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Abstract 

We study by the function theory on Cartan domains, the Berezin-Toeplitz symbol 
calculus, the essential commutant of analytic Toeplitz operators and algebras associated 
with spherical isometries and on the Bergman space. The classification of reducing 
subspaces of a class of multiplication operators on the Bergman space, the Hardy space 
of the bidisk with the Totally Abelian Toeplitz operators and geometric invariants 
associated with their symbol curves are considered. The Hankel operators on Fock spaces 
and related Bergman kernel estimates and asymptotics for generalized Fock spaces are 
introduced . We obtain the localization, compactness and Sarason’s Toeplitz product 
problem in Bergman and Fock spaces .  
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 الخلاصة 

تبولیتز والمبدل -كارتان وحسبان رمز بیرزنمجالات بواسطة نظریة الدالة علي  درسنا
س الدائریة وعلي فضاء یتریومساسي لمؤثرات تبولیتز التحلیلیة والجبریات المشاركة مع الایزالأ

عتبار تصنیف الفضاءات الجزئیة  المختزلة لعائلة المؤثرات الضربیة علي فضاء قمنا بإ .بیرجمان
الھندسیة  فضاء ھاردي للقرص الثنائي مع مؤثرات تبولیتز الابیلیة الكلیة واللامتغیراتو بیرجمان

یرجمان فوك وتقدیرات نواة ب دخال مؤثرات ھانكل علي فضاءات. تم إتھا الرمزیةاركة مع منحنیاالمش
. تم الحصول علي الموضعیة والتراص ومسالة ضرب بات لفضاءات فوك المعممةوالمقارذات العلاقھ 

  .تبولیتز في فضاءات بیرجمان وفوك ساراسون
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Introduction 

          For ܶ ∈   be an essentially normal spherical isometry with empty point(ܪ)ܤ 
spectrum on a separable complex Hilbert space H , and let ்ࣛ ⊂  be the unital ( ܪ)ܤ 
dual operator algebra generated by T . In this note we show that every operator ܵ ∈  (ܪ)ܤ
in the essential commutant of ்ࣛ has the form ܵ = ܺ +  with a T -Toeplitz operator X ܭ
and a compact operator K. Our proof actually covers a larger class of subnormal op-erator 
tuples, called A-isometries, which includes for example the tuple ܶ = , ௭ଵܯ) . . . , ( ௭ܯ ∈
  consisting of the multiplication operators with the coordinate functions on((ߪ)ଶܪ)ܤ
the Hardy space ܪଶ(ߪ) asso-ciated with the normalized surface measure ߪ on the 
boundary ߲ ܦ of a strictly pseudoconvex domain  ܦ ⊂ ℂ.  

       We study the commutant of an analytic Toeplitz operator. For ߶ ∈ ߶ ஶ, letܪ =  Fݔ
be its innerouter  factorization. Our main result is that if there  exists ߣ ∈  ݔ such  that ܥ
factors  as  ݔ = . ଶݔଵݔ   . . ܨ  an inner function, and ifݔ  eachݔ −  is divisible by each ߣ
, then ൛ݔ థܶൟᇱ = { ௫ܶ}ᇱ⋂ { ிܶ}ᇱ. We develop a machinery to study multiplication operators 
on the Bergman space via the Hardy space of the bidisk. Using the machinery we study 
the structure of reducing subspaces of a multiplication operator on the Bergman space.  

    We show that the key step in the proof, which is a curious result about nilpotent 
operators. One corollary of our main result is that if ݔ(ऊ) = ऊ, ݊ ≥ 1, then ൛ థܶൟᇱ =
{ ௫ܶ}ᇱ⋂ { ிܶ}ᇱ, another is that if ߶ ∈ ஶ is univalent then ൛ܪ థܶൟᇱ = { ऊܶ}ᇱ. We are also able 
to prove that if the inner factor of  f ߶ is ݔ(ऊ) = ऊ, ݊ ≥ 1, then  ൛ థܶൟᇱ = { ऊܶೞ}ᇱ where ݏ 
is a positive integer maximal with respect to the property that ऊ and ܨ(ऊ)  are both 
functions of  ऊ௦. We conclude by raising six questions. We completely classify reducing 
subspaces of the multiplication operator by a Blaschke product ߶ with order three on the 
Bergman space to solve a conjecture of Zhu. 

       We study the compactness of operators on the Bergman space of the unit ball and on 
very generally weighted Bargmann-Fock spaces in terms of the behavior of their Berezin 
transforms and the norms of the operators acting on reproducing kernels. In particular, in 
the Bergman space setting we show how a vanishing Berezin transform combined with 
certain (integral) growth conditions on an operator T are sufficient to imply that the 
operator is compact.  
        We  studies totally Abelian operators in the context of analytic Toeplitz operators on 
both the Hardy and Bergman space. When the symbol is a meromorphic function on ℂ, 
we establish the connection between the totally Abelian property of these operators and 
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geometric properties of their symbol curves. It is found that winding numbers and 
multiplicities of self-intersection of symbol curves play an important role. Techniques of 
group theory, complex analysis, geometry and operator theory are intrinsic.  

         We introduce a function space integrable mean oscillation (IMO) on C୬. With IMO, 
for all possible 1 ≤ p, q < ∞ we characterize those symbols f on C୬ for which the Hankel 
operators H and H are simultaneously bounded (or compact) from Fock space F

୮ to 
Lebesgue space L

୯ .  Sarason’s Toeplitz product problem asks when the operator T୳T୴ is 
bounded on various Hilbert spaces of analytic functions, where u and v are analytic. The 
problem is highly nontrivial for Toeplitz operators on the Hardy space and the Bergman 
space (even in the case of the unit disk).  
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Chapter 1 
Function Theory on Cartan Domains and Essential Commutant  

        We determine the essential commutant of the set of all analytic Toeplitz operators 
on ܪଶ(ߪ) and thus extend results proved by Davidson (1977) for the unit disc and 
Ding and Sun (1997) for the unit ball. 
Section (1.1): The Berezin-Toeplitz Symbol Calculus:                     
            For Ω be a bounded symmetric (Cartan) domain in ܥ with ݀(ݖ)ݒ normalized 
Lebesgue measure on Ω . We let ܮ = ,ଶ(Ωܮ  (ݒ݀  be the usual space of Lebesgue 
square-integrable complex-valued functions on Ω. By ܪଶ  = ,ଶ(Ωܪ   we denote (ݒ݀
the Bergman subspace of ܮଶ  consisting of holomorphic functions. The orthogonal 
projection operator from ܮଶ  onto ܪଶ  is denoted by ܲ. Forf in ܮஶ(Ω), the space of 
essentially bounded, measurable functions on Ω, we will consider the multiplication 
operator 

= ݃ܯ ݂݃ , 
onܮଶ the Hankel operator on ܮଶ 

ܪ  = − ܫ)   ,ܲܯ(ܲ 
and the Toeplitz operator on ܪଶ 

ܶ݃ =  .݃ܯܲ 
The main problem we consider is to determine the maximal conjugate-closed 
subalgebraΩ of ܮஶ for which 

ܶ ܶ −  ܶ 
is a compact operator for all ݂, ݃ in ࣫. The algebra ࣫ is the homolog of the quasi-
continuous functions for the corresponding classical problem with Toeplitz operators 
on the Hardy space of the unit circle [2]. 
        Our results can be viewed as a major part of Berezin's program to "quantize" 
curved space [4]. As is clear in the case of ܥ with Gaussian measure [6, 12, 3], the 
݂ ܽ݉ → ܶ is a good candidate for a "quantization modulo the compact operators" 
on any domain in ܥ.  
        We develop a theory of functions of "vanishing mean oscillation at the boundary" 
of the classical domains. This theory is of independent interest and is evidence that 
some of the modern results in one complex variable [3] remain valid for domains in 
  . when formulated in terms of the Bergman metricܥ
        It is elementary algebra that (Proposition (1.1.20),) 

࣫ = ൛݂ ∈ ஶܮ  ∶  .are compactൟ ܫ̅ܪ  andܪ 
To characterize ࣫  in function-theoretic terms, we need to introduce the Bergman 
reproducing kernel ݖ)ܭ, ܽ). For a in Ω, ,∙)ܭ ܽ) is in ܪଶ and for any ݂ in ܪଶ 

݂(ܽ)  =  〈݂, ,∙)ܭ ܽ)〉 
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in the ܮଶ inner product 〈  , 〉.The function ܭ( ∙ , ∙ ) is actually defined and continuous 
on Ω ܺ Ωഥ (where Ωഥ  is the closure of Ω in ܥ). The normalized (in ܪଶ) reproducing 
kernel is denoted by 

݇(ܼ)  = ,ݖ)ܭ  ,ܽ)ܭ)(ܽ ܽ))ିଵ
ଶൗ . 

The functions ܭ( ∙ , ∙ )  are well understood on bounded symmetric domains and have 
many useful properties. We shall make essential use of the Berezin transform of݂in 
 ஶ, which is given by ܮ

ሚ݂(ܽ)  =  〈݂݇, ݇〉 . 
For typographical reasons, we will write (|݂|ଶ)  ̃for the Berezin transform of |݂|ଶ.  
         We will denote the topological boundary of Ω in ܥby ߲Ω. Since ߲Ω is compact, 
by ݖ → ߲Ω for ݖin Ω, we will simply mean that the usual distance function ݀(ݖ, ߲Ω) 
has the property that 

,ݖ)݀ ߲Ω) → 0 
 For ݂ bounded and continuous on Ω we write ݂ ∈  and we define (Ω)ܥܤ 

(݂)௭ܿݏܱ = (ݖ)݂|}ݑݏ  − |(ݓ) ݂ ∶ ,ݖ)ߚ  (ݓ  ≤ 1 } 
where ߚ(∙ , ∙) is the Bergman metric on Ω. The closed Bergman metric ball centered 
at ݖ (with radius ݎ) is denoted by 

,ݖ)ܧ (ݎ  = ∋ ݓ}  ܳΩ: ݖ)ߚ, (ݓ ≤  .{ݎ 
We say that ݂ in ܥܤ(Ω) is in ܸ డܱ  (vanishing oscillation at the boundary) if  

lim
௭→డΩ

(݂)௭ܿݏܱ = 0. 
It is not hard to check that ܸ డܱ  is a norm-closed, conjugate closed subal-gebra of the 
sup norm algebra ܥܤ(Ω).  
         We also define the algebra ℐ by 

ℐ = {݂ ∈ (ݖ)̃  ஶ: (|݂|ଶ)ܮ → → ݖ ݏܽ 0 ߲Ω} 
and the algebra ෨ܳby 

෨ܳ  =  {݂ ∈ (ݖ)̃  ஶ: (|݂|ଶ)ܮ −  ሚ݂(ܼ)ଶ → ݖ ݏܽ 0  → ߲Ω}. 
Finally, we define the algebra ܸܯ డܱ(ݎ)  by writing 

መ݂(ݖ, (ݎ  = ,ݖ)ܧ| ଵି|(ݎ න (ݓ)ݒ݀(ݓ) ݂
ா(௭,)

, 

 Where |ܣ| is the v-measure of any measurable subset A, and setting 

ܯܸ డܱ(ݎ)  = {݂ ∈ :ஶܮ ,ݖ)ܧ| ଵି|(ݎ න ห݂ (ݓ) − መ݂(ݖ, ห(ݎ
ா(௭,)

(ݓ)ݒ݀ → ݖ ݏܽ 0 → ߲Ω} 

Our main result is that, for a class of Ω-including the ball and the polydisc-described 
later, 
Theorem (1.1.1)[1]: For ݂in ܮஶ(Ω) the following are equivalent: 

(a) ݂ ∈ ࣫ 
(b) ݂ ∈  ෨࣫ 
(c) ݂ ∈ ܯܸ  డܱ(ݎ) 
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(d) ݂ ∈ ܸ డܱ  + ࣤ. 
Moreover, for ݂  in ࣫, መ݂ and መ݂(∙, ܸ are in (ݎ డܱ with ݂ − ሚ݂  and ݂ − መ݂(∙,  in  ࣤ. The(ݎ
decomposition ࣫ = ܸ డܱ  + ࣤ is almost unique: 

ܸ డܱ ∩ ࣤ = డܥ ≡ {݂ ∈ BC(Ω): ݂(z) → 0 as z →  ∂Ω} 
and 

ሚ݂ − መ݂(∙,  (ݎ
is in ܥడΩ for ݂in ࣫ and ݎ > 0 arbitrary. 
Corollary (1.1.2)[1]: ܸܯ డܱ(ݎ) is independentof ݎ > 0. 
In applications of Theorem (1.1.1), the metric geometry of (࣫, ݂)is very significant. 
For general, Ω, ߚ is unbounded and the balls ݖ)ܧ, ܥare compact  in (ݎ . As ܽ →
߲Ω, ,ܽ)ܧ (ݎ → ߲Ω in the sense that 

ݑݏ
௪∈ா(.)

,ݓ)݀ ߲Ω) →  0   . 

For Ω = ܽ , more is true: asܥ the open unit ball in , → ,߲ ,ܽ)ܧ (ݎ →  ܽ. in the 
sense that  

ݑݏ
௪∈ா(,)

|ܹ − ܽ| → ܱ  

It follows easily that 
(ഥ)ܥ  ⊂  ܸ డܱ()                                                     (∗)   

and we recover an old result of [2]. On the other hand, (∗) fails for higher rank 
domains. 
For arbitrary bounded symmetric Ω, ܸ డܱ(Ω)and ࣤ(Ω)  are nontrivial (bigger than 
scalars + ܥడ and ܥడ respectively). In fact, it is easy to check that 

݁ඥఉ(ை,௭) 
is always in ܸ డܱ . 
         Using Theorem (1.1.1), Fredholm and index theory for the C*-algebras ߬(࣫), 
generated by all ܶ  with ݂  in ࣫ , becomes accessible. The algebras ܸ డܱ(࣫)  are 
interesting in their own right. For SC the full ideal of compact operators and Ω as in 
Theorem (1.1.1), we have 
Theorem (1.1.3)[1]: For f in ࣫, ܶis compact if and only if ݂ ∈ ࣤ . There are *-
isomorphisms 

߬(࣫)/ࣥ ≃  ࣫/߬ ≃  ܸ డܱ/ܥడ. 
The prototype for Theorems (1.1.1) and (1.1.3) is the earlier work [4, 8]  for the 
domain Ω =  replaced by normalized Gaussian measure. The "point at ݒ݀  withܥ 
infinity" plays the role of the boundary ߲Ω . Working with "Carleson rectangles" 
instead of Bergman metric balls, [3] then established versions of Theorems (1.1.1) 
and (1.1.3) for Ω =  .the open unit disk in C ,ࡰ 
         For Ω =  showed that [2] ,ࡰ 

∩ (ࡰ)࣫ (ࡰ)ஶܪ  = (ࡰ)ܤ   ∩  ,(ࡰ)ஶܮ 
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whereܪஶ is the usual space of bounded analytic functions and ܤ(ࡰ) is the "little 
Bloch space" of analytic functions f on D such that 

lim
௭→డࡰ

(1 − |ܼ|ଶ)|݂′(ݖ)| =  0. 

His method extends to the ball B in ܥ to yield 
()࣫  ∩ ()ஶܪ  = ()ܤ   ∩  ,()ஶܮ 

Where ܤ() consists of all analytic functions on B with  
lim

௭→డ
(1 − |ܼ|ଶ)|∇݂(ݖ)| =  0. 

This sort of result fails spectacularly for higher rank domains. Using [22],we have 
Theorem (1.1.4)[1]: for rank(Ω) > 1, ࣫(Ω) ∩  ஶ(Ω).consists of just the constantܪ
functions 
         Although our methods of proof in Theorem (1.1.1) use many properties of 
bounded symmetric domains, the results are likely to hold more generally. In 
particular, for Ω = ܥ  we have the related results of [5,8]. We conjecture that 
Theorem (1.1.1) holds for all strictly pseudoconvex domains. 
         Here we collect the properties of bounded symmetric domains which will be 
used in the main results. [4] will provide essentially all of our requirements. 
         Any bounded symmetric domain Ω in ܥ  is, by definition, a Hermitian 
symmetric space [5] with complete Riemannian metric the Bergman metric ߚ(∙ , ∙). 
We always assume that Ω is in its Harish-Chandra realization so that 0 ∈ Ω. It follows 
directly from [6] that for each ܽ in ߗ there is a biholomorphic automorphism of Ω, ߮, 
with the properties 

(a) ߮(ܽ) = 0 
(b) ߮ ∘ ߮ =  identity map. 

For Ω = , the open unit disk in ,ࡰ ߮(ݖ) = (ܽ − 1)(ݖ − തܽݖ)ିଵ . For Ω =  , the 
open unit ball in ܥ, the ߮ 's are explicitly described in [7]. We denote by Aut(Ω) the 
group of all biholomorphic automorphisms of Ω. 
For the Bergman reproducing kernel mentioned, we have the well-known 
transformation law 

,(ݖ)൫߮ܭ  തതതതതതതതതതതത(ݓ)(߮ܬ)(ݖ)(߮ܬ)൯(ݓ)߮ = ,ݖ)ܭ    (1)                          ,(ݓ
here߮ is a biholomorphic map from Ω to Ωᇱ and (ܬ߮)(ݖ) denotes the determinant of 
the complex Jacobian of ߮ . Note also that |(ܬ߮)(ݖ)|ଶ  is the determinant of the 
corresponding real Jacobian [8]. 
Using normalized volume measure ݀ݒ  on Ω  (instead of the more customary 
unnormalized volume measure), it is clear from [14, 13] that we can assume 

,ݖ)ܭ  0)   = 1 
for all z in Ω. 
Proposition (1.1.5)[1]: For ߮described above, 

ଶ|(ݖ)(߮ܬ)|  = |݇(ݖ)|ଶ . 
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Proof. Using the transformation law (1), we see that 
,ݖ)ܭ ܽ)  =  തതതതതതതതതതതതത(ܽ)(߮ܬ)(ݖ)(߮ܬ)(0,(ݖ)߮)ܭ

,ܽ)ܭ ܽ)  = ,0)ܭ    .ଶ|(ܽ)(߮ܬ)|(0
It follows that 

,ݖ)ܭ| ܽ)|ଶ = ,ܽ)ܭଶ|(ݖ)(߮ܬ)| ܽ) 
whence 

ଶ|(ݖ)(߮ܬ)| = |݇(ݖ)|ଶ 
and, in fact, for |ߣ| = 1 

(ݖ)(߮ܬ)  =  .(ݖ)݇ߣ
It follows from [9] that for bounded symmetric domains Ω in the standard 
representation, with normalized volume measure, the kernel functions ܭ(∙ , ∙) have 
the special properties: 
(a) 0)ܭ, ܽ)  = 1 = ,ܽ)ܭ 0), 
(b) ݖ)ܭ, ܽ) ≠  0, ∋ ݖ Ω, ܽ ∈ Ωഥ, 
(c) limିడΩ ,ܽ)ܭ ܽ) = + ∞, 
(d) ݖ)ܭ, ܽ)ିଵis a smooth function  ݊ ×  . 
          Of course, ݖ)ܭ, ܽ)  = ,ܽ)ܭ    and ߲Ωܥ തതതതതതതതത. Here Ωഥ denotes the closure of Ω in(ݖ
is the topological boundary. The complex conjugate of ݂ is denoted  
One useful consequence of (1)-(3) is 
Proposition (1.1.6)[1]: ܱ݊ Ω, ݇(߮(ݖ))݇(ݖ) ≡ 1 
Proof. From Proposition (1.1.5) and the fact that ߮ is an involution, it follows that 

|݇(߮(ݖ))݇(ݖ)| = 1. 
Using analyticity, ݇(߮(ݖ))݇(ݖ) is constant on Ω and we can evaluate this constant 
at ݖ =  0. 
          Another consequence of (a)-(c) is that, for ݂  any polynomial in ݖ =
,ଵݖ)  . . . ,  ),  we haveݖ

〈݂, ݇〉 = ,ܽ)ܭ   ܽ)ିଵ/ଶ݂(ܽ) 
so that 

lim
→డΩ

〈݂, ݇〉 = 0. 
Using density of polynomials in ܪଶ(Ω), it follows that the net {݇} con-verges weakly 
to 0 as ܽ → ߲Ω. 
          For a in Ω, we consider the operator 

( ܷ݂)(w) = ݇(w)݂(߮(ݓ)) 
on ܮଶ(Ω). Using Proposition (1.1.6), it is easy to check that 
(a) ܷ

ଶ =  ܫ
(b) ܷ = ܷ

∗ is unitary  
(c) ܷܲ = ܲ ܷ. 
Now we turn to the properties of the Bergman metric ߚ(∙ ,∙) on Ω. As noted earlier, 
 :is a complete Riemannian metric [10] and it follows [12] that (∙, ∙)ߚ
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(a) the ߚ metric topology on Ω is the usual topology, 
(b) the closed  ߚ -metric balls 

E(a, r) = {w ∈ Ω: ,a)ߚ (ݓ  ≤   {ݎ 
are compact. 
          It follows easily that for a in Ω 

lim
௭→డΩ

,ܽ)ߚ (ݖ = +∞. 
We will need to know that the ܧ(ܽ, ܽ concentrate at ߲Ωas (ݎ → ߲Ω. 

We have 
Lemma (1.1.7)[1]: For r fixed,   ܽ → ߲Ω if and only if 

ݑݏ
௭∈ா(,)

,ݖ)݀ ߲Ω) → 0. 

Proof. It is enough to show that, as ܽ → ߲Ω, ܧ(ܽ,  is eventually in the complement (ݎ
of any compact subset of Ω. For C such a compact subset and ݖ ∈  we let ,ܥ

ݑݏ
௭∈

,ݖ)ߚ (ݖ =   ܴ. 

Now, ߚ(ܽ, (ݖ → ܽ ݏܽ∞ → ߲Ω, and for ߚ(ܽ, (ݖ > ܴ + ,ܽ)ܧ we see that ,ݎ (ݎ  ∩  is ܥ
empty. 
Lemma (1.1.8)[1]:For Ω = ,ܽ)݀ ,asܥ the open unit ball in , (߲ → ܱ,we have 

ݑݏ
௭∈ா(,)

ݖ| − ܽ| → 0. 

Moreover, if ܽ → ܽ in ߲ then 
ݑݏ

௭∈ா(,)
ݖ| − ܽ| → 0. 

Proof. For z in ܧ(ܽ, (ݎ , we must have ߮(ݖ)   in 0)ܧ, (ݎ  so, by com-pactness of 
,0)ܧ ߤ there is a ,(ݎ = ,ߤ  with (ݎ)

|߮(ݖ)| ≤ ߤ < 1. 
It follows from [11] that 

ݖ| − ܽ| ≤ ቆ ߤ
1 − |ܽ|ଶ

1 − ଶ|ܽ|ଶቇߤ

ଵ
ଶ

+ |ܽ|
ଶ(1ߤ − |ܽ|ଶ)
1 − ଶ|ܽ|ଶߤ  

Hence,  as ݀(ܽ, (߲ → 0(|ܽ| − 1) we have 
ݑݏ

௭∈ா(,)
ݖ| − ܽ| → 0. 

 Moreover, if ܽ → ܽ in ߲ then the triangle inequality implies that 
ݑݏ

௭∈ா(,)
ݖ| − ܽ| → 0. 

The last geometric fact we will use is another consequence of the fact that (Ω,  is a (ߚ
complete Riemannian manifold. For ݖ)ߚ, (ݓ ≤  from ߛ ܿݎܽ consider the geodesic ,ݎ 
z to w of length ݖ)ߚ, |ݎ For any .(ݓ > 0, we can find ݉ = ,ݎ)݉   on {ݖ} points (|ݎ
ଵݖ ℎݐ݅ݓ ߛ = ,ݖ  ݖ  =  and ݓ

,ݖ)ߚ (ݖ ≤  ݎ 
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,ݖ)ߚ  ݖ + 1) ≤  .|ݎ
We will require some information about the ݀ݒ measure of the metric balls ܧ(ܽ,  .(ݎ
We write 

,ܽ)ܧ| |(ݎ = න (ݖ)ݒ1݀
ா( ,)

. 

 By Proposition (1.1.5) and the invariance of ߚ(∙ , ∙)  under biholomorphic trans-
formations [12], we see that ߮ܧ(ܽ, (ݎ = ,0)ܧ   and (ݎ

,ܽ)ܧ| |(ݎ = න |݇(ݓ)|ଶ݀(ݓ)ݒ
ா( ,)

. 

This fact allows us to compare volumes of different metric balls. 
Lemma (1.1.9)[1]: For a, b in Ω with ߚ(ܽ, ܾ) ≤  ܴand ݎ, ݏ > 0, we have 

0 < ݉(ܴ, ,ݎ (ݏ ≤
,ܽ)ܧ| |(ݎ
,ܾ)ܧ| |(ݏ ≤ ,ܴ)ܯ  ,ݎ (ݏ < ∞. 

Proof. It is sufficient to check the upper bound separately on 
,ܽ)ܧ| |(ݎ
,ܾ)ܧ| |(ݎ ,

,ܾ)ܧ| |(ݎ
,ܾ)ܧ| |(ݏ . 

 We have 

,ܿ)ܧ| |(ݐ = ,ܿ)ܭ    ܿ)ିଵ න ,ݖ)ܭ| ܿ)|ଶ(ݖ)ݒ݀ܫ
ா(,௧)

 

and by the compactness of 0)ܧ, (ݐ  and the fact that ݖ)ܭ, ܿ)  is continuous and 
nonvanishing on 0)ܧ, (ݐ  ×  Ωഥ, we see that 

0 < ݉, ≤ ,ܿ)ܧ| ,ܿ)ܭ |(ݐ ܿ) ≤ ௧ܯ < ∞ 
for all c in Ω. It follows immediately that 

,ܽ)ܧ| |(ݎ
,ܾ)ܧ| |(ݏ ≤  

ܯ

݉௦
 

Moreover, 
,ܽ)ܧ| |(ݎ
,ܾ)ܧ| |(ݎ

,ܽ)ܭ| ܽ)|
,ܾ)ܭ| ܾ)| ≤  

ܯ

݉௦
 

so that 
,ܽ)ܧ| |(ݎ
,ܾ)ܧ| |(ݎ ≤  

ܯ

݉௦

,ܾ)ܭ| ܾ)|
,ܽ)ܭ| ܽ)| 

Using the transformation law for ܭ(∙ ,∙) and Propositions (1.1.5) and (1.1.6), we have 
,ܾ)ܭ| ܾ)|
,ܽ)ܭ| ܽ)| =  

,(ܾ)߮)ܭ| ߮(ܾ))|
,(ܾ)߮)ܭ| ܽ)|ଶ  
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Since ߚ(ܽ, ܾ) ≤  ܴ, ߮(ܾ)  ∈ ,0)ܧ ܴ). Again using the fact that ݖ)ܭ, ܿ) is continuous 
and nonvanishing on the compact set 0)ܧ, ܴ)  ×  Ωഥ, we see that there is a constant ܭோ 
with 

,ܾ)ܭ| ܾ)|
,ܽ)ܭ| ܽ)| ≤  ோܭ

and 
,ܽ)ܧ| |(ݎ
,ܾ)ܧ| |(ݎ ≤  

ܯ

݉௦
ோܭ  

This finishes the proof. 
          The map (ܽ, (ݎ → ,ܽ)ܧ|  will be of considerable interest to us. We will use |(ݎ
Lemma(1.1.10)[1]: The map (ܽ, (ݎ → ,ܽ)ܧ| |(ݎ  is continuous in each variable 
separately. 
Proof.  For fixed a, we can easily check continuity of ݎ → ,ܽ)ܧ|   provided we |(ݎ
know 

ܵ(ܽ, (ݎ = ∋ ݖ} Ω: ߚ(ܽ, (ݖ =  {ݎ 
has  ܵ(ܽ, (ݎ = 0 . This follows directly from the fact that (Ω, (ߚ  is a complete 
Riemannian manifold. The exponential map sends the sphere of radius r in the tangent 
space at a onto ܵ(ܽ,  Differentiability of the exponential map [9] provides the .(ݎ
appropriate estimate to show that ܵ(ܽ, (ݎ = 0. 
          For fixed r, we recall that 

,ܽ)ܧ| |(ݎ = න
,ݖ)ܭ| ܽ)|ଶ

,ܽ)ܭ ܽ)
(ݓ)ݒ݀

ா( ,)
. 

Continuity of  ݖ)ܭ, ܽ), compactness of 0)ܧ, ,ܽ)ܭ and the fact that ,(ݎ ܽ) ≠ 0 now 
show that ܽ → ,ܽ)ܧ|  .is continuous|(ݎ
We also need a somewhat different kind of estimate.  
Lemma (1.1.11)[1]: For r > 0, there are constants (ݎ)ܧ,  so that (ݎ)߳

∞ > (ݎ)ܧ   ≥ |݇(ݖ)|ଶ|ܧ(ܽ, |(ݎ ≥ (ݎ)߳  >  0 
fora, z in Ω with ߚ(ܽ, (ݖ ≤  .ݎ
Proof. We have  

|݇(ݖ)|ଶ|ܧ(ܽ, |(ݎ =
,ݖ)ܭ| ܽ)|ଶ

,ܽ)ܭ ܽ)ଶ න ,ݓ)ܭ| ܽ)|ଶ݀(ݓ)ݒ
ா( ,)

 

so, using previously discussed properties of ܭ(∙ ,∙), 
0 < ݉  ≤ ∫ ,ݓ)ܭ| ܽ)|ଶ݀(ݓ)ݒா( ,) ≤ ܯ < ∞, 

and it suffices to consider 
,ݖ)ܭ| ܽ)|
,ܽ)ܭ ܽ)

 

Again using the transformation rules and Proposition (1.1.6), we obtain 



9 
 

,ݖ)ܭ| ܽ)|
,ܽ)ܭ ܽ)

=  
1

,(ݖ)߮)ܭ| ܽ)| 

Since (߮(ݖ)  is in 0)ܧ,  is continuous and nonvanishing on the (∙, ∙)ܭ and (ݎ
compact set 0)ܧ, (ݎ  × Ωഥ, the desired estimate follows. 
          There is one important analytic requirement which remains. We need a version 
of a result in [12] for Ω = ܥ the open unit ball in , . This estimate has been 
somewhat extended by [13]. 
Lemma (1.1.12)[1]: For Ω a finite product of balls or the irreducible rank two 
domain of 2 ×  2 contractive symmetric matrices (in ܥଷ), there are ߳ > 0 and ݍ >
1 with 

∞ > Ωܯ
ఢబ, = sup

௭∈Ω
න ,ݖ)ܭ| ,ݓ)ܭ(ଵିଶചబ)|(ݓ (ݓ)ݒఢబ݀(ݓ

Ω
 

Proof. Direct calculation using [17, p. 17] [10]. Hence forth, we will assume when 
needed that Lemma (1.1.12) holds for Ω. 
For Ω a bounded symmetric domain in ܥ and ߚ(∙ , ∙) the Bergman metric, we now 
derive some function-theoretic results which will be needed later. We have, first, for 
fin ܥܤ(Ω): 
Lemma (11.13)[1]: The function f  is in ܸ ܱ if and only if for any fixed ݎ > ܱ 

lim
→డΩ

(ܽ)݂| }ݑݏ − :|(ݓ)݂ ,ܽ)ߚ (ݓ ≤ {ݎ = 0  . 
Proof. One direction is trivial. Suppose f is in ܸ డܱand ݎ >  0 is given. Recall that, by 
Lemma (1.1.7), 

ݑݏ
௭∈ா(,)

,ݖ)݀ ߲Ω) → 0 

as a → ߲Ω. Recall also that there are ݉ = ,ݎ)݉ 1) points ݖ for any win ܧ(ܽ,  so ,(ݎ
that {ݖ}  are in ܧ(ܽ, (ݎ  and ݖ)ߚ, (ାଵݖ  ≤ ଵݖ ℎݐ݅ݓ 1 =  ܽ  and ܼ = ݓ  . By 
compactness of ܧ(ܽ,   ,(ݎ

(ܽ)݂| }ݑݏ − :|(ݖ)݂ ,ܽ)ߚ (ݖ ≤ {ݎ   =  |݂(ܽ) −  |(ݓ)݂
for some w in ܧ(ܽ,   ,Thus .(ݎ

|݂(ܽ) − |(ݓ)݂ ≤  ห݂൫ݖ൯ − ݂൫ݖାଵ൯ห
ିଵ

ୀଵ

 

for{ݖ} as above. As ܽ → ߲Ω, the ݖ → ߲Ω and, by the definition of ܸ డܱ , for any ߳ >
0, if ݀(ܽ, ߲Ω) is small enough then  

ห݂൫ݖ൯ − ݂൫ݖାଵ൯ห < ߳/݉ 
so that  

|݂(ܽ) − |(ݓ)݂ < ߳. 
We can now prove 
Theorem (1.1.14)[1]: If  f is in ܸ డܱ then 
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‖݂(ܽ) − ݂ °߮(∙)‖ → 0 
As ܽ → ߲Ω for all  > 1. 
Proof. This follows easily from Lemma (1.1.13), the invariance of ߚ(∙ , ∙) under 
biholomorphic maps, and the Lebesgue dominated convergence theorem. 
we will establish some relations between the function spaces ത࣫, ܯܸ డܱ(ݎ) , and 
ܸ డܱ + ℐ described in the introduction. 
These relations are purely function-theoretic and are part of the proof of Theorem 
(1.1.1). We begin with 
Lemma (1.1.15) [1]:  The following are equivalent: 

(a) ݂ ∈ ܯܸ డܱ(ݎ) 
(b)   lim

→డΩ
,ܽ)ܧ| ଶି|(ݎ ∫ ∫ (ݓ)݂| − ா(,)ா(,)(ݖ)ݒ݀(ݓ)ݒଶ݀|(ݖ)݂   =  . 

Proof.  By direct calculation  

,ܽ)ܧ| ଶି|(ݎ න න (ݓ)݂| − (ݖ)ݒ݀(ݓ)ݒଶ݀|(ݖ)݂ 
ா(,)ா(,)

 

= ,ܽ)ܧ|2  − (ݓ) ଵห݂ି|(ݎ  መ݂(ܽ, ห(ݎ
ଶ

 .(ݓ)ݒ݀ 
The desired result follows, using the fact that f is in ܮஶ and standard estimates. 
Lemma (1.1.16)[1]: For ݎ| > ܯܸ we have ,ݎ  డܱ(ݎ|)  ⊂ ܯܸ  డܱ(ݎ). 
Proof. Using Lemma (1.1.15), it suffices to check that 

หܧ(ܽ, ห(|ݎ
ିଵ|ܧ(ܽ, |(ݎ ≥ ݉(0, ,ݎ (|ݎ  >  0. 

This is exactly the content of Lemma (1.1.9). 
          We can now check 
Theorem (1.1.17)[1]: The space ෨࣫ is contained in ܸܯ డܱ(ݎ). 
Proof. Direct calculation shows that 

2(|݂|ଶ~(ܽ)  − ห ሚ݂(ܽ)ห
ଶ

) =  න න (ݖ)݂|  − (ݓ)ݒ݀(ݖ)ݒଶ݀|(ݓ)ଶ|݇|(ݖ)ଶ|݇| (ݓ) ݂
ΩΩ

  

≥ න න (ݖ)݂|  − (ݓ)ݒ݀(ݖ)ݒଶ݀|(ݓ)ଶ|݇|(ݖ)ଶ|݇| (ݓ) ݂
ா(,)ா(,)

  . 

Now using Lemma (1.1.11), we see that 
(ܽ)~ଶ|݂|2ି[(ݎ)߳]2  − |෨݂(ܽ)|2)  

≥ ,ܽ)ܧ| ଶି|(ݎ න න (ݖ)݂|  − (ݓ)ݒ݀(ݖ)ݒ݀ 2| (ݓ) ݂
(ݎ,ܽ)ܧ(ݎ,ܽ)ܧ

 

The desired result follows from Lemma (1.1.15).  
          Next we consider the function መ݂(∙,   .(ݎ
Lemma(1.1.18)[1]: Forf in ܮஶ (Ω) and ݎ > 0, መ݂ (∙,  .(Ω)ܥܤ is in (ݎ
Proof. Boundedness is clear. Using Lemma (1.1.10), it suffices to check that the map 
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ܽ → න (ݓ)ݒ݀(ݓ)݂ ≡ (ܽ)ܨ
ா( ,)

 

is continuous. We note that, for ߚ(ܽ, ܽ) small, 
,ܽ)ܧ − ݎ ,ܽ)ߚ ܽ))  ⊂ ,ܽ)ܧ   .(ݎ

Thus,  

(ܽ)ܨ =  න (ݓ)ݒ݀(ݓ)݂
ா(,)

 

= න (ݓ)ݒ݀(ݓ)݂
ா൫బ, ିఉ(,బ)൯

+ න ,(ݓ)ݒ݀(ݓ)݂
ா(,)\ா൫బ, ିఉ(,బ)൯

 

(ܽ)ܨ = න (ݓ)ݒ݀(ݓ)݂
ா൫బ, ିఉ(,బ)൯

+ න ,(ݓ)ݒ݀(ݓ)݂
ா(,)\ா൫బ, ିఉ(,బ)൯

 

and it follows that  
(ܽ)ܨ|  − |(ܽ)ܨ ≤ ‖݂‖ஶ {|ܧ(ܽ, | (ݎ + ,ܽ)ܧ|  |(ݎ − ܽ)ܧ|2  , − ݎ ,ܽ) ߚ ܽ))|}. 

Again using Lemma (1.1.10), it follows that |ܨ(ܽ)  − |(ܽ)ܨ → → ܽ ݏܽ 0 ܽ. 
          Finally, we can prove 
Theorem (1.1.19)[1]: For ݎ > ܱ and fin ܸܯ డܱ(ݎ), መ݂(∙, (2/ݎ  is in ܸܯ డܱ  and ݂ −
መ݂(. , ܯܸ ,is in ℐ. Thus (2/ݎ డܱ(ݎ) is contained inܸ డܱ + ℐ. 

Proof. For ݂ in ܸܯ డܱ(ݎ), we know that መ݂(∙ ,  .by Lemma (1.1.18) (Ω)ܥܤ is in (2/ݎ
By Lemma (1.1.13), to check that መ݂(∙ , ܸ is in (2/ݎ డܱ it will suffice to check that  

lim
ିడΩ

൛หݑݏ መ݂(ܽ, (2/ݎ − መ݂(ݖ, ห(2/ݎ ∶ ,ܽ)ߚ (ݖ ≤ 2ൟ/ݎ =  0. 
We have for ߚ(ܽ, (ݖ ≤  2/ݎ

ห መ݂(ܽ, (2/ݎ −  መ݂(ݖ, ห(2/ݎ
≤ ,ܽ)ܧ| ,ݖ)ܧ|1−|(2/ݎ 1−|(2/ݎ

× න න (ݑ)݂| − (ݓ)ݒ݀(ݑ)ݒ݀|(ݓ)݂
2ቁݎ,ቀܽܧ2ቁݎ,ݖቀܧ

≤
,ܽ)ܧ| 2|(ݎ

,ܽ)ܧ| ,ݖ)ܧ||(2/ݎ |(2/ݎ
1

,ܽ)ܧ| 2|(ݎ

× න න (ݑ)݂| − .(ݓ)ݒ݀(ݑ)ݒ݀|(ݓ)݂
(ݎ,ܽ)ܧ(ݎ,ܽ)ܧ

 

Thus, by Lemma (1.1.9) and the Cauchy-Schwarz inequality, we have 
ห መ݂(ܽ, (2/ݎ − መ݂(ݖ, ห(2/ݎ

≤ ,0)ܯ  ,ݎ ,2/ݎ)ܯ(2/ݎ ,ݎ (2/ݎ  

× ቊ|ܧ(ܽ, 2|(ݎ න න (ݑ)݂| − (ݓ)ݒ݀(ݑ)ݒ2݀|(ݓ)݂
 

(ݎ,ܽ)ܧ

 

(ݎ,ܽ)ܧ
ቋ

1/2

 

and Lemma (1.1.15) implies that መ݂(∙ , ܸ is in (2/ݎ డܱ. 
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Next, we check that ݃ = ݂ − ݂(∙,  is in ℐ.We need to show that(2/ݎ

න (ݓ)ݒ(ܹ)|ଶ݀݇||(ݓ)݃| →  0
 

Ω
 

As ܽ → ߲Ω. 
          Given ߳ >  0, using Proposition (1.1.5) and 

Ω = ራ ,ܱ)ܧ ݇) 
ஶ

ୀଵ

  

there is an ܴ = ܴ(߳) with 

න (ݓ)ݒଶ݀ |(ݓ)݇||(ݓ)݃|
 

Ω
= න ห݃ ∘ ߮൫߮(ݓ)൯ห|݇(ݓ)| ଶ݀(ݓ)ݒ

 

Ω

= න |݃ ∘ ߮(ݖ)|݀(ݖ)ݒ
 

Ω

≤ න |݃ ∘ ߮(ݖ)|݀(ݖ)ݒ
 

ா(,ோ)
+ ‖݃‖ஶ|Ω − ,0)ܧ  ܴ)|

≤ න |݃ ∘ ߮(ݖ)|݀(ݖ)ݒ
 

ா(,ோ)
+ ߳ ≤ න (ݓ)ݒଶ݀ |(ݓ)݇||(ݓ)݃|

 

ா(,ோ)
+ ߳ 

Moreover, 
∞ > (ܴ)ܧ    ≥ ,ܽ)ܧ| ܴ)||݇(ݓ)|ଶ 

 
for all w in ܧ(ܽ, ܴ) by Lemma (1.1.11). It follows that it will suffice to check that 

,ܽ)ܧ| ܴ)|ିଵ න (ݓ)ݒ݀ |(ݓ)݃|
 

ா(,ோ)
→ ܱ  

as ܽ → ߲Ω 
          Using the fact that ߮0)ܧ, ܴ)  = ,ܽ)ܧ  ܴ) , it is easy to find ݉ =  ݉(ܴ,  (ݎ
points ܽ in ܧ(ܽ, ܴ) so that 

,ܽ)ܧ ܴ) ⊂ ራ )ܧ ܽ, (2/ݎ


ୀଵ

 . 

Thus,           

,ܽ)ܧ| ܴ)|ିଵ න (ݓ)ݒ݀ |(ݓ)݃|
 

ா(,ோ)
≤ |ܧ(ܽ, ܴ)|ିଵ



ୀଵ

න (ݓ)ݒ݀ |(ݓ)݃|
 

ா(ೕ ,/ଶ)
. 

Moreover, since ߚ( ܽ , ܽ) ≤ ܴ by Lemma (1.1.9),      
,ܽ)ܧ|  ܴ)|ିଵ  ≤ ൫ܧ ܽ , ݎ ∕ 2൯

 ିଵ
,ܴ)ܯ ݎ ∕ 2, ܴ)  

and so           

,ܽ)ܧ| ܴ)|ିଵ න (ݓ)ݒ݀ |(ݓ)݃|
 

ா(,ோ)
≤ ,ܴ)ܯ ,2/ݎ ܴ) |ܧ(ܽ, ܴ)|ିଵ



ୀଵ

න (ݓ)ݒ݀ |(ݓ)݃|
 

ா(ೕ,/ଶ)
. 
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Using Lemma (1.1.7), it will now suffice to check that    

,ܽ)ܧ| ݎ ∕ 2)|ିଵ න (ݓ)ݒ݀ |(ݓ)݃|
 

ா(,∕ଶ)
→ ܱ  

as ܽ → ߲Ω 
To finish the proof, we note that 

,ܽ)ܧ| ݎ ∕ 2)|ିଵ න (ݓ)ݒ݀ |(ݓ)݃|
 

ா(,∕ଶ)

≤ ,ܽ)ܧ| ݎ ∕ 2)|ିଵ න ห݂(ݓ) − መ݂(ܽ, ݎ ∕ 2)ห ݀(ݓ)ݒ
 

ா(,∕ଶ)

+ ,ܽ)ܧ| ݎ ∕ 2)|ିଵ න ห መ݂(ܽ, ݎ ∕ 2) − መ݂(ݓ, ݎ ∕ 2)ห ݀(ݓ)ݒ
 

ா(,∕ଶ)
 

As ܽ → ߲Ω, the first term on the right goes to zero since f  is in ܸܯ డܱ(2/ݎ) by Lemma 
(1.1.16). Since መ݂(∙ , ݎ ∕ 2)is in ܸ డܱ , Lemma (1.1.13) shows that the second term on 
the right goes to zero as ܽ → ߲Ω. 
          We now turn to the operator-theoretic estimates which are required. Let ࣥ 
denote the algebra of all compact op-erators on the appropriate Hilbert space. Note 
that A is in ࣥ if and only if ܣ ∗  is in ࣥ. For completeness we check ܣ
Proposition (1.1.20)[1]: ࣫ = {݂ ∈ :ஶܮ ,ܪ ̅ܪ ∈ ࣥ}. 
Proof. It is easy to check that ܪ,  ̅ are in ࣥ if and only ifܪ

 [ܲ, [ܯ = ܯܲ −  ܲܯ
is in ࣥ. Since 

 [ܲ, [ܯ  = ൣܲ, ܯ൧ܯ + ,ܲ]ܯ   [ܯ
we see that {݂ ∈ :ஶܮ ܪ , ̅ܪ ∈ ࣥ} is a closed (since ࣥ  is norm closed) conjugate-
closed subalgebra of ܮஶ. 
Using 

ܲܯܲ − (ܲܯܲ)(ܲܯܲ)  = ܫ)ܯܲ   −  ,ܲܯ(ܲ 
we see that for ܪ̅ or ܪ in ࣥ, ܶ − ܶ ܶ is in ࣥ.Choosing ݂ =  ݃̅, we also see that
 ܶ||మ − ܶത ܶ = ܪ  

 ܪ∗
so that ܪ is in ࣥ if and only if ܶ||మ − ܶത ܶ is in ࣥ . the desired conclusion follows. 
A natural ideal in ࣫ is described as follows: 

ࣤࣥ = {݂ ∈ ࣫: ܶ  ∈ ࣥ}. 
Lemma (1.1.21) [1]: ࣤࣥ  is a closed ideal in ࣫. f is in ࣤࣥ  if and only if ݂ ∈  ஶ andܮ

ܶ||మ ∈ ࣥ. 
Proof. It is easy to check that f is in ࣤࣥ  if and only if ܯܲ is in ࣥ (equivalently, 
ܶ||మ ∈ ࣥ)and ݂ ∈ ࣥࣤ ஶ . It is now easy to check thatܮ  is an ideal in ܮஶ and that ࣤࣥ  
is closed. 
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For f in ܮஶ(Ω), we define 

,ݖ)ଵܬ ݂) = න –(ݖ)݂| ,ݖ)ܭ| |(ݓ)݂ ,ݓ)ܭ |(ݓ (ݓ)ݒఢ݀(ݓ
  

ஐ
 

,ݖ)ଶܬ ݂) = න ,ݖ)ܭ| |(ݓ)݂| ,ݓ)ܭ |(ݓ (ݓ)ݒఢ݀(ݓ
  

ஐ
 

where ߳ is chosen as in Lemma (1.1.12). We have    
Lemma(1.1.22)[1]:  For ߳ > 0, ݍ > 1 as in Lemma (1.1.12) and ିଵ + ିݍଵ = 1, 
there is a positive constant M, independent off,such that  
,ݖ)ଵܬ  ݂) ≤ ,ݖ൫ܭܯ  ൯ݖ 

ఢ‖݂ (ݖ) −  ݂ ∘ ߮௭‖  
,ݖ)ଶܬ  ݂) ≤ ,ݖ൫ܭܯ  ൯ݖ 

ఢ‖ ݂ ∘ ߮௭‖. 
Proof. The argument for ܬଶexactly parallels the argument for ܬଵ. By change of 
variables for ܬଵ(ݖ, ݂ ), we have    

,ݖ)ଵܬ ݂ ) න (ݖ)݂ −  ݂ ∘ ߮௭(ݓ)
 

Ω
× ,ݖ)ܭ| ߮௭(ݓ))|ܭ(߮௭(ݓ), ߮௭(ݓ))ఢ|݇௭(ݓ)| ଶ݀(ݓ)ݒ. 

Using Proposition (1.1.6) and the transformation laws for ܭ(∙ ,∙) we find that 

,ݖ)ܭ| ߮௭(ݓ))| =
,ݖ)ܭ (ݖ

,ݖ)ܭ|  |(ݓ

and   
,(ݓ)௭߮)ܭ ߮௭(ݓ)) |݇௭(ݓ)| ଶ = ,ݓ)ܭ    .(ݓ

Thus, by the Jordan-Hölder inequality and Lemma (1.1.12) 
,ݖ)ଵܬ ݂) = ,ݖ)ܭ (ݖ)݂|ఢ(ݖ −  ݂ ∘ ߮௭(ݓ)| |ݖ)ܭ, ଵିଶച|(ݓ ,ݓ)ܭ (ݓ)ݒఢ݀(ݓ

≤ ൫ܯΩ
ఢ,൯

ଵ∕
,ݖ)ܭ (ݖ)݂‖ఢ(ݖ −  ݂ ∘ ߮௭‖. 

This completes the proof. 
We also need 
Lemma (1.1.23)[1]: For ߯ = ߯ܿ the characteristic function of any compact subset C 
of  Ω,  .ଶ(Ω)ܮ ܲ are compact operators onܯఞܲܯ  andܪఞܯ
Proof. For g in the range of P, 

(ݖ)݃(ܪఞܯ) = න (ݖ)݂)(ݖ)߯  − ,ݖ)ܭ((ݓ)݂ (ݓ)ݒ݀(ݓ)݃(ݓ
 

ஐ
 

(ݖ)݃(ܲܯఞܲܯ) = ∫ ,ݖ)ܭ(ݓ)݂(ݖ)߯  (ݓ)ݒ݀(ݓ)݃(ݓ
ஐ . 

The integral kernels are bounded so that the operators are Hilbert-Schmidt. 
          We can now establish the next link in the main result: 
Theorem (1.1.24)[1]: ܸ డܱ + ℐ is contained in ࣫.  
Proof. Since ࣫  is an algebra, we need only check that ܸ డܱ  and ℐ  are separately 
contained in ࣫. Suppose that f  is in ܸ డܱ . By Theorem (1.1.14), ‖݂(ܽ) −  ݂ ∘ ߮‖ →
0 as ݀(ܽ, ߲Ω)  →  0. Given ߳ > 0, choose ߜ = ,߳)ߜ    ݂) small enough so that 
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‖݂(ܽ) −  ݂ ∘ ߮௭‖ < ߳ 
When ever 

݀(ܽ, ߲Ω) <  .ߜ
Let ߯ = ߯ܿ be the characteristic function of the compact set 
 

= ܥ {ܽ ∈ Ω: ݀(ܽ, ߲Ω)  ≥  .{ߜ
By Lemma (1.1.23), ܯఞܪ  is in ࣥ .Moreover, for g in ܪଶ(Ω)  and  ߳ >  0  as in 
Lemma (1.1.12), 

൫ܪ݃൯(ݖ) = න ൫݂(ݖ)– ,ݖ)ܭ൯(ݓ)݂ (ݓ)ݒ݀(ݓ)݃(ݓ
 

Ω
. 

so that 
ห(ܪ݃)(ܼ)ห

ଶ
 

≤ න –(ݖ)݂| ,ݖ)ܭ||(ݓ)݂ ,ݓ)ܭ|(ݓ ఢ(ݓ
 

Ω
(ݓ)ݒ݀

× න –(ݖ)݂| ,ݖ)ܭ||(ݓ)݂ ,ݓ)ܭ|(ݓ ଶ|(ݓ)݃|ఢି(ݓ
 

Ω
 (ݓ)ݒ݀

by the Cauchy-Schwarz Lemma. Using Lemma (1.1.22), we now have 

ห(ܪ݃)(ܼ)ห
ଶ

≤ 2‖݂‖ஶ ܯఢݖ)ܭ, ఢ(ݖ න ,ݖ)ܭ| ,ݓ)ܭ|(ݓ ଶ|(ݓ)݃|ఢି(ݓ
 

Ω
 (ݓ)ݒ݀

for z in Ω\ܥ. Thus by Fubini's Theorem and another application of Lemma (1.1.22), 
we have 

ฮ൫ܪ − ൯݃ฮܪఞܯ
ଶ
ଶ

 = න ห(ܪ݃)(ܼ)ห
ଶ

(ݖ)ݒ݀
 

Ω\

≤ 2‖݂‖ஶ ܯఢ න ,ݓ)ܭ ଶ|(ݓ)݃|ఢି(ݓ
 

Ω
(ݓ)ݒ݀

× න ,ݖ)ܭ| ,ݖ)ܭ|(ݓ ఢ(ݖ
 

Ω
(ݖ)ݒ݀ ≤ 2‖݂‖ஶܯଶ߳‖݂‖ଶ

ଶ 

Since ߳ >  0 is arbitrary, it follows that ܪ is in ࣥ. The same argument shows that 
 .̅ is in ࣥ and so f  is in ࣫ by Proposition (1.1.20)ܪ
          To show that ℐ is contained in ࣫, we actually check that  ℐ is contained in ℐࣥ. 
For f in ℐ, it is easy to see that (|݂|) ̃ is in ܥడ(Ω)for  >  1. To show that f is in ℐࣥ, 
it suffices to show that ܶ||మ  is in ࣥ. The proof is completed by noting that 

‖ ݂ ∘ ߮‖
 = (|݂|) ̃(ܽ) 

and estimating 
ฮܲܯ||మܲ −  |మܲฮ|ܯఞܲܯ

using the method above.  
Corollary (1.1.25)[1]: ℐ = ℐࣥ  
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Proof. We need only check that ℐࣥ  is contained in ℐ. We recall that the net {݇} 
converges weakly to zero as ܽ → ߲Ω. Hence, for f in ℐࣥ , ܶ||మ  is in ࣥ and so 
 〈ܶ||మ݇ ,  ݇〉 =  (|݂|) ̃(ܽ) → 0 

as ܽ → ߲Ω.   An application of the Cauchy-Schwarz inequality now implies that f is 
in ℐ. 
Corollary (1.1.26)[1]: ܥడ(Ω) is contained in ℐ. 
Proof.  Using Corollary (1.1.25) and Lemma (1.1.21), it suffices to check that ܶ||మ  is 
in ࣥ for |݂|ଶ in ܥడ(Ω). This is an easy exercise. 
To establish that ࣫ is contained in ෨࣫, we require several preliminary results. The next 
Lemma appears in [14]. We sketch the proof. 
Lemma (1.1.27) [1]:  ܲ|ಮ(Ω) =  is a compact operator from the Banach space ܧܲ
 .ଶ(Ω)ܪ ஶ(Ω) toܮ
Proof. [15]. Let E be the injection of ܮஶ(Ω) into ܮଶ(Ω). Then ܲ|ಮ(Ω) =  PE and for 
ఞఙܯ , the operator of multiplication by the character-istic function of the compact set 
,ߪ ߪ ⊂ Ω, we have 

ܧܲ = ܧఞܯܲ +  .ܧఞΩ∖ܯܲ

Note that ܲܯఞఙ is a compact operator since P is an integral operator with smooth 
kernel away from the boundary ߲Ω. Choose. ߪ so that |Ω ∖ |ߪ < ߳. Then, for ‖݂‖ஶ ≤
1, we have 

ቛܲܯఞΩ∖݂ܧቛ
ଶ

=  ฮܲܯఞΩ∖ఙฮ
ଶ

≤ ‖߯Ω ∖ ଶ‖ߪ < √߳ 
so that 

ቛܲܯఞΩ∖ܧቛ < √߳. 
Hence, PE is a norm limit of compact operators. 
          We also need 
Lemma (1.1.28) [1]:  If { ݂} is a sequence of real-valued functions  in ܮଶ(Ω) with 
‖ ݂ − ℎ‖ଶ → 0 for h in ܪଶ(Ω),   then h is a constantfunction. 
Proof. Write ℎ = ݑ  + ,ݑ with ݒ݅  real-valued. Then ݒ

| ݂(ݖ) − ℎ(ݖ)|ଶ = | ݂(ݖ) − ଶ|(ݖ)ݑ +  .ଶ|(ݖ)ݒ|
It follows that 

‖ ݂ − ℎ‖ଶ ≥  ଶ‖ݒ ‖
so that ݒ = 0 and h is a real-valued holomorphic function. It is now elementary that 
h must be a constant function. 
          We can establish 
Theorem (1.1.29)[1]: ࣫ is contained in ෨࣫. 
Proof. Since ࣫ is conjugate-closed, it is enough to show that for f real-valued in ࣫, f 
must be in ෨࣫. For f real-valued, f in ࣫, we know 
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(|݂|ଶ)~(ܽ) − ห ሚ݂(ܽ)ห
ଶ

= ฮ ሚ݂(ܽ) −  ݂ ∘ ߮ฮଶ
ଶ

≥  0. 
Suppose that       

lımതതതത
→డΩ

ฮ ሚ݂(ܽ) −  ݂ ∘ ߮ฮଶ
ଶ

≥  0 
so there are ܽ → ߲Ω with     

                                      ฮ ሚ݂(ܽ) −  ݂ ∘ ߮ฮଶ
ଶ

≥ ߩ >  0 
for  =   1, 2, . . ..  . Since f is in ࣫, ܪ  = ܫ) − ܲ ܯ(ܲ   is a compact operator by 
Proposition (1.1.20). Since {݇} converges weakly to zero as ܽ → ߲Ω,  we must 
have       

lim
→ஶ

ฮ(ܫ − ܲ)݂݇ฮ
ଶ

= 0 
We now use the unitary operators 

( ܷ݂)(ݓ) = ݇(ݓ)݂ ∘ ߮(ݓ) 
discussed earlier and recall that [ܲ, ܷ] = 0 and   

ܷ(݂ ∘ ߮) = ݂݇ . 
It is easy to check that            

   lim
→ஶ

ฮ(ܫ − ܲ)݂ ∘ ߮ฮ
ଶ

= 0                                                  (2)  
Noting that {݂ ∘ ߮} is a bounded subset of ܮஶ (Ω), Lemma (1.1.27) implies that 
there is an h in ܪଶ(Ω) and a subsequence {ܽೖ} so that 

 lim
→ஶ

ቛܲ(݂ ∘ ߮ೖ
) − ℎቛ

ଶ
= 0 .                                        (3) 

Combining (2) and (3), we see that      
 lim
→ஶ

ቛ(݂ ∘ ߮ೖ
) − ℎቛ

ଶ
= 0 . 

It follows from Lemma (1.1.28) that h is a constant function. Thus 
ሚ݂൫ܽೖ൯ = 〈݂ ∘ ߮ೖ

, 1〉 → 〈ℎ, 1〉 = ℎ 
and it follows from the estimate        

ቛ ሚ݂൫ܽೖ൯ − ݂ ∘ ߮ೖ
ቛ

ଶ
≤ ቛ(݂ ∘ ߮ೖ

) − ℎቛ
ଶ

+ ฮ ሚ݂൫ܽೖ൯ − ℎฮ
ଶ

 
that             

 lim
→ஶ

ቛ ሚ݂൫ܽೖ൯ − ݂ ∘ ߮ೖ
ቛ

ଶ
= 0 . 

This contradicts (a).           
          It follows that            

 lim
→డΩ

ฮ ሚ݂(ܽ) −  ݂ ∘ ߮ฮଶ
ଶ

= 0 
and so f  is in ෨࣫.   
          We can now assemble the results of earlier sections. We need 
Lemma (1.1.30)[1]: For f in ෨࣫ , wehave ሚ݂ − መ݂(∙, (ݎ  in ܥడ(Ω)  for  any ݎ > ܱ .It 
Follows that f  is in ܸ డܱ . 
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Proof. It is easy to see that ሚ݂ is in ܥܤ(Ω) because of the continuity of ܭ(∙,∙) and the 
definition of ሚ݂ . Moreover, መ݂(∙, (ݎ  is in ܸ డܱ  by Theorems (1.1.17)and (1.1.19). It 
remains to estimate ሚ݂ − መ݂(∙,  Using Lemma (1.1.11) and direct calculation, we have .(ݎ

(ܽ)~ଵ[(|݂|ଶ)ି(ݎ)߳ − ห ሚ݂(ܽ)ห
ଶ

]   = ଵି(ݎ)߳ න ห݂(ݓ) − ሚ݂(ܽ)ห
ଶ|݇(ݓ)|ଶ݀(ݓ)ݒ

 

Ω

≥ ,ܽ)ܧ| ଵି|(ݎ න ห݂(ݓ) − ሚ݂(ܽ)ห
ଶ

(ݓ)ݒ݀
 

ா(,)
≥ መ݂(ܽ, (ݎ − ሚ݂(ܽ)ଶ. 

The desired result follows. 
We also require a characterization of ܸ డܱ which is of intrinsic interest. 

Theorem (1.1.31)[1]: ܸ డܱ = ෨࣫ ∩ {݂: ݂ − ሚ݂ ∈   .{డ(Ω)ܥ 
Proof. By Theorem (1.1.14), if f is in ܸ డܱ then   

   lim
→డΩ

‖݂(ܽ) −  ݂ ∘ ߮‖ଶ
ଶ = 0 

Direct calculation shows that      
‖݂(ܽ) −  ݂ ∘ ߮‖ଶ

ଶ = (|݂|ଶ)~(ܽ) − ห ሚ݂(ܽ)ห
ଶ

+ ห ሚ݂(ܽ) − ݂(ܽ)ห
ଶ

. 
Note that          

(|݂|ଶ)~(ܽ) ≥ ห ሚ݂(ܽ)ห
ଶ
 

by the Cauchy-Schwarz inequality. It follows that if (1) holds and f is in ܥܤ(Ω) then 
f is in ෨࣫ and ሚ݂ − ݂ is in ܥడ(Ω). By Lemma (1.1.30), we see that f is in ܸ డܱ . The 
desired result follows from (b). 
          For f  in ܮ ஶ(Ω) the following are equivalent: 

(a) ݂ ∈ ࣫ 
(b) ݂ ∈ ෨࣫ 
(c) ݂ ∈ ܯܸ డܱ(ݎ) 
(d) ݂ ∈ ܸ డܱ + ℐ. 

Moreover, for f in ࣫, f and መ݂( ∙, ܸ are in (ݎ డܱ with ݂ − ሚ݂and ݂ − መ݂(∙, < ݎ in ℐ for (ݎ
 0. We have 

ܸ డܱ ∩ ℐ = డ(Ω) and ሚ݂ܥ − መ݂(∙,  .డ(Ω) for f in ࣫ and r >  0ܥ is in (ݎ
Proof. (ܾ) ⇒ (ܿ) is Theorem (1.1.19). (ܿ) ⇒ (݀) is Theorem (1.1.19). (݀) ⇒  (ܽ) 
is Theorem (1.1.24). (ܽ) ⇒ (ܾ) is Theorem (1.1.29). Theorem (1.1.19) also shows 
that መ݂(∙, (ݎ  is in ܸ డܱ  with ݂ − ሚ݂(∙, (ݎ  in ℐ . By Lemma (1.1.30), ሚ݂ − መ݂(∙, (ݎ  is in 
డ(Ω) is contained in ℐܥ ,డ(Ω). By Corollary(1.1.26) of Theorem (1.1.24)ܥ  and it 
follows that ݂ − ሚ݂ is in ℐ.     
          Finally, using Theorem (1.1.31) we see that for f  in ܸ డܱ ∩ ℐ, ݂ −  ሚ݂ and 
(|݂|)~  are in  ܥడ(Ω).It followsthat ሚ݂ is in  ܥడ(Ω)  so that f is also in  ܥడ(Ω) . The 
reverse inclusion is elementary in view of Corollary (1.1.26) of Theorem (1.1.24). 
ܯܸ డܱ(ݎ) is independent of r >  0. 
Proof. ܸܯ డܱ(ݎ) = ࣫ for all ݎ >  0. 
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For f in ࣫, ܶ is compact if and only iff is in ℐ. We have *isomorphisms 
߬(࣫)/ ࣥ ≃ ࣫/ℐ −  .(ܳ)ܽܥ/ܱܸ݀ܽ

Proof. We need to check, first, that ࣥ  is contained in ߬(࣫). A standard argument 
shows it is enough to check irreducibility of ߬(࣫). Using Theorem (1.1.24) and noting 
that ℐ contains the set ܮ

ஶ of ܮஶ functions with compact support, it suffices to check 
the irreducibility of the set { ܶ: ݂ ∈ ܮ

ஶ}. Cutting down the coordinate functions ݖ to 
compact subsets of Ω and an application of the Lebesgue dominated convergence 
theorem as in [15] shows that the irreducibility of { ܶ: ݂ ∈ ܮ

ஶ} follows from the 
easily checked irreducibility of { ௭ܶ: ݆ = 1, 2, . . . , ݊ } (cf. [12]). 
By Corollary(1.1.25) of Theorem (1.1.24), for ݂ in ࣫, ܶ is in ࣥ if and only if f is in 
ℐ. Moreover, for all ݃, ℎ in ࣫ 

ܶ ܶ − ܶ 
is in ࣥ. It follows easily from standard *-algebra facts that ߬(࣫)/ࣥ ≃  ࣫/ℐ. The 
last isomorphism is clear from Theorem (1.1.1). 
Theorem (1.1.32) [1]: [14]. For B the open unit ball in  , the algebra ܥ(ഥ) is 
contained in ࣫(). 
Proof.  If f is in ܥ(ഥ), then for arbitrary ߳ > 0 there is a ߜ(߳) > 0 for which ݀(ݖ, ܽ) <
(߳)ߜ  implies that |݂(ܽ) − |(ݖ)݂ < ߳ . By Lemma (1.1.8), there is a ߜᇱ =
,ݎ)ᇱߜ ((߳)ߜ > 0  so that ݀(ܽ, (߲ < ᇱߜ  implies ݀(ݖ, ܽ) < (߳)ߜ  for all z in ܧ(ܽ, (ݎ . 
This shows that ܥ(ഥ) is contained in ܸ డܱ(). An application of Theorem (1.1.24) 
completes the proof. 
          For rank (Ω) > 1, ࣫(Ω) ∩   .ஶ(Ω)  consists of just the constant  functionsܪ
Proof. Let    

௭ܩ = 1/2 ቆ
߲ଶ

߲௭߲௭̅

,ݖ)ܭ ݈݃  ቇ(ݖ

be the (infinitesimal) Bergman metric on Ω . For f  holomorphic on Ω, = ݖ
,ଵݖ)  .  . . , ,(ݖ ഥݓ = ,ഥଵݓ) . .  . , ,ݖ)(ഥݓ ݓ  define [12] ,( ݊݅ 

࣫(ݖ) = sup
,(ݖ)݂∇〉| |〈ഥݓ

ඥ〈ܩଶݓ, 〈ݓ
: |ݓ| = 1 

where   〈  , 〉  is the usual inner product on  and  

(ݖ)݂∇ =
߲݂
߲௭భ

, … ,
߲݂
߲௭

 

is the analytic gradient of f.  It is known [12] that 
࣫(߮(ݖ))  = ࣫∘ఝ(ݖ) 

for all ߮ in Aut(Ω). It is also known [12] for rank (Ω) > 1 that if 
  lim

௭→డΩ
࣫(ݖ) = 0,                                                   (∗)  

then  f  is a constant function. Thus, it suffices to show that (*) holds for f in ࣫ ∩  .ஶܪ
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Since f is in ܪஶ, it is clear that ݂ = ሚ݂ and ܪ = 0. It follows from Theorem (1.1.29) 
and Theorem (1.1.31) that, for f ܪஶ ∩ ࣫, ݂ must be in ܸ డܱ and so 

   lim
→డΩ

࣫(ݖ) ฮ݂(ܽ) − ݂ ∘ ߮ฮଶ
ଶ

= 0                              (∗∗)   
Next, we show that (*) follows from (**). 
By [12], there is a smooth function ܸ(ݖ,  on (ݓ × ,ݖ)ܭ  so that (ݓ  =
,ݖ)ܸ  ଵ.  Thus, if g is analytic on Ω, thenି(ݓ

 g(ݖ) = න ,ݖ)ܸ(ݓ)݃ (ݓ)ݒଵ݀ି(ݓ
 

Ω
 

߲݃
∂z୧

(ݖ)  = − න ,ݖ)ܸ(ݓ)݃ ଶି(ݓ ߲ܸ
∂z୧

,ݖ) (ݓ)ݒ݀(ݓ
 

Ω
. 

Note that 0)ܭ, (ݓ ≡ ,ݖ)ܭ 0) ≡ 1. Thus,  ܸ(0, (ݓ ≡ 1. Since ܸ(ݖ,  is smooth on (ݓ
 × ܯ , there is a constant , and Ω is bounded in > 0 such that 

ฬ
߲ܸ
∂z୧

(0, ฬ(ݓ ≤  ܯ

for all 1 ≤ ݅ ≤ ݊ and ݓ in Ω. Therefore, we have 

ฬ
߲݃
∂z୧

(0)ฬ ≤ ܯ න (ݓ)ݒ݀|(ݓ)݃|
 

Ω
. 

Replacing g by ݃ − ݃(0) yields      

|∇݃(0)|ଶ  ≤ ଶܯ݊ න (ݓ)݃| − ݃(0)|ଶ݀(ݓ)ݒ
 

Ω
. 

Finally, for ݃ = ݂ ∘ ߮ pawe have      
|∇(݂ ∘ ߮)(0)|ଶ ≤ − (ܽ)ଶฮ݂ܯ݊ ݂ ∘ ߮ฮଶ

ଶ
 

and so         
lim

→డΩ
|∇(݂ ∘ ߮)(0)| =   0 

Since         
ଶߙ = ݂݅݊

‖௪‖ୀଵ
,ݓܩ〉 〈ݓ > 0 

[ܶ݅݉ଵ] it follows from the definition of ࣫(ݖ) that  
  ࣫∘ఝೌ(0) ≤ ݂)∇|ଵିߙ ∘ ߮)(0)|  
and so         
  ࣫(ܽ) = ࣫(߮(0))  = ࣫∘ఝೌ(0)  
tends to 0 as ܽ → ߲Ω. This completes the proof.   
          We conclude with a remark about the extension of Theorem (1.1.1) and some 
open problems. 
Conjecture: Theorem (1.1.1) holds for Ω any strictly pseudoconvex domain. 
Of course, a different method of proof will be needed because of the sparsity of 
analytic automorphisms. 
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Section (1.2): Analytic Toeplitz Operators Associated with Spherical Isometries               
For m denote the linear Lebesgue measure on the unit circle ߲॰. A classical theorem 
of  Davidson from 1977 (Theorem 1 in [26]) asserts that an operator S on the Hardy 
space ܪଶ(݉)  commutes modulo compact operators with all analytic Toeplitz 
operators if and only if S is a compact perturbation of a Toeplitz operator ९ with 
symbol ݂ ∈ (݉)ஶܪ + (॰߲)ܥ , where ܪஶ(݉)  refers to the space of all bounded 
holomorphic functions on ॰ regarded as a subspace of ܮஶ(݉) by passing to non-
tangential boundary values. 
           [24] by Ding and Sun from 1997 an analogue of this result is obtained for the 
Hardy space on the open Euclidean unit ball ९ ⊂ ℂ. If ߪ denotes the normalized 
surface measure on ߲९ , then by Theorem 2 in [24], an operator ܵ ∈  (( ߪ)ଶܪ)ܤ
essentially commutes with all analytic Toeplitz operators if and only if ܵ = ९ +  ,ܭ
where K is compact and ݂ ∈  has the property that the associated Hankel ( ߪ)ஶܮ
operator ܪ =  ܲுమ(ఙ)఼ ܯ |ܪଶ(ߪ)  is compact. For ݊ > 1 , this class of symbols 
strictly contains the space ܪஶ(ߪ) +  while equality holds in the ,([27] ݁݁ݏ) (९߲)ܥ
case ݊ = 1. 
          We establish variants of the cited results for Toeplitz operators associated with 
spherical isometries or, more general, with A-isometries. Recall that a spherical 
isometry on a complex Hilbert space H is a commuting tuple ܶ ∈   satisfying(ܪ)ܤ

 ܶ ∗ ܶ



ୀଵ

= 1ு . 

Given a spherical isometry T, there is an abstract theory of T -Toeplitz operators ܺ ∈
(ܪ)ܤ  defined by Prunaru [25] as the solutions of the operator equation 
∑ ܶ ∗ ܺ ܶ


ୀଵ = ܺ. From this point of view, the result of  Ding and Sun cited above 

describes the essential commutant of the dual algebra 
்ࣛℂ[ ଵܶ, . . . , ܶ]തതതതതതതതതതതതതത௪∗ ⊂  (ܪ)ܤ

generated by the special spherical isometry ܶ = ( ଵܶ, . . . , ܶ) ∈   consisting of(ܪ)ܤ
the multiplication operators  ܶ = ऊܯ  with the coordinate functions on the Hardy 
space ܪ =  Formulated in the setting of general spherical isometries, the main .(ߪ) ଶܪ
result is the following (cf. Theorem (1.2.24)): 
          If ܶ ∈ (ܪ)ܤ  is an essentially normal spherical isometry with empty point 
spectrum, then every operator ܵ ∈  in the essential commutant of ்ࣛ has the ( ܪ)ܤ
form ܵ = ܺ +  . with a T-Toeplitz operator X and a compact operator K on H ܭ
          As an application we deduce concrete analogues of the above-mentioned results 
of  Davidson and Ding–Sun for multiplication tuples on Hardy-type function spaces. 
To be more specific, let ߤ denote a regular Borel probability measure on ߲९ with the 
property that all one-point sets have ߤ-measure zero. Then the multiplication tuple 

ऊܶ = ൫ܯऊభ  , . . . , ऊܯ  ൯ ∈   on the associated Hardy space((ߤ)ଶܪ)ܤ
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(ߤ)ଶܪ =  ℂ[ऊଵ, . . . , ऊ]തതതതതതതതതതതതതത‖∙‖మ,ఓ  ⊂  (ߤ)ଶܮ 
is a spherical isometry whose ऊܶ-Toeplitz operators are precisely the compressions 

ܶ =  ܲுమ(ఓ)ܯ ∖  (ߤ)ଶܪ
of multiplication operators ܯ: ܮଶ(ߤ) → ݂ with symbols (ߤ)ଶܮ ∈  The analytic .(ߤ)ஶܮ
Toeplitz operators are those with a symbol belonging to the space 

(ߤ)ஶܪ =  ℂ[ऊଵ, . . . , ऊ]തതതതതതതതതതതതതത௪∗ ⊂  .(ߤ)ஶܮ 
We show the following form (see Corollary (1.2.25)): 
If ऊܶ ∈   is essentially normal, then an operator essentially commutes with((ߤ)ଶܪ)ܤ
all analytic Toeplitz operators if and only if it has the form ܵ = ܶ +  with a compact ܭ
operator K and a symbol ݂ ∈ ܪ for which the associated Hankel operator (ߤ)ஶܮ =
ܲுమ(ఓ)఼ܯ ∖  .is compact (ߤ)ଶܪ
          We actually prove stronger versions of the above results for so-called regular 
A-isometries. The precise definition will be given. Let us just mention at the moment 
that this class is general enough to cover multiplication tuples with the coordinate 
functions on strictly pseudo-convex domains. For example, we obtain the following 
exact analogue of the above-mentioned theorem of Ding and Sun in the strictly 
pseudoconvex situation. 
          If ߪ denotes the normalized surface measure on the boundary ߲ܦ of a strictly 
pseudoconvex domain ܦ ⊂ ℂ  with C2-boundary, then an operator S in ܤ(ܪଶ(ߪ)) 
essentially commutes with all analytic Toeplitz operators on ܪଶ(ߪ) if and only if it 
has the form ܵ = ܶ + ݂ with a compact operator K and a symbol ܭ ∈  for ( ߪ)ஶܮ
which the associated Hankel operator ܪ is compact. 
          We extend Prunaru’s theory [26] on the existence of short exact Toeplitz 
sequences from the case of spherical isometries to the class of A-isometries and refine 
his results in the essentially normal case. To illustrate this for a spherical isometry ܶ ∈
, let us write ࣮(ܪ)ܤ  (ܶ) = )∗ܥ  ܶ ∶  ݂ ∈  for the C*-algebra generated by ((९߲)ܥ 
all T-Toeplitz operators with continuous symbols (for the definition of  ܶ ,). Then 
Proposition (1.2.18) says the following: 
          Let ܶ ∈ (ܪ)ܤ  be an essentially normal, non-normal spherical isometry. If 

࣮ (ܶ) is irreducible, then there is a short exact sequence of C*-algebras 
0 ⟶  (ܪ)ࣥ

⊂
→ ࣮(ܶ) 

ఙ
→ ((ܶ)ߪ) ܥ  ⟶  0, 

where ߪ maps the Toeplitz operator ܶ to ݂ |݊ߪ(ܶ) for every ݂ ∈  .(९߲)ܥ
          As the above examples show (see also Theorem 3.5 in [27]), many interesting 
aspects of the theory of Toeplitz operators on classical Hardy spaces can be 
rediscovered of multi-variable subnormal isometries. The role of the surface measure 
in the classical theory will then be played by a scalar spectral measure of the minimal 
normal extension for the underlying subnormal tuple. In general, this measure is far 
from being explicitly known. So one cannot hope to find as detailed results as in the 
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classical case. It seems worth wile to pursue this connection further. An interesting 
question arises from a recent result of Xia (Theorem 1 in [26]) who answered a 
longstanding problem for Toeplitz operators on the unit disc. By the cited theorem, 
the condition that ܶఏഥ  ܺ ఏܶ − ܺ  is compact for every inner function ߠ ∈  (݉)ஶܪ
implies that ܺ ∈ ((݉)ଶܪ)ܤ  is a compact perturbation of a Toeplitz operator. In 
spherical isometries ܶ ∈ (ܪ)ܤ , the T-Toeplitz operators with inner symbols 
naturally correspond to isometries in the dual operator algebra ்ࣛ. So we may ask: 
          If ܶ ∈ (ܪ)ܤ  is an essentially normal spherical isometry with empty point 
spectrum, and ܺ ∈ (ܪ)ܤ  has the property that ܬ ∗ ܬܺ −  ܺ  is compact for every 
isometry ∈ ்ࣛ . Must X then necessarily be a compact perturbation of a T -Toeplitz 
operator? 
          Xia’s proof depends on a special sequence of inner functions (ߠ)ஹ consisting 
of finite Blaschke products, for which a multi-variable substitute is out of sight at the 
moment. So it seems that more sophisticated methods are needed to solve this 
problem. 
          Let H be a separable complex Hilbert space. A commuting tuple ܶ ∈   is(ܪ)ܤ
called a spherical isometry if it satisfies the relation 

 ܶ ∗ ܶ



ୀଵ

= 1ு . 

A result of Athavale [28] from 1990 saying that each spherical isometry is subnormal 
marks the starting point of the structure theory for this class of multi-operators. Since 
our approach to spherical isometries and their generalizations is based on the property 
of subnormality, we briefly recall some central facts about subnormal operator tuples. 
By definition, a subnormal tuple ܶ ∈ ܷ  possesses an extension to a tuple(ܪ)ܤ ∈
(ܪ)ܤ  consisting of commuting normal operators on some Hilbert space ܪ 
containing . If the only reducing subspace for U that contains H is the space ܪ itself, 
then the tuple ܷ ∈    is called a minimal normal extension of T . Given any(ܪ)ܤ
normal extension U of T, one can always obtain a minimal one by restricting U to the 
space ⋁ఈ∈ℕబ

(ܷ∗)ఈܪ. It is well known that any two minimal normal extensions of T 
are unitarily equivalent. In particular, the normal spectrum of T, which is defined by 
(ܶ)ߪ =  for some minimal normal extension U of T, does not depend on the (ܷ)ߪ
choice of U. A result of Putinar [29] guarantees that ߪ(ܶ) is always contained in 
 .(ܶ)ߪ
          Now, fix a subnormal tuple ܶ ∈ (ܪ)ܤ  together with a minimal normal 
extension ܷ ∈ . Then one can choose a separating vector ऊ(ܪ)ܤ ∈  for ܷ , which ܪ
means that the projection-valued spectral measure ܧ(∙) for U and the scalar-valued 
measure ߤ = ,ऊ(∙)ܧ〉 ऊ〉  are mutually absolutely continuous. The measure ߤ obtained 
in this way is a finite regular positive Borel measure supported by ߪ(ܶ) =  ,(ܷ) ߪ
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and will be called a scalar spectral measure for U . From the identity ߤ(ߪ(ܶ)) =
‖ऊ‖ଶ  it follows that ߤ is a probability measure if the underlying separating vector ऊ ∈
 does not ߤ is a unit vector. Since, up to mutual absolute continuity, the measure ܪ
depend on the special choice of U, we may speak of ߤ as a scalar spectral measure 
associated with T. By the spectral theorem for normal tuples, there exists an 
isomorphism of von Neumann algebras 

ߖ ∶ (ߤ)ஶܮ  →  ܹ∗(ܷ ) ⊂  ,(ܪ)ܤ 
mapping the coordinate functions to the corresponding components of U . Defining  

ℛ் = {݂ ∈ ܪ(݂) ߖ :(ߤ)ஶܮ ⊂  {ܪ
one obtains a weak∗ closed subalgebra of ܮஶ(ߤ) called the restriction algebra. The 
induced mapping 

்ߛ ∶ ℛ் → ,(ܪ)ܤ ݂ ⟼  ܪ|(݂) ߖ
is known to be isometric again (see Conway [25]). Thus ்ߛ defines a weak∗ continuous 
isometric algebra homomorphism mapping ऊ  to ܶ  for ݅ = 1, . . . , ݊ . It should be 
mentioned that the restriction algebra ℛ் is independent of the choice of the minimal 
normal extension U and the concrete spectral measure ߤ. 
          From these general considerations about subnormal tuples we now return to the 
special case of a spherical isometry ܶ ∈ (ܪ)ܤ . According to Athavale [29], T is 
subnormal and the spectral inclusion ߪ(ܶ) ⊂  ߲९  holds. An obvious density 
argument for the polynomials implies that the restriction algebra always contains the 
ball algebra ܣ(९) = {݂ ∈ {९ is holomorphic| ݂ :(९ഥ)ܥ . The rich function-
theoretic structure of ܣ(९) and suitable weak* closures then leads to interesting 
structure theorems for spherical isometries such as the reflexivity [29] of the dual 
operator algebra generated by T or factorization properties of type ८ଵ and ८ଵ,ℵ (see 
[25]). Replacing ܣ(९) by an arbitrary function algebra A containing the polynomials 
one obtains the following very general notion of an isometric operator tuple 
introduced by [26]. 
Definition(1.2.1)[23]: Let ܭ ⊂ ℂ  be a compact set and let ܣ ⊂  be a closed (ܭ)ܥ
subalgebra containing the restrictions of the polynomials ܥ[ऊ] in n complex variables 
ऊ = (ऊଵ, . . . , ऊ). A subnormal tuple ܶ ∈  (ܶ) isߪ  is called an A-isometry if(ܪ)ܤ
contained in the Shilov boundary ߲ of A and ⊂ ℛ் . 
          By definition the Shilov boundary ߲ ⊂  is the smallest closed set such that ܭ
‖݂‖ஶ, = ‖݂‖ஶ,డಲ  holds for every ݂ ∈ ܣ . Since the Shilov boundary of ܣ(९) 
coincides with the topological boundary ߲९, the remarks preceding the definition 
show that spherical isometries are precisely the ܣ(९)-isometries. 
          Other natural examples of A-isometries can be found of generalized Hardy 
spaces. Fix a compact set ܭ ⊂ ℂ , a closed subalgebra ܣ ⊂ (ܭ)ܥ  containing the 
polynomials ℂ[ऊ]|ܭ and a positive measure ߤ ∈ )ାܯ ߲). The multiplication tuple 
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ऊܯ = ऊభܯ) , . . . , (ऊܯ ∈ ((ߤ)ଶܮ)ܤ   is normal with scalar spectral measure ߤ  and 
Taylor spectrum ߪ(ܯऊ) = (ߤ)ݑݏ ⊂ ߲. The associated functional calculus is given 
by the map ߖெऊ (ߤ)ஶܮ : → ,((ߤ)ଶܮ)ܤ  ݂ ⟼   . A Stone–Weiertrass argument showsܯ
that the restriction ऊܶ of ܯऊ to the invariant sub-space 

ܪ
ଶ(ߤ) = మ,ഋ‖∙‖ܣ̅ ⊂  (ߤ)ଶܮ

has ܯऊ  as minimal normal extension. Since ܪ
ଶ(ߤ)  is invariant under each 

multiplication operator ܯ with symbol ݂ ∈ it follows that ℛ ,ܣ ऊ் ⊃  Thus .ܣ 
ऊܶ = ऊభܯ)  , . . . , (ऊܯ ∈ ܪ)ܤ

ଶ(ߤ))  
is an A-isometry. Note that the multiplication tuples with the coordinate functions on 
the classical Hardy spaces over strictly pseudoconvex or bounded symmetric domains 
in ℂ. 
Definition(1.2.2)[23]: A multiplication tuple of the form ऊܶ ∈ ܪ)ܤ

ଶ(ߤ)) described 
above will be called a Hardy-space A-isometry. 
Let us now return from these concrete examples to the study of a general A-isometry 
ܶ ∈ (ܪ)ܤ . Fix a minimal normal extension ܷ ∈   and a scalar spectral(ܪ)ܤ
measure ߤ of T. we may consider ߤ as an element of ܯା( ߲) in the sequel. 
Since the restriction algebra is weak∗ closed and contains A, it also contains the dual 
algebra 

ܪ
ஶ(ߤ) = ∗௪ܣ̅  ⊂  .(ߤ)ஶܮ 

If we denote the image of ܪ
ஶ(ߤ) under the canonical map ்ߛ   introduced above by 

ℋ்  = ܪ)்ߛ 
ஶ(ߤ)) ⊂  ,( ܪ)ܤ 

which is a weak⋆ closed subalgebra of B(H) , then we obtain a dual algebra 
isomorphism, that is, a weak∗ homeomorphism and isometric isomorphism 

்ߛ ∶ ܪ
ஶ(ߤ) → ℋ்  , ݂ ↦  ,ܪ|(݂)ߖ

extending the polynomial functional calculus of  T . This map will be referred to as 
the canonical functional calculus for T. Via ்ߛ one can analyze the operator algebra 
ℋ் by studying the function algebra ܪ

ஶ(ߤ). A special role is played by the family 
ఓܫ = ߠ} ∈ ܪ

ஶ(ߤ): |ߠ|  = − ߤ 1   almost everywhere on ߲} , 
whose elements are called μ-inner functions. As in the case of spherical isometries, 
there is a one-to-one correspondence between ܫఓ and the operator family 

்࣮  = ܬ}  ∈ ℋ் ∶  {is isometric ܬ 
A word-by-word repetition of the proof of Lemma 1.1 in [27] yields the following 
result. 
Lemma(1.2.3)[23]: Let ܶ ∈   be an A-isometry with associated scalar spectral(ܪ)ܤ
meassure ߤ  in ܯା( ߲) . Then ்࣮ = ்ߛ (ఓܫ)  , where ்ߛ  is the canonical functional 
calculus of T . 
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In [25], Aleksandrov gives a sufficient condition ensuring ܪ
ஶ(ߤ)  to have a rich 

supply of inner functions. More explicitly, a triple (ܣ, ,ܭ  consisting of a compact (ߤ
set ܭ ⊂ ℂ , a closed subalgebra ܣ ⊂ ( ܭ)ܥ  and a measure ߤ ∈ (ܭ)ାܯ , is called 
regular in the sense of Aleksandrov if the following approximation problem is 
solvable: For every ߮ ∈ (ܭ)ܥ  with ߮ > 0 , there exists a sequence of functions 
(߮݇) in A with |߮  | < ߮ on K and log→ஶ |߮݇ | =  .almost everywhere on K-ߤ  ߮
One of the main results in [24] says that, if the measure ߤ  in a regular triple is 
continuous in the sense that one-point sets have ߤ-measure zero, then the set of all ߤ-
inner functions is rich in the following sense (see Corollary 29 in [25]). 
Theorem (1.2.4)[23]: (Aleksandrov). Let (ܣ, ,ܭ (ߤ be a regular triple with a 
continuous measure μ in ܯା(ܭ). Then the weak∗ sequential closure of the set ܫఓ 
contains all ܮஶ(ߤ)-equivalence classes of functions ݂ ∈ |݂| with ܣ ≤  1 on K . 
          In [30, Proposition 2.4 and Corollary 2.5] it was observed that the following 
weaker version of this density assertion is valid without any continuity assumption on 
the measure. 
Proposition (1.2.5)[23]: For every regular triple (ܣ, ,ܭ  we have ,(ߤ

ܪ
ஶ(ߤ) = ∗തതതത௪ܪܮ  ൫ܫఓ൯ ܽ݊݀  ܮஶ(ߤ)  = ∗തതതത௪ܪܮ  ߟ̅} · ߠ ∶ ,ߟ  ߠ ∈  . {ఓܫ

Now we introduce a regularity criterion for A-isometries which guarantees that the 
above density results hold for the associated scalar spectral measures. 
Definition (1.2.6)[23]: An A-isometry ܶ ∈   is called regular if, for some or(ܪ)ܤ
equivalently every scalar spectral measure ߤ ∈ )ାܯ ߲) associated with T, the triple 
|ܣ) ߲, ߲,  .is regular (ߤ
          In general, the regularity condition is hard to check. Nevertheless there are 
examples of function algebras A for which every A-isometry is regular. For example, 
if ܦ ⊂ ℂ is a relatively compact strictly pseudoconvex open set and 

(ܦ)ܣ  = {݂ ∈  {ℎ݅ܿݎ݈݉ℎ ݏ݅ ܦ| ݂ :(ഥܦ)ܥ
is the generalized ball-algebra, then ߲(ܦ) = ,ܦ߲|(ܦ)ܣ) and the triple ܦ߲ ,ܦ߲  is (ߤ
regular for every measure ߤ ∈  see Aleksandrov [24] or, for a more detailed) (ܦ ߲)ାܯ
explanation, [28]). 
Proposition (1.2.7)[23]: Every (ܦ)ܣ -isometry on a relatively compact strictly 
pseudoconvex open set ܦ ⊂ ℂ (in particular, every spherical isometry) is regular. 
          As another example, take (ܭ)ܥ ܣ. Then ߲ = ,(ܭ)ܥ) and ܭ  ,ܭ  is regular (ߤ
for every measure ߤ ∈ (ܭ)ାܯ . Now, a look at Definition (1.2.1) shows that the 
regular C(K )-isometries are precisely the normal tuples ܶ ∈ (ܪ)ܤ  with Taylor 
spectrum contained in K . 
          The regularity of an A-isometry ܶ ∈ (ܪ)ܤ  has immediate and far-reaching 
consequences for the structure of the dual operator algebras associated with T and its 
minimal normal extension U . For later reference, we collect some of them in the 
following proposition. Recall from Lemma (1.2.3) that the family of all isometries 
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in ℋ் is ்࣮  = ்ߛ (ఓܫ) ⊂ ܷ Considering the normal tuple .( ܪ)ܤ ∈   also as an(ܪ)ܤ
A-isometry, the corresponding set of all isometries contained in  ℋ  is ࣮ =
 Having in mind that the point spectrum .( ܪ)ܤ(ఓܫ)ߖ

(ܶ) ߪ = ߞ  ∈ ℂ : ሩ ߞ)ݎ݁݇ − ܶ  ) ≠  ∅


ୀଵ

 

coincides with the set ∆ఓ = ߞ}  ∈ ߲: ({ ߞ})ߤ > 0}  of all one-point atoms of one 
(equivalently any) scalar spectral measure ߤ (cf. the remarks following Proposition 
3.1 in [24] for the case of spherical isometries), the following approximation results 
are immediate consequences of Lemma (1.2.3), Theorem (1.2.4) and Proposition 
(1.2.5). 
Proposition (1.2.8)[23]: Let ܶ ∈ (ܪ)ܤ   be a regular A-isometry with minimal 
normal extension ܷ ∈  :. Then the following assertions hold(ܪ)ܤ
(a) The families of isometries ்࣮   and ࣮ defined above satisfy 

 ℋ் = ∗തതതത௪ܪܮ  (்࣮  )  ܽ݊݀   ܹ∗(ܷ )  = ଵܬ})∗തതതത௪ܪܮ 
,ଵܬ :ଶܬ∗ ଶܬ ∈ ࣮}). 

(b) If T has empty point spectrum, then the dual operator algebra ℋ் contains a 
weak∗ zero sequence of isometries ܬ = ்ߛ  ߠ with (ߠ) ∈ ݇ ఓ forܫ  ≥ 1. 
It seems that a profound theory of  Toeplitz operators for A-isometries can only be 
established under the assumption that the associated families of isometries ்࣮   and ࣮ 
are sufficiently rich (in the sense of part (a) above). This is the reason why we mostly 
consider regular A-isometries from now on.      
          Recall that Toeplitz operators associated with a spherical isometry ܶ ∈  (ܪ)ܤ
have been introduced by Prunaru in [29] as the solutions ܺ ∈  of the operator ( ܪ)ܤ
equation ∑ ܶ

∗ܺ ܶ = ܺ
ୀଵ . This relation is modelled after the classical Brown–Halmos 

condition characterizing Hardy-space Toeplitz operators on the unit disc [30]. A 
recent result of the authors (Proposition 3.1 in [31]) shows that the following definition 
for general A-isometries is consistent with Prunaru’s definition for spherical 
isometries. 
Definition (1.2.9)[23]: Let ܶ ∈ (ܪ)ܤ  be an A-isometry. Then an operator ܺ ∈
 is called a T - Toeplitz operator if ( ܪ)ܤ

ܬܺ∗ܬ = ܬ ݕݎݐ݁݉ݏ݅ ݕݎ݁ݒ݁ ݎ݂     ܺ  ∈ ℋ் . 
We write ࣮(ܶ) for the set of all T -Toeplitz operators on H . 
To give an alternative characterization of T -Toeplitz operators, fix a minimal normal 
extension  ܷ ∈ ,(ܪ)ܤ  and write (ܷ)ᇱ for the commutant of ܷ in(ܪ)ܤ ுܲ ∈  (ܪ)ܤ
for the orthogonal projection onto H . Then every operator ܺ ∈   of the form ( ܪ)ܤ
  ܺ = ுܲݐ݅ݓ       ܪ|ܣℎ ܣ ∈ (ܷ)ᇱ  
belongs to ࣮(ܶ). Indeed, if ܬ = ்ߛ is an isometry in ℋ் (ߠ)  and ℎ, ݇  are arbitrary 
elements of H , then the fact that ߠ ∈ ܪ

ஶ (ߤ)  is inner immediately implies 
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that ,ℎ ܬܺ∗ܬ〉  ݇〉 = ,ℎ(ߠ)ߖܣ〉 〈݇(ߠ)ߖ = ,ℎܣ〉 〈݇(ଶ|ߠ|)ߖ = ,ℎܣ〉 ݇〉 = 〈ܺℎ, ݇〉  . In 
particular, for every function ݂ ∈ we obtain an element ܶ ,(ߤ)ஶܮ ∈ ࣮(ܶ) by setting 

ܶ =  ுܲ ߖ (݂)|ܪ ∈  ,(ܪ)ܤ
called the T -Toeplitz operator with symbol f . The corresponding Hankel operator 
with symbol f is defined to be 

ܪ = (1 − ுܲ)ߖ (݂ )|ܪ ∈ ,ܪ ܤ  . ୄܪ
In case of a regular A-isometry the different types of Toeplitz operators considered 
above are related as follows. 
Proposition (1.2.10)[23]: Given a regular A-isometry ܶ ∈ (ܪ)ܤ  with minimal 
normal extension ܷ ∈      :, the following assertions hold(ܪ)ܤ
(a)  The T -Toeplitz operators possess the representation  ࣮(ܶ) = ுܲ(ܷ)ᇱ|ܪ.  
 (b)  If ܹ ∗(ܷ) is a maximal abelian W ∗-algebra, then ࣮(ܶ ) = { ఝܶ: ߮ ∈  .{(ߤ)ஶܮ
Proof. Note that the T -Toeplitz operators in the sense of Definition (1.2.9) are just 
the operators ܺ ∈  that are T -Toeplitz with respect to the commuting family of (ܪ)ܤ
isometries ((ߠ)்ߛ)ఏ∈ூഋ  in the sense of Prunaru (Definition 1.1 in [28]). The 
representation 

ܹ ∗(ܷ) = ଵܬ})∗തതതത௪ܪܮ
,ଵܬ :ଶܬ∗ ଶܬ ∈ ࣮}) 

obtained in Proposition (1.2.8) shows that the commutant of the family 
ఏ∈ூഋ(( ߠ)ߖ)  coincides with (ܹ ∗(ܷ ))ᇱ =  (ܷ)ᇱ . But then the minimality of ܷ as a 
normal extension of T implies that (ߖ(ߠ ))ఏ∈ூഋ   is the minimal normal extension of 
the commuting family ((ߠ)்ߛ)ఏ∈ூഋ   of isometries. Using Theorem 1.2 in Prunaru [32] 
for commuting families of isometries, we obtain that 

࣮(ܶ) = ுܲ (ߖ(ߠ))ఏ∈ூഋ
ᇱ

 
= ܪ| ுܲ(ܷ)ᇱ|ܪ. 

To prove part (b), observe that if ܹ ∗(ܷ ) is a maximal abelian W ∗-algebra, then 
ܹ ∗(ܷ ) = (ܹ ∗(ܷ))ᇱ =  (ܷ)ᇱ  by Proposition 4.62 in Douglas [32]. Therefore  
࣮(ܶ ) = ுܲ(ܷ)ᇱ|ܪ = ுܲ ߖ(ܮஶ(ߤ))|ܪ , as desired. 
Corollary (1.2.11)[23]: For every regular Hardy-space A-isometry ܶ = ऊܶ ∈
ܪ)ܤ

ଶ(ߤ)) associated with a probability measure ߤ ∈ ଵܯ
ା( ߲), we obtain the identity 

࣮(ܶ) = ቄܺ ∈ ܪቀ ܤ
ଶ(ߤ)ቁ: ܶఏഥܺ ఏܶ = ߠ ݕݎ݁ݒ݁ ݎ݂ ܺ ∈ ఓቅܫ = ఝܶ: ߮ ∈  . (ߤ)ஶܮ

Proof. Remember that the minimal normal extension of T is ܷ = ऊܯ  ∈  .((ߤ)ଶܮ)ܤ 
Propo-sition 4.50 in Douglas [34] says that ܹ∗(ܷ) = ߮ :ఝܯ}  ∈ {(ߤ)ஶܮ  ⊂  ((ߤ)ଶܮ)ܤ
is a maximal abelian W ∗-algebra. Hence the assertion follows from Lemma (1.2.3) 
and part (b) of the above proposition. 
          Let us add a simple lemma with two elementary properties of Toeplitz operators 
that will often be used without a comment throughout. For abbreviation, we say that 



29 
 

a map ߁ ∶ (ߤ)ஶܮ →  is pointwise boundedly SOT-continuous if, for every (ܪ)ܤ
bounded sequence ( ݂)ஹ ଵ in ܮஶ(ߤ) converging pointwise μ-almost everywhere to 
some ݂ ∈ ߤ)ஶܮ ) (at the level of representatives), we have ߁ (݂ ) = ܱܵܶ −
lim
→ஶ

)߁ ݂) . 
Lemma (1.2.12)[23]: Let ܶ ∈ (ܪ)ܤ  be an A-isometry with minimal normal 
extension ܷ ∈   :.Then the following assertions hold(ܪ)ܤ
(a)  For ܻ ∈   ൯, the mapsܪ൫ܤ
߁ ∶ (ߤ)ஶܮ → , (ܪ)ܤ ݂ ↦ ுܲ(ߖ(݂)ܻ)|ܪ , (ߤ)ஶܮ :∗߁ ݀݊ܽ → ,(ܪ)ܤ ( ݂)∗߁ =  ∗(݂) ߁
are pointwise boundedly SOT-continuous. 
(b)  Given ܻ ∈ (ܷ)ᇱ , ݂ ∈ ,݃ and (ߤ)ஶܮ ℎ ∈ ܪ

ஶ(ߤ), we have 
ுܲ(ߖ(݂݃̅ ℎ)ܻ)|ܪ =  ܶത ( ுܲ(ߖ(݂)ܻ)|ܪ) ܶ  

and in particular ܶത  =  ܶത  ܶ ܶ. 
Proof. Fix an arbitrary vector ݔ ∈ ݕ and set ܪ =  Then the desired continuity . ݔܻ
property for Γ follows from the dominated convergence theorem and the estimate 

ଶ‖ݔ(݂)߁‖ ≤ ଶ‖ݕ(݂) ߖ‖ = න |݂|ଶ݀ 〈ݕ(·)ܧ, 〈ݕ
 

డಲ

      (݂ ∈  . ((ߤ)ஶܮ 

An analogous argument applies to ‖ݔ∗(݂)߁‖ଶ ≤ ‖ܻ∗‖ଶ ‖ߖ (݂)ݔ‖ଶ. This proves 
part (a). In order to verify part (b), note that, for ݔ, ∋ ݕ  the scalar product , ܪ 
〈 ுܲ ߖ(݂݃̅ ℎ)ܻ ݔ,  can be rewritten as  〈ݕ

,ݔ(ℎ)ߖ ܻ(݂)ߖ∗(݃)ߖ〉 〈 ݕ = ,ݔ(݂)ܻ ܶߖ〉  ܶ ݕ〉 =  〈 ܶത  ுܲ ߖ(݂)ܻ  ܶݔ,  ,〈ݕ
as desired. 
          By applying the main result of the of Prunaru (Theorem 1.2 in [30]) to the 
setting explained in the proof of Proposition (1.2.10), we obtain the following version 
of Prunaru’s result for -Toeplitz operators associated with regular A-isometries. 
Proposition (1.2.13)[23]: (Prunaru). For a regular A-isometry ܶ ∈ (ܪ)ܤ  with 
minimal normal extension ܷ ∈    :, the following assertions hold(ܪ)ܤ
a) The compression map : (ܷ)ᇱ → ,(ܪ)ܤ ܻ ↦ ுܻܲ|ܪ , is a complete isometry with 
range (ߩ)݊ܽݎ = ࣮(ܶ).      
b) There is a surjective unital *-representation ߨ: (( ܶ)࣮)∗ܥ → (ܷ)ᇱ ⊂
((ܻ) ߩ)ߨ satisfying the identity (ܪ)ܤ = ܻ ݕݎ݁ݒ݁ ݎ݂ ܻ ∈ (ܷ)ᇱ .  
c) There exists a completely positive and unital projection ߔ: (ܪ)ܤ  →  onto (ܪ)ܤ 
(ߔ)݊ܽݎ = ࣮(ܶ) such that ߔ(ܺ) = ுܲ ܪ|(ܺ)ߨ holds for every ܺ ∈  .((ܶ)࣮)∗ܥ
d) The kernels ݇݁((( ܶ)࣮)∗ܥ|ߔ)ݎ and ݇݁(ߨ)ݎ are equal and coincide with the two-
sided closed ideal in ܥ∗(࣮(ܶ )) generated by all operators of the form ܻܺ −  ( ܻܺ)ߔ 
with X, Y in ࣮(ܶ ). 
          Let ߤ ∈ )ାܯ ߲)  be a scalar spectral measure associated with a regular A-
isometry T in (ܪ)ܤ. For ݂ ∈  , let us denote by ℛ(݂) the essential range of f ,(ߤ)ஶܮ
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that is, the set of all ݓ ∈ ℂ such that ߤ({ऊ ∈ ߲: |݂(ऊ) − |ݓ  < ߳}) > 0 for every ߳ >
0. It follows from part (a) of Theorem (1.2.4) that 

ฮ ܶฮ = ‖(݂)ߖ‖ =   ‖݂‖ಮ(ఓ)   
for every ݂ ∈  and it is well known (see e.g. Satz 3.3.5 in [32]) that this property ,(ߤ)ஶܮ
is equivalent to the condition that the spectral inclusion 

ℛ(݂) ⊂ ) ߪ ܶ) 
holds for every function ݂ ∈  If the point spectrum of T is empty, then exactly .(ߤ)ஶܮ
as in the proof  of  Proposition 3.3 from [35] it follows that the norm and essential 
norm of every T -Toeplitz operator coincide. 
Corollary (1.2.14)[23]: Let ܶ ∈ ߤ  be a regular A-isometry and let(ܪ)ܤ ∈ )ାܯ ߲) 
be a scalar spectral measure associated with T . 
a) For every ݂ ∈ we have  ฮ ,(ߤ)ஶܮ ܶฮ = ‖݂‖ಮ(ఓ) and  ℛ(݂) ⊂ ) ߪ ܶ). 
b) If T has empty point spectrum, then for every T -Toeplitz operator ܺ ∈  the ,( ܪ)ܤ
equality ‖ܺ‖ = ݂݅݊{  ‖ܺ − ‖ܭ ∶ ܭ ∈  .holds {( ܪ)ߢ
As another immediate consequence , we obtain the existence of a generalized Toeplitz 
sequence which, in some sense, justifies the definition of Toeplitz operators via the 
condition ܬܺ∗ܬ = ܺ for every ܬ ∈ ॎ் . 
Corollary (1.2.15)[23]: For every regular A-isometry T ∈ B(H )n, there is a short 
exact sequence 

0 ⟶ (ܶ)ܥܵ   
⊂
→ ൫࣮(ܶ )൯∗ܥ 

గ
→ (ܷ)ᇱ ⟶ 0, 

where ܵܥ(ܶ) stands for the two-sided closed ideal in ܥ∗൫࣮(ܶ )൯ generated by all 
operators of the form ܻܺ − ,ܺ ℎݐ݅ݓ ( ܻܺ)ߔ  ܻ ∈ ࣮(ܶ). 
Restricting the map ߨ from the full Toeplitz C∗ -algebra ܥ∗൫࣮(ܶ)൯ to the C∗-algebra 

࣮ (ܶ) = ൫൛∗ܥ  ܶ: ݂ ∈ )ܥ ߲)ൟ൯ ⊂  ( ܪ)ܤ
generated by all Toeplitz operators with continuous symbols, we obtain the next result. 
Let ܵܥ(ܶ) ⊂ ࣮(ܶ) be the closed two-sided ideal generated by all semi-commutators 

ܶ ܶ −  ܶ with ݂, ݃ ∈ )ܥ ߲), and let ܥ(ܶ) ⊂  ࣮(ܶ) be the closed two-sided ideal 
generated by all com-mutators ܶ ܶ − ܶ ܶ with ݂, ݃ ∈ )ܥ ߲). It is elementary to see 
that ܥ(ܶ) ⊂  .(ܶ)ܥ ܵ 
Corollary(1.2.16)[23]: For every regular A-isometry ܶ ∈ (ܪ)ܤ , there is a short 
exact sequence 

0 ⟶ (ܶ)ܥ ܵ = ( ܶ)ܥ
⊂
→ ࣮(ܶ) 

ఙ
→ ( (ܶ)ߪ) ܥ   ⟶  0 

with a ∗-homomorphism ߪ satisfying ߪ ( ܶ)  = ݂ (ܶ) for everyߪ|݂  ∈ )ܥ ߲). 
Proof. With the notations from Proposition (1.2.13), we have ߩ (ߖ (݂)) =
 ுܲߖ(݂)|ܪ = ܶ   for ݂ ∈ )ܥ ߲).  Hence by part (b) of Proposition (1.2.13), the 
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restriction of the map ߨ ∶ ((ܶ)࣮)∗ܥ → (ܷ)ᇱ ݐ ࣮(ܶ) yields a surjective C∗-algebra 
homomorphism ߨ: ࣮(ܶ) → )ߨ ℎݐ݅ݓ (ܷ)∗ܥ ܶ) = ݂ (݂) for allߖ ∈ )ܥ ߲). We want 
to determine the kernel of ߨ , which is a closed two-sided ideal in ࣮(ܶ). First observe 
that part (c) of Proposition (1.2.13) yields the identity 

)ߔ ܶభ  · · ·  ܶೖ  ) = ܲுഏ( ܶభ  · · ·  ܶೖ ܪ|( = ܲுഏ ( ܶభ)  · · · )ߨ  ܶೖ)|ܪ
= ுܲߖ( ଵ݂  · · ·  ݂ )|ܪ = ܶభ···ೖ  , 

valid for all ݇ ≥ 1 and all ଵ݂,· · ·, ݂ ∈ )ܥ ߲). 
          Let us denote by ࣮(ܶ) ⊂  the C ∗ -subalgebra generated by all operators ( ܪ)ܤ

ܶ  with ݂ ∈ ܣ . Then ࣮(ܶ)  is the closed linear span of all finite products ܺ =
 ܶభ … ܶೖ  such that ݂ or ݂̅ belongs to A for all i. Set ܶ =  ܶ for all i. Since ⊂ ℛ் , 
we obtain that 

(ܺ)ߔ  = ܶభ···ೖ = ෑ ܶ

 

∈ூ

ෑ ܶ

 

 ∈

∈ ࣮(ܶ), 

where ܬ  is the set of all indices ݆ ∈ {1, . . . , ݇} with ݂ ∈ ܣ  and ܫ consists of the 
remaining indices. Hence ࣮(ܶ) is invariant under ߔ. If 1 ∈  then , ܫ

ܺ − (ܺ)ߔ  =  ଵܶ ( ଶܶ · · · ܶ  − )ߔ  ଶܶ · · ·  ܶ)) 
and if 1 ∈  then , ܬ

ܺ − (ܺ)ߔ  = ଵܶ( ଶܶ · · · ܶ)  − )ߔ  ଶܶ · · ·  ܶ) ଵܶ
= ଵܶ ( ଶܶ · · · ܶ − )ߔ  ଶܶ · · ·  ܶ))  +  ଵܶߔ( ଶܶ · · · ܶ)  − )ߔ  ଶܶ · · 
· ܶ) ଵܶ. 

Hence by induction on ݇ we find that ܺ − (ܺ)ߔ  ∈  ܺ (ܶ) for every finite productܥ
as above.  
          For ݂, ݃ ∈ )ܥ ߲)  with ܶ, ܶ ∈ ࣮(ܶ ) , we obtain that ܶ = )ߔ ܶ ܶ) ∈
 ࣮(ܶ ) . By Stone –Weierstrass, ܶ ∈ ࣮࣮ (ܶ )  for all ݂ ∈ )ܥ ߲)  and therefore 

࣮(ܶ ) = ࣮ (ܶ). Hence ߔ෨ = |ߔ ࣮(ܶ) is a continuous linear map withߔ෩ଶ =  ෩. By partߔ
(d) of Proposition (1.2.13),         

1)݊ܽݎ − (෩ߔ = (෩ߔ)ݎ݁݇ = (ߔ)ݎ݁݇ ∩  ࣮(ܶ) = ( ߨ)ݎ݁݇ ∩ ࣮(ܶ) =  ( ߨ)ݎ݁݇
By the above inductive argument, it follows that ݇݁ݎ(ߨ) = 1)݊ܽݎ − (෩ߔ ⊂   ((ܶ)ܥ
          On the other hand, for all ݂, ݃ ∈ )ܥ ߲),          

ܶ ܶ − ܶ = ܶ ܶ − )ߔ ܶ ܶ) ∈ (ߨ)ݎ݁݇ = ran(1 −  .(෩ߔ
Hence ܥ(ܶ) = (ܶ)ܥܵ =  To complete the proof, we define the symbol map .(ߨ)ݎ݁݇ 
ߪ as the composition ߪ = ߁  ߨ ∘
          In the classical theory of Hardy space Toeplitz tuples on the unit ball or, more 
general, on strictly pseudoconvex domains in ܥ  (see [24]), the first space in the 
above short exact sequence coincides with the ideal ࣥ(ܪ) ⊂  of all compact (ܪ)ܤ
operators on H. While this fails to be true for arbitrary A-isometries, it holds under 
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some natural additional assumptions on T including essential normality. Recall that a 
commuting tuple ܶ ∈   is said to be essentially normal if its self-commutators(ܪ)ܤ
are compact, that is, if 

[ ܶ , ܶ
∗] = ܶ ܶ

∗ − ܶ
∗

ܶ ∈ = ݅)        (ܪ)ࣥ 1, . . . , ݊). 
In other words, the images ߨ( ܶ) of the components of T under the canonical map 

ߨ ∶ (ܪ)ܤ  → (ܪ)ܥ = ܺ         ,(ܪ)ࣥ/(ܪ)ܤ  ↦ ܺ +  (ܪ)ࣥ
into the Calkin-algebra form a commuting tuple ߨ(ܶ ) = )ߨ) ଵܶ), . . . , )ߨ ܶ))  of 
normal elements in (ܪ)ܥ. Some useful characterizations of essentially normal A-
isometries are collected in the following lemma. 
Lemma (1.2.17)[23]: For an A-isometry ܶ ∈ (ܪ)ܤ , the following assertions are 
equivalent: 
(a) The tuple T is essentially normal. 
(b) All Hankel operators ܪ with continuous symbol ݂ ∈ )ܥ ߲) are compact. 
(c) For every ݂ ∈ )ܥ ߲) and every ܻ ∈  the semi-commutators ,( ܪ)ܤ

( ுܻܲ|ܪ) ܶ  − ுܲ(ܻߖ(݂))|ܪ   ܽ݊݀     ܶ( ுܻܲ|ܪ) − ுܲ(ߖ(݂)ܻ|ܪ) 
are compact. 
(d) The semi-commutators ܶ ܶ − ܶ  are compact whenever ݂ ∈ )ܥ ߲)  and ݃ ∈
,݂ or, equivalently, whenever) (ߤ)ஶܮ ݃ ∈ )ܥ ߲)). 
Proof. It is well known that a subnormal tuple ܶ ∈ (ܪ)ܤ  with minimal normal 
extension ܷ ∈    is essentially normal if and only if(ܪ)ܤ

[ ܷ  , ுܲ ]  ∈ ݅)     (ܪ)ࣥ  = 1, . . . , ݊), 
or equivalently, if ߨ( ுܲ) ∈ (ܪ)ܥ  belongs to the commutant of the C∗-algebra 
generated by the commuting normal elements ߨ( ܷ) (݅ = 1, . . . , ݊). In the setting of 
the lemma, this immediately implies the compactness of all commutators [ߖ(݂), ுܲ] 
with ݂ ∈ )ܥ ߲), and thus of all Hankel operators 

ܪ  = (1 −  ுܲ) ߖ(݂ ) ுܲ|ܪ = (1 −  ுܲ)[ߖ(݂ ) ுܲ] |ܪ    (݂ ∈ )ܥ ߲)) . 
This settles the implication (ܽ) ⇒  (ܾ). Now, fix arbitrary elements ܻ ∈  and (ܪ)ܤ
݂ ∈ )ܥ ߲).  
A look at the algebraic identities               

( ுܻܲ |ܪ) ܶ − ுܲ(ܻ ߖ (݂))|ܪ = ுܻܲ  ( ுܲ ߖ(݂)  − ܪ|((݂)ߖ 
= ுܻܲ ( ுܲ − = ܪ|(݂)ߖ(1   − ுܻܲ ܪ 

and ܶ( ுܻܲ |ܪ ) − ுܲ(ߖ(݂ )ܻ )|ܪ =  (( ுܻܲ∗|ܪ )ܶ̅ − ுܲ(ܻ∗ߖ(݂̅ ))|ܪ ))∗  
shows that (b) implies (c). Setting ܻ = ݃ (݃) withߖ  ∈  in the last part, we (ߤ)ஶܮ 
obtain (d) as special case. Using the decomposition 

ܶ , ܶ 
∗ =  ऊܶ  ऊ̅ܶ −  ऊ̅ܶ ऊܶ =  ( ऊܶ ऊ̅ܶ −  ऊܶऊ̅)  +  ( ऊ̅ܶऊ − ऊ̅ܶ ऊܶ)   (݅ = 1, . . . , ݊) 

we get back to condition (a), as desired. 
          Part (d) of the preceding lemma can be used to calculate the commutator ideal 
of the Toeplitz algebra ࣮(ܶ), that is, the closed two-sided ideal of ࣮(ܶ) generated 
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by all commutators [ܣ, [ܤ = ܤܣ − ܣܤ  of operators ܣ, ܤ ∈  ࣮(ܶ ) . Recall that a 
subset ܵ ⊂  is called irreducible if there is no non-zero proper closed subspace ( ܪ)ܤ
ܯ ⊂  which is reducing for H . It is well known that the classical Toeplitz tuples ऊܶ ܪ
on the Hardy space ܪଶ(ߪ) with respect to the surface measure of the unit sphere or 
the boundary of a strictly pseudoconvex domain in ℂ  are essentially normal and 
generate an irreducible Toeplitz algebra ࣮( ऊܶ) (see Upmeier [24]). 
Proposition (1.2.18)[23]: Let ܶ ∈ (ܪ)ܤ  be an essentially normal, non-normal 
regular A-isometry. If the Toeplitz C∗-algebra ࣮(ܶ)  is irreducible, then the 

commutator ideal of  ࣮(ܶ)  is ࣥ(ܪ), and there is a short exact sequence of C∗-
algebras 

0 ⟶ ( ܪ)ࣥ   
⊂
→  ࣮(ܶ )

ఙ
→ (( ܶ)ߪ) ܥ ⟶ 0, 

where the symbol homomorphism ߪ satisfies σ ( ܶ) = ݂ (ܶ ) for everyߪ| ݂ ∈ )ܥ ߲). 
Proof. Let ࣝ ⊂ ࣮(ܶ ) denote the commutator ideal. By the assumption on T not to be 
normal, and part (d) of the previous lemma, we conclude that 

0 ≠ ࣝ ⊂  ࣭ࣝ(ܶ) ⊂  .(ܪ)ࣥ
In particular, it follows that ࣮(ܶ ) ∩ (ܪ)ࣥ  ≠ 0 . Hence ࣮(ܶ)  ⊃ ( ܪ)ࣥ  by the 
assumed irre-ducibility (Theorem 5.39 in [12]). So both ࣝ and ࣭ࣝ(ܶ ) are non-zero 
closed ideals of ࣥ(ܪ). Since ࣥ(ܪ) is known to contain no proper closed ideals, we 
conclude that ܥ = ࣭ࣝ(ܶ) =  Hence the asserted short exact sequence is just .(ܪ)ࣥ
the one established in Corollary (1.2.16). 
          The essential commutant of an arbitrary subset ℱ ⊂   is defined as (ܪ)ܤ

(ℱ)݉ܥݏݏܧ  = ܥ} ∈ ܻܥ :(ܪ)ܤ − ܥܻ  ∈ ܻ ݈݈ܽ ݎ݂ ( ܪ)ࣥ ∈ ℱ } . 
In other words, an operator C belongs to ݉ܥݏݏܧ(ℱ) if and only if its image (ܥ)ߨ in 
the Calkin algebra belongs to the commutant (( ܨ)ߨ)ᇱ . Obviously, ݉ܥݏݏܧ(ℱ) is 
always a norm-closed subalgebra of (ܪ)ܤ. This is devoted to a detailed study of the 
essential commutant of the dual algebra ℋ்  associated with a regular essentially 
normal A-isometry. The following two simple observations show how the assumption 
on T to be essentially normal influences the structure of ݉ܥݏݏܧ(ܶ). 
Lemma (1.2.19)[23]: If  ܶ ∈   is an essentially normal regular A-isometry, then(ܪ)ܤ
we have ݉ܥݏݏܧ(ܶ) = )݉ܥݏݏܧ ࣮(ܶ)), and this is a C∗ -algebra. 
Proof. To prove the non-trivial inclusion, fix an element ܴ ∈ (ܶ)݉ܥݏݏܧ . 
)ߨ com-mutes with the commuting normal elements (ܴ)ߨ ݁ܿ݊݅ܵ ܶ) (݅ =  1, . . . , ݊), it 
commutes with ((ܶ)ߨ)∗ܥ. By Lemma (1.2.17) the map ܥ( ߲)  → ,(ܪ)ܥ  ݂ ↦ )ߨ ܶ), 
is a C∗-algebra homomorphism. The theorem of Stone–Weierstrass implies that 
)ߨ ܶ) ∈ ((ܶ)ߨ)∗ܥ  for all ݂ ∈ )ܥ ߲)  and hence that ߨ( ࣮(ܶ )) ⊂ ((ܶ)ߨ)∗ܥ . 
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Therefore ܴ ∈ )݉ܥݏݏܧ ࣮(ܶ)) .Since ࣮(ܶ)) ⊂ (ܪ)ܤ   is a self-adjoint subset, its 
essential commutant is a C∗ -algebra. 
          For an arbitrary element ݂ ∈  to be the ( ݂)ݑݏ we define the support ,(ߤ)ஶܮ
support of the measure ߤ induced by f via the formula ߤ(߱) = ∫  ߤ݀ |݂|

ఠ   for every 
Borel subset ߱ ⊂ ߲ . By definition, sݑ(݂) ⊂ ߲  is closed and ݑݏ(݂)  is the 
largest open set ܩ ⊂ ߲  with the property that ݂ =  .almost everywhere on G-ߤ 0
Moreover, if ݃ ∈ )ܥ ߲) is a function with ݃ = 1 on ݑݏ(݂), then (1 − ݃) · ݂ =
0 and ݂݃ =  .almost everywhere on ߲-ߤ ݂
Lemma (1.2.20)[23]:  Suppose that ܶ ∈   is an essentially normal A-isometry(ܪ)ܤ
and that ܴ ∈ ,Then, for every choice of operators ଵܻ .(ܶ)݉ܥݏݏܧ  ଶܻ ∈ (ܷ)ᇱ  and 
every pair of elements ଵ݂, ଶ݂ ∈  with disjoint supports, we have (ߤ)ஶܮ

( ுܲ(ߖ( ଵ݂) ଵܻ)|ܪ) ܴ ( ுܲ (ߖ( ଶ݂) ଶܻ)|ܪ) ∈  .( ܪ)ࣥ
Proof. Let us abbreviate the factors on both sides of ܴ by ଵܺ = ுܲ(ߖ( ଵ݂) ଵܻ)|ܪ and 
ܺଶ = ுܲ (ߖ( ଶ݂) ଶܻ)|ܪ . By Urysohn’s lemma, we can choose a continuous function 
ℎ ∶ ߲ →  [0, 1] with ℎ = 1 on ݑݏ( ଵ݂) and ℎ = 0 on ݑݏ( ଶ݂). With this choice of 
ℎ, an application of Lemma (1.2.17)(c) guarantees that 

)ߨ ଵܺ ) = )ߨ  ଵܺ ܶ)     ܽ݊݀      ߨ( ܶܺଶ)  =  0. 
Since ܴ ∈ (ܶ)݉ܥݏݏܧ = )݉ܥݏݏܧ  ࣮(ܶ)) (see Lemma (1.2.19)), we obtain that 

)ߨ ଵܴܺܺଶ)  = )ߨ  ଵܺ ܴܶܺଶ)  = )ߨ  ଵܴܺ ܶܺଶ)  =  0, 
as desired. 
          As most ideas occurring, the previous lemma goes back in its original form to 
Davidson [26]. Our study of  ݉ܥݏݏܧ(ℋ்)  has been inspired by corresponding 
results of Le [28] and Ding and Sun [27] (see also [28] and [29]) who developed 
Davidson’s technique further in the several-variable case. 
          For the remainder, we fix a regular A-isometry ܶ ∈ (ܪ)ܤ  with ߪ (ܶ) = ∅ 
and denote its minimal normal extension by ܷ ∈  .(ܪ)ܤ
Lemma (1.2.21)[23]: For every element ܵ ∈  there are a weak∗ zero ,(ℋ்)݉ܥݏݏܧ
sequence of isometries (ܬ)ஹଵ in ℋ் and an operator ௌܻ ∈ (ܷ)ᇱ such that the limit 

ௌܺ = ∗ݓ −  lim
→ஶ

ܬ
  ܬܵ ∗

exists and satisfies ௌܺ = ுܲ ௌܻ|ܪ . 
Proof. Let ܵ ∈  be given. According to Proposition (1.2.8) there is a (ℋ்)݉ܥݏݏܧ
weak* zero sequence (ܬ)ஹଵ of isometries in ℋ். By passing to a subsequence we 
can achieve that the limit ௌܺ = ∗ݓ −  lim

→ஶ
ܬ

ܬܵ ∗ ∈  exists. For every isometry (ܪ)ܤ
ܸ ∈ ℋ், we obtain that 

ܸ∗
ௌܸܺ = ∗ݓ − lim

→ஶ
ܬ

ܬܸܵ∗ܸ ∗  = ∗ݓ − lim
→ஶ

ܬ
ܬܵ ∗ = ௌܺ . 
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Here we have used that [ܵ, ܸ] ∈ ( ܪ)ࣥ  and that ݓ∗ −  lim
→ஶ

ܬ
ܬܭ ∗ = 0  for every 

compact operator ܭ on ܪ. Thus ௌܺ  is a T-Toeplitz operator. By Proposition (1.2.10) 
there is an operator ௌܻ ∈ (ܷ) with ௌܺ = ுܲ ௌܻ|ܪ . 
          Before we continue, we need an elementary topological lemma ensuring the 
existence of suitable open covers of compact sets ࣫ ⊂ ℂ. Since the real dimension is 
involved, we formulate it for compact sets in ℝ. Given a subset ܨ ⊂ ℝ, we denote 
its diameter with respect to the Euclidean norm by |ܨ| = ݑݏ 

௫,௬∈ி
ݔ| −  . |ݕ

Lemma (1.2.22)[23]:  Let ࣫ ⊂ ℝ be compact and let ߝ > 0 be given. Then there 
exists a finite open cover ࣫ =  ⋃ ܷ∈   consisting of relatively open sets ܷ ⊂ ࣫ with 
| ܷ| < ߝ  and such that the index set ܬ  admits a decomposition ܬ = ଵܬ ∪ · · · ∪ ଶܬ   
with the property that each of the families ( ܷ)∈  (݈ =  1, . . . , 2)  consists of 
pairwise disjoint sets. 
Proof. For the convenience of the reader, we indicate the elementary ideas. Clearly it 
suffices to prove the assertion for every compact rectangle ࣫ ⊂ ℝ. For ݉ = 1, the 
result obviously holds. Suppose that the assertion is true for some ݉ ≥ 1, and let 
࣫ = ࣫ଵ × ࣫ଶ be a compact rectangle with ࣫ଵ ⊂  ℝ, ࣫ଶ ⊂  ℝ. Choose open covers 
( ܷ

ଵ)∈భ   for ࣫ଵ and ( ܷ
ଶ)∈మ   for ࣫ଶ as in the assertion. Let 

ଵܬ = ଵܬ
ଵ ∪ ଶܬ

ଵ     ܽ݊݀     ܬଶ = ଵܬ
ଶ ∪ · · · ∪ ଶܬ 

ଶ  
be the corresponding decompositions of the index sets. Define open sets 

(ܷ,) = ܷ
ଵ × ܷ

ଶ ⊂ ࣫         (݆ ∈ ,ଵܬ ݇ ∈  (ଶܬ

and index sets 
ܬ = ଵܬ × (,)ܬ   ଶ   andܬ = ܬ

ଵ × ܬ 
ଶ         

Then ൫ (ܷ,)൯(,)∈
 is a cover of ࣫ by open sets of diameter | (ܷ,)| ≤  | ܷ| +  | ܷ| <

,ߝ2 ܬ  is the disjoint union of all ܬ(,)  and the families ൫ (ܷ,)൯(,)∈(ೌ,್)
 consist of 

pairwise disjoint sets. 
          Let ܻ ∈ (ܷ)ᇱ and ܵ ∈  be given operators. By Lemma (1.2.12) the (ܶ)݉ܥݏݏܧ
map 

:ܨ (ߤ)ஶܮ → (݂) ܨ    ݕܾ      ( ܪ)ܤ  = ܶܵ − ுܲ (ߖ(݂)ܻ|ܪ). 
is pointwise boundedly SOT-continuous. A straightforward application of Lemma 
(1.2.20) (and Lemma (1.2.19)) yields that, for any pair of functions ݂, ݃ ∈  (ߤ)ஶܮ 
with disjoint supports, each of the products 

,(݃)ܨ(݂)ܨ ,(݃) ܨ∗(݂) ܨ ∗(݃) ܨ(݂) ܨ ∈  (ܪ)ܤ 
is compact. 
          Our main result will follow by applying the following general observation to 
functions of the above type. 
Proposition (1.2.23)[23]: Let ܨ ∶ (ߤ)ஶܮ →  be a linear map such that (ܪ)ܤ
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(P1) F is pointwise boundedly SOT-continuous; 
(P2) ܨ(߯) is not compact for a characteristic function ߯ of some Borel set in ߲; 
(P3) if ݂, ݃ ∈ (ߤ)ஶܮ  have disjoint supports, then each of the products 
,(݃)ܨ(݂)ܨ ,∗(݃)ܨ(݂)ܨ  .is compact (݃)ܨ∗(݂)ܨ
          Then there are a positive real number ߩ > 0  and a sequence ( ݂ )ஹଵ  of 
continuous functions ݂ ∶ ߲ → [0,1] with disjoint supports satisfying ‖ܨ ( ݂)‖ >  ߩ
for all ݇ ≥ 1. 
Proof. Let ߙ = 2/‖((߯)ܨ)ߨ‖  > 0 and define     

ߝ =   {݂ ∈ )ܥ ߲): 0 ≤ ݂ ≤ ‖( ݂߯)ܨ‖  ݀݊ܽ   1  >  {( 2ܰ)/ߙ 
with ߝ = 2ଶ . We obtain a decreasing sequence (ܧ)ஹଵ of closed subsets of ߲ by 
defining each ܧ as the closure of the set 

ራ :(݂)ݑݏ ݂ ∈ |(݂)ݑݏ| ℎݐ݅ݓ  ߝ ≤
1
݇

 
We first prove that ܧ = ⋂ ஹଵܧ    is non-empty. Let us assume the converse. Then  
‖( ݂߯)ܨ‖ ≤ ݂ for every (2ܰ)/ߙ ∈ )ܥ ߲) with 0 ≤ ݂ ≤ 1 and |ݑݏ(݂)| ≤ ଵ


. 

          According to Lemma (1.2.22) we can choose an open cover ߲ = ଵܷ ∪ · · · ∪
 ܷ such that | ܷ| ≤  1/ ݇ (݆ = 1, . . . ,  and such that the set {1, . . . , r} is the disjoint ( ݎ
union of sets ܬଵ, . . . , ேܬ  with the property that each of the families ( ܷ)∈  (݈ =
1, . . . , ܰ ) consists of pairwise disjoint sets. Let (ℎ)ୀଵ,..., be a continuous partition of 
unity relative to the open cover ( ܷ)ୀଵ,..., . In view of the decomposition 

((߯)ܨ) ߨ =
(߯)ܨ)ߨ + (∗(߯)ܨ

2
+ ݅

(߯)ܨ)ߨ − (∗(߯)ܨ 
2݅

, 
we can choose an ߝ ∈  {−1, +1} such that  ܨ)‖ߨ(߯) + ‖(∗(߯)ܨߝ >  Then .ߙ
ܣ  = ൫ℎ߯൯ܨ ߨ + ൫ℎ߯൯ܨߝ

∗
        (݆ =  1, . . . ,  ( ݎ

defines a family (ܣ)ୀଵ,...,   of normal elements in the Calkin algebra such that 
ఔܣఓܣ = 0 whenever ߤ, ݈)ܬ are different indices in one of the sets ߥ = 1, . . . , ܰ). 
A simple spectral radius argument then yields the estimates    

ቯ  ܣ
∈

ቯ ≤ ݔܽ݉
∈

ฮܣฮ ≤ 2 · ݔܽ݉
∈

ฮܨ(ℎ߯ )ฮ ≤ ݈)       ܰ/ߙ = 1, . . . , ܰ) 

which leads to the contradiction            

ߙ < ቯ ܣ



ୀଵ

ቯ ≤  ቯ ܣ
∈

ቯ
ே

ୀଵ

≤  .ߙ 
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Thus we have shown that ܧ = ⋂ ܧ ≠ ∅ஹଵ
. 

          Define ߩ = ( 2ܰ)/ߙ . In the second step we prove the existence of a sequence 
(݃)ஹଵ in ܥ( ߲) with 0 ≤ ݃ ≤ 1 and pairwise disjoint supports such that‖ܨ(݃߯ )‖ >
݇ for all ߩ ≥ 1.  
          To this end, let us fix a point ݖ ∈ ,Suppose that ݃ଵ .ܧ . . . ݃ ∈  are functions with  ܧ
pairwise disjoint supports such that 

݀ = ,ݖ  ݐݏ݅݀  ራ (݃)ݑݏ


ୀଵ

>  0. 

Since ݖ ∈ ݂ there is a function ,ܧ ∈ |(݂)ݑݏ | with ߝ < ݀/3 and ݀݅ݖ)ݐݏ, ((݂)ݑݏ <
݀/3. If ݖ ∉ we define ݃ାଵ ,(݂)ݑݏ = ݂ . Otherwise we choose a sequence of functions 
)ܥ ஹଵ in(ߢ) ߲) with 0 ≤ ߢ ≤ 1, ݖ ∉ ݆ for all (ߢ)ݑݏ ≥ 1 and 

(ऊ)ߢ
 
→ ݖ)     1  ∈ ߲\ {ݖ}) . 

By hypothesis ߪ (ܶ) = ∅ and hence ߤ has no one-point atoms. Therefore (ߢ݂߯)  is a 
bounded sequence in ܮஶ(ߤ)  which converges pointwise ߤ -almost everywhere to the 
function ݂߯. Using condition (P1) we find that  

(݂߯)ܨ  =  ܱܵܶ − lim
→ஶ

 (݂߯ߢ)ܨ

Since ݂ ∈ ߝ  , we can choose a natural number ݆ ≥ 1 with ܨ(ߢ݂߯ ) >  In this .(2ܰ)/ߙ 
case we define ݃ାଵ =  ݂. In both cases we obtain a family (݃)ୀଵ,...,ାଵ of functions inߢ
 .ݖ with pairwise disjoint supports not containing ߝ
Inductively, one finds a sequence (݃)ஹଵ  in ߝ  with pairwise disjoint supports and 
‖(߯݃)ܨ‖ > ݇ for all ߩ ≥ 1. 
A standard application of Lusin’s theorem (Theorem 7.4.3 and Proposition 3.1.2 in [24]) 
shows that there is a sequence of continuous functions ℎ : ߲ →  [0, 1]  such that 

(ℎ)
 
→  almost everywhere. Again using hypothesis (P1) we find that-ߤ ߯

(߯݃)ܨ =  ܱܵܶ −   lim
→ஶ

 ൫݃ℎ൯ܨ

for every ݇ ≥ 1 . Hence, for every ݇ ≥ 1 , there is a natural number ݆  such that 
( ℎ݃) ܨ > The observation that the resulting functions ݂ .ߩ = ݃ℎ have all required 
properties completes the proof. 
Now we are able to prove the main theorem . Recall that, by Proposition (1.2.7), every 
spherical isometry is a regular ܣ(९)-isometry. 
Theorem(1.2.24)[23]: Let ܶ ∈   be an essentially normal regular A-isometry with(ܪ)ܤ
(ܶ)ߪ = ∅, and let ܵ ∈  be an operator that essentially commutes with ℋ் . Then (ܪ)ܤ
there are a T -Toeplitz operator ܺ ∈ ܭ and a compact operator (ܪ)ܤ ∈  with (ܪ)ࣥ

ܵ = ܺ +  .ܭ
Proof. According to Lemma (1.2.21) there is a sequence (ܬ)ஹଵ of isometries in ℋ் in 
such that the limit 

ௌܺ = ∗ݓ − lim
→ஶ

ܬ
ܬܵ∗  

defines a T -Toeplitz operator. By Proposition (1.2.10) there is an operator ௌܻ ∈  (ܷ)ᇱ with 
ௌܺ = ுܲ ௌܻ|ܪ  . By Lemma (1.2.3) we can choose a sequence (ߠ)ஹଵ  of bounded 

measurable functions ߠ ∶ ߲ → ℂ  with |ߠ| = 1  on ߲  such that ߠ  , or better its 
equivalence class in ܮஶ(ߤ), belongs to ܪ

ஶ(ߤ) and satisfies ܬ = ்ߛ  ݅ for every ( ݅ߠ)  ≥ 1. 
As seen before, the continuous mapping ܮ :ܨஶ(ߤ) →  defined by (ܪ)ܤ 



38 
 

(݂)ܨ = ܶܵ −  ுܲ (ߖ(݂) ௌܻ)|ܪ 
satisfies the hypotheses (P1) and (P3) of Proposition (1.2.23). To complete the proof it 
suffices to show that F (1) is a compact operator. We even show that 

(ߤ)ஶܮܨ ⊂  .( ܪ)ࣥ
we assume that the inclusion does not hold. Since every bounded measurable function can 
be approximated uniformly by finite linear combinations of characteristic functions of 
Borel sets, there is a characteristic function ߯ of some Borel set in ߲ such that ܨ(߯) is not 
compact. As an application of Proposition (1.2.23) we find that there are a real number 
ߩ > 0  and a sequence ( ݂)ஹଵ  of continuous functions ݂ ∶ ߲ →  [0, 1]  with pairwise 
disjoint supports ܣ = )ݑݏ ݂) and  ‖ܨ( ݂)‖ > ݇ for all ߩ ≥ 1.   
Let us fix an index ݇ ≥ 1. Choose a real number ݐ with 0 < ݐ < 4ି and ݐ · ‖(1)ܨ‖ <
߶ Then the function .2/ߩ = ݂ + ݐ ∈ )ܥ ߲) is strictly positive on ߲  and satisfies the 
estimates  

 ‖߮‖ஶ,డಲ  ≤  2,           ‖߮‖ஶ,డಲ\ < 4ି       , ‖(߮)ܨ‖ >     .2/ߩ
Since ( ߲| ܣ, ߲, is regular, there is a sequence (߮)ஹଵ (ߤ  in A with |߮| < ඥ߮  on ߲ 

and |߮|
 
→ ඥ߮ ߤ-almost everywhere on ߲. Property (P1) implies that  

(߮)ܨ       =  ܱܵܶ −  lim
→ஶ

   . |ଶ߮|ܨ

Choose a natural number ݆ with ฮܨ(|߮|ଶ)ฮ > 2/ߩ  and set  ݃ = ߮ .Then  ݃ ∈  ܣ
satisfies the estimates ‖݃‖ஶ,డಲ ≤ 2  and  ‖݃‖ஶ,డಲ\ೖ  <  2ି . The identity 

|ଶ݃|ܨ =  ܶത ܵ −  ுܲ (ߖ(݃̅݇݃݇) ௌܻ)|ܪ = ܶത ܶ ܵ − ுܲ(ߖ(݃݇ ) ௌܻ)|ܪ
= ܶതܨ(݃݇) 

implies that  ‖ܨ(݃݇)‖ >  The observation that .4/ߩ
∗ݓ lim

→ஶ
ܬ

∗( ܶܬܵ − ܵ ܶ (ܬ = ∗ݓ − lim
→ஶ

൫ ܶܵ − ܬ
ܬܵ∗ ܶ൯ = ܶ  ܵ − ( ுܲ ௌܻ|ܪ )்ೖ

= ܶ  ܵ −  ுܲ(ߖ(݃݇ ) ௌܻ)|ܪ =  (݇݃)ܨ
allows us to choose a natural number ݅ such that 

ฮ ܶ ܵܬ −  ܵ ܶ ฮܬ >  .4/ߩ 
The functions ℎ =  ߠ  , where for every given ݇ ≥ 1  the index ݅  is chosen as 
explained above, satisfy the estimates 

‖ℎ‖ஶ,డ  ≤ 2  ܽ݊݀     ‖ℎ‖ஶ,డಲ\ೖ < 2ି. 
Furthermore by construction the functions ℎ , or better their equivalence classes in 
(ߤ)ஶܮ ,belong to ܪ

ஶ(ߤ)  and the commutators ܤ = [ ܶೖ , ܵ] ∈ (ܪ)ܤ  are compact 
operators with ܤ ≥  .4/ߩ
By passing to a subsequence, we can achieve that the limit 

ܿ = lim
→ஶ

‖ܤ‖ ∈ ,4/ߩ] ∞) 
exists. Since the sequence (ℎ)ஹଵ is uniformly bounded on ߲ and converges to zero 
pointwise on ߲, it follows that both sequences (ܤ)ஹଵ and (ܤ

∗)ஹଵ converge to zero in 
the strong op-erator topology (see Lemma (1.2.12)). A result proved by Muhly and Xia 
in [29, Lemma 2.1] shows that, by passing to a subsequence again, we can achieve that 
the series 

ܤ =  ܤ

ஶ

ୀ
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converges in the strong operator topology and satisfies ‖(ܤ)ߨ‖ = ܿ ≥  Since every .4/ߩ
point ऊ ∈ ߲ belongs to at most one of the sets ܣ , the partial sums of the series ∑ ℎ

ஶ
ୀ are 

uniformly bounded on ߲ and converge pointwise to a function ℎ ∶ ߲ → ℂ Clearly, (the 
equivalence class of). h belongs to ܪ

ஶ(ߤ) and the identities   

ܶ =  ܶℎ

ஶ

ୀଵ

          ܽ݊݀  [ ܶ, ܵ] = [ܶℎ , ܵ]
ஶ

ୀଵ

=  ܤ 

hold in the strong operator topology. But then ܶ ∈ ℋ்  would be an operator with non-
compact commutator [ܵ, ܶ]. This contradicts the hypothesis and thus completes the 
proof. 
Corollary (1.2.25)[23]: Let ܶ ∈   be an essentially normal regular A-isometry with(ܪ)ܤ
(ܶ) ߪ = ∅. Denote by ܷ ∈ (ܪ)ܤ  the minimal normal extension of T. Suppose that 
ܹ∗(ܷ) ⊂ ܵ is a maximal abelian von Neumann algebra. Then a given operator (ܪ)ܤ ∈
essentially commuteswith ℋ் (ܪ)ܤ   if and only if S has the form ܵ = ܶ + ܭ  with a 
compact operator ܭ ∈ (ܪ)ࣥ  and a symbol ݂ ∈ (ߤ)ஶܮ  having the property that the 
associated Hankel operator ܪ is compact. 
Proof. Suppose that ܵ ∈  essentially commutes with ℋ். Fix a weak∗ zero sequence (ܪ)ܤ

of isometries (ܬ)ஹଵ in ℋ் such that the weak∗ limit 
ܺ = ∗ݓ  − lim

→ஶ
ܬ

ܬܵ ∗ ∈   (ܪ)ܤ
defines a T -Toeplitz operator (see Lemma (1.2.21)). By Proposition (1.2.10) (b) there is 
a function ݂ ∈ = such that (ߤ)ஶܮ ுܲ ߖ(݂)|ܪ = ܶ. The proof of the preceding theorem 
shows that the image of the map 
ܨ   ∶ (ߤ)ஶܮ → (ℎ)ܨ         ,(ܪ)ܤ = ܶܵ − ுܲ ߖ(ℎ)|ܪ  
is contained in ࣥ(ܪ). In particular, the operator ܭ = (1)ܨ = ܵ − ܶ  is compact.
 Because of 

(݂̅)ܨ = − ܵߖ  ܶ||మ = ܶ̅ ܶ − ܶ||మ + ܶ̅ܭ
= ுܲߖ(݂̅) ுܲߖ(݂)|ܪ − ுܲߖ (݂̅)ߖ(݂)|ܪ + ܭߖ
= − ுܲߖ (݂̅)ܲு఼ ߰ (݂)|ܪ + ܶ̅ܭ = ܪ−

ܪ∗ + ܶ̅ ܭ 
we find that ܪ

 . is compactܪ  and hence alsoܪ∗
Conversely, suppose that ݂ ∈ ܪ is a function such that (ߤ)ஶܮ  is compact. Then, for 
every ݃ ∈ ܪ

ஶ(ߤ), it follows that 
ܶ ܶ =  ுܲ ߖ(݂)ߖ(݃)|ܪ = ுܲ ߖ(݃) ுܲ ߖ(݂)|ܪ + ுܲ ߖ(݃)ܪ

= ܶ ܶ +  ுܲ ߖ(݃)ܪ. 
Thus ܶ essentially commutes with ℋ். 
The preceding corollary in particular applies to each essentially normal regular Hardy-
space A-isometry ܶ =  ऊܶ ∈ ܪ)ܤ

ଶ(ߤ)) (Definition (1.2.2)) with empty point spectrum. 
To give a concrete example, let ܦ ⊂ ℂ be a relatively compact strictly pseudoconvex 
open set with ܥଶ-boundary ߲ܦ. The normalized surface measure ߪ on the boundary ߲ܦ 
has no one-point atoms. The associated Toeplitz tuple ऊܶ =  ( ऊܶభ , . . . , ऊܶ) ∈
()ܪ)ܤ

ଶ ((ߪ)  is a regular Hardy-space (ܦ)ܣ-isometry. The space ܪ()
ଶ  coincides (ߪ)

with the classical Hardy space ܪଶ(σ ) ⊂ Lଶ(σ) on the boundary ߲ ܦ (see Section 7 in 
[28]). To identify ܪ()

ஶ (σ)  we use the map ܪ :ݎஶ(ܦ) → ,(ߪ)ஶܮ ݂ ↦ ݂∗ , associating 
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with each function ݂ ∈  its non-tangential boundary value ݂∗ (see Theorem 8.4.1 (ܦ)ஶܪ
in [27]). Fix ݂ ∈ ݂ Since .(ܦ)ܦ ∈ there exists a function ሚ݂ ,(ܦ)ଶܪ ∈ Lଶ(ߪ) such that 

݂(ऊ) = ൫࣪ ሚ݂൯(ऊ) = න ܲ(ऊ, (ݓ ሚ݂(ݓ)݀(ݓ)ߪ
 

డ
   (ऊ ∈  ,(ܦ

where ܲ denotes the Poisson kernel of ܦ (Theorem 8.3.6 in [27]). In the proof of Theorem 
8.4.1 in [27] it is shown that ݎ(݂) = ሚ݂.Hence ሚ݂ ∈ andฮ (ߪ)ஶܮ ሚ݂ฮஶ,ఙ

= ‖݂‖ஶ,. Thus the 
map ݎ: (ܦ)ஶܪ →  Since .(ߪ)ஶܪ is isometric. As usual we denote its range by (ߪ)ஶܮ
((݂)ݎ)࣪ = ݂ for every ݂ ∈ ࣪ is the Poisson transformation ݎ the inverse of ,(ܦ)ஶܪ ∶
(ߪ)ஶܪ →  .(ܦ)ஶܪ
          Standard arguments show that ܪஶ(ߪ) ⊂ ( ߪ)ஶܮ  is weak∗ closed. We briefly 
indicate a possible proof. Let ( ݂) be a sequence in the closed unit ball of ܪஶ(ܦ) such 
that ݃ = ∗ݓ − lim


)ݎ ݂)  exists in ܮஶ(ߪ) . By Krein–Smulian’s theorem and the 

separability of ܮଵ(ߪ) it suffices to show that ݃ ∈  By Montel’s theorem we may .(ߪ)ஶܪ
suppose that ( ݂) converges to some function ݂ ∈  uniformly on every compact (ܦ)ஶܪ
subset of ܦ. Since ݎ(݂) and ݃ are functions in ܮஶ(ߪ) such that 

࣪൫ݎ (݂)൯(ऊ) = ݂(ऊ) = lim
 ݂(ऊ) = lim


න ܲ(ऊ, ݎ)(ݓ ݂)(ݓ)݀(ݓ)ߪ

 

డ

= ࣪(݃)(ऊ) 

for all ऊ ∈ ݃ it follows that ,ܦ  =  .(cf. the proof of Theorem 8.4.1 in [17]) (݂) ݎ
 As an application one obtains the weak∗ continuity of the map ݎ ∶ (ܦ)ஶܪ →  .(ߪ)ஶܪ 
Since ܪஶ(ܦ) = ᇱ((ܦ)ஶܪୄ /(ܦ)ଵܮ)  has a separable predual, it suffices to show that 
)ݎ) ݂)) is a weak∗ zero sequence in L∞(σ ) for each weak∗ zero sequence ( ݂) in ܪஶ(ܦ). 
But this follows from the observation that 

〈[ܲ(ऊ,·)] , ) ݎ ݂)〉 = න ܲ(ऊ, )ݎ(ݓ ݂)(ݓ) ݀(ݓ) ߪ
 

డ

= ݂(ऊ)

→  0 

for all ऊ ∈ ܦ   and the fact that the predual ܮଵ(ߪ )/ ୄܪஶ(ߪ ) of ܪஶ(ߪ ) is the closed 
linear span of all equivalence classes [ܲ(ऊ,·)] (ऊ ∈  .(ܦ
Since ܪஶ(ߪ ) ⊂ ( ߪ)ஶܮ  is weak∗  closed, the inclusion ()ܪ 

ஶ (ߪ)  = ∗തതതതതതതതതതതതതത௪(ܦ߲|(ܦ)ܣ) ⊂
൯(ܦ)ஶܪ൫ݎ = (ߪ)ஶܪ holds. The reverse inclusion (ߪ)ஶܪ ⊂ ()ܪ

ஶ  follows from the (ߪ)

weak∗ continuity of ݎ and the fact that there is an open neighbourhood ܷ of ܦഥ in ℂ such 

that ࣩ(ܷ)|ܦ is sequentially weak∗ dense in ܪஶ(ܦ) (Proposition 2.1.6 in [28]). 
          Since ߛ ऊ் (݂) = (ߪ)ଶܪ|(݂)ߖ = ܶ for  ݂ ∈ (ߪ)ஶܪ , the dual algebra  ℋ ऊ்  
coincides with the set of all analytic Toeplitz operators, that is, Toeplitz operators ఝܶ with 
symbol ߮  in ܪஶ(ߪ) . By Theorem 4.2.17 in Upmeier [24] the tuple ऊܶ  is essentially 
normal. So the last corollary applies to this case and yields a description of the essential 
commutant of the set of all analytic Toeplitz operators, which extends Theorem 2 of Ding 
and Sun [29]. 
Corollary (1.2.26)[23]: Let ߪ be the normalized surface measure on the boundary ߲ܦ of 
a strictly pseudoconvex domain ܦ ⊂ ℂ  with C2-boundary. Then an operator ܵ ∈
 if and only (ߪ)ଶܪ essentially commutes with all analytic Toeplitz operators on ((ߪ)ଶܪ)ܤ
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if it has the form ܵ = ܶ + ݂ and a symbol ܭ with a compact operator ܭ ∈  for ,(ߪ)ஶܮ
which the associated Hankel operator Hf is compact. 
          Since in the setting of Corollary (1.2.26) there are no non-zero compact Toeplitz 
operators, it follows that a Toeplitz operator ܶ  with symbol ݂ ∈ (ߪ)ஶܮ  essentially 
commutes with all analytic Toeplitz operators if and only if ܪ  is compact. A more 
concrete description of this class of operators for the case of the unit ball can be found in 
[25]. 
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Chapter 2 
The Commutant and Multiplication Operators 

          We show results about nilpotent operators. One corollary of result is that if ݔ(ऊ) =
ऊ , ݊ ≥ 1 , then ൛ థܶൟ

ᇱ
= { ௫ܶ}ᇱ⋂ { ிܶ}ᇱ,  another is that if  ߶ ∈ ஶܪ  is univalent 

then ൛ థܶൟ
ᇱ

= { ऊܶ}ᇱ. We are also able to show that if the inner factor of  f ߶ is ݔ(ऊ) =
ऊ , ݊ ≥ 1, then  ൛ థܶൟ

ᇱ
= { ऊܶೞ}ᇱ where ݏ is a positive integer maximal with respect to the 

property that  ऊ  and ܨ(ऊ)   are both functions of  ऊ௦ . We conclude by raising six 
questions. We completely classify reducing subspaces of the multiplication operator by a 
Blaschke product ߶ with order three on the Bergman space to solve a conjecture of Zhu. 
Section (2.1): Analytic Toeplitz Operators   
          For  ܪଶ denote the Hilbert space of functions ݂ analytic in the open unit disc D for 
which the functions ݂(ߠ) = ଶ-norm for rܮ are uniformly bounded in (ఏ݁ݎ)݂ < 1, and 
let Hஶ denote the linear manifold of bounded functions in ܪଶ. For ߶ ∈ ,ஶܪ థܶ(ݎ) థܶ(ऊ) 
is the analytic Toeplitz operator on Hଶ defined by the relation ( థ݂ܶ)(ऊ) = ߶(ऊ)݂(ऊ). 
These operators have received a great deal of attention recently and many of their 
properties are well known ([54], [55]). The operator ऊܶ is often called the unilateral shift 
and is the canonical example of a completely nonunitary isometry of defect one. Every 
analytic Toeplitz operator commutes with T,  in fact, every operator that commutes with 

ऊܶ  is an analytic Toeplitz operator. We study the commutant of an arbitrary analytic 
Toeplitz operator. We obtain some partial results characterizing the commutant of an 
analytic Toeplitz operator as well as some partial results characterizing those analytic 
functions whose associated Toeplitz operators have commutant equal to that of T. The 
main result stated in terms of pure isometries, the rest contain numerous results on the 
commutant of analytic Toeplitz operators.     
 It is well known that if  ݂ ∈ ∗݂ ଶ then there is a functionܪ ∈  such that (ࢀ)ଶܮ
.converges almost everywhere  to  ݂∗(݁ఏ) (ఏ݁ݎ)݂ ߯ ∈  ஶ is said  to be an inner functionܪ
if ห߯∗(݁ఏ)ห = 1 almost everywhere (or equivalently, if ௫ܶ is an isometry). Every inner 
function ߯  has a factorization ߯(ܼ) =  ݁ఊ(ݖ)ܵ(ݖ)ܤ  with ห݁ఊห = 1  where (ݖ)ܤ  is a 
Blaschke product of the form 

(ݖ)ܤ = ݖ ෑ
|ߙ|
ߙ

ߙ − ऊ
1 − ऊߙ

ஶ

୩ୀଵ

 , 0 < |ߙ| < 1, 

And ܵ(ݖ)  is a singular inner function of the form 

ܵ(ऊ) = −ቊ ݔ݁ න
݁௧ + ऊ
݁௧ − ऊ

ଶగ


 ቋ(ݐ)ߤ݀

with ߤ a singular measure. ܨ ∈   ஶ is said to be an outer function if  F  is of  the formܪ

(ऊ)ܨ  = ቊ ݔ݁
1

ߨ2 න
݁௧ +  ऊ
݁௧ −  ऊ

ଶగ


 ቋ(ݐ)݀(ݐ)݇

where ݇ is a real-valued integrable function (or equivalently,if  T  has dense range). 
Every nonconstant function  ߶ ∈ ஶܪ  has a unique factorization of the form ߶(ऊ) =
߯(ऊ)ܨ(ऊ) where ߯ ∈ ஶ  is an inner function and Fܪ ∈ Hஶ is an outer function ([56]). 
Results show that this factorization plays a key role in determining the commutant of Tம. 
Although we are primarily interested in analytic Toeplitzoperators it will be convenient 
to state some of our results more generally. An isometry Von a Hilbert space ℋ is called 
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a pure isometry ([52], [53]) if ⋂ ܸℋஶ
ୀ = {0}. The dimension of the defect space K =

ℋ ⊖ Vℋ  is called the defect or multiplicity of  V , and one easily obtains the 
decomposition ℋ = ∑ ⊕ V୬K

ஶ
୬ୀ . Any two pure isometries of the same multiplicity are 

unitarily equivalent. Thus V  is unitarily equivalent to the unilateral shift ାܷ on  
݈ା

ଶ (ܭ)  = ∑ ⊕ ܭ
ஶ
ୀ  defined by 

ାܷ(ݔை , ,ଵݔ ,ଶݔ . . . ) = (0, ைݔ , ଵݔ , ,ଶݔ … ). 
It is easily verified that the commutant of  Uା consists  of those bounded linear 
operators on ݈ ା

ଶ (K) of the form  ∑ A୬Uା
୬ஶ

୬ୀ  where, for  A a bounded linear operator on  
Kᇲ , A  (the inflation of A) is defined on lା

ଶ (K) by  
A(ݔ, ,ଵݔ ,ଶݔ . . . )  = ,ݔܣ)   ,ଵݔܣ ,ଶݔܣ … ). 

Thus the commutant of a pure isometry can be characterized.  
If ߯ ∈  ஶ is a nonconstant inner function then ௫ܶ is a pure isometry (this follows sinceܪ
no 0 ≠ ݂ ∈   ஶ is infinitely divisible by ߯), which has finite defect if and only if  χ  is aܪ
finite Blaschke product. Hence the commutant of T୶  for χ  an inner function is well 
known, and we attempt to characterize the commutant of an arbitrary analytic Toeplitz 
operator in terms of these objects. For a Hilbert space  ℋ, ℬ(ℋ) will denote the algebra 
of all bounded linear operators on ℋ. If ܣ ∈  ℬ(ℋ) then {A}ᇱ will denote the commutant 
of A, that is, {A}ᇱ = {B ∈ ℬ(ℋ): AB =  BA}. 
Throughout ܭ will denote a Hilbert space, ℋ will denote the Hilbert space ݈ା

ଶ  and ܷା ,(ܭ)
will  denote  the unilateral shift on ℋ. 
Lemma (2.1.1)[50]: Suppose ܵ ∈ ℬ(ℋ) has dense range and commutes with ܷା. If  ܶ ∈
ℬ(ℋ) commutes with  ܷܵା, then  T has a lower triangular operator-valued matrix on ℋ. 
Proof. Since ܶ lower triangular is equivalent to ܶ∗ upper triangular, which in turn, is 
equivalent to the subspaces ܯ୬ = ∑ ⊕ ܭ

୩ୀ  invariant for ܶ∗, it suffices to prove that ܶ∗ 
leaves ܯ୬  invariant. Since ܶ  commutes with ܷܵା, ܶ∗  commutes with ܵ∗ܷା

∗  and hence 
with ܵ∗ାூ ܷା

∗ାூ Thus ܶ∗ leaves invariant the null space of ܵ∗ା୍ ܷା
∗ା୍ . Because ܵ has  

dense range, ܵ∗ା୍is one-to-one, and 
ା୍ ାܷ∗ܵ) ݈݈ݑ݊

∗ା୍) = ାܷ) ݈݈ݑ݊
∗ା୍) =  ୬ܯ

Hence  ܶ is lower triangular.  
The following lemma is essential.    
Lemma (2.1.2)[50]: Let ܰ be a nilpotent operator on  ܭ and let ߯ = ܫߣ + ܰ where  0 ≠
ߣ ∈ ,ܤ If .ܥ ,ܣ ,ଵܣ ,ଶܣ … ∈ ℬ(ܭ)  satisfy  
a. ‖ܣ‖ ≤ ,ܯ ݇ = 0,1,2, …, and             
b. ܣ߯ = ߯ܣିଵ + ,ܤ ݇ = 1,2,3, . . .,  
then  ܣ = ଵܣ =   ଶܣ 
Proof.  By Theorem 1 in [8], K decomposes  into ∑ ⊕̇ ܭ


୧ୀଵ  and ߯   has a lower 

triangular operator-valued  matrix with diagonal elements ܫߣ. We show that ܣ = ଵܣ =
ଶܣ  = ⋯  by showing that they must have the same 

(1, ݊), (1, ݊ − 1), … , (1, 1), (2, ݊), . . ., (2, 1), . . . , (݊, ݊), . . . , (݊, 1) 
operatorentries with respect to  this decomposition. We repeatedly use the obvious fact 
that the lemma is true if  N = 0 . More precisely, if D, C, Cଵ, Cଶ, … ∈ ℬ(Kᇱ, Kᇱᇱ) 
satisfying ‖ܥ‖ ≤ M and ܥߣ = ିூܥߣ + for k ܦ = 1, 2, 3, . .. then  C = Cଵ = Cଶ =
⋯. To see that this is the case  merely observe that  ߣC୩ = ିூܥߣ + ܥߣ implies ܦ =
ܥߣ + ‖ܥ‖ In order that .ܦ݇ ≤ ܦ we must have that ܯ = 0 and hence ܥ = ଵܥ = ଶܥ =
⋯. 
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Now the (1, ݊) entry of (b) is                
ଵ,(ܣ)ߣ = ିଵܣ)ߣ  + = ݇        ,ଵ,(ܤ)  0, 1, 2, …, 

 and so  by the above remark and by the fact  that (a) implies ฮ(ܣ),ฮ ≤ ,݅ for ܯ ݆ =
0, 1, 2, … , ݊ ,   ݇ =  0, 1, 2, … one concludes  that (ܣ)ଵ, = ଵ,(ଵܣ) = ଵ,(ଶܣ) = ⋯ 
.The (1, ݊ − 1)  entry of (b) is   

ଵ,୬ିଵ(A୩)ߣ + (χ)୬,୬ିଵ(A୩)ଵ,୬ = ଵ,୬ିଵ(A୩ିଵ)ߣ  + (B)ଵ,୬ିଵ 
or since (ܣ)ଵ, = ଵ,(ଵܣ)  = ⋯, that           
ଵ,୬ିଵ(A୩)ߣ  = ଵ,୬ିଵ(A୩ିଵ)ߣ + [(B)ଵ,୬ିଵ − (χ)୬,୬ିଵ(ܣ)ଵ,] 
and again we conclude that (ܣ)ଵ,ିଵ = ଵ,ିଵ(ଵܣ)  = ⋯ .  
Now the (݅, ݆) entry of (b) is             

,(ܣ)ߣ + ,ାଵ(ܣ) + (χ)୨ାଵ,୨ + ⋯ + ,(χ),(ܣ)
= ,(ିଵܣ)ߣ  + (χ),ିଵ(ܣିଵ)ିଵ, + ⋯ + (χ),ଵ(ܣିଵ)ଵ, + .ܤ) ).  

Let us now assume that (ܣ), = ,(ଵܣ) = ,(ଶܣ) =. ..  for all   = ݅, ݆ < ݍ ≤
݊ and  1 ≤  < ݅, ݍ = ݆. Then 

,(ܣ)ߣ = ,(ିଵܣ)ߣ + [(χ),ିଵ(ܣ)ିଵ +. . . +(χ),ଵ(ܣ), + ,(ܤ) − ,ାଵ(ܣ)
+ (χ)ାଵ, − . . .  [ ,(χ),(ܣ)  −

and we conclude that  (ܣ), = ,(ଵܣ) = ⋯ . Inductively we obtain that  
,(ܣ) = ,(ଵܣ)  = ⋯ ,݅ ݈݈ܽ ݎ݂    ݆ = 1, 2, . . . , ݊ 

and so   ܣ, ,ଵܣ ,ଶܣ … .      
Corollary (2.1.3)[50]:  If  ܰ is a nilpotent operator on ܭ and χ = ܫߣ + ܰ where 0 ≠
ߣ ∈  then ,

‖߯
߯ܣ

ି‖ ≤ ݊  ݎ݂   ܯ  = 0, 1,2, . . ߯ܣ   ݏ݈݁݅݉݅    . = ߯ܣ. 
If ܭ is finite dimensional, then the converse is also true.    
Proof. Let ܣ = ߯

߯ܣ
ି  for  ݇ = 0, 1, 2, . ..   . Then ߯ܣ  = ߯ܣିଵ and the result 

follows from Lemma (2.1.2) by setting  ܤ = 0. 
In order to see that the converse is true if  ܭis finite dimensional, first observe that if χ 
satisfies the conclusion of the corollary, that is, χ = ܫߣ + ܰ for 0 ≠  ,and ܰ nilpotent ߣ
then so does any operator ܵχܵିଵ similar to χ. 
          Now using Jordan canonical forms it is easy to see that for any invertible operator  
χ  with two or more distinct eigen values there is another operator ܣ  satisfying 
‖߯

߯ܣ
ି‖ ≤ ܯ  but  ߯ܣ ≠ ߯ܣ . For example, if ߤ, ߣ ≠ 0  and if  ߯ = ଵܫߣ) +

ଵܰ) ⨁ (ܫߤଶ + ଶܰ) on [݁
(ଵ)]ୀଵ

భ  ⨁ [݁
(ଶ)]ୀଵ

మ  where  ܰ  ݁
() equals ݁ାଵ

()  if ݊ < ݊  and equals 
0 if  ݊ = ݊  if ܣ  is defined by ܣ ݁

(ଶ) = ୬݁(ߤ/ߣ) 
(ଵ)  and 0 otherwise, then  ߯߯ܣ

ିଵ =
ߣ So that if .ܣ(ߤ/ߣ) ≠ |ߤ| and ߤ ≥ then ‖߯ |ߣ|

߯ܣ
ି‖ ≤ χܣ and |ߤ/ߣ| ≠ χܣ. 

Lemma ((2.1.4)[50]: Suppose ܶ ∈ ℬ(ℋ) has a lower triangular operator valued matrix 
on ℋ. If  T  commutes with ߯ = (∑ ߯̂୬ܷା

ஶ
ୀ )ܷା where ߯ = ܫߣ + ܰ  with  ߯ = ߣ ∈

 .and  ܰ nilpotent, then T commutes with  ܷା 
Proof. We will show that T commutes with ܷା by inductively proving ܶ, = ܶାଵ,ଵ =

ܶାଶ,ଶ = . .. for ݇ = ܱ, 1,2, . ..  Notice that  ฮ ୩ܶା୨,୨ฮ ≤ ‖ܶ‖ for all , ݆ = 0, 1,2,   . .. . 
If 1 ≤  ݆ < ݅ then the (݅, ݆) entry of  ܶ߯ = ߯ܶ is    

ܶ,ାଵ߯ +  ܶ ,ାଶ߯ଵ + ⋯ +  ܶ,߯ିିଵ  = ߯ିିଵ ܶ, +  ߯ି ܶାଵ, +  … +  ߯ ܶିଵ,  (1) 
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If  ݅ = ݆ +  1 we obtain ܶାଵ,ାଵ߯ = ߯ ܶ and Lemma (2.1.2) implies   that  ܶ, =
ଵܶ,ଵ = ଶܶ,ଶ = ⋯ . Let us now assume that ܶ, = ܶାଵ,ଵ = ܶାଶ,ଶ = ⋯  for all ݈ ≤ ݇ . 

Setting ݅ = ݆ + ݇ + 2 in (1) we obtain   
ܶାଵାାଵ,ାଵ߯ = ߯ ܶାଵା, + ൣ߯ଵ ܶ, + ⋯ + ߯ାଵ ܶ, −  ܶ,߯ଵ − ⋯ − ܶ,߯ାଵ൧ 

Applying Lemma (2.1.2) we obtain that ܶାூ,ை =  ܶାଶ,ଵ  = ⋯ and hence by induction 
ܶ, = ܶାଵ,ଵ = . .. for all ݇ = 0,1,2, . ..  Thus ܶcommutes with ܷା. 

Theorem (2.1.5)[50]: Let ܸ be a pure isometry on a Hilbert space ℋ, and ܵ ∈ ℬ(ℋ) 
have dense range and commute with ܸ.  Suppose  there exists a ߣ ∈   such that ܸ 
factors as  a product of pure isometries ଵܸ, ଶܸ, . . . , ܸ and such that ܵ − ܫߣ = ܸ ܵ  for 
each ݅ = 1, 2, . . , ݊,  where each ܸ  commutes with each ܵ . Then {ܸܵ}ᇱ − {ܵ}ᇱ ∩ {ܸ}ᇱ. 
Proof. It clearly suffices to prove the result for ܸ = ܷା on ℋ = ݈ା

ଶ  If ܶ commutes .(ܭ)
with ܵ and ܷା then it obviously commutes with ܷܵା. So assume that ܶ commutes with 
ܷܵା. Lemma (2.1.1) implies that ܶ has a lower triangular operator- valued matrix on ℋ.  
Since ܵ has dense range and commutes with ାܷ, it follows that ߣ ≠ 0 and that  ܵ =
∑ ߯̂୬ܷା

ஶ
୬ୀ . We need only show that ߯ − ܫߣ  is nilpotent for then Lemma (2.1.4) will 

imply that ܶ commutes with ܷା. Since  ܷା is one-to-one and commutes with S, it then 
follows that ܶ also commutes with ܵ.     
We will in fact show that ߯ has a decomposition as described in the proof of Lemma 
(2.1.2). By hypothesis ܷା =  ଵܸ ଶܸ … ܸ and ܵ commutes with each ܸ . Since ߯

∗  is the 
restriction of ܵ∗ to 

ܭ  = ℋ ⊖ ܷାℋ = (ℋ ⊖ ଵܸℋ) ଵܸ(ℋ ⊖ ଶܸℋ) ⊕ … ⊕ ଵܸ ଶܸ … ܸିଵ(ℋ ∋ ܸℋ) 
it follows  that χ

∗  is upper triangular and hence that  ߯  is lower  riangulaL. 
Let (߯)  be the compression of ߯ to ଵܸ ଶܸ … ܸିଵ(ℋ ⊖ ܸℋ) . If  ݂, ݃ ∈ (ℋ ⊖ ܸℋ)  
then, since ܵ = ܫߣ + ܸ ܵ )  we obtain  

ܵ( ଵܸ ଶܸ … ܸିଵ݂) =  ( ଵܸ ଶܸ … ܸିଵ)݂ܵ = ߣ  ଵܸ ଶܸ … ܸିଵ݂ + ଵܸ ଶܸ … ܸିଵ ܸ ܵ ݂. 
But ( ܸ ܵ ଵܸ ଶܸ … ܸିଵ ݂, ଵܸ ଶܸ … ܸିଵ ݃) = 0, hence   (߯) =  .ܫߣ
we reformulate Theorem (2.1.5) in terms of analytic Toeplitz operators and obtain 
numerous consequences. 
Theorem (2.1.6)[50]: Let ߶ ∈ ߶ ஶ andܪ ∈ ܨ߯  be its inner-outer factorization. If for 
some ߣ ∈ , ߯   factors as ߯ = ߯ଵ߯ଶ . . . ߯  with each ߯  an inner function and ܨ −  ߣ
divisible by each ߯,  then ൛ థܶൟ

ᇱ
= ൛ ఞܶൟ

ᇱ
∩ { ிܶ}ᇱ. 

Proof. If ߯ is constant, then the result is obvious since ߶ =  If ߯ is nonconstant, then .ܨ
as remarked earlier ఞܶ is a pure isometry and ிܶ has dense range and commutes with ఞܶ. 
By hypothesis there exist ݃ ∈ (ऊ)ܨ ஶ such thatܪ − ߣ = ߯(ऊ) ݃(ऊ). Hence ிܶ − ܫߣ =

ఞܶ ܶ , and of course ఞܶ  commutes with  ܶ . Thus Theorem (2.1.1) implies ൛ థܶൟ
ᇱ

=
൛ ఞܶൟ

ᇱ
∩ { ிܶ}ᇱ. 

Corollary (2.1.7)[50]: Let  ߶ ∈ ߶ ஶ andܪ ∈  be its inner-outer factorization. If ܨ߯

߯(ऊ) = ऊ  ෑ ቈ
|ߙ|
ߙ

 
ߙ − ऊ

1 − തऊߙ


ஶ

ୀଵ

, 

ߙ ∈ ݊ ,distinct ܦ  ≤ ܰ, and (0)ܨ = for all i, then ൛ܶథൟ (ߙ)ܨ
ᇱ

= ൛ ఞܶൟ
ᇱ

∩ { ிܶ}ᇱ. 
Proof. Factor ߯(ऊ) = ߯ଵ(ऊ)߯ଶ(ऊ) . . . ߯ே(ऊ) where each ߯(ऊ) is a Blaschke product in 
which distinct ߙ  appear at most once. Since (0)ܨ = (ߙ)ܨ  for all i, ܨ − (0)ܨ  is 
divisible by each ߯ and Theorem (2.1.6) implies the conclusion. 
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Corollary (2.1.8)[50]: Let ߶ ∈ ஶܪ  and ߶ ∈  be its inner-outer factorization. If  ܨ߯
߯(ऊ) = ߙ)) − ऊ)/(1 − തऊ))ߙ , ݊ >  0, ߙ ∈ then  ൛ܶథൟ  ࡰ

ᇱ
= ൛ ఞܶൟ

ᇱ
∩ { ிܶ}ᇱ. 

Proof. Obvious by Corollary (2.1.7).                  
  
Proposition (2.1.9)[50]: Suppose ߶ ∈ ஶܪ  is such that ߶ −  has a zero of order (ߙ)߶
݊ > 1  at  ߙ ∈ ߳ and that there exists ࡰ > 0 such  that 

(߶(ऊ) − ऊ)/((ߙ)߶ − (ߙ ≥ ߳ > ∋ ऊ ݈݈ܽ ݎ݂    0 ,ࡰ ऊ ≠  .ߙ
Then the inner factor of ߶ − ߙ)) is (ߙ)߶ − ऊ)/(1 −  .തऊ))ߙ
Proof. The hypotheses imply that (ऊ −  ܽ)/(߶(ऊ) − ((ߙ)߶ ∈  ஶ. Writingܪ

൬
ऊ − ߙ

1 − തऊߙ
൰


=

(ऊ − (ߙ

߶(ऊ) − (ߙ)߶
(߶(ऊ) − ((ߙ)߶ ൬

1
1 − തऊߙ

൰


 

and noting that the inner-outer factorization of any function is unique, one easily 
concludes  that the inner factor of ߶ − is((ऊ (ߙ)߶ − 1)/(ߙ −  .തऊ)) (seep. 51 in[6])ߙ
Corollary (2.1.10)[50]: If ߶ ∈ ߶ ஶ is such thatܪ −  has a simple zero for some (ߙ)߶
ߙ ∈ ࡰ  and |(߶(ऊ) − ऊ)/((ߙ)߶ − |(ߙ ≥ ߳ > 0  for all ऊ ∈ ࡰ , ऊ ≠ ߙ , then  ൛ థܶൟ

ᇱ
=

{ ऊܶ}ᇱ. 
Proof. Proposition (2.1.9) implies the inner factor of ߶ − ߙ) is (ߙ)߶ − ऊ)/(1 −  .(തऊߙ
Since ൛ (ܶఈିऊ)/(ଵିఈഥऊ)ൟ

ᇱ
= { ऊܶ}ᇱ, Corollary (2.1.8) implies  ൛ థܶൟ

ᇱ
= { ऊܶ}ᇱ. 

Corollary (2.1.11)[50]: If ߶ ∈ ஶ is univalent then ൛ܪ థܶൟ
ᇱ

= { ऊܶ}ᇱ.    
Proof. A univalent function satisfies the hypothesis of Corollary(2.1.10) for every ߙ ∈
  .ࡰ
Proposition(2.1.12)[50]: The Fredholm spectrum of an analytic Toeplitz operator థܶ 
isexactly the cluster set ܥథ.  
Proof. Recall that ߣ is not in the Fredholm spectrum of an operator T if and only if ܶ −
ܶ is  Fredholm, that is ߣ − ܶ  has  closed range and the null spaces of ߣ − ܶ) and ߣ −  ∗(ߣ
are both finite dimensional. For convenience we consider ߣ =  0. Note that థܶ − ߣ =
 థܶିఒ is always oneto-one unless ϕ(ऊ) ≡  .ߣ
          Suppose 0 ∉ and write ϕ (ϕ)ܥ = ܨܵܤ  where B is a Blaschke product, S is a 
singular inner function, and F is an outer function. If  S were nonconstant or if B were 
an infinite Blaschke product, then one could easily find ऊ ∈ ,ࡰ |ऊ| → 1, such that 
ܵ(ऊ)ܤ(ऊ) → 0  contradicting 0 ∉ (ϕ)ܥ  since F ∈ Hஶ . Hence ܵ(ऊ) = 1  and B is a 
finite Blaschke product. Since 0 ∉ ϕ(ࡰ)തതതതതതത implies หϕ൫eఏ൯ห = หF൫eఏ൯ห ≥ ߳ >  0 almost 
everywhere, it follows that ିܨଵ ∈ Hஶ  and that ிܶ is invertible. But ܶ  is clearly 
Fredholm, hence ܶథ = ܶ̇ ிܶ is also Fredholm.   
          Conversely suppose that థܶ is Fredholm and write ϕ =  Since థܶ has closed .ܨܵܤ
range, ߶ is bounded below [55, and so ிܶ is invertible. If S were non-constant or if B 
were an infinite Blaschke product then  ݀݅݉(݈݈݊ݑ ܶ

∗ ௌܶ
∗) = +∞ . Since ݈݈݊ݑ (ܶథ

∗ )  =
) ݈݈ݑ݊ ܶ

∗ ௌܶ
∗) we must again have that B is a finite Blaschke product. Thus the inner factor 

B of ߶ is continuous on T with หB൫eఏ൯ห = 1 and so 0 ∉   .(߶)ܥ
 We will  completely characterize the commutant of ܶథ for any function ϕ ∈ Hஶ 
whose inner factor is ऊ, ݊ ≥ 1. Analogous results also hold for any function ϕ ∈ Hஶ 
whose inner factor is ((ߙ − ऊ)/(1 − ,ऊ))ߙ ݊ ≥ 1, ߙ ∈    .ࡰ
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Lemma (2.1.13)[50]: Suppose T commutes with ऊܶ , ݊ > 1, and with ܶ where ݂(ऊ) =
ܽ + ܽଵऊ + ܽଶऊଶ + ⋯  ∈ Hஶ . Let  ≥ 1  be the smallest integer for which ܽ ≠ 0, and 
let  = ݊ݍ + where  0 ݎ ≤ and  0 ݍ ≤ ݎ < ݊. Then T commutes with ܶ where 

݃(ऊ) = (݂(ऊ) − ܽ)/ऊ  = ܽऊ +  … . 
Proof. Since ܶ, commutes with ܷା = ऊܶ we have that ܶ = ∑ መܷାܣ

୩ஶ
୩ୀ   If ݍ = 0 then 

the result follows. So assume ݍ ≥ 1. By the definition of p we have that ܣ = ܽܫ, ଵܣ =
0, … , ିଵܣ = 0. Since T commutes with  ܶ we obtain  

ܶ ൭ መܷାܣ
୩

ஶ

୩ୀ

൱ = ൭ መܷାܣ
୩

ஶ

୩ୀ

൱ ቌ ܶ ݎ ܶ መܷାܣ
୩

ஶ

୩ୀ୯

ቍ = ቌ መܷାܣ
୩

ஶ

୩ୀ୯

ቍ ܶ. 

Hence   

ܶ ൭ መାܣ ାܷ
୩

ஶ

୩ୀ

൱ = ൭ መାܷାܣ
୩

ஶ

୩ୀ

൱ ܶ . 

since T commutes with ܷା, and since ܷା is isometric. But by definition of ݃ we have that  
ܶ = ∑ መାܷାܣ

୩ஶ
୩ୀ  . 

Lemma (2.1.14)[50]: Suppose T commutes with  ऊܶ , ݊ > 1 , and with   ܶ , 
where  ݂(ऊ) = ܽ + ܽऊ +  … +∈ ,ஶܪ ܽ ≠ 0, 1 ≤ ݎ  < ݊. If r divides n then T 
commutes with ऊܶೝ.  
Proof.  Since ܶ commutes with  ܷା = ऊܶ , we have that ܶ = ∑ መܷାܣ

୩ஶ
୩ୀ  Since r 

divides n, say ݊ =   is  unitarily  equivalent toܣ we have that ,ݎݍ

⎝

⎜⎜
⎛

ܽܫ
 
 
 

0

ܻ ܽܫ  

 
ܻ

⋱⋱
ܻ

 
 

ܽܫ⎠

⎟⎟
⎞

 

on ∑  ⨁
ୀଵ , where ܻ = ܽ ܫ  + ܰ on  , ܽ ≠ 0, N nilpotent. Since ܶ commutes with 

 ܷା = ऊܶ we also have that ∑ ܷାܤ
୩ஶ

୩ୀ .   In order that T commute with ܶ it is necessary 
tha ܤ  commute with ܣ .  But one easily checks that since ܻ = ܽ ܫ + ܰ, ܽ ≠ 0, N 
nilpotent  this  implies  that  ܤ  is  lower triangular on ∑  ⨁

ୀଵ , which  in turn implies  
that T is  lower triangular with respect to the decomposition of ܪଶ for  ାܸ = ௭ܶೝ . Notice 
that 

ܶ − ܽ ܫ = ൭ ܷܺା
୩

ஶ

୩ୀ

൱ ାܸ 

and ܺ = ܻ = ܽ ܫ +  ܰ with N a nilpotent  operator. Lemma (2.1.4) now applies and 
we obtain that T commutes with ାܸ = ऊܶೝ .  
Lemma (2.1.15)[50]: Suppose T commutes with ऊܶ , ݊ ≥ 1, and with ܶ where ݂(ऊ) =
ܽ + ܽऊ + ⋯  ∈ ,ஶܪ ܽ ≠ 0  If  = ݊ݍ + ݎ  with  0 ≤ ݍ  and 0 < ݎ < ݊  then T  
commutes with ऊܶೞ where  ݏ =   ݃. ܿ. ݀. (r, n). 
Proof. By Lemma (2.1.13), T commutes with ܶ where  

݃(ऊ) = ܽऊ + ⋯ 
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Now if ݏ =  . then r divides n and Lemma (2.1.14) implies that T commutes with ऊܶೞ ݎ 
Otherwise there exist integers ݐ, ݇ ≥ 0 such that ݏ = ݎݐ − ݇݊. Hence ݎݐ = ݇݊ + ,ݏ 0 ≤
 ݇, 0 < ݏ < ݊ . Since T commutes with  ܶ , ܶ  also commutes with ܶ

௧ = ܶ  where 
g(ऊ)௧ =  ܽ

௧ ऊ௧ + ⋯ By Lemma (2.1.13),T then commutes with ܶ  where  ܾ(ऊ) =
ܽ

௧  ऊ௦ +. . . ,0 < ݏ < ݊. Since s divides n, Lemma  (2.1.14) now implies that T commutes 
with ऊܶೞ, 
Theorem (2.1.16)[50]:  If ϕ ∈ Hஶ has inner-outer factorization ϕ = where ߯(ऊ) ܨ߯ =
ऊ, ݊ ≥ 1, then ൛ மܶൟ

ᇱ
= { ऊܶೞ }ᇱ where  ݏ > 1 is  the positive  integer which is  maximal 

with respect to the property that both ऊ and ܨ(ऊ) are functions of  ऊ௦ (equivalently: 
that ϕ is a functionof ऊ௦). 
Proof. Clearly if  ߯  and  F  are both functions of  ऊ௦  and if T commutes with ऊܶೞ  ,  
then T commutes with ఞܶ and ிܶ, and hence  with மܶ. 
          Now suppose that T commutes with Tம . Corollary (2.1.8) then implies that T 
commutes with Tऊ   and ிܶ   where ܨ(ऊ) = ܽ + ܽଵऊ + ܽଶऊଶ + ⋯  ∈ Hஶ. Let ݏ > 1 
be maximal with respect to the property that both ऊ୬  and ܨ(ऊ)  are functions of ऊ௦ . 
Denote the sequence of integers  ≥ 1  such that ܽ ≠ 0  by ଵ  < ଶ  < ଷ < ⋯ . 
Then ݏ = ݃. ܿ. ݀ .(݊, ,ଵ ,ଶ … ). Let ݏ  = ݃. ܿ. ݀. (݊, ,ଵ ,ଶ … , ଵ ). Now suppose =
ଵ݊ݍ  + ଵ with 0ݎ  ≤ ଵ, and 0ݍ ≤ ଵݎ < ݊. If  ݎଵ =  0  then ݏଵ =  ݊ and  T commutes with 

ऊܶೞభ   while if 0 < ଵݏ  then Lemma (2.1.15) implies that T commutes with ऊܶೞభ   since 
݃. ܿ. ݀. (݊, (ଵݎ =  ݃. ܿ. ݀. (݊, (ଵ = ଵ. In either case T commutes with ऊܶೞభݏ  . From this 
one concludes that T also commutes with ܶభ where  ଵ݂(ऊ) = ݂(ऊ) − ܽ − ܽభऊభ =
ܽమऊమ + ⋯ . Now suppose ଶ = ଵݏଶݍ + ଶ with 0ݎ ≤ and 0 ≤ ଶݎ < ଶݎ ଵ. Ifݏ = 0 then 
ଶݏ = ଵ and T commutes with ऊܶೞమݏ  , while if 0 <  ଶ then Lemma (2.1.15) implies thatݎ
T commutes with ऊܶೞమ   since ݃. ܿ. ݀. ,ଵݏ) (ଶݎ = ݃. ܿ. ,ଵݏ)  .݀ (ଶ = ݃. ܿ. ݀.  (݊, ,ଵ (ଶ  =
ଶݏ  From this one concludes that T commutes with ܶమ  where  ଶ݂(ऊ) = ݂(ऊ) − ܽ −
ܽభऊభ − ܽమऊమ = ܽయऊయ + ⋯ . Now suppose ଷ = ଶݏଷݍ + ଷ with 0ݎ ≤ ଷݍ  and  0 ≤
ଷݎ < ଶ . Ifݏ ଷݎ  = 0  then ݏଷ = ଶݏ  and  T commutes with ऊܶೞయ  , while if  0 < ଷݎ  then 
Lemma (2.1.15) implies that T commutes with ऊܶೞయ   since ݃. ܿ. ݀. ,ଶݏ) (ଷݎ =
݃. ܿ. ݀. ,ଶݏ) (ଷ = ݃. ܿ. ݀. (݊, ,ଵ ଶ , (ଷ  =  ଷ. Continuing in this manner we obtain thatݏ
T commutes with ܶऊೞೖ  for every k. Hence T commutes with ऊܶೞ . 
Corollary (2.1.17)[50]: Let ߶ ∈ ߶ ஶ andܪ =  be its inner-outer factorization with ܨ߯
߯(ऊ) = ऊ, ݊ ≥ 1, and ܨ(ऊ) = ܽ + ܽଵ ऊ + ܽଶऊଶ + ⋯ . If there exists an integer  ≥ 1  
such  that ܽ ≠ 0  and ݃. ܿ. ݀. (݊, ( = 1 then  ൛ థܶൟ

ᇱ
= { ऊܶ}ᇱ. 

Proof. Theorem (2.1.16) applies and the hypotheses imply that ݏ = 1. 
Corollary (2.1.18)[50]: If  ݊, ݇ ≥ } are positive integers, then ܫ ऊܶ }ᇱ ∩ ൛ܶऊೖ ൟ

ᇱ
=

{ ऊܶೞ }ᇱ  where ݏ =  ݃. ܿ. ݀. (݊, ݇). 
Proof. Observe that if T commutes with ऊܶ  and ܶऊೖ  then it also commutes with 
ܶऊ(ଵାऊೖ) Since 1 + ऊ is outer, Theorem (2.1.16) implies that T also commutes with 

ऊܶೞ  where s can be described as in the corollary. 
Corollary (2.1.19)[50]: If ݊, ݇ ≥ 1 are positive integers and 0 < |ܽ| < 1, then  { ऊܶ}ᇱ ∩

൜ܶ
൫(ఈିऊ)∕(ଵିఈഥऊ)൯ೖ ൠ

ᇱ
= { ऊܶ }ᇱ. 
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Proof. If T commuteswith ऊܶ  and ܶ
൫(ఈିऊ)∕(ଵିఈഥऊ)൯ೖ  then T also commutes with థܶ 

where ߶(ऊ) = ऊ(1 + ൫(ߙ − ऊ) ∕ (1 −  തऊ)൯).Since the coefficient of ऊ in the outer partߙ
of ߶ is nonzero, Corollary(2.1.17) implies the result [3.55]. 
Section (2.2): Bergman Space by the Hardy Space of the Bidisk   

For ॰ be the open unit disk in ℂ. Let dA denote the Lebesgue area measure on the 
unit disk ॰, normalized so that the measure of ॰ equals 1. The Bergman space ܮ

ଶ  is the 
Hilbert space consisting of the analytic functions on ॰  that are also in the space 
ܮ

ଶ (॰,  .of square integrable functions on ॰ (ܣ݀
We study multiplication operators on ܮ

ଶ  by bounded analytic functions on the unit 
disk ॰ via the Hardy space of bidisk. The theme is to use the theory of multivariable 
operators to study a single operator. The main idea is to lift the Bergman shift up as the 
compression of a commuting pair of isometries on a nice subspace of the Hardy space of 
bidisk. This idea was used in studying the Hilbert modules by R. Douglas and V. Paulsen 
[65], operator theory in the Hardy space over the bidisk by R. Douglas and R. Yang [66], 
[67], [68] and [69], the higher-order Hankel forms by S. Ferguson and R. Rochberg [70] 
and [71], and the lattice of the invariant subspaces of the Bergman shift by S. Richter 
[72]. 

For a bounded analytic function ߶ on the unit disk, the multiplication operator ܯథ  

is defined on the Bergman space ܮ
ଶ  given by ܯథℎ = ߶ℎ for ℎ ∈ ܮ

ଶ . Let ݁ = √݊ +  .ݖ1
Then {݁}

ஶ form an orthonormal basis of the Bergman space ܮ
ଶ  . On the basis {݁}, the 

multiplication operator ܯ௭ by z is a weighted shift operator, called the Bergman shift: 

௭݁ܯ = ටାଵ
ାଶ

݁ାଵ. 

The multiplication operators on the Bergman space possess a very rich structure theory. 
Even the lattice of the invariant subspaces of the Bergman shift ܯ௭  is huge [73]. The 
Bergman shift ܯ௭  has a universal property [74]: for any strict contraction S on a Hilbert 
space H, there always exists a pair of invariant subspaces of ܯ௭ , say ℳ and ࣨ in Lat ܯ௭  
(the invariant subspace lattice of ܯ௭  is the set of subspaces ℳ of ܮ

ଶ  with ܯ௭ℳ ⊂ ℳ), 
such that ܵ ≅ ܲℳ⊖ࣨ൛ܯ௭|ℳ⊖ࣨൟ , where ܲℳ⊖ࣨ  denotes the orthogonal projection of 
ܮ

ଶ (॰) onto ℳ ⊖ ࣨ. This indicates that existence of the invariant subspace problem for 
Hilbert space operator is equivalent to whether Lat ܯ௭ is saturated, i.e., for any ℳ, ࣨ ∈
Lat ܯ௭, with ℳ ⊃ ࣨ and ݀݅݉(ℳ ⊖ ࣨ) = ∞, whether there always exists some Ω ∈
 ௭ such thatܯ ݐܽܮ

ࣨ ⫋ Ω ⫋ ℳ. 
Let ॻ denote the unit circle. The torus ॻଶ  is the Cartesian product ॻ × ॻ. The Hardy 
space ܪଶ(ॻଶ) over the bidisk is ܪଶ(ॻ) ⊗  ଶ(ॻ). Let P be the orthogonal projectionܪ
from the space ܮଶ(ॻଶ) of the Lebesgue square integrable functions on the torus ॻଶ onto 
ଶ(ॻଶ)ܪ . The Toeplitz operator on ܪଶ(ॻଶ)  with symbol f in ܮஶ(ॻଶ) ق  is defined by 

ܶ(ℎ) = ܲ(݂ℎ), for ℎ ∈  ଶ(ॻଶ). Clearly, ௭ܶ and ௪ܶ are a pair of doubly commuting pureܪ
isometries on ܪଶ(ॻଶ). For each integer ݊ ≥ 0, let 

ܲ(ݖ, (ݓ =  ିݓݖ


ୀ

=
ାଵݖ − ାଵݓ

ݖ − ݓ  
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Let ℋ  be the subspace of ܪଶ(ॻଶ)  spanned by functions  { ܲ}ୀ
ஶ . The orthogonal 

complement of ℋ  in ܪଶ(ॻଶ) is 
ݖ] − [ݓ = ݖ)}ுమ(ॻమ)݁ݎݑݏ݈ܿ −  .{ଶ(ॻଶ)ܪ(ݓ

Then [ݖ − ݂ is an invariant subspace of analytic Toeplitz operators ܶ for [ݓ ∈  .ஶ(ॻଶ)ܪ
Let ܲℋ  be the orthogonal projection from ܮଶ(ॻଶ) onto ℋ . It is easy to check that 

ℋܲ ௭ܶ|ℋ = ܲℋ ௪ܶ|ℋ . 

Let ℬ denote the operator above. It was shown explicitly in [75] and implicitly in [76] 
that ℬ is unitarily equivalent to the Bergman shift ܯ௭  on the Bergman space ܮ

ଶ  via the 
following unitary operator ܷ: ܮ

ଶ (॰) → ℋ, 

ݖܷ = ܲ(ݖ, (ݓ
݊ + 1

. 
Clearly, for each ݂(ݖ, (ݓ ∈ ℋ,         

(ݖ)(݂∗ܷ) = ,ݖ)݂  .(ݖ
for  ݖ ∈ ܦ .  The simple observation that ܲ(ݖ, (ݓ = ௭శభି௪శభ

௭ି௪
 gives that for each 

,ݖ)݂ (ݓ ∈ ℋ, there is a function ሚ݂(ݖ) in the Dirichlet space ࣞ such that 

,ݖ)݂ (ݓ =
ሚ݂(ݖ) − ሚ݂(ݓ)

ݖ − ݓ  
Thus, for each Blaschke product ߶(ݖ) with finite order, the multiplication operator ܯథ 
on the Bergman space is unitarily equivalent to ߶(ℬ) on ℋ. 
          We will study the operator ߶(ℬ) on the Hardy space of the bidisk to shed light on 
properties of the multiplication operator ܯథ. This method seems to be effective in dealing 
with the multiplication operators on the Bergman space because functions in the Hardy 
space of the bidisk behave slightly better than the functions in the Bergman space. 
The difficulty to study ℬ on ℋ is to get better understanding the projection ܲℋ. We will 
get a lot of mileage from developing a ‘‘heavy’’ machinery on the Hardy space of the 
bidisk how to get rid of ℋܲ  in the expression 

߶(ℬ)݂ =  
1

݊ + 1
 ℋܲ൫ ܲ൫߶(ݖ),  ,൯݂൯(ݓ)߶

for ݂ ∈ ℋ. To do this, letting ܮ denote the space ݇݁ݎ థܶ(௭)
∗ ∩ థܶ(௪) ݎ݁݇

∗ ∩ ℋ, for each 
݁ ∈ , we construct functions {݀ܮ

} such that for each ݈ ≧ 1, 

,(ݖ)߶ ൫ + ൯݁(ݓ)߶  ,(ݖ)߶൫ ൯ ݀(ݓ)߶
ି

ିଵ

ୀ

 ∈ ℋ 

and 
,(ݖ)߶ ൫ ൯݁(ݓ)߶ + ,(ݖ)߶ିଵ ൫ ൯݀(ݓ)߶

 ∈ ℋ . 
On one hand, we have a precise formula of ݀

. On the other hand, ݀
  is orthogonal to ܮ. 

These constructions are useful in studying the reducing subspaces of ߶(ℬ). A reducing 
sub-space ℳ for an operator T on a Hilbert space H is a subspace ℳ of H such that 
ܶℳ ⊂ ℳ  and ܶ∗ℳ ⊂ ℳ . A reducing subspace ℳ  of T is called minimal if only 
reducing subspaces contained in ℳ are ℳand {0}. As in [77], a subspace ࣨof H is a 
wandering subspace of T if ࣨ  is orthogonal to ܶࣨ  for each = 1,2, . ..  . If ℳ  is an 
invariant subspace of T, it is clear that ℳ ⊖ ܶℳ is a wandering subspace of T, and we 
will refer this subspace as the wandering subspace of ℳ. 
          For a reducing subspace ℳof ߶(ℬ), and e in the wandering subspace of  ℳ, 
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,(ݖ)߶ ൫ ൯݁(ݓ)߶ +  ,(ݖ)߶൫ ൯ ݀(ݓ)߶
ି

ିଵ

ୀ

 ∈ ℳ. 

Although for a Blaschke product ߶  of finite order, ܯథ  is not an isometry, using the 
machinery on the Hardy space of bidisk we will show that there exists a unique reducing 
subspace ℳ , the so called distinguished subspace, on which the restriction of ܯథ  is 
unitarily equivalent to the Bergman shift, which will play an important role in classifying 
reducing subspaces of ܯథ. The functions ݀

ଵ and ݀
 have the following relation. 

Theorem (2.2.1)[64]: If ℳ  is a reducing subspace of ߶(ℬ)  orthogonal to the 
distinguished reducing subspace ℳ, for each e in the wandering subspace for ℳ, then 
there is an element ݁̃ in the wandering subspace for ℳ and a number ߣ such that  
                                                      ݀

ଵ  = ݀
 + ݁̃ + ݁ ߣ                                                                        (2) 

To understand the structure of minimal reducing subspaces of ߶(ℬ) we lift a reducing 
subspace of ߶(ℬ) as a reducing subspace of the pair of doubly commuting isometries 

థܶ(௭) and థܶ(௪). For a given reducing subspace ℳ of  (ℬ), define the lifting ℳ෩  of ℳ: 
ℳ෩ = (ݖ)߶}݊ܽݏ , ;ℳ(ݓ)߶  ݈, ݇ ≧ 0}. 

Since ℳ is a reducing subspace of ߶(ℬ) and หℳ෩  is a reducing subspace of the pair of 
doubly commuting isometries థܶ(௭)and థܶ(௪), by the Wold decomposition of the pair of 
isometries on ℳ, we have 

ℳ෩ = ⊕
,≧

(ݖ)߶ , ℳ෩ܮ(ݓ)߶ , 

where ܮℳ෩  is the wandering subspace 
ℳ෩ܮ = థܶ(௭) ݎ݁݇

∗ ∩ థ(௪)ܶ ݎ݁݇
∗ ∩ ℳ෩  

The following theorem gives a complete description of the wandering subspace ܮℳ෩ . 
Theorem (2.2.2)[64]: Suppose that ℳ is a reducing subspace of ߶(ℬ) orthogonal to ℳ. 
If ቄ݁ଵ

(ெ), . . . , ݁ಾ
(ெ)ቅ is a basis of the wandering subspace of ℳ, then 

ℳ෩ܮ = ݁݊ܽݏ ൜݁ଵ
(ெ), . . . , ݁ಾ

(ெ); ݀
భ

(ಾ)
ଵ  , . . . , ݀

ಾ
(ಾ)

ଵ ൠ 

and 
ℳ෩ܮ ݉݅݀ =  . ெݍ2

To prove Theorem (2.2.2), first we use the Wold decomposition of the pair of doubly 
commuting isometries థܶ(௭)and థܶ(௪)on the lifting ࣥథ൫= ℋ෩ ൯ of ℋ to get the dimension 
of the wandering subspace ℒథ(= ℋ෩ܮ ). By means of the Fredholm theory in [8], we are 
able to show that the dimension of ℒథ  equals 2ܰ − 1 , where N is the order of the 
Blaschke product ߶. 
          Then by means of the finite dimension of the wandering subspace of these 
isometries on the reducing subspace we will be able to obtain some structure theorems on 
reducing subspaces of the multiplication operators by finite Blaschke products on the 
Bergman space. 
Theorem (2.2.3)[64]: Suppose that ߗ, ℳ and ࣨ  are three distinct nontrivial minimal 
reducing subspaces contained in ℳ

ୄ for ߶(ℬ). If 
ߗ ⊂ ℳ ⊕ ࣨ, 

then there is a unitary operator ܷ ∶ ℳ → ࣨ  such that U commutes with ߶(ℬ)  and 
߶(ℬ)∗ . 
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The machinery on the Hardy space of the bidisk is not only useful in classifying the 
reducing subspaces of multiplication operators on the Bergman space, but also it is helpful 
in understanding the lattice of invariant subspaces of the Bergman shift as in [79] and 
hence the invariant subspace problem. We develop the Bergman function theory [80], 
[81] via the Hardy space of the bidisk. 
          Applying the machinery developed , we will be able to disprove Zhu’s conjecture 
in the following theorem. For a holomorphic function ߶ on the unit disk and a point ܿ in 
the unit disk, we say that ܿ is a critical point of ߶ if its derivative vanishes at ܿ. 
Theorem (2.2.4)[64]: Let ߶  be a Blaschke product with three zeros. If ߶(ݖ)  has a 
multiple critical point in the unit disk, then ܯథ has three nontrivial minimal reducing 
subspaces. If ߶ does not have any multiple critical point in the unit disk, then ܯథ has 
only two nontrivial minimal reducing subspaces. 
          The multiplication operator on the Bergman space is completely di¤erent from that 
in the Hardy space. By the famous Beurling Theorem [82], the lattice of the invariant 
subspaces of the multiplication operator by z on the Hardy space is completely determined 
by inner functions. A Beurling’s theorem was recently obtained for the Bergman space 
[83]. On one hand, on the Hardy space, for an inner function ߶, the multiplication operator 
by ߶ is a pure isometry and hence unilateral shift (with arbitrary multiplicity). So its 
reducing sub-spaces are in one-to-one correspondence with the closed subspaces of ܪଶ ⊝
 ଶ [84], [85]. Therefore, it has infinitely many reducing subspaces provided that ߶ isܪ߶
any inner function other than a Möbius function. Many people have studied the problem 
of determining reducing subspaces of a multiplication operator on the Hardy space of the 
unit circle [86], [87] and [88]. For an inner function ߶, the multiplication operator by ߶ 
on the Bergman space is a contraction but not an isometry. On the other hand, 
surprisingly, on the Bergman space, it was shown in [89] and [90] that for a Blaschke 
product ߶  with two zeros, the multiplication operator ܯథ  has only two nontrivial 
reducing subspaces. Zhu [66] conjectured that for a Blaschke product ߶ with N zeros, the 
lattice of reducing subspaces of the operator ܯథ is generated by N elements. In other 
words, ܯథ has exactly N nontrivial minimal reducing subspaces. 
          Bochner’s theorem [65], [66] says that every Blaschke product with N zeros has 
exactly ܰ − 1 critical points in the unit disk ॰. Theorem (2.2.4) gives a classifcation of 
reducing subspaces for ܯథ for a Blaschke product ߶ with three zeros. 
          Critical points of ߶ have important geometric meaning about the self-mapping of 
the unit disk. The work of Stephenson [70], [75], [76] suggests that the geometric version 
of the above theorem should be in terms of the Riemann surfaces. A finite Blaschke 
product ߶ with N zeros is an N to 1 conformal map of ॰ഥ  onto ॰ഥ . Bochner’s theorem [75], 
[76] says that ߶ has exactly ܰ − 1 critical points in the unit disk ॰ and none on the unit 
circle. Let ࣝ denote the set of the critical points of ߶ in ॰ and ℱ = ߶ିଵ ∘ ߶(ࣝ). Then ℱ 
is a finite set, and ߶ିଵ ∘ ߶ is an N-branched analytic function defined and arbitrarily 
continuable in ॰ ∕ ℱ. Not all of the branches of ߶ିଵ ∘ ߶ can be continued to a different 
branch, for example z is a single valued branch of ߶ିଵ ∘ ߶. The Riemann surface for 
߶ିଵ ∘ ߶ over ॰ is an N-sheeted cover of ॰ at most ܰ(ܰ − 1) branch points, and it is not 
connected. The geometric version of Theorem (2.2.4) is the following theorem. 
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Theorem (2.2.5)[64]: Let ߶ be a Blaschke product with three zeros. Then the number of 
non-trivial minimal reducing subspaces of ܯథ  equals the number of connected 
components of the Riemann surface of ߶ିଵ ∘ ߶ over ॰. 

We would like to point out that there are many essential differences in analysis and 
geometry between Blaschke products with order three and Blaschke products with order 
two. On one hand, for Blaschke products ߶ with order two, ߶ିଵ ∘ ߶ contains two analytic 
functions on the unit disk and hence the Riemann surface for ߶ିଵ ∘ ߶ over ॰ is just two 
copies of the unit disk. On the other hand, for the most Blaschke products with order 
three, ߶ିଵ ∘ ߶ has three multivalue functions on the unit disk and the Riemann surface 
for ߶ିଵ ∘ ߶ over ॰ has two connected components. This phenomenon makes it difficult 
for us to classify the reducing subspaces of a multiplication operator with the Blaschke 
product of order higher than two. It seems that the machinery developed is inevitable in 
classifying the reducing subspaces of the multiplication operator by a Blaschke product 
of higher order. 

The problem of determining reducing subspaces of a multiplication operator is 
equi-valent to finding projections in the commutant of the operator which is the set of 
operators commuting with the multiplication operators. Everyvon Neumann algebra is 
generated by its projections. Theorem (2.2.4) says that everyvon Neumann algebra 
contained in the commutant of mulitplication operator by the Blaschke product with third 
order is commutative. A lot of nice and deep work on the commutant of a multiplication 
operator has been done on the Hardy space [66], [63], [64] while Blaschke products with 
finite zeros play an important role. Indeed Cowen proved that for ݂ ∈  ஶ, if the innerܪ
factor of ݂ − ߙ is a Blaschke product ߶ with finite order for some (ߙ) ݂ ∈ ॰, then the 
commutant of the multiplication operator by f equals the commutant of the multiplication 
operator by the finite Blaschke product ߶ [66]. Thus the structure of lattice of reducing 
subspaces of the multiplication operator by a Blaschke product with finite order is useful 
in studying the general multiplication operators on the Bergman space. 

One application of the machinery on the Hardy space of the bidsk is that it was 
proved in [62] that the multiplication operator on the Bergman space is unitarily 
equivalent to a weighted unilateral shift operator of finite multiplicity if and only if its 
symbol is a constant multiple of the N-th power of a Mo¨bius transform. Another one is 
that we have obtained a complete description of nontrivial minimal reducing subspaces 
of the multipli-cation operator by ߶ on the Bergman space of the unit disk for the fourth 
order Blaschke product ߶ [61]. 

Using Theorems (2.2.1) and (2.2.3), for a finite Blaschke product ߶, we are able to 
show that for two distinct nontrivial minimal reducing subspaces of ߶(ℬ), either they are 
orthogonal or ߶(ℬ) has two distinct unitarily equivalent reducing subspaces and has also 
infinitely many minimal reducing subspaces. Thus either ߶(ℬ)  has infinitely many 
minimal reducing subspaces or the number of nontrivial minimal reducing subspaces of 
߶(ℬ) is less than or equal to the order of ߶. We say that two reducing subspaces ℳ and 
ࣨ of ߶(ℬ) are unitarily equivalent if there is a unitary operator ܷ ∶ ℳ → ࣨ such that U 
commutes with ߶(ℬ) and (ℬ) . 

The adjoint of the multiplication operator by a finite Blaschke product is in a 
Cowen-Douglas class [67]. The theory of Cowen-Douglas classes will be useful in 
studying the multiplication operators on the Bergman space. On the other hand, we would 
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like to see some applications of the results obtained to the study of the Cowen-Douglas 
classes. 

First we introduce notations and show some properties of functions in ℋ. Then we 
compute the dimension of the wandering space for the lifting ℋ෩  of ℋ. The dimension is 
useful for us to find the wandering space for the lifting ℳ of a reducing subspace ℳ of 
߶(ℬ).   
          For ߙ ∈ ࣞ, let ݇ఈ be the reproducing kernel of the Hardy space ܪଶ(ॻ) at ߙ. That 
is, for each function f in ܪଶ(ॻ), 

(ߙ)݂ = 〈݂, ݇ఈ〉 
In fact, ݇ఈ = 1 ∕ (1 −  ஶ(ॻ), let ܶథ denote the analytic Toeplitz operatorܪ For ߶ in .(ݖതߙ
with symbol ߶ on ܪଶ(ॻ), given by      
          ܶథℎ = ߶ℎ.       
Thus it is easy to check that   
                                                               ܶథ

∗݇ఈ = തതതതതതത݇ఈ(ߙ)߶ .                                                            (3) 
For an integer ݏ ≧ 0, let  

݇ఈ
௦ (ݖ) =

!ݏ ௦ݖ

(1 −  .௦ାଵ(ݖതߙ

Lemma (2.2.6)[64]: For each ݂ ∈        ,ஶ(ॻ)ܪ

ܶ
∗݇ఈ

௦ = 
!ݏ

݈! ݏ) − ݈)!  ݂()(ߙ)തതതതതതതതത݇ఈ
௦ି

௦

ୀ

. 

Lemma (2.2.6) gives that the kernel of  the Toeplitz operator ܶథ
∗  on the Hardy space 

of the unit circle is spanned by  ቄ൛݇ఈೖ

௦ೖ ൟ
௦ೖୀ,…, ೖ

ቅ
ୀ,…,

.     

Recall that ℋis the subspace of ܪଶ(ॻଶ) spanned by functions {}ୀ
ஶ . The following 

two lemmas give some properties for functions in ℋ or ℋୄ. 
Lemma (2.2.7)[64]: If f is in ܪଶ(ॻଶ) and continuous on the closed bidisk and e is in ℋ, 
then 

,ݖ)݂〉 ,(ݓ ,ݖ)݁ 〈(ݓ = ,ݖ)݂〉 ,(ݖ ,ݖ)݁ 0)〉 = ,ݓ)݂〉 ,(ݓ ݁(0,  〈(ݓ
Lemma(2.2.8) [64]: For ℎ(ݖ, (ݓ ∈ ,ଶ(ॻଶ)ܪ ℎ is in ℋୄ if ℎ(ݖ, (ݖ = 0, for ݖ ∈ ॰. 
Proof. As pointed out before, 

ℋୄ = ݖ)}1ܿ −  {ଶ(ॻଶ)ܪ(ݓ
Let z be in ॰. For each function ݂(ݖ, (ݓ ∈ ݖ) − ,ଶ(ॻଶ)ܪ(ݓ ,ݖ)݂ (ݖ = 0 for each ℎ ∈
ℋୄ. 
Conversely, assume that for a function ℎ ∈ ℋୄ, ℎ(ݖ, (ݖ = 0, for ݖ ∈ ॰. For 0 < ݎ < 1, 
define 

ℎ(ݖ, (ݓ = ℎ(ݖݎ,  .(ݓݎ
Then for each fixed  0 < ݎ < 1, ℎ(ݖ, (ݖ = 0, and ℎ(ݖ,  is continuous on the closed (ݓ
bidisk and in ܪଶ(ॻଶ). 
By Lemma (2.2.7), for each ݁(ݖ,  ,in ℋ (ݓ

〈ℎ(ݖ, ,(ݓ ,ݖ)݁ 〈(ݓ = 〈ℎ(ݖ, ,(ݖ ,ݖ)݁ 0)〉 = 0. 
On the other hand, by [73], Theorem 3.4.3, 

〈ℎ(ݖ, ,(ݓ ,ݖ)݁ 〈(ݓ = lim
୰→ଵష

〈ℎ(ݖ, ,(ݓ ,ݖ)݁ 〈(ݓ = 0. 
Hence we conclude that h is in ℋୄ. 
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The Dirichlet space ࣞ consists of analytic functions on the unit disk whose derivative is 
in the Bergman space ܮఈ

ଶ . 
Theorem (2.2.9)[64]:  For each ݂(ݖ,  ଶ(ܶଶ), f is in ℋ if and only if there is aܪ in (ݓ
function ሚ݂(ݖ) in ࣞ such that    

,ݖ)݂ (ݓ =
ሚ݂(ݖ) − ሚ݂(ݓ)

z − w
 

for two distinct points z, w in the unit disk. 
This immediately gives the following three lemmas. 
Lemma (2.2.10)[64]: Suppose that ݁(ݖ, ,ݖ)݁ is in ℋ. If (ݓ (ݖ = 0 for each z in the unit 
disk, then ݁(ݖ, (ݓ = 0 for (ݖ,  .on the torus (ݓ
Lemma (2.2.11)[64]: If ݁(ݖ,  is in ℋ, then (ݓ

,ݖ)݁ (ݓ = ,ݓ)݁  .(ݖ
Lemma (2.2.12)[64]: Suppose ݂(ݖ, (ݖ)ܨ is in ℋ. Let (ݓ = ,ݖ)݂ 0) . Then 

,ߣ) ݂ (ߣ = (ߣ)ᇱܨߣ +  ,(ߣ)ܨ
for each ߣ ∈ ॰. 
For an operator T on a Hilbert space, let ݇݁ݎ ܶ denote the kernel of T. Then 

∗ܶ ݎ݁݇ = ܪ ⊖  .ܪܶ
Given a pure isometry U on a Hilbert space H, the classical Wold decomposition theorem 
[79] states that 

ܪ = ⊕
≧

ܷܧ , 

where ܧ = ܪ ⊖  . ∗ܶ ݎ݁݇ is the wandering subspace for U and equals ܪܷ
For a function ߶ in ܪஶ(॰), we can view ߶(ݖ) and ߶(ݓ) as functions on the torus ॻଶ. 
While ܯథ is not an isometry on the Bergman space of the unit disk, the analytic Toeplitz 
operators థܶ(௭) and థܶ(௪) are a pair of doubly commuting pure isometries on the Hardy 
space ܪଶ(ॻଶ) of torus. Since 

௭ܶ
∗ = ௪ܶ

∗  =  ିଵ
for ݊ ≧ 1 and 

௭ܶ
∗  = ௪ܶ

∗   = 0, 
ℋ is an invariant subspace for both ௭ܶ

∗ and ௪ܶ
∗ . So ℋ is also an invariant subspace for 

both థܶ(௭)
∗  and థܶ(௪)

∗ . Recall the lifting ࣥథ of ℋ: 
ࣥథ = ;ℋ(ݓ)߶(ݖ)߶}݊ܽݏ  ݈, ݇ ≧ 0}. 

Then ࣥథ is a reducing subspace for both థܶ(௭) and థܶ(௪), and so ܶథ(௭) and ܶథ(௪) are also 
a pair of doubly commuting isometries on ࣥథ. 
We consider the Wold decompositions for the pair on both ࣥథ and ࣥథ

ୄ൫ܪଶ(ॻଶ) ⊖ ࣥథ൯. 
Introduce wandering subspaces 

ℒథ = థ(௭)ܶݎ݁݇ 
∗ ∩ ݎ݁݇ థܶ(௪)

∗ ∩ ࣥథ, 
and  

ℒథ = ݎ݁݇  థܶ(௭)
∗ ∩ ݎ݁݇ థܶ(௪)

∗ ∩ ࣥథ
ୄ. 

To get the dimension of the wandering subspaces ℒథ  and ℒథ , we will dentify the 
wandering subspace ℒథ  for the Blaschke product ߶ with distinct zeros. The following 
lemma follows from the remark after Lemma (2.2.6) about ker ܶథ

∗ . 
Lemma (2.2.13)[64]: If ߶(ݖ) is a Blaschke product with distinct zeros {ߙ}ୀଵ

ே s, then 
intersection of the kernel of థܶ(௭)

∗ and థܶ(௪)
∗  is spanned by {݇݅ߙ

݆ߙ݇(ݖ)
1=݆,݅{(ݓ)

ܰ . 
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The following lemma is implicit in the proof of Theorem 3 [79]. But we give a complete 
proof of the lemma. 
Lemma (2.2.14)[64]: Suppose that ߶(ݖ)  is a Blaschke product with distinct 
zeros {ߙ}ୀଵ

ே . Then the wandering space ℒథ  is equal to the space spanned by 
ቄ݇ఈ

ఈೕ݇(ݖ)
(ݓ) − ݇ఈೕ

ఈ݇(ݖ)
;(ݓ)  1 ≦ ݅ < ݆ ≦ ܰቅ  ܽ݊݀ 

Tି୵
∗ ቂkౢ

(z)kౢశభ
(w) + ݇ఈశభ

ఈ݇(ݖ)
(ݓ) + ݇ఈ

ఈቃ݇(ݖ) ; 2 ≦ l + 1 < ݍ ≦ N. 
Moreover, the dimension of ℒథ  equals (N − 1)ଶ.   
Proof. First we show 

ℒథ = ݎ݁݇ థܶ(௭)
∗ ∩ థ(௪)ܶݎ݁݇

∗ ∩ ℋୄ. 
Since ℋ ⊂ ࣥథ,     

ℒథ ⊂ ݎ݁݇ థܶ(௭)
∗ ∩ థ(௪)ܶݎ݁݇

∗ ∩ ℋୄ. 
Conversely, if f is in ݇݁ݎ థܶ(௭)

∗ ∩ ݎ݁݇ థܶ(௪)
∗ ∩ ℋୄ then f is in ݇݁ݎ థܶ(௭)

∗ ∩ ݎ݁݇ థܶ(௪)
∗  and 

orthogonal to ℋ. Thus for each ݃(ݖ, (ݓ = ∑ ℎ,≧(ݓ)߶(ݖ)߶ ∈ ℋ where ℎ ∈ ℋ we 
have 

〈݂, ݃〉 =  〈݂, 〈ℎ݈݇݇(ݓ)߶݈(ݖ)߶
݇,݈≧0

=  〈ൣ థܶ(௭)
∗ ൧


ൣ థܶ(௪)

∗ ൧


݂, ℎ݈݇〉
݇,݈≧0

= 0 

So f is also in ℒథ . Hence we have 
ℒథ = ݎ݁݇ థܶ(௭)

∗ ∩ థ(௪)ܶݎ݁݇
∗ ∩ ℋୄ. 

We want to prove that the dimension of ℒథ is (ܰ − 1)ଶ. Without loss of generality, we 
assume that ܽூ = 0. By Lemma (2.2.13), the ܰଶ dimensional space ݇݁ܶݎథ(௭)

∗ ∩ ݎ݁݇ థܶ(௪)
∗  

is spanned by  {݇݅ߙ
݆ߙ݇(ݖ)

݆,݅{(ݓ) =1
ܰ . So it follows from Lemma (2.2.8) that ℒథ  consists of 

the elements h in ݇݁ݎ థܶ(௭)
∗ ∩ ݎ݁݇ థܶ(௪)

∗  which satisfy ℎ(ݖ, (ݖ =  0. That is, 

ℒథ = ቐℎ =   ܿ݇ఈ
ఈೕ݇(ݖ)

;(ݓ) ℎ(ݖ, (ݖ
ே

ୀଵ

ே

ୀଵ

=   ܿ݇ఈ
ఈೕ݇(ݖ)

(ݖ) = 0
ே

ୀଵ

ே

ୀଵ

ቑ 

For any ℎ ∈ ℒథ , taking the limit at infinity and testing the multiplicity at its poles 1 ∕ ఫܽഥ  
of the function ℎ(ݖ, (ݖ , we immediately have that ℎ(ݖ, (ݖ = 0  implies ܿ = 0, ݆ =
1,2, … , ܰ. That is, 

ℒథ = ቐℎ =   ܿ݇ఈ
ఈೕ݇(ݖ)

;(ݓ) ℎ(ݖ, (ݖ
ே

ୀଵ

ே

ஷ,ୀଵ

=   ܿ݇ఈ
ఈೕ݇(ݖ)

(ݖ) = 0
ே

ୀଵ

ே

ஷ,ୀଵ

ቑ 

Observe that ݇
ೕ݇(ݖ)

(ݓ) = ܽ݇
(ݖ) + ܾ݇

where ܽ (ݖ) = ഢതതത
ഢതതത ି ണതതത

  and ܾ = −ണതതത

ഢതതത ି ണതതത
 , and 

݇ఈమ
,(ݖ) … , ݇ఈಿ

(ݖ)  are linearly independent. Write ℎ(ݖ, (ݖ  as linear combination of 
݇ఈೕ

,(ݖ) ݆ =  2, . . . , ܰ, then all the coe‰cients of ݇ఈೕ
 must be zero. So we have a system (ݖ)

of another ܰ − 1 linear equations governing ܿ , ݅ ≠ ݆, ݅, ݆ =  1, . . . , ܰ. It is easy to check 
that the rank of the coe‰cient matrix of the system is ܰ − 1. Hence the dimension of  ℒథ  

(as the solution space of ܰଶ − ܰ  unknown variables governed by ܰ − 1  linearly 
independent equations) equals ܰଶ − ܰ − (ܰ − 1) . The proof is finished.  
We show the main result. 
Theorem (2.2.15)[64]: Let ߶ be a Blaschke product with N zeros in the unit disk. Then 
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ࣥథ  = ⊕
,݈≧

(ݓ)݇߶(ݖ)݈߶  ℒ߶, 

and        
ଶ(ॻଶ)ܪ ⊝ ࣥథ = ⊕

݈,≧
(ݓ)݇߶(ݖ)݈߶  ℒ߶  

The dimension of ℒథ  equal (ܰ − 1)ଶ and The dimension of ℒథ  equals 2ܰ − 1 
Proof. As pointed out early, థܶ(௭) and థܶ(௪) are a pair of doubly commuting isometries 
on both ࣥథ and ܪଶ(ॻଶ) ⊝ ࣥథ. Consider the Wold decomposition of థܶ(௭) on ࣥథ  to get 

ࣥథ  = ⊕
݈≧

 ܧ݈(ݖ)߶

where E is the wandering subspace for థܶ(௭) given by 

ܧ = ࣥథ ⊝ ൣ థܶ(௭)ࣥథ൧ = ݎ݁݇ ܶథ(௭)
∗ ห

ࣥഝ
൨ = ݎ݁݇ థܶ(௭)

∗ ∩ ࣥథ . 

Since థܶ(௭) and థܶ(௪) are doubly commuting, E is a reducing subspace of థܶ(௪). Thus 
థܶ(௪)ห

ா
 is still an isometry. The Wold decomposition theorem again gives 

ܧ = ⊕
݇≧

 1ܧ݇(ݓ)߶

where ܧଵ is the wandering subspace for థܶ(௪)ห
ா

 given by 
ଵܧ = ܧ ⊝ ܧ(ݓ)߶ܶ = (ݓ)߶ܶݎ݁݇

∗ ∩ = ܧ (ݖ)߶ܶ ݎ݁݇ 
∗ ∩ (ݓ)߶ܶ

∗ ∩ ࣥ߶  

This gives 
ࣥథ  = ⊕

,݈≧
(ݓ)݇߶(ݖ)݈߶  ℒ߶. 

Considering the Wold decompositions of ܶథ(௭) and ܶథ(௪) on ܪଶ(ॻଶ) ⊝ ࣥథ, similarly 
we obtain 

ଶ(ॻଶ)ܪ ⊝ ࣥథ = ⊕
݈,≧

(ݓ)݇߶(ݖ)݈߶  ℒ߶. 

 Noting                       
థ(௭)ܶ ݎ݁݇

∗ ∩ ݎ݁݇ థܶ(௪)
∗ = ℒ߶ ⊕ ℒ߶ 

we have        
dimൣ݇݁ݎ థܶ(௭)

∗ ∩ ݎ݁݇ థܶ(௪)
∗ ൧ = dimൣℒ߶൧ + dimൣℒ߶൧. 

By Lemma (2.2.13), the dimension of ݇݁ݎ థܶ(௭)
∗ ∩ థ(௪)ܶݎ݁݇

∗ equals ܰଶ. Hence  
          dimൣℒ߶൧ = ܰଶ − dimൣℒ߶൧.   
To finish the proof, it suffices to show that the dimension of ൣℒ߶൧  equals (ܰ − 1)ଶ . By 
Lemma(2.2.14) , for a Blaschke product ߶(ݖ) with distinct zeros, the dimension of ℒథ  
equals (ܰ − 1)ଶ. We need to show that this is still true for a Blaschke product B with N 
zeros which perhaps contains some repeated zeros. To do so, for a given l ߣ  ∈ ॰ , 
let ߶ఒ(ݖ) be the Möbius transform ௭ିఒ

ଵିఒഥ௭
 . Then ߶ఒ ∘  is a Blaschke product with N (ݖ)߶

zeros in the unit disk and 
        థܶഊ∘థ(௭) = ൫ థܶ(௭) − ܫ൯൫ܫߣ − ߣ థܶ(௭)൯

ିଵ
 .     

Thus ࣥథ = ࣥథഊ∘థ, and so 
ℒథഊ∘థ  = థഊ∘థ(௭)ܶ ݎ݁݇

∗ ∩ థഊ∘థ(௪)ܶݎ݁݇
∗ ∩ ଶ(ܶଶ)ܪൣ ⊝ ࣥథഊ∘థ൧

= థ(௭)ିఒܶ ݎ݁݇
∗ ∩ థ(௪)ିఒܶݎ݁݇

∗ ∩ ଶ(ܶଶ)ܪൣ  ⊝ ࣥథ൧. 
The last equality follows from that 

థ(௭)ିఒܶ ݎ݁݇
∗ = థܶഊ∘థ(௭) ݎ݁݇

∗  

and 
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థܶ(௪)ିఒ ݎ݁݇
∗ = థഊ∘థ(௪)ܶݎ݁݇

∗  
We have the fact that 

݀݅݉ℒథഊ∘థ = −index൫ థܶ(௭)ିఒ
∗ , థܶ(௪)ିఒ

∗ ൯, 

where  index൫ థܶ(௭)ିఒ
∗ , థܶ(௪)ିఒ

∗ ൯  is the Fredholm index of the pair 
index൫ థܶ(௭)ିఒ

∗ , థܶ(௪)ିఒ
∗ ൯, which was first introduced in [78]. It was shown in [78] that the 

Fredholm index of the pair index൫ థܶ(௭)ିఒ
∗ , ܶథ(௪)ିఒ

∗ ൯ is a continuous mapping from the set 
of the Fredholm tuples to the set of integers. Thus for a sufficiently small ߣ, 

index൫ థܶ(௭)ିఒ
∗ , థܶ(௪)ିఒ

∗ ൯ = index൫ థܶ(௭)
∗ , థܶ(௪)

∗ ൯. 
If ߣ is not in the critical values set ࣝ = ൛ߤ ∈ ॰; ߤ = ᇱ(௭)߶ ݀݊ܽ (ݖ)߶ = ∋ ݖ ݁݉ݏ ݎ݂ 0
॰ൟ  of ߶ , then ߶ఒ ∘ (ݖ)߶  is a Blaschke product with N distinct zeros in ॰ . In fact, 
Bochner’s theorem implies that there are at most ܰ − 1 points in ࣝ . In this case, by 
Lemma (2.2.14), 
 ݀݅݉ℒథഊ∘థ = (ܰ − 1)ଶ  
Since the set ࣝ has zero area, we conclude that the dimension of ℒథ  equals  (ܰ − 1)ଶ. 
we will construct a family {݀

}  of functions and a function ݀
  in ℒథ  for each ݁ ∈

థܶ(௭) ݎ݁݇
∗ ∩ ݎ݁݇ థܶ(௪)

∗ ∩ ℋ , which have properties in Theorem (2.2.1) to present the 
proof of Theorem (2.2.1) that gives a relation between ݀

ଵ and ݀
. The relation is very 

useful for us to understand the structure of the minimal reducing subspaces in the rest . 
Let ܮ be ݇݁ݎ థܶ(௭)

∗ ∩ ݎ݁݇ థܶ(௪)
∗ ∩ ℋ. It is easy to check that the dimension of ܮ 

equals the order of the Blaschke product. 
First we will show that for a given reducing subspace ℳ for ߶(ℬ), for each ݁ ∈

ℳ ∩ ݈  and each integerܮ ≧ 1, there is a family of functions {݀
}ୀଵ

  such that 

  ൫߶(ݖ), ൯݁(ݓ)߶ +    ൫߶(ݖ), ൯݀(ݓ)߶
ି

ିଵ

ୀ

∈ ℳ. 

These functions are useful in studying the structure of the multiplication operator ܯథ on 
the Bergman space. 
The following lemma shows that for each reducing subspace ℳ of ߶(ℬ), the intersec-
tion of ℳ and ܮ is nontrivial. 
Lemma (2.2.16)[64]: If ℳ  is a nontrivial reducing subspace for ߶(ℬ) , then the 
wandering sub-space of ℳ is contained in ܮ. 
Proof. Let ℳ be a nontrivial reducing subspace for ߶(ℬ). For each f in ℋ, ࣪ℳ݂ is in 
ℳ. Thus for each e in the wandering subspace ℳ ⊝ ߶(ℬ)ℳ݂ ℳ, 

0 = 〈݁, ߶(ℬ)࣪ℳ݂〉 = 〈݁, ࣪ℳ߶(ℬ)݂〉 
= 〈݁, ߶(ℬ)݂〉 = 〈 థܶ(௭)

∗ ݁, ݂〉. 
The second equality follows from that ℳ is a reducing subspace and the last equality 
follows from the fact that for each ݂ ∈ ℋ, 

߶(ℬ)∗݂ = థܶ(௭)
∗ ݂ = ܶథ(௪)

∗  ݂ . 
So ܶథ(௭)

∗ ݁ = 0. Similarily, we also have that థܶ(௪)
∗ ݁ = 0. This gives that e is in ܮ to 

complete the proof. 
Lemma (2.2.17)[64]: If ℳ is a reducing subspace for ߶(ℬ), then ߶(ℬ)∗ℳ = ℳ. 
Proof. First note that for a Blaschke product ߶(ݖ) with finite order, ߶(ℬ) is Fredholm 
and the kernel of ߶(ℬ) contains only zero. Thus 
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߶(ℬ)∗ℋ = ℋ 
Suppose that ℳ is a reducing subspace for ߶(ℬ). Let ࣨ = ℳୄ. Then 

߶(ℬ)∗ = ߶(ℬ)∗|ℳ ⨁ ߶(ℬ)∗|ࣨ  
under the decomposition ℋ = ℳ ⨁ ࣨ. Since ߶(ℬ)∗  is subjective, 

߶(ℬ)∗|ℳℳ = ℳ. 
This completes the proof. 
Theorem (2.2.18)[64]: Suppose that ℳ is a reducing subspace for ߶(ℬ). For a given e 
in the wandering subspace of ℳ, there is a unique family of functions {݀

} ⊂ ℒథ ⊝  ܮ
such that: 

  ൫߶(ݖ), ൯݁(ݓ)߶ + ∑ ,(ݖ)߶ ൫ ൯݀(ݓ)߶
ିିଵ

ୀ   is in ℳ, for each ݈ ≧ 1. 
,(ݖ)߶൫ℋൣ ൯݀(ݓ)߶

൧  is in ℳ for each ݇ ≧ 1., and ݈ ≧ 0. 
Proof. For a given e in the wandering subspace of ℳ, first we will use mathematical 
induction to construct a family of functions {݀

}. 
By Lemma (2.2.16), e is in ܮ. A simple calculation gives థܶ(௭)

∗ ൣ൫߶(ݖ) + ൯݁൧(ݓ)߶ = ݁, 
and థܶ(௪)

∗ ൣ൫߶(ݖ) + ൯݁൧(ݓ)߶ = ݁. By Lemma (2.2.17), there is a unique function ݁̃ ∈ ⊝
  such thatܮ

థܶ(௭)
∗ ݁̃ = థܶ(௪)

∗ ݁̃  = ݁. 
This gives  

థܶ(௭)
∗ ൣ݁̃ − ൫߶(ݖ) + ൯݁൧(ݓ)߶ = ݁ − ݁ = 0, 

and  
థܶ(௪)
∗ ൣ݁̃ − ൫߶(ݖ) + ൯݁൧(ݓ)߶ = ݁ − ݁ = 0, 

to get that letting ݀
ଵ = ݁̃ − ൫߶(ݖ) + ൯݁, ݀(ݓ)߶

ଵ  is in ݇݁ݎ థܶ(௭)
∗ ∩ థܶ(௪) ݎ݁݇

∗ , and 
,(ݖ)߶ଵ൫ ൯݁(ݓ)߶ + ݀

ଵ = ൫߶(ݖ) + ൯݁(ݓ)߶ + ݀
ଵ ∈ ℳ. 

Because both ݁̃ and e are in ℳ, we have that ݀
ଵ is in ࣥథ, and hence ݀

ଵ is in ℒథ. 
Next we show that ݀

ଵ is orthogonal to ܮ. To do so, let ݂ ∈  . A simple calculation givesܮ
〈݀

ଵ, ݂〉 = 〈݁̃ − ൫߶(ݖ) + ,൯݁(ݓ)߶ ݂〉 = 〈݁̃, ݂〉 − 〈൫߶(ݖ) + ,൯݁(ݓ)߶ ݂〉
= 0 − 〈݁, థܶ(௭)

∗ ݂ + థܶ(௪)
∗ ݂〉 = 0. 

The third equality follows from that ݁̃ is in ℳ ⊝ . This gives that ݀ܮ
ଵ is in ℒథ ⊝  .ܮ

Assume that for ݊ < ݈ there is a family of functions {݀
}ୀଵ

 ⊂ ℒథ ⊝   such thatܮ

,(ݖ)߶൫ ൯݁(ݓ)߶ +    ൫߶(ݖ), ൯݀(ݓ)߶
ି

ିଵ

ୀ

∈ ℳ. 

Let ܧ  = ,(ݖ)߶൫ ൯݁(ݓ)߶ + ∑ ,(ݖ)߶ ൫ ൯݀(ݓ)߶
ିିଵ

ୀ . By Lemma (2.2.17) again, 
there is a unique function ܧ෨ in ℳ ⊝   such thatܮ

థܶ(௭)
∗ ෨ܧ = థܶ(௪)

∗ ෨ܧ  =  ܧ
Let ܨ = ,(ݖ)߶ାଵ൫ ൯݁(ݓ)߶ + ∑   ൫߶(ݖ), ൯݀(ݓ)߶

ାଵି
ୀଵ  Since 

థܶ(௭)
∗ ,(ݖ)߶൫ൣ ൯݂൧(ݓ)߶ = థܶ(௪)

∗ ,(ݖ)߶൫ൣ ൯݂൧(ݓ)߶ = ,(ݖ)߶ିଵ ൫   ,൯݂(ݓ)߶
for each f in ℒథ and ݇ ≧ 1, simple calculations give 

థܶ(௭)
∗ = ܨ ܶథ(௪)

∗ ܨ =  .ܧ
Thus 

థܶ(௭)
∗ ൫E෩ − F൯ = థܶ(௪)

∗ ൫E෩ − F൯ = E − E = 0. 
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So letting ݀
ାଵ = E෩ − F, ݀

ାଵ is in ݇݁ݎ థܶ(௭)
∗ ∩ థܶ(௪) ݎ݁݇

∗ . Noting E෩ is orthogonal to ܮ 
, we have that for each ݂ ∈  ,ܮ

〈݀
ାଵ, ݂〉 = 〈E෩, ݂〉 − 〈F, ݂〉

= − 〈ାଵ൫߶(ݖ), ,൯݁(ݓ)߶ ݂〉 + 〈  ൫߶(ݖ), ൯݀(ݓ)߶
ାଵି, ݂〉



ୀଵ

൩ = 0. 

to get that ݀
ାଵ is in ℒథ ⊝  . Henceܮ

,(ݖ)߶ାଵ൫ ൯݁(ݓ)߶ +    ൫߶(ݖ), ൯݀(ݓ)߶
ାଵି



ୀଵ

+ ݀
ାଵ ∈ ℳ 

This gives a family of functions {݀
} ⊂ ℒథ ⊝  . satifying Property (2)ܮ

To finish the proof we only need to show that Property (3) holds. A simple calculation 
gives  

2߶(ℬ)݁ = ℋܲ൫ଵ൫߶(ݖ), ൯݁൯(ݓ)߶ = ℋܲ൫ଵ൫߶(ݖ), ൯݁(ݓ)߶ + ݀
ଵ൯ − ℋܲ(݀

ଵ)  
= ,(ݖ)߶ଵ൫ ൯݁(ݓ)߶ + ݀

ଵ − ℋܲ(݀
ଵ). 

This implies                           
  ℋܲ(݀

ଵ) = ,(ݖ)߶ଵ൫ൣ ൯݁(ݓ)߶ + ݀
ଵ൧ − 2߶(ℬ)݁ ∈ ℳ.  

Noting that ݀
ଵ − ܲℋ݀

ଵ is in ℋୄ = ݖ] − ݖ] and [ݓ −  is an invariant subspace for [ݓ
analytic Toeplitz operators, we have that 

ൣp୪ିଵ൫߶(ݖ), ൯ (݀(ݓ)߶
ଵ − ℋܲ݀

ଵ)൧ ∈ ℋୄ, 
and so          

ℋܲൣp୪ିଵ൫߶(ݖ), ൯ (݀(ݓ)߶
ଵ − ℋܲ݀

ଵ)൧ = 0, 
to get                           

ܲℋൣଵ൫߶(ݖ), ൯݀(ݓ)߶
ାଵ൧  = ℋܲ  ൛p୪ିଵ൫߶(ݖ), ]൯(ݓ)߶ ℋܲ݀

ଵ]ൟ ∈ ℳ. 
Assume that ℋܲൣଵ൫߶(ݖ), ൯݀(ݓ)߶

൧ ∈ ℳ for ݇ ≦ ݊ and any ݈ ≧ 0. To finish the proof 
by induction we only need to show that  

ܲℋൣଵ൫߶(ݖ), ൯݀(ݓ)߶
ାଵ൧ ∈ ℳ 

for any ݈ ≧ 0.                           
A simple calculation gives              

(݊ + 2)߶(ℬ)ାଵ݁

= ℋܲ ାଵ൫߶(ݖ), ൯݁(ݓ)߶ +    ൫߶(ݖ), ൯݀(ݓ)߶
ାଵି



ୀ

൩

− ൝ ℋܲ[݀
ାଵ] + ℋܲ  ,(ݖ)߶ ൫ ൯݀(ݓ)߶

ାଵି


ୀଵ

൩ൡ . 

Thus 

ℋܲ[݀
ାଵ] = ℋܲ ାଵ൫߶(ݖ), ൯݁(ݓ)߶ +    ൫߶(ݖ), ൯݀(ݓ)߶

ାଵି


ୀ

൩

− ൝(݊ + 2)߶(ℬ)ାଵ݁ + ܲℋ    ൫߶(ݖ), ൯݀(ݓ)߶
ାଵି



ୀଵ

൩ൡ. 
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Property (2) gives that the first term in the last equality is ℳ, the induction hypothesis 
gives that the last term is in ℳ and the second term belongs to ℳ since ݁ ∈ ℳ and ℳ 
is a reducing subspace for ߶(ℬ). So ܲℋ[݀

ାଵ] is in M. Therefore we conclude 
ℋܲൣଵ൫߶(ݖ), ൯݀(ݓ)߶

ାଵ൧ = ℋܲൣଵ൫߶(ݖ), )൯(ݓ)߶ ℋܲ݀
ାଵ)൧ ∈ ℳ 

to complete the proof. 
In the special case for ℋ, as ℋ is a reducing subspace for ߶(ℬ), Theorem (2.2.18) 

immediately gives the following theorem. 
Theorem (2.2.19) [64]: For a given ݁ ∈  there is a unique family of functions {݀ܮ

} ⊂
ℒథ ⊝   such thatܮ

,(ݖ)߶൫ ൯݁(ݓ)߶ +    ൫߶(ݖ), ൯݀(ݓ)߶
ି

ିଵ

ୀ

∈ ℋ 

for each ݈ ≧ 1. 
Next for a given ݁ ∈ , we will show that the function ݀ܮ

(ݖ,  given by (ݓ
݀

(ݖ, (ݓ = ,0)݁ݓ  ,ݖ)݁(ݓ (ݓ − ,ݖ)݁(ݓ)߶ݓ  (ݓ
is in ℒథ and satisfies 

,(ݖ)߶൫ ൯݁(ݓ)߶ + ,(ݖ)߶ିଵ൫ ൯݀(ݓ)߶
 ∈ ℋ 

for each ݈ ≧ 1. 
Recall that ߶ is a Blaschke product with zeros {ߙ}

 and ߙ repeats ݊ + 1 times, and 
(ݖ)߶ = ܰ where ߶is a Blaschke product with (ݖ)߶ݖ − 1 zeros. Let ݁ = థ(௭)ିథ(௪)

௭ି௪
. 

Theorem (2.2.9) gives that ݁ is in ℋ since ߶ is a Blaschke product with finite order. This 
also gives that ݁(ݖ, 0) = ߶(ݖ). 
Theorem (2.2.20)[64]: Let ߶ be a nonzero function f in ℋ. ൫߶(ݖ), ݂ ൯(ݓ)߶ ∈ ℋ, for 
some ݈ ≧ 1 if and only if ݂ =   .ߣ  for some constant݁ߣ
The proof of Theorem (2.2.20) is left to the readers. 
Theorem (2.2.20) gives that 

ℳ = ݊ܽݏ
≧ଵ 

൛൫߶(ݖ),  ൯݁ൟ(ݓ)߶

is a reducing subspace of ߶(ℬ). We will study the space. 
For each ݁(ݖ,  , letܮ in (ݓ

݀
(ݖ, (ݓ = ,0)݁ݓ  ,ݖ)݁(ݓ (ݓ − ,ݖ)݁(ݓ)߶ݓ  (ݓ

Theorem (2.2.21)[64]: For each ݁(ݖ, , ݀ܮ in (ݓ
(ݖ, is a function in ℒథ (ݓ  such that 

,(ݖ)߶൫                                      ൯݁(ݓ)߶ + ,(ݖ)߶ିଵ൫ ൯݀(ݓ)߶
 ∈ ℋ,                              (4) 

for ݈ ≧ 1. 
Proof. First we show that the function ݀

(ݖ, థ(௭)ܶ ݎ݁݇ is in (ݓ
∗ ∩ థܶ(௪) ݎ݁݇

∗ . To do this, 
by Theorem (2.2.9), write 

,ݖ)݁                                                   (ݓ =
߶(ݖ) − ߶(ݓ)

ݖ − ݓ
                                                       (5) 

for some function ߶  in the Dirichlet space ࣞ  with ߶(0) = 0. Letting ݓ = 0 in the 
above equality gives that ݁(ݖ, 0) = ݁(0, (ݖ =  .(ݖ)߶̅ݖ
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݀
(ݖ, (ݓ =  w݁(0, ,ݖ)݁(ݓ (ݓ − ,ݖ)݁(ݓ)߶ݓ (ݓ

= ߶(ݓ) ቈ
(ݖ)߶ − (ݓ)߶

ݖ − ݓ
 − (ݓ)߶ ቈ

߶(ݖ) − ߶(ݓ)
ݖ − ݓ



=
߶(ݓ)߶(ݖ) − (ݖ)߶(ݓ)߶

ݖ − ݓ
. 

This gives that ݀
(ݖ, ,ݖ)is a symmetric function of z and w. Since ݁ (ݓ ,ݖ)݁ and (ݓ  (ݓ

are symmetric functions of z and w in ܮ, we have 
ܶథ(௭)

∗ [݀
(ݖ, [(ݓ = థܶ(௭)

∗ [w݁(0, ,ݖ)݁(ݓ (ݓ − ,ݖ)݁(ݓ)߶ݓ [(ݓ
= w݁(0, (ݓ థܶ(௭)

∗ [݁(ݖ, [(ݓ − థ(௭)ܶ(ݓ)߶ݓ
∗ ,ݖ)݁ (ݓ = 0 

థܶ(௪)
∗ [݀

(ݖ, [(ݓ = థܶ(௪)
∗ [݀

(ݓ, [(ݖ = థܶ(௪)
∗ [z݁(0, ,ݓ)݁(ݖ (ݖ − ,ݓ)݁(ݖ)߶ݖ [(ݖ

= z݁(0, (ݖ థܶ(௪)
∗ [݁(ݖ, [(ݓ − (ݖ)߶ݖ థܶ(௪)

∗ ,ݖ)݁ (ݓ = 0 
to get that ݀

(ݖ, థܶ(௭) ݎ݁݇ is in (ݓ
∗ ∩ థ(௪)ܶ ݎ݁݇

∗ . 
Next we show that ݀

(ݖ,  satisfies (4). To do this, let (ݓ
ܧ = ,(ݖ)߶൫ ൯݁(ݓ)߶ + ,(ݖ)߶ିଵ൫ ൯݀(ݓ)߶

. 
We show that 

ܧ =
߶(ݖ)߶(ݖ) − ߶(ݓ)߶(ݓ)

ݖ − ݓ . 
By Theorem (2.2.9), this gives that ܧ is in ℋ. Simple calculations give 

,(ݖ)߶൫ ൯݁(ݓ)߶ = ቈ
߶ାଵ(ݖ) − ߶ାଵ(ݓ)

(ݖ)߶ − (ݓ)߶  ቈ
߶(ݖ) − ߶(ݓ)

ݖ − ݓ


=
߶ାଵ(ݖ)߶(ݖ) − ߶ାଵ(ݖ)߶(ݓ) − ߶ାଵ(ݓ)߶(ݖ) + ߶ାଵ(ݖ)߶(ݓ)

൫߶(ݖ) − ݖ)൯(ݓ)߶ − (ݓ
 

and 

,(ݖ)߶ିଵ൫ ൯݀(ݓ)߶
 = ቈ

߶(ݖ) − ߶(ݓ)
(ݖ)߶ − (ݓ)߶  ቈ

߶(ݓ)߶(ݖ) − (ݖ)߶(ݓ)߶
ݖ − ݓ 

=
߶ାଵ(ݖ)߶(ݓ) − ߶(ݖ)߶(ݓ)߶(ݖ) − ߶(ݓ)߶(ݖ)߶(ݓ) + ߶ାଵ(ݓ)߶(ݖ)

൫߶(ݖ) − ݖ)൯(ݓ)߶ − (ݓ
 

Thus 
ܧ = ,(ݖ)߶൫ ൯݁(ݓ)߶ + ,(ݖ)߶ିଵ൫ ൯݀(ݓ)߶



=
߶(ݖ)߶(ݖ)൫߶(ݖ) − ൯(ݓ)߶ − ߶(ݓ)߶(ݓ)൫߶(ݖ) − ൯(ݓ)߶

൫߶(ݖ) − ݖ)൯(ݓ)߶ − (ݓ

=
߶(ݖ)߶(ݖ) − ߶(ݓ)߶(ݓ)

ݖ − ݓ
. 

Since ଵ൫߶(ݖ), ൯݁(ݓ)߶ + ݀
 is in ℋ and ଵ൫߶(ݖ),  ൯݁ is in ࣥథ, we conclude that(ݓ)߶

݀
 is in ࣥథ. Hence ݀

 is in ℒథ. This completes the proof. 
Now we are ready to prove Theorem (2.2.1). 

Since ℳ is orthogonal to ℳ, we have 
ℳ = ℳ ⊕ ℳ

ୄ  = ℳ ⊕ ℳ ⊕ [ℳ
ୄ ∩ ℳୄ]. 

Thus 
ܮ = ݁ܥ ⊕ [ℳ ∩ [ܮ ⊕ [ℳ

ୄ ∩ ℳୄ ∩  .[ܮ
So e is orthogonal to ݁, and 

ܮ ⊝ ݁ = [ℳ ∩ ܮ) ⊝ ݁)] ⊕ [ℳ
ୄ ∩ ℳୄ ∩ ܮ) ⊝ ݁)]. 
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Let  ܲ denote the orthogonal  projection  from  ܪଶ(ॻଶ) onto  the  space  ݁ܥ.  Let ݀ =
݀

 − ܲ݀
 . Then ݀ is orthogonal to ݁. Theorems (2.2.20) and (2.2.21) give  

,(ݖ)߶൫                                      ൯݁(ݓ)߶ + ,(ݖ)߶ିଵ൫ ൯݀(ݓ)߶ ∈ ℋ,                               (6) 
for ݈ ≧ 1. By Theorem (2.2.19), there is a function ݀

 ∈ ℒథ ⊝   such thatܮ

,(ݖ)߶൫ ൯݁(ݓ)߶ +    ൫߶(ݖ), ൯݀(ݓ)߶
ି  ∈ ℳ

ିଵ

ୀ

 , 

for each ݈ ≧ 1. Thus 
݀ − ݀

ଵ = ,(ݖ)߶ଵ൫ ൯݁(ݓ)߶ + ݀ − ൫ଵ൫߶(ݖ), ൯݁(ݓ)߶ + ݀
ଵ൯  ∈ ℋ. 

 So ݀ − ݀
ଵ is in ܮ ⊝ ݁. Write 

݀ − ݀
ଵ = ݁′ + ݁ᇱᇱ 

for ݁′ ∈ ℳ ∩ ܮ) ⊝ ݁) and ݁ᇱᇱ ∈ ℳୄ ∩ ܮ) ⊝ ݁). Thus (6) gives that the following 
function is in ℋ: 

,(ݖ)߶ଶ൫ ൯݁(ݓ)߶ + ,(ݖ)߶ଵ൫  ൯݀(ݓ)߶ = 
,(ݖ)߶ଶ൫ൣ ൯݁(ݓ)߶ + ,(ݖ)߶ଵ൫  ൯݀(ݓ)߶

ଵ + ݀
ଶ൧ + ,(ݖ)߶ଵ൫ൣ ′൯݁(ݓ)߶ + ݀ᇱ

ଵ ൧
+ ,(ݖ)߶ଵ൫ൣ ′′൯݁(ݓ)߶ + ݀ᇲᇲ

ଵ ൧ − ൫݀
ଶ + ݀ᇱ

ଵ + ݀ᇲᇲ
ଵ ൯. 

Theorem (2.2.18) gives that the first term and the second term in the right-hand side are 
in ℳ and the third term is in ℳୄ. Thus the last term must be in ℋ and hence 

݀
ଶ + ݀ᇱ

ଵ + ݀ᇲᇲ
ଵ ∈ ℋ ∩ థܶ(௭) ݎ݁݇

∗ ∩ థܶ(௪)
∗ =  ܮ

By Theorem (2.2.18) again, we have 
݀

ଶ + ݀ᇱ
ଵ + ݀ᇲᇲ

ଵ ∈ ℒథ ⊝  ,ܮ
to get 

݀
ଶ + ݀ᇱ

ଵ + ݀ᇲᇲ
ଵ = 0 

This gives 
ℋܲ݀ᇲᇲ

ଵ = − ൫ ℋܲ݀ᇲ
ଵ + ܲℋ݀

ଶ൯ 
On the other hand, Theorem (2.2.18) gives ℋܲ݀ᇲ

ଵ + ℋܲ݀
ଶ is in ℳ and ℋܲ݀ᇲᇲ

ଵ  is in ℳୄ. 
Thus ℋܲ݀ᇲᇲ

ଵ = 0, and so simple calculations give 
ฮ݀ᇲᇲ

ଵ ฮ
ଶ

= 〈݀ᇲᇲ
ଵ , ݀ᇲᇲ

ଵ 〉 = 〈݀ᇲᇲ
ଵ , ,(ݖ)߶ଵ൫ ′′൯݁(ݓ)߶ + ݀ᇲᇲ

ଵ 〉
= 〈݀ᇲᇲ

ଵ , ,(ݖ)߶ଵ൫ℋൣ ′′൯݁(ݓ)߶ + ݀ᇲᇲ
ଵ ൧〉

= ℋ൫݀ᇲᇲ〉
ଵ ൯, ,(ݖ)߶ଵ൫ ′′൯݁(ݓ)߶ + ݀ᇲᇲ

ଵ 〉 = 0. 
Hence we have that ݀ᇲᇲ

ଵ = 0, to get 
,(ݖ)߶ଵ൫ ൯݁ᇱᇱ(ݓ)߶ ∈ ℋ. 

Theorem (2.2.20) gives that ݁′′ = Since ݁ᇱᇱ .ߣ , for some constant݁ߣ ∈ ℳୄ ∩ ܮ) ⊝ ݁) 
we conclude that ݁′′ = 0 to get ݀ = ݀

ଵ + ݁′. Letting ݁̃ = −݁′ ∈ ℳ, we obtain 
݀

ଵ = ݀ + ݁̃ = ݀
 − ܲ݀

 + ݁̃ = ݀
 + ݁̃ +  ݁ߣ

as desired. The last equality follows from that ܲ݀
 = ݁ߣ  for some constant. This 

completes the proof. 
Theorems (2.2.1) and (2.2.19) are useful in studying reducing subspaces of ߶(ℬ). 

we will use them to show that there always exists a unique reducing subspace ℳ for 
߶(ℬ) such that the restriction of ߶(ℬ) on ℳ is unitarily equivalent to the Bergman shift. 
The existence of such a reducing subspace is the main result in [68]. Moreover, we will 
show that such reducing space is unique. We call ℳ to be the distinguished reducing 
subspace for ߶(ℬ). In fact, ℳ is unitarily equivalent the subspace ݊ܽݏ൛߶ᇱథ; ݉ =
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0, . . . , ݊, . . . ൟ of the Bergman space [27] if ߶(0) =  0. Furthermore we will show that only 
the multiplication operator by a finite Blaschke product has such nice property. 
Assume that ߶  be a Blaschke product of order N with ߶(0) =  0. Recall ݁(ݖ, (ݓ =
థ(௭)ିథ(௪)

௭ି௪
 . The following lemmas will be used in the proofs of Theorems (2.2.25) and 26. 

The proofs of those lemmas are left to the readers. 
Lemma (2.2.22) [64]: Let f be a function in ܪଶ(ॻଶ). Then 

,(ݖ)߶൫(ݖ)߶ℋൣ ൯݂൧(ݓ)߶ =
݊ + 1
݊ + 2 ,(ݖ)߶ାଵ൫ℋൣ  .൯݂൧(ݓ)߶

Lemma (2.2.23) [64]:  Let ߶(ݖ) be an inner function satisfying థ(௭)ିథ(௪)
௭ି௪

∈  ଶ(ॻଶ), thenܪ
(ݖ)߶ − (ݓ)߶

ݖ − ݓ
⊥  .ଶ(ॻଶ)ܪ(ݖ)߶

Lemma (2.2.24) [64]:  For an inner function ߶(ݖ), థ(௭)ିథ(௪)
௭ି௪

 is in ܪଶ(ॻଶ) iff ߶(ݖ) is a 
finite Blaschke product. Moreover, for a Blaschke product f of order N, 

‖݁‖ଶ = ܰ. 
We show the first main result. 
Theorem (2.2.25) [64]: Let ߶  be a Blaschke product of order N. There is a unique 
reducing subspace ℳ  for ߶(ℬ)  such that ߶(ℬ)|ℳబ is unitarily equivalent to the 
Bergman shift. In fact, 

 ℳ = span≧൛൫߶(ݖ), ൯݁ൟ(ݓ)߶ , ܽ݊݀   ቊ
,(ݖ)߶൫ ൯݁(ݓ)߶

√݈ + 1√ܰ
ቋ



ஶ

 

form an orthonormal basis of ℳ. 
Proof. First we show that there exists a reducing subspace ℳ  of ߶(ℬ)  such that 
߶(ℬ)|ℳబ  is unitarily equivalent to the Bergman shift. 
Let 

ℳ = span≧൛൫߶(ݖ),  ൯݁ൟ(ݓ)߶
As pointed out before, Theorem (2.2.20) gives that ℳ is a reducing subspace of ߶(ℬ). 
Here  ݁(ݖ, (ݓ = థ(௭)ିథ(௪)

௭ି௪
. 

A simple calculation gives 
ฮ൫߶(ݖ), ൯݁ฮଶ(ݓ)߶

ଶ
= (݈ + 1)‖݁‖ଶ

ଶ, 
and 
,(ݖ)߶൫〉   ,൯݁(ݓ)߶ ,(ݖ)߶൫ 〈൯݁(ݓ)߶ = 0,  

for ݊ ≠ ݈ . Let ܧ = ൫థ(௭),థ(௪)൯బ

√ାଵ‖బ‖మ
 . Thus {ܧ}  is an orthonormal basis of ℳ . By 

Lemma (2.2.22) we have 
߶(ℬ)ൣ൫߶(ݖ), ൯݁൧(ݓ)߶ = ℋܲൣ߶(ݖ)൫߶(ݖ), ൯݁൧(ݓ)߶

= ℋܲ 
݊ + 1
݊ + 2

,(ݖ)߶ାଵ൫ ൯݁൨(ݓ)߶ =
݊ + 1
݊ + 2

,(ݖ)߶ାଵ൫  ,൯݁(ݓ)߶
to obtain 

߶(ℬ)ܧ =
߶(ℬ)ൣ൫߶(ݖ), ൯݁൧(ݓ)߶

√݊ + 1‖݁‖ଶ
=

݊ + 1
݊ + 2

,(ݖ)߶ାଵ൫ ൯݁(ݓ)߶

√݊ + 1‖݁‖ଶ
= ඨ

݊ + 1
݊ + 2

 .ାଵܧ
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Clearly, ߶(ℬ)∗ ܧ = 0. This implies that ߶(ℬ)|ℳబ is unitarily equivalent to the Bergman 
shift.  
Suppose that ℳଵ is a reducing subspace of ߶(ℬ) and ߶(ℳ)|ℳభ  to the Bergman shift, 
i.e., there is an orthonormal basis {ܨ} of ℳଵ  such that 

߶(ℬ)ܨ = ඨ
݊ + 1
݊ + 2

 ାଵܧ

Next we will show that ℳଵ = ℳ. Observe 

ℋܲൣ൫߶(ݖ) + ൧ܨ൯(ݓ)߶ = 2߶(ℬ)ܨ =
2

√2
 .ଵܨ

Thus  
ฮ ℋܲൣ൫߶(ݖ) + ൧ฮܨ൯(ݓ)߶

ଶ
= 2. 

Since  
ܶథ(௭)

∗ ܨ = ߶(ℬ)∗ܨ = 0, 
a simple calculation gives 

ฮ൫߶(ݖ) + ฮܨ൯(ݓ)߶
ଶ

= 〈൫߶(ݖ) + ,ܨ൯(ݓ)߶ ൫߶(ݖ) + 〈ܨ൯(ݓ)߶
= ,ܨ(ݖ)߶〉 〈ܨ(ݖ)߶ + ,ܨ(ݓ)߶〉 〈ܨ(ݓ)߶ + ,ܨ(ݖ)߶〉 〈ܨ(ݓ)߶
+ ,ܨ(ݓ)߶〉 〈ܨ(ݖ)߶ = ,ܨ〉2 〈ܨ = 2. 

Thus we obtain 
ܲℋ఼ൣ൫߶(ݖ) + ൧ܨ൯(ݓ)߶ = 0 

because 
ฮ൫߶(ݖ) + ฮܨ൯(ݓ)߶

ଶ
= ฮ ℋܲൣ൫߶(ݖ) + ൧ฮܨ൯(ݓ)߶

ଶ
+ ฮܲℋ఼ൣ൫߶(ݖ) + ൧ฮܨ൯(ݓ)߶

ଶ
. 

So ଵ൫߶(ݖ), ܨ൯(ݓ)߶ = ൫߶(ݖ), ܨ  is in ℋ. Theorem (2.2.20) gives thatܨ൯(ݓ)߶ =  ݁ߣ
for some constant ߣ. Thus ℳ  is a subspace of ℳଵ but ℳ is a reducing subspace of 
߶(ℬ)|ℳభ  , which is unitarily equivalent to the Bergman shift. But the Bergman shift is 
irreducible. So we conclude that ℳଵ = ℳ, to complete the proof. 
For ߶(ݖ) ∈ థหܯஶ(॰), let ܵథ denote ℋܲܪ

ℋ
. Then 

ܷ∗ܵథܷ =  ,థܯ
where ܯథ is the multiplication operator on ܮ

ଶ (॰). Indeed, for each ݃ ∈ ℋ and any ݖ ∈
॰, we have 

൫ܷ∗ܵథ݃൯(ݖ) = ൫ܵథ݃൯(ݖ, (ݖ = ( ℋܲ߶݃)(ݖ, (ݖ = (߶݃ − ܲℋ఼߶݃)(ݖ, (ݖ = ,ݖ)݃(ݖ)߶ (ݖ
= ൫ܯథܷ∗݃൯(ݖ). 

The last equality follows from Lemma (2.2.8). This gives that ܷ∗ܵథ = థܷܯ  . Thus 
ܷ∗ܵథܷ =  .థܯ
Theorem (2.2.25) tells us that for each finite Blaschke product ߶, ܯథ has a unique the 
distinguished reducing subspace. The following theorem shows that only a multiplication 
operator by a finite Blaschke product has such property. 
Theorem (2.2.26) [64]: Let  ߶ ∈ ஶ(॰)ܪ . Then ܯథ  acting on ܮ

ଶ (॰)  has the 
distinguished reducing subspace iff ߶ is a finite Blaschke product. 
Proof. We only need to prove that if ܯథ has the distinguished reducing subspace, then ߶ 
is a finite Blaschke product. Now, assume ܯథ has the distinguished reducing subspace 
ℳ such that ܯథห

ℳ
 is unitarily equivalent to the Bergman shift ܯ௭, that is, there exists a 
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unitary operator ܷ: ܯ → ܮ
ଶ (॰) such that ܷ∗ܯ௭ܷ = థหܯ

ℳ
. Let ܭఒ

ℳ be the reproducing 
kernel of ℳ for ߣ ∈ ॰. Clearly, ܭఒ

ℳ ≠ 0, except for at most a countable set. Thus we 
have 
ห〈ℳథܭఒ

ℳ , ఒܭ
ℳ〉ห = ఒܭฮ|(ߣ)߶|

ℳฮ
ଶ

= ห〈ܯ௭ܷܭఒ
ℳ , ఒܭܷ

ℳ〉ห ≦ ఒܭ௭‖ ฮܷܯ‖
ℳฮ

ଶ 
≦ ฮܭఒ

ℳฮ
ଶ

, 
to get that |߶(ߣ)| ≦ 1 except for at most a countable set. So ‖߶‖ஶ ≦ 1 Since ܵథ acting 
on ℋ = ଶ(ॻଶ)ܪ ⊖ ݖ] − థܯ is unitarily equivalent to [ݓ  acting on ܮ

ଶ (॰)  this means 
that ܵథ, restricted on its corresponding reducing subspace ࣨ, is unitarily equivalent to 
௭ܯ  acting on  ܮ

ଶ (॰), that is, there exists a unitary operator ܸ ∶ ࣨ → ܮ 
ଶ (॰) such that 

௭ܸܯ∗ܸ = ܵథห
ࣨ

. Set ݁ = ܸ∗݁
ᇱ  , where ݁

ᇱ = √݊ + ݊   forݖ1 = 0,1, . .. . Then ܵథ
∗ ݁ =

0, and hence ܯథ(௭)
∗ ݁ = 0 and ܯథ(௪)

∗ ݁ = 0, where ܯథ(௭) and ܯథ(௪) are the operators 
acting on ܪଶ(ॻଶ). Noticing ܵథ(௭) = ܵథ(௪), we have 

ቛܸܵ൫థ(௭)ାథ(௪)൯݁ቛ
ଶ

= ݖ‖ + ଶ‖ݖ = 2, 
to obtain 

,݁(ݖ)߶〉 〈 ݁(ݓ)߶ = థ(௪)ܯ〉
∗ ݁, థ(௭)ܯ

∗ ݁〉 = 0. 
Thus    

ฮ൫߶(ݖ) + ൯݁ฮ(ݓ)߶
ଶ

= ‖ଶ݁(ݖ)߶‖ + ‖ଶ݁(ݓ)߶‖ ≦ 2. 
Since    

2 = ቛܸܵ൫థ(௭)ାథ(௪)൯݁ቛ
ଶ

= ฮV ℋܲ ൫߶(ݖ) + ൯݁ฮ(ݓ)߶
ଶ

=  ฮ ℋܲ  ൫߶(ݖ) + ൯݁ฮ(ݓ)߶
ଶ

, 
we have    

൫߶(ݖ) + ൯݁(ݓ)߶ ∈ ℋ, 
 
to obtain       

݁ = ܿ
(ݖ)߶ − (ݓ)߶

ݖ − ݓ
 

for some constant c. This follows from Theorem (2.2.20). 
On the other hand, 

ฮ൫߶(ݖ) + ൯݁ฮ(ݓ)߶
ଶ

= ‖ଶ݁(ݖ)߶‖ + ‖ଶ݁(ݓ)߶‖ ≦ 2. 
As showed above, ‖߶‖ஶ ≦ 1. We have that ‖߶(ݖ)݁‖ଶ = 1 to get  

න ଶ|(ݖ)߶|) − 1)|݁|ଶ݀݉ଶ

 

ॻమ
= 0. 

Thus |߶(ݖ)| = 1 almost all on the unit circle and so ߶  is an inner function. Lemma 
(2.2.24) gives that ߶ is a finite Blaschke product. This completes the proof. 
we will first show that every nontrivial minimal reducing subspace of ߶(ℬ) is orthogonal 
to the distinguished subspace ℳ  if it is other than ℳ . We will show the proof of 
Theorem (2.2.3). 
Theorem (2.2.27) [64]: Suppose that Ω is a nontrivial minimal reducing subspace for 
߶(ℬ). If Ω does not equal ℳ then Ω is a subspace of ℳ

ୄ. 
Proof. By Lemma (2.2.16), there is a function e in Ω ∩ ݁  such thatܮ = ݁ߣ + ݁ଵ for 
some constant ߣ and a function e1 in ℳ

ୄ ∩  ,. By Theorem (2.2.18)ܮ
,(ݖ)߶ଵ൫ ൯݁(ݓ)߶ + ݀

ଵ ∈ Ω. 
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Here ݀
ଵ is the function constructed in Theorem (2.2.18). Let 

E = ϕ(ℬ)∗[ϕ(ℬ)e] −
1
2

e. 

Since ଵ൫߶(ݖ),    ൯݁ is in ℋ, we obtain(ݓ)߶

ϕ(ℬ)݁ =
,(ݖ)߶ଵ൫ ൯݁(ݓ)߶

2  

Simple calculations give 

ܧ = ߶(ℬ)∗{ϕ(ℬ)[݁ߣ + ݁ଵ]} −
1
2

݁ߣ] + ݁ଵ] = −
1
2

߶(ℬ)∗
ℋܲ݀భ

ଵ . 

The sixth equality holds because (ݖ)߶ଵ൫  + ൯݁ଵ(ݓ)߶ + ݀భ
ଵ ∈ ℋ . The eighth equality 

follows from that ݀భ
ଵ

 is in ℒథ. We claim that ܧ ≠ 0. If this is not true, we would have 
1
2

߶(ℬ)∗
ℋܲ݀భ

ଵ = 0 
This gives that ℋܲ݀భ

ଵ  is in ܮ. And hence 
0 = 〈 ℋܲ݀భ

ଵ , ݀భ
ଵ 〉 = ฮ݀భ

ଵ ฮ
ଶ

. 
This gives that ݀భ

ଵ = 0 . Thus we obtain that  ଵ൫߶(ݖ) + ൯݁ଵ(ݓ)߶ ∈ ℋ . By Theorem 
(2.2.20), we get that ݁ଵ  is linearly dependent on ݁ . This contradicts that ݁ଵ ∈ ℳ

ୄ . By 
Theorem (2.2.18), ℋܲ݀భ

ଵ  is in  ℳ and so is  ܧ = − ଵ
ଶ

߶(ℬ)∗
ℋܲ݀భ

ଵ .  This implies that E is in 
Ω ∩ ℳ

ୄ . We conclude that  Ω ∩ ℳ
ୄ = Ω since Ω is minimal to complete the proof. 

Lemma (2.2.28) [64]: If ℳ  and ࣨ  are two mutually orthogonal reducing subspaces of 
ϕ(ℬ), then ℳ෩  is orthogonal to ෩ࣨ .    
Proof.  Let ݂ = ∑ ݉,≧(ݓ)߶(ݖ)߶  and g = ∑ n,≧(ݓ)߶(ݖ)߶ for finite numbers 
of elements m୪୩ ∈ ℳ and n୪୩ ∈ ࣨ. Then  
〈݂, ݃〉 = 〈  ݉(ݓ)߶(ݖ)߶

,≧

,  ݊(ݓ)߶(ݖ)߶
,≧

〉 =   ିభ݉(ݓ)߶ିభ(ݖ)߶〉 , ݊〉
భ,భ≧,≧

. 

Since ℳ is orthogonal to ࣨ and both ℳ and ࣨ are invariant subspaces of థܶ(௭)
∗  and థܶ(௪)

∗ , 
the above inner product 〈݂, ݃〉 must be zero. Thus we conclude that ℳ෩  is orthogonal to  ෩ࣨ  
to complete the proof. 
Suppose that {݁ଵ

(ெ), . . . , ݁ெ
(ெ)} forms a basis of ℳ ∩  . First we showܮ

൜݁ଵ ݊ܽݏ  
(ெ), . . . , ݁ெ

(ெ); ݀
భ

(ಾ)
ଵ , . . . , ݀

ಾ
(ಾ)

ଵ ൠ ⊂  . ℳܮ

Note that {݁ଵ
(ெ), . . . , ݁ெ

(ெ); ݀
భ

(ಾ)
ଵ , . . . , ݀

ಾ
(ಾ)

ଵ } are contained in ℒథ. It suffices to show  

    ൜݁ଵ
(ெ), . . . , ݁ெ

(ெ); ݀
భ

(ಾ)
ଵ , . . . , ݀

ಾ
(ಾ)

ଵ ൠ ⊂ ℳ෩ .   

Since ℳ ∩ ܮ  contains {݁ଵ
(ெ), . . . , ݁ெ

(ெ)}  for each ݈, ݇ ≧ 0, ݅݁(ݓ)߶(ݖ)߶
(ܯ)  is in ℳ෩ . By 

Theorem (2.2.18), we have    
,(ݖ)߶ଵ൫ ൯݁(ݓ)߶

(ெ) + ݀


(ಾ)
ଵ ∈ ℳ. 

So we have that ݀


(ಾ)
ଵ ∈ ℳ෩ , to obtain 
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൜݁ଵ ݊ܽݏ  
(ெ), . . . , ݁ெ

(ெ); ݀
భ

(ಾ)
ଵ , . . . , ݀

ಾ
(ಾ)

ଵ ൠ ⊂ ℳ෩ܮ  . 

Next we will show that {eଵ
(), . . . , e୯

(); d
ୣభ

()
ଵ , . . . , d

ୣ౧
()

ଵ } are linearly independent. Suppose 

that for some constants ߣ and ߤ, 

 ݁ߣ
(ெ)



ୀଵ

+  ݀ߤ
(ಾ)

ଵ


ୀଵ

= 0. 

Thus 

 ݁ߣ
(ெ)



ୀଵ

= −  ݀ߤ
(ಾ)

ଵ


ୀଵ

. 

The right-hand side of the above equality is in ܮ but the left-hand side of the equality is 
orthogonal to ܮ. So we have 

 ݁ߣ
(ெ)



ୀଵ

= 0 

and 

 ݀ߤ
(ಾ)

ଵ


ୀଵ

= 0 

The first equality gives that ߣ = 0 and the second equality gives 
݀∑ ఓ

(ಾ)
సభ

ଵ = 0. 

Because ℳ is orthogonal to ℳ, by Theorem (2.2.20), we have 

 ݁ߤ
(ெ)



ୀଵ

= 0 

This gives that ߤ = 0. Hence {݁ଵ
(ெ), . . . , ݁ெ

(ெ); ݀
భ

(ಾ)
ଵ , . . . , ݀

ಾ
(ಾ)

ଵ } are linearly independent. So 

far, we have obtained      
ℳ෩ܮ ݉݅݀  ≧   .ܯݍ2
To finish the proof, we only need to show that    
ℳ෩ܮ ݉݅݀  ≧   .ܯݍ2
To do so, we consider the decomposition of ℋ,  

ℋ = ℳ⨁ℳ⨁[ℳ
ୄ ∩ ℳୄ], 

and 
ܮ = [ℳ ∩ ]⨁[ℳܮ ∩ ]⨁{[ℳܮ

ୄ ∩ ℳୄ] ∩  .{ܮ
Then       

݀݅݉{[ℳ
ୄ ∩ ℳୄ] ∩ {ܮ = ܮ݉݅݀ − ݀݅݉[ℳ ∩ [ܮ  −  [ℳ ∩ [ܮ  = ܰ − 1 −  .ܯݍ

Letting = [ℳ
ୄ ∩ ℳୄ] , Lemma (2.2.28) gives 

ࣥ = ℳ෪ ⨁ℳ෩ ⨁ ෩ࣨ , 
and   

ℒథ = ℳబ෪ܮ ℳ෩ܮ⨁ ܮ⨁ ෩ࣨ , 
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Replacing ℳ by ࣨ in the above argument gives  
ܮ ݉݅݀ ෩ࣨ ≧ 2(ܰ − 1 −  .(ܯݍ

By Theorem (2.2.15), so we have 
2ܰ − 1 = 1 + ℳ෩ܮ]݉݅݀ ] + ܮ]݉݅݀ ෩ࣨ ]. 

Hence    
dim[ܮℳ෩ ] = 2N − 2 − dim[ܮ ෩ࣨ ] ≦ 2N − 2 − 2(ܰ − 1 − (ܯݍ = 2qM 

This completes the proof. 
Lemma (2.2.29) [64]: Suppose that ℳ , ࣨ , and Ω are three distinct nontrivial minimal 
reducing subspaces of ߶(ℬ) such that 

Ω ⊂ ℳ⨁ࣨ 
If ℳ, ࣨ, and Ω are orthogonal to ℳ, then  

ℳ෩ ∩ Ω෩ = ෩ࣨ ∩ Ω෩ = {0}. 
Proof.  Since the intersection ℳ෩ ∩ Ω෩ is also a reducing subspace of the pair of isometries 

థܶ(௭)
∗  and థܶ(௪)

∗ , the Wold decomposition of the pair of the pair of isometries on ℳ෩ ∩ Ω෩ 
gives 

ℳ෩ ∩ Ω෩ = ⨁
݈,݇≧0

ℳ෩ܮ݇(ݓ)߶݈(ݖ)߶ ∩ஐ෩ , 

where ܮℳ෪ ∩Ω෩  is the wandering space given by 
Lℳ෩ ∩ஐ෩ =  ker థܶ(௭)

∗ ∩ థܶ(௪)
∗ ∩ ℳ෩ ∩ Ω෩

= ൣker థܶ(௭)
∗ ∩ థܶ(௪)

∗ ∩ ℳ෩ ൧ ∩ ൣker థܶ(௭)
∗ ∩ థܶ(௪)

∗ ∩ Ω෩൧ = ℳ෩ܮ ∩ ஐ෩ܮ . 
To prove that ℳ෩ ∩ Ω෩ = {0}, it suffices to show  

ℳ෩ܮ ∩ ஐ෩ܮ = {0}. 
To do this, let ݍ ∈ ℳ෩ܮ ∩ ஐ෩ܮ . By Theorem (2.2.2), there are functions ݁ெ, ݁̃ெ ∈ ℳ ∩    andܮ 
݁ஐ, ݁̃ஐ ∈ Ω ∩   such thatܮ 

ݍ = ݁ெ + ݀̃ಾ
ଵ = ݁ஐ + ݀̃ಈ

ଵ  

The above two equalities give 
݁ெ − ݁ஐ = ݀̃ಾି̃ಈ

ଵ  . 
On the other hand, ݀̃ಾି̃ಈ

ଵ  is orthogonal to ܮ. Thus 
 ݀̃ಾି̃ಈ

ଵ = ݁ெ − ݁ஐ = 0.  
This gives    

݁ெ = ݁ஐ. 
But ݁ெ  is in ℳ  and ݁ஐ  is in Ω  and hence both ݁ெ  and ݁ஐ  are zero. Since ݀̃ಾି̃ಈ

ଵ = 0 , 
Theorem (2.2.20) implies that ݁̃ெ − ݁̃ஐ  linearly depends on ݁ . Since both ℳ  and Ω are 
orthogonal to ℳ, we have that ݁̃ெ = ݁̃ஐ. Thus we obtain ݁̃ெ = 0 to conclude that ݍ = 0, as 
desired. So 

ℳ෩ ∩ Ω෩ = {0} 
Similarly we obtain 

෩ࣨ ∩ Ω෩ = {0} 
Lemma (2.2.30) [64]: Suppose that ℳ , ࣨ , and Ω are three distinct nontrivial minimal 
reducing subspaces of ߶(ℬ) such that 

Ω ⊂ ℳ⨁ࣨ 
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If ℳ, ࣨ, and ߗ are orthogonal to ℳ, then 
ܲℳ෩ ஐ෩ܮ = ெ෩ܮ , 

and 
ܲ ෩ࣨ ஐ෩ܮ = ே෩ܮ , 

where ܲℳ෩  denotes the orthogonal projection from ܪଶ(ॻଶ) onto ℳ෩ . 
Proof. Since ℳ is orthogonal to ࣨ, Lemma (2.2.28) gives that ℳ෩  is orthogonal to ෩ࣨ  and 

Ω෩ ⊂ ℳ෩ ⨁ ෩ࣨ . 
We will show that ܲℳ෩ ஐ෩ܮ = ெ෩ܮ  . 
Since Ω ⊂ ℳ⨁ࣨ, we have 

Ω ∩ ܮ ⊂ [ℳ ∩ ࣨ]⨁[ܮ ∩  .[ܮ
For each ݁(ஐ) ∈ Ω ∩ , there are two functions ݁()ܮ ∈ ℳ ∩  and ݁()ܮ ∈ ࣨ ∩ ܮ  such 
that 

݁(ஐ) = ݁() + ݁(), 
݀(ಈ)

ଵ = ݀()
ଵ + ݀(ొ)

ଵ . 
By Theorem (2.2.2), ݀()

ଵ  is in ℳ෩  and ݀(ొ)
ଵ

 is in ෩ࣨ . Since ℳ, ࣨ, and Ω are orthogonal to 
ℳ, the above decompositions are unique. Thus 

Pℳ෩ ݁(ஐ) = ݁(), 
and      

ܲℳ෩ ݀(ಈ)
ଵ = ݀()

ଵ . 
So for each f = ݁(ஐ) + ݀̃(ಈ)

ଵ ∈ ஐ෩ܮ , where ݁(ஐ) and ݁̃(ஐ), we have 
 ܲℳ෩ ݂ = ݁() + ݀()

ଵ . 
is in ܮ෩  to obtain 

ܲℳ෩ ஐ෩ܮ ⊂ ℳ෩ܮ . 
To prove that ܲℳ෩ ஐ෩ܮ ⊂ ℳ෩ܮ , it suffices to show that 

ܲℳ෩ : ஐ෩ܮ → ℳ෩ܮ  
is subjective. If this is not so, by Theorem (2.2.2), there are two functions ݁, ݁̃ ∈ ℳ ∩  ܮ
such that 0 ≠ ݁ + ݀̃

ଵ  is orthogonal to ܲℳ෩ ஐ෩ܮ . 
Assume that {݁ଵ, . . . , ݁ஐ} is a basis of Ω ∩     . Thenܮ

ܲℳ෩ ஐ෩ܮ = ଵ݁} ݊ܽݏ
(ெ), . . . , ݁ஐ

(ெ); ݀
భ

(ಾ)
ଵ , . . . , ݀

ಈ
(ಾ)

ଵ } 

If ݁ ≠ 0, then 〈݁, ݁୧
(ெ)〉 = 0, for 1 ≦ ݅ ≦  Ω. Thusݍ

0 = 〈݁, ݁
(ெ)〉 = 〈݁, ݁

(ெ) + ݁
(ே)〉 = 〈݁, ݁〉, 

and   
〈݁, ݀

ଵ 〉 = 0, 
For each  1 ≦ i ≦ qΩ. So e is orthogonal to Lஐ෩ = span{eଵ, . . . , e୯ஐ; dୣభ

ଵ , . . . , dୣ౧ಈ
ଵ }. Noting e 

is in L, we see that e is orthogonal to ߶(ݖ)߶(ݓ)ܮΩ෩ , for each ݈ > 0 or ݇ > 0. This gives 
that e is orthogonal to Ω෩ and hence orthogonal to Ω. Since e is in ℳ, e must be orthogonal 
to the closure of ܲℳΩ ∈ ℳ, which is also a reducing subspace of ߶(ℬ). Therefore e is 
orthogonal to ℳ, which is a contradiction. 
If ݁ = 0, then ݀̃

ଵ ≠ 0 and 
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0 = 〈݀̃
ଵ, ݀


(ಾ)

ଵ 〉 = 〈݀̃
ଵ, ܲℳ෩ ݀

ଵ 〉. 

and         
〈݀̃

ଵ, ݁〉 = 0 
for each 1 ≦ i ≦ qΩ. This gives that ݀̃

ଵ is orthogonal to ܮஐ෩ . But ݀̃
ଵ is also in ℒథ. We have 

that for any ∈ ஐ෩ܮ  , 
〈݀̃

ଵ, 〈݂(ݓ)߶(ݖ)߶ = 0, 
for ݈ > 0 or ݇ > 0. We have that ݀̃

ଵ is orthogonal to Ω෩ and hence orthogonal to Ω to obtain 
that ℋܲ݀̃

ଵ is orthogonal to Ω. On the other hand, by Theorem (2.2.18), ℋܲ݀̃
ଵ is in ℳ. Thus 

ℋܲ݀̃
ଵ is orthogonal to the closure of ܲℳΩ and so ℋܲ݀̃

ଵ must be zero because the closure of 
ܲℳΩ equals ℳ. Therefore, 
0 = 〈 ℋܲ݀̃

ଵ, ,(ݖ)߶ଵ൫ ൯݁̃(ݓ)߶ + ݀̃
ଵ〉 = 〈݀̃

ଵ, ,(ݖ)߶ଵ൫ ൯݁̃(ݓ)߶ + ݀̃
ଵ〉 = 〈݀̃

ଵ, ݀̃
ଵ〉 = ฮ݀̃

ଵฮ
ଶ

. 
The second equality follows from that ଵ൫߶(ݖ), ൯݁̃(ݓ)߶ + ݀̃

ଵ is in ℋ and the third equality 
follows from that ݀̃

ଵ is orthogonal to ଵ൫߶(ݖ), ൯݁̃. This gives that ݀̃(ݓ)߶
ଵ = 0, which is a 

contradiction. We have obtained that ܲℳ෩ : ஐ෩ܮ → ℳ෩ܮ  is subjective and hence 
ܲℳ෩ ஐ෩ܮ = ℳ෩ܮ . 

Similarly we obtain 
ܲ ෩ࣨ ஐ෩ܮ = ܮ ෩ࣨ . 

This completes the proof. 
 First we will show 

ܲℳ = ℋܲܲℳ෩ . 
Let ଵࣨ denote the orthogonal complementary of ℳ⨁ࣨ in ℋ. Write 

ℋ = ℳ⨁ࣨ⨁ ଵࣨ 
Lemma (2.2.28) gives 

ℋ෩ = ℳ෩ ⨁ ෩ࣨ ⨁ ෩ࣨଵ. 
For each function f in ܪଶ (ॻଶ), write  

݂ = ݂ℋ෩ ⨁ ଶ݂ = ݂ℳ෩ ⨁݂ ෩ࣨ ⨁݂ ෩ࣨభ
⨁ ଶ݂, 

where ଶ݂ is orthogonal to ℋ෩ , ݂ℋ෩ ∈ ℋ෩ , ݂ℳ෩ ∈ ℳ෩ , ݂ ෩ࣨ ∈ ෩ࣨ , and ݂ ෩ࣨభ
∈ ෩ࣨଵ. Since ℳ෩  contains 

ℳ, we write 
 ݂ℳ෩ = ℳ݂⨁ ଷ݂,  
for two functions ℳ݂ ∈ ℳand ଷ݂ ∈ ℳ෩ ⊖ ℳ. Thus ଷ݂ is orthogonal to both  ෩ࣨ  and ෩ࣨଵ and 
hence orthogonal to both ࣨ and ଵࣨ. So ଷ݂ is orthogonal to 

ℋ = ℳ⨁ࣨ⨁ ଵࣨ. 
This gives that ℋܲ ଷ݂ = 0. We have 

ℋܲܲℳ෩ ݂ = ℋ݂ܲℳ෩ = ℋܲ ℳ݂ + ℋܲ ଷ݂ = ℋܲ ℳ݂ = ℳ݂ , 
and 

ܲℳ݂ = ℳ݂ , 
to get 

ܲℳ = ℋܲܲℳ෩ . 
Next we will show that ܲℳ  is subjective from Ω onto ℳ . For each ݍ ∈ ℳ , by Lemma 
(2.2.30), there are functions ݍ ∈ ஐ෩ܮ  such that 
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ݍ =  ݈݇݉݇(ݓ)߶݈(ݖ)߶
݈,݇≧0

, 

and 
ଶ‖ݍ‖ = ‖݈݉݇‖ଶ

݈,݇≧0

 < ∞, 

where ݉ =  ܲℳ෪ ஐ෩ܮ Since .݈݇ݍ  and ܮ෩  are finite dimension spaces, there are two positive 
constants ܿଵ and ܿଶ such that 

ܿଵ‖ݍ‖ ≦ ‖݈݉݇‖ ≦ ܿଶ‖ݍ‖. 
Define 

ݍ =  ݈݇ݍ݈(ݓ)߶݇(ݖ)߶
݈,݇≧0

. 

Thus  
‖ଶݍ‖ = ‖ݍ‖ଶ

݈,݇≧0

≦ ܿଶ ‖݈݉݇‖ଶ

݈,݇≧0

< ∞. 

So we obtain that ݍ is in Ω෩, and        
ݍ =  ݍ(ݓ)߶(ݖ)߶

,≧

=  (ݓ)߶(ݖ)߶

,≧

[ܲℳ෩ ݍ + ܲ ෩ࣨ [ݍ

=  (ݓ)߶(ݖ)߶

,≧

݉ +  (ݓ)߶(ݖ)߶

,≧

[ܲ ෩ࣨ [ݍ = ݍ +  ,ேݍ

where ݍே = ∑ (ݓ)߶(ݖ)߶
,≧ [ܲ ෩ࣨ ] is in ෩ࣨݍ . Hence ܲℳ෩ ݍ =  We have .ݍ

ℋܲܲℳ෩ ݍ = ℋܲݍ =  ,ݍ
to obtain              
       ܲℳݍ = ℋܲܲℳ෩ ݍ = q, 
Since ℳ is a subspace of  ℋ, ܲℳ = ܲℳ ℋܲ. Thus  

ܲℳ ℋܲݍ  = ܲℳݍ = q. 
Writing ݍ =  e୩୪

(ஐ) + d
ୣౡౢ

(ಈ)
ଵ . for functions e୩୪

(ஐ), e୩୪
(ஐ) ∈ Ω ∩ L, we have 

ℋܲݍ  =  ℋܲ(߶(ݖ)߶(ݓ)ݍ)
,≧

=  ℋܲ߶(ݖ)߶(ݓ) ൬e୩୪
(ஐ) + d

ୣౡౢ
(ಈ)

ଵ ൰
,≧

=  ቀ ℋܲ߶(ݖ)߶(ݓ)e୩୪
(ஐ)ቁ

,≧

+  ൬ ℋܲ߶(ݖ)߶(ݓ)d
ୣౡౢ

(ಈ)
ଵ ൰

,≧

=  ቀ ℋܲ߶(ݖ)߶(ݓ)e୩୪
(ஐ)ቁ

,≧

+   ℋܲ߶(ݖ)߶(ݓ) ൬ ℋܲd
ୣౡౢ

(ಈ)
ଵ ൰൨

,≧

. 

The last equality follows from that (ݖ)߶(ݓ)(1 − ℋܲ)d
ୣౡౢ

(ಈ)
ଵ is orthogonal to ℋ. The first 

sum in the last equality is in Ω and Theorem (2.2.18) gives that the second sum in the equality 
is in Ω also. Letting ߱ = ℋܲݍ, we have proved that ܲℳ߱ =  to get that ݍ

ܲℳΩ = ℳ. 
On the other hand, ݇݁ݎ[ܲℳ|ஐ ] ⊂ Ω is a reducing subspace of ߶(ℬ). Since Ω is a non-trivial 
minimal reducing space of ߶(ℬ), we see that ݇݁ݎ[ܲℳ|ஐ ] = {0}. This implies that ܲℳ ∶ Ω →
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ℳ  is bijective and bounded. By the closed graph theorem we conclude that ܲℳ|ஐ  is 
invertible. 
Similarly we can show that ܲࣨ |ஐ is invertible. Define 

ܵ = [ܲࣨ |ஐ][ܲℳ|ஐ]ିଵ. 
Then S is an invertible operator from ℳ  onto ࣨ . Both S and ܵ∗  commute with ߶(ℬ) 
because Ω, ℳ and ࣨ are three distinct nontrivial minimal reducing subspaces for ߶(ℬ). 
Thus ܵ∗ܵ commutes with ߶(ℬ). Making the polar decomposition of S, we write  

ܵ = ܷ|ܵ|, 
for some unitary operator U from ℳ onto ࣨ, where |ܵ| = [ܵ∗ܵ]ଵ∕ଶ. So U commutes with 
both ߶(ℬ) and ߶(ℬ)∗ . This completes the proof. 
Theorem (2.2.31)[64]: Let ℳ and ࣨ be two distinct nontrivial minimal reducing subspaces 
of ߶(ℬ). Then either they are orthogonal or ߶(ℬ) has two distinct unitarily equivalent 
reducing subspaces and has also infinitely many minimal reducing subspaces. 
Proof. Let ℳ  and ࣨ  be two distinct nontrivial minimal reducing subspaces of ߶(ℬ) . 
Consider 

ࣱ = ℳ)݁ݎݑݏ݈ܿ] + ࣨ)] ⊖ ℳ. 
Then ࣱ is a reducing subspace of ߶(ℬ). For each ݕ ∈ ℳ)݁ݎݑݏ݈ܿ + ࣨ), we have 

ݕ = ܲℳݕ + ܲℳ఼ݕ. 
Thus 

ℳ)݁ݎݑݏ݈ܿ + ࣨ) = ℳ⨁ࣱ. 
If ℳ  and ࣨ  are not orthogonal, by Theorem (2.2.27), ℳ , ࣨ  are orthogonal to the 
distiguished minimal reducing subspace ℳ, and then ࣨ does not equal ࣱ and 
                                                         ࣨ ⊂ ℳ⨁ࣱ.                                                   (7) 
Now we show that ࣱ is a minimal reducing subspace of ߶(ℬ). Since ℳ and ࣨ are distinct 
and they are minimal reducing subspaces, we have that the intersection of ℳ and ࣨ equals 
0. Noting that ࣨ ∩ ℳୄ is a reducing subspace and contained in ࣨ, we see that ࣨ ∩ ℳୄ 
equals 0 to get that 

(ࣨ|ℳܲ)ݎ݁݇ = {0}. 
This gives that for each ݍ ∈ ࣨ, ܲℳ ≠ 0. Since ࣨ is a minimal reducing subspace, for each 
0 ≠ ݍ}  in ࣨ, the closure ofݍ − ܲℳݍ; ݍ ∈ ࣨ} is the reducing subspace generated by ݍ −
ܲℳݍ which equals ࣱ. Thus ࣱ is a minimal reducing subspace. By (7), we observe that 
ℳ, ࣨ and ࣱ satisfy the conditions in Theorem (2.2.3). So ℳ is unitarily equivalent to ࣱ.  
Now for each ߙ in [0,1] , define 

ఈࣨ = ݍ}݁ݎݑݏ݈ܿ − ;ݍℳܲߙ ݍ ∈ ࣨ}. 
As ࣨ is a minimal reducing subspace, each ఈࣨ is a minimal reducing subspace. For ߙ and 
 ଶ in ࣨ, ifݍ ଵ andݍ in [0,1] , and ߚ

ଵݍ − ଵݍℳܲߙ = ଶݍ −  ,ଶݍℳܲߚ
then   

ଵݍ − ଶݍ = ଵݍℳܲߙ − ଶݍℳܲߚ . 
The right-hand side of the above equality is in ࣨ but the left-hand side is in ℳ. Thus ݍଵ 
equals ݍଶ and ߙ equals ߚ. So ఈࣨ does not equal ఉࣨ provided ߚ does not equal ߙ. Hence we 
get infinitely many minimal reducing subspaces to complete the proof. 
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Theorem (2.2.32)[64]: Let ߶ be a Blaschke product of finite order N. Then either ߶(ℬ) has 
infinitely many minimal reducing subspaces or the number of nontrivial reducing subspaces 
of ߶(ℬ) is less than or equal to N. 
Proof. If ߶(ℬ) does not have infinitely many nontrivial reducing subspaces, by Theorem 
(2.2.31), any two distinct reducing subspaces must be orthogonal. Let ൛ℳൟ

ୀଵ
ேభ  be the set of 

distinct minimal reducing subspaces of ߶(ℬ). Thus 
⊕ୀଵ

ேభ ℳ ⊂ ℋ. 
Lemma (2.2.16) gives that the dimension of ℳ ∩   is at least one. Soܮ

ܮ ݉݅݀  ≧ ݀݅݉ቄൣ⊕ୀଵ
ேభ ℳ൧ ∩ ቅܮ ≧ ଵܰ. 

On the other hand, 
ܮ = థܶ(௭) ݎ݁݇ 

∗ ∩ థܶ(௪) ݎ݁݇
∗ ∩ ℋ. 

As pointed out before, the dimension of ܮ equals N. Thus 
ܰ ≧ ଵܰ. 

So the number of nontrivial minimal reducing subspaces of ߶(ℬ) is less than or equal to the 
order N of ߶. The proof is completed. 
          We will prove Theorems (2.2.4) and (2.2.5). For the Blaschke product ߶(ݖ) =
ଶݖ ௭ିఈ

ଵିఈഥ௭
  with a nonzero point ߙ in ॰, for each e in the wandering subspace of a reducing 

subspace of ߶(ℬ) we will be able to calculate ݀
 in Theorem (2.2.21) and ܮ precisely. By 

Theorem (2.2.1), the fact that ݀
ଵ is orthogonal to ܮ leads to some algebraic equations. By 

solving the algebraic equations, we will show that ߶(ℬ) has only two nontrivial minimal 
reducing subspaces. 
Theorem (2.2.33)[64]:  For the Blaschke product ߶(ݖ) = ଶݖ ௭ିఈ

ଵିఈഥ௭
  with a nonzero point ߙ 

in ॰, ߶(ℬ) has only two minimal reducing subspaces {ℳ , ܯ
ୄ}. 

Proof.  For a given nonzero point ߙ in the unit disk,  let  ߶(ݖ) = ݖ ௭ିఈ
ଵିఈഥ௭

 .The Mittag-
Leffler expansion of the finite Blaschke product ߶ is 

߶(ݖ) = − ଵି|ఈ|మ

ఈഥమ − ଵ
ఈഥ

ݖ + ଵି|ఈ|మ

ఈഥమ ݇ఈ(ݖ).   
So                                              

(ݖ)߶ = (ݖ)߶ݖ = −
1 − ଶ|ߙ|

തଶߙ ݖ −
1
തߙ

ଶݖ +
1 − ଶ|ߙ|

തଶߙ ݇ఈ(ݖ). 
Hence                                              

݁(ݖ, (ݓ = −
1 − ଶ|ߙ|

തଶߙ −
1
തߙ

,ݖ)ଵ (ݓ +
1 − ଶ|ߙ|

തଶߙ ݇ఈ(ݖ)݇ఈ(ݓ). 
It is easy to see that 

ܮ = ,1}݊ܽݏ  ,ݖ)ଵ ,(ݓ ݇ఈ(ݖ)݇ఈ(ݓ)}. 
Theorem (2.2.25) gives 

ℳ = ,(ݖ)߶൫≧൛݊ܽݏ ൯݁ൟ(ݓ)߶ . 
By Theorem (2.2.27), for each minimal reducing subspace ߗ  not equal to ℳ ߗ ,  is a 
subspace of ܯ

ୄ. So we only need to show that ܯ
ୄ is a minimal reducing subspace for ߶(ℬ). 
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Assume that ܯ
ୄ is not a minimal reducing subspace for ߶(ℬ). Then ℋ is the direct sum of 

three reducing subspaces of ߶(ℬ). We may assume 
ℋ =⊕ୀ

ଶ ℳ . 
Now choose a nonzero vector ݁ in the wandering subspace for ℳ, which is contained in 

. Since {݁}ୀܮ
ଶ  are mutually orthogonal to each other, they form a basis for ܮ. On the 

other hand, those functions 1, ,ݖ)ଵ  . Thus there areܮ are a basis for (ݓ)ఈ݇(ݖ)and ݇ఈ (ݓ
some constants ܿ such that 

݁ = ܿ + ܿଵ ଵ(ݖ, (ݓ + ܿଶ݇ఈ(ݖ)݇ఈ(ݓ). 
First we show that neither ܿଵଶ nor ܿଶଶ equals zero. Since 

〈݁, 1〉  = ݁(0,0) = ߶(0) = 0 
and 

〈݁, 〈ଵ  = 〈݁, ,ݖ)ଵ 〈(ݖ = 〈݁(ݖ, 0), 〈ݖ2 = 2〈߶, 〈ݖ =  ߙ2−
we have that 1 is in ܯ

ୄ but ଵ(ݖ, ܯ is not in (ݓ
ୄ, to get that ܿଶ ≠ 0 for ݅ = 1,2. 

Next we show that ݁(0, ݅ equals 0 for (ߙ = 0,1,2. To do this, note that the dimension of the 
wandering subspace for each ℳ equals 1. By Theorem (2.2.1), there are constants ߚ and ߣ 
such that 

݀
ଵ = ݀

 + ݁ߚ +  .݁ߣ
Thus for ݅, ݆ ≧ 1 and ݅ ≠ ݆,    

〈݀
 , ݁〉 = 〈݀

ଵ − ݁ߚ − ,݁ߣ ݁〉 = 〈݀
ଵ , ݁〉 − 〈݁ߚ , ݁〉 − ,〈݁ߣ ݁〉 = 0.  

The last equality follows from the fact that ݀
ଵ  is orthogonal to ܮ and {݁} is an orthogonal 

basis for ܮ .     
By Theorem (2.2.21), we have    

〈݀
 , ݁〉 = ,(0݁ݓ〉 ,ݖ)݁(ݓ (ݓ − ,ݖ)݁(ݓ)߶ ,(ݓ ݁〉 = ,(0݁ݓ〉 ,ݖ)݁(ݓ ,(ݓ ݁(ݖ,  .〈(ݓ

Simple calculations give 
,(0݁ݓ〉 ,ݖ)݁(ݓ ,(ݓ ,ݖ)ଵ 〈(ݓ                            

= ,(0݁ݓ〉    ,ݓ)݁(ݓ ,(ݓ ,ݖ)ଵ  (by Lemma (2.2.7))     〈(ݓ
= ,(0݁ݓ〉  ,(ݓ)′߶(ݓ ,ଵ(0  (by Lemma (2.2.9))         〈(ݓ

= ,(0݁ݓ〉  ,(ݓ)′߶(ݓ 〈ݓ = ݁(0,0)߶′(0) = 0. 
It is easy to see that 

,(0݁ݓ〉 ,ݖ)݁(ݓ ,(ݓ 1〉 = 0. 
 These give 

〈݀
 , ݁〉 = ܿଶ〈݁ݓ(0, ,ݖ)݁(ݓ ,(ݓ ݇ఈ(ݖ)݇ఈ(ݓ)〉 = ܿଶ〈݁ݓ(0, ,ݓ)݁(ݓ ,(ݓ ݇ఈ(ݖ)݇ఈ(ݓ)〉

= ܿଶ〈݁ݓ(0, ,ݓ)݁(ݓ ,(ݓ ݇ఈ(ݓ)〉 = ܿଶ݁ߙ(0, ,ߙ)݁(ߙ  .(ߙ
Noting that ݁(ߙ, (ߙ = ߶′(0) ≠ 0, we have ܿଶ݁(0, (ߙ = 0, to get that ݁(0, (ߙ = 0 for ݅ =
1,2 . Also we have ݁(0, (ߙ = ߶(ߙ) ≠ 0 . Since {݁, ݁ଵ, ݁ଶ}  forms a basis for ܮ  and 
,ݖ)ଵ ,ݖ)ଵ ,ܮ is in (ݓ ,is a linear combination of functions ݁ (ݓ ݁ଵ and ݁ଶ. Thus 0),  (ߙ
must be zero. But ଵ(0, (ߙ = ߙ ≠ 0. This leads to a contradiction. So ܯ

ୄ  is a minimal 
reducing subspace of ߶(ℬ) to complete the proof. 
Now we are ready to prove Theorems (2.2.4) and (2.2.5). 
          Suppose that ߶ is a Blaschke product with three zeros. As pointed out ܯథ is unitarily 
equivalent to ߶(ℬ), in the rest proof we will concern only ߶(ℬ). 
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First observe that for ߣ ∈ ॰ and a subspace ℳ of ℋ, ℳ is a reducing subspace of ߶(ℬ) if 
and only if ℳ is a reducing subspace of ߶ఒ ∘ ߶(ℬ). 
If ߶(ݖ) has a multiple critical point in the unit disk, then 

߶ = ߶ఒ ∘ ଷݖ ∘ ߶ఓ  
for two numbers ߣ, ߤ ∈ ॰ . Thus every reducing subspace of ߶(ℬ)  is also a reducing 
subspace of ߶ఓ(ℬ)ଷ. But ߶ఓ(ℬ)ଷ is unitarily equivalent to the direct sum of three weighted 
shifts and hence it has only three minimal reducing subspaces. 
If ߶ does not have any multiple critical point in the unit disk, by Bochner’s theorem [75], 
ߣ always has a critical point c in the unit disk. Let (ݖ)߶ = ߶(ܿ). Then 

߶ఒ ∘ ߶ ∘ ߶(ݖ) = ଶݖ ݖ − ܽ
ݖ − തܽݖ

, 
for some nonzero point ܽ ∈ ॰ . Let ߰(ݖ) = ߶ఒ ∘ ߶ ∘ ߶(ݖ) . By Theorem (2.2.33), we 
conclude that ߰(ℬ) has only two minimal reducing subspaces. Hence ߶(ℬ) has only two 
minimal reducing subspaces. This completes the proof.  
Let ߶ be a Blaschke product with three zeros. 
As in the proof of Theorem (2.2.4), if ߶(ݖ) has a multiple critical point in the unit disk, then 

߶ = ߶ఒ ∘ ଷݖ ∘ ߶ఓ 
for two numbers ߣ, ߤ ∈ ॰. In this case, the Riemann surface of ߶ିଵ ∘ ߶ over ॰ has the same 
number of connected components as the one of ିݖଷ ∘  ଷ over ॰ does. But the latter one hasݖ
three connected components and ܯథ  has the only three nontrivial minimal reducing 
subspaces. Thus the number of nontrivial minimal reducing subspaces of ܯథ  equals the 
number of connected components of the Riemann surface of ߶ିଵ ∘ ߶ over ॰. 
If ߶ does not have any multiple critical point in the unit disk, as in the proof of Theorem 
ߣ always has a critical point c in the unit disk. Let (ݖ)߶ ,(2.2.4) = ߶(ܿ). Then 

߶ఒ ∘ ߶ ∘ ߶(ݖ) =  ,(ݖ)߰
where ߰(ݖ) = ଶݖ ௭ି

௭ିത௭
 for some nonzero point ܽ ∈ ॰. By the example in [24], except for the 

trivial branch z, nontrivial branches of ߰ିଵ ∘ ߰ are all continuations of one another. Thus 
the Riemann surface of ߰ିଵ ∘ ߰ over ॰ has only two connected components. So does the 
Riemann surface of ߶ିଵ ∘ ߶ over ॰. By Theorem (2.2.33), the number of nontrivial minimal 
reducing subspaces of ܯథ  equals the number of connected components of the Riemann 
surface of ߶ିଵ ∘ ߶ over ॰. This completes the proof. 
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Chapter 3 
Bergman Kernel Asymptotics and Hankel Operators 

We show that for a large class of measures, we find that these quantities satisfy asymptotic 
relations similar to the simple exact relations which hold in the model case ݉(ݐ) = ݁ି௧. We 
show that the main result says that a Hankel operator on such a Fock space is bounded if and 
only if the symbol belongs to a certain BMOA space, defined via the Berezin transform. The 
latter space coincides with a corresponding Bloch space which is defined by means of the 
Bergman metric. This characterization of boundedness relies on certain precise estimates for 
the Bergman kernel and the Bergman metric. Characterizations of compact Hankel operators 
and Schatten class Hankel operators are also given. In the latter case, results on Carleson 
measures and Toeplitz operators along with Hörmander’s ܮଶ estimates for the ߲̅operator are 
key ingredients in the proof. 
Section (3.1): Generalized Fock Spaces            
          Given a positive measure ݉(ݐ)݀ݐ  on ࡾା and its moment sequence ߛ =
∫ ஶݐ݀(ݐ) ݉ݐ

 , ݊ = 0, 1, 2 , . . ., we form the associated Bergrnan kernel function, ܭ(ݔ) =
∑ ߛ

ିଵݔ  .We also form the new measure (ܭ(ݐ))ିଵ݉ (ݐ)݀ݐ  and its kernel function, 
(ݐ)݉ షభ. If we start with()ܭ = ݁ି௧ and do the computations, we find three striking facts:  
for all ݐ ∈ ܽ ା  and allࡾ ∈ ℂ, 
           (A) ݉(ݐ)ܭ(ݐ) = 1, 
           (B) ܭ()షభ(ݐ) = ܭ2

ଶ  ,(ݐ)
and 
           (C) ∫ ∫ หܭ()షభ( തܽऊ)ห݉(|ऊ|ଶ) ௗ௫ௗ௬

గ
 

 =  (|ܽ|ଶ)ܭ2
Our interest in these identities arose w h e n we were doing operator theory on the Fock space, 
the Hilbert space of entire functions square integrable with respect to the Gaussian density. 
We wanted to know if similar relations or useful substitutes held in Bergrnau spaces of entire 
functions square integrable with respect to other radial measures, ିߨଵ݉(|ऊ|ଶ)݀ݕ݀ݔ . 
However, although operator theoretic issues influence our discussion of the consequences of 
our main results, neither our results here nor our methods involve operator theory. We hope 
to pursue the operator theoretic implications of these results else where. See [107]. 
          We collect background information about conjugate functions of convex functions (in 
the sense of Fenchel, Legendre, and Young) which arises both as we pass from the density m 
to its moments ߛ, and as we pass from the coefficients of ܭ to its values. has informal 
statements and proof outlines for our two main technical results: Theorem (3.1.2) — which 
shows how the growth of the density function controls the asymptotic growth of the moment 
sequence — and Theorem (3.1.3) — which shows how the growth of the coefficient sequence 
controls the growth of ܭ൫݁ݎఏ൯ for large r. The next two have the statements and proofs of 
Theorems (3.1.2) and (3.1.3). The basic approach for Theorem (3.1.2) is Laplace's method 
for asymptotic estimation of integrals which depend on a parameter. To prove Theorem 
(3.1.3), we join Laplace's method with Poisson summation, we combine Theorem (3.1.2) and 
Theorem (3.1.3) to give Theorem (3.1.12), our estimates for the Bergman kernel functions. 
A consequence of that theorem is Corollary (3.1.13), which includes the result that, as ݎ →
∞, 
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~(ݎ)ܭ(ݎ)݉
− ቀݎ ݀

ቁݎ݀
ଶ

log (ݎ)݉

ݎ
. 

In particular, if ݉(ݎ) ~ܽݎ݁ି, with ܽ, ܾ, ܿ, ݀ > 0, we have 
 , ௗିଵݎଶ݀ܿ ~(ݎ)ܭ(ݎ)݉

which is a version of (A). If we take the estimates for K in terms of m and then use Theorem 
(3.1.2) and Theorem (3.1.3) again to estimate ܭ()షభ, we find that the two expressions in 
(B) are asymptotically equal. In fact, as is suggested by the example o f the exponential 
density, we see in Theorem (3.1.14) that 

షഀ~ (1()ܭ   −  ଵାఈ                                               (1)(ܭ)(ߙ
for ߙ > 0. We also show that the Berezin transform for these Bergrnan spaces is given 
asymptotically by integration against a Gaussian density. This and (1) are then used to give 
an asymptotic version of (C) in Corollary (3.1.16). 
Asummary of these and related results along with some discussion of the operator theory is 
in [107]. 
Suppose A(s) is a convex function defined on an  ܫ ⊂ ܴ. (When convenient, we set (ݏ) =
ݏ ݎ݂∞+ ∉  .We recall the definition o f the conjugate function of A( .ܫ

(ݔ)∗ܣ    = ݑݏ
ୱ∈܀

ݏݔ} −  (2)                                             . {(ݏ)ܣ

This transformation occurs in various contexts, at times associated with the names Fenchel, 
Legendre, or Young. 
Lemma (3.1.1)[106]: Suppose A is smooth and ܣ, ,′ܣ "ܣ > 0 . Set (ݔ)ݏ = (ݔ) ᇱିଵܣ  and 
(ݏ)ݔ = ,∗ܣ Then .(ݏ)′ܣ ,′∗ܣ < "∗ܣ 0 and we have, for all s, x, 

(a) ((ݏ)ݔ)ݏ = , ݏ ((ݔ)ݏ)ݔ =  , ݔ
(b) ݔݏ ≤ (ݏ)ܣ +  ,(ݔ)∗ܣ
(c) (ݔ)∗ܣ = (ݔ)ᇱିଵܣݔ − ((ݔ)ᇱିଵܣ)ܣ = (ݔ)ݏݔ −  ,((ݔ)ݏ)ܣ
(d) (ݔ)ݏ = (ݔ)′∗ܣ =  , (ݔ)ᇱିଵܣ
(e) (ݏ)∗∗ܣ =  ,(ݏ)ܣ
(f) (ݔ)"∗ܣ =  ,ଵି((ݖ)ݏ)"ܣ
(g) ܣ∗(ଷ)(ݔ)(ݔ)′′∗ܣିଷ/ଶ =  ,ଷ/ଶି((ݔ)ݏ) "ܣ((ݔ)ݏ)(ଷ)ܣ−
(h) ܣ∗(ସ)(ݔ)(ݔ)′′∗ܣିଶ = ଶି((ݔ)ݏ)"ܣ((ݔ)ݏ)(ସ)ܣ −  +  . ଷି((ݔ)ݏ)"ܣଶ((ݔ)ݏ)(ଷ)ܣ3

Note: We are only interested in asymptotic behavior for large s and large x. Hence, if 
necessary to insure that the hypotheses are satisfied, we can first restrict A to an interval 
,ܯ) ∞) and then set ܣ = +∞ on (− ∞,  In that case, the conclusions of the lemma hold .[ܯ
for all sufficiently large x, s. 
Proof. The proof of related results under minimal smoothness assumptions requires care, but 
here there is no problem. The first statement follows from the definitions, as does the second, 
which is often called Young's conjugate function inequality. Our assumptions insure that the 
supremum in (b) is attained at the unique critical point of ݏݔ −  This gives the formula .(ݏ)ܣ
for ܣ∗. The first equality in (d) follows from differentiating (c). The relation (e) comes from 
(c) and (d). Formula (f) follows from differentiating (e). Equality (g) follow s from 
differentiating (f) and noting that (ݔ)′ݏ = (ݔ)′′∗ܣ =  ଵ. Formuala 8follows fromି((ݔ)ݏ)"ܣ
differentiating (g), using (ݔ)′ݏ = (ݔ)′′∗ܣ =  .ଵ,  and then using (g)ି((ݔ)ݏ)"ܣ
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The model pair for what we do later is 
(ݏ)ܣ = ݁௦ −  , ݏ

(ݔ)∗ܣ = ݔ) + ݔ)݈݃ (1 + 1) − ݔ) + 1), 
which corresponds to ݉(ݐ) = (ݐ) More generally, for . (ݐ−)ݔ݁ =  we have , (ఉݐ−)ݔ݁

(ݏ)ܣ                                                          = ݁ఉ௦ −  (3)                                                                , ݏ

(ݔ)∗ܣ = ൬
ݔ + 1

ߚ
൰ ݈݃  ൬

ݔ + 1
ߚ

൰ − ൬
ݔ + 1

ߚ
൰ , 

The theorems and proofs have substantial technical details. However, the basic ideas are quite 
straightforward. we present the ideas. 
Given a positive function ܽ(ݏ) defined on ࡾା, set 

(ݏ)ܣ                                       =  − log ܽ(݁௦) −  (4)                                               .ݏ
We suppose that for all large s  

,(ݏ)ܣ                                     ,(ݏ)′ܣ ,(ݏ)"ܣ ,(ݏ)(ଷ)ܣ (ݏ)(ସ)ܣ > 0.                                   (5) 
Set ݏ௫ = (ݔ)ݏ =  Suppose b is a positive function which varies slowly compared to . (ݔ)ᇱିଵܣ
a and set (ݏ)ܤ = log ܾ(݁௦) . Let ߛ  be the moments of the measure ܽ(ݐ)ܾ(ݐ) ܽݐ; ߛ =
∫ ஶݐ݀ (ݐ)ܾ(ݐ)ܽݐ

  . 
Theorem (3.1.2) [106]: As ݊ → ∞, we have 

ߛ ∼ ݁∗() ߨ2√

ඥܣ"(ݏ)
݁(௦). 

In the simplest case, when ܽ(ݐ) = ݁ି௧ and ܾ(ݐ) = 1, this is Stirling's formula. Now suppose 
c(x) is a positive function on ࡾା. Set 
                Γ(ݔ) = log  (6)                                                                   . (ݔ)ܿ
Suppose that for all large x   
              Γ(ݔ), Γ′(ݔ) , Γ"(ݔ) > 0.                                                             (7)
  
However, in contrast to the previous theorem, we now require that as ݔ → ∞ 

 Γᇱ(x) → ∞ ,                 Γ"(x) , Γ(ଷ)(x), Γ(ସ)(x) → 0.                            (8) 
Let Γ∗  be the conjugate function of Γ  and set ݔ௦ = (ݏ)ݔ = Γᇱିଵ(ݏ) . Suppose that d is a 
positive function which varies slowly compared to c. Let f  be the holomorphic function 

݂(ऊ) =  ݀(݊)ܿ(݊)ିଵ ऊ
ஶ



. 

Theorem  (3.1.3) [106]:  f is entire.  Forsmall ߠ we have as ݏ → ∞ 

݂(݁௦ାఏ)~݁∗(௦)  
ߨ2√

ඥΓ"(ݔ௦)
d(ݔ௦)ࢋ௫ೞఏ ିࢋఏమ/(2Γ"(ݔ௦)). 

Our main kernel estimate, Theorem (3.1.12), follows quickly from these two results. First we 
apply Theorem (3.1.2) with the choices ܽ(ݐ) = ,(ଶݐ)݉ (ݐ)ܾ =  and then Theorem (3.1.3) ܫ
with the choices (ݔ) = ,(ݔ)∗ܣ (ݔ)݀ =  ௫ . Because we are able to put some o f theߛ/(ݔ)ܿ
behavior o f the mon~ents into the correction term d, we obtain kernel estimates whose main 
term involves ܣ∗∗. We then use the fact that ܣ∗∗ = ܭ To get estimates for .ܣ 

షഀ, we repeat 
the cycle, using as our new starting choice for a the square of the function used the first time. 
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This forces a nonconstant choice for b. However, b turns out to be slowly varying, so again 
the main term o f the estimate involves ܣ∗∗ =  .ܣ 
To prove Theorem (3.1.2), we use Laplace's method for asymptotic evaluation of integrals as 
it adapts to our situation. We want to estimate 

ߛ = න ݐ݀ (ݐ)ܾ(ݐ)ܽݐ
ஶ


 

                     = න  ݁  ௧ା(௧)ܾ(ݐ) ݀ݐ
ஶ


 

                                  = න  ݁௦ା  ௧ା(ೞ)ା௦ܾ(݁௦) ݀ݏ
ஶ

ିஶ
 

                                                                  = න  ݁௦ି(௦)݁(௦) ݀ݏ
ஶ

ିஶ
.                                               (9) 

The hypotheses insure that, for fixed large n, the function ݊ݏ −  has a maximum value (ݏ)ܣ
at the point ݏ = Aᇱିଵ(݊). The value is ܣ∗(݊) = ݏ݊ − ݏ݊ We now expand .(ݏ)ܣ −  in (ݏ)ܣ
a Taylor series about its critical point ݏ: 

ݏ݊ − (ݏ)ܣ = (݊)∗ܣ  −
1
2

ݏ)(ݏ)ᇱᇱܣ − )ଶݏ + ℛ. 
Here ℛ is the remainder term. I f we could drop ℛ and replace (ݏ)ܤ , which is built from a 
slowly varying function, by ܤ(ݏ) then w e could evaluate the integral and would have ߛ 
equal to the desired estimate. The technical details o f the proof involve estimating the errors 
that result from dropping ℛ and replacing (ݏ)ܤ by ܤ(ݏ) . 
Introduce the new integration variable ݑ = ݏ − (ݏ)ᇱܣ .  Usingݏ = ݊ , we have 

ݏ݊ − (ݏ)ܣ = (݊)∗ܣ − ݑ)ܣ] + (ݏ − (ݏ)ܣ −  .[ݑ(ݏ)′ܣ
We need to estimate 

ߛ                         = ݁∗() න ݁ି[(௦ା௨)ି(௦)ିᇱ(௦)௨]݁(௦ା௨) ݀ݑ
ஶ

ିஶ
.                                    (10) 

To do this we select a positive function ߜ =  and split the integral as (݊)ߜ

න . . . du
ஶ

ିஶ
=  න . . . du

 

୳ழିஔ
+ න . . . du

 

|୳|ழఋ
 + න . . . du

 

୳வఋ
=  L + C + R . 

To estimate C, we want to kno w that, uniformly in {ݑ: |u| < {ߜ , we have for some 
appropriate small ࣥ 

ݏ)ܣ + (ݑ = (ݏ)ܣ + ݑ(ݏ)′ܣ + + ଶ/ 2ݑ (ݏ)"ܣ ܱ(ࣥ), 
ݏ)ܤ                     + (ݑ = (ݏ)ܤ  + ܱ(ࣥ) . 
Those estimates follow from the hypotheses on a and b and Taylor's theorem. Using them, 
we have 

݁∗()ܥ = ݁∗() න ݁ି"(௦)௨మ/ ଶ݁(௦)[1 + ܱ(ࣥ)]du
 

|୳|ழఋ
.  

Introducing the new variable ݒ =  we find that,(ݏ)"ܣඥݑ

݁∗()ܥ =
݁∗()݁(௦)

ඥܣ"(ݏ)
න eି௩మ/ଶ[1 + O(ࣥ)]

 

|୳|ழఋඥ"(௦)

 .ݒ݀
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If we know ߜଶ(݊)ܣ"(ݏ) → ∞, we can conclude that 

݁∗()ܥ = ݁∗() ߨ2√

ඥܣ"(ݏ)
݁(௦)[1 + O(ࣥ)]. 

The tails, L and R, can be estimated b y tails o f Gaussian integrals and are seen to be 
ܱ(݁ିఋమ()"(௦)/ଵ). Combining the estimates for L, C, and R gives Theorem (3.1.2). 
In the second theorem, we can pass from the sum to the corresponding integral and use a 
similar argument to get the estimates on the positive real axis. However, that approach doesn't 
capture the cancellation which occurs off the axis. Hence w e split the sum into three terms 
and estimate the main term, the central one, using Poisson summation. 
 
In Theorem (3.1.3), we show that if we are given the moments {ߛ} o f a density, then the 
asymptotic growth of the kernel function is given by 

݂(݁௦)~√2݁ߨ(୪୭ ఊ)∗(௦),           ݏ → ∞. 
Rewriting this in terms of the Taylor coefficients ܽ (= ߛ

ିଵ) o f f ,  we have 

ܽ~
1

ߨ2√
݁ି((ೞ))∗(),     ݊ → ∞. 

In the other direction, one can ask whether, given an entire function which satisfies 
appropriate conditions, we can conclude this sort o f asymptotic growth for the coefficients. 
That such estimates do, in fact, hold for a large class o f entire functions is a result of Hayman 
[108]. 
          Suppose ݂(ऊ) = ∑ ܽऊஶ

  is an entire function with positive coefficients. Set 
(ݏ)ܨ =  . (௦݁)݂ ݈݃

We say that f is admissible if ܨ"(݁௦) → ݏ ݏܽ ∞ → ∞ and there is a positive function δ(ݎ), 
defined for all sufficiently large r, such that 0 <  δ(ݎ) <  ,ߨ

݂൫݁ݎఏ ൯~ ݂(ݎ)݁ிᇲ(୪୭ )ഇ݁ିଵ
ଶிᇲᇲ(୪୭ )ഇమ

ݎ  ݏܽ    → ∞ 
uniformly for |ߠ| ≤ δ(ݎ), and 

݂൫ ݁ݎఏ൯ = (1)
(ݎ)݂

ඥ(ݎ ݈݃)"ܨ
 , 

uniformly for δ(ݎ) ≤ |ߠ| <   .ߨ
Corollary II of [109] is 
Theorem (3.1.4) [106]:  If ݂(ݔ) is admissible, then as ݊ → ∞ 

ܽାଵ ~ 
1

ߨ2√
1

ඥܨ"( ܨᇱିଵ(݊))
݁ିி∗(). 

In fact, this follows quite easily from the admissibility of f. Most of the work in [110] is 
in establishing that a substantial number of functions are admissible, in showing that the 
class o f admissible functions has interesting closure properties, and in deriving further 
consequences of admissibility. Our Theorem (3.1.3) insures that the kernel functions we 
construct are admissible. 
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In Hayman's theorem as well as Theorems (3.1.2) and (3.1.3), we see that the transforms 
have asymptotics described to leading order using the conjugate function. That is in 
keeping with the heuristic "principle o f duality o f phases", for describing the asymptotic 
behavior of Fourier (and related) transforms ([104], p. 358). The principle has a long 
tradition in this context. Hayman's results are related to earlier results of Wiener and 
Martin [105], [106] and still earlier results of Hardy and Fejor, both of whom attribute the 
basic insight to Riemann. (For this see the discussion in [111].) More recent related results 
in this tradition are given by Evgrafov [107] and Bemdtsson [112]. 
Related questions have been considered for measures and kernel functions defined on the 
unit disk. See [112], with more recent results by Kriete and MacCluer [113] and Kriete 
[114]. Here are two o f the results of [113]. 
Suppose that we are working on the Bergman space o f the disk with radial weight 
ݕ݀ ݔ݀(ݎ)ݓଵି(ߨ2) . Thus (ݔ)ܭ  = ∑ ߛ

ିଵݔ  with  ߛ = ∫ ଵݎ݀ (ݎ)ݓଶାଵݎ
 . Set (ݏ)ܣ  =

2 ݈݃ − (௦/ଶି݁)ݓ ݈݃ +  Under appropriate conditions on w, a result analogous to .ݏ
Theorem (3.1.2) is obtained. 
Theorem (3.1.5) [106]:  As  ݊ → ∞,  .ᇱᇱ(−݊)݁∗(ି)∗ܣඥߨ√~ߛ
This theorem is used in the proof o f the following quantitative alternative to (A), which 
plays a major technical role in [113]: 
Theorem (3.1.6) [106]:  As ݎ → 1ି, (ݎ)ܭ(ݎ) ݉ ↗  ∞. 
We learned that Kriete has taken his work further and obtained rather comprehensive 
results on the unit disk [116]. Although the detailed formalism of [114] and [115] differ 
from ours, there is certainly a similarity between those methods and ours. 
Related questions have been studied for nonradial weights using a variety of function 
theoretic techniques. For instance, it is shown in [118] that under some regularity 
conditions on the function (ऊ)ݓ  ≥ 0 , and with the assumption that −݈ݓ ݃  is 
subharmonic, the Bergman kernel ܭ(ऊ, (ߞ  for the space ܮଶ(॰, (ݕ݀ ݔ݀ (ऊ)ݓ ∩  ݈ܪ
satisfies 
Proposition (3.1.7) [106]: There are positive constants ܥଵ and ܥଶ so that 

ଵܥ <
,ऊ)ܭ ऊ)ݓ(ऊ)
(ऊ)ݓ ݈݃ ∆−

<  .ଶܥ

Similar techniques produce an analogous result for Bergman spaces on the plane. These 
should be compared with Theorem (3.1.12), which deals with smooth radial weights (on 
the plane). That result states that, as ऊ → ∞, 

,ऊ)ܭ ऊ)ݓ(ऊ)
(ऊ)ݓ ݈݃ ∆−

= 1 +  .(1)

Christ, Berndtsson, Ortega-Cerdà and Seip, Delin, and others have obtained refined 
estimates on Bergman kernel functions, including estimates off the diagonal, using (9 
techniques. It is a theorem of Miles and Williamson [110], which proved a conjecture of 



83 
 

Renyi and Vincze, that ݉(ݐ) = ݁ି௧ is essentially the only function which satisfies (A). It 
would be interesting to know if there were analogous uniqueness results related to (C). 
As mentioned, we shall prove that for fixed ߙ, as ߙ → ∞ 
ܭ                          

షഀ(ݐ)~ (1 + ܭ(ߙ
ଵାఈ(ݐ).                                                 (11) 

In his interesting study of Berezin quantization, Englis [112] shows that in certain cases, 
for fixed t, (11) holds as → ∞ . His methods and viewpoint are quite different from ours. 
we discuss briefly the possibility of obtaining asymptotics as ߙ → ∞ by our methods. 
Suppose ݉(ݐ)݀ݐ  is a positive measure on [0, ∞) . For ݔ > 0 , set ߛ௫ = (ݔ)ߛ  =
∫ ஶݐ݀ (ݐ)௫݉ݐ

 . We assume that m does not have compact support and that (ݔ)ߛ is finite 
for all x. We write ݉(ݐ) =  with a as the main term and b as a slowly varying (ݐ)ܾ(ݐ)ܽ
correction. Although ݉ =  ܾܽ is the object of interest, most of our computations, and 
hence also the hypotheses, are in terms of auxiliary functions, A and B, defined by 
(ݏ)ܣ                             = − log ܽ(݁௦) −  (12)                                                        ,ݏ
(ݏ)ܤ                             = log ܾ(݁௦).                                                         (13) 
Set ݔݏ = (ݔ)ݏ = ,ߝ Fix .(ݔ)ᇱିଵܣ 1/4 < ߝ < 1/2. We suppose that for all sufficiently large 
x 
(ݔ)()ܣ  > 0,          ݅ = 0, . . . , 4,                                                 (14) 

                           Aᇱᇱᇱ(ݔ) = O ቀAᇱᇱଷ ଶ⁄  ቁ,                                                 (15)(ݔ)()ߝି

                           A(ସ)(ݔ) = ܱ ቀAᇱᇱଶିଶߝ()(ݔ)ቁ.                                                          (16) 
The core hypothesis for the proof of Theorem (3.1.2) is that we can find an auxiliary 
positive function ߜ such that ߜଶ(ݔ)Aᇱᇱ(ݏ௫) → ∞ and ߜଷ(ݔ)Aᇱᇱᇱ(ݏ௫) → 0 as ݔ → ∞. We 
surrendered a slight a m o u n t o f generality b y assuming ( l 5), but that lets us mak e a 
simple choice for ߜ. Select ߙ with 0 < ߙ < 2/ߝ − 1/8 and set 
(ݔ)ߜ   =  ଵ/ଶାఈ .                                                          (17)ି(௫ݏ)"ܣ
The model case for the hypotheses is (ݏ)ܣ = ݁ఉ௦ −  In that case, (15) and (16) hold .ݏ
with any ߝ < 1/2. The same is true for (ݏ)ܣ = ݁ (௦) with any function h of regular and 
modest growth. Hence , for the examples we have in mind, we coul d restrict attention to 
A which satisfy (15) and (16) for all ߝ up to 1/2. In fact, suppose A were to fail (15) for a 
fixed ߝ because there is some ߮ < 1/2 − so that Aᇱᇱᇱ ߝ ≥  Aᇱᇱଵାఝ. In such a case, weܥ 
could compare Aᇱᇱ with the exact solution of ݂′ =  cannot (ݏ)"ܣ ଵାఝ  and conclude that݂ܥ
be finite for all ݏ > 0. Such A are not of interest here. However, we carry the extra 
generality o f allowing (15) and (16) to fail for some ߝ < 1/2 because it may be useful in 
some other context. That being said, w e should note that in the following discussion it m 
a y be convenient to think of the model case ߝ = (1/2)ି, ߙ = 0ା . 
Our pointwise estimates on the derivatives of A imply interval estimates. 
Lemma (3.1.8) [106]:  I f we have (15), (16), and (17), then we also have 

ݑݏ                              
|௧|ழఋ

௫ݏ)"ܣ + (ݐ  = (1 +  (18)                                       , (௫ݏ) "ܣ ((1)
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 ݑݏ                              
|௧|ழఋ

 Aᇱᇱᇱ(ݏ௫ + (ݐ =  (19)                                          , ( ଷ/ଶିఌ(௫ݏ)"ܣ)ܱ

ݑݏ                              
|௧|ழఋ

A(ସ)(ݏ௫ + (ݐ  =  (20)                                          . (ଶିଶఌ(௫ݏ)"ܣ)ܱ 

Proof. Set ݃(ݐ) = ௫ݏ)"ܣ + ′݃ ,B y (15) .(ݐ  = ܱ(݃ଷ/ଶିఌ) and hence ݃ିଷ/ଶାఌ݃′ =  ܱ(1). 
Pick and fix some ݐ, |ݐ| <  Integrating, we find .ߜ

ห݃ିଵ/ଶାఌ(ݐ) − ݃ିଵ/ଶାఌ(0)ห =  . (ߜ)0
Hence, recalling the definitions of g and ߜ, we have 

݃ିଵ/ଶାఌ(ݐ)
݃ିଵ/ଶାఌ(0)

= 1 + หg୪/ଶିக(0)หO(g(0)ିଵ/ଶା) = 1 + O(g(0)ିக) , 

as required for (18).  For (19), note that b y (15) we have 
௫ݏ)′′′ܣ  + (ݐ = O(ܣᇱᇱଷ/ଶିக (ݏ௫ +  , ((ݐ
and by (18) w e can replace ܣᇱᇱଷ/ଶିக (ݏ௫ +  We obtain (20) by the .(௫ݏ) ᇱᇱଷ/ଶିகܣ b y (ݐ
same reasoning. 
We say that a positive function b is slowl y varying in the first sense with respect to ܽ,  ߝ
and α and write ܾ ∈ ,ܽ)ܫܸܵ ,ߝ α) if, for B given b y (13), 
ᇱܤ  = (ᇱᇱᇱܣଶߜ)ܱ = ܱ ቀܣ

ᇲᇲభ
మ ିகାଶቁ,                                              (21) 

"ܤ   =  (22)                                                               .(ଶ(ᇱᇱଵ/ଶିகାଶܣ))ܱ
Note that 0 < 1/2 − ߝ + ߙ2 < 1/4. We know from the previous lemma that ܣᇱᇱ and ܣᇱᇱᇱ 
satisfy interval estimates. Hence so do ܤ′ and " . 
We use the following notation for a class of error terms which will be negligible for our 
purposes. Write ܺ = (ݔ)ܺ = (ߝ)ܱ  if there is a positive c such that =
 .(((௫ݏ)ᇱᇱܣ−)ݔ݁)ܱ
Suppose a and b are positivefunctions on ࡾା, A and B are defined by (12) and (13), and 
 is given by (17). Suppose A satisfies (14), (15), (16), and hence also (18), (19), and ߜ
(20). Suppose ܾ ∈ ,ܽ)ܫܸܵ  ,ߝ α). Let 

(ݔ)ߛ = න ݐ݀ (ݐ)ܾ(ݐ)௫ܽݐ
ஶ


. 

As ݔ → ∞, we have 

(ݔ)ߛ                   = ݁∗(௫)  
ߨ2√

ඥܣ"(ݏ௫)
݁(௦ೣ)൫1 + (ఈିଶఌ(௫ݏ)ᇱᇱܣ)ܱ +  ൯.               (23)(ߝ)ܱ

Furthermore, as ݔ → ∞    
                              (log (ݔ)ᇱ(ߛ → ∞,                                                        (24) 

(ݔ)ᇲ∗ܣ                  − (log (ݔ)ᇱ(ߛ = ܱ ቆܣᇱᇱିభ
మାଶఈିఌ(ݔ)ቇ,                                     (25) 

(ݔ)ᇲᇲ∗ܣ              − (log (ݔ)ᇱᇱ(ߛ = ܱ൫ܣᇱᇱିଵାఈିଶఌ(ݔ)൯.                                       (26) 
Notes: 1. 

ߙ6 − ߝ2 < − 1/4 ,     − 1/2 + ߙ2 − ߝ < − 3/4 ,   − 1 + ߙ6 − ߝ2 < − 5/4 . 
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(c) The formulation of (23) is redundant, as ܱ(ߝ) is smaller than ܣᇱᇱఈିଶఌ. We include 
it separately because, while the error term ܱ(ܣᇱᇱఈିଶఌ)  can obviously be refined by 
straightforward (but lengthy) analysis, the exponential error term appears to be intrinsic 
to the method. 
(d)  (24), (25), and (26) are technical estimates we shall use when we use the output 
from this theorem as input for Theorem (3.1.3). 
Proof.  Fix x large. We write ߜ for (ݔ)ߜ.  Set 

ߙ = ,(௫ݏ)()ܣ ݅ = 0 , 1 , . . . , 
ߚ = ,(௫ݏ)()ܤ ݅ =  0 , 1 , . . . . 

We saw at (10) in the proof outline that 

(ݔ)ߛ = ݁∗(௫)݁ఉబ න ݁ି[(௦ೣା௨)ିఈబିఈభ௨]݁(௦ೣା௨)ିఉబ ݀ݑ
ஶ

ିஶ
. 

We need to estimate 

ܫ =  න ݁ି[(௦ೣା௨)ିఈబିఈభ௨]݁(௦ೣା௨)ିఉబݑ ݑ݀ 
ஶ

ିஶ
 

for ݆ = 0, 1, 2. The analysis of the tails, L and R, is the same for ݆ = 0, 1, and 2,; we 
present the discussion only for ݆ = 0. We have 

ܫ =  න . . . du
 

୳ழିஔ
+ න . . . du

 

|୳|ழఋ
 + න . . . du

 

୳வఋ
=  L + C + R . 

We first estimate L. Integration by parts gives 

௫ݏ)ܣ + (ݑ  − ߙ − ݑଵߙ = න ݎ) − ௫ݏ)ᇱᇱܣ (ݑ + ݎ݀ (ݎ


௨
. 

In the integral defining ܮ, ݑ < ߜ− < 0; thus the integrand in the previous integral is 
positive. Using this and the monotonicity of ܣᇱᇱ, we continue with 

௫ݏ)ܣ + ( ݑ − ߙ − ݑଵߙ ≥ න (r − u) Aᇱᇱ(s୶ + r) dr


ିஔ
≥ Aᇱᇱ(s୶ − δ) න (r − u)  dr



ିஔ

= −
1
2

ݑ2) + δ)δAᇱᇱ(s୶ − δ). 
Thus 

L ≤ න ݁
ଵ
ଶ(ଶ௨ାఋ)ஔᇲᇲ(ୱ౮ିஔ)ା(௦ೣା௨)ିఉబ ݀ݑ

ିఋ

ିஶ
 

= ݁
ଵ
ଶఋమᇲᇲ(௦ೣିஔ) න ݁௨ᇲᇲ(௦ೣିఋ)ା(௦ೣା௨)ିఉబ ݀ݑ

ିఋ

ିஶ
. 

Now 

݁(௦ೣା௨)ିఉబ = න ݔ݁ ௫ݏ)ᇱܤ + ݐ݀ (ݑ
௨


. 

Usin g (21) and recalling that Aᇱᇱ is monotone, we find 
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݁(௦ೣା௨)ିఉబ = ଶߙ|ݑ|(1)ܱ)ݔ݁ 
ఏ) , 

where ߠ =  1/2 − ߝ +  is between 0 and 1/4.  Hence  ߙ 2

ܮ ≤ ݁
ଵ
ଶఋమᇲᇲ(௦ೣିஔ) න ௫ݏ)ᇱᇱܣߜݑ)ݔ݁ − (ߜ + ଶߙ|ݑ|(1)ܱ

ఏ) ݀ݑ
ିఋ

ିஶ
. 

Taking into account (17), and recalling that u is negative in the region of integration, we 
have 

௫ݏ)ᇱᇱܣߜݑ − (ߜ + ଶߙ|ݑ|(1)ܱ
ఏ = ଶ൫1ߙ൫ߜݑ + ൯(1) + ଶߙଵିߜ(1)ܱ

ఏ൯ 
                = ଶ൫1ߙ൫ߜݑ + ൯(1) + ଶߙ(1)ܱ

ଵାఈିఌ൯  = ଶ(1ߙߜݑ +  . ((1)
Thus we can continue with 

ܮ ≤ ݁
ଵ
ଶఋమᇲᇲ(௦ೣିఋ) න ଶ(1ߙߜݑ)ݔ݁ + ݑ݀ (((1)

ିఋ

ିஶ

=
1

൫1 − o(1)൯δαଶ
݁

ଵ
ଶఋమఈమ(ଵା(ଵ))݁ିఋమఈమ(ଵି(ଵ))

≤
(1 + ((1)

ଶߙ
݁ି(ଵ

ଶି(ଵ))ఋమఈమ =  .(ߝ)ܱ

Hence also ߙଶ
ଵ/ଶ ܮ =  .which is what we require ,(ߝ)ܱ

We now look at R. We need to estimate 

න ݁ି[(௦ೣା௨)ିఈబିఈభ௨]݁(௦ೣା௨)ିఉబ ݀ݑ
ஶ

ିஶ
. 

By Taylor's theorem, 

௫ݏ)ܣ + (ݑ − ߙ − ௫ݏ)ܤ] ݑଵߙ + (ݑ − [ߚ = + ݑߚ−
1
2

௫ݏ)ᇱᇱܣ) + ((ߦ − ௫ݏ)ᇱᇱܤ +  ଶݑ(ߦ
for some ߦ ∈ (0, (ݑ . Taking into account (21), (22), and the motonicity of ܣᇱᇱ , we 
continue with 

௫ݏ)ܣ + (ݑ − ߙ − ௫ݏ)ܤ] ݑଵߙ + (ݑ − [ߚ = ଶߙ)
ଵ/ଶ)ݑ 

+
1
2

௫ݏ)ᇱᇱܣ) + (ߦ + ௫ݏ)ᇱᇱܣ) +  ଶݑ(((ߦ

≥ ଶߙ)
ଵ/ଶ)ݑ + (

1
2

+  .ଶݑଶߙ((1)
Henc e        

න ݁ି[(௦ೣା௨)ିఈబିఈభ௨]݁(௦ೣା௨)ିఉబ ݀ݑ
ஶ

ఋ
≤ න ݁ିቂ(ఈమ

భ/మ)௨ା(ଵ/ଶା(ଵ))ఈమ௨మቃ݀ݑ
ஶ

ఋ

≤ ଶߙ
ିଵ/ଶ න ݁ି[(ଵ)௩ା(ଵ/ଶା(ଵ))௨మ]݀ݒ

ஶ

ఋఈమ
భ/మ

=  .(ߝ)ܱ

Hence ߙଶ
ଵ/ଶܴ =  .which is what we needed ,(ߝ)ܱ

We now estimate C.  For ݆ = 0, 1, 2, we need to estimate 
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ܥ = න ݑ݁ି[(௦ೣା௨)ିఈబିఈభ௨]݁(௦ೣା௨)ିఉబ݀ݑ
 

|௨|ழఋ
 . 

We no w need to take the Taylor series analysis given in the pro f outline one step further. 
By Taylor's theorem, we have 

݁ି[(௦ೣା௨)ିఈబିఈభ௨]݁(௦ೣା௨)ିఉబ = −
1
2

ଶݑଶߙ −
1
6

ଷݑଷߙ −
1

24
ସݑොସߙ + ݑଵߚ +

1
2

 .ଶݑመଶߚ
Here we use decoration to indicate terms which must be evaluated away from ݏ௫: ොସߙ =
(ݓ)(ସ)ܣ  for some ݓ, ௫ݏ| − |ݓ < ,ߜ መଶߚ = (′ݓ)"ܤ  for some ,′ݓ  ௫ݏ| − |ᇱݓ < ߜ . We 
separate the main quadratic term, the odd powers, and the error term. We set ܦ =
− ଵ


ଷݑଷߙ + ݑଵߚ  and ܧ = ଵ

ଶସ
ସݑොସߙ + ଵ

ଶ
ܣ ଶ , Setݑመଶߚ = ଶߙ

ଷఈିఌ  and note that 3ߙ − ߝ <
−1/8 . Noting (15), (16), (21), and (22) and Lemma (3.1.8), we have ܦ = ,(ܣ)ܱ ܧ =
ଶܦ and ,(ଶܣ)ܱ = ܣ Taking into account that .(ଶܣ)ܱ  → 0, we have 

ܥ = න ݑ݁ିఈమ௨మ∕ଶ݁݁ா݀ݑ
 

|௨|ழఋ
= න ݁ିఈమ௨మ∕ଶ(1ݑ + ܦ + 1)((ଶܦ)ܱ + ݑ݀((ܧ)ܱ

 

|௨|ழఋ

= න ݁ିఈమ௨మ∕ଶ(1ݑ + ܦ + ݑ݀((ଶܣ)ܱ
 

|௨|ழఋ

= න ݁ିఈమ௨మ∕ଶ(1ݑ + ݑ݀(ܦ + (ଶܣ)ܱ
 

|௨|ழఋ
න ݑ݁ିఈమ௨మ∕ଶ݀ݑ

 

|௨|ழఋ

= න ݁ିఈమ௨మ∕ଶ(1ݑ + ݑ݀(ܦ + ଶߙ(ଶܣ)ܱ
ି(ାଵ)/ଶ

 

|௨|ழఋ
. 

For ݆ = 0,2, ∫  ݑఈమ௨మ∕ଶ݀ି݁ܦݑ
|௨|ழఋ  is the integral of an odd function over a symmetric 

interval and hence we can drop D from the expressions for ܿ and ܿଶ. We next pass to 
integrals over the entire line. This introduces an error of ܱ(ߝ), which we absorb into the 
larger error terms. We have 

ܥ =  න ݁ିఈమ௨మ∕ଶ݀ݑ
ஶ 

ିஶ
+ ଶߙ(ଶܣ)ܱ

ିଵ/ଶ = ଶߙ
ିଵ/ଶ൫√2ߨ +  ;൯(ଶܣ)ܱ

ଶܥ = න ݑଶ݁ିఈమ௨మ∕ଶ݀ݑ
ஶ 

ିஶ
+ ଶߙ(ଶܣ)ܱ

ିଷ/ଶ = ଶߙ
ିଷ/ଶ ቀ√2ߨ + ቁ(ଶܣ)ܱ . 

For ݆ = 1 the integral involving ݑ  ݁ିఈమ௨మ∕ଶ vanishes; and we have, using (15), (17), and 
(21), 

ଵܥ = න ݑ݀ܦఈమ௨మ∕ଶି݁ݑ
ஶ 

ିஶ
+ ଶߙ(ଶܣ)ܱ

ିଵ = ଶߙ)ܱ
ିଷ/ଶ ߚଵ) + ଶߙ)ܱ

ିହ/ଶߙଷ) + ଶߙ(ଶܣ)ܱ
ିଵ

= ଶߙ
ିଵ(ߙଶ

ିఌାଶఈ + ଶߙ
ିఌ + (ଶܣ = ଶߙ

ିଵ(ߙଶ
ିఌାଶఈ). 

Hence 
  ݁∗(௫)݁ఉబܫ = ݁∗(௫)݁ఉబߙଶ

ିଵ/ଶ ቀ√2ߨ +  ቁ,                                       (27)(ଶܣ)ܱ
             ݁∗(௫)݁ఉబܫଵ = ݁∗(௫)݁ఉబߙଶ

ିଵܱ(ߙଶ
ିఌାଶఈ)                                         (28), 
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            ݁∗(௫)݁ఉబܫଶ = ݁∗(௫)݁ఉబߙଶ
ିଷ/ଶ ቀ√2ߨ +  ቁ.                           (29)(ଶܣ)ܱ

  
This gives us (23). 
We now proceed to verify (24), (25), and (26).  For appropriate K, we have 

(ݔ)ߛ = ݁∗(௫)݁ఉబ න ௫ݏ)ܭ  + ݑ݀ (ݑ
ஶ 

ିஶ
. 

If we differentiate (9) and then follow the same pattern of analysis we find 

(ݔ)()ߛ = ݁∗(௫)݁ఉబ න ௫ݏ) + ௫ݏ)ܭ(ݑ + ݑ݀ (ݑ
ஶ 

ିஶ
 

for ݆ =  1, 2. If we set 

ܬ = න ௫ݏ)ܭݑ + ݑ݀ (ݑ
ஶ 

ିஶ
,       ݆  =   0 , 1 , . . ., 

then we can write 
ߛ                                                      = ݁∗݁ఉబܬ,                                                                (30) 

ᇱߛ = ݁∗ ݁ఉబ(ݏ௫ܬ +  , (ଵܬ
ᇱᇱߛ                                                = ݁∗ ݁ఉబ(ݏ௫

ଶܬ + ଵܬ௫ݏ2 +  . (ଶܬ
From Lemma(3.1.1), we know that ܣ∗ᇱ(ݔ) = ௫ݏ  and ܣ∗ᇱᇱ(ݔ) =  ଵ . Henceି(ݔ)"ܣ
the quantities we want to estimate are 

(log ᇱ(ߛ = ௫ݏ +
ଵܬ

ܬ
, ᇱ∗ܣ − (log ᇱ(ߛ = −

ଵܬ

ܬ
, 

ᇱ∗ܣ − (log ᇱᇱ(ߛ = ᇱᇱିଵܣ −
ଶܬ

ܬ
+ ൬

ଵܬ

ܬ
൰

ଶ

. 

From (27) and (28), we know that 

−
ଵܬ

ܬ
=

݁∗(௫)݁ఉబߙଶ
ିଵ ܱ(ߙଶ

ଶఈିఌ)

݁∗(௫)݁ఉబߙଶ
ିଵ/ଶ ቀ√2ߨ + ଶߙ)ܱ

ఈିଶఌ)ቁ
= ଶߙ

ିଵ ܱ(ߙଶ
ଶఈିఌ) = ଶߙ)ܱ

ିଵାఈିଶఌ), 

This gives (25). Also, noting that ݏ௫ → ∞ , we have (24). This also gives the 
required estimate for ( ܬଵ/ܬ)ଶ  in (25). We complete (25) by noting 

(௫ݏ)ᇱᇱିଵܣ −
ଶܬ

ܬ
= ଶߙ

ିଵ −
݁∗(௫)݁ఉబߙଶ

ିଷ/ଶ ቀ√2ߨ + ଶߙ)ܱ
ఈିଶఌ)ቁ

݁∗(௫)݁ఉబߙଶ
ିଵ/ଶ ቀ√2ߨ + ଶߙ)ܱ

ఈିଶఌ)ቁ
= ଶߙ

ିଵ − ଶߙ
ିଵ( 1 + ଶߙ)ܱ

ఈିଶఌ)) = ଶߙ)ܱ
ିଵାఈିଶఌ)), 

as required.  

We start with positive functions c and d defined on ାࡾ . We want to 
estimate ݂(ऊ) = ∑ ܿ(݊)ିଵ݀(݊) ऊ . Here c will be our main term with d a slowly 
varying correction. We will do our computational work with the auxiliary 
functions 
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(ݔ)߁                        =  (31)                                                             ,(ݔ)ܿ ݈݃
                        Δ(ݔ) =  (32)                                                                   .(ݔ)݀ ݈݃
Let ߁∗ be the conjugate function to ߁ and set ݔ௦ = (ݏ)ݔ = (ݏ)ᇱିଵ߁ =  We .(ݏ)ᇱ∗߁
suppose that 1/4 < ߝ <  1/2 is such that as ݔ → ∞ 
,(ݔ)߁                 ,(ݔ)ᇱ߁ ,(ݔ)ᇱᇱ߁ (ݔ)(ଷ)߁− > 0,                                                 (33) 
,(ݔ)߁                                (ݔ)ᇱ߁ → ∞ ,                                                               (34) 
,(ݔ)ᇱᇱ߁                                    ,(ݔ)(ଷ)߁ (ݔ)(ସ)߁ → 0,                                       (35) 

(ݔ)ᇱᇱᇱ߁                               = O ቆ ߁ᇱᇱయ
మାக(ݔ)ቇ,                                                 (36) 

(ݔ)(ସ)߁                                  = O൫ ߁ᇱᇱଶାଶఌ(ݔ)൯.                                             (37) 
Note that if this holds for e, then it also holds for any ߝ′ such that 1/4 < ′ߝ <  .ߝ 
In analogy to the previous theorem, the core hypothesis for the proof is no w that we can 
find an auxiliary function ߣ  such that ߣଶ߁ᇱᇱ → ∞  and ߣଷ߁ᇱᇱᇱ → 0 . Assumption (36) 
allows us to use 
(ݏ)ߣ             = భି(௦ݔ)ᇱᇱ߁

మ ିఉ                                                   (38) 
for some ߚ, 0 < ߚ < 3 /ߝ − 1/12 , which we now regard as selected and fixed. As 
before, a convenient choice to keep in mind is ߝ = (1/2)ି, ߚ = 0ା . 
Lemma (3.1.9) [106]:  If we have (36), (37), and (38),  then we also have 

ݑݏ                     
|ఏ|ழఒ

௦ݔ)ᇱᇱ߁| + |(ߠ = ൫1 +  (39)                                             , |(௦ݔ)ᇱᇱ߁|൯(1)

ݑݏ                                
|ఏ|ழఒ

௦ݔ)ᇱᇱᇱ߁| + |(ߠ = ܱ ൬߁ᇱᇱᇱ(ݔ௦)
ଷ
ଶାఌ൰,                                          (40) 

ݑݏ                           
|ఏ|ழఒ

ห߁(ସ)(ݔ௦ + ห(ߠ = ܱ൫߁(ସ)(ݔ௦)ଶାଶఌ൯.                                             (41) 

Proof.  The proof is the natural modification o f the proof of Lemma (3.1.6). 
Suppose that d is a positive ܥଶ function. We say that d is slowly varying in the second 
sense with respect to ܿ, ݀ and write ,ߚ and ,ߝ ∈ ,ܿ ) ܫ ܫ ܸܵ ,ߝ ݏ if, as ,(ߚ → ∞, 
(ݏ)ᇱ߁                                              − ∆ᇱ(ݏ) → ∞,                                                        (42) 
                               ∆ᇱ= ܱ ቀ߁

ᇲᇲభ
మ ାఌିఉቁ,                                                        (43) 

                                ∆ᇱᇱ= ܱ൫(߁ᇱᇱଵ/ଶାఌିఉ)൯
ଶ

.                                              (44) 
Note that the assumptions imply 

3
4

<
1
2

+ ߝ − ߚ < 1. 
In analogy with A and B, these estimates on F imply interval estimates for ∆. 
For these hypotheses the model case is 

(ݔ)߁ =
ݔ + 1

ߛ
log

ݔ + 1
ߛ

−
ݔ + 1

ߛ
, (ݔ)ᇱ߁ =

1
ߛ

log
ݔ + 1

ߛ
, (ݔ)ᇱᇱ߁ =

1
ݔ)ߛ + 1)   

and ߝ can be chosen as close as desired to 1/2. 
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Set 
ܿ = ,( ௦ݔ)()߁ ݅ = 0 , 1 , 2 , . . . 
݀ = ∆()(ݔ௦),        ݅ =  0, 1,2, . .. 

ߪ                                          = ௦ݔ −  .[௦ݔ]
Define the scaled parameters 
ଷܥ                                             =  ܿଷܿଶ

ିଷ/ଶ, 

ܧ = ݀ଵ ܿଶ
ିଵ/ଶ −

1
2

 ܿଷܿଶ
ିଷ/ଶ, 

                                             Θ = Θ(ߠ, 0) = ଶܿߠ
ିଵ/ଶ, 

Θ(݊) = Θ(ߠ, ݊) = ߠ) + ଶܿ(ࣿߨ2
ିଵ/ଶ. 

Note that the previous assumptions insure that ܥଷ, = ܧ  .(1)
Again we want notation for a class o f small error terms. We write ܻ = (௦ݔ)ܻ = ܱ(ℱ) i 
f for some > 0, ܻ =  . ((ି(௦ݔ)ᇱᇱ߁ −)ݔ݁)ܱ
Set 
 ߬ = ߝ2 − ߚ6 − ଵ

ଶ
.                                                                 (45) 

The assumptions on ߝ and ߚ insure that 0 < ߬ < 1/2. 
Theorem (3.1.3) [106]: Suppose ߁  satisfies (33), (34),(35), (36), (37), and hence 
also(39), (40), and (41) and that ݀ ∈ ,ܿ ) ܫ ܫ ܸܵ ,ߝ Set ݂(ऊ) .(ߚ = ∑ ݀(ࣿ)ܿ(ࣿ)ିଵऊஶ

 . 
Then f is entire and, as ݏ → ∞, has the asymptotic growth 

           ݂൫݁௦ାఏ൯

= ݁௰∗(௦) ߨ2√
ඥ߁ᇱᇱ(ݔ)

ఏ௫ೞ݁(௦ݔ)݀  ቈ݁ିଵ
ଶ௵మ

(1 + ܧ߆݅ + (ଷܥଷ߆݅ + ܱ ቆܿଶ

ଵ
ଶାఛ

ቇ

+ ܱ(ℱ) .                                                                                                    (46) 

ln particular, fo ܿଶ
ଵ/ଶିఉ < |ߠ| <   ߨ

                   ห݂(݁௦ାఏ)ห = ݂(݁௦)ܱ ቆܿଶ

భ
మାఛ

ቇ.                                                             (47) 

Note: As with the previous theorem, the formulation in (46) is redundant. The ܱ(ℱ) error 
term, which is smaller, is intrinsic to the method; the other could be mechanically refined. 
Hence we present both. 
we use the results of this theorem as input for Theorem (3.1.2). To do that, we require 
certain estimates on the derivatives of f on the axis. We present those estimates as a 
lemma now because it is convenient to include their proof along with the proof of 
Theorem (3.1.3).Lemma: .In  the situation of Theorem (3.1.3), we have  the following  
additional estimates: 

                                                ऊ ௗ
ௗऊ

݂(݁௦) = ܮ௦ݔ +  ଵ,                                                (48)ܮ
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                                         ቀऊ ௗ
ௗऊ

ቁ
ଶ

݂(݁௦) = ௦ݔ
ଶܮ + ଵܮ௦ݔ2 +  ଶ,                               (49)ܮ

where for ݆ =  0,1,2 

ܮ                       = ݁௰∗(௦)ା∆(௫ೞ)ඨ
ߨ2
ܿଶ

ቈට ܿଶ

ߨ2
ܬ + ܱ(ܿଶ

ଵ/ଶାఛ)  + ܱ(ℱ)                      (50) 

with 

ܬ             = ߨ2
1

√ܿଶ
 , ଵܬ = ߨ2√  

−ܿଷ + 2݀ଵܿଶ

2(√ܿଶ)ହ  , ଶܬ = ߨ2√
1

(√ܿଶ)ଷ .        (51) 

Proof. The hypothesis (42) insures that ݈݅݉(݀(ࣿ)ܿ(ࣿ)ିଵ)ଵ/ࣿ =  ܱ. Thus f is entire. 
We need to estimate 

൬ऊ
݀

݀ऊ
൰

ଶ

݂(ऊ) =  ࣿ݀(ࣿ)ܿ(ࣿ)ିଵऊ
ஶ



,       ݅ = 0,1, 2 . 

We split the sum into a central part and tails. The tails will be estimated by the 
corresponding integrals, using analysis similar to that in the previous proof. In order to 
capture the cancellation when ߠ ≠ 0, we treat the central part differently. 
The analysis of the tail terms is not essentially changed by the factors ࣿ; hence we 
present the estimates only for ݅ = 0. We have 

(ݔ)݂ =  ݀(ࣿ)ܿ(ࣿ)ିଵݔ =  ݁ࣿ ୪୭ ௫ି()ା∆(). 

Writing ݔ = ݁௦, we have ݂൫݁௦ାఏ൯  = ∑ exp(ࣿݏ − Γ(ࣿ) + ∆(ࣿ) +  Fix s large. For .(ߠ݅
this ݏ, ݏݔ − Γ(ݔ) has its maximum at ݔ௦ . Set ݑ = ݊ − ௦ݔ . Thus ݁ࣿఏ =  ݁௫ೞఏ݁௨ఏ. For 
typographic convenience, we set 

Ω = −(Γ (ݔ௦ + (ݑ − ܿଶ − ܿଵݑ )  + ௦ݔ)∆ + (ݑ − ݀. 
Bringing a factor of ݁௰∗(ࣿ)݁௫ೞఏ  outside the sum, recalling that ܿଵ = (௦ݔ)ᇱ߁ =  and ,ݏ
doing a bit o f rearranging, we find 

݂(݁௦ାఏ) = ݁௰∗(௦ା∆(௦)ାఏ௫ೞ)  ݁ஐା௨ఏ
ஶ

ି௫ೞ

. 

We need to show 

          ට
ܿଶ

ߨ2
 ݁ஐା௨ఏ

ஶ

ି௫ೞ

= ݁ିଵ
ଶ௵మ

(1 + ܧ߆݅ + (ଷܥଷ߆݅ + ܱ ቆܿଶ

ଵ
ଶାఛ

ቇ + ܱ(ℱ).           (52) 

We use  ߣ =  as given by (38) to split the range of summation into three parts, again (ݏ)ߣ
L, C, and R. We start the analysis with L. We drop the unimodular factor and dominate 
the sum by the corresponding integral. That is, 

                                               ට
ܿଶ

ߨ2
ܮ = ܱ(1)ට ܿଶ

ߨ2
න ݁ஐ݀ݑ

ିఒ

ି௫ೞ

  .                                    (53) 
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We now estimate the integrand. We have 

௦ݔ)߁ + (ݑ − ܿ − ܿଵݑ = න ݎ) − ௦ݔ )ᇱᇱ߁( ݑ + ݎ݀ (ݎ 


௨
. 

By the monotonicity of ߁ᇱᇱ we see that if ݑ <   then  ߣ−

௦ݔ )߁ + (ݑ − ܿ − ܿଵݑ ≥ න ݎ) − ௦ݔ)ᇱᇱ߁( ݑ& + ݎ݀(ݎ 


ିఒ
≥ (௦ݔ)ᇱᇱ߁ න ݎ) − ݎ݀( ݑ&



ିఒ

=
1
2

ݑ2)ߣ(௦ݔ)ᇱᇱ߁ +  .(ߣ
Thus, we continue (53) with 

ට ܿଶ

ߨ2
ܮ = ܱ(1)ට ܿଶ

ߨ2
݁మୡమ/ଶ න ݁ୡమ௨ఒା∆(௫ೞା௨)ିௗబ ݀ݑ

ିఒ

ି௫ೞ

 

= ܱ(1)݁మୡమ/ଶ න ݁୵ఒ√ୡమା[∆(௫ೞା௪/√ୡమ)ିௗబ] dw
ିఒ√ୡమ

ିஶ
. 

We need to estimate the integral. Using (43) to estimate [∆(ݔ௦ + (cଶ√/ݓ − ݀]in the 
integral, we find that, for some positive K, 

ට ܿଶ

ߨ2
න …  dw

ିఒ√ୡమ

ିஶ
= ܱ(1)݁మୡమ/ଶ න ݁୵ఒ√ୡమ݁ି௪ dw

ିఒ√ୡమ

ିஶ

= ܱ(1)
݁మୡమ/ଶ݁(ିమୡమା√ୡమ)

cଶ√ߣ − ܭ
= ܱ(1)

݁ିమୡమ/ଶା√ୡమ)

cଶ√ߣ − ܭ

= −) ݔ݁) ܱ(1)ܱ
λଶcଶ

2
+ ((ܭඥcଶߣ = ܱ(ℱ). 

as required. We now look at ܴ. I f ݑ ≥  then , ߣ

xୱ)߁ + u) − c − cଵu = න (u − r )Γᇱᇱ(xୱ + r)dr
୳


≥ න (u − r )Γᇱᇱ(xୱ +  r)dr





≥ Γᇱᇱ(xୱ + λ) න (u − r )dr



=

1
2

λΓᇱᇱ(xୱ + λ)(2u − λ). 

Set cଶ = Γᇱᇱ(xୱ + λ).  Then 

ܴ = ܱ(1) න ݁ିଵ
ଶఒୡమ(ଶ୳ି)ା∆(௫ೞା௨)ିௗబ ݀ݑ

ஶ

ఒ
. 

Thus 

ට ܿଶ

ߨ2
ܴ = ܱ(1)ඥܿଶ ݁

ଵ
ଶఒమୡమ න ݁ିఒୡమ௨ା∆(௫ೞା௨)ିௗబ ݀ݑ

ஶ

ఒ
. 

Lemma (3.1.9) insures cଶ~cଶ. The hypothesis (43) and the monotonicity of Γᇱᇱ insure 
௦ݔ)∆ + (ݑ − ݀ = ܱ(1)ܿଶ

ଵ/ଶݑ. Thus we need to estimate 
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ܫ = ܱ(1)ඥܿଶ݁1))ݔ + (ଶ/2ߣcଶ((1) න 1)ߣ−)ݔ݁ + cଶu((ܫ)0 + ଶܿ(ܫ)ܱ
ଵ/ଶݑ݀(ݑ

ஶ

ఒ
 

= ܱ(1)ඥܿଶ݁1))ݔ

+ (ଶ/2ߣcଶ((1) න ݔ݁ ቀൣ−(1 + ଶcଶߣ((ܫ) + ଶܿ(ܫ)ܱ
ଵ/ଶ൧

ݑ
ߣ

ቁ ݑ݀
ஶ

ఒ
. 

We know 2ܿߣ
1/2 → ∞. Hence, for large s, 

ቂ−(1 + 2ܿ2ߣ((1) + ଶܿߣ(1)ܱ
ଵ/ଶቃ

ݑ
ߣ

 ≤ −
2
3

2ܿ2൨ߣ
ݑ
ߣ

= −
2
3

 .ݑ2ܿߣ
Thus 

ܫ = ܱ(1)ඥܿ2݁1))ݔ + (2/2ߣc2((1) න ݑ݀ (3/ݑ2ܿߣ2−)ݔ݁
∞

ߣ

= ܱ(1)ඥܿ2݁1))ݔ + (2c2/3ߣ2−)ݔ݁ ଵି(ߣc2)(2/2ߣc2((1)

= ܱ(1)
1

√ܿ2
))ݔଵ݁ିߣ

1
2

−
2
3

+ (2ߣc2((1) = ܱ(ℱ), 

as required. 
We now need to estimate the center term, 

  


 = ݁௰∗(௦)ା∆(௫ೞ)ାఏ௫ೞ  ݁ஐା௨ఏ

|[௨]|ழఒ

. 

By Taylor's theorem, we have, for |ݑ| <  ,ߣ

Ω = −
1
2

c22ݑ −
1
6

c33ݑ + ݑ1݀ −
1

24
cො44ݑ +

1
2

d22ݑ. 

Here cොସ = and d (ݓ)(4)߁ ଶ = Δ′′(ݓ′), with ݓ, ∋ ′ݓ ௦ݔ) − ,ߣ  ௦ݔ +  ,Using (36), (37) .(ߣ
(43), and (44), we find 

|cො44ݑ| + หd22ݑห = ܱ(ܿଶ
ଵ/ଶା), 

 (|c33ݑ| + |d1ݑ|)ଶ = ܱ(ܿଶ
ଵ/ଶା). 

We have 

 ݁ఆା௨ఏ

|[௨]|ழఒ

=  ቆ1 + ݑ1݀ −
3ݑ3ܿ

6
+ ܱ(ܿଶ

ଵ/ଶା)ቇ ݔ݁ ቆ−
2ݑ2ܿ

2
+ ቇߠݑ݅

=  ቆ1 + ݑ1݀ −
3ݑ3ܿ

6
ቇ ݔ݁ ቆ−

2ݑ2ܿ

2
+ ቇߠݑ݅

+  ܱ(ܿଶ
ଵ/ଶା)݁ݔ ቆ−

2ݑ2ܿ

2
+  ቇߠݑ݅

=    
ଵ

+   
ଶ

.                                                                             (54) 

We estimate ∑  ଶ  by passing to absolute values, estimating the truncated Gaussian sum 
by the corresponding Gaussian integral over the entire line, and then evaluating the 
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integral. This gives ∑  ଶ = ܱ(ܿ2
2ܿ)ܱ(ݎ+1/2

−1/2) = ܱ(ܿ2
ݎ ), which is what we needed. (Recall 

from (52) that we pick up an additional factor of ܱ(ܿଶ
ଵ/ଶ) outside o f the sum ∑  |[௨]|ழఒ . ) 

Write ݑ = ݇ − ݇ with ߪ ∈ ߪ and ࢆ = ௦ݔ  − ∑ Now .[௦ݔ]   ଵ  is a sum with the range |݇| <
 However, the natural estimates show that we change things only by ܱ(ℱ) if we replace .ߣ
that with the sum over all integers. We do that and thus no w need to estimate 

 ቆ1 + d1(k − σ) −
ܿ3(k − σ)ଷ

6
ቇ ݔ݁  ቆ−

ܿ2(k − σ)2

2
+ ݅(k − σ)ߠቇ

ஶ

ିஶ

. 

By the Poisson summation formula ([114], p. 8), this equals ∑ ℎ(݊)ஶ
ିஶ , where 

ℎ(݊) = න ቆ1 + ݔ)1݀ − (ߪ −
ݔ)3ܿ − ଷ(ߪ

6
ቇ

ஶ

ିஶ

× ݔ݁ ቆ−
ݔ)2ܿ − 2(ߪ

2
+ ݔ)݅ − ቇߠ(ߪ ݁ଶగ௫  ݀ݔ 

= ݁ଶగఙ න (1 + ݕ1݀ − ଷݕ3ܿ ∕ ଶݕ2ܿ−)ݔ݁(6 ∕ (2 + ݊ߨ2 + ݕ݀ (ݕ݅(ߠ
ஶ

ିஶ
. 

Starting with the formula for ∫  ݁ି௧௬మାଶ௦௬݀ݕஶ
ିஶ  ( [115], p. 8) and differentiating with 

respect to s, t, and then both, we find 

                                 න  ݁ି௧௬మାଶ௦௬݀ݕ
ஶ

ିஶ
=

√π
√t

 ݁௦మ∕௧ ,                                                                    (55) 

                                 න ݕ௧௬మାଶ௦௬݀ି݁ݕ 
ஶ

ିஶ
=

ݏ
ݐ

ߨ√
ݐ√

 ݁௦మ∕௧ ,                                                             (56) 

           ∫ ஶݕଶ݁ି௧௬మାଶ௦௬݀ݕ 
ିஶ =  ଵ

ଶ௧
+ ቀ௦

௧
ቁ

ଶ
൨ √గ

√௧
 ݁௦మ∕௧ ,                                         (57) 

                           න ݕଷ݁ି௧௬మାଶ௦௬݀ݕ 
ஶ

ିஶ
= 

ݏ3
ଶݐ2 + ቀ

ݏ
ݐ

ቁ
ଶ

൨
ߨ√
ݐ√

 ݁௦మ∕௧ .                                      (58) 

For ݊ = 0, direct computation gives 

ℎ(0) = ݁ି௵మ∕ଶܿ2 ቆ1 + ൭݅߆
݀1

݀2
−

1
2

൬
ܿ3

ܿ2
2൰൱ + ݅

ଷܥଷ߆

ܿ2
3 ቇ

ߨ2√
√ܿ2

 

or, in terms of the scaled parameters, 

ℎ(0) = ݁ିଵ
ଶ௵మ

(1 + ܧ߆݅ + (ଷܥଷ߆݅
ߨ2√
√ܿ2

. 

In general, 

ℎ(݊) = ݁ିଵ
ଶ௵()మ

(1 + ܧ(݊)߆݅ + (ଷܥଷ(݊)߆݅
ߨ2√
√ܿ2

݁ଶగఙ. 
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                   In general, ∑ |ℎ(݊)|ஷ  is dominated by a geometric series which is dominated 
by ℎ(0)ܱ(ℱ) . However, this fails to be uniform in ߠ ; in fact, Θ(−ߨ, 1) = Θ(ߨ, 0) . 
However, this is only an issue if ݊ = ±1 and ݁ఏ is near the negative real axis. In that 
case, however, both terms are ܱ(݁ିܿ2

−1) = ܱ(ℱ). Hence all the ℎ(݊), for ݊ > 0, can be 
absorbed into the various error terms. Finally, notice that when ܿ2

−1/ଶିఉ < ,|ߠ| ℎ(0) =
ܱ(ℱ) . Hence the main term is the contribution associated to ∑  ଶ in (54), which we saw 
was ܱ(ܿ2

−1/ଶା). Thus (46) and (47) are done. 
We now proceed to the proof of the lemma.  For ݆ = 1, 2 we want to estimate 

൬ऊ
݀

݀(ऊ)
൰



݂(݁௦) = ݁௰∗(௦)݀(ݔ௦) (ݔ௦ + ݁ஐ(ݑ
ஶ

ି௫ೞ

. 

Straightforward manipulation shows that (48) and (49) hold with 

ܮ  = ݁௰∗(௦)݀(ݔ௦)  ݁ஐݑ
ஶ

ି௫ೞ

 

for j = 0, 1, 2. We estimate ܮଵ and ܮଶ using the same type o f analysis as in the proof of 
the theorem (which, in fact, treated ܮ). That is, the tails contribute an error that is ܱ(ℱ), 
and the central part of the sum is analyzed using Poisson summation. The situation here 
is slightly easier because we only want estimates on the positive real axis. Hence the 
terms in the Poisson summation corresponding to ݊ ≠ 0 contribute a total error which is 
ܱ(ℱ). This gives, up to an error term of ܱ(ܿ2

) + ܱ(ℱ), ܮ =   This gives us (50) withܬ

ܬ = න (1ݕ + ݕ1݀ − ଷݕ3ܿ ∕ ଶݕ2ܿ−)ݔ݁(6 ∕ ݕ݀ (2
ஶ

ିஶ
 

For ݆ = 0,1,2. Evaluating those integrals using (55) - (58) then produces the statements 
in the lemma. 
We shall use the output of Theorem (3.1.2) as input for Theorem and then use the output 
from Theorem (3.1.3) as input for Theorem (3.1.2). Here we collect the bookkeepin g 
lemmas which show that the functions which arise in this process satisfy the required 
hypotheses. 
First, suppose that we have a and b which satisfy the hypotheses of Theorem (3.1.2), that 
A and B are given by (12) and (13), and that {ߛ(݊)} are the associated moments . We 
want to use {ߛ(݊)ିଵ} as power series coefficients in a way which keeps the focus on a 
as the primary term. To do this, we define ݁, ݀ by (ݔ)ܿ   = ,((ݔ)∗ܣ)ݔ݁  (ݔ)݀ =
 .and ∆ b y (31) and (32) ߁ ଵ  and defineି(ݔ)ߛ(ݔ)ܿ
Lemma (3.1.10) [106]: Suppose ܽ,  satisfy the hypothese s of Theorem (3.1.2) ߙ and ,ߝ
and ܾ ∈ , ܽ ) ܫ ܸܵ , ߝ ߚ with ,ߝ Then, with the same . ( 3/ߙ = ߣ and with ,ߙ =  ᇱᇱି ଵ/ଶିఉ߁
, the data ߝ, ,ߚ  and ∆ satisfy the hypotheses of Theorem (3.1.3). That is, with the same ,߁
݀ satisfies (33), (34), (35), (36), a n d 0 7 ) , and ߁ ,ߝ ∈ , ܿ) ܫ ܫ ܸܵ ,ߝ  .(ߚ
Proof. The statements about ߁ follow from the hypotheses on A, the fact that ߁ =  ,∗ܣ
and Lemma (3.1.1). 
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To see that ݀ ∈ , ܿ) ܫ ܫ ܸܵ ,ߝ  note that ,(ߚ
∆ = − ܿ ݈݃ log  ߛ

= ߁ − log  ߛ
= ∗ܣ − log  ߛ

Hence , by (24), (25), and (26), ∆ satisfies (43) and (44). 
Suppose, now, that we had a, that b = 1, that we had a choice of ߙ, and that we then 
invoked Theorem (3.1.2) with the choice ߙ∗ =  ,Of course, for b constant function . 3/ߙ
݀ ∈ , ߙ)ܫ ܸܵ ,ߝ  Noting the previous lemma, we can then apply Theorem (3.1.3) to .(∗ߙ
the functions c and d just described. That will produce an entire function f . Suppose we 
have a fixed > − 1. We want to apply Theorem (3.1.2) to the functions  ܽఙ  and  ܾఙ, 
selected so that  ܽఙܾఙ  =  ݂ܽିఙ  . We set ܽఙ = ݁ିఙ , ܾఙ =  ݁ఙ݂ିఙ and ܣఙ(ݏ) =
ఙ(݁௦)ܽ ݈݃ −  − ,ݏ (ݏ)ఙܤ =   .ఙ(݁௦)ܾ ݈݃ 
Lemma (3.1.11) [106]:  Using a new smaller ߙ, we can apply Theorem (3.1.2) to the 
functions ܽఙ  and  ܾఙ.  That is, for a smaller ܣ ,ߙఙ satisfies (14),(15), (16), (19), and (20). 
Furthermore, ܾఙ ∈ ఙܽ)ܫ ܸܵ , ,ߝ  .(ߙ
Proof. Our choice ܿ(ݔ) = ߁ in Theorem (3.1.3) gives ((ݔ)∗ܣ)ݔ݁ = and hence ∗ܣ  =
∗߁ = ∗∗ܣ =  Thus .ܣ 

(ݏ)ఙܣ = ఙ(݁௦)݈ܽ݃− −  ݏ
                                                        = (௦݁)ܽ ݈݃ − − ݏ +  (ݏ)ܣߪ

   = (1 +  ,(ݏ)ܣ(ߪ
and the conclusions for ܣఙ  are immediate. We have ܤఙ(ݏ) = In ܾఙ(݁௦) = (ݏ)∗߁)ߪ −
((௦݁)݂ ݈݃  . Hence we need estimates for (߁∗ − ∗߁) and ′(݂ ݈݃ − = Set . "(݂ ݈݃
ऊ݀/݀ऊ . Direct computation yields 

ᇱ(݁௦)((௦݁)݂ ݈݃) =
݂ࣞ(݁௦)
݂(݁௦)

, 

ᇱ(݁௦)((௦݁)݂ ݈݃)              =
ࣞଶ݂(݁௦)

݂(݁௦)
− ൬

݂ࣞ(݁௦)
݂(݁௦)

൰
ଶ

 

(Recall that ߁∗ᇱ(ݏ) = ௦ݔ = (ݏ)′ܣ  and, by Lemma (3.1.1), ߁∗ᇱᇱ = ᇱᇱିଵ߁ = ܿଶ
ିଵ . Thus, 

using (48) and (49), we have 

∗߁) − ᇱ(݂ ݈݃ = (ݏ)ᇱ∗߁ −
݂ࣞ (݁௦)
݂ (݁௦)

, 

= ௦ݔ − ൬
ܮ௦ݔ + ଵܮ

ܮ
൰ = −

ଵܮ

ܮ
. 

= −
ඥܿଶ/ܬߨଵ + ܱ(ܿଶ

ଵ/ଶା)

ඥܿଶ/ܬߨ + ܱ(ܿଶ
ଵ/ଶା)

 

The last equality follows by using (50) and absorbing ܱ(ℱ) into the other, larger, error 
term. Using the values of ܬ and ܬଵ, we continue with 

∗߁) − ᇱ(݂ ݈݃ =
(−ܿଷ + 2݀ଵܿଶ)/2ܿଶ

ଶ + ܱ(ܿଶ
ଵ/ଶା)

1 + ܱ(ܿଶ
ଵ/ଶା)
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= − ቆ
−ܿଷ + 2݀ଵܿଶ)

2ܿଶ
ଶ +  ܱ(ܿଶ

ଵ/ଶା)ቇ ቀ1 + ܱ(ܿଶ
ଵ/ଶା)ቁ 

= ቀܱ(ܿଷܿଶ
ିଶ) + ܱ(݀ଵܿଶ

ିଵ) + ܱ(ܿଶ
ଵ/ଶା)ቁቀ1 + ܱ(ܿଶ

ଵ/ଶା)ቁ  

= ܱ ቀܿଶ
ିଵ/ଶିఌାఉቁ 

=  .(ᇱᇱଵ/ଶିఌାఉܣ)ܱ
Using this estimate for ܮଵ/ܮ, we analyze the second derivative by 

∗߁) − ᇱᇱ(݂ ݈݃ = (ݏ)ᇱᇱ∗߁ −
ࣞଶ݂(݁௦)

݂(݁௦)
+ ൬

݂ࣞ(݁௦)
݂(݁௦)

൰
ଶ

= (௦ݔ)ᇱᇱିଵ߁ −  ቆ
௦ݔ

ଶܮ + ଵܮ௦ݔ2 + ଶܮ

ܮ
ቇ + ൬

ܮ௦ݔ + ଵܮ

ܮ
൰

ଶ

= ܿଶ
ିଵ −

ଶܮ

ܮ
 + ൬

ଵܮ

ܮ
൰

ଶ

 

                    = ܿଶ
ିଵ −

ඥܿଶ/2ܬߨଶ + ܱ(ܿଶ
ଵ/ଶା)

ඥܿଶ/2ܬߨ + ܱ(ܿଶ
ଵ/ଶା)

+ ൫ܱ(ܣᇱᇱଵ/ଶିఌାఉ)൯
ଶ

 

= ܿଶ
ିଵ −

ܿଶ
ିଵ + ܱ(ܿଶ

ଵ/ଶା)

1 + ܱ(ܿଶ
ଵ/ଶା)

+ ൫ܱ(ܣᇱᇱଵ/ଶିఌାఉ)൯
ଶ

 

       = ܿଶ
ିଵ − ܿଶ

ିଵ + ܿଶ
ିଵܱ(ܿଶ

ଵ/ଶା) + ൫ܱ(ܣᇱᇱଵ/ଶିఌାఉ)൯
ଶ

 

                                  = ܱ(ܿଶ
ଵ/ଶା) + ൫ܱ(ܣᇱᇱଵ/ଶିఌାఉ)൯

ଶ
 

                                   =  .(ᇱᇱଵ/ଶఌାఉܣ)ܱ
This gives the required estimates for ܤᇱ and ܤᇱᇱ. 
we suppose that m is given and fixed and that (ݏ)ܣ = (௦݁)݉ ݈݃− − ݏ  satisfies the 
hypotheses of Theorem (3.1.2) for some selected ߝ,  We use the notation of Theorem .ߙ
(3.1.2) and its proof and of Theorem and its proof with the choice Γ =  ,In particular .∗ܣ
we denote the derivatives of A by ߙ's and of Γ by c's. 
Many of our estimates will be in terms of the function ܣᇱᇱ. We would like to be able to 
relate those estimates both to the starting function m and to the function ߮ defined by 
(ଶ|ݖ|)݉ =  which is often used as a parameterization in this context. B y ,((ऊ)2߮−)ݔ݁
straightforward calculation, we have 

(ଶݔ݈݃)ᇱᇱܣ = − ൬ݔ
݀

ݔ݀
൰

ଶ

(log (ଶݔ)(݉ =  .(ݔ)(߮∆)ଶݔ
Let ܪ be the weighted Bergman space, 

ܪ = ଶܮ  ൬ℂ, (ଶݎ) ݉
ߠ݀ݎ݀ݎ

ߨ
൰ ∩  .݈ܪ 

For each ݓ ∈ ℂ, there is a Bergman kernel function ݇ = ݇,௪ which is characterized 
as that element of ܪ  which satisfies ݂(ݓ) = 〈݂, ݇௪〉  for all f in ܪ . Because the 
monomials are an orthogonal basis of ܪ , ݇௪(ऊ) = ∑ ‖ऊ‖ିଶ(ݓഥऊ)ஶ

ୀ  . Thus, setting 
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ߛ = ∫ ஶ ݔ݀ (ݔ)݉ݔ
  and ܭ(ऊ) = ݇(ऊ) = ∑ ߛ

ିଵऊஶ
ୀ , we have݇௪(ऊ) =  We .(ഥऊݓ)ܭ

are interested in estimating ݇௪ and related objects. We start with m, use Theorem (3.1.2) 
to estimate the ߛ's in terms of m, and then use those estimates in Theorem (3.1.3) to 
estimate K . There is no loss of generality in assuming that w is real and positive, and we 
make that assumption for the rest. 
In describing various small quantities, we use the shorthand 

(ݔ)ܵ =  . ଵି(ݔ ݈݃)ᇱᇱܣ
Here is our main estimate for the Bergma n kernel.   
Theorem (3.1.12) [106]: ݏܣ → ∞, for |ߠ| ≤    , ଵ/ଶିఈ(ݎݓ)ܵ

݇௪൫݁ݎఏ൯ = ݁(୪୭ ௪) ܣᇱᇱ(݈ݎݓ ݃)݁ఏᇲ(୪୭ ௪) ቀ݁ିᇲᇲ( ௪)ఏమ\ଶ + ܱ൫ܵ(ݎݓ)ଵ\ଶା൯ቁ . (59) 
and thus      

 ~( ݎݓ)݉(ߠ݅݁ݎ)ݓ݇                              
(ݎݓ ݈݃)"ܣ

ݎݓ
 (60)                             .2\2ߠ(ݎݓ ݈݃)′′ܣ−݁ 

On the diagonal,     
                 ݇௪(ݓ) = ݁(ଶ ୪୭  ௪)ܣᇱᇱ(2݈ݓ ݃)(1 +  (61)                      .((ଵ\ଶା(2ݓ)ܵ)ܱ

Far from the axis, |ߠ| ≤ ఊ(ݎݓ)ܵ  for (any) fixed ߛ > 0,   
              ݇௪൫݁ݎఏ൯ = ݇௪(ݎ)ܱ(ܵ൫2ݓ൯ଵ\ଶା)).                                            (62)  

Note: Recall from Theorem (3.1.3) that ߬ = ߝ2 − ߚ6 − 1/2 and 0 < ߬ < 1/2. 
Proof. We apply Theorem (3.1.2) with the choice (ݏ)ܣ = (௦݁)݉ ݈݃− − ܤ ,ݏ =0. Let ߛ 
be the moment function we obtain. Lemma (3.1.10) insures that we can then use Theorem 
(3.1.3) with the choices ܿ = ,(∗ܣ)ݔ݁ ݀ = ଵିߛ(∗ܣ)ݔ݁   (and thus ܿିଵ݀ = ଵିߛ  ). 
Theorem (3.1.3) shows that on the positive axis 

݂(݁௦)~݁∗(௦)  
ߨ2√

ඥΓᇱᇱ(ݔ௦)
1)(௦ݔ)݀  +  .(ݎ+1\2(ଶݓ)ܵ)ܱ

We have Γ = ∗and hence Γ ∗ܣ = ∗∗ܣ =  ,the last by Lemma (3.1.1). We also know ,ܣ 
from that lemma, that Γᇱᇱ = ᇱᇱܣ = ᇱᇱିଵܣ  and hence ܿଶ = ᇱᇱିଵܣ  . Finally, =
ܤ ,In this case . ߨ2√/(ܤ)ݔᇱᇱܶ݁ܣ√  = 0 and hence ݂(݁௦)~ ݁ܣᇱᇱ. From the definitions, 
we have ݁(୪୭ ௧) = ((ݐ)݉ݐ)/1  . Recalling that ܭ = ݂  gives (59). The other estimates 
follow b y restricting to appropriate ߠ. 

From this theorem, we get an asymptotic version of (A). 
Corollary (3.1.13) [106]: 

~(ݎ)݇(ଶݎ)݉
ᇱᇱ(logܣ (ଶݎ

ଶݎ . 

In particular, if  ݉(ݎ)~ ܽݎ݁ି(ݎ)ݏ, where ܽ , ܾ , ܿ , ݀ > 0 , and ݏ ∈
݁ିݎܽ)ܫܸܵ , ,ߝ ,ߝ for  (ߙ   allowed in Theorem (3.1.2), then ߙ

 .ଶௗିଶݎଶ݀ܿ  ~ (ݎ)݇(ଶݎ)݉
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Theorem (3.1.12) is not enough to give a version of (B). It shows that ݈݃ ݇ =
1)(݈݉݃ −)  +  but to get to a version of (B), we need to know that a similar estimate ;((1)
holds after we apply (ݔ݀/݀ݔ)ଶ to each side. For that reason, we need to invoke (9) and 
Theorem (3.1.2) again. 
Theorem (3.1.14) [106]: Fix ߪ  > 0  and set ఙ,௪ܭ  = ݇

ష,௪ . As ݎ  → ∞ , for |ߠ| ≤
 ଵ\ଶିఈ(ݎ)ܵ

1)~(ߠ݅݁ݎ)ఙ,௪ܭ +  .ଵାఙ(ߠ݅݁ݎ),௪ܭ(ߪ
For ߨ ≥ |ߠ| >  ,ߙ6−2\1(ݎ)ܵ

 . (ݎ+2\1(ݎ)ܵ )ܱ(ݎ)ఙ,௪ܭ~(ߠ݅݁ݎ)ఙ,௪ܭ
Proof. We have (ݏ)ܣ = (௦݁)݉ ݈݃− − ݏ . We want to apply Theorem (3.1.2) with the 
choices ܽఙ =  ݉ ݁ିఙ and ܾఙ = ݁ఙܭ(ݔ )ିఙ . The associated function ܣఙ is 

(ݏ)ఙܣ = − log ܽఙ (݁௦)  − ݏ = − log ݉ (݁௦) − ݏ − (ݏ)ܣߪ = (1 +  . (ݏ)ܣ(ߪ
We saw in the proof of Theorem (3.1.12) that ܭ(݁௦)~݁ܣܣᇱᇱܾ =  ᇱᇱ. The same argumentܣܣ݁
applied to ܽఙ and ܾఙ gives 
 
ఙܣ݁~(ݔ)ఙ,௪ܭ                                     

ᇱᇱܾఙ 
   = ݁(ଵାఙ)(1 +  ᇱᇱܾఙܣ(ߪ

                                                  = ݁(ଵାఙ)(1 + ଵ൯ି( ݔ),௪ܭᇱᇱ൫݁ܣ(ߪ
ఙ

  
                                                   ~݁(ଵାఙ)(1 +  ఙ(ᇱᇱܣ)ᇱᇱܣ(ߪ

= (1 +  ଵାఙ(ᇱᇱܣ݁)(ߪ
~(1 +  .ଵାఙ(ݔ),௪ܭ(ߪ

For small ߠ, the proof of Theorem (3.1.3) goes through with Θ(݊)ଶ increased by a factor of 
1 +  .the argument in that proof gives the required estimates ,ߠ For large .ߪ
Rather than integrate these estimates to get an asymptotic version of (C), we do a slightly 
more general computation in the following. 
The Berezin transform ܤ is a valuable tool for studying Toeplitz operators on ܪ. For a 
smooth function ܨ,  is defined by (ܨ)ܤ

,ܤ (ݓ)ܨ = ܨ〉 
݇௪

‖݇௪‖ ,
݇௪

‖݇௪‖
〉 

                                                         = න න (ऊ)ܨ
ଶ|(ഥऊݓ)ܭ|

(ଶ|ݓ|)ܭ ݉(|ऊ|ଶ)
ݕ݀ݔ݀

ߨ

 

ℂ
 .             (63) 

If we look at the Fock spaces, ݉ఙ(|ऊ|ଶ) = 1)−)ݔ݁ +  ऊ|ଶ), then we have| (ߪ

ܤ (ݓ)ܨ  = න න ऊି௪|మ|(ଵାఙ)ି݁(ऊ)ܨ ݕ݀ݔ݀
ߨ

 

ℂ
  

                                                        = (ݓ)ܨ +
1
4

1
(1 + (ߪ (ݓ)ܨ∆ + ܱ ൬

1
(1 +  . ଶ൰(ߪ

We would like analogues of these formulas for our more general weights. The general theory 
of reproducing kernels insures that the Berezin measure 

ߤ݀ =
ଶ|(ഥऊݓ)ܭ|

(ଶ|ݓ|)ܭ ݉(|ऊ|ଶ)
ݕ݀ݔ݀

ߨ
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is always a probability measure. We now want to study ݀ߤ using our asymptotic estimates 
on the kernel function. First, however, we introduce a further restriction on a, which we 
formulate in terms o f the auxiliary function A o f (4). We require ܣᇱᇱ(ݏ) to be dominated by 
ܥ in a controlled way. Suppose, therefore, that there exists constants (ଶݏ)ݔ݁ > 0, ߙ > 0 
such that for ߙ > ݐ  andߙ >  1/2 we have (ߙ)ᇱᇱܣ

                                              log
ߙ)ᇱᇱܣ + t)

(ߙ)ᇱᇱܣ ≤ Ctଶ.                                                         (64) 

For context, note that in the model case (ݐ)ܣ = ݁ఉ௧ −   .ݐߚ the left-hand side equals ݐ
For smooth functions F defined on ℂ , set ‖ܨ‖ = ∑ ஸଷ|ܨ∇| ݑݏ  .  In addition to 
rectangular coordinates on ℂ  we will use coordinates (ݏ, (ߠ  where ݓ = ݁ఠ  and  ऊ =
݁ఠା௦ାఏ  and also use the scaled coordinates (ܵ, Θ)  where ܵ = ඥܣᇱᇱ(2߱)ݏ  and Θ =
ඥܣᇱᇱ(2߱)ߠ.  
In particular, we still have the hypotheses and conclusions of Theorem (3.1.12) and Theorem 
(3.1.14). 
Theorem (3.1.15) [106]: In addition to the hypotheses of the previous, suppose that (64) 
holds. Given F with ‖ܨ‖ < ∞, we have  

,ܤ (ݓ)ܨ =  න න (ௌమାమ)ି݁(ऊ)ܨ ݀ܵ݀Θ
ߨ

 

ℂ
+  .ିఈ(ଶݓ)ܵ‖ܨ‖(1)ܱ

Proof. We start from (63). We first estimate the integral over the unit disk. On ॰ we can 
bound F by ‖ܨ‖ and |ܭ(ݓऊ)| by (ݓ)ܭ. Thus we have 

ቤන න (ऊ)ܨ
ଶ|(ऊݓ)ܭ|

(ଶ|ݓ|)ܭ ݉(|ऊ|ଶ)
ݕ݀ݔ݀

ߨ

 

॰
ቤ ≤ 2 ݈(ݖݓ)‖ܨ‖

ଶ(ݓ)ܭ

(ଶݓ)ܭ . 

To show that this can be absorbed into the error term, we need to control (ݓ)ܭଶ/ܭ(ݓଶ) for 
large w. Recall that ߱ = log  By Theorem (3.1.12), it is enough to show that .ݓ

݁ଶ(ఠ)ܣᇱᇱ(߱)ଶ

݁(ଶఠ)ܣᇱᇱ(2߱)
=  . (ᇱᇱ(2߱)ିଵܣ)ܱ

Hence it suffices to show that 
݆(߱) = (߱)ܣ2 − (2߱)ܣ +  (߱)ᇱᇱܣ ݈݃ 2

is bounded above. We compute 

݆ᇱ(߱) = (߱)ᇱܣ2 − ᇱ(2߱)ܣ2 + 2 
(߱)ᇱᇱܣ
(߱)ᇱᇱܣ

 

and use the intermediate value theorem on the first pair of terms and the hypothesis (14) on 
the third. It follows that for some ߱ ∈ (߱, 2߱) 

݆′(߱) ≤ )ᇱᇱܣ2߱ − ߱)  +  . ଵ/ଶ(߱)"ܣ2
Recalling that ܣᇱᇱ is monotone increasing and unbounded, we see that ݆ᇱ is negative for all 
large w, which gives what we need. 
We now pass to coordinates ,ݏ)  (ߠ , where ݓ = ݁ఠ  and ऊ = ݁ఠା௦ାఏ and so ݀ݕ݀ ݔ =
݁ଶ(ఠା௦) ݀ߠ݀ ݏ. By definition, ݉(|ऊ|ଶ) = ݉(݁ଶ(ఠା௦)) = ݁ିଶ(ఠା௦)݁ି(ଶఠାଶ௦). 
Hence ିߨଵ݉(|ऊ|ଶ)݀ݕ݀ ݔ =  .ߠ݀ ݏ݀ ଵ݁ି(ଶఠାଶ௦)ିߨ
Set ܴ = ,ݏ)} :(ߠ |ߠ| <  In R we use the asymptotic estimates for K given .{(ଵ/ଶିఈ(ݎݓ)ܵ)ܱ
in Theorem (3.1.12). This lets us estimate the integrand by 
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(ऊ)ܨ
ห݁(ଶఠା௦)ܣᇱᇱ(2߱ + ᇲᇲ(ଶఠା௦)ఏమ/ଶ(1ି݁(ݏ + O(S(wr)ଵ/ଶା୰))ห

ଶ

݁(ଶఠ) ܣᇱᇱ(2߱)(1 + O(S(wr)ଵ/ଶା୰))
 ݁ି(ଶఠାଶ௦). 

Note that (1 + O(S(wr)ଵ/ଶା୰))ଶ/(1 + O(S(wr)ଵ/ଶା୰)) = (1 + O(S(wr)ଵ/ଶା୰)). We shall 
see that our approximations to the Berezin measure converge to a probability measure; in 
the course of that analysis, it will be clear that the norms of the approximations are uniformly 
bounded. Hence the error made by dropping the factors (1 + O(S(wr)ଵ/ଶା୰)) in the integral 
can be safely absorbed into the error term. Thus, in R, the integrand can be estimated by 

ଶ(ଶఠା௦)ି(ଶఠ)ି(ଶఠାଶ௦)݁(ऊ)ܨ                      
ᇱᇱ(2߱ܣ + ଶ(ݏ

ᇱᇱ(2߱)ܣ  ݁ିᇲᇲ(ଶఠା௦)ఏమ.           (65) 

We have estimated the integral over the unit disk, i.e., < − ߱ . We now consider the region 
where − ߱ < ݏ <  Set . ߜ−

ℎ(ݏ) = 2߱)ܣ2 + (ݏ − (2߱)ܣ − 2߱)ܣ +  (ݏ2
and put ߜ =  ,Near the axis .ߠ and first do the integral in ‖ܨ‖ by (ऊ)ܨ We dominate .(2߱)ߜ
we use the Gaussian estimate of (65). Integrating that gives (√ߨ  + ᇱᇱ(2߱ܣ((1)  +  .ଵ/ଶି(ݏ
Using the estimate in (62) away from the axis, w e get a further contribution of 
2߱)"ܣ) + ߠ ଵ/ଶ) . Thus, integrating inି(ݏ  contributes a factor of ܱ(1)ܣᇱᇱ(2߱ + ଵ/ଶି(ݏ . 
Hence we must estimate 

න ݁(௦) ᇱᇱ(2߱ܣ + ଶ(ݏ

ᇱᇱ(2߱ܣᇱᇱ(2߱)ܣ + ଵ/ଶି(ݏ ݏ݀ 
ିఋ

ିఠ
. 

Now ܣᇱᇱ is increasing; hence the fraction in the integrand is at most 1. We need to estimate 
∫ ݁(௦) ݀ିݏఋ

ିఠ . We have ℎ′(ݏ) = ᇱ(2߱ܣ2 + (ݏ − ᇱ(2߱ܣ2 +  ᇱ is increasing and sܣ Since .(ݏ2
is negative, ℎ′  is positive and thus h is increasing. Thus the integral is dominated by 
(ିఋ)݁ݓ . To estimate ℎ(−ߜ), we compute ℎᇱᇱ(ݏ) = ᇱᇱ(2߱ܣ2 + (ݏ − ᇱᇱ(2߱ܣ4 +  and (ݏ2
take note o f (18). We find that, on (− ߜ, 0), ℎᇱᇱ(ݏ) = ᇱᇱ(2߱)(1ܣ2− +  Noting that .((1)
ℎ(0) = ℎ′(0) = 0 and integrating twice gives ℎ(−ߜ) = ଶ(1ߜᇱᇱ(2߱)ܣ− +  Recalling .((1)
that ܣᇱᇱଵ/ଶߜ = ᇱᇱܣ  for some ݇ > 0, we conclude that the integral is dominated by any 
negative power of ܣᇱᇱ, a better estimate than needed. 
Now we consider the integral over the region where ݏ > Note that ℎ(0) .ߜ = ℎ′(ܱ) = 0 
and ℎᇱᇱ(ܱ) =  ,ᇱᇱ(2߱). Hence, by Taylor's theoremܣ2−

ℎ(ݏ) = ଶݏᇱᇱ(2߱)ܣ − +
1
6

ℎᇱᇱᇱ(ݏ∗)ݏଷ , 
with ݏ∗ between 0 and s. Again we dominate ܨ(ऊ) by ‖ܨ‖ and first do the integral in ߠ, 
making the same estimates as in the previous case. We are reduced to estimating 

න ݁ି ᇲᇲ(ଶఠ)௦మାଵ
ᇲᇲᇲ(௦∗)௦య ᇱᇱ(2߱ܣ + ଶ(ݏ

ᇱᇱ(2߱ܣᇱᇱ(2߱)ܣ + ଵ/ଶ(ݏ ݏ݀ 
ஶ

ఋ
 . 

We make the change of variables ݏ =  ܵ/ඥܣᇱᇱ(2߱)  and introduce the shorthand ߮. We 
then need to estimate 

න ݁ିௌమାఝௌయ ᇱᇱ(2߱ܣ + ᇱᇱିଵ/ଶ(2߱))ଷ/ଶܣܵ

ᇱᇱ(2߱)ଷ/ଶܣ  ݀ܵ
ஶ

ఋඥᇲᇲ(ଶఠ)
 . 
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In the region of integration, s is positive and hence ݏ∗ is positive. We compute ℎᇱᇱᇱ(ݐ) =
ᇱᇱᇱ(2߱ܣ2 + (ݐ − ᇱᇱᇱ(2߱ܣ8 + (ݐ2 . Recalling that ܣᇱᇱᇱ  is positive and increasing, we 
conclude that ߮ is negative. Hence we make the integral larger by dropping ߮ܵଷ. We thus 
need to estimate 

න ݁ିௌమ ᇱᇱ(2߱ܣ + ᇱᇱିଵ/ଶ(2߱))ଷ/ଶܣݏ

ᇱᇱ(2߱)ଷ/ଶܣ  ݀ܵ
ஶ

ఋඥᇲᇲ(ଶఠ)
. 

The estimate (64) insures that the fraction in the integral is dominated by 
− ݁)ܱ This insures that the integral is .(ᇱᇱିଵ(2߱)ܣଶܵ′ܥ)ݔ݁ ߠ ᇱᇱఏ) for someܣ > 0, which 
is more than we need. 
Now we look at the range |ݏ| <  .First we consider the part of that region outside of R ߜ
Using (62), we see that, for fixed s, the integration in ߠ (outside of R) yields an integrand of 
the form 

݁‖ܨ‖(1)ܱ  ᇲᇲ(ଶఠ)௦మାଵ
ᇲᇲᇲ(௦∗)௦య ᇱᇱ(2߱)ଶܣ

ᇱᇱ(2߱)ଷ/ଶାܣ . 

In  |ݏ| < ߜ  the  hypotheses on  A  insure  that  the  quotient  in  this  expression  is 
 Thus we must estimate the integral of .(1)  ଷ  isݏ(∗ݏ)and  that  ℎᇱᇱᇱ  (ᇱᇱ(2߱)ଵ/ଶିܣ)ܱ
ᇱᇱ(2߱)ଵ/ଶିܣᇲᇲ(ଶఠ)(ଵା(ଵ))௦మି݁‖ܨ‖(1)ܱ . Doing the s integration gives 
 .ᇱᇱ(2߱)ି, which is an acceptable error termܣ‖ܨ‖ (1)ܱ
What remains is the main contribution, the integral over the region where s and ߠ are both 
small. In that region, we first note that the hypotheses on A and standard Taylor estimates 
insure that 

݁ିᇲᇲ(ଶఠ)௦మାᇲᇲᇲ(௦∗)௦య/ ݁ିᇲᇲ(ଶఠା௦)ఏమ = ݁ିᇲᇲ(ଶఠ)(௦మାఏమ)(1 +  .((ఌ(ଶݓ)ܵ)ܱ
Hence, making the change o f variable (ܵ, Θ) = (ඥܣᇱᇱ(2߱)ݏ, ඥܣᇱᇱ(2߱)ߠ)  , we obtain, up 
to a term which can be safely absorbed into the error term,   

න න (&ௌమାమ)ି݁(ऊ)ܨ ᇱᇱ(2߱ܣ + ଶ(ݏ

ᇱᇱ(2߱)ଶܣ
݀ܵ ݀Θ

ߨ

 

|ௌ|ழఋᇲᇲ(ଶఠ)
భ
మ

 

||ழᇲᇲ(ଶఠ)౸ഘ
. 

Using the Taylor expansion of ܣᇱᇱ(2߱ + (ݏ   about ݏ = 0 , (17), and (19), we see that 
ᇱᇱ(2߱ܣ + ᇱᇱ(2߱)ଶܣ/ଶ(ݏ = 1 +  ఈିఌ  . It remains only to note that the passage(ᇱᇱ(2߱)ܣ)ܱ
from ∫ ∫   

|ௌ|ழఋᇲᇲ(ଶఠ)
భ
మ

 
||ழᇲᇲ(ଶఠ)౸ഘ to ∫ ∫   

ℂ
 

  introduces an error which, is ܱ(ℱ). 

This estimate gives our asymptotic version of (C): 
Corollary (3.1.16) [106]:  ݓ ݏܣ → ∞, 

                       න න  
 

ℂ

 

 
 หܭ

షభ(ݓऊ)ห݉(|ऊ|ଶ) 
ݕ݀ ݔ݀

ߨ
 (66)                          .(ଶ|ݓ|)ܭ2 ~ 

Proof. We use the notation of Theorem (3.1.14), that is, ܭ = ଵܭ  andܭ = ܭ
షభ. We 

want to estimate 

ܫ = න න  
 

ℂ

 

 
 
|(ऊݓ)ଵܭ|
(ଶ|ݓ|)ܭ ݉(|ऊ|ଶ) 

ݕ݀ ݔ݀
ߨ

. 

The same arguments as those in the proof of Theorem (3.1.14) insure that 

න ~ܫ න  
 

ோ

 

 
 
|(ऊݓ)ଵܭ|
(ଶ|ݓ|)ܭ ݉(|ऊ|ଶ) 

ݕ݀ ݔ݀
ߨ

, 



103 
 

where 
ܴ = ,ݏ)} (ߠ ∶ |ݏ| < ,ߜ |ߠ| < ݓ2)ܵ +  .{ଵ/ଶିఈ/10(ݎ 

We rewrite this as 

න ~ ܫ න  
 

ோ

 

 
 

|(ऊݓ)ଵܭ|
ଶ|(ऊݓ)ܭ|

ଶ|(ऊݓ)ܭ|

(ଶ|ݓ|)ܭ ݉(|ऊ|ଶ) 
ݕ݀ ݔ݀

ߨ
 

~ න න  
 

ோ

 

 
௪(ऊ)ܨ

ଶ|(ऊݓ)ܭ|

(ଶ|ݓ|)ܭ ݉(|ऊ|ଶ) 
ݕ݀ ݔ݀

ߨ
, 

where ܨ௪ =  ௪~ 2 on R. Thereܨ ଶ on R. Theorem (3.1.14) insures that|(ऊݓ)ܭ|/|(ऊݓ)ଵܭ|
is no problem extending ܨ௪  to the entire plane with ‖ܨ௪‖ bounded independently of w. We 
now apply the previous theorem with ܨ = ௪ܨ  and find that 

ܫ =  න න  
 

ℂ

 

 
݁௪(ऊ)ܨ − (ܵଶ + Θଶ)

݀ܵ ݀Θ
ߨ

+  .(1)

Recalling that ܨ௪~ 2, we obtain 2 ~ܫ, which is the desired conclusion. 
the results are estimates in a fixed Bergman space which are asymptotic as |ऊ| → ∞ . 
However, instead of a fixed density m, we could look at the family of densities ݉ఙ =
ܭ

షభష  and investigate the asymptotic behavior of the kernel function and Berezin 
transform for fixed ऊ and as ߪ → ∞. Such questions are of interest in quantization, with 
(1 +  ଵ playing the role of Planck's constant. See [115] and [116] for instances o f suchି(ߪ
estimates as well as further discussion. Here we discuss briefly the type of results that could 
perhaps be obtained by the methods, and why we have not yet obtained them. 
First, consider Theorem (3.1.14). We have ܭఙ൫݁ݎఏ൯ ~ (1 + ఏ൯݁ݎ൫ܭ(ߪ

ଵାఙ
. There may 

be a more refined result such as 

ఙܭ = (1 + ܭ(ߪ
ଵାఙ + (ℎ݅݊݃ݐ݁݉ݏ) +

1
ߪ) + 1)

(ℎ݅݊݃ݐ݁݉ݏ)  + ܱ ൬
1

 . ଶ൰ߪ

However, the proof which we give fails to produce such a result. That proof gives 

ఙܭ = (1 + ܭ(ߪ
ଵାఙ ൬1 + ܱ ൬

1
ᇱᇱఉ൰ ൰ܣ



 
for some positive ߚ. This is fine for fixed ߪ and large r, but not for fixed r and large ߪ. Th 
e fact that the right-hand side involves a factor (1 +  ఙ  seems to be intrinsic to the(݈ݐܽ݉ݏ 
structure of our proof. 
It also seems plausible that more is true in Theorem (3.1.15). We can estimate the Gaussian 
integral by writing F near ऊ = 2߱ as a Taylor polynomial of degree 2 in the variables s and 
 .The integral of the Taylor remainde r gives a contribution smaller than the error term .ߠ
The polynomial - times - Gaussian can be integrated explicitly, and we obtain 

(ݓ)ܨ ܤ = (ݓ)ܨ +
ଶݓ

(ݓ)ܨ∆ ᇱᇱ(2߱)ܣ4 +  .ᇱᇱ(2߱)ఈିఌܣ‖ܨ‖(1)ܱ

However, this presentation is misleading. We do not know that the third term on the right is 
smaller than the middle one. The difficulty is not in the estimation of the Gaussian integral, 
which produces an error that is ܱ( ܣᇱᇱିଶ). The problem is the error terms on the estimates 
whic h led to the Gaussian integral. If it were known that the error terms resulting from that 
analysis were ܱ( ܣᇱᇱିଶ) , then we would in fact have 
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(ݓ)ܨ ܤ = (ݓ)ܨ +
ଶݓ

(ݓ)ܨ∆ ᇱᇱ(2߱)ܣ4 +  .‖ܨ‖(ᇱᇱିଶܣ)ܱ

We can carry the speculation a step further. If, instead of fixed m, we n o w look at the family 
of densities ݉ఙ = ܭ

షభష  and write ܤఙ  for the corresponding Berezin transforms, we 
would have 

(ݓ)ܨ ~ (ݓ)ܨఙܤ +
ଶݓ

(ݓ)ܨ∆ ᇱᇱ(2߱)ܣ4 +  ‖ܨ‖(ᇱᇱିଶܣ)ܱ

Now recall from the proof of Theorem (3.1.14) that ܣఙ = (1 +  . We could next regardܣ(ߪ
m, F, and w as fixed and let ߪ grow. That would give, as ߪ → ∞, 

(ݓ)ܨ ~(ݓ)ܨఙܤ +
1

1 + ߪ
ଶݓ

ܣ4
ᇱᇱ(2߱) ∆(ݓ)ܨ + ܱ ൬

1
ଶ൰ߪ . 

Estimates such as this, even with an error term (1\ߪ)  , woul d be sufficient to give 
correspondence principle for Berezin quantization schemes; see the Introduction of [ 117 ] . 
It may be that the methods here can be developed to obtain such estimates for large ߪ. 
However, it appears that doing this by direct estimation would be quite awkward.  
Section (3.2): Fock Spaces and Related Bergman Kernel Estimates 
          We presents Hankel operators with anti-holomorphic symbols for a large class of 
weighted Fock spaces. Thus certain natural analogues of BMOA, the Bloch space, the little 
Bloch space, and the Besov spaces are identified and shown to play similar roles as their 
classical counterparts do. We will see that these spaces con-tain all holomorphic polynomials 
and are infinite-dimensional whenever the weight decays so fast that there exist functions of 
infinite order belonging to the Fock space. 
Consider a ܥଷ-function Ψ: [0, +∞[→ [0, +∞[ such that 

Ψᇱ(ݔ) > 0, Ψᇱᇱ(ݔ) ≥ 0,        ܽ݊݀      Ψᇱᇱᇱ(ݔ) ≥ 0.                               (67) 
We will refer to such a function as a logarithmic growth function. Note that (67) effectively 
says that Ψ should grow at least as a linear function. Set 

ஏ(ऊ)ߤ݀ ∶= ݁ିஏ(|௭|మ)݀ ܸ(ऊ), 
where ܸ݀ denotes Lebesgue measure on ℂ, and let ࣛଶ(Ψ) be the Fock space defined as the 
closure of the set of holomorphic polynomials in ܮଶ(ߤஏ). We observe that ࣛଶ(Ψ) coincides 
with the classical Fock space when Ψ is a suitably normalized linear function.  
It is immediate that                   

:ௗݏ = න ݔ݀ௗ ݁ିஏ(௫)ݔ
ାஶ


< +∞ 

for all nonnegative integers d . Moreover, as shown in [130], the series 

(ߞ)௦ܨ ∶= 
ௗߞ

ௗݏ

ାஶ

ௗୀ

 , ߞ ∈ ℂ 

has an infinite radius of convergence and ࣛଶ(Ψ)is a reproducing kernel Hilbert space with 
reproducing kernel 

,ஏ(ऊܭ (ݓ =
1

(݊ − 1)!
௦ܨ

(ିଵ)(〈ऊ, ,(〈ݓ ऊ, ݓ ∈ ℂ. 

This implies that the orthogonal projection P from ܮଶ(ߤஏ) onto ࣛଶ(Ψ) can be expressed as 
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( ஏܲ݃)(ऊ) = න ,ஏ(ऊܭ (ݓ)ஏߤ݀(ݓ)݃(ݓ
 

ℂ
, ݖ ∈ ℂ , 

for every function ݃ in ܮଶ(ߤஏ). The domain of this integral operator can be extended to 
include functions g that satisfy ܭஏ(ऊ,∙)݃ ∈  for every ऊ in ℂ. This extension allows (ஏߤ)ଵܮ
us to define (big) Hankel operators. To do so, denote by ࣮(Ψ) the class of all f in ܮଶ(ߤஏ) 
such that ఝ݂ܭஏ(ऊ,∙) ∈ (ஏߤ)ଵܮ  for all holomorphic polynomials  ߮  and ऊ  in ℂ  and the 
function 

:(߮)(ऊ)ܪ = න ,ஏ(ऊܭ (ऊ)݂](ݓ)߮(ݓ − ,(ݓ)ஏߤ݀ [(ݓ)݂
 

ℂ
   ऊ ∈ ℂ  

is in ܮଶ(ߤஏ). This is a densely defined operator from ࣛଶ(Ψ) into ܮଶ(ߤஏ) which will be 
called the Hankel operator ܪwith symbol f . It can be written in the form 

(߮)ܪ = ܫ) − ஏܲ)( ఝ݂) 
for all holomorphic polynomials ߮. It is clear that the class ࣮(Ψ) contains all holomorphic 
polynomials.    
The main theorem involves the analogues in our setting of the space BMOA and the Bloch 
space. The analogue of BMOA is most conveniently defined via the Berezin transform, 
which for a linear operator T on ࣛଶ(Ψ) is the function ෨ܶ defined on ℂ by   
  

෨ܶ(ऊ): =
,∙)ஏܭܶ〉 ऊ), ,∙)ஏܭ ऊ)〉

,ஏ(ऊܭ ऊ) . 

If T = Mf is the operator of multiplication by the function f , then we just set ܯ෪  =  ሚ݂. We 
set 
  ‖݂‖ெை   ∶= ݑݏ 

ऊ∈ℂ
   , (ऊ)( ݂ ܱܯ)

where                 

(MO f )(ऊ) ∶= ට|݂|ଶ෪ (ऊ) − ห ሚ݂(ऊ)ห
ଶ

, 

and define ܱܯܤ(Ψ) as the set of functions f on ℂ  for which |݂|ଶ෪ (ऊ) is finite for every ऊ 
and  ‖݂‖ெை <  ∞. It is plain that ܱܯܤ(Ψ) is a subset of ࣮(Ψ). The space ܱܯܤ(Ψ)  is the 
subspace of ܱܯܤ(Ψ) consisting of analytic elements; this space is in turn a subset of 
࣮(Ψ) ∩ ࣛଶ(Ψ)   .       
We introduce the Bergman metric associated with Ψ. Set Λஏ(ऊ) = ,ஏ(ऊܭ ݈݃  ऊ) and 
         

,ଶ(ऊߚ ( ߦ ∶= 
߲ଶΛஏ(ऊ)

߲ऊ߲ऊ̅
̅ߦߦ



,ୀଵ

 

for arbitrary vectors ऊ = (ऊଵ, . . . , ऊ)  and ߦ = ,ଵߦ) . . . , (ߦ  in ℂ . The corresponding 
distance ߷ is given by 

߷(ऊ, (ݓ  ∶= ݂݅݊
ఊ

න ,(ݐ)ߛ൫ߚ ݐ൯݀(ݐ)ᇱߛ
ଵ


  ,                                  (68) 
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where the infimum is taken over all piecewise ܥଵ-smooth curves ߛ ∶ [0, 1] → ℂ such that 
(0)ߛ = ऊ and (1)ߛ = ݓ . We define the Bloch space ß(Ψ) to be the space of all entire 
functions f such that         

‖݂‖ß(ஏ): = ݑݏ
ऊ∈ℂ

ቈ ݑݏ
క∈ℂ\{}

ห〈(݂ߘ)(ऊ), ห〈̅ߦ
,ऊ)ߚ ( ߦ

 < +∞.                              (69) 

In what follows, the function         
   Φ(ݔ): =      (ݔ)Ψᇱݔ 
will play a central role. By (67), we have that both   Φᇱ(ݔ) > 0 and Φᇱᇱ(ݔ) > 0, and it may 
be checked that Φᇱ(|ऊ|ଶ) coincides with the Laplacian of Ψᇱ(|ऊ|ଶ) when ݊ =  1 and in 
general is bounded below and above by positive constants times this Laplacian for arbitrary 
݊ > 1. 
We prepared to state the main result. 
Theorem (3.2.1)[129]: Let Ψ be a logarithmic growth function, and suppose that there 
exists a real number ߟ < 1/2 such that 

Φᇱᇱ(ݐ) = ܱ ൬ିݐଵ
ଶ [Φᇱ(ݐ)]ଵାఎ൰ ݐ ℎ݁݊ݓ   →  ∞.                                 (70) 

If f is an entire function on ℂ, then the following statements are equivalent: 
(i) The function f belongs to ࣮(Ψ) and the Hankel operator ܪ̅ on ࣛଶ(Ψ) is bounded; 
(i) The function f belongs to ܣܱܯܤ(Ψ) ; 
(iii) The function f belongs to ß(Ψ). 
Note that the additional assumption (70) is just a mild smoothness condition, which holds 
whenever Ψ is a nontrivial polynomial or a reasonably well-behaved function of super-
polynomial growth. 
As part of the proof of Theorem (3.2.1), we will perform a precise computation of the 
asymptotic behavior of ߚ(ऊ, |when |ऊ ( ߦ → ∞. We state this result as a separate theorem. 
Theorem (3.2.2) [129]: Let Ψ be a logarithmic growth function, and suppose that there 
exists a real number ߟ < 1/2  such that (70) holds. Then we have, that ߚଶ(ऊ, (ߦ =
൫1 + (ଶ|ݖ|)ଶΨᇱ|ߦ|൯(1) + |ऊ, |ℎ݁݊ |ऊݓ  (ଶ|ݖ|)ଶΨᇱᇱ|ߦ → ∞. 
          We observe that for the classical Fock space (Ψ a linear function) we have Ψᇱᇱ(ݔ) ≡
0, and so the “directional” term in ߚ(ऊ,  is not present. Note also that ß(Ψ) contains all ( ߦ
polynomials and is infinite-dimensional whenever the growth of Ψᇱ(ݔ) is super-polynomial. 
In the language of entire functions, this means that ࣛଶ(Ψ) contains functions of infinite 
order. When ݊ = 1, ,ଶ(ऊߚ  ଶ. The same is also true when Ψ|ߦ|can be replaced by Φᇱ(|ऊ|ଶ) (ߦ
is a polynomial, because then Ψᇱ and Φᇱ have the same asymptotic behavior. In the latter 
case, our two theorems give the following precise result: If Ψ is a polynomial of degree d , 
then ß(Ψ) consists of all holomorphic polynomials of degree at most d ; cf. Theorem A in 
[130]. 
          The implication (݅) ⇒ (݅݅) in Theorem (3.2.1) is standard; it follows from general 
arguments for reproducing kernels. Likewise, the implication (݅݅) ⇒ (݅݅݅) can be established 
by a well-known argument concerning the Bergman metric. Our proof of Theorem (3.2.1)  
therefore deals mainly with the implica-tion (݅݅݅) ⇒ (݅). The crucial technical ingredients in 
the proof of this result are certain estimates for the Bergman kernel ܭஏ(ऊ,  Such estimates .(ݓ
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have previously been obtained by F. Holland and R. Rochberg in [131]. The results of [131] 
are not directly applicable because we need more precise off-diagonal estimates for the 
kernel than those given. Our method of proof is similar to that of [131], but our approach 
highlights more explicitly the interplay between the smoothness of and the off-diagonal 
decay of the Bergman kernel. This is where the additional smoothness condition (70) comes 
into play; many of our estimates can be performed with sufficient precision without the 
assumption that (70) holds, but some condition of this kind seems to be needed for our off-
diagonal estimates. 
          The fact that the Bergman metric is the notion used to define the Bloch space ß(Ψ) 
suggests that Theorem (3.2.1) should be extendable beyond the case of radial weights. To 
obtain such an extension, one would need a replacement of our Fourier-analytic approach, 
which relies crucially on the representation of the Bergman kernel as a power series. 
          The machinery developed to prove Theorem (3.2.1) leads with little extra effort to a 
characterization of compact Hankel operators in terms of the obvious counterparts to VMOA 
and the little Bloch space; for details. In the study of Schatten class Hankel operators, 
however, some additional techniques will be used. We will need local information about the 
Bergman metric, namely that balls of fixed radius in the Bergman metric are effectively 
certain ellipsoids in the Euclidean metric of ℂ. These results appear to be of independent 
interest; they lead to a characterization of Carleson measures and in turn to a characterization 
of the spectral properties of Toeplitz operators. Building on these results and using ܮଶ 
estimates for the ߲ operator, we obtain a characterization of Schatten class Hankel operators. 
Boundedness and compactness of Hankel operators with arbitrary symbols have previously 
been considered only for the classical Fock space (Ψ a linear function); see, [133]. The 
methods, relying on the transitive self-action of the group ℂ, cannot be extended beyond 
this special case. Hankel operators with anti-holomorphic symbols defined on more general 
weighted Fock spaces were studied recently in [139] and [138], where it was shown that 
anti-holomorphic polynomials do not automatically induce bounded Hankel operators. For 
Bergman kernel estimates in similar settings, see [134] and [135]. We finally mention [133] 
and [134]; the first of these focuses on small Hankel operators and the Heisenberg group 
action, while the second deals with Hankel operators for the Bergman projection on smoothly 
bounded pseudoconvex domains in ℂ. 
          Throughout, ܷ(ऊ) ≲ ܸ(ऊ)  (or equivalently ܸ(ऊ) ≳  ܷ(ऊ) ) means that there is a 
constant C such that ܷ(ऊ) ≤  holds for all z in the set in question, which may be a (ऊ)ܸܥ
space of functions or a set of numbers. If both ܷ(ऊ) ≲ ܸ(ऊ) and ܸ(ऊ) ≳  ܷ(ऊ), then we 
write ܷ(ऊ) ≃ ܸ(ऊ). 
The following standard argument shows that (i) implies (ii) in Theorem (3.2.1). To begin 
note that if f is in ࣛଶ(߰), then ሚ݂ = ݂. Moreover, by the definition of the reproducing kernel, 
a computation shows that 

|݂|ଶ෪ (ऊ) −  |݂ (ऊ)|ଶ = න ( ߦ)݂| − ݂(ऊ)|ଶ , ߦ)ܭ| ऊ)|ଶ

,ஏ(ऊܭ ऊ) (ߦ) ߤ݀
 

ℂ
 =

ฮܪሚܭஏ(·, ऊ)ฮ
ଶ

,ஏ (ऊܭ ऊ)  .   (71) 

Hence, if ܪሚ  is bounded, then  ‖݂‖ெை < +∞.      
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The implication (ii) ⇒ (iii) is a consequence of the following lemma, the proof of which is 
exactly as the proof of Corollary 1 in [134] . 
Lemma (3.2.3) [129]: Suppose that f is in ܣܱܯ(Ψ) . Then for every piecewise ܥଵ-smooth 
curve ߛ ∶  [0, 1]  → ℂ we have 

ฬ
݀
ݐ݀

(݂ ∘ ฬ(ݐ)( ߛ ≤ ,(ݐ)ߛ)ߚ2√2  .(( ݐ) ߛ)( ݂ ܱܯ)((ݐ) ߛ

If we choose  (ݐ) = ऊ +  then we obtain , ߦ ݐ
ห〈(݂ߘ)(ऊ), ห〈̅ߦ

,ऊ)ߚ (ߦ
≤  (72)                                        (ऊ)( ݂ ܱܯ)2√2

for all ऊ in ℂ and ߦ in ℂ\ {0}. 
This  is a somewhat elaborate preparation for the proof of Theorem (3.2.2) and also the proof 
of the implication (iii) ⇒ (i) in Theorem (3.2.1). 
Set 

(ݎ)ߠ ∶=  .ଵ/ଶି[(ݎ)Φᇱݎ]
The key estimates for the Bergman kernel are the following. 
Lemma (3.2.4) [129]: Suppose that (70) holds. Let ऊ and ݓ be arbitrary points in ℂ such 
that ऊ, ݓ ≠ 0, and write  〈ऊ, 〈ݓ = ݎ ఏ , where݁ ݎ > 0 and −ߨ < ߠ ≤  Then we have . ߨ

1
[Ψᇱ(ݎ)]ିଵ

,ஏ(ऊܭ| |(ݓ
݁ஏ() ≲ ൜

Φᇱ(ݎ),                         |ߠ| ≤ ,( ݎ)ߠ
,ଷି|ߠ|ଵ/ଶି[(ݎ)Φᇱ]ଷ/ଶିݎ |ߠ| > .(ݎ)ߠ

 

Moreover, there exists a positive constant c such that if ߠ <  then ,(ݎ)ߠܿ
,ஏ(ऊܭ|   |(ݓ ≳  .ିଵ݁ஏ()[(ݎ)Φᇱ]( ݎ)
We collect a few results. 
Lemma (3.2.5) [129]: Let ߟ be as in Theorem (3.2.1). Then, for any fixed ߙ >  we have ,ߟ

ݑݏ
|߬| ≤ ݐ)ఈΦᇱି[(ݐ)Φᇱ] ଵ/ଶݐ + ߬ )  = (1 +  ( ݐ)Φᇱ((1)

when ݐ →  ∞.       
Proof. The proof is similar to the proof of Lemma 6 in [131]. By (70), [Φᇱ(ݔ)]ିଵିఎ ×
Φᇱᇱ(ݔ) = ݔ when (ଵ/ଶିݔ)ܱ →  ∞, which implies that 

|[Φᇱ(ݐ + ߬)]ିఎ − [Φᇱ(ݐ )]ିఎ| =  (߬ ଵ/ଶିݐ)ܱ| ߬|
when ݐ →  ∞. The result follows from this relation.  
In order to estimate |ܭஏ(ऊ,  ௗ . To thisݏ we need precise information about the moments ,|(ݓ
end, note that the integrand of 

න ௧ݔ  ݁ିஏ(௫)݀ݔ
ஶ


 

attains its maximum at ݔ = Φିଵ(ݐ). Set      
ℎ௧ (ݔ) = ݔ݈݃ ݐ−  + Ψݔ) − (ݐ)Φିଵ݈݃ ݐ−)  + Ψ(Φିଵ(ݐ ))) 

and                    

( ݐ)ܫ = න  ݁ି (௫)݀ݔ
ஶ


; 

we may then write 
ௗݏ =  ݁ௗ షభ(ௗ )ିஏ(షభ(ௗ ))ܫ(݀). 
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We have the following precise estimate for (ݐ)ܫ.       
Lemma (3.2.6) [129]: For the function (ݐ)ܫ we have      
  

(ݐ)ܫ = ߨ2√ )  + ((1) ቈ
Φିଵ(ݐ)

Φᇱ( Φିଵ(ݐ))


ଵ/ଶ

 

when ݐ → ∞.    
Proof. Set (ݔ) = ߟ ఈ , whereି[(ݔ)Φᇱ]ݔ√ < ߙ < 1/2. Since 

ℎ௧
ᇱᇱ (ݔ) =

Φᇱ(ݔ)
ݔ

+
ݐ

ଶݔ −
Φ(ݔ)

ଶݔ =
Φᇱ(ݔ)

ݔ
+

1
ଶݔ ൣΦ൫Φିଵ(ݐ )൯ − Φ(ݔ)൧, 

we have, by Lemma (3.2.5),                  
ℎ௧

ᇱᇱ(ݔ) = ℎ௧
ᇱᇱ(Φିଵ(ݐ))(1 +  ((1) 

when |ݔ − Φିଵ(ݐ)| ≤ ߬(Φିଵ(ݐ)). On the other hand, by the convexity of ℎ௧  , we then have
   

|ℎ௧ (ݔ)|  ≥
1
2

(ℎ௧
ᇱᇱ(Φିଵ(ݐ)) + − ݔ|((ݐ)Φିଵ) ߬((1) Φିଵ(ݐ)| 

for |ݔ − Φିଵ(ݐ)|  ≥ ߬ (Φିଵ(ݐ)). Setting for simplicity    

ܿ = ℎ௧
ᇱᇱ(Φିଵ(ݐ)) =

Φᇱ(Φିଵ(ݐ))
Φିଵ(ݐ)

, 

we then get                   

(ݐ)ܫ = න ݁ି ଵଶ ൫ା(ଵ)൯௫మ
+ ݔ݀  (ݐ)ܧ

 

|௫|ஸఛ (షభ(௧))
,                             (73) 

where 

|( ݐ)ܧ| ≤ 2 න ݁ିଵ
ଶ(ା(ଵ))ఛ (షభ(௧))௫ ݀ݔ

 

௫ஹఛ (షభ(௧))
. 

Thus the result follows, since the integral in (73) can be estimated by the corresponding 
Gaussian integral from −∞ to ∞. 
We will estimate a number of integrals in a similar fashion, using Lemma (3.2.5) to split the 
domain of integration. The integrands will be of the type ݁ି(௫)ܵ௧(ݔ)  and satisfy the 
following: 
  ݃௧  attains its minimum at a point ݔ = (ݐ)ݔ → ∞ with ݔ(ݔ) = (1 + ݔ| for ܿ((1) −
|ݔ ≤ ߬ and 1/߬ = ݐ when (ܿ) → ∞. 
K For |ݔ − |ݔ ≤ ߬ , ܵ௧(ݔ) can be estimated by a constant C times |ݔ − |ݔ  for some 
positive integer m. 
 When |ݔ − |ݔ ≥ ߬ and |ݔ −  decays so fast that (ݔ)| grows, the function ݁ି(௫)ܵ௧ݔ

න ݁ି(௫)|ܵ௧(ݔ)|݀ݔ = (1 + ((1)
ஶ


න ݁ି(௫)|ܵ௧(ݔ)|݀ ݔ.

 

|௫ି௫బ|ஹఛ
 

Taking into account the formula  

න ݁ିଵݔ
ଶ௫మ

ݔ݀  = (ܿ/2)ି(ାଵ)/ଶ
ஶ


 න ݔ݁ି௫మ݀ݔ

ஶ


 ,                             (74) 

we then arrive at the estimate     
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න ݁ି (௫)ௌ(௫)ௗ௫ 
ஶ


=  (75)                                       (ଶ/(ାଵ)ିܿܥ)ܱ

when ݐ → ∞. 
We will at one point encounter a slightly different variant of this scheme, obtained by 
replacing (II) by the following: 
           (II') For |ݔ − |ݔ ≥ ߬, we have ܵ(ݔ) = (1 + ݔ)((1) − ݐ ) whenݔ → ∞. 
In this case, because of the symmetry around the point x0, we get the slightly better estimate 

න ݁ି(௫)ܵ(ݔ)݀ ݔ = (ଵିܿ) 
ஶ


                                          (76) 

when ݐ → ∞. 
          To avoid tedious repetitions, in the following we will omit most of the details of such 
calculus arguments. We will briefly state that conditions (I), (II), (III) (or, respectively, (I), 
(II'), (III)) are satisfied and conclude that this leads to the estimate (75) (or, respectively, 
(76)). 
In the proof of the next lemma, we will use this scheme three times. 
Lemma (3.2.7) [129]: We have      

(ݐ)′ܫ = ܱ൫[Φିଵ(ݐ)Φ′(Φିଵ(ݐ))]ିଵ/ଶ(ݐ)ܫ൯ ; 
(ݐ)′′ܫ = ܱ([Φିଵ(ݐ)Φ′(Φିଵ(ݐ))]ିଵ(ݐ)ܫ) ; 
(ݐ)ܫ = ܱ൫[Φିଵ(ݐ)Φ′( Φିଵ(ݐ))]ିଷ/ଶ(ݐ)ܫ൯ 

when ݐ → ∞. 
Proof. We begin by noting that ܫ′ can be computed in the following painless way: 

(ݐ)ᇱܫ = න ݈݃
ݔ

Φିଵ(ݐ) ݁ି(௫)݀ݔ
ஶ


;                                          (77) 

this holds because ℎ௧
ᇱ  (Φିଵ(ݐ)) = 0. For the same reason, we get    

    

(ݐ)ᇱᇱܫ = න −
൫Φ(ିଵ)൯

ᇱ(ݐ)
Φିଵ(ݐ) + ൬݈݃

ݔ
Φିଵ(ݐ)൰

ଶ
൩ ݁ି(௫)݀ݔ

ஶ


              (78) 

and 
 (ݐ)ᇱᇱᇱܫ

= න − 
൫Φ(ିଵ)൯

ᇱ(ݐ)
Φିଵ(ݐ) ൩

ᇱ

− 3
൫Φ(ିଵ)൯

ᇱ(ݐ)
Φିଵ(ݐ) ݈݃

ݔ
Φିଵ(ݐ) + ൬݈݃

ݔ
Φିଵ(ݐ)൰

ଷ
൩ ݁ି(௫)݀ݔ

ஶ


(79) 

We use that [Φିଵ]′(ݐ) = 1/(Φିଵ(ݐ)), and then in (79) we also use the fact that 

ቈ
1

Φ′(Φ(ିଵ)(ݐ))Φିଵ(ݐ)


ᇱ

=  −
Φ′′(Φିଵ(ݐ))

[Φ′(Φିଵ(ݐ))]ଷΦିଵ(ݐ)
−

1
[Φ′(Φିଵ(ݐ))Φିଵ(ݐ)]ଶ ; (80) 

we apply condition (70) to the first term on the right-hand side. When we estimate the 
integrals in (77), (78), and (79), we use that 

ฬ݈݃
ݔ

Φିଵ(ݐ)ฬ ≤  ݁
ݔ| − Φିଵ(ݐ)|

Φିଵ(ݐ)  

for ݔ ≥ ݁ିଵΦିଵ(ݐ) and that, say, 
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ฬ݈݃
ݔ

Φିଵ(ݐ)ฬ ≤ ݈݃ 
1

Φିଵ(ݐ) 

when 1 ≤ ݔ < ݁ିଵΦିଵ(ݐ ). In each case, the integrand satisfies conditions (I), (II), (III) with 
݃௧ = ℎ௧ , so that we may use (75). The desired results for ܫ′ , , ′′ܫ  .now follow from (75) ′′′ܫ
We will need similar estimates for the function       

(ݐ)ܮ = − ݎ ݈݃ ݐ ݔ݁ (ݐ)Φିଵ݈݃ ݐ + Φିଵ(ݐ )  , 
where r is a positive parameter.                   
Lemma (3.2.8) [129]: We have                  
    

ܮ
ᇱ (ݐ)  = ቆ− ݈݃

Φିଵ(ݐ)
ݎ

ቇ  ;(ݐ) ܮ

ܮ
ᇱᇱ (ݐ) = ቆ ݈݃

Φିଵ(ݐ)
ݎ

ቇ
ଶ

−
1

Φ′( Φିଵ(ݐ))Φିଵ(ݐ)
൩  ;(ݐ) ܮ

′′ܮ
ᇱ (ݐ)  = ൦ቆ− ݈݃

Φିଵ(ݐ)
ݎ

ቇ
ଷ

+
݃3݈ Φିଵ(ݐ)

ݎ
Φ′( Φିଵ(ݐ))Φିଵ(ݐ)

+  ܱ൫[Φ′( Φିଵ(ݐ))Φିଵ(ݐ)]ିଷ/ଶ൯൪ ܮ (ݐ) 

when ݐ → ∞. 
Proof. The first and the second of these formulas are obtained by direct computation. We 
arrive at the estimate for the third derivative by again using (80) and then applying condition 
(70).          

We begin by recalling that 
,ஏ (ऊܭ      (ݓ = ݇(ऊ,  ,(ݓ
where            

:( ߞ)݇ =
1

(݊ −  1)!


݀(݀ − 1)  · · ·  (݀ − ݊ + 2)
ௗݏ

ௗିାଵߞ
ஶ

ௗୀିଵ

 . 

We set  〈ऊ, 〈ݓ = ݎ ఏ and assume that݁ݎ > 0 and |ߠ| ≤  We may then write . ߨ
〈ऊ, ௗ〈ݓ

ௗݏ
=

ܮ  (݀)
(݀)ܫ

 (ߠ ݀݅)ݔ݁

and hence                
〈ऊ, ,ஏ(ऊܭିଵ〈ݓ (ݓ  = − ݊)݅)ݔ݁ ିଵݎ  ఏ݁ݎ ݇(ߠ(1 

=
1

(݊ − 1)!
 ݀(݀ − 1)  · · · (݀ − ݊ + 2)

ஶ

ௗୀିଵ

ܮ  (݀)
(݀)ܫ

 .(ߠ ݀݅)ݔ݁

Let Ω(ݐ) be a function in ܥଷ(ܴ) so that    

Ω(ݐ) =
1

(݊ − 1)!
ݐ)ݐ − 1)  · · · ݐ)  − ݊ + (ݐ)ܮ(2

(ݐ)ܫ
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for ݐ ≥ ݊ − 1 and Ω(ݐ) = 0 for ݐ ≤ ݊ − 2. Then the Poisson summation formula gives 

݊)݅)ݔ݁ ିଵݎ − ఏ൯݁ ݎ൫݇(ߠ(1 =  Ω෩(݆)
ஶ

ିஶ

, 

where            

Ω෩(݆) = න Ω(ݐ)݁(ଶగାఏ)௧ ݀ݐ
ஶ

ିஶ
 . 

Integrating by parts, we obtain          

|( ఏ݁ ݎ)݇|ିଵݎ ≤ |Ω෩(0)| + ‖Ω′′′‖ଵ 
2

݆)ଷ( ߨ2) − 1/2)ଷ

ஶ

 ୀଵ

. 

Since            
 |Ω෩(0)| ≤  ݉݅݊(‖Ω‖ଵ,   ,(ଷ‖Ω′′′‖ଵି|ߠ|
the proof of the first part of the lemma is complete if we can prove that 

  ‖Ω‖ଵ ≲ ൫Φ(ݎ)൯
ିଵ

Φᇱ(ݎ)݁ஏ()                                        (81) 
and            

‖Ω′′′‖ଵ ≲ ൫Φ(ݎ)൯
ିଵ ݁ஏ()

ݎ
ଷ
ଶ݁ඥΦᇱ(ݎ)

.                                   (82) 

We first estimate‖Ω‖ଵ. We write ܮ(ݐ) =  ,and claim that conditions (I), (II) ((ݐ)ݎ݃−)ݔ݁
(III) above hold. To see this, we observe that, by the first formula of Lemma (3.2.8), ܮ 
attains its maximum at = Φ(ݎ) . Moreover, ݃ is a convex function and 

݃ 
ᇱᇱ(ݐ) =

1
Φᇱ൫Φିଵ(ݐ)൯Φିଵ(ݐ)

. 

Lemma (3.2.5) implies that 
݃ 

ᇱᇱ(ݐ) = (1 +  ݃((1)
ᇱᇱ((ݎ)) 

when |ݐ − Φ(ݎ)| ≤  ଵିଶఈ . The remaining details are carried out as in the proof[(ݎ)Φᇱ]ݎ√
of Lemma (3.2.6). Using (75) with ݉ = 0 and Lemma (3.2.6), we therefore get 

‖Ω‖ଵ =  |Φ(ݎ)(Φ(ݎ ) −  1) · · ·  (Φ(ݎ) −  ݊ + 2)|
൯(ݎ)൫Φܮ
൯(ݎ)൫Φܫ

ቀ √2ߨ + ቁ(1)  [Φᇱ(ݎ)ݎ]
ଵ
ଶ

= ൫1 + ൯(ݎ)൯൫Φ(1)
ିଵ

Φᇱ(ݎ)݁ஏ() , 
which shows that (81) holds. 

To arrive at (82), we need a pointwise estimate for Ω′′′ . To simplify the writing, 
we set 
ܽ =   ቚ݈݃ షభ(௧)


ቚ  ܽ݊݀  ܾ = [Φ′(Φିଵ(ݐ))Φିଵ(ݐ)]ିଵ/ଶThen using the Leibniz rule along 

with Lemmas (3.2.7) and (3.2.8), we get 
 |Ω′′′(ݐ)| ≲ (ܽଷ + ܽଶܾ +  ܾܽଶ + ܾଷ)Ω(ݐ). 

By a straightforward calculus argument, we verify that each of the terms in this expression 
satisfies (I), (II), and (III) above, again with ݔ = Φ(ݎ) ߬ =  ଵିଶఈ . We now use[(ݎ)′Φ ]ݎ √
(75) to achieve the desired estimate for each of the terms ܾܽଷିΩ(ݐ). 
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The previous proof also gives the second estimate when ߠ = 0, because then Ω෩(0) = ‖Ω‖ଵ . 
To prove it in general, we need to check that ݇(ݎ) ≃ |ߠ| when |(ఏ݁ݎ)݇| ≤  .ଵ/ଶି[(ݎ)′Φݎ]ܿ
To this end, note that    

Ω෩(0) =  ݁ఏ() න Ω(ݐ)݁ఏ(௧ି())݀ݐ
ஶ

ିஶ
 , 

which implies that        
 |Ω෩(0)| ≥ ‖Ω‖ଵ ∫ Ω(ݐ)|ݐ||ߠ − Φ(ݎ)|݀ݐ.ஶ

ିஶ  
The integral on the right is computed using (75) with ݉ = 1, and so we get  

|Ω෩(0)| ≥ ‖Ω‖ଵ൫1 −  . ଵ/ଶ൯[(ݎ)′Φݎ]|ߠ|ܥ 
Thus the second estimate in Lemma (3.2.4) holds for c sufficiently small. 
We close by proving some estimates for another function that will be important later. Set 

ܳ௫ (ݎ)  =
1
2

(Ψ(ݎଶ) + Ψ(ݔଶ))  −  (83)                                 .(ݎݔ 
Lemma (3.2.9) [129]: Let ߙ be a positive number such that ߟ < ߙ < 1/2, let ݔଵ and ݔଶ be 
the two points such that ݔଵ < ݔ <  ଶ andݔ

ݔ| − |ଵݔ = ݔ| − |ଶݔ = [(ݔ)] −  , ߙ
and set ܿ = (0). When ݎ →  ∞, we have     

ܳ௫
ᇱᇱ (ݎ) = ൫1 + ଵݔ   ,(ଶݔ)൯Φᇱ(1) ≤ ݎ ≤ ;ଶݔ                                     (84) 

ܳ௫ (ݎ)  ≥
ܿ
4

ݔ) − ଶ(ݎ  + ቆ
1
4

+ ቇ(1)  [Φᇱ(ݔଶ)]ଵିଶఈ , ݎ < ;ଵݔ          (85) 

ܳ௫ (ݎ)  ≥
ܿ
4

ݔ) − ଶ(ݎ + ቆ
1
4

+ ቇ(1)  [Φᇱ(ݔଶ)]ଵିଶఈ , ݎ >  ଶ.           (86)ݔ

Proof. We begin by noting that  
ܳ௫

ᇱ (ݎ) = (ଶݎ)′Ψݎ −  (ݎݔ)′Ψݔ
and                           

ܳ௫
ᇱᇱ(ݎ) = Ψᇱ(ݎଶ) + (ଶݎ)′′ଶΨݎ2 −  .(ݎݔ)′′ଶΨݔ

We observe that for ݔଵ ≤ ݎ ≤       :ଶ Lemma (3.2.5) appliesݔ
ܳ௫

ᇱᇱ(ݎ) = Φᇱ(ݎଶ)  + (ଶݎ)′′ଶΨݎ  − (ݎݔ)′′2Ψݔ  = (1 +  ,(ଶݔ) Φᇱ((1)
and so we have established (84). For ݎ <  :ଵ, we use the following estimateݔ

ܳ௫(ݎ) ≥
1
2

න Ψᇱ(ݏଶ)(ݏ −  ݏ݀(ݔ
௫


+

1
2

න න ܳ௫
ᇱᇱ(ݑ)݀ݐ݀ݑ

௧

௫ି[ᇲ(௫మ)]షഀ

௫

௫ି[ᇲ(௫మ)]షഀ
 

≥
ܿ
4

ݔ) − ଶ(ݎ + ൬
1
4

+ ൰(1) [Φᇱ(ݔଶ)]ଵିଶఈ  , 
where we used again Lemma (3.2.5) in the last step. Now observe that sinceΨᇱᇱ(ݕ) is a 
nondecreasing function, we have       

ܳ௫
ᇱᇱ(ݎ) ≥ Φᇱ(ݎଶ) 

for ݎ ≥ ݔ We therefore obtain for .ݔ >          :ଶݔ

ܳ௫(ݎ) ≥
1
2

න Ψᇱ(ݏଶ)(ݏ −  ݏ݀(ݔ


௫
+

1
2

න න ܳ௫
ᇱᇱ(ݑ)݀ݐ݀ݑ

௧

ି[ᇲ(௫మ)]షഀ



ି[ᇲ(௫మ)]షഀ
 

≥
ܿ
4

ݔ) − ଶ(ݎ + ൬
1
4

+ ൰(1) [Φᇱ(ݎଶ)]ଵିଶఈ , 
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where Lemma (3.2.5) is applied once more. Hence (86) also holds.   
We begin by recalling that 

,ஏ(ऊܭ ऊ) =  ,(ଶݎ)݇
 
where 

(ݎ)݇ =  ܿௗ ݎௗ ,
ஶ

ୀ

 

and                  

ܿௗ: =
(݀ +  1)  · · ·  (݀ +  ݊ −  1)

(݊ −  1)! ݀ݏ  + ݊ − 1
. 

A computation shows that       

,ݖ)ଶߚ :(ߦ = ଶ|ߦ| ݇′(|ऊ|ଶ)
݇(|ऊ|ଶ)

+  |〈ऊ, ଶ|〈ߦ   
݇′′((|ऊ|ଶ))
݇((|ऊ|ଶ)) − ቆ

݇′(|ऊ|ଶ)
݇(|ऊ|ଶ)

ቇ
ଶ

൩ . 

Thus Theorem (3.2.2) is a consequence of the following lemma. 
Lemma (3.2.10) [129]: Suppose that (70) holds. Then we have  

(ݎ) ′݇
(ݎ)݇

= (1 +  ,(ݎ)′Ψ((1)

ቆ
(ݎ) ′݇
(ݎ)݇

ቇ
ᇱ

= (1 + (ݎ)′′Ψ((1) + (1)
Ψ′(ݎ)

ݎ
 

when ݎ →  ∞. 
The proof of this lemma relies on the following estimates. 
Lemma (3.2.11) [129]: Suppose that (70) holds and let the coefficients cd be as defined 
above. Then we have 

 ܿௗ (݀ − Φ(ݎ))ݎௗ
ஶ

ௗୀଵ

=  (87)                          ,((ݎ)ଵ/ଶ݇[(ݎ)′Φݎ])

 ܿௗ (݀ − Φ(ݎ))ଶݎௗ
ஶ

ௗୀଵ

=  ൫1 +  (88)                  (ݎ)݇(ݎ)Φᇱݎ൯(1)

when ݎ → ∞. 
Proof. The proof is essentially the same as the proof for the diagonal estimates in Lemma 
(3.2.4). The only difference is that we replace the function Ω(ݐ)  by ൫ݐ − Φ(ݎ)൯Ω(ݐ) 
and (ݐ − Φ(ݎ))ଶΩ(ݐ) , respectively. In the first case, we have a functionthat satisfies 
condition (II′). This means that we may use (76) to arrive at (87). To establish (88), we may 
apply (74) with ݉ = 2 and take into account that 2 we have the explicit factor (ݐ − Φ(ݎ))ଶ 
front of Ω(ݐ).  
We write        

(ݎ)′݇ =
Φ(ݎ)

ݎ
(ݎ)݇) + ܱ(1)) +

1
ݎ

 ܿௗ(݀ −  Φ(ݎ))ݎௗ
ஶ

ௗୀଵ

; 

using Lemma (3.2.11), we obtain         
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(ݎ)′݇
(ݎ)݇

= (1 + (ݎ)′Ψ((1) +  ൭ቈ
Φ′(ݎ)

ݎ


ଵ/ଶ

൱ . 

The desired estimate for k / k follows because, in view of Lemma (3.2.5,) we have 
Φ(ݎ) ≥ ∫ Φ′(ݐ)݀ݐ = (1 + ଵିఈ[(ݎ)′Φ]ଵ/ଶݎ((1)

ିభ/మ  [ᇱ()]షഀ
    

for some ߙ < 1/2.                         
To arrive at the second estimate, we first observe that     

(ݎ)′′݇ =
Φ(ݎ) −  1

ݎ
(ݎ)′݇) + ܱ(1)) +

1
ݎ

  ܿௗ݀ ൫݀& − &Φ(ݎ)൯ݎௗିଵ
ஶ

ௗୀଶ

 

=
Φ(ݎ) −  1

ݎ
(ݎ)′݇) + ܱ(1)) +

Φ(ݎ)
ଶݎ  ܿௗ(݀ − Φ(ݎ))ݎௗ

ஶ

ௗୀଶ

    

+
1
ଶݎ  ܿௗ(݀ − Φ(ݎ))ଶ ݎௗ .

ஶ

ௗୀଶ

 

Combining our expressions for ݇′  and ݇′′  , we find that      

݇ᇱᇱ(ݎ)݇(ݎ) − ൫݇ᇱ(ݎ)൯
ଶ 

=
(ݎ)݇

ଶݎ  ܿௗ൫݀ − Φ(ݎ)൯
ଶ

ௗݎ
ஶ

ௗୀଶ

−
1
ଶݎ  ܿௗ ൫݀ − Φ(ݎ)൯ݎௗ

ஶ

ௗୀଶ

൩
ଶ

− 

(ݎ)′݇(ݎ)݇
ݎ

 + Ψ′(ݎ)ܱ(݇(ݎ) +  .((ݎ)′݇
Using again Lemma (3.2.11) and the estimate already obtained for ݇′/݇, we get 

ቆ
(ݎ)′݇
(ݎ)݇

ቇ
ᇱ

= (1 + ((1)
Φ′(ݎ)

ݎ
− (1 + ((1)

Φ(ݎ)
ଶݎ  

from which the second estimate in Lemma (3.2.10) follows.    
We finally turn to the proof that (iii) implies (i) in Theorem (3.2.1). A different proof, 
using ܮଶ estimates for the ߲ ഥ operator, will be given, subject to an additional mild smoothness 
condition. The proof gives a more informative norm estimate, which will be crucial in our 
study of Schatten class Hankel operators. The proof to be given below has the advantage that 
it does not require f to be holomorphic. 
Using the reproducing formula, we find that   

̅݃(ऊ)ܪ = න ൫݂(ऊ)തതതതതത − ,ஏ(ऊܭതതതതതതത൯(ݓ)݂ (ݓ)ஏߤ݀(ݓ)݃(ݓ
 

ℂ
. 

Therefore, by the definition of ß(Ψ), we have   

|̅݃(ऊ)ܪ| ≤ ‖݂‖ß(ஏ)  න ߷(ऊ, ,ஏ(ऊܭ(ݓ (ݓ)ஏߤ݀(ݓ)݃(ݓ
 

ℂ
. 

Thus it suffices to prove that the operator A defined as  

(ऊ)݃ܣ  = න ߷(ऊ, ,ஏ(ऊܭ(ݓ (ݓ)ஏߤ݀(ݓ)݃(ݓ
 

ℂ
  

is bounded on ܮଶ(ߤஏ). 
We shall use a standard technique known as Schur’s test [18, p. 42]. Set 
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,ऊ)ܪ (ݓ  = ߷(ऊ, ,ஏ(ऊܭ|(ݓ ଵି݁|(ݓ
ଶ(ஏ(|ऊ|మ)ାஏ|௪|మ)). 

By the Cauchy–Schwarz inequality, we obtain   

ଶ݁ି ஏ(|ऊ|మ)|(ऊ)(݃ܣ)| ≲ න ,ऊ)ܪ (ߞ)ܸ݀(ߞ
 

ℂ
 න ,ऊ)ܪ ଶ݁ିஏ|௪|మ)ௗ(௪)|(ݓ)݃|(ݓ

 

ℂ
. 

This means that the operator A is bounded on ܮଶ(ߤஏ) if  

ݑݏ
ऊ

න ,ऊ)ܪ (ߞ)ܸ݀(ߞ < ∞
 

ℂ
.                                              (89) 

Our task is therefore to establish (89). 
            We may assume that ऊ = ,ݔ)  0, . . . , 0) with ݔ > 0. We begin by estimating ߷(ऊ,  .(ݓ
To this end, write ݓ = ,ଵݓ) ߦ with (ߦ  a vector in ℂିଵ  and ݓଵ = ఏ݁ݎ  when ݊ > 1. Set 
݁ଵ = (1, 0, . . . , 0) and consider the three curves 

(ݐ)ଵߛ = ,௧ ݁ଵ݁ݔ 0 ≤ ݐ ≤  , ߠ
(ݐ)ଶߛ                                          = ൫ݔ + ݎ)ݐ − ,൯݁ఏ ݁ଵ(ݔ 0 ≤ ݐ ≤ 1, 

(ݐ)ଷߛ = ൫݁ݎఏ , ,൯ߦ ݐ 0 ≤ ݐ ≤ 1, 
which together constitute a piecewise smooth curve from ऊ to w. (When ݊ = 1,  ଷ does notߛ
appear and can be neglected.) Note that 
,( ݐ)ଵߛ〉|                   ଵߛ

ᇱ(ݐ)〉| = ଵߛ||(ݐ)ଵߛ|
ᇱ(ݐ)  =  ,ଶݔ

,(ݐ)ଶߛ〉| ଶߛ
ᇱ |〈(ݐ) = ଶߛ||( ݐ)ଶߛ|

ᇱ |( ݐ) = ݔ) + ݎ)ݐ − ݔ|((ݔ −  ,|ݎ
,( ݐ)ଷߛ|                    ଷߛ

ᇱ (ݐ) =  .ଶ|ߦ|ݐ
By these observations and Theorem (3.2.2), we get the following estimate: 

߷(ऊ, (ݓ ≲ ଵ/ଶ[(ଶݔ)′Φ]|ߠ|ݔ + [Φ′(݉ܽݔ)ݔଶ, ݔ|ଶ))]ଵ/ଶݎ −  |ݎ

ଶݎ)Ψᇱ] |ߦ| + + [(ଶ|ߦ|
ଵ
ଶ + ଶݎ)′′ଶ[Ψ|ߦ| +  .ଶ)]ଵ/ଶ|ߦ|

When estimating the last term on the right-hand side of this inequality, we will use that 
[Ψᇱ(ݕ)]ଶ ≳ Ψᇱᇱ(ݕ),                                                       (90) 

which is a consequence of our assumptions (67) and (70). Indeed, assuming Ψᇱᇱ > 0, we 
have ݕΨᇱᇱ(ݕ) ≃ Φ′(ݕ) sinceΨᇱᇱ is a nondecreasing function. Thus (90) is equivalent to the 
following:       
      Φ(ݐ) ≳ ଵ/ଶ[(ݐ)′Φ] ଵ/ଶݐ .  
We arrive at this estimate because        

Φ(ݐ) = Φ(0) + න Φ′(߬)݀߬
௧


≥ Φ(0) + (1 +  ,ଵ/ଶ[(ݐ)′Φ] ଵ/ଶݐ((1)

where in the second step we used Lemma (3.2.5) with ߙ = 1/2.  
For  ߞ =            ఏ , we set݁|ߞ|

ℎ(ߞ ) = ൜
Φᇱ(|ߞ|),                                                 |ߠ|  ≤ ,(|ߞ|)ߠ 

|ߠ|                         ,ଷି|ߠ|ଵ/ଶି[(|ߞ|)Φᇱ]ଷ/ଶି|ߞ|  > .(| ߞ|)ߠ 
 

Using this notation and Lemma (3.2.4), we then obtain    
,ऊ)ܪ (ݓ ≲ ,ݔ)߷ ିଵ݁ିభ[(ݎݔ)Ψᇱ](ఏ݁ݎݔ)ℎ(ݓ

మ(ஏ(௫మ)ାஏ(మା|క|మ))ିஏ(௫).By Fubini’s theorem, 
we may compute the integral in (89) by first integrating with respect to the vector ߦ over 
ℂିଵ and then taking an area integral with respect to the complex variable ݓଵ over ℂ. Since 
ݕ ⟼ Ψ(ݎଶ + ݕ ଶ) attains its maximum atݕ = 0 and has a second derivative larger than 
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2Ψ′(ݎଶ) , we have that  Ψ(ݎଶ + (ଶݕ − Ψ(ݎଶ) ≥ Ψ′(ݎଶ)ݕଶ . Using spherical coordinates 
along with this fact, we find that   

න ݁ିஏ(మା|క|మ)݀ ܸିଵ

 

ℂషభ
(ߦ) ≲ ݁ିஏ(మ)[Ψ′(2ݎ)]ିାଵ. 

Similarly, again using spherical coordinates, we get           

න Θ(ݎ, ݀ஏ(మା|క|మ)ି݁(|ߦ| ܸିଵ(ߦ)
 

ℂషభ
= ܥ න Θ(ݎ, ݕ݀ଶିଶ݁ିஏ(మା௬మ)ݕ(ݕ

ஶ


, 

where C is the surface area of the unit sphere in ℂିଵ and is any suitable function of two 
variables. From the estimate for ߷(ऊ, (ݓ  and (90) we see that we are interested in the 
following two choices: (1) Θ(ݎ, (ݕ = ଶݎ)Ψᇱ]ݕ + ,ݎ)ଶ)]ଵ/ଶ and (2) Θݕ (ݕ = ଶݎ)ଶΨݕ +  .( ଶݕ 
In case (1), we use the Cauchy–Schwarz inequality, so that we get  

න ଶݎ)′Ψ]|ߦ| + ݀ଶ)]ଵ/ଶ݁ିஏ(మା|క|మ)|ߦ| ܸିଵ(ߦ)
 

ℂషభ

≲ ݁ିஏ(మ) ቈන ݕ݀ସିଷ݁ି(ஏ(మା ௬మ )ିஏ(మ))ݕ
ஶ




ଵ/ଶ

. 

Estimating Ψ(ݎଶ + ( ଶݕ  − Ψ(ݎଶ) as above, we therefore get 

න ଶݎ)′Ψ]|ߦ| + ݀ଶ)]ଵ/ଶ݁ିஏ(మା|క|మ)|ߦ| ܸିଵ(ߦ)
 

ℂషభ
≲ ݁ିஏ(మ)[Ψᇱ(ݎଶ)]ିାଵ. 

In case (2), we integrate by parts and get           

න ଶݎ)′ଶΨ|ߦ| + ݀ଶ)݁ିஏ(మା|క|మ)|ߦ| ܸିଵ(ߦ )
 

ℂషభ
≲ න ݕ݀ଶିଵ݁ିஏ(మା ௬మ )ݕ

ஶ


 . 

We proceed as above and obtain                         
  ∫ ଶݎ)′ଶΨ|ߦ| + ݀ଶ)݁ିஏ(మା|క|మ)|ߦ| ܸିଵ(ߦ ) 

ℂషభ ≲ ݁ିஏ(మ)[Ψᇱ(ݎଶ)]ିାଵ. 
With ߪ denoting Lebesgue measure on ℂ, we therefore get     

න ,ऊ)ܪ (ݓ)ܸ݀(ݓ
 

ℂ
≲ න ,ݔ)ܩ ,ݎ (ߠ ቈ

(ݔ ݎ)ᇱߖ
(ଶݎ)ᇱߖ


ିଵ

  ℎ(݁ݎݔఏ)݁ିொೣ ()݀ߪ (݁ݎఏ)
 

ℂ
, 

where                                           
,ݔ)ܩ ,ݎ ( ߠ = ଵ/ଶ[(ଶݔ)Φᇱ]|ߠ|ݔ   + [Φᇱ(݉ܽݔ)ݔଶ, ݔ|ଶ))]ଵ/ଶݎ − |ݎ  + 1 

and ܳ௫ is as defined by (83).                          
We now resort to polar coordinates; simple calculations show that  

න ℎ(݁ݎݔఏ)݀ߠ
గ

ିగ
≲ ቈ

Φᇱ(ݎݔ)
ݎݔ



ଵ
ଶ

ܽ݊݀ න ߠ݀(ఏ݁ݎݔ)ℎ|ߠ|
గ

ିగ
≲

1
ݎݔ

 

so that                                         

න ,ऊ)ܪ (ݓ)ܸ݀(ݓ
 

ℂ
≲ න ൫ܵ௫(ݎ) + ௫ܶ (ݎ)൯݁ିொೣ()ݎ݀ݎ,

ஶ


 

where                                           

ܵ௫ (ݎ) = ቌ
 [Φᇱ(ݔଶ)]ଵ/ଶ

ݎ
+ ቈ

Φᇱ(ݎݔ)
ݎݔ



ଵ
ଶ

ቍ ቈ
(ݔݎ)ᇱߖ
(ଶݎ)ᇱߖ


ିଵ
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and 

௫ܶ(ݎ) = ߮(max(ݔଶ, ݔ|((ଶݎ − |ݎ ቈ
Φᇱ(ݎݔ)

ݎݔ


ଵ
ଶ

ቈ
(ݔݎ)ᇱߖ
(ଶݎ)ᇱߖ

ିଵ

 

By Lemma (3.2.9) and a straightforward argument, we find that both ܵ௫ ݁ିொೣ and ௫ܶ ݁ିொೣ 
satisfy conditions (I), (II), (III) of Sect. 3 (with ݔ = ,ݐ ܳ௫ = ݃௧  , ݔ  = ݔ , and ߬ =
 [Φᇱ(ݔ)]ିఈ). Hence (75) applies with m = 0 and m = 1 for the respective integrands, so that 
we get 

ݑݏ
௫வ

න ܵ௫(ݎ)݁ିொೣ()ݎ݀ݎ
ஶ


< ݑݏ ݀݊ܽ ∞

௫வ
න ௫ܶ(ݎ)݁ିொೣ()ݎ݀ݎ

ஶ


< ∞. 

We may therefore conclude that (89) holds. 
            We now turn to a study of the relation between the spectral properties of Hankel 
operators and the asymptotic behavior of their symbols. We begin with the case of compact 
Hankel operators. 
            An entire function is said to be of vanishing mean oscillation with respect to 
if (ܱܯ ݂ )(ऊ)  = |as |ऊ (1)  → +∞. Entire functions of vanishing mean oscillation form a 
closed subspace of (ߖ)ܣܱܯܤ which we will denote by (ߖ)ܣܱܯ . In ac-cordance with our 
preceding discussion, we define the little Bloch space ß(ߖ) as the collection of functions f 
in ß(ߖ) for which   

ݑݏ
క∈ℂ\{}

ห〈∇݂ (ऊ), ห〈̅ߦ
,ऊ)ߚ (ߦ

 = |ℎ݁݊ |ऊݓ      (1) → +∞. 

The main result reads as follows. 
Theorem (3.2.12) [129]: Let ߖ be a logarithmic growth function, and suppose that there 
exists a real number ߟ < 1/2 such that (70) holds. If f is an entire function on ℂ , then the 
following statements are equivalent: 
(i) The function f belongs to T (ߖ) and the Hankel operator ܪ̅ on ࣛଶ(ߖ) is compact; 
(b) The function f belongs to ܸ(ߖ)ܣܱܯ ; 
(iii) The function f belongs to ß(ߖ). 
Our proof of Theorem (3.2.12) requires the following two lemmas. 
Lemma (3.2.13) [129]: The normalized Bergman kernels ܭఅ(·, ऊ)/ඥܭఅ(ऊ, ऊ)  converge 
weakly to 0 in ࣛଶ(ߖ) when |ऊ| → +∞.      
Proof. Since the holomorphic polynomials are dense in ࣛଶ(ߖ) , it suffices to show that for 
any non-negative integer m, we have 

|ऊ|

ඥܭఅ(ऊ, ऊ)
→ 0 

as|ऊ| → +∞. But this holds trivially because ܭఅ(ऊ, ऊ) is an infinite power series in 
|ऊ|ଶwith positive coefficients. 
Lemma (3.2.14) [129]: Let ݂: ℂ → ℂ be a function for which there exist positive numbers 
R and ߝ such that 

|݂(ऊ) − |(ݓ)݂ ≤ ,ऊ)߷ߝ  (ݓ
whenever |ऊ| ≥ ࡾ . Then there exists a function ݂: ℂ → ℂ  such that ݂(ऊ)  = ݂(ऊ) for 
|ऊ| ≥  and ࡾ
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| ݂(ऊ) − ݂(ݓ)| ≤ ,ऊ)߷ߝ  (ݓ
for all points ऊ and ݓ in ℂ . 
Proof. We argue as in the proof of Lemma 5.1 in [133]. We assume without loss of generality 
that f is real-valued and set 

݂(ऊ) ∶= ݂݅݊
௪∈ℂ

(ݓ)݂} + ,ऊ)߷ߝ {(ݓ . 

Then a straightforward argument using the triangle inequality for the Bergman metric shows 
that f0 has the desired properties. 
We first prove the implication (i) ⇒ (ii). Assuming that ܪ̅ is compact, we obtain, using 
Lemma (3.2.13), that 

ଶ[(ऊ)(݂ ܱܯ)] =
ฮܪ̅ܭఅ(·, ऊ)ฮ

,అ(ऊܭ ऊ)

ଶ

→  0 

when |ऊ| → +∞. This gives the desired conclusion. 
We next note that the implication (ii) ⇒ (iii) is immediate from (72). 
Finally, to prove that (iii) implies (i), in view of Theorem (3.2.1), we only need to prove that 
the bounded Hankel operator ܪ̅ is compact whenever (iii) is satisfied. To see that this holds, 
we choose an arbitrary positive ߝ. Assuming (iii), we may find a positive ܴ such that 

,(ऊ)(݂ߘ)| |̅ߦ ≤
ߝ
2

,ऊ)ߚ  (ߦ
whenever |ऊ| ≥ ܴ and ߦ is in ℂ\{0}. Then for some ܴ > ܴ we have 

|݂(ऊ) − |(ݓ)݂ ≤ ,ऊ)߷ߝ  (ݓ
as long as |ऊ| ≥ ܴ. Indeed, this follows because ߚ(ऊ, | ߦ|/(ߦ →  ∞ when |ऊ| → ∞ so that, 
whenever |ऊ| is sufficiently large, ߷(ऊ,  is “essentially” determined by the contribution to (ݓ
the integral in (68) from the points that lie outside the ball of radius ܴ centered at 0. Now 
let ݂ be the function obtained from Lemma (3.2.14). We write 

̅ܪ = ̅ି̅బܪ
+ ̅బܪ  

and observe that ݂̅ − ݂̅ is a compactly supported continuous function on ℂ . Hence ܪ̅ି̅బ
 

is compact. On the other hand, if g is a holomorphic polynomial, then 

̅బܪ|
 ݃(ऊ)| ≲ න ห݂̅(ݓ) − ݂̅(ऊ)ห  |ܭఅ(ऊ, (ݓ) అߤ݀ |(ݓ)݃(ݓ

 

ℂ

≤ ߝ  න ,ऊ)ߚ ,అ(ऊܭ| (ߦ (ݓ) అߤ݀ |(ݓ)݃(ݓ
 

ℂ
  

so that, by the proof of Theorem (3.2.1), we see that ฮܪ̅బ
ฮ ≲  The implication (iii) ⇒ (i) .ߝ

follows because ߝ can be chosen arbitrarily small.     
In what follows, we will need the analogue of Lemma (3.2.5) for the function ߖ when 
݊ > 1. We will therefore assume that       

(ݐ)ᇱᇱߖ = ܱ ൬ିݐଵ
ଶ [ߖᇱ(ݐ)]ଵାఎ ൰ → ݐ ℎ݁݊ݓ  ∞                            (91) 

for some ߟ < 1/2 whenever ݊ > 1. This is again a mild smoothness condition on ߖ. 
Lemma (3.2.15) [129]: Assume that (91) holds for some ߟ < 1/2. Then, for any fixed ߙ >
 we have ,ߟ
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ݑݏ
|ఛ|ஸ௧భ/మ [అᇲ(௧)]షഀ

ݐ)ᇱߖ + ߬) = (1 +  (ݐ)ᇱߖ((1)

when ݐ → ∞.                 
We are interested in describing geometrically the Bergman ball     

,ऊ)ܤ ܽ)  = ݓ}  ∶ ߷(ऊ, (ݓ < ܽ}. 
Let ऊܲ  denote the orthogonal projection in ℂonto the complex line {ߞऊ: ߞ ∈ ℂ}, where ऊ is 
an arbitrary point in ℂ\{0}. It will be convenient to let P0 denote the identity map. We use 
the notation 

,ऊ)ܦ ܽ) =  ൛ݓ: |ऊ − ऊܲݓ| ≤ ܽ[Φ′(|ऊ|ଶ)]ିଵ/ଶ, ݓ| − ऊܲݓ| ≤  .  ଵ/ଶൟି[ᇱ(|ऊ|ଶ)ߖ]ܽ
Then we have the following result. 

real number ߟ < 1/2  such that Lemma (3.2.16) [129]: Suppose that there exists a 
(70) holds and that (91) holds if ݊ > 1. Then, for every positive number a, there exist two 
positive numbers m and M such that 

,ऊ)ܦ ݉) ⊂ ,ऊ)ܤ ܽ) ⊂ ,ऊ)ܦ  (ܯ
for every ऊ in ℂ . 

߷(ऊ, (ݓ ≃ |ऊ − ऊܲݓ|[Φ′(|ऊ|ଶ]ଵ/ଶ + ݓ| − ऊܲݓ|[ߖᇱ(|ऊ|ଶ)]ଵ/ଶ      (92) 
for w in ܦ(ऊ,  for any fixed positive number M . (The latter term vanishes and can be (ܯ
disregarded when n = 1.) To begin with, we note that Theorem (3.2.2) gives that 

߷(ऊ, (ݓ ≃ ݂݅݊
ఊ

න ൬|(ݐ)′ߛ|[ߖᇱ(|ऊ|ଶ)]
ଵ
ଶ + ,(ݐ)ߛ〉| [(ଶ|(ݐ)ߛ|)′′ߖ]|〈(ݐ)ᇱߛ

ଵ
ଶ൰ ݐ݀ 

ଵ


 , (93) 

where the infimum is taken over all piecewise smooth curves ߛ: [0,1] → ℂ  such that 
(0)ߛ = ऊ and (1)ߛ =  followed by ݓto be the line segment from ऊ to ऊܲ ߛ If we choose .ݓ
the line segment from ऊܲݓ to w and use that (ݔ)′′ߖ =  ,  on the latter part of (ଵ/ଶ[(ݔ)′ߖ])
we get from (93) that 
߷(ऊ, (ݓ ≃ |ऊ − ऊܲݓ|[Φ′(|ऊ|ଶ]ଵ/ଶ +  | ऊܲݓ − ଵ/ଶ[ᇱ(|ऊ|ଶ)ߖ]|ݓ + | ऊܲݓ −  .(ᇱ(|ऊ|ଶ)ߖ)ଶ|ݓ

This gives the desired bound from above because, by assumption, | ऊܲݓ − |ݓ ≤
 .ଵ/ଶି[ᇱ(|ऊ|ଶ)ߖ]ܯ
To prove the bound from below, we argue in the following way. Let ℓ(ߛ)  denote the 
Euclidean length of ߛ . Set        

߷ఊ
∗ (ऊ, (ݓ = න ൬|ߛᇱ(ݐ)|[ߖᇱ(|(ݐ)ߛ|ଶ)]

ଵ
ଶ + ,(ݐ)ߛ〉| [ଶ|(ݐ)ߛ|)ᇱᇱߖ]|〈(ݐ)ᇱߛ

ଵ
ଶ൰

ଵ


 ݐ݀

and  ߷ఊ
∗ (ऊ, (ݓ = ݅݊ ఊ݂ ߷ఊ

∗ (ऊ,    We observe that (93) implies that .(ݓ
      ߷ఊ

∗ (ऊ, (ݓ ≳ ݂݅݊
௧

ଵ[(ଶ|(ݐ)ߛ|)ᇱߖ] ଶ⁄ ℓ(ߛ)                                    (94) 

whenever, say, ߷ఊ
∗ (ऊ, (ݓ ≤ 2߷∗(ऊ,  Since we know by the first part of the proof that .(ݓ

߷(ऊ, (ݓ ≲ 1, this implies that 
ℓ(ߛ) ≲ ݂݅݊

௧
ଵି[(ଶ|(ݐ)ߛ|)ᇱߖ] ଶ⁄ . 

By Lemma (3.2.15), we therefore have 
ℓ(ߛ) ≲ ଵି[(ଶ|(ݐ)ߛ|)ᇱߖ] ଶ⁄ , 

which, in view of (94), in turn gives 
ℓ(ߛ) ≲ ଵି[(ଶ|(ݐ)ߛ|)ᇱߖ] ଶ⁄ ߷(ऊ,  (95)                             .(ݓ
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Now let ߛ be any curve such that ߷ఊ
∗ (ऊ, (ݓ ≤ 2߷∗(ऊ,  We then get from (93) that .(ݓ

߷(ऊ, (ݓ ≳ |ऊ − ଵ[(ଶ|(ݐ)ߛ|)ᇱߖ]|ݓ ଶ⁄ + න ,(ݐ)ߛ〉| ଵ[(ଶ|(ݐ)ߛ|)ᇱᇱߖ]|〈(ݐ)′ߛ ଶ⁄  ݐ݀
ଵ


. (96) 

Set ߛ(ݐ) =  ऊܲ((ݐ)ߛ) and ߛଵ(ݐ) = (ݐ)ߛ − ଵ(0)ߛ Note that .(ݐ)ߛ = 0 and that ℓ(ߛଵ)  ≤
ℓ(ߛ).  By orthogonality and the triangle inequality, we get 

න ,(ݐ)ߛ〉| ଵ[(ଶ|(ݐ)ߛ|)ᇱᇱߖ]|〈(ݐ)ᇱߛ ଶ⁄  ݐ݀
ଵ



≥ න ,(ݐ)ߛ| ߛ
ᇱ ଵ[(ଶ|(ݐ)ߛ|)ᇱᇱߖ]|(ݐ) ଶ⁄ ݐ݀

ଵ



− න ,(ݐ)ଵߛ| ଵߛ
ᇱ(ݐ)|[ߖᇱᇱ(|(ݐ)ߛ|ଶ)]ଵ ଶ⁄ .ݐ݀

ଵ


 

Let ݐଵ be the smallest t such that |ऊ − |(ݐ)ߛ = |ऊ − ऊܲݓ|. Using that ߖᇱᇱ(ݔ)  =
      and (95), we then get (ଶ[(ݔ)ᇱߖ])

න ,(ݐ)ߛ〉| ଵ[(ଶ|(ݐ)ߛ|)ᇱᇱߖ]|〈(ݐ)ᇱߛ ଶ⁄ ≤ ݐ݀
ଵ


(1

+ ((1) න |ऊ||ߛ
ᇱ ݐଵ/ଶ݀[ᇱᇱ(|ऊ|ଶ)ߖ]|(ݐ) −  [ℓ(ߛ)]ଶ(ߖᇱ(|ऊ|ଶ))

௧భ


≳ |ऊ −  ऊܲݓ||ऊ|[ߖᇱᇱ(|ऊ|ଶ)]ଵ/ଶ − ,ऊ)(1)   (ݓ

when |ऊ| → ∞. Plugging this estimate into (96), we obtain the desired bound from below. 
It follows from the previous lemma that the Euclidean volume of ܤ(ऊ,  can be estimated (ݎ
as 

,ऊ)ܤ| |(ݎ ≃ [Φ′|ऊ|ଶ)]ିଵ
ଶ[ߖᇱ(|ऊ|ଶ)]

ିଵ
ଶ                                             (97) 

when r is a fixed positive number. We will now use this fact to establish two covering 
lemmas. 
 Lemma (3.2.17) [129]: Suppose that there exists a real number ߟ < 1/2 such that (70) 
holds and that (91) holds if ݊ > 1. Let R be a positive number and m a positive integer. Then 
there exists a positive integer N such that every Bergman ball ܤ(ܽ, ݎ with (ݎ ≤ ܴ can be 
covered by N Bergman balls ܤ(ܽ , 


 ). 

Proof.  Fix a ball ܤ(ܽ, Choose ܽ .(ݎ ∶=  ܽ and let ܽଵ be a point in ℂ  such that ߷(ܽ, ܽଵ) =
݉/ݎ . Now iterate so that in the k-th step ܽ is chosen as a point in the complement of 
⋃ )ܤ ܽ  , ିଵ(݉/ݎ

ୀଵ  minimizing the distance from ܽ , and let ܬ  be the smallest ݇  such that 
߷(ܽ, ܽ) ≥ ݎ . Then the balls ܤ(ܽ, ,(݉/ݎ . . . , )ܤ ܽ ିଵ, (݉/ݎ  constitute a covering of 
,ܽ)ܤ )ܤ By the triangle inequality, we see that the sets .( ݎ ܽ  ,  ,are mutually disjoint ((2݉)/ݎ
and they are all contained in ܤ(ܽ, + ݎ ݆ when ((2݉)/ݎ  <  Hence . ܬ

หܤ( ܽ , ห((2݉)/ݎ ≤ ,ܽ)ܤ| + ݎ . |((2݉)/ݎ 
 ିଵ

ୀ

 

On the other hand, by (97), it follows that there is a positive number C depending on and ݉ 
but not on ܽ such that 
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1
ܥ

,ܽ)ܤ| + ݎ |((2݉)/ݎ  ≤ , ݆ܽ)ܤ|  (|(2݉)/ݎ
for every ݆ . We observe that it suffices to take N to be the smallest positive integer larger 
than or equal to C. 
Inspired by the construction in the previous lemma, we introduce the following notion. We 
say that a sequence of distinct points (ܽ) in Cn is a -lattice if there exists a positive number 
r such that the balls ܤ(ܽ , constitute a covering of ℂ (ݎ  and the balls ܤ(ܽ , (2/ݎ  are 
mutually disjoint. Replacing ܽ by, say, 0, and ݎ/݉ by ݎ in the previous proof, we have a 
straightforward way of constructing a Ψ-lattice. Note that since the balls ܤ(ܽ  ,  are (2/ݎ
mutually disjoint, we must have ߷(ܽ  , ܽ) ≥ ≠ when ݎ ݆ . The number  , which may fail to 
be unique, is called a covering radius for the Ψ -lattice (ܽ). The supremum of all the 
covering radii is again a covering radius; it will be called the maximal covering radius for 
(ܽ). 
Lemma (3.2.18) [129]: Suppose that there exists a real number ߟ < 1/2 such that (70) 
holds and that (91) holds if ݊ > 1, and let R be a positive number. Then there exists a positive 
integer N such that if (ܽ) is a Ψ-lattice with maximal covering ݎ ݏݑ݅݀ܽݎ ≤  ܴ/2, then 
every point z in ℂ belongs to at most N of the sets ܤ(ܽ ,  .( ݎ2
Proof. Let N  be the integer obtained from Lemma (3.2.17) for the given R  when ݉ =
4 and assume that ऊ ∈ ⋂ ೕܽ)ܤ , ே ାଵ(ݎ2

 ୀଵ . Then ܽೕ  is in ܤ(ऊ, ݆ for every ( ݎ2 = 1, . . . , ܰ +
1. If the sets ܤ(ऊଵ, ,(2/ݎ . . . , , ऊଵ)ܤ ,ऊ)ܤ constitute a covering of (2/ݎ  the existence of ,( ݎ2
which is guaranteed by Lemma (3.2.17), then at least one of the sets ܤ(ऊ ,  must (2/ݎ
contain two of the points ܽೕ  , ݆ = 1, . . . , ܰ +  1 . On the other hand, by the triangle 
inequality, we have reached a contradiction because the minimal distance between any two 
points in the sequence (ܽ) cannot be smaller than  .      
For a nonnegative Borel measure ߥ on ℂ, we set      

ஏ (ऊ)ߥ݀ = ݁ିஏ(|ऊ|మ)݀ߥ(ऊ). 
Such a measure ߥ is called a Carleson measure for ࣛଶ(Ψ) if there is a positive constant C 
such that         

න |݂(ऊ)|ଶ݀ߥஏ(ऊ)
 

ℂ
≤ ܥ න |݂(ऊ)|ଶ݀ߤஏ(ऊ)

 

ℂ
 

for every function f in ࣛଶ(Ψ). Thus ߥ is a Carleson measure for ࣛଶ(Ψ) if and only if the 
embedding ܧఔ of ࣛଶ(Ψ) into the space ܮଶ(ߥஏ) is bounded. 
Theorem (3.2.19) [129]: Let Ψ be a logarithmic growth function, and suppose that there 
exists a real number ߟ < 1/2 such that (70) holds and that (91) holds if ݊ > 1. If ߥ is a 
nonnegative Borel measure on ℂ, then the following statements are equivalent: 
(i) ߥ is a Carleson measure for ࣛଶ(Ψ); 
There is a constant ܥ > 0 such that 

න
,ݓ)ஏܭ| ऊ)|ଶ

,ऊ) ܭ ऊ)
(ݓ)ஏߥ݀

 

ℂ
≤  ܥ

        for every ऊ in ℂ; 
For every positive number ݎ , there is a positive number C such that 

,ऊ)ܤ)ߥ ((ݎ ≤ ,ऊ)ܤ|ܥ  |(ݎ
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        for every ऊ in ℂ; 
There exist a   Ψ-lattice (ܽ) and a positive number C such that 

, ܽ)ܤ)ߥ ((ݎ ≤ , ܽ)ܤ|ܥ  |(ݎ
for every point k, where r is the maximal covering radius for (ܽ). 
We prepare for the proof of Theorem (3.2.19) by establishing the following two lemmas. 
Lemma (3.2.20) [129]: Suppose that there exists a real number ߟ < 1/2 such that (70) 
holds and that (70) holds if ݊ > 1. Then there exists a positive number ݎ such that 

,ݓ)ஏܭ| ऊ)|ଶ ≃ ,ऊ) ܭ ऊ)ݓ)ܭ,  (ݓ
holds for ऊ and w whenever ߷(ऊ, (ݓ ≤  .ݎ
Proof. The lemma follows from Lemma (3.2.4) along with Lemma (3.2.16). 
Lemma (3.2.21) [129]: Suppose that there exists a real number ߟ < 1/2 such that (70) 
holds and that (91) holds if ݊ > 1, and let r0 be the constant from Lemma (3.2.20). Then 
there is a constant C such that 

|݂(ऊ)|ଶ݁ିஏ(|ऊ|మ) ≤
ܥ

,ऊ)ܤ| |(ݎ
න (ݓ) ஏߤଶ݀|(ݓ)݂|

 

(ऊ, )
 

for every entire function f on ℂ and every ऊ in ℂ. 
Proof. By Lemma (3.2.20), the holomorphic function ݓ ↦ ,ऊ)ܭ   does not vanish at any (ݓ
point in ܤ(ऊ, ݓ Thus the function .(ݎ ↦ ,ஏ(ऊܭ|ଶ|(ݓ)݂|  ,ऊ)ܤ ଶ is subharmonic inି|(ݓ  .(ݎ
Choosing ݉ as in Lemma (3.2.16), we therefore get 

 

|݂(ऊ)|ଶ|ܭ(ऊ, ऊ)|ିଶ ≲
1

,ऊ)ܦ| ݉)|
න ,ஏ(ऊܭ|ଶ|(ݓ)݂| (ݓ)ܸ ଶ݀ି|(ݓ

 

(ऊ,)

≲
1

,ऊ)ܤ| |( ݎ
න ,ஏ(ऊܭ|ଶ|(ݓ)݂| (ݓ)ܸ ଶ݀ି|(ݓ

 

(ऊ, )
. 

Applying Lemma (3.2.20) to the integrand to the left and then Lemma (3.2.4) to each side, 
we arrive at the desired estimate. 
Note that, by (97)the lemma is valid for all positive ݎ , with the additional proviso that C 
depends on ݎ . 
We begin by noting that the implication (i) ⇒ (ii) is trivial because it is just the statement 
that the Carleson measure condition holds for the functions ܭ (·, ऊ). To prove that (ii) 
implies (iii), we assume that (ii) holds and consider a ball ܤ(ऊ,  is a fixed positive ݎ where (ݎ
number. Then, by Lemma (3.2.20) and (97), we have 

1
,ऊ)ܤ| |( ݎ

≲
,ஏ(ऊܭ| ଶ|(ݓ

,ऊ)ܭ ऊ)
݁ିஏ(|ऊ|మ) 

when ߷(ऊ, (ݓ ≤      , and therefore we obtainݎ
,ऊ)ܤ)ߥ ((ݎ

,ऊ)ܤ| |(ݎ
≲ න

,ஏ(ऊܭ| ଶ|(ݓ

,ஏ(ऊܭ ऊ)
݁ିஏ(|௪|మ)݀(ݓ)ݒ ≤ ܥ

 

ℂ
. 

 
The implication (iii) ⇒ (iv) is trivial (modulo the existence of Ψ-lattices), and we are therefore 
done if we can prove that (iv) implies (i). To this end, assume that (iv) holds, and let (ܽ) be a Ψ-
lattice with maximal covering radius  . By Lemma (3.2.21), we see that 
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ݑݏ
ऊ∈(ೖ ,)

|݂(ऊ)|ଶ݁ିஏ(|ऊ|మ ) | ≲
1

ܽ)ܤ| , |(ݎ2
න ஏ (ऊ)ߤଶ݀|(ݓ)݂|

 

|(ೖ ,ଶ)|
 

for every ݇. We therefore get  

න |݂(ऊ)|ଶ݀ߤஏ(ऊ)
 

ℂ
≲  න (ݓ) ஏߤଶ݀|(ݓ)݂| 

 

(ೖ ,ଶ)

≲ න ஏ(ऊ)ߤଶ݀|(ݓ)݂|
 

ℂ
, 

where the latter inequality holds by Lemma (3.2.18).  
For ν a nonnegative Borel measure on ℂ, we define the Toeplitz operator ఔܶ on ࣛଶ(Ψ)in 
the following way: 

 ( ఔܶ ݂)(ऊ) ∶= න ,ஏ(ऊܭ(ݓ)݂ (ݓ)ߥ݀ஏ(|௪|మ)ି݁(ݓ
 

ℂ
. 

computation shows that ܧఔ
ఔܧ∗ = ఔܶ . Thus Theorem (3.2.19) characterizes bounded 

Toeplitz operators. Compact Toeplitz operators can likewise be characterized via so-
called vanishing Carleson measures; an obvious and straightforward modification of 
Theorem (3.2.19) gives a description of such measures. Toeplitz operators belonging to 
the Schatten classes ܵ are characterized by the following theorem. 
Theorem (3.2.22) [129]: Let Ψ be a logarithmic growth function, and suppose that there 
exists a real number ߟ < 1/2 such that (70) holds and that (91) holds if ݊ > 1. If ߥ is a 
nonnegative Borel measure on ℂ  and  ≥ 1 , then the following statements are 
equivalent: 
(i)  The Toeplitz operator ఔܶ on ࣛଶ(Ψ) belongs to the Schatten class ܵ ; 
(ii) There exists a  Ψ-lattice (ܽ) such that  

 ൬
ܽ)ܤ)ߥ , ((ݎ
ܽ)ܤ|  , |( ݎ

൰
ஶ

ୀଵ

 < +∞, 

where r is the maximal covering radius for (ܽ). 
For the proof of this theorem, we require the following two lemmas. 
Lemma (3.2.23) [129]: Suppose that ( ݁) is an orthonormal basis forࣛଶ(Ψ) and that 
(a) is a Ψ-lattice. Then the operator ܬ on ࣛଶ(Ψ) defined by 

݁(ऊ) ܬ ∶=
,ஏ(ऊܭ ܽ)

ඥܭஏ( ܽ , ܽ)
 

is bounded.                             
Proof. For two arbitrary functions ݂ = ∑ ܿ ݁    and ݃  in ࣛଶ(Ψ) , the reproducing 
formula and the Cauchy–Schwarz inequality give  

,݂ܬ〉| ݃〉|ଶ = ቮ ܿ
݃( ఫܽ)തതതതതതത

ඥܭஏ( ܽ , ܽ)


ቮ

ଶ

≤ ቌห ܿห
ଶ



ቍ ൭
|݃(ܽ݇ )|ଶ

ஏ(ܽܭ , ܽ)


൱  . 

If we set                             

ߥ ∶= 
݁ஏ(|ೕ|మ)

)ஏܭ ܽ , ܽ)
δೕ



 

then we may write this estimate as                  
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,݂ܬ〉| ݃〉|ଶ ≤   ‖݂‖ࣛమ(ஏ)
ଶ න |݃(ऊ)|ଶ݀ߥஏ(ऊ)

 

ℂ
. 

By Theorem (3.2.19), we see that ߥ  is a Carleson measure, which implies that ܬ is a 
bounded operator on ࣛଶ(Ψ).       
Lemma (3.2.24) [129]: Suppose that ܶ is a positive operator on ࣛଶ(Ψ). Then the trace 
of T can be computed as  

(ܶ)ݎܶ = න ෨ܶ(ऊ)ܭஏ(ऊ, ऊ)݀ߤஏ (ऊ)
 

ℂ
. 

Proof. We write ܭஏ(ऊ, (ݓ = ∑ ݁(ऊ)݁(ݓ)തതതതതതതതஶ
ୀ , where (݁) is an orthonormal basis for 

ࣛଶ(Ψ) . The lemma is then proved by means of the following computation:  

( ܶ)ݎܶ = 〈ܶ ݂ , ݂〉ࣛమ(ஏ)

ஶ

ୀ

 = න .)ஏܭܶ〉 , ऊ), .)ஏܭ , ऊ)〉ࣛమ(ஏ) ݀ߤஏ(ऊ)
 

ℂ
. 

We begin by assuming that ఔܶ  is in ܵ . Pick a Ψ-lattice ( ܽ) and let ݎ be its maximal 
covering radius. By (97) and Lemma (3.2.20), we have  

 ൬
ܽ)ܤ)ߥ  , ((ݎ

ܽ)ܤ|  , |(ݎ
൰





≃  ቆන ,ݓ)ஏܭ (ݓ)ஏߥ݀(ݓ
 

(ೖ  , )
ቇ





≃  ቆන
ஏ(ܽܭ| , ଶ|(ݓ

ஏ(ܽܭ , ܽ)
(ݓ)ஏߥ݀

 

(ೖ , )
ቇ





 . 

By Lemma (3.2.18) and our assumption on ߥ, this gives 

 ൬
ܽ)ܤ)ߥ , ((ݎ
ܽ)ܤ|  , |(ݎ

൰


≲


 ቆන
ஏ(ܽܭ| , ଶ|(ݓ

,ஏ(ܽܭ ܽ)
(ݓ)ஏߤ݀

 

ℂ
ቇ





 

If we construct ܬ  as in Lemma (3.2.23), then the right-hand side equals 
∑ , ݁ܬ ఔܶ ∗ܬ〉| ݁〉|

  . Since ܬ is a bounded operator, ܬ∗ ఔܶ ܬ also belongs to ܵ , and so 
the latter sum converges. We conclude that (i) implies (ii). 
We will use an interpolation argument to prove that (ii) implies (i). We already know 
from Theorem (3.2.19) that ఔܶ  is in the Schatten class ܵஶ  whenever ܤ)ߥ(ܽ, ((ݎ ≤
,ܽ)ܤ|ܥ   for some positive constant C. Suppose now that |(ݎ


ܽ)ܤ)ߥ , ((ݎ
, ܽ)ܤ| |(ݎ

< +∞


, 

and let ( ݁) be an orthonormal basis for ࣛଶ(Ψ). By the reproducing formula, we have 

〈 ఔܶ ݁ , ݁〉 = න | ݁(ݓ)|ଶ݀ ߥஏ(ݓ)
 

ℂ
, 

which implies that        

 |〈 ఔܶ ݁ , ݁〉|


= න ,ݓ)ஏܭ (ݓ)ஏߥ݀(ݓ
 

ℂ
≤  න ,ݓ)ஏܭ (ݓ)ஏߥ݀(ݓ

 

(ೖ , )

. 

Again using Lemma (3.2.4), we then get      
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 |〈 ఔܶ ݁ , ݁〉|


≲ 
ܽ)ܤ)ߥ , ((ݎ
ܽ)ܤ|  , |(ݎ

< +∞


, 

which means that ఔܶ belongs to ଵܵ. By interpolation, we conclude that (ii) implies (i). 
We remark that the theorems proved generalize results for the classical Fock space when 
݊ = 1 obtained recently in [140]. It may be noted that Theorem (3.2.19) above could be 
elaborated to include two additional conditions for membership in ܵ, in accordance with 
Theorem 4.4 in [141]. The proof would be essentially the same as the proof of the latter 
theorem. Note that [142] also treats Schatten class membership of Toeplitz operators for 
 < 1. 
We suggest two possible definitions of Besov spaces, in accordance with our respective 
definitions of ܣܱܯܤ(Ψ) and ß(Ψ) . We let ß

 (Ψ) denote the set of entire functions 
݂ such that 

න ,ஏ(ऊܭ [(ऊ)݂ ܱܯ] ऊ)݀ߤஏ(ऊ)
 

ℂ
< ∞; 

for a function ℎ: ℂ → ℂ, we set     

|ℎ(ऊ)|ఉ = ݑݏ
క∈ℂ\{}

|〈ℎ(ऊ), |〈̅ߦ
,ऊ)ߚ ( ߦ

, 

and we let ßௗ
(Ψ)be the set of entire functions ݂ for which 

න ऊ)|ఉ ݂ߘ|
 ,ஏ(ऊܭ  ऊ)݀ߤஏ(ऊ)

 

ℂ
< ∞. 

These definitions are in line with those of K. Zhu for Hankel operators on the Bergman 
space of the unit ball in ℂ [143]. 
It is immediate from (72) that ß

 (Ψ)  ⊂ ßௗ
(Ψ) . The basic question is whether these 

spaces coincide and in fact characterize Schatten class Hankel operators with anti-
holomorphic symbols. The following theorem gives an affirmative answer to this 
question. 
Theorem (3.2.25) [129]: Let Ψ be a logarithmic growth function, and suppose that there 
exists a real number ߟ < 1/2 such that (70) holds and that (91) holds if ݊ > 1. If ݂ is an 
entire function on ℂ and  ≥ 2, then the following statements are equivalent: 
(i) The function ݂ belongs to ࣮(Ψ)and the Hankel operator ܪ̅ on ࣛଶ(Ψ) is in the 
Schatten class ܵ ; 
(ii)  The function ݂ belongs to ß

 (Ψ);  
(iii) The function ݂ belongs to ßௗ

(Ψ). 
Proof. We have already observed that the implication (ii) ⇒ (iii) is an immediate 
consequence of (72). The implication (i) ⇒ (ii) relies on the following general Hilbert 
space argument. If (i) holds, then the operator [ܪ̅

[̅ܪ ∗

మ  is in the trace class ଵܵ. Applying 

Lemma (3.2.24) and using the spectral theorem along with Hölder’s inequality, we obtain 
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ݎܶ ቀ[ܪ̅
[̅ܪ ∗


ଶቁ = න ̅ܪൣ〉

̅൧ܪ ∗

ଶܭஏ(. , ऊ), .)ஏܭ , ऊ)〉 ஏ(ऊ)ߤ݀

 

ℂ
 

≳ න 
ฮܪ̅ܭஏ(ऊ, ऊ)ฮ

ଶ

,ஏ(ऊܭ ऊ) ൩


ଶ 

ℂ
,ஏ(ऊܭ ऊ)݀ߤஏ(ऊ). 

Recalling the computation made in (71), we arrive at (ii).  
Our proof of the implication (iii) ⇒ (i) will use a version of L. Hörmander’s ܮଶ  estimates 
for the ߲̅ operator. To this end, write ∆ஏ(ऊ) = Ψ(|ऊ|ଶ) and observe that 

,ଶ(ऊߙ (ߦ ∶= 
߲ଶ∆ஏ(ऊ)

߲ऊೕ߲ऊ̅ೖ

ߦ ̅ߦ  = ଶΨ′(|ऊ|ଶ)|ߦ|  + |〈ऊ, ଶΨ′′(|ऊ|)|〈ߦ


,ୀଵ

 

for arbitrary vectors ऊ =  (ऊଵ, . . . , ऊ) and ߦ = ,ଵߦ) . . . ,  ,) in ℂ. By Theorem (3.2.2)ߦ 
we therefore have ߙ(ऊ, ( ߦ  ≃ ,ऊ)ߚ (ߦ . Now let ܮఉ

ଶ (ߤ)  be the space of vector-valued 
functions ℎ = (ℎଵ, . . . , ℎ), identified with the corresponding (0, 1)-forms ℎଵ݀ऊ̅ଵ +· · ·
 +ℎ݀ऊ̅ such that 

‖ℎ‖ഁ
మ  (ఓಇ)

ଶ ∶= න |ℎ(ऊ)|ఉ
ଶ ஏ(ऊ)ߤ݀ 

 

ℂ
< ∞. 

It follows from Theorem 2.2 in [144] (a special case of a theorem proved by J.-P. De-
mailly in [145]) that the operator S giving the canonical solution to the ߲̅-problem is 
bounded from ܮఉ

ଶ  . (ஏߤ)ଶܮ into (ஏߤ)
Since ݂ is holomorphic, we have          

(̅݃ܪ)߲ =  തതതത݂݃ߘ
when ݃ is in ࣛଶ(Ψ) , whence ܪ̅݃ =    Thus it follows that .(തതതത݂݃ߘ)ܵ 

ฮܪ̅݃ฮ
మ(ఓಇ)

≲ න ఉ|(ऊ)݂ߘ|
ଶ |݃(ऊ)|ଶ݀ ߤஏ(ऊ)

 

ℂ
.        (98) 

If we set ݀ߥ(ऊ) = ఉ|(ऊ)݂ߘ|
ଶ  ܸ݀(ऊ), this may be written as 

̅ܪ
̅ܪ ∗ ≲ ഁ|ఇ|ܯ

∗ ഁ|ఇ|ܯ  = ఔܶ  , 
where as before ܯdenotes the operator of multiplication by ℎ from ࣛଶ(Ψ) into ܮଶ(ߤஏ). 
By Theorem E, it remains to verify that (iii) implies that for some Ψ –lattice (ܽ) we have
        

 ൬
ܽ)ܤ)ߥ , ((ݎ

ܽ)ܤ| , |(ݎ
൰

/ଶ

<  +∞
ஶ

ୀଵ

, (99) 

where ݎ  is the maximal covering radius for (ܽ). To this end, we first observe that 
Hölder’s inequality gives that 

൬
,ऊ)ܤ)ߥ ((ݎ

,ऊ)ܤ| |(ݎ
൰

/ଶ

≲
1

,ऊ)ܤ| |(ݎ
න ఉ|(ऊ)݂ߘ|

 (ݓ)ܸ݀ 
 

(ऊ,)
. 

Hence, using (97) and Lemma (3.2.4), we obtain   

൬
,ऊ)ܤ)ߥ ((ݎ

,ऊ)ܤ| |(ݎ
൰

/ଶ

≲ න ఉ|(ऊ)݂ߘ|
 ,ऊ)ܭ  ऊ)ܸ݀(ݓ)

 

(ऊ,)
. 
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Now choosing any Ψ-lattice (ܽ) and using Lemma (3.2.18), we arrive at (99).  
Several remarks are in order. First, note that (98) gives another proof of the implication 
(iii) ⇒ (i) in Theorem (3.2.1), subject to the additional smoothness condition (91). Second, 
as shown in [146], there are nontrivial Hankel operators in ܵ only when  > 2݊. This 
fact is easy to see from Theorem (3.2.25) when ݊ = 1, because then 

ఉ|(ऊ)݂ߘ| ≃ ݂′(ऊ)|[Φ′(|ऊ|ଶ)]ିଵ/ଶ, 
whence f is in ßௗ

(Ψ) if and only if   

න |݂′(ऊ)|[Φ′(|ऊ|ଶ)]ଵି/ଶܸ݀(ऊ)
 

ℂ
 < ∞.                                 (100) 

When ݊ > 1, the computation of |݂ߘ(ऊ)|ఉ is less straightforward, but we always have 
ଵ/ଶି[Φ′(|ऊ|ଶ)]|(ऊ)݂ߘ| ≲ ఉ|(ऊ)݂ߘ| ≲  .ଵ/ଶି[Ψ′(|ऊ|ଶ)]|(ऊ)݂ߘ|

The estimate from above shows that the condition  

න Φ′(|ऊ|ଶ[Ψᇱ(|ऊ|ଶ)]ିଵି|(ऊ)݂ߘ|
ଶܸ݀(ऊ) < ∞

 

ℂ
                      (101) 

is sufficient for f to belong to ßௗ
(Ψ), and the estimate from below shows that this is also 

necessary when Φ′/Ψᇱis a bounded function. We conclude from (100) and (101) that if 
the growth of Ψᇱ is super-polynomial, then ßௗ

(Ψ) is infinite-dimensional and contains 
all polynomials if and only if  > 2݊. This is immediate when ݊ = 1, and it follows also 
when ݊ > 1 because 

න
Ψᇱᇱ(ݐ)

[Ψᇱ(ݐ)]ଵାఋ ݐ݀ ≤
ஶ



1
ఋ[Ψᇱ(0)]ߜ < ∞ 

for every ߜ > 0. If, on the other hand, is a polynomial, then Φ′/Ψᇱ is a bounded function, 
and one may use (101) and Theorem (3.2.25) to deduce Theorem B in [147]. It is not hard 
to check that if ݂ is a monomial and ݊ > 1, then 

ఉ|(ऊ)݂ߘ| ≃  ଵ/ଶି[Ψᇱ(|ऊ|ଶ)]||(ऊ)݂ߘ|
for ऊ  belonging to a set of infinite volume measure. By Lemma 2.12 in [148] and 
Theorem (3.2.25) above, one may therefore conclude as in [149] that ßௗ

(Ψ) is nontrivial 
only if  > 2݊. 
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Chapter 4 
Localization and Compactness with Essential Commutant 

            We show  the weighted Bargmann-Fock space setting we show that the 
reproducing kernel thesis for compactness holds for operators satisfying similar growth 
conditions. The main results extend the results of  Xia and Zheng to the case of the 
Bergman space when 1 <  < ∞, and in the weighted Bargmann-Fock space setting, our 
results provide new, more general conditions that imply the work of  Xia and Zheng via 
a more familiar approach that can also handle the 1 <  < ∞ case. For  ࣮ be the ܥ∗-
algebra generated by the Toeplitz operators { ܶ: ݂ ∈ ,)ஶܮ  on the Bergman space{ (ݒ݀
of the unitball. We show that the essential commutant of T equals { ܶ ∶ ݃ ∈ ܸܱௗௗ} + ࣥ, 
where ܸܱௗௗ is the collection of bounded functions of vanishing oscillation on B and ࣥ 
denotes the collection of compact operators on ܮ

ଶ ,)  .(ݒ݀
Section (4.1): Bergman and Fock  Spaces   
The Bargmann-Fock space ℱ: = ℱ(ℂ) is the collection of entire functions f on ℂ 

such that ݂(·)݁ି |·|మ  ∈ ,(ℂܮ  It is well known that ℱଶ is a reproducing kernel Hilbert .(ݒ݀
space with reproducing kernel given by ܭऊ(ݓ)  =  ݁ ऊ̅௪. As usual, we denote by ݇ऊ the 
normalized reproducing kernel at ऊ . For a bounded operator T on ℱ , the Berezin 
transform of T is the function defined by 

ܶ(ऊ) =  〈ܶ݇ऊ , ݇ऊ〉ℱమ  . 
It was proved recently by Bauer that the vanishing of the Berezin transform is sufficient 
for compactness whenever the operator is in the Toeplitz algebra [150]. However, it is 
generally very difficult to check whether a given operator T is in the Toeplitz algebra, 
unless T is itself a Toeplitz operator or a combination of a few Toeplitz operators, and as 
such one would like a “simpler” sufficient condition to guarantee this. 
            In the recent and interesting [151], Xia and Zheng introduced a class of 
“sufficiently localized” operators on ℱଶ  which includes the algebraic closure of the 
Toeplitz operators. These are the operators T acting on ℱଶ such that there exist constants 
2݊ < ߚ < ∞ and 0 < ܥ < ∞ with 

                                  |〈ܶ݇ऊ , ݇௪〉ℱమ| ≤  
ܥ

(1 +  |ऊ −  ఉ(|ݓ 
 .                                    (1) 

It was proved by Xia and Zheng that every bounded operator T from the ܥ∗ algebra 
generated by sufficiently localized operators whose Berezin transform vanishes at 
infinity, i.e., 

                                               lim
|ऊ|→ஶ

〈ܶ݇ऊ , ݇ऊ〉ℱమ  = 0                                                (2) 

is compact on ℱଶ. One of their main innovations is providing an easily checkable condi-
tion (1) which is general enough to imply compactness from the seemingly much weaker 
condition (2). 
            We extend the Xia-Zheng notion of suffi-ciently localized operators to both a 
much wider class of weighted Fock spaces (in particular, the class of so-called 
“generalized Bargmann-Fock spaces” considered in [152]) and to a larger class of 
operators. Note that (1) easily implies 
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ݑݏ
ऊ∈ℂ

න |〈ܶ݇ऊ , ݇௪〉ℱమ| ݀(ݓ)ݒ  <  ∞
 

ℂ
;  

and consequently one should look at generalizations of sufficiently localized operators 
that allow for weaker integral conditions. Also, note that the ideas in [150] are essentially 
frame theoretic (see [151] for a discussion of the ideas in [150] from this point of view) 
and therefore one cannot easily extend these ideas to the non-Hilbert space setting. We 
will provide a simpler, more direct proof of the main result in [150] which follows a more 
traditional route and which can be extended to other (not necessarily Hilbert) spaces of 
analytic functions. In particular, we show that our main result, in an appropriately 
modified form, holds for the classical Bergman space ܣ on the ball we will discuss the 
possibility of extending our results to a very wide class of weighted Bergman spaces.) 
The extension of the main results in [150] to a larger class of operators and to a wider 
class of weighted Fock spaces is as follows. Let ݀ =  

ସ
 (߲̅  −  ߲) and let d be the usual 

exterior derivative. For the rest let ߶ ∈  ଶ(ℂ) be a real valued function on ℂ such thatܥ
ܿ߱ <  ݀݀߶ < ߱ܥ  

holds uniformly pointwise on ℂ  for some positive constants c and C (in thesense of 
positive (1, 1) forms) where ߱ =  ݀݀| · |ଶ  is the standard Euclidean Kähler form. 
Furthermore, for 0 <  ≤ ∞, define the generalized Bargmann-Fock space ܨథ

 to be the 
space of entire functions f on ℂ such that ݂݁ିథ ∈ (ℂܮ  ,  for a detailed study of) (ݒ݀
the linear space properties of ℱథ

 see [153]). For operators T acting on the reproducing 
kernels (ऊ, ℱథ ݂ (ݓ

ଶ  , we impose the following conditions. We first assume that 

ݑݏ 
ऊ∈ℂ

∫ ቚ〈ܶ݇ऊ , ݇௪〉ℱഝ
మ ቚ (ݓ)ݒ݀  < ∞ 

ℂ , ݑݏ
ऊ∈ℂ

∫ ቚ〈ܶ∗݇ऊ , ݇௪〉ℱഝ
మ ቚ (ݓ)ݒ݀  < ∞ 

ℂ ,     (3) 

which is enough to conclude that the operator T initially defined on the linear span of the 
reproducing kernels extends to a bounded operator on ℱథ

 for 1 ≤  ≤ ∞ . To show that 
the operator is compact, we impose the following additional assumptions on T: 

lim
→ஶ

ݑݏ
ऊ∈ℂ

න ቚ〈ܶ݇ऊ , ݇௪〉ℱഝ
మ ቚ (ݓ)ݒ݀ 

 

(௭,)

= 0,   lim
→ஶ

ݑݏ
ऊ∈ℂ

න ቚ〈ܶ∗݇ऊ , ݇௪〉ℱഝ
మ ቚ (ݓ)ݒ݀ 

 

(௭,)
 =  0.                      (4) 

Definition (4.1.1)[149]: We will say that a linear operator T on ℱథ
 is weakly localized 

(and for convenience write ܶ ∈  .థ(ℂ)) if it satisfies the conditions (3) and (4)ܣ
Note that every sufficiently localized operator on ℱଶ in the sense of Xia and Zheng ob-
viously satisfies (3) and (4) and is therefore weakly localized in our sense too. Now if 
,ऊ)ܦ  is the Euclidean ball with center ऊ and radius r, and if ‖ܶ‖ denotes the essential (ݎ
norm of a bounded operator T on ℱథ

  then the following theorem is one of the main 
results: 
Theorem (4.1.2) [149]: Let 1 <  < ∞ and let T be an operator on ℱథ

 which belongs to 
the norm closure of  ܣథ(ℂ)). Then there exists ݎ, ܥ > 0 (both depending on T) such that 
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‖ܶ‖ ≤ ݑݏ lim ܥ 
|ऊ|→ஶ

ݑݏ
௪∈(ऊ,)

|〈ܶ݇ऊ , ݇௪〉|   . 

In particular, if 
lim

|ऊ|→ஶ
‖ܶ݇ऊ‖ℱഝ

 =  0 

then T is compact on ܨథ
. 

Now if ܣ(ℂ) is the class of sufficiently localized operators on ℱଶ then note that an 
application of  Proposition 1.4 in [155] in conjunction with Theorem (4.1.2) immediately 
proves the following theorem, which provides the previously mentioned generalization of 
the results in [150]. 
Theorem (4.1.3) [149]: Let 1 <  < ∞ and let T be an operator on ℱ which belongs to 
the norm closure of ܣ(ℂ). If lim

|ऊ|→ஶ
|〈ܶ݇ऊ , ݇ऊ〉ℱమ|   =  0 then T is compact. 

We write the so called “Fock-Sobolev spaces” from [154] as generalized Bargmann-Fock 
spaces, so that in particular Theorem (4.1.2) immediately applies to these spaces (see 
[155]). 
To state the main result in the Bergman space. Let ९ denote the unit ball in ℂ and let 
the space ܣ: =  (९) denote the classical Bergman space, i.e., the collection of allܣ 
holomorphic functions on ९ such that 

‖݂‖
 ∶= න |݂(ऊ)| ݀ݒ(ऊ)

 

९

 < ∞. 

The function ܭऊ(ݓ) ∶= (1 −  ऊ̅ݓ)ି(ାଵ) is the reproducing kernel for ܣଶ and 

(ݓ)ऊܭ  ∶=  
(1 − |ऊ|ଶ)

ାଵ
ଶ

(1 −  ऊ̅ݓ)(ାଵ) 

is the normalized reproducing kernel at the point ऊ . We also will let ݀ߣ  denote the 
invariant measure on ९, i.e., 

(ऊ)ߣ݀  =
(ऊ)ݒ݀

(1 − |ऊ|ଶ)ାଵ 

Now let 1 <  < ∞ and let ଵ


 + ଵ
ᇲ = 1. We are interested in operators T acting on the 

reproducing kernels of ܣଶ that satisfy the following conditions. First, we assume that 
there exists 0 < ߜ < ,}݊݅݉  such that {′

ݑݏ
ऊ∈९

න |〈ܶ݇ऊ , ݇௪〉మ|
ऊ‖మܭ‖

ଵି ଶఋ
ᇲ(ାଵ)

௪‖మܭ‖

ଵି ଶఋ
ᇲ(ାଵ)

(ݓ)ߣ݀
 

९

< ∞, 

ݑݏ                       
ऊ∈९

න |〈ܶ∗݇ऊ , ݇௪〉మ |
ऊ‖మܭ‖

ଵି ଶఋ
(ାଵ)

௪‖మܭ‖

ଵି ଶఋ
(ାଵ)

(ݓ)ߣ݀
 

९

< ∞                                  (5)  

These are enough to conclude that the operator T initially defined on the linear span of 
the reproducing kernels extends to a bounded operator on ܣ  (see the comments 
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following the proof of Proposition (4.1.10)). To treat compactness we assumptions on T: 
there exists 0 < > ߜ ,}݊݅݉   such that {′

ݑݏ
ऊ∈९

න |〈ܶ݇ऊ , ݇௪〉మ|
ऊ‖మܭ‖

ଵି ଶఋ
ᇲ(ାଵ)

௪‖మܭ‖

ଵି ଶఋ
ᇲ(ାଵ)

(ݓ)ߣ݀
 

ୈ(ऊ,୰)ౙ
→ 0, 

                        
  

ݑݏ
ऊ∈९

න |〈ܶ∗݇ऊ , ݇௪〉మ |
ऊ‖మܭ‖

ଵି ଶఋ
(ାଵ)

௪‖మܭ‖

ଵି ଶఋ
(ାଵ)

(ݓ)ߣ݀
 

ୈ(ऊ,୰)ౙ
→ 0                          (6)  

as ݎ → ∞. 
Definition (4.1.4) [149]: We say that a linear operator T on ܣ is p weakly localized 
(which we denote by ܶ ∈  .(९)) if it satisfies conditions (5) and (6)ܣ
Note that the condition 0 < ߜ < ,}݊݅݉ implies that both 1 {′ − ଶఋ

(ାଵ)
and 1 − ଶఋ

ᇲ(ାଵ)
 

are strictly between ିଵ
୬ାଵ

 and 1. Furthermore, note that when  = ′  = 2, we have that 
ିଵ
୬ାଵ

<  1 −  ఋ
(ାଵ)

 < 1  precisely when 0 < ߜ < 2 . Thus, in this case we can rewrite 

condition (5) in the following simpler way: there exists ିଵ
୬ାଵ

<  ܽ < 1 where   

ݑݏ
ऊ∈९

න |〈ܶ݇ऊ , ݇௪〉మ|
ऊ‖మܭ‖



௪‖మܭ‖
 (ݓ)ߣ݀

 

९

< ∞,
 

ݑݏ
ऊ∈९

න |〈ܶ∗݇ऊ  , ݇௪〉మ |
ऊ‖మܭ‖



௪‖మܭ‖
 (ݓ)ߣ݀

 

९

< ∞ 
We can similarly rewrite condition (6) when  = 2. 
We prove the following result. 
Theorem (4.1.5) [149]: Let 1 <  < ∞ and let T be an operator on ܣ which belongs to 
the norm closure of ܣ(९). If 

lim
|ऊ|→ଵ

〈ܶ݇ऊ , ݇ऊ〉మ  =  0 

then T is compact. 
It will be clear that the method of proof also will work for the weighted Bergman space 
ఈܣ

 . 
Note that this result is known through deep work of Suàrez, [159] in the case of ܣ when 
the operator T belongs to the Toeplitz algebra generated by ܮஶ symbols (see also [157] 
for the case of weighted Bergman spaces.) We will prove below that the Toeplitz algebra 
on ܣ  generated by ܮஶ  symbols is a subalgebra of the norm closure of ࣛ(९). In 
particular, the results provide a considerably simpler proof of the main results in [158] 
for the  ≠ 2 situation (though it should be noted that a similar simplification when  =
2 was provided in [156]). 
We provide the extension of the the Xia and Zheng result to the Bergman space on the 
unit ball ९, and in particular we prove Theorem (4.1.5). we prove Theorems (4.1.2) and 
(4.1.3) which provides an extension of the Xia and Zheng result in the case of the 
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generalized Bargmann-Fock spaces. Finally we will briefly discuss some interesting open 
problems related to these results. 
Let ߮ऊ be the Möbius map of ९ that interchanges 0 and ऊ. It is well known that 

1 − |߮ऊ(ݓ)|ଶ  =
(1 − |ऊ|ଶ)(1 − (ଶ|ݓ|

|1 − ऊ̅ݓ|ଶ , 

and as a consequence we have that       

  |〈݇ऊ , ݇௪〉మ| =
1

ฮܭఝऊ(௪)ฮ
మ

 .                                              (7) 

Using the automorphism ߮ऊ  , the pseudohyperbolic and Bergman metrics on ९  are 
defined by 

,ऊ)ߩ     :(ݓ = |߮ऊ (ݓ)|  ܽ݊݀   ߚ(ऊ, :(ݓ =
1
2

݈݃
1 + ,ऊ)ߩ (ݓ
1 − ,ऊ)ߩ  .  (ݓ

Recall that these metrics are connected by ߩ = మഁିଵ
మഁାଵ

=  and it is well-known that ߚ ℎ݊ܽݐ 
these metrics are invariant under the automorphism group of ९. We let 

,ऊ)ܦ (ݎ ∶= ݓ}  ∈ ९ ∶ ,ऊ)ߚ  (ݓ ≤ {ݎ = ݓ} ∈ ९: ,ऊ)ߩ (ݓ ≤ = ݏ  ,{ݎ ℎ݊ܽݐ 
denote the hyperbolic disc centered at ऊ  of radius r. Recall also that the orthogonal 
(Bergman) projection of  ܮଶ(९ ,  ଶ is given by the integral operatorܣ onto (ݒ݀

ܲ(݂ )(ऊ) ∶= න ௪ܭ〉 , ऊ 〉మܭ (ݓ)ݒ݀(ݓ)݂ 
 

९

 . 

Therefore, for all ݂ ∈   ଶ we haveܣ

 ݂ (ऊ) = න 〈݂, ݇௪〉మ  ݇௪(ऊ) ݀(ݓ)ߣ
 

९

.                                                      (8) 

As usual an important ingredient in our treatment will be the Rudin-Forelli estimates, see 
[151] or [156]. Recall the standard Rudin-Forelli estimates: 

  න
ऊܭ〉| , |௪〉మܭ

ା௦
ଶ

ऊ‖మܭ‖
௦ ௪‖మܭ‖

 (ݓ)ߣ݀  ≤  ܥ 
 

९

= ,ݎ)ܥ  (ݏ < ∞, ∀ऊ ∈  ९              (9) 

for all ݎ > ߢ > ݏ > 0, where ߢ = :ߢ = ଶ
୬ାଵ

 . We will use these in the following 

form: For all ିଵ
୬ାଵ

< ܽ < 1 we have that       

 න |〈݇ऊ , ݇௪〉మ|
ऊ‖మܭ‖



௪‖మܭ‖
 (ݓ)ߣ݀ ≤ ܥ

 

९

= (ܽ)ܥ  < ∞, ∋ ݖ∀  ९ .           (10) 

To see that this is true in the classical Bergman space setting, for a given ିଵ
୬ାଵ

< ܽ < 1 set  

ݎ = 1 + a and ݏ = 1 − ܽ > 0. Then ݎ + ݏ = 2, and since ܽ > ିଵ
୬ାଵ

 we have that ݎ = 1 +

a > ଶ
ାଵ

. Furthermore since 0 < ܽ < 1 we have that 0 < ݏ < 1 ≤ ଶ
ାଵ

 . By plugging this 
in (9) we obtain (10). 
We will also need the following uniform version of the Rudin-Forelli estimates.    
Lemma (4.1.6) [149]:  Let ିଵ

୬ାଵ
< ܽ < 1. Then                
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 lim
ோ→ஶ

sup
ऊ∈९

න |〈݇ऊ , ݇௪〉మ|
ऊ‖మܭ‖



௪‖మܭ‖
 (ݓ)ߣ݀  =  0

 

ୈ(ऊ,ୖ)ౙ
  .                       (11) 

Proof. Notice first that 

න |〈݇ऊ , ݇௪〉మ |
ऊ‖మܭ‖



௪‖మܭ‖
  (ݓ)ߣ݀

 

ୈ(ऊ,ୖ)ౙ
= න ห〈݇ऊ , ݇ఝऊ(௪)〉మ ห

ऊ‖మܭ‖


ฮܭఝऊ(௪)ฮ
మ

  (ݓ)ߣ݀
 

ୈ(,ୖ)ౙ

= න
|〈݇ऊ , ݇௪〉మ|

௪‖మܭ‖
ଵା  (ݓ)ߣ݀

 

ୈ(,ୖ)ౙ

= න
(ݓ)ݒ݀

|1 − − ഥऊ|(ାଵ) (1ݓ  (ଶ|ݓ| 
ାଵ

ଶ  (ଵି)
 

 

ୈ(,ୖ)ౙ

= න න
ݎ݀ߦଶିଵ݀ݎ

ห1 −  ऊ̅ߦݎห
(ାଵ)ೌ

(1 − (ଶݎ 
ାଵ

ଶ (ଵି)

 

ॺ

 ଵ

ோᇱ
 

where in the last integral ܴ = ଵାோᇱ ݈݃ 
ଵିோᇱ

 . Notice that ܴ′ → 1 when ܴ → ∞ and note that 
the last integral can be written as 

න  (ऊݎ)ି(ାଵ)ܫ
ݎଶିଵ݀ݎ

(1 − (ଶݎ 
ାଵ

ଶ  (ଵି) 

ଵ

ோᇱ
  ,     

where  

(ऊ)ܫ  ∶= න
ߦ݀

ห1 − ऊ̅ߦݎ ห
ା

 

ॺ

   

By standard estimates (see [11, p. 15] for example), we have that     

(ऊݎ)ି(ାଵ)ܫ ≲

⎩
⎪
⎨

⎪
⎧

1,   ݂݅  (݊ +  1)ܽ –  ݊ <  0

log
1

1 − ऊ|ଶݎ| , ݂݅(݊ +  1)ܽ −  ݊ =  0

1
(1 − ऊ|ଶ)( ା ଵ) ି ݎ| , ݂݅(݊ +  1)ܽ −  ݊ >  0,

 

which gives us that 

න |〈݇ऊ , ݇௪〉మ |
ऊ‖మܭ‖



௪‖మܭ‖
 (ݓ)ߣ݀

 

ୈ(ऊ,ୖ)ౙ

≲

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ න

ଶିଵݎ

(1 − (ଶݎ 
ାଵ

ଶ (ଵି)
,ݎ݀ ݂݅(݊ +  1)ܽ −  ݊ <  0

 ଵ

ோᇱ

න ݈݃
1

1 − ଶݎ 
ଶିଵݎ

(1 − (ଶݎ 
ଵ
ଶ

,ݎ݀ ݂݅(݊ +  1)ܽ −  ݊ =  0
 ଵ

ோᇱ

න
ଶିଵݎ

(1 − ଶ)(ାଵ) ି  ାାଵݎ 
ଶ (ଵି)

 ଵ

ோᇱ
,ݎ݀ ݂݅(݊ +  1)ܽ −  ݊ >  0
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Since ܽ < 1, it is easy to see that all the functions appearing on the right hand side are 
integrable on (0, 1). Therefore, we obtain the desired conclusion by taking the limit as 
ܴ → ∞ (which is the same as ܴ′ → 1). 
First, we want to make sure that the class of weakly localized operators is large enough 
to contain some interesting operators. This is indeed true since every Toeplitz operator 
with a bounded symbol belongs to this class. 
Proposition (4.1.7) [149]: Each Toeplitz operator ௨ܶ on ܣ with a bounded symbol ݑ(ऊ) 
is in ࣛ(९) for any 1 <  < ∞. 
Proof. Clearly it is enough to show that 

ݑݏ
ऊ∈९

න |〈 ௨ܶ ݇ऊ , ݇௪〉మ |
ऊ‖మܭ‖



௪‖మܭ‖
 (ݓ)ߣ݀

 

ୈ(ऊ,୰)ౙ

→ 0 , ݑݏ
ऊ∈९

න |〈 ௨ܶഥ ݇ऊ , ݇௪〉మ  |
ऊ‖మܭ‖



௪‖మܭ‖
 (ݓ)ߣ݀ → 0

 

ୈ(ऊ,୰)ౙ
 

as ݎ →  ∞ for all ݊ − 1 <  ܽ <  ∞By definition            
          

௨ܶ ݇ऊ(ݓ) = (ݓ)(ऊ݇ݑ)ܲ  = න ௫ܭ〉 , (ݔ)ݒ݀ (ݔ)ऊ݇(ݔ)ݑ௪〉మܭ
 

९

. 

Therefore,                        

|〈 ௨ܶ ݇ऊ , ݇௪〉మ | ≤ න |〈݇௪ , ݇௫〉మ| |(ݔ)ݑ| |〈݇ऊ , ݇௫〉మ| ݀(ݔ)ߣ
 

९

≤ ஶ‖ݑ‖ න |〈݇௪ , ݇௫〉ଶ 〈݇௫, ݇ऊ 〉ଶ| ݀(ݔ)ߣ
 

९

. 

Now for ऊ, x ∈ ९୬, set  

(ݔ)ऊܫ ∶=  |〈݇௫, ݇ऊ〉ଶ| න |〈݇௪, ݇௫〉మ|  
ऊ‖మܭ‖



௪‖మܭ‖
 (ݓ)ߣ݀ 

 

ୈ(ऊ,୰)ౙ
 

First note that 

න |〈 ௨ܶ ݇ऊ, ݇௪〉మ |
ऊ‖మܭ‖



௪‖మܭ‖
 (ݓ)ߣ݀

 

ୈ(ऊ,୰)ౙ

≤ ஶ‖ݑ‖ න න |〈݇௪ , ݇௫〉ଶ 〈݇௫ , ݇ऊ 〉ଶ| ݀(ݔ)ߣ
 

९

 

ୈ(ऊ,୰)ౙ

ऊ‖మܭ‖


௪‖మܭ‖
 (ݓ)ߣ݀

= ஶ‖ݑ‖ න න |〈݇௪ , ݇௫〉ଶ  
ऊ‖మܭ‖



௪‖మܭ‖
 ,௫݇〉(ݓ)ߣ݀ ݇ऊ 〉ଶ| ݀(ݔ)ߣ

 

ୈ(ऊ,୰)ౙ

 

९

= ஶ‖ݑ‖ න (ݔ)ߣ݀ (ݔ)ऊܫ
 

९

= ஶ‖ݑ‖ න න + න  
 

ୈ(ऊ,୰ଶ)ౙ

 

ୈ(ऊ,୰ଶ)
(ݔ)ߣ݀ (ݔ)ऊܫ

 

९

 

To estimate the first integral notice that for x ∈ D(ऊ, ୰
ଶ
)we have D(ऊ, r)ୡ ⊂  D ቀx, ୰

ଶ
ቁ

ୡ
 . 

Therefore, the first integral is no greater than 

න න  |〈k୵, k୶〉ଶ|
‖Kऊ‖మ

ୟ

‖K୵‖మ
ୟ dλ(w) |〈k୶, kऊ 〉ଶ|dλ(x).

 

ୈ(୶,୰ଶ)ౙ

 

ୈ(ऊ,୰ଶ)
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It is easy to see that the last expression is no greater than C(a)A ቀ୰
ଶ
ቁ , where 

 A(r)  = sup
ऊ∈९

න  |〈kऊ , k୵〉ଶ|
‖Kऊ‖మ

ୟ

‖K୵‖మ
ୟ dλ(w) .

 

ୈ(ऊ,୰)ౙ
   

and C(a) is just the bound from the standard Rudin-Forelli estimates (10). 
Estimating the second integral is simpler. The second integral is clearly no greater than 

න න  |〈݇௪ , ݇௫〉ଶ|
ऊ‖మܭ‖



௪‖మܭ‖
 ௫݇〉| (ݓ)ߣ݀ , ݇ऊ  〉ଶ|݀(ݔ)ߣ.

 

९

 

ୈ(ऊ,୰ଶ)
 

By the standard Rudin-Forelli estimates (10) the inner integral is no greater than 

(ܽ)ܥ
ऊ‖మܭ‖



௪‖మܭ‖
   , 

where the constant ܥ(ܽ) is independent of ऊ and ݔ. So, the whole integral is bounded by 
ܣ(ܽ) ቀ୰

ଶ
ቁ . Therefore 

sup
ऊ∈९

න  |〈 ௨ܶ ݇ऊ , ݇௪〉మ |
ऊ‖ܭ‖

௪‖ܭ‖ (ݓ)ߣ݀
 

ୈ(ऊ,୰)ౙ
≤ ஶ‖ݑ‖ ቆܣ(ܽ)ܥ ቀ

r
2

ቁ + ܣ(ܽ)ܥ  ቀ
r
2

ቁቇ. 

Applying the uniform Rudin-Forelli estimates (11) in Lemma (4.1.6) completes the 
proof since 2ݑ‖(ܽ)ܥ‖ஶܣ ቀ୰

ଶ
ቁ → → ݎ ݏܽ 0   ∞.  

We next show that the class of weakly localized operators forms a ∗-algebra. 
Proposition (4.1.8) [149]: If 1 <  < ∞ then ࣛ(९) is an algebra. Furthermore, 
ࣛଶ(९) is a ∗−algebra.     
Proof. It is trivial that ܶ ∈ ࣛଶ(९) implies ܶ∗ ∈ ࣛଶ(९). It is also easy to see that any 
linear combination of two operators in ࣛ(९) must be also in ࣛ(९). It remains to 
prove that if ܶ, ܵ ∈ ࣛ(९), then ܶ ܵ ∈ ࣛ(९). To that end, we have that 

න |〈ܶܵ݇ऊ , ݇௪〉ଶ|
ऊ‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

௪‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

(ݓ)ߣ݀
 

ୈ(ऊ,୰)ౙ

= න |〈ܵ݇ऊ , ܶ∗݇௪〉ଶ|
ऊ‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

௪‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

(ݓ)ߣ݀
 

ୈ(ऊ,୰)ౙ

= න ቤන 〈ܵ݇ऊ , k୶〉ଶ〈 k୶ , ܶ∗݇௪〉ଶ݀(ݔ)ߣ
 

९

ቤ
ऊ‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

௪‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

(ݓ)ߣ݀
 

ୈ(ऊ,୰)ౙ

≤ න න |〈 ݇ऊ , ܶ∗݇௪〉ଶ|
(ݓ)ߣ݀

௪‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

|〈ܵ݇ऊ , k୶〉ଶ|‖ܭऊ‖మ

ଵି ଶఋ
ᇱ(ାଵ)݀(ݔ)ߣ

 

ୈ(ऊ,୰)ౙ

 

९
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Proceeding exactly as in the proof of the previous Proposition and using the conditions 
following from ܶ, ܵ ∈ ࣛ(९) in the place of the local Rudin-Forelli estimates (11) (and 
replacing a with 1 − ଶఋ

ᇱ(ାଵ)
 we obtain that 

lim
→ஶ

න  |〈ܶܵ݇ऊ , ݇௪〉మ |
ऊ‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

௪‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

(ݓ)ߣ݀
 

ୈ(ऊ,୰)ౙ
(ݓ)ߣ݀  =  0. 

The corresponding condition for (ܶܵ)∗ is proved in exactly the same way.  
We next show that every weakly localized operator can be approximated by infinite sums 
of well localized pieces. To state this property we need to recall the following proposition 
proved in [156].  
Proposition (4.1.9) [149]: There exists an integer ܰ > 0 such that for any ݎ > 0 there is 
a covering ℱ = {ℱ} of ९ by disjoint Borel sets satisfying 

(a) every point of ९ belongs to at most N of the sets ܩ: = ݖ} ∈ ९: ݀(ऊ, ℱ) ≤  ,{ݎ
(b) ݀ ݅ܽ݉ௗ  ℱ ≤  .for every j ݎ2

We use this to prove the following proposition, which is similar to what appears in [6], 
but exploits condition (6). 
Proposition (4.1.10) [149]: Let 1 <  < ∞ and let T be in the norm closure of ࣛ(९). 
Then for every ߳ > 0 there exists ݎ > 0 such that for the covering ℱ = {ℱ} (associated 
to r) from Proposition (4.1.9), we have: 

ቯܶܲ −  ଵℱೕܯ
ଵಸೕܩ1ܯܲܶ



ቯ

→(९,ௗ௩)

< ߳. 

Proof.  By Proposition (4.1.8) in conjunction with Proposition (4.1.9) and a simple 
approximation argument, we may assume that ܶ ∈ ࣛ(९). Now define 
 ܵ = ܶܲ − ∑ ଵℱೕܯ

ଵಸೕܩ1ܯܲܶ . 
Given ߳ choose r large enough so that               

sup
ऊ∈९

න  |〈ܶ݇ऊ , ݇௪〉మ |
ऊ‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

௪‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

(ݓ)ߣ݀
 

ୈ(ऊ,୰)ౙ
< ߳ 

and       1−    2δ  

sup
ऊ∈९

න  |〈ܶ∗݇ऊ , ݇௪〉మ |
ऊ‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

௪‖మܭ‖

ଵି ଶఋ
ᇱ(ାଵ)

(ݓ)ߣ݀
 

ୈ(ऊ,୰)ౙ
< ߳ 

Now for any ऊ ∈ ९ let ∈ బܨ  , so that               
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|݂ܵ(ऊ)| ≤ න  1ிೕ(ऊ) 1
ೕீ
(ݓ)|〈ܶ∗ܭऊ , (ݓ)ݒ݀ |(ݓ)݂| |௪〉మܭ



 

९

= න , ऊܭ ∗ܶ〉| (ݓ)ݒ݀ |(ݓ)݂| |௪〉మܭ
 

ೕீబ


≤ න , ऊܭ ∗ܶ〉| (ݓ)ݒ݀ |(ݓ)݂| |௪〉మܭ
 

ୈ(ऊ,୰)ౙ
. 

To finish the proof, we will estimate the operator norm of the integral operator 
on ܮ(९ , , ऊܭ ∗ܶ〉|(ݓ)with kernel 1(ऊ,) (ݒ݀  .௪〉మ| by using the classical Schur testܭ

To that end, let ℎ(ݓ) = ‖K୵‖మ

మഃ
ᇲ(శభ)  so that  

න 1(ऊ,)(ݓ)|〈ܶ∗ ܭऊ , (ݓ)ݒᇲ݀(ݓ)௪〉మ|ℎܭ
 

९

= න , ऊܭ ∗ܶ〉| ௪〉మ|‖K୵‖మܭ

ଶఋ
(ାଵ)݀(ݓ)ݒ

 

(ऊ,)

= න |〈ܶ∗݇ऊ , ݇௪〉మ|‖Kऊ‖‖K୵‖మ

ଶఋ
(ାଵ) ିଵ

(ݓ)ߣ݀
 

(ऊ,)
≤ ߳‖Kऊ‖మ

ଶఋ
(ାଵ) 

= ߳ℎ(ऊ)ᇱ 
Similarly, we have that 

න 1(ऊ,) , ऊܭ ∗ܶ〉|(ݓ) (ऊ)ݒ௪〉మ|ℎ(ऊ)݀ܭ
 

९

≤  ߳ℎ(ݓ)
 

which completes the proof. 
It should be noted that a very similar Schur test argument actually proves that condition 
(5) implies that T is bounded on ܣ. 
We can now prove one of our main results whose proof uses the ideas in [6, Theorem 4.3] 
and [155, Lemma 5.3]. First, for any ݓ ∈ ९  and 1 <  < ∞ , let ݇௪

() be the “p - 
normalized reproducing kernel” defined by 

݇௪
() =

,ऊ)ܭ (ݓ

‖K௪‖
ଶ
୮ᇱ

. 

Clearly we have that ݇௪
(ଶ) = ݇௪  and an easy computation tells us that ቛ݇௪

()ቛ


≈ 1 
(where obviously we have equality when  = 2). 
Theorem (4.1.11) [149]:  Let 1 <  < ∞ and let T be in the norm closure of ࣛ(९). 
Then there exists ݎ, ܥ > 0 (both depending on T ) such that 

‖ܶ‖  ≤ ݑݏ lim ܥ 
|ऊ|→ଵି

ݑݏ
௪∈(ऊ,)

| 〈ܶ݇ऊ
(), ݇௪

(ᇲ)〉మ |  

Where ‖ܶ‖is the essential norm of  T as a bounded operator on ܣ. 
Proof. Since ܲ: (९ܮ , (ݒ݀ →   is a bounded projection, it is enough to estimate theܣ
essential norm of ܶ = ܶܲ as an operator on from ܣ to ܮ(९ ,  .(ݒ݀
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Clearly if ‖ܶܲ‖ = 0 then there is nothing to prove, so assume that ‖ܶܲ‖ > 0. By 
Proposition (4.1.10) there exists ݎ > 0 such that for the covering ℱ =  associated to {ܨ}
r (from Proposition (4.1.9)) 

ቯܶܲ −  ଵಷೕܯ
ଵಸೕܯ ܲ ܶ



ቯ

→(९ ,ௗ௩)

<
1
2

‖ܶܲ‖. 

Since ∑ ଵಷೕܯ
ଵಸೕழܯ ܲ ܶ  is compact for every ݉ ∈ ℕ  we have that ‖ܶܲ‖  (as an 

operator from ܣ to ܮ(९ ,   :can be estimated in the following way ((ݒ݀

‖ܶܲ‖ ≤  ቯܶܲ −  ଵಷೕܯ
ଵಸೕܯ ܲ ܶ

ழ

ቯ

→(९ ,ௗ௩)

≤  ቯܶܲ −  ଵಷೕܯ
ଵಸೕܯ ܲ ܶ



ቯ

→(९ ,ௗ௩)

+ ‖ ܶ‖→(९ ,ௗ௩)

≤
1
2

‖ܶܲ‖ + ‖ ܶ‖→(९ ,ௗ௩), 
Where 

ܶ =  ଵಷೕܯ
ଵಸೕܯ ܲ ܶ

ஹ

. 

We will complete the proof by showing that there exists ܥ > 0 where 
 

limݑݏ
→ஶ

‖ ܶ‖→(९ ,ௗ௩) ≲ ݑݏ lim ܥ
|ऊ|→ଵష

ݑݏ
௪∈(ऊ,)

| 〈ܶ݇ऊ
(), ݇௪

(ᇲ)〉మ | +
1
4

‖ܶܲ‖. 

If ݂ ∈             is arbitrary of norm no greater than 1, thenܣ
‖ ݂ܶ‖

  =  ቛܯଵಷೕ
ଵಸೕܯ ܲ ܶ

݂ቛ




ஹ

 

= 
ቛܯଵಷೕ

ଵಸೕܯ ܲ ܶ
݂ቛ





ቛܯଵಸೕ
݂ቛ




ஹ

ቛܯଵಷೕ
ଵಸೕܯ ܲ ܶ

݂ቛ



≤  ܰ ݑݏ

ஹ
ቛܯଵಷೕ

ܶ ݈ቛ



    

where              

         ݈ ∶=
 ெభಸೕ



ฯெభಸೕ
ฯ

ಲ

. 

Therefore, we have that                        

‖ ܶ‖→(९,ௗ௩) ≲ ݑݏ
ஹ

sup
‖‖ಲ ஸଵ

൞ቛܯଵಷೕ
ܶ ݈ቛ


: ݈ =

ଵಸೕܯ ܲ
 ݂

ቛܯଵಸೕ
݂ቛ



ൢ  

and hence                 
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limݑݏ
→ஶ

‖ ܶ‖→(९,ௗ௩) ≲ limsup
୨→ஶ

sup
‖‖ಲ ஸଵ

൞ቛܯଵಷೕ
ܶ ݈ቛ


: ݈ =

ଵಸೕܯ ܲ
 ݂

ቛܯଵಸೕ
݂ቛ



ൢ 

Now pick a sequence { ݂} in ܣ with  ‖݂‖ ≤ 1 such that           

limsup
୨→ஶ

sup
‖‖ஸଵ

൞ቛܯଵಷೕ
ܶ ݃ቛ


: ݃ =

ଵಸೕܯ ܲ
 ݂

ቛܯଵಸೕ
݂ቛ



ൢ −
1
4

‖ܶܲ‖  ≤  limݑݏ
→ஶ

ቛܯଵಷೕ
ܶ ݃ቛ


 , 

where                 

݃ =
ଵಸೕܯ ܲ

 ݂

ቛܯଵಸೕ ݂ቛ


=
∫ 〈݂, ݇௪

(ᇱ)〉మ ݇௪
()݀(ݓ)ߣ 

ீೕ

ቀ∫ ቚ〈݂, ݇௨
(ᇱ)〉మቚ


 (ݓ)ߣ݀

ீೕ
ቁ

ଵ


= න ܽ(ݓ)݇௪
()݀(ݓ)ߣ

 

ீೕ

   

where                      

ܽ(ݓ) =
〈݂, ݇௪

(ᇲ)〉మ

ቀ∫ ቚ〈݂, ݇௨
(ᇱ)〉మቚ


 (ݓ)ߣ݀

ீೕ
ቁ

ଵ


. 

Finally, by the reproducing property and H¨older’s inequality, we have that 

limsup
୨→ஶ

ቛܯଵಷೕ
ܶ ݃ቛ




 ≤  limsup

୨→ஶ
න ൭න ห ܽ(ݓ)ห ቚT ݇௪

()(ऊ)ቚ dλ(w)
 

ୋౠ

൱
 

ౠ

dv(ऊ) 

                          =  limsup
୨→ஶ

න ൭න ห ܽ(ݓ)ห ቚ〈T ݇௪
(), ݇ऊ

(ᇲ)〉మቚ dλ(w)
 

ୋౠ

൱
 

ౠ

 (ऊ)ߣ݀ 

         ≤  lim ݑݏ
|ऊ|→ଵష

ݑݏ
௪∈(ऊ,ଷ)

ቚ〈ܶ݇ऊ
(), ݇௪

(ᇲ)〉మቚ


൭sup


(ܩ)ߣ න | ܽ(ݓ)| ݀(ݓ)ߣ
 

ீೕ

൱  

≤  C(r) lim ݑݏ
|ऊ|→ଵష

ݑݏ
௪∈(ऊ,ଷ)

ቚ〈ܶ݇ऊ
(), ݇௪

(ᇲ)〉మቚ


 

since by Proposition (4.1.9) we have that ऊ ∈ ܨ  and ݓ ∈ ܩ  implies that ݀(ऊ, (ݓ ≤
(ܩ)ߣ and ݎ3  ≤  .݆ is independent of (ݎ)ܥ where (ݎ)ܥ
We will finish off with a proof of Theorem (4.1.5). First, for ऊ ∈ ९, define 

ऊܷ
()݂(ݓ) ∶=  ݂(߮ऊ(ݓ))(݇ऊ(ݓ))

ଶ
  

which via a simple change of variables argument is clearly an isometry on ܣ. As was 
shown in [9], an easy computation tells us that there exists a unimodular function Φ(·,·) 
on ९ × ९ where 

                                       ቀ ऊܷ
()ቁ

∗
݇௪

(ᇱ) = Φ(ऊ, థऊ(௪)݇(ݓ
(ᇲ) .                                                          (12) 

With the help of the operators ऊܷ
(), we will prove the following general result which in 

conjunction with Theorem (4.1.11) proves Theorem (4.1.5). Note that proof is similar to 
the proof of [155, Proposition 1.4]. 
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Proposition (4.1.12) [149]: If T is any bounded operator on ܣ for 1 <  <  ∞ then the 
following are equivalent 

(a) lim
|ऊ|→ଵష

ݑݏ
௪∈(ऊ,)

ቚ〈ܶ ݇ऊ
(), ݇௪

(ᇲ)〉మቚ  = ݎ ݈݈ܽ ݎ݂      0 > 0, 

(b) lim
|ऊ|→ଵష

ݑݏ
௪∈(ऊ,)

ቚ〈ܶ ݇ऊ
(), ݇௪

(ᇲ)〉మቚ  = < ݎ ݁݉ݏ ݎ݂     0  0, 

(c) lim
|ऊ|→ଵష

ݑݏ
௪∈(ऊ,)

|〈ܶ ݇ऊ , ݇ऊ〉మ | =  0. 

Proof. Trivially we have that (ܽ) ⇒ (ܾ), and the fact that (ܾ) ⇒ (ܿ) follows by definition 
and setting ऊ = (ܿ) We will complete the proof by showing that .ݓ  ⇒ (ܽ). 
Assume to the contrary that |〈T kऊ , kऊ〉మ| vanishes as |ऊ| → 1ି but that 

lim
|ऊ|→ଵష

sup
୵∈ୈ(ऊ,୰)

ቚ〈T kऊ
(୮), k୵

(୮ᇱ)〉మቚ ≠ 0 

for some fixed ݎ > 0. Thus, there exists sequences {ऊ}, and some 0 {ݓ} < ݎ < 1 
where lim

→ஶ
|ऊ| = 1 and |ݓ| ≤ ݉  for anyݎ  ∈ ℕ, and where 

                                     limsup
୫→ஶ

ቚ〈T kऊ
(୮), kऊ(ೢ)

(୮ᇱ) 〉మቚ > ϵ                                     (13) 

for some ߳ > 0. Furthermore, passing to a subsequence if necessary, we may assume that 
lim

→ஶ
ݓ = ∋ ݓ  ९ . Note that since |ݓ| ≤ ݎ < 1  for all m, we trivially have 

lim
୫→ஶ

݇௪
(ᇱ) = ݇୵

(ᇱ) where the convergence is in the ܣᇱ norm. 
Let ℬ(ܣ) be the space of bounded operators on ܣ. Since the unit ball in ℬ(ܣ) is WOT 
compact, we can (passing to another subsequence if necessary) assume that 

ܶ  =  ܹܱܶ −  lim
→ஶ

ܷऊ
()ܶ ቀܷऊ

(ᇱ)ቁ
∗

 . 
Thus, we have that 

limsup
୫→ஶ

ቚ〈T kऊ

(୮), kऊ(ೢ)

(୮ᇲ) 〉మቚ  =  limsup
୫→ஶ

ቚ〈ܷऊ

()ܶ ቀ ऊܷ

(ᇲ)ቁ
∗

k
(୮), k௪

(୮ᇲ)〉మቚ 

                                                    = limsup
୫→ஶ

ቚ〈 ऊܷ
()ܶ ቀ ऊܷ

(ᇱ)ቁ
∗

k
(୮), k௪

(୮ᇱ)〉మቚ 

      = ห〈 ܶk, k୵〉మห. 
However, for any ऊ ∈ ९                    

ቚ〈 ܶ݇
(), ݇ऊ

(ᇱ)〉ቚ = lim
→ஶ

ቚ〈 ऊܷ
()ܶ ቀܷऊ

(ᇱ)ቁ
∗

kऊ
(୮), kऊ

(୮ᇱ)〉ቚ ≈ lim
→ஶ

ቚ〈ܶ ݇ऊ(ऊ)
() , ݇ऊ(ऊ)

(ᇱ) 〉ቚ
= 0 

since by assumption |〈T kऊ , kऊ〉| vanishes as |ऊ| → 1ି . Thus, since the Berezin 
transform is injective on ܣ, we get that ܶ = 0, which contradicts (13) and completes the 
proof.  
we will prove Theorems (4.1.2) and (4.1.3). Some parts of the proofs are essentially 
identical to proof of Theorem (4.1.5) and so we will we only outline the necessary 
modifications. 

,ऊ)ܦ (ݎ ∶= ݓ}  ∈ ℂ ∶ ݓ| − ऊ| <  {ݎ
denote the standard Euclidean disc centered at the point ऊ of radius ݎ > 0. For ऊ ∈ ℂ, 
we define 
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ऊܷ݂ (ݓ) ∶=  ݂ (ऊ −  ,(ݓ)ऊ݇(ݓ 
which via a simple change of variables argument is clearly an isometry on ℱ (though 
note in general that it is not clear whether ऊܷ  even maps ℱథ

 into itself). Recall also that 
the orthogonal projection of ܮଶ(ℂ, ݁ିଶథ݀ݒ) onto ℱథ

ଶ is given by the integral operator  

ܲ (݂ )(ऊ) ∶= න ௪ܭ〉 , ऊ〉ℱഝܭ
మ ݒ݀ଶథ(௪)ି݁ (ݓ) ݂

 

ℂ
. 

Therefore, for all ݂ ∈ ℱథ
 we have     

݂(ऊ) = න 〈݂, ݇௪෪ 〉ℱഝ
మ  ݇௪෪ (ऊ)݀(ݓ)ݒ

 

ℂ
                                               (14) 

where ݇௪෪ (ऊ) ∶= ,ऊ)ܭ| ௪(ऊ)݁ିథ(௪). Note thatܭ ऊ)| ≈  ݁ଶథ(ऊ) (see [158]) so that  
 ห݇௪෪ (ऊ)ห ≈ |݇௪(ऊ)|.                                                            (15) 

The following analog of Lemma (4.1.6) is simpler to prove in this case. 
Lemma (4.1.13) [149]: 

  lim
ோ→ஶ

ݑݏ
ऊ∈ℂ

න ቚ〈݇ऊ , ݇௪〉ℱഝ
మ ቚ (ݓ)ݒ݀ 

 

(ऊ,ோ)
= 0.                       (16) 

To prove this, simply note that there exists ߳ > 0 such that ቚ〈݇ऊ , ݇௪〉ℱഝ
మ ቚ ≤  ݁ିఢ|ऊି௪| for 

all ऊ, ݓ ∈ ℂ. The proof of this is then immediate since 

න ቚ〈݇ऊ , ݇௪〉ℱഝ
మ ቚ (ݓ)ݒ݀ 

 

(ऊ,ோ)
≤ න ݁ିఢ|௪|ௗ௩(௪)

 

(,ோ)
 

which clearly goes to zero as ܴ → ∞. 
As in the Bergman case, ࣛథ(ℂ) contains all Toeplitz operators with bounded symbols. 
Also, as was stated in the introduction, any ܶ ∈ ࣛథ(ℂ) is automatically bounded on ℱథ

 
for all 1 ≤  ≤ ∞. To prove this, note that it is enough to prove that T is bounded on ℱథ

ଵ  
and ℱథ

ஶ  by complex interpolation (see [155]). To that end, we only prove that T is 
bounded on ℱథ

ଵ  since the proof that T is bounded on ℱథ
ஶ is similar. If ܶ ∈ ࣛథ(ℂ) and 

݂ ∈ ℱథ
ଵ , then the reproducing property gives us that 

|Tf(ऊ)| eିம(ऊ) ≈  ቚ〈f, T∗kऊ〉ℱದ
మ ቚ ≲ න |f(u)| ቚ〈T∗kऊ , k୳〉ℱದ

మ ቚ eିம(୳)
 

ℂ
dv(u). 

Thus, by Fubini’s theorem, we have that     

‖݂ܶ‖ℱഝ
భ  ≤ න |f(u)| ቆන ቚ〈ܶ∗݇ऊ , ݇௨〉ℱದ

మ ቚ (ऊ)ݒ݀
 

ℂ
ቇ  eିம(୳) ݀(ݑ)ݒ

 

ℂ
 ≲  ‖݂‖ℱഝ

భ  . 

In addition, ࣛథ(ℂ) satisfies the following two properties: 
Proposition (4.1.14) [149]: Each Toeplitz operator ௨ܶ  on ℱథ

  with a bounded symbol 
 .is weakly localized (ऊ)ݑ
Proof.  Since ቚ〈݇ऊ , ݇௪〉ℱഝ

మ ቚ ≤  ݁ିఢ|ऊି௪| for some ߳ > 0 we have that 
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ቚ〈 ௨ܶ݇ऊ , ݇௪〉ℱഝ
మ ቚ  ≲ ಮ‖ݑ‖ න ቚ〈݇ऊ , ݇௫〉ℱഝ

మ ቚ ቚ〈݇௫, ݇௪〉ℱഝ
మ ቚ

 

ℂ
ݔ݀

≲ ಮ‖ݑ‖ න ݁ିఢ|ऊି௫|݁ିఢ|௫ି௪|
 

ℂ
 .ݔ݀ 

Now if |ऊ − |ݓ  ≥ then by the triangle inequality we have that either |ऊ ݎ − |ݔ  ≥  or 2/ݎ 
ݔ| − |ݓ ≥  so that 2/ݎ

න ቚ〈 ௨ܶ݇ऊ , ݇௪〉ℱഝ
మ ቚ ݓ݀

 

(ऊ,)
≲  ݁ିఢ

ଶ ಮ‖ݑ‖ න න ݁ିఢ
ଶ|ऊି௫|ିఢ

ଶ|௫ି௪|
 

ℂ

 

(ऊ,)
 ݓ݀ ݔ݀ 

≲  ݁ିఢ
ଶ ಮ‖ݑ‖  

Note that ௨ܶ is suffciently localized even in the sense of Xia and Zheng by [10, Proposition 
4.1]. Also note that a slight variation of the above argument shows that the Toeplitz operator 

µܶ ∈ ࣛథ(ℂ) if µ is a positive Fock-Carleson measure on ℂ (see [158]). 
Proposition (4.1.15) [149]: ࣛథ(ℂ) forms a ∗-algebra. 
We will omit the proof of this proposition since it is proved in exactly the same way as it is 
in the Bergman space case (where the only difference is that one uses (14) in conjunction 
with (15) instead of (8)). 
We next prove that operators in the norm closure of ࣛథ(ℂ) can also be approximated 
by infinite sums of well localized pieces. To state this property we need to recall the 
following proposition proved in [156] 
Proposition (4.1.16) [149]: There exists an integer ܰ > 0 such that for any ݎ > 0 there 
is a covering ℱ =  of ℂ by disjoint Borel sets satisfying {ܨ}

(a) every point of  ℂ belongs to at most N of the sets ܩ ∶=  {ऊ ∈ ℂ ∶ ݀(ऊ, (ܨ ≤  ,{ݎ
(b) ݀ ݅ܽ݉ௗ ܨ  ≤  .for every j ݎ2 

We use this to prove the following proposition, which is similar to what appears in [156], 
but exploits condition (4) (and is proved in a manner that is similar to the proof of [155, 
Lemma 5.2]). Note that for the rest, ܮథ

  will refer to the space of measurable functions f 
on ℂ such that ݂ ݁ିథ ∈ ,(ℂܮ   .(ݒ݀
Proposition (4.1.17) [149]: Let 1 <  < ∞ and let T be in the norm closure of ࣛథ(ℂ). 
Then for every ߳ > 0 there exists ݎ > 0 such that for the covering ℱ =  associated) {ܨ}
to r) from Proposition (4.1.16) 

ቯܶܲ −  ଵಷೕܯ
ଵಸೕܯܲܶ



ቯ

ℱഝ
→ഝ



< ߳. 

Proof. Again by an easy approximation argument we can assume that T ∈ ࣛம(ℂ୬). Fur-
thermore, we first prove the theorem for  = 2. 
Define 

ܵ = ܶܲ −  ଵಷೕܯ
ଵಸೕܯܲܶ



. 

Given ߳ choose r large enough so that      
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ݑݏ
ऊ∈ℂ

න ቚ〈ܶ∗݇ऊ , ݇௪〉ℱഝ
మ ቚ (ݓ)ݒ݀

 

(ऊ,)
< ݑݏ    ݀݊ܽ   ߳

ऊ∈ℂ
න ቚ〈ܶ݇ऊ , ݇௪〉ℱഝ

మ ቚ (ݓ)ݒ݀
 

(ऊ,)
< ߳. 

Now for any ऊ ∈ ࣛம(ℂ୬), pick ݆ such that ऊ ∈ బܨ . Then we have that 

|݂ܵ(ऊ)| ≤ න  1ிೕ(ऊ)1
ೕீ
 , ऊܭ∗ܶ〉ቚ  (ݓ)  ௪〉ℱഝܭ

మ ቚ (ݓ)ݒ݀ ଶథ(௪)ି݁ |(ݓ)݂|


 

ℂ
 

= න ቚ〈ܶ∗ܭऊ , ௪〉ℱഝܭ
మ ቚ (ݓ)ݒ݀ ଶథ(௪)ି݁ |(ݓ)݂|

 

ೕீబ


 

≤ න ቚ〈ܶ∗ܭऊ , ௪〉ℱഝܭ
మ ቚ (ݓ)ݒ݀ ଶథ(௪)ି݁ |(ݓ)݂|

 

(ऊ,)
. 

To finish the proof when  = 2, we will estimate the operator norm of the integral operator  
on ܮథ

ଶ  with kernel 1(ऊ,)(ݓ) ቚ〈ܶ∗ܭऊ , ௪〉ℱഝܭ
మ ቚ using the classical Schur test. To that end, let 

ℎ(ऊ) = ݁
భ
మథ(ऊ) so that  

න 1(ऊ,)(ݓ) ቚ〈ܶ∗ܭऊ , ௪〉ℱഝܭ
మ ቚ ℎ(ݓ)ଶ݁ିଶథ(௪) ݀(ݓ)ݒ

 

ℂ
 

≈ ℎ(ऊ)ଶ න ቚ〈ܶ∗݇ऊ  , ݇௪〉ℱഝ
మ ቚ  (ݓ)ݒ݀ 

 

(ऊ,)
≲  ߳ℎ(ऊ)ଶ . 

 
Similarly, we have that     

න 1(ऊ,)(ݓ) ቚ〈ܶ∗ܭऊ , ௪〉ℱഝܭ
మ ቚ ℎ(ݓ)ଶ݁ିଶథ(௪) ݀ݒ(ऊ)

 

ℂ
 ≲  ߳ℎ(ݓ)ଶ 

which finishes the proof when  = 2. 
Now assume that 1 <  < 2. Since T is bounded on ℱథ

ଵ , we easily get that 

ቯ ଵಷೕܯ
ଵಸೕܯܲܶ



ቯ

ℱഝ
భ →ഝ

భ

< ∞ 

which by complex interpolation proves the proposition when 1 <  < 2. Finally when 
2 <  < ∞, one can similarly get a trivial ܮథ

ଵ → ℱథ
ଵ  operator norm bound on 

ቌ ଵಷೕܯ
ଵಸೕܯܲܶ



ቍ

∗

=  ଵಸೕܯ ܲ
ଵಷೕܯܲ∗ܶ



 

since T∗ is bounded on ℱம
ଵ. Since (ℱம

୮)∗ =  ℱம
୯ when 1 < p < ∞ where q is the conjugate 

exponent of p (see [158]), duality and complex interpolation now proves the proposition 
when 2 < p < ∞. 
Because of (15), the proof of the next result is basically the same as the proof of Theorem 
(4.1.11) . 
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Theorem (4.1.18) [149]: Let 1 <  < ∞ and let T be in the norm closure of ࣛథ(ℂ). Then 
there exists r, ܥ > 0 (both depending on T ) such that 

‖ܶ‖  ≤ ݑݏlim ܥ
|ऊ|→ஶ

ݑݏ
௪∈(ऊ,)

ቚ〈ܶ ݇ऊ, ݇௪〉ℱഝ
మ ቚ        

Where ‖ܶ‖ is the essential norm of T as a bounded operator on ℱథ
. 

As was stated in the beginning, the operator Uऊ  for ऊ ∈ ℂ୬  is an isometry on ℱ୮ . 
Furthermore, since a direct calculation shows that 

| ऊܷ  ݇௪(ݑ)|  ≈  |݇ऊି௪(ݑ)| , 
the proof of Theorem (4.1.3) now follows immediately by combining Theorem (4.1.18) with 
[155, Proposition 1.4]. 
The reader should clearly notice that the proof of Theorem (4.1.11) did not in any way use 
the existence of a family of “translation” operators ቄ ऊܷ

()ቅ
ऊ∈ℂ

 on ܣ that satisfies 

                                                  ቚቀ ऊܷ
()ቁ

∗
݇௪

(ᇱ)ቚ

≈  ቚ݇థऊ

(ᇱ)ቚ                                                                                          (17) 
(and moreover, one can make a similar remark regarding Theorem (4.1.18)). In particular, 
a trivial application of Hölder’s inequality in conjunction with the above remark implies that 
one can prove the so called “reproducing kernel thesis” for operators in the norm closure of 
ࣛథ(९) (respectively, ࣛథ(ℂ) without the use of any “translation” operators. It would 
therefore be interesting to know if our results can be proved for the weighted Bergman 
spaces on the ball that were considered in [153] for example. Moreover, it would be 
interesting to know whether one can use the ideas to modify the results in [156] to include 
spaces where condition A.5 on the space of holomorphic functions at hand is not necessarily 
true (note that it is precisely this condition that allows one to easily cook up “translation 
operators”). 
It would also be very interesting to know whether “translation” operators are in fact crucial 
for proving Proposition (4.1.12) and its generalized Bargmann-Fock space analog (again see 
[155, Proposition 1.4]). More generally, it would be fascinating to know precisely how these 
translation operators fit into the “Berezin transform implies compactness”. 
As was noted earlier, the techniques in [153] are essentially frame theoretic, and therefore 
are rather different than the techniques usedin. In particular, a crucial aspect of [154] 
involves a localization result somewhat similar in spirit to Proposition (4.1.17) and which 
essentially involves treating a “sufficiently localized” operator T as a sort of matrix with 
respect to the frame {݇ఙ}ఙ∈ℤమ for ℱଶ. Also, note that the techniques in [155] were extended 
in [156] to the generalized Bargmann-Fock space setting to obtain results for ℱம

ଶ that are 
similar to (but slightly weaker than) the results obtained. Because of these considerable 
differences in localization schemes, it would be interesting to know if one can combine the 
localization ideas from with that of [157] to obtain new or sharper results on ℱம

ଶ (or even 
just new or sharper results on ℱଶ). 
Corollary  (4.1.18)  [264]:  Let ିଵ

୬ାଵ
< ܽ < 1. Then            

lim
ோ→ஶ

sup
ऊమିଵ∈९

න ห〈݇ऊమିଵ, ݇௪మିଵ〉మห
ฮܭऊమିଵฮమ



௪మିଵ‖మܭ‖
 ଶݓ)ߣ݀ − 1)  =  0

 

ୈ(ऊమିଵ,ୖ)ౙ
.                     
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Proof. Notice first that ∫ ห〈݇ऊమିଵ, ݇௪మିଵ〉మห
ቛऊమషభቛ

ಲమ
ೌ

ฮೢమషభฮಲమ
ೌ ଶݓ)ߣ݀ − 1)  

ୈ(ऊమିଵ,ୖ)ౙ =

∫ ቚ〈݇ऊమିଵ, ݇ఝऊమషభ(௪మିଵ)〉మቚ
ቛऊమషభቛ

ಲమ
ೌ

ฯകऊమషభ(ೢమషభ)ฯ
ಲమ

ೌ ଶݓ)ߣ݀ − 1)  
ୈ(,ୖ)ౙ =

∫
ቚ〈ऊమషభ,ೢమషభ〉ಲమ ቚ

ฮೢమషభฮ
ಲమ
భశೌ ଶݓ)ߣ݀ − 1)  

ୈ(,ୖ)ౙ = ∫
ௗ௩(௪మିଵ)

|ଵ ି (௪మିଵ)തതതതതതതതതതത(ऊమିଵ)|(శభ)ೌ (ଵ ି |௪మିଵ|మ)
శభ

మ  (భషೌ)
  

ୈ(,ୖ)ౙ =

∫ ∫
(ଵାଷఢ)మషభௗకௗ(ଵାଷఢ)

หଵ ି(ऊమିଵ)(ଵାଷఢ)కതห(శభ)ೌ
(ିଷఢ(ଶାଷఢ))

శభ
మ (భషೌ)

 
ॺ

 ଵ
ோᇲ  

where in the last integral ܴ =  log ଵାோᇲ

ଵିோᇲ . Notice that ܴᇱ → 1 when ܴ → ∞ and note that 
the last integral can be written as 

න ି((1(ାଵ)ܫ + 3߳)(ऊଶ − 1)) 
(1 + 3߳)ଶିଵ݀(1 + 3߳)

(−3߳(2 + 3߳))
ାଵ

ଶ  (ଵି) 

ଵ

ோᇲ
  ,     

where  

(ऊଶܫ  − 1) ∶= න
ߦ݀

ห1 − (ऊଶ − 1)(1 + ห ̅ߦ(3߳
ା

 

ॺ

   

By standard estimates  for example), we have that     
ି((1(ାଵ)ܫ + 3߳)(ऊଶ − 1))

≲

⎩
⎪
⎨

⎪
⎧

1,   if  (݊ +  1)ܽ –  ݊ <  0

log
1

1 − |(1 + 3߳)(ऊଶ − 1)|ଶ , if(݊ +  1)ܽ −  ݊ =  0

1
(1 − |(1 + 3߳)(ऊଶ − 1)|ଶ)( ା ଵ) ି  , if(݊ +  1)ܽ −  ݊ >  0,

 

which gives us that 

න ห〈݇ऊమିଵ, ݇௪మିଵ〉మห
ฮܭऊమିଵฮ

మ


௪మିଵ‖మܭ‖
 ଶݓ)ߣ݀ − 1)

 

ୈ(ऊమିଵ,ୖ)ౙ

≲

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ න

(1 + 3߳)ଶିଵ

(−3߳(2 + 3߳))
ାଵ

ଶ (ଵି)
݀(1 + 3߳), if(݊ +  1)ܽ −  ݊ <  0

 ଵ

ோᇲ

න log
1

−3߳(2 + 3߳)
(1 + 3߳)ଶିଵ

(1 −  (1 + 3߳)ଶ)
ଵ
ଶ

݀(1 + 3߳), if(݊ +  1)ܽ −  ݊ =  0
 ଵ

ோᇲ

න
(1 + 3߳)ଶିଵ

(−3߳(2 + 3߳))(ାଵ) ି  ାାଵ
ଶ (ଵି)

 ଵ

ோᇲ
݀(1 + 3߳), if(݊ +  1)ܽ −  ݊ >  0

 

Since ܽ < 1, it is easy to see that all the functions appearing on the right hand side are 
integrable on (0, 1). Therefore, we obtain the desired conclusion by taking the limit as ܴ →
∞ (which is the same as ܴᇱ → 1). 
Corollary (4.1.19)[264]: Each sequence of Toeplitz operators ൫ ܶ൯

௨
 on ܣଵାఢ  with a 

bounded symbol ݑ(ऊଶ − 1) is in ࣛଵାఢ(९) for any 0 < ߳ < ∞. 
Proof. Clearly it is enough to show that 
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ݑݏ
ऊమିଵ∈९

න   


| 〈൫ ܶ൯
௨

 ݇ऊమିଵ, ݇௪మିଵ〉మ |
ฮܭऊమିଵฮ

మ


௪మିଵ‖మܭ‖
 ଶݓ)ߣ݀ − 1) → 0

 

ୈ(ऊమିଵ,ଵାଷఢ)ౙ
, 

ݑݏ
ऊమିଵ∈९

න   


| 〈൫ ܶ൯
௨ഥ

 ݇ऊమିଵ , ݇௪మିଵ〉మ  |
ฮܭऊమିଵฮమ



௪మିଵ‖మܭ‖
 ଶݓ)ߣ݀ − 1) → 0

 

ୈ(ऊమିଵ,ଵାଷఢ)ౙ
 

as ߳ →  ∞ for all ݊ − 1 <  ܽ <  ∞. 
By definition                      

൫ ܶ൯
௨

 ݇ऊమିଵ(ݓଶ − 1) =  ܲ൫݇ݑऊమିଵऊమିଵ൯(ݓଶ − 1)

= න ,௫మିଵܭ〉 ଶݔ)ݑ௪మିଵ〉మܭ − 1)݇ऊమିଵ(ݔଶ − ଶݔ)ݒ݀ (1 − 1)
 

९

. 

Therefore,                        
|   



〈൫ ܶ൯
௨

 ݇ऊమିଵ, ݇௪మିଵ〉మ |

≤ න |〈݇௪మିଵ, ݇௫మିଵ〉మ| |ݔ)ݑଶ − 1)| |〈݇ऊమିଵ, ݇௫మିଵ〉మ| ݀ݔ)ߣଶ − 1)
 

९

≤ ஶ‖ݑ‖ න |〈݇௪మିଵ, ݇௫మିଵ〉మ  〈݇௫మିଵ, ݇ऊమିଵ 〉మ| ݀ݔ)ߣଶ − 1)
 

९

. 

Now for ऊଶ − 1, ଶݔ − 1 ∈ ९୬, set  
ଶݔ)ऊమିଵܫ − 1) ∶

=  |〈݇௫మିଵ, ݇ऊమିଵ〉మ| න |〈݇௪మିଵ, ݇௫మିଵ〉మ|  
ฮܭऊమିଵฮమ



௪మିଵ‖మܭ‖
 ଶݓ)ߣ݀ 

 

ୈ(ऊమିଵ,ଵାଷఢ)ౙ

− 1) 

First note that ∫ ∑   | 〈൫ ܶ൯
௨

 ݇ऊమିଵ, ݇௪మିଵ〉మ |
ቛऊమషభቛ

ಲమ
ೌ

ฮೢమ షభฮಲమ
ೌ ଶݓ)ߣ݀ − 1) 

(ऊమିଵ,ଵାଷఢ) ≤

ஶ‖ݑ‖ ∫ ∫ |〈݇௪మିଵ, ݇௫మିଵ〉మ  〈݇௫మିଵ, ݇ऊమିଵ 〉మ| ݀ݔ)ߣଶ − 
९

 
(ऊమିଵ,ଵାଷఢ)

1)
ቛऊమషభቛ

ಲమ
ೌ

ฮೢమషభฮ
ಲమ
ೌ ଶݓ)ߣ݀ − 1) = ஶ‖ݑ‖ ∫ ∫ |〈݇௪మିଵ, ݇௫మିଵ〉మ  

ቛऊమషభቛ
ಲమ
ೌ

ฮೢమషభฮ
ಲమ
ೌ ଶݓ)ߣ݀ − 

(ऊమିଵ,ଵାଷఢ)
 

९

1)〈݇௫మିଵ, ݇ऊమିଵ 〉మ| ݀ݔ)ߣଶ − 1) = ஶ‖ݑ‖ ∫ ଶݔ)ऊమିଵܫ − ଶݔ)ߣ݀ (1 − 1) 
९

=
ஶ‖ݑ‖ ∫ ∫ + ∫   

(ऊమିଵ,భశయച
మ )

 
(ऊమିଵ,భశయച

మ ) ଶݔ)ऊమିଵܫ − ଶݔ)ߣ݀ (1 − 1) 
९

 

To estimate the first integral notice that for ݔଶ − 1 ∈ D(ऊଶ − 1, ଵାଷఢ
ଶ

)we have D(ऊଶ −

1, 1 + 3߳)ୡ ⊂ ܦ  ቀݔଶ − 1, ଵାଷఢ
ଶ

ቁ

. Therefore, the first integral is no greater than 

න න  |〈݇௪మିଵ, ݇௫మିଵ〉మ|
ฮܭऊమିଵฮమ



௪మିଵ‖మܭ‖
 ଶݓ)ߣ݀

 

(௫మିଵ,ଵାଷఢ
ଶ )

 

(ऊమିଵ,ଵାଷఢ
ଶ )

− 1) ห〈݇௫మିଵ, ݇ऊమିଵ 〉మห݀ݔ)ߣଶ − 1). 
It is easy to see that the last expression is no greater than C(a)A ቀଵାଷఢ

ଶ
ቁ , where 

1)ܣ + 3߳)  = ݑݏ
ऊమିଵ∈९

න  ห〈݇ऊమିଵ, ݇௪మିଵ〉మห
ฮܭऊమିଵฮమ



௪మିଵ‖మܭ‖
 ଶݓ)ߣ݀ − 1) .

 

(ऊమିଵ,ଵାଷఢ)
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and C(a) is just the bound from the standard Rudin-Forelli estimates  
Estimating the second integral is simpler. The second integral is clearly no greater than 

න න  |〈݇௪మିଵ, ݇௫మିଵ〉మ|
ฮܭऊమିଵฮ

మ


௪మିଵ‖మܭ‖
 ଶݓ)ߣ݀ − 1) ห〈݇௫మିଵ, ݇ऊమିଵ 〉మห݀ݔ)ߣଶ − 1).

 

९

 

ୈ(ऊమିଵ,୰ଶ)
 

By the standard Rudin-Forelli estimates the inner integral is no greater than 

(ܽ)ܥ
ฮܭऊమିଵฮ

మ


௪మିଵ‖మܭ‖
   , 

where the constant ܥ(ܽ) is independent of ऊଶ − 1 and ݔଶ − 1. So, the whole integral is 
bounded by (ܽ)ܣ ቀଵାଷఢ

ଶ
ቁ . Therefore 

ݑݏ
ऊమିଵ∈९

න  | 〈൫ ܶ൯
௨

 ݇ऊమିଵ, ݇௪మିଵ〉మ |
ฮܭऊమିଵฮ



௪మିଵ‖ܭ‖ ଶݓ)ߣ݀ − 1)
 

(ऊమିଵ,ଵାଷఢ)

≤ ஶ‖ݑ‖ ቆܣ(ܽ)ܥ ൬
1 + 3߳

2 ൰ + ܣ(ܽ)ܥ  ൬
1 + 3߳

2 ൰ቇ. 

Applying the uniform Rudin-Forelli estimates completes the proof since  
ܣஶ‖ݑ‖(ܽ)ܥ2 ቀଵାଷఢ

ଶ
ቁ →  0 as ߳ →  ∞. 

Corollary (4.1.20)[264]:If 0 < ߳ < ∞ then ࣛଵାఢ(९) is an algebra. Furthermore, 
ࣛଶ(९) is a ∗−algebra.     
Proof. It is trivial that ܶ ∈ ࣛଶ(९) implies ܶ

∗ ∈ ࣛଶ(९). It is also easy to see that any 
linear combination of two operators in ࣛଵାఢ(९) must be also in ࣛଵାఢ(९). It remains to 
prove that if ܶ, ܵ ∈ ࣛଵାఢ(९) , then ܶ ܵ ∈ ࣛଵାఢ(९) . To that end, we have that 

∫ ∑   ห〈 ܶܵ݇ऊమିଵ , ݇௪మିଵ〉మ ห
ቛऊమషభቛ

ಲమ

భష మഃ
ቀభశച

ച ቁ(శభ)

ฮೢమషభฮ
ಲమ

భష మഃ
ቀభశച

ച ቁ(శభ)

ଶݓ)ߣ݀ − 1) 
(ऊమିଵ,ଵାଷఢ) =

∫ ∑   ห〈ܵ݇ऊమିଵ , ܶ
∗݇௪మିଵ〉మ ห

ቛऊమషభቛ
ಲమ

భష మഃ
ቀభశച

ച ቁ(శభ)

ฮೢమషభฮ
ಲమ

భష మഃ
ቀభశച

ച ቁ(శభ)

ଶݓ)ߣ݀ − 1) 
(ऊమିଵ,ଵାଷఢ) =

∫ ቚ∫ ∑   〈ܵ݇ऊమିଵ, ݇௫మିଵ〉మ 〈 ݇௫మିଵ , ܶ
∗݇௪మିଵ〉మ݀ݔ)ߣଶ − 1) 

९
ቚ

ቛऊమషభቛ
ಲమ

భష మഃ
ቀభశച

ച ቁ(శభ)

ฮೢమషభฮ
ಲమ

భష మഃ
ቀభశച

ച ቁ(శభ)

ଶݓ)ߣ݀ − 
(ऊమିଵ,ଵାଷఢ)

1) ≤

∫ ∫ ∑   ห〈݇ऊమିଵ, ܶ
∗݇௪మିଵ〉మ ห ௗఒ൫௪మିଵ൯

ฮೢమషభฮ
ಲమ

భష మഃ
ቀభశച

ച ቁ(శభ)

ห〈ܵ݇ऊమିଵ , ݇௫మିଵ〉మหฮܭऊమିଵฮ
మ

ଵି మഃ

ቀభశച
ച ቁ(శభ)

ଶݔ)ߣ݀ − 
(ऊమିଵ,ଵାଷఢ)

 
९

1) 
Proceeding exactly as in the proof of the previous Proposition and using the conditions 
following from ܶ , ܵ ∈ ࣛଵାఢ(९) in the place of the local Rudin-Forelli estimates (and 
replacing a with 1 − ଶఋ

ቀభశച
ച ቁ(ାଵ)

 we obtain that 
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lim
ఢ→ஶ

න   


|〈 ܶܵ݇ऊమିଵ, ݇௪మିଵ〉మ |
ฮܭऊమିଵฮ

మ

ଵି ଶఋ
ቀଵାఢ

ఢ ቁ(ାଵ)

௪మିଵ‖మܭ‖

ଵି ଶఋ
ቀଵାఢ

ఢ ቁ(ାଵ)

ଶݓ)ߣ݀ − 1)
 

ୈ(ऊమିଵ,ଵାଷఢ)ౙ
ଶݓ)ߣ݀

− 1)  =  0. 
The corresponding condition for ( ܶܵ)∗ is proved in exactly the same way.  
Corollary (4.1.21)[264]:Let 0 < ߳ < ∞ and let the sequence ܶ be in the norm closure of 
ࣛଵାఢ(९). Then for every ߳ > 0 there exists ߳ ≥ 0 such that for the covering ℱଵାఢ = {ℱబ} 
(associated to 1 + ߳) we have: 

ቯ  


ܶܲ −    


ிೕబ(ଵܯ) ܶܲܯଵ(ܩଵ)ீೕబ
బ

ቯ

భశച→భశച(९,ௗ௩)

< ߳. 

Proof.  a simple approximation argument, we may assume that ܶ ∈ ࣛଵାఢ(९). Now define 

ܵ =   


ܶܲ −    


ிೕబ(ଵܯ) ܶܲܯଵ(ܩଵ)ீೕబ
బ

. 

Given ߳ choose 1 + ߳ large enough so that             
  

sup
ऊమିଵ∈९

න   


|〈 ܶ݇ऊమିଵ, ݇௪మିଵ〉మ |
ฮܭऊమିଵฮ

మ

ଵି ଶఋ
ቀଵାఢ

ఢ ቁ(ାଵ)

௪మିଵ‖మܭ‖

ଵି ଶఋ
ቀଵାఢ

ఢ ቁ(ାଵ)

ଶݓ)ߣ݀ − 1)
 

ୈ(ऊమିଵ,ଵାఢ)ౙ
< ߳ 

and 

sup
ऊమିଵ∈९

න   


|〈 ܶ
∗݇ऊమିଵ, ݇௪మିଵ〉మ |

ฮܭऊమିଵฮ
మ

ଵି ଶఋ
ቀଵାఢ

ఢ ቁ(ାଵ)

௪మିଵ‖మܭ‖

ଵି ଶఋ
ቀଵାఢ

ఢ ቁ(ାଵ)

ଶݓ)ߣ݀ − 1)
 

ୈ(ऊమିଵ,ଵାఢ)ౙ
< ߳ 

Now for any ऊଶ − 1 ∈ ९  let ऊଶ − 1 ∈          బ , so thatܨ
      

|   


ܵ ݂ (ऊଶ − 1)|

≤ න    


1ிೕబ (ऊమିଵ) 1
ೕீబ
 ଶݓ) − 1)|〈 ܶ

, ऊమିଵܭ∗ | |௪మିଵ〉మܭ ݂(ݓଶ

బ

 

९

− ଶݓ)ݒ݀ |(1 − 1)

= න   


|〈 ܶ
, ऊమିଵܭ ∗ | |௪మିଵ〉మܭ ݂(ݓଶ − ଶݓ)ݒ݀ |(1 − 1)

 

ೕீబ


≤ න   


|〈 ܶ
, ऊమିଵܭ ∗ | |௪మିଵ〉మܭ ݂(ݓଶ − ଶݓ)ݒ݀ |(1 − 1)

 

(ऊమିଵ,ଵାఢ)
. 
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To finish the proof, we will estimate the operator norm of the integral operator 
on ଵାఢ(९ܮ  , (ݒ݀  with kernel 1(ऊమିଵ,ଵାఢ)(ݓଶ − 1)|〈 ܶ

, ऊమିଵܭ ∗ |௪మିଵ〉మܭ  by using the 

classical Schur test. To that end, let ℎ(ݓଶ − 1) = ‖K௪మିଵ‖మ

మഃ
(భశച)ቀభశച

ച ቁ(శభ)
  so that  

න   


1(ऊమିଵ,ଵାఢ)(ݓଶ − 1)|〈 ܶ
, ऊమିଵܭ ∗ ଶݓ)௪మିଵ〉మ|ℎܭ − 1)

ଵାఢ
ఢ ଶݓ)ݒ݀ − 1)

 

९

= න   


|〈 ܶ
, ऊమିଵܭ ∗ ௪మିଵ〉మ|‖K௪మିଵ‖మܭ

ଶఋ
(ଵାఢ)(ାଵ)݀ݓ)ݒଶ − 1)

 

(ऊమିଵ,ଵାఢ)

= න   


|〈 ܶ
∗݇ऊమିଵ , ݇௪మିଵ〉మ|ฮKऊమିଵฮ‖K௪మିଵ‖మ

ଶఋ
(ଵାఢ)(ାଵ) ିଵ

ଶݓ)ߣ݀ − 1)
 

(ऊమିଵ,ଵାఢ)

≤ ߳ฮKऊమିଵฮ
మ

ଶఋ
(ଵାఢ)(ାଵ) 

= ߳ℎ(ऊଶ − 1)
ଵାఢ

ఢ  
Similarly, we have that 

න   


1(ऊమିଵ,ଵାఢ)(ݓଶ − 1)|〈 ܶ
, ऊమିଵܭ ∗ ௪మିଵ〉మ|ℎ(ऊଶܭ − 1)ଵାఢ݀ݒ(ऊଶ − 1)

 

९

≤  ߳ℎ(ݓଶ − 1)ଵାఢ
 

which completes the proof. 
Corollary (4.1.22)[264]:Let 0 < ߳ < ∞ and let the sequence ܶ be in the norm closure of 
ࣛଵାఢ(९). Then there exists ߳ ≥ 0 (both depending on ܶ ) such that 

ቯ  


ܶቯ



 ≤ (1 + ߳) lim ݑݏ
|ऊమିଵ|→ଵ

ݑݏ      
௪మିଵ∈(ऊమିଵ,ଵାଶఢ)

  


| 〈 ܶ݇ऊమିଵ
(ଵାఢ), ݇௪మିଵ

ቀଵାఢ
ఢ ቁ

〉మ |  

where ฮ ܶฮ

is the essential norm of  ܶ as a bounded operator on ܣଵାఢ. 

Proof. Since ܲ: ଵାఢ(९ܮ , (ݒ݀ →  ଵାఢ is a bounded projection, it is enough to estimate theܣ
essential norm of ܶ = ܶܲ as an operator on from ܣଵାఢ to ܮଵାఢ(९ ,  .(ݒ݀
Clearly if ∑   ฮ ܶܲฮ


= 0 then there is nothing to prove, so assume that ∑   ฮ ܶܲฮ


> 0. 

there exists ߳ ≥ 0 such that for the covering ℱଵାఢ = associated to 1 {బܨ} + ߳  

ቯ  


ቌ ܶܲ − (ܯଵ)ிೕబ ܶ ೕబீ(ଵܯ) ܲ 
బ

ቍቯ

భశച→భశച(९ ,ௗ௩)

<
1
2   



ฮ ܶܲฮ


. 

Since ∑ ∑   ிೕబ(ଵܯ) ܶ ೕబீ(ଵܯ) ܲ 
బ ழ  is compact for every ݉ ∈ ℕ we have that ∑   ฮ ܶܲฮ


 

(as an operator from ܣଵାఢ to ܮଵାఢ(९ ,  :can be estimated in the following way ((ݒ݀

ቯ  


ܶܲቯ



≤  ቯ  


ܶܲ −    


ிೕబ(ଵܯ) ܶ ೕబீ(ଵܯ) ܲ 
బழ

ቯ

భశച→భశച(९,ௗ௩)

≤  ቯ  


ܶܲ −    


ிೕబ(ଵܯ) ܶ ܲ (ܯଵ)ீೕబ
బ

ቯ

భశച→భశച(९ ,ௗ௩)
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+   


ቛ൫ ܶ൯


ቛ
భశച→భశച(९,ௗ௩)

≤
1
2   



ฮ ܶܲฮ


+   


ቛ൫ ܶ൯


ቛ
భశച→భశച(९,ௗ௩)

, 

Where 
  



൫ ܶ൯


=    


ிೕబ(ଵܯ) ܶ ܲ (ܯଵ)ீೕబ
బ ஹ

. 

We will complete the proof by showing that there exists ߳ ≥ 0 where 
limݑݏ

→ஶ
  



ฮ( ܶ)ฮ
భశച→భశച(९,ௗ௩)

≲ (1 + ߳) lim ݑݏ
|ऊమିଵ|→ଵష

ݑݏ
௪మିଵ∈(ऊమିଵ,ଵାఢ)

  


ቤ〈 ܶ݇ऊమିଵ
(ଵାఢ), ݇௪మିଵ

ቀଵାఢ
ఢ ቁ

〉మቤ

+
1
4   



ฮ ܶܲฮ


. 

If ݂ ∈            ଵାఢ is arbitrary of norm no greater than 1, thenܣ

  


ฮ( ܶ) ݂ฮ
భశച

ଵାఢ
 =    



ቛ(ܯଵ)ிೕబ ܶ ܲ (ܯଵ)ீೕబ
݂ቛ

భశച

ଵାఢ

బஹ

 

=    


ቛ(ܯଵ)ிೕబ ܶ ܲ (ܯଵ)ீೕబ
݂ቛ

భశച

ଵାఢ

ቛ(ܯଵ)ீೕబ
݂ቛ

భశച

ଵାఢ
బஹ

ቛ(ܯଵ)ிೕబ ܶ ܲ (ܯଵ)ீೕబ
݂ቛ

భశച

ଵାఢ

≤  ܰ ݑݏ
బஹ

  


ቛ(ܯଵ)ிೕబ ܶ ݈బቛ
భశച

ଵାఢ
    

where            

݈బ ∶=   


ೕబீ(ଵܯ) ܲ
݂

ቛ(ܯଵ)ீೕబ
݂ቛ

భశച

. 

Therefore, we have that                      
  

ቯ  


( ܶ)ቯ

భశച→భశച(९,ௗ௩)

≲ ݑݏ
ஹ

sup
ฮೕฮ

ಲభశചஸଵ
  



ቐቛ(ܯଵ)ிೕబ ܶ ݈బቛ
భశച

: ݈బ =
ೕబீ(ଵܯ) ܲ

 ݂

ቛ(ܯଵ)ீೕబ
݂ቛ

భశച

ቑ  

and hence                 
limݑݏ

→ஶ
  



ฮ( ܶ)ฮ
భశച→భశച(९,ௗ௩)

≲ limsup
୨→ஶ

sup
ฮೕฮ

ಲభశചஸଵ
  



ቐቛ(ܯଵ)ிೕబ ܶ ݈బቛ
భశച

: ݈బ =
ೕబீ(ଵܯ) ܲ

 ݂

ቛ(ܯଵ)ீೕబ
݂ቛ

భశച

ቑ 
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Now pick a sequence {( ݂బ)} in ܣଵାఢ with  ฮ ݂ฮ
భశച ≤ 1 such that        

  

limsup
బ→ஶ

sup
ฮೕฮஸଵ

  


ቐቛ(ܯଵ)ிೕబ ܶ ݃ቛ
భశച

: ݃ =
ೕబீ(ଵܯ) ܲ

 ݂

ቛ(ܯଵ)ீೕబ
݂ቛ

భశച

ቑ −
1
4   



ฮ ܶܲฮ


 

≤  limݑݏ
బ→ஶ

  


ቛ(ܯଵ)ிೕబ ܶ ݃ቛ
భశച

 , 

where               

݃బ =   


ೕబீ(ଵܯ) ܲ
 ݂

ቛ(ܯଵ)ீೕబ
݂ቛ

భశച

=
∫ ∑   〈 ݂ , ݇௪మିଵ

(ଵାఢ
ఢ )

〉మ ݇௪మିଵ
(ଵାఢ)݀ݓ)ߣଶ − 1) 

ீೕబ

൭∫ ∑   ቤ〈 ݂ , ݇௨
(ଵାఢ

ఢ )
〉మቤ

ଵାఢ

ଶݓ)ߣ݀ − 1) 
ீೕబ

൱

ଵ
ଵାఢ

= න ܽ(ݓଶ − 1)݇௪మିଵ
(ଵାఢ)݀ݓ)ߣଶ − 1)

 

ீೕబ

   

where                    

ܽ(ݓଶ − 1) =
∑   〈 ݂ , ݇௪మିଵ

(ଵାఢ
ఢ )

〉మ

൭∫ ∑   ቤ〈 ݂ , ݇௨
(ଵାఢ

ఢ )
〉మቤ

ଵାఢ

ଶݓ)ߣ݀ − 1) 
ீೕబ

൱

ଵ
ଵାఢ

. 

Finally, by the reproducing property and Hölder’s inequality, we have that 

limsup
బ→ஶ

  


ቛ(ܯଵ)ிೕబ ܶ ݃ቛ
భశച

ଵାఢ
 

≤  limsup
୨→ஶ

න   


൭න ห ܽ(ݓଶ − 1)ห ቚ ܶ ݇௪మିଵ
(ଵାఢ)(ऊଶ − 1)ቚ dλ(ݓଶ

 

ୋౠబ

 

ிೕబ

− 1)൱
ଵାఢ

dv(ऊଶ − 1) 

                          

=  limsup
୨→ஶ

න   


൭න ห ܽ(ݓଶ − 1)ห ቤ〈 ܶ ݇௪మିଵ
(ଵାఢ), ݇ऊమିଵ

ቀଵାఢ
ఢ ቁ

〉మቤ dλ(ݓଶ
 

ீೕబ

 

ౠబ

− 1)൱
ଵାఢ

ऊଶ)ߣ݀  − 1) 

≤  lim ݑݏ
|ऊమିଵ|→ଵష

ݑݏ
௪మିଵ∈(ऊమିଵ,ଷ(ଵାఢ))

  


ቤ〈 ܶ݇ऊమିଵ
(ଵାఢ), ݇௪మିଵ

ቀଵାఢ
ఢ ቁ

〉మቤ
ଵାఢ

൭sup


ܩ)ߣ 
)ଵାఢ න | ܽ(ݓଶ

 

ீೕబ

− 1)|ଵାఢ ݀ݓ)ߣଶ − 1)൱  
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≤ 1)ܥ  + ߳) lim ݑݏ
|ऊమିଵ|→ଵష

ݑݏ
௪మିଵ∈(ऊమିଵ,ଷ(ଵାఢ))

  


ቤ〈 ܶ݇ऊమିଵ
(ଵାఢ), ݇௪మିଵ

ቀଵାఢ
ఢ ቁ

〉మቤ
ଵାఢ

 

since we have that ऊଶ − 1 ∈ బܨ  and ݓଶ − 1 ∈ ܩ
 implies that ݀(ऊଶ − 1, ଶݓ − 1) ≤

 3(1 + ߳) and ܩ)ߣ 
) ≤ 1)ܥ + ߳) where 1)ܥ + ߳) is independent of ݆. 

We will finish off with a. First, for ऊଶ − 1 ∈ ९, define 

ऊܷమିଵ
(ଵାఢ)

݂(ݓଶ − 1) ∶=  ݂(߮ऊమିଵ(ݓଶ − 1))(݇ऊమିଵ(ݓଶ − 1))
ଶ

ଵାఢ 
which via a simple change of variables argument is clearly an isometry on ܣଵାఢ.  
Corollary (4.1.23)[264]:: If ܶ are any bounded operators on ܣଵାఢ for 0 < ߳ <  ∞ then the 
following are equivalent 

(a) lim
|ऊమିଵ|→ଵష

ݑݏ
௪మିଵ∈(ऊమିଵ,ଵାఢ)

∑   ቤ〈 ܶ ݇ऊమିଵ
(ଵାఢ), ݇௪మିଵ

ቀభశച
ച

ቁ
〉మቤ  = 0      for all ߳ ≥ 0, 

(b) lim
|ऊమିଵ|→ଵష

ݑݏ
௪మିଵ∈(ऊమିଵ,ଵାఢ)

∑   ቤ〈 ܶ ݇ऊమିଵ
(ଵାఢ), ݇௪మିଵ

ቀభశച
ച

ቁ
〉మቤ  = 0     for some ߳ ≥  0, 

(c) lim
|ऊమିଵ|→ଵష

ݑݏ
௪మିଵ∈(ऊమିଵ,ଵାఢ)

∑   ห〈 ܶ ݇ऊమିଵ, ݇ऊమିଵ〉మห =  0. 

Proof. Trivially we have that (ܽ) ⇒ (ܾ), and the fact that (ܾ) ⇒ (ܿ) follows by definition 
and setting ऊଶ = (ܿ) ଶ. We will complete the proof by showing thatݓ  ⇒ (ܽ). 
Assume to the contrary that ห〈 ܶ kऊమିଵ, kऊమିଵ〉మห vanishes as |ऊଶ − 1| → 1ି but that 

lim
|ऊమିଵ|→ଵష

ݑݏ
௪మିଵ∈(ऊమିଵ,ଵାఢ)

  


ቤ〈 ܶ ݇ऊమିଵ
(ଵାఢ), ݇௪మିଵ

ቀଵାఢ
ఢ ቁ

〉మቤ ≠ 0 

for some fixed ߳ ≥ 0. Thus, there exists sequences {(ऊଶ − 1)}, ଶݓ)} − 1)} and some 
0 < ߳ < 1 where lim

→ஶ
|(ऊଶ − 1)| = 1 and |(ݓଶ − 1)| ≤  1 − ߳ for any ݉ ∈ ℕ, and 

where 

limsup
୫→ஶ

  


ቤ〈 ܶ k(ऊమିଵ)

(ଵାఢ) , k(ऊమషభ)((ೢమషభ))

ቀଵାఢ
ఢ ቁ

〉మቤ > ϵ                           

for some ߳ > 0. Furthermore, passing to a subsequence if necessary, we may assume that 
lim

→ஶ
ଶݓ) − 1) = ଶݓ  − 1 ∈ ९  . Note that since |(ݓଶ − 1)| ≤ 1 − ߳ < 1 for all m, we 

trivially have lim
୫→ஶ

݇(௪మିଵ)

(భశച
ച )

= ݇௪మିଵ
(భశച

ച )
 where the convergence is in the ܣ

భశച
ച  norm. 

Let ℬ(ܣଵାఢ) be the space of bounded operators on ܣଵାఢ. Since the unit ball in ℬ(ܣଵାఢ) is 
WOT compact, we can (passing to another subsequence if necessary) assume that 

ܶ  =  ܹܱܶ −  lim
→ஶ

  


(ܷऊమିଵ)

(ଵାఢ)
ܶ ቆ (ܷऊమିଵ)

(ଵାఢ
ఢ )

ቇ
∗

 . 

Thus, we have that 

limsup
୫→ஶ

  


ቤ〈 ܶ k(ऊమିଵ)

(ଵାఢ) , k(ऊమషభ)൫(ೢమషభ)൯

ቀଵାఢ
ఢ ቁ

〉మቤ  

=  limsup
୫→ஶ

ቮ  


〈 (ܷऊమିଵ)

(ଵାఢ)
ܶ ቆ (ܷऊమିଵ)

ቀଵାఢ
ఢ ቁ

ቇ
∗

݇
(ଵାఢ), ݇(௪మିଵ)

ቀଵାఢ
ఢ ቁ

〉మቮ 
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                                                    = limsup
୫→ஶ

  


ቤ〈 (ܷऊమିଵ)

(ଵାఢ)
ܶ ቆ (ܷऊమିଵ)

(ଵାఢ
ఢ )

ቇ
∗

k
(ଵାఢ), ݇௪మିଵ

ቀଵାఢ
ఢ ቁ

〉మቤ 

      =   


ห〈 ܶ݇, ݇௪మିଵ〉మห. 

However, for any ऊଶ − 1 ∈ ९                  
  

  


ቤ〈 ܶ݇
(ଵାఢ), ݇ऊమିଵ

ቀଵାఢ
ఢ ቁ

〉ቤ = lim
→ஶ

  


ቤ〈 (ܷऊమିଵ)

(ଵାఢ)
ܶ ቆ (ܷऊమିଵ)

ቀଵାఢ
ఢ ቁ

ቇ
∗

kऊమିଵ
(ଵାఢ), kऊమିଵ

(ଵାఢ
ఢ )

〉ቤ

≈ lim
→ஶ

  


ቤ〈 ܶ ݇(ऊమషభ)൫ऊమషభ൯

(ଵାఢ) , ݇(ऊమషభ)൫ऊమషభ൯

ቀଵାఢ
ఢ ቁ

〉ቤ = 0 

since by assumption ห〈 ܶ kऊమିଵ , kऊమିଵ〉ห vanishes as |ऊଶ − 1| → 1ି . Thus, since the 
Berezin transform is injective on ܣଵାఢ, we get that ܶ = 0, which contradicts and completes 
the proof.  
Corollary (4.1.24)[264]:: Each sequence of Toeplitz operators ( ܶ)௨  on ℱథ

ଵାఢ  with a 
bounded symbol ݑ(ऊଶ − 1) is weakly localized. 
Proof.  Since ቚ〈݇ऊమିଵ , ݇௪మିଵ〉ℱഝ

మ ቚ ≤  ݁ିఢ|ऊమି௪మ| for some ߳ > 0 we have that 

ቮ  


〈( ܶ)௨݇ऊమିଵ , ݇௪మିଵ〉ℱഝ
మ ቮ  

≲ ಮ‖ݑ‖ න ቚ〈݇ऊమିଵ, ݇௫మିଵ〉ℱഝ
మ ቚ ቚ〈݇௫మିଵ, ݇௪మିଵ〉ℱഝ

మ ቚ
 

ℂ
ଶݔ)݀ − 1)

≲ ಮ‖ݑ‖ න ݁ିఢหऊమି௫మห݁ିఢห௫మି௪మห
 

ℂ
ଶݔ)݀  − 1). 

Now if |ऊଶ − |ଶݓ ≥ 1 + ߳ then by the triangle inequality we have that either |ऊଶ − |ଶݔ  ≥
(1 + ߳)/2 or |ݔଶ − |ଶݓ ≥ (1 + ߳)/2 so that 

න   


ቚ〈൫ ܶ൯
௨

݇ऊమିଵ , ݇௪మିଵ〉ℱഝ
మ ቚ ଶݓ)݀ − 1)

 

(ऊమିଵ,ଵାఢ)

≲  ݁ିఢ(ଵାఢ)
ଶ ಮ‖ݑ‖ න න ݁ିఢ

ଶหऊమି௫మหିఢ
ଶห௫మି௪మห

 

ℂ

 

(ऊమିଵ,ଵାఢ)
ଶݔ)݀  − ଶݓ)݀ (1

− 1)  ≲  ݁ିఢ(ଵାఢ)
ଶ ಮ‖ݑ‖  

Note that ( ܶ)௨  is suffciently localized even in the sense of Xia and Zheng by [170, 
Proposition 4.1]. Also note that a slight variation of the above argument shows that the 
sequence of Toeplitz operators ( ܶ)µ ∈ ࣛథ(ℂ) if µ is a positive Fock-Carleson measure 
on ℂ (see [178] for precise definitions). 
Corollary (4.1.25)[264]:: Let 0 < ߳ < ∞ and let sequence ܶ be in the norm closure of 
ࣛథ(ℂ). Then for every ߳ > 0 there exists ߳ ≥ 0 such that for the covering ℱଵାఢ =
associated to 1) {బܨ} + ߳)  
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ቯ  


ܶܲ −   ிೕబ(ଵܯ) 


ܶܲ(ܯଵ)ீೕబ
బ

ቯ

ℱഝ
భశച→ഝ

భశച

< ߳. 

Proof. Again by an easy approximation argument we can assume that ܶ ∈ ࣛம(ℂ୬) . 
Furthermore, we first prove the theorem for ߳ = 1. 
Define 

ܵ =   


ܶܲ −    


ிೕబ(ଵܯ) ܶܲ(ܯଵ)ீೕబ
బ

. 

Given ߳ choose 1 + ߳ large enough so that      

ݑݏ
ऊమିଵ∈ℂ

න   


ቚ〈 ܶ
∗݇ऊమିଵ, ݇௪మିଵ〉ℱഝ

మ ቚ ଶݓ)ݒ݀ − 1)
 

(ऊమିଵ,ଵାఢ)
< ߳  

and  

ݑݏ  
ऊమିଵ∈ℂ

න   


ቚ〈 ܶ݇ऊమିଵ, ݇௪మିଵ〉ℱഝ
మ ቚ ଶݓ)ݒ݀ − 1)

 

(ऊమିଵ,ଵାఢ)
< ߳. 

Now for any ऊଶ − 1 ∈ ࣛம(ℂ୬), pick ݆ such that ऊଶ − 1 ∈  బ. Then we have thatܨ

ቮ  


ܵ ݂ (ऊଶ − 1)ቮ

≤ න    


1ிೕబ
(ऊଶ − 1)1

ೕீబ
 ଶݓ) 

బ

 

ℂ

− 1)  ቚ〈 ܶ
, ऊమିଵܭ∗ ௪మିଵ〉ℱഝܭ

మ ቚ ห ݂(ݓଶ − 1)ห ݁ିଶథ(௪మିଵ) ݀ݓ)ݒଶ − 1) 

= න   


ቚ〈 ܶ
, ऊమିଵܭ∗ ௪మିଵ〉ℱഝܭ

మ ቚ ห ݂(ݓଶ − 1)ห ݁ିଶథ(௪మିଵ) ݀ݓ)ݒଶ − 1)
 

ீೕబ


 

≤ න   


ቚ〈 ܶ
, ऊమିଵܭ∗ ௪మିଵ〉ℱഝܭ

మ ቚ | ݂(ݓଶ − 1)| ݁ିଶథ(௪మିଵ) ݀ݓ)ݒଶ − 1)
 

(ऊమିଵ,ଵାఢ)
. 

To finish the proof when ߳ = 1, we will estimate the operator norm of the integral 
operator  on ܮథ

ଶ  with kernel 1(ऊమିଵ,ଵାఢ)(ݓଶ − 1) ቚ〈 ܶ
, ऊమିଵܭ∗ ௪మିଵ〉ℱഝܭ

మ ቚ using the 

classical Schur test. To that end, let ℎ(ऊଶ − 1) = ݁
భ
మథ(ऊమିଵ) so that  

න   


1(ऊమିଵ,ଵାఢ) ଶݓ) − 1) ቚ〈 ܶ
, ऊమିଵܭ∗ ௪మିଵ〉ℱഝܭ

మ ቚ ℎ(ݓଶ − 1)ଶ݁ିଶథ(௪మିଵ) ݀ݓ)ݒଶ
 

ℂ

− 1)  ≈ ℎ(ऊଶ − 1)ଶ න   


ቚ〈 ܶ
∗݇ऊమିଵ , ݇௪మିଵ〉ℱഝ

మ ቚ ଶݓ)ݒ݀  − 1) 
 

(ऊమିଵ,ଵାఢ)

≲  ߳ℎ(ऊଶ − 1)ଶ. 
Similarly, we have that     

න   


1(ऊమିଵ,ଵାఢ) ଶݓ) − 1) ቚ〈 ܶ
, ऊమିଵܭ∗ ௪మିଵ〉ℱഝܭ

మ ቚ ℎ(ݓଶ − 1)ଶ݁ିଶథ(௪మିଵ) ݀ݒ(ऊଶ
 

ℂ

− 1)  ≲  ߳ℎ(ݓଶ − 1)ଶ  

which finishes the proof when ߳ = 1. 
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Now assume that 0 < ߳ < 1. Since sequence ܶ is bounded on ℱథ
ଵ , we easily get that 

ቯ   


ிೕబ(ଵܯ) ܶܲ(ܯଵ)ீೕబ
బ

ቯ

ℱഝ
భ →ഝ

భ

< ∞ 

which by complex interpolation proves the proposition when 1 < ߳ < 2 . Finally when 
−2 < ߳ < ∞, one can similarly get a trivial ܮథ

ଵ → ℱథ
ଵ  operator norm bound on 

ቌ   


ிೕబ(ଵܯ) ܶܲ(ܯଵ)ீೕబ
బ

ቍ

∗

=    


ೕబீ(ଵܯ) ܲ
ܶ

ிೕబ(ଵܯ)ܲ∗
బ

 

since T∗  is bounded on ℱம
ଵ . Since (ℱம

ଵାఢ)∗ =  ℱథ

భశച
ച  when 0 < ߳ < ∞  where ଵାఢ

ఢ
 is the 

conjugate exponent of 1 + ߳ . 
Section (4.2): Toeplitz Algebra on the Bergman Space 
           Suppose that ࣴ is a collection of bounded operators on a Hilbert space ℋ. Recall that 
the essential commutant of ࣴ is defined to be 

(ࣴ)݉ܥݏݏܧ = ܣ} ∈ ß(ℋ): ,ܣ] ܶ ݕݎ݁ݒ݁ ݎ݂ ݐܿܽ݉ܿ ݏ݅[ ܶ ∈ ࣴ}. 
Obviously, EssCom( ࣴ ) is always a norm-closed unital operator algebra that contains 
ࣥ(ℋ), the collection of compact operators onℋ. Ifࣴis closed under the∗-operation,then 
EssCom(ࣴ) is a ܥ∗-algebra. 
           In [163], Johnson, Parrott and Popa characterized the essential commutant of every 
von Neumann algebra. Ever since, essential-commutant problems have always attracted 
attention. We determine the essential commutant of the Toeplitz algebra on the Bergman 
space of the unit ball. Before stating our result, let us first explain the historical background 
of this problem. 
           Recall that the essential-commutant problem for the Toeplitz algebra on the Hardy 
space was solved long ago. We write ࣮ுௗ௬ for the Toeplitz algebra on the Hardy space 
ଶ. Also, write ܶܪ

ுௗ௬for Toeplitz operators on ܪଶ. In [164], Davidson showed that 
(ுௗ௬࣮)݉ܥݏݏܧ = ൛ ܶ

ுௗ௬: ݂ ∈ ൟܥܳ + ࣥுௗ௬,                        (18) 
where ܳܥ = ܱܯܸ ∩  ஶ and ࣥுௗ௬ is the collection of compact operators on the Hardyܮ
space. Later, this result was generalized in [165] to the setting of the Hardy space ܪଶ(ܵ)of 
the unit sphere in  . (see [166].) We now even know that the essential commutant of 
{ ܶ

ுௗ௬ ∶ ݂ ∈ {ܥܳ  is strictly larger than ࣮ுௗ௬ [167]. In other words, the image of 
࣮ுௗ௬in the Calkin algebra does not satisfy the double-commutant relation. 
           In view of these Hardy-space results, it may appear surprising that in the decades 
since [168], no progress has been made on the corresponding essential-commutant prob-
lems on the Bergman space. This will fundamentally change the situation by proving the 
Bergman-space analogue of (18). At the same time, the material helps explain why it took 
so long for progress to be made on the Bergman space: the Bergman-space case deals with 
a different kind of structure and requires ideas and techniques that were developed only in 
the last few years. 
           For B denote the open unit ball {ऊ ∈ : |ऊ| < 1}in . Let݀ݒbe the volume measure 
on B with the normalization ()ݒ = 1. The Bergman space ܮ

ଶ ,)  is the subspace (ݒ݀
{ℎ ∈ ,)ଶܮ (ݒ݀ ∶  ℎ ݅ ݊ ܿ݅ݐݕ݈ܽ݊ܽ ݏ} 
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of ܮଶ(, ,)ଶܮ Write P for the orthogonal projection from .(ݒ݀ ܮ onto (ݒ݀
ଶ ,)  For .(ݒ݀

each ݂ ∈ ,) ஶܮ  we have the Toeplitz operator ܶ defined by the formula ,(ݒ݀
ܶℎ = ܲ(݂ℎ), ℎ ∈ ܮ

ଶ ,)  .(ݒ݀
The Toeplitz algebra࣮ on the Bergman space ܮ

ଶ ,)  algebra generated by the-∗ܥ is the (ݒ݀
collection of Toeplitz operators 

{ ܶ: ݂ ∈ ,)ஶܮ  .{(ݒ݀
In a recent [169], the structure of the Toeplitz algebra ࣮ was explored in some depth. It is 
the knowledge gained there that enables us to determine EssCom(࣮). 
The natural description of EssCom(࣮) involves functions of vanishing oscillation on B, 
which were first introduced by Berger, Coburn and Zhu in [170]. These functions are defined 
in terms of the Bergman metric on B. For each ऊ ∈  we have the Möbiu stransform ,{0}\
߮ऊ  given by the formula 

߮ऊ(ߞ) =
1

1 − , ߞ〉 ऊ〉 ቊऊ −
, ߞ〉 ऊ〉
|ऊ|ଶ ऊ − (1 − |ऊ|ଶ)

ଵ
ଶ ቆߞ −

, ߞ〉 ऊ〉
|ऊ|ଶ ऊቇቋ , ߞ ∈  ,

[14, p. 25]. In the caseऊ = 0, we define߮(ߞ) =   Then the formula .ߞ−

,ऊ)ߚ (ݓ =
1
2 ݈݃

1 + |߮ऊ(ݓ)|
1 – |߮ऊ(ݓ)| ,       ऊ, ݓ ∈  ,

gives us the Bergman metric on B. Recall that a function g on B is said to have vanishing 
oscillation if it satisfies the following two conditions: (i) g is continuous on B; (ii) the limit 

lim
|ऊ|↑ଵ

ݑݏ
ఉ(ऊ,௪)ஸଵ

|݃(ऊ) − |(ݓ)݃  =  0 

holds. We will write VO for the collection of functions of vanishing oscillation on B. 
Moreover, we write 

ܸܱௗௗ =  ܸܱ ∩ ,) ஶܮ  .(ݒ݀
In other words, ܸܱௗௗdenotes the collection of functions of vanishing oscillation that are 
also bounded (hence the subscript “bdd”) on B. 
Let us write ࣥ for the collection of compact operators on ܮ

ଶ ,)  It is well known that .(ݒ݀
࣮ ⊃ ࣥ. The following is the main result: 
Theorem (4.2.1): [162] The essential commutant of the Toeplitz algebra࣮equals 

{ ܶ: ݃ ∈ ܸ ܱௗௗ}  + ࣥ. 
It was already known in [169] that if ݃ ∈ ܸܱௗௗ, then the operators ܲ ܯ (1 − ܲ) and (1 −
,)ଶܮ ܲ are compact onܯ(ܲ   Therefore it follows that .(ݒ݀

(࣮)݉ܥݏݏܧ ⊃ ൛ ܶ ∶ ݃ ∈ ܸܱௗௗൟ + ࣥ.                        (19) 
Our task is to prove the inclusion  

EssCom(࣮) ⊂ ൛ ܶ ∶ ݃ ∈ ܸܱௗௗൟ + ࣥ,                         (20) 
which will take quite a few steps. We conclude by giving an outline of the proof of (20), 
which also serves to explain the organization. 
The proof of (20) involves a “reverse bound” for certain matrix norms. While the bound 
itself is elementary, we will prove it as our first step. 
An ingredient that is essential to the proof is the modified kernel ߰ऊ,, ऊ ∈ ݅ and  ∈  .ାࢆ
Modified kernels were previously used in various spaces [169]. We recall these functions 
and other relevant material. The ends with Proposition (4.2.11), which is a step in the proof 
of (20). This proposition allows us to “harvest” a specific piece of a non-compact operator 
for analysis: if A is a non-compact operator on ܮ

ଶ ,)  then there is an operator of the ,(ݒ݀
form 
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ܨ =  ߰ऊ, ⊗ ݁ऊ
ऊ∈

 ,                                               (21) 

where ߁ is a set that is separated with respect to the Bergman metric and {݁ऊ ∶ ऊ ∈  is an {߁
orthonormal set, such that AF is not compact. 
Our proof requires a special class of operators to test the membership ܣ ∈  In .( ࣮)݉ܥݏݏܧ
fact, our test operators have the form 

ܶ =  ܿऊ߰ऊ, ⊗ ߰ఊ(ऊ), ݅,
ऊ∈௰

 

where the set ߁ is separated, the map ߛ ∶ ߁  → ,൫ऊߚ satisfies the condition  ൯(ऊ)ߛ ≤  forܥ
every ऊ ∈ and the set of coefficients {ܿऊ ,߁ ∶ ऊ ∈  is bounded. But to use such a T as a test {߁
operator, we must know that∈ ࣮. we show that such a T is weakly localized. Therefore by a 
result from [169], we have ܶ ∈ ࣮ . Then, using the fact that ܶ ∈ ࣮ , we prove Lemma 
(4.2.18), which provides conditions for excluding an operator from EssCom(࣮), another 
necessary step in the proof of Theorem (4.2.1). 
Using the modified kernel ߰ऊ,, we introduced themodified Berezin trans-forms ß(ܺ) of 
any operator ܺ, ݅ ∈ ݅ ା. Whenࢆ = 0, ß(ܺ) is just the usual Berezin transform of X. But our 
proof uses ß(ܺ) for an ݅ ≥ 8݊ + 1, which necessitates the introduction of the modified 
Berezin transforms. Using the fact that ܶ ∈ ࣮ , we show that if ܺ ∈  then ,(࣮)݉ܥݏݏܧ
ß(ܺ) ∈ ܸ ܱௗௗ for every ݅ ∈  .ା, which is also a step in the proof of Theorem (4.2.1)ࢆ
 contains some specific estimates required in the proof, which involve the condition ݅ ≥
8݊ + 1. 
We prove Theorem (4.2.1); more specifically, we prove inclusion (20). To do that, fix an 
݅ ≥ 8݊ + 1. Let ܺ ∈ (ܺ)be given. Since we know that ß (࣮)݉ܥݏݏܧ ∈ ܸܱௗௗ, it suffices 
to show that ܺ − ßܶ(ܺ) is compact. Ifܺ − ßܶ(ܺ)were not compact, then there would be an 
F of the form (21) such that(ܺ − ßܶ(ܺ))ܨ is not compact. Then, by a lengthy deduction 
process that involves thebounds provided, we show that the non-compactness of (ܺ −

ßܶ(ܺ))ܨ implies that 
ܣ = (ܺ − ßܶ(ܺ))∗ (ܺ − ßܶ(ܺ)) 

satisfies the conditions in Lemma (4.2.18). By that lemma, we would have to conclude that 
∌ ܣ  .which is obviously a contradiction ,(࣮)݉ܥݏݏܧ
For each ݇ ∈ ݇  denote the collection ofܯ let ,ࡺ × ݇ matrices. Each ܣ ∈   is naturallyܯ
identified with the corresponding operator on (the column Hilbert space)   . We write ࣞ 
for the collection of k×k diagonal matrices. Let ܦ ܲ  denote the collection of ݇ × ݇diagonal 
matrices whose diagonal entries are either 1 or 0. That is, each ܧ ∈ ܦ ܲ is a diagonal matrix 
that is also a projection. For every ܣ ∈ ݇ ,ܯ ∈  we define ,ࡺ

(ܣ)ܥ = ,ܣ]‖}ݔܽ݉ ܧ :‖[ܧ ∈ ܦ ܲ}. 
Lemma (4.2.2) [162]: Forܦ ∈ ࣞandܣ ∈ ݇,ܯ ∈ ,ܣ]‖we have ,ࡺ ‖[ܦ ≤  .(ܣ)ܥ‖ܦ‖4 
Proof. It suffices to show that ‖[ܣ, ‖[ܦ ≤ ܦ for (ܣ)ܥ‖ܦ‖2 ∈ ࣞ with real entries. Given 
such a D, we list its diagonal entriesin the ascending order as 

݀ଵ ≤ · · · ≤ ݀ . 
Then there is a permutation (1)ߪ, . . . , ,of 1 (݇)ߪ . . . , ݇ such that for every ݅ ∈ {1, . . . , ݇}, ݀݅is 
in the intersection of the ߪ(݅)-th row and the ߪ(݅)-th column of D. Note that ݀ଵ ≥  ‖ܦ‖−
and ݀ ≤ ܦ . For each݅ ∈ {1, . . . , ݇}, letܧ be the݇ × ݇diagonal matrixwhose entry in the 
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intersection of the ߪ(݆)-th row and the ߪ(݆)-th column equals 1 for every ݅ ≤ ݆ ≤ ݇, and 
whose other entries are all 0. Then ܧଵ is the ݇ × ݇ identity matrix, and we have 

ܦ = ݀ଵܧଵ +  (݀ଶ − ݀ଵ)ܧଶ + · · ·  + (݀ − ݀ିଵ)ܧ . 
Accordingly, for any ܣ ∈  , we haveܯ

,ܣ ]‖ ‖[ܦ ≤ |݀ଵ|  ‖[ܣ, ‖[ଵܧ + (݀ଶ − ݀ଵ)‖[ܣ, ‖[ଶܧ + · · ·  + (݀ − ݀ିଵ)‖[ܣ, ‖[ܧ
≤ (݀ଶ − ݀ଵ)ܥ (ܣ) + · · ·  + (݀ − ݀ିଵ)ܥ(ܣ)  =  (݀ − ݀ଵ)ܥ(ܣ)
≤  (ܣ)ܥ‖ܦ‖2

as promised. 
For each ݇ ∈ ܣ  be the collection ofܦܸ let ,ࡺ ∈  . whose diagonal entries are all zeroܯ
That is, VD stands for vanishing diagonal. 
Lemma (4.2.3) [162]: If ܣ ∈ ݇,ܦܸ ∈ ‖ܣ‖then ,ࡺ ≤ ,ܣ]‖}ݑݏ ܦ :‖[ܦ ∈ ࣞ, ܦ ≤ 1}. 
Proof. Let ݇ ∈ ߠ be given. For each ࡺ ∈ let ఏܸ ,ࡾ  be the ݇ × ݇ diagonal matrix whose 
diagonal entries are, in the natural order, ݁ఏ , ݁ଶఏ, . . . , ݁ఏ  . Let ܣ ∈ ܦܸ . Since the 
diagonal entries of A are all zero, elementary calculation shows that 

න ఏܸ
ܣ ∗ ఏܸ  ߠ݀ 

ଶగ



=  0. 

Hence 

ܣ =
1

ߨ2 න ܣ) − ఏܸ
ܣ ∗ ఏܸ)݀ߠ

ଶగ



=
1

ߨ2 න ,ܣ] ఏܸ
∗] ఏܸ݀ߠ

ଶగ



. 

Thus for each ܣ ∈ ܦܸ  , there is a (ܣ)ߠ ∈ [0, [ߨ2  such that ฮ[ܣ, ఏܸ()
∗ ] ఏܸ(ܣ)ฮ ≥

,ܣ]Since ฮ.‖ܣ‖ ఏܸ()
∗ ]ฮ = ฮ[ܣ, ఏܸ()

∗ ] ఏܸ(ܣ)ฮ,  the lemma follows. 
The following bound is a step in the proof of (20): 
Proposition (4.2.4) [162]:If∈ ݇,ܦܸ ∈ ‖ܣ‖then ,ࡺ ≤  .(ܣ)ܥ4
Proof.  The conclusion follows immediately from Lemmas (4.2.3) and (4.2.2). 
As usual, we write ܪஶ() for the collection of bounded analytic functions on B. Also, we 
write ‖ℎ‖ஶ = ݑݏ

∈
|ℎ(ߞ)| for ℎ ∈  assubset of the ()ஶܪ Naturally, we consider .()ஶܪ

Bergman space ܮ
ଶ ,)  Recall that the formula .(ݒ݀

݇ऊ(ߞ) =
(1 − |ऊ|ଶ)(ାଵ)/ଶ

(1 − , ߞ〉 ऊ〉)ାଵ ,   ऊ, ߞ ∈  ,

gives us the normalized reproducing kernel for ܮ
ଶ ,) ݅ For each integer .(ݒ݀ ≥ 0, we 

define the modified kernel function 

߰ऊ,(ߞ) =
(1 − |ऊ|ଶ)ቄାଵ

ଶ ቅା

(1 − ,ߞ〉 ऊ〉)ାଵା , ऊ, ߞ ∈  .   

If we introduce the multiplier 

݉ऊ(ߞ)  =
1 − |ऊ|ଶ

1 − , ߞ〉 ऊ〉 

for each ऊ ∈ then we have the relation ߰ऊ, , = ݉ऊ
 ݇ऊ  . As we have seen previously 

[7,8,18], this modification gives߰ऊ, a faster “decaying rate” than ݇ऊ, which is what makes 
the estimate in Lemma (4.2.29) possible. 
Obviously, ‖݉ऊ‖ஶ ≤ 1 + |ऊ| < 2  for every ऊ ∈  . Therefore for every ݅ ∈ ାࢆ we 
have߰ऊ, ≤ 2 . On the other hand,߰ऊ,, ݇ऊ = 1. Hence the inequality  
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1 ≤ ฮ߰ऊ,ฮ ≤ 2                                                     (22) 
holds for all ݅ ∈ ା  and ऊࢆ ∈   .
Definition (4.2.5) [162]: (a) For ऊ ∈ ݎ and  > 0, denote ܦ(ऊ, (ݎ = ߞ} ∈  ∶ ,ऊ)ߚ  (ߞ <
 .{ݎ
 (b) Let ܽ > 0. A subset ߁ of B is said to be a-separated if ܦ(ऊ, ܽ) ∩ ,ݓ)ܦ ܽ) = ∅ 
for all distinct elements ऊ,  .߁ in ݓ
 (c) A subset ߁of B is simply said to be separated if it is a-separated for some ܽ > 0. 
Lemma (4.2.6) [162]: [169, Lemma 2.2] Let ߁be a separated set in B. 
(a)For each 0 < ܴ < ∞ , there is a natural number ܰ = ,߁)ܰ ܴ)  such that card{ݒ ∈
,ݑ)ߚ :߁ (ݒ ≤ ܴ} ≤ ܰfor everyݑ ∈  .߁
(b) For every pair ofऊ ∈ ߩand > 0, there is a finite partition߁ = ଵ߁ ∪· · ·∪  such that߁
for every݅ ∈ {1, . . . , ݉}, the conditionsݑ, ݒ ∈ ݑand߁ ≠ ,௨(ऊ)߮)ߚimplyݒ ߮௨(ऊ)) >  .ߩ
Recall that for each ऊ ∈  the formula ,

( ऊܷℎ)(ߞ) = ݇ऊ(ߞ)ℎ(߮ऊ(ߞ)),       ߞ ∈ ℎ ݀݊ܽ  ∈ ܮ
ଶ ,)  ,(ݒ݀

defines a unitary operator. 
Lemma (4.2.7) [162]:[169, Lemma 2.6] Given any separated set Γ in B, there exists a 
constant 0 < (Γ)ܤ < ∞  such that the following estimate holds: Let {ℎ௨ ∶ ݑ ∈ {߁ be 
functionsin ܪஶ() such that ݑݏ

௨∈௰
‖ℎ௨‖ஶ < ∞, and let {݁௨: ݑ ∈  be any orthonormal {߁

set.Then 

ะ( ௨ܷ ℎ௨) ⊗ ݁௨
௨∈௰

ะ ≤ ݑݏ
௨∈௰

‖ℎ௨‖ஶ  . 

Suppose that ߁ is a separated set in B, ݅ ∈ ା and ऊࢆ ∈ ,߁} For each such triple . ݅, ऊ}, we 
define the operator 

௰;ऊ;ܧ =  ߰ఝೠ(ऊ),
௨∈௰

⊗ ߰ఝೠ(ऊ),. 

Corollary (4.2.8) [162]:Let߁be a separated set in B and let ݅ ∈ ܴ ା. Given anyࢆ > 0, 
there isa constant ܥଷ.ସ = ௰;ऊ;ฮܧଷ.ସ(ܴ) such that the inequality ฮܥ ≤  ଷ.ସ holds for everyܥ
ऊ ∈ ,ऊ)ߚ satisfying the condition  0) ≤ ܴ. 
Proof.  Let ݑ ∈ ߁  and ऊ ∈ By [164, Theorem 2.2.2], we have ߰ఝೠ(ऊ), . = ܷ௨ℎ௨,ऊ; , 
where 

ℎ௨,ऊ; = ቆ
1 − ,ݑ〉 ऊ〉

|1 − ,ݑ〉 ऊ〉|ቇ
ାଵ

(݉ఝೠ(ऊ) ∘ ߮௨)݇ऊ. 

Obviously,ฮℎ௨,ऊ;ฮஶ
≤ 2‖݇ऊ‖ஶ ≤ 1)ܥ − |ऊ|)ି(ାଵ)/ଶ, where ܥ =  2݅ + (1/2)(݊ + 1). 

Com-bining this with the fact that|ऊ| = (݁ଶఉ(ऊ,) − 1 )/(݁ଶఉ(ऊ,) + 1), we obtain 
ฮℎ௨,ऊ;ฮஶ

≤ ଶఉ(ऊ,)݁)ܥ  +  1)(ାଵ)/ଶ. 
Applying Lemma (4.2.7), we see that the constant ܥଷ.ସ = (ܴ)ଷ.ସܥ = ଶ(݁ଶோܥ(߁)ଶܤ  +
1)ାଵ suffices for the given ܴ > 0. 
Let ݀ߣ denote the standard Möbius-invariant measure on B. That is, 

(ऊ)ߣ݀ =
(ऊ)ݒ݀

(1 − |ऊ|ଶ)ାଵ . 

Proposition (4.2.9) [162]:[168, Proposition 4.1]For each integer ݅ ≥ 0 , there exist 
scalars0 < ܿ ≤ ܥ < ∞ which are determined by i and n such that the self-adjoint operator 
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ܴ = න ߰ऊ, ⊗ ߰ऊ,݀ߣ(ऊ) 

satisfies the operator inequality ܿܲ ≤  ܴ ≤ ,)ଶܮ on the Hilbert space ܲ ܥ  .(ݒ݀
Lemma (4.2.10) [162]:[166, Lemma 4.2]Let{ܺ, ,ܯ  be a  (finite or infinite) measure{ߤ
space. Let H be a separable Hilbert space and let ࣥ(ܪ) denote the col lection of compact 
operators on H . Suppose that ܨ: ܺ →  is a weakly ℳ-measurable map. If (ܪ)ࣥ

න (ݔ)ߤ݀‖(ݔ)ܨ‖


< ∞, 

then 

ܭ = න (ݔ)ߤ݀(ݔ)ܨ


 

is a compact operator on the Hilbert space H. 
Using the above facts, we can “decompose” non-compactness on the Bergman space: 
Proposition (4.2.11) [162]: LetAbe a bounded, non-compact operator onܮ

ଶ ,)  Then .(ݒ݀
for every݅ ∈  in B such that the operator ߁ ା, there is a 1-separated setࢆ

ܣ  ߰ऊ, ⊗ ݁ऊ
ऊ∈௰

 

is not compact, where {݁ऊ: ऊ ∈  .is any orthonormal set {߁
Proof.  Let ℒ be a subset of B which is maximal with respect to the property that 

,ݑ)ܦ 1) ∩ ,ݒ)ܦ  1) = ≠ ݑ  ݈݈ܽ ݎ݂∅  ℒ.             (23)  ݊݅  ݒ
The maximality of ℒ implies that 

ራ ,ݑ)ܦ 2)
௨∈ℒ

 =  (24)                                                           .

Now define the function 
ߔ =  ߯(௨,ଶ)

௨∈ℒ

 

on B. By (23) and Lemma (4.2.6)(a), there is a natural number ܰ ∈  such that ࡺ
ݒ}݀ݎܽܿ ∈ ℒ: ݑ)ܦ, 2) ∩ ,ݒ)ܦ 2) ≠ ∅} ≤ ܰ 

for every ݑ ∈ ℒ. This and (24) together tell us that the inequality 
1 ≤ ߔ ≤ ܰ                                                                 (25) 

holds on the unit ball B. 
Given any integer ݅ ∈  ା, we define the operatorࢆ

ܴ
ᇱ = න ऊ,߰(ऊ)ߔ ⊗ ߰ऊ,݀ߣ(ऊ)  =  න ߰ऊ, ⊗ ߰ऊ,݀ߣ(ऊ)

(௨,ଶ)௨∈ℒ

. 

Then (25) implies that ܴ ≤ ܴ
ᇱ ≤ ܴܰ . Applying Proposition (4.2.9), we see that the 

operator inequality ܿ ≤ ܴ
ᇱ ≤ ܮ holds on the Bergman space ܥ ܰ

ଶ ,) That is, ܴ .(ݒ݀  is 
both bounded and invertible on ܮ

ଶ ,)  ,ߣ݀ and ߚ By the Möbius invariance of both .(ݒ݀
we have 

ܴ
ᇱ =  න ߰ఝೠ(ऊ), ⊗ ߰ఝೠ(ऊ),݀ߣ(ऊ)

(,ଶ)௨∈ℒ

 = න ℒ;ऊ;ܧ (ऊ)ߣ݀ 
(,ଶ)

. 
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Let A be a bounded, non-compact operator on ܮ
ଶ ,) (ݒ݀ . Since ܴ

ᇱ  is invertible, the 
operator 

ܴܣ
ᇱ = න (ऊ)ߣℒ;ऊ;݀ܧܣ

(,ଶ)

 

is not compact. By Corollary (4.2.8), there is a finite bound for ฮܧℒ;ऊ;ฮ, ऊ ∈ ,0)ܦ 2). 
ThusLemma (4.2.10) tells us that there is aݓ ∈  ,.ℒ;ऊ;is not compact, i.eܧܣsuch that (0,2)ܦ

ܣ  ߰ఝೠ(௪), ⊗ ߰ఝೠ(௪),
௨∈ℒ

                                                  (26) 

is not compact. Since ℒ is 1-separated, Lemma (4.2.6)(b) provides a partition ℒ = ℒଵ ∪· ·
 · ∪ ℒsuch that for each݆ ∈ {1, . . . , ݉}, we haveߚ(߮௨(ݓ), ߮௩(ݓ)) > 2 for allݑ ≠ in ℒݒ . 
That is, each set ߁ = {߮௨(ݓ) ∶ ݑ ∈ ℒ}  is also 1-separated, ݆ ∈ {1, . . . , ݉} . The non-
compactness of (26) implies that there is a ݆ ∈ {1, . . . , ݉} such that the operator 

ܣ  ߰ऊ, ⊗ ߰ऊ,
ऊ∈௰ೕబ

                                                        (27) 

is not compact. Finally, let {݁ऊ: ऊ ∈  బ} be any orthonormal set and define the operator߁

ܨ =  ߰ऊ, ⊗ ݁ऊ
ऊ∈௰ೕబ

. 

By Corollary (4.2.8), F is a bounded operator. Since (27) equals ܨܨܣ∗, we conclude that 
AF is not compact. This completes the proof. 
To prove Theorem (4.2.1), we obviously need plenty of operators to test the membership 
ܣ ∈  In view ofProposition (4.2.11), it is easy to understand that the most .(࣮)݉ܥݏݏܧ
suitable “test operators” are discrete sums constructed from the modified kernel ߰ऊ, . But 
then a problem immediate arises: how do we know that these operators belong to  ? 
It was first discovered in [170] that localization is a powerful tool for analyzing operators 
on reproducing-kernel Hilbert spaces. Recently, Isralowitz, Mitkovski and Wick further 
explored this idea in [171] by introducing the notion of weakly localized operators on the 
Bergman space. This in turn led to [169], which settles the membership problem mentioned 
in the preceding paragraph. 
Definition (4.2.12) [162]: Let a positive number (݊ − 1)/(݊ + 1) < > ݏ 1 be given. 
(c) A bounded operator B on the Bergman space ܮ

ଶ ,) (ݒ݀  is said to be s-weakly 
localized if it satisfies the conditions 

ݑݏ
ऊ∈

න|〈݇ܤऊ ,  ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − |ऊ|ଶ ቇ

௦(ାଵ)
ଶ

(ݓ)ߣ݀ < ∞, 

ݑݏ
ऊ∈

ऊ݇∗ܤ〉| ,  ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − |ऊ|ଶ ቇ

௦(ାଵ)
ଶ

(ݓ)ߣ݀ < ∞, 

lim
→ஶ

ݑݏ
ऊ∈

න ,ऊ݇ܤ〉|  ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − |ऊ|ଶ ቇ

௦(ାଵ)
ଶ

(ݓ)ߣ݀
(ऊ,)\

=  0   ܽ݊݀  
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lim
→ஶ

ݑݏ
ऊ∈

න ,ऊ݇ܤ∗ܤ〉|  ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − |ऊ|ଶ ቇ
௦(ାଵ)/ଶ

(ݓ)ߣ݀
(ऊ,)\

= 0. 

(c) Let ࣛ௦  denote the collection of s-weakly localized operators defined as above. 
(d) Let ܥ∗(ࣛ௦) denote the C∗ -algebra generated by ࣛ௦. 
Theorem (4.2.13) [162]:[169, Theorem 1.3]For every (݊ − 1)/(݊ + 1) < ݏ < 1 we 
haveܥ∗(ࣛ௦) = ࣮. 
Lemma (4.2.14) [162]:[169, Lemma 2.3]For allݑ, ,ݒ ,ݔ ݕ ∈  we have

(1 − |߮௨ (ݔ)|ଶ)ଵ/ଶ(1 − |߮௩(ݕ)|ଶ)ଵ/ଶ

|1 − 〈߮௨(ݔ), ߮௩(ݕ)〉|
≤  2݁ఉ(௫,)ାఉ(௬,) (1 − ଶ)ଵ/ଶ(1|ݑ| − ଶ)ଵ/ଶ|ݒ|

|1 − ,ݑ〉 |〈ݒ
. 

Corollary (4.2.15) [162]:For every triple ofऊ, ऊ′ , ߞ ∈ |(ߞ)we have|݇ऊ ≤
(2݁ఉ(ऊ,ऊᇱ))ାଵ|݇ऊᇲ  .|(ߞ)
Proof. Given any triple of ऊ, ऊ′ , ߞ ∈ ݑ we apply Lemma (4.2.14) to the case where , =
ऊ′, ݒ = ,ߞ ݔ = ߮ऊᇲ (ऊ) and ݕ = 0, which gives us 

(1 − |ऊ|ଶ)ଵ/ଶ(1 − ଶ)ଵ/ଶ|ߞ|

|1 − 〈ऊ, |〈ߞ ≤  2݁ఉ(ఝऊᇲ(ऊ),) (1 − |ऊ′|ଶ)ଵ/ଶ(1 − ଶ)ଵ/ଶ|ߞ|

|1 − 〈ऊ′, |〈ߞ . 

Since ߚ(߮ऊᇲ (ऊ),0) = ,ऊ)ߚ  ऊ′), this implies the conclusion of the corollary. 
We now present the “test operators” mentioned earlier. 
Proposition (4.2.16) [162]: Let߁be a separated set inB. Suppose that߁ :ߛ →  is a map
forwhich there is a 0 < ܥ < ∞ such that 

,ݑ൫ߚ                                                        ൯(ݑ)ߛ ≤  (28)                                                                   ܥ
for every ݑ ∈ ݅ Then for every .߁ ∈  ା and every bounded set of complex coefficientsࢆ
{ܿ௨: ݑ ∈  the operator ,{߁

ܶ =  ܿ௨߰௨, ⊗ ߰ఊ(௨),
௨∈௰

                                                 (29) 

belongs to the Toeplitz algebra ࣮ . 
Proof. We need the Forelli–Rudin estimates in [10]. Fix an (݊ − 1)/(݊ + 1) < ݏ < 1 and 
set 

ܣ = ݑݏ
௫∈

න|〈݇௫ , ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − ଶ|ݔ| ቇ

௦(ାଵ)
ଶ

(ݓ)ߣ݀   ܽ݊݀ 

(ܴ)ܤ = ݑݏ
௫∈

න |〈݇௫ , ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − ଶ|ݔ| ቇ

௦(ାଵ)
ଶ

(ݓ)ߣ݀
ఉ(௪,௫)ஹோ

 

for R > 0. From [170, p. 1558] we know that ܣ < ∞ and ܤ(ܴ) → 0 as ܴ → ∞. To show 
that ∈ ࣮ , by Theorem (4.2.13), it suffices to show that ܶ ∈ ࣛ௦. 
Thus we need to verify that 

lim
→ஶ

ݑݏ
ऊ∈

න |〈ܶ݇ऊ, ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − |ऊ|ଶ ቇ
௦(ାଵ)/ଶ

(ݓ)ߣ݀
(ऊ,)\

= 0.                       (30) 

To prove this, let us write ܥଵ = |௨ܿ|}ݑݏ ∶ ݑ ∈  which is assumed to be finite. Forevery ,{߁
pair of ऊ, ݓ ∈    we have 
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|〈ܶ݇ऊ , ݇௪〉| ≤ ଵܥ ห〈݇ऊ , ߰ఊ(௨),〉〈߰௨, , ݇௪〉ห
௨∈௰

≤ 2ଶܥଵ(1 −  |ऊ|ଶ)
ାଵ

ଶ (1 − (ଶ|ݓ|
ାଵ

ଶ  |݇ఊ(௨)(ऊ)݇௨(ݓ)|
௨∈௰

.                    (31) 

By  the assumption on ߁,  there is  an ܽ >  0  such that ݑ)ܦ, ܽ)  ∩ ,ݒ)ܦ ܽ) =  ∅  for all= 
v in Γ. By Corollary (4.2.15), we have |݇௨(ݓ)| ≤ (2݁)ାଵ|݇௫(ݓ)|  for every ݔ ∈
,ݑ)ܦ ܽ) . Similarly, by (28) and Corollary (4.2.15), we have |݇ఊ(ݑ)(ݖ)| ≤
(2݁)ାଵ|݇௫(ऊ)|  for every ݔ ∈ ,ݑ)ܦ ܽ) . Substituting these in(31), we find that if we 
setܥଶ = 2ଶܥଵ(4݁ଶା)ାଵ,then 

|〈ܶ݇ऊ , ݇௪〉| ≤ ଶܥ ห〈݇ऊ , ݇௫ೠ
〉〈݇௫ೠ , ݇௪〉ห

௨∈௰

, 

where ݔ௨ ∈ ,ݑ)ܦ ܽ) for every ݑ ∈ ݖ Thus for any .߁ ∈ ݎ and  > 0, we have 

න |〈ܶ݇ऊ, ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − |ऊ|ଶ ቇ

௦(ାଵ)
ଶ

(ݓ)ߣ݀
(ऊ,)\

≤ න ଶܥ  න |〈݇ऊ, ݇௫〉〈݇௫, ݇௪〉|
(ݔ)ߣ݀

,ݑ)ܦ)ߣ ܽ)) ቆ
1 − ଶ|ݓ|

1 − |ऊ|ଶ ቇ

௦(ାଵ)
ଶ

(௨,)௨∈௰ఉ(ऊ,௪)ஹ

(ݓ)ߣ݀

≤
ܥ

,0)ܦ)ߣ ܽ))
න න |〈݇ऊ, ݇௫〉〈݇௫, ݇௪〉| ቆ

1 − ଶ|ݓ|

1 − |ऊ|ଶ ቇ

௦(ାଵ)
ଶ

(ݔ)ߣ݀(ݓ)ߣ݀
ఉ(ऊ,௪)ஹ

. 

The rest of the proof resembles the proof of [10, Proposition 2.2]: Write the last integral in 
the form of ܫଵ +  . ଶܫ
         If ߚ(ऊ, (ݔ < ,ऊ)ߚ and 2/ݎ (ݓ ≥ ,ݔ)ߚ then ,ݎ (ݓ ≥  Hence .2/ݎ

ଵܫ ≤ |〈݇ऊ , ݇௫〉| ቆ
1 − ଶ|ݔ|

1 − |ऊ|ଶቇ

௦(ାଵ)
ଶ

න |〈݇ऊ , ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − ଶ|ݔ| ቇ

௦(ାଵ)
ଶ

ఉ(௪,௫)ஹ/ଶ

 (ݔ)ߣ݀(ݓ)ߣ݀

Since the inner integral is at most (2/ݎ)ܤ, we have ܫଵ ≤  ,On the other hand .(2/ݎ)ܤܣ

≤ න |〈݇ऊ, ݇௫〉| ቆ
1 − ଶ|ݔ|

1 − |ऊ|ଶቇ

௦(ାଵ)
ଶ

ఉ(ऊ,௫)ஹ/ଶ

න|〈݇ऊ , ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − ଶ|ݔ| ቇ

௦(ାଵ)
ଶ

 (ݔ)ߣ݀(ݓ)ߣ݀

Since the inner integral does not exceed ܣ, we have ܫଶ ≤  Hence .(2/ݎ)ܤܣ

න |〈ܶ݇ऊ , ݇௪〉| ቆ
1 − ଶ|ݓ|

1 − |ऊ|ଶ ቇ

௦(ାଵ)
ଶ

(ݓ)ߣ݀
(ऊ,)\

≤
(2/ݎ)ܤܣଶܥ2
,0)ܦ)ߣ ܽ))

 

for all ऊ ∈ ݎ and > 0, which proves (30). By the same argument, if we replace T by 
ܶ∗in(30), the limit also holds. This completes the verification thatܶ ∈ ࣛ௦. 
For an operator ܣ on a Hilbert space ℋ, we write ‖ܣ‖ொforits essential norm, i.e., 

ொ‖ܣ‖ = ܣ‖} ݂݊݅  −  .{ℋ ݊ ݎݐܽݎ݁ ݐܿܽ݉ܿ ݕ݊ܽ ݏ݅ ܭ :‖ܭ 
Next we use operators of the form (29) to test membership in ݉ܥݏݏܧ(࣮). To do this, we 
also need a familiar lemma: 
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Lemma (4.2.17) [162]:[172, Lemma 2.1]Let{ܤ}be a sequence of compact operators on 
a Hilbert space ℋ satisfying the following conditions: 

(a) Both sequences {ܤ} and {ܤ
∗ } converge to 0 in the strong operator topology. 

(b)  Thelimitlim
→ஶ

 .‖existsܤ‖
Then there exist natural numbers ݅(1) < ݅(2) < · · · <  ݅(݉) < · · ·such that the sum 

 ()ܤ

ஶ

ୀଵ

= lim
ே→ஶ

 ()ܤ

ே

ୀଵ

 

exists in the strong operator topology and we have 

ะ  ()ܤ

ஶ

ୀଵ

ะ
ொ

= lim
→ஶ

‖ܤ‖ . 

  
Lemma (4.2.18) [162]:Letܣbe a bounded operator onܮ

ଶ ,)  Suppose that there exist .(ݒ݀
an݅ ∈ < ܿ and a  in ߁ ା, a separated setࢆ 0 such that the fol lowing two conditions hold: 

(a) There is a sequence ܧଵ, . . . , , ܧ  . ..  of finite subsets of ߁ such that 

ቯܣ,  ߰ऊ, ⊗ ߰ऊ,
ऊ∈ ாೕ

ቯ ≥ ݆ ݕݎ݁ݒ݁ ݎ݂      ܿ  ≥ 1. 

(b) inf{|ऊ| ∶ ऊ ∈ {ܧ  → 1as݆ →  ∞. 
Then A does not belong to the essential commutant of ߁ . 
Proof.  For convenience, for each subset E of ߁ we denote 

ܵா =  ߰ऊ, ⊗ ߰ऊ,
ऊ∈ா

. 

By Corollary (4.2.8), ܵ  is a bounded operator. Therefore ‖ܵா‖ ≤ ‖ܵ‖ < ∞ for every 
ܧ ⊂  .߁
Since each ܧ is a finite set and since (2) holds, passing to a subsequence if necessary, we 
may assume that  ܧ ∩ ܧ  =  ∅ for all ݆ = ݇ in N. Denote = ∪ୀଵ

ஶ   . Thenܧ

〈ܵఌ  ℎ, ℎ〉 =  〈ܵாೕ  ℎ, ℎ〉
ஶ

ୀଵ

 

or every ℎ ∈ ܮ
ଶ ,) (ݒ݀ . Obviously, this implies that the sequence of operators {ܵாೕ} 

converges to 0 weakly. But since ܵாೕ ≥  0 for every ݆, from this weak convergence we 
deduce that the operator sequence {ܵாೕ} converges to 0 strongly. Define 

ܤ = ,ܣ]  ܵாೕ] 
for every ݆ ∈ ܤ Then we have the strong convergence .ࡺ →  0 and ܤ

∗ → 0 as ݆ → ∞, i.e., 
condition (a) in Lemma (4.2.17) is satisfied by these operators. Since ฮܤฮ ≤  ‖ܵ‖‖ܣ‖2
for every ݆, there is a subsequence {݆ఔ} of the natural numbers such that the limit 

݀ = lim
ఔ→ஶ

ฮܤഌฮ 
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exists. That is, the subsequence {ܤഌ}  satisfies both condition (a) and condition (b) in 
Lemma (4.2.17). By that lemma, there are (1)ߥ < (2)ߥ  <· · ·< (݉)ߥ  <· · · such that 
thesum 

ܤ =  ഌ()ܤ

ஶ

ୀଵ

=  lim
ே →ஶ

 ഌ()ܤ

ே

ୀଵ

 

converges in the strong operator topology with ‖ܤ‖ொ = ݀ . By condition (1), ݀ ≥ ܿ >
0.Thus B is not a compact operator. 
For each ܰ ∈  define ,ࡺ

ேܶ =  ܵாೕഌ()

ே

ୀଵ

. 

If we set ℱ =∪ ⋃ ഌ()ܧ
ஶ
ୀଵ , then we obviously have the weak convergence ேܶ →

ܵℱasܰ →  ∞. Thus, taking weak limit, we obtain 

ܤ = lim
ே →ஶ

 ,ܣ] ܵாೕഌ()
]

ே

ୀଵ

 = lim
ே →ஶ

,ܣ] ேܶ] = ,ܣ]  ܵℱ]. 

This shows that the commutator [ܣ, ܵℱ]is not compact. Since Proposition (4.2.16) tells us 
that ܵℱ ∈ ࣮ , we conclude that ܣ ∉  .(࣮)݉ܥݏݏܧ 
We begin with some general elementary facts. 
Lemma (4.2.19) [162]:LetTbe a bounded, self-adjoint operator on a Hilbert spaceℋ. Then 
foreach unit vector x ∈ H we have 

‖[ ܶ, ݔ ⊗ ‖[ݔ =  ‖(ܶ − ,ݔܶ〉  .‖ݔ(〈ݔ
Proof.Let ݔ ∈ ,ݔܶ〉ܶ By the self-adjointness of T, we have .ܪ 〈ݔ ∈  Therefore .ࡾ

[ܶ , ݔ ⊗ [ݔ  =  {(ܶ − ,ݔܶ〉 {ݔ(〈ݔ ⊗ ݔ − ݔ  ⊗ {(ܶ − ,ݔܶ〉 {ݔ(〈ݔ =  ℎ ⊗ ݔ − ݔ ⊗ ℎ, 
where we write ℎ =  (ܶ − ,ݔܶ〉 ‖ݔ‖ In the case .ݔ(〈ݔ =  1 , we have 〈ℎ, 〈ݔ =  0 . 
Hence 

‖[ܶ , ݔ ⊗ ‖[ݔ =  ‖ℎ ⊗ ݔ − ݔ ⊗ ℎ‖ =  ‖ℎ‖‖ݔ‖ =  ‖ℎ‖ =  ‖(ܶ − ,ݔܶ〉  ‖ݔ(〈ݔ
for every unit vector ݔ ∈ ℋ. 
Lemma (4.2.20) [162]:LetTbe a bounded, self-adjoint operator on a Hilbert space ℋ . 
Then forevery pair of unit vectors ݔ, ∋ ݕ ℋ we have 

,ݔܶ〉|       〈ݔ − ,ݕܶ〉 〈ݕ ≤  ‖[ܶ, ݔ ⊗ ‖[ݕ +  ‖[ܶ, ݔ ⊗ ‖[ݔ + ‖[ܶ, ݕ ⊗  (32)            .‖[ݕ
Proof.  By the self-adjointness of T , we have 

[ܶ , ݔ ⊗ [ݕ  = (ݔ ܶ)   ⊗ ݕ − ݔ  (ݕ ܶ) ⊗
=  {(ܶ − ,ݔܶ〉 {ݔ(〈ݔ  ⊗ − ݕ ⊗ ݔ   {(ܶ − ,ݕܶ〉 { ݕ(〈ݕ  + ,ݔܶ〉)  〈ݔ − ,ݕܶ〉 ݔ(〈ݕ ⊗  .ݕ

Since x and y are unit vectors, we have ‖ݔ ⊗ ‖ݕ = ‖ݕ‖‖ݔ‖ =  1. Therefore 
,ݔܶ〉| ,ݕܶ〉〈ݔ |〈ݕ = ,ݔܶ〉)‖ 〈ݔ − ,ݕܶ〉& ݔ(〈ݕ ⊗ ‖ݕ

≤ ‖[ܶ , ݔ ⊗ ‖[ݕ + ‖{(ܶ − ,ݔܶ〉 {ݔ〈ݔ ⊗ ‖ݕ + ݔ‖ ⊗ {(ܶ − ,ݕܶ〉 ‖{ ݕ(〈ݕ
=  ‖[ܶ , ݔ ⊗ ‖[ݕ + ‖(ܶ − ,ݔܶ〉 {‖ݔ(〈ݔ + ‖(ܶ − ,ݕܶ〉  . ‖ݕ(〈ݕ

Applying Lemma (4.2.19) to the last two terms above, we obtain (32). 
Lemma (4.2.21) [162]:Let{ऊ}be a sequence inBsuch that 

lim
→ஶ

|ऊ| ݑݏ = 1.                                                 (33) 
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Then there is a sequence ݆ଵ < ݆ଶ < · · · < ݆ < · · · of natural numbers such that |ऊ| <
|ऊାଵ | for every ݅ ∈ ݅ :and such that the set {ऊ ࡺ ∈  .is separated {ࡺ
Proof. For ऊ ∈ ,ऊ)ߚ we have , 0)  = 1)}݈݃ (1/2)  + |ऊ|)/(1 −  |ऊ|)}. Therefore (33) 
implies 

lim
→ஶ

ऊ)ߚ ݑݏ , 0) =  ∞. 

Using the triangle inequality for ߚ, the conclusion of the lemma follows from an easy 
inductive selection of ݆ଵ < ݆ଶ < · · · < ݆ < ···. 
Proposition (4.2.22) [162]:Suppose that{ऊ}is a sequence in B such that  

lim
→ஶ

|ऊ| = 1.                                                            (34) 

Furthermore, suppose that {ݓ} is a sequence in B for which there is a constant 0 < ܥ <
∞ such that 

൫ऊߚ , ൯ݓ ≤  (35)                                                         ܥ 
for every ݆ ∈ ݅ Then for every .ࡺ ∈ ܺ ା  and everyࢆ ∈   we have (࣮)݉ܥݏݏܧ

lim
→ஶ

ቛ[ܺ, ߰ऊೕ, ⊗ ߰௪ೕ,]ቛ    = 0.                                                (36) 

Proof. For the given {ऊ}, ,{ݓ} ݅ and ܺ, suppose that (36) did not hold. Then, replacing 
{ऊ}, by subsequences if necessary, we may assume that there is aܿ{ݓ} > 0 such that 

lim
→ஶ

ቛ[ܺ, ߰ऊೕ, ⊗ ߰௪ೕ,]ቛ = ܿ.                                         (37) 

We will show that this leads to a contradiction. 
By (34) and Lemma (4.2.21), there is a sequence ݆ଵ < ݆ଶ < · · · < ݆௩ <···of natural numbers 
such that |ऊೡ| < |ऊೡశభ| for every ߥ ∈ :and such that the set ൛ऊೡ ࡺ ߥ ∈  ൟis separated. Forࡺ
eachߥ ∈  we now define the operator ,ࡺ

ఔܤ =  [ܺ, ߰ऊೕೡ , ⊗ ߰௪ೕೡ ,], 

whose rank is at most 2. Since ݓ)ߚ , 0) = 1)}݈݃ (1/2) + |)/(1ݓ| −  |)}, (34) andݓ|
(35) together imply that |ݓ| ↑ 1  as ݆ →  ∞ . Thus both sequences of 
vectors{߰ऊೕ ,}and{߰௪ೕ,}converge to 0 weakly inܮ

ଶ ,)  Consequently we have the .(ݒ݀
convergence 

lim
ఔ→ஶ

ఔܤ  = 0  ܽ݊݀          lim
ఔ→ஶ

ఔܤ
∗  = 0 

in the strong operator topology. Thus by (37) and Lemma (4.2.17), there is a subsequence 
(1) < (2)ߥ <· · ·< (݉)ߥ <· · ·of natural numbers such that the sum 

ܤ =  ఔ()ܤ

ஶ

ୀଵ

 

converges strongly with ‖ܤ‖ொ = ܿ > 0. ThusB is not compact. Now define the operator 

ܣ =  ߰ऊೕഌ(), ⊗ ߰௪ೕഌ(),

ஶ

ୀଵ

. 

Since the set {ऊೡ ∶ ߥ ∈  is separated and since (35) holds, by Proposition (4.2.16) we {ࡺ
have ܣ ∈ ࣮ . Since ܺ ∈ (࣮)݉ܥݏݏܧ , the commutator [ܺ,  compact. On the other  [ܣ
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hand,we clearly have [ܺ, [ܣ =  which, according to Lemma (4.2.17), is a non-compact ,ܤ
operator. This is the contradiction promised earlier. 
Next we introduce modified Berezin transforms. To do this, we first need to normalize ߰ऊ,. 
For all݅ ∈ ାandऊࢆ ∈  we define ,

෨߰ऊ, =
߰ऊ,

ฮ߰ऊ,ฮ
. 

Keep in mind that 1 ≤ ฮ߰ऊ,ฮ ≤ 2 (see (22)). Suppose that A is a bounded operator on 
ܮ

ଶ ,) ݅ Then for each .(ݒ݀ ∈  ାwe define the functionࢆ
ß(ܣ)(ऊ) = ,෨߰ऊ, ܣ〉 ෨߰ऊ,〉, ऊ ∈  ,

on the unit ball. Of course, ß(ܣ) is just the usual Berezin transform (also called Berezin 
symbol ) of A. For each݅ > 0, we considerß(ܣ) as a modified Berezin transform of A. 
Proposition(4.2.23) [162]:Ifܺ ∈ (ܺ)thenß ,(࣮)݉ܥݏݏܧ ∈ ܸܱௗௗfor every݅ ∈  .ାࢆ
Proof. Let ݅ ∈  .(࣮)݉ܥݏݏܧ ା be given. Since ࣮ is closed under the ∗-operation, so isࢆ
Hence it suffices to consider a self-adjoint ܺ ∈  Obviously, ß(ܺ) is both .(࣮)݉ܥݏݏܧ 
bounded and continuous on B. If it were true that ß(ܺ) ∉ ܸܱ, then there would be a ܿ >
0 and sequences{ऊ},  in B with{ݓ}

lim
→ஶ

|ऊ| =  1                                                            (38) 

such that for every ݆ ∈ ऊ)ߚ we have ,ࡺ , (ݓ ≤ 1 and 
ቚ〈ܺ ෨߰ऊೕ,, ෨߰ऊೕ,〉 − 〈ܺ ෨߰௪ೕ,, ෨߰௪ೕ,〉ቚ = หß(ܺ)൫ऊ൯ − ß(ܺ)൫ݓ൯ห ≥ ܿ.           (39) 

But on the other hand, it follows from Lemma (4.2.20) that 
| 〈ܺ ෨߰ऊೕ,, ෨߰ऊೕ,〉 − 〈ܺ ෨߰௪ೕ,, ෨߰௪ೕ,〉 |

≤ ቛ[ܺ, ෨߰ऊೕ , ⊗ ෨߰௪ೕ,]ቛ +  ቛ[ܺ, ෨߰ऊೕ, ⊗ ෨߰ऊೕ,]ቛ

+  ቛ[ܺ, ෨߰௪ೕ, ⊗ ෨߰௪ೕ,]ቛ.                                                                         (40) 
By (38) and the condition ߚ(ऊ , (ݓ ≤ 1, ݆ ∈  we can apply Proposition (4.2.22) to obtain ,ࡺ

lim
→ஶ

ቛቂܺ, ߰ऊೕ, ⊗ ߰௪ೕ,ቃቛ = 0  ܽ݊݀  lim
→ஶ

ቛ[ܺ, ߰ऊೕ , ⊗ ߰ऊೕ,]ቛ = 0.                 (41) 

bviously, conditions (38) and ߚ(ऊ , (ݓ ≤ 1, ݆ ∈ ࡺ , also imply lim
→ஶ

|ݓ| =  1 . Thus 

Proposition (4.2.22) also provides that 
lim
→ஶ

ቛ[ܺ, ߰௪ೕ, ⊗ ߰௪ೕ,]ቛ   = 0.                                          (42) 

By (22), we have ฮ[ܺ, ෨߰ऊ, ⊗ ෨߰௪,]ฮ ≤    [ܺ, ߰ऊ, ⊗ ߰௪,]for all ऊ, ݓ ∈  Thus (40),(41) .
and (42) together contradict (39). 
Lemma (4.2.24) [162]:[163, Theorem 11]If݃ ∈ ܸܱௗௗ , then    

lim
|ऊ|↑ଵ

‖(݃ − ݃(ऊ))݇ऊ‖ = 0. 

Proposition (4.2.25) [162]:Ifܺ ∈ then for every݅ ,(࣮)݉ܥݏݏܧ ∈  ାwe haveࢆ
lim
|ऊ|↑ଵ

(ܺ − ßܶ())߰ऊ,  =  0. 

Proof. Again, it suffices to consider any self-adjoint ܺ ∈ (࣮)݉ܥݏݏܧ . Let ݅ ∈ ାࢆ  be 
given. Then from Lemma (4.2.19), Proposition (4.2.22) and (22) we deduce that 
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lim
|ऊ|↑ଵ

ฮ(ܺ − ß(ܺ)(ऊ))߰ऊ,ฮ ≤  2 lim
|ऊ|↑ଵ

(ܺ − ß(ܺ)(ऊ))߰ऊ, ≤ 2 lim
|ऊ|↑ଵ

ฮ[ܺ, ߰ऊ, ⊗ ߰ऊ,]ฮ

=  0. 
Therefore the proposition will follow if we can show that   

lim
|ऊ|↑ଵ

ฮ( ßܶ() − ß(ܺ)(ऊ))߰ऊ,ฮ  =  0.                             (43) 

But                            
ฮ( ßܶ() − ß(ܺ)(ऊ))߰ऊ,ฮ ≤ ฮ൫ß(ܺ) − ß(ܺ)(ऊ)൯߰ऊ,ฮ = ฮ൫ß(ܺ) − ß(ܺ)(ऊ)൯݉ऊ

 ݇ऊฮ
≤  2ฮ൫ß(ܺ) − ß(ܺ)(ऊ)൯݇ऊฮ .                                    (44) 

Proposition (4.2.23) tells us thatß(ܺ) ∈ ܸܱௗௗ, which enables us to apply Lemma (4.2.24) 
in the case ݃ = ß(ܺ). Thus (43) follows from (44) and Lemma (4.2.24). 
Here we present a number of estimates that will be needed in the proof of Theorem 
(4.2.1).First of all, we need a more precise version of Lemma (4.2.6)(a). 
Lemma (4.2.26) [162]: There is a constantܥ.ଵsuch that if߁is any 1-separated set inBand 
if1 ≤ ܴ < ∞, then for everyݑ ∈  we have߁ 

ݒ}݀ݎܽܿ ∈ :߁ ,ݑ)ߚ (ݒ ≤ ܴ} ≤  .ଵ݁ଶோ.                                        (45)ܥ
Proof. Since ߁ is 1-separated, for every pair of ݔ = ݒ} in ݕ ∈ ߁ ∶ ,ݑ)ߚ (ݒ ≤ ܴ}, we have 
,ݔ)ܦ 1) ∩ ,ݕ)ܦ 1) = ∅ . Also, if ,ݑ)ߚ  (ݒ  ≤  ܴ , then ,ݒ)ܦ 1) ⊂ ,ݑ)ܦ ܴ + 1) . By the 
Möbiusinvariance of both ߚ and ݀ߣ, we have ܦ)ߣ(ऊ, ((ݐ  = ,0)ܦ)ߣ  for all ऊ ((ݐ ∈  and 
ݐ > 0. Hence for every ݑ ∈  we have ߁

ݒ}݀ݎܽܿ ∈ :߁ ,ݑ)ߚ (ݒ ≤ ܴ} ≤ ఒ(௨,ோ ା ଵ))
ఒ൫(,ଵ)൯

= ఒ൫(,ோାଵ)൯
ఒ൫(,ଵ)൯

                   (46).  

On the other hand, 0)ߚ, ऊ) = 1)}݈݃ (1/2) + |ऊ|)/(1 − |ऊ|)}, ऊ ∈  Therefore .
,0)ܦ ܴ + 1) = {ऊ ∈ : |ऊ| < ,{ߩ = ߩ ݁ݎℎ݁ݓ (݁ଶோାଶ − 1)/(݁ଶோାଶ + 1). 

By the radial-spherical decomposition of the volume measure dv, we have  
  

,0)ܦ)ߣ ܴ + 1))  = න
(ऊ)ݒ݀

(1 − |ऊ|ଶ)ାଵ
| ऊ|ழఘ

= න
ݎଶିଵ݀ݎ2݊

(1 − ଶ)ାଵݎ

ఘ



≤ න
ݎ2݊݀

(1 − ାଵ(ݎ

ఘ



≤
2

(1 − (ߩ . 

Obviously, 1 − ߩ ≥ ݁ିଶோିଶ. Therefore0)ܦ)ߣ, ܴ + 1)) ≤ 2݁ଶ݁ଶோ . Substituting this in 
(46), we see that (45) holds for the constant ܥ.ଵ =  2݁ଶ/((0,1)ܦ)ߣ. 
Lemma (4.2.27) [162]: [168, Lemma 4.2] Given any integer ݅ ≥ 1 , there is a 
constantܥ.ଶsuch that 

ห〈߰ऊ,, ߰௪,〉ห ≤  .ଶ݁ିఉ(ऊ,௪)                                     (47)ܥ 
for all ऊ, ݓ ∈  .
Lemma (4.2.28) [162]: [166, Lemma 4.1] Let X be a set and let E be a subset of ܺ × ܺ. 
Supposethat m is a natural number such that 

ݕ}݀ݎܽܿ ∈ ܺ ∶ ,ݔ)  (ݕ ∈ {ܧ ≤ ݕ}݀ݎܽܿ ݀݊ܽ  ݉ ∈ ܺ ∶ ,ݕ)  (ݔ  ∈ {ܧ ≤ ݉ 
for every ݔ ∈ ܺ. Then there exist pairwise disjoint subsets ܧଵ, ,ଶܧ . . . ,  ଶ  of E such thatܧ

ܧ = ଵܧ ∪ ଶܧ ∪ . . .∪ ଶܧ  
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and such that for each 1 ≤ ݆ ≤ 2݉ , the conditions (ݔ, ,(ݕ ,′ݔ) (′ݕ ∈ ܧ  and (ݔ, (ݕ ≠
,′ݔ) ݔ imply both (′ݕ ≠ ݕ and ′ݔ  =  . ′ݕ
Lemma (4.2.29) [162]:Let an integer  ݅ ≥  8݊ + 1  be given. Then there is a 
constantܥ.ସsuch that the following estimate holds: Let ߁ be a 1-separated set in B and let 
{݁௨: ݑ ∈ be any orthonormal set. Let 1 {߁ ≤ ܴ < ∞. Then 

ቯ  〈߰௩, , ߰௨,〉݁௨ ⊗ ݁௩
(௨,௩)∈ி

ቯ ≤  .ସ݁ି(ସାଵ)ோܥ

for every ܨ ⊂ ,ݑ)} (ݒ ∈ ߁ × :߁ ,ݑ)ߚ (ݒ ≥  ܴ}.   
Proof.  We partition such an F in the form   

ܨ = (ଵ)ܧ ∪ (ଶ)ܧ ∪ · · · ∪ ()ܧ · · ·   ݁ݎℎ݁ݓ   , 
()ܧ = ,ݑ)} (ݒ ∈ ܴ݇ :ܨ  ≤ ,ݑ)ߚ (ݒ < (݇ + 1)ܴ}, ݇ ∈  .ࡺ

Accordingly,     
 〈߰௩, , ߰௨,〉݁௨ ⊗ ݁௩

(௨,௩)∈ி

= ܶ(ଵ) + ܶ(ଶ) + · · ·  +ܶ() · · ·  (48)                  ݁ݎℎ݁ݓ   , 

ܶ() =  〈߰௩, , ߰௨,〉݁௨ ⊗ ݁௩
(௨,௩)∈ா(ೖ)

,   ݇ ∈  .ࡺ

By Lemma (4.2.26), for each ݑ ∈    we have ߁ 
ݒ}݀ݎܽܿ ∈ :߁ ,ݑ) (ݒ ∈ {()ܧ ≤  ݀݊ܽ    .ଵ݁ଶ(ାଵ)ோܥ

ݒ}݀ݎܽܿ ∈ :߁ ,ݒ) (ݑ ∈ {()ܧ ≤  ..ଵ݁ଶ(ାଵ)ோܥ
Thus, by Lemma (4.2.28), each ܧ()  admits a partition  

()ܧ = ଵܧ
() ∪ · · · ∪ ଶೖܧ

() ℎ  ݉ݐ݅ݓ      ≤  .ଵ݁ଶ(ାଵ)ோܥ
such that for every ݆ ∈ {1, . . . , 2݉} , the conditions (ݑ, ,(ݒ ,′ݑ) (′ݒ ∈ ܧ

()  and (ݑ, (ݒ ≠
,′ݑ) ݑ imply both (′ݒ ≠ ݒ and ′ݑ =  . ′ݒ
Accordingly, we decompose each ܶ() in the form 

ܶ() =  ଵܶ
() + · · ·  + ଶܶೖ

() ,  (49)                        ݁ݎℎ݁ݓ

ܶ
() =  〈߰௩, , ߰௨,〉݁௨ ⊗ ݁௩

(௨,௩)∈ாೕ
(ೖ)

, ݆ ∈ {1, . . . , 2݉}. 

The above-mentioned  property  of  ܧ
() meansthat both projections  (ݑ, (ݒ ↦  ݑ

and(ݑ, (ݒ ↦ ܧ are injective on ݒ
(). Therefore 

ቛ ܶ
()ቛ = ݑݏ

(௨,௩)∈ாೕ
(ೖ)

|〈߰௩, , ߰௨,〉| . 

Applying Lemma (4.2.27), this gives us ቛ ܶ
()ቛ ≤  .ଶ݁ିோ. By (49), we now haveܥ

ฮܶ()ฮ ≤ 2݉ܥ.ଶ݁ିோ ≤ .ଶ݁ଶ(ାଵ)ோ݁ିோܥ.ଵܥ2    =  ,ଵ݁ି{ିଶ(ାଵ)}ோܥ
where ܥଵ = ݅ .ଶ. Sinceܥ.ଵܥ2  ≥ 8݊ + 1 and ݇ ≥  1, we have 

݅݇ − 2݊(݇ + 1) ≥ (8݊ + 1)݇ − 2݊ · 2݇ = (4݊ + 1)݇. 
Hence ฮܶ()ฮ ≤  ଵ݁ି(ସାଵ)ோ. Combining this with (49), we obtainܥ 
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ቯ  〈߰௩,, ߰௨,〉݁௨ ⊗ ݁௩
(௨,௩)∈ி

ቯ ≤ ฮܶ()ฮ
ஶ

ୀଵ

≤ ଵܥ  ݁ି(ସାଵ)ோ
ஶ

ୀଵ

 . 

Recall that we assume ܴ ≥ 1. Thus, factoring out ݁ି(ସାଵ)ோ  on the right, we see thatthe 
lemma holds for the constantܥ.ସ = ଵܥ ∑ ݁ି(ସାଵ)(ିଵ)ஶ

ୀଵ . 
Lemma (4.2.30) [162]:Given any ݅ ≥  8݊ + 1 , there is a positive number2 ≤ ܴ(݅) <
∞such that the following holds true for every ܴ ≥ ܴ(݅): Let ߁ be a subset of B with the 
property that ݑ)ߚ, (ݒ ≥ ܴ for ݑ ≠ ݑ :and let {݁௨ ,߁ in ݒ ∈  be an orthonormal set. Then {߁
the operator 

Ψ =  〈߰௩, , ߰௨,〉݁௨ ⊗ ݁௩
௨,௩∈௰

 

satisfies the condition ‖ݔߖ‖ ≥  for every vector x of the form‖ݔ‖(1/2)
= ݔ  ܿ௨݁௩

௨∈௰

,         |ܿ௨|ଶ

௨∈௰

< ∞.                                       (50) 

Proof. Given any ݅ ≥ 8݊ + 1 , let 2 ≤ ܴ(݅) < ∞ besuch that ܥ.ସ݁ି(ସାଵ)ோ() ≤ 1/2 , 
whereܥ.ସ is the constant provided by Lemma (4.2.29). Let ܴ ≥ ܴ(݅), and suppose that ߁ 
has the property that ݑ)ߚ, (ݒ  ≥ ܴ for ݑ ≠ = We have .߁ in ݒ ܦ + ܻ , where 

= ܦ ฮ߰௨,ฮ
ଶ

݁௨ ⊗ ݁௨
௨∈௰

 ܽ݊݀ ܻ  =  〈߰௩, , ߰௨,〉݁௨ ⊗ ݁௨
௨,௩∈௰
௨ஷ௩

. 

By (22), we have ‖ݔܦ‖ ≥  we ,߁ for every vector x of the form (50). By the propertyof‖ݔ‖
can apply Lemma (4.2.29) to obtain ܻ ≤ .ସ݁ି(ସାଵ)ோܥ ≤ .ସ݁ି(ସାଵ)ோ()ܥ ≤ 1/2Clearly, 
the conclusion of the lemma follows from these two inequalities. 
             As we have already mentioned, (19) is known and we only need to prove (20). To 
do this, we first fix an integer ݅ ≥  8݊ +  1. Let X be any operator in ݉ܥݏݏܧ(࣮). Then 
Proposition (4.2.23) tells us that ß() ∈ ܸܱௗௗ . Thus ßܶ() ∈ (࣮)݉ܥݏݏܧ  by (19). 
Toprove (20), it suffices to show that the operator ܺ − ßܶ()  is compact. Assume the 
contrary, i.e., ܺ − ßܶ() is not compact. We will show that this non-compactness leads to 
the conclusion that the operator 

ܣ = ቀܺ − ßܶ()ቁ
∗

ቀܺ − ßܶ()ቁ                                           (51) 
does not belong to ݉ܥݏݏܧ(࣮), which is a contradiction. 
Since ܺ − ßܶ() is assumed not to be compact, Proposition (4.2.11) provides a 1-separated 
set ߁ in B such that the operator 

ܻ = ቀܺ − ßܶ()ቁ  ߰௨, ⊗ ݁௨
௨∈

                                                  (52) 

is also not compact, where {݁௨: ݑ ∈  is an orthonormal set, which will be fixed for the {߁
rest of the proof. Our next step is to fix certain constants. 
First of all, the non-compactness of Ymeans that 

‖ܻ‖ொ =  ݀ > 0.                                                      (53) 
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Since ߰௨, = ݉௨
 ݇௨ = ܷ௨݉௨

 ∘ ߮௨  and since ‖݉௨‖ஶ ≤ 2, ݑ ∈  by Lemma (4.2.7) we ,߁ 
have 

 ߰௨, ⊗ ݁௨
௨∈ீ

 ≤ 2ܩ     ݕݎ݁ݒ݁ ݎ݂       (߁)ܤ ⊂  (54)                                 .߁

Let ܴ(݅) ≥ 2 be the positive number provided by Lemma (4.2.30) for the selected integer 
i. We then pick a positive number ܴ > ܴ(݅) such that 

4‖ܺ‖ଶܥ.ସ݁ିோ ≤
݀ଶ

2ସାܤସ(߁)ܥ.ଵ
ଶ ,                                            (55) 

where ܥ.ଵ and ܥ.ସ  are the constants provided by Lemmas (4.2.26) and (4.2.29) 
respectively. By Lemma (4.2.26), there is a natural numberܰ ≤  .ଵ݁ଶோsuch thatܥ

ݒ}݀ݎܽܿ ∈ ,ݑ)ߚ :߁ (ݒ ≤ ܴ}  ≤ ܰ 
for every u ∈ Γ. By a standard maximality argument, there is a partition Γ = Γଵ ∪···∪ Γ 
such that for every ν ∈ {1, . . . , N},  

,ݑ   ݏ݊݅ݐ݅݀݊ܿ ℎ݁ݐ ݒ ∈ ఔ߁ ݑ   ݀݊ܽ   ≠ ,ݑ)ߚ ݕ݈݉݅  ݒ (ݒ > ܴ.          (56) 
For each ߥ ∈ {1, . . . , ܰ}, define   

ఔܻ  = (ܺ − ßܶ())  ߰௨, ⊗  ݁௨
௨∈௰ഌ

. 

By (52) and (53), there is a ߤ ∈ {1, . . . , ܰ} such that ฮ ఓܻฮ
ொ

≥ ݀/ܰ . 
By Lemma (4.2.18), to obtain the promised contradiction ܣ ∉  it suffices to ,(࣮)݉ܥݏݏܧ
produce, for each ݆ ∈ ܰ, a finite subset ܧ ⊂ ఓ߁ ∩ {ऊ ∈  ∶ |ऊ| ≥ 1 −  (1/݆)} such that 

ቯܣ,  ߰௨, ⊗ ߰௨,
௨∈ாೕ

ቯ ≥
݀ଶ

2ସାܤସ(߁)ܥ.ଵ
ଶ ݁ସோ   .                   (57) 

Let ݆ ∈ ܰ be given. To find the ܧdescribed above, we set ܩ = ఓ߁ ∩  {ऊ ∈ : |ऊ| ≥ 1 −
(1/j)}.  Note that ߁ఓ\ܩ is a finite set. Thus if we define 

ܼ = (ܺ − ßܶ() )  ߰௨, ⊗ ݁௨
௨∈ீೕ

, 

then ఓܻ − ܼ  is a finite-rank operator, and consequently ฮ ܼฮ
ொ

 =  ฮ ఓܻฮ
ொ

≥  ݀/ܰ . Hence 

ฮZ ୨∗ ܼฮ
୕

= ฮ ܼฮ
୕
ଶ

≥ (d/N )ଶ ≥
dଶ

.ଵܥ
ଶ ݁ସோ . 

Obviously, we have Z ୨∗ ܼ = ܦ + ܹ , where      

ܦ =  ቛ(ܺ − ßܶ())߰௨,ቛ
ଶ

݁௨ ⊗ ݁௨
௨∈ீೕ

    ܽ݊݀   ܹ =  , ௩,߰ܣ〉 ߰௨,〉݁௨ ⊗ ݁௩
௨,௩∈ீೕ

௨ஷ௩

. 

proposition (4.2.25) implies that D is a compact operator. Hence 
  ‖ܹ‖ ≥ ‖ܹ‖ொ = ฮZ ୨∗ ܼฮ

୕
≥ ୢమ

ల.భ
మ రೃ . 

For each ݇ ∈  define the orthogonal projection ,ࡺ
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ܨ =  ݁௨ ⊗ ݁௨
௨∈ீೕ

|௨|ஸଵି(ଵ/)

. 

Then obviously we have the strong convergence ܨܹܨ → ܹ  as ݇ → ∞. Therefore there 
is a ݇(݆) ∈ ܩ such that if we set ࡺ = ݑ}  ∈ ݆ܩ ∶ |ݑ|   ≤  1 −  (1/݇(݆))} and 

Wᇱ =  , ௩,߰ܣ〉 ߰௨,〉݁௨ ⊗ ݁௩
௨,௩∈ ೕீ

ᇲ

௨ஷ௩

,                                    (58) 

then     
 ‖ܹ′‖ ≥ (1/2)ܹ ≥ ௗమ

ଶల.భ
మ రೃ  .                          (59).   

Obviously, ܩ
ᇱ is a finite set and the diagonal of  ܹ′ vanishes. 

We now apply Proposition (4.2.4) to the finite-rank operator ܹ′. By that proposition, there 
is an ܧ ⊂ ܩ

ᇱ  such that the orthogonal projection 

ܳ =  ݁௨ ⊗ ݁௨
௨∈ாೕ

   

has the property 4‖[W′ , Q]‖ ≥ ‖ܹ′‖ .  If we define 
ܬ =  ݁௨ ⊗ ݁௨

௨∈ ೕீ
ᇲ\ாೕ

, 

then  [ܹ′, ܳ]  = ܳ′ܹܬ  − ܬ′ܹܳ .  Since ܹ′  is self-adjoint, this gives us  ‖[ܹ′, ܳ]‖ =
 Combining these facts with (59), we obtain .‖ܳ′ܹܬ‖

‖ܳ′ܹܬ‖ ≥
݀ଶ

.ଵܥ8
ଶ ݁ସோ . 

On the other hand, since {ܩ
ᇱ\ܧ} ∩ ܧ =  ∅, from (58) we see that 

ܳ′ܹܬ =   , ௩,߰ܣ ߰௨, ݁௨ ⊗ ݁௩
௩∈ாೕ௨∈ ೕீ

ᇲ\ாೕ

=  , ܶܣ ∗ܵ 

where 
ܵ =  ߰௨, ⊗ ݁௨

௨∈ ೕீ
ᇲ\ாೕ

     ܽ݊݀    ܶ =  ߰௨, ⊗ ݁௨
௨∈ாೕ

. 

By the finite dimensionalities involved here, there are unit vectors ߦ ∈ ൛݁௨݊ܽݏ  ∶ ݑ ∈
ߟ ൟ andܧ ∈ ௨݁}݊ܽݏ  ∶ ݑ ∈ ܩ

ᇱ\ܧ} such that|〈ܵ∗ߦ ܶܣ, |〈ߟ =  Hence  .‖ ܶܣ∗ܵ‖ 

,ߦ ܶܣ∗ܵ〉| 〈ߟ ≥
݀ଶ

.ଵܥ8
ଶ ݁ସோ . 

Since ܴ >  ܴ(݅) and ܧ ⊂ ܩ ⊂ ఓ߁  , by (56) and Lemma (4.2.30), we have ‖ܶ∗ܶ ݔ‖ ≥
‖ݔ‖(1/2)  for every ݔ ∈ ௨݁}݊ܽݏ ∶ ݑ  ∈ {ܧ . This implies that ܶ∗ܶ  is surjective on 
௨݁}݊ܽݏ ∶ ݑ  ∈ {ܧ . Hence there is an ݔ ∈ ݑ :௨݁}݊ܽݏ ∈ {ܧ  with ‖ݔ‖ ≤ 2  such that 
ߦ = ݕ . Similarly, there is aݔܶ∗ܶ ∈ ௨݁}݊ܽݏ  ∶ ݑ ∈ ܩ

ᇱ\ܧ} with ‖ݕ‖ ≤ 2 such that ߟ =
 . Thereforeݕܵ∗ܵ 
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,ݔ ܶ∗ܶ ܶܣ∗ܵܵ∗ܵ〉| |〈ݕ = ,ݔ ܶ∗ܶ ܶܣ∗ܵ〉| |〈ݕܵ∗ܵ = ,ߦܶܣ∗ܵ|  |ߟ ≥
݀ଶ

.ଵܥ8
ଶ ݁ସோ 

Since ‖ݔ‖ ≤ 2 and ‖ݕ‖ ≤ 2, this implies 

‖ܶ∗ܶ ܶܣ∗ܵܵ∗ܵ‖ ≥
݀ଶ

.ଵܥ32
ଶ ݁ସோ . 

By (54), we have ‖ܶ‖ ≤ 2(߁)ܤ and ‖ܵ‖ ≤ 2(߁)ܤ. Hence 

‖∗ܶܶܣ∗ܵܵ‖ ≤
݀ଶ

2ଶାହܤଶ(߁)ܥ.ଵ
ଶ ݁ସோ .                                      (60) 

On the other hand,                
‖∗ܶܶܣ∗ܵܵ‖ ≤ ,ܣ]∗ܵܵ‖ ܶܶ∗]‖  + ‖ܣ∗ܶ ܶ∗ܵܵ‖

≤ ,ܣ ]‖‖∗ܵܵ‖ ܶܶ∗] ‖ + ‖ܣ‖‖∗ܶ‖‖ܶ∗ܵ‖ ‖ܵ‖
≤  2ଶ ,ܣ&]‖(߁)ଶܤ  ܶ ܶ∗&]‖   
+ 2ଶ ܤଶ(߁)‖(61)                                                                                     . ‖ܶ∗ܵ‖‖ܣ 

Recalling (51), we clearly have ‖ܣ‖ ≤ 4‖ܺ‖ଶ. Thus from (60) and (61) we deduce 

,ܣ ]‖ ܶܶ∗]‖ + 4‖ܺ‖ଶ‖ܵ∗ܶ‖ ≥
݀ଶ

2ସାହܤସ(߁)ܥ.ଵ
ଶ ݁ସோ .                              (62) 

To estimate ‖ܵ∗ܶ‖, note that              
ܵ∗ܶ =   〈߰௩,  , ߰௨,〉݁௨ ⊗ ݁௩

௨∈ாೕ௨∈ ೕீ
ᇲ\ாೕ

  . 

Obviously, {ܩ
ᇱ\ܧ}  × ܧ ⊂ ,ݑ)} (ݒ ∈ ఓ߁ × ఓ߁ ∶ ݑ ≠ {ݒ . By (75), we can apply Lemma 

(4.2.29) to obtain ‖ܵ∗ܶ‖ ≤  .ସ݁ି(ସାଵ)ோ . Substituting this in (62), we haveܥ

,ܣ ]‖ ܶܶ∗]‖ + 4‖ܺ‖ଶܥ.ସ݁ି(ସାଵ)ோ ≥
݀ଶ

2ସାହܤସ(߁)ܥ.ଵ
ଶ ݁ସோ . 

We now apply condition (55) in the above and then simplify. The result of this is 

,ܣ ]‖ ܶܶ∗]‖ ≥
݀ଶ

2ସାܤସ(߁)ܥ.ଵ
ଶ ݁ସோ . 

this proves (57) and completes the proof of Theorem (4.2.1). 
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Chapter 5 
Classification of Reducing Subspaces of a Class of Multiplication Operators and 

Totally Abelian Toeplitz Operators  
             We obtain a complete description of nontrivial minimal reducing subspaces ofthe 
multiplication operator by a Blaschke product with four zeros on the Bergman space of the 
unit disk via the Hardy space of the bidisk. As a byproduct, under a mild condition we 
provides an affirmative answer to a question raised , and also construct some examples to 
show that the answer is negative if the associated conditions are weakened. 
Section (5.1): Bergman Space by the Hardy Space of the Bidisk   
             For ॰ be the open unit disk in ℂ. Let dA denote Lebesgue area measure on the unit 
disk ॰, normalized so that the measure of ॰ equals 1. The Bergman space ܮ

ଶ  is the Hilbert 
space consisting of the analytic functions on ॰ that are also in the space ܮଶ(॰,  of (ܣ݀
square integrable functions on॰. For a bounded analytic function߶on the unit disk, the 
multiplication operator ܯథwith symbol ߶  is defined on theBergman space ܮଶ  given by 
థℎܯ = ߶ℎ  for ℎ ∈ ଶܮ . On the basis {݁}ୀ

ஶ , where ݁ isequal to √݊ + 1ऊ , the 
multiplication operator ܯऊ by ऊ is a weighted shift operator, said to be the Bergman shift 

ऊ݁ܯ = ඨ ݊ + 1
݊ +  2

݁ାଵ . 

A reducing subspace M for an operator T on a Hilbert space H is a subspace M of H such 
thatܶܯ ⊂ ܯ∗andܶܯ  ⊂  A reducing subspace M of T is called minimalif M does not .ܯ
have any nontrivial subspaces which are reducing subspaces. We classify reducing 
subspaces of ܯథ for the Blaschke product ߶ with four zeros by identifying its minimal 
reducing subspaces. We lift the Bergman shift up as a compression of a commuting pair of 
isometries on a nice subspace of the Hardy space of the bidisk. This idea was used in 
studying the Hilbert modules by R. Douglas and V. Paulsen [185], operator theory in the 
Hardy space over the bidisk by R. Douglas and R. Yang [183–184], the higher order Hankel 
forms by S. Ferguson and R. Rochberg [182], and the lattice of the invariant subspaces of 
the Bergman shift by S. Richter [183]. 
             On the Hardy space of the unit disk, for an inner function ߶, the multiplication 
operator by ߶  is a pure isometry. So its reducing subspaces are in one-to-one 
correspondence with the closed subspaces of ܪଶ ⊖ ଶܪ߶  [183]. Therefore, it has 
infinitelymany reducing subspaces provided that ߶  is any inner function other than a 
Mӧbius function. Many people have studied the problem of determining reducing 
subspaces of a multiplication operator on the Hardy space of the unit circle [184]. 
             The multiplication operators on the Bergman space possess a very rich structure 
theory. Even the lattice of the invariant subspaces of the Bergman shift ܯऊ is huge[183]. 
But the lattice of reducing subspaces of the multiplication operator by a finite Blaschke on 
the Bergman space seems to be simple. On the Bergman space, Zhu [185] showed that for 
a Blaschke product ߶  with two zeros, the multiplication operator ܯథ  has exactly two 
nontrivial reducing subspaces ℳ and ℳ

ୄ. In fact, the restriction of the multiplication 
operator on ℳ is unitarily equivalent to the Bergman shift. Usingthe Hardy space of the 
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bidisk in [186], we show that the multiplication operator with a finite Blaschke product ߶ 
has a unique reducing subspace ℳ(߶) , on which the restriction of ܯథ is unitarily 
equivalent to the Bergman shift and if a multiplication operator has such a reducing 
subspace, then its symbol must be a finite Blaschke product. The space ℳ(߶) is called 
the distinguished reducing subspace of ܯథ and is equal to 

ሧ ࢃ {߶′߶ ∶ ݊ = 0, 1, . . . , ݉, . . . } 
if ߶ vanishes at 0 in [185], i.e, 

߶(ऊ) = ܿऊ ෑ
ऊ − ߙ 

1 − തതതऊߙ



ୀଵ

, 

for some points {ߙ} in the unit disk and a unimodular constant c. The space has played an 
important role in classifying reducing subspaces of ܯథ . In [183], we have shown that for 
a Blaschke product ߶of the third order, except for a scalar multiple of the third power of a 
Mobius transform, ܯథ  has exactly two nontrivial minimal reducing subspaces ℳ  and 
ℳ

ୄ. This continues our study on reducing subspaces of the multiplication operators ܯథon 
the Bergman space in [184] by using the Hardy space of the bidisk. We will obtain a 
complete description of nontrivial minimal reducing subspaces of ܯథfor the fourth order 
Blaschke product ߶. 
             We introduce some notation to lift the Bergman shift as the compression of some 
isometry on a subspace of the Hardy space of the bidisk and state some theorems in [188] 
which will be used later. We state the main result and present its proof. Since the proof is 
long, two difficult cases in the proof are considered. 
             Let ॻ denote the unit circle. The torus ॻଶ is the Cartesian product ॻ × ॻ. Let ݀ߪ 
be the rotation invariant Lebesgue measure on ॻଶ. The Hardy space ܪଶ(ॻଶ) is the sub-
space of ܮଶ(ॻଶ,  ଶ(ॻଶ) can be identified with the boundary valueܪ where functions in ,(ߪ݀
of the function holomorphic in the bidisc ॰ଶ  with the square summable Fourier 
coefficients. The Toeplitz operator on ܪଶ(ॻଶ) with symbol ݂ in ܮஶ(ॻଶ,  is defined by (ߪ݀

ܶ(ℎ) = ܲ(݂ℎ), for ℎ ∈ ,ଶ(ॻଶܮ ଶ(ॻଶ), where P is the orthogonal projection fromܪ  (ߪ݀
onto ܪଶ(ॻଶ),. 
             For each integer ݊ ≥ 0 , let (ऊ, (ݓ  = ∑ ऊݓି

ୀ .  Let ℋ  be the subspace 
ofܪଶ(ॻଶ)spanned by functions{}ୀ

ஶ  .Thus     
ଶ(ॻଶ)ܪ = ℋ ⊕ ܿ1{(ऊ −  .{ଶ(ॻଶ)ܪ(ݓ

Let ℬ = ℋܲ ऊܶ|ℋ = ℋܲ ௪ܶ|ℋ , where ℋܲ  is the orthogonal projection from ܮଶ(ॻଶ,  (ߪ݀
ontoℋ. So ℬis unitarily equivalent to the Bergman shift ܯऊon theBergman space ܮ

ଶ  via 
the following unitary operator ܷ: ܮ

ଶ (॰) → ℋ, 

ܷऊ =
,(ऊ (ݓ
݊ +  1

. 
This implies that the Bergman shift is lifted up as the compression of an isometry on a nice 
subspace of ܪଶ(ॻଶ). Indeed, for each finite Blaschke product ߶(ऊ), the multiplication 
operator ܯథ on the Bergman space is unitarily equivalent to ߶(ℬ) on ℋ. 
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Let ܮ be ݇݁ݎ థܶ(ऊ)
∗ ∩ థܶ(୵) ݎ݁݇ 

∗ ∩ ℋ. In [189], for each ݁ ∈  , we construct functionsܮ
{݀

} and ݀
 such that for each ݈ ≥ 1, 

,(߶(ऊ) ߶(w))݁ +  ,(߶(ऊ) ߶(w))݀
ି

ିଵ

ୀ

∈ ℋ 

and 
,(߶(ऊ) ߶(w))݁ + ,ିଵ(߶(ऊ) ߶(w))݀

 ∈ ℋ. 
On one hand, we have a precise formula of ݀

: 
                            ݀

(ऊ, (ݓ = ,0)݁ݓ ,(ऊ݁(ݓ (ݓ − ,ऊ)݁(ݓ)߶ݓ  (1)                                ,(ݓ
where ݁ is the functionऊ −  On the other hand, deis orthogonal to .ݓ

థܶ(ऊ) ݎ݁݇
∗ ∩ థܶ(୵) ݎ݁݇ 

∗ ∩ ℋ, 
and for a reducing subspace M and ݁ ∈ ℳ, 

,(߶(ऊ) ߶(w))݁ +  ,(߶(ऊ) ߶(w))݀
ି

ିଵ

ୀ

∈ ℳ. 

Moreover, the relation between de
1 and de

0 is given by [9, Theorem 1] as follows. 
Theorem(5.1.1)[181]: If  ℳ is a reducing subspace of ߶(ℬ)  orthogonal to the 
distinguished reducing subspace ℳ , for each ݁ ∈ ℳ ∩ ̃݁  ,then there is an elementܮ ∈
ℳ ∩  such that ߣ  and a numberܮ

                                                              ݀
ଵ  = ݀

 + ݁̃ +  .                                                      (2)݁ߣ 
Since it is not difficult to calculate ݁̃ and ߣ precisely for Blaschke products with smaller 
order, we are able to classify minimal reducing subspaces of a multiplication operator by a 
Blaschke product of the fourth order. The main ideas in the proofs of Theorems (5.1.7) and 
(5.1.8) are that by complicated computations we use (2) to derive conditions on zeros of 
the Blaschke product of the fourth order. 
we often use Theorem (5.1.1) and Theorems 1 and 25 in [189] stated as follows. 
Theorem (5.1.2) [181]: There is a unique reducing subspace ℳ  for ߶(ℬ)  such that 
߶(ℬ)|ℳబisunitarily equivalent to the Bergman shift. In fact, 

ℳ = ሧ{(߶(ऊ), ߶(w))݁
ஹ

    ܽ݊݀ ቊ
,(߶(ऊ) ݁((ݓ)߶

√݈ + 1‖݁‖
ቋ



ஶ

 

form an orthonormal basis of ℳ. 
Let ℳ be the distinguished reducing subspace for ߶(ℬ). Then ℳ is unitarily equivalent 
to a reducing subspace of ܯథ contained in the Bergman space, denoted by ℳ(߶). The 
space plays an important role in classifying the minimal reducing subspaces of Mφ in 
Theorem (5.1.4). 
In [189] we showed that for a nontrivial minimal reducing subspace Ω for ߶(ℬ), either Ω 
equals ℳ or Ω is a subspace of ℳ

ୄ. The condition in the following theorem is natural. 
Theorem(5.1.3) [181]:Suppose thatߗ, ℳ , andࣨ are three distinct nontrivial minimal 
reducing subspaces for ߶(ℬ) and Ω ⊂ ℳ ⊕  ࣨ. If they are contained in ℳ

ୄ, then there 
is a unitary operator ܷ: ℳ → ࣨ such that U commutes with ߶(ℬ) and ߶(ℬ)∗. 
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Let ߶ be a Blaschke product with four zeros. we will obtain a complete description of 
minimal reducing subspaces of the multiplication operator ܯథ  . First observe that the 
multiplication operator ܯऊర  is a weighted shift with multiplicity 4: 

ऊర݁ܯ = ඨ݊ + 1
݊ + 5

݁ାସ, 

where ݁ equals √݊ + 1ऊ . By [184, Theorem B], ܯऊరhas exactly four nontrivial minimal 
reducing subspaces: 

ℳ  = ሧ{ऊ: ݊ ≡ {4 ݀݉ ݆  , ݆ =  1, 2, 3, 4. 
It is not difficult to see that the set of finite Blaschke products forms a semigroup under 
composition of two functions. For a finite Blaschke product ߶  we say that ߶  is 
decomposable if there are two Blaschke products ߰ଵ and ߰ଶ with orders greater than 1 
such that 

߶(ऊ) = ߰ଵ ∘ ߰ଶ(ݖ). 
For each ߣ in ॰, let ߶ఒ denote the Mӧbius transform:     

߶ఒ(ऊ) =
ߣ −  ऊ

1 − ऊߣ̅ 
. 

Define the operator ఒܷon the Bergman space as follows: ఒܷ݂ =   ݂ ∘ ߶ఒ݇for  ݂in ܮ
ଶ where 

݇ is the normalized reproducing kernel(ଵି|ఒ|మ)
(ଵି௭)మ . Clearly, ఒܷis a self-adjoint unitary operator 

on the Bergman space.  Using the unitary operator ఒܷ  wehaveℳ(߶) = ఒܷℳ(߶ ∘ ߶ఒ), 
where λ is a zero ofthe finite Blaschke product ߶ . This easily follows from that ߶ ∘ ߶ఒ 
vanishes at 0 and ఒܷ

థܯ∗ ఒܷ = థ∘థഊܯ  .     
We say that two Blaschke products ߶ଵ and ߶ଶ are equivalent if there is a complexnumber 
in ॰ such that ߶ଵ ߣ = ߶ఒ ∘ ߶ଶ.  For two equivalent Blaschke products ߶ଵand ߶ଶ, థభܯ  and ܯథమ 
are mutually analytic function calculi of each other and hence share reducing subspaces. 
The following main result gives a complete description of minimal reducing subspaces. 
Theorem(5.1.4) [181]: Let ߶ be a Blaschke product with four zeros. One of the following 
holds. 
(i) If ߶  is equivalent to ऊସ , i.e.,߶  is a scalar multiple of the fourth power ߶

ସ  of the 
Mӧbiustransform ߶  for some complex number c in the unit disk, ܯథ  has exactly four 
nontrivial minimal reducing subspaces 

{ ܷℳଵ, ܷℳଶ, ܷℳଷ, ܷℳସ}. 
(ii) If ߶ is is decomposable but not equivalent to ऊସ ,i.e,߶ =  ߰ଵ ∘ ߰ଶ  for two Blaschke 
products ߰ଵ and ߰ଶ with orders 2 but not both of ߰ଵ and ߰ଶ are a scalar multiple of ऊଶ, 
then ܯథ has exactly three nontrivial minimal reducing subspaces 

{ℳ(߶), ℳ(߰ଶ)  ⊖ ℳ(߮), ℳ(߰ଶ)ୄ}. 
(iii) If ߶  is not decomposable, then ܯథ  has exactly two nontrivial minimal reducing 
subspaces 

{ℳ(߶), ℳ(߶)ୄ}. 
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To prove the above theorem we need the following two lemmas, which tell us when a 
Blaschke product with order 4 is decomposable. 
Lemma (5.1.5) [181]:If a Blaschke product߶with order four is decomposable, then the 
numerator of the rational function ߶(ऊ) −  .has at least three irreducible factors (ݓ)߶
Proof. Suppose that߶is the Blaschke product with order four. Let݂(ऊ,  be thenumerator (ݓ
of the rational function ߶(ऊ) − = ߶ If ߶ is decomposable, then .(ݓ)߶  ߰ଵ ∘ ߰ଶ for two 
Blaschke products ߰ଵ and ߰ଶ with order two. Let ݃(ऊ,  be the numerator of the rational (ݓ
function ߰ଵ(ऊ)  − ߰ଵ(ݓ).  Clearly, ऊ − ݓ  is a factor of ݃(ऊ, (ݓ . Thus we can write 
݃(ऊ, (ݓ = (ऊ − ,ऊ) (ݓ  ,ऊ) for some polynomial (ݓ  to get ݓ of ऊ and (ݓ

݃(߰ଶ(ऊ), ߰ଶ(ݓ)) = (߰ଶ(ऊ) −  ߰ଶ(ݓ)) (߰ଶ(ऊ), ߰ଶ(ݓ)). 
On the other hand, we also have    

߰ଶ(ऊ) − ߰ଶ(ݓ)  =
(ऊ − ,ଶ(ऊ (ݓ  (ݓ

,ଶ(ऊݍ (ݓ
 

for two polynomials ଶ(ऊ, ,ଶ(ऊݍ and (ݓ ,ଶ(ऊݍ ,with no common factor. In fact (ݓ  and(ݓ
the numerator of the rational function 

,ଶ(ऊ)߰) ߰ଶ(ݓ)) 
do not have a common factor also. So we obtain 

 

݃(߰ଶ(ऊ), ߰ଶ(ݓ))  =
(ऊ − ,ଶ (ऊ (ݓ (ݓ

,ଶ(ऊݍ (ݓ
,ଶ(ऊ)߰) ߰ଶ(ݓ)). 

Since ݂(ऊ, ,is the numerator of the rational function ݃(߰ଶ(ऊ) (ݓ ߰ଶ(ݓ)), this gives that 
݂(ऊ,  .has at least three factors (ݓ
For ߙ, ∋ ߚ ॰, define 

ఈ݂,ఉ (ݓ, ऊ) = ݓ)ଶݓ − ݓ)(ߙ − 1)(ߚ − 1)(ݖതߙ − (ݖߚ̅ − ऊଶ(ऊ − ऊ)(ߙ − − 1)(ߚ 1)(ݓതߙ
−  .(ݓߚ̅

It is easy to see that ఈ݂,ఉ (ݓ, ऊ) is the numerator of ऊଶ߶ఈ(ऊ)߶ఉ(ऊ) −  .(ݓ)ఉ߶(ݓ)ଶ߶ఈݓ 
The following lemma gives a criterion for when the Blaschke product ऊଶ߶ఈ(ऊ)߶ఉ(ऊ) is 
decomposable. 
Lemma (5.1.6) [181]: For ߙ and ߚ in ॰, one of the following holds. 
(i) If both α and β equal zero, then 

ఈ݂,ఉ (ݓ, ऊ) = ݓ) − ऊ)(ݓ + ऊ)(ݓ − ݅ऊ)(ݓ + ݅ऊ). 
(ii) If ߙ does not equal either ߚ or −ߚ, then ఈ݂,ఉ (ݓ, ऊ) = ݓ) − ऊ) ݓ), ऊ) for some 
irreducible polynomial ݓ), ऊ). 
(iii) If ߙ equals either ߚ or −ߚ, but does not equal zero, then 

ఈ݂,ఉ (ݓ, ऊ)  = ݓ)  − ऊ) ݓ), ऊ)ݓ)ݍ, ऊ) 
for two irreducible distinct polynomials ݓ), ऊ) and ݓ)ݍ, ऊ). 
Proof. Clearly, (i) holds. 
To prove (ii), by the example in [183, p. 6] we may assume that neither ߙ nor ߚ equals 0. 
First observe that (ݓ − ऊ) is a factor of the polynomial ఈ݂,ఉ (ݓ, ऊ). Taking a long division 
gives ఈ݂,ఉ (ݓ, ऊ) = ݓ) − ऊ)݃ఈ,ఉ(ݓ, ऊ), where 
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݃ఈ,ఉ(ݓ, ऊ)  = (1 − − ऊ)(1̅ߙ ଷݓ(ऊ̅ߚ  +  (ऊ − ߙ) + 1)((ߚ − ऊ)(1ߙ̅ − ଶݓ(ऊ̅ߚ  
+ (ऊ − ऊ)(ߙ − 1)(ߚ − തߙ) + ݓ(ऊ(ߚ̅ + ऊ(ऊ − ऊ)(ߙ −  (ߚ

Next we will show that ݃ఈ,ఉ(ݓ, ऊ) is irreducible. To do this, we assume that ݃ఈ,ఉ(ݓ, ऊ) is 
reducible to derive a contradiction. 
Assuming that ݃ఈ,ఉ(ݓ, ऊ) is reducible, we can factor ݃ఈ,ఉ(ݓ, ऊ) as the product of two 
polynomials ݓ), ऊ) and ݓ)ݍ, ऊ) of ऊ and ݓ with degree of w greater than or equal to one. 
Write 

,ݓ) ऊ) = ܽଵ(ऊ)ݓ + ܽ(ऊ), ,ݓ)ݍ ऊ) = ܾଶ(ऊ)ݓଶ + ܾଵ(ऊ)ݓ + ܾ(ऊ), 
where ܽ(ऊ)  and ܾ(ऊ)  are polynomials of ऊ .Since ݃ఈ,ఉ(ݓ, ऊ)  equals the product of 
,ݓ) ऊ) and ݓ)ݍ, ऊ), taking the product and comparing coefficients ofݓgive 
 
 ܽଵ(ऊ)ܾଶ(ऊ) =  (1 − തऊ)൫1ߙ −  ऊ൯,                                                          (3)ߚ̅

 ܽଵ(ऊ)ܾଵ(ऊ) + ܽ(ऊ)ܾଶ(ऊ) = ൫ऊ − ߙ) + ൯(1(ߚ  − − തऊ)൫1ߙ  ऊ൯,           (4)ߚ̅ 
 ܽଵ(ऊ)ܾ(ऊ) + ܽ(ऊ)ܾଵ(ऊ) =  (ऊ − ऊ)(ߙ − ൫1(ߚ − ൫ߙത +  ൯ऊ൯,      (5)ߚ̅
                              ܽ(ऊ)ܾ(ऊ) = ऊ(ऊ − ऊ)(ߙ  −  (6)                                    .(ߚ 
Equation (3) gives that one of 

ܽଵ(ऊ) = (1 −  ,(തऊߙ
ܽଵ(ऊ) = (1 − തऊ)(1ߙ −  ,(ऊߚ̅

ܽଵ(ऊ)=1. 
In the first case that ܽଵ(ऊ) =  (1 − തऊ), (3) gives ܾଶ(ऊ)ߙ =   (1 −  ऊ).  Thus by equationߚ̅
(4) we have   

ܽ(ऊ)(1 − (ऊߚ̅ = (1 − തऊ)[(ऊߙ − ߙ) + 1)((ߚ − (ऊߚ̅ − ܾଵ(ऊ)], 
to get that (1 − തऊ) is a factor of ܽ(ऊ), and hence is also a factor of a factor ऊ(ऊߙ −
ऊ)(ߙ  −  .by (6). This implies that α must equal 0. It is a contradiction (ߚ 
             In the second case that ܽଵ(ऊ) = (1 − തऊ)(1ߙ − ऊ), we have that ܾଶ(ऊ)ߚ̅ = 1 to 
getthat either the degree of b1(z) or the degree of b0(z) must be one while the degrees of 
ܾଵ(ऊ) andܾ(ऊ) are at most one. So the degree ofܽ(ऊ) is at most two. Also ܽ(ऊ) doesnot 
equal zero. Equation (4) gives 

(1 − തऊ)(1ߙ − ऊ)ܾଵ(ऊ)ߚ̅ + ܽ(ऊ) = (ऊ − ߙ) + 1)((ߚ − തऊ)(1ߙ −  .(ऊߚ̅
Thus ܽ(ऊ) =  ܿଵ(1 − തऊ)(1ߙ −  ऊ) for some constant ܿଵBut equation (6) givesߚ̅

ܿଵ(1 − തऊ)(1ߙ − ऊ)ܾ(ऊ)ߚ̅ = ऊ(ऊ − ऊ)(ߙ −  .(ߚ
Either ܿଵ = 0 or (1 − തऊ)(1ߙ − ऊ) is a factor of ऊ(ऊߚ̅ − ऊ)(ߙ −  .This is impossible .(ߚ
In the third case that ܽଵ(ऊ) =  1, then ܾଶ(ऊ) =  (1 − തऊ)(1ߙ −  ऊ). Since the root wofߚ̅

ఈ݂,ఉ (ݓ, ऊ) is a nonconstant function of ऊ , the degree of ܽ(ऊ) must be one. Thus the 
degrees of ܾଵ(ऊ) and ܾ(ऊ) are at most two. By equation (4) we have 

 (1 − തऊ)(1ߙ − ऊ)ܽ(ऊ)ߚ̅ + ܾଵ(ऊ) = (ऊ − ߙ) + 1)((ߚ − തऊ)(1ߙ −  ,(ऊߚ̅
to get ܾଵ(ऊ) = (1 − തऊ)(1ߙ − ऊ)[(ऊߚ̅ − ߙ)  + ((ߚ − ܽ(ऊ)]. Since the degree of 
ܾଵ(ऊ)isat most two, we have   

ܽ(ऊ) = ൫ऊ − ߙ) + ൯(ߚ − ܿ,          ܾଵ(ऊ) = ܿ(1 − തऊ)(1ߙ −  .(ऊߚ̅
Equations (6) and (5) give 

[(ऊ − + ߙ)  ((ߚ  − ܿ]ܾ(ऊ)  = ऊ(ऊ − ऊ)(ߙ  −  (ߚ 
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and 
ܾଵ(ऊ)[(ऊ − ߙ) + ((ߚ − ܿ] + ܾ(ऊ)  =  (ऊ − ऊ)(ߙ − 1)(ߚ − തߙ) +  . (ऊ(ߚ̅

Multiplying both sides of the last equality by [(z − (α + β)) − c0] gives 
ܾଵ(ऊ)[(ऊ − ߙ) + ((ߚ − ܿ]ଶ + ऊ(ऊ − ऊ)(ߙ  − (ߚ 

=  ൣ൫ऊ(ߙ + ൯(ߚ − ܿ൧(ऊ − ऊ)(ߙ − തߙ൫1൫(ߚ +  .൯ऊ൯ߚ̅
This leads to    

[c(1 − αതऊ)(1 − βതऊ)[(ऊ −  (α + β))  − c]ଶ + ऊ(ऊ −  α)(ऊ −  β)
=  [(ऊ − ߙ) + ((ߚ − c ](ऊ − ऊ)(ߙ − 1)(ߚ − തߙ ) +  .(ऊ( ߚ̅

If c = 0, then the above equality gives that (ऊ − ऊ)(ߙ  − is a factor of [(ऊ (ߚ  − ߙ)  +
((ߚ − c]ଶ. This is impossible. 
If c = 0, then we have 

ऊ(ऊ − ऊ)(ߙ − (ߚ  =  [(ऊ − ߙ) + ऊ)[((ߚ − ऊ)(ߙ − തߙ1൫)(ߚ + ,൯ߚ̅ ऊ, 
to get ߙത + ߚ̅ =  0 and henceα = −β. It is also a contradiction. This completes the proof 
that ݃ఈ,ఉ (ݓ, ऊ) is irreducible. 
To prove (iii), we note that if ߙ equals ߚ, an easy computation gives 

ఈ݂,ఉ(ݓ, ऊ) = ݓ) − ऊ)[(1 – ߙതऊ)ݓ + (ऊ −  [(ߙ 
× ݓ)ݓ] − 1)(ߙ − (തऊߙ + ऊ(ऊ − 1)(ߙ  −  .[(ݓതߙ

If ߙ =  we also have ,ߚ−
ఈ݂,ఉ (ݓ, ऊ)  = − ݓ)  ऊ)(ݓ + ऊ)[(1 − ଶݓ(തଶऊଶߙ + (ऊଶ −  .[(ଶߙ

Assume that߶is a Blaschke product with the fourth order.By the Bochner Theorem [187], 
߶ has a critical point c in the unit disk. Let ߣ =  ߶(ܿ) be the critical value of ߶. Then there 
are two points ߙ and ߚ in the unit disk such that 

߶ఒ ∘ ߶ ∘ ߶(ऊ) =  , ऊଶ߶ఈ߶ఉߟ
where ߟ  is a unimodule constant. Let ߰ be ऊଶ߶ఈ߶ఉ  . Since ߶ ∘ ߶  and ߰ are mutually 
analytic function calculus of each other, both ܯథ∘థand ܯట share reducing subspaces. 
(i) If ߶ is equivalent to ऊସ, then ߰ must equal a scalar multiple of ऊସ. By [184, Theorem 
B], ܯట has exactly four nontrivial minimal reducing subspaces 

{ℳଵ, ℳଶ, ℳଷ, ℳସ} 
where ℳ = ⋁{ऊ ∶ ݊ ≡ ݆ for  {4 ݀݉ ݆ = 1, 2, 3, 4 . The four spaces above are also 
reducing subspaces for ܯథ∘థ . Noting ܷ

థ∘థܯ∗ ܷ =  థ has exact fourܯ థ , we have thatܯ
nontrivial minimal reducing subspaces 

{ ܷℳଵ, ܷℳଶ, ܷℳଷ, ܷℳସ}. 
(ii) If ߶  is decomposable but not equivalent to ऊସ , i.e.,߶ = ߰ଵ ∘ ߰ଶ  for two Blaschke 
products ߰ଵ and ߰ଶ with degree two and not both ߰ଵ and ߰ଶ are scalar multiples of ऊଶ, by 
Lemmas (5.1.5) and (5.1.6), then ߙ  equals either ߚ  or −ߚ  but does not equal 0. By 
Theorem (5.1.2), the restriction of ܯటమ on ℳ(߰ଶ) is unitarily equivalent to the Bergman 
shift. Thus ℳ(߰ଶ) is also a reducing subspace of ܯథ and the restriction of ܯథ = టభ∘టమܯ  
on ℳ(߰ଵ) is unitarily equivalent to ܯటభ  on the Bergman space. By Theorem (5.1.2) 
again, there is a unique reducing subspace ℳ(߰ଵ)  on which the restriction ܯటభ  is 
unitarily equivalent to the Bergman shift. Thus there is a subspace of ℳ(߰ଶ) on which 
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the restriction of ܯథ is unitarily equivalent to the Bergman shift. Theorem (5.1.2) implies 
that ℳ(߶)  is contained in ℳ(߰ଶ) . Therefore ℳ(߰ଶ) ⊖ ℳ(߶)  is also a minimal 
reducing subspace of ܯథ and 

ܮ
ଶ = ℳ(߶) ⊕  [ℳ(߰ଶ) ⊖ ℳ(߶)] ⊕ [ℳ(߰ଶ)]ୄ. 

By [186, Theorem 3.1], {ℳ(߶), [ℳ(߰ଶ)  ⊖ ℳ(߶)], [ℳ(߰ଶ)]ୄ}  are nontrivial 
minimal reducing subspaces of ܯథ. We will show that they are exact nontrivial minimal 
reducing subspaces of ܯథ  . If this is not true, then there is another minimal reducing 
subspace Ω of ܯథ . By [9, Theorem 38], we have 

Ω ⊂ [ℳ(߰ଶ) ⊖ ℳ(߶)] ⊕ [ℳ(߰ଶ)]ୄ. 
By Theorem (5.1.3), there is a unitary operator ܷ ∶  [ℳ(߰ଶ) ⊖ ℳ(߶)]  →
 [ℳ(߰ଶ)]ୄ which commutes with both ܯథ  and ܯథ

∗ . But ݀݅݉ ݇݁ܯ ݎథ
∗  ∩  [ℳ(߰ଶ) ⊖

ℳ(߶)] = 1 and ݀݅݉ ݇݁߮ܯ ݎ ∗ ∩ [ℳ(߰ଶ)]ୄ =  2. This is a contradiction. Thus 
{ℳ(߶), [ℳ(߰ଶ) ⊖ ℳ(߶)], [ℳ(߰ଶ)]ୄ} 

are exact nontrivial minimal reducing subspaces of ܯథ . 
(iii) If ߶ is not decomposable, by Lemma (5.1.6), then ߶ equals ऊଷ߶ఈ or ऊଷ߶ఈ߶ఉ for two 
nonzero points ߚ ߙ in ॰ and α does not equal ߚ or −ߚ. The difficult cases will be dealt 
with . By Theorems (5.1.7) and (5.1.8), ܯథ has exactly two nontrivial minimal reducing 
subspaces {ℳ(߶), ℳ(߶)ୄ}. 
we will study reducing subspaces of ܯऊయథഀ

 for a nonzero point ߙ ∈  ॰. Recall that ℳ is 
the distinguished reducing subspace of ߶(ℬ) as in Theorem (5.1.2). 
Theorem (5.1.7) [181]: Let ߶ = ऊଷ߶ఈ for a nonzero pointߙ ∈  ॰. Then ߶(ℬ)has exactly 
two nontrivial reducing subspaces{ℳ, ℳ

ୄ}. 
Proof. Letℳbe the distinguished reducing subspace of߶(ℬ) as in Theorem (5.1.2). By 
Theorem (5.1.3), we only need to show that ℳ

ୄ is a minimal reducing subspace for ߶(ℬ). 
Assume that ℳ

ୄ is not a minimal reducing subspace for ߶(ℬ). Then by [186, Theorem 
3.1] we may assume ℋ =⊕ୀ

ଶ   is a nontrivial reducing subspace forܯ  such that eachܯ
߶(ℬ), ܯ = ℳ is the distinguished reducing subspace for ߶(ℬ), and ℳ

ୄ = ଵܯ ⊕  .ଶܯ
Recall that 

߶  = ऊଶ߶ఈ , ܮ = ,1}݊ܽݏ  ,ଵ , ଶ ݇ఈ(ऊ)݇ఈ(ݓ)}, 
ܮ = ܮ) ∩ (ܯ ⊕ ܮ) ∩ (ଵܯ ⊕ ܮ) ∩  .(ଶܯ

We further assume that 
ଵܯ)݉݅݀ ∩ (ܮ  = ଶܯ)݉݅݀       ݀݊ܽ      1  ∩ (ܮ = 2. 

Take 0 ≠ ݁ଵ ∈ ଵܯ ∩ ,ܮ ݁ଶ, ݁ଷ ∈ ଶܯ ∩ , such that {݁ଶܮ ݁ଷ} are a basis for ܯଶ ∩  .Thenܮ 
ܮ = ,݁}݊ܽݏ  ݁ଵ, ݁ଶ, ݁ଷ }. 
By (1), we have ݀ೕ

 = ,ೕ(0ݓ  ݁(ݓ − (ݓ)߶ ݁  and direct computations show that 
〈݀ೕ

  , 〈  = ೕݓ〉
(0, ݁(ݓ − (ݓ)߶ ݁ , 〈  = ,ೕ(0ݓ〉 ,݁(ݓ 〈  థܶ(௪)  ݕ ܾ

∗   = 0) 
= ,ೕ(0ݓ〉 ,ݓ)݁(ݓ ,(ݓ   (0, 〈(ݓ = ,ೕ(0ݓ〉 ,(ݓ )′߶(ݓ 〈ݓ

= ଷݓ〉
݁(0, ఈ߶ݓ)(ݓ

ᇱ (ݓ) + 3߶ఈ(ݓ)), 〈ݓ
= ଷିݓ〉

݁(0, ఈ߶ݓ)(ݓ
ᇱ (ݓ) + 3߶ఈ(ݓ)), 1〉 = 0 

for 0 ≤ ݇ ≤ 2, and             
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݀ೕ
 , ݇ఈ(ऊ)݇ఈ(ݓ) = ߙ ݁(0, ,ߙ)݁(ߙ (ߙ  = ߙ  ݁(0, (ߙ

ଷߙ

1 − ଶ|ߙ|  . 

This implies that those functions ݀ೕ
 are orthogonal to {1, ,ଵ   .{ଶ

Simple calculations give  〈݁,  〉 =  0 for 0 ≤ ݇ ≤ 1,     

〈݁, 〈ଶ  = 〈݁(0, ,(ݓ ,ݓ)ଶ  〈(ݓ =
3
2

߶
ᇱᇱ(0) = ߙ3− ≠ 0 

and     
〈݁, ݇ఈ(ऊ)݇ఈ(ݓ)〉 =  ݁(ߙ, (ߙ  = (ߙ)′߶  = ఈయ

ଵି |ఈ|మ ≠ 0.    
By Theorem (5.1.1), there are numbers µ,  such thatߣ

݀భ
ଵ = ݀భ

 +  µ݁ଵ +  ,ଵ݁ߣ 
݀మ

ଵ = ݀మ
 +  ݁̃ଶ +  ,ଶ݁ߣ

݀య
ଵ = ݀య

 +  ݁̃ଷ + ଷ݁ߣ , 
where ݁̃ଶ , ݁̃ଷ ∈ ଶܯ ∩  . ܮ
Now we consider two cases. In each case we will derive a contradiction. 
Case 1:µ ≠ 0. In this case, we get that ݁ଵ is orthogonal to {1, ,ଵ}. So {1  ,ଵ  ݁ , ݁ଵ}form 
an orthogonal basis for ܮ. 
First we show that ݁̃ଶ = 0.  If ݁̃ଶ ≠ 0, then we get that {1, ,ଵ  ݁ , ݁̃ଶ} are also anorthogonal 
basis for ܮ. Thus ݁̃ଶ =  ܿ݁ଵ  for some nonzero number c. However, ݁̃ଶ  isorthogonal to ݁ଵ, 
since ݁̃ଶ ∈ ଶ and ݁ଵܯ ∈  ଵ. This is a contradiction. Thusܯ

݀మ
ଵ = ݀మ

 +  .ଶ݁ߣ
Since both ݀మ

ଵ and ݀మ
 are orthogonal to ଶand〈݁ , 〈ଶ = ߙ3 ≠  0, we have thatߣଶ = 0to get 

that ݀మ
 = ݀మ

ଵ is orthogonal to ܮ. On the other hand, 

〈݀మ
  , ݇ఈ(ऊ)݇ఈ(ݓ)〉   = ,ଶ(0݁ߙ (ߙ

ଷߙ

1 − ଶ|ߙ| . 

Thus ݁ଶ(0, (ߙ = 0. Similarly we get that ݁ଷ(0, (ߙ = 0. 
Moreover, since ݁ଶ  and ݁ଷ  are orthogonal to {݁, ݁ଵ}, write ݁ଶ =  ܿଵଵ + ܿଵଶଵ  and ݁ଷ  =
 ܿଶଵ + ܿଶଶଵ. Thus we have 

݁ଶ(0, (ߙ = ܿଵଵ +  ܿଵଶߙ =  0, ݁ଷ (0, (ߙ  = ܿଶଵ + ܿଶଶߙ =  0 
to get that ݁ଶ and ݁ଷ are linearly dependent. This leads to a contradiction in this case. 
Case 2: µ = 0. In this case we have݀భ

ଵ = ݀భ
 +  ଵ݁. Similarly to the proof in Case 1,weߣ

get that ߣଵ =  0,  
                                                        ݀భ

ଵ = ݀భ
 ⊥                                                                  (7)ܮ

and  
ଵ݁(0, (ߙ = 0. 

Without loss of generality we assume that 
                                                            ଵ݁ = + ߙ−   ଵ.                                                                  (8)

Letting ݁ be in ܯଶ ∩   such that e is a nonzero function orthogonal to ݁̃ଶ, we have that eܮ
is orthogonal to {݁, ݁̃ଶ}. Thus e must be in the subspace 1}݊ܽݏ,  ଵ}. So there are two
constants ܾଵand ܾଶ such that = ܾଵ + ܾଶଵ . Noting 0 =  〈݁, ଵ݁〉 =  −ܾଵߙത + 2ܾଶ, we have 
݁ = ܾଵ/2(2 +  ଵ). Hence we may assume thatതߙ
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                                                                ݁ =  2 +  ଵ.                                                                 (9)തߙ
By Theorem (5.1.1) we have ݀

ଵ = ݀
 + ݁̃ + ݁ߣ  for some number ߣ  and ݁̃ ∈ ଶܯ ∩ ܮ . 

Thus 
0 =   〈݀భ

ଵ , ݀
ଵ〉 =   〈݀భ

ଵ , ݀
 +  ݁̃ + 〈݁ߣ = 〈݀భ

ଵ , ݀
〉 = 〈݀భ

 , ݀
〉(ܾ(7) ݕ). 

However, a simple computation gives     
〈݀భ

 , ݀
〉 = 〈݀భ

  , ,0)݁ݓ ݁(ݓ − 〈݁(ݓ)߶ = 〈݀భ
 , ,0)݁ݓ థܶ(௪) ݕܾ)〈݁(ݓ

∗ ݀భ
 =  0

= ݓ〉 ଵ݁(0, ݁(ݓ − (ݓ)߶ ଵ݁, ,0)݁ݓ 〈݁(ݓ
= ݓ〉 ଵ݁(0, ,݁(ݓ ,0)݁ݓ 〈݁(ݓ − (ݓ)߶〉 ଵ݁ , ,0)݁ݓ  . 〈݁(ݓ

We need to calculate two terms in the right-hand side of the above equality. By (8)and 
(9), the first term becomes 

ݓ〉 ଵ݁(0, ,݁(ݓ ,0)݁ݓ 〈݁(ݓ = + ߙ−)ݓ〉 ,݁(ݓ  2)ݓ + 〈݁(ݓതߙ
= + ߙ−)〉 ,݁(ݓ  (2 + 〈݁(ݓതߙ
= ݁ߙ −〉  , 2݁〉 + ,݁ݓ〉 2݁〉 + ,݁ߙ −〉  〈݁ݓതߙ + , ݁ݓ〉 〈݁ݓതߙ
= ,݁〉 ߙ− ݁〉 + , ݁ݓ〉 2 ݁〉 − ଶ〈݁ߙ ,  . 〈݁ݓ

The first term in the right-hand side of the last equality is 
〈݁, ݁〉 = 〈݁(ݓ, ,(ݓ ݁(0, 〈(ݓ = ߶ݓ〉

ᇱ + ߶, ߶〉
= ఈ߶ݓ2)ݓ〉 + ଶ߶ఈݓ

ᇱ ), 〈ଶ߶ఈݓ  + 〈߶, ߶〉 =  2 + ఈ߶ݓ〉
ᇱ , ߶ఈ〉 + 1 = 4. 

The last equality follows from 

߶ఈ = −
1
തߙ

+
1
തߙ − ߙ

1 − ݓതߙ
=  −

1
തߙ

+ ൬
1
തߙ

 − ത൰ߙ ఈܭ  .(ݓ) 
Similarly, we have 

,݁ݓ〉 ݁〉 = ,ݓ) ݁ݓ〉 ,(ݓ ݁(0, 〈(ݓ = ߶ݓ)ݓ
ᇱ + ߶), ߶ =  .ߙ

This gives 
ݓ〉 ଵ݁(0, ,݁(ݓ ,0)݁ݓ 〈݁(ݓ = 〈 ଵ݁(0, ,݁(ݓ ݁(0, 〈݁(ݓ = + ߙ−)〉 ,݁(ݓ  (2 + 〈݁(ݓതߙ

= ,݁〉 ߙ2−  ݁〉  − ,ଶ〈݁ߙ 〈݁ݓ + ,݁ݓ〉 2 ݁〉 + , ݁ݓ 〉ߙ 〈݁ݓ
= ߙ8− − ଶ|ߙ|ߙ  + ߙ2 + ߙ4 = ߙ2− −  .ଶ|ߙ|ߙ

A simple calculation gives that the second term becomes 
(ݓ)߶〉 ଵ݁ , ,0)݁ݓ 〈݁(ݓ = 〈߶(ݓ) ଵ݁ , (2 + 〈݁(ݓതߙ = 〈߶(ݓ) ଵ݁ , 2݁〉 + 〈߶(ݓ) ଵ݁, 〈݁ݓതߙ

= 2〈߶(ݓ) ଵ݁(ݓ, ,(ݓ ݁(0, 〈(ݓ + (ݓ)߶〉ߙ ଵ݁(ݓ, ,(ݓ ,(0݁ݓ 〈(ݓ
= 2〈 ଵ݁(ݓ, ,(ݓ 1〉 + 〉ߙ ଵ݁(ݓ, ,(ݓ 〈ݓ = ߙ−〉2 + ,ݓ2  1〉 + ߙ−〉ߙ  + ,ݓ2 〈ݓ
= + ߙ2−  = ߙ2   0. 

Thus we conclude 
〈݀భ

 , ݀
〉 = ݓ〉 ଵ݁(0, ,݁(ݓ ,0)݁ݓ 〈݁(ݓ − (ݓ)߶〉 ଵ݁, ,0)݁ݓ 〈݁(ݓ = − ߙ2− ଶ|ߙ|ߙ 

= 2)ߙ− + (ଶ|ߙ| ≠  0 
to get a contradiction in this case. This completes the proof. 
we will classify minimal reducing subspaces of ܯऊమ థഀథഁ

 for two nonzero points ߙ and ߚ 
in ॰ and with ߙ ≠  .ߚ 
Theorem (5.1.8) [181]: Let ߶ be the Blaschke product ऊଶ߶ఈ߶ఉ for two nonzero 
pointsߙandߚin ॰. If α does not equal either β or −ߚ, then ߶(ℬ) has exact two nontrivial 
reducing subspaces {ℳ , ℳ

ୄ}. 
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Proof.  By [189, Theorem 27], ifࣨis a nontrivial minimal reducing subspace of߶(ℬ)which 
is not equal to ℳ, then ࣨ is a subspace of ℳ

ୄ, so we only need to show that ℳ
ୄ is a 

minimal reducing subspace for ߶(ℬ) unless ߙ =  .ߚ− 
Assume that ℳ

ୄ is not a minimal reducing subspace for ߶(ℬ).By [186, Theorem 3.1], we 
may assume ℋ =⊕ୀ

ଶ ܯ , is a reducing subspace for ߶(ℬ)ܯ  such that eachܯ = ℳ 
is the distinguished reducing subspace for ߶(ℬ), andܯଵ ⊕ ଶܯ =  ℳ

ୄ.Recall that߶ =
ऊ߶ఈ߶ఉ, ܮ = ,1}݊ܽݏ , ଵ  ݁ఈ , ఉ݁}, with ݁ఈ = ݇ఈ(ऊ)݇ఈ(ݓ), ఉ݁ =  ݇ఉ  (ऊ)݇ఉ(ݓ) and 

ܮ = ܮ)  ∩ (ܯ ⊕ ܮ) ∩ (ଵܯ ⊕ ܮ) ∩  .(ଶܯ
So we further assume that the dimension ܯଵ ∩ ଶܯ of  is one and the dimension ofܮ ∩  isܮ
two. Take a nonzero element ଵ݁inܯଵ ∩  . Then by Theorem (5.1.1), there are numbersܮ
µଵ,  ଵ such thatߣ

                                                             ݀భ
ଵ = ݀భ

 + µଵ ଵ݁ + ଵ݁ߣ .                                                                     (10) 
We only need to consider two possibilities, µଵis zero or nonzero.If µଵ is zero,then (10) 
becomes    

                                                                ݀భ
ଵ = ݀భ

 + ଵ݁ߣ .                                                                    (11) 
In this case, simple calculations give 

〈݀భ
  , 〈ଵ  = ݓ〉 ଵ݁(0, ,(ऊ݁(ݓ (ݓ − (ݓ)߶ݓ  ଵ݁(ऊ, ,(ݓ ,ଵ(ऊ 〈(ݓ

= ݓ〉 ଵ݁(0, ,ݓ)݁(ݓ (ݓ  − (ݓ)߶ݓ  ଵ݁(ݓ, ,(ݓ ,ଵ(ऊ 〈(ݓ
= ݓ〉 ଵ݁(0, ,ݓ)݁(ݓ (ݓ  − (ݓ)߶ݓ  ଵ݁(ݓ, ,(ݓ ,ଵ(0 〈(ݓ
= ݓ〉 ଵ݁(0, ,ݓ)݁(ݓ (ݓ  − (ݓ)߶ݓ  ଵ݁(ݓ, ,(ݓ 〈ݓ
= 〈 ଵ݁(0, ,ݓ)݁(ݓ − (ݓ ߶(ݓ) ଵ݁(ݓ, ,(ݓ 1〉
= ଵ݁(0, 0)݁(0, 0)  − ߶(0) ଵ݁(0, 0)  =  0, 

and 
〈݁, 〈ଵ = 〈݁(ऊ, ,(ݓ ,ଵ(ऊ 〈(ݓ = 〈݁(ऊ, ,(ݓ ,ݓ)ଵ 〈(ݓ = 〈݁(0, ,(ݓ 〈ݓ2 = 〈߶(ݓ), 〈ݓ2

= ,(ݓ)ఉ߶(ݓ) ఈ߶ݓ〉 2 〈ݓ = 2߶ఈ(0)߶ఉ(0) = 2߶ఉ ≠ 0. 
Noting that ݀భ

ଵ is orthogonal to ܮ, by (11) we have that ߣଵ = 0, and hence 
݀భ

 = ݀భ
ଵ ⊥  .ܮ

So〈݀భ
 , ݁ఈ〉 = 0 = 〈݀భ

 , ఉ݁〉. On the other hand, 
〈݀భ

 , ݁ఈ〉 = ߙ  ଵ݁(0, ,ߙ)݁(ߙ (ߙ  − (ߙ)߶ߙ  ଵ݁(ߙ, (ߙ = ߙ ଵ݁(0, ,ߙ)݁(ߙ  (ߙ
and 

〈݀భ
 , ఉ݁〉 = ߚ  ଵ݁(0, ,ߚ) ݁(ߚ (ߚ − (ߚ)߶ߚ ଵ݁(ߚ, (ߚ  = ߚ  ଵ݁(0, ,ߚ)݁(ߚ  .(ߚ

Consequently, 
                                                     ଵ݁(0, (ߙ = ଵ݁(0, (ߚ =  0.                                                  (12) 

Observe that ݁ , ଵ݁  , and 1 are linearly independent. If this is not so, then 1 =  ܽ݁ +
 ܾ ଵ݁for some numbers a, b. But ଵ݁(0, (ߙ = 0 and݁(0, (ߙ = 0.This forces that1 = 0 and 
leads to a contradiction. 
By Theorem (5.1.1), we can take an element ݁ ∈ ଶܯ ∩  such that ݀ܮ

ଵ = ݀
 + ݁ଶ +  µ݁  

with ݁ = 0 and ݁ଶ ∈ ଶܯ ∩ . Thus we have that ݁ଶܮ  is orthogonal to 1 and so ݁ଶ  is in 
{1, ݁  , ଵ݁}ୄ and {1, ݁ , ଵ݁, ݁ଶ} form a basis for ܮ. Moreover for any ݂ ∈ ଶܯ ∩  ,ܮ 

݀
ଵ = ݀

 + ݃ + ݁ߣ  
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for some number ߣ and ݃ ∈ ଶܯ ∩  . If g does not equal 0, then g is orthogonal to 1. Thusܮ
g is in {1, ݁  , ଵ݁}ୄ and hence ݃ =  ܿ݁ଶ  for some number c. Therefore taking a nonzero 
element ݁ଷ ∈ ଶܯ ∩   which is orthogonal to ݁ଶ, we haveܮ

݀మ
ଵ = ݀మ

 + µଶ݁ଶ + ଶ݁ߣ , ݀య
ଵ = ݀య

 + µଶ݁ଷ + ଷ݁ߣ , 
and {݁, ଵ݁, ݁ଶ , ݁ଷ} is an orthogonal basis for ܮ. 
If µଶ = 0, then by the same reason as before we get 

ଶߣ =  0, ݀మ
  = ݀మ

ଵ ⊥ ,݁ଶ(0ܮ (ߙ  = ݁ଶ(0, (ߚ =  0. 
So using ଵ ∈ ܮ = ,1}݊ܽݏ  ݁, ଵ݁, ݁ଶ} , we have ߙ = ,ଵ(0 (ߙ = ,ଵ(0 (ߚ = ߚ , which 
contradicts our assumption that ߙ ≠ Hence µଶ .ߚ ≠ 0. 
Observe that 1 is in ܮ = ݁}݊ܽݏ  , ଵ݁ , ݁ଶ  , ݁ଷ} and orthogonal to both ݁  and ݁ଶ . Thus 1 =
ܿଵ ଵ݁ + ܿଷ݁ଷ for some numbers ܿଵ and ݁ଷ. So 

1 = ܿଵ ଵ݁(0, (ߙ  + ܿଷ݁ଷ(0, (ߙ = ܿଵ ଵ݁(0, (ߚ  + ܿଷ݁ଷ(0,  .(ߚ
By (12), we have 1 = ܿଷ݁ଷ(0, (ߙ  = ܿଷ݁ଷ(0, to obtain that ܿଷ ,(ߚ ≠ 0 and 

ܿଷ(0, (ߙ = ݁ଷ(0, (ߚ = 1/ܿଷ. 
If µଷ = 0, then by the same reason as before we get ݁ଷ(0, (ߙ = ݁ଷ(0, (ߚ = 0. Hence µଷ ≠
0. 
Now by the linearality of ݀(.)

ଵ  and ݀(.)
  we have 

݀µయమିµమయ
ଵ =  ݀µయమିµమయ

 + (µଷߣଶ − µଶߣଷ)݁. 
By the same reason as before we getµଷߣଶ − µଶߣଷ = 0 and݀µయమିµమయ

 = ݀µయమିµమయ
ଵ ⊥  ܮ

and therefore 
µଷ݁ଶ(0, (ߙ − µଶ݁ଷ(0, (ߙ = µଷ݁ଶ(0, (ߚ − µଶ݁ଷ(0, (ߚ = 0. 

So we get ݁ଶ(0, (ߙ = µଶ/µଷܿଷ = ݁ଶ(0, (ߚ . Hence ଵ ∈ ܮ = ,1}݊ܽݏ  ݁, ଵ݁, ݁ଶ} . This 
implies that ߙ = ,ଵ(0 (ߙ = ,ଵ(0 (ߚ =  which again contradicts our as-sumption that ,ߚ 
≠ ߙ  .ߚ 
Another case is that µ1 is not equal to 0. In this case, (10) can be rewritten as 

ଵ݁ =
1
µଵ

݀భ
ଵ −

1
µଵ

݀భ
 −  

ଵߣ

µଵ
݁, 

and we have that ଵ݁ is orthogonal to 1 since ݀భ
ଵ  , ݀భ

  , and ݁  are orthogonal to 1. Thus 1 
is in ܯଶ ∩  .ܮ
By Theorem (5.1.1), there is an element ݁ ∈ ଶܯ ∩   such thatߣ  and a numberܮ
                                                               ݀ଵ

ଵ = ݀ଵ
 + ݁ + ݁ߣ .                                                                   (13) 

       
If ݁ = 0, then ߣ = 0, and hence ݀ଵ

 ⊥ and 1ܮ = 1(0, (ߙ = 1(0, ݁ So .(ߚ ≠  0.  
Since ݀ଵ

ଵ is in ܮ
ୄ, ݀ଵ

ଵis orthogonal to 1. Noting that ݀ଵ
and ݁  are orthogonal to 1,we have that 

݁ ⊥ 1. Hence we get an orthogonal basis {݁ , ଵ݁ , 1, ݁} of ܮ.   
Claim: ݁(0, (ߙ −  ݁(0, (ߚ = 0.     
Proof. Using Theorem (5.1.1) again, we have that ݀

ଵ = ݀
 + ݃ + ݁ߣ for some ݃ ∈ ܮ ∩

݃ ଶ.Ifܯ ≠ 0, we have that ݃ ⊥ 1, since ݀
ଵ, ݀

, and ݁are orthogonal to 1. Thus we havethat 
݃ = µ݁ for some number µ to obtain ݀

ଵ = ݀
 + µ݁ +  .݁ߣ

Furthermore by the linearality of ݀(.)
ଵ  and ݀(.)

 we have that        
݀ିµଵ

ଵ = ݀ିµଵ
 + ߣ) −  µߣ)݁ . 
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By the same reason (namely ݀ିµଵ
ଵ ⊥ ,ܮ ݀ିµଵ

 ⊥  1 and  〈݁  , 1〉 ≠ 0) we have that  
ߣ −  µߣ =  0,    ݀ିµଵ

 = ݀ିµଵ
ଵ ⊥  ܮ

(݁ −  µ1)(0, (ߙ  =  (݁ −  µ1)(0, (ߚ = 0. 
Hence we have ݁(0, (ߙ − ݁(0, (ߚ = µ − µ = 0 to complete the proof of the claim. 
Let us find the value of ߣ in (13) which will be used to make the coefficients symmetric with 
respect to ߙ and ߚ. To do this, we first state a technical lemma which will be used in several 
other places. 
Lemma (5.1.9) [181]: If g is in ܪଶ(ॻ), then ݓ〈݃߶

ᇱ , ߶〉 = ݃(0) + (ߙ)݃ +  .(ߚ)݃
Proof. Since ߶ equals ऊ߶ఈ߶ఉ , simple calculations give 

߶݃ݓ〉
ᇱ , ߶〉 = ,′(ఈ߶ఉ߶ݓ)݃ݓ〉 〈ఈ߶ఉ߶ݓ = ,′(ఈ߶ఉ߶ݓ)݃〉 ߶ఈ߶ఉ〉

= 〈݃(߶ఈ߶ఉ + ఈ߶ݓ 
ᇱ ߶ఉ + ఈ߶ఉ߶ݓ 

ᇱ ), ߶ఈ߶ఉ〉
= 〈݃, 1〉 + ఈ߶݃ݓ〉 

ᇱ , ߶ఈ〉 + ఉ߶݃ݓ〉
ᇱ , ߶ఉ〉

= ݃(0)  + ఈ߶݃ݓ〉  
ᇱ , ߶ఈ〉 + ఉ߶݃ݓ〉

ᇱ , ߶ఉ〉 . 
Writing ߶ఈ as 

߶ఈ = −
1
തߙ

+
1
തߙ − ߙ

1 − ݓതߙ
=  −

1
തߙ

+
1 − ଶ|ߙ|

തߙ
 .(ݓ) ఈܭ

we have                                   

ఈ߶݃ݓ〉
ᇱ , ߶ఈ〉 =

1 − ଶ|ߙ|

ߙ
ఈ߶݃ݓ)

ᇱ (ߙ)( =  .(ߙ)݃
The first equality follows from〈݃ݓ߶ఈ

ᇱ , 1〉equals 0 and the second equality followsfrom 

߶ఈ
ᇱ (ߙ)  =

1
1 −  .ଶ|ߙ|

By the symmetry of ߙ and ߚ, similar computations lead to〈݃ݓ߶ఉ
ᇱ , ߶ఉ〉 =   .(ߚ)݃

We state the values of ߣ and〈݁, ݁〉as a lemma.            
Lemma (5.1.10) [181]:                                  

ߣ = −
+ ߙ ߚ 

4
,      〈݁ , ݁〉 =  4, 

Proof. Since ݀ଵ
ଵ is orthogonal to ܮ, ݁  is in ܮ, and e is orthogonal to ݁ , (13) gives 

0 = 〈݀ଵ
ଵ, ݁〉 = 〈݀ଵ

 + ݁ + ݁ߣ , ݁〉 = 〈݀ଵ
 , ݁〉 〈݁ߣ + , ݁〉. 

We need to compute 〈݀ଵ
 , ݁〉 and 〈݁ , ݁〉 , respectively.         

〈݀ଵ
 , ݁〉 = (ݓ)߶−〉  + ݁ݓ , ݁〉 = ݁ݓ〉  , ݁〉 = ,ݓ)݁ݓ〉 ,(ݓ ݁(0, 〈(ݓ = ߶ݓ)ݓ〉

ᇱ + ߶), ߶〉
= ଶ߶ݓ〉

ᇱ , ߶〉 + ,߶ݓ〉 ߶〉 = ଶ߶ݓ〉
ᇱ , ߶〉 = ߙ +  .ߚ

The last equality follows from Lemma (5.1.9) with ݃ =  .ݓ 
〈݁ , ݁〉 = 〈݁(ݓ, ,(ݓ ݁(0, 〈(ݓ = ߶ݓ〉

ᇱ + ߶, ߶〉 = ߶ݓ〉
ᇱ , ߶〉 + 〈߶ , ߶〉

= ߶ݓ〉
ᇱ , ߶〉 +  1 = 4, 

where the last equality follows from Lemma (5.1.9) with ݃ =  1. Hence ߙ + ߚ + ߣ4 = 0 
and ߣ =  ିఈାఉ

ସ
 . 

Continuing with the proof of Theorem (5.1.8), let ܲబ  denote the projection of ܪଶ(ॻଶ) onto 
(ݓ). The element ܲబ(݇ఈܮ − ݇ఉ(ݓ)) has the property that for any ݃ ∈  ,ܮ
 



188 
 

〈݃, ܲబ(݇ఈ(ݓ) − ݇ఉ(ݓ))〉 = 〈݃, ݇ఈ(ݓ) − ݇ఉ(ݓ)〉 = ݃(0, (ߙ − ݃(0,  .(ߚ
Thus ܲబ(݇ఈ(ݓ) − ݇ఉ(ݓ)) is orthogonal to g for ݃ ∈ , with ݃(0ܮ (ߙ = ݃(0,  So .(ߚ

ܲబ(݇ఈ(ݓ) − ݇ఉ(ݓ)) is orthogonal to ݁ ,1, e. On the other hand, 
,ଵ〉 ܲబ(݇ఈ(ݓ) − ݇ఉ(ݓ))〉 = ߙ  − ߚ  ≠ 0. 

This gives that the element ܲబ(݇ఈ(ݓ) − ݇ఉ(ݓ)) is a nonzero element. Therefore 
there exists a nonzero number b such that ܲబ(݇ఈ(ݓ) − ݇ఉ(ݓ)) =  ܾ݁1. Without loss 
of generality we assume that ݁ଵ =  ܲబ(݇ఈ(ݓ) − ݇ఉ(ݓ)). 
Observe that 

,ଵ൫߶(ऊ) ൯݁ଵ(ݓ)߶ +  ݀భ
ଵ ∈ ,ଵ(߶(ऊ)      ,ଵܯ ((ݓ)߶ + ݀ଵ

ଵ ∈ ଶܯ , ଵܯ ⊥  ,ଶܯ 
to get   
,ଵ(߶(ऊ)〉  ଵ݁((ݓ)߶ + ݀భ

ଵ , ,ଵ(߶(ऊ) ((ݓ)߶ +  ݀ଵ
ଵ〉 = 0. 

Thus we have  
                0 = ,ଵ൫߶(ऊ)〉 ൯݁ଵ(ݓ)߶ + ݀భ

ଵ , ,ଵ൫߶(ऊ) ൯(ݓ)߶ +  ݀ଵ
ଵ〉

= 〈൫߶(ऊ), ,൯݁ଵ(ݓ)߶ ߶(ऊ) + 〈(ݓ)߶ + 〈݀భ
ଵ  , ݀ଵ

ଵ〉 
=  〈݀భ

ଵ  , ݀ଵ
ଵ〉  .                                                                                                                           (14) 

The second equality follows from ݀భ
ଵ , ݀ଵ

ଵ ∈ థܶ(ऊ) ݎ݁݇ 
∗ ∩ ݎ݁݇ థܶ(ऊ)

∗ . The last equality 
follows from ݁ଵ ⊥ 1  and ݁ଵ, 1 ∈ థܶ(ऊ) ݎ݁݇

∗  ∩ థܶ(ऊ) ݎ݁݇
∗ . Substituting (13) into 

equation (14), we have 
0 = 〈݀భ

ଵ , ݀ଵ
 + ݁ + 〈݁ߣ = 〈݀భ

ଵ , ݀ଵ
〉 = 〈݀భ

ଵ , (ݓ)߶− + 〈݁ݓ = 〈݀భ
ଵ , 〈݁ݓ

= 〈݀భ
 + µଵ݁ଵ + ଵ݁ߣ , 〈݁ݓ = 〈݀భ

 , 〈݁ݓ + µଵ〈݁ଵ, 〈݁ݓ + ଵ〈݁ߣ ,  .〈݁ݓ
The second equation comes from the fact that ݀భ

ଵ  is orthogonal to ܮ and both e and 
݁  are in ܮ . The third equation follows from the definition of ݀ଵ

  and the forth 
equation follows from the fact that ݀భ

ଵ  is in ker థܶ(ऊ)
∗  ∩ థܶ(௪) ݎ݁݇

∗ . We need to 
calculate 〈݀భ

 , ݁ݓ , ݁ଵ, 〉, and 〈݁݁ݓ ,  .〉 separately݁ݓ
To get 〈݀భ

 , 〉, by the definition of ݀భ݁ݓ
 we have 

〈݀భ
 , 〈݁ݓ = ଵ݁(ݓ)߶ −〉  + ,ଵ(0݁ݓ  ݁(ݓ , 〈݁ݓ

= ,ଵ݁(ݓ)߶−〉  〈݁ݓ + ,ଵ(0݁ݓ〉 ,݁(ݓ  .〈݁ݓ
Thus we need to compute 〈−߶(ݓ)݁ଵ, ,ଵ(0݁ݓ〉 〉 and݁ݓ ,݁(ݓ  〉 one by one. The݁ݓ
equality〈−߶(ݓ)݁ଵ, 〈݁ݓ = 0 follows from the following computations. 

,ଵ݁(ݓ)߶−〉 〈݁ݓ = ,ଵ݁(ݓ)߶ݓ −〉 〈݁ݓ =  −〈߶(ݓ)݁ଵ, ݁〉
= −〈 ߶(ݓ)݁ଵ(ݓ, ,(ݓ ݁(0, 〈(ݓ = 〈− ߶(ݓ)݁ଵ(ݓ, ,(ݓ ߶(ݓ)〉
= − 〈݁ଵ(ݓ, ,(ݓ 1〉 = − 〈݁ଵ, 1〉 = 0. 

To get〈݁ݓଵ(0, ,݁(ݓ   .〉, we continue as follows݁ݓ



189 
 

,ଵ(0݁ݓ〉 ݁(ݓ , 〈݁ݓ = 〈݁ଵ(0, ,݁(ݓ ݁〉 = 〈݁ଵ(0, ,ݓ)݁(ݓ ,(ݓ ݁(0, 〈(ݓ
= 〈݁ଵ(0, ,ݓ)݁(ݓ ,(ݓ ߶(ݓ)〉 = 〈݁ଵ(0, (ݓ)߶)(ݓ + ߶ݓ

ᇱ ,((ݓ) ߶(ݓ)〉
= 〈݁ଵ(0, ,(ݓ)߶(ݓ ߶(ݓ)〉 + 〈݁ଵ(0, ߶ݓ(ݓ

ᇱ ,(ݓ) ߶(ݓ)〉
= 〈݁ଵ(0, 〈1,(ݓ + 〈݁ଵ(0, ߶ݓ(ݓ

ᇱ ,(ݓ) ߶(ݓ)〉
= ݁ଵ(0,0) + 〈݁ଵ(0, ߶ݓ(ݓ

ᇱ ,(ݓ) ߶(ݓ)〉
= 〈݁ଵ, 1〉 + 〈݁ଵ(0, ߶ݓ(ݓ

ᇱ ,(ݓ) ߶(ݓ)〉 = 〈݁ଵ(0, ,(ݓ)′0߮ݓ(ݓ ߶(ݓ)〉
= ݁ଵ(0, (ߙ + ݁ଵ(0,  .(ߚ

The last equality follows from Lemma (5.1.9) and ݁ଵ(0, 0)  = 〈݁ଵ, 1〉 =  0. Hence 
〈݀భ

 , 〈݁ݓ = ݁ଵ(0, (ߙ + ݁ଵ(0,  .(ߚ
Recall that ݀ଵ

ଵ = ݀ଵ
 + ݁ + ݁ߣ  is orthogonal to ܮ and ݁ଵ is orthogonal to both e 

and ݁ . Thus 
0 = 〈݁ଵ, ݀ଵ

 + ݁ + 〈݁ߣ = 〈݁ଵ , (ݓ)߶−  + 〈݁ݓ  = 〈݁ଵ,  . 〈݁ݓ
From the computation of ݀ଵ

, ݁ in the proof of Lemma (5.1.10) we have showed that 
݁ݓ〉 , ݁〉 = ߙ  +  Therefore we have that .ߚ

                                             ݁ଵ(0, (ߙ + ݁ଵ(0, (ߚ + തߙଵ൫ߣ + ൯ߚ̅
= 0.                                        (15) 

On the other hand, 
0 = 〈݀భ

ଵ , ݁〉 = ݀భ
 + µଵ݁ଵ + ଵ݁ߣ , ݁ = 〈݀భ

 , ݁〉 +  ଵߣ4 

and 
〈݀భ

 , ݁〉 = ଵ݁(ݓ)߶ −〉  + ,ଵ(0݁ݓ  ݁(ݓ , ݁〉 = ,ଵ(0݁ݓ〉 ,݁(ݓ ݁〉
= ,ଵ(0݁ݓ〉 ,ݓ)݁(ݓ ,(ݓ ݁(0, 〈(ݓ
= ,ଵ(0݁ݓ〉 (ݓ)߶)(ݓ + ߶ݓ

ᇱ ), ߶(ݓ)〉 = ,ଶ݁ଵ(0ݓ〉 ߶(ݓ
ᇱ , ߶(ݓ)〉

= ,ଵ(0݁ߙ (ߙ  + ,ଵ(0݁ߚ   .(ߚ
The last equality follows from Lemma (5.1.9) with ݃ = ,ଵ(0݁ݓ   Thus .(ݓ

,ଵ(0݁ߙ (ߙ + ,ଵ(0݁ߚ  (ߚ + ଵߣ4  =  0. 
So                       

ଵߣ = −
α
4

݁ଵ(0, (ߙ −
β
4

݁ଵ(0,  (16)                                               .(ߚ
Substituting (16) into (15), we have         

ቈ1 −
തߙ൫ߙ + ൯ߚ̅

4
 ݁ଵ(0, (ߙ + ቈ1 −  

തߙ൫ߚ + ൯ߚ̅
4

 ݁ଵ(0, (ߚ = 0. 

Recall that ߣ  =  − ఈାఉ
ସ

 , to get       
൫1 + ,൯݁ଵ(0ߙߣ̅ (ߙ +  ൫1 + ,൯݁ଵ(0ߚߣ̅ (ߚ = 0.                                   (17)  

We are going to draw another equation about ݁ଵ(0, ,and ݁ଵ(0 (ߙ  from the (ߚ
property that ݀భ

ଵ is orthogonal to ܮ. To do this, recall that  
    ݁ଵ = ܲబ(݇ఈ(ݓ) − ݇ఉ(ݓ)) ∈ ଵܯ ∩  ,ܮ

݀భ
ଵ = ݀భ

 + µଵ݁ଵ + ଵ݁ߣ ⊥  ,ܮ
ܮ = ,1}݊ܽݏ ,ଵ ݁ఈ, ఉ݁}, 
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݁ఈ =  ݇ఈ(ऊ)݇ఈ(ݓ), ఉ݁ =  ݇ఉ(ऊ)݇ఉ(ݓ). 
Thus ݀భ

ଵ  is orthogonal to ଵ, ݁ఈ and ఉ݁ .        
Since ݀భ

ଵ is orthogonal to ଵ we have 〈݀భ
 , 〈ଵ + µଵ〈݁ଵ, 〈ଵ + ,ଵ〈݁ߣ 〈ଵ = 0. 

Noting 
〈݀భ

 , 〈ଵ = ଵ݁(ݓ)߶ −〉  + ,ଵ(0݁ݓ  ,݁(ݓ 〈1 = ,ଵ(0݁ݓ〉  〈ଵ ݁(ݓ
= ,ଵ(0݁ݓ 〉  ,ݓ)݁(ݓ ,(ݓ 〈ݓ   =  〈݁ଵ(0, ,ݓ)݁(ݓ ,(ݓ 1〉 =  0, 

〈݁ଵ, 〈ଵ =   〈 ܲబ(݇ఈ(ݓ) − ݇ఉ(ݓ)), 〈 ଵ =  〈݇ఈ(ݓ) − ݇ఉ(ݓ), 〈ଵ = തߙ −  ,ߚ̅
〈݁, 〈ଵ = 〈݁(0, ,(ݓ ,ݓ)ଵ 〈(ݓ = 〈߶(ݓ), 〈ݓ2 = , ఈ߶ఉ߶ݓ〉 〈ݓ2 =  2 〈߶ఈ߶ఉ , 1〉   

=  2߶ఈ(0)߶ఉ(0) =  ,ߚߙ2
we have (ߙത − µଵ(ߚ̅ + ଵߣߚߙ2  = 0, to obtain        

ଵߣ = −µଵ
തߙ − ߚ̅
ߚߙ2

. 

Since ݀భ
ଵ ⊥ ݁ఈ, we have 〈݀భ

 , ݁ఈ〉 + µଵ〈݁ଵ, ݁ఈ〉 + , ଵ〈݁ߣ ݁ఈ〉 =  0, to get 

݀〈݀భ
 , ݁ఈ〉 + µଵ〈݁ଵ, ݁ఈ〉  − µଵ

തߙ − ߚ̅
ߚߙ2

, 〈݁ , ݁ఈ〉 =  0.                              (18) 

We need to calculate  〈݀భ
 , ݁ఈ〉, 〈݁ଵ, ݁ఈ〉, and 〈݁ , ݁ఈ〉 . Simple calculations show 

that 
 〈݀భ

 , ݁ఈ〉 = ଵ݁(ݓ)߶ −  + ,ଵ(0݁ݓ  ,݁(ݓ ݁ఈ = ,ଵ(0݁ݓ〉 ,݁(ݓ ݁ఈ〉  
= ,ଵ(0݁ߙ ,ߙ)݁(ߙ  (19)        ,(ߙ

      〈݁ଵ, ݁ఈ〉 = ݁ଵ(ߙ, (ߙ = 〈 ܲబ ቀ݇ఈ(ݓ) − ݇ఉ(ݓ)ቁ , ݁ఈ  〉 =
1

1 − ଶ|ߙ|  −
1

1 − ߚ̅ߙ
 

 = ఈ൫ఈഥିఉഥ൯
(ଵି |ఈ|మ )൫ଵ ିఈఉഥ൯

,                                                                   (20) 

 〈݁, ݁ఈ〉 = ݁(ߙ, (ߙ = ߶ߙ 
ᇱ (ߙ) + ߶(ߙ) = ଶߙ  1

1 − ଶ|ߙ| 
− ߙ ߚ 
1 − ߚ̅ߙ

 .           (21) 

Thus (20) and (21) give   
݁ଵ(ߙ, (ߙ
݁(ߙ, (ߙ

 =
തߙ − ߚ̅

− ߙ)ߙ (ߚ 
. 

Substituting the above equality in equation (18) leads to 

,ଵ(0݁ߙ ,ߙ)݁(ߙ (ߙ  + µଵ݁ଵ(ߙ, (ߙ  − µଵ
തߙ − ߚ̅
ߚߙ2

݁(ߙ, (ߙ = 0. 

Dividing both sides of the above equality by ݁(ߙ,  gives  (ߙ

,ଵ(0݁ߙ (ߙ + µଵ
݁ଵ(ߙ, (ߙ
݁(ߙ, (ߙ

 − µଵ
തߙ − ߚ̅
ߚߙ2

=  0.  

Hence we have          

,ଵ(0݁ߙ (ߙ + µଵ
തߙ − ߚ̅

ߙ)ߙ − (ߚ
− µଵ

തߙ − ߚ̅
ߚߙ2

=  0, 

to obtain                 
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,ଵ(0݁ߙ  (ߙ + ߚ) + (ߣ ଶµభ൫ఈഥିఉഥ൯
ఈఉ(ఈିఉ)

=  0.                                 (22) 
Similarly, since ݀భ

ଵ  is orthogonal to ఉ݁ , we have     
  〈݀భ

  , ఉ݁〉 + µଵ〈݁ଵ, ఉ݁〉 + , 〈݁ߣ ఉ݁〉 =  0, 
to obtain                

〈݀భ
  , ఉ݁〉 + µଵ〈݁ଵ, ఉ݁〉 − µଵ

തߙ − ߚ̅
ߚߙ2

〈݁, ఉ݁〉 =  0.                            (23) 

We need to calculate 〈݀భ
  , ఉ݁〉, 〈݁ଵ , ఉ݁〉, and 〈݁ , ఉ݁〉. Simple calculations as above 

show that                
    〈݀భ

  , ఉ݁〉 = ଵ݁(ݓ)߶ −  + ,ଵ(0݁ݓ  ,݁(ݓ ఉ݁ = ,ଵ(0݁ݓ ,݁(ݓ ఉ݁ 
= ,ଵ(0݁ߚ ,ߚ)݁(ߚ  (24)    ,(ߚ

     〈݁ଵ, ఉ݁〉 = ݁ଵ(ߚ, (ߚ = 〈 ܲబ(݇ఈ(ݓ) − ݇ఉ(ݓ)), ఉ݁〉 = (ݓ)ߙ݇ − ,(ݓ)ߚ݇  ߚ݁

=
1

1 − ߚതߙ
−

1
1 −  ଶ|ߚ|

=
തߙ൫ߚ − ൯ߚ̅

(1 − 1)(ߚതߙ −  ଶ) ,                                                                        (25)|ߚ|

〈݁, ఉ݁〉 = ݁(ߚ, (ߚ = ߶ߚ
ᇱ (ߚ) + ߶(ߚ) = ଶߚ ߚ − ߙ

1 − ߚതߙ
1

1 − ଶ|ߚ|               (26) 

Combining (25) with (26) gives     
݁ଵ(ߚ, (ߚ
݁(ߚ, (ߚ

= −
തߙ − ߚ̅

− ߙ)ߚ (ߚ 
 

,ଵ(0݁ߚ ,ߚ)݁(ߚ (ߚ  + µଵ݁ଵ(ߚ, (ߚ  − µଵ2݁ߚߙ(ߚ, (ߚ = 0. 
Dividing both sides of the above equality by ݁(ߚ,  gives (ߚ

,ଵ(0݁ߚ (ߚ + µଵ
݁ଵ(ߚ, (ߚ
݁(ߚ, (ߚ − µଵ

തߙ − ߚ̅
ߚߙ2

=  0 

Hence we have  

,ଵ(0݁ߚ (ߚ − µଵ
തߙ − ߚ̅

ߙ)ߚ − (ߚ
− µଵ

തߙ − ߚ̅
ߚߙ2

=  0, 

to get           

,ଵ (0݁ߚ  (ߚ − ߙ) + (ߣ
2µଵ൫ߙത − ൯ߚ̅
ߙ)ߚߙ − (ߚ =  0.                             (27) 

Eliminating ଶµభ(ఈഥିఉഥ)
ఈఉ(ఈିఉ)

 from (22) and (27) gives   
+ ߙ)ߙ ,)݁ଵ(0ߣ (ߙ + + ߚ)ߚ  ,)݁ଵ(0ߣ (ߚ =  0.                                  (28) 

Now combining (27) and (28), we have the following linear system of equations 
about ݁ଵ(0, ,and ݁ଵ (0(ߙ          (ߚ

 (1 + ,ଵ(0݁(ߙߣ̅ (ߙ + (1 + ,ଵ(0݁(ߚߣ̅ (ߚ  =  0
ߙ)ߙ + ,)݁ଵ(0ߣ  (ߙ + ߚ)ߚ + ,)݁ଵ(0ߣ (ߚ  =  0.                                (29) 

If ݁ଵ(0, (ߙ = ݁ଵ(0, (ߚ = 0, then ଵ is in ܮ = , ݁}݊ܽݏ  ݁ଵ, 1, ݁}. But noting 
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݁(0, (ߙ = ݁(0, ,0)݁  ݀݊ܽ   (ߚ (ߙ = ݁(0,  (ߚ
we have ଵ(0, (ߙ = ,ଵ (0 ߙ which contradicts the assumption that ,(ߚ =  So at .ߚ
least one of ݁ଵ(0, ,and ݁ଵ(0 (ߚ  is nonzero. Then the determinant of the coefficient (ߚ
matrix of system (29) must be zero. This implies 

ฬ 1 + 1          ߙߣ̅ + ߚߣ̅
ߙ)ߙ + ߚ)ߚ    (ߣ + )ฬߣ =  0 

Making elementary row reductions on the above the determinant, we get 

ฬ (α −  β)̅ߣ          1 + ߚߣ̅
α − β)(α +  β + + )   β(βߣ )ฬߣ =  0. 

Since ߙ + ߚ = ߙ  andߣ4− − ߚ ≠ 0, we have 

ฬ           1ߣ̅ + ߚߣ̅
   β(βߣ3− + )ฬߣ =  0. 

Expanding this determinant we have     
0 = ଶߚ)ߣ̅  + (ߣߚ  + (1ߣ3̅ + (ߚߣ̅ = ଶߚ)ߣ̅ + ߣߚ + (ߣߚ3   + ߣ3 

= ଶߚ)ߣ̅ + (ߣߚ4   + ߣ3  = (ߚߙ−)ߣ̅ +  .ߣ3
Taking absolute value on both sides of the above equation, we have 

0 = (ߚߙ−)ߣ̅|  + |ߣ3 ≥ − |(3ߣ| (|ߚߙ| ≥  ,|ߣ|2
to get ߣ =  0. This implies ߙ + ߚ = 0, to complete the proof of Theorem (5.1.8) 

 

Section (5.2): Geometric Invariants Associated with their Symbol Curves       
For ॰ denotes the unit disk in the complex plane ℂ, and ॻ denotes the boundary of 
॰. Let ै(॰ഥ) consist of all meromorphic functions over ℂ which have no pole on 
the closed unit disk ॰ഥ , and ℜ(॰ഥ) denotes the set of all rational functions without 
poles on ॰ഥ . It is clear that ै(॰ഥ) ⊇ ℜ(॰ഥ). Let ܪஶ(॰) denote the Banach algebra 
of all bounded holomorphic functions over ॰, and ܪஶ(॰ഥ), as a subset of ܪஶ(॰), 
consists of functions that are holomorphic on ॰ഥ . The Hardy space ܪଶ(॰) consists 
of all holomorphic functions on ॰  whose Taylor coefficients at 0 are square 
summable. The Bergman space ܮ

ଶ (॰) consists of all holomorphic functions over ॰ 
that are square integrable with respect to the normalized area measure over ॰. For 
each function ߶ in ܪஶ(॰), let థܶ denote the Toeplitz operator on the Hardy space 
ܮ ଶ(॰) or the Bergman spaceܪ

ଶ (॰) according to the context. 
Let H be a Hilbert subspace. For an operator T in (ܪ)ܤ, {ܶ}′ denotes the commutant 
of T; that is, 

{ܶ}′ = {ܵ ∈ (ܪ)ܤ ∶ ܵܶ = ܶܵ}, 
which is a WOT-closed subalgebra of (ܪ)ܤ. The operator T is called totally Abelian 
if {ܶ}′  is Abelian; equivalently, {ܶ}′  is a maximal Abelian subalgebra of (ܪ)ܤ 
[205]. Berkson and Rubel [204] completely characterized totally Abelian operators 
in (ܪ)ܤ in the case of dim ܪ < ∞, and in this case they proved that ܶ is totally 
Abelian if and only if ܶ has a cyclic vector. In the case of ݀݅݉ ܪ = ∞ and ܪ being 
separable, they also characterized when normal operators (including unitary 
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operators) and non-unitary isometric operators are totally Abelian. Related work on 
analytic Toeplitz operators on ܪଶ(॰) are also initiated by Berkson and Rubel [205], 
where it is shown that if ߶ is an inner function, then థܶ is totally Abelian on ܪଶ(॰) 
if and only if there exist a unimodular constant c and a point ߣ ∈ ॰ such that ߶(ऊ) =
 ܿ ఒିऊ

ଵିఒഥऊ
 [206,Theorem 2.1]. Recall that  { ऊܶ}′ = { ܶ: ℎ ∈ {ஶ(॰)ܪ   is maximal 

Abelian. It follows that an analytic Toeplitz operator థܶ is to-tally Abelian if and 
only if { థܶ}′ = { ऊܶ}′ (this statement also holds on many function spaces, such as 
weighted Bergman spaces). But in general, it is hard to judge when { థܶ}′ = { ऊܶ}′ 
holds. Thus for a generic symbol ߶ ∈  ஶ(॰), it is beyond reach to give a completeܪ
characterization for the totally Abelian property of థܶ. This leads us to consider the 
commutants for analytic Toeplitz operators defined on the Hardy space ܪଶ(॰). In 
[207] Deddens and Wong raised several questions on this topic. One of them asks 
whether for each function ߶ ∈ ஶ(॰)ܪ , there is an inner function ߰  such that 
{ థܶ}′ = { టܶ}′  and that ߶ =  ℎ ∘ ߰  for some ℎ ∈ ஶ(॰)ܪ . Baker, Deddens and 
Ullman [208] proved that for an entire function ߶, there is a positive integer k such 
that { థܶ}′ =  {ܶऊೖ}′ and ߶ = ℎ(ऊ) for some entire function h. 
For a function ߶ in ܪஶ(॰), if there exists a point ߣ in ॰ such that the inner part of 
߶ −  is a finite Blaschke product, then ߶ is said to be in Cowen-Thomson’s (ߣ)߶
class, denoted by ߶ ∈ ࣮ࣝ(॰) . It is known that ࣮ࣝ(॰)  contains all nonconstant 
functions in ܪஶ(॰ഥ). Below, ℋ  denotes the Hardy space ܪଶ(॰) or the Bergman 
space ܮ

ଶ (॰). As presented below is the remarkable theorem on commutants for 
analytic Toeplitz operators, due to Thomson and Cowen [205]; also see [206, 
Chapter 3] for a detailed discussion and see [207]. 
Theorem (5.2.1)[203]: [Cowen-Thomson] Suppose ߶ ∈ ࣮ࣝ(॰). Then there exists 
a finite Blaschke product B and an ܪஶ-function ߰ such that ߶ = } and (ܤ)߰  థܶ}′ =
{ ܶ}′ℎ݊ ݏ݈݀ ℋ. 
The identity ߶ = -in Theorem (5.2.1) is called the Cowen-Thomson repre (ܤ)߰ 
sentation of ߶. Note that this B is of maximal order in the following sense: if there 
is another finite Blaschke product ܤ෨  and a function ෨߰  in ܪஶ(॰) satisfying ߶ =
 ෨߰(ܤ෨), then 

≤ ܤ ݎ݁݀ݎ ෨ܤ ݎ݁݀ݎ  . 
One defines a quantity ܾ(߶) to be the maximum of orders of B, for which there is a 
function ߰ in ܪஶ(॰) such that ߶ =  and ܾ(߶) is called the Cowen-Thomson ,(ܤ)߰
order of ߶. Thus for the finite Blaschke product B in Theorem (5.2.1) we have order 
ܤ = ܾ(߶). Once ߶ is fixed, it is not difficult to show that B is uniquely determined 
in the following sense. If there is another finite Blaschke product ܤ satisfying one 
of the following: 
(i) order ܤ = ܾ(߶) and there is an ℎ ∈ ߶ ஶ such thatܪ  =  ℎ(ܤ); 
(ii) { థܶ}′ =  { ܶబ}′ , 
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then there is a Moebius map ߟ such that ܤ = -This means that the Cowen .(ܤ)ߟ 
Thomson representation of ߶ is unique in the sense of modulo Moebius maps. 
For a bounded holomorphic function ߶ over ॰, as we mention థܶwe always assume 
that థܶ is defined on ℋ, the Hardy space ܪଶ(॰) or the Bergman space ܮ

ଶ (॰). The 
following is an immediate consequence of Theorem (5.2.1), see [208]. 
Corollary (5.2.2) [203]: Let ߶ be a nonconstant function in ܪஶ(॰ഥ). Then there 
exist a finite Blaschke product B and a function ߰  in ܪஶ(॰ഥ)  such that ߶ =
} ݀݊ܽ (ܤ)߰  థܶ}′ =  { ܶ}′ holds. If ߶ is entire, then ߰ is entire and ܤ(ऊ) = ऊ for 
some positive integer n. 
Suppose ߶ belongs to Cowen-Thomson’s class ࣮ࣝ(॰). Then థܶ is totally Abelian 
if and only if ܾ(߶) = 1. When ߶ is an entire function, expanding ߶’s Taylor series 
yields 

߶(ऊ) =  ܽऊ
ஶ

ୀ

. 

Set ܰ = ݃ܿ݀{݊ ∶ ܽ ≠ 0}, and then by Corollary (5.2.2) { థܶ}′ =  {ܶऊಿ }′ . In this 
case, ܾ(߶) = ܰ . Therefore, for a nonconstant entire function ߶ , థܶ  is totally 
Abelian if and only if 

݃ܿ݀{݊ ∶ ܽ = 1. 
Therefore, for the totally Abelian property of analytic Toeplitz operators థܶ it is 
important to determine the Cowen-Thomson order ܾ(߶) of ߶, and it is of interest to 
determine the exact form of the Blaschke product with order ܾ(߶). As we will see, 
there are several ways to study ܾ(߶). The first attack is made by Baker, Deddens 
and Ullman [209] in the case of ߶ being an entire function. In what follows, for ܿ ∉
߶(ॻ), let wind(߶, ܿ) denote the winding number of the curve ߶(ऊ) (ऊ ∈  ॻ) around 
the point c. Write ݊(߶) for the number 

,߶)݀݊݅ݓ} ݊݅݉ ߶(ܽ)) ∶  ܽ ∈ ॰, ߶(ܽ) ∉ ߶(ॻ)}. 
For a function ߶ ∈ (߶)ܾ ஶ(॰ഥ), it is obvious thatܪ ≤ ݊(߶). If ܾ(߶)  =  ݊(߶), ߶ is 
said to satisfy the Minimal Winding Number property (the MWN property). It is 
shown that a nonconstant entire function ߶ enjoys the MWN property [210]. For 
functions in ܪஶ(॰ഥ), the problem raised in [211] can be reformulated as: 
if ߶ is a nonconstant function in ܪஶ(॰ഥ), then does ߶ have the MWN Property; that 
is, ܾ(߶) = ݊(߶)? 
If the answer is yes, for a large class of analytic Toeplitz operators we can formulate 
their totally Abelian property in terms of winding number. 
For those functions ߶ in ܪஶ(॰ഥ) satisfying the MWN property, we can determine 
the exact form of B appearing in Corollary (5.2.2). Let be a point in ॰ such that ߶ −
߶(ܽ) does not vanish on ॻ and 

,߶)݀݊݅ݓ ߶(ܽ))  =  ݊(߶) =  ܾ(߶). 
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Denote the inner factor of ߶ − ߶(ܽ) by Ba, and we will show that ܤ is the desired 
finite Blaschke product. For this, let 

߶ =  (ܤ)߰
be the Cowen-Thomson representation of ߶. By Corollary (5.2.2), ߰ is in ܪஶ(॰ഥ). 
Let 

߰ − ߶(ܽ) =  ܨߟ
be the inner-outer factorization of ߰ − ߶(ܽ), where ߟ is inner. We see that 

߶ − ߶(ܽ) = (߰ − ߶(ܽ)) ∘ ܤ = ߟ  ∘ ܨ ܤ ∘  .ܤ 
Therefore ܤ = ߟܿ ∘ |ܿ| where c is a constant with ,ܤ = 1. Since 

ܤ ݎ݁݀ݎ = ,߶)݀݊݅ݓ  ߶(ܽ))  =  ܾ(߶)  =  ,ܤ ݎ݁݀ݎ 
this forces ߟ to be a Blaschke factor of order 1. Therefore this ܤ is the desired finite 
Blaschke product in Corollary (5.2.2). In this way, finding B essentially reduces to 
finding one of these points a (in general, such points a consist of a nonempty open 
set). In some cases of interest this procedure is feasible (see Theorem (5.2.5)). 
The MWN property is quite restricted. We will provide some examples of functions 
with good smoothness on the unit circle, and they are in Cowen-Thomson’s class 
࣮ࣝ(॰) but do not have the MWN property, see Examples (5.2.32) and (5.2.33). It 
is known that entire functions have the MWN property [212]. In Theorem (5.2.5) we 
extend this result to all nonconstant meromorphic functions in ॑(॰ഥ). 
Before continuing, we introduce the finite self-intersection property (the FSI 
property). For a function ߶  in the disk algebra ܣ(॰)  and ߟ ∈ ॻ , let ܰ (߶ −
,(ߟ)߶ ॻ) denote the cardinality of the set 

ݓ} ∈ ॻ ∶ (ݓ)߶ − (ߟ)߶ = 0}. 
called the multiplicity of self-intersection of the curve ߶(ऊ) (ऊ ∈ ॻ) at the point 
 Write .(ߟ)߶

ܰ(߶) = ݉݅݊ {ܰ(߶ − ,(ߟ)߶ ॻ) ∶ ߟ ∈ ॻ}, 
called the multiplicity of self-intersection of the curve ߶(ऊ) (ऊ ∈ ॻ) . It is not 
difficult to verify that ܾ(߶) ≤ ܰ(߶). A function ߶ in ܣ(॰) is said to have the FSI 
property if there exists a finite subset E of ॻ such that each point ߦ ∈ ॻ \ ܧ satisfies 
ܰ(߶ − ,(ߦ)߶ ॻ) = 1 [212]. 
For meromorphic functions in ॑(॰ഥ), we have the following result. 
Theorem (5.2.3) [203]: Suppose ߶  is a nonconstant function in ॑(॰ഥ) . The 
following are equivalent: 

(a) the Toeplitz operator థܶ is totally Abelian; 
(b) ߶ has the FSI property. 
(c) ܰ (߶) = 1. 

For a nonconstant function ߶  in ܪஶ(॰ഥ), let ߶ =  be the Cowen-Thomson (ܤ)߰ 
representation of ߶. If ߰ ∈  ஶ(॰ഥ) has the FSI property, then is said to have theܪ
FSI-decomposable property.  Quine [205] showed that each nonconstant polynomial 
has the FSI-decomposable property. In we prove that each nonconstant function in 
॑(॰ഥ) also enjoys the same property (see Theorem (5.2.21)). 
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For the characterization of geometric properties of symbol curves, we introduce the 
semigroup G(߶). Precisely, for each continuous function ߶ on ॻ define G(߶) to be 
the set of all continuous maps ߩ from ॻ to ॻ satisfying ߶(ߩ)  = ߶. 
For a finite Blaschke product ߶ , G(߶) is a finite cyclic group, and furthermore 
#(G(߶)) = order ߶ [204]. For ߶ ∈  .ஶ(॰ഥ), we have the following resultܪ
Theorem (5.2.4) [203]:  Suppose ߶ is a nonconstant function in ܪஶ(॰ഥ). Then G(߶) 
is a finite cyclic group. 
Let (߶) denote the order of ܩ(߶); that is, (߶)  =  We thus have four .(߶)ܩ#
integer quantities for a function ߶: (߶), ܾ(߶), ݊(߶) and ܰ(߶). We will prove that 
if ߶ is in ܪஶ(॰ഥ), then ܾ(߶) ≤ (߶) ≤ ݊(߶) and (߶) ≤ ܰ(߶). 
For a finite Blaschke product ܤ (ܤ) , = ܤ ݎ݁݀ݎ = (ܤ)݊ = (ܤ)ܰ [204]. More 
generally, we will prove that each nonconstant meromorphic function in ॑(॰ഥ) 
enjoys this property. 
Theorem (5.2.5) [203]: Suppose ߶ is a nonconstant function in ॑(॰ഥ). Then 

݊(߶)  =  ܾ(߶) = (߶) =  ܰ(߶). 
In particular, for ߶ ∈ ॑(॰ഥ) the Toeplitz operator థܶ is totally Abelian if and only 
if (߶) = 1; equivalently, the identity map is the only continuous map ߩ ∶ ॻ →
ॻ satisfying ߶(ߩ) = ߶. 
This is arranged as follows. first provides some basic properties of the group ܩ(߶) 
for ߶  in ܪஶ(॰ഥ)  and gives the proof of Theorem (5.2.4). focuses on Toeplitz 
operators with meromorphic symbols, discusses the MWN property, (߶), ܰ(߶) 
and the Cowen-Thomson order ܾ(߶) of ߶ for ߶ ∈ ॑(॰ഥ), and gives the proof of 
Theorem (5.2.5). first presents the proof of Theorem (5.2.3), and then give further 
results on FSI and FSI-decomposable properties. constructs some examples. On one 
hand, we give some totally Abelian Toeplitz operators defined by symbols in ॑(॰ഥ). 
On the other hand, some examples show that conclusion of Theorem (5.2.3) can fail 
even if the associated functions have good smoothness on ॻ. 
This provides some basic properties of ܩ(߶). 
For a function ߶ holomorphic on the closure of a domain Ω, ܰ(߶, Ω) or ܰ(߶, Ωഥ) 
denotes the number of zeros of ߶ on Ω or Ωഥ respectively, counting multiplicity. The 
winding number of ߶ is defined to be wind(߶, 0). 
The following shows that each member in ܩ(߶) has very strong restriction. 
Lemma (5.2.6) [203]: Suppose ߶ is a nonconstant function in ܪஶ(॰ഥ). Then every 
ߩ ∈   .is an automorphism of ॻ with winding number 1 (߶)ܩ
Proof. For each ߩ ∈  define ,(߶)ܩ

߉ = ݐ}  ∈ [0, (ߨ2 ∶ ߶′(݁௧)߶′(ߩ(݁௧)) = 0}. 
We will show that ߉ is a finite set. In fact, let ࣴ′ denote the zero set of ߶′ on ॰ഥ  and 
put 

ℱ = ߶ିଵ(߶(ࣴ)) ∩ ॻ. 
Since ߶ ∈ ((௧݁)ߩ) ߶ ஶ(॰ഥ), F is a finite set. Ifܪ = 0, then ρ(݁௧) ∈ ℱ. Therefore, 
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݁௧ ∈ ራ{ऊ ∈ ॻ ∶ ߶(ρ(ऊ))  − ߶(ς)  =  0}
ண∈ℱ

= ራ{ऊ ∈ ॻ ∶ ߶(ऊ) − ߶(ς)  =  0}
ண∈ℱ

. 

Since ߶ is holomorphic on ॰ഥ  and nonconstant, the right hand side is a union of 
finitely many finite sets. Hence {ݐ ∈ [0, :(ߨ2 ߶ᇱ൫݁௧൯ = 0} is a finite set, and so is 
Λ. 
Write (0, ߉ \ (ߨ2 = ⋃ ݐ) , ାଵ)ିଵݐ

ୀ  , where 0 = ݐ < ଵݐ < · · · ݐ = 2π. Since ߩ is 
continuous, there exists a real continuous function ߠ on [0, (௧݁)ߩ such that [ߨ2  =
 ݁ఏ(௧). Then 

߶(݁௧)  = ߶(݁ఏ(௧)). 
The Inverse Function Theorem implies that ߠ is differentiable on (0,  Taking .߉\(ߨ2
derivatives of t yields that 

(ݐ)ᇱߠ =
݁௧߶ᇱ൫݁௧൯

݁ఏ(௧)߶ᇱ(݁ఏ(௧)) ≠ 0, ∋ ݐ  (0,  (30)                       .߉ \(ߨ2

Hence for 0 ≤ ݇ ≤ ݊ − ݐ) is strictly monotonic on each interval ߠ ,1 ,  ାଵ) Sinceݐ
߶(ॻ) is of zero area measure and ߶(॰) is open, one can pick ߣ ∈ ॰  such that 
(ߣ)߶ ∉ ߶(ॻ). By the Argument Principle, we have 

ܰ(߶ − ,(ߣ)߶ (ܦ =
1

݅ߨ2
න

߶ᇱ(ߦ)
(ߦ)߶ − (ߣ)߶ ߦ݀

 

ॻ
=

1
ߨ2

න
߶ᇱ(݁௧)

߶(݁௧) − (ߣ)߶ ݁௧݀ݐ
ଶగ



=
1

ߨ2
 න

߶ᇱ(݁௧)
߶൫ߩ(݁௧)൯ − (ߣ)߶

݁௧݀ݐ
௧ೖశభ

௧ೖ

ିଵ

ୀ

(30)
=

 
1

ߨ2
 න

߶ᇱ൫݁ఏ(௧)൯
߶(݁ఏ(௧)) − (ߣ)߶ ݁ఏ(௧)ߠᇱ(ݐ)݀ݐ

௧ೖశభ

௧ೖ

ିଵ

ୀ

 

=
1

ߨ2
 න

߶ᇱ൫݁ఏ൯
߶(݁ఏ) − (ߣ)߶ ݁ఏ݀ߠ

ఏ(௧ೖశభ)

ఏ(௧ೖ)

ିଵ

ୀ

=
1

ߨ2
න

߶ᇱ൫݁ఏ൯
߶(݁ఏ) − (ߣ)߶ ݁ఏ݀ߠ

(ߨ2)ߠ

(0)ߠ

=
(ߨ2)ߠ − (0)ߠ

2݅ߨ4 න
(ߦ)′߶

(ߦ)߶  − (ߣ)߶ ߦ݀
 

ॻ
= #ρ · ܰ(߶ − ,(ߣ)߶  ॰), 

where #ߩ = ,ߩ)݀݊݅ݓ  0) . Since ܰ(߶ − ,(ߣ)߶  ॰)  is a positive integer, we have 
ߩ# =  1. This implies that ߩ is surjective. 
It remains to show that ρ is injective. Otherwise, there exist two points ߦଵ and ߦଶ in 
ॻ such that ߩ(ߦଵ) = (ଶߦ)ߩ = ߶ Let A be the set of zeros of .ߟ −  in ॻ, and (ߟ)߶ 
|ߩ ∶ ܣ →   is actually a|ߩ ,is surjective. Since A is a finite set ߩ is surjective as ܣ
bijection, which is a contradiction to ߩ(ߦଵ) =   .The proof is complete .(ଶߦ)ߩ
Corollary (5.2.7) [203]: Suppose that ߶ is a nonconstant function in ܪஶ(॰ഥ) and 
both ߩଵ  and ߩଶ  belong to ܩ(߶). If ߩଵ(ߦ)  = ߦ for some point (ߦ)ଶߩ ∈ ॻ, then 
ଵߩ =  .ଶߩ
Proof. Let ߣ be an arbitrary point in ॻ \ {ߦ}.  Let A be the zero set of ߶ −  in (ߣ)߶ 
ॻ. Arrange the points of {ߦ} ∪  :in the counter-clockwise direction ܣ

,ߦ ,ଵߦ . . . , బߦ  (݊ ≥ 1). 
It is clear that ߩଵ({ߦ} ∪ (ܣ = {ߦ})ଶߩ ∪  ଶ areߩ ଵ andߩ By Lemma (5.2.6), both .(ܣ
automorphisms of ॻ  with winding number #ߩଵ = ଶߩ# = 1 . Thus, when moves 
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along ॻ  in the positive direction, the images ߩଵ(ߦ)  and ߩଶ(ߦ)  run in the same 
direction. As ߦ  goes from ߦ  to ߦଵ ଵߩ ,  and ߩଶ  must coincide at the point ߦଵ . By 
induction, we have ߩଵ(ߦ) = 1 ,(ߦ)ଶߩ ≤ k ≤ ݊. In particular, ρ1(λ) = ρ2(λ). The 
proof is finished. 
In the case of finite Blaschke products, ܩ(߶) is a finite cyclic group [4]. 
In what follows we will prove that this result also is true for functions in ܪஶ(॰ഥ). 
Now we come to the proof of Theorem (5.2.4) (=Theorem (5.2.8)), which is 
represented as below. 
Theorem (5.2.8): [203] Suppose ߶ is a nonconstant function in ܪஶ(॰ഥ). Then ܩ(߶) 
is a finite cyclic group. 
Proof. By Lemma (5.2.6), ܩ(߶) is a group. We will show that ܩ(߶) is a finite cyclic 
group. Note that for a fixed point ߞ ∈ ॻ, {ऊ ∈ ॻ ∶ (ݖ)߶ =  is a finite set, and {(ߞ)߶
by Corollary (5.2.7) ܩ(߶) is a finite group. 
Let ߦ be a point on T, and let ߦ,· · · , ξబିଵ be all zeros of ߶ −  on ॻ in the (ߦ)߶
counter-clockwise direction. Then define {ߦ}ୀ

ஶ  to be the infinite sequence 
, · · ·,ߦ ξబିଵ; , · · ·,ߦ  ξబିଵ; · · · . 

That is, for all j 
ߦ = ݆ ݁ݎℎ݁ݓ        , []ߦ  ≡  ,( ݊ ݀݉ ) [݆]

where 0 ≤ [j] ≤ ݊ − 1. Let d be the minimal positive integer ݈ for which there is a 
member ߩ  in ܩ(߶)  satisfying ߩ(ߦ) = ξ . By Lemma (5.2.6) ߩ  maps each 
circular arc ξపξప + 1෫  to ఫߦ ఫߦ  + 1෫  for some ݆ , preserving the orientation. By 
continuity, if ߩ(ߦ) =  , then one hasߦ

(ξ)ߩ = ,ାߦ  0 ≤  ݅ ≤ ݊ − 1.                                     (31) 
By definition of d, there is a member ߬ in ܩ(߶) satisfying ߬(ߦ) =  ௗ. To finish theߦ 
proof of Theorem (5.2.8), it suffices to show that for each member ߩ in ܩ(߶), there 
is an integer m such that ߩ = ߬ (in the sense of composition). Write ߩ(ߦ) =  ,ߦ
and there are two integers ݇ ≥ 0 and ݈ such that 0 ≤ ݈ < ݀ and  

݈ = ݇݀ + ݈. 
Letting ߪ = ߬ିߩ, we have ߪ ∈ (ߦ)ߪ and by (31) ,(߶)ܩ = బߦ  . By definition of d 
we have ݈ = 0. By Corollary (5.2.7) ߪ = ݅݀, forcing ߩ = ߬ to complete the proof. 
For two positive integers m and n, write ݉|݊ to denote that m divides n. By Theorem 
(5.2.8), if ߶ is a nonconstant function in ܪஶ(॰ഥ), ܩ(߶) is a finite cyclic group. If 
߶ =  is a subgroup of (ܤ)ܩ is the Cowen-Thomson representation of ߶, then (ܤ)߰
(ܤ) Since .(߶)|(ܤ) and hence ,(߶)ܩ = ܾ(߶), we have 

 .(߶) | (߶)ܾ
The following gives some properties of the order (߶) of ܩ(߶). 
Corollary (5.2.9) [203]: Suppose ߶ is a nonconstant function in ܪஶ(॰ഥ). Then for 
each ߦ ∈ ॻ, ߶)ܰ| (߶) − ,(ߦ)߶ ॻ). Besides, for each ܽ ∈ ॰, if ߶(ܽ)  ∉ ߶(ॻ), then 

,߶)݀݊݅ݓ| (߶) ߶(ܽ)). 
In particular, we have 
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 ,(߶)݊| (߶)    ݀݊ܽ    (߶)ܰ| (߶)
where ܰ(߶) = ݉݅݊ {ܰ(߶ − ,(ߦ)߶ ॻ) ∶ ߦ ∈ ॻ} and 

݊(߶)  = ,߶)݀݊݅ݓ} ݊݅݉  ߶(ܽ)) ∶  ܽ ∈  ॰, ߶(ܽ) ∉ ߶(ॻ)}. 
Proof.  Let us have a close look at the proof of Theorem (5.2.8). Fix ߦ ∈ ॻ, and let 
, · · ·,ߦ ߶ బିଵ be all zeros ofߦ −  on ॻ in counter-clockwise direction. Let d (ߦ)߶
be the minimal positive integer ݈  so that there is a member ߩ in G(߶) satisfying 
ρ(ߦ) = ξ , and τ denotes the generator in G(߶) satisfying τ(ߦ) =  ξୢ . Then by 
Lemma (5.2.6) we have 

τ (ξ)  =  ξ୧ାୢ, 0 ≤ i ≤ n  −  1, 
and ݀|బ . Write 

݊ =  ݆݀. 
For ݇ > 0, ߬(ߦ) =  ௗ. By Corollary (5.2.7) we have that ߬ is the identity map ifߦ
and only if ߦௗ =  . Therefore j is the minimal positive number k such that ߬ isߦ
the identity map, and then 

݆ =  .(߶) 
Since ݊ =  ݆݀, ݆|బ; that is, (߶) | ܰ(߶ − ,(ߦ)߶  ॻ). The first statement is proved. 
For 0 ≤ ݅ ≤ ݆ − 1 let ߛ denote the positively oriented circular arc ߦపௗߦ(పାଵ)ௗ෫ , ௗߦ) =
(ߛ)). Then ߬ߦ = , and ߶(߬)ߛ = ߶. Also noting that ߶(߬) are closed curves, we 
have 

,(ߛ)߶)݀݊݅ݓ (ߣ = ,(ߛ)߶)݀݊݅ݓ ,(ߣ ߣ ∈ ℂ\߶(ॻ), 0 ≤  ݅ ≤  ݆ − 1. 
Since 

ॻ = ራ ߛ

ିଵ

ୀ

 ,(ݏ݁ݒݎݑܿ     ݏܽ)      

,(ॻ)߶)݀݊݅ݓ (ߣ = ݆ · ,(ߛ)߶)݀݊݅ݓ  ,(ߣ ߣ ∈ ℂ\߶(ॻ). 
Thus o(߶)|wind(߶, λ). In particular, we have 

o(߶) |wind(߶, ߶(a)) 
for each a ∈ ॰ such that ߶(a) ∉ ߶(ॻ). The proof is complete. 
Recall that a Jordan curve in ℂ is the image of a continuous injective map from the 
unit circle ॻ into ℂ. For ߶ ∈ Hஶ(॰), in the case of ߶(ॻ) being a Jordan curve, we 
have the following. 
Proposition (5.2.10) [203]: Suppose ߶ ∈  ஶ(॰) and its image on ॻ is a Jordanܪ
curve. Then there is a univalent function h on ॰ and a finite Blaschke product B 
satisfying ߶ = h(B). In this case, we have 

݊(߶) = ܾ(߶) = (߶) = ܰ(߶) =  .ܤ ݎ݁݀ݎ
Proof. Write Γ = ߶(ॻ), the image of ॻ under ߶. Then Γ is a Jordan curve. We will 
prove that Γ = ∂߶(॰). For this, note that ∂߶(॰) ⊆ Γ . Assume conversely that 
∂߶(॰) ≠ Γ . Since Γ  is a Jordan curve, ℂ\ ∂߶(॰)  is connected. A fact from 
topology states that a domain Ω in ℂ is a component of ℂ \ ∂Ω. Letting Ω = ߶(॰), 
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we have Ω = ℂ \ ∂߶(॰). However, this can not happen since ℂ \ ∂߶(॰)  is not 
bounded. Therefore, Γ = ∂߶(॰). 
The Jordan curve Γ divides the complex plane ℂ to an interior region and an exterior 
region. By Γ = ∂߶(॰), we know that ߶ is a proper map and ߶(॰) is the interior 
region of Γ, a simply connected domain. Let h be a conformal map from ॰ onto 
߶(॰), and write ߰ = hିଵ(߶). Then ߰ is a proper holomorphic map from ॰ to ॰. 
Hence ߰ is a finite Blaschke product [207, Theorem 7.3.3]. Also, we have ߶ = h(߰) 
as desired. 
By Carathéodory’s Theorem, a conformal map from ॰ onto a Jordan domain Ω 
extends to a continuous bijection from ॰ഥ  onto Ωഥ. Thus h is bijective on ॻ. Rewrite 
ψ = B. By ߶ = h(B), we get o(߶) = o(B) = order B, n(߶)  =  n(B), and N(߶) =
N (B). Since B ∶ ॻ → ॻ is a covering map, 

(ܤ) = (ܤ)݊ = (ܤ)ܰ =  ,ܤ ݎ݁݀ݎ
forcing (߶) = ݊(߶) = ܰ(߶) = Since order B .ܤ ݎ݁݀ݎ ≤ b(߶) ≤ o(߶), we have 
o(߶) = n(߶) = b(߶) = N(߶) = order B. The proof is finished.  
focuses on the class ै(॰ഥ), consisting of all meromorphic functions on ℂ whose 
poles are outside ॰. In this interesting case, we give the proof of Theorem (5.2.5). 
We begin with the notion of analytic continuation [209, Chapter 16]. A function 
element is an ordered pair (݂,  where D is an open disk and f is holomorphic ,(ܦ
function on D. Two function elements ( ݂, (ܦ  and ( ଵ݂, (ଵܦ  are called direct 
continuations of each other if ܦ ∩ ଵ is not empty and ݂ܦ = ଵ݂ holds on ܦ ∩  .ଵܦ
By a curve, we mean a continuous map from [0, 1] into ℂ. Given a function element 
( ݂, (0)ߛ with ߛ ) and a curveܦ ∈  :, if there is a partition of [0, 1]ܦ

0 = ݏ < ଵݏ < · · · < ݏ = 1 
and function elements ( ݂  , ) (0ܦ ≤ ݆ ≤ ݊) such that 

(a) ( ݂ , ) ) andܦ ݂ାଵ, ାଵ) are direct continuations for all j with 0ܦ ≤ ݆ ≤ ݊ −
 1; 

(b) ݏ]ߛ , [ାଵݏ ⊆ ≥ (0ܦ j ≤ n − 1) and (1)ߛ ∈ ) , thenܦ ݂ ,  ) is called anܦ
analytic continuation of (f0, D0) along γ. 

Suppose ߗ is a domain satisfying ܦ ∩ ߗ = ∅. A function element ( ݂,  ) is saidܦ
to admit unrestricted continuation in ߗ if for any curve ߛ in ߗ such that (0)ߛ  ∈  ,ܦ 
( ݂,  Furthermore, analytic continuation .ߛ ) admits an analytic continuation alongܦ
along a curve is essentially unique; that is, if (݃, ܷ) is another analytic continuation 
of ( ݂, ܷ then on ,ߛ ) alongܦ ∩  we have ݂ܦ = ݃. For ݏ ∈ [0, 1], we denote by 

݂(ߛ, the value of analytic continuation of ݂ (ݏ  along ߛ  at the endpoint (ݏ)ߛ of 
௦ߛ ݐ : ↦ ,(ݐݏ)ߛ 0 ≤ ݐ ≤ 1. In particular, ݂(ߛ, 1) = ݂((1)ߛ). 
For example, let ܦ = {ऊ ∈ ℂ: |ऊ − 1| < 1} and define 

݂(ऊ) = ݈݊ ऊ, ऊ ∈  ܦ 
with ln 1 =  0. Let (ݐ)ߛ = ,݂) Then .(݅ߨݐ2)ݔ݁  admits analytic continua-tion (ܦ
along ߛ. We have ݂(ߛ, 0) = ݂(1) = 0, and in general 
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,ߛ)݂ (ݐ  = ,݅ߨݐ2  0 ≤ ݐ ≤ 1. 
Note that ݂(ߛ, 1)  = ݅ߨ2  ≠ ,ߛ)݂ 0), but (1)ߛ  =  .(0)ߛ 
For a holomorphic function f on a planar domain ߗ, if there is a subdo-main V of ߗ and 
a holomorphic function ߩ ∶ ܸ →  such that ߗ

݂(ऊ) = ,((ऊ)ߩ)݂ ऊ ∈ ܸ, 
then ߩ is called a local inverse of f on V . The analytic continuation of a local inverse of f 
is also a local inverse. 
For each ऊ ∈ ℂ\ {0}, define 

ऊ∗ = 1/ऊ̅. 
Let A be a subset of the complex plane, and define ܣ∗ = {ऊ∗ ∶ ऊ ∈  .{{0}\ ܣ
For a meromorphic function f on domain ߗ, define ݂∗ by 

݂∗(ऊ)  = (݂(ऊ∗))∗, ऊ ∈  .∗ߗ
Note that ݂∗ is a meromorphic function if ݂ ≢ 0. 
We need the following lemma. 
Lemma (5.2.11) [203]: Suppose that f is a holomorphic function on a convex domain ߗ 
and ݔ ∈ ߗ ∩ ܴ. If there exists a sequence {ݔ} in ℝ\ {ݔ} such that ݔ → ݇)ݔ → ∞), 
and ݂(ݔ) ∈ ℝ, then ݂(ߗ ∩ ℝ)  ⊆ ℝ. 
Proof. Write ܷ = ߗ ∩ {ऊ̅: ऊ ∈ which is itself a domain. Then define ݃(ऊ) ,{ߗ = ݂(ऊ) −
݂(ऊ̅)തതതതതത on U. For each k, we have 

(ݔ)݃ = (ݔ)݂ − തതതതതതത(തതതݔ)݂  = (ݔ)݂ − തതതതതതതതതത((ݔ)݂)  =  0. 
Since ݔ ∈ ܷ and ݔ is the accumulation point of {ݔ}, ݃ ≡ 0. In particular, for each ݔ in 
ߗ ∩ ℝ, (ݔ)݂ = തതതതതത(ݔ̅)݂ = (ݔ)݂ ,തതതതതത. That is(ݔ)݂ ∈ ℝ to finish the proof. 
For ܽ ∈ ℂ and ߜ >  0, let 

ܱ(ܽ, (ߜ = {ऊ ∈ ℂ ∶  |ऊ − ܽ| <  .{ߜ
Since there is a Moebius map mapping the real line to the unit circle, Lemma (5.2.11) 
implies the following. 
Corollary (5.2.12) [203]: Assume f is holomorphic in ܱ(ߞ, ߞ where (ߜ ∈ ॻ and ߜ > 0.  
Suppose that there exists a sequence {ߞ}  in ॻ\ {ߞ} such that ߞ → ݇)ߞ → ∞) and 
(ߞ)݂ ∈ ॻ. Then ݂(ܱ(ߞ, (ߜ ∩ ॻ)  ⊆ ॻ. 
For two planar domains Ωଵ and Ωଶ, a holomorphic map ݂ ∶ Ωଵ → Ωଶ is called proper if 
݂ିଵ(ܧ) is compact for each compact subset E of Ωଶ. For a proper holomorphic map ݂ ∶
Ωଵ → Ωଶ, there exists a positive integer n such that for each ݓ ∈ Ωଶ, ݂ −  has exactly n ݓ
zeros in Ωଵ, counting multiplicity (see [208, Theorem 15.1.9]). The integer n is called the 
multiplicity of the holomorphic proper map f. 
An observation is in order. Let f be a nonconstant function holomorphic at a. By complex 
analysis, there is a holomorphic function ߰ over a neighborhood W of a and a positive 
integer n such that 

݂(ऊ)  −  ݂(ܽ)  =  (ऊ −  ܽ)߰(ऊ), ऊ ∈  ܹ 
and ߰(ܽ) ≠ 0. For W sufficiently small, ݃(ऊ)  =  (ऊ −  ܽ) ඥ߰(ऊ)  is univalent on W , 
and we have 
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݂(ऊ) − ݂(ܽ)  =  ݃(ऊ) . 
Furthermore, we can require W to be a Jordan domain such that ݃(ܹ) is a disk centered 
at 0. Therefore, we immediately get the following. 
Lemma (5.2.13) [203]: Suppose f is a nonconstant holomorphic function over a domain 
containing both a and b, and ݂(ܽ)  =  ݂(ܾ)  =  Then for a sufficiently small positive .ߣ 
number ߝ, there are two Jordan neighborhoods ଵܹ and ଶܹ of a and b, such that both 
݂|ௐభ  and ݂|ௐమ  are proper maps onto ߣ +  .॰ߝ
Furthermore, in this case for each pair (ऊ, satisfying ݂(ऊ) (ݓ  = ,(ݓ)݂  ऊ ∈  ଵܹ \{ܽ}, 
and ݓ ଶܹ\{ܾ}, there is a local inverse ߩ of f such that ߩ(ऊ)  =  admits analytic ߩ and ݓ 
continuation along any curve in ଵܹ \{ܽ}, with values in ଶܹ\{ܾ}. 
A problem raised in [208] asks whether each nonconstant function in ܪஶ(॰ഥ) has the 
MWN property. Under a certain condition this is answered by the following result. 
Theorem (5.2.14) [203]: Suppose ߶ is a nonconstant function in ै(॰ഥ). Then 

݊(߶)  =  ܾ(߶)  = (߶)   =  ܰ (߶). 
The proof of Theorem (5.2.14) is long and thus it is divided into several parts. In what 
follows we will establish some lemmas and corollaries and then prove Theorem (5.2.14) 
at the end. 
let ߶ be a nonconstant function in ै(॰ഥ). We write for the set of poles of ߶ in ℂ, and ܼ′ 
for the set of zeros of ߶′ . Let ܺ = ܲ ∪ ߶ିଵ(߮(0)) ∪ ߶ିଵ(߶(ܼ′)), ܻ = ܺ ∪ ܺ∗, and write 

ܻ = ߶ିଵ(߶(ܻ )). 
Note that ෨ܻ  is a countable set containing Y and ߶ିଵ(߶( ෨ܻ)) = ෨ܻ . Recall that a planar 
domain minus a countable set is path-connected. 
Lemma (5.2.15) [203]: Suppose that there is a point ߦ on  \ ෨ܻ , a neighborhood కܷ of ߦ, 
and a local inverse ߩ of ߶  satisfying ߩ = on కܷ ∗ߩ . If ߛ  is a curve in ॰\ ෨ܻ  such that 
(0)ߛ =  .ߛ then ρ admits analytic continuation along ,ߦ
Proof. To reach a contradiction, assume that ߩ admits no analytic continuation along ߛ. 
Write ߛ௦(ݐ)  = ,(ݐݏ)ߛ  ∋ ݐ  [0, 1] and put 

ݏ = ݏ} ݑݏ ∈ [0, 1] ∶  .{௦ߛ ݈݃݊ܽ ݊݅ݐܽݑ݊݅ݐ݊ܿ ܿ݅ݐݕ݈ܽ݊ܽ ݊ܽ ݏݐ݅݉݀ܽ ߩ
Then it is clear that the map ߩ defined on కܷ admits no analytic continuation along ߛ௦బ  ; 
otherwise there is some ݏଵ > ௦భߛ admits an analytic continuation along ߩ  such thatݏ  , a 
contradiction. Recall that ߛ)ߩ,  denotes the value of the analytic continuation of ρ at the (ݏ
endpoint (ݏ)ߛ of ߛ௦ , where 0 ≤ > ݏ   .ݏ
One will show that {ߛ)ߩ, (ݏ ∶ ∋ ݏ   [0, ,ߛ)ߩ )} is bounded. Note thatݏ  is continuous in (ݏ
s. If {ߛ)ߩ, (ݏ ∶ ∋ ݏ   [0, {ݏ} )} is not bounded, then these exists a sequenceݏ  ⊆  [0,  (ݏ
such that {ݏ} tends to ݏ, and 

lim
→ஶ

,ߛ)ߩ (ݏ   =  ∞.                                                     (32) 
Since ߛ ∩ ෨ܻ = ∅,  of ∗ߩ has no intersection with ߶ିଵ(߶(0)), and then the local inverse ߛ
߶ admits an analytic continuation along ߛ௦

∗, where 
௦ߛ

(ݐ)∗  = ,∗((ݐ)ݏߛ)  ∋ ݐ  [0, 1]. 
Then by (32) 
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lim
→ஶ

,∗ߛ)∗ߩ (ݏ   =  0, 
forcing 

lim
→ஶ

((ݏ)∗ߛ)߶ = ߶(0). 
That is, ߶(ߛ(ݏ)∗)  = ߶(0), and hence ߛ(ݏ)∗ ∈ ߶ିଵ(߶(0)). But ߛ has no intersection 
with the set ߶ିଵ(߶(0))∗, which is a contradiction. Therefore {ߛ)ߩ, (ݏ ∶ ݏ  ∈ [0,  )} isݏ
bounded by a positive number ܿ. 
Let {ऊ}ୀଵ

  be all the zeros of ߶ − in ܿ॰ഥ ((ݏ)ߛ)߶ . Since ߛ has no intersection with 
߶ିଵ(߶(ܼ′)), we have that ߶′(ߛ(ݏ)) ≠ 0 and 

߶′(ऊ) ≠ 0, ݅ =  1, . . . , ݉. 
Then one can find a connected neighborhood U of ߛ(ݏ)  and disjoint connected 
neighborhoods ܷ(݅ =  1, . . . , ݉)  of ऊ  such that ߶|  and ߶|  are univalent. Since 
߶(ऊ)  = ≥ for 1 ((ݏ)ߛ)߶  ݅ ≤  ݉, using Lemma (5.2.13) and contracting U and ܷ  we 
have that 

߶( ܷ)  = ߶(ܷ)  = ,((ݏ)ߛ)߶)ܱ  ,(ߝ 1 ≤ ݅ ≤ ݉, 
for some ߝ > 0, and that 

߶ିଵ(ܱ(߶(ߛ(ݏ)), ((ߝ ∩  ܿ॰ഥ ⊆ ሡ ܷ



ୀଵ

.                                            (33) 

By continuity of ߶, there exists a positive number ߜ <   such thatݏ
ݏ]ߛ)߶ − ,ߜ  ([ݏ  ⊆ ,((ݏ)ߛ)߶)ܱ   .(ߝ

By (33) {ߛ)ߩ, (ݏ ∶ ݏ ∈ ݏ) − ,ߜ  ∐ )} is a connected set inݏ ܷ

ୀଵ , and thus it is 

contained in a single ܷ for some 1 ≤ ݆ ≤ ݉. Letting  
τ =  (߶| ܷ)ିଵ ∘ (߶|ܷ ), 

we have that ߬ is a local inverse of ߶ such that ߬(ߛ(ݏ)) = ऊ and ߬ (ܷ) = ܷ  .  
For each ݏ ∈ ݏ) − ,ߜ ௦ߛ along ߩ ௦ be the analytic continuation forߩ ), letݏ , and then ߩ௦ 
is a direct continuation of ߬ . Then by combining ρs with  , we have that ߩ admits analytic 
continuation along ߛ௦బto derive a contradiction. The proof is complete.                                            
Lemma (5.2.16) [203]: Suppose ߶ ∈ ै(॰ഥ) is not a rational function. Then for each 
positive number C, there exist two points a and ܽ′ in ℂ such that |߶(ܽ)|  > ,ܥ  |߶(ܽ′)| <
ଵ

 and ݉݅݊{|ܽ|, |ܽ′|}  >  .ܥ 

Proof. Since ߶ ∈ ै(॰ഥ), ߶ is a meromorphic function over ℂ. Then either the infinity ∞ 
is an isolated singularity or ∞ is the limit of poles. If ∞ is an isolated singularity, ∞ is a 
removable singularity, a pole or an essential singularity. If ∞ were either a removable 
singularity or a pole, then ߶  would have finitely many singularities (poles), and by 
complex analysis φ is a rational function. This is a contradiction to our assumption. 
Therefore, ∞  is an essential singularity of ߶ . By Weierstrass’ theorem in complex 
analysis, for each point ݓ ∈ ℂ ∪ {∞} there is a sequence {ऊ} tending to ∞ such that 
{߶(ऊ)} tends to w. Hence the conclusion of Lemma (5.2.16) follows. 
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If ∞ is the limit of poles of φ, then for a fixed number ܥ > 0, one can find a point a 
satisfying |ܽ| > |(ܽ)߶| and ܥ >  To complete the proof, we will show that there exists .ܥ 
a point ܽ′ such that |ܽ′| > |(′ܽ)߶| and ܥ < ଵ


 . If this were not true, then we would have 

1
|߶(ऊ)|

≤ ,ܥ  |ऊ|  >  ,ܥ 

where ଵ
థ(ऊ)

 equals zero if ऊ is one pole of ߶. Since ଵ
థ

 is bounded at a neigh borhood 

of ∞, ∞ is a removable singularity of ଵ
థ

 . Then ଵ
థ

 has only finitely many poles in ℂ ∪

{∞}. Then by complex analysis ଵ
థ

 is a rational function, and so is ߶. This derives a 
contradiction to finish the proof.  
We will use Lemmas (5.2.15) and (5.2.16) to prove the following. 
Lemma (5.2.17) [203]: Suppose ߶ ∈ ै(॰ഥ) is not a rational function. Then there exists 
a bounded domain ߗ ⊇ ॰ഥ  having the following property: for a point ߦ ∈ ॻ\ ෨ܻ  , if there 
is a neighborhood కܷ of ߦ, and a local inverse ߩ of ߶ satisfying ߩ =  on కܷ, then for ∗ߩ
each curve ߛ in ߗ \ ෨ܻ with (0)ߛ = ,ߛ)ߩ we have ,ߦ 1) ∈  ത, i.e. the value of the analyticߗ
continuation ߩ of ρ along ߛ at endpoint (1)ߛ lies in ߗത. 
Proof. Suppose ߶ ∈ ै(॰ഥ) is not a rational function. First we give the construction of Ω. 
By comments above Lemma (5.2.13) there exists a small neighborhood V of 0 and a 
biholomorphic function ݃ ∶  ܸ → ݎ)॰ݎ  > 0) such that ߶(ऊ)  − ߶(0)  =  ݃(ऊ) on V for 
some positive integer k. One can require that V is a Jordan domain and ߲ܸ is contained in 
॰. Put 

Γ =  (߲ܸ)∗ =  {1/ऊ̅ ∶ ऊ ∈  ߲ܸ }, 
a closed Jordan curve outside ॰ഥ . Let Ω be the interior of ߁, and then 

ܸ∗ = ℂ\ߗത. 
Let  ∈ ॻ\ ෨ܻ  , and let ߛ  be a curve in ߗ \ ෨ܻ  with (0)ߛ  = ߦ  . Suppose that there is a 
neighborhood కܷ of ߦ, and a local inverse ߩ of ߶ satisfying ߩ =  on కܷ. The proof will ∗ߩ
be finished if we can show that 

,ߛ)ߩ 1) ∈  .തߗ
To reach a contradiction, we assume that ߛ)ߩ, 1)  ∈ ℂ\ ߗഥ = ܸ∗ . Let 

(ݐ)௦ߛ = ,(ݐݏ)ߛ ݐ ∈ [0, 1] 
and by Lemma (5.2.15) the map ߩ defined on కܷ admits an analytic continuation ߩ௦ along 
௦ߛ . Recall that ߛ)ߩ, ௦(1)ߛ ௦ at the endpointߩ is the value of (ݏ =  and let ,(ݏ)ߛ

(ݏ)ߪ = ,ߛ)ߩ  ,(ݏ ∋ ݏ  [0, 1].                                    (34) 
Then ߪ  is a curve in ℂ\ ෨ܻ  . Since ߦ ∉ ߶ିଵ(߶(ܼ′)), (ߦ)′ߩ ≠ 0 , and thus there is a 
sufficiently small neighborhood కܸ  of ߦ such that కܸ ⊆ కܷ , 

కܸ =  కܸ
∗, 
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and ߩ ∶  కܸ  → )ߩ  కܸ) is biholomorphic. Since ߛ has no intersection with ߶ିଵ(߶(ܼ′)), the 
map ିߩଵ ∶ )ߩ  కܸ)  →  కܸ  admits an analytic continuation ିߩଵ෪  along ߪ, and by (34) we 
have 

,ߪ)ଵିߩ (ݐ  = ,(ݐ)ߛ  ∋ ݐ  [0, 1]. 
In particular, we get 

ଵ෪ିߩ ൫(1)ߪ൯ = ,ߪ)ଵିߩ 1) =  (35)                                      .(1)ߛ
Let {}ୀଵ

  be the poles of ߶ on ߗത. One can construct disjoint connected neighborhoods 
ܷ(݅ = 1, … , ݉) of   such that 

(a) ߶ has no zeros in ഥܷ for 1 ≤  ݅ ≤  ݉; 
(b) ܷഥ ∩  [߶ିଵ(߶(0))]∗ ⊆ ≥ for 1 {}  ݅ ≤  ݉; 
(c) For i such that ߶(

∗) = ߶(0) , there exists a sufficiently small connected 
neighborhood ܸ ⊆ ܸ  of 0, such that ߶|

∗  , ߶|  are proper maps satisfying 
߶( ܷ

∗)  = ߶( ܸ); for other i, let ܸ =  ܸ. 
In fact, Condition (a) is easy to fulfill. Since ߶ିଵ(߶(0)) is discrete and [߶ିଵ(߶(0))]∗ 
has at most one accumulation point 0, Condition (b) is fulfilled if we let ܷ be sufficiently 
small. By Lemma (5.2.13) we can choose ܷ  and ܸ  to satisfy (c) and be as small as 
possible thus to meet (a) and (b). Therefore, one has (a)-(c) as desired. 
Let 

= ܯ max
ऊ∈ఆഥ\ ⋃ 


సభ 

|߶(ऊ)| , 

and define 
ߝ  = ,(0)߶)ݐݏ݅݀  ߶( పܷ

∗തതതത)), ݅ =  1,· · · , ݉. 
If each ߝ equals zero, set ߝ =  +∞; otherwise, write 

= ߝ ߝ} ݊݅݉  ∶ ߝ > 0, 1 ≤ ݅ ≤ ݉}.                              (36) 
Then there exists a number ߜ >  0 such that  

(॰ߜ)߶ ⊆ ܱ(߶(0), ॰ߜ     ݀݊ܽ    (ߝ ⊆ ሩ ܸ



ୀଵ

   .                            (37) 

By Lemma (5.2.16) we get a point ܽ ≠ ෨ܻ satisfying  

|ܽ| >
1
ߜ

        ܽ݊݀      |߶(ܽ)| >  .ܯ

Since ܸ∗\ ෨ܻ  is path-connected, we can choose a curve ߫ in ܸ∗\ ෨ܻ  connecting ߛ)ߩ, 1) =
(1)ߪ  with a. By Lemma (5.2.15), ିߩଵ: )ߩ కܸ) → కܸ  admits an analytic continuation ߬ 
along ߫ߪ, where ߫ߪ is defined by 

(ݐ)߫ߪ  = ൞
,(ݐ2)ߪ 0 ≤ ≥ ݐ 

1
2

  ,

− ݐ2)߫  1),    
1
2

< ≥ ݐ   1.
 

Since ߩ = on కܸ ∗ߩ , we have ߩ( కܸ)  = )ߩ  కܸ)∗ and ିߩଵ = ∗(ଵିߩ) ∶ )ߩ  కܸ) → కܸ  admits 
the analytic continuation ߬∗ along ߪ∗߫∗. Then both ߬ and ߬∗ are local inverses of ߶. Since 
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|߶(߬ (ܽ))|  =  |߶(ܽ)|  >  ,ܯ 
by the definition of M we get either ߬ (ܽ) ∈ ܸ∗ or ߬(ܽ) ∈ ܷ for some i. As follows, to 
derive contradictions we will distinguish two cases. 
Case I: ߬(ܽ) ∈ ܸ∗ . For , ऊ ∈ ܸ , let ߶(ݓ) =  ߶(ऊ). Recall that on V we have 

߶(ऊ)  − ߶(0) = ݃(ऊ) , 
and then ݃(ݓ) = ݃(ऊ). Since ݃|  is biholomorphic, we get 

= ݓ  ݃ିଵ ∘ ,((ऊ)݃ߣ) ऊ ∈ ܸ, 
where ߣ = ଶగ)ݔ݁ 


 )  for some integer j in {1,· · · , ݇} . Let ߬  denote the map ݃ିଵ ∘

(ܸ)we have ߬ ,((ऊ)݃ߣ) = ܸ and ߬(0) = 0. 
Note that 

τ∗(ܽ∗) = (߬(ܽ))∗  ∈ (ܸ∗)∗  =  ܸ. 
Since ߶(߬∗(ܽ∗)) = ߶(ܽ∗) and ܽ∗ ∈ ܸ , there exists an integer ݆ such that 

߬బ(ܽ∗) = ߬∗(ܽ∗). 
By noting ߬ = (߬∗)∗, we have that ߬ extends analytically to 

߬బ
∗ ∶ ܸ∗ → ܸ∗ . 

Recall that ିߩଵ෪  and ߬  are analytic continuations of ିߩଵ along ߪ  and ߫ߪ , respectively. 
Thus ିߩଵ෪  also extends analytically to ߬బ

∗  . Then by (35) 
(1)ߪ  = ଵ෪ିߩ ((1)ߪ)  =  ߬బ

∗ ((1)ߪ)  ∈  ܸ∗ . 
This contradicts with the fact that ߛ ⊆  .ߗ
Case II: There is some i such that ߬(ܽ) ∈ ܷ. First we show ߶(

∗)  = ߶(0). In fact, since 
ܽ∗ ∈  ॰, by (37) we haveߜ

|߶(0)  − ߶(߬∗(ܽ∗))|  =  |߶(0)  − ߶(ܽ∗)| <  .ߝ
Since ߬∗(ܽ∗) = (߬ (ܽ))∗ ∈ ܷ

∗, 
ߝ = ,(0)߶)ݐݏ݅݀  ߶( పܷ

∗തതതത)) <  ,ߝ
which along with (36) gives ߝ = 0. This shows that పܷ

∗തതതത ∩ ߶ିଵ(߶(0)) is not empty. By 
Condition (b) we immediately get పܷ

∗തതതത ∩ ߶ିଵ(߶(0)) ⊆ }
∗}, and thus 

)߶
∗) = ߶(0). 

Since Condition (a) shows that     
݉݅݊{|߶(ऊ)| ∶ ऊ ∈ పܷഥ , 1 ≤ ݅ ≤ ݉}  >  0, 

by Lemma (5.2.16) there is a point ܽ′ ≠ ෨ܻ satisfying     
|߶(ܽ′)| < ݉݅݊{|߶(ऊ)| ∶ ऊ ∈ పܷഥ , 1 ≤ ݅ ≤ ݉}                     (38) 

And |ܽ′| > ଵ
ఋ
. By (37) ܽ′ ∈ ܸ

∗ . Let ߞ be a curve in ܸ
∗ \ ෨ܻ joining a with ′ , and let ߬̃ be 

the analytic continuation of ߬ along ߞ. Since both ߬ and ߬∗ are local inverses of ߶, so are 
߬̃ and ߬̃∗ , and ߬̃∗ is the analytic continuation of ߬∗along ߞ∗. By Condition (c) and Lemma 
(5.2.13), along any curve in ܸ\ {0}, ߬∗  admits analytic continuation with values in 

ܷ
}\∗

∗}. Thus we have 
߬̃∗(ܽᇱ∗) ∈ ܷ

∗. 
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Since (߬̃(ܽ′))∗ = ߬̃∗(ܽᇱ∗), ߬̃(ܽ) lies in ܷ, and hence ߶(ܽ′)  = ߶(߬̃(ܽ′)) ∈ ߶( ܷ). This is 
a contradiction to (38). In either case, we conclude a contradiction thus finishing the proof 
of Lemma (5.2.17).  
Suppose ߶ is a function in ܪஶ(॰ഥ). For ߦ ∈ ॻ, define 

(ߦ)݉  = lim
ఋ→శ

min
ఎ∈ை(క,ఋ)∩ॻ

ܰ(߶ − ,(ߟ)߶ ॻ)    . 

Clearly, ݉(ߦ) ≤  ܰ(߶ − ,(ߦ)߶ ॻ). Write 
ܵ = ∋ ߦ}  ॻ ∶ (ߦ)݉   <  ܰ(߶ − ,(ߦ)߶ ॻ)}. 

For ݎ ∈  (0, 1), let ܣ denote the annulus 

{ऊ ∈ ℂ ∶ > ݎ   |ऊ|  <  
1
ݎ

 }. 
We need the following lemma. 
Lemma (5.2.18) [203]: Let ߶ be a nonconstant function in ܪஶ(॰). Then S is count-able. 
Proof. To reach a contradiction, assume S is uncountable. Let ࣴ′ denote the zero set of 
߶′ on ॰ഥ  and 

ܨ = ߶ିଵ(߶(ࣴ′)). 
For each positive integer j, put 

ܵ = ߦ} ∈ ܵ: ܰ(߶ − ,(ߦ)߶ ॻ) = ݆}. 
Then there exists at least a positive integer ݈ such that ܵ is uncountable. Recall that an 
uncountable set in ℂ  has infinitely many accumulation points. One can pick an 
accumulation point ߦ of ܵ such that ߦ ∈  . ܨ 
Since ߶ − ߶ has finitely many zeros on ॻ and (ߦ)߶ −  is holomorphic on ॻ, one (ߦ)߶
can pick an 0) ݎ < > ݎ   1) close to 1 such that all zeros of ߶ −  .തതത lie on ॻܣ in (ߦ)߶
By Rouch´e’s Theorem, there exists a positive number ߜ such that for each ऊ in ܱ(ߦ,  (ߜ

ܰ(߶ − ߶(ऊ), (ܣ  =  ܰ(߶ − ,(ߦ)߶ (ܣ  =  ܰ(߶ − ,(ߦ)߶ ॻ)  =  ݈. 
On the other hand, there is a sequence {ߦ} in ܵ  ∩ ,ߦ)ܱ]  ߦ such that ,[{ߦ} \ (ߜ →
݇)ߦ → ∞). Thus, 

݈ =  ܰ(߶ − ,(ߦ)߶ (ܣ  ≥  ܰ(߶ − ,(ߦ)߶ ॻ)  =  ݈. 
This means that each zero of ߶ − ߦ  lies on ॻ. Sinceܣ in (ߦ)߶ ∉  there exist ݈ local , ܨ 
inverses ߩ, . . . , ,ߦ)ܱ ିଵ of ߶ defined onߩ  ,that is ;(ߜ

(ߩ)߶  = ߶, ݅ =  0, . . . , ݈ −  1. 
Note that ߩ(ߦ), . . . , ߶ are exactly ݈ zeros of (ߦ)ିଵߩ −  on ॻ, and for all k we (ߦ)߶
have 

(ߦ)ߩ  ∈ ॻ, ݅ =  0, . . . , ݈ −  1. 
By Corollary (5.2.12), ߩ(ܱ(ߦ, (ߜ  ∩ ॻ)  ⊆ ॻ, ݅ =  0, . . . , ݈ −  1. We can require ߜ to be 
small enough such that ߩ(ܱ(ߦ, (ߜ  ∩ ॻ)  are pairwise disjoint. Hence for each ߦ ∈
,ߦ)ܱ  (ߜ  ∩  ॻ, ߶ − ,(ߦ)ߩ ,has ݈ distinct zeros on ॻ (ߦ)߶ . . . ,  Therefore .(ߦ)ିଵߩ

(ߦ)݉  ≥  ݈ =  ܰ(߶ − ,(ߦ)߶ ॻ), 
a contradiction to ߦ ∈  ܵ, finishing the proof. 
By using Lemmas (5.2.17) and (5.2.18), one can prove the following. 
Proposition (5.2.19) [203]: Suppose ߶ is a nonconstant function in ै(॰ഥ). Then 
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(߶)  =  ܾ(߶). 
Proof. We will first construct some local inverses of ߶ that maps some arc of ॻ into T. 
For this, by Lemma (5.2.18) ߶(ܵ) is countable as well as S, and then ߲߶(॰) \߶(ܵ) is 
uncountable. Then there is a point ߦ in ॻ \ ( ෨ܻ ∪ ܵ) satisfying 

(ߦ)߶  ∈  ߲߶(॰). 
Rewrite ݊  =  ܰ(߶ − ,(ߦ)߶ ॻ) = ∋ ݎ Then one can find an .(ߦ)݉   (0, 1) close to 1 
such that 

݊  =  ܰ(߶ − ,(ߦ)߶ ॻ)  =  ܰ(߶ − ,(ߦ)߶  .(തതതܣ
By application of Rouché’s theorem, there exists a positive number ߜ >  0 satisfying 

ܰ(߶ − ,(ߦ)߶ ॻ)  ≤  ܰ(߶ − ,(ߦ)߶ (തതതܣ  =  ܰ(߶ − ,(ߦ)߶ (തതതܣ  =  ݊, ∋ ߦ ,ߦ)ܱ  (ߜ  ∩  ॻ. 
By definition of ݉(ߦ), ܰ(߮ − ,(ߦ)߮  ܶ)  ≥  ݊, forcing 

ܰ(߶ − ,(ߦ)߶ ॻ) = (ߦ)݉  =  ݊0, ∋ ߦ ,ߦ)ܱ  (ߜ ∩  ॻ.                         (39) 
As done in Lemma (5.2.18) one can find ݊  holomorphic functions ߩ, . . . , 0ିଵ݊ߩ  on 
,ߦ)ܱ  such that (can be decreased if necessary ߜ) (ߜ

(a) for ऊ ∈ ,ߦ)ܱ  ,(ߜ
ܰ(߶ − ߶(ऊ), (ܣ  =  ܰ(߶ − ,(ߦ)߶ (ܣ  =  ܰ(߶ − ,(ߦ)߶ ॻ)  = ݊0; 

(b) ߶(ߩ)  = ߶, 0 ≤  ݅ ≤ ݊0 −  1; 
(c) ߩ(ܱ(ߦ, ((ߜ  ⊆ ܣ , 0 ≤  ݅ ≤ ݊0 −  1. 

In particular, ߩ(ߦ), . . . , ߶ are exactly those n0 zeros of (ߦ)0ିଵ݊ߩ −  on ॻ. Then (ߦ)߶
by (a) 

݊ =  ܰ(߶ − ,(ߦ)߶ (ݎܣ  ≥  ܰ(߶ − ,(ߦ)߶ ॻ)  = ݊, ∋ ߦ ,0ߦ)ܱ  (ߜ  ∩  ॻ, 
forcing all zeros of ߶ −   to fall onto ॻ. Hence by Conditions (b) and (c) weܣ in (ߦ)߶
get 

(ߦ)ߩ  ∈ ॻ, ݅ =  0, . . . , ݊0 −  1. 
Hence there exists a neighborhood of ߦ where we have ߩ = ߩ 

∗ for ݅ =  0, . . . , ݊0 −  1, 
as they are equal on some arc of ॻ. 
By Lemma (5.2.15) for each curve ℘ in ℂ\ ෨ܻ  such that ℘(0)  = ߩ} , each member inߦ ∶
 ݅ =  0, . . . , ݊0 −  1} admits analytic continuation along ℘. We will see that the family 
ߩ} ∶  ݅ =  0, . . . , ݊0  −  1} is closed under analytic continuation. For this, assume that ߛ is 
a loop in ℂ \ ෨ܻ  with (0)ߛ  = (1)ߛ   = ߦ . Let ߩప (0 ≤  ݅ ≤ ݊0 −  1)  be the analytic 
continuation of ߩ along ߛ. Clearly, all these ߩప  are local inverses of ߶, i.e. ߶(ߩప ) = ߶. 
Since ߶(ߦ)  ∈  ߲߶(॰), 

పߩ (ߦ) ∉ ॰. 
Besides, we have ߩ = ߩ 

∗ on some neighborhood of ߦ, and then 
(ߩ)߶  = ߩ)߶

∗)  = ߶. 
Write (ݐ)∗ߛ  = ݐ) ∗((ݐ)ߛ)  ∈ [0, 1]) and define ߩ

∗ along ߛ∗. Hence 
ߩ)߶

∗) = ߶, 0 ≤  ݅ ≤ ݊0 −  1. 
By similar reasoning as above, ߩప (ߦ)∗ ∉ ॰. Also noting ߩప (ߦ) ∉ ॰ gives ߩప (ߦ)  ∈ ॻ. 
Then it follows that {ߩప (ߦ) ∶  ݅ = 0, . . . , ݊0 −  1}  is a permutation of {ߩ(ߦ) ∶  ݅ =
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 0, . . . , ݊0 −  1}. If two local inverses are equal at one point ߦ ∈  ߶ିଵ(߶(ܼ′)), by the 
Implicit Function Theorem they are equal on a neighborhood of this point. Thus we have 

పߩ ∶  ݅ =  0, . . . , ݊0 −  1}  = ߩ}  ∶  ݅ =  0, . . . , ݊0 −  1}. 
Give two curves ߛଵ  and ߛଶ  with ߛଵ(0) = ଶ(0)ߛ = ߦ  and ߛଵ(1)  = ,ଶ(1)ߛ  ଶߛଵߛ

ିଵ  is a 
loop with endpoints ߦ. Therefore, we have that analytic continuations of the family {ߩ ∶
 ݅ =  0, . . . , ݊0 −  1} along ߛଵ are the same as those along ߛଶ. Thus analytic continuations 
of the family {ߩ ∶  ݅ =  0, . . . , ݊0 −  1} does not depend on the choice of the curve. Define 

(ऊ)ܤ = ෑ పߩ (ऊ), ऊ ∈  ℂ ෨ܻ
݊0ିଵ

ୀ

 ,                             (40)  

where we use analytic continuations. In what follows, we will show that B extends 
analytically to a finite Blaschke product and there are two cases to distinguish: 

߶ ∈ ℜ(॰ഥ)   ݎ     ߶ ∈ ै(॰ഥ) \ℜ(॰ഥ). 
Case I: ߶ ∈ ℜ(॰ഥ). Thus ߶ is a rational function, and then ෨ܻ  is a finite set. Assume that 
the infinity ∞ is a pole of ߶, without loss of generality. Otherwise, one can compose ߶ 
with some ߟ ∈  defined by (॰)ݐݑܣ 

(ऊ)ߟ  =
− ߙ  ऊ
1 − തऊߙ

, 

mapping ∞ to a pole 1/ߙത of ߶. Replacing ߶ with ߶ reduces to the desired case. Since 
߶ ∈ ℜ(॰ഥ), there is a constant ܿଵ > 1 such that ߶ is holomorphic on some neighborhood 
of ܿଵ॰. Let 

ܯ = |(ऊ)߶|}ݔܽ݉  ∶  |ऊ|  ≤  ܿଵ}  <  +∞. 
Since ߶(∞)  =  ∞, there exists a constant ܿଶ > 0 satisfying 

 |߶(ऊ)|  > ,ܯ  |ऊ|  >  ܿଶ. 
For ∈  ܿଵ॰ \ ෨ܻ , we have 

పߩ)߶| (ऊ))|  =  |߶(ऊ)|  ≤ ,ܯ  0 ≤  ݅ ≤ ݊0 −  1, 
and then each ߩప (ऊ) is bounded by ܿଶ. Hence B is an analytic function bounded by ܿଶ

݊0 . 
Therefore, B extends analytically to ܿଵ॰ since ෨ܻ  is a finite set. Besides, all ߩప (ऊ) are 
unimodular on the circular arc ܱ(ߦ, (ߜ  ∩ ॻ, and so is B. By Corollary (5.2.12) B is 
unimodular on ॻ, and hence B is a finite Blaschke product [17]. 
Case II: ߶ ∈ ै(॰ഥ) \ ℜ(॰ഥ), then ߶ is not a rational function. By Lemma (5.2.17) there 
exists a bounded domain ߗ ⊇ ॰ഥ  such that for ∈  ෨ܻ , we have \ ߗ 

పߩ (ऊ)  ∈ ,തߗ  0 ≤  ݅ ≤ ݊0 −  1. 
For these ߩ, each analytic continuation along a curve in ߗ \ ෨ܻ is defined by a chain of 
disks, and hence by (40) B extends naturally to an open set ܸ(ܸ ⊆ ෨ܻ \ ߗ containing (ߗ   
. Since ෨ܻ  is countable, there is a relatively closed countable set ܻ such that 

ܸ = \ߗ ܻ. 
Since ߗ \ ෨ܻ is dense in ߗ \ ܻ, for ऊ ∈  ܻ we have \ ߗ 

పߩ (ऊ) ∈ ,തߗ 0 ≤ ݅ ≤ ݊0 −  1. 
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Therefore, B is a well-defined bounded analytic function on ߗ \ ܻ . Since ܻ  is a 
countable relatively closed set in ߗ, ܻ is ܪஶ-removable, and thus B extends analytically 
on ߗ. In particular, B is analytic on a neighborhood of ॰ഥ . Since each ߩప (ऊ) is unimodular 
on the circular arc ܱ(ߦ, (ߜ  ∩  ॻ, so is B. By Corollary (5.2.12) B is unimodular on ॻ, 
forcing B to be a finite Blaschke product. 
In both cases we have shown that B extends analytically to a finite Blaschke product. All 
local inverses of B are exactly {ߩప ∶  ݅ =  0, . . . , ݊0 −  1}, and clearly, order ܤ = ݊0. By 
Corollary (5.2.7), each member ߩ in ܩ(߶) is uniquely determined by the value ߩ(ߦ). 
Thus 

(߶) ≤  ܰ(߶ − ,(ߦ)߶ ॻ). 
Note that ߩ(ߦ), . . . , ߶ are all zeros of (ߦ)0ିଵ݊ߩ −  on ॻ, and thus (ߦ)߶

(߶) ≤  ݊0 = = ܤ ݎ݁݀ݎ   (41)                                   .(ܤ) 
On the other hand, {ߩప ∶  ݅ =  0, . . . , ݊0 −  1} are local inverses of ߶, and then ܤ(ऊ) ↦
 ߶(ऊ) is a well-defined analytic function, denoted by h. Since h is bounded on ܿଵ॰ minus 
a finite set where ܿଵ > 1, h extends to a function in ܪஶ(॰ഥ), and 

߶ =  ℎ(ܤ). 
This gives ܩ(߶)  ⊇ (߶) Noting (41), we have .(ܤ)ܩ   =  ,.(ܤ) 

(߶)  ≥  ܾ(߶)  ≥ = ܤ ݎ݁݀ݎ  (ܤ)   =  .(߶) 
forcing ܾ(߶)  = (߶)   = ݊0. 
To establish Theorem (5.2.14), we also need the following. 
Corollary (5.2.20) [203]: For a nonconstant function ߶ ∈ ै(॰ഥ), except for a countable 
set each point ߦ in ॻ satisfies ܰ(߶ − ,(ߦ)߶ ॻ)  =  ܾ(߶). Furthermore, ܰ(߶)  =  ܾ(߶). 
Proof. By Proposition (5.2.19), we write 

݊ =  ܾ(߶)  =  .(߶) 
By Corollary (5.2.9) we have 

ܰ(߶ − ,(ߦ)߶ ॻ)  ≥ ݊0, ∋ ߦ ॻ. 
Write 

= ܣ ߦ}  ∈ ॻ  ܰ(߶ − ,(ߦ)߶ ॻ)  > ݊0}, 
and it suffices to show that A is countable. Assume conversely that A is uncountable. 
Since A contains uncountable accumulation points in itself, one can pick an accumulation 
point ߟ in ॻ\( ෨ܻ ∪ ܵ). Write 

݈ =  ܰ(߶ − ,(ߟ)߶ ॻ)  > ݊0. 
In the first paragraph of the proof of Proposition (5.2.19), by replacing ߦ with ߟ we get 
݈ local inverses on some neighborhood of ߟ, which maps an arc in ॻ into ॻ. Let ߛ be a 
curve in ℂ\( ෨ܻ ∪ ܵ)  connecting ߟ  and ߦ , and these ݈  local inverses admit analytic 
continuations along ߛ , denoted by ߬ , . . . , ߬ିଵ෦ . Also ߬

∗, . . . , ߬ିଵ෦ ∗  are exactly analytic 
continuations along ߛ∗ of the local inverses ߬

∗, . . . , ߬ିଵ
∗  at ߟ. For 0 ≤ ݅ ≤ ݈ −  1, neither 

߬̃(ߦ) nor ߬̃
(ߦ)߶ belongs to ॰ as (ߦ)∗ ∈ ߲߶(॰). Therefore {߬̃(ߦ) ∶  0 ≤ ݅ ≤ ݈ −  1} 

are ݈ distinct zeros of ߶ −  ,on ॻ. But by (39) (ߦ)߶
ܰ(߶ − ,(ߦ)߶ ॻ)  =  ݊0 <  ݈, 

which derives a contradiction. Hence A is countable, as desired. 
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Now we proceed to present the proof of Theorem (5.2.14). 
Suppose that ߶  is a nonconstant meromorphic function in ℂ without poles on ॰ഥ . By 
Proposition (5.2.19) and Corollary (5.2.20), we have 

ܰ(߶)  =  ܾ(߶)  =  .(߶) 
It remains to show that 

݊(߶)  =  ܾ(߶). 
Recall that 

݊(߶)  = min
ऊ∈,థ(ऊ)∉థ(ॻ)

,(ॻ)߶)݀݊݅ݓ ߶(ऊ)) . 

By Corollary (5.2.9) (߶)  ≤  ݊(߶) . Since ܾ(߶)|(߶), ܾ(߶)  ≤  ݊(߶) . It remains to 
prove that 

݊(߶)  ≤  ܾ(߶). 
Recall that ܼ′ is the zero of ߶, and let ܨ = ߶ିଵ(߶(ܼ′ ∩ ॰ഥ)). By Corollary (5.2.20) there 
is a point ݓ ∈ ॻ\ܨ such that ߶(ݓ)  ∈  ߲߶(॰ഥ) and 

(߶ − ,(ݓ)߶ ॻ)  =  ܾ(߶). 
Since the zeros of ߶ are isolated in ℂ, there exists a positive constant ݐ >  1 satisfying 

ܰ(߶ − ,(ݓ)߶ (॰ݐ  =  ܰ(߶ − ,(ݓ)߶ ॰)  =  ܾ(߶). 
By Rouché’s Theorem, there is a positive number ߜ such that 

ܰ(߶ − ߶(ऊ), (॰ݐ  =  ܰ(߶ − ,(ݓ)߶ (॰ݐ  =  ܾ(߶), ऊ ∈ ,ݓ)ܱ   .(ߜ
Let ऊ   be a point in ܱ(ݓ, (ߜ ∩ ॰  such that ߶(ऊ) ∉ ߶(ॻ) , and by the Argument 
Principle we get 

,(ॻ)߶)݀݊݅ݓ ߶(ऊ))  =  ܰ(߶ − ߶(ऊ), ॰)  ≤  ܰ(߶ − ߶(ऊ), (॰ݐ  =  ܾ(߶). 
Thus ݊(߶)  ≤  ܾ(߶), forcing ݊(߶) = ܾ(߶). This finishes the proof of Theorem (5.2.14). 
It is shown that each nonconstant function in ै(॰ഥ) has the FSI-decomposable property. 
Based on this, the proof of Theorem (5.2.3) is furnished. 
Recall that ै(॰ഥ) denotes the class of all meromorphic functions in ℂ without poles on 
॰ഥ . We prove the following. 
Theorem (5.2.21) [203]: For a nonconstant function ߶ ∈ ߶ suppose ,(ܦ)ܯ  =  is (ܤ)߰ 
the Cowen-Thomson representation of ߶. Then ߰ has the FSI property. 
Later, by using Theorem (5.2.21) one will get Theorem (5.2.3), restated as follows. 
Theorem (5.2.22) [203]: Suppose ߶ is a nonconstant function in ै(॰ഥ). The following 
are equivalent:  

(a) the Toeplitz operator థܶ is totally Abelian; 
(b) ߶ has the FSI property. 
(c) ܰ (߶)  =  1. 

Recall that a point ߣ in ℂ is called a point of self-intersection of the curve ߶(ऊ) (ऊ ∈ ॻ) 
[214] if there exist two distinct points ݓଵ and ݓଶ on ॻ such that 

(ଵݓ)߶  = (ଶݓ)߶  =  ;ߣ 
equivalently, ܰ(߶ − ,ߣ  ॻ) > 1. To prove Theorem (5.2.21), we need the following. 
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Lemma (5.2.23) [203]: Suppose ߶ ∈ -ஶ(॰ഥ). Then the cardinality of points of selfܪ 
intersections of the curve ߶(ऊ) (ऊ ∈ ॻ)  is either finite or ℵଵ , the cardinality of 
continuum. 
Proof. Suppose ߶ ∈  ஶ(॰ഥ). Denote the set of all points of self-intersection of ߶(ॻ) byܪ
A. If A is finite, the proof is finished. 
Assume A is an infinite set. Then ߶ିଵ(ܣ)  ∩ ॻ must have an accumulation point ߦ on ॻ. 
By the definition of points of self-intersection, there is a sequence {ߦ} in ॻ\ {ߦ} and a 
sequence {ߟ} in ॻ such that ߦ → ݇)ߦ → ∞), and 

(ߦ)߶  = ,(ߟ)߶ ߦ ≠ ߟ , ∀݇. 
Without loss of generality, one assumes that {ߟ} itself converges to a point ߟ on ॻ. 
Thus we have 

(ߦ)߶  = (ߟ)߶  ≡  .ߣ 
Note that ߦ may be equal to ߟ. 
Since ߶  is not constant, by Lemma (5.2.13) there are two simply-connected 
neighborhoods U of ߦ, V of ߟ and a positive number ε such that 

߶(ܷ) = ߶(ܸ)  = ॰ߝ  +  ,ߣ 
and ߶|  , ߶|  are proper holomorphic maps, whose multiplicities are equal to the 
multiplicities of zero of ߶ −   respectively. Writeߟ  andߦ  atߣ 

ܷ = ܸ     ݀݊ܽ       {ߦ}\ܷ =  .{ߟ}\ܸ
Let N be the multiplicity of the zero of ߶ −  . By Lemma (5.2.13), forߟ  at the pointߣ 
each ऊ ∈ ܷ we have the following: 

(a) there exist exactly N distinct local inverses of ߶ on a connected neigh-borhood ऊܷ  
of ऊ with values in ܸ  and ऊܷ ⊆  ܷ ; 

(b) each local inverse in (a) admits analytic continuation along any curve in ܷ starting 
from the point ऊ. 

Note that analytic continuation of a local inverse of ߶ in (a) is also a local inverse, with 
values in ܸ  . 
We construct a special holomorphic function ߱ defined on some neighborhood D of 0, 
which maps infinitely many real numbers to real numbers. The following discussions are 
based on the upper half plane П rather than on the unit disk, and this will be more 
convenient. Let ߮ be a Moebius transformation mapping ॰ onto П, its pole being distinct 
from ߦ and ߟ. Rewrite 

ݔ  = ݕ    ݀݊ܽ      (ߦ)߮ = ,(ߟ)߮ ݇ ≥ 0. 
We point out that ݔ and ݕ  do not represent the real and imaginary parts of a complex 
number. Let ߜ  be a positive number such that ܱ(ݔ, തതതതതതതതതതത(ߜ  ⊆ ߮(ܷ), and we define four 
simply connected domains: 

ܦ = {ऊ ∈ ,ݔ)ܱ :(ߜ ܴ݁(ऊ − (ݔ > 0}, ଵܦ = {ऊ ∈ ,ݔ)ܱ :(ߜ ऊ)݉ܫ − (ݔ > 0}; 
ଶܦ = {ऊ ∈ ,ݔ)ܱ :(ߜ ܴ݁(ऊ − (ݔ < 0}, ଷܦ = {ऊ ∈ ,ݔ)ܱ :(ߜ ऊ)݉ܫ − (ݔ < 0}. 

Note that ܦଵ, ܦଶ and ܦଷ can be obtained by a rotation of ܦ. Since ߮ିଵ(ܦ) is simply 
connected for ݅ =  0, 1, 2, 3, by (a) and (b) we get N local inverses of ߶ with values in ܸ ; 
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and by the Monodromy Theorem these local inverses are all analytic on ߮ିଵ(ܦ) for fixed 
i. Let 

߶෨ = ߶ ∘ ߮ିଵ, 
and we obtain N local inverses of ߶෨ , which are analytic on each domain ܦ  for ݅ =
 0, 1, 2, 3. With no loss of generality, assume there are infinitely many points of {ݔ} lying 
in ܦ. Then there exists at least one local inverse ߪ of defined on ܦ so that σ0 maps ݔ 
to ݕ , for infinitely many k. Define 

ସାܦ = ܦ , 0 ≤ ݅ ≤ 3, ݆ ∈ ℤା. 
Note that 

ܦ = ସܦ = ଼ܦ =···, 
and there are only finitely many distinct local inverses of ߶෨  on ܦ . There must be a 
minimal positive integer ݊ ≤  ܰ satisfying ߪସ݊0

=  . As follows, we will use functionߪ
elements (ߪ , = ݅) (ܦ  0, . . . , 4݊0 −  1) to construct a holomorphic function on a disk D. 
Precisely, write ܦ =  ܱ(0, ߜ√

݊0 ), and for ऊ ∈  define {0} \ ܦ 

߱(ऊ)  =

⎩
⎪
⎨

⎪
(ऊ݊0ߪ⎧ + ≥ ),                               0ݔ ऊ ݃ݎܽ  <  

ߨ
2݊0

 ;

ଵ(ऊ݊0ߪ + (ݔ ,                               
ߨ

2݊0
≤ ऊ ݃ݎܽ  <

ߨ
݊0

;
. ..                                                                               

ସ݊0ିଵ(ऊ݊0ߪ + ),       (4݊0ݔ −  1)  ≤ ऊ ݃ݎܽ  < .ߨ2 

 

Then ߱ is well-defined and holomorphic in {0} \ ܦ. Observe that as z tends to ݔ  in 
= ݅)ܦ  0, . . . , 4݊0 −  1) , each ߪ(ऊ) tends to ݕ . Therefore ߱  is bounded near 0, and 
hence 0 is a removable singularity of ߱. By setting ߱(0)  =   we get a holomorphicݕ 
function ߱ on D. 
Since ߱|∩ℝశ (ݔ)  = 0݊ݔ)ߪ + (ݔ)ߪ ), andݔ  = ݕ  holds for infinitely many k, we 

have ߱( ඥݔ  − ݔ
݊0 )  = ݕ ∈ ℝ as ݔ >  ,. By Lemma (5.2.11)ݔ

ܦ)߱ ∩ ℝ) ⊆ ℝ, 
forcing ߪ(ܦ ∩ ℝ)  ⊆ ℝ. Letting 

ߛ = ߮ିଵ(ܦ ∩ ℝ)  ⊆ ॻ, 
and 

(ݓ)ߪ  = ߮ିଵ ∘ ߪ ∘ ,(ݓ)߮  ∋ ݓ ߮ିଵ(ܦ)  ⊆  ܷ, 
we have ߪ(ߛ)  ⊆ ॻ. Clearly ߪ is not the identity map, and neither is ߪ. Let 

ܹ =  {ऊ ∈ ߮ିଵ(ܦ)  ∩ ॻ ∶ (ऊ)ߪ  = ऊ}, 
and W is at most countable. Since the cardinality of ߮(ߛ) is ℵଵ, so is ߮(ߛ\ܹ ), finishing 

the proof of Lemma (5.2.23).  
Suppose that ߶  is a nonconstant function in ै(॰ഥ) , and ߶ = (ܤ)߰   is the Cowen-

Thomson representation. Corollary (5.2.2) says that ߰ is in ܪஶ(॰ഥ). By comments below 
Theorem (5.2.1), B is of maximal order and thus ߰ can not be written as a function of a 
finite Blaschke product of order larger than 1. Again by Corollary (5.2.2) we have ܾ(߰)  =
 1. Corollary (5.2.20) implies that
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∋ ݓ} ॻ ∶  ܰ(߰ − ,(ݓ)߰  ॻ)  >  1} 
is countable, as well as {߰(ݓ)  ∈ ॻ ∶  ܰ(߰ − ,(ݓ)߰  ॻ)  >  1}. But by Lemma (5.2.23) 
self-intersections of ߰(ऊ) (ऊ ∈ ॻ)  is finite or has the cardinality of the continuum. 
Therefore, it must be finite. Thus ߰ has the FSI property as desired. 
 Note (b) ⇒ (c) is trivial. To show (c) ⇒ (a), assume ܰ(߶)  =  1. By Corollary (5.2.20) 
we have ܾ(߶)  =  ܰ(߶)  =  1. Then Theorem (5.2.1) gives that థܶ is totally Abelian. 
For (a) ⇒ (b), let ߶ =  be the Cowen-Thomson representation. Then by Theorem (ܤ)߰ 
(5.2.21) ߰ has the FSI property. Since థܶ is totally Abelian, 

{ ऊܶ}′ =  { థܶ}′ ⊇ { ܶ}′ ⊇ { ऊܶ}′ . 
Then { థܶ}′ =  { థܶ}′ , forcing order B = 1. Since ߶ = ߶ ,(ܤ)߰   has the FSI property as 
desire.  
It is straightforward to get equivalent formulations for (a)-(c) in Theorem (5.2.22): (d) there 
is a point ߦ ∈ ॻ satisfying ܰ(߶ − ,(ߦ)߶ ॻ)  =  1; and (5) except for a countable or finite set 
every point ߦ ∈ ॻ satisfies ܰ(߶ − ,(ߦ)߶ ॻ)  =  1. 
Theorem (5.2.21) shows that each function ߶ in ै(॰ഥ) has the FSI-decomposable property; 
that is, for the Cowen-Thomson representation ߶ =  ,has the FSI property. In fact ߰ ,(ܤ)߰ 
we will see that ߰ has quite special form (see Lemma (5.2.24) and Theorem (5.2.26)). 
Recall that ℜ(॰ഥ) consists of all rational functions which have no pole on D. If P and ܳ are 
two co-prime polynomials, order 

ொ
 is defined to be max {deg ܲ, deg ܳ}. The following is of 

independent interest and for related work, See Stephenson’s [210, Lemma 3.4] [211]. 
Lemma (5.2.24) [203]: If f is in ℜ(॰ഥ) and there is a function h on ॰ such that 

݂ =  ℎ(ܤ), 
where B is a finite Blaschke product, then h is ℜ(॰ഥ). In this case, we have order ݂ =
× ℎ ݎ݁݀ݎ   .ܤ ݎ݁݀ݎ 
Proof. Suppose f is a function in ℜ(॰ഥ) and h is a function on ॰ satisfying 

݂ =  ℎ(ܤ), 
where B is a finite Blaschke product. Let ݊ =  and B has n local inverses, denoted ,ܤ ݎ݁݀ݎ 
by ߩ,· · · ,  ′ܼ in ℂ, and by Bochner’s Theorem [216] ′ܤ ିଵ. Let ܼ′ denote the zero set ofߩ
is a finite subset of ॰. Write 

ℇ =  .((′ܼ)ܤ)ଵିܤ 
It is known that each local inverse of B admits unrestricted continuation in ॰ഥ\ ℇ. For each 
݆ (0 ≤  ݆ ≤  ݊ −  1), define ߩ

∗(ऊ)  =  which admits unrestricted continuation ,∗( (ऊ∗)ߩ) 
on ܥ \ ॰ഥ  minus a finite set. Recall that the derivative ܤ′ of B does not vanish on ॻ, ߩ is 
analytic on ॻ and ߩ

∗ =   admitsߩ ଵ such that eachܨ  on ॻ. Thus there exists a finite setߩ 
unrestricted continuation on ℂ\ ܨଵ. 
For each ऊ ∈ ॰, by ℎ(ܤ(ऊ))  =  ݂(ऊ) we get 

݂(ऊ) =  ݂ ቀߩ (ऊ)ቁ , 0 ≤  ݆ ≤  ݊ −  1.                                    (42) 
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By analytic continuation, the above also holds for all ऊ ∈ ℂ\ ܨଵ. Let P denote the poles of f, 
a finite set in ℂ. Then by (42) ܤ(ऊ) ↦  ݂(ऊ) extends to ℂ\(ܤ(ܨଵ)  ∪  ܲ ). Thus on the 
complex plane minus discrete points, we have 
 

݂ =  ℎ(ܤ).                                                         (43) 
If f is a rational function, then its only possible isolated singularities (including ∞) are poles. 
By (43), h has at most finitely many singularities including ∞, which are either removable 
singularities or poles. Hence h is a rational function. Since f is holomorphic on ॰ഥ , by (43) h 
is bounded on a neighborhood of ॰ഥ  with finitely many singularities possible. Thus h extends 
analytically on ॰ഥ , forcing ℎ ∈ ℜ(॰ഥ). 
Suppose f is a rational function. Noting that f can be written as the quotient of two co-prime 
polynomials, by computations we have that f is a covering map on ℂ\ (݂ିଵ(݂(∞))  ∪ ℇ), 
and the multiplicity is exactly the order of f. Since both h and B are rational functions, they 
can be regarded as covering maps on ℂ minus some finite set. This leads to the conclusion 
that 

= ݂ ݎ݁݀ݎ × ℎ ݎ݁݀ݎ   ,ܤ ݎ݁݀ݎ 
to complete the proof. 
By Theorem (5.2.21) and Lemma (5.2.24) we get the following. 
Corollary (5.2.25) [203]: Suppose R is a rational function in ℜ(॰ഥ) with prime order. Then 
either R is a composition of a Moebius transformation and a finite Blaschke product, or R 
has the FSI property. In the latter case, ோܶ is totally Abelian. 
Below we come to functions in ै(॰ഥ) \ ℜ(॰ഥ). The main theorem in says that each entire 
function ߶  has the Cowen-Thomson representation ߶(ऊ)  = (ݖ)߰   for some entire 
function ߰ and some integer n. The following theorem generalizes the theorem in [210] to 
functions in ै(॰ഥ) \ ℜ(॰ഥ), and is of independent interest. 
Theorem (5.2.26) [203]: Suppose that ݂ ∈ ै(॰ഥ) is not a rational function. Then there is 
a positive integer n and a function h in ै(॰ഥ) such that 

݂(ऊ)  =  ℎ(ऊ) 
 
and { ܶ}′ = { ऊܶ  }′ . Furthermore, ݊ = (݂) = ܾ(݂) = ݊(݂) = ܰ(݂). 
Proof. To prove Theorem (5.2.26), we begin with an observation from complex analysis. By 
Lemma (5.2.13) and comments above it, for a function ߮ holomorphic on a neighborhood 
of ߣ, let ݇ = ,߮) ݎ݁݀ݎ  ߮ the multiplicity of the zero of ,(ߣ −  Then there is a .ߣ at (ߣ)߮ 
Jordan neighborhood W of ߣ such that ߮|ௐ is a ݇ − ݐ − 1 proper map onto a neighborhood 
of ߮(ߣ). This is right even if ߣ =  ∞ or ߣ  is a pole of ߮  (for ߣ =  ∞, order (߮, ∞) =
,(ऊ/1)߮) ݎ݁݀ݎ  0)). 
Based on this, we will show that if ܤ  is a finite Blaschke product of order k, and 
order (ܤ, ∞) equals k, then ܤ is a function of ऊ. In fact, either ܤ(∞)  =  ∞ or ܤ(∞) is 
finite and |ܤ(∞)| is necessarily greater than 1. If ܤ(∞) is finite and |ܤ(∞)|  >  1, by 
letting 
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߰(ऊ)  =  
(∞)തതതതതതതതܤ/1  − ऊ
1 − ऊ/ܤ(∞)

 

we have ߰ ∘ (∞)ܤ  =  ∞. Then we can assume ܤ(∞)  =  ∞. Note that order (1/ܤ(1/
ऊ), 0)  = ,ܤ) ݎ݁݀ݎ  ∞)  =  ݇. Write 

(ऊ)ܤ = ܿ ෑ
ߙ  − ऊ

1 − ఫ തതതऊߙ 



ୀଵ

, 

where |ܿ| = 1 and ߙ ∈ ॰ for all j, and then 

(1/ऊ)ܤ/1 = ܿ̅ ෑ
ఫഥߙ −  ऊ

1 −  ऊߙ
.



ୀଵ

 

Since order (1/ܤ(1/ऊ), 0)  =  ݇, ߙ =  0 for all j. Then ܤ is a function of ऊ. This fact 
will be used later. 
Suppose that ݂ ∈ ै(॰ഥ) is not a rational function. By Theorem (5.2.1) there is a function 
ℎ ∈  ஶ(॰) and a finite Blaschke product B such thatܪ 

݂(ऊ)  =  ℎ(ܤ(ऊ)), ऊ ∈ ॰, 
and { ܶ}′ = { ܶ}′ . Without loss of generality, assume order ܤ =  ݊ ≥  2. In the proof of  
Lemma (5.2.24) we have shown that there is a finite set ܨଵ such that each local inverse ߩ of 
B admits unrestricted continuation on ℂ\ ܨଵ. Let P denote the poles of ݂. By ܤ(ߩ )  =  ܤ 
on ℂ\ ܨଵ and ݂(ऊ)  =  ℎ(ܤ(ऊ)), we can define a holomorphic function  

ℎ(ऊ) ∶ (ऊ)ܤ  ↦ ݂(ऊ) 
on ℂ\(ܤ(ܨଵ)  ∪  ܲ ). So h has only isolated singularities. Letting  

ܨ = ଵܨ ∪  ,ଵ(ܲ )തതതതതതതതതതതതതതതതതିܤ 
we have  

݂(ऊ) =  ℎ൫ܤ(ऊ)൯, ऊ ∈ ℂ\ ܨ                                                (44) 
If order (ܤ, ∞)  =  ݊, then by the second paragraph of this proof B is a function of ऊ, and 
hence 

{ ܶ}′ = { ܶ}′ =  { ऊܶ}′ . 
Reasoning as (44), there is a function ℎ෨ such that ݂(ऊ) = ℎ෨(ऊ) holds on ℂ minus a discrete 
set. In this case, it is straightforward to show ℎ෨ is in ै(॰ഥ). By Theorem (5.2.14), we have 
݊ = (݂)   =  ܾ(݂)  =  ݊(݂)  =  ܰ(݂) to complete the proof for the case of order (ܤ, ∞)  =
 ݊. 
Noting order (ܤ, ∞)  ≤  order ܤ =  ݊ , we will prove that order (ܤ, ∞)  <  ݊  would not 
happen. For this, assume conversely that order (ܤ, ∞)  <  ݊ to reach a contradiction. Since 
B is an n-to-1 map, we have a point ܽ ∈ ℂ, two neighborhoods ଵࣨ of a and ଶࣨ of ∞ such 
that ܤ(ܽ)  = |ܤ ,(∞)ܤ  భࣨ and ܤ| మࣨ are proper maps, and their images are equal. There are 
two cases to distinguish: either P is a finite set or P is an infinite set. 
Case I: P is a finite set. Then ܨ is a finite set. By (44), ݂ has similar behaviors at a and at 
∞: since ݂ is a meromorphic function and not a rational function, ∞ is an essential singularity 
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of  ݂, and so is a. But this is a contradiction to the fact that ݂ has no isolated singularities 
other than poles in ℂ. 
Case II: P is an infinite set. Let ∞ be the limit of all poles {ݓ ∶  ݇ ≥  1} of ݂. Note that 
there is an integer ݇ such that ݓ ∈ ଶࣨ for ݊ ≥ ݇. Then there is a sequence {ݓ

ᇱ ∶ ݇ ≥ ݇} 
in ଵࣨ such that 

ݓ)ܤ
ᇱ ) = ݓ    ݀݊ܽ      (ݓ)ܤ 

ᇱ  →  ܽ (݇ →  ∞). 
Soon we will see that ܨ contains only finitely many accumulation points, that is, poles of 
B. In fact, since ܨଵ is a finite set and ܨ = ∪ 1ܨ  ܤ  − 1(ܲ ), the accumulation set of  ܨ are 
exactly that of ିܤଵ(ܲ), where ܲ = ݓ} ∶ ݇ ≥ 1}. Since ∞ is the limit of {ݓ} and ିܤଵ(∞) 
consists of (finitely many) poles of B, it follows that the accumulation points of ିܤଵ(ܲ ) are 
poles of B, and hence the accumulation points of ܨ are poles of B. 
Since the only accumulation points of ܨ  are poles of B, these points ݓ

ᇱ  are isolated 
singularities of ݂. Noting (44), we have that ݓ

ᇱ  are poles of ݂ because ݓ are poles of ݂. 
But {ݓ

ᇱ } tends to the finite point a, and thus a is not an isolated singularity of ݂. This is a 
contradiction to ݂ ∈ ै(॰ഥ). 
Therefore, in both cases we derive a contradiction to finish the proof. 
Some comments are in order. Quine [214] showed that each polynomial has the FSI-
decomposible property. Precisely, he proved that a nonconstant polynomial can always be 
written as (ऊ) (݉ ≥  1) where p is a polynomial of the FSI property. For decomposition 
of rational functions, See [215]. 
The following result gives some equivalent conditions for a Toeplitz operator with an entire 
function as symbol to be totally Abelian, and it follows from Theorems (5.2.21) and (5.2.22). 
See [215]. 
Proposition (5.2.27) [203]: Suppose ߶(ऊ)  = ∑ ܿऊஶ

ୀ is a nonconstant entire function. 
Then the following are equivalent:   

(a) ܶ థ is totally Abelian;    
(b) ݊ (߶)  = ,߶)݀݊݅ݓ} ݊݅݉  ߶(ܽ)) ∶  ܽ ∈ ॰, ߶(ܽ) ∉ ݂(ॻ)}  =  1. 
(c) there is a point w on ॻ such that ߶(ݓ) is not a point of self-intersection; 
(d) ߶ has only finitely many points of self-intersection on ॻ; 
(e) there is a point w in ॰ such that ߶ −  has exactly one zero in ॰, counting (ݓ)߶

multiplicity. 
(f) there is a point ߣ ∈ ℂ such that ߶ −  has exactly one zero in ॰, counting ߣ 

multiplicity; 
(g) ݃ ܿ݀{ܿ ∶  ܿ ≠ 0}  =  1. 

provides some examples. Some of them are examples of totally Abelian Toeplitz operators, 
and others will show that the MWN property is quite restricted even for functions of good 
“smooth” property on ॻ. 
We begin with a rational function in ℜ(॰ഥ). 
Example (5.2.28) [203]: Let ܳ be a polynomial without zeros on ॰ഥ  and of prime degree q. 
Let P be a nonconstant polynomial satisfying 

݀݁݃ ܲ <  .ݍ 
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Suppose that P has at least one zero in ॰ and let = 
ொ

 . We will show that ோܶ  is totally 
Abelian. For this, assume R has ݇ zeros in ॰, counting multiplicity. We have 

1 ≤  ݇ ≤  ݀݁݃ ܲ <  (45)                       .ݍ 
If ோܶ were not totally Abelian, then by Corollary (5.2.25) there would be a finite Blaschke 
product B and a Moebius map ෨ܴ such that 

ܴ = ෨ܴ ∘  ,ܤ
and order ܤ = ܴ But by .ݍ =  ෨ܴ ∘ ≤ ݇ we have ,ܤ = ܤ ݎ݁݀ݎ   which is a contradiction ,ݍ 
to (45). Therefore ோܶ is totally Abelian. 
The following two examples arise from the Riemann-zeta function and the Gamma function. 
It is shown that under a translation or a dilation of the variable, the corresponding Toeplitz 
operators are totally Abelian. 
Example (5.2.29) [203]: The Riemann-zeta function (ݖ)ߞ  is defined as the analytic 
continuation of the following: 

ऊ ↦ 
1

݊ऊ

ஶ

ୀଵ

 , ܴ݁ऊ >  1. 

It is a meromorphic function in ℂ and the only pole is ऊ = 1. Write ݂(ऊ) = ऊ)ߞ 
ଶ
 ), and then 

݂(ऊ)  ∈ ै(॰ഥ). We claim that ܶ is totally Abelian. 
For this, by Theorem (5.2.26) it suffices to show that there is no meromorphic function ݃  on 
ℂ such that ݂(ऊ)  =  ݃(ऊ) for some integer ݇ ≥  2. Otherwise, taking ߱ ≠ 1 and ߱ =
1, we have ݂(߱ऊ)  =  ݂(ऊ). This gives ߞ( ఠऊ

ଶ
 )  = ऊ )ߞ 

ଶ
 ), and thus 

(ऊ߱)ߞ  =  .(ऊ)ߞ 
Then ߞ  has at least two poles 1 and ഥ߱ . This is a contradiction. Therefore, ܶ  is totally 
Abelian. 
Example (5.2.30) [203]: The Gamma function ߁(ऊ) is a meromorphic function with only 
poles at non-positive integers 

0, −1, −2,··· . 
Let ݂(ऊ)  = ऊ)߁  +  2) . Then ݂(ऊ) ∈ ै(॰ഥ)  and Tf is totally Abelian. Otherwise, by 
Theorem (5.2.26), there is a function ݃ ∈ ै(॰ഥ) such that ݂(ऊ) = ݃(ऊ) for some integer 
݇ ≥  2. Let ߱ ≠ 1 and ߱ = 1, and we have ݂(ऊ) = ݂(߱ऊ); that is, 

ऊ)߁ +  2)  = ऊ߱)߁  +  2). 
The poles of ߁(ऊ +  2) 

−2, −3,··· 
must be the poles of ߁(߱ऊ +  2) 

−2 ഥ߱, −3 ഥ߱,· · · . 
This is impossible. Hence ܶ is totally Abelian. 
Before continuing, recall that a Jordan domain is the interior of a Jordan curve. We need 
Carathéodory’s theorem, which can be found in a standard textbook of complex analysis, 
see [216] for example. 
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Lemma (5.2.31) [203]: [Carath´eodory’s theorem] Suppose that ߗ is a Jordan domain. 
Then the inverse Riemann mapping function ݂ from ॰ onto ߗ extends to a 1-to-1 continuous 
function F from ॰ഥ  onto ߗത. Furthermore, the function F maps T 1-to-1 onto ߲ߗ. 
In what follows, we provide some examples to show that in general a function ݂ in the disk 
algebra ܣ(॰) may not satisfy the MWN property, even if ݂ has good smoothness on ॻ. 
Example (5.2.32) [203]: First, we present an easy example of a function in ܣ(॰) with good 
smoothness on ॻ, but not satisfying the MWN property. Put 

ߗ  =  {ऊ ∶  0 <  |ऊ|  <  1, 0 < ऊ ݃ݎܽ  <  ,{ߨ 
and write ݃(ऊ) = ऊ଼, ऊ ∈ ߗ . Let ߶ be a conformal map from the unit disk ॰ onto ߗ . 

Precisely, write ݑ(ऊ)  = ට݅ ऊାଵ
ऊିଵ

  with √1  =  1 and 

߶(ऊ)  =  
1 − (ऊ)ݑ2 
1 + (ऊ)ݑ2 

 , ऊ ∈  .ܦ 

and put ߶ଵ =  ݃ ∘ ߶. Note that ߶ଵ − ߶ଵ(0) has finitely many zeros in ॰ and is away from 
zero on ॻ. Then the inner factor of ߶ଵ − ߶ଵ(0) contains no singular inner factor; otherwise, 
there is a sequence {ߣ} in ॰ satisfying |ߣ| →  1 and ߶ଵ(ߣ)  − ߶ଵ(0) →  0 as ݇ →  ∞, a 
contradiction. Therefore, the inner factor of ߶ଵ − ߶ଵ(0) is a finite Blaschke product, and 
hence ߶ଵ ∈ ࣮ࣝ(॰). 
For smoothness of ߶ଵ, by Lemma (5.2.31) we have that ߶ଵ ∈  In addition, by using .(॰)ܣ
Schwarz Reflection Principle we see that except for at most three points on ॻ, ߶ଵ extends 
analytically across ॻ. 
However, ߶ଵ does not satisfy the MWN property. In fact, for each point             ܽ ∈  ॰, ߶ଵ −
߶ଵ(ܽ) has at least 3 zeros in ॰. Thus, 

݊(߶ଵ)  ≥  3. 
On the other hand, since ܰ(߶ଵ, ॻ)  =  1, φ1 can not be written as a function of a finite 
Blaschke product of order larger than 1. Then by Theorem (5.2.1) { థܶభ}′ = { ऊܶ}′. That is, 
ܾ(߶ଵ)  =  1. But 

݊(߶ଵ)  >  1, 
forcing ݊(߶ଵ)  =  ܾ(߶ଵ). 
Inspired by this example, put ߗଵ =  {ऊ ∈ ℂ ∶  |ऊ|  <  1, |ऊ −  1|  <  1}, and let ℎ ∶ ॰ →  ߗ 
be a conformal map. Note that by Carath´eodory’s theorem, h extends continuously to a 
bijective map from ॰ഥ  onto ߗത . Furthermore, noting that ߗଵ  has two cusp points, one can 
show that except for two cusp points, can be analytically extended across ॻ, as well as h9. 
Also, {ܶవ  }′ = { ऊܶ}′  . The next example shows that Theorems (5.2.3) and (5.2.5) are 
restricted. 
Example(5.2.33) [203]: By Schwarz-Christoffel formula, one can construct a conformal 
map ݂  form the upper half-plane onto the rectangle ߗ  with vertices {− 

ଶ
 , 

ଶ
 , 

ଶ
+

,′ܭ݅  − 
ଶ

+ ,ܭ where ,{′ܭ݅  ′ܭ >  0. Precisely, it is defined by 

݂(ऊ)  = ܥ  න
1

ଶߣ) − ଶߣ)(1 − (ଶݐ

ऊ


,ߣ݀ ऊ ∈  ,ߗ 
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where √1  =  1, < ܥ  0 and t is a parameter in (0, 1) [210, Section 2.5]. We can specialize 
′ܭ = ≤ ݇ for some integer ߨ2݇   100. 
Define ℎ(ऊ)  = ऊ)ݔ݁  −  

ଶ
 ), ऊ ∈ ℂ and let ݃(ऊ) be a conformal map from the unit disk 

onto the upper plane. Write 
(ݖ)߶  =  ℎ ∘ ݂ ∘ ݃(ऊ), ऊ ∈ ॰. 

It is not difficult to see that 
݊(߶)  ≥  ݇, 

and for each ߦ ∈ ॻ, ܰ(߶ − ,(ߦ)߶ ॻ)  ≥  2. Moreover, we have ܰ(߶)  =  2. 
Next we show that (߶)  =  1. For this, note that ݂ ∘ ݃ maps the unit disk ॰ conformally 
onto the rectangle ߗ, and ݂ ∘ ݃ extends to a continuous bijection from ॰ഥ  onto ߗത, and ݂ ∘
݃(ॻ)  = (߶) the assertion ,(߶) Thus by definition of .ߗ߲   =  1 is equivalent to that the 
only continuous map ߩ ∶ → ߗ߲  (ߩ)satisfying ℎ ߗ߲   =  ℎ is the identity map. For this, let 

ℎ(ߩ(ऊ))  =  ℎ(ऊ), ऊ ∈  .ߗ߲ 
Then for each ऊ in ߲ߗ, (ऊ)ߩ  = ऊ +  2݇(ऊ)݅ߨ  for some integer ݇(ݖ). But ρ is continuous, 
forcing ݇(ݖ) to be a constant integer k. Hence 

(ऊ)ߩ  =  ℎ(ऊ)  + ,݅ߨ2݇  ऊ ∈  .ߗ߲ 
Since (ߗ߲)ߩ  ⊆ = ݇ we have ,ߗ߲   0 and ρ is the identity map, forcing (߶)  =  1. Since 
,(߶) | (߶)ܾ ܾ(߶)  =  1. By Theorem (5.2.1), ఝܶ is totally Abelian. But for this function φ 
we have 

ܾ(߶)  = (߶)   <  ܰ(߶)  <  ݊(߶). 
We conclude by showing that the function ߶  defined in Example (5.2.33) has good 
smoothness property on ॻ . Rewrite ℎ(ॻ)  = 2݊(ऊ)ݒ   where ݒ(ऊ)  = ଵ ]ݔ݁ 

ଶ
 (ऊ − 

ଶ
)]. 

Note that ݒ ∘  ݂ ∘ ݃ defines a conformal map from ॰ onto the domain 
{ऊ ∈  ℂ ∶ ି )ݔ݁ 

ଶ
 )  <  |z|  <  1, ∋ ݖ ݃ݎܽ  (0,  ,{(ߨ

whose boundary contains only four “cusp points”. By Lemma (5.2.31) we have ݒ ∘  ݂ ∘ ݃ ∈
∘ ݒ and by Schwarz Reflection Principle ,(ܦ)ܣ   ݂ ∘ ݃ extends analytically across T except 
for these cusp points. The same is true for ߶.  
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Chapter 6 
Hankel Operators and Sarason’s Toeplitz Product Problem 

We obtain all holomorphic functions f for which the Hankel operators ܪ are bounded (or 
compact) from ܨఈ

 to ܮఈ
 . We provide a complete solution to the problem for a class of Fock 

spaces on the complex plane. In particular, this generalizes an earlier result of Cho, Park, 
and Zhu. 
Section (6.1): Between Fock Spaces      
For ℂ  be the ݊ -dimensional complex Euclidean space. For ݖ = ,ଵݖ) … , ݓ )  andݖ =
,ଵݓ) … , ,ݖ〉 )  in ℂ , writeݓ 〈ݓ = ଵݓଵݖ + |ݖ| ,  andݓݖ+  = ඥ〈ݖ, ߙ Given . 〈ݖ > 0 , we 
consider the Gaussian probability measure 

(ݖ)ఈݒ݀ = ቀ
ߙ
ߨ

ቁ


݁ିఈ|௭|మ݀(ݖ)ݒ 
on ℂ, where ݀(ݖ)ݒ is the ordinary Lebesgue volume measure on ℂ. 
For 1 ≤  < ∞ , the space ܮఈ

   consists of all Lebesgue measurable functions ݂  on ℂ  for 
which 

‖݂‖,ఈ
 = ቀ

ߙ
ߨ2

ቁ


න |
ℂ

ఈି݁(ݖ)݂
ଶ|௭|మ

|݀(ݖ)ݒ < ∞. 

It is clear that ܮఈ
  is a Banach space with the norm ‖ ⋅ ‖,ఈ. We use ܮ to stand for the usual 

p-th Lebesgue space with the norm ‖ ⋅ ‖ = ቄ∫ |ℂ ⋅ |݀ݒቅ
భ
. Let ܪ(ℂ) be the family of all 

holomorphic functions on ℂ. The Fock space ܨఈ
 is defined by 

ఈܨ
 = ఈܮ

 ∩  . (ℂ)ܪ
It is easy to see that ܨఈ

 is closed in ܮఈ
 . Therefore, ܨఈ

 is a Banach space. The Fock space has 
been studied by many authors, see [1, 2, 6, 10, 12]. 
Let ܭఈ(⋅) be the reproducing kernel of ܨఈ

ଶ, it is well known that ܭఈ(ݖ, (ݓ = ݁ఈ〈௭,௪〉. The 
orthogonal projection ఈܲ ∶ ఈܮ 

ଶ → ఈܨ
ଶ can be represented as 

ఈ݂ܲ(ݖ) = න ఈܭ
ℂ

,ݖ)  . (ݓ)ఈݒ݀(ݓ)݂(ݓ

With this expression, ఈܲ can be extended to a bounded linear operator from ܮఈ
  to ܨఈ

 for 1 ≤
 ≤ ∞,  and for ݂ ∈ ఈܨ

   there holds ఈ݂ܲ = ݂.  Set ݇௭(ݓ) = ഀ(௪,௭)
||ഀ(⋅,௭)‖మ,ഀ

  to be the normalized 

ఈܨ
for 1 ≤  < ∞. Bergman kernel. The set Span{݇௭ ∶ ݖ  ∈ ℂ} Let ߁ denote the family of 

those measurable function ݂  on ℂ  satisfying ݂݇௭ ∈ ⋃   
ஹଵ ఈܮ

   for each ݖ ∈ ℂ . Given ݂ ∈
ఈܨ  induced by symbol ݂ can be densely defined onܪ the Hankel operator ,߁

 by 
(ݖ)݃ܪ = ܫ) − ఈܲ)(݂݃)(ݖ) 

= න ൫݂(ݖ) − ൯(ݓ)݂
ℂ

,ݖ)ఈܭ  , (ݓ)ఈݒ݀(ݓ)݃(ݓ

where ܫ is the identity operator on ܮఈ
 . 

During the past decades, a lot of researches have been done on Hankel operators, see [5, 6, 
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8, 9, 12] for example. More recently in [8], in the case 1 <  ≤ ݍ < ∞, Pau, Zhao and Zhu 
characterized those ݂  on the unit ball ९  for which both the operators ܪ  and ܪ  are 
bounded from Bergman space ܣఈ

(९) to Lebesgue space ܮ൫९ ,  ఉ൯ . In [9, 12] and someݒ݀
others, the behavior of Hankel operators on Fock spaces ܨఈ

 was studied, however the known 
results are only from ܨఈ

 to ܮఈ
 , with the same exponent . 

We characterize real-valued functions ݂ ∈ ఈܨ  is bounded (or compact) fromܪ so that ߁
 to 

ఈܮ
  with 1 ≤ , ݍ < ∞. This is equivalent to characterizing complex-valued functions ݂ ∈  ߁

such that both ܪ  and ܪ  are bounded (or compact). The following theorem is the main 
result. The spaces BMOq, ܸܱܯ and ܱܯܫ௦, will be defined. 
Theorem (6.1.1)[230]: Let ߙ > 0 and let ݂ ∈  .߁
(a) For 1 ≤  ≤ ݍ < ∞, ,ܪ ܪ ∶ ఈܨ 

 → ఈܮ
   are both bounded if and only if ݂ ∈

ܱܯܤ  ; ,ܪ  ܪ ∶ ఈܨ 
 → ఈܮ

  are both compact if and only if ݂ ∈ ܱܯܸ . 
(b) For 1 ≤ ݍ <  < ∞, ,ܪ ܪ ∶ ఈܨ 

 → ఈܮ
  are both bounded if and only if ܪ, :ܪ . ఈܨ

 →
ఈܮ

  are both compact if and only if ݂ ∈ ݏ ௦,, whereܱܯܫ = 
ି

 
We introduce a family of IMO spaces and get some related results. IMO spaces are some 
generalization of the well-known ܱܯܤ  spaces., we define some weighted convolution 
operators for which we will give some mapping properties from one Lebesgue space to 
another. This part may have its own interests in operator theory of real variables. We study 
simultaneous boundedness (and compactness) of ܪ  and ܪ  from ܨఈ

  to ܮఈ
  . Our theory 

generalizes those of [231] and [132] where only the case  = ݍ ≥ 1 was considered. 
We use ܥ to denote positive constants whose value may change from line to line, but do not 
depend on functions being considered. For two quantities ܣ  and ܤ , we write ܣ < ܤ ∼  if 
there exists some ܥ such that ܣ ≤ ܣ are equivalent, denoted by ܤ and ܣ We call .ܤܥ ≃  if ,ܤ
there exists some ܥ such that ିܥଵܣ ≤ ܤ ≤ For 1 .ܣܥ ≤  < ∞, let ܮ

  be the set of all p-
th locally Lebesgue integrable functions on ℂ . Given some ݖ ∈ ℂ  and ݎ > 0,  write 
,ݖ)ܤ (ݎ = ݓ} ∈ ℂ ∶ ݓ|  − |ݖ < ݂ For .{ݎ ∈ ܮ

 , the average function ݂  can be defined (ݖ)
as 

݂ (ݖ) =
1

,ݖ)ܤ൫ݒ ൯(ݎ
න ݂

(௭,)
 ; (ݓ)ݒ݀(ݓ)

and the -th mean oscillation of ݂ at ݖ is given by 

ܯ ܱ,(݂)(ݖ) = ቌ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
(ݓ)݂ − ݂ ቍ(ݓ)ݒ݀|(ݖ)

ଵ


 

For 1 ≤ ݏ ≤ ∞, 1 ≤  < ∞  and ݎ > 0 , the space ܯܫ ܱ
௦,,  (ݏ,  th integrable mean- (

oscillation, is defined to be the set of all ݂ ∈ ܮ
  such that ܯ ܱ,(݂) ∈ ݂ ௦(ℂ) . Forܮ ∈

ܯܫ ܱ
௦,, write 

‖݂‖ூெைೝ
ೞ,స‖ܯ ܱ,(݂)‖౩(ℂ). 
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As in [12], the space ܯܤ ܱ
 consists of those functions ݂ ∈ ܮ

  for which 
‖݂‖ெைೝ

 = sup
௭∈ℂ

ܯ   ܱ,(݂)(ݖ) < ∞, 

and the space ܸܯ ܱ
  consists of those ݂ ∈ ܯܤ ܱ

 such that 
lim
௭→ஶ

ܯ ܱ,(݂)(ݖ) = 0. 
It is trivial to see that ܯܫ ܱ

ஶ, = ܯܤ ܱ
 . The spaces ܯܤ ܱ

 and ܸܯ ܱ
 are independent of 

ܯܤ  forܱܯܤ Thus, we will write .(see Chapter 3 of [232]) ݎ ܱ
 (and ܸܱܯ for ܸܯ ܱ

) for 
short. 
Let 1 ≤  < ∞, 1 ≤ ݏ ≤ ∞, and ݎ > 0. We denote by ܣܫ௦, the space of functions ݂ ∈ ܮ

  
with 

‖݂‖ூ౩, = ‖൫|݂| ൯
ଵ
‖౩(ℂ) < ∞ 

for some ݎ > 0. By the knowledge of (, (ݍ −Fock Carleson measure (see [4]), we know 
the space ܣܫ௦, is independent of ݎ. 
Given any ݎ > 0, for a continuous function ݂ on ℂ, let 

߱(݂)(ݖ) =  sup {|݂(ݖ) − :|(ݓ)݂ ݓ| − |ݖ <  {ݎ
be the oscillation of ݂  at ݖ . We use ߱(݂)(ݖ)  for (߱ଵ(݂)(ݖ)  for short. Let ܫ ܱ

௦   denote the 
space of continuous function ݂ on ℂ such that 

‖݂‖ூைೝ
౩స‖(߱(݂)‖౩(ℂ) < ∞. 

It is easy to see, when ݏ = ∞,  the space ܣܫ
௦,  is consistent with ܣܤ

.  the space ܫ ܱ
௦   is 

consistent with ܤ ܱ. The definitions of ܣܤ
 and ܤ ܱ  can be found in [232]. 

The next lemma shows that the space ܫ ܱ
 is independent of the choice of ݎ. So we write it 

ܱܫ . 
Lemma (6.1.2) [230]:. Suppose 0 <  ≤ ∞.  Then for ݎ, ܴ ∈ (0, ∞)  and ݂  Lebesgue 
measurable on ℂ, ݂ ∈ ܫ ܱ

  if and only in ݂ ∈ ܫ ோܱ
 . Furthermore, ‖݂‖ூைೝ

 ≃ ‖݂‖ூைೃ
 . 

‖݂‖ூைೃ
 ≤ ூைభ‖݂‖ܥ

  

for ܴ > 1. To see this, notice that 0)ܤ, ܴ) ∩ ଵ
ଶ

ℤ is finite, say 
Proof. We need only to prove, 

,0)ܤ ܴ) ∩
1
2

ℤ = ,ଵߦ} ,ଶߦ . . . ,  .{ߦ

Then ߱ோ(݂)(ݖ) ≤ ∑  ୀଵ,ଶ,…. ߱(݂)൫ݖ +  ൯ . This givesߦ

‖݂‖ூைೃ
 ≤ ܥ   

ୀଵ,ଶ,.

‖݂൫⋅ ൯‖ூைభߦ+
 . 

But ‖݂൫⋅ ൯‖ூைభߦ+
 = ‖݂‖ூைభ

  , the desired estimate follows. This completes the proof. 
We now describe the structure of ܯܫ ܱ

௦, via ܱܫ௦  and ܣܫ௦,. 
Theorem (6.1.3) [230]: Let 1 ≤  < ∞, ݎ > 0  and 1 < ݏ ≤ ∞ . Then ݂ ∈ ܯܫ ܱ

௦,  if and 
only if ݂ admits a decomposition ݂ = ଵ݂ + ଶ݂, where ଵ݂ ∈ ௦ܱܫ  and ଶ݂ ∈  ,௦,. Furthermoreܣܫ
‖݂‖ூெைೝ

౩,  is equivalent to 
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 inf {‖ ଵ݂‖ூைೞ + ‖ ଶ݂‖ூ౩, ∶  ݂ = ଵ݂ + ଶ݂, ଵ݂ ∈ ௦ܱܫ , ଶ݂ ∈   ௦,}.                       (1)ܣܫ
Proof. Suppose ݂ ∈ ܯܫ  ܱ

௦, . Set ଵ݂  =  መ݂ೝ
మ
 and ଶ݂  =  ݂ −  ଵ݂. For |ݖ − |ݓ   ≤  

ଶ
 , we have 

| ଵ݂(ݖ) −  ଵ݂(ݓ)| ≤ ห ଵ݂(ݖ) −  መ݂(ݖ)ห +  ห መ݂(ݖ) −  ଵ݂(ݓ)ห

≤
1

ݒ  ൬ܤ ቀݖ, ݎ
2 ቁ൰

  න  
 

ቀ௭,ଶ ቁ

 ห݂(ݑ) −  መ݂(ݖ)ห݀(ݑ)ݒ +
1

,ݓ)ܤ)ݒ ݎ
2 ))

 න  
 

ቀ௭,ଶ ቁ

(ݑ)݂|   

−  መ݂(ݖ)|݀(ݑ)ݒ. 
Since ܤ ቀݖ, 

ଶ
ቁ and ܤ ቀݓ, 

ଶ
ቁ are both contained in (ݖ,  it follows from Hölder’s inequality , (ݎ

that 

| ଵ݂(ݖ) − ଵ݂(ݓ)|∼ < ቌ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
(ݑ)݂ − ݂ ቍ(ݑ)ݒ݀|(ݖ)

ଵ


 

This and Lemma (6.1.2) tell us ଵ݂ ∈ ௦ܱܫ  and 
‖ ଵ݂‖ூைೞ ≤ ூெைೝ‖݂‖ܥ

ೞ, .                                                           (2) 
For ଶ݂, 

൬| ଶ݂|
ଶ

൰
ଵ
 (ݖ) ≤

⎝

⎜
⎛ 1

ݒ ൬ܤ ቀݖ, ݎ
2ቁ൰

න |
ቀ௭,ଶቁ

(ݑ)݂ − ଵ݂(ݖ)|݀(ݑ)ݒ

⎠

⎟
⎞

ଵ


 

+

⎝

⎜
⎛ 1

ݒ ൬ܤ ቀݖ, ݎ
2ቁ൰

න |
ቀ௭,ଶቁ

ଵ݂(ݑ) − ଵ݂(ݖ)|݀(ݑ)ݒ

⎠

⎟
⎞

ଵ


 

≤ ,ଶܱܯ
(ݖ)(݂) + ߱

ଶ
( ଵ݂)(ݖ) . 

This and (2) imply ൬| ଶ݂| ೝ
మ
൰

భ


∈  ௦(ℂ) withܮ

‖ ଶ݂‖ூ౩, ≤ ூெைೝ‖݂‖ܥ
౩,.                                                 (3) 

Conversely, we show ݂ ∈ ܯܫ ܱ
௦,  whenever ݂ ∈ ݂ ௦  orܱܫ ∈  ௦,  with the desired normܣܫ

estimates. Suppose ݂ ∈ ௦ܱܫ . Since 

ܯ ܱ,(݂)(ݖ) ≤ ቌ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
(ݓ)݂ − ቍ(ݓ)ݒ݀|(ݖ)݂

ଵ


 

(ݖ)݂|+ − ݂ |(ݖ) ≤ 2߱(݂)(ݖ) , 
we have ݂ ∈ ܯܫ ܱ

௦, with 
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ቛ݂‖ூெைೝ
ೞ, ≤ ቛܥ ଵ݂‖ூை౩ .                                                     (4) 

And for ݂ ∈  ௦, we haveܣܫ

ܯ ܱ,(݂)(ݖ) ≤ ቌ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
ቍ(ݓ)ݒ݀|(ݓ)݂

ଵ


+ | ݂  |(ݖ)

≤ 2൫| ଶ݂|൯
ଵ
. 

Therefore ݂ ∈ ܯܫ ܱ
௦, with 

‖݂‖ூெைೝ
ೞ, ≤ ‖ܥ ଶ݂‖ூೞ,.                                                        (5) 

The estimate (a) comes form (2)-(5) . The proof is finished. 
Proposition (6.1.4) [230]: Let 1 ≤  < ∞, 1 ≤ ݏ ≤ ∞, ݎ > 0. Then for ݂ ∈ ܮ

  there holds 
(a) ݂ ∈  on ℂ such that (ݖ)ܿ ௦, if and only if there exists a continuous functionܱܯܫ

ቌ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
(ݓ)݂ − ቍ(ݓ)ݒ݀|(ݖ)ܿ

ଵ


∈  ௦(ℂ) .                    (6)ܮ

(b) ݂ ∈  on ℂ such that (ݖ)ܿ  if and only if there exists a continuous functionܱܯܸ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
݂ − ݒ݀|(ݖ)ܿ → 0 

as ܼ → ∞. 
Proof. (a) If ݂ ∈ (ݖ)ܿ ௦,, then (6) holds withܱܯܫ = ݂ ݖ which is continuous for (ݖ) ∈ ℂ. 
Conversely, suppose (6) holds. By Minkowski’s inequality, ܯ ܱ,(݂)(ݖ) =

൬ ଵ
௩൫(௭,)൯ ∫ |(௭,) ݂ − ݂ ൰ݒ݀|(ݖ)

భ

 

≤ ቆ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
݂ − ቇݒ݀|(ݖ)ܿ

ଵ


+ | ݂ (ݖ) −  .|(ݖ)ܿ

Meanwhile, Hölder’s inequality tells us 

| ݂ (ݖ) − |(ݖ)ܿ = |
1

,ݖ)ܤ൫ݒ ൯(ݎ
න ൫݂ − ൯(ݖ)ܿ

(௭,)
 |ݒ݀

≤ ቆ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
݂ − ቇݒ݀|(ݖ)ܿ

ଵ


∈  . ௦(ℂ)ܮ

Therefore ݂ ∈  ௦,.sܱܯܫ
The proof of the conclusion (b) is similar and is omitted here. The proof is finished 
Proposition (6.1.5) [230]: Suppose 1 ≤ >    ∞, 1 < ≥ ݏ   ∞, < ݎ  0  and ݂ ∈ ܮ 

 .  If 
for each ݖ ∈ ℂ, there exist ℎଵ, ℎଶ  ∈ ,ݖ)ܤ)ܪ   satisfying ((ݎ
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ቆ
1

,ݖ)ܤ൫ݒ ൯(ݎ
 න  

(௭,)
|݂ −  ℎଵ|݀ݒቇ

ଵ


 ∈  ௦(ℂ)ܮ 

 and  

ቆ
1

,ݖ)ܤ൫ݒ ൯(ݎ
 න  

(௭,)
ห݂̅  −  ℎଶห


ቇݒ݀

ଵ


 ∈   ,௦(ℂ)ܮ 

then ݂ ∈   .௦,ܱܯܫ 
Proof. It is well known that, if ݒ ∶ ,0)ܤ  1)  → ℝ  is pluriharmonic, there exists some 
pluriharmonic function ݑ ∶ ,0)ܤ  1)  → ℝ  such that ݑ + ∋ ݒ݅  ,0)ܤ)ܪ  1)).  Theorem 1 
from [3] tells us there is some constant ܥଵ  >  0  such that ห|ݑ − ห((,ଵ),ௗ௩)|(0)ݑ    ≤

< ݎ ห((,ଵ),ௗ௩). Hence, for any|ݒ|ଵหܥ   0, by 
change of variables we know that, if ݒ ∶ ,ݖ)ܤ  (ݎ → ℝ  is pluriharmonic, there exists a 
pluriharmonic function ݑ such that ݑ + ݒ݅ ∈ ,ݖ)ܤ൫ܪ  ൯ and(ݎ

ݑ‖ − ((௭,),ௗ௩)‖(ݖ)ݑ ≤  ((௭,),ௗ௩).                                 (7)‖ݒ‖ଵܥ

For ݂ ∈ ܮ
 , set ‖݂‖,(௭,) = ൬ ଵ

௩൫(௭,)൯ ∫ |(௭,) ݂|݀ݒ൰
భ

 By triangle inequality we have 

‖
݂ + ݂

2
−

ℎଵ + ℎଶ

2
‖,(௭,) 

≤ ‖
݂ − ℎଵ

2
‖,(௭,) + ‖

݂ − ℎଶ

2
‖,(௭,) ∈  . ௦(ℂ)ܮ

Since ݂ + ݂  is real valued, we get ‖ Im భାమ

ଶ
‖,(௭,) ∈ ௦(ℂ)  . Notice that ℎଵܮ + ℎଶ ∈

,ݖ)ܤ൫ܪ  ൯ , by (7) we obtain(ݎ

‖ Re 
ℎଵ + ℎଶ

2
−  Re 

ℎଵ + ℎଶ

2
,(௭,)‖(ݖ) ≤  Im ‖ܥ

ℎଵ + ℎଶ

2
‖,(௭,) 

Therefore, 

‖
݂ + ݂

2
−  Re 

ℎଵ + ℎଶ

2
 ,(௭,)‖(ݖ)

≤ ‖
݂ + ݂

2
−  Re 

ℎଵ + ℎଶ

2
‖,(௭,) + ‖ Re 

ℎଵ + ℎଶ

2
−  Re 

ℎଵ + ℎଶ

2
 ,(௭,)‖(ݖ)

≤ ‖
݂ + ݂

2
−

ℎଵ + ℎଶ

2
‖,(௭,) + ‖ Re 

ℎଵ + ℎଶ

2
−  Re 

ℎଵ + ℎଶ

2
 ,(௭,)‖(ݖ)

This shows ‖ ା
ଶ

−  Re భାమ

ଶ
,(௭,)‖(ݖ) ∈  ௦(ℂ) . Similarly, we haveܮ

‖ Im 
݂ − ݂

2
−  Im 

ℎଵ − ℎଶ

2
,(௭,)‖(ݖ) ∈  . ௦(ℂ)ܮ

Choose ܿ(ݖ) =  Re భାమ

ଶ
(ݖ) + ݅ Im భିమ

ଶ
݂‖ then  , (ݖ) − ,(௭,)‖(ݖ)ܿ ∈  ௦(ℂ)  . Fromܮ

this and Proposition (6.1.4) the desired result follows immediately. The proof is finished. 
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we consider mapping properties of some weighted convolution operators ܶ,ఌ  which will 
play a key role in our study of Hankel operators from ܨఈ

 to ܮఈ
  for 1 ≤ ݍ <  < ∞. Our 

analysis will be carried out in real analysis. 
Given two Lebesgue measurable functions ݂ and ݃ on ℝ, if 

න ݂
ℝ

ݔ) −  (ݕ)ݒ݀(ݕ)݃(ݕ

converges, we call the integral above the convolution of ݂ and ݃. 
We use ܮ to denote ܮ(ℝ , for short. Young’s inequality tells us for 1 (ݒ݀ ≤  ≤ ∞ and 
∈ ܮ , ݃ ∈  ଵ, there holdsܮ

‖ න ݂
ℝ

ݔ) − ‖(ݕ)ݒ݀(ݕ)݃(ݕ ≤ ‖݃‖భ‖݂‖ . 

More details about convolution can be found in [11]. 
Given some Lebesgue measurable function ݂ on ℝ, set 

(ݔ)(݂)߱ =  sup {|݂(ݕ) − |(ݔ)݂ ∶ ݕ  ∈ ℝᇱ , ݕ| − |ݔ < 1} 
For ߝ > 0 fixed, define integral operator ܶ,ఌ as 

ܶ,ఌℎ(ݔ) = න ቆන ݓ
ଵ


(݂)൫ݔ + ݕ)ݐ − ቇݐ൯݀(ݔ

ℝ
݁ିఌ|௬ି௫|ℎ(ݕ)݀(ݕ)ݒ . 

The operator ܶ,ఌ  can be considered as a kind of weighted convolution operators. The 
following result shows the mapping properties of ܶ,ఌ from ܮ  to ܮ . 
Theorem (6.1.6) [230]: Let 1 ≤ ݍ <  < ߝ  ,∞ > 0 . Suppose ݂  is Lebesgue measurable 

such that ݂ ∈ ܱܫ


ష౧. 
(a) The integral operator ܶ,ఌ is bounded from ܮ to ܮ. Moreover, 

‖ ܶ,ఌ‖→ ≤ ‖݂‖ܥ
ூை


ష౧

. 

(b) For bounded sequence {ℎ}  in ܮ  satisfying lim
→ஶ

sup|௭|ஸோ |ℎ(ݖ)| = 0  for all ܴ > 0 , 
there holds lim

→ஶ
‖ ܶ,ఌ(ℎ)‖ = 0. 

Proof. (a) Write ݏ = 
ି

, then ݏ > 1, and ݏᇱ = 
ିା

. By Hölders inequality we have 

| ܶ,ఌℎ(ݔ)| ≤ න ቆන (ߣ)
ଵ


(݂)௦൫ݔ + ݕ)ݐ − ቇݐ൯݀(ݔ

ଵ
ୱ

ℝ
݁ିఌ|௬ି௫||ℎ(ݕ)|݀(ݕ)ݒ 

≤ [න (
ℝ

න  
ଵ


߱(݂)௦൫ݔ + ݕ)ݐ − [(ݕ)ݒ݀|௦⋅ఌଶ|௬ି௫ି݁(ݐ൯݀(ݔ

ଵ
ୱ 

ቈන |
ℝ

ℎ(ݕ)|௦ᇲ݁ି௦ᇲ⋅ఌଶ|௬ି௫|݀(ݕ)ݒ

ଵ
ୱ
 

Write 

ଵܫ = න ቆන ߱
ଵ


(݂)௦൫ݔ + ݕ)ݐ − ቇݐ൯݀(ݔ

ℝ
݁ି௦⋅ఌଶ|௬ି௫|݀(ݕ)ݒ , 
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and 

ଶܫ = න |
ℝ

ℎ(ݕ)|௦ᇱ݁ି௦ᇲ⋅ఌଶ|௬ି௫|݀(ݕ)ݒ .  

Then Fubini’s theorem gives 

න ଵܫ
ℝ

 (ݔ)ݒ݀

= න ݀
ℝ

(ݔ)ݒ න ݀
ଵ


ݐ න ݓ

ℝ
(݂)௦൫ݔ + ݕ)ݐ −  (ݕ)ݒ݀|൯݁ି௦⋅ఌଶ|௬ି௫(ݔ

= න ݀
ℝ

(ݔ)ݒ න ݀
ଵ


ݐ න ߱

ℝ
(݂)௦(ݔ +  (ݑ)ݒ݀|௦⋅ఌଶ|௨ି݁(ݑݐ

= න ݀
ଵ


ݐ න ݁ି௦⋅ఌଶ|௨|

ℝ
(ݑ)ݒ݀ න (

ℝ
ݔ)௦(݂)ݒ +  (ݔ)ݒ݀(ݑݐ

= ‖݂‖ூைೞ
௦ න ݀

ଵ


ݐ න ݁ି௦⋅ఌଶ|௨|

ℝ
 (ݑ)ݒ݀

= ூைೞ‖݂‖ܥ
௦ . 

Since 
௦

≥ 1, by Hölder’s inequality and Fubini’s theorem we get 

න ݁ି௦ᇲ⋅ఌଶ|௬ି௫|

ℝ
|ℎ(ݕ)|௦ᇲ݀(ݕ)ݒ 

≤ ቌන ݁ିఌ
ସ |௬ି௫|

ℝ
|ℎ(ݕ)|௦ᇲ⋅௦ ቍ(ݕ)ݒ݀

ୱᇲ



ቌන ݁ିఌ
ସ


ି|௬ି௫|

ℝ
ቍ(ݕ)ݒ݀

ଵିୱᇲ



 

Then, 

න (ଶܫ)

ୱ

ℝ
 (ݔ)ݒ݀

= න ቌන ݁ି௦ᇲ⋅ఌଶ|௬ି௫|

ℝ
|ℎ(ݕ)|௦ᇲ݀(ݕ)ݒቍ


ୱ

ℝ
 (ݔ)ݒ݀

≤ ܥ න ቌන ݁ିఌ
ସ |௬ି௫|

ℝ
|ℎ(ݕ)|௦ᇲ⋅ୱ݀(ݕ)ݒቍ

ℝ
 (ݔ)ݒ݀

= ܥ න |
ℝ

ℎ(ݕ)|݀(ݕ)ݒ . 

Therefore, 

න ቀ ܶ,ఌℎ(ݔ)ቁ


ℝ
(ݔ)ݒ݀ ≤ න ቀ(ܫଵ)


ୱ(ܫଶ)


ୱቁ

ℝ
 (ݔ)ݒ݀
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≤ ቌන ଵܫ
ℝ

ቍ(ݔ)ݒ݀


ୱ

 ቌන (ଶܫ)

௦

ℝ
ቍ(ݔ)ݒ݀




 

≤ ூைೞ‖݂‖ܥ
 ⋅ ‖ℎ‖

 . 
This means ܶ,ఌ is bounded from ܮ  to ܮ with 

‖ ܶ,ఌ‖→ ≤ ூைೞ‖݂‖ܥ , 
which gives the statement (1). 
Now we prove the statement (2). To do this, for ߩ > 0  we consider ܶ,ఌ(ℎ)(ݔ) =
(ݔ),(ℎ)ܬ + ܳ,ఘ(ℎ)(ݔ) with 

(ݔ),ఘ(ℎ)ܬ = න (
|௬ି௫|ஹఘ

න  
ଵ


߱(݂)൫ݔ + ݕ)ݐ −  , (ݕ)ݒ݀|(ݕ)ఌ|௬ି௫||ℎି݁(ݐ൯݀(ݔ

and 

ܳ,(ℎ)(ݔ) = න ቆන  
ଵ


߱(݂)൫ݔ + ݕ)ݐ − ቇݐ൯݀(ݔ

|௬ି௫|ழఘ
݁ିఌ|௬ି௫||ℎ(ݕ)|݀(ݕ)ݒ . 

Then, 
 (ݔ),(ℎ)ܬ

≤ ݁ିఌ
ଶఘ න ቆන ߱

ଵ


(݂)൫ݔ + ݕ)ݐ − ቇݐ൯݀(ݔ

|௬ି௫|ஹఘ
݁ିఌ

ଶ|௬ି௫||ℎ(ݕ)|݀(ݕ)ݒ 

≤ ݁ିఌ
ଶ

ܶ,ఌଶ
(|ℎ|)(ݔ) 

From (1) we have 
,ఘ(ℎ)‖ܬ‖ ≤ ఌି݁ܥ

ଶఘ‖݂‖ூை౩ ⋅ ‖ℎ‖.                                          (8) 
To estimte ‖ܳ,ఘ(ℎ)‖, for ܴ > 0 let ߯ோ be the characteristic function of 0)ܤ, ܴ) . Then 

‖ܳ,(1)߯ோ‖ 

≤ ܴܥ

 ቊන ܳ,

|௫|ழோ
(1)௦(ݔ)݀(ݔ)ݒቋ

ଵ
௦
 

≤ ܴܥ

 {න න න  

ଵ

ℝℝ
߱(݂)௦൫ݔ + ݕ)ݐ − ൯݁ିఌ(ݔ

ଶ|௬ି௫|݀(ݔ)ݒ݀(ݕ)ݒ݀ݐ}
ଵ
௦  

= ܴܥ

 ‖݂‖ூை౩ . 

Therefore, 

‖ܳ,ఘ(ℎ)߯ோ‖ ≤ ܴܥ

 ( sup |ℎ(ߦ)|)‖݂‖ூை౩ .                  (9) 

On the other hand, it is easy to verify that 
sup

௬∈(௫,),௧∈[,ଵ]
   ߱(݂)൫ݔ + ݕ)ݐ − ൯(ݔ ≤ ߱ାଵ(݂)(ݔ) . 

By Young’s inequality, we know 
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‖ න ݁ିఌ|௬ି௫|

ℝ
|ℎ(ݕ)|݀(ݕ)ݒ‖ ≤ ℎ‖‖ܥ . 

Then, applying Hölder’s inequality with the exponents 
ି

 and 

 to get 

‖ܳ,ఘ(ℎ)(1 − ߯ோ)‖ 

≤ ቌන ߱ఘାଵ
|௫|ஹோ(

(݂)௦(ݔ)ቍ

ଵ
ୱ

‖ න ݁ିఌ|௬ି௫|

|௬ି௫|ழ
|ℎ(ݕ)|݀(ݕ)ݒ‖  

≤ න)ܥ ߱ఘାଵ(݂)௦(ݔ))
ଵ
௦

|௫|ஹோ
‖ℎ‖ .                                   (10) 

The constants ܥ in (8), (9) and (10) are independent of ߩ and ܴ. Now suppose {ℎ}ୀଵ
ஶ  is a 

bounded sequence in ܮ   satisfying sup|௭|ஸோ|ℎ(ݖ)| → 0  as ݇ → ∞  for any fixed ܴ > 0 . 
Without loss of generality, we may assume 
‖ℎ‖ ≤ 1.  Given any ߝ > 0,  pick some  > 0  so that ݁ିഄ

మ <  by Lemma  ,ߩ For this . ߝ
(6.1.2) ݂ ∈ ାଵܱܫ

௦ . We have some ܴ > 0 such that 

ቌන ߱ఘାଵ
|௫|ஹோ

(݂)௦(ݔ)ቍ

ଵ
ఌ

<  .ߝ

From (8), (9) and (10) we have, whenever ݇ is sufficiently large, 
‖ ܶ,ఌ(ℎ)‖  

≤ ,ఘ(ℎ)‖ܬ‖ + ‖ܳ,ఘ(ℎ)߯ோ‖ + ‖ܳ,ఘ(ℎ)(1 − ߯ோ)‖  

≤ ܥ ቊߝ(‖݂‖ூை౩ + 1) + ܴ

 ቆ sup

|క|ஸோାఘ
  |ℎ(ߦ)|ቇ ‖݂‖ூை౩ቋ 

≤  ,ߝܭ
where the constants ܭ is independent of ߝ. Therefore, 

lim
→ஶ

‖ ܶ,ఌ(ℎ)‖ = 0 
as desired. The proof is finished. 
we are going to provide a proof of Theorem (6.1.1). Recall that ߁ is the family of those 
measurable function ݂ on ℂ satisfying ݂݇௭ ∈ ⋃   

ஹଵ ఈܮ
  for all ݖ ∈ ℂ. 

Theorem (6.1.7) [230]: Suppose 1 ≤  ≤ ݍ < ∞, ߙ > 0 and ݂ ∈  .߁
(i) ܪ and ܪ are both bounded from ܨఈ

 to ܮఈ
  if and only if ݂ ∈ ܱܯܤ . Moreover, 

‖ிഀ→ഀܪ‖
 + ‖ிഀ→ഀܪ‖

 ≃ ‖݂‖ெை౧ .                    (11) 
(ii) ܪ and ܪ are both compact from ܨఈ

 to ܮఈ
  if and only if ݂ ∈ ܱܯܸ . 

Proof. (i) Suppose ݂ ∈ ܱܯܤ .  From Theorem 3.3  in [5] we know ܪ, ܪ ∶ ఈܨ 
 → ఈܮ

   are 
bounded. Moreover, 

‖ிഀ→ഀܪ‖
 + ∽‖ிഀ→ഀܪ‖

 < ‖݂‖ெை . 
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Since the Fock spaces have the nest property that the inclusion ܨ
 ⊂ ఈܨ

  is bounded for 0 <
 ≤ ݍ < ∞, we have ܪ, ܪ ∶ ఈܨ 

 → ఈܮ
  are both bounded, and the left hand side of (11) can 

be dominated by the right hand side. 
Conversely, suppose ܪ, ఈܨ  are both bounded fromܪ

 to ܮఈ
 . Set 

(ݖ)(݂)ఈ,ܯ = ‖݂݇௭ − ݃௭(ݖ)݇௭‖,ఈ, 
where ݃௭ denotes the holomorphic function on ℂ given by 

݃௭(ݓ) = ఈܲ൫݂݇௭൯(ݓ)
݇௭(ݓ) , ݓ ∈ ℂ 

It is easy to check that ݃௭(ݖ) is continuous on ℂ. Clearly, ‖݇௭‖,ఈ = 1. By Minkowski’s 
inequality, 

(ݖ)(݂)ఈ,ܯ ≤ ‖݂݇௭ − ఈܲ(݂݇௭)‖,ఈ + ‖ ఈܲ(݂݇௭) − ݃௭(ݖ)݇௭‖,ఈ 
= (݇௭)‖,ఈܪ‖ + ‖ ఈܲ(݂݇௭) − ݃௭(ݖ)݇௭‖,ఈ. 

Notice that 
݃௭(ݖ)݇௭ = ఈܲ(݃௭݇௭) .                                     (12) 

To see this, since ܭ௭(ݓ) =  by the reproducing formula ,(ݖ)௪ܭ
݃௭(ݖ)݇௭(ݓ) = ௭‖ଶ,ఈܭ‖

ିଵ ⋅ ݃௭(ݖ)ܭ௪(ݖ) = ௭‖ଶ,ఈܭ‖
ିଵ ⋅ 〈݃௭ܭ௪ ,  ௭〉ఈܭ

= ௭‖ଶ,ఈܭ‖
ିଵ ⋅ ,௭ܭ〉 ݃௭ܭ௪〉ఈ = 〈݃௭݇௭,  ௪〉ఈܭ

= ఈܲ(݃௭݇௭)(ݓ) . 
Hence, by (12) and the boundedness of ఈܲ on ܮఈ

 , 
‖ ఈܲ(݂݇௭) − ݃௭(ݖ)݇௭‖,ఈ = ‖ (ܲ(݂݇௭) − ఈܲ(݃௭݇௭)‖,ఈ 

≤ ‖ ఈܲ‖ഀ
 →ഀ

౧ ⋅ ‖(݂ − ݃)݇௭‖,ఈ 

= ‖ ఈܲ‖ഀ
 →ഀ

౧ ⋅ ‖݂݇௭ − ݃௭݇௭‖,ఈ 
= ‖ (ܲ‖ഀ

 →ഀ
 ⋅  .(݇௭)‖,ఈܪ‖

Therefore 
(ݖ)(݂)ఈ,ܯ ≤ ቀ1 + ‖ ఈܲ‖ഀ

 →ഀ
౧ ቁ ⋅ ቀ‖ܪ(݇௭)‖,ఈ +  (݇௭)‖,ఈቁ .   (13)ܪ‖

Since ܪ, ܪ ∶ ఈܨ 
 → ఈܮ

  are both bounded, we get ܯఈ,(݂) ∈  ஶ(ℂ) . Meanwhile, by theܮ

fact that inf௪∈(௭,)|݁ఈ〈௪,௭〉| ≥ ݁ܥ
ഀ
మ|௭|మାഀ

మ|௪|మ
 we have 

ቀܯఈ,(݂)(ݖ)ቁ

 

= න |
ℂ

(ݓ)௭݇(ݓ)݂ − ݃௭(ݖ)݇௭(ݓ)|݁ି୯ఈ
ଶ |௪|మ

 (ݓ)ݒ݀

≥ ௭‖ଶ,ఈܭ‖
ି ⋅ න |

(௭,)
(ݓ)݂ − ݃௭(ݖ)||݁ఈ〈௪,௭〉|݁ିఈ

ଶ |௪|మ
 (ݓ)ݒ݀

≥ ܥ න |
(௭,)

(ݓ)݂ − ݃௭(ݖ)|݀(14)                      . (ݓ)ݒ 
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Therefore, 

න |
(௭,)

(ݓ)݂ − ݃௭(ݖ)|݀(ݓ)ݒ ∈  . ஶ(ℂ)ܮ

It follows from Proposition (6.1.4) that ݂ ∈ ܱܯܤ . And the right-hand side of (11) can be 
dominated by the left-hand side. 
(ii) Suppose ݂ ∈ ݂ By Theorem 3.39 in [232], ݂ admits a decomposition .ݏܱܯܸ  = ଵ݂ +

ଶ݂, where ଵ݂ and ଶ݂ satisfies 
lim
௭→ஶ

߱ ( ଵ݂)(ݖ) = 0                                                                 (15) 
and 

lim
௭→ஶ

1
,ݖ)ܤ൫ݒ ൯(ݎ

න |
(௭,)

ଶ݂(ݓ)|݀(ݓ)ݒ = 0.                                       (16) 

respectively. For ଵ݂,  given any ߝ > 0  we claim that there exists some ℎ  with compact 
support such that 

‖ ଵ݂ − ℎ‖ை <  (17)                                                           .ߝ
In fact, by (15) we have some ݎ > 0 such that ݓ( ଵ݂)(ݖ) < |ݖ| whenever ߝ ≥  Similar to .ݎ
Lemma 3.33 in [232], for |ݖ| ≥  we have ݎ

| ଵ݂(ݖ) − ଵ݂ ൬
ݎ

|ݖ|
൰ݖ | < ൫1ߝ + |ݖ|) −  . ൯(ݎ

Then, | ଵ݂(ݖ)| < sup|క|ୀ| ଵ݂(ߦ)| + |ݖ|)ߝ + 1) which implies there is some ܴ > ݎ + 2 such 
that 

| ଵ݂(ݖ)|
|ݖ|

<  (18)                                                              ߝ2

whenever |ݖ| ≥ ܴ − 2. Set 

(ݖ)ݏ = ൞

1        0 ≤ |ݖ| < ܴ;
1
ܴ

(2ܴ − ܴ         (|ݖ| ≤ ݐ < 2ܴ;

|ݖ|                 ,0 ≥ 2ܴ.

 

Then, ߱(ݏ) ≤ ଵ
ோ

 . Define ℎ(ݖ) = ଵ݂(ݖ)(ݖ)ݏ .  For |ݖ| ≤ ܴ − 1, ߱( ଵ݂ − ℎ)(ݖ) = 0.  For |ݖ| ≥
2ܴ + 1, ߱( ଵ݂ − ℎ)(ݖ) = ߱( ଵ݂)(ݖ) < ܴ For  .ߝ − 1 < |ݖ| < 2ܴ + 1  and ݓ ∈ ,ݖ)ܤ 1) ,  by 
(18) we know 

|൫ ଵ݂(ݖ) − ℎ(ݖ)൯ − ൫ ଵ݂(ݓ) − ℎ(ݓ)൯| 
≤ | ଵ݂(ݓ)||(|ݓ|)ݏ − |(|ݖ|)ݏ + ൫1 − |൯(|ݖ|)ݏ ଵ݂(ݓ) − ଵ݂(ݖ)| 

≤ | ଵ݂(ݓ)|߱(ݏ)(|ݖ|) + )(ݔ) ଵ݂)(ݖ) 

≤ | ଵ݂(ݓ)|
1
ܴ

+ ߱( ଵ݂)(ݖ) 

=
| ଵ݂(ݓ)|

|ݓ|
|ݓ|
ܴ

+ ߱( ଵ݂)(ݖ) 

≤ ߝ2
2ܴ + 2

ܴ
+ ߝ <  .ߝ7
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From these (17 ) follows. Since ℎ  has compact support, ܪ  is compact from ܨఈ
  to ܮఈ

  . 
Furthermore, (4) and (11), (17) imply 

భܪ‖ − ‖ிഀ→ഀܪ
 ≤ ‖ܥ ଵ݂ − ℎ‖ை <  ,ߝܥ

where ܥ is independent of ݅ߝ. Therefore, ܪభ ∶ ఈܨ 
 → ఈܮ

  is also compact. 
For ଶ݂ , set ଶ݂,ோ = ଶ݂ ⋅ ߯ோ,  where ߯ோ  is the characteristic function of 0)ܤ, ܴ)  . Since ଶ݂,ோ  is 
compact supported, ܪమ,ೃ  is compact from ܨఈ

  to ܮఈ
 .  Since ଶ݂  satisfies (16 ), from (5 ) and 

(11) we have 
ଶܪ‖ − ଶ,ோ‖ிഀ→ഀܪ

 ≤ ‖ܥ ଶ݂ − ଶ݂,ோ‖ → 0, 
as ܴ → ∞. Hence, ܪమ  is compact from ܨఈ

 to ܮఈ
 . Therefore, ܪ is compact from ܨఈ

 to ܮఈ
 . 

Similarly, ܪ is compact from ܨఈ
 to ܮఈ

  as well. 
Conversely, if ܪ and ܪ are compact from ܨఈ

 to ܮఈ
 . Notice that ݇௭ converges to 0 weakly 

in ܨఈ
 as ݖ → ∞, it follows from (13) that 

lim
௭→ஶ

ఈ,ܯ (ݖ)(݂) = 0. 
Now the estimate (14) tells us 

lim
௭→ஶ

න |
(௭,)

(ݓ)݂ − ݃௭(ݖ)|݀(ݓ)ݒ = 0. 

From Proposition (6.1.4) we know ݂ ∈ ܱܯܸ . This completes the proof. 
Next we characterize the boundedness (and the compactness) of both ܪ, ܪ from ܨఈ

 to ܮఈ
  

for 1 ≤ ݍ <  < ∞.  To this end, we first introduce Khinchine’s inequality. Let ݎ  be the 
Rademacher function defined by 

(ݐ)ݎ = ൞
1, ݂݅ 0 ≤ ݐ − [ݐ] <

1
2

−1, ݂݅ 
1
2

≤ ݐ − [ݐ] < 1
 

and ݎ(ݐ) = ݇ for (ݐ2)ݎ = 1,2, , where [ݐ] denotes the largest integer less than or equal to 
For 0 . ݐ < ݈ < ∞ , we need Khinchine’s inequality. That is, there exists some positive 
constants ܥଵ and ܥଶ depending only on ݈ such that 

ଵܥ ൭ |


ୀଵ

ܾ|ଶ൱


ଶ

≤ න |
ଵ


 ܾ



ୀଵ

ݐఐ݀|(ݐ)ݎ ≤ ଶܥ ൭ |


ୀଵ

ܾ|ଶ൱


ଶ

 

for all ݉ ≥ 1 and complex numbers ܾଵ, ܾଶ, , ܾ. More details can be found in [7]. 
As in [232], a sequence {ܽ}  in ℂ  is called an ݎ -lattice if the following conditions are 
satisfied: 
(a)⋃  ஶ

ୀଵ ܽܤ , (ݎ = ℂ; 
(b) ቄܤ ቀܽ , 

ସ
ቁቅ

ୀଵ

ஶ
arem utually disjoint. 

With these two hypotheses, it is easy to check that 
(c) For any ߜ > 0,  there exists a positive integer ݉  depending only on ݎ  and ߜ  such that 
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every point in ℂ belongs to at most ݉ of the sets {ܤ(ܽ , ݎ Given .{(ߜ > 0, it is easy to pick 
ܽ ∈ ℂ such that {ܽ} is an ݎ-lattice. Given ݂ ∈ ఐܮ

 , we define 

(ݖ)(݂),ܩ =  inf ቐቆ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
݂ − ℎ|݀ݒቇ

ଵ


∶  ℎ ∈ ,ݖ)ܤ൫ܪ  .൯ቑ(ݎ

The atomic decomposition for Fock spaces turns out to be a powerful theorem in the theory 
of Fock spaces. The following theorem, Theorem (6.1.8), is basically due to [236]. 
Theorem (6.1.8) [230]: Let 0 <  ≤ ∞. For ݎ-lattice {ܽ} and {ߣ} ∈ ݈, 

(ݖ)݂ =  ߣ

ஶ

ୀଵ

݁ఈ〈௭,ೖ〉ିఈ
ଶ|ೖ|మ

∈ ఈܨ
 ,                               (19) 

and ‖݂‖,ఈ ≤ ‖{ߣ}‖ . Furthermore, there exists some positive constant ݎ such that, for 
any 0 < ݎ < ఈܨ ,  the spaceݎ

  consists exactly of the functions (19), where {ߣ} ∈ ݈  and 
{ܽ} is an ݎ-lattice. And 

ଵ‖݂‖,ఈିܥ ≤  inf‖{ߣ}‖ߡ ≤  ,ఈ‖݂‖ܥ
for all ݂ ∈ ఈܨ

 ,  where the infimun is taken over all sequences {ߣ}  that give rise to the 
decomposition in (19). 
.) ܉ܕܕ܍ۺ . ૢ)[]: For continuous functions ݂ on ℂ, there holds 

(ݖ)݂| − |(ݓ)݂ ≤ 4(1 + ݖ| − (|ݓ න ߱
ଵ


(݂)൫ݖ + ݓ)ݐ −  ݐ൯݀(ݖ

for all ݖ and ݓ in ℂ. 
Proof. Suppose ݖ and ݓ in ℂ, if |ݖ − |ݓ < 1, then for any ݐ ∈ [0,1], we have 

(ݖ)݂| − |(ݓ)݂ ≤ (ݖ)݂| − ݂൫ݖ + ݓ)ݐ − |൯(ݖ + |݂൫ݖ + ݓ)ݐ − ൯(ݖ −  |(ݓ)݂
≤ 2 ⋅ ߱(݂)൫ݖ + ݓ)ݐ −  . ൯(ݖ

Integrating both sides with respect to ݐ from 0 to 1, 

(ݖ)݂| − |(ݓ)݂ ≤ 2 න  
ଵ


߱(݂)൫ݖ + ݓ)ݐ −  (20)                              .ݐ൯݀(ݖ

Now for |ݖ − |ݓ ≥ 1, let ܰ = ݖ|] − |ݓ + 1], where [ݔ] denotes the largest integer less than 
or equal to ݔ, and set ݖ = ݖ + 

ே
ݓ) − ,(ݖ ݆ = 0,1, … , ܰ. Then 

ାଵݖ| − |ݖ =
1
ܰ

ݓ| − |ݖ < 1, 
Therefore, 

(ݖ)݂| − |(ݓ)݂ ≤  |
ேିଵ

ୀ

݂൫ݖାଵ൯ − ݂൫ݖ൯| 

≤ 2  න ߱
ଵ



ேିଵ

ୀ

(݂) ቀݖ +
ݓ − ݖ

ܰ
⋅ ቁݐ  ݐ݀
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= 2  ܰ
ேିଵ

ୀ

න  
ଵ



߱(݂) ቀݖ + ݓ)ݏ − ቁ(ݖ  ݏ݀

= 2ܰ න  
ଵ


߱(݂)൫ݖ + ݓ)ݐ −  ݐ൯݀(ݖ

≤ ݖ|4 − |ݓ න ߱
ଵ


(݂)൫ݖ + ݓ)ݐ −  .ݐ൯݀(ݖ

This together with (20) completes the proof of the proposition. 
Theorem (6.1.10) [230]: Let 1 ≤ ݍ <  < ∞, ߙ > 0 and set ݏ = 

ି
. Then for ݂ ∈  the ,߁

following statements are equivalent: 
(a) ܪ, :̅ܪ ఈܨ

 → ఈܮ
  are bounded 

(b) ܪ, :̅ܪ ఈܨ
 → ఈܮ

  are compact. 
(c) ݂ ∈  .௦,ܱܯܫ
Furthermore, 

‖ிഀ→ഀܪ‖
 + ‖ிഀ→ഀܪ‖

౧ ≃ ‖݂‖ூெை౩,౧  .                            (21) 
Proof. We prove the implications (a) ⇒ (c)  and (c) ⇒ (b)  . The implication (b) ⇒ (a)  is 
trivial. 
(a) ⇒ (c) . Fix ݎ > 0, and let {ܽ} be an ݎ-lattice. According to Theorem (6.1.8), for any 
{ߣ} ∈ ݈,  we have ݃௧(ݖ) = ∑ ߣ

ஶ
ୀଵ ೖ݇(ݐ)ݎ

(ݖ) ∈ ఈܨ
 ,  and ‖݃௧‖,ఈ ≤  ఐ . It is‖{ߣ}‖ܥ

trivial to check that |݇ೕ
݁ିഀ|(ݖ)

మ |௭|మ
= ݁ିഀ

మ |௭ିೕ|మ
≃ 1  for ∈ ൫ܤ ܽ,  ൯  . By Fubini’sݎ

theorem and Khinchine’s inequality we obtain 

න ‖
ଵ


݃௧‖,ఈܪ

  ݐ݀

= න න |
ℂ

ଵ


 ߣ

ஶ

ୀଵ

݇ೖܪ(ݐ)ݎ
݁ିఈ|(ݖ)

ଶ |௭|మ
 ݐ݀(ݖ)ݒ݀

= න ݁ିఈ
ଶ |௭|మ

ℂ
(ݖ)ݒ݀ න |

ଵ


 ߣ

ஶ

ୀଵ

݇ೖܪ(ݐ)ݎ
 ݐ݀|(ݖ)

≥ ܥ න ൭ |
ஶ

ୀଵ

݇ೖܪ||ଶߣ
ଶ൱|(ݖ)


ଶ

ℂ
݁ିఈ

ଶ |௭|మ
 (ݖ)ݒ݀

≥ ܥ  න ൭ |
ஶ

ୀଵ

݇ೖܪ||ଶߣ
ଶ൱|(ݖ)


ଶ

൫ೕ,൯

ஶ

ୀଵ

݁ି୯ఈ
ଶ |௭|మ

 (ݖ)ݒ݀

≥ ܥ  |
ஶ

ୀଵ

|ߣ න |
൫ೕ,൯

ೕ݇(ݖ)݂
(ݖ) − ఈܲ ቀ݂݇ೕቁ ݁ିఈ|(ݖ)

ଶ |௭|మ
 (ݖ)ݒ݀
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≥ ܥ  |
ஶ

ୀଵ

|ߣ න |
൫ೕ,൯

(ݖ)݂ −
ఈܲ ቀ݂݇ೕቁ (ݖ)

݇ೕ
(ݖ) ||݇ೕ

݁ିఈ|(ݖ)
ଶ |௭|మ

 (ݖ)ݒ݀

≥ ܥ  |
ஶ

ୀଵ

|ߣ ቀܩ,(݂)൫ ܽ൯ቁ


. 

Meanwhile, the boundedness of ܪ ∶ ఈܨ 
 → ఈܮ

  gives 
݃௧‖,ఈܪ‖

 ≤ ‖ிഀ→ഀܪ‖ܥ


 ⋅ ‖݃௧ء‖,ఈ
 . 

Hence, 

 |
ஶ

ୀଵ

|ߣ ቀܩ,(݂)൫ ܽ൯ቁ


≤ ‖ிഀ→ഀܪ‖ܥ
౧

 ⋅ ‖{|ߣ|}‖





 . 

Since the conjugate exponent of 

 is 

ି
, a duality argument implies 

 ቀܩ,(݂)൫ ܽ൯ቁ
௦

ஶ

ୀଵ

≤ ‖ிഀ→ഀܪ‖ܥ
౧

௦ . 

On the other hand, the fact that 
(ݓ)(݂),௧ܩ ≤  , (ݖ)(݂),ܩܥ

when ݓ)ܤ, (ݐ ⊂ ,ݖ)ܤ  gives (ݎ

න ቀܩ,(݂)(ݖ)ቁ
௦

ℂ
(ݖ)ݒ݀ ≤  න ቀܩ,(݂)(ݖ)ቁ

௦

൫ೕ,൯

ஶ

ୀଵ

 (ݖ)ݒ݀

≤ ܥ  ቀܩ,ଶ(݂)൫ ܽ൯ቁ
௦

ஶ

ୀଵ

 

This shows that , for any ݎ > 0, (݂),ܩ ∈ ௦ܮ . Similarly, the boundedness of ܪ from ܨఈ
 to 

ఈܮ
   implies ܩ,൫݂൯ ∈ ݎ ௦  for anyܮ > 0 . By the definition of ܩ,(݂)  , for each ݖ ∈ ℂ  we 

have ℎଵ, ℎଶ ∈ ,ݖ)ܤ൫ܪ  ൯ such that(ݎ

ቆ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
݂ − ℎଵ|݀ݒቇ

ଵ


≤  , (ݖ)(݂),ܩ2

and 

ቆ
1

,ݖ)ܤ൫ݒ ൯(ݎ
න |

(௭,)
݂ − ℎଶ|݀ݒቇ

ଵ


≤  . (ݖ),൫݂൯ܩ2

It follows from Proposition (6.1.5) that ݂ ∈  ௦,. Moreover, the right-hand side of (21)ܱܯܫ
can be dominated by the left-hand side. 
(c) ⇒(b) . Suppose ∈  ௦, . First, we prove that the left-hand can be dominated by theܱܯܫ
right-hand side. By Theorem (6.1.3), ݂ admits a decomposition ݂ = ଵ݂ + ଶ݂ with 

‖ ଵ݂‖ூைೞ + ‖ ଶ݂‖౩,౧ ≤ ூெைೞ,‖݂‖ܥ .                       (22) 
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For ଶ݂ ∈ ఈܮ ௦, , the boundedness of ఈܲ onܣܫ
  yields 

మ݃‖,ఈܪ‖ ≤ ‖ ଶ݂݃‖,ఈ + ‖ ఈܲ( ଶ݂݃)‖,ఈ ≤ ‖ܥ ଶ݂݃‖,ఈ. 
Theorem 3.3 from [234] tells us ݀ߤ = | ଶ݂|݀ݒ is a(,  Fock Carleson measure. Thus the-(ݍ
operator ܯమ  defined by ܯమ݃ = ଶ݂݃ is bounded from ܨఈ

 to ܮఈ
 . Precisely, 

మ݃‖,ఈܯ‖ ≤ |൫‖ܥ ଶ݂|
൯

ଵ
‖ೞ‖݃‖,ఈ. 

Therefore, ܪమ ∶ ఈܨ 
 → ఈܮ

  is bounded with 
మ‖ிഀ→ഀܪ‖

 ≤ ‖ܥ ଶ݂‖ூ౩, . (23) 
Now we treat ܪభ  with ଵ݂ ∈ ௦ܱܫ . Notice that there are some ܥ > 0 and ߝ > 0 such that, for 
,ݖ ݓ ∈ ℂ , 

|݁ఈ〈௪,௭〉| ≤ ݁ܥ
ఈ
ଶቚ௭|మାఈ

ଶቚ௪|మିଶఌ|௭ି௪|, ݖ| − |ݓ ≤  .|ఌ|௭ି௪݁ܥ
For ݃ ∈ ఈܨ

 ,  set ℎ(ݓ) = ഀି݁(ݓ)݃
మ|௪|మ

.  Then, ℎ ∈ ,(ℂܮ  From Lemma (6.1.9) we .  (ݒ݀
have 

భ݃‖,ఈܪ‖
  

= න |
ℂ

݁ିఈ|(ݖ)భ݃ܪ
ଶ |௭|మ

 (ݖ)ݒ݀

= න |
ℂ

න ൫ ଵ݂(ݖ) − ଵ݂(ݓ)൯
ℂ

݁ିఈ|(ݓ)ఈݒ݀ఈ〈௭,௪〉݁(ݓ)݃
ଶ |௭|మ

 (ݖ)ݒ݀

≤ ܥ න ቌන |
ℂ

ଵ݂(ݖ) − ଵ݂(ݓ)| ⋅ ఈି݁(ݓ)݃|
ଶ|௪|మ

|݁ିଶఌ|௭ି௪|݀(ݓ)ݒቍ



ℂ
 (ݖ)ݒ݀

≤ ܥ න ܶభ,ఌ
ℂ

(ℎ)(ݖ)݀(ݖ)ݒ , 

Applying Theorem (6.1.6) to obtain ‖ܪభ݃‖,ఈ ≤ ‖ܥ ଵ݂‖ூைೞ‖݃‖,ఈ. That is, 
భ‖ிഀ→ഀܪ‖

 ≤ ‖ܥ ଵ݂‖ூைೞ . 
This and (22), (23) imply 

‖ிഀ→ഀܪ‖
 ≤ ூெைೞ,‖݂‖ܥ . 

Since ܯ ܱ,൫݂൯ = ܯ ܱ,(݂) , we have 
‖ிഀ→ഀܪ‖

 ≤ ூெை౩,‖݂‖ܥ . 
So the left-hand side of (21) can be dominated by the right-hand side. 
Now we prove the compactness. Write ݂ = ଵ݂ + ଶ݂ with (22). Let {݃}ୀଵ

ஶ  be any weakly 
null sequence in ܨఈ

 . That is, ‖݃‖,ఈ ≤ ୀଵ{(ݖ)݃} and  ܥ
ஶ   tends to 0  uniformly on any 

compact subset of ℂ. Set ℎ(ݖ) = ݃(ݖ)݁ିഀ
మ|௭|మ

. By Theorem (6.1.6), we obtain 
భܪ‖

(݃)‖,ఈ ≤ ‖ܥ ܶభ,ఌ(݃)‖౧ → 0 
as ݇ → ∞.  Hence, ܪభ   is compact. And for ଶ݂,  set ଶ݂,ோ = ଶ݂ ⋅ ߯ோ,  where ߯ோ  is the 
characteristic function of 0)ܤ, ܴ) . ݂(2, ܴ) is compact supported, so ܪమ , ܴ is compact from 
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ఈܨ
 to ܮఈ

 . By (23), 
మܪ‖ − మ,ೃ‖ிഀ→ഀܪ

 ≤ ‖ܥ ଶ݂ − ଶ݂,ோ‖ூ౩, → 0 
as ܴ → ∞. Hence ܪమ  is compact. The compactness of ܪభ  and ܪమ  tells us ܪ = భܪ + మܪ  is 
compact from ܨఈ

  to ܮఈ
 .  Since ߱(݂)(ݖ) = ߱൫݂൯(ݖ)  and ܯ ܱ,(݂)(ݖ) = ܯ ܱ,൫݂൯ ,  we 

know ܪ ∶ ఈܨ 
 → ఈܮ

  is compact as well. The proof is finished. 
As a corollary of Theorems (6.1.7) and (6.1.10), we have the following. 
Corollary (6.1.11) [230]: Let ߙ > 0 and let ∈  . (ℂ)ܪ
(i) For 1 ≤  ≤ ݍ < ∞. ఈܨ  is bounded fromܪ

 to ܮఈ
  if and only if ݂ is a linear polynomial; 

ఈܨ  is compact fromܪ
 to ܮఈ

  if and only if ݂ is constant. 
(ii) For 1 ≤ ݍ <  < ∞. ఈܨ  is bounded fromܪ

 to ܮఈ
  if and only if ݂ is constant. 

Proof. (i) We know that ݂ ∈ ܱܯܤ ∩ ݂ if and only if ݂ is a linear polynomial and (ℂ)ܪ ∈
ܱܯܸ ∩  if and only if ݂  is constant (see Proposition 3.38  and Corollary 3.40  in  (ℂ)ܪ
[232] for the one dimensional cases, and the proof also works in higher dimensions). The 
desired results follow from Theorem (6.1.7) immediately. 
(ii) Fock spaces have the nest property that the inclusion ܨఈ

 ⊂ ఈܨ
  is bounded for 0 < ݍ ≤

 < ∞ . The compactness of ܪ  from ܨఈ
  to ܮఈ

   implies its compactness from ܨఈ
   to ܮఈ

  . 
Hence ݂ is constant. 
Corollary (6.1.12) [264]: Suppose 0 ≤ ߳ ≤ ∞.  Then for 0 ≤ ߳ < ∞  and ݂  Lebesgue 
measurable on ℂ, ݂ ∈ ܫ ଵܱାఢ

ଵାఢ  if and only in ݂ ∈ ܫ ଵܱାଶఢ
ଵାఢ  . Furthermore, ∑   ‖ ݂‖ூைభశച

భశച ≃
∑   ‖ ݂‖ூைభశమച

భశച . 

‖   


݂‖ூைభశమച
భశച ≤ ܥ   



‖ ݂‖ூைభ
భశച  

for ߳ > 0. To see this, notice that 0)ܤ, 1 + ߳) ∩ ଵ
ଶ

ℤ is finite, say 
Proof. We need only to prove, 

,0)ܤ 1 + ߳) ∩
1
2

ℤ = ,ଵߦ} ,ଶߦ . . . ,  .{ߦ

Then ∑   ߱ଵାఢ൫ ݂൯(ݖ) ≤ ∑  ୀଵ,ଶ,…. ߱൫ ݂൯൫ݖ +  ൯ . This givesߦ

ቯ  


݂ቯ

ூைభశച
భశച

≤ ܥ   
ୀଵ,ଶ,.

‖ ݂൫⋅ ൯‖ூைభߦ+
భశച . 

But ∑   ‖ ݂൫⋅ ൯‖ூைభߦ+
భశച = ∑   ‖ ݂‖ூைభ

భశച  , the desired estimate follows. This completes the 
proof. 
We now describe the structure of ܯܫ ଵܱାఢ

ଵାఢ,ଵାఢ via ܱܫଵାఢ and ܣܫଵାఢ,ଵାఢ. 
Corollary (6.1.13) [264]: Let 0 ≤ ߳ < ∞. Then ݂ ∈ ܯܫ ଵܱାఢ

ଵାఢ,ଵାఢ if and only if ݂ admits a 
decomposition ݂ = ( ݂)ଵ + ( ݂)ଶ,  where ( ݂)ଵ ∈ ) ଵାఢ  andܱܫ ݂)ଶ ∈  . ଵାఢ,ଵାఢܣܫ
Furthermore, ‖ ݂‖ூெைభశച

భశച,భశച is equivalent to 
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inf   


൛‖( ݂)ଵ‖ூைభశച + ‖( ݂)ଶ‖ூభశച,భశച ∶  ݂ = ( ݂)ଵ + ( ݂)ଶ, ( ݂)ଵ ∈ ,ଵାఢܱܫ ( ݂)ଶ

∈     .ଵାఢ,ଵାఢൟܣܫ
Proof. Suppose ݂ ∈ ܯܫ  ଵܱାఢ

ଵାఢ,ଵାఢ .  Set ( ݂)ଵ  =  ( መ݂)భశച
మ

  and ( ݂)ଶ  =  ݂ −  ( ݂)ଵ.  For |ݖ −

|ݓ   ≤  ଵାఢ
ଶ

 , we have 

ቮ  


൬൫ ݂൯
ଵ

(ݖ) −  ൫ ݂൯
ଵ

൰ቮ(ݓ)

≤   


ห( ݂)ଵ(ݖ) −  ( መ݂)ଵାఢ(ݖ)ห +   


 ห( መ݂)ଵାఢ(ݖ) −  ( ݂)ଵ(ݓ)ห

≤
1

ݒ  ቆܤ ቀݖ, 1 + ߳
2  ቁቇ

  න   


 

ቀ௭,ଵାఢ
ଶ  ቁ

ห ݂(ݑ) −  ( መ݂)ଵାఢ(ݖ)ห݀(ݑ)ݒ

+
1

,ݓ)ܤ)ݒ 1 + ߳
2  ))

 න   


 

ቀ௭,ଵାఢ
ଶ  ቁ

| ݂(ݑ)  −  ( መ݂)ଵାఢ(ݖ)|݀(ݑ)ݒ. 

Since ܤ ቀݖ, ଵାఢ
ଶ

ቁ and ܤ ቀݓ, ଵାఢ
ଶ

ቁ are both contained in (ݖ, 1 + ߳) , it follows from Hölder’s 
inequality that 

ቮ  


൬൫ ݂൯
ଵ

(ݖ) − ൫ ݂൯
ଵ

൰ቮ(ݓ)

≲   


ቌ
1

,ݖ)ܤ൫ݒ 1 + ߳)൯
න |

(௭,ଵାఢ)
݂(ݑ) − ൫ መ݂൯

ଵାఢ
ቍ(ݑ)ݒଵାఢ݀|(ݖ)

ଵ
ଵାఢ

 

This and Lemma (6.1.9) tell us ( ݂)ଵ ∈  ଵାఢ andܱܫ

ቯ  


൫ ݂൯
ଵ

ቯ

ூைభశച

≤ ܥ   


‖ ݂‖ூெைభశച
భశച,భశച .                                   

For ( ݂)ଶ, 
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ቆቚ൫ ݂൯
ଶ

ቚ
ଵାఢ

ଵାఢ
ଶ

ቇ

ଵ
ଵାఢ

(ݖ)

≤   


⎝

⎜⎜
⎛ 1

ݒ ቆܤ ቀݖ, 1 + ߳
2 ቁቇ

න |
ቀ௭,ଵାఢ

ଶ ቁ
݂(ݑ) − ( ݂)ଵ(ݖ)|ଵାఢ݀(ݑ)ݒ

⎠

⎟⎟
⎞

ଵ
ଵାఢ

 

+   


⎝

⎜⎜
⎛ 1

ݒ ቆܤ ቀݖ, 1 + ߳
2 ቁቇ

න |
ቀ௭,ଵାఢ

ଶ ቁ
( ݂)ଵ(ݑ) − ( ݂)ଵ(ݖ)|ଵାఢ݀(ݑ)ݒ

⎠

⎟⎟
⎞

ଵ
ଵାఢ

 

≤   


ܱܯ
ଵାఢ,ଵାఢ

ଶ
൫ ݂൯(ݖ) +   



߱ଵାఢ
ଶ

൫( ݂)ଵ൯(ݖ) . 

This and (22) imply ∑   ൬ห( j݂)ଶห
ଵାఢ

భశച
మ

൰
భ

భశച
∈  ଵାఢ(ℂ) withܮ

‖   


( ݂)ଶ‖ூభశച,భశച ≤ ܥ   


‖ ݂‖ூெைభశച
భశച,భశച .                                    

Conversely, we show ݂ ∈ ܯܫ ଵܱାఢ
ଵାఢ,ଵାఢ  whenever ݂ ∈ ଵାఢ  or ݂ܱܫ ∈  ଵାఢ,ଵାఢ  with theܣܫ

desired norm estimates. Suppose ݂ ∈  ଵାఢ. Sinceܱܫ

  


ܯ ଵܱାఢ,ଵାఢ൫ ݂൯(ݖ) ≤   


ቌ
1

,ݖ)ܤ൫ݒ 1 + ߳)൯
න |

(௭,ଵାఢ)
݂(ݓ) − ݂(ݖ)|ଵାఢ݀(ݓ)ݒቍ

ଵ
ଵାఢ

 

+   


| ݂(ݖ) − ൫ መ݂൯
ଵାఢ

|(ݖ) ≤   


2߱ଵାఢ൫ ݂൯(ݖ) , 

we have ݂ ∈ ܯܫ ଵܱାఢ
ଵାఢ,ଵାఢ with 

ቯ  


݂ቯ

ூெைభశച
భశച,భశച

≤ ܥ   


ฮ( ݂)ଵฮ
ூைభశച .                                            

And for ݂ ∈  ଵାఢ,ଵାఢ we haveܣܫ
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ܯ ଵܱାఢ,ଵାఢ൫ ݂൯(ݖ)

≤   


ቌ
1

,ݖ)ܤ൫ݒ 1 + ߳)൯
න |

(௭,ଵାఢ)
݂(ݓ)|ଵାఢ݀(ݓ)ݒቍ

ଵ
ଵାఢ

+   


|൫ መ݂൯
ଵାఢ

 |(ݖ)

≤ 2   


൬ห( j݂)ଶห
ଵାఢ ൰

ଵ
ଵାఢ

. 

Therefore ݂ ∈ ܯܫ ଵܱାఢ
ଵାఢ,ଵାఢ with 

‖   


݂‖ூெைభశച
భశച,భశച ≤ ܥ   



‖( ݂)ଶ‖ூభశച,భశച .                                                

Corollary (6.1.14) [264]: Suppose 0 ≤ ߳ <  ∞  and ݂ ∈ ୪୭ୡܮ 
ଵାఢ.  If for each ݖ ∈ ℂ , there 

exist (ℎ)ଵ, (ℎ)ଶ ∈ ,ݖ)ܤ)ܪ  1 + ߳)) satisfying 

  


ቆ
1

,ݖ)ܤ൫ݒ 1 + ߳)൯
 න  

(௭,ଵାఢ)
ห ݂  −  (ℎ)ଵห

ଵାఢ
ቇݒ݀

ଵ
ଵାఢ

∈  ଵାఢ(ℂ)ܮ 

 and  

  


ቆ
1

,ݖ)ܤ൫ݒ 1 + ߳)൯
 න  

(௭,ଵାఢ)
ห݂̅  −  (ℎ)ଶห

ଵାఢ
ቇݒ݀

ଵ
ଵାఢ

∈   ,ଵାఢ(ℂ)ܮ 

then ݂ ∈   .ଵାఢ,ଵାఢܱܯܫ 
Proof. It is well known that, if ݒ ∶ ,0)ܤ  1)  → ℝ is pluriharmonic sequence, there exists 
some pluriharmonic sequence of functions ݑ ∶ ,0)ܤ  1)  → ℝ  such that ݑ  + ݒ݅  ∈
,0)ܤ)ܪ  1)).  Theorem 1 from [3] tells us there is some constant ܥଵ  >  0  such that 

ฬቚ∑   ቀݑ  − (0)ቁቚฬݑ 
భశച((,ଵ),ௗ௩ೕ)

  ≤ ଵܥ  ∑   ቚหݒหቚ
భశച((,ଵ),ௗ௩ೕ)

.  Hence, for any ߳ ≥ 0, 

by change of variables we know that, if ݒ ∶ ,ݖ)ܤ  1 + ߳) → ℝ is pluriharmonic, there exists 
a pluriharmonic functions ݑ such that ݑ + ݒ݅ ∈ ,ݖ)ܤ൫ܪ 1 + ߳)൯ and 

‖   


ቀݑ − ቁ(ݖ)ݑ ‖భశച൫(௭,ଵାఢ),ௗ௩ೕ൯ ≤ ଵܥ   


              .‖భశച൫(௭,ଵାఢ),ௗ௩ೕ൯ݒ‖

For ݂ ∈ ୪୭ୡܮ
ଵାఢ , set ∑   ‖ ݂‖ଵାఢ,(௭,ଵାఢ) = ∑   ൬ ଵ

௩൫(௭,ଵାఢ)൯ ∫ |(௭,ଵାఢ) ݂|ଵାఢ݀ݒ൰
భ

భశച
 . By 

triangle inequality we have 

ቯ  


൭
݂ + ݂

2
−

൫ℎ൯
ଵ

+ ൫ℎ൯
ଶ

2
൱ቯ

ଵାఢ,(௭,ଵାఢ)
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≤   


‖ ݂ − (ℎ)ଵ

2
‖ଵାఢ,(௭,ଵାఢ) +   



‖ ݂ − (ℎ)ଶ

2
‖ଵାఢ,(௭,ଵାఢ) ∈  . ଵାఢ(ℂ)ܮ

Since ݂ + ݂ is real valued, we get ‖ Im 
(ೕ)భା(ೕ)మ

ଶ
‖ଵାఢ,(௭,ଵାఢ) ∈  ଵାఢ(ℂ) . Notice thatܮ

(ℎ)ଵ + (ℎ)ଶ ∈ ,ݖ)ܤ൫ܪ 1 + ߳)൯ , we obtain 

ቯ  


ቌRe 
൫ℎ൯

ଵ
+ ൫ℎ൯

ଶ
2

−  Re 
൫ℎ൯

ଵ
+ ൫ℎ൯

ଶ
2

ቍቯ(ݖ)

ଵାఢ,(௭,ଵାఢ)

≤ ܥ   


ะIm 
൫ℎ൯

ଵ
+ ൫ℎ൯

ଶ
2

ะ
ଵାఢ,(௭,ଵାఢ)

 

Therefore, 

  


ะ
݂ + ݂

2
−  Re 

൫ℎ൯
ଵ

+ ൫ℎ൯
ଶ

2
ะ(ݖ)

ଵାఢ,(௭,ଵାఢ)

 

≤   


ะ
݂ + ݂

2
−  Re 

൫ℎ൯
ଵ

+ ൫ℎ൯
ଶ

2
ะ

ଵାఢ,(௭,ଵାఢ)

+   


ะRe 
൫ℎ൯

ଵ
+ ൫ℎ൯

ଶ
2

−  Re 
൫ℎ൯

ଵ
+ ൫ℎ൯

ଶ
2

ะ(ݖ)
ଵାఢ,(௭,ଵାఢ)

 

≤   


‖
݂ + ݂

2
−

(ℎ)ଵ + (ℎ)ଶ

2
‖ଵାఢ,(௭,ଵାఢ)

+   


‖ Re 
(ℎ)ଵ + (ℎ)ଶ

2
−  Re 

(ℎ)ଵ + (ℎ)ଶ

2
 ଵାఢ,(௭,ଵାఢ)‖(ݖ)

This shows ‖
ೕାೕ

ଶ
−  Re 

(ೕ)భା(ೕ)మ

ଶ
ଵାఢ,(௭,ଵାఢ)‖(ݖ) ∈  ଵାఢ(ℂ) . Similarly, we haveܮ

‖ Im 
݂ − ݂

2
−  Im 

(ℎ)ଵ − (ℎ)ଶ

2
ଵାఢ,(௭,ଵାఢ)‖(ݖ) ∈  . ଵାఢ(ℂ)ܮ

Choose ܿ(ݖ) =  Re 
(ೕ)భା(ೕ)మ

ଶ
(ݖ) + ݅ Im 

(ೕ)భି(ೕ)మ

ଶ
‖ then  , (ݖ) ݂ − ܿ(ݖ)‖ଵାఢ,(௭,ଵାఢ) ∈

 .ଵାఢ(ℂ) . From this and the desired result follows immediately. The proof is finishedܮ
 
Corollary (6.1.15) [264]: Let 0 ≤ ߳ < ߝ ,∞ > 0. Suppose ݂ is Lebesgue measurable such 

that ݂ ∈ ܱܫ
(భశమച)(భశച)

ച . 
(i) The integral operator ∑ܶ  ೕ ೕ,ఌ is bounded from ܮଵାଶఢ to ܮଵାఢ. Moreover, 

‖   


ܶೕ,ఌ‖భశమച→భశച ≤ ܥ   


‖ ݂‖
ூை

(భశమച)(భశച)
ച

. 
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(ii) For bounded sequence ൛(ℎ)ൟ  in ܮଵାଶఢ  satisfying lim
→ஶ

sup|௭|ஸଵାఢ ∑   |(ℎ)(ݖ)| = 0 

for all ߳ ≥ 0, there holds lim
→ஶ

∑   ቛ ܶೕ,ఌ ቀ൫ℎ൯


ቁቛ
భశച

= 0. 
Proof. (i) Then ߳ ≥ 0. By Hölder’s inequality we have 

|   


ܶೕ,ఌℎ(ݔ)| ≤ න   


ቆන (ߣ)
ଵ


൫ ݂൯

ଵାఢ
൫ݔ + ቇݐ൯݀(߳)ݐ

ଵ
ଵାఢ

ℝ
݁ିఌ|ఢ||ℎ(ݔ + ݔ)ݒ݀|(߳ + ߳) 

≤   


ቈන ቆන  
ଵ


߱൫ ݂൯

ଵାఢ
൫ݔ + ቇݐ൯݀(߳)ݐ

ℝ
݁ି(ଵାఢ)⋅ఌଶ|ఢ|݀ݔ)ݒ + ߳)

ଵ
ଵାఢ

ቈන |
ℝ

ℎ(ݔ

+ ߳)|
ଵାଶఢ
ଵାఢ ݁ିଵାଶఢ

ଵାఢ ⋅ఌଶ|ఢ|݀ݔ)ݒ + ߳)

ଵ
ଵାఢ

 

Write 

ଵܫ = න   


ቆන ߱
ଵ


൫ ݂൯

ଵାఢ
൫ݔ + ቇݐ൯݀(߳)ݐ

ℝ
݁ି(ଵାఢ)⋅ఌଶ|ఢ|݀ݔ)ݒ + ߳) , 

and 

ଶܫ = න   


|
ℝ

ℎ(ݔ + ߳)|
ଵାଶఢ
ଵାఢ ݁ିଵାଶఢ

ଵାఢ ⋅ఌଶ|ఢ|݀ݔ)ݒ + ߳) .  

Then Fubini’s theorem gives 

න ଵܫ
ℝ

(ݔ)ݒ݀ = න ݀
ℝ

(ݔ)ݒ න ݀
ଵ


ݐ න   



ݓ
ℝ

൫ ݂൯
ଵାఢ

൫ݔ + ݔ)ݒ݀|൯݁ି(ଵାఢ)⋅ఌଶ|ఢ(߳)ݐ + ߳) 

= න ݀
ℝ

(ݔ)ݒ න ݀
ଵ


ݐ න   



߱
ℝ

൫ ݂൯
ଵାఢ(ݔ +  (ݑ)ݒ݀|ఌଶ|௨⋅(ଵାఢ)ି݁(ݑݐ

= න ݀
ଵ


ݐ න ݁ି(ଵାఢ)⋅ఌଶ|௨|

ℝ
(ݑ)ݒ݀ න   

ℝ
൫ݒ ݂൯

ଵାఢ(ݔ +  (ݔ)ݒ݀(ݑݐ

=   


‖ ݂‖ூைభశച
ଵାఢ න ݀

ଵ


ݐ න ݁ି(ଵାఢ)⋅ఌଶ|௨|

ℝ
 (ݑ)ݒ݀

= ܥ   


‖ ݂‖ூைభశച
ଵାఢ . 

Since ߳ ≥ 0, by Hölder’s inequality and Fubini’s theorem we get 

න   


݁ିଵାଶఢ
ଵାఢ ⋅ఌଶ|ఢ|

ℝ
|ℎ(ݔ + ߳)|

ଵାଶఢ
ଵାఢ ݔ)ݒ݀ + ߳) 
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≤   


ቌන ݁ି(ଵାଶఢ)ఌ
ସ |ఢ|

ℝ
|ℎ(ݔ + ߳)|ቀଵାଶఢ

ଵାఢ ቁ
మ

ݔ)ݒ݀ + ߳)ቍ

ଵ
ଵାఢ

ቌන ݁ିଵାଶఢ
ସ |ఢ|

ℝ
ݔ)ݒ݀ + ߳)ቍ

ఢ
ଵାఢ

 

Then, 

න (ଶܫ)
ଵାଶఢ
ଵାఢ

ℝ
 (ݔ)ݒ݀

= න   


ቌන ݁ିଵାଶఢ
ଵାఢ ⋅ఌଶ|ఢ|

ℝ
|ℎ(ݔ + ߳)|

ଵାଶఢ
ଵାఢ ݔ)ݒ݀ + ߳)ቍ

ଵାଶఢ
ଵାఢ

ℝ
 (ݔ)ݒ݀

≤ ܥ න   


ቌන ݁ି(ଵାଶఢ)ఌ
ସ |ఢ|

ℝ
|ℎ(ݔ + ߳)|ቀଵାଶఢ

ଵାఢ ቁ
మ

ݔ)ݒ݀ + ߳)ቍ
ℝ

 (ݔ)ݒ݀

= ܥ න   


|
ℝ

ℎ(ݔ + ߳)|ଵାଶఢ݀ݔ)ݒ + ߳) . 

Therefore, 

න   


൬ ܶೕ,ఌℎ(ݔ)൰
ଵାఢ

ℝ
(ݔ)ݒ݀ ≤ න ൬(ܫଵ)

ଵାఢ
ଵାఢ(ܫଶ)

ଵାఢ
ଵାఢ൰

ℝ
 (ݔ)ݒ݀

≤ ቌන ଵܫ
ℝ

ቍ(ݔ)ݒ݀

ଵାఢ
ଵାఢ

 ቌන (ଶܫ)
ଵାଶఢ
ଵାఢ

ℝ
ቍ(ݔ)ݒ݀

ଵାఢ
ଵାଶఢ

 

≤ ܥ   


‖ ݂‖ூைభశച
ଵାఢ ⋅ ‖ℎ‖భశమച

ଵାఢ . 

This means ∑ܶ  ೕ ೕ,ఌ is bounded from ܮଵାଶఢ to ܮଵାఢ with 

‖   


ܶೕ,ఌ‖భశమച→భశച ≤ ܥ   


‖ ݂‖ூைభశച , 

which gives the statement (i). 
Now we prove the statement (ii). To do this, for ߩ > 0  we consider ∑   ܶೕ,ఌ൫ℎ൯(ݔ) =
∑   (ݔ)ೕ,ଵାଶఢ൫ℎ൯ܬ + ∑   ܳೕ,ఘ൫ℎ൯(ݔ) with 

  


(ݔ)ೕ,ఘ൫ℎ൯ܬ = න   
|ఢ|ஹఘ

න  
ଵ


߱൫ ݂൯൫ݔ + ݔ)ఌ|ఢ||ℎି݁(ݐ൯݀(߳)ݐ + ݔ)ݒ݀|(߳ + ߳) , 

and 

  


ܳೕ,ଵାଶఢ൫ℎ൯(ݔ) = න   


ቆන  
ଵ


߱൫ ݂൯൫ݔ + ቇݐ൯݀(߳)ݐ

|ఢ|ழఘ
݁ିఌ|ఢ||ℎ(ݔ + ݔ)ݒ݀|(߳ + ߳) . 

Then, 
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(ݔ)ೕ,ଵାଶఢ൫ℎ൯ܬ

≤ ݁ିఌ
ଶఘ න   



ቆන ߱
ଵ


൫ ݂൯൫ݔ + ቇݐ൯݀(߳)ݐ

|ఢ|ஹఘ
݁ିఌ

ଶ|ఢ||ℎ(ݔ + ݔ)ݒ݀|(߳ + ߳) 

≤ ݁ିఌ
ଶఘ   



ܶೕ,ఌଶ
൫|ℎ|൯(ݔ) 

From (i) we have 
‖   



ೕ,ఘ൫ℎ൯‖భశചܬ ≤ ఌି݁ܥ
ଶఘ   



‖ ݂‖ூை౩ ⋅ ‖ℎ‖భశమച .                      

To estimte ‖ܳೕ,ఘ൫ℎ൯‖భశച, for ߳ ≥ 0 let ߯ଵାఢ be the characteristic function of 0)ܤ, 1 + ߳) . 
Then 

‖   


ܳೕ,ଵାଶఢ(1)߯ଵାఢ‖భశച ≤ 1)ܥ + ߳)


ଵାଶఢ   


ቊන ܳೕ,ଵାଶఢ
|௫|ழଵାఢ

(1)ଵାఢ(ݔ)݀(ݔ)ݒቋ

ଵ
ଵାఢ

 

≤ 1)ܥ + ߳)


ଵାଶఢ   


{න න න  
ଵ

ℝℝ
߱൫ ݂൯

ଵାఢ
൫ݔ + ൯݁ିఌ(߳)ݐ

ଶ|ఢ|݀ݔ)ݒ݀ݐ + {(ݔ)ݒ݀(߳
ଵ

ଵାఢ 

= 1)ܥ + ߳)


ଵାଶఢ   


‖ ݂‖ூை౩ . 

Therefore, 
‖   



ܳೕ,ఘ൫ℎ൯߯ଵାఢ‖భశച ≤ 1)ܥ + ߳)


ଵାଶఢ   


൫sup |ℎ(ߦ)|൯‖ ݂‖ூை౩ .                   

On the other hand, it is easy to verify that 
sup

(௫ାఢ)∈(௫,ଵାଶఢ),௧∈[,ଵ]
   



߱൫ ݂൯൫ݔ + ൯(߳)ݐ ≤   


߱ଶ(ଵାఢ)൫ ݂൯(ݔ) . 

By Young’s inequality, we know 

‖ න   


݁ିఌ|ఢ|

ℝ
|ℎ(ݔ + ݔ)ݒ݀|(߳ + ߳)‖భశమച ≤ ܥ   



‖ℎ‖భశమച . 

Then, applying Hölder’s inequality with the exponents ଵାଶఢ
ఢ

 and ଵାଶఢ
ଵାఢ

 to get 

‖   


ܳೕ,ఘ൫ℎ൯(1 − ߯ଵାఢ)‖భశച

≤   


ቌන ߱ఘାଵ
|௫|ஹଵାఢ(

൫ ݂൯
ଵାఢ(ݔ)ቍ

ଵ
ଵାఢ

‖ න ݁ିఌ|ఢ|

|ఢ|ழଵାଶఢ
|ℎ(ݔ + ݔ)ݒ݀|(߳

+ ߳)‖భశమച  
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≤ ܥ   


ቌන  
|௫|ஹଵାఢ

߱ఘାଵ൫ ݂൯
ଵାఢ(ݔ)ቍ

ଵ
ଵାఢ

‖ℎ‖భశమച .                                   

The constants ܥ  are independent of ߩ  and 1 + ߳ . Now suppose ൛(ℎ)ൟ
ୀଵ
ஶ   is a bounded 

sequence in ܮଵାଶఢ  satisfying sup|௭|ஸଵାఢ|(ℎ)(ݖ)| → 0  as ݇ → ∞  for any fixed ߳ ≥ 0 . 
Without loss of generality, we may assume ∑   ‖(ℎ)‖భశమച ≤ 1.  Given any ߝ > 0,  pick 

some ߳ ≥ 0 so that ݁ିഄ
మఘ < by Lemma (6.1.9) ݂ ,ߩ For this .ߝ ∈ ଶାఢܱܫ

ଵାఢ. We have some ߳ ≥
0 such that 

  


ቌන ߱ఘାଵ
|௫|ஹଵାఢ

൫ ݂൯
ଵାఢ(ݔ)ቍ

ଵ
ఌ

<  .ߝ

we have, whenever ݇ is sufficiently large, 
‖   


ܶೕ,ఌ൫(ℎ)൯‖భశച

≤   


ೕ,ఘ൫(ℎ)൯‖భశചܬ‖ +   


‖ܳೕ,ఘ൫(ℎ)൯߯ଵାఢ‖భశച

+   


‖ܳೕ,ఘ൫(ℎ)൯(1 − ߯ଵାఢ)‖భశച  

≤ ܥ   


ቊߝ൫‖ ݂‖ூை౩ + 1൯ + (1 + ߳)


ଵାఢ ቆ sup
|క|ஸଵାఢାఘ

 |(ℎ)(ߦ)|ቇ ‖ ݂‖ூை౩ቋ 

≤  ,ߝܭ
where the constants ܭ is independent of ߝ. Therefore, 

lim
→ஶ

  


‖ ܶೕ,ఌ൫(ℎ)൯‖భశച = 0 

as desired. The proof is finished. 
Corollary (6.1.16) [264]: For continuous functions ݂ on ℂ, there holds 

ቮ  


ቀ ݂(ݖ) − ݂(ݓ)ቁቮ ≤ 4(1 + ݖ| − (|ݓ න   


߱
ଵ


൫ ݂൯൫ݖ + ݓ)ݐ −  ݐ൯݀(ݖ

for all ݖ and ݓ in ℂ. 
Proof. Suppose ݖ and ݓ in ℂ, if |ݖ − |ݓ < 1, then for any ݐ ∈ [0,1], we have 
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ቮ  


ቀ ݂(ݖ) − ݂(ݓ)ቁቮ

≤   


| ݂(ݖ) − ݂൫ݖ + ݓ)ݐ − |൯(ݖ +   


| ݂൫ݖ + ݓ)ݐ − ൯(ݖ − ݂(ݓ)| 

≤ 2 ⋅   


߱൫ ݂൯൫ݖ + ݓ)ݐ −  . ൯(ݖ

Integrating both sides with respect to ݐ from 0 to 1, 

ቮ  


ቀ ݂(ݖ) − ݂(ݓ)ቁቮ ≤ 2 න  
ଵ


  



߱൫ ݂൯൫ݖ + ݓ)ݐ −               .ݐ൯݀(ݖ

Now for |ݖ − |ݓ ≥ 1, let ܰ = ݖ|] − |ݓ + 1], where [ݔ] denotes the largest integer less than 
or equal to ݔ, and set ݖ = ݖ + 

ே
ݓ) − ,(ݖ ݆ = 0,1, … , ܰ. Then 

ାଵݖ| − |ݖ =
1
ܰ

ݓ| − |ݖ < 1, 
Therefore, 

ቮ  


ቀ ݂(ݖ) − ݂(ݓ)ቁቮ ≤  |
ேିଵ

ୀ
݂൫ݖାଵ൯ − ݂൫ݖ൯| ≤ 2  න ߱

ଵ



ேିଵ

ୀ

൫ ݂൯ ቀݖ +
ݓ − ݖ

ܰ
⋅ ቁݐ ݐ݀

= 2  ܰ
ேିଵ

ୀ

න  
ଵ



߱൫ ݂൯ ቀݖ + ݓ)ݏ − ቁ(ݖ ݏ݀

= 2ܰ න   


ଵ


߱൫ ݂൯൫ݖ + ݓ)ݐ −  ݐ൯݀(ݖ

≤ ݖ|4 − |ݓ න   


߱
ଵ


൫ ݂൯൫ݖ + ݓ)ݐ −  .ݐ൯݀(ݖ

This together completes the proof of the Corollary. 
Corollary (6.1.17) [264]: Let 0 ≤ ߳ < ∞ . Then for ݂ ∈  the following statements are  ,߁
equivalent: 
(a) ܪ∑ ೕೕ , ∑ܪ ̅ೕೕ

: ଵାఢܨ
ଵାଶఢ → ଵାఢܮ

ଵାఢ  are bounded 
(b) ܪ∑ ೕೕ , ∑ܪ ̅ೕೕ

: ଵାఢܨ
ଵାଶఢ → ଵାఢܮ

ଵାఢ  are compact. 

(c) ݂ ∈ ܱܯܫ
(భశమച)(భశച)

ച ,ଵାఢ. 
Furthermore, 

∑ܪ‖ ೕೕ ‖ிభశച
భశమച→భశച

భశച + ∑ܪ‖ ̅ೕೕ
‖ிభశച

భశమച→భశച
భశച ≃   



‖ ݂‖
ூெை

(భశమച)(భశച)
ച ,భశച

 .                             

Proof. We prove the implications (a) ⇒ (c)  and (c) ⇒ (b)  . The implication (b) ⇒ (a)  is 
trivial. 
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(a) ⇒ (c) . Fix ߳ ≥ 0, and let {ܽ} be an (1 + ߳)-lattice. According to Theorem (6.1.1), for 
any {ߣ} ∈ ݈ଵାଶఢ,  we have (݃)௧(ݖ) = ∑ ߣ

ஶ
ୀଵ ೖ݇(ݐ)ݎ

(ݖ) ∈ ଵାఢܨ
ଵାଶఢ,  and 

‖(݃)௧‖ଵାଶఢ,ଵାఢ ≤ భశమച‖{ߣ}‖ܥ  . It is trivial to check that |݇ೕ
ଵାఢ݁ି(భశച)మ|(ݖ)

మ |௭|మ
=

݁ି(భశച)మ

మ |௭ିೕ|మ
≃ 1 for ∈ ൫ܤ ܽ , 1 + ߳൯ . By Fubini’s theorem and Khinchine’s inequality we 

obtain 

න   


‖
ଵ


ೕ(݃)௧‖ଵାఢ,ଵାఢܪ

ଵାఢ ݐ݀

= න න   


|
ℂ

ଵ


 ߣ

ஶ

ୀଵ

ೕ݇ೖܪ(ݐ)ݎ
ଵାఢ݁ି(ଵାఢ)మ|(ݖ)

ଶ |௭|మ
 ݐ݀(ݖ)ݒ݀

= න ݁ି(ଵାఢ)మ

ଶ |௭|మ

ℂ
(ݖ)ݒ݀ න |

ଵ


 ߣ

ஶ

ୀଵ

∑ܪ(ݐ)ݎ  ೕ ೕ݇ೖ
 ݐଵାఢ݀|(ݖ)

≥ ܥ න ൭ |
ஶ

ୀଵ

∑ܪ||ଶߣ  ೕ ೕ݇ೖ
ଶ൱|(ݖ)

ଵାఢ
ଶ

ℂ
݁ି(ଵାఢ)మ

ଶ |௭|మ
 (ݖ)ݒ݀

≥ ܥ  න ൭ |
ஶ

ୀଵ

∑ܪ||ଶߣ  ೕ ೕ݇ೖ
ଶ൱|(ݖ)

ଵାఢ
ଶ

൫ೕ,ଵାఢ൯

ஶ

ୀଵ

݁ି(ଵାఢ)మ

ଶ |௭|మ
 (ݖ)ݒ݀

≥ ܥ  |
ஶ

ୀଵ

|ଵାఢߣ න |
൫ೕ,ଵାఢ൯

݂(ݖ)݇ೕ
(ݖ) − ଵܲାఢ ቀ ݂݇ೕቁ ଵାఢ݁ି(ଵାఢ)మ|(ݖ)

ଶ |௭|మ
 (ݖ)ݒ݀

≥ ܥ  |
ஶ

ୀଵ

|ଵାఢߣ න |
൫ೕ,ଵାఢ൯

݂(ݖ) −
ଵܲାఢ ቀ ݂݇ೕቁ (ݖ)

݇ೕ
(ݖ) |ଵାఢ|݇ೕ

ଵାఢ݁ି(ଵାఢ)మ|(ݖ)

ଶ |௭|మ
 (ݖ)ݒ݀

≥ ܥ  |
ஶ

ୀଵ

|ଵାఢߣ ቀܩଵାఢ,ଵାఢ൫ ݂൯൫ ܽ൯ቁ
ଵାఢ

. 

Meanwhile, the boundedness of ܪ∑ ೕೕ ∶ ଵାఢܨ 
ଵାଶఢ → ଵାఢܮ

ଵାఢ  gives 

‖   


ೕ(݃)௧‖ଵାఢ,ଵାఢܪ
ଵାఢ ≤ ܥ   



∑ܪ‖ ೕೕ ‖ிభశച
భశమച→భశച

భశച
ଵାఢ ⋅ ‖(݃)௧‖ଵାଶఢ,ଵାఢ

ଵାఢ . 

Hence, 

 |
ஶ

ୀଵ

|ଵାఢߣ ቀܩଵାఢ,ଵାఢ൫ ݂൯൫ ܽ൯ቁ
ଵାఢ

≤ ∑ܪ‖ܥ ೕೕ ‖ிభశച
భశమച→భశച

భశച
ଵାఢ ⋅ ‖{|ଵାఢߣ|}‖


భశమച
భశച

ଵାఢ . 

Since the conjugate exponent of ଵାଶఢ
ଵାఢ

 is ଵାଶఢ
ఢ

, a duality argument implies 
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 ቀܩଵାఢ,ଵାఢ൫ ݂൯൫ ܽ൯ቁ
(ଵାଶఢ)(ଵାఢ)

ఢ
ஶ

ୀଵ

≤ ܥ   


ೕ‖ிభశചܪ‖
భశమച→భశച

భశച

(ଵାଶఢ)(ଵାఢ)
ఢ . 

On the other hand, the fact that 

ଵାఢ,௧ܩ ቌ  


݂ቍ (ݓ) ≤ ܥ   


ଵାఢ,ଵାఢ൫ܩ ݂൯(ݖ) , 

when ݓ)ܤ, (ݐ ⊂ ,ݖ)ܤ 1 + ߳) gives 

න   


ቀܩଵାఢ,ଵାఢ൫ ݂൯(ݖ)ቁ
(ଵାଶఢ)(ଵାఢ)

ఢ

ℂ
(ݖ)ݒ݀

≤  න ቀܩଵାఢ,ଵାఢ൫ ݂൯(ݖ)ቁ
(ଵାଶఢ)(ଵାఢ)

ఢ

൫ೕ,ଵାఢ൯

ஶ

ୀଵ

 (ݖ)ݒ݀

≤ ܥ  ቀܩଵାఢ,ଶ(ଵାఢ)൫ ݂൯൫ ܽ൯ቁ
(ଵାଶఢ)(ଵାఢ)

ఢ
ஶ

ୀଵ

 

This shows that , for any ߳ ≥ 0, ଵାఢ,ଵାఢ൫ܩ ݂൯ ∈ ܮ
(భశమച)(భశച)

ച .  Similarly, the boundedness of 

∑ܪ ̅ೕೕ
  from ܨଵାఢ

ଵାଶఢ  to ܮଵାఢ
ଵାఢ   implies ܩଵାఢ,ଵାఢ൫ ݂൯ ∈ ܮ

(భశమച)(భశച)
ച   for any ߳ ≥ 0 . By the 

definition of ܩଵାఢ,ଵାఢ൫ ݂൯  , for each ݖ ∈ ℂ  we have (ℎ)ଵ, (ℎ)ଶ ∈ ,ݖ)ܤ൫ܪ 1 + ߳)൯  such 
that 

  


ቆ
1

,ݖ)ܤ൫ݒ 1 + ߳)൯
න |

(௭,ଵାఢ)
݂ − (ℎ)ଵ|ଵାఢ݀ݒቇ

ଵ
ଵାఢ

≤ 2   


ଵାఢ,ଵାఢ൫ܩ ݂൯(ݖ) , 

and 

  


ቆ
1

,ݖ)ܤ൫ݒ 1 + ߳)൯
න |

(௭,ଵାఢ)
݂ − (ℎ)ଶ|ଵାఢ݀ݒቇ

ଵ
ଵାఢ

≤ 2   


ଵାఢ,ଵାఢ൫ܩ ݂൯(ݖ) . 

It follows that ݂ ∈ ܱܯܫ
(భశమച)(భశച)

ച ,ଵାఢ. Moreover, the right-hand side can be dominated by 
the left-hand side. 

(c) ⇒ (b) . Suppose ݂ ∈ ܱܯܫ
(భశమച)(భశച)

ച ,ଵାఢ . First, we prove that the left-hand side can be 
dominated by the right-hand side. , ݂ admits a decomposition ݂ = ( ݂)ଵ + ( ݂)ଶ with 

‖   


( ݂)ଵ‖
ூை

(భశమച)(భశച)
ച

+ ‖   


( ݂)ଶ‖


(భశమച)(భశച)
ച ,భశച

≤ ܥ   


‖ ݂‖
ூெை

(భశమച)(భశച)
ച ,భశച

.                        

For ( ݂)ଶ ∈ ܣܫ
(భశమച)(భశച)

ച ,ଵାఢ , the boundedness of ଵܲାఢ on ܮଵାఢ
ଵାఢ  yields 
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‖   


మ݃‖ଵାఢ,ଵାఢ(ೕ)ܪ ≤   


‖( ݂)ଶ݃‖ଵାఢ,ଵାఢ +   


‖ ଵܲାఢ൫( ݂)ଶ݃൯‖ଵାఢ,ଵାఢ

≤ ܥ   


‖( ݂)ଶ݃‖ଵାఢ,ଵାఢ. 

tells us ݀ߤ = |( ݂)ଶ|ଵାఢ݀ݒ  is a(1 + 2߳, 1 + ߳) -Fock Carleson measure. Thus the operator 
∑ܯ  ೕ (ೕ)మ  defined by ∑   మ݃(ೕ)ܯ = ∑   ( ݂)ଶ݃ is bounded from ܨଵାఢ

ଵାଶఢ to ܮଵାఢ
ଵାఢ . Precisely, 

‖   


మ݃‖ଵାఢ,ଵାఢ(ೕ)ܯ ≤ ܥ   


‖ ൬ห( j݂)ଶห
ଵାఢ
ଵାఢ ൰

ଵ
ଵାఢ

‖


(భశమച)(భశച)
ച

‖݃‖ଵାଶఢ,ଵାఢ. 

Therefore, ܪ∑  ೕ (ೕ)మ ∶ ଵାఢܨ 
ଵାଶఢ → ଵାఢܮ

ଵାఢ  is bounded with 

‖   


మ‖ிభశച(ೕ)ܪ
భశమച→భశച

భశച ≤ ܥ   


‖( ݂)ଶ‖
ூ

(భశమച)(భశച)
ച ,భశച

 .                                    

Now we treat ܪ∑  ೕ (ೕ)భ  with ( ݂)ଵ ∈ ܱܫ
(భశమച)(భశച)

ച . Notice that there are some ܥ > 0 and ߝ >
0 such that, for ݖ, ݓ ∈ ℂ, 

|݁(ଵାఢ)〈௪,௭〉| ≤ ݁ܥ
ଵାఢ

ଶ ቚ௭|మାଵାఢ
ଶ ቚ௪|మିଶఌ|௭ି௪|, ݖ| − |ݓ ≤  .|ఌ|௭ି௪݁ܥ

For ݃ ∈ ଵାఢܨ
ଵାଶఢ,  set ∑   ℎ(ݓ) = ∑   ݃(ݓ)݁ିభశച

మ |௪|మ
.  Then, ℎ ∈ ,ଵାଶఢ(ℂܮ  From .  (ݒ݀

Lemma (6.1.9) we have 

  


భ݃‖ଵାఢ,ଵାఢ(ೕ)ܪ‖
ଵାఢ = න   



|
ℂ

ଵାఢ݁ି(ଵାఢ)మ|(ݖ)భ݃(ೕ)ܪ

ଶ |௭|మ
 (ݖ)ݒ݀

= න |
ℂ

න   


ቀ( ݂)ଵ(ݖ) − ( ݂)ଵ(ݓ)ቁ
ℂ

݃(ݓ)݁(ଵାఢ)〈௭,௪〉݀ݒଵାఢ(ݓ)|ଵାఢ݁ି(ଵାఢ)మ

ଶ |௭|మ
 (ݖ)ݒ݀

≤ ܥ න   


ቌන |
ℂ

( ݂)ଵ(ݖ) − ( ݂)ଵ(ݓ)| ⋅ |݃(ݓ)݁ିଵାఢ
ଶ |௪|మ

|݁ିଶఌ|௭ି௪|݀(ݓ)ݒቍ

ଵାఢ

ℂ
 (ݖ)ݒ݀

≤ ܥ න   


(ܶೕ)భ,ఌ
ℂ

൫ℎ൯
ଵାఢ(ݖ)݀(ݖ)ݒ , 

Applying to obtain ‖ ∑   భ݃‖ଵାఢ,ଵାఢ(ೕ)ܪ ≤ ܥ ∑   ‖( ݂)ଵ‖
ூை

(భశమച)(భశച)
ച

‖݃‖ଵାଶఢ,ଵାఢ. That is, 

‖   


భ‖ிభశച(ೕ)ܪ
భశమച→భశച

భశച ≤ ܥ   


‖( ݂)ଵ‖
ூை

(భశమച)(భశച)
ച

. 

‖   


ೕ‖ிభశചܪ
భశమച→భశച

భశച ≤ ܥ   


‖ ݂‖
ூெை

(భశమച)(భశച)
ച ,భశച

. 

Since ∑   ܯ ଵܱାఢ,ଵାఢ൫ ݂൯ = ∑   ܯ ଵܱାఢ,ଵାఢ൫ ݂൯ , we have 
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‖   


̅ೕܪ
‖ிభశച

భశమച→భశച
భశച ≤ ܥ   



‖ ݂‖
ூெை

(భశమച)(భశച)
ച ,భశച

. 

So the left-hand side can be dominated by the right-hand side. 
Now we prove the compactness. Write ݂ = ( ݂)ଵ + ( ݂)ଶ  with. Let ൛(݃)ൟ

ୀଵ
ஶ   be any 

weakly null sequence in ܨଵାఢ
ଵାଶఢ. That is, ‖(݃)‖ଵାଶఢ,ଵାఢ ≤ ൟ(ݖ)and ൛(݃) ܥ

ୀଵ
ஶ  tends to 0 

uniformly on any compact subset of ℂ . Set ∑   (ℎ)(ݖ) = ∑   (݃)(ݖ)݁ିభశച
మ |௭|మ

.  we 
obtain 

‖   


భ൫(݃)൯‖ଵାఢ,ଵାఢ(ೕ)ܪ ≤ ܥ   


‖ (ܶೕ)భ,ఌ൫(݃)൯‖భశച → 0 

as ݇ → ∞. Hence, ܪ∑  ೕ (ೕ)భ  is compact. And for ( ݂)ଶ, set ( ݂)ଶ,ଷାଶఢ = ( ݂)ଶ ⋅ ߯ଷାଶఢ, where 
߯ଷାଶఢ is the characteristic function of 0)ܤ, 3 + 2߳) . ݂(2,3 + 2߳) is compact supported, so 
మ(ೕ)ܪ , 3 + 2߳ is compact from ܨଵାఢ

ଵାଶఢ to ܮଵାఢ
ଵାఢ ., 

ቯ  


ቀܪ൫ೕ൯
మ

− ൫ೕ൯ܪ
మ,యశమച

ቁቯ

ிభశച
భశమച→భశച

భశച

≤ ܥ   


‖( ݂)ଶ − ( ݂)ଶ,ଷାଶఢ‖
ூ

(భశమച)(భశച)
ച ,భశച

→ 0 

as ߳ → ∞.  Hence ܪ∑  ೕ (ೕ)మ   is compact. The compactness of ܪ∑  ೕ (ೕ)భ   and ܪ∑  ೕ (ೕ)మ   tells us 
∑ܪ ೕೕ = ∑ܪ  ೕ (ೕ)భ + ∑ܪ  ೕ (ೕ)మ   is compact from ܨଵାఢ

ଵାଶఢ  to ܮଵାఢ
ଵାఢ .  Since ∑   ߱ଵାఢ൫ ݂൯(ݖ) =

∑   ߱ଵାఢ൫ ݂൯(ݖ)  and ∑   ܯ ଵܱାఢ,ଵାఢ൫ ݂൯(ݖ) = ∑   ܯ ଵܱାఢ,ଵାఢ൫ ݂൯ ,  we know ܪ∑ ̅ೕೕ
∶

ଵାఢܨ 
ଵାଶఢ → ଵାఢܮ

ଵାఢ  is compact as well. The proof is finished. 
Corollary (6.1.18) [264]: Let ߳ ≥ 0 and let ݂ ∈  . (ℂ)ܪ
(a) For 0 ≤ ߳ < ∞. ∑ܪ ̅ೕೕ

  is bounded from ܨଵାఢ
ଵାఢ  to ܮଵାఢ

ଵାଶఢ  if and only if ݂  is a linear 
polynomial; ܪ∑ ̅ೕೕ

 is compact from ܨଵାఢ
ଵାఢ to ܮଵାఢ

ଵାଶఢ if and only if ݂ is constant. 
(b) For 0 ≤ ߳ < ∞. ∑ܪ ̅ೕೕ

 is bounded from ܨଵାఢ
ଵାଶఢ to ܮଵାఢ

ଵାఢ  if and only if ݂ is constant. 
Proof. (a) We know that ݂ ∈ ଵାఢܱܯܤ ∩  if and only if ݂ is a linear polynomial and (ℂ)ܪ

݂ ∈ ଵାఢܱܯܸ ∩  if and only if ݂ is constant  for the one dimensional cases, and the (ℂ)ܪ
proof also works in higher dimensions). The desired results follow immediately. 
(b) Fock spaces have the nest property that the inclusion ܨଵାఢ

ଵାఢ ⊂ ଵାఢܨ
ଵାଶఢ is bounded for 0 ≤

߳ < ∞. The compactness of ܪ∑ ̅ೕೕ
 from ܨଵାఢ

ଵାଶఢ to ܮଵାఢ
ଵାఢ  implies its compactness from ܨଵାఢ

ଵାఢ 
to ܮଵାఢ

ଵାఢ . Hence ݂ is constant. 
Section (6.2): Aclass of Fock Spaces   
            For ॰ be the open unit disk in the complex plane ℂ and let ॻ =  ߲॰ denote the unit 
circle. The Hardy space ܪଶ  consists of functions ݂ ∈ ଶ(ॻ)ܮ   such that its Fourier 
coefficients satisfy መ݂  =  0  for all ݊ <  0.  Given a function ߮ ∈ ,ଶ(ॻ)ܮ   the Toeplitz 
operator ఝܶ ∶ ଶܪ   → = ଶ is densely defined by ఝ݂ܶܪ   ܲ(݂߮), where ܲ ∶ ଶ(ॻ)ܮ   →  ଶ isܪ 
the Riesz-Szego projection. 
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     The original problem that Sarason proposed in [244] was this: characterize the pairs of 
outer functions ݑ and ݒ in ܪଶ such that the operator ௨ܶ ௩ܶ is bounded on ܪଶ. Inner factors 
can easily be disposed of, so it was only necessary to consider outer functions in the Hardy 
space case. It was further observed in [244] that a necessary condition for the boundedness 
of ௨ܶ ௩ܶ on ܪଶ is that 

sup
௪∈॰

 ௪ܲ(|ݑ|ଶ ) ௪ܲ(|ݒ|ଶ ) < ∞, 

where ௪ܲ(݂) means the Poisson transform of ݂ at ݓ ∈ ॰. In fact, the arguments in [245] 
show that 

sup
௪∈॰

 ௪ܲ(|ݑ|ଶ ) ௪ܲ(|ݒ|ଶ ) ≤ 4‖ ௨ܶ ௩ܶ‖ଶ .                            (24) 

     Let ܣଶ denote the Bergman space consisting of analytic functions in ܮଶ(॰,  where ,(ܣ݀
ܣ݀  is ordinary area measure on the unit disk. If ܲ ∶ ,ଶ(॰ܮ  (ܣ݀  → ଶܣ   is the Bergman 
projection, then Toeplitz operators ఝܶ on ܣଶ are defined by ఝ݂ܶ =  ܲ(݂߮). Sarason also 
posed a similar problem in [246] for the Bergman space: characterize functions ݑ and ݒ in 
ଶ such that the Toeplitz product ௨ܶܣ ௩ܶ is bounded on ܣଶ. It was shown in [247] that 

sup
௪∈॰

ଶ෪|ݑ|  ଶ෪|ݒ|(ݓ) (ݓ)  ≤  16‖ ௨ܶ ௩ܶത‖ଶ                             (25) 

for all functions ݑ  and ݒ  in the Bergman space ܣଶ, where ݂ ෩  is the socalled Berezin (ݓ)
transform of ݂ at ݓ. This provides a necessary condition for the boundedness of ௨ܶ ௩ܶ on ܣଶ 
in terms of the Berezin transform. 
     The Berezin transform is well defined. In particular, the classical Poisson transform is the 
Berezin transform of the Hardy space ܪଶ.  So the estimates in (24) and (25) are in exactly 
the same spirit. Sarason stated in [248] that “it is tempting to conjecture that” ௨ܶ ௩ܶ  is 
bounded on ܪଶ or ܣଶ if and only if |ݑ|ଶ෪ ଶ෪|ݒ|(ݓ)  is a bounded function on ॰. It has by (ݓ)
now become standard to call this “Sarason’s conjecture for Toeplitz products”. 
     It turns out that Sarason’s conjecture is false for both the Hardy space and the Bergman 
space of the unit disk, and the conjecture fails in a big way. See [249] for counter-examples. 
In these cases, Sarason’s problem is naturally connected to certain two-weight norm 
inequalities in harmonic analysis, and counter-examples for Sarason’s conjecture were 
constructed by means of the dyadic model approach in harmonic analysis. 
     Another setting where Toeplitz operators have been widely studied is the Fock space. 
More specifically, we let ℱଶ be the space of all entire functions ݂ on ℂ that are square-
integrable with respect to the Gaussian measure 

(ऊ)ߣ݀ =
1
ߨ

 ݁ି|௭|మ  .(ऊ)ܣ݀ 
The function 

,ऊ)ܭ (ݓ  =  ݁௭௪ഥ , ऊ, ∋ ݓ ℂ, 
is the reproducing kernel of ℱଶ and the orthogonal projection ܲ from ܮଶ(ℂ,  onto ℱଶ is (ߣ݀
the integral operator defined by 

ܲ ݂(ऊ) = න  
 

ℂ
,ऊ)ܭ  ,(ݓ)ߣ݀(ݓ)݂(ݓ ऊ ∈ ℂ. 
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If ߮ is in ܮଶ(ℂ, → such that the function ऊ (ߣ݀ ߮(ऊ)ܭ(ऊ, ,ଵ(ℂܮ belongs to (ݓ  for any (ߣ݀
∋ ݓ ℂ, we can define the Toeplitz operator ఝܶ with symbol ߮ by ఝ݂ܶ =  ܲ(݂߮), or 

݂ܶ߮(ऊ) = න  
 

ℂ 
,ऊ)ܭ ,(ݓ)ߣ݀(ݓ)݂(ݓ)߮(ݓ ऊ ∈ ℂ, 

When 

(ݓ)݂  =   
ே

ୀଵ

ܿݓ)ܭ, ܿ) 

is a finite linear combination of kernel functions. Since the set of all finite linear 
combinations of kernel functions is dense in ℱଶ, the operator Tఝ is densely defined and ఝ݂ܶ 
is an entire function. See [249] for basic information about the Fock space and Toeplitz 
operators on it. 
     In a recent [248], Cho, Park and Zhu solved Sarason’s problem for the Fock space. More 
specifically, they obtained the following simple characterization for ௨ܶ ௩ܶ to be bounded on 
ℱଶ: if ݑ and ݒ are functions in ℱଶ, not identically zero, then ௨ܶ ௩ܶത is bounded on ℱଶ if and 
only if ݑ =  ݁  and ݒ =  ܿ݁ି, where ܿ is a nonzero constant and ݍ is a complex linear 
polynomial. As a consequence of this, it can be shown that Sarason’s conjecture is actually 
true for Toeplitz products on ℱଶ;.         
       we consider the weighted Fock space ℱ

ଶ ,  consisting of all entire functions in 
,ଶ(ℂܮ   are the generalized Gaussian measure defined byߣ݀ ), whereߣ݀

(ऊ)ߣ݀  =  ݁ି|ऊ|మ ,(ऊ)ܣ݀  ݉ ≥  1. 
Toeplitz operators on ℱ

ଶ  are defined exactly the same as the cases above, using the 
orthogonal projection ܲ ∶ ,ଶ(ℂܮ  (ߣ݀  → ℱ

ଶ . 
     We will solve Sarason’s problem and prove Sarason’s conjecture for the weighted Fock 
spaces ℱ

ଶ . Our main result can be stated as follows. 
Let ݑ and ݒ be in ℱ

ଶ , not identically zero. The following conditions are equivalent: 
(a) The product ܶ =  ௨ܶ ௩ܶത is bounded on ℱ

ଶ . 
(b) There exist a polynomial ݃ of degree at most m and a nonzero complex constant ܿ such 
that ݑ(ऊ)  =  ݁(ऊ) ܽ݊݀ ݒ(ऊ)  =  ܿ݁ି(ऊ) . 
(c) The product |ݑ|ଶ෪ (ऊ)|ݒ|ଶ෪ (ऊ) is a bounded function on ℂ. 
Furthermore, in the affirmative case, we have the following estimate of the norm: 

‖ܶ‖  ≤ ‖ଵ݁మ‖ܥ 
ಹమ
మ

 , 
where ‖݃‖ுమ  is the norm in the Hardy space of the unit disc, and ܥଵ and ܥଶ are positive 
constants independent of ݃. 
    Let us mention that [250] contains partial results related to Sarason’s conjecture on the 
Fock space. The arguments in [251] depend on the explicit form of the reproducing kernel 
and the Weyl operators induced by translations of the complex plane. Both of these are no 
longer available for the spaces ℱ

ଶ: 
there is no simple formula for the reproducing kernel of ℱ

ଶ  and the translations on the 
complex plane do not induce nice operators on ℱ

ଶ. 
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We recall some properties of the Hilbert space ℱ
ଶ . It was shown in [246] that the 

reproducing kernel of ℱ
ଶ is given by the formula 

,(ऊܭ (ݓ =
݉
ߨ

   
ାஶ

 ୀ

(ऊݓഥ)

߁ ቀ݇ + 1 
݉ ቁ

 .                                              (26)  

In terms of the Mittag-Leffler function 

ఊ,ఉ(ऊ)ܧ =   
ஶ

ୀ

ऊ

+ ݇ߛ)߁ , (ߚ  ,ߛ < ߚ  0 , 

we can also write 
,(ऊܭ (ݓ =

݉
ߨ

ܧ  ଵ
, ଵ


 (ऊݓഥ).                                                   (27) 

    Recall that the asymptotics of the Mittag-Leffler function ܧ భ
, భ


(ऊ)  as |ݖ|  → +∞  are 

given by 

ܧ ଵ
 , ଵ


 (ऊ) = ቐ

݉ऊିଵ݁ऊ  ൫1 + ൯,          |arg(1)  ऊ| ≤ ߨ
2݉ ,

  ܱ ቀ1
ऊ ቁ,                                  ߨ

2݉  <  |arg  ऊ|  ≤ ߨ 
 

            (28) 

for ݉ > ଵ
ଶ
 , and by 

ܧ ଵ
 , ଵ


 (ऊ) = ݉   

ே

 ୀିே

ऊିଵ ݁ଶగ(ିଵ)݁ऊమഏೕ  +  ܱ ൬
1
ऊ

൰ , > ߨ−  arg ऊ ≤  ,ߨ 

for 0 <  ݉ ≤ ଵ
ଶ
 ,  where ܰ  is the integer satisfying ܰ < ଵ

ଶ
 ≤  ܰ +  1  and the powers 

ऊିଵ and ऊ are the principal branches. See, for example, Bateman and Erdelyi [245], vol. 
III, 18.1, formulas (21)–(22). 
        The asymptotic estimates of the Mittag-Leffler function ܧ భ

, భ


 provide the following 

estimates for the reproducing kernel ܭ(ऊ,  which is a consequence of the results in [246] ,(ݓ
and Lemma 3.1 in [247]. 
Lemma (6.2.1)[243]: For arbitrary points ݔ, ∋ ݎ  (0, +∞) and ߠ ∈ ,ߨ−)   we have (ߨ

หܭ൫ݔ, ఏ൯ห݁ݎ ≲ ൞
|ߠ|         ିଵ݁(௫) ௦(ఏ)(ݎݔ) ≤

ߨ
2݉

ܱ ൬
1

ݎݔ
൰  ,                       

ߨ
2݉

 ≤ |ߠ|   < ߨ 
  

as ݎݔ →  +∞. Moreover, there is a constant ܿ >  0 such that for all |ߠ|  ≤  we (ݎݔ) ߠܿ
have 

,ݔ൫ܭ| |ఏ൯݁ݎ ≳  ିଵ ݁(௫)(ݎݔ)

as ݎݔ →  +∞, where ߠ(ݎ)  = ିݎ 
మ /݉. 

      On several occasions later on we will need to know the maximum order of a function in 
ℱ

ଶ . For example, if we have a non-vanishing function ݂ in ℱ
ଶ and if we know that the order 
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of ݂ is finite, then we can write ݂ =  ݁ with ݍ being a polynomial. The following estimate 
allows us to do this. 
 Lemma (6.2.2) [243]: If ݂ ∈  ℱ

ଶ , there is a constant ܥ >  0 such that 

|݂(ऊ)|  ≤ ݁ ऊ|ିଵ| ܥ 
ଵ
ଶ |ऊ|మ

 , ऊ ∈ ℂ. 
Consequently, the order of every function in ℱ

ଶ is at most 2݉. 
Proof. By the reproducing property and Cauchy-Schwartz inequality, we have 

|݂(ऊ)|  = ቤන  
 

ℂ
,(ऊܭ(ݓ)݂ ቤ(ݓ)ߣ݀(ݓ ≤ ,(ऊܭ ‖݂‖  ऊ) ½ 

for all ݂ ∈ ℱ
ଶ and all ऊ ∈ ℂ. The desired estimate then follows from Lemma (6.2.1). See 

[4] for more details.  
      Another consequence of the above lemma is that, for any function ݑ ∈ ℱ

ଶ , the Toeplitz 
operators ௨ܶ and ௨ܶഥ are both densely defined on ℱ

ଶ . 
We prove the equivalence of conditions (24) and (25) in the main theorem, which provides 
a simple and complete solution to Sarason’s problem for Toeplitz products on the Fock space 
ℱ

ଶ. We break the proof into several lemmas. 
Lemma (6.2.3) [243]: Suppose that ݑ and ݒ are functions in ℱ

ଶ, each not identically zero, 
and that the operator ܶ =  ௨ܶ ௩ܶത  is bounded on ℱ

ଶ . Then there exists a polynomial ݃ of 
degree at most ݉ and a nonzero complex constant ܿ such that ݑ(ऊ)  =  ݁(ऊ) and ݒ(ऊ)  =
 ܿ݁ି(ऊ) . 
Proof. If ܶ =  ௨ܶ ௩ܶ is bounded on ℱ

ଶ , then the Berezin transform ܶ is bounded, where 
ܶ(ऊ) =  〈 ௨ܶ ௩ܶത݇ऊ , ݇ऊ〉, ऊ ∈ ℂ. 

By the reproducing property of the kernel functions, it is easy to see that 
ܶ(ऊ)  =  .തതതതതത(ऊ)ݒ(ऊ)ݑ 

Since each ݇ऊ is a unit vector, it follows from the Cauchy-Schwarz inequality that 
|(ऊ)ݒ(ऊ)ݑ|  =  ห ෨ܶ(ऊ)ห ≤ ‖ܶ‖ 

for all ऊ ∈ ℂ. This together with Liouville’s theorem shows that there exist a constant ܿ such 
that ݒݑ =  ܿ. Since neither ݑ nor ݒ is identically zero, we have ܿ ≠ 0. Consequently, both 
 .are non-vanishing ݒ and ݑ
     Recall from Lemma (6.2.2) that the order of functions in ℱ

ଶ is at most 2݉, so there is a 
polynomial of degree ݀, 

݃(ऊ) =   
ௗ

ୀ

ܽऊ , ݀ ≤  [2݉], 

such that ݑ =  ݁ and ݒ =  ܿ݁ି. It remains to show that ݀ ≤  ݉. 
    Since ܶ is bounded on ℱ

ଶ , the function 

,ऊ)ܨ (ݓ =
〈ܶ ൫ܭ(·, ,൯(ݓ ,·)ܭ ऊ)〉

ඥܭ(ऊ, ऊ)ඥܭ(ݓ, (ݓ
 

must be bounded on ℂଶ. On general reproducing Hilbert spaces, we always have  
〈 ௨ܶ ௩ܶതܭ௪, 〈ऊܭ  =  〈 ௩ܶതܭ௪, ௨ܶܭऊ〉  = ௪ܭ(ݓ)ഥ ݒ〉  , 〈ऊܭ(ऊ)ݑ  = ഥ ݒ(ऊ)ݑ  ,ऊ)ܭ(ݓ)  .(ݓ

It follows that 
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,ऊ)ܨ (ݓ =  ܿ̅݁(ऊ)ି(௪)തതതതതതത ,(ऊܭ (ݓ

ඥܭ(ऊ, ऊ)ඥܭ(ݓ, (ݓ
 . 

From Lemma (6.2.1) we deduce that 

,ऊ)ܨ| |(ݓ ≳ ݁ோ൫(ऊ)ି(௪)൯݁ିଵ
ଶ (|ऊ|ି|௪|)మ

                         (29) 
for all |arg(ऊݓഥ)| ≤ < ݔ grows to infinity. Choose |ݓas |ऊ (|ݓऊ|)ߠܿ   0 sufficiently large 
and set 

ऊ(ݔ)  =  గ݁ݔ 
ଶௗ ݁ିୟ୰()

ௗ  , 
and 

(ݔ)ݓ  =  గ݁ݔ 
ଶௗ ݁ି

ୟ୰()ା 
ଶ௫

ௗ  . 
Since 

(|(ݔ)ݓ(ݔ)ऊ|)ߠ  =
1

 , ݔ݉
we can apply (29) to ऊ(ݔ) and (ݔ)ݓ to get 

݁ோቀ൫ऊ(௫)൯ି൫௪(௫)൯ቁ ≲ sup
(ऊ,௪)∈ℂమ

,ऊ)ܨ|  |(ݓ  <  ∞                      (30) 

as ݔ grows to infinity. On the other hand, a few computations show that 
ܴ݁ ቀ݃൫ऊ(ݔ)൯ −  ݃൫(ݔ)ݓ൯ቁ

=   
ௗ

ୀ

ݔ  ܴ݁ ൬ ܽ݁ గ
ଶௗ ି

ௗ [)   ൬1 −  ݁ି 
ଶௗ௫൰]

 ൬1 −  ݁ି 
ଶௗ௫൰] =  |ܽௗ| ݔௗ sin ቀ

ܿ
+  ቁݔ2݉  ݃ௗିଵ(ݔ), 

=  |ܽௗ| ݔௗ sin ቀ
ܿ

ቁݔ2݉   +  ݃ௗିଵ(ݔ),൰ 
Where 

݃ௗିଵ(ݔ)  =   
ௗିଵ

 ୀ

ܴ݁ݔ  ቆ ܽ݁గ
ଶௗି

ௗ ୟ୰()  ൬1 −  ݁ − ݅
݆ܿ

൰ቇݔ2݉݀  

= −   
 ௗିଵ

 ୀ

ห ܽหݔ sin ቆ
ߨ݆
2݀

 + ܽ ݃ݎܽ   −
݆
݀

ቇ(ௗܽ) ݃ݎܽ   sin
݆ܿ

ݔ2݉݀  

+   
ௗିଵ

 ୀ

| ܽ |ݔ cos 
ߨ݆
2݀

 + ܽ ݃ݎܽ    −
݆
݀

൨(ௗܽ) ݃ݎܽ  1 − ݏܿ 
݆ܿ

൨ݔ2݉݀

≲  .ௗିଵିݔ
Therefore, there exist some ݔ  >  0 and ߜ >  0 such that 

ܴ݁ ቀ݃൫ऊ(ݔ)൯  −  ݃൫(ݔ)ݓ൯ቁ ≥
ௗݔ|ௗܽ|ߜ

ݔ  
for all ݔ ≥ . Since ܽௗݔ  ≠ 0, it follows from (30) that ݀ ≤  ݉.  
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On several occasions later on we will need to estimate the integral 

(ܽ)ܫ  = න  
ஶ


݁ିଵ

ଶ మା
 ,ݎ݀ ேݎ 

where ݉ >  0, 0 ≤  ݀ ≤  ݉, ܰ >  −1, and ܽ ≥  0. 
       First, suppose ܽ >  1. By various changes of variables, we have 

(ܽ)ܫ = න  
ଵ


݁ିଵ

ଶ మା
+ ݎ݀ ேݎ  න  

ஶ

ଵ
݁ିଵ

ଶ మା
ݎ݀ ேݎ 

≤  ݁ න  
ଵ


ݎே݀ݎ + න  

ஶ

ଵ
݁ିଵ

ଶ మା ಿ
 ݎ݀ 

=
݁

ܰ +  1
 +  ݁

మ

ଶ න  
ஶ

ଵ
݁ିଵ

ଶ (ି)మ
 ݎ݀  ேݎ

=
݁

ܰ +  1
 +

݁
మ

ଶ

݉
න  

ஶ

ଵ
݁^(−

1
2

ݐ) − ܽ)ଶ ݐ
ேାଵ

  ିଵ ݀ݐ. 

If  ேାଵ


  −  1 ≤  0, then 

(ܽ)ܫ ≤
݁

ܰ +  1
 +

ߨ2√
݉

 ݁
మ

ଶ  ≤ ቆ
√݁

ܰ +  1
 +

ߨ2√
݉

ቇ ݁
మ

ଶ  . 

     Otherwise, we have ேାଵ


 −  1 >  0. Using the fact that ݑ ⟼ ݑ 
ಿశభ

 ିଵ  is increasing, we 
see that 

න  

ଶ

ି
ଶ

݁ି௧మ

ଶ ݐ)  + ܽ)
ேାଵ

  ିଵ݀ݐ ≤ ൬
3ܽ
2

൰
ேାଵ

 ିଵ

න  

ଶ

ି
ଶ

݁ି௧మ

ଶ ≥ ݐ݀  ߨ2√   ൬
3ܽ
2

൰
ேାଵ

  ିଵ

 . 

For the same reason we also have 

න  
ାஶ


ଶ

݁ି௧మ

ଶ + ݐ)   ܽ)
ேାଵ

  ିଵ ݀ݐ ≤ න  
ାஶ


ଶ

݁ି௧మ

ଶ (ݐ3) 
ேାଵ

  ିଵ݀ݐ 

≤ 3
ேାଵ

  ିଵ න  
ାஶ


ݐ

ேାଵ
  ିଵ݁ି௧మ

ଶ = ݐ݀ 
√2
2

൫3 √2൯
ேାଵ

  ିଵ
න  

ାஶ


ݑ

ேାଵ
  ିଵ݁ି௨ ݀ݐ 

=  
√2
2

൫3 √2൯
ேାଵ

  ିଵ
߁ ൬

ܰ +  1
2݉

൰  . 
In the case when 1 −  ܽ <  −ܽ 2 (or equivalently ܽ >  2), 

න  
ି

ଶ

ଵି
݁ି௧మ

ଶ + ݐ)   ܽ)
ேାଵ

 ିଵ ݀ݐ ≤ ቀ
ܽ
2

ቁ
ேାଵ

  ିଵ
න   

ି
ଶ

 ଵି
݁ି௧మ

ଶ ≥ ݐ݀  ቀ
ܽ
2

ቁ
ேାଵ

 ିଵ
 න  

ି
ଶ

 ଵି
݁

௧
ସ ݐ݀

≤ ቀ
ܽ
2

ቁ
 ேାଵ

 ିଵ
 
4
ܽ

݁ିమ

଼ ≤  2 ቀ
ܽ
2

ቁ
ேାଵ

 ିଵ
. 

It follows that there exists a constant ܥ = ,݉)ܥ  ܰ)  >  0 such that 

න  
ஶ

ଵ
 ݁ିଵ

ଶ (௧ି)మ
ݐ

ேାଵ
 ିଵ݀ݐ = න  

ஶ

ଵି
݁ି௧మ

ଶ + ݐ)   ܽ)
ேାଵ

  ିଵ݀ݐ ≤ + 1) ܥ   ܽ)
ேାଵ

  ିଵ 
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for ேାଵ


 − 1 >  0.  It is then easy to find another positive constant ܥ = ,݉)ܥ  ܰ), 
independent of ܽ, such that 

(ܽ)ܫ  ≤ + 1) ܥ   ܽ)
ேାଵ

  ିଵ݁
మ

ଶ  
for all ܽ ≥  1 and ேାଵ


 − 1 >  0. Therefore, 

න  
ஶ


݁ିଵ

ଶ మା
≥ ݎ݀ ேݎ  + 1) ܥ   ܽ)୫ୟ୶ቀ,ேାଵ

  ିଵቁ ݁
మ

ଶ                  (31) 

for all ܽ ≥  1. Since ܫ(ܽ) is increasing in ܽ, the estimate above holds for 0 ≤  ܽ ≤  1 as 
well. 
Lemma (6.2.4)[243]: For any ݉ >  0, < ߜ  0, ܴ ≥  1, ܰ >  −1, and  ≥  0, we can find 
a constant ܥ >  0 (depending on ܴ, ,ߜ , ܰ, ݉ but not on ܽ, ݀,  such that (ݔ

ேାଵିݔ න  
  ାஶ

ோ
௫మ

݁ି௫మ

ଶ  (ଵାమ)ା௫൫ଵାఋ൯ ݎே ݀ݎ ≤ + 1) ܥ   ܽ)୫ୟ୶ቀ,ேାାଵ
  ିଵቁ݁

ଵାఋమ

ଶ మ
 

and 

ݔ  න  
 ାஶ 

ோ
௫మ

݁ି௫మ

ଶ (ଵି)మା௫൫ଵି൯ݎ

ଶ ≥ ݎ݀  + 1)ܥ   ܽ)݁

మ

ଶ  

for all ݔ >  0, ܽ >  0, and 0 ≤  ݀ ≤  ݉. 
Proof. Let ܫ = ,݉)ܫ  ܰ, , ܴ, ,ݔ ܽ, ݀) denote the first integral that we are trying to estimate. 
If ݔ ≥  1, we have 

= ܫ ேାଵି ݁ି௫మݔ 

ଶ  ା௫
න   

ஶ

ோ
௫మ

݁ି(௫)మ

ଶ  ାఋ(௫) ݎே ݀ݎ 

≤  ݁ି௫మିݔ 

ଶ  ା௫
න  

ஶ

ோ
௫ 

݁ିమ

ଶ  ାఋ ݎே݀ݎ 

≤  ݁ିଵ
ଶ (௫ି)మାమ

ଶ
∫  ஶ

ோ
௫ 

ݎ

ܴ  ݁ିଵ
ଶ మାఋ

 ݎ݀ ேݎ 

≤
݁

మ

ଶ

ܴ  න  
ஶ

ோ
௫ 

݁ିమ

ଶ  ାఋ ݎேା݀ݎ. 

The desired result then follows from (31). 
    If 0 < ݔ <  1, we have 

= ܫ ேାଵି ݁ି௫మݔ 

ଶ  ା௫
 න   

ஶ

ோ
௫మ

݁ି(௫)మ

ଶ  ାఋ(௫) ݎே ݀ݎ ≤  ݁ିݔ   න  
ஶ

ோ
௫ 

݁ିమ

ଶ  ାఋ ݎே݀ݎ 

≤
݁

మ

ଶ  ାଵ

ܴ  න  
ஶ

ோ
௫ 

݁ିమ

ଶ  ାఋ ݎேା݀ݎ. 

The desired estimate follows from (31) again. 
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      To prove the second part of the lemma, denote by ܬ = ,݉)ܬ  ݀, ܴ, ,ݔ ܽ)  the second 
integral that we are trying to estimate. Then it is clear from a change of variables that for 
0 < ݔ <  1 we have 

,݉)ܬ ݀, ܴ, ,ݔ ܽ)  = ݔ 

ଶ  ିଵ න  

ାஶ

ோ
௫

݁ିଵ
ଶ (௫ି)మା൫௫ି൯ݎ


ଶ  ݎ݀ 

≤
݁

ܴ
ݔ 


ଶ  න  

ାஶ

ோ
௫

݁ିଵ
ଶ(௫మିଶ(௫)ାమ)ݎ


ଶ  ାଵ ݀ݎ 

≤
݁

ܴ
න  

ାஶ


݁ିమ

ଶ  ା
ݎ 


ଶ  ାଵ ݀ݎ = ݁ܥ   ≤ + ᇱ(1ܥ   ܽ)݁

మ

ଶ  , 

where the constants ܥ and ܥ only depend on ܴ and ݉. 
    Next assume that ݔ ≥  1. In case ܴ ≤ = ܬ ଶ we writeݔ  ଵܬ   +  ଶ, whereܬ 

ଵܬ  = ,݉)ଵܬ  ݀, ܴ, ,ݔ ܽ)  = ݔ    න  
ଵ

ோ
௫మ

 ݁ି௫మ

ଶ (ଵି)మା௫(ଵି)  ݎ

ଶ   ,ݎ݀ 

And 

ଶܬ  = ,݉)ଶܬ  ݀, ܴ, ,ݔ ܽ)  = ݔ  න  
ஶ

ଵ
 ݁ି௫మ

ଶ (ଵି)మା௫(ଵି)  ݎ

ଶ   .ݎ݀ 

 Otherwise we just use ܬ ≤  .ଶ. So it suffices to estimate the two integrals aboveܬ 
     To handle ܬଵ(݉, ݀, ܴ, ,ݔ ܽ), we fix ߝ >  0 and consider two cases. In the case ݔ  ≤
 ܽ(1 +  we have ,(ߝ 

,݉)ଵܬ ݀, ܴ, ,ݔ ܽ)  ≤ ݔ  න  
ଵ

ோ
௫మ

 ݁ି௫మ

ଶ (ଵି)మା௫൫ଵି൯  ݎ

ଶ ݎ݀ 

≤  ܽ(1 + ݁(ߝ 
మ

ଶ න  
ଵ

ோ
௫మ

݁ିଵ
ଶ (௫(ଵି)ି)మ ݎ


ଶ ≥       ݎ݀   ܽ(1 + ݁(ߝ 

మ

ଶ . 

When ݔ  ≥  ܽ(1 + = ݕ we set ,(ߝ  = ߬  andݔ  − ݕ)   ܽ)/2. Then we have 
߬ ≥

ߝ
2(1 + (ߝ  → ݕ   +∞ 

as ݕ →  +∞. By successive changes of variables we see that 

,݉)ଵܬ ݀, ܴ, ,ݔ ܽ)  ≤ ݔ  න  
ଵ

ோ
௫మ

݁ି௫మ

ଶ  (ଵି)మା௫(ଵି)ݎ

ଶ  ݎ݀ 

=
ݕ
݉

න  
ଵି ோ



௬మ


 (1 − (ݎ 

ଵ
 ିଵ

ଶ ݁ି ௬
మమ

ଶ  ା௬ ݀ݎ 

=
1
݉

න  
௬ିோ

௬


൬1 −

ݎ
ݕ

൰
ଵ
  ିଵ

ଶ
 ݁ିమ

ଶ  ା ݀ݎ 

=
݁

మ

ଶ

݉
න  

௬ିିோ

௬

ି
൬1 −

ܽ
ݕ

 −
ݎ
ݕ

൰
ଵ
 ିଵ

ଶ
 ݁ିమ

ଶ   .ݎ݀ 
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This shows that for 1 ≤  ݉ ≤  2 we have 

ଵܬ  ≤
݁

మ

ଶ

݉
න  

௬ିିோ

௬

ି
݁ିమ

ଶ ≥ ݎ݀ 
ߨ2√

݉
 ݁

మ

ଶ  . 

Thus we suppose that ݉ >  2. Then 

න  
ఛ

ିఛ
൬1 −

ܽ
ݕ

 −
ݎ
ݕ

൰
ଵ
 ିଵ

ଶ
  ݁ିమ

ଶ ݎ݀  ≤ ൬1 −
ܽ
ݕ

 −
߬
ݕ

൰
ଵ
 ିଵ

ଶ
න  

ఛ

ିఛ
݁ିమ

ଶ ݎ݀ 

= ൬
߬

ݕ2
൰

ଵ
  ିଵ

ଶ
න  

ఛ

ିఛ
݁ିమ

ଶ ݎ݀  ≤ ߨ2√   ൬
ߝ

4(1 + ൰(ߝ 
ଵ
 ିଵ

ଶ
. 

Moreover, in case −ܽ <  −߬ , we have 

න  
ିఛ 

ି
൬1 −

ܽ
ݕ

 −
ݎ
ݕ

൰
ଵ
  ିଵ

ଶ
 ݁ିమ

ଶ ≥ ݒ݀  ൬1 −
ܽ
ݕ

 +
߬
ݕ

൰
ଵ
 ିଵ

ଶ 
 න  

ିఛ

ି
݁ିఛ||

ଶ  ݎ݀ 

≤  2 ൬
ߝ3

2(1 + ൰(ߝ 
ଵ
 ିଵ

ଶ
 
݁ିఛమ

ଶ

߬
  ≤  4 ൬

3
2

൰
ଵ
 ିଵ

ଶ
  ቀ

ߝ
1 + ߝ 

ቁ
ଵ
 ିଷ

ଶ
 ݁

ି ఌమ

଼(ଵାఌ)మ  . 

Similarly, in case ݕ −  ܽ − ோ

௬
 ≥  ߬ ,  we have 

න  
௬ିିோ

௬

ఛ
1 −

ܽ
ݕ

 −
ݎ
ݕ

൨
ଵ
 ିଵ

ଶ
 ݁ିమ

ଶ ≥ ݎ݀  
ܴ

ଶݕ ൨

ଵ
 ିଵ

ଶ
   න  

௬ିିோ

௬

ఛ
݁ିఛ

ଶ  ݎ݀  

≤  2ܴଵି
ଶ  

ߝ
2(1 + ൨(ߝ 

ଶ
 ିଵ

  ߬ି ଶ
  ݁ିఛమ

ଶ  ൬݁ܿ݊݅ݏ ߬ ≥
ߝ

2(1 + ൰(ߝ    

≤  4ܴଵି
ଶ  

1 + ߝ 
ߝ

 ݁
ି ఌమ

଼(ଵାఌ)మ   . 
The last three estimates yield 

ଵܬ  ≤ + 1)ܥ   ܽ)݁
మ

ଶ  
for some C > 0 that is independent of ݔ and ܽ. 
     To establish the estimate for ܬଶ, we perform a change of variables to obtain 
 

ଶܬ  ≤ ݔ  න  
ାஶ

ଵ
 ݁ି௫మ

ଶ  (ଵି)మ
ݎ 


ଶ = ݎ݀ 

1
݉

න  
ାஶ


 ݁ିమ

ଶ  ቀ
ݎ

ݔ  +  1ቁ
ଵ
  ିଵ

ଶ
 .ݎ݀ 

If ݉ ≥  2, we have 

ଶܬ  ≤
1
݉

 න  
ାஶ


݁ିమ

ଶ  ,ݎ݀ 

and if 1 ≤  ݉ <  2, we have 

ଶܬ  ≤
1
݉

 න  
ାஶ


݁ିమ

ଶ + ݎ)  1)
ଵ
  ିଵ

ଶ ݀ݎ. 
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Therefore, ܬଶ  ≤ ܥ   for some ܥ >  0  that is independent of ݔ  and ܽ.  This completes the 
proof of the lemma. 
 
     In the proof of the main theorem, we will have to estimate the following two integrals: 

,ݔ)ܫ (ݎ  = න   
 

|ఏ|ஸ గ
ଶ

 ݁ି(௫)ାଶ ୱ୧୬మ൬ఏௗ
ଶ  ൰หܭ൫ݔ,  ,ߠ݀ ఏ൯ห݁ݎ

and 

,ݔ)ܬ (ݎ = න    
 

|ఏ|ஹ గ
ଶ

݁ି(௫)ା൫௫ା൯ หܭ൫ݔ,  ,ߠ݀ ఏ൯ห݁ݎ

where ݔ, ,ݎ ܽ ∈  (0, +∞) and 0 ≤  ݀ ≤  ݉. 
Lemma (6.2.5) [243]: For any ݉ >  0 there exist positive constants ܥ = = ܴ and (݉)ܥ 
 ܴ(݉) such that 

,ݔ)ܫ (ݎ  ≤ ିଵ(ݎݔ)ܥ   න  
ଵ


݁ି൫(௫)ି൯௧మ  ݐ݀ 

And 

,ݔ)ܬ (ݎ  ≤
ା൫௫ା൯(௫)ି݁ܥ

ݎݔ
  

for all ܽ >  0, 0 ≤  ݀ ≤  ݉, and ݔ >  0 with ݎݔ >  ܴ. 
Proof. It follows from Lemma (6.2.1) that there exist positive constants ܥ =  and (݉)ܥ 
ܴ =  ܴ(݉) such that for all ܽ >  0 and ݎݔ >  ܴ we have 

,ݔ)ܫ (ݎ  ≤ ିଵ(ݎݔ)ܥ  න  
 

|ఏ|ஸ గ
ଶ

݁ି(௫)ା(௫) ୡ୭ୱ(ఏ)ାଶ ୱ୧୬మ  ൬ఏௗ
ଶ  ൰ ݀ߠ 

= ିଵ න(ݎݔ)ܥ2   
గ

ଶ


݁ିଶ(௫) ୱ୧୬మ  ൬ఏ

ଶ  ൰ାଶ ୱ୧୬మ  ൬ఏௗ
ଶ  ൰ ݀ߠ 

≤ ିଵ(ݎݔ)ܥ2  න  
 గ
ଶ


 ݁ିଶ(௫) ୱ୧୬మ  ൬ఏ

ଶ  ൰ାଶ ୱ୧୬మ  ൬ఏ
ଶ  ൰ ݀ߠ 

≤ ିଵ(ݎݔ)ܥ2  න  
 గ
ଶ


݁ିଶ൫(௫)ି൯ ୱ୧୬మ  ൬ఏ

ଶ  ൰ ݀ߠ  

=
ܥ4
݉

ିଵ(ݎݔ)  න  
√ଶ
ଶ


݁

ିଶ൫(௫)ି൯௧మ ௗ௧
√ଵ ି ௧మ   ≤

ܥ2√4
݉

ିଵ(ݎݔ)  න  
√ଶ
ଶ


݁ିଶ൫(௫)ି൯௧మ  ݐ݀ 

≤
ܥ2√4

݉
ିଵ(ݎݔ)  න  

ଵ


݁ି൫(௫)ି൯௧మ  .ݐ݀ 

The estimate 

,ݔ)ܬ (ݎ  ≤
ା൫௫ା൯(௫)ି݁ܥ

ݎݔ
, < ݎݔ  ܴ, 

also follows from Lemma (6.2.1). 
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Lemma (6.2.6) [243]: For any ݉ ≥  1  there exist constants ܴ =  ܴ(݉)  >  1 and ܥ =
(݉)ܥ   >  0 such that 

න  
ାஶ

ோ
௫

݁ିଵ
ଶ (௫ି)మା(௫ି)  ݔ)ܫ, ≥ ݎ݀ ݎ(ݎ + 1) ܥ   ܽ)

ଵ
 ିଵ ݁మ  

and 

න  
ାஶ

ோ
௫

 ݁ିଵ
ଶ (௫ି)మ

,ݔ)ܬ  ≥ ݎ݀ ݎ(ݎ + 1) ܥ   ܽ)୫ୟ୶ቀ, ଶ
 ିଵቁೌమ

  

for all ݔ >  0, ܽ >  0, and 0 ≤  ݀ ≤  ݉. 
Proof. For convenience we write 

,ݔ) ூܣ (ݎ =  ݁ିଵ
ଶ (௫ି)మା(௫ି) ݔ)ܫ,  ,ݎ(ݎ

and 

,ݔ) ܣ (ݎ =  ݁ିଵ
ଶ (௫ି)మ

,ݔ)ܬ   .ݎ(ݎ
Let ܴ and ܥ be the constants from Lemma (6.2.5). In the integrands we have r > R/x, or xr 
> R, so according to Lemma (6.2.5), 

,ݔ)ܫ (ݎ  ≤ ିଵ(ݎݔ)ܥ  න  
ଵ


݁ି(௫)௧మା௧మ  .ݐ݀ 

If, in addition, ݔ ≤  1, then  
,ݔ)ܫ (ݎ ≤  , ିଵ݁ݎܥ 

and 

,ݔ) ூܣ (ݎ =  ݁ିଵ
ଶ (௫ି)మ ೌೣషೌೝ

,ݔ)ܫ  ≥ ݎ(ݎ ݁݁ିଵݎܥ 
ଶ (௫ି)మ

 . 
It follows that 

න  
ஶ

ோ
௫

,ݔ) ூܣ ≥ ݎ݀ (ݎ ݁ܥ  න  
ஶ

ோ
௫

݁ିଵݎ
ଶ (௫ି)మ

≥ ݎ݀  ݁ܥ  න  
ஶ


݁ିଵݎ

ଶ ௫మା௫ିଵ
ଶ మ

 ݎ݀ 

≤ ݁ܥ  න  
ஶ


݁షభݎ

మ ೝమ

≥                    ݎ݀  + 1) ܥ   ܽ)
ଵ
 ିଵ݁మ .  

for all ܽ >  0 and 0 < ≥ ݔ   1. 
    Similarly, if ݔ ≤  1 (and ݎݔ >  ܴ), we deduce from Lemma (6.2.5) and (31) that 

න   
ஶ

ோ
௫

,ݔ) ܣ ≥ ݎ݀ (ݎ
ܥ
ܴ

න   
ஶ

ோ
௫

݁ିଵ
ଶ (௫ି)మ

 ݁ି(௫ೝ)ା௫ା  ݀ݎ 

≤
݁ܥ

ܴ
න   

ஶ

ோ
௫

݁ିଵ
ଶ మା

≥     ݎ݀ ݎ  + ᇱ(1ܥ   ܽ) max ൬0,
2
݉

 − 1൰ ݁మ  . 

Suppose now that ݔ ≥  1 and ݔݎ >  ܴ. By Lemma (6.2.5) again, 

,ݔ) ூܣ (ݎ  ≤ ିଵ ݁ିଵ (ݎݔ)ݎܥ 
ଶ (௫ି)మା൫௫ି൯ න  

ଵ


݁ି௧మ൫(௫)ି൯ ݀ݐ. 

Fix a sufficiently small ߝ ∈  (0, 1). If (ݎݔ)݉ ≥ + ௗ(1ݎܽ   then ,(ߝ 
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න  
ଵ


݁ି௧మ൫(௫)ି൯ ݀ݐ =  

1

ඥ(ݎݔ)  − ௗݎܽ 
න  

ඥ(௫) ି 


݁ି௦మ ݀ݏ 

≤  
1

ඥ(ݎݔ)  − ௗݎܽ 
න  

ஶ


݁ି௦మ ݀ݏ =

ߨ√
2

ି(ݎݔ)
ଶ

ඨ1 − ൬ ௗݎܽ

൰(ݎݔ)

 

≤  ඨ1)ߨ + (ߝ 
ߝ4

ି(ݎݔ) 
ଶ  , 

so there exists a constant ܥ =  such that (݉)ܥ 

,ݔ) ூܣ (ݎ  ≤ (ݎݔ)ݎܥ 

ଶ  ିଵ ݁ିଵ

ଶ (௫ି)మା(௫ି) . 
If (ݎݔ)  ≤ + ௗ(1ݎܽ   we have ,(ߝ 

,ݔ)ூܣ ܽ (ݎ
ିଵ

 ݎ 
ௗ(ିଵ)ା

    ݁ିଵ
ଶ (௫మାమ)ା௫

න  
ଵ


݁(ଵି௧మ)൫(௫)ି൯ ݀ݐ 

≤  ܽ
ିଵ

 ݎ 
ௗ(ିଵ)ା

  ݁ିଵ
ଶ (௫మାమ)ା൫௫ାఌ൯ . 

It follows that 

න  
ାஶ

ோ
௫

,ݔ) ூܣ ݎ݀ (ݎ

≲ ݔ

ଶ ିଵ න  

ାஶ

ோ
௫

݁ିଵ
ଶ (௫ି)మା൫௫ି൯ݎ


ଶ  ݎ݀ 

+ ܽ
ିଵ

 න  
ାஶ

ோ
௫

 ݁ିଵ
ଶ (௫మାమ)ା൫௫ାఌ൯݀ݎ. 

The change of variables ݎ ⟼  along with the second part of Lemma (6.2.4) shows that ݎݔ

ݔ

ଶ ିଵ න  

ାஶ

ோ
௫

݁ିଵ
ଶ (௫ି)మା൫௫ି൯


మ ≥ ݎ݀   + 1)ܥ   ܽ)݁

మ

ଶ  . 

Similarly, the change of variables ݎ ⟼  together with the first part Lemma (6.2.4) shows ݎݔ
that 

න  
ାஶ

ோ
௫

ݎ
ௗ(ିଵ)ା

  ݁ିଵ
ଶ (௫మାమ)ା൫௫ାఌ൯ ݀ݎ ≤ + 1)ܥ   ܽ)

ௗ(ିଵ)ା
 ݁

ଵାఌమ

ଶ మ
 . 

We may assume that ߝ <  1. Then we can find a positive constant ܥ such that 

ܽ
ିଵ

 න  
ାஶ

ோ
௫

ݎ 
ௗ(ିଵ)ା

   ݁ିଵ
ଶ (௫మାమ)ା൫௫ାఌ൯݀ݎ ≤ + 1)ܥ   ܽ)

ଵ
  ିଵ ݁మ  . 

 
It follows that 
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න  
ାஶ 

ோ
௫

,ݔ) ூܣ  ≥ ݎ݀ (ݎ + 1) ܥ   ܽ)
ଵ
 ିଵ ݁మ  

for some other positive constant ܥ  that is independent of ܽ  and ݔ. This proves the first 
estimate of the lemma. 
    To establish the second estimate of the lemma, we use Lemma (6.2.5) to get 

,ݔ) ܣݔ (ݎݔ  = ௫మି݁ݎ ଶݔ 

ଶ  (ଵି)మ
,ݔ)ܬ  (ݎݔ  ≤ ௫మି݁ܥ 

ଶ  (ଵାమ)ା௫(ଵା) .  
It follows from this and Lemma (6.2.4) that 

න  
ାஶ 

ோ
௫

,ݔ) ܣ = ݎ݀ (ݎ න ݔ   
ାஶ 

ோ
௫మ

,ݔ) ܣ ≥ ݎ݀ (ݎݔ + 1)ܥ   ܽ)୫ୟ୶ቀ, ଶ
 ିଵቁ݁మ  .  

This completes the proof of the lemma. 
Lemma (6.2.7) [243]: If ݑ(ऊ)  =  ݁(ऊ)  and ݒ(ऊ)  =  ݁ି(ऊ) , where ݃ is a polynomial of 
degree at most ݉, then the operator ܶ =  ௨ܶ ௩ܶത is bounded on ℱ

ଶ . 
Proof. To prove the boundedness of ܶ =  ௨ܶ ௩ܶത , we shall use a standard technique known as 
Schur’s test [18, p.42]. Since 

ܶ ݂(ऊ)  = න  
 

ℂ
,(ऊܭ ௪|మ|ି݁(ݓ)݂ (ऊ)ି(௪)തതതതതതത݁(ݓ  ,(ݓ)ܣ݀ 

we have 

|ܶ ݂(ऊ)|݁ିଵ
ଶ |ऊ|మ

≤   න  
 

ℂ
,(ऊܪ  ଵି݁|(ݓ)݂|(ݓ

ଶ |௪|మ
 ,(ݓ)ܣ݀

where 

,(ऊܪ (ݓ ∶= ,(ऊܭ|  ଵି݁|(ݓ
ଶ (|ऊ|మା|௪|మ)ାோ൫(ऊ)ି(௪)തതതതതതത൯. 

Thus ܶ will be bounded on ℱ
ଶ if the integral operator ܵ defined by 

݂ܵ(ऊ)  = න  
 

ℂ
ቀܪ(ऊ, (ݓ + ,ݓ)ܪ ऊ)ቁ  (ݓ)ܣ݀ (ݓ)݂ 

is bounded on ܮଶ(ℂ,  Let .(ܣ݀

(ऊ)ܪ  = න  
 

ℂ
,(ऊܪ ,(ݓ)ܣ݀ (ݓ ऊ ∈ ℂ. 

Since 

(ऊ)ିܪ  = න  
 

\௨௦ 
ℂ ܪ(ݓ, ऊ) ݀(ݓ)ܣ, 

for all ऊ ∈ ℂ, by Schur’s test, the operator ܵ  is bounded on ܮଶ(ℂ,  if we can find a (ܣ݀
positive constant ܥ such that 

(ऊ)ܪ  + (ऊ)ିܪ   ≤ ,ܥ  ऊ ∈ ℂ. 
    By the Cauchy-Schwarz inequality, we have 

భାమ (ऊ)ܪ  ≤   ටܪଶభ 
(ऊ)ܪଶమ 

(ऊ) 

for all ऊ ∈ ℂ and holomorphic polynomials ݃ଵ  and ݃ଶ. Moreover, if 
ܷఏ(ऊ)  =  ݁ఏऊ, ऊ ∈ ℂ, ∋ ߠ ,ߨ−]   ,[ߨ
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Then 
ఖഇܪ  =  ఏܷ ߧ ܪ 

for all ऊ ∈ ℂ, ∋ ߠ ,ߨ−]   and holomorphic polynomials ݃. Therefore, we only need prove ,[ߨ
the theorem for ݃(ऊ)  =  ܽऊௗ with some ܽ >  0 and ݀ ≤  ݉ and establish that 

sup
௫ஹ

(ݔ)ܪ   ≤ ଵ݁మమܥ   ,                                                   (32) 

where ܥ are positive constants independent of ܽ and ݀ (but dependent on ݉). We will see 
that ܥଶ can be chosen as any constant greater than 1. 
    It is also easy to see that we only need to prove (32) for ݔ ≥  1. This will allow us to use 
the inequality ݔௗ  ≤  . for the rest of this proofݔ 
     For ܴ >  0 sufficiently large (we will specify the requirement on ܴ later) we write 

(ݔ)ܪ  =  න  
 

|௫௪|ஸோ
,ݔ)ܪ (ݓ)ܣ݀ (ݓ  + න  

 

|௫௪|ஹோ
,ݔ)ܪ  .(ݓ)ܣ݀ (ݓ

We will show that both integrals are, up to a multiplicative constant, bounded above 
by ݁(ଵାఌ)మ  . 
     By properties of the Mittag-Leffler function, we have 

,ݔ)ܭ| |(ݓ  ≤
݉
ߨ

ܧ  ଵ
 , ଵ


 (ܴ) ∶= ,ோܥ  |ݓݔ|  ≤  ܴ. 

It follows that the integral 

ଵܫ  = න  
 

௫|௪|ஸோ
,ݔ)ܪ  (ݓ)ܣ݀ (ݓ

Satisfies 

ଵܫ  = න  
 

௫|௪|ஸோ
,(ऊܭ|  ଵି݁|(ݓ

ଶ (|ऊ|మା|௪|మ)ାோ ൫௫ି௪൯ ݀(ݓ)ܣ  

≤ ோܥ  න  
 

௫|௪|ஸோ
 ݁ିଵ

ଶ (௫మା|௪|మ)ାோ൫௫ି௪൯ ݀(ݓ)ܣ  

≤ ோ݁ିଵܥ 
ଶ ௫మ ା௫

න  
 

௫|௪|ஸோ
 ݁ି

|௪|మ

ଶ  ା|௪|
(ݓ)ܣ݀   

≤ ோ݁ିଵܥߨ2 
ଶ ௫మା௫

න  
ାஶ


݁ିమ

ଶ  ା
 ݎ݀ ݎ 

≤ ோ݁ܥߨ2 
మ

ଶ න  
ାஶ


݁ିమ

ଶ  ା
≥    ݎ݀ ݎ  + 1)ܥ   ܽ)୫ୟ୶ቀ, ଶ

 ିଵቁ ݁మ  , 

where the last inequality follows from (31). 
      We now focus on the integral 

ଶܫ  = න  
 

௫|௪|ஹோ
,ݔ)ܪ   .(ݓ)ܣ݀ (ݓ

Observe that for all ݔ,  we have ߠ and ,ݎ
ܴ݁൫ݔௗ − ௗ ݁ௗఏ൯ݎ  = ௗݔ   − (ߠ݀)ௗ cosݎ     = ௗݔ   − ௗݎ   + − ௗ ൫1ݎ   cos(݀ߠ)൯  

= ௗݔ   − ௗݎ   + ௗݎ2  sinଶ  ൬
ߠ݀
2

൰ . 
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It follows from polar coordinates that 

ଶܫ  =  න  
ାஶ

ோ
௫

න  
గ

ିగ
,ݔ൫ܪ   ݎ݀ ߠ݀ ݎఏ൯݁ݎ

=  න  
ାஶ

ோ
௫

න  
గ

ିగ
݁ିଵ

ଶ (௫మାమ)ାቀ௫ି ୡ୭ୱ(ௗఏ)ቁหܭ൫ݔ,  ݎ݀ ߠ݀ ݎఏ൯ห݁ݎ

= න  
ஶ

ோ
௫

݁ିଵ
ଶ (௫ି)మା(௫ି)ି(௫)

ݎ݀ ݎ  න  
గ

ିగ
 ݁ଶ sinଶ  ൬

ߠ݀
2

 ൰ หܭ൫ݔ,  ߠ݀ ఏ൯ห݁ݎ

≤  න  
ାஶ

ோ
௫

݁ିଵ
ଶ (௫ି)మ ቀ݁൫௫ି൯ ݔ)ܫ, (ݎ + ,ݔ)ܬ  ቁ(ݎ  ,ݎ݀ ݎ 

Where 

,ݔ)ܫ (ݎ  =  න  
 

|ఏ|ஸ గ
ଶ

 ݁ି(௫)ାଶ ୱ୧୬మ  ൬ௗఏ
ଶ  ൰|ܭ൫ݔ,  ,ߠ݀ |ఏ൯݁ݎ

and 

,ݔ)ܬ (ݎ  =  න  
 

|ఏ|ஹ గ
ଶ

 ݁ି(௫)ା൫௫ା൯หܭ൫ݔ,  .ߠ݀ ఏ൯ห݁ݎ

By Lemma (6.2.6), there exists another constant ܥ >  0 such that 

ଶܫ  ≤ + 1)ܥ   ܽ)୫ୟ୶ቀ, ଶ
 ିଵቁ݁మ . 

Therefore, 

sup
ऊ∈ℂ

න  
 

ℂ
,(ऊܪ (ݓ)ܣ݀ (ݓ  ≤ + 1)ܥ   ܽ)୫ୟ୶ቀ, ଶ

 ିଵቁ݁మ 

for yet another constant ܥ that is independent of ܽ and ݀. Similarly, we also have 

sup
ऊ∈ℂ

න  
 

ℂ
,(ऊିܪ (ݓ)ܣ݀ (ݓ  ≤ + 1)ܥ   ܽ)୫ୟ୶ቀ, ଶ

 ିଵቁ݁మ  

This yields (32) and proves the lemma. 
We show that Sarason’s conjecture is true for Toeplitz products on the Fock type space ℱ

ଶ . 
We will prove that condition (26) in the main theorem stated is equivalent to conditions (24) 
and (25). Again we will break the proof down into several lemmas. 
Lemma (6.2.8) [243]: Suppose ݑ and ݒ are functions in ℱ

ଶ , not identically zero, such that 
the operator ܶ =  ௨ܶ ௩ܶത  is bounded on ℱ

ଶ . Then the function | ݑ|ଶ෫(ऊ)| ݒ|ଶ෫(ऊ) is bounded on 
the complex plane. 
Proof. Since ௨ܶ ௩ܶത  is bounded on ℱ

ଶ ,  the operator ( ௨ܶ ௩ܶത) ∗ = ௨ܶ ௩ܶത  and the products 
( ௨ܶ ௩ܶത) ∗ ௨ܶ ௩ܶത  and ( ௩ܶ ௨ܶഥ) ∗ ௩ܶ ௨ܶഥ  are also bounded on ℱ

ଶ .  Consequently, their Berezin 
transforms are all bounded functions on ℂ. 
         For any ऊ ∈ ℂ we let ݇ऊ denote the normalized reproducing kernel of ℱ

ଶ at ऊ. Then 
〈( ௨ܶ ௩ܶത) ∗ ௨ܶ ௩ܶത݇ऊ, ݇ऊ〉 =  〈 ௨ܶ ௩ܶത݇ऊ, ௨ܶ ௩ܶത݇ऊ〉  = തതതതതത݇ऊ(ऊ)ݒݑ〉   , 〈തതതതതത݇ऊ(ऊ)ݒݑ  =  ଶ෫(ऊ)|ݑ | ଶ|(ऊ)ݒ| 
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is bounded on ℂ.  Similarly |ݑ(ऊ)|ଶ | ݒ|ଶ෫(ऊ)  is bounded on ℂ.  By the proof of Lemma 
(6.2.3), the product ݒݑ is a non-zero complex constant, say, ݑ(ऊ)ݒ(ऊ)  =  It follows that .ܥ 
the function 

ଶ෫(ऊ)|ݑ |ଶ෫(ऊ)|ݒ |  = ଶ෫(ऊ)|ݑ | ଶ|(ऊ)ݒ|ଶ෫(ऊ)|ݒ | ଶ|(ऊ)ݑ| 
1

  ଶ|ܥ|

is bounded as well. 
      To complete the proof of Sarason’s conjecture, we will need to find a lower bound for 
the function 

ℬ(ऊ)  =  , ଶ|(ऊ)ݑ|ଶ෫(ऊ)|ݒ | 
where ݑ =  ݁, = ݒ  ݁ି, and ݃ is a polynomial of degree ݀. We write 

݃(ऊ)  =  ܽௗऊௗ  +  ݃ௗିଵ(ऊ), 
where 

ܽௗ  =  ܽ݁ఈ , ܽ >  0, 
and 

݃ௗିଵ(ऊ)  =   
ௗିଵ

ୀ

ܽऊ  . 

In the remainder we will have to handle several integrals of the form 

(ݔ)ܫ  = න  
 


ܵ௫(ݎ)݁ିೣ() ݀ݎ, 

where ܵ௫ and ݃௫  are ܥଷ-functions on the interval ܬ, and the real number ݔ tends to +∞. We 
will make use of the following variant of the Laplace method (see [250]).  
Lemma (6.2.9) [243]: Suppose that 
(a) ݃௫ attains its minimum at a point ݎ௫ , which tends to +∞ as ݔ tends to +∞, with ܿ௫  =
 ݃௫

ᇱᇱ(ݎ௫)  >  0; 
(b) there exists ߬௫  such that for |ݎ − |௫ݎ   <  ߬௫, ݃௫

ᇱᇱ(ݎ)  =  ܿ௫൫1 + ൯(1)   as ݔ ten ds to 
+∞; 
(c) for |ݎ − |௫ݎ  <  ߬௫, ܵ௫(ݎ) ∼  ܵ௫(ݎ௫); 
(d) we have 

න  
 


ܵ௫(ݎ)݁ିೣ() ݀ݎ =  ൫1 + ൯(1)  න  

 

|ିೣ |ழఛೣ

 ܵ௫(ݎ)݁ିೣ () ݀ݎ 

Then we have the following estimate 
(ݔ)ܫ  = ቀ√2ߨ  + ቁ(1)  [ܿ௫]ିଵ/ଶ ܵ௫(ݎ௫)݁ିೣ(ೣ ), → ݔ  +∞.       (33) 

          The computations in [251] ensure that, under the assumptions on ݃௫ and ܵ௫, we have 

න  
 

|ିೣ |வఛೣ

 ܵ௫(ݎ)݁ିೣ() ݀ݎ (ܿ௫߬௫)ିଵ න    
 

|௧|வఛೣ

݁ିଵ
ଷ ఛೣೣ௧ ݀(34)              .ݐ 

In particular, if one of the two conditions ܿ௫߬௫
ଶ  →  +∞ and ܿ௫߬௫  →  +∞ is satisfied, then 

hypothesis (݀) in Lemma (6.2.9) holds. 
         The study of ℬ(ऊ) will require some additional technical lemmas. 
Lemma (6.2.10) [243]: For ऊ = < ݔ థ, with݁ݔ   0 and ݁(ఈାௗథ) = 1, we have 
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ℬ(ऊ) ≳ න  
ାஶ


ି(ݔݎ)

ଶ   ݎ݀ଶିଵ݁ିೣ()ݎ

 
as ݔ →  +∞, where 

ℎ௫(ݎ) = ݎ)  − )ଶݔ   − ௗݔ)2ܽ   − (ௗݎ  + ௗିଵݎ)ܥ  + ௗିଵݔ  +  1),   (35) 
for some positive constant ܥ. 
Proof. It is easy to see that 

ℬ(ऊ) = න  
 

ℂ
,ݓ)ܭ| ऊ)|ଶ ݁ଶோ൫(ऊ)ି(௪)൯ [ܭ(ऊ, ऊ)]ିଵ ݁ି|௪|మ  ,(ݓ)ܣ݀ 

which, in terms of polar coordinates, can be rewritten as 

න  
ାஶ


න  

ିగ

 గ
หܭ൫݁ݎఏ, ऊ൯ห

ଶ
 ݁ଶோቀ(ऊ)ି൫ഇ൯ቁ [ܭ(ݔ,  .ߠ݀ ݎ݀ ݎଵ ݁ିమି[(ݔ

By Lemma (6.2.1), B(z) is greater than or equal to 

න  
ାஶ


න  

 

|ఏିథ|ஸఏబ(௫)
หܭ൫݁ݎఏ, ऊ൯ห

ଶ
݁ଶோቀ(ऊ)ି൫ഇ൯ቁ [ܭ(ݔ,  .ߠ݀ ݎ݀ݎ ଵ ݁ିଶି[(ݔ

This together with Lemma (6.2.1) shows that 

ℬ(ऊ) න  
ାஶ


ଶ(ିଵ)݁ି(ି௫)మݎ  ,ݎ)ܫ  ऊ)ݎ݀ݎ,  

where 

,ݎ)ܫ ऊ)  = න  
 

|ఏିథ|ஸఏబ(௫)
݁ଶோቀ(ऊ)ି൫ഇ൯ቁ ݀ߠ. 

Note that 

,ݎ)ܫ ऊ)  = න  
 

|ఏିథ|ஸఏబ(௫)
݁ଶோൣഀ  ൫௫ഝିഇ൯൧ାଶோൣషభ(ऊ)ିషభ൫ഇ൯൧݀ߠ 

= න  
 

|ఏିథ|ஸఏబ(௫)
݁ଶோቂ൫ഀశഝ൯൫௫ି(ഇషഝ)൯ቃାଶோൣషభ(ऊ)ିషభ൫ഇ൯൧݀ߠ. 

The condition on ߶ yields 

,ݎ)ܫ ऊ)  = න  
 

|ఏ|ஸఏబ(௫)
݁ଶோൣ൫௫ିഇ൯൧ାଶோൣషభ (ऊ)ିషభ൫(ഇశഝ)൯൧ ݀ߠ. 

Since 

݃ௗିଵ(ऊ)  −  ݃ௗିଵ൫݁ݎ(ఏାథ)൯  =   
ௗିଵ

 ୀ

ܽ൫ݔ  ݁థ  −  ,  ݁(ఏାథ)൯ݎ 

 
we have 

ܴ݁ൣ݃ௗିଵ(ऊ) −  ݃ௗିଵ൫݁ݎ(ఏାథ)൯൧ ≥ ௗିଵݎ)ܥ−   + ௗିଵݔ   +  1) 
for some constant ܥ. It follows that 

,ݎ)ܫ ऊ) ≥  ݁ି൫షభା௫షభାଵ൯ න  
 

|ఏ|ஸఏబ(௫)
݁ଶோൣ൫௫ିഇ൯൧݀ߠ. 
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 For the integral we have 

,ݎ)ܬ ऊ) ∶=  න  
 

|ఏ|ஸఏబ(௫)
݁ଶோൣ൫௫ିഇ൯൧݀ߠ = න  

 

|ఏ|ஸఏబ(௫)
݁ଶቀ௫ି ௦(ௗఏ)ቁ ݀ߠ 

= න  
 

|ఏ|ஸఏబ(௫)
݁ଶ൫௫ିା(ି ௦(ௗఏ)ାଵ)൯݀ߠ 

= න  
 

|ఏ|ஸఏబ(௫)
݁

ଶቆ௫ିାଶቆ௦൬ௗఏ
ଶ ൰

మ
 ቇቇ

 ߠ݀

≥  ݁ଶ൫௫ି൯  න  
 

|ఏ|ஸఏబ(௫)
݁ସ|| ௦൬ௗఏ

ଶ ൰
మ

 
 ߠ݀

≥ ݁ଶ൫௫ି൯  න  
 

|ఏ|ஸఏబ(௫)
≲                           ߠ݀ ݁ଶ൫௫ି൯ (ݔݎ)ି

ଶ   , 

which completes the proof of the lemma. 
Lemma (6.2.11) [243]: Assume ݀ = 2݉. For ऊ = < ݔ థ,where݁ݔ  0 and ݁(ఈାௗథ) = 1, 
we have 

ℬ(ऊ)݁
൫ଵା(ଵ)൯ ଶ

(ଵାଶ)௫మ
 , → ݔ  +∞. 

Proof. For ݔ  large enough, the function ℎ௫  defined in (35) is convex on some interval 
௫ܯ] , +∞) and attains its minimum at some point ݎ௫. In order to bound ℬ(ऊ) from below, we 
shall use the modified Laplace method from Lemma (6.2.9). Since 

ℎ௫
ᇱ (ݎ) = ݎ) ିଵݎ2݉  − (ݔ  + ௗିଵݎ2ܽ݀  + − ݀) ܥ   ௗିଶ,       (36)ݎ(1 

we have 
ℎ௫

ᇱ (ݎ) = 2݉(1 + ଶିଵݎ(2ܽ  − ିଵݎݔ2݉  + − ݀)ܥ   , ௗିଶݎ(1 
and 
ℎ௫

ᇱᇱ(ݎ) = 2݉(2݉ − 1)(1 + ଶିଶݎ(2ܽ − 2݉(݉ − ିଶݎݔ(1  + ݀)ܥ − 1)(݀ −  . ௗିଷݎ(2
 Writing ℎ௫

ᇱ (௫ݎ) = 0 and letting ݔ tend to +∞, we obtain 
݉(1 + ଶିଵ(௫ݎ)(2ܽ  ∼ ௫ݎݔ݉ 

ିଵ , 
or 

௫ݎ  ∼  (1 +  2ܽ)ି ଵ
 (37)                                             .ݔ 

Thus there exists ߩ௫, which tends to 0 as ݔ tends to +∞, such that 

௫ݎ  =  (1 +  2ܽ)ି ଵ
1)ݔ +  ௫).                                    (38)ߩ 

When ݔ tends to +∞, we have 
ℎ௫(ݎ௫) ∼ ௫ݎ) 

  − )ଶݔ   + ௫ݎ)2ܽ 
ଶ  − (ଶݔ   

∼ ௫ݎ) 
  − ௫ݎ)] (ݔ 

  − (ݔ  + ௫ݎ)2ܽ
  + [(ݔ   

∼ + ଶ[(1ݔ   2ܽ)ିଵ (1 + ௫)ߩ   −  1][(1 +  2ܽ)ିଵ (1 + ௫)ߩ  −  1

+ 2ܽ ((1 +  2ܽ)ିଵ(1 + ௫)ߩ   +  1)]  ∼ ଶݔ− 2ܽ
(1 +  2ܽ) ,  

or 

−ℎ௫(ݎ௫)  ∼ ଶݔ   
2ܽ

(1 +  2ܽ) .                                    (39) 
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    In order to estimate ܿ௫ ∶=  ℎ௫
ᇱᇱ(ݎ௫), we compute that 

ℎ௫
ᇱᇱ(ݎ௫)  ∼  2݉ଶ (1 +  2ܽ)ିଵା ଶ

 ݔଶିଶ . 
Thus we get 

ܿ௫  ≈  ଶିଶ .                                                    (40)ݔ 
    For ݎ in a neighborhood of ݎ௫ we set ݎ =  (1 + ௫ߪ ௫, whereݎ(௫ߪ  = (ݎ)௫ߪ   →  0 as ݔ →
 +∞; a little computation shows that 

ℎ௫
ᇱᇱ(ݎ)  ∼  ℎ௫

ᇱᇱ(ݎ௫) 
as ݔ →  +∞. Taking ߬௫  = ௫ݎ 

ଵ/ଶ and |ݎ − |௫ݎ   <  ߬௫, we have ℎ௫
ᇱᇱ(ݎ) =  ൫1 +  ൯ܿ௫, so(1) 

ℎ௫(ݎ) −  ℎ௫(ݎ௫) =
1
2

 ܿ௫(ݎ − + ௫)ଶ ൫1ݎ   .൯(1) 
Thus 

න  
 

|ିೣ |ழఛೣ

݁ିଵ
ଶ ೣ(ିೣ )మ൫ଵା(ଵ)൯݀ݎ = න  

 

|௧|ழఛೣ

݁ିଵ
ଶ ೣ௧మ൫ଵା(ଵ)൯ ݀ݐ ∼  

1
ඥܿ௫

න  
 

|௬|ழఛೣඥೣ

݁ିଵ
ଶ ௬మ

ݕ݀

≈
1

ඥܿ௫
, 

because ܿ௫߬௫
ଶ ≈ ௫ݎ

ଶିଵ tends to +∞ as ݔ tends to +∞. Finally, the estimates  

ℬ(ऊ) ≳ න  
 

|ିೣ |ழఛೣ

ି(ݔݎ)
ଶ ݎ݀ ଶିଵ݁ିೣ()ݎ 

= න  
 

|ିೣ |ழఛೣ

ି(ݔݎ)
ଶ ଶିଵ݁ିೣ(ೣݎ  )݁ି[ೣ()ିೣ(ೣ ݎ݀ [(

=  ݁ିೣ(ೣ ) න  
 

|ିೣ |ழఛೣ

ି(ݔݎ)
ଶ ଶିଵ݁ିଵݎ 

ଶೣ(ିೣ )మ൫ଵା(ଵ)൯ ݀ݎ

∼  ݁ିೣ(ೣ ௫ݎ(

ଷ
ଶ  ିଵ

ିݔ 
ଶ න  

 

|ିೣ |ழఛೣ

݁ିଵ
ଶೣ(ିೣ )మ൫ଵା(ଵ)൯ ݀ݎ

≈  ݁ିೣ(ೣ ௫ݎ(

ଷ
ଶିଵ

ିݔ 
ଶ

1
ඥܿ௫

  

along with (37), (39), and (40) give the lemma 
Lemma (6.2.12) [243]: Assume ݀ <  2݉. For ऊ = < ݔ థ, with݁ݔ   0 and ݁(ఈାௗథ)  =  1, 
we have 

ℬ(ऊ) ≳ ݁൫ଵା(ଵ)൯మௗమ

మ  ௫మషమି௫షభష
, → ݔ  +∞ 

for some positive constant ܥ 
Proof. Let ߬௫  =  be a positive real number that will be specified later. As in the proof (ݔ) 
of Lemma (6.2.10) we have 

ℬ(ऊ) ≳ න  
ାஶ


,ݎ)ܫଶ(ିଵ)݁ି(ି௫)మݎ ऊ)ݎ݀ ݎ

≳ න  
 

|ି௫|ஸఛೣ

݁ଶ(ିଵ)ݎ − ݎ) − ,ݎ)ܫ )ଶݔ ऊ)ݎ݀ ݎ,  
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where 

,ݎ)ܫ ऊ)  = න  
 

|ఏିథ|ஸఏబ(௫)
 ݁ଶோቀ(ऊ)ି൫ഇ൯ቁ ݀ߠ. 

There exists ܿᇱ  >  0 such that for |ݎ − |ݔ  ≤  ߬௫ we have 

,ݎ)ܫ ऊ)  ≥ න   
 

|ఏିథ|ஸᇲఏబ(௫మ)
 ݁ଶோቀ(ऊ)ି൫ഇ൯ቁ ݀ߠ 

= න   
 

|ఏ|ஸᇲఏబ(௫మ)
 ݁ଶோ൫௫ିഇ൯ାଶோൣషభ(ऊ)ିషభ൫ഇ൯൧݀ߠ 

= න   
 

|ఏ|ஸᇲఏబ(௫మ)
ௗݔ)2ܴܽ݁)^݁  − (ௗ݁ௗఏݎ − 2   

ௗିଵ

ୀ

|ܽ|หݔ −  .ߠ݀ ݁ఏหݎ

 Now for |ݎ − |ݔ   ≤  ߬௫, we write ݎ =  (1 + → ݔ tends to 0 as ߪ where ,ݔ(ߪ   +∞. Thus 
for 0 ≤ ݈ ≤ ݀ − 1 and |ߠ|  ≤  ܿᇱߠ(ݔଶ), we obtain 

หݔ   −  ݁ఏหݎ 
ଶ

 = − ଶ[1ݔ   2(1 + (ߠ݈)ݏܿ (ߪ   +  (1 + [ଶ(ߪ    
= − ଶൣ1ݔ   2൫1 + + ߪ݈  (ߠ݈)ݏܿ  ൯(ଶߪ)ܱ  + 1 + + ߪ2݈ ൧(ଶߪ)ܱ    
= − ଶൣ2 ൫1ݔ  + ൯(1(ߠ݈)ݏܿ  (ߪ݈  + ൧(ଶߪ)ܱ 

≲ ଶݔ sinଶ  ൬
ߠ݈
2

൰ + ଶ൨ߪ                                                 ≲ ଶߠ]ଶݔ  +  .[ଶߪ 
Next choosing |ߪ|  ≤  , we getିݔ 

หݔ  − ݎ   ݁ఏห ≲ ଶݔ ଶିݔ  ≲  ଶ(ௗିଵ)ିଶݔ
or 

หݔ  −  ݁ఏหݎ  ≲  .ௗିଵିݔ
Thus there exists a positive constant ܥ such that for |ݎ − |ݔ   ≤  ߬௫ and |ߠ| ≤  ܿᇱߠ(ݔଶ), 

2   
ௗିଵ

ୀ

|ܽ|หݔ  −  ݁ఏหݎ   ≤  .ௗିଵିݔܥ 

It follows that 

,ݎ)ܫ ऊ)  ≥ න   
 

|ఏ|ஸᇲఏబ(௫మ)
 ݁ଶோ൫௫ିഇ൯ − ߠௗିଵି݀ݔܥ ≳ ݁ଶோ൫௫ିഇ൯ି௫షభషିݔ  . 

Then 

ℬ(ऊ) න   
 

|ି௫|ஸఛೣ

ଶିଵ݁ି(ି௫)మݎ   ݎ݀ ݁ଶ൫௫ି൯ି௫షభషିݔ 

= ݁ି௫షభషିݔ  න   
 

|ି௫|ஸఛ
  ,ݎ݀ଶିଵ ݁ିೣ()ݎ

where 
ℎ௫(ݎ) = ݎ)  − )ଶݔ   − ௗݔ)2ܽ   −  .(ௗݎ 

    It is easy to see that ℎ௫  attains its minimum at ݎ௫ with ݎ௫  ∼ → ݔ as ݔ   +∞. Again we 
write 

௫ݎ  = + 1)ݔ   ௫),                                                (41)ߩ 
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where ߩ௫ tends to 0 as ݔ →  +∞. Using the fact that ℎ௫
ᇱ (௫ݎ) = 0, we have 2݉ݔଶିଵ (1 +

+ ௫) ିଵ [(1ߩ  ௫)ߩ   −  1] ∼ + ௗିଵ (1ݔ2ܽ݀−   ,௫)ௗିଵߩ 
and 

௫ߩ݉ ଶିଵݔ2݉  ∼  .ௗିଵݔ2ܽ݀− 
Therefore, 

௫ߩ  ∼  −
ܽ݀
݉ଶ  ௗିଶ.                                            (42)ݔ 

Since 
ℎ௫

ᇱᇱ(ݎ) = 2݉(2݉ − ଶିଶݎ(1   −  2݉(݉ − ିଶݎݔ(1   + 2ܽ݀(݀ −  ௗିଶݎ(1 
and ݀ <  2݉, we get 

ℎ௫
ᇱᇱ(ݎ௫)  ∼ − ଶିଶ[(2݉ݔ2݉   1)(1 + ௫)ଶିଶߩ  −  (݉ −  1)(1 + [௫)ିଶߩ 

∼  2݉ଶ ݔଶିଶ . 
Also, 

ℎ௫(ݎ௫) ∼ + ଶ [(1ݔ  ௫)ߩ   −  1]ଶ  + ௗݔ2ܽ    [(1 + ௫)ௗߩ   −  1]  
+ ௗିଵݔ)ܥ   + ௫ݎ 

ௗିଵ  +  1)  ∼  ݉ଶ ߩ௫
ଶݔଶ +  ௫ߩ݀ ௗݔ2ܽ 

It follows that  
ܿ௫  ∼  2݉ଶ ݔଶିଶ ,                                          (43) 

and 

−ℎ௫(ݎ௫) ∼
ܽଶ݀ଶ

݉ଶ  ଶௗିଶ.                                           (44)ݔ 
Reasoning as in the proof of Lemma (6.2.11), we arrive at 

ℬ(ऊ) ≳≳ ݁ି௫షభషିݔ  ݁ିೣ(ೣ ଶିଵݔ ( 1
ඥܿ௫

 . 

The desired estimate then follows from (44), and (43).  
Lemma (6.2.13) [243]: Suppose ݑ and ݒ are functions in ℱ

ଶ , not identically zero, such that 
 ܥ ଶ෫(ऊ) is bounded on the complex plane. Then there exists a nonzero constant|ݒ |ଶ෫(ऊ)|ݑ |
and a polynomial ݃ of degree at most ݉ such that ݑ(ऊ) =  ݁݃(ऊ) ܽ݊݀ ݒ(ऊ)  =  . (ऊ)ି݁ܥ 
Proof. It is easy to check that for ݑ ∈ ℱ

ଶ we have 

(ऊ)ݑ  = න  
 

ℂ
(ݔ)ߣ݀ ଶ|(ݔ)ऊ݇|(ݔ)ݑ  =  .(ऊ)ݑ 

Also, it follows from the Cauchy-Schwarz inequality that |ݑ(ऊ)|ଶ  ≤ .ଶ෫(ऊ)|ݑ |   So if 
ଶ෫(ऊ)|ݒ |ଶ෫(ऊ)|ݑ |  is bounded on ℂ,  then ℬ(ऊ)  and |ݑ(ऊ)ݒ(ऊ)|ଶ  are also bounded. 
Consequently, ݒݑ is a constant, , there is a non-zero constant ܥ and a polynomial ݃ such that 
= ݑ  ݁ and ݒ = ∋ ݑ . The conditionି݁ܥ  ℱ

ଶ  implies that the degree ݀ of ݃ is at most 
2݉; see Lemma (6.2.2). 
     We shall consider the case where ݑ(ऊ)  =  ݁(ऊ) and ݒ(ऊ)  =  ݁ି(ऊ) . We will show that 
that the boundedness of ℬ(ऊ) implies ݀ ≤  ݉. If 2݉ is an integer, Lemma (6.2.11) shows 
that we must have ݀ <  2݉. 
Thus, in any case (2݉  being an integer or not), a necessary condition is ݀ <  2݉. The 
desired result now follows from Lemma (6.2.12).  
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we specialize to the case ݉ =  1 and make several additional remarks. Thus for any ߙ >
 0  we let ℱఈ

ଶ denote the Fock space of entire functions ݂ on the complex plane ℂ such that 

න  
 

ℂ
|݂(ऊ)|ଶ ݀ߣఈ(ऊ) <  ∞, 

where  
ఈ(ऊ)ߣ݀  =

ߙ
ߨ

 ݁ିఈ|ऊ|మ  .(ऊ)ܣ݀ 
Toeplitz operators on ℱఈ

ଶ  are defined exactly the same as before using the orthogonal 
projection ఈܲ ∶ ,ଶ(ℂܮ  (ఈߣ݀  → ℱఈ

ଶ.      
    Suppose ݑ and ݒ are functions in ℱఈ

ଶ, not identically zero. It was proved in [248] that 
௨ܶ ௩ܶത  is bounded on the Fock space ℱఈ

ଶ if and only if there is a point ܽ ∈ ℂ such that 
(ऊ)ݑ  =  ܾ݁ఈതऊ , (ऊ)ݒ  =  ܿ݁ିఈതऊ ,                             (45) 

where ܾ and ܿ are nonzero constants. This certainly solves Sarason’s problem for Toeplitz 
products on the space ℱఈ

ଶ. But [258] somehow did not address Sarason’s conjecture, which 
now of course follows from our main result. 
    We want to make two points here. First, the proof of Sarason’s conjecture for ℱఈ

ଶ  is 
relatively simple after Sarason’s problem is solved. Second, Sarason’s conjecture holds for 
the Fock space ℱఈ

ଶ for completely different reasons than was originally thought, namely, the 
motivation for Sarason’s conjecture provided in [252] for the cases of Hardy and Bergman 
spaces is no longer valid for the Fock space. It is therefore somewhat amusing that Sarason’s 
conjecture turns out to be true for the Fock space but fails for the Hardy and Bergman spaces. 
 Suppose ݑ and ݒ are given by (45). We have  

ଶ෫(ऊ)|ݑ | =  ‖݂ ݇ऊ‖ଶ  = න   
 

ℂ
ఈ௪ऊ̅݁(ݓ)݂| − (ݓ)ఈߣ݀ ऊ|ଶ |ଶ|(2ߙ)  

=  |ܾ|ଶ ݁ିఈ|ऊ|మ න   
 

ℂ
ห݁ఈ௪(തାऊ̅)ห

ଶ
(ݓ)ఈߣ݀         

=  |ܾ|ଶ ݁ିఈ|ऊ|మାఈ|ାऊ|మ                                         = |ܾ|ଶ ݁ఈ(||మାത௭ାऊ̅) . 
Similarly, 

ଶ෫(ऊ)|ݒ |  =  |ܿ|ଶ ݁ఈ(||మିതऊିऊ̅) . 
It follows that 

ଶ෫(ऊ)|ݒ |ଶ෫(ऊ)|ݑ | =  |ܾࣷ|ଶ ݁ଶఈ||మ  
is a constant and hence a bounded function on ℂ. 
         On the other hand, it follows from Hölder’s inequality that we always have 

ଶ|(ऊ)ݑ|  ≤ ,ଶ෫(ऊ)|ݑ |  ∋ ݑ ℱఈ
ଶ, ऊ ∈ ℂ. 

Therefore, if | ݑ|ଶ෫| ݒ|ଶ෫ is a bounded function on ℂ, then there exists a positive constant ܯ 
such that 

ଶ|(ऊ)ݒ(ऊ)ݑ|  ≤ ଶ෫(ऊ)|ݒ |ଶ෫(ऊ)|ݑ |   ≤  ܯ 
for all ऊ ∈ ℂ. Thus, as a bounded entire function, uv must be constant, say ݑ(ऊ)ݒ(ऊ)  = ℂ 
for all ऊ ∈ ℂ. Since ݑ and ݒ are not identically zero, we must have ܥ ≠  0. Since functions 
in ℱఈ

ଶ must have order less than or equal to 2, we can write ݑ(ऊ)  =  ݁(ऊ) , where 
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(ऊ)  =  ܽऊଶ  +  ܾऊ +  ܿ 
is a polynomial of degree less than or equal to 2. But ݑ(ऊ)ݒ(ऊ) is constant, so ݒ(ऊ)  =
 ݁(ऊ) , where 

(ऊ)ݍ  =  −ܽऊଶ  −  ܾऊ +  ݀ 
is another polynomial of degree less than or equal to 2. 
      We will show that ܽ =  0. To do this, we will estimate the Berezin transform  |ݑ|ଶ෫ when 
ଵܥ is a quadratic exponential function as given above. More specifically, for ݑ  =  |݁|ଶ , we 
have 

ଶ෪|ݑ| (ऊ)  = ଵܥ   න  
 

ℂ
 ห݁(ऊା௪)మା(ऊା௪)ห

ଶ
(ݓ)ఈߣ݀   

= ଵ ห݁ऊమାऊ หܥ 
ଶ

න  
 

ℂ
 ห݁௪మା(ାଶऊ)௪ห

ଶ
 .(ݓ)ఈߣ݀ 

Write ܾ +  2ܽऊ = ଶ෫|ܨ | Then it follows from the inequality ̅.ߞߙ   ≥ ଶ෪|ܨ|   for ܨ ∈ ఈܨ 
ଶ again 

that 

ଶ෫(ऊ)|ݑ |  = ଵ ห݁ऊమାऊ หܥ 
ଶ

 ݁ఈ||మ න  
 

ℂ
ห݁௪మ  ݇ (ݓ)ห

ଶ
(ݓ)ఈߣ݀   

≥ ଵห݁ऊమାऊ หܥ 
ଶ

 ݁ఈ||మ  ห݁మห
ଶ

 . 
If we do the same estimate for the function ݒ, the result is 

ଶ෫(ऊ)|ݒ | ≥ ଶ ห݁ିऊమିऊหܥ 
ଶ

 ݁ఈ||మ  ห݁ିమห
ଶ

 , 
where ߞ is the same as before and ܥଶ  =  ห݁ௗห

ଶ
. It follows that 

ଶ෫(ऊ)|ݒ |ଶ෫(ऊ)|ݑ |  ≥ ଶ݁ଶఈ||మܥଵܥ   =  .ଶ݁ଶ|ାଶऊ|మ/ఈܥଵܥ 
This shows that | ݑ|ଶ෫| ݒ|ଶ෫  is unbounded unless ܽ =  0.  Therefore, the boundedness of 
 ଶ෫ implies that|ݒ |ଶ෫|ݑ |

(ऊ)ݑ =  ݁ऊା , (ऊ)ݒ  =  ݁ିऊାௗ . 
By [258], the product ௨ܶ ௩ܶ  is bounded on ܨఈ

ଶ. In fact, ௨ܶ ௩ܶ is a constant times a unitary 
operator. 
     Combining the arguments above and the main result of [8] we have actually proved that 
the following conditions are equivalent for ݑ and ݒ in ܨఈ

ଶ: 
(a) ௨ܶ ௩ܶത is bounded on ܨఈ

ଶ . 
(b) ௨ܶ ௩ܶത is a constant multiple of a unitary operator. 
(b) | ݑ|ଶ෫| ݒ|ଶ෫ is bounded on ℂ. 
(c) | ݑ|ଶ෫| ݒ|ଶ෫ is constant on ℂ. 
     Recall that in the case of Hardy and Bergman spaces, there is actually an absolute constant 
 such that (for the Hardy space and 16 for the Bergman space 4) ܥ

ଶ෫(ऊ)|ݒ |ଶ෫(ऊ)|ݑ |  ≤ ‖ܥ  ௨ܶ ௩ܶത‖ଶ 
for all ݑ,  and ऊ. We now show that such an estimate is not possible for the Fock space. To ,ݒ
see this, consider the functions 

(ऊ)ݑ =  ݁ఈത௭ , (ऊ)ݒ  = ݁ିఈതऊ . 
By calculations done in [8], we have 
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௨ܶ ௩ܶത  =  ݁ఈ||మ/ଶ ܹ , 
where ܹ is the Weyl unitary operator defined by ܹ݂(ऊ)  =  ݂(ऊ − ܽ)݇(ऊ). On the other 
hand, by calculations done earlier, we have 

ଶ෫(ऊ)|ݒ |ଶ෫(ऊ)|ݑ |  =  ݁ଶఈ||మ  . 
It is then clear that there is NO constant ܥ such that 

݁ଶఈ||మ  ≤  ఈ||మ/ଶ݁ܥ 
for all ܽ ∈ ℂ. Therefore, there is NO constant ܥ  such that 

sup
ऊ∈ℂ

ଶ෫(ऊ)|ݒ |ଶ෫(ऊ)|ݑ |   ≤ ‖ܥ  ௨ܶ ௩ܶത‖ଶ 

for all ݑ and ݒ. In other words, the easy direction for Sarason’s conjecture in the cases of 
Hardy and Bergman spaces becomes difficult for Fock spaces. 
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List of Symbols 

 
Symbol Page 

 ଵ : Lebesgue space 1ܮ
meas            : measure  1 
 ஶ : Essential Lebesgue space 1ܮ
ܹଵ,ே           : Sobolev space 1 
osc            : Oscillation 1 

ܹ
ଵ,           : Sobolev space 1 

sup           : Supremum 2 
 ଵ : Lebesgue integral in the Real line 4ܮ
ess           : essential 4 
  : Lebesgue space 4ܮ
inf            : Infimum   4 
Loc            : locally  5 
PSR            : Poincaré Sobolev Rearrangement 17 
a. e : Almost Everywhere  20 
max            : maximum   20 
PDES            : partial differential equations  34 
Lip : Lipschtiz 34 
 (௫) : Lebesgue space with variable exponent  37ܮ
 Almost monotone deceasing sequence  37 : ܵܦܯܣ
 Almost monotone increasing sequence  37 : ܵܫܯܣ
ܹ(௫) : Sobolev with Lebesgue variable exponent  38 
 (.) : Hardy space of variable exponent  50ܪ

௪ܹ
(.) : Lebesgue space with variable exponent with a weight  69 

ܹ(.),௪
ఈ  : Sobolev space with variable exponent with a weight  69 

supp           : Support 96 
  : Dual of Lebesgue space 119ܮ
u. s. c.           : upper strictly convex 126 
l. s. c.           : lower strictly convex 126 
int : Interior 175 
ext : exterior 175 
diag           : diagonal 209 
BMO            : Bounded Meau Oscillation 226 
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