,ﬁfﬂﬁ, Sudan University of Science and Technology
College of Graduate Studies

Rkt Cilaally AT Gl

Representations of *-Semigroups Associated to
Invariant Kernels and Seminormed #-Subalgebras
with Symmetric Generators of C*-Algebras

S%M\Qgﬂ\&\aﬁJM\*-ijﬁm
ALLaal) il gal) aca Aadiiial) And + — 4 Jad) cily padl g
C* — <l

A Thesis Submitted in Fulfillment of the Requirements for
the Degree of Ph.D in Mathematics

By
Aboubakr Khalifa Abass Khalifa

Supervisor
Prof. Dr. Shawgy Hussein AbdAlla

2021



Dedication

To my Family.



Acknowledgements

| would like to thank with all sincerity Allah, and my family for their
supports throughout my study. Many thanks are due to my thesis guide. Prof. Dr.
Shawgy Hussein AbdAlla.



Abstract

We show the inverse limits, the positive definite kernels, the dual
spaces and the topological representation of C*-algebras with maps
between locally C*-algebras and seminormed *-subalgebras of £*°. The
representations of Hermitian kernels by means of Krein spaces and of
*-semigroups associated to invariant kernels with values adjointable
and application of Jacobi representation convex topological R-algebras
and the dilations of some VH-spaces operator valued kernels are
considered. We give some new classes, a canonical decomposition, an
approximation of unitary equivalence and a C*-algebra approach to
complex and skew symmetric operators. We determine and
characterize the C*-algebras with Hausdorff spectrum and complex

symmetric generators of C* -algebras.
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Introduction

We present a theory of positive definite kernels of Hilbert C*-modules. We
study Hermitian kernels invariant under the action of a semigroup with
involution. We characterize those Hermitian kernels that realize the given action
by bounded operators on a Kréin space. This is motivated by the GNS
representation of *-algebras associated to Hermitian functionals, the dilation
theory of Hermitian maps on C*-algebras, as well as others.

We show that if 2l is a separable C*-algebra then 2l is type I if and only if
A is GCRand A is type I if and only if A has a smooth dual. We are it always
possible to define a natural topology in the set B = Upey A(P) SO that A is
represented as the algebra of all continuous cross-sections of B vanishing at
infinity.

We say that an operator T € B(H) is complex symmetric if there exists a
conjugate-linear, isometric involution C : H - H sothatT = CT*C. We show
that binormal operators, operators that are algebraic of degree two (including all
idempotents), and large classes of rank-one perturbations of normal operators are
complex symmetric. An operator T on a complex Hilbert space # is said to be
complex symmetric if there exists a conjugate-linear, isometric involution C :
H — H so that CTC = T*. An operator T on a complex Hilbert space H is
called skew symmetric if T can be represented as a skew symmetric matrix
relative to some orthonormal basis for 7. We study the approximation of skew
symmetric operators and provide a C*-algebra approach to skew symmetric
operators.

We investigate VVH-spaces (Vector Hilbert spaces, or Loynes spaces)
operator valued Hermitian kernels that are invariant under actions of x-
semigroups from the point of view of generation of =x-representations,
linearizations (Kolmogorov decompositions), and reproducing kernel spaces. We
consider positive semidefinite kernels valued in the x-algebra of adjointable
operators on a VE-space (Vector Euclidean space) and that are invariant under
actions of *-semigroups. A rather general dilation theorem is stated and proved:
for these kind of kernels, representations of the x-semigroup on either the VE-
spaces of linearisation of the kernels or on their reproducing kernel VE-spaces
are obtainable.



By the spectrum of a C*-algebra we mean the set of unitary equivalence
classes of irreducible representations equipped with the hull-kernel topology. We
are concerned with characterizing the C*-algebras with identity which have
Hausdorff spectrum. We characterize the C*-algebras with identity and bounded
representation dimension which have Hausdorff spectrum. For A be a
commutative unital R-algebra and let p be a seminorm on A which satisfies
p(ab) < p(a)p(b). We apply T. Jacobi’s representation theorem [10] to
determine the closure of a Y, 4% -module S of A in the topology induced by p,
forany integer d > 1. We show that this closure is exactly the set of all elements
a € Asuchthat a(a) = 0 for every p-continuous R-algebra homomorphism « :
AD - Rwitha(S) € [0,), and that this result continues to hold when p is
replaced by any locally multiplicatively convex topology T on A. Arbitrary
representations of an involutive commutative unital Falgebra A as a subalgeba of
FX are considered, where F = C or R and X = @. The Gelfand spectrum of A is
explained as a topological extension of X where a seminorm on the image of A
in FX is present. It is shown that among all seminorms, the sup-norm is of special
importance which reduces FX to £ (X). The Banach subalgebra of #*(X) of all
>-measurable bounded functions on X, M, (X, 2), is studied for which X is a o-
algebra of subsets of X.

An operator T on a complex Hilbert space H is called a complex symmetric
operator if there exists a conjugate-linear, isometric involutionC : H — H so
that CTC = T*. We study the approximation of complex symmetric operators. By
virtue of an intensive analysis of compact operators in singly generated C*-
algebras, we obtain a complete characterization of norm limits of complex
symmetric operators and provide a classification of complex symmetric operators
up to approximate unitary equivalence. Certain connections between complex
symmetric operators and anti-automorphisms of singly generated C*-algebras are
established. This provides a C*-algebra approach to the norm closure problem for
complex symmetric operators. For T € B(H) satisfying C*(T) N K(H) =
{0}, we give several characterizations for T to be a norm limit of complex
symmetric operators. We give necessary and sufficient conditions for an
essentially normal operator T to have its C* -algebra C*(T) generated by a
complex symmetric operator.
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Chapter 1
Inverse and Positive Definite Representations of Hermitian Kernels

We state develop certain properties of inverse limits of C*-algebras which are needed
for the development of their represent able K-theory. We give, including a representation of
a Hilbert C*-module as a concrete space of operators and a construction of the exterior tensor
product of two Hilbert C*-modules. We explain the key role played by the technique of
induced Kréin spaces and a lifting property associated to them.

Section (1.1): Limits of C*-Algebras:

We develop certain properties of inverse limits of C*-algebras which are needed for
the development of their represent able K-theory in [31]. The algebras were first
systematically studied in [18] as a generalization of C*-algebras, and were called locally C*-
algebras. (Also see [46]), they have since been studied, under various names in [37], [13],
[14], [15] and elsewhere. Voiculescu introduced essentially equivalent objects called pro-
C*-algebras in [41] where he applied them to the construction noncommutative analogs of
various classical Lie groups. Countable inverse limits were introduced in [9] under the name
of F*-algebras they were reintroduced by Arveson in [5] as o-C*-algebras and were used
there for the construction of tangent algebra of a C*-algebra.

We will follow Voiculescu (approximately) and Arveson, and call the objects we
study pro-C*-algebras and, in the case of countable inverse limits, o-C*-algebras. The
interest in them stems from the fact that the category of o- C*-algebras contains both C*-
algebras and objects corresponding to classifying spaces of compact Lie groups. It is also
possible that the noncommutative analogs of loop spaces will be found among the pro-C*- -
algebras. The topics that we treat here are chosen because they are needed for the following
application. In [31] and [32] we define representable K -theory for, o-C*-algebras, and
generalize the Atiyah-Segal completion Theorem [7] to C*-algebras. This Theorem asserts
that, if G is a compact Lie group, X is a compact G-space, and the equivariant K-theory
K (X) (defined in [38]) is finitely generated over the representation ring R(G), then a
certain completion K;(X)" is naturally isomorphic to the representable K -theory
RK*((X X EG)/G).Here EG is a contractible space on which G acts freely, and it cannot
be replaced by the algebra of continuous functions vanishing at infinity on any locally
compact space. However, a substitute for EG can be chosen in such a way that the analog of
the functor X — (X X EG)/G sends C*-Algebras to o-C* -algebras. Thus, we need
enough information about to o-C*-algebras be able to define their representable K-theory.

The original purpose “or generalizing the Atiyah-Segal completion Theorem was to
obtain the following Corollary, not involving o-C* -algebras, which will proved in
[32]: if t = x® is a homotopy of actions of a compact Lie group G on a C*-algebras4, and

if K.. (C( G A a® )) and K*.(C*( G A aW )) are both finitely generated as R (G) -
modules. Then for appropriate completions there is an isomorphism

K.. (C*( G, A a® ))A = K,. (c*( G A a® ))

Here (C*(G,A,a(t) )) Is the crossed product C* -algebra and the R(G)-module

structure is as defined. (The result is false without the completions, as will be shown in [32].)
Cur proof makes essential use of representable K-theory of certain 0-C*-algebras. (One can
obtain a weaker result without explicitly using representable K-theory or o-C*-algebras, but
the proof is artificial and the result is not strong enough to prove, for instance, the
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nonexistence of homotopies of actions.) Thus, even in a problem only involving o-
C*-algebras we are led to introduce o-C*-algebras and their represent able K-theory.

We present some basic defines and propositions, and some examples. There is some
overlap with the material of [18] and [37]. For completeness we state all of the results, but
we give proofs only when they are shorter or when we improve the results.

We give a new characterization of the commutative unital pro-C*-algebras, and
counterexamples to several plausible conjectures related to this characterization.

We devoted to sensor products, limits, approximate identities, and multiplier algebras.
Most of the material has not previously appeared, although UN extensive treatment of tensor
products from a different point of view is given in [14], and approximate identities are shown
to exist in [18].

We take up Hilbert modules over inverse limits of C*-algebra. These have not
previously appeared in the literature, and the proofs are not quite straightforward. We restrict
ourselves to o-C*-algebras, and prove for them several results, such as a stabilization
Theorem by generated Hilbert modules, which we were unable to prove for more verse
limits.

Recall that an inverse system of rings consists of a directed set D, aring R , for each
d € D, and homomorphisms

Tae: Ra-Re,
for all pairs (d,e) € D x D such that d > e. These homomorphisms are required to
satisfy my gy = idg, and mefomy, =myyford =2e = f .

The inverse limit of this inverse system is a ring R equipped with homomorphisms
Ra:R = Ry, such that my , o X; = X,, whenever d,e € D withd > e, and satisfying the
following universal property in the category of rings. Given any ring S and homomorphisms
@q:S = Ry, satisfying g, o g = @ for e < d, there exists a uniqgue homomorphism
¢ = S — R making the following diagrams commute for d > e:

S — > R

HJ.E

The inverse limit R, denoted by lim R, can be conveniently obtained as

R = {r € an : nd,e(r(d)) =r(e)foralld,e € D suchthatd > e
debD

With this identification, x, simply becomes the restriction to R of the projection from

[Tecq Re toR,. Observe that if each Ry, is a topological ring, and if the maps m, 4, are all

continuous, then R is also a topological ring, with the restriction of the product topology,

and the maps R, 4, are continuous. In fact, this topology on R is the weakest such that the



maps R,,, are all continuous, and R is the inverse limit of the system {R,;} in the category
of topological rings.

We will refer to elements of R as coherent sequences {r;} (where r; € R,ford €
D) wherever it is convenient to do so.

We will occasionally also take inverse limits of modules, vector spaces and abelian
groups. Thus, we note that the results just stated for rings are also valid in these other
categories. Furthermore, if {R;} is an inverse system of rings as above, and if {M;} is an
inverse system of abelian groups such that each M, is an M;-module, and such that the maps
g =My > M, , satisfy o5.,(rm) =mg.(r)og.(m) for r€R; and m € M; , then

lim M, is a (lim Rd)—module in a natural way, and the action is continuous.

The following definition is a way of singling out the inverse limits of C*-algebra

without specifying a particular system. (The inverse limit is unchanged. For example, if the
directed set is replaced by a cofinal subset.)
Definition (1.1.1)[1]: A pro-C*-algebra is a complete Hausdorff topological C*-algebra
over C whose topology is determined by its continuous C*-seminorms in the sense that a net
{a,} converges to 0 if and only if p(a,) — 0 for every continuous C*-seminorm p on A.
These objects are called locally C*-algebras in [18] and LMC*- algebras in [37]. If the
topology is determined by only countably many C*- seminorms, then we have the o-C*-
algebras of [5]. Closely related objects were called pro-C*-algebras in [41]: the exact relation
will be explained after Corollary (1.1.13).

If A isapro-C*algebras then S(A) denotes the set of all continuous C*-seminorms on
A.For P € S(A), we let Ker(P) be the set {a € A: P(a) = 0} which is a closed ideal in A.
(This notation is not quite standard because p is not a homomorphism.)

We also let A, be the completion of A/ker (P) in the norm given by p, so that4, is
a C*-algebra. (We will see in Corollary (1.1.12) that A‘pker(P) Is in fact already complete.)
For a € A, we denote its image in Ap, by ap.

Proposition (1.1.2)[1]: Topological C*-algebra A is a pro-C*-algebra if and only if it is the
inverse limit, in the sense above, of an inverse system of C* -algebras and * -
homomorphisms. In this case. We have A = pg}&)AP for the proof, see the remarks

following Satz 1.1 in [37]. Note that S(A) is directed with the order P < q if P(X) < q(X)
for all x, and that there is a canonical subjective map A, — A, whenever P < q. One of the
most useful consequences of this Proposition is that every coherent sequence in
{Ap: P € S(A)} determines a clement of A.

The homomorphisms of pro-C* -algebras are of course the continuous *-homomorphisms.
Since *-homomorphisms need not be continuous (see Example (1.1.24)). We adopt the
convention, unless otherwise specified, “homomorphism means” “ continu * -
homomorphism”.

Examples (1.1.3)[1]: (i) Any C*- algebra is a pro-C*-algebra.

(ii) A closed *-subalgebra of a pro-C*-algebra is again a pro- C*-algebra.

(iii) If X is a compactly generated space ([43]), then C(X), the set of all continuous
complex-valued functions on X with the topology of uniform convergence on compact
subsets, is a pro-C*-algebra. (We should point out here that Example 2.1(iii) of [I7] is wrong.
Since the algebras considered there need not be complete. See Example (1.1.25).)

(iv) A product of C*-algebras, with the product topology, is a pro-C*-algebra.



(v) A o-C*-algebra ([5], page 255) is a pro-C*-algebra. In particular, the tangent algebra
denied there is a pro-C*-algebra.
(vi) Given any sets G of generators and R of relations, as m [8], satisfying the consistency
condition but not necessarily the boundedness condition. there is a universal pro-C*-algebra.
which by abuse of notation we write C*(G, R), generated by the elements of G subject in the
relations R. to construct it, let F(G) be the tree associative =-algebra on the set G. for any
functions P: G — L(H) where L(H) is the algebra of bounded operators on some hilbert
space H, we also let p denote the extension to a *-homomorphism from F(G) to L(H) then
C*(G, R) is the Hausdorff completion of F(G) for the topology given by the C*-seminorms
av— ||P(a)|| as p runs through all functions from G to L(H) such that the elements P(G)
satisfy the relations R in L(H) this procedure can be shown to work for much more general
relations than the ones considered in [8]. see [34] for more details.
(vii) associated to every pro-C*- algebra as in [41] there is an inverse limit of C*-algebras,
and thus a pro-C*- algebra in our sense. thus, the category of pro-C*-algebras contain various
dual group algebras.
(viii) we consider a specific example similar to but not the same as the examples in [41],
namely the noncommutative infinite unitary group U, .(e0) is the noncommutative analog
of lim U(n). let U, . (n)be the universal unital C*- algebra generated by {Xij}fl_ X subject
«— L]=
in the relation that (Xij) IS a unitary element of M,, (Un,e(n)). these algebras were first
introduced in [10].) define a map m,: Uy (n + 1) = U, .(n) by xi = forl<i,j <
N, Xp+1n+e1 — 1 and xi; 0 when j =n+1 orj =n+1 but not both. then U, . ()

true is defined to be lim U, .(n).

(ix) The multiplier algebra of the Pedersen ideal of a C*-algebra (See [23]) is a pro-
C*algebra, See [33] for Details.

We define functional calculus in pro-C*- Algebras. For this we need the unitization
and the Spectrum.
Definition (1.1.4)[1]: ([I7], Theorem 2.3). Let A be a pro-C*-algebra then its unitization A*
Is the vector space A @ C topologiezed as the direct sum and with adjoint and
multiplication defined as for the unitization of a C*- algebra. note that A* is a pro-C*-
algebra, since A™ = lim A},

definition (1.1.5)[1]: Let A be a unital pro-C*-algebra and let a € A. then the spectrum
SP(a)ora € Aisthe set {1 € C: 1 — ais not invertible}it is not unital, then the spectrum
is taken with respect to A™.

Unlike in a C*-algebra, the spectrum need be neither closed nor bounded Indeed, if
S c C is any nonempty subset, then C(S) is a pro-C*- Algebra. (Note that S is metrizable,
hence compactly generated by [43], L43.) The identity function z: S — C is an element of
C(S) whose spectrum is S. However.spectrum is always nonempty indeed by examining
coherent sequences. One obtains the following:
Lemma (1.1.6)[1]: ([26]). Let A = lilnAd, and suppose the maps

Tge:Agq = Ag are all unital. then for a € A we have SP(a) = U sp(xq(@)),

d
where x;: A = Ay is the canonical map



A stronger result is found in Theorem 7.1 of [3] in the case of countable inverse limits
a further generalization is given in [4].

Corollary (1.1.7)[1]: ([18] Corollary 2.2 and Proposition 2.1 also see [46] Theorem
(1.1.28)) let A be apro-C*-algebra,andlea € A. Then:
(i) if a is selfadjoint then sp(a) € R
(ii) if a has the form b*h, then sp(a) < [0, )
(iii) if a is uitary, then sp(a) c {1 € C: |1 = 1|}
Proof. this follows immediately from the Lemma and the corresponding facts in C*-
algebras.
Proposition (1.1.8)[1]: ([18], Theorem (1.1.18) and 2.5 ;[46], Theorem (1.1.31)). Let A be
pro- C* -algebra, and let a € A be normal, that is a* a = aa” .then there a unique
hommomorphism from the pro-C*-algebra {f € C(SP((a)): f(0) = 0} to A which series
the identity function to A.if A is unital then this map extend uniquely to a hommorphic from
C(SP(a)) to A which sends 1 to 1.
Proof. The required map is the one sending f to the coherent sequence

{f(a):p € S(A)}

The proof that it satisfied the required properties is easy.

We write of course f(a) for the image of f under this map .

In the same manner. We obtain holomorphic functional calculus for arbitrary

elements of a pro-C*-algebra.for convenience, we state only the unital ease. If U c C is
open. Then we let H(U)denote the set of all holomorphic functions from U to C with the
topology of uniform convergence on compact subsets.
Proposition (1.1.9)[1]: Let A be a unital pro-C*-algebra, leta € A, and let U < C be an
open set containing SP(a) then there exists a unique continuous unital homomorphism
f — f(a) from H(U)to A sending the identity functionto a . This homomorphism satisfies
SP(f(a)) = f(SP(a)).

Of course in this situation, f +— f(a) is not a *-homomorphism . also its perfectly
permissible to take U = SP(a)if SP(a) happens to be open .

Definition (1.1.10)[1]: (Compare [37], satz (1.1.28)) let A be a pro-C*-algebra. then the set
of bounded elements of A is the set
b(A) = {a € A:||allo = sup{p(a):p € S(4)} < oo}.
Proposition (1.1.11)[1]: Let A be a pro-C*-algebra then:
(i) b(A) is a C*-algebra in the norm || || .
(ii) if @ € A is normal and f € C(SP(a)) id bounded, then £ (a) € b(A).
(iii) if a € A isnormal then a € b(A) if and only if SP(a) is bounded.
(iv) b(A) isdense in A.
(v) for a € b(A), we have SPp4)(a) = SP4(a).
(vi) if g € 5(A), then the map from b(A) to A,is surjective.
Proof. (i) see [37], satz (1.1.28).
(i) we have p(f (@) < sup;cspa /14 for all p € S(A).
(ii)we have ||alle = supespayp (@) = sup;espa)ld| because SP(a) = Upesca) SP(ay)
and each a,, is normal.
(ii1) this is [37], satz however, a shorter proof is as follows by considering the decomposition
into real and imaginary parts, its enough to prove that the selfajoint part of b(A) is dense in
selfadjoint part of A in [37], it is proved that for x € A selfadjoint, there is a net
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{x,}inb(A) n{x} (second commutant) converging to x . We produce sequence
{x,.}inb(A4) N {x} which converges to x, be setting x,, = f,(x), where
—n A —-n
(D) =31 —n<Ai<n
n n<Ai
(V) since SPy,4)(a) is closed and contains SP,(a) the inclusion SP,y(a) € SPp4)(a) is
immediate. For the reverse inclusion, note that if the distance from Ato SP,(a) is&e > 0,
then P((A —a)™1) < 1\eforall P € S(A).
(vi) this following immediately in (iv), as is shown in[37] in the remark after Folgerung
(1.1.53). (note that there A, means the algebra A/ ker(p) before being completed.)
Corollary (1.1.12)[1]: ([37], Folgerung (1.1.53)). For p € S(A), the map A - A4, is
surjective, that is A/ ker(p) is complete.
Corollary (1.1.13)[1]: (Compare [37], Folgerung (1.1.30)). Let ¢:A —> B be a * -
homomorphism (not necessarily continuous) between pro-C*-algebras. then ¢ defines a
homomorphism from b(A) to b(B).
Proof. Taking unitizations, we may assume that ¢ is unital. Then for any a € A we have
SP(¢(a)) € SP(a). If a is selfadjoint. then so is ¢ (a), is bounded by Proposition (1.1.11)
(iii). Now use the decomposition into real and imaginary parts.

We note that this result cannot be used to prove that every homomorphism is
continuous, in fact in Example (1.1.24) below, we will produce a discontinuous
homomorphism by exhibiting a pro-C°-algebra A such that b(A) = A as sets but he
topologies arc different.

We can now explain how our pro-C*-algebras are equivalent to those of [41]. if A is
one of our pro-C*-algebras. then for any cofinal subset D of S(A), the pair (b(A),D) is a
pro-C*-algebra as in [41]. While if (B, D) is a pro-C*-algebra as in [41], D being a directed
system of C*-seminorms on B whose supremuir is the norm on B, then

Ao lim B/k
=€D / ker(p)

is a pro-C*-algebra in our sense, and satisfies b(A) = B. Also, notes that if {A,;}is an
inverse system of C*-algebras, then b(li_mAd) is the inverse limit of {A,} in the category of
C*-algebras (as opposed to the inverse limit in the category of topological algebras. which
IS what we have designated limA,).

We also note that the term “bounded elements" Is justified by looking at b(A) for
some of the examples consider carlier. For example, if X is compactly generated. Then
b(C(X)) is the algebra C, (X) of all bounded continuous functions on X. If A is a product
[lic;4;, then b(A) is the (* sum of the A. consisting of all a € [];¢; 4; such that
sup{la;:i € I} < oo recall into n unital topological algebra is called a Q-algebra if its group
of invertible elements are open, and that a nonunital topological algebra is Q@ — algebra if it
IS unitization is a Q-algebra. See [24], it is frequently assumed that the pro-C*-algebras in
question are also Q-algebra. Therefore we include the following proposition. (This result
has already been noticed by Mallios - see[16].)

Proposition (1.1.14)[1]: A pro-C*-algebra A is a Q-algebra if and only if it is isomorphic,

as a topological *-algebra to a C*-algebra.

Proof. It is well known that Banach algebras are Q-algebra. So let A be a pro-C*-algebra

which also a Q-algebra. We may assume that A is unitl Since the group of invertible

elements is open, there isp € S(A) and € > 0 such thatthe set U = {a € A:p(a — 1) < &}
6



consist entirely of invertible elements. Let a € ker(p), and suppose that a # 0. then there
is q € S(A) such that a, # 0, whence aga, # 0. Using Lemma (1.1.6), we see that there is
a positive real number A € SP(a*a). Therefore I — A 1a*a Is not invertible. However, 1 —
A ta*a € U since P(A"1a*a) = 0. This is a contradiction and it follows that ker(p) = {0}.
Now let g € S(A), and suppose that p < g. Then there is a surjective map A, — A,. Since
A— A, , is surjective (by Corollary (1.1.12)), while A — A, , is injective (because
ker(p) = {0}), we see that A, — A,, is injective as well. Therefore it is an isometry
(because A,, and A,, are C*-algebras). whence g = p. Since S(A) is directed, we conclude
that g < p for all g € S(4). Consequently the map A — A, which is already known to be
continuous and bijective, has a continuous inverse.

So A is isomorphic, as a topological x-algebra. to the C*-algebra A,,.

It follows that the “complete locally m — convex QC™-algebra of [24] and the
Waelbrocclk C*-algebras” of [25] are exactly the C*-algebras.

We consider the commutative unital pro-C *-algebras. The results in [18] and [37] are
useful representations commutative pro-C*-algebras, but they give us no convenient way of
determining what all of the commutative pro-C*-algebras are.Using the notion of a
quasitopological space.

Due to Spanier [45], we obtain a much more satisfactory result, namely that a certain
functor analogous to X — C(X) is contravariant category equivalence. We begin by
recalling the definition.

Definition (1.1.15)[1]: ([46]). A quasitopolgy on a set X is an assignment to each compact
Hausdorff space K or a set Q(K,X) or functions from K to X such that the following
conditions hold:

(i) (K, X) contains all constants functions from K to X.

(i) if f: K; = K, is continuous and g € Q(K,X) then g o f € Q(K, X).

(i) if K is a disjoint union of compact Hausdorff spaces K;andK, then f €
Q(K,X) whenever f|K; € Q(K,X)| fori = 1,2.

(iv) if f: K; = K, is continuous and surjective, and if g: K, — X is a function such that g o
f € Q(Ky,X) then g € Q(K;, X).

If X and Y are quasitopological spaces, that is sets equipped with quasitopologies,
then a function h: X — Y is said to be quasicontinuous if for every compact Hausdorff space
K and every f € Q(K, X). The function h o f is inQ(K, X).

Any topological space X can be made into a quasitopological space by letting
Q(K, X) be the set or all continuous functions from K to X. Thus. it makes sense to speak of
a quasicontinuous function from, for example, a quasitopological space X to a topological
space Y. We remark that as observed [39]. The generated compactly spaces then become a
full subcategory or the category of quasitopological spices and quasicontinuous functions.

The spaces relevant to study of pro-C*-algebras are given in the following definition:
Definition (1.1.16)[1]: A (quasi-)topological space X is called completely Huasdorff if for
any two distinct points x, y € X There is a (quasi-)contentious function f:x — [0,1] such
that f(x) = 0and f(y) = 1.

This condition is stronger than being Hausdorff and weaker than complete regularity,
even among the compactly generated topological spaces - see Examples (1.1.26) and
(1.1.27).



Definition (1.1.17)[1]: Let X be a quasitopological space. Then C(X) denotes the x-algebra
of all quasicontinuous functions f: X — C. with the topology determined by the seminorms
| fo.xll = IIf gl ofor K Compact Hausdorff and g € Q(K, X).

Lemma (1.1.18)[1]: If X is a quasitopological space then C(X) is a pro-C*-algebra.

Proof. The only issue is completeness. So let {f} be a Cauchy netin C(X) Foreachx € X
the inclusion {x} — X IS in Q(K, X) whence f,, converges point wise to a function f: X —
C. If now g € Q(K, X).then f, o g must converge uniformly to some @ € C(K), and
clearly f9 = f o g it follows that f is quasicontinuous. And that £, — C(X).

Our main result is that X — C(X), restricted to the full subcategory of completely
Hausdorf quasitopological spaces, defines a contravariant category equivalence. It is
proving our result. It is useful to introduce the following category or compactly generated
spaces with distinguished families of compact subsets. As a byproduct of our proof, we then
obtain a more concrete description or the completely Hausdorff quasitopological spaces.
Definition (1.1.19)[1]: Let X be a topological space. A distinguished family of compact
subsets of X is a set F of compact subsets of X satisfying the following properties :

(i) every one point subset of X isin F.
(if) a compact subset of an element of F is in F.
(iii) the union of two elements of F isin F.
(iv) the family F detremines the topology of X, that is .a subset C < X is closed if and only
iIf C n K isclosed for all K € F.
If (X;,F,) and (K,, F,) are topological spaces with distinguished families of compact
subsets , then a morphism from (X3, F;) to (K, F,) is a continuous function f: X; = X,
such that f(K) € F, forevery K € K;.
Proposition (1.1.20)[1]: The category of completely Hausdorff spaces with distinguished
families of compact subsets is equivalent to the category of completely Hausdorff
quasitopological spaces, via the functor assigning to (X, F) the quasitopology given by

Qr (K, X) ={f:K » X: f is continuous and f(K) € F}.
Furthermore, under the correspondence of this functor, a function from X to a topological
space is continuous if and only if it is quasicontinuous.
Proof. We first observe that the statement of the Theorem defines a functor.
The sets Qr(K,,X) satisfy conditions (l) through (iii) of Definition (1.1.19) by the
corresponding conditions of Definition (1.1.19), and they satisfy (iv) for the same reason
that the quasitopology defined by a topology satisfies (iv). If f: X; — X, is continuous and
f(K) € F, for K € F;, then it is immediate that f is quasicontinuous.

We now construct an inverse to this functor. Let X be a completely Hausdorff
quasitopological space. Define a topology on X by declaring U c X to be apen if for every
compact Hausdorff space K and every g € Q (K, X), the set g~1(U) is open in K. It is
immediate that this does in fact define a topology on X, and that each Q (K, X) consists of
functions which are continuous with respect to this topology. Furthermore, it is easily
verified that if f: X — Y is any function to a topological space Y, then f is continuous if and
only if f is quasicontinuous. In particular, X is completely Hausdorff in this topology.

We now define Fy to be the set of all ranges of elements of the sets
Q (K,X) These ranges are all compact because the elements of Q (K, X) are continuous
Conditions (1) and (iii) of Definition (1.1.19) follow from the corresponding conditions of
Definitions (1.1.15), and (1.1.19) (ii) is obtained by using the fact that compact subsets of X
are closed and applying Definition (1.1.15)(ii) to an appropriate inclusion map. To verify
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Definition (1.1.19) (iv) let € c X, and suppose that C n g(K) is closed whenever g €
Q (K,X). Then g~1(C) is closed whenever g € Q (K,X), whence C is closed by the
definition of the topology on X This completes the verification that F is a distinguished
family of compact subsets of X.

To complete the definition of the inverse factor, we look at morphisms.

Thus let f: X, — X, be quasicontinuous. Then for g € Q(K, X;), the function fog is
in Q(K, X,) and is hence continuous. It follows thatf is quasicontinuous whe X; is regarded
as a quasitopological space and X, as a topological space Therefore f is continuous. It is
obvious thatf sends ranges of elements of Q(K, X,) to ranges of elements of Q (K, X,).

It remains to prove that our two functors really are inverse to each other if one starts
with a space X with a distintuished family of compact subsets, then the topology and family
of compact subsets obtained from the associated quasi topology are the same as the original
topology and distinguished family, using Definition (1.1.15)(iv) (for the topology) and the
fact that X is Hausdorff.

For the composition in the other order, it is necessary to show that if X is a
quasitopolngical space, then Qf, (K, X,) = Q(K.X) for every compact Hausdorff space K.
It is only necessary to prove that Qr, = (K, X) € Q(K,X) Solet g € QF, (K, X). Then there
is a compact Hausdorff' space L and a function f € Q(L, X) such that g(K) = f(L).writing
g =i = g, where i is the inclusion of g(K)in X.

And g, : K = g(K) in the obvious surjection, we see by Definition (1.1.15)(ii) that it
suffices to show that i € Q(g(K), X). Thus, we may assume that g is surjective, and in fact
a homeomorphism onto its image .Therefore h = g~! o f: L — K is a continuous surjective
map such that g: h € Q(L, X). So g € Q(K, X) by Definition (1.1.15)(iv), as desired.

As in the preceding proof ,we will write (X, Fy) for the topological space with
distinguished family of compact subset determined by the qusitopological space X.
Lemma (1.1.21)[1]: Let X be a completely Hausdorff topological space, and let F be a
family of compact subsets of X satisaying the first three conditions of Definition (1.1.15)
then for any compact set L € F, there exista net of continuous functions on X which
converges uniformly to 0 in the members of F and does not convert uniformly on L.

Proof. Let €. and choose 2 point x € L — K Because X is completely Hausdorff. there is
for every y € K continuous functions f,: X — [C, 1] such that f,(x) = 1 and f,(y) = 1
corsponding £, with a continuous function from [0,1] to [0,1] which sends 1 to 1 and
vanishes on a neighborhood of 0. We may assume that f,, vanishes in the neighborhood of
y. Since K is a compact, the infimum of an a appropriate finite subcollection of the functions
f will be a continuous function h;: X — [0,1] which vanishes in k and is equal to i at x €
L. the set F is directed with respect to the inclusion (by Definition (1.1.15)(iii)), so {hg}keFis

the required net.
Theorem (1.1.22)[1]: The functor X — C(X) is contravariant category equivalence from
the category of completely Hausdorff quasitopological spaces to the category of
commutative unital pro-C*-algebras and unital homomorphism.

If f: X, = X, is quasicontinuous, then C(f): C(X;) — C(X;) is the homomorphism
given by C(f)(h) = ho f.
Proof. Here also we need an inverse functor.it assigns to a commutative unital pro-C*-
algebra A the space ®(A) of all (continuons) homomorphism from Ato C , if Ais a
compact Hausdorff space then Q(K, CD(A)) Is taken to be the set of all functions g: K —
®(A) such that the formula ¢,(a)(x) = g(x)(a), for a € A, and x € K .defines a
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(continuous) homomorphism from A to C(K). Definition (1.1.15)(i) though Definition
(1.1.15)(iii) of quasitopology is immediate. For Definition (1.1.15)(iv) let f:K; —
K, and g: K, - ®(A) be as in Definition (1.1.15)(iv). Let y: C(K,) = C(K;) be given by
Y(h) = h o f theny is a homomorphism into its image.

The relations@g.r = ¥ o @4 and g ° f Q(K1,X) now imply that g € Q(K;3, X). As
desired. Also note that for every a € A. the function x » x(a) from ®(4)to C is
quasicontinuous. It follows that ®(A) is completely Hausdorf. To complete the
construction, observe that if y: A; = A,, is a (continuous) unital homomorphism.then the
function x — x oy, from ®(A4,) to ®(A4,). is quasicontinuous.

We now prove that these two functors are inverses or each other. This will be done
using Proposition (1.1.20), let A be a commutative unital pro-C* -algebra. For each
continuous C*-seminorm P on A. let ®(A4,) have the usual weak™ topology and identity
(ii) in the obvious way with a subset of ®(A4). Then ®(4) = Upesa) P(4p).

Let d(A) have the direct limit topology. and set F = {®(A4p): P € S(A)}. Then it is
easy to show that (®(A4), F) = (P(A), Fo(a)), We must therefore prove that the obvious
map from A to the continuous functions on ®(A), with the topology of uniform convergence
on members of F. is an isomorphism of pro-C*-algeblras. This is equivalent to the assertion
that A = lim C(®(45)) via the obvious map, and follows from the natural isomorphism

C(CD(AP)) = Ap, and Proposition (1.1.2). This proves that the composite of our functors in
one order is the identity.

For the other order, we let X be a completely Hausdorff quasitopclogical space.
Topologies CD(C(X)) in the manner or the previous paragraph. and let F be the
corresponding distinguished family of compact sets. We must show that the map sending x
to the evaluation ev, at xdetermines an isomorphism from (X, Fx) to (®(C(X)),F). The
injectivity of x — ev,follows from the fact that X is completely Hausdorff. For subjectivity.
let a: C(X) — C be ahomomorphism. Thenthereis K and g € Q(K, X) such that |a(h)| <
|hllkg = IR o glle. forall h € C(X).

It follows that a defines a homomorphism from C(K) to C. which must be ev, for
some y € K.Then a = evy,.

For g € Q(K,X). we clearly {ev,:x € g(K)} € F. Conversely. it L ¢ X a compact
set not in E,. then it Follows from Lemma (1.1.21) that {ev,:x € L} ¢ F.

Furthermore, if K € E,, then the relative topology from X is the same as the relative
topology from the identification of K with a sub of Q(C(X)). (K is compact in both
topologies.) It follows from Definition (1.1.15)(iv) and the definition of the topology on
CD(C(X)) that x — ev, . IS a homomorphism. This completes the proof that (X,E,) =
(@(c(X)),F).

Corollary (1.1.23)[1]: Let X be a completely Hausdorff quasitopological space . then
CX) = Iye_r?C(K ).

Example (1.1.24)[1]: (Weidner). We will produce a commutative unital pro-C*-algebra A
which is not isomorphic, as a pro-C*-algebra, to C(X) for any completely Hausdorff
topological space x. Thus, one cannot avoid using quasitopolugics or distinguished families
of compact subsets, at least if one insists that the continuous functions separate the points.
Let F be the set of countable closed subsets or [0, 1] possessing only finitely cluster
points. Then F satisfies the conditions of Definition (1.1.19) relative to the usual topology
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on [0, 1]. (for Definition (1.1.19) (iv), note that the sets of the form {x,, }U{x}. where x,, —
x; already determine the topology) Now let A be C([0,1]) with the topology of uniform
convergence on the members of F. It follows from Lemma (1.1.18) that A is n pro-C*-
algebra.

Suppose that X is a completely Hausdorff topological space such that there is an
isomorphism ¢: A — C(X). Then for each x € X, the homomorphism ev, o ¢ must be
evaluation at some f(x) € [0,1]. (This follows from the proof of Theorem (1.1.22).) Clearly
@(h) = ho f forevery h € A. The function f is injective because X completely Hausdorff,
and continuous because the usual topology on [0. I) is the weak topology determined by A.
Also, f must have dense range because ¢ is injective,if now t € f(X), then the function

h(X) = (- f(x))_1 but not in the range of (¢ Thus f is in fact directive.

It follows from Lemma (1.1.18) that f~1(K) is not compact for K & F Therefore f
IS not a homeomorphism. so that there is a set C < [0.1] which has a limit point ¢ ¢ C, but
such that £=1(C) is closed. Let {1,,} be a sequence in C which converges to ¢, and let T =
{u{ty:n e zZ*}. Then {f ¢, }} = f~1(T) n f~1(C) isaclosed subset of X, and it is not
compact because its image T\{t} in [0,1] .is not compact. Consequently f~1(T) is not
compact. This contradicts the assumpition that ¢ is a homeomorphism, by Lemma (1.1.21).
Therefore the space X cannot exist.

We also point that Lemma (1.1.21) shows that the identity map from A to C(]0,1])

(with its usual topology) is a discontinuous directive *-homomorphism from a pro-C*-
algebrato a C*-algebra. Furthermore, note that every element of A is bounded, even 'though
A is not a C*-algebra. Actually, these phenomena can occur even for A = C(X) for an
appropriate compactly generated completely Hausdorff space X, for example the set of
countable ordinals. (See Proposition 12.2 and the remark following in [26]).
Example (1.1.25)[1]: We will produce a completely regular space X such that C(X) is not
algebraically isomorphic to any pro-C*-algebra, Let Z* he the set of positive integers. let
BZ™* be its Stone-Céch compactification, choose x, € BZ*\Z*,. and let X = Z* U {x,}.
Then X is completely regular. since it is a subset of SX*. and it is real compact ([17]). since
it is countable, (See [7], 8.2.)

Suppose that C(X) is algebraically isomorphic to a pro-C*-algebra Then we must
have C(X) = C(Y) algebraically for some compactly generated completely Hausdorff
space Y, By [16]. (1.1.34), there is a completely regular space Z and a continuous subjective
function f:Y — Z such that the corresponding map C(Z) —» C(y) is an algebraic
isomorphism. since Y is completely Hausdorff must also be injective. Let W be the
realcompactification of Z ([17]. 8.4 and 8,5). so that in particular C(W) = C(Z) all
algebraically. Therefore C(W) = C(X) algebraically. so, by [17], 8.3, we have W = X,
Since Z is a subspace of W, this homeomorphism implies that Z is countable and hence
already realcompact, that is.W = Z = X. We thus have a continuous bijective map f:Y —
X such that h — h o f is an algebraic isomorphism C(X) to C(Y). By [26], Example 12.5,
every compact subset of X is finite. Therefore every compact subset of Y is finite, and, since
Y is compactly generated, Y must be discrete. Since there are no discontinuous functions on
Y. but there are discontinuous functions on X (for example,h = 0 on Z* and h(x,) = 1),
we obtain a contradiction. Thus, there is no topology on C(X) in which it is a pro-C*-
algebra.

Example (1.1.26)[1]: We will product: a completely Hausdorff compactly generated space
X which is not completely regular (in fact. not regular). Thus, the topology on X is not the
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weak topology determined by C(X), and hence differs from the topology used in [2] and
[37]. Also, one cannot require the spaces in Definition (1.1.19) to be completely regular. Let
Q be the first uncountable ordinal¢ let w to be the first infinite ordinal, setY; = {x:x < Q}
and Y, ={x:x}<wand let T =Y, X Y,\{(Q,w)}. Then it IS well Itnown (see [20],
Problem 4F) that T is not normal, and in fact that the closed subsets A = {Q} %
{x:x <w}and B = {x: X < Q} X {w} do not have disjoint neighborhoods.

Let X be the space T with the subset A collapsed in a point. with the quotient
topology. This is a space or the sort shown in [21]. Problem 4G to by Hausdorff but not
regular. (The point A and the closed set B do not have disjoint neighborhoods.) Now Y; X
Y,, is compact. so that T is locally compact and hence compactly generated ([43], 1.4.1). it
now follows from [39]. (1.1.20), that X is compactly generated.

Furthermore, X is completely Hausdorff let let x, y € T be two points whose images
In X are distinct. Then at least one or them, say x, is not in A. Since Its completely regular
(being a subspace or the normal space Y; X Y). there is a continuous function f: T — [0,1]
such that f(x) = 0and f = 1 on {y} U A This function defines continuous function from
X to [0,1] taking the values 0 and | on tilted images of x and y respectively.

Example (1.1.27)[1]: We will produce a regular compactly generated space Y which is not
completely huasdorff. As a consequence. we obtain an inverse system {4} such will the
maps A; — A,, are all surjective but the maps liin A; — A, are not all surjective fndeed

have C(Y) = lim C(K)as K runs through all compact subsets of Yand each restriction map

C(K) —» C(L) is surjective but the maps C(Y) — C(K) are not all surjective (take K =
{a,b} where a,b € Y can not be separated by a continuous function.)

The space Y is the space of [12]. it is shown there that Y is regular and not completely
Hausdorff, so we need only show that Y is compactly generated. This fact was pointed out
to us by Mladen Bestvina.

Let T be as in the previous example, and let X = Z X TU{a, b}. Where Z X T is given
the product topology. a neighborhood base a consists of the sets [n, o) X TU{a} and a
neighborhood base at b consists of the sets (—oo,n] X T U {b}.

(The intervals are to be interpreted in Z) Then the space Y is an Identification space
of X. from which it follows ([382. (1.1.20)) that it is sufficient to prove that X is completely
generated. This is easily seen to follow from the fact that Z x T is locally compact. and
hence compactly generated. together with the fact that @ and b it have countable
neighborhood bases.

We generalize to pro-C*-algebras two standard construction on C*algebras, namely
tensor products and multiplier algebras. We also consider direct and inverse limits. and
approximate identities. Tensor products have previously been studied (from the different
point of view) in [14], but there is very little overlap and our discussion. Approximate:
identities are shown exist in [17].

We begin with tensor products. Unless otherwise specified all tensor products of C*-
algebras are maximal C*tensor products. (See [40]. For general information on tensor
products of C*-algebras.) the Topology in the following definition appears in [14], where it
is called the projective tensorial I.m.c. C*-topology
Definition (1.1.28)[1]: Let A and B be pro-C*-algebras. Their maximal tensor product
AQ®Bis the pro- C* -algebra obtained by completing the algebraic tensor product of
A and Bfor the family of greatest C*-cross-seminorms p®gq determined by p and g, as
p runs through S(A) and q runs through S(B).
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As an immediate Corollary of the definition, we obtain:

Proposition (1.1.29)[1]: IfA =1lim A and B =1limB, thenAQ B = __lim A,;®B..
deD e€E (d,e)EDXE

Of course, in D x E we have (dq,e;) < (d,, e,) exactly when d, < d, and e; < e,.
Proof. The only nontrivial point is to ensure that if (d,,e;) < (d,, e,), then there is in fact
an extension of the obvious homomorphism of the algebraic tensor products to a
homomorphism 4;, @ B, > A4, ® B, this follows from [40].

We then obtain the usual universal property.

Proposition (1.1.30)[1]: Let A, B and C be apro-C*-algebras,and let ¢: A - C andy: B —
C be homomorphism whose range commute , then there is a unique homomorphism
n:AQB — C suchthat n(a®b) = @(a)y(b) foralla € A,b € B.

Proof. since the algebraic tensor product is dense AQB, the homomorphism nis unique if it
Is exist for existence it suffices to find continuous homomorphism n,.: AQB — C, forr €
S(C) which are coherent in the obvious sense . to define n, use the continuity of
@ and Y to find p € S(A) and q € S(B) such thatp o ¢,q oy < r then take n, to the
composite AQB — B,®B,, — C,;the first map is continuous by the definition of AQBand
the second one exist by the corresponding universal property for C*-algebras it is easily seen
that n,- does not depends on the choice of p and q.

The minimal tensor product can be defined in the same way, using the injective
tensorial 1.m.c C*-topology as in [14]. Minimal tensor products are also functorial, as can
be seen from the corresponding result for C*algebras,[40] Proposition 1V.4.2. see [14] for
more in this direction.

For the applications we have in mind. However, at least one of the factors« say A. will
be nuclear in the sense that A,,, is nuclear for every P € S(A). In this ease, the minimal and
maximal tensor products will agree. (This remark generalizes the comments about type |
algebras on page 126 of [I3].) Note that any commutative pro-C*-algebra (unital or not) is
nuclear, and that any nuclear C*-algebra is nuclear at a pro-C*-algebra.

We now show that the tensor product of pro-C*-algebra A with an algebra of the form
C (X) is what one expects. or X is qausitopological space (Definition (1.1.15)), then we let
C (X, A) be the =-algebra of all quasicontinuous functions from X to A, with the topology
determined by the C*-seminorms ||f | 4, = sup p(f o g(x)) x € K.

For K compact Hausdorff g € Q(K,X), and p € S(A). equivalently (using
Proposition (1.1.20).), C(X, A) is the algebra of all continuous functions from X to A with
the topology of uniform convergence on each element of Fyin each continuous C* -
seminorm on A.

Proposition (1.1.31)[1]: Let X be a completely Hausdorff quasitopological space then the
obvious map from C(X)®A to C(X, A) is an isomorphism.
Proof. Write A = lim 4, and C(X)=11ie_rp C(K). Now apply Proposition (1.1.29), using the

fact that C*-seminorms f ~ sung{m) which defines the topology on C (X, A) are exactly

the cross-norms pQ|| ||, where |||, = sup|f(x)].

X€Ek
A similar result holds when C (X) is replaced by the C*-algebras C,(X) of continuous
complex-valued functions vanishing at infinity on the locally compact space X thus given a
pro-C*algebra A. We let C,(X, A) be the set of all continuous functions f: X — A which
vanish at infinity in the sense that p o f vanishes at infinity for every p € S(A).
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Proposition (1.1.32)[1]: Let A be a pro-C*-algebra and let X be a locally compact then
Co(X)®A = Cy(X, A) via the obvious map.
Proof. By the reasoning of the previous proof we must show that the obvious map from

pélsl’&) Co (X, 4,) to Co(X, A) is an isomorphism , this is essential trivial.

Proposition (1.1.33)[1]: Inverse limits exist in the category of pro-C*-algebras if {A,},¢;
is a direct system of pro-C*-algebras , with homomorphism ¢, g: A, = Ag for x < f8, then

the direct limit is constructed as follows . Let

D= {p € HS(AQ):PQ o pgqp fora < By,
a€l

Ordered by p < qifp, < q, forall a.then D is a directed set. For P € D, set Bp =
lim(A,)p,, and set B = lim Bp then lim A, is the closure of the union of the images of the

A, and B. we omit the details of the proof because direct limits are sufficiently badly
behaved that they do not seem to be of much use .indeed ,in the following example , we
produce a countable direct system in which every map is injective and no algebra is zero ,
but for which the direct limit is zero. also we show in example (1.1.59). That a countable
direct limit of o-C*-algebras is usually not a o-C*-algebra .

Example (1.1.34)[1]: Write Q = {x;, x5, ... } and set X,, = Q\{x4, ..., x, }.

Set 4,, = C(X,,), and let ¢,: A,, = A, ., be the restriction map. Note that ¢, is injctive,
since X,,,, IS dense in X,,. We claim that 1i_r>nAn = 0. it suffices to show that, for any

sequence P,, Py, ... of continuous C*-seminorms A4, A,, ... satisfying P,,,, ° ¢,, < P, for all
n, we have lim(A4,)p = 0. for each n there is a compact set K, < X, such that P,(f) =

sup|f(x)| forall f € A,. the condition P,,,°¢@, <P, IS equivalent to K,,; C
X€Eky

K, .since N, X,, = 0, we have N, K,, = @, whence K,,, = @ for some m. so B,, = 0 and
lim(A4,)p, = 0, as desired.

Before turning to multiplier algebras, we need a Lemma to the effect that pro-C*-
algebras have approximate identities. Following [29], 1.4.1, we use the following strong
definition of an approximate identity.

Definition (1.1.35)[1]: Let A be a pro-C*-algebra. Then an approximate identity for A is an
increasing net {e, } of positive elements of A such that ||e;||, < 1 for all A and, forall a €
A, we have eja — a and ae,here. Of course, x is positive if it has the form y*y for some
y € A ;equivalently ,x is normal and sp(x) < [0. c0).

Proposition (1.1.36)[1]: every approximate identity for b(A) is an approximate identity for
A.

Proof. By definition. An increasing net {e,} of positive elements, bounded by 1 , is an
approximate identity for A if p(eja —a) - 0 and p(ae; —a) - 0 for alla€ Aandp €
S(A). the result not follows from the fact (Proposition (1.1.11) (v)) that the map from
b(A) to Ap is surjective.

Corollary (1.1.37)[1]: (Compare [18], Theorem (1.1.20)). Every pro-C*-algebra A has an
approximate identity which is also an approximate identity for b(A).

Definition (1.1.38)[1]: Let A be a pro-C*-algebra. Then the multiplier algebra of A is the
set M(A) of all pairs (I,r) of continuous linear maps from A toA such that [ and r are
respectively left and right A-module homomorphism, and r(a)b = al(b) for all a, b € A.
such a pair is called multiplier . (Compare [29], (1.1.37).1, where such objects are called
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double centralizers. Since we have no reason to think that such map is automatically
continuous, we simply assume it.) addition is defined as usual , multiplication is
(1, ), 1) = (l,1;,,1) and adjoint is (I, )" = (I*,r*), where r*(a) =r (a*)* and
similarly for [ for each p € S(A4), we define a C* -seminorm by |[[L,r]l,,. =
sup{p(1(a)):p(a) < 1}, and a family of seminorms , indexed by a € 4, by |1, 7|, =
p(l(a)) + p(r(a)). (it will be proved in the next Theorem that || ||, is in fact a C*-
seminorm.) the seminorm topology on M(A) is the one generated by the seminorms
|I. |, for p € S(A) and is the analog of the norm topology on the multiplier algebra of the
C* -algebra. The strict topology on M(A) is the one generated by the seminorms
||. 1|5« for p € S(A) and a € A. finally, we define a map from Ato M(A) by a = (I, 7).
where [,(a)ab and r,(b) = ba for a, b € A.

Theorem (1.1.39)[1]: Let A be a pro-C*-algebra. Then:

(i) if A= Li_m)Ad ,and the maps x;: 4 - Ay
€D

are all surjective then M(A4), with it is seminorm topology is isomorphic to

(ii) The isomorphism of (i) identifies the strict topology on M (M ) with the topology on
lim M (A, ) obtained by taking the inverse limit for the strict topologies on the M(4,).

(ili)M(A) is a pro-C*-algebra in it is seminorm topology.

(iv) M(A) is complete in the strict topology

(v) The map a » (l;,7;) is a homomorphism of A onto a closed (in the seminorm

topology) I deal of A.

(vi) The image of A under the map of (v) is dense in M (A) for the strict topology.
Proof.(i) since x4: A — Ay is surjective for all d, the maps A; — A,, are also all surjective
therefore we have maps M(A,;) - M(A,) defined as in Theorem (1.1.49) of [2] .(they need
not be serjective —see the example following that Theorem ).furthermore , if P; € S(A) is
defined by Py(a) = [[x4(a)ll, then we have A; = A,,. Therefore the inverse system

{A4:d € D} is cofinal subsystem of the inverse system {Ap: P e S(A)}. consequently the
inverse system {M(A,):d € D} and {M(4,): p € S(A)} have the same inverse limit and it
is enough to prove the result for D = S(A).

It is clear that every element of _lim M(4,) defines a multiplier of 4 and that the
PES(A)

resulting map to M(A) is a homomorphism onto the set of elements x € M(A) such that
|lx]l, < oo forall p so we have to product that if (I,7) € M(A) then [(I,7)]| < oco. this will
follow if we can show that (I, ) defines a multiplier of A, since multipliers of C*-algebras
are automatically bounded ([29],3.12.2). So let a € ker(P); we have to show that
[(a),r(a) € ker(P).since ker(P) is closed subalgebra of A. it’s a pro-C* -algebra and
therefore has an approximate identity {e;}. Then r(a) = li/{n r(ea) = li;rtn eyala) €
ker(p), since r is continuous.

Similarly I(a) € ker(P).so (I, 7) defines an element of M(4,,).

(ii) For all same reason as in (i), its enough to consider the particular inverse system
{Ap: P € S(A)}.(note that if B — C is a surjective map of C*-algebras, then M(B) —» M(C)
Is strictly continuous) the statement to be proved is now immediate.

(iii) This follows from (i) because there is always at least one inverse system {4}
with inverse limit A such that the maps A — A, are surjective, namely {Ap: P € S(A)}.
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(iv) M(Ap) is complete in the strict topology by ([11], Proposition 3.6), and inverse
limits of complete spaces are complete. Now use (ii).

(v) This follows immediately from equation ||I,, 7, ||, = P(a).

(vi) Let {e;} be an approximate identity for A, and let (I,r) € M(A). we claim that
(lr(el), rr(el)) — (I,r) strictly. Now the algebraic properties of multipliers and definition of
Il 1l Qive

|t r) - (lr(ea)’rr(ea))”p,a = P(l(a) — g;l(a)) + P(r(a — aey)).
Since {e, } is an approximate identity and r is continuous, both terms in the right converge
to 0.

Using (v) of the previous theorem, we will identify A with the obvious closed
subalgebra of M(A).

Multiplier algebras of pro-C*-algebras have the same kind of functriality as for
ordinary C*-algebras:

Proposition (1.1.40)[1]: (i) let ¢: A — B be a homomorphism of pro-C*-algebras which has
a dense range . then ¢ determines a canonical homomorphism M(A) — M(B).

(if) Let B be a pro-C* -algebra then let A be closed subalgebra of B containing an
approximate identity for B then M(A) can be canonically identified with subalgeba of
M(B).

Proof. (i) its enough to produce a consistent family of maps from M(A4) to M(B,) forq €
S(B). so fix g, and note that g o ¢ € S(A). furthermore, the obvious map from 4., to B,
iIs a homomorphism of C*-algebras which has dense range and therefore surjective .the
required map is then the composite of M(4) - M(4,.,) and the map M (AW - M(Bq))
defined in [2], Theorem (1.1.49).

(ii) For p € S(B),the restriction p|A is in S(A),and A, is a C*-subalgebra of Bp
containing an approximate identity for Bp. So M(Ap) < M(Bp) by [2], Proposition (1.1.20)

since A is closed in B, we have A = lim Ap. Now use the easily verified fact that the
pPES(B)

inverse limit of injective maps is injective .

For use in [31], we prove here the analogs of two other well known facts about
multiplier algebras of C*-algebras. for the porpose of the next Lemma, a subset S of a pro-
C*-algebra A is bounded if for all p € S(A) there is a constant M(P) such that p(a) <
M(p) for all a € S. (this is the usual notion of boundedness in topological vector spaces.
Note that any subset of b(A)which is bounded for ||. || is bound in A, but of course not
conversely.)

Proposition (1.1.41)[1]: Multiplication is jointly strictly continuous on bounded subsets of
M(A), for any pro-C*-algebra A.
Proof. let S, T < M(A) be bounded , let p € S(A), and let M(P) be a bound for the values
of ||.||p on S and T.let {x;} and {y;} be nets in S and T converging to x and y respectivly .
then , for all a € A, we have

Py — xya) < M(P)P(yaa — ya) + P(xzya — xya) — 0.
Similarly p(ax;y, — axy) = 0.
Proposition (1.1.42)[1]: Let X be a completely Hausdorff quasitopological space and let
A be a pro-C*-algebra. Then M(C(X) @ A) can be a canonically identified with the set of
all strictly continuous functions from X to M(A).
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Proof. This is true for X compact and A a C*-algebra by [2], Corollary (1.1.31). the result
of the Proposition is obtained by writing € (X) = lim C(K), and taking inverse limits, using

kEFx
Proposition (1.1.31) and Theorem (1.1.39).

We now define Hilbert modules over pro-C*-algebras. The results are the obvious
generalization of the known results over C*-algebras, and can be made to follow from them.
The proofs, however are not quite as straightforward .Hilbert modules over pro-C*-algebras
do not seem to have previously appeared in the literature, except in [24]. Where the special
case of finitely generated projective modules, and where the Hilbert space 12(A) over 4, in
the special case in which A is also a Q-algebra, is discussed. (This special case is useless for
our applications — see Proposition (1.1.14).)

See [19] and [20] for the standard definitions and the result which we generalize

below. (See [35].) We state all the definitions first, and then prove that they make sense
afterwards.
Definition (1.1.43)[1]: Let A be a pro-C*-algebra. And let E be a complex vector space
which is also a right A-module , compatibly with the complex algebra structure then E' is a
pre-Hilbert A-module if its equipped with an A-alued inner product ( , ): E X E — A which
is C-and A-linear in its second variable, is conjugate C-and A-linear in its first variable,
satisfies (¢,n)* = (&,n) for &,n € E, and is positive ((¢,n) = 0in A for all ¢, and (¢,n) =
0 only if £ =0) . we say that E is Hilbert A-module if E is complete in the family of
seminorms |[]l,, = p((&, 1) )/2 for [P € S(A).

If E is a Hilbert A-module and ¢: A — B is a homomorphism of pro-C*-algebras,
then we construct a Hilbert B-module ¢, (E) as follows. First , from the algebraic tensor
product E @4 B, which is right B-module in the obvious way .(of course, we identify A¢é @
band é @ Abforé = E,b € B,and A € C .) then define a B-module pre-inner product by
(@ b,n®c)=n"p{ n))c. the Hilbert B -module ¢,(E) is then the Hausdorff
completion of E ® 4 B for the family of seminorms obtained by composing the above inner
product with the C*-seminorms in S(B). note that if ¥»: B — C is another homomorphism of
pro-C*-algebras, then 1. (¢.(E)) is canonically isomorphic to (i ° ¢).(E).

If E and F is a Hilbert A-modules, then we denote by L(E, F) the space of all
continuous adjointable A-module homomorphisms from E to F. we write L(E) for the *-
algebra L(E,E). with ¢:A— B as above, define ¢.:L(E,F) - L(¢.(E), ¢.(F)) by
0. (t)(E Q b) = té& Q b wetopologize L(E, F) viathe seminorms ||t||, = ||(xp).(t)]l as p
turns through S(A), where x,,: A — A,, is the quotient map. For ¢ € F and n € E, we define
the rank one module homomorphism 6;, € L(E, F) by 0, (1) = {(n, 1) for A € E. then
the space of compact module homomorphisms K(E, F) is defined to be the closed linear
span of {6;,:¢ € F,n € E}in L(E, F).we write K (E) for the -algebra K (E, F).

The first three part of the following Theorem contain the statements needed to ensure
that this definition makes sense. The other three statements are also analogs of standard
results in the C*-algebra case.

Lemma (1.1.44)[1]: Let ¢: A = B be a homomorphism of pro-C*-algebras, and let E be a
pre-Hilbert A-module (except that we do not require that (¢,&) = 0 imply £ = 0). Then
{E€E:p(&,E)) =0} is a submodule of if B is a C*-algebra, then the function & —
lo (€, ENIIY/? is a seminorm on E.

Proof. We first observe that it’s enough to prove the first statement in the case of C*-algebra.
Indeed, with x,: B — B, being the quotient map for g € S(B), we have
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gerpEn=0= | {ferx o1 =0},
q€eS(B)
And the union is increasing. Next, replacing B by ¢(A), we can assume that B = Ap, where
P(a) = lle@)ll.

Let E, = E - ker(¢). the linear span of all products &a for ¢ € E anda € ker(¢).
then E /E, is a B-module with (¢ + E;)b = {a + E, where ¢(a) = b and has a B-valued
pre-inner product given by (¢ + Ey,n + Ey) = @((&,7n)). It now follows from the C*-
algebra case that & + Ey & |[(€ + E,, & + Eo)|I/? is a seminorm onE/E,, whence & -
lo((&, EN||*/? is a seminorm in E in particular {& € E: @({§,&)) = 0} is a vector subspace
of E, which is readily seen to be a sub-module.

If Ais a pro-C*-algebra, p € S(A4), and E is a pre-Hilbert A-module, then we write
Ep, for the Hilbert A, -module obtained by completing the pre-Hilbert Ap -module
E/{¢ € E: P({(¢,&)) = 0} as in the proof of the above Lemma. Note that the result of the
Lemma ensures that this makes sense. Also not that, with x,: A — Ap being the quotient
map, we have(xp).(E) = Ep, viathe map ¢ ® b — &a, where xp(a) = b, and bars denote
images in Ep of elements of E. In particular (xp),(E) is aHilbert Ap-module. Similarly, for
P = q and mp : Ap — Aq We have a canonical isomorphism Eq = (mp4) (Ep).

For the purpose of the next proposition, observe that if ¢: A — B is a homomorphism
of C*-algebras and E is a Hilbert A-module, then there is a norm-reducing homomorphism
o from E to ¢,(E) over ¢, given by a(§) = li{nf & e, where {e;} is an approximate

identity for B. (note that this net is Cauchy, and its limit is does not depend on which
approximate identity is chosen. In this case, ¢, (E) is already known to be a Hilbert B-
module by [35], Theorem (1.1.58).)

Proposition (1.1.45)[1]: Let A = liLnAd, with maps g .: Ay = A, and x4: A > Ag. if the

x4 are all surjective, then each Hilbert A-module E is the inverse limit lim(x,;).(E) of a

system of A, -modules. Conversely (without assuming surjectivty of the x,), given Hilbert
Agq-modules E, and a coherent family of isomorphisms E, = (m4,) (E), the inverse limit

E = lim E,; is a Hilbert A-module such that (x,;).(E) is canonically identified with a closed

submodule of Ej.

Proof. We do the second part first. The isomorphisms E, = (T[d,e)*(EO) yield coherent
module maps o, .: E; = E, over m,, satisfying (g, (), 04.(1)) = mg.((&, 1)), SO it’s
clear how to make li_r}n E,; into a pre-Hilbert li_r)n A, -module completeness and the statement

about (x;).(E) are immediate.

For the first part its enough to prove that E = lim Ep. There is an obvious isometry
PeS(A)

(in the sense of the A-valued, so is the image of E in lim Ep. Since E is complete, we have
E = limEp.

Lemma (1.1.46)[1]: Let A be a pro-C*-algebra, let E be a Hilbert A-module, and letp €
S(A). Then the map E — E,, is surjective.

Proof. We let b(F) be the set of bounded elements of, where ¢ € E is bounded if (£,&) isa
bounded elements of A. then b(E) is a complex vector space and a right b(A)-module
because, when E is identified with lim E;, we see that b(E) corresponding to the set of

bounded coherent sequences .the Cauchy-Schwarz inequality, applied to the Hilbert
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modules E, over the C*-algebra A4, , yields , for &,n € b(E), the inequality [[(¢, |3 <
1€, EMl oo l1{m, M)l 0, SO that the restriction to b(E) of the A-valued inner product on E is a
b(A)-valued inner product on b(E).

The proof of completeness in [37] , satz (1.1.28) , also applied here (compare with
Proposition (1.1.11)(i)), and shows that b(E) is complete for the norm ||¢]|, = ||(E,n)||io\2.
Therefore b(E) is Hilbert b(A)-module.

Since ¢:b(A) — Ap is asurjective map of C*-algebras (Proposition (1.1.11) (v)), and
since clearly <p*(b(E)) = Ep, the Lemma will follow if we can show the following :
whenever ¢: A = B is a surjective map of a C*algebras, and E is a Hilbert A-module, then
the canonical map o: E — ¢, (E) is a surjective . now in the case ¢, (E) is a completion of
E/E,, where E, = {&£ € E: p((&,&)) = 0}, in its obvious pre-Hilbert B-module structure ,
as in proof of Lemma (1.1.44). so it is enough to show that E /E is already complete , and
this will follow if wwe can show that its norm || + E,|| = |l ((&,EN]|Y/? is just the
quotient norm from E. (we know that E is complete .)Thus , we have to show that , for & €

E, we have [lp (€, EDII> = inf [I€ + 7l
0
For one direction, we observe that if ¢ € E and n € E, then

1E+7l1> = 1K +n, & + DIl = o€ +n,& + )l = lleUE,ENII,
Where ¢ ((¢,£)) = 0 because ¢ ({n,n)) = 0, by the Cauchy-Schwarz inequality in the form

(&, (&, n) < 1K€ &I, n) ([35], Proposition (1.1.23).) for the other direction , let & € E
and choose an approximate identity {e;} for ker(¢p). then ée; € E, for all 4, and we have
limll¢ — §ey?

= lim[|(1 — e)(5,$)(1 —en)l

((1 - ez)(f,‘f)%) = llp (& NIl
Where the second last equality is [29]. This shows that niélEf 1€+ 71l < lle(E, ENNIM?, as

needed.

Lemma (1.1.47)[1]: Let ¢: A - B be a homomorphism from a pro-C*-algebra to a C*-
algebra. Then for each Hilbert A-moduleE, the module ¢, (E) is a Hilbert B-module , and
@. defines a map from L(E,F) to L(¢.(E),.(F)) which sends K(E,F) to

K (@.(E), 9.(F)).

We note that the existence of the map from L(E.F) to L(¢.(E), ¢.(F)) is exactly

what is needed to define the topology on L(E, F) under which K(E, F) is the closure of the
finite rank module homomorphism.
Proof. let p € S(4) be p(a) = ||¢(a)||, and let yY: Ap — B be the obvious map of C*-
algebras . then @, (E) = ¥, (Ep), which is Hilbert module by [35], Theorem (1.1.58). Now
let t € L(E, F). choose an approximate identity {e,} for ker(¢), and observe that , for { €
E with ¢((¢,£)) = 0, we have

lim($ — $ep,§ —<Sea) = li/{n((f,f) — (&, 6en) — lin;e/l((f;f) — (&, €)ey) =0,
Since P(e;) < 1forall P € S(A).so ey — €. therefore
(6, t5) = lim(ts, t(Sex)) = lim(ts, t$)e; € ker(p).

That is , (£,&) =0 implies (t&,té) =0. so we obtain a map from E/{¢ €
E:p((&,¢)) =0}to F/{& € F:p((&,&)) = 0} which is easily seen to be adjointable and a

1
= i 2
Jim ”(f,f) tx

= lim
A
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B-module homomorphism . by the previous Lemma, this map is actually an adgointable
module homomorphism from Ep to Fp, and hence an element t, of L(Ep, Fp). (the map tp
automatically continuous, by Lemma 2 of [19].) applying ¥, and using the relations
V.(Ep) = ¢¥.(E) and ¥, (tp) = ¥.(t) ,we see that 1, (t) € L. (E), .(F)) is in fact well
defined . obviously ¢, is homomorphism.

It remains to verify that ¢, sends K(E, F) to K((p* (E), o, (F)) since ¢, is continuous
(t — tp is continuous by definition , and ¢, is continuous because it comes from a map of
C*-algebra ), its enough to show that <p*(05,n) IS a compact module homomorphism

determined by the images of ¢ andn if Fp and Ep repectively. Therefore ¢, (0¢,) =

Proposition (1.1.48)[1]: That an element of L(E,F) defines a coherent sequence of
elements of L(Ep, Fp) follows from the previous Lemma, and similarly for K(E, F) and
K (Ep, Fp). the converse for L(E, F) is easily shown by using Proposition (1.1.45) to write
E = liin Ep and F = liin Fp. that the resulting map is homomorphism is essentially the

definition of the topology on L(E, F).
Now let {Ky} be a coherent sequence of elements of K(Ep, Fp) . we have to show
that the corresponding operator k € L(E, F) isactuallyin K(E,F) .forp € S(A)and e > 0

choose &, ...,&, € E, and 1, ..., 7,, € Ep such that ||Z éfi,ﬁ. — kP” < &. using Lemma
(1.1.46), choose ¢,.,6, EFandnq,...,n, €EE whose images in
Fp and Ep are &y, ..., &, and 77y, ..., ], then set Lp, =Y éfi’n_ € K(E,F). we have lp. —
k as (P,&) — oo(that is ,as p increases and € — 0),s0 k € K(E, F) as desired .

We are now able to prove Theorem (1.1.49).
Theorem (1.1.49)[1]: (i) the function || ||, of the previous definition are seminorms .

(ii) the pre-inner product defined on E° & 4 B satsfies all of the properties of an inner product
except that (n,n) may be zero for nonzeron € E Q 4 B.
(iii) the map @,: L(E, F) - L(@.(E), p.(F)) is well defined .
(iv) 9.(K(E, F)) < K(9.(E), 9.(F)).
(V) L(E) and K(E) are pro — C* — algebras.
(vi) L(E) = M(K(E)) Canonically.
Proof. (i) this is Lemma (1.1.44).
(ii) for ¢: A —» B and q € S(B), let ¢,be the obvious homomorphism from A to B.

then , for Hilbert A-module E, we have ¢.(E) = lim(¢,) (E). the modules (¢,) (E) are

Hilbert B,-modules by Lemma (1.1.47), and the inverse limit is a Hilbert B-module by
Proposition (1.1.45) the statement now follows.

(iii) this follows from Lemma (1.1.47), Proposition (1.1.48), and the expression of
¢.(E) aslim(¢q)_(E) in the proof of part (ii).

(iv) this follows in the same way as (iii) .

(v) this is immediate from Proposition (1.1.48).

(vi) it follows from the argument used in the proof of Proposition (1.1.48) that the
map K(E) — K(Ep) has dense range. By Corollary (1.1.12), it must be surjective. It now
follows from Proposition (1.1.48) and Theorem (1.1.39) that M(K(E)) =
lim M(K(Ep)). since M(K(Ep)) = L(Ep) by ([19], Theorem 1), we obtain M(K(E)) =
L(E) by another application of Proposition (1.1.48).

20



Example (1.1.50)[1]: Let A = C(Z)*, which is just []o-; C, and let E = [];=; C™. we
make E into a Hilbert A-module via (éa),, = &é,a,, and (&,n),, = (¢, 1,,), where the right
hand side is the usual C valued inner product on CX. let Ax be the product of the first n
factors of A, and let Exbe the product of the first n factors of E. then A, = Ap . where
P,(a) = sup{|layll:k <n}. and E, =Ep. so A=I1imA, E =1limE,, and L(E) =
lim L(E,) = limK(E,) = K(E) using Proposition (1.1.48) however , E is not finitely
generated as an A-module .

We will prove a stabilization Theorem for countably generated Hilbert modules over
o-C*-algebras. The proof uses induction over the directed set, and we do not know if the
result is true over general pro-C*-algebras.

We restrict ourselves to the o-C*-algebras of Arveson. Which are the inverse limits
of C* -algebras whose topology is determined by countably many C* -seminorms.
equivalently. They are invert limits of countable inverse system of C*-algebras. We do this
because, in certain ways, the category of o-C*-algebras is much more manageable than the
category of pro-C*-algebras. In particular , we have no useful condition for the inverse limits
of exact sequence of C*-algebras to be exact , or for the maps li_r)n Ap — Ap 10 be surjective

, we have also been unable to show that the quotient of a pro-C*-algebra by a closed ideal is
again a pro-C*-algebra. (the issue here is completeness . it is known that in general the
quotient of a complete topological vector space need not be complete — see [22],23.5 or
32.6) .however , we do have the corresponding results for o-C*-algebras. our proof use
induction over the directed sets of our inverse system .

We discuses homomorphism, ideals, and of o-C*-algebras. we then give the o-C*-
algebra versions of the important results from the previous in those cases in which they
differ , and prove two additional results related to the earlier for which we need to begin
with a-C*-algebras. We will assume that the countable directed set is always Z™. this can
always arranged since any countable directed set has a cofinal subset isomorphic to Z* (or
else has a largest element),and limits are unchanged when the directed set is replaced by a
cofinal subset. We will also always assume that the maps A4,,,; = A4,, are all surjective ; this
can always be arranged by replacing each A,, by the intersection of the images of A4,, for
m = n. note that an inverse system indexed by Z* is determined by the maps 4,,,; = A4,
and that they can be arbitrary .

Finally , we assume that all ideals are closed two-sided .( it’s shown in Theorem
(1.1.22) of [18] that a closed two-sided ideal in an arbitrary pro-C*-algebra is necessarily
selfadjoint .)

Lemma (1.1.51)[1]: Let A = li_r)nAn be a o-C*-algebra (with all maps 4,,,; = 4,

surjective). Then A — A,, is a surjective.

Proof. We assume n = 1 .(the proof is same for all n). Given a, € A,,construct inductivity
a sequence {a,} defines an element of A whose image in 4, is a,.

Theorem (1.1.52)[1]: Let A be a o-C*-algebra, let B be a pro-C*-algebra, and let p: A - B
be a x-homomaorphism. Then ¢ is automatically continuous.

Proof. It is enough to prove that for P € S(B) the maps A — Bp, determined by ¢, are
continuous. Thus we reduce to the case in which B is a C*-algebra. Taking unitizations, we
may assume that A, B and ¢ are unital. Now represent B faithfully on a Hilbert space and
use Lemma (1.1.28) of [9].
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However that a homomorphism of o-C*-algebras need not have closed range
(consider the inclusion of b(A) in A for any o-C*-algebra A , for instance C(R), for which

b(A) + A).
A sequence

0-1 z>A i B-0 (D)
Is exact if and only if its an inverse limit (with surjective maps) of exact sequences of C*-
algebras.

For the if parts. The algebraic statements follow from Proposition 10.2 of [6], and the
topological statements are easily verified. For the "only if" part of (i), write B = lim B, with

maps A, = A, , and this hence a closed subalgebra of B,, we clearly have ¢ equal to the
inverse limit of the inclusions of 4,, in B,,.

Now we do (ii) using (i) write « as the inverse limit of maps «,,: I, = A,.then [, is
an ideal in 4,, and the sequence (1) is easily seen to be algebraically the inverse limit of the
sequences

0->1,-4,->A4,/,-0.
To show that the identification is also topological, use Theorem (1.1.52).

For general inverse system, we know of no good criterion for the surjectivity of the
last map in the inverse limit of a system of exact sequences. In the particular, if A isageneral
inverse limit of o-C*-algebra and I is an ideal in A, we have an obvious map from A/I to

lin(n : Ap /Ip, but we do not know whether its surjective in general.
PeS(A

The first part of the following Corollary has already been observed in [18] and [41].
Corollary (1.1.53)[1]: Let A be a o-C*-algebra and let I be an ideal in A. Then A/l is a o-
C*-algebra, and every homomorphism ¢: A — B of o-C*-algebra such that ¢|I = 0 factors
through A/1.

Proof. It essentially follows from the proof of the previous Proposition that with A =
limAp and I, being the image of Iin Apwe have A/l = liLnAP/IP.the last statement

follows from the definition of the quotient of topological vectors spaces.
The categorical role played by A/I is presumably played in the category of pro-C*-algebras
by the closure of the image of A inlim Ap /1.

Corollary (1.1.54)[1]: for the sequence of o-C*-algebra and *-homomorphism

0-1 E) A E) B-0
To be exact, it is sufficient that it be algebraically exact.
Proof. Use previous Corollary (once) and Theorem (1.1.52) (several times).
Proposition (1.1.55)[1]: let A be a o-C*-algebra , and let I and ] be ideals in A. then I x |
is a (closed) ideal in A.
Proof. Write A = IEnAn and let I,, and J,, be the images of I and J in A,, then we have I =

limI,, ] =limJ, and I + ] = lim(l,, + J,,) (for the last statement ,one needs the fact that

Iye1 N ]y = I, 0], 1S @ surjective.) since I,, + J,, is closed ([29], 1.5.8), so is + ] the
remaining properties are obvious.

We now identify the commutative o-C*-algebra. We will say that a topological space
X is countably compactly generated if there is accountable family {K,,} of compact subset
of X such that a set C c X is closed if and only if C n K,, is closed for all n. Obviously we
may require that K; < K, < ---. Thus, X is countably compactly generated if and only if its
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countable direct limit of compact spaces. (this is not the same as being a-compact and
compactly generated, as we will see in example (1.1.57).)

Proposition (1.1.56)[1]: The category of commutative unital o - C* -algebra is a
contrvariantly equivalent to the category of countably compactly generated Hausdorff
spaces.

Proof. We must prove two things: that a countably compactly generated Hausdorff space is
completely Hausdorff, and that every o-C*-algebra is isomorphic to C(X) for some
countably compactly generated Hausdorff space.

For the first part, it is sufficient to show that if X is a topological space with a
distinguished family F of compact subset which have countable cofinal subset , then X is
countably compactly generated and F is equal to the set of all compact sets of X. Let
{K,:n € Z*} be an increasing countable cofinal subset of F . Its immediate that
{K,;:n € Z*} determines the topology on X. If there is compact set L c Xwith L ¢ F, then
for each n we can choose x,, € L\K,,. The set T = {x,,:n € Z*}is closed because T N K,,
is finite for all n; similarly T\{x,,} is closed for each fixed n. Therefore T is a closed infinite
discrete subset of the compact set, a contradiction.

We now give an example of something that looks like o-C*-algebra but is not.
Example (1.1.57)[1]: (note that C(Q) is a pro-C™*-algebra, because metric spaces are
compactly generated by [43], 1.4.3.) to prove this suppose that C(Q) is a o-C*-algebra. By
the previous proposition, we then have C(Q) = C(X), where X is a countably compactly
generated space. Both Q and X are a-compact, hence Lindelof, hence realcompact by [17],
Theorem 8.2. therefore [17], Theorem 10.6 implies that Q and X are homeomorphic. So it’s
enough to prove that Q, in spite of being both countable and compactly generated, is not
countably compactly generated.

The following argument was suggested by Bob Edwards. Let K; € K, c -+ be
compact subsets of Q whose union is Q. each K,, is nowhere dense, so that there is x,, €
O\K, with 0 < x,, < 1/n.then x,, = 0in Q, but {x,,} does not converge in the direct limit
topology on li_r)n K, .(the only possible limit would be 0, which is not in {x,,}. but {x,} is

closed since K,,, N {x,,} is finite for all m). Thus C(Q) is not a o-C*-algebra. In fact, it
cannot be a-C*-algebra for any topology on C(Q).
We next specialize some of the results to o-C*-algebras.

Proposition (1.1.58)[1]: (i) the tensor product of two o-C*-algebra. In fact (lim An) X

(im B, ) = (4, ® By).
(ii) A countable inverse limit of o-C*-algebras is a o-C*-algebra.
(iii) the multiplier algebra of o-C*-algebra is a o-C*-algebra is a o-C*-algebra.

In fact, M (lim An) = lim M(A,,). (recall that A,,,, = A,, is assumed surjective.

However, M(4,,+1) = M(A,,) neet not be surjective.)

(iv) if Ais ao-C*-algebra and E is a Hilbert A-module, then K(E) and L(E) are o-
C*-algebras.

The proofs are trivial and are omitted. An uncountable inverse limit of o-C*-algebras
obviously need not be a o-C*-algebra. And, as we now show, even a countable limit of o-
C*-algebras need not be a o-C*-algebra.

Example (1.1.59)[1]: Let A be any o-C*-algebra which is not C*-algebra, and write A =
li_r)nAn with maps x,,: A = A, and seminorms given by p,(a) = ||x,(a)|| we can clearly
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arrange to have P, < p,,, for n < m. let B,, be the direct sum of m copies of A4, and define
Om: By = By BY @©,,(ay, ..., a,,,0). From the discussion, we see that lim B,,, can be

identified with the set B of all elements a € [];.—-, 4 such that, for every function s: Z* -
Z*, we have lim Py, (a,,) = 0. the topology on B is given by the C*-seminorms
m-—-0oo

qs(a) = sup{psumy(@n):m € Z*}. To show that B is not a a-C*-algebra, its enough to
show that there is no countable cofinal subset of the set of the seminorms g,. Notice that
q; < q, if and only if s <t. So suppose we had a cofinal subset {s;} of the set of all
functions. Thus li_r>n B, is not o-C*-algebra.

By proving two results for o-C*-algebra for which we have been unable to prove
analogous results for general pro-C*-algebra. Note that the multiplier algebra of a o-C*-
algebra is again a o-C*-algebra. We also point out that, by the Corollary to Theorem 14 of
[45]. Multipliers (double centralizers) of a o-C*-algebra are automatically continuous.
Theorem (1.1.60)[1]: Let ¢: A — B be a surjective homomorphism of o-C*-algebras, and
assume that A has a countable approximate identity. Then the map M(A4) » M(B) is
surjective.

Proof. If Aand B are C*-algebras, this is Theorem 10 of [45]. In general ase, let I =
ker(¢). using Proposition 5.3 (ii), write the exact sequence

0-1-A g B—-0

C as the inverse limit of exact sequences of C*-algebras

0—>In—>An%B—>O,
With, of course, all the maps in the inverse system being surjective. Let w,: 1,1 =
I, m,: Ay = Ay, and o,: B, = B,, be the maps of the inverse systems. Let J,, be the
kernel of the obvious map @,: M(4,,) - M(B,,). Since A has a countable approximate
identity, so does each A, and each B, . Therefore @, is surjective, as are the maps
T, M(A,+,) » M(A,) and ,;: M(B,.+,;) = M(B,). We thus have an inverse system of
exact sequences

0~ J ~ M(A,) BM(B,)~ 0 @).
In which the maps of the systems {M (4,,)} and {M(B,,)} are all surjective. Let & be the map

from J,,.; to /.
Consider the commutative diagram with exact rows and surjective vertical maps:

F.III
0—i ,,—4d,.,~—>8,,—0

.
mﬂ
0—Ff —d4, —> B —>0.

SetQ ={(a,b) € A,, Q B,,+1: p,(a) = 0,,(b)}. Then there is homomorphism
Y:Ap = Q
Given y(a) = (m,(a), ns1(a)) . A diagram shows that y is surjective. Therefore

Y:M(A,.1) » M(Q) is surjective (since 4,,,, has a countable approximate identity).
The projection from Q to A4,, and B,,,; are also surjective (since m,, and ¢,,,, are),
and its then easy to show that

M(Q) = {(a,b) € M(A,)®M(By+1): ¢, (a) = 7,(b)}.
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In the commutative diagram
"_llu-u‘-l

lﬂsr i ‘ "oy
L

?-rl'a-
0—>J, —>M(4) —> M(B) —0

With exact rows and in which 7, and @;, are surjective, the surjectivity of

Y: M(Apiq) = M(Q)
Now implies that zz,, is surjective. Therefore we can use Proposition (1.1.58)(ii) to take
inverse limits in (2). In particular, lim M(4,,) — lim M(B,,) is surjective. By Theorem

(1.1.39)(i), this is the same as saying that M(4) - M(B) is surjective.

For application of this Theorem, it should be pointed out that any separable o-C*-
algebra A has a countable approximate identity: if {e;} is an approximate identity for
b(A) and {a, } is countable dense subset of A, choose an increasing subsequence {x,,} of
{ax} such that, with {p,,} be a cofinal sequence in S(A). We have p,(x,a; — a;) +
pn(arx, —a,) <1/n for1 < k < n. Note that the separability of A is equivalent to A
being the countable inverse limit of separable C*-algebra.

However, b(A) can fail to be separable when A is separable: consider A = C(R).

Our final result is the stabilization Theorem promised.

Theorem (1.1.61)[1]: Let A be a o-C*-algebra with countable approximate identity, and let
E be a countably generated (in the topological sense) Hilbert A-module. Then E®I%(A) =
12(4).

Proof. Write A = li_r)n A,, (with surjective maps m,,: A,,.1 = A,), and correspondingly write

E =lim E,, with (n,,).(E,4+1) = E,. Then each A4,, has a countable approximate identity,

and each E,, is countably generated.

We will construct by induction on n, isomorphisms w,: E, @ [3(4,)" - [2(4,,)"
such that (1)), (u,41) = u, D 1 as the maps from E, @ 12(4,,)"*! to 12(4,)". We
obtain u, from the stabilization Theorem for Hilbert modules over C*-algebras, ([19],
Theorem 2).

Given u,, construct u,; as follows. First, use the stabilization Theorem to choose
an isomorphism [2(4,)"*! -» E, . 1®I?(4,,,1)". Thenu, (m,).(t) is a unitary element of
L(I%(A,)™), which we identify with which we identify with M(K(H) ® A,,), where H =
12(C).

Since H =@;_; H", we see from (Proposition 2.2 of [28]) that u, (r,,).(v) @ 1is
in the connected component of the identity in the unitary group of M(K(H"*1) ® A,).
Since K(H™*1) ® A,,4, has a countable approximate identity, the map

MKH™) @ Apy1) » M(K(H™™) ® Ay)
is surjective by Theorem 10 of [45]. By (Proposition 4.8 of [41]), there is a therefore an
invertible element w of M(K(H"*1) ® A,,;) whose image in M(K(H"*1) ® A,) is
u, (). (v) @ 1. Replacing w by w(w*w)~1/2,

We may assume that w is unitary. Now regard w as an element of
L(I?(A, )" and set u, y = ww @ 1)~ Then (7). (U4 1) = u,, D1, as desired.
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We now let x,, be the direct sum of u, and the identity on ®y-,.,, [*(4,). Writing
12(A,)* for the direct sum @y, [*(4,,), we see that {x,} is a coherent sequence of
isomorphisms in L(E, @ 12(4,)%,1%2(4,)®) . Therefore {x,,} defines an isomorphism
x:El1%(A4,)® - 12(4,)%. Since I?(4,)* = 1%(4,,) , this completes proof.

Section (1.2): Hilber €*-Modules

There are a number of results in the theory of C* -algebras and the unitary
Representation theory of groups concerned with various kinds of dilations. A unified
Approach to such problems can be taken via the concept of a Kolmogorov decomposition
for appositive definite kernel [51].The idea to write came from a reading of E. C. Lance's
[52], where a dilation theorem for completely positive maps of Hilbert C*-modules is
derived by means of a certain tensor product construction. It seemed possible that the scalar
theory of positive definite kernels would generalize to the Hilbert C*-module context and
that this could then be used to derive a more "natural” proof of the dilation theorem (as given
in the scalar case in [51]). The purpose, therefore, to present a generalized theory of positive
definite kernels in the Hilbert C*-module context. Further justification for such a theory is
provided by other applications we give below, where we use it to represent Hilbert C*-
modules as concrete spaces of operators and also to construct the exterior tensor product of
Hilbert C*-modules. An advantage of our construction of the latter is that we do not need to
invoke the stabilization theorem of Kasparov, as is done in the standard construction [52].

It turns out that much of the scalar theory of positive definite kernels goes over to the
context of Hilbert C*-modules straightforwardly, although one has to be rather careful at
certain points concerning the existence of adjoints for the linear maps under consideration.
There are some important differences from the scalar case nevertheless —for instance, the
proof of Theorem (1.2.3) below differs from its scalar analogue because a certain relevant
Banach space may not admit a predual. It would be possible to shorten by omitting those
parts of proofs that are parallel to the scalar case. However, it seemed preferable to give a
self-contained account, partly because the scalar theory of positive definite kernels and
Kolmogorov decompositions appears not to be as well known as it deserves to be and partly
because such a full account illustrates clearly the elegance of the proofs and shows how easy
and natural some Hilbert C*-module results are if one uses the approach adopted here.

We begin by recalling the definition of positive definiteness.

If S is a non-empty set, a map k from S x S to a C*-algebra A is said to be a positive
definite kernel if, for every positive integer n and for all n,,... ,n, €S, the matrix
(k(n;,n;)) in M, (4) is positive.

It follows immediately from the definition that k(s,s) = 0 and that k(s,s)* =
k(s t),foralls,t €S.

It follows that a kernel k:S xS — A is positive definite if and only if for all

n
S1,..,S, € Sand ay, ...,a, € A, the sum z a; k(s;,s;)a; is positive in A.
ij=1

We shall use these observations below.
Example (1.2.1)[50]: Let A and B be C*-algebras. A linear map p:A — B is said to be
completely positive if, for every positive integer n, the inflation M,,(4A) - M, (B), (a;;) -
(pa;;), is positive. Equivalently, p is completely positive if and only if the kernel k: A X
A - B, (aq,a,) — p(aja,), is positive definite. The equivalence follows easily from the
fact that a positive matrix (a;;) of M,,(A4) is a sum of matrices of the form (a;qa;), where
a, ..., a, € A.
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As we shall be studying positive definite kernels and completely positive maps in the
context of Hilbert C*-module theory, we recall now some basic terminology, notation and
results of that theory. ([52] for details and examples. However, we mention in passing that
the importance of Hilbert C-modules arises out of their applications to Morita equivalence,
KK -theory and C*-algebraic quantum group theory.)

(i) Let A be a C*-algebra and E a linear space that is right A -module. A pair consisting

of Eandamap (.,.) from E X E to A is called an inner-product A -module if the map

Is linear in the second variable, conjugate-linear in the first, and satisfies the following

conditions for all x,y € E and all a € A:

(i) (x,ya) = {(x,y);

(iii) {x, ¥)" = (y, x);
(iv) (x,x) = 0and if (x,x) = 0, then x = 0.

If (.,.) satisfies all these requirements except possibly for the second part of
Condition (3), it is called a semi-inner product on E. A version of the Cauchy-Schwarz
inequality for semi-inner products holds, namely,

W, X%, y) < [0y, y) - (x,y € E). (3)
A Hilbert C*-module over A, or Hilbert A-module, is an inner product A-module for which
the associated norm, x — ||{x, x)||*/? , is complete.

If E,F are Hilbert A-modules, a map V: E — F is adjointable if there exists a map
W:F — E such that (Vx,y) = (x, Wy) for all x € E and y € F. Automatically, VV is then
bounded and A-linear, that is, it is linear and V(xa) = V(x)a for all x € E and a € A.
Moreover, W is unique and is denoted by VV*. The Banach space of all adjointable maps
from E to F is denoted by L(E, F) and L(E) denotes the C*-algebra L(E, E).

A map U: E — F is a unitary if it is adjointable and U*U = 1 and UU* = 1. In this
case U is isometric, surjective and A-linear. Conversely, if U has these properties, it is a
unitary [52]. If a unitary mapping from E onto F exists, then E and F are said to be unitarily
equivalent.

Before turning now to the theory of positive definite kernels, we need a few more
items of notation that will be used frequently in the sequel.

We write B(H, K) for the Banach space of all bounded linear operators from H to K,
where H and K are Banach spaces, and we write B(H) for the algebra B(H, H).

If (x,y) — xy is abilinear map on the product H X K with values in a Banach space
L, and if S and T are subsets of H and K respectively, we denote by ST the closed linear
span in L of all products xy, wherex € Sandy € T.

We denote by [52] the closed linear span of S.

Let A be a C*-algebra. If V is an arbitrary map from a non-empty set S to L(E, E}),
where E and E, are Hilbert A-modules, then the kernel k, defined by setting k(s,t) =
V(s)'V(t), is positive definite (k has values in L(E)). The map V will be called a
Kolmogorov decomposition for k. If the (scalar) linear span of the set U,cs V(s)E is dense
in Ey,, then V will be said to be minimal.

Every positive definite kernel k with values in £L(E) has an essentially unique
minimal Kolmogorov decomposition. This is the content of the following result. The proof
iIs modeled on the scalar (Hilbert space) case, see [51]. However, some care about
adjointability of maps is required at certain points and a somewhat different approach is
taken to demonstrating the properties of the inner product of the space constructed.
Theorem (1.2.2)[50]: Let E be a Hilbert C*-module over a C*-algebra A. Let S be a non-
empty set and k a positive definite map from S x S to L(E). Then there exists a minimal
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Kolmogorov decomposition for k. Moreover, if V:S — L(E,E,) and W:S — L(E,E},) are
any two such minimal Kolmogorov decompositions, then there exists a unique unitary
U:E, - Ey) such that UV (s) = W(s), forall s € S.

Proof. If f:S—E has finite support, define kf:S— E by setting kf(s) =
Yees k(s, t)f(t) and denote by EQ the set of all these maps kf. When endowed with the
pointwise-defined operations, E is a right module over A. Moreover, we may endow EJ
with a semi-inner product by setting

(kf. gy = ) (k(s,0f (), 9(5))

S,tes
(Positivity is given by positive definiteness of k.) In fact, we actually have an inner product.

For, by the Cauchy-Schwarz inequality (5), if (kf,kf)=0, then (kf,kg) =
Ysestkf(s),g(s)) =0, forany map g:S — E of finite support. If x € E and t € S, define
the map x, from S to E by setting x,(s) = 0 if x # t and by setting x,(t) = x. Then with
g = X¢, we get (kf(t),x) = Yses(kf(s),x(s)) = 0. Hence, kf(t) =0, for all t € S, so
kf =0.

Thus, EJ is an inner product A-module. We complete it to get a Hilbert A-module that
we denote by Ey,.

If s €S, define V(s):E — Ey by setting V(s)x = k(x;). We show that V(s) €
L(E,Ey), thatis, V(s) is adjointable: Obviously, V(s) is A-linear. Also, it is bounded, since
IV ()xI? = [IKke (xs), k QeI = 1<k (s, $)x, )11 < Nlk(s, )llIxlI?,  and  therefore,
WV (s)IIk(s, s)||*/2. Define T: EQ — E by setting T(kf)x = (kf)(s). Direct computation
shows that

(x, T(kf)) = (V(s)x, kf) (4)
And therefore,

IT kIl = ||§cl|f£)1”<x'T(kf))” = ”iﬂ?l”W(S)x’ KO < VTR

Hence, [|T|] < ||V (s)]|. Now extend T to a bounded linear operator from E, to E. It follows
from Equation (4) that (x,T(g)) = (V(s)x,g) for all x € E and g € E,. Hence, V(s) is
adjointable, with adjoint V(s)* =T . Moreover, if s,t€S and x,y € E , then
V() V(s)x,y) = (k(xp), k(y:)) = (k(s,t)x,y),50 V(s)*'V(t) = k(s,t). Hence, the map,
V:S - V(s), is a Kolmogorov decomposition for k.

If £ is a map from S to E of finite support, then it can be written as a sum f = f; +
-+ f,, Where f; = (x")sl., for some vectors x' € E and elements s; € S. Since k(f;) =
V(s))xtand Y™, k(f;), the linear span of the set U, V(s)E contains k(f).
Hence, E, = [Ug V(s)E] and V' is minimal.

Suppose now that V:S - L(E,E,) and W:S = L(E,Ey) are any two minimal
Kolmogorov decompositions for k. If s; + ---+ s,, belong to S and x; + -+ + x;, belong to

E, then
n
z V(sp)x;
i=1

n

2 n n
=11 vesom, Y vy || = || tkspsi)x )
=1 ij=1

= zn: W (s)x;

j=1
2
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Hence, there is a well-defined isometry from a dense linear subspace of E} to E},, that maps
V(s)x to W(s)x. We extend this to get an isometry U from E, to E,,. We may define
similarly an isometry U’ from E,, to E, mapping W (s)x to V(s)x. Clearly, U" and U are
inverse to each other. Since (UV(s)x, W(t)y) = (W(s)x, W(t)y) = (k(t,s)x,y) =
(V(s)x, V(t)y) = (V(s)x, UW(t)y), we have (Uf,g) =(f,U'g) for all f € E, and g €
E,, . Hence, U is adjointable with U* = U’ = U~1. Thus, U is a unitary. Also, UV(s) =
W(s), forall S € s.

As observed earlier (in Example (1.2.1)), a completely positive map determines a
positive definite kernel. We use this now to derive a dilation theorem, part of whose proof
Is parallel to the derivation of Theorem 2.13 in [51]. First, we need some definitions.

If E and F are Hilbert A-modules, the strict topology on L(E, F) is the one given by
the seminorms

Vollikll (x€E). V-Iviyl (yeF).
The closed 0-centred ball of L(E, F)) of any finite radius is complete relative to the strict
topology.

If A and B are C*-algebras, and E is a Hilbert A-module, a completely positive map
p:B — L(E) is said to be strict [2,p.49] if, for some approximate unit (e;) of B, the net
(p(e;)) satisfies the Cauchy condition for the strict topology in L(E).(If B is unital, p is
automatically strict.)

Theorem (1.2.3)[50]: Let A and B be C*-algebras, let E be a Hilbert A-module and let
p: B — L(E) be astrict completely positive map. Then there exists a Hilbert A -module E,
a * -homomorphism m: B —» L(E,;) and an element W € L(E,E;) such that p(b) =
W*n(b)W, forall b € B. Moreover, [t(B)WE] = E,,.
Proof. Since the kernel k:(by,b,) = p(bib,) is positive definite, it has a minimal
Kolmogorov decomposition V: B — L(E, E,), by Theorem (1.2.2). Moreover, V is linear.
For, if b;,b,,c € Band A € C, then

V(by + Aby)"V(c) = p((by + Aby)"c) = p(bic) + Ap(byc)

=V(b1)"V(c) + AV (b2)*V(c) = (V(b1) + AV (b)) V (c);

hence, since [U.cg V(c)E] = Ey, we have V (b, + Ab,) = V(b)) + AV (b,).

If u is a unitary element of B = B + C1, the unitization of B, and b,c € B, then
V(ub)*V(uc) = p(b*u*uc) = p(b*c) = V(b)*V(c), so the map, ¢ — V(uc), is a minimal
Kolmogorov decomposition for k. Hence, there exists a unitary mw(u) € L(E}) such that
m(w)V(c) =V(uc) (ceB). If b is a linear combination of unitaries of B, say b =

oAy, then Qi Aim(u)V(e) = V(i Aiu))c) = V(bc). Using this and again
using the fact that Ey, = [U.cg V(c)E], it follows that we may define m(b) = Y1, 4, (w;),
independent of the decomposition of b into a linear combination of unitaries. Thus,
n(b)V(c) =V(bc), and it follows easily that m:B — L(Ey),b - n(b), IS a * -
homomorphism. Set E,; = Ey,.

Now let (e;) be an approximate unit of B for which (p(e;)) is a Cauchy net relative
to the strict topology of L(E"). We show that (VV(e;)) is a Cauchy net for the strict topology
of L(E, E,,): First, observe that it is bounded. For, if b € B, then

IWVBIZ =V VDB = llp bl < liplllibIl*. ()
Since V(e;)*V(b) = p(e;b) and since e;b — b in norm, the set (V(e;)*V(b)x) is
convergent in E for all x € E. Hence, (V (e;)*y) is convergent for all y in the linear span of
U, V(b)E . Using boundedness of the net (V(e;)*) and density of the linear span of
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U, V(b)E in E, it follows that (V(e;)*y) is convergent for all y € E,.. Now let x € E and
suppose that, e; < e;. Then
||V(ei)x — V(e]-)x”2 = ”(x, (V(e)) —V(e))” (V(ei) — V(ej)) x)”
= [[¢x. p((ei — €)?)0)| < [|x, pe; — €;)x)|

It follows that (V' (e;)x) isa Cauchy netin E,, since (p(e;)) forms a Cauchy net for the strict
topology. Hence, (V (e;)) is a Cauchy net for the strict topology in the closed 0-centred ball
of radius ||p]|*/? in L(E,E,) and therefore, by completeness, it is convergent in that
topology to some element W € L(E,E,,).

If b€ Bandx € E,then(b)Wx = limm(b)V(e;)x = limV (be;)x = V(b)x, since
V is continuous. Therefore, m(b)W = V(b). Since [U, V(b)E] = E,, it follows that
[r(B)WE] = E,. Finally, for any element x € E, we have W*n(b)Wx = W*V(b)x =
limV(e;)*V(b)x =limp(e;b)x = p(b)x, so W*n(b)W = p(b).

It is an important fundamental result that every C* -algebra has a faithful
representation as a concrete algebra of operators. We are now going to show that an
analogous result holds for Hilbert C*-modules. First, however, we must make an appropriate
definition.

Let H and K be Hilbert spaces and let A be a concrete C*-algebra of operators acting
on H. Let E be a closed linear subspace of B(H, K) and suppose that the following two
conditions are satisfied:

(@ Ifxe Eandaa € A, then xa € E;
(b)If x,y € E, then x*y € A.

Endowed with the multiplication (x,a) — xa (the product is just operator
composition), E becomes aright, A-module. Setting (x, y) = x*y makes E into a Hilbert A-
module. (The induced norm is the operator norm.)

We call E a concrete Hilbert C*-module.

The following result states that all Hilbert C*-modules can be represented as concrete
ones. A classical (Hilbert-space) Kolmogorov decomposition enters into the proof.
Theorem (1.2.4)[50]: Let A be a C*-algebra and let E be a Hilbert A-module. Then there
exists a faithful representation m of A on a Hilbert space H and an isometric, linear
isomorphism U from E onto a concrete Hilbert m(A)-module F of operators from H to a
Hilbert space K such that

((Ux), U) = n({x, y)) and U(xa) = U(x)m(a)
Forall x,y € E and a € A.
Proof. Let (H, ) be any faithful representation of A. Then the kernel, k: E X E = B(H),
(x,y) = n({x,y)), is positive definite. To see this, suppose xy,...,x, € E. Then, by
Remark (1.2.1), the matrix ({x;, x;)) € M,(A) is positive, since, if a;,...,a, € A, then
Li=1 ai{aj, apya; = (Xi-1 x;a5, X2 x;a;) = 0. Hence, the matrix (m{x;, x;)) is positive in
M, (B(H)).

Since k is positive definite, it admits a (classical) Kolmogorov decomposition U: E —
B(H, K), where K is some Hilbert space. Using the fact that U(x)*U(y) = m({x, y)) for all
x,y € E, one easily verifies that U is linear and isometric and that U(xa) = U(x)m(a) for
all x e E and a € A. Setting F = U(E), it follows that F is a closed linear subspace of
B(H,K) for which Frr(A) € F and F*F < m(A). Hence, F is a concrete Hilbert 7(A)-
module. This proves the theorem.
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We give an application of this representation to the construction of the exterior tensor
product of two Hilbert C*-modules. As remarked by Lance [2,p.34], the usual construction
Is hard: it uses the Kasparov stabilisation theorem [2,p.62]. However, our construction is
quite straightforward, using the preceding theorem.

We write EQ;, F for the algebraic tensor product of two linear spaces and H®K
for the Hilbert space tensor product of two Hilbert spaces.

Theorem (1.2.5)[50]: Suppose that B and C are C*-algebras and that E and F are Hilbert
C*-modules over B and C, respectively. Suppose also that A is the minimal C*-tensor
product of B and C. Then there exists a Hilbert C*-module G over A containing EQ ;4 F as

a dense linear subspace such that for all x,x’ € E and y,y' € F, we have (x®y, x'®y’) =
(x,x"Y®(y,y") and for all b € B and c € C, we have (x®y)(b®c) = xb®yc. Moreover,
G is unique up to unitary equivalence: If G and G’ are two Hilbert A-modules satisfying
these conditions, then there is a unique unitary U from G onto G' which is the identity map
when restricted t0 EQ ;4 F .

Proof. The uniqueness of G is almost obvious. We show only its existence. Using Theorem
(1.2.4), it is easily seen that we may suppose that B, C are concrete C*-algebras acting on
Hilbert spaces H and K, respectively and that E and F are concrete Hilbert C*-modules;
thus, they are closed linear subspaces of B(H,H") and B(K,K"), respectively, for some
Hilbert spaces H' and K'. Also, we regard A as a concrete C*-algebra acting on the Hilbert
space tensor product HQ®K.

We can identify EQ,;,F as a linear subspace of B(H®K, H'®QK") by identifying the
elementary tensor x®y with the operator that maps n®¢ onto x(n)®y(¢), wheren € H
and ¢ € K. We now define G to be the closure in B(H®K, H'®K") of EQ,;,F. We have
GA C G, since (xQy)(b®c) = xbQyc for all x e E,y€F, b€ B and c € C. Also,
G*'G € A, since (x;®y1) " (x,8y,) = x{x,Qy;y, for all x;,x, €E and y;,y, €EF .
Hence, G is a concrete Hilbert A-module satisfying the condition s of the theorem.

The module G is the exterior tensor product of E and F.

Section (1.3): Means of Krein Spaces:

The Hilbert space #7associated to a positive definite kernel K is an abstract version of
the L? space associated to a positive measure and the Kolmogorov decomposition of K gives
a useful expansion of the elements of #in terms of a geometrical model of a stochastic
process with covariance kernel K. Therefore, it is quite natural to seek similar constructions
for an arbitrary kernel. While the decomposition into a real and an imaginary part can be
realized without difficulties, the study of Hermitian kernels is no longer straightforward.
This was shown in the work of L. Schwartz [78], where a characterization of the Hermitian
kernels admitting a Jordan decomposition was obtained in terms of a boundedness condition
that we call the Schwartz condition (the statement (1) of Theorem (1.3.4) ). A key difficulty
of the theory was identified in [78] in the lack of uniqueness of the associated reproducing
kernel spaces.

It was shown in [58] that the Schwartz condition is also equivalent to the existence of
a Kolmogorov decomposition, while the uniqueness of the Kolmogorov decomposition was
characterized in spectral terms (Theorem (1.3.4) and, respectively, Theorem (1.3.5)). The
purpose is to continue these investigations by considering Hermitian kernels with additional
symmetries given by the action of a semigroup. The main result gives a characterization of
those Hermitian kernels that produce a representation of the action by bounded operators on
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a certain Krein space. It turns out that such a result has many applications and we discuss
GNS representations on inner product spaces.

We review the concept of induced Krein space and we show its key role in the
construction of Kolmogorov decompositions as described in [58]. A new result is added
here in connection with a lifting property for induced Krein spaces that is related to an
important inequality of M. G. Krein. Theorem (1.3.2) gives an example of an induced Krein
space without the lifting property, adding one more pathology to the study of Hermitian
kernels. Incidentally, this result answers negatively a question raised in [62].

We show the applicability of our results to questions concerning GNS representations
of x-algebras on Krein spaces. The whole issue is motivated by the lack of positivity in some
models in local quantum field theories. We relate these questions to properties of
Kolmogorov decompositions so that we can characterize the existence (Theorem (1.3.7))
and the uniqueness (Theorem (1.3.8)) of the GNS data. This is also a motivation for
considering the general case of semigroups with involution. For example, Theorem (1.3.19)
characterizes the boundedness of the GNS data.

We consider the action of a semigroup on a Hermitian kernel and Theorem (1.3.10)
gives the conditions that insure the representation of this action as a semigroup of bounded
operators on a Krein space. We also address the uniqueness property of such representations.
While the case of the trivial semigroup with one element is settled in [58] (Theorem (1.3.5))
and Theorem (1.3.13) gives another partial answer, the general case remains open. The proof
used for the trivial semigroup cannot be easily extended precisely because Theorem (1.3.2)
Is true. We analyze the case when the projective representation given by Theorem (1.3.10)
Is fundamentally reducible or, equivalently, it is similar to a projective Hilbert space
representation, a question closely related to other similarity problems and uniformly
bounded representations.

We briefly review the concept of a Kolmogorov decomposition for Hermitian kernels.
The natural framework to deal with these kernels is that of Krein spaces. We recall first
some definitions and a few items of notation. An indefinite inner product space(#[:,-]) is
called Krein space provided that there exists a positive inner product (-,) on # turning
(# (-,-)) into a Hilbert space such that[&,n] = (J&,n), & n € H, for some symmetry J(J* =
J~1 =]) on A Such a symmetry J is called a fundamental symmetry. The norm ||&]|? =
(&, &) is called a unitary norm. The underlying Hilbert space topology of xis called the
strong topology and does not depend on the choice of the fundamental symmetry.

For two Krein spaces #and x'we denote by L( ) the set of linear bounded operators
from #to x. For T € L(#K) we denote by T* the adjoint of T with respect to [-,-]. We say
that A € L(H) is aselfadjoint operator if A* = A. A possibly unbounded operator V between
two Krein spaces is called isometric if [VE,Vn] = [&,n] forall &, n inthe domain of V. Also,
we say that the operator U € L(#) is unitary if UU* = U*U = I, where I denotes the
identity operator on #. The notation T* is used for the adjoint of T with respect to the
positive inner product (:,-).

Krein spaces induced by selfadjoint operators. Many difficulties in dealing with
operators on Krein spaces are caused by the lack of a well-behaved factorization theory. The
concept of induced space turned out to be quite useful in this direction. Thus, for a selfadjoint
operator A in L(#)we define a new inner product[-,-], on # by the formula

[f, T’]A = [Af, 77]» frn S (6)
and a pair (& IT) consisting of a Krein space xand a bounded operator IT € L(#) is called
a Krein space induced by A provided that IT has dense range and the relation
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(1S, 1] e = [£,1]4 (7)
holds for all £, € #, where [-,-], denotes the indefinite inner product on k. One well-known
example is obtained in the following way.

Example (1.3.1)[53]: Let J be a fundamental symmetry on #and let (-,-); be the associated
positive inner product turning #into a Hilbert space. Then JA is a selfadjoint operator on
this Hilbert space and let #_ and 7, be the spectral subspaces of /A corresponding to
(—, 0) and, respectively, (0,0). We obtain the decomposition

H= H_@® kerA @ H,.
Note that (#_,—[:,-]4) and (4, , [,-]4) are positive inner product spaces and hence they
can be completed to the Hilbert spaces x_ and, respectively, k.. Let x; be the Hilbert direct
sum of x_ and k, and denote by (-,-)k; the positive inner product on k. Define

Jatk- @ ki) = —k_ Dk,
for x_ € x_and k, € k.. We can easily check that /, is a symmetry on x; and then the
inner product
(& K1k = (Juk, k) Ky
turns x, into a Krein space. The map I1,: # — k; is defined by the formula
I,¢ = [PH_ S]EB [PH+€]'
Where ¢ € H, Py, denotes the orthogonal projection of the Hilbert space (£, (-,-),) onto
the subspace ., and [Py, ¢] denotes the class of Py, & in K. Then one checks that
(¥4, 11,) is a Krein space induced by A. In addition, if JA = S;,|JA| is the polar
decomposition of JA, then we note that

Jally = 11,S5;,. (8)

This example proved to be very useful since it is accompanied by a good property

concerning the lifting of operators, as shown by a classical result of M.G. Krein, [69]. The
result was rediscovered by W.J. Reid [77], P.D. Lax [70], and J. Dieudonné [59]. The
indefinite version presented below was proved in [60] by using a 2 X 2 matrix construction
that reduces the proof to the positive definite case.
Theorem (1.3.1)[53]: Let A and B be bounded selfadjoint operators on the Kre™in spaces
H; and H,. Assume that the operators T, € L(H;,H,)and T, € L(H,, H;) satisfy the
relation T,*A = BT, . Then there exist (unique) operators T, € L(¥,,K5) and T, €
L(Kp, ¥4) such that Ty 11y = MgT;, T, = I,T, and [Ty f, glsc, = [f, T2glsx, forall f €
Ky 9 € Kp.

Theorem (1.3.1) will be used in an essential way in the proof of the main result and it
is also related to the uniqueness property of a Kolmogorov decomposition for invariant
Hermitian kernels. For these reasons we discuss one more question related to this result,
namely whether this lifting property holds for other induced Krein spaces. More precisely,
two Krein spaces (K;,I1;), i = 1,2, induced by the same selfadjoint operator A € L(H)
are unitarily equivalent if there exists a unitary operator U in L(¥,, X,) such that UIl, =
I1,. Theorem (1.3.7) in [58] shows that there exist selfadjoint operators with the property
that not all of their induced Krein spaces are unitarily equivalent.

Let (%, I1) be a Krein space induced by A. We say that (¥, ) has the lifting
property if for any pair of operators T,S € L(H) satisfying the relation AT = SA there
exist unique operators T, S € L(K) such that TTI = 1T, STI = I1S. From Theorem (1.3.1) it
follows that the induced Krein space (¥, , I14) constructed in Example (1.3.1) has the lifting
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property, as do all the others which are unitarily equivalent to it. However, as the following
result shows, this is not true for all induced Krein spaces of A.

Theorem (3.1.2)[53]: There exists a selfadjoint operator that has an induced Krein space
without the lifting property.

Proof. Let H,, be an infinite dimensional Hilbert space and A, is a bounded selfadjoint
operator in H, suchthat 0 < A, < I, ker A, = 0, and the spectrum of A, accumulates to 0,
equivalently, its range is not closed. Consider the Hilbert space H = H, @ H, as well as
the bounded selfadjoint operator

4o O
=[5 ) ®)
Let K be the Hilbert space H with the indefinite inner product [. , .] defined by the
symmetry
[ 0
J = [0 —1]

Consider the operator I1 € L(H, K),
1/2
[ I —(I—AO)/]. (10)
(I — A —I
It is a straightforward calculation to see that I1*JI1 = A and, by performing a Frobenius—
Schur factorization, it follows that IT has dense range. Thus, (&, IT) is a Krein space induced
by A and we show that it does not have the lifting property.

Let T be an operator in L(#) such that, with respect to its 2 X 2 block-matrix
representation, all its entries T;; , i, j = 1, 2, commute with A,. Define the operator S = JT]
and note that AT = SA.

Let us assume that there exists a bounded operator T€L(X) such that ||T|| = T. Then,
there exists the constant C=||T|| < oo such that

INTEN < CliTgll, § €A,
or, equivalently, that

T*HT < C?H, (11)
Where
B 2 — 4, —2(1 — 4,)"/?
—2(1 — Ay)/? 2—4, |

Taking into account that A, commutes with all the other operator entries involved in
(11), it follows that the inequality (11) is equivalent to
J1  —A o[ —A
[, FHr=erl T (12)
where we denoted

A= 2(I — Ay)V?(2 — Ay~
Note that, by continuous functional calculus, A is an operator in #such that 0 < A< I and

its spectrum accumulates to 1.
The use of the Frobenius—Schur factorization

Lo 7=l o o Zelle T (13

r=[y )
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and this choice is consistent with our assumption that all its entries commute with A4,.

Since T is bounded invertible, from (12) we get

I —A 2 [1 0
Ly =ty gl

Looking at the lower right corners of the matrices in the previous inequality we get I <
C2(I — A?) which yields a contradiction since the spectrum of the operator I — A?
accumulates to 0.

We show that the answer to this question is negative. Indeed, an operator D as above

produces the induced Krein space (D, D*) for A. Let A be the operator defined by (9). Let
us take

r=[' 1 5 .
One checks that AT = T*A. Define X = T*, then XA is selfadjoint. If Y € L(D) exists such
that XD = DY, then Y*D* = D*T and a similar reasoning as in the proof of Theorem (1.3.2)
shows that from (12) and (14) we get 2(A3 + A2 — A+ 1) < C?*(I — A?), which is
impossible since the spectrum of the operator from the left side is bounded away from 0.
One might ask whether another additional assumption on the operator T that is

frequently used in applications, namely that T is A-isometric, could enforce the lifting
property. To see that this is not the case, let us take

_z[r

V3 g = '
It is easy to prove that T*AT = A, that is, T is A-isometric. Noting that T is boundedly
invertible, this corresponds to S = T*~1. As before, from (12) and (13) we get%(—A3 +

%SAZ —3A+ ZI) < C?(I — A?). But this is again contradictory since the spectrum of the

operator from the left side is bounded away from 0.

Kolmogorov decompositions of Hermitian kernels. We can use the concept of
induced space in order to describe the Kolmogorov decomposition of a Hermitian kernel.
Let X be an arbitrary set. A mapping K defined on X X X with values in L(#), where
(H,[-,],) is a Krein space, is called a Hermitian kernel on X if K(x,y) = K(y, x)* for all
x,y €X.

Let F,(X,#) denote the vector space of #-valued functions on X having finite
support. We associate to K an inner product on F,(X,#) by the formula:

.9l = ) [KConf@), 9@l (s
X, yEX

for f, g € Fo(X,H). We say that the Hermitian kernel L: X X X — L(#) is positive definite
if the inner product [-,-]; associated to L by the formula (14) is positive. On the set of
Hermitian kernels on X with values in £(#) we also have a natural partial order defined as
follows: if A, B are Hermitian kernels, then A < B means [f,f ], < [f,f 15 for all f €
Fo(X,H). Following L. Schwartz [78], we say that two positive definite kernels A and B are
disjoint if for any positive definite kernel P such that P < A and P < B it follows that P =
0. A Kolmogorov decomposition of the Hermitian kernel K is a pair (V; k), where xis a
Krein space and V = {V (x)},ex is a family of bounded operators V (x) € L(#x) such that
K(x,y) =V(x)*V(y) for all x,y € X, and the closure of V,cxV (x)#is x([68],[75],[63]).
Note that here and Vv stands for the linear manifold generated by some set, without taking
any closure.

35



The next result, obtained in [58], settles the question concerning the existence of a
Kolmogorov decomposition for a given Hermitian kernel.

Theorem (1.3.4)[53]: Let K:X XX — L(H) be a Hermitian kernel. The following
assertions are equivalent:

(i) There exists a positive definite kernel L: X x X — L(#) suchthat —L < K < L.

(if) K has a Kolmogorov decomposition.

The condition —L < K < L of the previous result appeared in the work of L.
Schwartz [78] concerning the structure of Hermitian kernels. We will call it the Schwartz
condition. It is proved in [78] that this condition is also equivalent to the Jordan
decomposition of K, which means that the kernel K is a difference of two disjoint positive
definite kernels. It is convenient for our purpose to review the construction of the
Kolmogorov decomposition. We assume that there exists a positive definite kernel L: X X
X = L(H) such that —L < K < L. Let #, be the Hilbert space obtained by the completion
of the quotient space F,(X,4)/N, with respect to [--], , where M ={f€
Fo(X,R)|[f, f], = 0} isthe isotropic subspace of the inner product space (F,(X,4),[.,.].)-
Since —L < K < L is equivalent to

I, 9kl < [f, 1, %19, 91;2 (15)
for all {f,g € Fy(X,H) (see Proposition 38, [78]), it follows that A, is a subset of the
isotropic subspace Ay of the inner product space (Fy(X,A),[.,.]x). Therefore, [.,.]x
uniquely induces an inner product on 7, still denoted by [.,. ]k, such that (15) holds for
f, g € H,. By the Riesz representation theorem we obtain a selfadjoint contractive operator
A; € L(H,), referred to as the Gram, or metric operator of K with respect to L, such that

Hi[f, 9]k = [ALf, 9]L (16)
for all f,g € M. Let (K1, 114,) be the Kre'm space induced by 4, given by Example
(1.3.1). For ¢ € H and x € X, we define the element &, € (F,(X,#) by the formula:

AR (17)
Then we define
V(x)¢ =Ty, [x], (18)

where [£,.] denotes the class of &, in #, and it can be verified that (V; x;,) is a Kolmogorov
decomposition of the kernel K.

We finally review the uniqueness property of the Kolmogorov decomposition. Two
Kolmogorov decompositions (V;, ;) and (Vy, ;) of the same Hermitian kernel K are
unitarily equivalent if there exists a unitary operator ® € L((x, X)) such that for all x € X
we have V, (x) = @V, (x). The following result was obtained in [58].

Theorem (1.3.5)[53]: Let K be a Hermitian kernel which has Kolmogorov decompositions.
The following assertions are equivalent:

(i) All Kolmogorov decompositions of K are unitarily equivalent.

(i1) For each positive definite kernel L such that —L < K < L, there exists € > 0 such that
either (0,¢) c p(A,) or (—¢,0) < p(A,), where A, is the Gram operator of K with respect
to L.

We give some motivation for the study of Hermitian kernels invariant under the action
on a semigroup with involution. Thus, we first discuss the GNS representation for unital *-
algebras from the point of view of Hermitian kernels, showing that considering only actions
on groups is not sufficient. We make connections with some constructions of interest in
quantum field theories such as those summarized in [79].
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Another important issue is that we should consider projectively invariant Hermitian
kernels. This is emphasized, for example, by the Fock representation of the canonical
commutation relations obtained from an action of the rigid motions of a Hilbert space on
the exponential vectors of a Fock space, since it is natural to consider a similar construction
for other groups, the like the Poincaré group, involving an indefinite inner product. Various
models involving Fock spaces associated to indefinite inner products were studied in [72],
[79]. Here we emphasize that the Kolmogorov decomposition gives a simple construction
of the Weyl exponentials (the related topic of the representations of the Heisenberg algebra
in Krein spaces is taken up in [71]).

Representations of x-algebras associated to Hermitian forms. Let 4 be a x- algebra
with identity 1 and let Z be a linear Hermitian functional on A with mass 1(Z(1) = 1). Then
A is a unital multiplicative semigroup with involution acting on itself by

¢(a,x) =xa” (19)
for a, x € A. We define
Kz(x,y) = Z(xy") (20)
for x,y € A. Then K, is a Hermitian kernel on A with scalar values and satisfies the
symmetry relation
Kz(x, (a,y)) = Z(xay™) = K,(¢(a",x),y) 21
for a,x,y € A. In order to describe the GNS construction for Z we will use the concept of
unbounded representations of A. Thus, a mapping m of 4 into the set of closable operators
defined on a common dense domain D(w) of a Banach space xis called a closable
representation if it is linear, D(m) is invariant under all operators m(a),a € A4, and r(ab) =
n(a)m(b) for all a, b € 4. If, in addition, xis a Kre™in space and, for all a € A, the domain
of m(a)* contains D () and
r()*D(r) = n(a*), (22)
then m is called a Hermitian closable representation on the Kre'in space x (or, a J -
representation, as introduced in [73], see also [66]).

The GNS data (7,xQ)) associated to Z consists of a Hermitian closable representation

of A on the Krein space xand a vector Q, € D(rr) such that
Z(a) = [r(a)Q, Q] (23)

forall a € Aand V ¢ ,m(a)Q = D(m). It was known that not every Hermitian functional Z
admits GNS data. Characterizations of those Z that do admit GNS data appeared such as
[72], [54], [66]. We first show that the GNS data associated to a Hermitian form can be
equivalently described in terms of Kolmogorov decompositions of the kernel K. The proof
Is straightforward and can be omitted.
Proposition (1.3.6)[53]: Let 4 be a unital =-algebra, let Z be a linear Hermitian functional
on Awith Z(1) = 1, and consider the kernel K, associated to Z by (20). For every GNS data
(m, k5 Q) of Z define

V(a)A =nm(a*)AQ, a€A, AEC. (24)
Then (V,x) is a Kolmogorov decomposition of the Hermitian kernel K, and (24) establishes
a bijective correspondence between the set of all GNS data of Z and the set of all
Kolmogorov decompositions of K.

In particular, Z admits GNS data if and only if the Hermitian kernel K, has
Kolmogorov decompositions.

As a consequence, Proposition (1.3.6) reduces the characterization of those Hermitian
functionals that admit GNS data to Theorem (1.3.4) A different characterization was
obtained in Theorem 2 in [66].
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Theorem (1.3.7)[53]: Let 4 be a unital x-algebra and let Z be a linear Hermitian functional
on Awith Z(1) = 1. Then Z admits GNS data if and only if there exists a positive definite
scalar kernel L on A such that

n n
20> 2k < ) AdLGwx), neN, i, € G, c A (25)
ij=1 ij=1
Proof. Note that (25) is equivalent to —L < K, < L and then apply Proposition (1.3.6) and
Theorem (1.3.4).

We now discuss the uniqueness property of the GNS data, an issue previously
addressed in [66], but not completely solved. Two GNS data (74, X7, Q;) and (1, &5, Q)
are unitarily equivalent if there exists a unitary operator ® € L( k3, k;) such that ®D(m,) =
D(my), m,(a)® = &my(a) foralla € A and ®Q,; = Q,.

Theorem (1.3.8)[53]: Let 4 be a unital *-algebra and let Z be a linear Hermitian functional
on Awith Z(1) = 1, admitting GNS data. The following assertions are equivalent:
(i) All GNS data of Z are unitarily equivalent.
(if) For each positive definite kernel L on 4 such that —L < K, < L, there exists e > 0
such that either (0,€) < p(A4,) or (—¢,0) < p(A.), where A, is the Gram operator
of K, with respect to L.
Proof. Let (V, k;), i = 1,2, be two Kolmogorov decompositions of K, that are unitarily
equivalent, that is, there exists a unitary operator ® € L(43, &;) such that V, (x) = ®V; (x).
Let (1, &;,Q;), i = 1,2, be the corresponding GNS data for Z as in Proposition (1.3.6).
Then,

D(r,) = \/Vz(x)(C - \/CDVl(x)(C - cb(\/ V,(x)C) = dD(m,).
XEA XEA XEA
Also, fora € cAand A € C,

my()Vi(xX)A =y (@)Vy(x)A =V (xa™)A = DV (xa™)A = &y (a)V;(x)A,
which implies that m, (a)® = ®m, (a). Finally,
®Q, = V(D1 =1,(1)1 = 02,
therefore (4, K4, £2,) and (1, K5, £2,) are unitarily equivalent GNS data for Z.

Conversely, let (1, k;, 2;), i = 1,2, be two unitarily equivalent GNS data for Z and
let (V;, k;), i = 1,2, be the Kolmogorov decompositions of K, associated to these GNS data
by Proposition (1.3.6). Therefore, there exists a unitary operator @ € L(k, &) such that
dD(my) = D(my), my(a)® = &my(a) foralla € A and @02, = N,.. It follows that

V,(x)A = m,(a*)AQ, = m,(a")APN, = n,(a*)PAR, = P, (a*)A2; = PV (x)A,
which shows that (V;, k;) and (V5, k;) are unitarily equivalent Kolmogorov decompositions
of the kernel K,. Now, an application of Theorem (1.3.5) concludes the proof.

An example: We exponentials. Let (% [+,]) be a Kre™in space and consider 7Pthe group of
its rigid motions. This is the semidirect product of the additive group #and the group of the
bounded unitary operators on % The group law is given by

G 0E\U) =@ +Us,0U"
and an action of 72on # can be defined by the formula

(¢, U),¢) =5 +US".

In particular, the normal subgroup # of 2acts on # by translations. For simplicity, we
restrict here to this action by translations. The Hermitian kernel associated to this
construction is defined by the formula:
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k(e = exp( Sy o EZmEZM, (26)

for &,n € A The additive group # acts on itself by the translations ¢ (¢,17) = & + n and we
notice that

K@ m, ¢ n")) = almalE,n)Kmn") (25)
forall £,n,n' € H, where '
a(n) = exp(~ ot

and then

a§m) =an+n)ramn)ta(§+n,n") = exp( ).
In the terminology to be introduced, it is readily verified that « is a ¢-multiplier and hence
that o has the 2-cocycle property. Then (27) means that the (scalar) Hermitian kernel K is
projectively ¢-invariant.

We can obtain a Kolmogorov decomposition of the kernel K by adapting the Fock
space construction from the positive definite case, similar to the Kolmogorov decomposition
that gives the Bose-Fock space (see [63] or [75]).

Proposition (1.3.9)[53]: The kernel K defined by (26) has a Kolmogorov decomposition
(V,K) with the property that the operators defined by the formula

aE,MWEV@H) =V(E+1n) (28)
are defined on the common dense domain Vs,V ($)C in K and satisfy the canonical
commutation relations

i3[¢,7]
2

W(EOWm) = a(§,mW(E +n). (29)
We study properties of the Kolmogorov decompositions of Hermitian kernels with
additional symmetries. Let S be a unital semigroup and ¢ an action of S on the set X, this
means that ¢: S X X = X, ¢(a, (b, x)) = ¢p(ab,x) for all a,b € S,x € X, and ¢p(e, x) =
x, where e denotes the unit element of S. We are interested in those kernels K on X assumed
to satisfy a certain invariance property with respect to the action ¢ because this leads to the
construction of a representation of S on the space of a Kolmogorov decomposition of K.
This kind of construction is well-known for a positive definite kernel (it just extends the
construction of the regular representation, see for instance, [75]), but for the Krén space
setting the question concerning the boundedness of the representation operators is more
delicate. We deal with this matter in a more detailed way.
Let a be a ¢ -multiplier, that is, a complex-valued function on S x X such that
a(a,x) # 0 and subject to the following relation:
a(ab, x)a(ab,y) = a(a, ¢(b,x))a(a, ¢(b,y))a(b,x)a(b,y) (30)
for all x,y € X. This implies that
a(a,b) = a(a, (b, x)) a(b,x) a(ab,x)
does not depend on x; moreover, |o(a, b)| = 1, and ¢ has the 2-cocycle property:
o(a,b)o(ab,c) = a(a,bc)o(b,c) (31)
forall a,b,c € S (see [75] in Lemma 2.2).
For each a € S we define a projective shift Y,: F,(X,H) = Fy(X,H) by

(Ya(f N = ala,x)" f($(ax)), fEFoX,H),x€EX (32)
In terms of the atoms of the vector space F,(X,H), Y, acts as follows
Il)g(fx)(l(a, x)_1€¢>(a,x) = ((a(a, x)_1€)¢>(a,x))» (33)
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where &, is defined as in (17). This can be used as an alternate definition of i, since each
element h of Fy(X,”) can be uniquely written as a finite sum h = }}_, E,’C‘k for

vectors &1,...,&% € nand distinct elements x4, x,,..., x,, in X and then the projective shift
Y2 is the extension by linearity to a linear map ,, from F,(X,#) into Fy(X,H),

Yo = (Z f!:k> - Z Y.
k=1 k=1

We say that a positive definite kernel L is projectively ¢-bounded provided that for
all a € S, Y, isbounded with respect to the seminorm [-,-]i/2 induced by L on F,(X,H). We
denote by Bg(X,H) the set of positive definite projectively ¢-bounded kernels on X with
values in L(H).

In addition, from now on we assume that S is a unital semigroup with involution, that
IS, there exists a mapping J: S — S such that 3(5(a)) = a and J(ab) = F(b)J(a) for
all a, b € S. The connection between the involution § and the ¢-multiplier « is given by the
assumption

a(af(a),x) =1, a€S,xeX. (34)

Finally, with the notation and the assumptions as before, we say that the Hermitian

kernel K on X is projectively ¢ -invariant if

K(x, ¢(a,y)) = a(a, ¢U(a),x))a(a, y)K($(T(a), x),y) (35)
forall x,y € Xand a € S. In order to keep the terminology simple, the function a and the
involution 5 will be made each time precise, if not clear from the context. If a(a,x) =1
for all a € S and x € X then the Hermitian kernel K satisfying (35) is called simply ¢-
Ivariant.

Theorem (1.3.10)[53]: Let ¢ be an action of the unital semigroup S with involution J
satisfying (34) on the set X and let K be an L(#) -valued projectively ¢-invariant Hermitian
kernel on X.

The following assertions are equivalent:
(i) There exists L € B (X,) such that —L < K < L.
(i) K has a Kolmogorov decomposition (V; K) with the property that there exists a
projective representation U of S on «(that is, U(a)U(b) = a(a,b)U(ab) for all a,b € §)
such that

V(p(a,x)) = ala, x)U(a)V(x) (36)
forall x € X,a € S. In addition, (9 (a),a)U(J(a)) = U(a) foralla € S.
(ill) K = K; — K, for two positive definite kernels such that K; + K, € B(;’,(X,H).
(iv) K = K, — K_ for two disjoint positive definite kernels such that K, — K_ € B:;(X,H).
Proof. (i)=(ii). Let #; be the Hilbert space obtained by the completion of the quotient space
Fo(X,H) /N with respect to [-,-]., where N, = {f € Fo(X,A)|[f, f ], = 0} is the isotropic
subspace of the inner product space F,(X,#), [,-].)- Let A; be the Gram operator of K with
respect to L and let (V; &, ) be the Kolmogorov decomposition of the kernel K described.

Since L is ¢p-bounded, it follows that each i, extends to a bounded operator F(a) on
H,.\We notice that

[lpa(fx): ny]K = [(a(a: x)_lf)qb(a,x)» ny]K = a(a, x)_l[K(y: ¢(a» x))f: U]H

= a(a,¢((a),y)[K(P(I(a),y),x)$,nlx
= a(a,¢(9(a),y)a(d(a), y)[$x Y@ (My)lk
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From the definition of o we have that for y € X,
0(a,9(a)) = a(a, $(I(a),y)) " a(F(a),y) " a(ad(a),y).

By our assumption (3.5), a(aJ(a),y) = 1, so that

0(a,9(a)) = a(a,¢((@),y) a(d(a),y) "
Since |o(a,9(a))| = 1, we deduce that

[Ya(€x), 77y]1( =0(a,9(a))[¢x 1»l)ff(a) (ny)]K-
This relation can be extended by linearity to
[Ya(f ), 91k = o(aI(@)f, Y5(a)(9) ]k

forall f, g € F,(X,H).We deduce that

[ALYa(f ) 9] = a(a,T(@)[ALS, Y5y (9)]L,

A F(a) = o(a,9(a))F(I(a))AL. (37)
Theorem (1.3.1) implies that there exists a unique operator U(a) € L(k,,) such that
U(a)HAL = HALF(Q).

which implies that

Moreover, for h € #;,
U(@)U(b)Iy, h = U(a)lly, F(b)h = I, F(a)F (b)h.
We also notice that
Yap (&) = Pa(alb, X)épmr) = alb, x) a(a, ¢(b, x) " Ep@pm)
= o(a, b)a(ab, x)_lfd)(ab,x) = 0(a, b)Pap &y )
We deduce that F(a)F(b) = a(a, b)F (ab) and this relation implies that
U(a)U(b)IIy, h = o(a,b)U(ab)Ily, h.
Since the set {I,, h|h € #,} is dense in k,,, we deduce that U is a projective representation
of Son iy, .
For & € #we have
V(d(a,x))$ = Iy, [fd)(a,x)]
and
U(@)V(x)§ = U(@) Ty, [&] = My F(@)[]
Since Y (&) = a(a, x) ™ ¢y (a0, We deduce that
F(@)[éx] = a(a, ) [p@an]
so that (36) holds.
Finally, the relation (37) implies that
[U(a) 1y, f, 114, 91Ka, = [Hla, F(@)f, 114, 9]Ka, = [ALF (), 9]L
= 0(a,I(a)[F(3(a))"ALf, 9], = o(a, ()[f, F((a))g].
= o(a, (@) [y, f, Ty F(I(a))g]Ka,
= 0(a,I(@)[M,, f,UEI(@) 1y, g]Ka,
forall f, g € #,, which implies that o(a, 3(a))U(I(a)) = U(a)* .We now notice that
the relation (35) implies that a(a, 3(a)) = d(I(a), a), which concludes the proof of
the relation o (a, 3(a))U(I(a)) = U(a)* forall a € S.
(2) = (6). Let] be a fundamental symmetry on X. Then J is a selfadjoint operator
with respect to the positive definite inner product (h, g), = [Jh, g]i. Let] =], — J_ be the
Jordan decomposition of / and define the Hermitian kernels

Ki(x,y) =2V £V (), Lix,y) =V)HV(), xy€eX.
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Fromj, +jJ_=Tand +J; =J; ] ]+ we get K(x,y) = K. (x,y) —K_(x,y) and L(x,y) =
K,(x,y) + K_(x,y). Toprove that K, and K_ are positive definite kernels let h € F,(X,H).
Then

Y KeConh)h@L= ) VWYLV 0IRG), A,

x,yEX X,yEX
= > VOO, VEROLe= Y sl JeV GG, VRG],
X, yeXx xX,yEX
= Z (]iV(y)h(Y)' ]i V(X)h(x))] =|| z ]i V(x)h(x) "5 >0
xyex XEX

It remains to show that L is ¢-bounded. If h € Fy(X,4), thenh = Y}, f,’fk for some n €
N, vectors &1 ,...,&" € Hand distinct elements x4, x,, ..., x,, in X. Then

[lpa (h): lpa (h)]L [¢a» (S;x])wa (ka)]

=
=
Il
=

a(a, %) a(@,x) 7 E (0 ) Eamol

~
=

’I;‘M :WM siM :'I’;‘-M:

}_\

a(a, x) " a(a, x) T [L(P(a, 1), p(a x;))§7 €,

a(a,x) " a(a, x) " Vd(a %)), V(p(a, x))E"),

-
=

U@V U@ V(@44 =1 U@ Z V() I

<Il U(a) "]” z V(xk))fk "] =|| U(Cl) "] z (V(x])fj rV(xk))gk)J =

j k=1

—~.

n

U@ I > e8] =1 U@ 1 [kl
Jjk=1
so that L is ¢p-bounded.

We also deduce that (V, (,{-,-);)) is the Kolmogorov decomposition of the positive
definite kernel L and ], V,( J1X,(,);)) is the Kolmogorov decomposition of K,. Since
J+J- = 0 we deduce that /,x n J_X = {0} and, by Proposition 16, in [78] we deduce that K,
and K_ are disjoint kernels.

Since (vi)=(iii) and (iii)=(i) are obvious implications, the proof is complete.

A Kolmogorov decomposition (V,X) of the Hermitian kernel K for which there exists
a projective representation U such that (36) holds is called a projectively invariant
Kolmogorov decomposition. Also, a projective representation U satisfying the additional
property U(a)* = 0(3(a),a)U(I(a)) for all a €S, is called symmetric projective
representation.

A natural question that can be raised in connection with the previous result is whether
By (X,H) is a sufficiently rich class of kernels
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Proposition (1.3.11)[53]: Assume that S is a group and J(a) =a ', a€S. If K is a

projectively ¢ -invariant Hermitian kernel on X then, for any a € S the operator ¥, is

iIsometric with respect to the inner product [.,. . In particular, any projectively ¢-invariant

positive definite kernel on X belongs to B(;g (X,H).

Proof. Indeed, in this case (34) becomes a (e, x) = 1 for all x € X, where e is the unit of the

group S. Also, if K is a Hermitian kernel then it is projectively ¢-invariant if and only if
K(¢p(ax),¢(@y) = a(a,x)a(a,y)K(x,y), x,y€X,a€S.

Let &, € Hbe arbitrary. Then

[We(E) Pa)]k = 2(@ 1) 2(@Y) oy o]k

EE—1
=a(a,x)'a(a,y) [K(P(ay), ¢(ax))§ 0l = KO, x)E 0]k
= [$x) ny][(;
and hence y, is [., . ]x iIsometric.
Remark (1.3.12)[53]: (i) Theorem (1.3.10) is known when #is a Hilbert space and the
kernel K is positive definite and satisfies

K(qb(a, x), ¢ (a, y)) = a(a,x)a(a,y)K(x,y), a€s, xyeEX. (38)
(see, [75]). In that case the proof is easily obtained by defining directly
UV (x)¢ = aa,x) 'V (¢p(a,x))¢ (39)

for £ € 7 and verify that U(a) satisfies all the required properties (we note that no
involution is considered in this case). We have to emphasize that this direct approach does
not work in the Hermitian case since the formula (39) does not necessarily give a bounded
operator. In order to overcome this difficulty we have to replace the symmetry condition in
(38) by the symmetry condition in (35) and then use Theorem (1.3.1). This was the main
point in the proof of Theorem (1.3.10).

(if) The positive definite version of Theorem (1.3.10) has many applications, some of
them mentioned for instance in [63], [64], and [75]. Such a typical application gives a
Naimark dilation for Toeplitz kernels. Thus, if X = S, ¢(a, x) = ax,and a(a,x) = 1 forall
a,x € S, then (38) becomes the well-known Toeplitz condition

K(ab,ac) = K(b,c)
forall a, b, c € S. If K is a positive definite kernel on S satisfying the Toeplitz condition and
(e,e) =1, where e is the unit of S, then {U(a)},es defined by (39) is a semigroup of
isometries on a Hilbert space K containing # such that
K(a,b) = P,U(a)"U(b)|H,
for all a,b € S, where P, denotes the orthogonal projection of K onto #.

(ili) The next example explores the fact that for positive definite kernels the
representation {U(a)},es given by (39) is unique up to unitary equivalence. Thus, consider
the action of a group G on the Hilbert space #such that (¢(g,$),$(g,1)) = (&, n) for all
g € G and &,n € H. We consider the kernel K(&n)=5,¢ on #and notice that K is positive
definite. Its Kolmogorov decomposition isgiven by V(£):C - #, () A=A, 1€ C E € K
If we use the positive definite version of Theorem (1.3.10), we deduce that there exists a
Kolmogorov decomposition V' of K and a representation U’ of G such that V'(¢ (g, $)) =
U'(g)V'(é) forall g € G and & € # From the uniqueness of V up to unitary equivalence,
it follows that there exists a unitary operator @ such that V(¢ (g,$&)) = ®U'(g)P*V (&), or
d(g,&) = U(g)¢, with @U'(g)®*. Therefore we obtained the well-known result that ¢
acts by linear unitary operators.
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The last example was intended to emphasize the importance of the uniqueness up to
unitary equivalence of the projectively invariant Kolmogorov decompositions. This issue
turns out to be rather delicate in the Hermitian case. Theorem (1.3.5) settles this question
only in the case of the trivial semigroup S with one element. It is easily seen that the spectral
condition in Theorem (1.3.5) is also sufficient for the uniqueness of a projectively invariant
Kolmogorov decomposition. However, Theorem (1.3.2) shows that the proof in [58] of
Theorem (1.3.5) cannot be easily adapted to the case of an arbitrary semigroup S.

Given a Hermitian kernel K, the rank rank(K) is, by definition, the supremum of rank
(K,) taken over all finite subsets Ac X, where (K, ) is the restricted kernel (K (x,¥))yyea-
By definition rank(K) is either a positive integer or the symbol co.A Hermitian kernel K has
Kk negative squares if the inner product space (F,(X,H)][.,.]x) has negative signature k, that
IS, k is the maximal dimension of all its negative subspaces. It is easy to see that this is
equivalent to K = K, — K_, where K, are disjoint positive definite kernels such that
rank(K_) = k, see e.g. [78]. This allows us to define k= (K) = k, the number of negative
squares of the kernel K. In particular, Hermitian kernels with a finite number of negative
squares always have Kolmogorov decompositions and for any Kolmogorov decomposition
(V;x) of K we have k™ (K) = k™ (K) < o, hence K is a Pontryagin space with negative
signature «.

In Pontryagin spaces the strong topology is intrinsically characterized in terms of the

indefinite inner product, e.g. see [65]. Therefore, by using Proposition (1.3.11) and
Shmul’yan’s Theorem (e.g. see Theorem 2.10 in [62]) we get:
Theorem (1.3.13)[53]: Let ¢ be an action of the group S on the set X and let K be an L(#)-
valued projectively ¢-invariant Hermitian kernel on X with a finite number of negative
squares. Then K has a projectively invariant Kolmogorov decomposition on a Pontryagin
space that is unique up to unitary equivalence.

The symmetric projective representation U of S obtained in Theorem (1.3.10) acts on
a Krein space. It would be of special interest to decide whether U is at least similar to a
symmetric projective representation on a Hilbert space, a property related to the well-known
similarity problem for group representations, see [76].

The above mentioned problem is also closely related to the characterization of those
¢-invariant Hermitian kernels K with the property that the representation K = K, — K_
holds for two positive definite ¢-invariant kernels.

We give an answer to these two questions in terms of fundamental reducibility. We
say that the projective representation U of S on the Krein space x is fundamentally reducible
if there exists a fundamental symmetry J on x such that U(a)J = JU(a) for all a € S. This
condition is readily equivalent to the condition U(a)* = U(a)* for all a € S, and further,
equivalent to the diagonal representation of U(a) with respect to a fundamental
decomposition of the Krein space X.

Proposition (1.3.14)[53]: Let S be a semigroup with involution J and o satisfies the 2-
cocycle property (31) on S. Let U be a symmetric projective representation of S on the Krein
space K. Then the following assertions are equivalent:

(i) U is similar to a symmetric projective representation T on a Hilbert space.

(if) U is fundamentally reducible.
Proof. (i)=(ii). Let ® € L(K, G) be the similarity such that T(a)® = ®U(a) for a € S.We
first notice that @ is also an involutory similarity (with the terminology from [67]), that is

T(a)* = dU(a)*®™ 1, ac€S. (40)
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Then, we consider on K the positive inner product (¢,71)e = (P&, Pn), &,n € K. Since @ is
boundedly invertible, there exists a selfadjoint and boundedly invertible operator G € L(X)
such that [§,17] = (G&,n)e, &, n € K. Therefore, for arbitrary a € S and &,n € X we have
(U(a)$,me = (@U(a)$, Pn) = (T(a)®<, Pn)

= (®¢, T(a)* ®n) = (D¢, PU(a)*n)

=, U(@*n)e = [GT'¢, U(a)*n]

= [U(@G™§,n] = (GU(@)G™* §,m)e
Thus, GU(a) = U(a)G and letting ] = sgn(G) it follows that ] is a fundamental symmetry
on the Krein space x such that JU(a) = U(a)].

(i)=(1). If J is a fundamental symmetry on the Krein space x such that JU(a) =
U(a)/, for all a € S, then U is a symmetric projective representation with respect to the
Hilbert space (k(.,.),).

With the notation as in Proposition (1.3.14), if o has the 2-cocycle property (31) and
|o(a,b)| = 1forall a,b € S, then it follows that

U(@)*U(a) =U(S(a)a), a€S (41)
Thus, in certain applications where U consists of (Krein space) isometric operators, it is
interesting to know whether U is similar to a symmetric projective representation of
iIsometric operators on a Hilbert space. Clearly, a necessary condition is that for some
(equivalently for all) unitary norm ||-|| on X there exists C > 0 such that

1
IS = U@l = cligll, a€es,sex. (42)

As expected, the converse implication is related to the assumption of amenability of the
semigroup S. More precisely, following closely the idea in the proof of Théoréme 6 in [61],
we get:
Theorem (1.3.15)[53]: Let S be an amenable semigroup, o has the 2-cocycle property (31),
|o(a,b)| =1 for all a,b €S, and let U be a projective representation (without any
assumption of symmetry) of S on a Hilbert space X, such that (42) holds for some constant
C > 0. Then U is similar to a projective representation T of S on a Hilbert space G such that
T(a) are isometric forall a € S.

We come now to the problem of characterizing those Hermitian invariant kernels that
can be represented as a difference of two positive invariant kernels.
Theorem (1.3.16)[53]: Let ¢ be an action of the unital semigroup S with involution 3
satisfying (34) on the set X and let K be an £L(#)-valued ¢-invariant Hermitian kernel on X.
The following assertions are equivalent:

(i) Thereexists L € B[; (X,H) such that —L < K < L and L is ¢-invariant.

(i) K has a projectively invariant Kolmogorov decomposition (V;x) such that the
associated projective representation is fundamentally reducible.
(i) K = K, — K_ for two disjoint positive definite kernels such that K, + K_ € Bg (X,H)
and both K are ¢-invariant.
Proof. (i)=(ii). We use the same notation as in the proof of Theorem (1.3.10). Thus, #, is
the Hilbert space obtained by the completion of the quotient space (F,(X,4))/N; with
respect to [-+]., where NV, is the isotropic subspace of the inner product space
(Fo(X,H), [-,'].)- Let A}, be the Gram operator of K with respect to L and let (V;K,, ) be the
projectively invariant Kolmogorov decomposition of the kernel K described in the proof of
(i)=(i1) in Theorem (1.3.10). Since L is ¢-bounded, it follows that each i, extends to a
bounded operator F(a) on #,. Since L is ¢-invariant, we deduce that
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[Ya(f), gl = 0(a, (@), Y3y (D]L
forall f, g € F,(X,H), which implies that
F(a) = o(a,I())F (3(a))".
This relation and (37) imply that
A F(a) = F(a)4,
for allaeS. Let A, =S, |A, be the polar decomposition of A, and let J,, be the
symmetry introduced in Example (1.3.1). Using (8), we deduce that
U(a)]ALHAL = U(a)HALSAL
=1, F(a)S,,
=11y, Sy, F(a)
= ]ALHALF(a)
=Ja,U(@)y, ,
therefore the representation U is fundamentally reducible.
(it)=(ii1). We consider the elements involved in the proof of (2)=(6) in Theorem
(1.3.10) for a fundamental symmetry J on K for which U(a)] = JU(a),a € S. Therefore
U(a)J+ =]J+U(a) forall a € S, and then

Ki(x,¢(a,y)) = 2V ()*).V(¢(a, 1))
= ta(a, )V U(@V(y)
= ta(a, )V U(@)V(y)
= ta(a,y)o(3(a), V() *US(@)*/LV (y)
= ta(a, ¢ (3(a), x))a(a Y)V(P(S(@))*/:V ()
= oc(a, ¢ (S(a),x))oc(a, y)Ki (¢(S(a)x)r y)
(iii)=(i). Just set L(x,y) = K, (x,y) + K_(x,y).

In case S is a group with the involution J(a) = a1, then some of the assumptions in
the previous results simplify to a certain extent. In this case, as a consequence of (41), the
symmetric projective representation U associated to a ¢ -invariant Kolmogorov
decomposition consists of unitary operators.

Theorem (1.3.17)[53]: Let S be a group and o a 2-cocycle on S with |o(a, b)| = 1 for all
a,b € S. Let U be a unitary projective representation of S on the Krein space X. Then the
following assertions are equivalent:

(i) U is similar to a unitary projective representation T on a Hilbert space, that is,
T:S - L(G) , G a Hilbert space, T(a)T(b) =0(a,b)T(ab) and T(a)" =
g(a t,a)T(a ) foralla € S.

(if) U is fundamentally reducible.

Moreover, if U satisfies one (hence both) of the assumptions (i) and (ii) then U is
uniformly bounded, that is,

sgIS)IIU(a)II < o, (43)
a
If, in addition, S is amenable, then (43) is equivalent to (any of) the conditions (i) and (ii).

Proof. This follows from Proposition (1.3.14) and Theorem (1.3.15).
Theorem (1.3.18)[53]: Let ¢ be an action of the group S on the set X and let K be an L(#)-
valued ¢-invariant Hermitian kernel on X.
The following assertions are equivalent:
(i) There exists a ¢-invariant positive definite L on X such that —L < K < L.
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(i) K has a projectively invariant Kolmogorov decomposition (V;K) such that the
associated symmetric projective representation is similar to a symmetric projective
representation on a Hilbert space.

(il) K = K, — K_ for two disjoint positive definite ¢-invariant kernels.

Proof. This follows from Proposition (1.3.11) and Theorem (1.3.16).

Another consequence of the Kolmogorov decomposition approach is the possibility of
obtaining a characterization of those Hermitian functionals Z that admit bounded GNS data,
that is, the representation mr is made of bounded operators.

Theorem (1.3.19)[53]: Let A be a unital =-algebra and let Z be a linear Hermitian
functional on A with Z(1) = 1. Then Z admits bounded GNS data if and only if there exists
a positive definite scalar kernel L on A having the property (25) and such that for every a €
A there exists C, > 0 with the property that

Z Ai /1L(xa xja") < Cq z/l )LL(xl,xJ) neN, (4}, cC {x}L, cA.
i.j=1 i.j=1
Proof. This is a consequence of Theorem (1.3.10) and Proposition (1.3.6).

We conclude with a discussion of the Jordan decomposition of a linear Hermitian
functional on a *-algebra A, that is, the possibility of writing the Hermitian functional as
the difference of two positive functionals. Let us first note that a functional F: A — Cis
positive, that is, F(a*a) = 0 for all a € A, if and only if the kernel K associated to F by
the formula (20) is positive definite. Also, if F is a positive functional on A, then Ky is ¢-
bounded, with the action ¢ defined as in (19), if and only if for any a € A there exists C, >
0 such that

F(xa*ax* < C,F(xx*), x € A. (44)
For simplicity, we call the positive functional F ¢-bounded if K is ¢-bounded. Let F;, F,
be two positive functionals on the x-algebra A. Then F, < F,, by definition, if F, — F; is
a positive functional. It is easy to see that F; < F, ifandonly if K < K, . The functionals
F; and F, are called disjoint if their associated kernels K r, and K ¢, are disjoint.
Theorem (1.3.20)[53]: Let A be a unital =-algebra, let Z be a linear Hermitian functional
on A with Z(1) = 1, and let ¢ be the action given by (19). The following assertions are
equivalent:
(i) There exists a linear positive ¢-bounded functional Z, on A such that —Z, < Z <
Zy.
(i) Z admits bounded GNS data (m,X, Q,) such that the representation 7 is similar with a
x-representation on a Hilbert space.
(i) Zz =2, — Z_ for two disjoint linear positive definite functionals on A with the
property that (Z, + Z_) is ¢-bounded.
Proof. The implications (i)=(ii)=(iii) are direct consequences of Theorem (1.3.16) and
Proposition (1.3.6). For (iii)=(i) we use the proof of Theorem (1.3.10) in order to deduce
that there exists L € By (A, C) such that —L < K, < L. Then Theorem (1.3.16) shows that
L(x,¢(a,y)) = L(¢(a*,x),y) for all x,y,a € A. Also, in this case, L is linear in the first
variable (hence, antilinear in the second variable). If we define
Zy(x) =L(x,1)
for x € A, then Z, is a linear functional on A and
Ky, (x,y) = Zy(xy™) = L(xy*, 1) = L(x, y).
Now all the required properties of Z, follow from the corresponding properties of L.
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Chapter 2
C*-Algebras

We deal with some questions concerning the dual spaces of noncommutative C*-
algebras, especially the group C*-algebras of certain groups. We also find a number of other
conditions which for separable C*-algebras are equivalent to being type I.

Section (2.1): The Dual Spaces

The idea of the structure space (or dual space) A of an associative algebra A was
introduced by Jacobson in [88]. The space A consists of all kernels of irreducible
representations of A, with the hull-kernel topology: An ideal I in 4 is in the closure of a
subset B of A if I contains the intersection of the ideals in B. For unrestricted infinite-
dimensional A, the dual space need not be Hausdorff or even T;; and in many situations it
Is not very useful. However, Gelfand and others have shown that for commutative Banach
algebras the dual space is a powerful tool. For noncommutative Banach algebras, too, the
study of the dual space has been found fruitful. Kaplansky [92] has analyzed the dual spaces
of C*-algebras whose irreducible x-representations all consist of completely continuous
operators. The importance of this study is emphasized by the fact that the group algebras of
connected semi-simple Lie groups having faithful matrix representations all fall into this
category (see [87]).

We deal with some questions concerning the dual spaces of noncommutative C*-
algebras, especially the group C*-algebras of certain groups.

This is a theorem specifically about C*-algebras. It states that, if S is a family of *-
representations of a C*-algebra A, and T is a *-representation of A which vanishes for those
elements for which all S in § vanish, then positive functionals associated with T are weakly
x-approximated by sums of positive functionals associated with §. In another form, it states
a one-to-one correspondence between closed two-sided ideals of a C*-algebra and certain
subsets of the positive cone of its conjugate space. In the latter form, the theorem was
communicated to this author by R. Prosser, who also suggested the short proof of Theorem
(2.1.1) given here. An interesting corollary of this theorem is the following: If G is a locally
compact group, the hull-kernel topology of the dual space of its group C*-algebra is
equivalent to the topology which Godement defined in [85] for the space G of irreducible
unitary representations of G, using functions of positive type. Let us refer to this simply as
the topology of G.

The equivalence theorem leads naturally to the ideas of weak containment and weak
equivalence. Theorem (2.1.15) shows that every set of representations of a C*-algebra A is
weakly equivalent to a unique closed set of irreducible representations (compare the
definition of the spectrum of a positive functional, in [85]). Theorem (2.1.17) relates weak
equivalence to the construction of continuous direct integrals of representations. Theorem
(2.1.20) is a digression, and relates the topology of 4 to the condition that a discrete direct
sum of completely continuous representations be completely continuous. It should be noted
that the elements of A are the, (topologically) irreducible =-representations of 4, rather than
the kernels of these.

From Kaplansky's observation [92] that the Hausdorff property of the dual space A of
a C*-algebra A is related to the continuity of the real-valued functions T — ||T, || (T € 4, x
fixed). We ask what is the relation between the topology of 4 and the functions T — || T ||
for an arbitrary C*-algebra A. The answer is Theorem (2.1.24). We also ask how the
topology of A is related to the functions T — Trace (T,) (supposing that Trace (T,.) exists
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for many x and T). Theorems (2.1.29) and (2.1.36) are partial answers to this question. We
generalize Kaplansky's result [92] that a C* -algebra A all of whose irreducible
representations have the same finite dimension has a Hausdorff dual space. In fact, we show
that if {T} is a net of elements of 4, all of which are of dimension < n, and if T* - S™
(m=1,...,r), where St, ..., S™ are distinct elements of 4, then ¥.7 _, dimS™ = n.

To calculate explicitly the topologies of the duals of the n X n complex unimodular
groups G (all of whose irreducible representations together with their characters, are listed
in [84]). The result is Theorem (2.1.49). The topologies are not Hausdorff, though their
deviations from this property are rather weak (see Corollaries (2.1.50) and (2.1.56) of
Theorem (2.1.49)). To illustrate, we recall that in the 2 x 2 case the elements of G fall into
three classes: (i) the principal series of representations T"*" (m an integer, r real), (ii) the
supplementary series of representations T°(0 < s < 1), and (iii) the identity representation
1. Now the topology of G is the natural topology of the parameters with one exception: as
s » 1 —, TS converges both to I and to T%°. This failure of the Hausdorff property stems
from the behavior of the characters. If Y™, YS,Y! are the characters of T™", T, and I
respectively, it arises from the fact that

lim Vs =YY" + 7?20,

s—1-—,

A further fact about G, true for all n, is that each principal series is closed in G. This
has the interesting consequence (Theorem (2.1.59) that the regular representation of G
weakly contains the representations of the principal nondegenerate series, and no others.
Theorem (2.1.1)[80]: Let A be any norm-closed self-adjoint algebra of operators on a
Hilbert space H . Then any continuous positive linear functional ¢ on A can be
approximated in the weak”* topology (i. e., pointwise on A) by natural positive functionals
on A, that is, positive functionals y of the form

k
Y@ = ) (axx) (i € H),

In fact, the approximating functionals y» may be assumed to have norm equal to or less than
l#ll.

Proof. Let N he the family of all natural positive functionals ¥ on A lor which ||y]| = 1,
considered as a subset of the conjugate space of the real Banach space B of all Hermitian
elements of A. Then N is a convex set containing 0. We verify that the polar set N,, = {a €
Bly(a) = —1fory in N} (see [82]) consists of those a in B whose negative part a_
satisfies |la_|]| =1 ; and hence that the "bipolar* (N,)™ ={y¥ € B*|Y(a) =
—1forain N;} consists of all positive functionals ¥ with ||| = 1. Applying the theorem
on "bipolars," [82], which says that (N;)™ is the weak™ closure of N, we conclude that every
positive functional ¢ with [|¢|| = 1 is a weak™ limit of natural positive functionals i with
Il = 1.

If Ais a C*-algebra, a x-representation T ol A is a homomorphism of A into the
bounded operators on some Hilbert space H = H(T), involution in A going into the adjoint
operation. A positive functional ¢ on A is associated with a *-representation T if there is an
x in H(T) for which ¢(a) = (T,x,x)(a € A); ¢ is associated with a family S of -
representations if it is associated with some S in S.

Theorem (2.1.2)[80]: Let A be any C*-algebra, T a *-representation of A, and S a family of
x-representations of A. The following four conditions are equivalent:
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(i) The kernel J of T contains the intersection I of the kernels of the representations in
S,
(if) Every positive functional on A associated with T is a weak™ limit of finite linear
combinations of positive functionals associated with S;
(iif) Every positive functional on A associated with T is a weak™ limit of finite sums of
positive functionals associated with S;
(iv) Every positive functional ¢ on A associated with T is a weak™ limit of finite sums
Y of positive functionals associated with S for which ||y]] = || ||
Proof. Itis trivial that (iv) — (iii) — (ii). Assume (ii), and leta belong to I — J. Then there
IS a positive functional ¢ associated with T for which ¢(a) # 0. But, by (ii), ¢ is a weak*
limit of linear combinations ¥ of functionals associated with S; for such ¥,y (a) = 0.
Hence ¢(a) = 0; and we have a contradiction. Thus I < J; and we have shown that (ii)
implies (i).

Now assume (i), and let S° = Y;cs® S Since ] o1 = Kernel (§°), a positive
functional ¢ associated with T vanishes on I, and hence induces a continuous positive
functional ¢’ on .A/I, which may be identified with the range S°(A) of S°. Since the latter
is norm-closed, apply Theorem (2.1.1) and approximate ¢’ eakly* by sums 1’ of natural
positive functionals on S°(A4) for which ||¢’|| = ||¢'|l.. Thus, passing back to A, we
approximate ¢ weakly* by sums i of positive functionals associated with S°, for which
Y]l = ||¢]l. But each positive functional associated with S° is itself a norm-limit of sums
of positive functionals associated with §. The last two statements combine to give (iv). The
proof of the Theorem is now complete.

This theorem will be referred to as the equivalence theorem. If § and T are such as to
satisfy conditions (i)-(iv) of the theorem, we shall say that T is weakly contained in §S.

The equivalence of (i) and (ii) is evidently valid for any Banach x-algebra. However,
the equivalence of (i) and (iii) or (iv) depends on the special properties of C*-algebras; it
fails, for example, for the L, group algebras of certain groups (see remark following
Theorem (2.1.59)).

In case T is a cyclic representation, with cyclic vector & (that is, the T, ¢, a € A, are
dense in H(T)), each condition of the equivalence theorem is equivalent to:

(ii") Merely the positive functional ¢y(a) = (T, ) is a weak™ limit of finite linear
combinations of positive functionals associated with S.

Indeed: Assume (ii'); and let n € H(T),¢(a) = (T,n,n). Choose y in A so that
|T,€ — n|| is small. Then ¢', defined by ¢'(a) = (T,T,¢,T,€) = ¢o(y*ay), approximates
¢ in the norm, hence weakly*. Pick a net {1;} of linear combinations of positive functionals
associated with § so that y; —» ¢, weakly™. If Y;(a) = ;(y*ay), then {1} is again a net
of linear combinations of positive functionals associated with §, and converges weakly™* to
¢', i.e., to a functional approximating ¢ weakly*. Thus, by the arbitrariness of ¢, (ii) holds.

Let A he a C*-algebra without unit, and A, the C*-algebra obtained by adjoining a
unit 1 to A (see [81], or [97]).

A x-representation T of A is nowhere trivial if £ = 0 whenever T,& = 0 for all a in
A, or, equivalently, if the linear span of the T,¢(a € A,§ € H(T)) isdense in H(T). To each
x-representation T of A4, let T be the *-representation of A; coinciding with T on 4, and for
which T1(1) is the identity operator in H(T). If S is a family of =-representations of 4, §!
will mean {T*|T € §}.
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If I is a closed two-sided ideal of 4, let I* = {a + A1.1|a € A, A complex; ay + Ay €
I for all y in A}.

Lemma (2.1.3)[80]: I* is a closed two-sided ideal of A; with An It =1. In fact, if T is a
nowhere trivial x-representation of A with kernel I, then It is the kernel of I*.

Proof. There exists a nowhere trivial =-representation T of A with kernel I. We have
Tassa =0ifandonlyif 0 =T, ; T,& = Tyyy2,¢ forall yin Aand & in H(T), i.e., if and
onlyif ay + Ay € I lor all y in A. Thus I* = Kernel(T?).

Lemma (2.1.4)[80]: If 7 is a family of closed two-sided ideals of A, and J is a closed two-
sided ideal of A, then ] o N, if and only if J* D N,y 1.

Proof. If the second condition holds, intersect it with A to get the first (using Lemma
(2.1.3)). Let the first condition hold; and suppose a + 1.1 € N;es 1. Then ay + Ay € I for
all I in 7 and y in A; so that by the first condition a + 1.1 € J1.

Combining Lemmas (2.1.3) and (2.1.4), one obtains:

Lemma (2.1.5)[80]: If T is a nowhere trivial *-representation of A, and § is a family of
nowhere trivial =-representations of A, then T is weakly contained in S if and only if T? is
weakly contained in S?.

Let G be a locally compact topological group with unit element e. Its group algebra
L,(G) with respect to left-invariant Haar measure is a Banach =-algebra, and there is a
natural one-to-one correspondence between the unitary equivalence classes of unitary
representations of G and those of the nowhere trivial *-representations of L, (G) (see [94]).
In this correspondence irreducible representations of G correspond to irreducible
representations of L, (G), and vice versa.

Now introduce into L, (G) a new norm || ||, defined by

lIxlle = Sl;p”Tx”:

where T runs over all x-representations of L, (G). (This is the minimal regular norm; see
[95], or [97], p. 235.) The completion of L, (G) under|| ||, isa C*-algebra called C*(G), the
group C*-algebra of G. The correspondence between representations of G and of L,(G)
carries over into an exactly similar correspondence between unitary representations of G
and * -representations of C*(G), irreducible representations of one corresponding to
irreducible representations of the other.

If T is a unitary representation of G, and S is a family of unitary representations of G,
we say that T is weakly contained in § if this is the case when T and S are considered as
representations of C*(G).

We shall now show that, in the case of groups, the weak containment relation can be
defined in terms of the uniform convergence on compacta of functions of positive type. The
essential argument for this is given in [85].

We observe first that the continuous positive functionals on C*(G) and on L,(G) are
essentially the same.

Lemma (2.1.6)[80]: The restriction map is a one-to-one norm-preserving map of the
set of all continuous positive functionals on C*(G) onto the set of all continuous positive
functionals on L, (G).

Proof. It follows almost immediately from the definition of C*(G) that the restriction map
Is one-to-one and onto (see [95] or [97]). We need only prove that it preserves norm.

If X is a non-negative function in L,(G), and I is the one-dimensional identity

representation of G, we have ||x|l Z |||l = [ 6*@%9 = ||x||, (¢ Z lIx|l.. Hence
x|l ) = llxlle  forx €L(G), x=0 (1)
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Now let {U;} he a net of compact neighborhoods of e converging to e; and let x;, be
a continuous non-negative function on G, vanishing outside U;, with [ G*i@49 = 1, By (1),
x|, 6y = lIx;illc = 1; hence {x;} is an approximate identity satisfying ||x;]| = 1 in both
L,(G) and C*(G). If/is a continuous positive linear functional on C*(G), and /' is its
restriction to L, (G), we have (see [97], p. 172)

Il = supf’(x; * x;) = supf (x; * x;)
= Il

Thus the restriction mapping preserves the norm.

By Lemma (2.1.6), the norm of a continuous positive functional f is the same
Whether f acts on L,(G) or on C*(G). If {f;} is a net of such functionals, with uniformly
bounded norm || f;||, then weak* convergence of {f;} to f means the same with respect to
L,(G) as it does with respect to C*(G).

If T is a unitary representation of G, and 0 = & € H(T), the function F on G defined
by F(g) = (T,¢,¢) is a function of positive type associated with T. If § is a family of
unitary representations of G, a function of positive type is associated with § if it is associated
with some T in §. Functions F of positive type are extensively investigated in [85]. They
are bounded and continuous, with F(e) = supgeq|F(g)|. Considered as elements of
Lo (G), or the dual of L, (G), they are precisely the positive continuous linear functionals on
L.(G).

A family @ of functions of positive type on G will be said to be closed invariant if:
(i) @ is closed in the topology of uniform convergence on compacta ;

(ii) if ¢ € ®, n is a positive integer, 1y, ..., 1, are complex numbers, h4, ..., h,, are elements
of G, and v is defined on G by
n
(@)= ) Fmdhighy,
i,j=1
theny € O,

Now by an argument based on Gelfand's lemma on the weak™® convergence of
functionals, and similar to that used for the proof of Lemma C, [85], we derive the following:
Lemma (2.1.7)[80]: If & is a closed invariant family of functions of positive type, and if
{¢;} is a net of elements of @ such that:

(i) |l¢; |l is bounded uniformly in i;
(ii) p; = ¢ weakly™ (as elements of (L,(G))"), then ¢ € .
Theorem (2.1.8)[80]: If G is a locally compact group, T is a unitary representation of G,
and S is a family of unitary representations of G, then T is weakly contained in § if and only
if every function of positive type on G associated with T can be approximated uniformly on
compact sets by sums of functions of positive type associated with S.
Proof. The “if ” part of the theorem follows easily from Lemma (2.1.6) and the equivalence
theorem. To prove the converse, suppose that T is weakly contained in §; and let F be a
function of positive type associated with T, corresponding to the positive functional ¢ on
C*(G). By the equivalence theorem

¢ = ¢ weakly”, (2)
where each ¢; is a sum of positive functionals on C*(G) associated with §, and the ||¢;]|
are uniformly bounded in i. Let F; be the function of positive type corresonding to ¢;.
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We define @ to be the set of all uniform-on-compacta limits of sums of functions of
positive type associated with S. It is easy to verify that @ is closed invariant.-Now F; € ®,
and, by (2) and Lemma (2.1.6), F; = F weakly*(in(L,(G))").

Also, by Lemma (2.1.6), the [|F;|| are uniformly bounded in i. Applying Lemma
(2.1.7), we conclude that F € ®, which completes the proof of the theorem.
Corollary(2.1.9) [80]:If G, T, S are as in the theorem, T is weakly contained in §, and H is a
closed subgroup of G, then the restriction of T to H is weakly contained in the family of all
restrictions to H of members of S.

The relation of weak containment, applied to irreducible representations, gives the
closure operation in the dual space.

For any C*-algebra, the dual space A will be the set of all unitary equivalence classes
of irreducible =-representations of A. It S c A, the closure § of S will be defined as the set
of all T in A which are weakly contained in S, i.e., for which N5 Kernel(S) c
Kernel(T).

This definition of closure in a set of ideals is essentially given in [98].

Our A differs from the Jacobson structure space (see [88]) in two minor respects:
First, its elements are representations, not ideals (note that two different irreducible
representations might have the same kernel). Secondly, the representations in A are required
to be only topologically, not algebraically, irreducible. Kadison in [89] has shown that all
irreducible *-representations of a C*-algebra are algebraically irreducible; so that the
importance of the second difference is much reduced. However, in proving that the closure
defined above generates a topology, we need not use Kadison's rather abstruse result to make
Jacobson's classical proof directly applicable; a slight modification of the latter will suffice.
Lemma (2.1.10) [80]: The above closure operation in A generates a topology.

The topology defined by this closure is called the hull-kernel topology of A. Unless
the contrary is stated, we assume A equipped with this topology.

If G is a locally compact group, the dual space G will be the set of all unitary
equivalence classes of irreducible unitary representations of G, equipped with the hull-
kernel topology, i.e., the topology of (C*(G)) transferred to G by the natural
correspondence between G and (C*(G)) .

Let A be any C*-algebra, T any element of 4 belonging to the closure of a subset S
of A. By the equivalence theorem, each positive functional ¢ associated with T is a weak*
limit of sums of positive functionals associated with §. Since, however, we are dealing now
with irreducible representations, it is now possible to make a stronger statement: Each such
c6 isaweak™ limit of positive functionals associated with S; sums are unnecessary. We next
prove this.

First let the C*-algebra A have a unit 1. By P we denote the set of all normed
(i.e.,, (1) = 1) positive functionals on A, and by N the set of all indecomposable
positive functionals. Let Q he a weakly* closed subset of P, and L the weak™ closure of
the set of all convex linear combinations of elements of Q.

Lemma (2.1.11) [80]: Every extreme point of L lies in Q.

Proof. Let C(Q) he the space of all continuous complex functions on the compact
Hausdorff space Q, and M(Q) the set of all positive Baire measures on Q of total mass 1.
Each element u of M (Q) corresponds naturally to an element of (C(Q))*; and the weak*
topology of (C(Q))* transferred to M(Q) will be called the weak* topology of M(Q).
Evidently M(Q) is weakly* compact.
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Toeach uin M(Q) and x in A, let
Bu0) = | CIdug.
Q

Evidently ¢, € P, and the map u — ¢,, is continuous in the weak™ topologies of M (Q) and
P. So its range ¢(M(Q)) is compact, hence weakly* closed in P. On the other hand,
¢(M(Q)) contains all convex linear combinations of elements of @, and the latter are dense
in p(M(Q)). It follows that
L= ¢(M(Q)). 3)
Now let i be an extreme point of L. By (3) ¥ = ¢, u € M(Q). The lemma will be
proved if we show that u is a point mass, i.e., that its closed hull contains only one point.
Let f, be a point in the closed hull of u; and assume that the closed hull contains
another point distinct from f,,. Then, for all sufficiently small open Baire neighborhoods U

of £,

0<u(l)<1. (4)
Fix such a U. For each Baire set R let
u(RNU) u(R —U)
R)=—— R)=——=.
Then the y;, belong to M(Q) and, if y; = ¢,;, we have
Y =uy; + (1 - #(U))¢2» (5)
and by (3)
i € L. (6)
Since ¥ is an extreme point of L, (4), (5), and (6) give
5 Y1 =Y. (7)
ut

1
1 (x) = j S =~ jU SO — fo(x)

as U closes down on f,,. This combined with (7) shows that ¢ = f,, for each f, in the closed
hull of u. Hence there can only be one point in the closed hull of u.
Theorem (2.1.12)[80]: Let A be an arbitrary C*-algebra, S a subset of 4, and T an element
of A. Then the following three conditions are equivalent:
(i) TES;
(if) some nonzero positive functional associated with T is a weak* limit of finite linear
combinations of positive functionals associated with §;
(iii) every nonzero positive functional ¢ associated with T is the weak* limit of some net
{1,} of positive functionals associated with S such that ||y; || = ||®]l.
Proof. It is trivial that (iii) implies (ii); the equivalence theorem gives that (ii) implies (i).
To prove that (i) implies (iii), we assume that T € S.
Suppose first that A has a unit 1. Let ¢ be a normed positive functional associated with
T, Q the weak™ closure of the set of all normed positive functionals associated with §, and
L the weak™ closed convex hull of Q. The equivalence theorem assures us that ¢ € L. But
now ¢ is indecomposable, hence is certainly an extreme point of L. By Lemma (2.1.11),
¢ € Q This proves (iii) in case A has a unit.
If A has no unit, adjoin one to get A;. Define T?, $*. By Lemma (2.1.5), T € (§1)~ If
¢ is a positive functional of norm 1 associated with T, extend it to a normed positive
functional ¢’ on A, associated with T1. So by the last paragraph ¢' is the weak* limit of a
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net {¢;}, where each ¢; is a normed positive functional associated with §*. Restricting ¢;
to ¢;, on A, we have
lpill =1, ¢ =lim¢; (in the weak™ topology).

The following theorem for groups bears the same relation to Theorem (2.1.12) as
Theorem (2.1.8) does to the equivalence theorem. Its proof is omitted, since it is obtained
by applying Lemma (2.1.7) to Theorem (2.1.12) in the same way that Lemma (2.1.7) was
applied to the equivalence theorem in the proof of Theorem (2.1.8).

Theorem (2.1.13)[80]: Let G be a locally compact group, S a subset of G, and T an
element of G. The following three conditions are equivalent:

()T € S;

(if) some function of positive type associated with T is a uniform-on-compacta limit of

sums of functions of positive type associated with S;

(iii) every function of positive type associated with T is a uniform-on-compacta limit of
functions of positive type associated with §.

It might be conjectured, by analogy with Theorem (2.1.12), that Theorem (2.1.13)
would remain true on replacing “sums of” by “finite linear combinations of ” in condition
(if). This however is not so. A counter-example is provided by Theorem (2.1.59), together
with the observation that any bounded continuous complex function on G is a uniform-on-
compacta limit of finite linear combinations of functions of positive type associated with the
regular representation of G.

As we have already remarked, the essential difference between Theorems (2.1.2) and
(2.1.12) (also between Theorems (2.1.8) and (2.1.13)) is the replacement of convergence of
sums of positive functionals by convergence of single positive functionals, in the case that
the representations are irreducible. There are other cases in which this replacement is
possible. For example, Takenouchi has pointed out [99] that a representation V of a locally
compact group G is weakly contained in the regular representation R if each function of
positive type associated with V' is a uniform-oncompacta limit of functions of positive type
associated with the regular representation.

Let A be a C*-algebra without unit, and .A; the C*-algebra obtained by adjoining a
unit 1 to A. Foreach T in A, T* is in A,. Besides the T, there is only one other element of
A;, namely, the onedimensional representation 7 sending a + A. 1 into A (a € A). Thus A
may be identified (as a set) with A; — {r}. Lemma (2.1.5) now gives:

LLemma (2.1.14)[80]: The topology of A is that of A, relativized to 4; — {z}.

Observe that T belongs to the closure of A; — {r}. Otherwise 4, would contain an
element +1 . I not in 4, belonging to the kernels of all T*(T € A). This means that T, +
AI = 0 for all T in A (I is the identity operator in H(T)). But A2 # 0; hence T—asny = 1 for

all T in A. It follows that —a /A is a unit element of A.

Let § and G be any two families of x-representations of a C*-algebra A. If each S in
S is weakly contained in G. we say that S is weakly contained in G. .If § and g are each
weakly contained in the other, they are weakly equivalent.

The following remarks are trivial: (i) If § c G, S is weakly contained in G; (ii) the
relation of weak containment is reflexive and transitive; (iii) the relation of weak
equivalence is an equivalence relation; (iv) if S ¢ 4, G c A4, then S is weakly contained in
G if and only if S ¢ G; S is weakly equivalent to G if and only if S =G; (v) any *-
representation T of A is weakly equivalent to any direct sum of copies of T.
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Theorem (2.1.15)[80]: If S is any family of x-representations of a C*-algebra A, there
exists a (unique) closed subset G of A which is weakly equivalent to S. It consists of all T
in A which are weakly contained in S.

Proof. (i) First assume A has a unit 1; and define P as the set of all positive linear
functionals ¢ on A with ¢(1) = 1; and Q as the smallest convex weakly™ closed subset of
P containing all positive functionals associated with S. I claim that an extreme point of Q is
an extreme point of P (compare [85], Proposition 6, p. 40).

Let ¢ be an extreme point of Q; and assume
o=rP;+ (A -1, (0<r<1,y; €P).

If ¢ is associated with a representation T, ¢ (a) = (T,¢, &) (¢ cyclic in H(T)), then a well-
known majorization theorem [97] supplies us with an n in H(T) for which ¥, (a) =
(T.m,m). Since & is cyclic, there is a sequence {y,} of elements of A with ||T,, &|| = 1,

T, & - n. Put ¢,(a) = ¢y "ayy,); then ¢, € P, and ¢, — ¥, weakly*. Since ¢ € Q,
also ¢,, € Q; and hence ¥, € Q. Similarly ¥, € Q. Since ¢ is an extreme point of Q, this
gives Y; = ¥, = ¢. Hence ¢ is an extreme point of P; and the claim is justified.

Now let G be the (closed) set of all T in A which are weakly contained in S. It suffices
to show that S is weakly contained in G. If ¢ is in P and associated with §, and if E is the
set of all extreme points of Q, then by the Krein-Milman theorem ¢ is a weak* limit of
convex linear combinations of elements of E. On the other hand, elements of E are extreme
points of P, hence are associated with representations in G. Thus § is weakly contained in
g.

(ii) If A has no unit, adjoin a unit 1 to get A,. Defining S, we obtain by (A) a closed
subset G* of A; which is weakly equivalent to S*. Let G be the subset of A corresponding
to G — {r} (see Lemma (2.1.14)). G is obviously weakly contained in §. That S is weakly
contained in G follows from the two facts that St is weakly contained in G! and that ©
vanishes on A.

We will call the G of Theorem (2.1.15) the spectrum of §. This definition is a
generalization of [85], Definition 2, p. 43.

(See, [86]; and [97]) have studied direct integrals of *-representations of C*-algebras.
If this notion is defined topologically, rather than purely measure-theoretically, one can
conclude the weak equivalence of the direct integral representation with the set of
component representations.

For details concerning direct integrals, see [86].

Fix a locally compact Hausdorff space T; with each t in T associate a Hilbert space
H,. A vector field will be a function & on T such that £(t) € H, for each t. An operator field
will be a function B on T such that, for each t, B(t) is a bounded linear operator on H,.

A continuity basis is a family F of vector fields such that: (i) if {,n € F and r, s are
complex, thenré +sn € F; (ii) if £ € F, ||E(¢)]| is continuous on T; (iii) for each ty in T,
{&(tp)|¢ € Fisdensein Hy .

We fix a continuity basis F. A vector field ¢ is continuous if for each t, in T, and
each € > 0, there is a neighborhood U of t, and an n in F such that ||£(t) — n(t)|| < € for
all t in U. An operator field B is continuous if, for all continuous vector fields &, the map
t = B(t)&(t) is a continuous vector field.

Now let m be a fixed regular Borel measure on T whose closed hull is T; and denote
by H' the inner product space of all continuous vector fields ¢ for which
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f 1€ I[2dmt < oo,
T

equipped with the inner product

&n) = f (E(),n(t))dmt.
T
Following [97], the Hilbert space H obtained by completing H' will be denoted by

sz H,(dmt)'/?,
T

the direct integral of the H,.
A bounded linear operator b on H is a direct integral operator if there is a continuous
operator field B such that, for ¢ € H', bé € H' and (b&)(t) = B(t)é(t).
We describe this by writing b = [ @ B(t). The operator field B is uniquely
determined by b.
Lemma (2.1.16)[80]: (i) If b = [ @ B(t), then ||b|| = sup:||B(®)||-
(i) If b= [@® B(t),c = [ @ C(t), then

rb + sc = f@ (rB(t) + sC(t)),

bc = jEBB(t)C(t).

(iii) If b = [@® B(t), b* = [ @ C(t), then C(t) = B(t)*
(Note that b might be a direct integral operator, without b* being one.)
Now suppose A is a C* -algebra, and S a = -representation of A in

H=[ H,(dmt)*? such that S, = [ @ S is a direct integral operator for each x in 4. It
follows from Lemma (2.1.16) that, for each ¢ in T, the map S®:x - S is a -
representation of A in H,. We then say that S is a direct integral of the S®, and write § =
[& s®
Theorem (2.1.17)[80]: If S = [ @ S® is adirect integral representation of a C*- algebra 4,
then S is weakly equivalent to {S®|t € T}.
Proof. (A) Let t, € T. We shall show that S(¢) is weakly contained in S. Letting & € F, it
is sufficient to approximate

B0 = (588t £ (®)

in the weak* topology by positive functionals associated with S. For each compact
neighborhood U of t,, fy will be a continuous non-negative function on T vanishing
outside U, for which

| Go@yame=1. )
Putting &y () = fy(D)E(D), Py (x) = (Sxéu, &u), we get (note &, € HY):
p00) = [ (5896,@,6,©) dme
(10)
- | (W@ s, @me
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Now ¢, is a positive functional associated with S. By (8), (9) and (10), l}l_r)rgo Py(x) = p(x)

for x € A.
(B) To prove that S is weakly contained in the set of all S® | pick & € H' with
compact support D, and put
d(x) = (Sx §,¢)
(11)

= jD P! (x)dmt,

where ¢t(x) = (S,Et)f (t),&(t))- Itis enough to show that ¢ is weakly* approximated by
finite sums of the ¢¢. But this is evident from the integral (11).

It is of interest to inquire which locally compact groups G have the property—which
we shall refer to as property (R)—that their regular representation weakly contains all
irreducible representations. Godement [85], p.77 has observed that, if the regular
representation of G weakly contains merely the one-dimensional identity representation of
G, then it has property (R). It is well known that this is the case for compact groups and
locally compact Abelian groups. But it is not true for all locally compact groups. Takenouchi
has shown in [99] that, if G is a locally compact group whose factor group modulo the
connected component of the identity is compact, then property (R) holds if and only if G is
of type (C) in the sense of Iwasawa.

In Theorem (2.1.40) we shall determine exactly which irreducible representations of
the n X n complex unimodular group are weakly contained in the regular representation.

The following remark is mildly interesting:

Lemma (2.1.18)[80]: Let L be the left-regular representation of a locally compact group
G(Ly(x) =y xxforx € L,(G),y € L;(G). Then G has property (R) ifand only if [|y|[. =
|, || for all y in L, (G).

Proof. Property (R) holds if and only if the kernel of L on C*(G) is {0} i.e., L is an isometry
on C*(G). For this it suffices to know that L is an isometry on L, (G) with respectto || ||..

A x-representation P of a C*-algebra A is completely continuous if T, is completely
continuous for all a in A. Fix a C*-algebra A.

Lemma (2.1.19)[80]: If T is a completely continuous element of 4, then {T} is closed.
Proof. If I = Kernel (T), A/I is the algebra of all completely continuous operators on
H(T). If S € {T}, Kernel (S) o I, so that S induces an irreducible representation of A/I.
But the latter is well-known to have no irreducible representation other than the identity
map. Hence S = T.
Theorem (2.1.20)[80]: Let T* € A for each i in an index set N. Form the direct sum T =
Yien ® TE Then T is completely continuous if and only if the following three conditions
hold:

(i) Each T is completely continuous;

(i) For each i, there are only finitely many distinct j in N with T* = T/;

(iii) The set G = {T*|i € N} has no limit points in A.
Proof. (A) Assume T completely continuous. Obviously (i) and (ii) hold. To show that G
has no limit points, it is enough to show that it is closed in A. Indeed, if this has been done,
it will follow, since every subrepresentation of T is completely continuous, that every subset
of G is closed in A. But a set all of whose subsets are closed has no limit points.
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Let I be the intersection of the kernels of the T*; then I = Kernel (T). Pick an
irreducible representation S of A whose kernel contains I It suffices to show S € G

We will consider T as a faithful representation of B = A/I, and S as an irreducible
representation of B. Now B is (via T) a C*-algebra of completely continuous operators. By
the structure theorem for such (see [90]), B is isomorphic to the € *-sum

B = 269 B(™,

rew
where each B is the algebra of all completely continuous operators on some Hilbert space.

To each s in W corresponds an irreducible representation S° of B:

Ss:zeaar—uls;

rew
and all irreducible representations of B are of this form. In particular S = some S°. On the

other hand, each T*(i € N) gives rise to a representation of B, and these distinguish points
of B. It follows that all S5 occur among the T* In particular, S occursamongthe T, i.e., S €

g

(B) Now assume (i), (ii), and (iii); let I be the closed two-sided ideal of all x in A lor
which T, is completely continuous. It suffices to show that I = A.

Assume then that I + A. Then A has an irreducible representation S whose kernel
contains I Now S is not a limit point of G, so it is not in the closure of ' = G — {S}. Pick an
x, belonging to the kernels of all T* in G’, but not to the kernel of S.

Now eitherS e GorS ¢ G If S ¢ G, then G’ = G, so that x, € Kernel (T),

i.e., Ty, = 0.1fS € G, then T, is 0 on the subspaces of H(T") corresponding to all T =S,

while, on the subspace of H(T) corresponding to the T = S, T, is completely continuous
by (i) and (ii). Thus in either case T, is completely continuous; and x, € I c Kernel (S).
This contradicts x, & Kernel (5).

A will be an arbitrary fixed C*-algebra.

For each x in A, T — ||T,|| is a numerical function on A. In general, this function is
not continuous. It is, however, lower semi-continuous, as we now show.
Lemma (2.1.21)[80]: If S c Aand T € 4, then T € S if and only if for each x in 4,

ITxll = sugIISxII- (12)
SE
Proof. If T & A, by the definition of closure there is an x in A for which sup||S,|| = 0,

SES
IT,|| > 0. So (1) fails.
Assume T € S. By Lemma (2.1.14) it is sufficient to assume that A has a unit 1.

Again, since || Ty || = || Ty ||, we may assume without loss of generality that x is positive.
Choose & in H(T) so that ||€]|| = 1 and
(T8, 8) Z ITell =< (13)

By Theorem (2.1.12), there exist S,..,8™in S, & € H(SY) (i=1,..,n), and non-
negative 4, , ..., 4,, suchthat ||¢|| =1, X[, 4, = 1, and

{Z 4 (L&, fo} — (T,6,8)

But (SL&;, &) < ||SE]|, so that

<:. (14)
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n n
> hi(sig, &) max||si]| < suplis, . (15)
- i=1 SES

=1
Combining (3) and (4), we get
(T:£,) = supliS | +3. (16)
S
Now (1) follows from (2), (5), and the arbitrariness of €.

From this we immediately obtain:
Lemma (2.1.22)[80]: For each x in A, the function T — ||T,|| is lower semi-continuous,

i.e., if Tt > T in 4, then liminf||T|| Z |IT,ll.
l

Lemma (2.1.23)[80]: For every net {T} of elements of 4, and every element x of 4,
sup||S, |l Z lim sup||T|
SEG i

)

where G is the set of all cluster points of {T'}.
Proof. For each index J, §; will be the closure in A of {T!|i > j}. The §; form a decreasing

net of closed sets, and
G = ﬂ ;. 17)

J
Let]; = Nses; Kernel(S), K = N;eg Kernel(S). I claim that

k=] (18)

J
Indeed, letx & (U;1;) . Since (U;I;) is a closed two-sided ideal, there is a T in A such
that T,, # 0, and

U I c Kernel(T). (19)
]
Since each §; is closed, (19) implies that T belongs to all §;, i.e., T € G. Therefore T, # 0
givesx € K Thus K < (U; ;) . The opposite inclusion is obvious. This proves (18).
Now {/;} is an increasing net of closed two-sided ideals of A. Denote as usual by x/I;
the element of the C*-algebra A/I; corresponding to x. Applying to (18) an elementary
argument valid in all Banach spaces, we have for all x in A

li]m ||x/1j|| = ||x/K]||. (20)
Now, since ||x|| = sup||T,|| in any C*-algebra (see p. 411 of [90]),
TEA

[ /1;|| = suplIS,ll, (21)

SESJ'
ll2x/K || = supl|Sxl- (22)

SEG

Combining (20), (21), and (22), we get for all x,
limsup||S, |l = supl|S,l. (23)

] ses; SEG

But, by the definition of S;,
lim sup||S || 2 lim sup||T{|| = lim sup||T[|-
J ses; ] i>j i

This and (23) complete the proof.
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Theorem (2.1.24)[80]: Let A be an arbitrary C*-algebra, {T*} a net of elements of 4, and S
a closed subset of A. The following two conditions are equivalent:
(i) For all x in A, lim||T}|| = suplISql.

l SES

(i) For all subnets {T'} of {T'}, and all S in A, we have
T'" > Sifandonlyifs € S.
Proof. (A) Assume (ii). Then S is the set of all cluster points of {T*}. By Lemma (2.1.23),
limisup”TxiH = itel}s)”Sx”' (24)

On the other hand, if s € S, we have T* — S, so that by Lemma (2.1.22)
1S, Il < lim inf|| T||.
l
Combining this with (24) we get (i).
(B) Assume (i). Let S° ¢ S; then there exists x in A such that S2 # 0, S, = 0 for all
SinsS. By (i), lim ||| = 0. If at the same time S is a cluster point of {T*}, we pick a
l

subnet { VV} of {T{} for which T"-*S0. By Lemma (2.1.22)
1S2]] < lim inf|T,|| = 0.
J

This contradicts S2 # 0. Thus all cluster points of {T}areinS.
Let SO € S. I claimthat T* — S°. Indeed, if this were not so, there would be a subnet
{T'"} of {T*} and a neighborhood U of S° such that all T'"* are outside U. Hence there would

be an x such that 52 # 0, T,;j = 0 for all j Hence by(i) .
Slelclg)“Sx” = li%n | Tl = li]rn I || =0,
S

which contradicts S2 # 0. Thus every element of S is a limit of {T}.

We have proved that S coincides with the set of all limits, and also with the set of all
cluster points, of {T'}. But this is exactly (ii). The proof is complete.

It may be worth mentioning the status of Lemmas (2.1.22) and (2.1.23) and Theorem
(2.1.24) for an arbitrary Banach *-algebra A. For such an A, one defines the topological
space A, as the set of all irreducible *-representations with the hull-kernel topology. Now
Lemma (2.1.23) is still valid in the general case, but Lemma (2.1.22) is in general false;
consider, for example, the Banach *-algebra of complex functions continuous on the closed
unit disc and analytic in its interior. As for Theorem (2.1.24), it holds whenever Lemma
(2.1.22) does.

Corollary (2.1.25)[80]: If A is a C*-algebra, and {T*} a net of elements of 4, the following
are equivalent:
(i) lim | T:E|| = 0 for all x in 4;

(ii) no subnet of {T'*} converges to any limit;
(iii) 4 has no unit, (TY)* - 7 in A;, and no subnet of {(T*)'} converges to any other
limit.
Proof. Theorem (2.1.24), with § taken as the void set, shows that (i) and (ii) are equivalent.
The equivalence of (ii) and (iii) follows from Lemmas (2.1.11) and (2.1.14).
Theorem (2.1.24) has as a simple corollary a connection between the Hausdorff
property and the continuity of the functions T — ||T,||.
Let the ideal structure space X of A be defined as the set of all kernels of irreducible
x-representations, topologized with the hull-kernel topology. X is obtained by identifying
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elements of A with the same kernel. Since, for T € 4, ||T,|| depends only on the kernel of
T, we may define N, (I) as ||T, || whenever T € 4, Kernel (T) = I
Corollary (2.1.26)[80]: (see Theorem 4.1 of [92]). X is Hausdorff if and only if each N, is
continuous on X.

We fix a C*-algebra A, with dual A. The dimension of a representation S of A4 will be
called dim S, and the trace of an operator B Tr(B).
Lemma (2.1.27)[80]: If {T%} is a net of elements of 4, n is an integer, and dim T* = n for
each i, then {T''} can converge to no more than a finite number of distinct limits, and, for
each such limit S, dim S = n.
Proof. (A) Let T* - S. To prove dim S =n, we give a well-known argument using
polynomial identities (see [91]). Let

B=A / ﬂ Kernel (TY).

Since the elements of B are separated by the T!, B must satisfy the standard polynomial
identity for the n X n matrix algebra. Hence all its irreducible representations are of
dimension = n. But, since S is in the closure of the {T}, its kernel contains N; Kernel (T?);
hence it induces an irreducible representation of B. Combining these facts, we get dim S =
n.

(B) Pick such a positive integer p that there do not exist as many as p linear operators
A, ..., A, on an n-dimensional Hilbert space for which [|4xl| S 1 (k=1,...,p), |4k —
Aj|| =1(k,j=1,..,p; k#j). We complete the proof by contradicting the assumption
that {T*} converges to p distinct limits S, ..., SP.

By (A) and Lemma (2.1.19), each one-point set {S*} is closed in A. Thus, for k =
1, ..., p, there is a Hermitian element x;, of A such that

142, || = S (25)
Let F be the following real-valued continuous function on the reals:
1 if t=1,
Ft)={ tif —-1=t=1,
-1 if t= -1,

Applying F to x;, (see [92]), we have by (25)

IFGON =1, S} = F(Si,) =
Replacing the x,, by the F(x;), we may assume ||x, || = 1. Therefore

ITL ]l =1, foralliandallk =1, ...,p. (26)
Fix k # j. Since S belongs to the closure of all subnets of {T*}, Lemma (2.1.21) gives
1=||sk, || = T ||

Hence there is an i,
such that

T,gk_xj ” = 1/2 for all i > i,. We may therefore pick an i

x'k—T,éj =1/2 forallk,j=1,..,p; k#].

This combined with (26) contradicts the definition of p.

Lemma (2.1.28)[80]: Let {T''} be a net of n-dimensional representations in A, and suppose
S1,52,.., ST are distinct elements of A such that

(i) for all subnets {T''} of {T'},and all S in A, we have T"* - S if and only if S = some S¥;
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(i) for each x in A4, Tr(T}) approaches some limit o(x).
Then there exist positive integers M,, ..., M,. such that
r

Z M, dim Sk <n, 27)
k=1
T
a(x) = z M, Tr(S¥)  forall x in A. (28)
k=1

Proof. By Lemma (2.1.27), r is finite, and dim S* = n. By (i) and Theorem (2.1.24),
lim||T|| = r]£131X||S,’§|| (x € 4) (29)
Denote dim S* by d,,.

(A) Let P, ;(j = 1, ..., dy) be orthogonal one-dimensional projections in H(S®). We
shall first show that there are positive elements x;; in A(k =1, ..,7; j =1,...,dy) for
which

(8) 3, = SqicPij;
(b) There exists i, such that, lor i > i,, the Tx"kj (k=1,..,r;j=1,..,d;) are
orthogonal nonzero projections in H(T*), with dim Txikj. independent of i and ;.

To prove this, we select ).}, d,. distinct positive integers

wiitk=1,..,1; j=1,..,dy),
and put By, = Z?gl wy; Pj. Choose a positive element z of A such that
Sk =B, foreachk. (30)
Pick 1/4 = € > 0. | claim that i, can be found to satisfy the following, which we will call
property (P):

Fori > iy, T} has at least one eigenvalue in each interval [wyj — €, wyj + €], and no
eigenvalue lying outside [0, €] and also outside all [wy; — €, wy; + €].

Indeed: Fix k, j. Yet F be a continuous non-negative function on the reals which is 0
outside [wy; — €, wy; + €], and 1 at wy;. By (30)

Spoo =F(S7) = F(By) = 841Py;.

F(x)
Hence Sy, # 0. So, by (29), lim; || T, || exists and is not 0. Therefore we may choose i,

so that, for i > iy, ||Tf,|| > 0, ie. F(T}) # 0. But the latter implies that T} has an
eigenvalue in [wy; — €, wy; + €].

Thus i, can be chosen to satisfy the first half of property (P).

Now pick a non-negative continuous function G on the reals which is 0 at 0 and at
each wyj(k =1,..,7; j =1,...,dy), and is 1 at all points which lie outside all the intervals
[—€, €] and

[wrj — €, wj + €]k =1,..,7; j =1,..,dy).
Then

Sq

G(x) — G(Sg) = G(Bq) =0,

so that by (29) .
tim|[Té || = 0.
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Now choose i, so that not only does the first half of property (P) hold, but also, for all i >
io, |Téwll = G(TE) <1, ie., T} has no eigenvalues at places where G is 1. Then i
satisfies property (P). Fix this i,.

Now, for (k = 1,...,7; j = 1,...,dy), select a non-negative continuous function K
on the reals which is 1 on [wy; — €, wy; + €] and 0 outside [wy; — 2€, wy; + 2€]. If x; =
Ky;(z), we have by (30)

Sgkj - Kk}'(sg) = Kkj(BQ)
= g1 Px;»
which is (a). If i > i,, then by property (P), Tx"kj = Kkj(TZ") IS a nonzero projection on
H(TY), and all the T,g'kj(k =1,..,7;j=1,..,d) are orthogonal.

Let dj; be the dimension of the range of T, . Now dj; = Tr(T{,),w hich by
hypothesis approaches o(x,;). But a convergent set of integers is eventually constant.
Denoting the eventually constant value of d,"(j by my;, I claim that m,; depends only on k.

Indeed, fix k, and let j; and j, he two of the integers 1,...,d,. Select a partial
isometry C on H(S*) so that CC* = Py, CC" =Py j,;and letu € A, St= 84xC. Then

SCI

(uu*—xp j,)

=0 for all q.

Hence by (29)
”T(luu*—xk.h) | I 0;
so that
Tr(Tyy) = Tr(T%, ;) - 0.
Similarly

| | Tr(Tge) = Tr(Ti, ) - 0.
But Tr(T,.,-) = Tr(T..,), so that
Tr (T, ) = Tr(TE ) ~0.
But this means that m,, ; = m, ;,, which proves that m,; depends only on k. Write m,, for
mkj.
(B) I claim that the m, thus defined have the properties (27) and (28).
Indeed, for large enough i, the T,g'kj. are orthogonal projections in H(T*) of dimension

my,. Hence
r
n ; ka = kadk,
k,j k=1
which is (27).

Consider now any Hermitian element x of A such that
Py;S¥ = SxPy; (k=1,...,7;j=1,...,dy). (31)
Then for suitable real A ;, we have Sf = ¥; A, ;Py;. Now look at u = x — ¥, ; Ak xy;. We

have
Sy = zlquqj a Z’lkfsgkj =0
J k.j

by (a). Hence by (29),
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lim Tr(T) = 0.
l
Therefore,

0 = lim{ Tr(T}) — Z A Tr(TL, )
1 y ]

r dg
— lim { Tr(T%) — Z M, z A
l
k=1  j=1

T
= lim {Tr(T,;') — z my Tr(sf)} :
l
k=1
from which follows (28).

Now, for any preassigned Hermitian x in A, there is a set of Py ; for which (31) holds.
Thus (28) will be established if we show that the m,, are independent of the Py ; with which
we start. For this, choose a Hermitian x so that S¥ is the identity operator on H(S*), while
Sl = 0for q # k. This x satisfies (31) for any set of Py ;. Hence using this x in (28), we
have

o(x) = myd,.

Thus m, is independent of the choice of the P, ;. We have therefore shown that (28) holds
for all Hermitian elements, and hence for all elements. The proof is complete.

If A has a unit 1, then equality holds in (27). Indeed, substituting x = 1 in (28), we
have o(1) = n, Tr(Sf) = dim S*.
Theorem (2.1.29)[80]: Let {T'} be a net of n-dimensional representations in A (n finite),
and let S%, ..., S™ be distinct elements of A such that for all subnets {T'} of {T}, and all S
in A, we have T'* — S if and only if S = some S*. Then there exists a subnet {T"} of {T},
and positive integers m,, ..., m,. such that

r

z m,dim S¥ = n, (32)
k=1
and
r
lim Tr (T,)) = Z m, Tr(SK) (33)
k=1
for all x in A.

Proof. For fixed x in A4, |Tr(Tl)| n||x|| for all i. Hence, picking a universal subnet (see

[93]) {T"/} of {T''}, we find that Tr(TxJ) converges to some limit for each x in A. Now {T"/}
satisfies the hypotheses of Lemma (2.1.28); and the conclusion of that lemma gives the
theorem.

The following example shows that in Theorem (2.1.29) the subnet {T"'/} is unavoidable;
in general, (32) and (33) cannot be satisfied with the original {T*}.

Let A bethe C*- algebra of aII sequences x = (x(l) x®), ... ) of 2 x 2 complex matrices
satisfying: (i) 11m x = llmx = 0; (i) 11m x = llm xéi”l) exists; call it o(x); (iii)

lim xéi‘) = 0. Note that o isa onedlmensmnal representatlon of A. If T( is the irreducible

1—00
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representation sending x into x™, we have lim Tx(")” = |o(x)| for x € A; so that, by
n—-oo
Theorem (2.1.24), the hypotheses of Theorem (2.1.29) are satisfied with {S%,...,5"} = {o}.

On the other hand, TrTx(n) — o(x) and 20(x) as n — oo through even and odd values
respectively.

Corollary (2.1.30)[80]: Let {T} be a net of elements of 4, all of dimension equal to or less
than the integer n; and let S1, ..., S be distinct elements of A such that T* —; S* for each

k. Then
T
Z dim Sk = n.
k=1

Proof. Pick a universal subnet {T"/} of {T*}. Then dim T"/ is eventually equal to some m =<

n; Tr(T;j) approaches a limit for each x in 4; and {S%,...,5"} can be enlarged to a set
{1, ...,5%} (finite by Lemma (2.1.27)) for which (i) of Lemma (2.1.28) holds. Then the
hypotheses of Lemma (2.1.28) hold for {T"/} ; and the conclusion of that lemma gives

r

L
Z dim S < z dim S¥

k=1
Z m,dim S* = n.

Corollary (2.1.31)[80]: see Theorem 4.2 of [92] If all irreducible representations of A are

of the same finite dimension n, 4 is a Hausdorff space.

Proof. By Corollary (2.1.30), no net of elements of A can converge to more than one limit.

Corollary (2.1.32)[80]: If {T!} is a net of n-dimensional elements of A (n finite), and

S1,...,St are distinct elements of A for which (i) T! —; S* for all k =1, ...,r, and (ii)
r_,dim S* = n; then, for all x in 4,

lim Tr (T}) = z Tr (S).
l

Proof. If the conclusion fails, there is an x in A, and a subnet {T"/} of {T'}, such that

Tr(T,”) eventually lies outside some neighborhood U of Y%_, Tr (S¥). By (ii) and
Corollary (2.1.30), no subnet of {T*}, hence no subnet of {T'/}, can converge to any element
of A distinct from the S*. Hence the hypotheses of Theorem (2.1.29) hold, and there are a
subnet {T"'P} of {T'/}, and positive integers m;, ..., m,, such that

r

z m,dim S¥ = n, (34)
and )
T
lign Tr(T"?) = z m, Tr (SK). (35)
Now (ii) and (34) give m;, = 1. But then (35) contradicts the definition of {T'7}.

The contain a partial converse of Theorem (2.1.29) (Corollary (2.1.38) of Theorem
(2.1.36)).
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Let H be an arbitrary Hilbert space, with bounded linear operators A, B, C. Denote the
range of A by rng A, and the dimension of rng A by dim rng A. We will easily verify the
following lemma:

Lemma (2.1.33)[80]: Suppose dimrng A = n, dimrng B = m. Then dimrng A* = n, dim
mg (A + B) = n+m, dim rng (AC) = n, and dim rng (CA) = n. There is a projection P
such thatdimrng P = 2n, and PAP = A.

Now let A be a C*-algebra, and G a fixed family of x-representations of A. An element
x of A is boundedly represented in G if there is an integer n such that dimrng T,, = n for all
Ting.

Lemma (2.1.34)[80]: The elements of A which are boundedly represented in G form a self-
adjoint two-sided ideal of A (not necessarily closed).
Proof. By Lemma (2.1.33).
Lemma (2.1.35)[80]: Let x be a positive element of A which is boundedly represented in
G.1f S € G, and {T*} is a net of representations in G, such that, forallm = 1,2, ..., we have

lim Tr (Tim) = Tr(Sym), (36)
then

lim||T¢]| = 11Sll.

Proof. By Lemma (2.1.33) and bounded representedness, choose an integer n, an n-

dimensional projection P! in H(T"), and an n-dimensional projection Q in H(S), so that
Ti = PTIPY, S, =QS5,Q.

Since x =0, T = 0; let A}, ..., 24 be the eigenvalues of T} in rng P'. Similarly, let

Uy, ..., Uy DE the eigenvalues of S, inrng Q. Then

Tr(Tim) = Z(Aa)m

Tr(Sym) = z ™.

Taking mth roots of (36), we have for each m

n 1/m - n 1/m

lim [Z(A;;)m] - zukm] (37)

k=1 L k=1

But

n E 1/m
|| = max 2, = [z(/l;;)m = n/m = |74, (38)

1/m
1Sxll = max w = 2# ] = /M = ||S,]l. (39)

Combining (37), (38), and (39), and Iettlng m become arbitrarily large, we obtain the
conclusion of the lemma.

Theorem (2.1.36)[80]: Let G be a family of =-representations of 4, S an element of G, and
{T*} a net of elements of G. Suppose A contains a dense self-adjoint subalgebra B such that
(i) every x in B is boundedly represented in G; (ii) for every x in B, li{n Tr (Txi) = Tr(S,).

Then, for every x in 4,

67



lim||T¢]| = 11Sll. (40)
Proof. For positive elements x of B, (40) follows from Lemma (2.1.35). This, together with

Tl = I and the same for S, implies. (40) for all x in B. By continuity and

denseness, (40) holds for all x in A.

Corollary (2.1.37)[80]: Let G, B, {T*} be as in the theorem. If limTr(T.) = 0 for all x in
l

B, then limTr(T}) = 0 for all x in A.
L

Proof. Take S to be the zero representation in the theorem.

Corollary (2.1.38)[80]: Assume that A has a dense self-adjoint subalgebra B such that
every x in B is boundedly represented in A. Let {T*} be a net of elements of 4, and
S1,...,S" afinite sequence of elements of A (not necessarily distinct), such that for all x in
B,

limTr (TY) = ) Tr(SK. (41)

Then, forall Sin 4, Tt —; S if and only if S =some Sk,
Proof. Let G be the set of all direct sums of at most r elements of A. Then B is boundedly
represented in G. If S° = S1@ ... @ S7, then S® and T* all belong to G, and, by (41), we may
apply the theorem to conclude, for x in A4,

lim||7]| = 1521l = maxg, |S¥]|.

Now Theorem (2.1.24) gives the required conclusion.

A semi-simple connected Lie group with a faithful continuous matrix representation.
Let U be a maximal compact subgroup of G. Fix Haar measure dg in G and du in U (du
being normalized so that U has measure 1). Then, for x in L;(G) and y in L, (U), there are
natural convolutions x =y and y * x, both lying in L;(G). This is a special case of the
definition of the convolution of finite measures on G (see [85]).

Denote by E the family of all minimal central projections inL, (U) (see [93]).

The convolution on L;(G) X L,(U) can be extended to a convolution on C*(G) X
L;(U). Indeed, if x € L,(G),y € L, (U), and T is a unitary representation of G,

Ty || = 1T Tl = (T [ 1Tl S MYl on XNl 6.
Hence ||y * x|lc+g) = Iyl @ llxllc+): and similarly for x = y. It follows that x * y can
be defined on C*(G) x L, (U) so as to be jointly continuous in both variables; and similarly
for y = x. The equations Ty, = T,/ T), T,., = T, T, are preserved under this extension.

Since finite linear combinations of elements e xy (e € E, y € L;(U)) are dense in
L, (U), we easily obtain:

Lemma (2.1.39)[80]: Finite linear combinations of thee x x * f (e, f € E, x € C*(G)) are
dense in C*(G).

Now it is proved in [87] that, for each e in E, the subalgebra e * L, (G) * e satisfies a
standard polynomial identity. Since this subalgebra is dense in e x C*(G) * e, we have:
Lemma (2.1.40)[80]: For each e in E, e * C*(G) * e satisfies a standard polynomial
identity. Consequently there is an integer n such that every irreducible representation of e *
C*(G) = e is of dimension equal to or less than n.

Let T be an irreducible representation of G, or, equivalently, of C*(G). For e in E,
T,..«e leaves the range of T, invariant and annihilates its orthogonal subspace.

Lemma (2.1.41)[80]: T restricted to e * C*(G) * e is irreducible on the range of T,.
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This is proved as [87].

Now let B’ be the set of all finite linear combinations of elements e x x « f (e, f € E,
x € C*(@)).

Lemma (2.1.42)[80]: B’ is a dense self-adjoint subalgebra of C*(G). Every element of B is
boundedly represented in G (= C*(G))".
Proof. By Lemmas (2.1.39), (2.1.40), and (2.1.41).

This lemma of course connects with Theorem (2.1.36) and its corollaries.

We shall be considering the n X n complex unimodular group G = SL(n), the group of
all complex n X n matrices of determinant 1 (n being fixed). The irreducible unitary
representations of G belonging to the various principal and supplementary series, as well as
their characters, are described in [84]; and are proved in [96] to exhaust all of G. We find
the topology of G. The principal tool for this will be Corollary (2.1.38) of Theorem (2.1.36),
applied to the characters of the representations.

It is shown in [84] that the elements of G may be specified by parameters as follows:

By a (proper) set of parameters we shall mean a triple v, u, p, where, for some r =
1,2,...,n,V="Vy,Vy, ..,Vyp, U = Uy, U, ..., iy, aNd p = py, p5, ..., p, are three r-termed
sequences satisfying:

(i) The v; are positive integers satisfying Y./_; v; = n;

(ii) The y; are integers;

(iii) The p; are complex;

(iv) For some permutation p of {1, ... ,r}, and some non-negative

integer T such that 0 =27 =r, we have: (a) vpu tor i=1,..,2t; (b) for g =
Lo T lp2g-1) = Hp2q) Pp2q-1) = Pp2qy 0 <IMppgy <1 ; () for i=27+
1,7, ppy Is real.

In case v, u, p satisfy (i), (ii), (iii) and (iv'), where (iv') is obtained from (iv) by replacing in
(b) “0 < Im py2q) < 17 by “0 < Im p,24) = 1,” we shall speak of v, u, p as an extended
set of parameters.

Fix an extended set of parameters v, i, p. The sth block of integers (with respect to v)
will betheset {v; + -+ ve_1 +1,---,v; + -+ v} If g € G, let g5, he the submatrix of g
consisting of the rows of the sth block and the columns of the tth block. Define K to be the
subgroup of G consisting of those k for which k;; = 0 whenever s > t (triangular block
matrices). Finally, denote by X the complex homomorphism of K:

r

ﬂ"‘lp —Ui
X(k) = 1_[|Aj| A, (42)
j=1

where A; = det(k;;). Obviously, K and X depend on v, y, p.

If v, u, p is a proper set of parameters, the homomorphism X of K induces an irreducible
unitary representation T = TV#P of G (see [84]); these exhaust all of G (see [96]).

There are equivalences among the TV#? as follows:
Lemma (2.1.43)[80]: TV#P = TV'#'P" if and only if (a) the length r of the sequences
v, i, p is equal to the length of v, u’, p’, and (b) there exist a permutation p of {1,---,7}, an
integer m, and a real s, such that, fori = 1,---,r, we have

Vi = Vo) Hi = B Pi = Pp@) t5-
The representations TV#* are classified into series as follows, in accordance with the

values of r,v4, -+, v,., and :
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In view of Lemma (2.1.43), we assume, without loss of generality, that v, = v, =
-+ 2 v,.. 11 this is so, the (v4, -+, v,; T) series will be the set of all TV** having the given v
and the given value of . Each T in G lies in one and only one such series. If T = 0, the
series is principal; otherwise it is supplementary, If r =n and all v; = 1, the series is
nondegenerate; otherwise it is degenerate.

For example, if n = 2, the elements of G are classified as follows:

(i) The principal nondegenerate series: 7 =0, r = 2,v; = v, = 1. By Lemma (2.1.43), the
representations of this series are determined by m = u, — u, and r = p; — p,. We write
TVHP = T™" in this case where m and r run over the integers and the reals respectively.
One has T™" = T™'"" if and only if eitherm = m’, r =1 orm = —m/, r = —1".

(i) The supplementary nondegenerate series: t=1,r=2, v, =v, =1. By Lemma
(2.1.43), we may take u; = u, =0, p; = —is, p, =is, where 0 < s < 1. Writing T* for
TV#P we have T = TS ifand only if s = s

(iii) The principal degenerate series: T = 0, r = 2, v, = 2. This contains only the identity
representation 1.

Let Q,- be the family of all extended sets of parameters with sequences of length r.
As a subset of 3r-dimensional complex space, Q,- acquires a natural topology. The set Q =
m_, Q,of all extended sets of parameters has a natural topology as the direct sum of the
Q,-; with this topology we call it the extended parameter space. The family P of all proper
sets of parameters is a dense subspace of Q, called the (proper) parameter space.

Define an equivalence relation ~ in Q by requiring that (v, u, p)~(v', u’, p") if and
only if conditions (a) and (b) hold in Lemma (2.1.43). The set Q of equivalence classes of
~ inherits a natural quotient topology from Q, which is clearly locally compact and
Hausdorff. The set P of those equivalence classes which are contained in P is a dense subset
of Q. The topology of @ relativized to P will be called the natural topology of P. By Lemma
(2.1.43) P is in one-to-one correspondence with G. The topology of G transferred to P will
be the hull-kernel topology of P. We may sometimes fail to distinguish corresponding
elements of P and G.

It is shown in [84] that each T in G is characterized by a complex function y = 7 on
G, called the character of T, and given by

24X (§©9) [Ty [P (8°)| | det 5
y(8) 6] (43)

The notation in (43) will first be explained. Let v, u, p he a set of parameters for T,
the sequences being of length r.

If 5 is a diagonal n x n matrix, and s is a permutation of {1, ---,n}, then § will be
the diagonal matrix (§));; = 85¢)sqiy- If i = 1, -+, 7, then &; will mean &;;; and 5% means
(6©)),. Denote by Z the group of permutations of {1, ---,n} which leave setwise invariant
each ith block of integers with respect to v(i = 1,-:-,7). The symbol };; means summation
over a set of permutations s of {1, ---, n} which contains exactly one permutation from each
left coset sZ. The X is the complex homomorphism defined in (1). D(6) is the discriminant
of the characteristic equation of §, i.e., for a diagonal n xn matrix §, D(§) =
Yasicjzn(8; — 8 (if (n =1, D(6) = 1).

Clearly y(6®)) = y(8) for each permutation s of {1,---,n}. If g is a matrix in G
whose eigenvalues are all distinct, we may define y (&) without ambiguity by setting y(g) =

Vi
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v(8), where § is any diagonal matrix whose diagonal elements are the eigenvalues of g. The
y so defined (on almost all of G) we call y* or yV#~,

Lemma (2.1.44)[80]: If x is of the form y * z, where y, z are continuous complex functions
with compact support on G, then for each proper set of parameters v, y, p,

Tr(T,*") = j x(g) Y+ (g)dg.
G

For this lemma, see [84].

Now (42) and (43) will be used to define y = y¥#* as a function on G even when
v, 4, p is only an extended set of parameters. A routine verification gives:
Lemma (2.1.45)[80]: If (v,u,p) and (v',u’,p’) are in Q, and (v, u, p)~(v', ', p"), then
yVHP = VV’,M’,p’_

In view of this lemma, y9 may be considered as defined for the equivalence classes
g belonging to Q. Indeed, if (v, i, p) € q € Q, ¥ = yVHP,
Lemma (2.1.46)[80]: If g € Q, {q'} is a net of elements of Q, and q* — q in the natural
topology of @, then, for each bounded function x on G with compact support,

f x(@) 7 (g)dg - f x(9) v (g)dg, (44)

Proof. Since Q has a countable basis of open sets, it is enough to suppose that {g‘} is a
sequence.
As g in G ranges over the compact support of x, its eigenvalues also range over a

compact set. Hence y9(g) and the yqi(g) are all majorized by a constant times 1/|D(6)] ;

and the latter is summable over any compact subset of G. Further, it is clear that yqi(g) —
v%(g) lor almost all g. Equation (44) now follows from the Lebesgue dominated-
convergence theorem.

Lemma (2.1.47)[80]: {g‘} is a net of elements of Q converging to the point at infinity of Q,
then, for each bounded function x on G with compact support,

| @' @dg—0 (45)

Proof. 4 being the diagonal subgroup of G, it is clearly possible to decompose Haar measure
dg thus:

fG f(g) dg = jA dg fG F(g768) dg (46)

where dé is Haar measure on A, and ps is some measure on G depending on 6.
Let g contain the extended set of parameters (vi,ub, p'); and let X' be the
homomorphism (42) corresponding to this set. In proving (45) it is clearly sufficient to

suppose the vt are all the same. Substituting the definition of yqi into (46), we find that
[ x(g) y? (g)dg is the sum of a finite number of terms (the number being independent of i),
each of which is of the form
f XL (8)L(6)dS, (47)
A
L being summable on A and independent of i.
Now Xi(8) = X{(8)X5(8) where Xi(8) = (X'(6))/(|X'(®)]), Xi(8) = |x(®)] .
But X! is a character belonging to the dual group A of the commutative group A. As g° — oo
in Q, it is easy to see that X! — oo in A. If X. were independent of i, the desired conclusion
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that (47) approaches 0 in i would follow from the well-known theorem that the Fourier
transform of a summable function L on A is 0 at oo (in A). On the other hand, though X3
does depend on i, we have |ImpL| = 1 ; and a uniformity argument shows that the desired
conclusion follows in this case also.

Let g be an element of Q — P. Then the function y? is not the character of any
representation. We shall show that y? is the sum of a finite number of characters of
representations. It will turn out that the non-Hausdorff character of G arises from this sum
formula.

Suppose that v, u, p is an extended, but not a proper, set of parameters; in fact,
suppose that vy = v, =1, uy =, = U, py =0 —1,p, =0 +i.Z; and S will denote a
cross-section of left Z cosets, i.e., a set of permutations of {1, ---,n} containing exactly one
element from each left coset sZ. Let § be a diagonal matrix in G; 6].(5) means the same.

By (43), yV'*P = y is given by
r
|D(5)| y(6) = Z 1_[ {ldet6j(s) |Ilj=in_Vj(det5j(S))—l~lj |d€t(6j(5))|}.

SES j=1
For eachu,v =1, --,n, u # v, we define S(u, v) to be the set of all s in S for which
s(1) = u,s(2) = v. Noting that S = U+, S(u,v), we transform the last equation to
n

DOIVE = D [[6ul#* o6 8147281

u,v =1;u%v
r

x > | | tidets® pumiervicdet sy i D))
seS(u,v) j=3
(48)
= > LBl 8 S #2868y

u<v

r
x Z 1_[ |det 5 17105V (det 6)#1| D(5S)]]
seS(u,v) j=3
Now let v' = (2,vo, -+, vp), ' = (W, u3, -+ 1y), , p' = (0,p3,+, pp),. If Z" is the
group of permutations of {1, ---,n} leaving setwise invariant the blocks with respect to v’,
then " = U} , —1.u<» S(u, v) is a cross-section of left Z' cosets. Therefore, abbreviating

YV P 10y, we have
ID(&)|y'® = Z 8w #1772 (8 Bu) ™ |8y — S

u<v

(49)
T
x z 1_[ det 8 [#r+i05vi (det 5) | D61}

seS(u,v) j=3
Note that for any complex x, y,
1 1 |x—yv|? X
2t~ yz =2 2 T 2"
x| |yl lxyl x|yl*>  ylx|
Equations (48) and (49) thus give
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DO (Y& =Y (®) = ) {180l 84 7 8y l1072 6,4

U+v
r

x z 1_[ det 8 [Kr+er~vi(det 5) | D))
seS(u,v) j=3
= [D(&)Iy"(6),
wherey"" =yV #* P and v" = v,
p' = (u +Lu— Ly u),  pl=(0,0ps,pr)

We thus obtain
]/V#P—]/V# P _|_]/V”/i”p” (50)
For convenience we describe an extended set of parameters v, i, p by a 3 X r matrix
vl vz cee vT'
A=l p2 - ur], (51)
P1 P2 Pr

and write y4 for y¥#?. Now, iterating (50), we obtain the following lemma:
Lemma (2.1.48)[80]: If

1 1 1 1 -1 1 gy Vg
A=| W My Ha 2% R /7% Mr  Horyr “T], (52)
O-l_i O-1+l O-Z_i O-2+l O-T_i O-T‘I‘l p2T+1 pr

we have y4 = Yy ..y ¥ M MR where
Vor+1 Vy
R = [MZT+1 Hr] (53)
P2r+1 " Pr
and each M;(j = 1,---, 7) runs over the two possibilities
O; 0;

2
[Mj] and
j j j L
For illustration, let us apply Lemma (2.1.48) to the 2 X 2 case. Here Q — P contains exactly
one element g, described by the matrix

1 1
0 O0F;
-1 1

q is the limit, in the natural topology, of the representations T (of the supplementary series)
ass — 1. Since

corresponds to the identity representation I, and

: :fl

to the representation T2 of the principal series, Lemmas (2.1.46) and (2.1.48) give
lim y™° =y9 =y + 97, (55)

s—>1—

We are now ready to describe completely the hullkernel topology of P (= ).

If A is the matrix of v,u,p (see (51)), let [A] he the point of Q to which v, u,p
belongs.

1 1
M; +1 M,-—1]. (54)
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Theorem (2.1.49)[80]: With each point q of Q, we associate one or more points of P as
follows:
(i) If g € P, with q is associated just q itself;
(ii) If g € Q — P, q = [A], where A is the matrix (52), with |Im p;| < 1 for j > 27, then
with g are associated precisely the
[M; - M.R],

where R is as in (53), and each M; runs over the two alternatives (54).

Now if A c P, the hull-kernel closure of A consists exactly of those p in P which are
associated with some ¢ in the natural closure of A (with respect to Q).
Proof. Recalling the definition of E, we define B as the set of all finite linear combinations
of elements e xx*y * f, where e,f € E, and x and y are continuous functions with
compact support on G. Since the x = y are dense in C*(G), B is dense in B’; hence, by
Lemma (2.1.42), B is a dense self-adjoint subalgebra of C*(G), all of whose elements are
boundedly represented in G. By Lemma (2.1.44),

Tr(T;’“’p) = j x (gyVH*P(g)dg for x € B. (56)
G

Let A c P If q belongs to the natural closure of A (in Q), there is a sequence {q™} of
elements of A with g™ — q. By (56) and Lemma (2.1.46),

lim Tr(rd) = f x (2)y(g)dg

for x € B. By Lemma (2.10.48) and the definition of associated elements, this implies that
forx € B,

lim Tr Tq =Tr EEBTQ , (57)

where g’ runs over the elements of P which are assouated with q. This combined with
Corollary (2.1.38) of Theorem (2.1.36) shows that every g’ associated with g belongs to the
hull-kernel closure of A.

Conversely, let p in. P belong to the hull-kernel closure of A. Select a net {p'} of
elements of A converging hull-kernelwise to p. Now no subnet {p"*} of {p*} converges (in
the natural topology) to the point at infinity of Q. For, if it did, Lemma (2.1.47) and
Corollary (2.1.38) of Theorem (2.1.36) would tell us that {p’*} converged hull-kernelwise
to no limit at all; which is impossible.

Thus all natural cluster points of {p} are in the finite part of Q. Let g be such a cluster
point; and {p'*} a subnet of {p*} converging naturally to q. Again by Lemmas (2.1.46) and
(2.1.48), and Corollary (2.1.38) of Theorem (2.1.36), {p'} can converge in the hull-kernel
topology to no p’ except those associated with g; and the same is true of {p‘}. We have
shown that every point p in the hullkernel closure of A is associated with a point in the
natural closure of A. This completes the proof.

For illustration, consider the 2 x 2 case. We see that Q with the natural topology is
homeomorphic to the subset W of the plane consisting of:

(i) all (m,r), where m is a positive integer and r is real;
(i) all (0,7) where r = 0;

(iii) all (—s,0), where 0 < s = 1;

(iv) an isolated point, say (—2,0).
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Here the (m,r) or (i) or (ii) corresponds to the representation T™" of the principal series;
(—s,0) corresponds to the representation T° of the supplementary series for 0 < s < 1;
(=2, 0) corresponds to the identity representation I; and (—1, 0) corresponds to the one and
only point of Q — P. (—1,0) is associated with (—2,0) and (2, 0).

Corollary (2.1.50)[80]: In the 2 x 2 case, transfer the hull-kernel topology of G to the
subset W of the plane by means of the above correspondence. If A c W — {(— 1,0)} the
hull-kernel closure of A is equal to

(a) the natural closure 4 of A unless 4 contains (— 1,0);

(b) (A —{(— 1,00D U {(-2,0),(2,0)}if A contains (— 1,0).

From Corollary (2.1.50) we see that G is not Hausdorff. In fact, if s > 1—, T*

approaches both I and T%°. The same is true for the group G with general n. However, the
deviation from the Hausdorff property is rather weak, as is shown by the next corollary:
Corollary (2.1.51)[80]: If G is the n X n complex unimodular group, no net of elements of
G converges to more than 2[™/2 distinct limits.
Proof. By an argument exactly similar to the second half of the proof of Theorem (2.1.49),
for each net of elements of G there is a g in Q such that every limit of the net is associated
with g. But, by the definition of associated elements, the largest number of elements in P
associated with any one q in @ is 2"/2].

Recall that each extended set of parameters v, u, p, hence each q in Q, is associated
with a certain value of t, called its t-value, namely, half the number of nonreal terms in the
sequence p. Let Q, be the set of g in Q having T —value 7. The following fact is immediate:
Lemma (2.1.52)[80]: An element ¢’ associated with a g in Q, has  -value 7’ < .
Corollary (2.1.53)[80]: The topology of G relativized to the set A, of those representations
having fixed t -valued t, is Hausdorff.

Proof. Consider 4., as a subset of P. If B c A,, denote by B and B* the closure of B in the
natural and hull-kernel topologies respectively. It follows from Theorem (2.1.49) and
Lemma (2.1.52) that

BnA,=BinA,.
Hence the hull-kernel and the natural topologies coincide when relativized to A,. Thus the
former is Hausdorff on 4.
Corollary (2.1.54)[80]: The topology of G, relativized lo the union of all the principal
series, is Hausdorff.
Proof. Put T = 0 in Corollary (2.1.53).
Corollary (2.1.55)[80]: For each fixed t,, the set G(z,) of all T in G with T -values equal
to or less than to is closed in G.
Proof. By Lemma (2.1.52).

Note that r = [n/2] is the largest permissible value of 7. Corollaries (2.1.53) and

(2.1.55) show that the sequence
g(O),g(l), A'g(r) = é

is an ascending sequence of closed subsets of ¢ such that each G(i) — G(i — 1) is Hausdorff
in the relativized topology of G. An easy argument (see [92]) now shows:
Corollary (2.1.56)[80]: There is a finite increasing sequence

IO = {O}r 11,12,"',Ir = C*(G)
of closed two-sided ideals of C*(G) such that each I;/I;_y(i = 1,---,r) has a Hausdorff
structure space.
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Corollary (2.1.57)[80]: A subset A of G which (considered as a subset of Q) is closed in the
natural topology is also closed in G, and is Hausdorff as a subspace of G.

Proof. The closure of 4 in G follows immediately from Theorem (2.1.49). If B c 4, the
hull-kernel closure of B is equal to the natural closure. Thus the hull-kernel and natural
topologies relative to A coincide, and the former is Hausdorff.

Corollary (2.1.58)[80]: Each principal series is a closed subset of G.

Proof. By Corollary (2.1.57).

It is well known (see [84]) that the regular representation L of G is a direct integral of
representations of the principal non-degenerate series. In fact, if G is the locally compact
Hausdorff space consisting of the principal nondegenerate series (see Corollary (2.1.58)),
then

L=L®(NO-T)

with respect to a measure on G whose closed hull is G. By Theorem (2.1.17), L is weakly
equivalent to the set of all X, - T, T € G; hence (see remark preceding Theorem (2.1.15)) L
Is weakly equivalent to G. It follows that the spectrum of L (see Theorem (2.1.15)) is the
closure of G in G, i.e., G itself.
Theorem (2.1.59)[80]: The spectrum of the regular representation of G is precisely the
principal nondegenerate series.

Thus G is an example of a locally compact group whose regular representation does
not weakly contain all irreducible representations.

Theorem (2.1.59) also shows that the implication (i) — (iii) in Theorem (2.1.2) fails
for general Banach *-algebras. Indeed, let A be obtained by adjoining a unit element to the
group algebra L, (G), G being as usual the n X n unimodular group. Let T be an element of
G not belonging to the principal nondegenerate series; and consider it as acting on A. If a
positive functional ¢ on A associated with T is a weak™ limit of sums ; of positive
functionals on A associated with the regular representation L, an easy argument shows that
Y; = ¢ weakly™ even after ip; and ¢ are extended to C*(G); and hence that the regular
representation weakly contains T. But this is untrue by Theorem (2.1.59). Therefore
condition (iii) of Theorem (2.1.2) fails, when A, T are as defined above, and § consists of L
only. On the other hand, L is well known to be faithful on A; so that (i) holds. Thus the
implication (i) — (iii) fails in this situation.

One naturally asks what is the relationship between the topology of G discussed and
the Borel structure on G defined by Mackey in [94].

Corollaries (2.1.51) and (2.1.56) of Theorem (2.1.49) have shown that the departure
in G from the Hausdorff property is fairly weak, when G is a complex unimodular group.
Presumably the same result is true for arbitrary connected semisimple Lie groups with
faithful matrix representations.

Form the detailed study of the structure of the group C*-algebras of semi-simple
groups, or, more generally, of C*-algebras A whose irreducible representations are all
completely continuous. Perhaps, as suggested by Kaplansky in [94], the cases where the
structure space is Hausdorff form the appropriate building-blocks for the general case. If so,
it would appear that further progress must take two directions: (a) the analysis of A4, in case
A is Hausdorff, in terms of fibre bundles with A as base space; (b) the extension
problem—how a construct A when I and A/I are known (I being a closed two-sided ideal
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of A). We made some headway in problem (a), in the case that all irreducible representations
are of the same finite dimension.
Section (2.2): Type |

In [92], Kaplansky studied the class of those C* -algebras 2 such that every
irreducible representation of 2 maps 2 into the completely continuous operators (CCR
algebras). He proved that such an algebra 2 has a composition series {5, } (an increasing
family {J,} of ideals indexed by the set of ordinals less than or equal to some ordinal y,
such that 3o = 0, 3, = W and if a is a limit ordinal then Uz, Jp is dense in ) such that

the Jacobson structure space X, of J,+1/3, 1S Hausdorff. Kaplansky proved that X, is
locally compact and that J,..1/3, is closed under multiplication by continuous functions
on X,. CCR algebras are not the most general algebras with such a composition series, and
Kaplansky called a C*-algebra GCR if it has a composition series {J,} such that each
Ja+1/34 1S CCR, or equivalently a composition series {5, } such that each J,.1/3, 1S CCR
and has a Hausdorff structure space.

If @ is a representation of a C*-algebra 2, then ¢ is type I (resp. II, III) if the weak
closure of @ () is of type I (resp. II, III) in the sense of Murray and von Neumann. If all
representations of 2 are type I then we say a is type I. The C*-group algebras of many
locally compact groups are known to be type I.

We show that if 2 is a separable C*-algebra then 2l is type I if and only if 2 is GCR
and 2 is type I if and only if 2« has a smooth dual (Theorems (2.2.7) and (2.2.8)). We also
find a number of other conditions which for separable C*-algebras are equivalent to being
type I (Theorems (2.2.7) and (2.2.8)). We devoted to the proof of Theorems (2.2.7) and
(2.2.8). We show that the structure space of a GCR algebra 2L is T; if and only if 2 is CCR.
We derive necessary and sufficientc onditions for a C*-algebra 2 to have the property: every
w*-limit point of the pure states of 2 is proportional to a pure state of 2 (Theorem (2.2.16).
It is necessary but not sufficientt hat such an 2 be CCR with a Hausdorff structure space.
We apply the technique of the proof of Theorem (2.2.7) to show that there are
representations of the commutation relations of quantum field theory which generate factors
of type 11, (resp. III). A result of this nature has been announced by Garding and Wightman
[118] but the proof has not been published. We find an analogue for C*-algebras of a
theorem of Bishop and DeLeeuw characterizing the Choquet boundary of a uniformly closed
separating subalgebra of C.(X) [101]. This is a simple application of Lemma (2.2.2).

If a C*-algebra 2L has no non-zero GCR ideals (ideals which as sub- algebras of I are
GCR algebras) then we call 2l an NGCR algebra. Kaplan- sky proved [92] that any C*-
algebra 2 contains a largest GCR ideal A and W/9 is an NGCR algebra. In Theorem (2.2.7)
we find a number of properties which for separable C*-algebras are equivalent to being
NGCR. A major step in the proof of this equivalence and, in fact, in the proof of Theorems
(2.2.7) and (2.2.8) is Lemma (2.2.4). Lemma (2.2.4) states that an NGCR algebra contains
an “approximately ascending” sequence of “approximate matrix algebras” of order 2, 4,
-+, 2™, .- It follows that NGCR algebras behave in many ways like von Neumann algebras
of type II and III (von Neumann algebras of type II and III are NGCR, see [106]). The
infinite tensor product A = [[72, ® A, (owhere A, is an arbitrary C*-algebra, and 2 is a
2 X 2 matrix algebra for i # 0 seems to come closer to approximating the structure of an
arbitrary NGCR algebra.

The hypothesis of the lemma should be strengthened to include the assumption: If
f(A) =0 for all f in P then A= 0. Under the augmented hypothesis, 2 is order
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isomorphic (in the natural fashion) to a linear space of functions on P and so the proof cited
in [106] proves this weakened Lemma (2.2.7). It should not be difficultt o verify that the
extra hypothesis is satisfied each place that Lemma (2.2.7) is used in [106].

A C*-algebra 2 is a uniformly closed self-adjoint algebra of operators on a (complex)
Hilbert space $. Since we wish our results to be applicable to group representations, we do
not assume that 2l has a unit, but if 2 does have a unit we suppose that it is the identity
operation I on £, and in any case we suppose that the closed linear span of Ax for A in
and x in $ is . A state f of 2 is a positive linear functional on A such that sup {f(4): A €
WO=SA=]}=1.1fI e Uthisisequivalentto f(I) = 1. If I € A, the set of states of A is
convex and w*-compact. The extreme points of the set of states of U are called pure states.
Each state f of U gives rise to a representation ¢, of 2 on a Hilbert space %, suchthat f =
w,@r (w, is defined below) and [ (A)X] = H; for some x in H, the representation ¢y is
uniquely determined (up to unitary equivalence) by these properties and, furthermore, f is
pure if and only if ¢, is irreducible, see [115]. We denote by S the set of states of 2 with
the relative w*-topology, by P, the set of pure states of 2 and by P the relative w*-closure
of P, inS. If I € Aand if M is a self-adjoint linear subspace of A containing I then states
of I (positive functionals f such that f(I) = 1) have extensions to states of 2, and it
follows from the Krein-Milman theorem that pure states of 9t (extreme points of the set of
states of Mt) have extensions to pure states of A. If x € $ then w, is the linear functional
(- x,x) defined on the algebra of bounded operators on $). (If f ={(x, f(x)):x €
domain f} is a function we also let f(-) denote f). If ||x|| = 1 then w, |A is a state. If E is
a (self-adjoint) projection on H, we also denote by E the set{x:x € H,x = Ex}. IfF c
then [F] is the closed linear span of F (or the orthogonal projection on this subspace of ).
If x and y are in $ then [(x, y)| = ||x|||ly|| if and only if x and y are proportional.

If A is self-adjoint and in U, if f is a continuous complex valued function of a real
variable and if either f(0) =0 or I € A then f(A) is in A W. If f,,, is a sequence of
polynomials converging to f uniformly on the spectrum of A and such that £,,(0) = 0 if
f(0) = 0then f(A) is by Definition li)gnfn(A). Thus if A is a self-adjoint operator on $

and if Ax = Ax for some complex A and some vector x in $ then f(A)x = lim f,,(A)x =
n
lim f,,(A)x = f(1)x. Another elementary fact we shall need is that if A is a positive matrix
n

then determinant A = 0.

The structure space X of an arbitrary algebra 2 is the set of primitive ideals of 2, and

the closed sets in X are the sets K such that if Y D N,ex x then Y € K, see [88]. We let
A(x) = A/x,we let , be the canonical map, Ay,: A - A(x). By [92] we can suppose
A(x) acts faithfully and irreducibly on a Hilbert space $,.. If A € U, we let A(x) = ¥, (4).
Lemma (2.2.1)[100]: Let A be a C*-algebra with a unit I, let ¢ be an irreducible
representation of 2 on a Hilbert space §, let x4, -+ , x) be unit vectors in &, let K be the
w*-closedc onvexh ull of the set {w,: x is a unit vector in [{xy, - , x; }]} of states of 2.
Then
(x) KX ={A:Ais astate of Aand if BEWU, if0=B =1, if p(B)x; = x;, for all j, then
A(B) = 1}.
Let K; be the right member of (x). Then X; is w*-compact and convex and since w, ¢ €
K, if x isaunitvector in K = [{xy, -, x}] , K € K. Let 1 be an arbitrary extreme point
of ;. We will show that A € K and by the Krein-Milman theorem this will imply that
K, € K and the proof will be complete.
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Suppose 4 = (A; + A,)/2 where A; is a state of A. If Bis inWand 0 = B = I then
A1(B), 2;,(B) = 1. If further (B)x; = x;, for all j then 1 = A(B) = (1,(B) + 4,(B))/2.
Thus 1,(B), A,(B) = 1and A;,1, € K;. Since 1 is an extreme point of ¥; , 4, =1 =4,
and so A is a pure state.

If Y is a unit vector in $ but not in K then Y = x + z where x € K,z L K and
lx|| < 1. There is a self-adjoint B in A with ¢(B)x; = x;, for all j and ¢ (B)z = 0 [89].
Let f be the function defined by f(x) =0, x,1,asx = 0, x € [0,1] or x = 1 respectively.
Then

o(fB)z=f(pB))z=f(0)z=0
o(f(B)x; = f(e(B))x; = f(Dx; = x;
for all j and since 0 = f(x) =1, 0= f(B) =1 and it follows that wy¢ & XK; and A #
wy@. If 1 # w,e for any z in $ then ¢, and ¢ are not unitarily equivalent. Let « be in
$H;. S0 that A = w,, . By [107] there is a self-adjoint C in A with ¢, (C)w = 0 and
o (C)x; = x; for all j. As above ¢(f(C))x; = x;, and @, (f (C))w = 0 and A(f(C)) = 0.
This is a contradiction and so 1 = w,.¢ for some x in K, 1 € X and the proof is complete.
Lemma (2.2.2)[100]: Using the notation of Lemma (2.2.1), if VV is a relatively w*-open
neighborhood of I in § then there is a positive number § and a B in A such that 0 = B =
I, (B)x; = x; for all j and
{(:1eSAB)21-6}cVV.
The sets {1: L€ S,A(B) 21 —-6}n (S ~VV ), where 0 = B =1, ¢(B)x; = x;, for all j
and 6 > 0, are closed and by Lemma (2.2.1) this family of sets has an empty intersection.
Since § is compact, there are a finite number of these sets with an empty intersection, and
so there are By, -, B, in W and there is a positive &y, suchthat 0 = B; = I, ¢(B;)x; = x;,
and
{(LAESAMB)Z1-6,i=1,,n}cVV.
Let B = (1/n) Y-, B;. Then0 =B =Iand ¢(B)x; = x;. f A€ Sand A(B) = 1 — (8,/
n), then AX~,B) =2n -6, M(B)=1—-4,fori=1,---,n,and so A€ VV . Let § =
&, /n and the proof is complete.
Lemma (2.2.3)[100]: Let € be a positive number, let n be a positive integer. There is a
positive number 6(e,n) = 6 such that if 4,, --- , A, are operators on a Hilbert space &, if
0 = A; = I, if x is a vector in the unit sphere of § and if
4, Ax,x)>1-96,
then (A;x,x) >1—¢and ||4;x —x|| <efori=1,-,n.

Let §(g,n) = min{1,271 2 and let §(g,n) = 8(e,n—1)%/4. If 0= A; = and

(A4;x,x) >1— 2712 then

|4;x — x||* = (A%, A;x) —2(Ay6,x) + (6, x) <1 —2+ &2+ 1=¢g?
and so the lemma is true in the case n = 1. Suppose inductively that n = 2 and that the
lemma is true forn — 1. If (4,, -+ 41x,x) > 1 — §(g,n) then

1-38(g,n) < (A:l/ZAn_1 Alx,A:l/zx) = (Apx, x).

By the Definition of §(g,n), [|4,,x — x|l < 6(e,n —1)/2 and so

(Ap_q = Ax,x) =2 (A, - Ax,x) —|[Apx —x|| >1—-68(g,n—1).
By the induction hypothesis, (4;x,x) > 1 —¢cand ||[4;x — x|| < efori = 2,---,n and the
proof is complete.
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The next lemma may be regarded as an analogue for C*-algebras of the theorem of
Murray and von Neumann which states that every factor of type 11, contains a factor of type
I1;, which is hyperfinite. (A factor of type 11, is hyperfinite if it is generated by an increasing
sequence of factors of type I,,1,, -, I,n,---.) If A'is a C*-algebra with no non-zero GCR
ideals then we choose a subalgebra of 2 which is generated by operators in 2L which are
strong approximations to a sequence of matrix units of order 2",n=1,2,--- (i.e,, a

sequence of sets {Ei(]’?): i,j=1,---,2"},n=1,2,--- of non-zero operators, in general not in

o, such that ESVESY = 6]ESY, EZ = ESY” but in general X, ES # I). The operators

st

which generate the subalgebra will be denoted by V (a4, -+, a,,), wherea; =0orland n =
1,2,---,and V(ay, -+, a,) will be a strong approximation to Ej(ln) forsomejin1,---, 2™ This
construction is fundamental to the proofs of Theorems (2.2.7) and (2.2.8).

Lemma (2.2.4)[100]: Let 2 be a C*-algebra with unit I and with no non-zero GCR ideals,
let Sy, S1, S5, -+ be a sequence of self-adjoint elements in 2, and suppose S,, is positive and
I1[|Soll = 1. There are non-zero operators V (a4, -+, a,) in the unit sphere of A, a; = 0 or
1,n = 1,2, and there is a self-adjoint 2™ X 2™ matrix (aq,,...a,)(b,,-b,)) SUch that if we
let

T =D (et Cansan)oari) V(@ @) Vby, o, by’
(b1, ,bn)

Em) = ) V(ay, -, an) V(g an)’
(al""»an)

then the following properties are satisfied:

ifk = 2,||[E(k)(Sk-1 — Te—)E(R)| < 1/k; (58)
So+ (/DI =V (0)V(0); (59)
if j = k,ifay, -, a; # by,--,b;,V(ay,,a;)" V(by, -+, by) = 0; (60)
ifk=2,V(ay, ,a,) =V(ay,-,a,) =V(ay, -, a,_1)V(0,--,0,a;); (61)
if j <k, V(ay,-,a;)V(ay,,a)V(0,--,0,a,) =V(0,--,0,ax); (62)
V(0,-+,0) = 0. (63)

Let B(0) = So/%, let V(@) = V(ay, -+, a0) = 1. If nis a non-negative Integer we
suppose inductively that non-zero operators B(n) and V(ay, -+, a;) in the unit sphere of A
are defined if 0 = j = n and the self-adjoint matrix (@(ay,a;), (baob))s is defined if 0 <
j<mn,and if 0 <j = k = nthen (58),-,(63) are satisfied, and B(n) 2 0, ||[B(n)|| =1
and

V(ay, -, an)" V(ay, -, a)B(n) = B(n). (64)
If n = 0 the inductive assumption is true.

Let u be a pure state of A with u(B(n)) = 1. (There is a pure state u, of the C*-
algebra generated by B(n) with uy,(B(n)) = 1, namely evaluation at a point in the spectrum
of B(n), and u is an extension of y, to a pure state of 2[.) Suppose n # 0 and let

A(ayan), (by-by) = MV (Ag, -, an)* SpV(aq, -+, a,)) .
Let 4 = w, @, Where x is avector in §,,, let K be the closed convex hull of the set of states
wy @, Where Y is a unit vector in the linear span K of the ¢, (V(ay, -, ay))x. If z; =
Pu(V(ay, -, an))x and z; = ¢, (V(by, -, by))x then, using (60),

((pu (Tn)ZZI Zl) = A(ay,ay), (by,by) ((p# (V(ali Ty an)V(blr T bn)*)ZZI Zl)'
However
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0u(V @y, @) V(ay, ) | range ¢, (B(n)) = identity
by (64) and since ((pﬂ(B(n))x, x) =1= ||<p”(B(n))x|| ||x||, x is equal to ¢, (B(n))x, and
so x e range @, (B(n)) and ¢, (V(ay, -, a,)" V(ay, -, ay))x = x. Thus
(0u(Th)32,%1) = Aeaya,), (byyby)
X ((ppt (V(le Y bn)* V(bll T bn))x' Py (V(al' T an)* V(alr T an))x
= Ay ay), (b)) = (Pu(Sn)z2,31)-
This implies that K¢, (S,)K = K¢, (T,)K and so wy(¢,(S, —T,)) = 0 for Y in K. Let

W ={:12€8S, A6, - Tl <1/(n+ 1)}

Then W is an open subseto f S and by what we have just proved, X ¢ W . By Lemma
(2.2.2), there is a positive y and a B in A such that 0 = B = I, ¢, (B)p,V(ay, -+, ap)x =
goHV(al, -+,ay)x forall a;, -+, a,, and

(1esAB)>1—-y}c W,
We no longer suppose n # 0 . For each € in (0,1), let f, be the function defined by:
fe((=0,1 =€) =0, fz([1 — (¢/2),4)) =1,f. is linear on [1 —&,1— (¢/2)]. If n =
0,let A = B(0),ifn # 0, let

A = B(n) 1_[ V(ay, -, a,)* BV(ay, -, a,).
al'...’an

(We have not specified the order of the factors in the product on the right, however any order
will do.) Let B, = f.(AA*), let o = min{1/16, 8(y/2?"*1,20+1 4 2)/5} where &(y/
22n+1 on+l 4 23 is defined by Lemma (2.2.3).

It was proved in [106] that, if C is a non-zeroe lement of 2 then there is an irreducible
representation ¢ of A such that ¢ (C) is not completelyc ontinuous. In fact it is easy to see
that the set of all C in U such that ¢(C) is completely continuous for each irreducible
representation ¢ of 2 is a CCR ideal in a and so is zero. We have already proved that
0, (B(n))x = x. Thus ¢, (A)x = x = ¢, (A")x, ¢,(B;)x = x and so B, # 0. Let ¢ be an
irreducible representation of 2 such that ¢ (B,) is not completely continuous. Then the
range of ¢ (B,) is infinite dimensional, and we can choose orthogonal unit vectors Y and z
in the range of @(B,). There is a self-adjoint C, in A such that ¢ (Cy)Y =Y, ¢(Cy)z =0
[89]. Let f be the function defined by: f(x) = 0, x,1asx = 0, €[0,1], = 1 respectively, let
C=f(Cy). Then0=C=Tand p(C)Y =Y, ¢(C)z =0. Let Dy = B,,CB,,, let D; =
B,s — D, . let U be a unitary operator in € such that (U)Y = z [107]. Let V =
fsr (D1 Uf5, (Do), let k be the function defined by k(x) = (f;/2(x)x~*)*/2 for non-zero x,
k(0) =0, letV(0,,1) =Vk(V* V), V(0pty + 1) = (f1 (V" V)Y2, and if ay, -+, a, #
0,, let

V(al,---,an+1) = V(alr'"'an)v(on' an+1)' (65)
(Here and throughout, we use the symbol 0; ,t o indicate the family 0, ---, 0 of j zeros.) Let
B(n+1) = fi,,(V*V).
Since 0 = fi/», V(0,.4,) satisfies (63). Also B(n + 1) and V(ay, "+, an44) are in the
unit sphere of 2L. It follows from (64) that
V(ay,,a,)*V(ay, -, a,)AA" = AA”
and, since fg,, is a limit of polynomials without constant terms,
V(ay, -, an)" V(ay, -+, ay)Bgs = Bgg -
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Since fgo (X) fag (X) = fao (X) aNd fo5(X) f25(X) = f25(%), fosDi = D;. Since f;. is a limit
of polynomials without constant terms, Bg,V =V, Bg,V*V =V*V and Bg, f1,,(V* V) =
fi2(V* V). Thus
V(ay, -, a,)V(ay, -, an)V(0y, ani1)
=V(ay, -, a,)" =V(ay, -, a,)BgsV(0p, any1)
= BgsV (0p, ans1) = V(0y, ayyq)
which proves (62) if j =n, k =n+ 1. If j <n, then
V(ay, -, aj)*V(aL Y aj)V(On» an+1)
= V(alf T aj)*V(alf T aj)V(On)* V(On)v(on' an+1)
=V(0,)" V(0)V(0p, ans1) = V(0p, apnyq)
Which proves (62). In particular, V' (0,)* V(0,,)V(0,,,a,,+1) = V(0,, a,+1), and so
(V(0,)" V(0,))"/? | range V (0, @n1)
=V(0,)"V(0,) | range V(0y, any1) = 1| range V(0y, ayy4)
V(On)V(OnJ an+1) = (V(On)* V(On))l/z V(On: an+1) = V(On: an+1) ,
using the fact that 0 = V(0,,) by (63). This together with (65) shows that (61) is satisfied
for k = n + 1. Furthermore
V(Cll, T an+1)*V(a1r T an+1)B(n + 1) = V(Onr an+1)>'< V(On' an+1)B(n + 1)
and since
V(0,, 1) V(0,,1) = k(V* VIV VEWV* V) = f1,,(V* V)
V(0541)" V(0pe1) = f1/2(V* V),
we have
V(ay, -, ans1)*'V(ay, -, ane ) B+ 1) = f1,,(V'V) f1a(V* V)
= f1.(V*V)=B(n+1),
and (64) is true for n + 1.
Since Y and z are in the range of ¢(B,), and since B,;B; = By;B; =
By, 9(B2s)Y =Y and ¢(Bys)z = ¢(B25)z = 3. Thus 9(Dg)Y =Y, ¢(Dg)z = 0 and
@(D;)z = z,andsince f,(1) =1, o(f,(D))Y =Y, o(f;(D;))z = z. Since U is unitary,
p(UNz=9U Nz=TY, and s0 p(V* V)Y =9¥)z=TY and ¢(B(n+1)Y =Y.
Thus I ||B(n+ 1)|| =1;alsoB(n+ 1) = 0.
We show (60) is satisfied for k =n+ 1. If 0 < j < k then (60) follows from (61)
and the validity of (60) for k =n. Ifj = k butay, -+, a, # by, -+, by, it follows from (61)
and the validity of (60) for k = n that (60) is satisfied. Suppose j = k and a,,--,a,, =
by, -+, by bUt @y # bpyq. Since fo5(Dy) f5(D;) = f5(D;), we have
V(by, -+, bny1)V(ay, -+, any1) = V(O bpy1)* V(0p, anyq)
= V(0 bpy1)” fZG(Dbn+1)f20(Dan+1)V(Onr Ant1)-
If p is a homomorphism of the (commutative) C*-algebra generated by D, and B,, and if
p(Dy) # 0then p(Byy) = 1and p(D;) =1 — p(Dy). Thus

p(fZO'(DO)fZO'(Dl)) = fZO'(p(DO))fZO'(:D(Dl)) =0
since 20 < 1/2 and so f,,(Dy) fo,(D;) = 0 and
V(by, -+, bpy1)*V(ay, -, any1) = 0.

In this case (60) is satisfied for k = n + 1, and thus (60) is satisfied for k = n + 1 for all
cases.

We show (58) is true for k = n + 1. If n = 0, this is trivial; we suppose n = 1. We
suppose that 2 is acting on a Hilbert space . Letw =V (a4, -+, a,+1)v be a unit vector,
for some vector v in $. By (61) and (62),
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V((ll, T an)*W = V(Cll, Y an)* V(al' Y an)V(On' an+1)v (66)

and since x = fg,(x) — 4o for all positive numbers x,
(A"AV(ay, -, an)'w,V(ay, ,a,)'w) = (BSJV(Onr Ay 1)V, V(0 anyy)v — 40

= (V(0n, an41)v,V(0y, any1)v — 40

= ||V(aq, -, an)(V(0y, an+1)v”2 — 40 = ”WHZ — 40

=1—40>1—6(y/22mt1,2n+1 ¢+ 2)
By Lemma (2.2.3),
(V(ay, -+, a,)*BV(ay, -, a)V(ay, -, a,)w,V(ay, -, a,)w) >1—6(y/2?"*1) . and
by (66), V(ay, -, a,)V(as,,a,)*w =w, so (Bw,w) > 1 —6(y/22"1). If uis a unit
vector in the range of V(by,-+,b,41) then also (Bu,u) >1-68(/2?"1) . If
Ay, ,Qnyq F by, +++, byyq thenu L w by (60) and since [{u, w}]B[{u,w}] = I,

|(Bu,w)|?> = (1 — (Bu,w)(1 — (Bw,w)) < (y/2*""1)2.
If s=E(n+1)t is a unit vector, then by the Definition of E(n+1), s=
Ya,-a, (A, any1), Where we have let
S(all Y an+1) = V(alJ T an+1)V(a1' ) an+1)*t .

By (60), {s(a4, **, a,+1)}i S an orthogonal family, and so

(BS,S) = Z (Bs(al,---,an+1),s(a1,---,an+1))
a a

1,°0an

- 1B5(as, ) ans1),5 (s, -+ i)
ai,ans1Eb1, g
> A= /2)ls@, an)I?
al'...’an
-> (/22D lIs @, G )llls by, - b
ai,ane1Eb1,bnya

=1-(@/2)-Ww/2)=1~-v.
Thus ws|W € W and so |((S,, — T,)s,s)| < 1/(n+ 1). Let r be a vector in the unit sphere
of . Then [(E(n+ 1)(S,, —T,)E(n + Dr,r)| <1/(n+ 1), since E(n + 1)ris in the
range of E(n + 1) and has norm at most 1. Since. (E(n + 1)(S,, — T,)E(n + 1) is self-
adjoint, [(E(mn+ 1)(S,, — T,)E(n +1))]||] < 1/(n+ 1) and the proof of (58) is complete.

To prove (59) is true, we can suppose n = 0. Then

V(O)V(0)" = f12,(V'V) = Bgy < 40l + AA”
= (1/4)I + B(O)B(0)" = (1/4)I + S,,
and the proof of Lemma (2.2.4) is complete.

We remark that the hypothesis, no non-zero GCR ideals, enters the proof only one
point: the choice of a representation ¢ such that dim range @(B,) = 2. Instead of
approximating S,, at the nths tep, we could have approximated S5, ..., S,,.

Lemma (2.2.5)[100]: Let 2 and the V's be as in Lemma (2.2.4). Let ¢ be a representa- tion
of a which does not annihilate E(n),n = 1,2,---. Let 9t(n) be the linear span of
{V(aq, -, a)V(by, -, by) 1 a;, b; =0 or 1.
Then o(Mt(n)) [range @(E(n + 1))] isa 2™ x 2™ matrix algebra with matrix units
e(V(ay, -, an)V(by, -, by)")|[range @(E(n + 1))],
and ifn > 1,

p(V(ay, +, an_1)V(by, ", bp_1)")|[range (E(n + 1))]

= (p(V(ali -1, O)V(blf Y bn—lr 0)*
+(V(ay, -+, an_q, YV(by, -+, bp_y, 1)*|[range @ (E(n + 1))].
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Also  @(Mt(n)) leaves [range @(E(n+ 1))] invariant and the sequence
{[range @ (E(n))]} is monotone decreasing.
Letx = o(V(ay,:,a,4+1))Y for some Y in the Hilbert space £ upon which ¢ ()
acts. By (60), (61) and (62),
@V (by, -, bp)V (c1, -+, n)7)x
= (p(V(le T bn)V(clf T Cn)*)V(all T an)V(On' an+1))y (67)
= 8grran®(V (b1, bp, an11)) Y € [range ¢(E(n + 1))]
and so @ (MW(n)) leaves [range ¢ (E(n + 1))] invariant. By (67),
(p(V(bli n)V(ClJ T Cn)*) V(dl' T dn)V(el' T en)*)x
= 57 (Y (b, b ) Y
= 5;1,,2:14)(‘/(191' Ty bn)V(ell ) en)*)x-
Thus
(@V(by, -+, bp)V(cy, -, cn)")|[range @(E(n + 1))])
X ((p(V(le Y dn)V(elJ T en)*)l[range (p(E(Tl + 1))])
=8 (@(V (by, -+, b))V (e, -+, €)") |[range @ (E(n + 1)])
It follows from( 10) that
o(V(ay, ..., an-1)V(by, ..., by)")|[range p(E(n + 1))] # 0
and so the proof of the first statement is complete.
By a calculation similar to (67),
@V (by, ..., bV (cy, ey Cpog)x = Cl """ Zr:l 11<p(V(b1, s b1, @y, an+1))y
However
@V (by,...,byy_1,0)V(cy, ., €p1,0)" +V(by, ., by, DV (cq, ..., g, 1) )x
= 851V (b, o b1, 0,21))y
+ 8@ o (V(by, e by, 1, @)y
= 5C1““.:ZZL 11§0(V(b1»--- n—1 An, an+1))y
and the second statement is proved.
It follows from (4) that [range <p(E(n))] IS monotone decreasing as n — oo
Lemma (2.2.6)[100]: Using the notation of Lemma (2.2.4), let f be a state of U such that
f(Em)=1 . Then f(EMAEMm))=/f) for al A in A If
fV(ay,...,a,)V(ay, ...,a,)") = 1 then
f=fW(ay,..,a)V(ay, ..., a,) - V(ay,..,a)V(ay,, ..., a,)").
Let x be a vector in $, such that f = w,@,.If f(B) = 1 for a B in A of norm 1 then
(pr(B)x,x) =1 = || (B)x||llxll
and so ¢f(B)x is proportional to X, and thus is equal to x. Hence f(B - B) = f, and this
proves Lemma (2.2.6).
Theorem (2.2.7)[100]: Let U be a separable C*-algebra. Then
(a) the following are equivalent:
(al) A is GCR,
(@2) Aistypel,
(a3) A has no representations of type I,
(a4) A has no representations of type IlI,
(a5) every irreducible image of 2 contains the completely continuous operators.
(a6) If ¢, and ¢, are any two irreducible representations of $ such that kernel ¢, =
kernel @, then g7 is unitarily equivalent to ¢,.
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(b) The following are equivalent:

(b1) A has no non-zero GCR ideals,

(b2) A has a faithful type Il representation,

(b3) A has a faithful type Il representation,

(b4) there is a family {¢,} of irreducible representations of a such that A Y.,® ¢,

is faithful and ¢, (1) does not contain the completely continuous operators.

(b5) There are families {¢,:a € A} and {y,: a € A} of irreducible representations

of A such that ), P ¢, and )., P Y, are faithful and kernel ¢, = kernel Y,
but vy, is not unitarily equivalent to vy,
(c) The implications (al)=(a2) =(a3), (a2) = (a4) = (al) = (a5) = (a6), (b2) = (bl),

(b3) = (b1), (b5) =(b4) =(b1) are valid for non-separable C*-algebras.

It is no loss of generality to suppose 2 has a unit I. The implications (a2)=(a3) and
(a2) =(ad) are evident while (b2) =(bl) and (b3) =(bl) follow from the Corollary of
Lemma (2.2.1)2 of [106]. The last two implications can also be deduced from I. Kaplansky,
Group algebras in the large, Tohoku Math. J., 3 (1951), 249-255; we are indebted to J.
Dixmier for calling this work of Kaplansky to our attention. Furthermore [106] and its
corollary are essentially the same as Lemma (2.2.3) and Theorem (2.2.17) of I. Kaplansky,
op. cit. The implication (al) = (a2) is Theorem (2.2.17) of I. Kaplansky, op. cit.

(al) = (a5) and (b4) =(b1): Suppose A is GCR and ¢ is an irreducible representation
of 2L on a Hilbert space . Then ¢ () is a GCR algebra [92] and so contains a non-zero
CCR ideal 3. If E is a nonzero subspace of S invariant under  then [JET] is invariant under
@A), and so [JE] = 0 or &. However [JE] o [SUE] = [FS] # 0, so [FE] = S Since
[SE] c E,E = S and we have proved that  acts irreducibly on &. By the Definition of
CCR algebras,  consists of completely continuous operators, and by irreducibility 5 is all
completely continuous operators (see [89]). Thus ¢ () contains the completely continuous
operators, and (al) =(a5). Assume (b4) and let & be a GCR ideal in 2. If & is not zero then
P (K) is not zero for some a. As above, was ¢, | K is an irreducible representation of & and
by the implication (al) = (a5), ¢,(K) contains the completely continuous operators.
However this contradicts the assumption, (b4), so & = 0 and (b1) holds.

(a5) = (ab): We prove the stronger statement: If 2 is a C*algebra, if ¢, and ¢, are
irreducible representations of 2, if ¢, (2) contains the completely continuous operators and
if kernel ¢, = kernel ¢, then ¢, is unitarily equivalent to ¢,.

Let m: U » A/kernel ¢,, Then ¢,m~1 and ¢@,n~! are faithful irreducible
representations of m(A), unitarily equivalent if and only if ¢, and ¢, are unitarily
equivalent. Thus we can suppose ¢; and ¢, are faithful. Then 2 contains an ideal
iIsomorphic to the completely continuous operators, and so  has a unique (up to unitary
equivalence) irreducible representation, and since ¢, () and ¢, (J) act irreducibly, ¢, |3
Is unitarily equivalent to ¢,|3. Let U be a unitary operator which implements this
equivalence, let x be in the representation space S of ¢,. If A,B € 2, and B € U then

©2(A)(@2(B)x) = 92(AB)x = U9, (AB)Ux = U9, (A)UU ¢, (B)Ux
= U0, (A)U(p(B)x).
Since ¢, (J)S is dense in S, p,(A) = U@, (A)U, @ is unitarily equivalent to ¢,, and the
statement is proved.

(b5) =(b4). Given the families {¢,: @ € A} and {y,: @ € A} as in (b5), ¢, (A) does
not contain the completely continuous operators, since if it did ¢, and ¥, would be
unitarily equivalent, by the preceding paragraph.
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We have not yet used the assumption that 2 is separable and so the implications already
proved are valid for an arbitrary C*-algebra. Our proof of each of the remaining implications
will use the assumption of separability.

(bl) = (b5): Suppose (b1) is true and in Lemma (2.2.4) choose S;,S,, ... to be a
sequence of self-adjoint elements of 2 which is dense in the selfadjoint elements. Let S, be
an arbitrary positive element of 2 of norm one. Let Mt(n) be defined as in Lemma (2.2.5)
and let W(0) = I, let M be the closed linear subspace of A generated by the Mi(n)'s. Let
d,, d,, ... be a sequence of zeros and ones, let D, = d4, ..., d,.. Define a linear functional
fAd: D) = f() on M by

fD =1 V(@ e, a)V(by, ., by)?) = §oringidn  (6g)
In Lemma (2.2.5), take ¢ to be the identity representation. Then f| (the span of U¥_,9(n))
is a state (in fact a vector state) for k = 1,2,..., and so f is a state. Suppose f|Dt(n) =
271g|M(n) + 271h|M(n) where g and h are states of M. Since 0 = V(D )V (D,)* =
Lgv(D)V(D,)") =1.Ifay,..,a, # D, or by, ...,b, # D,,,

g(V(ay, ...,an)V(by, ..., bp)")
= g(W(D)V(D)'V(ay, ..., an)V(by,..., by) V(Dy)V(Dy)*) = 0

by Lemma (2.2.6) and (3), and so g|Mt(n) = f|MW(n). Thus f is a pure state of Wk. Let
eqae,) = ¢ bean extension of fto a pure state of M, let ¢, = @4, = @ be the representation
defined by e on a Hilbert space $4,; = M, let e = w, ¢ for some vector x = x({d;}) in H
such that [p(2)x] = $.We remark that ¢(S,) # 0. In fact (p(E(n))x,x) = e(E(n)) =
f(Em)) =150 @(E()) #0. By Lemma (2.2.5), llo(V(0)V(0)*)]l =1 and by (2),
o (Sy) # 0.

For later use we observe: The representation space of ¢ is denumerably infinite
dimensional. In fact $ is not finite dimensional since matrix units of arbitrarily high order
act on $ (Lemma (2.2.5)) and $ is separable since $ = [@(A)x] and A is separable.

Let I be the set of elements A of A such that for each B and C in ¥,
ALHOIOHE(H)BACE(H)H = 0. We assert that ¥ is the kernel of ¢. Let Abein S, let Band C

be in A Then

lp(A)e(C)x, p(B)x| = |w,(9(B"AC))| = |y (0(E(m)B*ACE()))
= |[E(m)B*ACE(m)|
and since [@(W)x] = 9H,9(A) = 0. Thus § c kernel ¢. Let A be in A but not in a, we
show that A ¢ kernel p. Let B and C be elements of A such that rlllrgollE(n)BACE(n)ll =

b > 0. If we show that BAC & kernel ¢ then it follows that A ¢ kernel ¢. Thus to prove
A & kernel ¢, it suffices to consider the case where lim ||E(n)AE (n)|| = b > 0. One of
n—>0o

|E(m)(A + ADE®)||, |1E(n)(A — A)E(n)||, has a non-zero limit and the corresponding
one of A+ A*,A— A" is not in 3. Kernel ¢ is self-adjoint, and so if one of A + A*, A —
A" & kernel ¢ then A & kernel ¢, and we can suppose A is self-adjoint. There is a k such
that [|E(k)(A —T,_1)E(k)|| < b/2, where Ty_, is in M (k — 1) and is defined in Lemma
(2.2.4), and so ||E(k)Tx_,E(k)|| > b/2, and ||T\_; |[range E(k)]|| > b/2. Applying
Lemma (2.2.5) first to the identity representation of 9t(k — 1) and then to the representation
@, we see that the map
Mk — 1)|[range E (k)] — o (M(k — 1))[range <p(E(k))]

defined by ¢ is an isomorphism (of one matrix algebra onto another), and in particular is
norm preserving. Thus
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lo(Ty-1)|[range p(E()]II > b/2.
Hence || (E (k)@ (Ti—1)p(EK))|| > b/2 and if ¢(4) = 0 then

o (E())p(A = T_)p(E(R)) > b/2,
which is a contradiction, and so @(A) # 0 and J = kernel ¢. This implies that kernel
@ = kernel Pie)) for all sequences d, d,, and c,, c,, ... Of zeros and ones.

We assert: If s, s,,... (resp. t;,t,,...) is a sequence of zeros and ones, then ¢y ; is
unitarily equivalent to ¢, 3 only if s; = t; for all but a finite number of i. We will need this
statement later and we will prove the converse later, that ¢, is unitarily equivalent to ¢y, ;
if s; =¢; for all but a finite number of i. Let g5 = @3, @i = @65 = e({Si)), er =
e({t;}), and suppose that ¢, is unitarily equivalent to ¢, and recall that ¢, (resp. ¢;) is the
representation defined by e, (resp. e;). It follows from [89] (as in the proof of Corollary 8

of [107]) that there is a B in U such that e;(A) = e;(B*AB) for all & in X, and by Lemma
(2.2.6),

es = e,(B**B) = e,(E(r)B*E(r) - E(r)BE(r))
forr =1,2,.. Thereare r; and r, and T, and T,., in Mt(ry) and M(r,) respectively such
|IE@)(27*(B+B") — T, )E()|
= |[E@E@ + (27 (B+B*)—T, )E(r+ DE(p)| <1/8
and
|E@)(27(B —B*) — T, )E(p)|| < 1/8
for p > maxr,r, . Let C =T, + iT,, let p >maxr,r, . Then got(C)x({tj}) =
got(E(p)CE(p))x({ti}) by Lemma (2.2.5), since x({t;}) € [range <pt(E(p + 1))], and so
lles —e.(C* - Ol = e.(E@)B*E(p) - E()BE(p)) — e:(E(p)C*E(p) - E(p)CE (p))
] = 2[|E(@)(B — C)E(p)ll < 1/2.
et

E(p,v) = z ay, o,y V(ay, o, ap_1,v)V(ay, .., ap_4, v)*,
v = 0or 1. Then E(p,t,) commutes with C, and if t,, # s,

1= e (E(p.5p)) S 1/2+ ec(C*E(p, 5,)C) — 1/2 + e (E(p, t,)C"E(p, 5,)CE(p, ) )
=1/2
by Lemma (2.2.6) (since e; (E(p tp)) = 1), for p > maxr;,r,. This is a contradiction and

if p > maxr, 7, then t,, = s, which proves our assertion.
Let ¢, be the representation of U defined by the choice s; = 0, let 5, be the
representation of A defined by the choice ¢; = 1. Then ¢g and i, are not unitarily

equivalent but have the same kernel. The family {¢; }(resp.{ys,}). as S, ranges over the
positive norm one elements of 2, satisfies (b5) and the proof that (b1)=(b5) is complete.

We remark that we have shown that there are not just two families {¢,} and {1, },
there is a continuum of families, {{¢ 4 }4ea: x € X} such that ¢, is not unitarily equivalent
to @,y for x # y, but kernel ., = kernel ¢4, and Y., @, is faithful. (X will be defined
in the proof of Theorem (2.2.8).)

(a6)=(al): Suppose (a6) is satisfied and let & be the maximum GCR ideal in 2 [92].
If & = A then A/K (and so A) has two unitarily inequivalent representations with the same
kernel, by (b1)=(b5). This contradicts (a6) and so & = A and A is GCR.
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(b1)=>(b2); (b1)=(b3): Let SO be an arbitrary positive element of 2 of norm 1, let
S1, S5, ... be a sequence of self-adjoint operators which is dense in the self-adjoint operators
inUA. Letpbein (0,1/2),letg = 1 — p. Let g be the functional on 9t (9N defined as before)
defined by
gD =1,  gW(ay ..,a)V(by, .., by)") — Sgv orqiza Giph=2ima &,

In Lemma (2.2.5), take ¢ to be the identity representation. Then it is evident that g| (the
span of U_; Mi(n)) is a state (in fact a vector state) for k = 1,2, .... This g is a state of k.
Let h be any extension of g to a state of 1.

We assert that the weak closure ¢, (1)~ of ¢, (2) is a von Neumann algebra of type
I if p=1/2, and of type Il if p+1/2. Let ¢ = ¢, . Since h(V(0,)V(0,)*) +
0, p(V(0)V(0,)*) # 0. This and (5) imply ||¢(V(0))|| = 1, and (2) implies that ¢ does
not annihilate S,. Since S, was an arbitrary positive element of 2 of norm one, this assertion
will show that (b2) and (b3) are satisfied. Let

F(n) = [range (E(m))].

The sequence {F(n)} is monotone decreasing (Lemma (2.2.5)), and so F = inf F (n) exists
and is in @A)~ . Let h = w, for some x in $H, such that H, = [(W)x]. Since
@(E(m)) = F(n) = 1andsince wy(@rE(M)) =1, w,F(n) = 1. Thus w,(F) = land x €
F. By Lemma (2.2.5), ¢(9(n)) leaves F(r) invariant for all = n + 1, and so ¢(M(n))
leaves F invariant. However o ((n))F = ¢(M(n))F(n + 1)F is a homomorphic image
of the 2™ x 2™ matrix algebra (M (n))F (n + 1) and since x € F, the image is not zero
and thus is a 2™ x 2™ matrix algebra. Let A be a self-adjoint element of 2. For each n there
is a j = 2n such that |[A—S;|| <1/2n and a T; in M()) such that |EG + 1)(S; —

T,)E( +1)|| < ——. Thus

IF,(A=T)F|l < ¢ (EG+1)(A-T))EG + D1/n
and we have proved that @ (9)F is uniformly dense in Fo (20)F.

Suppose we show @ (9)F~, the weak closure of @ (IM)F, is type Il if p = 1/2, and
type Il if p = 1/2. (In the case p = 1/2, this is well known and could be deduced from the
published literature. However, we include a proof . Our proof gives rise to a new
demonstration of the existence of factors of type I1;. In the case p # 1/2, this is known, but
not published.) Then Fo(A)F~ is type Il (resp. IlIl) and the commutant Fo(A)F' of
Fo(Q)F~ (acting on F$) is type Il (resp. I11) [102]. However [¢(A)x] = £ and a fortiori
[@p(AF] = 9, so F is separating for ¢ (A)’. That is, the map A" - A’F is an isomorphism
from @ (A)’ onto @(A)'F. Since p(A)'F = (Fe(W)F)' [102], (A)" is of type 11 (resp. I11)
and ¢ () is of type Il (resp. 111) [102] and the proof of (bi) => (b2), (b3) will be complete.
First we suppose p = 1/2. Then w, | (M (n))F is the trace (normalized by trace (I) = 1)
for (p(M(n))F. Thus for A, and B,, in (p(M(n))F, wx(4yB,) = wy(BrAy). LetAand B
be in @(M)F~ and suppose {4, } and {B,} are norm bounded sequences converging
strongly to A and B respectively, and suppose A4,, and B,, are in @ (Mi(n))F. Then {4,,B,,}
and {B,A4,,} converge strongly to AB and BA respectively so w,(AB) = w,(BA). Thus w,
is a trace for @ (M) F~. We assert o (M) F~ is a factor. In fact let R be a projection in the
center of @(M)F~. Then wp,|@(M(n))F, and w(;_g)x|@(PM(n))F are both proportional
to traces and so are proportional to each other. Thus wg,|@(IDF and w ;g |@ (DDF are
proportional and by weak continuity, [wg,|l@(WDF~ and w _pgy|@(PDF~ are
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proportional. In particular wg,(R) and wg_gy,(R) are proportional. If Rx # 0,
Owpry(R) = w(—g)x(R),0wgy = w_pyx, and (I — R)x = 0. Thus one of Rx, (I — R)x is
zero, one of Fo(A)FRx = REe(A)Fx, Fo(A)F(I — R)x = (I — R)Fe(A)Fx Is zero, and
so one of R,I — R is zero. Thus ¢(9M)F~ is a factor as asserted, and it is finite since x is a
trace vector. It is not of type Ir for any r < oo since it is infinite dimensional as a linear
space. Hence @ (0t)F~ is of type Il, and the proof (b1)=(b2) is complete.

We suppose p # 1/2 and we construct an isomorphism 8 of ¢ (90t)F~ with a factor
of type Il constructed by Pukanszky [114] by means of von Neumann's construction [113].
We introduce the notation of [114]. Let X, be the measure space {0, 1}, let S, be the set of
subsets of {0,1}, let u, be the measure on X, defined by u,({0}) = p,u,({1}) = q. Let
{Xn, S thn} = {Xo, S o} forn = 1,2, .. let{X, 8", u'} = {X;2,X;, X;2,S;, X2, A} and let
{X,S, u} be the measure space formed by the completion of u'. If x is in X, x is identified
with the sequence (x,,), where x,, = 0 or 1. If y = (y,,) is in X, we define x + y to be the
seguence (xn + ny) reduced mod 2. Then X is a group, and A= {(x,): x,, # 0 for at most
a finite number of n} is a countable subgroup of X generated by the elements y,, = (¥i))
where (yx), = 6;. Fory in A we define a mapping of X onto itself by xy = x +y. The
transformation defined by an a in A maps measurable sets onto measurable sets and sets of
pu-measure zero onto sets of u-measure zero [114]. Thus the Radon-Nikodym derivative
du,/du(X) of the translated measure with respect to the original measure exists. Let § be
the Hilbert space of functions F(y, x)(y € A, x € X) for which

D jX IF(y, ) [2dp < +oo

YEA
with inner product

F6)=Y jX F(r, 0G0, )dp,

YEA
for F and G in $. The ring of operators M generated by U, and L) (ain 4, p(x)a

bounded measurable function on X) is a factor of type I1l, where
1

du, . \?
(UaF)(y,x) = (W (x)) F(y + a,xa)

(Lo F) (3, x) = p(x)F (y, ).

X, k=1,2,..)where p(a4, ..., a; ) (x) is the characteristic function of the set {(x,,): = x; =
a;,i =1,..,k}. In fact, let C be the algebra of linear combinations of the functions
p(ay, ..., a;)(x). Then the strong closure L;; of L, is a subalgebra of L, _(, which is closed
under monotone limits and thus it contains L,, where p is the characteristic function of an
arbitrary measurable set, and so Ly = Ly -
Let

W(aq,...,a,; by, ...,0) = e(V(aq,...,a,)V(by,...,b,,)")F

H(Lp(al,...,an)) =W(a4,...,a,;a4,...,0,)
H(Uyn) =Y (ay, ..., an_l(W(al, cey@p_1,0;a4,...,a,,_4,1)
+W(aq,...,a,_1,1;a4,...,05_1, 0))
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Then 6 extends uniquely to an isomorphism 6 of the C*-algebra Ngenerated by U, and L,
onto p(M)F. Let G(y,x) = 1 if y = e, the identity of A, G(y,x) = 0 otherwise. Then G €

9,

wg|N = w, 0
and [NG] = §, [6(N)x] = [¢(M)Fx] = F. Thus there is a unitary transformation V from
Fto$suchthat@(-) =V -V*. ThenV - V* is an isomorphism of the weak closure Mof N
onto the weak closure @(I)F~ of o(W)F. Thus @ (IM)F~ is type Il and the proof of
(bD>(b3) is complete.

We remark that if ¢ is as above then ¢ () is a factor.

(@a3)=(al); (a4)=(al): Let K be the largest GCR ideal in 2. If A = K then A/K
satisfies (bl) [92] and so A/K (and hence A) has representations of type Il and
representations of type Ill. This contradicts (a3) and (a4) so %A = K and A is GCR. This
completes the proof of Theorem (2.2.7).

It would be interesting to know which portions of Theorem (2.2.7) remain true when
A is not separable. It follows from Theorem (2.2.7) and [92] that there is a "type
decomposition” for separable C*-algebras which is somewhat analogous to the
decomposition of a von Neumann algebra into a direct sum of von Neumann algebras of
types I, 1l and Ill. In fact, the maximum GCR ideal K of a separable C*-algebra 2 is the
type | portion of 2 and 2A/K might be called continuous or type Il and I11. However these
latter terms are somewhat misleading (in this terminology the algebra of continuous
funcions on a compact space is not a continuous C*-algebra) and it is not known whether
they are appropriate for non-separable C*- algebras. We will not use these terms and we
will call a C*-algebra with no non-zero GCR ideals an NGCR algebra. Of course 2 need
not be isomorphic to a direct sum of & and 2/K. This decomposition is fairly reasonable
with respect to the "global behavior” (i.e., faithful representations) of 2, but it may behave
poorly with respect to arbitrary representations (or arbitrary irreducible representations). For
example a might be an NGCR algebra, but have an ideal J such that 2/5 is GCR. To see
this, letU;,i = 1, 2, ..., be an NGCR algebra acting on a Hilbert space K;. Let  be the set
Ay, A,, ... of segences of operators, 4; in U;, such that }LI?OIIAiII = 0.3 S is a C*-algebra

(acting on @ $;) and the C*-algebra 2 generated by J and I, the identity operator on
YD H; has no non-zero GCR ideals. However J is an ideal in 2 and A/ is GCR, in fact
it is the complex numbers.

There are C*-algebras 2L which are not GCR but which have a family {¢,} of
irreducible representations such that )., ¢, is faithful and ¢, (2) contains the completely
continuous operators. In fact take 2 to be the direct sum .72, M;, where M; isani X i
matrix algebra [92]. Of course 21 is not separable; for an example of a separable C*-algebra,
take A to be the C*-algebra generated by the completely continuous operators and a
separable NGCR algebra 8B acting on $, for some Hilbert space $.

One might ask to what extent an arbitrary C*-algebra 2 could be studied by means of
representations ¢ of 2 such that the weak closure ¢ (20)~ of ¢ (20) is a factor of type | or Il
and () contains the trace class operators in @(A)~. There are (non-separable) C*-
algebras which have no such representations, for example the algebra of all bounded
operators on separable Hilbert space reduced modulo the completely continuous operators.
See also the C*-algebras of &6.

The implication (a2)=(a5) suggests that possibly every locally compact separable
type | group has sufficiently many "characters”. By a character of a locally compact group,
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we mean a complex or infinite valued functional on the L, group algebra £ of the form f —
trace(go(ﬁ)) where f € £ and ¢ is a * representation of £ such that the weak closure of

@(8) is a factor, and where 0 = trace(@(f)) < oo for some f in £. This is a modification
of Godement's Definition [107], the essential change being that we do not require the
character to be finite on a dense subset of £. This modification seems to be necessary in
order to deal with non-unimodular groups. Indeed it is quite likely that the "ax + b" group
has characters in the above sense for which the set {If: trace (go(f)) < oo} is not dense in
L. With regard to this, cf. [111].

The implications (b2)<(b3) show that a separable C*-algebra or locally compact
group has representations of type Il if and only if it has representations of type Ill. In
particular Mautner's five-dimensional connected Lie group (described, for example, in
[110]) has type 11 representations.

If 2 is a simple C*-algebra, 2 is either the completely continuous operators on a
Hilbert space or 2 is NGCR. In fact by [92], 2 is GCR or NGCR and the statement follows
from (al)=(ab). If A is a simple C*-algebra with a unit then 2 is either a full n x n matrix
algebra or NGCR.

We show Mackey's conjecture [110] (cf. [94]) that a separable locally compact group
is type | if and only if it has a smooth dual. We make the following Definitions (cf. [94]).
Foreachn = 1,2, ..., 0, let ,, be a fixed Hilbert space of dimension n. ($, is separable.)
Let ® be a separable locally compact group, let 2 be a separable C*-algebra, let £ be the L,
group algebra of ®. Let ®f (resp. £5,2US) be the set of all (unitary or *, respectively)
representations of ®(resp. £, A) on H,,. (For L to be a representation of &, we require that
the closed linear span of L¢®,, be ®,,, and similarly for 2[. Mackey does not impose this
restriction on representations and so the present meaning of &%, etc., differs from that of
[94].) Let G, have the smallest possible Borel structure (i.e., o-field of subsets of ®5,) such
that for each x in ®, and ¢ and Y in ¢, the complex valued function f (L) =
(Lyp,¥) (L € ) defined on &5, is a Borel function. Let £5, and 2, have analogous Borel
structures. Let ¢ = U,, 6%, let the Borel sets of ¢ be those which meet each &, in a Borel
set. Let B¢ be the subset of ® consisting of irreducible representations; let ® be the set of
unitary equivalence classes of representations in ®¢. Let ®¢ have a Borel structure as a
subspace of G¢. (The Borel subsets of &€ are defined to be the intersections of ¢ with the
Borel subsets of Tic.) Let ® have a Borel structure as a quotient of G¢. (The Borel subsets
of B¢ are the sets E such that the sets {x: x € ¥ € E for some & in E} are Borel subsets of
®°.) In an analogous fashion define £¢, 2¢, 8, A, A, A. Then \ fraktur G (resp. £, A) has
asmooth dual if there is a countable family of Borel subsets of & (resp. €, &) which separate
points of ®(resp. &, A). A Borel space is standard if it is isomorphic to the Borel space of
a Borel subset of a complete separable metric space. We say G(resp. ) has a metrically
smooth dual if ®(resp. ) is metrically countably separated, that is, for each o -finite
measure u on ®(resp.A), there is a Borel set N contained in ®(resp. ) such that u(N) =

0 and &~ N(resp.A~N) is countably separated (that is, there is a countable family of

Borel subsets of ® ~N or A~N which separates points of ®~N or A~N respectively). We
can state the following theorem, the portions (al)<(a2), (al)<(a3) and (gl)<=(g2),
(91)=(g3) of which, were conjectured by Mackey.
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Theorem (2.2.8)[100]: Let ® be a separable locally compact group, let 2 be a, separable
C*-algebra. Then the statements (al),...,(a4) are equivalent and the statements
(g1),..., (g4) are equivalent.

(al) (resp. (gl)) A (resp. ®) is type I.

(@2) (resp. (92)) U (resp. ®) has a metrically smooth dual.

(@3) (resp. (g3)) A (resp. ®) has a smooth dual.

(ad) (resp. (g4)) U (resp. ®) is a standard Borel space.

Suppose for the time being that we have proved the equivalence of (al),..., (a4) for all
separable C*-algebras. Let 2 be the completion of the L, group algebra £ of ® in the norm
Al = sup{ll@(A)||: ¢ is a * —representation of L}.

If A is self-adjoint then ||A]|. = [|A]l;, where ||A]|; is the norm of A as an element of £.
Thus [|A]| is finite in all cases, and furthermore 2 is a C*-algebra. Mackey has proved [94]
that A€ is a standard Borel space. Every *-representation of £ can be uniquely extended to
a *-representation of 2 and so the map L — L|& is one-one from A€ onto L¢. It is obviously
a Borel map and by [94] or by direct calculation, it is a Borel isomorphism. This map is an
isomorphism with respect to the properties of irreducibility and unitary equivalence, and so
A is Borel isomorphic to €. By [94], € is Borel isomorphic to &. (What we call € is called
A(’; in [94].) It is well known that ® is type | if and only if £ is type | and it is trivial to see
that ® is type | if and only if £ is type | (since the weak closure of L(2) is the weak closure
of L(L) for any representation L of ). Thus the equivalence of (gl),...,(g4) follows from

the equivalence of (al),...,(a4).

It is obvious that (a4)=(a3)=(a2). We prove (a2)=(al). Suppose 2 is not type I.
We must show that U is not metrically countably separated and to do this, it is sufficient to
find a subset K of 2 (not necessarily a Borel subset) such that K as a subspace of U is not
metrically countably separated. In fact suppose there is a o-finite measure u on K such that
for any Borel subset N of K of u-measure zero, K~N is not countably separated. Define

_ AE) =p(EnK) .
for E a Borel subset of 2. Then fi is a o-finite measure on 2. Let N be a Borel subset of 2
such that i(N) = 0, let E;, E,, ... be Borel subsets of 2. Then u(N n K) = 0 and so the sets
E;NK,E,NK,..do not separate K~N and this implies that the sets E;, E,, ... do not
separate A~N, and that U is not metrically countably separated.

Since A is not type |, Theorem (2.2.7) implies that the maximum GCR ideal & of A
is not equal to . Let K€ be the set of representations in ¢ which annihilate &, let K be the
set of unitary equivalence classes of ¢ contained in K¢. Let : A - A/K. The map

m*: (Y/K)"C - K€
defined by: m*(L) =Lom for L in (A/K)"¢ is one-one and onto and is a Borel
isomorphism. Since K¢ contains each unitary equivalence class it meets, =* defines a one-
one map from (A/K)"onto K, and furthermore this map is a Borel isomorphism, if we give
K the quotient Borel structure B, derived from K. If we can show that 2 /K does not have
a metrically smooth dual then K with the Borel structure B, is not metrically countably
separated. However B, contains the Borel structure B, on K which makes K a subspace of
A. In fact if E < A, let E be the set of elements of elements of £. If E c K then E € B, if
and only if there is a Borel set F contained in 2 such that F n K = E, or equivalently F n
K¢ =E, while E € B, if and only if there is a Borel set D contained in A€ such that D N
K¢ =E. (Actually B; = B, since K€ is a Borel set, but we do not need this.) Thus K with
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the Borel structure B, is not metrically countably separated. By the previous paragraph, this
implies that 2 does not have a metrically smooth dual. Thus it is sufficient to consider the
case & = 0.

We suppose U is NGCR and we use the notation of the proof of (bl)=(b5) of Theorem
(2.2.7). In particular we suppose S;,S,,.. and V(a4,..,a,),n=1,.. chosen as in
(bi)=(b5). Choose a unit vector 1 in $.,. and let K¢ = {L: L € A N A, (Lggoyp, ¥) =
1 and (Lgg¥,¥) = 0 or 1 for all k} where E(k) is defined in Lemma (2.2.4), E(k, 1)
is defined in (b1)=(b5). Then K¢ is a Borel subset of A¢. Let X be the measure space
defined in the proof of Theorem (2.2.7), (b1)=(b3) and let A be the group of measurability
preserving transformations defined there. If L € K¢, we define 6(L) to be the sequence
{(Lggey,¥):k =1,2,...}in X. Then 8 maps K¢ onto X. To see this, let (d;,d,, ...) be
an element of X and let ¢(q3 = @, H1q;3 = H and x({d;}) = x be as in (b1)=(b5). Let U be
a unitary transformation from $ onto $,, such that Ux = 1. (Recall that $ and &, have the
same dimension.) Define L by the equation L, = Up(A)U~! for A inA. Then L € A N
A, and

(Leao¥.¥) = (Up(ECR))x, Ux) = 1
(Leae-1y ¥, ¥) = (Up(E (k, Dx, Ux) = (p(E(k, 1)x,x) = dy
soL € K¢and 8(L) = (d4,d>, ...), and @ is onto.

We show that the Borel structure on X is the same as the quotient Borel structure on
X derived from 6 and K€, where K¢ has a Borel structure as a subset of A¢. Let
F(a4, ..., a;) be the cylinder {(x;, x5,...):x; = a4, ..., X = a,} in X. Then

0 Y (F(ay,...,ar)) ={L:L € K¢, (Lg ¥, ¥) = a;,j = 1,..., k}

is a Borel subset of K¢. Thus F(a,, ..., a,) is a Borel set in the quotient Borel structure and
the quotient Borel structure contains the original Borel structure of X. Thus the quotient
Borel structure is countably separated and since K¢ is standard, the quotient structure is
analytic [94]. (A countably generated Borel space which is the image under a Borel map of
a standard Borel space is called analytic.) The identity map of X onto itself is a Borel map
from the quotient Borel structure to the original Borel structure, and so the two Borel
structures coincide, as asserted ([109], [94]).

Let L! and L? be in K€. We assert that L! is unitarily equivalent to L? if and only if
O(LY) = 8(L*) + 6 for some & in A. First suppose L! is unitarily equivalent to L2, and let

O(LY) = (sq,82,...), let O(L?) = (ty,ty,...). Let @, = Pis;) et @y = @y letxg = x5,
let x, = Xt} We assert L' is unitarily equivalent to ¢;. Let V be the transformation from
9o t0 $;, the representation space of ¢;, defined by
V(Lap) = @i (A)x;.
Then
, 2 . P : 2
V(L™ = (A" D, x) = (Lpatp ¥) = ||Lad|
since w,, ;| = w,,L'| D (a consequence of Lemma (2.2.6) and the Definition of ¢;) and
SO Wy, P; = w¢Li (aconsequence of Lemma (2.2.6), formula (1) and the choice of S;, S5, ...).
Thus V is well defined, isometric, and admits a unitary extension. This extension
implements the desired equivalence and it follows that ¢, , is unitarily equivalent to ¢, and
as we saw in the proof of (b1)=(b5), s; = t; for all but finitely many i. Thus 8(L!) =
8(L?) + 6 for some & in A.
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Conversely suppose @(L') = 6(L*) +6 . Since & =y, + -+ 7y, for some

kq, ..., ks, where y, is defined as in (b1)=(b3), it is sufficient to consider the case 6 = y;,.
Let

Uk) = z V(@ o, apr, OV (as, .., a1, 1)"

+V(ay,...,ax_1, DV(ay, ...,ax_1,0)")
let W be a unitary operator on $. . such that W1/;=L%,(k)1/); W exists since
Uk)'U(k)E(k+ 1) =E(k+ 1) (Lemma (2.2.5)) and so

2 2
1L5a0%ll” = L5 Legs¥ll” = Lggane ¥ = 1.
(We use the fact that L7, 1% = 1; see the proof of Lemma (2.2.6).) Let L3 = W*L*W.
Then for any positive integer r,
Lz ¥) = (Ler Ly Logo®) = 1
since U(k)E(r)U(k)E(s) = E(r)E(s) = E(s) if s > maxr,k and Lé(s)lp = ;

Lo ) if r £k
Wz ¥) = Lhwsenowd ) { (G ) if 7 = k

since U(K)E(r, DU(K)E(s) = E(r, DE(s) ifr #k,=E(r,0)E(s) ifr =k, and if s >
max 7, k. Thus L3 € K¢ and 0(L3) = 0(L*) +y, = O(LY). Let O(L3) = (51,55,..). We
saw in the preceding paragraph that L3 and L! are each unitarily equivalent to the
representation ¢ 3 of A constructed in the proof of (b1)=(b5). Thus L' and L3 are unitarily
equivalent and L and L? are unitarily equivalent.

Let K be the set of unitary equivalence classes of elements of K¢. That is, if X € K
then for some x in K€, % = {y:y is unitarily equivalent to x and y € K¢}. Then % ¢ U; we
let p(%) be the unitary equivalence class in U containing %. Let B, be the quotient Borel
structure on K derived from K¢ and let B, be the Borel structure on K which makes p a
Borel isomorphism of K with p(K), where p(K) has a Borel structure as a subspace of .
If E c K, let E be the set of elements of elements of £. Then E € B, if and only if there is
a Borel subset F of A such that p(E) = p(K) n F or equivalently E = K¢ N F, while £ €
B, if and only if there is a Borel subset D of ¢ such that E = K¢ n D. Thus B, > B;.

Let 8 be the one-one map defined by 8 from K onto the set X of A-equivalence
classes of X, let X have the quotient Borel structure derived from X. We show that @ is a
Borel isomorphism with respect to the Borel structure B, on K. Let E be asubset of X. Then
E is a Borel set if and only if the set E of elements of elements of E is a Borel set and this
is a Borel set if and only if 71(E) is a Borel set. However 6~ 1(E) contains each unitary
equivalence class in K€ that it meets, and so 67 1(E) is a Borel set if and only if the set
6~ (E)™ of unitary equivalence classes of elements of 671 (E) is in B,,. Since 6 (E)~ =
6~-1(E), 0 is a Borel isomorphism.

X is a compact group, A is a dense subgroup and X = X /A. It follows from [94] that
X is not metrically countably separated and so K with the Borel structure B4, K with the
Borel structure B, p(K) and A are not metrically countably separated, and so U does not
have a metrically smooth dual. The proof of (a2)=(al) is complete.

We prove (al)=(a4). Suppose that 2 is a separable type | C*-algebra. By Theorem
(2.2.7), A is GCR and by [92], A has a composition series {K,} such that each K, /K, 1S
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CCR with a Hausdorff structure space. We assert that there are at most a countable number
of terms in the composition series. Let B(1), B(2), ... be a countable dense subset of . For
each index a, choose an x,, in the structure space X, of K,,,/%, and an 4, in &, with
[, (x )|l = 1. (We identify X, with the subset {x: &,(x) = 0, K,4+.(x) # 0} of the
structure space X of 2. The topology on X, as a subspace of X is the same as the topology
on X, as the structure space of &,.,,/8,; cf. [92].) Then
14e — Ag|l Z [|(Ac — 4p) ) || = 14 (Il = 1

for @ > B. Thus for any given i there is at most one a(i) for which ||,y — B()|| < 1/2,
and so i — a/(i) is a function. Since B(1), B(2), ... is dense, this function is onto the set of
all indexing ordinals except the largest, and this proves the assertion.

For each a choose a sequence B(a,1),B(a,2), ... dense in &,. The functions x —
|IB(a + 1,i)(x)|| are continuous on X,. [92] and separate points of X,, and so X, has a
countable base for open sets. (In the above and in what follows, topological statements
concerning subsets of X, will be regarded as referring to the topological space X, which
has the relative topology from X.)

Let K be a compact subset of X, let ¢ (K) be the set of L in A€ such that kernel L €
K. We show that ¢ (K) is a Borel set. Since X,, has a countable base for open sets, there is
a sequence {U(j)} of open neighborhoods of K in X, such that n; U; = K. There is no
difficulty in finding a C in &,,4, such that ||C(x)|| = 1 for x in K and since &, is closed
under multiplication by continuous functions on X, [92], we can find a C(j) in &, such
that ||C(j)(x)]| 2 1 forxin K and ||C(j)(x)|| = 0 for x notin U(j). Choose an orthonormal
basis {¢;: s = 1,2, ...,n} for $,, Then

AK)NAS = AN {L: L € UG, (Lya,nPs @) = 0 foralli,s,t,}
N {L: L € A, for each j,Is and t such that (Lo(j)(ps, gol-) * 0}

and so A€(K) is a Borel set. Since A (K) contains each unitary equivalence class it meets,
the set A(K) of unitary equivalence classes in A¢(K) is a Borel subset of .

Let L be in ¥, let m(L) be the kernel of a representative L of L. By 11I, Theorem
(2.2.7)] or [92], L is algebraically irreducible and so n(Z) € X. By [92] and the separability
of &, 7(A) = X and by Theorem (2.2.7), wis 1 — 1. If K is a compact subset of X,, then

n~1(K) = A(K) and it follows from the preceding paragraph that | X, is a Borel map.
Since X, is the intersection of the closed set {x:%,(x) =0} and the open set
{x: K 44+1(x) # 0}, X, is a Borel subset of X. Also m~(X,) is a Borel subset of & and so &
is a Borel map. We show that X is a standard Borel space. In fact X, is a Hausdorff locally
compact space [92] and an open (and hence Borel) subset of its one-point compactification
X, U {oo}. If we define ||B(a,i)(e0)|| = 0 then the functions x — ||B(a,i)(x)|| on X, U
{oo} are continuous [92] and so X, U {oo} is a separable metrizable space, and since X, U o
is compact, it is complete. Thus the Borel space of X, U {0} is standard and the Borel space
of X, is standard. Since X, is a Borel subset of X, if E c X then E is a Borel set if and only
if E N X, isaBorel set for each a, and by [94], X is standard. Thus W is countably separated
and so is analytic [94]. Hence = is a Borel isomorphism [109], [94], U is standard and the
proof of Theorem (2.2.8) is complete.

We remark that (al)=(a3) and the isomorphism 7 of 2 onto X derived in the proof of
the theorem could also be deduced from Theorem (2.2.7), (al)=>(a6) and [105]. In
[94],[108], Mackey has a theory of direct integral decomposition of multiplicity free
representations of separable locally compact type | groups or algebras with metrically
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smooth duals. It follows that the hypothesis "with metrically smooth dual” can be deleted,
and the theory is applicable to a wide range of groups, for example all real algebraic Lie
groups [103].

If A is a separable GCR algebra then we have already proved that Mackey's dual, I,
is Borel isomorphic to the Borel space generated by the structure space X of 2. Even in the
non-separable case, the structure space seems to be the natural dual to a GCR algebra. The
next theorem identifies X as a topological quotient of the set B, of pure states of ¥, it is
essentially a reformulation [104].

Theorem (2.2.9)[100]: Let A be a C*-algebra, let X be the structure space of ¥, let B, be
the set of pure states of A with the relative w*-topology. If f € B, let n(f) = kernel ¢y.
Then m is a continuous open map of B, onto X.

That T maps into X follows from [89], that  is onto was proved in [92]. Let K be a

closed subset of X, let £ be the intersection of the ideals in K, let £ be the subset of B,
which annihilates £. Let f be in B, and let f = w,@f for some x in $, (and [¢(AW)x] #
$r). If f € 2-then 0 = £(2) = (¢(®)x,x) = (0 (D ¢s (A)x, o7 (B)x) for all A and B
in A and so kemnel ¢, 2 &, f € r~*(K). Conversely if f € n~*(K) then ¢, (&) =
0,f(®) = wypr (&) =0, and f € &+, Thus n7*(K) = &+, 7 (K) is closed, and m is
continuous. We interrupt the proof to prove a lemma.
Lemma (2.2.10)[100]: Let A be a C*-algebra, let 2, be the C*-algebra generated by 2 and
I, let U be the group of unitary operators in 2, let A be a relatively w*-closed subset of B,
and suppose A is U-invariant (i.e., f € A implies f(U* - U) € A for Uin U. Then At is an
ideal, A*=Nycp kernel o, and A+ NB, = A.

We remark that 2 is an ideal in 2, and so A — U*AU is an automorphism of 2, for
UinU, and so f(U* - U) € By if f € By. Let ¢ = X {¢;: f € A}. Let A be an element
of A. If ¢ (A) = 0then @y (A) =0 forallf inA, f(A) =0forall finAand A € AL, If
@ (A) # 0 then @; (4) # 0 for some f in A and (¢f (A)y,y) # 0 for some y in $,. Let
f = wy@p for some x in Hr, let @, be the extension of ¢, to A, defined by
@r(I) = identity. Let U be in U such that @,(U)x =y [107]. Then f(U*AU) =
(¢ (A)@r(U)x, §r(U)x) # 0 and since f(U* - U) € A, A & A*. Thus A+= kernel ¢, A*
is an ideal and At=nNcp kernel @¢ . If p(A) is a non-zero element of ¢ () then we have
shown f(¢~t@(A)) # 0 for some fin A. If f(A) = 0 for all f in A then w, ¢ (A4) = 0 for
all y in$,and finA,¢r(A) = 0forall finAand@(A) = 0. Thus the mapping which
sends ¢ (4) into the function {(fo =%, f(A4)): f € A} is an order isomorphism of ¢ (2) onto
a linear space of functions on A@~1. It follows from the discussion of [108] that the w*-
closure of {fo~1: f € A} contains the pure states of ¢(A4) and so the w*-closure of A
contains the pure states of 2 which annihilate kernel ¢ [116]. Since A is relatively closed in
By, AD A N B,. The reverse inclusion is evident and the proof is complete.

Let Vbe an open subset of B,. Let U(V) ={f(U"-U):U €U, feV} letK=
m(Bo~U(V)). Then U(V) is open and Bo~U(V) is closed and U-invariant. Let & =n
{x:x €K}. Then &= (By~U(V))" and if g € U(V), then g(2) # 0,¢,(L) # 0 and
m(g) is not in the closure of K. Thus

X~K = X~n(Bo~UWV)) c r(UV)) € X~K < X~K.
Hence K is closed and (U(V)) = X~K is open. Since n(V) = n(U(V)),m is open and the
proof is complete.
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We remark that if 2L is GCR then
17 (x) = {wsy: € is a unit vector in $,}
If f = wsy, for some such & then ¢, is unitarily equivalent to vy, , kernel ¢y =
kernely, =x and f en~'(x). If f € n~'(x) then kernel ¢, = x and by Theorem
(2.2.7), ¢y = U™y, U, where U is some unitary transformation from $ to $,. Since f =

(@5 ()y,y) for some unit vector y in $,
f=Q,(OUy, Uy) = (‘)Uyl/)x
and the remark is proved.

We show that a GCR algebra has a T; structure space if and only if it is CCR (cf.
[104]). We denote by &($) the algebra of completely continuous operators on a Hilbert
space $.

Theorem (2.2.11)[100]: Let A be a GCR algebra with structure space X. If x € X then {x}
Is closed if and only if A(x) is the set of all completely continuous operators.

By Theorem (2.2.7), %(x) contains (%, ). However A(x) = G(H,) if and only if
all irreducible representations of 2(x) are faithful and this is true if and only if all primitive
ideals y which contain x are equal to x; that is, if and only if {x} is closed.

Theorem (2.2.11) would not be true if we deleted the hypothesis: 2 is GCR.

If A is commutative or if A is ($H) then it is known that each point in the w*-closure

of the set of pure states of 2 is proportional to a pure state of 2 (and if I € U, is a pure state).
Theorem (2.2.17) gives necessary and sufficient conditions for 2 to have this property. First
we need to extend [106] to C*-algebras without units.
Lemma (2.2.12)[100]: Let A be a C*-algebra acting on a Hilbert space $, and suppose I €
(resp.€)U. Then the w*-closure of the vector states of U is the set aw, |A + bg where
a,b € [0,1],a + b = (resp.= 1), X is a unit vector and g is a state of 2 which annihilates
the completely continuous operators in 2.

Let B be the set of Al + A for A a complex number and A in 2. Then B is a C*-
algebra and if B # A the positive linear functionals of 2 of norm not greater than one have
unique extensions to states of B. Furthermore a net of such functionals w*-converges if and
only if the net of extensions to states of B w*-converges. Thus w*-closure of the vector
states of 2 is the set of restrictions to 2 of elements of the w*-closure of the vector states of
B. Thus Lemma (2.2.12) follows from [106]. (See the first paragraph of the proof of
Theorem (2.2.8) of [106] for the fact that the f of Theorem (2.2.8) of [106] is a vector state.
Observe that w, = w,, + w,, where x; = [AN G(H)x]x and x, = x — x;.)

The next two lemmas are concerned with the continuous extension of matrix units in

A(y) to matrix units in A(x) for x neary.
Lemma (2.2.13)[100]: Let 2 be a CCR algebra with a Hausdorff structure space X. Lety
be in X, let N be a neighborhood of y and let E and F be in 2 and suppose that E(x) and F(x)
are projections for all x in N. Suppose further that there isa V in 2 such that \V/(y) is a partial
isometry from E(y) to F(y). Then there is a neighborhood M of y contained in N and a W in
A such that if x € M then W(X) is a partial isometry from E(x) to F(x) and W(y)=V(y).

Let M be the subset of N consisting of those x in N for which ||[V(x)]|? <
2,|IF(x) — FVEV*F(x)|| < 1/4 and ||E(x) —EV*FVE(x)|| <1/4. By [92] Mis a
neighborhood of y. Let W = FVEk(EV*FVE), where Kk is the function defined by: k(x) =

1

0 or G)E asx =1/4orx =1/2and Kk is linear on [1/4,1/2]. Let x be in M and let y be

a homomorphism of the (commutative) C*-algebra generated by E(x) and EV*FVE (x).
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Theny(EV*FVE(x))isin[—1/4,1/4] or [3/4,1 + (1/4)], and the first possibility occurs
if and only if y(E(x)) = 0, and so y( W*W (x)) = 0 or 1 and the first possibility occurs if
and only if y(E(x)) = 0. Thus y(E(x)) = y( W*W(x)) and E(x) = W* W (x). It follows
that W(x) is a partial isometry, WW*(x) is a projection, and since FW(x) =
W(x), WW*(x) = F(x). However

IF(x) =WW*()ll <IF(x) = FVEV'F ()|l + [[FVEV*F (x) = WW* ()|

<1/4+ VI |[E@) — (kv FVE))’ || s 1/4+2(1/3) < 1

since if y is as above, |y(E(x)) — y(k(EV*FVE))2| < 1/3. Thus WIW*(x) = F(x). Since

W (y) = V(y), the proof is complete.
Definition (2.2.14)[100]: A point y in X is called singular if there is an E in 2 with E(x) a
projection for all x in some neighborhood N of y, with E(y) one dimensional, and such that
for each neighborhood M of y contained in N, there is an x in M such that dim E(x) > 1. If
y is not singular, y is called -regular.

We remark that there is always an E in 2 and a neighborhood N of y with E(x) a

projection for all x in N and E(y) one dimensional (see Lemma (2.2.15)). If dim E(x) = 1
for x sufficiently near y then by Lemma (2.2.13), dim F(x) = 1 for x sufficiently near vy,
where F is any element of 2 such that F(x) is a projection for x near y and dim F(y) = 1,
and so y is regular.
Lemma (2.2.15)[100]: Let A be a CCR algebra with a Hausdorff structure space X, lety be
in X, let N be a neighborhood of y and let A and F be in 2. Suppose that F(x) is a projection
for x in N, A(y) is a non-zero projection and A(y)F(y) = 0. Then there is a neighborhood
M of y contained in N and a B in 2l such that B(x) is a non-zero projection and B(x)F (x) =
0 for x in M and B(y) = A(y). Furthermore if there is an E in & with E(x) a projection
greater than F(x) for x in N and if E(y) =2 A(y) then M and B can be chosen to satisfy the
above conditions and also to satisfy: E(x) = B(x) for all x in M.

Replacing A by (A + A*)/2 if necessary, we can suppose A is self-adjoint. Let C =
A if E is not given, let C = E*AE if E is given as above. Let D = C — F*C — CF + F*CF.
Then D is self-adjoint, D(y) = A(y),EDE(x) = D(x) if E is given and x € N, and

DF(x)=0 if x €N. Let y be the function defined by: y((— o0, —3| U{1/2}U [3/

2,400))=1,y(0) =y(1) = 0and y is linear on [-1/2,0],[0,1/2],[1/2,1],[1,3/2]. Let
M be the set of x in N for which ||y (D)(x)|| < 1/4,||D(x)|| > 3/4. Since y(D)(y) = 0,M
Is a neighborhood of y. Let § be the function defined by: §((—oo,1/4]) = 0,6([3/
4,400)) = 1,4 is linear on [1/4,3/4]. If x € M then a(D(x)), the spectrum of (D)(X) is
contained in [—i,ﬂ U [3/4,5/4] but not in [—-1/4,1/4] and so 6(D)(x) is a non-zero
projection. Since §(D) is a limit of polynomials in D without constant terms, §(D)F (x) =
0 and if E is given, ES(D)E(x) = §(D)(x), for x in M. We let B = §(D) and this
completes the proof.

The next result will not be used in the sequel, however it clarifies the concept of
regularity.
Theorem (2.2.16)[100]: Let A be a CCR algebra with a Hausdorff structure space X. The
set of regular elements is open and dense in X.

It follows from the remark following the Definition that the set of regular elements
is open. Let N be a non-empty open subset of X. We must show that N contains a regular
element. Let y be in N and let A be in 2 so that A(y) is a non-zero projection. By Lemma
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(2.2.15) there is a B in A and a neighborhood M of y contained in N such that B(x) is a
nonzero projection, for x in M. Since X is locally compact [92] we can suppose that M is
compact and the closure of its interior. Let M,, = {x:x € M,1 = Dim B(x) = n}. There is
a polynomial identity satisfied by all matrices of order n but not by all matrices of order n +
1 [91]. Thus M,, is closed. Since M =U,, M,,, the Baire category theorem implies that for
some n, M,,, has a non-void interior as a subset of M, M having the relative topology as a
subset of X. That is, there is an open set U in X and 00 + U N M c M,,. Then U N Interior
M is not empty since M is the closure of its interior. Thus M,, has a non-void interior as a
subset of X. Let m be the smallest integer for which M,,, has a non-void interior, let P be the
interior of M,,,, let z be in P but not in M,,_;. Then B(z) = X%, F;, where F; is an
orthogonal family of onedimensional projections. By Lemma (2.2.15) and by induction we
can choose By, ..., B, in A and an open neighborhood R of z such that {B; (x),..., B, (x)}
is an orthogonal family of non-zero projections in B(x) for x in R and B;(z) = F;. Thus if
X €ER

m
m = dim B(x) 2 z dim B;(x) 2 m.
i=1
There is equality throughout this equation, and so dim B;(x) = 1 for x in R. By the remark
following the Definition of regularity, z is regular, so N contains a regular element, namely
z, and the proof is complete.

It follows that a GCR algebra has a composition series {I,} such that the structure
space of 1., /1, is Hausdorff and has no singular points.

Theorem (2.2.17)[100]: Let U be a C*-algebra. The elements of the w*-closure of the pure
states of U are proportional to pure states if and only if 2 is CCR with a Hausdorff structure
space X and at every singular x in X, 2(x) is 1-dimensional.

Suppose A is CCR with a Hausdorff structure space and suppose (x) is 1-
dimensional for x singular in X. Let £ () be a net of pure states of 2 converging to a non-
zero linear functional f. Then af is a state for some non-negative a. Let x(B) =
kernel @sz). Then f(B) = gpx(p). Where g is a pure state of A(x(B)) [116]. The sets
{x: ||A(x)|| 2 r}for Aiin A and r positive are compact [92] and so if x(f) is not eventually
in some compact set in X then f = 0, a contradiction. Thus x(f) is eventually in some
compact subset of X, and by passing to a subnet we can suppose x(f) converges to some X
in X. If A € x then ||A(x(B))]| is small for g sufficiently large and £ (B)(A) is small. Thus
f(A) =0, f(x) =0, and af = gip, where g is a state of A(x). If x is singular then 2A(x)
is 1-demensional and so af is pure. Suppose X is regular. Since UA(x) = 6(9,.), it follows
from [102] that g = X; b;wg,. where b; = 0 and {&;} is an orthonormal family in $,. If j #
k, there is a neighborhood U of x and E, F, W in 2« such that if y € U then E(y) and F(y) are
orthogonal one-dimensional projections and W(y) is a partial isometry from E(y) to F(y),

and E(x) = [{k], F(x) = [{k] . Let gg = (-vp,vp) for some yp in H,) . For large
B, F(x(B))yp is proportional to W (xg )E (xz)yg, and
0= If(WI* =limlf (BYW)|* = li[gn|W(x(ﬁ))E(x(ﬂ))Vﬁ,F(x(ﬂ))mﬂz

= lim|[w (x(8))E (Bl | F (Bl
= lim[[EGB)r IF(xB))rg” = lim FBIEIS BYE) = bybi
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Thus there is at most one j with b; > 0, and af is pure. We have proved that the elements

of the w*-closure of the pure states are proportional to pure states.

Conversely suppose that the elements of the closure of the pure states of 2 are
proportional to pure states. Then the same is true for all homomorphic images of 2. By
Lemma (2.2.12) and [106], all irreducible images of 2 consist of completely continuous
operators and A is CCR. Suppose X is not Hausdorff and let z(8) be anetin X, letx and y
be distinct elements of X such that z(8) — x,z(8) — y. Let & be a unit vector in &, let
be a unit vector in $,,. If U is an open set in B, containing w;y, then it follows from
Theorem (2.2.9) and the remark following Theorem (2.2.9) that for sufficiently large B there
isa&(B) in H ) suchthat wegp P, sy € U. Thus by passing to a subnet (which we denote

zg) of z(B), we can choose unit vectors ¢z and z in 92, such that (l,bzﬁ (-)Eﬁ,fﬁ) -
wgPy, and (lpzﬁ(')fﬁ;(ﬁ) = Wiy,

We assert that there isan A in2Asuchthat 0 = A =1,A(y) = 0and A(x)¢é = £. By
[89] there is a self-adjoint A, in 2 such that A,(x)& = &. Letf be the function defined by:
f((=o0,1/2]) =0, f([1,+)) = 1 and f is linear on [1/2,1]. Then A; = f(A4,) is self-
adjoint, 4, (x)¢ = & and 4, (y)¢ = f(A4,(y)) has a finite dimensional range. By [107] there

is a self-adjoint A, in such that A,(x)é =& and A,(y) range A;(y) =0. Let A =
f(A,A,A,); then A has the the desired properties.

Let B be in 2. We show that lién(B(zﬁ)(ﬁ,fﬁ) = 0. Let B(25){p = agép + bg1p

where az and bg are complex numbers and 7z is a unit vector in 55ZB orthogonal to SZB.
Then
0= (B*AB()S,¢) = lim(B"AB(25 )45, ¢p) = im(A(25) (585 + bpTs ), apSp + by )

: 2
= lim (las|*(A(z)%5.5) — 2lasbgl|A(25)Ep 7] )
Since A =1,

1
“lgnzlaﬁ||bﬁ|(Aﬁ(Zﬁ)fﬁ'Tﬁ) =<lim 2|ag||bg||1 = (A(25)8p. $5)I?

1 1
= 1im 211BI*|1 — (A(7)¢5.$p) | = 21IBI*11 ~ (AG0)E, OI2 = 0
and so
0> 1i§n|aﬁ|2(‘4(zﬁ)fﬁ'fﬁ) = 1i[§n|aﬁ|2(f4(x)5' §) = li§n|aﬁ|2
Thus lién|a[;|2 = 0 and
lilgn(B(Zﬁ){ﬁ"fﬁ) = lim ag($p.§p) + bp(1p.8p) = 0
as asserted.
Let cg = |5 + &5]|, let vp = (p + &5)/cp. By Lemma (2.2.3) 1i[£n||A(zB)fB —&|l=0
and so
1
li§n|(fﬁ»5ﬁ)| = ligl|(A(ZB)fﬁ»fﬂ)| = 1i[§n|(A(Zﬂ)fﬂrfﬁ)| = “gn|A*A(Z/>’)5/3'5/3|2

= (A"A(¥)¢, ) = 0.
Thus lilgn g = V2 and
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lim(B(2g )vg, vp) = lim (c(B(2)%5:85) + ¢ (B(2)35.%))

1
- (E) (B()E &) + (112)(BDTQ),

and
lim (2, (Vvg, v ) = (et + weihy)/2. (69)

The right member of (69) is a limit of pure states of 2 but is not proportional to a pure state.
This is a contradiction and so X is Hausdorff.

Let x be a singular point in X and suppose A(x) is not 1-dimensional. Then we can
choose orthogonal unit vectors ¢ and ¢ in $(x), and by Lemma (2.2.15), there is a
neighborhood N; of x and E and Fin 2 such that E (x) = [¢], F(x) = [{] and if y € N, then
E(y) and F(y) are orthogonal projections. By Lemma (2.2.13) there is a neighborhood N of
x contained in N; and a W in 2 such that if y € N then W(y) is a partial isometry from E(y)

to F(y). Since x is singular, we can choose a net yz in N such that yz — x and dim E(yﬁ) =
dim F(yg) = 2, and so we can choose orthogonal unit vectors &;z and &, in E(yg). Let
Gip = W(yp)&1p let Sop = W (yp)ézp-

Let A be in . We assert that li[gn(A(yﬁ)gfm,{zﬁ) = 0. Since E(x) is one-

dimensional, FAE (x) = AW (x) for some complex number A, and by the continuity of the
norm,

lién”()LW — FAE)(yg)|| = 0.
Thus
“[?1(14(3’3)513' $ap) = lim {(FAE(yﬁ)flﬂ» $2B ) + ((AW — FAE) (g )15, 523)}

= “lgn(AXW(yﬁ)fw, $ap) = “[gn(/lw(yﬁ)flﬁfw(yﬁ)fw) = “lgn(/lfm,fzﬁ)
=0
as asserted. Let vg = (15 + (23)/\/5. Since E(x) and F(x) are one-dimensional, EAE (x) =
A1 (x), FAF (x) = A,,F (x) for some complex numbers A1, and 4,, and so

1i[gn||(111E —EAE)(yp)||=0= li/gn”(AZZF — FAF)(v3)||-
Thus
lim(4(v5)vp, v5)
=21 lilgn{(A(yg)flﬁ,flﬁ) + (A(¥5) %251 S2p) + (A(¥p) 3250 615)
+ (A(Wp)é1p: Cap)}
=271 11[511{(’111]5(3’3)513'513) + (A22E(V8)2p C2p)}
—27H(AM®)E, &) + (A, O3

and so
lim (1, (Y, v ) = (et + weihe) /2. (70)
The right member of (70) is a limit of pure states of 2 but is not proportional to a pure state
of 2, and this is a contradiction. Thus 2(x) is onedimensional and the proof is complete.
The technique might be useful in determining the closure B~ of the set B of

elementary positive definite normalized functions f on a locally compact separable type |
group G. (By normalized, we mean f(e) = 1 where e is the identity of G.) Theorem (2.2.17)
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suggests the question: are there any locally compact groups G other than direct products of
compact and abelian groups for which B~ CU; 3350 {Af: f €B}=[01] XxB ? The
topology in which the closure B~ of B is to be taken is the w*-topology in the dual to L;.

We show that certain C*-algebras associated with representations of the commutation
relations with an infinite number of degrees of freedom are simple, NGCR, and have
representations the weak closures of the images of which are factors of type 11, (resp. I11).
The existence of type Il and type 11l representations for one of the C*-algebras we consider
has been announced by GArding and Wightman in [118] but the proof has not been
published.

We present the terminology of [117]. A single particle structure ) is defined as a
system (9, ', B) where $ and $' are real linear spaces and B is a real non-singular bilinear
formon (%, 9"). A canonical system over Y. is defined as a pair of linear maps p(-) and q(:
) from $ and $', respectively, to respective commutative families of (unbounded)
selfadjoint operators on a complex Hilbert space (called the representation space) such that

eiP() piq(x") = 5iB(xx") pig(x") pip(x) (71)
for arbitrary x in $ and x’ in §'. Linearity is with respect to the strong operations on the
unbounded linear operators on the representation space. Since we wish to deal only with the
case of an infinite number of degrees of freedom, we assume that £ (and so $') is infinite
dimensional.

A bounded linear operator T (on the representation space) is said to depend on
submanifolds Mt of H and W'’ of ' in case T is in the weak closure of the algebra

generated by e?® and €™ as x and x’ range over M and M’ respectively. The
collection of all bounded linear operators dependent on a pair of fixed manifolds 9t and M’
forms a weakly closed von Neumann algebra 2(0t, 0t") while the union over all finite-
dimensional Mt and M’ forms an algebra whose uniform closure 2 is called the
representation algebra of field observables. It is proved in [117] that the algebra 2 is
determined (up to isomorphism) by ).

Suppose that 0t and I’ are n-dimensional and that B9t x Wi’ is nondegenerate. Let
a base {ey, ..., e, }(resp.{ey, ..., e;,}) be chosen in M (resp. V') so that if x = ),; a;e; x' =
Yiaie; then B(x,x") = Y;a;a;. It follows from [112] (at least in the case where the
representation space is separable, which is all we need here) that there is an isomorphism 6
from A (W, M) onto the bounded operators on L2(E™), such that

(6 (exp (in(a/¢)) f) oo &) = (&1 oo Ejmrs &) + @1t s i)
(9 (eXp (iq(ajej))) f) (1o ) = exp(ias;) £ (&1, 0 8))

for f in L(E™). (E™ is euclidean n-space.)

Theorem (2.2.18)[100]: A is simple and NGCR. If ¢ is a representation of 2 and if a trace
is defined on the weak closure ¢ ()~ of () then the only operator in ¢ (A) with finite
trace is zero. Thus U has no representations of type I,,(n < o) or of type I1;.

Let ¢ be a representation of U, let Mt, and Wt be finite dimensional subspaces of £
and $' respectively and let 9t (resp. ') be a finite dimensional subspace of & (resp. ')
such that M, & M (resp. My & M) and B|IM x M’ is non-degenerate. Then ph~1 is a
representation of the bounded operators on L?(E™), when n = dim 9, and kernel 81 is
zero or the completely continuous operators. No non-zero element of 6((3,, My)) is

completely continuous and so @816 (A (Do, My) ) and @|A(Dio, Ny) are faithful. Since

(72)
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M, and Wi, were arbitrary finite dimensional subspaces, ¢ is faithful and 2 is simple.
Since A is not an n X n matrix algebra, 2 is NGCR.

Let t be a trace on @ (A)~. Since 1 is an infinite projection in A(W, WM'), (1) is an
infinite projection in ¢ ()™, and so t((p(l)) = oo. The set of operators A in A such that

|t(¢(4))| < oo is a proper two sided ideal in 2 and so is zero.

A is never separable and so we cannot use Theorem (2.2.7) to conclude that 2 has
type 1l and type Il representations. By making further restrictions on $ and &', however,
we can make use of the techniques of Theorem (2.2.7). Let K be a separable Hilbert space,
let e4, e,, ... be an orthonormal base for K. Let §, be the real linear span of e, e,, ..., let $,
be the set of elements ) a;e; where {a;} is a square summable sequence of real numbers.
Let B;(x,x") = i(x,x") forxin i$, and x’" in i$,. We suppose that § is dense in $, and '
is dense in i$; and that B is the restriction to $ x ' of B;.

Theorem (2.2.19)[100]: If $, ' and B are as above then there is a representation ¢ of A
such that the weak closure @ (2) of () is a factor of type I1,, (resp. type I11) and this
representation ¢ arises from a canonical system over }..

Let 9, be the subspace of $, spanned by ey, ...,e,, let W;, = iM,,. Let S,, =
AM,, W) . Let N, be the subspace of H, spanned by e, , let N, =iN,,, let T,, =
AN, ;) let A, be the C*-algebra generated by the S,,,n = 1,2, ... Let 6,, (resp. y,,) be
the isomorphism 6 of S,, (resp. T;,) given by (72) in the case M, = W, Wk;, = W’ (resp.
N, =M, %N, =W).

Let go(x) =sinx if x €[—-m ], go(x) =0 otherwise, let g,(x) =sinx if x €
[—3m, 7] U [r, 37], g1 (x) = O otherwise, let f; = g;/||g;||, where ||g;|| is the norm of g;
as an element of L?(E'). We assert that there is a positive number b such that

|1 - (eaxjj-(x),f,-(x))| < a®b (73)
|1 — (f](x + a),f]-(x))l < a’b (74)

for all real a. In fact (73) follows from

jc (e'® — 1) sin?(x) dx = z <(l:|)n> fcx" sin?(x) dx

n=1
and from f_cc x sin?(x) dx = 0 for ¢ real while (74) follows from
2m+d 2m+d

2m+d
j sin(x + a) sin(x) dx = j sin?(x) cos(a) dx + f sin(x) cos(x) sin(a) dx
d d

2m+d ¢
= cos(a) sin?(x) dx
d
for d real. Let F;; be the projection on f;, let F;; be the partial isometry from F;; to Fj; which

takes f; onto f; for i # j. Let E0Y = ¢ 1 (F;;) € Ty, let

ij
. . . r 1
E(ll, ...,ln;]l) "'J]Tl) = El(l])lEl(:'_'])n

Since T and T; commute for s # t it is easy to see that

{E (s, s ini fis o0 )t bk i = 0,13
is a family of 2™ x 2™ matrix units in S,, and that E(iy,...,i,; i, ...,0,) IS @ minimal
projection in S,,. Let

E(n) = z ECiy, i iy, i)
i1 min
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Let M(n) be the linear span of the E(iy, ..., i; 1, «ves Jn)- SINCE E(iy, wr) iy iq, ey i) IS @
minimal projection, M(n) = E(n)S,,E(n). Letsbein (0, 1/2], lett = 1 — s, let

Ao (E (s, oerin; s s jn)) = ]1 Jngz"lktn Zicle,
As in the proof of (b1)=(b2), (b3) of Theorem (2. 2 7) there is a state A of 2, which is an
extension of A,. LetE = igf«pA(E(n)). The sequence ¢, (E(n)) is monotone decreasing

and so E exists and is in ¢, (U,)~, the weak closure of ¢;(2,). By an argument as in
Lemma (2.2.5), ¢, (M (n)) leaves @, (E(n + r)) invariant for r a positive integer, and so
@, (M (n)) leaves E invariant. Thus A — ¢, (A)E is a representation of M(n). Let M be the
linear span of the M(n). Then ¢@,(M)E is a*-algebra which is generated by an ascending
sequence @;(M(n))E of 2™ x 2™ matrix algebras, and it follows as in the proof of
(b1)=(b2) and (b1)=(b3) of Theorem (2.2.7) that ¢, (M)E~ is a factor of type I1, if s =
1/2 and a factor of type Il if s # 1/2. Since

EQr(Sp)E = E@y(E(M)S,E(M))E = @ (M(n)E
and since the union of the S,,'s is dense in Uy, @, (M)E is uniformly dense in E ¢, (U,)E.
As in the proof of (b1)=(b2), (b3) of Theorem (2.2.7), this implies that ¢, (2,) is type Il
if s = 1/2 and type Il if s #+ 1/2 and the same argument shows that ¢, (2,) is a factor.
If s = 1/2 then by Theorem (2.2.18), ¢, (2,)~ is a factor of type I1.

Let B, be in Ty, let F, = ES9 + EXY. Then
Fi By Fy = Z b EL

for some complex numbers b(k) As in Lemma (2.2.6), 1 = A(F - F) and since Fj
commutes with T; for j # k,
/’l(Bl,...,Bn) = ){(FlBlFl" F B Fn)

= Z{b.“? e, b gZriegn=Xkik: i = Qor1,....,i, = 0or 1}

l1l9 " Inln
n

- n (bg';>t + b§’§)s) = A(F,B1F,) ... (FyByF,) = A(By) ... A(B,).
k=1
Let z be a vector in $, such that A = w,p; and $H; = [1(Ap)z]. Let x = Y aiex be in
9o, let r=p or q, let j =1 or i respectively. Let R(a) be a 