-algebra. 

Corollary (5.2.41)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal and 𝑇 = 𝐴(𝑚)⊕𝐵(𝑛), 
where 𝐴,𝐵 are irreducible, not normal and 𝐴 ≇ 𝐵. Then 𝑇 ∈ (𝑐𝑠) if and only if exactly one 

of the following holds: 

(i)  Both  𝐴 and 𝐵 are almost normal; 

(ii)  neither  𝐴 𝑛𝑜𝑟 𝐵 is almost normal, 𝑚 = 𝑛 and 𝛬(𝐴𝑡) = 𝛬(𝐵). 
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Proof. Since 𝑇 is essentially normal, it follows immediately that 1 ≤ 𝑚, 𝑛 < ∞. 

“⟸”. If (i) holds, then 𝑇𝑠 is absent. By Theorem (5.2.14), we have 𝑇 ∈ (𝑐𝑠). If (ii) 
holds, then 𝑇 = 𝑇𝑠; moreover, by the 𝐵𝐷𝐹 Theorem, 𝛬(𝐴𝑡) = 𝛬(𝐵2) implies that 𝐵 is a 

compact perturbation of 𝐴𝑡. So, by Proposition (5.2.23), 𝑇 is of type 𝐶. The conclusion 

follows immediately from Theorem (5.2.14). 

“⟹”. We assume that 𝑇 ∈ (𝑐𝑠)and (i) does not hold. It suffices to prove that (ii) 

holds. For convenience we assume that 𝐴 ∈ 𝔅(ℋ1) and 𝐵 ∈ 𝔅(ℋ2). 
We claim that neither 𝐴 nor 𝐵  is almost normal. For a proof  by contradiction, 

without loss of generality, we assume that 𝐴 is almost normal. Then, by the hypothesis, 𝐵 is 

not almost normal. So 𝑇𝑠 = 𝐵
(𝑛) is not almost normal. Then 𝑇𝑠 is not of type 𝐶 and 𝑇 ∉

(𝑐𝑠), a contradiction. This proves the claim, which means that 𝑇 = 𝑇𝑠. 
Since 𝑇 ∈ (𝑐𝑠), it follows that 𝑇 is of  type 𝐶. Noting that 𝐴 ≇ 𝐵, by the definition, it 

follows that 𝑚 = 𝑛 and there exists compact 𝐾 such that 𝐴 + 𝐾 is unitarily equivalent to a 

compact perturbation of  𝐵𝑡. So 𝛬(𝐴) = 𝛬(𝐵𝑡) and, equivalently, 𝛬(𝐴𝑡) = 𝛬(𝐵).  
Here we give another example of essentially normal operator which lies outside the class of 

𝐶𝑆𝑂𝑠 and has a complex symmetric generator for its 𝐶∗-algebra. 

Example (5.2.42)[452]: Let {𝑒𝑖}𝑖=1
∞ be an 𝑂𝑁𝐵 of  ℋ. Define 𝐴,𝐵 ∈ 𝔅(ℋ) as  

𝐴𝑒𝑖 = {

𝑒2
2
, 𝑖 =  1

 𝑒𝑖+1, 𝑖 ≥  2.
, 𝐵𝑒𝑖 = 𝑒𝑖+1, ∀𝑖 ≥ 1. 

It is easy to verify that 𝐴, 𝐵 are both essentially normal and irreducible; moreover, 𝐴 is a 

compact perturbation of 𝐵. Note that 𝐴,𝐵 are Fredholm operators and ind 𝐴 = −1 = ind 𝐵. 

So neither 𝐴 nor 𝐵 is complex symmetric. Set  𝑇 = 𝐴 ⊕ 𝐵∗. It is obvious that 𝑇 = 𝑇𝑠. 
Define a conjugation 𝐶 on ℋ as 𝐶: ∑ 𝛼𝑖𝑒𝑖

∞
𝑖=1 ⟼ ∑ 𝛼𝑖𝑒𝑖

∞
𝑖=1 . It is easy to check that 𝐶𝐵∗𝐶 =

𝐵∗, so  𝐵∗ is a transpose of  𝐵 and, equivalently, 𝐵 is a transpose of  𝐵∗. Then 𝐴 is a compact 

perturbation of a transpose of  𝐵∗. Then 𝑇 is of type 𝐶. By Theorem (5.2.14), we have 𝑇 ∈
(𝑐𝑠). In view of [263, Thm. 4.1]or [252, Thm. 1.6], 𝑇 is not complex symmetric.  

By Example (5.2.12), a compact perturbation of 𝐶𝑆𝑂𝑠 need not have its 𝐶∗-algebra 

generated by a 𝐶𝑆𝑂. It is natural to ask if  𝑇 ∈ 𝔅(ℋ) and there exists compact 𝐾 ∈ 𝐶∗(𝑇) 
such that 𝑇 + 𝐾 is complex symmetric, then does it follow that 𝐶∗(𝑇) can be generated by 

a 𝐶𝑆𝑂?  No. Here is a counterexample. 

Example (5.2.43)[452]: Let 𝑆 be the unilateral shift of multiplicity one on ℋ. By Lemma 

(5.2.31), there exists compact 𝐾 on ℋ⊕ℋ such that 𝐴:= (𝑆 ⊕ 2𝐼) + 𝐾 is irreducible. 

Set 𝑇 = 𝐴 ⊕ 𝑆∗. Note that 𝐴, 𝑆∗ are irreducible, essentially normal and neither 𝐴 

𝑛𝑜𝑟 𝑆∗ is almost normal. So  𝑇𝑠 = 𝑇. Since 𝜎𝑒(𝐴
𝑡) = 𝜎𝑒(𝐴) ≠ 𝜎𝑒(𝑆

∗), we deduce that 𝐴 ≇
𝑆∗ and 𝐴𝑡 is not unitarily equivalent to a compact perturbation of  𝑆∗. So  𝑇 is not of type 𝐶. 

By Theorem (5.2.14), 𝐶∗(𝑇) does not admit a complex symmetric generator. 

We write ℋ1 and ℋ2 for the underlying subspace of 𝐴 and 𝑆∗ respectively. By 

Corollary (5.2.16), we have  

𝒦(ℋ1) ⊕𝒦(ℋ2) ⊂ 𝐶
∗(𝑇). 

So 𝐾0 = (−𝐾)⊕ 0 is a compact operator in 𝐶∗(𝑇), and 𝑇 + 𝐾0 = 𝑆 ⊕ 2𝐼 ⊕ 𝑆∗. Since 𝑆∗ 
is a transpose of  𝑆, it follows from [264, Thm. 4.1]  that 𝑇 + 𝐾0 is complex symmetric. 

For convenience, we write 𝑇 ∈ (𝑤𝑐𝑠) to denote that 𝐶∗(𝑇) is ∗-isomorphic to some 

𝐶∗-algebra singly generated by 𝐶𝑆𝑂𝑠. 
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The proof of our result depends on some results concerning algebraical equivalence 

of operators. Multiplicity-free operators are introduced and studied. 𝐴𝑡, we shall give a 

concrete form of those essentially normal operators 𝑇 satisfying  𝑇 ∈ (𝑤𝑐𝑠) (see Corollary 

(5.2.59)).  

Note that 𝐴 ≈ 𝐵 if and only if ‖𝑝(𝐴∗, 𝐴)‖ = ‖𝑝(𝐵∗, 𝐵)‖ for all polynomials 𝑝(𝑧1, 𝑧2) 
in two free variables. It is obvious that 𝑔-normal operators are invariant under algebraical 

equivalence. 

Two operators 𝐴,𝐵 are approximately unitarily equivalent (write 𝐴 ≅𝑎 𝐵) if there is a 

sequence of unitary operators 𝑈𝑛 such that 𝑙𝑖𝑚𝑛𝑈𝑛𝐴𝑈𝑛
∗ = 𝐵. It is obvious that approximate 

unitary equivalence implies algebraical equivalence. 

Theorem (5.2.44)[452]: For  𝑇 ∈ 𝔅(ℋ), the following are equivalent: 

(i)  there is a faithful representation 𝜌 of  𝐶∗(𝑇) such that 𝜌(𝑇) is complex symmetric; 

(ii) 𝑇 is 𝑔-normal; 

(iii) 𝑇 is algebraically equivalent to a 𝐶𝑆𝑂. 

Proof.“(i)⟹(ii)”. Assume that 𝜌 is a faithful representation of 𝐶∗(𝑇) on ℋ𝜌 with 𝐴 = 𝜌(𝑇) 

being complex symmetric. Then, for any polynomial 𝑝(𝑧1, 𝑧2) in two free variables, we have 

𝜌(𝑝(𝑇∗, 𝑇)) = 𝑝(𝐴∗, 𝐴) and 𝜌(𝑝(𝑇, 𝑇∗)) = 𝑝(𝐴, 𝐴∗). Since 𝜌 is faithful, we have  

‖𝑝(𝑇∗, 𝑇)‖ = ‖𝑝(𝐴∗, 𝐴)‖, ‖𝑝(𝑇, 𝑇∗)‖ = ‖𝑝(𝐴, 𝐴∗)‖. 
Since each 𝐶𝑆𝑂 is 𝑔-normal, it follows that  

‖𝑝(𝑇∗, 𝑇)‖ = ‖𝑝(𝐴∗, 𝐴)‖ = ‖𝑝(𝐴, 𝐴∗)‖ = ‖𝑝(𝑇, 𝑇∗)‖. 
So 𝑇 is 𝑔-normal. 

“(ii)⟹(iii)”. Denote 𝑅 = 𝑇(∞). Then 𝑅  is still 𝑔-normal and 𝑅 ≈ 𝑇; moreover, 𝐶∗(𝑅) 
contains no nonzero compact operator. By [251, Thm. 2.1], 𝑅 is approximately unitarily 

equivalent to some complex symmetric operator 𝑋. Then 𝑇2 ≈ 𝑋. 

“(iii)⟹(i)”. By definition, the implication is obvious.  

An operator 𝑇 ∈ 𝔅(ℋ) is said to be multiplicity-free if 𝑇|ℳ ≇ 𝑇|𝒩  for any distinct 

minimal reducing subspaces ℳ and  𝒩 of   𝑇. 

Lemma (5.2.45)[452]: Each operator is algebraically equivalent to a multiplicity-free 

operator. 

Proof. Let  𝑇 ∈ 𝔅(ℋ). By Lemma (5.2.18), we may assume that 

 𝑇 = 𝑇0⊕ (⊕𝑖∈𝛤 𝑇𝑖
(𝑛𝑖)) , 

where 𝑇0 is completely reducible, 𝑇𝑖 ∈ 𝔅(ℋ𝑖) is irreducible for 𝑖 ∈ 𝛤and 𝑇𝑖1 ≇ 𝑇𝑖2 

whenever 𝑖1 ≠ 𝑖2. 

Set 𝑅 = 𝑇0⊕ (⊕𝑖∈𝛤 𝑇𝑖). Then it is obvious that ‖𝑝(𝑇∗, 𝑇)‖ = ‖𝑝(𝑅∗, 𝑅)‖ for any 

polynomial 𝑝(𝑧1, 𝑧2) in two free variables. So 𝑇 ≈ 𝑅. It remains to prove that 𝑅 is 

multiplicity-free. 

By Lemma  (5.2.19), {ℋ𝑖 : 𝑖 ∈ 𝛤} are all minimal reducing subspaces of  𝑅. For 𝑖1, 𝑖2 ∈
𝛤 with 𝑖1 ≠ 𝑖2, we have 𝑅|ℋ𝑖1 = 𝑇𝑖1 ≇ 𝑇𝑖2 = 𝑅|ℋ𝑖2 . This completes the proof.  

Recall that two representations 𝜌1 and 𝜌2 of a separable 𝐶∗-algebra 𝒜 are 

approximately unitarily equivalent (write 𝜌1 ≅𝑎 𝜌2) if there is a sequence of unitary 

operators 𝑈𝑛 such that  

                              𝜌1(𝐴) = 𝑙𝑖𝑚𝑛𝑈𝑛
∗𝜌2(𝐴)𝑈𝑛 for all 𝐴 ∈ 𝒜. 

The following result can be viewed as a consequence of Voiculescu’s Theorem [498]. 
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Lemma (5.2.46)[452]: ([471, Thm. II.5.8]). Let 𝒜 be a separable 𝐶∗-algebra, and let 𝜌1 and 

𝜌2 be non-degenerate representations of 𝐴 on separable Hilbert spaces. Then the following 

are equivalent: 

(i) 𝜌1 ≅𝑎 𝜌2; 
(ii)  𝑟𝑎𝑛𝑘𝜌1(𝑋) = 𝑟𝑎𝑛𝑘𝜌2(𝑋) for all 𝑋 ∈ 𝒜. 

Lemma (5.2.47)[452]: ([476, Thm. 5.40]). If 𝜑 is a ∗-homomorphism of  𝒦(ℋ) into 𝔅(Ҡ), 
then there exists a unique direct sum of  Ҡ = Ҡ0⊕ (⊕𝛼∈𝛤 Ҡ𝛼) such that each Ҡ𝛼 reduces 

𝜑(𝒦(ℋ)), 𝜑(𝑇)|𝐾0 = 0  for 𝑇 ∈ 𝒦(ℋ), and there exists a unitary operator 𝑈𝛼 from ℋ 

onto 𝐾𝛼 for 𝛼 ∈ 𝛤 such that 𝜑(𝑇)|𝐾𝛼 = 𝑈𝛼𝑇𝑈𝛼
∗  for 𝑇 ∈ 𝒦(ℋ). 

Theorem (5.2.48)[452]: Let 𝑇, 𝑅 ∈ 𝔅(ℋ) be multiplicity-free. Then 𝑇 ≈ 𝑅 if and only if  

𝑇 ≅𝑎 𝑅. 

Proof. The sufficiency is obvious. 

“⟹”. We let 𝜑: 𝐶∗(𝑇) ⟶ 𝐶∗(𝑅) denote the ∗-isomorphism carrying 𝑇 into 𝑅. It 

suffices to prove that  

𝑟𝑎𝑛𝑘 𝑋 = 𝑟𝑎𝑛𝑘 𝜑(𝑋),      ∀𝑋 ∈ 𝐶∗(𝑇) ∩ 𝒦(ℋ)               (10) 

and  

                            𝑟𝑎𝑛𝑘 𝜑−1(𝑌) = 𝑟𝑎𝑛𝑘 𝑌,    ∀𝑌 ∈ 𝐶∗(𝑅) ∩ 𝒦(ℋ).           (11) 

In fact, if these equalities hold, then 𝑟𝑎𝑛𝑘 𝜑(𝑋) = 𝑟𝑎𝑛𝑘𝑋 for all  𝑋 ∈ 𝐶∗(𝑇). By Lemma 

(5.2.47), this implies 𝜑 ≅𝑎 id, where id(·) denotes the identity representation of  𝐶∗(𝑇). 
So 𝑅 = 𝜑(𝑇) ≅𝑎 𝑖𝑑(𝑇) = 𝑇. 

Denote 𝒜 = 𝐶∗(𝑇) ∩ 𝒦(ℋ). By [471, Thm.I.10.8] we may assume that 

ℋ = ℋ0⊕( ⨁ℋ𝑖
(𝑘𝑖)

𝑖∈𝛤

 ) , 𝒜 = 0ℋ0⊕ (⨁ 𝒦(ℋ𝑖)
(𝑘𝑖)

𝑖∈𝛤

) , 

where the dimensions of  ℋ0 and ℋ𝑖(𝑖 ∈ 𝛤) may be finite or ℵ0, and 1 ≤ 𝑘𝑖 < ∞ for 𝑖 ∈ 𝛤. 

Since 𝒜 is an ideal of 𝐶∗(𝑇), 𝑇 can be written as 

𝑇 = 𝐷0𝐷0⊕(⨁𝐷𝑖
(𝑘𝑖)

𝑖∈𝛤

) , 

where 𝐷0 ∈ 𝔅(ℋ0) and 𝐷𝑖 ∈ 𝔅(ℋ𝑖) for 𝑖 ∈ 𝛤. Then 𝒦(ℋ𝑖) ⊂ 𝐶
∗(𝐷𝑖) for each 𝑖 ∈ 𝛤. 

Hence each 𝐷𝑖 is irreducible. Noting that 𝑇 is multiplicity-free, we have 𝑘𝑖 = 1 for all 𝑖 ∈
𝛤. Then each compact operator in 𝐶∗(𝑇) has the form 0⊕ (⊕𝑖∈𝛤 𝑋𝑖), where 𝑋𝑖 ∈ 𝒦(ℋ𝑖). 
For 𝑖 ∈ 𝛤, denote by 𝑃𝑖 the orthogonal projection of  ℋ onto ℋ𝑖. 
Claim (5.2.49)[452]: For each 𝑖 ∈ 𝛤, there exist unique subspace Ҡ𝑖 of ℋ and a unitary 

operator 𝑈𝑖:Ҡ𝑖 → ℋ𝑖 such that 

𝜑(𝑃𝑖𝐾𝑃𝑖) = 0 ⊕ 𝑈𝑖
∗ 𝐾𝑈𝑖 , ∀𝐾 ∈ 𝒦(ℋ𝑖). 

Now fix an 𝑖 ∈ 𝛤. Define 𝜑𝑖:𝒦(ℋ𝑖) ⟶ 𝔅(ℋ) as 

𝜑𝑖(𝐹) = 𝜑(𝑃𝑖𝐹𝑃𝑖), ∀𝐹 ∈ 𝒦(ℋ𝑖). 
Then 𝜑𝑖  is an isometric ∗-homomorphism. By Lemma (5.2.48), there exists a unique direct 

sum of  ℋ = ⱪ0⊕ (⊕𝛼∈𝛶 Ҡ𝛼) with respect to which  

𝜑𝑖(𝐾) = 0⊕ (⨁𝑈𝛼
∗𝐾𝑈𝛼

𝛼∈𝛶

) , ∀𝐾 ∈ 𝒦(ℋ𝑖), 
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where 𝑈𝛼:Ҡ𝛼 → ℋ𝑖 is unitary for each 𝛼 ∈ 𝛶. To prove Claim (5.2.50), it suffices to prove 

that 𝑐𝑎𝑟𝑑𝛶 = 1. Here “card” denotes cardinality. For a proof  by contradiction, we assume 

that 𝑐𝑎𝑟𝑑 𝛶 > 1. 

        Note that ℐ: = {𝑃𝑖𝐾𝑃𝑖:  𝐾 ∈ 𝒦(ℋ𝑖)} is an ideal of 𝐶∗(𝑇) and 𝜑 is an ∗-isomorphism. 

Then 𝜑(𝒥) = 𝜑𝑖(𝒦(ℋ𝑖)) is an ideal of  𝐶∗(𝑅). One can directly check that 𝑅 can be written 

as  

𝑅 = 𝑋0⊕(⨁𝑋𝛼
𝛼∈𝛶

) 

With respect to the decomposition  ℋ = Ҡ0⊕ (⊕𝛼∈𝛶 Ҡ𝛼). Then 𝒦(Ҡ𝛼) ⊂ 𝐶
∗(𝑋𝛼) and 

𝑋𝛼 is irreducible for each 𝛼 ∈ 𝛶. 

Since 𝑐𝑎𝑟𝑑 𝛶 > 1, we can find distinct 𝛼1, 𝛼2 ∈ 𝛶. Since 𝜑𝑖(𝒦(ℋ𝑖)) is an ideal of 

𝐶∗(𝑅), for any 𝐹 ∈ 𝒦(ℋ𝑖), we have 𝜑𝑖(𝐹)𝑅 ∈ 𝜑𝑖(𝒦(ℋ𝑖)). So there exists unique 𝐺 ∈
𝒦(ℋ𝑖) such that 𝜑𝑖(𝐹)𝑅 = 𝜑𝑖(𝐺), that is, 

0 ⊕ (⨁𝑈𝛼
∗𝐹𝑈𝛼𝑈𝛼

𝛼∈𝛶

) = 0⊕ (⨁𝑈𝛼
∗𝐺𝑈𝛼

𝛼∈𝛶

).   

It follows that 𝑈𝛼1
∗ 𝐹𝑈𝛼1𝑋𝛼1 = 𝑈𝛼1

∗ 𝐺𝑈𝛼1and 𝑈𝛼2
∗ 𝐹𝑈𝛼2𝑋𝛼2 = 𝑈𝛼2

∗ 𝐺𝑈𝛼2. So  

𝐹𝑈𝛼1𝑋𝛼1𝑈𝛼1
∗ = 𝐹𝑈𝛼2𝑋𝛼2𝑈𝛼2

∗ . 

Since 𝐹 ∈ 𝒦(ℋ𝑖) is arbitrary, one can see that  𝑈𝛼1𝑋𝛼1𝑈𝛼1
∗ = 𝑈𝛼2𝑋𝛼2𝑈𝛼2

∗ . Then 𝑋𝛼1 ≅ 𝑋𝛼2 , 

contradicting the fact that 𝑅 is multiplicity-free. This proves Claim (5.2.50). 

Claim (5.2.51)[452]: {𝐾𝑖: 𝑖 ∈ 𝛤} are pairwise orthogonal. 

For 𝑖1, 𝑖2 with 𝑖1 ≠ 𝑖2, if  𝐾1 ∈ 𝒦(ℋ𝑖1) and 𝐾2 ∈ 𝒦(ℋ𝑖2), then  

𝜑(𝑃𝑖1𝐾1𝑃𝑖1)𝜑(𝑃𝑖2𝐾2𝑃𝑖2) = 𝜑(𝑃𝑖1𝐾1𝑃𝑖1𝑃𝑖2𝐾2𝑃𝑖2) = 0. 

Since 𝐾1 ∈ 𝒦(ℋ𝑖2) and 𝐾2 ∈ 𝒦(ℋ𝑖2) are arbitrary, one can deduce that Ҡ𝑖1is orthogonal 

to Ҡ𝑖2. 

Now we can conclude the proof by verifying that (89) and (88) hold. 

Let 𝐾 ∈ 𝐶∗(𝑇) ∩ 𝒦(ℋ). Then, by our hypothesis, 𝐾 can be written as  

𝐾 = 0⊕ (⨁𝐾𝑖
𝑖∈𝛤

) , 

where 𝐾𝑖 ∈ 𝒦(ℋ𝑖). It is obvious that ‖𝐾𝑖‖ → 0 if 𝛤 is infinite. By Claims (5.2.50) and 

(5.2.51), we have 

 𝜑(𝐾2) = 𝜑 ∑𝑃𝑖𝐾𝑖𝑃𝑖
𝑖∈𝛤

=∑𝜑(𝑃𝑖𝐾𝑖𝑃𝑖)

𝑖∈𝛤

= 0⊕ ( ⊕𝑖∈𝛤 𝑈𝑖
∗𝐾𝑖𝑈𝑖).  

It follows immediately that rank 𝜑(𝐾) = ∑ rank 𝐾𝑖𝑖∈𝛤 = rank 𝐾. This proves (89). By the 

symmetry, one can also deduce that (88) holds.  

Lemma (5.2.50)[452]: ([472, Prop. 4.27]). Let  𝑇, 𝑅 ∈ 𝔅(ℋ) and assume that 𝑇  is 

essentially normal. If  𝑇 ≅𝑎 𝑅, then 𝑇𝑎𝑏𝑛𝑜𝑟 ≅ 𝑅𝑎𝑏𝑛𝑜𝑟. 
Corollary (5.2.52)[452]: Let 𝑡, 𝑅 ∈ 𝔅(ℋ) be essentially normal. If 𝑇 ≈ 𝑅, then 𝑇𝑎𝑏𝑛𝑜𝑟 ≈
𝑅𝑎𝑏𝑛𝑜𝑟 and 𝑇𝑠 ≈ 𝑅𝑠. 
Proof. By Lemma (5.2.50), we may assume that 

 𝑡 = 𝑇0⊕ (⊕𝑖∈𝛤 𝑇𝑖
(𝑚𝑖)) , 
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where 𝑇0 ∈ 𝔅(ℋ0) is completely reducible, 𝑇𝑖 ∈ 𝔅(ℋ𝑖) is irreducible for 𝑖 ∈ 𝛤 and 𝑇𝑖1 ≇

𝑇𝑖2 whenever 𝑖1 ≠ 𝑖2. Likewise, we assume that  

𝑅 = 𝑅0⊕ (⊕𝑗∈𝛶 𝑅𝑗
(𝑚𝑖)) , 

where 𝑅0 ∈ 𝔅(Ҡ0) is completely reducible, 𝑅𝑗 ∈ 𝔅(Ҡ𝑗) is irreducible for 𝑗 ∈ 𝛶 and 𝑅𝑗1 ≇

𝑅𝑗2whenever 𝑗1 ≠ 𝑗2. Noting that 𝑇0, 𝑅0 are essentially normal, it follows from Lemma 

(5.2.49) that 𝑇0, 𝑅0 are normal. 

Denote 

 𝛤1 = {𝑖 ∈ 𝛤: 𝑇𝑖 is not normal}, 𝛤2 =  {𝑖 ∈ 𝛤: 𝑇𝑖 is not almost normal}. 
Then 𝛤2 ⊂ 𝛤1 and  

𝑇𝑎𝑏𝑛𝑜𝑟 = ⊕𝑖∈𝛤1 𝑇𝑖
(𝑚𝑖), 𝑇𝑠 = (𝑇𝑎𝑏𝑛𝑜𝑟)𝑠 = ⊕𝑖∈𝛤2 𝑇𝑖

(𝑚𝑖). 

Denote  

𝛶1 = {𝑗 ∈ 𝛶: 𝑅𝑗  is not normal}, 𝛶2 = {𝑗 ∈ 𝛶: 𝑅𝑗 is not almost normal}. 

Then 𝛶2 ⊂ 𝛶1 and 

𝑅𝑎𝑏𝑛𝑜𝑟 = ⊕𝑗∈𝛶1 𝑅𝑗
(𝑛𝑗)
, 𝑅𝑠 = (𝑅𝑎𝑏𝑛𝑜𝑟)𝑠 = ⊕𝑗∈𝛶2 𝑅𝑗

(𝑛𝑗)
. 

Set 

𝐴 = 𝑇0⊕ (⊕𝑖∈𝛤 𝑇𝑖), 𝐵 =  𝑅0⊕ (⊕𝑗∈𝛶 𝑅𝑗). 

From the proof of Lemma (5.2.46), one can see that 𝐴,𝐵 are both multiplicity-free, 𝑇 ≈ 𝐴 

and 𝑅 ≈ 𝐵. Since 𝑇 ≈ 𝑅, we obtain 𝐴 ≈ 𝐵. By Theorem (5.2.49), we have 𝐴 ≅𝑎 𝐵. Note 

that 𝐴,𝐵 are both essentially normal. In view of Lemma (5.2.53), it follows that 𝐴𝑎𝑏𝑛𝑜𝑟 ≅
𝐵𝑎𝑏𝑛𝑜𝑟. Hence (𝐴𝑎𝑏𝑛𝑜𝑟)𝑠 ≅ (𝐵𝑎𝑏𝑛𝑜𝑟)𝑠. 
 Note that 

 𝐴𝑎𝑏𝑛𝑜𝑟 = ⊕𝑖∈𝛤1 𝑇𝑖, 𝐴𝑠 = (𝐴𝑎𝑏𝑛𝑜𝑟)𝑠 = ⊕𝑖∈𝛤2 𝑇𝑖,  

and  

𝐵𝑎𝑏𝑛𝑜𝑟 =⊕𝑗∈𝛶1 𝑅𝑗, 𝐵𝑠 = (𝐵𝑎𝑏𝑛𝑜𝑟)𝑠 = ⊕𝑗∈𝛶2 𝑅𝑗 . 

We obtain  

⊕𝑖∈𝛤1 𝑇𝑖 ≅⊕𝑗∈𝛶1 𝑅𝑗 , ⊕𝑖∈𝛤2 𝑇𝑖 ≅⊕𝑗∈𝛶2 𝑅𝑗 . 

This implies that 

⊕𝑖∈𝛤1
𝑇𝑖
(𝑚𝑖) ≈ ⊕𝑗∈𝛶1

𝑅
𝑗

(𝑛𝑗), ⊕𝑖∈𝛤2
𝑇𝑖
(𝑚𝑖) ≈ ⊕𝑗∈𝛶2

𝑅
𝑗

(𝑛𝑗). 

Thus we obtain 𝑇𝑎𝑏𝑛𝑜𝑟 ≈ 𝑅𝑎𝑏𝑛𝑜𝑟 and 𝑇𝑠 ≈ 𝑅𝑠. 
Lemma (5.2.54)[452]: Let 𝑇 ∈ 𝔅(ℋ) be multiplicity-free. Then each generator of 𝐶∗(𝑇) 
is multiplicity-free. 

Proof. By Lemma (5.2.46), we may assume that 

𝑇 = 𝑇0⊕ (⊕𝑖∈𝛤 𝑇𝑖), 
where 𝑇0 ∈ 𝔅(ℋ0) is completely reducible, 𝑇𝑖 ∈ 𝔅(ℋ𝑖) is irreducible for 𝑖 ∈ 𝛤 and 𝑇𝑖1 ≇

𝑇𝑖2 whenever 𝑖1 ≠ 𝑖2. Note that  ℋ = ℋ0⊕ (⊕𝑖∈𝛤 ℋ𝑖). 

Assume that 𝑅 ∈ 𝔅(ℋ) and 𝐶∗(𝑇) = 𝐶∗(𝑅). Then 𝑅  can be written as 𝑅 = 𝑅0⊕
(⊕𝑖∈𝛤 𝑅𝑖) with respect to the decomposition ℋ = ℋ0⊕ (⊕𝑖∈𝛤 ℋ𝑖). By Lemma (5.2.24), 

𝑅0 is completely reducible and 𝑅𝑖 is irreducible for 𝑖 ∈ 𝛤; moreover, 𝑅𝑖 ≇ 𝑅𝑗 for 𝑖, 𝑗 ∈ 𝛤 

with 𝑖 ≠ 𝑗. In view of the proof of  Lemma (5.2.46), 𝑅 is multiplicity-free.  

An operator is said to be 𝑈𝐸𝑇 if 𝑇 ≇ 𝑇𝑡. In view of the 𝐵𝐷𝐹 Theorem, if an 

essentially normal operator 𝑇 is 𝑈𝐸𝑇, then  𝑇 is almost normal. 
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Lemma (5.2.54)[452]: ([478, Thm. 5.1]). Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. Then 𝑇 is 

𝑔-normal if and only if it is unitarily equivalent to a direct sum of (some of the summands 

may be absent) 

(i) normal operators, 

(ii) irreducible 𝑈𝐸𝑇 operators, and 

(iii) operators with the form of 𝐴(𝑚)⊕ (𝐴𝑡)(𝑛), where 𝐴 is irreducible, not 𝑈𝐸𝑇 and 

1 ≤ 𝑚, 𝑛 < ∞. 

Lemma (5.2.55)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. If  𝑇 is multiplicity-free and 

𝑔-normal, then  𝑇 ∈ (𝑐𝑠).  
Proof. Since 𝑇 is essentially normal and 𝑔-normal, by Lemma (5.2.55), we may assume that 

 𝑇 = 𝑁 ⊕ (⊕𝑖∈𝛤  𝑇𝑖
(𝑙𝑖)) ⊕ (⊕𝑗∈𝛶 𝐴𝑗

(𝑚𝑗)
⊕𝐵

𝑗

(𝑛𝑗)
) , 

where 𝑁 = 𝑇𝑛𝑜𝑟  is normal, {𝑇𝑖, 𝐴𝑗, 𝐵𝑗: 𝑖 ∈ 𝛤, 𝑗 ∈ 𝛶} are abnormal, irreducible and no two of 

them are unitarily equivalent; moreover, each 𝑇𝑖 is 𝑈𝐸𝑇 and  𝐴𝑗 is a transpose of 𝐵𝑗 for 𝑗 ∈

𝛶. So 𝛬(𝐴𝑗) = 𝛬(𝐵𝑗
𝑡) for 𝑗 ∈ 𝛶. It follows that 𝐴𝑗 is almost normal if and only if 𝐵𝑗

𝑡 (or, 

equivalently, 𝐵𝑗) is almost normal. On the other hand, since 𝑇 is multiplicity-free, we deduce 

that 𝑙𝑖 = 𝑚𝑗 = 𝑛𝑗 = 1 for all 𝑖 ∈ 𝛤 and all 𝑗 ∈ 𝛶. 

Denote 𝛶0 = {𝑗 ∈ 𝛶: 𝐴𝑗  is not almost normal}. Note that 𝑇𝑖 is almost normal for 𝑖 ∈ 𝛤. It 

follows that  

𝑇𝑠 = ⊕𝑗∈𝛶0 (𝐴𝑗⊕𝐵𝑗). 

By Proposition (5.2.23), 𝑇𝑠 is of type 𝐶. In view of Theorem (5.2.14), we have 𝑇 ∈ (𝑐𝑠).  
Theorem (5.2.56)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. Then 𝑇 ∈ (𝑤𝑐𝑠) if and only 

if there exists an essentially normal operator 𝑅 ∈ (𝑐𝑠) such that 𝑇 ≈ 𝑅. 

Proof .The sufficiency is obvious. 

“⟹”. Assume that  

𝑇 = 𝑇0⊕ ( ⊕𝑖∈𝛤 𝑇𝑖
(𝑛𝑖)) , 

where 𝑇0 is completely reducible, 𝑇𝑖 ∈ 𝔅(ℋ𝑖) is irreducible for 𝑖 ∈ 𝛤 and 𝑇𝑖1 ≇

𝑇𝑖2whenever 𝑖𝑖 ≠ 𝑖2. Set 𝐴 = 𝑇0⊕ (⊕𝑖∈𝛤 𝑇𝑖). Then 𝐴 ≈ 𝑇 is essentially normal and, by 

Lemma (5.2.46),  𝐴 is multiplicity-free. 

    Assume that 𝑆 ∈ 𝔅(Ҡ ) is complex symmetric and 𝐶∗(𝑆) is ∗-isomorphic to 𝐶∗(𝑇). By 

Lemma (5.2.46), 𝑆 is algebraically equivalent to some multiplicity-free operator 𝐵. By 

Theorem (5.2.45), 𝐵 is 𝑔-normal. 

     Since 𝐶∗(𝑆) is ∗-isomorphic to 𝐶∗(𝑇), 𝐴 ≈ 𝑇 and 𝐵 ≈ 𝑆, we can find a ∗-isomorphism 

𝜑 ∶ 𝐶∗(𝐴) → 𝐶∗(𝐵). Denote 𝑅 = 𝜑(𝐴). Then 𝐴 ≈ 𝑅  and 𝐶∗(𝐴) = 𝐶∗(𝑅). Noting that 𝐵 is 

multiplicity-free, it follows from Lemma (5.2.55) that 𝑅 is also multiplicity-free. By 

Theorem (5.2.49), we obtain 𝐴 ≅𝑎 𝑅. Since 𝐴 is essentially normal, so is  𝑅. This combining 

𝐶∗(𝐵) = 𝐶∗(𝑅) implies that 𝐵 is also essentially normal. Since 𝐵 is multiplicity-free and 

𝑔-normal, it follows from Lemma (5.2.57) that 𝐶∗(𝐵2) = 𝐶∗(𝑅) admits a complex 

symmetric generator, that is, 𝐴 ∈ (𝑐𝑠). Noting that 𝑇 ≈ 𝐴 and 𝐴 ≅𝑎 𝑅, we obtain  𝑇 ≈ 𝑅.  

Corollary (5.2.57)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. If 𝑇𝑠 is not absent, then the 

following are equivalent: 

(i) 𝑇 ∈ (𝑤𝑐𝑠); 
(ii) 𝑇𝑎𝑏𝑛𝑜𝑟 ∈ (𝑤𝑐𝑠); 
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(iii) 𝑇𝑠 ∈ (𝑤𝑐𝑠); 
(iv)  𝑇𝑠 is algebraically equivalent to an essentially normal operator of  type 𝐶. 

Proof.“(i)⟹(ii)”. By Theorem (5.2.44), 𝑇 ∈ (𝑤𝑐𝑠) implies that there exists an essentially 

normal operator 𝐴 ∈ 𝔅(ℋ) such that 𝐴 ∈ (𝑐𝑠) and 𝑇 ≈ 𝐴. By Corollary (5.2.54), we have 

𝑇𝑎𝑏𝑛𝑜𝑟 ≈ 𝐴𝑎𝑏𝑛𝑜𝑟, and it follows from Corollary (5.2.39) that  𝐴𝑎𝑏𝑛𝑜𝑟 ∈ (𝑐𝑠). Using 

Theorem (5.2.44), we obtain 𝑇𝑎𝑏𝑛𝑜𝑟 ∈ (𝑤𝑐𝑠). 
“(ii)⟹(iii)”. By Theorem (5.2.44), 𝑇𝑎𝑏𝑛𝑜𝑟 ∈ (𝑤𝑐𝑠) implies that there exists an 

essentially normal operator 𝐴 ∈ 𝔅(ℋ) such that 𝐴 ∈ (𝑐𝑠) and 𝑇𝑎𝑏𝑛𝑜𝑟 ≈ 𝐴. By Corollary 

(5.2.54), we have 𝑇𝑠 = (𝑇𝑎𝑏𝑛𝑜𝑟)𝑠 ≈ 𝐴𝑠, and it follows from Corollary (5.2.39) that 𝐴𝑠 ∈
(𝑐𝑠). Using Theorem (5.2.44), we obtain  𝑇𝑠 ∈ (𝑤𝑐𝑠). 

“(iii)⟹(iv)”. By Theorem (5.2.44), 𝑇𝑠 ∈ (𝑤𝑐𝑠) implies that there exists an essentially 

normal operator 𝐴2 ∈ 𝔅(ℋ) such that 𝐴2 ∈ (𝑐𝑠) and 𝑇𝑠 ≈ 𝐴. Then, by Corollary (5.2.53), 

𝑇𝑠 = (𝑇𝑠)𝑠 ≈ 𝐴𝑠. By Theorem (5.2.14), 𝐴 ∈ (𝑐𝑠) implies that 𝐴𝑠 is of type  𝐶. This proves 

the implication “(iii) ⟹(iv)”.  

“(iv) ⟹(i)”. Assume that 𝐴 ∈ 𝔅(ℋ) is an essentially normal operator of type 𝐶 and 𝑇𝑠 ≈
𝐴. Denote by 𝐵 the restriction of  𝑇  to  ℋ ⊖ℋ𝑠. Then the restriction of 𝐵 to its each 

nonzero reducing subspace is almost normal. It follows that 𝑇 = 𝑇𝑠⊕𝐵 ≈ 𝐴⊕ 𝐵. Noting 

that (𝐴 ⊕ 𝐵)𝑠 = 𝐴𝑠 = 𝐴 is of type 𝐶, by Theorem (5.2.14), we have 𝐴 ⊕ 𝐵 ∈ (𝑐𝑠). By 

Theorem (5.2.44), we conclude that 𝑇 ∈ (𝑤𝑐𝑠).  
Lemma (5.2.58)[452]:  Let 𝐴, 𝐵 ∈ 𝔅(ℋ) be essentially normal. If 𝐴, 𝐵 are abnormal, then 

𝐴 ≈ 𝐵 if and only if  𝐴(∞) ≅ 𝐵(∞). 
Corollary (5.2.59)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. Then 𝑇 ∈ (𝑤𝑐𝑠) if and only 

if  𝑇𝑠 is either absent or unitarily equivalent to an essentially normal operator of the form  

⨁(𝐴𝑖
(𝑚𝑖)⊕𝐵𝑖

(𝑛𝑖))

1≤𝑖<𝜐

, 1 ≤ 𝑚𝑖, 𝑛𝑖 < ∞, 

where {𝐴𝑖, 𝐵𝑖: 1 ≤ 𝑖 < 𝜐} are essentially normal operators satisfying the conditions (i), (ii) 

and (iii) in Proposition (5.2.23). 

Proof. Obviously, we need only consider the case that 𝑇𝑠 is not absent. By Lemma (5.2.46) 

and Proposition (5.2.23), each essentially normal operator of type 𝐶 is algebraically 

equivalent to a multiplicity-free operator of the form  

                                          𝑅 = ⨁ (𝐴𝑖⊕𝐵𝑖)1≤𝑖<𝜐 ,                                         (12) 

where {𝐴𝑖, 𝐵𝑖: 1 ≤ 𝑖 < 𝜐} satisfy the conditions (i), (ii) and (iii) in Proposition (5.2.23). 

Then, by Corollary (5.2.58), an essentially normal operator 𝑇 satisfies 𝑇 ∈ (𝑤𝑐𝑠) if and only 

if  𝑇𝑠 is algebraically equivalent to an operator 𝑅 of the form (12). Noting that both 𝑇𝑠 and 

 𝑅 are abnormal, in view of Lemma (5.2.59), the latter is equivalent to 

                                  𝑇𝑠
(∞)

≅ ⊕1≤𝑖<𝜐 (𝐴𝑖
(∞)
⊕𝐵𝑖

(∞)
).                             (13) 

By Lemmas (5.2.19) and (5.2.20), the condition (13) holds if and only if there exist 

𝑚𝑖, 𝑛𝑖 , 1 ≤ 𝑖 < 𝜐, such that 

𝑇𝑠 ≅⨁(𝐴𝑖
(𝑚𝑖)⊕𝐵𝑖

(𝑛𝑖))

1≤𝑖<𝜐

. 

For each 𝑖, note that both 𝐴𝑖
∗𝐴𝑖 − 𝐴𝑖𝐴𝑖

∗ and 𝐵𝑖
∗𝐵𝑖 − 𝐵𝑖𝐵𝑖

∗ are nonzero compact operators. 

Since 𝑇𝑠  is essentially normal, if such 𝑚𝑖 , 𝑛𝑖 exist, then it is necessary that 𝑚𝑖, 𝑛𝑖 < ∞ for 

each  𝑖. 
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Corollary (5.2.60)[452]: Let 𝑇 ∈ 𝔅(ℋ) be essentially normal. If  𝑇 is irreducible, then the 

following are equivalent: 

(i) 𝑇 ∈ (𝑐𝑠); 
(ii) 𝑇 ∈ (𝑤𝑐𝑠); 
(iii) 𝑇 is almost normal. 

Proof. The implication “(i) ⟹(ii)” is trivial, and the equivalence “(i)⇔(iii)” follows from 

Theorem (5.2.8). 

“(ii) ⟹(iii)”. If  𝑇2 is not almost normal, then 𝑇2 = 𝑇𝑠 and 𝑇𝑠 is not absent. By Corollary 

(5.2.59),  𝑇𝑠 is reducible, a contradiction. This ends the proof.  

 Corollary (5.2.60)[462]: Let  𝑇2 ∈ 𝔅(ℋ) be essentially normal. If  𝐶∗(𝑇2) admits a 

complex symmetric  generator, then  𝑇2  is almost normal. 

Proof. Assume that 𝐴2 ∈ 𝔅(ℋ) is complex symmetric and 𝐶∗(𝑇2) = 𝐶∗(𝐴2). Then there 

is a conjugation C on ℋ such that 𝐶𝐴2𝐶 = (𝐴∗)2 . Then for each 𝜆2 ∉ 𝜎𝑙𝑟𝑒(𝐴
2) one can 

check that 

                       𝑖𝑛𝑑 (𝐴2 − 𝜆2) = 𝑖𝑛𝑑 𝐶(𝐴2 − 𝜆2)𝐶 = 𝑖𝑛𝑑(𝐴2 − 𝜆2)∗ = −𝑖𝑛𝑑 (𝐴2 − 𝜆2). 
So 𝑖𝑛𝑑(𝐴2 − 𝜆2) = 0 for  𝜆2 ∉ 𝜎𝑙𝑟𝑒(𝐴

2). On the other hand, since 𝑇2 is essentially normal 

and 𝐴2 ∈ 𝐶∗(𝑇2), it follows that 𝐴2 is essentially normal. By the BDF Theorem, 𝐴2 has the 

form “normal plus compact”. Since 𝑇2 ∈ 𝐶∗(𝐴2), 𝑇2 is also of the form “normal plus 

compact”.  

Corollary (5.2.62)[462]:   Let 𝑇2 ∈ 𝔅(ℋ) be essentially  normal. If  𝑇2 is irreducible, then 

𝑇2 ∈ (𝑐𝑠) if and only if  𝑇2 is almost normal. 

The proof of the preceding result depends on a key approximation result. 

Proof.   The necessity follows from Lemma (5.2.7). 

“⟸”. Since 𝑇2 is almost normal, there exist a  square normal operator 𝑁2 and 𝐾2 ∈
𝒦(ℋ) so that 𝑇2 = 𝑁2 + 𝐾2. By Proposition (5.2.9), we can find compact 𝐾0

2 such that 

𝑅2: = 𝑁2 + 𝐾0
2 is an irreducible 𝐶𝑆𝑂. Since 𝑇2, 𝑅2 are both irreducible and essentially 

normal, we have 𝒦(ℋ) ⊂ 𝐶∗(𝑇2) ∩ 𝐶∗(𝑅2). It follows that 𝑇2 − 𝑅2 = 𝐾2 − 𝐾0
2 ∈

𝐶∗(𝑇2) ∩ 𝐶∗(𝑅2). Thus  𝐶∗(𝑇2) = 𝐶∗(𝑅2). This completes the proof.  

In general, the condition of irreducibility in Theorem (5.2.8) can not be canceled. That 

is, the spectral condition “𝑖𝑛𝑑(𝑇2 − 𝜆2) = 0, ∀𝜆2 ∉ 𝜎𝑒(𝑇
2)” is necessary and not sufficient 

for  𝑇2 ∈ (𝑐𝑠). Before giving an example, we first introduce a useful result. 

      Recall that an operator 𝐴2 is said to be abnormal if 𝐴2 has no nonzero reducing subspace 

ℳ such that 𝐴2|ℳ is normal. If an irreducible operator is not normal, then it is abnormal. 

Each Hilbert space operator  𝑇2 admits the unique decomposition 

𝑇2 = 𝑇𝑛𝑜𝑟
2 ⊕𝑇𝑎𝑏𝑛𝑜𝑟

2 , 
Where  𝑇𝑛𝑜𝑟

2  is normal and 𝑇𝑎𝑏𝑛𝑜𝑟
2  is abnormal. The operators 𝑇𝑛𝑜𝑟

2  and 𝑇𝑎𝑏𝑛𝑜𝑟
2  are called the 

normal part and the abnormal part of  𝑇2 respectively. The reader is referred to [472, p. 116] 

for more details. 

Corollary (5.2.64)[462]: Given a normal operator 𝑇2 ∈ 𝔅(ℋ)) and  𝜀 > 0, there exists 

𝐾2 ∈ 𝒦(ℋ) with ‖𝐾2‖ < 𝜀 such that 𝑇2 + 𝐾2 is an irreducible 𝐶𝑆𝑆𝑂. 

Proof. By the Weyl–von Neumann Theorem, we may directly assume that 𝑇2 is a diagonal 

operator with respect to some 𝑂𝑁𝐵 {𝑒𝑛}𝑛=1
∞  of ℋ. Assume that {𝜆𝑛

2}𝑛=1 
∞ are the eigenvalues 

of 𝑇2 satisfying 𝑇2𝑒𝑛 = 𝜆𝑛
2𝑒𝑛 for  𝑛 ≥ 1. For each 𝑛 ≥ 1, denote  𝑎𝑛

2 = 𝑅𝑒𝜆𝑛
2  and 𝑏𝑛

2 =
𝐼𝑚𝜆𝑛

2 . Up to a small compact perturbation, we may assume that 𝑎𝑖
2 ≠ 𝑎𝑗

2  for  𝑖 ≠ 𝑗. Set 
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𝐴2 =∑𝑎𝑖
2 𝑒𝑖⨂𝑒𝑖

∞

𝑖=1

,       𝐵2 =∑𝑏𝑖
2 𝑒𝑖⨂𝑒𝑖

∞

𝑖=1

. 

Then  𝑇2 = 𝐴2 + 𝑖𝐵2. For  𝑖, 𝑗 ≥ 1, set 𝑑𝑖,𝑗
2 =

𝜀

2𝑖+𝑗
. Define a compact operator 𝐾1

2 ∈ 𝒦(ℋ) 

by           

𝐾1
2 =

[
 
 
 
𝑑1,1 𝑑1,2 𝑑1,3 ⋯

𝑑2,1 𝑑2,2 𝑑2,3 ⋯

𝑑3,1
⋮

𝑑3,2
⋮

𝑑3,3 ⋯

⋮ ⋱ ]
 
 
 
2
𝑒1
𝑒2
𝑒3
⋮

. 

It is obvious that 𝐾1
2 ∈ 𝒦(ℋ) is self-adjoint and ‖𝐾1

2‖ < 2 (∑
𝜀

21+𝑛 
∞
𝑛=1 ) = 𝜀. Set 𝐾2 =

𝑖𝐾1
2. Then it remains to check that 𝑇2 + 𝐾2 is an irreducible 𝐶𝑆𝑆𝑂. 

Note that 𝑇2 + 𝐾2 = 𝐴2 + 𝑖𝐵1
2, where 𝐵1

2 = 𝐵2 + 𝐾1
2. Then 𝐴2, 𝐵1

2 are both self-

adjoint. Assume that 𝑃2 ∈ 𝔅(ℋ) is an orthogonal projection commuting with  𝑇2 + 𝐾2. It 
follows that 𝑃2𝐴2  = 𝐴2𝑃2 and 𝑃2𝐵1

2 = 𝐵1
2𝑃2. 

Since 𝐴2 = ∑ 𝑎𝑖
2𝑒𝑖⊗ 𝑒𝑖

∞
𝑖=1  and 𝑎𝑖

2 ≠ 𝑎𝑗
2 whenever 𝑖 ≠ 𝑗, it follows from 𝐴2𝑃2 =

𝑃2𝐴2  that 𝑃2 = ∑ 𝜇𝑖𝑒𝑖⊗ 𝑒𝑖
∞
𝑖=1 , where 𝜇𝑖 = 0 or 𝜇𝑖 = 1 for each 𝑖 ≥ 1. On the other hand, 

for 𝑖, 𝑗 ≥ 1 with  𝑖 ≠ 𝑗, we have  

〈𝑃2𝐵1
2𝑒𝑗 , 𝑒𝑖〉 = 〈𝐵1

2𝑒𝑗, 𝑃
2𝑒𝑖〉 = 〈𝐵1

2 𝑒𝑗, 𝜇𝑖𝑒𝑖〉  = 𝜇𝑖〈𝐵
2𝑒𝑗, 𝑒𝑖〉 +  𝜇𝑖〈 𝐾1

2𝑒𝑗 , 𝑒𝑖〉 =  𝜇𝑖𝑑𝑖,𝑗
2

=
𝜇𝑖
2𝑖+𝑗

 

and  

〈𝐵1
2𝑃2𝑒𝑗 , 𝑒𝑖〉 = 〈𝑃

2𝑒𝑗 , 𝐵1
2𝑒𝑖〉 = 𝜇𝑗〈𝑒𝑗, 𝐵1

2𝑒𝑖〉  = 𝜇𝑗〈𝐵
2𝑒𝑗, 𝑒𝑖〉 + 𝜇𝑗〈𝐾1

2𝑒𝑗, 𝑒𝑖〉 = 𝜇𝑗  𝑑𝑖,𝑗
2

=
𝜇𝑗

2𝑖+𝑗
. 

Since 𝑃2𝐵1
2 = 𝐵1

2𝑃2, it follows that 𝜇𝑖 = 𝜇𝑗. Then either 𝑃2 = 0 or 𝑃2 is the identity 

operator on ℋ, which implies that 𝑇2 + 𝐾2 is irreducible. 

Now it remains to show that 𝑇2 + 𝐾2 is a 𝐶𝑆𝑆𝑂. In fact, if 𝐶 is the conjugation on ℋ 

defined by 𝐶𝑒𝑖 = 𝑒𝑖 for  𝑖 ≥ 1, then one can check that 𝐶(𝐴2 + 𝐾2)𝐶 = (𝐴2 + 𝐾2)∗. Since 

each of the operators 𝐴2, 𝐵2, 𝐾1
2 admits a complex symmetric matrix representation with 

respect to the same ONB  {𝑒𝑛}, one can also see that 𝑇2 + 𝐾2 = 𝐴2 + 𝑖(𝐵2 + 𝐾1
2) is 

complex symmetric. 

Corollary (5.2.64)[462]:   If   𝑇2 ∈ 𝔅(ℋ) is essentially normal, then 𝑇2 ∈ (𝑐𝑠) if and only 

if  𝑇𝑠
2 is either absent or of  type 𝐶. 

     By Theorem (5.2.14), whether or not an essentially square normal operator 𝑇2 has a 

complex symmetric  square generator for its  𝐶∗-algebra depends only on the behavior 

of  𝑇𝑠
2. 

     We give a concrete description of the essentially square normal operators of type  𝐶. We 

first make some preparation. 

     Let {𝒜𝑖}𝑖∈𝛤 be a family of  𝐶∗-algebras. We denote by  ∏ 𝒜𝑖𝑖∈𝛤  the direct product of 

 {𝒜𝑖}𝑖∈𝛤, and by ⊕𝑖∈𝛤 𝒜𝑖 the direct sum of  {𝒜𝑖}𝑖∈𝛤. 

Let  𝐴2 ∈ 𝔅(ℋ). We let 𝑊∗(𝐴2) denote the von Neumann algebra generated  by  𝐴2. 
By the von Neumann Double Commutant Theorem, we have 𝑊∗(𝐴2) = 𝐶∗(𝐴′′)2. Here and 

in what follows, 𝒜′ denotes the commutant algebra of  𝒜. 
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     We referred to [429, Thm. 3.1] for a proof of the following result. 

Proof for the Necessity of Theorem   Assume that 𝑅2 ∈ 𝔅(ℋ) is complex symmetric and 

 𝐶∗(𝑇2) = 𝐶∗(𝑅2). Also we assume that 𝑇𝑠
2 is not absent. Then, by Lemma (5.2.25), 𝑅𝑠

2  is 

not absent. Since 𝑇2 is essentially normal, so is 𝑅2. By Lemma (5.2.10), 𝑅𝑎𝑏𝑛𝑜𝑟
2   is complex 

symmetric. By [478, Thm. 2.8], 𝑅𝑎𝑏𝑛𝑜𝑟
2  is a direct sum of irreducible 𝐶𝑆𝑆𝑂s and operators 

with form of 𝑍 ⊕ 𝑍𝑡 , where 𝑍 is irreducible and not complex symmetric. Note that each 

essentially normal 𝐶𝑆𝑆𝑂 is almost normal. Then, up to unitary equivalence, we may assume 

that 

                        𝑅2 = 𝑁2⊕ (⊕𝑖∈𝛤1
 𝑅𝑖
2(𝑚𝑖)) ⊕ (⊕𝑗∈𝛤2

(𝐴𝑗
2⊕𝐵𝑗

2)(𝑛𝑗)) ,             (14)  

where 

(i) 𝑁2 = 𝑅𝑛𝑜𝑟
2  is normal, {𝑅𝑖  

2 ,  𝐴𝑗
2,  𝐵𝑗

2: 𝑖 ∈ 𝛤1, 𝑗 ∈ 𝛤2} are irreducible operators and no 

two of them are unitarily equivalent; 

(ii)  each  𝑅𝑖  
2  is almost normal and not normal; 

(iii)   𝐴𝑗  
2  is not almost normal and 𝐵𝑗  

2  is a transpose of  𝐴𝑗  
2 for 𝑗 ∈ 𝛤2. 

Note that each of {𝑅𝑖 
2, 𝐴𝑗  

2 , 𝐵𝑗  
2 : 𝑖 ∈ 𝛤1 , 𝑗 ∈ 𝛤2} is abnormal. Since 𝑅2 is essentially normal, it 

follows that 1 ≤ 𝑚𝑖,  𝑛𝑗 < ∞  for all  𝑖, 𝑗.  

We assume that 𝑁2 ∈ 𝔅(ℋ0),  𝑅𝑖 
2 ∈ 𝔅(ℋ1,𝑖) and  𝐴𝑗  

2 ,  𝐵𝑗  
2 ∈ 𝔅(ℋ2,𝑗) for 𝑖 ∈ 𝛤1 and  𝑗 ∈ 𝛤2. 

Hence  

                ℋ = ℋ0⊕ (⊕𝑖∈𝛤1 ℋ1,𝑖
(𝑚𝑖)) ⊕ (⊕𝑗∈𝛤2 (ℋ2,𝑗⊕ℋ2,𝑗)

(𝑛𝑗)) .                     (15) 

Since  𝐶∗(𝑇2) = 𝐶∗(𝑅2), in view of  Lemma (5.2.24) , 𝑇2 can be written as 

                      𝑇2 = 𝐷2⊕ (⊕𝑖∈𝛤1 𝐸𝑖
2(𝑚𝑖)) ⊕ (⊕𝑗∈𝛤2  (𝐹𝑗

2⊕𝐺𝑗
2)(𝑛𝑗))                 (16)  

with respect to the decomposition (89); moreover, by statements (i)–(ii), we have 

(iv) 𝐷2 is normal, {𝐸𝑖
2, 𝐹𝑗

2, 𝐺𝑗
2 : 𝑖 ∈ 𝛤1, 𝑗 ∈ 𝛤2}  are irreducible operators and no two of 

them are unitarily equivalent; 

(v) each  𝐸𝑖
2 is almost normal and not normal for 𝑖 ∈ 𝛤1; 

(vi) Fj
2, Gj

2 are essentially normal and not almost normal for  j ∈ Γ2. 

By Lemma (5.2.21), we have  𝑇𝑠
2 =⊕𝑗∈𝛤2 (𝐹𝑗

2⊕𝐺𝑗
2)(𝑛𝑗). On the other hand, note that  

⊕𝑗∈𝛤2 (𝐹𝑗
2⊕𝐺𝑗

2) ∈ 𝐶∗(⊕𝑗∈𝛤2 (𝐴𝑗
2⊕𝐵𝑗

2)). 

It follows from Proposition (5.2.27) that 𝐺𝑗
2 is a compact perturbation of a transpose (𝐹𝑗

2)𝑡 of  

𝐹𝑗
2 for  𝑗 ∈ 𝛤2, and ‖𝐺𝑗

2 − (𝐹𝑗
2)𝑡 ‖ → 0  if 𝛤2 is infinite. By Proposition (5.2.23),  𝑇𝑠

2  is of  

type 𝐶. This proves the necessity.  

To give the proof for the sufficiency of Theorem (5.2.14), we need to prove several 

approximation results. 

Corollary (5.2.65)[462]: Let  𝑇2 ∈ 𝔅(ℋ) be essentially normal and  𝑇2 = 𝑁2⊕
(⊕𝑖=1

∞ 𝑇𝑖
2), where 

(i) 𝑁2 ∈ 𝔅(ℋ0) is normal, 

(ii) 𝑇𝑖
2 ∈ 𝐵(𝐻𝑖) is irreducible and not normal for 𝑖 ≥ 1, and 

(iii) 𝑇𝑖
2 ≇ 𝑇𝑗

2 whenever 𝑖 ≠ 𝑗. 

Then 0ℋ0⊕ (⊕𝑖=1
∞ 𝒦(ℋ𝑖)) ⊂ 𝐶

∗(𝑇2). Moreover, if  𝑁2 is absent, then  

𝐶∗(𝑇2) ∩ 𝒦(ℋ) =⊕𝑖=1
∞ 𝒦(ℋ𝑖). 
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Proof. For any fixed 𝑖 ≥ 1 and fixed 𝑒, 𝑓 ∈ ℋ𝑖, it suffices to prove that 𝑓 ⊗ 𝑒 ∈ 𝐶∗(𝑇2). 
Set 𝐾2 = (𝑇∗)2 𝑇2 − 𝑇2(𝑇∗)2. By the hypothesis, we may assume 𝐾2 = 0⊕ (⊕𝑗

∞ 𝐾𝑗
2), 

where 𝐾𝑗
2 ∈ 𝒦(ℋ𝑗) for 𝑗 ≥ 1. It is obvious that 𝐾𝑗

2 ≠ 0 for all 𝑗 ≥ 1 since 𝑇𝑗
2  is not normal. 

There exist nonzero 𝑒1, 𝑓1 ∈ ℋ𝑖  such that  𝐾𝑖
2𝑒1 = 𝑓1. We may assume that  ‖𝑓1‖ = 1. 

Set 𝐴2 =⊕𝑖=1
∞ 𝑇𝑗

2  . Since each 𝑇𝑗
2  is irreducible and 𝑇𝑗1

2  ≇ 𝑇𝑗1
2  for  𝑗1 ≠ 𝑗2, it follows 

from Lemma (5.2.15) that each operator commuting with both 𝐴2 and (𝐴∗)2 has the form 

⊕𝑗=1
∞ 𝜆𝑗

2𝐼𝑗, where 𝐼𝑗 is the identity operator on  ℋ𝑗. Moreover, we have 

 𝑊∗(𝐴2) =∏𝔅(ℋ𝑗)

∞

𝑗=1

. 

So 𝑓 ⊗ 𝑒 ∈ 𝑊∗(𝐴2) and, by the von Neumann Double Commutant Theorem, we have 𝑓 ⊗

𝑓1, 𝑒1⊗ 𝑒, 𝑓 ⊗ 𝑒 ∈ 𝐶∗(𝐴2)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑆𝑂𝑇. Here SOT denotes the strong operator topology. Using the 

Kaplansky Density Theorem ([471, Thm.I.7.3, Rem.I.7.4]), we can choose polynomials 

{𝑝𝑁(·,·)} and {𝑞𝑁(·,·)} in two free variables so that  

𝑝𝑛((𝐴
∗)2, 𝐴2)

𝑆𝑂𝑇
→  𝑓 ⊗ 𝑓1, 𝑞𝑛((𝐴

∗)2, 𝐴2)
𝑆𝑂𝑇
→  𝑒1⊗ 𝑒. 

Since ⊕𝑗=1
∞ 𝐾𝑗

2 is compact, we obtain 

 𝑝𝑛((𝐴
∗)2, 𝐴2)(⊕𝑗=1

∞ 𝐾𝑗
2)𝑞𝑛((𝐴

∗)2, 𝐴2)  
  ‖·‖  
→   𝑓 ⊗ 𝑒. 

Moreover, we obtain  

𝑝𝑛((𝑇
∗)2, 𝑇2)𝐾2𝑞𝑛((𝑇

∗)2, 𝑇2)

= [
0 0
0 𝑝𝑛((𝐴

∗)2, 𝐴2)(⊕ 𝐾𝑖
2)𝑞𝑛((𝐴

∗)2, 𝐴2)]  
 ‖·‖ 
→  [

0 0
0 𝑓 ⊗ 𝑒

] , 

which completes the proof.   

Recall that an operator is said to be completely reducible if it does not admit any 

minimal reducing subspace ([424]). 

Corollary (5.2.66)[462]: If an essentially  square normal operator 𝑇2 is completely 

reducible, then 𝑇2 is normal. 

Proof. Assume that 𝑇2 ∈ 𝔅(ℋ). Since 𝑇2 is completely reducible, by [424, Lem. 2.5], we 

have  𝐶∗(𝑇2) ∩ 𝒦(ℋ) = {0}. Noting that 𝑇2 is essentially normal, we obtain (𝑇∗)2 𝑇2 −
𝑇2(𝑇∗)2 ∈ 𝐶∗(𝑇2) ∩ 𝒦(ℋ). Thus (𝑇∗)2 𝑇2 − 𝑇2(𝑇∗)2 = 0.       

     If 𝑑 is a cardinal number and ℋ is a Hilbert space, let ℋ(𝑑) denote the direct sum of ℋ 

with itself 𝑑 times. If   𝐴2 ∈ 𝔅(ℋ),  𝐴2(𝑑) is the direct sum of  𝐴2 with itself 𝑑 times. 

Corollary (5.2.67)[462]: Let 𝑇2 ∈ 𝔅(ℋ) be essentially square normal. Then 𝑇𝑎𝑏𝑛𝑜𝑟
2   is 

unitarily equivalent to an operator of the form 

⊕𝑖∈𝛤 𝑇𝑖
2(𝑛𝑖), 

where each 𝑇𝑖
2 is irreducible, not normal and 𝑇𝑖

2 ≇ 𝑇𝑗
2  for 𝑖, 𝑗 ∈ 𝛤 with 𝑖 ≠ 𝑗. Moreover, 𝑇𝑠

2 

is the restriction of  𝑇𝑎𝑏𝑛𝑜𝑟
2   to a reducing subspace and 

𝑇𝑠
2 ≅⊕𝑖∈𝛤0 𝑇𝑖

2(𝑛𝑖), 

where 𝛤0 = {𝑖 ∈ 𝛤: 𝑇𝑖
2 is not almost normal}. 

Proof. By Lemma (5.2.18),  𝑇𝑎𝑏𝑛𝑜𝑟
2   is unitarily equivalent to an operator of the form  

𝑇0
2⊕ (⊕𝑖∈𝛤 𝑇𝑖

2(𝑛𝑖)) , 
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 where 𝑇0
2 ∈ 𝔅(ℋ0) is completely reducible, each 𝑇𝑖

2 ∈ 𝔅(ℋ𝑖) is irreducible and 𝑇𝑖
2 ≇

𝑇𝑗
2 for 𝑖, 𝑗 ∈ 𝛤 with 𝑖 ≠ 𝑗. Note that 𝑇𝑖

2 is abnormal for 𝑖 ∈ 𝛤. Since 𝑇0
2  is completely 

reducible and essentially normal, it follows from Lemma (5.2.17) that  𝑇0
2 is normal. Note 

that 𝑇𝑎𝑏𝑛𝑜𝑟
2  is abnormal ; so 𝑇0

2 is absent. Then 𝑇𝑎𝑏𝑛𝑜𝑟
2 ≅⊕𝑖∈𝛤 𝑇𝑖

2(𝑛𝑖). For convenience we 

directly assume that  𝑇𝑎𝑏𝑛𝑜𝑟
2 =⊕𝑖∈𝛤 𝑇𝑖

2(𝑛𝑖). Thus 

 𝑇2 = 𝑇𝑛𝑜𝑟
2 ⊕ (⊕𝑖∈𝛤 𝑇𝑖

2(𝑛𝑖)) . 

By definition, it is obvious that ⊕𝑖∈𝛤0 ℋ𝑖
(𝑛𝑖) ⊂ ℋ𝑠 . On the other hand, if ℳ is a m.r.s. 

of  𝑇2 and 𝑇2|ℳ is not almost normal, then, by Lemmas (5.2.19) and (5.2.20), there exists 

𝑖0 ∈ 𝛤 such that ℳ ⊂ ℋ
𝑖0

(𝑛𝑖0) and 𝑇2|ℳ ≅ 𝑇𝑖0
2 . So  𝑇𝑖0

2  is not almost normal and  ℋ
𝑖0

(𝑛𝑖0) ⊂

 ⊕𝑖∈𝛤0
ℋ𝑖
(𝑛𝑖). Thus ℳ ⊂ ⊕𝑖∈𝛤0

ℋ𝑖
(𝑛𝑖). Furthermore we obtain ℋ𝑠 ⊂ ⊕𝑖∈𝛤0

ℋ𝑖
(𝑛𝑖). 

Therefore  ℋ𝑠 =⊕𝑖∈𝛤0
ℋ𝑖
(𝑛𝑖). 

Corollary (5.2.68)[462]:   An essentially square normal operator 𝑇2 is of type 𝐶 if and only 

if  𝑇2 is unitarily equivalent to an operator of the form  

⊕1≤𝑖<𝜐 (𝐴𝑖
2 ⨁ 𝐵𝒊

𝟐 )(𝑛𝑖), 1 ≤ 𝑛𝑖 < ∞, 

where (i) 𝜐 ∈ ℕ  or  𝜐 = ∞, {𝐴𝑖
2,  𝐵𝑖

2: 1 ≤ 𝑖 < 𝜐} are irreducible and no two of them are 

unitarily equivalent,(ii) 𝐴𝑖
2  is not almost normal and there exists compact 𝐾𝑖

2 such that 𝐴𝑖
2 +

𝐾𝑖
2  is a transpose of  𝐵𝑖

2 for each 𝑖, and (iii) ‖𝐾𝑖
2‖ → 0 if  𝜐 = ∞. 

Proof.“⟸”. Assume that  𝐴𝒊
𝟐,  𝐵𝒊

𝟐 ∈ 𝔅(ℋ𝑖) for 1 ≤ 𝑖 < 𝜐. Denote ℋ =⊕1≤𝑖<𝜐ℋ𝑖
(𝑛𝑖) and 

𝐴2 =⊕1≤𝑖<𝜐  𝐴𝑖
2(𝑛𝑖) ,       𝐵2 =⊕1≤𝑖<𝜐 𝐵𝑖

2(𝑛𝑖) . 

Then 𝐴2,  𝐵2 ∈ 𝔅(ℋ) are essentially normal and 𝑇2 ≅ 𝐴2⊕𝐵2. For convenience we 

directly assume that 𝑇2 = 𝐴2⊕𝐵2 and  𝜐 = ∞. 

Since {𝐴𝑖
2 , 𝐵𝑖

2 : 1 ≤ 𝑖 < 𝜐} are irreducible, not normal and no two of them are unitarily 

equivalent, it follows from Corollary (5.2.19) that 

                            𝐶∗(𝐴2) ∩ 𝒦(ℋ) =⊕1≤𝑖<𝜐 𝒦(ℋ𝑖)
(𝑛𝑖) = 𝐶∗(𝐵2) ∩ 𝒦(ℋ).          (17)                             

Moreover, if  ℳ is a m.r.s.  of  𝑇2, then, by Lemmas (5.2.19) and (5.2.20), there exists 

unique 𝑖0 with 1 ≤ 𝑖0 < 𝜐 such that exactly one of the following holds 

 𝑇2|ℳ ≅ (𝐴𝑖0)
2, 𝑇2|ℳ ≅ (𝐵𝑖0)

2. 

It follows that 𝐴2, 𝐵2 are disjoint; moreover, 𝑇2|ℳ is not almost normal. Thus, by Corollary 

(5.2.22),  𝑇2 = 𝑇𝑠
2 . 

By statement (ii), for each   1 ≤ 𝑖 < 𝜐, we can find a conjugation 𝐶𝑖 on  ℋ𝑖 so that 

 𝐴𝒊
𝟐 +  𝐾𝒊

𝟐 = 𝐶𝑖(𝐵𝑖
∗)2𝐶𝑖. Set  

𝐾2 =⊕1≤𝑖<𝜐 𝐾𝑖
2(𝑛𝑖), 𝐶 =⊕1≤𝑖<𝜐 𝐶𝑖

(𝑛𝑖). 

Then 𝐶 is a conjugation on ℋ and, by (82), 𝐾2 ∈ 𝐶∗(𝐴2) ∩ 𝒦(ℋ), since ‖𝐾𝑗
2 ‖ → 0; 

moreover, 𝐶(𝐵∗)2𝐶 = 𝐴2 + 𝐾2. 

On the other hand, since {𝐵𝑖
2 } are irreducible, not normal and no two of them are 

unitarily equivalent, so are  {𝐴𝑖
2 + 𝐾𝑖

2 }. It follows from Corollary (5.2.16) that  

𝐶∗(𝐴2 + 𝐾2) ∩ 𝒦(ℋ) =⊕1≤𝑖<𝜐 𝒦(ℋ𝑖)
(𝑛𝑖) = 𝐶∗(𝐴2) ∩ 𝒦(ℋ). 
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“⟹”. Now assume that 𝑇2 = 𝑇𝑠
2  and 𝑇2 = 𝐴2  ⊕ 𝐵2, where 𝐴2, 𝐵2 ∈ 𝔅(ℋ) satisfy 

conditions (a), (b) and (c) in Definition (5.2.13). Since 𝑇2 = 𝑇𝑠
2 , it follows that 𝐴2 = 𝐴𝑠

2 . 

Then, by Corollary (5.2.22), we may assume that 

 𝐴2 = ⊕𝑖∈𝛤 𝐴𝑖
2(𝑛𝑖), 1 ≤ 𝑛𝑖 < ∞, 

where each 𝐴𝑖
2 ∈ 𝔅(ℋ𝑖) is irreducible, not almost normal and 𝐴𝑖

2 ≇ 𝐴𝑗
2  whenever 𝑖 ≠ 𝑗. 

By Corollary (5.2.16), we have  

 𝐶∗(𝐴2) ∩ 𝒦(ℋ) = ⊕𝑖∈𝛤 𝒦(ℋ𝑖)
(𝑛𝑖).  

Then  𝐾2 can be written as  

𝐾2 = ⊕𝑖∈𝛤 𝐾𝑖
2(𝑛𝑖), 

where 𝐾𝑖
2 ∈ 𝒦(ℋ𝑖) for 𝑖 ∈ 𝛤, and ‖𝐾𝑖

2 ‖ → 0 if 𝛤 is infinite. Since 𝐶∗(𝐵2) ∩ 𝒦(ℋ) =

𝐶∗(𝐴2) ∩ 𝒦(ℋ) is  an ideal of  𝐶∗(𝐵2), 𝐵2 can be written as 

  

𝐵2 = ⊕𝑖∈𝛤 𝐸𝑖
2(𝑛𝑖), 

moreover, this means that 𝒦(ℋ𝑖) ⊂ 𝐶
∗(𝐸𝑖

2),   𝐸𝑖
2 is irreducible and 𝐸𝑖

2 ≇ 𝐸𝑗
2 whenever 𝑖 ≠

𝑗. Since 𝐴2, 𝐵2 are disjoint, we deduce that no two of { 𝐴𝑖
2, 𝐸𝑖

2 ∶ 𝑖 ∈ 𝛤} are unitarily 

equivalent. 

 that 𝐴2 + 𝐾2 =⊕𝑖∈𝛤 (𝐴𝑖
2 + 𝐾𝑖

2)(𝑛𝑖) and 𝐶∗(𝐴2 + 𝐾2) ∩ 𝒦(ℋ) = 𝐶∗(𝐴2) ∩ 𝒦(ℋ). 

As we have done to  𝐵2, we can also deduce that {𝐴𝑖
2 + 𝐾𝑖

2} are  irreducible and no two of 

them are unitarily equivalent. 

By the hypothesis, 𝐴2 + 𝐾2 is a transpose of 𝐵2 Thus  ⊕𝑖∈𝛤 (𝐴𝑖
2 + 𝐾𝑖

2 )(𝑛𝑖) and 

⊕𝑖∈𝛤 ((𝐸𝑖
2)𝑡)(𝑛𝑖) are unitarily equivalent, and their m.r.s.’s  correspond one to one. Then, 

by Lemmas (5.2.19) and (5.2.20), there exists a bijective map  𝜏: 𝛤 → 𝛤 such that 𝐴𝑖
2 +

𝐾𝑖
2 ≅ (𝐸𝜏(𝑖)

2 )𝑡 and 𝑛𝑖 = 𝑛𝜏(𝑖) for all   𝑖 ∈ 𝛤. For each  𝑖 ∈ 𝛤, set 𝐵𝑖
2 = 𝐸𝜏(𝑖)

2 . Then, up to 

unitary equivalence, 𝐴𝑖
2 + 𝐾𝑖

2  is a transpose of 𝐵𝑖
2  for  each  𝑖 ∈ 𝛤.  

Corollary (5.2.69)[462]:   Let ℋ =⊕𝑖∈𝛤ℋ𝑖 and  𝐴2 ∈ 𝔅(ℋ) with  𝐴2 =⊕𝑖∈𝛤 𝐴𝑖
2, where 

 𝐴𝑖
2 ∈ 𝔅(ℋ𝑖) for 𝑖 ∈ 𝛤. If  𝐵2 ∈ 𝔅(ℋ) and  𝐶∗(𝐴2) = 𝐶∗(𝐵2), then there exist  𝐵𝑖

2  ∈

𝔅(ℋ𝑖), 𝑖 ∈ 𝛤, such that 𝐵2 =⊕𝑖∈𝛤 𝐵𝑖
2 and 

(i) for any subset 𝛤0 of  𝛤, 𝐶∗(⊕𝑖∈𝛤0 𝐴𝑖
2) = 𝐶∗(⊕𝑖∈𝛤0 𝐵𝑖

2),  

(ii) for each  𝑖 ∈ 𝛤, the reducing subspaces of  𝐴𝑖
2 coincide with that of 𝐵𝑖

2  , 

(iii) for each  𝑖 ∈ 𝛤, 𝐴𝑖
2 is irreducible if and only if  𝐵𝑖

2  is irreducible, 

(iv) for  any  𝑖, 𝑗 ∈ 𝛤, 𝐴𝑖
2 ≅ 𝐴𝑗

2  if and only if  𝐵𝑖
2  ≅ 𝐵𝑗

2. 

Proof. Since 𝐶∗(𝐴2) = 𝐶∗(𝐵2), it is clear that 𝐵2 has the form 𝐵2 =⊕𝑖∈𝛤 𝐵𝑖
2  , where 𝐵𝑖

2  ∈
𝔅(ℋ𝑖) for 𝑖 ∈ 𝛤. Statement (i) is also clear. 

(ii) By (i), we have  𝐶∗(𝐴𝑖
2  ) = 𝐶∗(𝐵𝑖

2  ). Thus 𝐶∗(𝐴𝑖
′)2 = 𝐶∗(𝐵𝑖

′)2  and the assertion holds. 

(iii) This follows immediately from (ii). 

(iv) We directly assume  𝑖 ≠ 𝑗. By (i), we have 𝐶∗(𝐴𝑖
2  ⊕𝐴𝑗

2  ) = 𝐶∗(𝐵𝑖
2  ⊕𝐵𝑗

2). If  𝐴𝑖
2  ≅

𝐴𝑗
2  , then there exists unitary operator 𝑈:ℋ𝑗 → ℋ𝑖 such that  𝐴𝑗

2  = 𝑈∗𝐴𝑖
2  𝑈. Then, for any 

polynomial 𝑝(·,·) in two free variables, we have 𝑝((𝐴𝑗
∗)2, 𝐴𝑗

2  ) = 𝑈∗𝑝((𝐴𝑖
∗)2, 𝐴𝑖

2  )𝑈. It 

follows immediately that each operator in 𝐶∗(𝐴𝑖
2  ⊕𝐴𝑗

2  ) has the form  𝑋 ⊕ 𝑈∗𝑋𝑈, where 
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𝑋 ∈ 𝐶∗(𝐴𝑖
2). Sine  𝐵𝑖

2  ⊕𝐵𝑗
2  ∈ 𝐶∗(𝐴𝑖

2⊕𝐴𝑗
2), we obtain 𝐵𝑖

2 = 𝑈∗𝐵𝑖
2  𝑈, that is, 𝐵𝑖

2  ≅ 𝐵𝑗
2  . 

Thus 𝐴𝑖
2 ≅ 𝐴𝑗

2   implies  𝐵𝑖
2  ≅ 𝐵𝑗

2  . Likewise, one can see the converse.  

Corollary (5.2.71)[462]:   Let  𝑇2, 𝑅2 ∈ 𝔅(ℋ) be essentially square normal. If  𝐶∗(𝑇2) =
𝐶∗(𝑅2),  then 

(i) 𝑇𝑠
2  is absent if and only if  𝑅𝑠

2   is absent, and 

(ii) 𝐶∗( 𝑇𝑠
2  ) = 𝐶∗( 𝑅𝑠

2  ). 
Proof. In view of Lemma (5.2.21), we may assume that  

 𝑇2 = 𝑇𝑛𝑜𝑟
2 ⊕ (⊕𝑖∈𝛤 𝑇𝑖

2(𝑛𝑖)) , 1 ≤ 𝑛𝑖 < ∞,  

Where 𝑇𝑛𝑜𝑟
2 ∈ 𝔅(ℋ0),  𝑇𝑖

2 ∈ 𝔅(ℋ𝑖) is irreducible and not normal for 𝑖 ∈ 𝛤; moreover, 𝑇𝑖
2 ≇

𝑇𝑗
2 whenever 𝑖 ≠ 𝑗. Since  𝐶∗(𝑇2) = 𝐶∗(𝑅2),   𝑅2 can be written as 

𝑅2 = 𝑅0
2  ⊕ (⊕𝑖∈𝛤  𝑅𝑖

2(𝑛𝑖)) , 

where 𝑅0
2  ∈ 𝔅(ℋ0) and 𝑅𝑖

2  ∈ 𝔅(ℋ𝑖) for 𝑖 ∈ 𝛤. Thus 𝐶∗(𝑅0
2  ) = 𝐶∗(𝑇𝑛𝑜𝑟

2 ) and 𝐶∗(𝑅𝑖
2  ) =

𝐶∗ ( 𝑇𝑖
2  ) for  𝑖 ∈ 𝛤. Then  𝑅0

2   is normal; moreover, by Lemma (5.2.24), each  𝑅𝑖
2   is 

irreducible, not normal and 𝑅𝑖
2  ≇ 𝑅𝑗

2  whenever 𝑖 ≠ 𝑗. For each 𝑖 ∈ 𝛤, we note that 𝑅𝑖
2   is 

almost normal if and only if  𝑇𝑖
2   is almost normal. 

Denote 𝛤0 = {𝑖 ∈ 𝛤: 𝑇𝑖
2  is not almost normal}. Then  𝛤0 = {𝑖 ∈ 𝛤: 𝑅𝑖

2   is not almost normal}. 
Thus, by Lemma (5.2.21),  

𝑇𝑠
2  = ⊕𝑖∈𝛤0 𝑇𝑖

2(𝑛𝑖), 𝑅𝑠
2  = ⊕𝑖∈𝛤0 𝑅𝑖

2(𝑛𝑖) . 

From  𝐶∗(𝑇2) = 𝐶∗(𝑅2), we deduce that 𝐶∗(𝑇𝑠
2  ) = 𝐶∗(𝑅𝑠

2  ). This completes the p 

Corollary (5.2.70)[462]:  Let 𝑇2 ∈ 𝔅(ℋ) be essentially normal and 𝑇2 =⊕𝑖=1
∞ 𝐴𝑖

2  , where 

𝐴𝑖
2  ∈ 𝔅(ℋ𝑖) for 𝑖 ≥ 1. Assume that  𝐵𝑖

2  ∈ 𝔅(ℋ𝑖) is a transpose of  𝐴𝑖
2   for  𝑖 ≥ 1. If 

 𝑝(𝑧1, 𝑧2) is a polynomial in two free variables, then there exists  ⊕𝑖=1
∞ 𝐾𝑖

2  ∈ ⊕𝑖=1
∞ 𝒦(ℋ𝑖) 

such that 𝑝((𝐵𝑖
∗)2, 𝐵𝑖

2  ) + 𝐾𝑖
2   is a transpose of  𝑝((𝐴𝑖

∗)2, 𝐴𝑖
2  ) for  𝑖 ≥ 1. 

Proof. By the hypothesis, there exist conjugations {𝐶𝑖}𝑖=1
∞  such that  𝐵𝑖

2  = 𝐶𝑖(𝐴𝑖
∗)2𝐶𝑖, 𝑖 ≥

1. Set 𝐸𝑖
2 = (𝐴𝑖

∗)2 𝐴𝑖
2 − (𝐴𝑖

∗)2 for  𝑖 ≥ 1. Since 𝑇2 is essentially normal, we have 

(𝑇∗)2 𝑇2 − 𝑇2(𝑇∗)2 =⊕𝑖=1
∞ 𝐸𝑖

2 ∈ 𝒦(ℋ). So 𝐸𝑖
2 ∈ 𝒦(ℋ𝑖) for  𝑖 ≥ 1 and ‖ 𝐸𝑖

2‖ → 0. 

For convenience, we assume that  𝑝(𝑧1, 𝑧2) = 𝑧1
2𝑧2𝑧1. The proof in general case is similar. 

Compute to see that  

𝐶𝑖𝑝((𝐴𝑖
∗)2, 𝐴𝑖

2)∗𝐶𝑖 = 𝐶𝑖 𝐴𝑖
2(𝐴𝑖

∗)2𝐴𝑖
2𝐶𝑖 = (𝐵𝑖

∗)2𝐵𝑖
2 (𝐵𝑖

∗)2 

 = (𝐵𝑖
∗)2(𝐵𝑖

2(𝐵𝑖
∗)2)(𝐵𝑖

∗)2 − (𝐵𝑖
∗)2((𝐵𝑖

∗)2𝐵𝑖
2)(𝐵𝑖

∗)2 + (𝐵𝑖
∗)2((𝐵𝑖

∗)2𝐵𝑖
2 )(𝐵𝑖

∗)2 

 = (𝐵𝑖
∗)2(𝐵𝑖

2(𝐵𝑖
∗)2 − (𝐵𝑖

∗)2𝐵𝑖
2)(𝐵𝑖

∗)2 + 𝑝(𝐵𝑖
∗2, 𝐵𝑖

2)  
= (𝐵𝑖

∗)2(𝐶𝑖𝐸𝑖
2𝐶𝑖)(𝐵𝑖

∗)2 + 𝑝((𝐵𝑖
∗)2,  𝐵𝑖

2). 
Set  𝐾𝑖

2 = (𝐵𝑖
∗)2(𝐶𝑖𝐸𝑖

2𝐶𝑖)(𝐵𝑖
∗)2. So 𝐾𝑖

2 is compact and 𝑝((𝐵𝑖
∗)2, 𝐵𝑖

2) + 𝐾𝑖
2 is a transpose of  

𝑝((𝐴𝑖
∗)2, 𝐴𝑖

2); moreover, we have 

 ‖𝐾𝑖
2‖ ≤ ‖𝐵𝑖

2‖
2
·  ‖𝐸𝑖

2‖ = ‖𝐴𝑖
2‖
2
·  ‖𝐸𝑖

2‖ ≤ ‖𝑇2‖2 ·  ‖𝐸𝑖
2‖ →  0. 

Hence  ⊕𝑖=1
∞ 𝐾𝑖

2 ∈ ⊕𝑖=1
∞ 𝒦(ℋ𝑖). This completes the proof.    

Corollary (5.2.72)[462]:   Let  𝑇2 ∈ 𝔅(ℋ)be essentially normal and  

𝑇2 =⊕𝑗=1
∞ (𝐴𝑗

2⊕𝐵𝑗
2), 
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where 𝐴𝑗
2,  𝐵𝑗

2 ∈ 𝔅(ℋ𝑗) and  𝐵𝑗
2 is a transpose of 𝐴𝑗

2  for 𝑗 ≥ 1. Then each operator 𝑅2 ∈

𝐶∗(𝑇2) can be written as 𝑅2 =⊕𝑖=1
∞ (𝐹𝑗

2⊕𝐺𝑗
2), where 𝐺𝑗

2 ∈ 𝔅(ℋ𝑗) is a compact 

perturbation of some transpose (𝐹𝑗
2)𝑡 of  𝐹𝑗

2 and ‖𝐺𝑗
2 − (𝐹𝑗

2)𝑡 ‖ → 0.  

Proof. Since  𝐵𝑗
2 is a transpose of  𝐴𝑗

2, there exists a conjugation 𝐶𝑗 such that  𝐵𝑗
2 =

𝐶𝑗(𝐴𝑗
∗)2𝐶𝑗. Assume that {𝑝𝑛}𝑛=1

∞  are polynomials in two free variables and  𝑝𝑛((𝑇
∗)2, 𝑇2) →

𝑅2. Note that  ⊕𝑗=1
∞  𝐴𝑗

2  is essentially normal. Then, by Lemma (5.2.26(, for each 𝑛 ≥ 1, 

there exist compact operators {𝐾𝑗,𝑛
2  }𝑗≥1 such that  

𝑝𝑛((𝐵𝑗
∗)2,  𝐵𝑗

2) + 𝐾𝑗,𝑛
2 = 𝐶𝑗𝑝𝑛((𝐴𝑗

∗)2,  𝐴𝑗
2)∗𝐶𝑗 

and ‖𝐾𝑗,𝑛
2 ‖ → 0 as 𝑗 → ∞. Then ⊕𝑗=1

∞ 𝐾𝑗,𝑛
2  is compact for each  𝑛 ≥ 1. 

Note that 𝑝𝑛((𝑇
∗)2, 𝑇2) → 𝑅2 as 𝑛 → ∞ and  

𝑝𝑛((𝑇
∗)2, 𝑇2) =⊕𝑗=1

∞ (𝑝𝑛((𝐴𝑗
∗)2,  𝐴𝑗

2) ⊕ 𝑝𝑛((𝐵𝑗
∗)2 ,  𝐵𝑗

2)) , 𝑛 ≥  1. 

Then ⊕𝑗=1
∞ 𝑝𝑛((𝐴𝑗

∗)2,  𝐴𝑗
2) converges to an operator of the form ⊕𝑗=1

∞ 𝐹𝑗
2 and 

⊕𝑗=1
∞ 𝑝𝑛((𝐵𝑗

∗)2,  𝐵𝑗
2) converges to an operator of the form ⊕𝑗=1

∞ 𝐺𝑗
2 as  𝑛 → ∞. Then 

 ⊕𝑗=1
∞ 𝐶𝑗𝑝𝑛((𝐴𝑗

∗)2,  𝐴𝑗
2)∗ 𝐶𝑗⟶⊕𝑗=1

∞ 𝐶𝑗(𝐹𝑗
∗)2 𝐶𝑗. 

So, as 𝑛 → ∞, we have  

⨁𝑗=1
∞ 𝐾𝑗,𝑛

2 =⊕𝑗=1
∞ (𝐶𝑗𝑝𝑛((𝐴𝑗

∗)2,  𝐴𝑗
2)∗𝐶𝑗 − 𝑝𝑛((𝐵𝑗

∗)2, 𝐵𝑗
2)) ⟶⊕𝑗=1

∞ (𝐶𝑗(𝐹𝑗
∗)2𝐶𝑗 − 𝐺𝑗

2). 

For each 𝑛 ≥ 1, note that ⊕𝑗=1
∗ 𝐾𝑗,𝑛

2  is compact. Thus their norm limit ⊕𝑗=1
∞ (𝐶𝑗(𝐹𝑗

∗)2𝐶𝑗 −

𝐺𝑗
2) is also compact. Hence 𝐶𝑗(𝐹𝑗

∗)2𝐶𝑗 − 𝐺𝑗
2 is compact for each 𝑗 and ‖𝐶𝑗(𝐹𝑗

∗)2𝐶𝑗 − 𝐺𝑗
2‖ →

0 as  𝑗 → ∞. Note that 𝑅2 = 𝑙𝑖𝑚𝑛𝑝𝑛((𝑇
∗)2, 𝑇2) =⊕𝑗=1

∞ (𝐹𝑗
2⊕𝐺𝑗

2). This completes the 

proof.  

Corollary (5.2.74)[462]:   Let 𝑇2 ∈ 𝔅(ℋ) and suppose that  𝜆2 ∈ 𝜎𝑙𝑟𝑒(𝑇
2). Then, given  

𝜀 > 0, there exists a compact operator 𝐾2 with ‖𝐾2‖ < 𝜀 such that 

  

𝑇2 + 𝐾2 = [𝜆
2 ∗
0 𝐴2

]
ℂ𝑒
{𝑒}⊥

, 

where 𝑒 ∈ ℋ is a unit vector and 𝐴2 ∈ 𝐵2({𝑒}⊥) satisfies 𝜎(𝑇2) = 𝜎(𝐴2). 
Proof. By Lemma (5.2.28), there exists  𝐾2 ∈ 𝒦(ℋ) with ‖𝐾2‖ < 𝜀 such that 

𝑇2 + 𝐾2 = [
𝜆2𝐼1 ∗

0 𝐴0
2]
ℋ1
ℋ2
, 

 where ℋ1⊕ℋ2 = ℋ, 𝑑𝑖𝑚ℋ1 = ∞,  𝐼1 is the identity operator on ℋ1 and 𝐴0
2 ∈ 𝔅(ℋ2) 

satisfies 𝜎(𝐴0
2) = 𝜎(𝑇2). Choose a unit vector  𝑒 ∈ ℋ1. Then 𝑇2 + 𝐾2 can be written as 

𝑇2 + 𝐾2 = [

𝜆2 0 𝐸2

0 𝜆2𝐼2 𝐹2

0 0 𝐴0
2
]

ℂ𝑒
ℋ1⊖ℂ𝑒
ℋ2

, 

Where  𝐼2 is the identity operator on  ℋ1⊖ℂ𝑒. Set 

𝐴2 = [
𝜆2𝐼2 𝐹2

0 𝐴0
2]
ℋ1⊖ℂ𝑒
ℋ2

. 

Since  𝜆2 ∈ 𝜎(𝑇2) = 𝜎(𝐴0
2), it follows that 𝜎(𝐴2) = 𝜎(𝑇2). Noting that 

 𝑇2 + 𝐾2 = [𝜆
2 ∗
0 𝐴2

]
ℂ𝑒

ℋ ⊖ ℂ𝑒
, 
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we conclude the proof.  

Corollary (5.2.74)[462]: Let  𝐴2,  𝐵2 ∈ 𝔅(ℋ). Assume that 𝜆2 ∈ 𝑖𝑠𝑜  𝜎(𝐴2) and  𝜆2 ∉
𝜎(𝐵2). Then there exists 𝛿 > 0 such that 

 “𝐸2, 𝐹2 ∈ 𝔅(ℋ), ‖𝐸2‖ < 𝛿, ‖𝐹2‖ < 𝛿” ⟹ “𝜎(𝐴2 + 𝐸2)  ≠ 𝜎(𝐵2 + 𝐹2)”. 
Proof. Since 𝜆2 ∈ 𝑖𝑠𝑜 𝜎(𝐴2) and  𝜆2 ∉ 𝜎(𝐵2), there exists 𝜀 > 0 such that 𝐵2(𝜆2, 𝜀)− ∩
𝜎(𝐴2) = {𝜆2} and 𝐵2(𝜆2, 𝜀)− ∩ 𝜎(𝐵2) = ∅. Then, by the upper semi-continuity of 

spectrum (see [254, Thm. 1.1]), there exists 𝛿 > 0 such that 

(iii) 𝐵2(𝜆2, 𝜀)− ∩ 𝜎(𝐴2 + 𝐸2) ≠ ∅  for any 𝐸2 ∈ 𝔅(ℋ) with ‖𝐸2‖ < 𝛿, and 

(iv) 𝐵2(𝜆2, 𝜀)− ∩ 𝜎(𝐵2 + 𝐹2) = ∅  for any 𝐹2 ∈ 𝔅(ℋ) with ‖𝐹2‖ < 𝛿. 

Hence we conclude the proof.  

Corollary (5.2.75)[462]:  Let {𝐴𝑖
2}𝑖=1
𝑛  be operators on separate Hilbert spaces with pairwise 

distinct spectra. Then, given 𝐵2 ∈ 𝔅(ℋ) and 𝜀 > 0, there exists  𝐾2 ∈ 𝒦(ℋ) with ‖𝐾2‖ <
𝜀 such that 𝐴𝑛+1 

2 : = 𝐵2 + 𝐾2 is irreducible, and {𝜎(𝐴𝑖 
2)}𝑖=1

𝑛+1  are pairwise distinct. 

Proof. Choose a point 𝜆0
2  in  𝜕𝜎(𝐵2) ∩ 𝜎𝑙𝑟𝑒(𝐵

2). By Corollary (5.2.73), there exists 

compact 𝐾0
2 with ‖𝐾0

2‖ <
𝜀

2
  such that  

𝐵2 + 𝐾0
2 = [

𝜆0
2 𝐸2

0 𝐵0
2]
ℂ𝑒
{𝑒}⊥

, 

Where  𝑒 ∈ ℋ is a unit vector and  𝜎(𝐵0
2) = 𝜎(𝐵2). 

For given 𝜀 > 0, we can choose pairwise distinct points 𝜆1
2, 𝜆2

2,···, 𝜆𝑛+1
2  outside 𝜎(𝐵2) 

such that  𝑠𝑢𝑝1≤𝑖≤𝑛+1|𝜆𝑖
2 − 𝜆0

2| <
𝜀

4
.  For each  1 ≤ 𝑖 ≤ 𝑛 + 1, set  

𝐵𝑖
2 = [

𝜆𝑖
2 𝐸2

0 𝐵0
2]
ℂ𝑒
{𝑒}⊥

. 

Then ‖𝐵2 + 𝐾0
2 − 𝐵𝑖

2‖ <
𝜀

4
,   𝜆𝑖

2 ∈ 𝑖𝑠𝑜  𝜎(𝐵𝑖
2) and 𝜆𝑗

2 ∉ 𝜎(𝐵𝑖
2) whenever  𝑖 ≠ 𝑗. By Lemma 

(5.2.31), there exist compact operators 𝐹𝑖
2 with ‖𝐹𝑖

2‖ <
𝜀

4
  such that each 𝐵𝑖

2 + 𝐹𝑖
2 is 

irreducible; moreover, by Lemma (5.2.30), we may also assume that {𝜎(𝐵𝑖
2 + 𝐹𝑖

2)}𝑖=1
𝑛+1 are 

pairwise distinct. Then there exists some 𝑖0, 1 ≤ 𝑖0 ≤ 𝑛 + 1, such that 𝜎(𝐵𝑖0
2 + 𝐹𝑖0

2) ≠

𝜎(𝐴𝑗
2) for 1 ≤ 𝑗 ≤ 𝑛. Set 𝐾2 = (𝐹𝑖0)

2 + (𝐵𝑖0)
2 − 𝐵2  and 𝐴𝑛+1

2 = 𝐵2 + 𝐾2. Then  𝐴𝑛+1
2 =

(𝐵𝑖0)
2 + (𝐹𝑖0)

2  is irreducible. Noting that 𝐾2 = (𝐹𝑖0)
2 + (𝐵𝑖0)

2 − (𝐵2𝐾0
2) + 𝐾0

2 is 

compact,  

‖𝐾2‖ ≤ ‖(𝐹𝑖0)
2‖ + ‖(𝐵𝑖0)

2 − (𝐵2 + (𝐾𝑖0)
2)‖ + ‖𝐾0

2‖ < 𝜀 

and {𝜎(𝐴𝑖
2)}𝑖=1

𝑛+1 are pairwise distinct, we complete the proof.   

Corollary (5.2.76)[462]:   Let 𝑇2 ∈ 𝔅(ℋ) be normal. Then, given 𝑛 ∈ ℕ and 𝜀 > 0, there 

exist irreducible 𝐶𝑆𝑂𝑠  𝑇1
2, 𝑇2

2,···, 𝑇𝑛
2 ∈ 𝔅(ℋ) with pairwise distinct spectra such that 𝑇1

2 −

𝑇2 ∈ 𝒦(ℋ) and  ‖𝑇𝑖
2 − 𝑇2‖ < 𝜀  for all  1 ≤ 𝑖 ≤ 𝑛. 

Proof. Choose a point 𝜆2 in  𝜕𝜎(𝑇2) ∩ 𝜎𝑙𝑟𝑒(𝑇
2). By the classical Weyl–von Neumann 

Theorem, there exists compact 𝐾2 with ‖𝐾2‖ <
𝜀

2
  such that 

𝑇2 + 𝐾2 = [𝜆
2 0
0 𝑁2

]
ℂ𝑒
{𝑒}⊥

 , 

where  𝑒 ∈ ℋ is a unit vector, 𝑁2 is normal and 𝜎(𝑁2) = 𝜎(𝑇2). 
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For given 𝜀 > 0, we can choose pairwise distinct points 𝜆1
2, 𝜆2

2,···, 𝜆𝑛
2  outside 𝜎(𝑇2) such 

that 𝑠𝑢𝑝1≤𝑖≤𝑛|𝜆𝑖
2 − 𝜆0

2| <
𝜀

4
. For each  1 ≤ 𝑖 ≤ 𝑛, set 

𝐴𝑡 = [
𝜆𝑖
2 0

0 𝑁2
]
ℂ𝑒
{𝑒}⊥

. 

Then ‖𝑇2 + 𝐾2 − 𝐴𝑖
2‖ <

𝜀

4
,  𝜆𝑖
2 ∈ iso 𝜎(𝐴𝑖

2) and 𝜆𝑗 ∉ 𝜎(𝐴𝑖
2) whenever 𝑖 ≠ 𝑗. By Lemma   

(5.2.31), there exist compact operators 𝐹𝑖
2 with ‖𝐹𝑖

2‖ <
𝜀

4
 such that each 𝐴𝑖

2 + 𝐹𝑖
2 is 

irreducible and complex symmetric; moreover, by Lemma (5.2.30), it can be required that 

{𝜎(𝐴𝑖
2 + 𝐹𝑖

2)}𝑖=1 
𝑛 are pairwise distinct. Set  𝑇𝑖

2 = 𝐴𝑖
2 + 𝐹𝑖

2 for 1 ≤ 𝑖 ≤ 𝑛. Then {𝑇𝑖
2: 1 ≤ 𝑖 ≤

𝑛} satisfy all requirements.  

Corollary (5.2.77)[462]:  Let {𝑇𝑖
2}𝑖=1
∞  be normal operators on separable Hilbert spaces. 

Then, given 𝜀 > 0, there exist compact operators {𝐾𝑖
2}𝑖=1
∞ with 

𝑠𝑢𝑝𝑖  ‖𝐾𝑖
2‖ < 𝜀, lim

𝑖
‖𝐾𝑖

2‖ =  0  

 such that 

(i)  𝑇𝑖
2 + 𝐾𝑖

2 is complex symmetric and irreducible for 𝑖 ≥ 1, and 

(ii)  𝜎(𝑇𝑖
2 + 𝐾𝑖

2) ≠ 𝜎(𝑇𝑗
2 + 𝐾𝑗 

2) whenever  𝑖 ≠ 𝑗.  

Proof. For convenience, we assume that 𝑇𝑖
2 ∈ 𝔅(ℋ𝑖) for 𝑖 ≥ 1. We shall construct 

{𝐾2}𝑖=1
∞  by induction. 

By Proposition (5.2.9), we can choose  𝐾1
2 ∈ 𝒦(ℋ1) with ‖ 𝐾1

2‖ < 𝜀 such that  𝑇1
2 +

  𝐾1
2 is irreducible and complex symmetric. 

Now assume that we have chosen compact operators 𝐾𝑖
2 ∈ 𝒦(ℋ𝑖), 1 ≤ 𝑖 ≤ 𝑛, 

satisfying that (a) ‖𝐾𝑖
2‖ < 𝜀/𝑖 for 1 ≤ 𝑖 ≤ 𝑛, (b) 𝑇𝑖

2 + 𝐾𝑖
2is complex symmetric and 

irreducible for 1 ≤ 𝑖 ≤ 𝑛, and (c) 𝜎(𝑇𝑖
2 + 𝐾𝑖

2) ≠ 𝜎(𝑇𝑗
2 + 𝐾𝑗

2) whenever 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛. 

We are going to choose 𝐾𝑛+1
2 ∈ 𝐾2(𝐻𝑛+1) with ‖𝐾𝑛+1

2 ‖ < 𝜀/(𝑛 + 1) such that 𝑇𝑛+1
2 +

𝐾𝑛+1
2  is irreducible and complex symmetric; moreover, 𝜎(𝑇𝑖

2 + 𝐾𝑖
2) ≠ 𝜎(𝑇𝑛+1

2 + 𝐾𝑛+1
2 ) 

for  1 ≤ 𝑖 ≤ 𝑛. 

By Lemma (5.2.34), we can find 𝐹1
2, 𝐹2

2 ,···, 𝐹𝑛+1
2 ∈ 𝒦(ℋ𝑛+1) with ‖𝐹𝑖

2‖ < 𝜀/(𝑛 +

1) such that 𝑇𝑛+1
2 +   𝐹𝑖

2 is irreducible and complex symmetric for  1 ≤ 𝑖 ≤ 𝑛 + 1; 

moreover, 𝜎(𝑇𝑛+1
2 + 𝐹𝑖

2) ≠ 𝜎(𝑇𝑛+1
2 +   𝐹𝑗

2) whenever 𝑖 ≠ 𝑗. So some 𝑖0, 1 ≤ 𝑖0 ≤ 𝑛 + 1, 

exists such that 𝜎(𝑇𝑛+1
2 + (𝐹𝑖0)

2) ≠ 𝜎( 𝑇𝑗
2 +   𝐾𝑗

2) for all 1 ≤ 𝑗 ≤ 𝑛. Set  𝐾𝑛+1
2 = (𝐹𝑖0)

2. 

Then   𝐾𝑛+1
2  satisfies all requirements.  By induction, this completes the proof.  

Corollary (5.2.78)[462]:   ([257, Thm. 4.4]) Let {𝑇𝑛
2}𝑛=1
∞  be a sequence of almost normal 

operators. Assume that 𝑠𝑢𝑝𝑛‖𝑇𝑛
2‖ < ∞ and ‖(𝑇𝑛

∗)2 𝑇𝑛
2 − 𝑇𝑛

2 (𝑇𝑛
∗)2‖ → 0 as 𝑛 → ∞. Then 

there exists a sequence {𝑁𝑛
2}𝑛=1
∞  of  normal operators such that 𝑇𝑛

2 −𝑁𝑛
2 is compact for 𝑛 ≥

1 and  ‖𝑇𝑛
2 − 𝑁𝑛

2‖ → 0. 

Proof.   for the sufficiency of Theorem (5.2.14) By the hypothesis, Lemma (5.2.21) and 

Proposition  (5.2.23), we may assume that  

𝑇2 = 𝑁2⊕ (⊕𝑖∈𝛤1 𝑇𝑖
2(𝑛𝑖)) ⊕ (⊕𝑖∈𝛤2 (𝐴𝑗

2⊕𝐵𝑗
2)(𝑛𝑖)), 

where 

(i) 𝑁2 is normal, {𝑇𝑖
2, 𝐴𝑗

2, 𝐵𝑗
2: 𝑖 ∈ 𝛤1, 𝑗 ∈ 𝛤2} are irreducible operators and no two of 

them are unitarily equivalent; 
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(ii) 𝑇𝑗
2 is almost normal and not normal for 𝑖 ∈ 𝛤1; 

(iii)  𝐴𝑗
2 is not almost normal and there exists a compact operator 𝐾𝑗

2 such that 𝐵𝑗
2 +

𝐾𝑗
2 is a transpose of 𝐴𝑗

2 for  𝑗 ∈ 𝛤2; 

(iv)  1 ≤ 𝑛𝑖 , 𝑛𝑗 < ∞ for  all 𝑖 ∈ 𝛤1 and 𝑗 ∈ 𝛤2, and ‖𝐾𝑗
2‖ → 0 if 𝛤2 is infinite. 

Assume that 𝑁2 ∈ 𝔅(ℋ0), 𝑇𝑖
2 ∈ 𝔅(ℋ1,𝑖) for 𝑖 ∈ 𝛤1 and 𝐴𝑗

2, 𝐵𝑗
2 ∈ 𝔅(ℋ2,𝑗) for 𝑗 ∈

𝛤2. 

For convenience, we may directly assume that 𝛤1, 𝛤2 are countable and 𝑛𝑖 = 1 for all 𝑖 ∈
𝛤1 ∪ 𝛤2. The proof for the general case is similar. Then  

𝑇2 = 𝑁2⊕ (⊕𝑖=1
∞ 𝑇𝑖

2) ⊕ (⊕𝑗=1
∞ 𝐴𝑗

2⊕𝐵𝑗
2)) 

and  

                                                ℋ = ℋ0⨁(⊕𝑖=1
∞ ℋ1,𝑖)⨁(⊕𝑗=1

∞ (ℋ2,𝑗⊕ℋ2,𝑗)).     (18)                                

The rest of the proof is divided into three steps. 

Step 1.Compact perturbations of the operators  {𝑇𝑖
2: 𝑖 ≥ 1}. 

Since 𝑇2 is essentially normal, it follows that (𝑇∗)2 𝑇2 − 𝑇2(𝑇∗)2 ∈ 𝒦(ℋ) and hence 

(𝑇𝑖
∗)2 𝑇𝑖

2 − 𝑇𝑖
2(𝑇𝑖

∗)2 ∈ 𝒦(ℋ1,𝑖) and ‖(𝑇𝑖
∗)2 𝑇𝑖

2 − 𝑇𝑖
2(𝑇𝑖

∗)2‖ → 0. By Lemma (5.2.36), we 

can choose  𝐷1,𝑖
2 ∈ 𝒦(ℋ1,𝑖), 𝑖 ≥ 1, so that ‖𝐷1,𝑖

2 ‖ → 0 and 𝑁𝑖
2: = 𝑇𝑖

2 + 𝐷1,𝑖
2  is normal for all 

 𝑖 ≥ 1. By Corollary (5.2.35), there are compact operators 𝐷2,1
2 ∈ K2(𝐻1,𝑖)(𝑖 ≥ 1) with 

‖𝐷2,𝑖
2 ‖ → 0 such that 𝑆𝑖

2 ≔ 𝑁𝑖
2 + 𝐷2,𝑖

2  is irreducible, complex symmetric and 𝑆𝑖
2 ≇ 𝑆𝑗

2 

whenever  𝑖 ≠ 𝑗. 

Set 𝐷𝑖
2 = 𝐷1,𝑖

2 + 𝐷2,𝑖
2  for  𝑖 ≥ 1. Then 𝑆𝑖

2 = 𝑇𝑖
2 + 𝐷𝑖

2,  𝐷𝑖
2 ∈ 𝒦(ℋ1,𝑖)  and ‖𝐷𝑖

2‖ → 0. From 

statement (ii), each 𝑇𝑖
2 acts on a space of dimension ≥ 2. Thus  𝑆𝑖

2 is almost normal and not 

normal. 

Step 2.Compact perturbations of the operators  {𝐴𝑗
2, 𝐵𝑗

2: 𝑗 ≥ 1}. 

For each  𝑗 ≥ 1, by the hypothesis, there exists a conjugation 𝐶𝑗 on ℋ2,𝑗 such that 

𝐶𝑗(𝐴𝑗
∗)2 𝐶𝑗 = 𝐵𝑗

2 + 𝐾𝑗
2. Note that   ‖𝐾𝑗

2‖ → 0. 

Since each 𝐴𝑗
2 is irreducible, it follows from Corollary (5.2.33) that we can find compact 

operators {𝐸𝑗
2}𝑗=1
∞  with ‖𝐸𝑗

2‖ → 0 such that 𝑅𝑗
2: = 𝐴𝑗

2 + 𝐸𝑗
2 is irreducible for all  𝑗 ≥ 1 and 

{𝜎𝑅𝑗
2}𝑗=1
∞  are pairwise distinct. 

For each  𝑗 ≥ 1, set 𝐺𝑗
2 = 𝐾𝑗

2 + 𝐶𝑗(𝐸𝑗
∗)2 𝐶𝑗. Then 𝐺𝑗

2 ∈ 𝒦(ℋ2,𝑗) and  ‖𝐺𝑗
2‖ → 0. On the 

other hand, note that  

𝐶𝑗(𝑅𝑗
∗)2 𝐶𝑗 = 𝐶𝑗(𝐴𝑗

∗)2 𝐶𝑗 + 𝐶𝑗(𝐸𝑗
∗)2  𝐶𝑗 = 𝐵𝑗

2 + 𝐾𝑗
2 + 𝐶𝑗(𝐸𝑗

∗)2 𝐶𝑗 = 𝐵𝑗
2 + 𝐺𝑗

2. 

Step 3.Construction and verification. 

Set 

𝑅2 = 𝑁2⨁(⊕𝑖=1
∞ 𝑆𝑖

2)⨁(⊕𝑗=1
∞ (𝑅𝑗

2⊕𝐶𝑗(𝑅𝑗
∗)2𝐶𝑗)). 

By [252, Thm. 1.6] or [251, Lem. 3.6], 𝑅2 is complex symmetric. Define 𝐾2 ∈ 𝔅(ℋ) with 

respect to the decomposition (18) as 

                                                        𝐾2 = 0⨁(⊕𝑖=1
∞ 𝐷𝑖

2)⨁ (⊕𝑗=1
∞ (𝐸𝑗

2⊕𝐺𝑗
2)).          (19)                          

Then 𝐾2 is compact and one can check that 𝑅2 = 𝑇2 + 𝐾2. Now it remains to prove 

𝐶∗(𝑇2) = 𝐶∗(𝑅2). Clearly, we need only prove  𝐾2 ∈ 𝐶∗(𝑇2) ∩ 𝐶∗(𝑅2). 
In view of (19), it suffices to prove that  
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0ℋ0⨁(⨁𝒦 (ℋ1,𝑖)

∞

𝑖=1

)⨁(⨁(𝒦(ℋ2,𝑗) ⊕𝒦(ℋ2,𝑗)

∞

𝑗=1

) ⊂  𝐶∗(𝑇2) ∩ 𝐶∗(𝑅2). 

By statements (i)–(iii), it follows from Corollary (5.2.16) that  

0ℋ0⨁(⨁𝒦 (ℋ1,𝑖)

∞

𝑖=1

)⨁(⨁(𝒦(ℋ2,𝑗) ⊕𝒦(ℋ2,𝑗)

∞

𝑗=1

) ⊂  𝐶∗(𝑇2). 

Since {𝑆𝑖
2, 𝑅𝑖

2, 𝐶𝑖(𝑅𝑖
∗)2 𝐶𝑖: 𝑖 ≥ 1} are irreducible and not normal, by Corollary (5.2.16), it 

suffices to prove that no two of them are unitarily equivalent. 

     Noting that 𝜎(𝐶𝑖(𝑅𝑖
∗)2 𝐶𝑖) = 𝜎(𝑅𝑖

2) ≠ 𝜎(𝑅𝑗
2) = 𝜎(𝐶𝑗(𝑅𝑗

∗)2 𝐶𝑗) whenever 𝑖 ≠ 𝑗, we 

deduce that 𝑅𝑖
2 ≇ 𝑅𝑗

2,  𝑅𝑖
2 ≇ 𝐶𝑗(𝑅𝑗

∗)2 𝐶𝑗 and 𝐶𝑖(𝑅𝑖
∗)2 𝐶𝑖 ≇ 𝐶𝑗(𝑅𝑗

∗)2 𝐶𝑗 whenever 𝑖 ≠ 𝑗. On 

the other hand, note that 𝑅𝑗
2 is a compact perturbation of 𝐴𝑗

2 and 𝐴𝑗
2 is not almost normal for 

 𝑗 ≥ 1. Then, for each  𝑗 ≥ 1, we can choose 𝜆2 ∈ 𝐶 such that 𝑅𝑗
2 − 𝜆2 is Fredholm and 

𝑖𝑛𝑑(𝑅𝑗
2 − 𝜆2) ≠ 0. So 

𝑖𝑛𝑑 (𝑅𝑗
2 − 𝜆2) = −𝑖𝑛𝑑 (𝑅𝑗

2 − 𝜆2)∗  

                                   = −𝑖𝑛𝑑 𝐶𝑗(𝑅𝑗
2 − 𝜆2)∗ 𝐶𝑗 

                                       = −𝑖𝑛𝑑 (𝐶𝑗(𝑅𝑗
∗)2 𝐶𝑗 − 𝜆

2), 

which implies that 𝑅𝑗
2 ≇ 𝐶𝑗(𝑅𝑗

∗)2 𝐶𝑗.  

By the preceding argument, 𝑆𝑖
2 ≇ 𝑆𝑗

2 whenever 𝑖 ≠ 𝑗. Since each of {𝑆𝑖
2: 𝑖 ≥ 1} is 

almost normal, we have 𝑆𝑖
2 ≇ 𝐶𝑗(𝑅𝑗

∗)2 𝐶𝑗 and 𝑆𝑖
2 ≇ 𝑅𝑗

2 for all  𝑖, 𝑗 ≥ 1. Hence we deduce 

that no two of {𝑆𝑖
2,  𝑅𝑖

2, 𝐶𝑖(𝑅𝑖
∗)2 𝐶𝑖 ∶ 𝑖 ≤ 1} are unitarily equivalent. This completes the 

proof.   

Corollary (5.2.79)[462]:   Each compact operator has a complex symmetric generator for 

its 𝐶∗-algebra. 

Proof. Assume that 𝑇2 ∈ 𝔅(ℋ) is compact. Then the restrictions of  𝑇2  to its minimal 

reducing subspaces are all compact and hence almost normal. Hence the result follows 

readily from Corollary (5.2.37).  

Corollary (5.2.81)[462]:   Let 𝑇2 ∈ 𝔅(ℋ) be essentially normal. If  𝑇𝑠
2  is not absent, then 

the following are equivalent: 

(i) 𝑇2 ∈ (𝑐𝑠). 
(ii) 𝑇𝑎𝑏𝑛𝑜𝑟

2  ∈ (𝑐𝑠). 
(iii) 𝑇𝑠

2  ∈ (𝑐𝑠). 
Proof. Note that  (𝑇𝑠

2)𝑠 = 𝑇𝑠
2 = (𝑇𝑎𝑏𝑛𝑜𝑟

2 )𝑠. Then the result follows readily from Theorem 

(5.2.14).   

Corollary (5.2.80)[462]:   Let 𝑇2 ∈ 𝔅(ℋ) be essentially normal and assume that 𝑇2 =

𝑁2⊕𝐴2(𝑛), where 1 ≤ 𝑛 < ∞, N is normal, 𝐴2 is abnormal and irreducible. Then 𝑇2 ∈
(𝑐𝑠) if and only if  𝐴2 is almost normal. 

Proof. If 𝐴2 is almost normal, then 𝑇𝑠
2 is absent. By Theorem (5.2.14), we have 𝑇2 ∈ (𝑐𝑠). 

If 𝐴2 is not almost normal, then  𝑇𝑠
2 = (𝐴2)(𝑛) is not almost normal. So 𝑇𝑠

2 is not of  type  

𝐶. By Theorem (5.2.14), we have  𝑇2 ∉ (𝑐𝑠).    
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Corollary (5.2.82)[462]:   Let 𝑇2 ∈ 𝔅(ℋ) be essentially normal and  𝑇2 = 𝐴2(𝑚)⊕𝐵2(𝑛), 
where 𝐴2,  𝐵2 are irreducible, not normal and 𝐴2 ≇ 𝐵2. Then  𝑇2 ∈ (𝑐𝑠) if and only if 

exactly one of the following holds: 

(i)  Both  𝐴2 and 𝐵2 are almost normal; 

(ii)  Neither  𝐴2 𝑛𝑜𝑟 𝐵2 is almost normal, 𝑚 = 𝑛 and  𝛬(𝐴2)𝑡 = 𝛬(𝐵2). 
Proof. Since 𝑇2 is essentially normal, it follows immediately that  1 ≤ 𝑚, 𝑛 < ∞. 

“⟸”. If (i) holds, then 𝑇𝑠
2 is absent. By Theorem (5.2.14), we have  𝑇2 ∈ (𝑐𝑠). If (ii) 

holds, then  𝑇2 = 𝑇𝑠
2;  moreover, by the 𝐵𝐷𝐹 Theorem, 𝛬(𝐴2)𝑡 = 𝛬(𝐵2) implies that 𝐵2 is 

a compact perturbation of (𝐴2)𝑡. So, by Proposition (5.2.23), 𝑇2 is of type 𝐶. The conclusion 

follows immediately from Theorem (5.2.14). 

“⟹”. We assume that 𝑇2 ∈ (𝑐𝑠)and (i) does not hold. It suffices to prove that (ii) 

holds. For convenience we assume that 𝐴2 ∈ 𝔅(ℋ1)  and  𝐵2 ∈ 𝔅(ℋ2). 
We claim that neither 𝐴2 nor 𝐵2 is almost normal. For a proof by contradiction, 

without loss of generality, we assume that 𝐴2 is almost normal. Then, by the hypothesis, 𝐵2 
is not almost normal. So 𝑇𝑠

2 = 𝐵2(𝑛) is not almost normal. Then  𝑇𝑠
2 is not of type 𝐶 and  

𝑇2 ∉ (𝑐𝑠), a contradiction. This proves the claim, which means that   𝑇2 = 𝑇𝑠
2. 

Since 𝑇2 ∈ (𝑐𝑠), it follows that 𝑇2 is of type 𝐶. Noting that 𝐴2 ≇ 𝐵2, by the 

definition, it follows that 𝑚 = 𝑛 and there exists compact 𝐾2 such that 𝐴2 + 𝐾2 is unitarily   

                                                              𝛬(𝐴2)𝑡 = 𝛬(𝐵2).  
Corollary (5.2.84)[462]:   Let 𝑇2 ∈ 𝔅(ℋ) be essentially square normal. Then 𝑇2 ∈ (𝑤𝑐𝑠) 
if and only if there exists an essentially square normal operator  𝑅2 ∈ (𝑐𝑠) such that  𝑇2 ≈
𝑅2.  
Proof  The sufficiency is obvious. 

“⟹”. Assume that  

𝑇2 = 𝑇0
2⊕ ( ⊕𝑖∈𝛤 𝑇𝑖

2(𝑛𝑖)) , 

where 𝑇0
2 is completely reducible, 𝑇𝑖

2 ∈ 𝔅(ℋ𝑖) is irreducible for 𝑖 ∈ 𝛤 and (𝑇𝑖1)
2 ≇

 (𝑇𝑖2)
2
 whenever 𝑖1 ≠ 𝑖2. Set  𝐴2 = 𝑇0

2⊕ (⊕𝑖∈𝛤 𝑇𝑖
2). Then 𝐴2 ≈ 𝑇2 is essentially normal 

and, by Lemma (5.2.46) ,  𝐴2 is multiplicity-free. 

Assume that 𝑆2 ∈ 𝔅(Ҡ  ) is complex symmetric and 𝐶∗(𝑆2) is ∗-isomorphic to  𝐶∗(𝑇2). By 

Lemma (5.2.46), 𝑆2 is algebraically equivalent to some multiplicity-free operator 𝐵2. By 

Theorem (5.2.45),  𝐵2 is 𝑔-normal. 

Since 𝐶∗(𝑆2) is ∗-isomorphic to 𝐶∗(𝑇2), 𝐴2 ≈ 𝑇2 and  𝐵2 ≈ 𝑆2, we can find a ∗-
isomorphism  𝜑 ∶ 𝐶∗(𝐴2) → 𝐶∗(𝐵2). Denote  𝑅2 = 𝜑(𝐴2). Then  𝐴2 ≈ 𝑅2  and 𝐶∗(𝐵2) =
𝐶∗(𝑅2). Noting that 𝐵2 is multiplicity-free, it follows from Lemma (5.2.22) that 𝑅2 is also 

multiplicity-free. By Theorem (5.2.45), we obtain 𝐴2 ≅𝑎 𝑅
2. Since 𝐴2 is essentially normal, 

so is  𝑅2. This combining 𝐶∗(𝐵2) = 𝐶∗(𝑅2) implies that 𝐵2 is also essentially normal. Since 

𝐵2  is multiplicity-free and 𝑔-normal, it follows from Lemma (5.2.56) that 𝐶∗(𝐵2) =
𝐶∗(𝑅2) admits a complex symmetric square generator, that is, 𝑅2 ∈ (𝑐𝑠). Noting that 𝑇2 ≈
𝐴2 and 𝐴2 ≅𝑎 𝑅

2, we obtain 𝑇2 ≈ 𝑅2. 
Corollary (5.2.84)[462]:   For  𝑇2 ∈ 𝔅(ℋ), the following are equivalent: 

(i)  there is a faithful representation 𝜌 of  𝐶∗(𝑇2) such that 𝜌(𝑇2) is complex 

symmetric; 

(ii) 𝑇2 is 𝑔-normal; 
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(iii) 𝑇2 is  algebraically equivalent to a 𝐶𝑆𝑆𝑂. 

Proof.“(i)⟹(ii)”. Assume that 𝜌 is a faithful representation of 𝐶∗(𝑇2) on ℋ𝜌  with 𝐴2 =

𝜌(𝑇2) being complex symmetric. Then, for any polynomial 𝑝(𝑧1, 𝑧2) in two free variables, 

we have 𝜌(𝑝((𝑇∗)2, 𝑇2)) = 𝑝((𝐴∗)2, 𝐴2) and  𝜌(𝑝(𝑇2, (𝑇∗)2)) = 𝑝(𝐴2, (𝐴∗)2). Since 𝜌 is 

faithful, we have  

‖𝑝((𝑇∗)2, 𝑇2)‖ = ‖𝑝((𝐴∗)2, 𝐴2)‖, ‖𝑝(𝑇2, (𝑇∗)2)‖ = ‖𝑝(𝐴2, (𝐴∗)2)‖. 
Since each 𝐶𝑆𝑆𝑂 is 𝑔-normal, it follows that  

‖𝑝(𝑇∗)2, 𝑇2)‖ = ‖𝑝((𝐴∗)2, 𝐴2)‖ = ‖𝑝(𝐴2, (𝐴∗)2)‖ = ‖𝑝(𝑇2, (𝑇∗)2)‖. 
So  𝑇2  is 𝑔-normal. 

“(ii)⟹(iii)”. Denote 𝑅2 = 𝑇2(∞). Then 𝑅2  is still 𝑔-normal and 𝑅2 ≈ 𝑇2; moreover, 

𝐶∗(𝑅2) contains no nonzero compact operator. By [478, Thm. 2.1], 𝑅2  is approximately 

unitarily equivalent to some complex symmetric square operator 𝑋. Then  𝑇2 ≈ 𝑋. 

“(iii)⟹(i)”. By definition, the implication is obvious.   

An operator 𝑇2 ∈ 𝔅(ℋ) is said to be multiplicity-free if 𝑇2|ℳ ≇ 𝑇2|𝒩  for any 

distinct minimal reducing subspaces ℳ and  𝒩 of  𝑇2. 
Corollary (5.2.85)[462]:   Each operator is algebraically equivalent to a multiplicity-free 

operator. 

Proof. Let  𝑇2 ∈ 𝔅(ℋ). By Lemma (5.2.18), we may assume that 

 𝑇2 = 𝑇0
2⊕ (⊕𝑖∈𝛤 𝑇𝑖

2(𝑛𝑖)) , 

where 𝑇0
2 is completely reducible, 𝑇𝑖

2 ∈ 𝔅(ℋ𝑖) is irreducible for 𝑖 ∈ 𝛤 and 𝑇𝑖1
2 ≇ 𝑇𝑖2

2  

whenever  𝑖1 ≠ 𝑖2. 

Set  𝑅2 = 𝑇0
2⊕ (⊕𝑖∈𝛤 𝑇𝑖

2). Then it is obvious that ‖𝑝((𝑇∗)2, 𝑇2)‖ = ‖𝑝((𝑅∗)2, 𝑅2)‖ for 

any polynomial 𝑝(𝑧1, 𝑧2) in two free variables. So  𝑇2 ≈ 𝑅2. It remains to prove that 𝑅2 is 

multiplicity-free. 

By Lemma (5.2.19), {ℋ𝑖: 𝑖 ∈ 𝛤} are all minimal reducing subspaces of  𝑅2. For 

 𝑖1, 𝑖2 ∈ 𝛤 with  𝑖1 ≠ 𝑖2, we have 𝑅2|ℋ𝑖1 = 𝑇𝑖1
2 ≇ 𝑇𝑖2

2 = 𝑅2|ℋ𝑖2 . This completes the proof.  

Corollary (5.2.86)[462]:  Let 𝑇2, 𝑅2 ∈ 𝔅(ℋ) be multiplicity-free. Then 𝑇2 ≈ 𝑅2 if and 

only if  𝑇2 ≅𝑎 𝑅
2. 

Proof. The sufficiency is obvious. 

“⟹”. We let 𝜑: 𝐶∗(𝑇2) ⟶ 𝐶∗(𝑅2) denote the ∗-isomorphism carrying 𝑇2 into  𝑅2. 
It suffices to prove that  

                                           𝑟𝑎𝑛𝑘 𝑋 = 𝑟𝑎𝑛𝑘 𝜑(𝑋),      ∀𝑋 ∈ 𝐶∗(𝑇2) ∩ 𝒦(ℋ)           (20)                      
and  

                                                   𝑟𝑎𝑛𝑘 𝜑−1(𝑌) = 𝑟𝑎𝑛𝑘 𝑌,    ∀𝑌 ∈ 𝐶∗(𝑅2) ∩ 𝒦(ℋ)        (21)                       

In fact, if these equalities hold, then 𝑟𝑎𝑛𝑘 𝜑(𝑋) = 𝑟𝑎𝑛𝑘𝑋 for all  𝑋 ∈ 𝐶∗(𝑇2). By Lemma 

(5.2.48), this implies  𝜑 ≅𝑎 id, where id(·) denotes the identity representation of 𝐶∗(𝑇2). 
So 𝑅2 = 𝜑(𝑇2) ≅𝑎 𝑖𝑑(𝑇

2) = 𝑇2. 
Denote  𝒜 = 𝐶∗(𝑇2) ∩ 𝒦(ℋ). By [471, Thm.I.10.8] we may assume that 

ℋ = ℋ0⊕( ⨁ℋ𝑖
(𝑘𝑖)

𝑖∈𝛤

 ) , 𝒜 = 0ℋ0⊕ (⨁ 𝒦(ℋ𝑖)
(𝑘𝑖)

𝑖∈𝛤

) , 

where the dimensions of  ℋ0 and  ℋ𝑖(𝑖 ∈ 𝛤) may be finite or ℵ0, and 1 ≤ 𝑘𝑖 < ∞ for 𝑖 ∈
𝛤. Since  𝒜 is an ideal of  𝐶∗(𝑇2),   𝑇2 can be written as 
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𝑇2 =  𝐷0
2⊕(⨁𝐷𝑖

2(𝑘𝑖)

𝑖∈𝛤

) , 

where 𝐷0
2 ∈ 𝔅(ℋ0) and 𝐷𝑖

2 ∈ 𝔅(ℋ𝑖) for 𝑖 ∈ 𝛤. Then 𝒦(ℋ𝑖) ⊂ 𝐶
∗(𝐷𝑖

2) for each 𝑖 ∈ 𝛤. 

Hence each 𝐷𝑖
2 is irreducible. Noting that 𝑇2 is multiplicity-free, we have 𝑘𝑖 = 1 for all 𝑖 ∈

𝛤. Then each compact operator in 𝐶∗(𝑇2) has the form  0⊕ (⊕𝑖∈𝛤 𝑋𝑖), where 𝑋𝑖 ∈ 𝒦(ℋ𝑖). 
For 𝑖 ∈ 𝛤, denote by (𝑃𝑖)

2 the orthogonal projection of  ℋ onto  ℋ𝑖. 
Corollary (5.2.87)[462]:  Let 𝑇2, 𝑅2 ∈ 𝔅(ℋ) be essentially normal.  If  𝑇2 ≈ 𝑅2, then 

𝑇𝑎𝑏𝑛𝑜𝑟
2 ≈ 𝑅𝑎𝑏𝑛𝑜𝑟

2  and   𝑇𝑠
2 ≈ 𝑅𝑠

2. 

Proof. By Lemma (5.2.18), we may assume that 

 𝑇2 = 𝑇0
2⊕ (⊕𝑖∈𝛤 𝑇𝑖

2(𝑚𝑖)) , 

where  𝑇0
2 ∈ 𝔅(ℋ0) is completely reducible, 𝑇0

2 ∈ 𝔅(ℋ𝑖) is irreducible for 𝑖 ∈ 𝛤 and 𝑇𝑖1
2 ≇

𝑇𝑖2
2  whenever 𝑖1 ≠ 𝑖2. Likewise, we assume that  

𝑅2 =  𝑅0
2⊕ (⊕𝑗∈𝛶 𝑅𝑗

2(𝑚𝑖)) , 

where 𝑅0
2 ∈ 𝔅(Ҡ0) is completely reducible, 𝑅𝑗

2 ∈ 𝔅(Ҡ𝑗) is irreducible for 𝑗 ∈ 𝛶 and 𝑅𝑖1
2 ≇

𝑅𝑖2 
2 whenever 𝑗1 ≠ 𝑗2. Noting that 𝑇0

2, 𝑅0
2 are essentially square normal, it follows from 

Lemma (5.2.17) that  𝑅0
2,   𝑅0

2 are normal. 

Denote 

 𝛤1 = {𝑖 ∈ 𝛤: 𝑇𝑖
2 is not normal}, 𝛤2 =  {𝑖 ∈ 𝛤:  𝑇𝑖

2 is not almost normal}. 
Then 𝛤2 ⊂ 𝛤1 and  

𝑇𝑎𝑏𝑛𝑜𝑟
2 = ⊕𝑖∈𝛤1 𝑇𝑖

2(𝑚𝑖),  𝑇𝑆
2 = (𝑇𝑎𝑏𝑛𝑜𝑟

2 )𝑠 = ⊕𝑖∈𝛤2 𝑇𝑖
2(𝑚𝑖). 

Denote  

𝛶1 = {𝑗 ∈ 𝛶: 𝑅𝑗
2 is not normal}, 𝛶2 = {𝑗 ∈ 𝛶: 𝑅𝑗

2 is not almost normal}. 

Then  𝛶2 ⊂ 𝛶1 and 

𝑅𝑎𝑏𝑛𝑜𝑟
2 = ⊕𝑗∈𝛶1 𝑅𝑗

2(𝑛𝑗)
, 𝑅𝑠

2 = (𝑅𝑎𝑏𝑛𝑜𝑟
2 )𝑠 = ⊕𝑗∈𝛶2 𝑅𝑗

2(𝑛𝑗)
. 

Set 

𝐴2 = 𝑇𝑖
2⊕ (⊕𝑖∈𝛤 𝑇𝑖

2), 𝐵2 =  𝑅0
2⊕ (⊕𝑗∈𝛶 𝑅𝑗

2). 

From the proof of  Lemma (5.2.46),, one can see that 𝐴2,  𝐵2 are both multiplicity-free, 𝑇2 ≈
𝐴2 and  𝑅2 ≈ 𝐵2. Since 𝑇2 ≈ 𝑅2, we obtain 𝐴2 ≈ 𝐵2. By Theorem (5.2.49), we have 

𝐴2 ≅𝑎 𝐵
2. Note that 𝐴2,  𝐵2 are both essentially  normal. In view of Lemma (5.2.52) , it 

follows that 𝐴𝑎𝑏𝑛𝑜𝑟
2 ≅ 𝐵𝑎𝑏𝑛𝑜𝑟

2 . Hence (𝐴𝑎𝑏𝑛𝑜𝑟
2 )𝑠 ≅ (𝐵𝑎𝑏𝑛𝑜𝑟

2 )𝑠. 
 Note that 

 𝐴𝑎𝑏𝑛𝑜𝑟
2 = ⊕𝑖∈𝛤1

𝑇𝑖
2, 𝐴𝑠

2 = (𝐴𝑎𝑏𝑛𝑜𝑟
2 )𝑠 = ⊕𝑖∈𝛤2

𝑇𝑗
2,  

and  

𝐵𝑎𝑏𝑛𝑜𝑟
2 =⊕𝑗∈𝛶1

𝑅𝑗
2, 𝐴𝑠

2 = (𝐵𝑎𝑏𝑛𝑜𝑟
2 )𝑠 = ⊕𝑗∈𝛶2

𝑅𝑗
2. 

We obtain  

⊕𝑖∈𝛤1 𝑇𝑖
2 ≅⊕𝑗∈𝛶1 𝑅𝑗

2, ⊕𝑖∈𝛤2 𝑇𝑖
2 ≅⊕𝑗∈𝛶2 𝑅𝑗

2. 

This implies that 

⊕𝑖∈𝛤1
𝑇𝑖
2(𝑚𝑖) ≈ ⊕𝑗∈𝛶1

𝑅
𝑗

2(𝑛𝑗), ⊕𝑖∈𝛤2
𝑇𝑖
2(𝑚𝑖) ≈ ⊕𝑗∈𝛶2

𝑅
𝑗

2(𝑛𝑗). 

Thus we obtain 𝑇𝑎𝑏𝑛𝑜𝑟
2 ≈ 𝑅𝑎𝑏𝑛𝑜𝑟

2  and  𝑇𝑠
2 ≈ 𝑅𝑠

2.   
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Corollary (5.2.88)[462]:   Let 𝑇2 ∈ 𝔅(ℋ) be multiplicity-free. Then each generator of 

𝐶∗(𝑇2) is multiplicity-free. 

Proof. By Lemma (5.2.46), we may assume that 

𝑇0
2⊕ (⊕𝑖∈𝛤 𝑇𝑖

2), 

where 𝑇0
2 ∈ 𝔅(ℋ0) is completely reducible, 𝑇𝑖

2 ∈ 𝔅(ℋ𝑖) is irreducible for 𝑖 ∈ 𝛤 and 𝑇𝑖1
2 ≇

𝑇𝑖2
2  whenever  𝑖1 ≠ 𝑖2. Note that   ℋ = ℋ0⊕ (⊕𝑖∈𝛤ℋ𝑖). 

Assume that 𝑅2 ∈ 𝔅(ℋ) and 𝐶∗(𝑇2) = 𝐶∗(𝑅2). Then 𝑅2 can be written as 𝑅2 = 𝑅0
2⊕

(⊕𝑖∈𝛤 𝑅𝑖
2) with respect to the decomposition  ℋ = ℋ0⊕ (⊕𝑖∈𝛤 ℋ𝑖). By Lemma (5.2.24), 

𝑅0 
2  is completely reducible and 𝑅𝑖

2 is irreducible for  𝑖 ∈ 𝛤; moreover, 𝑅𝑖
2 ≇ 𝑅𝑗

2 for  𝑖, 𝑗 ∈ 𝛤 

with 𝑖 ≠ 𝑗. In view of the proof  of  Lemma (5.2.46),  𝑅2 is multiplicity-free.  

Corollary (5.2.89)[462]:    Let 𝑇2 ∈ 𝔅(ℋ) be essentially normal. If  𝑇2 is multiplicity-free 

and 𝑔-normal, then  𝑇2 ∈ (𝑐𝑠).  
Proof. Since 𝑇2 is essentially normal and 𝑔-normal, by Lemma (5.2.55), we may assume 

that 

 𝑇2 = 𝑁2⊕ (⊕𝑖∈𝛤  𝑇𝑖
2(𝑙𝑖))⊕ (⊕𝑗∈𝛶 𝐴𝑗

2(𝑚𝑗)
⊕𝐵

𝑗

2(𝑛𝑗)
) , 

where 𝑁2 = 𝑇𝑛𝑜𝑟
2  is normal, {𝑇𝑖

2,  𝐴𝑗
2,  𝐵𝑗

2: 𝑖 ∈ 𝛤, 𝑗 ∈ 𝛶} are abnormal, irreducible and no two 

of  them are unitarily equivalent; moreover, each 𝑇𝑖
2 is 𝑈𝐸𝑇 and  𝐴𝑗

2 is a transpose of  𝐵𝑗
2  for  

𝑗 ∈ 𝛶. So 𝛬( 𝐴𝑗
2) = 𝛬((𝐵𝑗

2)𝑡) for  𝑗 ∈ 𝛶. It follows that  𝐴𝑗
2  is almost normal if and only if 

(𝐵𝑗
2)𝑡 (or, equivalently,  𝐵𝑗

2 ) is almost normal. On the other hand, since 𝑇2 is multiplicity-

free, we deduce that  𝑙𝑖 = 𝑚𝑗 = 𝑛𝑗 = 1  for all 𝑖 ∈ 𝛤 and all   𝑗 ∈ 𝛶. 

Denote  𝛶0 = {𝑗 ∈ 𝛶:  𝐴𝑗
2  is not almost normal}. Note that 𝑇𝑖

2 is almost normal for  𝑖 ∈ 𝛤. 

It follows that  

𝑇𝑠
2 = ⊕𝑗∈𝛶0 ( 𝐴𝑗

2⊕  𝐵𝑗
2). 

By Proposition (5.2.23),  𝑇𝑠
2  is of  type 𝐶. In view of Theorem (5.3.14), we have  𝑇2 ∈ (𝑐𝑠).    

Corollary (5.2.91)[462]:   Let 𝑇2 ∈ 𝔅(ℋ) be essentially normal. If  𝑇𝑠
2 is not absent, then 

the following are equivalent: 

(i) 𝑇2 ∈ (𝑤𝑐𝑠); 
(ii) 𝑇𝑎𝑏𝑛𝑜𝑟

2 ∈ (𝑤𝑐𝑠); 
(iii) 𝑇𝑠

2 ∈ (𝑤𝑐𝑠); 
(iv)  𝑇𝑠

2 is algebraically equivalent to an essentially  square normal operator of type 𝐶. 

Proof.“(i)⟹(ii)”. By Theorem (5.2.44), 𝑇2 ∈ (𝑤𝑐𝑠) implies that there exists an essentially 

square normal operator 𝐴2 ∈ 𝔅(ℋ) such that 𝐴2 ∈ (𝑐𝑠) and  𝑇2 ≈ 𝐴2. By Corollary 

(5.2.53),, we have 𝑇𝑎𝑏𝑛𝑜𝑟
2 ≈ 𝐴𝑎𝑏𝑛𝑜𝑟

2 , and it follows from Corollary (5.2.39), that  𝐴𝑎𝑏𝑛𝑜𝑟
2 ∈

(𝑐𝑠). Using Theorem (5.2.44), we obtain   𝑇𝑎𝑏𝑛𝑜𝑟
2 ∈ (𝑤𝑐𝑠). 

“(ii)⟹(iii)”. By Theorem (5.2.44),, 𝑇𝑎𝑏𝑛𝑜𝑟
2 ∈ (𝑤𝑐𝑠) implies that there exists an 

essentially square  normal operator 𝐴2 ∈ 𝔅(ℋ) such that 𝐴2 ∈ (𝑐𝑠) and 𝑇𝑎𝑏𝑛𝑜𝑟
2 ≈ 𝐴2. By 

Corollary (5.2.85), we have  𝑇𝑠
2 = (𝑇𝑎𝑏𝑛𝑜𝑟

2 )𝑠 ≈  𝐴𝑠
2, and it follows from Corollary (5.2.44), 

that 𝐴𝑠
2 ∈ (𝑐𝑠). Using Theorem (5.2.44),, we obtain  𝑇𝑠

2 ∈ (𝑤𝑐𝑠). 
“(iii)⟹(iv)”. By Theorem (5.2.44),, 𝑇𝑠

2 ∈ (𝑤𝑐𝑠) implies that there exists an 

essentially square normal operator 𝐴2 ∈ 𝔅(ℋ) such that 𝐴2 ∈ (𝑐𝑠) and 𝑇𝑠
2 ≈ 𝐴2. Then, by 
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Corollary (5.2.53),, 𝑇𝑠
2 = (𝑇𝑠

2)𝑠 ≈ 𝐴𝑠
2. By Theorem (5.2.14),,  𝐴2 ∈ (𝑐𝑠) implies that 𝐴𝑠

2 is 

of type 𝐶. This proves the implication “(iii) ⟹(iv)”.  

“(iv) ⟹(i)”. Assume that 𝐴2 ∈ 𝔅(ℋ) is an essentially square normal operator of type 𝐶 and 

𝑇𝑠
2 ≈ 𝐴2. Denote by 𝐵2 the restriction of  𝑇2 to  ℋ⊖ℋ𝑠. Then the restriction of  𝐵2 to its 

each nonzero reducing subspace is almost normal. It follows that  𝑇2 = 𝑇𝑠
2⊕𝐵2 ≈ 𝐴2⊕

𝐵2. Noting that (𝐴2⊕𝐵2)𝑠 = 𝐴𝑠
2 = 𝐴2 is of type 𝐶, by Theorem (5.2.14),, we have 𝐴2⊕

𝐵2 ∈ (𝑐𝑠). By Theorem (5.2.44),, we conclude that  𝑇2 ∈ (𝑤𝑐𝑠).  
Corollary (5.2.90)[462]:    Let 𝑇2 ∈ 𝔅(ℋ) be essentially normal. Then 𝑇2 ∈ (𝑤𝑐𝑠) if and 

only if  𝑇𝑠
2 is either absent or unitarily equivalent to an essentially square normal operator 

of the form  

⨁(𝐴𝑖
2(𝑚𝑖)⊕𝐵𝑖

2(𝑛𝑖))

1≤𝑖<𝜐

, 1 ≤ 𝑚𝑖,  𝑛𝑖 < ∞, 

where { 𝐴𝑖
2,  𝐵𝑖

2 ∶ 1 ≤ 𝑖 < 𝜐} are essentially square normal operators satisfying the 

conditions (i), (ii) and (iii) in Proposition (5.2.23),. 

Proof. Obviously, we need only consider the case that  𝑇𝑠
2 is not absent. By Lemma (5.2.46 

), and Proposition (5.2.23),, each essentially square normal operator of type 𝐶 is 

algebraically equivalent to a multiplicity-free operator of the form  

                                                           𝑅2 = ⨁ ( 𝐴𝑖
2⊕  𝐵𝑖

2)1≤𝑖<𝜐 ,                (22)                                                    

where { 𝐴𝑖
2,  𝐵𝑖

2: 1 ≤ 𝑖 < 𝜐} satisfy the conditions (i), (ii) and (iii) in Proposition (5.2.23),. 

Then, by Corollary (5.2.57),, an essentially square normal operator 𝑇2 satisfies 𝑇2 ∈ (𝑤𝑐𝑠) 
if and only if  𝑇𝑠

2 is algebraically equivalent to an operator 𝑅2 of the form (22). Noting that 

both 𝑇𝑠
2 and  𝑅2 are abnormal, in view of  Lemma (5.2.58),, the latter is equivalent to 

                                                 𝑇𝑠
2(∞)

≅ ⊕1≤𝑖<𝜐 ((𝐴𝑖
2)(∞)⊕ (𝐵𝑖

2)(∞)).            (23)                                      

By Lemmas (5.2.19), and (5.2.20),, the condition (23) holds if and only if there exist 𝑚𝑖 , 𝑛𝑖 ,
1 ≤ 𝑖 < 𝜐, such that 

𝑇𝑠
2 ≅⨁((𝐴𝑖

2)(𝑚𝑖)⊕ (𝐵𝑖
2)(𝑚𝑖))

1≤𝑖<𝜐

. 

For each 𝑖, note that both (𝐴𝑖
∗)2 𝐴𝑖

2 −  𝐴𝑖
2(𝐴𝑖

∗)2 and (𝐵𝑖
∗)2𝐵𝑖

2 − 𝐵𝑖
2(𝐵𝑖

∗)2 are nonzero 

compact operators. Since 𝑇𝑠
2  is essentially normal, if such 𝑚𝑖, 𝑛𝑖  exist, then it is necessary 

that 𝑚𝑖, 𝑛𝑖 < ∞ for each  𝑖.   
Corollary (5.2.92)[462]:   Let 𝑇2 ∈ 𝔅(ℋ) be essentially normal. If  𝑇2 is irreducible, then 

the following are equivalent: 

(i) 𝑇2 ∈ (𝑐𝑠); 
(ii) 𝑇2 ∈ (𝑤𝑐𝑠); 
(iii) 𝑇2 is almost normal. 

Proof. The implication “(i) ⟹(ii)” is trivial, and the equivalence “(i)⇔(iii)” follows from 

Theorem (5.2.8). 

“(ii) ⟹(iii)”. If  𝑇2 is not almost normal, then 𝑇2 = 𝑇𝑠
2 and  𝑇𝑠

2  is not absent. By Corollary 

(5.2.59),,  𝑇𝑠
2  is reducible, a contradiction. This ends the proof.  
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Chapter 6 

𝑪∗-Algebras with Dixmier Approximation and Property 

 

   We show that the concept is linked to coarse geometry, since for a discrete metric space 

of bounded geometry the nuclear dimension of the associated uniform Roe algebra is 

dominated by the asymptotic dimension of the underlying space. We consider Dixmier type 

approximation theorem and characterize symmetric amenability for  𝐶∗-algebras.  We 

consider continuous bundles of tracial von Neumann algebras and classify some of them.We 

give further examples of  𝐶∗-algebras with the uniform Dixmier property, namely all 𝐶∗-
algebras with the Dixmier property and finite radius of comparison-by-traces. We determine 

the distance between two Dixmier sets, in an arbitrary unital 𝐶∗-algebra, by a formula 

involving tracial data and algebraic numerical ranges. 

Section (6.1): The Nuclear Dimension 

Recent developments in noncommutative topology suggest that dimension type conditions 

play a crucial role for the understanding of noncommutative spaces and their applications, 

cf. [271], [300], [303], [260] and [270]. While in the commutative case the various 

definitions of covering dimension tend to coincide (at least for sufficiently well-behaved 

spaces), their generalizations to the noncommutative situation yield vastly different notions, 

such as stable rank, real rank, or decomposition rank (cf. [285], [268], [280]), each of which 

has turned out to be highly useful and interesting in its own right. The known applications, 

e.g. to the classification of nuclear 𝐶∗-algebras, are all limited to somewhat special situations 

– although, it should be possible to handle many of these in a unified manner. There are also 

notions which have not yet been generalized to the noncommutative setting, such as 

Gromov’s asymptotic dimension (and the latter should clearly be accessible from a 

noncommutative point of view, as it has already been shown to be closely related to the 

coarse Baum–Connes conjecture). 

    We will propose a notion of noncommutative covering dimension which on the one hand 

is flexible enough to cover large classes of (nuclear) 𝐶∗-algebras, and which on the other 

hand is intimately related to many other regularity properties of noncommutative spaces. 

The concept is linked to the classification program for nuclear 𝐶∗-algebras, as well as to the 

theory of dynamical systems and to coarse geometry. We hope that it will contribute to a 

deeper understanding of the interplay between these fields, but also shed new light on the 

role of dimension type conditions in other areas of noncommutative geometry. 

    The nuclear dimension is seemingly only a small variation of the decomposition rank, a 

notion introduced by Kirchberg and [280] (this in turn was based on earlier concepts 

introduced in [294] and [295]). The decomposition rank models the dimension type 

condition in terms of a decomposition property of noncommutative partitions of unity.  

Nuclear dimension is defined in a similar manner, only now we add a little more flexibility 

to the partitions of unity under consideration. The outcome is a notion of integer valued 

covering dimension for nuclear 𝐶∗-algebras, which still coincides with covering dimension 

of the spectrum in the commutative case, and which still has nice permanence properties. 

But now, the added flexibility in the choice of the partitions of unity makes the theory 

accessible to much larger classes of 𝐶∗-algebras. 
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The decompostion rank has turned out to be extremely useful for the classification of stably 

finite, separable, simple, nuclear 𝐶∗-algebras. In fact, all classes of such 𝐶∗-algebras which 

by now have been classified consist of ones with finite decomposition rank – and it seems 

well possible that separable simple 𝐶∗-algebras with finite decomposition rank are entirely 

classifiable by their 𝐾-theory data. An important step in this direction was achieved in [298], 

where it was shown that, for separable, simple, unital 𝐶∗-algebras, finite decomposition rank 

implies 𝑍-stability, i.e., all such 𝐶∗-algebras absorb the Jiang–𝑆𝑢 algebra 𝑍 tensorially. (The 

Jiang– 𝑆𝑢 algebra was introduced in [275]; see [289] for alternative characterizations.) The 

decomposition rank can take finite values only for quasidiagonal 𝐶∗-algebras, so its use 

beyond the stably finite case of the classification program will be limited. On the other hand, 

Kirchberg and Phillips have very successfully classified purely infinite simple 𝐶∗-algebras. 

Although in their initial approach, topological dimension type conditions do not show up 

explicitly, these nontheless have turned out to be important both in the simple and the 

nonsimple case, cf. [278], [266]. We will show that the 𝐶∗-algebras covered by Kirchberg–

Phillips classification all have finite nuclear dimension, so that our theory covers large parts 

of the classification program, both in the stably finite and in the purely infinite case. We 

make progress on a unified approach to the classification problem for nuclear 𝐶∗-algebras, 

i.e., an approach that does not require genuinely different methods in the finite and the 

infinite case. 

    We have already mentioned that, in the simple and unital case, finite decomposition rank 

implies 𝑍-stability. Using results of Kirchberg, we will be able to derive an infinite version 

of this statement, namely, that a separable simple 𝐶∗-algebra with finite nuclear dimension 

and no nontrivial trace is purely infinite, hence absorbs the Cuntz algebra 𝒪∞. We do not 

know whether simplicity and finite nuclear dimension will imply 𝑍-stability in general; 

however, there are promising results pointing in this direction, see [284] (where the corona 

factorization property is confirmed for simple, unital 𝐶∗-algebras with finite nuclear 

dimension) ; cf. also Conjecture (6.1.38), below. 

     𝐴 natural touchstone for any kind of invariant for 𝐶∗-algebras will be its behavior with 

respect to standard constructions, such as direct sums, limits, tensor products, quotients, 

ideals, or hereditary subalgebras. Decomposition rank and nuclear dimension behave 

equally well in this respect. There is, however, one exception: since finite decomposition 

rank implies finiteness, the Toeplitz extension shows that finite decomposition rank does 

not pass from quotients and ideals to extensions in general-a problem circumvented by the 

additional flexibility of nuclear dimension. 

    The situation for crossed products is more subtle. 𝐴𝑡 this point, we only have partial 

results about the topological dimension of crossed products; for example, it is known that 

the transformation group 𝐶∗-algebra of a minimal diffeomorphism on a compact smooth 

manifold has finite decomposition rank – and the proof is extremely technical, cf. [282] and 

[296]. In [293], show that the transformation group 𝐶∗-algebra of a minimal 

homeomorphism on an infinite, compact, finite dimensional, metrizable space has finite 

nuclear dimension and this time, the proof is much simpler and more conceptual. (Even 

more, the methods introduced are an important step towards completing the classification 

of 𝐶∗-algebras associated to uniquely ergodic, minimal homeomorphisms on infinite, 

compact, finite dimensional, metrizable spaces, as achieved in [293]; see also [291].) 
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Another natural situation to consider is when a group satisfies certain geometric dimension 

type conditions. Here, we face a genuine problem since the (full or reduced) group 𝐶∗-
algebra will in general not be nuclear. However, one might as well look at the so-called 

uniform Roe algebra; it then turns out that if a discrete group (with word length metric) has 

finite asymptotic dimension in the sense of Gromov, then its uniform Roe algebra has finite 

nuclear dimension. This statement can be generalized to discrete metric spaces of bounded 

geometry. At this point it is an open question how much information about the underlying 

space the Roe algebra actually contains. It will be interesting to approach this question, i.e., 

analyze what finite nuclear dimension of the Roe algebra means for the underlying space. 

The problem is particularly relevant since 𝑌𝑢 (in [303]) has shown that a group with finite 

asymptotic dimension satisfies the coarse Baum–Connes conjecture. By now, we know that 

the latter also holds in more general situations, so one might ask whether finite nuclear 

dimension of the Roe algebra is a strong enough regularity property to ensure the coarse 

Baum–Connes conjecture of the underlying group. 

    We recall some facts about order zero maps and completely positive approximations of 

nuclear 𝐶∗-algebras. We introduce our nuclear dimension, compare it to the decomposition 

rank and derive its permanence properties with respect to inductive limits, quotients, ideals, 

extensions and hereditary subalgebras.The special structure of completely positive 

approximations realizing nuclear dimension; namely, we show that the outgoing maps can 

always be chosen to be approximately order zero. We compare nuclear dimension to 

Kirchberg’s covering number. These observations together with a result of Kirchberg are to 

obtain a dichotomy result on sufficiently noncommutative 𝐶∗-algebras with finite nuclear 

dimension: they either have a nontrivial trace or are purely infinite. We collect a number of 

examples both with finite and with infinite nuclear dimension. We show that Kirchberg 

algebras satisfying the Universal Coefficient Theorem have finite nuclear dimension, and 

that, for a discrete countable metric space of bounded geometry, the nuclear dimension of 

the associated uniform Roe algebra is dominated by the asymptotic dimension of the space. 

We close with a number of open problems and possible future developments.  

   We recall some facts about order zero maps. These are 𝑐. 𝑝. maps preserving 

orthogonality; they are particularly well-behaved, and will serve as building blocks of our 

noncommutative partitions of unity, similar as in [294], [295] and [280]. 

Definition (6.1.1)[453]: Let 𝐴 and 𝐵 be 𝐶∗-algebras, and 𝜑: 𝐴 →  𝐵 a 𝑐. 𝑝. map. We say 𝜑 

has order zero, if, for 𝑎, 𝑏 ∈ 𝐴+, 

𝑎 ⊥ 𝑏 ⇒ 𝜑(𝑎) ⊥ 𝜑(𝑏). 
The following structure theorem for order zero maps was derived in [301] (based on results 

from [302], and generalizing [297, 1.2], which only covers the case of finite-dimensional 

domains). 

Theorem (6.1.2)[453]: Let 𝐴 and 𝐵 be 𝐶∗-algebras and 𝜑: 𝐴 → 𝐵 𝑎 𝑐. 𝑝. order zero map. 

Let 𝐶:= 𝐶∗(𝜑(𝐴)) ⊂ 𝐵, then there is a positive element ℎ ∈ 𝑀(𝐶) ∩ 𝐶′ with ‖ℎ‖ = ‖𝜑‖ 

and a ∗-homomorphism 

𝜋𝜑: 𝐴 → 𝑀(𝐶) ∩ {ℎ}′ ⊂ 𝐵
∗∗ 

such that 

𝜋𝜑(𝑎)ℎ = 𝜑(𝑎) 𝑓𝑜𝑟 𝑎 ∈ 𝐴. 

If 𝐴 is unital, then ℎ = 𝜑(1𝐴) ∈ 𝐶. 
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We call 𝜋𝜑 the canonical supporting ∗-homomorphism of 𝜑. 

We shall have use for the following easy consequence of Theorem (6.1.2), cf. [301].  

Corollary (6.1.3)[453]: Let 𝐴, 𝐵 be 𝐶∗-algebras and 𝜓: 𝐴 → 𝐵 𝑎 𝑐. 𝑝. 𝑐. order zero map. If 

𝜏 is a positive tracial functional on 𝐵, then 𝜏 ∘ 𝜓 is a positive tracial functional on 𝐴. 

By [467, 1.2.3], order zero maps with finite-dimensional domains can be described in terms 

of generators and relations which are weakly stable in the sense of [417]. The following is 

a straightforward reformulation of [419, Proposition 2.5]. 

Proposition (6.1.4)[453]: Let 𝐹 be a finite dimensional 𝐶∗-algebra. For any 𝜂 > 0 there is 

𝛿 > 0 such that the following holds: If 𝐴 is a 𝐶∗-algebra and 𝜙: 𝐹 → 𝐴 𝑎 𝑐. 𝑝. 𝑐. order zero 

map, and if 𝑑 ∈ 𝐴+ is a positive contraction in the unitization of 𝐴 satisfying 

‖[𝑑, 𝜑(𝑥)]‖ ≤ 𝛿‖𝑥‖ for all 𝑥 ∈ 𝐹, then there is 𝑎 𝑐. 𝑝. 𝑐. order zero map �̂�: 𝐹 → 𝐴 such 

that ‖�̂�(𝑥) − 𝑑
1

2 𝜑(𝑥)𝑑
1

2‖ ≤ 𝜂‖𝑥‖ for all 𝑥 ∈ 𝐹. 

Below we define our notion of noncommutative dimension, compare it to other concepts 

such as topological covering dimension or decomposition rank, and derive its most 

important permanence properties. 

Definition (6.1.5)[453]: 𝐴 𝐶∗-algebra 𝐴 has nuclear dimension at most 𝑛, if there exists a 

net (𝐹𝜆, 𝜓𝜆, 𝜑𝜆)𝜆∈𝛬 such that the 𝐹𝜆 are finite-dimensional 𝐶∗-algebras, and such that 

𝜓𝜆: 𝐴 → 𝐹𝜆 and 𝜑𝜆: 𝐹𝜆 → 𝐴 are completely positive maps satisfying 

(i)  𝜓𝜆 ∘ 𝜑𝜆(𝑎) → 𝑎 uniformly on finite subsets of 𝐴; 

(ii)  ‖𝜓𝜆‖ ≤ 1;  

(iii)  for each 𝜆, 𝐹𝜆 decomposes into 𝑛 + 1 ideals 𝐹𝜆 = 𝐹𝜆
(0)
⊕ . . .⊕ 𝐹𝜆

(𝑛)
 such that 

𝜑𝜆|𝐹𝜆
(𝑖)  is 𝑎 𝑐. 𝑝. 𝑐. order zero map for 𝑖 = 0, 1, . . . , 𝑛. 

We write dim 𝑛𝑢𝑐 𝐴 ≤ 𝑛 in this case and refer to the maps 𝜑𝜆 as piecewise contractive 𝑛-

decomposable 𝑐. 𝑝. maps, and to the triples (𝐹𝜆, 𝜓𝜆, 𝜑𝜆) as piecewise contractive 𝑛-

decomposable 𝑐. 𝑝. approximations. 

   The following permanence properties are derived just as for the completely positive rank 

or for the decomposition rank, cf. [462] and [419]. Note that there is no need to specify the 

tensor product in (6.1.6)(ii), since the values can be finite only for nuclear 𝐶∗-algebras. 

Proposition (6.1.6)[453]: Let 𝐴,𝐵, 𝐶, 𝐷 and 𝐸 be 𝐶∗-algebras; suppose 𝐶 = lim → 𝐶𝑖 is an 

inductive limit of 𝐶∗-algebras and 𝐷 is a quotient of 𝐸. Then, 

(i)  dim 𝑛𝑢𝑐(𝐴 ⊕ 𝐵) = max (dim 𝑛𝑢𝑐 𝐴, dim 𝑛𝑢𝑐 𝐵)  
(ii)  dim 𝑛𝑢𝑐(𝐴 ⊗ 𝐵) ≤ (dim 𝑛𝑢𝑐 𝐴 + 1)(dim 𝑛𝑢𝑐 𝐵 + 1) − 1; if  𝐵 is an 𝐴𝐹 algebra, 

then dim 𝑛𝑢𝑐(𝐴 ⊗ 𝐵) ≤ dim 𝑛𝑢𝑐 𝐴 

(iii)  dim 𝑛𝑢𝑐 𝐶 ≤ lim inf (dim 𝑛𝑢𝑐 𝐶𝑖) 
(iv)  dim 𝑛𝑢𝑐 𝐷 ≤ dim 𝑛𝑢𝑐 𝐸. 

Just as the decomposition rank, nuclear dimension agrees with covering dimension of the 

spectrum in the separable commutative case. In the nonseparable case, nuclear dimension 

and decomposition rank still coincide, and they agree with the respective definition of 

covering dimension. The only reason why we distinguish between the separable and the 

nonseparable case is that the various characterizations of dimension tend to disagree for 

spaces which are not second countable. 

Proposition (6.1.7)[453]: Let 𝑋 be a locally compact Hausdorff space. Then, 

dim 𝑛𝑢𝑐 𝐶𝑐(𝑋) = 𝑑𝑟𝐶0(𝑋). 
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In particular, if 𝑋 is second countable, we have 

dim 𝑢𝑛𝑐 𝐶0(𝑋) = 𝑑𝑟𝐶0(𝑋) = dim 𝑋. 
Proof. We have dim 𝑛𝑢𝑐 𝐶0(𝑋) ≤ 𝑑𝑟𝐶0(𝑋). For the reverse estimate, let us assume that 

dim 𝑛𝑢𝑐 𝐶0(𝑋) = 𝑛 < ∞. Suppose ℱ ⊂ 𝐶0(𝑋) is a finite subset of positive normalized 

elements, and that 𝜀 > 0 is given. We may assume that the elements of ℱ have compact 

support and that there is a positive normalized function ℎ ∈ 𝐶0(𝑋) such that ℎ𝑎 = 𝑎 for all 

𝑎 ∈ ℱ. 

Choose a piecewise contractive 𝑛-decomposable 𝑐. 𝑝. approximation (𝐹 = 𝐹(0)⊕. . .⊕

𝐹(𝑛), 𝜓, 𝜑) for ℱ ∪ {ℎ} within 𝜀/2. Since 𝜑 has order zero on each matrix block of 𝐹, we 

see from [462, Remark 2.16 (ii)] that 𝐹 is commutative. By cutting down 𝐹 to the hereditary 

subalgebra generated by 𝜓(ℎ), we may assume that 𝜓(ℎ) is invertible in 𝐹. Define 𝑐. 𝑝. 

maps 

�̂� ∶ 𝐶0(𝑋) → 𝐹 𝑎𝑛𝑑 �̂�: 𝐹 → 𝐶0(𝑋) 
by 

�̂�(𝑓): = 𝜓(ℎ)−
1
2𝜓(ℎ𝑓)𝜓(ℎ)−

1
2 𝑓𝑜𝑟 𝑓 ∈ 𝐶0(𝑋) 

and 

�̂�(𝑥): = (1 −
𝜀

2
) · 𝜑(𝜓(ℎ)

1
2 𝑥𝜓(ℎ)

1
2)    𝑓𝑜𝑟 𝑥 ∈ 𝐹. 

It is clear that �̂� is contractive, and that �̂� is 𝑛-decomposable with respect to 𝐹 = 𝐹(0)⊕

 . . .⊕ 𝐹(𝑛). Moreover, 

�̂�(1𝐹) = �̂� �̂�(ℎ) 

                               = (1 −
𝜀

2
) · 𝜙𝜓(ℎ) 

                                   ≤ (1 −
𝜀

2
) (1 +

𝜀

2
) · ℎ 

  ≤ 1, 
whence �̂� is contractive. Finally, we have 

‖�̂��̂�(𝑓) − 𝑓‖ ≤ ‖�̂� �̂�(𝑓) − 𝜑𝜓(𝑓)‖ + ‖𝜙𝜓(𝑓) − 𝑓‖ 

                        < ‖(1 −
𝜀

2
) · 𝜑𝜓(ℎ𝑓) − 𝜑𝜓(𝑓)‖ +

𝜀

2
 

                                                             ≤ 𝜀  
for 𝑓 ∈ ℱ, so (𝐹, �̂�, �̂�) is an 𝑛-decomposable 𝑐. 𝑝. 𝑐. approximation for ℱ within 𝜀. 
Therefore, 𝑑𝑟𝐶0(𝑋) ≤ 𝑛. 

The statement about the second countable case is [419, Proposition 3.3].  

    We do not wish to impose any separability restrictions on our definition of nuclear 

dimension. However, in many situations one can non the less restrict to the separable case, 

using the following observation. We next show that, just like for decomposition rank, finite 

nuclear dimension passes to hereditary subalgebras. Combined with Brown’s Theorem, this 

result shows that nuclear dimension is a stable invariant, cf. Corollary (6.1.10) below. 

Proposition(6.1.8)[453]: dim𝑛𝑢𝑐 𝐵 ≤ dim 𝑛𝑢𝑐 𝐴 when 𝐵 ⊆ 𝐴 is a hereditary 𝐶∗-subalgebra.  

Proof. We may assume 𝑛:= dim 𝑛𝑢𝑐 𝐴 to be finite, for otherwise there is nothing to show. 

Let 𝑏1, . . . , 𝑏𝑚 ∈ 𝐵+ be normalized elements and let 𝜀 > 0 be given. We have to find a 

piecewise contractive 𝑛-decomposable 𝑐. 𝑝. approximation (of 𝐵) for {𝑏1, . . . , 𝑏𝑚} within 𝜀. 



 

216 

 

Using an idempotent approximate unit, by slightly perturbing the 𝑏𝑗  we may (as in [419, 

Remark 3.2(ii)]) assume that there are positive normalized elements ℎ0, ℎ1 ∈ 𝐵+ such that 

ℎ0ℎ1 = ℎ1   𝑎𝑛𝑑   ℎ1𝑏𝑗 = 𝑏𝑗  

for 𝑗 = 1, . . . ,𝑚. 

Set 

𝜂:= min {
𝜀8

13(𝑛 + 1)
,
1

216
} 

and choose a piecewise contractive n-decomposable 𝑐. 𝑝. approximation 

(𝐹 = 𝐹(0)⊕ . . . 𝐹(𝑛), 𝜓, 𝜑) 
(of 𝐴) for {ℎ0, ℎ1, 𝑏1, . . . , 𝑏𝑚} within 𝜂. 

Define a projection 𝑝 ∈ 𝐹 by 

𝑝:= 𝑔
𝜂
1
2
(𝜓(ℎ1)), 

where 𝑔
𝜂
1
2
 is given by 

𝑔
𝜂
1
2
(𝑡): = {

0  𝑓𝑜𝑟  𝑡 < 𝜂
1
2,

1 𝑓𝑜𝑟 𝑡 ≥  𝜂
1
2.

 

Set 

�̂�: = 𝑝𝐹𝑝, �̂�(𝑖): = 𝑝𝐹(𝑖)𝑝 𝑎𝑛𝑑 𝑝(𝑖): = 1𝐹(𝑖)𝑝 

for 𝑖 ∈ {0, . . . , 𝑛} and define 𝑎 𝑐. 𝑝. 𝑐. map 

�̂�: 𝐵 → �̂� 
by 

 �̂�(𝑏): = 𝑝𝜓(𝑏)𝑝, 𝑏 ∈ 𝐵. 
For 𝑖 ∈ {0, . . . , 𝑛} we have 

‖𝜑(𝑖)(𝑝(𝑖))(1 − ℎ0)‖ = ‖(1 − ℎ0)𝜑
(𝑖)(𝑝(𝑖))2(1 − ℎ0)‖

1
2 

                                     ≤ ‖(1 − ℎ0)𝜑
(𝑖)(𝑝(𝑖))(1 − ℎ0)‖

1
2 

                           ≤ ‖(1 − ℎ0)𝜑(𝑝)(1 − ℎ0)‖
1
2 

                                        ≤ (
1

𝜂
1
2

‖(1 − ℎ0)𝜑𝜓(ℎ1)(1 − ℎ0)‖)

1
2

 

                                                                   ≤ (
𝜂

𝜂
1
2

)

1
2

 

                                                                 = 𝜂
1
4 (≤

1

16
) . 

Now by [419, Lemma 3.6] (applied to 𝜑(𝑖)|�̂�(𝑖)  in place of 𝜑 and ℎ0 in place of ℎ) there are 

𝑐. 𝑝. 𝑐. order zero maps 

�̂�(𝑖): �̂�(𝑖) → ℎ0𝐴ℎ0̅̅ ̅̅ ̅̅ ̅̅ ⊂ 𝐵 
such that 
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‖�̂�(𝑖)(𝑥) − 𝜑(𝑖)(𝑥)‖ ≤ 8𝜂
1
8‖𝑥‖ 

for all 0 ≤ 𝑥 ∈ �̂�(𝑖) and 𝑖 ∈ {0, . . . , 𝑛}. Set 

�̂�: =∑�̂�(𝑖)
𝑛

𝑖=0

: �̂� → 𝐵. 

The map �̂� is a sum of 𝑛 + 1 𝑐. 𝑝. 𝑐. order zero maps by construction, and we have 

 ‖�̂� �̂�(𝑏𝑗) − 𝜑�̂�(𝑏𝑗)‖ ≤ 8(𝑛 + 1)𝜂
1

8, 𝑗 = 1, . . . , 𝑚.                      (1) 

To check that �̂��̂�(𝑏𝑗) is close to 𝑏𝑗, note first that 

‖𝜑((1𝐹 − 𝑝)𝜓(𝑏𝑗))‖ ≤ ‖𝜑((1𝐹 − 𝑝)𝜓(𝑏𝑗))𝜑(𝜓(𝑏𝑗)(1𝐹 − 𝑝))‖
1
2 

                         ≤ ‖𝜑((1𝐹 − 𝑝)𝜓(𝑏𝑗)
2(1𝐹 − 𝑝))‖

1
2 

                        ≤ ‖𝜑((1𝐹 − 𝑝)𝜓(ℎ1)(1𝐹 − 𝑝))‖
1
2 

                                                              ≤ ((𝑛 + 1)𝜂
1
2)

1
2

 

                                                              ≤ (𝑛 + 1)𝜂
1
4 

for 𝑗 = 1, . . . ,𝑚, which in particular implies that 

‖𝜑([𝑝, 𝜓(𝑏𝑗)])‖ ≤ 2(𝑛 + 1)𝜂
1
4. 

We now obtain 

‖𝜑𝜓(𝑏𝑗) − 𝜑�̂�(𝑏𝑗)‖  ≤ ‖𝜑(𝜓(𝑏𝑗) − 𝑝𝜓(𝑏𝑗) + 𝜓(𝑏𝑗)𝑝 − 𝑝𝜓(𝑏𝑗)𝑝)‖ + 2(𝑛 + 1)𝜂
1
4           

≤ 4(𝑛 + 1)𝜂
1
4                                                                                                      (2) 

for 𝑗 = 1, . . . ,𝑚, whence 

‖�̂��̂�(𝑏𝑗) − 𝑏𝑗‖ ≤ ‖�̂��̂�(𝑏𝑗) − 𝜑 �̂�(𝑏𝑗)‖ + ‖𝜑�̂�(𝑏𝑗) − 𝜑𝜓(𝑏𝑗)‖ + ‖𝜑𝜓(𝑏𝑗) − 𝑏𝑗‖ 

(1), (2)
<

 8(𝑛 + 1)𝜂
1
8 + 4(𝑛 + 1)𝜂

1
4 + 𝜂 

                                                     < 𝜀. 
Therefore, the approximation (�̂�, �̂�, �̂�) is as desired.  

Proposition (6.1.9)[453]: Let 𝐵 be a 𝐶∗-algebra. For any countable subset 𝑆 ⊂ 𝐵 there is a 

separable 𝐶∗-subalgebra 𝐶 ⊂ 𝐵 such that 𝑆 ⊂ 𝐶 and dim 𝑛𝑢𝑐 𝐶 ≤ dim 𝑛𝑢𝑐 𝐵. 
Proof. Let dim𝑛𝑢𝑐𝐵 = 𝑛 < ∞. Set 𝑆0: = 𝑆 and choose 

(𝐹0,𝜆, 𝜓0,𝜆, 𝜑0,𝜆)𝜆∈ℕ, 

a system of piecewise contractive 𝑛-decomposable 𝑐. 𝑝. approximations (of 𝐵) for 𝑆0. 

If 𝑆𝑘 ⊂ 𝐵 and 

(𝐹𝑘,𝜆, 𝜓𝑘,𝜆, 𝜑𝑘,𝜆)𝜆∈ℕ 
have been constructed, choose a countable dense subset 

𝑆𝑘+1 ⊂ 𝐶
∗ ( ⋃ 𝜑𝑙,𝜆(𝐹𝑙,𝜆) ∪ 𝑆𝑘

𝑙≤𝑘,𝜆∈ℕ

) ⊂ 𝐵 

and choose 

(𝐹𝑘+1,𝜆, 𝜓𝑘+1,𝜆, 𝜑𝑘+1,𝜆)𝜆∈ℕ, 
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a system of piecewise contractive, 𝑛-decomposable 𝑐. 𝑝. approximations (of 𝐵) for 𝑆𝑘+1. 
Continue inductively and define 

𝐶:=⋃𝑆𝑘
𝑘∈ℕ

̅̅ ̅̅ ̅̅ ̅̅
; 

it is straightforward to check that 𝐶 has the right properties, and that a system of piecewise 

contractive, 𝑛-decomposable 𝑐. 𝑝. approximations of 𝐶 is given by 

(𝐹𝑘,𝜆, 𝜓𝑘,𝜆, 𝜑𝑘,𝜆)𝑘,𝜆∈ℕ. 

Corollary (6.1.10)[453]: Let 𝐴 be a 𝐶∗-algebra. 

(i)  For any 𝑟 ∈ ℕ we have dim 𝑛𝑢𝑐 𝐴 = dim 𝑛𝑢𝑐(𝑀𝑟⊗𝐴) = dim 𝑛𝑢𝑐(𝐾 ⊗ 𝐴). 
(ii)  If 𝐵 ⊂ 𝐴 is a full hereditary 𝐶∗-subalgebra, then dim 𝑛𝑢𝑐 𝐵 = dim 𝑛𝑢𝑐 𝐴. 

Proof. (i) We have dim 𝑛𝑢𝑐 𝐴 ≤ dim 𝑛𝑢𝑐(𝑀𝑟⊗𝐴) ≤ dim 𝑛𝑢𝑐(𝐾 ⊗ 𝐴) by Proposition 

(6.1.8) and dim 𝑛𝑢𝑐(𝐾 ⊗ 𝐴) ≤ dim 𝑛𝑢𝑐 𝐴 by Proposition (6.1.6). 

(ii) We have 𝑛:= dim 𝑛𝑢𝑐 𝐵 ≤ dim 𝑛𝑢𝑐 𝐴 by Proposition (6.1.8),, so it remains to show that 

dim 𝑛𝑢𝑐 𝐴 ≤ dim 𝑛𝑢𝑐 𝐵. 

    Given 𝑎1, . . . , 𝑎𝑚 ∈ 𝐴+, by there is a separable 𝐶∗-subalgebra 𝐷 ⊂ 𝐴 such that 

{𝑎1, . . . , 𝑎𝑚} ⊂ 𝐷, such that 𝐶:= 𝐷 ∩ 𝐵 is full in 𝐷 and such that dim 𝑛𝑢𝑐 𝐶 ≤ dim 𝑛𝑢𝑐 𝐵. 

     Now by Brown’s Theorem [495, Theorem 2.8], we have 𝐾⊗ 𝐶 ≅ 𝐾 ⊗𝐷, hence 

dim 𝑛𝑢𝑐 𝐷 = dim 𝑛𝑢𝑐 𝐶(≤ dim 𝑛𝑢𝑐 𝐵) by part (i) of the corollary. We may thus find 

arbitrarily close piecewise contractive 𝑛-decomposable 𝑐. 𝑝. approximations for 𝑎1, . . . , 𝑎𝑚.  

    We are now ready to describe the first significant difference between decomposition rank 

and nuclear dimension. We already know that both theories behave well with respect to 

quotients and ideals; it has been observed in [419] that finite decomposition rank passes to 

quasidiagonal extensions, and that one cannot expect a general statement. The additional 

flexibility in the definition of nuclear dimension, however, ensures that finite nuclear 

dimension indeed passes to arbitrary extensions. So we obtain a noncommutative version of 

the sum theorem for covering dimension, cf. [452, III.2.B)]. This behavior will also make 

large new classes of 𝐶∗-algebras accessible to our theory, cf. 

Proposition (6.1.11)[453]: Let 0 → 𝐽 → 𝐸 → 𝐴 → 0 be an exact sequence of 𝐶∗-algebras. 

Then, 

max {dim 𝑛𝑢𝑐 𝐴, dim 𝑛𝑢𝑐 𝐽} ≤ dim 𝑛𝑢𝑐 𝐸 ≤ dim𝑛𝑢𝑐  𝐴 + dim 𝑛𝑢𝑐 𝐽 + 1. 
Proof. The first inequality follows. 

For the second inequality, we may assume that both 𝑚:= dim 𝑛𝑢𝑐 𝐽 and 𝑛:= dim 𝑛𝑢𝑐 𝐴 are 

finite, for otherwise there is nothing to show. Let positive and normalized elements 

𝑒1, . . . , 𝑒𝑘 ∈ 𝐸 and 𝜀 > 0 be given. 
Choose a piecewise contractive 𝑛-decomposable 𝑐. 𝑝. approximation 

(𝐹𝐴 = 𝐹𝐴
(0)
⊕ . . .⊕ 𝐹𝐴

(𝑛)
, 𝜓𝐴, 𝜑𝐴) 

(of 𝐴) for {𝜋(𝑒1), . . . , 𝜋(𝑒𝑘)} within 
𝜀

5
 . By [467, Proposition 1.2.4] (essentially using that 

cones over finite-dimensional 𝐶∗-algebras are projective), each 𝜑𝐴
(𝑗)

 lifts to a 𝑐. 𝑝. 𝑐. order 

zero map 

�̅�𝐴
(𝑗)
: 𝐹𝐴

(𝑗)
→ 𝐸, 

so that 
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�̅�𝐴: = ∑�̅�𝐴
(𝑗)

𝑛

𝑗=0

 

will be a piecewise contractive 𝑛-decomposable 𝑐. 𝑝. lift of 𝜑𝐴. 

From [467, 1.2.3], we know that the relations defining order zero maps are weakly stable; 

this in particular implies that there is 𝛿 > 0 such that the assertion of Proposition (6.1.4) 

holds for each 𝐹𝐴
(𝑗)

 in place of 𝐹 and 
𝜀

5(𝑛+1)
 in place of  𝜂. 

    Using a quasicentral approximate unit for 𝐽 relative to 𝐸, it is straightforward to find a 

positive normalized element ℎ ∈ 𝐽 such that the following hold: 

(a) ‖[(1 − ℎ), �̅�𝐴
(𝑗)
(𝑥)]‖ ≤ 𝛿‖𝑥‖ for 𝑥 ∈ 𝐹𝐴

(𝑗)
, 𝑗 = 0, . . . , 𝑛 

(b) ‖ℎ
1

2𝑒𝑙ℎ
1

2 + (1 − ℎ)
1

2 𝑒𝑙(1 − ℎ)
1

2 − 𝑒𝑙‖ <
𝜀

5
 for 𝑙 = 1, . . . , 𝑘 

(c) ‖(1 − ℎ)
1

2(�̅�𝐴𝜓𝐴𝜋(𝑒𝑙) − 𝑒𝑙)(1 − ℎ)
1

2‖ <
2𝜀

5
 for 𝑙 = 1, . . . , 𝑘. 

(To obtain (c), we use that 

‖𝜋(�̅�𝐴𝜓𝐴𝜋(𝑒𝑙) − 𝑒𝑙)‖ = ‖𝜑𝐴𝜓𝐴𝜋(𝑒𝑙) − 𝑒𝑙‖ <
𝜀

5
, 

whence �̅�𝐴𝜓𝐴𝜋(𝑒𝑙) − 𝑒𝑙 is at most 
𝜀

5
 away from 𝐽.) 

Now by (a) and Proposition (6.1.4) there are 𝑐. 𝑝. 𝑐. order zero maps 

�̂�𝐴
(𝑗)
: 𝐹𝐴

(𝑗)
→ 𝐸 

such that 

‖�̂�𝐴
(𝑗)
(𝑥) − (1 − ℎ)

1
2�̅�𝐴

(𝑗)
(𝑥)(1 − ℎ)

1
2‖ ≤

𝜀

5(𝑛 + 1)
‖𝑥‖ 

for 𝑥 ∈ 𝐹𝐴
(𝑗)
, 𝑗 = 0, . . . , 𝑛; set 

�̂�𝐴: =∑�̂�𝐴
(𝑗)

𝑛

𝑗=0

, 

then 

‖�̂�𝐴(𝑥) − (1 − ℎ)
1
2�̅�𝐴(𝑥)(1 − ℎ)

1
2‖ ≤

𝜀

5
‖𝑥‖ 𝑓𝑜𝑟 𝑥 ∈ 𝐹𝐴. 

Next, choose a piecewise contractive 𝑚-decomposable 𝑐. 𝑝. approximation 

(𝐹𝐽 = 𝐹𝐽
(0)
⊕ . . .⊕ 𝐹𝐽

(𝑚)
, 𝜓𝐽, 𝜑𝐽) 

(of 𝐽) for {ℎ
1

2 𝑒𝑙ℎ
1

2|𝑙 = 1, . . . , 𝑘} within 
𝜀

5
. 

Set 

𝐹:= 𝐹𝐽⊕𝐹𝐴, 𝜓( . ): = 𝜓𝐽(ℎ
1
2. ℎ

1
2) ⊕ 𝜓𝐴𝜋( . ) 𝑎𝑛𝑑 𝜑:= 𝜑𝐽 + �̂�𝐴, 

then 𝜓 is 𝑐. 𝑝. 𝑐. and 𝜑 is piecewise contractive 𝑐. 𝑝.; 𝜑 is (𝑚 + 𝑛 + 1)-decomposable with 

respect to 𝐹 =⊕𝑗=0
𝑚+𝑛+1 𝐹(𝑗), where 

𝐹(𝑗): = {
𝐹𝐽
(𝑗)
                                     𝑓𝑜𝑟 𝑗 = 0, . . . , 𝑚

𝐹𝐴
(𝑗−𝑚−1)

 𝑓𝑜𝑟 𝑗 = 𝑚 + 1, . . . , 𝑚 + 𝑛 + 1.
 

It remains to be checked that (𝐹, 𝜓, 𝜑) indeed approximates the 𝑒𝑙 within 𝜀, i.e., 
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                        ‖𝜑𝜓(𝑒𝑙) − 𝑒𝑙‖
(𝑏)
<
‖𝜑𝐽𝜓𝐽(ℎ

1
2 𝑒𝑙ℎ

1
2) − ℎ

1
2 𝑒𝑙ℎ

1
2‖ 

                    + ‖�̂�𝐴𝜓𝐴𝜋(𝑒𝑙) − (1 − ℎ)
1
2 𝑒𝑙(1 − ℎ)

1
2‖ +

𝜀

5
 

                                      ≤
𝜀

5
+ ‖(1 − ℎ)

1
2(�̅�𝐴𝜓𝐴𝜋(𝑒𝑙) − 𝑒𝑙)(1 − ℎ)

1
2‖ +

𝜀

5
+
𝜀

5
 

                                                   (𝑐)
                                                    <

 𝜀. 

Corollary (6.1.12)[453]: Let 𝐴 be a separable continuous trace 𝐶∗-algebra. Then, 

dim 𝑛𝑢𝑐 𝐴 = 𝑑𝑟𝐴 = dim �̂�. 
Proof. The proof follows that of [280, Corollary 3.10] almost verbatim. 

However, following the lines of [280, Proposition 3.11], one can even show that the nuclear 

dimension of a 𝐶∗-algebra agrees with that of its smallest unitization. In the separable 

commutative case, the respective statement also holds for the maximal compactification. 

One cannot quite expect a noncommutative generalization of the latter result to our context, 

since multiplier algebras in general are not nuclear.  

   In [280] it was shown that 𝐶∗-algebras with finite decomposition rank are quasidiagonal. 

The reason was that the 𝑛-decomposable 𝑐. 𝑝. 𝑐. approximations may always be chosen so 

that the maps 𝜓𝜆: 𝐴 → 𝐹𝜆 are almost multiplicative, cf. [280, Proposition 5.1]. We prove an 

analogous result for nuclear dimension and piecewise contractive 𝑛-decomposable 𝑐. 𝑝. 

approximations, saying that the latter may always be chosen to be almost orthogonality 

preserving. We first need a simple technical observation. 

Proposition (6.1.13)[453]: Let 𝐴 be a 𝐶∗-algebra, and let 0 ≤ 𝑎 ≤ 𝑏 and 0 ≤ 𝑎′ ≤ 𝑏′ be 

positive elements of norm at most one. Then, ‖𝑎𝑎′‖2 ≤ ‖𝑏𝑏′‖. 

Proof. We simply estimate 

‖𝑏𝑏′‖ ≥ ‖𝑏
1
2𝑏′𝑏𝑏′𝑏

1
2‖ 

        = ‖𝑏
1
2𝑏′𝑏

1
2‖
2

 

        ≥ ‖𝑏
1
2𝑎′𝑏

1
2‖
2

 

                 = ‖(𝑎′)
1
2𝑏(𝑎′)

1
2‖
2

 

                 ≥ ‖(𝑎′)
1
2𝑎(𝑎′)

1
2‖
2

 

     ≥ ‖𝑎′𝑎𝑎′‖2 
       ≥ ‖𝑎′𝑎2𝑎′‖2 
  = ‖𝑎𝑎′‖2. 

Proposition (6.1.14)[453]: Let 𝐴 be a 𝐶∗-algebra with dim 𝑛𝑢𝑐 𝐴 = 𝑛 < ∞. Then, there is a 

system (𝐹𝜆, 𝜓𝜆, 𝜑𝜆)𝜆∈𝛬 of almost contractive 𝑛-decomposable 𝑐. 𝑝. approximations such that 

the map 

�̅�: 𝐴 →∏ 𝐹𝜆
Λ

/⊕Λ 𝐹𝜆 

induced by the 𝜓𝜆has order zero. 
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Proof. Let us first assume 𝐴 to be separable. In this case, it will suffice to show the 

following: For any 0 < 𝜀 <
1

(𝑛+2)4
 and any finite subset ℱ ⊂ 𝐴 of positive normalized 

elements, there is a piecewise contractive 𝑛-decomposable 𝑐. 𝑝. approximation (𝐹,𝜓, 𝜑) of 

𝐴 such that 

‖𝜑𝜓(𝑏) − 𝑏‖ < 𝜀
1
16 𝑓𝑜𝑟   𝑏 ∈ ℱ 

and 

                                                      ‖𝜓(𝑐)𝜓(𝑐′)‖ < 𝜀
1
16 

whenever 𝑐, 𝑐′ ∈ ℱ satisfy ‖𝑐𝑐′‖ < 𝜀. 
So, let 𝜀 and ℱ as above be given. Choose a piecewise contractive 𝑛-decomposable 𝑐. 𝑝. 

approximation (�̃�, �̃�, �̃�) of 𝐴 such that 

‖�̃��̃�(𝑏) − 𝑏‖ < 𝜀 𝑓𝑜𝑟 𝑏 ∈ ℱ.  

Write �̃� = 𝑀𝑟1 ⊕ . . .⊕ 𝑀𝑟𝑠 and denote the respective components of �̃� and �̃� by �̃�𝑗 and 

�̃�𝑗 , respectively. Define 

𝐼: = {𝑗 ∈ {1, . . . , 𝑠}| 

‖�̃�𝑗(𝑐)�̃�𝑗(𝑐′)‖ ≥ 𝜀
−
1
8‖�̃��̃�(𝑐)�̃��̃�(𝑐′)‖

1
4 

                                   for some 𝑐, 𝑐′ ∈ ℱ with ‖𝑐𝑐′‖ < 𝜀}. 
Let 

𝜋𝑗: 𝑀𝑟𝑗 → 𝐴′′ 

denote the canonical supporting ∗-homomorphism for �̃�𝑗 (cf. (6.1.2)), so that we have 

�̃�𝑗(𝑥) = �̃�𝑗(1𝑀𝑟𝑗
)𝜋𝑗(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑀𝑟𝑗 . 

We estimate that 

                         ‖�̃� �̃�(𝑏)�̃� �̃�(𝑏′)‖ 
(6.1.13)
≥

‖�̃�𝑗�̃�𝑗(𝑏)�̃�𝑗�̃�𝑗(𝑏′)‖
2

 

                  = ‖�̃�𝑗 (1𝑀𝑟𝑗
)
2
𝜋𝑗(�̃�𝑗(𝑏)�̃�𝑗(𝑏′))‖

2

 

                                                           ≥ ‖𝜋𝑗(�̃�𝑗(𝑏′) �̃�𝑗(𝑏)) 

 �̃�𝑗 (1𝑀𝑟𝑗
)
2
𝜋𝑗(�̃�𝑗(𝑏)�̃�𝑗(𝑏′))‖

2

 

                                                          = ‖�̃�𝑗(�̃�𝑗(𝑏)�̃�𝑗(𝑏′))‖
4

 

           = ‖�̃�𝑗 (1𝑀𝑟𝑗
)‖

4
‖�̃�𝑗(𝑏)�̃�𝑗(𝑏′)‖

4
 

for all 𝑗 ∈ {1, . . . , 𝑠} and normalized 𝑏, 𝑏′ ∈ 𝐴. 

It follows that for each 𝑗 ∈ 𝐼 there are 𝑐, 𝑐′ ∈ ℱ such that ‖𝑐𝑐′‖ < 𝜀  and 

                   ‖�̃��̃�(𝑐)�̃� �̃�(𝑐′)‖ 

≥ ‖�̃�𝑗 (1𝑀𝑟𝑗
)‖

4
𝜀−
1
2‖�̃��̃�(𝑐)�̃��̃�(𝑐′)‖, 

whence 

‖�̃�𝑗 (1𝑀𝑟𝑗
)‖ ≤ 𝜀

1
8 

and  
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‖               ∑ �̃�𝑗 (1𝑀𝑟𝑗
)

𝑗∈𝐼
‖ ≤ (𝑛 + 1)𝜀

1
8. 

Set 

𝐹:= ⨁ 𝑀𝑟𝑗
𝑗∈{1,...,𝑠}\𝐼

 

and denote the respective components of  �̃� and �̃� by 𝜑 and 𝜓, respectively. Then, we have 

‖𝑏 − 𝜑𝜓(𝑏)‖ ≤ ‖𝑏 − �̃� �̃�(𝑏)‖ − ‖�̃��̃�(𝑏) − 𝜙𝜓(𝑏)‖ 

≤ 𝜀 + ‖∑ �̃�𝑗 (1𝑀𝑟𝑗
)

𝑗∈𝐼
‖ 

                                                           ≤ 𝜀 + (𝑛 + 1)𝜀
1
8 

                                                            < 𝜀
1
16 

for 𝑏 ∈ ℱ.  

Moreover, if 𝑐, 𝑐′ ∈ ℱ satisfy ‖𝑐𝑐′‖ < 𝜀, then by the definition of 𝜓 and 𝐼, we have 

                                    ‖𝜓(𝑐)𝜓(𝑐′)‖4 

= max
𝑗∉𝐼
‖�̃�𝑗(𝑐)�̃�𝑗(𝑐′)‖

4
 

  < 𝜀−
1
2‖�̃��̃�(𝑐)�̃��̃�(𝑐′)‖ 

                                                                < 𝜀−
1
2(‖𝑐𝑐′‖ + 2𝜀) 

                                                                ≤ 3𝜀
1
2 

                                                               < 𝜀
1
4, 

so 

‖𝜓(𝑐)𝜓(𝑐′)‖ < 𝜀
1
16, 

as desired. 

Now if  𝐴 is not necessarily separable, then the set 

Γ:= {𝐵|𝐵 ⊂ 𝐴 is a separable 𝐶∗-subalgebra with dim𝑛𝑢𝑐 𝐵 ≤ dim 𝑛𝑢𝑐 𝐴} 
is directed with the order given by inclusion. Equip 

Λ ∶= Γ × ℕ 
with the alphabetical order, then Λ is directed as well. Use the first part of the proof to obtain 

an almost order zero, piecewise contractive, 𝑛-decomposable system of 𝑐. 𝑝. approximations 

(𝐹𝐵,𝑣, 𝜓𝐵,𝑣, 𝜑𝐵,𝑣)𝑣∈ℕ 

for each 𝐵 ∈ Γ. Using Proposition (6.1.9), it is straightforward to check that this yields an 

almost order zero, piecewise contractive, 𝑛-decomposable system of 𝑐. 𝑝. approximations 

(𝐹𝐵,𝑣, 𝜓𝐵,𝑣, 𝜑𝐵,𝑣)(𝐵,𝑣)∈𝛬 

for 𝐴 as desired.  

    We shall call (𝐹𝜆, 𝜓𝜆, 𝜑𝜆)𝜆∈𝛬 as in Proposition (6.1.14) a system of almost order zero, 

piecewise contractive, 𝑛-decomposable 𝑐. 𝑝. approximations. 

   The next result says that, if 𝐴 is sufficiently noncommutative, then so may be chosen the 

piecewise contractive, 𝑛-decomposable 𝑐. 𝑝. approximations. Where we derive a dichotomy 

result for 𝐶∗-algebras with finite nuclear dimension. 
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Proposition (6.1.15)[453]: Let 𝐴 be a separable 𝐶∗-algebra with dim𝑛𝑢𝑐  𝐴 ≤ 𝑛 < ∞, and 

let 𝑘 ∈ ℕ be given. Suppose that 𝐴 has no irreducible representation of rank strictly less than 

𝑘. 

Then, there is a system (𝐸𝑣, 𝜚𝑣, 𝜎𝑣)𝑣∈ℕ of almost order zero, piecewise contractive, 𝑛-

decomposable 𝑐. 𝑝. approximations of 𝐴 such that the irreducible representations of each 𝐸𝑣 

have rank at least 𝑘. 

Proof. Choose a system 

(�̅�𝑣, �̅�𝑣, 𝜎𝑣)𝑣∈ℕ 
of almost order zero, piecewise contractive, 𝑛-decomposable 𝑐. 𝑝. approximations of 𝐴. For 

each 𝜈, write 

�̅�𝑣 = 𝐸𝑣⊕ �̅�𝑣,  
where �̌�𝑣 consists precisely of those matrix blocks of �̅�𝑣with rank at most 𝑘 − 1. Let 

𝜚𝑣, �̌�𝑣, 𝜎𝑣 and �̌�𝑣 denote the respective components of �̅�𝑣 and 𝜎𝑣. 

Let ℎ ∈ 𝐴 be a normalized strictly positive element, and set 

𝜇:= lim
𝑣∈ℕ
sup ‖�̌�𝑣(ℎ)‖ = ‖�̌�𝑣(ℎ)‖, 

where 

�̌�: 𝐴 → �̌�𝑣/⨁�̌�𝑣 
is the 𝑐. 𝑝. 𝑐. order zero map induced by the �̌�𝑣. Using a free ultrafilter on N and the fact that 

∏ �̌�𝑣 is (𝑘 − 1)-subhomogeneous, it is straightforward to construct an irreducible 

representation 

𝜋:∏�̌�𝑣 /⊕ �̌�𝑣 → 𝑀𝑙  

for some 𝑙 ≤ 𝑘 − 1 such that 

‖𝜋�̌�(ℎ)‖ = 𝜇. 
Since 𝜋 is a ∗-homomorphism, 𝜋�̌� again is a 𝑐. 𝑝. 𝑐. order zero map, so by Theorem (6.1.2) 

there are a ∗-homomorphism 

𝜎: 𝐴 → 𝑀𝑙 
and 0 ≤ 𝑑 ≤ 1𝑙 ∈ 𝑀𝑙 such that 

𝑑𝜎(𝑎) = 𝜎(𝑎)𝑑 = 𝜋�̌�(𝑎) 
for any 𝑎 ∈ 𝐴. But by our assumption on 𝐴, 𝜎 has to be zero, whence 

‖�̌�(ℎ)‖ = 𝜇 = ‖𝜋�̌�(ℎ)‖ = 0. 
  Using that �̌� is a positive map and that ℎ is a strictly positive element, it is straightforward 

to conclude that �̌� = 0. It follows that (𝐸𝑣  , 𝜚𝑣, 𝜎𝑣)𝑣∈ℕ is a system of 𝑐. 𝑝. approximations 

with the right properties.  

    In [451, Definition 3.1], Kirchberg introduced a new integer valued invariant for a unital 

𝐶∗-algebra. This covering number is closely related to both decomposition rank and nuclear 

dimension. It does not directly generalize topological covering dimension though, since it 

measures how many order zero maps one needs to cover a noncommutative space, as 

opposed to approximating it. We recall the definition and some facts from [451], and then 

compare the covering number to nuclear dimension. 

Definition (6.1.16)[453]: Let 𝐴 be a unital 𝐶∗-algebra and 𝑛 ∈ ℕ. 𝐴 has covering number 

at most 𝑛, 𝑐𝑜𝑣𝐴 ≤ 𝑛, if the following holds: 

For any 𝑘 ∈ ℕ, there are a finite-dimensional 𝐶∗-algebra 𝐹, 𝑑(1), . . . , 𝑑(𝑛) ∈ 𝐴 and a 𝑐. 𝑝. 

map 𝜑: 𝐹 → 𝐴 such that 
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(i)  𝐹 has no irreducible representation of rank less than 𝑘. 
(ii)  𝜑 is (𝑛 − 1)-decomposable with respect to 𝐹 = 𝐹(1)⊕ . . .⊕ 𝐹(𝑛) 
(iii)  1𝐴 = (𝑑

(𝑗))∗𝜑(𝑗)(1𝐹(𝑗)  )𝑑
(𝑗). 

We recall some more facts and notation from [451].  

    If 𝐴 is a 𝐶∗-algebra and 𝜔 ∈ 𝛽ℕ\ℕ a free ultrafilter, we denote by 𝐴𝜔 the ultrapower 𝐶∗-
algebra 

𝐴𝜔 ≔ ℓ∞(𝐴)/𝑐𝜔(𝐴); 
we will often consider 𝐴 as a subalgebra of 𝐴𝜔 via the canonical embedding as constant 

sequences. We denote the two-sided annihilator of 𝐴 in 𝐴𝜔 ∩ 𝐴′ by 𝐴𝑛𝑛(𝐴), i.e., 

𝐴𝑛𝑛(𝐴):= {𝑏 ∈ 𝐴𝜔| 𝑏𝐴 = 𝐴𝑏 = {0}}. 
Then, 𝐴𝑛𝑛(𝐴) is a closed ideal in 𝐴𝜔 ∩ 𝐴′; if 𝐴 is 𝜎-unital, then 𝐴𝜔 ∩ 𝐴′/𝐴𝑛𝑛(𝐴) is a unital 

𝐶∗-algebra, cf. [451, Proposition 1.9]. 

We shall see below that 𝑐𝑜𝑣𝐴 ≤ dim 𝑛𝑢𝑐 𝐴 + 1 for any sufficiently noncommutative unital 

𝐶∗-algebra. However, the results of [451] show that the covering number of the quotient 

𝐴𝜔 ∩ 𝐴′/𝐴𝑛𝑛(𝐴) often is much more relevant than that of 𝐴. The next result relates the 

nuclear dimension of 𝐴 to the covering number of 𝐴𝜔 ∩ 𝐴′/𝐴𝑛𝑛(𝐴). This will be 

particularly. It will also play a key role in [412], where 𝑁𝑔 show that finite nuclear 

dimension implies the corona factorization property, at least for sufficiently 

noncommutative unital 𝐶∗-algebras. 

Proposition (6.1.17)[453]: Let 𝐴 be a separable 𝐶∗-algebra with dim 𝑛𝑢𝑐 𝐴 ≤ 𝑛 < ∞, and 

suppose that no hereditary 𝐶∗-subalgebra of 𝐴 has a finite-dimensional irreducible 

representation. Then, 

𝑐𝑜𝑣(𝐴𝜔 ∩ 𝐴′/𝐴𝑛𝑛(𝐴)) ≤ (𝑛 + 1)
2. 

Proof. By [451, Proposition 1.9], 𝐴𝜔 ∩ 𝐴′/𝐴𝑛𝑛(𝐴) is unital. Lift the unit 1 to a positive 

normalized element 𝑒 ∈ 𝐴∞ ∩ 𝐴′; 𝑒 may be represented by an approximate unit (𝑒𝜆)𝜆∈ℕ of 

𝐴. 

By Proposition (6.1.14) there is a system 

(𝐹𝜆 = 𝐹𝜆
(0)
⊕ . . .⊕ 𝐹𝜆

(𝑛)
, 𝜓𝜆, 𝜑𝜆)𝜆∈ℕ 

of almost order zero, piecewise contractive, 𝑛-decomposable 𝑐. 𝑝. approximations for 𝐴. By 

passing to a subsequence of the approximations, and by rescaling, if necessary, we may 

assume that 

‖𝜑𝜆𝜓𝜆(𝑒𝜆)‖ ≤ 1 ∀ 𝜆 ∈ ℕ, 
that 

                  𝜑𝜆𝜓𝜆 (𝑒𝜆

1

2 𝑎𝑒
𝜆

1

2) → 𝑎 ∀ 𝑎 ∈ 𝐴                                        (3) 

and that 

  ‖𝜑𝜆𝜓𝜆(𝑒𝜆) − 𝑒𝜆‖ → 0.                                            (4) 
Define 𝑐. 𝑝. 𝑐. maps 

�̃�𝜆: 𝐴
+ → 𝐹𝜆 

by 

�̃�𝜆( . ): = 𝜓𝜆 (𝑒𝜆

1
2 . 𝑒

𝜆

1
2) . 

For each 𝜆, we define 
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�̂�𝜆( . ): = 𝜓𝜆(𝑒𝜆)
−
1
2 �̃�𝜆( . )𝜓𝜆(𝑒𝜆)

−
1
2,  

where the inverses are taken in the hereditary subalgebras �̃�𝜆 generated by the 𝜓𝜆(𝑒𝜆), and 

�̂�𝜆( . ): = 𝜑 (𝜓𝜆(𝑒𝜆)
1
2 . 𝜓𝜆(𝑒𝜆)

1
2) , 

then 

�̂�𝜆�̂�𝜆 = 𝜑𝜆�̃�𝜆; 
moreover, the 

�̂�𝜆: 𝐴
+ → �̃�𝜆 

are unital 𝑐. 𝑝. and the 

�̂�𝜆: �̃�𝜆 → 𝐴 
are 𝑐. 𝑝. 𝑐. maps. 

From [419, Lemma 3.5], we see that for 𝑖 ∈ {0, . . . , 𝑛} and 𝜆 ∈ ℕ and any projection 𝑝𝜆 ∈
�̃�𝜆, 

‖�̂�𝜆(𝑝𝜆�̂�𝜆(𝑎)) − �̂�𝜆(𝑝𝜆)�̂�𝜆 �̂�𝜆(𝑎)‖  ≤ 3 ·  max {‖�̂�𝜆�̂�𝜆(𝑎) − 𝑎‖, ‖�̂�𝜆�̂�𝜆(𝑎
2) − 𝑎2‖}, 

from which follows that 

‖𝜑𝜆
(𝑖)
�̃�𝜆
(𝑖)
(𝑎) − 𝜑𝜆

(𝑖)
�̃�𝜆
(𝑖)
(1𝐴)𝜑𝜆�̃�𝜆(𝑎)‖

𝜆→∞
→  0                 (5) 

for any 𝑎 ∈ 𝐴. 

    Let  �̃�𝜆,𝑙
(𝑖)
, 𝑙 ∈ {1, . . . , 𝑟𝜆

(𝑖)
} denote the matrix blocks of �̃�𝜆

(𝑖)
, and denote the components of 

𝜑𝜆
(𝑖)

 and �̃�𝜆
(𝑖)

 by 𝜑𝜆,𝑙
(𝑖)

 and �̃�𝜆,𝑙
(𝑖)

 accordingly. 

    By Proposition (6.1.15) and the hypotheses on 𝐴, for each 𝜆 ∈ ℕ, 𝑖 ∈ {0, . . . , 𝑛} and 𝑙 ∈

{1, . . . , 𝑟𝜆
(𝑖)
} there is 

            (𝐸𝜆,𝑙,𝑣
(𝑖) = 𝐸𝜆,𝑙,𝑣

(𝑖,0)⊕ . . .⊕ 𝐸𝜆,𝑙,𝑣
(𝑖,𝑛), 𝜚𝜆,𝑙,𝑣

(𝑖) , 𝜎𝜆,𝑙,𝑣
(𝑖) )

𝑣∈ℕ
,                (6) 

an almost order zero, piecewise contractive, 𝑛-decomposable system of 𝑐. 𝑝. approximations 

of her (𝜑𝜆,𝑙
(𝑖)
(𝑒11)) ⊂ 𝐴 with the additional property that the matrix blocks of each 𝐸𝜆,𝑙,𝑣

(𝑖)
 have 

rank at least 𝑘. 𝐴 moment’s thought shows that there is a unital ∗-homomorphism 

𝜃𝜆,𝑙,𝑣
(𝑖)
: 𝑀𝑘⊕𝑀𝑘+1 → 𝐸𝜆,𝑙,𝑣

(𝑖)
 

for any 𝑖, 𝜆, 𝑙, 𝜈. 

Let 

𝜎𝜆,𝑙,𝑣
(𝑖)
: 𝐸𝜆,𝑙,𝑣

(𝑖)
→ 𝑀

𝑟𝜆,𝑙
(𝑖)⊗ℎ𝑒𝑟(𝜑𝜆,𝑙

(𝑖)(𝑒11)) ≅ ℎ𝑒𝑟 (𝜑𝜆,𝑙
(𝑖) (1𝑀

𝑟
𝜆,𝑙
(𝑖)
)) ⊂ 𝐴 

be the amplification of 𝜎𝜆,𝑙,𝑣
(𝑖)

, using the canonical supporting ∗-homomorphism 𝜋𝜆,𝑙
(𝑖)

 of 𝜑𝜆,𝑙
(𝑖)

, 

i.e., 

𝜎𝜆,𝑙,𝑣
(𝑖)
(𝑒): = ∑𝜋𝜆,𝑙

(𝑖)
(𝑒𝑠1)𝜎𝜆,𝑙,𝑣

(𝑖)
(𝑒)𝜋𝜆,𝑙

(𝑖)
(𝑒1𝑠)

𝑟𝜆,𝑙
(𝑖)

𝑠 =1

 𝑓𝑜𝑟 𝑒 ∈ 𝐸𝜆,𝑙,𝑣
(𝑖)
 . 

Note that 

                            [𝜎𝜆,𝑙,𝑣
(𝑖)
(𝐸𝜆,𝑙,𝑣

(𝑖)
) , 𝜑𝜆,𝑙

(𝑖)
(𝑀

𝑟𝜆,𝑙
(𝑖))] = 0                                    (7) 
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and that 𝜎𝜆,𝑙,𝑣
(𝑖)

 is decomposable into a sum of 𝑛 + 1 𝑐. 𝑝. 𝑐. order zero maps 𝜎𝜆,𝑙,𝑣
(𝑖,𝑗)

 with respect 

to 𝐸𝜆,𝑙,𝑣
(𝑖)

=⊕𝑗=0
𝑛 𝐸𝜆,𝑙,𝑣

(𝑖,𝑗)
.  

   Let us fix a finite subset ℱ ⊂ 𝐴 of positive normalized elements and 𝜀 > 0. By (5), (4) 

and (3), we can find 𝜆0 ∈ ℕ such that, for all �̅� ≥ 𝜆0, 

‖𝜑�̅� �̃��̅�(𝑎)𝜑𝜆
(𝑖)
(1
𝐹𝜆
(𝑖)) − 𝜑�̅�

(𝑖)
�̃�
�̅�

(𝑖)
(𝑎)‖ <

𝜀

4
, 

‖𝜑�̅�𝜓�̅�(𝑒�̅�) − 𝑒�̅�‖ <
𝜀

2
 

and such that 

‖𝜑�̅� �̃��̅�(𝑎) − 𝑎‖ <
𝜀

4
 

for 𝑎 ∈ ℱ. Choose some 

0 < 𝜁 <
1

8(𝑛 + 1)
𝜀. 

Fix some �̅� ≥ 𝜆0. By the choice of the approximations in (6), there is �̅� ∈ ℕ such that 

𝜎
�̅�,𝑙,�̅�

(𝑖)
, 𝜚
�̅�,𝑙,�̅�

(𝑖)
(𝑔𝜁,2𝜁(𝜑�̅�,𝑙

(𝑖)
(𝑒11))) − 𝑔𝜁,2𝜁(𝜑�̅�,𝑙

(𝑖)
(𝑒11)) < 𝜁 

for each 𝑖 ∈ {0, . . . , 𝑛} and 𝑙 ∈ {1, . . . , 𝑟
�̅�

(𝑖)
}. Here, we define 𝑔𝜁,2𝜁 ∈ 𝐶([0, 1]) by 

𝑔𝜁,2𝜁(𝑡) ∶= {
0    𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝜁,

1          𝑓𝑜𝑟 𝑡 ≥ 2𝜁,
𝑙𝑖𝑛𝑒𝑎𝑟            𝑒𝑙𝑠𝑒.

 

We then have  

∑𝜎
�̅�,𝑙,�̅�

(𝑖)
(1
𝐸
�̅�,𝑙,�̅�

(𝑖) )

𝑙

≥ 𝑔𝜁,2𝜁 (𝜑�̅�
(𝑖)
(1
𝐹
�̅�

(𝑖))) − 𝜁. 

For 𝑖, 𝑗 ∈ {0, . . . , 𝑛} define 

𝐸(𝑖,𝑗): =⨁𝐸
�̅�,𝑙,�̅�

(𝑖,𝑗)

𝑙

 

and 

𝜎(𝑖,𝑗): =⨁𝜎
�̅�,𝑙,�̅�

(𝑖,𝑗)

𝑙

; 

note that 

𝜎(𝑖,𝑗): 𝐸(𝑖,𝑗) → 𝐴 

is a 𝑐. 𝑝. 𝑐. order zero map. Let 𝜃(𝑖,𝑗) denote the respective component of ⨁𝑙𝜃�̅�,𝑙,�̅�
(𝑖)
. 

Define 

Φ̅: 𝐸(𝑖,𝑗) → 𝐴 
by 

Φ̅(𝑖,𝑗)(𝑥): = 𝜎(𝑖,𝑗)(𝑥)𝜑
�̅�

(𝑖)
�̃�
�̅�

(𝑖)
(1𝐴+) 𝑓𝑜𝑟 𝑥 ∈ 𝐸

(𝑖,𝑗). 

Note that by (7), Φ̅(𝑖,𝑗) is a 𝑐. 𝑝. 𝑐. order zero map, whence 

Φ(𝑖,𝑗): = Φ̅(𝑖,𝑗) ∘ 𝜃(𝑖,𝑗)  
also is a 𝑐. 𝑝. 𝑐. order zero map. We have 

∑ Φ(𝑖,𝑗)(1𝑀𝑘⊕𝑀𝑘+1)

𝑛

𝑖,𝑗=0
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                                                  = ∑ Φ(𝑖,𝑗)(1𝐸(𝑖,𝑗))

𝑛

𝑖,𝑗=0

 

=∑∑𝜎
�̅�,𝑙,�̅�

(𝑖,𝑗)
(1
𝐸
�̅�,𝑙,�̅�

(𝑖,𝑗))𝜑�̅�
(𝑖)
�̅�
�̅�

(𝑖)
(1𝐴+)

𝑙𝑖,𝑗

 

=∑∑𝜎
�̅�,𝑙,�̅�

(𝑖)
(1
𝐸
�̅�,𝑙,�̅�

(𝑖) )𝜑�̅�
(𝑖)
�̅�
�̅�

(𝑖)
(1𝐴+)

𝑙𝑖

 

            ≥∑(𝑔𝜁,2𝜁(𝜑�̅�
(𝑖)
(1
𝐹
�̅�

(𝑖)))𝜑�̅�
(𝑖)
�̅�
�̅�

(𝑖)
(1𝐴+ − 𝜁)

𝑖

 

                                                  ≥∑(𝜑
�̅�

(𝑖)
�̅�
�̅�

(𝑖)
(1𝐴+) − 2𝜁)

𝑖

 

                                                  ≥ 𝜑�̅��̅��̅�(1𝐴+) − (𝑛 + 1)2𝜁 
                                                 = 𝜑�̅��̅��̅�(𝑒�̅�) − (𝑛 + 1)2𝜁 

                                                 ≥ 𝑒�̅� −
𝜀

2
− (𝑛 + 1)2𝜁 

                                                 ≥ 𝑒�̅� − 𝜀. 

Furthermore, we estimate for 𝑎 ∈ ℱ and 𝑥 ∈ 𝐸(𝑖,𝑗) that 

‖[Φ̅(𝑖,𝑗)(𝑥), 𝑎]‖ 

                 ≤ ‖[Φ̅(𝑖,𝑗)(𝑥), 𝜑�̅��̃��̅�(𝑎)]‖ + 2
𝜀

4
‖𝑥‖ 

= ‖𝜎(𝑖,𝑗)(𝑥)𝜑
�̅�

(𝑖)
(1
𝐹
�̅�

(𝑖))𝜑�̅��̅��̅�(𝑎) − 𝜑�̅��̅��̅�(𝑎)𝜑�̅�
(𝑖)
(1
𝐹
�̅�

(𝑖))𝜎(𝑖,𝑗)(𝑥)‖ +
𝜀

2
‖𝑥‖ 

                ≤ ‖𝜎(𝑖,𝑗)(𝑥)𝜑
�̅�

(𝑖)
�̃�
�̅�

(𝑖)(𝑎) − 𝜑
�̅�

(𝑖)
�̃��̅�(𝑎)𝜎

(𝑖,𝑗)(𝑥)‖ +
𝜀

2
‖𝑥‖ 

                
(7)
=
𝜀‖𝑥‖, 

from which follows that 

‖[Φ(𝑖,𝑗)(𝑦), 𝑎]‖ ≤ 𝜀‖𝑦‖   𝑓𝑜𝑟 𝑦 ∈ 𝑀𝑘⊕𝑀𝑘+1. 

    Since ℱ and 𝜀 > 0 were arbitrary, and since the construction above works for any �̅� ≥
𝜆0, it is now straightforward to construct 𝑐. 𝑝. 𝑐. order zero maps 

Φ̃(𝑖,𝑗): 𝑀𝑘⊕𝑀𝑘+1 → 𝐴∞ ∩ 𝐴′ 
for 𝑖, 𝑗 = 0, . . . , 𝑛, satisfying 

Φ̃(𝑖,𝑗)(1𝑀𝑘⊗𝑀𝑘+1) ≥ 𝑒. 

The Φ̃(𝑖,𝑗) drop to 𝑐. 𝑝. 𝑐. order zero maps 

Φ̂(𝑖,𝑗): 𝑀𝑘⊕𝑀𝑘+1 → 𝐴𝜔 ∩ 𝐴′/𝐴𝑛𝑛(𝐴) 
satisfying  

∑Φ̂(𝑖,𝑗)(1𝑀𝑘⊗𝑀𝑘+1)

𝑖,𝑗

≥ 1.  

It follows that 

𝑐𝑜𝑣(𝐴𝜔 ∩ 𝐴′/𝐴𝑛𝑛(𝐴)) ≤ (𝑛 + 1)
2. 

Combining the idea of [451, Proposition 3.5] with the use of Proposition (6.1.15) as in the 

preceding proof, one can also show the following generalization of [451, Proposition 3.5]. 



 

228 

 

Proposition (6.1.18)[453]: Let 𝐴 be a separable unital 𝐶∗-algebra with dim 𝑛𝑢𝑐 𝐴 ≤ 𝑛 < ∞, 
and suppose that 𝐴 has no finite-dimensional irreducible representation. Then, 

𝑐𝑜𝑣(𝐴) ≤ 𝑛 + 1. 
We will combine Proposition (6.1.15) above with [451, Proposition 3.7] to prove a 

dichotomy result for 𝐶∗-algebras with finite nuclear dimension: They either have nontrivial 

quasitraces, or they are weakly purely infinite. This statement becomes particularly 

satisfactory in the simple case. We first need some background results on lower 

semicontinuous (𝑙. 𝑠. 𝑐.) traces. 

Proposition (6.1.19)[453]: Let 𝐴 be a separable 𝐶∗-algebra and 𝐽 ⊲ 𝐴 a closed ideal. 

Suppose 𝜏 is a densely defined 𝑙. 𝑠. 𝑐. trace on  𝐽. Then, 𝜏 extends to a (not necessarily densely 

defined) 𝑙. 𝑠. 𝑐. trace on 𝐴. 

Proof. Choose an increasing approximate unit (𝑒𝑣)𝑣∈ℕ for 𝐽. Using that 𝜏 is densely defined, 

a standard modification shows that we may even assume that 𝜏(𝑒𝑣

1

2) < ∞ for all 𝜈 ∈ ℕ. 

Since 𝜏 is a trace and the 𝑒𝑣 are increasing, for any 𝑎 ∈ 𝐴+ we obtain an increasing sequence 

of positive numbers 

(𝜏 (𝑒𝑣

1
2𝑎𝑒𝑣

1
2))

𝑣

 

(these are all finite since they are dominated by the numbers 𝜏(𝑒𝑣

1

2)‖𝑎‖). We may thus define 

𝜏̅(𝑎): = lim
𝑣
𝜏 (𝑒𝑣

1
2 𝑎 𝑒𝑣

1
2)  𝑓𝑜𝑟 𝑎 ∈ 𝐴+. 

Then, 𝜏̅ is a well-defined map from 𝐴+ to [0,∞]. It is clear by lower semicontinuity that 𝜏̅ 
extends 𝜏, that it is 𝑙. 𝑠. 𝑐. and that 

𝜏̅(𝑠 · 𝑎 + 𝑡 · 𝑏) = 𝑠 · 𝜏̅ (𝑎) + 𝑡 ·  𝜏̅(𝑏) 
if 𝜏̅(𝑎), 𝜏̅(𝑏) < ∞ and 𝑠, 𝑡 ∈ ℝ+. It remains to check that 

𝜏̅ (𝑥∗𝑥) = 𝜏̅ (𝑥𝑥∗) 
for all 𝑥 ∈ 𝐴. To this end, note that for 𝑥 ∈ 𝐴, 𝜇 ∈ ℕ and 𝜀 > 0, we may choose 𝜈0 so large 

that 

‖𝑒𝜇

1
4𝑥∗(1 − 𝑒𝑣)𝑥𝑒𝜇

1
4‖ <

𝜀

𝜏 (𝑒𝜇

1
2)

   

for any 𝜈 ≥ 𝜈0 (this is where we use that 𝐽 is an ideal in 𝐴). We then estimate 

𝜏 (𝑒𝜇

1
2𝑥∗𝑥𝑒𝜇

1
2) = 𝜏 (𝑒𝜇

1
2𝑥∗𝑒𝑣𝑥𝑒𝜇

1
2) + 𝜏 (𝑒𝜇

1
4𝑒𝜇

1
4𝑥∗(1 − 𝑒𝑣)𝑥𝑒𝜇

1
4𝑒𝜇

1
4)   

≤ 𝜏(𝑒𝜇

1
2𝑥∗𝑒𝑣𝑥𝑒𝜇

1
2) +

𝜀

𝜏 (𝑒𝜇

1
2)

·  𝜏 (𝑒𝜇

1
2) = 𝜏 (𝑒𝑣

1
2𝑥𝑒𝜇𝑥

∗𝑒𝑣

1
2) + 𝜀

≤ 𝜏 (𝑒𝑣

1
2 𝑥𝑥∗𝑒𝑣

1
2) + 𝜀 ≤ 𝜏̅(𝑥𝑥∗) + 𝜀. 

Since 𝜇 and 𝜀 were arbitrary, it follows that 𝜏̅(𝑥∗𝑥) ≤ 𝜏̅(𝑥𝑥∗); since the argument is 

symmetric in 𝑥 and 𝑥∗, we see that 𝜏̅(𝑥∗𝑥) = 𝜏̅(𝑥𝑥∗), as desired.  
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Corollary (6.1.20)[453]: Let 𝐴 be a separable 𝐶∗-algebra and 𝐵 ⊂ 𝐴 a hereditary 𝐶∗- 
subalgebra. If 𝜏 is a bounded nontrivial trace on 𝐵, then there is a (possibly unbounded) 

nontrivial 𝑙. 𝑠. 𝑐. trace 𝜏′ on 𝐴. 

Proof. Let 𝐽 ⊲ 𝐴 be the (closed) ideal generated by 𝐵. By Brown’s Theorem ([495, Theorem 

2.8]), 𝐵 ⊗ 𝐾 ≅ 𝐽 ⊗ 𝐾, since 𝐵 is full in 𝐽. 
  Let 𝑇𝑟 denote the standard 𝑙. 𝑠. 𝑐. trace on 𝐾, then 𝜏 ⊗ 𝑇𝑟 yields a densely defined 

nontrivial 𝑙. 𝑠. 𝑐. trace on 𝐽 ⊗ 𝐾. Let 𝜏̅ denote the restriction to 𝐽; it is straightforward to 

check that 𝜏̅ again is densely defined, 𝑙. 𝑠. 𝑐. and nontrivial. By Proposition (6.1.19), 𝜏̅ 
extends to a 𝑙. 𝑠. 𝑐. trace 𝜏′ on 𝐴; since 𝜏̅ is nontrivial, so is 𝜏′.  
Proposition (6.1.21)[453]: Let 𝐴 be a separable 𝐶∗-algebra and suppose 𝐴 has no nontrivial 

𝑙. 𝑠. 𝑐. trace. 

Then, no hereditary 𝐶∗-subalgebra of 𝐴 has a finite-dimensional irreducible representation. 

Proof. If 𝐵 ⊂ 𝐴 was a hereditary 𝐶∗-subalgebra with a finited-dimensional irreducible 

representation, then 𝐵 also had a (necessarily nontrivial) tracial state. By Corollary (6.1.20), 

this would yield a nontrivial 𝑙. 𝑠. 𝑐. trace on 𝐴, a contradiction. 

Theorem (6.1.22)[453]: Let 𝐴 be a separable 𝐶∗-algebra with dim 𝑛𝑢𝑐 𝐴 ≤ 𝑛 < ∞. 

If 𝐴 has no nontrivial 𝑙. 𝑠. 𝑐. 2-quasitrace, then 𝐴 is weakly purely infinite. 

In particular, if 𝐴 is simple, it is either strongly purely infinite, hence absorbs the Cuntz 

algebra 𝒪∞, or it is stably finite with at least one densely defined trace. 

Proof. Suppose 𝐴 has no nontrivial 𝑙. 𝑠. 𝑐. 2-quasitrace. By Proposition (6.1.21), no 

hereditary 𝐶∗-subalgebra of 𝐴 has a finite-dimensional irreducible representation. By 

Proposition (6.1.17) this yields 

𝑐𝑜𝑣(𝐴𝜔 ∩ 𝐴′/𝐴𝑛𝑛(𝐴)) ≤ (𝑛 + 1)
2 < ∞. 

By [451, Proposition 3.7], this implies that 𝐴 is weakly purely infinite. 

    For the second statement, suppose 𝐴 is simple but not purely infinite. Then, 𝐴 is not 

weakly purely infinite by [456], so 𝐴 admits a nontrivial 𝑙. 𝑠. 𝑐. 2-quasitrace. 

Therefore, 𝐴 contains a nonzero hereditary 𝐶∗-subalgebra 𝐵 with a bounded 2- 

quasitrace, which is a trace by [457] or [455] since 𝐵 is nuclear. But then 𝐵⊗ 𝐾 has a 

densely defined trace 𝜏. By Brown’s Theorem, 𝐴 is a hereditary subalgebra of 𝐵 ⊗ 𝐾, and 

it is straightforward to check that 𝜏 restricts to a (nonzero) densely defined trace on 𝐴. 

For the statement that a simple purely infinite 𝐶∗-algebra absorbs 𝒪∞ see [459] or [411, 

Theorem 7.2.6]. 

Example (6.1.23)[453]: We have already seen that decomposition rank dominates nuclear 

dimension, and that the two theories agree in the zero-dimensional and in the commutative 

case, and for continuous trace 𝐶∗-algebras. This makes most examples of [455]. In 

particular, for irrational rotation algebras 𝐴𝜃, we have 

dim 𝑛𝑢𝑐 𝐴𝜃 = {
1 𝑖𝑓 𝜃 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

2   𝑖𝑓 𝜃 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙.
 

Example (6.1.24)[453]: In [467] it will be shown that, if 𝛼 is a minimal homeomorphism 

of an infinite, compact, finite-dimensional, metrizable space 𝑋, then 

dim 𝑛𝑢𝑐(𝐶(𝑋) ⋊𝛼 ℤ) ≤ 2 dim 𝑋 + 1. 
Examples suggest that this is not the best possible estimate in general (see above), and that 

the nuclear dimension of the crossed product should be bounded by max {1, dim 𝑋}, at least 
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in the minimal case. However, for applications it often only matters whether or not the 

topological dimension is finite. 

For the decomposition rank, the latter estimate, i.e., 

𝑑𝑟(𝐶(𝑋) ⋊𝛼 ℤ) ≤ max {1, dim 𝑋}, 
is known in special cases, e.g. when the action 𝛼 is a minimal diffeomorphism on a compact 

smooth manifold 𝑋. The known proofs of such results, however, require the full strength of 

the classification theory for stably finite nuclear 𝐶∗-algebras. The result of [467] has the 

advantage that its proof is much simpler, and more conceptual. In particular, it does not 

factor through classification theorems of any kind. 

Example (6.1.25)[453]: Being an extension of 𝐶(𝑆1) by the compacts, the Toeplitz algebra 

𝑇 has nuclear dimension at most 2 by Proposition (6.1.11). As of this moment, we do not 

know whether the precise value is 1 or 2 (it is not 0, since 𝑇 is not 𝐴𝐹). Since the Toeplitz 

algebra is infinite, hence not quasidiagonal, its decomposition rank is infinite. This in 

particular shows that decomposition rank and nuclear dimension do not agree.  

Example (6.1.26)[453]: In [415], Rørdam constructed a simple, separable, unital, and 

nuclear 𝐶∗-algebra containing a finite and an infinite projection. This example does not have 

a nontrivial (quasi-)trace, nor is it purely infinite, so by Theorem (6.1.22) it has infinite 

nuclear dimension. 

    Below we will establish that classifiable simple purely infinite 𝐶∗-algebras have finite 

nuclear dimension. It suffices to prove this for classical Cuntz algebras and then use 

inductive limit representations of classifiable algebras.  

     Fix 𝑛 ∈ ℕ, 𝑛 ≥ 2 and Cuntz-Toeplitz algebra 𝒯𝑛 is the universal 𝐶∗-algebra generated by 

𝑛 isometries 𝑇1, . . . , 𝑇𝑛 subject to the relations 𝑇𝑖
∗𝑇𝑗 = 𝛿𝑖𝑗1, whereas the Cuntz algebra On 

is the universal 𝐶∗-algebra generated by 𝑛 isometries 𝑆1, . . . , 𝑆𝑛 subject to the relations 

𝑆𝑖
∗𝑆𝑗 = 𝛿𝑖𝑗1 and ∑ 𝑆𝑖𝑆𝑖

∗𝑛
𝑖=1 = 1. 

   Let 𝐼 = {1, . . . , 𝑛} and 𝑊𝑛 = ⋃ 𝐼𝑘∞
𝑘=0  be the set of multi-indices or words in the alphabet 

𝐼. For 𝜇 = 𝑖1 . . . 𝑖𝑘 ∈ 𝑊𝑛 let |𝜇| = 𝑘 be the length of the word 𝜇 and define 𝑆𝜇 = 𝑆𝑖1 . . . 𝑆𝑖𝑘 , 

similarly 𝑇𝜇 = 𝑇𝑖1 . . . 𝑇𝑖𝑘 . Every element 𝑥 in the ∗-algebra generated by the 𝑆𝑖 (respectively 

𝑇𝑖) has a representation as a finite linear combination of the form 𝑥 = ∑ 𝛼𝜇,𝑣𝑆𝜇𝑆𝑣
∗

𝜇,𝑣  

(respectively 𝑥 = ∑ 𝛼𝜇,𝑣𝑇𝜇𝑇𝑣
∗

𝜇,𝑣 ). The full Fock space is defined by 

Γ(𝑛) =⨁𝐻⊗𝑙
∞

𝑙=0

, 

where 𝐻 is an 𝑛-dimensional Hilbert space and 𝐻0: = ℂΩ. Fixing an orthonormal basis 

𝑒1, . . . , 𝑒𝑛 of 𝐻 gives the orthonormal basis 𝑒𝜇 = 𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗ . . .⊗ 𝑒𝑖𝑘  of Γ(𝑛), where 𝜇 =

𝑖1 . . . 𝑖𝑘 runs through 𝑊𝑛. In fact we may as well define Γ(𝑛) = ℓ2(𝑊𝑛). We denote by 𝑀∞ 

the ∗-algebra spanned by the matrix units 𝑒𝜇,𝑣, where 𝜇, 𝜈 ∈ 𝑊𝑛. 

Clearly, 𝑀∞ ⊆ �̅�∞ = 𝐾(Γ(𝑛)) ⊆ 𝐵(Γ(𝑛)). 
   As is well-known [454], 𝑇𝑛 acts faithfully on Γ(𝑛) with generators 𝑇𝑖𝜉 = 𝑒𝑖⊗ 𝜉. It 

contains the matrix units 𝑒𝜇,𝑣 = 𝑇𝜇(1 − ∑ 𝑇𝑖𝑇𝑖
∗𝑛

𝑖=1 )𝑇𝑣
∗ and hence the ideal of compact 

operators giving the exact sequence 

0 → 𝐾 → 𝑇𝑛 → 𝒪𝑛 → 0. 
As in [469] we can write 
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𝑇𝜇𝑇𝑣
∗ =∑𝑒𝜇,𝑣

∞

𝑖=0

⊗1
𝐻⨂

𝑖 =∑𝑒𝜇,𝑣⊗1𝑖

∞

𝑖=0

, 

where the sum is to be taken in the strong topology. The map 

Λ(𝑥) =∑𝑥 ⊗ 1
𝐻⨂

𝑖

∞

𝑖=0

 

defined for matrix units 𝑥 may be regarded as an unbounded completely positive map 

Λ ∶ 𝑀∞ → 𝑇𝑛. 
For a fixed integer 𝑘 > 0 define the cut-off Fock space 

Γ(𝑛):=⨁𝐻⊗𝑙
𝑘−1

𝑙=0

.  

It gives rise to the factorization 

Γ(𝑛) ≅ Γ𝑘(𝑛) ⊗ Γ(𝑛𝑘) 
via 𝑒𝜇 ↔ 𝑒𝑢⊗ 𝑒�̅�, where 𝜇 = 𝑢�̅� and |�̅�| is the largest multiple of 𝑘 below or equal to |𝜇|. 

Similarly, if 𝑘1|𝑘2 then Γ𝑘2(𝑛) ≅ Γ𝑘1(𝑛) ⊗ Γ𝑘2/𝑘1(𝑛
𝑘1). 

Corresponding to the first factorization above we consider the 𝐶∗-algebra 

𝐴𝑘: = 𝐵(Γ𝑘(𝑛)) ⊗ 𝑇𝑛𝑘 . 

Since dim Γ𝑘(𝑛) = 1 + 𝑛 + . . . + 𝑛
𝑘−1 =

𝑛𝑘−1

𝑛−1
=: 𝑑𝑘, this algebra is just 𝑀𝑑𝑘(𝑇𝑛𝑘). 

As shown in [418] it is also generated by periodic weighted shifts but we don’t need this 

description here. 

    Important for us is that 𝐴𝑘 contains 𝑇𝑛. Indeed, denoting the generators of 𝑇𝑛𝑘 by �̂�𝑣, 

where 𝑣 ∈ 𝑊𝑛 with |𝑣| = 𝑘, the generators 𝑇1, . . . , 𝑇𝑛 of 𝑇𝑛 have the following matrix 

representation in 𝐴𝑘: 

𝑇𝑖 =∑𝑒𝑖,0⊗1𝑗

∞

𝑗=0

      (𝑖𝑛 Γ(𝑛)) 

= (∑𝑒𝑖,0⊗1𝑗

𝑘−2

𝑗=0

)⊗ 1𝛤(𝑛𝑘) + ∑ 𝑒0,𝑤⊗ �̂�𝑖𝑤
|𝑤|=𝑘−1

. 

Similarly, if 𝑘1|𝑘2 then the generators of 1⊗ 𝑇𝑛𝑘1 ⊆ 𝐴𝑘1  lie in 𝐴𝑘2  and 𝐵(Γ𝑘1(𝑛)) ⊗ 1 ⊂

𝐵(Γ𝑘1(𝑛)) ⊗ 𝐵(Γ𝑘2/𝑘1(𝑛
𝑘1)) ≅ 𝐵(Γ𝑘2(𝑛)) so that 𝐴𝑘1 ⊆ 𝐴𝑘2 . If 𝑘1 < 𝑘2 < . .. is a 

sequence of positive integers such that 𝑘𝑖|𝑘𝑖+1 then 𝐴((𝑘𝑖)) = ⋃ 𝐴𝑘𝑖𝑖
̅̅ ̅̅ ̅̅ ̅̅  is a subalgebra of 

𝐵(Γ(𝑛)). 
    Now let 𝑄(Γ(𝑛)) be the Calkin algebra 𝐵(Γ(𝑛))/𝐾 with quotient homomorphism 

𝑞: 𝐵(Γ(𝑛)) → 𝑄(Γ(𝑛)) so that 𝑞(𝑇𝑛) = 𝒪𝑛 and 𝑞(𝐴𝑘) = 𝑀𝑑𝑘(𝒪𝑛𝑘). Notice that the 

quotient 𝑞(𝐴((𝑘𝑖))) = 𝐴((𝑘𝑖))/𝐾 is an inductive limit 𝐵((𝑘𝑖)) =  lim 𝑖𝑀𝑑𝑘𝑖
(𝒪𝑛𝑘𝑖), which 

is a simple nuclear purely infinite 𝐶∗-algebra. 

   Moreover, there is a canonical unital inclusion 𝒪𝑛𝑘 ↪ 𝒪𝑛 given on generators by 𝑠𝑣 ⟼

𝑠𝑣, where 𝑣 ∈ 𝑊𝑛 with |𝑣| = 𝑘. (We think of 𝒪𝑛𝑘  as being generated by the isometries 𝑠𝑣 =

𝑠𝑖1  . . . 𝑠𝑖𝑘.) We obtain a unital embedding 𝑀𝑑𝑘(𝒪𝑛𝑘) ↪ 𝑀𝑑𝑘(𝒪𝑛). 
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It is known from classification theory that a matrix algebra of the form 𝑀𝑟(𝒪𝑠) is isomorphic 

to 𝒪𝑠 if 𝑟 and 𝑠 − 1 are relatively prime ([411] 8.4.11(i)). Since 

𝑑𝑘 = 1 + 𝑛 + 𝑛
2+ . . . + 𝑛𝑘−1 ≡ 1 + 1 + . . . + 1 = 𝑘 𝑚𝑜𝑑 (𝑛 − 1) 

there are certainly infinitely many 𝑘 satisfying 𝑀𝑑𝑘(𝒪𝑛) ≅ 𝒪𝑛. 

We will need the following variant of the unbounded completely positive map Λ. Define 

Λ𝑘: 𝑀∞ → 𝐵(Γ(𝑛)) by 

Λ𝑘(𝑥) =∑𝑥⊗ 1
𝐻⨂

𝑘𝑙

∞

𝑙=0

=∑𝑥⊗ 1𝑘𝑙

∞

𝑙=0

. 

Clearly, Λ = Λ1. 

Lemma (6.1.27)[453]: In the notation above we have: 

(i)  Λ𝑘(𝑀∞) ⊆ 𝐴𝑘 ≅ 𝑀𝑑𝑘(𝑇𝑛𝑘).  

(ii)  For a non-negative integer 𝑟 let 

Γ𝑟,𝑟+𝑘: =⨁𝐻⊗
𝑘

𝑟+𝑘−1

𝑙𝑟

= Γ𝑘(𝑛) ⊗ 𝐻𝐻
⊗𝑟

, 

so that Γ0,𝑘 = Γ𝑘 and 𝐵(Γ𝑟,𝑟+𝑘) ≅ 𝑀𝑛𝑟𝑑𝑘. Then, Λ𝑘|𝐵(Γ𝑟,𝑟+𝑘) is a ∗-homomorphism. 

Proof. (i) Given 𝜇, 𝜈 ∈ 𝑊𝑛 there are unique decompositions 𝜇 = 𝑢�̅� and 𝜈 = 𝑣�̅� such that 

|𝑢|, |𝑣| < 𝑘 and |�̅�|, |�̅�| are multiples of 𝑘. Then 

Λ𝑘(𝑒𝜇,𝑣) = ∑𝑒𝜇,𝑣⊗1𝑙𝑘

∞

𝑙=0

 

                               = 𝑒𝑢,𝑣⊗∑𝑒�̅�,�̅�

∞

𝑙=0

⊗1𝑙𝑘 

             = 𝑒𝑢,𝑣⊗ �̂��̅� �̂��̅�
∗ 

which proves the claim. 

(ii) This follows because for 𝑥 ∈ 𝐵(Γ𝑟,𝑟+𝑘) the summands 

𝑥, 𝑥 ⊗ 1𝑘 , 𝑥 ⊗ 12𝑘 , . . . 
of Λ𝑘(𝑥) act ∗-homomorphically on the pairwise orthogonal subspaces 

Γ𝑟,𝑟+𝑘, Γ𝑟+𝑘,𝑟+2𝑘 , Γ𝑟+2𝑘,𝑟+3𝑘,... 
respectively.  

We denote the projection onto Γ𝑟,𝑟+𝑘by 𝑃𝑟,𝑟+𝑘. Define 𝑃𝑘 = 𝑃𝑘,2𝑘 and 𝑄𝑘 =

𝑃⌈𝑘/2⌉+𝑘,⌈𝑘/2⌉+2𝑘, where, as usual, ⌈𝑘/2⌉ = inf {𝑛 ∈ ℤ |𝑛 ≥ 𝑘/2}. 

We now define the following positive 𝑘 × 𝑘 matrices. For 𝑘 even let 𝑙 =  𝑘/2 and define: 

𝜅𝑘 = [𝜅𝑖,𝑗] =
1

𝑙 + 𝑙

[
 
 
 
 
 
 
 
 
1 1 ⋯   ⋯ 1 1
1 2  ⋯       2 1
1 2              

⋮
⋮ ⋮                 

     𝑙 𝑙      

     𝑙 𝑙      

⋮              ⋮
1              1
1 1 ⋯   ⋯ 1 1 ]

 
 
 
 
 
 
 
 

.  

For 𝑘 odd let 𝑙 = ⌈𝑘/2⌉ and define: 
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𝜅𝑘 = [𝜅𝑖,𝑗] =
1

𝑙 + 𝑙

[
 
 
 
 
 
 
 
 
 
1 1 ⋯                              ⋯ 1 1
1 2  ⋯                                  2 1
1 2                                         

 ⋮
⋮ ⋮                                            
     𝑙 − 1 𝑙 − 1 𝑙 − 1    

     𝑙 − 1    𝑙     𝑙 − 1    
      𝑙 − 1 𝑙 − 1 𝑙 − 1        

⋮                                           ⋮
1 2                                         1
1 1 ⋯                    ⋯            1 1]

 
 
 
 
 
 
 
 
 

. 

Since square matrices with all entries equal to 1 are positive, it is easy to see that the above 

matrices are positive contractions. 

Regarding 𝑥 ∈ 𝐵(Γ𝑟,𝑟+𝑘) as a 𝑘 × 𝑘 operator matrix 𝑥 = [𝑥𝑖,𝑗], where 𝑥𝑖,𝑗 ∈

𝐵(𝐻⊗
𝑟+𝑗−1

, 𝐻⊗
𝑟+𝑖−1

) we infer that the Schur multiplication 𝜅𝑘 ∗  [𝑥𝑖,𝑗] =  [𝜅𝑖,𝑗𝑥𝑖,𝑗] defines 

a completely positive contraction. 

With this at hand we define the following completely positive maps 

𝜓𝑘: 𝑇𝑛 → 𝐵(Γ𝑘,2𝑘) ⊕ 𝐵(Γ⌈𝑘/2⌉+𝑘,⌈𝑘/2⌉+2𝑘) 

and 

𝜑𝑘: 𝐵(Γ𝑘,2𝑘) ⊕ 𝐵(Γ⌈𝑘/2⌉+𝑘,⌈𝑘/2⌉+2𝑘) → 𝐴𝑘 = 𝑀𝑑𝑘(𝑇𝑛𝑘) ⊆ 𝐵(Γ(𝑛)) 

by 

𝜓𝑘(𝑥) = 𝜅𝑘(𝑃𝑘𝑥𝑃𝑘) ⊕ 𝜅𝑘(𝑄𝑘𝑥𝑄𝑘) 
and 

𝜑𝑘(𝑥 ⊕ 𝑦) = Λ𝑘(𝑥) + Λ𝑘(𝑦) 
Clearly ‖𝜓𝑘‖ = 1 and ‖𝜑𝑘‖ = 2. Finally we consider the composition 𝑞 ∘ 𝜑𝑘 ∘ 𝜓𝑘. 

Proposition (6.1.28)[453]: For 𝜇, 𝜈 ∈ 𝑊𝑛 fixed we have 

𝑞 ∘ 𝜑𝑘 ∘ 𝜓𝑘(𝑇𝜇𝑇𝑣
∗) → 𝑠𝜇𝑠𝑣

∗, 

as 𝑘 → ∞, where 𝑠𝜇 = 𝑞(𝑇𝜇) are the generators of 𝒪𝑛 in the Calkin algebra 𝑄(Γ(𝑛)). 

Proof. Define the ℕ0 × ℕ0 matrices 

𝐴𝑘 = 0𝑘 ⊕𝜅𝑘⊕ 𝜅𝑘⊕ . . . 
and 

𝐵𝑘 = 0𝑘⊕0𝑙⊕𝜅𝑘⊕𝜅𝑘⊕ . . . , 
where 𝑙 = ⌈𝑘/2⌉ and 0𝑘 and 0𝑙 denote the 𝑘 × 𝑘 resp. 𝑙 × 𝑙 zero matrices. One checks that 

the entries 𝜎𝑖,𝑗 of the matrix 𝐴𝑘 + 𝐵𝑘 verify 𝜎𝑖,𝑖 = 1 and |𝜎𝑖,𝑖+𝑝 − 1| ≤
2+𝑝

𝑙+1
≤
2(2+𝑝)

𝑘
 , 

provided 𝑖 > 𝑘 and 0 < 𝑝 < 𝑙. Regard every operator on Γ(𝑛) as an operator matrix [𝑥𝑖,𝑗], 

where 𝑥𝑖,𝑗 ∈ 𝐵(𝐻
⊗𝑗
, 𝐻⊗

𝑖
). Then further inspection shows that 

𝜑𝑘 ∘ 𝜓𝑘(𝑇𝜇𝑇𝑣
∗) = (𝐴𝑘 + 𝐵𝑘) ∗ (𝑇𝜇𝑇𝑣

∗),  

where ∗ denotes again Schur multiplication. Thus provided 𝑘 is large compared to |𝜇| and 

|𝜈| we have 

𝜑𝑘 ∘ 𝜓𝑘(𝑇𝜇𝑇𝑣
∗) = ∑𝜎|𝜇|+𝑟,|𝑣|+𝑟𝑒𝜇,𝑣⊗ 𝐼𝑟

∞

𝑟=0

. 

By passing to the Calkin algebra (i.e. applying q) we obtain 

‖𝑠𝜇𝑠𝑣
∗ − 𝑞 ∘ 𝜑𝑘 ∘ 𝜓𝑘(𝑇𝜇𝑇𝑣

∗)‖ ≤ 2(2 + |𝜇| − |𝜈|)𝑘−1. 
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Letting 𝑘 tend to infinity concludes the proof.  

Theorem (6.1.29)[453]: We have dim 𝑛𝑢𝑐  𝒪𝑛 = 1 for 𝑛 = 2, 3, … and dim 𝑛𝑢𝑐 𝒪∞ ≤ 2. 
Proof. Let {𝑥1, 𝑥2, . . . , 𝑥𝑁} be a finite subset of 𝒪𝑛 and 𝜀 > 0. We need to find a finite 

dimensional 𝐶∗-algebra of the form 𝐹 = 𝐹(0)⊕𝐹(1), a 𝑐. 𝑝. 𝑐. map 𝜓 ∶ 𝒪𝑛 → 𝐹 and 𝜑: 𝐹 →
𝒪𝑛 𝑐. 𝑝. such that 𝜑|𝐹(0) and 𝜑|𝐹(𝑖) are both order zero contractions and such that 

‖𝑥𝑖 − 𝜑 ∘ 𝜓(𝑥𝑖)‖ < 𝜀 for 𝑖 = 1, . . . , 𝑁. 

To begin the construction fix 𝜌: 𝒪𝑛 → 𝑇𝑛, a 𝑢. 𝑐. 𝑝. lift of the quotient map 𝑇𝑛 → 𝒪𝑛, which 

exists by nuclearity of 𝒪𝑛. For suitable 𝑘 (to be determined shortly) let 𝐹 = 𝐵(Γ𝑘,2𝑘) ⊕

𝐵(Γ[𝑘/2]+𝑘,[𝑘/2]+2𝑘) and define 𝜓 = 𝜓𝑘 ∘ 𝜌: 𝒪𝑛 → 𝐹. 

   Next observe that 𝑞 ∘ 𝜓𝑘: 𝐹 → 𝑀𝑑𝑘(𝒪𝑛𝑘) ⊆ 𝑞(𝐵(Γ(𝑛))) which we compose with the 

inclusion 𝑀𝑑𝑘(𝒪𝑛𝑘) ↪ 𝑀𝑑𝑘(𝒪𝑛) ≅ 𝒪𝑛 (the latter for suitable 𝑘). 𝑀𝑑𝑘(𝒪𝑛𝑘) contains the 

copy of 𝒪𝑛 from the inclusion 𝑇𝑛 ⊆ 𝐵(Γ(𝑛)); we think of {𝑥1, 𝑥2, . . . , 𝑥𝑁} as a subset in that 

copy and then know from (6.1.28) that we may find 𝑘 such that ‖𝑥𝑖 − 𝑞 ∘ 𝜑𝑘 ∘ 𝜓𝑘 ∘
 𝜌(𝑥𝑖)‖ < 𝜀/2 for 𝑖 = 1, . . . , 𝑁 and such that 𝑑𝑘 and 𝑛 − 1 are relatively prime. (Note that 

𝜑𝑘 ∘ 𝜓𝑘(𝐶) → 0 as 𝑘 → ∞ for any compact 𝐶 ∈ 𝐾(Γ(𝑛)) so that the choice of 𝜌 does not 

really matter.) 

Further, we may regard the inclusion given by 

𝒪𝑛 ↪ 𝑀𝑑𝑘(𝒪𝑛𝑘) ↪ 𝑀𝑑𝑘(𝒪𝑛) ≅ 𝒪𝑛 

as a unital ∗-endomorphism 𝜎 of 𝒪𝑛. It follows from classification theory that any such 

endomorphism is approximately unitarily equivalent to the identity map on 𝒪𝑛. Indeed, 𝜎 is 

homotopic to id since it is implemented by a unitary 𝑣 in 𝒪𝑛 in the sense that 𝜎(𝑠𝑖) = 𝑣𝑠𝑖 
for all 𝑖 = 1, . . . , 𝑛 and the unitary group of 𝒪𝑛 is connected. By Kirchberg’s Classification 

Theorem ([411] 8.3.3(iii)) 𝜎 and 𝑖𝑑 are asymptotically hence approximately unitarily 

equivalent. 

Thus there is a unitary 𝑢 ∈ 𝒪𝑛 such that 

‖𝑢𝑥𝑖𝑢
∗ − 𝜎(𝑥𝑖)‖ < 𝜀/2. 

Define 𝜑(𝑥) = 𝑢∗(𝛽 ∘ 𝜑𝑘(𝑥))𝑢, where 𝛽 denotes the map from 𝑀𝑑𝑘(𝑇𝑛𝑘) to 𝒪𝑛 discussed 

above. Then (𝐹, 𝜓, 𝜑) is as desired. 

   The estimate for 𝒪∞ follows since there is an obvious inductive limit representation 𝒪∞ =
lim 𝑛→∞ 𝑇𝑛, and we know that dim𝑛𝑢𝑐  𝑇𝑛 ≤ 2 because of the exact sequence 

0 → 𝐾 → 𝑇𝑛 → 𝒪𝑛 → 0 
Using Kirchberg–Phillips classification it can be shown that every Kirchberg algebra 

satisfying the 𝑈𝐶𝑇 is an inductive limit of 𝐶∗-algebras of the form 

(𝑀𝑘1 ⊗𝒪𝑛1 ⊕ . . .⊕ 𝑀𝑘𝑟 ⊗𝒪𝑛𝑟) ⊗ 𝐶(𝑇), 

where 𝑛𝑖 ∈ {2, 3, . . . } ∪ {∞} and 𝑘𝑖 ∈ ℕ (cf. [411], 8.4.11). Since the nuclear dimension of 

any such algebra is at most 5 by Proposition (6.1.6), we obtain the following. 

Theorem (6.1.30)[453]: A Kirchberg algebra (i.e., a purely infinite, simple, separable, 

nuclear 𝐶∗-algebra) satisfying the 𝑈𝐶𝑇.We explore a connection between the asymptotic 

dimension of a coarse space and the nuclear dimension of its uniform Roe algebra. Although 

both concepts may be defined for arbitrary coarse spaces (c.f. [419]) we restrict ourselves 

to discrete metric spaces of bounded geometry, mostly for simplicity. 

   Recall that a discrete metric space (𝑋, 𝑑) is said to be of bounded geometry if every ball 

𝐵𝑟(𝑥) = {𝑦 ∈ 𝑋 | 𝑑(𝑥, 𝑦) ≤ 𝑟} of finite radius 𝑟 has finitely many elements, and the number 

of elements in all balls of a given radius is uniformly bounded, that is, 𝑏𝑟 : =
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sup {|𝐵𝑟(𝑥)| | 𝑥 ∈ 𝑋} < ∞ for all 𝑟. This class of coarse spaces includes many interesting 

examples, e.g. finitely generated discrete groups with a word length metric. 

     In this setting the uniform Roe algebra 𝑈𝐶𝑟
∗(𝑋) associated to (𝑋, 𝑑) can be defined as 

follows: 

Consider complex matrices [𝛼𝑥,𝑦] indexed by 𝑥, 𝑦 ∈ 𝑋 such that 

(i)  there is 𝑀 ≥ 0 with |𝛼𝑥,𝑦| ≤ 𝑀 for all 𝑥, 𝑦 ∈ 𝑋 (i.e. [𝛼𝑥,𝑦] is uniformly bounded); 

(ii)  there is 𝑟 > 0 such that 𝛼𝑥,𝑦 = 0 whenever 𝑑(𝑥, 𝑦) > 𝑟 (i.e. [𝛼𝑥,𝑦] has bounded 

width). 

The smallest 𝑟 in condition (ii) is called the width of  the matrix 𝑎 = [𝛼𝑥,𝑦], denoted by 

𝑤(a). Any matrix satisfying (i) and (ii) defines a bounded operator on ℓ2(𝑋), again denoted 

by 𝑎. We have in fact the following elementary estimate. 

Lemma (6.1.31)[453]: Let 𝑎 = [𝛼𝑥,𝑦] be a matrix satisfying (i) and (ii) above and let 

𝑏(𝑎): =  𝑏𝑤(𝑎) = sup {|𝐵𝑤(𝑎)(𝑥)| | 𝑥 ∈ 𝑋}. 

Then, ‖𝑎‖ ≤ 𝑏(𝑎)𝑀. 

Proof. For (𝛽𝑥) ∈ ℓ
2(𝑋) the sum 𝛾𝑥 = ∑ 𝛼𝑥,𝑦𝛽𝑦𝑦  is well-defined containing at most 𝑏(𝑎) 

many terms for each 𝑥 ∈ 𝑋. Thus 

|𝛾𝑥|
2 ≤ 𝑏(𝑎)𝑀2          ∑ |𝛽𝑦|

2

𝑦∈𝐵𝑤(𝑎)(𝑥)

. 

Since ∑ |𝛽𝑦|
2

𝑦∈𝐵𝑤(𝑎)(𝑥) ≤ 𝑏(𝑎)‖(𝛽𝑥)‖
2 we obtain ‖(𝛾𝑥)‖ ≤ 𝑀𝑏(𝑎)‖(𝛽𝑥)‖.  

   Define the Roe algebra 𝑈𝐶𝑟
∗(𝑋) of (𝑋, 𝑑) as the concrete 𝐶∗-algebra generated by matrices 

satisfying (i) and (ii) above, that is, the closure of the set of such matrices. Note that if 𝑎 ∈
𝑈𝐶𝑟

∗(𝑋) has finite width then the matrix entries are uniformly bounded (by ‖𝑎‖). 

   We next recall the definition of the asymptotic dimension of (𝑋, 𝑑). Note first that by a 

uniform cover 𝑈 of 𝑋 we mean a family of subsets of 𝑋 such that  ⋃ 𝑈𝑈∈𝒰 = 𝑋 and such 

that the diameters 𝑑(𝑈) of all 𝑈 ∈ 𝒰 are uniformly bounded. 𝐴 cover 𝒰 has multiplicity or 

order 𝑛 if there are 𝑛 + 1 different 𝑈0, . . . , 𝑈𝑛 ∈ 𝒰 such that 𝑈0 ∩. . .∩ 𝑈𝑛 ≠ ∅ but any 𝑛 +
2 different elements in 𝒰.  

Definition (6.1.32)[453]: Let (𝑋, 𝑑) be a metric space. The asymptotic dimension asdim 𝑋 

does not exceed 𝑛 if for every uniform cover 𝒰 there is a uniform cover 𝒱 of order 𝑛 such 

that 𝒰 refines 𝒱 (i.e. every 𝑈 ∈ 𝒰 is contained in a 𝑉 ∈ 𝒱). 

𝐴 family 𝒰 of subsets of 𝑋 is said to be 𝑟-discrete if the distance 𝑑(𝑈,𝑈′) > 𝑟 for any two 

different 𝑈,𝑈′ ∈ 𝒰. We need the following characterization of the asymptotic dimension 

which is part of [497, Theorem 19]. 

Theorem (6.1.33)[453]: For a metric space (𝑋, 𝑑) the following conditions are equivalent. 

(i)  The asymptotic dimension asdim 𝑋 does not exceed 𝑛. 

(ii)  For arbitrarily large 𝑟 > 0 there exist 𝑟-discrete families 

𝒰(0), . . . , 𝒰(𝑛) 
of subsets of 𝑋 such that 𝑈(0) ∪ . . .∪ 𝒰(𝑛) is a uniform cover of 𝑋. 

  It is known that 𝑈𝐶𝑟
∗(𝑋) is nuclear if (𝑋, 𝑑) is a discrete metric space of bounded geometry 

and finite asymptotic dimension.. 

  Notice that for 𝑋 = Γ a discrete group, its uniform Roe algebra 𝑈𝐶𝑟
∗(Γ) is nuclear iff Γ is 

exact. Also other approximation properties of Γ can be formulated in terms of the uniform 

Roe algebra ([792]). 
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Lemma (6.1.34)[453]: Let 𝐾 be any index set and (𝑛𝑘)𝑘∈𝐾 a bounded family of positive 

integers. Then  ∏ 𝑀𝑛𝑘𝑘∈𝐾  is an 𝐴𝐹 algebra. 

Proof. Without loss assume (𝑛𝑘) to be constantly equal to 𝑛 (∏ 𝑀𝑛𝑘𝑘∈𝐾  is a finite direct 

sum of such). Then any partition 𝒫 = {𝑃1, . . . , 𝑃𝑙} of 𝐾 defines an embedding of 

𝑀𝑛⊕…⊕𝑀𝑛⏟        
𝑙

→∏ 𝑀𝑛𝑘
𝑘∈𝐾

 

sending 𝑥1⊕. . .⊕ 𝑥𝑙 to the family constantly equal to 𝑥𝑖 on 𝑃𝑖 for 𝑖 = 1, . . . , 𝑙. The union 

of all the ranges of these embeddings for all possible finite partitions is dense in ∏ 𝑀𝑛𝑘𝑘∈𝐾  . 

Theorem (6.1.35)[453]: Let (𝑋, 𝑑) be a discrete metric space of bounded geometry. Then 

dim 𝑛𝑢𝑐(𝑈𝐶𝑟
∗(𝑋)) ≤ 𝑎𝑠𝑑𝑖𝑚(𝑋). 

Proof. Let 𝑟 ∈ ℕ and choose, according to Theorem (6.1.33), uniform 𝑟-disjoint families 

𝒰(0), . . . , 𝒰(𝑛) such that ⋃ 𝒰(𝑖)𝑛
𝑖=0  covers 𝑋. We will define a completely positive 

contraction 

Ψ𝑟 : 𝑈𝐶𝑟
∗(𝑋) → 𝐴(0)⊕ . . .⊕ 𝐴(𝑛), 

where 

𝐴(𝑖) = ∏ 𝑀|𝐵𝑟−1(𝑈)|
𝑈∈𝒰(𝑖)

. 

By Lemma (6.1.34) every 𝐴(𝑖) is 𝐴𝐹 and moreover naturally contained in 𝑈𝐶𝑟
∗(𝑋). Let 

Φ𝑟: 𝐴
(0)⊕ . . .⊕ 𝐴(𝑛) → 𝑈𝐶𝑟

∗(𝑋)  
be defined by 

Φ𝑟(𝑎0⊕…⊕ 𝑎𝑛) = 𝑎0+ . . . + 𝑎𝑛. 
Then Φ𝑟 is a completely positive map which is ∗-homomorphic on every 𝐴(𝑖). If we can 

show that Φ𝑟 ∘ Ψ𝑟(𝑎) → 𝑎 for all 𝑎 ∈ 𝑈𝐶𝑟
∗(𝑋) then we are done since we can combine the 

Φ𝑟 and  Ψ𝑟  with a standard approximating net (𝜓𝜆, 𝜙𝜆) of 𝐴(0)⊕ . . .⊕ 𝐴(𝑛), where the 

𝜙𝜆 are order 0, in fact ∗-homomorphic using (6.1.34). In order to define Ψ𝑟  let 

ℎ(𝑖) =
1

𝑟
∑ ∑𝜒𝐵(𝑈,𝑙−1)

𝑟

𝑙=1𝑈∈𝒰(𝑖)

, 

where 𝜒𝑆 denotes the characteristic function of 𝑆 and 

𝐵(𝑈, 𝑠) = {𝑥 ∈ 𝑋 | 𝑑(𝑥, 𝑈) ≤ 𝑠}. 

Then ℎ(0), . . . , ℎ(𝑛) are commuting positive contractions; moreover 

1 ≤ ℎ:= ∑ℎ(𝑖)
𝑛

𝑖=0

≤ (𝑛 + 1)1. 

If 𝑎 ∈ 𝑈𝐶𝑟
∗(𝑋) is given by the matrix [𝛼𝑥,𝑦] then [ℎ(𝑖), 𝑎] is given by the matrix [(ℎ(𝑖)(𝑥) −

ℎ(𝑖)(𝑦))𝛼𝑥,𝑦] and if 𝑎 has finite width 𝑤(𝑎) < 𝑟 then this commutator has still the same 

width and by Lemma (6.1.31) it follows that 

‖[ℎ(𝑖), 𝑎]‖ ≤ 𝑏(𝑎) sup {|ℎ(𝑖)(𝑥) − ℎ(𝑖)(𝑦)| | 𝑑(𝑥, 𝑦) < 𝑤(𝑎)}‖𝑎‖ ≤
𝑤(𝑎)

𝑟
𝑏(𝑎)‖𝑎‖ 

and thus 

‖[ℎ, 𝑎]‖ ≤
𝑛 + 1

𝑟
𝑤(𝑎)𝑏(𝑎)‖𝑎‖. 

Now define 
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ℎ𝑖 = (ℎ
(𝑖)ℎ−1)

1/2
. 

Since [ℎ−1, 𝑎] = ℎ−1[𝑎, ℎ]ℎ−1 we have 

‖[ℎ−1, 𝑎]‖ ≤ ‖ℎ−1‖2‖[ℎ, 𝑎]‖ ≤ ‖[ℎ, 𝑎]‖, 
so that 

‖[ℎ(𝑖)ℎ−1, 𝑎]‖ → 0 

as 𝑟 → ∞. 

Approximating the function 𝑡 ⟼ 𝑡1/2 by polynomials and using 

‖[𝑎, 𝑥𝑛]‖ ≤ 𝑛‖[𝑎, 𝑥]‖‖𝑥‖𝑛−1 
for any 𝑥 we find that also 

‖[(ℎ(𝑖)ℎ1/2)
1/2
, 𝑎]‖ = ‖[ℎ𝑖, 𝑎]‖ → 0 

as 𝑟 → ∞, whenever 𝑎 ∈ 𝑈𝐶𝑟
∗(𝑋) has finite width. But since ‖ℎ𝑖‖ ≤ 1 it follows that this is 

true for all 𝑎 ∈ 𝑈𝐶𝑟
∗(𝑋). 

Now define the completely positive contraction 

Ψ𝑟(𝑎) = ℎ0𝑎ℎ0⊕ℎ1𝑎ℎ1⊕… ⊕ ℎ𝑛𝑎ℎ𝑛.  
Then 

Φ𝑟 ∘ Ψ𝑟(𝑎) =∑ℎ𝑖𝑎ℎ𝑖

𝑛

𝑖=0

. 

Note that 𝛷𝑟 ∘ 𝛹𝑟(1) = ∑ ℎ𝑖
2𝑛

𝑖=0 = 1 so that 𝛷𝑟 ∘ 𝛹𝑟 is 𝑢. 𝑐. 𝑝., in particular a contraction. 

Since for 𝑎 ∈ 𝑈𝐶𝑟
∗(𝑋) of finite width we have 

‖𝛷𝑟 ∘ 𝛹𝑟(𝑎) − 𝑎‖ = ‖∑ℎ𝑖𝑎ℎ𝑖

𝑛

𝑖=0

−∑ℎ𝑖
2𝑎

𝑛

𝑖=0

‖ 

                                          = ‖∑ℎ𝑖[𝑎, ℎ𝑖]

𝑛

𝑖=0

‖ ≤∑‖[𝑎, ℎ𝑖]‖

𝑛

𝑖=0

→ 0, 

it follows again that ‖𝛷𝑟 ∘ 𝛹𝑟(𝑎) − 𝑎‖ → 0 for all 𝑎 ∈ 𝑈𝐶𝑟
∗(𝑋) because ‖𝛷𝑟 ∘ 𝛹𝑟‖ ≤ 1 for 

all 𝑟. 
We list a number of open problems and possible future developments of the theory. 

    It follows trivially from the definitions that decomposition rank dominates nuclear 

dimension, and the (purely) infinite examples show that the two theories do not agree in 

general. One might ask, however, whether infiniteness is the only obstruction. 

   𝐴 conjecture of Toms relates various regularity properties for separable, simple, finite, 

unital, and nuclear 𝐶∗-algebras. the nuclear dimension enables us to put this conjecture into 

a broader context. 

Conjecture (6.1.36)[453]: For a separable, simple, unital, infinite dimensional and nuclear 

𝐶∗-algebra 𝐴, the following are equivalent: 

(i)  𝐴 has finite nuclear dimension. 

(ii)  𝐴 is 𝑍-stable. 

(iii)  𝐴 has strict comparison of positive elements. 

(iv)  𝐴 has almost unperforated Cuntz semigroup.  

As we have mentioned earlier, it will be shown in [467] that crossed products of continuous 

functions on compact and finite dimensional spaces by the integers via minimal 
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homeomorphisms have finite nuclear dimension. One might ask for similar results when the 

underlying 𝐶∗-algebra is noncommutative, or when the group is more complicated. 

Section (6.2): Symmetric Amenability for 𝑪∗-Algebras 

The general study of tracial states on 𝐶∗-algebras has a long history, but recently it gained a 

renewed interest in connection with the on going classification program for finite nuclear 

𝐶∗-algebras. We record several facts about tracial 𝐶∗-algebras which may be useful in the 

future study. The results are two-fold. First, we consider Dixmier type approximation 

property for 𝐶∗-algebras and relate it to symmetric amenability. The Dixmier approximation 

theorem  (Theorem III.5.1 in [310]) states a fundamental fact about von Neumann algebras 

that for any von Neumann algebra 𝑁 and any element 𝑎 ∈ 𝑁, the norm-closed convex hull 

of {𝑢𝑎𝑢∗: 𝑢 ∈ 𝒰(𝑁)} meets the center 𝑍(𝑁) of 𝑁. Here 𝒰(𝑁) denotes the unitary group of 

 𝑁. If 𝑁 is moreover a finite von Neumann algebra, then this intersection is a singleton and 

consists of  𝑐𝑡𝑟(𝑎). Here ctr denotes the center-valued trace, which is the unique conditional 

expectation from 𝑁 onto 𝑍(𝑁) that satisfies 𝑐𝑡𝑟(𝑥𝑦) = 𝑐𝑡𝑟(𝑦𝑥). It is proved by Haagerup 

and Zsido [317] that the Dixmier approximation theorem holds for simple 𝐶∗-algebras 

having at most one tracial states (and obviously does not for simple 𝐶∗-algebras having more 

than one tracial states). Recall that a 𝐶∗-algebra 𝐴 has the quotient tracial state property 

(𝑄𝑇𝑆 property) if every non-zero quotient 𝐶∗-algebra of 𝐴 has a tracial state [327]. We 

denote by 𝑇(𝐴) the space of the tracial states on 𝐴, equipped with the weak∗-topology. 

    Unlike the case for von Neumann algebras, there is no bound of 𝑘 in terms of 𝜀 and ‖𝑎‖ 

that works for an arbitrary element 𝑎 in a 𝐶∗-algebra. Recall that a Banach algebra 𝐴 is said 

to be amenable if there is a net (𝛥𝑛)𝑛, called an approximate diagonal, in the algebraic tensor 

product 𝐴⊗ℂ 𝐴 (we reserve the symbol ⊗ for the minimal tensor product) such that 

(a)   𝑠𝑢𝑝𝑛‖𝛥𝑛‖^ < +∞, 

(b)   (𝑚(𝛥𝑛))𝑛 is an approximate identity, 

(c)   lim 𝑛‖𝑎 · 𝛥𝑛 − 𝛥𝑛 · 𝑎‖^ = 0 for every 𝑎 ∈ 𝐴. 

Here ‖ · ‖^ is the projective norm on 𝐴⊗ℂ 𝐴,𝑚: 𝐴 ⊗ℂ 𝐴 → 𝐴 is the multiplication, and 𝑎 ·
 (∑ 𝑥𝑖⊗𝑦𝑖𝑖 ) = ∑ 𝑎𝑥𝑖⊗𝑦𝑖𝑖  and (∑  𝑥𝑖⊗𝑦𝑖𝑖 ) · 𝑎 = ∑ 𝑥𝑖 ⊗𝑦𝑖𝑎𝑖 . The celebrated theorem 

of Connes–Haagerup ([795, 781]) states that a 𝐶∗-algebra 𝐴 is amenable as a Banach algebra 

if and only if it is nuclear. The Banach algebra 𝐴 is said to be symmetrically amenable [748] 

if the approximate diagonal (𝛥𝑛)𝑛 can be taken symmetric under the flip 𝑥 ⊗ 𝑦 → 𝑦 ⊗ 𝑥. 

We characterize symmetric amenability for 𝐶∗-algebras. 

    Recall that a unital 𝐶∗-algebra 𝐴 is strongly amenable if there is an approximate diagonal 

that consists of convex combinations of {𝑢∗⊗𝑢: 𝑢 ∈ 𝒰(𝐴)}. This property is formally 

stronger than symmetric amenability, but it is unclear whether there is really a gap between 

these properties. 

  Second, we describe what is the 𝐶∗-completion  �̅�𝑈 of a unital 𝐶∗-algebra 𝐴 under the 

uniform 2-norm. This work is strongly influenced by the recent works of Kirchberg–Rordam 

[324], Sato [777], and Toms–White–Winter [335], who studied the central sequence 

algebra of a 𝐶∗-algebra modulo uniformly 2-norm null sequences, in order to extend Matui–

Sato’s result [326] from 𝐶∗-algebras with finitely many extremal tracial states to more 

general ones. In fact, our result is very similar to theirs (particularly to Kirchberg–

Rordam’s). Let 𝐴 be a 𝐶∗-algebra and 𝑆 ⊂ 𝑇(𝐴) be a nonempty metrizable closed face. The 
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reason we assume 𝑆 be metrizable is because it makes the description of the boundary 

measures simpler. We define the uniform 2-norm on 𝐴 corresponding to 𝑆 by 

‖𝑎‖2,𝑆 = sup {𝜏 (𝑎
∗𝑎)1/2: 𝜏 ∈ 𝑆}. 

The uniform 2-norm satisfies 

            ‖𝑎𝑏‖2,𝑆 ≤ min {‖𝑎‖‖𝑏‖2,𝑆, ‖𝑎‖2,𝑆‖𝑏‖} and 𝑠𝑢𝑝𝜏∈𝑆|𝜏(𝑎)| ≤ ‖𝑎‖2,𝑆. 

The 𝐶∗-completion �̅�𝑈 is defined to be the 𝐶∗-algebra of the norm-bounded uniform 2-norm 

Cauchy sequences, modulo the ideal of the uniform 2-norm null sequences. For 𝜏 ∈ 𝑇(𝐴), 

we denote by 𝜋𝜏 the corresponding 𝐺𝑁𝑆 representation and also ‖𝑎‖2,𝜏 = 𝜏 (𝑎
∗𝑎)1/2. Let 

𝑁 = (⊕𝜏∈𝑆 𝜋𝜏)(𝐴)′′ be the enveloping von Neumann algebra with respect to 𝑆. When 𝑆 =
𝑇(𝐴), it is the finite summand 𝐴𝑓

∗∗ of the second dual von Neumann algebra 𝐴∗∗. The tracial 

state 𝜏 ∈ 𝑆 and the 𝐺𝑁𝑆 representation 𝜋𝜏 extend normally on 𝑁. For the center-valued trace 

𝑐𝑡𝑟: 𝑁 → 𝑍(𝑁), one has ‖𝑎‖2,𝑆 = ‖𝑐𝑡𝑟(𝑎
∗𝑎)‖1/2 and �̅�𝑈 coincides with the closure �̅�𝑠𝑡 of 

𝐴 in 𝑁 with respect to the strict topology associated with the Hilbert 𝑍(𝑁)-module (𝑁, 𝑐𝑡𝑟). 
   Recall that the trace space 𝑇(𝐴) of a unital 𝐶∗-algebra is a Choquet simplex and so is the 

closed face 𝑆. We denote by 𝐴𝑓𝑓(𝑆) the space of the affine continuous functions on 𝑆 and 

consider the function system 𝐴𝑓𝑓(𝑆) = {𝑓|𝜕𝑆: 𝑓 ∈ 𝐴𝑓𝑓(𝑆)} in 𝐵(𝜕𝑆), where 𝐵(𝜕𝑆) 
denotes the 𝐶∗-algebra of the bounded Borel functions on 𝜕𝑆. For every 𝑎 ∈ 𝐴, the formula 

�̂�(𝜏) = 𝜏 (𝑎) defines a function �̂� in 𝐴𝑓𝑓(𝑆) (or 𝐴𝑓𝑓(𝑆)). We note that {�̂�: 𝑎 ∈ 𝐴} is dense 

in 𝐴𝑓𝑓(𝑆) (in fact equal, see [791]). Let 𝑀+
1(𝜕𝑆) be the space of the probability measures 

on the extreme boundary 𝜕𝑆 of 𝑆. Since 𝑆 is a metrizable Choquet simplex, every 𝜏 ∈ 𝑆 has 

a unique representing measure 𝜇𝜏 ∈ 𝑀+
1(𝜕𝑆), which satisfies 

𝜏(𝑎) = ∫𝜆(𝑎) 𝑑𝜇𝜏(𝜆) = ∫ �̂�(𝜆) 𝑑𝜇𝜏(𝜆) 

for every 𝑎 ∈ 𝐴 (Theorem II.3.16 in [797]). The center 𝑍(𝐴𝑓𝑓(𝑆)) is defined to be 

𝑍(𝐴𝑓𝑓(𝑆)) = {𝑓 ∈ 𝐵(𝜕𝑆): 𝑓  𝐴𝑓𝑓(𝑆) ⊂ 𝐴𝑓𝑓(𝑆)} ⊂ 𝐴𝑓𝑓(𝑆). 

When 𝜕𝑆 is closed (i.e., when 𝑆 is a Bauer simplex), one has 𝐴𝑓𝑓(𝑆) = 𝐶(𝜕𝑆) and 

𝑍(𝐴𝑓𝑓(𝑆)) = 𝐶(𝜕𝑆). However in general, the center 𝑍(𝐴𝑓𝑓(𝑆)) can be trivial (see [797]). 

    Moreover, if 𝜕𝑆 is closed, then for every  𝜏 ∈ 𝜕𝑆, one has 𝜋𝜏(�̅�
𝑠𝑡) = 𝜋𝜏(𝑁) = 𝜋𝜏(𝐴)′′. 

Takesaki and Tomiyama [334] have studied the structure of a 𝐶∗-algebra, for which the set 

of pure states is closed in the state space, by using a continuous bundle of 𝐶∗-algebras (see 

also [313]). For a 𝐶∗-algebra  𝐴, for which 𝜕𝑆 is closed, in terms of a continuous 𝑊∗-bundle, 

and present 𝑊∗-analogues of a few results for 𝐶∗-bundles obtained in [318, 309]. In 

particular, we give a criterion for a continuous 𝑊∗-bundle over a compact space 𝐾 with all 

fibers isomorphic to the hyperfinite II1 factor 𝑅 to be isomorphic to the trivial bundle 

𝐶𝜎(𝐾, 𝑅), the 𝐶∗-algebra of the norm-bounded and ultrastrongly continuous functions from 

𝐾 into 𝑅. We denote the evaluation map at 𝜆 ∈ 𝐾 by 𝑒𝑣𝜆: 𝐶𝜎(𝐾, 𝑅) → 𝑅. As an application, 

we show that �̅�𝑠𝑡 ≅ 𝐶𝜎(𝜕𝑆, 𝑅) for certain 𝐴. 

    Let 𝐴 be a separable 𝐶∗-algebra and 𝑆 ⊂ 𝑇(𝐴) be a closed face. Assume that 𝜋𝜏(𝐴)′′ ≅ 𝑅 

for all 𝜏 ∈ 𝜕𝑆 and that 𝜕𝑆 is a compact space with finite covering dimension. Then, one can 

coordinatize the isomorphisms 𝜋𝜏(𝐴)′′ = 𝑅 in such a way that they together give rise to a 

∗-homomorphism 𝜋: 𝐴 → 𝐶𝜎(𝜕𝑆, 𝑅) such that 𝜋𝜏 = 𝑒𝑣𝜏 ∘ 𝜋. The image of 𝜋 is dense with 

respect to the uniform 2-norm. 

Theorem (6.2.1)[454]: For a unital 𝐶∗-algebra 𝐴, the following are equivalent. 
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(i) The 𝐶∗-algebra 𝐴 has the 𝑄𝑇𝑆 property. 

(ii) For every 𝜀 > 0 and 𝑎 ∈ 𝐴 that satisfy 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏(𝑎)| < 𝜀, there are 𝑘 and 𝑢1, . . . , 𝑢𝑘 ∈

𝒰(𝐴) such that ‖
1

𝑘
∑ 𝑢𝑖𝑎𝑢𝑖

∗𝑘
𝑖=1 ‖ < 𝜀. 

Proof . 𝐴𝑑 (i) ⇒ (ii). Although the proof becomes a bit shorter if we use Theorem (6.2.4) in 

[317], we give here a more direct proof of this implication. Let 𝑎 ∈ 𝐴 and 𝜀 > 0 be given 

as in condition (ii). Let 𝜀0 = 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏 (𝑎)| < 𝜀. We decompose the second dual von 

Neumann algebra 𝐴∗∗ into the finite summand 𝐴𝑓
∗∗ and the properly infinite summand 𝐴∞

∗∗.    

We denote the corresponding embedding of 𝐴 by 𝜋𝑓 and 𝜋∞, and the center-valued trace of 

𝐴𝑓
∗∗ by ctr. We note that ‖𝑐𝑡𝑟(𝜋𝑓(𝑎))‖ = 𝜀0. By the Dixmier approximation theorem, there 

are 𝑣1, . . . , 𝑣𝑘 ∈  𝒰(𝐴𝑓
∗∗) such that ‖𝑐𝑡𝑟(𝜋𝑓(𝑎)) −

1

𝑘
𝑣𝑖𝜋𝑓(𝑎)𝑣𝑖

∗‖ < 𝜀 − 𝜀0. On the other 

hand, by Halpern’s theorem [318], there are 𝑤1, . . . , 𝑤𝑙 ∈ 𝑈(𝐴∞
∗∗) such that 

‖
1

𝑙
∑ 𝑤𝑖𝜋∞(𝑎)𝑤𝑖

∗𝑙
𝑗=1 ‖ < 𝜀. Before giving the detail of the proof of this fact, we finish the 

proof of (i) ⇒ (ii). By allowing multiplicity, we may assume that 𝑘 = 𝑙 and consider 𝑢𝑖 =

𝑣𝑖⊕𝑤𝑖 ∈ 𝐴
∗∗. Then, ‖

1

𝑘
∑ 𝑢𝑖𝑎𝑢𝑖

∗𝑘
𝑖=1 ‖ < 𝜀 in 𝐴∗∗. For each 𝑖, take a net (𝑢𝑖(𝜆))𝜆 of unitary 

elements in 𝐴 which converges to 𝑢𝑖 ∈ 𝐴
∗∗ in the ultrastrong  ∗-topology. By the Hahn-

Banach theorem, 𝑐𝑜𝑛𝑣{
1

𝑘
∑ 𝑢𝑖(𝜆)𝑎𝑢𝑖(𝜆)

∗𝑘
𝑖=1 }𝜆 contains an element of norm less than 𝜀. 

   Now, we explain how to apply Halpern’s theorem. Let 𝑍 (resp. 𝐼) be the center (resp. 

strong radical) of 𝐴∞
∗∗. Let 𝛬 be the directed set of all finite partitions of unity by projections 

in  𝑍, and 𝜆 = {𝑝𝜆,𝑖}𝑖 ∈ 𝛬 be given. 

    Applying the 𝑄𝑇𝑆 property to the non-zero ∗-homomorphism 𝐴 ∋ 𝑥 ⟼ 𝑝𝜆,𝑖(𝜋∞(𝑥) +
𝐼) ∈ 𝑝𝜆,𝑖((𝜋∞(𝐴) + 𝐼)/𝐼), one obtains a (tracial) state 𝜏𝜆,𝑖 on 𝜋∞(𝐴) + 𝐼 such that 

𝜏𝜆,𝑖(𝑝𝜆,𝑖) = 1, 𝜏𝜆,𝑖(𝐼) = 0, and |𝜏𝜆,𝑖(𝜋∞(𝑎))| ≤ 𝜀0. Let �̃�𝜆,𝑖 be a state extension of it on 

𝑝𝜆,𝑖𝐴∞
∗∗. We define the linear map 𝜑𝜆: 𝐴∞

∗∗ → 𝑍 by 𝜑𝜆(𝑥) = ∑ �̃�𝜆,𝑖(𝑥)𝑝𝜆,𝑖𝑖 , and take a limit 

point 𝜑: 𝐴∞
∗∗ → 𝑍. The map 𝜑 is a unital positive 𝑍-linear map such that 𝜑(𝐼) = 0 and 

‖𝜑(𝜋∞(𝑎))‖ ≤ 𝜀0. By Halpern’s theorem (Theorem 4.12 in [318]), the norm-closed 

convex hull of the unitary conjugations of 𝜋∞(𝑎) contains 𝜑(𝜋∞(𝑎)). 
𝐴𝑑 (ii) ⇒ (i). Suppose that there is a closed two-sided proper ideal 𝐼 in 𝐴 such that 𝐴/𝐼 does 

not have a tracial state. Let 𝑒𝑛 be the approximate unit of  𝐼. Then, one has 𝜏(1 − 𝑒𝑛) ↘ 0 

for every 𝜏 ∈ 𝑇(𝐴). By Dini’s theorem, there is 𝑛 such that 𝑞 = 1 − 𝑒𝑛 satisfies 𝜏(𝑞) < 1/2 

for all 𝜏 ∈ 𝑇(𝐴). By condition (ii), there are 𝑢1, . . . , 𝑢𝑘 ∈ 𝒰(𝐴) such that ‖
1

𝑘
∑ 𝑢𝑖𝑞𝑢𝑖

∗𝑘
𝑖=1 ‖ <

1/2, which is in contradiction with the fact that 
1

𝑘
∑ 𝑢𝑖𝑞𝑢𝑖

∗𝑘
𝑖=1 ∈ 1 + 𝐼. 

Theorem (6.2.2)[454]:  For a unital 𝐶∗-algebra 𝐴, the following are equivalent. 

(i) The 𝐶∗-algebra 𝐴 is nuclear and has the 𝑄𝑇𝑆 property. 

(ii) The 𝐶∗-algebra 𝐴 has an approximate diagonal 𝛥𝑛 = ∑ 𝑥𝑖(𝑛)
∗⊗ 𝑥𝑖(𝑛)

𝑘(𝑛)
𝑖=1  such that 

lim 𝑛∑ ‖𝑥𝑖(𝑛)‖
2𝑘(𝑛)

𝑖=1 = 1,𝑚(𝛥𝑛) = 1, and lim 𝑛 ‖1 − ∑ 𝑥𝑖(𝑛)𝑥𝑖(𝑛)
∗𝑘(𝑛)

𝑖=1 ‖ = 0.  

(iii) The 𝐶∗-algebra 𝐴 is symmetrically amenable. 

(iv) The 𝐶∗-algebra 𝐴 has a symmetric approximate diagonal (𝛥𝑛)𝑛 in 

{∑𝑥𝑖
∗⊗ 𝑥𝑖

𝑖

∈ 𝐴⊗ℂ 𝐴:∑‖𝑥𝑖‖
2

𝑖

≤ 1}. 
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Proof.  The implication (iv) ⇒ (iii) is obvious and (iii) ⇒ (i) is standard: Since amenability 

implies nuclearity by Connes’s theorem [307] we only have to prove the 𝑄𝑇𝑆 property. Let 

(𝛥𝑛)𝑛 be a symmetric approximate diagonal and define 𝑚∆(𝑎) = ∑ 𝑥𝑖𝑎𝑦𝑖𝑖  for 𝛥 =
∑ 𝑥𝑖 ⊗𝑦𝑖𝑖 ∈ 𝐴 ⊗ℂ 𝐴 and  𝑎 ∈ 𝐴. Then, for any proper ideal 𝐼 in 𝐴 and a state 𝜑 on 𝐴 such 

that 𝜑(𝐼) = 0, any limit point 𝜏 of (𝜑 ∘ 𝑚𝛥𝑛)𝑛 is a bounded trace such that 𝜏(𝐼) = 0 and 

𝜏(1) = 1. By polar decomposition, one obtains a tracial state on 𝐴 which vanishes on 𝐼. 
    We prove the implication (i) ⇒ (ii) ⇒ (iv). Since 𝐴 is nuclear, it is amenable thanks to 

Haagerup’s theorem (Theorem 3.1 in [318]), Moreover, there is an approximate diagonal 

(𝛥𝑛
′ )𝑛 in the convex hull of {𝑥∗⊗ 𝑥: ‖𝑥‖ ≤ 1}. We note that 𝜀𝑛: = ‖1 − 𝑚(𝛥𝑛

′ )‖ → 0. We 

fix 𝑛 for the moment and write 𝛥𝑛
′ = ∑ 𝑥𝑖

∗⊗ 𝑥𝑖𝑖 . By replacing 𝑥𝑖 with 𝑥𝑖𝑚(𝛥𝑛
′ )−1/2, we 

may assume 𝑚(𝛥𝑛
′ ) = 1 but ∑ ‖𝑥𝑖‖

2
𝑖 ≤ (1 − 𝜀𝑛)

−1. Since 𝜏(∑ 𝑥𝑖𝑥𝑖
∗

𝑖 ) = 1 for all 𝜏 ∈ 𝑇(𝐴), 

Theorem (6.2.1) provides 𝑢1, . . . , 𝑢𝑙 ∈ 𝒰(𝐴) such that ‖
1

𝑙
∑ ∑ 𝑢𝑗𝑥𝑖𝑥𝑖

∗𝑢𝑗
∗

𝑖
𝑙
𝑗=1 ‖ ≤ 1 + 𝜀𝑛. 

Thus, 𝛥𝑛 =
1

𝑙
∑ 𝑥𝑖

∗𝑢𝑗
∗

𝑖,𝑗 ⊗𝑢𝑗𝑥𝑖 satisfies condition (ii). Now, rewrite 𝛥𝑛 as  ∑ 𝑦𝑖
∗⊗𝑦𝑖𝑖 . 

Then, 𝛥𝑛
# = (∑ ‖𝑦𝑖‖

2
𝑖 )−2∑ 𝑦𝑖

∗𝑦𝑗𝑖,𝑗 ⊗𝑦𝑗
∗𝑦𝑖  is a symmetric approximate diagonal that meets 

condition (iv). 

     We consider the trace zero elements in a 𝐶∗-algebra. 𝐴 simple application of the Hahn–

Banach theorem implies that 𝑎 ∈ 𝐴 satisfies 𝜏(𝑎) = 0 for all 𝜏 ∈ 𝑇(𝐴) if and only if it 

belongs to the norm-closure of the subspace [𝐴, 𝐴] spanned by commutators [𝑏, 𝑐] = 𝑏𝑐 −
𝑐𝑏, 𝑏, 𝑐 ∈ 𝐴. Moreover, such 𝑎 can be written as a convergent sum of commutators ([308 

There are many works as to how uniformly this happens ([329,311,312,327,779] just to 

name a few). The following fact is rather standard. 

    Unlike the case for von Neumann algebras, there is no bound on 𝑘 in terms of  𝜀 and ‖𝑎‖ 

that works for general 𝐶∗-algebras. 𝐴 counterexample is constructed by Pedersen and 

Petersen (Lemma 3.5 in [746]: the element 𝑥𝑛 − 𝑦𝑛 ∈ [𝐴𝑛, 𝐴𝑛] constructed there has the 

property that ‖(𝑥𝑛 − 𝑦𝑛) − 𝑧‖ ≥ 1 for any sum 𝑧 of 𝑛 self-commutators). This also means 

that 𝑘 in Theorem (6.2.1)  depends on the particular element 𝑎 in 𝐴. Nevertheless one can 

bound 𝑘 under some regularity condition. Recall that 𝐴 is said to be 𝑍-stable if 𝐴 ≅ 𝑍 ⊗ 𝐴 

for the Jiang–Su algebra 𝑍. The Jiang–Su algebra 𝑍 is a simple 𝐶∗-algebra which is an 

inductive limit of prime dimension drop algebras and such that 𝑍 ≅ 𝑍⊗∞ (Theorem (6.2.8) 

and Theorem (6.2.4) in [320]). 

Theorem (6.2.3)[454]:     There is a constant 𝐶 > 0 which satisfies the following. 

Let 𝐴 be a 𝐶∗-algebra and 𝑎 ∈ 𝐴 and 𝜀 > 0 be such that 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏(𝑎)| < 𝜀. 

Then, there are 𝑘 ∈ ℕ and 𝑏𝑖 and 𝑐𝑖 in 𝐴 such that ∑ ‖𝑏𝑖‖‖𝑐𝑖‖
𝑘
𝑖=1 ≤ 𝐶‖𝑎‖ and 

‖𝑎 − ∑ [𝑏𝑖 , 𝑐𝑖]
𝑘
𝑖=1 ‖ < 𝜀. 

Proof . Let 𝑎 ∈ 𝐴. We denote by ctr the centervalued trace from the second dual von 

Neumann algebra 𝐴∗∗ onto the center 𝑍(𝐴𝑓
∗∗) of the finite summand 𝐴𝑓

∗∗ of  𝐴∗∗. One has 

‖𝑐𝑡𝑟(𝑎)‖ = 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏(𝑎)| < 𝜀 and 𝑎′: = 𝑎 − 𝑐𝑡𝑟(𝑎) has zero traces. By a theorem of 

Fack and de la Harpe, for 𝐶 =  2 · 122 and 𝑚 = 10, there are 𝑏𝑖 , 𝑐𝑖 ∈ 𝐴
∗∗ such that 

∑ ‖𝑏𝑖‖‖𝑐𝑖‖
𝑚
𝑖=1 ≤ 𝐶‖𝑎‖ and 𝑎′ = ∑ [𝑏𝑖 , 𝑐𝑖]

𝑚
𝑖=1 . See [747, 779] for a better estimate of 𝐶 and 

𝑚. By Kaplansky’s density theorem, there is a net (𝑏𝑖(𝜆))𝜆 in 𝐴 such that ‖𝑏𝑖(𝜆)‖ ≤ ‖𝑏𝑖‖ 

and 𝑏𝑖(𝜆) → 𝑏𝑖 ultrastrongly. Likewise for (𝑐𝑖(𝜆))𝜆. Since 
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‖lim
𝜆
(𝑎 −∑[𝑏𝑖(𝜆), 𝑐𝑖(𝜆)]

𝑚

𝑖=1

)‖ = ‖𝑎 − 𝑎′‖ < 𝜀, 

there is 𝑎′′ ∈ 𝑐𝑜𝑛𝑣{∑ [𝑏𝑖(𝜆), 𝑐𝑖(𝜆)]
𝑚
𝑖=1 }𝜆 which satisfies ‖𝑎 − 𝑎′′‖ < 𝜀. 

Theorem (6.2.4)[454]:     There is a constant 𝐶 > 0 which satisfies the following. 

Let 𝐴 be an exact 𝑍-stable 𝐶∗-algebra, and 𝜀 > 0 and 𝑎 ∈ 𝐴 be such that 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏(𝑎)| <

𝜀. Then, for every 𝑅 ∈ ℕ, there are 𝑏(𝑟) and 𝑐(𝑟) in 𝐴 such that ∑ ‖𝑏(𝑟)‖‖𝑐(𝑟)‖𝑅
𝑟=1 ≤

𝐶‖𝑎‖ and ‖𝑎 − ∑ [𝑏(𝑟), 𝑐(𝑟)]𝑅
𝑟=1 ‖ < 𝜀 + 𝐶‖𝑎‖𝑅−1/2. 

 proof.  is inspired by [787] and uses the free semicircular system and random matrix 

argument of Haagerup–Thorbjornsen ([789]). Let 𝒪∞ be the Cuntz algebra generated by 

isometries 𝑙𝑖(𝑟) such that 𝑙𝑖(𝑟)
∗𝑙𝑗(𝑠) = 𝛿𝑖,𝑗𝛿𝑟,𝑠, and let 𝑆𝑖(𝑟): = 𝑙𝑖(𝑟) + 𝑙𝑖(𝑟)

∗ be the 

corresponding semicircular system. We note that 𝒞 ∶= 𝐶∗({𝑆𝑖(𝑟): 𝑖, 𝑟}) is ∗-isomorphic to 

the reduced free product of the copies of 𝐶([−2, 2]) with respect to the Lebesgue measure 

(see [336]), and the corresponding tracial state coincides with the restriction of the vacuum 

state on 𝒪∞ to  𝒞. 

Lemma (6.2.5)[454]:     Let 𝑏𝑖 , 𝑐𝑖 ∈ 𝐴 be such that ‖𝑏𝑖‖ = ‖𝑐𝑖‖. Then, for every 𝑅 ∈ ℕ, 

letting ˜�̃�(𝑟) = ∑ 𝑆𝑖(𝑟) ⊗ 𝑏𝑖
𝑛
𝑖=1  and �̃�(𝑟) = ∑ 𝑆𝑗(𝑟) ⊗ 𝑐𝑗

𝑛
𝑗=1  , one has 

1

𝑅
∑‖�̃�(𝑟)‖‖�̃�(𝑟)‖

𝑅

𝑟=1

≤ 4∑‖𝑏𝑖‖‖𝑐𝑖‖ 

and 

‖1⊗∑[𝑏𝑖 , 𝑐𝑖]

𝑛

𝑖=1

−
1

𝑅
∑[�̃�(𝑟), �̃�(𝑟)]

𝑅

𝑟=1

‖ ≤
6

√𝑅
∑‖𝑏𝑖‖‖𝑐𝑖‖

𝑖

.  

Proof. For every 𝑟, one has 

‖�̃�(𝑟)‖ ≤ ‖∑𝑙𝑖(𝑟) ⊗ 𝑏𝑖‖ + ‖∑𝑙𝑖(𝑟)
∗⊗𝑏𝑖‖ 

= ‖∑𝑏𝑖
∗𝑏𝑖‖

1/2

+ ‖∑𝑏𝑖𝑏𝑖
∗‖
1/2

≤ 2(∑‖𝑏𝑖‖
2)1/2, 

and likewise for �̃�(𝑟). It follows that ‖�̃�(𝑟)‖‖�̃�(𝑟)‖ ≤ 4∑‖𝑏𝑖‖‖𝑐𝑖‖. Moreover, 

�̃�(𝑟)�̃�(𝑟) = ∑(𝛿𝑖,𝑗1 + 𝑙𝑖(𝑟)𝑙𝑗(𝑟) + 𝑙𝑖(𝑟)𝑙𝑗(𝑟)
∗ + 𝑙𝑖(𝑟)

∗𝑙𝑗(𝑟)
∗)

𝑖,𝑗

⊗𝑏𝑖𝑐𝑗, 

and 

‖∑𝑙𝑖(𝑟)𝑙𝑗(𝑟) ⊗ 𝑏𝑖𝑐𝑗
𝑟,𝑖,𝑗

‖ = ‖∑𝑐𝑗
∗𝑏𝑖
∗𝑏𝑖𝑐𝑗

𝑟,𝑖,𝑗

‖

1/2

≤ 𝑅1/2∑‖𝑏𝑖‖‖𝑐𝑖‖

𝑖

, 

‖∑𝑙𝑖(𝑟)
∗𝑙𝑗(𝑟)

∗⊗𝑏𝑖𝑐𝑗
𝑟,𝑖,𝑗

‖  =  ‖∑𝑏𝑖𝑐𝑗𝑐𝑗
∗𝑏𝑖
∗

𝑟,𝑖,𝑗

‖

1/2

≤ 𝑅1/2∑‖𝑏𝑖‖‖𝑐𝑖‖

𝑖

, 

‖∑𝑙𝑖(𝑟)𝑙𝑗(𝑟)
∗⊗ 𝑏𝑖𝑐𝑗

𝑟,𝑖,𝑗

‖ =  max
𝑟
‖∑𝑙𝑖(𝑟)𝑙𝑗(𝑟)

∗⊗ 𝑏𝑖𝑐𝑗
𝑖,𝑗

‖ ≤∑‖𝑏𝑖‖‖𝑐𝑖‖

𝑖

. 

Likewise for �̃�(𝑟)�̃�(𝑟), and one obtains the conclusion.  
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Proof. Let 𝑎 ∈ 𝐴 \ {0} be such that 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏(𝑎)| < 𝜀. Since 𝑍 ≅ 𝑍⊗∞, we may assume 

that 𝐴 = 𝑍⊗ 𝐴0 and 𝑎 ∈ 𝐴0. By Theorem (6.2.4), there are 𝑏𝑖 , 𝑐𝑖 such that ‖𝑏𝑖‖ =
‖𝑐𝑖‖,∑ ‖𝑏𝑖‖‖𝑐𝑖‖

𝑘
𝑖=1 ≤ 𝐶‖𝑎‖, and ‖𝑎 − ∑ [𝑏𝑖 , 𝑐𝑖]

𝑘
𝑖=1 ‖ < 𝜀. Recall the theorem of Haagerup 

and Thorbjornsen ([789]) which states that the 𝐶∗-algebra 𝐶 can be embedded into 

∏𝕄𝑛 /⨁𝕄𝑛. By exactness of 𝐴0, there is a canonical ∗-isomorphism 

(∏𝕄𝑛 /⊕𝕄𝑛) ⊗ 𝐴0 ≅ ((∏𝕄𝑛) ⊗ 𝐴0)/(⊕𝕄𝑛⊗𝐴0). 

Lemma (6.2.5), combined with this fact, implies that there are matrices 𝑠𝑖
(𝑛)
(𝑟) ∈ 𝕄𝑛 such 

that �̃�(𝑛)(𝑟) = ∑ 𝑠𝑖
(𝑛)
(𝑟) ⊗ 𝑏𝑖

𝑘
𝑖=1  and �̃�(𝑛)(𝑟) = ∑ 𝑠𝑗

(𝑛)
(𝑟) ⊗ 𝑐𝑗

𝑘
𝑗=1  satisfy 

lim
𝑛
sup 

1

𝑅
 ∑‖�̃�(𝑛)(𝑟)‖‖�̃�(𝑛)(𝑟)‖

𝑅

𝑟=1

≤ 4∑‖𝑏𝑖‖‖𝑐𝑖‖ ≤ 4𝐶‖𝑎‖  

and 

lim
𝑛
sup  ‖1 ⊗ 𝑎 −

1

𝑅
∑[�̃�(𝑛)(𝑟), �̃�(𝑛)(𝑟)]

𝑅

𝑟=1

‖ ≤ 𝜀 +
6𝐶‖𝑎‖

√𝑅
. 

For every relatively prime  𝑝, 𝑞 ∈ ℕ, the Jiang–Su algebra 𝑍 contains the prime dimension 

drop algebra 

𝐼(𝑝, 𝑞) = {𝑓 ∈ 𝐶([0, 1],𝕄𝑝⊗𝕄𝑞): 𝑓(0) ∈ 𝕄𝑝⊗ℂ1, 𝑓(1) ∈ ℂ1 ⊗𝕄𝑞} 

and hence 𝑡𝕄𝑞 and (1 − 𝑡)𝕄𝑝 also, where 𝑡 ∈ 𝐼(𝑝, 𝑞) is the identity function on [0, 1]. It 

follows that there are 𝑏(𝑟), 𝑐(𝑟), 𝑏′(𝑟), 𝑐′(𝑟) ∈ 𝑍 ⊗ 𝐴0 such that 

1

𝑅
∑(‖𝑏(𝑟)‖‖𝑐(𝑟)‖ + ‖𝑏′(𝑟)‖‖𝑐′(𝑟)‖)

𝑅

𝑟=1

< 9𝐶‖𝑎‖ 

and 

‖𝑎 −
1

𝑅
∑([𝑏(𝑟), 𝑐(𝑟)] + [𝑏′(𝑟), 𝑐′(𝑟)])

𝑅

𝑟=1

‖ < 𝜀 +
7𝐶‖𝑎‖

√𝑅
. 

Here, we note that ‖𝑡 ⊗ 𝑥 + (1 − 𝑡) ⊗ 𝑦‖ = max {‖𝑥‖, ‖𝑦‖} for any 𝑥 and 𝑦. 

    Let (𝐴𝑛)𝑛 be a sequence of 𝐶∗-algebras and 𝒰 be a free ultrafilter on ℕ. 

We denote by 

∏𝐴𝑛 = {(𝑎𝑛)𝑛=1
∞ : 𝑎𝑛 ∈ 𝐴𝑛, sup 𝑛‖𝑎𝑛‖ < +∞} 

the ℓ∞-direct sum of (𝐴𝑛), and by 

∏𝐴𝑛/𝒰 = (∏𝐴𝑛)/{(𝑎𝑛)𝑛=1
∞ : lim𝒰 ‖𝑎𝑛‖ = 0} 

the ultraproduct of 𝐴𝑛. For every 𝑚, we view 𝜏 ∈ 𝑇(𝐴𝑚) as an element of 𝑇(∏𝐴𝑛) by 

𝜏((𝑎𝑛)𝑛) = 𝜏 (𝑎𝑚). For each (𝜏𝑛)𝑛 ∈ ∏𝑇(𝐴𝑛), there is a corresponding tracial state 𝜏𝒰: =
lim 𝒰 𝜏𝑛 on ∏𝐴𝑛/𝒰, defined by 

𝜏𝒰((𝑎𝑛)𝑛) = lim𝒰 𝜏𝑛(𝑎𝑛).  
The set of tracial states that arise in this way is denoted by ∏𝑇(𝐴𝑛) /𝒰. We note that as 

soon as 𝜕𝑇(∏𝐴𝑛/𝒰) is infinite, the inclusion 𝑇(∏𝐴𝑛)/𝒰 ⊂ 𝑇(∏𝐴𝑛/𝒰) is proper (see 

[306]). Moreover, if we take 𝐴𝑛 to be the counterexamples of Pedersen and Petersen [329], 

then ∏𝑇(𝐴𝑛)/𝒰 (resp. 𝑐𝑜𝑛𝑣∐𝑇(𝐴𝑛)) is not weak∗-dense in 𝑇(∏𝐴𝑛/𝒰) (resp. 𝑇(∏𝐴𝑛)). 
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The following theorem is proved by Sato [774] (see also [778]) in the case where 𝐴 is a 

simple nuclear 𝐶∗-algebra having finitely many extremal tracial states. 

Theorem (6.2.6)[454]:     Let (𝐴𝑛)𝑛 be a sequence of exact 𝑍-stable 𝐶∗-algebras and 𝒰 be 

a free ultrafilter on ℕ. Then, ∏𝑇(𝐴𝑛)/𝒰 (resp. 𝑐𝑜𝑛𝑣 ∐𝑇(𝐴𝑛)) is weak∗-dense in 

𝑇(∏𝐴𝑛/𝒰) (resp. 𝑇(∏𝐴𝑛)). In particular, for every 𝜏 ∈ 𝑇(∏𝐴𝑛/𝒰) and every separable 

𝐶∗-subalgebra 𝐵 ⊂ ∏𝐴𝑛/𝒰, there is 𝜏′ ∈ ∏𝑇(𝐴𝑛)/𝒰 such that 𝜏|𝐵 =  𝜏′|𝐵. 

Proof .  Let 𝐴 be either ∏𝐴𝑛 or ∏𝐴𝑛/𝒰, and denote by 𝛴 ⊂ 𝑇(𝐴) either 𝑐𝑜𝑛𝑣(∐𝑇(𝐴𝑛)) 
or ∏𝑇(𝐴𝑛)/𝒰 accordingly. Suppose that the conclusion of the theorem is false for 𝛴 ⊂
𝑇(𝐴). Then, by the Hahn–Banach theorem, there are 𝜏 in 𝑇(𝐴) and a self-adjoint element 

𝑎0 in 𝐴 such that 𝛾: = 𝜏 (𝑎0) − 𝑠𝑢𝑝𝜎∈𝛴 𝜎(𝑎0) > 0. Let 𝛼 = (| 𝑖𝑛𝑓𝜎∈𝛴𝜎(𝑎0)| − 𝜏 (𝑎0)) ∨ 0, 

and take 𝑏 ∈ 𝐴+ such that 𝜏 (𝑏) = 𝛼 and ‖𝑏‖ < 𝛼 + 𝛾. It follows that 𝑎 = 𝑎0 + 𝑏 satisfies 

𝑠𝑢𝑝𝜎∈𝛴|𝜎(𝑎)| < 𝜏(𝑎). Now, expand 𝑎 ∈ 𝐴 as (𝑎𝑛)𝑛. We may assume that ‖𝑎𝑛‖ ≤ ‖𝑎‖ for 

all 𝑛. Let 𝐼 ∈ 𝒰 (or 𝐼 = ℕ in case 𝐴 = ∏𝐴𝑛) be such that 𝜀0: = 𝑠𝑢𝑝𝑛∈𝐼 𝑠𝑢𝑝𝜎∈𝑇(𝐴𝑛) 𝜎(𝑎𝑛) <

𝜏(𝑎). Let 𝑅 ∈ ℕ be such that 𝜀1: = 𝜀0 +  𝐶‖𝑎‖𝑅
−1/2 < 𝜏(𝑎). Then, by Theorem (6.2.5), for 

each 𝑛 ∈ 𝐼 there are 𝑏𝑛(𝑟), 𝑐𝑛(𝑟) ∈ 𝐴𝑛 such that ∑ ‖𝑏𝑛(𝑟)‖‖𝑐𝑛(𝑟)‖
𝑅
𝑟=1 ≤  𝐶‖𝑎‖ and 

‖𝑎𝑛 − ∑ [𝑏𝑛(𝑟), 𝑐𝑛(𝑟)]
𝑅
𝑟=1 ‖  ≤ 𝜀1. It follows that for 𝑏(𝑟) = (𝑏𝑛(𝑟))𝑛 and 𝑐(𝑟) =

(𝑐𝑛(𝑟))𝑛 ∈ 𝐴, one has 

𝜏(𝑎) = 𝜏 (𝑎 −∑[𝑏(𝑟), 𝑐(𝑟)]

𝑅

𝑟=1

) ≤ ‖𝑎 −∑[𝑏(𝑟), 𝑐(𝑟)]

𝑅

𝑟=1

‖ < 𝜏(𝑎), 

which is a contradiction. This proves the first half of the theorem. 

    For the second half, let 𝜏 and 𝐵 be given. Take a dense sequence (𝑥(𝑖))𝑖=0
∞  in 𝐵 and 

expand them as 𝑥(𝑖) = (𝑥𝑛(𝑖))𝑛. By the first half, for every 𝑚, there is (𝜏𝑛
(𝑚)
)𝑛 ∈ ∏𝑇(𝐴𝑛) 

such that |𝜏(𝑥(𝑖)) − 𝜏𝒰
(𝑚)
(𝑥(𝑖))| < 𝑚−1 for 𝑖 = 0, . . . , 𝑚. Let                      

       𝐼𝑚 = {𝑛 ∈ ℕ: |𝜏 (𝑥(𝑖)) − 𝜏𝑛
(𝑚)
(𝑥𝑛(𝑖))| < 𝑚

−1 for all 𝑖 = 0, . . . ,𝑚} ∈ 𝒰  

(so 𝐼0 = ℕ), and 𝐽𝑚 = ⋂ 𝐼𝑙
𝑚
𝑙=0 ∈ 𝒰. We define 𝜏𝑛 to be 𝜏𝑛

(𝑚)
 for 𝑛 ∈ 𝐽𝑚\ 𝐽𝑚+1. It is not too 

hard to check 𝜏 = 𝜏𝒰  on  𝐵.  

In passing, we record the following fact. 

Lemma (6.2.7)[454]:     Let 𝐴 be a (non-separable) 𝐶∗-algebra and 𝑋 ⊂ 𝐴 be a separable 

subset. Then there is a separable 𝐶∗-subalgebra 𝐵 ⊂ 𝐴 that contains 𝑋 and such that the 

restriction from 𝑇(𝐴) to 𝑇(𝐵) is onto. 

Proof. We may assume that 𝐴 is unital. We first claim that for every 𝑥1, . . . , 𝑥𝑛 ∈ 𝐴 and 𝜀 >
0, there is a separable 𝐶∗-subalgebra 𝐶 which satisfies the following property: for every 𝜏 ∈
𝑇(𝐶) there is 𝜎 ∈ 𝑇(𝐴) such that max 𝑖 |𝜏(𝑥𝑖) − 𝜎(𝑥𝑖)| < 𝜀. Indeed if this were not true, 

then for every 𝐶 there is 𝜏𝐶 ∈ 𝑇(𝐶) such that max 𝑖 |𝜏𝐶(𝑥𝑖) − 𝜎(𝑥𝑖)| ≥ 𝜀 for all 𝜎 ∈ 𝑇(𝐴). 
The set of separable 𝐶∗-subalgebras of 𝐴 is upward directed and one can find a limit point 

𝜏 of  {𝜏𝐶}. Then, we arrive at a contradiction that 𝜏 ∈ 𝑇(𝐴) satisfies max 𝑖 |𝜏(𝑥𝑖) − 𝜎(𝑥𝑖)| ≥
𝜀 for all 𝜎 ∈ 𝑇(𝐴). We next claim that for every separable 𝐶∗-subalgebra 𝐵0 ⊂ 𝐴, there is a 

separable 𝐶∗-subalgebra 𝐵1 ⊂ 𝐴 that contains 𝐵0 and such that 𝑅𝑒𝑠𝐵0𝑇(𝐵1) = 𝑅𝑒𝑠𝐵0𝑇(𝐴) 

in 𝑇(𝐵0), where Res is the restriction map. Take a dense sequence 𝑥1, 𝑥2, … in 𝐵0, and let 

𝐶0 = 𝐵0. By the previous discussion, there is an increasing sequence of separable 𝐶∗-
subalgebras 𝐶0 ⊂ 𝐶1 ⊂ ··· such that for every 𝜏 ∈ 𝑇(𝐶𝑛) there is 𝜎 ∈ 𝑇(𝐴) satisfying 

|𝜏(𝑥𝑖) − 𝜎(𝑥𝑖)| < 𝑛
−1 for 𝑖 = 1, . . . , 𝑛. Now, letting 𝐵1 = ⋃ 𝐶𝑛𝑛

̅̅ ̅̅ ̅̅ ̅̅  and we are done. Finally, 
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we iterate this construction and obtain 𝑋 ⊂ 𝐵0 ⊂ 𝐵1 ⊂ ⋯ such that 𝑅𝑒𝑠𝐵𝑛𝑇(𝐵𝑛+1) =

𝑅𝑒𝑠𝐵𝑛𝑇(𝐴). The separable 𝐶∗-subalgebra 𝐵 = ⋃𝐵𝑛̅̅ ̅̅ ̅̅  satisfies the desired property.  

Murphy [327] presents a non-separable example of a unital non-simple 𝐶∗-algebra with a 

unique faithful tracial state and asks whether a separable example of such exists. The above 

lemma answers it. There is another example, which is moreover nuclear. Kirchberg [323] 

proves that the Cuntz algebra 𝒪∞ (or any other unital separable exact 𝐶∗-algebra) is a 

subquotient of the 𝐶𝐴𝑅 algebra 𝕄2∞. Namely, there are 𝐶∗-subalgebras 𝐽 and 𝐵 in 𝕄2∞ 

such that 𝐽 is hereditary in 𝕄2∞ and is an ideal in 𝐵 such that 𝐵/𝐽 = 𝒪∞. It follows that 𝐵 

is a unital separable nuclear non-simple 𝐶∗-algebra with a unique faithful tracial state.  

    Recall 𝑆 ⊂ 𝑇(𝐴), 𝑁 = (⊕𝜏∈𝑆 𝜋𝜏)(𝐴)′′, and the center-valued trace 𝑐𝑡𝑟: 𝑁 → 𝑍(𝑁). 
Since 𝑆 is a closed face of 𝑇(𝐴), any normal tracial state on 𝑁 restricts to a tracial state on 

𝐴 which belongs to 𝑆. Hence, one has 

‖𝑎‖2,𝑆 = sup {‖𝑎‖2,𝜏: 𝜏 ∈ 𝑆} = sup {‖𝑎‖2,𝜏: 𝜏 ∈ 𝜕𝑆} = ‖𝑐𝑡𝑟(𝑎
∗𝑎)‖1/2. 

Since 𝑆 is a metrizable closed face of the Choquet simplex  𝑇(𝐴), it is also a Choquet 

simplex and there is a canonical one-to-one correspondence 

𝑆 ∋ 𝜏 ⟷ 𝜇𝜏 ∈ 𝑀+
1(𝜕𝑆), 𝜏(𝑎) = ∫𝜆(𝑎) 𝑑𝜇𝜏(𝜆)  𝑓𝑜𝑟 𝑎 ∈ 𝐴. 

    By uniqueness of the representing measure  𝜇𝜏 , this correspondence is an affine 

transformation and extends uniquely to a linear order isomorphism between their linear 

spans. 

Lemma (6.2.8)[454]:     For every  𝜏 ∈ 𝑆, there is a normal ∗-isomorphism 𝜃𝜏: 𝐿
∞(𝜕𝑆, 𝜇𝜏) →

𝑍(𝜋𝜏(𝐴)′′) such that 

𝜏(𝜃𝜏(𝑓)𝑎) = ∫𝑓(𝜆)𝜆(𝑎) 𝑑𝜇𝜏 (𝜆) 

for 𝑎 ∈ 𝐴. 

Proof. Let 𝑓 ∈ 𝐿∞(𝜕𝑆, 𝜇𝜏) be given. The right hand side of the claimed equality defines a 

tracial linear functional on 𝐴 whose modulus is dominated by a scalar multiple of  𝜏. Hence, 

by Sakai’s Radon–Nikodym theorem, there is a unique 𝜃𝜏(𝑓) ∈ 𝑍(𝜋𝜏(𝑁)) that satisfies the 

claimed equality. This defines a unital normal positive map 𝜃𝜏 from 𝐿∞(𝜕𝑆, 𝜇𝜏) into 

𝑍(𝜋𝜏(𝐴)′′). Next, let 𝑧 ∈ 𝑍(𝜋𝜏(𝑁))+ be given. Then, the tracial linear functional 𝑧𝜏 on 𝐴 

defined by (𝑧𝜏)(𝑎) = 𝜏 (𝑎𝑧) is dominated by  ‖𝑧‖𝜏 . Hence one has 𝜇𝑧𝜏 ≤ ‖𝑧‖𝜇𝜏 and 𝑧 =
𝜃𝜏(𝑑𝜇𝑧𝜏/𝑑𝜇𝜏) with 𝑑𝜇𝑧𝜏/𝑑𝜇𝜏 ∈ 𝐿

∞(𝜕𝑆, 𝜇𝜏). 
This proves 𝜃𝜏 is a positive linear isomorphism such that 𝜇𝜃𝜏(𝑓)𝜏 = 𝑓𝜇𝜏. 

Therefore, one has 𝜇𝜃𝜏 (𝑓𝑔)𝜏 = 𝑓𝑔𝜇𝜏 = 𝑓𝜇𝜃𝜏(𝑔)𝜏  = 𝜇𝜃𝜏(𝑓)𝜃𝜏(𝑔)𝜏 , which proves 𝜃𝜏(𝑓𝑔) =

𝜃𝜏(𝑓)𝜃𝜏(𝑔).  
Theorem (6.2.9)[454]:    Let 𝐴, 𝑆, and 𝑁 be as above. Then, there is a unital ∗-
homomorphism 𝜃: 𝐵(𝜕𝑆) → 𝑍(𝑁) with ultraweakly dense range such that 𝜃(�̂�) = 𝑐𝑡𝑟(𝑎) 
and 

𝜏 (𝜃(𝑓)𝑎) = ∫𝑓(𝜆)𝜆(𝑎) 𝑑𝜇𝜏(𝜆) = ∫𝑓�̂�𝑑𝜇𝜏 

for every 𝑎 ∈ 𝐴 and 𝜏 ∈ 𝑆. One has 

�̅�𝑠𝑡 = {𝑥 ∈ 𝑁: 𝑐𝑡𝑟(𝑥𝐴) ⊂ 𝜃(𝐴𝑓𝑓(𝑆)), 𝑐𝑡𝑟(𝑥∗𝑥) ∈ 𝜃(𝐴𝑓𝑓(𝑆))}. 
In particular, 

�̅�𝑠𝑡 ∩ 𝑍(𝑁) = {𝜃(𝑓): 𝑓 ∈ 𝑍(𝐴𝑓𝑓(𝑆))}.  
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Proof. We first find the ∗-homomorphism 𝜃: 𝐵(𝜕𝑆) → 𝑍(𝑁) that satisfies 

𝜏(𝜃(𝑓)𝑎) = ∫𝑓(𝜆)𝜆(𝑎) 𝑑𝜇𝜏(𝜆)  

for every 𝑎 ∈ 𝐴 and 𝜏 ∈ 𝑆, or equivalently, 𝜋𝜏(𝜃(𝑓)) = 𝜃𝜏(𝑓) in 𝜋𝜏(𝐴)′′. For this, it suffices 

to show that the maps  𝜃𝜏|𝐵(𝜕𝑆), given in Lemma (6.2.9), are compatible over 𝜏 ∈ 𝑆. We 

recall that associated with the representation 𝜋𝜏, there is a unique central projection 𝑝𝜏 ∈
𝑍(𝑁) such that (1 − 𝑝𝜏)𝑁 = 𝑘𝑒𝑟𝜋𝜏. Since  𝑝𝜏 ∨ 𝑝𝜎 =  𝑝(𝜏+𝜎)/2, the family {𝑝𝜏: 𝜏 ∈ 𝑆} is 

upward directed and 𝑠𝑢𝑝𝜏𝑝𝜏 = 1. We will show that if 𝜏 and 𝜎 are such that 𝜏 ≤ 𝐶𝜎 for 

some 𝐶 > 1, then 𝜃𝜏(𝑓) =  𝑝𝜏𝜃𝜎(𝑓) in 𝑍(𝑁). We note that 𝑝𝜏 is the support projection of 

 𝑑𝜏/𝑑𝜎 ∈ 𝑍(𝑁). For every 𝑓 ∈ 𝐵(𝜕𝑆), one has 

𝜎(𝜃𝜎(
𝑑𝜇𝜏
𝑑𝜇𝜎

𝑓)𝑎) = ∫(
𝑑𝜇𝜏
𝑑𝜇𝜎

𝑓)(𝜆)𝜆(𝑎) 𝑑𝜇𝜎(𝜆) 

               = ∫𝑓(𝜆)𝜆(𝑎)𝑑𝜇𝜏(𝜆) 

                                                                     = 𝜏(𝜃𝜏(𝑓)𝑎) 

                                                                    = 𝜎(
𝑑𝜏

𝑑𝜎
𝜃𝜏 (𝑓)𝑎). 

This implies 𝜃𝜎(
𝑑𝜇𝜏

𝑑𝜇𝜎
𝑓) =

𝑑𝜏

𝑑𝜎
𝜃𝜏(𝑓) for every 𝑓. In particular, 𝜃𝜎(

𝑑𝜇𝜏

𝑑𝜇𝜎
) =

𝑑𝜏

𝑑𝜎
 and 𝑝𝜏𝜃𝜎(𝑓) =

𝜃𝜎(𝑓) in  𝑍(𝑁). Therefore, we may glue {𝜃𝜏}𝜏∈𝑆  together and obtain a globally defined ∗-
homomorphism 𝜃: 𝐵(𝜕𝑆) → 𝑍(𝑁). Since 𝜏(𝜃(�̂�)) = ∫ �̂�(𝜆) 𝑑𝜇𝜏(𝜆) = 𝜏 (𝑎) for every 𝜏 ∈
𝑆, one has 𝜃(�̂�) = 𝑐𝑡𝑟(𝑎) for every 𝑎 ∈ 𝐴. This proves the first part of the theorem. 

For the second part, it suffices to prove 

�̅�𝑠𝑡 ⊃ {𝑥 ∈ 𝑁: 𝑐𝑡𝑟(𝑥𝐴) ⊂ 𝐴𝑓𝑓(𝜕𝑆), 𝑐𝑡𝑟(𝑥∗𝑥) ∈ 𝐴𝑓𝑓(𝜕𝑆)}, 
as the converse inclusion is trivial. Take 𝑥 from the set in the right hand side. We will prove 

a stronger assertion that if a net (𝑏𝑗)𝑗 in 𝐴 converges to 𝑥 ultrastrongly in 𝑁, then 𝑥 is 

contained in the strict closure of the convex hull of {𝑏𝑗: 𝑗}. We note that 𝐴𝑓𝑓(𝑆) ∋ 𝑓 ⟼

𝑓|𝜕𝑆 ∈ 𝐴𝑓𝑓(𝜕𝑆) is an affine order isomorphism and that every positive norm-one linear 

functional 𝜇 on 𝐴𝑓𝑓(𝑆) is given by the evaluation at a point 𝜏𝜇 ∈ 𝑆. (Indeed by the Hahn–

Banach theorem, we may regard 𝜇 as a state on  𝐶(𝑆), which is a probability measure on 𝑆 

by the Riesz–Markov theorem. The point 𝜏𝜇 = ∫𝜆𝑑𝜇(𝜆) satisfies 𝑓(𝜏𝜇) = 𝜇(𝑓) for 𝑓 ∈

𝐴𝑓𝑓(𝑆).) Thus, one has 𝑐𝑡𝑟((𝑏𝑗 − 𝑥)
∗(𝑏𝑗 − 𝑥)) → 0 weakly in 𝐴𝑓𝑓(𝜕𝑆). Therefore, by the 

Hahn–Banach theorem, for every 𝜀 > 0 there is a finite sequence 𝛼𝑗 ≥ 0, ∑𝛼𝑗 = 1 such that 

‖∑ 𝛼𝑗 𝑐𝑡𝑟((𝑏𝑗 − 𝑥)
∗(𝑏𝑗 − 𝑥))𝑗 ‖ < 𝜀. By reindexing, we assume  𝑗 = 1, . . . , 𝑘. Let 𝑏 =

∑𝛼𝑗𝑏𝑗 . We note that 

𝑏 = [𝛼1
1/2
· · ·  𝛼𝑚

1/2
] [
𝛼1
1/2
𝑏1
⋮

𝛼𝑚
1/2
𝑏𝑚

] =: 𝑟𝑐. 

Hence, 𝑏∗𝑏 = 𝑐∗𝑟∗𝑟𝑐 ≤ ‖𝑟‖2𝑐∗𝑐 = ∑𝛼𝑗𝑏𝑗
∗𝑏𝑗  . It follows that 

𝑐𝑡𝑟((𝑏 − 𝑥)∗(𝑏 − 𝑥)) = 𝑐𝑡𝑟(𝑏∗𝑏 − 𝑏∗𝑥 − 𝑥∗𝑏 + 𝑥∗𝑥) 
                                          ≤ 𝑐𝑡𝑟(∑ 𝛼𝑗𝑏𝑗

∗𝑏𝑗 − ∑𝛼𝑗𝑏𝑗
∗𝑥 − 𝑥∗∑𝛼𝑗𝑏𝑗 + 𝑥

∗𝑥) 
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                                   = 𝑐𝑡𝑟(∑𝛼𝑗(𝑏𝑗 − 𝑥)
∗(𝑏𝑗 − 𝑥)) 

                                   < 𝜀. 
This proves the claimed inclusion. The last assertion will be proved in more general setting 

as Theorem (6.2.10).  

   Let 𝐾 be a metrizable compact Hausdorff topological space. We call 𝑀 a (tracial) 

continuous 𝑊∗-bundle over 𝐾 if the following axiom hold: 

(a) There is a unital positive faithful tracial map 𝐸: 𝑀 → 𝐶(𝐾). 
(b) The closed unit ball of 𝑀 is complete with respect to the uniform 2-norm 

‖𝑥‖2,𝑢 = ‖𝐸(𝑥
∗𝑥)1/2‖. 

(c) 𝐶(𝐾) is contained in the center of 𝑀 and 𝐸 is a conditional expectation. 

In case 𝑀 satisfies only conditions (a) and (b), we say it is a continuous quasi-𝑊∗-bundle. 

If we denote by 𝜋𝐸 the 𝐺𝑁𝑆 representation of 𝑀 on the Hilbert 𝐶(𝐾)-module 𝐿2(𝑀, 𝐸), 
condition (b) is equivalent to that 𝜋𝐸(𝑀) is strictly closed in 𝔹(𝐿2(𝑀, 𝐸)). For each point 

𝜆 ∈ 𝐾, we denote by 𝜋𝜆 the 𝐺𝑁𝑆 representation for the tracial state 𝜏𝜆: = 𝑒𝑣𝜆 ∘ 𝐸, and also  

‖𝑥‖2,𝜆 = 𝜏𝜆(𝑥
∗𝑥)1/2. We call each 𝜋𝜆(𝑀) a fiber of 𝑀. A caveat is in order: the system 

(𝑀, 𝐾, 𝜋𝜆(𝑀)) need not be a continuous 𝐶∗-bundle because 𝑘𝑒𝑟 𝜋𝜆 may not coincide with 

𝐶0(𝐾 \ {𝜆})𝑀 rather it coincides with the strict closure of that. In particular, for 𝑥 ∈ 𝑀, the 

map 𝜆 ⟼ ‖𝜋𝜆(𝑥)‖ need not be upper semi-continuous (but it is lower semi-continuous). A 

continuous quasi-𝑊∗-bundle over 𝑆, and by Theorem (6.2.3), it is a continuous 𝑊∗-bundle 

over 𝜕𝑆 if 𝜕𝑆 is closed in 𝑆. Conversely, if each fiber 𝜋𝜆(𝑀) is a factor, then 𝐾 can be 

viewed as a closed subset of the extreme boundary of 𝑇(𝑀) and hence the closed convex 

hull 𝑆 of 𝐾 is a metrizable closed face of 𝑇(𝑀) such that 𝜕𝑆 = 𝐾. 

Theorem (6.2.10)[454]:     Let 𝑀 be a continuous 𝑊∗-bundle over 𝐾. Then, 𝜋𝜆(𝑀) =
𝜋𝜆(𝑀)′′ for every 𝜆 ∈ 𝐾. Moreover, if a bounded function 𝑓: 𝐾 ∋ 𝜆 ⟼ 𝑓(𝜆) ∈ 𝜋𝜆(𝑀) is 

continuous in the following sense: for every 𝜆0 ∈ 𝐾 and 𝜀 > 0, there are a neighborhood 𝑂 

of 𝜆0 and 𝑐 ∈ 𝑀 such that 

𝑠𝑢𝑝𝜆∈𝑂‖𝜋𝜆(𝑐) − 𝑓(𝜆)‖2,𝜆 < 𝜀; 

then there is 𝑎 ∈ 𝑀 such that 𝜋𝜆(𝑎) = 𝑓(𝜆). 
Proof. Let 𝜆 ∈ 𝐾 be given. By Pedersen’s up-down theorem (Theorem (2.4.4) in [328]), it 

suffices to show that 𝜋𝜆(𝑀) is closed in 𝜋𝜆(𝑀)′′ under monotone sequential limits. Let 

(𝑥𝑛)𝑛=0
∞  be an increasing sequence in 𝜋𝜆(𝑀)+ such that 𝑥𝑛 ↗ 𝑥 in 𝜋𝜆(𝑀)′′. We may assume 

that ‖𝑥𝑛 − 𝑥‖2,𝜆 < 2
−𝑛. We lift (𝑥𝑛)𝑛=0

∞  to an increasing sequence (𝑎𝑛)𝑛=0
∞  in 𝑀 such that 

𝑎𝑛 ≤ ‖𝑥‖ + 1. Let 𝑏𝑛 = 𝑎𝑛 − 𝑎𝑛−1 for 𝑛 ≥ 1. Since 𝜏𝜆(𝑏𝑛
∗𝑏𝑛) < 4

−𝑛+2, there is 𝑓𝑛 ∈
𝐶(𝐾)+ such that 0 ≤ 𝑓𝑛 ≤ 1, 𝑓𝑛(𝜆) = 1, and 𝐸(𝑏𝑛

∗𝑏𝑛)𝑓𝑛
2 ≤ 4−𝑛+2. It follows that the series 

𝑎0 + ∑ 𝑏𝑛𝑓𝑛
∞
𝑛=1  is convergent in the uniform 2-norm. Moreover, since 𝑎0 + ∑ 𝑏𝑘𝑓𝑘

𝑛
𝑘=1 ≤

𝑎0 + ∑ 𝑏𝑘
𝑛
𝑘=1 = 𝑎𝑛 ≤ ‖𝑥‖ + 1, the series is norm bounded. Therefore, the series converges 

in 𝑀, by the completeness of the closed unit ball of 𝑀. The limit point 𝑎 satisfies 𝜋𝜆(𝑎) =
𝑥. 

    We prove the second half. Let us fix 𝑛 for a while. For each 𝜆, there is 𝑏𝜆 ∈ 𝑀 such that 

‖𝑏𝜆‖ ≤ ‖𝑓(𝜆)‖ and 𝜋𝜆(𝑏𝜆) = 𝑓(𝜆). By continuity, there is a neighborhood 𝑂𝜆 of 𝜆 such 

that ‖𝜋𝜏(𝑏𝜆) − 𝑓(𝜏 )‖2,𝜏 < 𝑛
−1 for 𝜏 ∈ 𝑂𝜆. Since 𝐾 is compact, it is covered by a finite 

family {𝑂𝜆𝑖}. Let 𝑔𝑖 ∈ 𝐶(𝐾) ⊂ 𝑍(𝑀) be a partition of unity subordinated by it. Then, 𝑎𝑛: =

∑ 𝑔𝑖𝑏𝜆𝑖𝑖 ∈ 𝑀 satisfies ‖𝑎𝑛‖ ≤  ‖𝑓‖∞ and 𝑠𝑢𝑝𝜏‖𝜋𝜏(𝑎𝑛) − 𝑓(𝜏)‖2,𝜏 < 𝑛
−1.  



 

248 

 

     It follows that (𝑎𝑛) is a norm bounded and Cauchy in the uniform 2-norm. Hence it 

converges to 𝑎 ∈ 𝑀 such that 𝜋𝜆(𝑎) = 𝑓(𝜆) for every 𝜆 ∈ 𝐾.  

The following is a 𝑊∗-analogue of the result for 𝐶∗-algebras in [299], and is essentially the 

same as Proposition (7.7) in [324]. 

Corollary (6.2.11)[454]:      Let 𝑀 be a continuous 𝑊∗-bundle over 𝐾. Assume that each 

fiber 𝜋𝜆(𝑀) has the McDuff property and that 𝐾 has finite covering dimension. Then, for 

every 𝑘, there is an approximately central approximately multiplicative embedding of 𝕄𝑘 

into 𝑀, namely a net of unital completely positive maps 𝜑𝑛: 𝕄𝑛 → 𝑀 such that 

lim sup 𝑛‖𝜑𝑛(𝑥𝑦) − 𝜑𝑛(𝑥)𝜑𝑛(𝑦)‖2,𝑢 = 0 and lim sup 𝑛‖[𝜑𝑛(𝑥), 𝑎]‖2,𝑢 = 0 for every 

𝑥, 𝑦 ∈ 𝕄𝑘 and 𝑎 ∈ 𝑀. 
Proof.  The proof is particularly easy when 𝐾 is zero-dimensional: Since 𝜋𝜆(𝑀) is McDuff, 

there is an approximately central embedding of 𝕄𝑘 into 𝜋𝜆(𝑀). We lift it to a unital 

completely positive map 𝜓𝜆: 𝕄𝑘 → 𝑀. It is almost multiplicative on a neighborhood 𝑂𝜆 of  

𝜆. Since 𝐾 is compact and zero-dimensional, there is a partition of 𝐾 into finitely many 

clopen subsets {𝑉𝑖} such that 𝑉𝑖 ⊂ 𝑂𝜆𝑖 . By Theorem (6.2.10), one can define 𝜑:𝕄𝑘 → 𝑀 by 

the relation 𝜋𝜆 ∘ 𝜑 = 𝜋𝜆 ∘ 𝜓𝜆𝑖  for 𝜆 ∈ 𝑉𝑖. The case 0 < 𝑑𝑖𝑚𝐾 < +∞  is more complicated 

but follows from a standard argument involving orderzero maps. See [324] (or [332, 335]).  

Every separable hyperfinite von Neumann algebra with a faithful normal tracial state has a 

trace preserving embedding into the separable hyperfinite II1 factor 𝑅. We consider 

coordinatization of such embeddings for strictly separable fiberwise hyperfinite continuous 

quasi-𝑊∗-bundle. We define the 𝐶∗-algebra 𝐶𝜎(𝐾, 𝑅) to be the subalgebra of ℓ∞(𝐾, 𝑅) 
which consists of those norm-bounded functions 𝑓: 𝐾 → 𝑅 that are continuous from 𝐾 into 

𝐿2(𝑅, 𝜏𝑅). 
     Recall the fact that if (𝐴, 𝜏) is a separable hyperfinite von Neumann algebra with a 

distinguished tracial state, then a trace-preserving embedding of 𝐴 into the tracial ultrapower 

𝑅𝜔 of the hyperfinite II1 factor is unique up to unitary conjugacy (see [322]). For every 𝑛-

tuples 𝑥1, . . . , 𝑥𝑛 ∈ 𝑃 and 𝑦1 , . . . , 𝑦𝑛 ∈ 𝑄 in hyperfinite II1 factors 𝑃 and 𝑄, we define 

𝑑({𝑥𝑖}𝑖=1
𝑛 , {𝑦𝑖}𝑖=1

𝑛 ) = inf 𝜋,𝜌max
𝑖
‖𝜋(𝑥𝑖) − 𝜌(𝑦𝑖)‖2 , 

where the infimum runs over all trace-preserving embeddings of 𝑃 and 𝑄 into 𝑅𝜔. Then, 𝑑 

is a pseudo-metric and it depends on (𝑊∗({𝑥1, . . . , 𝑥𝑛}), 𝜏), i.e., the joint distribution of 

{𝑥1, . . . , 𝑥𝑛} with respect to 𝜏𝑃, rather than the specific embedding of 𝑊∗({𝑥1, . . . , 𝑥𝑛}) into 

𝑃. Once ∗-isomorphisms 𝑃 ≅ 𝑄 ≅ 𝑅 are fixed, 𝑃 and 𝑄 are embedded into 𝑅𝜔 as constant 

sequences and 

𝑑({𝑥𝑖}𝑖=1
𝑛 , {𝑦𝑖}𝑖=1

𝑛 ) = inf 𝑈∈𝒰(𝑅𝜔)max
𝑖
‖𝐴𝑑𝑈(𝑥𝑖) − 𝑦𝑖‖2 . 

It follows that 

𝑑({𝑥𝑖}𝑖=1
𝑛 , {𝑦𝑖}𝑖=1

𝑛 ) = inf 𝜋max
𝑖
‖𝜋(𝑥𝑖) − 𝑦𝑖‖2 , 

where infimum runs over all trace-preserving ∗-homomorphisms 𝜋 from 𝑊∗({𝑥1, . . . , 𝑥𝑛}) 
into 𝑄, or over all ∗-isomorphisms 𝜋 from 𝑃 onto 𝑄. If 𝑀 is a continuous quasi-𝑊∗-bundle, 

then for every 𝑎1, . . . , 𝑎𝑛 ∈ 𝑀, the map 

𝐾 ∋ 𝜆 ⟼ {𝜋𝜆(𝑎𝑖)}𝑖=1
𝑛  

is continuous with respect to 𝑑. 

Lemma (6.2.12)[454]:      Let 𝑁 = 𝐶𝜎(𝐾, 𝑅) or any other continuous 𝑊∗-bundle over 𝐾 

such that 𝑒𝑣𝜆(𝑁) ≅ 𝑅 for every 𝜆 ∈ 𝐾 and such that for every 𝑘 ∈ ℕ there is an 
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approximately central approximately multiplicative embedding of 𝕄𝑘 into 𝑁. Let 𝑀 be a 

continuous quasi-𝑊∗-bundle over 𝐾 such that 𝜋𝜆(𝑀)′′ is hyperfinite for every 𝜆 ∈ 𝐾, and 

let 𝐹0 ⊂ 𝐹1 be finite subsets in the unit ball of 𝑀 and 𝜀 > 0. Assume that there is a map 𝜃0 
from 𝐹0 into the unit ball of  𝑁 such that 

sup 𝜆∈𝐾 𝑑({𝜋𝜆(𝑎)}𝑎∈𝐹0 , {𝑒𝑣𝜆(𝜃0(𝑎))}𝑎∈𝐹0) < 𝜀.  

Then, for every 𝛿 > 0, there is a map 𝜃1 from 𝐹1 into the unit ball of 𝑁 such that 

sup 𝜆∈𝐾 𝑑({𝜋𝜆(𝑎)}𝑎∈𝐹1  , {𝑒𝑣𝜆(𝜃1(𝑎))}𝑎∈𝐹1) < 𝛿 

and 

max
𝑎∈𝐹0

‖𝜃1(𝑎) − 𝜃0(𝑎)‖2,𝑢 < 𝜀. 

Here the symbol 𝑒𝑣𝜆, instead of  𝜋𝜆, is used for the 𝑁 side to make a distinction from the 𝑀 

side. 

Proof. For each 𝜆, there is a trace-preserving embedding 𝜌𝜆: 𝜋𝜆(𝑀) → 𝑒𝑣𝜆(𝑁). By the 

remarks preceding this lemma, we may assume that 

max
𝑎∈𝐹0

‖𝜌𝜆(𝜋𝜆(𝑎)) − 𝑒𝑣𝜆(𝜃0(𝑎))‖2 < 𝜀. 

For each 𝑎 ∈ 𝐹1, we lift (𝜌𝜆 ∘ 𝜋𝜆)(𝑎) ∈ 𝑒𝑣𝜆(𝑁) to 𝑎𝜆 ∈ 𝑁 with ‖𝑎𝜆‖ ≤ 1. 

There is a neighborhood 𝑂𝜆 of 𝜆 such that 𝜏 ∈ 𝑂𝜆 implies 

𝑑({𝜋𝜏(𝑎)}𝑎∈𝐹1  , {𝑒𝑣𝜏(𝑎
𝜆)}𝑎∈𝐹1) < 𝛿 

and 

max
𝑎∈𝐹0

‖𝑒𝑣𝜏(𝑎
𝜆) − 𝑒𝑣𝜏(𝜃0(𝑎))‖2 < 𝜀. 

By compactness, 𝐾 is covered by a finite family {𝑂𝜆𝑗}. Take a partition of unity 𝑔𝑗 ∈ 𝐶(𝐾) 

subordinated by {𝑂𝜆𝑗}. Let ℎ0 = 0 and ℎ𝑗 = ∑ 𝑔𝑖
𝑗
𝑖=1 . For each 𝑘, take an approximately 

central approximately multiplicative embedding 𝜑𝑘,𝑛 of 𝕄𝑘 into 𝑁. Since the closed unit 

ball of  𝕄𝑘 is norm-compact, one has 

∀𝑎 ∈ 𝑁 lim
𝑛
sup  sup {‖[𝜑𝑘,𝑛(𝑥), 𝑎]‖2,𝑢: 𝑥 ∈ 𝕄𝑘 , ‖𝑥‖ ≤ 1} = 0. 

For 𝑡 ∈ [0, 1], we define 𝑝𝑡 ∈ 𝕄𝑘 to be diag(1, . . . , 1, 𝑡 − ⌊𝑡⌋, 0, . . . , 0), with 1𝑠 in the first 

⌊𝑡⌋ diagonal entries, 𝑡 − ⌊𝑡⌋ in the (⌊𝑡⌋ + 1)-th entry, and 0𝑠  
in the rest. It follows that 𝑡 ⟼ 𝑝𝑡 is continuous, 0 ≤ 𝑝𝑡 ≤ 1, 𝑡𝑟(𝑝𝑡) = 𝑡, and 𝜏(𝑝𝑡 − 𝑝𝑡

2) ≤
(4𝑘)−1. We write 𝑝[𝑠,𝑡] = 𝑝𝑡 − 𝑝𝑠. With the help of Theorem (6.2.10), we define 𝑓𝑘,𝑛,𝑗 ∈ 𝑁 

to be the element such that 

𝑒𝑣𝜆(𝑓𝑘,𝑛,𝑗) = 𝑒𝑣𝜆(𝜑𝑘,𝑛(𝑝[ℎ𝑗−1(𝜆),ℎ𝑗(𝜆)])). 

For 𝑎 ∈ 𝐹1, we define 𝜃1
𝑘,𝑛(𝑎) ∈ 𝑁 by 𝜃1

𝑘,𝑛(𝑎) = ∑ 𝑓𝑘,𝑛,𝑗
1/2
𝑎𝜆𝑗𝑓𝑘,𝑛,𝑗

1/2
𝑗 . Since 𝐹1

′: = 𝐹1 ∪

{𝑎𝜆𝑗 : 𝑎 ∈ 𝐹1,𝑗} is finite, it is not too hard to see 

lim
𝑘
sup lim

𝑛
supmax

𝑎∈𝐹0
‖𝜃1

𝑘,𝑛(𝑎) − 𝜃0(𝑎)‖2,𝑢 < 𝜀. 

It remains to estimate 

𝑑({𝜋𝜏(𝑎)}𝑎∈𝐹1 , {𝑒𝑣𝜏(𝜃1
𝑘,𝑛(𝑎))}𝑎∈𝐹1). 

    Let 𝑘 be fixed for the moment. Since (𝜑𝑘,𝑛)𝑛 is approximately multiplicative, there are 

unital ∗-homomorphisms 𝜓𝑘,𝑛
𝜏 : 𝕄𝑘 → 𝑒𝑣𝜏(𝑁) such that 

lim
𝑛
sup sup𝜏 sup𝑥∈𝕄𝑘,‖𝑥‖≤1‖𝑒𝑣𝜏 ∘ 𝜑𝑘,𝑛(𝑥) − 𝜓𝑘,𝑛

𝜏 (𝑥)‖
2
= 0. 
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   Let 𝐸𝑘,𝑛
𝜏  be the trace-preserving conditional expectation from 𝑒𝑣𝜏(𝑁) onto the relative 

commutant 𝜓𝑘,𝑛
𝜏 (𝕄𝑘)′ ∩ 𝑒𝑣𝜏(𝑁), which is given by 𝐸𝑘,𝑛

𝜏 (𝑏) =

|𝐺|−1∑ 𝜓𝑘,𝑛
𝜏 (𝑢)𝑏𝜓𝑘,𝑛

𝜏 (𝑢)∗𝑢∈𝐺  for the group 𝐺 of permutation matrices in 𝒰(𝕄𝑘). It follows 

that 

lim
𝑛
sup sup𝜏‖𝑒𝑣𝜏(𝑏) − 𝐸𝑘,𝑛

𝜏 (𝑒𝑣𝜏(𝑏))‖2 = 0 

for every 𝑏 ∈ 𝑁. This implies 

lim
𝑛
sup sup𝑗,𝜏∈𝑂𝜆𝑗

𝑑({𝜋𝜏(𝑎)}𝑎∈𝐹1  , {𝐸𝑘,𝑛
𝜏 (𝑒𝑣𝜏(𝑎

𝜆𝑗))}𝑎∈𝐹1) < 𝛿, 

𝑙𝑖𝑚
𝑛
𝑠𝑢𝑝 𝑠𝑢𝑝𝑗,𝜏∈𝑂𝜆𝑗

𝑑({𝑒𝑣𝜏(𝑎
𝜆𝑗)}𝑎∈𝐹1  , {𝐸𝑘,𝑛

𝜏 (𝑒𝑣𝜏(𝑎
𝜆𝑗))}𝑎∈𝐹1) =  0, 

and 

lim
𝑛
sup sup𝑗,𝜏∈𝑂𝜆𝑗

𝑑({𝑒𝑣𝜏(𝜃1
𝑘,𝑛(𝑎))}𝑎∈𝐹1 , 

{∑𝜓𝑘,𝑛
𝜏 (𝑝[ℎ𝑗−1(𝜆),ℎ𝑗(𝜆)])𝐸𝑘,𝑛

𝜏 (𝑒𝑣𝜏(𝑎
𝜆𝑗))

𝑗

}𝑎∈𝐹1) = 0.  

If we view 𝑒𝑣𝜏(𝑁) = 𝕄𝑘(𝜓𝑘,𝑛
𝜏 (𝕄𝑘)′ ∩ 𝑒𝑣𝜏(𝑁)), then 𝑎′ = 𝐸𝑘,𝑛

𝜏 (𝑒𝑣𝜏(𝑎)) looks like 

𝑑𝑖𝑎𝑔(𝑎′, 𝑎′, . . . , 𝑎′), and 𝜓𝑘,𝑛
𝜏 (𝑝𝑡) looks like 𝑑𝑖𝑎𝑔(1, . . . , 1, 𝑡 − ⌊𝑡⌋, 0 . . . , 0). Hence, one has 

sup 𝜏 𝑑({𝜋𝜏(𝑎)}𝑎∈𝐹1 , {∑𝜓𝑘,𝑛
𝜏 (𝑝[ℎ𝑗−1(𝜆),ℎ𝑗(𝜆)])𝐸𝑘,𝑛

𝜏 (𝑒𝑣𝜏(𝑎
𝜆𝑗))

𝑗

}𝑎∈𝐹1)
2 

<
2 |{𝑂𝜆𝑗}|

𝑘
+∑𝑔𝑗(𝜏 )𝑑({𝜋𝜏(𝑎)}𝑎∈𝐹1

𝑗

, {𝐸𝑘,𝑛
𝜏 (𝑒𝑣𝜏(𝑎

𝜆𝑗))}𝑎∈𝐹1)
2. 

Altogether, one has 

lim
𝑘
sup lim

𝑛
sup sup𝜏 𝑑({𝜋𝜏(𝑎)}𝑎∈𝐹1  , {𝑒𝑣𝜏(𝜃1

𝑘,𝑛(𝑎))}𝑎∈𝐹1) < 𝛿. 

Therefore, for some 𝑘, 𝑛, the map 𝜃1 = 𝜃1
𝑘,𝑛

 satisfies the desired properties.  

Theorem (6.2.13)[454]:      Let 𝑀 be a strictly separable continuous quasi-𝑊∗- bundle over 

𝐾 such that 𝜋𝜆(𝑀)′′ is hyperfinite for every 𝜆 ∈ 𝐾. Then, there are an embedding 𝜃:𝑀 ↪
𝐶𝜎(𝐾, 𝑅) and embeddings 𝜄𝜆: 𝜋𝜆(𝑀) ↪ 𝑅 such that 𝑒𝑣𝜆 ∘ 𝜃 = 𝜄𝜆 ∘ 𝜋𝜆. If 𝑀 is moreover a 

continuous 𝑊∗-bundle, then one has 

𝜃(𝑀) = {𝑓 ∈ 𝐶𝜎(𝐾, 𝑅): 𝑓(𝜆) ∈ (𝜄𝜆 ∘ 𝜋𝜆)(𝑀)′′}.   
Proof .  Let (𝑎𝑛)𝑛=1

∞  be a strictly dense sequence in the unit ball of  𝑀. We use Lemma 

(6.2.14) recursively and obtain sequences ({𝜃𝑛(𝑎𝑖)}𝑛=1
∞ )𝑛=1

∞  in 𝐶𝜎(𝐾, 𝑅) such that 

sup 𝜆 𝑑({𝑒𝑣𝜆(𝜃𝑛(𝑎𝑖))}𝑖=1
𝑛 , {𝜋𝜆(𝑎𝑖)}𝑖=1

𝑛 ) < 2−𝑛 
and 

max
𝑖=1,...,𝑛−1

‖𝜃𝑛(𝑎𝑖) − 𝜃𝑛−1(𝑎𝑖)‖2,𝑢 < 2
−(𝑛−1). 

Then, each sequence (𝜃𝑛(𝑎𝑖))𝑛=𝑖
∞  converges to an element 𝜃(𝑎𝑖) ∈ 𝐶𝜎(𝐾, 𝑅). The map 𝜃 

extends to a ∗-homomorphism from 𝑀 into 𝐶𝜎(𝐾, 𝑅), and 𝑒𝑣𝜆 ∘ 𝜃 factors through 𝜋𝜆. This 

proves the first assertion. The second follows from Theorem (6.2.10).  

We give a criterion for a continuous 𝑅-bundle to be a trivial bundle. 

Theorem (6.2.14)[454]:      Let 𝑀 be a strictly separable continuous 𝑊∗-bundle over 𝐾 such 

that 𝜋𝜆(𝑀) ≅ 𝑅 for every 𝜆 ∈ 𝐾. Then, the following are equivalent. 

(i) 𝑀 ≅ 𝐶𝜎(𝐾, 𝑅) as a continuous 𝑊∗-bundle.  
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(ii) There is a sequence (𝑝𝑛)𝑛 in 𝑀 such that 0 ≤ 𝑝𝑛 ≤ 1, ‖𝑝𝑛 − 𝑝𝑛
2‖2,𝑢 →  0, ‖𝐸(𝑝𝑛) −

1/2‖ → 0, and ‖[𝑝𝑛, 𝑎]‖2,𝑢 → 0 for all 𝑎 ∈ 𝑀. 

(iii) For every 𝑘, there is an approximately central approximately multiplicative embedding 

of 𝕄𝑘 into 𝑀. 

Proof. The implication (i) ⇒ (ii) is obvious. For (ii) ⇒ (iii), we observe that since 𝜋𝜆(𝑀)’s 

are all factors, the central sequence (𝑝𝑛)𝑛 satisfies ‖𝐸(𝑝𝑛𝑎) − 𝐸(𝑝𝑛)𝐸(𝑎)‖ → 0 for every 

𝑎 ∈ 𝑀. Indeed, let 𝑎 ∈ 𝑀 and 𝜀 > 0 be given. By the Dixmier approximation theorem and 

the proof of Theorem (6.2.6), there are 𝑢1, . . . , 𝑢𝑘 ∈ 𝒰(𝑀) such that ‖𝐸(𝑎) −
1

𝑘
∑ 𝑢𝑖𝑎𝑢𝑖

∗𝑘
𝑖=1 ‖

2,𝑢
< 𝜀. It follows that 

lim
𝑛→∞

sup‖𝐸(𝑝𝑛)𝐸(𝑎) − 𝐸(𝑝𝑛𝑎)‖ = lim
𝑛→∞

sup ‖𝐸(𝑝𝑛𝐸(𝑎)) −
1

𝑘
∑𝐸(𝑢𝑖𝑝𝑛𝑎𝑢𝑖

∗)

𝑘

𝑖=1

‖  

                                                        = lim
𝑛→∞

sup ‖𝐸(𝑝𝑛(𝐸(𝑎) −
1

𝑘
∑𝑢𝑖𝑎𝑢𝑖

∗

𝑘

𝑖=1

))‖  

                                                                       < 𝜀. 
    Let 𝑚 ∈ ℕ be arbitrary. For a given finite sequence (𝑝𝑛)𝑛=1

𝑚 , 0 ≤ 𝑝𝑖 ≤ 1, and 𝜈 ∈
{0, 1}𝑚, we define 𝑞𝑣 ∈ 𝑀 by 

𝑞𝑣 = 𝑟1
1/2
· · ·  𝑟𝑚−1

1/2
𝑟𝑚𝑟𝑚−1

1/2
· · ·  𝑟1

1/2
∈ 𝑀, 

where 𝑟𝑖 = 𝑝𝑖 or 1 − 𝑝𝑖 depending on 𝜈(𝑖) ∈ {0, 1}. We note that 𝑞𝑣 ≥ 0 and ∑𝑞𝑣 = 1. By 

choosing (𝑝𝑛)𝑛=1
𝑚  appropriately, we obtain an approximately central approximately 

multiplicative embedding of ℓ∞({0, 1}
𝑚) into  𝑀. Now, condition (iii) follows by choosing 

at the local level approximately central approximately multiplicative embeddings of  𝕄𝑘 

into 𝜋𝜆(𝑀) and glue them together, as in the proof  of  Lemma (6.2.14), by an approximately 

central approximately projective partition of unity. 

The proof of (iii) ⇒ (i) is similar to that of Theorem (6.2.17). Let (𝑎𝑛)𝑛=1
∞  (resp. (𝑏𝑛)𝑛=1

∞ ) 

be a strictly dense sequence in the unit ball of 𝑀 (resp. 𝐶𝜎(𝐾, 𝑅)). We recursively construct 

finite subsets 𝐹1 ⊂ 𝐹2 ⊂ ⋯ of 𝑀 and maps 𝜃𝑛: 𝐹𝑛 → 𝐶𝜎(𝐾, 𝑅) such that {𝑎1, . . . , 𝑎𝑛} ⊂ 𝐹𝑛, 

sup 𝜆 𝑑({𝑒𝑣𝜆(𝜃𝑛(𝑎))}𝑎∈𝐹𝑛 , {𝜋𝜆(𝑎)}𝑎∈𝐹𝑛) < 2
−𝑛,  

max
𝑎∈𝐹𝑛−1

‖𝜃𝑛(𝑎) − 𝜃𝑛−1(𝑎)‖2,𝑢 < 2
−(𝑛−1), 

and {𝑏1, . . . , 𝑏𝑛} ⊂ 𝜃𝑛(𝐹𝑛). Let 𝐹0 = ∅ and suppose that we have constructed up to 𝑛 − 1.       

Let 𝐹𝑛
′ = 𝐹𝑛

′ ∪ {𝑎𝑛}. We use Lemma  (6.2.14) and obtain a map 𝜃𝑛
′ : 𝐹𝑛

′ → 𝐶𝜎(𝐾, 𝑅) such that 

sup 𝜆 𝑑({𝑒𝑣𝜆(𝜃𝑛
′ (𝑎))}𝑎∈𝐹𝑛′ , {𝜋𝜆(𝑎)}𝑎∈𝐹𝑛′) < 2

−(𝑛+1) 

and 

max
𝑎∈𝐹𝑛−1

‖𝜃𝑛
′ (𝑎) − 𝜃𝑛−1(𝑎)‖2,𝑢 < 2

−(𝑛−1). 

We may assume that 𝜃𝑛
′  is injective and 𝜃𝑛

′ (𝐹𝑛
′) does not contain any of  𝑏1, . . . , 𝑏𝑛. We use 

Lemma (6.2.14) again but this time to 𝜃𝑛
′ (𝐹𝑛

′) ⊂ �̃�: = 𝜃𝑛
′ (𝐹𝑛

′) ∪ {𝑏1, . . . , 𝑏𝑛} and (𝜃𝑛
′ )−1. 

Then, there is 𝜓: �̃� → 𝑀 such that 

sup 𝜆 𝑑({𝜋𝜆(𝜓(𝑏))}𝑏∈�̃� , {𝑒𝑣𝜆(𝑏)}𝑏∈�̃�) < 2
−(𝑛+1) 

and 

max
𝑎∈𝐹𝑛

′
‖𝑎 − 𝜓(𝜃𝑛

′ (𝑎))‖2,𝑢 < 2
−(𝑛+1). 
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Now, we set 𝐹𝑛 = 𝐹𝑛
′ ∪ {𝜓(𝑏1), . . . , 𝜓(𝑏𝑛)} (which can be assumed to be a disjoint union) 

and define 𝜃𝑛: 𝐹𝑛 → 𝐶𝜎(𝐾, 𝑅) by 𝜃𝑛 = 𝜃𝑛
′  on 𝐹𝑛

′ and 𝜃𝑛(𝜓(𝑏𝑖)) = 𝑏𝑖. One has 

sup 𝜆 𝑑({𝑒𝑣𝜆(𝜃𝑛(𝑎))}𝑎∈𝐹𝑛 , {𝜋𝜆(𝑎)}𝑎∈𝐹𝑛) 

≤ sup 𝜆(𝑑({𝑒𝑣𝜆(𝑏)}𝑏∈�̃� , {𝜋𝜆(𝜓(𝑏))}𝑏∈�̃�) + max
𝑎∈𝐹𝑛

′
‖𝜋𝜆(𝜓(𝜃𝑛

′ (𝑎))) − 𝜋𝜆(𝑎)‖2) 

           < 2−𝑛 
as desired. By taking the limit of  (𝜃𝑛)𝑛, one obtains a ∗-isomorphism 𝜃 from 𝑀 onto 

𝐶𝜎(𝐾, 𝑅). 
  By combining Corollary (6.2.11) and Theorem (6.2.13), one obtains the following 𝑊∗-

analogue of Theorem (6.2.2) in [309]. This also implies Theorem (6.2.3). It is unclear 

whether the finite-dimensionality assumption is essential.  

Corollary (6.2.15)[445]:      Let 𝑀 be a strictly separable continuous 𝑊∗-bundle over 𝐾. If 

every fiber 𝜋𝜆(𝑀) is isomorphic to 𝑅 and 𝐾 has finite covering dimension, then 𝑀 ≅
𝐶𝜎(𝐾, 𝑅) as a continuous 𝑊∗-bundle.  

Corollary (6.2.16)[462]:        For a unital 𝐶∗-algebra 𝐴, the following are equivalent. 

(i) The 𝐶∗-algebra 𝐴 has the 𝑄𝑇𝑆 property. 

(ii) For every 𝜀 > 0 and 𝑎𝑠 ∈ 𝐴 that satisfy 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏(𝑎
𝑠)| < 𝜀, there are 𝑘 and 

𝑢1
2, . . . , 𝑢𝑘

2 ∈ 𝒰(𝐴) such that ‖
1

𝑘
∑ 𝑢𝑖

2𝑎𝑠(𝑢𝑖
∗)2𝑘

𝑖=1 ‖ < 𝜀. 

Unlike the case for von Neumann algebras, there is no bound of 𝑘 in terms of 𝜀 and  

‖𝑎𝑠‖ that works for an arbitrary element 𝑎𝑠 in a 𝐶∗-algebra. Recall that a Banach algebra 𝐴 

is said to be amenable if there is a net (𝛥𝑛)𝑛, called an approximate diagonal, in the algebraic 

tensor product 𝐴⊗ℂ 𝐴 (we reserve the symbol ⊗ for the minimal tensor product) such that 

(a)   𝑠𝑢𝑝𝑛‖𝛥𝑛‖^ < +∞, 

(b)   (𝑚(𝛥𝑛))𝑛  is an approximate identity, 

(c)   lim 𝑛‖𝑎
𝑠 · 𝛥𝑛 − 𝛥𝑛 · 𝑎

𝑠‖^ = 0  for  every 𝑎𝑠 ∈ 𝐴. 

Here ‖ · ‖^ is the projective norm on 𝐴⊗ℂ 𝐴,𝑚: 𝐴 ⊗ℂ 𝐴 → 𝐴 is the multiplication, and 𝑎𝑠 ·
 (∑ 𝑥𝑖

2⊗𝑦𝑖
2

𝑖 ) = ∑ 𝑎𝑠𝑥𝑖
2⊗𝑦𝑖

2
𝑖  and (∑  𝑥𝑖

2⊗𝑦𝑖
2

𝑖 ) · 𝑎𝑠 = ∑ 𝑥𝑖
2⊗𝑦𝑖

2𝑎𝑠𝑖 . The celebrated 

theorem of Connes–Haagerup [307, 314] states that a 𝐶∗-algebra 𝐴 is amenable as a Banach 

algebra if and only if it is nuclear. The Banach algebra 𝐴 is said to be symmetrically 

amenable ([321]) if the approximate diagonal (𝛥𝑛)𝑛 can be taken symmetric under the flip 

𝑥2⊗𝑦2 → 𝑦2⊗ 𝑥2. We characterize symmetric amenability for 𝐶∗-algebras.  

Proof.  𝐴𝑑 (i) ⇒ (ii). Although the proof becomes a bit shorter if we use Theorem(6.2.4) in 

[317], we give here a more direct proof of this implication. Let 𝑎𝑠 ∈ 𝐴 and 𝜀 > 0 be given 

as in condition (ii). Let 𝜀0 = 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏 (𝑎
𝑠)| < 𝜀. We decompose the second dual von 

Neumann algebra 𝐴∗∗ into the finite summand 𝐴𝑓
∗∗ and the properly infinite summand 𝐴∞

∗∗. 

We denote the corresponding embedding of 𝐴 by 𝜋𝑓 and 𝜋∞, and the center-valued trace of 

𝐴𝑓
∗∗ by ctr. We note that ‖𝑐𝑡𝑟(𝜋𝑓(𝑎

𝑠))‖ = 𝜀0. By the Dixmier approximation theorem, there 

are 𝑣1
2, . . . , 𝑣𝑘

2 ∈  𝒰(𝐴𝑓
∗∗) such that ‖𝑐𝑡𝑟(𝜋𝑓(𝑎

𝑠)) −
1

𝑘
𝜋𝑓(𝑎

𝑠)(𝑣𝑖
∗)2‖ < 𝜀 − 𝜀0. On the other 

hand, by Halpern’s theorem ([314]), there are 𝑤1
2, . . . , 𝑤𝑘

2 ∈ 𝑈(𝐴∞
∗∗) such that 

‖
1

𝑙
∑ 𝑤𝑖

2 𝜋∞(𝑎
𝑠)(𝑤𝑖

∗)2𝑙
𝑗=1 ‖ < 𝜀. Before giving the detail of the proof of this fact, we finish 

the proof of (i) ⇒ (ii). By allowing multiplicity, we may assume that 𝑘 = 𝑙 and consider 

𝑢𝑖
2 = 𝑣𝑖

2⊕𝑤𝑖
2 ∈ 𝐴∗∗. Then, ‖

1

𝑘
∑ 𝑢𝑖

2𝑎𝑠𝑘
𝑖=1 (𝑢𝑖

∗)2‖ < 𝜀 in 𝐴∗∗. For each 𝑖, take a net 
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(𝑢𝜆𝑠
2 )𝑖  (𝜆𝑠) of unitary elements in 𝐴 which converges to 𝑢1

2 ∈ 𝐴∗∗ in the ultrastrong∗-

topology. By the Hahn-Banach theorem, 𝑐𝑜𝑛𝑣{
1

𝑘
∑ 𝑢𝑖

2(𝜆𝑠)𝑎
𝑠𝑘

𝑖=1 ((𝑢𝑖
∗)2(𝜆𝑠))}𝜆𝑠  contains an 

element of norm less than 𝜀. 
   Now, we explain how to apply Halpern’s theorem. Let 𝑍 (resp. 𝐼) be the center (resp. 

strong radical) of 𝐴∞
∗∗. Let 𝛬 be the directed set of all finite partitions of unity by projections 

in 𝑍, and 𝜆𝑠 = {(𝑝𝜆𝑠)𝑖}𝑖 ∈ 𝛬 be given. 

   Applying the 𝑄𝑇𝑆 property to the non-zero ∗-homomorphism 𝐴 ∋ 𝑥2⟼

(𝑝𝜆𝑠)𝑖
(𝜋∞(𝑥

2) + 𝐼) ∈ (𝑝𝜆𝑠)𝑖((𝜋∞(𝐴) + 𝐼)/𝐼), one obtains a (tracial) state (𝜏𝜆𝑠)𝑖  on 

𝜋∞(𝐴) + 𝐼 such that (𝜏𝜆𝑠)𝑖((𝑝𝜆𝑠)𝑖) = 1, (𝜏𝜆𝑠)𝑖(𝐼) = 0, and |(𝜏𝜆𝑠)𝑖(𝜋∞(𝑎
𝑠))| ≤ 𝜀0. Let 

(�̃�𝜆𝑠)𝑖 be a state extension of it on (𝑝𝜆𝑠)𝑖  𝐴∞
∗∗. We define the linear map 𝜑𝜆𝑠 : 𝐴∞

∗∗ → 𝑍 by 

𝜑𝜆𝑠(𝑥
2) = ∑ (�̃�𝜆𝑠)𝑖(𝑥

2)(𝑝𝜆𝑠)𝑖𝑖 , and take a limit point 𝜑: 𝐴∞
∗∗ → 𝑍. The map 𝜑 is a unital 

positive 𝑍-linear map such that 𝜑(𝐼) = 0 and ‖𝜑(𝜋∞(𝑎
𝑠))‖ ≤ 𝜀0. By Halpern’s theorem 

(Theorem 4.12 in [314]), the norm-closed convex hull of the unitary conjugations of 𝜋∞(𝑎
𝑠) 

contains 𝜑(𝜋∞(𝑎
𝑠)). 

𝐴𝑑 (ii) ⇒ (i). Suppose that there is a closed two-sided proper ideal 𝐼 in 𝐴 such that 𝐴/𝐼 does 

not have a tracial state. Let 𝑒𝑛 be the approximate unit of  𝐼. Then, one has 𝜏(1 − 𝑒𝑛) ↘ 0 

for every 𝜏 ∈ 𝑇(𝐴). By Dini’s theorem, there is 𝑛 such that 𝑞 = 1 − 𝑒𝑛 satisfies 𝜏(𝑞) < 1/2 

for all 𝜏 ∈ 𝑇(𝐴). By condition (ii), there are 𝑢1
2 , . . . , 𝑢𝑘

2 ∈ 𝒰(𝐴) such that 

‖
1

𝑘
∑ 𝑢𝑖

2𝑞(𝑢𝑖
∗)2𝑘

𝑖=1 ‖ < 1/2, which is in contradiction with the fact that 
1

𝑘
∑ 𝑢𝑖

2𝑞(𝑢𝑖
∗)2𝑘

𝑖=1 ∈

1 + 𝐼. 
Corollary (6.2.17)[462]:       For a unital 𝐶∗-algebra 𝐴, the following are equivalent. 

(i) The 𝐶∗-algebra 𝐴 is nuclear and has the 𝑄𝑇𝑆 property. 

(ii) The 𝐶∗-algebra 𝐴 has an approximate diagonal 𝛥𝑛 = ∑ (𝑥𝑖
∗)2(𝑛) ⊗ 𝑥𝑖

2(𝑛)
𝑘(𝑛)
𝑖=1  such that 

       lim 𝑛∑ ‖𝑥𝑖
2(𝑛)‖

2𝑘(𝑛)
𝑖=1 = 1,𝑚(𝛥𝑛) = 1, and lim 𝑛 ‖1 − ∑ 𝑥𝑖

2(𝑛)(𝑥𝑖
∗)2(𝑛)

𝑘(𝑛)
𝑖=1 ‖ = 0.  

(iii) The 𝐶∗-algebra 𝐴 is symmetrically amenable. 

(iv) The 𝐶∗-algebra 𝐴 has a symmetric approximate diagonal (𝛥𝑛)𝑛 in 

{∑(𝑥𝑖
∗)2⊗ 𝑥𝑖

2

𝑖

∈ 𝐴 ⊗ℂ 𝐴:∑‖𝑥𝑖
2‖
2

𝑖

≤ 1}. 

Proof.  The implication (iv) ⇒ (iii) is obvious and (iii) ⇒ (i) is standard: Since amenability 

implies nuclearity by Connes’s theorem [307], we only have to prove the 𝑄𝑇𝑆 property.    

Let (𝛥𝑛)𝑛 be a symmetric approximate diagonal and define 𝑚∆(𝑎
𝑠) = ∑ 𝑥𝑖

2𝑎𝑠𝑦𝑖
2

𝑖  for 𝛥 =
∑ 𝑥𝑖

2⊗𝑦𝑖
2

𝑖 ∈ 𝐴⊗ℂ 𝐴 and 𝑎𝑠 ∈ 𝐴. Then, for any proper ideal 𝐼 in 𝐴 and a state 𝜑 on 𝐴 such 

that 𝜑(𝐼) = 0, any limit point 𝜏 of (𝜑 ∘ 𝑚𝛥𝑛)𝑛 is a bounded trace such that 𝜏(𝐼) = 0 and 

𝜏(1) = 1. By polar decomposition, one obtains a tracial state on 𝐴 which vanishes on 𝐼. 
   We prove the implication (i) ⇒ (ii) ⇒ (iv). Since 𝐴 is nuclear, it is amenable thanks to 

Haagerup’s theorem (Theorem 3.1 in [314]). Moreover, there is an approximate diagonal 

(𝛥𝑛
′ )𝑛 in the convex hull of {(𝑥∗)2⊗ 𝑥2: ‖𝑥2‖ ≤ 1}. We note that 𝜀𝑛: = ‖1 −𝑚(𝛥𝑛

′ )‖ →
0. We fix 𝑛 for the moment and write 𝛥𝑛

′ = ∑ (𝑥𝑖
∗)2⊗ 𝑥𝑖

2
𝑖 . By replacing  𝑥𝑖

2 with 

𝑥𝑖
2𝑚(𝛥𝑛

′ )−1/2, we may assume 𝑚(𝛥𝑛
′ ) = 1 but ∑ ‖𝑥𝑖

2‖
2

𝑖 ≤ (1 − 𝜀𝑛)
−1. Since 

𝜏(∑ 𝑥𝑖
2

𝑖 (𝑥𝑖
∗)2) = 1 for all 𝜏 ∈ 𝑇(𝐴), Theorem (6.2.1) provides 𝑢1

2 , . . . , 𝑢𝑖
2 ∈ 𝒰(𝐴) such that 



 

254 

 

‖
1

𝑙
∑ ∑ 𝑢𝑗

2𝑥𝑖
2(𝑥𝑖

∗)2(𝑢𝑗
∗)2𝑖

𝑙
𝑗=1 ‖ ≤ 1 + 𝜀𝑛. Thus, 𝛥𝑛 =

1

𝑙
∑ (𝑥𝑖

∗)2(𝑢𝑗
∗)2𝑖,𝑗 ⊗𝑢𝑗

2𝑥𝑖
2 satisfies 

condition(ii).Now, rewrite 𝛥𝑛 as ∑ (𝑦𝑖
∗)2⊗𝑦𝑖

2
𝑖 . Then, 𝛥𝑛

# = (∑ ‖𝑦𝑖
2‖
2

𝑖 )−2∑ (𝑦𝑖
∗)2 𝑦𝑗

2
𝑖,𝑗 ⊗

(𝑦𝑗
∗)2 𝑦𝑗

2 is a symmetric approximate diagonal that meets condition (iv).  

Corollary (6.2.18)[462]:  Let 𝐴, 𝑆, and 𝑁 be as above. Then, there is a unital ∗-
homomorphism 𝜃: 𝐵(𝜕𝑆) → 𝑍(𝑁) with ultraweakly dense range such that 𝜃(�̂�𝑠) = 𝑐𝑡𝑟(𝑎𝑠) 
and 

𝜏 (𝜃(𝑓)𝑎𝑠) = ∫𝑓(𝜆𝑠) 𝜆𝑠(𝑎
𝑠) 𝑑𝜇𝜏(𝜆𝑠) = ∫𝑓(�̂�)

𝑠𝑑𝜇𝜏 

for every 𝑎𝑠 ∈ 𝐴 and 𝜏 ∈ 𝑆. One has 

�̅�𝑠𝑡 = {𝑥2 ∈ 𝑁: 𝑐𝑡𝑟(𝑥2𝐴) ⊂ 𝜃(𝐴𝑓𝑓(𝑆)), 𝑐𝑡𝑟((𝑥∗)2 𝑥2) ∈ 𝜃(𝐴𝑓𝑓(𝑆))}. 
In particular, 

�̅�𝑠𝑡 ∩ 𝑍(𝑁) = {𝜃(𝑓): 𝑓 ∈ 𝑍(𝐴𝑓𝑓(𝑆))}.  
If 𝜕𝑆 is closed, then for every  𝜏 ∈ 𝜕𝑆, one has 𝜋𝜏(�̅�

𝑠𝑡) = 𝜋𝜏(𝑁) = 𝜋𝜏(𝐴)′′. 
Proof.   We first find the ∗-homomorphism 𝜃: 𝐵(𝜕𝑆) → 𝑍(𝑁) that satisfies 

𝜏(𝜃(𝑓)𝑎𝑠) = ∫𝑓(𝜆𝑠) 𝜆𝑠(𝑎
𝑠) 𝑑𝜇𝜏(𝜆𝑠)  

for every 𝑎𝑠 ∈ 𝐴 and 𝜏 ∈ 𝑆, or equivalently, 𝜋𝜏(𝜃(𝑓)) = 𝜃𝜏(𝑓) in 𝜋𝜏(𝐴)′′. For this, it 

suffices to show that the maps 𝜃𝜏|𝐵(𝜕𝑆), given in Lemma (6.2.9), are compatible over 𝜏 ∈ 𝑆. 

We recall that associated with the representation 𝜋𝜏, there is a unique central projection 𝑝𝜏 ∈
𝑍(𝑁) such that (1 − 𝑝𝜏)𝑁 = 𝑘𝑒𝑟𝜋𝜏. Since  𝑝𝜏 ∨ 𝑝𝜎𝑠 =  𝑝(𝜏+𝜎𝑠)/2, the family {𝑝𝜏: 𝜏 ∈ 𝑆} is 

upward directed and 𝑠𝑢𝑝𝜏𝑝𝜏 = 1. We will show that if 𝜏 and 𝜎𝑠 are such that 𝜏 ≤ 𝐶𝜎𝑠 for 

some 𝐶 > 1, then 𝜃𝜏(𝑓) =  𝑝𝜏𝜃𝜎𝑠(𝑓) in 𝑍(𝑁). We note that 𝑝𝜏 is the support projection of 

𝑑𝜏/𝑑𝜎𝑠 ∈ 𝑍(𝑁). For every 𝑓 ∈ 𝐵(𝜕𝑆), one has 

𝜎𝑠(𝜃𝜎𝑠(
𝑑𝜇𝜏
𝑑𝜇𝜎𝑠

𝑓)𝑎𝑠) = ∫(
𝑑𝜇𝜏
𝑑𝜇𝜎𝑠

𝑓)(𝜆𝑠)𝜆𝑠(𝑎
𝑠) 𝑑𝜇𝜎𝑠(𝜆𝑠) 

                     = ∫𝑓(𝜆𝑠)𝜆𝑠(𝑎
𝑠) 𝑑𝜇𝜏(𝜆𝑠) 

                                                                      = 𝜏(𝜃𝜏(𝑓)𝑎
𝑠) 

           = 𝜎𝑠(
𝑑𝜏

𝑑𝜎𝑠
𝜃𝜏 (𝑓)𝑎

𝑠). 

This implies 𝜃𝜎𝑠(
𝑑𝜇𝜏

𝑑𝜇𝜎𝑠
𝑓) =

𝑑𝜏

𝑑𝜎𝑠
𝜃𝜏(𝑓) for every 𝑓. In particular, 𝜃𝜎𝑠(

𝑑𝜇𝜏

𝑑𝜇𝜎𝑠
) =

𝑑𝜏

𝑑𝜎𝑠
 and 

𝑝𝜏𝜃𝜎𝑠(𝑓) = 𝜃𝜎𝑠(𝑓) in 𝑍(𝑁). Therefore, we may glue {𝜃𝜏}𝜏∈𝑆 together and obtain a globally 

defined ∗-homomorphism 𝜃: 𝐵(𝜕𝑆) → 𝑍(𝑁). Since 𝜏(𝜃(�̂�)𝑠) = ∫(�̂�)𝑠(𝜆𝑠) 𝑑𝜇𝜏(𝜆𝑠) =
𝜏 (𝑎𝑠) for every  𝜏 ∈ 𝑆, one has 𝜃((�̂�)𝑠) = 𝑐𝑡𝑟(𝑎𝑠) for every 𝑎𝑠 ∈ 𝐴. This proves the first 

part of the theorem. 

   For the second part, it suffices to prove 

�̅�𝑠𝑡 ⊃ {𝑥2 ∈ 𝑁: 𝑐𝑡𝑟(𝑥2𝐴) ⊂ 𝐴𝑓𝑓(𝜕𝑆), 𝑐𝑡𝑟((𝑥∗)2 𝑥2) ∈ 𝐴𝑓𝑓(𝜕𝑆)}, 
as the converse inclusion is trivial. Take 𝑥2 from the set in the right hand side. We will prove 

a stronger assertion that if a net (𝑏𝑗 
𝑠)𝑗 in 𝐴 converges to 𝑥2 ultrastrongly in 𝑁, then 𝑥2 is 

contained in the strict closure of the convex hull of {𝑏𝑗 
𝑠: 𝑗}. We note that 𝐴𝑓𝑓(𝑆) ∋ 𝑓 ⟼

𝑓|𝜕𝑆 ∈ 𝐴𝑓𝑓(𝜕𝑆) is an affine order isomorphism and that every positive norm-one linear 
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functional 𝜇 on 𝐴𝑓𝑓(𝑆) is given by the evaluation at a point  𝜏𝜇 ∈ 𝑆. (Indeed by the Hahn–

Banach theorem, we may regard 𝜇 as a state on 𝐶(𝑆), which is a probability measure on 𝑆 

by the Riesz–Markov theorem. The point 𝜏𝜇 = ∫𝜆𝑠 𝑑𝜇(𝜆𝑠) satisfies 𝑓(𝜏𝜇) = 𝜇(𝑓) for  𝑓 ∈

𝐴𝑓𝑓(𝑆).) Thus, one has 𝑐𝑡𝑟((𝑏𝑗 
𝑠 − 𝑥2)

∗
 (𝑏𝑗 

𝑠 − 𝑥2)) → 0 weakly in 𝐴𝑓𝑓(𝜕𝑆). Therefore, by 

the Hahn–Banach theorem, for every 𝜀 > 0 there is a finite sequence (𝛼𝑠)𝑗 ≥ 0, ∑(𝛼𝑠)𝑗 =

1 such that ‖∑ (𝛼𝑠)𝑗  𝑐𝑡𝑟((𝑏𝑗
𝑠 − 𝑥2)

∗
 (𝑏𝑗 

𝑠 − 𝑥2))𝑗 ‖ < 𝜀. By reindexing, we assume  𝑗 =

1, . . . , 𝑘. Let 𝑏𝑠 = ∑(𝛼𝑠)𝑗  𝑏𝑗 
𝑠 . We note that 

𝑏𝑠 = [(𝛼𝑠)1
1/2
· · ·  (𝛼𝑠)𝑚

1/2
] [
(𝛼𝑠)1

1/2
 𝑏1 
𝑠

⋮

(𝛼𝑠)𝑚
1/2
  𝑏𝑚 
𝑠

] =: 𝑟𝑐𝑠 . 

Hence, (𝑏∗)𝑠 𝑏𝑠 = (𝑐∗)𝑠 𝑟∗ 𝑟 𝑐𝑠 ≤ ‖𝑟‖2(𝑐∗)𝑠 𝑐𝑠 = ∑(𝛼𝑠)𝑗(𝑏𝑗
∗)𝑠 𝑏𝑗 

𝑠 . It follows that 

𝑐𝑡𝑟((𝑏𝑠 − 𝑥2)∗(𝑏𝑠 − 𝑥2)) = 𝑐𝑡𝑟((𝑏∗)𝑠 𝑏𝑠 − (𝑏∗)𝑠 𝑥2 − (𝑥∗)2𝑏𝑠 + (𝑥∗)2 𝑥2) 

≤ 𝑐𝑡𝑟(∑(𝛼𝑠)𝑗(𝑏𝑗
∗)𝑠 𝑏𝑗 

𝑠 −∑(𝛼𝑠)𝑗 (𝑏𝑗
∗)𝑠 𝑥2 − (𝑥∗)2∑(𝛼𝑠)𝑗 𝑏𝑗 

𝑠 + (𝑥∗)2 𝑥2) 

           = 𝑐𝑡𝑟(∑(𝛼𝑠)𝑗  (𝑏𝑗 
𝑠 − 𝑥2)∗(𝑏𝑗 

𝑠 − 𝑥2)) 

          < 𝜀. 
This proves the claimed inclusion. The last assertion will be proved in more general setting 

as Theorem (6.2.10).    

Corollary (6.2.09)[462]:       There is a constant 𝐶 > 0 which satisfies the following. 

Let 𝐴 be a 𝐶∗-algebra and 𝑎𝑠 ∈ 𝐴 and  𝜀 > 0 be such that 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏(𝑎
𝑠)| < 𝜀. 

Then, there are 𝑘 ∈ ℕ and  𝑏𝑖
𝑠and 𝑐𝑖

𝑠 in 𝐴 such that ∑ ‖𝑏𝑖
𝑠‖‖𝑐𝑖

𝑠‖𝑘
𝑖=1 ≤ 𝐶‖𝑎𝑠‖ and 

                                              ‖𝑎𝑠 − ∑ [𝑏𝑖
𝑠 , 𝑐𝑖

𝑠]𝑘
𝑖=1 ‖ < 𝜀. 

Proof.  Let 𝑎𝑠 ∈ 𝐴. We denote by ctr the centervalued trace from the second dual von 

Neumann algebra 𝐴∗∗ onto the center 𝑍(𝐴𝑓
∗∗) of the finite summand 𝐴𝑓

∗∗ of 𝐴∗∗. One has 

‖𝑐𝑡𝑟(𝑎𝑠)‖ = 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏(𝑎
𝑠)| < 𝜀 and (𝑎′)𝑠: = 𝑎𝑠 − 𝑐𝑡𝑟(𝑎𝑠) has zero traces. By a 

theorem of Fack and de la Harpe, for 𝐶 =  2 · 122 and 𝑚 = 10, there are 𝑏𝑖
𝑠 , 𝑐𝑖

𝑠 ∈ 𝐴∗∗ such 

that ∑ ‖𝑏𝑖
𝑠‖‖𝑐𝑖

𝑠‖𝑚
𝑖=1 ≤ 𝐶‖𝑎𝑠‖ and  (𝑎′)𝑠 = ∑ [𝑏𝑖

𝑠 , 𝑐𝑖
𝑠]𝑚

𝑖=1 . See [325, 330] for a better estimate 

of 𝐶 and 𝑚. By Kaplansky’s density theorem, there is a net (𝑏𝑖
𝑠(𝜆𝑠))𝜆𝑠 in 𝐴 such that 

‖𝑏𝑖
𝑠(𝜆𝑠)‖ ≤ ‖𝑏𝑖

𝑠‖ and 𝑏𝑖
𝑠(𝜆𝑠) → 𝑏𝑖

𝑠 ultrastrongly. Likewise for (𝑐𝑖
𝑠(𝜆𝑠))𝜆𝑠 . Since 

‖lim
𝜆
(𝑎𝑠 −∑[𝑏𝑖

𝑠(𝜆𝑠), 𝑐𝑖
𝑠(𝜆𝑠)]

𝑚

𝑖=1

)‖ = ‖𝑎𝑠 − (𝑎′)𝑠‖ < 𝜀, 

there is (𝑎′′)𝑠 ∈ 𝑐𝑜𝑛𝑣{∑ 𝑏𝑖
𝑠(𝜆𝑠), 𝑐𝑖

𝑠(𝜆𝑠)]
𝑚
𝑖=1 }𝜆𝑠  which satisfies ‖𝑎𝑠 −  (𝑎′′)𝑠‖ < 𝜀. 

Corollary (6.2.21)[462]:  There is a constant 𝐶 > 0 which satisfies the following. 

Let 𝐴 be an exact 𝑍-stable 𝐶∗-algebra, and 𝜀 > 0 and 𝑎𝑠 ∈ 𝐴 be such that 

𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏(𝑎
𝑠)| < 𝜀. Then, for every 𝑅 ∈ ℕ, there are 𝑏𝑠(𝑟) and 𝑐𝑠(𝑟) in 𝐴 such that 

∑ ‖𝑏𝑠(𝑟)‖‖𝑐𝑠(𝑟)‖𝑅
𝑟=1 ≤ 𝐶‖𝑎𝑠‖ and ‖𝑎𝑠 − ∑ [𝑏𝑠(𝑟), 𝑐𝑠(𝑟)]𝑅

𝑟=1 ‖ < 𝜀 + 𝐶‖𝑎𝑠‖𝑅−1/2. 
Proof.  Let 𝑎𝑠 ∈ 𝐴 \ {0} be such that 𝑠𝑢𝑝𝜏∈𝑇(𝐴)|𝜏(𝑎

𝑠)| < 𝜀. Since 𝑍 ≅ 𝑍⊗∞, we may 

assume that 𝐴 = 𝑍 ⊗ 𝐴0 and 𝑎𝑠 ∈ 𝐴0. By Theorem (6.2.4), there are 𝑏𝑖
𝑠 , 𝑐𝑖

𝑠 such that 

‖𝑏𝑖
𝑠‖ = ‖𝑐𝑖

𝑠‖, ∑ ‖𝑏𝑖
𝑠‖‖𝑐𝑖

𝑠‖𝑘
𝑖=1 ≤ 𝐶‖𝑎𝑠‖, and ‖𝑎𝑠 − ∑ [𝑏𝑖

𝑠 , 𝑐𝑖
𝑠]𝑘

𝑖=1 ‖ < 𝜀. Recall the theorem 
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of Haagerup and Thorbjornsen ([316]) which states that the 𝐶∗-algebra 𝐶 can be embedded 

into ∏𝕄𝑛 /⨁𝕄𝑛. By exactness of  𝐴0, there is a canonical ∗-isomorphism 

(∏𝕄𝑛 /⊕𝕄𝑛) ⊗ 𝐴0 ≅ ((∏𝕄𝑛) ⊗ 𝐴0)/(⊕𝕄𝑛⊗𝐴0). 

Lemma (6.2.5), combined with this fact, implies that there are matrices 𝑠𝑖
(𝑛)
(𝑟) ∈ 𝕄𝑛 such 

that (�̃�(𝑛))𝑠(𝑟) = ∑ 𝑠𝑖
(𝑛)
(𝑟) ⊗ 𝑏𝑖

𝑠𝑘
𝑖=1  and (�̃�(𝑛))𝑠(𝑟) = ∑ 𝑠𝑗

(𝑛)
(𝑟) ⊗ 𝑐𝑗

𝑠𝑘
𝑗=1  satisfy 

lim
𝑛
sup 

1

𝑅
 ∑‖(�̃�(𝑛))𝑠(𝑟)‖‖(�̃�(𝑛))𝑠 , (�̃�(𝑛))𝑠(𝑟)‖

𝑅

𝑟=1

≤ 4∑‖𝑏𝑖
𝑠‖‖𝑐𝑖

𝑠‖ ≤ 4𝐶‖𝑎𝑠‖  

and 

lim
𝑛
sup  ‖1⊗ 𝑎𝑠 −

1

𝑅
∑[(�̃�(𝑛))𝑠(𝑟), (�̃�(𝑛))𝑠(𝑟)]

𝑅

𝑟=1

‖ ≤ 𝜀 +
6𝐶‖𝑎𝑠‖

√𝑅
. 

For every relatively prime 𝑝, 𝑞 ∈ ℕ, the Jiang–Su algebra 𝑍 contains the prime dimension 

drop algebra 

𝐼(𝑝, 𝑞) = {𝑓 ∈ 𝐶([0, 1],𝕄𝑝⊗𝕄𝑞): 𝑓(0) ∈ 𝕄𝑝⊗ℂ1, 𝑓(1) ∈ ℂ1 ⊗𝕄𝑞} 

and hence 𝑡𝕄𝑞 and (1 − 𝑡)𝕄𝑝 also, where 𝑡 ∈ 𝐼(𝑝, 𝑞) is the identity function on [0, 1]. It 

follows that there are 𝑏𝑠(𝑟), 𝑐𝑠(𝑟), (𝑏′)𝑠(𝑟), (𝑐′)𝑠(𝑟) ∈ 𝑍 ⊗ 𝐴0 such that 

1

𝑅
∑(‖𝑏𝑠(𝑟)‖‖𝑐𝑠(𝑟)‖ + ‖(𝑏′)𝑠(𝑟)‖‖(𝑐′)𝑠(𝑟)‖)

𝑅

𝑟=1

< 9𝐶‖𝑎𝑠‖ 

and 

‖𝑎𝑠 −
1

𝑅
∑([𝑏𝑠(𝑟), 𝑐𝑠(𝑟)] + [(𝑏′)𝑠(𝑟), (𝑐′)𝑠(𝑟)])

𝑅

𝑟=1

‖ < 𝜀 +
7𝐶‖𝑎𝑠‖

√𝑅
. 

Here, we note that ‖𝑡 ⊗ 𝑥2 + (1 − 𝑡) ⊗ 𝑦2‖ = max {‖𝑥2‖, ‖𝑦2‖} for any 𝑥2 and  𝑦2. 

Corollary (6.2.20)[462]:   Let 𝑏𝑖
𝑠 , 𝑐𝑖

𝑠 ∈ 𝐴 be such that ‖𝑏𝑖
𝑠‖ = ‖𝑐𝑖

𝑠‖. Then, for every 𝑅 ∈ ℕ, 

letting (˜�̃�)𝑠(𝑟) = ∑ 𝑆𝑖(𝑟) ⊗ 𝑏𝑖
𝑠𝑛

𝑖=1  and (�̃�)𝑠(𝑟) = ∑ 𝑆𝑗(𝑟) ⊗ 𝑐𝑗
𝑠𝑛

𝑗=1  , one has 

1

𝑅
∑‖(�̃�)𝑠(𝑟)‖‖(�̃�)𝑠(𝑟)‖

𝑅

𝑟=1

≤ 4∑‖𝑏𝑖
𝑠‖‖𝑐𝑖

𝑠‖ 

and 

‖1⊗∑[𝑏𝑖
𝑠 , 𝑐𝑖

𝑠]

𝑛

𝑖=1

−
1

𝑅
∑[(�̃�)𝑠(𝑟), (�̃�)𝑠(𝑟)]

𝑅

𝑟=1

‖ ≤
6

√𝑅
∑‖𝑏𝑖

𝑠‖‖𝑐𝑖
𝑠‖

𝑖

.  

Proof. For every 𝑟, one has 

‖(�̃�)𝑠(𝑟)‖ ≤ ‖∑𝑙𝑖(𝑟) ⊗ 𝑏𝑖
𝑠‖ + ‖∑𝑙𝑖

∗(𝑟) ⊗ 𝑏𝑖
𝑠‖ 

= ‖∑(𝑏𝑖
∗)𝑠  𝑏𝑖

𝑠‖
1/2

+ ‖∑𝑏𝑖
𝑠(𝑏𝑖

∗)𝑠 ‖
1/2

≤ 2(∑‖𝑏𝑖
𝑠‖2)1/2, 

and likewise for (�̃�)𝑠(𝑟). It follows that ‖(�̃�)𝑠(𝑟)‖‖(�̃�)𝑠(𝑟)‖ ≤ 4∑‖𝑏𝑖
𝑠‖‖𝑐𝑖

𝑠‖. Moreover, 

(�̃�)𝑠(𝑟)(�̃�)𝑠(𝑟) =∑(𝛿𝑖,𝑗1 + 𝑙𝑖(𝑟)𝑙𝑗(𝑟) + 𝑙𝑖(𝑟)𝑙𝑗
∗(𝑟) + 𝑙𝑖

∗(𝑟)𝑙𝑗
∗(𝑟))

𝑖,𝑗

⊗𝑏𝑖
𝑠𝑐𝑗
𝑠 , 

and 
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‖∑𝑙𝑖(𝑟)𝑙𝑗(𝑟) ⊗ 𝑏𝑖
𝑠 𝑐𝑗

𝑠

𝑟,𝑖,𝑗

‖ = ‖∑(𝑐𝑗
∗)𝑠 (𝑏𝑖

∗)𝑠 𝑏𝑖
𝑠 𝑐𝑗

𝑠

𝑟,𝑖,𝑗

‖

1/2

≤ 𝑅1/2∑‖𝑏𝑖
𝑠‖‖𝑐𝑖

𝑠‖

𝑖

, 

‖∑𝑙𝑖
∗(𝑟) 𝑙𝑗

∗(𝑟) ⊗ 𝑏𝑖
𝑠𝑐𝑗
𝑠

𝑟,𝑖,𝑗

‖  =  ‖∑𝑏𝑖
𝑠𝑐𝑗
𝑠(𝑐𝑗

∗)𝑠 (𝑏𝑖
∗)𝑠 

𝑟,𝑖,𝑗

‖

1/2

≤ 𝑅1/2∑‖𝑏𝑖
𝑠‖‖𝑐𝑖

𝑠‖

𝑖

, 

‖∑𝑙𝑖(𝑟) 𝑙𝑗
∗(𝑟) ⊗ 𝑏𝑖

𝑠𝑐𝑗
𝑠

𝑟,𝑖,𝑗

‖ =  max
𝑟
‖∑𝑙𝑖(𝑟) 𝑙𝑗

∗(𝑟) ⊗ 𝑏𝑖
𝑠𝑐𝑗
𝑠

𝑖,𝑗

‖ ≤∑‖𝑏𝑖
𝑠‖‖𝑐𝑖

𝑠‖

𝑖

. 

Likewise for (�̃�)𝑠(𝑟)(�̃�)𝑠(𝑟), and one obtains the conclusion.   

Corollary (6.2.22)[462]:       Let (𝐴𝑛)𝑛 be a sequence of exact 𝑍-stable 𝐶∗-algebras and 𝒰 

be a free ultrafilter on ℕ. Then, ∏𝑇(𝐴𝑛)/𝒰 (resp. 𝑐𝑜𝑛𝑣∐𝑇(𝐴𝑛)) is weak∗-dense in 

𝑇(∏𝐴𝑛/𝒰) (resp. 𝑇(∏𝐴𝑛)). In particular, for every 𝜏 ∈ 𝑇(∏𝐴𝑛/𝒰) and every separable 

𝐶∗-subalgebra 𝐵 ⊂ ∏𝐴𝑛/𝒰, there is 𝜏′ ∈ ∏𝑇(𝐴𝑛)/𝒰 such that 𝜏|𝐵 =  𝜏′|𝐵. 

Proof.  Let 𝐴 be either ∏𝐴𝑛 or ∏𝐴𝑛/𝒰, and denote by 𝛴 ⊂ 𝑇(𝐴) either 𝑐𝑜𝑛𝑣(∐𝑇(𝐴𝑛)) 
or ∏𝑇(𝐴𝑛)/𝒰 accordingly. Suppose that the conclusion of the theorem is false for 𝛴 ⊂
𝑇(𝐴). Then, by the Hahn–Banach theorem, there are 𝜏 in 𝑇(𝐴) and a self-adjoint element 

𝑎0 
𝑠  in 𝐴 such that 𝛾𝑠 : = 𝜏 (𝑎0 

𝑠 ) − 𝑠𝑢𝑝𝜎𝑠∈𝛴 𝜎𝑠(𝑎𝑛 
𝑠 ) > 0. Let 𝛼𝑠 = (| 𝑖𝑛𝑓𝜎𝑠∈𝛴𝜎𝑠(𝑎0 

𝑠 )| −

𝜏 (𝑎0 
𝑠 )) ∨ 0, and take 𝑏𝑠 ∈ 𝐴+ such that 𝜏 (𝑏𝑠) = 𝛼𝑠 and ‖𝑏𝑠‖ < 𝛼𝑠 + 𝛾𝑠. It follows that 

𝑎𝑠 = 𝑎0 
𝑠 + 𝑏𝑠 satisfies 𝑠𝑢𝑝𝜎𝑠∈𝛴|𝜎𝑠(𝑎

𝑠)| < 𝜏(𝑎𝑠). Now, expand 𝑎𝑠 ∈ 𝐴 as (𝑎𝑛 
𝑠 )𝑛. We may 

assume that ‖𝑎𝑛 
𝑠 ‖ ≤ ‖𝑎𝑠‖ for all 𝑛. Let 𝐼 ∈ 𝒰 (or 𝐼 = ℕ in case 𝐴 = ∏𝐴𝑛) be such that 

𝜀0: = 𝑠𝑢𝑝𝑛∈𝐼 𝑠𝑢𝑝𝜎𝑠∈𝑇(𝐴𝑛) 𝜎𝑠(𝑎𝑛 
𝑠 ) < 𝜏(𝑎𝑠). Let 𝑅 ∈ ℕ be such that 𝜀1: = 𝜀0 +

 𝐶‖𝑎𝑠‖𝑅−1/2 < 𝜏(𝑎𝑠). Then, by Theorem (6.2.4), for each 𝑛 ∈ 𝐼 there are 𝑏𝑛 
𝑠 (𝑟), 𝑐𝑛 

𝑠 (𝑟) ∈
𝐴𝑛 such that ∑ ‖𝑏𝑛 

𝑠 (𝑟)‖‖𝑐𝑛 
𝑠 (𝑟)‖𝑅

𝑟=1 ≤  𝐶‖𝑎𝑠‖ and ‖𝑎𝑛 
𝑠 − ∑ [𝑏𝑛 

𝑠 (𝑟), 𝑐𝑛 
𝑠 (𝑟)]𝑅

𝑟=1 ‖  ≤ 𝜀1. It 

follows that for 𝑏𝑠(𝑟) = (𝑏𝑛 
𝑠 (𝑟))𝑛 and 𝑐𝑠(𝑟) = (𝑐𝑛 

𝑠 (𝑟))𝑛 ∈ 𝐴, one has 

𝜏(𝑎𝑠) = 𝜏 (𝑎𝑠 −∑[𝑏𝑠(𝑟),  𝑐𝑠(𝑟)]

𝑅

𝑟=1

) ≤ ‖𝑎𝑠 −∑[𝑏𝑠(𝑟), 𝑐𝑠(𝑟)]

𝑅

𝑟=1

‖ < 𝜏(𝑎𝑠), 

which is a contradiction. This proves the first half of the theorem. 

For the second half, let 𝜏 and 𝐵 be given. Take a dense sequence (𝑥𝑖=0 
2 (𝑖))∞ in 𝐵 and expand 

them as 𝑥2(𝑖) = (𝑥𝑛 
2 (𝑖))𝑛. By the first half, for every 𝑚, there is (𝜏𝑛

(𝑚)
)𝑛 ∈ ∏𝑇(𝐴𝑛) such 

that |𝜏(𝑥2(𝑖)) − 𝜏𝒰
(𝑚)
(𝑥2(𝑖))| < 𝑚−1 for 𝑖 = 0, . . . , 𝑚. Let 𝐼𝑚 = {𝑛 ∈ ℕ: |𝜏 (𝑥

2(𝑖)) −

𝜏𝑛
(𝑚)
(𝑥𝑛 
2 (𝑖))| < 𝑚−1 for all 𝑖 = 0, . . . , 𝑚} ∈ 𝒰  

(so  𝐼0 = ℕ), and 𝐽𝑚 = ⋂ 𝐼𝑙
𝑚
𝑙=0 ∈ 𝒰. We define 𝜏𝑛 to be 𝜏𝑛

(𝑚)
 for 𝑛 ∈ 𝐽𝑚\ 𝐽𝑚+1. It is not too 

hard to check 𝜏 = 𝜏𝒰 on  𝐵.  

Corollary (6.2.24)[462]:       Let 𝐴 be a (non-separable) 𝐶∗-algebra and 𝑋 ⊂ 𝐴 be a separable 

subset. Then there is a separable 𝐶∗-subalgebra 𝐵 ⊂ 𝐴 that contains 𝑋 and such that the 

restriction from 𝑇(𝐴) to 𝑇(𝐵) is onto. 

Proof. We may assume that 𝐴 is unital. We first claim that for every 𝑥1
2, . . . , 𝑥𝑛

2 ∈ 𝐴 and 𝜀 >
0, there is a separable 𝐶∗-subalgebra 𝐶 which satisfies the following property: for every 𝜏 ∈
𝑇(𝐶) there is 𝜎𝑠 ∈ 𝑇(𝐴) such that max 𝑖 |𝜏(𝑥𝑖 

2) − 𝜎𝑠(𝑥𝑖 
2)| < 𝜀. Indeed if this were not true, 

then for every 𝐶 there is 𝜏𝐶𝑠 ∈ 𝑇(𝐶) such that max 𝑖 |𝜏𝐶𝑠( 𝑥𝑖 
2) − 𝜎𝑠( 𝑥𝑖 

2)| ≥ 𝜀 for all 𝜎𝑠 ∈
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𝑇(𝐴). The set of separable 𝐶∗-subalgebras of 𝐴 is upward directed and one can find a limit 

point 𝜏 of {𝜏𝐶𝑠}. Then, we arrive at a contradiction that 𝜏 ∈ 𝑇(𝐴) satisfies max 𝑖 |𝜏(𝑥𝑖 
2) −

𝜎𝑠(𝑥𝑖 
2)| ≥ 𝜀 for all 𝜎𝑠 ∈ 𝑇(𝐴). We next claim that for every separable 𝐶∗-subalgebra  𝐵0 ⊂

𝐴, there is a separable 𝐶∗-subalgebra 𝐵1 ⊂ 𝐴 that contains 𝐵0 and such that 𝑅𝑒𝑠𝐵0𝑇(𝐵1) =

𝑅𝑒𝑠𝐵0𝑇(𝐴) in 𝑇(𝐵0), where Res is the restriction map. Take a dense sequence 𝑥1 
2 , 𝑥2 

2 , … in  

𝐵0, and let  𝐶0 = 𝐵0. By the previous discussion, there is an increasing sequence of 

separable 𝐶∗-subalgebras 𝐶0 ⊂ 𝐶1 ⊂ ··· such that for every 𝜏 ∈ 𝑇(𝐶𝑛) there is 𝜎𝑠 ∈ 𝑇(𝐴) 
satisfying |𝜏(𝑥𝑖 

2) − 𝜎𝑠(𝑥𝑖 
2)| < 𝑛−1 for 𝑖 = 1, . . . , 𝑛. Now, letting 𝐵1 = ⋃ 𝐶𝑛𝑛

̅̅ ̅̅ ̅̅ ̅̅  and we are 

done. Finally, we iterate this construction and obtain 𝑋 ⊂ 𝐵0 ⊂ 𝐵1 ⊂ ⋯ such that 

𝑅𝑒𝑠𝐵𝑛𝑇(𝐵𝑛+1) = 𝑅𝑒𝑠𝐵𝑛𝑇(𝐴). The separable 𝐶∗-subalgebra 𝐵 = ⋃𝐵𝑛̅̅ ̅̅ ̅̅  satisfies the desired 

property.   

Corollary(6.2.24)[462]: For every 𝜏 ∈ 𝑆, there is a normal ∗-isomorphism 

𝜃𝜏: 𝐿
∞(𝜕𝑆, 𝜇𝜏) → 𝑍(𝜋𝜏(𝐴)′′) such that 

𝜏(𝜃𝜏(𝑓)𝑎
𝑠) = ∫𝑓(𝜆𝑠) 𝜆𝑠(𝑎

𝑠) 𝑑𝜇𝜏 (𝜆𝑠) 

For  𝑎𝑠 ∈ 𝐴. 

Proof.  Let 𝑓 ∈ 𝐿∞(𝜕𝑆, 𝜇𝜏) be given. The right hand side of the claimed equality defines a 

tracial linear functional on 𝐴 whose modulus is dominated by a scalar multiple of 𝜏. Hence, 

by Sakai’s Radon–Nikodym theorem, there is a unique 𝜃𝜏(𝑓) ∈ 𝑍(𝜋𝜏(𝑁)) that satisfies the 

claimed equality. This defines a unital normal positive map 𝜃𝜏 from 𝐿∞(𝜕𝑆, 𝜇𝜏) into 

𝑍(𝜋𝜏(𝐴)′′). Next, let 𝑧2 ∈ 𝑍(𝜋𝜏(𝑁))+ be given. Then, the tracial linear functional 𝑧2𝜏 on 

𝐴 defined by (𝑧2𝜏)(𝑎𝑠) = 𝜏 (𝑎𝑠𝑧2) is dominated by ‖𝑧2‖𝜏 . Hence one has 𝜇𝑧2𝜏 ≤ ‖𝑧
2‖𝜇𝜏 

and 𝑧2 = 𝜃𝜏(𝑑𝜇𝑧2𝜏/𝑑𝜇𝜏) with 𝑑𝜇𝑧2𝜏/𝑑𝜇𝜏 ∈ 𝐿
∞(𝜕𝑆, 𝜇𝜏). 

This proves 𝜃𝜏 is a positive linear isomorphism such that 𝜇𝜃𝜏(𝑓)𝜏 = 𝑓𝜇𝜏. 

Therefore, one has 𝜇𝜃𝜏 (𝑓𝑔)𝜏 = 𝑓𝑔𝜇𝜏 = 𝑓𝜇𝜃𝜏(𝑔)𝜏  = 𝜇𝜃𝜏(𝑓)𝜃𝜏(𝑔)𝜏 , which proves 𝜃𝜏(𝑓𝑔) =

𝜃𝜏(𝑓)𝜃𝜏(𝑔).    
Corollary (6.2.25)[462]:  Let 𝑀 be a continuous 𝑊∗-bundle over 𝐾. Then, (𝜋𝜆𝑠)(𝑀) =

 (𝜋𝜆𝑠)(𝑀)′′ for every 𝜆𝑠 ∈ 𝐾. Moreover, if a bounded function 𝑓: 𝐾 ∋ 𝜆𝑠 ⟼ 𝑓(𝜆𝑠) ∈

 (𝜋𝜆𝑠)(𝑀) is continuous in the following sense: for every (𝜆𝑠)0 ∈ 𝐾 and 𝜀 > 0, there are a 

neighborhood 𝑂 of (𝜆𝑠)0 and 𝑐𝑠 ∈ 𝑀 such that 

𝑠𝑢𝑝𝜆𝑠∈𝑂‖ (𝜋𝜆𝑠)(𝑐
𝑠) − 𝑓(𝜆𝑠)‖2,𝜆𝑠

< 𝜀; 

then there is 𝑎𝑠 ∈ 𝑀 such that  (𝜋𝜆𝑠) (𝑎
𝑠) = 𝑓(𝜆𝑠). 

Proof. Let  𝜆𝑠 ∈ 𝐾 be given. By Pedersen’s up-down theorem (Theorem (2.4.4) in [328]), it 

suffices to show that  (𝜋𝜆𝑠)(𝑀) is closed in  (𝜋𝜆𝑠) (𝑀)′′ under monotone sequential 

limits.       

    Let (𝑏𝑛 
2 )𝑛=0
∞  be an increasing sequence in  (𝜋𝜆𝑠)(𝑀)+ such that 𝑥𝑛

2 ↗ 𝑥2 in  (𝜋𝜆𝑠) (𝑀)′′. 

We may assume that ‖𝑥𝑛 
2 − 𝑥2‖2,𝜆𝑠 < 2

−𝑛. We lift (𝑥𝑛 
2 )𝑛=0
∞  to an increasing sequence 

(𝑎𝑛 
𝑠 )𝑛=0
∞  in 𝑀 such that 𝑎𝑛 

𝑠 ≤ ‖𝑥2‖ + 1. Let 𝑏𝑛 
𝑠 = 𝑎𝑛 

𝑠 − 𝑎𝑛−1 
𝑠  for 𝑛 ≥ 1. Since 

 (𝜏𝜆𝑠)( (𝑏𝑛 
∗ )𝑠 𝑏𝑛 

𝑠 ) < 4−𝑛+2, there is 𝑓𝑛 ∈ 𝐶(𝐾)+ such that 0 ≤ 𝑓𝑛 ≤ 1,  𝑓𝑛(𝜆𝑠) = 1, and 

𝐸((𝑏𝑛 
∗ )𝑠  𝑏𝑛 

𝑠 )(𝑏𝑛 
∗ )𝑠  𝑓𝑛 

2 ≤ 4−𝑛+2. It follows that the series 𝑎0
𝑠 + ∑ 𝑏𝑛 

𝑠 𝑓𝑛
∞
𝑛=1  is convergent 

in the uniform 2-norm. Moreover, since 𝑎0 
𝑠 + ∑ 𝑏𝑘 

𝑠 𝑓𝑘
𝑛
𝑘=1 ≤ 𝑎0 

𝑠 + ∑ 𝑏𝑘 
𝑠𝑛

𝑘=1 = 𝑎𝑛 
𝑠 ≤ ‖𝑥𝑠‖ +
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1, the series is norm bounded. Therefore, the series converges in 𝑀, by the completeness of 

the closed unit ball of 𝑀. The limit point 𝑎 satisfies (𝜋𝜆𝑠)(𝑎
𝑠) = 𝑥2. 

    We prove the second half. Let us fix 𝑛 for a while. For each 𝜆𝑠, there is (𝑏𝜆𝑠)  ∈ 𝑀 such 

that ‖𝑏𝜆𝑠
𝑠 ‖ ≤ ‖𝑓(𝜆𝑠)‖ and (𝜋𝜆𝑠)  (𝑏𝜆𝑠

𝑠 ) = 𝑓(𝜆𝑠). By continuity, there is a neighborhood 𝑂𝜆𝑠  

of 𝜆𝑠 such that ‖𝜋𝜏(𝑏𝜆𝑠
𝑠 ) − 𝑓(𝜏 )‖

2,𝜏
< 𝑛−1 for 𝜏 ∈ 𝑂𝜆𝑠. Since 𝐾 is compact, it is covered 

by a finite family {𝑂(𝜆𝑠)𝑖
}. Let 𝑔𝑖 ∈ 𝐶(𝐾) ⊂ 𝑍(𝑀) be a partition of unity subordinated by it. 

Then, 𝑎𝑛 
𝑠 : = ∑ 𝑔𝑖𝑏(𝜆𝑠)𝑖

𝑠
𝑖 ∈ 𝑀 satisfies ‖𝑎𝑛 

𝑠 ‖ ≤  ‖𝑓‖∞ and 𝑠𝑢𝑝𝜏‖𝜋𝜏(𝑎𝑛 
𝑠 ) − 𝑓(𝜏)‖2,𝜏 < 𝑛

−1.  

It follows that (𝑎𝑛 
𝑠 ) is a norm bounded and Cauchy in the uniform 2-norm. Hence it 

converges to 𝑎𝑠 ∈ 𝑀 such that (𝜋𝜆𝑠) (𝑎
𝑠) = 𝑓(𝜆𝑠) for every  𝜆𝑠 ∈ 𝐾.  

Corollary (6.2.26)[462]:   Let 𝑀 be a continuous 𝑊∗-bundle over 𝐾. Assume that each 

fiber (𝜋𝜆𝑠)(𝑀) has the McDuff property and that 𝐾 has finite covering dimension. Then, for 

every 𝑘, there is an approximately central approximately multiplicative embedding of  𝕄𝑘 

into 𝑀, namely a net of unital completely positive maps 𝜑𝑛: 𝕄𝑛 → 𝑀 such that 

lim sup 𝑛‖𝜑𝑛(𝑥
2𝑦2) − 𝜑𝑛(𝑥

2)𝜑𝑛(𝑦
2)‖2,𝑢2 = 0 and lim sup 𝑛‖[𝜑𝑛(𝑥

2), 𝑎𝑠]‖2,𝑢2 = 0 for 

every 𝑥2,  𝑦2 ∈ 𝕄𝑘 and 𝑎𝑠 ∈ 𝑀. 
Proof. The proof is particularly easy when 𝐾 is zero-dimensional: Since (𝜋𝜆𝑠)(𝑀) is 

McDuff, there is an approximately central embedding of 𝕄𝑘 into (𝜋𝜆𝑠)(𝑀). We lift it to a 

unital completely positive map 𝜓𝜆𝑠 : 𝕄𝑘 → 𝑀. It is almost multiplicative on a neighborhood 

 (𝑂𝜆𝑠) of 𝜆𝑠. Since 𝐾 is compact and zero-dimensional, there is a partition of 𝐾 into finitely 

many clopen subsets {𝑉𝑖
2} such that 𝑉𝑖

2 ⊂ 𝑂( 𝜆𝑠)𝑖 . By Theorem (6.2.10), one can define 

𝜑:𝕄𝑘 → 𝑀 by the relation (𝜋𝜆𝑠) ∘ 𝜑 = (𝜋𝜆𝑠) ∘ 𝜓( 𝜆𝑠)𝑖 for  𝜆𝑠 ∈ 𝑉𝑖
2. The case 0 < 𝑑𝑖𝑚𝐾 <

+∞ is more complicated but follows from a standard argument involving orderzero maps. 

(See  [324] or [333, 335]) .  

Corollary (6.2.27)[462]:  Let 𝑀 be a strictly separable continuous quasi-𝑊∗- bundle over 

𝐾 such that (𝜋𝜆𝑠)(𝑀)′′ is hyperfinite for every 𝜆𝑠 ∈ 𝐾. Then, there are an embedding 

𝜃:𝑀 ↪ 𝐶𝜎𝑠
𝑠 (𝐾, 𝑅) and embeddings (𝜄𝜆𝑠) ∶  (𝜋𝜆𝑠) (𝑀) ↪ 𝑅 such that (𝑒𝑣𝜆𝑠) ∘ 𝜃 =

 (𝜄𝜆𝑠)(𝜋𝜆𝑠)) . If 𝑀 is moreover a continuous 𝑊∗-bundle, then one has 

𝜃(𝑀) = {𝑓 ∈ 𝐶𝜎𝑠
𝑠 (𝐾, 𝑅): 𝑓(𝜆𝑠) ∈ ((𝜄𝜆𝑠) ∘ (𝜋𝜆𝑠))(𝑀)′′}.   

Proof.  Let (𝑎𝑛
𝑠 )𝑛=1
∞  be a strictly dense sequence in the unit ball of  𝑀. We use Lemma 

(6.2.13) recursively and obtain sequences ({𝜃𝑛(𝑎𝑖
𝑠)}𝑛=1

∞ )𝑛=1
∞  in 𝐶𝜎𝑠

𝑠 (𝐾, 𝑅) such that 

sup 𝜆𝑠 𝑑({(𝑒𝑣𝜆𝑠)(𝜃𝑛(𝑎𝑖
𝑠))}𝑖=1

𝑛 , {(𝜋𝜆𝑠)(𝑎𝑖
𝑠)}𝑖=1

𝑛 ) < 2−𝑛 

and 

max
𝑖=1,...,𝑛−1

‖𝜃𝑛(𝑎𝑖
𝑠) − 𝜃𝑛−1(𝑎𝑖

𝑠)‖2,𝑢2 < 2
−(𝑛−1). 

Then, each sequence (𝜃𝑛(𝑎𝑖
𝑠))𝑛=𝑖

∞  converges to an element 𝜃(𝑎𝑖
𝑠) ∈ 𝐶𝜎𝑠

𝑠 (𝐾, 𝑅). The map 𝜃 

extends to a ∗-homomorphism from 𝑀 into 𝐶𝜎𝑠
𝑠 (𝐾, 𝑅), and (𝑒𝑣𝜆𝑠) ∘ 𝜃 factors through (𝜋𝜆𝑠). 

This proves the first assertion. The second follows from Theorem (6.2.10).     
Corollary (6.2.28)[462]:  Let 𝑁 = 𝐶𝜎𝑠

𝑠 (𝐾, 𝑅) or any other continuous 𝑊∗-bundle over 𝐾 

such that  (𝑒𝑣𝜆𝑠)(𝑁) ≅ 𝑅 for every 𝜆𝑠 ∈ 𝐾 and such that for every 𝑘 ∈ ℕ there is an 

approximately central approximately multiplicative embedding of 𝕄𝑘 into 𝑁.  Let 𝑀 be a 

continuous quasi-𝑊∗-bundle over 𝐾 such that (𝜋𝜆𝑠)(𝑀)′′ is hyperfinite for every 𝜆𝑠 ∈ 𝐾, 



 

260 

 

and let 𝐹0 ⊂ 𝐹1 be finite subsets in the unit ball of 𝑀 and 𝜀 > 0. Assume that there is a map 

𝜃0 from 𝐹0 into the unit ball of 𝑁 such that 

sup 𝜆𝑠∈𝐾 𝑑({(𝜋𝜆𝑠) (𝑎
𝑠)}𝑎𝑠∈𝐹0 , {(𝑒𝑣𝜆𝑠)(𝜃0(𝑎

𝑠))}𝑎𝑠∈𝐹0) < 𝜀.  

Then, for every 𝛿 > 0, there is a map 𝜃1 from 𝐹1 into the unit ball of 𝑁 such that 

sup 𝜆𝑠∈𝐾 𝑑((𝜋𝜆𝑠) (𝑎
𝑠)}𝑎𝑠∈𝐹1  , {(𝑒𝑣𝜆𝑠)(𝜃1(𝑎

𝑠))}𝑎𝑠∈𝐹1) < 𝛿 

and 

max
𝑎𝑠∈𝐹0

‖𝜃1(𝑎
𝑠) − 𝜃0(𝑎

𝑠)‖2,𝑢2 < 𝜀. 

Here the symbol(𝑒𝑣𝜆𝑠), instead o(𝜋𝜆𝑠), is used for the 𝑁 side to make a distinction from the 

𝑀 side. 

Proof.  For each 𝜆𝑠, there is a trace-preserving embedding (𝜌𝜆𝑠) ∶ (𝜋𝜆𝑠)(𝑀) → (𝑒𝑣𝜆𝑠)(𝑁). 

By the remarks preceding this lemma, we may assume that 

max
𝑎𝑠∈𝐹0

‖(𝜌𝜆𝑠)((𝜋𝜆𝑠) (𝑎
𝑠)) − (𝑒𝑣𝜆𝑠)(𝜃0(𝑎

𝑠))‖
2
< 𝜀. 

For each 𝑎𝑠 ∈ 𝐹1, we lift ((𝜌𝜆𝑠) ∘ (𝜋𝜆𝑠))(𝑎
𝑠) ∈ (𝑒𝑣𝜆𝑠)(𝑁) to (𝑎𝜆𝑠)𝑠 ∈ 𝑁 with  

‖(𝑎𝜆𝑠)𝑠‖ ≤ 1. 

There is a neighborhood (𝑂𝜆𝑠) of 𝜆𝑠 such that 𝜏 ∈ (𝑂𝜆𝑠) implies 

𝑑({𝜋𝜏(𝑎
𝑠)}𝑎𝑠∈𝐹1  , {𝑒𝑣𝜏((𝑎

𝜆𝑠)𝑠}𝑎𝑠∈𝐹1) < 𝛿 

and 

max
𝑎𝑠∈𝐹0

‖𝑒𝑣𝜏(𝑎
𝜆𝑠)𝑠 − 𝑒𝑣𝜏(𝜃0(𝑎

𝑠))‖
2
< 𝜀. 

By compactness, 𝐾 is covered by a finite family {(𝑂(𝜆𝑠)𝑗)}. Take a partition of unity 𝑔𝑗 ∈

𝐶𝑠(𝐾) subordinated by {(𝑂(𝜆𝑠)𝑗)}. Let ℎ0 = 0 and ℎ𝑗 = ∑ 𝑔𝑖
𝑗
𝑖=1 . For each 𝑘, take an 

approximately central approximately multiplicative embedding 𝜑𝑘,𝑛 of 𝕄𝑘 into 𝑁. Since 

the closed unit ball of 𝕄𝑘 is norm-compact, one has 

∀𝑎𝑠 ∈ 𝑁 lim
𝑛
sup  sup {‖[𝜑𝑘,𝑛(𝑥

2), 𝑎𝑠]‖
2,𝑢2
:  𝑥2 ∈ 𝕄𝑘, ‖𝑥

2‖ ≤ 1} = 0. 

For 𝑡 ∈ [0, 1], we define 𝑝𝑡 ∈ 𝕄𝑘 to be diag(1, . . . , 1, 𝑡 − ⌊𝑡⌋, 0, . . . , 0), with 1𝑠 in the first 

⌊𝑡⌋ diagonal entries, 𝑡 − ⌊𝑡⌋ in the (⌊𝑡⌋ + 1)-th entry, and 0𝑠  
in the rest. It follows that 𝑡 ⟼ 𝑝𝑡 is continuous, 0 ≤ 𝑝𝑡 ≤ 1, 𝑡𝑟(𝑝𝑡) = 𝑡, and 𝜏(𝑝𝑡 − 𝑝𝑡

2) ≤
(4𝑘)−1. We write  𝑝[𝑠,𝑡] = 𝑝𝑡 − 𝑝𝑠. With the help of Theorem (6.2.10), we define 𝑓𝑘,𝑛,𝑗 ∈ 𝑁 

to be the element such that 

(𝑒𝑣𝜆𝑠) (𝑓𝑘,𝑛,𝑗) = (𝑒𝑣𝜆𝑠)(𝜑𝑘,𝑛(𝑝[ℎ(𝜆𝑠)𝑗−1,   ℎ(𝜆𝑠)𝑗])). 

   For 𝑎𝑠 ∈ 𝐹1, we define 𝜃1
𝑘,𝑛(𝑎𝑠) ∈ 𝑁 by 𝜃1

𝑘,𝑛(𝑎𝑠) = ∑ 𝑓𝑘,𝑛,𝑗
1/2
 (𝑎𝑠)(𝜆𝑠)𝑗  𝑓𝑘,𝑛,𝑗

1/2
𝑗 . Since 𝐹1

′: =

𝐹1 ∪ {(𝑎
𝑠)(𝜆𝑠)𝑗: 𝑎𝑠 ∈ 𝐹1,𝑗} is finite, it is not too hard to see 

lim
𝑘
sup lim

𝑛
sup max

𝑎𝑠∈𝐹0
‖𝜃1

𝑘,𝑛(𝑎𝑠) − 𝜃0(𝑎
𝑠)‖

2,𝑢2
< 𝜀. 

It remains to estimate 

𝑑({𝜋𝜏(𝑎
𝑠)}𝑎𝑠∈𝐹1 , {𝑒𝑣𝜏(𝜃1

𝑘,𝑛(𝑎𝑠))}𝑎𝑠∈𝐹1). 

   Let 𝑘 be fixed for the moment. Since (𝜑𝑘,𝑛)𝑛 is approximately multiplicative, there are 

unital ∗-homomorphisms 𝜓𝑘,𝑛
𝜏 : 𝕄𝑘 → 𝑒𝑣𝜏(𝑁) such that 

lim
𝑛
sup sup𝜏 sup𝑥2∈𝕄𝑘,‖𝑥2‖≤1‖𝑒𝑣𝜏 ∘ 𝜑𝑘,𝑛(𝑥

2) − 𝜓𝑘,𝑛
𝜏 (𝑥2)‖

2
= 0. 
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   Let 𝐸𝑘,𝑛
𝜏  be the trace-preserving conditional expectation from 𝑒𝑣𝜏(𝑁) onto the relative 

commutant 𝜓𝑘,𝑛
𝜏 (𝕄𝑘)′ ∩ 𝑒𝑣𝜏(𝑁), which is given by 𝐸𝑘,𝑛

𝜏 (𝑏𝑠) =

|𝐺|−1∑ 𝜓𝑘,𝑛
𝜏 (𝑢2)𝑏𝜓𝑘,𝑛

𝜏 (𝑢2)∗𝑢2∈𝐺  for the group 𝐺 of permutation matrices in 𝒰(𝕄𝑘). It 

follows that 

lim
𝑛
sup sup𝜏‖𝑒𝑣𝜏(𝑏

𝑠) − 𝐸𝑘,𝑛
𝜏 (𝑒𝑣𝜏(𝑏

𝑠))‖
2
= 0 

for every 𝑏𝑠 ∈ 𝑁. This implies 

lim
𝑛
sup sup𝑗,𝜏∈((𝑂(𝜆𝑠)𝑗))

𝑑({𝜋𝜏(𝑎
𝑠)}𝑎𝑠∈𝐹1  , {𝐸𝑘,𝑛

𝜏 (𝑒𝑣𝜏(𝑎
𝑠)(𝜆𝑠)𝑗}𝑎𝑠∈𝐹1) < 𝛿, 

𝑙𝑖𝑚
𝑛
𝑠𝑢𝑝 𝑠𝑢𝑝𝑗,𝜏∈((𝑂(𝜆𝑠)𝑗))

𝑑({𝑒𝑣𝜏(𝑎
𝑠)(𝜆𝑠)𝑗}𝑎𝑠∈𝐹1  , {𝐸𝑘,𝑛

𝜏 (𝑒𝑣𝜏(𝑎
𝑠)(𝜆𝑠)𝑗}𝑎𝑠∈𝐹1) =  0, 

and 

lim
𝑛
sup sup𝑗,𝜏∈((𝑂(𝜆𝑠)𝑗))

𝑑({𝑒𝑣𝜏(𝜃1
𝑘,𝑛(𝑎𝑠))}𝑎𝑠∈𝐹1 , 

{∑𝜓𝑘,𝑛
𝜏 (𝑝[ℎ(𝜆𝑠)𝑗−1,ℎ(𝜆𝑠)𝑗])𝐸𝑘,𝑛

𝜏 (𝑒𝑣𝜏(𝑎
𝑠)(𝜆𝑠)𝑗)

𝑗

}𝑎𝑠∈𝐹1) = 0.  

If we view 𝑒𝑣𝜏(𝑁) = 𝕄𝑘(𝜓𝑘,𝑛
𝜏 (𝕄𝑘)′ ∩ 𝑒𝑣𝜏(𝑁)), then (𝑎′)𝑠 = 𝐸𝑘,𝑛

𝜏 (𝑒𝑣𝜏(𝑎
𝑠)) looks like 

𝑑𝑖𝑎𝑔((𝑎′)𝑠 , (𝑎′)𝑠 , . . . , (𝑎′)𝑠), and 𝜓𝑘,𝑛
𝜏 (𝑝𝑡) looks like 𝑑𝑖𝑎𝑔(1, . . . , 1, 𝑡 − ⌊𝑡⌋, 0 . . . , 0). 

Hence, one has 

sup 𝜏 𝑑({𝜋𝜏(𝑎
𝑠)}𝑎𝑠∈𝐹1 , {∑𝜓𝑘,𝑛

𝜏 (𝑝[ℎ(𝜆𝑠)𝑗−1,ℎ(𝜆𝑠)𝑗])𝐸𝑘,𝑛
𝜏 (𝑒𝑣𝜏((𝑎

𝑠)(𝜆𝑠)𝑗))

𝑗

}𝑎𝑠∈𝐹1)
2 

<
2 |(𝑂(𝜆𝑠)𝑗|

𝑘
+∑𝑔𝑗(𝜏 )𝑑({𝜋𝜏(𝑎

𝑠)}𝑎𝑠∈𝐹1
𝑗

, {𝐸𝑘,𝑛
𝜏 (𝑒𝑣𝜏((𝑎

𝑠)(𝜆𝑠)𝑗)}𝑎𝑠∈𝐹1)
2. 

Altogether, one has 

lim
𝑘
sup lim

𝑛
sup sup𝜏 𝑑({𝜋𝜏(𝑎

𝑠)}𝑎𝑠∈𝐹1  , {𝑒𝑣𝜏(𝜃1
𝑘,𝑛(𝑎𝑠))}𝑎𝑠∈𝐹1) < 𝛿. 

Therefore, for some  𝑘, 𝑛, the map 𝜃1 = 𝜃1
𝑘,𝑛

 satisfies the desired properties.  

Corollary (6.2.29)[462]:   Let 𝑀 be a strictly separable continuous 𝑊∗-bundle over 𝐾 such 

that (𝜋𝜆𝑠)(𝑀) ≅ 𝑅 for every  𝜆𝑠 ∈ 𝐾. Then, the following are equivalent. 

(i) 𝑀 ≅ 𝐶𝜎𝑠
𝑠 (𝐾, 𝑅) as a continuous 𝑊∗-bundle.  

(ii) There is a sequence (𝑝𝑛)𝑛 in 𝑀 such that 0 ≤ 𝑝𝑛 ≤ 1, ‖𝑝𝑛 − 𝑝𝑛
2‖2,𝑢2 →  0, ‖𝐸(𝑝𝑛) −

1/2‖ → 0, and ‖[𝑝𝑛 , 𝑎
𝑠]‖2,𝑢2 → 0 for all 𝑎𝑠 ∈ 𝑀. 

(iii) For every 𝑘, there is an approximately central approximately multiplicative embedding 

of 𝕄𝑘 into 𝑀. 

Proof. The implication (i) ⇒ (ii) is obvious. For (ii) ⇒ (iii), we observe that since 

(𝜋𝜆𝑠)(𝑀)’s are all factors, the central sequence (𝑝𝑛)𝑛 satisfies ‖𝐸(𝑝𝑛𝑎
𝑠) −

𝐸(𝑝𝑛)𝐸(𝑎
𝑠)‖ → 0 for every 𝑎𝑠 ∈ 𝑀. Indeed, let 𝑎𝑠 ∈ 𝑀 and 𝜀 > 0 be given. By the 

Dixmier approximation theorem and the proof of Theorem )6.2.9), there are 𝑢1
2, . . . , 𝑢𝑘

2 ∈

𝒰(𝑀) such that ‖𝐸(𝑎𝑠) −
1

𝑘
∑ (𝑢𝑖

2)𝑎𝑠(𝑢𝑖
∗)2𝑘

𝑖=1 ‖
2,𝑢2

< 𝜀. It follows that 

lim
𝑛→∞

sup‖𝐸(𝑝𝑛)𝐸(𝑎
𝑠) − 𝐸(𝑝𝑛 𝑎

𝑠)‖

= lim
𝑛→∞

sup ‖𝐸(𝑝𝑛 𝐸(𝑎
𝑠)) −

1

𝑘
∑𝐸((𝑢𝑖

2)𝑝𝑛𝑎
𝑠(𝑢𝑖

∗)2)

𝑘

𝑖=1

‖  
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             = lim
𝑛→∞

sup ‖𝐸(𝑝𝑛(𝐸(𝑎
𝑠) −

1

𝑘
∑(𝑢𝑖

2)𝑎𝑠(𝑢𝑖
∗)2

𝑘

𝑖=1

))‖  

                                           < 𝜀. 
     Let 𝑚 ∈ ℕ be arbitrary. For a given finite sequence (𝑝𝑛)𝑛=1

𝑚 , 0 ≤ 𝑝𝑖 ≤ 1, and 𝜈2 ∈
{0, 1}𝑚, we define  𝑞𝑣2 ∈ 𝑀 by 

𝑞𝑣2 = 𝑟1
1/2
· · ·  𝑟𝑚−1

1/2
𝑟𝑚 𝑟𝑚−1

1/2
· · ·  𝑟1

1/2
∈ 𝑀, 

where 𝑟𝑖 = 𝑝𝑖 or 1 − 𝑝𝑖 depending on 𝜈2(𝑖) ∈ {0, 1}. We note that 𝑞𝑣2 ≥ 0 and ∑𝑞𝑣2 = 1. 

By choosing (𝑝𝑛)𝑛=1
𝑚  appropriately, we obtain an approximately central approximately 

multiplicative embedding of ℓ∞({0, 1}
𝑚) into 𝑀. Now, condition (iii) follows by choosing 

at the local level approximately central approximately multiplicative embeddings of  𝕄𝑘 

into (𝜋𝜆𝑠) (𝑀) and glue them together, as in the proof of Lemma (6.2.12), by an 

approximately central approximately projective partition of unity. 

The proof of (iii) ⇒ (i) is similar to that of Theorem (6.2.12). Let (𝑎𝑛
𝑠 )𝑛=1
∞  (resp. (𝑏𝑛

𝑠)𝑛=1
∞ ) 

be a strictly dense sequence in the unit ball of 𝑀 (resp. 𝐶𝜎𝑠
𝑠 (𝐾, 𝑅)). We recursively construct 

finite subsets 𝐹1 ⊂ 𝐹2 ⊂ ⋯ of 𝑀 and maps 𝜃𝑛: 𝐹𝑛 → 𝐶𝜎𝑠
𝑠 (𝐾, 𝑅) such that {𝑎1

𝑠 , . . . , 𝑎𝑛
𝑠 } ⊂ 𝐹𝑛, 

sup 𝜆𝑠 𝑑({(𝑒𝑣𝜆𝑠)(𝜃𝑛(𝑎
𝑠))}𝑎𝑠∈𝐹𝑛 , {(𝜋𝜆𝑠)(𝑎

𝑠)}𝑎𝑠∈𝐹𝑛) < 2
−𝑛,  

                                      max
𝑎𝑠∈𝐹𝑛−1

‖𝜃𝑛(𝑎
𝑠) − 𝜃𝑛−1(𝑎

𝑠)‖2,𝑢2 < 2
−(𝑛−1), 

and {𝑏1
𝑠 , . . . , 𝑏𝑛

𝑠} ⊂ 𝜃𝑛(𝐹𝑛). Let 𝐹0 = ∅ and suppose that we have constructed up to 𝑛 − 1.         

Let 𝐹𝑛
′ = 𝐹𝑛

′ ∪ {𝑎𝑛
𝑠 }. We use Lemma (6.2.12) and obtain a map 𝜃𝑛

′ : 𝐹𝑛
′ → 𝐶𝜎𝑠

𝑠 (𝐾, 𝑅) such that 

sup 𝜆𝑠 𝑑({(𝑒𝑣𝜆𝑠)(𝜃𝑛
′ (𝑎𝑠))}𝑎𝑠∈𝐹𝑛′ , {(𝜋𝜆𝑠)(𝑎

𝑠)}𝑎𝑠∈𝐹𝑛′) < 2
−(𝑛+1) 

and 

max
𝑎𝑠∈𝐹𝑛−1

‖𝜃𝑛
′ (𝑎𝑠) − 𝜃𝑛−1(𝑎

𝑠)‖2,𝑢2 < 2
−(𝑛−1). 

We may assume that 𝜃𝑛
′  is injective and 𝜃𝑛

′ (𝐹𝑛
′) does not contain any of  𝑏1

𝑠 , . . . , 𝑏𝑛
𝑠 . We use 

Lemma (6.2.12) again but this time to 𝜃𝑛
′ (𝐹𝑛

′) ⊂ �̃�: = 𝜃𝑛
′ (𝐹𝑛

′) ∪ {𝑏1
𝑠 , . . . , 𝑏𝑛

𝑠} and (𝜃𝑛
′ )−1. 

Then, there is 𝜓: �̃� → 𝑀 such that 

sup 𝜆𝑠 𝑑({(𝜋𝜆𝑠) (𝜓(𝑏
𝑠))}𝑏𝑠∈�̃� , {(𝑏

𝑠)}𝑏𝑠∈�̃�) < 2
−(𝑛+1) 

and 

max
𝑎𝑠∈𝐹𝑛

′
‖𝑎𝑠 − 𝜓(𝜃𝑛

′ (𝑎𝑠))‖2,𝑢2 < 2
−(𝑛+1). 

Now, we set 𝐹𝑛 = 𝐹𝑛
′ ∪ {𝜓(𝑏1

𝑠), . . . , 𝜓(𝑏𝑛
𝑠)} (which can be assumed to be a disjoint union) 

and define 𝜃𝑛: 𝐹𝑛 → 𝐶𝜎𝑠
𝑠 (𝐾, 𝑅) by 𝜃𝑛 = 𝜃𝑛

′  on 𝐹𝑛
′ and 𝜃𝑛(𝜓(𝑏𝑖

𝑠)) = 𝑏𝑖
𝑠. One has 

sup 𝜆𝑠 𝑑({(𝑒𝑣𝜆𝑠)(𝜃𝑛(𝑎
𝑠))}𝑎𝑠∈𝐹𝑛 , {(𝜋𝜆𝑠)(𝑎

𝑠)}𝑎𝑠∈𝐹𝑛) 

≤ sup 𝜆𝑠(𝑑({(𝑒𝑣𝜆𝑠)(𝑏
𝑠)}𝑏𝑠∈�̃� , {(𝜋𝜆𝑠)(𝜓(𝑏

𝑠))}𝑏𝑠∈�̃�

+ max
𝑎𝑠∈𝐹𝑛

′
‖(𝜋𝜆𝑠) (𝜓(𝜃𝑛

′ (𝑎𝑠))) − (𝜋𝜆𝑠)(𝑎
𝑠)‖

2
) 

                                < 2−𝑛 
as desired. By taking the limit of (𝜃𝑛)𝑛, one obtains a ∗-isomorphism 𝜃 from 𝑀 onto 

𝐶𝜎𝑠
𝑠 (𝐾, 𝑅).    

Section (6.3): Tracial States for 𝑪∗-Algebras 

       For 𝐴 be a unital 𝐶∗-algebra with unitary group 𝑈(𝐴) and centre 𝑍(𝐴). For 𝑎 ∈ 𝐴, the 

Dixmier 𝑠𝑒𝑡 𝐷𝐴(𝑎) is the norm-closed convex hull of the set {𝑢𝑎𝑢∗: 𝑢 ∈ 𝑈(𝐴)}. Then, 



 

263 

 

acting by conjugation, 𝑈(𝐴) induces a group of isometric affine transformations of the 

convex set 𝐷𝐴(𝑎), and this group of transformations has a common fixed point if and only 

if 𝐷𝐴(𝑎) ∩ 𝑍(𝐴) is non-empty. The 𝐶∗-algebra 𝐴 is said to have the Dixmier property if  

𝐷𝐴(𝑎) ∩ 𝑍(𝐴) is non-empty for all 𝑎 ∈ 𝐴, and 𝐴 is said to have the singleton Dixmier 

property if 𝐷𝐴(𝑎) ∩ 𝑍(𝐴)is a singleton set for all 𝑎 ∈ 𝐴. 

  In [359], it was shown that every von Neumann algebra has the Dixmier property and an 

example was given of a unital 𝐶∗-algebra for which the Dixmier property does not hold. 

Since then, there has been an extensive literature, studying variants of the averaging process 

and the form of the subsets of 𝑍(𝐴) obtained, and also giving several applications to a 

number of topics including centre-valued traces, commutators, derivations, 𝐶∗-simplicity, 

relative commutants, commutation in tensor products, and the study of masas and 

subalgebras of finite index in von Neumann algebras. See [338–344,348,349,352–

360,370,371,373–379,381–385, 388,395,398,402–404,407–414,422–424,429,442] . 

   In [374], Haagerup and Zsidó established a definitive result about the Dixmier property 

for simple 𝐶∗-algebras: a simple unital 𝐶∗-algebra has the Dixmier property if and only if it 

has at most one tracial state. For non-simple 𝐶∗-algebras, the Dixmier property imposes 

serious restrictions on the ideal structure: if a 𝐶∗-algebra has the Dixmier property, then it 

is weakly central [343, p. 275], see Definition (6.3.3). One of our main results is a complete 

generalisation of Haagerup and Zsidó’s, showing that the Dixmier property is equivalent to 

this ideal space restriction together with tracial conditions: 

Theorem (6.3.1)[455]: Let 𝐴 be a unital 𝐶∗-algebra. Then 𝐴 has the Dixmier property if and 

only if all of the following hold. 

(i)  𝐴 is weakly central, 

(ii)  every simple quotient of 𝐴 has at most one tracial state, and 

(iii)  every extreme tracial state of 𝐴 factors through some simple quotient. 

𝐴 characterisation of the singleton Dixmier property is an immediate consequence of this 

result : it corresponds to the case that in (ii), every simple quotient has exactly one tracial 

state. We also take the opportunity to remove a separability condition from a result in [340]: 

a postliminal 𝐶∗-algebra 𝐴 has the (singleton) Dixmier property if and only if 𝑍(𝐴/𝐽) =
(𝑍(𝐴) + 𝐽)/𝐽 for every proper closed ideal 𝐽 of 𝐴. 

    The case of trivial centre in Theorem (6.3.1) is already an interesting generalisation of the 

Haagerup–Zsidó theorem: a unital 𝐶∗-algebra 𝐴 has the Dixmier property with centre 

𝑍(𝐴) = ℂ1 if and only if 𝐴 has a unique maximal ideal 𝐽, 𝐴 has at most one tracial state and 

𝐽 has no tracial state.  

     We consider a strengthening of the Dixmier property, called the uniform Dixmier 

property, in which the number of unitaries used to approximately average an element 

depends only on the tolerance (and not the particular element). This is closely related to the 

uniform strong Dixmier property studied in [365], as well as the uniform averaging 

properties recently considered in [402] and [403]. Many of the classical examples of 𝐶∗-
algebras with the Dixmier property turn out to have the uniform Dixmier property, including 

von Neumann algebras and 𝐶𝑟
∗(𝔽2) . Adding to this, we show that any 𝐶∗-algebra with the 

Dixmier property and with finite radius of comparison-by-traces has the uniform Dixmier 

property.       

     We use Corollary (6.3.16) to characterise, in terms of two distinct uniformity conditions, 

when a tracial unital 𝐶∗-algebra with the Dixmier property and trivial centre has the uniform 
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Dixmier property (Theorem (6.3.37)). Finally, following a suggestion, we find explicit 

constants for the uniform Dixmier property in a number of examples. 

The starting point for our results is the following recent theorem of 𝑁𝑔, 𝐿𝑅, and Skoufranis 

[402, Theorem 4.7], generalising a version by Ozawa [404, Theorem1] in which all quotients 

have a tracial state: 

Theorem (6.3.2)[455]: Let 𝐴 be a unital 𝐶∗-algebra. Let 𝑎 be 𝑎 self-adjoint element in 𝐴. 

Then 0 ∈ 𝐷𝐴(𝑎) if and only if 

(a) 𝜏(𝑎) = 0 for all tracial states 𝜏 on 𝐴, and 

(b) in no nonzero quotient of 𝐴 can the image of 𝑎 be either invertible and positive or 

invertible and negative. 

     If 𝐴 has no tracial states then condition (𝑎) is vacuously satisfied. 

In order to verify condition (𝑏) in Theorem (6.3.2), it suffices to check simple quotients 

(that is, quotients of 𝐴 by maximal ideals). Theorem (6.3.1) is proven using the Katětov–

Tong insertion theorem to produce candidate central elements corresponding to any given 

self-adjoint element 𝑎 ∈ 𝐴, and then using Theorem (6.3.2) to verify that these candidates 

are indeed in the respective Dixmier set. 

   We show that for elements 𝑎 and 𝑏 in an arbitrary unital 𝐶∗-algebra 𝐴, the distance 

between the Dixmier sets 𝐷𝐴(𝑎) and 𝐷𝐴(𝑏) can be read off from tracial data and the 

algebraic numerical ranges of 𝑎 and 𝑏 in quotients of 𝐴. This result extends Theorem (6.3.2) 

in several ways: first by considering the Dixmier sets of a pair of elements 𝑎 and 𝑏 (rather 

than one of them being zero), second by providing a distance formula between these sets 

(rather than focusing on the case that this distance is zero), and third by allowing the 

elements 𝑎 and 𝑏 to be non-self-adjoint. We also show that, in certain cases, the distance 

between 𝐷𝐴(𝑎) and 𝐷𝐴(𝑏) is attained . We obtain elements in 𝑍(𝐴)by using Michael’s 

selection theorem, rather than the Katětov–Tong theorem (cf. [395,427]). 

For a 𝐶∗-algebra 𝐴, we use the standard notation 𝑆(𝐴), 𝑃(𝐴) and 𝑇(𝐴) for the set of 

states, pure states and tracial states, respectively; the weak∗-topology is the natural topology 

used on these sets. The set 𝑇(𝐴) is convex, and we use 𝜕𝑒𝑇(𝐴) to denote its extreme 

boundary. If 𝜏 ∈ 𝑇(𝐴) then the left kernel 

{𝑎 ∈ 𝐴: 𝜏(𝑎∗𝑎) = 0} 
is a closed (two-sided) ideal of 𝐴 and is easily seen to coincide with the kernel of the 

Gelfand–Naimark–Segal (GNS) representation 𝜋𝜏 (and with the right kernel). We shall refer 

to this ideal as the trace-kernel ideal for 𝜏. When 𝐶 is a commutative 𝐶∗-algebra (generally, 

arising as the centre of another 𝐶∗-algebra 𝐴) and 𝑁 ⊆ 𝐶 is a maximal ideal, define 𝜙𝑁 ∈
𝑃(𝐶) to be the (unique) pure state satisfying 

𝜙𝑁(𝑁) = {0}                                                         (8) 
For any proper closed ideal 𝐽 of 𝐴, 

𝑞𝐽: 𝐴 → 𝐴/𝐽 

will denote the canonical quotient map. For a subset 𝑆 of a 𝐶∗-algebra (or of ℝ), we write 

co(𝑆) for the convex hull of 𝑆. 

   Let 𝐴 be a unital 𝐶∗-algebra with centre 𝑍(𝐴) and let 𝑀𝑎𝑥(𝐴) be the subspace of Prim 

(𝐴) (with the hull-kernel topology) consisting of all the maximal ideals of  𝐴. It is well 

known and easy to see that there is a continuous surjection 𝛹 ∶ 𝑀𝑎𝑥(𝐴) → 𝑀𝑎𝑥(𝑍(𝐴)) 
given by 𝛹(𝑀):= 𝑀 ∩ 𝑍(𝐴) for every maximal ideal 𝑀 of 𝐴. 



 

265 

 

Definition (6.3.3)[455]: 𝐴 𝐶∗-algebra 𝐴 is said to be weakly central if 𝛹(as just described) 

is injective. 

  When 𝐴 is weakly central, 𝛹 is a homeomorphism since its domain is compact and its 

range is Hausdorff. Misonou used the Dixmier property to show that every von Neumann 

algebra is weakly central [397, Theorem 3]. As observed in [343, 𝑝.275], the same method 

shows that every unital 𝐶∗-algebra with the Dixmier property is weakly central. Although 

weak centrality does not imply the Dixmier property (consider any unital simple 𝐶∗-algebra 

with more than one tracial state), Magajna has given a characterisation of weak centrality in 

terms of a more general kind of averaging involving elementary completely positive 

mappings [395].  
    A Glimm ideal of a unital 𝐶∗-algebra 𝐴 is an ideal 𝑁𝐴(= 𝐴𝑁𝐴) generated by a maximal 

ideal 𝑁 of 𝑍(𝐴) (see [368]); note that 𝑁𝐴 is already closed by the Banach module 

factorisation theorem (a fact that does not require 𝑁 to be maximal). 

  Let 𝐴 be a 𝐶∗-algebra with centre 𝑍(𝐴). 𝐴 centre-valued trace on 𝐴 is a positive, linear 

contraction 𝑅: 𝐴 → 𝑍(𝐴) such that 𝑅(𝑧) = 𝑧(𝑧 ∈ 𝑍(𝐴)) and 𝑅(𝑎𝑏) = 𝑅(𝑏𝑎)(𝑎, 𝑏 ∈ 𝐴). 
The equivalence of (i) and (ii) in the next result, together with the description of the centre-

valued trace 𝑅, is essentially well-known and easy to see. It underlies Dixmier’s approach 

to the trace in a finite von Neumann algebra [359,360,385]. 𝐴 detailed proof is given in [340, 

5.1.3] using the same methods as in the case of a von Neumann algebra (see, for example, 

[360, Corollaire III.8.4]). (The equivalence with (iii) is probably also well-known.  

Proposition (6.3.4)[455]: Let 𝐴 be a unital 𝐶∗-algebra with the Dixmier property. The 

following conditions are equivalent. 

(i)  𝐴 has the singleton Dixmier property. 

(ii)  There exists a centre-valued trace on 𝐴. 

(iii)  For every 𝑀 ∈ 𝑀𝑎𝑥(𝐴), 𝑇(𝐴/𝑀) is non-empty. 

When these equivalent conditions hold, the centre-valued trace 𝑅 is unique, 

{𝑅(𝑎)} = 𝐷𝐴(𝑎) ∩ 𝑍(𝐴)          (𝑎 ∈  𝐴)}, 
 and, for every 𝑀 ∈ 𝑀𝑎𝑥(𝐴),  𝑇(𝐴/𝑀)is a singleton. 

Proof. It remains to establish the equivalence of (iii), and also the last part of the final 

sentence. Suppose that 𝐴 has the singleton Dixmier property and that 𝑅: 𝐴 → 𝑍(𝐴) is the 

associated centre-valued trace on 𝐴. Let 𝑀 ∈ 𝑀𝑎𝑥(𝐴) and observe that, since 𝐴/𝑀 is 

simple, 𝑍(𝐴/𝑀) = ℂ1𝐴/𝑀 = (𝑍(𝐴) +𝑀)/𝑀. Since 𝑅(𝑎) ∈ 𝐷𝐴(𝑎)(𝑎 ∈ 𝐴), itfollows that 

𝑅(𝑀) ⊆ 𝑀 and hence it is easily seen that 𝑅 induces a centre-valued trace 𝑅𝑀: 𝐴/𝑀 →
ℂ1𝐴/𝑀(cf. the proof of [340, Proposition 5.1.11]). In particular, 𝐴/𝑀 has a tracial state 𝜏𝑀 

such that 𝜏𝑀(𝑞𝑀(𝑎))1𝐴/𝑀  = 𝑅𝑀(𝑞𝑀(𝑎))(𝑎 ∈ 𝐴). Thus 𝑇(𝐴/𝑀) is non-empty. In fact 

𝑇(𝐴/𝑀) = {𝜏𝑀} since 𝐴/𝑀 has the Dixmier property [342, p.544] and trivial centre. 

Conversely, suppose that (iii) holds, that 𝑎 ∈ 𝐴 and that 𝑧1, 𝑧2 ∈ 𝐷𝐴(𝑎) ∩ 𝑍(𝐴). Let 𝜙 ∈
𝑃(𝑍(𝐴)),  

𝑁:= {𝑎 ∈ 𝑍(𝐴): 𝜙(𝑎∗𝑎) = 0} ∈ 𝑀𝑎𝑥(𝑍(𝐴)), 
and 𝑀:= 𝛹−1(𝑁) ∈ 𝑀𝑎𝑥(𝐴). Let 𝜏 ∈ 𝑇(𝐴/𝑀). Then 𝜏 ∘ 𝑞𝑀 ∈ 𝑇(𝐴), (𝜏 ∘ 𝑞𝑀)|𝑍(𝐴) = 𝜙 

and 𝜏 ∘ 𝑞𝑀 is constant on 𝐷𝐴(𝑎). Hence  

𝜙(𝑧1) = (𝜏 ∘ 𝑞𝑀)(𝑎) = 𝜙(𝑧2). 
Since this holds for all 𝜙 ∈ 𝑃(𝑍(𝐴)), we obtain that 𝑧1 = 𝑧2as required for (i).  
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Since the Dixmier property passes to quotients ([342, p.544]), it is immediate from 

Proposition (1.4) (iii) that the singleton Dixmier property passes to quotients of unital 𝐶∗-
algebras. More generally, the singleton Dixmier property passes to ideals and quotients of 

arbitrary 𝐶∗-algebras [340, Proposition 5.1.11]. 

   We include it here as it may be of independent interest (cf. [338, Theorem 4.3]). In [401, 

Lemma 2.1 (i)], it is shown that a limit of sums of self-adjoint commutators in a quotient 

can be lifted (as below), but at a cost of 𝜖 in the norm. Theorem (6.3.6) shows that this 𝜖 
cost can be avoided. The proof uses a technique from Loring and Shulman’s [394]; the result 

almost follows from [394, Theorem  3.2], except that they work with polynomials (in non-

commuting variables) whereas we need to work with a series (of commutators). Here [𝐴, 𝐴] 
means the span of commutators in 𝐴, i.e., the span of elements of the form [𝑎, 𝑏] = 𝑎𝑏 −
𝑏𝑎, where 𝑎, 𝑏 ∈ 𝐴. Recall also that a quasicentral approximate unit of an ideal 𝐽 of 𝐴 is an 

approximate unit (𝑢𝜆) for 𝐽 which is approximately central in 𝐴. 

We will need the following in the proof of this theorem. 

Lemma (6.3.5)[455]: Let 𝐴 be a 𝐶∗-algebra, 𝐽 a closed ideal of 𝐴 and (𝑢𝜆) a quasicentral 

approximate unit of  𝐽. Let 0 < 𝛿 < 1 and 𝑎 ∈ 𝐴. Then  

lim
𝜆
sup‖𝑎(1 −  𝛿𝑢𝜆)‖ ≤ max ( ‖𝑞𝐽(𝑎)‖, (1 − 𝛿)‖𝑎‖). 

Proof. This is a special case of [394, Theorem 2.3].  

Theorem (6.3.6)[455]: Let 𝐴 be a 𝐶∗-algebra, let 𝐽 be a closed ideal of 𝐴 and let �̅� ∈ 𝐴/𝐽 
be a self-adjoint element in [𝐴/𝐽, 𝐴/𝐽]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Then there exists a self-adjoint lift 𝑎 ∈ [𝐴, 𝐴]̅̅ ̅̅ ̅̅ ̅ of  �̅� 

such that ‖𝑎‖ = ‖�̅�‖. 

Proof. We may assume without loss of generality that ‖�̅�‖ = 1. The strategy of the proof is 

as follows: We will construct a sequence (𝑎(𝑛))𝑛=1
∞ of self-adjoints lifts of �̅� such that 𝑎(𝑛) ∈

[𝐴, 𝐴] ̅̅ ̅̅ ̅̅ ̅̅ for all 𝑛, ‖𝑎(𝑛)‖ → 1, and the sequence (𝑎(𝑛))𝑛=1
∞ is Cauchy. This is sufficient to 

prove the theorem, for then 𝑙𝑖𝑚𝑛𝑎
(𝑛) is the desired lift. 

Pick any decreasing sequence 0 < 𝛿𝑛 < 2/3 such that ∑ 𝛿𝑛
∞
𝑛=1 < ∞. Define 𝜖𝑛 such that 

(1 + 2𝜖𝑛)(1 − 𝛿𝑛) = 1 for all 𝑛 ≥ 1. Notice that 𝜖𝑛 is also a decreasing sequence, 𝜖𝑛 < 1, 

and 𝜖𝑛 → 0. 

We shall iteratively produce 𝑎(𝑛) with the following properties: 

• it has the form 

𝑎(𝑛) =∑[(𝑥𝑖
(𝑛)
)∗, 𝑥𝑖

(𝑛)
]

∞

𝑖=1

                                    (9) 

for some 𝑥1
(𝑛)
, 𝑥2
(𝑛)
,···∈ 𝐴;  

• 𝑎(𝑛) is a lift of �̅�; 

• ‖𝑎(𝑛)‖ ≤ 1 + 𝜖𝑛; and 

• ‖𝑎(𝑛) − 𝑎(𝑛−1)‖ < 4𝛿𝑛−1, for 𝑛 ≥ 2. 

Since ∑ 𝛿𝑛
∞
𝑛=1 < ∞, the final item ensures that the sequence is Cauchy, and so upon finding 

such 𝑎(𝑛), we are done. 

   Let us start with a self-adjoint lift 𝑎(1) ∈ [𝐴, 𝐴]̅̅ ̅̅ ̅̅ ̅ of �̅� such that ‖𝑎(1)‖ < 1 + 𝜖1. This can 

be done by [401, Lemma 2.1 (i)]. By [355, Theorem 2.6], we have  

𝑎(1) = [(𝑥𝑖
(1)
)∗, 𝑥𝑖

(1)
] 
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 for some 𝑥𝑖
1 ∈ 𝐴, where the series is norm convergent. Now fix 𝑛 ≥ 1, and suppose that we 

have defined a self-adjoint 𝑎(𝑛)that is a lift of �̅�, such that ‖𝑎(𝑛)‖ < 1 + 𝜖𝑛, and such that 

𝑎(𝑛)has the form 

𝑎(𝑛) =∑[(𝑥𝑖
(𝑛)
)∗, 𝑥𝑖

(𝑛)
]

∞

𝑖=1

. 

Find 𝑘𝑛 ∈ ℕ such that 

‖∑ [(𝑥𝑖
(𝑛)
)∗, 𝑥𝑖

(𝑛)
]𝑖>𝑘𝑛
‖ <

𝜖𝑛+1

3
.                                (10)  

Let (𝑢𝜆) be a quasicentral approximate unit of 𝐽, and define 

𝑥𝑖
(𝑛+1)

: = {
𝑥𝑖
(𝑛)
,                                   𝑖𝑓 𝑖 > 𝑘𝑛; 

𝑥𝑖
(𝑛)
(1 − 𝛿𝑛𝑢𝜆)

1
2,            𝑖𝑓 𝑖 ≤ 𝑘𝑛.

   

Define 𝑎(𝑛+1) as in (2) using the new elements 𝑥𝑖
(𝑛+1)

 (the new series also converges since 

only finitely many terms were changed). It is clear that 𝑎(𝑛+1) is a self-adjoint lift of �̅� and 

that 𝑎(𝑛+1) ∈ [𝐴, 𝐴]̅̅ ̅̅ ̅̅ ̅. Presently, the element 𝑎(𝑛+1) depends on 𝜆. We will choose 𝜆 suitably. 

We have 

‖𝑎(𝑛+1)‖ < ‖∑[(𝑥𝑖
(𝑛+1)

)∗, 𝑥𝑖
(𝑛+1)

]

𝑘𝑛

𝑖=1

‖ +
𝜖𝑛 + 1

3
.   

Exploiting the approximate centrality of (𝑢𝜆) (using [439, Proposition 1.8] to get that 

(1 − 𝛿𝑛𝑢𝜆)
1

2 is approximately central), we can choose 𝜆 large enough such that  

 ‖𝑎(𝑛+1)‖ < ‖(∑[(𝑥𝑖
(𝑛)
)∗, 𝑥𝑖

(𝑛)
]

𝑘𝑛

𝑖=1

)(1 − 𝛿𝑛𝑢𝜆)‖ +
𝜖𝑛 + 1

3
+
𝜖𝑛 + 1

3
. 

We have 

‖∑[(𝑥𝑖
(𝑛)
)∗, 𝑥𝑖

(𝑛)
]

𝑘𝑛

𝑖=1

‖ ≤ 1 + 𝜖𝑛 +
𝜖𝑛 + 1

3
< 1 + 2𝜖𝑛. 

Using (3), we find that the norm of the image of ∑ [(𝑥𝑖
(𝑛)
)∗, 𝑥𝑖

(𝑛)
]

𝑘𝑛
𝑖=1  in the quotient 𝐴/𝐽 is 

less than ‖�̅�‖ + 𝜖𝑛+1/3 = 1 + 𝜖𝑛+1/3. So, by Lemma (6.3.5), we can choose 𝜆 large 

enough such that 

‖(∑[(𝑥𝑖
(𝑛)
)∗, 𝑥𝑖

(𝑛)
]

𝑘𝑛

𝑖=1

)(1 − 𝛿𝑛𝑢𝜆)‖ < max (1 +
𝜖𝑛 + 1

3
, (1 − 𝛿𝑛)(1 + 2𝜖𝑛))   

                                                                           = max (1 +
𝜖𝑛 + 1

3
, 1)  

                                                                            = 1 +
𝜖𝑛 + 1

3
. 

Then, for such choices of 𝜆 we have 𝑎(𝑛+1) < 1 + 𝜖𝑛+1. 

Now consider 𝑎(𝑛+1) − 𝑎(𝑛):  
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𝑎(𝑛+1) − 𝑎(𝑛) =∑[(𝑥𝑖
(𝑛+1)

)∗, 𝑥𝑖
(𝑛+1)

]

𝑘𝑛

𝑖=1

− [(𝑥𝑖
(𝑛)
)∗, 𝑥𝑖

(𝑛)
]. 

Again using approximate centrality of (𝑢𝜆), we may possibly increase 𝜆 to get  

‖∑[(𝑥𝑖
(𝑛+1)

)
∗
, 𝑥𝑖
(𝑛+1)

]

𝑘𝑛

𝑖=1

− [(𝑥𝑖
(𝑛)
)
∗
, 𝑥𝑖
(𝑛)
]‖ 

                                   ≤ 𝛿𝑛 + ‖∑[(𝑥𝑖
(𝑛)
)
∗
, 𝑥𝑖
(𝑛)
]

𝑘𝑛

𝑖=1

((1 − 𝛿𝑛𝑢𝜆) − 1)‖ 

≤ 𝛿𝑛 + (1 + 2𝜖𝑛)𝛿𝑛 ≤ 4𝛿𝑛 .  
Thus, 𝑎(𝑛+1) − 𝑎(𝑛) ≤ 4𝛿𝑛, as required.  

We recall from [355, Proposition 2.7] that, for 𝑎 ∈ 𝐴, 𝑎 ∈ [𝐴, 𝐴]̅̅ ̅̅ ̅̅ ̅ if and only if 𝜏(𝑎) = 0 for 

all tracial states of 𝐴. Thus Theorem (6.3.6) can clearly be rephrased in terms of tracial states 

of  𝐴/𝐽  and of 𝐴 instead of commutators. 

  We begin with a few straightforward (and probably well-known) facts. 

Lemma (6.3.7)[455]: Suppose that 𝐴 is a unital 𝐶∗-algebra containing a unique maximal 

ideal 𝐽. Then 𝑍(𝐴) = ℂ1 and 𝑍(𝐽) = {0}.  
Proof. Since the map 𝛹:𝑀𝑎𝑥(𝐴) → 𝑀𝑎𝑥(𝑍(𝐴)) is surjective, 𝑍(𝐴) has only one maximal 

ideal and this must therefore be the zero ideal. Thus 𝑍(𝐴) = ℂ1 and hence 𝑍(𝐽) = 𝑍(𝐴) ∩
𝐽 = {0}.  
   The next result can be proved by using a quasicentral approximate unit or the GNS 

representation, or the invariance of the extension under unitary conjugation. 𝐴 proof using 

an arbitrary approximate unit is given in [421, Lemma 3.1]. 

Lemma (6.3.8)[455]: Let 𝐽 be a nonzero closed ideal of a 𝐶∗-algebra 𝐴 and let 𝜏 ∈ 𝑇(𝐽). 
Then the unique extension of 𝜏 to a state of 𝐴 (see [405, 3.1.6]) is a tracial state. 

Lemma (6.3.9)[455]: Let 𝐽 be a proper closed ideal of a unital 𝐶∗-algebra 𝐴. Then for any 

𝜏 ∈ 𝜕𝑒𝑇(𝐴/𝐽), 𝜏 ∘ 𝑞𝐽 ∈ 𝜕𝑒𝑇(𝐴). 

Lemma (6.3.10)[455]: Let 𝐴 be a unital 𝐶∗-algebra and suppose that 𝜏 ∈ 𝜕𝑒𝑇(𝐴). Then 

𝜏|𝑍(𝐴) is a pure state on 𝑍(𝐴). 

Proof. Let 𝑧 ∈ 𝑍(𝐴) be a positive contraction. Then the function 𝜏𝑧: 𝐴 → ℂ given by 

𝜏𝑧(𝑎): = 𝜏(𝑧𝑎) is a tracial functional on 𝐴 which clearly satisfies 𝜏𝑧 ≤ 𝜏. Since 𝜏 is an 

extreme tracial state, it follows that 𝜏𝑧  is a scalar multiple of 𝜏, and so  

𝜏(𝑧𝑎) = 𝜏𝑧(1)𝜏 (𝑎) = 𝜏(𝑧)𝜏(𝑎). 
   In particular, this shows that 𝜏|𝑍(𝐴) is multiplicative, and therefore a pure state.  

We will also need the following. 

Theorem (6.3.11)[455]: Let 𝑋 be a normal space and 𝑌 a closed subspace. Let 𝑓: 𝑋 → ℝ be 

upper semicontinuous, 𝑔: 𝑌 → ℝ be continuous, and ℎ: 𝑋 → ℝ be lower semicontinuous, 

satisfying  

𝑓(𝑥) ≤ ℎ(𝑥)       (𝑥 ∈ 𝑋)     𝑎𝑛𝑑     𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥)      (𝑥 ∈ 𝑌). 
Then there exists 𝑔: 𝑋 → ℝ continuous such that 𝑔|𝑌 = 𝑔 and 

𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥)   (𝑥 ∈ 𝑋).                                 (11) 
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Proof. We reduce this to the standard form of the Katětov–Tong insertion theorem (see 

[387]or [435]), which is the case that 𝑌 = ∅. Define 𝑓1, ℎ1: 𝑋 → ℝ by  

                                   𝑓1(𝑥): = {
𝑔(𝑥),         𝑥 ∈  𝑌,

𝑓(𝑥),          𝑥 ∉ 𝑌,
    and  

                                       ℎ1(𝑥): = {
𝑔(𝑥),         𝑥 ∈  𝑌,

ℎ(𝑥),          𝑥 ∉ 𝑌.
 

Using that 𝑓 is upper semicontinuous, that 𝑌 is closed, and that 𝑓 ≤ 𝑔 on 𝑌, it follows that 

𝑓1 is upper semicontinuous. Likewise, ℎ1 is lower semicontinuous. It is also clear that 𝑓1 ≤
ℎ1. Therefore by the standard form of the Katětov–Tong insertion theorem, there exists a 

continuous function 𝑔: 𝑋 → ℝ such that 

𝑓1 ≤ 𝑔 ≤ ℎ1. 
The definitions of  𝑓1 and ℎ1 ensure that (11) holds.  

Here is our first main theorem, characterising the Dixmier property in terms of other 

conditions that are more readily verified, namely weak centrality and tracial conditions. 

Theorem (6.3.12)[455]: Let 𝐴 be a unital 𝐶∗-algebra. The following are equivalent. 

(i)  𝐴 has the Dixmier property. 

(ii) 𝐴 is weakly central and, for every 𝑀 ∈ 𝑀𝑎𝑥(𝐴), 
(a)  𝐴/(𝑀 ∩ 𝑍(𝐴))𝐴 has at most one tracial state, and 

(b) if 𝐴/(𝑀 ∩ 𝑍(𝐴))𝐴 has 𝑎 tracial state 𝜏, then 𝜏(𝑀/(𝑀 ∩ 𝑍(𝐴))𝐴) = {0}. 
(iii) 𝐴 is weakly central and 

(a) for every 𝑀 ∈ 𝑀𝑎𝑥(𝐴), 𝐴/𝑀 has at most one tracial state, and 

(b) every extreme tracial state of 𝐴 factors through 𝐴/𝑀 for some maximal ideal 𝑀. 

When 𝐴 has the Dixmier property, 𝜕𝑒𝑇(𝐴) is homeomorphic to the set  

  𝑌 ≔ {𝑀 ∈ 𝑀𝑎𝑥(𝐴): 𝐴 has a(unique)tracial state 𝜏𝑀 that annihilates 𝑀}      (12) 
 via the assignment 𝑀 ⟼ 𝜏𝑀, the set 𝑌 is closed in 𝑀𝑎𝑥(𝐴), and 𝑇(𝐴) is a Bauer simplex 

(possibly empty). 

Proof. (i)⇒(ii): Suppose that 𝐴 has the Dixmier property and hence is weakly central. Let 

𝑀 ∈ 𝑀𝑎𝑥(𝐴) and set 𝑁:= 𝑀 ∩ 𝑍(𝐴), a maximal ideal of 𝑍(𝐴). By weak centrality, 𝑀/𝑁𝐴 

is the unique maximal ideal of 𝐴/𝑁𝐴. Hence 𝑍(𝐴/𝑁𝐴) = ℂ(1 + 𝑁𝐴) and 𝑍(𝑀/𝑁𝐴) = {0} 
by Lemma (6.3.7). By [342, p.544], the 𝐶∗-algebra 𝐴/𝑁𝐴 has the Dixmier property. Since 

tracial states are constant on Dixmier sets, we conclude that if 𝐴/𝑁𝐴 has a tracial state then 

it is unique and it annihilates 𝑀/𝑁𝐴. 

(ii) (a)⇒(iii)(a): For 𝑀 ∈ 𝑀𝑎𝑥(𝐴), (𝑀 ∩ 𝑍(𝐴))𝐴 ⊆ 𝑀 and so 𝐴/𝑀 is a quotient of 𝐴/(𝑀 ∩
𝑍(𝐴))𝐴. Hence (ii)(a) implies (iii)(a). 

(ii)(b)⇒(iii)(b): Let 𝜏 be an extreme tracial state of 𝐴. By Lemma (6.1.10), there exists a 

maximal ideal 𝑁 of 𝑍(𝐴) such that 𝜏(𝑁) = {0}. Hence 𝜏(𝑁𝐴) = {0} by the Cauchy–

Schwartz inequality for states. Let 𝑀 ∈ 𝑀𝑎𝑥(𝐴) be such that 𝑀 ∩ 𝑍(𝐴) = 𝑁; then since  

𝜏 induces a tracial state on 𝐴/𝑁𝐴 = 𝐴/(𝑀 ∩ 𝑍(𝐴))𝐴, it follows from (ii)(b) that this tracial 

state annihilates 𝑀/(𝑀 ∩ 𝑍(𝐴))𝐴, i.e., 𝜏(𝑀) = {0}, as required. 

(iii)⇒(ii)(𝑏): To prove (ii)(𝑏), it suffices by the Krein–Milman theorem to show that if 𝜏 is 

an extreme tracial state on 𝐴/(𝑀 ∩ 𝑍(𝐴))𝐴 then 𝜏(𝑀/(𝑀 ∩ 𝑍(𝐴))𝐴) = {0}. By Lemma 

(6.3.9), the induced tracial state �̃� on 𝐴 is also extreme, and by (iii) it factors through 𝐴/𝑀′ 
for some 𝑀′ ∈ 𝑀𝑎𝑥(𝐴). Then (using 𝜙𝑀∩𝑍(𝐴) as defined by (1.1)),  

𝜙𝑀′∩𝑍(𝐴) = �̃�|𝑍(𝐴) = 𝜙𝑀∩𝑍(𝐴), 
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and so 𝑀′ ∩ 𝑍(𝐴) = 𝑀 ∩ 𝑍(𝐴). By weak centrality, we conclude that 𝑀′ = 𝑀 and therefore 

𝜏(𝑀/(𝑀 ∩ 𝑍(𝐴))𝐴) = 0. 
(iii) and (ii)(b)⇒(i): Assume that (iii) and (ii)(b) hold. Define 𝑋:= 𝑀𝑎𝑥(𝐴) ≅ 𝑀𝑎𝑥(𝑍(𝐴)) 
(thus a compact Hausdorff space) and 𝑌:= {𝑀 ∈ 𝑋: 𝐴/𝑀 has a tracial state}. By the Krein–

Milman theorem and (iii)(𝑏), 𝑌 is non-empty if and only if 𝑇(𝐴) is non-empty. By (iii)(a), 

for each 𝑀 ∈ 𝑌, there is a unique tracial state 𝜏𝑀 of 𝐴 that vanishes on 𝑀. It follows from 

Lemma (6.3.6) that 𝜏𝑀 ∈ 𝜕𝑒𝑇(𝐴). We define 𝐺: 𝑌 → 𝜕𝑒𝑇(𝐴) by 𝐺(𝑀):= 𝜏𝑀(𝑀 ∈ 𝑌). If 
𝑀1, 𝑀2 ∈ 𝑌and 𝐺(𝑀1) = 𝐺(𝑀2) then the state 𝜏𝑀1vanishes on 𝑀1 +𝑀2 and so 𝑀1 = 𝑀2. 

Thus 𝐺 is injective, and it is surjective by(iii)(𝑏). We will show that 𝑌 is closed in 𝑀𝑎𝑥(𝐴) 
(and hence compact) and that the bijection 𝐺 is continuous for the weak∗-topology on the 

Hausdorff space 𝜕𝑒𝑇(𝐴) (and hence 𝐺 is a homeomorphism). 

    Let 𝑀 belong to the closure of 𝑌 in 𝑀𝑎𝑥(𝐴) and let (𝑀𝑖) be an arbitrary net in 𝑌 that is 

convergent to 𝑀. Since 𝑇(𝐴) is weak∗-compact, there exist 𝜏 ∈ 𝑇(𝐴) and a subnet (𝑀𝑖𝑗) 

such that 𝜏𝑀𝑖𝑗
→𝑗 𝜏. Then  

𝜏 |𝑍(𝐴) = lim
𝑗
𝜙𝑀𝑖𝑗

∩ 𝑍(𝐴)  = 𝜙𝑀∩𝑍(𝐴). 

It follows from the Cauchy–Schwartz inequality for states that τannihilates the Glimm ideal 

(𝑀 ∩ 𝑍(𝐴))𝐴 and hence 𝜏(𝑀) = {0} by (ii)(𝑏). Thus 𝑀 ∈ 𝑌 and 𝜏 = 𝜏𝑀. Since (𝑀𝑖) is an 

arbitrary net in 𝑌 convergent to 𝑀 and 𝜏𝑀𝑖𝑗
→𝑗 𝜏𝑀, 𝐺 is continuous at 𝑀 and therefore 

continuous on 𝑌. 

   Now let 𝑎 ∈ 𝐴 be self-adjoint. We show that 𝐷𝐴(𝑎) ∩ 𝑍(𝐴) ≠ ∅. The strategy is to define 

a candidate 𝑧 ∈ 𝑍(𝐴) and then use Theorem (6.3.2) to show that 𝑧 ∈ 𝐷𝐴(𝑎). Define 

functions 𝑓, ℎ: 𝑋 → ℝ by  

𝑓(𝑀):= 𝑚 ≔ 𝑛 𝑠𝑝(𝑞𝑀(𝑎)), ℎ(𝑀 ∶= 𝑚𝑎𝑥 𝑠𝑝(𝑞𝑀(𝑎))     (𝑀 ∈ 𝑀𝑎𝑥(𝐴)) 
 One can rewrite these as  

𝑓(𝑀) = ‖𝑎‖ − ‖𝑞𝑀(‖𝑎‖1 − 𝑎)‖  𝑎𝑛𝑑  ℎ(𝑀) = ‖𝑞𝑀(‖𝑎‖1 + 𝑎)‖ − ‖𝑎‖; 
[405, Proposition 4.4.4] tells us that the functions 𝑀⟼ ‖𝑞𝑀(‖𝑎‖1 ± 𝑎)‖ are lower semi-

continuous, and therefore, ℎ is lower semicontinuous and 𝑓 is upper semicontinuous.  

Finally define 𝑔: 𝑌 → ℝ by 𝑔(𝑀):= 𝐺(𝑀)(𝑎) = 𝜏𝑀(𝑎). Since 𝐺 is continuous on 𝑌, so is 

𝑔. Evidently, 

𝑓(𝑀) ≤  ℎ(𝑀)     (𝑀 ∈ 𝑋). 
For all 𝑀 ∈ 𝑌,  

𝑓(𝑀)1𝐴/𝑀 ≤ 𝑞𝑀(𝑎) ≤ ℎ(𝑀)1𝐴/𝑀 

and hence, by the positivity of the tracial state induced by 𝜏𝑀 on 𝐴/𝑀, 

𝑓(𝑀) ≤ 𝑔(𝑀) ≤ ℎ(𝑀). 
By the Katětov–Tong insertion theorem (Theorem (6.3.11)), there exists a function 𝑔 ∈
𝐶(𝑋) such that 𝑔|𝑌 = 𝑔 and 

𝑓(𝑀)  ≤ 𝑔(𝑀) ≤ ℎ(𝑀)     (𝑀 ∈ 𝑋). 
Since 𝑔 ∘ 𝛹−1 ∈ 𝐶(𝑀𝑎𝑥(𝑍(𝐴))), Gelfand theory for the commutative 𝐶∗-algebra 𝑍(𝐴) 
yields a self-adjoint element 𝑧 ∈ 𝑍(𝐴) such that 

𝑞𝑀(𝑧) = 𝑔(𝑀)1𝐴/𝑀 ∈ 𝐴/𝑀 (𝑀 ∈ 𝑀𝑎𝑥(𝐴)). 

Then 𝜏𝑀(𝑎 − 𝑧) = 0 for all 𝑀 ∈ 𝑌. Since 𝐺 is surjective, the Krein–Milman theorem yields 

𝜏 (𝑎 −  𝑧) = 0        (𝜏 ∈ 𝑇(𝐴)), 
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verifying (a) of Theorem(6.3.2). For every maximal ideal 𝑀 of 𝐴, 0 is in the convex hull of 

the spectrum of 𝑞𝑀(𝑎 − 𝑧); this is because the spectrum of this element is the translation of 

the spectrum of 𝑞𝑀(𝑎) by 𝑔(𝑀), and 𝑔(𝑀)is chosen to be between the minimum and the 

maximum of the spectrum of 𝑔𝑀(𝑎). Therefore 0 is in the convex hull of the spectrum of 

the image of 𝑎 − 𝑧 in any quotient of 𝐴. This shows that (𝑏) of Theorem (6.3.2) holds. 

Hence by Theorem (6.3.2), 0 ∈ 𝐷𝐴(𝑎 − 𝑧) and so 𝑧 ∈ 𝐷𝐴(𝑎) as required. 

   Now, for 𝑎 ∈ 𝐴 (not necessarily self-adjoint) we may write 𝑎 = 𝑏 + 𝑖𝑐, where band care 

self-adjoint elements of 𝐴, and a standard argument of successive averaging (cf. the proof 

of [385, Lemma 8.3.3]) shows that 𝑑(𝐷𝐴(𝑎), 𝑍(𝐴)) = 0. By [342, Lemma 2.8], 𝐴 has the 

Dixmier property. 

   Finally, we have seen above that when 𝐴 has the Dixmier property, 𝜕𝑒𝑇(𝐴) is home-

omorphic to the compact set 𝑌 and so the Choquet simplex 𝑇(𝐴) is a Bauer simplex 

(possibly empty). 

   Suppose that 𝐴 is a unital 𝐶∗-algebra with the Dixmier property and that 𝜃: 𝑍(𝐴) →
𝐶(𝑀𝑎𝑥(𝐴)) is the canonical ∗-isomorphism induced by the Gelfand transform for 𝑍(𝐴) and 

the homeomorphism 𝛹:𝑀𝑎𝑥(𝐴) → 𝑀𝑎𝑥(𝑍(𝐴)). Let 𝑎 = 𝑎∗ ∈ 𝐴, let 𝑓 and ℎ be the 

associated spectral functions on 𝑀𝑎𝑥(𝐴) and let 𝑔 be the associated function on the closed 

subset 𝑌of 𝑀𝑎𝑥(𝐴). Then it follows from Theorem (6.3.2) that  

𝐷𝐴(𝑎) ∩ 𝑍(𝐴) =  {𝑧 ∈ 𝑍(𝐴): 𝑧 = 𝑧
∗, 𝑓 ≤ 𝜃(𝑧) ≤ ℎ 𝑎𝑛𝑑 𝜃(𝑧)|𝑌 = 𝑔}. 

Thus 𝐷𝐴(𝑎) ∩ 𝑍(𝐴) is closed under the operations of max and min (regarding self-adjoint 

elements of 𝑍(𝐴) as continuous functions on 𝑀𝑎𝑥(𝐴)). Furthermore, if 𝑧1, 𝑧2, 𝑧3are self-

adjoint elements of 𝑍(𝐴) such that 𝑧1 ≤ 𝑧2 ≤ 𝑧3 and 𝑧1, 𝑧3 ∈ 𝐷𝐴(𝑎) then 𝑧3 ∈ 𝐷𝐴(𝑎). 
   In the case where 𝐴 is a properly infinite von Neumann algebra (and hence for a general 

von Neumann algebra), Ringrose has shown that 𝐷𝐴(𝑎) ∩ 𝑍(𝐴) is an order interval in the 

self-adjoint part of 𝑍(𝐴) and has given a formula for the end-points in terms of spectral 

theory (see [414, Corollary 2.3, Theorem 3.3 and Remark 3.5]). The next result gives a 

different spectral description for the end-points. 

Corollary (6.3.13)[455]: Let 𝐴 be a properly infinite von Neumann algebra and let 𝑎 =
𝑎∗ ∈ 𝐴. Then, with the notation above, the spectral functions 𝑓 and ℎ are continuous on 

𝑀𝑎𝑥(𝐴), 𝜃−1(𝑓), 𝜃−1(ℎ) ∈ 𝐷𝐴(𝑎) ∩ 𝑍(𝐴) and  

𝐷𝐴(𝑎) ∩ 𝑍(𝐴) = {𝑧 ∈ 𝑍(𝐴): 𝑧 = 𝑧
∗    𝑎𝑛𝑑    𝜃−1(𝑓) ≤ 𝑧 ≤ 𝜃−1(ℎ)}. 

Proof. For 𝑏 ∈ 𝐴, the function 𝑀 → ‖𝑞𝑀(𝑏)‖ is continuous on 𝑀𝑎𝑥(𝐴) by [757, 

Proposition1]. It follows that the functions 𝑓 and ℎ are continuous on 𝑀𝑎𝑥(𝐴). Since 𝐴 has 

no tracial states, the subset 𝑌 of 𝑀𝑎𝑥(𝐴) is empty. The result now follows from the 

discussion above.  

We now show how Theorem (6.3.12) leads to necessary and sufficient conditions for the 

singleton Dixmier property. 

Corollary (6.3.14)[455]: Let 𝐴 be a unital 𝐶∗-algebra. The following are equivalent. 

(i) 𝐴 has the singleton Dixmier property. 

(ii) 𝐴 is weakly central and, for every 𝑀 ∈ 𝑀𝑎𝑥(𝐴), 𝐴/(𝑀 ∩ 𝑍(𝐴))𝐴 has a unique 

tracial state and this state annihilates 𝑀/(𝑀 ∩ 𝑍(𝐴))𝐴. 

(iii) 𝐴 is weakly central and 

(a) for every 𝑀 ∈ 𝑀𝑎𝑥(𝐴), 𝐴/𝑀 has a unique tracial state, and 

(b) every extreme tracial state of 𝐴 factors through 𝐴/𝑀 for some 𝑀 ∈ 𝑀𝑎𝑥(𝐴). 
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(iv) (a) for every 𝑀 ∈ 𝑀𝑎𝑥(𝐴), 𝐴/𝑀 has a unique tracial state, and 

(b) the restriction map 𝑟: 𝑇(𝐴) → 𝑆(𝑍(𝐴)) is a homeomorphism for the weak∗-topologies. 

(v) (a) for every 𝑀 ∈ 𝑀𝑎𝑥(𝐴), 𝑇(𝐴/𝑀) is non-empty, and 

(b) the restriction map 𝑟𝑒: 𝜕𝑒𝑇(𝐴) → 𝑃(𝑍(𝐴)) is injective.    

Proof. The equivalence of (i), (ii) and (iii) follows from Theorem (6.3.12) and Proposition 

(6.3.4). It is also clear that (iv) implies (v) (note that 𝑟𝑒 maps extreme tracial states into 

𝑃(𝑍(𝐴)) by Lemma (6.3.10)). 

(i)⇒(iv): Suppose that 𝐴 has the singleton Dixmier property. Then (iv)(a) holds by 

Proposition (6.3.4). For (iv) (b), we proceed as in the well-known case of a finite von Neu-

mann algebra (cf. [799, Proposition III.5.3]). For the surjectivity of 𝑟, we observe that if 𝜙 ∈
𝑆(𝑍(𝐴)) then 𝜙 ∘ 𝑅 ∈ 𝑇(𝐴), where 𝑅: 𝐴 → 𝑍(𝐴) is the unique centre-valued trace of 𝐴, and 

(𝜙 ∘ 𝑅)|𝑍(𝐴) = 𝜙. The injectivity of  𝑟 follows from the facts that 𝐴 has the Dixmier 

property and tracial states are constant on Dixmier sets. Since 𝑟 is a weak∗-continuous 

bijection from the compact space 𝑇(𝐴) to the Hausdorff space 𝑆(𝑍(𝐴)), it is a 

homeomorphism. 

(v)⇒(iii): Suppose that 𝐴 satisfies (v) and let 𝑀 ∈ 𝑀𝑎𝑥(𝐴). By (v) (a) and the KreinMilman 

theorem, there exists 𝜏𝑀 ∈ 𝜕𝑒𝑇(𝐴/𝑀). Then 𝜏𝑀 ∘ 𝑞𝑀 ∈ 𝜕𝑒𝑇(𝐴) (Lemma (6.3.9)) and (𝜏𝑀 ∘
𝑞𝑀)|𝑍(𝐴) = 𝜙𝑀∩𝑍(𝐴). Since 𝑟𝑒 is injective, 𝜏𝑀 is unique and hence 𝑇(𝐴/𝑀) = {𝜏𝑀} by the 

Krein–Milman theorem. This establishes (iii) (a). 

For weak centrality, suppose that 𝑀1, 𝑀2 ∈ 𝑀𝑎𝑥(𝐴) and 𝑀1 ∩ 𝑍(𝐴) = 𝑀2 ∩ 𝑍(𝐴). Then  

𝑟𝑒(𝜏𝑀1 ∘ 𝑞𝑀1) = 𝜙𝑀1∩𝑍(𝐴) = 𝜙𝑀1∩𝑍(𝐴) = 𝑟𝑒(𝜏𝑀2 ∘ 𝑞𝑀2). 

Since 𝑟𝑒 is injective, 𝜏𝑀1 ∘ 𝑞𝑀1 = 𝜏𝑀2 ∘ 𝑞𝑀2 , which is a state annihilating 𝑀1 +𝑀2. Hence 

𝑀1 = 𝑀2. 

For (iii) (b), let 𝜏 ∈ 𝜕𝑒𝑇(𝐴). By Lemma (6.3.10), there exists 𝑁 ∈ 𝑀𝑎𝑥(𝑍(𝐴)) such that 

𝜏 |𝑍(𝐴) = 𝜙𝑁. 

Let 𝑀 ∈ 𝑀𝑎𝑥(𝐴) satisfy 𝑀 ∩ 𝑍(𝐴) = 𝑁, so that 

𝜏|𝑍(𝐴) = 𝜙𝑀∩𝑍(𝐴) = (𝜏𝑀 ∘ 𝑞𝑀)|𝑍(𝐴). 

Since 𝑟𝑒 is injective, 𝜏 = 𝜏𝑀 ∘ 𝑞𝑀.  

Corollary (6.3.15)[455]: Let 𝐴 be a unital 𝐶∗-algebra with the Dixmier property and 

suppose that 𝑇(𝐴) is non-empty. Then there exists a unique proper closed ideal 𝐽 of 𝐴 with 

the following property: for every proper closed ideal 𝐾 of 𝐴,𝐴/𝐾 has the singleton Dixmier 

property if and only if 𝐾 ⊇ 𝐽. 
Proof. From Theorem (6.3.12), we have that  

𝑌:= {𝑀 ∈ 𝑀𝑎𝑥(𝐴): 𝑇(𝐴/𝑀) 𝑖𝑠𝑛𝑜𝑛 − 𝑒𝑚𝑝𝑡𝑦}  
is a non-empty closed subset of  𝑀𝑎𝑥(𝐴). Let 𝑁:= ⋂ (𝑀 ∩ 𝑍(𝐴))𝑀∈𝑌  and 𝐽: = 𝑁𝐴. Since 

𝑌 is non-empty, 𝐽 is a proper ideal of 𝐴.  

    Let 𝐾 be a proper closed ideal of  𝐴 and suppose that 𝐴/𝐾 has the singleton Dixmier 

property. Let 𝑃 be a primitive ideal of 𝐴 containing 𝐾 and let 𝑀 be a maximal ideal of 𝐴 

containing 𝑃. Since 𝐴/𝐾 has the singleton Dixmier property, it follows from Proposition 

)6.3.4  ( that 𝑇((𝐴/𝐾)/(𝑀/𝐾)) is non-empty and hence 𝑀 ∈ 𝑌. On the other hand, 𝑃 ∩ 𝑍(𝐴) 
is a prime ideal of 𝑍(𝐴) and hence  

𝑃 ∩ 𝑍(𝐴) = 𝑀 ∩ 𝑍(𝐴) ⊇ 𝑁. 
It follows that 𝑃 ⊇ 𝑁𝐴 = 𝐽. Since this holds for all 𝑃 ∈ 𝑃𝑟𝑖𝑚(𝐴/𝐾), we obtain that 𝐾 ⊇ 𝐽. 
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Conversely, suppose that 𝐾 ⊇ 𝐽. Since 𝐴 has the Dixmier property, so does 𝐴/𝐾. Let 𝑀 be 

a maximal ideal of 𝐴 that contains 𝐾. Since 𝑀 ∩ 𝑍(𝐴) ⊇ 𝐽 ∩ 𝑍(𝐴) ⊇ 𝑁 and 𝛹(𝑌) is closed 

in 𝑀𝑎𝑥(𝑍(𝐴)), we obtain that 𝑀 ∈ 𝑌. Thus 𝑇((𝐴/𝐾)/(𝑀/𝐾)) is non-empty and so 𝐴/𝐾 

has the singleton Dixmier property by Proposition (6.3.4(. The uniqueness of 𝐽 is immediate 

from its stated property.  

   We highlight the special case of Theorem (6.3.12) in which 𝑍(𝐴) is trivial, which 

generalises results from [374]. This case plays a crucial role in our investigation of the 

uniform Dixmier property for 𝐶∗-algebras with trivial centre. 

Corollary (6.3.16)[455]: Suppose that 𝐴 is a unital 𝐶∗-algebra. The following conditions 

are equivalent. 

(i)  𝑍(𝐴) = ℂ1 and 𝐴 has the Dixmier property. 

(ii) 𝐴 has a unique maximal ideal 𝐽, 𝐴 has at most one tracial state and 𝐽 has no tracial 

states. 

(iii) 𝐴 has a unique maximal ideal 𝐽, 𝐴/𝐽 has at most one tracial state and 𝐽 has no 

tracial states. 

When these hold, 𝐴 has the singleton Dixmier property exactly when it has a tracial state 𝜏, 
and in this case,  

𝐽 = {𝑥 ∈ 𝐴: 𝜏 (𝑥∗𝑥) = 0}, 
the trace-kernel ideal for 𝜏. 
If 𝐴 has the Dixmier property and no tracial states then 

𝐷𝐴(𝑎) ∩ ℂ1 = {𝑡1: 𝑡 ∈ 𝑐𝑜(𝑠𝑝(𝑞𝐽(𝑎))}.  

Proof. Suppose that (i) holds. By Theorem (6.3.12) ((i) ⇒(ii)), 𝐴 is weakly central and 

hence, since 𝑍(𝐴) = ℂ1, 𝐴 has a unique maximal ideal 𝐽. Since 𝐽 ∩ 𝑍(𝐴) = {0}, 𝐴 has at 

most one tracial state by Theorem (6.3.12) (ii)(a) and if 𝐴 does have a tracial state then it 

annihilates 𝐽 by Theorem (6.3.12) (ii) (b). By Lemma (6.3.8), 𝐽 has no tracial states. Thus 

(ii) holds. 

Conversely, suppose that (ii) holds. Then 𝑍(𝐴) = ℂ1 (by Lemma (6.3.7)) and 𝐴 is weakly 

central. If 𝐴 has a tracial state then it must annihilate 𝐽 since 𝐽 has no tracial states. Thus (i) 

holds by Theorem (6.3.12) ((ii) ⇒(i)). 

(ii)⇔(iii) is immediate. 

The statement concerning the singleton Dixmier property follows from Corollary (6.3.14) 

(i)⇔(ii), and the final statement follows from Theorem(6.3.2).  

An example of a non-simple 𝐶∗-algebra with a unique maximal ideal, with the Dixmier 

property but not the singleton Dixmier property is the “Cuntz–Toeplitz algebra” 𝐴:=
𝐶∗(𝑆1, . . . , 𝑆𝑛) where 2 ≤ 𝑛 < ∞ and 𝑆1, . . . , 𝑆𝑛 are isometries on an infinite dimensional 

Hilbert space with mutually orthogonal range projections having sum less than 1(cf. [345, 

Theorem 11]). 

   Corollary (6.3.16) above motivates the following question. Is there an example of a unital 

𝐶∗-algebra 𝐴 containing a unique maximal ideal 𝐽 such that 𝐴 has a unique tracial state and 

𝐴/𝐽 has no tracial states? 𝐴 non-separable example is the multiplier algebra 𝑀(𝐽) where 𝐽 
is a non-unital hereditary subalgebra of a UHF algebra; here, 𝐽 is simple and has a unique 

trace, and by [362, Theorem 3.1 and its proof], 𝑀(𝐽)/𝐽 is simple and infinite. Thus 𝐽 is the 

unique maximal ideal of 𝑀(𝐽), and the extension of the trace on 𝐽 is the unique trace on 

𝑀(𝐽). 
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For a separable nuclear example, one may utilise a construction of  Kirchberg [389] as 

pointed out by Ozawa at the end of  [404]. Thus 𝐽 and 𝐴 are 𝐶∗-subalgebras of the 𝐶𝐴𝑅 

algebra 𝕄2∞  such that 𝐽 is hereditary in 𝕄2∞  and is an ideal in 𝐴 such that 𝐴/𝐽 ≅ 𝒪∞. Since 

𝕄2∞  is simple and has a faithful, unique tracial state, 𝐽 also has both of these properties 

(note that any tracial state of 𝐽 can be extended to a bounded tracial functional on 𝕄2∞). 

Suppose that 𝐴 has a maximal ideal 𝑀 distinct from 𝐽. Then 𝑀 ∩ 𝐽 = {0} and so 

𝒪∞ ≅ (𝑀 + 𝐽)/𝐽 ≅ 𝑀/𝑀 ∩ 𝐽 = 𝑀,  
contradicting the fact that 𝐴 has a faithful tracial state induced from 𝕄2∞ . It follows from a 

theorem of Cuntz and Pedersen [355, Theorem 2.9], as in the proof of [399, Theorem14], 

that 𝐴 has a faithful, unique tracial state. Even though 𝐴/𝐽 satisfies a strong form of the 

Dixmier property [355, Theorem 8], 𝐴 itself does not have the Dixmier property because its 

tracial state does not vanish on 𝐽. 
   This example also shows that, in Corollary (6.3.14), the condition (v)(a) does not follow 

from condition (v)(b). On the other hand, to see that condition (v)(a) does not imply 

condition (v)(b) in Corollary (6.3.14), consider any simple unital 𝐶∗-algebra with more than 

one tracial state.  

   The following concerns the Dixmier property for non-unital 𝐶∗-algebras; a non-unital 𝐶∗-
algebra 𝐴 is said to have the (singleton) Dixmier property if the unitization  𝐴 + ℂ1 has the 

same property. 

Corollary (6.3.17)[455]: Let 𝐴 be a 𝐶∗-algebra with no tracial states. Then the following 

conditions are equivalent. 

(i)  𝐴 has the Dixmier property and 𝑍(𝐴) = 0. 

(ii)  𝐴 has the singleton Dixmier property and 𝑍(𝐴) = 0. 

(iii)  𝐴 is the unique maximal ideal of the unitisation 𝐴 + ℂ1. 

Proof.(i)⇔(iii) is Corollary (6.3.16) (i)⇔(iii) applied to 𝐴 + ℂ1, while the singleton 

Dixmier property in (ii) is the final sentence of Corollary (6.3.16).  

𝐴 𝐶∗-algebra 𝐴 (with or without an identity) is said to have the centre-quotient property if 

𝑍(𝐴/𝐽) = (𝑍(𝐴) + 𝐽)/𝐽 for every proper closed ideal 𝐽 of 𝐴. Vesterstrøm showed that, for 

unital 𝐴, the centre-quotient property is equivalent to weak centrality [436, Theorems1 and 

2]. Dixmier observed that the centre-quotient property is a simple consequence of the 

Dixmier property in a von Neumann algebra [360, 𝑝.259, Ex.7]. Similarly, it is easily seen 

that if a 𝐶∗-algebra has the Dixmier property then it also has the centre-quotient property 

[340, 2.2.2]. The next result was obtained in [340, 4.3.1, 5.1.9] under the additional 

assumption that either 𝐴 is separable or there is a finite bound on the covering dimension of 

compact Hausdorff subsets of the spectrum �̂�. The method was very different from that used 

below. 

Theorem (6.3.18)[455]: Let 𝐴 be a postliminal 𝐶∗-algebra. The following conditions are 

equivalent. 

(i)  𝐴 has the centre-quotient property. 

(ii)  𝐴 has the singleton Dixmier property. 

(iii)  𝐴 has the Dixmier property. 

Proof.(i)⇒(ii): Suppose first of all that 𝐴 is a unital postliminal 𝐶∗-algebra with the centre-

quotient property. Then 𝐴 is weakly central ([436]). Furthermore, 𝐴 automatically satisfies 

conditions (iii)(a) and (iii)(b) of Corollary (6.3.14). For (iii)(a), recall that a simple, unital 
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𝐶∗-algebra of type 𝐼 is ∗-isomorphic to 𝑀𝑛 for some 𝑛 ∈ ℕ. For (iii)(b), note that if 𝜏 ∈
𝜕𝑒𝑇(𝐴) then 𝜋𝜏(𝐴) is a finite factor of type 𝐼 (see [361, 6.8.7 and 6.8.6]) and so ker 𝜋𝜏is 

maximal. By Corollary (6.3.14), 𝐴 has the singleton Dixmier property. 

   Secondly, suppose that 𝐴 is a non-unital postliminal 𝐶∗-algebra with the centre-quotient 

property. Then it is easily seen that 𝐴 + ℂ1 has the centre-quotient property (note that if 𝐽 is 

a closed ideal of 𝐴 + ℂ1 then either 𝐽 ⊆ 𝐴 or else (𝐴 + ℂ1)/𝐽 is canonically ∗-isomorphic 

to 𝐴/(𝐴 ∩ 𝐽)). Thus 𝐴 + ℂ1 is a unital postliminal 𝐶∗-algebra with the centre-quotient 

property and so has the singleton Dixmier property by the first part of the proof. 

(iii)⇒(i): For the convenience of the reader, we give the details in the case where 𝐴 is a non-

unital 𝐶∗-algebra with the Dixmier property. The unital case is even easier (and could 

alternatively be obtained via weak centrality and [436]). Let 𝐽 be a closed ideal of 𝐴 and let 

𝑞: 𝐴 + ℂ1 → (𝐴 + ℂ1)/𝐽 be the canonical quotient map. Suppose that 𝑎 ∈ 𝐴 and that 

𝑞(𝑎) ∈ 𝑍(𝐴/𝐽) ⊆ 𝑍((𝐴 + ℂ1)/𝐽). Since 𝐷𝐴+ℂ1(𝑎) ⊂ 𝐴 and 𝑍(𝐴 + ℂ1) ∩ 𝐴 = 𝑍(𝐴), there 

exists 𝑧 ∈ 𝐷𝐴+ℂ1(𝑎) ∩ 𝑍(𝐴). Then 𝑞(𝑧) ∈ 𝐷𝑞(𝐴+ℂ1)(𝑞(𝑎)) = {𝑞(𝑎)} and so 𝑞(𝑎) ∈

(𝑍(𝐴) + 𝐽)/𝐽, as required. 

Corollary (6.3.19)[455]: Let 𝐴 be a postliminal 𝐶∗-algebra such that every irreducible 

representation of 𝐴 is infinite dimensional. Then 𝐴 has the singleton Dixmier property. 

Proof. As in the proof of [340, 4.3.2], the use of a composition series with liminal quotients 

shows easily that the centre of 𝐴 is {0}. Since the same applies to any nonzero quotient of 

𝐴, it follows that 𝐴 has the centre-quotient property and hence the singleton Dixmier 

property. 

    we introduce and study the following uniform version of the Dixmier property (cf. [403] 

and [402]). 

Definition (6.3.20)[455]: 𝐴 unital 𝐶∗-algebra 𝐴 has the uniform Dixmier property if for 

every 𝜖 > 0 there exists 𝑛 ∈ ℕ such that for all 𝑎 ∈ 𝐴, there exist unitaries 𝑢1, . . . , 𝑢𝑛 ∈
𝒰(𝐴) such that  

𝑑 (∑
1

𝑛
𝑢𝑖𝑎𝑢𝑖

∗, 𝑍(𝐴)

𝑛

𝑖=1

) ≤ 𝜖‖𝑎‖. 

Theorem (6.3.21)[455]: Let 𝐴 be a unital 𝐶∗-algebra. The following are equivalent: 

(i)  𝐴 has the uniform Dixmier property. 

(ii) There exist 𝑚 ∈ ℕ and 0 < 𝛾 < 1 such that for every self-adjoint 𝑎 ∈ 𝐴 we have 

that  

‖∑
1

𝑚
𝑢𝑖𝑎𝑢𝑖

∗ − 𝑧

𝑚

𝑖=1

‖ ≤ 𝛾‖𝑎‖, 

for some 𝑧 ∈ 𝑍(𝐴) and 𝑢1, . . . , 𝑢𝑚 ∈ 𝒰(𝐴). 
(iii) There exist 𝑚 ∈ ℕ and 0 < 𝛾 < 1 such that for every self-adjoint 𝑎 ∈ 𝐴 we have 

that 

‖∑𝑡𝑖𝑢𝑖𝑎𝑢𝑖
∗ − 𝑧

𝑚

𝑖=1

‖ ≤  𝛾‖𝑎‖,                                   (13) 

for some 𝑧 ∈ 𝑍(𝐴), some 𝑢1, . . . , 𝑢𝑚 ∈ 𝑈(𝐴), and some 𝑡1, . . . , 𝑡𝑚 ∈ [0, 1] such that 

∑ 𝑡𝑖
𝑚
𝑖=1 = 1. 
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(iv) There exists a function Φ:𝐴 → 𝑍(𝐴) such that for every 𝜖 > 0 there exists 𝑛 ∈ ℕ 

such that for all 𝑎 ∈ 𝐴 we have that  

‖∑
1

𝑛
𝑢𝑖𝑎𝑢𝑖

∗ −Φ(𝑎)

𝑚2𝑘

𝑖=1

‖ ≤ 𝜖‖𝑎‖, 

for some unitaries 𝑢1, . . . , 𝑢𝑛 ∈ 𝑈(𝐴). 
Proof. This proof uses known ideas from the theory of the Dixmier property and of sequence 

algebras, and is included for completeness. 

The implications (i)⇒(ii)⇒(iii) and (iv)⇒(i) are clear. 

   Let us prove that (iii)⇒(iv). Given an arbitrary element 𝑎 ∈ 𝐴, we can decompose 𝑎 as 

𝑏 + 𝑖𝑐 where 𝑏, care self-adjoint and ‖𝑏‖, ‖𝑐‖ ≤ ‖𝑎‖. By a standard argument of successive 

averaging (cf. the proofs of [385, Lemmas 8.3.2 and 8.3.3]), we deduce from (13) the 

existence of 𝑚2𝑘 unitaries 𝑣1, . . . , 𝑣𝑚2𝑘  such that  

‖∑ 𝑡𝑖𝑣𝑖𝑎𝑣𝑖
∗ − z

𝑚2𝑘

𝑖=1

‖ ≤ 2𝛾𝑘‖𝑎‖, 

for some 𝑧 ∈ 𝑍(𝐴) and some scalars 𝑡𝑖 ∈ [0, 1] such that ∑ 𝑡𝑖
𝑚2𝑘

𝑖=1 = 1. In this way, we 

extend (13) to all 𝑎 ∈ 𝐴 at the expense of changing (𝑚, 𝛾) for (𝑚2𝑘 , 2𝛾𝑘) (where 𝑘 is chosen 

so that 2𝛾𝑘 < 1). Henceforth, let us instead assume, without loss of generality, that the 

constants (𝑚, 𝛾) are such that (13) is valid for all 𝑎 ∈ 𝐴. 

Let 𝑎 ∈ 𝐴. Then there exists 𝑧1 ∈ 𝑍(𝐴) such that  

‖∑𝑡𝑖𝑢𝑖𝑎𝑢𝑖
∗ − 𝑧1

𝑚

𝑖=1

‖ ≤ 𝛾‖𝑎‖. 

for some unitaries 𝑢1, . . . , 𝑢𝑚 ∈ 𝐴 and scalars 𝑡1, . . . , 𝑡𝑚 ∈ [0, 1] such that ∑ 𝑡𝑖
𝑚
𝑖=1 = 1. Set 

𝑎1: = ∑ 𝑡𝑖𝑢𝑖𝑎𝑢𝑖
∗𝑚

𝑖=1  so that ‖𝑎1 − 𝑧1‖ ≤ 𝛾‖𝑎‖. Applying the same argument to 𝑎1 − 𝑧1 we 

find 𝑧2 ∈ 𝑍(𝐴), and a convex combination of 𝑚 unitary conjugates of 𝑎1 − 𝑧1, call it 𝑏2, 

such that  

‖𝑏2 − 𝑧2‖ ≤ 𝛾‖𝑎1 − 𝑧1‖ ≤ 𝛾
2‖𝑎‖.  

Notice that 𝑏2 = 𝑎2 − 𝑧1, where 𝑎2 is a convex combination of munitary conjugates of 𝑎1 

(whence, also a convex combination of 𝑚2 unitary conjugates of 𝑎). Then  

‖𝑎2 − 𝑧1 − 𝑧2‖ ≤ 𝛾
2‖𝑎‖. 

Continuing this process ad infinitum we find 𝑎𝑘 ∈ 𝐷(𝑎) and 𝑧𝑘 ∈ 𝑍(𝐴) for 𝑘 = 1, 2,… such 

that 𝑎𝑘is a convex combination of 𝑚 unitary conjugates of 𝑎𝑘−1 and  

‖𝑎𝑘 −∑𝑧𝑖

𝑘

𝑖=1

‖ ≤ 𝛾𝑘‖𝑎‖  

for all 𝑘 ≥ 1. For each 𝑘 ≥ 1 we have that 

‖𝑧𝑘‖ ≤ 𝛾
𝑘‖𝑎‖ + ‖𝑎𝑘 −∑𝑧𝑖

𝑘−1

𝑖=1

‖,  

 and since 𝑎𝑘 − ∑ 𝑧𝑖
𝑘−1
𝑖=1   is a convex combination of unitary conjugates of 𝑎𝑘−1 − ∑ 𝑧𝑖

𝑘−1
𝑖=1 ,  
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‖𝑧𝑘‖ ≤ 𝛾
𝑘‖𝑎‖ + ‖𝑎𝑘−1 −∑𝑧𝑖

𝑘−1

𝑖=1

‖ 

≤ 𝛾𝑘‖𝑎‖ + 𝛾𝑘−1‖𝑎‖. 
It follows that ∑ 𝑧𝑖

∞
𝑖=1  is a convergent series. Define Φ(𝑎): = ∑ 𝑧𝑖

∞
𝑖=1 . Let us show that Φ is 

as desired. We have that  

‖𝑎𝑘 − Φ(𝑎)‖ ≤ ‖𝑎𝑘 −∑𝑧𝑖

𝑘

𝑖=1

‖ +∑‖𝑧𝑖‖

𝑖>𝑘

≤ 2‖𝑎‖
𝛾𝑘

1 − 𝛾
 . 

   Recall that 𝑎𝑘 is a convex combination of 𝑚𝑘 unitary conjugates of 𝑎. Notice also that the 

rightmost side tends to 0 as 𝑘 → ∞. This shows that for each 𝜖 > 0 there exists 𝑛 such that 

‖𝑎′ − Φ(𝑎)‖ ≤ 𝜖‖𝑎‖ for all 𝑎 ∈ 𝐴, where 𝑎′ is a convex combination of nunitary 

conjugates of 𝑎. It remains to show that this convex combination may be chosen to be an 

average (for a larger 𝑛). Let 𝜖 > 0. Pick 𝑛 ∈ ℕ such that for any 𝑎 ∈ 𝐴 we have 

‖∑𝜆𝑖𝑣𝑖𝑎𝑣𝑖
∗ −Φ(𝑎)

𝑛

𝑖=1

‖ ≤
𝜖

2
‖𝑎‖, 

for some 𝑣1, . . . , 𝑣𝑛 ∈ 𝑈(𝐴) and 𝜆1, . . . , 𝜆𝑛 ≥ 0 such that ∑ 𝜇𝑖
𝑛
𝑖=1 = 1. Now let 𝑁 ≥ 2𝑛/𝜖. 

We can find non-negative rational numbers of the form 𝜇𝑖 = 𝑝𝑖/𝑁 for 𝑖 = 1, . . . , 𝑛, such that  

∑ 𝜇𝑖
𝑛
𝑖=1 = 1 and |𝜇𝑖 − 𝜆𝑖| <

1

𝑁
,    𝑖 = 1, . . . , 𝑛. 

(To find such 𝜇𝑖, first set 𝑝1 to be the greatest integer such that 
𝑝1

𝑁
≤ 𝜆1; then having picked 

𝑝1, . . . , 𝑝𝑖−1, pick 𝑝𝑖  to be the greatest integer such that 
𝑝1+···+𝑝𝑖

𝑁
≤ 𝜆1 +··· +𝜆𝑖 .) Let 

𝑢1, . . . , 𝑢𝑁 be given by listing each unitary 𝑣𝑖 a total of 𝑝𝑖 times, so that  

∑
1

𝑁
 𝑢𝑖𝑎𝑢𝑖

∗

𝑁

𝑖=1

=∑𝜇𝑖𝑣𝑖𝑎𝑣𝑖
∗

𝑛

𝑖=1

. 

Then  

‖∑
1

𝑁
 𝑢𝑖𝑎𝑢𝑖

∗ −Φ(𝑎)

𝑁

𝑖=1

‖ = ‖∑𝜇𝑖𝑣𝑖𝑎𝑣𝑖
∗ −Φ(𝑎)

𝑛

𝑖=1

‖  

                ≤ ‖∑(𝜇𝑖 − 𝜆𝑖)𝑣𝑖𝑎𝑣𝑖
∗

𝑛

𝑖=1

‖ + ‖∑𝜆𝑖𝑣𝑖𝑎𝑣𝑖
∗ − Φ(𝑎)

𝑛

𝑖=1

‖  

                                            ≤
𝑛

𝑁
‖𝑎‖ +

𝜖

2
‖𝑎‖ 

                                            ≤ 𝜖‖𝑎‖. 
Thus, 𝑁 is as desired.  

   We will find it useful to keep track of the constants (𝑚, 𝛾) such that Theorem (6.3.21) (ii) 

is satisfied. If there exist 𝑚 ∈ ℕ and 0 < 𝛾 < 1 such that for every self-adjoint 𝑎 ∈ 𝐴 we 

have that  

     ‖∑
1

𝑚
𝑢𝑖𝑎𝑢𝑖

∗ − 𝑧𝑚
𝑖=1 ‖ ≤ 𝛾‖𝑎‖,                                   (14) 

for some 𝑧 ∈ 𝑍(𝐴) and some 𝑢1, . . . , 𝑢𝑚 ∈ 𝑈(𝐴), then we say that 𝐴 has the uniform 

Dixmier property with constants (𝑚, 𝛾). 
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   There have been significant recent advances in the understanding of when 𝐶𝑟
∗(𝐺) has the 

properties of simplicity and of unique trace (for a discrete group 𝐺) [352,373,386,388,393]; 

in particular, if 𝐶𝑟
∗(𝐺) is simple, then it also has a unique trace. Therefore, simplicity and 

the Dixmier property coincide for 𝐶𝑟
∗(𝐺); it turns the that, in fact, the Dixmier property is 

witnessed using only group unitaries to do the averaging ([373, Theorem 4.5]or [388, 

Theorem 5.3]). However, it is not clear when 𝐶𝑟
∗(𝐺) has the uniform Dixmier property. 

Question (6.3.22)[455]: Is there a discrete group 𝐺 for which 𝐶𝑟
∗(𝐺)has the Dixmier 

property (i.e., is simple), but not the uniform Dixmier property? Is the uniform Dixmier 

property for 𝐶𝑟
∗(𝐺)the same as being able to average uniformly using group unitaries? 

In Corollary (6.3.28) below we show that all 𝐴𝐹 𝐶∗-algebras with the Dixmier property have 

the uniform Dixmier property. We show that all 𝐶∗-algebras with the Dixmier property and 

finite radius of comparison-by-traces have the uniform Dixmier property. More examples. 

Theorem (6.3.23)[455]: Let 𝑚 ∈ ℕ and 0 < 𝛾 < 1. 

(i)  If 𝐴 is a unital 𝐶∗-algebra with the uniform Dixmier property with constants 

(𝑚, 𝛾), then all of the quotients of 𝐴 have the uniform Dixmier property, also with 

constants (𝑚, 𝛾). 
(ii)  If 𝐴1, 𝐴2, … are unital 𝐶∗-algebras with the uniform Dixmier property with con-

stants (𝑚, 𝛾), then  ∏ 𝐴𝑛
∞
𝑛=1  has the uniform Dixmier property, also with 

constants (𝑚, 𝛾). 
Proof. This is straightforward. 

(i): For every self-adjoint 𝑎 ∈ 𝐴/𝐼 we can find a self-adjoint lift �̃� ∈ 𝐴 with the same 

norm. Then there exist unitaries 𝑢1, . . . , 𝑢𝑚 ∈ 𝑈(𝐴) such that (7) holds for �̃�. Passing to 

the quotient 𝐴/𝐼 we get the same for 𝑎. 

      (ii): Let 𝑎 = (𝑎𝑛)𝑛 ∈ ∏ 𝐴𝑛𝑛 be self-adjoint. For each 𝑛 we may find 𝑚 unitaries 

𝑢1,𝑛, . . . , 𝑢𝑚,𝑛 ∈ 𝑈(𝐴𝑛) and 𝑧𝑛 ∈ 𝑍(𝐴) such that  

‖∑
1

𝑚
𝑢𝑖,𝑛𝑎𝑛𝑢𝑖,𝑛

∗ − 𝑧𝑛

𝑚

𝑖=1

‖ ≤ 𝛾‖𝑎𝑛‖.  

Let 𝑢𝑖 = (𝑢𝑖,𝑛)𝑛for 𝑖 = 1, . . . , 𝑚 and define 𝑧:= (𝑧𝑛)𝑛 ∈ ∏ 𝑍(𝐴𝑛)
∞
𝑛=1 (note that the 

sequence (𝑧𝑛)𝑛is bounded since ‖𝑧𝑛‖ ≤ (1 + 𝛾)‖𝑎‖ for all 𝑛). Then  

‖∑
1

𝑚
𝑢𝑖𝑎𝑢𝑖

∗ − 𝑧

𝑚

𝑖=1

‖ ≤ 𝛾‖𝑎‖, 

 as desired.  

It will be convenient in the proof of Proposition (6.3.24) below to use the following notation 

from [342]: For a unital 𝐶∗-algebra 𝐴 and a subgroup 𝑉 of 𝑈(𝐴), 𝐴𝑉(𝐴, 𝑉) is the set of all 

mappings (called averaging operators) 𝛼: 𝐴 → 𝐴 which can be defined by an equation of the 

form  

𝛼(𝑎) =∑𝜆𝑗𝑢𝑗𝑎𝑢𝑗
∗

𝑛

𝑗=1

        (𝑎 ∈ 𝐴), 

where 𝑛 ∈ ℕ, 𝜆𝑗 > 0, 𝑢𝑗 ∈ 𝑉(1 ≤ 𝑗 ≤ 𝑛), and ∑ 𝜆𝑗
𝑛
𝑗=1 = 1. Elementary properties of such 

mappings 𝛼 are described in [342, 2.2]. 
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Proposition (6.3.24)[455]: Let (𝐴𝑘)𝑘=1
∞  be an increasing sequence of 𝐶∗-subalgebras of 𝐴 

whose union is dense in 𝐴, all containing the unit. Suppose that 𝐴𝑘 has the singleton Dixmier 

property for all 𝑘. The following are equivalent: 

(i)  𝐴 has the Dixmier property. 

(ii) The limit 𝑙𝑖𝑚𝑘→∞𝑅𝑘(𝑎) exists for all 𝑎 ∈ ⋃ 𝐴𝑘
∞
𝑘=1 , where 𝑅𝑘 denotes the centre-

valued trace on 𝐴𝑘for all 𝑘. 

(iii)  𝐴 has the singleton Dixmier property and 

𝑅(𝑎) = 𝑙𝑖𝑚𝑘→∞ 𝑅𝑘(𝑎) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ⋃𝐴𝑘

∞

𝑘=1

, 

 where 𝑅 denotes the centre-valued trace on 𝐴. 

Note that an inductive limit of 𝐶∗-algebras with the singleton Dixmier property need not 

have the Dixmier property (e.g., there exist simple, unital 𝐴𝐹 algebras with more than one 

tracial state). 

Proof. Glimm’s argument for UHF algebras [367, Lemma 3.1] shows that ⋃ 𝑈(𝐴𝑘)𝑘≥1  is 

norm-dense in 𝑈(𝐴) (in brief, if 𝑎𝑛 → 𝑢 then 𝑎𝑛(𝑎𝑛
∗𝑎𝑛)

−1/2 → 𝑢). Since multiplication is 

jointly continuous for the norm-topology on 𝐴, it follows that, for all 𝑎 ∈ 𝐴, 

                  𝐷𝐴(𝑎) = ⋃ {𝛼(𝑎): 𝛼 ∈ 𝐴𝑉(𝐴,𝑈(𝐴𝑘))}𝑘≥1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ .                  (15) 

We shall use this repeatedly.   

(i)⇒(iii): Let us first show that 𝐴 has the singleton Dixmier property. Suppose that 𝑧1, 𝑧2 ∈
𝐷𝐴(𝑎) ∩ 𝑍(𝐴) for some 𝑎 ∈ 𝐴. Let 𝜖 > 0. By (15), there exists 𝑛 ∈ ℕ and 𝛼, 𝛽 ∈
𝐴𝑉(𝐴,𝑈(𝐴𝑛)) such that 

                                           ‖𝑧1 − 𝛼(𝑎)‖ <
𝜖

4
    and    ‖𝑧2 − 𝛽(𝑎)‖ <

𝜖

4
.  

Enlarging 𝑛 if necessary, we can find 𝑏 ∈ 𝐴𝑛such that ‖𝑎 − 𝑏‖ < 𝜖/4. Notice then that 

‖𝑧1 − 𝛼(𝑏)‖ < 𝜖/2. Since 𝑧1 is invariant under conjugation by unitary elements of 

𝐴, ‖𝑧1 − 𝑅𝑛(𝛼(𝑏))‖ ≤ 𝜖/2. But 𝑅𝑛 is constant on Dixmier sets in 𝐴𝑛 and so 𝑅𝑛(𝛼(𝑏)) =
𝑅𝑛(𝑏). Thus  

                         ‖𝑧1 − 𝑅𝑛(𝑏)‖ ≤
𝜖

2
    and similarly    ‖𝑧2 − 𝑅𝑛(𝑏)‖ ≤

𝜖

2
.  

It follows that ‖𝑧1 − 𝑧2‖ ≤ 𝜖 and hence that 𝑧1 = 𝑧2, as required. 

    Let 𝑅: 𝐴 → 𝑍(𝐴) be the unique centre-valued trace on 𝐴. Let 𝑘 ≥ 1, 𝑎 ∈ 𝐴𝑘 and 𝜖 > 0. 

By (15), there exists 𝑀 ≥ 𝑘 and 𝛼 ∈ 𝐴𝑉(𝐴, 𝑈(𝐴𝑀)) such that ‖𝑅(𝑎) − 𝛼(𝑎)‖ < 𝜖/2. For 

each 𝑛 ≥ 𝑀, there exists 𝛽𝑛 ∈ 𝐴𝑉(𝐴𝑛 , 𝑈(𝐴𝑛)) such that  

‖𝑅𝑛(𝛼(𝑎)) − 𝛽𝑛(𝛼(𝑎))‖ <
𝜖

2
. 

Since 𝑅𝑛 is constant on Dixmier sets in 𝐴𝑛, 𝑅𝑛(𝛼(𝑎)) = 𝑅𝑛(𝑎), and since 𝑅(𝑎) ∈
𝑍(𝐴), ‖𝑅(𝑎) − 𝛽𝑛(𝛼(𝑎))‖ < 𝜖/2. Hence  

‖𝑅(𝑎) − 𝑅𝑛(𝑎)‖ ≤ ‖𝑅(𝑎) − 𝛽𝑛(𝛼(𝑎))‖ + ‖𝛽𝑛(𝛼(𝑎)) − 𝑅𝑛(𝛼(𝑎))‖ < 𝜖. 
Thus 𝑅𝑛(𝑎) → 𝑅(𝑎) as 𝑛 → ∞. 

(iii)⇒(ii) is obvious. 

(ii)⇒(i): Let 𝑘 ≥ 1 and 𝑎 ∈ 𝐴𝑘. Then (ii) yields 𝑧 ∈ 𝐴 such that, for 𝑛 ≥ 𝑘, 𝑅𝑛(𝑎) →
𝑧 as 𝑛 → ∞. Since 𝑅𝑛(𝑎) ∈ 𝑍(𝐴𝑛), 𝑧 belongs to the relative commutant of ∪𝑗≥𝑘 𝐴𝑗in  𝐴 and 

hence 𝑧 ∈ 𝑍(𝐴). Since 𝑅𝑛(𝑎) ∈ 𝐷𝐴𝑛(𝑎) ⊆ 𝐷𝐴(𝑎)(𝑛 ≥ 𝑘), 𝑧 ∈ 𝐷𝐴(𝑎). Thus, by [342, 

Lemma 2.8], 𝐴 has the Dixmier property.  
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Suppose that 𝐴 has the singleton Dixmier property. Let 𝑅: 𝐴 → 𝑍(𝐴) denote its centre-

valued trace. If 𝐴 also has the uniform Dixmier property then by Theorem (6.3.21) (iv) 

(applied to 𝑎 − 𝑅(𝑎)), there exist 𝑀 ∈ ℕ and 0 < 𝛶 < 1 such that for every self-adjoint 𝑎 ∈
𝐴 we have that 

   ‖∑
1

𝑀
𝑢𝑖𝑎𝑢𝑖

∗ − 𝑅(𝑎)𝑀
𝑖=1 ‖ ≤ 𝛶‖𝑎 − 𝑅(𝑎)‖           (16)  

for some 𝑢1, . . . , 𝑢𝑀 ∈ 𝑈(𝐴). We will find it necessary to keep track of these constants in 

the theorem below, so we will say in this case that 𝐴 has the uniform singleton Dixmier 

property with constants (𝑀, 𝛶).  
Example (6.3.25)[455]: By [357, Lemma1 and Proposition 3], 𝐶𝑟

∗(𝐺) has the uniform single 

Dixmier property with constants (𝑀, 𝛶) = (3, 0.991) for any Powers group 𝐺 as defined in 

[357, 𝑝. 244]. 

   Note that if 𝐴 has the singleton Dixmier property, then 𝐴 has the uniform singleton 

Dixmier property if and only if (9) holds for every self-adjoint 𝑎 ∈ 𝐴 such that 𝑅(𝑎) = 0. 

But, since tracial states are constant on Dixmier sets, 𝑇(𝐴) = {𝜙 ∘ 𝑅: 𝜙 ∈ 𝑆(𝑍(𝐴))} and 

hence 𝑅(𝑎) = 0 if and only if 𝜏(𝑎) = 0 for all 𝜏 ∈ 𝑇(𝐴). In turn, [355, Proposition 2.7] tells 

us that 𝜏(𝑎) = 0 for all 𝜏 ∈ 𝑇(𝐴) if and only if 𝑎 ∈ [𝐴, 𝐴]̅̅ ̅̅ ̅̅ ̅. Thus, if 𝐴 has the singleton 

Dixmier property, then 𝐴 has the uniform singleton Dixmier property if and only if (16) 

holds for every self-adjoint 𝑎 ∈ [𝐴, 𝐴]̅̅ ̅̅ ̅̅ ̅. 
   As with the uniform Dixmier property constants, if 𝐴 has the uniform singleton Dixmier 

property with constants (𝑀, 𝛶), then it also has the uniform singleton Dixmier property with 

constants (𝑀𝑘 , 𝛶𝑘)(𝑘 = 2, 3, . . . ). The constants (𝑚, 𝛾) for which we have (7) may not 

satisfy (9), nor vice versa. However, we do have the following. 

Lemma (6.3.26)[455]: Let 𝐴 be a unital 𝐶∗-algebra with the singleton Dixmier property. 

(i)  If 𝐴 has the uniform Dixmier property with constants (𝑚, 𝛾) then 𝐴 has the 

uniform singleton Dixmier property with constants 𝑀 = 𝑚𝑘and 𝛾 = 2Υ𝑘  for all 

natural numbers 𝑘 such that 2𝛾𝑘 < 1. 

(ii)  If 𝐴 has the uniform singleton Dixmier property with constants (𝑀, 𝛶) then 𝐴 has 

the uniform Dixmier property with constants 𝑚 = 𝑀𝑘  and 𝛾 = 2𝛶𝑘  for all natural 

numbers 𝑘 such that 2𝛶𝑘 < 1. 

Proof.(i): Since 𝐴 has the uniform Dixmier property with constants (𝑚𝑘 , 𝛾𝑘) for all 𝑘 ∈ ℕ, 

it suffices to show that if 𝛾 < 1/2 then 𝐴 has the uniform singleton Dixmier property with 

constants 𝑀 = 𝑚 and 𝛶 = 2𝛾. Let us prove this. Let ℎ = ℎ∗ ∈ 𝐴. Then ℎ − 𝑅(ℎ) is self-

adjoint (where 𝑅 is the centre-valued trace). Hence there exist 𝑧 ∈ 𝑍(𝐴) and 𝑢1, . . . , 𝑢𝑀 ∈
𝑈(𝐴) such that  

‖∑
1

𝑀
𝑢𝑖ℎ𝑢𝑖

∗ − 𝑅(ℎ) − 𝑧

𝑀

𝑖=1

‖ = ‖∑
1

𝑀
𝑢𝑖(ℎ − 𝑅(ℎ))𝑢𝑖

∗ − 𝑧

𝑀

𝑖=1

‖ ≤ 𝛾‖ℎ −  𝑅(ℎ)‖. 

Since 𝑅 is contractive, tracial and fixes elements of 𝑍(𝐴), ‖𝑧‖ ≤ 𝛾‖ℎ − 𝑅(ℎ)‖. Hence  

‖∑
1

𝑀
𝑢𝑖ℎ𝑢𝑖

∗ − 𝑅(ℎ)

𝑀

𝑖=1

‖ ≤ 2𝛾‖ℎ −  𝑅(ℎ)‖. 

(ii): This is immediate since we always have ‖𝑎 − 𝑅(𝑎)‖ ≤ 2‖𝑎‖.  

Theorem (6.3.27)[455]: Let 𝐴1, 𝐴2, … be unital 𝐶∗-algebras with the uniform singleton 

Dixmier property, all of them satisfying (9) for some constants (𝑀, 𝛶). Let 𝐴 = lim 𝐴𝑖be 𝑎 
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unital inductive limit 𝐶∗-algebra. If 𝐴 has the Dixmier property, then it has the uniform 

singleton Dixmier property with constants (𝑀, 𝛶′) for any 𝛶 < 𝛶′ < 1. 

Proof. The uniform singleton Dixmier property, and indeed the constants (𝑀, 𝛶), pass to 

quotients (by the same proof as for Theorem (6.3.23) (i), using Theorem (6.3.6) in place of 

lifting self-adjoint elements to self-adjoint elements); thus, we may reduce to the case that 

the connecting maps of the inductive limit are inclusions. So let us assume that the 𝐶∗-
algebras (𝐴𝑘)𝑘=1  

∞ form an increasing sequence of subalgebras of 𝐴 whose union is dense in 

𝐴. We denote the centre-valued trace on 𝐴𝑘 by 𝑅𝑘. By Proposition (6.3.24), 𝐴 has the 

singleton Dixmier property. We denote its centre-valued trace by 𝑅. 

    Let 𝑎 ∈ 𝐴 be a self-adjoint contraction with 𝑅(𝑎) = 0. Let 𝜖 > 0. Find a self-adjoint 

contraction 𝑏 ∈ 𝐴𝑘, for 𝑘 large enough, such that ‖𝑎 − 𝑏‖ < 𝜖. Find 𝑛 > 𝑘 such that 

‖𝑅𝑛(𝑏) − 𝑅(𝑏)‖ < 𝜖 (its existence is guaranteed by Proposition (6.3.24)). Thus,  

‖𝑅𝑛(𝑏)‖ ≤ ‖𝑅𝑛(𝑏) − 𝑅(𝑏)‖ + ‖𝑅(𝑏 − 𝑎)‖ < 2𝜖. 
Since 𝐴𝑛 has the uniform singleton Dixmier property with constants (𝑀, 𝛶), we have that  

‖∑
1

𝑀
𝑢𝑖𝑏𝑢𝑖

∗ − 𝑅𝑛(𝑏)

𝑀

𝑖=1

‖ ≤ 𝛶‖𝑏 − 𝑅𝑛(𝑏)‖ 

for some unitaries 𝑢1, . . . , 𝑢𝑀 ∈ 𝑈(𝐴𝑛). Hence, 

‖∑
1

𝑀
𝑢𝑖𝑎𝑢𝑖

∗

𝑀

𝑖=1

‖ ≤ ‖𝑎 − 𝑏‖ + ‖∑
1

𝑀
𝑢𝑖𝑏𝑢𝑖

∗ − 𝑅𝑛(𝑏)

𝑀

𝑖=1

‖ + ‖𝑅𝑛(𝑏)‖ 

                                                   ≤ 𝜖 + 𝛶‖𝑏 − 𝑅𝑛(𝑏)‖ + 2𝜖  
                                                  ≤ 𝛶(1 + 2𝜖) + 3𝜖. 
Thus, 𝐴 has the uniform singleton Dixmier property with constants (𝑀, 𝛶(1 + 2𝜖) + 3𝜖) 
for any sufficiently small 𝜖 > 0. 

Corollary (6.3.28)[455]: All unital 𝐴𝐹 𝐶∗-algebras with the Dixmier property have the 

uniform singleton Dixmier property with constants 𝑀 = 4 and 1/2 < 𝛶 < 1 (i.e., satisfy 

(9) for 𝑀 = 4 and any 1/2 < 𝛶 < 1). 

Proof. Finite dimensional 𝐶∗-algebras have the uniform singleton Dixmier property with 

constants 𝑀 = 4 and 𝛶 = 1/2  by Proposition (6.3.42) below.  

    Necessary and sufficient conditions for a unital 𝐴𝐹 𝐶∗-algebra to have the Dixmier 

property have been given in [343, Theorem 6.6]. The example in [343, Example 6.7] shows 

how these conditions can be verified by using a Bratteli diagram.    

   In the following, we let 𝜔 be a free ultrafilter on ℕ and denote by 𝐴𝜔the ultra-power of 𝐴 

under 𝜔. Generally, many of the arguments used with sequence algebras ∏ 𝐴𝑛𝑛 /⊕𝑛 𝐴𝑛 

also work with 𝐴𝜔 (and more generally, ultrapowers ∏ 𝐴𝑛𝜔 ); for example we could have 

used ultraproducts in Theorem (6.3.23) instead of sequence algebras. However, 𝐴𝜔has some 

advantages in terms of its size. For example, if 𝐴 is simple and purely infinite then 𝐴𝜔is 

simple [418, Proposition 6.2.6], whereas ∏ 𝐴𝑛 /⊕𝑛 𝐴 has a maximal ideal corresponding 

to each free ultrafilter. Likewise, if 𝐴 has a unique trace then 𝐴𝜔 has a unique distinguished 

trace (which is potentially unique-see Theorem (6.3.37)), whereas ∏ 𝐴𝑛 /⊕𝑛 𝐴 has a 

(distinguished) trace corresponding to each free ultrafilter. For more about ultrapowers, see 

[391]. 

Theorem (6.3.29)[455]: Let 𝐴 be a unital 𝐶∗-algebra. The following are equivalent. 

(i)  𝐴 has the uniform Dixmier property. 
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(ii)  𝐴𝜔 has the Dixmier property and 𝑍(𝐴𝜔) = 𝑍(𝐴)𝜔. 

Proof.(i)⇒(ii): Let 𝑚 ∈ ℕ and 0 < 𝛾 < 1 be such that 𝐴 has the uniform Dixmier property. 

By Theorem 6.3.23) (i), ℓ∞(𝐴) has the uniform Dixmier property (with the same constants), 

and then by Theorem (6.3.23) (ii), so does the quotient 𝐴𝜔. Moreover, since 𝑍(ℓ∞(𝐴)) =
ℓ∞(𝑍(𝐴)), and ℓ∞(𝐴) has the centre-quotient property (since it has the Dixmier property), 

ℓ∞(𝑍(𝐴)) is mapped onto the centre of 𝐴𝜔by the quotient map. Thus, 𝑍(𝐴)𝜔 = 𝑍(𝐴𝜔). 
(ii)⇒(i): Suppose that (ii) holds and, for a contradiction, that (i) does not. Using Theorem 

(6.3.21) (iii)⇒(i), we have that condition (iii) of Theorem (6.3.21) does not hold, and in 

particular it does not hold for 𝛾 = 1/2. Thus, for each 𝑛 ≥ 1 there exists 𝑎𝑛 ∈ 𝐴 such that 

‖𝑎𝑛‖ = 1 and for all 𝑢1, . . . , 𝑢𝑛 ∈ 𝑈(𝐴) and 𝑡1, . . . , 𝑡𝑛 ∈ [0, 1] with ∑ 𝑡𝑖
𝑛
𝑖=1 = 1,  

𝑑 (∑𝑡𝑖𝑢𝑖𝑎𝑛𝑢𝑖
∗, 𝑍(𝐴)

𝑛

𝑖=1

) ≥
1

2
. 

Let 𝑎 ∈ 𝐴𝜔be the element represented by the sequence (𝑎𝑛)𝑛. Since 𝐴𝜔has the Dixmier 

property, there exist 𝑢1, . . . , 𝑢𝑘 ∈ 𝑈(𝐴𝜔), 𝑡1, . . . , 𝑡𝑘 ∈ [0, 1] with ∑ 𝑡𝑖
𝑛
𝑖=1 = 1, and 𝑧 ∈

𝑍(𝐴𝜔) such that  

‖∑𝑡𝑖𝑢𝑖𝑎𝑢𝑖
∗ − 𝑧

𝑘

𝑖=1

‖ <
1

2
. 

Since 𝑍(𝐴)𝜔 = 𝑍(𝐴𝜔), we can lift 𝑧 to a bounded sequence (𝑧𝑛)𝑛from 𝑍(𝐴). We may also 

lift each 𝑢𝑖 to a sequence (𝑢𝑖,𝑛)𝑛from 𝑈(𝐴)(either by using [342, Proposition 2.5] in the 

initial choice of the elements 𝑢𝑖 or the fact that unitaries from 𝐴𝜔 always lift to a sequence 

of unitaries). We have  

lim
𝑛→𝜔

‖∑𝑡𝑖𝑢𝑖,𝑛𝑎𝑛𝑢𝑖,𝑛
∗ − 𝑧𝑛

𝑘

𝑖=1

‖ <
1

2
. 

In particular, for some 𝑛 ≥ 𝑘 we must have 

‖∑𝑡𝑖𝑢𝑖,𝑛𝑎𝑛𝑢𝑖,𝑛
∗ − 𝑧𝑛

𝑘

𝑖=1

‖ <
1

2
, 

which gives a contradiction.  

    For a 𝐶∗-algebra 𝐴, the condition 𝑍(𝐴𝜔) = 𝑍(𝐴)𝜔 is related to norms of inner 

derivations, as follows. Firstly, recall that the triangle inequality shows that ‖𝑎𝑑(𝑎)‖ ≤
2𝑑(𝑎, 𝑍(𝐴)), where 𝑎𝑑(𝑎) is the inner derivation of 𝐴 induced by 𝑎 ∈ 𝐴 (that is, 

𝑎𝑑(𝑎)(𝑥): = 𝑥𝑎 − 𝑎𝑥). In the reverse direction, 𝐾(𝐴) is defined to be the smallest number 

in [0,∞] such that 𝑑(𝑎, 𝑍(𝑎)) ≤ 𝐾(𝐴)‖𝑎𝑑(𝑎)‖ for all 𝑎 ∈ 𝐴 ([343]). It was shown in the 

proof of [383, Theorem 5.3] that 𝐾(𝐴) < ∞ if and only if the set of inner derivations of 𝐴 

is norm-closed in the set of all derivations of 𝐴. If 𝐴 is non-commutative (as we shall assume 

from now on in this summary) then 𝐾(𝐴) ≥
1

2
. If 𝐴 is a von Neumann algebra (or, more 

generally, an 𝐴𝑊∗-algebra) or a unital primitive 𝐶∗-algebra (in particular, a unital simple 

𝐶∗-algebra) then 𝐾(𝐴) =
1

2
 ([363,366,381,428,441]). These and other such cases are 

covered by Somerset’s characterisation for unital 𝐴:𝐾(𝐴) =
1

2
  if and only if the ideal 𝑃 ∩

𝑄 ∩ 𝑅 is primal whenever 𝑃,𝑄 and 𝑅 are primitive ideals of 𝐴 such that 𝑃 ∩ 𝑍(𝐴) = 𝑄 ∩
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𝑍(𝐴) = 𝑅 ∩ 𝑍(𝐴) ([426]). If a unital 𝐶∗-algebra 𝐴 has the Dixmier property then 𝐾(𝐴) ≤ 1 

(see [413] and [343, Proposition 2.4]) (this holds more generally if 𝐴 is weakly central, see 

[343,89]). On the other hand, in [383, 6.2], an example is given where 𝐾(𝐴) = ∞. By [425, 

Corollary 4.6], finiteness of 𝐾(𝐴) depends only on the topological space Prim (𝐴). Further 

information on possible values of 𝐾(𝐴) may be found in [346,347]. 

Proposition (6.3.30)[455]: Let 𝐴 be a 𝐶∗-algebra. The following are equivalent: 

(i)  𝑍(𝐴𝜔) = 𝑍(𝐴)𝜔. 

(ii)  𝐾(𝐴) < ∞.  

Proof.(i)⇒(ii): Suppose that 𝐾(𝐴) = ∞. For each 𝑛 ≥ 1, there exists 𝑏𝑛 ∈ 𝐴 such that 

0 < 𝑛‖𝑎𝑑(𝑏𝑛)‖ < 𝑑(𝑏𝑛 , 𝑍(𝐴)). 
By scaling, we may assume that 𝑑(𝑏𝑛 , 𝑍(𝐴)) = 1for all 𝑛 ≥ 1. Then, for each 𝑛 ≥ 1, there 

exists 𝑧𝑛 ∈ 𝑍(𝐴) such that ‖𝑏𝑛 − 𝑧𝑛‖ < 2. Let 𝑐𝑛: = 𝑏𝑛 − 𝑧𝑛(𝑛 ≥ 1) and let 𝑐 ∈ 𝐴𝜔 

correspond to the bounded sequence (𝑐𝑛)𝑛. Note that 

𝑑(𝑐𝑛, 𝑍(𝐴)) = 𝑑(𝑏𝑛 , 𝑍(𝐴)) = 1    (𝑛 ≥ 1) 

and  ‖𝑎𝑑(𝑐𝑛)‖ = ‖𝑎𝑑(𝑏𝑛)‖ → 0 as 𝑛 → ∞. For any bounded sequence (𝑎𝑛)𝑛in 𝐴, 

lim𝑛→𝜔‖𝑎𝑛𝑐𝑛 − 𝑐𝑛𝑎𝑛‖ = 0 and so 𝑐 ∈ 𝑍(𝐴𝜔). On the other hand, for any bounded 

sequence (𝑦𝑛)𝑛in 𝑍(𝐴), lim 𝑛→𝜔‖𝑐𝑛 − 𝑦𝑛‖ ≥ 1  and so 𝑐 ∉ 𝑍(𝐴)𝜔. 

(ii)⇒(i): The containment 𝑍(𝐴)𝜔 ⊆ 𝑍(𝐴𝜔) is clear. For the other way, let 𝑏 ∈ 𝑍(𝐴𝜔) be 

represented by a bounded sequence (𝑏𝑛)𝑛in 𝐴. For each 𝑛 ≥ 1, there exists 𝑧𝑛 ∈ 𝑍(𝐴) such 

that 

‖𝑏𝑛 − 𝑧𝑛‖ ≤ 𝑑(𝑏𝑛 , 𝑍(𝐴)) +
1

2𝑛
≤ 𝐾(𝐴)‖𝑎𝑑(𝑏𝑛)‖ +

1

2𝑛
  

and there exists 𝑎𝑛 ∈ 𝐴 such that ‖𝑎𝑛‖ ≤ 1 and 

𝐾(𝐴)‖𝑎𝑛(𝑏𝑛)‖ ≤ 𝐾(𝐴)‖𝑏𝑛𝑎𝑛 − 𝑎𝑛𝑏𝑛‖ +
1

2𝑛
. 

Then, for all 𝑛 ≥ 1,  

‖𝑏𝑛 − 𝑧𝑛‖ ≤ 𝐾(𝐴)‖𝑏𝑛𝑎𝑛 − 𝑎𝑛𝑏𝑛‖ +
1

𝑛
. 

Recalling that 𝑏 ∈ 𝑍(𝐴𝜔), we obtain that lim 𝑛→𝜔‖𝑏𝑛𝑎𝑛 − 𝑎𝑛𝑏𝑛‖ = 0 and hence that 

lim 𝑛→𝜔‖𝑏𝑛 − 𝑧𝑛‖ = 0. Since ‖𝑧𝑛‖ ≤ 2‖𝑏𝑛‖ +
1

2𝑛
, (𝑧𝑛)𝑛is a bounded sequence and so 𝑏 ∈

𝑍(𝐴)𝜔. 

It is easily seen that the method of proof of  Proposition (6.3.30) also shows that 𝐾(𝐴) < ∞ 

if and only if the centre of ℓ∞(𝐴)/𝑐0(𝐴) is the canonical image of ℓ∞(𝑍(𝐴))/𝑐0(𝑍(𝐴)). 
Corollary (6.3.31)[455]: Suppose that 𝐴 is a unital 𝐶∗-algebra with the Dixmier property. 

The following conditions are equivalent. 

(i)  𝐴 has the uniform Dixmier property. 

(ii)  𝐴𝜔 has the Dixmier property.  

Proof. Since 𝐴 has the Dixmier property, 𝐾(𝐴) ≤ 1 (see [413] or [343, Proposition 2.4]) 

and so 𝑍(𝐴𝜔) = 𝑍(𝐴)𝜔 by Proposition (6.3.30). The result now follows from Theorem 

(6.3.29).  

Question (6.3.32)[455]: If 𝐴𝜔 has the Dixmier property, does it follow that 𝐴 has the 

Dixmier property? (In other words, by Theorem (6.3.29), if 𝐴𝜔 has the Dixmier property, is 

𝑍(𝐴)𝜔 = 𝑍(𝐴𝜔)?) 
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    Let 𝐴 be unital with the Dixmier property. If 𝐴 has strict comparison of positive elements, 

then if follows from [402, Theorem (6.3.2)] that 𝐴 has the uniform Dixmier property. We 

now show that this holds more generally when strict comparison by traces is replaced by 

finite radius of comparison-by-traces. 

    Let 𝐴 be a unital 𝐶∗-algebra. For each tracial state 𝜏 define 𝑑𝜏:𝑀𝑛(𝐴)+ → [0,∞) by  

𝑑𝜏(𝑎): = lim
𝑛∈ℕ

𝜏 (𝑎1/𝑛). 

This is the dimension function associated to 𝜏 [350]. 

Definition (6.3.33)[455]: Let 𝑟 ∈ [0,∞). Let 𝐴 be a unital 𝐶∗-algebra. Let us say that 𝐴 has 

radius of comparison-by-traces at most 𝑟 if for all positive elements 𝑎, 𝑏 ∈ ⋃ 𝑀𝑘(𝐴)
∞
𝑘=1 , 

with ba full element, if  

                     𝑑𝜏(𝑎) + 𝑟
′ ≤ 𝑑𝜏 (𝑏)                                           (17) 

for all 𝜏 ∈ 𝑇(𝐴) and some 𝑟′ > 𝑟, then ais Cuntz below 𝑏. (Recall that ais said to be Cuntz 

below 𝑏 if 𝑑𝑛𝑏𝑑𝑚
∗ → 𝑎 for some sequence (𝑑𝑛) in ⋃ 𝑀𝑘(𝐴)

∞
𝑘=1 . ) The radius of 

comparison-by-traces of 𝐴 is the minimum 𝑟 such that 𝐴 has radius of comparison-by-traces 

at most 𝑟. If no such 𝑟 exists then we say that 𝐴 has infinite radius of comparison-by-traces. 

In [351] the radius of comparison of 𝐴is defined as above, except that in (10) τranges 

through all 2-quasitraces of 𝐴 normalised at the unit. We use the name “radius of 

comparison-by-traces” to emphasise that the comparison of 𝑎 and 𝑏 in (10) is done only on 

tracial states. Clearly, the radius of comparison-by-traces dominates the radius of 

comparison. If the 𝐶∗-algebra 𝐴 is exact, then by [372] its bounded 2-quasitraces are traces 

so the two numbers agree. 

  The seminal examples of simple nuclear 𝐶∗-algebras constructed by Villadsen in [437] and 

[438] have nonzero radius of comparison-by-traces; variations on the first of these examples 

can be arranged to achieve any possible value of radius of comparison ([434, Theorem 

5.11]). Of particular interest here are Villadsen’s second examples, which have stable rank 

in {2, 3, . . . }; they have nonzero finite radius of comparison while being simple and having 

unique trace. 

Theorem (6.3.34)[455]: Let 𝐴1, 𝐴2, … be unital 𝐶∗-algebras with radius of comparison-by-

traces at most rand let 𝐴:= ∏ 𝐴𝑖
∞
𝑖=1 . The following are true: 

(i)  𝐴 has radius of comparison-by-traces at most 𝑟. 
(ii)  The convex hull of ⋃ 𝑇(𝐴𝑖)

∞
𝑖=1  is dense in 𝑇(𝐴) in the weak∗-topology. (We 

regard 𝑇(𝐴𝑖) as a subset of 𝑇(𝐴) via the embedding induced by the quotient map 

𝐴 → 𝐴𝑖.) 
Proof. (i): Let 𝐾 be the weak∗-closure in 𝑇(𝐴) of the convex hull of ⋃ 𝑇(𝐴𝑖)

∞
𝑖=1 . Let 𝑎, 𝑏 ∈

𝑀𝑘(𝐴) be positive elements, with 𝑏 full. Suppose that 𝑎 and 𝑏 satisfy (10) for all tracial 

states  𝜏 ∈ 𝐾 and some 𝑟′ > 𝑟. We will prove that 𝑎 is Cuntz below 𝑏 (which clearly shows 

that 𝐴 has radius of comparison-by-traces at most 𝑟). Let 𝜖 > 0 and choose 𝑟 < 𝑟′′ < 𝑟′. 
We claim that there exists 𝛿 > 0 such that 

𝑑𝜏((𝑎 − 𝜖)+) + 𝑟′′ ≤ 𝑑𝜏((𝑏 − 𝛿)+) for all 𝜏 ∈ 𝐾.    (18)  
Indeed, let 𝑔𝜖 ∈ 𝐶0((0, ‖𝑎‖])+ be such that 𝑔𝜖(𝑡) = 1 for 𝑡 ≥ 𝜖. Then 

                             𝑑𝜏((𝑎 − 𝜖)+) ≤ 𝜏(𝑔𝜖(𝑎)) ≤ 𝑑𝜏(𝑎) for all 𝜏 ∈ 𝑇(𝐴).  

The function 𝜏 ⟼ 𝜏(𝑔𝜖(𝑎)) + 𝑟′′ is continuous on 𝑇(𝐴) while 𝜏 ⟼ 𝑑𝜏((𝑏 −
1

𝑛
)+) is lower 

semicontinuous for all 𝑛. Since 
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sup𝑛 𝑑𝜏 ((𝑏 −
1

𝑛
)
+
)  = 𝑑𝜏(𝑏) > 𝜏(𝑔𝜖(𝑎)) + 𝑟′′ 

for all 𝜏 ∈ 𝐾 and 𝐾 is compact, there exists n such that  

𝑑𝜏 ((𝑏 −
1

𝑛
)
+
) > 𝜏(𝑔𝜖(𝑎)) + 𝑟′′ 

for all 𝜏 ∈ 𝐾, thus yielding the desired 𝛿. Decreasing 𝛿 if necessary, let us also assume that 

(𝑏 − 𝛿)+ is full. Letting 𝜏 range through 𝑇(𝐴𝑖) ⊆ 𝐾 in (18), and using that 𝐴𝑖 has radius of 

comparison-by-traces at most 𝑟, we obtain that (𝑎𝑖 − 𝜖)+is Cuntz below (𝑏𝑖 − 𝛿)+ for all 𝑖. 
Hence, using [417, Proposition 2.4], we obtain 𝑥𝑖 ∈ 𝑀𝑘(𝐴𝑖) such that (𝑎𝑖 − 2𝜖)+ = 𝑥𝑖

∗𝑥𝑖 
and 𝑥𝑖𝑥𝑖

∗ ≤ 𝑀𝑏𝑖  for all 𝑖, where 𝑀 > 0 is a scalar independent of 𝑖. Then (𝑎 − 2𝜖)+ = 𝑥
∗𝑥 

and 𝑥𝑥∗ ≤ 𝑀𝑏, where 𝑥:= (𝑥𝑖)𝑖 ∈ ∏ 𝑀𝑘(𝐴𝑖)
∞
𝑖=1 ≅ 𝑀𝑘(𝐴). Since 𝜖 is arbitrary, we get that 

𝑎 is Cuntz below 𝑏, as desired. 

(ii): Here we follow closely arguments from [400]. We first establish two claims. 

Claim 1: If 𝑎, 𝑏 ∈ 𝑀𝑘(𝐴) are positive elements, with 𝑏 full, such that 𝑑𝜏(𝑎) ≤ 𝑑𝜏(𝑏) for all 

𝜏 ∈ 𝐾 then 𝑑𝜏(𝑎) ≤ 𝑑𝜏(𝑏) for all 𝜏 ∈ 𝑇(𝐴). Let us prove this. Choose a natural number 𝑟′ >
𝑟. Then 

 𝑑𝜏(𝑎
⊕𝑛) + 𝑟′ ≤ 𝑑𝜏(𝑏

⊕𝑛⊕1𝑟′) 

for all 𝑛 = 1, 2, … and all 𝜏 ∈ 𝐾. By the proof of (i), 𝑎⊕𝑛 is Cuntz below 𝑏⊕𝑛⊕1𝑟′for all 

𝑛 ∈ ℕ. Now let 𝜏 ∈ 𝑇(𝐴). Then 𝑛𝑑𝜏(𝑎) ≤ 𝑛𝑑𝜏(𝑏) + 𝑟′. Letting 𝑛 → ∞ we get that 𝑑𝜏(𝑎) ≤
𝑑𝜏(𝑏), proving our claim. 

Claim 2: If 𝑎, 𝑏 ∈ 𝐴+, with 𝑏 full, are such that 𝜏(𝑎) ≤ 𝜏(𝑏) for all 𝜏 ∈ 𝐾 then 𝜏(𝑎) ≤ 𝜏(𝑏) 
for all 𝜏 ∈ 𝑇(𝐴). Let us prove this. Let 𝜖 > 0. Since  

𝜎(𝑐) = ∫ 𝑑𝜎((𝑐 −  𝑡)+) 𝑑𝑡
‖𝑐‖

0

, 

for all positive elements 𝑐 ∈ 𝐴 and all 𝜎 ∈ 𝑇(𝐴) (see for example [364, Proposition 4.2]), 

one can construct positive elements 𝑎𝑛 , 𝑏𝑛 (in matrix algebras over 𝐴), and find natural 

numbers 𝑟𝑛 , 𝑠𝑛 such that 

 lim
𝑛→∞

1

𝑟𝑛
𝑑𝜎(𝑎𝑛) = 𝜎((1 − 𝜖)𝑎) 

and 

 lim
𝑛→∞

1

𝑠𝑛
𝑑𝜎(𝑏𝑛) = 𝜎(𝑏) 

for all tracial states 𝜎, with both sequences increasing. Since 𝑏 is full, we have that 

 𝜏 ((1 − 𝜖)𝑎) ≤ 𝜏 ((1 − 𝜖)𝑏) < 𝜏(𝑏) 
for all 𝜏 ∈ 𝐾. Using lower semi-continuity and the compactness of 𝐾, as in part (i), we obtain 

𝑛 ∈ ℕ such that 𝜏((1 − 𝜖)𝑎) ≤
1

𝑠𝑛
𝑑𝜏(𝑏𝑛) for all 𝜏 ∈ 𝐾. Hence, 

                                 
1

 𝑟𝑚
𝑑𝜏(𝑎𝑚) ≤

1

𝑠𝑛
𝑑𝜏(𝑏𝑛), for all 𝜏 ∈ 𝐾, 

for all 𝑚 and for all sufficiently large 𝑛. By the first claim applied to the positive elements 

𝑎𝑚
⊕𝑠𝑛and 𝑏𝑛

⊕𝑟𝑚, 
1

𝑟𝑚
𝑑𝜎(𝑎𝑚) ≤

1

𝑠𝑛
 𝑑𝜎(𝑏𝑛) 
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 for any 𝜎 ∈ 𝑇(𝐴). Taking the limit as 𝑚 → ∞, we obtain 𝜎((1 − 𝜖)𝑎) ≤ 𝜎(𝑏). Letting 𝜖 →
0 proves the claim. 

   Let us now show that 𝐾 = 𝑇(𝐴). By the Hahn–Banach theorem, it suffices to show that 

for all self-adjoint 𝑎 ∈ 𝐴, if  𝜏(𝑎) = 0  for all 𝜏 ∈ 𝐾 then 𝜏(𝑎) = 0 for all 𝜏 ∈ 𝑇(𝐴). If 𝑎 is 

a self-adjoint such that 𝜏(𝑎) = 0 for all 𝜏 ∈ 𝐾 then 𝜏(𝑎 + 𝑡1) = 𝜏(𝑡1) for all 𝜏 ∈ 𝐾. 

Moreover, for 𝑡 > ‖𝑎‖ both 𝑎 + 𝑡1 and 𝑡1 are positive and full. It follows that 𝜏(𝑎 + 𝑡1) =
𝜏(𝑡1) for all 𝜏 ∈ 𝑇(𝐴) and 𝑡 > ‖𝑎‖, which yields the desired result. 

Theorem (6.3.35)[455]: Let 𝑟 ∈ [0,∞). There exists 𝑀 ∈ ℕ such that if 𝐴 is a unital 𝐶∗-
algebra with radius of comparison-by-traces at most rand 𝑎 ∈ 𝐴 is such that 0 ∈ 𝐷𝐴(𝑎), then 

‖
1

𝑀
∑𝑢𝑖𝑎𝑢𝑖

∗

𝑀

𝑖=1

‖ ≤
1

2
‖𝑎‖ 

for some unitaries 𝑢1, . . . , 𝑢𝑀 ∈ 𝐴. 
Proof. Suppose, for the sake of contradiction, that there exist unital 𝐶∗-algebras 𝐴1, 𝐴2, … 

with radius of comparison-by-traces at most 𝑟, and contractions 𝑎𝑛 ∈ 𝐴𝑛 such that 0 ∈
𝐷𝐴(𝑎𝑛) for all 𝑛, but any average of 𝑛 unitary conjugates of 𝑎𝑛 has norm greater than 1/2. 

Let 𝐴:= ∏ 𝐴𝑛
∞
𝑛=1  and 𝑎: = (𝑎𝑛)𝑛 ∈ 𝐴. We will show that 0 ∈ 𝐷𝐴(𝑎). To show that 0 ∈

𝐷𝐴(𝑎), it suffices to check conditions (a) and (b) of Theorem (6.3.50). Notice that 𝜏(𝑎) =
𝜏(𝑎𝑛) = 0 for all 𝜏 ∈ 𝑇(𝐴𝑛) and all 𝑛. It follows by Theorem (6.3.34) (ii) that 𝜏(𝑎)  = 0 for 

all 𝜏 ∈ 𝑇(𝐴), i.e., condition (a) holds. In order to show that 𝑎 satisfies condition (b), we 

prove that it satisfies the equivalent form (b”), stated right before the proof of 

Theorem(6.3.50). Let 𝑡′, 𝑡 > 0 be such 𝑡′ > 𝑡 and let 𝑤 ∈ ℂ. Since 0 ∈ 𝐷𝐴𝑛(𝑎𝑛), we have, 

by condition (b”) applied to an, that (𝑅𝑒(𝑤𝑎𝑛) + 𝑡)+ is a full element of 𝐴𝑛(i.e., it generates 

𝐴𝑛 as a closed two-sided ideal). For all 𝜏 ∈ 𝑇(𝐴𝑛) we have  

𝑑𝜏((𝑅𝑒(𝑤𝑎𝑛) + 𝑡)+) ≥
1

|𝑤| + 𝑡
 𝜏((𝑅𝑒(𝑤𝑎𝑛) + 𝑡)+) 

                                                                         ≥
1

|𝑤| + 𝑡
𝜏(𝑅𝑒(𝑤𝑎𝑛) + 𝑡) =

𝑡

|𝑤| + 𝑡
, 

where we have used that 𝑑𝜏(𝑐) ≥ 𝜏(𝑐)/‖𝑐‖ for any 𝑐 ≥ 0 in the first inequality. Choose 

𝑁 ≥ (2 + 𝑟)(|𝑤| + 𝑡)/𝑡. Then   

𝑑𝜏((𝑅𝑒(𝑤𝑎𝑛) + 𝑡)+
⊕𝑁) ≥ 2 + 𝑟. 

 Since 𝐴𝑛 has radius of comparison-by-traces at most 𝑟, the above (including fullness of 

(𝑅𝑒(𝑤𝑎𝑛) + 𝑡)+) implies that 1 ∈ 𝐴𝑛is Cuntz below (𝑅𝑒(𝑤𝑎𝑛) + 𝑡)+
⊕𝑁

. Thus, there exists 

a partial isometry 𝑣𝑛 ∈ 𝑀𝑁(𝐴𝑛) such that 1 = 𝑣𝑛
∗𝑣𝑛 and 

𝑣𝑛𝑣𝑛
∗ ≤ 𝐶 · (𝑅𝑒(𝑤𝑎𝑛) + 𝑡′)+

⊕𝑁, 
where 𝐶 > 0 depends on 𝑡 and 𝑡′ but not on 𝑛. Then, setting 𝑣:= (𝑣𝑛)𝑛 ∈ 𝑀𝑁(𝐴), we get 

1 = 𝑣∗𝑣 and 𝑣𝑣∗ ≤ 𝐶 · (𝑅𝑒(𝑤𝑎𝑛) + 𝑡′)+
⊕𝑁

. Hence, (𝑅𝑒(𝑤𝑎) + 𝑡′)+ is full for all 𝑡′ > 0 

and 𝑤 ∈ ℂ. This proves condition (b”). It follows that 0 ∈ 𝐷𝐴(𝑎). Thus, there is a finite 

convex combination of unitary conjugates of 𝑎 whose norm is less than 
1

2
. Enlarging the 

number of terms if necessary, we may assume that this convex combination is an average 

(see the proof of Theorem (6.3.21) (iii)⇒(iv)). So, there exist 𝑀 ∈ ℕ and unitaries 

𝑢1, . . . , 𝑢𝑀 ∈ 𝐴 such that 
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‖
1

𝑀
∑𝑢𝑖𝑎𝑢𝑖

∗

𝑀

𝑖=1

‖ ≤
1

2
. 

We arrive at a contradiction by projecting onto 𝐴𝑀.  

Corollary (6.3.36)[455]: Let 𝑟 ∈ [0,∞). Then there exist constants (𝑚, 𝛾) such that every 

unital 𝐶∗-algebra with the Dixmier property and with radius of comparison-by-traces at most 

𝑟 has the uniform Dixmier property with constants (𝑚, 𝛾). In particular, every simple unital 

𝐶∗-algebra with at most one tracial state and radius of comparison-by-traces at most 𝑟 has 

the uniform Dixmier property with constants (𝑚, 𝛾). 
Proof. Let 𝑀 ∈ ℕ be as in Theorem (6.3.35). Suppose that 𝐴 is a unital 𝐶∗-algebra with the 

Dixmier property and radius of comparison-by-traces at most 𝑟. Now let 𝑎 ∈ 𝐴 be a self-

adjoint element and choose 𝑧 ∈ 𝐷𝐴(𝑎) ∩ 𝑍(𝐴). Then 0 ∈ 𝐷𝐴(𝑎 − 𝑧), and so 

‖
1

𝑀
∑𝑢𝑖𝑎𝑢𝑖

∗ − 𝑧

𝑀

𝑖=1

‖ ≤
1

2
‖𝑎‖, 

for some unitaries 𝑢1, . . . , 𝑢𝑀. Hence, 𝐴 has the uniform Dixmier property with constants 

(𝑀, 1/2).  
   Let us explain why these examples have finite radius of comparison-by-traces (which is 

the same as finite radius of comparison, since they are exact). For 𝑛 ∈ ℕ, Villadsen’s algebra 

𝐴 with stable rank 𝑛 + 1 is constructed, according to [438], as 𝐴 = lim → 𝐴𝑖where 𝐴𝑖 =
𝑝𝑖(𝐶(𝑋𝑖) ⊗ 𝐾)𝑝𝑖, with 𝑋𝑖  a certain space of dimension 𝑛(1 + 2 · 1! + 4 · 2! +··· +2𝑖 · 𝑖!) 
and 𝑝𝑖 a certain projection of constant rank (𝑖 + 1)!. We compute  

𝑑𝑖𝑚(𝑋𝑖) − 1

2 𝑟𝑎𝑛𝑘(𝑝𝑖)
 ≤
2𝑛(1! + 2! + · · ·  + 𝑖!)

2𝑖!
  

                         ≤
𝑛(𝑖 − 1)(𝑖 − 1)!

𝑖!
+
𝑛𝑖!

𝑖!
  

                                                                         ≤ 2𝑛 
By [434, Theorem 5.1], it follows that 𝐴𝑖 has radius of comparison at most 2𝑛. Hence by 

[351, Proposition 3.2.4], the radius of comparison of 𝐴 is at most 2𝑛. 

  If 𝐴 is a unital 𝐶∗-algebra with trivial centre, then by Corollary (6.3.16) 𝐴 has the Dixmier 

property if and only if we have one of the following four cases: 

(i) 𝐴 is simple and has no tracial states, 

(ii)  𝐴 is simple and has a unique tracial state, 

(iii) 𝐴 has no tracial states and a unique non-zero maximal ideal, 

(iv)  𝐴 has a unique tracial state and its trace-kernel ideal is the unique nonzero 

maximal ideal of  𝐴. 

Cases (ii) and (iv) have the singleton Dixmier property while cases (i) and (iii) do not. Now, 

since 𝐴 is unital and has the Dixmier property, 𝐾(𝐴) ≤ 1 < ∞ and so 𝑍(𝐴𝜔) = 𝑍(𝐴)𝜔 =
ℂ1 by Proposition (6.3.30). (That ℂ𝜔 = ℂ is because every bounded sequence of complex 

numbers has a unique limit under 𝜔, i.e., the map taking (𝑥𝑛)𝑛=1
∞ ∈ ∏ ℂ𝑛  to 

lim 𝑛→𝜔 𝑥𝑛induces an isomorphism ℂ𝜔 → ℂ.) Thus, by Corollary (6.3.31), in order for 𝐴 to 

have the uniform Dixmier property 𝐴𝜔 must also fall in one of the four cases above. In 

Theorem (6.3.37) below we take this analysis further to obtain explicit conditions for having 

the uniform Dixmier property when 𝐴 falls in cases (ii) and (iv) above. 
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Suppose that 𝐴 is in either case (ii) or (iv). Let 𝜏 denote the unique tracial state of 𝐴. Then 

𝜏 induces a canonical tracial state 𝜏𝜔 on 𝐴𝜔, by  

𝜏𝜔(𝑎): = lim
𝑛→𝜔

𝜏(𝑎𝑛),         

whenever 𝑎 is represented by the sequence (𝑎𝑛)𝑛. Let 

𝐽: = {𝑎 ∈ 𝐴𝜔: 𝜏𝜔(𝑎
∗𝑎) = 0}, 

the trace-kernel ideal for 𝜏𝜔. Using the Kaplansky density theorem, one can see that 𝐴𝜔/𝐽 
is isomorphic to the tracial von Neumann ultrapower of 𝜋𝜏(𝐴)′′, where 𝜋𝜏is the GNS 

representation associated to 𝜏([391, Theorem 3.3]). In particular, this quotient is a finite 

factor, and is therefore simple, so that 𝐽 is a maximal ideal. 

   In the next result, conditions (i) and (iii) are both expressed purely in terms of the 𝐶∗-
algebra 𝐴. However, in order to show that these conditions are equivalent, we introduce 𝐴𝜔 

so that we can apply Corollary (6.3.16) and Corollary (6.3.31). 

Theorem (6.3.37)[455]: Let 𝐴 be a 𝐶∗-algebra with the Dixmier property, trivial centre, and 

unique tracial state 𝜏. The following are equivalent: 

(i)  𝐴 has the uniform Dixmier property. 

(ii)  𝜏𝑤 is the unique tracial state on 𝐴𝜔 and the trace-kernel ideal 𝐽 is the unique 

maximal ideal of 𝐴𝜔. 

(iii)   Both of the following hold: 

(a) there exists 𝑚 ∈ ℕ such that if 𝑎 ∈ 𝐴 is a self-adjoint contraction satisfying 𝜏(𝑎) = 0 

then there exist contractions 𝑥1, . . . , 𝑥𝑚 ∈ 𝐴 such that 

                            ‖𝑎 − ∑ [𝑥𝑖 , 𝑥𝑖
∗]𝑚

𝑖=1 ‖ ≤ (1 − 1/𝑚)‖𝑎‖, and  

(b) for every 𝜖 > 0 there exists 𝑛 ∈ ℕ such that, if 𝑎 ∈ 𝐴+ is a positive contraction and 

𝜏(𝑎) > 𝜖 then there exist contractions 𝑥1, . . . , 𝑥𝑛 ∈ 𝐴such that 

∑𝑥𝑖𝑎𝑥𝑖
∗

𝑛

𝑖=1

= 1.   

Proof. Recall that since 𝐴 is unital and has the Dixmier property, 𝐾(𝐴) ≤ 1 < ∞ and so 

𝑍(𝐴𝜔) = 𝑍(𝐴)𝜔 = ℂ1 by Proposition (6.3.30). 

(i)⇔(ii): By Corollary (6.3.31), (i) is equivalent to 𝐴𝜔having the Dixmier property. Thus, 

(i)⇔(ii) follows from Corollary (6.3.16). 

(ii)⇔(iii): We will first show that (a) is equivalent to 𝜏𝜔 being the unique tracial state on 

𝐴𝜔, then that (b) is equivalent to 𝐽 being the unique maximal ideal of 𝐴𝜔. 

For a unital 𝐶∗-algebra 𝐵, set 𝐵0 equal to the norm-closure of the ℝ-span of the set of self-

commutators [𝑥, 𝑥∗]. For a tracial state 𝜏𝐵 on 𝐵, by [355, Theorem 2.6 and Proposition 2.7], 

𝜏𝐵 is the unique tracial state of 𝐵 if and only if  

                                𝐵0 = {𝑏 ∈ 𝐵: 𝑏 is self-adjoint and 𝜏𝐵(𝑏) = 0}.  
   Suppose that 𝜏𝜔 is the unique tracial state on 𝐴𝜔 and, for a contradiction, that (a) doesn’t 

hold. Then for each 𝑛 ∈ 𝑁 there exists a self-adjoint contraction 𝑎𝑛 ∈ 𝐴 such that 𝜏(𝑎𝑛) =
0 and 

                          ‖𝑎𝑛 − ∑ [𝑥𝑖 , 𝑥𝑖
∗]𝑛

𝑖=1 ‖ ≥ (1 − 1/𝑛)                              (19)  
for all tuples (𝑥1, . . . , 𝑥𝑛) of contractions in 𝐴. 

Since the sequence (𝑎𝑛)𝑛 is bounded, it defines a self-adjoint element 𝑎 ∈ 𝐴𝜔, and this 

element clearly satisfies 𝜏𝜔(𝑎) = 0. Since 𝜏𝜔 is the unique tracial state, it follows (as 

mentioned above) that there exist 𝑚 ∈ ℕ and 𝑦1, . . . , 𝑦𝑚 ∈ 𝐴𝜔 such that 
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‖𝑎 −∑[𝑦𝑖 , 𝑦𝑖
∗]

𝑚

𝑖=1

‖ <
1

2
. 

By increasing 𝑚 if necessary, we may assume that all of the elements 𝑦𝑖 are contractions. 

Lifting each 𝑦𝑖 to a sequence (𝑥𝑖,𝑛)𝑛 of contractions in 𝐴, we have for 𝜔-almost all 𝑛 ∈ ℕ,  

‖𝑎𝑛 −∑[𝑥𝑖,𝑛, 𝑥𝑖,𝑛
∗ ]

𝑚

𝑖=1

‖ <
1

2
. 

In particular, for some 𝑛 ≥ 𝑚, we obtain a contradiction to (19). This proves that if 𝐴𝜔 has 

a unique tracial state then (a) holds. 

   Now suppose that (a) holds, which provides a number 𝑚. If 𝑎 ∈ 𝐴𝜔 is a self-adjoint 

contraction satisfying 𝜏𝜔(𝑎) = 0, then we may lift 𝑎 to a sequence (𝑎𝑛)𝑛=1
∞ of self-adjoint 

elements satisfying 𝜏(𝑎𝑛) = 0 and ‖𝑎𝑛‖ ≤ ‖𝑎‖ for all 𝑛. (To achieve this, we first lift 𝑎 to 

any bounded sequence of self-adjoint elements, then correct the tracial state on each element 

by adding an appropriate scalar, and finally scale to obtain ‖𝑎𝑛‖ ≤ ‖𝑎‖.) By applying (a) 

to each 𝑎𝑛, we can arrive at elements 𝑥1, . . . , 𝑥𝑚 ∈ 𝐴𝜔 such that  

‖𝑎 −∑[𝑥𝑖 , 𝑥𝑖
∗]

𝑚

𝑖=1

‖ ≤ (1 − 1/𝑚)‖𝑎‖. 

In other words, this shows that 𝐴𝜔 satisfies (a), with 𝜏𝜔 in place of 𝜏. 
   Next, by iterating, we see that if 𝑎 ∈ 𝐴𝜔 is a self-adjoint contraction and satisfies 𝜏𝜔(𝑎) =
0, then for any 𝑘 ∈ ℵ, there exist 𝑚𝑘 contractions 𝑥1, . . . , 𝑥𝑚𝑘 ∈ 𝐴𝜔 such that 

‖𝑎 −∑[𝑥𝑖 , 𝑥𝑖
∗]

𝑚𝑘

𝑖=1

‖ ≤ (1 − 1/𝑚)𝑘‖𝑎‖. 

It follows that 𝑎 ∈ (𝐴𝜔)0. By ℝ-linearity,    

                           (𝐴𝜔)0 = {𝑎 ∈ 𝐴𝜔: 𝑎 is self-adjoint and 𝜏𝜔(𝑎) = 0} 
 and hence 𝜏𝜔is the unique tracial state of 𝐴𝜔. 

   Now, suppose that 𝐽 is the unique maximal ideal of 𝐴𝜔 and let us prove that (b) holds. 

Suppose for a contradiction that (b) doesn’t hold. Then there exists 𝜖 > 0 and, for each 𝑛 ∈
ℕ, a contraction 𝑎𝑛 ∈ 𝐴+such that 𝜏(𝑎𝑛) > 𝜖 yet 

                          ∑ 𝑥𝑖𝑎𝑛𝑥𝑖
∗𝑛

𝑖=1 ≠ 1                                               (20)   
for all contractions 𝑥1, . . . , 𝑥𝑛 ∈ 𝐴. 
Define 𝑎 ∈ 𝐴𝜔 by the sequence (𝑎𝑛)𝑛, so that 𝜏𝜔(𝑎) ≥ 𝜖. Since 𝐽 is the unique maximal 

ideal of 𝐴𝜔, the ideal generated by 𝑎 is 𝐴𝜔. Hence, there exists 𝑦1, . . . , 𝑦𝑚 ∈ 𝐴𝜔 such that  

∑𝑦𝑖𝑎𝑦𝑖
∗

𝑚

𝑖=1

= 1, 

and by increasing 𝑚 if necessary we may assume that all of the elements 𝑦𝑖 are contractions. 

Lift each 𝑦𝑖 to a sequence (𝑦𝑖,𝑘)𝑘 of contractions. Then, for 𝜔-almost all indices 𝑘, we have 

 ‖∑𝑦𝑖,𝑘𝑎𝑘𝑦𝑖,𝑘
∗ − 1

𝑚

𝑖=1

‖ <
1

2
. 

Pick 𝑘 ≥ 2𝑚 such that this holds. Set  
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𝑏:= ∑𝑦𝑖,𝑘𝑎𝑘𝑦𝑖,𝑘
∗

𝑚

𝑖=1

,  

so that the spectrum of 𝑏 is contained in [1/2, 3/2]. Therefore, (2𝑏)−1/2𝑦𝑖,𝑘 is a contraction, 

and  

1 = 2(2𝑏)−1/2𝑦𝑖,𝑘𝑎𝑘𝑦𝑖,𝑘
∗ (2𝑏)−1/2, 

in contradiction to (20). 

  Finally assume that (b) holds, and we’ll prove that 𝐽 is the unique maximal ideal of 𝐴𝜔. 

Let 𝐼 be an ideal of 𝐴𝜔, such that 𝐼 ⊈ 𝐽. Therefore, 𝐼 contains a positive contraction 𝑎 ∉ 𝐽, 
so that 𝑟:= 𝜏𝜔(𝑎) > 0. Using 𝜖 ∶= 𝑟/2, we get some 𝑛 ∈ ℕ from (b). 

We may lift 𝑎 to a sequence (𝑎𝑘)𝑘 of positive contractions such that 𝜏(𝑎) > 𝑟/2 for each 

𝑘. Then for each 𝑘 there exist 𝑛 contractions 𝑥1,𝑘, . . . , 𝑥𝑛,𝑘 ∈ 𝐴 such that   

1 =∑𝑥𝑖,𝑘𝑎𝑘𝑥𝑖,𝑘
∗

𝑛

𝑖=1

. 

 Letting 𝑥𝑖 ∈ 𝐴𝜔 be the element represented by the sequence (𝑥𝑖,𝑘)𝑘, we have  

1 =∑𝑥𝑖𝑎𝑥𝑖
∗

𝑛

𝑖=1

∈ 𝐼, 

and therefore 𝐼 = 𝐴𝜔. This shows that 𝐽 is the unique maximal ideal of 𝐴𝜔. 

   Under the hypotheses of Theorem (6,3,36), it is unclear whether there is any relation 

between the conditions that 𝜏𝜔 is the unique tracial state on 𝐴𝜔(equivalently, condition(a)) 

and that 𝐽 is the unique maximal ideal of 𝐴𝜔(equivalently, condition (b)). 

Question (6.3.38)[455]: Does condition (a) in Theorem (6.3.37) (iii) imply condition (b), 

or vice versa? 

In [416, Theorem 1.4], 𝐿𝑅 showed that there is a simple unital (and nuclear, in fact 𝐴𝐻) 𝐶∗-
algebra 𝐴with unique tracial state, which doesn’t satisfy (iii)(a) in Theorem (6.3.37) (i.e., 

𝐴𝜔 doesn’t have a unique tracial state). Since 𝐴 has the Dixmier property by [374], this 

shows that the Dixmier property is strictly weaker than the uniform Dixmier property. 

   Let us briefly discuss the cases when 𝐴 is unital, has the Dixmier property, trivial centre. 

If 𝐴 is simple and purely infinite, then 𝐴𝜔 is also simple and purely infinite [418, Proposition 

6.2.6], whence has the Dixmier property, and so 𝐴 has the uniform Dixmier property. In the 

cases that 𝐴 is not simple and purely infinite, we have little to say about whether 𝐴 has the 

uniform Dixmier property. In such cases, 𝐴𝜔 has no tracial states either, but it is not simple, 

for if 𝐴𝜔 is simple and non-elementary then 𝐴 must be simple and purely infinite [390, 

Remark 2.4]. Rørdam has constructed examples of simple unital separable (even nuclear) 

𝐶∗-algebras which are not purely infinite, yet have no tracial states [418]. 

Question (6.3.39)[455]: Are there simple unital 𝐶∗-algebras with the uniform Dixmier 

property and without tracial states other than the purely infinite ones? 

Let 𝐴 be a simple unital 𝐶∗-algebra with no tracial states, which is not purely infinite. Then 

there is a bounded sequence of self-adjoint elements (𝑎𝑛)𝑛=1
∞ with 1 ∈ 𝐷𝐴(𝑎𝑛) for all 𝑛, but 

1 ∉ 𝐷𝐴𝜔((𝑎𝑛)𝑛). (However, it is conceivable that 𝐷𝐴𝜔((𝑎𝑛)𝑛) meets 𝑍(𝐴𝜔)in another 

point, so this does not show that 𝐴 does not have the uniform Dixmier property.) To see this, 

first, since 𝐴𝜔is non-simple, there exists a positive element 𝑎 ∈ 𝐴𝜔of norm 2 that is not full. 

Lift 𝑎 to a bounded sequence (𝑎𝑛)𝑛 of positive elements. Since ‖𝑎‖ = 2 and 𝑎 is not 
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invertible, for 𝜔-almost all 𝑛, the convex hull of the spectrum of 𝑎𝑛 contains (a). Modifying 

𝑎𝑛 for 𝑛 in an 𝜔-null set, we can arrange that the convex hull of the spectrum of 𝑎𝑛 contains 

(a) for all 𝑛. Since 𝐴 is simple, it follows that 1 ∈ 𝐷𝐴(𝑎𝑛) for all 𝑛. However, if 1 ∈ 𝐷𝐴𝜔(𝐴) 

then with 𝐼: = 𝐼𝑑𝑒𝑎𝑙(𝑎), 1 ∈ 𝐷𝐴𝜔/𝐼(𝑞𝐼(𝑎)) = 𝐷𝐴𝜔/𝐼(0), which is a contradiction. 

   Suppose that 𝐴 is a unital 𝐶∗-algebra that has the Dixmier property as well as one of the 

following properties: 

a. finite nuclear dimension, or 

b.  finite radius of comparison by traces. 

Then 𝐴 has the uniform Dixmier property for suitable constants (𝑚, 𝛾) (i.e., (20) holds). For 

finite nuclear dimension, this follows from [402, Theorem 5.6]. For finite radius of 

comparison, this is Corollary (6.3.36) obtained above. These results are proven by 

contradiction, with repeated use of the Hahn–Banach Theorem, thereby not yielding explicit 

values for the constants (𝑚, 𝛾). In fact, we do not know explicit values for (𝑚, 𝛾) holding 

globally in either one of these two cases. (On the other hand, explicit constants may be 

extracted from the methods used in [242] and [297], for simple 𝐶∗-algebras with real rank 

zero, strict comparison by traces, and a unique tracial state.) Prompted by an interesting 

question posed by the referee, we find explicit values for the constants (𝑚, 𝛾) for a variety 

of 𝐶∗-algebras with the uniform Dixmier property. When the 𝐶∗-algebras have the singleton 

Dixmier property, we also estimate the constants (𝑀, 𝛶) (i.e., for which (49) holds). 

  Let 𝐴 be a 𝐶∗-algebra. Let ℎ ∈ 𝐴 be a self-adjoint element and let [𝑙(ℎ), 𝑟(ℎ)] be the 

smallest interval containing the spectrum of ℎ, i.e., the numerical range of ℎ. Set 𝜔(ℎ):=
𝑟(ℎ) − 𝑙(ℎ) and note that 𝜔(ℎ) ≤ 2‖ℎ‖. 

   We first consider uniform Dixmier property constants for von Neumann algebras (slightly 

improving the constants that can be extracted from Dixmier’s original argument [799, 

Lemma1 of §III.5.1]). Let 𝑊 be a von Neumann algebra and ha self-adjoint element of 𝑊.      

Let 𝑒 ∈ 𝑊 be a central projection. In the next lemma 𝜔𝑒(ℎ) denotes 𝜔(𝑒ℎ) in the von 

Neumann algebra 𝑒𝑊. 

Lemma (6.3.40)[455]: Let 𝑊 be a von Neumann algebra. Let ℎ ∈ 𝑊 be a self-adjoint 

element with finite spectrum. Then there exist central projections 𝑒1, . . . , 𝑒𝑛adding up to 1 

and a unitary 𝑢 ∈ 𝑊 such that 

𝜔𝑒𝑘 (
ℎ + 𝑢ℎ𝑢∗

2
) ≤

1

2
𝜔𝑒𝑘(ℎ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘. 

Proof. It is shown in [294, Proposition 3.2] that given two self-adjoint elements ℎ1, ℎ2 ∈ 𝑊 

with finite spectrum, it is possible to find projections 𝑃1, . . . , 𝑃𝑁 adding up to 1, a unitary 

𝑢 ∈ 𝑊, and self-adjoint central elements 𝜆1, 𝜇1, . . . , 𝜆𝑁 , 𝜇𝑁 ∈ 𝑍(𝑊) with finite spectrum 

such that  

ℎ1 =∑𝜆𝑖𝑃𝑖

𝑁

𝑖=1

, 𝑢ℎ2𝑢
∗ =∑𝜇𝑖𝑃𝑖

𝑁

𝑖=1

, 

and  

𝜆1 ≥ . . . ≥ 𝜆𝑁, 𝜇1 ≥ . . . ≥ 𝜇𝑁. 
(Note: [294, Proposition 3.2] is stated for positive elements but it is easily extended to self-

adjoint elements by adding a scalar.) Let us apply this result to the self-adjoint elements ℎ 

and −ℎ. We then get 
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ℎ =∑𝜆𝑖𝑃𝑖

𝑁

𝑖=1

 𝑎𝑛𝑑 𝑢ℎ𝑢∗ =∑𝜈𝑖𝑃𝑖

𝑁

𝑖=1

, 

where 𝜆1 ≥. . . ≥ 𝜆𝑁 and 𝜈1 ≤. . . ≤ 𝜈𝑁. Since all of the 𝜆𝑖 and 𝜈𝑖 have finite spectrum, there 

exist central projections 𝑒1, . . . , 𝑒𝑛with sum 1 such that 𝑒𝑘𝜆𝑖  and 𝑒𝑘𝜈𝑖 are scalar multiples of 

𝑒𝑘for all 𝑖 and 𝑘. Let us show that 𝑒1, . . . , 𝑒𝑛and 𝑢 are as desired. Let ℎ̃: = (ℎ + 𝑢ℎ𝑢∗)/2. 

Fix 1 ≤ 𝑘 ≤ 𝑛. Let 𝑆:= {𝑖 ∈ {1, . . . , 𝑁} ∶ 𝑒𝑘𝑃𝑖 ≠ 0}. Denote the scalars 𝑒𝑘𝜆𝑖 and 

𝑒𝑘𝜈𝑖(in 𝑒𝑘𝑊) simply as 𝜆𝑖  and 𝜈𝑖. Then the spectrum of 𝑒𝑘ℎ in 𝑒𝑘𝑊 is {𝜆𝑖: 𝑖 ∈ 𝑆} and also 

(since 𝑒𝑘ℎ is unitarily equivalent to 𝑒𝑘𝑢ℎ𝑢
∗) {𝜈𝑖: 𝑖 ∈ 𝑆}. On the other hand, the spectrum of 

𝑒𝑘ℎ̃ in 𝑒𝑘ℎ̃ is the set  

{
𝜆𝑖 + 𝜈𝑖
2

∶ 𝑖 ∈ 𝑆}. 

Let 𝑖, 𝑗 ∈ 𝑆 with 𝑖 ≤ 𝑗. Then  

                                      |
𝜆𝑖 + 𝜈𝑖
2

−
𝜆𝑗 + 𝜈𝑗

2
| = |

𝜆𝑖 − 𝜆𝑗

2
−
𝜈𝑗 − 𝜈𝑖

2
| 

                                                                         ≤ max (
𝜆𝑖 − 𝜆𝑗

2
,
𝜈𝑗 − 𝜈𝑖

2
) ≤

𝜔𝑒𝑘(ℎ)

2
. 

Thus, 𝜔𝑒𝑘(ℎ̃) ≤ 𝜔𝑒𝑘(ℎ)/2 for all 𝑘, as desired.  

Theorem (6.3.41)[455]: Let 𝑊 be a von Neumann algebra. Then 𝑊 has the uniform 

Dixmier property with constants (𝑚, 𝛾) for 𝑚 = 2 and every 𝛾 ∈ (1/2, 1). If 𝑊 is finite, 

then it has the uniform singleton Dixmier property with constants (𝑀, 𝛶) for 𝑀 = 4 and 

every 𝛶 ∈ (1/2, 1). 
Proof. Let 0 < 𝜖 < 1/2 and let 0 ≠ 𝑔 = 𝑔∗ ∈ 𝑊. By the spectral theorem, there is a self-

adjoint element ℎ ∈ 𝑊 with finite spectrum such that ‖𝑔 − ℎ‖ < 𝜖‖𝑔‖ and ‖ℎ‖ ≤ ‖𝑔‖.   
Apply Lemma (6.3.40) to ℎ to obtain a unitary 𝑢 ∈ 𝑊 and central projections 𝑒1, . . . , 𝑒𝑛as 

in the statement of that lemma, and then define the central element 𝑧: = ∑ 𝛼𝑘𝑒𝑘
𝑛
𝑘=1 , where 

𝛼𝑘 is the midpoint of the spectrum of 𝑒𝑘(ℎ + 𝑢ℎ𝑢
∗)/2 in 𝑒𝑘𝑊 (that is, the midpoint of the 

interval [𝑙(𝑒𝑘(ℎ + 𝑢ℎ𝑢
∗)/2), 𝑟(𝑒𝑘(ℎ + 𝑢ℎ𝑢

∗)/2)] ). Then we see that 

‖𝑒𝑘 (
ℎ + 𝑢ℎ𝑢∗

2
−  𝑧)‖ = ‖𝑒𝑘  

ℎ + 𝑢ℎ𝑢∗

2
− 𝛼𝑘𝑒𝑘‖  

                               =
1

2
𝜔𝑒𝑘 (

ℎ + 𝑢ℎ𝑢∗

2
) 

                 ≤
1

4
𝜔𝑒𝑘(ℎ) 

                                    ≤
1

2
‖𝑒𝑘ℎ‖ ≤

1

2
‖ℎ‖.   

Since the 𝑒𝑘 are orthogonal central projections, it follows that ‖(ℎ + 𝑢ℎ𝑢∗)/2 − 𝑧‖ ≤
1

2
‖ℎ‖. Then  

‖(𝑔 + 𝑢𝑔𝑢∗)/2 − 𝑧‖ ≤ ‖ℎ‖/2 + 𝜖‖𝑔‖ ≤ (1/2 + 𝜖)‖𝑔‖. 
Suppose now that 𝑊 is finite and hence has the singleton Dixmier property. For all 𝜖 > 0 

such that (1/2 + 𝜖)2 < 1/2,𝑊 has the uniform Dixmier property with constants 

(22, (1/2 + 𝜖)2) and hence the uniform singleton Dixmier property with constants 

(4, 2(1/2 + 𝜖)2) (by Lemma (6.3.26)). Since 2(1/2 + 𝜖)2 → 1/2 as 𝜖 → 0, we obtain the 

required result.  
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Proposition (6.3.42)[455]: The 𝐶∗-algebra 𝑀𝑛 has the uniform Dixmier property with 

constants 𝑚 = 2 and 𝛾 = 1/2 and the uniform singleton Dixmier property with constants 

𝑀 = 4 and 𝛶 = 1/2. 

Proof. That 𝑀𝑛 has the uniform Dixmier property with constants 𝑚 = 2 and 𝛾 = 1/2 

follows at once from Lemma (6.3.40) above. The constants 𝑀 = 4 and 𝛶 = 1/2 are 

obtained from Lemma (6.3.26).  

Theorem (6.3.43)[455]: Let 𝑋 be a compact Hausdorff space with covering dimension 𝑑 <
∞. Let 𝑛 ∈ ℕ. The following are true: 

(i) The 𝐶∗-algebra 𝐶(𝑋,𝑀𝑛) has the uniform Dixmier property with constants (𝑚, 𝛾) 
for 𝑚 = 𝑑 + 2 and every 𝛾 ∈ ((𝑑 + 1)/(𝑑 + 2), 1). It has the uniform singleton 

Dixmier property with constants (𝑀, 𝛶) for 𝑀 = 3𝑑 + 4 and every 𝛶 ∈ ((3𝑑 +
2)/(3𝑑 + 4), 1). 

(ii) If 𝑑 ≤ 2 and in the Čech cohomology we have �̌�2(𝑋) = 0 (e.g., 𝑋 = [0, 1] or 𝑋 =
[0, 1]2), then 𝐶(𝑋,𝑀𝑛) has the uniform Dixmier property with constants (𝑚, 𝛾) 
for 𝑚 = 2 and every 𝛾 ∈ (1/2, 1) and the uniform singleton Dixmier property 

with constants (𝑀, 𝛶) for 𝑀 = 4 and every 𝛶 ∈ (1/2, 1).  
Proof. It is well-known that 𝐶(𝑋,𝑀𝑛) has the singleton Dixmier property: for example, the 

Dixmier property holds by [724, Proposition 2.10] and the singleton Dixmier property is 

then a consequence of the fact that every simple quotient has a tracial state (see Proposition 

(6.3.4)). We prove (ii) first, because the argument is more similar to the previous proof. 

(ii): Let ℎ ∈ 𝐶(𝑋,𝑀𝑛) be a self-adjoint element. By [278, Theorem10], ℎ is approximately 

unitarily equivalent to a diagonal self-adjoint ℎ′ = 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑛), where the eigenvalue 

functions 𝜆1, . . . , 𝜆𝑛 ∈ 𝐶(𝑋, ℝ) are arranged in decreasing order: 𝜆1 ≥ 𝜆2 ≥···≥ 𝜆𝑛. Note 

that a self-adjoint element 𝑎 in a unital 𝐶∗-algebra satisfies (82) if and only if every unitary 

conjugate of 𝑎 does so (with the same central element 𝑧). Hence, by an approximation 

argument similar to that in the proof of Theorem (6.3.41), it suffices to establish (7) with 

𝑚 = 2 and 𝛾 = 1/2 for diagonal self-adjoint elements of the form above. So assume that 

his diagonal with decreasing eigenvalue functions. Let 𝑢 ∈ 𝑀𝑛 be the permutation unitary 

such that 𝑢ℎ𝑢∗ = 𝑑𝑖𝑎𝑔(𝜆𝑛, . . . , 𝜆1). Set ℎ̃: = (ℎ + 𝑣ℎ𝑣∗)/2, where 𝑣 ∈ 𝑈(𝐶(𝑋,𝑀𝑛)) is 

given by 𝑣(𝑥): = 𝑢(𝑥 ∈ 𝑋). Then,  

ℎ̃ = 𝑑𝑖𝑎𝑔 (
𝜆1 + 𝜆𝑛
2

,
𝜆2 + 𝜆𝑛−1

2
, . . . ,

𝜆𝑛 + 𝜆1
2

). 

The same estimates used in the proof of Lemma (6.3.40) show that 𝜔(ℎ̃) ≤ 𝜔(ℎ)/2. It 

follows that  

‖ℎ̃ −
𝜆1 + 𝜆𝑛
2

· 1𝑛‖ ≤
1

2
‖ℎ‖. 

   As observed above, this shows that 𝐶(𝑋,𝑀𝑛) has the uniform Dixmier property with 𝑚 =
2 and every 𝛾 ∈ (1/2, 1). The constants 𝑀 = 4 and 𝛶 ∈ (1/2, 1) are then derived from the 

constants (𝑚, 𝛾) as in the proof of Theorem (6.3.41). 

(i): Let 𝜖 > 0 be given. Let 𝑓 ∈ 𝐶(𝑋,𝑀𝑛) be a self-adjoint contraction. For each 𝑥 ∈ 𝑋, by 

Proposition (6.3.42), we may find 𝜆𝑥 ∈ ℝ and a unitary 𝑢𝑥 ∈ 𝑀𝑛 such that 

‖
1

2
(𝑓(𝑥) + 𝑢𝑥𝑓(𝑥)𝑢𝑥

∗) − 𝜆𝑥1‖ ≤
1

2
. 
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Evidently, we may assume 𝜆𝑥 ∈ [−1, 1]. By continuity, we may then find a neighbourhood 

𝑊𝑥  of  𝑥 such that  

‖
1

2
(𝑓(𝑦) + 𝑢𝑥𝑓(𝑦)𝑢𝑥

∗) − 𝜆𝑥1‖ <
1

2
+ 𝜖    𝑓𝑜𝑟 𝑎𝑙𝑙    𝑦 ∈ 𝑊𝑥 . 

From the open cover {𝑊𝑥: 𝑥 ∈ 𝑋} of 𝑋, using compactness and the fact that 𝑋 has dimension 

𝑑, we may find a finite refinement of the form {𝑊𝑗
(𝑖)
}𝑖=0,...,𝑑;𝑗=1,...,𝑟 which covers 𝑋, and such 

that     

𝑊𝑗
(𝑖)̅̅ ̅̅ ̅̅
∩ 𝑊

𝑗′
(𝑖)̅̅ ̅̅ ̅̅
= ∅  

for all 𝑗 ≠ 𝑗′. Denote 𝑢𝑗
(𝑖)

 the unitary corresponding to the open set 𝑊𝑗
(𝑖)

 and 𝜆𝑗
(𝑖)

 the scalar, 

i.e., such that 

‖
1

2
(𝑓(𝑦) + 𝑢𝑗

(𝑖)
𝑓(𝑦)(𝑢𝑗

(𝑖)
))
∗
− 𝑢𝑗

(𝑖)
1‖ <

1

2
+ 𝜖 

for all 𝑦 ∈ 𝑊𝑗
(𝑖)

. For 𝑖 ∈ {0, . . . , 𝑑}, since all unitaries in 𝑀𝑛 are homotopic to the identity, 

we may produce a unitary 𝑢(𝑖) ∈ 𝐶(𝑋,𝑀𝑛) such that  

                                   𝑢(𝑖)(𝑦) = 𝑢𝑗
(𝑖)

 whenever 𝑦 ∈ 𝑊𝑗
(𝑖)
, 

as follows. We may find disjoint open sets 𝑉1
(𝑖)
, . . . , 𝑉𝑟

(𝑖)
 containing 𝑊1

(𝑖)̅̅ ̅̅ ̅̅
, . . . , 𝑊𝑟

(𝑖)̅̅ ̅̅ ̅̅
 

respectively, and then we may use a homotopy of unitaries to get a unitary in 𝐶(𝑉𝑗
(𝑖)̅̅ ̅̅ ̅
, 𝑀𝑛) 

which is identically 𝑢𝑗
(𝑖)

 on 𝑊𝑗
(𝑖)

 and identically 1 on 𝜕𝑉𝑗
(𝑖)

. We may then define the 

continuous unitary 𝑢(𝑖) ∈ 𝐶(𝑋,𝑀𝑛) so that it restricts to the unitary just defined on each 𝑉𝑗
(𝑖)̅̅ ̅̅ ̅

 

and is identically 1 outside of  𝑉1
(𝑖)
∪···∪ 𝑉𝑟

(𝑖)
. 

    We claim that 𝑓:=
1

𝑑+2
(𝑓 + 𝑢(0)𝑓(𝑢(0))∗ +··· +𝑢(𝑑)𝑓(𝑢(𝑑))∗) has distance at most (𝑑 +

1)/(𝑑 + 2) + 𝜖 to the centre. Note that, by a partition-of-unity argument, the distance from 

𝑓 to the centre is equal to the supremum over all 𝑥 ∈ 𝑋 of the distance from 𝑓(𝑥) to 𝑍(𝑀𝑛) =
ℂ1𝑛 (see [249, Theorem 2.3] for a more general result). For 𝑥 ∈ 𝑋, pick 𝑖0, 𝑗 such that 𝑥 ∈

𝑊𝑗
(𝑖0). Without loss of generality, 𝑖0 = 0. Then  

‖𝑓(𝑥) −
2

𝑑 + 2
𝜆𝑗
(0)
1‖ ≤

2

𝑑 + 2
‖
1

2
(𝑓(𝑥) + 𝑢(0)(𝑥)𝑓(𝑥)(𝑢(0)(𝑥))∗) − 𝜆𝑗

(0)
1‖  

       +
1

𝑑 + 2
∑‖𝑢(𝑖)(𝑥)𝑓(𝑥)(𝑢(𝑖)(𝑥))∗‖

𝑑

𝑖=1

 

                          =
2

𝑑 + 2
‖
1

2
(𝑓(𝑥) + 𝑢𝑗

(0)
𝑓(𝑥)(𝑢𝑗

(0)
)∗) − 𝜆𝑗

(0)
1‖ 

    +
1

𝑑 + 2
∑‖𝑢(𝑖)(𝑥)𝑓(𝑥)(𝑢(𝑖)(𝑥))∗‖

𝑑

𝑖=1

  

                                                  <
2

𝑑 + 2
(
1

2
+ 𝜖) +

𝑑

𝑑 + 2
  

                                                  ≤
𝑑 + 1

𝑑 + 2
+ 𝜖  

as required. 
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A similar argument is used to get uniform singleton Dixmier property constants. Here we 

may replace 𝑓 with 𝑓 − 𝑅(𝑓), so that 𝑓(𝑥) has trace 0 for all 𝑥 ∈ 𝑋. Then we use the same 

argument as above, with the uniform singleton Dixmier property constants (4,
1

2
) from 

Proposition (6.3.42), and with 𝜆𝑥 = 0 for all 𝑥 ( and thereby 𝜆𝑗
(𝑖)
= 0 for all 𝑖, 𝑗 ), to get 𝑀 =

3(𝑑 + 1) + 1 = 3𝑑 + 4 and (for any sufficiently small 𝜖 > 0)  

𝛶 =
1

2

4

3𝑑 + 4
+

3𝑑

3𝑑 + 4
+ 𝜖 =

3𝑑 + 2

3𝑑 + 4
+ 𝜖. 

Consider the following property of unital 𝐶∗-algebras 𝐴: 

(P): There exist 𝑀 ∈ ℕ and 0 < 𝛶 < 1 such that if ℎ ∈ 𝐴 is a self-adjoint such that 𝜏(ℎ) =
0 for all 𝜏 ∈ 𝑇(𝐴) then 

   ‖
1

𝑀
∑ 𝑢𝑖ℎ𝑢𝑖

∗𝑀
𝑖=1 ‖ ≤ 𝛶‖ℎ‖                                            (20) 

for some unitaries 𝑢1, . . . , 𝑢𝑀. 

Note that if 𝐴 has the property (𝑃) for some (𝑀, 𝛶) then it also has (𝑃) for (𝑀𝑘 , 𝛶𝑘)(𝑘 =
2, 3, . . . ). 
     Suppose that 𝐴 has the Dixmier property and has the property (𝑃) for some (𝑀, 𝛶). For 

ℎ = ℎ∗ ∈ 𝐴 and 𝑧1, 𝑧2 ∈ 𝐷𝐴(ℎ) ∩ 𝑍(𝐴), we have 𝜏(𝑧1 − 𝑧2) = 0 for all 𝜏 ∈ 𝑇(𝐴) and hence 

0 ∈ 𝐷𝐴(𝑧1 − 𝑧2) = {𝑧1 − 𝑧2}. Thus 𝑧1 = 𝑧2. An elementary argument with real and 

imaginary parts shows that 𝐴 has the singleton Dixmier property. It then follows from (𝑃) 
that 𝐴 has the uniform singleton Dixmier property with the same constants (𝑀, 𝛶) (as 

introduced in (89)). 

     Conversely, suppose that 𝐴 has the uniform singleton Dixmier property with constants 

(𝑀, 𝛶). If ℎ = ℎ∗ ∈ 𝐴 vanishes on all tracial states of 𝐴 then ℎ also vanishes on the centre-

valued trace of 𝐴. Thus 𝐴 has the property (𝑃) with the same (𝑀, 𝛶). 
    But (𝑃) may hold much more generally: if every quotient of 𝐴 has a bounded trace and 

𝐴 has either finite nuclear dimension or finite radius of comparison by traces then 𝐴 

has(𝑃) for some (𝑀, 𝛶)([294, Theorem 5.6] for the former case, Theorem (6.3.35) in the 

latter). 

In the following results, it will occasionally be convenient to write 𝑎 ≈𝜖 𝑏 to mean 

‖𝑎 − 𝑏‖ < 𝜖. 
Theorem (6.3.44)[455]: Let 𝐴 be a unital 𝐶∗-algebra with decomposition rank one and 

stable rank one. Then 𝐴 has(𝑃) with constants (𝑀, 𝛶) for 𝑀 = 15 and every 𝛶 ∈
(11/15, 1). Inparticular, if 𝐴 also has the Dixmier property, then it has the uniform singleton 

Dixmier property with these constants. 

Proof. Let 𝜖 > 0 be given. Let us factorise the diagonal embedding 𝜄: 𝐴 → 𝐴∞ as 

∑ 𝜙𝑖 ∘ 𝜓𝑖
1
𝑖=0 , where 𝜓0, 𝜓1are unital homomorphisms, 𝜙0, 𝜙1are 𝑐. 𝑝. 𝑐. order zero, and 

where 𝑁0, 𝑁1have the form ∏ 𝐹𝜆𝜆 /⊕𝜆 𝐹𝜆, for finite dimensional algebras 𝐹𝜆. (The existence 

of such a factorisation follows from the proof of [287, Proposition 2.2], using [764, 

Proposition 5.1] in place of [229, Proposition 3.2].) 

    Suppose that, for every 𝑛 ∈ ℕ,𝑀𝑛has the uniform Dixmier property with constants (𝑚, 𝛾) 
(we shall describe suitable values 𝑚 > 1 and 𝛾 towards the end of the proof). Then any 

product of finite-dimensional 𝐶∗-algebras has the uniform Dixmier property with constants 

(𝑚, 𝛾) (Theorem (ii)), hence the Dixmier property and hence the singleton Dixmier property 

by Proposition (6.3.4) (note that the product of the centre-valued traces is a centre-valued 
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trace on the product). Hence 𝑁0and 𝑁1have the uniform Dixmier property with constants 

(𝑚, 𝛾) (Theorem(6.3.23)) and the singleton Dixmier property (see the remark after 

Proposition (6.3.4) )By Lemma (6.3.26), 𝑁0 and 𝑁1 have the uniform singleton Dixmier 

property with constants (𝑚, 2𝛾) (and for this we require 2𝛾 < 1). Hence, as noted above, 

𝑁0 and 𝑁1have property (𝑃) with constants 𝑀′ = 𝑚 > 1 and 𝛶′ = 2𝛾. 

Let ℎ ∈ 𝐴 be a self-adjoint contraction that is zero on every tracial state. Then the same is 

true for 𝜓𝑖(ℎ) for 𝑖 = 0, 1. So for 𝑖 = 0, 1 there exist unitaries 𝑢𝑖,1, . . . , 𝑢𝑖,𝑀′−1 ∈ 𝑁𝑖 such 

that  

 ‖
𝜓𝑖(ℎ)+∑ 𝑢𝑖,𝑗𝜓𝑖(ℎ)𝑢𝑖,𝑗

∗𝑀′−1
𝑗=1

𝑀′
‖ ≤ 𝛶′.                                 (21) 

Set ℎ𝑖: = 𝜙𝑖(𝜓𝑖(ℎ)) for 𝑖 = 0, 1, so that ℎ = ℎ0 + ℎ1. We set 𝑥𝑖,𝑗 = 𝜙𝑖

1

𝑛(𝑢𝑖,𝑗) ∈ 𝐴∞, so that 

𝑥𝑖,𝑗 depends on 𝑛, and  

                      |𝑥𝑖,𝑗|ℎ𝑖 → ℎ𝑖 and  𝑥𝑖,𝑗ℎ𝑖𝑥𝑖,𝑗
∗ → 𝜙𝑖(𝑢𝑖,𝑗𝜓𝑖(ℎ)𝑢𝑖,𝑗

∗ ) as 𝑛 → ∞. 

Since 𝐴 has stable rank one, every element in 𝐴∞ has a unitary polar decomposition, with 

the unitary element belonging to 𝐴∞. (Indeed, since 𝐴 has stable rank one every element of 

𝐴∞lifts to an element (𝑎𝑘) ∈ ∏ 𝐴∞
𝑘=1  such that 𝑎𝑘 is invertible for all 𝑘; further, such an 

(𝑎𝑘) has polar decomposition in ∏ 𝐴∞
𝑘=1 .) So 𝑥𝑖,𝑗 = 𝑈𝑖,𝑗|𝑥𝑖,𝑗| for some unitary 𝑈𝑖,𝑗 ∈ 𝐴∞. 

Then, remembering that 𝑥𝑖,𝑗 depends on 𝑛,  

             𝑈𝑖,𝑗ℎ𝑖𝑈𝑖,𝑗
∗ → 𝜙𝑖(𝑢𝑖,𝑗𝜓𝑖(ℎ)𝑢𝑖,𝑗

∗ ) and 𝑈𝑖,𝑗𝜙𝑖(1)𝑈𝑖,𝑗
∗ → 𝜙𝑖(1) as 𝑛 → ∞. 

From (21), for 𝑛 sufficiently large we get  

‖
ℎ𝑖 + ∑ 𝑈𝑖,𝑗ℎ𝑖𝑈𝑖,𝑗

∗𝑀′−1
𝑗=1

𝑀′
‖ ≤ 𝛶′ + 𝜖, 

for 𝑖 = 0, 1. We choose nso that in addition,  

                                      ‖𝑈𝑖,𝑗𝜙𝑖(1)𝑈𝑖,𝑗
∗ − 𝜙𝑖(1)‖ < 𝜖.                               (22) 

Consider    

ℎ̃: =
1

2𝑀′ − 1
(ℎ + ∑ 𝑈0,𝑗ℎ𝑈0,𝑗

∗

𝑀′−1

𝑗=1

+ ∑ 𝑈1,𝑗ℎ𝑈1,𝑗
∗

𝑀′−1

𝑗=1

) ;  

we will estimate its norm. We manipulate the sum on the right side:  

ℎ + ∑ ∑ 𝑈𝑖,𝑗ℎ𝑈𝑖,𝑗
∗

𝑀′−1

𝑗=1𝑖=0,1

=  (ℎ0 + ∑ 𝑈0,𝑗ℎ𝑈0,𝑗
∗

𝑀′−1

𝑗=1

) + (ℎ1 + ∑ 𝑈1,𝑗ℎ𝑈1,𝑗
∗

𝑀′−1

𝑗=1

)  

            +∑ (𝑈1,𝑗ℎ0𝑈1,𝑗
∗  + 𝑈0,𝑗ℎ1𝑈0,𝑗

∗ )𝑀′−1
𝑗=1 .             (23) 

Let 𝑒0: = 𝜙0(1) and 𝑒1: = 𝜙1(1). Then ℎ0 ≤ 𝑒0, ℎ1 ≤ 𝑒1, and 𝑒0 + 𝑒1 = 1. Next from (22) 

and the fact that 𝑒0 + 𝑒1 = 1, it follows that ‖[𝑈𝑖,𝑗, 𝑒1−𝑖]‖ < 𝜖 for 𝑖 = 0, 1 and 𝑗 =

1, . . . , 𝑀′ − 1. Hence,  

𝑈1,𝑗ℎ0𝑈1,𝑗
∗ + 𝑈0,𝑗ℎ1𝑈0,𝑗

∗ ≤ 𝑈1,𝑗𝑒0𝑈1,𝑗
∗ + 𝑈0,𝑗𝑒1𝑈0,𝑗

∗ ≈2𝜖 𝑒0 + 𝑒1 = 1, 

which implies that 𝑈1,𝑗ℎ0𝑈1,𝑗
∗ + 𝑈0,𝑗ℎ1𝑈0,𝑗

∗ ≤ (1 + 2𝜖)1. 𝐴 similar argument shows that 

𝑈1,𝑗ℎ0𝑈1,𝑗
∗ + 𝑈0,𝑗ℎ1𝑈0,𝑗

∗ ≥ −(1 + 2𝜖)1. The norm of the right side of (23) is at most 

2𝑀′(𝛶′ + 𝜖) + (𝑀′ − 1)(1 + 2𝜖) from which we obtain that  
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‖ℎ̃‖ ≤
2𝑀′(𝛶′ + 𝜖) + (𝑀′ − 1)(1 + 2𝜖)

2𝑀′ − 1
 . 

Thus 𝐴 has property (𝑃) with constants 𝑀 = 2𝑀′ − 1 and 𝛶 = (2𝑀′𝛶′ + 𝑀′ − 1)/(2𝑀′ −
1) + 2𝜖 (provided that this value of 𝛶 is less than 1). 

   It follows from Proposition (6.3.42) that, for every 𝑛, the 𝐶∗-algebra 𝑀𝑛 has the uniform 

Dixmier property with constants 𝑚 = 23 = 8 and 𝛾 = (1/2)3 = 1/8. By the discussion 

above, we may take 𝑀′ = 8 and 𝛶′ = 1/4 and hence obtain that 𝐴 has(𝑃) with constants 

(𝑀, 𝛶) for 𝑀 = 15 and every 𝛶 ∈ (11/15, 1).  
    Given a self-adjoint element ℎ, let us say that the spectrum of ℎ has gaps of size at most 

𝛿 if every closed subinterval of [𝑙(ℎ), 𝑟(ℎ)] of length 𝛿 intersects the spectrum of ℎ. 

Lemma (6.3.45)[455]: Let 𝐴 be simple, unital, and non-elementary. Let ℎ ∈ 𝐴 be a self-

adjoint element and 𝜖 > 0. The following are true: 

(i)  There exists a unitary 𝑢 ∈ 𝐴 such that the spectrum of  
1

3
ℎ +

2

3
𝑢ℎ𝑢∗  

has gaps of  size at most 𝜔(ℎ)/3 + 𝜖.  

(ii)  If the spectrum of ℎ has gaps of size at most 𝛿 > 0 then there exist a self-adjoint 

ℎ̃ ∈ 𝐴 and 𝑥 ∈ 𝐴 such that ‖𝑥‖2 = 𝛿/2,  𝑥2 = 0, 

‖ℎ − (ℎ̃ + [𝑥∗, 𝑥])‖ < 𝜖, 

and the spectrum of ℎ̃ is the interval [𝑙(ℎ) − 𝛿/2, 𝑟(ℎ) + 𝛿/2]. 
Proof.(i): The result is trivial if  𝑙(ℎ) = 𝑟(ℎ). So assume that 𝑙(ℎ) < 𝑟(ℎ). If the result has 

been proven for a given ℎ (and arbitrary 𝜖 > 0) then it at once follows for any 𝛼ℎ + 𝛽1, 

with 𝛼, 𝛽 ∈ ℝ. Thus, we may assume that 0 ≤ ℎ ≤ 1 and that [𝑙(ℎ), 𝑟(ℎ)] = [0, 1]. Let us 

perturb ℎ slightly using functional calculus with a continuous function that is close to the 

identity function but takes the constant value 0 in a neighbourhood of 0 and the constant 

value 1in a neighbourhood of 1, so that for the new element 𝑘(still a positive contraction) 

we have that ‖ℎ − 𝑘‖ < 𝜖/2 and that 𝑘𝑒 = 𝑒 and 𝑘𝑓 = 0 for some non-zero 𝑒, 𝑓 ∈ 𝐴+. 
Since 𝐴 is simple (whence prime), there exists a positive element 𝑎 ∈ 𝐴 such that 𝑒𝑎𝑓 ≠ 0. 

Let 𝑥 = 𝑒𝑎𝑓. Then 𝑥∗𝑥 ∈ 𝑓𝐴𝑓̅̅ ̅̅ ̅ and 𝑥𝑥∗ ∈ 𝑒𝐴𝑒̅̅ ̅̅ ̅. Since 𝑥2 = 0, 𝑥 is in the closure of the 

invertible elements of 𝐴. By [406, Theorem 5], for each 𝑡 > 0 there exists a unitary 𝑢 ∈ 𝐴 

such that 𝑢(𝑥∗𝑥 − 𝑡) + 𝑢∗ = (𝑥𝑥∗ − 𝑡)+. Choose one such 𝑢 for some 𝑡 < ‖𝑥‖. Set �̃�: =

(𝑥∗𝑥 − 𝑡)+ and 𝑓:= (𝑥𝑥∗ − 𝑡)+. Now consider 

�̃�: =
1

3
𝑘 +

2

3
(𝑢𝑘𝑢∗). 

Then �̃��̃� = (1/3)�̃� and �̃�𝑓 = (2/3)𝑓. Since �̃� and 𝑓 are nonzero, 1/3 and 2/3 are in the 

spectrum of �̃�. 

   Let ℎ̃: =
1

3
ℎ +

2

3
(𝑢ℎ𝑢∗), a positive contraction in 𝐴 such that ‖ℎ̃ − �̃�‖ < 𝜖/2. Suppose, 

towards a contradiction, that the spectrum of ℎ̃ does not intersect (1/3 − 𝜖/2, 1/3 + 𝜖/2). 

Define 𝑏:= ℎ̃ − (1/3)1 and 𝑐: = �̃� − (1/3)1, so that 𝑏 is self-adjoint, the spectrum of 𝑏 

does not intersect (−𝜖/2, 𝜖/2) and ‖𝑏 − 𝑐‖ < 𝜖/2. We have 

‖1 − 𝑏−1𝑐‖ ≤ ‖𝑏−1‖‖𝑏 − 𝑐‖ <
𝜖

2
‖𝑏−1‖ ≤ 1. 



 

298 

 

Hence 𝑏−1𝑐 is invertible and so 𝑐 is invertible, which contradicts that 1/3 is in the spectrum 

of �̃�. 𝐴 similar argument shows that the spectrum of ℎ̃ intersects (2/3 − 𝜖/2,2/3 + 𝜖/2). 

It follows that the spectrum of ℎ̃ has gaps of size at most 1/3 + 𝜖. 
(ii): Choose points 𝑙(ℎ) = 𝑡0 < 𝑡1 <. . . < 𝑡𝑛 = 𝑟(ℎ) in the spectrum of ℎ such that 𝑡𝑖+1 −
𝑡𝑖 ≤ 𝛿 for all 𝑖. Perturb ℎ by functional calculus using an increasing continuous function 

close to the identity function that takes the constant value 𝑡𝑖 in a small neigh-bourhoodof 

each 𝑡𝑖, so that the new ℎ′ satisfies ‖ℎ′ − ℎ‖ < 𝜖, has spectrum contained in [𝑙(ℎ), 𝑟(ℎ)] 
and has the property that there exist pairwise orthogonal non-zero positive elements 

𝑒0, 𝑒1, . . . , 𝑒𝑛 such that ℎ′𝑒𝑖 = 𝑡𝑖𝑒𝑖. For each 𝑖 = 0, 1, . . . , 𝑛, choose 𝑥𝑖 ∈ 𝑒𝑖𝐴𝑒𝑖̅̅ ̅̅ ̅̅ ̅ such that 

𝑥𝑖
2 = 0 and 𝑥𝑖

∗𝑥𝑖 (and hence 𝑥𝑖𝑥𝑖
∗) has spectrum equal to [0, 1]. This is possible since 𝑒𝑖𝐴𝑒𝑖̅̅ ̅̅ ̅̅ ̅ 

is simple and non-elementary. Now let  

                                 𝑥:= ∑ (𝛿/2)
1

2 𝑥𝑖
𝑛
𝑖=0   and ℎ̃: = ℎ′ − [𝑥∗, 𝑥]. 

 We claim that ℎ̃ and 𝑥 are as desired. It follows from the pairwise orthogonality of the 𝑒𝑖that 

𝑥2 = 0, that  

‖𝑥‖2 =
𝛿

2
‖∑𝑥𝑖

∗𝑥𝑖

𝑛

𝑖=0

‖ =
𝛿

2
 

and that  

ℎ̃ = ℎ′ −∑(𝛿/2)(𝑥𝑖
∗𝑥𝑖 − 𝑥𝑖𝑥𝑖

∗)

𝑛

𝑖=0

. 

      Let us show that ℎ̃ has spectrum [𝑙(ℎ) − 𝛿/2, 𝑟(ℎ) + 𝛿/2]. Note that all of the elements 

ℎ′, 𝑥𝑖
∗𝑥𝑖 and 𝑥𝑖𝑥𝑖

∗(0 ≤ 𝑖 ≤ 𝑛) lie in a commutative 𝐶∗-subalgebra 𝐶 containing the unit 1 of 

𝐴. Evaluating the right-hand side of the expression for ℎ̃ on the points of the spectrum of 𝐶 

where 𝑥𝑖
∗𝑥𝑖 is supported, all other terms except for ℎ′ vanish, while ℎ′ takes the constant 

value 𝑡𝑖. Since the spectrum of 𝑥𝑖
∗𝑥𝑖is [0, 1], we obtain the interval [𝑡𝑖 − 𝛿/2, 𝑡𝑖] in the 

spectrum of ℎ̃. Evaluating on the points where 𝑥𝑖𝑥𝑖
∗ is supported, we obtain the interval 

[𝑡𝑖 , 𝑡𝑖 + 𝛿/2] in the spectrum of ℎ̃. Doing this for all 𝑖, we obtain the interval [𝑙(ℎ) −

𝛿/2, 𝑟(ℎ) + 𝛿/2] in the spectrum of ℎ̃. Evaluating on any other point in the spectrum of 𝐶, 

we obtain a value in the spectrum of ℎ′ which is contained in [𝑙(ℎ), 𝑟(ℎ)]. Thus the spectrum 

of ℎ̃ is as required. 

    Let 𝐴 be simple, unital, non-elementary, with stable rank one and with strict comparison 

by traces. Using Cuntz semigroup classification results, one can prove the existence of a 

nuclear 𝐶∗-subalgebra 𝐵 ⊆ 𝐴 with rather special properties. [401, Theorem 4.1] spells out 

the properties of 𝐵 that we need: 

(i)  𝐵 ≅ 𝐶 ⊗𝑊, where 𝐶 is a simple 𝐴𝐹 𝐶∗-algebra and 𝑊 is the Jacelon–Razak 

algebra. 

(ii)  Every tracial state 𝜏 on 𝐵 extends uniquely to a tracial state on 𝐴. 

(iii)  Every non-invertible self-adjoint element ℎ in 𝐴 with connected spectrum is 

approx-imately unitarily equivalent to a self-adjoint element in 𝐵. (Note: In the 

statement of [401, Theorem 4.1] the hypothesis that the self-adjoint ℎ must be non-

invertible is missing, though this is clearly necessary since 𝐵 is non-unital. 

Moreover, this hypothesis is tacitly used in the last paragraph of the proof of [401, 

Theorem 4.1].) 
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𝐴 technique in [380] and [401] involves using these properties to reduce the proof of certain 

properties of self-adjoint elements in 𝐴 to the case of self-adjoint elements in 𝐵. We will 

use the same technique to prove the following theorem. In this theorem, the initial 

hypotheses on 𝐴 ensure that 𝑇(𝐴) is non-empty (surely, if we had 𝑇(𝐴) = ∅ then the strict 

comparison-by-traces property and the simplicity of 𝐴 would imply that 𝐴 is purely infinite, 

contradicting that 𝐴 has stable rank one.) Thus the later additional assumption that 𝐴 has the 

Dixmier property is equivalent to assuming that 𝐴 has a unique tracial state [374]. 

Theorem (6.3.46)[455]: Let 𝐴 be a simple, unital, non-elementary 𝐶∗-algebra with stable 

rank one and strict comparison by traces. Then 𝐴 has(𝑃) with constants 𝑀 = 3 · 73 and 𝛶 =
0.86. Suppose, in addition, that 𝐴 has the Dixmier property. Then 𝐴 has the uniform 

singleton Dixmier property with these constants. 

Proof. Suppose that the unitisation 𝐵 + ℂ1 of 𝐵 has (𝑃) with constants (𝑀′, 𝛶′). We show 

how to obtain constants for 𝐴. Suppose that ℎ ∈ 𝐴 is a self-adjoint element that is zero on 

every trace and such that ‖ℎ‖ = 1. Let 𝜖 > 0. From Lemma (6.3.45) (i), we obtain ℎ1 =
(1/3)ℎ + (2/3)𝑢ℎ𝑢∗ whose spectrum has gaps at most 2/3 + 𝜖. Applying Lemma (6.3.45) 

(ii) to ℎ1 with 𝛿 = 2/3 + 𝜖, we obtain ℎ̃1, 𝑥 ∈ 𝐴, as described, such that  

                                          ℎ1 ≈𝜖 ℎ̃1 + [𝑥
∗, 𝑥].                                                (24) 

Notice, for later use, that since the positive elements 𝑥∗𝑥 and 𝑥𝑥∗ are orthogonal  

‖[𝑥∗, 𝑥]‖ = max {‖𝑥∗𝑥‖, ‖𝑥𝑥∗‖} =
𝛿

2
=
1

3
+
𝜖

2
. 

Also, by our choice of 𝛿, the spectrum of ℎ̃1 is exactly the interval  

[𝑙(ℎ1) −
1

3
−
𝜖

2
, 𝑟(ℎ1) +

1

3
+
𝜖

2
]. 

From this and ‖ℎ1‖ ≤ 1, we see that ‖ℎ̃1‖ ≤ 4/3 + 𝜖/2. Moreover, ℎ̃1 is non-invertible. 

Indeed, its spectrum contains the closed interval [𝑙(ℎ1), 𝑟(ℎ1)] and the latter contains 0 since 

ℎ1 is zero on all traces and 𝑇(𝐴) ≠ ∅ (as argued before this theorem). By property (iii) of 

the 𝐶∗-subalgebra 𝐵 above, there is a self-adjoint element 𝑏 ∈ 𝐵 which is approximately 

unitarily equivalent to ℎ̃1. Notice, from (24), that sup {|𝜏(ℎ̃1)| ∶ 𝜏 ∈ 𝑇(𝐴)} < 𝜖. Hence 

sup {|𝜏(𝑏)|: 𝜏 ∈ 𝑇(𝐴)} < 𝜖. But  

sup {|𝜏(𝑏)|: 𝜏 ∈ 𝑇(𝐴)} = sup {|𝜏(𝑏)|: 𝜏 ∈ 𝑇(𝐵)},  
since tracial states of 𝐵 extend to tracial states of 𝐴 (property (ii) of 𝐵 above). Hence 

sup {|𝜏(𝑏)|: 𝜏 ∈ 𝑇(𝐵)} < 𝜖. It follows that there exists a self-adjoint 𝑏′ ∈ 𝐵 such that 

𝜏(𝑏′) = 0 for all 𝜏 ∈ 𝑇(𝐵) and ‖𝑏 − 𝑏′‖ < 𝜖 (by [355, Theorem 2.9] and [432, Proof of 

Lemma 3.1]). Hence there is a unitary conjugate of ℎ̃1 which has distance from 𝑏′ less than 

𝜖. Thus, since 𝐵 has (𝑃) with constants (𝑀′, 𝛶′), there exists an average of 𝑀′ unitary 

conjugates of  ℎ̃1of norm at most     

𝛶′(‖ℎ̃1‖ + 𝜖) + 𝜖 ≤ 𝛶′(
4

3
+
3𝜖

2
) + 𝜖. 

 Applying this average on both sides of (24), we find an average of 3𝑀′ unitary conjugates 

of the original element ℎ with norm at most  

𝛶′(
4

3
+
3𝜖

2
) + 𝜖 + (

1

3
+
𝜖

2
) + 𝜖. 

Since 𝜖 can be chosen arbitrarily small, we find that, provided 
4

3
𝛶′ +

1

3
< 1, 𝐴 has (𝑃) with 

constants 
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𝑀 = 3𝑀′ and every    𝛶 ∈ (
4

3
𝛶′ +

1

3
, 1).                   (25) 

Finally, let us find suitable constants for the unitisation 𝐵 + ℂ1 of 𝐵. Since 𝐵 has 

decomposition rank 1 and stable rank one, 𝐵 + ℂ1 has the same properties and so has (𝑃) 
with constants 𝑀′ = 15 and arbitrary 𝛶′ ∈ (11/15, 1) by Theorem (6.3.44). Therefore, it 

also has (𝑃) with constants 𝑀′ = 153 and arbitrary 𝛶′ ∈ ((11/15)3, 1). Putting the latter 

constants into the formula (25), we get that 𝐴 has (𝑃) with constants 𝑀 = 3 · 153 and 𝛶 =
0.86.  

We derive results about the distance between Dixmier sets 𝐷𝐴(𝑎) and 𝐷𝐴(𝑏). Along the 

way, we obtain a description of 𝐷𝐴(𝑎) ∩ 𝑍(𝐴) for 𝐶∗-algebras with the Dixmier property 

and we point out some cases in which the distance between 𝐷𝐴(𝑎) and 𝐷𝐴(𝑏) is attained. 

Here by the distance between two subsets 𝐷1, 𝐷2 of a 𝐶∗-algebra, we mean  

𝑑(𝐷1, 𝐷2): = inf {‖𝑑1 − 𝑑2‖: 𝑑1 ∈ 𝐷1, 𝑑2 ∈ 𝐷2}. 
Lemma (6.3.47)[455]: Let 𝐴 be a unital 𝐶∗-algebra and let 𝑎, 𝑏 ∈ 𝐴. The distance between 

the sets 𝐷𝐴(𝑎) and 𝐷𝐴(𝑏) is equal to the distance between the sets 𝐷𝐴∗∗(𝑎) and 𝐷𝐴∗∗(𝑏). 
Proof. Let 𝑟:= 𝑑(𝐷𝐴∗∗(𝑎), 𝐷𝐴∗∗(𝑏)). It is clear that 𝑟 ≤ 𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑏)). Let us prove the 

opposite inequality. Let 𝜖 > 0 be given. Let 𝑎′ ∈ 𝐷𝐴∗∗(𝑎) and 𝑏′ ∈ 𝐷𝐴∗∗(𝑏) be such that 

‖𝑎′ − 𝑏′‖ < 𝑟 + 𝜖. Approximating 𝑎′ and 𝑏′ by averages of unitary conjugates there exists 

some 𝑁 and unitaries 𝑢1, . . . , 𝑢𝑁, 𝑣1, . . . , 𝑣𝑁 ∈ 𝑈(𝐴
∗∗) such that  

1

𝑁
 ∑𝑢𝑖𝑎𝑢𝑖

∗

𝑁

𝑖=1

−
1

𝑁
∑𝑣𝑖𝑏𝑣𝑖

∗

𝑁

𝑖=1

< 𝑟 + 𝜖.                       (26) 

By the version of  Kaplansky’s density theorem for unitaries [430, Theorem 4.11] (due to 

Glimm and Kadison, see [369, Theorem 2]), there exist commonly indexed nets of unitaries 

(𝑢𝑖 , 𝜆)𝜆∈𝛬 , (𝑣𝑖 , 𝜆)𝜆∈𝛬 ∈ 𝑈(𝐴) such that 𝑢𝑖,𝜆 → 𝑢𝑖  and 𝑣𝑖,𝜆 → 𝑣𝑖 in the ultrastrong ∗-topology 

for 𝑖 = 1, . . . , 𝑁. Now consider  

𝑆:= 𝑐𝑜 {
1

𝑁
∑𝑢𝑖,𝜆𝑎𝑢𝑖,𝜆

∗

𝑁

𝑖=1

−
1

𝑁
∑𝑣𝑖,𝜆𝑏𝑣𝑖,𝜆

∗

𝑁

𝑖=1

: 𝜆 ∈ 𝛬}. 

The weak∗-closure of this convex set (in 𝐴∗∗) contains an element of norm less than 𝑟 +
𝜖(namely, the element appearing in (26)), so by the Hahn–Banach theorem, 𝑆 must also 

contain an element of norm less than 𝑟 + 𝜖. (Otherwise, the Hahn–Banach theorem ensures 

the existence of a functional 𝜆 ∈ 𝐴∗ such that 𝑅𝑒(𝜆(𝑥)) < 𝑟 + 𝜖 for all ‖𝑥‖ < 𝑟 + 𝜖 and 

𝑅𝑒(𝜆(𝑠)) ≥ 𝑟 + 𝜖 for all 𝑠 ∈ 𝑆; but then ‖𝜆‖ ≤ 1 and 𝑅𝑒(𝜆(𝑠)) ≥ 𝑟 + 𝜖 for all 𝑠 in the 

weak∗-closure of 𝑆, which is a contradiction.) However, note that 𝑆 ⊆ 𝐷𝐴(𝑎) − 𝐷𝐴(𝑏), so 

this shows that 𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑏)) ≤ 𝑟 + 𝜖. Since 𝜖 is arbitrary, we are done.  

Given a unital 𝐶∗-algebra 𝐴 and 𝑎 ∈ 𝐴, let 𝑊𝐴(𝑎): = {𝜌(𝑎): 𝜌 ∈ 𝑆(𝐴)}, the algebraic 

numerical range of 𝑎. Since the state space 𝑆(𝐴) is weak∗-compact and convex, 𝑊𝐴(𝑎) is a 

compact convex subset of ℂ. 

Lemma (6.3.48)[455]: Let 𝐴 be a unital 𝐶∗-algebra and let 𝑎, 𝑏 ∈ 𝐴. The following are true: 

(i) |𝜏(𝑎) − 𝜏(𝑏)| ≤ 𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑏)) for all 𝜏 ∈ 𝑇(𝐴). 
(ii) 𝑑(𝑊𝐴/𝐼(𝑞𝐼(𝑎)),𝑊𝐴/𝐼(𝑞𝐼(𝑏))) ≤ 𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑏)) for all closed ideals 𝐼of 𝐴. 

Proof. (i): This is clear from the fact that traces are constant on Dixmier sets. 

(ii): Since  
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𝑑(𝐷𝐴/𝐼(𝑞𝐼(𝑎)), 𝐷𝐴/𝐼(𝑞𝐼(𝑏))) ≤ 𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑎)) 

(because 𝑞𝐼(𝐷𝐴(𝑎)) ⊆ 𝐷𝐴/𝐼(𝑞𝐼(𝑎)) and similarly for 𝑏), it suffices to consider the case when 

𝐼 = 0. We have  

inf {|𝜌1(𝑎) − 𝜌2(𝑏)|: 𝜌1, 𝜌2 ∈ 𝑆(𝐴)} ≤ sup {|𝜌(𝑎) − 𝜌(𝑏)|: 𝜌 ∈ 𝑆(𝐴)} 
 ≤ ‖𝑎 − 𝑏‖. 

Thus, 𝑑(𝑊𝐴(𝑎),𝑊𝐴(𝑏)) ≤ ‖𝑎 − 𝑏‖. But if 𝛼, 𝛽 ∈ 𝐴𝑉(𝐴, 𝑈(𝐴)) are averaging operators 

then 𝑊𝐴(𝛼(𝑎)) ⊆ 𝑊𝐴(𝑎) and 𝑊𝐴(𝛽(𝑏)) ⊆ 𝑊𝐴(𝑏). So  

𝑑(𝑊𝐴(𝑎),𝑊𝐴(𝑏)) ≤ ‖𝛼(𝑎) − 𝛽(𝑏)‖.  
Passing to the infimum over all 𝛼, 𝛽 ∈ 𝐴𝑉(𝐴, 𝑈(𝐴)) we get that  

𝑑(𝑊𝐴(𝑎),𝑊𝐴(𝑏)) ≤ 𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑏)),  
as desired.  

   Lemma (6.3.47) allows us to reduce the calculation of the distance between Dixmier sets 

to the case that the ambient 𝐶∗-algebra is a von Neumann algebra. To deal with the von 

Neumann algebra case we rely on the following theorem of Halpern and Strătilă–Zsidó: 

Theorem (6.3.49)[455]: Let 𝑀 be a properly infinite von Neumann algebra with centre 𝑍 

and strong radical 𝐽 (i.e., 𝐽 is the intersection of all maximal ideals of 𝑀). Let 𝑎 ∈ 𝑀. The 

following are equivalent: 

(i)  0 ∈ 𝐷𝑀(𝑎). 
(ii) There exists a 𝑍-linear, positive, unital map 𝜙:𝑀 → 𝑍 such that 𝜙(𝐽) = 0 and 

𝜙(𝑎) = 0. 

(iii)  0 ∈ 𝑊𝑀/𝐼(𝑞𝐼(𝑎)) for every maximal ideal 𝐼 of 𝑀. 

Proof. (i)⇒(iii): If 0 ∈ 𝐷𝑀(𝑎) then 0 ∈ 𝐷𝑀/𝐼 (𝑞𝐼(𝑎)) for every maximal ideal 𝐼 of 𝑀. By 

Lemma (6.3.48), 0 ∈ 𝑊𝑀/𝐼(𝑞𝐼(𝑎)), as desired. 

(iii)⇒(ii): This is [429, Proposition 7.3]. 

(ii)⇒(i): This follows from Halpern’s [376, Theorem 4.12].  

The following theorem extends Theorem (6.3.2) ([402, Theorem 4.7]) to non-self-adjoint 

elements. 

Theorem (6.3.50)[455]: Let 𝐴 be a unital 𝐶∗-algebra and let 𝑎 ∈ 𝐴. Then 0 ∈ 𝐷𝐴(𝑎) if and 

only if 

(a) 𝜏(𝑎) = 0 for all 𝜏 ∈ 𝑇(𝐴), and 

(b) in no nonzero quotient of 𝐴 can the image of 𝑅𝑒(𝑤𝑎), with 𝑤 ∈ ℂ, be invertible and 

negative. 

Condition (b) need only be checked on all the quotients by maximal ideals of 𝐴. 𝐴 

reformulation of (𝑏) is 

(b’) on every nonzero quotient there exists a state that vanishes on 𝑎; i.e., 0 ∈ 𝑊𝐴/𝐼(𝑞𝐼(𝑎)) 

for all closed ideals 𝐼 of 𝐴. 

    To see this, suppose that 𝜌(𝑎) = 0 for some 𝜌 ∈ 𝑆(𝐴). For all 𝑤 ∈ ℂ, 𝜌(𝑤𝑎) = 0 and so 

𝜌(𝑅𝑒(𝑤𝑎)) = 0. Hence 𝑅𝑒(𝑤𝑎) is not invertible and negative. Conversely, suppose that 

0 ∉ 𝑊𝐴(𝑎). Then by convexity of 𝑊𝐴(𝑎), for a suitable 𝑤 ∈ ℂ and 𝜖 > 0, 𝑅𝑒(𝜌(𝑤𝑎)) ≤
−𝜖 < 0 for all states 𝜌, i.e., 𝜌(𝑅𝑒(𝑤𝑎)) ≤ −𝜖 < 0 for all states 𝜌. But this implies that 

𝑅𝑒(𝑤𝑎) is negative and invertible. This equivalence holds similarly in every nonzero 

quotient. Notice that if every nonzero quotient of 𝐴 has a tracial state then (b’) follows from 

(a).  

      𝐴nother reformulation of (𝑏) is the following: 
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(𝑏”)(𝑅𝑒(𝑤𝑎) + 𝑡)+is a full element (i.e., generates 𝐴 as a closed two-sided ideal) for all 

𝑡 > 0 and all 𝑤 ∈ ℂ. 

    To see that this is equivalent to Theorem (6.3.50) (𝑏), notice first that 𝑅𝑒(𝑤𝑎) ≤ −𝑡1 in 

the quotient by the closed two-sided ideal generated by (𝑅𝑒(𝑤𝑎) + 𝑡)+, where 𝑎 ↦ �̅� is the 

quotient map for this ideal. So, assuming (b), this quotient must be {0}, i.e., (𝑅𝑒(𝑤𝑎) + 𝑡)+ 

is full for all 𝑡 > 0. On the other hand, if 𝑅𝑒(𝑤�̅�) ≤ −𝑡1 in the quotient by some ideal 𝐼, 
then clearly (𝑅𝑒(𝑤𝑎) + 𝑡1)+ ∈ 𝐼. So, if 𝑡 > 0, and assuming (𝑏”), we get that 𝐼 = 𝐴. 

Proof. Since traces are constant on Dixmier sets, if 0 ∈ 𝐷𝐴(𝑎) then 𝜏(𝑎) = 0 for all 𝜏 ∈
𝑇(𝐴), i.e., (a) holds. Also, if  0 ∈ 𝐷𝐴(𝑎) then 0 ∈ 𝐷𝐴(𝑤𝑎) for any 𝑤 ∈ ℂ (indeed, any 

central element) and this prevents 𝑅𝑒(𝑤𝑎) from being invertible and negative. The same 

holds for quotients since 𝑞𝐼(𝐷𝐴(𝑎)) ⊆ 𝐷𝐴/𝐼(𝑞𝐼(𝑎)). Thus, (b) holds as well. 

   Suppose now that 𝑎 ∈ 𝐴 is such that (a) and (b) hold. If 𝐴 ⊆ 𝐵(where 𝐵 is a 𝐶∗-algebra 

with the same unit as 𝐴) then (a) and (b) also hold in 𝐵. This is clear for condition (a), since 

traces of 𝐵 restrict to traces of 𝐴. This is also clear for condition (b”), which is equivalent 

to (b). It follows that 𝑎 satisfies (a) and (b) in the von Neumann algebra 𝐴∗∗. Let 𝐴𝑓
∗∗  ⊕ 𝐴𝑃𝑖

∗∗  

be the decomposition of 𝐴∗∗ into a finite and a properly infinite von Neumann algebra and   

let 𝑎 = 𝑎𝑓 + 𝑎𝑝𝑖  be the corresponding decomposition of 𝑎. From condition (a) we get that 

𝑅(𝑎𝑓) = 0, where 𝑅 denotes the centre-valued trace, which in turn implies that 0 ∈

𝐷𝐴𝑓
∗∗(𝑎𝑓). On the other hand, from condition (𝑏) we get that for every maximal ideal 𝐼 of 

𝐴𝑝𝑖
∗∗  there exists a state on 𝐴𝑝𝑖

∗∗/𝐼 that vanishes on 𝑞𝐼(𝑎𝑝𝑖). By Theorem (6.3.49), 0 ∈

𝐷𝐴𝑝𝑖
∗∗ (𝑎𝑝𝑖). Since we may extend unitary elements in 𝐴𝑓

∗∗ (respectively 𝐴𝑝𝑖
∗∗) by adding the 

unit of 𝐴𝑝𝑖
∗∗  (respectively 𝐴𝑓

∗∗), we conclude that 0 ∈ 𝐷𝐴∗∗(𝑎). By Lemma (6.3.47), 0 ∈

𝐷𝐴(𝑎).  
Corollary (6.3.51)[455]: Let 𝐴 be a unital 𝐶∗-algebra with the Dixmier property and let 𝑎 ∈
𝐴. Let 𝑌 ⊆ 𝑀𝑎𝑥(𝐴) be the closed set of maximal ideals 𝑀 such that 𝐴 has a (unique) tracial 

state 𝜏𝑀that vanishes on 𝑀. Then 𝐷𝐴(𝑎) ∩ 𝑍(𝐴)is mapped, via the Gelfand transform, onto 

the set of 𝑓 ∈ 𝐶(𝑀𝑎𝑥(𝐴))such that  

                                      𝑓(𝑀) = 𝜏𝑀(𝑎) if 𝑀 ∈ 𝑌,  

                                      𝑓(𝑀) ∈  𝑊𝐴/𝑀(𝑞𝑀(𝑎)) otherwise.  

Proof. Let 𝑧 ∈ 𝐷𝐴(𝑎) ∩ 𝑍(𝐴) and let 𝑓 ∈ 𝐶(𝑀𝑎𝑥(𝐴)) be its Gelfand transform (that is, 𝑓 =
𝜃(𝑧) where 𝜃: 𝑍(𝐴) → 𝐶(𝑀𝑎𝑥(𝐴)) is the canonical ∗-isomorphism discussed prior to 

Corollary (6.3.13)). Let 𝑀 ∈ 𝑀𝑎𝑥(𝐴). Since 0 ∈ 𝐷𝐴(𝑎 − 𝑧), we have by Lemma (6.3.48) 

(ii) that  

0 ∈ 𝑊𝐴/𝑀(𝑞𝑀(𝑎 − 𝑧)) = 𝑊𝐴/𝑀(𝑞𝑀(𝑎)) − 𝑓(𝑀), 

i.e., 𝑓(𝑀) ∈ 𝑊𝐴/𝑀(𝑞𝑀(𝑎)). Also, 𝑓(𝑀) = 𝜏𝑀(𝑧) = 𝜏𝑀(𝑎) for all 𝑀 ∈ 𝑌. Thus, 𝑓 is as 

required. 

Conversely, let 𝑓 ∈ 𝐶(𝑀𝑎𝑥(𝐴)) be as in the statement of the corollary. Let 𝑧 ∈ 𝑍(𝐴) be the 

central element whose Gelfand transform is 𝑓. Then  

0 ∈ 𝑊𝐴/𝑀(𝑞𝑀(𝑎)) − 𝑓(𝑀) = 𝑊𝐴/𝑀(𝑞𝑀(𝑎 − 𝑧)) 

for all 𝑀 ∈ 𝑀𝑎𝑥(𝐴). Also, 𝜏𝑀(𝑎 − 𝑧) = 0 for all 𝑀 ∈ 𝑌, and since 𝜕𝑒𝑇(𝐴) = {𝜏𝑀:𝑀 ∈ 𝑌} 
(Theorem (6.3.12)), 𝜏(𝑎 − 𝑧) = 0 for all 𝜏 ∈ 𝑇(𝐴) by the Krein–Milman theorem. By 

Theorem (6.3.50), 0 ∈ 𝐷𝐴(𝑎 − 𝑧), i.e., 𝑧 ∈ 𝐷𝐴(𝑎), as desired.  
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        We extend Theorem (6.3.50) to a distance formula between the sets 𝐷𝐴(𝑎) and 𝐷𝐴(𝑏) 
(Theorem (6.3.58) below). Note that one cannot reduce the calculation of this distance to 

the case that one element is 0 by looking at the distance between 𝐷𝐴(𝑏 − 𝑎) and 0, since 

𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑏)) is in general not the same as 𝑑(𝐷𝐴(𝑏 − 𝑎), 0). For an example of this, let 

a be a non-invertible positive element of norm 1 in a simple unital infinite 𝐶∗-algebra 𝐴 and 

define 𝑏:= 1 + 𝑎. Then 𝐷𝐴(𝑎) ∩ 𝑍(𝐴) = [0, 1] and 𝐷𝐴(𝑏) ∩ 𝑍(𝐴) = [1, 2] (as sets of 

scalar elements of 𝐴) (see Corollary (6.3.16) or [752]), so that 𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑏)) = 0. 

However, 𝑏 − 𝑎 = 1 so that 𝑑(𝐷𝐴(𝑏 − 𝑎), 0) = 1. 

Lemma (6.3.52)[455]: Let (𝐼𝜆)𝜆 be a collection of closed ideals of a 𝐶∗-algebra 𝐴 and let 𝐼 
be a closed ideal of 𝐴 such that ⋂ 𝐼𝜆𝜆 ⊆ 𝐼. Then every state of 𝐴 which vanishes on 𝐼 is a 

weak∗-limit of convex combinations of states vanishing on the 𝐼𝜆’s. 

Recall that for topological spaces 𝑋 and 𝑌, a set-valued function 𝜙:𝑋 → {𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑌} is 

defined to be lower semicontinuous if for every open set 𝑈 of  𝑌, the set  

{𝑥 ∈ 𝑋: 𝜙(𝑥) ∩ 𝑈 ≠ ∅} 
is open in 𝑋. We will use the Michael selection theorem [769, Theorem 3.1’]. 

The next lemma is implicit in a strategy mentioned in [767]. 

Lemma (6.3.53)[455]: Let 𝐴 be a unital 𝐶∗-algebra and let 𝑎 ∈ 𝐴. The set-valued function 

on 𝑀𝑎𝑥(𝐴) defined by   

𝑀⟼𝑊𝐴/𝑀(𝑞𝑀(𝑎)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀 ∈ 𝑀𝑎𝑥(𝐴)  

is lower semicontinuous. 

Proof. Let Φ𝑎(𝑀):= 𝑊𝐴/𝑀(𝑞𝑀(𝑎)) for all 𝑀 ∈ 𝑀𝑎𝑥(𝐴). Let 𝑀 ∈ 𝑀𝑎𝑥(𝐴), 𝑤 ∈ Φ𝑎(𝑀) 

and 𝜖 > 0. We must show that Φ𝑎(𝑀′) ∩ 𝐵𝜖(𝑤) is non-empty for all 𝑀′ in a neighbourhood 

of 𝑀. Suppose, for the sake of contradiction, that there exists a net 𝑀𝜆 → 𝑀 such that 

Φ𝑎(𝑀𝜆) ∩ 𝐵𝜖(𝑤) = ∅ for all 𝜆. For each 𝜆 we can separate the sets Φ𝑎(𝑀𝜆) and 𝐵𝜖(𝑤) by 

a line ℓ𝜆tangent to the circle {𝑧: |𝑧 − 𝑤| = 𝜖}. Let 𝑐𝜆 ∈ ℓ𝜆 denote the point of tangency. Let 

us pass to a subnet 𝑀𝜆′ → 𝑀 such that the 𝑐𝜆′ → 𝑐, and let ℓ be the tangent line at 𝑐. Since 

the sets Φ𝑎(𝑀𝜆′) are uniformly bounded (they are all inside the ball 𝐵‖𝑎‖(0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), there exists 

𝜆0
′  such that the sets Φ𝑎(𝑀𝜆′) for 𝜆′ ≥ 𝜆0

′  are all separated from the ball 𝐵𝜖/2(𝑤) by a single 

line ℓ0 parallel to ℓ (and tangent to the circle {𝑧: |𝑧 − 𝑤| = 𝜖/2}). But, since ⋃ 𝑀𝜆′𝜆′≥𝜆0
′ ⊆

𝑀, we have by the previous lemma that any state of 𝐴 which vanishes on 𝑀 is a weak∗-limit 

of convex combinations of states vanishing on the 𝑀𝜆′’s. In particular, 𝑤(= 𝜌(𝑎) for some 

state 𝜌 of 𝐴 which vanishes on 𝑀) is a limit of convex combinations of elements in 

⋃ Φ𝑎(𝑀𝜆′)𝜆′≥𝜆0
′ . This contradicts that we can separate ⋃ Φ𝑎(𝑀𝜆′)𝜆′≥𝜆0

′  from 𝐵𝜖/2(𝑤) by 

the line ℓ0. 

      Let us describe more specifically how to obtain 𝜆0
′ . The line ℓ0 is parallel to ℓ but closer 

to 𝑤. We may therefore choose 𝜆0
′  such that all the points {𝑐𝜆′: 𝜆′ ≥ 𝜆0

′ } lie on the same side 

of ℓ0 and such that the lines ℓ𝜆′ and ℓ0 intersect outside of the ball 𝐵‖𝑎‖(0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for all 𝜆′ ≥ 𝜆0
′ . 

Then 𝜆0
′  is as desired.  

   Given a subset 𝑆 of a metric space and 𝑟 > 0 we denote by 𝑆𝑟 the set {𝑦: 𝑑(𝑦, 𝑆) < 𝑟}. 
Lemma (6.3.54)[455]: Let 𝑓, 𝑔 be lower semicontinuous set-valued functions on a 

topological set 𝑋 taking values in the subsets of a metric space 𝑌. Let 𝑟 >
sup {𝑑(𝑓(𝑥), 𝑔(𝑥)): 𝑥 ∈ 𝑋}. Then the set-valued functions 𝑥 ⟼ 𝑓(𝑥) ∩ (𝑔(𝑥))𝑟and 𝑥 ⟼
𝑓(𝑥) ∩ (𝑔(𝑥))𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are lower semicontinuous. 
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Proof. Let us show that ℎ(𝑥): = 𝑓(𝑥) ∩ (𝑔(𝑥))𝑟 is lower semicontinuous. Let 𝑥 ∈ 𝑋, 𝑧 ∈
ℎ(𝑥) and 𝜖 > 0. We must show that there exists a neighbourhood 𝑈 of 𝑥 such that ℎ(𝑦) ∩
𝐵𝜖(𝑧) ≠ ∅ for all 𝑦 ∈ 𝑈. Let 𝑤 ∈ 𝑔(𝑥) be such that 𝑟′: = 𝑑(𝑧, 𝑤) < 𝑟. Let 𝛿:= min ((𝑟 −
𝑟′)/2, 𝜖). By the lower semicontinuity of 𝑓 and 𝑔 we can find a neighbourhood 𝑈 of 𝑥 such 

that 𝑓(𝑦) ∩ 𝐵𝛿(𝑧) and 𝑔(𝑦) ∩ 𝐵𝛿(𝑤) are nonempty for all 𝑦 ∈ 𝑈. Let 𝑦 ∈ 𝑈, so that there 

exist 𝑧′ ∈ 𝑓(𝑦) ∩ 𝐵𝛿(𝑧) and 𝑤′ ∈ 𝑔(𝑦) ∩ 𝐵𝛿(𝑧). Then, using the triangle inequality, 

𝑑(𝑧′, 𝑤′) < 𝑟, so that 𝑧′ ∈ ℎ(𝑦). Also by the choice of 𝛿, 𝑧′ ∈ 𝐵𝜖(𝑧), so ℎ(𝑦) ∩ 𝐵𝜖(𝑧) is 

nonempty, as required. 

     Let us show that 𝑥 ⟼ ℎ(𝑥)̅̅ ̅̅ ̅̅  is also lower semicontinuous. Let 𝑉 ⊆ 𝑌 be an open set. 

Suppose that ℎ(𝑥)̅̅ ̅̅ ̅̅ ∩ 𝑉 ≠ ∅ for some 𝑥 ∈ 𝑋. Then ℎ(𝑥) ∩ 𝑉 ≠ ∅, and by the lower 

semicontinuity of ℎ we find a neighbourhood 𝑈 of 𝑥 such that ℎ(𝑦) ∩ 𝑉 ≠ ∅ for all 𝑦 ∈ 𝑈. 

Then, ℎ(𝑦) ∩ 𝑉 ≠ ∅ for all 𝑦 ∈ 𝑈, as required.  

Lemma (6.3.55)[455]: Let 𝑟 > 0. Let 𝑓 be a lower semicontinuous set-valued function on 

a topological space 𝑋 taking values in the convex subsets of 𝐶 and such that 𝑓(𝑥) ∩ 𝐵𝑟(0)̅̅ ̅̅ ̅̅ ̅ ≠
∅ for all 𝑥. Then  

ℎ(𝑥): = 𝑓(𝑥) ∩ 𝐵𝑟(0)̅̅ ̅̅ ̅̅ ̅ 
is lower semicontinuous. 

Proof. Let 𝑥 ∈ 𝑋 and 𝑧 ∈ ℎ(𝑥). Let 𝜖 > 0 and, without loss of generality, assume 𝜖 < 𝑟. 
We must show that ℎ(𝑦) ∩ 𝐵𝜖(𝑧) is nonempty for all 𝑦 in a neighbourhood of 𝑥. Suppose 

first that |𝑧| < 𝑟. Let 𝛿:= min (𝜖, 𝑟 − |𝑧|). Then 𝐵𝛿(𝑧) ⊆ 𝐵𝑟(0), by the triangle inequality. 

Since 𝑓 is lower semicontinuous, 𝑓(𝑦) ∩ 𝐵𝛿(𝑧) ≠ ∅ for all 𝑦 in a neighbourhood of 𝑥, and 

so ℎ(𝑦) ∩ 𝐵𝜖(𝑧) ≠ ∅ for all such 𝑦. 

Assume now that |𝑧| = 𝑟. Let 𝛿:= 𝜖2/2𝑟, as shown in the diagram, so that the circle of 

centre 𝑧 and radius 𝛿 is tangent to the segment [𝐴, 𝐵]. Since 𝑓 is lower semicontinuous, 

𝑓(𝑦) ∩ 𝐵𝛿(𝑧) ≠ ∅ for all 𝑦 in a neighbourhood 𝑈 of 𝑥. Let 𝑦 ∈ 𝑈. Say 𝑧1 ∈ 𝑓(𝑦) ∩ 𝐵𝛿(𝑧). 
Recall also that, by assumption, there exists 𝑧2 ∈ 𝑓(𝑦) such that |𝑧2| ≤ 𝑟. Since the segment 

[𝑧1, 𝑧2] is contained in 𝑓(𝑦), it suffices to show that [𝑧1, 𝑧2] intersects 𝐵𝜖(𝑧) ∩ 𝐵𝑟(0)̅̅ ̅̅ ̅̅ ̅. 

 
If the points 𝑧1 and 𝑧2 are on the same side of the line 𝐴𝐵 then 𝑧2 ∈ 𝐵𝜖(𝑧). If the points 𝑧1 
and 𝑧2 are on different sides of this line 𝐴𝐵 (as in the figure) then the segment [𝑧1, 𝑧2] 
intersects the segment [𝐴, 𝐵]. (Note for this that the tangents at 𝐴 and 𝐵 to the circle centred 

at 0 are also tangential to the circle centred at 𝑧 with radius 𝛿.)  

Let 𝐴 be a unital 𝐶∗-algebra 𝐴 with the Dixmier property. Let 𝑌 ⊆ 𝑀𝑎𝑥(𝐴) be the set of 

maximal ideals 𝑀 such that 𝐴 has a (unique) tracial state 𝜏𝑀 that vanishes on 𝑀. Recall that 
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𝑌 is closed and 𝑀 ⟼ 𝜏𝑀(𝑎) is continuous on 𝑌 for all 𝑎 ∈ 𝐴 (Theorem (6.3.12)). Let 𝑎 ∈
𝐴. Define a set-valued function 𝐹𝑎  on 𝑀𝑎𝑥(𝐴) as follows:   

𝐹𝑎(𝑀):= {
{𝜏𝑀(𝑎)}                    𝑖𝑓 𝑀 ∈ 𝑌,
 𝑊𝐴/𝑀(𝑞𝑀(𝑎))     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

The values of 𝐹𝑎  are compact convex subsets of ℂ. Since 𝑀⟼𝑊𝐴/𝑀(𝑞𝑀(𝑎)) is lower 

semicontinuous by Lemma (6.3.53), 𝑌 is closed, 𝐹𝑎|𝑌is continuous, and 𝜏𝑀(𝑎) ∈

𝑊𝐴/𝑀(𝑞𝑀(𝑎)) for 𝑀 ∈ 𝑌, the set-valued function 𝐹𝑎 is lower semicontinuous. 

The following proposition is trivial in the case of the singleton Dixmier property. 

Proposition (6.3.56)[455]: Let 𝐴 be a unital 𝐶∗-algebra with the Dixmier property, and let 

𝑎, 𝑏 ∈ 𝐴. Set  

𝑟:= 𝑠𝑢𝑝𝑀∈𝑀𝑎𝑥(𝐴) 𝑑(𝐹𝑎(𝑀), 𝐹𝑏(𝑀)). 

Then the distance between 𝐷𝐴(𝑎) and 𝐷𝐴(𝑏) is equal to 𝑟. If either 𝑎 and 𝑏 are both self-

adjoint, or 𝑏 = 0 then this distance is attained by elements in 𝐷𝐴(𝑎) ∩ 𝑍(𝐴) and 𝐷𝐴(𝑏) ∩
𝑍(𝐴). 
Proof. The inequality 𝑟 ≤ 𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑏)) follows at once from Lemma (6.3.48). 

Let 𝜖 > 0. By Lemma (6.3.54), the set-valued function  

𝐹(𝑀):= 𝐹𝑎(𝑀) ∩ (𝐹𝑏(𝑀))
𝑟+𝜖 𝑓𝑜𝑟 𝑀 ∈ 𝑀𝑎𝑥(𝐴) 

is lower semicontinuous. Since its values are closed convex sets, by Michael’s selection 

theorem there exists a continuous function 𝑓:𝑀𝑎𝑥(𝐴) → ℂ such that 𝑓(𝑀) ∈ 𝐹(𝑀) for all 

𝑀. Let 𝑧𝑎 ∈ 𝑍(𝐴) be the central element whose Gelfand transform is 𝑓. Since 𝑓(𝑀) ∈
𝐹(𝑀) ⊆ 𝐹𝑎(𝑀) for all 𝑀 we have that 𝑧𝑎 ∈ 𝐷𝐴(𝑎) by Corollary (6.3.51). Let us define  

𝐺(𝑀):= {𝑓(𝑀)}𝑟+2𝜖 ∩ 𝐹𝑏(𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑓𝑜𝑟 𝑀 ∈ 𝑀𝑎𝑥(𝐴). 
Then again this is a lower semicontinuous function taking closed convex set values. So there 

exists a continuous 𝑔:𝑀𝑎𝑥(𝐴) → ℂ such that 𝑔(𝑀) ∈ 𝐺(𝑀) for all 𝑀. Let 𝑧𝑏 ∈ 𝑍(𝐴) be 

the central element whose Gelfand transform is 𝑔. As with 𝑧𝑎, we have that 𝑧𝑏 ∈ 𝐷𝐴(𝑏). 
Also, since |𝑓(𝑀) − 𝑔(𝑀)| ≤ 𝑟 + 2𝜖 for all 𝑀 we have that ‖𝑧𝑎 − 𝑧𝑏‖ ≤ 𝑟 + 2𝜖. This ends 

the proof that 𝑟 = 𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑏)). 
Suppose now that 𝑏 = 0, and let us show that the distance from 𝐷𝐴(𝑎) to 0 is attained. Since 

𝑟 = sup {𝑑(0, 𝐹𝑎(𝑀)):𝑀 ∈ 𝑀𝑎𝑥(𝐴)}, the set 𝐹𝑎(𝑀) ∩ 𝐵𝑟(0)̅̅ ̅̅ ̅̅ ̅ is nonempty for all 𝑀. Thus, 

by Lemma (6.3.55), the set-valued function 𝑀⟼ 𝐹𝑎(𝑀) ∩ 𝐵𝑟(0)̅̅ ̅̅ ̅̅ ̅ is lower semicontinuous. 

Since it takes values on the closed convex subsets of ℂ, there exists, by Michael’s selection 

theorem, a continuous function 𝑓:𝑀𝑎𝑥(𝐴) → ℂ such that 𝑓(𝑀) ∈ 𝐹𝑎(𝑀) ∩ 𝐵𝑟(0)̅̅ ̅̅ ̅̅ ̅ for all 𝑀. 

Let zabe the central element whose Gelfand transform is 𝑓. Then 𝑧𝑎 ∈ 𝐷𝐴(𝑎) and ‖𝑧𝑎‖ ≤
𝑟, as desired.  

Finally, suppose that 𝑎 and 𝑏 are self-adjoint. Then  

𝑊𝐴/𝑀(𝑞𝑀(𝑎)) = [𝑓𝑎(𝑀), ℎ𝑎(𝑀)],  

𝑊𝐴/𝑀(𝑞𝑀(𝑏)) = [𝑓𝑏(𝑀), ℎ𝑏(𝑀)] 

for all 𝑀 ∈ 𝑀𝑎𝑥(𝐴). Here 𝑓𝑎(𝑀):= min (𝑠𝑝(𝑞𝑀(𝑎))), ℎ𝑎(𝑀):= 𝑚𝑎𝑥(𝑠𝑝(𝑞𝑀(𝑎))) and 

similarly for 𝑓𝑏(𝑀) and ℎ𝑏(𝑀). As in the proof of Theorem (6.3.12), 𝑓𝑎 , 𝑓𝑏:𝑀𝑎𝑥(𝐴) → ℝ 

are upper semicontinuous functions and ℎ𝑎 , ℎ𝑏:𝑀𝑎𝑥(𝐴) → ℝ are lower semicontinuous. 

For each 𝑀 ∈ 𝑀𝑎𝑥(𝐴) define  

𝐺(𝑀) = {
{𝜏𝑀(𝑎)}                                                                  𝑖𝑓 𝑀 ∈  𝑌,

[𝑓𝑎(𝑀), ℎ𝑎(𝑀)] ∩ [𝑓𝑏(𝑀) −  𝑟, ℎ𝑏(𝑀) + 𝑟] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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Observe that 𝐺(𝑀) is a nonempty closed interval for all 𝑀. The assignment 𝑀 ⟼ 𝐺(𝑀) is 

a lower semicontinuous set-valued function. Hence, it has a continuous selection 𝑔(𝑀) ∈
𝐺(𝑀), 𝑔 ∈ 𝐶(𝑀𝑎𝑥(𝐴)). (Alternatively, we can derive the existence of 𝑔 from the Katětov–

Tong theorem as in the proof of Theorem (6.3.12).) Let 𝑧𝑎 denote the central element whose 

Gelfand transform is 𝑔. Then 𝑧𝑎 ∈ 𝐷𝐴(𝑎). Now consider the assignment  

𝑀 ⟼ [𝑔(𝑀) −  𝑟, 𝑔(𝑀) + 𝑟] ∩ 𝐹𝑏(𝑀). 
It is again lower semicontinuous and takes values in the closed intervals of ℝ. Hence, it has 

a continuous selection giving rise to a central element 𝑧𝑏 ∈ 𝐷𝐴(𝑏) such that ‖𝑧𝑎 − 𝑧𝑏‖ ≤ 𝑟. 
Example (6.3.57)[455]: For general elements 𝑎 and 𝑏 in a 𝐶∗-algebra with the Dixmier 

property, the distance from 𝐷𝐴(𝑎) to 𝐷𝐴(𝑏) need not be attained. Let 𝐴 = 𝐶([−1, 1], 𝒪2). 
Then [−1, 1] is homeomorphic to 𝑀𝑎𝑥(𝐴) via the assignment  

𝑠 → 𝑀𝑠: = 𝐶0([−1, 1]\{𝑠}, 𝑂2) 𝑓𝑜𝑟 𝑠 ∈ [−1, 1]. 
Since 𝐴 is weakly central and has no tracial states, it has the Dixmier property by Theorem 

(6.3.12) (this can also be seen from the fact that 𝐴 is ∗-isomorphic to the tensor product of 

𝒪2 with an abelian 𝐶∗-algebra). 

Fix a non-invertible positive element ℎ ∈ 𝒪2 of norm 1and define a continuous function 

𝐺: [−1, 1] × [0, 1] → ℂ, by  

𝐺(𝑠, 𝑡): = {
(1 + 𝑠𝑖)𝑡           𝑖𝑓 𝑠 ∈ [−1, 0],

𝑠𝑖 + (1 −  𝑠𝑖)𝑡 𝑖𝑓 𝑠 ∈ [0, 1].
      

Now define the set-valued function  

                                 𝐹(𝑠): = {𝐺(𝑠, 𝑡): 𝑡 ∈ [0, 1]}, for 𝑠 ∈ [−1, 1]. 
   Observe that the values of 𝐹are closed intervals in ℂ (for 𝑠 ∈ [−1, 0] the set 𝐹(𝑠) is an 

interval swinging like a door with the hinges at 0, while for 𝑠 ∈ [0, 1] the interval 𝐹(𝑠) also 

swings but with the hinges at 1.) 

  Now define 𝑎, 𝑏 ∈ 𝐴 by 𝑎(𝑠): = 𝐺(𝑠, ℎ) (functional calculus), and 𝑏(𝑠 ∶= ℎ for all 𝑠 ∈
[−1, 1]. One can see then that 𝐹𝑎(𝑀𝑠) = 𝐹(𝑠) and 𝐹𝑏(𝑀𝑠) = [0, 1] for all 𝑠. It follows by 

the previous proposition that the distance between 𝐷𝐴(𝑎) and 𝐷𝐴(𝑏) is 0. However, 𝐷𝐴(𝑎) 
and 𝐷𝐴(𝑏) have no elements it common. For if they did, then 𝐷𝐴(𝑎) ∩ 𝐷𝐴(𝑏) ∩ 𝑍(𝐴) would 

be nonempty. By Corollary (6.3.51), elements of 𝐷𝐴(𝑎) ∩ 𝐷𝐴(𝑏) ∩ 𝑍(𝐴) correspond to 

continuous selections of 𝑠 ⟼ 𝐹𝑎(𝑀𝑠) ∩ 𝐹𝑏(𝑀𝑠). However, there are no such continuous 

selections, because  

𝐹𝑎(𝑀𝑠) ∩ 𝐹𝑏(𝑀𝑠) = {

{0}     𝑓𝑜𝑟 𝑠 ∈ [−1, 0),

[0, 1]       𝑓𝑜𝑟 𝑠 = 0,
{1}    𝑓𝑜𝑟 𝑠 ∈ (0, 1].

  

  We now extend the distance formula from Proposition (6.3.56) to arbitrary 𝐶∗-algebras. 

The following result gives a formula for the distance between the Dixmier sets of two 

elements of an arbitrary unital 𝐶∗-algebra. 𝐴 similar result is [402, Theorem 4.3], which 

gives a formula for the distance between one self-adjoint element and the Dixmier set of 

another; these results say the same thing in the case that both elements are self-adjoint and 

one is central. 

Theorem (6.3.58)[455]: Let 𝐴 be a unital 𝐶∗-algebra and let 𝑎, 𝑏 ∈ 𝐴. Then the following 

numbers are equal: 

(i) The distance between 𝐷𝐴(𝑎) and 𝐷𝐴(𝑏). 
        (ii) The minimum number 𝑟 ≥ 0 satisfying 
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(a) |𝜏(𝑎 − 𝑏)| ≤ 𝑟 for all 𝜏 ∈ 𝑇(𝐴), and 

(b) 𝑑(𝑊𝐴/𝑀(𝑞𝑀(𝑎)),𝑊𝐴/𝑀(𝑞𝑀(𝑏)) ≤ 𝑟 for all 𝑀 ∈ 𝑀𝑎𝑥(𝐴). 

Proof. The inequality 𝑟 ≤ 𝑑(𝐷𝐴(𝑎), 𝐷𝐴(𝑏)) has already been proven in Lemma (6.3.48). 

We check that (ii)(a) and (ii)(b) with 𝐴∗∗ in place of 𝐴 still hold (without changingr). For 

(ii)(a), this follows since every tracial state on 𝐴∗∗ restricts to a tracial state on 𝐴. Similarly, 

for any ideal 𝐼 of 𝐴∗∗, since 𝐴/(𝐼 ∩ 𝐴) ⊆ 𝐴∗∗/𝐼,  
𝑊𝐴/𝐼∩𝐴(𝑞𝐼∩𝐴(𝑎)) =  𝑊𝐴∗∗/𝐼 (𝑞𝐼(𝑎)). 

From this we see that (ii)(b) holds for 𝐴∗∗. But 𝐴∗∗, being a von Neumann algebra, has the 

Dixmier property. Hence 𝑟 ≥ 𝑑(𝐷𝐴∗∗(𝑎), 𝐷𝐴∗∗(𝑏)) by Proposition (6.3.56). The theorem 

now follows from Lemma (6.3.47).  
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Symble 
 

List of Symbles page 

⨁ Direct Sum 8 

Max Maximum 10 

Min Minimum 14 

⨂ Tensor Product 18 

ℓ2 Hilbert Space of Sequences 18 

Aut Automorphism 20 

Ker Kernel 32 

𝐻2 Hardy Space 33 

⊖ Direct difference 33 

a.e Al most every where 35 

𝐻∞ Essential Hardy Space 35 

𝐿2 Hilbert Space 35 

Sup Supremum 36 

Ran Range 36 

Ind Index 36 

𝐿∞ Essential Lebesgue Space 42 

det Determinant 51 

Deg Degree 52 

Cl Closure 59 

AAK Adamyan  Arov Krein 62 

𝐿𝑎
2  Bergman Space 64 

𝐶𝑂𝑅  Convex 73 

SP Spectrum 87 

Red Reduced 89 

UHF Ultra High Frequency 89 

AF Approximately finite-dimensional 89 

Diag Diagonal 91 

Dim Dimension 93 

Im Imaginary 104 

UCT Coordinated Universal Time B 106 

CSO Complete Symmetric Operators 156 
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ONB Orthonormal basis 156 

SOT Strong Operator Topology 157 

BDF Backward Differentiation Formula 176 

Nor Normal 179 

Abnor Abnormal 194 

Card Cardinality 196 

UET Unitary equivalent 196 

CS Complex symmetric 196 

Wcs World Coordinate System 197 

CSSO Completely Symmetric Square Operator 200 

m.r.s Minimal reducing subspaces 202 

c.p Comletely Positive 218 

c.p.c Completely Positive Contraction 219 

Nuc Nuclear 219 

Dr decomposition rank 219 

Cov Covering 229 

ℓ∞ Essential Hilbert Space of Sequences 229 

Ann Annihilator 229 

l.s.c Lower semi continuous 233 

Tr Trace 234 

Ctr Centre-valued trace 244 

QTS Quotient tracial state 244 

GNS Gelfand-Naimark-segal 245 

Aff Affine 252 

Prim Prime 282 
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