Dedication

To my family
Acknowledgements

I would like initially to express my deepest gratitude to Dr. Abdelmoneim Sulieman for his great support and useful guidance. Without his help, this work could not have been accomplished.

My thanks also go to AL-NELEIN diagnostic center staff for their help.
Contents

Dedication i
Acknowledgments ii
Contents iii
List of Table viii
List of Figures ix
Abstract [Arabic] xi
Abstract [English] xi

Chapter One: Introduction
1.1. History of X-rays. 1
1.2 Urography. 1
1.2.1 History of urography. 1
1.2.2 Intravenous Urography and CT Urography. 3
1.3 Radiation Risk. 5
1.4 Factors Affecting CT Doses. 7
1.5 Dose Reduction and Future Development. 8
1.6 Problem of the study. 8
1.7 Objective 9

Chapter Two: Background
2.1 Anatomy of renal system. 10
2.1.1 The Nephron. 11
2.1.2 The Renal Corpuscle. 12
2.1.3 The renal tubule.
2.1.4 The proximal convoluted tubule.
2.1.5 Cortical and Juxtamedullary Nephrons.
2.1.6 Blood Supply.
2.1.4 Nerve Supply.
2.2. Physiology of renal system.
2.3 CT Instrumentation.
2.3.1 CT scan machine
2.3.1.1 The Gantry.
2.3.1.2 The Computer.
2.3.1.3 Patient Couch.
2.3.1.4 Multislice CT.
2.4 X ray tube.
2.5 Radiation Dose Descriptors.
2.5.1 CT Dose Descriptors.
2.5.2 Computed Tomography Dose Index.
2.5.3 Dose – Length Product (DLP) Unit.
2.5.4 Devices For Automatic Dose Control.
2.5.5 Dose Display.
2.6 Scan Parameter.
2.6.1 Tube current – Time product.
2.6.3 Slice collimation and slice thickness.
2.6.4 Pitch.
2.6.5 Gantry rotation time.
2.6.6 Object diameter or patient. 33
2.7 Examination Parameters. 34
2.7.1 Scan Length. 34
2.7.2 Number of scan series. 34
2.7.3 Number of rotation in dynamic CT studies. 34
2.8 CTU and IVU Techniques. 35
2.8.1 Techniques of axial image CTU. 35
2.8.1.1 Single bolus technique. 35
2.9 IVU Technique. 38
2.9.1 Film Sequence 38
2.10 Previous study. 40

Chapter Three: Materials and Methods

3.1 3.1 Patient Data. 45
3.2 Material and method for CTU. 45
3.2.1 Machine used. 45
3.2.2 Patient Preparation. 45
3.2.3 Patient positioning. 45
3.2.4 The protocol used in CTU. 45
3.3 CT dose measurements. 46
3.4 Organ dose determinations. 46
3.5 material and method for IVU. 48
3.5.1 Machine used. 48
3.5.2 Patient Preparation. 48
3.5.3 The protocol used in IVU. 48
3.5.6 Entrance surface dose measurements 48
3.6 Organ dose calculations 49
3.6.1 Estimation of absorbed organ doses and effective doses 49

Chapter Four: Results

Results 51

Chapter five: Discussion, Conclusion and Recommendation

5.1 Discussion. 62
5.2 Conclusion. 68
5.3 Recommendations. 69
5.4 Suggestion for future work. 70

References 71
Table

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Clinical indications for patients undergone CTU</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>The average values and (the range) for patient demographic data for patients undergone CTU.</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Exposure parameters for patients had undergone CTU.</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Patients radiation doses values for patients undergone CTU.</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Patient risk estimation for patient undergone CTU</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>Clinical indications for patients for patients undergone IVU.</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>The average values and (the range) for patient demographic data patients undergone IVU.</td>
<td>58</td>
</tr>
<tr>
<td>4.8</td>
<td>Exposure parameters patients had undergone IVU.</td>
<td>59</td>
</tr>
<tr>
<td>4.9</td>
<td>Patient radiation dose values patients had undergone IVU.</td>
<td>59</td>
</tr>
<tr>
<td>4.10</td>
<td>Patient risk estimation for patients undergone IVU</td>
<td>61</td>
</tr>
<tr>
<td>5.1</td>
<td>The previous studies results during CTU procedure</td>
<td>64</td>
</tr>
<tr>
<td>5.2</td>
<td>The previous studies results during IVU procedure</td>
<td>65</td>
</tr>
</tbody>
</table>

List of tables

7
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Intravenous Urography radiograph.</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>CTU image show tumor in the right kidney and a missing left kidney.</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>CTU image show bilateral renal pelvis calculi.</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>The dose-response curve for exposure</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Longitudinal section of the kidney with detailed instructions.</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Kidneys site of the body and the longitudinal cut of the kidney.</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of the Nephron.</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>CT scan machine.</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>CT gantry.</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>X ray tube</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>CTDI in single and multi-detector CT.</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Dose length product in CT</td>
<td>28</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.9</td>
<td>Relationship between beam width and dose length product</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>The clinical indications for patients undergone CTU.</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>The average values and (the range) for patient demographic data for patients undergone CTU.</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>The relation between mAs and DLP.</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>The relation between mAs and CTDI.</td>
<td>55</td>
</tr>
<tr>
<td>4.5</td>
<td>The relation between DLP and CTDI.</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>The clinical indications for patients undergone CTU.</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>The average values and (the range) for patient demographic data patients undergone IVU.</td>
<td>58</td>
</tr>
<tr>
<td>4.8</td>
<td>The relation between kV and BMI.</td>
<td>60</td>
</tr>
<tr>
<td>4.9</td>
<td>The relation between mAs and BMI</td>
<td>60</td>
</tr>
<tr>
<td>4.10</td>
<td>The relation between ESD and BMI.</td>
<td>61</td>
</tr>
</tbody>
</table>
الملخص

يتمثل التصوير الطبي دوراً أساسياً مهم في طرق التشخيص الطبي ولذلك فإنه يقع على عاتق اخصائي وتقنية الاشعه تحديد عوامل التعريض للفحوصات الإشعاعية وذلك لتوفير التوازن بين جودة الصورة وجرعة الاشعاع وحفظ المريض من تعرض لمستويات عالية من الاشعاع.

الهدف الرئيس من الدراسة هو قياس ومقارنة جرعة الاشعاع للمرضى أثناء فحوصات الجهاز البولي بالأشعة المقطعية والتقليدية وتفصيم نوع التقنية المستخدمة.

الجرعة الإشعاعية في فحوصات الأشعة المقطعية قد تم قدرتها بواسطة برنامج الهيئة القومية للوقاية من الاشعاع وبرنامج حساب الجرعات للأشعة المقطعية. وفي الإشعاع التقليدية حسب جرعة الاشعاعية بواسطة برنامج حساب الجرعة.
Abstract

Radiography has a major role of diagnostic method in medical field. Urography provides the radiologist with useful detailed information. However, it is the responsibility of radiologist and technologist to determine scanning technique factor that provide balance between image quality and radiation dose and share in keeping patient radiation exposure at lowest as possible.

The objective of this study are to measure and compare patient radiation dose form computed tomography (CT) and conventional urography and evaluate the protocols used in CTU and IVU imaging procedure.
The radiation dose in CTU estimate by using (NRPB) database and using Impact CT patient dosimetry calculator. In IVU the radiation dose determined by calculated using DoseCal software.

Patients’ radiation dose values for CTU were 172±61.04 mGy/cm (DLP), CTDI\textsubscript{vol} 4.75±1.5 mGy and Effective dose 2.58±0.91 mSv. Cancer probabilities per million were 520.12 for pancreas and 30.96 for testicles. Patients radiation dose values for IVU, the mean ESD 21.62±5.85 mGy Effective dose 1.79±0.48 mSv. Cancer probabilities were 962.95 for uterus and 3.45 for thyroid per million.

Radiation dose can vary considerably between scanners and between institutions. Clinical dose are reported as the dose to standard dosimetry phantom. However, due to large variation in patient size, these doses may not estimate accurately the dose delivered to patient during a particular exam. In this study the radiation dose is considered low compared with previous studies this may be due to the patient size (less than normal), scanner or protocol used. A patient radiation risk for particular exam is proportional to the radiation dose delivered during the exam. This dose will depend on the size of patient, the type of scanner and the imaging protocol used.