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Abstract

We study by the function theory on Cartan domains, the Berezin-Toeplitz symbol
calculus, the essential commutant of analytic Toeplitz operators and algebras associated
with spherical isometries and on the Bergman space. The classification of reducing
subspaces of a class of multiplication operators on the Bergman space, the Hardy space
of the bidisk with the Totally Abelian Toeplitz operators and geometric invariants
associated with their symbol curves are considered. The Hankel operators on Fock spaces
and related Bergman kernel estimates and asymptotics for generalized Fock spaces are
introduced . We obtain the localization, compactness and Sarason’s Toeplitz product
problem in Bergman and Fock spaces .
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Introduction

For T € B(H)"™ be an essentially normal spherical isometry with empty point
spectrum on a separable complex Hilbert space H , and let A € B(H ) be the unital
dual operator algebra generated by 7". In this note we show that every operator S € B(H)
in the essential commutant of A has the form S = X + K with a T -Toeplitz operator X
and a compact operator K. Our proof actually covers a larger class of subnormal op-erator
tuples, called 4-isometries, which includes for example the tuple T = (M, ,..., M, ) €

B(H?(0))" consisting of the multiplication operators with the coordinate functions on
the Hardy space H?(o) asso-ciated with the normalized surface measure o on the
boundary d D of a strictly pseudoconvex domain D < C".

We study the commutant of an analytic Toeplitz operator. For ¢ € H*®, let ¢ = xF
be its innerouter factorization. Our main result is that if there exists A € € such that x
factors as x = x;x,...x, each x; an inner function, and if F — 1 is divisible by each

X;, then {T(p}’ = {T.}'N {Tr}'. We develop a machinery to study multiplication operators

on the Bergman space via the Hardy space of the bidisk. Using the machinery we study
the structure of reducing subspaces of a multiplication operator on the Bergman space.

We show that the key step in the proof, which is a curious result about nilpotent
operators. One corollary of our main result is that ifx(3) = z",n > 1, then {T ¢}’ =
{T,.} N {Tr}', another is that if ¢ € H* is univalent then {T¢}’ = {T,}'. We are also able

to prove that if the inner factor of f ¢ is x(z) = 3™, n = 1, then {T(p}’ = {T,s} where s
is a positive integer maximal with respect to the property that z™ and F(z) are both
functions of z°. We conclude by raising six questions. We completely classify reducing
subspaces of the multiplication operator by a Blaschke product ¢ with order three on the
Bergman space to solve a conjecture of Zhu.

We study the compactness of operators on the Bergman space of the unit ball and on
very generally weighted Bargmann-Fock spaces in terms of the behavior of their Berezin
transforms and the norms of the operators acting on reproducing kernels. In particular, in
the Bergman space setting we show how a vanishing Berezin transform combined with
certain (integral) growth conditions on an operator 7 are sufficient to imply that the
operator is compact.

We studies totally Abelian operators in the context of analytic Toeplitz operators on
both the Hardy and Bergman space. When the symbol is a meromorphic function on C,
we establish the connection between the totally Abelian property of these operators and
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geometric properties of their symbol curves. It is found that winding numbers and
multiplicities of self-intersection of symbol curves play an important role. Techniques of
group theory, complex analysis, geometry and operator theory are intrinsic.

We introduce a function space integrable mean oscillation (IMO) on C". With /MO,
for all possible 1 <p, g < o we characterize those symbols fon C" for which the Hankel
operators Hy and H¢ are simultaneously bounded (or compact) from Fock space Fg to
Lebesgue space L. Sarason’s Toeplitz product problem asks when the operator T, T, is
bounded on various Hilbert spaces of analytic functions, where u and v are analytic. The
problem is highly nontrivial for Toeplitz operators on the Hardy space and the Bergman
space (even in the case of the unit disk).

\
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Chapter 1
Function Theory on Cartan Domains and Essential Commutant

We determine the essential commutant of the set of all analytic Toeplitz operators
on H?(0) and thus extend results proved by Davidson (1977) for the unit disc and
Ding and Sun (1997) for the unit ball.

Section (1.1): The Berezin-Toeplitz Symbol Calculus:

For Q be a bounded symmetric (Cartan) domain in C™ with dv(z) normalized
Lebesgue measure on Q. We let L = L2(Q, dv) be the usual space of Lebesgue
square-integrable complex-valued functions on Q. By H? = H?((Q, dv) we denote
the Bergman subspace of L? consisting of holomorphic functions. The orthogonal
projection operator from L? onto H? is denoted by P. Forf in L*(), the space of
essentially bounded, measurable functions on (), we will consider the multiplication
operator

Mg =fg,
onlL? the Hankel operator on L?
and the Toeplitz operator on H?

Trg = PMgg.

The main problem we consider is to determine the maximal conjugate-closed
subalgebra(Q of L* for which

TiTg — Trg
is a compact operator for all f, g in Q. The algebra Q is the homolog of the quasi-
continuous functions for the corresponding classical problem with Toeplitz operators
on the Hardy space of the unit circle [2].

Our results can be viewed as a major part of Berezin's program to "quantize"
curved space [4]. As is clear in the case of C,, with Gaussian measure [6, 12, 3], the
map f — Ty is a good candidate for a "quantization modulo the compact operators"
on any domain in C,,.

We develop a theory of functions of "vanishing mean oscillation at the boundary"
of the classical domains. This theory is of independent interest and is evidence that
some of the modern results in one complex variable [3] remain valid for domains in
C,, when formulated in terms of the Bergman metric.

It is elementary algebra that (Proposition (1.1.20),)

Q ={fe L”: Hy and Hyl are compact}.
To characterize Q in function-theoretic terms, we need to introduce the Bergman
reproducing kernel K(z,a). For ain Q, K (-, a) is in H? and for any f in H?
f(@) = (f,K(,a))



in the L? inner product { , ).The function K( -, *) is actually defined and continuous
on Q X Q(where Q is the closure of Q in C™). The normalized (in H?) reproducing
kernel is denoted by
ko (Z) = K(z,a)(K(a,a)) /2.

The functions K( -, -) are well understood on bounded symmetric domains and have
many useful properties. We shall make essential use of the Berezin transform offin
L *°, which is given by

f@) = (fkakq).
For typographical reasons, we will write (|f|?)” for the Berezin transform of | f|?.

We will denote the topological boundary of Q in C™by 9Q. Since 91 is compact,
by z — 01 for zin (), we will simply mean that the usual distance function d(z, 90Q)
has the property that
d(z,0Q) -0
For f bounded and continuous on () we write f € BC({}) and we define
Osc,(f) = sup{lf(2) = f W)|: Bz, w) <1}
where (-, -) is the Bergman metric on (). The closed Bergman metric ball centered
at z (with radius r) is denoted by
E(z,r) = {w € QQ: B(z,w) < 1}

We say that f in BC(Q) is in VO, (vanishing oscillation at the boundary) if

Zl_iglﬂ Osc,(f) = 0.
It 1s not hard to check that VO, is a norm-closed, conjugate closed subal-gebra of the
sup norm algebra BC ({1).

We also define the algebra J by
I={feLl”: (fI?)(z) > 0asz - 0Q}
and the algebra Qby
Q = {feL™ (fI*y (@) - f(2)* > Oasz-3q}

Finally, we define the algebra VM Oy (r) by writing

fan =GN [ f mdew),

E(z)
Where |A] is the v-measure of any measurable subset A, and setting
VMO,(r) = {f € L*: IE(Z,r)I‘lj

|f W) — f(z,r)|dv(w) > 0as z > Q)
E(z,1)
Our main result is that, for a class of (2-including the ball and the polydisc-described
later,
Theorem (1.1.1)[1]: For fin L™ (L)) the following are equivalent:
@ feQ
(b) feQ
(c) f€e VMOy(r)



(d f evVo; +J.
Moreover, for f inQ, f and f(,7) are in VO, with f — f and f — f(-,7)in J. The
decomposition Q@ = V0, + J is almost unique:
VoaNnJ=Cy={f €BCQ):f(z) »0asz - 90}

and

f=rGr)
is in C3 ) for fin Q and r > 0 arbitrary.
Corollary (1.1.2)[1]: VMO, (1) is independentof r > 0.
In applications of Theorem (1.1.1), the metric geometry of (@, f)is very significant.
For general, Q, Bis unbounded and the balls E(z,r) are compact inC™. Asa —
00, E(a,r) — 0% in the sense that

sup d(w,0Q) - 0
WEE(a.r)

For Q = B, the open unit ball in C™, more is true: asa — dB,E(a, r) — a. in the
sense that

sup [W —al -0
WEE(a,r)

It follows easily that

C(B) < VO0,(B) (*)
and we recover an old result of [2]. On the other hand, () fails for higher rank
domains.
For arbitrary bounded symmetric €,V 0,;()and J()) are nontrivial (bigger than
scalars + Cy and Cj respectively). In fact, it is easy to check that

eWB(0,2)

is always in VV0y.

Using Theorem (1.1.1), Fredholm and index theory for the C*-algebras 7(Q),
generated by all Tr with f in @, becomes accessible. The algebras V0,(Q) are
interesting in their own right. For SC the full ideal of compact operators and ( as in
Theorem (1.1.1), we have
Theorem (1.1.3)[1]: For f in Q, Tris compact if and only if f € J . There are *-
isomorphisms

7(Q)/K = Q/t = V0, /Cs.
The prototype for Theorems (1.1.1) and (1.1.3) is the earlier work [4, 8] for the
domain ) = C,, with dv replaced by normalized Gaussian measure. The "point at
infinity" plays the role of the boundary d(1. Working with "Carleson rectangles"
instead of Bergman metric balls, [3] then established versions of Theorems (1.1.1)
and (1.1.3) for A = D, the open unit disk in C.

For 1 = D, [2] showed that
Q(D) N H®(D) = Bo(D) n L*(D),



whereH® is the usual space of bounded analytic functions and B, (D) is the "little
Bloch space" of analytic functions f on D such that

lim (1~ [ZB)If @) = 0.
His method extends to the ball B in C™ to yield

Q(B) N H®(B) = By(B) N L*(B),
Where B, (B) consists of all analytic functions on B with

lim (1~ 1ZI)IVf ()] = 0.
This sort of result fails spectacularly for higher rank domains. Using [22],we have
Theorem (1.1.4)[1]: for rank(Q) > 1,9(Q) N H*(Q).consists of just the constant
functions

Although our methods of proof in Theorem (1.1.1) use many properties of
bounded symmetric domains, the results are likely to hold more generally. In
particular, for Q = C™ we have the related results of [5,8]. We conjecture that
Theorem (1.1.1) holds for all strictly pseudoconvex domains.

Here we collect the properties of bounded symmetric domains which will be
used in the main results. [4] will provide essentially all of our requirements.

Any bounded symmetric domain Q in C" is, by definition, a Hermitian
symmetric space [5] with complete Riemannian metric the Bergman metric (-, ).
We always assume that Q is in its Harish-Chandra realization so that 0 € (. It follows
directly from [6] that for each a in {2 there is a biholomorphic automorphism of Q, ¢,
with the properties

(@) @q(a) =0
(b) @, ° @, = identity map.
For Q = D, the open unit disk in C,¢,(z) = (a —z)(1 —az)~!. For Q = B, the
open unit ball in C", the ¢,'s are explicitly described in [7]. We denote by Aut() the
group of all biholomorphic automorphisms of ().
For the Bergman reproducing kernel mentioned, we have the well-known
transformation law
K(¢(2), pw))Uc0) (@)U p)W) = K(z,w), (1
hereg is a biholomorphic map from Q to Q' and (J.¢)(z) denotes the determinant of
the complex Jacobian of ¢. Note also that |(J.¢)(2)|? is the determinant of the
corresponding real Jacobian [8].
Using normalized volume measure dv on () (instead of the more customary
unnormalized volume measure), it is clear from [14, 13] that we can assume
K(z,0) =1
for all z in Q.
Proposition (1.1.5)[1]: For @ described above,

|(]c(pa)(z)|2 = |ka(z)|2-



Proof. Using the transformation law (1), we see that
K(z,a) = K(94(2),0)(c®a)(2)Jcpa)(a)
K(a,a) = K(0,0)|Jcpa)(@)]*.

|K(Z» a)lz = |Uc(pa)(z)|2K(a» a)
|(]c(pa)(z)|2 = |ka(z)|2

Uc®a)(2) = Agkq(2).
It follows from [9] that for bounded symmetric domains Q in the standard
representation, with normalized volume measure, the kernel functions K (-, -) have
the special properties:
(@) K(0,a) =1 =K(a,0),
(b) K(z,a) # 0,z € Q,a €Q,
(©) limg_gqK(a, a) = + oo,
(d) K(z, a)tis a smooth function on C™ x C".
Of course, K(z,a) = K(a,z). Here Q denotes the closure of Q in C™ and 00
is the topological boundary. The complex conjugate of f is denoted
One useful consequence of (1)-(3) is
Proposition (1.1.6)[1]: On Q, k(9. (2))k,(2) = 1
Proof. From Proposition (1.1.5) and the fact that ¢, is an involution, it follows that
ko (9a(2))ka(2)| = 1.
Using analyticity, k, (¢, (2))k,(2) is constant on Q and we can evaluate this constant
atz = 0.
Another consequence of (a)-(c) is that, for f any polynomial in z =
(z4,--.,2,), We have

It follows that
whence

and, in fact, for |[1,] =1

(f ka) = K(a,a)7"*f(a)

lirgﬂ(f; kq) = 0.
a—
Using density of polynomials in H2(Q), it follows that the net {k,} con-verges weakly

to 0 as a = 01.
For a in Q, we consider the operator

(Uaf) (w) = kq (W)f((pa (W))
on L?(Q). Using Proposition (1.1.6), it is easy to check that

so that

(@ U =1
(b) U, = U, is unitary
(¢) U,P =PU,.

Now we turn to the properties of the Bergman metric S(-,") on Q. As noted earlier,
B (-,) is a complete Riemannian metric [10] and it follows [12] that:

5



(a) the B metric topology on Q is the usual topology,
(b) the closed B -metric balls
E(a,r) ={w e Q:B(a,w) < 1}
are compact.
It follows easily that for a in Q
Zlirglﬂ,[?(a, z) = +oo.
We will need to know that the E(a, ) concentrate at dQlas a — 0X).
We have
Lemma (1.1.7)[1]: For r fixed, a — 0} if and only if
sup d(z,0Q) — 0.

Z€E(a,r)
Proof. 1t is enough to show that, as a — 9Q), E(a, r) is eventually in the complement
of any compact subset of Q. For C such a compact subset and z, € C, we let

sup B(z,,z) = R.

zeC
Now, f(a,z,) - was a - dQ, and for B(a,z,) > R + r, we see that E(a,r) N C is

empty.
Lemma (1.1.8)[1]:For Q = B, the open unit ball in C",as d(a, dB) = 0,we have
sup |z—a| - 0.
ZEE(a,r)
Moreover, if a = a; in dB then

sup |z —ay| = 0.
Z€E(a,r)

Proof. For z in E(a,r), we must have ¢,(z) in E(0,7r) so, by com-pactness of
E(0,7), there is a u = u, (r) with
|pa(2)| < p < 1.

1
1-la2 \2 . u?(1-lal®
-l =k <1—M2|a|2> el
Hence, as d(a,dB) — 0(|a] — 1) we have
sup |z—a| - 0.
ZEE(a,r)
Moreover, if a — ay in dB then the triangle inequality implies that

sup |z —ay| = 0.
Z€E(a,r)

The last geometric fact we will use is another consequence of the fact that (), §) is a
complete Riemannian manifold. For f(z,w) < r, consider the geodesic arc y from
z to w of length B(z,w). For any r! > 0, we can find m = m(r,r!) points {zj} on
y with z, = z,z,, = w and

It follows from [11] that

B(z,z))< T



B(Zj,Zj + 1) < T'l.
We will require some information about the dv measure of the metric balls E (a, ).
We write

|E(a,1)| = j 1dv(z).

E(a,r)
By Proposition (1.1.5) and the invariance of (-, -) under biholomorphic trans-
formations [12], we see that ¢, E(a,r) = E(0,7) and

E@nl= [  TkanPdvm),

E(0,1)
This fact allows us to compare volumes of different metric balls.
Lemma (1.1.9)[1]: For a, b in Qwith f(a,b) < Randr,s > 0, we have

0<m(Rrs)<M< M(R,7,5) < ©
) ) —_— |E(b, S)l —_— ) ) .
Proof. It is sufficient to check the upper bound separately on
|E(a, )| |E (b, 1)
|E(b, )|’ |E(b,s)|
We have
|E(c,t)] = K(c,c)™?! |K(z,¢)|*1dv(z)
E(0,t)

and by the compactness of E(0,t) and the fact that K(z,c) is continuous and
nonvanishing on E(0,t) X £, we see that

0<m,<|E(c,t)| K(c,c) < M; < oo
for all ¢ in Q. It follows immediately that

E(a,n)| _ M,
|E(b,s)| — mg
Moreover,
|E(a,7)||K(a,a)| - M,
|E(b,7)| |[K(b,b)] — mg
so that

[Ea,r)| _ M, |K(b,b)
|E(b,m)| — ms|K(a,a)l
Using the transformation law for K (- ,-) and Propositions (1.1.5) and (1.1.6), we have
K(b,D)| 1K (9a(b), 9, (b))

K(@, )l |K(pa(b), )2




Since B(a,b) < R, ¢@,(b) € E(0,R). Again using the fact that K(z, ¢) is continuous
and nonvanishing on the compact set E(0, R) X Q, we see that there is a constant Kp
with
|K (b, b)|
K@@l = F
and
E(@n)] _ M,
E(b,7)| ~ mg F
This finishes the proof.

The map (a,r) — |E(a,r)| will be of considerable interest to us. We will use
Lemma(1.1.10)[1]: The map (a,v) = |E(a,7)| is continuous in each variable
separately.

Proof. For fixed a, we can easily check continuity of r = |E(a,r)| provided we
know

S(a,r)y={z €Q:B(a,z) = 1}
has S(a,r) = 0. This follows directly from the fact that (£,5) is a complete
Riemannian manifold. The exponential map sends the sphere of radius r in the tangent
space at a onto S(a,r). Differentiability of the exponential map [9] provides the
appropriate estimate to show that S(a,r) = 0.
For fixed , we recall that

K (z,0)|?
|E(a, T‘)l = L(O ’r)mdv(W) .

Continuity of K(z,a), compactness of E(0,7), and the fact that K(a,a) # 0 now
show that a = |E (a, r)|is continuous.
We also need a somewhat different kind of estimate.
Lemma (1.1.11)[1]: For r > 0, there are constants E(r), €(r) so that
o> E() = lk,(2)|*|E(a, 1) =€(r) >0

fora, z in Q with f(a,z) <.
Proof. We have

|ka(2)I2IE (a,7)] = Mj K (w, @)[2dv(w)

¢ , K(a' a)Z E(0,r) ,

so0, using previously discussed properties of K (- ,-),

0<m, < fE(O,r)lK(W’ a)|?dv(w) < M, < oo,
and 1t suffices to consider
K (z,a)
K(a,a)

Again using the transformation rules and Proposition (1.1.6), we obtain



K (z,a)l 1

K(a,a)  |K(9q(2),a)l
Since (¢,(z) isin E(0,7) and K(-,7) is continuous and nonvanishing on the
compact set E(0,7) X (, the desired estimate follows.

There is one important analytic requirement which remains. We need a version
of a result in [12] for Q = B, the open unit ball in C". This estimate has been
somewhat extended by [13].

Lemma (1.1.12)[1]: For Q a finite product of balls or the irreducible rank two
domain of 2 X 2 contractive symmetric matrices (in C3), there are €5 > 0 and q >
1 with

00 > M"? = sup j |K (z, w)| A~ 29K (w, w) €0 dv(w)
Q

ZEQ
Proof. Direct calculation using [17, p. 17] [10]. Hence forth, we will assume when

needed that Lemma (1.1.12) holds for Q.
For Q a bounded symmetric domain in C™ and S(, -) the Bergman metric, we now
derive some function-theoretic results which will be needed later. We have, first, for
fin BC(Q):
Lemma (11.13)[1]: The function f is in VO, if and only if for any fixed r > O

lim sup{|f(a) - fW)|:Blaw) =r}=0.
Proof. One direction is trivial. Suppose fis in VOzand r > 0 is given. Recall that, by
Lemma (1.1.7),

sup d(z,00Q) -0

Z€E(a,r)
asa — 0Q. Recall also that there are m = m(r, 1) points z; for any win E(a, 1), so

that {z;} are in E(a,r) and B(zj,2j41) <1withz; = a and Z,, = w . By
compactness of E(a, 1),

sup{ |f(a) = f(2)|:B(a,2) = r} = |f(@) = f(W)

for some win E(a,r). Thus,

@ = FWI < ) 1£(5) = f(z4)
j=1

for{z;} as above. As a — 0Q, the z; —» 9 and, by the definition of V 0y, for any € >
0, if d(a, 0Q) is small enough then

f(2) = f(z+1)| < e/m

If (@) = fW)] <e.
We can now prove

Theorem (1.1.14)[1]: If fis in VO, then

so that



If(@) = f°pa (I, = 0

Asa — 0Q forallp > 1.
Proof. This follows easily from Lemma (1.1.13), the invariance of S(-, -) under
biholomorphic maps, and the Lebesgue dominated convergence theorem.
we will establish some relations between the function spaces Q,VMO0y(r), and
V05 + J described in the introduction.
These relations are purely function-theoretic and are part of the proof of Theorem
(1.1.1). We begin with
Lemma (1.1.15) [1]:  The following are equivalent:

(a) f € VMO, (r)

() lim [E@ |72 [0 [yl f W) = f@Pdvw)dv(z) = o,
Proof. By direct calculation
@I [ [ irw - r@Pdvmde)
E(ar)YE(ar)

= 2|E(a, M7 f W) = f@n)] dvw).

The desired result follows, using the fact that f'is in L and standard estimates.
Lemma (1.1.16)[1]: For r! > 7, we have VMO, (r") © VMO, (r).
Proof. Using Lemma (1.1.15), it suffices to check that

|E(a,r|)|_1|E(a,r)| >m(0,r,r) > 0.
This 1s exactly the content of Lemma (1.1.9).

We can now check

Theorem (1.1.17)[1]: The space Q is contained in VM Oy (7).
Proof. Direct calculation shows that

2(If 17~ (@) = |[f@]") = fﬂ fﬂ If(2) = f W) Plka@)*lkaW)|?dv(z)dv(w)

> f f F @) = f W) Plka(@) 2l ka(w)Pdv(2)dv(w) .
E(ar)YE(a,r)

Now using Lemma (1.1.11), we see that

221> (@) — F@I?)
> 1E(a, 7|2 j f@) = F W) I dv(@)dvw)
E(ar)

E(ar
The desired result follows from Lemm(a ()1.1.15).
Next we consider the function f (-, 7).
Lemma(1.1.18)[1]: Forfin L® (Q) andr > 0, f (-, 1) is in BC(Q).
Proof. Boundedness is clear. Using Lemma (1.1.10), it suffices to check that the map
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a- f(w)dv(w) = F(a)
E(a,r)
is continuous. We note that, for f(a, ay) small,
E(ayg,r —B(a,ay)) < E(a,r).
Thus,

F(a) = j v
E(ar

Fw)dv(w) + j Fw)dv(w),

E(a,r)\E(ao,r —B(a,ao))

Fw)dv(w) + j Fw)dv(w),

E(a,r)\E(ao,r —B(a,ao))

-[E(ao,r -B(a,a0))
Fap) = |

E(ao,r —B(a,ao))
and 1t follows that

|F(a) — F(ao)l < lIfllw {IE(a,7) | + |E(ao,7)| — 2|E(ao, 7 — B (a,a))I}-

Again using Lemma (1.1.10), it follows that |F (a) — F(ag)| = 0 asa — a,.
Finally, we can prove
Theorem (1.1.19)[1]: For r > Oand fin VMO, (r), f(-,7/2) is in VMO, and f —
f(.,r/2) is in J. Thus, VM Oy (r) is contained inV 0, + 7.
Proof. For f in VMO, (1), we know that f(-,7/2) is in BC(Q) by Lemma (1.1.18).
By Lemma (1.1.13), to check thatf (-, 7/2) is in V0, it will suffice to check that
C}i_rglﬂsupﬂf(a, r/2) — f(z,r/2)|: Bla,z) <7/2} = 0.
We have for f(a,z) <r/2
f(a,r/2) = f(z,7/2)|
< |E(a,r/2)|"'E(z,1/2)|7!

X If (W) — fw)|dv(w)dv(w)
fE(a%) fE(z%)

- |E(a,7)|? 1
~ |E(a,7/2)||E(z,7/2)| |E(a,1)|?

X f f IF@w) — Fw)|dv(w)dvw).
E(ar)YE(ar)

Thus, by Lemma (1.1.9) and the Cauchy-Schwarz inequality, we have

|f(a,r/2) - f(Z,T/Z)l
< MO,r,v/2)M(r/2,7r,7/2)

1/2
X {IE (a,1)I? f If —f (W)Izdv(u)dv(W)}
AE (a,r) YE(a,r)
and Lemma (1.1.15) implies that f(-,7/2) is in V0.

11



Next, we check that g = f — f(-,r/2)is in 7.We need to show that

j 9w ke W) 2dv(w) = 0
Q

As a — 0Q.
Given € > 0, using Proposition (1.1.5) and

Q= U E(0,k)
k=1
there is an R = R(e) with

j g W) lieu (W) 2dv(w) = j 19 © 9a(9a )| lla ()] 2dv(w)
QO QO
=f|g°<pa(2)|dv(z)
QO
< j 190 9a(DIdv() + lgllwl@ — EQ,R)]
E(O,R)

< j 190 0a@Ddv(@) + € < j g W) 1kaw)] 2du(w) + €
E(O,R) E(a,R)

Moreover,
o > E(R) = |E(a R)|lke(w)|?

for all w in E'(a, R) by Lemma (1.1.11). It follows that it will suffice to check that
@RI [ lgnl dvw) - 0
E(a,R)
as a — 01
Using the fact that ¢,E(0,R) = E(a,R), it is easy to find m = m(R,r)
points a; in E(a, R) so that

E(a,R) C UE(aj,r/Z) :
j=1

Thus,

E@r |

E(a,R)

gl dvw) < Y IE@RI | lgw)ldv(w).
= E(ajr/2)

Moreover, since f(a;,a) < R by Lemma (1.1.9),
E(a,R)|™* <E(aj,r/2) MQR,T/2R)
and so

E@RI [

E(a,R)

|9Gw)] dv(w) < MR,7/2,R) ) |E(a R)|™ j lg(w)l dv(w).
j=1 g

(@jr/2)

12



Using Lemma (1.1.7), it will now suffice to check that

E(a,r /2)|™! j lgw)| dv(w) > 0

E(ar/2)
asa — 0Q
To finish the proof, we note that

E(a,r /2)|™! j lgw)| dv(w)

E(ar/2)
<|E(a,r/2)|"! j = far /] aen
+IECar/2) j JF@r /D= fenr s 2] aven

As a — 0Q, the first term on the right goes to zero since f is in VM Oy (r/2) by Lemma
(1.1.16). Since f(-,r / 2)is in V0,3, Lemma (1.1.13) shows that the second term on
the right goes to zero as a — 0().

We now turn to the operator-theoretic estimates which are required. Let K
denote the algebra of all compact op-erators on the appropriate Hilbert space. Note
that 4 is in K if and only if A * 4 1s in K. For completeness we check
Proposition (1.1.20)[1]: @ = {f € L*: Hy, Hf € K},

Proof. 1t is easy to check that Hy, Hr are in X if and only if

[P,M¢] = PMy — M¢P
is in K. Since

[P,M,r] =[P, M,|Ms+ M,[P, Ms]
we see that {f € L”: Hr, Hr € K} is a closed (since K is norm closed) conjugate-
closed subalgebra of L.
Using
PMysP — (PMgP)(PMyP) = PMs(I — P)M,P,
we see that for Hg or Hy in X, Ty, — TfTy is in K .Choosing f = g, we also see that
Tigiz — TgTy = HgHy

so that Hy is in X if and only if T4z — T5T, is in X . the desired conclusion follows.
A natural ideal in Q 1s described as follows:

Jx ={f €Q:Tr €X}.
Lemma (1.1.21) [1]: Jy is a closed ideal in Q. fis in Jy if and only if f € L and
T|f|2 e XK.
Proof. 1t is easy to check that f'is in Jy if and only if M¢P is in K (equivalently,
T|fz € K)and f € L% . It is now easy to check that Jy is an ideal in L* and that Jy
is closed.

13



For fin L (1), we define
L f) = j £ @)= FO)I 1K (2, w)] K (w, w)<odv(w)
Q

Loz f) = jﬂ I 1K (2, w)] K (w, w)eodv(w)

where €, 1s chosen as in Lemma (1.1.12). We have
Lemma(1.1.22)[1]: Fore, > 0,q > 1 as in Lemma (1.1.12) andp™ + q71 =1,
there is a positive constant M, independent off,such that

J1(z,f) < MK(z, 2)°IIf (2) = fo @l

€o
]Z(Z;f)s MK(Z; Z) ”f o(pZ”p'
Proof. The argument for J,exactly parallels the argument for ;. By change of
variables for /;(z, f ), we have

L f) jﬂ F@ = fog,w)

X |K (2, 0,(W))IK (0, (W), p,(W)) |k, (W)| 2dv(w).
Using Proposition (1.1.6) and the transformation laws for K (- ,-) we find that
K9, )] = )
zZ,o,W))| = ———
¢ |K (z,w)|
and

K (o, (W), 9,(W)) lk,(W)| 2 = K(w,w).
Thus, by the Jordan-Ho6lder inequality and Lemma (1.1.12)

J1(z f) = K(z,2)%|f(2) — f o o, (W)| |K(z, w)|" 2K (w, w)dv(w)

< (M) k(2,2 @) = f o @yl
This completes the proof.
We also need
Lemma (1.1.23)[1]: For y = xc the characteristic function of any compact subset C
of Q, M, Hy and M, PMsP are compact operators on L?(Q).

Proof. For g in the range of P,
(MyHp)g(2) = fQX(Z)(f (2) = f(W)K(z,w)g(w)dv(w)

(MyPMfP)g(z) = [, x(2)f WK (z, w)g(w)dv(w).
The integral kernels are bounded so that the operators are Hilbert-Schmidkt.
We can now establish the next link in the main result:
Theorem (1.1.24)[1]: VO, + 7 is contained in Q.
Proof. Since Q is an algebra, we need only check that VOy and J are separately
contained in Q. Suppose that /' is in V0,. By Theorem (1.1.14), [[f(a) — f o @q4ll, =

Oasd(a,dQ) — 0.Givene > 0, choose § = J(€, f) small enough so that

14



If(@) = feq.lly<e

When ever
d(a,dQ) < 4.
Let y = yc be the characteristic function of the compact set

C ={a €Q:d(a,d) =6}
By Lemma (1.1.23), M, H; is in X .Moreover, for g in H?(Q) and €, > 0 as in
Lemma (1.1.12),

(Hp9) () = jﬂ (f @) FW))K (2, w) g (w)dv(w)
so that
|(H;9) ()|
< jﬂ ()~ FWIIK 2, )] K (w, w)% dv(w)

x [ 1F@- FONIIK G WK G, w) o g (w)]? dv(w)
Q
by the Cauchy-Schwarz Lemma. Using Lemma (1.1.22), we now have
2
D@ < 20flle MK 2,2 [ 1K G w)IKGw,w) o lg(w) [ do(w)
Q

for z in Q\C. Thus by Fubini's Theorem and another application of Lemma (1.1.22),
we have

I, =m0l = | Iero@ [ ave
< 20fll M, j K (w, w)~%olg(w)[? dv(w)
Q

x j 1K (2, w)IK (2, 2)% dv(z) < 2[IfllM2ellf |1
Q

Since €, > 0 is arbitrary, it follows that H is in X. The same argument shows that
Hf is in X and so /" is in Q by Proposition (1.1.20).

To show that J is contained in Q, we actually check that 7 is contained in Jy.
For fin 7, it is easy to see that (|f|F) is in C3(Q)for p > 1. To show that f'is in Iy,
it suffices to show that Tz is in K. The proof is completed by noting that

If e @alle = UfI7) (@)

|[PM,f12P — M, PMf2P|

and estimating

using the method above.
Corollary (1.1.25)[1]: I = I«
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Proof. We need only check that 75 is contained in 7. We recall that the net {k,}
converges weakly to zero as a — 0€). Hence, for f'in Jy;, Tz is in K and so

(T\f12ka, ka) = (If17) (@) = 0
as a — dL. An application of the Cauchy-Schwarz inequality now implies that f'is
inJ.
Corollary (1.1.26)[1]: C5(Q) is contained in J.
Proof. Using Corollary (1.1.25) and Lemma (1.1.21), it suffices to check that Tz is
in X for |f|? in C4(Q). This is an easy exercise.
To establish that Q is contained in Q, we require several preliminary results. The next
Lemma appears in [14]. We sketch the proof.
Lemma (1.1.27) [1]: Py« = PE is a compact operator from the Banach space
L*(Q) to H*(Q).
Proof. [15]. Let E be the injection of L* (Q) into L?(€). Then P|; =y = PE and for

M, 5, the operator of multiplication by the character-istic function of the compact set
0,0 C (), we have

PE = PMy E + PM,, E.

Note that PM,,; is a compact operator since P is an integral operator with smooth
kernel away from the boundary 9. Choose. o so that [Q \ o] < €. Then, for ||f||, <
1, we have

|PMa 5[], = 1PMppanall, < x2\ ol < Ve
so that
||PMXQ\GE|| < Ve

Hence, PE is a norm limit of compact operators.
We also need
Lemma (1.1.28) [1]: If{f,} is a sequence of real-valued functions in L?() with
| £, — hll, = O for hin H3(Q)), then h is a constantfunction.
Proof. Write h = u + iv with u, v real-valued. Then

u(2) = h(DI? = |fu(2) —u@)I* + lv(2)|*.

| fo = Rllz 2 I vll2
so that v = 0 and 4 is a real-valued holomorphic function. It is now elementary that
h must be a constant function.
We can establish
Theorem (1.1.29)[1]: Q is contained in Q.
Proof. Since Q is conjugate-closed, it is enough to show that for freal-valued in Q,
must be in 9. For freal-valued, fin Q, we know

It follows that
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~ Vol 2 r 2
(1@ = |f@]| = [f@ ~ fowdl, = 0.
Suppose that
— |z 2
— >
Im [|f(@) = foga, = 0
so there are a,, —» 9 with
- 2
If (@) = feoull,=zp>0
for = 1,2,..... Since fis in Q,Hf = (I — P)M; P is a compact operator by
Proposition (1.1.20). Since {k,_} converges weakly to zero as a,, — 0{), we must
have

lim (1~ Pk, |, = 0
We now use the unitary operators

Waf)(W) = ka(W)f o 9o (W)

discussed earlier and recall that [P,U,] = 0 and
Ua(f © 9a) = fkq.

Tim||(7 = P)f o g, ]|, = 0 @
Noting that {f ¢ ¢,_} is a bounded subset of L** (Q), Lemma (1.1.27) implies that
there is an 4 in H2(Q) and a subsequence {an,} so that

Jim [P 0a,,) = 1], =0. 3)
Combining (2) and (3), we see that
Jm [ 2 @0, )= 1], = 0.
It follows from Lemma (1.1.28) that /4 is a constant function. Thus
f(ank) =(fo (pank» ->(h1)=h
and it follows from the estimate

17 (an,) = f © a,,

It is easy to check that

| < || © @ay) =], +11F(an,) — Al
that
=0.

Jim|f(an) = £ o 0a,, |,
This contradicts (a).

It follows that

~ 2
1im [|f(@) = fogull; =0

and so f isin Q.

We can now assemble the results of earlier sections. We need
Lemma (1.1.30)[1]: For f in O, wehave f — f(;,1) in Cy(Q) for any r> 0.1t
Follows that f is inVO;,.
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Proof. 1t is easy to see that f is in BC () because of the continuity of K(+,-) and the
definition of f. Moreover, f(-,7) is in VO, by Theorems (1.1.17)and (1.1.19). It
remains to estimate f — £ (-,7). Using Lemma (1.1.11) and direct calculation, we have

e A1) @ = [f@|] = e fﬂ ) = F (@) 1ka(w) 2w (w)
ZWMJN*f Fw) = F @[ dvw) = f(ar) - F@)>.

E(a,r)
The desired result follows.
We also require a characterization of V 0y which is of intrinsic interest.
Theorem (1.1.31D)[1]: VO, = n{f:f — f € C5(D)}.
Proof. By Theorem (1.1.14), if f'is in V0, then
Tim If (@) — f ° @all3 =0
Direct calculation shows that
If (@) = £ o @all} = (f1H (@ - |f @] +|f(@ - f@|"
Note that
IF13" @ = @]’
by the Cauchy-Schwarz inequality. It follows that if (1) holds and f'is in BC({1) then
fisinQand f — f is in C5(Q). By Lemma (1.1.30), we see that f is in V0,. The
desired result follows from (b).
For f in L ®(Q) the following are equivalent:
(@ feQ
(b) f€Q
(c) fEVMO,(r)
(d) feVo;+17.
Moreover, for fin Q, fand f(-,1) are in VO, with f — fand f — f (-, 1) in I forr >
0. We have
V0, NT = Cy(Q) and f — f(,7) is in C5(Q) for fin Q and r > 0.
Proof. (b) = (c) is Theorem (1.1.19). (¢) = (d) is Theorem (1.1.19). (d) = (a)
is Theorem (1.1.24). (a) = (b) is Theorem (1.1.29). Theorem (1.1.19) also shows
that £(-,r) is in VO, with f — f(,7) in 7. By Lemma (1.1.30), f — f(-,7) is in
Cy(Q)). By Corollary(1.1.26) of Theorem (1.1.24), C5({2) is contained in J and it
follows that f — f is in J.

Finally, using Theorem (1.1.31) we see that for f in VO3 N7, f — f and
(IfD)~ are in Cy(Q).It followsthat f is in C»(€) so that f is also in Cy(L). The
reverse inclusion is elementary in view of Corollary (1.1.26) of Theorem (1.1.24).
VMO, (1) is independent of r > 0.

Proof. VMOy(r) = Q forallr > 0.
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For fin Q, Ty is compact if and only iff is in J. We have *isomorphisms
7(Q)/ K = /7 — V0ad /Ca(Q).
Proof. We need to check, first, that K is contained in 7(Q). A standard argument
shows it is enough to check irreducibility of 7(Q). Using Theorem (1.1.24) and noting
that 7 contains the set Ly of L functions with compact support, it suffices to check
the irreducibility of the set { T¢: f € L¢'}. Cutting down the coordinate functions z; to
compact subsets of Q and an application of the Lebesgue dominated convergence
theorem as in [15] shows that the irreducibility of { T;: f € L’} follows from the
easily checked irreducibility of { T;;:j = 1,2,...,n } (cf. [12]).
By Corollary(1.1.25) of Theorem (1.1.24), for f in Q, T is in X if and only if fis in
J. Moreover, for all g, h in Q
TyTh — Tygn
is in K. It follows easily from standard *-algebra facts that t(Q)/K =~ Q/J. The
last isomorphism is clear from Theorem (1.1.1).
Theorem (1.1.32) [1]: [14]. For B the open unit ball in C", the algebra C(B) is
contained in Q(B).
Proof. Iffis in C (B), then for arbitrary € > 0 thereisa §(€) > 0 for which d(z, a) <
d(e) implies that |f(a) — f(z)| <€ . By Lemma (1.1.8), there is a §' =
8'(r,8(€)) > 0 so that d(a,dB) < &' implies d(z,a) < 6(€) for all z in E(a,r).
This shows that C(B) is contained in V0, (B). An application of Theorem (1.1.24)
completes the proof.
For rank () > 1,9(Q) N H*(Q) consists of just the constant functions.
Proof. Let

aZ
G,=1/2 <aZiaZ_i log K(z,z))

be the (infinitesimal) Bergman metric on . For f holomorphic on Q,z =
(z1,. - Zp), W = (Wq,.. .,Wy)(z;, w;in C), define [12]

0.2) = sup DM
! SGow,wy

where ( , ) is the usual inner product on €™ and

of of
Vf(iz) ==—,..,=—
FD =55,
is the analytic gradient of f. It is known [12] that

Qr(@0(2)) = Qfop(2)
for all ¢ in Aut(Q). It is also known [12] for rank () > 1 that if
lim 0,(2) =0, )

z—0Q
then f is a constant function. Thus, it suffices to show that (*) holds for fin Q N H®.

lw| =1

n
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Since fis in H*, it is clear that f = f and Hy = 0. It follows from Theorem (1.1.29)
and Theorem (1.1.31) that, for fH* N Q, f must be in V0, and so

lim 0,(2) [|f(@) — f ° ¢alf; = 0 (%)

a—0Q
Next, we show that (*) follows from (*%*).

By [12], there is a smooth function V (z, w) on €™ X C" so that K(z,w) =
V(z,w)~ L. Thus, if g is analytic on Q, then

8(2) = jﬂ GV (z w) " dv(w)

3 v
52 @ == | gV (@w)? T w)dv(w),

Note that K(0,w) = K(z,0) = 1. Thus, V(0,w) = 1. Since V(z,w) is smooth on
C™ x C", and Q is bounded in C™, there is a constant M > 0 such that

Vo] <
aZi( ,W) -

forall1 <i < nandw in Q. Therefore, we have
dg
52| < M [ lgtnldve).
Z; Q
Replacing g by g — g(0) yields
VO < nM? [ lgtw) - g(O)Pdu(w)
Q

Finally, for g = f o ¢, pawe have
2
IV(f ° 9)(0)I* < nM?||f(a) — f ° pal|,

and so
lim [V(f o @g)(0)| = 0
a—-0Q

Since

a? = inf (Gow,w) >0
Iwll=1

[Tim,] it follows from the definition of Qs(z) that

Qfopya(0) < a™HV(f o 9a)(0)]
and so

0r(@) = Qf(9a(0)) = Qfup, (0)
tends to 0 as a — 0(). This completes the proof.

We conclude with a remark about the extension of Theorem (1.1.1) and some

open problems.
Conjecture: Theorem (1.1.1) holds for Q any strictly pseudoconvex domain.
Of course, a different method of proof will be needed because of the sparsity of
analytic automorphisms.
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Section (1.2): Analytic Toeplitz Operators Associated with Spherical Isometries
For m denote the linear Lebesgue measure on the unit circle dD. A classical theorem
of Davidson from 1977 (Theorem 1 in [26]) asserts that an operator S on the Hardy
space H?(m) commutes modulo compact operators with all analytic Toeplitz
operators if and only if S is a compact perturbation of a Toeplitz operator B,, with
symbol f € H*(m) + C(dD), where H®”(m) refers to the space of all bounded
holomorphic functions on D regarded as a subspace of L (m) by passing to non-
tangential boundary values.

[24] by Ding and Sun from 1997 an analogue of this result is obtained for the
Hardy space on the open Euclidean unit ball B,, € C". If o denotes the normalized
surface measure on 0BB,,, then by Theorem 2 in [24], an operator S € B(H?(0))
essentially commutes with all analytic Toeplitz operators if and only if S = B,, + K,
where K is compact and f € L* (o) has the property that the associated Hankel
operator Hy = Pyz5L My |H 2(0) is compact. For n > 1, this class of symbols

strictly contains the space H* (a) + C(0B,,) (see [27]), while equality holds in the
casen = 1.

We establish variants of the cited results for Toeplitz operators associated with
spherical isometries or, more general, with A-isometries. Recall that a spherical
isometry on a complex Hilbert space H is a commuting tuple T € B(H)" satisfying

n
ZTi*Ti=1H'
i=1

Given a spherical isometry 7, there is an abstract theory of T -Toeplitz operators X €
B(H) defined by Prunaru [25] as the solutions of the operator equation
i T; * XT; = X. From this point of view, the result of Ding and Sun cited above
describes the essential commutant of the dual algebra
ArC[Ty,...,T,]" < B(H)
generated by the special spherical isometry T = (Ty,...,T,) € B(H)" consisting of
the multiplication operators T; = M, with the coordinate functions on the Hardy

space H = H? (o). Formulated in the setting of general spherical isometries, the main
result is the following (cf. Theorem (1.2.24)):

If T € B(H)" is an essentially normal spherical isometry with empty point
spectrum, then every operator S € B(H ) in the essential commutant of Ar has the
form S = X + K with a T-Toeplitz operator X and a compact operator K on H .

As an application we deduce concrete analogues of the above-mentioned results
of Davidson and Ding—Sun for multiplication tuples on Hardy-type function spaces.
To be more specific, let u denote a regular Borel probability measure on dB,, with the
property that all one-point sets have pu-measure zero. Then the multiplication tuple

T, = (le yeos My ) € B(H?(1))™ on the associated Hardy space
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H2(W) = Clay,...,3,]"2# ¢ 12(n)

1s a spherical isometry whose T,-Toeplitz operators are precisely the compressions
Ty = PuzgyMp \ H* ()

of multiplication operators Mj: L?(u) — L*(u) with symbols f € L* (). The analytic
Toeplitz operators are those with a symbol belonging to the space

H®u) = Clzy,...,5,]" C L® ().
We show the following form (see Corollary (1.2.25)):
If T, € B(H?(u))" is essentially normal, then an operator essentially commutes with
all analytic Toeplitz operators if and only if it has the form S = Tr + K with a compact
operator K and a symbol f € L* (u) for which the associated Hankel operator Hy =
Pz My \ H?(w) is compact.

We actually prove stronger versions of the above results for so-called regular
A-isometries. The precise definition will be given. Let us just mention at the moment
that this class is general enough to cover multiplication tuples with the coordinate
functions on strictly pseudo-convex domains. For example, we obtain the following
exact analogue of the above-mentioned theorem of Ding and Sun in the strictly
pseudoconvex situation.

If o denotes the normalized surface measure on the boundary dD of a strictly
pseudoconvex domain D © C™ with C?-boundary, then an operator S in B(H?(0))
essentially commutes with all analytic Toeplitz operators on H*(o) if and only if it
has the form S = Ty + K with a compact operator K and a symbol f € L* (o) for
which the associated Hankel operator Hy is compact.

We extend Prunaru’s theory [26] on the existence of short exact Toeplitz
sequences from the case of spherical isometries to the class of A-isometries and refine
his results in the essentially normal case. To illustrate this for a spherical isometry T €
B(H)", letus write T, (T) = C*(Ty : f € C(0By,)) for the C"-algebra generated by
all T-Toeplitz operators with continuous symbols (for the definition of Ty ,). Then
Proposition (1.2.18) says the following:

Let T € B(H)™ be an essentially normal, non-normal spherical isometry. If
Te (T) is irreducible, then there is a short exact sequence of C -algebras

0 — K(H) = To(T) > C (6,(T)) — 0,
where o maps the Toeplitz operator Ts to f |on(T) for every f € C(0By).

As the above examples show (see also Theorem 3.5 in [27]), many interesting
aspects of the theory of Toeplitz operators on classical Hardy spaces can be
rediscovered of multi-variable subnormal isometries. The role of the surface measure
in the classical theory will then be played by a scalar spectral measure of the minimal
normal extension for the underlying subnormal tuple. In general, this measure is far
from being explicitly known. So one cannot hope to find as detailed results as in the
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classical case. It seems worth wile to pursue this connection further. An interesting
question arises from a recent result of Xia (Theorem 1 in [26]) who answered a
longstanding problem for Toeplitz operators on the unit disc. By the cited theorem,
the condition that Tg XTg — X is compact for every inner function 8 € H*(m)
implies that X € B(H?(m)) is a compact perturbation of a Toeplitz operator. In
spherical isometries T € B(H)™, the T-Toeplitz operators with inner symbols
naturally correspond to isometries in the dual operator algebra A . So we may ask:

If T € B(H)" is an essentially normal spherical isometry with empty point
spectrum, and X € B(H) has the property that | x X] — X is compact for every
isometry € Ar . Must X then necessarily be a compact perturbation of a T -Toeplitz
operator?

Xia’s proofdepends on a special sequence of inner functions (6 )xso consisting
of finite Blaschke products, for which a multi-variable substitute is out of sight at the
moment. So it seems that more sophisticated methods are needed to solve this
problem.

Let H be a separable complex Hilbert space. A commuting tuple T € B(H)" is
called a spherical isometry if it satisfies the relation

n
ZTi*Ti=1H'
i=1

A result of Athavale [28] from 1990 saying that each spherical isometry is subnormal
marks the starting point of the structure theory for this class of multi-operators. Since
our approach to spherical isometries and their generalizations is based on the property
of subnormality, we briefly recall some central facts about subnormal operator tuples.
By definition, a subnormal tuple T € B(H)™ possesses an extension to a tuple U €
B(H)"™ consisting of commuting normal operators on some Hilbert space H
containing . If the only reducing subspace for U that contains H is the space H itself,
then the tuple U € B(H)" is called a minimal normal extension of T . Given any
normal extension U of 7, one can always obtain a minimal one by restricting U to the
space Vaenn(U")*H. It is well known that any two minimal normal extensions of 7
are unitarily equivalent. In particular, the normal spectrum of T, which is defined by
o, (T) = o(U) for some minimal normal extension U of 7, does not depend on the
choice of U. A result of Putinar [29] guarantees that g,,(T) is always contained in
a(T).

Now, fix a subnormal tuple T € B(H)™ together with a minimal normal
extension U € B(H)™. Then one can choose a separating vector z € H for U , which
means that the projection-valued spectral measure E'(-) for U and the scalar-valued
measure 4 = (E(*)3,z) are mutually absolutely continuous. The measure p obtained
in this way is a finite regular positive Borel measure supported by ¢,,(T) = o (U),
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and will be called a scalar spectral measure for U . From the identity u(o,(T)) =
|z]|? it follows that u is a probability measure if the underlying separating vector z €
H is a unit vector. Since, up to mutual absolute continuity, the measure yu does not
depend on the special choice of U, we may speak of u as a scalar spectral measure
associated with T. By the spectral theorem for normal tuples, there exists an
isomorphism of von Neumann algebras

Y, L®°(u) > W*(U) c B(H),
mapping the coordinate functions to the corresponding components of U . Defining

Rr =1{f € L®(W): ¥y (f)H c H}
one obtains a weak* closed subalgebra of L™ (u) called the restriction algebra. The
induced mapping

Yr : Ry = B(H), f—=%y (HIH

is known to be isometric again (see Conway [25]). Thus yr defines a weak* continuous

isometric algebra homomorphism mapping z; to T; for i = 1,...,n. It should be
mentioned that the restriction algebra Rt is independent of the choice of the minimal
normal extension U and the concrete spectral measure u.

From these general considerations about subnormal tuples we now return to the

special case of a spherical isometry T € B(H)™. According to Athavale [29], T is
subnormal and the spectral inclusion 0,(T) € 9B, holds. An obvious density
argument for the polynomials implies that the restriction algebra always contains the
ball algebra A(B,) = {f € C(B,): f |B,, is holomorphic} . The rich function-
theoretic structure of A(BB,,) and suitable weak* closures then leads to interesting
structure theorems for spherical isometries such as the reflexivity [29] of the dual
operator algebra generated by T or factorization properties of type A; and A, xo (see
[25]). Replacing A(BB,,) by an arbitrary function algebra A4 containing the polynomials
one obtains the following very general notion of an isometric operator tuple
introduced by [26].
Definition(1.2.1)[23]: Let K < C" be a compact set and let A € C(K) be a closed
subalgebra containing the restrictions of the polynomials C[z] in n complex variables
%2 =(21,---,3n). A subnormal tuple T € B(H)" is called an A-isometry if ¢,,(T) is
contained in the Shilov boundary d4 of 4 and € Ry .

By definition the Shilov boundary d, < K is the smallest closed set such that
Ifllco.x = Ifllco,9, holds for every f € A. Since the Shilov boundary of A(B,)
coincides with the topological boundary dB,,, the remarks preceding the definition
show that spherical isometries are precisely the A(IB,,)-isometries.

Other natural examples of A-isometries can be found of generalized Hardy
spaces. Fix a compact set K ¢ C", a closed subalgebra A c C(K) containing the
polynomials C[z]|K and a positive measure u € M*(d,). The multiplication tuple
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M, =M,,....,M, )€ B(L*(u))™ is normal with scalar spectral measure y and
Taylor spectrum o(M,) = supp(u) < d4. The associated functional calculus is given
by the map ¥y : L* (1) - B (L2(w)), f — M; . A Stone—Weliertrass argument shows
that the restriction T, of M, to the invariant sub-space
H2(u) = AMlew  12(p)

has M, as minimal normal extension. Since HZ(u) is invariant under each
multiplication operator My with symbol f € 4, it follows that Ry, > A. Thus

T, = (My,,...,M; ) € BLH; ())"
is an A-isometry. Note that the multiplication tuples with the coordinate functions on
the classical Hardy spaces over strictly pseudoconvex or bounded symmetric domains
in C™.
Definition(1.2.2)[23]: A multiplication tuple of the form T, € B(H3 (1))™ described
above will be called a Hardy-space 4-isometry.
Let us now return from these concrete examples to the study of a general 4-isometry
T € B(H)". Fix a minimal normal extension U € B(H)™ and a scalar spectral
measure y of 7. we may consider y as an element of M*(d,) in the sequel.

Since the restriction algebra is weak* closed and contains A4, it also contains the dual
algebra

He (W) = A% < L%(w).
If we denote the image of Hz° (i) under the canonical map y; introduced above by

Hr = yr(Hy (W) € B(H),
which is a weak* closed subalgebra of B(H), then we obtain a dual algebra

isomorphism, that is, a weak* homeomorphism and isometric isomorphism
yr i Hy (W) - Hy, f=¥(HIH,

extending the polynomial functional calculus of 7. This map will be referred to as
the canonical functional calculus for 7. Via y one can analyze the operator algebra
Hr by studying the function algebra H;°(1). A special role is played by the family

I, ={0 € H"(u):160] = 1 — almost everywhere on d,},
whose elements are called u-inner functions. As in the case of spherical isometries,
there is a one-to-one correspondence between [, and the operator family

Tr = {J] € Hy : ] isisometric}

A word-by-word repetition of the proof of Lemma 1.1 in [27] yields the following
result.
Lemma(1.2.3)[23]: Let T € B(H)™ be an A-isometry with associated scalar spectral
meassure |1 in M (0,). Then Tr = yr (I,), where yr is the canonical functional
calculus of T .
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In [25], Aleksandrov gives a sufficient condition ensuring H;°(¢) to have a rich
supply of inner functions. More explicitly, a triple (4, K, 1) consisting of a compact
set K € C", a closed subalgebra A c C(K ) and a measure 4 € M*(K), is called
regular in the sense of Aleksandrov if the following approximation problem is
solvable: For every @ € C(K) with ¢ > 0, there exists a sequence of functions
(pk) in A with |@y | < @ on K and logy_« |0k | = @ p-almost everywhere on K.
One of the main results in [24] says that, if the measure pu in a regular triple is
continuous in the sense that one-point sets have y-measure zero, then the set of all u-
inner functions is rich in the following sense (see Corollary 29 in [25]).

Theorem (1.2.4)[23]: (Aleksandrov). Let (A,K,u) be a regular triple with a

continuous measure p in M™(K). Then the weak* sequential closure of the set I,

contains all L (u)-equivalence classes of functions f € A with |f| < 1on K.

In [30, Proposition 2.4 and Corollary 2.5] it was observed that the following
weaker version of this density assertion is valid without any continuity assumption on
the measure.

Proposition (1.2.5)[23]: For every regular triple (A, K, i), we have

HY W) = LHY (I,) and L®(w) = LHY {77-0: n,0 € 1,}.
Now we introduce a regularity criterion for A-isometries which guarantees that the
above density results hold for the associated scalar spectral measures.
Definition (1.2.6)[23]: An A-isometry T € B(H)™" is called regular if, for some or
equivalently every scalar spectral measure u € M*(d,) associated with T, the triple
(A|0y, 04, 1) is regular.

In general, the regularity condition is hard to check. Nevertheless there are
examples of function algebras 4 for which every 4-isometry is regular. For example,
if D c C" is a relatively compact strictly pseudoconvex open set and

A(D) ={f € C(D): f |D is holomorphic}
is the generalized ball-algebra, then d,(D) = dD and the triple (A(D)|dD, oD, u) is
regular for every measure u € M* (0 D) (see Aleksandrov [24] or, for a more detailed
explanation, [28]).
Proposition (1.2.7)[23]: Every A(D) -isometry on a relatively compact strictly
pseudoconvex open set D © C™ (in particular, every spherical isometry) is regular.

As another example, take A C(K). Then d4 = K and (C(K), K, u) is regular
for every measure 4 € M*(K). Now, a look at Definition (1.2.1) shows that the
regular C(K )-isometries are precisely the normal tuples T € B(H)™ with Taylor
spectrum contained in K .

The regularity of an A-isometry T € B(H)™ has immediate and far-reaching
consequences for the structure of the dual operator algebras associated with 7" and its
minimal normal extension U . For later reference, we collect some of them in the
following proposition. Recall from Lemma (1.2.3) that the family of all isometries
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inHr is I =yr(l,) € B(H ). Considering the normal tuple U € B(H)™ also as an
A-isometry, the corresponding set of all isometries contained in Hy is Ty =
Yy(l,)B (H). Having in mind that the point spectrum

o, (T) = { € C": ﬂker(q T.) % 0

coincides with the set A, = {{ € 0d,: u({( }) > 0} of all one-point atoms of one
(equivalently any) scalar spectral measure u (cf. the remarks following Proposition
3.1 in [24] for the case of spherical isometries), the following approximation results
are immediate consequences of Lemma (1.2.3), Theorem (1.2.4) and Proposition
(1.2.5).
Proposition (1.2.8)[23]: Let T € B(H)" be a regular A-isometry with minimal
normal extension U € B(H)™. Then the following assertions hold:
(a) The families of isometries I and Ty defined above satisfy

Hr = LHY (Jr) and W*(U) = LHY ({1)2:J1,)2 € Ty}).
(b) If T has empty point spectrum, then the dual operator algebra Hy contains a

weak* zero sequence of isometries [, = yr(0y) with 0 € 1, for k = 1.

It seems that a profound theory of Toeplitz operators for A-isometries can only be
established under the assumption that the associated families of isometries I and Ty
are sufficiently rich (in the sense of part (a) above). This is the reason why we mostly
consider regular A-isometries from now on.

Recall that Toeplitz operators associated with a spherical isometry T € B(H)"
have been introduced by Prunaru in [29] as the solutions X € B(H ) of the operator
equation ;- T"XT; = X. This relation is modelled after the classical Brown—Halmos
condition characterizing Hardy-space Toeplitz operators on the unit disc [30]. A
recent result of the authors (Proposition 3.1 in [31]) shows that the following definition
for general A-isometries is consistent with Prunaru’s definition for spherical
Isometries.

Definition (1.2.9)[23]: Let T € B(H)™ be an A-isometry. Then an operator X €
B(H ) is called a T - Toeplitz operator if

J*X] = X foreveryisometry] € Hy.
We write 7' (T) for the set of all T -Toeplitz operators on H .
To give an alternative characterization of 7 -Toeplitz operators, fix a minimal normal
extension U € B(H)™ and write (U)' for the commutant of U in B(H), Py € B(H)
for the orthogonal projection onto A . Then every operator X € B(H ) of the form

X =PyAlH withAe€ (U)

belongs to 7'(T). Indeed, if ] = y;(0) is an isometry in H and h, k are arbitrary
elements of H , then the fact that 6 € Hy° (u) is inner immediately implies
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that (J*XJ h, k) = (A¥,(0)h, ¥y (0)k) = (Ah, ¥y (|6|2)k) = (Ah, k) = (Xh, k) . In
particular, for every function f € L*°(u), we obtain an element Ty € T (T) by setting
Ty = Py Wy (f)|H € B(H),

called the T -Toeplitz operator with symbol f . The corresponding Hankel operator
with symbol f'is defined to be

Hf =1 —Py)¥y (f)IHEB H H:.
In case of a regular A-isometry the different types of Toeplitz operators considered
above are related as follows.
Proposition (1.2.10)[23]: Given a regular A-isometry T € B(H)"™ with minimal
normal extension U € B(H)™, the following assertions hold:
(a) The T -Toeplitz operators possess the representation T (T) = Py (U)'|H.

(b) If W *(U) is a maximal abelian W *-algebra, then T(T ) = {T,: ¢ € L (1)}
Proof. Note that the 7" -Toeplitz operators in the sense of Definition (1.2.9) are just

the operators X € B(H) that are T -Toeplitz with respect to the commuting family of
isometries (yr (9))9€1u in the sense of Prunaru (Definition 1.1 in [28]). The

representation

W *(U) = LHY ({32 J1. )2 € Ty
obtained in Proposition (1.2.8) shows that the commutant of the family
(Yy (6 ))ger, coincides with (W *(U ))' = (U)" . But then the minimality of U as a

normal extension of 7 implies that (¥ (0 ))ge I is the minimal normal extension of
the commuting family (y7(0))ge I of isometries. Using Theorem 1.2 in Prunaru [32]
for commuting families of isometries, we obtain that
T(T) =Py (IPU(Q))IBEI“ |H = Py(U)'|H.
To prove part (b), observe that if W *(U ) is a maximal abelian W *-algebra, then
W*(U)= W *(U)) = (U)' by Proposition 4.62 in Douglas [32]. Therefore
T(T)=Py(U)'|H = Py Wy(L”(n))|H , as desired.
Corollary (1.2.11)[23): For every regular Hardy-space A-isometry T =T, €
B(HZ ()™ associated with a probability measure u € M{ (04), we obtain the identity

T(T) = {X €B (Hj(u)): T5XTy = X for every 6 € IM} =T, €L°(1).
Proof. Remember that the minimal normal extension of Tis U = M, € B(L*(u))".
Propo-sition 4.50 in Douglas [34] says that W*(U) = {M,: ¢ € L*(w)} € B(L*(n))
1s a maximal abelian W *-algebra. Hence the assertion follows from Lemma (1.2.3)

and part (b) of the above proposition.
Let us add a simple lemma with two elementary properties of Toeplitz operators
that will often be used without a comment throughout. For abbreviation, we say that
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a map I' : L (u) = B(H) is pointwise boundedly SOT-continuous if, for every
bounded sequence (fi)gsq1 in L™ (1) converging pointwise u-almost everywhere to
some f € L”(u ) (at the level of representatives), we have I' (f ) = SOT —
m I (fy) -
Lemma (1.2.12)[23]: Let T € B(H)" be an A-isometry with minimal normal
extension U € B(H)™.Then the following assertions hold:
(a) ForY € B(ﬁ) the maps
I:=L*w) - BH),f = Py(Py(NHY)IH,and I'": L* () » B(H),I'"(f ) =T ()’
are pointwise boundedly SOT-continuous.
(b) GivenY € (U)',f € L*(u) and g,h € Hy° (), we have

PH(’IUU(Q_f h)Y)|H = Tg (PH(IIUU(f)Y)lH)Th
and in particular Tgrp = Tz T¢ Th,.
Proof. Fix an arbitrary vector x € H and set y = Yx . Then the desired continuity
property for I' follows from the dominated convergence theorem and the estimate

IrHxl? < 1Py POyll* = Jlflzd (EQy,y)  (f € L*).

An analogous argument applies to ||F(f) x||2 < IY*I? ¥y (f)x||?. This proves
part (a). In order to verify part (b), note that, for x,y € H , the scalar product
(Py Wy(gf h)Y x,y) can be rewritten as

(Pu(@)'Pu(NY Py(h)x,y) = (Pu(f)Y Trx, Ty y) = (Tg Py Wy ()Y Tpx,y),
as desired.

By applying the main result of the of Prunaru (Theorem 1.2 in [30]) to the
setting explained in the proof of Proposition (1.2.10), we obtain the following version
of Prunaru’s result for -Toeplitz operators associated with regular A-isometries.
Proposition (1.2.13)[23]: (Prunaru). For a regular A-isometry T € B(H)" with
minimal normal extension U € B(H)", the following assertions hold:

a) The compression map :(U) — B(H),Y » PyY|H , is a complete isometry with
range ran(p) = T (T).

b) There is a surjective wunital *-representation m:C*(T(T)) - (U)' c
B(H) satisfying the identity m(p (Y)) =Y for everyY € (U)'.

c) There exists a completely positive and unital projection @: B(H) — B(H) onto
ran(®) = T(T) such that ®(X) = Py w(X)|H holds for every X € C*(T(T)).

d) The kernels ker(®@|C*(T (T ))) and ker(m) are equal and coincide with the two-
sided closed ideal in C*(T (T )) generated by all operators of the form XY — @ (XY )
with X, Yin T(T ).

Let u € M*(d,) be a scalar spectral measure associated with a regular A-
isometry T in B(H)™. For f € L*(u), let us denote by R(f) the essential range of f,
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that is, the set of all w € C such that u({z € d4: |f(8) — w| < €}) > 0 forevery € >
0. It follows from part (a) of Theorem (1.2.4) that

”Tf“ = ||lluu(f)|| = ||f||L°°(u)
for every f € L™ (u), and it is well known (see e.g. Satz 3.3.5 in [32]) that this property
is equivalent to the condition that the spectral inclusion

R(f) € o (Ty)

holds for every function f € L® (u). If the point spectrum of 7 is empty, then exactly
as in the proof of Proposition 3.3 from [35] it follows that the norm and essential
norm of every T -Toeplitz operator coincide.
Corollary (1.2.14)[23]: Let T € B(H)™ be a regular A-isometry and let u € M*(0,)
be a scalar spectral measure associated with T .

a) Forevery f € L (u), we have ||Tf|| = ||fll oy and R(f) < o (Tf).
b) If T has empty point spectrum, then for every T -Toeplitz operator X € B(H ), the
equality || X|| = inf{ ||X — K|| : K € k(H )} holds.
As another immediate consequence , we obtain the existence of a generalized Toeplitz
sequence which, in some sense, justifies the definition of Toeplitz operators via the
condition J*X] = X forevery ] € I .
Corollary (1.2.15)[23]: For every regular A-isometry T € B(H )", there is a short
exact sequence
C Vs

0— SC(T) -» c*(7(T))-> ) — 0,
where SC(T) stands for the two-sided closed ideal in C *(T (T )) generated by all
operators of the form XY — ®(XY ) with X,Y € T(T).
Restricting the map 7 from the full Toeplitz C* -algebra C*(7T(T)) to the C*-algebra

Te (T) = C*({T;: f € C(8,)}) € B(H)
generated by all Toeplitz operators with continuous symbols, we obtain the next result.

Let SC-(T) c J.(T) be the closed two-sided ideal generated by all semi-commutators
Tf Ty — Trg with f, g € C(0,4), and let C(T) € T (T) be the closed two-sided ideal

generated by all com-mutators Ty Ty, — T, Tr with f, g € C(0,4). Itis elementary to see
that Co(T) c S C(T).
Corollary(1.2.16)[23]: For every regular A-isometry T € B(H)", there is a short
exact sequence
C o

0 = 8Cc(T)=Cc(T)—=> Te(T) = C(0p(T)) — 0
with a *-homomorphism o satisfying o (Tr) = f|an(T) for every f € C(9,).
Proof. With the notations from Proposition (1.2.13), we have p (¥y (f)) =
Py¥Yy(f)|H = Ty for f € C(d,). Hence by part (b) of Proposition (1.2.13), the
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restriction of the map m : C*(T(T)) — (U)' to T;(T) yields a surjective C*-algebra
homomorphism 7: I (T) = C*(U) with @(Ty) = ¥y (f) for all f € C(d,). We want
to determine the kernel of 77 , which is a closed two-sided ideal in T, (T). First observe
that part (c) of Proposition (1.2.13) yields the identity

=Py¥Py(fi - fi)lH = Tfl---fk )
valid forall k = 1 and all f;,- - -, f, € C(3,).

Let us denote by T3 (T) < B(H ) the C * -subalgebra generated by all operators
Ty with f € A. Then J(T) is the closed linear span of all finite products X =

Ty, ... Ts, such that f; or f; belongs to 4 for all i. Set T; = Ty, for all i. Since € Ry,
we obtain that

OX) =Tj.p, = ﬂTi HT]- e T.(T),
iel  jej

where | is the set of all indices j € {1,...,k} with f; € A and I consists of the
remaining indices. Hence J3(T) is invariant under @. If 1 € [ , then

X—0X) =Ty (T, Ty — &(Ty -+ Ty)
and if 1 € J , then

X = @X) =TT, T) — &My TTy

=Ty Ty T — @(T2--- Ty)) + T1@(Ty - Ty) — O(T2 -

- Ty)Ty.
Hence by induction on k we find that X — @ (X) € C(T) for every finite product X
as above.

For f,g € C(04) with Tf, T; € Ty(T ), we obtain that Ty, = @ (Tr Ty) €
Tu(T) . By Stone —Weierstrass, Ty € Jr,(T ) for all f € C(9,) and therefore
T4(T) = T (T). Hence ® = ®|J(T) is a continuous linear map with®? = @. By part
(d) of Proposition (1.2.13),

ran(l — @) = ker(®) = ker(®) n T (T) = ker(n) N T (T) = ker(7)
By the above inductive argument, it follows that ker (%) = ran(1 — ®) c C(T))
On the other hand, for all f,g € C(d,),
TiTy — Try = TfT, — ®(T;T,) € ker(%) = ran(1 — ).
Hence C.(T) = SC.(T) = ker(f). To complete the proof, we define the symbol map
o as the compositiono =1 o 7

In the classical theory of Hardy space Toeplitz tuples on the unit ball or, more
general, on strictly pseudoconvex domains in C™ (see [24]), the first space in the
above short exact sequence coincides with the ideal KX'(H) < B(H) of all compact
operators on /. While this fails to be true for arbitrary 4-isometries, it holds under
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some natural additional assumptions on 7" including essential normality. Recall that a
commuting tuple T € B(H)" is said to be essentially normal if its self-commutators
are compact, that is, if
[T;,T]] = T;T] — T;'T; € K (H) (i=1,...,n).

In other words, the images m(T;) of the components of 7" under the canonical map

n: B(H)—-> C(H)= B(H)/X(H), X X+XK(H)
into the Calkin-algebra form a commuting tuple n(T ) = (n(Ty),...,n(T,)) of
normal elements in C(H). Some useful characterizations of essentially normal A-
isometries are collected in the following lemma.
Lemma (1.2.17)[23]: For an A-isometry T € B(H)", the following assertions are
equivalent:
(@) The tuple T is essentially normal.
(b) All Hankel operators Hy with continuous symbol f € C(04) are compact.

(c) Foreveryf € C(04) and everyY € B(H ), the semi-commutators

(PHY|H)Tf — Py(Y¥y(f))IH and Tr(PyY|H) — Py(¥y(HY|H)
are compact.
(d) The semi-commutators TfTy — Try are compact whenever f € C(0,) and g €
L (w) (or, equivalently, whenever f,g € C(0,)).
Proof. It is well known that a subnormal tuple T € B(H)™ with minimal normal
extension U € B(H)™is essentially normal if and only if

[U;,Py] € XK(H) (i=1,...,n),

or equivalently, if m(Py) € C(H) belongs to the commutant of the C*-algebra

generated by the commuting normal elements w(U;) (i = 1,...,n). In the setting of
the lemma, this immediately implies the compactness of all commutators [Y;(f), Py]
with f € C(d,), and thus of all Hankel operators
He =1 = Pp)Yy(f)PylH =1 — P)¥Py(f )Pyl |H (f € C(94)).
This settles the implication (a) = (b). Now, fix arbitrary elements Y € B(H) and
f € C(ay).
A look at the algebraic identities
(PyY |[H)T; — Py(Y Yy (f)IH = PyY (Py ¥yu(f) — Yu(f)IH
= PyY (Py — DYy (HIH = _PHYHf _
and Te(PyY |H) = Py(Yy(f)Y)IH = ((PyY"|H)T7 — Py(Y ¥y (f ))IH )"
shows that (b) implies (c). Setting Y = ¥;(g) with g € L*(u) in the last part, we
obtain (d) as special case. Using the decomposition
T, T; = Toi T — Tg Ty = (T Tz — Toz) + Tz — T3, T5) (1=1,...,1)
we get back to condition (a), as desired.
Part (d) of the preceding lemma can be used to calculate the commutator ideal
of the Toeplitz algebra T, (T), that is, the closed two-sided ideal of 7, (T) generated
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by all commutators [A, B] = AB — BA of operators A,B € J-(T ). Recall that a
subset S € B(H ) is called irreducible if there is no non-zero proper closed subspace
M c H which 1s reducing for H . It is well known that the classical Toeplitz tuples T,
on the Hardy space H%(o) with respect to the surface measure of the unit sphere or
the boundary of a strictly pseudoconvex domain in C™ are essentially normal and
generate an irreducible Toeplitz algebra T (T,) (see Upmeier [24]).

Proposition (1.2.18)[23]: Let T € B(H)" be an essentially normal, non-normal

regular A-isometry. If the Toeplitz C*-algebra T.(T) is irreducible, then the

commutator ideal of Tp(T) is KX (H), and there is a short exact sequence of C*-
algebras

0— H(H) > Te(T)SC (0,(T) =0,
where the symbol homomorphism o satisfies o (Tr) = f |0, (T ) for every f € C(0,).
Proof. Let C € J,(T ) denote the commutator ideal. By the assumption on 7 not to be
normal, and part (d) of the previous lemma, we conclude that
0+#Cc SC(T) c K(H).
In particular, it follows that 7.(T ) N K (H) # 0. Hence J.(T) 2> K (H) by the
assumed irre-ducibility (Theorem 5.39 in [12]). So both € and SC.(T ) are non-zero
closed ideals of K (H). Since K (H) is known to contain no proper closed ideals, we
conclude that C = SC.(T) = K (H). Hence the asserted short exact sequence is just
the one established in Corollary (1.2.16).
The essential commutant of an arbitrary subset F € B(H) is defined as
EssCom(F) ={C € B(H):CY — YCE€X(H) forallY € F}.
In other words, an operator C belongs to EssCom(F) if and only if its image (C) in
the Calkin algebra belongs to the commutant ((F ))’. Obviously, EssCom(F) is
always a norm-closed subalgebra of B(H). This is devoted to a detailed study of the
essential commutant of the dual algebra H; associated with a regular essentially
normal 4-isometry. The following two simple observations show how the assumption
on T to be essentially normal influences the structure of EssCom(T).
Lemma (1.2.19)[23]: If T € B(H)" is an essentially normal regular A-isometry, then

we have EssCom(T) = EssCom(T;(T)), and this is a C* -algebra.

Proof. To prove the non-trivial inclusion, fix an element R € EssCom(T) .
Since m(R) com-mutes with the commuting normal elements 7 (T;) (i = 1,...,n),it
commutes with C*(7(T)). By Lemma (1.2.17) the map C(04) — C(H), f - m(Tf),

is a C*-algebra homomorphism. The theorem of Stone—Weierstrass implies that
n(Ts) € C*(n(T)) for all f € C(04) and hence that m(JTp(T)) c C*(m(T)) .
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Therefore R € EssCom(J:(T)).Since T-(T)) € B(H) is a self-adjoint subset, its
essential commutant is a C* -algebra.

For an arbitrary element f € L*(u), we define the support supp(f ) to be the
support of the measure u; induced by f'via the formula pr(w) = fw |f| du for every

Borel subset w © d4. By definition, supp(f) < d, is closed and supp(f)¢ is the
largest open set G < d4 with the property that f = 0 p-almost everywhere on G.
Moreover, if g € C(d,) 1s a function with g = 1 on supp(f), then (1—g)-f =
0 and gf = f u-almost everywhere on d,.
Lemma (1.2.20)[23]: Suppose that T € B(H)™ is an essentially normal A-isometry
and that R € EssCom(T). Then, for every choice of operators Y;,Y, € (U)" and
every pair of elements fi, f, € L (u) with disjoint supports, we have
(Py(Py(fDYDIH) R (Py (Yy(f2)Y2)|H) € K (H).
Proof. Let us abbreviate the factors on both sides of R by X; = Py (¥, (f;)Y1)|H and
X, = Py Wy (f,)Y,)|H . By Urysohn’s lemma, we can choose a continuous function
h:d,4 = [0,1] with h = 1 on supp(f;) and h = 0 on supp(f,). With this choice of
h, an application of Lemma (1.2.17)(c) guarantees that
n(X,) = n(X;T,) and w(TyX,) = 0.
Since R € EssCom(T) = EssCom(T:(T)) (see Lemma (1.2.19)), we obtain that
n(X1RX;) = n(X;ThRX,) = n(X;RTyX,) = 0,
as desired.

As most ideas occurring, the previous lemma goes back in its original form to
Davidson [26]. Our study of EssCom(Hr) has been inspired by corresponding
results of Le [28] and Ding and Sun [27] (see also [28] and [29]) who developed
Davidson’s technique further in the several-variable case.

For the remainder, we fix a regular A-isometry T € B(H)" with g, (T) = @
and denote its minimal normal extension by U € B(H)".

Lemma (1.2.21)[23]: For every element S € EssCom(Hy), there are a weak* zero

sequence of isometries (Ji) k=1 in Hr and an operator Ys € (U)' such that the limit
Xs=w" — Illfolo]l: STk

exists and satisfies X¢ = PyYs|H .

Proof. Let S € EssCom(Hr) be given. According to Proposition (1.2.8) there is a

weak* zero sequence (Ji)r>1 of isometries in Hy. By passing to a subsequence we
can achieve that the limit Xg = w* — Ilim Ji S]i € B(H) exists. For every isometry
—00

V € Hr, we obtain that
VXV =w* — Ilim J VSV, =w" — Ilim I Sk = X;s.
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Here we have used that [S,V] € K (H ) and that w* — ]lim Jx KJi. = 0 for every

compact operator K on H. Thus X is a T-Toeplitz operator. By Proposition (1.2.10)
there is an operator Y5 € (U) with Xg¢ = Py Ys|H .

Before we continue, we need an elementary topological lemma ensuring the
existence of suitable open covers of compact sets @ < C". Since the real dimension is
involved, we formulate it for compact sets in R™. Given a subset F ¢ R™, we denote

its diameter with respect to the Euclidean norm by |F| = sup |x — y|.
X,YEF

Lemma (1.2.22)[23]: Let Q € R™ be compact and let € > 0 be given. Then there
exists a finite open cover Q = U je; U; consisting of relatively open sets U; € Q with
|Uj| < € and such that the index set | admits a decomposition | = J{ U+ --U Jm
with the property that each of the families (U;)ie;, (1= 1,...,2™) consists of
pairwise disjoint sets.
Proof. For the convenience of the reader, we indicate the elementary ideas. Clearly it
suffices to prove the assertion for every compact rectangle @ ¢ R™. For m = 1, the
result obviously holds. Suppose that the assertion is true for some m = 1, and let
Q = Q! x Q2 be a compact rectangle with Q' c¢ R, Q@? c¢ R™. Choose open covers
(U jeyr for Q" and (Uy)jej2 for Q2 as in the assertion. Let

Jt=JiuJ; and J*=JFU---U [om
be the corresponding decompositions of the index sets. Define open sets

Uji =Uj xU; cQ GeJLkeJ]?)
and index sets

J=J*xJ* and Jep) =Ja X J5

Then (U(j'k))(j,k)e] is a cover of Q by open sets of diameter |U; i)| < |Uj| + |Ug| <

2¢,] is the disjoint union of all J, 5y and the families (U(j,k)) GIOE) consist of
k)€ (a,b)

pairwise disjoint sets.

LetY € (U)" and S € EssCom(T) be given operators. By Lemma (1.2.12) the
map

F:1®(w) - BH) by F(f)=TS =Py (Py(H)YIH).

is pointwise boundedly SOT-continuous. A straightforward application of Lemma
(1.2.20) (and Lemma (1.2.19)) yields that, for any pair of functions f,g € L*(u)
with disjoint supports, each of the products
_ F(f)F(9).F (f)°F (9).F (f)F (9)" € B(H)
is compact.

Our main result will follow by applying the following general observation to
functions of the above type.
Proposition (1.2.23)[23]: Let F : L* () = B(H) be a linear map such that
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(P1) F'is pointwise boundedly SOT-continuous,
(P2) F(x) is not compact for a characteristic function y of some Borel set in 0y;
(P3) if f,g € L”(u) have disjoint supports, then each of the products

F(f)F(9), F(f)F(g)", F(f)'F(g) is compact.

Then there are a positive real number p > 0 and a sequence (fy k=1 of
continuous functions f;, + 04 = [0,1] with disjoint supports satisfying ||F (fi)ll > p
forallk = 1.

Proof. Let a = [|[m(F(x))|l/2 > 0 and define

e= {f€C(04):0<f<1 and [[F(fx)ll > a/(2N )}
with € = 22" . We obtain a decreasing sequence (Ej )1 of closed subsets of 9, by
defining each E}, as the closure of the set

U supp(f): f € € with |supp(f)| S%
We first prove that E = N1 E  1s non-empty. Let us assume the converse. Then
IF(F20)Nl < @/(2N) for every f € C(3,) with 0 < f < 1 and |supp(f)| < 1.
According to Lemma (1.2.22) we can choose an open coverdy = U; U -+ - U
Uy suchthat |U;| < 1/ k (j = 1,...,7 ) and such that the set {1, . . ., r} is the disjoint
union of sets Jy,...,Jy with the property that each of the families (Uj);ej, (I =

.....

.....

gy = ED @Y D~ F @),

we can choose an € € {—1,+1} such that w||(F(x) + eF(x))|| > a. Then
A =nF(hx)+eF(hx) (G = 1,...,1)
defines a family (A;)j=,, , of normal elements in the Calkin algebra such that
A A, = 0 whenever y, v are different indices in one of the sets J =1,...,N).
A simple spectral radius argument then yields the estimates

;Aj s%c;fc”Aj“ SZ-’r}zEc;fc||F(hj)()|| <a/N (=1,..,N)
J&J1

which leads to the contradiction
T

j=1 I1=1||j€/;



Thus we have shown that E = N1 Ex # O

Define p = a/(2N ). In the second step we prove the existence of a sequence
(9r) k=110 C(04) with 0 < g; < 1 and pairwise disjoint supports such that||F (grx )|l >
p forall k > 1.

To this end, let us fix a point z, € E. Suppose that g4,... g, € E are functions with

pairwise disjoint supports such that
k

d = dist ZO,Usupp(gj) > 0.
j=1
Since zy € E, there is a function f € € with | supp(f)| < d/3 and dist(z,, supp(f)) <
d/3.1f zy € supp(f), we define g1 = f . Otherwise we choose a sequence of functions
(k) jz11n C(04) with 0 < k; < 1,z & supp(k;) forallj = 1 and

K(2) > 1 (z€0,\ {z]).
By hypothesis g, (T) = @ and hence u has no one-point atoms. Therefore (k;fx); is a
bounded sequence in L*(u) which converges pointwise u-almost everywhere to the
function fy. Using condition (P1) we find that

F(fx) = SOT — lim F(x;fx)
]—>oo
Since f € £, we can choose a natural number j = 1 with F(x;fx ) > a/(2N). In this

¢ with pairwise disjoint supports not containing z.

Inductively, one finds a sequence (gy)xs1 In € with pairwise disjoint supports and
|F(grx)|| > p forall k > 1.

A standard application of Lusin’s theorem (Theorem 7.4.3 and Proposition 3.1.2 in [24])
shows that there is a sequence of continuous functions h;:d4 — [0,1] such that

(h)) —J> x u-almost everywhere. Again using hypothesis (P1) we find that
Flge) = SOT ~ lim F(gkh;)
for every k > 1. Hence, for every k > 1, there is a natural number j, such that
F (gihjk ) > p. The observation that the resulting functions fx = gy hjx have all required
properties completes the proof.
Now we are able to prove the main theorem . Recall that, by Proposition (1.2.7), every
spherical isometry is a regular A(B,,)-isometry.
Theorem(1.2.24)[23]: Let T € B(H)™ be an essentially normal regular A-isometry with
0,(T) = @, and let S € B(H) be an operator that essentially commutes with Hr . Then
there are a T -Toeplitz operator X € B(H) and a compact operator K € K (H) with
S=X+K.
Proof. According to Lemma (1.2.21) there is a sequence (Ji)y>1 of isometries in Hr in
such that the limit
Xs=w" — }i_)rg)];s]k

defines a T -Toeplitz operator. By Proposition (1.2.10) there is an operator Y5 € (U)" with
X = PyYs|H . By Lemma (1.2.3) we can choose a sequence (6;);»; of bounded
measurable functions 6; : d4 > C with |6;] =1 on d, such that 8; , or better its
equivalence class in L (i), belongs to H;° (1) and satisfies J; = y; (i) forevery i > 1.
As seen before, the continuous mapping F: L*(u) — B(H) defined by
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F(f) = TfS — Py (Wy(f)Ys)|H
satisfies the hypotheses (P1) and (P3) of Proposition (1.2.23). To complete the proof it
suffices to show that F' (1) is a compact operator. We even show that
FL®(u) c X(H).

we assume that the inclusion does not hold. Since every bounded measurable function can
be approximated uniformly by finite linear combinations of characteristic functions of
Borel sets, there is a characteristic function y of some Borel set in d4 such that F(y) is not
compact. As an application of Proposition (1.2.23) we find that there are a real number
p > 0 and a sequence (fy)ys1 of continuous functions f; : d4 — [0, 1] with pairwise
disjoint supports A, = supp(fi) and ||F(f)|| > p forall k > 1.
Let us fix an index k > 1. Choose a real number t with 0 < t <4 ®and t - [|[F(1)] <
p/2. Then the function ¢p = f, +t € C(d,) 1s strictly positive on d, and satisfies the
estimates

lolooy <2 lolwopar <47 L IF(@I > p/2.

Since (04| 4, 0y, ) is regular, there is a sequence (¢;)>1 iIn 4 with |@;] < \/5 on dy

and |¢;| EA \/Z p-almost everywhere on d,4. Property (P1) implies that
F(p) = SOT — lim Flg;[*.
Choose a natural number j with ||F(|<pj|2)|| >p/2 and set g =¢; .Then g €A
satisfies the estimates ||gx|lw,a, < 2 and ||gkllwa,n\a, < 27K . The identity
Flgrl* = Takgr S — Pu (Py(gkgk)Ys)|H = Tgy Ty S — Pu(Wy(gk )Ys)|H
= TgF (gk)
implies that ||F(gk)|| > p/4. The observation that
w’ ili_)rg];(Tgk]iS = STyJ)) =w™ — ili_)rg(Tng —JiS)iTg) = Ty S — (PuYs|H )Ty
=T S — Pu(Py(gk)Ys)|H = F(gk)
allows us to choose a natural number i such that
|TodiS = STydi|| > p/4.
The functions hy = g0; , where for every given k =1 the index i is chosen as
explained above, satisfy the estimates
Ihicllowoa <2 and  hyllw,o,0a, <275
Furthermore by construction the functions h;, or better their equivalence classes in
L% (u) ,belong to Hy (u) and the commutators By = [Ty,,S] € B(H) are compact
operators with B, = p/4.
By passing to a subsequence, we can achieve that the limit
¢ = Jim [IBll € [p/4, )
exists. Since the sequence (hy )7 1s uniformly bounded on d4 and converges to zero
pointwise on dy, it follows that both sequences (By)k>1 and (B )1 converge to zero in
the strong op-erator topology (see Lemma (1.2.12)). A result proved by Muhly and Xia
in [29, Lemma 2.1] shows that, by passing to a subsequence again, we can achieve that

the series
0
B = z Bk
k=0
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converges in the strong operator topology and satisfies ||7(B)|| = ¢ = p/4. Since every
point z € d4 belongs to at most one of the sets Ay, the partial sums of the series Yo hare
uniformly bounded on d4 and converge pointwise to a function h : d4 = C Clearly, (the
equivalence class of). h belongs to Hz° (i) and the identities

Th = Z Thk and [Th,S] = Z[Thk,S] = B
k=1 k=1
hold in the strong operator topology. But then T}, € H would be an operator with non-

compact commutator [S, T,]. This contradicts the hypothesis and thus completes the
proof.

Corollary (1.2.25)[23]: Let T € B(H)" be an essentially normal regular A-isometry with
o, (T) = 0. Qenote by U € B(H)"™ the minimal normal extension of T. Suppose that
W*(U) c B(H) is a maximal abelian von Neumann algebra. Then a given operator S €
B(H) essentially commuteswith Hr if and only if S has the form S =T + K with a

compact operator K € K (H) and a symbol f € L*(u) having the property that the
associated Hankel operator Hg is compact.

Proof. Suppose that S € B(H) essentially commutes with Hr. Fix a weak* zero sequence

of isometries (J )1 in Hy such that the weak* limit
X = w' = lim J; SJ; € B(H)
defines a T -Toeplitz operator (see Lemma (1.2.21)). By Proposition (1.2.10) (b) there is
a function f € L* (u) such that = Py ¥y, (f)|H = Tf. The proof of the preceding theorem
shows that the image of the map
F:L*(u) » B(H), F(h) =TyS — Py Wy(hs)|H
is contained in K (H). In particular, the operator K = F(1) =S — Ty is compact.
Because of
F(f) =W¥yS — Tsp = TeTe— Tz + TFK )
= Py¥y(NPyPy(HIH — PPy (N¥y(HIH +¥PyK
= —Py¥y (f)Pyr Yy (N)|H +TgK = —H¢Hy + Tf K
we find that H¢H; and hence also Hy is compact.
Conversely, suppose that f € L*(u) is a function such that Hy is compact. Then, for
every g € Hy°(u), it follows that
Tr Ty = Py Wy(fWPy(9)|H = Py Wy(9) Py Py (f)|H + Py Wy (9)Hs
=T,Tf + Py Wy (9)Hs.
Thus Ty essentially commutes with H.
The preceding corollary in particular applies to each essentially normal regular Hardy-
space A-isometry T = T, € B(HZ(u))™ (Definition (1.2.2)) with empty point spectrum.
To give a concrete example, let D € C™ be a relatively compact strictly pseudoconvex
open set with C2-boundary dD. The normalized surface measure o on the boundary dD
has no one-point atoms. The associated Toeplitz tuple T, = (T, ,...,T; ) €
B(Hj(D) (o))" is a regular Hardy-space A(D)-isometry. The space Hj(D)(J) coincides
with the classical Hardy space H%(c) c L?(o) on the boundary d D (see Section 7 in
[28]). To identify Hypy(c) we use the map r: H*(D) - L*(0), f = f*, associating
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with each function f € H* (D) its non-tangential boundary value f* (see Theorem 8.4.1
in [27]). Fix f € D(D). Since f € H?(D), there exists a function f € L?(o) such that
f@) = (P)@ = [ PGwf@)dew) (z€D),

aD
where P denotes the Poisson kernel of D (Theorem 8.3.6 in [27]). In the proof of Theorem

8.4.1in [27] it is shown that r(f) = f.Hence f € L® (o) and”f”ooa = |[fllco,p- Thus the
map r: H®(D) = L* (o) is isometric. As usual we denote its range by H® (o). Since
P(r(f)) = f for every f € H*(D), the inverse of r is the Poisson transformation P :
H®(a) - H* (D).

Standard arguments show that H*(¢) c L* (o) is weak* closed. We briefly
indicate a possible proof. Let (f;) be a sequence in the closed unit ball of H* (D) such
that g =w" — lilzn r(fi) exists in L”(0) . By Krein—-Smulian’s theorem and the

separability of L! (o) it suffices to show that g € H* (o). By Montel’s theorem we may
suppose that (fi,) converges to some function f € H*(D) uniformly on every compact
subset of D. Since r(f) and g are functions in L* (o) such that

P(r ()@ = £@) = lim @ = lim [ Pa,w)(f)w)dow) = P()(2)
oD

for all z € D, it follows that g = r (f) (cf. the proof of Theorem 8.4.1 in [17]).

As an application one obtains the weak* continuity of the map r : H*(D) - H®(0).
Since H*(D) = (LY(D)/ *H* (D))’ has a separable predual, it suffices to show that
(r(fi)) is a weak” zero sequence in L™ (o ) for each weak* zero sequence (fy) in H* (D).
But this follows from the observation that

([P(z)],r (fi)) = fP(Z» w)r(fi)(w) do (w) = fi(2) 50
for all z € D and the fact that f’c)}[;e predual L'(c)/tH®(c) of H®(0) is the closed

linear span of all equivalence classes [P(3,-)] (3 € D).

r(H °°(D)) = H* (o) holds. The reverse inclusion H*(¢) c H XED)(G) follows from the
weak® continuity of r and the fact that there is an open neighbourhood U of D in C" such

that O(U)|D is sequentially weak* dense in H* (D) (Proposition 2.1.6 in [28]).

Since yr (f) = Yy (H)|H?(0) = Ty for f € H*(0) , the dual algebra Hr,
coincides with the set of all analytic Toeplitz operators, that is, Toeplitz operators T, with
symbol ¢ in H®(0). By Theorem 4.2.17 in Upmeier [24] the tuple T, is essentially
normal. So the last corollary applies to this case and yields a description of the essential
commutant of the set of all analytic Toeplitz operators, which extends Theorem 2 of Ding
and Sun [29].

Corollary (1.2.26)[23]: Let o be the normalized surface measure on the boundary dD of
a strictly pseudoconvex domain D c C" with C*-boundary. Then an operator S €
B(H?(0)) essentially commutes with all analytic Toeplitz operators on H*(0) if and only
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if it has the form S = Tr + K with a compact operator K and a symbol f € L*(a), for
which the associated Hankel operator Hy is compact.

Since in the setting of Corollary (1.2.26) there are no non-zero compact Toeplitz
operators, it follows that a Toeplitz operator Ty with symbol f € L* (o) essentially
commutes with all analytic Toeplitz operators if and only if Hf is compact. A more
concrete description of this class of operators for the case of the unit ball can be found in
[25].
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Chapter 2
The Commutant and Multiplication Operators
We show results about nilpotent operators. One corollary of result is that if x(z) =

z",n>1, then {T¢}, = {T,}'N {Tg}, another is that if ¢ € H* 1is univalent
then {T¢}’ = {T,}. We are also able to show that if the inner factor of f¢ is x(3) =

z™,n > 1, then {T¢,}’ = {T,s}’ where s is a positive integer maximal with respect to the
property that z™ and F(z) are both functions of z°. We conclude by raising six
questions. We completely classify reducing subspaces of the multiplication operator by a
Blaschke product ¢ with order three on the Bergman space to solve a conjecture of Zhu.
Section (2.1): Analytic Toeplitz Operators

For H? denote the Hilbert space of functions f analytic in the open unit disc D for
which the functions f,-(8) = f(re'?) are uniformly bounded in L?-norm for r < 1, and
let H® denote the linear manifold of bounded functions in H2. For ¢ € H®, Ty (o) T2
is the analytic Toeplitz operator on H? defined by the relation (Tyf)(2) = ¢ (2)f (2).
These operators have received a great deal of attention recently and many of their
properties are well known ([54], [55]). The operator T, is often called the unilateral shift
and is the canonical example of a completely nonunitary isometry of defect one. Every
analytic Toeplitz operator commutes with T,, in fact, every operator that commutes with
T, is an analytic Toeplitz operator. We study the commutant of an arbitrary analytic
Toeplitz operator. We obtain some partial results characterizing the commutant of an
analytic Toeplitz operator as well as some partial results characterizing those analytic
functions whose associated Toeplitz operators have commutant equal to that of T,. The
main result stated in terms of pure isometries, the rest contain numerous results on the
commutant of analytic Toeplitz operators.

It is well known that if f € H? then there is a function f* € L>(T) such that
f(re'?) converges almost everywhere to f*(e'?).y € H® issaid to be an inner function
if X*(ei9)| = 1 almost everywhere (or equivalently, if T, is an isometry). Every inner
function y has a factorization y(Z) = e'YB(z)S(z) with |e”| = 1 where B(2) is a
Blaschke product of the form

[0¢]
|l | ap — 3
a, 1—apz’
w1 Gk %4
And S(z) is a singular inner function of the form

S(z) = - - du(t
@=ew |- [ S o)
with p a singular measure. F € H® is said to be an outer function if F is of the form

1 2T it+
Fz) = exp {g f c zk(t)d(t)}
0

B(z) = z" 0<|ag] <1,

elt —

where k is a real-valued integrable function (or equivalently,if Tg has dense range).
Every nonconstant function ¢p € H* has a unique factorization of the form ¢(3z) =
X(@)F(z) where y € H® is an inner function and F € H® is an outer function ([56]).
Results show that this factorization plays a key role in determining the commutant of Tg,.
Although we are primarily interested in analytic Toeplitzoperators it will be convenient
to state some of our results more generally. An isometry Von a Hilbert space H is called
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a pure isometry ([52], [53]) if Np=o V"H = {0}. The dimension of the defect space Ky =
H ©VH is called the defect or multiplicity of V, and one easily obtains the
decomposition H = Yo oD V"Ky. Any two pure isometries of the same multiplicity are
unitarily equivalent. Thus V is unitarily equivalent to the unilateral shift U, on
12(Ky) = Y7o Ky defined by
Uy (xg, %1, X9,...) = (0,x0, X1, X5, ...).
It is easily verified that the commutant of U, consists of those bounded linear
operators on [2(Ky) of the form Y% ,A,U" where, for A a bounded linear operator on
Ky, A (the inflation of A) is defined on 12 (Ky) by
A(xg, %1, %y,...) = (Axg, Axy,Axy,...).
Thus the commutant of a pure isometry can be characterized.
If y € H® is a nonconstant inner function then T}, is a pure isometry (this follows since
no 0 # f € H? is infinitely divisible by y), which has finite defect if and only if x is a
finite Blaschke product. Hence the commutant of Ty for x an inner function is well
known, and we attempt to characterize the commutant of an arbitrary analytic Toeplitz
operator in terms of these objects. For a Hilbert space ', B(H) will denote the algebra
of all bounded linear operators on H. If A € B(H) then {A} will denote the commutant
of A, that is, {A} = {B € B(H):AB = BA}.
Throughout K will denote a Hilbert space, 2 will denote the Hilbert space % (K), and U,
will denote the unilateral shift on 7.
Lemma (2.1.1)[50]: Suppose S € B(H) has dense range and commutes with U,. If T €
B(H) commutes with SU,, then T has a lower triangular operator-valued matrix on H .
Proof. Since T lower triangular is equivalent to T* upper triangular, which in turn, is
equivalent to the subspaces M, = Y _,D K invariant for T*, it suffices to prove that T*
leaves M,, invariant. Since T commutes with SU,, T* commutes with S*U} and hence
with S*"* U™+ Thus T* leaves invariant the null space of $*™**! U™*! Because S has
dense range, S*"*lis one-to-one, and
null (S y™thy = nuil (U™ = M,
Hence T is lower triangular.
The following lemma is essential.
Lemma (2.1.2)[50]: Let N be a nilpotent operator on K and let yo = Al + N where 0 #
A€C.IfB,Ay, A1, Ay, ... € B(K) satisfy
a. ||Agll £M,k=0,1,2,.., and
b. Axxo = xoAx-1 +B, k=123,..,
then Ay = A, = A,
Proof. By Theorem 1 in [8],K decomposes into Zin=1€9 K;andy, has a lower
triangular operator-valued matrix with diagonal elements Al;. We show that Ay = A; =
Ay = - by showing that they must have the same
(1,n),1,n-1),..,(1,1),(2,n),..., 2,1),...,(n,n),...,(n, 1)
operatorentries with respect to o this decomposition. We repeatedly use the obvious fact
that the lemma is true if N = 0. More precisely, if D,C,, Cq,C,, ... € B(K',K")
satisfying ||C || £ M and AC, = AC,,_; + D fork=1,2, 3, ... then (Cy=C, =C, =
---. To see that this is the case merely observe that ACy = AC,_; + D implies AC), =
ACy + kD. In order that ||C || £ M we must have that D = 0 and hence Cy, = C; = C, =
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Now the (1, n) entry of (b) is
AA i = AAk-1+ Blin, k =10,1,2,..,
and so by the above remark and by the fact that (a) implies ||(A ki, ]|| <Mfori,j=
0,1,2,..,n, k =0,1,2,.. one concludes that(4¢)1, = (A1)1n = (A2)1n =
.The (1,n — 1) entry of (b) is
A(A)1,n-1 + Ko)nn-1(A)1,n = AAk—1)1,n-1 + B)1n-1
or since (4¢)1n = (A1)1n = -+, that
A(A)1,n-1 = AAk-1)1,n-1 + [(B)1,n-1 — Ko)nn-1(A0)1,n]
and again we conclude that (4g)1 -1 = (A1)1n-1= """
Now the (i, j) entry of (b) is
AAR) i+ (Ak)ije1 + Qodj+1j + o+ (A inXodn,j
= MAk-1)ij + o)ij-1(Ak-1)i—1,j + =+ X0)i,1(Ak-1)1,j + (B.)yj
Let us now assume that (Ag)pg = (A1)pq = (A2)pg = for all p=1i,j<q<
nand 1 <p <i,q =j. Then
A(AK)ij = AMAk-1)ij + [X0)ii-1(A0)i—1 .. +X0)i1(A0)ij + (B)ij — (Ao)ij+1

+ Xo)js1,j — - — (A0)in(Xo)n,j ]
and we conclude that (4¢);; = (41);; = **-. Inductively we obtain that
(AO)i,j = (Al)i,j = - fOT all i,j= 1,2,...,n

and so Ay, A1, A4, ...
Corollary (2.1.3)[S0]: If N is a nilpotent operator on K and x, = Al + N where 0 #
A € C, then
IxdAxo™ | < M for n=0,1,2,... implies Axxo = XoA.
If K is finite dimensional, then the converse is also true.
Proof. Let A, = y¥Ayg* for k=0,1,2,... . Then A,xo = xoAx—;and the result
follows from Lemma (2.1.2) by setting B = 0.
In order to see that the converse is true if Kis finite dimensional, first observe that if x,
satisfies the conclusion of the corollary, that is, xo = AI + N for 0 # A and N nilpotent,
then so does any operator SxoS ™! similar to x,.
Now using Jordan canonical forms it is easy to see that for any invertible operator

Xo With two or more distinct eigen values there is another operator A satisfying
IxdAxo™ | <M but Ayxg # xoA . For example, if u,A#0 and if y,= (A +
Ny) @ (ul, + Ny) on [eP10L, @ [e2172, where N; el equals 67(121 if n < n; and equals
0 if n=mn; if A is defined by Ae'® = (A/uw)el and 0 otherwise, then yoAyst =
(A/W)A. So that if A # p and |u| = |A]| then ||x&Axo ™|l < |A/u| and Axy # XoA.
Lemma ((2.1.4)[50]: Suppose T € B(H) has a lower triangular operator valued matrix
onH.If T commutes with y = o g¥nUH)U, where yo =Al + N with y,=A1€
C and N nilpotent, then T commutes with U,.
Proof. We will show that T commutes with U, by inductively proving Ty, , = Tj111 =
Tit22 = .. fork = 0,1,2,... Notice that ||Tiy;]| < IIT|| forall,j =0,1,2, ...
If1 < j <ithenthe (i,j) entry of Ty = xT is

TijeiXo+ Tijeoxs + o+ TyiXioj-1 = Xi—j-1Tii + Xi—jTj41j + -+ XoTi-1; (1)
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Ifi =j+ 1 weobtain Tjyq j41X0 = XoT;j and Lemma (2.1.2) implies  that Too =

Ty, =T,, =--.Letusnow assume that Tjg = Tj411 = Tj4, =+ for all [ <k .
Settingi = j + k + 2 in (1) we obtain

Tes1+j+1,j+1X0 = XoTk+14j,j T [x1Tko + -+ Xix1To0 — TioXs — =+ — TooXk+1]
Applying Lemma (2.1.2) we obtain that T4, 9 = Ty4p1 = --- and hence by induction

Tko =Tk411 =..forallk =0,1,2,... Thus Tcommutes with U..
Theorem (2.1.5)[50]: Let V be a pure isometry on a Hilbert space H, and S € B(H)
have dense range and commute with V. Suppose there exists aA € C such that V
factors as a product of pure isometries V;,V,,...,V, and such that S — Al =V, §; for
eachi = 1,2,..,n, where each V; commutes with each S;. Then {SV} — {S} n {V'}'.
Proof. It clearly suffices to prove the result for V = U, on H = [2(K).IfT commutes
with S and U, then it obviously commutes with SU,. So assume that T commutes with
SU,. Lemma (2.1.1) implies that T has a lower triangular operator- valued matrix on .
Since S has dense range and commutes with Uy, it follows that A # 0 and that § =
Yoo XnU¥. We need only show that y, — Al is nilpotent for then Lemma (2.1.4) will
imply that T commutes with U,. Since U, is one-to-one and commutes withS, it then
follows that T also commutes with S.
We will in fact show that y, has a decomposition as described in the proof of Lemma
(2.1.2). By hypothesis U, = V,V, ...V, and S commutes with each V;. Since y; is the
restriction of $* to

K=HOUH=HSVHIVEHSV,H)D .. BV, ..V 1(H3VH)
it follows that xg is upper triangular and hence that y, is lower riangulal.
Let (xo);; be the compression of yoto ViV, .. Vi_i(H © V,H) . If f,g € (H B V;H)
then, since S = Al + V;S;) we obtain

SV, W Viif) = WV Vil )DSf = AV, Vi f + ViV Vi ViSif.

But (VL'SL'V1V2 "'Vi—l f, V1V2 "'Vi—l g) = 0, hence (XO)ii = All
we reformulate Theorem (2.1.5) in terms of analytic Toeplitz operators and obtain
numerous consequences.
Theorem (2.1.6)[50]: Let ¢ € H® and ¢ € xF be its inner-outer factorization. If for
some A € C,xy factors as Y = Y1Xo --- Xn With each y; an inner function and F — A

divisible by each ;, then {T¢}, = {TX}’ N{Tg}.
Proof. If y is constant, then the result is obvious since ¢p = F. If y is nonconstant, then
as remarked earlier T, is a pure isometry and Tr has dense range and commutes with T,
By hypothesis there exist g; € H® such that F(z) — 1 = x;(8)g;(3). Hence Tr — Al =
TxiTgi’ and of course T,, commutes with T, . Thus Theorem (2.1.1) implies {T¢}’ =
{T,} n{Tr}.
Corollary (2.1.7)[50]: Let ¢ € H® and ¢ € xF be its inner-outer factorization. If

- lo;| a;—z "

— Sk - -
x(2) =z H[ai 1-az|

=
a; € D distinct,n; < N, and F(0) = F(a;) for all i, then {Tp} ={T,} n{Tr}.
Proof. Factor y(z) = x1(8)x(3) ... ¥y (8) where each y;(z) is a Blaschke product in

which distinct a;, appear at most once. Since F(0) = F(a;) for all i, F —F(0) is
divisible by each y; and Theorem (2.1.6) implies the conclusion.
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Corollary (2.1.8)[50]: Let ¢ € H® and ¢ € yF be its inner-outer factorization. If
x@) = ((a—2)/1—az)",n> 0,a €D then {Ty} ={T,} N{T:}.
Proof. Obvious by Corollary (2.1.7).

Proposition (2.1.9)[50]: Suppose ¢ € H” is such that ¢ — ¢p(a) has a zero of order
n > 1 at a € D and that there exists € > 0 such that
(p(3) —dp()/(z—a)"=€>0 forallz €D, Z # Q.
Then the inner factor of ¢ — ¢p(a) is (@ — z)/(1 — az))™
Proof. The hypotheses imply that (z — a)"/(¢(z) — ¢(a)) € H*. Writing
z—a\" (z —a)” 1 \"
(1 - o_zz) $(2) — pa) P ~¢@) (1 - o_zz)
and noting that the inner-outer factorization of any function is unique, one easily
concludes that the inner factor of ¢ — ¢ () is((z — a)/(1 — @z))" (seep. 51 in[6]).
Corollary (2.1.10)[50]: If ¢ € H® is such that ¢ — ¢p(a) has a simple zero for some

@ €D and |(p(z) — p(@)/(z—a)| = e >0 for all €D, 5% a, then {Ty) =
{T,}.

Proof. Proposition (2.1.9) implies the inner factor of ¢ — ¢p() is (@ — 3)/(1 — az).
Since {T(a—z)/(l—c_lz)}, = {T,}', Corollary (2.1.8) implies {T¢}, = {T,}'.

Corollary (2.1.11)[50]: If ¢ € H® is univalent then {Tcﬁ}, = {T,}.

Proof. A univalent function satisfies the hypothesis of Corollary(2.1.10) for every a €
D.

Proposition(2.1.12)[S0]: The Fredholm spectrum of an analytic Toeplitz operator T
isexactly the cluster set Cg.

Proof. Recall that A is not in the Fredholm spectrum of an operator 7 ifand only if T —
A is Fredholm, thatis T — A has closed range and the null spaces of T — A and (T — 1)*
are both finite dimensional. For convenience we consider A = 0. Note that Ty, — A =
T4 is always oneto-one unless ¢(z) = A.

Suppose 0 € C(¢p) and write ¢ = BSF where B is a Blaschke product, S is a
singular inner function, and F is an outer function. If S were nonconstant or if B were
an infinite Blaschke product, then one could easily find z,, € D, |z,| = 1, such that
S(z,)B(z,) = 0 contradicting 0 & C(¢) since F € H”. Hence S(g) =1 and B is a
finite Blaschke product. Since 0 ¢ ¢ (D) implies |c|)(ei9)| = |F(ei9)| > € > 0 almost
everywhere, it follows that F~1 € H® and that Ty is invertible. But Ty is clearly
Fredholm, hence Ty = Ty T is also Fredholm.

Conversely suppose that Tg is Fredholm and write ¢ = BSF. Since Ty has closed
range, ¢ is bounded below [55, and so T is invertible. If S were non-constant or if B
were an infinite Blaschke product then dim(null Tg T5) = +oo. Since null (Ty) =
null (T Ts) we must again have that B is a finite Blaschke product. Thus the inner factor
B of ¢ is continuous on T with |B(ei9)| =1landso 0 &€ C(¢).

We will completely characterize the commutant of T¢ for any function ¢ € H*
whose inner factor is 2™, n = 1. Analogous results also hold for any function ¢ € H®
whose inner factor is ((a« —2)/(1 — az))",n>1, a € D.
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Lemma (2.1.13)[50]: Suppose T commutes with Tyn,n > 1, and with Tr where f(z) =
ag + a3 + a,z%2+ -+ € H® .Letp = 1 be the smallest integer for which a, # 0, and
letp = qn + 1 where 0 < q and 0 <r <n. Then T commutes with T, where

9(z) = (f(3) —ap)/zT" =a,z" + ...
Proof. Since Ty, commutes with U, = T » we have that Tf = Y2 AUX If ¢ = 0 then

the result follows. So assume g > 1. By the definition of p we have that 4, = a¢l,A; =
0,..,4A4-1 = 0. Since T commutes with Tr we obtain

T (Z A,ﬂk) = (Z AkU}§>T or T Z AUX | = Z A UN|T.
k=0 k=0 k=q k=q
T(Z Ak+qU}§> = (Z Ak+qU1§)T.
k=0 k=0

since T commutes with U, and since U, isisometric. But by definition of g we have that
Ty = Zl(io=0‘4k+q(—ll-if .

Lemma (2.1.14)[50]: Suppose T commutes with Ty,n, n>1, and with Ty,
where f(z) =ay+a,z"+ ..+€H® a, #0, 1 < r<n. If r divides n then T
commutes with Tr.

Proof. Since Ty commutes with U, = T,n», we have that Ty = Zlcf:OAkU}f Since r
divides n, say n = qr, we have that A, is unitarily equivalent to

Hence

agl 0
Y apl

\ : i)

on Y @ C",whereY =a, I+ NonC",a, # 0, Nnilpotent. Since T commutes with
U, = T,n we also have that Y., B, UX. Inorder that T commute with Tf itis necessary
tha B, commute with A,. But one easily checks that since Y =a, I+ N,a, # 0, N
nilpotent this implies that B, is lower triangular on Z?:l @ C", which in turn implies
that T is lower triangular with respect to the decomposition of H? for V, = T,r. Notice

that
Tr—aol = (Z )?kU1+<> /A
k=0

and X, =Y =a, I + N with N a nilpotent operator. Lemma (2.1.4) now applies and
we obtain that 7’ commutes with ~ V, = T,r.

Lemma (2.1.15)[50]: Suppose T commutes with T;n,n = 1, and with Tr where f(z) =
a0+apZP+--- EH®a,#0 If p=qn+r with 0<q and 0 <r<n then T

commutes with T,;s where s = g.c.d.(r,n).
Proof. By Lemma (2.1.13), T commutes with T, where
9(z) = apz” + -
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Now if s = r then r divides » and Lemma (2.1.14) implies that 7 commutes with Ts .
Otherwise there exist integers t, k = 0 such that s = tr — kn. Hence tr = kn + 5,0 <
k,0 <s <n. Since T commutes with T, T also commutes with T, = T, where
g(z)" = apz'™ 4 - By Lemma (2.1.13),T then commutes with T, where b(z) =
az”, z° +...,0 < s < n. Since s divides n, Lemma (2.1.14) now implies that 7 commutes
Wlth Tzs,

Theorem (2.1.16)[50]: If & € H™ has inner-outer factorization ¢ = yF where y(3) =
z™,n =1, then {Tq,}’ = {T,s } where s > 1is the positive integer which is maximal
with respect to the property that both z™ and F(z) are functions of z° (equivalently:
that ¢ is a functionof z%).

Proof. Clearly if y and F' are both functions of z°® and if 7 commutes with Tys ,
then 7' commutes with T, and Tr, and hence with T,.

Now suppose that T commutes with Ty,. Corollary (2.1.8) then implies that T
commutes with T,n  and Tz where F(3) = ag + a;2 + a;z%+ - € H®. Let s > 1
be maximal with respect to the property that both z™ and F(z) are functions of z°.
Denote the sequence of integers p = 1 such that a, # 0 by p; < p, <pz <--
Then s = g.c.d.(n,p1, 02, ---). Let s, = g.c.d.(n,p1, P2, -, Pr)- NOW suppose p; =
qgn+ rywith0<q;,and0 <r; <n.If r; = 0 thens; = nand T commutes with
T,s: while if 0 < s; then Lemma (2.1.15) implies that 7 commutes with T,s; since
g.c.d.(n,r1) = g.c.d.(n,py) = s1. In either case T commutes with T;s: . From this
one concludes that T also commutes with Ty, where f;(z) = f(2) — ag — a,, zP* =
ap,zP? + -+ . Now suppose p, = g5 + 1, with0 <and 0 <71, < 5. Ifr, =0 then
S, = s1 and T commutes with T,s, , while  if 0 < r,, then Lemma (2.1.15) impliesthat
T commutes with T,s, since g.c.d.(s1,13) = g.c.d. (s,02) = g.c.d. (M, p,p2) =
s, From this one concludes that 7 commutes with Tz, where f,(3) = f(z) —ao —
a, 3P — a,,zP2 = a, zP* + - . Now suppose p3 = q35, + 13 with 0 < gz and 0 <
r3 < S, .1f r3 = 0 then s3 = s, and 7T commutes with T,s; , while if 0 <173 then
Lemma (2.1.15) implies that 7 commutes with T,ss since g.c.d.(sp,13) =
g.c.d.(s3,p3) = g.c.d.(n,p1,p2,p3) = S3. Continuing in this manner we obtain that
T commutes with T s, for every k. Hence 7' commutes with Ts .

Corollary (2.1.17)[50]: Let ¢ € H® and ¢ = yF be its inner-outer factorization with
x(2) =z"n>=1and F(3) = ag+ a, 3 + ayz% + -+ . If there exists an integer p = 1
such thata, # 0 and g.c.d.(n,p) = 1 then {T¢}’ = {T,}".

Proof. Theorem (2.1.16) applies and the hypotheses imply that s = 1.

Corollary (2.1.18)[50]: If n,k = I are positive integers, then {T,n} N {Tzk}, =
{Tys}Y wheres = g.c.d.(n, k).

Proof. Observe that if 7 commutes with T;n and T« then it also commutes with
T jn (1445 Since 1 + z" is outer, Theorem (2.1.16) implies that T also commutes with
T,s where s can be described as in the corollary.

Corollary (2.1.19)[50]: If n, k = 1 are positive integers and 0 < |a| < 1, then {T;n} N

{T((a—z)/u—az))"} ={T, }.
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Proof. If 7 commuteswith T,» and T k then T also commutes with Ty

((a-2)/1-az))
where ¢(z) = z"(1+ ((a —3) / (1 — &z))k).Since the coefficient of z in the outer part
of ¢ is nonzero, Corollary(2.1.17) implies the result [3.55].

Section (2.2): Bergman Space by the Hardy Space of the Bidisk

For D be the open unit disk in C. Let dA denote the Lebesgue area measure on the
unit disk D, normalized so that the measure of D equals 1. The Bergman space L? is the
Hilbert space consisting of the analytic functions on D that are also in the space
L% (D, dA) of square integrable functions on ID.

We study multiplication operators on L2 by bounded analytic functions on the unit
disk D via the Hardy space of bidisk. The theme is to use the theory of multivariable
operators to study a single operator. The main idea is to lift the Bergman shift up as the
compression of a commuting pair of isometries on a nice subspace of the Hardy space of
bidisk. This idea was used in studying the Hilbert modules by R. Douglas and V. Paulsen
[65], operator theory in the Hardy space over the bidisk by R. Douglas and R. Yang [66],
[67], [68] and [69], the higher-order Hankel forms by S. Ferguson and R. Rochberg [70]
and [71], and the lattice of the invariant subspaces of the Bergman shift by S. Richter
[72].

For a bounded analytic function ¢ on the unit disk, the multiplication operator M,

is defined on the Bergman space L% given by Mgh = ¢h for h € 1. Lete, = Vn + 1z™.
Then {e,,}3 form an orthonormal basis of the Bergman space L% . On the basis {e,}, the
multiplication operator M, by z is a weighted shift operator, called the Bergman shift:

n+1
M,e, = [—e )
ztn n+2 n+1

The multiplication operators on the Bergman space possess a very rich structure theory.
Even the lattice of the invariant subspaces of the Bergman shift M, is huge [73]. The
Bergman shift M, has a universal property [74]: for any strict contraction S on a Hilbert
space H, there always exists a pair of invariant subspaces of M,, say M and V" in Lat M,
(the invariant subspace lattice of M, is the set of subspaces M of L2 with M, M c M),
such that § = Pyrg N{MZ| MGN}: where Py denotes the orthogonal projection of
L2 (D) onto M © . This indicates that existence of the invariant subspace problem for
Hilbert space operator is equivalent to whether Lat M, is saturated, i.e., for any M/, V" €
Lat M,, with M D IV and dim(M © ') = oo, whether there always exists some () €
Lat M, such that

NEQEM.
Let T denote the unit circle. The torus T? is the Cartesian product T X T. The Hardy
space H2(T?) over the bidisk is H2(T) ® H?(T). Let P be the orthogonal projection
from the space L?(T?) of the Lebesgue square integrable functions on the torus T? onto
H?(T?). The Toeplitz operator on H%(T?) with symbol f in L*(T?)3 is defined by
Tr(h) = P(fh), for h € H?(T?). Clearly, T, and T, are a pair of doubly commuting pure
isometries on H2(T?). For each integer n > 0, let

n

B,(z,w) = Z zwn Tt =

i=0

n+1 _ ,,n+l

VA w

Z—Ww
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Let 7 be the subspace of H?(T?) spanned by functions {P,}o_,. The orthogonal
complement of H in H(T?) is

[z — w] = closureyz¢r2){(z — w)H?(T?)}.
Then [z — w] is an invariant subspace of analytic Toeplitz operators Ty for f € H*(T?).
Let Py; be the orthogonal projection from L?(T?) onto I . It is easy to check that

Py Tylse = Py T lye -

Let B denote the operator above. It was shown explicitly in [75] and implicitly in [76]
that B is unitarily equivalent to the Bergman shift M, on the Bergman space L% via the
following unitary operator U: L% (D) - 3,

Uz™ = (2, W).
n+1
Clearly, for each f(z,w) € H,
UnNe@ =,z
for z€ D. The simple observation that B,(z,w) = % gives that for each
f(z,w) € H, there is a function f(z) in the Dirichlet space D such that
f@)—fw)
fw) =——

Thus, for each Blaschke product ¢(z) with finite order, the multiplication operator M
on the Bergman space is unitarily equivalent to ¢(B) on H .

We will study the operator ¢(B) on the Hardy space of the bidisk to shed light on
properties of the multiplication operator M. This method seems to be effective in dealing
with the multiplication operators on the Bergman space because functions in the Hardy
space of the bidisk behave slightly better than the functions in the Bergman space.

The difficulty to study B on H is to get better understanding the projection Py,. We will
get a lot of mileage from developing a ‘‘heavy’’ machinery on the Hardy space of the
bidisk how to get rid of P4, in the expression

¢(B)f = 7 Py (Po(9(2), o(W))f),
for f € 3. To do this, letting Lo denote the space ker Ty, N ker Ty(,y N H, for each
e € Ly, we construct functions {dX} such that for each I = 1,

-1
p (6@ 6M)e + ) p($(),dw)) dEF €3
k=0

and
P (9(2), oW))e + i1 (¢(2),p(W))d2 € H .
On one hand, we have a precise formula of d2. On the other hand, d¥ is orthogonal to L.
These constructions are useful in studying the reducing subspaces of ¢ (B). A reducing
sub-space M for an operator 7 on a Hilbert space H is a subspace M of H such that
TM cM and T"M c M. A reducing subspace M of T is called minimal if only
reducing subspaces contained in M are M'and {0}. As in [77], a subspace Nof H is a
wandering subspace of 7' if V' is orthogonal to T"V for each = 1,2,.... If M is an
invariant subspace of 7, it is clear that M' © TM is a wandering subspace of 7, and we
will refer this subspace as the wandering subspace of M .
For a reducing subspace M of ¢(B), and e in the wandering subspace of M,
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-1

P (9(2), p(W))e + Z pr(9(2), p(w)) ds* e M.
k=0

Although for a Blaschke product ¢ of finite order, My is not an isometry, using the
machinery on the Hardy space of bidisk we will show that there exists a unique reducing
subspace M, the so called distinguished subspace, on which the restriction of My is
unitarily equivalent to the Bergman shift, which will play an important role in classifying
reducing subspaces of M. The functions d} and d2 have the following relation.
Theorem (2.2.1)[64]: If M is a reducing subspace of ¢(B) orthogonal to the
distinguished reducing subspace M, for each e in the wandering subspace for M, then
there is an element € in the wandering subspace for M' and a number A such that
dl =dd+é+ e (2)

To understand the structure of minimal reducing subspaces of ¢ (B) we lift a reducing
subspace of ¢ (B) as a reducing subspace of the pair of doubly commuting isometries
Te ) and Ty ). For a given reducing subspace M of (B), define the lifting M of M:

M = span{p ()", p(W)*M; I,k = 0}.
Since M is a reducing subspace of ¢(B) and |J\7f is a reducing subspace of the pair of
doubly commuting isometries Ty, and Te ), by the Wold decomposition of the pair of
iIsometries on M, we have

M= @ ¢@"d¢W)Lyz,
LkZ0
where L j; is the wandering subspace
L]Qi' = ker T(;;(Z) N ker T(;;(W) N ]\7[
The following theorem gives a complete description of the wandering subspace L ;.
Theorem (2.2.2)[64]: Suppose that M is a reducing subspace of ¢ (B) orthogonal to M.

If {el(M), e ec%)} is a basis of the wandering subspace of M, then

Lz = spane {el(M), : ..,e%); diiM) . "di(M)}

and
dim Ly = 2qy -

To prove Theorem (2.2.2), first we use the Wold decomposition of the pair of doubly
commuting isometries Ty, and Tg ) on the lifting 3C¢(= H ) of H to get the dimension
of the wandering subspace Ly (= Lg). By means of the Fredholm theory in [8], we are
able to show that the dimension of Ly equals 2N — 1, where N is the order of the
Blaschke product ¢.

Then by means of the finite dimension of the wandering subspace of these
isometries on the reducing subspace we will be able to obtain some structure theorems on
reducing subspaces of the multiplication operators by finite Blaschke products on the
Bergman space.

Theorem (2.2.3)[64]: Suppose that 2, M and N are three distinct nontrivial minimal
reducing subspaces contained in M- for ¢ (B). If

NcMepN,
then there is a unitary operator U : M = N such that U commutes with ¢(B) and

¢(B)".
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The machinery on the Hardy space of the bidisk is not only useful in classifying the
reducing subspaces of multiplication operators on the Bergman space, but also it is helpful
in understanding the lattice of invariant subspaces of the Bergman shift as in [79] and
hence the invariant subspace problem. We develop the Bergman function theory [80],
[81] via the Hardy space of the bidisk.

Applying the machinery developed , we will be able to disprove Zhu’s conjecture
in the following theorem. For a holomorphic function ¢ on the unit disk and a point ¢ in
the unit disk, we say that c is a critical point of ¢ if its derivative vanishes at c.
Theorem (2.2.4)[64]: Let ¢ be a Blaschke product with three zeros. If ¢(z) has a

multiple critical point in the unit disk, then My has three nontrivial minimal reducing
subspaces. If ¢ does not have any multiple critical point in the unit disk, then My has
only two nontrivial minimal reducing subspaces.

The multiplication operator on the Bergman space is completely dicerent from that
in the Hardy space. By the famous Beurling Theorem [82], the lattice of the invariant
subspaces of the multiplication operator by z on the Hardy space is completely determined
by inner functions. A Beurling’s theorem was recently obtained for the Bergman space
[83]. On one hand, on the Hardy space, for an inner function ¢, the multiplication operator
by ¢ is a pure isometry and hence unilateral shift (with arbitrary multiplicity). So its
reducing sub-spaces are in one-to-one correspondence with the closed subspaces of H2 ©
¢H? [84], [85]. Therefore, it has infinitely many reducing subspaces provided that ¢ is
any inner function other than a Mdbius function. Many people have studied the problem
of determining reducing subspaces of a multiplication operator on the Hardy space of the
unit circle [86], [87] and [88]. For an inner function ¢, the multiplication operator by ¢
on the Bergman space is a contraction but not an isometry. On the other hand,
surprisingly, on the Bergman space, it was shown in [89] and [90] that for a Blaschke
product ¢ with two zeros, the multiplication operator My has only two nontrivial
reducing subspaces. Zhu [66] conjectured that for a Blaschke product ¢p with N zeros, the
lattice of reducing subspaces of the operator My is generated by N elements. In other
words, My has exactly N nontrivial minimal reducing subspaces.

Bochner’s theorem [65], [66] says that every Blaschke product with N zeros has
exactly N — 1 critical points in the unit disk . Theorem (2.2.4) gives a classifcation of
reducing subspaces for My for a Blaschke product ¢ with three zeros.

Critical points of ¢ have important geometric meaning about the self-mapping of
the unit disk. The work of Stephenson [70], [75], [76] suggests that the geometric version
of the above theorem should be in terms of the Riemann surfaces. A finite Blaschke
product ¢ with N zeros is an N to 1 conformal map of D onto ID. Bochner’s theorem [75],
[76] says that ¢ has exactly N — 1 critical points in the unit disk D and none on the unit
circle. Let C denote the set of the critical points of ¢p in D and F = ¢~ 1 o ¢(C). Then F
is a finite set, and ¢! o ¢ is an N-branched analytic function defined and arbitrarily
continuable in D / F. Not all of the branches of ¢~ o ¢ can be continued to a different
branch, for example z is a single valued branch of ¢ 1 o ¢p. The Riemann surface for
¢~ o ¢ over D is an N-sheeted cover of D at most N(N — 1) branch points, and it is not
connected. The geometric version of Theorem (2.2.4) is the following theorem.
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Theorem (2.2.5)[64]: Let ¢ be a Blaschke product with three zeros. Then the number of
non-trivial minimal reducing subspaces of My equals the number of connected
components of the Riemann surface of ¢~ o ¢ over D.

We would like to point out that there are many essential differences in analysis and
geometry between Blaschke products with order three and Blaschke products with order
two. On one hand, for Blaschke products ¢ with order two, ¢ 1 o ¢ contains two analytic
functions on the unit disk and hence the Riemann surface for ¢ 1 o ¢ over I is just two
copies of the unit disk. On the other hand, for the most Blaschke products with order
three, ¢ 1 o ¢ has three multivalue functions on the unit disk and the Riemann surface
for ¢~ 1 o ¢ over D has two connected components. This phenomenon makes it difficult
for us to classify the reducing subspaces of a multiplication operator with the Blaschke
product of order higher than two. It seems that the machinery developed is inevitable in
classifying the reducing subspaces of the multiplication operator by a Blaschke product
of higher order.

The problem of determining reducing subspaces of a multiplication operator is
equi-valent to finding projections in the commutant of the operator which is the set of
operators commuting with the multiplication operators. Everyvon Neumann algebra is
generated by its projections. Theorem (2.2.4) says that everyvon Neumann algebra
contained in the commutant of mulitplication operator by the Blaschke product with third
order is commutative. A lot of nice and deep work on the commutant of a multiplication
operator has been done on the Hardy space [66], [63], [64] while Blaschke products with
finite zeros play an important role. Indeed Cowen proved that for f € H*, if the inner
factor of f — f (@) is a Blaschke product ¢p with finite order for some @ € D, then the
commutant of the multiplication operator by f equals the commutant of the multiplication
operator by the finite Blaschke product ¢ [66]. Thus the structure of lattice of reducing
subspaces of the multiplication operator by a Blaschke product with finite order is useful
in studying the general multiplication operators on the Bergman space.

One application of the machinery on the Hardy space of the bidsk is that it was
proved in [62] that the multiplication operator on the Bergman space is unitarily
equivalent to a weighted unilateral shift operator of finite multiplicity if and only if its
symbol is a constant multiple of the N-th power of a Mo bius transform. Another one is
that we have obtained a complete description of nontrivial minimal reducing subspaces
of the multipli-cation operator by ¢ on the Bergman space of the unit disk for the fourth
order Blaschke product ¢ [61].

Using Theorems (2.2.1) and (2.2.3), for a finite Blaschke product ¢, we are able to
show that for two distinct nontrivial minimal reducing subspaces of ¢ (B), either they are
orthogonal or ¢ (B) has two distinct unitarily equivalent reducing subspaces and has also
infinitely many minimal reducing subspaces. Thus either ¢(B) has infinitely many
minimal reducing subspaces or the number of nontrivial minimal reducing subspaces of
¢(B) is less than or equal to the order of ¢p. We say that two reducing subspaces M and
N of ¢ (B) are unitarily equivalent if there is a unitary operator U : M’ — N such that U
commutes with ¢(B) and (B) .

The adjoint of the multiplication operator by a finite Blaschke product is in a
Cowen-Douglas class [67]. The theory of Cowen-Douglas classes will be useful in
studying the multiplication operators on the Bergman space. On the other hand, we would
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like to see some applications of the results obtained to the study of the Cowen-Douglas
classes.

First we introduce notations and show some properties of functions in /. Then we
compute the dimension of the wandering space for the lifting H of H. The dimension is
useful for us to find the wandering space for the lifting M of a reducing subspace M of
¢(B).

For a € D, let k, be the reproducing kernel of the Hardy space H?(T) at . That
is, for each function fin H%(T),

F(@) = (f kg)
In fact, k, =1/ (1 — az). For ¢ in H*(T), let T, denote the analytic Toeplitz operator
with symbol ¢ on H2(T), given by

Toh = dh.
Thus it is easy to check that
T(jtkoc = ¢p(a)kg. (3)
For an integer s = 0, let
slzs
S —
kale) ="zt

Lemma (2.2.6)[64]: For each f € H*(T),
S

. vt
*1,S S—
Trka _IZ(:)I!(S—Z)! fo @k
Lemma (2.2.6) gives that the kernel of the Toeplitz operator ’IA"(;; on the Hardy space

. . . Sk
of the unit circle is spanned by {{kak 5e=0,. "k}k=0,...,1(.
Recall that #is the subspace of H%(T?) spanned by functions {p,}5-o. The following
two lemmas give some properties for functions in H or H'*.
Lemma (2.2.7)[64]: If f'is in H*(T?) and continuous on the closed bidisk and e is in I,
then
(f(z,w),e(z,w)) =(f(z,2),e(z,0)) = (f(w,w), e(0,w))
Lemma(2.2.8) [64]: For h(z,w) € H*(T?),his in H* ifh(z,z) = 0, for z € D.
Proof. As pointed out before,
HL =c1{(z — w)H?*(T?)}
Let z be in D. For each function f(z,w) € (z— w)H?(T?), f(z,z) = 0 for each h €
Mt
Conversely, assume that for a functionh € H+, h(z,z) =0, forz€ D. For0 <r < 1,
define
h,(z,w) = h(rz,rw).
Then for each fixed 0 <r <1, h,-(z,z) = 0, and h,.(z, w) is continuous on the closed
bidisk and in H?(T?).
By Lemma (2.2.7), for each e(z,w) in H,
(h,.(z,w),e(z,w)) = (h,.(z,2),e(z,0)) = 0.
On the other hand, by [73], Theorem 3.4.3,
(h.(z,w),e(z,w)) = lir{1 (h.(z,w),e(z,w)) = 0.
r-1-

Hence we conclude that h is in 7.
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The Dirichlet space D consists of analytic functions on the unit disk whose derivative is
in the Bergman space L%,
Theorem (2.2.9)[64]: For each f(z,w) in H*(T?), f is in H if and only if there is a
function f(z) inD such that
f@) = Fw)
few) ==
for two distinct points z, w in the unit disk.
This immediately gives the following three lemmas.
Lemma (2.2.10)[64]: Suppose that e(z,w) is in H. If e(z,z) = 0 for each z in the unit
disk, then e(z,w) = 0 for (z,w) on the torus.
Lemma (2.2.11)[64]: If e(z,w) is in H, then
e(z,w) =e(w,2).
Lemma (2.2.12)[64]: Suppose f(z,w) isin H. Let F(z) = f(z,0) . Then
f A = AF' () + FQD),
for each 1 € D.
For an operator T on a Hilbert space, let ker T denote the kernel of 7. Then
kerT* = H © TH.
Given a pure isometry U on a Hilbert space H, the classical Wold decomposition theorem
[79] states that
H= & U"E,

n=0
where E = H & UH is the wandering subspace for U and equals ker T™ .
For a function ¢ in H* (D), we can view ¢(z) and ¢p(w) as functions on the torus T?.

While M is not an isometry on the Bergman space of the unit disk, the analytic Toeplitz
operators Tg () and Ty, are a pair of doubly commuting pure isometries on the Hardy
space H?(T?) of torus. Since
T;pn = TwPn = Pn-1
forn = 1 and
T;po =Typo =0,
H is an invariant subspace for both T, and T,,. So H is also an invariant subspace for
both Ty, and Ty, Recall the lifting K of 3:
Ky = span{p'(2)p*W)H; Lk = 0}.
Then X is a reducing subspace for both Ty, and T (y), and so Ty, () and Ty, are also
a pair of doubly commuting isometries on K.
We consider the Wold decompositions for the pair on both %, and K (H*(T*) © Ky).
Introduce wandering subspaces
L¢ = keTT(;;(Z) N kerTq’;(W) N 7(¢,
and
[,¢ = keTT(;;(Z) N keTT(;;(W) N 7qu5‘ N
To get the dimension of the wandering subspaces Ly and Ly, we will dentify the
wandering subspace fl; for the Blaschke product ¢ with distinct zeros. The following
lemma follows from the remark after Lemma (2.2.6) about ker 'IA"(;;.
Lemma (2.2.13)[64]: If ¢(2) is a Blaschke product with distinct zeros {a;}\- s, then
intersection of the kernel of Tq’g(z)and Tq’;(w) is spanned by {k,, (Z)kaj (W)}?S-:l.
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The following lemma is implicit in the proof of Theorem 3 [79]. But we give a complete
proof of the lemma.
Lemma (2.2.14)[64]: Suppose that ¢(z) is a Blaschke product with distinct

zeros {a;}_,. Then the wandering space f(; is equal to the space spanned by
(ke (@ka;(W) = ko (Do, w); 1S i< j = N} and
Ty | Ko @Ky, (W) + Ky, 2k, W) + ko, (ke |52 S 141 < g SN,
Moreover, the dimension of f;b equals (N — 1)2.
Proof. First we show
Ly = kerTye,y N kerTyq,, N H*.
Since H < Ky,
Ly © kerTy,y N kerTyq,, N H™..
Conversely, if f'is in ker Ty, N kerTy,, N H L thenfis in kerTy, N kerTy,,) and

orthogonal to . Thus for each g(z,w) = X k20 ¢ (2)'p(W)¥hy, € H where hy; € I we
have

£,9) = D (£,0@' b h) = > (Toeo] o] o1 = 0
=20 )
So f'is also in f:ﬁ Hence we have

Ly = kerTy,y N kerTyq,, N H*..
We want to prove that the dimension of Z(\pis (N — 1)2. Without loss of generality, we
assume that ¢; = 0. By Lemma (2.2.13), the N? dimensional space kerTy,y N kerTy,)
is spanned by {k,, (z)kaj(w)}?}zl. So it follows from Lemma (2.2.8) that f; consists of
the elements 7 in kerT(;(Z) N kerTy,, which satisfy h(z z) = 0. That is,

chuk (@, W); h(z, z)—ZZCuk (D (@) = 0

i=1 j= i=1j=
For any h € Z(\p, taking the limit at infinity and testing the multiplicity atits poles 1 / @,

of the function h(z,z), we immediately have that h(z,z) = 0 implies ¢;; =0,j =
1,2, ...,N. That is,

_ z Zcuk (kg W); hz,7) = Z ZCL,kal(z)k (2)=0

i#j,i=1j= i#ji=1j=
Observe that kai(z)kaj (W) = a;jkq,(2) + bk, (2) where a;; = e and b;; = % , and
] ]

ka,(2), ..., Kq,(2) are linearly independent. Write h(z, z) as linear combination of
kaj(z), Jj = 2,...,N, then all the coe%ocients of kaj (z) must be zero. So we have a system
of another N — 1 linear equations governing c;;,i # j,i,j = 1,...,N. Itis easy to check
that the rank of the coe%ocient matrix of the system is N — 1. Hence the dimension of L
(as the solution space of N> — N unknown variables governed by N — 1 linearly
independent equations) equals N> — N — (N — 1) . The proof is finished.

We show the main result.

Theorem (2.2.15)[64]: Let ¢ be a Blaschke product with N zeros in the unit disk. Then
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Ky = @ ¢'(De"W) Ly,
Lk=0
and
H*(T?) © X = @ ¢'(2)d"“w) L,
Lk=0

The dimension of Ly equal (N — 1)2 and The dimension of Ly equals 2N — 1
Proof. As pointed out early, Tg(,) and Ty () are a pair of doubly commuting isometries
on both K, and H?(T?) © K. Consider the Wold decomposition of Ty, on Ky to get

Ky = 1620 ¢(2)'E
where £ is the wandering subspace for Ty, given by

E = :7((1) e [T¢(Z)7(¢] = ker [T(;(Z)lx(#] = kerT(;;(Z) N 7(¢

Since Ty (,) and Ty () are doubly commuting, £ is a reducing subspace of Ty ). Thus
Tpw) |E is still an isometry. The Wold decomposition theorem again gives
E=@ ¢W)E,
k=0
where E; is the wandering subspace for Ty ) |E given by
E, = EO T¢(W)E = kerT:})(W) NE = ker T::b(z) N T;(W) N .7C¢
This gives
7C¢ = @ ¢I(Z)¢k(W) Ly.
LkZ0
Considering the Wold decompositions of T,) and Ty on H*(T?) © K, similarly
we obtain
HAT) © %y = @ ¢'(2)¢" W) L.
Noting B
ker Td)(z) N keTT¢(W) = L¢ @ L¢
we have
dim[ker Ty, N kerTy,,| = dim[£,] + dim[Z,].
By Lemma (2.2.13), the dimension of ker Ty, N kerTy, equals N 2 Hence
dim[£,] = N* — dim|[Z;]. N
To finish the proof, it suffices to show that the dimension of [L¢] equals (N — 1)? . By
Lemma(2.2.14), for a Blaschke product ¢p(z) with distinct zeros, the dimension of f;

equals (N — 1)%2. We need to show that this is still true for a Blaschke product B with N
zeros which perhaps contains some repeated zeros. To do so, for a given | A € D,

let ¢, (z) be the Mobius transformlz_;;z . Then ¢, o ¢(z) is a Blaschke product with N
zeros in the unit disk and
-1
Toretz) = (Tpe) = M) = ATpz)) -
Thus K, = K04, and so
Lorop = ker Tgupiry N kerTg ooy N [HA(T?) © Kp,op]
= ker T(;)(Z)—/'l N kerT(;(W)_/l N [HZ(TZ) e .7(¢]

The last equality follows from that

keT T¢(z)_/1 == keT T¢l°¢(z)
and
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ker Towy-2 = kerTg, opw)
We have the fact that
dimLy . = —index(Tq’;(Z)_A, Tq’g(w)_l),
where index(Ty(,)-2 Tow)-2) s the Fredholm index of the pair
index (T ,)- 2 Tpwy—2)» Which was first introduced in [78]. It was shown in [78] that the
Fredholm index of the pair index(Tq’;(Z)_ 2 Topow)— ») is a continuous mapping from the set
of the Fredholm tuples to the set of integers. Thus for a sufficiently small 4,
il’ldeX(T(;;(Z)_/l, T(;;(W)—/l) = il’ldeX(T(;;(Z), T(;;(W))
If A is not in the critical values set C = {u € D; u = ¢(z) and ¢'?D =0 for somez €
]D)} of ¢, then ¢, o p(z) is a Blaschke product with N distinct zeros in D. In fact,
Bochner’s theorem implies that there are at most N — 1 points in C. In this case, by
Lemma (2.2.14),
dlmL¢lo¢ = (N — 1)2 .
Since the set C has zero area, we conclude that the dimen