Sudan University of Science and Technology
College of Graduate Studies

Evaluation of Entrance and Exit Doses in Tangential Fields in Breast Cancer Treatment. SAD and SSD Techniques

The Thesis Submitted for partial Fulfillment of the Requirements of MS.c Degree in Radiotherapy Technology

By:

Abdalazeem Ahmed Khalifa Mohammed Ali

Supervisor:
Assistant. Prof / Sulieman M . Elhassan
College of Medical Radiological Sciences

July 2009
Dedication

This work is dedicated to

My parents, who pray a lot for my success, my brothers and sisters for their endless support and kindness. To my teachers and colleagues
Acknowledgement

I am greatly indebted to my Supervisor Assistance prof / Sulieman M. Elhassan, who played a knee-role and also to his kind support and help during my work in this research.

I express my deep gratitude to Dr. Mohammed Elfadil the head of radiotherapy department who extended the most possible help in completion of my study.

Special thanks to Mis/ Fowzia Elsadig, Dr. Khalid Ibrahim, Mr. Yousif Mohamed and Mr. Awad Drag who made all possible steadfast support and help in order to let this work sees light.

I want to thank the teachers of college of medical radiological sciences department of Radiotherapy, who made this research possible.
List of Tables

Table 4.1: shows the relation between the mean and standard deviation of the entrance dose
--40

Table 4.2: shows the relation between SAD and SSD techniques in entrance dose
--40

Table 4.3: shows the relation between the mean and standard deviation of the exit dose
--43

Table 4.4: shows the relation between SAD and SSD techniques in exit dose
--43

Table (4.5): shows the relation between the mean and standard deviation of the Lung dose
--46

Table (4.6) shows the relation between SAD and SSD techniques in lung dose
--46
List of Figures

Figure (2.1) : Diagram showing a stage T1 breast cancer--------------------------11

Figure (2.2) : Diagram showing a stage T2 breast cancer------------------------12

Figure (2.3) : Diagram showing a stage T3 breast cancer------------------------13

Figure (2.4) : Breast-conserving surgery(Lumpectomy)-------------------------21

Figure (2.5) : Total (simple) mastectomy---------------------------------------22

Figure (2.6) : Modified radical mastectomy------------------------------------23

Figure (3.1) : Determination of the isocenter----------------------------------35

Figure (4.1) Scatter plot shows the relation between the entrance skin dose (cGy) and Separation-------------------------------------38

Figure (4.2) Scatter plot shows the relation between the entrance skin dose (cGy) and Separation-------------------------------------38

Figure (4.3) Shows the relation between the SAD and SSD technique in entrance dose---39

Figure (4.4) Shows the relation between the SAD and SSD technique in entrance dose---39

Figure (4.5) Scatter plot shows the relation between the exit skin dose (cGy) and Separation in SAD technique----------------------41

Figure (4.6) Scatter plot shows the relation between the exit skin dose (cGy) and Separation in SSD technique----------------------41
Figure (4.7) Shows the relation between the SAD and SSD technique in exit skin dose

Figure (4.8) Shows the relation between the SAD and SSD technique in exit dose

Figure (4.13) Scatter plot shows the relation between the Lung dose (cGy) and Separation in SAD technique

Figure (4.14) Scatter plot shows the relation between the Lung dose (cGy) and separation in SSD technique

Figure (4.15) Shows the relation between the SAD and SSD technique in lung dose

Figure (4.16) Shows the relation between the SAD and SSD technique in lung dose

list of Appendices

Appendix (A)

Appendix (1) : shows 10 common diseases among females in NCI during 2008

Appendix (2) : shows the dose received by skin and lung in SAD and SSD setup

Appendix (3) : shows the dose received by skin dose (entrance) in SAD and SSD techniques and Separation of the patients

Appendix (4) : shows the dose received by skin dose (exit) in SAD and SSD techniques and Separation of the patients

Appendix (5) : shows the dose received by the Lung in SAD and SSD techniques and Separation of the patients

Appendix (B)

Appendix (1) : Anatomy of the breast

Appendix (2) : Anatomy of the Breast, shows the Ducts and Lobules of the Breast

Appendix (3) : Standard X-ray mammography

Appendix (4) : Lymph node areas adjacent to breast area

Appendix (5) : The ultrasound of breast

Appendix (6) : shows 10 common Diseases among females in
Appendix (7): Incidence and mortality rates

Appendix (8): Monoisocentric technique of locoregional radiotherapy to the breast

Appendix (9)-a: treatment area in tangential breast cancer

Appendix (9)-b1: Simulator radiogram of a tangential breast field

Appendix (9)-b2: Drawing of tangential treatment fields on the patient’s skin

Appendix (9)-b3: Patient’s position during radiotherapy simulation

Appendix (10): First level axillary lymph nodes contoured on CT slice

Appendix (11): Composite isodose distribution for a pair of parallel opposed fields

Appendix (12): Isodose curves for a cobalt-60 gamma ray beam

List of Abbreviation

SAD Source to Axis Distance 4
SSD Source to Skin Distance 5
SEER Surveillance Epidemiology and End Results 8
DCIS Ductal Carcinoma In Situ 9
LCIS Lobular Carcinoma In Situ 9
TNM tumor, lymph node, metastasis 11
NPI Nottingham Prognostic Indicator 11
FNA Fine Needle Aspiration 16
HER-2 Human epidermal receptor-2 16
HBMI High body mass index 17
DNA Deoxyribo Nuclear Acid 18
ROS Reactive oxygen species 18
R.O.P Relative output 28
EFF Electron Filter Factor 28
SPSS Statistical Package for Social Studies 32
3D Three Dimension 33
ABSTRACT

The carcinoma of the Breast is a common disease in Sudan, about 51.5% of 10 common cases, 195 out of 379 cases during 2008 in National Cancer Institute-Madani-Sudan. Appendix-A(1), For radical treatment the external beam therapy is common, given via two tangential fields cover the area of the breast, chest wall and parasternal lymph nodes by a dose around 5000 cGy in 25 fractions, 5 fractions per week.

This study conducted at the National Cancer Institute in the period from July 2009 to December 2009. The main objective of this study is to evaluate the sum of entrance and exit doses of tangential fields in Breast cancer for SAD and SSD techniques to find out the differences whether it is within the acceptable limits or not. The radiation dose was measured and evaluated during the planning course using the THERAPLANPLUS. The data analysis by using Statistical Package for Social Studies and from Appendix (4.1) the correlation is 0.972, is significant. And by using t-test the value:

\[(P-value = 0.000 < 0.05)\]
Indicate that there is difference between two variables so from Appendix(4.1) and other Appendices, there is difference between the two variables. The last results reveal that the dose increase by increasing separation in case of SAD, and the skin dose is higher in case of SAD than in SSD.

الخلاصة

يعتبر سرطان الثدى من أكثر السرطانات شيوعاً في السودان، يمثل 51.5% من المائة من أكثر عشرة حالات شائعة، 951 من 379 حالة خلال العام 2008. بالمعهد القومي للسرطان بمدني - السودان، نظر ملحق ب(1). يعتبر العلاج الإشعاعي الخارجي للثدى علاجاً جذرياً يعطى في شكل حقلين تماثلين متصادين يغطي كل الثدى والغدد الليمفاوية المجاورة. يعطى المريض 5000 سيتر في 52 جلسة خلال خمسة أسابيع. تم جمع البيانات بالمعهد القومي للسرطان بمدني خلال الفترة من يوليو 2009 حتى أغسطس 2009.

الهدف العام من الدراسة تقييم مجموع الجرعة الداخلية والجرعة الخارجية SSD و SAD و جرعة الرئة للحقلين المنسوجين لسرطان الثدى في حالة تقنية ال THERAPLANPLUS. تم حساب الجرعة الداخلية والخارجية وجرعة الرئة خلال عملية التخطيط ومن خلال جهاز توزيع الجرعة التي تسمى Statistical. تم تحليل البيانات إحصائياً من خلال برنامج إحصائي يسمى Statistical Package for Social Studies. اختلاف معنوي بين المتغيرين في الدراسة.
من الملحق (4.1) تم حساب معامل الارتباط بين المتغيرين 0.972 وهو معنوي . اما بالنسبة لاختبار- فان قيمة :

\[P-value = 0.000 < 0.05 \]

ما يدل على رفض فرضية عدم الاختلاف معنوية بين المتغيرين من الملحق (4.1) ومن الملاحظة الأخرى ينصح أن هناك اختلاف بين المتغيرين , النتائج السابقة توضح ان الجرعة تزيد بزيادة المسافة في حالة SAD وان جرعة السطح اعلى في حالة SAD منه في حالة SSD .

TABLE OF CONTENTS

Dedication ..I
Acknowledgements ..II
List of Tables ..III
List of Figures ..IV
List of Abbreviation ...V
Abstract

Table of contents

Chapter one
1.0 : Introduction

1.1 : Introduction

1.2 : The Problems

1.3 : Objectives

1.3.1: General Objective

1.3.2 : Specific Objective

Chapter two (part one)
2.0 : Background and Literature review

2.1 : Anatomy of the Breast

2.2: Pathology of the Breast

 2.2.1 : : Staging of the Breast cancer

 2.2.2 : Symptoms and Signs of the Breast cancer
2.2.3 : Diagnosis of the Breast cancer
-------------------------------------15

2.3 : Eiotology of the Breast cancer
---------------------------------------16

2.4 : Incidence of breast cancer
---------------------------------------19

Chapter two (part two)
2.1 : Treatment of Breast cancer
--------------------------------------21

2.1.1 : Surgical
--------------------------------------21

2.1.2 : Radiation therapy
--------------------------------------24

2.1.2.1 : Field margins
--------------------------------------24

2.1.2.2 : Parallel opposed fields
--------------------------------------25

2.1.2.3 : Dose distribution
--------------------------------------26

2.1.2.4 : SAD and SSD techniques
--------------------------------------27

2.1.2.5 : Calculation, theoretical basis
--------------------------------------27

2.1.2.6 : Calculation methods
--------------------------------------29

2.1.3 : Chemotherapy and Hormon therapy
--------------------------------------31
Chapter three
3.0 : Methodology of the study
--------------------------------------- 32
3.1 : Materials
--- 33
 3.1.1 : The Simulator machine
---------------------------------- 33
 3.1.2 : Treatment Planning System (TPS)
---------------------- 34
3.2 : Methods
--- 34
 3.2.1 : Procedure description
----------------------------- 34
 3.2.2 : treatment machine setup
----------------------------- 36

Chapter Four
4.0 : The Result
--37

Chapter five
5.0 : Discussion
--47
6.0 : Conclusions
-- 49
7.0 : Recommendations
--50
8.0 : References
--51
9.0 : Appendices
-- 54
9.1: Appendix (A)
-- 54
9.2: Appendix (B)
--- 63