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ABSTARACT 

     Various methods to study the electric charge distribution on conductors were 

presented in details in this thesis. The electrostatic potential is mediated by 

potential law that varies as inverse power potential instead of coulomb potential.   

       To simplify this physical problem and its solution, the method of images 

was used for the different way.  Inverse power potential was used to determine 

the position and magnitude of the image charges on different shapes of 

conductors. Then the charge density distribution on these conductors was 

calculated.  

      The charge density distributions on the surface of these conductors in case 

of inverse power potential are plotted using Maple program and compared with 

the charge distribution in the case of using Coulomb law. 
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 انًستخهص

عهًٍت يخخصصت اث فً ْزِ انذساست حى حمذٌى بعط انطشق انعهًٍت  انخً َششث فً دٔس

شئ عٍ انشسُت ع انشسُت انكٓشبٍت عهى انًٕصلاث فً زانت  أٌ اندٓذ انُاٌنذساست كٍفٍت حٕص

انخشبٍع انعكسً نكٕنٕو ٌٔخغٍش ٔفك خٓذ  قانونانُمطٍت ٌخخهف عٍ اندٓذ انًسسٕب بٕاسطت 

 . كسًعٕي انمان

كًا اسخخذيج طشٌمت انصٕس فً ْزِ انشسانت نذساست حٕصٌع انشسُت انكٓشبٍت عهى 

انًٕصلاث. ٔرنك بافخشاض أٌ اندٓذ انُاشئ عٍ انشسُت انُمطٍت ٌخخهف عٍ اندٓذ 

.  زٍث حى كسًعٕي انمانسسٕب بٕاسطت لإٌَ انخشبٍع انعكسً نكٕنٕو ٌٔخغٍش ٔفك خٓذ انً

فً ْزِ انذساست نخسذٌذ  بطشٌمت يخخهفّبذلا يٍ خٓذ كٕنٕو  كسًعٕي انماناسخخذاو خٓذ 

يٕظع صٕسة انشسُت انكٓشبٍت ٔ يمذاسْا أٔلا ٔيٍ ثى إٌداد كثافت انشسُت انسطسٍت باشخماق 

 ذة انًخدّ انعًٕدي.اندٓذ بانُسبت نٕز

عهى ًَارج يخخهفت يٍ انًٕصلاث )يٕصم  كسًعٕي انمانحى حطبٍك طشٌمت انصٕس ندٓذ 

عهى شكم نٕذ يخصم بالأسض ٔ يٕصم كشٔي يخصم بالأسض ٔ يٕصم كشٔي يشسٌٕ 

فً  Mapleيعضٔل(.بعذ زساب كثافت انشسُت انسطسٍت نكم ْزِ انًُارج . اسخخذو بشَايح 

يع حهك  انُخائح انًسسٕبت باسخخذاو لإٌَ  اسَت انُخائح انًخسصم عهٍٓسسى انًُسٍُاث ٔ يما

انخشبٍع انعكسً نكٕنٕو. يٍ خلال يماسَت انُخائح احعسج اًٍْت ًَٕرج انصٕسة فً حبسٍط 

 انًسأنت كًا أيكٍ إٌداد كثافت انشسُت انسطسٍت عهى سطر انًٕصلاث. 
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1.1 Introduction 

Coulomb’s Law is a fundamental principle describing the electric force between 

isolated charges, and represents the first quantitative law achieved in 

electromagnetism. The degree of confidence with which the law is 

experimentally known to hold was investigated after the law was put forth by 

Coulomb in 1785. The electrodynamics for massive particles suggests that a 

photon with a finite rest mass will cause a deviation from the inverse square 

law. So, modern interpretations of the possible deviation from Coulomb’s 

inverse square law are usually associated with the non-zero photon mass. In this 

article, we first give a historical review of the foundation of Coulomb’s inverse 

square law. Then, the experimental searches for validity of Coulomb’s Law, 

particularly in its inverse square nature, are generally introduced. Based 

onProca’s equations, the unique. 

simplest relativistic generalization of Maxwell’s equations, the link between the 

deviation from Coulomb’s Law and the upper limit on the photon rest mass 

based on the concentric-spheres apparatus established in the classical 

experiment of Cavendish is reviewed. Up to now, all the experiments show no 

evidence for a positive value, and the experimental result was customarily 

expressed as an upper limit on the deviation or on the photon rest mass. As a 

representative method with the double mission of testing of the validity of 

Coulomb’s Law and of the photon rest mass, possible improvements for this 

kind of experiment are discussed. 

The famous inverse square law in electrostatics, first published in 1785 by 

Charles Augustin de Coulomb, is known as the fundamental law of 

electrostatics. As the first quantitative law in the history of electricity, 

Coulomb’s inverse square law has played a crucial role and made great 

contributions to the development of electricity and magnetism, and other related 

fields. Coulomb’s Law, along with  the  principle. 
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of superposition, gives Gauss’s Law and the conservative nature of the electric 

field, which may be generalized using the Lorentz transformation to obtain 

Maxwell’s equations. Even then, the validity of Coulomb’s Law has been 

tested. 

Continuously over the past centuries. Based on the classical ingenious scheme 

devised by Henry Cavendish [1,2], modern experiments usually yield not only 

the result of possible deviation from Coulomb’s inverse square law, but that of 

the upper limit on the photon rest mass [3,7]. 

The photon, as the fundamental particle of electromagnetic interaction, is 

generally assumed to be mass less. This hypothesis is based on the fact that a 

photon cannot stand still for ever. However, a nonzero photon mass could be so 

small that present-day experiments cannot probe it. Taking into account the 

uncertainty principle, the photon mass could be estimated using   2ctm  
to 

have a magnitude of about 10
−66

 g while the age of the universe is about 10
10

 

years, which gives the ultimate limit for meaningful experimental measurements 

of the photon mass. Up to now, there is no positive result for the photon rest 

mass or the deviation from Coulomb’s inverse square law. The experimental 

results just serve to set an upper bound to the photon mass and the deviation 

from the exponent 2 in the inverse square law. The aim of this paper is to give a 

review of the main ideas and results of the investigations intended to test 

Coulomb’s Law and pertinently to improve the upper limit on the photon rest 

mass. 

1.2 The Problem 

The great triumphs of Maxwell an electromagnetism and quantum 

electrodynamics were based on the hypothesis that the photon should be a 

particle with zero rest mass. The photon could carry energy and momentum 

from place to place and light rays would propagate in vacuum with a constant 

velocity c being independent of inertial frames, which was the second postulate 
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in Einstein’s theory of special relativity. As a result, the velocity of a particle 

with finite mass would never reach the constant c. The fact that light could not 

stand still made the assumption reasonable and it was difficult to find any 

counter-examples in theory. Still, experimental efforts to improve the limits on 

the rest mass of the photonin other words, to challenge the accepted theories of 

the timehave continued since the time of Cavendish or earlier, even before the 

concept of the photon was introduced.So in case of nonzero photon mass the 

universal constant c will be different and Maxwell equation will reduce to Proca 

form. 

1.3 The Aim of Study 

The aim of this thesis is to construct moral idea to study charge distribution in case 

of potential deviating from inverse square coulombs law and follows inverse 

power law. 

1.4 General Method and Technical Background 

From the time of Cavendish or earlier, Coulomb’s inverse square law has been 

tested directly or indirectly. Experiments with higher precision and involving 

different dimensions have been performed over the years. It is now customary to 

quote tests of the inverse square law in one of the following two ways [8]: 

(a) Assume that the force varies with the distance r between two point charges 

according to the phenomenological formula 
r

q2

1
and quote a value or limit for q, 

which represents departure from the Coulomb inverse square law. 

(b) Assume that the electrostatic potential has the ‘inverse power law as 
 

  
instead 

of the Coulomb form 1/r and quote a value or limit forn. Since tcm   the test 

of the inverse square law is sometimes expressed in terms of an upper limit on the 

photon rest mass. Geomagnetic and extraterrestrial experiments give μγ or mγ , 

while laboratory experiments usually give q and perhaps μγ or mγ . 
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(c) Using method of images to calculate charge density and maple program to 

construct graphical representation 

1.5 Presentation of the thesis 

     This thesis contain five chapters, chapter one was an introduction in chapter 

two photon rest mass and effect of nonzero mass of photon on charge 

distribution, in chapter threeConductors in the Electrical fieldChapter fourthe 

method of imageschapter five results and conclusion and recommendations. 
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2.1 Introduction    

The famous inverse square law in electrostatics, first published in 1785 by Charles 

Augustine de Coulomb, is known as the fundamental law of electrostatics. As the 

first quantitative law in the history of electricity, Coulomb’s inverse square law 

has played a crucial role and made great contributions to the development of 

electricity and magnetism, and other related fields. Coulomb’s Law, along with 

the principle of superposition, gives Gauss’s Law and the conservative nature of 

the electric field, which may be generalized using the Lorentz transformation to 

obtain Maxwell’s equations. Even then, the validity of Coulomb’s Law has been 

tested continuously over the past centuries. Based on the classical ingenious 

scheme devised by Henry Cavendish [1, 2], modern experiments usually yield not 

only the result of possible deviation from Coulomb’s inverse square law, but that 

of the upper limit on the photon rest mass [3, 7]. 

The photon, as the fundamental particle of electromagnetic interaction, is 

generally assumed to be massless. This hypothesis is based on the fact that a 

photon cannot stand still for ever. However, a nonzero photon mass could be so 

small that present-day experiments cannot probe it. Taking into account the 

uncertainty principle, the photon mass could be estimated using   2ctm   to 

have a magnitude of about 10−
66

 g while the age of the universe is about 10
10

 

years, which gives the ultimate limit for meaningful experimental measurements 

of the photon mass. Up to now, there is no positive result for the photon rest mass 

or the deviation from Coulomb’s inverse square law. The experimental results just 

serve to set an upper bound to the photon mass and the deviation from the 

exponent 2 in the inverse square law.  
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2.2 The Photon Rest Mass and Related Experiments 

2.2.1General Introduction 

The great triumphs of Maxwellian electromagnetism and quantum 

electrodynamics were based on the hypothesis that the photon should be a particle 

with zero rest mass. The photon could carry energy and momentum from place to 

place and light rays would propagate in vacuum with a constant velocity c being 

independent of inertial frames, which was the second postulate in Einstein’s 

theory of special relativity. As a result, the velocity of a particle with finite mass 

would never reach the constant c. The fact that light could not stand still made the 

assumption reasonable and it was difficult to find any counter-examples in theory. 

Still, experimental efforts to improve the limits on the rest mass of the photon—in 

other words, to challenge the accepted theories of the time—have continued since 

the time of Cavendish or earlier, even before the concept of the photon was 

introduced. 

A finite photon mass may be accommodated in a unique way by changing the 

inhomogeneous Maxwell equations to the Proca equations, the theoretical 

expressions of possible nonzero photon rest mass introduced by Proca [9] and de 

Broglie [10]. In the presence of sources ρ and J, these 

equations may be written as (SI units) 

 

                                                                                             (2.1) 

 

                                                                                                   (2.2) 

  

                                                                                                          (2.3) 

 

                                                                                  (2.4) 

Together with the field strengths E = −∇ φ−∂A/∂t, B = ∇ ×A and the Lorentz 

condition 
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

0.  B

A
t

JB 2

000  




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                                                                                            (2.5) 

Where φ and A are the scalar and the vector potentials, which uniquely determine 

the field, and )(1 cm  is a characteristic length, with 0m  as the photon 

mass. If 0m , the Proca equations would reduce to Maxwell’s equations. The 

Proca equations, the relativistic ally invariant modification of Maxwell’s 

equations, provide a complete and self-consistent description of electromagnetic  

Phenomena [7]. 

In four-dimensional space the Proca equations can be rewritten as 

 

(□
2
 - μγ)Aμ= -μ0Jμ                                                                                     (2.6)                    
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Table 2.1.shows several important limits on the photon rest mass m . 

Author (date)                             Ref.  Experimental scheme                               Upper limit on mγ /g 

Terrestrial results 

Goldhaber et al (1971)                   [4] Speed of light    5.6 × 10−42 

Williams et al (1971)                     [13] Test of Coulomb’s law                                               1.6 × 10-42 

Chernikov et al (1992)                   [14] Test of Ampere’s law                                                 8.4 × 10-46 

Lakes (1998)                                  [15] Static torsion balance                                                    2 × 10-50 

Luo et al (2003)    [16] Dynamic torsion balance                                           1.2 × 10-50 

Extraterrestrial results 

de Broglie (1940)      [10]Dispersion of starlight                                                   0.8 × 10-39 

Feinberg (1969) [17]Dispersion of starlight                                                            10-44 

Schaefer (1999) [18] Dispersion of gamma ray bursts                                   4.2 × 10-44 

Davis et al (1975) [19]Analysis of Jupiter’s magnetic field                                 8 × 10-49 

Fischbach et al (1994) [20] Analysis of Earth’s magnetic field                                1.0 × 10-48 

Ryutov (1997) [21]Solar wind magnetic f field and plasma                                  10-49 

Gintsburg (1964) [22] Altitude dependence of geomagnetic field                      3 × 10-48 

Patel (1965) [23] Alfv´en waves in Earth’s magnetosphere                        4 × 10-47 

Hollweg (1974) [24] Alfv´en waves in interplanetary medium                      1.3 × 10
-48 

Barnes et al (1975) [25] Hydromagnetic waves                                                      3 × 10-50 

DeBernadis et al (1984) [26]Cosmic ack ground radiation                                            3 × 10-51 

Williams et al (1971) [27]Galactic magnetic field                                                     3 × 10-56 

Chibisov (1976) [5]Stability of the galaxies                                                       3 × 10-60 

 

Where Aμand Jμare the 4-vector of potential (A, iφ/c) and current density (J, 

icρ), respectively. The d’Alembertiansymbol □
2
is equal to ∇ 2

−∂
2
/∂ (ct)

 2
. In free 

space, the aboveequation reduces to 

(□
2
 - μγ)Aμ= 0                                                                                          

(2.7) 

Which is essentially the Klein–Gordon equation for the photon. The 

characteristic length scale 1

 , namely the reduced Compton wavelength of the 

photon, is an effective range in which the electromagnetic interaction would 

exhibit an exponential damping by exp( 1

 r). 
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2.3 Effect of Massive Photon on the Static Electric Field 

Once the photon is provided with a finite mass, three immediate consequences 

may be deduced from the Proca equations: the frequency dependence of the 

velocity of light propagating in free space; the third state of the polarization 

direction, namely the ‘longitudinal photon’; and some modifications in the 

characteristics of classical static fields. All those effects are useful approaches 

for laboratory experiments and cosmological observations to determine the 

upper bound on the photon mass. 

What is of interest in this paper is the effect of a massive photon in a static 

electric field. In the case of a massive photon, the wave equation will be 

modified for all potentials (including the Coulomb potential) in the form 

 

                                                                            (2.8) 

For a point charge and in the static case, this yields a Yukawa type potential, 

 

                                                                               (2.9) 

and the electric field  

 r
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










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4
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(2.10) 

Inspection of equations (2.8),(2.10) shows that if rr 1

 then the inverse 

square law of forces is a good approximation, but if rr 1

 , then the force law 

departs from the prediction of Maxwell’s equations. Up to now, finding the 

exponential deviation from Coulomb’s Law provides the most reliable test for 

the photon rest mass in terrestrial experiments, in that those laboratory tests 

have the advantage of free variation of the experimental parameters [7]. As for 

large scale observations, the limits usually come from the analyses of 

astronomical data of the cosmological magnetic field. However, those results 

are essentially order-of-magnitude arguments due to the incomplete knowledge 
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about the structure of the large scale magnetic field [11, 12]. In section 4 we 

will review those laboratory experiments in detail. 
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3.1 Introduction 

Conductors are in all electric devices. They are as common in electrostatics as 

in other areas of electrical engineering. Nevertheless, it is important to 

understand how they behave in electrostatics. This behavior explains some 

useful electromagnetic devices. 

In addition, in many non-electrostatic applications conductors behave similarly 

to the way they do in electrostatics. So this chapter is important beyond its 

application to electrostatics. 

3.2 Behavior of Conductors in the Electrostatic Field 

Conductors have a relatively large proportion of freely movable electric 

charges. The best conductors are metallic (silver, aluminum, copper, gold, etc.). 

They usually have one free electron per atom, an electron that is not bound to its 

atom, but moves freely in the space between atoms. Because of their small 

mass, these free electrons move in response to any electric field, however small, 

that exists inside a conductor. The same is true for all other conductors, e.g., 

liquid solutions and semiconductors, except that inside such conductors both 

positive and negative free charges can exist. The number of free charge carriers 

is smaller and their mass greater than in metals and electrons, but this has no 

influence on the behavior of conductors in the electrostatic field. 

Let us make an imaginary experiment. Assume that this book is a conductor. 

Suppose that it has both free positive and negative charges in equal number. If 

the book is not situated in the electric field, the number of positive and negative 

free charge inside any small volume is the same, and there is no surplus electric 

charge at any point in the book. To be more picturesque, imagine that positive 

charges are blue and negative yellow. If we mix blue and yellow we get green, 

so your book will look green both over its surface and at any point inside. 
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What would happen if we establish an electric field in the book, for example, by 

means of two electrodes on the two sides of the book, charged with equal 

charges of opposite sign? Let the positive electrode be on your left. The electric 

field in the book will then be directed from left to right. You would notice that 

blue (positive) charges move from left to right (repelled by the positive 

electrode), and that yellow (negative) charges move from right to left. 

consequently, the right side of the book will become progressively more blue 

(positive), and its left side progressively more yellow (negative). 

The surplus charges in the body created in this manner are known as electrostat-

ically induced charges. They are, of course, the source of an electric field. 

Because the positive induced charge is on the right side of the book, and the 

negative on its left side, this electric field is directed from right to left, i.e., 

opposite to the initial electric field that produced the charge. As the amount of 

the induced charge increases, the total field inside the book becomes 

progressively smaller and the motion of charges inside the book decays. In the 

end, the electric field of induced charges at all points inside the book cancels out 

the initial electric field (due to the two charged electrodes). We thus reach 

electrostatic equilibrium, in which there can be no electric field at any point 

inside our conductive book. 

          Form this simple imaginary experiment, we conclude the following:  

if we have a conducting body in an electrostatic field, and wait until the drift 

motion of charges under the influence of field stops (in reality, an extremely 

rapid process) the electric field of induced charges will exactly cancel out the 

external field, and the total electric field at all points of a conductor will be zero. 

Thus the first fundamental conclusion is 

 Inelectrostatic E= 0 inside conductor                                                        (3.1) 
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With this knowledge, let us apply gauss law to an arbitrary closed surface S that 

is completely inside the conductor. Because vector E is zero at all points on S, 

the total charge enclosed by S must be zero. This means that all the excess 

charge (if any) must be distributed over the surfaces of conductor: 

In electrostatics, a conductor has charges only on its surface.                     (3.2) 

 Because there is no field inside conductors, the tangential component of the 

electric field strength, E, on the very surface of conductors is also zero 

(otherwise it would produce organized motion of charge on its surface): 

In electrostatics, 0tan gentialE  on conductor surfaces                                        (3.3) 

Because the tangential component of E is zero on conductor surfaces, the 

potential difference between any two points of a conductor is zero. This means 

that the surface of a conductor in electrostatics is equipotential. Because there is 

no E inside conductors either, it follows that all points of a conductor have the 

same potential: 

In electrostatics, the surface and volume of a conductor are equipotential     (3.4) 

Finally, a simple relation exists between the normal component, En of E on a 

conductor surface, and local surface charge density, σ. To derive this relation, 

consider a small cylindrical surface, similar to a coin, with a base ∆S and a 

height ∆h → 0. One base is in the conductor and the other in air (Figure. 3.1). 

Let us apply Gauss' law to the closed surface of the cylinder. There is no flux of 

E through the base inside the conductor (zero area). The flux of E through the 

cylinder is thus equal only to  
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Figure 3.1 A small cylinder of negligible height with one base in the conductor and the other 

in airEn ∆S. Because the charge enclosed is σ ∆S, using Gauss' law we obtain that on the air 

side of a conductor surface. 

 

0


nE

                                                                                                            
 (3.5) 

Normal component of electric field strength close to conductor surfacethe 

simple conclusions in Equation. (3.1) through (3.5) are all we need to know to 

understand the behavior of conductors in the electrostatic field. 

3.2.1 Charged Metal Ball. 

 Suppose that a metal ball of radius a is situated in a vacuum and has a charge 

How will the charge be distributed over its surface [We know from Equation 

(3.2) that Q exists only over the conductor surface.] Because equal charges 

repel, due to symmetry the charge distribution over the surface of the ball must 

be uniform. The surface charge density is therefore simple. 24 aQ    Let us 

determine E and V due to this charge.  

          Due to the uniform charge distribution, vector E is radial and has the 

same magnitude on any spherical surface concentric to the ball. (Such a surface 

was said to be an equipotential surface. on can use Gauss' law to find the 

magnitude of vector E on any of these surfaces: 

0

24)().(



Q

rrEdsrE
sphere

  

Note that the sphere encloses no charge if r < a. thus 
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0)( rE ar                                                                                                     (3.6) 

This expression is the same as the one for the field of a point charge Q at the 

center of the ball. On the surface of the ball (r=a), 
0

)(


aE as predicted by   

Equation. (3.5). It follows that outside the ball, the potential is the same as that 

of a point charge Q placed at the center of the ball. Inside the ball the potential 

is constant, equal to that on the ball surface, that is 

004
)(







a

a

Q
av                                                                                                (3.7) 

3.2.2 Charged Metal Wire 

.Consider a very long (theoretical, infinitely long) straight metal wire of circular 

cross section of radius a. let it be charged with Q' per unit length. What are the 

field and potential everywhere around the wire? 

            Due to symmetry, the charge will be distributed uniformly over the wire 

surface. It is not difficult to conclude that, as the result of this symmetrical 

charge distribution, vector E is radial. Its magnitude depends only on the normal 

distance r from the wire axis and can be determined by Gauss' law. 

             For the application of Gauss' law, we adopt the cylindrical surface 

shown in (Figure3.2). There is not flux through the cylinder bases because 

vector E is tangential to them. The total flux through the closed surface is 

therefore equal to the flux through its cylindrical part. Applying Gauss' law 

gives 
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Figure.3.2.Segment of an infinitely long straight wire of circular cross section of radius a. 
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Note that if ar  the surface encloses no charge. Thus, 

r

Q
rE

02
)(




 ar        ,       0)( rE  ar                                                        (3.8) 

(Electric field of straight, infinitely long, uniformly charged thin wire) 

Because the surface charge density on the cylinder is )(),2( rEaQ    the wire 

surface can be written in the form. 0)( aE  This of course, is the result as 

obtained by applying Equation (3.5). 

The determination of potential is slightly more complicated consider a point P at 

a containing P and the wire axis. Recall that we can adopt any path from P to R 

in determining the potential. We choose the simplest: first a radial line from P to 

the distance rR from the wire axis, and then a line parallel to the axis to R, 

(Figure.3.2). Along the first path segment, E and the line element are parallel, so

     drrEdLrEdLrEdIE . , because the line element, dL , becomes the 

differential increase in drr, . along the second poth segment 0. dIE . Thus we 

have  



 
 

17 
 

Or 
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
                                                                                                (3.9) 

(Potential of straight, infinitely long, uniformly charged thin wire) 

We see that in this case we cannot adopt the reference point at infinity, because 

log   →   . 

The expressions in Equations (3.8) and (3.9) are also useful for noninfinite 

wires, as long as we are interested in the field at points close to the wire and 

away from the ends. Because metallic wires are used often in electrical 

engineering, these equations are important. 

3.3 Charge Distribution on Conductive Bodies of Arbitrary Shapes  

Only for symmetrical isolated conductors is the charge distribution on their 

surface known actually, inferred from symmetry. For conducting bodies of 

arbitrary shape the determination of charge distribution is one of the most 

important and the most difficult problems in electrostatics. Except in a few 

relatively simple cases, it can be determined only numerically. For many 

applications, it is useful to have a roughidea what the charge distribution is like. 

In estimating the charge distribution, the following simple reasoning can be of 

significant help. 

We know that on an isolated metal sphere the charge is distributed uniformly. 

We also know that if the radius of the sphere is a and the surface charge density 

on it is , then the potential of sphere is 0)( aaV   (Equation, 3.7). Let us use 

this expression to estimate the charge distribution on a more complex 

conducting body. 

Consider a charged metal body sketched in (Figure.3.3). It consists of a larger 

sphere of radius a, onto which are pressed part of two smaller spheres of radii b 

and c. 
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Close to points A, B, and C indicated in the figure, the surface charge density is 

not the same. These three points are, however, at the same potential, V because 

the body is conductive. because charges that are close to a certain point 

predominantly contribute to the potential at the point, roughly speaking the 

surface charge density A  is approximately that of a sphere of radius a at the 

potential V. there for, according to Equation.(3.7) avA 0   .Similarly, 

bvB 0  , and cvc 0   .Thus, for the conducting body shown in (Figure.3.3), 

cBA cba   . 

 

Figure.3.3. A charged metal body 

 

Because the surfaces charge density is proportional to the local electric field 

strength, cBA cEbEaE  . 

These are simple but important approximate result. They tell us that the surface 

charge density at different points a metal body is approximately inversely 

proportional to the curvature of the surface of the body at these points. This 

means that the largest charge density and electric field strength on charged 

conductive bodies is around sharp parts of the body. 

An application of Equation (3.11), for example, is a simple method for 

discharging aircraft. During flight, the plane becomes charged due to air 
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friction. this charge could produce large fields during landing that in turn could 

produce a spark resulting in parts, the charge density and, consequently, the 

electric field at these points become very high and the air ionizes(i.e., becomes 

conductive). A large portion of the charge "leaks" through these conducting 

channels into the atmosphere. 

3.4 Charged Conductors 

Now suppose we inject charge into the conductor. Since like charges repel, the 

injected charges will move as far away from each other as possible, without 

leaving the conductor. This implies that the charge must reside on the surface of 

the conductor. Moreover, the field within the conductor must be zero. Why? 

Because the conductor is in equilibrium. By definition, this means that there is 

no net migration of charge. If there is no net migration of charge, this implies 

that the free charges experience a net electric force of zero, that is, zero electric 

field. 

 

 

 

Figure.3.4Injected Charge intotheConductor 
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3.4.1 A Hollow Conductor 

Consider a conductor with a net charge of +1 μC. As noted, the charges will 

migrate rapidly to the surface of the conductor and distribute themselves in such 

a way that the electric field within the conductor is zero. Suppose that the cavity 

within the conductor contains a +2 μC charge. Because the field within the 

conductor is zero, the field on the Gaussian surface shown is necessarily zero. 

Therefore, according to Gauss’s law, the net charge enclosed by the Gaussian 

surface must also be zero. 

The only way the net charge enclosed by the Gaussian surface can be zero is if, 

in addition to the +2μC in the cavity, there is also within the Gaussian surface a 

charge of –2μC. Where does that charge come from? It comes from the free 

charges in the conductor, which are attracted to the +2μC charge. Where does 

that charge reside? In the only place it can: on the inner surface of theconductor. 

Moreover, the inner surface charge is distributed so that its field plus that of the 

+2μC charge sum to zero, as it must, outside the cavity, that is, within the 

conductor. 

But since the net charge of the conductor is +1μC, and its inner surface has a 

charge of –2μC, it follows from charge conservation that a charge of +3μC must 

exist somewhere in or on the conductor. A net charge cannot reside in a 

conductor in equilibrium. Nor can it reside on the inner surface, because if it did 

the net charge there would be –2μC + 3μC = 1μC, contradicting Gauss’s law. 

Therefore, the +3μC charge must reside on the conductor’s outer surface. 
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Figure 3.5 a conductor with a net charge  

 

3.4.2 A Hollow Spherical Conductor 

Consider a neutral spherical conductor in equilibrium with an internal cavity 

containing a net charge –q. The fact that the conductor is neutral means that its 

net charge is zero 

1. The charge on the inner surface of the cavity is +q.  

2. The charge on the outer surface of the conductor must therefore be –q.  

3. Amazingly, in this case, this charge is uniformly distributed. Because the 

inner surface charge exactly cancels the field in the conductor due to the charge 

in the cavity and, consequently, the conductor behaves exactly like a neutral 

spherical conductor without a cavity. 
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Figure.3.6 Neutral spherical conductor in equilibrium with an internal cavity containing a net 

charge –q. 
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4.1 Conductors 

In a conductor, there are free charges that move in the presence of an electric 

field. A consequence is that in a purely electrostatic situation, the electric field 

inside a conductor must be zero. Since the electric field is zero inside the 

conductor, the electric potential is uniform throughout the conductor. 

Any charge on the conductor must reside on the surface of the conductor. 

If there are charge free cavities inside the conductor, then these cavities also 

have uniform potential equal to that of the conductor. This follows from the 

uniqueness of the solution to the Laplace equation with Dirichlet boundary 

conditions. Since a cavity has uniform potential the electric field inside the 

cavity is zero as it is inside the conductor. Since the field is zero in a cavity and 

conductor there can be no charges on the walls of a cavity. Any charges must lie 

on the outside of the conductor. 

Since the surface of the conductor is an equipotential, the components of 

electric field in the plane tangent to the conductor are zero. Hence the field is 

perpendicular to the surface of the conductor. By applying the divergence 

theorem to a ‘Gaussian pillbox’, i.e. a small cylinder with axis normal to the 

surface of the conductor, we find that the surface charge density σ is related to 

the electric field just outside the conductor by 4ps = n ×E, where n is the 

outward normal unit vector. 

 

Figure 4.1the field is perpendicular to the surface of the conductor. 
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4.2 Method of Images 

The method of images is useful for finding the potential of a charge distribution 

in the presence of grounded conductors of simple geometry. The simplest case 

is when the surface of the conductor is an infinite plane. Since by definition the 

potential of a grounded conductor is zero (the same as the potential at infinity), 

the potential on the side of the conductor containingthe charge is the same as for 

the original charge distribution plus a charge distribution of opposite sign 

symmetrically placed with respect to the location of the surface of the conductor 

but with the conductor removed. 

Note that the force on the charge q is directed towards the conductor. The work 

function of a metal is largely the work needed to remove an electron in the 

presence of its attractive image force. 

 

Figure (4.2) grounded conducting plate with charge q located at distanced and its 

image            . 

 

The method of images can also be used to find the potential due to a charge 

inside or outside agrounded spherical surface. For example, consider a point 

charge q, a distance d from the center of a sphere of radius a where d > a. Since 

there is azimuthal symmetry about the line through the charge and the center of 
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the sphere, we look for a solution involving an image charge –q′ placed a 

distance d’’ from thecenter of the sphere on the symmetry axis.  

 

 

 

Figure (4.3) grounded conducting sphere with charge q located at distance d and its 

image            . 

 

The potential due to a charge inside or outside agrounded spherical surface 

Let n be a unit vector along the symmetry axis pointingaway from the center of 

the sphere. The potential at position r is  
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4.3 The Potential on The Sphere is 
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Makes the potential zero on the sphere. Consider two vectors ba  and ba  . 

The difference in the squares of the lengths of these two vectors is   2221 ba   

. Hence if a and b have the same length, ba  and ba   also have the same 
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length. Since rˆ and n are both unit vectors, we conclude that the above choice 

for q′ and d′ makes the potential zero on the spherical surface. 

The location and magnitude of the image charge are then 
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(4.4) 

The potential outside the sphere is 
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(4.5) 

Where d = dn is the position of the point charge, q. 

The force on the charge q from the grounded sphere is the same as that from the 

image charge. Theonly non-zero component of this force is that along the 

symmetry axis 
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(4.6) 

Note that at a large distance from the sphere, the force varies as the inverse cube 

of the separation. Thisis because the charge distribution on the sphere is induced 

by the charge q. 

4.4 The Potential of a Point Charge in The Presence of an Insulated, 

Charge Spherical Conductor 

Suppose the total charge on the spherical conductor is Q. The charged induced 

on the conductor bythe point charge is -q′. Hence the added charge is Q+q′. This 

additional charge distributes itself uniformlyon the surface of the spherical 

conductor to give an equipotential surface. The potential is 
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The potential outside a grounded conducting sphere placed in a uniform electric 

field. 
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The electric field near the midpoint of a line connecting charges Q and –Q, 

separated by a distance 2R is nearly uniform over distances small compared to 

R. The magnitude of the nearly uniform field is 

20

2

R

Q
E 

                                                                                                                                                       
(4.8) 

and is directed towards the charge –Q. By letting Q and R go to infinity, 

keeping E0 fixed, we can use the method of images to find the potential outside 

a grounded conducting sphere placed in a uniform field. Consider the 

arrangement below: 

 

 

Figure (4.4) grounded charged conducting sphere Q with charge q located at distance d and 

its image              

 

Using the method of images the potential outside the sphere is 
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With the angle θ as shown, the potential is 
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For R >> r, series expansion gives 
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Replacing 2Q/R
2
 by E0, and letting R go to infinity, we finally get 
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Where the first term is the potential due to a uniform field, and the second is 

that for a dipole aligned ina direction parallel to the field. 

The charge density on the sphere is 
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The net charge on the sphere is zero. 
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5.1 Introduction 

 

One of the foundations of electrostatics is Coulomb’s law. Major 

electromagnetic laws are built upon this law.As a direct consequence of this law 

(or its equivalent, Gauss’s law), any excess charge placed on a conductormust 

lie entirely on its surface. According to Coulomb’s law, excess charges given to 

a conductor will moveaway from each other and distribute themselves about the 

conductor in such a manner as to reduce the totalamount of repulsive forces 

within the conductor and that both the charge and the field inside the conductor 

willvanish [1],[6]. 

Testing this law has been a subject for many experiments over the past two and 

a half centuries [1],[2]. Anydeviation from inverse square law would suggest a 

finite range for electromagnetic force, implying a nonzerophoton rest mass. Rest 

mass of the photon provides indirect test of the deviations from exactness of 

Coulomb’law. If the photon mass is zero, Coulomb’s inverse-square law is the 

foundational law in electrostatics. Experimentsmeasure deviations in the 

exponent of inverse-square law and photon rest mass are increasingly exact. 

The most recent ion interferometry experiment measures the value of the 

exponent to be a few times 10
−22

 anddetect a photon rest mass at the level of9× 

10
−50

 grams [1]. Detection of any deviation from Coulomb’s lawwould have far-

reaching implications. Maxwell’s equations and much of the standard model 

would have to bemodified. The notion that absolute electrostatic potential is 

arbitrary would have to be abandoned, along withmany other tenets of classical 

electromagnetism [1]. 

In an interesting papers, Spencer [3] and Griffiths and Uvanovic [4] studied 

distribution of excess chargewithin a conductor for laws rather than inverse 

square law such as Yukawa’s law or power law. In these twocases they found 
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that some of the charge goes to the surface, and the remainder distributes itself 

uniformly overthe volume of the conductor. 

In this thesis we introduce the method of images to study the distribution of 

charges in cases where the potentialis depending on the photon rest of mass. 

And give a theoretical extension work to the experimental resultsthat detect a 

photon rest mass at the level of 9 × 10
−50

 grams and as a result a deviating from 

Coulomb’s Law. 

This thesis is also important to understand physics of molecules and electron 

transport through a single moleculewhich offers a highly promising new 

technology for the production of electronic chip. 

5.2  Method and Results 

5.2.1 Method of Images for Inverse Power Law Potential and Grounded 

Spherical Conductor 

The reaction field of a point charge due to surrounding medium can be 

represented by the method of imagecharge. The method of images allows us to 

solve certain differential form of electric potential problem withoutspecifically 

solving a differential equation of this problem. 

The potential Φ(x) everywhere outside a conducting sphere can be calculated by 

using method of images. 

As illustrated (Figure 5.1) we consider conducting sphere with radius R = a. For 

convenience, place the sphere atthe origin. We assume a point charge q outside 

the sphere and defined by position vector y. By symmetry,the image charge lie 

on the line connecting the charge and the origin of the sphere and will be 

located inside thesphere at position vector y. If the sphere is grounded then the 

potential everywhere on the sphere equal zero. 

Now we are able to calculate the magnitude and the position vector y′ of an 

image charge q′ that is requiredto make the potential equal zero on the surface 

of the grounded sphere. Total Yukawa potential [4] Φ(x) dueto the assumed 

charge q and its image charge q′ at any point P is given by Equation (5.1). 
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The reaction field of a point charge due to surrounding medium can be 

represented by the method of imagecharge. The method of images allows us to 

solve certain differential form of electric potential problem withoutspecifically 

solving a differential equation of this problem. 

The potential Φ(x) everywhere outside a conducting sphere can be calculated by 

using method of images. 

As illustrated (Figure.5.1) we consider conducting sphere with radius R = a. For 

convenience, place the sphere atthe origin. We assume a point charge q outside 

the sphere and defined by position vector y. By symmetry,the image charge lie 

on the line connecting the charge and the origin of the sphere and will be 

located inside thesphere at position vector y. If the sphere is grounded then the 

potential everywhere on the sphere equal zero. 

Now we are able to calculate the magnitude and the position vector y′ of an 

image charge q′ that is requiredto make the potential equal zero on the surface 

of the grounded sphere. Total inverse square law potential [4]Φ(x) dueto the 

assumed charge q and its image charge q′ at any point P is given by Equation 

(5.1). 
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                           (5.13) 
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Figure 5.1 Two-dimensional schematic illustration of a conducting sphere of radius a with a 

point charge q outside and image charge q′ inside. 

If the sphere is grounded, then the potential at the surface of the sphere 

vanishesΦ(x= a) = 0, thus: 

Where n̂ and nˆ are unit vectors in the direction of x and y respectively. To satisfy 

the boundary condition 

Φ(x= a) = 0 at R = a, we must have: 

More generally, the potential in the neighborhood of an uncharged grounded 

conducting sphere is given by 

Equation (5.4): 

Substitute Equation (5.5) in Equation (5.4) and then differentiate to get the 

actual induced charge density on thesurface of the grounded uncharged 

conducting sphere: 

The total charge on the sphere may be found by integrating Equation (5.6) over 

all angles. The total surface inducedcharge is equal to the magnitude of the 

image charge for Coulomb potential. But in case of Yukawa potentialthe total 

surface induced charge is less than the value of the image charge. This result 
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implies that smallportion of the induced charge distributed itself inside the 

volume of the conducting sphere. The rest of the inducedcharge is distributed 

itself on the surface of the conducting sphere. Some values of the total induced 

surfacecharge on grounded conducting sphere are given in Equation (5.15) and 

(5.16) for both Coulomb when n=1 and inverse power law potentials when 

n=1.1, 1.2 etc. Which are graphed on (Figures (5.2), (5.6)). 
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Figure (5.2). Charge distribution on grounded conducting sphere in existence charge q by 

means method of images in case y inverse power law and coulombs low at 1.1n , 

25.0ya  
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Figure (5.3) Charge distribution on grounded conducting sphere in existence charge q by 

means method of images in case y inverse power law and coulombs low at 5.1n , 

25.0ya  
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Figure (5.3). Charge distribution on grounded conducting sphere in existence charge q by 

means method of images in case y inverse power law and coulombs low at 2n , 25.0ya  
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Figure (5.4). Charge distribution on grounded conducting sphere in existence charge q by 

means method of images in case y inverse power law and coulombs low at 5.2n , 

25.0ya  
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Figure (5.5). Charge distribution on grounded conducting sphere in existence charge q by 

means method of images in case y inverse power law and coulombs low at 9.2n , 

25.0ya  
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Figure (5.6). Charge distribution on grounded conducting sphere in existence charge q by 

means method of images in case y inverse power law and coulombs low at 5.3n , 

25.0ya  
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5.3 Discussion 

From (Figure (5.2), (5.6)) it was clear that the area under those curves in case of 

inverse power law potential compared to coulombs law reveals quite difference 

(coulombs law state that charge on any conductor reside on the surface of the 

conductor and inverse power law indicate that some of charge reside on the 

surface while the remainder of this charge distribute its self in the interior 

volume of the conductor). 

5.4 Conclusion 

According to the previous result one concluded that in case of nonzero mass 

photon even very small mass it will be sensitive to this case and some of this 

charge will distribute in the interior volume of the conductor when power law 

used instead of coulomb law. 

5.5  Recommendation  

1. More experimental work should be held in order to find the upper limit of 

photon mass. 

2. The sensitivity of the equipment which are used to determine the photon 

mass bust modified to determine the mass of photon accurately.   
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 انبزَايج انًستخذو في رسى انًُحُياث

 

 اولا في حانت نوح يوصم )يوكاوا و كونوو(

with(plots): 

k:=1.; 

                                     1. 

d:=1.0; 

                                     1.0 

A:=plot((k/(r^2+d^2)+1.0/(r^2+d^2)^1.5)*exp(-

k*(r^2+d^2)^0.5),r=0..5,symbolsize=2,thickness=2,color=red,sym

bol=circle,legend="yukawa k=1.0 d=1"): 

B:=plot(1.0/(r^2+d^2)^1.5,r=0..5,color=blue,thickness=1,symbol=

diamond,legend="couolomb k=0  d=1"): 

display(A,B);      

 ثاَيا في حانت كزة يوصهت يتصم بالأرض)يوكاوا و كونوو(

 

with(plots): 

k:=0.00824; 

                                k := 0.00824 
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ay:=1.0/2.0; 

                             ay := 0.5000000000 

a:=1.0; 

                                  a := 1.0 

y:=a/2.0; 

                              y := 0.5000000000 

z:=(1.25-cos(theta))^0.5; 

                                                 0.5 

                         z := (1.25 - cos(theta))    

A:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-

2.*(ay)*cos(theta))^1.5,theta=0..Pi,color=red): 

ay:=1.0/4.0; 

                             ay := 0.2500000000 

y:=a/4.0; 

                              y := 0.2500000000 

z:=(17.0/16.0-(0.5)*cos(theta))^0.5; 

                                                      0.5 
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                   z := (1.062500000 - 0.5 cos(theta))    

B:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-

2.*(ay)*cos(theta))^1.5,theta=0..Pi,color=black): 

ay:=1.0/2.0; 

                             ay := 0.5000000000 

a:=1.0; 

                                  a := 1.0 

y:=a/2.0; 

                              y := 0.5000000000 

C:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue): 

ay:=1.0/4.0; 

                             ay := 0.2500000000 

a:=1.0; 

                                  a := 1.0 

y:=a/4.0; 

                              y := 0.2500000000 
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d:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=green): 

display(A,B,C,d); 

 ثانثا في حانت كزة يوصهت يشحوَت و يعزونت)يوكاوا و كونوو(

 

> with(plots): 

> ay:=1.0/2.0; 

 

> k:=0.00824; 

 

> a:=1.0; 

 

> y:=a/2.0; 

 

> Qq:=0.0; 

 

> z:=(1.25-cos(theta))^0.5; 

 

> A:=plot(ay*(1.0-ay^2)/(1+ay^2-2.*ay*cos(theta))^1.5-

(Qq+ay),theta=0..Pi): 

> B:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-2.*(ay)*cos(theta))^1.5+(-
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k*(ay-cos(theta))+k*(1-ay*cos(theta)))*exp(-k(y-a)*z)/z-1.0*exp(-

k(y-a)*z),theta=0..Pi): 

> display(A,B); 

> k:=0.00824; 

 

> ay:=1.0/2.0; 

 

> a:=1.0; 

 

> y:=a/2.0; 

 

> z=(1.25-cos(theta))^0.5; 

 

> Qq:=-1.0; 

 

> A:=plot(ay*(1.0-ay^2)/(1+ay^2-2.*ay*cos(theta))^1.5-

(Qq+ay),theta=0..Pi): 

> B:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-2.*(ay)*cos(theta))^1.5+(-

k*(ay-cos(theta))+k*(1-ay*cos(theta)))*exp(-k(y-a)*z)/z-1.0*exp(-

k(y-a)*z),theta=0..Pi): 

> display(A,B); 

> k:=0.00824; 
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> ay:=1.0/2.0; 

 

> a:=1.0; 

 

> y:=a/2.0; 

 

> z=(1.25-cos(theta))^0.5; 

 

> Qq:=1.0; 

 

> A:=plot(ay*(1.0-ay^2)/(1+ay^2-2.*ay*cos(theta))^1.5-

(Qq+ay),theta=0..Pi): 

> B:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-2.*(ay)*cos(theta))^1.5+(-

k*(ay-cos(theta))+k*(1-ay*cos(theta)))*exp(-k(y-a)*z)/z-1.0*exp(-

k(y-a)*z),theta=0..Pi): 

> display(A,B); 

k:=0.00824; 

                                   0.00824 

ay:=1.0/2.0; 

                                0.5000000000 
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a:=1.0; 

                                     1.0 

y:=a/2.0; 

                                0.5000000000 

z:=(1.25-cos(theta))^0.5; 

                                              0.5 

                           (1.25 - cos(theta))    

Qq:=3.0; 

A:=plot(ay*(1.0-ay^2)/(1+ay^2-2.*ay*cos(theta))^1.5-

(Qq+ay),theta=0..Pi): 

B:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-2.*(ay)*cos(theta))^1.5+(-

k*(ay-cos(theta))+k*(1-ay*cos(theta)))*exp(-k(y-a)*z)/z-1.0*exp(-

k(y-a)*z),theta=0..Pi): 

display(A,B);  

 سابعا في حانت نوح يتصم بالأرض )قاَوٌ انقوة انعكسي و كونوو(

> with(plots): 

> n:=1.1; 
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> d:=1.0; 

 

> 

B:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=red,thickness=3,leg

end="yukawa n=1.1"): 

> 

A:=plot(1/(r^2+d^2)^(1.5),r=0.0..4.0,color=blue,thickness=3,legen

d="coulomb n=1"): 

> n:=1.5; 

 

> 

C:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=black,thickness=3,l

egend="yukawa n=1.5"): 

> n:=2.0; 

 

> 

l:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=green,thickness=3,le

gend="yukawa n=2.0"): 

>  

> n:=2.5; 

 

> d:=1.0; 
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> 

e:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=orange,thickness=3,l

egend="yukawa n=2.5"): 

> n:=2.9; 

 

> 

f:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=brown,thickness=3,l

egend="yukawa n=2.9"): 

> n:=3.0; 

 

> 

g:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=yellow,thickness=4,l

egend="yukawa n=3.0"): 

 

> n:=3.5; 

 

> 

h:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=gray,thickness=4,le

gend="yukawa n=3.5"): 

> display(A,B,C,l,e,f,g,h); 

 خايسا كزة يوصهت يتصهت بالأرض )انقوة انعكسي و كونوو(

> with(plots): 

> ay:=1.0/2.0; 

 



 
 

55 
 

> n:=1.1; 

 

>  

> ay:=1.0/2.0; 

 

> 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-          

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=4,legend="

yukawa n=1.1"): 

> display(A,B); 

> ay:=1.0/2.0; 

 

> n:=1.5; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-          

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2),theta=0.0..Pi,color=red,thickness=4,l

egend="yukawa n=1.5"): 

> ay:=1.0/2.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-                     

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=4,legend="

yukawa n=1.5"): 
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> display(A,B); 

> ay:=1.0/2.0; 

 

> n:=2.9; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-                

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2),theta=0.0..Pi,color=red,thickness=4,l

egend="yukawa n=2.9"): 

> ay:=1.0/2.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=4,legend="

yukawa n=2.9"): 

> display(A,B); 

 

 سادسا في حانت كزة يعزونت و يشحوَت )انقوة انعكسي و كونوو(

> with(plots): 

> ay:=1.0/2.0; 

 

> n:=1.1; 

 

> Qq:=-3.0; 
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> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=re

d,thickness=2,legend="power law a/y=0.5 n=1.1 Qq=-3"): 

 

> ay:=1.0/2.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=2,legend="

Coulomb a/y=0.5 n=1.0"): 

 

> display(A,B); 

> ay:=1.0/4.0; 

 

> n:=1.1; 

 

> Qq:=-3.0; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=bl

ack,thickness=2,legend="power law a/y=0.25 n=1.1 Qq=-3"): 

> ay:=1.0/4.0; 
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> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=green,thickness=2,legend=

"Coulomb a/y=0.25"): 

> display(A,B); 

> ay:=1.0/2.0; 

 

> n:=1.1; 

 

> Qq:=-1.0; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=re

d,thickness=2,legend="power law a/y=0.5 n=1.1 Qq=-1.0"): 

> ay:=1.0/2.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=2,legend="

Coulomb a/y=0.5 n=1.0"): 

> display(A,B); 

> ay:=1.0/4.0; 

 

> n:=1.1; 

 

> Qq:=-1.0; 
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> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=bl

ack,thickness=2,legend="power law a/y=0.25 n=1.1 Qq=-1.0"): 

> ay:=1.0/4.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=green,thickness=2,legend=

"Coulomb a/y=0.25 n=1.0"): 

> display(A,B); 

> ay:=1.0/2.0; 

 

> n:=1.5; 

 

> Qq:=-1.0; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=re

d,thickness=2,legend="power law a/y=0.5 n=1.5 Qq==1.0"): 

> ay:=1.0/2.0; 
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> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=2,legend="

Coulomb a/y=0.5 n=1.0"): 

> display(A,B); 

> ay:=1.0/4.0; 

 

> n:=1.5; 

 

> Qq:=-1.0; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=bl

ack,thickness=2,legend="power law a/y=0.25 n=1.5 Qq=-1.0"): 

> ay:=1.0/4.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=green,thickness=2,legend=

"Coulomb a/y=0.25 n=1.0"): 

> display(A,B); 

> ay:=1.0/2.0; 

 

> n:=2.9; 

 

> Qq:=-1.0; 
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> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=re

d,thickness=2,legend="power law a/y=0.5 n=2.9 Qq=-1.0"): 

> ay:=1.0/2.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=2,legend="

Coulomb a/y=0.5 n=1.0"): 

> display(A,B); 

> ay:=1.0/4.0; 

 

> n:=2.9; 

 

> Qq:=-1.0; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=bl

ack,thickness=2,legend="power law a/y=0.25 n=2.9 Qq=-1.0"): 

> ay:=1.0/4.0; 
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> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=green,thickness=2,legend=

"Coulomb a/y=0.25 n=1.0"): 

> display(A,B); 

> ay:=1.0/2.0; 

 

>  

 

>  

 

>  

>  

 

>  

> DISPLAY(A,B); 

 

 


