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Abstract 

The bi-Lipschitz type inqualities with the quasi – isometries of harmonic 

quasiconformal mappings and between smooth Jordan domains are studied. The 

quasiconformal maps with controlled Laplacian and coefficients estimates for harmonic ߭ 

– Bloch mappings and harmonic k- quasiconformal mappings with the curvature of the 

boundary are considered. We give the smooth functions, partitions of unity, lines and 

spaces and partitions of unity on certain Banach spaces. We show the dual locally 

uniformaly rotund and convex norms, the structure of WUR Banach spaces. Smooth 

norms and approximation in Banach spaces of type C(k). the three lattice – point problems 

of Steinhaus and Steinhaus tilling problem for Banach spaces are dealt with. 
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ةالخلاص  
لبشيتز مع شبه الايزومتريس للرواسم شبه حافظات الزوايا التوافقية وبين  –المتباينات نوع ثنائية قمنا بدراسة 

مجالات جوردان الملساء. تم اعتبار الرواسم شبه حافظات الزوايا مع اللابلاسيان التحكمي وتقديرات المعاملات 
التوافقية مع انحناء الحدية. قمنا بإعطاء  k –ظات الزوايا التوافقية والرواسم شبه حاف ߭ -لأجل رواسم بلوش 

الدوال الملساء والتجزئيات الى الوحدة والخطوط والفضاء والتجزئيات الى الوحدة على فضاءات باناخ الأكيدة. تم 
م والنظائ WURتوضيح النظائم المحدبة والمستديرة المنتظمة الموضعية المزدوجة والبناء الى فضاءات باناخ 

الشبكة الثلاث الى شتاينهاوس  –. تعاملنا مع مسائل نقطة C(k)الملساء والتقريب في فضاءات باناخ الى النوع 
 ومسألة قرمدة شتاينهاوس لأجل فضاءات باناخ. 
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Introduction 

Pavlovic [14] proved that any quasiconformal and harmonic selfmapping F of the 
unit disk is bi-Lipschitz with respect to the Euclidean metric. We present some recent 
results on the topic of quasiconformal harmonic maps. The main result is that every 
quasiconformal harmonic mapping ݓ of ܥଵ;ఓ Jordan domain Ωଵ onto ܥଵ,ఓ Jordan domain 
Ω is Lipschitz continuous, which is the property shared with conformal mappings. 

A decade ago the late Professor Steinhaus sent a sequence of communications 
proposing certain problems about the number of points of the Cartesian lattice covered by 
congruent copies of a plane set ܵ. We consider a set, L, of lines in R n and a partition of L 
into some number of sets: ܮ	 = 	 ଵܮ ∪. . .∪ . We seek a corresponding partition ℝܮ =
	 ଵܵ ∪. . .∪ ܵ such that each line l in ܮ meets the set ܵ in a set whose cardinality has some 
fixed bound, ߱ఛ. We show several results related to a question of Steinhaus: is there a set 
	ܧ ⊂ 	ℝଶ such that the image of E under each rigid motion of ℝଶ contains exactly one 
lattice point 

We present a lemma about partitions of unity. It is an open problem whether a non-
separable Banach space with a ࣝ norm (or, more generally, a ࣝ “bump function”) 
admits ࣝ partitions of unity, though many partial results in this direction are known. We 
show that the existence of an equivalent dual LUR norm on a dual Banach space can be 
characterized by a topological property similar to the fragmentability. We present an 
example of a Banach space ܧ admitting an equivalent weakly uniformly rotund norm and 
such that there is no ߔ ∶ 	ܧ	 → 	 ܿ(߁), for any set ߁, linear, one-to-one and bounded.  

We establish that every K-quasiconformal mapping of w of the unit disk ܦ onto a 
	ݓ∆ ଶ -Jordan domain Ω is Lipschitz provided thatܥ ∈ 	 ܮ  for some (ܦ)	 > 2. We also 
show that if in this situation K → 1 with ‖∆ݓ‖() → 	0, and Ω	 →  ଵ,ఈ-sense withܥ in ܦ	
	ߙ > 	1/2, then the bound for the Lipschitz constant tends to 1.  For ݂(ݖ) 	= 	ℎ(ݖ) +  തതതതതത(ݖ)݃
be a harmonic ݒ-Bloch mapping defined in the unit disk ॰ with ‖݂‖ೡ ≤  where ,ܯ	
ℎ(ݖ) = ∑ 	ஶ

ୀଵ ܽ	ݖ and ݃(ݖ) = ∑ 	ஶ
ୀଵ ܾ	ݖ are analytic in ॰. We obtain the coefficient 

estimates for f as follows: |ܽ|ଶ 	+ |ܾ|ଶ 	≤  .is given (ܯ,ݒ)ܣ where ,(ܯ,ݒ)ܣ	
Furthermore, we show that for ݒ	 < 	1, lim→ஶ 	 (ܯ,ݒ)ܣ 	= 	0 and for ݒ	 ≥ 	1, 
(ܯ,ݒ)ܣ 	≤ 	ܱ(݊ଶ௩ − 2). We estimate the Jacobian of harmonic mapping of the unit disk 
onto a smooth and convex Jordan domain by the boundary function and the boundary 
curvature of the image domain.  

We work in the theory ZFC; the usual axioms of set theory with the axiom of choice 
(AC). AC is used heavily in the main construction as we require, for example, an 
enumeration of the equivalence classes of the lattices under a certain equivalence relation. 
Recently, using Fourier transform methods, it was shown that there is no measurable 
Steinhaus set in ℝଷ, a set which no matter how translated and rotated contains exactly one 
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integer lattice point. We show a new characterisation of the existence of smooth partitions 
of unity on a Banach space.  

Results are proved about the Banach space ܺ	 =  is compact and ܭ where ,(ܭ)ܥ	
Hausdorff. We concern smooth approximation: let ݉ be a positive integer or ∞; we show 
that if there exists on ܺ a non-zero function of class ܥ with bounded support, then all 
continuous real-valued functions on ܺ can be uniformly approximated by functions of 
class ܥ. Steinhaus proved that given a positive integer ݊, one may find a circle 
surrounding exactly n points of the integer lattice. This statement has been recently 
extended to Hilbert spaces by Zwoleński, who replaced the integer lattice by any infinite 
set that intersects every ball in at most finitely many points.  
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Chapter 1 
Bi-Lipschitz Type Inequalities with Quasi-Isometries and Quasiconformal 
 
We find explicit estimations of bi-Lipschitz constants for F that are expressed by 

means of the maximal dilatation ܭ of ܨ and |ିܨଵ(0)|. Under the additional assumption 
(0)ܨ = 0 the estimations are asymptotically sharp as ܭ → 1, so ܨ behaves almost like a 
rotation for sufficiently small ܭ. We show versions of the Ahlfors–Schwarz lemma for 
quasiconformal euclidean harmonic functions and harmonic mappings with respect to the 
Poincaré metric. In addition, if  has ܥଶ,ఓ boundary, then w is bi-Lipschitz continuous. 
These results have been considered. 
Section (1.1): Quasiconformal Harmonic Mappings 
   Set ܦ: = ݖ} ∈ :ܥ |ݖ| < 1}, ܶ: = ݖ} ∈ :ܥ |ݖ| = ݎ for {ݎ	 > 0 and ܶ: = ଵܶ. 
Given ܭ ≥ 1 and domains Ωଵ and Ωଶin ܥ write ܳܥ(Ωଵ,Ωଶ;ܭ) for the class of all ܭ-
quasiconformal mappings of Ωଵ onto Ωଶ and let ܳܥ(Ωଵ,Ωଶ;ܭ) be the class of all 
mappings in ܳܥ(Ωଵ,Ωଶ;ܭ) that are harmonic onΩଵ. In case Ωଵ = Ωଶwe write shortly 
(ܭ;Ωଵ)ܥܳ ≔ :(ܭ;Ωଵ)ܪܥܳ and (ܭ;Ωଵ,Ωଶ)ܥܳ =  .(ܭ;Ωଵ,Ωଶ)ܪܥܳ	
    There are a lot of results providing intrinsic characterizations of the boundary Valued 
mapping ݂ for a mapping ܨ ∈ :(ܦ)ܥܳ = ⋃ ஸଵ(ܭ;ܦ)ܥܳ 	; cf. e.g. [6], [10] and S [18]. A 
similar problem may be posed in the case where ∈ : (ܦ)ܪܥܳ = ⋃ ஸଵ(ܭ;ܦ)ܥܳ . In [9] 
and [11] several results were established that provide intrinsic characterizations of ݂ in 
terms of the Cauchy and Cauchy–Stieltjes singular integrals involving ݂. The results also 
provide motivation for the further study of such integrals. We express the Cauchy singular 
integral of the derivative ݂ᇱ by means of two functions ܸ[݂] and ܸ∗[݂] defined in (13) and 
(14), respectively; cf. Theorem (1.1.2). It is done in the case where ݂	is a sense-preserving 
homeomorphic self-mapping of ܶ and ݂ is absolutely continuous on ܶ. The rest part with 
estimating ܸ[݂] under the additional assumption that ݂ is the boundary valued mapping of 
ܨ ∈ (0)ܨ and (ܦ)ܥܳ = 0; see Theorem (1.1.4) and Corollary (1.1.6). We gather a few 
results related to formal derivatives ߲ܨ and	߲̅ܨ of ܨ ∈  in the context of Hardy (ܦ)ܥܳ
spaces ܪଵ(ܦ) and ܪஶ(ܦ). They seem to be known, but we prove them for the sake of 
completeness of our considerations, where we present applications of Corollary (1.1.6). 
We prove Theorem (1.1.10) which gives asymptotically sharp estimations for ܸ[݂] and 
ܸ∗[݂] as ܭ ≥ 1 tends to 1, provided ܨ ∈ :(ܭ;ܦ)ܪܥܳ =. We use them for the bi-Lipschitz 
type estimations for ݂ (Theorem (1.1.11)) and ܨ (Theorems (1.1.12) and (1.1.13)) under 
the additional assumption (0)ܨ = 0. All the estimations are asymptotically sharp as 
ܭ → 1. These theorems combined with [11] essentially improve the eminent results by 
Pavlovic [14]. 
     We recall that the Cauchy singular integral ்ܥ[݂] of a function ݂:ܶ →  ܥ
Lebesgue integrable on ܶ is defined for every ݖ ∈ ܶ	as follows: 

(ݖ)[݂]்ܥ ≔ ܸܲ
1

݅ߨ2
න
(ݑ)݂
ݑ − ݖ

	

்

ݑ݀ ≔ lim
ఌ→శ

1
݅ߨ2

න
(ݑ)݂
ݑ − ݖ

	

் ்⁄ (௭,ఌ)

 (1)																	ݑ݀

Whenever the limit exists and (ݖ)[݂]்ܥ ∶= 0 otherwise, where ܶ൫݁௫, :൯ߝ = ൛	݁௧ ∈
ܶ: ݐ| − |ݔ < ܫ ൟ. Here and subsequently, integration along any arcߝ ⊂ ܶ is understood 
under counterclockwise orientation and the limit operator is understood in ܥ with the 
Euclidian distance. Given a function ݂:ܶ → ݖ and ܥ ∈ 2 ܶ we define 
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݂ᇱ(ݖ): = lim
௨→௭

(ݑ)݂ − (ݖ)݂
ݑ − ݖ

																																												(2) 
Provided the limit exists and ݂ᇱ(ݖ): = 0 otherwise. Write Hom+(ܶ) for the class of all 
sense-preserving homeomorphic self-mappings of ܶ. Each ݂ ∈ Hom+(ܶ) defines a unique 
continuous function 	 መ݂	satisfying 0	 ≤ መ݂(0) <   and ߨ2

݂൫݁௧൯ = ݁መ(௧)					, ݐ ∈ ܴ.																																										(3) 
Actually, መ݂ is an increasing homeomorphism of R onto itself satisfying 

መ݂(ݐ	 + (ߨ2 − መ݂(ݐ) = ,ߨ2 ݐ ∈ ܴ,																												(4) 
Moreover, from (3) it follows that for every ݐ ∈ ܴ, f is differentiable at ݁௧ iff መ݂ is 
differentiable at ݐ, and for every such point ݐ, 

	݂ᇱ(݁௧)݁௧ = 	 ݂ᇱ መ(௧)	݁(ݐ) = ห݂ᇱ൫݁௧൯ห݂൫݁௧൯.																												(5) 
Thus by Lebesgue’s classical theorem on the differentiation of a monotonic function, for 
each ݂ ∈ 	Homା(ܶ) the limit in (2) exists for a.e. ݖ ∈ ܶ. 
Lemma (1.1.1)[1]: Suppose that ݂ ∈ 	Homା(ܶ) is absolutely continuous on ܶ	and that f is 
differentiable at a point ݖ ∈ ܶ. Then both the following limits exist and  

lim
ఌ→ା

ܴ݁	
തതതതതതത(ݖ)݂ݖ

݅ߨ
න

݂ᇱ(ݑ)
ݑ − ݖ

	

் ்⁄ (௭,ఌ)

ݑ݀ = lim
ఌ→ା

1
ߨ2

න
(ݑ)݂| − ଶ|(ݖ)݂

ݑ| − ଶ|ݖ

	

் ்⁄ (௭,ఌ)

|ݑ݀| .					(6) 

Moreover, both the following limits simultaneously exist or not and in the first case  

lim
ఌ→ା

Im 	
തതതതതതത(ݖ)݂ݖ

݅ߨ
න

݂ᇱ(ݑ)
ݑ − ݖ

	

் ்⁄ (௭,ఌ)

ݑ݀ = − lim
ఌ→ା

1
ߨ

න
ห݂(ݑ)݂(ݖ)തതതതതതห

ݑ| − ଶ|ݖ

	

் ்⁄ (௭,ఌ)

|ݑ݀| .								(7) 

Proof. Fix ݖ = ݁௫ ∈ ܶ and ߝ ∈  ,is absolutely continuous on ܶ, we see	Since ݂ .(ߨ;0)
integrating by parts, that 

න
݂ᇱ(ݑ)
ݑ − ݖ

	

் ்⁄ (௭,ఌ)

ݑ݀ = න
݀
ݑ݀

(ݑ)݂] − [(ݖ)݂
1

ݑ − ݖ

	

் ்⁄ (௭,ఌ)

 ݑ݀

																						=
(ఌᇱᇱݖ)݂ − (ݖ)݂

ఌᇱᇱݖ − ݖ
−
(ఌᇱݖ)݂ − (ݖ)݂

ఌᇱݖ − ݖ
+ න

(ݑ)݂ − (ݖ)݂
ݑ) − ଶ(ݖ

	

் ்⁄ (௭,ఌ)

 (8)																								,ݑ݀

Where ݖఌᇱ : = ݁(௫ାఌ)	and	ݖఌᇱᇱ ∶= ݁(௫ିఌ).	Furthermore, 
തതതതതത(ݖ)݂ݖ

݅ߨ
න

(ݑ)݂ − (ݖ)݂
ݑ) − ଶ(ݖ

	

் ்⁄ (௭,ఌ)

ݑ݀ = −
1

ߨ2
න

2 − (ݑ)തതതതതത݂(ݖ)2݂
ݑ)̅ݖ − തݑଶ(ݖ

	

் ்⁄ (௭,ఌ)

 (9)																							.|ݑ݀|

=
1

ߨ2
න

ଶ|(ݑ)݂| − (ݑ)തതതതതത݂(ݖ)2݂ + ଶ|(ݖ)݂|

ݑ| − ଶ|ݖ

	

் ்⁄ (௭,ఌ)

 .|ݑ݀|

Thus combining (8) and (9) we obtain 
തതതതതത(ݖ)݂ݖ

݅ߨ
න

݂ᇱ(ݑ)
ݑ − ݖ

	

் ்⁄ (௭,ఌ)

ݑ݀ =
തതതതതത(ݖ)݂ݖ

݅ߨ
ቈ
(ఌᇱᇱݖ)݂ − (ݖ)݂

ఌᇱᇱݖ − ݖ
−
(ఌᇱݖ)݂ − (ݖ)݂

ఌᇱݖ − ݖ
																				(10) 

+
1

ߨ2
න

(ݑ)݂| − ଶ|(ݖ)݂

ݑ| − ଶ|ݖ

	

் ்⁄ (௭,ఌ)

|ݑ݀| +
1
݅ߨ

න
തതതതതതห(ݖ)݂(ݑ)ห݂݉ܫ

ݑ| − ଶ|ݖ

	

் ்⁄ (௭,ఌ)

 	.|ݑ݀|

Assume now that	݂ is differentiable at ݖ. Then 
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lim
ఌ→ା

ቈ
(ఌᇱᇱݖ)݂ − (ݖ)݂

ఌᇱᇱݖ − ݖ
−
(ఌᇱݖ)݂ − (ݖ)݂

ఌᇱݖ − ݖ
 = ݂ᇱᇱ(ݖ) − ݂ᇱ(ݖ) = 0																					(11) 

as well as 

lim
ఌ→ା

1
ߨ2

න
(ݑ)݂| − ଶ|(ݖ)݂

ݑ| − ଶ|ݖ

	

் ்⁄ (௭,ఌ)

|ݑ݀| =
1

ߨ2
න

(ݑ)݂| − ଶ|(ݖ)݂

ݑ| − ଶ|ݖ

	

்

|ݑ݀| < +∞				(12) 

Thus combining (10) with (11) and (12) we obtain the assertion of the lemma, which ends 
the proof.  
Given a continuous function ݂:ܶ → ݖ and ܥ ∈ ܶ set 

:(ݖ)[݂]ܸ = lim
ఌ→ା

1
ߨ2

න
(ݑ)݂| − ଶ|(ݖ)݂

ݑ| − ଶ|ݖ

	

் ்⁄ (௭,ఌ)

|ݑ݀| ,																																(13) 

:(ݖ)[݂]∗ܸ = − lim
ఌ→ା

1
ߨ

න
ห݂(ݑ)݂(ݖ)തതതതതതห

ݑ| − ଶ|ݖ

	

் ்⁄ (௭,ఌ)

|ݑ݀| ,																									(14) 

provided the limits exist as well as ܸ[݂](ݖ): = (ݖ)[݂]∗ܸ	݀݊ܽ	∞+ ∶= 0 otherwise. 
Theorem (1.1.2)[1]: If ݂ ∈ ݖ.ା(ܶ) is absolutely continuous on ܶ, then for a.e݉ܪ ∈ ܶ the 
limit in (1) with ݂ replaced by ݂ᇱ and the limits in (13) and (14) exist, and 
(ݖ)[ᇱ݂]்ܥ2																									 = (ݖ)[݂]൫ܸ(ݖ)݂̅ݖ +  (15)																																															൯.(ݖ)[݂]∗ܸ݅

Proof. Since ݂(ܶ) = ܶ is a rectifiable curve, it follows that ݂ᇱ is a Lebesgue integrable 
function on ܶ. Then by [4] we see that the limit 

1
ߨ2

lim
ఌ→ା

න ݂ᇱ൫݁௧൯
	

ఌழ|௧ି௫|ஸగ

ݐܿ
ݔ − ݐ

2
 (16)																																						ݐ݀	

exists for a.e. ݖ = ݁௫ ∈ ܶ. Moreover, as shown in the proof of [9], the following equality 
1

݅ߨ2
	 න

݂ᇱ(ݑ)
ݑ − ݖ

	

் ்⁄ (௭,ఌ)

 (17)																																																																																				ݑ݀

1
ߨ4

න ݂ᇱ൫݁௧൯
	

ఌழ|௧ି௫|ஸగ

ݐ݀ +
݅

ߨ4
න ݂ᇱ൫݁௧൯
	

ఌழ|௧ି௫|ஸగ

ݐܿ
ݔ − ݐ

2
 ݐ݀	

Holds for all ݖ = ݁௫ ∈ ܶ andߝ ∈  Thus the limit in (1) with ݂ replaced by ݂ᇱ exists .[ߨ;0)
for a.e. ݖ ∈ ܶ and the theorem follows directly from Lemma (1.1.1). 
We recall that for each ܭ > 0 the Hersch–Pfluger distortion function Φ is defined by the 
equalities 

Φ(ݎ): = ߤ)ଵିߤ (ݎ) ⁄ܭ ), 0 < ݎ < 1; 	Φ(0): = 0; 	Φ(1): = 	1,																						(18) 
Where ߤ stands for the module of the Grötzsch extremal domain ܦ [0; ⁄[ݎ ; cf. [5] and [7]. 
Lemma (1.1.3)[1]: For every	ܭ ≥ 1 the following inequalities hold: 

1 ≤ :ܯ =
4
ߨ
න ቆ

Φ(ݎ)
ݎ

ቇ
ଵାଵ ⁄ଵ √ଶ⁄



	
ݎ݀

√1 − ଶݎ
≤ ଶ2ହ(ଵିଵܭ మ⁄ ) ଶ⁄ 																							(19) 

and 

1 ≥ :ܮ =
4
ߨ
න ቆ

Φଵ ⁄ (ݎ)
ݎ

ቇ
ଵାଵ ⁄ଵ √ଶ⁄



	
ݎ݀

√1 − ଶݎ
≥
2ହ(ଵିଵܭ మ⁄ ) (ଶ)⁄

ଶܭ + ܭ − 1
.																		(20) 

In particular, ܮ − 1 and ܯ → 1	as	ܭ → 1ା. 
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Proof. Fix ܭ ≥ 1. Substituting ݎ: =  we have ݐ	݊݅ݏ

ܯ =
4
ߨ
න ቆ

Φ(sin (ݐ
sin ݐ

ቇ
ଵାଵ ⁄గ ସ⁄



 (21)																																																			ݐ݀

and 

ܮ =
4
ߨ
න ቆ

Φଵ ⁄ (sin (ݐ
sin ݐ

ቇ
ଵାଵ ⁄గ ସ⁄



 (22)																																													.ݐ݀

Since sin ݐ ≥ (ݐ4) ൫2√ߨ൯⁄  forݐ ∈ ߨ;0] 4⁄ ], we conclude from the Hübner inequality (cf. 
[2] or [7]) 

ଵݎ	 ⁄ ≤ Φ(ݎ) ≤ 4ଵିଵ ⁄ ଵݎ	 ⁄ , 0 ≤ ݎ ≤ ܭ,1 ≥ 1,																						(23) 
That 

1 ≤
Φ(sinݐ)

sinݐ
≤ 	4ଵିଵ ⁄ ൬

ݐ4
2√ߨ

൰
ଵ ିଵ⁄

, 0 < ݐ ≤ ߨ 4⁄ . 

This together with (21) yields (19). From (18) it follows that the composition Φ ∘ Φଵ ⁄  is 
the identity function on [0; 1]. Hence and by (23), 

ݎ	 ≥ Φଵ ⁄ (ݎ) ≥ 4ଵି	ݎ, 0 ≤ ݎ ≤ ܭ,1 ≥ 1.																																												(24) 
Using once more the estimation ݐ݊݅ݏ ≥ (ݐ4) ൫2√ߨ൯⁄ 	for	ݐ ∈ ߨ;0] 4⁄ ] we conclude from 
(24) that 

1 ≥
Φଵ ⁄ (ݐ	݊݅ݏ)

ݐ	݊݅ݏ
≥ 	4ଵିଵ ⁄ ൬

ݐ4
2√ߨ

൰
ିଵ

, 0 < ݐ ≤ ߨ 4⁄ . 

This together with (22) yields (20). From the estimations (19) and (20) it easily follows 
that ܮ → 1 and ܯ → 1 as ܭ → 1ା, which ends the proof.  
Given a continuous function ݂:ܶ → ݖ and ܥ ∈ ܶ set 

݂ା(ݖ) ≔ sup
௨∈் {௭}⁄

ቤ
(ݑ)݂ − (ݖ)݂

ݑ − ݖ
ቤ 	∈ [0; +∞],																						(25) 

(ݖ)ି݂	 ≔ inf
௨∈் {௭}⁄

ቤ
(ݑ)݂ − (ݖ)݂

ݑ − ݖ
ቤ 	∈ [0; +∞).																						(26) 

	Theorem (1.1.4)[1]: Given ܭ ≥ 1 and ܨ ∈  let ݂ be the boundary valued (ܭ;ܦ)ܥܳ
function of ܨ. If (0)ܨ = 0, then 

൯(ݖ)൫݂ିܮ
ଵିଵ ⁄

≤ (ݖ)[݂]ܸ ≤ ൯(ݖ)൫݂ାܭܯ	
ଵିଵ ⁄

ݖ				, ∈ ܶ.																						(27) 
Proof. Since ܨ ∈ (0)ܨand (ܭ;ܦ)ܥܳ = 0, we see by the quasi-invariance of the harmonic 
measure that for every ݐ ∈ ߠ] − ߠ;ߨ +  ,[ߨ

Φଵ ⁄ ቆcos
ห መ݂(ݐ) − መ݂(ߠ)ห

4
ቇ ≤ cos

ݐ − ߠ
4

≤ Φ ቆcos
ห መ݂(ݐ) − መ݂(ߠ)ห

4
ቇ ; 																(28) 

see e.g. [8]. Applying now the identity ([2]) 

Φ(ݎ)ଶ + Φଵ ⁄ ቀඥ1 − ଶቁݎ
ଶ

= 1,0 ≤ ݎ ≤ 1,																						(29) 
We obtain for everyݐ ∈ ߠ] − ߠ;ߨ +  ,[ߨ

Φଵ ⁄ ቆsin
ห መ݂(ݐ) − መ݂(ߠ)ห

4
ቇ ≤ ݊݅ݏ	

ݐ − ߠ
4

≤ Φ ቆsin
ห መ݂(ݐ) − መ݂(ߠ)ห

4
ቇ .																						(30) 

Given ߠ ∈ ܴ and ݐ ∈ ߠ] − ߠ;ߨ + :ߙ set [ߨ = ݐ) − (ߠ 2⁄  and ߚ: = ൫ መ݂(ݐ) − መ݂(ߠ)൯ 2⁄ . 
Then	|ߙ| ≤ ߨ 2⁄ 	and	|ߚ| ∈  from (28) and (30) it follows that .ߨ
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|ߙ| ≤ |ߚ| ⟹ 1 ≤
sin |ߚ|

2
sin |ߙ|

2

	≤
Φ ൬sin |ߙ|

2 ൰

sin |ߙ|
2

and
Φଵ ⁄ ൬cos |ߙ|

2 ൰

cos |ߙ|
2

≤
cos |ߚ|

2
cos |ߙ|

2

≤ 1 

and 

|ߙ| ≥ |ߚ| ⟹	≤
Φଵ ⁄ ൬sin |ߙ|

2 ൰

sin |ߙ|
2

≤
sin |ߚ|

2
sin |ߙ|

2

≤ 1and		1 ≤
cos |ߚ|

2
cos |ߙ|

2

≤
Φ ൬cos |ߙ|

2 ൰

cos |ߙ|
2

. 

Hence 

min൞
Φଵ

ൗ
൬sin |ߙ|

2 ൰

sin |ߙ|
2

	 ,
Φଵ ⁄ ൬cos |ߙ|

2 ൰

cos |ߙ|
2

ൢ 

≤ ฬ
sinߚ
sinߙ	

ฬ ≤ max൞
Φ ൬sin |ߙ|

2 ൰

sin |ߙ|
2

,
Φ ൬cos |ߙ|

2 ൰

cos |ߙ|
2

ൢ .																																(31) 

From [2] it follows that for any fixed  ܭ ≥ 1, (0; 1] 	 ∋ ݐ ⟼ Φ(ݐ)	ݐଵ ⁄  is a decreasing 
function and (0; 1] 	 ∋ ݐ ⟼ Φଵ ⁄   is an increasing function. Then (31) yieldsିݐ	(ݐ)

Φଵ
ൗ
൬݊݅ݏ |ߙ|

2 ൰

	݊݅ݏ |ߙ|
2

≤ ฬ
ߚ݊݅ݏ
	ߙ݊݅ݏ

ฬ ≤
Φ ൬݊݅ݏ

|ߙ|
2 ൰

	݊݅ݏ |ߙ|
2

.																							(32) 

Fix	ݖ = ݁ఏ ∈ ܶ.	If	݂ା(ݖ) = +∞, then the second inequality in (27) is obvious. 
So we may assume that݂ା(ݖ) < +∞. Applying (32), (13) and (25) we obtain 

(ݖ)[݂]ܸ =
1

ߨ2
න ቤ

(ݑ)݂ − (ݖ)݂
ݑ − ݖ	

ቤ
ଶ	

்

 																																																									|ݑ݀|

≤
1

ߨ2
න൫݂ + ൯(ݖ)

ଵିଵ ⁄
ቤ
(ݑ)݂ − (ݖ)݂

ݑ − ݖ	
ቤ
ଵାଵ ⁄	

்

 						|ݑ݀|

= (݂ା(ݖ))ଵିଵ ⁄ 1
ߨ2

න ൮
݊݅ݏ

መ݂(ݐ) − መ݂(ߠ)
2

	݊݅ݏ ݐ − ߠ
2

൲

ଵାଵ ⁄
ఏାగ	

ఏିగ

 (33)																						ݐ݀

							≤ (݂ା(ݖ))ଵିଵ ⁄ 1
ߨ2

න ቌ
Φ ቀ݊݅ݏ

ݐ − ߠ
2 ቁ

	݊݅ݏ ݐ| − |ߠ
2

ቍ

ଵାଵ ⁄ఏାగ	

ఏିగ

 .ݐ݀

Thus substituting ݏ: = ௧ିఏ
ସ

 and using (21) we derive the second inequality in (27). 
Applying now (32), (13), (26) and following calculations from (33) we obtain 

(ݖ)[݂]ܸ ≥ ଵିଵ((ݖ)ି݂) ⁄ 1
ߨ2

න ൮
Φଵ ⁄ ൬݊݅ݏ ݐ| − |ߠ

4 ൰

	݊݅ݏ ݐ| − |ߠ
4

൲

ଵାଵ ⁄
ఏାగ	

ఏିగ

 .ݐ݀
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Thus substituting ݏ: = ௧ିఏ
ସ

 and using (22) we derive the first inequality in (27), which 
completes the proof.  
Lemma (1.1.5)[1]: Suppose that ݂ ∈ Homା(ܶ) is absolutely continuous on ܶ. Then 

sup
௭∈்

݂ା(ݖ) = ݁: = ess	 sup
௭∈்

|݂ᇱ(ݖ)|.																																												(34) 

as well as 
inf
௭∈்

(ݖ)ି݂ = ݀ ≔ ess	 inf
௭∈்

|݂ᇱ(ݖ)|.																																												(35) 
Proof. From (25) and (26) it follows that 

(ݖ)ି݂	 ≤ |݂ᇱ(ݖ)| ≤ ݂ା(ݖ)																																																																		(36) 
for each ݖ ∈ ܶ such that the limit (2) exists. Hence 

inf
௭∈்

(ݖ)ି݂ ≤ ݀ ≤ ݁ 	sup
௭∈்

݂ା(ݖ).																																													(37) 

Assume now that ݂ is absolutely continuous on ܶ. If ݁ = +∞, then (37) yields (34). Thus 
we may confine considerations to the case ݁ < +∞. Then 

ห መ݂(ݐ) − መ݂(ݔ)ห = ቮන መ݂ᇱ(ݏ)	݀ݏ
௧

௫

ቮ ≤ ݁|ݐ − ݔ,ݐ							,|ݔ ∈ ܴ.																						(38) 

Fix ݑ = ݁௧; ݖ	 = ݁௫ ∈ ܶ. Since ݁ ≥ 1 and the function sin is increasing and concave on 
ߨ;0] 2⁄ ], we conclude from (38) that 

(ݑ)݂| − |(ݖ)݂ = 2sin ቤ
መ݂(ݐ) − መ݂(ݔ)

2
ቤ ≤ 2sin ݁ ฬ

ݐ − ݔ
2

ฬ ≤ 2 ݁sin ฬ
ݐ − ݔ

2
ฬ = ݁|ݑ −  |ݖ

Provided |ݐ − |ݔ ≤ ߨ ݁⁄ 	 . 	݂ܫ ߨ ݁⁄ ≤ ݐ| − |ݔ ≤ ,ߨ then 

݁	|ݑ − |ݖ = 2 ݁sin ฬ
ݐ − ݔ

2
ฬ ≥ 2 ݁

2
ߨ
ฬ
ݐ − ݔ

2
ฬ ≥ 2 ≥ (ݑ)݂| −  .|(ݖ)݂

Thus  
(ݑ)݂| − |(ݖ)݂ ≤ ݁|ݑ − ,ݑ						,|ݖ ݖ ∈ ܶ.																																												(39) 

Combining (39) with (37) we obtain (34). 
If ݀ = 0, then (37) yields (35). So we may assume that ݀ > 0. Then 

ห መ݂(ݐ) − መ݂(ݔ)ห = ቮන መ݂ᇱ(ݏ)	݀ݏ
௧

௫

ቮ ≥ ݀|ݐ − ,|ݔ ,ݐ ݔ ∈ ܴ, 

and so the inverse mapping ݂ିଵ is also absolutely continuous on ܶ. Then for a.e. ݖ ∈
ܶ, (݂ିଵ)ᇱ(ݖ) = 1 ݂ᇱ⁄ (݂ିଵ(ݖ)) and, in consequence, ݁షభ = 1 ݀⁄ . Applying now (39) with 
݂ replaced by ݂ିଵ we get for any ݑ, ݖ ∈ ܶ, 

݀|ݑ − |ݖ = ݀ห݂ିଵ൫݂(ݑ)൯ − ݂ିଵ(݂(ݖ))ห ≤ ݀݁షభ݆|݂(ݑ) − |(ݖ)݂ 	
= (ݑ)݂| −  (40)																																																																																										.|(ݖ)݂

Combining (40) with (37) we obtain (35), which completes the proof.  
Corollary (1.1.6)[1]: Given ܭ ≥ 1 and ܨ ∈  let f be the boundary valued (ܭ;ܦ)ܥܳ
function of ܨ. If (0)ܨ = 0 and f is absolutely continuous on ܶ, then 

݀ܮ
ଵିଵ ⁄ ≤ (ݖ)[݂]ܸ = ൧(ݖ)[ᇱ݂]்ܥതതതതതത(ݖ)݂ݖൣܴ݁	2 ≤ ݀ܯ

ଵିଵ ⁄ 																						(41) 
for a.e.	ݖ ∈ ܶ, where ܯ ܮ, , ݁	and df are defined by (19), (20), (34) and (35), 
respectively. 
Proof. The corollary follows directly from Theorems (1.1.4) and (1.1.2) and Lemma 
(1.1.5). 
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We collect results that seem to be known. However, we prove them for the sake of 
completeness of our considerations. 
Lemma (1.1.7)[1]: Given ܭ ≥ 1 and a domainΩ in ܥ letܨ ∈  If Ωis .(ܭ;Ω,ܦ)ܪܥܳ
bounded by a rectifiable Jordan curveΓ, then 

		 sup
ழழଵ

න|߲ݖ݀||(ݖ)ܨ| ≤
ܭ + 1

2
|Γ|ଵ

	

ೝ்

,																																												(42) 

And 

sup
ழழଵ

න|߲ݖ݀||(ݖ)ܨ| ≤
ܭ − 1

2
|Γ|ଵ

	

ೝ்

,																																												(43) 

 Where |Γ|ଵ is the length of Γ. In particular, ߲ܨ, തതതതܨ߲ 	∈  .(ܦ)ଵܪ
Proof. Write ݂ for the boundary valued function of ܨ. Then 

(ݖ)ܨ = :(ݖ)[݂]ܲ = න ݂൫݁௦൯
ଶగ



	 ܲ(ݐ − ݖ					,ݏ݀(ݏ = ௧݁ݎ ∈  (44)																						,ܦ

Where 

ܲ(ߠ): =
1
ߨ
ܴ݁

1 + ఏ݁ݎ

1 − ఏ݁ݎ
, 0 ≤ ݎ	 < 1, ߠ ∈ ܴ,																						(45) 

is the Poisson kernel function. Since the function ܲ  is symmetric, we get 
߲
ݐ߲ ܲ(ݐ − (ݏ = −

߲
ݏ߲ ܲ(ݐ − ,ݐ				,(ݏ ݏ ∈ ܴ. 

Then integrating by parts we conclude from (44) that 

߲
ݐ߲
௧൯݁ݎ൫ܨ = න ݂൫݁௦൯

ଶగ



߲
ݐ߲ ܲ(ݐ − ݏ݀(ݏ = −න ݂൫݁௦൯

ଶగ



߲
ݏ߲ ܲ(ݐ −  (46)																						ݏ݀(ݏ

= න ܲ(ݐ − ,൫݁௦൯݂݀(ݏ
ଶగ



	0 ≤ ݎ < 1, ݐ ∈ ܴ,																																	 

Because the function ݏ ⟼ ݂(݁௦) is of bounded variation on [0;  the last integral is ;[ߨ2
regarded as the Stieltjes one. Fix ݎ ∈ (0; 1). Then by (46), 

߲
ݐ߲
௧൯݁ݎ൫ܨ = lim

→ஶ
 ܲ



ୀଵ

ݐ) − ݇ߨ2 ݊⁄ )ൣ݂൫݁ଶగ ⁄ ൯ − ݂൫݁ଶగ(ିଵ) ⁄ ൯൧, ݐ ∈ ܴ.						(47) 

Hence, applying Fatou’s limiting integral lemma, we obtain 

න ฬ
߲
ݐ߲
௧൯ฬ݁ݎ൫ܨ

ଶగ



 ݐ݀

= න อ lim
→ஶ

 ܲ



ୀଵ

ݐ) − ݇ߨ2 ݊⁄ )ൣ݂൫݁ଶగ ⁄ ൯ − ݂൫݁ଶగ(ିଵ) ⁄ ൯൧อ
ଶగ



 (48)																						ݐ݀

≤ liminf
→ஶ

න อ ܲ



ୀଵ

ݐ) − ݇ߨ2 ݊⁄ ) ൣ݂൫݁ଶగ ⁄ ൯ − ݂൫݁ଶగ(ିଵ) ⁄ ൯൧อ
ଶగ



 												.ݐ݀

Since  
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න อ ܲ



ୀଵ

ݐ) − ݇ߨ2 ݊⁄ ) ൣ݂൫݁ଶగ ⁄ ൯ − ݂൫݁ଶగ(ିଵ) ⁄ ൯൧อ
ଶగ



 ݐ݀

							≤  ห݂൫݁ଶగ ⁄ ൯ − ݂൫݁ଶగ(ିଵ) ⁄ ൯หන | ܲ(ݐ − ݇ߨ2 ݊⁄ ݐ݀|(
ଶగ






ୀଵ

 

≤ ห݂൫݁ଶగ ⁄ ൯ − ݂൫݁ଶగ(ିଵ) ⁄ ൯ห ≤ |Γ|ଵ



ୀଵ

																										 

and since for ݖ =  ,௧݁ݎ

	
߲
ݐ߲
௧൯݁ݎ൫ܨ = (ݖ)ܨ߲ݖൣ݅ −  (49)																																												൧,(ݖ)ܨ߲̅̅ݖ

we conclude from (48) that 

න(|߲(ݖ)ܨ| − |ݖ݀|((ݖ)ܨ߲̅
	

ೝ்

≤ න ห(ݖ)ܨ߲ݖ − ห(ݖ)ܨ߲̅̅ݖ
ଶగ



ݐ݀ ≤ |Γ|ଵ.																						(50) 

By the assumption, the mapping ܨ is ܭ-quasiconformal, which means that 
ܭ) + 1)ห߲̅(ݖ)ܨห ≤ ܭ) − ,|(ݖ)ܨ߲|(1 ݖ ∈  (51)																																												.ܦ

Hence by (50), 

න൫ห߲̅(ݖ)ܨห + |ݖ݀|൯|(ݖ)ܨ߲|
	

ೝ்

≤ ܭ න൫߲|(ݖ)ܨ| − ห߲̅(ݖ)ܨห൯|݀ݖ|
	

ೝ்

≤  .Γ|ଵ|ܭ

	Combining this with (50) and (51) leads to (42) and (43). 
Corollary (1.1.8)[1]: Given ܭ ≥ 1 and a domain Ω in ܥ let ܨ ∈  If Ω is .(ܭ;Ω,ܦ)ܪܥܳ
bounded by a rectifiable Jordan curveΓ, then the boundary valued function ݂of ܨ is 
absolutely continuous. 
Proof. From Lemma (1.1.7) it follows that ߲ܨ, തതതതܨ߲ ∈  The classical result of Riesz .(ܦ)ଵܪ
[3] says that there exist functions ܦ:ܩ,ܪഥ →  ഥ andܦ ഥ, holomorphic onܦ continuous on ܥ
absolutely continuous on ܶ and such that ܪᇱ(ݖ) = (ݖ)ᇱܩ and (ݖ)ܨ߲ = ݖ ,(ݖ)തതതതܨ߲ ∈  .i.e ,ܦ
H and ܩ are primitive functions to ߲ܨ and ߲ܨതതതത on ܦ, respectively. Moreover, ܨ has a 
continuous extension to ܦഥ. Hence for each ݖ ∈ ܶ, 

(ݖ)݂ − (0)ܨ = න߲ݑ݀(ݑ)ܨ
	

ఊ

+  (52)																																																																		തതതതݑ݀(ݑ)ܨ߲̅

= නܪᇱ

	

ఊ

	ݑ݀(ݑ) + തതതതതതതതതതതݑ݀(ݑ)ᇱܩ	 = (ݖ)ܪ − (0)ܪ + (ݖ)ܩ −  ,തതതതതതതതതതതതതതതത(0)ܩ

where	(ݐ)ߛ: = ,ݖݐ ݐ ∈ [0; 1]. From (52) we see that	݂(ݖ) = (ݖ)ܪ + തതതതതത(ݖ)ܩ 	+ (0)ܨ	 −
(0)ܪ − ݖ തതതതതത for(0)ܩ ∈ ܶ. Thus ݂ is an absolutely continuous function on ܶ.  

Modifying the proof of Lemma (1.1.7) we may easily derive the following lemma. 
Lemma (1.1.9)[1]: Given ܭ ≥ 1 and a Jordan domain Ω in ܥ let ܨ ∈  .(ܭ;Ω,ܦ)ܪܥܳ
If the boundary valued function ݂ of ܨ satisfies the inequality  

(ݑ)݂|	 − |(ݒ)݂ ≤ ݑ|ܮ − ,ݑ				,|ݒ ݒ ∈ ܶ,																																																										(53) 
 for some positive constant ܮ, then 

sup
∈ୈ

|∂F(z)| ≤
K	 + 1

2
L,																																																																												(54) 
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And  

sup
∈ୈ

ห∂തF(z)ห ≤
K − 1

2
L.																																																																												(55) 

In particular, ߲ܨ, തതതതܨ∂ ∈  .(ܦ)ஶܪ
Proof. From (53) it follows that  Ω is bounded by a rectifiable Jordan curveΓ. Hence the 
function ݏ ⟼ ݂(݁௦) is of bounded variation on [0;  and, as in the proof of Lemma [ߨ2
(1.1.7), the equality (47) holds. From (53) it also follows that for all ݊ ∈ ܰ and ݇ =
1,2, … , ݊, 

	ห݂൫݁ଶగ ⁄ ൯ − ݂൫݁ଶగ(ିଵ) ⁄ ൯ห ≤ ห݁ଶగܮ ⁄ − ݁ଶగ(ିଵ) ⁄ ห																			(56) 

=
ߨ2
݊

= ݊)ܮ ⁄ߨ )sin(ߨ ݊⁄ ).					 
Fix ݎ ∈ (0; 1). Since(݊ ⁄ߨ )sin(ߨ ݊⁄ ) → ݊	ݏܽ	1 → ∞, we conclude from (47) and (56) that 
for every ݐ ∈ ܴ, 

ฬ
߲
ݐ߲
ฬ(௧݁ݎ)ܨ ≤ ܮ lim

→ஶ
݊)ܮ ⁄ߨ )sin(ߨ ݊⁄ ) ܲ



ୀଵ

ݐ) − ݇ߨ2 ݊⁄ )
ߨ2
݊

= නܮ ܲ

ଶగ



ݐ) − ݏ݀(ݏ

=  (57)																																																																																																																													.ܮ
Since for ݖ =  ௧ the equality (49) holds, we conclude from (57) that݁ݎ

|(ݖ)ܨ߲|൫ݎ	 − ห∂ത(ݖ)ܨห൯ ≤ ห(ݖ)ܨ߲ݖ − ̅ݖ ∂ത(ݖ)ܨห ≤  (58)																																						.ܮ
By the assumption, the mapping F is K-qc., which means that (51) holds. Hence by (58), 

|(ݖ)ܨ|൫∂തݎ	 − ൯|(ݖ)ܨ∂| ≤ |(ݖ)ܨ߲|൫ܭݎ − ห∂ത(ݖ)ܨห൯ ≤  (59)																																							.ܮܭ
Combining the inequalities (58) and (59) with (51) we obtain the inequalities (54) and 
(55), because both the functions ∂ܨതതതത and ߲ܨ are holomorphic on ܦ.  
Theorem (1.1.10)[1]: Given ܭ ≤ 1 and ܨ ∈  let f be the boundary valued (ܭ;ܦ)ܪܥܳ
function of F. Then for a.e. ݖ ∈ ܶ, 

ฬܸ[݂](ݖ) + (ݖ)[݂]∗ܸ݅ −
1
2
൬ܭ +

1
ܭ
൰݂ᇱ(ݖ)ฬ ≤

1
2
൬ܭ −

1
ܭ
൰ |݂ᇱ(ݖ)|.																			(60) 

In particular, for a.e. ݖ ∈ ܶ, 
1
ܭ
ቤ|݂ᇱ(ݖ)| ≤ (ݖ)[݂]ܸ ≤ |(ݖ)[݂]∗ܸ|		and		|(ݖ)ᇱ݂|ܭ ≤

1
2
൬ܭ −

1
ܭ
൰݂ᇱ(ݖ)ቤ .																			(61) 

Proof. From [11] it follows that ݂ᇱ(ݖ) ≠ 0 for a.e. ݖ ∈ ܶ. By Corollary (1.1.8), ݂ is 
absolutely continuous onܶ. Hence and by [9] we obtain 

ܭ) + 1) ቤ1 − 2
(ݖ)[ᇱ݂]்ܥ
݂ᇱ(ݖ) ቤ ≤ ܭ) − 1) ቤ1 − 2

(ݖ)[ᇱ݂]்ܥ
݂ᇱ(ݖ) ቤ 					for	ܽ. ݁. ݖ ∈ ܶ, 

which leads to 

ቤ2
(ݖ)[ᇱ݂]்ܥ
݂ᇱ(ݖ)

−
1
2
൬ܭ +

1
ܭ
൰ቤ ≤

1
2
൬ܭ −

1
ܭ
൰ 	for	ܽ. ݁. ݖ ∈ ܶ.																			(62) 

From Theorem (1.1.2) and (5) it follows that for a.e. ݖ ∈ ܶ, 

2
(ݖ)[ᇱ݂]்ܥ
݂ᇱ(ݖ)

=
(ݖ)݂̅ݖ
݂ᇱ(ݖ)

(ݖ)[݂]ܸ) 	+ ((ݖ)[݂]∗ܸ݅ =
1

|݂ᇱ(ݖ)|
(ݖ)[݂]ܸ) +  ((ݖ)[݂]∗ܸ݅	

This combined with (62) yields (60)). The inequalities (61) follow directly from (60)), 
which ends the proof.  
Theorem (1.1.11)[1]: Given ܭ ≥ 1 and ܨ ∈  let ݂ be the boundary valued (ܭ;ܦ)ܪܥܳ
function of ܨ. If (0)ܨ = 0, then for a.e. ݖ ∈ ܶ,  
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2ହ(ଵିమ) ଶ⁄

ଶܭ) + ܭ − 1) ≤
ܮ) ⁄ܭ ) ≤ |݂ᇱ(ݖ)| ≤ (ܭܯ) ≤ ଷ2ହ(ିଵܭ ⁄ ) ଶ⁄ ,																			(63) 

where ܯ and ܮ are defined by (19) and (20), respectively. 
Proof. By Corollary (1.1.8), ݂ is absolutely continuous on ܶ. Then Corollary (1.1.6) and 
the first inequality in (61) show that for a.e. ݖ ∈ ܶ, ݀ܮ

ଵିଵ ⁄ ≤ |(ݖ)and |݂ᇱ |(ݖ)ᇱ݂|ܭ ≤
ܯܭ ݁

ଵିଵ ⁄ 	, where ݁ and ݀ are defined by (34) and (35), respectively. 
Hence ܮ݀

ଵିଵ ⁄ ≤  and݀ܭ ݁ ≤ ܯܭ ݁
ଵିଵ ⁄ 	, and consequently, we obtain the following 

implications 
ൣ	0 < ݀ ⟹ ܮ) ⁄ܭ ) ≤ ݀൧and	ൣ ݁ < +∞⟹ ݁ ≤  (64)																			൧.(ܭܯ)

For any ݊ ∈ ܰ let ܦ ∶= ݖ} ∈ :ܥ |ݖ| < ݊ (݊ + 1)⁄ } and ߮ be the conformal mapping 
from ܦ onto ିܨଵ(ܦ) such that ߮(0) = 0 and ߮ᇱ (0) > 0. Then ܨ: = (1 + 1 ݊⁄ ܨ( ∘
߮ ∈ (0)ܨand (ܭ;ܦ)ܪܥܳ = 0, ݊ ∈ ܰ. Fix ݊ ∈ ܰ. Since F is a ܥଶ-diffeomorphic self-
mapping of ܦ we see that ିܨଵ(ܦ) is a domain bounded by a ܥଶ-Jordan curve. Applying 
Kellogg–Warschawski theorem ([16], [17]) we see that ߮ᇱ  has a continuous extension ߰ 
to the closed disk ܦഥ and ߰(ݖ) ≠ 0 for allݖ ∈  ഥ. Thus the boundary valued function ݂ ofܦ
ଵ-diffeomorphic self-mapping ofܶ, and so0ܥ  is aܨ < ݀ ≤ ݁ < +∞. By (64) and 
Lemma (1.1.5) we see that for all ݑ, ݖ ∈ ≠ ݑ,ܶ  ,ݖ

ܮ) ⁄ܭ ) ≤ ݀ ≤
| ݂(ݑ) − ݂(ݖ)|

ݑ| − |ݖ ≤ ݁ ≤ ,(ܭܯ) ݊ ∈ ܰ.																			(65) 

Setting ܨ: =  we conclude from [7] that ܨ
(ݖ)ܨ| − |(߱)ܨ ≤ ݖ|16	 − ߱|ଵ ⁄ , ߱,ݖ ∈ ,ഥܦ ݊ = 0,1,2, … . 

Hence for all ݖ ∈ ܶ and߱ ∈  ,ܦ

| ݂(ݖ) − |(ݖ)݂ ≤ ݖ|32 − ߱|ଵ ⁄ + 16|߮(߱) − ߱|ଵ ⁄ +
1
݊

, ݊ ∈ ܰ.																			(66) 
From [15] it follows that ߮ᇱ (߱) → ߱ as ݊ → ∞ for each	߱ ∈ ߝ Thus given .ܦ > 0 and 
ݖ ∈ ܶ we can choose ߱ ∈ ߝ and ܦ ∈ ܰ such that the right hand side in (66) is less than ߝ 
as ݊ > ݊ఌ. This means that for every ݖ ∈ ܶ, ݂(ݖ) → ݊	ݏܽ(ݖ)݂ → ∞. Since ݂ is absolutely 
continuous on ܶ, (65) and Lemma (1.1.5) then show that (ܮ ⁄ܭ ) ≤ ݀ ≤ ݁ ≤  .(ܭܯ)
This and Lemma (1.1.3) yield (63), which ends the proof.  
Theorem (1.1.12)[1]: Given ܭ ≥ 1 and ܨ ∈ (0)ܨassume that (ܭ;ܦ)ܪܥܳ = 0. 
Then for all ݖ,߱ ∈  ,ܦ

(ݖ)ܨ| − |(߱)ܨ ≤ ݖ|(ܭܯ)ܭ − ߱| ≤ ଷାଵ2ହ(ିଵܭ ⁄ ) ଶ⁄ ݖ| − ߱|																			(67) 
As well as 

(ݖ)ܨ| − |(߱)ܨ ≥
ଷܮ

ܯସାଵܭ
 ݖ| − ߱| ≥

2ହ(ଵିమ)(ଷାଵ ⁄ ) ଶ⁄

ଶܭ)ଷାଵܭ + ܭ − 1)ଷ ݖ| − ߱|,																			(68) 

Where ܯ and ܮ are defined by (19) and (20), respectively. 
Proof. Fixݖ,߱ ∈ (ݐ)ߛSetting .ܦ ∶= ݖ + ߱)ݐ − ,(ݖ ݐ ∈ [0,1], we get 

(ݖ)ܨ| − |(߱)ܨ = ቮන
݀
ݐ݀

ଵ



 																																																															ቮݐ൯݀(ݐ)ߛ൫ܨ

																																				= ቮන߲
ଵ



൯(ݐ)ߛ൫ܨ + (ݐ)ᇱߛ +  (69)												ቮݐതതതതതതത݀(ݐ)ᇱߛ((ݐ)ߛ)ܨ߲̅



11 

																											≤ න൫ห߲ܨ൫(ݐ)ߛ൯ห + (ݐ)ᇱߛ + ห߲̅ܨ൫(ݐ)ߛ൯ห൯
ଵ



ݖ|	ݐ݀ − ߱| 

≤ sup
௨∈

൫|߲(ݑ)ܨ| + ห߲̅(ݑ)ܨห൯ ݖ| − ߱|. 

From Corollary (1.1.8) and Lemmas (1.1.5) and (1.1.9) it follows that 
sup
௨∈

൫|߲(ݑ)ܨ| + ห߲̅(ݑ)ܨห൯ ݖ| − ߱| ≤ ܭ ݁,																																						(70) 

Where ݂ is the boundary valued function of ܨ. Combining (69) and (70) we conclude from 
Theorem (1.1.11) that the estimation (67) holds. Setting now (ݐ)°ߛ ∶= ݖ)ଵିܨ + ߱)ݐ −
,((ݖ ݐ ∈ [0,1],	We get 

ݖ| − ߱| = න ฬ
݀
ݐ݀
ฬ	((ݐ)ߛ)ܨ

ଵ



ݐ݀ = නห߲ܨ൫(ݐ)ߛ൯ + (ݐ)ᇱߛ + തതതതതതതห(ݐ)ᇱߛ൯(ݐ)ߛ൫ܨ߲̅
ଵ



 ݐ݀

≥ න൫ห߲ܨ൫(ݐ)ߛ൯ห|ߛᇱ(ݐ)| − ห߲̅ܨ൫(ݐ)ߛ൯หหߛᇱ(ݐ)തതതതതതതห൯
ଵ



 (71)																						ݐ݀

≥ inf
௨∈

൫|߲(ݑ)ܨ| − ห߲̅(ݑ)ܨห൯න|ߛᇱ(ݐ)|
ଵ



 ݐ݀

															≥ inf
௨∈

ଶ|(ݑ)ܨ߲| − ห߲̅(ݑ)ܨห
ଶ

|(ݑ)ܨ߲| + ห߲̅(ݑ)ܨห
(ݖ)ଵିܨ| −  .|(߱)ଵିܨ

From [12] it follows that	|߲(ݑ)ܨ|ଶ − ห߲̅(ݑ)ܨห
ଶ
≥ ݀ଷfor all ݑ ∈  .ܦ

Hence and by (71) and (70) we get 

(ݖ)ܨ	| − |(߱)ܨ ≥
݀ଷ

ܭ ݁
ݖ| − ߱|.																																						(72) 

Applying now Theorem (1.1.11) we obtain the estimation (68), which ends the proof.  
Applying a variant of Heinz’s inequality from [13] we derive an alternative estimation to 
(68) like below. 
Theorem (1.1.13)[1]: Given ܭ ≥ 1 and ܨ ∈ (0)ܨ assume that (ܭ;ܦ)ܪܥܳ = 0. 
Then for allݖ,߱ ∈  ,ܦ

(ݖ)ܨ| − |(߱)ܨ ≥
1
ܭ

max ൜
2
ߨ

, ∗ܮ ൠ ݖ| − ߱|,																			(73) 
Where  

∗ܮ : =
2
ߨ

න
ݐ݀

Φ൫√ݐ൯Φଵ ⁄ ൫√1 − ൯ݐ

భ ಼⁄ (ଵ √ଶ⁄ )మ



.																			(74) 

Proof. From (71), (51) and [13] we see that 

ݖ| − ߱| ≥ inf
௨∈

൫|߲(ݑ)ܨ| − ห߲̅(ݑ)ܨห൯න|ߛᇱ(ݐ)|
ଵ



ݐ݀ ≥
2

ܭ + 1
inf
௨∈

(ݖ)ଵିܨ||(ݑ)ܨ߲| − |(߱)ଵିܨ 	

≥
1
ܭ

max ൜
2
ߨ

, ∗ܮ ൠ (ݖ)ଵିܨ| −  ,|(߱)ଵିܨ
which leads to (73).  
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Section (1.2): Harmonic Quasiconformal Mappings 
                   It is convenient to give a few comments about the notation. 
Let		ॼ = ݖ} ∈ ℂ: |ݖ| < 1}denote the unit disc. 
   We write qc, qr,ρ-qch, and ρ-qrh instead of quasiconformal, quasiregular, ߩ −harmonic 
quasiconformal and ߩ-harmonic quasiregular, respectively and e-qch, h-qch instead of 
euclidean and hyperbolic harmonic quasiconformal. Basic definitions will be given. 
   The Schwarz lemma attracted a lot of attention and found numerous applications in 
geometric function theory. 
    It seems that investigations concerning the Schwarz lemma have been primarily 
concerned with the following question: 

For our purpose the following are relevant. 
Lemma (1.2.1)[19]: If ߩ > 0 is a ܥଶ function (metric density)on ॼ	and the Gaussian 
curvature satisfies ܭఘ ≤ −1, then ߩ ≤  .ߣ
  Sometimes we refer to this result as the Ahlfors–Schwarz lemma. 
  In [30], Yau mentioned that in order to draw a useful conclusion in the case of harmonic 
mappings between Riemannian manifolds, one has to assume the mapping is 
quasiconformal. Wan [29] was the first one who showed a result in a special situation 
concerning Yau’s suggestion: 
Lemma (1.2.2)[19]: (Wan). Every hyperbolic harmonic quasiconformal diffeomorphism 
from ॼ onto itself is a quasi-isometry of the Poincaré disc. 
In particular, the method of the proof is interesting. It provides at least a partial motivation 
to study this approach and raises the following question: 
 [24], proved an inequality of opposite type of the Ahlfors–Schwarz lemma: 
Lemma (1.2.3)[19]: If ܪ > 0 is a ܥଶ metric density on ॼ for which the Gaussian 
curvature satisfies ܭு ≥ −1and if (ݖ)ܪ tends to+∞, when	|ݖ| tends to 1 −, then	ߣ ≤  .ܪ
  We will use this lemma together with the Ahlfors–Schwarz lemma. 
  We prove an analogue of the Lemma (1.2.2) holds for quasiconformal euclidean 
harmonic mappings and we generalize it to quasiregular harmonic mappings with respect 
to the metric ߩ, whose curvature is bounded from above by a negative constant. 
    It is interesting that we have a similar estimate of the hyperbolic distance for qc 
euclidean harmonic mappings and harmonic mappings with respect to the Poincaré metric, 
which are different in many respects. 
 Let ݂ be aܭ-qc euclidean harmonic diffeomorphism from a domain ܦ on to itself. We 
show that ݂ is a(1/ܭ,ܭ) quasi-isometry with respect to the Poincaré distance in the case 
where ܦ is the isc or the upper-half plane. We refer to these results as the unit disc and the 
half plane euclidean-qch versions, respectively. 
The proofs of these cases cannot be transferred to one another using conformal mappings 
because the euclidean metric is not invariant under them. 
Theorem (1.2.4)[19]: (The half plane and the unit disc e-qch versions). Let ݂ be aܭ-qc 
euclidean harmonic diffeomorphism from the upper half plane ܪ(or the unit disc) onto 
itself. Then ݂ is ܽ(1/ܭ,ܭ) quasi-isometry with respect to the Poincaré distance. 
 It is interesting that we use completely different techniques for the disc and the half plane. 
In the case of the unit disc we use a curvature estimate (see below). In the case of the 
upper half plane, the following known fact plays an important role: 
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Lemma (1.2.5)[19]: Let ݂ be an euclidean harmonic 1-1 mapping of the upper half-plane 
ℍ onto itself, continuous onℍഥ , normalized by ݂(∞) = ∞and ݒ = (ݖ)ݒ Then .݂݉ܫ =
 .has bounded partial derivatives on ℍ ݒ ,where ܿ is apositive constant. In particular ,ݖ	݉ܫܿ
This lemma is a corollary of the Herglotz representation of the positive harmonic function 
 .(see for example [21])ݒ
For information regarding the quasi-isometries, with respect to the hyperbolic metric for e-
qch mappings with general codomains, see [27]. 
We extend Wan’s result to qrߩ-harmonic mappings: 
Theorem (1.2.6)[19]: (ρ-qrh version). Let ܴ be a hyperbolic surface with the Poincaré 
metric density ߣ,ܵ a hyperbolic surface with metric density and let the Gaussian curvature 
of the metric ݀ݏଶ =  ଶbe uniformly bounded from above on ܵ by the negative|ݓ݀|(ݓ)ߩ
constant −ܽ. Then any ߩ-harmonic k-quasiregular map ݂ from ܴ into ܵ decreases 
distances up to a constant de-pending only on a and ݇. 
  The basic properties of ߩ-harmonic functions will be briefly discussed. 
A proof of the above result can be based on an application of the uniformization theorem 
with the fact that ߩ = ܽ(1 − ݇ଶ)ߩ ∘ ݂| ௭݂|ଶ is an ultrahyperbolic metric density. 

Using the conformal automorphisms ߶(ݖ) = ௭ି
ଵିത௭

, ܽ ∈ ॼ,of ॼ, one can define the 
pseudo-hyperbolic distance on ॼ by ߜ(ܽ,ܾ) = |߶(ܾ)|, ܽ, ܾ ∈ ॼ . 
The hyperbolic metric on the unit discॼisݖ݀|ߣ|ଶ, where 

(ݖ)ߣ = ቀ ଶ
ଵି|௭|మ

ቁ
ଶ
. 

We say that ߣis the hyperbolic metric density. The hyperbolic distance on the unit disc ॼ 
is	 

݀ఒ(ݖ,߱) = ݈݊
1 + (߱,ݖ)ߜ
1 − (߱,ݖ)ߜ

= ݈݊
1 + ቚ ݖ − ߱

1 − ቚ߱̄ݖ

1 − ቚ ݖ − ߱
1 − ቚ߱̄ݖ

. 

We also use the notation ݀instead of ݀ఒ. 
The classical Schwarz lemma states: If ݂:ܷ → ܷ is an analytic function and if ݂(0) = 0, 
then |݂(ݖ)| ≤ |and |݂ᇱ(0) |ݖ| 	≤ 1. Equality|݂(ݖ)| = ݖ with ,|ݖ| ≠ 0, or|݂ᇱ(0)| = 1 can 
occur only for ݂(ݖ) = ݁ఈݖ, where ߙ	is a real constant. 
It was noted by Pick that the result can be expressed in invariant form. See following 
result as the Schwarz–Pick lemma. 
Theorem (1.2.7)[19](Schwarz–Pick lemma). Let ܨ be an analytic function from the unit 
disc into itself. Then ܨ does not increase the corresponding hyperbolic (pseudo-
hyperbolic) distances. 
A Riemannian metric given by the fundamental form 

ଶݏ݀ = ଶݔ݀)ߩ + (ଶݕ݀ =  ଶ|ݖ݀|ߩ
or	݀ݏ = ඥݖ݀|ߩ|, ߩ > 0, is conformal to the euclidean metric. We call ߩ a metric density 
(scale) and denote by ݀ఘ the corresponding distance. 
If ߩ > 0 is a ܥଶ	function on ܷ, the Gaussian curvature of a Riemannian metric with 
density ߩ on ܷ is expressed by the formula 

ܭ  = ఘܭ = − ଵ
ଶఘ
 .ߩ	݈݊

We also write (ߩ)ܭ instead of ܭఘ.Ifݏ > 	0 is a constant, it is clear that (ߩݏ)ܭ =  .(ߩ)ܭଵିݏ
A metric ݖ݀|ߩ|ଶ, ߩ ≥ 0, is said to be ultrahyperbolic in a region ߗ ⊂ ℂ if it has the 
following properties: 



14 

(a) ߩ is upper semicontinuous; and 
(b) at every ݖ withߩ(ݖ) > 	0 there exists a supporting metric density ߩ,of class ܥଶ in a 
neighborhood ܸof ݖ, such that ߩ ≤ ఘబܭ and ߩ ≤ −1inV, while ߩ(ݖ) =  .(ݖ)ߩ
If a metric ݖ݀|ߩ|ଶ is ultrahyperbolic in a region ߗ ⊂ ℂ we say that ߩ is an ultrahyperbolic 
metric density. 
Ahlfors (see [20]) proved a stronger version of the Schwarz–Pick lemma and of the 
Ahlfors–Schwarz lemma. 
Theorem (1.2.8)[19] (Ahlfors–Schwarz lemma). Suppose ρ is an ultrahyperbolic metric 
on the unit discॼ.Then ߩ ≤  .ߣ
    Sometimes we refer to this result as the Ahlfors–Schwarz lemma or the non-analytic 
form of the Schwarz lemma. If we wish to be more specific, we refer to this result as the 
Ahlfors ultrahyperbolic lemma. 
   Now, we can state Theorem (1.2.8) in the following form: If ߩ is a metric density on ॼ 
such that ܭఘ(ݖ) ≤ −ܽ, for some ܽ > 0, then the metric a ߩ is ultrahyperbolic and therefore 
aߩ ≤  .ߣ
The notation of an ultrahyperbolic metric makes sense and the theorem remains valid if ߗ 
is replaced by a Riemann surface. 
In a plane region ߗ whose complement has at least two points, there exists a unique 
maximal ultrahyperbolic metric and this metric has constant curvature of −1. 
The maximal metric density is called the Poincarémetric (density) in ߗ and we denote it by 
ߩ satisfies ߩ ఆ. It is maximal in the sense that every ultrahyperbolic metric densityߣ ≤  ఆߣ
throughout ߗ. 
    Ultrahyperbolic metrics (without the name) were introduced by Ahlfors. They found 
many applications in the theory of several complex variables. 
Let ܴ and ܵ be two surfaces. Let ݖ݀|(ݖ)ߪ|ଶ and	ݓ݀|(ݓ)ߩ|ଶ be metrics with respect to the 
isothermal coordinate charts on ܴ and ܵ, respectively, and let ݂ be a	ܥଶ-map from ܴ to ܵ. 
It is convenient to use the notation in local coordinates: 

݂݀ = ݖ݀ + 	where	,̅ݖ̄݀ݍ = ௭݂	andݍ = ݂̄௭̅ .  
We also introduce the complex (Beltrami) dilatation 

݂ߤ  = [݂]ݐ݈݁ܤ = 

,  

where it is defined. 
We say that a	ܥଶ-map f from ܴ	to ܵ	is ρ-harmonic (harmonic with respect to the metric 
density ߏ or, shortly, harmonic) if ݂ satisfies the following equation: 
௭݂̄௭ + ௪(ߩ݈݃) ∘ ݂ = 0. 

For basic properties of harmonic maps and for further information see Jost [22] and 
Schoen and Yau [28]. 
  Note that if ܴ and ܵ are domains in the complex plane and if ߪ and ߩ are the euclidean 
metric densities (that is ߪ = ߩ = 1), then ݂ is euclidean harmonic. 
If ݂:ॼ → ॼis a ߣ-harmonic mapping, we call ݂ a hyperbolic harmonic or a harmonic 
mapping with respect to the Poincaré metric. 
   Let ܴ and ܵ be two Riemann surfaces and ݂:ܴ → ܵ be a	ܥଶ-mapping. If ܲ is a point on 
ܴ, തܲ = ݂(ܲ) ∈ ܵ,߶ a local parameter on ܴ defined near ܲ and ߰ a local parameter on	ܵ 
defined near തܲ, then the map ݓ = ℎ(ݖ) defined byℎ = ߰ ∘ ݂ ∘ ߶ିଵ|(ܸis a sufficiently 
small neighborhood of	ܲ) is called a local representation of ݂at	ܲ.The map ݂ is called k-
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quasiregular if there is a on stant	݇ ∈ (0,1) such that for every representation ℎ, at every 
point of	ܴ, |ℎ௭̅|݇|ℎ௭|. 
If a ݇-qr apping is one-to-one, we call it a ݇-qc mapping. Also, if ݂ is a ݇-qc mapping, we 
use the notation ܭ = ଵା

ଵି
, and we also write that ݂is	ܭ-qc. 

We write: 
ܮ = (ݖ)ܮ = | ௭݂(ݖ)| + ห݂̄௭̅(ݖ)ห	and݈ = ݈(ݖ) = | ௭݂(ݖ)| − | ௭݂̅(ݖ)|, 
 If ௭݂(ݖ)	and ௭݂̅(ݖ) exist. 
The following statements are useful in applications: 

(ݖ)ܮ
1 − ଶ|(ݖ)݂|

≤ ܿଵ
1

1 − ଶ|ݖ|
, ݖ ∈ ॼ,																																																					(75) 

Then ݀(݂	(ݖଵ), ((ଶݖ)݂ ≤ ܿଵ݀(ݖଵ,  .(ଶݖ
݈(ݖ)

1 − ଶ|(ݖ)݂|
≥ ܿଶ

1
1 − ଶ|ݖ|

, ݖ ∈ ॼ,																																																						(76) 

Then		݀(݂	(ݖଵ), ((ଶݖ)݂ ≥ ܿଶ݀(ݖଵ,  .(ଶݖ
The proofs are straightforward. Note that in the proof of 3A it is convenient to consider the 
hyperbolic geodesic joining ݖଵand ݖଶ and in the proof of 3B the hyperbolic geodesic 
joining ݂(ݖଵ) and ݂(ݖଶ). 
Proposition (1.2.9)[19]: (The unit disc euclidean-qch version). Let ݂ be ak-
quasiconformal Euclidean harmonic apping from the unit disc ॼ into itself. Then for all 
ݖ ∈ ॼ	we have  

௭݂(ݖ) ≤
1

1 − ݇
1 − ଶ|(ݖ)݂|

1 − ଶ|ݖ|
. 

Notice that as a corollary we get	(1 − (ݖ)where ݀ ,(ݖ)݀ܭ4(ݖ)ܮ(ଶ|ݖ| =
,(ݖ)	݂)ݐݏ݅݀ ߲ܷ). 
Proof. Let us define (ݖ)ߪ = (1 − ݇)ଶ݂)ߣ	((ݖ)| ௭݂(ݖ)|ଶ, ݖ ∈ ॼ. Since ݂ is harmonic 
in	ॼ,i.e. ௭݂̄௭(ݖ) = 0, ݖ ∈ ॼ, then ௭݂ is holomorphic in ॼ. By Lewy’s theorem ௭݂	does not 
vanish and hence the mapping ݖ ⟼ |݈݃ ௭݂(ݖ)| is harmonic in	ॼ. 
Therefore, (ݖ)(	ߪ݈݃∆) = ߣ)݈݃∆) ∘ ݖ for all,(ݖ)((݂ ∈ ॼ. A straightforward calculation 
gives 

(ݖ)(	ߪ݈݃∆) = ߣ)݈݃ ∘ (ݖ)(݂ = ߣ)݈݃)4 ∘ ݂))௭̄௭(ݖ)

=
8| ௭݂(ݖ)|ଶ

(1 − ଶ)ଶ|(ݖ)݂|
൭1 + ଶ|(ݖ)ߤ| + 2ܴ݁ ቆ

ଶ((ݖ)݂) ௭݂(ݖ)തതതതതതത ௭݂̅(ݖ)|തതതതതതതത
| ௭݂(ݖ)|ଶ ቇ൱ 

=
(ݖ)ߪ2

(1 − ݇)ଶ
൭1 + ଶ|(ݖ)ߤ| + 2ܴ݁ ቆ

ଶ((ݖ)݂) ௭݂(ݖ)തതതതതതത ௭݂̅(ݖ)|തതതതതതതത
| ௭݂(ݖ)|ଶ ቇ൱ . 

Hence, the Gaussian curvature of the conformal metric ݀ݏଶ =  ଶ satisfies|ݖ݀|(ݖ)ߪ

(ݖ)(	ߪ)ܭ	 = −
1

(1 − ݇)ଶቌ1 + ଶ|(ݖ)ߤ| + 2ܴ݁ ൭
൫݂(ݖ)൯

ଶ
௭݂(ݖ)തതതതതതത ௭݂̅(ݖ)|തതതതതതതത

| ௭݂(ݖ)|ଶ ൱ቍ							(77) 

for all ݖ ∈ ॼ. On the other hand we have 

อܴ݁ ൭
൫݂(ݖ)൯

ଶ
௭݂(ݖ)തതതതതതത ௭݂̅(ݖ)|തതതതതതതത

| ௭݂(ݖ)|ଶ ൱อ ≤ อܴ݁ ൭
൫݂(ݖ)൯

ଶ
௭݂(ݖ)തതതതതതത ௭݂̅(ݖ)|തതതതതതതത

| ௭݂(ݖ)|ଶ ൱อ ≤  (78)						,|(ݖ)ߤ|

so we obtain  
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ܴ݁ ቆ
ଶ((ݖ)݂) ௭݂(ݖ)തതതതതതത ௭݂̅(ݖ)|തതതതതതതത

| ௭݂(ݖ)|ଶ ቇ ≥  .|(ݖ)ߤ|−

Therefore, 

(ݖ)(ߪ)ܭ ≤ −
1

(1 − ݇)ଶ
1 + ଶ|(ݖ)ߤ| − |(ݖ)ߤ|2 = −

(1 − ଶ(|(ݖ)ߤ|

(1 − ݇)ଶ
≤ −1, 

and hence, using the Ahlfors–Schwarz lemma, we get (ݖ)ߪ ≤ ,(ݖ)ߣ ݖ ∈ ॼ, or equivalently  
(1 − ݇)ଶߣ൫݂(ݖ)൯| ௭݂(ݖ)|ଶ ≤  (79)																																																							(ݖ)ߣ

for all ݖ ∈ ॼ. Now, the claim follows easily from (79). 
Theorem (1.2.10)[19]: Let ݂ be ak-quasiconformal euclidean harmonic mapping from the 
unit discॼ into itself. Then for any two points ݖଵand ݖଶin ॼ we have 

 ݂݀(ݖଵ), (ଶݖ)	݂ ≤ ଵା
ଵି

݀(ݖଵ,  ,(ଶݖ
 where ݀ is the hyperbolic distance function induced by the hyperbolic metric in ॼ. 
Note that this statement follows from Proposition (1.2.9). 
Notice that, in order to get the opposite inequality in Proposition (1.2.9), we need to 
assume that ݂ is onto. 
Theorem (1.2.11)[19]: Let ݂ be ak-quasiconformal euclidean harmonic mapping from the 
unit disc ॼ onto itself. Then for all ݖ ∈ ॼ	we have 

| ௭݂(ݖ)| ≥
1

1 + ݇
1 − ଶ|(ݖ)݂|

1 − ଶ|ݖ|  

and		݂݀(ݖଵ), ((ଶݖ)݂ ≥ ଵି
ଵା

݀(ݖଵ,  .(ଶݖ
Proof. By (77) and (78) 

(ݖ)(	ߪ)ܭ ≥ − ଵ
(ଵି)మ

(1 + ଶ|(ݖ)ߤ| + (|(ݖ)ߤ|2 = − (ଵା|ఓ(௭)|)మ

(ଵି)మ
≥  .ଶܭ−

In [26], it has been proved that there is a constant ܿ > 0 such that| ௭݂| ≥ ܿ	on ॼ. Hence, ߪ 
tends to +∞, when |ݖ| tends to 1 −. Thus, by Lemma (1.2.3),(1 + ݇)ଶ((ݖ)݂)ߣ| ௭݂(ݖ)|ଶ ≥
݈(1	and therefore, since (ݖ)ߣ − ݇)| ௭݂(ݖ)|,wehave ܭଶ((ݖ)݂)ߣ݈ଶ ≥ ݈((ݖ)݂)መߣܭ .i.e,ߣ ≥
መߣ where	መ,ߣ =  .ߣ√
Now, an application of 3B immediately yields ݂݀(ݖଵ), (ଶݖ)	݂ ≥ ଵି

ଵା
݀(ݖଵ,  .(ଶݖ

For ܽ ∈ ℂ and ݎ > 0 we define ܤ(ܽ; :ݖ(ݎ ݖ| − ܽ| <  In particular, we writeॼ instead .{ݎ
of 0)ܤ;  .(ݎ
Theorem (1.2.12)[19] (The half plane euclidean-qch version). Let ݂	be ܭ-qc euclidean 
harmonic diffeo-morphism rom	ℍ onto itself. Then ݂	is(1/ܭ,ܭ) quasi-isometry with 
respect to the Poincaré distance. 
  We first show that, by precomposition with a linear fractional transformation, we can 
reduce the proof to the case	݂(∞) = ∞.If ݂(∞) ≠ ∞, there is a real number ܽ such that 
݂(ܽ) = ∞. 
On the other hand, there is a conformal automorphism ܣ of ℍ such that ܣ(∞) = ܽ. Since 
A is an isometry of ℍ onto itself and ݂ ∘  is a K-qc euclidean harmonic diffeomorphism ܣ
from ℍ onto it self, the proof is reduced to the case ݂(∞) = ∞. 
It is well known that f has a continuous extension toℍഥ  (see [7]). 
Hence, by Lemma (1.2.5),݂ = ݑ +  where c is a positive constant. Using the linear ,ݖ݉ܫ	ܿ݅
mapping B, defined by (ݓ)ܤ =  and a similar consideration as the above, we can ,ܿ/ݓ
reduce the proof to the case ܿ = 1. Therefore we can write ݂ in the form ݂ = ݑ + ݖ݉ܫ݅ =
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ଵ
ଶ

(ݖ) ܨ) + ݖ + (ݖ)ܨ − (ݖ)ߤ ,ℍ. Hence	is a holomorphic function in ܨ തതതതതതതതതതതത, where(ݖ =
ிᇲ(௭)ିଵ
ிᇲ(௭)ାଵ

  and ܨᇱ(ݖ) =
ଵାఓ(௭)
ଵିఓ(௭)

, ݖ ∈ ℍ. 

Define ݓ = (ߞ)ܵ = ଵା
ଵି

. Then, ܵ( ܷ) = ܤ = ܽ)ܤ ;ܴ), Where ܽ = ଵ
ଶ

ܭ) +  and (ܭ/1

ܴ = ଵ
ଶ

ܭ) −  .(ܭ/1
Since ݂ is ݇-qc, then ߤ(ݖ) ∈ ܷ  and therefore ܨᇱ(ݖ) ∈ ݖ , forܤ ∈ ℍ. This yields, first, 
ܭ + 1 ≥ (ݖ)ᇱܨ| + 1| ≥ 1 + ܭ					,ܭ/1 − (ݖ)ᇱܨ|1 − 1| ≥ 1 − and then, 1 ,ܭ/1 ≤ (ݖ)ܮ =
ଵ
ଶ

(ݖ)ᇱܨ|) + 1| + (ݖ)ᇱܨ| − 1|) ≤  .ܭ
So we have	݈(ݖ)ܮ(ݖ)/ܭ ≥  Thus, we find .ܭ/1

1
ܭ
≤ ݈(ݖ) ≤ (ݖ)ܮ ≤  (80)																																																						.ܭ

Since ((ݖ)݂)ߣ = ,(ݖ)ߣ ݖ ∈ ℍ, using (80) and the corresponding versions of 3A and 3B for 
ℍ, we obtain 

	
1 − ݇
1 + ݇

݀(ݖଵ, (ଶݖ ≤ ݀൫݂(ݖଵ),݂(ݖଶ)൯ ≤
1 + ݇
1 − ݇

݀(ݖଵ,  .(ଶݖ
It also follows from (80) that 

	
1
ܭ

ଶݖ| − |ଵݖ ≤ (ଶݖ)݂ − (ଵݖ)݂ ≤ ଶݖ|ܭ − ,|ଵݖ ,ଵݖ ଶݖ ∈ ℍ. 
This estimate is sharp (see also [23] for an estimate with some constant ܿ(ܭ)). 

We first need some properties of harmonic mappings. 
Let ܴ and ܵ be two surfaces. Let ݖ݀|(ݖ)ߪ|ଶ and ݓ݀|(ݓ)ߩ|ଶ	be metrics with respect 

to the isothermal coordinate charts on ܴ and ܵ, respectively, and let f be ܥଶ-map from ܴ to 
ܵ. 
We use the following notation: 

ߤ = [݂]ݐ݈݁ܤ =
ݍ


, |߲݂|ଶ =
ߩ
ߪ

| ௭݂|ଶ, ห߲݂̅ห
ଶ

=
ߩ
ߪ

|݂̄௭̅|ଶ, (݂)ܬ = |߲݂|ଶ − ห߲݂̅ห
ଶ

, 

and the Bochner formula (see [28])  
∆݈݊	|߲݂| = (݂)ܬௌܭ− +  (81)																																																																																												ோ.ܭ

Let us briefly explain how we apply the Bochner formula: Let ݂ be aρ-harmonic 
mapping,ߩ ∗= ݂ߩ = ߩ ∘ ∗ܭ ଶand||݂ =  is ߪ Recall, if .∗ߩ ఘ∗the Gaussian curvature ofܭ
the Euclidean metric density (that is ߪ = 1), it follows from the Bochner formula (81) that 
∗ܭ = ௌ(1ܭ −  .(ଶ|ߤ|
   Note that the Bochner formula is useful tool (for ρ-harmonic mappings if the Gaussian 
curvature of ߩ is negative), but it does not give new information for euclidean harmonic 
mappings. 
   Namely, if ߪand ߩ are euclidean metrics densities (that is ߪ = ߩ = 1), then ݂ is 
Euclidean harmonic and application of the Bochner formula yields ∆݈݊|߲݂| = 0. Also, this 
is an easy consequence of the fact that ߲݂ is an analytic function. 
Theorem (1.2.13)[19]: (Hyperbolic-qch version). Let ݂ be ak-quasiconformal harmonic 
mapping from the unit discॼ onto itself with respect to the Poincaré metric. Then for any 
two points ݖଵand ݖଶ in ॼ we have 

	(1 − ݇)݀(ݖଵ, (ଶݖ ≤ ݀൫݂(ݖଵ, ൯(ଶݖ)	݂( ≤ ඨ1 + ݇
1 − ݇

݀(ݖଵ,  (82)																																				ଶ),ݖ
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Where ݀is the hyperbolic distance induced by the hyperbolic metric in ॼ. 
We now consider a generalization of Theorem (1.2.13). We are actually concerned with a 
generalization of the right inequality in (82) and we postpone a more general discussion. 
We have the following lemma. 
Lemma (1.2.14)[19]: Let ߪ and ߩ be two metric densities on ॼ, which define the 
corresponding metrics ݀ݏ = ݏଶand݀|ݖ݀|(ݖ)ߪ = ଶ, and let ݂:ॼ|ݓ݀|(ݓ)ߩ → ॼ be a ܥଵ-
mapping. Ifܮ((ݖ) ݂)ߩଶ(ݖ)ܿ(ݖ)ߪ, ݖ ∈ ॼ, then	݀ఘ(݂(ݖଶ), ((ଵݖ)݂ ≤ ܿ݀ఙ(ݖଶ,  ଵ), for allݖ
,ଶݖ ଵݖ ∈ ॼ 
The proof of this result, which is a generalization of 3A. 
A version of the following result was announced in [25]. 
Theorem (1.2.15)[19]: (ρ-qrh version). Let ܴ be a hyperbolic surface with the Poincaré 
metric density ߣ, ܵ another with a metric density ߩ and let the Gaussian curvature of the 
metric ݀ݏଶ =  ଶ e uniformly bounded from above on ܵ by the negative constant|ݓ݀|(ݓ)ߩ
−ܽ,ܽ > 0. Then any ρ-harmonic k-quasiregular map f from R into S decreases distances 
up to a constant depending only on a and k: 

	݀ఘ൫݂(ݖଵ, ൯(ଶݖ)	݂( ≤
1
√ܽ

ඨ1 + ݇
1 − ݇

	

݀(ݖଵ,  (83)																																																									ଶ),ݖ

where ݀ఘ is the corresponding distance induced by the metric ds 2=ρ(w)|dw|2 on S. 
Proof. By the uniformization theorem we can suppose that ܴ and ܵ are the unit discs. 
Let ߩ∗ = ߩ ∘ ,ଶ||݂ ߩ = ܽ(1 − ݇ଶ)ߩ∗and ܭ =  .ߩ the Gaussian curvature of (ߩ)ܭ
Set	ܭ∗ =  , is an ultrahyperbolic metric density. NamelyߩFirst, we show that .(∗ߩ)ܭ
ifߩ = (ݖ)	ݏ݅	ݐℎܽݐ)0 = ௭݂(ݖ) ≠ 0), then there is a neighborhood W of ݖ such that ݂ is 
one-to-one in ܹ. 
Using the fact that	ܭ∗ = ௌ(1ܭ − ∗ܭ ଶ), we conclude that|ߤ| − ܽ(1 − ݇ଶ) and therefore 
ܭ ≤ −1on ܹ. Thus, ߩ is an ultrahyperbolic metric on ॼ. Hence, by the Ahlfors 
ultrahyperbolic lemma, ܽ(1 − ݇ଶ)ߩ∗ ≤ ܽ(1	and	ߣ − ݇ଶ)ܮ(ݖ)݂ߩଶ(ݖ) ≤ ,ߣଶܭ ݖ ∈ ॼ. An 
application of Lemma (1.2.14) immediately yields the result. 
Note that one can show that there is a qc mapping ݃ and an analytic function ܨ such that 
݂ = ܨ ∘ ݃. 
Using the uniformization theorem, some results can be extended to a more general setting 
including Riemann surfaces, more general functions and metrics on both domains and 
codomains. 
Section (1.3): Harmonic Mappings between Smooth Jordan Domains 

For ܦ and	ܩ be subdomains of the complex plane ܥ: A homeomorphism ݂:ܦ ⟼  ;ܩ
where is said to be ܭ-quasiconformal (K-q.c), ܭ ≥ 1, if ݂ is absolutely continuous on 
almost every horizontal and almost every vertical line and  

																																													ฬ
߲݂
ݔ߲
ฬ
ଶ

− ฬ
߲݂
ݕ߲
ฬ
ଶ

≤ ൬ܭ +
1
ܭ
൰ .ܽ	ܬ ݁. ;ܦ	݊ 																																						(84) 

Where ܬ is the Jacobian of ݂ (cf. [32]). Note that the condition (84) can be written as 

| ௭݂̅| ≤ ݇| ௭݂|	ܽ. ݁. on	ܦ	where	݇ =
ܭ − 1
ܭ + 1

݅. 	ܭ.݁ =
1 + ݇
1 − ݇

: 
A function ߱ is called harmonic in a region ܦ if it is of the form ߱ = ݑ +  and ݑ where ݒ݅
 is simply-connected, there exist two ܦ If .ܦ are real-valued harmonic functions in ݒ
analytic functions g and h defined on ܦ such that w has the representation 
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߱ = ݃ + ℎത. 
   If ߱ is a harmonic univalent function, then by Lewy's theorem (see [42]), ߱ has a non-
vanishing Jacobian and consequently, according to the inverse mapping theorem, w is a 
diffeomorphism. 
Let  

ݔ,ݎ)ܲ − ߮) =
1 − ଶݎ

1)ߨ2 − ݔ)ݏܿ	ݎ2 − ߮) + (ଶݎ
 

denote the Poisson kernel. Then every bounded harmonic function w defined on the unit 
disk ܷ: = :ݖ} |ݖ| < 1}g has the representation 

(ݖ)߱																																			 = (ݖ)[݂]ܲ = න ݔ,ݎ)ܲ − ߮)݂൫݁௫൯
ଶగ



 (85)																																						,ݔ݀	

Where ݖ =  .ఝ and f is a bounded integrable function defined on the unit circle ܵଵ݁ݎ
Suppose ߛ is a rectifiable, directed, differentiable curve given by its arc-length 

parametrization ݃(ݏ), 0 ≤ ݏ ≤ ݈, where l is the length of ߛ. Then ห݃′(ݏ)ห = 1 and ݏ =
∫ ห݃′(ݐ)ห௦
 ݏ for all ;ݐ݀	 ∈ [0, ݈]. 

If ߛ is a twice-differentiable curve, then the curvature of ߛ at a point  =  is given by (ݏ)݃
()ఊܭ = ห݃′′(ݏ)ห: Let 

,ݏ)ܭ										 (ݐ = ܴ݁	[൫݃(ݐ) − .൯തതതതതതതതതതതതതതതതതത(ݏ)݃  (86)																																																									[(ݏ)′݃݅
be a function defined on [0, ݈] × [0, ݈]. By ݏ)ܭ ± ݈, ݐ ± ݈) = ,ݏ)ܭ  we extend it on (ݐ
ℝ × ℝ. Note that i݃′(ݏ) is the unit normal vector of ߛ at ݃(ݏ) and therefore, if ߛ is convex 
then 
,ݏ)ܭ		 (ݐ ≥ 0	for	every	s	and	:ݐ																																						(87)  
We say that ߛ ∈ ,ଵ,ఓܥ 0 < ߤ ≤ 1, if ݃ ∈  ଵ andܥ

sup
௧,௦

ห݃′(ݐ) − ห(ݏ)′݃
ݐ| − ఓ|ݏ < ∞. 

Let ߛ ∈  .ଵ,ఓ be a Jordan curve such that the interior of ° contains the originܥ
Let ݂ be a ܥଵ,ఓ function from the unit circle onto ߛ and let (ݔ)ܨ = ݂(݁௫),ݔ ∈ [0,  .(ߨ2
Then the functions (ݔ)ߩ = (ݔ)ߠ and |(ݔ)ܨ| = ,on (0 ߨmod 2 (ݔ)ܨ	݃ݎܽ  ଵ,ఓܥ have [ߨ2
extension on ℝ. We will use ݂ and ܨ interchangeably and will write ݂  instead of (ݔ)′
 .(ݔ)′ܨ
Suppose now that ݂:ℝ ⟼  ଵ function such thatܥ periodic ߨis an arbitrary 2 ߛ
݂|[,ଶగ): (ߨ0,2] 	⟼  .is an orientation preserving bijective function ߛ
Then there exists an increasing continuous function ݏ: [ߨ0,2] ⟼ [0, ݈] such that 

																																														݂(߮) = ݃൫ݏ(߮)൯.																																																						(88) 
Hence 

݂ ′(߮) = ݃′൫ݏ(߮)൯. ݏ ′(߮), 
and therefore 

ห݂ ′(߮)ห = ห݃′൫ݏ(߮)൯ห. หݏ ′(߮)ห = หݏ ′(߮)ห. 
Along with the function K we will also consider the function ܭ defined by 

,߮)	ܭ (ݔ = ܴ݁	ൣ൫݂(ݔ) − ݂(߮)൯. ݂݅ ′(߮)൧. 
It is easy to see that 

(ݔ,߮)	ܭ	 = ݏ ′(߮)ܴ݁	 ቂቀ݃൫(ݔ)ݏ൯ − 	݃൫ݏ(߮)൯ቁതതതതതതതതതതതതതതതതതതതതതതതതതതതത . ݅݃′൫ݏ(߮)൯ቃ = 	 ݏ ,(߮)ݏ൫ܭ(߮)′  (89)				൯.(ݔ)ݏ
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 The following lemma is a slight modiffications of the corresponding lemma in [37]. 
Lemma (1.3.1)[31]: Let ߛ be a ܥଵ,ఓJordan curve. Let ݃: [0, ݈] ⟼  be a natural ߛ
parametrization and ݂: [ߨ0,2] ⟼  Then .ߛ be arbitrary parametrization of ,ߛ
 							หܭ(ݏ, ห(ݐ ≤ ݏఊܥ ′(߮)		min{|ݏ(߮) − ݈)	ଵାగ|(ݔ)ݏ − (߮)ݏ| −   (90)																			ଵାఓ},(|(ݔ)ݏ
and 
							หܭ(߮,ݔ)ห ≤ ݏఊܥ ′(߮)	min{|ݏ(߮) − ,ଵାఓ|(ݔ)ݏ (݈ − (߮)ݏ| −  (91)																			ଵାఓ},(|(ݔ)ݏ
Where 

ఊܥ =
1

1	 + ߤ
sup

ஸ௧ஷ௦ஸ

ห݃′(ݐ) − ห(ݏ)′݃
ݐ| − ଵାఓ|ݏ	 . 

Here ݀ఊ ቀ݂൫݁ఝ൯, ݂൫݁௫൯ቁ : = (߮)ݏ|}݊݅݉ − ,|(ݔ)ݏ (݈ − (߮)ݏ| −  is the distance ({|(ݔ)ݏ
(shorter) between ݂൫݁ఝ൯ and ݂൫݁௫൯ along ߛwhich satisfies the relation 

ห݂൫݁ఝ൯ − ݂൫݁௫൯ห 	≤ ቀ݂൫݁ఝ൯,݂൫݁௫൯ቁ ≤ ఊห݂൫݁ఝ൯ܥ − ݂൫݁௫൯ห. 
Moreover if ߛ has a bounded curvature then the relations (90) and (91) are true for 

ఊܥ = ൛ݑݏ ห݇ఊ ห((ݏ)݃)	 2⁄ : ݏ ∈ [0, ݈]ൟ 
 and ߤ = 1. In this case 

lim
௧→௦

,ݏ)ܭ (ݐ
ݏ) − ଶ(ݐ	

=
ห݇ఊ൫݃(ݏ)൯ห

2
 

 And 

lim
௫→ఝ

,߮)ܭ (ݔ
(ݔ)ݏ) − ଶ((߮)ݏ

	=
ห݇ఊ൫݃(ݏ)൯ห

2
ݏ ′(߮), 

and the constant ܥఊ is the best possible. 
Proof. Note that 

,ݏ)ܭ (ݐ = ܴ݁ ቂ൫݃(ݐ) − .൯തതതതതതതതതതതതതതതതതത(ݏ)݃  ቃ(ݏ)′݃݅

= 	ܴ݁ ቈ(݃(ݐ) − .	തതതതതതതതതതതതതതതതതത((ݏ)݃ ݅ ቆ݃′(ݏ) −
(ݐ)݃ − (ݏ)݃

ݐ − ݏ
ቇ , 

and 

(ݏ)′݃ −
(ݐ)݃ − (ݏ)݃

ݐ − ݏ
= න

(ݏ)′݃ − ݃′(࣮	)
ݐ − ݏ

௧

௦

࣮݀. 

If ߛ has a bounded curvature then ݃′′ is bounded and 

	ቤ݃′(ݏ) −
(ݐ)݃ − (ݏ)݃

ݐ − ݏ
ቤ ≤ න

ห݃′(ݏ) − ݃′(࣮	)ห
ݐ − ݏ

௧

௦

࣮݀	 

≤ sup
௦ஸ௫ஸ௧

ห݃′′(ݔ)หන
(ݏ)′݃ − ݃′(࣮	)

ݐ − ݏ

௧

௦

࣮݀ =
1
2

	
sup
௦ஸ௫ஸ௧

ห݃′′(ݔ)ห ݐ)	 −  .(ݏ

On the other hand 
ห݃(ݐ) − തതതതതതതതതതതതതതതห(ݏ)݃ ≤ sup

௦ஸ௫ஸ௧

	
	 ห݃

ݐ)(ݔ)′ − ห(ݏ = ݐ) −  ,(ݏ

 and thus 
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,ݏ)ܭ| |(ݐ ≤
1
2

sup
௦ஸ௫ஸ௧

	
	 ห݃

ݏ)ห(ݔ)′′ −  .ଶ(ݐ

It follows that the inequality (90) holds for ܥఊ = sup ห	݇ఊ()ห 2⁄  and ߤ = 1. 
From (90) and (89) we obtain (91). Since  

ߜ
ݏߜ
,ݏ)ܭ (ݐ = (ݐ)݃)	ൣܴ݁ − .തതതതതതതതതതതതതതതതതത((ݏ)݃  ,൧(ݏ)′′݃݅

it follows that 

	lim
௧→௦

,ݏ)ܭ (ݐ
ݏ) − ଶ(ݐ

	= lim
௧→௦

ܴ݁ ቂ	൫݃(ݐ) − .൯തതതതതതതതതതതതതതതതതത(ݏ)݃ ቃ(ݏ)′′݃݅
ݏ)2 − (ݐ

 

= ܴ݁ .(ݏ)′݃−] [(ݏ)′′݃݅ 2⁄ = ห(ݏ)′′ห݃ߝ 2⁄ 	= ݇ఊ(ݏ) 2⁄ , 
Here ߝ = 1	݂݅	݇ఊ > 0 and ߝ = −1 if ݇ఊ < 0: Similarly we can prove the case ° ߛ ∈  .ଵ,ఓܥ
Lemma (1.3.2)[31]: [37] Let ߱ = ݑ +  :be a differentiable function defined on ܷ. Then ݒ݅

ఝ݁ݎ)ఠܬ																				 = ௬ݒ௫ݑ − ௫ݒ௬ݑ = |߱௭|ଶ − |߱௭̅|ଶ =
1
ݎ

ఝݒݑ) −  (92)																						)ݒఝݑ
And 

ఝ൯݁ݎ൫(߱)ܦ																								 ≔ |߱௭|ଶ + |߱௭̅|ଶ =
|߲߱|ଶ

2
+
ห߲ఝ߱ห

ଶ

ଶݎ2
.																																						(93) 

If in addition we suppose that ߱ = ݂ where ,(ݖ)[݂]ܲ ∈ :݂,ଵ,ఓܥ ܵଵ ⟼  then ,ߛ
there exist continuous functions ܬఠ and ܦ(߱) on the unit circle de¯ned by: 
ఠ(݁ఝ)ܬ																																																																								 = lim

→ଵ
 (94)																																							ఝ൯݁ݎఠ൫ܬ

And 

൫݁ఝ൯(߱)ܦ								 = lim
→ଵ

(߱)ܦ ൫݁ఝ൯ = lim
→ଵ

ห߲߱൫݁ݎఝ൯ห
ଶ

2
+
ห݂ ′(߮)ห

ଶ

ଶݎ2
	.																															(95) 

Proposition (1.3.3)[31]: (Kellogg). Let ߛ ∈ ଵ,ఓ be a Jordan curve and let Ωܥ =  .(Γ)ݐ݊ܫ
    If ߱ is a conformal mapping of ܷ onto Ω , then ߱′ and ln ߱′ are in ݅ܮఓ . In particular, 
ห߱′ห is bounded from above and below by positive constants on ܷ. 
For the proof, see for example [41]. 
The following lemma is a generalization of Mori's Theorem, (cf. [32]). 
Lemma (1.3.4)[31]: If ߱ is a ܭ quasiconformal function between the unit disk and a 
Jordan domain Ω with ܥଵ,ఓ boundaryߛ, then there exists a constant ܥ depending only on 
 and on ߱(0) such that  ߛ

(ଵݖ)߱|	 |(ଶݖ)߱− ≤ ଵݖ|ܥ − ߙ,ଶ|ఈݖ =
1 − ݇
1 + ݇

, ,ଵݖ ଶݖ ∈ ܷ. 
Note that the constant ߙ is the best possible (in general case). 
We give some estimates for the Jacobian of a harmonic univalent function. It is a slight 
improvement of [37]. 
Lemma (1.3.5)[31]: Let ߱ =  be a harmonic function between the unit disk ܷ and (ݖ)[݂]ܲ
the Jordan domain Ω, such that ݂ is injective, ݂ ∈ ଵ,ఓ, and ߲Ωܥ = ݂(ܵଵ) ∈  ଵ,ఓ. Then forܥ

ଵܥ =
ߨ

4(1 + (ߤ upݏ
ୱஷ௧

ห݃′(ݏ) − ห(ݐ)′݃
ݏ) − ఓ(ݐ

 

one has 
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			 lim
→ക

ଵห݂ܥ(ݖ)ఠܬ ′(߮)ห න
݀ఊ(݂൫݁(ఝା௫)൯,݂(݁ఝ))ଵାఓ

ଶݔ

గ

ିగ

 (96)																																						ݔ݀	

for all ݁ఝ ∈ ܵଵ. 
Proof. Since ݂ ∈  ଵ,ఓ, by the proof of the Lemma (1.3.2) it follows that the partialܥ
derivatives of the function w have continuous extensions on the boundary. Since 

(ݔ)ܨ 	=  ;ఝ(௫)݁(ݔ)	
we obtain 
൫݁ఝ൯ݑ  = lim௭→ക (ݖ)ݑ , ൫݁ఝ൯ݒ = lim௭→ക  ,(ݖ)ݒ

	 lim
௭→ക

(ݖ)ఝݑ = ܴ݁
߲
߲߮

ቀߩ൫߮݁ఏ(ఝ)൯ቁ = (߮)ߠ	ݏܿ(߮)′ߩ − ߠ(߮)ߩ  	(߮)ߠ݊݅ݏ(߮)′

and 

	 lim
௭→ക

(ݖ)ఝݒ = ݉ܫ
߲
߲߮

ቀߩ൫߮݁ఏ(ఝ)൯ቁ = (߮)ߠ݊݅ݏ	(߮)′ߩ − ߠ(߮)ߩ  .(߮)ߠݏܿ(߮)′

Observe that  ݑ(݁ఝ) = (ఝ݁)ݒ	and	(߮)ߠ	ݏܿ(߮)ߩ =  :Thus .	(߮)ߠ݊݅ݏ(߮)ߩ

lim
→ക

(ݖ)ఠܬ ൫݁ݎఝ൯ = lim
→ଵ

1
ݎ
൫ݑݒఝ − ൯ݒఝݑ

= lim
→ଵ

ቀݑ൫݁ݎఝ൯ − ൫݁ఝ൯ቁݑ
1 − ݎ

(߮)ߠ݊݅ݏ(߮)ᇱߩ +  ߠᇱ(߮)cosߠ(߮)ߩ

− lim
→ଵ

ቀݒ൫݁ݎఝ൯ − ൫݁ఝ൯ቁݒ
1 − ݎ

(߮)ߠcos(߮)′ߩ + ߠ(߮)ߩ  (߮)ߠ݊݅ݏ(߮)′

= lim
→ଵ

නܭ(ݔ,߮)
గ

ିగ

߮,ݎ)ܲ − (ݔ
1 − ݎ

 ݔ݀

= lim
→ଵ

නܭ(ݔ + ߮,߮)
గ

ିగ

(ݔ,ݎ)ܲ
1 − ݎ	

 .ݔ݀

According to (91) 
หܭ(ݔ + ߮,߮)ห ≤ ఊ݂ᇱ(߮)݀ఊܥ ቀ݂൫݁(ఝା௫)൯,݂൫݁ఝ൯ቁ1 +  .ߤ

 On the other hand, using the inequality|ݐ| ≤ ߨ 2⁄ ߨ for |ݐ	݊݅ݏ	| 2⁄ ≤ ݐ ≤ ߨ 2⁄ , we obtain 

ܲ
(ݔ,ݎ)
1 − ݎ	

=
1 + ݎ

1)ߨ2 + ଶݎ − (ݔ	ݏܿ	ݎ2	
≤

1
1))ߨ − ଶ(ݎ	 + ଶ݊݅ݏ	ݎ4 ݔ	 2⁄ )

≤
ߨ

ଶݔݎ4
 

For	0 < ݎ ≤ ݔ	݀݊ܽ	1 ∈  ,Thus	.[ߨ,ߨ−]

lim
→ଵ

න(߮,ݔ)ܭ
గ

ିగ

߮,ݎ)ܲ − (ݔ	
1 − ݎ	

ݔ݀ ≤
ఊܥߨ

4
|݂ᇱ(߮)| න

݀ఊ(݂൫݁(ఝା௫)൯,݂(݁ఝ))ଵାఓ

ଶݔ

గ

ିగ

 .ݔ݀

	The inequality now holds for 

ଵܥ =
ߨ

4(1 + (ߤ sup
௦ஷ௧

|݃ᇱ(ݏ) − ݃ᇱ(ݐ)|
ݏ) − ఓ(ݐ	

 

Using Lemma (1.3.2), Proposition (1.3.3), Lemma (1.3.4) and Lemma (1.3.5) we obtain: 
Theorem (1.3.6)[31]: [37] Let ߱ =  be a K q.c. harmonic function between the (ݖ)[݂]ܲ
unit disk and a Jordan domainΩ, such that ߱(0) = 0. If	ߛ = Ω ∈  ଵ,ఓ, then there exists aܥ
constant ܥᇱ =  such that (ܭ,ߛ)ᇱܥ

|	݂ᇱ(߮)| ≤ ߮	every	almost	for	ᇱܥ ∈  (97)																																						,[ߨ0,2]
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And 
(ଵݖ)߱|																														 |(ଶݖ)߱− ≤ ଵݖ|ᇱܥܭ − ,ଵݖ	for	ଶ|ݖ ଶݖ ∈ ܷ.																																						(98) 
Notice that Theorem (1.3.6) is a generalization of the corresponding result for the 
harmonic q.c. of the unit disk onto itself, see [14]. Theorem (1.3.6) has its extension to the 
class of q.c. mappings satisfying the differential inequality |∆߱| ≤  .௭||߱௭| (see [40])߱|ܯ
Example (1.3.7)[31]: ([33]). Let ܲ be a regular n¡polygon. Then the function  

(ݖ)߱ = න(1 − )ିଶݖ ⁄
௭



 ݖ݀	

 is a conformal mapping of the unit disk onto the polygon ܲ. However ߱ᇱ(ݖ) =
(1 − )ିଶݖ ⁄  is an unbounded function on the unit disk and thus the condition ߛ ∈  ଵ,ఓ inܥ
Theorem (1.3.6) is important. 
Corollary (1.3.8)[31]: [37] Let w be a quasiconformal harmonic mapping between Jordan 
domains Ω andΩଵ, such that ߱(0) = 0. If ߛ = ߲Ω ∈ ଵߛ ଵ,ఓ andܥ = ߲Ωଵ ∈ ଵ,ఓభܥ , 0 <
ଵߤ,ߤ ≤ 1	, then there exist the constants C and ܥଵ depending on and °1 such that 

(ଵݖ)߱|						 − |(ଶݖ)߱ ≤ ଵݖ|ܥ −  (99)																																			ଶ|ݖ
and 

(ݖ)(߱)ܦ																	 = |߱௭(ݖ)|ଶ 	+ |߱௭(ݖ)|ଶ ≤  (100)																																						ଵ.ܥ
The following theorem provides a necessary and sufficient condition for the q.c. harmonic 
extension of a homeomorphism from the unit circle to a ܥଵ,ఓ convex Jordan curve. It is an 
extension of the corresponding theorem of Pavlovi¶c ([14]): 
Theorem (1.3.9)[31]: [37] Let ݂: ܵଵ ⟼  be an orientation preserving absolutelyߛ
continuous homeomorphism of the unit circle onto a convex Jordan curve ° 2C1;¹. Then 
߱ = ܲ[݂] is a quasiconformal mapping if and only if 

										0 < ess inf|f ᇱ(߮)| ,																																																								(101) 
					ess	sup	|f ᇱ(߮)| < ∞																																																									(102) 

and 

		ess	sup
ఝ

อන
|f ᇱ(߮ + f||(ݐ ᇱ(߮ − |(ݐ

	݊ܽݐ ݐ 2⁄
ݐ݀

గ



อ < ∞.																																										(103) 

We note that the hypothesis "absolutely continuous" in the previous theorem is needed, 
although this theorem appeared in [37] without this hypothesis. 
Example (1.3.10)[31]: ([36]). Let 

(߮)ߠ	 =
2 + (|߮|݈݃)ݏܿ)ܾ − ((|߮|	݈݃)݊݅ݏ	

2	 + (ߨ	݈݃)ݏܿ)ܾ	 − ((ߨ	݈݃)݊݅ݏ
߮,߮ ∈  ,[ߨ,ߨ−]

where 0 < ܾ < 1. Then the function ߱(ݖ) = (ݖ)[݂]ܲ = ܲ[݁ఏ(ఝ)](ݖ) is a quasiconformal 
mapping of the unit disk onto itself such that ݂ᇱ(߮) does not exist for ߮ = 0. 
    Hence a q.c. harmonic function does not have necessarily a ܥଵ extension to the 
boundary as in conformal case. 
Corollary (1.3.11)[31]: [37] Let ߱ be a ܭ quasiconformal harmonic function between a 
Jordan domain Ω and a convex Jordan domain Ωଵ, such that ߱(0) = 0 and ߲Ω, ∂Ωଵ ∈
ܮ ଵ,ఓ. Then ߱ is bi-Lipschitz, i.e. there exists a constantܥ ≥ 1 such that 

ଵݖ|ଵିܮ			 − |ଶݖ	 < (ଵݖ)߱| |(ଶݖ)߱− < ଵݖ|ܮ − ,|ଶݖ	 ,ଵݖ  (104)																												ଶ.ݖ	
Moreover, there exists ܥ	 = (Ω,Ωଵ,ܭ)ܥ ≥ 1 such that  

	1 ⁄ܥ ≤ (ݖ)(߱)ܦ ≤ ݖ	for							,ܥ ∈ Ω																																						(105) 
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We have the following theorem. It is an extension of Corollary (1.3.11) for a nonconvex 
case. 
Theorem (1.3.12)[31]: [38] Let ߱ =  quasiconformal harmonic mapping ܭ be a (ݖ)݂
between a Jordan domain Ω with ܥଵ,ఓ boundary and a Jordan domain Ωଵ with ܥଶ,ఓ 
boundary. Let in addition ܽ ∈ Ω and ܾ = ݂(ܽ). Then ߱ is bi-Lipschitz. Moreover there 
exists a positive constant ܿ = ,Ω,Ωଵ,ܭ)ܿ ܽ,ܾ) ≥ 1 such that 

					
1
ܿ

ଵݖ| − |ଶݖ ≤ (ଵݖ)݂| − |(ଶݖ)݂ ≤ ଵݖ|ܿ − ,|ଶݖ ,ଵݖ ଶݖ ∈ Ω.																												(106) 

We write	ܮ = (ݖ)ܮ = |(ݖ)݂߲| + ห߲݂̅(ݖ)ห and ݈ = ݈(ݖ) = |(ݖ)݂߲| + ห߲݂̅(ݖ)ห, if ߲݂(ݖ) 
and ߲݂̅(ݖ) exist. 
In [19], the following results have been obtained (see also [25]). 
Theorem (1.3.13)[31]: Let f be a k-qc euclidean harmonic difeomorphism from the upper 
half-plane ℍ onto itself and ଵା

ଵି
. Then ݂ is a (1 ⁄ܭ  quasi-isometry with respect to the (ܭ,

Poincare distance		݀. 
Outline of the proof: Precomposing ݂ with a linear fractional transformation, we can 
suppose that ݂(∞) = ∞ and therefore we can write ݂ in the form ݂ = ݑ + 	ݕ݅	 =
ଵ
ଶ
൫(ݖ)ܨ + ݖ + 	 (ݖ)ܨ −  .is a holomorphic function in ℍ ܨ തതതതതതതതതതത൯, whereݖ

Hence the complex dilatation  

ߤ =
(ݖ)ᇱܨ	 − 1
(ݖ)ᇱܨ + 1

(ݖ)ܮ, =
1
2

(ݖ)ᇱܨ|) + 1| + (ݖ)ᇱܨ| − 1|) 

and 

݈(ݖ) =
1
2

(ݖ)ᇱܨ|) + 1| + (ݖ)ᇱܨ| − 1|); 
which yields 

1 + 1 ⁄ܭ ≤ (ݖ)ᇱܨ| + 1| ≤ ܭ + 1,			1 − 1 ⁄ܭ ≤ (ݖ)ᇱܨ| − 1| ≤ ܭ − 1 
and therefore it follows  

1 ≤ (ݖ)ܮ =
1
2

(ݖ)ᇱܨ|) + 1| + (ݖ)ᇱܨ| − 1|) ≤  ,ܭ
and consequently  

݈(ݖ) ≥ (ݖ)ܮ ⁄ܭ ≥ 1 ⁄ܭ . 
Now using a known procedure, we obtain 

					
1
ܭ

ଶݖ| − |ଵݖ ≤ (ଶݖ)݂| − |(ଵݖ)݂ ≤ ଶݖ|ܭ − ,ଵݖ		|ଵݖ ଶݖ ∈  (107)																												,ܪ

		
1 − ݇
1 + ݇

݀(ݖଵ, ,(ଵݖ)݀൫݂	ଶ)6ݖ ൯(ଶݖ)݂ ≤
1 + ݇
1 − ݇

݀(ݖଵ, ,ଵݖ(ଶݖ ଶݖ ∈  (108)																												.ܪ
Both estimates are sharp (see also [23], [35] for an estimate with some constantc(K) in 
(107)). 

The following generalization of Theorem (1.3.12) will appear in [43]. 
It is partially based on the results obtained in [38] and on Bochner formula for harmonic 
maps. 
Theorem (1.3.14)[31]: [43] Let ߱ be a ܥଶ	ܭ quasiconformal mapping of the unit disk 
onto a ܥଶ,ఈ	Jordan domain. Let ߩ be a ܥଵ metric onΩ of non-negative curvature and w ½-
harmonic, that is 

	߱௭௭ + ఠ߱௭߱௭(ߩ	݈݃) = 0. 
Then ܬఠ ≠ 0 and ߱ is bi-Lipschitz. 
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Finally, notice that the proof of Theorem (1.3.9), which was published in [37], can 
be also based on the results presented in [26] and [27].  
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Chapter 2 

Three Lattice-Point Problem and Partitions 

We determine equivalences between the bounds on the size of the continuum, 
2ఠ ≤ ߱ఏ, and some relationships between , ߱ఛ and ߱ఏ. Assuming measurability we 
answer the analogous question in higher dimensions in the negative, and we improve on 
the known partial results in the two dimensional case. We also consider a related problem 
involving finite sets of rotations. 

Section (2.1): Problems of Steinhaus 

We shall use the following notation, ߤ will denote the Lebesgue measure of a set, 
plane or linear as appropriate; any metnion of ߤ will imply measurability of the set in 
question; ߤ∗,  ,will denote inner, outer measure when we deal with non-measurable sets ∗ߤ
in Theorem (2.1.9).  will be a rigid motion of the plane (without reflection); as in [57], it 
is sometimes convenient to regard the set ܵ as moving and the points ܮ of the Cartesian 
lattice as fixed, sometimes the opposite. Then |(ܵ) ∩ |ܮ = |ܵ ∩  counts the |(ܮ)ଵି
number of points of ܮ covered by the congruent copy (ܵ) of ܵ. Following [52] and [57], 
we denote the supremum, infimum of this function (taken over all such ) by ܯ(ܵ),݉(ܵ) 
respectively. But if the  are restricted to be translations only, we write ்ܯ(ܵ),்݉(ܵ). 

Then Steinhaus' problems may be shortly expressed thus: 

(a) If ߤ(ܵ) is finite, is ݉(ܵ) necessarily finite? 

(b) If ߤ(ܵ) is infinite, then is the supremum ܯ(ܵ) 	= 	∞ necessarily attained for some ? 

(c) Does there exist an ܵ for which ܯ(ܵ) 	= 	݉(ܵ)	(=  In fact (a) has already been ?(ݕܽݏ	݊
solved: the idea, though without the concept of measure, goes back to Blichfeldt [46]; and 
Niven and Zuckerman [57] obtained a stronger relation, replacing ݉(ܵ) by ்݉(ܵ), 
essentially restated as Theorem (2.1.1) below. The contributions here give partial solutions 
to (b) and (c); partial in the sense that we require extra conditions on ܵ in each of the main 
Theorems (2.1.1) and (2.1.8). It seems that new and deeper ideas are needed to enable us 
to jettison these conditions: (b) and (c) as they stand are still resistant. 

The generalization of the solution of (a) referred to above is: 

Theorem (2.1.1)[44]: if ߤ(ܵ) < ∞, then ்݉(ܵ) ≤ (ܵ)்ܯ and ;[(ܵ)ߤ] ≥  where ;{(ܵ)ߤ}
[	], {	} denote rounded down, rounded up, respectively, to the nearest integer. 

The proof in [57] consists of the straightforward application of Fubini's Theorem to the 
characteristic function of ܵ: we deduce that ߤ(ܵ) is the 'average' of |(ܵ) ∩  over all |ܮ
translations, and, since ்݉,்ܯ are integers, the result follows. A fortiori, we trivially 
deduce the same result for ݉,ܯ. 

We next note that the simple Fubini argument above applied to the case where ߤ(ܵ) 	= 	∞ 
produces only ்ܯ(ܵ) as a supremum, not necessarily attained. Indeed for translations it 
may not be so attained: a counterexample is given (in Cartesian coordinates) by the open 
set 
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ܵ ≡ ራ {(݉,݉ + ݉ିଵ) × (݊,݊ + ݊ିଵ)}
வ,வ

. 

For rigid motions the best result I can prove in the direction of answering (b) is: 

We need 2 lemmas. 

Lemma (2.1.2)[44]: Let ܲ be the set of points ܻ > ܺସ, where ܻ = ݕ − 	ܺ ,ݔܽ = 	ݔ	 +  ,ݕߙ
where ߙ is a fixed irrational. Let ܮ′ be the set of lattice points ܮ ∩ ܲ, with moduli ݎଵ, ,ଶݎ . . ., 
such that ݎଵ ≤ ଶݎ ≤ ଷݎ ≤ ⋯. Then ݎାଵ − ݎ → 0 as ݅ → ∞. 

Proof. The result will follow if there is a sequence of points of ܮ′ with ܻ-coordinates 
ܻ → ∞ with ܻାଵ − ܻ → 0. For then we have (since ܮᇱ ⊂ ܲ) 

	(1	 + 	ܽଶ)
ଵ
ଶ(ݎାଵݎ) ≤ ( ܻାଵ

ଶ + ܻାଵ

ଵ
ଶ )

ଵ
ଶ −	 ܻ → 0, 

as desired.  

We now suppose that ܻାଵ − ܻ ↛ 0, and deduce a contradiction. If this were so, then there 
would exist some ߝ	 > 	0, such that there would be a sequence of rectangles, free of points 
of ܮ′, and all with width at least ߝ, and with lengths tending to ∞, all lying parallel to 
ܻ	 = 	0. Any such rectangle. ܴ may be translated any integer distance parallel to the 
original ݔ- and ݕ-axes and remain free of points of ܮ, and in particular moved so that its 
longer axis cuts ܺ	 = 	0 and lies along ܻ	 = ߬, where ห ߬ห 	< ܿ, some constant. By a 
compactness argument on the ߬, we see that there must exist a strip of the plane of infinite 
length, of thickness at least ଵ

ଶ
	ܻ parallel to ,ߝ = 	0, and free of points of ܮ. But this 

contradicts a well-known consequence of Kronecker's theorem, namely that any line of the 
form ݕ	 = 	ݔߙ	 +  .ܮ with a irrational passes arbitrarily close to points of ߚ	

Corollary (2.1.3)[44]: If we consider the ݎଵ to refer not to points of ܮᇱ = 	ܲ ∩  but to ,ܮ
points of ܮ" = 	ܳ	 ∩ ଵߠ where ܳ is any fixed sector, given in polar coordinates by ,ܮ >
ߠ > ାଵݎ ଶ, say, then the conclusionߠ − ݎ → 0 remains valid. 

For any fixed ܳ contains all the points of some such ܲ (as in the lemma) which are 
sufficiently distant from the origin. 

Lemma (2.1.4)[44]: If an ܵ, satisfying (1), has lattice points ܮଵ, ଶܮ …   lying in ܵ, thenܮ,
it is possible to make a rigid motion of ܵ so small that each of these ܮ remains in ܵ, and 
yet also so that ܵ covers a further lattice point ܮାଵ. 

Proof. Let the distance of ܮ from ݂ݎ	ܵ be ߛ (> 0). We restrict consideration to rigid 
motions so small that they move each ܮ by a distance at most 2ିିଵ	(݅	 = 	1, 2	, . . . , ݇). 
Such motions certainly contain as a subset ܯ all motions described in the following way 
(for some certain small ߝଵ, ଶߦ) క,ఎ of magnitudeݐ ଶ): a translationߝ + (ଶߟ

భ
మ <  ଵ, followedߝ

by a rotation ߩ, about 0, of magnitude |ߩ| <  ,ଶ. By the corollary to Lemma (2.1.2) aboveߝ
in any sector ܳ:	ߠଵ > ߠ > ଵߠ ଶ, so small thatߠ − ଶߠ < ଵ

ଶ
 for ,{(ܮ)ଵିߩ} ଶ, say, the setߝ
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|ߩ| < ݎ  withݎ ଶ, contains a set of circular arcs, centre O, radiiߝ ↑ ∞ and ݎାଵ − ݎ → 0, 
and sweeping across the sector from ߠ = 	ߠ ଵ toߠ =   ଶ. It follows that the setߠ

൛ݐక,ఎ
ିଵିߩଵ(ܮ): หݐక,ఎห < ,ଵߝ |ߩ| <  ଶൟߝ

covers all sufficiently distant points in ܳ, and so (since the plane is covered by a finite 
number of sectors like ܳ) all sufficiently distant points of the plane; and in particular some 
point ܣ ∈ ܵ. Thus for some rigid motion ߩ ∈ ,ܯ  .ାଵ, as desiredܮ is a lattice point (ܣ)ߩ

Theorem (2.1.5)[44]: Let ܵ the interior of ܵ satisfy: 

ܵ is unbounded;                                                       (1) 

then ܯ(ܵ) 	= ∞	 is attained. 

Proof. We progress inductively using Lemma (2.1.4). Trivially the sum of the successive 
rigid motions performed to 'capture' successive new points of ܮ has a limiting motion; and 
none of the points ܮ once captured 'escapes' in later motions or in passing to the limit, 
since ∑ 2ିିଵߛஶ

ୀଵ <  , are capturedܮ . In the limit infinitely mayߛ

We see from Lemma (2.1.4) above that the set of  ∈ Π for which |(ܵ) ∩ |ܮ ≤ ݊, for any 
integer ݊, is a nowhere dense set (for any neighbourhood contains a neighbourhood in the 
complementary set), and hence their union is a set of the first category in Π; that is, the set 
of rigid motions satisfying Theorem (2.1.5) is not only non-empty, but is a residual set in 
Π. 

This last fact inclines one to the view that the whole phenomenon belongs to category 
theory rather than measure theory and suggests in particular that the appropriate 
generalization of condition (1), instead of being ߤ(ܵ) 	= ∞, might perhaps be: 'the part of 
ܵ outside some large circle possesses the property of Baire and is of the second category'. 
See [58] especially ch. 4, 19, 20, 21, for such translations from measure to category. (The 
ambience of the result here is reminiscent of a previous 1-dimensional theorem of [48]: let 
ܧ ⊂ ℝା have unbounded interior, then there exists a dense set of values of ℎ whose 
multiples {݊ℎ} lie infinitely often in ܧ. Professor J. F. C. Kingman pointed out that this 
was indeed a category result. It has been re-discovered several times; see [59], where it is 
characterized a 'folk-theorem'; and [53] for some applications and extensions. Here it is 
known that the measure-theoretic analogue is false: see Haight [50], [51], Lekkerkerker 
[54].) 

The category theory aspect suggests faintly that the question (b) in its original measure-
theoretic fomulation should have a negative answer. 

Contrariwise, a full-blooded variant of (b) in measure-theoretic terms, much stronger (and 
so perhaps easier to disprove) would read: 

Conjecture (2.1.6)[44]:(࢈ା). Let ߤ(ܵ) < ∞. Let ܯஶ be the set of points in Π for which 
(ܵ)| ∩ |ܮ 	= 	∞. Then its measure (in Π) ߨ(ܯஶ) = 0. 

This we must also leave open. However, it is easy to prove: 

Theorem (2.1.7)[44]: If ߤ(ܵ) < ∞, then ߨ(ܯஶ) 	= 	0. 
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This result follows immediately on applying the Fubini technique of Theorem (2.1.1), but 
now in the 3 variables ߠ,ܺ,ܻ. 

We note that the results of Theorem (2.1.7) and (the category extension of) Theorem 
(2.1.5) overlap: if both ܵ is unbounded and ߤ(ܵ) < ∞, then ܯஶ, is ܽ∗ residual set but of 
measure 0 in the space Π. 

The 'expanded rotated' lattice ܮఒ,ఏ denotes, for fixed ߣ(>  the set of points ,ߠ ,(0

ራ	{(݉]ߣ	ݏܿ	ߠ	 + ,[ߠ	݊݅ݏ	݊	 	ߠ	݊݅ݏ	݉−]ߣ + {([ߠ	ݏܿ	݊	
,

 

The 'expanded translated' lattice ܮఒ,క,ఎ denotes, for fixed ܣ	(> 0),  the set of points ,ߟ,ߦ

ራ	{݉ߣ + ,ߦ ݊ߣ + {ߟ
,

 

Then another variant of Theorem (2.1.5) is obtained by using the first of these: 

Theorem (2.1.8)[44]: Let ܵ be unbounded. Then for some ߣ, we have หܵ ,ߠ ∩ ఒ,ఏหܮ = ∞. 

Proof. The analogous result to the Corollary to Lemma (2.1.2) is immediate in this case, 
and the arguments of Lemma (2.1.4) and after it, apply mutatis mutandis. The category-
theoretic comments are similarly applicable. 

However, we have, for the second variant above, 

Theorem (2.1.9)[44]: There exists an open set ܵ with ߤ(ܵ) = ∞, such that 

หܵ ∩ ,ߣ ఒ,క,ఎห  is finite for eachܮ ,ߦ  .ߟ

Proof. The set of points whose Cartesian coordinates satisfy 0	 < 	ݕݔ	 < 	1 

clearly provides such an example. 

Note the contrast between Theorem (2.1.8), with a positive conclusion, although it has 2 
'degrees of freedom' and Theorem (2.1.9), negative yet it has 3. 

It is interesting to see that the analogue of Conjecture (b) fails for the lattices ܮఒ,ఏ. 

Theorem (2.1.10)[44]: There exists a set ܵ with ߤ(ܵ) = ∞, such that หܵ ∩  ఒ,ఏห is finiteܮ
for all ߠ,ߣ. 

Proof. Let ܪ ⊂ ℝା denote Haight's set of [51], constructed with his set ܩ being 
{ඥ(݉ଶ 	+ 	 ݊ଶ):	݉, ݊	integers}. Let ܵ be given in polar coordinates by {(ݎ, ݎ	:(ߠ ∈  .{ܪ
Then ߤ(ܵ) 	= 	∞, since (ܪ)ߤ 	= 	∞. And we see by construction that หܵ ∩  ఒ,ఏห must beܮ
always finite, since Haight's condition (B) gives ߣ · ඥ(݉ଶ + ݊ଶ) ∈  has only finitely ܪ
many solutions for any ߣ > 0. 

For another possible variation of the lattice, see Macbeath [55]. 
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Once we allow non-measurable ܵ, other possibilities come alive. We can of course deduce 
trivial corollaries from Theorems (2.1.1) and (2.1.2) by the use of measurable kernels and 
measurable envelopes, but, as one might guess, there are 'paradoxical' results, not 
envisaged there; specifically: 

Theorem (2.1.11)[44]: (i). There exists an ܵ with ߤ∗(ܵ) 	= 0, but ݉(ܵ) 	= 	∞. 

(ii) There exists an ܵ with ߤ∗(ܵ) 	= 	∞, but ܯ(ܵ) = 	1. 

Proof. (i) The exhibited ܵ will be of the shape ܬ × (−∞,∞). This will contain infinitely 
many lattice points on each non-vertical line of (ܮ) ( a rigid motion), and hence in total, 
provided that J satisfies the condition: 

 is a linear set that contains infinitely many members of every arithmetic progression ܬ
{ܽ	 + 	ܾ݇:	ܽ, ܾ real, ݇ integral}; we also need ܬ non-measurable with (ܬ)∗ߤ 	= 	0. 

We construct first a set ܬଵ thus: either by considering a Hamel basis (see e.g. [62], 443-
449) of the reals, with one member of it a rational, or by considering the reals as a vector 
space over the rationals and using the Axiom of Choice, we may decompose any real ݔ 
into ݔ 	+ 	 ݔ  withݔ ∈ ℚ, the rationals, and such that ݔ 	= ݔ if ݔ	 ∈ ℚ and (ݔ	 + (ݕ	 =
ݔ + ܫ Let .ݕ ,ݔ  for allݕ = 	⋃ [݅, ݆ + 1)	ୣ୴ୣ୬ , and set ܬଵ ≡ ݔ	:ݔ} ∈  .{ܫ

We prove that ܬଵ has nearly all the properties claimed for ܬ. First, if it were measurable, a 
standard argument, as in the usual demonstration of a non-measureable set, produces 
ଵܬ)ߤ ∩ [—ܰ,ܰ])~ܰ as ܰ → ∞. But also ܬଵ has arbitrarily small periods, namely ݕݐ for 
any ݐ ∈ ℚ, and ݕ ≠ 0 any fixed real with ݕ = 0. And we know that measurable sets with 
arbitrarily small periods have either full or empty measure. Hence ܬଵ is nonmeasurable, 
and, again using the periodicity, we find that we must have ߤ∗(ܬଵ) = 	0. Also, for any real 
ܽ, ܾ, we have ݇ + ܾ ∈ ଵ if and only if ݇ܽܬ + ܾ =  and this always occurs for infinitely ,ܫ
many ݇ (both positive and negative) except in the case ܽ an even integer, and integer [ܾ] 
odd. 

Similarly if ܬଶ be the complement of ܬଵ then ݇ܽ	 + 	ܾ ∈  ଶ for infinitely many ݇ unless ܽܬ
be an even integer and [ܾ] even. Thus, finally, we see that all the desired properties are 
possessed by the set 

ܬ ≡ ൫ܬଵ ∩ (0,∞)൯ ∪ ൫ܬଶ ∩ (−∞, 0)൯. 

 (ii) We proceed by transfinite induction, using the idea of [63] as a model. 

The closed sets ܨ of positive measure in the plane are of cardinality ܿ, and may be well-
ordered  

,ଶܨ,ଵܨ,ܨ . . . ఈܨ, , . . . , ߙ) < Ω), 

where Ω is the smallest transfinite ordinal corresponding to the power of the continuum. 
We construct the points 

,ଶ,ଵ … ఈ, , … , (ܽ < Ω) 
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that will constitute ܵ by transfinite induction, as follows. Given any index ߙ < Ω, we 
suppose that the points క(ߦ <  have been determined, and we show how to construct (ߙ
ఈܨ ఈ. Since  has positive measure, there exists some line ݈ for which ߤ(݈ ∩ (ܨ > 0, and so 
݈ ∩ ఈܨ  has cardinality ܿ. 

Consider the set of points ݍ on ݈ which lie on some circle centre some క(ߦ <  radius ,(ߙ

(݉ଶ + ݊ଶ)
భ
మ (݉,݊ some integers). Each such circle cuts ݈ at most twice, and hence the set 

of such ݍ has cardinal less than that of the continuum. Thus I may, and do, choose a 
 ∈ ݈ ∩  ఈ not on any such circle. Clearly ܵ, the totality of points thus chosen has no pairܨ
of points ఉ , ఊ ever at any distance (݉ଶ + ݊ଶ)

భ
మ apart, so trivially ܯ(ܵ) = 	1. And I say 

that since ܵ ∩ ఈܨ ≠ 0 for any ߙ, necessarily ߤ∗(ܵ) = ∞. For if ߤ∗(ܵ) were finite, the 
measurable envelope of ܵ would have a complementary set which would contain some 
closed set of positive measure. 

Of course, the proofs of both (i), (ii) necessitate the Axiom of Choice, as they must. 

We come now to consider Conjecture (c). The best result that we can prove is: 

We need 2 lemmas and a definition of some independent interest. 

Lemma (2.1.12)[44]: Let ܧ be a non-empty plane set with (ܧ)ߤ 	= 	0. Then there exists a 
rigid motion  such that |(ܧ) ∩ |ܮ 	= 	1 exactly. 

The proof will be by contradiction. We assume that there exists an ܧ such that whenever ܧ 
and ିଵ(ܮ) have 1 common point they must have at least 2, and deduce that such an ܧ 
must have positive plane measure. 

As the last sentence indicates, it is convenient here to picture ܧ as fixed and apply the 's 
to ܮ. 

Take first the origin ܱ at an arbitrary point of ܧ, and rotate ܮ about it; by the supposition, 
at each orientation, ܧ contains at least 1 of the other points of ܮ. Since there are but 
countably many points of ܮ (each of which we assume keeps its identity throughout the 
rotation), necessarily then ܧ contains some set of positive measure of some circular arc 
(centre ܱ) on which some lattice point, say ܮଵ moves. We may restrict ourselves by talcing 
a subset of this on an arc of small length; ܮଵ will denote a generic point of this set of 
positive linear measure. We now repeat the argument, with ܮଵ in place of ܱ as centre for 
swinging the lattice round. 

Thus, again, for each such ܮଵ there is a set of positive linear measure on some circular arc 
(centre ܮଵ radius some ඥ(ݎଶ 	+ 	 ,(ଶݏ ,ݎ  ଶ be aܮ Let .ܧ integers not both 0) lying in ݏ
generic point of this set. By restricting consideration to one pair out of the countable 
number of combinations of ݎ and ݏ, we may take ܮଵܮଶ of some constant length. Let 
,ଵܮܱ  there ,ߠ respectively to some fixed line. To each fixed ,߶,ߠ ଶ be at anglesܮଵܮ
corresponds an ߝ(ߠ), such that there is a positive subset of ߶ of the above type satisfying 
also |݊݅ݏ	ߠ) − ߶)| ≥  Thus restricting to further subsets if necessary, there is a set .(ߠ)ߝ
of ߠ of measure at least ߝଵ, to each of which corresponds a set of ߶ of measure at least ߝଶ, 
and such that each relevant ߝ(ߠ) is at least some fixed ߝଷ. As a final restriction, we 
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choose one or other (whichever gives the larger measure of the set of ܮଶ) of the choices: 
ߠ − ߶(mod 2ߨ) lies in (0,ߨ) or (ߨ,  Then we see that this means that we have a .(ߨ2
(1, 1)-relation between the points ܮଶ and the pair (ߠ,߶). So finally the set of ܮଶ thus 
characterized has a real measure at least ߝଵߝଶߝଷ. So ܧ has positive measure: the desired 
contradiction. 

Definition (2.1.13)[44]: Let ܵ be a measurable set. Then the set ܧ of points at which the 
metric density of ܵ is neither 0 nor 1 is the metrical boundary of ܵ. 

(The exact definition of density is of little consequence; we take it to be the limit, if it 
exists, of ߤ(ܵ ∩ ߜ ଶ asߜ/(ܳ → 0, where ܳ is a square of side ߜ, oriented along some 
appropriate Cartesian axes, and centred at the point in question.) 

The following result is an immediate corollary of the standard 'density theorem': (ܧ)ߤ 	=
	0, for any measurable ܵ, bounded or not. See e.g. [61],(128-131); or simpler, observe that 
the proof of [47], (83), using Vitali's covering theorem, is valid in any number of 
dimensions. 

We now have a result 'in the other direction'; this result may be known. 

Lemma (2.1.14)[44]: Let ܧ be the metrical boundary of a plane set ܵ with ߤ(ܵ) 	> 0, 
(ܵ\ℝଶ)ߤ > 0; then ܧ ≠ ∅. 

Proof. Let ܳఋ(ݔ) be the closed square of side ߜ and centre ݔ. Then ܦఋ(ݔ) 	= ܵ)ߤ ∩
ܳఋ(ݔ))/ߜଶ is continuous in ݔ, for fixed ߜ; and since, by the density theorem quoted above 
(see the same references), we have that there exist points ݕଵ  ଵ such thatߜ ଶ, and aݕ,
(ଵݕ)ఋభܦ > ଵ

ଶ
> (ଵݔ)ఋభܦ ଵ such thatݔ it follows by continuity that there is an ,(ଶݕ)ఋభܦ = ଵ

ଶ
. 

Now, working only in ܳఋభ	(ݔଵ), we observe that for ߜ/ߜଵ sufficiently small, the average 
value of ܳఋ(ݔ) over ܳఋభିఋ(ݔଵ) is near to ଵ

ଶ
 (since the edge effect becomes insignificant as 

ߜ ⁄ଵߜ → 0). Thus there exists a ߜଶ(0	 < 	 ଶߜ 	< 	  ଵ) such that this average lies betweenߜ
ଵ
ଶ

± ଶݔ we find that for some ,ݔ is continuous in (ݔ)ఋమܦ Since .(ߝ for a given fixed) ߝ ∈

ܳఋభିఋమ(ݔ), we have |ܦఋమ(ݔଶ) − ଵ
ଶ

| <  .ߝ

Proceeding thus inductively, we obtain sequences ݔ and ߜ such that 

ାଵݔ ∈ ܳఋభିఋశభ  and 

ฬܦఋశభ(ݔାଵ) −
1
2
ฬ < ߝ + ଶߝ + ⋯+ ߝ < 	1)/ߝ −  (2)					.(ߝ	

The squares ܦఋ(ݔ) are a decreasing nested sequence, and, assuming, as we may, that 
ߜ → 0, we obtain, by compactness, ܽ	ݖ with ݔ → ݖ = ⋂ ܳఋ(ݔ)

ஶ
ଵ . I say that ݖ ∈  For .ܧ

consider ܦଶఋ(ݔ). As ݖ ∈ ܳఋ(ݔ), we have ܳଶఋ(ݖ) ⊃ ܳఋ(ݔ); so taking the two extreme 
possibilities of ܵ ∩ (ܳଶఋ(ݖ)\ܳఋ(ݔ)) having empty, full measure, we get  

ܵ)ߤ ∩ (ܳఋ(ݔ))) ≤ ܵ)ߤ ∩ ܳଶఋ(ݖ)) ≤ ܵ)ߤ ∩ ܳఋ(ݔ)) +  ,((ݔ)ఋܳ\(ݖ)ଶఋܳ)ߤ

and so, on dividing by 4ߜଶ and using (2), we obtain: 



33 

1
4

(
1
2
− ߝ (1 − ⁄(ߝ ) ≤ (ݖ)ଶఋܦ ≤

1
4

(
1
2

+ ߝ (1 − ⁄(ߝ ) +
3
4

. 

Hence ܦఋ(ݖ) cannot have limit 0 or 1 as ߜ → 0: either the limit is strictly between 0 and 1 
or does not exist. This proves the lemma. 

Theorem (2.1.15)[44]: Suppose that 

ܵ is measurable and essentially bounded,                                 (3) 

then it is impossible to have ܯ(ܵ) 	= 	݉(ܵ) 	= 	݊ for any integer ݊. 

Proof. Let ܵ satisfy the given conditions, and also the negative of the conclusion, so that 
(ܵ)| ∩ |ܮ = ݊ for all rigid motions ; 

we shall deduce a contradiction. The first step is to show the existence of some  for 
which 

(ܮ)ଵି| ∩ |ܧ = 1																																																																			(4) 

exactly, where ܧ denotes the metrical boundary of ܵ. 

For, by a Fubini argument as in Theorem (2.1.1), we have that the (measurable) set ܵ must 
have measure exactly ݊. Hence Lemma (2.1.14) is applicable to it, and ܵ has a non-empty 
metrical boundary ܧ that is of measure 0. And Lemma (2.1.12) applied to this ܧ gives (4), 
as desired. 

Finally, we start from the position of the lattice just guaranteed, i.e. satisfying (4). 
Let ܮ be the one point specified there. We consider making small translations ݐక,, say 
with |ߦ|, |ߟ| ≤  of the lattice from this position (with ܵ remaining fixed throughout). It is ,ߜ
now convenient to use the language of probability theory, supposing these translations to 
be made randomly with equal-area probability in the square |ߦ|, |ߟ| ≤  .ߜ

Since ܵ is essentially bounded, we may restrict consideration (by ignoring sets of measure 
0 in (ߦ,  of specified (moving) lattice points. Given small fixed ܭ to a finite number ((ߟ
,ߝ ′ߝ > 0, the definitions of density and of the metrical boundary ܧ of ܵ imply: 

(i) for each of the ܭ lattice points mentioned, except ܮ, the probability of ݐక,ఎ shifting the 
status of the point from being in ܵ to being not in ܵ, or vice versa, is less than ߝ: this is true 
for all sufficiently small ߝ, and for all sufficiently small ߜ =  ;(ߝ)ߜ

(ii) for ܮ the probability of its shifting its status as above is greater than ߝ′: this is true for 
all sufficiently small ߝ′, and some small ߜ =  .(ᇱߝ)ߜ

Thus, if we arrange that (1 − ିଵ(ߝ 	> 	1 −  as we may, then, by simple probability ,′ߝ
considerations, there is some ߦ, ܭ for which the ߟ − 1 lattice points each remain in or out 
of ܵ, but for which ܮ is either 'captured', or else 'escapes'. For such a ݐక,ఎ we may take  
as its inverse to obtain: 

(ܵ)| ∩ |ܮ = |ܵ ∩ |(ܮ)ଵି = ݊ ± 1, 

the desired contradiction with the supposition |ܵ ∩ |(ܮ)ଵି = 	݊ for all . 
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On the other hand, jettisoning measurability renders the problem of a quite different 
nature. We inclined to believe that the Conjecture (c) has an affirmative answer, at least if 
we assume sufficient axioms of set theory, although a simple-minded attempt to build up 
such an ܵ using transfinite induction fails. 

We recall the (compact) space II, defined above, of rigid motions , characterized 
by the 3 parameters ߠ, ,ݔ  denote measure in this 3-dimensional space, and let ℳ ߨ let ;ݕ
denote the set of pell for which |(ܵ) ∩ |ܮ 	= 	݊ exactly. If ℳ is non-empty, we say ܵ 
represents the integer ݊; if ߨ(ℳ) > 0, we say ܵ represents ݊ essentially. 

Conjecture (2.1.16)[44]: Let ܵ be a plane measurable set. If ߨ(ℳି) > 0 and 

(ℳା௦)ߨ > 0 (some 	, ݏ ≥ 1 ) , then necessarily ߨ(ℳ) > 0. That is, the (finite) set of 
integers essentially represented by ܵ consists of a set of consecutive integers. (We might 
even hope for some inequalities between the ߨ(ℳ) for different ݊.) 

Corollary (2.1.17)[44]: If ߤ(ܵ) 	= 	݊ (integral), then there exists some rigid motion  
such that |(ܵ) ∩ |ܮ = ݊. 

Proof of Corollary (2.1.17) from Conjecture (2.1.16). Let ߨ∗ denote 2-dimensional 
measure in (ݔ, 	ߠ of sets in subspaces (ݕ = 	   of the space II. Suppose, if possible, thatߠ
the corollary were false; then II consists of 2 sets ℳା,ℳି being sets of points 
representing 's for which |(ܵ) ∩  is greater than, respectively less than, ݊. Fubini's |ܮ
Theorem gives us that the 'average' number of lattice points covered by (ܵ) (with  now 
a translation, ߠ = (ℳା)∗ߨ  throughout) is ݊. Soߠ > (ℳି)∗ߨ,0 > 0, for each ߠ. Hence 
(ℳା)ߨ > (ିܯ)ߨ,0 > 0, and the conjecture is then untrue. 

We observe that the corollary fails if 'rigid motion ' is replaced by 'translation ݐ' in its 
statement. For a counter-example, we may take ܵ to be a square (open or closed) of side 
√3 with axes parallel to those of ܮ. 

Further, Conjecture (2.1.16) fails even for 'nice' sets if the word 'essentially' is omitted: for 
ܵ a closed disc of radius √5, the integers represented include 17 and 21, but not 18, 19, or 
20; for ܵ an open punctured disc of radius √5 with the centre removed, they include 12 
and 14 but not 13. 

One way to tackle Conjecture (2.1.16) is perhaps to show that the common metrical 
boundary of the 2 sets ⋃ ℳழ ,⋃ ℳவ  is 'large', in particular 2-dimensional. 

 (But we do not even know simpler results about metrical boundaries for sets in ℝଶ; e.g. 
what sets ܧ ⊂ ℝଶ of measure 0 are metrical boundaries of some set ܵ? We might simple-
mindedly hope, for example, that such an ܧ is a regular, linearly-measurable set, in the 
sense of Besicovitch [45] (see also [60] 128-130, and [56]), and that its 'length' ߣ satisfied 
the isoperimetrical inequality ߣଶ ≥  (.(ܵ)ߤߨ4

A further conjecture not involving lattice points, but with a similar underlying theme is: 

Conjecture (2.1.18)[44]: Let ܵ be plane measurable with 0 < (ܵ)ߤ < ∞. Then there 
exists a ߜ = (ܵ)ߜ > 0 such that for each ݔ	0) < 	ݔ <  there is a line I such that the ,(ߜ
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linear measure ߤ(ܵ ∩ ݈) 	=  ݔ and, moreover, we can choose ݈ to vary continuously with ;ݔ	
in the range 0	 < 	ݔ	 <  .ߜ	

The obvious approach here is to prove that ߤ(ܵ ∩ ݈) is continuous in ݈ at ݈ = ݈ if ܧ)ߤ ∩
݈) = 0 where ܧ is the metrical boundary of ܵ, and then show that ܧ)ߤ ∩ ݈) > 0 for only 
a small set of ݈, and apply a connectivity argument in the space of lines ݈. Unfortunately 
the possibility of ܧ's containing a Besicovitch set (i.e. one having plane measure 0 but 
containing a unit line-segment in every direction) or something similar, seems to render 
this approach at least complicated. 

One curious aspect of Conjecture (2.1.18) is that the ݀	(≥ 3) dimensional analogue (with 
hyperplanes replacing lines) has an easy affirmative answer. 

This is an immediate consequence of some recent work of Falconer [49]: he proves, in 
ℝௗ(݀ ≥ 3), that if ߠ)ܨ,  is the 'sectional integral' of a measurable bounded function ݂ of (ݐ
compact support, i.e. the (݀ − 1)- dimensional integral of the function ݂ over a 
hyperplane, at orientation ߠ, and distance ݐ, then ܨ is continuous in ݐ, for p.p. ߠ. Letting ݂ 
be the characteristic function of our ݀-dimensional set ܵ, we obtain what we need by 
merely moving the hyperplane at constant orientation ߠ, providing we avoid a set of ߠ of 
measure 0. 

This disparity between ݀	 = 	2 and ݀	 > 	2 dimensions is in sharp and curious contrast 
with the theorems and lemmas whose proofs generalize immediately to higher dimensions 
(although a little care is needed with Lemma (2.1.12)). 

Finally, Dr. Falconer proposes the following 

Conjecture (2.1.19)[44]: Let ܭ be the set of vertical lines in the plane given by 
	ݔ	:(ݕ,ݔ)} = 	݊ℎ, ݊ ∈ ℤ, ݕ ∈ ℝ}; let ܵ have 0 < (ܵ)ߤ < ∞. Suppose that for all rigid 
motions , we have that (ܵ) ∩  then ; ଵ has linear measure ܿ, where ܿ is independent ofܭ
ܿ	 = 	0. 

He observes that this would imply Theorem (2.1.15) above. Further, he believes that he 
can show, with the use of Fourier transforms, the equivalence of the hypotheses: 

(ܵ)‘ ∩ (ܵ)‘ and ’ is constant for all ܮ ∩ ݎ for ,  is constant for allܭ = 1/
ඥ(݉ଶ + ݊ଶ) for all ݉,݊ ∈ ℤା’. 

Section (2.2): Partitions of Lines and Space 

      In 1951, Sierpinski [77] showed that the continuum hypothesis is equivalent to the 
following: for the partition of the lines in ℝଷ parallel to one of the coordinate axes into the 
disjoint sets ܮଵ,ܮଶ, and ܮଷ, where ܮ consists of all lines parallel to the ith axis, there is a 
partition of ℝଷ into disjoint sets, ଵܵ, ܵଶ, and ܵଷ, such that any line in ܮ meets at most 
finitely many points in ܵ. He also showed that the corresponding statement for ℝସ, using 
,ଵܮ ,ଶܮ ,ସ and four sets ଵܵܮ ଷ andܮ ܵଶ, ܵଷ and ܵସ, is equivalent to 2ఠ ≤ ߱ଶ. Also, the 
corresponding statement for ℝଶ, using sets of lines ܮଵ and ܮଶ and sets ଵܵ and ܵଶ, is false. 
He obtained analogous results by replacing “finite” by “countable”. Thus, CH is 
equivalent to the assertion that ℝଶ can be divided into two disjoint sets ଵܵ and ܵଶ with 
each line in ܮ meeting ܵ in a countable set [76]. He showed that the countable version for 
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ℝଷ with three sets is equivalent to 2ఠ ≤ ߱ଶ. These theorems were generalized by 
Kuratowski [75] and Sikorski [78]. Erd˝os [69] raised the issue of whether these results 
could be further strengthened by considering partitions of all lines rather than just those 
lines parallel to some coordinate axis. Davies [67] showed that an analogous result is 
obtained if one partitions the lines in ℝ	, ݇	 ≥ 	2, which are parallel to one of ܮଵ, . . .  ,ܮ,
where ܮଵ, . . . ,   are fixed pairwise non-parallel lines (and one partitions the linesܮ
according to which ܮ it is parallel to). This result was extended by Simms [80], who 
considered translates of linear subspaces instead of just lines. Simms’ result also 
generalizes Sikorski’s result, and gives best possible bounds for the type of partitions it 
considers. Davies [68] later removed the restriction that the lines in ℝ be partitioned in 
the special manner referred to above. Bagemihl [65] has also extended some of these 
results. See Simms [79] for an extensive historical survey.  

We develop a general framework within which these theorems can be obtained as 
corollaries. Our framework deals with arbitrary partitions of all lines (or planes, or more 
general objects) and not necessarily special partitions or families of lines. The central 
issues are the number of sets of lines in the partition, the allowed size of the intersection of 
a line in a given set with the corresponding set in the decomposition of the space, and the 
value of the continuum. Galvin and Gruenhage [72], and independently Bergman and 
Hrushovski (cf. Proposition 19 of [66]), have previously obtained results which imply 
special cases of some of our results. In particular, those results yield (a)⇒(b) for the case 
	ߠ = 	0 and 	 = 	ݏ	 + 	2. Corollary (2.2.21) also follows from [68] and unpublished results 
of [72]. We deal with some perhaps surprising phenomena arising from infinite partitions. 
In particular, we show that some interesting set-theoretic properties come into play.  

We should mention that some of the key ideas of our arguments go back to combinatorial 
arguments of Erd˝os and Hajnal [71.  

If ݐ is a positive integer, then card(ܣ) 	= 	 |ܣ| 	≤ 	߱ି௧ means ܣ is finite. If ߠ	 =
ߠ̅	 	+ ߠ̅ where ,ݏ	 	> 	0 is a limit ordin   and ݏ is an integer, and ݐ is an integer with ݐ	 >  ,ݏ	
then |ܣ| 	≤ 	߱ఏି௧ means |ܣ| 	< 	 ߱ఏ.  

Before we prove Theorem (2.2.5), let us make some comments and derive some 
corollaries.  

The first corollary yields Sierpiński’s theorem as a special case and answers question a) in 
[69].  

Corollary (2.2.1)[64]: The following are equivalent:  

(i) ܪܥ	, the continuum hypothesis, holds: 2ఠ 	= 	 ߱ଵ.  

(ii) If the lines in ℝଷ are decomposed into three sets ܮ	(݅	 = 	1, 2, 3), then there exists a 
decomposition of ℝଷ into three sets ܵ such that the intersection of each line of ܮ with the 
corresponding set ܵ is finite.  

Proof. Take ߠ	 = 	1, ݊	 = 	3 and 	 = 	3 in Theorem (2.2.5). Then each line in ܮ meets ܵ 
in a set of size at most ߱ఏିାଵ 	= 	߱ିଵ, which by our convention means finite.  
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The second corollary yields the Bagemihl–Davies theorem [79] as a special case and notes 
that the condition that we be in ℝଷ in Corollary (2.2.1) is not necessary. This also answers 
question b) in [69]. 

Corollary (2.2.2)[64]: The following are equivalent:  

(i) 2ఠ 	= 	 ߱ଵ.	 

(ii) If the lines in ℝଶ are decomposed into three sets ܮ	(݅	 = 	1, 2, 3), then there exists a 
decomposition of ℝଶ into three sets ܵ such that the intersection of each line of ܮ with the 
corresponding set Si is finite.  

Proof. Take ߠ	 = 	1, ݊	 = 	2	and 	 = 	3 in Theorem (2.2.5).  

The next corollary is a theorem of Kuratowski [75].  

Corollary (2.2.3)[64]: Let ݊	 ∈ 	߱, and ̅ߠ be a limit ordinal or zero. The following two 
statements are equivalent:  

(i) 2ఠ 	< 	 ߱ఏഥ .  

(ii) There is a partition of ℝାଵ	,ℝାଵ 	= 	 ଵܵ 	∪	. . .∪	ܵାଵ, such that |݈	 ∩ 	 ܵ 	| 	< 	 ߱ఏഥ  
whenever l is parallel to the ݅ −th axis.  

Proof. As Kuratowski mentions, the case ݊	 = 	0 is easy. If ݊	 > 	0, take ߠ	 = 	ߠ	 + 	(݊	 −
	1) and 	 = 	݊	 + 	1 in Theorem (2.2.5). Thus, 2ఠ 	≤ 	߱ఏ 	< 	 ߱ఏഥ 	if and only if ℝାଵ 	=
	⋃ 	ାଵ

ୀଵ 		 ܵ 	, where |݈	 ∩ 	 ܵ 	| 	≤ 	߱ఏିାଵ 	= 	 ߱ఏഥ  provided l is parallel to the ith axis. This 
means, by our convention, that |݈ ∩ ܵ 	| 	< 	 ߱ఏഥ , as required.  

This yields Davies’ theorem:  

Corollary (2.2.4) (Davies). Let ݊	 ≥ 	2, and let ݈ଵ, . . . , ݈, 	 ≥ 	2, be nonparallel lines in 
ℝ . Then the following are equivalent:  

(i) 2ఠ 	≤ 	߱ఏ.  

(ii) There is a partition ℝ 	= 	⋃ 	
ୀଵ 		 ܵ of the points in ℝ such that for every line ݈ 

parallel to ݈ 	, |݈	 ∩ 	 ܵ 	| 	≤ 	߱ఏିାଵ.  

Theorem (2.2.5)[64]: Let ߠ be an ordinal, ߠ	 = 	 ߠ̅ 	+ 	ݏ	 ≥ 	1, where ̅ߠ is 0 or a limit 
ordinal, and let ݏ	 ∈ 	߱. The following statements are equivalent:  

(a) 2ఠ 	≤ 	߱ఏ.  

(b) For e a c h ݊	 ≥ 	2 and for e a c h partition of ܮ, the set of all lines in ℝ , into 	 ≥ 	2 
disjoint sets, ܮ	 = 	 ଵܮ 	∪ ଶܮ	 	∪	. .  ,disjoint sets  , there is a partition of ℝ intoܮ	∪.
ℝ 	= 	 ଵܵ 	∪ 	ܵଶ 		∪	. . .∪	ܵ , such that each line in ܮ meets ܵ in a set of size ≤ 	߱ఏିାଵ.	 

(c) For s o m e ݊	 ≥ 	2, s o m e , with ݏ	 + 	2	 ≥ 		 ≥ 	2, and s o m e non-parallel lines 
݈ଵ, . . . , ݈ in ℝ , if we let ܮ be the set of all lines in ℝ parallel to ݈ , then there is a 
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partition ℝ 	= 	 ଵܵ 	∪	. . .∪	ܵ such that every line in ܮ meets ܵ in a set of size ≤
	߱ఏିାଵ.  

Proof. We introduce an auxiliary Proposition (2.2.6) for integer 	 ≥ 	2.  

Proposition (2.2.6)[64]: For each ordinal ߠ, if ܣ is a set of lines and points in ℝ of size at 
most ߱ఏ, and the set of lines in ܣ, which we call ܮ, is divided into ݇ disjoint sets, ܮ	 =
ଵܮ	 	∪	. . 	݇ , whereܮ	∪. ≥  ,ܣ and if ݂ is a function with domain ܵ, the set of points in ,	
such that for all ݔ	 ∈ 	ܵ, (ݔ)݂ 	⊆ 	 {1, . . . , ݇} and |݂(ݔ)| 	≤ 	݇	 −  then there is a partition ,	
of ܵ into ݇ sets, ܵ	 = 	 ଵܵ 	∪	. . .∪	ܵ , such that for each ݔ	 ∈ 	ܵ:	 

a)	ݔ	 ∉ 	 ܵ , if ܽ	 ∈  .(ݔ)݂	

b) Each line ݈ in ܮ meets at most ߱ఏିାଵ points in ܵ .  

We think of ݂(ݔ) as being forbidden “colors” for ݔ. Thus, the hypothesis of ܳ() requires 
there to be at least p non-forbidden colors for each point ݔ	 ∈  for all ()ܳ Note that .ܣ	
	 ≥ 	2 yields (ܽ) ⇒ (ܾ) of Theorem (2.2.5) by taking ݇	 =  and ݂ the function with 	
constant value ∅.  

We establish ܳ(), working in ZFC, by induction on . So, assume first that 	 = 	2. Let ܣ 
be a set of points and lines in ℝ of size ≤ 	߱ఏ, for some ordinal ߠ (we allow ߠ	 = 	0). Let 
	ܮ = 	 ଵܮ 	∪	. . 	݇ with ܣ  be a partition of the lines inܮ	∪. ≥  and let ݂ be as in the ,	
statement of ܳ(). We define the partition ܵ	 = 	 ଵܵ 	∪. . .∪ ܵ  of the points in ܣ as 
required. Let {݈ଵఈ 	}, . . . , {݈ఈ	}	and	{ݔఈ 	ߙ,{	 < 	߱ఏ , enumerate the lines in ܮଵ, . . . , ܮ , and the 
points of ܵ, respectively. We inductively decide to which ܵ we add ݔఈ. Suppose we are at 
step ߙ	 < 	 ߱ఏ  and we have decided for all ߚ	 <  . Consider the	ఉݔ to which ܵ we add ߙ	
following cases.  

Case I. For some 1	 ≤ 	݅	 ≤ 	݇ such that ݅	 ∉ 	ߚ and all ,(ߙ	ݔ)݂	 < ,ߙ	 	ߙ	ݔ ∉ 	 ݈
ఉ	. In this 

case add ݔఈ to ܵ (choose ݅ arbitrarily if the above is satisfied for more than one ݅).  

Case II. For all 1	 ≤ 	݅	 ≤ 	݇ with ݅	 ∉ ,(ߙ	ݔ)݂	 ఈ lies on some ݈ݔ
ఉ()	, with ߚ(݅) 	<  Let	.ߙ	

> in fact be the least such ordinal (݅)ߚ Let ݅ .ߙ	 	 ∉ (݅)ߚ be such that (ఈݔ)݂	 	≥  for (݅)ߚ	
all ݅	 ∉   .	ఈ to ܵݔ We then add .(ఈݔ)݂	

Thus, we have defined a partition ܵ	 = 	 ଵܵ 	∪	. . .∪	ܵ . Fix now a line ݈ఋ 	 ∈  We show .ܮ	
that | ܵ 	∩ 	 ݈ఋ 	| 	≤ 	߱ఏିାଵ 	= 	 ߱ఏିଵ (this means, by our convention, that | ܵ 	∩ 	 ݈ఋ 	| 	<
	߱ఏ). First, we need only consider those points ݔఈ with ߙ	 > > since there are ,ߜ	 	 ߱ఏ 
points ݔఈ with ߙ	 ≤  ఈ would not lie onݔ then ,ܫ ఈ were put in ܵ by virtue of Caseݔ If .ߜ	
݈ఋ 	. Suppose then that ݔఈ,ߙ	 > ߚ ,is put in ܵ by virtue of Case II. Thus ,ߜ	  is defined (ߙ)	
for each ݆	 ∉ (ߙ)ߚ ఈ is put into ܵ , we haveݔ Since .(ߙ	ݔ)݂	 	≥ ߚ}ݑݏ	 (ߙ)	 ∶ 	݆	 ∉
(ߙ)ߚ If .{(ఈݔ)݂	 	> ఈݔ ,then by Definition (2.2.7) ,ߜ	 	 ∉ 	 ݈ఋ 	. Thus, we need only consider 
	ߜ ఈ for whichݔ ≥ (ߙ)ߚ	 	≥ ߚ}ݑݏ	 (ߙ)	 ∶ 	݆	 ∉ > There are .{(ఈݔ)݂	 	 ߱ఏ  possibilities for 
the set {ߚ 	݇ Since .{(ߙ)	 −  has at least two elements, and two lines determine a (ߙ	ݔ)݂
point, it follows that the set of such ݔఈ has size < 	 ߱ఏ. This completes the proof of ܳ(2).  
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Note, in particular, that ܳ(2) holds when ߠ	 = 	0, that is, when ܣ is countable. However, 
for countable (2)ܳ,ܣ easily implies ܳ() for all 	 ≥ 	2 as well (since in this case 
|݈	 ∩ ܵ 	| 	≤ 	߱ఏିାଵ means the same thing, i.e., ݈	 ∩ ܵ is finite, for all 	 ≥ 	2).  

Before giving the inductive step in the proof of ܳ(), we introduce a basic Definition 
(2.2.7).  

Definition (2.2.7)[64]: If ܣ is a collection of lines and points in ℝ, we call ܣ good if it 
satisfies the following:  

a) For any two distinct points ݔ,ࣳ	 ∈   .ܣ and y is also in ݔ the line determined by ,ܣ	

b) For any two distinct intersecting lines in ܣ, the point of intersection is also in ܣ.  

Clearly, for any infinite set ܣ of lines and points in ℝ, the good set generated by ܣ has 
the same cardinality as ܣ.  

Assume now that ܳ() holds, and we show ܳ( + 	1). Let ܣ be a collection of lines ܮ and 
points ܵ in ℝ with size ߱ఏ, and let ܮ	 = 	 ଵܮ 	∪	. . 	݇ with ܮ   be a partition ofܮ	∪. ≥ 		 +
	1. We may assume ߠ	 ≥ 	1 by our note above. Without loss of generality, we may also 
assume that ܣ is good. Let ݂ ∶ 	ܵ	 → 	 {1, . . . ,݇} be given with |݂(ݔ)| 	≤ 	݇	 − 	)	 + 	1) 	=
	݇	 − 		 − 	1. Express A as an increasing union, ܣ	 = 	⋃ 	ఈழ	ఠഇ ܣ . where each ܣఈ is good, 
and |ܣఈ| 	≤ 	߱ఏିଵ. We call a line ݈	 ∈ 	݈ ఈ “new” ifܣ	 ∈ ⋃\ఈܣ	 		ఉழ  ఉ. and otherwise callܣ
݈ “old” (relative to ߙ). We label the points of ܣఈ as new and old in the same fashion. We 
define at step α the partition of ܵఈ , the set of new points in ܣఈ, ܵఈ 	= 	 ଵܵ

ఈ 	∪	. . .∪	ܵఈ	. 
Suppose we are at step ߙ	 < 	 ߱ఏ . Enumerate ܮఈ,, the new lines of ܮ in ܣఈ, and points of 
(ߙ)ఈ into type ߱ఙܣ 	< 	 ߱ఏ , say ݈ఈ,

ఉ , ఈ,ఉݔ
ఉ 	< 	 ߱ఙ,ଵ 	≤ 	݅	 ≤ 	݇. Note that for each ߚ	 <

	߱ఙ(ఈ)	, each ݔఈ
ఉ lies on at most one old line, since each ܣఋ is good. Thus, for ߚ	 < 	 ߱ఙ(ఈ)	, 

set ఈ݂(ݔఈ
ఉ) 	= ఈݔ)݂	

ఉ) ∪	{݆}, where ݆ is such that ݔఈ
ఉ lies on an old line in ܮ if one exists, 

and otherwise set ఈ݂(ݔఈ
ఉ) 	= ఈݔ)݂	

ఉ). Thus, fα maps the new points of ܣఈ into {1, . . . ,݇} 
and	| ఈ݂(ݔ)| 	≤ 	݇	 −  , we may	applied to ߱ఙ(ఈ) ()ܳ Now, by the induction hypothesis .	
partition the points in ܵఈ , ܵఈ 	= 	 ଵܵ

ఈ 	∪. . .∪ ܵఈ	, so that any new line ݈ఈ,
ఉ  intersects at most 

߱ఙ(ఈ)ିାଵ points from ܵ
ఈ	, and ݔఈ

ఉ 	 ∉ 	 ܵఈ for any ܽ	 ∈ 	 ఈ݂(ݔఈ
ఉ). Note that ߱ఙ(ఈ)ିାଵ 	≤

	߱ఏି.  

This defines our partition of ܵ. To show this partition works, fix a line ݈ in ܣ, say ݈	 ∈
	݈ be the least such that ߙ Let	.	ܮ	 ∈ 	  We must show .ߙ so that ݈ is a new line at step	ఈ,,ܮ
that ≤ 	߱ఏି points in ܵ 	= 	 ܵఈ

ఊ, in Si cannot lie on ݈, since then ݅	 ∈ 	 ఊ݂(ݔఊఋ 	), but, by 
construction, ݔఊఋ 	 ∉ 	 ܵ 	. So, we may assume ߛ	 ≤  ఊఋ forݔ Now, there is at most one point .ߙ	
	ߛ <  Thus, we need only .ߙ on the line ݈, since otherwise ݈ would not be new at ߙ	
consider points of the form ݔఈ,ఋ

ఋ 	< 	 ߱ఙ(ఈ)	. However, from the Definition (2.2.7) of the set 
ܵ
ఈ	,≤ 	߱ఙ(ఈ)ିାଵ of these points lie on ݈	 ∈ 	   .ఈ,ܮ
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Thus, each line in ܮ intersects ≤ 	߱ఏି points of ܵ . Since ఈ݂(ݔఈ
ఉ) 	⊃ ఈݔ)݂	

ఉ) for all 
ఈݔ
ఉ 	 ∈ 	ܵ, we also have ݔఈ

ఉ ∉ 	ܵ	if ܽ	 ∈ ఈݔ)݂	
ఉ). This completes the proof of the proposition 

	)ܳ + 	1) and, as mentioned, the proof that (a) implies (b).  

Since (b) clearly implies (c), it only remains to prove (c) implies (a). Assume now (c) 
holds, with ߠ	 = 	 ߠ̅ 	+ 	and 2 ݏ	 ≤ 		 ≤ 	ݏ	 + 	2. Towards a contradiction, assume 2ఠ 	≥
	߱ఏାଵ. Let ݈ଵ, . . . , ݈ and ܮଵ, . . . , , and ଵܵܮ . . . , ܵ be as in (c). For each ݅, 2	 ≤ 	݅	 ≤  let ,	
|หݒ| be a vector parallel to ݈ with หݒ 	= 	1. We construct sets ܤଵ, . . .   as follows. Letܤ,
ଵܤ 	⊆ 	 ݈ଵ 	= 	 ݔ} 	+ 	 ௩ݐ ∶ 	ݐ	 ∈ ℝ} be any set of size ω(ି୮ାଵ)ାଵ 	≥ 	ω	. Assume 1	 ≤
	݅	 ≤ 		 − 	1 and ܤ has been defined with |ܤ 	| = ߱(ఏିାଵ)ା 	< 	2ఠ . Let ܦ be the set of 
all distances between two distinct points of ܤ . So, |ܦ 	| = ܤ| 	|. Let ܥାଵ be a subset of ℝ 
such that |ܥାଵ| 	= 	 ߱(ఏିାଵ)ା(ାଵ) and (ܥାଵ 	− (ାଵܥ	 ܦ	∩ 	= 	∅ (where ܣ	 − ܤ	 ∶=
	{ܽ	 − 	ܾ ∶ ܽ ∈ ܾ,ܣ ∈ ାଵܤ Let .({ܤ = ⋃ 	∈శభ ାଵݒܿ] 	+ [ܤ = ⋃ 	௫∈ ݔൣ + ݔ	 ∈
ܤ 	⋃ 	∈శభ   in the directionܤ consists of ߱(ఏିାଵ)ା(ାଵ) translates of	ାଵܤ ,ାଵ൧. Thusݒܿ
of ݈ାଵ. Also, notice that these translates of ܤ form a pairwise disjoint family. Finally, 
since 2ఠ 	≥ 	߱ఏାଵ 	= 	 ߱(ఏିାଵ)ା,ܤ is defined.  

Consider first ܤିଵ. Since |ܤିଵ| 	= 	 ߱ఏ, and since each line parallel to ݈ through a point 
of ܤିଵ intersects ܵ in at most ߱ఏିାଵ points, |ܵ 	∩ |ܤ	 	≤ 	߱ఏ. But, since ܤ consists 
of ߱ఏାଵ disjoint translates of ܤିଵ, there is some ܿ 	 ∈ 	 ݒ such that ܿܥ 	+ ିଵܤ	 	⊆
	 ଵܵ 	∪	. . .∪	ܵିଵ.	If		 = 	2, stop; otherwise, continue. So, in general, suppose 3	 ≤ 	݆	 ≤  	
and we have produced numbers ܿ 	 ∈ 	 	݆	, for	ܥ ≤ 	݅	 ≤ such that ݁ ,	 	+ ିଵܤ	 	⊆ 	 ଵܵ 	∪
	. . .∪	 ܵିଵ, where ݁ 	= 	 ܿݒ + ܿିଵݒିଵ+. . . + ܿݒ	. Now, ݁ + ିଵܤ 	= 	⋃ 	∈ೕషభ 		[ ݁ +
ିଵ	ݒܿ + |ିଵܥ| the translates in this union being pairwise disjoint, and	ିଶ],ܤ 	= 	 ߱ఏ −  +
݆	. Since ܵିଵ contains at most ߱ఏ −  + ݆ିଵ	 points of this union, there is some ܿିଵ 	 ∈
ିଵ such that ݁ܥ	 	+ 	 ܿିଵݒ	ିଵ 	+ ିଶܤ	 	⊆ 	 ଵܵ 	∪	. . .∪	 ܵିଶ. Finally, we have ܤതଵ 	= 	 ݁ଶ 	+
ଵܤ	 	= 	 ܿݒ 	+ 	 ܿିଵݒ	ିଵ	+	. . . +	ܿଶݒଶ 	+ ଵܤ	 	⊆ 	 ଵܵ. As ܤതଵ is a translate of ܤଵ, |തଵܤ| 	=
|ଵܤ|	 	= 	 ߱ఏିାଶ. But, also, ܤതଵ is a subset of the line through ݔ 	+ 	 ݁ଶ parallel to ݈ଵ. Thus, 
|തଵܤ| 	≤ 	߱ఏିାଵ. This is a contradiction.  

Further generalizations are possible. The only properties of lines that were used in the 
preceding argument were that two distinct lines determine at most one point and two 
distinct points determine a line. We generalize this as follows. Definition (2.2.7). Let 
	ܪ ⊆ 	࣪(ℝ)	be a family of subsets of ℝ . Let ݎ and s be positive integers. We say that ܪ 
is (ݎ,   :finitely determined if the following are satisfied (ݏ

(a) The intersection of any r distinct elements of ܪ is finite.  

(b) For any s distinct points in ℝ, there are at most finitely many ℎ	 ∈  which contain ܪ	
all those points.  

Example (2.2.8)[64]: The set ܪ of all circles in ℝ	(݊	 ≥ 	2)	is (2, 3) finitely determined. 
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Example (2.2.9)[64]: The set ܪ of all hyperplanes in ℝ perpendicular to a coordinate 
axis is (݊, 1) finitely determined. Somewhat more generally still, we introduce the notion 
of a partition being (ݎ,   .finitely determined (ݏ

Definition (2.2.10)[64]: Given ܪ	 ⊆ 	ܲ(ℝ), we say a partition ܪ	 = ଵܪ	 	∪	. .  ݇)	ܪ	∪.
can be infinite here) is (ݎ,   :finitely determined if (ݏ

(a) The intersection of ݎ distinct elements of ܪ lying in different ܪ is finite.  

(b) For any s distinct points in ℝ, there are at most finitely many ℎ	 ∈  containing these ܪ	
  .points ݏ

Note that if ܪ	 ⊆ 	࣪(ℝ) is an (ݎ,  finitely determined family of sets, then any partition (ݏ
of ܪ is (ݎ,   .finitely determined (ݏ

Theorem (2.2.5) may be generalized as follows, where our convention is still in force.  

Theorem (2.2.11)[64]: Let ߠ	 ≥ 	1 be an ordinal. The following are equivalent: 

(i) 2ఠ 	≤ 	߱ఏ.	 

(ii) For each positive integer ݐ, for each ݊	 ≥ 	1, and for any ݎ	 ≥ 	2, 	ݏ ≥ 	1, if ܪ	 = ଵܪ	 	∪
. . ,ݎ)	ܽ	is	ܪ	∪. 	ܪ finitely determined partition of some (ݏ ⊆ 	ܲ(ℝ) into 	 = ݎ)ݐ	 	 −
1	) 	+ 	1 disjoint sets, then there is a partition of ℝ ,ℝ 	= 	 ଵܵ 	∪	. . .∪	ܵ, such that 
|ℎ	 ∩	 ܵ 	| 	≤ 	߱ఏି௧ for all ℎ	 ∈ ܪ	 	, 1	 ≤ 	݅	 ≤  	.	

Proof. The proof that (i) implies (ii) is similar to that of Theorem (2.2.5). As there, we 
formulate an auxiliary Proposition (2.2.12), for ݐ	 ≥ 	1, which we prove in ZFC by 
induction on ݐ.  

Proposition (2.2.12)[64]: For each ordinal ߠ, ݇, and integers ݊	 ≥ 	1, 	ݎ ≥ 	2, 	ݏ ≥ 	1,	if 
	ܪ = ଵܪ	 	∪	. . ,ݎ) is an	ܪ	∪. 	ܪ finitely determined partition of (ݏ ⊆ 	ܲ(ℝ) into ݇	 ≥
ݎ)ݐ	 − 1) 	+ 	1 pieces, then if ܣ	 ⊆ 	ܪ	 ∪	ℝ is a set consisting of some elements of ܪ and 
points, ܵ, of ℝ with |ܣ| 	≤ 	߱ఏ,	and ݂ is a function from ܵ into ܲ({1, . . . , ݇}) such that for 
all ݔ	 ∈ 	ܵ we have |݂(ݔ)| 	≤ 	݇	 − 	 	ݎ)ݐ] − 	1) 	+ 	1], then there is a partition of ܵ into ݇ 
sets, ܵ	 = 	 ଵܵ 	∪	. . .∪	ܵ , such that for each ݔ	 ∈ 	ݔ,ܵ	 ∉ 	 ܵ	if ܽ	 ∈ 	and if ℎ ,(ݔ)݂	 ∈ ܪ	 	∩
	then |ℎ ,ܣ	 ∩	 ܵ 	| 	≤ 	߱ఏି௧,	for	1	 ≤ 	݅	 ≤ 	݇.  

The proof for ݐ	 = 	1 proceeds exactly as the proof of Theorem (2.2.5) for 	 = 	2. Again, 
the determination of which set ݔఈ should be placed into breaks into two cases. In the first 
case, for some ݅	 ∉ ఈݔ we have (ఈݔ)݂	 	 ∉ 	ℎ

ఊ for all ߛ	 <  ఈ is placed in some ܵݔ and ,ߙ	
with i in this set. For the ݔఈ in the second case, one obtains a function ݔఈ 	→
,((ߙ)ଵ݅)ߚ)	 . . . 	݃ where ,(((ߙ)݅)ߚ, ≥ and the ݅ ݎ	  ఈ lies onݔ list the i’s such that (ߙ)	
some ℎ

ఊ	, with ߛ	 < )ߚ and ,ߙ	 ݅  This function is not necessarily .ߛ is the least such ((ߙ)	
one-to-one as in Theorem (2.2.5), but, from the first condition of being (ݎ,  finitely (ݏ
determined, the function is finite-to-one. This is sufficient for the argument.  

Note, as in Theorem (2.2.5), that if ߠ	 = 	0, then ܴ(1) easily implies ܴ(ݐ) for all ݐ. Thus, 
we may assume in the inductive step that ߠ	 ≥ 	1.  
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The inductive step for obtaining ܴ(ݐ + 	1) from ܴ(ݐ) is similar to that for ܳ(). Perhaps it 
should be noted that in obtaining ܴ(ݐ	 + 	1) from ܴ(ݐ), one builds, as before, an increasing 
transfinite sequence of “good” sets, ܣఈ, with ܣ	 = 	⋃ 	ఈழ	ఠഇ |ఈܣ|| ఈ andܣ		 < 	 ߱ఏ 	 being 
good now means that if ℎଵ, . . . , ℎ are elements of distinct sets ܣఈ 	∩ ℎ	, then ⋂	ܪ 	⊆  ,ఈܣ	
and for any ݏ distinct points of ܣఈ, the finitely many elements of ܪ containing these points 
are in ܣఈ. Since the partition of ܪ is (ݎ,  finitely determined, the cardinality of the good (ݏ
set generated by an infinite set does not increase. The argument then proceeds as before.  

To prove (ii) implies (i), take ݐ	 = 	1 and ݊	 = 	2. Let ܪ be the set of lines parallel to the 
 ℎ axis. So, the partition is (2, 1) finitely determined. Applying (ii) to this family, we haveݐ݅
	 = 	ݎ	 = 	2 and ݐ	 = 		 − 	1. So, there is a partition ℝଶ 	= 	 ଵܵ 	∪ 	ܵଶ such that |ℎ	 ∩
	 ܵ 	| 	≤ 	߱ఏି௧ 	= 	 ߱ఏିାଵ. Since (c) implies (a), 2ఠ 	≤ 	߱ఏ.  

Corollary (2.2.13)[64]: (Sikorski). The continuum hypothesis is equivalent to the 
following statement. The points in ℝଷ can be partitioned into three sets ଵܵ,ܵଶ and ܵଷ such 
that each plane perpendicular to the ݔ axis meets ܵ in at most countably many points.  

Proof. If ܪ	 = planes in ℝଷ perpendicular to a coordinate axis, then ܪ is (3, 1) finitely 
determined. Now, take ߠ	 = 	1	 =  in Theorem (2.2.11). The proof of the converse may	ݐ	
be found in [78] or done directly. Of course, our proof also works for any partition of the 
planes in ℝଷ which is (3,   .ݏ finitely determined for some (ݏ

As another example, consider the analog of Corollary (2.2.4) where “countable” is 
replaced by “finite”. We first show that four “colors” are not sufficient (note: Lemma 
(2.2.14) and one direction of Corollary (2.2.16) follow of [79], [80], but are included here 
for the sake of completeness).  

Lemma (2.2.14)[64]: There are four unit vectors, ݒଵ, ,ଶݒ  ସ, in ℝଷ such that ifݒ ଷ andݒ
ܪ 	= 	 {ℎ ∶ 	ℎ is a plane with normal ݒ}, then the partition ܪଵ 	∪	. .  ସ is (3, 1) finitelyܪ	∪.
determined, and yet there is no partition ℝଷ 		= 	 ଵܵ 	∪	. . .∪	ܵସ such that |ℎ	 ∩	 ܵ 	| 	<
	߱	for all ℎ	 ∈   .	ܪ	

Proof. Let ݒ, ݅	 = 	1, 2, 3, be the canonical unit basis vectors for ℝଷ	. Let ݒସ 	=
	0,−	√2/2,√2/2		. Let ܣଵ,ܣଶ 	⊆ ℝ with |ܣଵ| 	= 	 ߱  and |ܣଶ| 	= 	 ߱ଵ, and let ܣଷ 	= ℚ, the 
rationals. Let ܩ	 ⊆ ℝ be such that |ܩ| 	= 	 ߱ଵ and (ܩ	 − (ܩ	 	∩ 	ܳ	 = 	 {0}. Let ܹ	 =
	{(0, ,ݐ (ݐ ∶ 	ݐ	 ∈ 	ܤ Let .{ܩ	 = 	 ଵܣ 	× ଶܣ	 	× 	ܧ ଷ andܣ	 = 	ܤ	 + 	ܹ. The following claim 
(2.2.15) suffices to finish the proof of the lemma. 

Claim (2.2.15)[64]: For each ݑ	 = 	 ,ଵݑ) ,ଶݑ (ଷݑ ∈ 	ℝଷ	,ܧ	 + ݑ ⊈ 	 ଵܵ 		∪. . .∪ ܵସ, where each 
ܵ meets each plane with normal ݒ in a finite set.  

Proof. Fix ݑ, and assume such sets ܵ exist. For each ࣳ	 ∈ ࣳܧ ଶ, letܣ	 	= 	 ଵܣ] × {ࣳ} ×
[ଷܣ + ܹ	 + ܧ Then .ݑ + 	ݑ = 	⋃ 	ࣳ∈మ 	 Ey. To see that these sets are disjoint, notice that 
otherwise we would have (ܽଵ, ଵࣳ, (ଵݍ + इଵ 	= 	 (ܽଶ, ଶݕ (ଶݍ, + इଶ, with इଵ 	≠ इଶ. But 
this would imply ݐଵ − ଶݐ 	 ∈ ℚ for some two distinct elements of ܩ. Now, for each 
ଵݔ 	 ∈ 	ݔ ଵ, the planeܣ	 = 	 ଵݔ 	+ ଵ meets only finitely many points of ଵܵ. Thus, ଵܵݑ	 	∩
	ܧ) + is countable and so there is some ࣳ (ݑ 	 ∈ ࣳܧ ଶ such thatܣ	 	⊆ 	 ܵଶ 	∪ 	ܵଷ 	∪ 	ܵସ. 
For each (ݔ, ऊ) 	 ∈ ଵܣ	 	× ℚ, the plane ℎ(ݔ,ࣳ, ऊ) passing through (ݔ,ࣳ, ऊ) 	+  with ݑ	
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normal ݒସ meets only finitely many points of ܵସ. But ࣳܧ 	= 	⋃ 	௪∈ௐ ଵܣ)]		 	× 	 {ࣳ} 	×
(ଷܣ	 	+ 	ݓ	 + and the sets in this union are disjoint. So, there is some इ [ݑ	 	 ∈ 	ܹ such 
that (ܣଵ 	× 	 {ࣳ} 	× (ଷܣ 	+ इ 	+ 	ݑ ⊆ 	 ܵଶ 	∪ ܵଷ. But this set lies in a plane with normal 
Thus, there is some ऊ	ଶ. So, only finitely many points of this set are in ܵଶ.ݒ 	 ∈ ℚ such that 
ଵܣ) 	× 	 {ࣳ} × 	{ऊ}) + इ 	+ 	ݑ ⊆ 	 ܵଷ. But this set is an infinite subset of a plane with 
normal ݒଷ and ܵଷ meets this plane in a finite set. 

Corollary (2.2.16)[64]: The continuum hypothesis is equivalent to the following 
statement. If ܪ is a set of planes in ℝଷ and ܪ	 = ଵܪ	 	∪. . .∪  which for ܪ ହ is a partition ofܪ
some ݏ is (3, finitely determined, then there is a partition ℝଷ (ݏ 	= 	 ଵܵ 	∪	. . .∪	ܵହ such that 
each plane in ܪ meets ܵ  in a finite set. More generally, the hypothesis 2ఠ 	≤ 	߱	is 
equivalent to the above statement, where ܪ	 = ଵܪ	 	∪	. . 	ܪ ହ is replaced byܪ	∪. = ଵܪ	 	∪
	. .  	.ଶାଷܪ	∪.

Proof. If 2ఠ 	= 	 ߱ଵ, take ߠ	 = 	1 and ݐ	 = 	2 and apply Theorem (2.2.11). To prove the 
converse in this case, assume 2ఠ 	≥ 	߱ଶ. Let us follow the same notation used in the proof 
of Lemma (2.2.14). Let ݒହ be a unit vector, ݒହ 	≠ 	 ݒ 	, 1	 ≤ 	݅	 ≤ 	4, and ܪହ 	= {ℎ ∶ 	ℎ is a 
plane normal to ݒହ}. Let ܨ	 ⊆ 	 ݔ} ∶ ,ݔ) (ହݒ 	= 	0} such that (ܨ	 − (ܨ	 	∩ 	ܧ)	 − (ܧ	 	= 	 {0} 
and |ܨ| 	= 	 ߱ଶ.	Let ଵܵ, . . . ,ܵହ be the required partition of ℝଷ	. Set ܯ	 = 	⋃ 		∈ி 	ܧ	 + 	݂	 =
	⋃ 	∈ா 		݁	 + 	݁ the sets in each union being disjoint. For each ,ܨ	 ∈ ,ܧ	 |ܵହ 	∩ 	 (݁	 + |(ܨ	 	<
	߱.ܵ	, |ܵହ 	∩ |ܨ	 	≤ 	߱ଵ. Thus, there is a vector ݂	 ∈ 	ܧ such that ܨ	 + 	݂	 ⊆ 	 ଵܵ 	∪	. . .∪
	ܵସ. This contradicts the Claim (2.2.15) in the proof of Lemma (2.2.14).  

The argument for this direction can be strengthened slightly. We may take ܨ	 ⊆ 	 	ݔߙ} ∶
	ߙ	 ∈ ℝ}, where (ݔ, (ହݒ 	= 	0.	Let	ݒ 	≠ 	 ,ଵݒ . . . ,  ܪ ହ, and defineݒ ସ be perpendicular toݒ
accordingly. Let ܩ	 ⊆ 	 ݕߙ} ∶ 	ߙ	 ∈ ℝ}, where (ݕ, (ݒ 	= 	0, be such that |ܩ| 	= 	 ߱ଶ and 
	ܩ) − (ܩ	 	∩ 	 	ܯ) − (ܯ	 	= 	 {0}. Set ܰ	 = 	⋃ 	∈ீ 	ܯ		 + 	݃. It is easy to check then that if 
ℝଷ 	= 	 ଵܵ 	∪	. . .∪	ܵ is a partition of ℝଷ	, for some ݂	 ∈ 	݃,ܨ	 ∈ 	ܧ we have ܩ	 + 	݂	 +
	݃	 ⊆ 	 ଵܵ 	∪	. . .∪	ܵସ, a contradiction. Thus, the following statement implies the continuum 
hypothesis: for every partition ܪ	 = ଵܪ	 	∪	. . , of planes which is (3ܪ	∪.  finitely (ݏ
determined for some ݏ, there is a partition ℝଷ 	= 	 ଵܵ 	∪	. . .∪	ܵ with each plane in ܪ 
meeting ܵ in a finite set.  

If 2ఠ 	= 	 ߱, apply Theorem (2.2.11) with ߠ	 = 	݊	and ݐ	 = 	݊	 + 	1 to obtain one 
direction. The converse direction (which follows from Simms) can be obtained by 
extending the above argument, assuming 2ఠ 	≥ 	߱ାଵ, and using vectors 
,ݒ,ହݒ . . .  ଶାହ. This, in fact, gives the stronger result that the stated partitionݒ,ଶାସݒ,
property using 2݊	 + 	4 sets ܪ 	, ܵ implies 2ఠ 	≤ 	߱.  

Theorem (2.2.11) may be refined in several different ways. For some families ܪ	 ⊆ 	ℝ, 
the value of  in (ii) of Theorem (2.2.11) is not the best possible. For example, in ℝସ	, for 
each ߉	 = 	 {݅ଵ, ݅ଶ} 	⊆ 	 {1, 2, 3, 4} with ݅ଵ 	≠ 	 ݅ଶ, let ܪ௸ consist of all planes of the form 
ଵݔ 	= 	 ܽଵ and ݔଶ 	= 	 ܽଶ, where ܽଵ, ܽଶ 	 ∈ ℝ.  

Notice that ܪ	 = 	⋃ 	௸  is a (4, 3) finitely determined partition of some planes into 6 ௸ܪ		
sets. Sikorski [78] showed, as a particular case of a general theorem, that there is a 
corresponding partition ℝସ 	= 	⋃ 		 	 ௸ܵ such that if ℎ	 ∈ 	then ℎ ,௸ܪ	 ∩	 ௸ܵ is finite. ܣ direct 
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application of Theorem (2.2.11) requires partitioning ℝସ	 into 7 sets. One can refine 
Theorem (2.2.11), however, to obtain Sikorski’s theorem.  

Theorem (2.2.28).9 of Simms [80] extends Sikorski’s result by obtaining the best possible 
value of 	in the case where ܪ is the family of translates of a fixed finite number of 
subspaces of ℝ , and the elements ℎ of ܪ are partitioned according to which subspace 
they are a translate of. His results are stated in terms of the least integer ݊ such that the 
collection of subspaces is “݊ −good”. In fact, we may refine the argument of Theorem 
(2.2.11) to obtain Simms’ result, and also allow general partitions of the family ܪ. We 
briefly sketch the argument.  

Let ߎ be a finite set of linear subspaces of ℝ, for some ݊	 ≥ 	2. Let ܪ be the family of 
translates of these subspaces. That is, every ℎ	 ∈ 	is of the form ℎ ܪ	 = 	ܸ	 +  where	,ݑ
ܸ	 ∈ 	ݑ and ߎ	 ∈ 	ℝ. Following Simms, we say that ߎ is ݐ −good if for every linear 
ordering ≺	of ߎ, there is a subset ܵ of ߎ of size ݐ such that for all ܸ	 ∈ 	′ܸ}	ܶ,ߎ	 ≼ 		ܸ ∶
	¬∃ܸ′′		 ∈ 	ܵ such that ܸ′		 ≺ 	ܸ′′	 ≺ 	ܸ	} is finite. We thus have:  

Corollary (2.2.17)[64]: Let ݊	 ≥ 	2, and ߠ	 ≥ 	1 be an ordinal. The following are 
equivalent:  

(a) 2ఠ 	≤ 	߱ఏ.  

(b) For every non-empty set ߎ of size ݇ of non-trivial linear subspaces ܸ of ℝ which is 
ݐ −good, if ܪ	 = 	 {ܸ	 + ݑ	 ∶ 	ܸ	 ∈ ,ߎ	 	ݑ ∈ 	ℝ	} is partitioned into ݇ sets ܪ	 = ଵܪ	 	∪	. . .∪
ܪ	 , then there is a partition ℝ 	= 	 ଵܵ 	∪	. . .∪	ܵ such that for every ℎ	 ∈ ,	ܪ	 |ℎ	 ∩	 ܵ 	| 	≤
	߱ఏି௧	.  

(c) There is a non-empty set ߎ	 = 	 { ଵܸ, . . . , ܸ} of non-trivial linear subspaces of ℝ which 
is not (ݐ	 + 	1) −good and for which there is a partition ℝ݊	 = 	 ଵܵ 	∪	. . .∪	ܵ	such that 
∀1		 ≤ 	݅	 ≤ 	ݑ∀	݇	 ∈ 	ℝ	|(ܸ݅	 + (ݑ	 	∩ 	 ܵ 	| 	≤ 	߱ఏି௧	. R e m a r k. The fact that (c) 
implies (a) is half of [80], and will not be proven here. The special case of (a)⇒(b) for the 
partition of (c) is the other half of that theorem.  

Sketch of proof. Assume 2ఠ 	≤ 	߱ఏ , and let ߎ and ܪ	 = ଵܪ	 	∪	. .   be as in (b)ܪ	∪.
above. As in the proof of Theorem (2.2.11), we prove in ZFC an auxiliary Proposition 
(2.2.12) (which suffices to prove the corollary). 

Proposition (2.2.18)[64]: ܴ(ݐ). Let ߠ be an ordinal, ݊	 ≥ 	2, 	ݐ ≥ 	1,݇	 ≥ 	1 be integers, 
	ߎ = 	 { ଵܸ, . . . , ܸ} be a set of non-trivial subspaces of ℝ which is t-good, ܪ	 = ଵܪ	 	∪	. . .∪
	ܪ  be a partition ofܪ	 = 	 {ܸ	 + ݑ	 ∶ 	ܸ	 ∈ ,ߎ	 	ݑ ∈ 	ℝ}, and let  ܣ	 ⊆ 	ℝ 	∪  be a set of ܪ	
size ≤ 	߱ఏ. Then there is a partition ܵ	 = 	ܣ	 ∩ 	ℝ 	= 	 ଵܵ 	∪	. . .∪	ܵ  such that for all 
ℎ	 ∈ 	ܣ	 ∩ ,	ܪ	 |ℎ	 ∩ 	ܵ݅	| 	≤ 	߱ఏି௧	.  

If ݐ	 = 	1, then the hypothesis that ߎ	is 1 −good simply says that ⋂ 	
ୀଵ 		 ܸ  is finite. It 

follows that the intersection of any ݇ distinct elements of ܪ is also finite. Thus, the given 
partition of ܪ is (݇, 1) finitely determined. Theorem (2.2.11) then finishes this case. Since 
′ݐ is ߎ being t-good implies ߎ −good for all ݐ′	 ≤  ݐ also holds for all (ݐ)ܴ we see that ,ݐ	
when ߠ	 = 	0. So, we may assume ߠ	 ≥ 	1. Likewise, in proving ܴ(ݐ) we may assume that 
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	ߠ = 	ߠ	 + 	ݐ)	 − 	1) for some ordinal ߠ. We call a set ܣ	 ⊆ ℝ 	∪  good provided: (a) for ܪ	
any ℎଵ, . . . , ℎ 	 ∈ 	ܣ	 ∩ ⋂ if	,ܪ	 	

ୀଵ 	 hi is finite, then ⋂ 	
ୀଵ ℎ 	⊆  and (c) for any ,ܣ	

	ݔ ∈ 	ℝ 	∩ 	the finitely many ℎ ,ܣ	 ∈   .ܣ also lie in ݔ which contain ܪ	

Without loss of generality, we may assume ܣ is good, and |ܣ| 	= 	 ߱ఏ.  

Write ܣ	 = 	⋃ 	ఈభழ	ఠഇ భܣ 	, as an increasing union, where each ܣఈభ 	is good and has size 
≤ 	߱ఏିଵ. Similarly, we write each ܣఈభ  as an increasing union ܣఈభ 	= 	⋃ 	ఈమழ	ఠഇିଵ భ,మܣ	   
where each ܣఈభ,ఈమ is good of size ≤ 	߱ఏିଶ. Continuing, we define good sets 
,ఈభ,ఈమܣ . . . ଵߙ ௧ିଵ for allߙ, 	< 	 ߱ఏ , . . . ௧ିଵߙ, 	< 	 ߱ఏି(௧ିଶ), such that each ܣఈభ,ఈమ , . . .  ௧ିଵߙ,
has size ≤	߱ఏି௧ାଵ 	= 	 ߱ఏഥ 	. Write also ܣఈభ,...,ఈషభ 	= 	⋃ ఠഇഥ	,ఈழ		భ,….ܣ

		  where each 
> ఈభ,...,ఈ has sizeܣ 	 ߱ఏഥ  but is not necessarily good (if	̅ߠ 	≥ 	1, then we may make these 
sets good as well). For each point x (or ℎ	 ∈ ,ଵߙ and ordinals ܣ in (ܪ	 . . . ߙ, 	, ݅	 ≤  we ,ݐ	
say that ݔ (or ℎ) is new relative to ߙଵ, . . . 	݆  provided for allߙ, ≤ 	ݔ,݅	 ∈ ఈభ,...,ఈೕܣ	 	−
	⋃ 	ఉழ	ೕ ഁ,ఈభ,...,ఈೕషభܣ		 . There is clearly a unique sequence ߙଵ 	= 	 ,(ݔ)ଵߙ . . . ௧ߙ, 	= 	  (ݔ)௧ߙ
such that ݔ is new relative to ߙଵ, . . .   .௧ߙ,

For ݔ	 ∈ ଵߙ Let .ݔ we now describe the ܵ into which we place ,ܣ	 	= 	 ,(ݔ)ଵߙ . . . ௧ߙ, 	=
,	Let ℎଵଵ .(ݔ)௧ߙ	 . . . , ℎଵ

(ଵ) enumerate the ℎ	 ∈ 	ܪ	 ∩  lies which are old relative ݔ on which ܣ
to ߙଵ. Let ℎଶଵ	, . . . , ℎଶ

(ଶ) be those ℎ	 ∈ ܪ	 ∩  ଵߙ lies which are new relative to ݔ on which ܣ
but old relative to ߙଵ,ߙଶ, and continuing, ℎ௧ଵ	, . . . , ℎ௧

(௧) those ℎ	 ∈ 	ܪ	 ∩  lies ݔ on which ܣ	
which are new relative to ߙଵ, . . . ,ଵߙ but old relative to	௧ିଵߙ, . . .  ,௧. Clearlyߙ,
ܽ(1)	+	. . . (ݐ)ܽ	+ 	≤ 	݇. If there is some “color” 1	 ≤ 	݅	 ≤ 	݇ not taken on by any of the 
ℎ 	, put ݔ into one such ܵ . Note that this includes the case where ܽ(1)	+	. . . (ݐ)ܽ	+ 	< 	݇. 

Otherwise, let ℎଵଵ	, . . . , ℎଵ
(ଵ)	, ℎଶଵ	, . . . , ℎଶ

(ଶ)	, . . . , ℎ௧ଵ	, . . . , ℎ௧
(௧)	correspond to the subspaces 

ଵܹ, . . . , ܹ 	of	ߎ	ݏ), ଵܹ, . . . , ܹ is a permutation of ଵܸ, . . . , ܸ). This determines a linear 
ordering ≺	=	≺ By t-goodness, there are ܾ(1) .ߎ of (ݔ) 	<	. . . <  such that for all (ݐ)ܾ	
0	 ≤ 	݆	 < ⋂,ݐ	 	(ାଵ)

ୀ() 	 ܹ	is finite (where we interpret ܾ(0) as 1). Note first that ܾ(1) 	>

	ܽ(1), as otherwise ℎଵଵ 	∩	. . .∩	ℎଵ
(ଵ) would be finite. This would contradict the fact that ݔ 

is new relative to ߙଵ, and all of the ܣఉ are good. Without loss of generality, we may 
assume that ܾ(1) 	= 	ܽ(1) 	+ 	1.	It then follows by similar reasoning that ܾ(2) 	> 	ܽ(2), 
and again we may assume that ܾ(2) 	= 	ܽ(2) 	+ 	1. Continuing, we may assume that 
	ݐ)ܾ − 	1) 	= 	ݐ)ܽ	 − 	1) 	+ 	1. Thus, ℎ௧ଵ 	∩	. . .∩	ℎ௧

(௧) is finite. Also, by our above remarks, 
we may assume that ܽ(1)	+	. . . (ݐ)ܽ	+ 	= 	݇, and each color 1	 ≤ 	݅	 ≤ 	݇ is taken on 
exactly once in the sequence ℎଵଵ	, . . . , ℎ௧

(௧) (that is, for each ݅, there is exactly one ℎ in this 
sequence which lies in ܪ). For each 1	 ≤ 	݆	 ≤ ℎ௧)ߚ let ,(ݐ)ܽ	

 	) 	< 	߱ఏഥ  be the ordinal such 
that ℎ௧

 is new relative to ߙଵ, . . . ℎ௧)ߚ,௧ିଵߙ,
 	). Finally, put ݔ into ܵ , where ℎ௧ 	 ∈  ݈  andܪ	

is such that ߚ(ℎ௧ 	) 	≥ ℎ௧)ߚ}ݑݏ	
 	) ∶ 	1	 ≤ 	݆	 ≤   .{(ݐ)ܽ	

To show this works, fix an	ℎ	 ∈ ܪ	 	∩ 	We show that |ℎ .ܣ	 ∩	 ܵ 	| 	< 	 ߱ఏഥ . Suppose 
|ℎ ∩ ܵ 	| 	≥ 	߱ఏഥ . Let ߙଵ 	= 	 ,ଵ(ℎ)ߙ . . . ௧ߙ, 	= 	 ,ଵߙ ௧(ℎ), i.e., ℎ is new relative toߙ . . .  ௧. Ifߙ,
	ݔ ∉ ఈభܣ	 	, and ݔ lies on h, then by Definition (2.2.7) of our coloring, ݔ	 ∉ 	 ܵ 	. There are 
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no old (relative to ߙଵ) points ݔ which lie on ℎ, since the ܣఉ are good. Thus there must be 
≥ 	߱ఏഥ  points x ∈ ܵ which are new at ߙଵ which lie on ℎ. Continuing, we see that ≥
	߱ఏഥ 	points ݔ	 ∈ 	 ܵ which are new at ߙଵ, . . . > ௧ିଵ lie on ℎ. There areߙ, 	 ߱ఏഥ  points in 
ఈభܣ , . . . ,ଵߙ new at ݔ , hence we need only consider	௧ߙ, . . . 	ߚ where ,ߚ,௧ିଵߙ, > 	  ௧. If suchߙ
an ݔ lies on ℎ, then the values of the ߚ(ℎ௧

 	), 1	 ≤ 	݆	 ≤  are all ,ݔ as computed for	,(ݐ)ܽ	
≤ ℎ௧)ߚ from the Definition (2.2.7)s of the	௧ߙ	

 	) and our coloring. Since ℎ௧ଵ 	∩	. . .∩	ℎ௧
(௧) is 

finite, it follows that there are < 	 ߱ఏഥ  such ݔ,	a contradiction.  

We consider results related to partitions of lines and points into infinitely many pieces. 
The analog of Theorem (2.2.11) becomes the following.  

Theorem (2.2.19)[64]: (ZFC) Let ݊	 ≥ 	1. For any ݎ	 ≥ 	2, 	ݏ ≥ 	1	and any (ݎ,  finitely (ݏ
determined partition ܪ	 = 	⋃ 	ழ	ఠ 	ܪ	of	ܪ	 ⊆ 	ܲ(ℝ),	there is a partition	ℝ 	=
	⋃ 	ழ	ఠ ܵ   such that |ℎ	 ∩	 ܵ 	| 	< 	߱ for all ݅	 < 	߱ and ℎ	 ∈ ܪ	 	.	 

Proof. First, one proves in ZFC, by induction on 	∈ 	ܱܰ , the following proposition:  

Proposition (2.2.20)[64]: If ܣ is a collection of elements of ܪ and points in ℝ , |ܣ| 	≤
	߱ఎ , and ܣ	 ∩ 	ܪ	 = 	⋃ 	ழ	ఠ ,ݎ) ,  is a partition which is	ܣ  ݂ finitely determined, and if (ݏ
is a function with domain ܵ	 = points in ܣ such that ∀ݔ	 ∈ (ݔ)݂		 	⊆ 	߱, |(ݔ)݂| 	< 	߱ then 
there is a partition ܵ	 = 	⋃ 		ழ	ఠ ܵ	  such that each ℎ	 ∈  , intersects ܵ in a finite setܣ	
and, for all ݈	ݔ	 ∈ 	ܵ, 	ݔ ∉ 	 ܵ for any ܽ	 ∈  .(ݔ)݂	

Notice that ܲ(2ఠ) implies Theorem (2.2.19).  

In proving ܲ(ߟ), we may assume that ܣ is good, that is, if ℎଵ, . . . , ℎ lie in different ܣ, 
then ⋂ 	

	ୀଵ 	ℎ 	⊆ ,ଵݔ and if points ܣ	 . . . ,  ܪ then so are the finitely many ℎ in ,ܣ ௦ are inݔ
which contain them. Note that ܲ(0) is essentially trivial (see the proof of Corollary 
(2.2.23) below). For ߟ	 ≥ 	1, the proof that ܲ(ߟ) holds is broken into cases depending on 
whether ߟ is successor or limit. In each case, we write ܣ as an increasing union of good 
sets, the argument then being essentially identical to those given earlier.  

As a special case of Theorem (2.2.19), we have:  

Corollary (2.2.21)[64]: (ZFC) If the lines ܮ in ℝ	(݊	 ≥ 	2) are partitioned into ߱ disjoint 
pieces ܮ	 = ⋃ 	ழఠ   then there is a partition ℝܮ 	= 	⋃ 	ழఠ ܵ		. such that each line 
݈	 ∈ 	 	݅  meets ܵ in a finite set, for allܮ ∈ 	߱.  

Still further generalizations are possible. For example, we may define ܪ	 ⊆ 	࣪(ℝ	) as 
being (ݎ, ,ݏ ,ݎ) determined (or a partition being (ߢ ,ݏ  is an infinite ߢ determined) where (ߢ
cardinal as before, except that we now require that the intersection of ݎ distinct elements 
of ܪ (or the intersection of ݎ elements of ܪ lying in different ܪ) has size ≤  and for ,ߢ	
any ݏ distinct points at most ߢ many ℎ	 ∈   :contain these points. Then we have ܪ	

Theorem (2.2.22)[64]: (ZFC) Let ݊	 ≥ 	1, 	ݎ ≥ 	2, 	ݏ ≥ 	1 be integers, ߢ an infinite 
cardinal. Let ܪ	 ⊆ 	࣪(ℝ) be (ݎ, 	ܪ determined. Then for any partition (ߢ,ݏ = 	⋃ 	ழ  ܪ
into ߢ disjoint sets, there is a partition ℝ = ⋃ ܵ	ழ  of ℝ into ߢ disjoint sets such that 
|ℎ	 ∩	ܵఈ| 	< 	߱ for all ℎ	 ∈  .ఈܪ	
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The proof is a trivial generalization of that of Theorem (2.2.19); just start with good sets of 
size ߢ.  

Of course, since the last theorem and previous corollary are proved in ZFC only, their 
conclusions imply no bound on the continuum.  

Corollary (2.2.21) may be modified in a curious manner, which reintroduces set-theoretic 
connections. The case 	 = 	0 follows from Davies [68].  

Corollary (2.2.23)[64]: Suppose m is a positive integer and 2ఠ 	≤ 	߱. If the set ܮ of 
lines in ℝ, ݊	 ≥ 	2, is partitioned into ߱ sets, ܮ	 = 	⋃ 	ழ	ఠ  . then there is a partitionܮ
ℝ 	= 	⋃ 	ழ	ఠ ܵ . such that any line in ܮ meets ܵ in a set of size at most ݉ + 	1. More 
generally, if 2ఠ 	≤ 	߱, and the lines are partitioned into ߱ sets, ܮ	 = 	⋃ 	ఈழ	ఠ ܮ	 . for 
	 ∈ 	߱, then we may partition the points, ℝ 	= ⋃ 	ఈழ	ఠ ܵ . so that |ܮఈ 	∩ 	ܵఈ| 	≤ 	݉	 −
		 + 	1	for all ߙ	 < 	߱. 

Sketch of Proof. We show by induction on ݉	 ≥ 	0 (working in ZFC) that if ܣ is a good 
set of lines and points in ℝ	(݊	 ≥ 	2) of size ≤ 	߱,ܮ	 = 	⋃ 	ఈழఠ  , is a partition of the	ܮ	
lines in ܣ, and f is a function which assigns to each ݔ	 ∈ 	ܵ	 = 	ܣ	 ∩ 	ℝ a finite subset of 
߱, then we may partition the set ܵ of points in ܣ, ܵ	 = 	ܵ write ܣ	 = 	⋃ ܵ	ழఠ 	, so that 
each line ݈	 ∈ 	 	݉ ఈ intersects ܵఈ in a set of size at mostܮ − 		 + 	1 and that for all 
	ݔ ∈ 	ܵ, 	ݔ ∉ 	 ܵఈ for all ߙ	 ∈ ݉ For .(ݔ)݂	 ≤  the result is trivial (assign colors to the  
points of ܵ in a one-to-one manner avoiding the forbidden colors). If ܣ is a good set of size 
ωm, ݉	 > 	ܣ write ,	 = 	ܵ ⋃ ఉழఠ	ఉܣ , with each ߚܣ good of size ≤ 	߱ିଵ. For ߚ	 < 	 ߱, 
consider the new points of ܣఉ. Each such point lies on at most one old line. For each such 
point, let ݂̅(ݔ) 	= (ݔ)݂	 	∪ 	{݆}, where ݔ lies on an On old line in ܮ if one exists (otherwise 
set ݂̅(ݔ) 	=  so that for any ߚ By induction, we may partition the new points at .((ݔ)݂	
	ݔ ∈ 	 ܵఈ new at ߚ, 	݉ lies on at most ݔ − ఈܮ in ߚ lines new at 	 , and also ߙ	 ∉  .(ݔ)݂	
Since any line new at ߚ has at most one old point which lies on it, it is easy to see that this 
partition of ܵ works.  

Considering the converse direction to Corollary (2.2.23) leads to some interesting 
questions. For example, assuming CH, given a partition ܮ	 = 	⋃ 	ழఠ   then we mayܮ
partition the points, ℝଶ 	= ⋃ 	ழఠ ܵ so that for each ݈	 ∈ 	 ,	ܮ |݈	 ∩ 	 ܵ 	| 	≤ 	2 . Davies 
showed in [68], answering a question of [69], that we may not always get |݈	 ∩ 	 ܵ 	| 	≤ 	1, 
even assuming CH. We will strengthen this result. It is natural to ask, then, whether this 
partition property implies CH, or has any strength beyond ZF at all.  

Question. Is it true (or consistent) in ZFC that if the lines in the plane are partitioned into 
countably many sets,	ܮ	 = ⋃ 	ழఠ   then we may partition the points, ℝଶܮ		 	= ⋃ 	ழఠ ܵ 
so that for each ݈	 ∈ 	 ܮ 	, |݈	 ∩ 	 ܵ 	| 	≤ 	2? Is  the analogous statement for ℝ true (or 
consistent)? More generally, do the converse implications to Corollary (2.2.23) hold?  

We begin by considering the question of whether the hypothesis 2ఠ ≤ ߱	   is necessary 
in Corollary (2.2.23). Suppose that 2ఠ 	= 	 ߱ଶ. The argument of Corollary (2.2.23) shows 
that we still have the “two-point” partition property (i.e., for each line ݈	 ∈ 	 ,	ܮ |݈	 ∩
	 ܵ 	|≤ 2)  provided we have the following:  
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(∗) For every set ܣ	 ⊆ 	ܮ	 ∪ 	ℝ of lines and points in ℝ of size ߱ଵ, and any partition 
	ܣ ∩ 	ܮ	 = 		⋃ 	ழఠ 	ܣ there is a partition ,ܣ   of the lines inܮ ∩	ℝ 	= 	⋃ 	ழఠ ܵ such that 
for each line ݈	 ∈ 	 ܮ , |݈	 ∩ 	ܵ| ≤ 1	 . 

Our previous argument showed that (∗) fails assuming CH, but it is not immediately clear 
(∗) fails assuming just ZFC. We show below, however, that this is the case. We first 
reformulate (∗) into purely set-theoretic partition properties. Consider the following 
partition statements about ߱ଵ (F. Galvin pointed out to us that the properties 
ܲ(߱ଵ),ܳ(߱ଵ) were introduced earlier in [70], where they were shown to be false 
assuming CH):  

ܲ(߱ଵ) For every partition ܲ ∶ 	 (߱ଵ)ଶ 	→ 	߱, there is an ℎ ∶ 	߱ଵ 	→ 	߱ such that for all 
	ߙ < 	ߚ	 < 	 ߱ଵ, if	ܲ(ߚ,ߙ) 	= 	݅, then at least one of ℎ(ߙ),ℎ(ߚ) ≠ 	݅.  

Lemma (2.2.24)[64]: (ZFC) (∗) ⇔ ܲ(߱ଵ).  

Proof. Assuming (∗), let ܲ ∶ 	 (߱ଵ)ଶ 	→ 	߱ be a partition. Let ܤ	 ⊆ 	ℝ be an independent 
set of size ߱ଵ, i.e., no three points of ܣ are colinear. Let ܣ	 = 	ܤ	 ∪  is the set of ܮ where ,ܮ	
lines through two points of ܤ. Applying now (∗) to ܣ produces an ℎ ∶ 	߱ଵ 	→ 	߱ as 
required by ܲ(߱ଵ), identifying ߱ଵ with ܤ. Assuming ܲ(߱ଵ), let ܣ,  be as in the statement	ܮ
of (∗). Let {ݔఈ} enumerate the points of ܣ. Define ܲ ∶ 	߱ଵ 	→ 	߱ by ܲ(ߚ,ߙ) 	= 	݅ iff the 
line between ݔఈ and ݔఉ lies in ܮ 	. Applying ܲ(߱ଵ)	then produces an ℎ ∶ 	߱ଵ 	→ 	߱. This 
defines a corresponding partition of the ݔఈ which easily works.  

Note that it makes sense to consider ܲ(߱ଵ) in just ܼܨ. We reformulate ܲ(߱ଵ) in a more 
suggestive manner of usual partition type properties:  

ܳ(߱ଵ) For any partition ܳ ∶ 	 (߱ଵ)ଶ 	→ 	߱, we may write ߱ଵ 	= 	⋃ 	ழ	ఠ   so that for allܣ		
  .is co-infinite (	ଶ[ܣ])ܳ,݇

Note that in ܳ(߱ଵ) there is no loss of generality in assuming the ܣ are disjoint. 

Lemma (2.2.25)[64]: (ܼܨ)	ܲ(߱ଵ) ⇔ ܳ(߱ଵ).  

Proof. Assume first ܲ(߱ଵ), and let ܳ ∶ 	 (߱ଵ)ଶ 	→ 	߱	be given. Let ݎ ∶ 	߱	 → 	߱ be onto 
with ିݎଵ	(݅) infinite for all ݅	 ∈ 	߱. Let ܲ(ߚ,ߙ) 	= Let ℎ .((ߚ,ߙ)ܳ)ݎ	 ∶ 	߱ଵ 	→ 	߱ be as 
given by ܲ(߱ଵ) for ܲ. Let ܣ 	= 	 	ߙ} < 	 ߱ଵ ∶ 	ℎ(ߙ) 	= 	݇}. Then, for 
	ߚ,ߙ ∈ ܣ	 , ൯(ߚ,ߙ)൫ܳݎ = 	݇, hence ܳ(ߚ,ߙ) 	 ∉ 	  (݇). Then, for		ଵିݎ
	ߚ,ߙ ∈ ܣ	 , ൯(ߚ,ߙ)൫ܳݎ ≠ 	݇, hence ܳ(ߚ,ߙ) 	 ∉ 	  (݇). Assume now ܳ(߱ଵ), and let	ଵିݎ
ܲ ∶ 	 (߱ଵ)ଶ 	→ 	߱ be given. Let {ܣ ∶ 	݇	 ∈ 	߱} be as given by ܳ(߱ଵ) for the partition ܲ. 
Let ݊, ݊ଵ, . .. be distinct integers such that ݊ 	 ∉ (ߙ)for all ݇. Let ℎ (	ଶ[ܣ])ܲ	 	= 	 ݊  for 
all ߙ	 ∈ ܣ	 . This easily works.  

The following theorem of Todorˇcević (see [81]) immediately implies that ܳ(߱ଵ) is false 
in ZFC.  

Theorem (2.2.26)[64]: (Todorˇcević). Assume ZFC. There is a partition ܿ ∶ 	 [߱ଵ]ଶ 	→ 	߱ 
such that ܿ([ܥ]ଶ	) 	= 	߱ for all uncountable ܥ	 ⊆ 	߱ଵ.  
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Corollary (2.2.27)[64]: (ZFC) (∗),ܲ(߱ଵ),ܳ(߱ଵ) are all false.  

From the failure of ܲ(߱ଵ), it follows (in ܼܥܨ) that there is a partition ܮ	 = 	⋃ 	ழఠ   of aܮ		
set ܮ of lines in ℝଶ	, with |ܮ| 	= 	 ߱ଵ, such that for every partition R 2 = ⋃ 	ழఠ 		ܵ we 
have |݈	 ∩ 	ܵ| 	≥ 	2 for some ݊ and ݈	 ∈ 	   (cf. the proof of Lemma (2.2.24)). Thisܮ
strengthens a result of Davies mentioned earlier. Todorˇcević’s theorem is proved in ZFC, 
and thus it remains possible that ܳ(߱ଵ) (or, equivalently, ܲ(߱ଵ)) is consistent with ZF. 
We in fact show that ܳ(߱ଵ) is a theorem of ܦܣ, and thus holds in ܮ(ℝ) assuming ZFC + 
large cardinal axioms. In fact, we show a much stronger version of ܳ(߱ଵ) under these 
hypotheses. Consider the following strengthening of ܳ(߱ଵ):  

ܳ௦	(߱ଵ) For every partition ܳ ∶ 	 [߱ଵ]ଶ 	→ 	߱, we may write ߱ଵ 	= 	⋃ 	ழఠ  whereܣ
	݇ is finite for all (	ଶ[ܣ])ܳ ∈ 	߱. 

Theorem (2.2.28)[64]: (ܼܨ	 + 	ܦܣ	 +   .(߱ଵ) holds	௦ܳ(ܥܦ	

Proof. We sketch two proofs. The first uses only the theory of indiscernibles for (ݔ)ܮ, 	ݔ ∈
ℝ. The second uses the analysis of measures on ߱ଵ of [73]. The second proof, however, 
extends to cardinals other than ߱ଵ.  

Let ܳ ∶ 	 [߱ଵ]ଶ 	→ 	߱ be given. From AD, there is an ݔ	 ∈ ℝ such that ܳ	 ∈  Let .(ݔ)ܮ	
	ܥ = 	 ఈߦ} ∶ 	ߙ	 ∈ 	ܱܰ	} be the canonical closed unbounded set of (Silver) indiscernibles for 
 ߬ as a parameter. Let ݔ denote terms in the language of set theory with ߪ,	߬ ,Below .(ݔ)ܮ
be a term such that ܳ	 = 	 ߬(ݔ)	(ߦ, . . . , ,ߚ,ߦ . . . ߦ	where	),ߚ, 	<	. . . < 	 ߦ 	< 	 ߱ଵ 	≤
ߚ	 	<	. . . < 	 ߚ 	 ∈ 	ߙ For each	.ܥ	 < 	 ߱ଵ we canonically choose a representation ߙ	 =
,(ߙ)ߠ)	(ݔ)ܮ	(ߙ)ߪ	 . . . , (ߙ)ߠ and (ߙ)ߪ for some term ,((ߙ)	(ߙ)ߠ 	<	. . . < 	 (ߙ)	(ߙ)ߠ 	<
	߱ଵ in ܥ. For each ߙ	 < 	 ߱ଵ, let (ߙ) 	 ∈ 	߱ be an integer which codes the term 
 and the manner in which the two sequences of ordinals ,(ߙ)݉,(ߙ)ߪ
,ߦ) . . . , ,(ߦ ,(ߙ)ߠ) . . . ,  .are interlaced (including which of them are equal) ((ߙ)	(ߙ)ߠ
For ߚ,ߙ	 < 	 ߱ଵ, let (ߚ,ߙ)ݍ 	 ∈ 	߱ be an integer which codes how the two sequences of 
ordinals ~(ߙ)ߠ, ܣ are interlaced. Let (ߚ)ߠ~ 	= 	 	ߙ} < 	 ߱ଵ ∶ (ߙ)	 	= 	݇}. To see this 
works, fix ݇	 ∈ 	߱, and consider ܳ⌈	[ܣ]ଶ	. Note that ݍ([ܣ]ଶ	) is finite. It thus suffices to 
show that if ߙ	 < 	ߛ,ߚ	 < ܣ are in ߜ	 , and (ߚ,ߙ)ݍ 	= ,ߛ)ݍ	 (ߚ,ߙ)ܳ then ,(ߜ 	= ,ߛ)ܳ	  .(ߜ
However, from the fact that ߚ,ߙ, ,ߛ 	ߜ ∈ (ߚ,ߙ)ݍ  andܣ	 	=  it follows that the ,(݀,ߛ)ݍ	
manner in which (ߦ, . . . , ,(ߦ  are interlaced is the same as that for the (ߚ)ߠ⃗ and ,(ߙ)ߠ⃗
sequences (ߦ, . . . , ,(ߦ ,(ߛ)ߠ⃗   It thus follows by indiscernibility that .(ߜ)ߠ⃗

(ߚ,ߙ)ܳ 	= 	 (߬(ݔ)	(ߦ, . . . , ߦ ߚ, , . . . (((ߚ)ߠ⃗	)	(ݔ)ܮߪ,((ߙ)ߠ⃗	)	(ݔ)ߪ)((ߚ, 	
= 	 (߬(ݔ)	(ߦ, . . . , ߦ ,ߚ, . . . (((ߜ)ߠ⃗	)	(ݔ)ܮߪ,((ߛ)ߠ⃗	)	(ݔ)ߪ)((ߚ, 	
=  	.(ߜ,ߛ)ܳ	

For the second proof, fix again ܳ ∶ 	 [߱ଵ]ଶ 	→ 	߱. Let ℐ	 ⊆ ࣪(߱ଵ) be the countably additive 
ideal consisting of all ܣ	 ⊆ 	߱ଵ such that ܣ	 ⊆ 	⋃ 	ழ	ఠ ܵ	 where each ܵ 	⊆ 	߱ଵ is such 
that ܳ	([ܵ]ଶ	) is finite. Assume by way of contradiction that I is a proper ideal (i.e., 
߱ଵ 	 ∉ 	ߢ By Kunen, from AD, any countably additive ideal on an ordinal .(ܫ	 <  can be ߆	
extended to a measure (i.e., countably additive ultrafilter) on ߢ. (Proof: Let μ be the Martin 
measure on the Turing degrees ࣞ	. By the coding lemma, let ߨ ∶ ℝ	 → ℐ be onto. For 
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݀	 ∈ 	ࣞ, set ߷(݀) 	= least ߙ	 < ⋃ not in 	ߢ	 		௫∈ௗ  This is well-defined since ℐ is .(ݔ)ߨ		
proper. Then ߷(μ) is a measure on ߢ giving measure 0 to all ܫ	 ∈ ℐ, where ߷(μ)(ܣ) 	=
	1	if݂	μ({݀	 ∈ ࣞ ∶ 	߷(݀) 	 ∈ ({ܣ	 	= 	1. )  

The claim of Section 2 of [73] analyzes, assuming AD, all measures ν on ߱ଵ. The result 
(somewhat restated) is that there is a function ݂ ∶ 	 [߱ଵ]	݉	 → 	߱ଵ for some ݉	 ∈ 	߱ such 
that for all ܤ	 ⊆ 	߱ଵ, (ܤ)ߥ 	= 	1 iff there is a c.u.b. ܥ	 ⊆ 	߱ଵ such that ݂(ߜଵ, . . . , (ߜ 	 ∈
ଵߜ for all	ܤ	 	<	. . . < 	 ߜ 	 ∈  By applying the finite exponent partition property on ߱ଵ .ܥ	
(with exponent 2݉) finitely many times, we get a c.u.b. ܥ	 ⊆ 	߱ଵ such that for all pairs of 
increasing sequences of length m from ܥ, ,ଵߙ) . . . ,(ߙ, ,ଵߚ) . . .  ), the valueߚ,
,ଵߙ)݂)ܲ . . . ,ଵߚ)݂,(ߙ, . . .  )) depends only on the manner of interlacing of the twoߚ,
sequences. This ܥ, however, then defines a measure one set with respect to ν on which Q 
takes only finitely many values, a contradiction.  

Corollary (2.2.29)[64]: ܲ(߱ଵ), ]࣫(߱ଵ) are consistent with ܼܨ.  

Finally, we state without proof some extensions of the above ordinal partition properties. 
For cardinals ߢ, ܲ be the statement that for any partition (ߜ,ߢ)ܲ let ,ߜ ∶ 	 ଶ[ߢ] 	→  there is	,ߜ	
an ℎ ∶ 	ߢ	 → 	ߙ such that for any ߜ	 < 	ߚ	 < ,(ߙ)at least one of ℎ ,ߢ	 ℎ(ߚ) is different from 
࣫ be the statement that for any (ߜ,ߢ)࣫ Let .(ߚ,ߙ)ܲ ∶ 	 ଶ[ߢ] 	→ 	ߢ we may write ,ߜ	 =
⋃ 	ఒழ	ఋ ,ߣ	ఒwhere for eachܣ	 	ߜ − ,ߢ)	ܳ௦	is infinite. Let also	(	ଶ[ఒܣ])࣫  be	(ߜ
as	࣫(ߜ,ߢ)	except that we write	ߢ	 = 	⋃ 	ழइ 	  to be (	ଶ[ܣ])࣫ , and we require eachܣ,
finite.  

The same argument given before shows that ∀ , ,ߢ)ܲ)	ߜ (ߜ ⇔  ,(ߜ,ߢ)࣫ Also, in .((ߜ,ߢ)࣫
we may replace “ߜ	 − 	ߜ“ is infinite” by (	ଶ[ܣ])࣫	 −  The second .”ߜ has size (	ଶ[ܣ])࣫	
proof given above for ࣫௦	(߱ଵ) when combined with the analysis of measures on ߜଶାଵଵ  
(see [74] for the case n = 1) yields:  

Theorem (2.2.30)[64]: (ܼܨ	 + 	ܦܣ	 + 	ߜ For all (ܥܦ	 < 	 ଶାଵଵߜ 	,࣫௦	(ߜଶାଵଵ   .holds (ߜ,

It is again easy to see that ܳ௦	(ߢ,  We .ߜ and infinite 	ߢ fails in ZFC for all uncountable (ߜ
believe, however, that the Steel–Van Wesep–Woodin forcing [82] for recovering ߱ଵ −DC 
can be used to show the following: (ZFC + ADL(R) ) There is a model of ܼܨ	 + 	߱ଵ −
	ܥܦ + 	ߜ∀	 < 	 ଶାଵଵߜ 	(ܳ௦	(ߜଶାଵଵ , ,ߢ)	holds). Thus, ܳ௦ (ߜ  is consistent with small (ߜ
amounts of choice.  

As ܵ. Todorˇcević pointed out to us, one can show that ܳ(߱ଵ), and hence ܳݏ	(߱ଵ), have 
consistency strength beyond ZFC. In fact, ܳ(߱ଵ) implies ߱ଵ is inaccessible to L. For if 
not, then for some ݔ	 ∈ ℝ,߱ଵ 	= 	 ߱ଵ

(௫)	. Let ܿ ∶ 	 [߱ଵ]ଶ 	→ 	߱ be the Todorˇcević partition 
defined in (ݔ)ܮ. Applying ܳ, let ܣ	 ⊆ 	߱ଵ, |ܣ| 	= 	 ߱ଵ be such that ܿ([ܣ]ଶ	) is co-infinite. 
The proof of Todorˇcević’s theorem shows that in (ܣ,ݔ)ܮ, ܿ retains the property that 
(	ଶ[ܤ])ܿ 	= 	߱ for all ܤ	 ⊆ 	߱ଵ of size ߱ଵ. This contradicts ܿ([ܣ]ଶ	) being ܿ −infinite.  

The failure of ܲ(߱ଵ) in ZFC rules out one approach for showing the “two-point” partition 
property (as in Corollary (2.2.23)) in ZFC, or even from 2ఠ 	= 	 ߱ଶ. The original question, 
stated at the end, however, remains. Note, however, that the consistency of ܼܨ	 + 	ܪܥ¬	 +
	ܳ(߱ଵ)	shows that the “ordinal version” of the two-point partition problem is consistent 
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with ܼܨ	 +  ,.Here “lines” refers to subsets of ߱ଶ satisfying the usual properties, i.e .ܪܥ¬	
two ordinals less than ߱ଶ determine a line, and two distinct lines intersect in at most one 
ordinal. 

Section (2.3): Steinhaus Tiling Problem 

By a rotation and translation of a set ܧ ⊂ ℝௗ we mean of course a set of the form 
ܧߩ + ߩ for some ݔ ∈ ܱܵ(݀) and ݔ ∈ ℝௗ It is natural to consider Steinhaus’ question 
separately for measurable and nonmeasurable sets. Both the measurable and 
nonmeasurable cases are presently open, but will be concerned only with the measurable 
case, which leads to some attractive questions in harmonic analysis. Accordingly we 
define a Steinhaus set to be a measurable set ܧ ⊂ ℝௗ with the property that every rigid 
motion ܧߩ +  contains exactly one lattice point. Croft [44] showed that a Steinhaus set ݔ
cannot be bounded and Beck [84] gave a Fourier analysis proof of this result. One of the 
present authors showed in [91] that if ܧ is a Steinhaus set (in ℝଶ), then ∫ |	ா ఈ|ݔ = ∞ for all 

ߙ > ଵ
ଷ

. The case of closed sets has also been considered; see [86] and [92]. 

For a given lattice ߉, the condition that every translate of ܧ contain exactly one point of ߉ 
is equivalent to requiring that the translates of ܧ under the elements of ߉ form a tiling. 
Note in particular that a Steinhaus set must have measure 1. More generally, one can 
consider tilings by functions instead of sets; we will say that an ܮଵ function ݂ tiles with a 
lattice ߉ if 

݂
	

௩∈௸

ݔ) − .ܽ	ݐ݊ܽݐݏ݊ܿ	ݏ݅	(ݑ ݁.  (ݔ݀)

One purpose is to solve the higher dimensional analogue of the (measurable) Steinhaus 
problem: 

Theorem (2.3.1)[83]: Suppose that ݀ ≥ 3 and that  : ℝௗ → ℝ is an ܮଵ function which tiles 
with every rotation of ℤௗ, i.e. 

 ݂
	

௩∈ℤ
ݔ) −  (ݒߩ

is constant a. e. for each ߩ ∈ ܱܵ(݀) . Then ݂ agrees a. e. with a continuous function. 

In particular this means that ݂ cannot be the indicator function of a set with positive 
measure, so we obtain 

Corollary (2.3.2)[83]: There are no Steinhaus sets in three or more dimensions. 

We have been unable to prove a similar result in ℝଶ but we will improve on the bound in 
[91] in the following way: 
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 Thus the result of [89] ቀߚ = ସ
ଷ

+  is Steinhaus then (28) holds ܧ ቁ implies that ifߝ

for all ߙ > ସ
ଶ

; this is the best that we know unconditionally. The conjectured result 

ߚ) = ଵ
ଶ

+ ߙ see e.g. [90] or [93]) on (27) would imply (28) for all ,ߝ > 1. This same range 
ߙ > 1 also arises in another way‐ see the remark after the proof of Corollary (2.3.9). 

Property (28) with ߙ = 2 can be proved by an argument similar to [91] but based on 
ଶܮ → ଵܮ ଶ instead ofܮ →  .ஶ estimates. We give this argument in Corollary (2.3.9) belowܮ
The relevant ܮଶ estimate, Corollary (2.3.8)(b), is quite simple and may be of some 
independent interest. Theorem (2.3.1) and Theorem (2.3.14) (in the case ߙ < 2) is proved. 
Both proofs use bounds for exponential sums. 

We also consider a related problem for finite sets of rotations. It is natural to ask whether 
there are sets ܧ which have the Steinhaus property relative to a large finite set of rotations 
∑ i.e., whether it is possible to have ,{ߩ} ߯ா	

௩∈ℤ ݔ) − (ݒߩ = 1 for each ݅. This question 
was answered in the affirmative in [92] for a more precise statement. We will prove an 
analogue of the Croft‐Beck unboundedness result in this context and more generally for 
images of ℤௗ under linear maps with determinant 1 rather than just rotations: 

It is based on uniform distribution modulo 1 and a theorem of Ronkin [94] and 
Berndtsson [85] on the real zeros of entire functions of exponential type in ℂௗ . 

We let ߪ௧ be the surface measure on the sphere in ℝௗ of radius ݐ, and will normalize the 
Fourier transform via መ݂(ߦ) = ∫ ݂		  ”We note also that a (Schwarz function .ݔଶగ௫⋅క݀ି݁(ݔ)
will mean a function belonging to the Schwarz space as defined (say) in [88], p. 160, 
Definition 7.1.2. 

Lemma (2.3.3)[83]: Assume ݀ ≥ 2. Let ݍ:ℝ → ℝ be a ܥஶ function supported in ቂଵ
ଶ

, 2ቃ, 

and let ܾ ∈ (0,1]. Define ܭே : ℝௗ → ℂ 

(ݔ)ேܭ = 
1

√݊ + ܾ

	



ݍ ቆ
√݊ + ܾ
ܰ

ቇߪ√ାෟ  (ݔ)

Then for large ܰ there is an estimate 

	|(ݔ)ேܭ| ≲

⎩
⎪
⎨

⎪
1		if			ଵି(|ݔ|ܰ)⎧ ≤ |ݔ| ≤

ܰ
2

൬
ܰ

|ݔ|
൰
ௗିଶ
ଶ
						if		|ݔ| ≥

ܰ
2

 

Proof. This will follow from the asymptotics for the Fourier transform of surface measure 
and a simple form of the vander Corput method for estimating exponential sums. We 
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remark that if |ݔ| ≥ ܰఈ with ߙ > 1 then the bound can be improved by using exponent 
pairs, but Lemma (2.3.3) as stated is enough for the proof of Theorem (2.3.5). 

It is well known (e.g. [95] p. 50) that ߪଵෞ(ݔ) = re൫(|ݔ|)ܤ൯ where (ݎ)ܤ =  ଶగ, with݁(ݎ)ܽ
 being a complex valued function satisfying estimates (ݎ)ܽ

|
݀ܽ
ݎ݀

|	 ≲ ିݎ
ௗିଵ
ଶ ି																																																	(5) 

Hence also ߪ௧ෝ (ݔ) = re ቀݐௗିଵ(|ݔ|ݐ)ܤቁ. Define ݐା = 	max	(ݐ, 0),and let ݎ =  In the.|ݔ|

calculation below, we use that (ݐ)ݍ = 0 when ݐ < ଵ
ଶ

; this implies that various integrals 
may be taken interchangeably over ℝ and over (0,∞) . We have 


1

√݊ + ܾ

	

ஹ

ݍ ቆ
√݊ + ܾ
ܰ

ቇ ൫√݊ + ܾ൯
ௗିଵ

݊√ݎ൫ܤ + ܾ൯ 

= 	((݊ + ܾ)ା)
ௗିଶ
ଶ

	

∈ℤ

ݍ ൭
ඥ(݊ + ܾ)ା

ܰ
൱ܽ ቀݎඥ(݊ + ܾ)ାቁ ݁ଶగඥ(ା)శ 										 

																= 	න ݕ)) + ܾ)ା)
ௗିଶ
ଶ

	

ℝ

	

௩∈ℤ

ݍ ൭
ඥ(ݕ + ܾ)ା

ܰ
൱ܽ ቀݎඥ(ݕ + ܾ)ାቁ ݁ଶగඥ(௬ା)శ݁ିଶగ௩௬݀ݕ 

		= 	න ௗିଶ(ݖܰ)
	

ℝ

	

௩∈ℤ

ଶݖଶగே௭݁ିଶగ୧୴(ேమ௭మି)݀(ܰଶ݁(ݖܰݎ)ܽ(ݖ)ݍ − ܾ)											 

= 	 ିݎ
ௗିଵ
ଶ ܰ

ௗାଵ
ଶ න߮

	

ℝ

	

௩∈ℤ

 (6)																																															ݖ݀ଶగே௭݁ିଶగ௩(ேమ௭మି)݁(ݖ)

where ߮(ݖ) = (ܰݎ)ௗିଵݖ2
షభ
మ  We used the Poisson summation formula and .(ݖ)ݍ(ݖܰݎ)ܽ	

then the change of variables ݖ	 = ඥ௬ା
ே

	. We note that the estimate (5) implies that the 

functions ߮ = ߮ே, belong to a compact subset of ܥஶ; this means that the estimates below 
are uniform in ݎ and ܰ. 

We rewrite the sum (6) isolating the ݒ = 0 term and making some algebraic 
manipulations: 

(6) = ିݎ
ௗିଵ
ଶ ܰ

݀ + 1
2

න߮
	

ℝ
ݖଶగே௭݀݁(ݖ)

+ ିݎ
ௗିଵ
ଶ ܰ

ௗାଵ
ଶ  ݁ଶగ൬௩ା

మ
ସ௩൰

	

௩∈ℤ\{}

න߮
	

ℝ
ଶగ௩ேି݁(ݖ)

మቀ௭ି 
ଶே௩ቁ

మ

 (7)																							ݖ݀
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The first term in (7) is equal to ݎ − ௗିଵ
ଶ
ܰ ௗାଵ

ଶ
ො߮(−ܰݎ), hence ≲ ݎ − ௗିଵ

ଶ
ܰ ௗାଵ

ଶ
  forି(ݎܰ)

any ݇. In particular, it is	≲ ݎ ଵ ifି(ݎܰ) ≥ 1. The terms in the sum in (7) may be 
evaluated via the asymptotics for Gaussian Fourier transforms ([88], Lemma 7.7.3); the 
 th term is equal toݒ

݁ଶగ൬௩ା
మ
ସ௩൰  ܿ

ିଵ

ୀ

ିି(ଶܰݒ)
ଵ
ଶ߮ ቀ

ݎ
ݒ2ܰ

ቁ + ࣩ ൬(ܰݒଶ)ିି
ଵ
ଶ൰																						(8) 

for any ݉; here ܿ are fixed constants and the ߮ are certain derivatives of ߮. All the 

terms in the sum over ݇ vanish if ݒ ∉ ቂ 
ସே

, 
ே
ቃ so that 

	(8) ≲ ൞
ି(ଶܰݒ)

ଵ
ଶ if	ݒ ∈ ቂ

ݎ
4ܰ

,
ݎ
ܰ
ቃ

ିି(ଶܰݒ)
ଵ
ଶ if	ݒ ∉ ቂ

ݎ
4ܰ

,
ݎ
ܰ
ቃ
 

Accordingly the sum in (7) is 

≲ card ቀℤ ∩ 	ቂ
ݎ

4ܰ
,
ݎ
ܰ
ቃቁ ି(ܰݎ)

ଵ
ଶ + ିି(ܰݎ)

ଵ
ଶ 

Taking ݉ sufficiently large we obtain 

(7) ≲ ିݎ
ௗିଵ
ଶ ேௗାଵଶ card ቀℤ ∩	 ቂ

ݎ
4ܰ

,
ݎ
ܰ
ቃቁ ି(ܰݎ)

ଵ
ଶ + ∽ଵି(ܰݎ) <

⎩
⎪
⎨

⎪
⎧
൬
ܰ
ݎ
൰
ௗିଶ
ଶ

if	ݎ ≥
ܰ
2

ଵି(ܰݎ) if	1 ≤ ݎ ≤
ܰ
2

 

The lemma follows since ܭே is the real part of the quantity (7). 

We need one more lemma, an easy consequence of the Poisson summation formula. 

Lemma (2.3.4)[83]: Let ݇ ≥ 2 be an integer, let ݍ be a fixed ܥஶ function supported in 

ቂଵ
ଶ

, 2ቃ, let ܾ ∈ [0,1) and let ℎ = ℎ(ݐ) be a function on the line satisfying the following 
estimate: 

|
݀ℎ
ݐ݀

| ≤ ܴ 

when 0 ≤ ݆ ≤ ݇ and ே
ଵ

≤ ݐ ≤ 100ܰ. Then for large ܰ 

อ
1

√݊ + ܾ

	



ݍ ቆ
√݊ + ܾ
ܰ

ቇ ℎ൫√݊ + ܾ൯ − 2නݍ
	

	
൬
ݐ
ܰ
൰ ℎ(ݐ)݀ݐอ ≲ ܴܰି(ିଵ)																		(9) 

where the implicit constant depends on ݍ only. 
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Proof. Set ݃(ݔ) = ൫√௫ା൯
√௫ା

 and (ݔ) = ݍ ቀ√௫ା
ே

ቁ . Then ܽ is supported in ݔ ≈ ܰଶ and 

derivatives of ܽ satisfy 

|
݀ܽ
ݔ݀

|	 ≲ ܰିଶ																																																																				(10) 

since the functions ݍ൫√ݔ + ܾܰ − 2൯ belong to a compact subset of ܥஶ and ܽ(ݔ) is 
obtained from ݍ൫√ݔ + ܾܰିଶ൯ by dilating by ܰଶ When ݔ ≈ ܰଶ, derivatives of ݃ satisfy 

|
݀݃
ݔ݀

|	 ≲ ܴܰି(ଵା)																																																							(11) 

when ݆ ≤ ݇. Namely, it is easy to show by induction on ݆ that the jth derivative of ݃ is a 

sum of finitely many terms each of which has the form 
()൫√௫ା൯

൫√௫ା൯
ℓ  where ℎ() = ݅th 

derivative of ℎ, with ݅ ≤ ݆ and ℓ ≥ ݆ + 1. Estimate (11) is then obvious. 

The left side of (9) is (make the change of variables ݐ = ݔ√ + ܾ) equal to 

|ܽ
	



(݊)݃(݊) −නܽ
	

	
 |ݔ݀(ݔ)݃(ݔ)

By Poisson summation this is 

อܽෞ݃ (ݒ)
	

௩ஷ

	อ 																																																																(12) 

and if we integrate by parts ݇ times and use (10) and (11), we bound the ݑth term in the 
sum (12) by 

නି|ݒ| |
	

	

݀(ܽ݃)
ݔ݀

ݔ݀| ≲ නି|ݒ| ܴ
ଶேమ


ܰି(ଵା)݀ݔ 

																								≲  ܴܰି(ିଵ)ି|ݒ|

Hence (12) ܴܰି(ିଵ) and the proof is complete. 

We prove Theorem (2.3.1). The argument is Fourier analytic and is based on the following 
observation: let ݂ be a function satisfying the hypotheses of Theorem (2.3.1). Then መ݂ 
vanishes identically on any sphere centered at the origin which contains a point of ℤௗ 
When ݀ = 2, this observation was made in [84] (and used also in [91]) and the proof 
extends immediately to higher dimensions. Since every integer is the sum of four squares 
and every integer congruent to 1 mod	8 is the sum of three squares, we see that it suffices 
to prove the following: 
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Theorem (2.3.5)[83]: Assume that ݀ ≥ 3 and let ܽ and ܾ be positive real numbers. Let  
݂:	ℝௗ → ℂ be an ܮଵ function such that መ݂ vanishes identically on the sphere centered at the 
origin with radius √ܽ݉ + ܾ for every positive integer ݉. Then ݂ is continuous. 

 

Proof : We may clearly assume that ܽ = 1 and ܾ ≤ 1. 

We let ݍ ∈ ஶ(ℝ) be supported in ቂଵܥ
ଶ

, 2ቃ and such that the functions ൛ݍଶೕൟିஶ
ஶ  form a 

partition of unity on (0,∞) ; here we have defined ݍଶೕ(ݔ) = ݍ ቀ ௫
ଶ
ቁ . We define ܭே as in 

Lemma (2.3.3) using this ݍ. 

Fix a ball ܦ with radius 1; we will show that ݂ is continuous on ܦ. Let ܦ෩ be the concentric 
ball with radius 2, and let ݂ = ߯෩݂ and ݂ = ߯ℝ\෩݂ where ߯ா is the indicator function of 
the set ܧ. By assumption, ߪ√ାෟ ∗݂ vanishes identically for any positive integer ݊ and 
therefore ܭே ∗ ݂ vanishes identically for any ܰ. 

Claim (2.3.6)[83]: Suppose ߟ > 0 is given. Then, provided ݇ is large enough, we have 

 |
	

ஹ

ଶೕܭ ∗ ݂(ݕ)| ≤  (13)																																													ߟ

for all ݕ ∈  .ܦ

Namely, by the preceding remarks it suffices to prove this with ݂ replaced by ݂. If 
ݕ| − |ݖ ≥ 1, then Lemma (2.3.3) implies that 

 |
	

ஹ

ݕ)ଶܭ − ∽|(ݖ <  ൫2|ݕ − ൯|ݖ
ିଵ

	

:ଶౠஹଶ|௬ି௭|

+  ቆ
2

ݕ| − |ݖ
ቇ

ௗିଶ
ଶ	

:ଶౠஸଶ|௬ି௭|

 

Since ݀ ≥ 3, it follows easily that for a suitable constant ܥ 

 |
	

ஹ

ݕ)ଶܭ − |(ݖ ≤  (14)																																					ܥ

for all ݕ ∈ ݖ and ܦ ∈ ℝௗ\ܦ෩. Now fix a number ܴ ≥ 2 which is large enough that 

න |
	

ℝ\ೃ
݂| <

ߟ
ܥ2

 

where ܦோ is the ball concentric with ܦ and with radius ܴ. Then, using Lemma (2.3.3) as in 
the proof of (14), if ݇ is sufficiently large then 
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 |
	

ஹ

ݕ)ଶೕܭ − |(ݖ <
ߟ

2‖݂‖ଵ
 

for all ݕ ∈ ݖ and ܦ ∈  ෩. It follows thatܦ\ோܦ

 |
	

ஹ

ଶೕܭ ∗ ݂(ݕ)| ≤ න  |
	

ஹ

	

ೃ\෩
ݕ)ଶೕܭ − ݖ݀|(ݖ)݂||(ݖ + න  |

	

ஹ

	

ℝ\ೃ
ݕ)ଶೕܭ −  ݖ݀|(ݖ)݂||(ݖ

< 	
ߟ

2‖݂‖ଵ
. ‖݂‖ଵ + ܥ ⋅

ߟ
ܥ2

=  																																						ߟ

											 

as claimed. 

We now fix ݕ ∈  and define ܦ

ℎ(ݎ) ≝ න݁ଶగ௬⋅క
	

	
ప݂(ߦ)݀ߪ(ߦ) = ௗିଵනݎ න݂

	

෩

	

|క|ୀଵ
 (ߦ)ଵߪ݀ݖଶగ(௬ି௭)⋅క݀݁(ݖ)

The estimates below will be uniform in ݕ ∈  ourier inversion, we have߁ Using .ܦ

ேܭ ∗ ݂(ݕ) 	= 	
1

√݊ + ܾ

	



ݍ ቆ
√݊ + ܾ
ܰ

ቇන݁ଶగ௬⋅క
	

	
ప݂(ߦ)݀ߪ√ା(ߦ) 

= 	
1

√݊ + ܾ

	



ݍ ቆ
√݊ + ܾ
ܰ

ቇℎ൫√݊ + ܾ൯ 

If ݕ ∈  then the second form of the definition of ℎ shows that ℎ and all its derivatives ,ܦ

are ࣩ(ܰௗିଵ) when ݎ ∈ ቂ ே
ଵ

, 100ܰቃ. Accordingly, Lemma (2.3.4) with a large value of ݇ 
implies 

නℎ
	

	
ݍ(ݐ) ൬

ݐ
ܰ
൰݀ݐ =

1
2
ேܭ ∗ ݂(ݕ) + ࣩ(ܰିଵ)																											(15) 

Now define ߰ே:ℝௗ → ℝ via 

߰ே (ߦ) = ݍ ൬
|ߦ|
ܰ
൰ 

Then, using ߁ourier inversion and the definition of ℎ, we have 

߰ே ∗ ݂(ݕ) 	= 	න ݁ଶగ௬⋅క
	

	
ݍ ൬

|ߦ|
ܰ
൰ ప݂(ߦ)݀ߦ 
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						= 	නℎ
	

	
ݍ(ݐ) ൬

ݐ
ܰ
൰݀ݐ 

On the other hand ߰ே belongs to the Schwarz space, and ∑ ߰ଶണ	
ஹ (ߦ) = 1 when |ߦ| is 

large. Accordingly, the function ߮ଶೖ defined via 

߮ଶೖෞ (ߦ) = 1 −߰ଶണ
	

ஹ

 (ߦ)

belongs to the Schwarz space. We have 

݂(ݕ) − ߮ଶೖ ∗ ݂(ݕ) 	= 	߰ଶೕ
	

ஹ

∗ ݂(ݕ) 

																																																= 	නℎ
	

	

	

ஹ

ݍ(ݐ) ൬
ݐ

2
൰  ݐ݀

																																																																			= 	
1
2
ܭଶೕ
	

ஹ

∗ ݂(ݕ) + ࣩ(2ିଵ) 

by (15). We conclude using (13) that 

| ݂(ݕ) − ߮ଶೖ ∗ ݂(ݕ)| 	≲ 	 |
	

ஹ

ଶܭ ∗ ݂(ݕ)| + 2ିଵ 

≲  ߟ2	

for any given ߟ provided ݇ is sufficiently large. Hence, on ܦ, ݂ is the uniform limit of the 
continuous functions ߮ଶೖ ∗ ݂ and therefore continuous.  

If ܧ is a nice enough set in ℝௗ then it is well known that the indicator function ߯ா cannot 

belong to the Sobolev space ܹ
భ
మ, i.e. the integral ∫ |	

ℝ  must be infinite. In ߦଶ݀|(ߦ)ாෞ߯||ߦ
fact, there is an asymptotic expression which implies in particular that 

න |
	

|క|ஹோ
߯ாෞ(ߦ)|ଶ݀ߦ ≈ ܴିଵ																																																						(16) 

as ܴ → ∞. This is often used in connection with irregularities of distribution; see e.g. [93]. 

We will not use (16), but we will need to know that the lower bound in (16) is valid 
without any regularity assumptions on the set ܧ. This is not difficult but does not seem to 
be in the literature, so we prove it in Corollary (2.3.8) below. 



59 

Let ߮ be a Schwarz class function in ℝௗ with ො߮(0) = 1;߮ will be kept fixed for the rest. 
Let ߮ఌ be the corresponding approximate identity defined by ߮ఌ(ݔ) =  . (ݔଵିߝ)ௗ߮ିߝ

Lemma (2.3.7)[83]: Suppose that ܧ is a set in ℝௗ with |ܧ| = 1 and |ܧ ∩ |ܦ > 0 for a 
certain ball ܦ with radius 1. Let ܦ෩ be the concentric ball with radius ܥௗ. Then 

| ൜ݔ ∈ :෩ܦ
1
4
≤ ߮ఌ ∗ ߯ா(ݔ) ≤

3
4
ൠ |		 ≳  ߝ

provided that ߝ is sufficiently small; the implicit constants may depend on ܧ. 

Proof. We will use the following well‐known fact: 

ఌ߮)ߘ‖ ∗ ߯ா)‖ஶ	 ≲  (17)																																																					ଵିߝ

To prove (17), let ߰ = ܥ let ,߮ߘ = ‖߰‖ଵ and define ߰ఌ(ݔ) =  . (ݔଵିߝ)ௗ߰ିߝ
Differentiation under the integral sign leads toߘ(߮ఌ ∗ ߯ா) = ଵ߰ఌିߝ ∗ ߯ா. On the other 
hand, for any ݔ ∈ ℝௗ, we have |߰ఌ ∗ ߯ா(ݔ)| ≤ ‖߰ఌ‖ଵ‖߯ா‖ஶ = ‖߰‖ଵ, which proves that 
ఌ߮)ߘ‖ ∗ ߯ா)‖ஶ ≤  .ଵ, as claimedିߝܥ

It follows by the mean value theorem that if ߮ఌ ∗ ߯ா(ݔ) = ଵ
ଶ
, then ߮ఌ ∗ ߯ா(ݔ) ∈ ቂଵ

ସ
, ଷ
ସ
ቃ for 

all ݔ ∈  be surface measure onܵௗିଵ; here we take it to be ߪ We let .(ߝଵିܥ,ݔ)ܦ
normalized so that ߪ(ܵௗିଵ) = 1. We also let ܧ be the complement of the set ܧ. 

Choose once and for all a point of density of ܧ ∩  which we may assume to be the ,ܦ
origin. Let ܣ be the set of all ω ∈ ܵௗିଵ such that the ray {߱ݎ ∶ 	1 < ݎ <  ௗ} contains aܥ
point of density of ܧ. Since ܧ has measure 1 it is clear that ܣ must have measure ≥ ଷ

ସ
 

provided ܥௗ is large enough. If ߱ ∈ ఠ then we let ܣ =  be the corresponding point of ݓఠݎ
density of ܧ In a similar way we can choose a small sphere centered at 0, ݔ =
߱:߱ߩ} ∈ ܵௗିଵ}, where ߩ < 1 in such a way that ݍఠ =  for all ܧ is a point of density of ߱ߩ
߱ ∈ ܤ where ܤ ⊂ ܵௗିଵ is a set of measure > ଷ

ସ
. 

By Egoroff’s theorem, we can find subsets ܣ∗ ⊂ ≤ with measure ܣ ଶ
ଷ
 and ܤ∗ ⊂  with ܤ

measure ≥ ଶ
ଷ
 and a number ߝ such that if ߝ <   thenߝ

ܧ| ∩ ఠ)ܦ , |(ߝ
ఠ)ܦ| , |(ߝ

< 10ି	݂ݎ	݈݈ܽ	߱ ∈  (18)																																	∗ܣ

and 

ܧ| ∩ ,ఠݍ)ܦ |(ߝ
ఠݍ)ܦ| , |(ߝ

< 10ି	݂ݎ	݈݈ܽ	߱ ∈  (19)																																∗ܤ

Note |ܣ∗ ∩ |∗ܤ ≥ ଵ
ଷ
. 
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Now fix ߝ < ߱ , letߝ ∈ ∗ܣ ∩ and consider ߮ఌ ∗ܤ ∗ ߯ா as a function on the line segment 
:ݓݐ} ߩ ≤ ݐ ≤ ≤is	ߩ ఠ}. Its value atݎ 1 − 10ି	and its value at ݎఠ is ≤ l0ିAccordingly, 
there must be a value of ݐఠ ∈ ,ߩ) ఠ) where ߮ఌݎ ∗ ߯ா(ݐఠ߱) = ଵ

ଶ
.Then by the remarks at the 

beginning of the proof, ߮ఌ ∗ ߯ா(߱ݐ) ∈ ቀଵ
ସ

, ଷ
ସ
ቁ for all ߱ ∈ ∗ܣ ∩  in the interval ݐ and all ∗ܤ

centered at ݐఠ with length ିܥଵߝ. Using polar coordinates it now follows that the set 

ቄݔ ∶ 	߮ఌ ∗ ߯ா(ݔ) ∈ 	 ቀଵ
ସ

, ଷ
ସ
ቁቅ has measure ≳  ߝ where the constant is independent of ߝ

provided ߝ is small.  

Corollary (2.3.8)[83]: If ܧ ⊂ ℝௗ  is a set with finite nonzero measure and if ߮ఌ is as in 
Lemma (2.3.7) then 

(a) ‖߮ఌ ∗ ߯ா − ߯ா‖ଶ ≥ ߝாିଵܥ
భ
మ for small ߝ. 

(b) ∫ |	
|క|ஹோ ߯ாෞ|ଶ ≥  and all sufficiently ܧ ா depending onܥ ଵ for a certain constantି(ாܴܥ)

large ܴ. In particular, ߯ா ∉ ܹ
భ
మ. 

Proof. Part (a) is immediate from Lemma (2.3.7), since ଵ
ସ
≤ ߮ఌ ∗ ߯ா(ݔ) ≤ ଷ

ସ
 implies 

|߮ఌ ∗ ߯ா(ݔ)− ߯ா(ݔ)| ≥ ଵ
ସ
. Part (b) follows easily from (a). By (a) we have 

න |
	

ℝ
߯ாෞ(ߦ)|ଶ| ො߮(ܴିଵߦ) − 1|ଶ݀ߦ ≥  (20)																															ଵି(ாܴܥ)

uniformly in ܴ, and if ߮ has been chosen to be nonnegative, then | ො߮(ܴିଵߦ) − 1| is 
bounded away from zero when |ߦ| ≥ ܴ.  

From Corollary (2.3.8) we can obtain a form of Theorem (2.3.14) where ߙ = 2: 

Corollary (2.3.9)[83]: If ܧ ⊂ ℝଶ is Steinhaus then ∫ |	ா ݔଶ݀|ݔ = ∞. 

Proof. As was done in [91], we use the elementary estimate (which is also the only known 
estimate) for the maximum gap between sums of two squares: 

(G): If ݎ ∈ [1,∞) then for a suitable fixed constant ܥଵ there is ݑ ∈ ℤଶ such that |ݎ −

||ݒ| ≤ ݎଵܥ
ିభమ. 

We also use the following form of the Poincare inequality, which is well‐known. 

(PI): Let ܳ be a square in the plane with side ݎ and let ߛ be a Jordan arc contained in ܳ, 
such that the distance between the endpoints of ߛ is ≥  Let ݂ be a function which .ݎଵିଵܥ
vanishes on ߛ. Then 

න |
	

ொ
݂|ଶ ≤ ଶනݎଶܥ |

	

ொ
 ଶ|݂ߘ
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where ܥଶ depends on ܥଵ only. 

Fix a large number ܰ and define ܣே ≝ ߦ} ∈ ℝଶ ∶ 	ܰ ≤ |ߦ| ≤ 2ܰ}. Let ܥ be a large 

enough constant and cover ܣே with nonoverlapping squares ܳ of side ିܰܥభమ. If ܧ is 
Steinhaus, ݂ = ߯ாෞ, then (G) implies that each square will satisfy the hypothesis of (PI). 
We conclude that 

න |
	

ொ
߯ாෞ|	ଶ ≲ ܰିଵන |

	

ொ
 ாෞ|ଶ߯ߘ

for each ܳ and therefore 

න |
	

ಿ
߯ாෞ|	ଶ ≲ ܰିଵන |

	

ಿ∗
 ாෞ|ଶ߯ߘ

where ܣே∗  is the union of the squares and is contained in {ߦ ∈ ℝଶ ∶ 	ܰ − 1 ≤ |ߦ| ≤ 2ܰ +
1}. Consequently 

න |
	

ಿ
ߦଶ݀|(ߦ)ாෞ߯||ߦ ≲ න |

	

ಿ∗
 ாෞ|ଶ߯ߘ

If we now sum over dyadic values of ܰ and use that no point belongs to more than two 
∗ேܣ s, we obtain 

න |
	

ℝమ
ߦଶ݀|(ߦ)ாෞ߯||ߦ ≲ න |

	

ℝమ
ߦாෞ|ଶ݀߯ߘ + 1 

Hence by Corollary (2.3.8)(b), ∫ |	
ℝమ ாෞ|ଶ߯ߘ = ∞, i.e. ∫ |	ா ݔଶ݀|ݔ = ∞ see [87].  

If 1 <  < ∞ and ߙ > 0, then we let ܹ,ఈ be the ܮ  Sobolev space with ߙ derivatives. If 

 is any set with positive measure, then ߯ா cannot belong to ܹ,భ. This is because Lemma ܧ

(2.3.7) implies that ‖߯ா − ߮ఌ ∗ ߯ா‖ ≳ ߝ
భ
, which implies that ߯ா cannot belong to any 

Besov space ߉భ


  with ݍ < ∞. Since ߉భ


  contains ܹ,భ when ݍ ≥ 	max	(, 2) it follows 

that ߯ா cannot belong to ܹ,భ. 

We note that Croft’s proof [44] that Steinhaus sets are unbounded was based on 
considering points which are density points neither of ܧ nor of its complement. Corollary 
(2.3.8) is basically a quantitative version of existence of such points. 

We now prove a further technical result, which we will need for the proof of Theorem 
(2.3.14). It says roughly that the lower bounds on ‖߮ఌ ∗ ߯ா − ߯ா‖ଶ obtained (as above) by 
considering large values are always sharp. If ܧ ⊂ ℝௗ is a set of finite measure, then we 
define 



62 

(ܧ)ఌܣ = ‖߮ఌ ∗ ߯ா − ߯ா‖ଵ 

(ܧ)ఌܤ = ‖߮ఌ ∗ ߯ா − ߯ா‖ଶଶ 

(ܧ)ఌܥ																																							 = | ൜ݔ ∈ ℝௗ: |߮ఌ ∗ ߯ா(ݔ) − ߯ா(ݔ)| ≥
1
4
ൠ | 

It is easy to see that 

	(ܧ)ఌܥ ≲ 	(ܧ)ఌܤ ≲  (21)																																															(ܧ)ఌܣ

for any ܧ and ߝ. 

Lemma (2.3.10)[83]: For any given set ܧ ⊂ ℝௗ  with |ܧ| < ∞ there is a sequence 
ߝ = 2ିೕ → 0 such that ܣఌೕ(ܧ)	 ≲  the constants here (and in (21)) depend only ; (ܧ)ఌೕܥ
on ݀ and ߮. 

Proof. We may assume that |ܧ| = 1. If ܦ = ,ݔ)ܦ  ߩ and radius ݔ is the ball with center (ߩ
then we define 

(ܦ)ߙ = 	min	(|ܧ ∩ ,|ܦ ܧ| ∩  (|ܦ

(ܦ)ߚ =  2ିଵௗ
ஶ

ୀ

 										൯ܦ൫2ߙ

Here we have used the notation ܧ = ℝௗ\ܧ and (ݔ, (ߩ = ,ݔ)ܦ  . (ߩݎ

Let ܥ be a large constant. If ܦ is any ball of radius ܥିଵߝ then we claim that the following 
are valid: 

I. ‖߮ఌ ∗ ߯ா − ߯ா‖భ(ୈ) ≲  (ܦ)ߚ

II. | ቄݔ ∈ ܦ ∶ 	 |߮ఌ ∗ ߯ா(ݔ) − ߯ா(ݔ)| ≥ ଵ
ସ
ቅ | ≥  . (ܦ)ߙ

In fact, II follows easily from (17). Namely, if ܥ is large then (17) implies via the mean 
value theorem that the difference between the maximum and minimum values of ߮ఌ ∗ ߯ா 
on the ball ܦ is less than ଵ

ଶ
. It follows that one of the following must hold 

(i) ߮ఌ ∗ (ݔ)߯ ≤ ଷ
ସ

for	all	ݔ ∈  or , ܦ

(ii)߮ఌ ∗ (ݔ)߯ ≥ ଵ
ସ

for	all	ݔ ∈  .ܦ

In case (i) we have | ቄݔ ∈ :ܦ |߮ఌ ∗ ߯ா(ݔ) − ߯ா(ݔ)| ≥ ଵ
ସ
ቅ | ≥ ܧ| ∩ |ܦ ≥  and in case (ܦ)ߙ

(ii) we have | ቄݔ ∈ :ܦ |߮ఌ ∗ ߯ா(ݔ) − ߯ா(ݔ)| ≥ ଵ
ସ
ቅ ܧ | ∩ |ܦ ≥  i.e. II holds in either,(ܦ)ߙ

case. 
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To prove I, we express ߮ as a synthesis of ܥஶ functions, say 

߮ =  ܽ

ஶ

ୀ

߮ 

where supp߮ ⊂ ,൫0ܦ ଵ2൯,߮ఫෞ(0)ି(ܥ2) = 1, ‖߮‖ଵ ≤ and ܽ ܥ ≤  2ିଵௗ. Letܥ

߮ఌ
(ݔ) =  It follows by Minkowski’s inequality and the support properties . (ݔଵିߝ)ௗ߮ିߝ

that 

‖߮ఌ
 ∗ ߯ா − ߯ா‖భ()	 ≲ ܧ| ∩ ൫2ܦ൯| 

and therefore also 

‖߮ఌ
 ∗ ߯ா − ߯ா‖భ()	 ≲  ൯ܦ൫2ߙ

since the left side is unchanged when ܧ is replaced by ܧ I now follows by summing over 
݆. 

Let (ߝ) = ∫ 	ߙ
ℝ ൫ܦ(ܥ,ݔିଵߝ)൯݀(ߝ)ܬ ,ݔ = ∫ 	ߚ

ℝ ൫ܦ(ܥ,ݔିଵߝ)൯݀ݔ. Integrating I and II over 
ℝௗ we get 

	(ߝ)ܫௗିߝ ≲ (ܧ)ఌܥ ≲ (ܧ)ఌܣ ≲  (22)																																					(ߝ)ܬௗିߝ

Let ݇ be a large positive integer and consider the sums 

ℐ =  2ିହௗℓ
ஶ

ℓୀ

 ൫2ℓି൯ܫ

ࣤ =  2ିହௗℓ
ஶ

ℓୀ

 ൫2ℓି൯ܬ

For any ݇, we have 

ࣤ 	= 	 2ିௗ(ହℓାଵ)
ஶ

ୀ

ஶ

ℓୀ

 ൫2ℓାି൯ܫ

≲	  2ିହௗ
ஶ

ୀ

(2ି)ܫ 	= ℐ	 

On the next to last line, we set ݉ = ݆ + ℓ and used that ∑ 2ିௗ(ହℓାଵ)ழ	
ାℓୀ 2ିହௗ. 
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Now observe that (ߝ)ܬ	 ≳  e.g. by (22) and Corollary (2.3.8)(a), and that ,ߝ ௗାଵ for smallߝ
(ߝ)ܫ ≲ ௗߝ 	 for any ߝ (even when ߝ > 1), e.g. by (22). It follows that ࣤ ≳ 2ି(ௗାଵ) and 
that ∑ 2ିହௗℓ	

ℓவೖమ
 ିℓ is small compared with 2ି(ௗାଵ) Accordinglyܫ

 <
	

ℓஸଶ

2ିହௗℓܬ(2ℓି) ≲	
ℓஸଶ

2ିହௗℓܫ(2ℓି) 

which implies there is a value 2ℓି ≤ √2 − ݇ with ܬ൫2ℓି൯ ≲  ൫2ℓି൯ . This and (22)ܫ
prove the lemma.  

We assume that the Schwarz function ߮ satisfies the following conditions: 

	ݑݏ ො߮ ⊂ ,(0,1)ܦ ො߮(ߦ) = ߦ	݂݅	1 ∈ ܦ ൬0,
1
2
൰																																(23) 

We set ߮(ݔ) = (ݔ)߮ − 2ௗ߮(2ݔ) ; thus ߰ is a Schwarz function with supp ߰ ⊂

ܦ\(0,2)ܦ ቀ0, ଵ
ଶ
ቁ . We define ߰ఌ(ݔ) = ∑ so that , (ݔଵିߝ)ௗ߰ିߝ ߰ଶିఌஶ

ୀ ∗ ݂ = ߮ఌ ∗ ݂ − ݂ 

for any ݂ and ߝ, as may be seen bytaking Fourier transforms. Property (23) implies that no 
point belongs to the support of ߰ఫ for more that three values of ݆, so it follows by the 
Plancherel theorem that 

‖
ஶ

ୀ

߰ଶିఌ ∗ ݂‖ଶ2 ≳ ‖݂ − ߮ఌ ∗ ݂‖ଶଶ																																						(24) 

Furthermore, 

‖߰ଶିఌ ∗ ݂‖ଵ	 ≲ ‖݂ − ߮ఌ ∗ ݂‖ଵ																																																	(25) 

Namely, the support property (23) makes it possible to represent ߰ଶି = ݃ ∗ ߜ) − ߮) 
with ‖݃‖ଵ ≤ ݆ Indeed if .(is the Dirac delta function ߜ here) ܥ ≥ 1 then ߰ଶିఫ  and ො߮  have 
disjoint support so we can take ݃ = ߰ଶି, and when ݆ = 0,߰ଶିఫ = ߰ is obtained from 
1 − ො߮	by multiplication by the ܥஶ function ݉ defined via	݉(ߦ) = −1	when	|ߦ| ≤ 1 and 
ట෩

ଵିఝ
 when |ߦ| ≥ 1. It follows using dilations that ߰ଶషೕఌ = ݃,ఌ ∗ ߜ) − ߮ఌ) where |ߦ| ≤ 1 

and when	||݃ , ଵ‖ߝ = ‖݃ ≤  .ܥ

Accordingly ‖߰ଶషೕఌ ∗ ݂‖ଵ = ‖݃,ఌ ∗ ߜ) − ߮ఌ) ∗ ݂‖ଵ = ‖݃,ఌ ∗ (݂ − ߮ఌ ∗ ݂)‖ଵ ≤ ݂‖ܥ −
߮ఌ ∗ ݂‖ଵ which is (25). 
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Corollary (2.3.11)[83]: Assume that ߮ satisfies (23) and define ߰ as above. If ܧ is a set of 
finite measure then there is a sequence ߝ → 0 such that, for each ݆, (i) ‖߰ఌೕ ∗ ߯ா‖ଵ ≲

൬	log	 ଵ
ఌೕ
൰
ଶ
‖߰ఌೕ ∗ ߯ா‖ଶ

ଶ and (ii) ‖߰ఌೕ ∗ ߯ா‖ଶ
ଶ ≳ ߝ . 

Proof Let ߝ be such that ܣఌ(ܧ) ≲ ߟ If . (ܧ)ఌܤ = 2ିߝ then ‖߰ఎೖ ∗ ߯ா‖ଵ ≲  by (ܧ)ఌܣ
(25) and ∑ ‖	

ஸ ߰ఎೖ ∗ ߯ா‖ଶ
ଶ ≳  by (24). Hence, for some ݇ we must have (ܧ)ఌܤ

	max	 ቀ(݇ + 1)ିଶ‖߰ఎೖ ∗ ߯ா‖ଵ, (݇ + 1)ିଶܤఌ(ܧ)ቁ ≲ ‖߰ఎೖ ∗ ߯ா‖ଶ
ଶ 

Also ܤఌ(ܧ) > ߝ ∼ by Corollary (2.3.8)(a), so (݇ + 1)ିଶܤఌ(ܧ) ≳ ݇) , andߟ + 1)ିଶ ≳

ቀ	log	 ଵ
ఎೖ
ቁ
ିଶ

 We conclude that 

	max	 ቆ൬	log	
1
ߟ
൰
ିଶ

‖߰ఎೖ ∗ ߯ா‖ଵ,ߟቇ
	
≲ ‖߰ఎೖ ∗ ߯ா‖ଶ

ଶ 

i.e. that there are arbitrarily small numbers ߝ such that (i) and (ii) hold.  

The following fact will be used repeatedly below, so we formulate it as a lemma. 

Lemma (2.3.12)[83]: If ܰ ≥ 1 then for any ߝ > 0 and ݎ > 0 

 (1 + ݎ|ܰ − ଵି(||ݒ|
	

௩∈ℤమ
≤ ఌܰఌܥ 	max	 ቀ

ݎ
ܰ

, 1ቁ 

Proof Because of the rapid decay of (1 + ݐ ଵ whenି(ݐܰ ≥ ଵ
ே

, it is easy to show that it 
suffices to prove the following estimate for all ݎ: 

݊ ൬ݎ +
1
ܰ
൰ − (ݎ)݊ ≲ ܰఌ 	max	 ቀ

ݎ
ܰ

, 1ቁ																																(26) 

where ݊(ݎ) is as in (27). To prove (26), consider two cases. 

(i) ݎ ≤ ܰଷ The number of lattice points on a circle is bounded by any given power of the 

radius, hence a circle of radius ߩ ∈ ቀݎ, ݎ + ଵ
ே
ቁ contains ≲ ݎ

ഄ
య ≲ ܰఌ  lattice points. There 

are ≲ max	(
ே

, 1) values of ߩ for which it contains some lattice point and (26) follows. 

(ii) ݎ ≥ ܰଷ. In this case we use (l) with the classical exponent ߚ = ଶ
ଷ
.  Thus ݊ ቀݎ + ଵ

ே
ቁ −

	(ݎ)݊ ≲

ே

+ ݎ
మ
య ≈ 

ே
.  

The proof of Theorem (2.3.14) will be like the proof of Theorem (2.3.1) insofar as it is 
also based on using an appropriate “fundamental solution” However, we must replace the 
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kernel in Lemma (2.3.3) by an analogous one involving a sum only over circles which 
contain lattice points. We will use the obvious choice where one counts each circle 
according to the number of lattice points it contains. 

Let  be a nonnegative ܥஶ function of one variable supported in ݐ ≤ 1 and with (ݐ) = 1 
when ݐ ≤ ଵ

ଶ
. Define 

(ݔ)ேܭ = 
1

|ݒ|

	

௩∈ℤ	మ,௩ஷ

௩|ෞ|ߪ (ݎ) ൬
|ݒ|
ܰ
൰ 

where ݎ =  .|ݔ|

We will use complex notation when convenient and define operators ܶ on ܮଶ(ℝଶ) 

via ݂ܶ(ݔ) = ∫ ݂		 ൫ݔ + ఏ൯݁ߩ ௗఏ
ଶగ

, i.e. ݂ܶ is the circular mean over the circle of radius ߩ. 

Lemma (2.3.13)[83]: Let ܧ ⊂ ℝଶ be a Steinhaus set and let ߰ be a Schwarz function in 
ℝଶ with ߰(0) = 0. Let ݂ = ߯ா. Then 

߰ ∗ (ݔ)݂ = −  |ܶ௩|

	

௩∈ℤ	మ,௩ஷ

(߰ ∗ ݂) 

Proof The Steinhaus property gives after convolving with ߰ that 

߰ ∗ (ݔ)݂ = −  ߰
	

௩∈ℤ	మ,௩ஷ

∗ ݔ)݂ + ݁ఏ	ݒ) 

for all ߠ and ݔ. The lemma follows by integrating with respect to ߠ. 

Theorem (2.3.14)[83]: Assume a bound of the form 

(ݎ)݊ = ଶݎߨ + ࣩ൫ݎఉ൯																																																		(27) 

where (ݎ) = card൫(ℤଶ\{0}) ∩ ,0)ܦ ܧ ൯ . Then any Steinhaus set(ݎ ⊂ ℝଶ must satisfy 

න |
	

ா
ݔఈ݀|ݔ = ∞																																																(28) 

for all ߙ > ఉ
ଵିఉ

. 

Proof. We let ߚ be such that (27) is true and assume toward a contradiction that ܧ is 

Steinhaus and ∫ |	ா ఈ|ݔ < ∞ for some ߙ > ఉ
ଵିఉ

. 
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Fix a Schwarz function ߮ satisfying (23) and set (ݔ) = (ݔ)߮ −  Thus supp . (ݔ2)4߮
߰ ⊂ ܦ\(0,2)ܦ ቀ0, ଵ

ଶ
ቁ . Let ߰ோ(ݔ) = ܴଶ߰(ܴݔ) . Also fix a function  as in Lemma 

(2.3.22). Applying Lemma (2.3.13) with ߰ோ, we get for any ܯ 

߰ோ ∗ ߯ா = ெ(߰ோܣ− ∗ ߯ா) − ெ(߰ோܤ ∗ ߯ா)																								(29) 

where the operators ܣெ and ܤெ are defined by 

ெܣ = 
	

௩ஷ

൬
|ݒ|
ܯ
൰ |ܶ௩|														 

ெܤ = ൭1 −  ൬
|ݒ|
ܯ
൰൱

	

௩
|ܶ௩| 

Note that ܣெ and ܤெ are convolution operators and the convolution kernel of ܣெ is 
supported in |ݔ| ≤  .ܯ

The strategy of the proof is to show that the right side of (29) is too small to be equal to 
the left side, and we start by making appropriate ܮଶ → ଵܮ ଶ andܮ →  ஶ estimates for theܮ
operators ܣெ and ܤெ respectively. We state the estimates in a “localized” form for the 
sake of the application below. 

Claim (2.3.15)[83]: Assume that ܯ < ܴ and that supp( ො݃) ⊂ ܦ\(0,2ܴ)ܦ ቀ0, ோ
ଶ
ቁ . Then, 

given (27), there is an estimate 

	ெ݃‖మ൫(,ெ)൯ܣ‖ ≲ మ൫(,ଵ,ெ)൯‖݃‖(ଵିఉ)ିܴܯ + ܴିଵ‖݃‖ଶ 

for any ܽ ∈ ℝଶ 

Namely, let ܬோ and ܬோ be the annuli ቄߦ ∶ 	ோ
ଷ
≤ |ߦ| ≤ 3ܴቅ and ቄߦ ∶ 	ோ

ସ
≤ |ߦ| ≤ 4ܴቅ 

respectively. The estimate 

	ݑݏ ො݃ ⊂ ோܬ ⇒ 	ெ݃‖ଶܣ‖ ≲  (30)																													ଶ‖݃‖(ଵିఉ)ିܴܯ

is immediate from Lemma (2.3.22): ܣெ is a convolution operator, and the corresponding 

multiplier is the function ܭெ, whose ܮஶ norm on ܦ\(0,4ܴ)ܦ ቀ0, ோ
ସ
ቁ is ≲  by (ଵିఉ)ିܴܯ

Lemma (2.3.22). 

The localized form follows in a standard way using that the convolution kernel of ܣெ is 
supported in |ݔ| ≤ ܽ we may suppose :ܯ = 0, and we let ߩ ∈ ߩ ஶ be such thatܥ = 1 on 
(ݔ)ெߩ Define . (0,10)ܦ =  Let ߯ be a Schwarz function whose Fourier . (ݔଵିܯ)ߩ
transform is supported in ܬଵ and equal to 1 on ܬଵ and define ߯ோ(ݔ) = ܴଶ߯(ܴݔ) . 
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The support property of the convolution kernel implies that ܣெ݃(ݔ) =  when (ݔ)(ெߩ݃)ெܣ
∈  Accordingly . (ܯ,0)ܦ

ெ݃‖మ൫(,ெ)൯ܣ‖ 	≤ 	 ெ൫߯ோܣ)‖ ∗ ൯‖ଶ(ெߩ݃) + ெߩெ൫݃ܣ‖ − ߯ோ ∗  ൯‖ଶ(ெߩ݃)

≲ ெ‖ଶߩ݃‖(ଵିఉ)ିܴܯ	 + ெߩ݃‖ଶܯ − ߯ோ ∗  (31)																ଶ‖(ெߩ݃)

where we used (30), that ‖߯ோ‖ଵ = ‖߯‖ଵ ≤ ∽ெ݂‖ଶܣ‖ and the trivial estimate ,ܥ <
 in the (probability measures (ଶܯ)ࣩ ெ is convolution with a sum ofܣ since) ଶ‖݂‖ଶܯ
second term. On taking Fourier transforms we see that ‖݃ߩெ − ߯ோ ∗ ଶ‖(ெߩ݃) =
‖(1 − ߯ோෞ)ߩெෞ ∗ ො݃‖ଶ∼ < ெෞߩ‖ ∗ ො݃‖మ൫ℝమ\బೃ൯ ≲  ଵଶ‖݃‖ଶ, where the last inequalityି(ܴܯ)

follows since ො݃ is supported in ோ
ଶ
≤ |ߦ| ≤ 2ܴ and |ߩெෞ 	|(ߟ) ≲  ଶ. Claimି(|ߟ|ܯ)ଶܯ

(2.3.15) follows by substituting this bound into (31). 

Claim (2.3.16)[83]: If ܯ < ܴ, supp ො݃ ⊂ ߝ then for any (0,2ܴ)ܦ > 0, 

	|(ݔ)݃ܯܤ| ≲ ܴఌ
ܴ
ܯ
‖݃‖

భ൬ቀ௫,ெଷቁ

൰

+ ܴିଵ‖݃‖ଵ 

For this, we fix a Schwarz function ߩ such that ߩො = 1 on (0,2)ܦ and define ߩோ(ݔ) =
ܴଶ(ݔܴ)ߩ . Then ݃ = ோߩ ∗ ݃, so 

	ெ݃ܤ = 	൭1 −  ൬
|ݒ|
ܯ
൰൱

	

௩
|ܶ௩|(ߩோ ∗ ݃)																						 

= 	൭1 −  ൬
|ݒ|
ܯ
൰൱

	

௩

ோߩଵ൫ି|ݒ| ∗ ௩|൯|ߪ ∗ ݃																																		(32) 

where ߪ|௩| is arclength measure on the circle centered at 0 with radius |ݒ|. We let ܪ be the 

convolution kernel in (32), i.e. (ݔ)ܪ = ∑ ൬1 −  ቀ|௩|
ெ
ቁ൰	

௩ ோߩଵି|ݒ| ∗  . (ݔ)|௩|ߪ

Uniformly in ݒ we have 

ோߩ| ∗ 	|(ݔ)|௩|ߪ 	≲ ܴ൫1 + ܴห|ݒ| − ห൯|ݔ|
ିଵଵ

																																	(33) 

This is well known and is easy to prove using that ߪ|ఔ|(ܦ(ܽ, ((ݐ ≲  a and ,ߥ	uniformly in ݐ	

(ݐ) and use that ߥ We now sum over .ݐ 	= 	1 when ݐ	 ≤ ଵ
ଶ
. Thus 

	|(ݕ)ܪ| ≲ 
ܴ

|ݒ|

	

|௩|ஹெଶ

(1 + |ݒ||ܴ −  ଵଵି(||ݕ|

It is clear that 
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|௩|ஹெଶ

||௩|ି|௬||வ |ఔ|
ଵ

ܴ
|ݒ|

	(1 + |ݒ||ܴ − ଵଵି(||ݕ| ≲ 
ܴ

|ݒ|

	

|௩|ஹெଶ

ଵଵି(|ݒ|ܴ) ≲ ܴିଵ 

Accordingly, 

|(ݕ)ܪ| ≲ ܴିଵ +  	
|௩|ஹெଶ

ห|௩|ି|௬|หவ |ఔ|
ଵ

ܴ
|ݒ| 	൫1 + ܴห|ݒ| − ห൯|ݕ|

ିଵ
ห|ݒ| − ห|ݕ| <

|ߥ|
100

															(34) 

If |ݕ| ≤ ெ
ଷ

 then the sum in (34) is empty, so 

|(ݕ)ܪ| ≲ ܴିଵ																																																			(35) 

If |ݕ| > ெ
ଷ

, then we observe that |ݒ| ≥ |௬|
ଶ

 for all ݑ in the sum (34), and then apply Lemma 
(2.3.12) with ݎ = ܰ and |ݕ| = ܴ obtaining 

|(ݕ)ܪ| ≲ ܴିଵ +
ܴ

|ݕ|
(1 + |ݒ||ܴ − ଵି(||ݕ|
	

௩

 

≲ 	
ܴ

|ݕ| ⋅ ܴ
ఌ 	max	 ቆ

|ݕ|
ܴ

, 1ቇ																 

≲ 	ܴఌ
ܴ
ܯ
																																																																																								(36) 

Claim (2.3.16) follows from formula (32) and the estimates (35), (36) for the convolution 
kernel ܪ. 

We now continue with the main proof. By Corollary (2.3.11), we can find arbitrarily large 
numbers ܴ such that ‖߰ோ ∗ ߯ா‖ଶଶ ≥ (	log	ܴ)ିଶ‖߰ோ ∗ ߯ா‖ଵ and also ‖߰ோ ∗ ߯ா‖ଶ	ଶ ≳ ܴିଵ In 
the subsequent argument ܴ is taken to be a sufficiently large number with these properties. 
We fix ߛ with 1 − ߚ > ߛ > ଵ

ଵାఈ
, and define 

ܯ = ܴఊ																																																																							(37) 

To ease the notation we also define 

݃ = ߰ோ ∗ ߯ா 

Note that supp( ො݃) ⊂ ܦ\(0,2ܴ)ܦ ቀ0, ோ
ଶ
ቁ ; this fact will be used without mention below. 
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We subdivide ℝଶ in squares ܳ of side 10ିܯ taking one of them to be centered at the 
origin. We will denote the square centered at the origin by ܳ. Let ෨ܳ be the disc concentric 
withܳwith radius ଵ

ଵ
	and	ܯ ෨ܳ 	the concentric disc with radius ܯ. Define a square ܳ to be 

good if ||݃‖మ(ொ)
ଶ ≥ (	log	ܴ)ିସ‖݃‖భ(ொ෨)	and bad otherwise. The reason for making this 

definition is as follows: 

Claim (2.3.17)[83]: If ܳ is a good square and ℎ : ܳ → ℂ is a function on ܳ such that 
‖ℎ‖ஶ ≤ ଵ

ସ
(	log	ܴ)ିସ then 

‖݃ + ℎ‖మ(ொ)
ଶ ≳ (	log	ܴ)ିସ‖݃‖

మ൫ொ෨෨൯
ଶ	  

Namely, let ܻ = ݕ} ∈ ܳ: |(ݕ)݃| ≥ 2‖ℎ‖ஶ}. Then 

‖݃‖మ(ொ\)
ଶ 	≤ 	 ‖݃‖ಮ(ொ\)‖݃‖భ(ொ\) 

											≤ 	2‖ℎ‖ஶ‖݃‖భ(ொ) 

																										≤ 	2(	log	ܴ)ସ‖ℎ‖ஶ‖݃‖మ(ொ)
ଶ  

≤ 	
1
2
‖݃‖మ(ொ)

ଶ  

so that ‖݃‖మ()
ଶ ≥ ଵ

ଶ
‖݃‖మ(ொ)

ଶ . If ݕ ∈ ܻ, then |݃(ݕ) + ℎ(ݕ)| ≥ ଵ
ଶ

 so we have ,|(ݕ)݃|

|݃ + ℎ‖మ()
ଶ ≥ ଵ

ସ
‖݃‖మ()

ଶ ≥ ଵ
଼
‖݃‖మ(ொ)

ଶ . Claim (2.3.17) now follows since ‖݃‖మ(ொ)
ଶ ≥

(	log	ܴ)ିସ‖݃‖భ൫ொ෨෨൯ ≳ (	log	ܴ)ିସ‖݃‖మ൫ொ෨෨൯
ଶ . 

Next we have 

Claim (2.3.18)[83]: There is a good square ܳ with the following two additional properties: 

‖݃‖భ(ொ෨) ≲ (	log	ܴ)ଵିܯఈ																																												(38) 

‖݃‖భ(ொ) ≥ ܴିହ																																																															(39) 

For this, we let ࣡ and ܤ be the unions of the good and bad squares respectively and let ܤ෨෨  
be the union of the ෨ܳ෨ ’s corresponding to bad ܳ’s. We note that any given point ݕ belongs 
to ෨ܳ෨ for only a bounded number of ܳ’s. We have 

‖݃‖భ(࣡) + ‖݃‖భ൫෨෨൯ ≲ ‖݃‖ଵ 

≲	 (	log	ܴ)ଶ‖݃‖ଶଶ 

= 	 (	log	ܴ)ଶ‖݃‖మ(࣡)
ଶ + (	log	ܴ)ଶ‖݃‖మ()

ଶ  
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≲ 	 (	log	ܴ)ଶ‖݃‖భ(࣡) + (	log	ܴ)ିଶ‖݃‖భ൫෨෨൯ 

so that ‖݃‖భ൫෨෨൯ ≲ (	log	ܴ)ଶ‖݃‖భ(࣡) and therefore 

‖݃‖ଵ ≲ (	log	ܴ)ଶ‖݃‖భ(࣡)																																											(40) 

Next define ࣡∗ to be the union of all good squares ܳ which have property (38). We will 
show that 

‖݃‖భ(࣡∗) ≳ (	log	ܴ)ିଶ‖݃‖ଵ																																											(41) 

Namely, our decay assumption on the set ܧ implies that 

‖݃‖భ(ொబ)	 ≲  (42)																																																				ఈିܯ

Now consider two cases: 

(ii)  	‖݃‖భ(ொబ) ≤
ଵ
ଶ

(	log	ܴ)ଵିܯఈ													 

(ii)  	‖݃‖భ(ொబ) > ଵ
ଶ

(	log	ܴ)ଵିܯఈ 

In case (i), (42) implies that all squares ܳ satisfy (38) so (41) follows tautologically from 
(40). In case (ii), (42) implies that 

ฮ݃‖భ(ொబ) ≲ (	log	ܴ)ିଵฮ݃‖భ(ொబ)																														(43) 

If ܳ were bad, then (43) would imply that ‖݃‖భ(࣡) ≲ (	log	ܴ)ିଵ‖݃‖ଵ, contradicting 
(40) if ܴ	is large enough So ܳ must good, and therefore contained in ࣡∗ by (42). 

Accordingly ||݃‖భ(࣡∗) ≥ ‖݃‖భ(ொబ)∼ > (	୪୭	ோ)భబబ

ଵା(	୪୭	ோ)భబబ ||݃||ଵ,where the last inequality follows 

from (43). This is stronger than (41), which has therefore been proved in both cases (i) and 
(ii). 

Now let ܺ be the union of all squares ܳ such that ‖݃‖భ(ொ) < ܴିହ Then, taking (say) 
ܶ = ܴଵ, 

‖݃‖భ() 	≤ 	 ‖݃‖భ൫∩(,்)൯ + ‖݃‖భ(∩(,்)) 

≲ 	ܴିହ ൬
ܶ
ܴ
൰
ଶ

+ ܶିఈ											 

≤ 	ܴିଵ																																 

≲ ܴିଽ‖݃‖ଵ																							 

This and (41) imply that ࣡∗ cannot be contained in ܺ, which gives Claim (2.3.18). 
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Let ܳ be the square in Claim (2.3.18). If ݔ ∈ ܳ, then ܦ ቀݔ, ெ
ଷ
ቁ

 is disjoint from ෨ܳ. 

Accordingly, by Claim (2.3.16) and then (38) and (37), for any ߝ > 0 

ெ(݃)‖ಮ(ொ)ܤ‖ 	≤ 	ܴఌ
ܴ
ܯ
‖݃‖భቀொቁ + ܴିଵ‖݃‖ଵ																				 

≲ 	ܴଵିఊାఌ	(	log	ܴ)ଵିܯఈ 

= 	 (	log	ܴ)ଵܴଵିఊିఊఈାఌ 

If ߝ is small, then the exponent of ܴ here is negative. It follows by Claim (2.3.17) that 

ฮ݃ + ெ(݃)‖మ(ொ)ܤ
ଶ ≳ (	log	ܴ)ିସฮ݃‖మ൫ொ෨෨൯

ଶ 																										(44) 

On the other hand, 

‖݃ + ெ(݃)‖మ(ொ)ܤ
ଶ 	= 	 ‖ − ெ(݃)‖మ(ொ)ܣ

ଶ 																													 

≲ 	൫ିܴܯ(ଵିఉ)൯
ଶ
‖݃‖మ(ொ)

ଶ + ܴିଶ 

≲ 	ܴିఎ‖݃‖మ൫ொ෨෨൯
ଶ + ܴିଶ																																																											(45) 

where ߟ = 2(1 − ߚ − (ߛ > 0. We used Claim (2.3.15) and (37). Combining (44) and (45) 
we get 

(	log	ܴ)ିସ‖݃‖మ൫ொ෨෨൯
ଶ ≲ ܴିఎ‖݃‖మ൫ொ෨෨൯

ଶ + ܴିଶ 

and therefore ‖݃‖మ(ொ)
ଶ ≲ ܴିଵଽଽ Since ܳ is good it follows that ‖݃‖భ(ொ) ≤ ܴିଵଽ଼, which 

contradicts (39) so the proof of Theorem (2.3.14) is complete.  

Before proving Theorem (2.3.19) we will make some further remarks about the question. 

If ߉ ⊂ ℝௗ is a lattice then let ߉∗ = ߦ} ∈ ℝௗ ∶ ߦ	 ⋅ ݔ ∈ ℤ∀ݔ ∈  be the dual lattice. We {߉
note that a function ݂ tiles with the lattice ߉ precisely when ݂ vanishes on {0}\∗߉. 

The Steinhaus problem asks for a subset of ℝௗ that tiles with all rotations of the lattice ℤௗ 
It seems reasonable instead to ask for a set ܧ ⊂ ℝௗ that tiles with a given finite collection 
of lattices, say ߉ଵ, . . . , ߉  or lattices with volume 1 and with no nontrivial relation of߁ .
the type 

ଵߣ + ⋯+ ߣ = 0, ߣ ∈  ∗߉

it is shown in [92] that measurable such sets exist. The existence question is of course very 
easy if instead of trying to tile with a subset of ℝௗ we try to find a function ݂ ∈  ଵ(ℝௗ)ܮ
that tiles simultaneously with a given collection of lattices, that is 
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݂
	

ఒ∈௸

ݔ) − (ߣ = ,௸ݐݏ݊ܥ .a	ݎ݂ e.		ݔ ∈ ℝௗ ,																												(46) 

and for all lattices ߉ in the collection under consideration. Indeed, say we are dealing with 
the finite collection ߉ଵ, . . . , ߉, assume that ܦ is a fundamental parallelepiped for the 
lattice ߉, and write 

݂ = ߯భ ∗ ⋯ ∗ ߯ .																																																	(47) 

Since tiling with a lattice ߉ is equivalent with the vanishing of the Fourier Transform on 
 ݂ , it follows that the function߉ and since it is clear that ߯ tiles with the lattice ,{0}\∗߉
defined in (47) tiles with all ߉ , ݅ = 1, . . . , ݊. 

The problem becomes nontrivial if we try to find such a function ݂ that tiles with ߉ଵ, . . . , 
  have volume 1, no߉  which has small support. It is easy to see that, whenever the߉
matter what the choice of the ܦ, the function ݂ defined in (47) necessarily has support of 
diameter at least ݊ܥ, where ܥ depends only on the dimension. 

Theorem (2.3.19) gives a lower bound for the diameter of the support of a function 
݂ ∈  ଵ(ℝௗ) that tiles with a given finite number of trivially intersecting unimodularܮ
lattices. 

Theorem (2.3.19)[83]: There is a constant ܤ =  making the following true. Suppose (݀)ܤ
that the lattices ߉ , ݅ = 1, . . . , ݊, have volume 1 and that 

߉ ∩ ߉ = {0}, ݅	݈݈ܽ	ݎ݂ ≠ ݆																															(48) 

Let ݂ ∈ , and assume that መ݂(0)߉ ଵ(ℝௗ) be a function which tiles with all theܮ ≠ 0. Then 

the diameter of the support of ݂ is at least ݊ܤ
భ
. 

Proof. All constants below may depend only on the dimension ݀. We note that ߉ଵ ∩ ଶ߉ =
{0} implies that the lattice ߉ଵ∗  is uniformly distributed mod	߉ଶ∗ . This can be proved using 
Weyl’s lemma‐see for example [92]. 

We shall make use of a theorem of Ronkin [94] and Berndtsson [85] which concerns the 
zero set on the real plane of an entire function of several complex variables which is of 
exponential type. We formulate it as a lemma: 

Lemma (2.3.20)[83]: ([94],[85]) Assume that ܧ ⊂ ℝௗ  is a countable set with any two 
points having distance at least ℎ and let 

݀ா = lim
→ஶ

	sup	
ܧ| ∩ ,0)ܦ |(ݎ

,0)ܦ| |(ݎ
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be its “upper density” Assume that ݃ : ℂௗ → ℂ is an entire function vanishing on ܧ which 
is of exponential type 

ߪ < ℎௗିଵ݀ா(݀)ܣ . 

Then ݃ is identically 0. (Here ܣ(݀) is an explicit function of the dimension d) 

When ݀ = 1 this is classical and follows from Jensen’s formula. 

Assume that  : ℝௗ → ℂ is as in Theorem (2.3.19). Then መ݂ vanishes on (∪  ∗)\{0}. Write߉

ߙ =  ݂	ݑݏ	݉ܽ݅݀	

We may assume that supp ݂ is contained in a disc of radius ≲  ,centered at the origin ߙ
since the assumptions are unaffected by a translation of coordinates. Then መ݂ can be 
extended to ℂௗ as an entire function of exponential type ߙܥ, in fact 

| መ݂(ݔ + |(ݕ݅ ≤ ݔ	ݎ݂,|݁ఈ|௬ܥ + ݕ݅ ∈ ℂௗ. 

Furthermore, መ݂ vanishes on 

ܼ = ራ߉∗\{0}


ୀଵ

. 

Observe that, since every lattice ߉∗ is uniformly distributed mod every ߉∗, ݆ ≠ ݅, the 
density of points in each ߉∗ which are also in some ߉∗ is 0 and therefore the density of the 
set ܼ is ݊. 

In order to use Lemma (2.3.20) we have to select a large (in terms of upper density), well‐
separated subset of ܼ. Notice first that we can assume that for each ݅ all points of ߉∗ are at 

least distance ݊ି
భ
 apart. For if ݒ ,ݑ ∈ ݑ| ∗ have߉ − |ݒ < ݊ି

భ
 then for a suitable constant 

ܿ, the one‐dimensional version of Lemma (2.3.20) implies that the function መ݂ on the 

subs∧pace E= ℂ(ݑ − ≥ cannot be of exponential type (ݒ ܿ݊
భ
. Note also that the 

assumption ݂(0) ≠ 0 precludes ݂ vanishing identically on this subspace. But መ݂ restricted 
to ܧ is the Fourier transform of ா݂ : ܧ → ℂ defined by ா݂(ݔ) = ∫ ݂	

௫ାா఼  is ୄܧ here) ݕ݀(ݕ)

the orthogonal complement of ܧ ∩ ℝ in ℝ). Hence ߙ ≥ diam supp f≥ ݊ܥ
భ
, which is 

what we want to conclude about ߙ. 

Suppose now that we want to extract a subset of ܼ whose elements are at least ℎ distance 
apart, for some ℎ > 0 to be determined later. We shall say that point ݔ of lattice ߉∗ is 
killed by point ݕ of lattice ߉∗ if |ݔ − |ݕ < ℎ. Then, we define the subset ܼᇱ of ܼ as those 
points of ܼ which are not killed by any point of the other lattices. This set clearly has all its 
points at distance at least ℎ apart, provided that 
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ℎ ≤
1
2

min
௨,௩∈ஃ

∗ 	 ݑ|	 − |ݒ ≤ ି݊ܥ
ଵ
ௗ,																															(49) 

so that no point of a lattice may kill a point of the same lattice. Let us see how many points 
of ߉ଶ∗  are killed by some point of ߉ଵ∗ . We use the uniform distribution of ߉ଶ∗  mod ߉ଵ∗ . 

Fix a fundamental parallelepiped ܦଵ of ߉ଵ∗ . It is clear that only a fraction ߩ(ℎ) ≤  ℎௗ ofܥ
ଵܦ = ℝௗ/߉ଵ∗  has distance from 0 that is less than ℎ (this distance is measured on the torus 
∗ଶ߉ ଵ). Asܦ  is uniformly distributed mod	߉ଵ∗  the subset of points of ߉ଶ∗  which are killed by 
some point of ߉ଵ∗  has density (ℎ) . Hence the density of those points of ߉ଶ∗  that are killed 
by any other lattice is at most (݊ − (ℎ)ߩ(1 ≤  ℎௗ݊. We deduce that the density of ܼᇱ is atܥ

least (1 − ℎௗ)݊. We now choose ℎ݊ܥ = ܿ݊ି
భ
, for a sufficiently small constant ܿ, to 

ensure that the density of ܼᇱ is at least ݊ܥ. Applying Lemma (2.3.20) with ݃ = መ݂ and 
ܧ = ܼᇱ we get 

ߙ ≥ ℎௗିଵ݊ܣܥ ≥ ݊ܥ
ଵ
ௗ. 

We first let ݍ be a nonnegative ܥஶ function supported in the interval ቂଵ
ଶ

, 2ቃ and 

define a kernel ܬே analogously to ܭே replacing  by ݍ: 

(ݔ)ேܬ = 
1

|ݒ|

	

௩∈ℤమ
௩|ෞ|ߪ ݍ(ݎ) ൬

|ݒ|
ܰ
൰																																															(50) 

Lemma (2.3.21)[83]: With notation as above there is a Schwarz function ߰, such that ߰ 
vanishes in a neighborhood of the origin, and making the following true. Let ݎ =  If .|ݔ|
(say) ݎ ≥ ଵ

ଶ
 and ܰ ≥ ଵ

ଶ
 then 

(ݔ)ேܬ = ିݎܰ
ଵ
ଶ  |

	

௩∈ℤ	మ,௩ஷ

ି|ݒ
ଵ
ଶ߰൫ܰ(|ݒ| − ൯(ݎ + ࣩ ൬ܰି(ଵିఌ)ିݎଵ + ܰ

ଵ
ଶିݎ

ଷ
ଶ൰															(51) 

for any ߝ > 0. 

Proof : First let  : ℝ → ℝ be any ܥஶ function supported in the interval ቂଵ
ଶ

, 2ቃ. Define 

(ߤ,ܶ)ܫ = න න ߮
ஶ



ଶగ


 ߠ݀ݎ݀ఏ)	ୡ୭ୱ	ଶగ்(ఓିି݁(ݎ)

We will show that there is a Schwarz function ߯ such that ߯̂ vanishes in a neighborhood of 
0 and such that, for ߤ > 0 and ܶ ≥ ଵ

ଶ
, 

(ߤ,ܶ)ܫ = ܶି
ଵ
ଶ߯൫ܶ(ߤ − 1)൯ + ࣩ ൬ܶି

ଷ
ଶ(1 + ߤ|ܶ − 1|)ିଵ൰																							(52) 
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To prove (52), note first of all that ො߮  is an entire function and satisfies 

| ො߮(ݔ + 	|(ݕ݅ ≲ (1 +  ଶ݁గ௬ି(|ݔ|

when ݕ < 0. Making a change of variable and using contour integration, 

(ߤ,ܶ)ܫ 	= 	2න ො߮
గ


൫ܶ(ߤ − 	cos	ߠ)൯݀ߠ 

																= 	2න ො߮
ଵ

ିଵ
൫ܶ(ߤ − ൯(ݏ

ݏ݀
√1 − ଶݏ

 

= ܫ	 +  																																ܫܫ

where 

ܫ = 2݅ න ො߮
ஶ

௧ୀ
൫ܶ(ߤ + 1 − ൯(ݐ݅

ݐ݀

ඥ1 − (−1 + ଶ(ݐ݅
 

ܫܫ = −2݅ න ො߮
ஶ

௧ୀ
൫ܶ(ߤ − 1 − ൯(ݐ݅

ݐ݀

ඥ1 − (1 + ଶ(ݐ݅
 

Using that ߤ > 0, we have 

|ܫ| 	≤ 	2න |
ஶ

௧ୀ
ො߮൫ܶ(ߤ + 1 − |൯(ݐ݅

ݐ݀
ݐ√

 

≤ 	൫1 + ܶ(1 + ൯(ߤ
ିଶ

න ݁ିగ்௧
ஶ

௧ୀ

ݐ݀
ݐ√

 

≲	ܶି
ଵ
ଶ൫1 + ܶ(1 + ൯(ߤ

ିଶ
≲ ܶି

ଷ
ଶ(1 + ߤ|ܶ − 1|)ିଵ 

On the other hand, 

	ܫܫ =
−2݅
√−݅

න ො߮
ஶ

௧ୀ
൫ܶ(ߤ − 1 − ൯(ݐ݅

ݐ݀
ݐ2√ + ଶݐ݅

 

= 	
−2݅
√−݅

න ො߮
ஶ

௧ୀ
൫ܶ(ߤ − 1 − ൯(ݐ݅

ݐ݀
ݐ2√

+ ࣩ ቆන |
ஶ

௧ୀ
ො߮൫ܶ(ߤ − 1 −  (53)																		ቇݐ݀ݐ√|൯(ݐ݅

since | ଵ
√ଶ௧ା௧మ

− ଵ
√ଶ௧

| ≲  The second term in (53) satisfies .ݐ√

න |
ஶ

௧ୀ
ො߮൫ܶ(ߤ − 1 − 	ݐ݀ݐ√|൯(ݐ݅ ≲ 	 (1 + ߤ|ܶ − 1|)ିଵන ݁ିగ்௧

ஶ

௧ୀ
ݐ
ଵ
ଶ݀ݐ 

≈ 	ܶି
ଷ
ଶ(1 + ߤ|ܶ − 1|)ିଵ 



77 

The first term in (53) is by change of variable ݐ → ିܶ equal to ݐܶ
భ
మ߯൫ܶ(ߤ − 1)൯ where 

(ݔ)߯ =
−2݅
√−݅

න ො߮
ஶ

௧ୀ
ݔ) − (ݐ݅

ݐ݀
ݐ2√

 

߯ is a Schwarz function, and the support of its inverse ߁ourier transform is contained in 

the support of ߮‐ in fact ߯̌(ݕ) is a constant multiple of ఝ(௬)

√௬
. This proves (52). 

To prove Lemma (2.3.21) we use the first term in the asymptotic expansion of ߪොଵ: let 
ݎ =  Then .|ݔ|

(ݔ)ොଵߪ = ିݎߨ2√2
ଵ
ଶ	cos	 ቀ2ݎߨ −

ߨ
4
ቁ + ࣩ ൬ିݎ

ଷ
ଶ൰ 

See e.g. [88], Theorem 7.7.14 or [96], Lemma IV. 3.11 and the preceding discussion 
relating Bessel functions to ߪଵෞ. It follows that 

௩|ෞ|ߪଵି|ݒ| (ݎ) = ି(|ݒ|ݎ)ߨ2√2
ଵ
ଶ	cos	 ቀ2ݒ|ݎߨ| −

ߨ
4
ቁ + ࣩ ൬(ݒ|ݎ|)ି

ଷ
ଶ൰																									(54) 

Substituting (54) into the definition of ܬே we find that 

൫2√2ߨ൯
ିଵ
(ݔ)ேܬ

=  ି(|ݒ|ݎ)
ଵ
ଶ

	

௩∈ℤమ
cos ቀ2ݒ|ݎߨ| −

ߨ
4
ቁ ݍ ቆ

|ݒ|
ܰ
ቇ + ࣩቌ  ݍ

	

௩∈ℤమ\{}

൬
|ݒ|
ܰ
൰ ି(|ݒ|ݎ)

ଷ
ଶቍ 

The second term here is ≲ ܰ
భ
మିݎ

య
మ since there are ࣩ(ܰଶ) lattice points ݒ with ே

ଶ
≤ |ݒ| ≤

2ܰ. We rewrite the first term using the Poisson summation formula, obtaining 

൫2√2ߨ൯
ିଵ
(ݔ)ேܬ = ିݎ

ଵ
ଶ  r

	

௩∈ℤమ
eቆ݁

గ
ସ න ݁ଶగ୧௩⋅௬

	

ℝమ
ି|ݕ|

ଵ
ଶ݁ିଶగ|௬|ݍ ൬

|ݕ|
ܰ
൰݀ݕቇ + ࣩ ൬ܰ

ଵ
ଶିݎ

ଷ
ଶ൰ 

																														= 	ܰ
ଷ
ଶିݎ

ଵ
ଶ  re ቆ݁

గ
ସ න ݁ିଶగே(|௬|ି௩⋅௬)

	

ℝమ
ି|ݕ|

ଵ
ଶݕ݀(ݕ)ݍቇ + ࣩ ൬ܰ

ଵ
ଶିݎ

ଷ
ଶ൰

	

௩∈ℤమ
 

																									= 	ܰ
ଷ
ଶିݎ

ଵ
ଶ reቆ݁

గ
ସන න ߮

ஶ



గ

ିగ
ଶగே|௩|௧൬ି݁(ݐ) |ఔ|ି	ୡ୭ୱ	ఏ൰݀ߠ݀ݐቇ+ ࣩ ൬ܰ

ଵ
ଶିݎ

ଷ
ଶ൰

௩ஷ

 

where (ݐ) = ݐ
భ
మ(ݐ)ݍ . Here the second line followed by change of variables ݕ →  and ,ݕܰ

on the last line we introduced polar coordinates with ߠ =  and used that the ,ݕ0ݒ∠

contribution from ݒ = 0 is equal to re ቆ݁
ഏ
రܰ

య
మିݎ

భ
మ ො߮(ܰݎ)ቇ and therefore ࣩ((ܰݎ)ିଵ) . 
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Now we apply (52) to the terms in the sum, with = ߤ ,|ݒ|ܰ = 
|௩|

. Letting ߰(ݐ) =

re ൬݁
ഏ
ర߯(ݐ)൰ we conclude that 

൫2√2ߨ൯
ିଵ
(ݔ)ேܬ

= ܰ
ଷ
ଶିݎ

ଵ
ଶ(ܰ|ݒ|)ି

ଵ
ଶ

	

௩ஷ

߰൫ܰ(|ݒ| − ൯(ݎ

+ ࣩ ൭ܰ
ଷ
ଶିݎ

ଵ
ଶ(ܰ|ݒ|)ି

ଷ
ଶ

	

௩ஷ

(1 + |ݒ||ܰ − ଵ൱ି(|ݎ + ࣩ ൬ܰ
ଵ
ଶିݎ

ଷ
ଶ൰ 

The second term is ≲ ଶܰఌିݎ 	max	 ቀ 
ே,ୢ

, 1ቁ, since the contribution to the sum from terms 

with |ݒ| ≤ 
ଶ
 is clearly very small and the contribution from	|ݒ| ≥ 

ଶ
 can be estimated by 

Lemma (2.3.12). (51) follows from this on replacing ߰ by 2√2߰ߨ.  

Lemma (2.3.22)[83]: Assume the bound (27). Then 

	|(ݔ)ேܭ| ≲  (55)																																																											(ଵିఉ)ି|ݔ|ܰ

if |ݔ| ≥ ܰ ≥ 1. 

Proof. We first prove the estimate (55) with ܭே replaced by ܬே. We define (ݐ) =

ିݐ
భ
మ߰൫ܰ(ݐ −  ൯ , with ߰ as in Lemma (2.3.21). Since ߰ is in the Schwarz space it is(ݎ

easily seen using the product rule that for any fixed ߚ > 0, 

න 	
ஶ

௧ୀଵ
ݐ݀|(ݐ)ఉ|݂ᇱݐ	 ≲ ఉିݎ

ଵ
ଶ																																																(56) 

uniformly in ܰ ≥ ଵ
ଶ
 and ݎ ≥ ଵ

ଶ
. Now consider the quantity ቀݎ ≥ ଵ

ଶ
,ܰ ≥ ଵ

ଶ
ቁ 

 |
	

௩∈ℤ	మ,௩ஷ

ି|ݒ
ଵ
ଶ߰൫ܰ(|ݒ| − ൯(ݎ = 	න ݂

ஶ

௧ୀ
 																																																			(ݐ)݊݀(ݐ)

= 	න 2
ஶ

௧ୀ
ݐ݀(ݐ)݂ݐߨ + න ݂

ஶ

௧ୀ
(ݐ)݊)݀(ݐ) −  (ଶݐߨ

= 	න 2
ஶ

௧ୀ
ݐ݀(ݐ)݂ݐߨ + න (ݐ)݊) − (ଶݐߨ

ஶ

௧ୀ
݂ᇱ(ݐ)݀ݐ																												(57) 

The first term in (57) is easily seen to be very small: 

|න 2
ஶ

௧ୀ
|ݐ݀(ݐ)݂ݐߨ = න|ߨ2 ݐ) + (ݎ

ଵ
ଶ

ஶ

௧ୀି
 |ݐ݀	(ݐܰ)߰
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= න|ߨ2	 ݐ) + (ݎ
ଵ
ଶ

ஶ

ିஶ
|ݐ݀(ݐܰ)߰ +  (ଵି(ܰݎ))ࣩ

≲ ିݎ	
ଵ
ଶන |

ஶ

௧ୀିஶ
ݐ݀|(ݐܰ)߰||ݐ +  ଵି(ܰݎ)

≈ ିݎ	
ଵ
ଶܰିଶ 

Here the second line followed since ߰ is in the Schwarz space and the third line followed 

since (ݎ + (ݐ
భ
మ = ݎ

భ
మ + ࣩ ቀିݎ

భ
మ|ݐ|ቁ and ߰(0) = 0. The second term in (57) is	≲

∫ ఉஶݐ
௧ୀଵ |݂ᇱ(ݐ)|݀ݐ + ∫ ଶଵݐ

௧ୀ |݂ᇱ(ݐ)|݀ݐ ≲ ఉିݎ
భ
మ by (56) and an obvious estimate for the 

contribution from ݐ < 1. Now we use (51). Let ݎ = ݎ We’ve assumed that .|ݔ| ≥ ܰ, so the 
error term in (51) is ≲  ଵ Henceିݎ

|(ݔ)ேܬ| 	≲ ିݎܰ	
ଵ
ଶ|  |

	

௩∈ℤ	మ,௩ஷ

ି|ݒ
ଵ
ଶ߰൫ܰ(|ݒ| − |൯(ݎ +  ଵିݎ

							≲ ିݎܰ	
ଵ
ଶ ⋅ ఉିݎ

ଵ
ଶ + ିݎܰ

ଵ
ଶ ⋅ ିݎ

ଵ
ଶܰିଶ +  ଵିݎ

≈  																																										(ଵିఉ)ିݎܰ	

When ݐ > 0 we can express  in the form (ݐ) = ∑ 	ݍ
ஹ ൫2ݐ൯ where ݍ is supported in 

ቂଵ
ଶ

, 2ቃ. Observe that if ே
ଶೕ

< ଵ
ଶ
 then the sum defining ܬಿ

మೕ
 is empty. Hence |ܭே(ݔ)| ≤

∑ |	 ಿܬ
మೕ

|(ݔ) ≲ ∑ ே
ଶೕ

	
 (ଵିఉ)ି	|ݔ| ≲  .and the proof is complete (ଵିఉ)ି|ݔ|ܰ

Corollary (2.3.23)[240]: Assume ߳ ≥ 0. Let ݍ:ℝ → ℝ be a ܥஶ function supported in 

ቂଵ
ଶ

, 2ቃ, and let 0 ≤ ߳ < 1. Define ܭே: ℝଶାఢ → ℂ 

(ݔ)ேܭ = 
1

√݊ + 1 − ߳

ݍ ቆ
√݊ + 1 − ߳

ܰ
ቇߪ√ାଵିఢෟ  (ݔ)

Then for large ܰ there is an estimate 

	|(ݔ)ேܭ| ≲

⎩
⎪
⎨

⎪
1		if			ଵି(|ݔ|ܰ)⎧ ≤ |ݔ| ≤

ܰ
2

൬
ܰ

|ݔ|
൰
ఢ
ଶ
						if		|ݔ| ≥

ܰ
2

 

Proof: This will follow from the asymptotics for the Fourier transform of surface measure 
and a simple form of the vander Corput method for estimating exponential sums. We 
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remark that if |ݔ| ≥ ܰଵାఢ with ߳ > 0 then the bound can be improved by using exponent 
pairs, but Corollary (2.3.23) as stated is enough for the proof of Theorem (2.3.5). 

It is well known (e.g. [95] p. 50) that ߪଵෞ(ݔ) = re൫(|ݔ|)ܤ൯ where 1)ܤ + ߳) =
ܽ(1 + ߳)݁ଶగ(ଵାఢ), with ܽ(1 + ߳) being a complex valued function satisfying estimates 

ቤ
(2 + ߳)ܽ

(2 + ߳)(1 + ߳)
ቤ ≲ (1 + ߳)ି

ଵାఢ
ଶ ି																																																	(58) 

Hence also ߪ௧ෝ (ݔ) = re൫ݐଵାఢ(|ݔ|ݐ)ܤ൯. Define ݐା = 	max	(ݐ, 0),and let 1 + ߳ =  In the.|ݔ|

calculation below, we use that (ݐ)ݍ = 0 when ݐ < ଵ
ଶ

; this implies that various integrals 
may be taken interchangeably over ℝ and over (0,∞) . We have 


1

√݊ + 1 − ߳ஹ

ݍ ቆ
√݊ + 1 − ߳

ܰ
ቇ ൫√݊ + 1 − ߳൯

ଵାఢ
൫(1ܤ + ߳)√݊ + 1 − ߳൯ 

= 	((݊ + 1 − ߳)ା)
ଵାఢ
ଶ

∈ℤ

ݍ ൭
ඥ(݊ + 1 − ߳)ା

ܰ
൱ܽ ቀ(1

+ ߳)ඥ(݊ + 1 − ߳)ାቁ ݁ଶగ(ଵାఢ)ඥ(ାଵିఢ)శ  

= 	න ((1 + (ା(ݔ
ఢ
ଶ

ℝ௩∈ℤ

ݍ ൭
ඥ(1 + ା(ݔ

ܰ
൱ܽ ൬(1

+ ߳)ඥ(1 + ା൰(ݔ ݁ଶగ(ଵାఢ)ඥ(ଵା௫)శ݁ିଶగ௩(௫ାఢ)݀(ݔ + ߳) 

= 	න ݔ)ܰ) + 2߳))ఢ
ℝ௩∈ℤ

ݔ)ݍ + 2߳)ܽ((1 + ݔ)ܰ(߳

+ 2߳))݁ଶగ(ଵାఢ)ே(௫ାଶఢ)݁ିଶగ୧୴(ேమ(௫ାଶఢ)మି(ଵିఢ))݀(ܰଶ(ݔ + 2߳)ଶ − (1 − ߳)) 

= 	 (1 + ߳)ି
ଵାఢ
ଶ ܰ

ଷାఢ
ଶ න ߮

ℝ௩∈ℤ

ݔ) + 2߳)݁ଶగ(ଵାఢ)ே(௫ାଶఢ)݁ିଶగ௩ቀே
మ(௫ାଶఢ)మି(ଵିఢ)ቁ݀(ݔ

+ 2߳)																																																																																																																										(59) 

where ߮(ݔ + 2߳) = ݔ)2 + 2߳)ଵାఢ((1 + ߳)ܰ)
భశച
మ 	ܽ((1 + ݔ)ܰ(߳ + ݔ)ݍ((2߳ + 2߳). We 

used the Poisson summation formula and then the change of variables ݔ + 2߳ = √ଵା௫
ே
	. We 

note that the estimate (58) implies that the functions ߮ = ߮ே,ଵାఢ belong to a compact 
subset of ܥஶ; this means that the estimates below are uniform in (1 + ߳) and ܰ. 
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We rewrite the sum (59) isolating the ݒ = 0 term and making some algebraic 
manipulations: 

(59) = (1 + ߳)ି
ଵାఢ
ଶ ܰ

3 + ߳
2

൮න ߮
ℝ

ݔ) + 2߳)݁ଶగ(ଵାఢ)ே(௫ାଶఢ)݀(ݔ + 2߳)

+  ݁ଶగ൬௩(ଵିఢ)ା(ଵାఢ)మ
ସ௩ ൰

௩∈ℤ\{}

න ߮
ℝ

ݔ) + 2߳)݁
ିଶగ௩ேమቆ(௫ାଶఢ)ିଵାఢଶே௩ቇ

మ

ݔ)݀

+ 2߳)൲																																																																																																										(60) 

The first term in (60) is equal to 1 + ߳ − ଵାఢ
ଶ
ܰ ଷାఢ

ଶ
ො߮(−ܰ(1 + ߳)), hence ≲ 1 + ߳ −

ଵାఢ
ଶ
ܰ ଷାఢ

ଶ
(ܰ(1 + ߳))ି for any ݇. In particular, it is	≲ (ܰ(1 + ߳))ିଵ if ߳ ≥ 0. The 

terms in the sum in (60) may be evaluated via the asymptotics for Gaussian Fourier 
transforms ([88], Lemma 7.7.3); the ݒ	th term is equal to 

݁ଶగ൬௩(ଵିఢ)ା(ଵାఢ)మ
ସ௩ ൰  ܿ

ିଵ

ୀ

ିି(ଶܰݒ)
ଵ
ଶ߮ ൬

1 + ߳
ݒ2ܰ

൰ + ࣩ ൬(ܰݒଶ)ିି
ଵ
ଶ൰			(61) 

for any ݉; here ܿ are fixed constants and the ߮ are certain derivatives of ߮. All the 

terms in the sum over ݇ vanish if ݒ ∉ ቂଵାఢ
ସே

, ଵାఢ
ே
ቃ so that 

(61) 	≲ ൞
ି(ଶܰݒ)

ଵ
ଶ if	ݒ ∈ 

1 + ߳
4ܰ

,
1 + ߳
ܰ

൨

ିି(ଶܰݒ)
ଵ
ଶ if	ݒ ∉ 

1 + ߳
4ܰ

,
1 + ߳
ܰ

൨
 

Accordingly the sum in (60) is 

≲ card ൬ℤ ∩	
1 + ߳

4ܰ
,
1 + ߳
ܰ

൨൰ ((1 + ߳)ܰ)ି
ଵ
ଶ + ((1 + ߳)ܰ)ିି

ଵ
ଶ 

Taking ݉ sufficiently large we obtain 

≲ (1 + ߳)ି
ଵାఢ
ଶ ேଷାఢଶ card ൬ℤ ∩ 	

1 + ߳
4ܰ

,
1 + ߳
ܰ

൨൰ ((1 + ߳)ܰ)ି
ଵ
ଶ + ((1 + ߳)ܰ)ିଵ∼

<

⎩
⎪
⎨

⎪
⎧
൬
ܰ

1 + ߳
൰
ఢ
ଶ

if	1 + ߳ ≥
ܰ
2

((1 + ߳)ܰ)ିଵ if	1 ≤ 1 + ߳ ≤
ܰ
2
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The lemma follows since ܭே is the real part of the quantity (60). 

We need one more lemma, an easy consequence of the Poisson summation formula (see 
[83]). 

Corollary (2.3.24)[240]: Let ߳ ≥ 0 be an integer, let ݍ be a fixed ܥஶ function supported 

in ቂଵ
ଶ

, 2ቃ, let 0 ≤ ߳ < 1 and let ℎ = ℎ(ݐ) be a function on the line satisfying the following 
estimate: 

ቤ
݀ℎ
ݐ݀

ቤ ≤ ܴ 

when 0 ≤ ݆ ≤ 2 + ߳ and ே
ଵ

≤ ݐ ≤ 100ܰ. Then for large ܰ 

|
1

√݊ + 1 − ߳

ݍ ቆ
√݊ + 1 − ߳

ܰ
ቇℎ൫√݊ + 1 − ߳൯ − 2න ݍ ൬

ݐ
ܰ
൰ℎ(ݐ)݀ݐ|	 ≲ ܴܰି(ଵାఢ)(62) 

where the implicit constant depends on ݍ only. 

Proof Set ݃(ݔ) = ൫√௫ାଵିఢ൯
√௫ାଵିఢ

 and (ݔ) = ݍ ቀ√௫ାଵିఢ
ே

ቁ . Then ܽ is supported in ݔ ≈ ܰଶ and 

derivatives of ܽ satisfy 

ቤ
݀ܽ
ݔ݀

ቤ ≲ ܰିଶ																																																			(63) 

since the functions ݍ൫ඥݔ + (1 − ߳)ܰ − 2൯ belong to a compact subset of ܥஶ and ܽ(ݔ) is 

obtained from ݍ൫ඥݔ + (1 − ߳)ܰିଶ൯ by dilating by ܰଶ. When ݔ ≈ ܰଶ, derivatives of ݃ 
satisfy 

|
݀݃
ݔ݀

|	 ≲ ܴܰି(ଵା)																																								(64) 

when ݆ ≤ 2 + ߳. Namely, it is easy to show by induction on ݆ that the jth derivative of ݃ is 

a sum of finitely many terms each of which has the form 
()൫√௫ାଵିఢ൯

൫√௫ାଵିఢ൯
ℓ  where ℎ() = ݅th 

derivative of ℎ, with ݅ ≤ ݆ and ℓ ≥ ݆ + 1. Estimate (64) is then obvious. 

The left side of (62) is (make the change of variables ݐ = ݔ√ + 1 − ߳) equal to 

|ܽ


(݊)݃(݊) − න ܽ  |ݔ݀(ݔ)݃(ݔ)

By Poisson summation this is 
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ቮ
௩ஷ

	ܽෞ݃  (65)																																																											ቮ(ݒ)

and if we integrate by parts ݇ times and use (63) and (64), we bound the ݑth term in the 
sum (65) by 

නି|ݒ| |
݀(ܽ݃)
ݔ݀

ݔ݀| ≲ නି|ݒ| ܴ
ଶேమ


ܰି(ଵା)݀ݔ ≲  ܴܰି(ିଵ)ି|ݒ|

Hence (65) ܴܰି(ିଵ) and the proof is complete. 

Corollary (2.3.25)[240]: Suppose that ߳ ≥ 0 and that ݂: ℝଷାఢ → ℝ is an ܮଵ function 
which tiles with every rotation of ℤଷାఢ, i.e. 

 ݂
௩∈ℤయశച

ݔ) −  (ݒߩ

is constant a. e. for each ߩ ∈ ܱܵ(3 + ߳) . Then ݂ agrees a. e. with a continuous function. 

Proof: (see [83]). We may clearly assume that ܽ = 1 and ߳ > 0. 

We let ݍ ∈ ஶ(ℝ) be supported in ቂଵܥ
ଶ

, 2ቃ and such that the functions ൛ݍଶೕൟିஶ
ஶ  form a 

partition of unity on (0,∞) ; here we have defined ݍଶೕ(ݔ) = ݍ ቀ ௫
ଶ
ቁ . We define ܭே as in 

Corollary (2.3.23) using this ݍ. 

Fix a ball ܦ with radius 1; we will show that ݂ is continuous on ܦ. Let ܦ෩ be the concentric 
ball with radius 2, and let ݂ = ߯෩݂ and ݂ = ߯ℝమశച\෩݂ where ߯ா is the indicator function 
of the set ܧ. By assumption, ߪ√ାଵିఢෟ ∗݂ vanishes identically for any positive integer ݊ 
and therefore ܭே ∗ ݂ vanishes identically for any ܰ. 

Corollary (2.3.26)[240]: Suppose that ܧ is a set in ℝଷାఢ with |ܧ| = 1 and |ܧ ∩ |ܦ > 0 
for a certain ball ܦ with radius 1. Let ܦ෩ be the concentric ball with radius ܥଷାఢ. Then 

| ൜ݔ ∈ :෩ܦ
1
4
≤ ߮ఌ ∗ ߯ா(ݔ) ≤

3
4
ൠ |		 ≳  ߝ

provided that ߝ is sufficiently small; the implicit constants may depend on ܧ. 

Proof We will use the following well‐known fact: 

ఌ߮)ߘ‖ ∗ ߯ா)‖ஶ	 ≲  (66)																																							ଵିߝ

To prove (66), let ߰ = ܥ let ,߮ߘ = ‖߰‖ଵ and define ߰ఌ(ݔ) =  . (ݔଵିߝ)߰(ଷାఢ)ିߝ
Differentiation under the integral sign leads toߘ(߮ఌ ∗ ߯ா) = ଵ߰ఌିߝ ∗ ߯ா. On the other 
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hand, for any ݔ ∈ ℝଷାఢ, we have |߰ఌ ∗ ߯ா(ݔ)| ≤ ‖߰ఌ‖ଵ‖߯ா‖ஶ = ‖߰‖ଵ, which proves that 
ఌ߮)ߘ‖ ∗ ߯ா)‖ஶ ≤  .ଵ, as claimedିߝܥ

It follows by the mean value theorem that if ߮ఌ ∗ ߯ா(ݔ) = ଵ
ଶ
, then ߮ఌ ∗ ߯ா(ݔ) ∈

ቂଵ
ସ

, ଷ
ସ
ቃ for all ݔ ∈  be surface measure on ܵଶାఢ; here we take it to be ߪ We let .(ߝଵିܥ,ݔ)ܦ

normalized so that ߪ(ܵଶାఢ) = 1. We also let ܧ be the complement of the set ܧ. 

Choose once and for all a point of density of ܧ ∩  which we may assume to be the ,ܦ
origin. Let ܣ be the set of all ω ∈ ܵଶାఢ such that the ray {(1 + ߳)߱:	1 < 1 + ߳ <  {ଷାఢܥ
contains a point of density of ܧ. Since ܧ has measure 1 it is clear that ܣ must have 
measure ≥ ଷ

ସ
 provided ܥଷାఢ is large enough. If ߱ ∈ ఠ then we let ܣ =  ఠ߱ be theݎ

corresponding point of density of ܧ In a similar way we can choose a small sphere 
centered at 0, ݔ = ߱:߱ߩ} ∈ ܵଶାఢ}, where ߩ < 1 in such a way that ݍఠ =  is a point of ߱ߩ
density of ܧ for all ߱ ∈ ܤ where ܤ ⊂ ܵଶାఢ is a set of measure > ଷ

ସ
. 

By Egoroff’s theorem, we can find subsets ܣ∗ ⊂ ≤ with measure ܣ ଶ
ଷ
 and ܤ∗ ⊂  ܤ

with measure ≥ ଶ
ଷ
 and a number ߝ such that if ߝ <   thenߝ

ܧ| ∩ ఠ)ܦ , |(ߝ
,ఠ)ܦ| |(ߝ

< 10ି		for	all		߱ ∈  (67)																										∗ܣ

and 

ܧ| ∩ ,ఠݍ)ܦ |(ߝ
,ఠݍ)ܦ| |(ߝ

< 10ି		for	all		߱ ∈  (68)																																∗ܤ

Note |ܣ∗ ∩ |∗ܤ ≥ ଵ
ଷ
. 

Now fix ߝ < ߱ , letߝ ∈ ∗ܣ ∩ and consider ߮ఌ ∗ܤ ∗ ߯ா as a function on the line 
segment {ߩ:ݓݐ ≤ ݐ ≤ ≤ is	ߩ ఠ}. Its value atݎ 1 − 10ି	and its value at ݎఠ is ≤
10ିAccordingly, there must be a value of ݐఠ ∈ ,ߩ) ఠ) where ߮ఌݎ ∗ ߯ா(ݐఠ߱) = ଵ

ଶ
.Then by 

the remarks at the beginning of the proof, ߮ఌ ∗ ߯ா(߱ݐ) ∈ ቀଵ
ସ

, ଷ
ସ
ቁ for all ߱ ∈ ∗ܣ ∩  and all ∗ܤ

 Using polar coordinates it now follows .ߝଵିܥ ఠ with lengthݐ in the interval centered at ݐ

that the set ቄݔ:	߮ఌ ∗ ߯ா(ݔ) ∈ 	 ቀଵ
ସ

, ଷ
ସ
ቁቅ has measure ≳  where the constant is independent ߝ

of ߝ provided ߝ is small.  

Corollary (2.3.27)[240]: If ܧ ⊂ ℝଷାఢ is a set with finite nonzero measure and if ߮ఌ is as 
in Corollary (2.3.26) then 

(a) ‖߮ఌ ∗ ߯ா − ߯ா‖ଶ ≥ ߝாିଵܥ
భ
మ for small ߝ. 
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(b) ∫ ||క|ஹଶାఢ ߯ாෞ|ଶ ≥ ா(2ܥ) + ߳))ିଵ for a certain constant ܥா depending on ܧ and all 

sufficiently large 2 + ߳. In particular, ߯ா ∉ ܹ
భ
మ. 

Proof Part (a) is immediate from Corollary (2.3.26), since ଵ
ସ
≤ ߮ఌ ∗ ߯ா(ݔ) ≤ ଷ

ସ
 implies 

|߮ఌ ∗ ߯ா(ݔ)− ߯ா(ݔ)| ≥ ଵ
ସ
. Part (b) follows easily from (a). By (a) we have 

න |
ℝ

߯ாෞ(ߦ)|ଶ| ො߮((2 + ߳)ିଵߦ) − 1|ଶ݀ߦ ≥ ா(2ܥ) + ߳))ିଵ																																	(69) 

uniformly in 2 + ߳, and if ߮ has been chosen to be nonnegative, then | ො߮((2 + ߳)ିଵߦ) − 1| 
is bounded away from zero when |ߦ| ≥ 2 + ߳.  

From Corollary (2.3.27) we can obtain a form of Corollary (2.3.33) where ߳ = 1: 

Corollary (2.3.28)[240]: If ܧ ⊂ ℝଶ is Steinhaus then ∫ |ா ݔଶ݀|ݔ = ∞. 

Proof As was done in [91], we use the elementary estimate (which is also the only known 
estimate) for the maximum gap between sums of two squares: 

(G): If 0 < ߳ < ∞ then for a suitable fixed constant ܥଵ there is ݑ ∈ ℤଶ such that |1 + ߳ −

||ݒ| ≤ ଵ(1ܥ + ߳)ି
భ
మ. 

We also use the following form of the Poincare inequality, which is well‐known. 

(PI): Let ܳ be a square in the plane with side 1 + ߳ and let ߛ be a Jordan arc contained in 
ܳ, such that the distance between the endpoints of ߛ is ≥ ଵିଵ(1ܥ + ߳). Let ݂ be a function 
which vanishes on ߛ. Then 

න |
ொ

݂|ଶ ≤ ଶ(1ܥ + ߳)ଶන |
ொ

 ଶ|݂ߘ

where ܥଶ depends on ܥଵ only. 

Fix a large number ܰ and define ܣே ≝ ߦ} ∈ ℝଶ:	ܰ ≤ |ߦ| ≤ 2ܰ}. Let ܥ be a large enough 

constant and cover ܣே with nonoverlapping squares ܳ of side ିܰܥభమ. If ܧ is Steinhaus, 
݂ = ߯ாෞ, then (G) implies that each square will satisfy the hypothesis of (PI). We conclude 
that 

න |
ொ

߯ாෞ|	ଶ ≲ ܰିଵන |
ொ

 ாෞ|ଶ߯ߘ

for each ܳ and therefore 
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න |
ಿ

߯ாෞ|	ଶ ≲ ܰିଵන |
ಿ∗

 ாෞ|ଶ߯ߘ

where ܣே∗  is the union of the squares and is contained in {ߦ ∈ ℝଶ:	ܰ − 1 ≤ |ߦ| ≤ 2ܰ + 1}. 
Consequently 

න |
ಿ

ߦଶ݀|(ߦ)ாෞ߯||ߦ ≲ න |
ಿ∗

 ாෞ|ଶ߯ߘ

If we now sum over dyadic values of ܰ and use that no point belongs to more than two 
∗ேܣ s, we obtain 

න |
ℝమ

ߦଶ݀|(ߦ)ாෞ߯||ߦ ≲ න |
ℝమ

ߦாෞ|ଶ݀߯ߘ + 1 

Hence by Corollary (2.3.27)(b), ∫ |ℝమ ாෞ|ଶ߯ߘ = ∞, i.e. ∫ |ா ݔଶ݀|ݔ = ∞.  

Corollary (2.3.29)[240]: For any given set ܧ ⊂ ℝଷାఢ with |ܧ| < ∞ there is a sequence 
ߝ = 2ିೕ → 0 such that ܣఌೕ(ܧ)	 ≲  the constants here (and in (21)) depend only ; (ܧ)ఌೕܥ
on 3 + ߳ and ߮. 

Proof: We may assume that |ܧ| = 1. If ܦ = ,ݔ)ܦ  ߩ and radius ݔ is the ball with center (ߩ
then we define 

(1 + (ܦ)(߳ = 	min	(|ܧ ∩ ,|ܦ ܧ| ∩  (|ܦ

(ܦ)ߚ =  2ିଵ(ଷାఢ)
ஶ

ୀ

(1 + ߳)൫2ܦ൯ 

Here we have used the notation ܧ = ℝଷାఢ\ܧ and (ߩ,ݔ) = ,ݔ)ܦ (1 +  . (ߩ(߳

Let ܥ be a large constant. If ܦ is any ball of radius ܥିଵߝ then we claim that the following 
are valid: 

I. ‖߮ఌ ∗ ߯ா − ߯ா‖భ(ୈ) ≲  (ܦ)ߚ

II. | ቄݔ ∈ ఌ߮|	:ܦ ∗ ߯ா(ݔ) − ߯ா(ݔ)| ≥ ଵ
ସ
ቅ | ≥ (1 +  . (ܦ)(߳

In fact, II follows easily from (66). Namely, if ܥ is large then (66) implies via the mean 
value theorem that the difference between the maximum and minimum values of ߮ఌ ∗ ߯ா 
on the ball ܦ is less than ଵ

ଶ
. It follows that one of the following must hold 

(i) ߮ఌ ∗ (ݔ)߯ ≤ ଷ
ସ

for	all	ݔ ∈  or , ܦ
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(ii)߮ఌ ∗ (ݔ)߯ ≥ ଵ
ସ

for	all	ݔ ∈  .ܦ

In case (i) we have | ቄݔ ∈ :ܦ |߮ఌ ∗ ߯ா(ݔ) − ߯ா(ݔ)| ≥ ଵ
ସ
ቅ | ≥ ܧ| ∩ |ܦ ≥ (1 +  and in (ܦ)(߳

case (ii) we have | ቄݔ ∈ :ܦ |߮ఌ ∗ ߯ா(ݔ) − ߯ா(ݔ)| ≥ ଵ
ସ
ቅ ܧ	| ∩ |ܦ ≥ (1 +  i.e. II holds,(ܦ)(߳

in either case. 

To prove I, we express ߮ as a synthesis of ܥஶ functions, say 

߮ =  ܽ

ஶ

ୀ

߮ 

where supp߮ ⊂ ,൫0ܦ ଵ2൯,߮ఫෞ(0)ି(ܥ2) = 1, ‖߮‖ଵ ≤ and ܽ ܥ ≤  2ିଵ(ଷାఢ). Letܥ

߮ఌ
(ݔ) =  It follows by Minkowski’s inequality and the support . (ݔଵିߝ)߮(ଷାఢ)ିߝ

properties that 

‖߮ఌ
 ∗ ߯ா − ߯ா‖భ()	 ≲ ܧ| ∩ ൫2ܦ൯| 

and therefore also 

‖߮ఌ
 ∗ ߯ா − ߯ா‖భ()	 ≲ (1 + ߳)൫2ܦ൯ 

since the left side is unchanged when ܧ is replaced by ܧ I now follows by summing over 
݆. 

Let (ߝ) = ∫ (1 + ߳)ℝయశച ൫ܦ(ܥ,ݔିଵߝ)൯݀(ߝ)ܬ ,ݔ = ∫ ℝయశചߚ ൫ܦ(ܥ,ݔିଵߝ)൯݀ݔ. 
Integrating I and II over ℝଷାఢ we get 

	(ߝ)ܫ(ଷାఢ)ିߝ ≲ (ܧ)ఌܥ ≲ (ܧ)ఌܣ ≲  (70)														(ߝ)ܬ(ଷାఢ)ିߝ

Let ݇ be a large positive integer and consider the sums 

ℐ =  2ିହ(ଷାఢ)ℓ
ஶ

ℓୀ

 ൫2ℓି൯ܫ

ࣤ =  2ିହ(ଷାఢ)ℓ
ஶ

ℓୀ

 ൫2ℓି൯ܬ

For any ݇, we have 

ࣤ = 	 2ି(ଷାఢ)(ହℓାଵ)
ஶ

ୀ

ஶ

ℓୀ

൫2ℓାି൯ܫ ≲ 	  2ିହ(ଷାఢ)
ஶ

ୀ

(2ି)ܫ = ℐ 
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On the next to last line, we set ݉ = ݆ + ℓ and used that ∑ 2ି(ଷାఢ)(ହℓାଵ)
ାℓୀ <

2ିହ(ଷାఢ) 

Now observe that (ߝ)ܬ	 ≳  e.g. by (70) and Corollary (2.3.27)(a), and that ,ߝ ସାఢ for smallߝ
(ߝ)ܫ ≲ ߝ even when) ߝ  for any	ଷାఢߝ > 1), e.g. by (70). It follows that ࣤ ≳ 2ି(ସାఢ) and 
that ∑ 2ିହ(ଷାఢ)ℓ

ℓவೖమ
 ିℓ is small compared with 2ି(ସାఢ) Accordinglyܫ

 <
ℓஸଶ

2ିହ(ଷାఢ)ℓܬ(2ℓି) ≲	
ℓஸଶ

2ିହ(ଷାఢ)ℓܫ(2ℓି) 

which implies there is a value 2ℓି ≤ √2 − ݇ with ܬ൫2ℓି൯ ≲  ൫2ℓି൯ . This and (70)ܫ
prove the corollary.  

We assume that the Schwarz function ߮ satisfies the following conditions: 

supp	 ො߮ ⊂ ,(0,1)ܦ ො߮(ߦ) = ߦ	݂݅	1 ∈ ܦ ൬0,
1
2
൰																											(71) 

We set ߮(ݔ) = (ݔ)߮ − 2ଷାఢ߮(2ݔ) ; thus ߰ is a Schwarz function with supp ߰ ⊂

ܦ\(0,2)ܦ ቀ0, ଵ
ଶ
ቁ . We define ߰ఌ(ݔ) = ∑ so that , (ݔଵିߝ)߰(ଷାఢ)ିߝ ߰ଶିఌஶ

ୀ ∗ ݂ = ߮ఌ ∗
݂ − ݂ for any ݂ and ߝ, as may be seen bytaking Fourier transforms. Property (71) implies 
that no point belongs to the support of ߰ఫ for more that three values of ݆, so it follows by 
the Plancherel theorem that 

‖
ஶ

ୀ

߰ଶିఌ ∗ ݂‖ଶ2 ≳ ‖݂ − ߮ఌ ∗ ݂‖ଶଶ																	(72) 

Furthermore, 

‖߰ଶିఌ ∗ ݂‖ଵ	 ≲ ‖݂ − ߮ఌ ∗ ݂‖ଵ																																				(73) 

Namely, the support property (71) makes it possible to represent ߰ଶି = ݃ ∗ ߜ) − ߮) 
with ‖݃‖ଵ ≤ ݆ Indeed if .(is the Dirac delta function ߜ here) ܥ ≥ 1 then ߰ଶିఫ  and ො߮  have 
disjoint support so we can take ݃ = ߰ଶି, and when ݆ = 0,߰ଶିఫ = ߰ is obtained from 
1 − ො߮	by multiplication by the ܥஶ function ݉ defined via	݉(ߦ) = −1	when	|ߦ| ≤ 1 and 
ట෩

ଵିఝ
 when |ߦ| ≥ 1. It follows using dilations that ߰ଶషೕఌ = ݃,ఌ ∗ ߜ) − ߮ఌ) where |ߦ| ≤ 1 

and when	||݃ , ଵ‖ߝ = ‖݃ ≤  .ܥ

Accordingly ‖߰ଶషೕఌ ∗ ݂‖ଵ = ‖݃,ఌ ∗ ߜ) − ߮ఌ) ∗ ݂‖ଵ = ‖݃,ఌ ∗ (݂ − ߮ఌ ∗ ݂)‖ଵ ≤ ݂‖ܥ −
߮ఌ ∗ ݂‖ଵ which is (73). 
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Corollary (2.3.30)[240]: Assume that ߮ satisfies (71) and define ߰ as above. If ܧ is a set 
of finite measure then there is a sequence ߝ → 0 such that, for each ݆, (i) ‖߰ఌೕ ∗ ߯ா‖ଵ ≲

൬	log	 ଵ
ఌೕ
൰
ଶ
‖߰ఌೕ ∗ ߯ா‖ଶ

ଶ and (ii) ‖߰ఌೕ ∗ ߯ா‖ଶ
ଶ ≳ ߝ . 

Proof: Let ߝ be such that ܣఌ(ܧ) ≲ ߟ If . (ܧ)ఌܤ = 2ିߝ then ‖߰ఎೖ ∗ ߯ா‖ଵ ≲  by (ܧ)ఌܣ
(73) and ∑ ‖ஸ ߰ఎೖ ∗ ߯ா‖ଶ

ଶ ≳  by (72). Hence, for some ݇ we must have (ܧ)ఌܤ

	max	 ቀ(݇ + 1)ିଶ‖߰ఎೖ ∗ ߯ா‖ଵ, (݇ + 1)ିଶܤఌ(ܧ)ቁ ≲ ‖߰ఎೖ ∗ ߯ா‖ଶ
ଶ 

Also ܤఌ(ܧ) > ߝ ∼ by Corollary (2.3.27)(a), so (݇ + 1)ିଶܤఌ(ܧ) ≳ ݇) , andߟ + 1)ିଶ ≳

ቀ	log	 ଵ
ఎೖ
ቁ
ିଶ

 We conclude that 

	max	 ቆ൬	log	
1
ߟ
൰
ିଶ

‖߰ఎೖ ∗ ߯ா‖ଵ,ߟቇ
	
≲ ‖߰ఎೖ ∗ ߯ா‖ଶ

ଶ 

i.e. that there are arbitrarily small numbers ߝ such that (i) and (ii) hold.  

Corollary (2.3.31)[240]: If ߳ > 0 

൫1 + (1 + ߳)ห1 + ߳ − ห൯|ݒ|
ିଵ

௩∈ℤమ
≤ ఌ(1ܥ + ߳)ఌ 	max	(1, 1) 

Proof: Because of the rapid decay of (1 + (1 + ݐ ଵ whenି(ݐ(߳ ≥ ଵ
ଵାఢ

, it is easy to show 
that it suffices to prove the following estimate for all 1 + ߳: 

݊ ቆ
2 + 2߳ + ߳ଶ

1 + ߳
ቇ − ݊(1 + ߳) ≲ (1 + ߳)ఌ 	max	(1, 1)																																(74) 

where ݊(1 + ߳) is as in (75). To prove (74), consider two cases. 

(i) ݎ ≤ (1 + ߳)ଷ The number of lattice points on a circle is bounded by any given power of 

the radius, hence a circle of radius ߩ ∈ ቀݎ, ݎ + ଵ
ଵାఢ

ቁ contains ≲ ݎ
ഄ
య ≲ (1 + ߳)ఌ lattice 

points. There are ≲ max	( 
ଵାఢ

, 1) values of ߩ for which it contains some lattice point and 
(74) follows. 

(ii) ݎ ≥ (1 + ߳)ଷ. In this case we use (l) with the classical exponent ߚ = ଶ
ଷ
.  Thus ݊ ቀݎ +

ଵ
ଵାఢ

ቁ − 	(ݎ)݊ ≲


ଵାఢ
+ ݎ

మ
య ≈ 

ଵାఢ
.  

The proof of Corollary (2.3.33) will be like the proof of Corollary (2.3.25) insofar 
as it is also based on using an appropriate “fundamental solution” However, we must 
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replace the kernel in Corollary (2.3.23) by an analogous one involving a sum only over 
circles which contain lattice points. We will use the obvious choice where one counts each 
circle according to the number of lattice points it contains. 

Let  be a nonnegative ܥஶ function of one variable supported in ݐ ≤ 1 and with (ݐ) = 1 
when ݐ ≤ ଵ

ଶ
. Define 

(ݔ)ଵାఢܭ = 
1

|ݒ|
௩∈ℤ	మ,௩ஷ

௩|ෞ|ߪ (ݎ) ൬
|ݒ|

1 + ߳
൰ 

where ݎ =  .|ݔ|

Corollary (2.3.32)[240]: Let ܧ ⊂ ℝଶ be a Steinhaus set and let ߰ be a Schwarz function 
in ℝଶ with ߰(0) = 0. Let ݂ = ߯ா. Then 

߰ ∗ (ݔ)݂ = −  |ܶ௩|
௩∈ℤ	మ,௩ஷ

(߰ ∗ ݂) 

Proof The Steinhaus property gives after convolving with ߰ that 

߰ ∗ (ݔ)݂ = −  ߰
௩∈ℤ	మ,௩ஷ

∗ ݔ)݂ + ݁ఏ	ݒ) 

for all ߠ and ݔ. The lemma follows by integrating with respect to ߠ. 

Corollary (2.3.33)[240]: Assume a bound of the form 

(ݎ)݊ = ଶݎߨ + ࣩ൫ݎఉ൯																																																		(75) 

where ݊(ݎ) = card൫(ℤଶ\{0}) ∩ ,0)ܦ ܧ ൯ . Then any Steinhaus set(ݎ ⊂ ℝଶ must satisfy 

න |
ா

|ݔ
ఉ

ଵିఉାఢ݀ݔ = ∞																																																(76) 

for all ߳ > 0. 

Proof: We let ߚ be such that (75) is true and assume toward a contradiction that ܧ is 

Steinhaus and ∫ |ா |ݔ
ഁ

భషഁାఢ < ∞ for some ߳ > 0. 

Fix a Schwarz function ߮ satisfying (71) and set (ݔ) = (ݔ)߮ −  Thus supp . (ݔ2)4߮
߰ ⊂ ܦ\(0,2)ܦ ቀ0, ଵ

ଶ
ቁ . Let ߰ଶାఢ(ݔ) = (2 + ߳)ଶ߰((2 + Also fix a function 1 . (ݔ(߳ + ߳ as 

in Corollary (2.3.36). Applying Corollary (2.3.32) with ߰ଶାఢ, we get for any ܯ 
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߰ଶାఢ ∗ ߯ா = ெ(߰ଶାఢܣ− ∗ ߯ா)− ெ(߰ଶାఢܤ ∗ ߯ா)																																			(77) 

where the operators ܣெ and ܤெ are defined by 

ெܣ = 
௩ஷ

൬
|ݒ|
ܯ
൰ |ܶ௩| 

ெܤ = ൭1 −  ൬
|ݒ|
ܯ
൰൱

௩
|ܶ௩| 

Corollary (2.3.34)[240]: There is a constant ܤ = 3)ܤ + ߳) making the following true. 
Suppose that the lattices ߉ , ݅ = 1, . . . , ݊, have volume 1 and that 

߉ ∩ ߉ = {0}, for	all	݅ ≠ ݆																															(78) 

Proof: (See [83]). All constants below may depend only on the dimension 3 + ߳. We note 
that ߉ଵ ∩ ଶ߉ = {0} implies that the lattice ߉ଵ∗  is uniformly distributed mod	߉ଶ∗ . This can be 
proved using Weyl’s lemma‐see for example [92]. 

Corollary (2.3.35)[240]: With notation as above there is a Schwarz function ߰, such that 
߰ vanishes in a neighborhood of the origin, and making the following true. Let 1 + ߳ =

߳ If (say) .|ݔ| ≥ 0 then 

ଵܬ
ଶାఢ

(ݔ)

= ൬
1
2

+ ߳൰
ଵ
ଶ

 |
௩∈ℤ	మ,௩ஷ

ି|ݒ
ଵ
ଶ߰൭൬

1
2

+ ߳൰ ቆ|ݒ| − ൬
1
2

+ ߳൰ቇ൱

+ ࣩ ቆ൬
1
2

+ ߳൰
ି(ଵିఌ)ିଶ

ቇ																																																																	(79) 

for any ߝ > 0. 

Proof: First let  ߮: ℝ → ℝ be any ܥஶ function supported in the interval ቂଵ
ଶ

, 2ቃ. Define 

,ܶ)ܫ (ߤ = න න ߮
ஶ



ଶగ


൬

1
2

+ ߳൰ ݁ିଶగ்ቀ
ଵ
ଶାఢቁ(ఓି	ୡ୭ୱ	ఏ)݀ ൬

1
2

+ ߳൰  ߠ݀

We will show that there is a Schwarz function ߯ such that ߯̂ vanishes in a neighborhood of 
0 and such that, for ߤ > 0 and ܶ ≥ ଵ

ଶ
, 

(ߤ,ܶ)ܫ = ܶି
ଵ
ଶ߯൫ܶ(ߤ − 1)൯ + ࣩ ൬ܶି

ଷ
ଶ(1 + ߤ|ܶ − 1|)ିଵ൰			(80) 

To prove (80), note first of all that ො߮  is an entire function and satisfies 
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| ො߮(ݔ + ݔ)݅ + ߳))|	 ≲ (1 +  ଶ݁గ(௫ାఢ)ି(|ݔ|

when ݔ + ߳ < 0. Making a change of variable and using contour integration, 

,ܶ)ܫ (ߤ = 	2න ො߮
గ


൫ܶ(ߤ − 	cos	ߠ)൯݀ߠ = 	2න ො߮

ଵ

ିଵ
൫ܶ(ߤ − ൯(ݏ

ݏ݀
√1 − ଶݏ

= ܫ	 +  ܫܫ

where 

ܫ = 2݅ න ො߮
ஶ

௧ୀ
൫ܶ(ߤ + 1 − ൯(ݐ݅

ݐ݀

ඥ1 − (−1 + ଶ(ݐ݅
 

ܫܫ = −2݅ න ො߮
ஶ

௧ୀ
൫ܶ(ߤ − 1 − ൯(ݐ݅

ݐ݀

ඥ1 − (1 + ଶ(ݐ݅
 

Using that ߤ > 0, we have 

|ܫ| ≤ 	2න |
ஶ

௧ୀ
ො߮൫ܶ(ߤ + 1 − |൯(ݐ݅

ݐ݀
ݐ√

≤ 	 ൫1 + ܶ(1 + ൯(ߤ
ିଶ

න ݁ିగ்௧
ஶ

௧ୀ

ݐ݀
ݐ√

≲ 	ܶି
ଵ
ଶ൫1 + ܶ(1 + ൯(ߤ

ିଶ
≲ ܶି

ଷ
ଶ(1 + ߤ|ܶ − 1|)ିଵ 

On the other hand, 

ܫܫ =
−2݅
√−݅

න ො߮
ஶ

௧ୀ
൫ܶ(ߤ − 1 − ൯(ݐ݅

ݐ݀
ݐ2√ + ଶݐ݅

 

= 	
−2݅
√−݅

න ො߮
ஶ

௧ୀ
൫ܶ(ߤ − 1 − ൯(ݐ݅

ݐ݀
ݐ2√

+ ࣩ ቆන |
ஶ

௧ୀ
ො߮൫ܶ(ߤ − 1 −  (81)			ቇݐ݀ݐ√|൯(ݐ݅

since | ଵ
√ଶ௧ା௧మ

− ଵ
√ଶ௧

| ≲  The second term in (81) satisfies .ݐ√

න |
ஶ

௧ୀ
ො߮൫ܶ(ߤ − 1 − 	ݐ݀ݐ√|൯(ݐ݅ ≲ 	 (1 + ߤ|ܶ − 1|)ିଵන ݁ିగ்௧

ஶ

௧ୀ
ݐ
ଵ
ଶ݀ݐ

≈ 	ܶି
ଷ
ଶ(1 + ߤ|ܶ − 1|)ିଵ 

The first term in (81) is by change of variable ݐ → ିܶ equal to ݐܶ
భ
మ߯൫ܶ(ߤ − 1)൯ where 

(ݔ)߯ =
−2݅
√−݅

න ො߮
ஶ

௧ୀ
ݔ) − (ݐ݅

ݐ݀
ݐ2√

 

߯ is a Schwarz function, and the support of its inverse Fourier transform is contained in the 

support of ߮‐ in fact ߯̌(ݔ + ߳) is a constant multiple of ఝ(௫ାఢ)
√௫ାఢ

. This proves (80). 
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To prove Corollary (2.3.35) we use the first term in the asymptotic expansion of ߪොଵ: let 
ଵ
ଶ

+ ߳ =  Then .|ݔ|

(ݔ)ොଵߪ = ߨ2√2 ൬
1
2

+ ߳൰
ିଵଶ
	cos	 ൬2ߨ ൬

1
2

+ ߳൰ −
ߨ
4
൰ + ࣩቌ൬

1
2

+ ߳൰
ିଷଶ
ቍ 

See e.g. [88], Theorem 7.7.14 or [96], Lemma IV. 3.11 and the preceding discussion 
relating Bessel functions to ߪଵෞ. It follows that 

௩|ෞ|ߪଵି|ݒ| ൬
1
2

+ ߳൰

= ߨ2√2 ቆ൬
1
2

+ ߳൰ ቇ|ݒ|
ିଵଶ
	cos	 ൬2ߨ ൬

1
2

+ ߳൰ |ݒ| −
ߨ
4
൰

+ ࣩቌቆ൬
1
2

+ ߳൰ ቇ|ݒ|
ିଷଶ
ቍ																																																																											(82) 

Substituting (82) into the definition of ܬభ
మାఢ

 we find that 

൫2√2ߨ൯
ିଵ
ଵܬ
ଶାఢ

(ݔ)

=  ቆ൬
1
2

+ ߳൰ ቇ|ݒ|
ିଵଶ

௩∈ℤమ
cos ൬2ߨ ൬

1
2

+ ߳൰ |ݒ| −
ߨ
4
൰ ݍ ቌ

|ݒ|
1
2 + ߳

ቍ

+ ࣩ ቌ  ݍ
௩∈ℤమ\{}

ቌ
|ݒ|

1
2 + ߳

ቍቆ൬
1
2

+ ߳൰ ቇ|ݒ|
ିଷଶ
ቍ 

The second term here is ≲ ቀଵ
ଶ

+ ߳ቁ
ିଵ

 since there are ࣩ ൬ቀଵ
ଶ

+ ߳ቁ
ଶ
൰ lattice points ݒ with 

భ
మାఢ

ଶ
≤ |ݒ| ≤ 2 ቀଵ

ଶ
+ ߳ቁ. We rewrite the first term using the Poisson summation formula, 

obtaining 

൫2√2ߨ൯
ିଵ
ଵܬ
ଶାఢ

(ݔ)

= ൬
1
2

+ ߳൰
ିଵଶ

 r
௩∈ℤమ

eቌ݁
గ
ସන ݁ଶగ୧௩⋅(௫ାఢ)

ℝమ
ݔ|

+ ߳|ି
ଵ
ଶ݁ିଶగቀ

ଵ
ଶାఢቁ|௫ାఢ|ݍ ቌ

ݔ| + ߳|
1
2 + ߳

ቍ݀(ݔ + ߳)ቍ + ࣩ ቆ൬
1
2

+ ߳൰
ିଵ

ቇ 
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= 	 ൬
1
2

+ ߳൰
	

 re
௩∈ℤమ

൭݁
గ
ସන ݁

ିଶగቀଵଶାఢቁቆቀ
ଵ
ଶାఢቁ|௫ାఢ|ି௩⋅(௫ାఢ)ቇ

ℝమ
ݔ| + ߳|ି

ଵ
ଶݔ)ݍ + ݔ)݀(߳ + ߳)൱

+ ࣩ ቆ൬
1
2

+ ߳൰
ିଵ

ቇ 

= 	 ൬
1
2

+ ߳൰
	


௩ஷ

re

⎝

⎜
⎛
݁
గ
ସ න න ߮

ஶ



గ

ିగ
݁(ݐ)

ିଶగቀଵଶାఢቁ|௩|௧ቌ
ଵ
ଶାఢ
|ఔ| ି	ୡ୭ୱ	ఏቍ

ߠ݀ݐ݀

⎠

⎟
⎞

+ ࣩ ቆ൬
1
2

+ ߳൰
ିଵ

ቇ 

where ߮(ݐ) = ݐ
భ
మ(ݐ)ݍ. Here the second line followed by change of variables ݔ + ߳ →

ቀଵ
ଶ

+ ߳ቁ ݔ) + ߳), and on the last line we introduced polar coordinates with ߠ = ݔ)0ݒ∠ +

߳), and used that the contribution from ݒ = 0 is equal to reቆ݁
ഏ
ర ቀଵ

ଶ
+ ߳ቁ

	
ො߮ ൬ቀଵ

ଶ
+ ߳ቁ

ଶ
൰ቇ 

and therefore ࣩ ቆ൬ቀଵ
ଶ

+ ߳ቁ
ଶ
൰
ିଵ

ቇ . Now we apply (80) to the terms in the sum, with 

= ቀଵ
ଶ

+ ߳ቁ ߤ ,|ݒ| =
భ
మାఢ

|௩|
. Letting ߰(ݐ) = re ൬݁

ഏ
ర߯(ݐ)൰ we conclude that 

൫2√2ߨ൯
ିଵ
(ݔ)ேܬ

= ൬
1
2

+ ߳൰
	

ቆ൬
1
2

+ ߳൰ ቇ|ݒ|
ିଵଶ

௩ஷ

߰൭൬
1
2

+ ߳൰ ቆ|ݒ| − ൬
1
2

+ ߳൰ቇ൱

+ ࣩ ቌ൬
1
2

+ ߳൰
	

ቆ൬
1
2

+ ߳൰ ቇ|ݒ|
ିଷଶ

௩ஷ

൬1 + ൬
1
2

+ ߳൰ |ݒ|| − ൬
1
2

+ ߳൰ |൰
ିଵ

ቍ

+ ࣩ ቆ൬
1
2

+ ߳൰
ିଵ

ቇ 

The second term is ≲ ቀଵ
ଶ

+ ߳ቁ
ିଶାఢ

	max	 ቆ
భ
మାఢ

ቀభమାఢቁ,ଷାఢ
, 1ቇ, since the contribution to the sum 

from terms with |ݒ| ≤
భ
మାఢ

ଶ
 is clearly very small and the contribution from	|ݒ| ≥

భ
మାఢ

ଶ
 can be 

estimated by Corollary (2.3.31). (79) follows from this on replacing ߰ by 2√2߰ߨ.  

Corollary (2.3.36)[240]: Assume the bound (75). Then 

	|(ݔ)ଵାఢܭ| ≲ (1 +  (83)																																					(ଵିఉ)ି|ݔ|(߳
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if |ݔ| ≥ 1 + ߳ ≥ 1. 

Proof: We first prove the estimate (83) with ܭቀభమାఢቁ
 replaced by ܬభ

మାఢ
. We define (ݐ) =

ିݐ
భ
మ߰൬ቀଵ

ଶ
+ ߳ቁ ቀݐ − (ଵ

ଶ
+ ߳)ቁ൰ , with ߰ as in Corollary (2.3.35). Since ߰ is in the Schwarz 

space it is easily seen using the product rule that for any fixed ߚ > 0, 

න 	
ஶ

௧ୀଵ
ݐ݀|(ݐ)ఉ|݂ᇱݐ	 ≲ ൬

1
2

+ ߳൰
ఉିଵଶ

																																																(84) 

uniformly in ߳ ≥ 0. Now consider the quantity (߳ ≥ 0, ߳ ≥ 0) 

 |
௩∈ℤ	మ,௩ஷ

ି|ݒ
ଵ
ଶ߰൭൬

1
2

+ ߳൰ ቆ|ݒ| − ൬
1
2

+ ߳൰ቇ൱ = 	න ݂
ஶ

௧ୀ
(ݐ)݊݀(ݐ)

= 	න 2
ஶ

௧ୀ
ݐ݀(ݐ)݂ݐߨ + න ݂

ஶ

௧ୀ
(ݐ)݊)݀(ݐ) −  (ଶݐߨ

= 	න 2
ஶ

௧ୀ
ݐ݀(ݐ)݂ݐߨ + න (ݐ)݊) − (ଶݐߨ

ஶ

௧ୀ
݂ᇱ(ݐ)݀ݐ			(85) 

The first term in (85) is easily seen to be very small: 

ቤන 2
ஶ

௧ୀ
ቤݐ݀(ݐ)݂ݐߨ = ߨ2 ቮන ൬ݐ +

1
2

+ ߳൰
ଵ
ଶஶ

௧ୀିቀଵଶାఢቁ
߰ ቆ൬

1
2

+ ߳൰ ቇݐ ቮݐ݀

= ߨ2	 ቮන ൬ݐ +
1
2

+ ߳൰
ଵ
ଶஶ

ିஶ
߰ ቆ൬

1
2

+ ߳൰ ቇݐ ቮݐ݀ + ࣩ ൭ቆ൬
1
2

+ ߳൰
ଶ

ቇ
ିଵ

൱

≲ ൬
1
2

+ ߳൰
ିଵଶ
න 	
ஶ

௧ୀିஶ
|ݐ| ቤ߰ ቆ൬

1
2

+ ߳൰ ቇቤݐ ݐ݀ + ቆ൬
1
2

+ ߳൰
ଶ

ቇ
ିଵ

≈ 	൬
1
2

+ ߳൰
ିହଶ

 

Here the second line followed since ߰ is in the Schwarz space and the third line followed 

since ቀଵ
ଶ

+ ߳ + ቁݐ
భ
మ = ቀଵ

ଶ
+ ߳ቁ

భ
మ + ࣩ ቆቀଵ

ଶ
+ ߳ቁ

ିభమ ቇ and ߰(0)|ݐ| = 0. The second term in 

(85) is	≲ ∫ ఉஶݐ
௧ୀଵ |݂ᇱ(ݐ)|݀ݐ + ∫ ଶଵݐ

௧ୀ |݂ᇱ(ݐ)|݀ݐ ≲ ቀଵ
ଶ

+ ߳ቁ
ఉିభమ by (84) and an obvious 

estimate for the contribution from ݐ < 1. Now we use (79). Let ଵ
ଶ

+ ߳ =  We’ve .|ݔ|

assumed that ߳ ≥ 0, so the error term in (79) is ≲ ቀଵ
ଶ

+ 2߳ቁ
ିଵ

 Hence 
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ଵܬ|
ଶାఢ

|(ݔ) 	≲ ൬
1
2

+ ߳൰ ൬
1
2

+ 2߳൰
ିଵଶ

|  |
௩∈ℤ	మ,௩ஷ

ି|ݒ
ଵ
ଶ߰൭൬

1
2

+ ߳൰ ቆ|ݒ| − ൬
1
2

+ 2߳൰ቇ൱ |

+ ൬
1
2

+ 2߳൰
ିଵ

≲ ൬
1
2

+ ߳൰ ൬
1
2

+ 2߳൰
ିଵଶ
⋅ ൬

1
2

+ 2߳൰
ఉିଵଶ

+ ൬
1
2

+ ߳൰ ൬
1
2

+ 2߳൰
ିଵଶ

⋅ ൬
1
2

+ 2߳൰
ିଵଶ
൬

1
2

+ ߳൰
ିଶ

+ ൬
1
2

+ 2߳൰
ିଵ

≈ ൬
1
2

+ ߳൰ ൬
1
2

+ 2߳൰
ି(ଵିఉ)

 

When ݐ > 0 we can express  in the form (ݐ) = ∑ ஹݍ ൫2ݐ൯ where ݍ is supported in 

ቂଵ
ଶ

, 2ቃ. Observe that if 
భ
మାఢ

ଶೕ
< ଵ

ଶ
 then the sum defining ܬభ

మశച

మೕ

 is empty. Hence |ܭభ
మାఢ

|(ݔ) ≤

∑ | భܬ
మశച

మೕ

|(ݔ) ≲ ∑
భ
మାఢ

ଶೕ (ଵିఉ)ି	|ݔ| ≲ ቀଵ
ଶ

+ ߳ቁ   .and the proof is complete (ଵିఉ)ି|ݔ|
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Chapter 3 

Smooth Functions with Dual Locally and Structure 

 

We show that the space ࣝ[0,Ω) admits ࣝஶ partitions of unity for every ordinal Ω. 
The compact spaces homeomorphic to weak* compact subsets of a dual LUR Banach 
space have the same properties as the class of Radon-Nikodym compact spaces. 

Section (3.1): Partitions of Unity on Certain Banach Spaces 

      In [101], a method, based on the use of “Talagrand operators”, for defining infinitely 
differentiable equivalent norms on the spaces ࣝ(ܮ) for certain locally compact, scattered 
spaces ܮ. A special case of this result was that a ࣝஶ renorming exists on ࣝ(ܮ) for every 
countable locally compact ܮ. Recently, Hܽ́jek [100] extended this result by showing that a 
real normed space ܺ admits a ࣝஶ renorming whenever there is a countable subset of the 
unit ball of ܺ∗ on which every element of ܺ attains its norm, that is to say, a countable 
boundary. This suggested that the locally compact topology on ܮ was perhaps not essential 
in [101], and we shall develop the methods of that work in a way that does not require 
such a topology. We obtain infinitely differentiable norms on certain (typically non-
separable) Banach spaces ܺ as well as on some certain injective tensor products ܺ	⊗ఢ   .ܧ	

We present a lemma about partitions of unity. It is an open problem whether a non-
separable Banach space with a ࣝ norm (or, more generally, a ࣝ “bump function”) 
admits ࣝ partitions of unity, though many partial results in this direction are known. Our 
lemma enables us to show that the answer is yes for classes of Banach spaces that admit 
projectional resolutions of the identity. In particular, we show that the space ࣝ[0,Ω) 
admits ࣝஶ partitions of unity for every ordinal Ω. Results from are used in [102] to give 
examples of Banach spaces admitting infinitely differentiable bump functions and 
partitions of unity but no smooth norms.  

    We have followed the conventions of [99]. Although that work contains everything that 
we will need in order to understand the present, we recall for convenience a few facts and 
definitions. It should be noted that we are concerned only with real, as opposed to 
complex, Banach spaces. When we refer to a function on a Banach space as being of class 
ࣝ , where ݇ is a positive integer, it is the standard (Fr݁́chet) notion of smoothness that we 
are employing. Making a mild abuse of language, we shall say that a norm ‖	·‖ on a 
Banach space ܺ is of class ࣝ if the function ݔ	  .{0}	\	is of that class on the set ܺ ‖ݔ‖	⟼
(Of course, no norm is differentiable at 0.)  

     A bump function on a Banach space ܺ is a function ߮ ∶ 	ܺ	 → ℝ with bounded, non-
empty support. On finite-dimensional spaces, ࣝஶ bump functions are plentiful (and 
fundamental to the theory of distributions). The existence of a ࣝଵbump function on an 
infinite-dimensional Banach space ܺ is already a strong condition. 

For a separable space ܺ, it is equivalent to separability of the dual space ܺ∗, and to the 
existence of an equivalent ࣝଵ norm. More generally, the existence of a ࣝଵ	bump on ܺ 
implies that ܺ belongs to the important class of Asplund spaces. Whether every Asplund 
space admits a ࣝଵ bump is an open problem, as is the relationship between existence of a 
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ࣝ bump and of a ࣝ norm on a separable space once ݇ is greater than 1. On the other 
hand, the equivalences in the following proposition are very easy to establish.  

Proposition (3.1.1)[97]: For a real Banach space ܺ and ݇	 ∈ ℕ	 ∪	 {∞}, the following are 
equivalent:  

    (i) ܺ admits a ࣝ -bump function;  

    (ii) there exists a real number ܴ	 > 	1 and a function ߰ ∶ 	ܺ	 → ℝ, of class ࣝ , such that 
0	 ≤ 	߰	 ≤ (ݔ)߰,1	 	= 	0 when ‖ݔ‖ ≤ 	0 and ‖ݔ‖ = 	1 when ‖ݔ‖ ≥ 	ܴ;	 

    (iii) there is a function ߠ ∶ 	ܺ	 → ℝ, of class ࣝ , such that (ݔ)ߠ 	→ ‖ݔ‖	ݏܽ	∞	 → ∞.	 

Proof. (i)
											
ሳልልሰ (ii):  

     Let ߮ be a ࣝ bump function with ߮(0) 	= 	1. There exist positive real numbers ߜ and 
(ݔ)߮ such that ܯ ≥ ଶ

ଷ
 when ‖ݔ‖ ≤ (ݔ)߮ and ߜ	 	= 	0 when ‖ݔ‖ ≥ ߨ Let	.ܯ	 ∶ ℝ	 → 	 [0, 1] 

be a ࣝஶ function with (ݐ)ߨ 	= 	0 for ݐ	 ≥ ଶ
ଷ
 and (ݐ)ߨ 	= 	1 for ݐ	 ≤ ଵ

ଷ
 . Then the function ߰ 

defined by  

(ݔ)߰ 	=  ((ݔߜ)߮)ߨ	

has the required properties, with ܴ	 = 	  	.ܯଵିߜ

    (ii) 
											
ሳልልሰ (iii):  

    Given ܴ and ߰ as in (ii), we may define 

(ݔ)ߠ	 	= ߰(ܴିݔ)
ஶ

ୀ

	,	 

noting that on each ball {ݔ	 ∈ 	ܺ ∶ 	 ‖ݔ‖ < 	ܰ} the sum has only finitely many nonzero 
terms.  

    (iii) 
											
ሳልልሰ (i):  

    Given ߠ, we define ߮(ݔ) 	= (ݔ)ߠ)ߨ	 	− ߨ where	,((0)ߠ	 ∶ ℝ	 → ℝ is the function 
already used above.  

     Many of our results concern spaces that are subspaces of the space ℓஶ(ܮ) of bounded 
real-valued functions on a set ܮ. For elements ݂ of ℓஶ(ܮ) we use “coordinate” notation, 
writing ( ௧݂)௧∈ and thinking of the ௧݂ as coordinates. A certain class of very nice functions, 
already well-established, will be of particular importance. We shall say that a function ߮, 
defined on a subset ܦ of ℓஶ(ܮ), depends locally on finitely many coordinates if, for each 
݂ in ܦ, there exist an open neighbourhood ܩ of ݂ in ܦ and a finite subset ܯ of ܮ such 
that, for ݂	 ∈ 	ݐ)	the value of ߮(݂) depends only on ௧݂ ,ܩ	 ∈  	.(ܯ	

Theorem (3.1.2)[97]: Let ܮ	 be a set and let ܷ(ܮ) be the subset of the direct sum 
ℓஶ(ܮ) 	⊕	ܿ(ܮ) consisting of all pairs (݂,ݔ)	such that ‖݂‖ஶ and ‖ݔ‖ஶ are both strictly 
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less than ቛ|݂| + ଵ
ଶ
ቛ|ݔ|	

ஶ
. The space ℓஶ(ܮ) 	⊕	ܿ(ܮ)	admits an equivalent norm ‖	·‖ with 

the following properties:  

       (i) ‖	·‖  is a lattice norm, in the sense that ‖(݃,ݕ)‖ ≤ 	‖(݂, |݃| whenever ‖(ݔ 	≤ 	 |݂| 
and |ݕ| 	≤ 	  	;|ݔ|

       (ii) ‖	·‖ is infinitely differentiable on the open set ܷ(ܮ);	 

       (iii) locally on ܷ(ܮ), ‖(݂,  ;depends on only finitely many non-zero coordinates ‖(ݔ
that is to say, for each (݂	,ݔ	) 	 ∈ 	ܰ there is a finite (ܮ)ܷ	 ⊆  and an open ܮ	
neighbourhood ܸ of (݂	, (ݔ,݂) such that for ,(ܮ)ܷ ) in	ݔ 	 ∈ 	ܸ the norm ‖(݂,  is ‖(ݔ
determined by the values of ௧݂ and ݔ௧ with ݐ	 ∈ 	ܰ and such that ௧݂ ≠ 	0, ௧ݔ ≠ 	0	for all 
such (݂,ݔ) and ݐ.  

      We start the proof of Theorem (3.1.2) by fixing a strictly increasing ࣝஶ function		߸ ∶
	[0, 2) 	→ 	 [0,∞) such that ߸(ݑ) 	→ 	∞	as ݑ	 ↑ 	2 and ߸(ݑ) 	= 	0 for ݑ	 ≤ 	1. The inverse 
function ߸ିଵ is ࣝஶ and strictly increasing from (0,∞) onto (1, 2). We define ߠ ∶
	[0,∞	 → 	 [0,∞) by  

(ܿ)ߠ 	= 	න
ݒ݀

߸ିଵ(ݒ)





		,	 

and start by recording some facts about this function.  

Lemma (3.1.3)[97]:  

    (i) The function ߠ is strictly increasing and strictly concave from [0,∞)	onto [0,∞). It 
is of class ࣝஶ on (0,∞),	with ߠ′(ܿ) 	= 	1/߸ିଵ(ܿ)	(ܿ	 > 	0), and differentiable at 0	with 
ᇱ(0)ߠ = lim

↓
	1/߸ିଵ(ܿ) 	= 	1.  

     (ii) The composite function ߠ ∘ ߸:	[0, 2) 	→ 	 [0,∞)	is infinitely differentiable, with  

	ߠ) ∘ (ݑ)′(߸ 	= 	 ൜ݑ
ିଵ߸′(ݑ)											(ݑ	 ≥ 	0)

	ݑ)																											0 = 	0)		 

      (iii) We have ଵ
ଶ
	ܿ < (ܿ)ᇱߠܿ	 	< (ܿ)ߠ	 	< 	ܿ for all positive ܿ.  

     The next lemma can be regarded as the finite-dimensional part of the proof of Theorem 
(3.1.2).  

Lemma (3.1.4)[97]: Let ܰ be a finite set, let ߟ be a positive real number and and let ܹ be 
the subset of ℝே 	× ℝே consisting of all (f,x) such that 
ቛ|| + ଵ

ଶ
ቛ|ܠ|	

ஶ
	> {ஶ‖ݔ‖,ஶ‖݂‖}ݔܽ݉	 	+ ܨ Let the functions .ߟ	 ∶ ℝே 	× ℝே 	×

	[0,∞)ே 	→ ℝ,ܩ ∶ ℝே × 	ℝே 	→ 	ℝ	 be defined by  

,)ܨ ,ܠ (܋ = exp −ܿ௧
௧∈ே

	൩[ܿ௧| ௧݂| + [|௧ݔ|(௧ܿ)ߠ	
௧∈ே
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,)ܩ	 (ܠ = sup
∈[,ஶ)ಿ

,)ܨ	 ,ܠ  	.(܋

If	(, (ܠ 	 ∈ 	ܹ then the supremum in the definition of )ܩ,  this ;܋ is attained at a unique(ܠ
has the property that ܿ௧ ܋ 	= 	0 whenever | ௧݂| 	≤ |௧ݔ| or ߟ	 	≤  is of class ܩ The function .ߟ	
ࣝஶon ܹ. 

Proof. To start with, let us consider a fixed (ܠ,) ∈ 	ܹ. We have  

ܨ߲
߲ܿ௦

	= exp −ܿ௧
௧∈ே

	൩ | ௦݂| + |௦ݔ|ᇱ(ܿ௦)ߠ −[ܿ௧| ௧݂| + [|௧ݔ|(௧ܿ)ߠ	
௧∈ே

൩ 	

≤ ݔ݁	 −ܿ௧
௧∈ே

	൩ 	[(1	 − 	 ܿ௦)| ௦݂| 	+ (௦ܿ)′ߠ)	 	−  	,	[|௦ݔ|((௦ܿ)ߠ	

which is non-positive when ܿ௦ 	≥ 	1. Thus the supremum in the definition of )ܩ,  may (ܠ
be taken over the compact set [0, 1]ே rather than over [0,∞)ே ; this supremum is thus 
attained at some c. By elementary calculus, any c at which the supremum is attained 
satisfies, for all ݏ, either  

(ia)																													ܿ௦ 	> 	0								ܽ݊݀					| ௦݂| + |௦ݔ|ᇱ(ܿ௦)ߠ	 =  																																ߥ	

(ib)																							ݎ					ܿ௦ 	= 	0					ܽ݊݀								| ௦݂| + |௦ݔ|ᇱ(0)ߠ	 ≤  																														ߥ	

where ߥ	 = ∑ [ܿ௧| ௧݂| + ௧|]௧∈ேݔ|(௧ܿ)ߠ	 	. In case (ia) we have  

(ii)																																																ܿ௦ = 	߸	 ቀ |௫ೞ|
ఔ	ି	|ೞ|ቁ																																																						 

because ߸ is the function inverse to 1/ߠ′ . In fact, this equality holds in case 1b as well 
because then | ௧݂| 	+ 	 |௧ݔ| 	= 	 | ௧݂| 	+ |௧ݔ|(0)′ߠ	 	≤ 	ߥ)/|௧ݔ|	whence ,ߥ	 −	 | ௧݂|) 	≤ 	1 and 
	ߥ)/|௧ݔ|)߸ −	 | ௧݂|)) 	= 	0	 = 	 ܿ௧. Thus ߥ is a solution of  

(iii)																						ߥ	 = ∑ ቂ߸ ቀ |௫|
ఔ	ି	||ቁ | ௧݂| + ߠ	 ∘ ߸ ቀ |௫|

ఔ	ି	||ቁ ௧|ቃ௧∈ேݔ| 															 

Since the right hand side of this equation is a decreasing function of ߥ it has only one 
solution. By equation (ii), we now see that ܿ௦	(ݏ	 ∈ 	ܰ) are uniquely determined too.  

     Because (, (ܠ ∈ 	ܹ, there is some ݏ such that | ௦݂| + ଵ
ଶ
|௦ݔ|	 	> {ஶ,‖݂‖ஶ‖݂‖}ݔܽ݉	 +

ᇱ(ܿ௦)ߠ since ;ߟ	 > ଵ
ଶ
 we have	ߥ	 ≥ 	 | ௦݂| + ଵ

ଶ
	ߥ ௦| by (ia) and (ib). Thusݔ|	 > 	 | ௧݂| +  and ߟ

	ߥ > 	 |௧ݔ| 	+ |௧ݔ| So if either .ݐ for all ߟ	 	≤ | or ߟ	 ௧݂| 	≤  ,it must be that (ib) holds ߟ	
with	ܿ௧ 	= 	0.	 

     We now move on to consider the behaviour of ߥ	 = and of ܿ௧ (ܠ,)ߥ	 = 	 ܿ௧(ܠ,) as (f, 
x) varies over ܹ. We consider the function ܪ defined on the open set ܸ	 = 	 ,)} (ݒ,ܠ ∶
,)	 (ܠ 	 ∈ 	ܹ and ߥ	 > {ஶ‖ݔ‖,ஶ‖݂‖}ݔܽ݉	 	+ of ℝே {ߟ	 	× ℝே 	× ℝ		by  

,ܠ,)ܪ (ݒ 	= ቈ߸ቆ
|௧ݔ|

	ߥ −	 | ௧݂|
ቇ | ௧݂| + ߠ	 ∘ ߸ ቆ

|௧ݔ|
	ߥ −	 | ௧݂|

ቇ ௧|ݔ|
௧∈ே

	.	 
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We have already noted that for each (, (ܠ ∈ 	ܹ there is a unique ߥ	 = ,))ߥ	  such that (ܠ
,ܠ,)ܪ (ݒ 	= 	0. It is also easy to verify that డு

డఔ
	≥ 	1 everywhere on ܸ. Thus the infinite 

differentiability of (, (ܠ ⟼ ,)ߥ  will follow from the Implicit Function Theorem (ܠ
provided we can show that ܪ is itself infinitely differentiable. The absolute value signs 
appear to present a problem on a neighbourhood of a point where one of the variables ௧݂ or 
| ௧ is zero. However, as soon as eitherݔ ௧݂| or |ݔ௧| is smaller than ߟ, the terms 
߸ ቀ |௫|

ఔ	ି	||ቁ | ௧݂| and ߠ ∘ ߸ ቀ |௫|
ఔ	ି	||ቁ  ௧| vanish, showing that we do not have a problem atݔ|

all.  

     Once we have shown that ߥ varies in an infinitely differentiable fashion with (ܠ,), it 
follows from (ii) that the same is true for all the ܿ௧ and hence for ܩ.  

     We now take up the proof of the theorem. We define a norm ‖	·‖ on ℓஶ(ܮ) ⊕బ   by (ܮ)

‖(݂, ‖(ݔ = 	ݑݏ	 ൝݁ି∑ 	ௗ௧∈ಽ 		[݀௧| ௧݂| 	+ [|௧ݔ|(௧݀)ߠ	
௧∈

∶ 	ݐ݀	 ≥ ௧݀	݀݊ܽ		ݐ	݈݈ܽ	ݎ݂	0	 	

=  	.	ൡ	ݐ	ݕ݊ܽ݉	ݕ݈݁ݐ݂݅݊݅	ݐݑܾ	݈݈ܽ	ݎ݂	0	

and claim that this has the properties we require. It is clear that ‖	·‖ is a lattice norm and 
that  

݁ିଵ	݉ܽݔ	 ൜‖݂‖ஶ,
1
2
ൠ	ஶ‖ݔ‖	 ≤ 	 ‖(ݔ,݂)‖ ≤ 	 ݁ିଵ(‖݂‖ஶ 	+  	.(ஶ‖ݔ‖	

     For (݂,ݔ) 	 ∈   we define (ܮ)ܷ	

,݂)ߦ (ݔ = ฯ	|݂| +
1
2
ฯ|ݔ|	

ஶ
	− max{‖݂‖ஶ,‖ݔ‖ஶ}																			 

,݂)ܯ	 (ݔ = 	 ൜ݐ	 ∈ ܮ	 ∶ 	 |(ݐ)݂| + 	 |(ݐ)ݔ| ≥ 	ฯ	|݂| +
1
2
ฯ|ݔ|	

ஶ
ൠ						 

																ܰ(݂, (ݔ 	= 	 	ݐ} ∈ ܮ	 ∶ 	 |(ݐ)݂| + 	 |(ݐ)ݔ| ≥ ฯ	|݂| +
1
2
ฯ|ݔ|	

ஶ
−

1
2
,݂)ߦ	  	{(ݔ

and note that ܰ(݂, 	ݔ is a finite set, because (ݔ ∈ 	 ܿ(ܮ) and ܰ(݂, (ݔ 	⊆ 	 ݐ} ∶ 	 |௧ݔ| ≥
ଵ
ଶ
,݂)ߦ	  it is enough to take the ‖(ݔ,݂)‖	We shall show first that in the definition of .{(ݔ

supremum over families ݀	 = 	 (݀௧) such that ݀௧ 	= 	0 for all ݐ ∉ ,݂)ܯ	  Indeed, let	.(ݔ
(݂, 	݀ and suppose that ,(ܮ)ܷ be in (ݔ = 	 (݀௧)௧∈ is such that ݀௧భ > 	0 for some ݐଵ ∉
,݂)ܯ	 |(ݐ)݂|  be chosen so thatݐ Let .(ݔ + ଵ

ଶ
|(ݐ)ݔ|	 	= ቛ	|݂| + ଵ

ଶ
ቛ|ݔ|	

ஶ
and let ݀′ =

	(݀௧ᇱ 	) be defined by  

݀௧ᇱ = 	 ቐ
									݀௧																									݂݅	ݐ ∉ 	 ,ݐ} {ଵݐ

	ݐ	݂݅																											0 = 	 ଵݐ
݀௧బ 	+ 	݀௧భ 	ݐ	݂݅											 = 	 .ݐ
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We note that ∑ ݀௧ᇱ௧ 	= ∑ ݀௧௧ 	 and that ߠ൫݀௧బ
ᇱ 	൯ − ൫݀௧బߠ	 	൯ > ଵ

ଶ
	݀௧భ 	, because ߠ′ is 

everywhere greater than ଵ
ଶ
 .  

[݀௧ᇱ| ௧݂| + [|௧ݔ|(௧ᇱ݀)ߠ	
௧∈

	− 	[݀௧| ௧݂| + [|௧ݔ|(௧݀)ߠ	
௧∈

																																																		 

																													= ݀௧భൣห ௧݂బห − 	 ห ௧݂భห൧ 	+ 	 ቀߠ൫݀௧బ
ᇱ ൯ − ൫݀௧బ൯ቁߠ	 หݔ௧బห −  ௧భหݔ൫݀௧భ൯หߠ	

																														≥ 	 ݀௧భ ቂห ௧݂బห+ ଵ
ଶ
|௧బݔ|	 	− 	 | ௧݂భ| 	− 	   ௧భ|ቃݔ|

and this is strictly positive by our assumptions about ݐ and ݐଵ. In this way, we may reduce 
to 0 all coordinates ݀௧ with ݐ ∉  while increasing the value of (ݔ,݂)ܯ	
[−∑ ௧ݐ݀ ]	[∑ ݀௧| ௧݂| 	+ ௧|௧ݔ|(ݐ)ߠ	 ] .  

      We now set about finding the neighbourhoods ܸ and finite sets ܰ referred to in (iii). 
Given (݂	,ݔ	) 	 ∈ 	ܰ we set ,(ܮ)ܷ	 = 	ܰ(݂	,   and define ܸ to be the open set	)	ݔ

ܸ	 = 	 	݂‖	:(ݔ,݂)} − 	݂‖ஶ,‖ݔ	 ‖ஶݔ	− 	<
1
7
,	݂)ߦ	  .{(	ݔ

It is easy to check that if (݂,ݔ) 	 ∈ 	ܸ then ߦ(݂, (ݔ > ଵ
ଶ
,	݂)ߦ	 ,݂)ܯ ) and	ݔ (ݔ 	⊆ 	ܰ. By 

what we have already proved, this shows that on the open set ܸ our norm depends only on 
coordinates in the finite set ܰ.  

       Moreover, for (݂, (ݔ 	 ∈ 	ܸ	we have   

‖(ݔ,݂)‖ = sup
∈[,ஶ)ಿ

,ࢉ)ܨ	 ( ௧݂)௧∈ே	,  	(	௧∈ே(௧ݔ)

where ܨ ∶ 	 [0,∞)ே 	× ℝே 	× 	ℝே is the function  

,ࢊ)ܨ , (ܠ 	= ݔ݁ ൭−݀ݐ
௧∈ே

൱	[݀௧| ௧݂| 	+ [|௧ݔ|(௧݀)ߠ	
௧∈ே

	.	 

We can thus apply Lemma (3.1.4) (with ߟ	 = ଵ
ଶ
,	݂)ߦ	  ‖ is	·	)) to conclude that ‖	ݔ

infinitely differentiable on ܸ	.  

      In the following corollary to Theorem (3.1.2) we use the above remark to deduce a 
renorming result about injective tensor products. We recall some facts about such 
products. If ܺ and ܧ are Banach spaces and ߟ,ߦ are elements of the dual spaces ܺ∗,ܧ∗ 
respectively, then a linear form ߦ ⊗  may be defined on the algebraic tensor product ߟ
  by ܧ	⨀	ܺ

	ߦ) ⊗ ݔ	)(ߟ	 	⊗	 ݁



ୀଵ

) 	= 〈ݔ,ߦ ,ߟ〉〈	 ݁〉


	.	 

The injective tensor product ܺ	⊗ఢ  for the	ܧ	⨀	ܺ is defined to be the completion of ܧ	
norm defined by  
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ఢ‖ݖ‖ 	= 	ߦ)〉|}ݔܽ݉	 ⊗ ,(ߟ	 |〈ݖ ∶ 	ߦ	 ∈ 	ܾ݈݈ܽ	ܺ∗		, 	ߟ ∈ ,	∗ܧ	݈݈ܾܽ	 }.	 

The elementary tensor forms ߦ	 ⊗ 	ܺ extend by continuity to ߟ	 ⊗ఢ 	ߦ} and ܧ	 ⊗ ߟ	 ∶ 	ߦ	 ∈
	ܾ݈݈ܽ	ܺ, 	ߟ ∈ 	ܺ) is a weak* compact subset of ball	{ܧ	݈݈ܾܽ	 ⊗ఢ  on which every ∗(ܧ	
element of ܺ	 ⊗ఢ   .attains its norm ܧ	

      If ܳ ∶ 	 ଵܺ 	→ 	ܺଶ and ܴ ∶ ଵܧ	 	→  ଶ are bounded linear operators then a bounded linearܧ	
operator ܳ	 ⊗ 	ܴ ∶ 	 ଵܺ 	⊗ఢ ଵܧ	 	→ 	ܺଶ 	⊗ఢ 	ܳ) ଶ is determined byܧ	 ⊗ 	ݔ)(ܴ	 ⊗ 	݁) 	=
(ݔܳ)	 	⊗ 	(ܴ݁). A special case is the so-called “slice map” ܫ 	⊗ ߟ	 ∶ 	ܺ	 ⊗ 	ܧ	 → 	ܺ 
derived from an element ߟ of ܧ∗ and given by (ܫ 	⊗ 	ݔ)(ߟ	 ⊗ 	݁) 	= 	 ,ߟ〉  By our .ݔ〈݁
earlier remark about the attainment of norms on elementary tensor forms, we see that for 
any ݖ	 ∈ 	ܺ	 ⊗ఢ 	ߟ there is some ܧ	 ∈ ఢ‖ݖ‖	with		∗ܧ	݈݈ܾܽ	 	= ܫ)	‖ 	⊗   .‖(ݖ)(ߟ	

     In the special case where ܺ is a space ℓஶ(ܮ), then ܺ	⊗ఢ  identifies isometrically ܧ	
with a subspace of the vector-valued function space ℓஶ(ܮ;  the elementary tensor) (ܧ	
௧∈(௧ݔ) 	⊗ 	݁ corresponding to ݐ	 ⟼ 	ݖ ௧݁). The effect of a slice map onݔ	 ∈ 	 ℓஶ(ܮ) ⊗ఢ  ܧ	
regarded as an element (ݖ௧)௧∈ of ℓஶ(ܮ;   is simply (ܧ	

(ܮ)ℓಮܫ) 	⊗ (ݖ)(ߟ	 	= 	 ,ߟ〉)  .௧〉)௧∈ݖ

Corollary (3.1.5)[97]: Let ܺ be a Banach space and let ܮ be a set. Suppose that there exist 
a linear homeomorphic embedding ܵ ∶ 	ܺ	 → 	 ℓஶ(ܮ) and a linear operator ܶ ∶ 	ܺ	 → 	 ܿ(ܮ) 
with the property that (ܵ(ݔ),ܶ	(ݔ))	is in the set ܷ(ܮ) of Theorem (3.1.2) whenever ݔ is a 
non-zero element of ܺ. Then ܺ admits an equivalent ࣝஶ norm. Moreover, whenever the 
Banach space ܧ admits an equivalent ࣝ norm so does the injective tensor product 
ܺ	 ⊗ఢ   .ܧ	

Proof. It is clear that, using the norm on ℓஶ(ܮ) 	⊕ 	ܿ(ܮ) that we defined in Theorem 
(3.1.2), we may set  

‖ݔ‖ = 	  	‖((ݔ)	ܶ,(ݔ)ܵ)‖

and obtain an infinitely differentiable norm on ܺ.  

      Now let ܧ be a Banach space with a ࣝ norm	‖	·‖ா 	. For ݂	 ∈ 	 ℓஶ(ܮ;  we define (ܧ	
݂ܰ	 ∈ 	 ℓஶ(ܮ) by  

(݂ܰ)௧ 	= 	 ‖ ௧݂‖ா 	.	 

The operators ܵ and ܶ	induce	ܵ ⊗ ாܫ 	and ܶ	 ⊗  ா, taking the injective tensor productܫ
ܺ	 ⊗ఢ (ܮ)to ℓஶ ܧ	 ⊗ఢ (ܮ)and ܿ ܧ	 ⊗ఢ (ܮ)respectively. Identifying ܿ ܧ	 ⊗ఢ  with	ܧ	
ܿ(ܮ; (ܮ)and ℓஶ (ܧ	 ⊗ఢ ;ܮ)with a subspace of ℓஶ ܧ	  we may define a norm on ,(ܧ	
ܺ	 ⊗ఢ   by ܧ	

‖ݖ‖ = ‖	(ܰ((ܵ	 ாܫ	⊗ ,((ݖ)(	 (ܰ((ܶ	 ாܫ	⊗  	.‖(((ݖ)(	

The coordinate maps ݔ ⟼ ቀܰ൫(ܵ	 ⊗	 ൯ቁ(ݔ)(ாܫ
௧

= ‖	(ܵ	 ⊗	 ாܫ 	ݔ	and	௧‖(ݔ)(	 ⟼

ቀܰ൫(ܶ	 ாܫ	⊗ ൯ቁ(ݔ)(	
௧
	= ‖	(ܶ	  . are of class ࣝ except where they vanish	௧‖(ݔ)(ாܫ	⊗

Thus, by the above remark, we shall be able to conclude that we have a ࣝ norm on 
ܺ	 ⊗ఢ 	ܵ))ܰ) provided we can show that ܧ	 ⊗	 ,((ݖ)(ாܫ (ܰ((ܶ	  is in (((ݖ)(ாܫ	⊗
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	ݖ whenever	(ܮ)ܷ ∈ 	 (ܺ	 ⊗ఢ  This is not really difficult, being just a matter of .{0}	\	(ܧ	
disentangling tensor notation.  

     For such a ݖ we choose some ߟ	 ∈ ℓಮ()ܫwith ฮ ∗ܧ	݈݈ܾܽ	 	⊗ 	ܵ))(ߟ	 ⊗	 ฮ((ݖ)(	ாܫ
ஶ
	=

	‖(ܵ	 ⊗	 ாܫ ℓಮ()ܫஶ. We then note that ൫‖(ݖ)(	 	⊗ ൯ߟ	 ∘ 	(ܵ	 ாܫ	⊗ 	) = 	ܵ ∘ 	 ܫ) 	⊗  Our	.(ߟ	
hypothesis about ܵ and  , applied to ݔ	 = 	 ܫ) 	⊗ 	ݐ	tells us that there is some (ݖ)(ߟ	 ∈  ܮ	
with 

	ቚܵ൫(ܫ ⊗ ൯௧ቚ(ݖ)(ߟ	 + ଵ
ଶ
	|ܶ	൫(ܫ 	⊗ |൯௧(ݖ)(ߟ	 	> 	 ฮܵ൫(ܫ 	⊗   .൯ฮஶ(ݖ)(ߟ	

Thus  

ܰ൫(ܵ	 ⊗	 ൯௧(ݖ)(ாܫ 	+
1
2
ܰ൫(ܶ	 ൯௧(ݖ)(	ாܫ	⊗ 	

= ‖	(ܵ	 ⊗	 ௧‖ா(ݖ)(ாܫ 	+
1
2
	‖(ܶ	 ாܫ	⊗ ௧‖ா(ݖ)(	 																																						 

	≥ 	 ,ߟ〉| (ܵ	 |〈௧(ݖ)(ாܫ	⊗ +
1
2
,ߟ〉|	 (ܶ	  																			|〈௧(ݖ)(ாܫ	⊗

																			= 	 ห൫ܫℓಮ() 		⊗ 	ܵ)൯ߟ	 ⊗	 ாܫ ௧ห(ݖ)(	 +
1
2
	ห൫ܫబ() 	⊗ 	ܶ)൯ߟ	  ௧ห(ݖ)(ாܫ	⊗

= 	 ቚܵ൫(ܫ 	⊗ ൯௧ቚ(ݖ)(ߟ	 +
1
2
	ቚܶ	൫(ܫ 	⊗  																					൯௧ቚ(ݖ)(ߟ	

	> ฮܵ൫(ܫ 	⊗  																																																																	൯ฮஶ(ݖ)(ߟ	

= ‖	(ܵ	 ⊗	  																																																																						ஶ‖(ݖ)(ாܫ

A similar argument involving an ߟ chosen so that ฮ(ܫబ() ⊗ 	ܶ))(ߟ	 ாܫ	⊗  ฮ is equal(ݖ)(	
to ‖(ܶ	   .enables us to finish the proof ‖(ݖ)(ாܫ	⊗

The above corollary allows us to reprove Hܽ́jek’s theorem from [100], though not, 
of course, the more recent, and very strong, result of [98], according to which any norm on 
a Banach space with countable boundary may be approximated by analytic norms. 

Corollary (3.1.6)[97]: [Hܽ́jek]. Let ܺ be a Banach space which admits a countable 
boundary. Then ܺ admits a ࣝஶ	renorming and ܺ	⊗ఢ  admits a ࣝ renorming whenever ܧ	
  .does ܧ

Proof. Let {ߦ ∶ 	݊	 ∈ ℕ} be a countable boundary for ܺ	and define ܵ ∶ 	ܺ	 → 	 ℓஶ(ℕ) and 
ܶ ∶ 	ܺ	 → 	 ܿ(ℕ) by (ܵݔ) 	= 	 ,ߦ〉 ,〈ݔ (ݔܶ) 	= 	2ି〈ߦ,  It is easy to see that .〈ݔ
((ݔ)	ܶ,(ݔ)ܵ) 	∈  ݊ there exists	ݔ is a non-zero element of ܺ, since for any ݔ when (ܮ)ܷ	
with 〈ߦ 〈ݔ, 	=  	.‖ݔ‖

     Extending slightly the terminology of [101], we shall say that a bounded linear operator 
ܶ from a subspace ܺ of ℓஶ(ܮ) into ܿ(ܮ) is a Talagrand operator for ܺ if for every non-
zero ݔ in ݔ there exists ݐ	 ∈ |௧ݔ| with ܮ	 	= 	 ௧(ݔܶ) ஶ and‖ݔ‖ ≠ 	0. It is clear that Corollary 
(3.1.5) is applicable to any such space, taking ܵ to be the identity operator. In the 



105 

particular case where ܮ is equipped with a locally compact topology and ܺ is the space 
ࣝ	  of continuous functions, vanishing at infinity, we retrieve the results of [101]. The (ܮ)
classic example of a Talagrand operator is defined on the space ࣝ	 ([0,Ω), where Ω is an 
ordinal, by 

	(݂ܶ)ఈ 	= 	 ఈ݂ 	− 	 ఈ݂ାଵ	.	 

This has the required property since for any non-zero ݂	 ∈ 	ࣝ	 ([0,Ω)) there is a maximal ߙ 
with | ఈ݂| 	= 	 ‖݂‖ஶ. A non-linear version of a Talagrand operator is used in [101] to give 
an example of a space admitting a ࣝஶ bump function but no smooth norm. The earlier ࣝଵ 
version of this result appears as Theorem VII.6.1 of [99]. The relevant application of our 
theorem is the following.  

Corollary (3.1.7)[97]: Let ܺ be a Banach space and let ܮ be a set. Suppose that there exist 
continuous mappings ܵ ∶ 	ܺ	 → 	 ℓஶ(ܮ),ܶ ∶ 	ܺ	 → 	 ܿ(ܮ) with the following properties:  

     (i) for all ݔ	 ∈ 	ܺ the pair (ܵݔܶ,ݔ)	is in ܷ(ܮ) 	∪ 	{0};	 

     (ii) the coordinates of ܵ and of ܶ are all ࣝ functions on the sets where they are non-
zero;  

     (iii) ‖ܵݔ‖ஶ 	→ 	∞ as ‖ݔ‖ 	→ 	∞.	 

Then ܺ admits a ࣝ bump function.  

Proof. Let ߠ ∶ 	 [0,∞) 	→ 	 [0,∞) be a ࣝஶ	function which vanishes on [0, 1]	and which 
tends to infinity with its argument. The formula  

(ݔ)߮ 	=  	(‖(ݔܶ,ݔܵ)‖)ߠ	

defines a ࣝ function on ܺ which tends to infinity with ‖ݔ‖.  

    We do not know whether the results of Corollary (3.1.5) about injective tensor products 
extend to the non-linear set-up of Corollary (3.1.7). However, in the special case of spaces 
of continuous functions we have the following proposition.  

Proposition (3.1.8)[97]: Let ܮ be a locally compact space such that there exists a function 
ܶ ∶ ࣝ	 (ܮ) 	→ 	 ܿ(ܮ) satisfying  

    (i) for all ݂	 ∈ ࣝ	 (ܮ)ܷ the pair (݂,݂ܶ) is in	(ܮ) 	∪ 	{0};  

    (ii) each coordinate of ܶ is a ࣝ function depending locally on finitely many 
coordinates. 

Let ܧ be a Banach space admitting a ࣝ bump function. Then the space ࣝ	 ;ܮ)  also (ܧ	
admits such a function. In particular, if each of the spaces ܮଵ, . . . ,   is homeomorphic toܮ
an ordinal then ࣝ	 ଵܮ) 	×	·	·	·	× ;ܮ	   .admits a ࣝ bump function (ܧ	

Proof. Let ߠ be a ࣝfunction on ܧ	such that (ݔ)ߠ 	→ 	∞ as ‖ݔ‖ 	→ 	∞. For ݂	 ∈ ࣝ	 ;ܮ)  (ܧ	
the composition ߠ ∘ ݂ is in ࣝ	 ߠ) and the pair	(ܮ) ∘ ߠ)	ܶ,݂ ∘ ݂)) is in ܷ(ܮ) ∪ {0}. 
Moreover, for ݐ	 ∈ 	݂ the coordinate maps ,ܮ	 ⟼	 ߠ) ∘ 	݂)௧ and ݂	 ⟼ ߠ)	ܶ	 ∘ 	݂)௧ are of 
class ࣝon ࣝ	 ;ܮ) ߩ Let .(ܧ	 ∶ ℝ	 → ℝ be a ࣝஶ function such that (ݑ)ߩ 	= 	0 for ݑ	 ≤ 	1 
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and (ݑ)ߩ 	→ 	∞ as ݑ	 → 	∞. It is easy to check that the function ߮ ∶ 	ࣝ	 ;ܮ) (ܧ	 	→
ℝ	defined by  

߮(݂) 	= ߠ)‖)	ߩ	 ∘ ߠ)	ܶ,݂	 ∘ 	݂))‖)		 

is of class ࣝand tends to infinity with the norm of its argument.  

     When ܮ is an ordinal Ω (identified with the set [0,Ω) of ordinals smaller than itself), an 
operator ܶ of the type considered above does exist. Indeed, we may use the Talagrand 
operator	(݂ܶ)ఈ 	= 	 ఈ݂ 	− 	 ఈ݂ାଵ. Thus ࣝ	 ([0,Ω);  admits a ࣝ bump function whenever (ܧ	
	does. Since ࣝ ܧ ଵܮ) 	×	·	·	·	× ;	ܮ 	may be identified with ࣝ	(ܧ	 	ଵ;ࣝܮ) ଶܮ) 	×	·	·	·	×
;ܮ	   .an easy induction argument finishes the proof ,((ܧ	

     We say that a subset ܪ of a Banach space ܺ admits partitions of unity of class ࣝ if, for 
every open covering ࣰ of ܪ, there is a locally finite partition of unity on ܪ, subordinate to 
the covering ࣰ, and consisting of the restrictions to ܪ of functions that are of class ࣝon 
ܺ. Once again, see [99], for the connection between partitions of unity and approximation 
by smooth functions and for Torunczyk’s criterion: ܪ admits ࣝ partitions of unity if and 
only if there is a ߪ-locally finite base for the topology of ܺ consisting of ࣝ-cozero sets 
(that is to say, sets of the form {ݔ	 ∈ ܪ	 ∶ (ݔ)߮	 ≠ 	0} with ߮	 ∈ 	ࣝ(ܺ)). It is not known 
whether ࣝ partitions of unity necessarily exist on every space that admits a ࣝ bump 
function, though many partial results. The following theorem has hypotheses that are 
involved but of fairly wide applicability.  

Theorem (3.1.9)[97]: Let ܺ be a Banach space, let ߁ be a set and let ݇ be a positive 
integer or ∞. Let ܶ ∶ 	ܺ	 → 	 ܿ(߁) be a function such that each coordinate ݔ	 ⟼  ఊ is(ݔ)	ܶ	
of class ࣝ on the set where it is non-zero. For each finite subset ܨ of ߁, let ܴி ∶ 	ܺ	 → 	ܺ 
be of class ࣝ and assume that the following hold:  

    (i) for each ܨ, the image ܴி[ܺ] admits ࣝ partitions of unity;  

    (ii) ܺ	admits a ࣝ bump function;  

    (iii) for each ݔ	 ∈ 	ܺ and each ߳	 > 	0 there exists ߜ	 > 	0 such that ‖ݔ	 −	ܴிݔ‖ < ߳ if 
we set ܨ	 = 	 	ߛ} ∈ ߁	 ∶ 	 |(ߛ)(ݔܶ)| 	≥   .{ߜ	

Then ܺ admits ࣝpartitions of unity.  

Proof. By Torunczyk’s Criterion, it is enough to show that there is a ߪ-locally finite base 
for the topology of ܺ, consisting of ࣝ-cozero-sets. By hypothesis, each ܴி[ܺ] admits a ߪ-
locally finite base ிࣰ consisting of ࣝ-cozero-sets. Since ܺ admits a ࣝ- bump function, 
there is a neighbourhood base of 0 in ܺ consisting of ࣝ-cozero-sets, say ܷ(݊	 ∈ ℕ). We 
introduce the covering ࣱ of ܿ(߁) consisting of ∅ܹ 	= 	 ܿ(߁), together with all sets  

ிܹ,, = 	 	ݕ} ∈ 	 ܿ(߁): min
ఊ∈ி

|(ߛ)ݕ| 	> 		݀݊ܽ	ݎ	 sup
ఊ∈௰\ி

|(ߛ)ݕ|	 	<  {ݍ	

with ܨ a finite non-empty subset of ߁, and ݍ, 	ݍ positive rational numbers with ݎ <  We .ݎ	
note that ࣱ is ߪ-locally finite, and that its members are ࣝஶ-cozero-sets.  

    In ܺ we consider the family of all sets of the form  
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ܶିଵ	[ ிܹ,,] 	∩ 	ܴிିଵ	[ܸ	] 	∩ 	(ܴி 	−  	[ܷ]	ଵି(ܫ	

with ݉ a positive integer, ܨ a finite subset of ߁, ,ݍ 	ݍ positive rationals with ݎ <  and	ݎ	
ܸ	 ∈ ிࣰ . It is easy to check that this family is a ߪ-locally finite family of ࣝ cozero sets. 
We have to show that it forms a base for the topology of ܺ.  

    Let ݔ be in ܺ and let ߳ > 	0 be given. We fix ݉ so that  

ܷ 	⊆
1
3
	߳	ܾ݈݈ܽ	ܺ,	 

and, using (iii), choose ߜ	 > 	0 so that  

	ݔ −	ܴி	(ݔ) 	 ∈ 	ܷ	 

when we set ܨ	 = 	 	ߛ} ∈ ߁	 ∶ 	 |(ߛ)(ݔܶ)| 	≥ 	ݔܶ Because .{ߜ	 ∈ 	 ܿ there exist rationals ݍ,  ݎ
with 0	 < 	ݍ	 < 	ݎ	 < |(ߛ)(ݔܶ)| such that ߜ	 	< 	ߛ whenever ݍ	 ∈  is in ݔ Thus .ܨ	\	߁	
ܶିଵ	[ ிܹ,,]. Since ிࣰ is a base for the topology of ܴி	[ܺ], there exists ܸ	 ∈ ிࣰ such that  

ܴி	(ݔ) ∈ 	ܸ	 ⊆ 	ܴி	(ݔ) +
1
3
	߳	ܾ݈݈ܽ	ܺ. 

It follows that ݔ is in the set  

ܶିଵ	ൣ ிܹ,൧ ∩ 	ܴிିଵ	[ܸ	] 	∩ 	(ܴி 	−  	.[ܷ]	ଵି(ܫ	

If ݔ′	 is any other member of this set, then we have  

‖ܴி	(ݔ) 	− ‖(′ݔ)	ܨܴ	 	≤ 	߳/3	 

because ܴி(ݔ′) 	 ∈ 	ܸ , while  

‖ܴி(ݔ′) 	− ‖′ݔ	 	≤ 	߳/3,	 

because (ܴி(ݔ′) 	− (	′ݔ	 	 ∈ 	ܷ. Thus	‖ݔ	 − ‖′ݔ	 < 	߳, which is what we wanted to prove.  

      It should be noted that the mappings ܶ and ܴி in the theorem are not assumed to be 
linear; a non-linear ܶ is used in [102] to give an example where ࣝஶ partitions of unity 
exist on a space with no smooth norm. However, the theorem offers some improvements 
on existing results even when only linear operators are involved. A special case of the 
corollary that follows occurs when the ܴఈ form a “projectional resolution of the identity” 
on ܺ. It is thus a result that is more general, as well as a bit simpler to prove, than the 
implication (vi) 

									
ሳልሰ (v) in Theorem VII.3.2 of [99].  

Corollary (3.1.10)[97]: Let ܺ be a Banach space admitting a ࣝ bump function. Let Ω be 
an ordinal and let ܴఈ 	ߙ)	 < 	Ω) be a family of ࣝ functions from ܺ to ܺ having the 
property that, for every ݔ	 ∈ 	ܺ, the function ܴݔ ∶ 	 [0,Ω] 	→ 	ܺ defined by (ܴݔ)ఈ =
ܴఈݔ	ߙ)	 < 	Ω), Ω(ݔܴ) 	=  the image of ܴఈ admits ࣝ ߙ is continuous. If for each ݔ	
partitions of unity then so does ܺ.  
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Proof. Since ܺ admits a ࣝ bump function there exists a function ߮ ∶ 	ܺ	 → 	 [0, 1], of class 
ࣝ and such that ߮(ݔ) 	= 	0 on some neighbourhood of 0 in ܺ, while ߮(ݔ) 	= 	1 
whenever ‖ݔ‖ ≥ 	1. We set ߁	 = 	Ω	 × ℕ and define ܶ ∶ 	ܺ	 → 	 ℓஶ(߁) by  

,ߙ)(ݔܶ) ݊) 	= 	2ି߮(2	(ܴఈାଵݔ	 − 	ܴఈݔ)). 

By construction, there is some ߟ	 > 	0 such that ߮(ݔ) 	= 	0 whenever ‖ݔ‖ ≤  Given .ߟ	
	ݔ ∈ 	ܺ and ߳	 > 	0 we fix ݉ such that 2ି < 	߳ and then note that, because of the 
continuity of ߙ	 ⟼	ܴఈݔ, the quantity ‖ܴఈାଵݔ	 −	ܴఈݔ‖ can exceed 2ିߟ only for ߙ in 
some finite set ܪ. We thus have |(ܶݔ)ఊ| 	≤ 	߳ except when ߛ	 ∈ ܪ	 × {0, 1, 2, . . . ,݉ − 1}. 
This shows that ܶ takes its values in ܿ(߁).  

    To define the “reconstruction operators” ܴி we set ܴ∅ 	= 	 ܴ and ܴி 	= 	 ܴఈ(ி)ାଵ where, 
for a finite non-empty subset	ܨ of (ܨ)ߙ ,߁ 	= ߙ}ݔܽ݉	 ∶ 	 ,ߙ)	ℎݐ݅ݓ	݊∃ ݊) 	 ∈  We shall .{ܨ	
show that Condition (iii) of Theorem (3.1.9) is satisfied. Given ݔ	 ∈ 	ܺ and ߳ > 	0, it may 
be that ‖ݔ	 −	ܴఈݔ‖ 	< ߳ for all ߙ	 < 	Ω; in this case there is clearly no problem. 
Otherwise, by the continuity of ߙ	 ⟼	ܴఈݔ on [0,Ω],	there is a maximal ߚ	 < 	Ω with 
ฮݔ	 − 	ܴఉݔฮ 	≥ 	߳. Again by the continuity of ߙ	 ⟼	ܴఈݔ, we know that there is some 
	ߛ > 	ݔsuch that ฮܴఊାଵ ߚ	 −	ܴఊݔฮ takes a strictly positive value, ߟ say. Now we fix ݊ 
such that 2ߟ	 ≥ 	1, noting that (ܶݔ)(ߛ,݊) 	= 	2ି, and set ߜ	 = 	2ି. If ܨ is the set 
(݉,ߙ)} 	 ∈ 	Ω	 × ℕ ∶ 	 |(݉,ߙ)(ݔܶ)| 	≥ (݊,ߛ) then {ߜ	 	 ∈ (ܨ)ߙ and so ܨ	 	≥ 	ߛ	 >
	ݔ‖ whence	,ߚ	 −	ܴி	ݔ‖ < 	߳, as required.  

Corollary (3.1.11)[97]: Let Ω be an ordinal and let ܧ be a Banach space admitting 
ࣝpartitions of unity. Then the space ࣝ([0,Ω];   .also admits ࣝ partitions of unity (ܧ	

Proof. Proceeding by transfinite induction, we may suppose that ࣝ([0, ;[ߛ  admits ࣝ (ܧ	
partitions of unity whenever ߛ is an ordinal smaller than Ω. If we define 
ܴఊ ∶ 	ࣝ([0,Ω]; (ܧ	 	→ ࣝ([0,Ω];   by (ܧ	

൫ܴఊ݂൯ఉ 	= 		 ቊ ఉ݂ 	ߚ)											 ≤ (ߛ	
ఊ݂ 	ߚ)											 >  	(ߛ	

then the range of ܴఊ is isomorphic to ࣝ([0,߁];  .and so admits ࣝ partitions of unity (ܧ	
Moreover, the continuity hypothesis in the preceding corollary is certainly satisfied, so that 
the proof will be finished if we know that ࣝ([0,Ω];  admits a ࣝ bump function. This is (ܧ	
true by Proposition (3.1.8), since ࣝ([0,Ω]; 	ܺ is isomorphic to (ܧ	 = 	 ࣝ([0,Ω); (ܧ	 	⊕  	.ܧ	

Section (3.2): Uniformly Rotund Norms 

 A Banach space ܺ is said to be Asplund if every convex function on ܺ is Fr݁́chet 
differentiable on a dense ࣡ఋ-set. If a Banach space has an equivalent Fr݁́chet differentiable 
norm then it is Asplund, but the converse is not true; see [106], for example. The ሙܵmulyan 
criterion provides a method to construct an equivalent Fr݁́chet differentiable norm on ܺ: 
any equivalent norm on ܺ is Fr݁́chet differentiable provided that its dual norm on ܺ∗ is 
locally uniformly rotund (see [106]).  
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Definition (3.2.1)[104]: Let ܺ be a Banach space endowed with a norm ‖	. ‖ and let ܵ 
denote its unit sphere. The norm ‖	. ‖  is said to be locally uniformly rotund (LUR), if 
lim‖ݔ − ‖ݔ = 	0 whenever ݔ,ݔ ∈ 	ܵ are such that lim‖ݔ + ‖ݔ = 2. 

    We study how close is the property of being the dual of an Asplund space to having an 
equivalent dual LUR norm. We shall need the following topological definitions. The first 
one has been introduced by Jayne and Rogers in [115].  

Definition (3.2.2)[104]: Let (ܺ, ߬)	be a topological space and let ݀ be a metric on ܺ. We 
say that ܺ 

(i) is fragmentable by ݀ if for every ߝ > 	0 and every nonempty ܣ	 ⊂ 	ܺ there is ܷ ∈ ߬ 
such that ܣ ∩ ܷ ≠ ∅ and diam(ܣ	 ∩ ܷ) 	<   .ߝ	

(ii) has property ܲ(݀, ߬) if there is a sequence (ܣ)	of subsets of ܺ, such that for every 
ݔ ∈ 	ܺ and every ߝ > 	0, there is ݊ ∈ ℕ and ܷ ∈ 	߬ such that ݔ ∈ ܣ 	∩ ܷ and 
diam(ܣ ∩ 	ܷ) 	<  .ߝ	

       Namioka and Phelps showed in [120] that a Banach space ܺ is Asplund if and only if 
the unit ball of ܺ∗ endowed with the weak* topology is fragmented by the norm. They 
also showed [120] that if a dual Banach space ܺ∗ has an equivalent ݓ∗-Kadec norm, that 
is, the weak* and the norm topologies agree on the unit sphere, then ܺ is Asplund. 
Property ܲ was introduced in [121] for pairs of topologies, but when stated as above it is 
equivalent to properties introduced and studied by Hansell [111] and Jayne, Namioka and 
Rogers [113]. The main result is the following theorem which says that dual LUR 
renormability of a dual space ܺ∗ is a nonlinear topological property.  

Theorem (3.2.3)[104]: Let ܺ∗ be a dual Banach space. The following conditions are 
equivalent:  

(i) ܺ∗ admits an equivalent dual LUR norm.  
(ii) ܺ∗ admits an equivalent ݓ∗-Kadec norm.  
(iii) ܺ∗ has ܲ(‖	.   .(∗ݓ,	‖

    Statement (iii) above completes the characterizations of renormability given in [122]. 
Let us mention that there are no analogous results in Banach spaces for the weak 
topology. There exists a Banach space having a Kadec norm but with no equivalent 
strictly convex norm [102]. It is unknown whether every ߪ-fragmentable Banach space (in 
particular, if ܺ has ܲ(‖	.   .has an equivalent Kadec norm [113] ((ݓ,	‖

    We prove an interpolation result in the spirit of the results by Davis, Figiel, Johnson 
and Pelczy݊́fiski for Eberlein compaeta [108] and Namioka for Radon-Nikod́ݕ;m 
compacta [108], [119]. It can also be regarded as a "reciproque" of the transfer technique 
of Godefroy, Troyanski, Whitfield and Zizler for LUR renorming [110], [21]. 

Theorem (3.2.4)[104]: Let ܺ be a Banach space, and let ܭ ⊂ 	ܺ∗ be a ݓ∗-compact subset 
which has ܲ(‖	.  Then there exists a Banach space ܻ such that ܻ∗ has a dual LUR .(∗ݓ,	‖
norm and a bounded linear operator ܶ:	ܺ	 → 	ܻ with dense range such that ܭ	 ⊂   .(∗ܤ)	∗ܶ	

     A compact Hausdorff space is said to be a Radon-Nikod́ݕm compact if it is 
homeomorphic to a weak*-compact subset of a dual Banach space having the Radon 
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Nikod́ݕm property. A result of Namioka states that a weak*-compact subset of a dual 
Banach space ܺ∗ which is fragmented by the norm of ܺ∗ is a Radon- Nikod́ݕm compact. 
All these facts suggest that we introduce the following class of compact Hausdorff spaces.  

Definition (3.2.5)[104]: A compact Hausdorff space ܭ is called a Namioka-Phelps 
compact if it is homeomorphic to a weak*-compact subset of a dual Banach space having 
a dual LUR norm.  

     Clearly, any Namioka-Phelps compact space is Radon-Nikod́ݕm. Namioka 
characterizes internally the Radon-Nikod́ݕm compacta as those compact Hausdorff spaces 
which are fragmented by a lower semicontinuous metric. We will prove an analogous 
result.  

Theorem (3.2.6)[104]: A compact Hausdorff space ܭ is Namioka-Phelps if and only if it 
has property ܲ(݀, ߬) with some ߬-lower semicontinuous metric ݀.  

     If ܭ is a Radon- Nikod́ݕm compact, then the space (ܭ)ܥ is weak-Asplund, that is, 
every convex function on (ܭ)ܥ is G ොܽteaux differentiable on a dense ࣡ఋ-set. Similarly, we 
obtain the following result.  

Theorem (3.2.7)[104]: If ܭ is a Namioka Phelps compact space, then (ܭ)ܥ has an 
equivalent G ොܽteaux differentiable norm.  

We study compact spaces having the property ܲ	with some metric showing the 
analogue with the properties of fragmentable compact spaces studied by Namioka in 
[119]. We prove the main result concerning the characterization of the existence of 
equivalent dual LUR norms in a dual Banach space. Finally, we study embedding 
properties of the Namioka-Phelps compact spaces.  

A network of some topology is a family of subsets such that any open set is a union 
of subsets from that family. In [121] we introduced the property ܲ for a couple of 
topologies. If ܺ is a set and ߜ and ߬ topologies on ܺ, we say that ܺ has ܲ(ߜ, ߬) if there is a 
sequence (ܣ) of subsets of ܺ such that for every ݔ ∈ 	ܺ and every ܸ ∈ ݔ with ߜ ∈ 	ܸ, 
there is ݊ ∈ ℕ and ܷ ∈ ߬ such that ݔ ∈ ܣ	 ∩ ܷ	 ⊂ ܸ. This property can be reformulated in 
terms of networks as follows: ܺ has ܲ(ߜ, ߬)  if {ܣ⋂	ܷ:	݊ ∈ ℕ,ܷ ∈ ߬} is a network for ߜ. 
One can observe that this definition of property ܲ extends Definition (3.2.2). We say that a 
topological space ܺ has property ܲ(ߜ, ߬) with ߬ -closed sets, if the sets ܣ ⊂ 	ܺ can be 
taken ߬ -closed. The following is in [121].  

Lemma (3.2.8)[104]: Suposse that a set ܺ has ܲ(݀, ߬) with a sequence of subsets (ܣ). If 
the metric ݀	is ߬ -lower semicontinuous, then ܺ has ܲ(݀, ߬)  with the sequence (ܣതതതത

) In 
particular, ܺ has ܲ(݀, ߬)  with ߬ -closed sets.  

Proposition (3.2.9)[104]: Let ܺ be a set, ߜ and ߬ two topologies on ܺ. The following 
statements are equivalent:  

(i) ܺ has ܲ(ߜ, ߬) with ߬ -closed sets.  
(ii) There is a ߬-1ower semicontinuous function ܨ:	ܺ → ℝ such that for every net 

with ߬-limఠ (ఠݔ) ఠݔ = and lim ݔ	
ఠ
(ఠݔ)ܨ	 	= lim-ߜ then ,(ݔ)ܨ	

ఠ
ఠݔ	 =  	.ݔ
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A real function with the property stated in (ii) will be called a Kadec function.  

Proof: (ii) ⇒ (i) For every ݔ ∈ ܺ and every ܸ ∈ ݔ with ߜ ∈ ܸ there is ܷ ∈ 	߬ and ߝ	 > 	0 
such that if ݕ ∈ 	ܷ	and |(ݕ)ܨ 	− |(ݔ)ܨ	 < ݕ then ,ߝ	 ∈ 	ܸ. Let (ݎ) be an enumeration of 
the rational numbers. Define  

ܣ 	= 	 ݕ} ∈ (ݕ)ܨ	:ܺ	 ≤ .ݎ	 }.	 

The sets ܣ are ߬-closed because ܨ is ߬-lsc. We claim that ܺ has ܲ(ߜ, ߬) with the sequence 
ݎ . Indeed, take rationalsܣ 	< (ݔ)ܨ	 	< 	 ݎ  andݎ 	− ݎ	 	<  Consider the ߬-open set .ߝ	
ܷᇱ =   . Then we have thatܣ	\	ܷ	

ݔ ∈ ܣ ∩ ܷ′	 ⊂ 	ܸ,	 

which proves the claim.  

(i) ⇒ (ii) Let Ξ be the characteristic function of the set ܣ. Consider the series  

(ݔ)ܨ 	= 	 4ିΞ∖(ݔ)
ஶ

ୀଵ

. 

It follows that ܨ is ߬-lsc. Let (ݔఠ)  be a net with	߬-limఠ ఠݔ = and lim ݔ	
ఠ
(ఠݔ)ܨ	 	=  .(ݔ)ܨ	

We claim that ߜ-lim
ఠ
ఠݔ	 =  Indeed, a simple reasoning gives us that 	.ݔ

lim
ఠ
	Ξ\(ݔఠ) = Ξ\(ݔ)		 

for every ݊ ∈ ℕ. Now, for every ߜ-neighbourhood ܸ of ݔ there is ݊ and ܷ ∈ ߬ such that 
ݔ ∈ ܣ	 ∩ ܷ	 ⊂ ܸ. Since Ξ\(ݔఠ) must be constant for ߱ big enough, we deduce that 
ఠݔ ∈ ఠݔ ,. Also, for ߱ big enoughܣ	 ∈ 	ܷ. Thus ݔఠ ∈ 	ܸ. This shows the ߜ-convergence 
of (ݔఠ) to ݔ. |  

     The following result compares with [119].  

Corollary (3.2.10)[104]: Every weak compact subset of a Banach space has ܲ(‖	. ‖,߱), 
and every Eberlein compact space is Namioka-Phelps.  

Proof:  Without loss of generality, we assume that ܺ	 =  ܺ Then the space .(ܭ)‖.	‖തതതതതതത݊ܽݏ
will have an equivalent LUR norm ‖|. |‖, which is in particular a Kadec norm. Then apply 
Proposition (3.2.9). Any Eberlein compact space is isomorphic to a weak compact subset 
of a reflexive space, which has an equivalent LUR norm which clearly is dual.  

      A family of subsets of a topological space is said to be isolated if every point 
belonging to a subset of the family has a neighbourhood that does not meet another 
member of the family. A family of subsets is said to be ߪ-isolated if it is the union of a 
countable number of isolated families. Hansell studied in [111] the class of topological 
spaces having a ߪ-isolated network as a natural generalization of metrizable spaces; see 
also [118]. The following result is a consequence of the work of Hansell, and it shows the 
relation between fragmentability and property ܲ.  

Theorem (3.2.11)[104]: Let (ܭ, ߬) be a compact Hausdorff space and let ݀ be a ߬-lower 
semicontinuoas metric on ܭ. The following are equivalent:  
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(i) ܭ	has (݀, ߬) .  
(ii) ݀ has a network which is ߪ-isolated with respect to߬.  
(iii) ߬ has a ߪ-isolated network and ݀ fragments (ܭ, ߬).  

Proof: (i) ⇒ (iii) Any ߬-lsc metric on ܭ is finer than ߬. Let ी = ⋃ ी
ஶ
ୀଵ 	 be a basis of ݀ 

such that every family ी is ݀-discrete. Fix ݊,݉ ∈ ℕ and ܧ ∈ ी . Define  

ாܪ = ݔ} ∈ ܷ∃	:ܣ	 ∈ .ݏ	߬ .ݐ ݔ ∈ ܣ	 	∩ ܷ	 ⊂  .{ܧ	

It is easy to see that ॉ, = 	 ܧ	:ாܪ} ∈ ी} is ߬-isolated and ॉ = ⋃ ॉ,,  is a network 
of ݀. Since ߬ is coarser than ݀, we have that ॉ is a ߪ-isolated network of ߬. On the other 
hand, it is shown in [121] that if ܭ has ܲ(݀, ߬), then (ܭ, ߬) is ߪ-fragmented by ݀. Since ݀ 
is ߬-Isc and	(ܭ, ߬) is compact, a result from [114] states that (ܭ, ߬) is fragmented by ݀.  

(iii)⇒ (ii) If (ܭ, ߬) has a ߪ-isolated network, then it is in particular hereditarily weakly ߠ-
refinable, that is, every family of open sets in ܺ has a ߪ-isolated (not necessary open) 
refinement. Hansell shows [111] that if a hereditarily weakly ߠ-refinable space is 
fragmented (or ߪ-fragmented) by some metric ݀, then the topology of ݀ has a network 
ॉ = 	⋃ ॉ

ஶ
ୀଵ  such that every ॉ is ߪ-isolated respect to ߬.  

(ii) ⇒ (i) If ॉ = 	⋃ ॉ
ஶ
ୀଵ  , is a network of ݀ such that every ॉ is ߪ-isolated with respect 

to ߬, then it is easy to verify that ܭ has ܲ(݀, ߬) with the sequence of sets ܣ =∪ॉ 

Corollary (3.2.12)[104]: If ܺ∗ is a dual Banach space and ܭ	 ⊂ 	ܺ∗ is a ݓ∗-compact 
subset having ܲ(‖.  is fragmentable by the norm. In particular, if ܺ∗ has ܭ then	,(∗ݓ,‖
ܲ(‖.   .m propertyݕthen ܺ∗ has the Radon- Nikod́ ,(∗ݓ,‖

     The following result compares with [119].  

Theorem (3.2.13)[104]: Let (ܭ, ߬) be compact spaces for ݅	 = 	1, 2 and let ݀ be metrics 
on ܭ. Suppose that there is a surjection ܶ:	ܭଵ 	→ ଶ such that ܶ is ߬ଵܭ	 − ߬ଶ continuous and 
݀ଵ-݀ଶ continuous. If ܭଵ	 has ܲ(݀ଵ, ߬ଵ) with ߬ଵ-closed sets, then ܭଶ has ܲ(݀ଶ	, ߬ଶ) with ߬ଶ-
closed sets.  

Proof: If ܭଵ has ܲ(݀ଵ, ߬ଵ) with ߬ଵ-Closed sets, there is a ߬ଵ-lsc function ܨଵ:	ܭଵ → [0, 1] 
with the Kadec property by Proposition (3.2.9). Define a function ܨଶ:ܭଶ 	→ [0, 1] as 
follows:  

(ݔ)ଶܨ 	= (′ݔ)ܶ	:(′ݔ)ଵܨ}݂݊݅	 	=  	.{ݔ	

Since ܨଵ is ߬ଵ-lsc, this infinmum is attained. We claim that ܨଶ is ߬ଶ-1sc. Indeed, suppose 
that lim

ఠ
ఠݔ = ,ଶܭ) in ݔ	 ߬ଶ) and ܨଶ(ݔఠ) ≤ ఠᇱݔ ߱.ܶake points	for every	ݎ	 ∈  such	ଵܭ

that	ܶ(ݔఠᇱ ) 	= 	 	ఠݔ 	and	ܨଵ(ݔఠᇱ ) = 	ఠݔ)ଶܨ ).	Let	ݔᇱ ∈  be a cluster point	ଵܭ
of	(ݔఠᇱ ).	Since	ܨଵ	is	߬ଵ-lsc we have that	ܨଵ(ݔᇱ) ≤  On the other hand, by	.ݎ
continuity,ܶ(ݔ′) 	= (ݔ)ଶܨ so	,ݔ	 ≤ (ݔ)ଶܨ This shows that .(ᇱݔ)ଵܨ ≤  and the claim is ݎ
proved. We claim now that ܨଶ	has the Kadec property and then the result will follow from 
Proposition (3.2.9). Suppose not, that is, there is a net (ݔఠ	 ) in ܭଶ with ߬ଶ-limit a point ݔ 
such that limFଶ(

ఠ
(ఠݔ = ߝ and there is ,(ݔ)ଶܨ > 	0 such that ݀ଶ(ݔఠ (ݔ, 	>  Take points .ߝ	

ఠᇱݔ ∈ ఠᇱݔ)ܶ ଵ such thatܭ	 ) 	= 	ఠݔ  and ܨଵ(ݔఠᇱ ) = 	ఠݔ)ଶܨ ). Let ݔ′ be a cluster point of (ݔఠᇱ ). 
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Without loss of generality we can assume that (ݔఠᇱ ) is ߬ଵ-converging to ݔ′. Clearly, we 
have that ܶ(ݔ′) 	=   ,and the following inequalities ݔ	

lim
ఠ
	ఠݔ)ଶܨ ) = (ݔ)ଶܨ ≤ (ᇱݔ)ଵܨ ≤ lim

ఠ
ఠᇱݔ)ଵܨ ) = lim

ఠ
	ఠݔ)ଶܨ ). 

We deduce that limఠ ఠᇱݔ)ଵܨ ) = 	  ଵ we have thatܨ By the Kadec property of .(′ݔ)ଵܨ
limఠ ݀ଵ(ݔఠᇱ , (′ݔ = 	0, and from the ݀ଵ-݀ଶ continuity of ܶ we deduce that 
limఠ ݀ଶ(ݔఠ	 (ݔ, 	= 	0,	which is a contradiction to our supposition.  

Corollary (3.2.14)[104]: Let ܶ:	ܺ∗ 	→ ܻ∗ be a bounded linear operator between dual 
spaces which is ݓ∗ 	ܭ continuous. If ∗ݓ− ⊂ 	ܺ∗ is a ݓ∗-compact subset having 
ܲ(‖. .‖)ܲ has (ܭ)ܶ then ,(∗ݓ,‖   .∗ܻ in (∗ݓ,‖

    The following result compares with [119].  

Lemma (3.2.15)[104]: Let (ܭ , ߬) be compact spaces for ݅ ∈ ℕ and let ݀ be a metric on 
, has ܲ(݀ܭ  such thatܭ ߬) with ߬-closed sets for every ݊ ∈ ℕ. Let ߬ be the topology 
product of the ߬-topologies on ܭ	 = ∏ ஶܭ

ୀଵ 	 and let ݀ be a metric compatible with the 
product of the ݀-topologies on ܭ. Then ܭ has ܲ(݀, ߬) with ߬-closed sets.  

Proof: Take for every ݊ ∈ ℕ a ߬,-lsc Kadec function ܨ:	ܭ 	→ [0, 1]. An easy lower 
semicontinuity argument shows that  

(ݔ)ܨ 	= 	2ିܨ(ݔ)
ஶ

ୀଵ

 

is a ߬-lsc Kadec function on ܭ linking ݀ with ߬, where ݔ	 = 	   .(ݔ)

     The following result can be regarded as a topological version of the transfer technique 
of Godefroy-Troyanski-Whitfield-Zizler [110], [106].  

Theorem (3.2.16)[104]: Let (ܺ, ߬) be a topological space and let ݀ be a ߬-lower 
semicontinuous metric on ܺ. Suppose that there exist ߬-compacts sets ܭ 	⊂ ܺ having 
ܲ(݀, ߬) such that ⋃ ஶܭ

ୀଵ
തതതതതതതതതതതௗ = 	ܺ. Then ܺ has ܲ(݀, ߬).  

Proof: We can suppose the sequence (ܭ) increasing and the metric ݀ bounded. By 
Proposition (3.2.9), for every ݊ ∈ ℕ there is a ߬-lsc Kadec function ܨ:	ܭ 	→ 	 [0, 1].	We 
define the functions ݂ on ܺ as follows,  

݂(ݔ) 	= (ݕ,ݔ)݀}݂݊݅	 	+ 	 ݕ	:(ݕ)ܨ ∈  .{ܭ	

Note that the infimum is attained. We claim that ݂ is ߬-lsc. Indeed, suppose that ߬ -
lim
ఠ
ఠݔ 	= (ఠݔ)and ݂ ݔ	 ≤ ఠݕ for every ߱. Take points ݎ	 ∈ (ఠݔ) such that ݂ܭ	 	=

,ఠݔ)݀	 (ఠݕ 	+ ݕ Let .(ఠݕ)ܨ	 ∈   Then we have that .(ఠݕ)  be a cluster point ofܭ	

݂	(ݔ) ≤ ,ݔ)݀	 (ݕ + 	 (ݕ)ܨ ≤  	ݎ	

because of the lower semicontinuity of ݀ and ܨ. Now we define a function ܨ on ܺ by the 
formula  
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(ݔ)ܨ 	= 	 2ି ݂(ݔ)
ஶ

ୀଵ

. 

We claim that ܨ has the Kadec property. Indeed, suppose not. We can take a net (ݔఠ) in ܺ 
with ߬ -limit a point ݔ such that lim

ఠ
(ఠݔ)ܨ 	= ߝ	and there is ,(ݔ)ܨ	 > 	0 such that 

,ఠݔ)݀ (ݔ 	> A standard argument of lower semicontinuity gives that lim .ߝ	
ఠ ݂(ݔఠ) 	=

	 ݂(ݔ) for every ݊ ∈ ℕ. Fix ݊ ∈ ℕ such that 1/݊	 < (ܭ,ݔ)݀ and 3/ߝ	 	<  We can .3/ߝ	
take points ݕఠ ∈    such thatܭ	

݂(ݔఠ) = ఠݔ)݀ (ఠݕ, +  .(ఠݕ)ܨ

Let ݕ ∈ -߬ Without loss of generality we can assume that .(ఠݕ)  be a cluster point ofܭ	
lim
ఠ
ఠݕ =   Since .ݕ	

,ݔ)݀ (ݕ + (ݕ)ܨ	 ≤ lim
ఠ ݂(ݔఠ) = ݂(ݔ) ≤ ,ݔ)݀ (ݕ +  (ݕ)ܨ

we have that  

lim
ఠ

ఠݔ)݀] , (ఠݕ 	+ 	 [(ఠݕ)ܨ 	= ,ݔ)݀	 (ݕ 	+ 	  	.(	ݕ)ܨ

Using the lower semicontinuity, we deduce that lim
ఠ
ఠݔ)݀ (ఠݕ, 	= ,ݔ)݀	 (ݕ 	<  and 3/ߝ	

lim
ఠ
(ఠݕ)ܨ 	= 	 The last equality gives that lim .(ݕ)ܨ

ఠ
ఠݕ)݀ (ݕ, 	= 	0, thus for ߱ big enough 

we have that ݀(ݔఠ , (ఠݕ 	< ఠݕ)݀ and	3/ߝ	 (ݕ, 	< ,ݔ)݀ Since .3/ߝ	 (ݕ 	<  we have that 3/ߝ	
,ఠݔ)݀ (ݔ 	<   .which is a contradiction ,ߝ	

    Given a Banach space ܺ, a bounded subset ܼ	 ⊂ 	ܺ∗ is said to be norming if there is 
ߣ > 	0 such that ݔ‖ߣ‖ ≤ ∗ݔ	:|(ݔ)∗ݔ|}ݑݏ ∈ ܼ} for all ݔ ∈ 	ܺ. Notice that the supremun 
defines an equivalent norm on ܺ which is lower semicontinuous for the topology of 
convergence on ܼ, denoted ߪ(ܺ,ܼ). A linear subspace ܼ	 ⊂ ܺ∗	is said to be norming if 
∗ܤ 	⋂	ܼ is a norming subset.  

     The following result compares with [119].  

Proposition (3.2.17)[104]: Let ܺ be a Banach space, let ܼ	 ⊂ ܺ∗ be a norming subset and 
let ܭ ⊂ ܺ∗be a bounded ߪ(ܺ,ܼ)-compact subset which has ܲ(‖.  Then .((ܼ,ܺ)ߪ,‖
.‖)ܲ have (ܭ)തതതതതఙ(,)ܿܽ and (ܭ)‖.‖തതതതതതത݊ܽݏ  .(	(ܼ,ܺ)ߪ,‖

Proof: Let ܫ(݊,݉) 	= 	 [−݉,݉] 	×. . .× 	 [−݉,݉] (݊ times) with the usual topology of ℝ. 
Let ܭ, = (݊,݉)ܫ	 	× 	ܭ	 ×	. . .×  is ܭ If ߬ is the product topology when .(times ݊) ܭ
endowed with ߪ(ܺ,ܼ), then ܭ, is ߬-compact. If ܭ is endowed with the norm topology, 
then the product topology is metrized by a metric that we call ݀. By Lemma (3.2.15), ܭ, 
has ܲ(݀, ߬). The map ܶ, from ܭ, to ܺ defined by ܶ,	(	ߙଵ	, . . . ,ߙ, ,	ଵݔ . . . , (	ݔ 	=
ଵݔଵߙ	 + ⋯+ .‖-݀ continuous and (ܼ,ܺ	)ߪ-߬  is clearlyݔߙ	 ‖ continuous, thus every 
.‖)ܲ has (,ܭ)	compact set ܶ,-(ܼ,ܺ	)ߪ  by Theorem (3.2.13). Since (	(ܼ,ܺ)ߪ,‖
span(ܭ) 	= 	⋃ ܶ,	(ܭ,), , we have that ݊ܽݏതതതതതതത‖.‖(ܭ) has ܲ(‖.  by Theorem(	(ܼ,ܺ)ߪ,‖
(3.2.16). The result for the ߪ(	ܺ,ܼ)- closed absolutely convex hull follows from the fact 
that ܽܿതതതതതఙ(,)(ܭ) 	= 	   .is fragmentable by the norm; see [119] ܭ because (ܭ)‖.‖തതതതതܿܽ



115 

   The following result compares with [119].  

Theorem (3.2.18)[104]: If ܭ is a Namioka-Phelps compact, then (ܤ()∗  is also a (∗ݓ,
Namioka-Phelps compact.  

Proof. In the proof of [119] it is shown that if ܭ is a Radon-Nikod́ݕm compact, then there 
is a dual Banach space ܺ∗ and a bounded injective ݓ-∗ݓ∗-continuous linear operator 
∗(ܭ)ܥ	:ܶ 	→ ܺ∗ such that ܶ(ܭ) is fragmented by the norm ‖. ‖ of ܺ∗. If ܭ is moreover 
Namioka-Phelps, then ܶ(ܭ) has ܲ(‖. (∗()ܤ)ܶ Then .(∗ݓ,‖ 	= 	  has ((ܭ)ܶ)‖.‖തതതതതܿܽ
ܲ(‖.   .is Namioka-Phelps 	(∗()ܤ)ܶ by Proposition (3.2.17), and thus (∗ݓ,‖

A dual Banach space ܺ∗ having a dual LUR norm has the Radon- Nikod́ݕm 
property. The space ܥ[ݓ,0ଵ] shows that the converse is not true. Fabian and Godefroy 
proved [FG] that a dual Banach space with the Radon- Nikod́ݕm property has an 
equivalent LUR norm (not necessarily dual, of course). The LUR norm in that case can be 
made a dual norm under additional hypothesis, e.g., if the predual ܺ is WCD, or the space 
ܺ∗ is itself WCD; see [106]. Following Hansell [111], we say that a dual Banach space ܺ∗ 
is dual-descriptive if it has the Radon -Nikod́ݕm property and the weak* topology has a ߪ-
isolated network. The class of dual-descriptive spaces coincides with the dual Banach 
spaces having a countable cover by sets of local small diameter in the sense of Jayne, 
Namioka and Rogers [113]. A dual Banach space with a ݓ∗-Kadec norm is dual-
descriptive [111]. Our main result states that the existence of an equivalent dual LUR 
norm is a topological property. Partial results in this direction were obtained in [122], in 
the spirit of the Molt́-Orihuela-Troyanski characterization of LUR renormability [117].  

Theorem (3.2.19)[104]: Let ܺ∗ be a dual Banach space. The following conditions are 
equivalent:  

(i) ܺ∗ admits an equivalent dual LUR norm.  
(ii) ܺ∗ admits an equivalent norm such that weak topology and the weak* topology 

coincide on its unit sphere.  
(iii) ܺ∗ is dual-descriptive.  
(iv) ܺ∗ (resp. ܵ∗) has ܲ(‖.   .(∗ݓ,‖

Proof: (i) ⟺ (ii) It is proved in [122]. 

(i)	⇒ (iv) It follows from Proposition (3.2.9).  

(iv) ⇔ (iii) It follows from Theorem (3.2.11).  

(iv)	⇒	(ii) If a dual Banach space ܺ∗ has ܲ(‖.  mݕthen ܺ∗ has the Radon -Nikod́ ,(∗ݓ,‖
property, by Corollary (3.2.12). A result from [121] establishes that there is a ݓ∗-lower 
semicontinuous real function	ܨ on ܺ∗with ‖. ‖ ≤ .)ܨ ) ≤ 	3‖. ‖ such that the norm and the 
	ܵ topology coincide on the set-∗ݓ = 	 ∗ݔ} ∈ (∗ݔ)ܨ	:∗ܺ	 	= 	1}. Let 	= 	 ∗ݔ} ∈ (∗ݔ)ܨ	:∗ܺ	 ≤
1} . Since ܺ∗ has the Radon-Nikod́ݕm property, ܿതതത‖.‖(ܭ) will be a ݓ∗-compact set, 
symmetric and with nonempty norm interior, that is the unit ball of some equivalent dual 
norm on ܺ∗.Without loss of generality we can suppose ܺ∗ endowed with that norm, 
namely ܤ∗ = 	  topology coincide on-∗ݓ We will show that the norm and the .(ܭ)‖.‖തതതܿ
ܵ∗.  
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     Suppose not, that is, there is some ߝ	 > 	0 and some net (ݔఠ∗ ) in ܵ∗ ݓ∗- converging to 
a point ݔ∗ ∈ ܵ∗ such that ‖ݔఠ∗ 	− ‖∗ݔ	 	>  such that ܭ ఠ onߤ Take Radon probabilities .ߝ	
∗ఠݔ 	= 	 ∫ ॴ݀ߤఠ	

	
  (integrals are taken in the sense of Bochner, see [107]). Without loss of 

generality we can suppose that (ߤఠ)	converges in (ݓ,∗(ܭ)ܥ∗) to a Radon probability ߤ on 
∗ݔ We must have that .ܭ 	= ∫ ॴ݀ߤ	

 	.  

     Since ‖ݔఠ∗ ‖ 	= 	 ‖∗ݔ‖ = 	1, we have that ߤఠ and ߤ are supported by ܵ∗ ∩ 	ܭ ⊂ 	ܵ. We 
can take disjoint norm compact sets ܭ ⊂ 	ܵ for ݅	 = 	1, . . . , ݊	with diameter ݊ less than 7/ߝ 
such that ߤ(⋃ ܭ

ୀଵ ) 	> 	1	 − ܭ	 We can take a norm compact set .12/ߝ	 ⊂ 	ܵ disjoint 
from ⋃ ܭ

ୀଵ  such that ߤ(⋃ ܭ
ୀ ) 	> 	1	 −  Take disjoint norm open sets ܸ for .12݊/ߝ	

݅ = 0, . . . , ݊ with ܭ ⊂ 	 ܸ and the diameter of ܸ for ݅ = 1, . . . ,݊ less that 6/ߝ.  Since the 
norm and the ݓ∗-topology coincide on ܵ, we can take ݓ∗-open sets ܷ such that ܷ ∩ 	ܵ	 =
	 ܸ ∩ 	ܵ.	 

     By Urysohn's Lemma, we can take	ݓ∗-continuous functions ݂ for ݅	 = 	0, . . . , ݊ from 
∗ to [0,1] such that ݂|ܤ = 1 and ݂|∗\ = 	0. Since ∫ ݂݀ߤఠ

	
  converges to ∫ ݂݀ߤ

	
 ≥

	݅ for (ܭ)ߤ = 	0, . . . ,݊ we will have, for ߱ big enough, that	ߤఠ( ܸ) = )ఠߤ ܷ) ≥
∫ ݂݀ߤఠ 	
	
 > (ܭ)ߤ	 − ݅ 12݊ଶ for/ߝ = 	0, . . . , ݊. On the other hand, we must have 
)ఠߤ ܸ) 	< (ܭ)ߤ	 	+ ఠ൫ߤ If not, then .6݊/ߝ ܸ൯ ≥ (ܭ)ߤ 	+  for some ݆. Summing the 6݊/ߝ
above inequalities for ݅ ≠ 	݆ we will have ߤఠ(⋃ ܸ


ୀ ) 	> ⋃)ߤ	 ܭ

ୀ ) 	+ 6݊/ߝ	 −
12݊ଶ/ߝ݊	 > 	1 − 	12݊/ߝ	 + 	6݊/ߝ	 − 	12݊/ߝ	 = 	1 which is a contradiction. Thus we have 
that |ߤఠ( ܸ 	) 	− |(ܭ)ߤ	 < ⋃)ఠߤ and 6݊/ߝ	 ܸ


ୀଵ ) 	> 	1	 −   .6/ߝ	

     Fix any ݅	 = 	1, . . . , ݊. We can take points ݔଵ∗, ∗ଶݔ ∈ )	‖.‖തതതܿ ܸ)	such that ߤ(ܭ)ݔଵ∗ 	=
∫ ॴ݀ߤ	


, and ߤఠ( ܸ)ݔଶ∗ = ∫ ॴ݀ߤఠ
	


. Since the diameter of ܸ 	is less than 6/ߝ, then ‖ݔଵ∗ −
‖∗ଶݔ ≤   We have that	.6/ߝ

ቯන ॴ݀ߤఠ

	



− නॴ݀ߤ
	



ቯ = 	 )ఠߤ‖ ܸ)ݔଶ∗ − ‖∗ଵݔ(ܭ)ߤ

≤ 	 )ఠߤ| ܸ) − ‖∗ଶݔ‖.|(ܭ)ߤ + ∗ଵݔ‖(ܭ)ߤ	 − ‖∗ଶݔ ≤ (1\݊ + (	(ܭ)ߤ ቀ
ߝ
6
ቁ. 

We will show that ‖ݔఠ∗ − ‖∗ݔ 	<   to get the final contradiction ߝ

∗ఠݔ‖ − ‖∗ݔ = 	 ะන ॴ݀ߤఠ

	



− නॴ݀ߤ
	



ะ

≤ ቯ න ॴ݀ߤఠ

	

\⋃ 
సభ

− න ॴ݀ߤ
	

\⋃ 
సభ

ቯ+ 	ቯනॴ݀ߤఠ

	



− න ॴ݀ߤ
	



ቯ


ୀଵ

≤
ߝ
6

+
ߝ

12
+ (

1
݊

+ ((ܭ)ߤ ቀ
ߝ
6
ቁ



ୀଵ

<  	ߝ

This shows that the norm ‖. ‖ is ߱∗-Kadec. .  
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Corollary (3.2.20)[104]: Let ܺ be a Banach space such that its dual ܺ∗ satisfies any of the 
statements of Theorem (3.2.19). Then ܺ has an equivalent Fr݁́chet differentiable norrll.  

    Let ܺ be an Asplund Banach space. We shall consider the following construction on its 
dual ܺ∗. For any weak*-compact convex subset ܤ	 ⊂ 	ܺ∗ and ߝ	 > 	0, take  

ఌᇱ(ܤ) = 	 ∗ݔ} ∈ ܷ∀	:ܤ	 ∈ ∗ݔ,∗ݓ	 ∈ 	ܷ, 	ܤ)݉ܽ݅݀ ∩ 	ܷ) 	>  	.{ߝ	

Define by transfinite induction the sets (ܤఌఈ)	as follows:  

ఌܤ = 	 ∗ܤ , 

ఌఈାଵܤ								 	= 	 ఌᇱ(ఌఈܤ) 	 

and, for ߙ a limit ordinal,  

ఌఈܤ = ሩܤఌ
ఉ

ఉழఈ

	. 

Now take ܵऊ(ܺ, (ߝ 	= ఌఈܤ	:ߙ}݂݊݅	 = 	∅,	and	ܵऊ(ܺ) = sup
ఌவ

,ܺ)௭ߜ  The ordinal number	.{(ߝ

	ܵऊ(ܺ)	is called the Szlenk index of ܺ. The following result was proved by Lancien [116] 
using a Kunen-Martin type argument.  

Corollary (3.2.21)[104]: (Lancien): If ܺ is a Banach space with 	ܵऊ(ܺ) 	< 	 ߱ଵ, then ܺ∗ 
has an equivalent dual LUR norm.  

The following is a transfer result for LUR renorming of Godefroy –Troyanski-
Whitfield-Zizler [110], [106]. A topological version of it is Theorem (3.2.16).  

Theorem (3.2.22)[104]: (Godefroy, Troyanski, Whitfield & Zizler): Let	ܺ be a Banach 
space, let ܼ ⊂	ܺ∗ be a norming subset, let ܻ∗ be a dual Banach space having a dual LUR 
norm and let ܶ:	ܻ∗ → ܺ be a bounded linear operator ߪ-∗ݓ(ܺ,ܼ) continuous. Then ܺ has 
an equivalent 1-(ܼ,ܺ)ߪower semicontinuous norm which is LUR at the points of 
ܶ(ܻ∗)തതതതതതതത‖.‖	.  

    We shall prove the following interpolation result in the spirit of the Davis-Figiel-
Johnson-Pelczy݊́ski Theorem, that can be regarded as a reciprocal of Theorem (3.2.22).  

Theorem (3.2.23)[104]: Let ܺ be a Banach space, let ܼ ⊂ ܺ∗ be a norming subset and let 
ܭ ⊂ 	ܺ be a bounded ߪ(ܺ,ܼ)-compact subset which has ܲ(‖.  Then there .((ܼ,ܺ)ߪ,‖
exists a dual Banach space ܻ∗ having a dual LUR norm and a bounded one-to-one linear 
operator ܶ:	ܻ∗ → ܺ which is -∗ݓ	ߪ(ܺ,ܼ) continuous such that ܭ ⊂   .(∗ܤ)ܶ	

Proof: After Lemma (3.2.17) we know that ܭ = 	  is an absolutely convex (ܭ)	‖.‖തതതതതܿܽ
compact set with ܲ(‖.   is fragmented by the norm. Followingܭ	Thus .((ܼ,ܺ)ߪ,‖
Namioka [119], there is an Asplund space ܻ and a bounded injective linear operator 
ܶ:	ܻ∗ → ܺ which is -∗ݓ	ߪ(ܺ,ܼ) continuous such that ܭ ⊂ (∗ܤ)ܶ ⊂ 	2ܭ + ,0]ܤ	 1/2] 
for every ݊ ∈ ℕ.	By Theorem (3.2.16) we have that ܶ(ܤ∗) will be a descriptive ߪ(ܺ,ܼ)-
compact subset of 	ܺ. Since ܶ is a homeomorphism when restricted to ܤ∗, we deduce that 
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∗ܤ)  isolated network. Thus ܻ∗ is dual-descriptive and it has an equivalent-ߪ has a (∗ݓ,
dual LUR norm by Theorem (3.2.19).  

Corollary (3.2.24)[104]: Let ܺ be a Banach space, let ܼ ⊂ ܺ∗ be a norming subset and let 
ܭ ⊂ 	ܺ be a bounded ߪ(ܺ,ܼ)-compact subset which has ܲ(‖.  .((ܼ,ܺ)ߪ,‖

Then ܺ has an equivalent ߪ(ܺ,ܼ)-lower semicontinuous norm which is LUR at the points 
of ݊ܽݏതതതതതതത‖.‖	(ܭ).	 

Proof: Apply Theorems (3.2.23) and (3.2.22). I  

     The following extends a well-known result of Deville [105] concerning the dual LUR 
renorming of (ܭ)ܥ∗,	where ܭ is a scattered compact space such that ܭ 	(ఠభ) = 	∅; see also 
[106].  

Corollary (3.2.25)[104]: Let ܭ be a Hausdorff compact space. The following are 
equivalent:  

(i) (ܭ)ܥ∗ has an equivalent dual LUR norm. 
(ii) ܭ is a countable union of relatively discrete subsets.  

Proof: Suppose that (ܭ)ܥ∗ has an equivalent dual LUR norm. Then (ܭ)ܥ∗has ܲ(‖.  (∗ݓ,‖
and, in particular, ܭ has ܲ(‖.  The following .(ܣ) with some sequence of subsets (∗ݓ,‖
sets  

ܦ 	= 	 ݔ} ∈ ܷ∃	:ܣ	 ∈ ,∗ݓ	 ݔ ∈ ܣ)݉ܽ݅݀,ܷ	 	∩ 	ܷ) 	< 	1}	 

are relatively discrete and cover ܭ. Conversely, assume that ܭ is a countable union of 
relatively discrete subsets. Then it is easy to see that ܭ	 has ܲ(݀, ߬) where ݀ is the discrete 
metric. By Theorem (3.2.11), ܭ is ݀-fragmentable, so ܭ must be scattered. Regarding ܭ as 
a subset of (ܭ)ܥ∗, it has ܲ(‖. ∗(ܭ)ܥ and (∗ݓ,‖ 	=  has an equivalent dual (ܭ)	‖.‖തതതതതതത݊ܽݏ
LUR norm by Corollary (3.2.24).   

Proposition (3.2.26)[104]: Let ܭ be Hausdorff compact space. The following statements 
are equivalent:  

(i) ܭ is Namioka-Phelps.  
(ii) There is a lower semicontinuous metric ݀ such that ܭ	has ܲ(݀, ߬).	 
(iii) ܭ	is Radon-Nikod́ݕm and it has a ߪ-isolated network.  

Proof: (i) ⟺ (iii) ⇒ (ii) It is clear after Theorem (3.2.11).  

(ii) ⇒ (i) Let ݀ be a lower semicontinuous metric on (ܭ, ߬) such that ܭ has 
ܲ(݀, ߬). There is a dual space ܺ∗ containing ܭ as ݓ∗-compact subset in such a 
way that the metric ݀ is induced by the norm [112]. Then the result will follow 
from Theorem (3.2.23).   

Theorem (3.2.27)[104]: Let ܭ be a Namioka-Phelps compact space. Then (ܭ)ܥ∗has an 
equivalent ܹ∗LUR norm. In particular, (ܭ)ܥ has an equivalent G ොܽteaux differentiable 
norm.  

Proof: The proof of [119] shows that if K is a Radon-Nikod́ݕm compact, then there is a 
dual Banach space	ܺ∗ and a bounded injective ݓ-∗ݓ∗- continuous linear operator 
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∗(ܭ)ܥ	:ܶ 	→ 	ܺ∗ such that ܶ(ܭ) is fragmented by the norm ‖. ‖	of ܺ∗. If ܭ is Namioka-
Phelps, we have that ܶ(ܭ) has ܲ(‖.  ∗ܺ By Corollary (3.2.24), we can suppose that .(∗ݓ,‖
is endowed with a dual norm which is LUR at the points of ܶ((ܭ)ܥ∗). Define an 
equivalent dual norm ‖. ‖	on	(ܭ)ܥ∗ by the formula ‖|ݔ|‖ଶ 	= 	 ଶ‖ݔ‖ 	+  ଶ. We claim‖(ݔ)ܶ‖
that ‖. ‖ is ܹ∗LUR. To see that, take points ݔ,ݔ in (ܭ)ܥ∗ with ‖|ݔ|‖	 = 	‖|ݔ|‖ = 	1 and 
lim

ݔ|‖ + 	‖|ݔ = 2.	By a standard convexity argument [106], we have that lim


‖(ݔ)ܶ‖ =

and lim	‖(ݔ)ܶ‖

(ݔ)ܶ‖	 	+ ‖(ݔ)ܶ	 	= .‖ Since .‖(ݔ)ܶ‖2	 ‖ is LUR at ܶ(ݔ), we have that 

lim

(ݔ)ܶ‖	 	+ ‖(ݔ)ܶ	 = 	0. In particular, ܶ(ݔ) is ݓ∗-convergent to ܶ(ݔ), and hence (ݔ) 

is ݓ∗-convergent to ݔ because of the ݓ∗-continuity of ܶିଵ on ܶ(ܤ()∗).  

Section (3.3): WUR Banach Spaces 

     Our motivation for the present work was two questions posed to us, in Paseky’s 
conference (2004), by G. Godefroy and V. Zizler. We suspected that one of the examples 
of [125] is a possible candidate for answering both questions. Furthermore, discussing 
with S. Troyanski during his visit in Athens, we realized that Zizler’s question is closely 
related to a problem posed by M. Fabian, G. Godefroy, P. Hܽ́jek and V. Zizler [130]. Thus 
we show that the second example of [125] answers negatively the following two questions.  

      Q1. Let ܺ be a Banach space with a WUR norm. Does there exist a bounded, linear, 
one-to-one operator ߔ ∶ 	ܺ	 → 	 ܿ(߁), for some set ߁?  

      Q2. Let ܺ be a Banach space such that ܺ is a subspace of a WCG and also there exists 
a norm-one projection ܲ ∶ 	ܺ∗∗ 	→ 	ܺ. Is then ܺ a WCG space?  

The example from [125] answering the aforementioned questions is a subspace ܻ of a 
Banach space ܺ with the following properties.  

(i) The space ܺ is WCG and it does not contain ℓଵ.  
(ii) Both spaces ܺ and ܻ are duals, ܺ∗∗ 	= 	ܺ	 ⊕	ℓଶ(߁) and ܻ∗∗ 	= 	ܻ	 ⊕	ℓଶ(߁). 

In particular ܺ∗∗ is WCG.  
(iii) The space ܻ is not WCG and ܺ/ܻ is reflexive. 

The space ܺ is of the form (∑ ⊕ )ܬ ܶ)ஶ
ୀଵ )ଶ	 , where ( ܶ) is the remarkable Rezniܿ̆enko 

sequence of trees. This is a sequence of trees with each ܶ	of height ߱ and which satisfy a 
strong Baire property. The original construction of ( ܶ) was based on a transfinite (for 
	ߦ < 	 ߱ଵ) recursive argument. We provide a new construction with the use of a coding 
function ߪ. Each ܶ consists of all ߪ-admissible sequences with first element the natural 
number ݊, ordered by the initial segment inclusion. It is worth pointing out that the space 
ܺ is also a James tree space with ܶ	 = ⋃ ܶ

ஶ
ୀଵ 	, which shows that the WCG ܬ(ܶ)	spaces 

are not hereditarily WCG. The following is the key property for our results.  

Proposition (3.3.1)[123]: Let ܻ be the subspace of ܺ mentioned before. Then there is no 
ߔ ∶ 	ܻ∗ 	→ 	 ܿ(߁)	linear, one-to-one and bounded.  

This proposition in conjunction with the property that ܺ∗∗ is Hilbert-generated yields a 
negative answer to Q1. Let us recall that if ܧ admits an equivalent WUR norm, then ܧ∗ is 
a subspace of a WCG ([128]). In particular, if ܧ is isomorphic to ܻ∗ for some Banach 
space  , then ܻ could not contain ℓଵ. This actually shows that any example ܻ∗ answering in 
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negative Q1, should satisfy the following properties. First ℓଵ does not embed in ܻ and 
second, ܻ∗∗ is a non-WCG subspace of a WCG Banach space. Namely the space ܻ must 
satisfy the basic properties of the example presented here.  

      We start with the construction of the sequence ( ܶ) mentioned above. First we fix a 
well ordering ≺ of the set ℝ of real numbers.  

       Let {ܫఈ ∶ 	ߙ	 < 	ܿ}, with |ܫఈ| 	= 	ܿ for ߙ	 < 	ܿ, be a disjoint family of subsets of the set 
ℝ	\	ℕ, where ܿ denotes the cardinality of the continuum. We denote by ℒ the set of all 
sequences ⃗ݏ 	= 	 ,ଵݏ) ,ଶݏ . . . ) with the following properties: 

      (i) for every ݇	 ∈ 	ℕ, ݏ 	= 	 ,ݐ) ,ଵݐ . . . , ݐ ௗೖ), whereݐ 	 ∈ 	ℕ, ݀ 	≥ 	0, ݐ 	 ∈ 	ℝ	\	ℕ for 
1	 ≤ 	݅	 ≤ 	 ݀ , ݐ ≠ 	 for 1ݐ	 ≤ 	݅	 < 	݆	 ≤ 	 ݀	and  

      (ii) ݏ 	∩ ݏ	 	= 	∅	for ݇	 < 	݉.  

Fix a one-to-one mapping ߪ ∶ ℒ → 	 [0, ܿ), where [0, ܿ)	is the interval of all ordinals 
smaller than ܿ.  

Definition (3.3.2)[123]: A finite sequence (ݐ, ,ଵݐ . . . , ݐ ௗ), whereݐ 	 ∈ ℕ, ݀	 ≥ 	1, ݐ ∈
	ℝ	\	ℕ for 1	 ≤ 	݅	 ≤ 	݀, is said to be ߪ-admissible if ݐ 	≺ 	 ଵݐ 	≺	·	·	·	≺ 	  ௗ and for allݐ
݅	 = 	1, 2, . . . , ݀, there exists ⃗ݏ 	 ∈ 	ℒ such that (ݐ, ,	ଵݐ . . . , (ିଵݐ 	 ∈ ݐ  andݏ⃗ 	 ∈ 	   . ఙ(௦⃗)ܫ

     Define for every ݇	 ∈ 	ℕ a partial order <  in ℝ as follows: 

     If ݐ, 	ݏ ∈ 	ℝ, then ݐ < ,ݐ) admissible sequence−ߪ iff there exist a ݏ ,ଵݐ . . . ,  ௗ) withݐ
ݐ 	= 	݇ and 0	 ≤ 	݅	 < 	݆	 ≤ 	݀ such that ݐ	 = 	 	ݏ  andݐ = 	 ݐ 	. 

     Set ܶ 	= 	 	ݐ} ∈ ℝ	\	ℕ:	݇	 < {ݐ ∪	 {݇} for ݇	 ∈ 	ℕ. Then the sequence of partially 
ordered sets ( ܶ, <), ݇ ∈ 	ℕ, has the properties of a sequence of Rezniܿ̆enko trees (see 
also Proposition 3.2 in [125]). In fact we have the following  

Theorem (3.3.3)[123]: (i) For every ݇	 ∈ 	ℕ, the partially ordered set ( ܶ , <) is a tree of 
height ߱	with root ݇. 

      (ii) If ݇ଵ ≠ 	݇ଶ and ܫ is a segment of ܶ	, ݅	 = 	1, 2, then |ܫభ 	∩ 	 మܫ 	| 	≤ 	1.	 

      (iii) For every non empty subset ܯ of ℕ and ܫ initial segment of ܶ, ݊	 ∈  such	,ܯ	
that ܫ 	∩ 	 ܫ 	= 	∅ for ݊ ≠ 	݉, there exist uncountable many ݐ	 ∈ ℝ	\	ℕ such that 
	ݐ ∈ 	 ܵ୫ୟ୶ 	ூ

  , for all ݊	 ∈ 	ݐ where for)	,ܯ	 ∈ 	 ܶ we denote by ܵ௧ the set of all immediate 
successors of ݐ in the tree ܶ). 

Proof: (i) Let us observe that the definition of the ߪ-admissible sequences yields that for 
any ݇	 ∈ 	ℕ and every pair (݇	 = 	 ,ݐ ,ଵݐ . . . , ,(ௗభݐ (݇	 = 	 ,ݏ ,ଵݏ . . . ,  admissible -ߪ ௗమ) ofݏ
sequences, there exists 0	 ≤ 	 ݅ 	≤ 	݉݅݊{݀ଵ,݀ଶ} such that for all ݅	 ≤ 	 ݅ we have ݐ 	= 	  ݏ
and the sets {ݐబାଵ, . . . , ,{ௗమݐ ,బାଵݏ} . . . , ) are disjoint. This shows that	ௗమ}ݏ ܶ, <)  is a tree 
of height ߱. 

(ii) By (i), it is enough to show the property only for initial segments. Let ݇ଵ ≠ 	݇ଶ and 
(݇ଵ, ,ଵݐ . . . , ,(ௗభݐ (݇ଶ, ,ଵݏ . . . ,  admissible sequences. Assume that-ߪ ௗమ) beݏ
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|{݇ଵ, ,ଵݐ . . . , {ௗభݐ ∩ {݇ଶ, ,ଵݏ . . . , |{ௗమݏ 	≥ 	2. Namely, there exist 1	 ≤ 	 ݅ଵ 	< 	 ݅ଶ 	≤ 	 ݀ଵ and 
1	 ≤ 	 ݆ଵ 	< 	 ݆ଶ 	≤ 	 ݀ଶ	such that {ݐభ 	, {మݐ 	= 	 ,	భݏ} భݐ మ}. Sinceݏ 	≺ మݐ 	and ݏభ ≺ 	 మݏ  for the 
fixed well ordering ≺ of 	ℝ, we conclude that ݐభ 	= 	 భݏ 	and ݐమ = 	 మݏ 	. This yields a 
contradiction since the ߪ-admissible sequences (݇ଵ, ,ଵݐ . . . , ,(మିଵݐ (݇ଶ, ,ଵݏ . . . ,  మିଵ) haveݏ
common ߪ-extension although they are not disjoint. (iii) It follows immediately from the 
definitions of the function ߪ and the ߪ- admissible sequences.  

      Any sequence of trees ܶ, ݇	 ∈ 	ℕ, satisfying the assertions (i) to (iii) of the above 
theorem is called a sequence of Rezniܿ̆enko trees. As it is shown in [125] (Proposition 
3.3), any sequence of Rezniܿ̆enko trees satisfies a sort of Baire category property. To this 
end we need the following definition.  

Definition (3.3.4)[123]: Let ܶ be a tree. A subset ܦ of ܶ is said to be successively dense 
in ܶ if there exists ݐ 	 ∈ 	ܶ such that for every ݐ	 ∈ 	ܶ with ݐ 	≤ ܦ we have ݐ	 ∩ ܵ௧ ≠ 	∅.  

     Let us point out that if ܶ has the additional property that for each ݐ	 ∈ 	ܶ	ܵ௧ ≠ 	∅, then 
every successively dense subset ܦ of ܶ must contain an infinite segment. Under the above 
terminology we have the following fundamental property of Rezniܿ̆enko sequences of 
trees.  

Theorem (3.3.5)[123]: Let ܶ,݊	 ≥ 	1 be any sequence of Rezniܿ̆enko trees, so that each 
ܶ has as a root the number ݊ ∈ 	ℕ and ܶ	 = 	⋃ ܶ

ஶ
ୀଵ 	. If  ܦ, ݊	 ≥ 	1 is any sequence of 

subsets of ܶ with ܶ	 = 	⋃ ஶܦ
ୀଵ 	then there exists ݇ 	 ∈ ℕ such that the set ܦబ  is 

successively dense in ܶబ 	. In particular, there exists ݐ 	 ∈ 	 ܵబ
బ 	 such that for every 

	ݐ ∈ 	 ܶబ 	with ݐ 	≤బ we have |ܵ௧ ݐ	
బ 	∩ |బܦ	 	≥ 	߱ଵ.  

    The proof follows the arguments of [125], [124]. 

Theorem (3.3.6)[123]: There exists a WCG Banach space ܺ such that ܺ∗∗ is also WCG 
not containing ℓଵ. Moreover there exists a closed subspace ܻ of ܺ such that:  

       (a) the spaces ܻ and ܻ∗∗ are not WCG;  

       (b) the quotient ܺ/ܻ is a reflexive space.  

     We first recall the definition of a James space ܬ(ܶ), for a given tree (ܶ,≤). So ܬ(ܶ) is 
the completion of the linear space ܿ(ܶ) of finitely supported real functions on ܶ under 
the norm  

(்)‖ݔ‖ 	= ݑݏ	 ൞ቌ(ݐ)ݔଶ

௧∈ௌ

ቍ

ଵ/ଶ

ୀଵ

∶ ଵܵ, . . . , ܵ	ܽ݁ݎ	ݐ݆݊݅ݏ݅݀	ݏݐ݊݁݉݃݁ݏ	݂	(ܶ,≤)ൢ	.	 

The space ܺ in the above theorem is of the form (∑ ⊕ ܺஶ
ୀଵ )ଶ, where ܺ is the James 

space ܬ( ܶ 	× 	{݉})	and ܶ,݉	 ≥ 	1, is a sequence of Rezniܿ̆enko trees. Since each tree 
ܶ is of height ߱, each ܺ has the following properties:  

(i) ܺ is a WCG, ܺ 	≅ 	 ܼ∗  and ܺ∗ /ܼ 	≅ 	 ℓଶ(ܤ), where ܼ is the closed 
linear span of the set {݁(௧,)

∗ ∶ 	ݐ	 ∈ 	 ܶ}	in ܺ∗  and ℬ the set of branches of 
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the tree ܶ (clearly ܼ is a WCG, since the set {݁(௧,)
∗ ∶ 	ݐ	 ∈ 	 ܶ} 	∪ 	{0} is 

weakly compact in ܺ∗ ).  
Using properties of Dixmier’s projection ܲ ∶ 	 ܼ∗∗∗ 	→ 	ܼ∗  we find that,  

(ii) ܺ∗∗ 	≅ ܺ 	⊕	ℓଶ(ℬ)	(cf.[129]).  
Set ܼ	 = 	 (ܲ∞	݉ = 1	 ⊕ ܼ݉)2. Then using properties (i) and (ii) (and 
Dixmier ’s projection ܲ ∶ 	ܼ	 ∗∗∗	→ 	ܼ	 ∗ ) we get that,  

(iii) ܺ	 ≅ 	ܼ∗		,ܺ∗/ܼ ≅ 	ℓଶ(	ℬ	) and ܺ∗∗ ≅ 	ܺ	 ⊕	ℓଶ(ℬ	), where ܤ	 = 	⋃ ℬஶ
ୀଵ . 

It follows in particular that ܺ is complemented in ܺ∗∗ by Dixmier’ s projection 
ܲ ∶ ܺ∗∗ 	→ 	ܺ.	 

      We notice that, it follows for the definition of ܺ and properties (i) and (iii) that both of 
the spaces ܺ and ܺ∗∗are WCG. These spaces have the additional property to be Hilbert-
generated. We recall that a Banach space ܼ is Hilbert generated if there exists a bounded 
linear operator from a Hilbert space onto a dense subspace of ܼ (see [130]). 

Lemma (3.3.7)[123]: The spaces ܺ and ܺ∗∗are Hilbert generated.  

Proof: It clearly follows from the definition of ܺ and property (iii) that it is enough to 
show that each James space ܼ	 = -where ܶ is any tree of height ߱, is Hilbert ,(ܶ)ܬ	
generated. Indeed, let ܶ(݊) be the ݊-th level of ܶ,݊	 ≥ 	0. Then ܶ = ⋃ ܶ(݊)ஶ

ୀ 	and each 
of the subspaces ܼ 	= തതതതതതത{݁௧݊ܽݏ	 ∶ 	ݐ	 ∈ 	ܶ(݊)} of ܼ is isometric to the Hilbert space 
ℓଶ(ܶ(݊))  . Since the union of ⋃ ܼஶ

ୀ  generates ܼ, it is easily verified that the operator 
ܨ ∶ 	 ℓଶ(ܶ) 	→ 	ܼ defined by (ݔ)ܨ = ∑ ௫

ଶ
ஶ
ୀ 	, where ݔ 	= 	 	ݔ for ()்|ݔ ∈ 	 ℓଶ(ܶ) and 

݊	 ≥ 	0,	makes ܼ a Hilbert-generated space.  

      The space ܻ is defined as follows: for every ݐ	 ∈ 	ܶ	 = ⋃ ܶ
ஶ
ୀଵ , set  

௧ܦ 	= 	 {݉	 ∈ ℕ ∶ 	ݐ	 ∈ 	 ܶ}			ܽ݊݀			ݔ௧ 	= 	 
1

2/ଶ 	݁(௧,)
∈

		. 

       Finally set, ܻ	 = 	 ௧ݔ}തതതതതതത݊ܽݏ ∶ 	ݐ	 ∈ 	ܶ} 	⊂ 	ܺ. Then the following facts can be proved 
(see [125]).  

       (i) There exists a family { ௧݂ ∶ 	ݐ	 ∈ 	ܶ} 	⊂ 	ܻ∗ so that the family {(ݔ௧ , ௧݂) ∶ 	ݐ	 ∈ 	ܶ} is 
an ܯ-basis for ܻ  , where for ݐ	 ∈ 	ܶ	 and ݉	 ∈ ,௧ܦ	 ௧݂ 	= 2


మ (௧,)݁)∗ܫ	

∗ ) and ܫ ∶ 	ܻ	 → 	ܺ is 
the natural embedding of ܻ into ܺ.  

       (ii) Let ݉	 ∈ 	ℕ and ܾ	 = 	 ଵݐ} 	<	. . . < 	 ݐ 	<	. . . } be any branch of the tree ܶ	. Then 
the series ∑ ௧݂ೖ

ஶ
ୀଵ 	 is weak∗ convergent in 	ܻ∗ .  

       Facts (i) and (ii) together imply that ܻ is not WCG.  

      (iii) ܻ∗∗ ≅ 	ܻ	 ⊕	ℓଶ(ℬ).	 

      Since ܻ is not a WCG, it clearly follows from fact (iii) that neither ܻ∗∗ is WCG. The 
following lemma is the analogue for trees ܶ of height ߱ of a known property of the James 
tree space [132].  
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Lemma (3.3.8)[123]: The space ܻ is complemented in ܻ∗∗ by a norm-one projection and 
hence it is a dual space of a WCG space ܻ (having a shrinking ܯ-basis).  

Proof: Let ܲ ∶ ܺ∗∗ ≅ 	ܺ	 ⊕ ℓଶ(ℬ) 	→ 	ܺ be Dixmier’s projection and ݕ∗∗ ∈ 	ܻ∗∗ ⊂ 	ܺ∗∗. 
Then ݕ∗∗ 	= 	ݕ	 + 	ݕ where ,ݓ	 ∈ 	ܺ and ݓ	 ∈ ℓଶ(ℬ). Since from fact (iii), ܻ∗∗ ≅ 	ܻ	 ⊕
	ℓଶ(ℬ) we find that ܺ	 ∩	ܻ∗∗ = 	ܻ , so ݕ	 = 	 ∗∗ݕ 	− 	ݓ	 ∈ 	ܺ	 ∩ 	ܻ∗∗ 	= 	ܻ . Therefore the 
restriction of ܲ on the subspace ܻ∗∗ of ܺ∗∗ is a norm-one projection of ܻ∗∗ onto ܻ.  

    We define ܻ to be the closed linear span of the set { ௧݂ ∶ 	ݐ	 ∈ 	ܶ} in the space ܻ∗.	We 
shall show that ܻ

∗∗ 	≅ 	ܻ . So we define the operator ܨ ∶ 	ܻ	 → 	 ܻ
∗ by (ݕ) 	= 	 బ|ݕ  . It is 

clear that ܨ is a well defined linear bounded (‖(ݕ)ܨ‖ ≤  operator and since the (‖ݕ‖
family { ௧݂ ∶ 	ݐ	 ∈ 	ܶ} separates the points of ܻ it is also one-to-one. 

    Let ݃	 ∈ 	 ܻ
∗	. Then by Hahn-Banach theorem there exist ො݃ 	 ∈ ܻ∗∗ ∶ ො݃|బ = ݃ and 

‖݃‖ = ‖ ො݃‖. Set ܲ( ො݃) 	= 	ݕ then clearly ;ݕ	 ∈ 	ܻ and  

	ݓ = ො݃ 	− 	ݕ	 ∈ 	 ℓଶ(ℬ). 

So we have that for all ݐ	 ∈ 	ܶ,  

݃( ௧݂) 	= 	 ො݃( ௧݂) 	= 	 	ݕ) + )(ݓ	 ௧݂) 	= )ݕ	 ௧݂) 	+ )ݓ	 ௧݂) 	= )ݕ	 ௧݂),	 

because ݓ( ௧݂) 	= 	0, for every ݐ	 ∈ 	ܶ (recall that, ௧݂ 	= 2

మ (௧,)݁)∗ܫ	

∗ ), for ݉	 ∈  ௧). Itܦ	
follows that ݃(ݕ∗) 	= ∗ݕ for all (∗ݕ)ݕ	 	 ∈ 	 ܻ, which implies that (ݕ)ܨ = ݃.	Therefore the 
operator ܨ is surjective and thus an isomorphism between the spaces ܻ and ܻ

∗	.	 

     It is obvious from the above that the family {( ௧݂, (௧ݔ ∶ 	ݐ	 ∈ 	ܶ} is a shrinking ܯ-basis 
for ܻ.  

     Now we are able to prove the main result.  

Proposition (3.3.9)[123]: There is no bounded linear one-to-one operator ܨ ∶ 	 ܻ∗ 	→
	ܿ(߁)	for any set ߁.  

Proof: Assume, for the purpose of contradiction, that there exists a bounded linear one-to-
one operator ܨ ∶ ܻ∗ 	→ 	 ܿ(߁) for some set ߁. Let ܨ∗ ∶ 	 ℓଵ(߁) 	→ 	ܻ∗∗ be the dual operator 
of ܨ. Then we may assume without loss of generality that ܨ∗൫݁ఊ∗൯ ≠ 	0 for all ߛ	 ∈  and ߁	
note that the set {ܨ∗(݁ఊ∗	) ∶ 	ߛ	 ∈ {߁	 	∪ 	{0} is a weak∗ compact (and weak∗ total) in ܻ∗∗, 
so that for every sequence (ߛ)	of distinct points of ߁ we have that ݓ∗ 	− lim

→ஶ
ఊ݁)∗ܨ

∗ 	) 	=
	0. By Lemma (3.3.8), the ܯ-basis {( ௧݂, (௧ݔ ∶ 	ݐ	 ∈ 	ܶ} of the predual ܻ of ܻ is shrinking, 
therefore the set  

Ω	 = ൜ ௧݂
‖ ௧݂‖

∶ ݐ ∈ 	ܶൠ Ω	ݐ݁ݏ	ℎ݁ݐ	݀݊ܽ	݁ݐ݁ݎܿݏ݅݀	ݕ݈݇ܽ݁ݓ	ݏ݅	

	݊݅	ݐܿܽ݉ܿ	ݕ݈݇ܽ݁ݓ	ݏ݅	{0}	∪ ܻ.	 

We consider the map  

ߔ ∶ 	ܶ	 × 	߁	 → ℝ ∶ ,ݐ)ߔ	 (ߛ = )൯	൫݁ఊ∗∗ܨ ௧݂)				݂ݎ			(ߛ,ݐ) 	 ∈ 	ܶ	 ×  	.߁	
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It follows that there exist partitions { ఋܶ ∶ 	ߜ	 ∈ 	 ∆} and {߁ఋ ∶ 	ߜ	 ∈ 	 ∆} of ܶ and ߁ into 
countable sets, such that for every ߜଵ, ଶߜ 	 ∈ 	∆ with ߜଵ ≠ 	ݐ ଶ and for everyߜ	 ∈ 	 ఋܶభ 	ߛ,	 ∈
ఋమ߁	 	, we have that (ߛ,ݐ)ߔ 	= 	0 (see [127] and [125]).  

     We enumerate each ߁ఋ  and ఋܶ as {ߛఋ ∶ 	݊	 ≥ 	1}, ఋݐ} ∶ 	݊	 ≥ 	1} and for ݊,݉	 ∈ ℕ	we 
put  

	,ܦ = 	 	ݐ} ∈ 	ܶ ∶ 	ݐ	 = 	 ఋݐ 	ߜ	݁݉ݏ	ݎ݂		 ∈ 	ߛ	ݏݐݏ݅ݔ݁	݁ݎℎ݁ݐ	݀݊ܽ	∆	 ∈ ఋ߁	 ∶ 	 |(ߛ,ݐ)ߔ|

≥
1
݉
	} 

,߁ = ൜ߛ	 ∈ ߁	 ∶ 	ߛ	 = 	 ఋߛ 	ߜ	݁݉ݏ	ݎ݂		 ∈ 	ݐ	ݏݐݏ݅ݔ݁	݁ݎℎ݁ݐ	݀݊ܽ	∆	 ∈ 	 ఋܶ ∶ |(ߛ,ݐ)ߔ|

≥
1
݉
ൠ	.	 

Set ܦ 	= ⋃ 	,̀ܦ
ஶ
ୀଵ  and ߁ = ⋃ ,߁

ஶ
ୀଵ  for ݉	 ∈ ℕ. Then we have  

    (a) ܶ	 = ⋃ 	ܦ
ஶ
ୀଵ ;  

    (b) if (ߛ,ݐ) 	 ∈ 	ܶ	 × ,ݐ)ߔ and ߁	 (ߛ ≠ 	0 then there exists ݉	 ∈ ℕ such that (ݐ, (ߛ 	 ∈
ܦ	 	×    and߁	

     (c) for every ݉	 ∈ ℕ and ݔ	 ∈ ܦ	 	∪ 	ݕ  there exists߁	 ∈ ܦ	 	∪ ߁	  such that,  

	ݔ			ݎℎ݁ݐ݅݁ ∈ 	ݕ			,ܦ	 ∈ |(ݕ,ݔ)ߔ|			݀݊ܽ			߁	 ≥
1
݉
	 

	ݔ			ݎ																											 ∈ ߁	 , 	ݕ ∈ |(ݔ,ݕ)ߔ|			݀݊ܽ			ܦ	 ≥ ଵ

	.  

    We get from fact (iii) that for every ߛ	 ∈ ఊݕ there exists a unique pair ߁	 ∈ 	ܻ and 
ఊݓ ∈ 	 ℓଶ(ℬ) such that ܨ∗൫݁ఊ∗	൯ = 	 ఊݕ 	+   .ఊݓ	

      Let ݉ 	 ∈ 	ℕ be such that ܦబ  is successively dense in the tree ܶబ  (see Theorem 
(3.3.5) and also (a)). Using this fact and also properties (a)–(c) above, we can choose by 
induction sequences	(ߛ) 	⊂ (ݐ) బ and߁	 	⊂ 	 ܶబ 	such that:  

      (d) {ݐଵ 	<	. . . < 	 ݐ <	. . . }	is an infinite segment of the tree ܶబ  ;  

      (e) for every ݊	 ≥ 	1, |(ାଵߛ,ାଵݐ)ߔ| ≥ ଵ
బ

 and ݐାଵ ∉ 	ܾ for all branches ܾ	 ∈ ℬ with 
(ܾ)ఊݓ ≠ 	0. Note that ݓఊ 	 ∈ 	 ℓଶ(ℬ) thus the set {ܾ	 ∈ 	ℬ ∶ (ܾ)ఊݓ	 ≠ 	0} is at most 
countable.  

       Fact (ii) and (d) above imply that the series ∑ ௧݂ೖ
ஶ
ୀଵ 	is weak∗ -convergent in ܻ∗, say 

∗ݔ 	= ∗ݓ	 	− ∑ ௧݂ೖ
ஶ
ୀଵ 	. It also follows from (e) that ݓఊ	(ݔ

∗) 	= 	0 for all ݊	 ≥ 	1. We shall 
show that the sequence ቀܨ∗൫݁ఊ

∗ 	൯ቁ


 is not weakly* null. Indeed  
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(	∗ݔ)൯	൫݁ఊ∗∗ܨ = 	 ൫ݓఊ + (	∗ݔ)൯	ఊݕ	 = 	 ݔ)	ఊݕ
∗) = lim

ℓ→ஶ
	 ௧݂ೖ(ݕఊ	)
ℓ

ୀଵ

= 	 ௧݂(ݕఊ	) 	

= 	 ఊݓ) + )(	ఊݕ ௧݂	) 	= ൫݁ఊ∗ܨ
∗ 	൯( ௧݂	) 	= ݐ)ߔ	  	.(ߛ,

Therefore  

หܨ∗൫݁ఊ
∗ 	൯(ݔ∗)ห = 	 ,ݐ)ߔ| |(ߛ ≥

1
݉

	݊			݈݈ܽ	ݎ݂				 ≥ 	1,	 

which proves the claim and so the proof of the theorem is complete, [99], [135].  

       We first recall that a norm ‖	·	‖ of a Banach space ܺ is said to be weakly uniformly 
rotund (WUR for sort) if ݓ	 − ݔ)݈݉݅	 	− (ݕ	 	= 	0 whenever ‖ݔ‖ = 	 ‖ݕ‖ 	= 	1 for all 
݊ and ݈݅݉‖ݔ 	+ ‖ݕ	 	= 	2. Fabian, Hܽ́jek, and Zizler have proved that if ܺ is a WUR 
Banach space, then its dual ܺ∗ is a subspace of a WCG. More exactly, they proved that the 
space ܺ admits an equivalent WUR norm if and only if the bidual unit ball ܤ∗∗  of ܺ∗∗ in 
its weak* topology is a uniform Eberlein compact space ([128]). The following result is an 
easy consequence of the theorem of Fabian, Hܽ́jek and Zizler.  

Corollary (3.3.10)[123]: Let ܧ be a Banach space such that ܧ∗ is a subspace of a Hilbert 
generated ܨ. Then ܧ admits a WUR renorming. 

Proof: We simply observe that (ܤா∗∗  is a continuous image of a uniform Eberlein (	∗ݓ,	
compact space (i.e., of the ball of (ܤி∗  hence a well-known result of ,( ∗ܨ of (	∗ݓ,	
Benyamini, Rudin and Wage yields that the space (ܤா∗∗  is a uniform Eberlein		(	∗ݓ,	
compact ([126]). Now by the above mentioned result of Fabian, Hܽ́jek and Zizler we get 
the conclusion.  

      Summing up all the previous results, we get a negative answer to the problem of 
Fabian, Godefroy, Hܽ́jek and Zizler mentioned in the introduction as question Q1.  

Theorem (3.3.11)[123]: There exists a WUR renormable Banach space ܧ that does not 
admit any bounded, linear, one-to-one operator into some ܿ(߁).	 

Proof: Set ܧ = 	 ܻ∗ , where ܻ is the space of Proposition (3.3.9), so there is no bounded, 
linear, one-to-one operator from ܧ to ܿ(߁). On the other hand, ܧ∗ 	= 	 ܻ∗∗ is a subspace of 
the Hilbert generated space ܺ∗∗ (see Lemma (3.3.7)) and hence, by the above corollary, ܧ 
admits a WUR renorming. The proof of the theorem is completed.  

     The following describes a peculiar property of James tree spaces. 

Proposition (3.3.12)[123]: Let ܶ be a tree. Then the following are equivalent.  

(i) ܬ(ܶ) is weakly countably determined. 
(ii)  There exists a sequence	(ܣ)∈ℕ such that each ܣ is an antichain of ܶ and 

ܶ	 = ⋃ ஶܣ
ୀଵ 	.  

(iii) ܬ(ܶ) is Hilbert generated (hence it is WCG).  

Proof: (i)⇒(ii) Let us observe that every branch ܾ of ܶ is at most countable (otherwise the 
ordinal ߱ଵ will be subset of ܤ(்)∗ yielding a contradiction) and moreover the set  
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ࣞ	 = 	 {ܵ∗ ∶  	{ܶ		݂	ݐ݊݁݉݃݁ݏ	ܽ	ݏ݅		ܵ	

is a w*-compact subset of ܤ(்)∗ . Hence ࣞ is a Gulko compact subset of 0}ߑ, 1}்	. Clearly 
the adequate closure of ࣞ, 

	 ࣞ = 	 	ܣ} ⊆ 	ܶ ∶ 	 ∃ܵ	 ∈ 	ܣ			ℎݐ݅ݓ			ࣞ	 ⊆ 	ܵ}	 

remains Gulko compact. This follows from Theorem 3.6 [135], [134] yields that ܶ	 =
⋃ ஶܣ
ୀଵ 	 with each ܣ an antichain of ܶ. 

       (ii)⇒(iii) As we have mentioned in Lemma (3.3.7), for ܣ antichain of ܶ, the space 
തതതതതതത{݁௧݊ܽݏ ∶ 	ݐ	 ∈  The result follows from arguments similar to the .(ܣ)is isometric to ℓଶ {ܣ	
proof of Lemma (3.3.7).  

       (iii)⇒(i) Obvious.  
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Chapter 4 

Quasiconformal Maps and Coefficients Estimate for Harmonic ࢜-Bloch Mappings 
with Curvature of the Boundary 

 

We provide a quasiconformal analogue of the Smirnov absolute continuity result 
over the boundary. Moreover, if ݂ is a harmonic ܭ-quasiconformal self-mapping of ॰, 
then |ܽ| + |ܾ| ≤ is given such that lim→ஶ (ܭ)ܤ where ,(ܭ)ܤ 	 (ܭ)ܤ 	= 	0 and 
(1)ܤ 	=  We make some asymptotically sharp estimates of constant of .ߨ݊	4	
quasiconformality for harmonic diffeomorphisms between the unit disk and the convex 
domains by their boundary mappings. 

Section (4.1): Controlled Laplacian 

The map ݓ ∶ 	॰	 → 	ℂ of the unit disc to the complex plane is quasiconformal if it is 
a sense preserving homeomorphism that has locally ܮଶ-integrable weak partial derivatives, 
and it satisfies for almost every ݖ	 ∈ 	॰ the distortion inequality |ݓ௭| 	≤  ௭|, whereݓ|݇	
݇	 < 	1. In this situation we say that ݓ is ܭ-quasiconformal, with ܭ ∶= 	 (1 + ݇)/(1 −
݇).We refer to [32] and [139] for basic notions and results of the quasiconformal theory. 
Quasiconformal mappings, even when ܥଶ-smooth, can be far from being Lipschitz maps. 

However, in the situation where ݓ ∶ 	॰	 → 	॰ is a quasiconformal homeomorphism 
that is also harmonic Pavlović [14] proved that ݂ is bi-Lipschitz. 

Many generalisations of this result for harmonic maps heve been proven see [149] 
and [140]. 

The addresses the following question: how much one can relax the condition of 
harmonicity of the quasiconformal map ݓ, while still being able to deduce the Lipschitz 
property of ݓ - in this situation it is less natural to inquire ݓ to be bi-Lipschitz. Answers to 
this kind of questions ought to be useful also in applications to non-linear elasticity. A 
natural measure for the deviation from harmonic functions is to consider ‖∆ݓ‖(॰) for 
some 	 ≥ 	1 and ask whether finiteness of this quantity enables one to make the desired 
conclusion. Our first main result yields the following: 

The second main result shows that in the setting of Theorem (4.1.3) the Lipschitz 
constant of ݂ becomes arbitrarily close to 1 if the image domain Ω approaches the unit disc 
in a suitably defined ܥଵ,ఈ-sense, and if both ܭ close to one is and the deviation from 
harmonicity are small enough. Below we identify [0,  .and ॻ in the usual way (ߨ2
Theorem (4.1.1)[137]: Let 	 > 	2 and assume that ݓ ∶ 	॰	 → 	݊ is a ܭ-quasi-conformal 
normalised map normalised by (0)ݓ 	= 	0, and with 

lim
→ஶ

ܭ 	= 	1	ܽ݊݀ lim
→ஶ

(॰)‖ݓ∆‖ = 	0. 
Moreover, we assume that for each ݊	 ≥ 	1 the bounded Jordan domain Ω approaches the 
unit disc in the ܥଵ,ఈ-bounded sense. More precisely, there is a parametrisation 

߲Ω 	= 	 { ݂(ߠ)	|	ߠ	 ∈  ,{܂	
where ݂ satisfies for some ߙ	 > 	1/2 

ฮ ݂(ߠ) −	݁ఏฮಮ(ࢀ) → 	݊		ݏܽ		0	 → 	∞		ܽ݊݀	 sup
ஹଵ

‖ ݂(ߠ)‖భ,ഀ 	< 	∞. 

Then for large enough ݊ the function ݓ is Lipschitz, and moreover its Lipschitz constant 
tends to 1 as ݊	 → 	∞: 
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lim
→ஶ

ಮ(॰)‖ݓ∇‖ 	= 	1.																																																												(1) 
This result will be obtained as a corollary of slightly more general results. Together, our 
Theorems (4.1.3) and (4.1.1) considerably improve the main result of the first author and 
Pavlović from [151], where it was instead assumed that ∆ݓ	 ∈  Other related results .(॰ഥ)ܥ	
are contained in [150], see [141] for other type of connections between quasiconformal 
and Lipschitz maps. 
In order to state our last theorem, we recall the result of V. I. Smirnov, stating that a 
conformal mapping of the unit disk ࢁ onto a Jordan domain Ω with rectifiable boundary 
has a absolutely continuous extension to the boundary. This implies in particular that if 
	ܧ ⊂  is a set of (ܧ)݂ is a set of zero 1-dimensional Hausdorff measure then its image ࢀ	
zero 1-dimensional Hausdorff measure in ߲Ω. Further, this result has been generalized for 
the class of q.c. harmonic mapping by several authors (see e.g. [1], [147]). On the other 
hand if we assume that ݂ is merely quasiconformal, then its boundary function need not be 
in general an absolutely continuous function. We prove the following generalization of 
Smirnov’s theorem for quasiconformal mappings, subject again to an size condition on 
their Laplacian: 
Further comments, generalisations and open questions related to the above results are 
included. 

Lipschitz-property of qc-solutions to ∆݂	 = 	݃. 
In what follows, we say that a bounded Jordan domain Ω	 ⊂ 	ℂ has ܥଶ-boundary if it 

is the image of the unit disc ॰ under a ܥଶ-diffeomorphism of the whole complex plane 
onto itself. For planar Jordan domains this is well-known to be equivalent to the more 
standard definition, that requires the boundary to be locally isometric to the graph of a ܥଶ-
function on ℝ. In what follows, ∆ݓ always refers to the distributional Laplacian. We shall 
make use of the following well-known fact, whose proof we recall: 
Lemma (4.1.2)[137]: Assume that ݓ	 ∈ (॰)‖ݓ∆‖ is such that (॰ഥ)ܥ	 	< 	∞ with 	 > 	1. 
(i) In case 	 > 	2 one has ‖∇ݓ‖ಮ൫(,)൯ < 	∞ for any ݎ	 < 	1. Moreover, if ݓ|డ = 0, 
then there is ܥ 	< 	∞ so that 

ಮ(॰)‖ݓ∇‖ 	≤  .(॰)‖ݓ∆‖ܥ	
(ii) If ݓ|డ॰ = 0, and 1	 < 		 < 	2, then ‖∇ݓ‖ଶ/(ଶି) < ∞. 
Proof. By the classical representation we have for |ݖ| 	< 	1 

(ݖ)ݓ

=
1

ߨ2
න ܲ൫ݖ, ݁ఝ൯ݓ൫݁ఝ൯݀߮
ଶగ



+ නܣ݀(߱)ݓ∆(߱,ݖ)ܩ(߱)
	


,																																																													(2) 

where ܲ stands for the Poisson kernel and (߱,ݖ)ܩ ∶= ଵ
ଶగ

log ቚଵି௭ఠഥ
௭ିఠ

ቚ for the Green’s 
function of ॰. We observe first that since ܩ is real-valued, |∇ܩ| 	= 2|߲௭ܩ| so that 

|(߱,ݖ)ܩ∇| =
1

ߨ2
− ഥ߱

1	 − ݖ	 ഥ߱
−

1
	ݖ − 	߱

≤
1

	ݖ|ߨ − 	߱| .																								(3) 

Hence an application of Hölder’s inequality shows that the second term in (2) has 
uniformly bounded gradient in ॰. To conclude part (i) it suffices to observe that the first 
term vanishes if w|ப॰ 	= 	0, and in the general case it has uniformly bounded gradient in 
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compact subsets of ॰. Finally, part (ii) follows immediately from (3) by the standard 
mapping properties of the Riesz potential ܫଵ with the kernel |ݖ	 − 	߱|ିଵ, see [154]. 
Theorem (4.1.3)[137]: Assume that ݃	 ∈ 	 	 (॰) andܮ > 	2. If ݓ is a ܭ-quasiconformal 
solution of ∆ݓ	 = 	݃, mapping the unit disk onto a bounded Jordan domain Ω ⊂ 	ℂ with 
 is Lipchitz continuous. The result is sharp since it fails in general if ݓ ଶ-boundary, thenܥ
	 = 	2. 
Proof. It would be natural to try to generalise the ideas in [150] where differential 
inequalities were applied while treating related problems. 
However, it turns out that by introducing appropriate new ideas the approach of [148], 
where the use of distance functions was initiated, is flexible enough for further 
development. 
By our assumption on the domain, we may fix a diffeomorphism ߰ ∶ 		Ωഥ → ॰ that is ܥଶ up 
to the boundary. Denote ܪ ∶= 	1	 − 	 |߰|ଶ, whence ܪ is ܥଶ-smooth in  and vanishes on ∂Ω 
with |∇ܪ| 	≈ 	1 in a neighbourhood of ∂Ω. 
We may then define ℎ ∶ 	॰	 → 	 [0, 1] by setting 

ℎ(ݖ) ∶= 	ܪ	 ∘ (ݖ)ݓ	 	= 	1	 − 	 ห߰൫(ݖ)ݓ൯ห
ଶ
	for	ݖ	 ∈ 	॰. 

The quasiconformality of ݂ and the behaviour of ∇ܪ near ߲Ω imply that there is r 	 ∈
	(0, 1) so that the weak gradients satisfy 

|∇ℎ(ݔ)| ≈ 	 ݎ	for|(ݔ)ݓ∇| 	≤ 	 |ݔ| < 	1.																																													(4) 
Moreover, by Lemma (4.1.2)(i) we have |ߘℎ(ݔ)| ≲ |(ݔ)ݓ∇| ≤ |ݔ| for ܥ 	≤ 	  . It followsݎ
that for any ݍ	 ∈ 	 (1,∞] we have that 

∇ℎ	 ∈ 	 	ݓ∇	if	only	and	(॰)ifܮ ∈ 	  (5)																																						(॰).ܮ
A direct computation, simplified by the fact that ܪ is real valued, yields that 

∆ℎ = ܪ)∆ ∘  																																																																																																																	(ݓ
					= ௭|ଶݓ|)(ݓ)(ܪ∆) + ௪ഥݓ| |ଶ) + 2Re(ܪ௭௭(ݓ)ݓ௭ݓ௭ +  (6)													.ݓ∆(ݓ)௭ܪ

Especially, since ܪ	 ∈  and the function w is bounded we have (ഥܦ)ଶܥ	
|∆ℎ| ≲ ଶ|ݓ∇| 	+ 	 |݃|.																																								(7) 

The higher integrability of quasiconformal self-maps of ॰ makes sure that ∇(߰	 ∘ (ݓ	 	 ∈
	ݍ (॰) for someܮ	 > 	2, which implies that ∇ݓ	 ∈ 	  .(॰)ܮ
By combining this with the fact that ݃	 ∈ 	 	 (॰) withܮ > 	2, we deduce that ∆ℎ	 ∈
	ݎ (॰) withܮ	 = 	min(, (2/ݍ 	> 	1. This information is not enough to us in case ݍ	 ≤ 	4, 
but we will actually show that one may improve the situation to ݍ	 > 	4 via a 
bootstrapping argument based on the following observation: in our situation 

if	∇ݓ	 ∈ 	 2	with	(॰)ܮ < ݍ < 4, then	actually	∇ݓ	 ∈  (8)															ଶ/(ସି)(॰).ܮ
In order to prove (8), assume that ∇ݓ	 ∈ 	 	ݍ (॰) for an exponentܮ ∈ 	 (2, 4). Then (7) and 
our assumption on ݃ verify that ∆ℎ	 ∈ 	  /ଶ(॰). Since h vanishes continuously on theܮ
boundary ߲॰, we may apply Lemma (4.1.2)(ii) to obtain that ∇ℎ	 ∈ 	  ଶ/(ସି)(॰) whichܮ
yields the claim according to (5). 
We then claim that in our situation one has case ∇ݓ	 ∈ 	  (॰) with some exponentܮ
	ݍ > 	4. For that end, fix an exponent ݍ 	> 	2 obtained from the higher integrability of the 
quasiconformal map w so that ∇ݓ	 ∈ 	   if needed, we may wellݍ బ(॰). By diminishingܮ
assume that ݍ ∈ (2, 4) and 

ݍ 	 ∉ ൜
2

2ିଵ − 1
			for					݊	 = 	3, 4, . . . ൠ. 
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Then we may iterate (8) and deduce inductively that ∇ݓ	 ∈ 	 	݇ ೖ(॰) forܮ = 0, 1, 2	. . . ݇, 
where the indexes ݍ satisfy the recursion ݍାଵ = ଶೖ

ସିೖ
 and ݇ is the first index such that 

బݍ 	> 	4. Such an index exists since we may explicitly solve for ݇	 ≥ 	0 

ݍ 	=
2

1	 − 	2(1	 − 	2 ⁄ݍ ). 

Thus we may assume that ∇ݓ	 ∈ 	 	ݍ (॰) withܮ > 	4. At this stage (7) shows that ∆ℎ	 ∈
	 ∧(/ଶ)(॰). Asܮ	 ∧	 (2/ݍ) 	> 	2, Lemma (4.1.2)(ii) verifies that ∇ℎ is bounded. Finally, 
by (5) we have the same conclusion for ݓߘ, and hence ݓ is Lipschitz as claimed. 
In order to verify the sharpness of the result, consider the following map 

(ݖ)ݓ = ݖ	 log ൬
݁

 ,ଶ൰|ݖ|

where ܽ	 ∈ 	 (0, 1/2) is fixed. Then ݓ is a self-homeomorphism of ॰ that is 
quasiconformal with even continuous Beltrami-coefficient since we may 
easily compute ݓ(ݖ) = ݖ	 logିଵ ቀ  	

|௭|మቁ log	 ቀ
భషೌ

|௭|మ ቁ and (ݓ)௭̅ 	= 	−ܽ ௭
௭̅

logିଵ ቀ  	

|௭|మቁ so 
that the complex dilatation of w0 satisfies 

หߤ௪బ
ห(ݖ) = อ−ܽ

ݖ
̅ݖ
ቆlog	 ቆ

݁ଵି

ଶ|ݖ| ቇቇ
ିଵ

อ ≤
ܽ

1 − ܽ
< 1. 

In addition, we see that ∆ݓ 	 ∈ 	  ଶ(॰) sinceܮ

|(ݖ)ݓ∆| = ฬ4
݀
̅ݖ

ฬ(ݖ)௭(ݓ) = ቤ
4ܽ
̅ݖ

logିଶ ൬
݁ 	

ଶ൰|ݖ| ቆ
(ܽ − 1) − log	 ൬

݁
 ଶ൰ቇቤ|ݖ|

≲ ଵି|ݖ| ൬log	 ൬
݁

ଶ൰൰|ݖ|
ିଵ

. 

Finally, it remains to observe that ݓ is not Lipschitz at the origin.  
We start with an auxiliary lemma. 

Lemma (4.1.4)[137]: There exists a function  ߰ ∶ 	 (1, 2) 	→ 	ℝା with the following 
property: If ݓ ∶ 	॰	 → 	॰ is a ܭ-quasiconformal self-map normalised with ߰(0) 	= 	0, 
then 

௭|ଶݓ|‖ 	+ 	 ௭̅|ଶݓ| − 1‖య(॰) ≤  .(ܭ)߰
Moteover, lim→ଵశ (ܭ)߰ = 	0. 
Proof. By the sharp area distortion ‖∇ݓ‖ల(॰) < 8 for ܭ	 < 	3/2. By reflecting ݓ over the 
boundary ߲॰ we may also assume that ݓ extends to a ܭ-quasiconformal map (still 
denoted by ݓ) to the whole plane. By rotation of needed, we may also impose the 
condition that (1)ݓ 	= 	1. Furthermore, we may even assume that ݓ\(,యഏ) is the 
identity map, since we may use standard quasiconformal surgery (choose ݇ = ܭ) −
	ܭ)/(1 + 	1) and _ 	= 	2݇ in [139] to produce ଷିଵ

ଷି
-quasiconformal modification (still 

denoted by ݓ) that equals to ݓ in ॰ and is satisfies (ݖ)ݓ 	= |ݖ| for ݖ	 	≥ 	݁ଷగ. 
Especially, it is a principal solution. Since ଷିଵ

ଷି
→ 	1 as ܭ	 → 	1, and we are interested 

only on small values of ܭ, it is thus enough to prove the corresponding claim for principal 
solutions with complex dilatation supported in 0)ܤ, ݁ଷగ). 
Denote by ܯ the norm of the Beurling operator on ܮ(ℂ). Fix ܴ 	> 	0 and consider a 
principal solution ݓ to the Beltrami equation ݓ௭̅ 	= |ߤ| ௭ withݓߤ	 ≤ 	݇	 <  Then .ܯ1/2	
we have the standard Neumann-series representation 
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௭̅ݓ 	= 	ߤ	 + 	ߤܶߤ	 + .	+	ߤܶߤܶߤ	 . .			and					ݓ௭ 	− 	1	 =  .௭̅ݓܶ	
We thus obtain that 

௭̅‖ల(ℂ)ݓ‖ ≤ ల(ℂ)‖ߤ‖ ቆ1 +
݇

ܯ2
+ ൬

݇
ܯ2

൰
ଶ

	+	. . . ቇ ≤ ల(ℂ)‖ߤ‖2 ≤  ଵ/݇ܥ

and, a fortiori ‖ݓ௭ 	− 	1‖ల(ℂ) ≤ ଵ/݇ܥܯ = 	  ᇱ݇ଵ/. We obtain the desiredܥ
| ଷ-estimate forܮ ௭݂̅|ଶ since ݇	 → 	0 as ܭ	 → 	1. The estimate for | ௭݂|ଶ − 1 follows by noting 
that || ௭݂|ଶ 	− 1| ≤ 	 | ௭݂ 	− 1|(| ௭݂ 	− 1| 	+ 2) and applying Hölder’s inequality. 
Before proving the more general convergence result stated in the introduction it is useful 
to consider first the case where the image domain is fixed, and in fact equals ॰. 
Proposition (4.1.5)[137]: Assume that 	 > 	2. There exist a function 

[1,∞) 	× 	 [0,∞) 	 ∋ 	 (ݑ,ܭ) 	→  (ݑ,ܭ)̅ܥ	
with the property: if ݓ ∶ 	॰	 → 	॰ is a ܭ-quasiconformal self map of the unit disc, 
normalised by (0)ݓ 	= 	0, and with ∆ݓ	 ∈ 	  (॰), then one hasܮ

ಮ(॰)‖ݓ∇‖ 	≤ ,ܭ)̅ܥ	  .(‖ݓ∆‖
Moreover, the function ܥ̅ satisfies 

lim
→ଵశ,௨→శ

(ݑ,ܭ)̅ܥ 	= 	1.																																																				(9) 

Proof. We follow the line to the proof of Theorem (4.1.3), in particular we employ its 
notation, but this time we strive to make the conclusion quantitative. 
We may well assume that 	 ≤ 	3. Let us then assume that ݓ is as in the assumption of the 
Proposition with ܭ	 < 	1	 + 	1/100, say. In addition, we may freely assume that (1)ݓ 	=
	1. As the image domain is ܦ, the function h from the proof of Theorem (4.1.3), takes the 
form 

ℎ(ݖ) 	= 	1	 − 	  .ଶ|(ݖ)ݓ|
Let us write ℎ(ݖ) 	= 	1	 − 	  is the identity map. An ݓ ଶ, which corresponds to ℎ when|ݖ|
application of (6) and Lemma (4.1.4) allow us to estimate 

‖∆(ℎ	 −	ℎ)‖(॰) = ௭|ଶݓ|)4‖ 	− 	1) + ௭̅|ଶݓ|4	 + 2Re(ݓഥ݃)‖(॰) 
≤ ௭|ଶݓ|)4‖4	 − 1) + ௭̅|ଶ‖య(॰)ݓ|4	 + ‖݃‖(॰) 
≤ (ܭ)4߰	 + 	 ‖݃‖(॰).																																																									(10) 

Lemma (4.1.2) implies that 
‖∇ℎ	 −	∇ℎ‖ 	≤ 	 ܿ൫߰(ܭ) + ‖݃‖(॰)൯.																																	 

The quasiconformality of ݓ verifies a.e. that 
|∇ℎ(ݖ)| ≥  .|(ݖ)ݓ∇||(ݖ)ݓ)ଵ|(∇ℎ)ିܭ
Since |∇ℎ(ݖ)| 	= 	we obtain by considering the annulus 1 ,|ݖ|2	 − ߝ ≤ |ݖ| < 1 with 
arbitrarily small ߝ	 > 	0 that 

lim	sup|௭|→ଵష ‖(ݖ)ݓ∇| ≤
ܭ
2

lim	sup|௭|→ଵష(|∇ℎ	 −	∇ℎ| + 	 |∇ℎ|) 

≤
ܿܭ

2
൫߰(ܭ) + 	‖݃‖(॰)൯ +  (11)																														.ܭ

Let us then write ݓ in terms of the standard Poisson decomposition ݓ	 = ݑ	 + ݂, where ݑ 
is harmonic with ݑ|డ॰ 		=  డ॰, the term ݂ has vanishing boundary values and it satisfies|ݓ	
∆݂	 = 	 	ݓ∆ = 	݃ in ॰. Then maximum principle applies to the subharmonic function 
|ݑ∇| 	= 	 |௭ݑ| + |௭̅ݑ| = |ܽᇱ| + |ܾᇱ|, where ܽ and ܾ are analytic functions such that ݑ	 =
	ܽ	 + 	ܾ, together with 1 shows that |∇ݓ| is bounded by ܿ‖݃‖(॰). All, in all combing 
these observations with (11) we deduce that 
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sup
|௭|ழଵ

|(ݖ)ݓ∇| ≤ lim	sup|௭|→ଵష|∇ݑ| 	+ sup
|௭|ழଵ

|(ݖ)݂∇| 	≤ lim	sup|௭|→ଵష|∇ݓ| + 2 sup
|௭|ழଵ

 |(ݖ)݂∇|

≤
ܿܭ

2
൫߰(ܭ) + 	‖݃‖(॰)൯ + 	ܭ	 + 	2ܿ‖݃‖(॰).																					(12) 

We may thus choose for small enough ܭ 

,ܭ)̅ܥ (ݐ = 	ܭ	 +
ܿܭ

2
(ܭ)߰ +

ܿ(ܭ	 + 	4)
2

 							,ݐ
which has the desired behavior. 
Below Id stands for the identity matrix Id ∶= ቀ1 0

0 1ቁ. 
Definition (4.1.6)[137]: Let 	 > 	2. We say that the sequence of bounded Jordan domains 
Ω 	⊂ 	ℂ such that 0	 ∈ 	Ω for each ݊	 ≥ 	1 converge in ܹଶ,-controlled sense to the unit 
disc ॰ if there exist sense-preserving diffeomorphisms Ψ ∶ 	॰	 → 	Ω , normalized by 
Ψ(0) 	= 	0, such that for some ܯ 	< 	∞ it holds that 

lim
→ஶ

Ψܦ‖ − Id‖ಮ(॰) 	= 	0,	 
and	‖Ψ‖&ௐഥ మ,(॰) ≤ 	݊	݈݈ܽ	ݎ݂	ܯ ≥ 1,																															(13) 

together with 
‖ΔΨ୬‖(॰) 	→ 	݊			ݏܽ				0	 → 	∞.																																			(14) 

One should observe that above since Ψ 	 ∈ 	ܹଶ,(ܦ) with 	 > 	2, it follows automatically 
that ∇Ψ is continuous, so asking Ψ to be a diffeomorphism makes perfect sense in terms 
and, in particular, Ψ is a bi-Lipschitz map for large enough ݊. Also, each Ω is a bounded 
 .ଵ-Jordan domain in the planeܥ
It turns out that the above condition is in a sense symmetric with respect to the domains ॰ 
and Ω: 
Lemma (4.1.7)[137]: Assume that Ω tends to ॰ in a controlled sense and (Ψ) is the 
associated sequence of diffeomorphisms satisfying the conditions of Definition (4.1.6). 
Then the inverse maps Φ ∶= Ψିଵ ∶ 	 Ω 	→ 	॰ satisfy 

lim
→ஶ

Φܦ‖ − Id‖ಮ(ஐ) = 	0,		 
ܽ݊݀	‖Φ‖ௐమ,(ஐ) 	≤ ܯ	

ᇱ 	݊	݈݈ܽ	ݎ݂	 ≥ 	1,																																				(15) 
together with 

‖ΔΦ‖(ஐ) 	→ 	݊	ݏܽ	0	 → 	∞.																																							(16) 
Proof. Conditions (15) follows easily by employing the formulas for the derivatives 
implicit function, after first approximating by smooth functions. 
Note, in regards condition (16), that in general the inverse of a harmonic diffeomorphism 
needs not to be harmonic, so (16) is not a direct consequence of (14). However, the first 
condition in (13) tells us the our functions are asymptotically conformal, the maximal 
complex dilatation ݇ of Ψ tends to 0 as ݊	 → 	∞, so that Ψ is asymptotically conformal. 
This makes (16) more plausible, and indeed a direct computations shows that for ܥଶ-diffeo 
 Ψ ∶ 	॰	 → Ω with maximal dilatation ݇ and controlled derivative |߰ܦ|, |ଵି(߰ܦ)| 	≤
 it holds that ,ܥ	

ΔΦ	 = 	ܣ	 ∘ 	Φ, 
where (recall that the Jacobian has the formula ܬஏ = 	 |Ψ௭|ଶ −	 |Ψ௭̅|ଶ) 

	ܣ =
4

ଷ(ஏܬ) ൣ−Ψ௭̅൫Ψ௭௭̅
തതതതതܬஏ −Ψ௭തതതത(Ψ௭തതതതΨ௭௭ + Ψ௭Ψ௭௭̅ −Ψ௭̅തതതതΨ௭௭̅ − Ψ௭̅Ψ௭௭തതതതതതതത)൯

+ Ψ௭൫Ψ௭௭തതതതതܬஏ − Ψ௭തതതത(Ψ௭തതതതΨ௭௭̅ + Ψ௭Ψ௭௭തതതതത − Ψ௭̅തതതതΨ௭௭തതത −Ψ௭Ψ௭௭̅തതതതത)൯൧ 
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We next recall that Ψ௭ is bounded and |Ψ௭̅| ≤ ݇Ψ௭ , and observe that above in the right 
hand side the terms that do not directly contain either Ψ௭௭̅ or Ψ௭̅ as a factor sum up to 

Ψ௭௭തതതതത(ܬஏ − |Ψ௭|ଶ) = −Ψ௭௭തതതതത|Ψ௭̅|ଶ, 
We obtain that 

|ܣ| ≲ |ଶΨܦ݇| + |∆Ψ, 
and (16) follows by applying this on Ψ . 
We may now generalize Proposition (4.1.5) to include variable image domains that 
converge to the unit disc in controlled sense. 
Theorem (4.1.8)[137]: Let 	 > 	2 and assume that the planar Jordan domains Ω 
converge to ॰ in ܹଶ,-controlled sense. Moreover, assume that ݓ ∶ 	॰	 → Ω is a ܭ-
quasi-conformal normalised map normalised by (0)ݓ 	= 	0, and with 

lim
→ஶ

ܭ 	= 	1	ܽ݊݀ lim
→ஶ

‖Δݓ‖(॰) = 0. 
Then for large enough ݊ the function ݓ is Lipschitz, and moreover its Lipschitz constant 
tends to 1 as ݊	 → 	∞: 

lim
→ஶ

ಮ(॰)‖ݓ∇‖ = 1.																																																				(17) 
Proof. Let Ψ ∶ 	॰	 → 	Ω be the maps as in Definition (4.1.6). By renumbering, if 
needed, we may assume that that |Ψᇱ (ݖ) 	− 	1| 	< 	1/2 for all ݊ and ݖ	 ∈ 	॰. Write 
Φ 	= 	Ψିଵ and define 

ഥݓ ∶= Ψିଵ 	 ∘ ݓ	 	= 	Φ 	 ∘ ݓ	 ∶ 	॰	 → 	॰. 
Then ݓ is ܭ෩-quasi-conformal, with ܭ෩ 	→ 	0 as ݊	 → 	∞ by the first condition in (13). 
Fix an index ݍ	 ∈ 	 (2,  Again by the just mentioned condition, in order to prove (17) .(
Proposition (4.1.5) shows that we just need to verify that 

lim
→ஶ

‖Δݓ‖(॰) = 	0.																																																																							(18) 
A simple computation yields that 

					Δݓ
= 	 (ΔΦ)(ݓ)(|(ݓ)௭|ଶ 	+ 	 (௭̅|ଶ(ݓ)|
+ 	4൫(Φ)௭௭(ݓ)(ݓ)௭(ݓ)௭̅ 	+ 	(Φ)௭௭തതത(ݓ)(ݓ)௭(ݓ)௭̅തതതതതതതതതതതതതതത൯
+ ((Φ)௭(ݓ)Δݓ 	+ 	(Φ)௭̅(ݓ)Δݓതതതതതത) 
= 	ܣ	: + 	ܤ	 +  (19)																																																																															,ܥ	

Since |ܦΦ| remains uniformly bounded and we know that ‖Δݓ‖(॰) 	→ 	0, we see that 
	݊ (॰) tends to zero as‖ܥ‖ → 	∞, whence the same is true for the ܮ-norm. Set ݍ ∶=
	ඥݍ so that ݍ	 < 	 ݍ 	<  -quasiconformal self-map of theܭ  is a normalizedݓ Since .	
unit disc ॰, and ܭ 	→ 	0, we may assume, again by discarding small values of ݊ and 
relabeling, if needed, by the higher integrability of quasiconformal maps that 
∫ 	|ଶ(/)ᇱݓ∇|
॰ 	< ∫ and ܥ ൫ܬ௪

షభ൯
(/)ᇱ

	(ݖ)ܣ݀
ஐ 	<  stands for ′(ݍ/ݍ݁) for all ݊. Here ܥ	

the dual exponent. 
Denoting ݇ 	= 	 ܭ) 	− ܭ)/(1 	+ 1) we thus obtain for any measurable function ܨ on Ω 

න 	ܨ| ∘ (ݖ)ܣ௭|ଶ|݀(ݓ)|ݓ	
	

॰
	≤ ቆන 	ܨ| ∘ (ݖ)ܣ|݀ݓ	

	

॰
ቇ



ቆන |ଶቀݓ∇|


ቁ

ᇲ

(ݖ)ܣ݀
	

॰
ቇ

ଵ


ᇲ

.															 



134 

							≲ ቆන 	ܨ| ∘ (ݖ)ܣ|݀ݓ	
	

॰
ቇ




≤ ቆන ௪ܬ|ܨ|
షభ݀(ݖ)ܣ

	

ஐ
ቇ



																																																																																												 

≲ 	ቆන (ݖ)ܣ݀|ܨ|
	

ஐ
ቇ



ቆන ൫ܬ௪

షభ൯
ቀቁ

ᇲ

(ݖ)ܣ݀
	

ஐ
ቇ
/((/)ᇱ)

	≤ ቆන (ݖ)ܣ݀|ܨ|
	

ஐ
ቇ




. 

By employing this formula and Lemma (4.1.7) we obtain immediately that 
(॰)‖ܣ‖ 	≲ ‖∆Φ‖(ஐ) 	→ 	݊		ݏܽ		0	 → 	∞. 

Moreover, 
(॰)‖ܤ‖ 	≲ ݇ 	→ 	݊			ݏܽ				0	 → 	∞. 

This ends the proof of the Theorem. 
We next examine what kind of convergence of the boundaries ߲Ω 	→ 	߲॰ imply ܹଶ,-
controlled convergence of the domains itself. First of all, given 
߰ ∶ 	॰	 → 	Ω as in Definition (4.1.6) we have Ψ ∈ ܹଶ,(॰), so that by the trace theorem 

of the Sobolev spaces the induced map on the boundary satisfies Ψ|డ॰ 	 ∈ ,ܤ	
ଶିభ(॰). On 

the other hand, for 	 > 	2 we may pick ߙ,ߙᇱ 	 ∈ (1/2, 1) so that 

ଵ,ఈᇲ(߲॰)ܥ 	⊂ ,ܤ	
ଶିଵ(॰) 	⊂  ,ଵ,ఈ(߲॰)ܥ	

see [156]. Hence about the best one can hope is to have a theorem where the boundary 
converges if ܥଵ,ఈ for some ߙ	 > 	1/2. In fact, this can be realised: 
Theorem (4.1.9)[137]: Let (Ω) be a a sequence of bounded Jordan domains in ℂ such 
that there is the parametrisation 

߲Ω 	= 	 { ݂(ߠ)	|	ߠ	 ∈ 	 (0,  .{(ߨ2
for each ݊, where ݂ satisfies for some ߙ	 > 	1/2 

ฮ ݂(ߠ)−	݁ఏฮಮ(ࢀ) → 	݊	ݏܽ	0	 → 	∞	ܽ݊݀ sup
ஹଵ

‖ ݂(ߠ)‖భ,ഀ < ∞.										(20) 

Then the sequence (Ω) converges to ॰ in ܹଶ,-controlled manner. In particular, the 
conclusion of Theorem (4.1.8) holds true for the sequence (Ω). 
Proof. Let us first observe that instead of (20) we may fix ߙᇱ 	 ∈ 	  and assume that (ߙ,1/2)

ฮ ݂(ߠ) −	݁ఏฮభ,ഀᇲ 	→ 	݊	ݏܽ	0	 → 	∞. 
Namely this follows applying interpolation on (20). Write ݃(ߠ) 	= 	 ݂(ߠ) 	− 	݁ఏ. By 
relabeling, if needed, we may assume that for all ݊	 ≥ 	1 we have ฮ ݂(ߠ)−	݁ఏฮభ,ഀ ≤
	1/10, say. Since Id ∶ 	ॻ	 → 	ℂ is 1-bi-Lipschitz, and ݅ܮ(݃) 	≤ 	1/5, we obtain that 
݂ ∶ 	ॻ	 → 	߲Ω is a diffeomorphism. We simply define Ψ as the harmonic extension 

Ψ(ݖ) =
1

ߨ2
න ܲ൫ݖ, ݁௧൯ ݂൫݁௧൯݀ݐ
ଶగ


	= ݖ +

1
ߨ2

න ܲ൫ݖ, ݁௧൯݃൫݁௧൯݀ݐ
ଶగ


 

				= 	ݖ	 + ,(ݖ)ܩ	 	ݖ ∈ 	॰. 
Since ‖݃ᇱ ‖ஶ 	→ 	0 and ‖݃ܪᇱ ‖ஶ 	→ 	0 (recall that the Hilbert transform ܪ is continuous 
in ܥఈ), we may also assume that |ܩܦ(ݖ)| 	≤ 	1/2 for all ݊, and we have 
lim→ஶ‖ܩܦ‖ಮ(॰) = 	0. Especially, Ψ 	 ∶ 	॰ഥ 	→ 	Ωതതതത is bi-Lipschitz, hence 
diffeomorphism. The first condition in (13) follows immediately, and condition (14) is 
immediate since Ψ is harmonic. It remains to verify the second condition in (13). For that 
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end observe that by [154] the fact that ‖݃‖భ,ഀ(ࢀ) 	≤  for all ݊ implies (actually is ܥ	
equivalent to) that the Poisson extension satisfies 

‖(ݖ)ܩଶܦ‖ 	≤
ᇱܥ

(1	 − 	  ,ଵିఈ(|ݖ|

which obviously yields the desired uniform bound for ‖ܦଶܩ(ݖ)‖(॰) if 	 <
(1	 −  .ଵି(ߙ	
Another condition is obtained by specialising to Riemann maps – the proof of the 
preceding theorem could also be based on the following lemma: 
Lemma (4.1.10)[137]: Let 	 > 	2. The sequence of bounded Jordan domains Ω 	⊂ 	ℂ 
converges in ܹଵ,-controlled sense to the unit disc ॰ if the Riemann maps 
ܨ ∶ 	॰	 → 	Ω (normalized by ܨ(0) 	= 	0 and arg	ܨᇱ(0) 	> 	0) satisfy 

lim
→ஶ

ᇱܨ‖ − 1‖ಮ(॰) 	= ᇱᇱ‖(॰)ܨ‖	݀݊ܽ,0	 ≤ 	݊	݈݈ܽ	ݎ݂	ܯ	 ≥ 	1,																	(21) 
with some ܯ 	< 	∞. 
Proof. Obvious after the definition of controlled convergence. 
Theorem (4.1.11)[137]: Assume that ݂ is a quasiconformal mapping of the unit disk onto 
a Jordan domain with rectifiable boundary such ∆ݓ is locally integrable and satisfies 

|(ݖ)݂∆| 	≤ 	1)ܥ	 −  ି(|ݖ|
for some constants ܽ	 < 	1, and ܥ	 < 	∞. Then |்݂ is an absolutely continuous function. 
The result is optimal: there is a quasiconformal self-map of ݓ ∶ 	॰	 → 	॰, with non-
absolutely continuous boundary values, and such that ݂	 ∈ |(ݖ)݂∆| ஶ(॰) and withܥ	 	≤
	1)ܥ	 − 	  .ଵ in ॰ି(|ݖ|
Proof. We first assume that f is as in the theorem so that Δ݂(ݖ) 	≤ 	 (1	 − 	   withି(|ݖ|
ܽ	 ∈ 	 (0, 1). Then we are to show that the boundary map induced by w is absolutely 
continuous. For that end we need two simple lemmas. 
Lemma (4.1.12)[137]: Assume that ݑ	 ∈  തതതതത is a harmonic mapping of the unit disk(ܦ)ܥ	
into  such that the ݂ ∶= 	 (܂)݂ is a homeomorphism and ࢀ|ݑ 	= 	Γ is a rectifiable Jordan 
curve. Then |Γ| ∶= ∫ |߲ఏݑ(݁ݎఏ)|݀ߠ	

܂  is increasing in ݎ so that |Γ| 	≤ 	 |Γ	|. Especially, the 
angular derivative of ݑ satisfies ߲ఏ(ݖ)ݑ 	 ∈ 	 ℎଵ. 
Proof. By differentiating the Fourier-series representation 

(ఏ݁ݎ)ݑ 	=  ො݃ݎ||݁ఏ
ஶ

ୀିஶ

 

we see immediately that ߲ఏ(ݖ)ݑ is the harmonic extension to ܷ of the distributional 
derivative ߲ఏ݃. By assumption, ݃ is of bounded variation, and hence ߲ఏ݃ is a finite 
(signed) Radon measure, which implies that ߲ఏݑ	 ∈ 	ℎଵ. 
It is well-known (see [153]) that for functions in ℎଵ the integral average ∫ |߲ఏݑ(݁ݎఏ)|݀ߠ	

܂  
is increasing in ݎ. 
Lemma (4.1.13)[137]: Let ݃	 ∈ 	 	 with (ࢁ)ܮ > 	1. Then there is a unique solution to the 
Poisson equation △ 	ݒ = 	݃ such that ݒ	 ∈ ࢀ|ݒ തതതതത and(ܷ)ܥ	 	= 	0. Moreover, the weak 
derivative ݒܦ can be modified in a set of measure zero so that 

න ߠ݀|(ఏ݁ݎ)ݑܦ|
ଶగ


	≤ (݃)ܥ	 	< 	ݎ		ݎ݂				∞	 ∈ 	 (1/2, 1). 

Proof. The classical regularity theory for elliptic equations (see [138], [144] yields a quick 
approach, as it guarantees that our Poisson equation has a unique solution ݒ in the Sobolev 
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space ܹଶ,(ܷ), and continuity up to the boundary follows from the inclusion ܹଶ,(ܷ) 	⊂
തതതതത. Then the derivatives satisfy ߲௭(ܷ)ܥ	 ,߲௭̅ ∈ ܹଵ,(ܷ). Especially, we then have 
,0)ܤ)ௐభ,‖ݒܦ‖ ((ݎ 	≤ 	ݎ ᇱ for anyܥ	 ∈ 	 (1/2, 1). At this stage the trace theorem (see e.g. 
[156]) for the space ܹଵ,(ܷ) and a simple scaling argument shows that for a suitable 
representative of ݒܦ it holds that 

(ࢀ)‖ௐభషభ/,(ݒܦ)‖ 	ݎ	for	ᇱܥ	≥ ∈ 	 (1/2, 1). 
Here (ݒܦ) stands for the function ࢀ	 ∋ ߠ	 ↦  The claim follows by observing .(ఏ݁ݎ)ݒ	
the continous imbeddings ܹଵିଵ/,(ࢀ) 	⊂ 	 (ࢀ)ܮ 	⊂ 	  .(ࢀ)ଵܮ
Recall also that any analytic (or anti-analytic) function in ℎଵ can be represented as the 
Poisson integral of an ܮଵ-function, see [153] or [145]. In order to proceed towards the 
absolute continuity of boundary values of ݂, write ݂	 = 	ܽ	 + 	 തܾ 	+  solves ݒ where ,ݒ	
△ 	ݒ = 	݃ ∶= 	 ∆݂ with ࢀ|ݒ 	= 	0 and ܽ and ܾ are analytic in the unit disk. Since ݑ ∶= 	ܽ	 +
	 തܾ 	= ࣪[  is a homeomorphism, it follows from Lemma (4.1.12) that ࢀ݂| where ,[ࢀ݂|
߲௧ݑ	 = ᇱܽݖ)݅	 − (ᇱതതതതܾݖ 	 ∈ 	 ℎଵ(ࢁ), because ݂(ࢀ) is a rectifiable curve. Further, the weak 
derivatives satisfy 

௭݂ 	= 	 ܽᇱ + ,ݖݒ ௭݂̅ 	= 	 ܾᇱഥ 	+ 	  ௭̅ݒ
Now we use that 

| ௭݂̅| 	≤ 	݇| ௭݂|, ݇	 =
	ܭ − 	1
	ܭ + 	1

 
which implies that 

|ܽᇱ 	+ |௭ݒ	 	≤ 	݇|ܾᇱ 	+  .|௭̅തതതݒ	
As 

ܾᇱ 	=
̅ݖ
ݖ
ܽᇱ 	−

݅
ݖ
 ,௧തതതݑ

we obtain for ݖ ≠ 	0 that 

|ܽᇱ| 	≤ 	݇ ฬ
̅ݖ
ݖ
ܽᇱഥ 	−

݅
ݖ
௧തതതݑ 	+ ௭̅തതതฬݒ	 + 	  .|௭ݒ|

This yields for |ݖ| 	≥ 	1/2 the inequality, valid almost everywhere 

|ܽᇱ| 	≤
1

1	 − 	݇
|௧തതതݑ|2) 	+ 	 |௭̅തതതݒ| 	+ 	  .(|௭ݒ|

Our assumption on the size of the Laplacian of ݂ yields that ∆݂	 ∈ 	  (॰) for someܮ
	 > 	1. By combining this with above inequality, and noting that 
௧തതതݑ 	∈ 	 ℎଵ by Lemma (4.1.12), we infer from (and simple argument that uses Fubini as the 
above inequality holds only for a.e. ݖ) that ܽᇱ 	 ∈ ଵ. Then the relation ܾᇱܪ	 	= ௭̅

௭
ܽᇱ 	− 

௭
 ௧തതതݑ

verifies that also ܾ	 ∈  ଵ function, and weܮ is the Poisson integral of an ݑଵ. Thus ߲௧ܪ	
conclude that |݂ࢀ 	= 	  .is absolutely continuous ࢀ|ݑ
In order to prove the optimality of Theorem (4.1.11), we are to construct quasiconformal 
maps with non-absolutely continuous boundary values, but with not too large Laplacian. 
For that end it is easier to work in the upper half space ℂା ∶= 	 ݖ} ∶ 	Imݖ	 > 	0}. We need to 
produce quasisymmetric functions on ℝ which can be quasiconformally extended to the 
upper half plane with not too large Laplacian, so somehow the function itself should be as 
smooth as possible while its derivative still possessing a singular part. 
We will produce the desired functions with the help of Zygmund measures. 
Recall first that a bounded and continuous function ݃ ∶ 	ℝ	 → 	ℝ is Zygmund if 

	ݔ)݃| + (ݐ	 + 	ݔ)݃	 − (ݐ	 − |(ݔ)2݃	 ≤ ,ݔ	all	for		|ݐ|ܥ	 	ݐ ∈ 	ℝ. 
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The smallest possible ܥ above is the Zygmund norm of ݃. If ݃ is increasing, its derivative 
is a positive finite Borel measure, ݃ᇱ 	=  on ℝ and we call ݃ a singular Zygmund ,ߤ	
function if, in addition, ߤ is singular. It is well-known that there exists singular Zygmund 
measures, see [152] or [146]. [142]. 
We next recall a modified version of the Beurling-Ahlfors extension, due to Fefferman, 
Kenig and Pipher [143]. For that end denote the Gaussian density by ߰(ݔ) ∶=
(ݔ)ଵ/ଶ݁ି௫మ/ଶ, and notice that −߰ᇱି(ߨ2)	 = 	ݐ As usual, for .(ݔ)߰ݔ−	 > 	0 we define the 
dilation ߰௧(ݔ) ∶= 	 and ߰௧ᇱ ,(ݐ/ݔ)ଵ߰ିݐ  is defined in analogous way. Then the extension ݑ 
of and (at most polynomially) increasing homeomorphism ݃ ∶ 	ℝ	 → 	ℝ is defined by 
setting 

ݔ)ݑ + :(ݐ݅ = 	 (߰௧ ∗ (ݔ)(݃ + 	݅(−	߰௧ᇱ ∗ ,(ݔ)(݃ for	all	ݔ	 + 	ݐ݅	 ∈ ℂା.																(22) 
Obviously, ݑ is smooth in ℂା and it has the right boundary values. We have: 
Lemma (4.1.14)[137]: ([143]). If ݃ ∶ 	ℝ	 → 	ℝ is quasisymmetric, then the extension ݑ 
defined via (22) defines a quasiconformal homeomorphism of 
ℂା whose boundary map coincides with ݃. 
We need one more auxiliary result: 
Lemma (4.1.15)[137]: Assume that ݃ ∶ 	ℝ	 → 	ℝ is Zygmund. Then the extension (22) of 
݃ satisfies 

	ݔ)ݑ∆| + |(ݐ݅	 	≤ 	ݔ	݈݈ܽ	ݎ݂	ଵିݐܥ	 ∈ 	ℝ, 	ݐ > 	0, ܽ݊݀ 
,ݔ)ݑ∇|																		 |(ݐ݅ ≤ ܥ	 log൫݉ܽݔ(݁, ଵ)൯ିݐ 	ݔ	݈݈ܽ	ݎ݂		 ∈ 	ℝ, 	ݐ > 	0, 

where ܥ	 > 	0 is a constant. 
Proof. Let us first observe that if ݃ is Zygmund, then for any ߮	 ∈ 	ܹଶ,ଵ(ℝ) (i.e. ߮,߮ᇱᇱ 	 ∈
 ଵ(ℝ)) we haveܮ	

ብ
݀ଶ

ଶݔ݀
߮௧ 	 ∗ 	݃ብ

ಮ(ℝ)
	= ,(ଵିݐ)ܱ	 	ݐ	݈݈ܽ	ݎ݂ > 	0.																								(23) 

We note that this follows easily from the mere definition of Zygmund functions if ߮ is 
even, but for general ߮ we shall use the fact that ݃ can be decomposed as the sum 
݃	 = ∑ ݃ஶ

ୀ , where ฮ݃ฮಮ(ℝ) 	= ܱ(2ି) and ฮ݃ᇱ
ᇱฮ
ಮ(ℝ)

	= ܱ(2) for all ݆	 ≥ 	0, see 
[154]. We may compute in two ways 

݀ଶ

ଶݔ݀
൫߮௧ ∗ ൯(ݔ)݃ = 	 ଵනିݐ ߮௧(ݔ	 − ݕ݀(ݕ)ᇱᇱ݃(ݕ	

ஶ

ିஶ
	 

= 	 ଷනିݐ ߮௧ᇱᇱ(ݔ	 − ݕ݀(ݕ)݃(ݕ	
ஶ

ିஶ
.			 

By assuming first that ݐ	 ≤ 	1 with ݐ	 ∼ 	2ି we apply the first formula above to the sum 
݃	 = ∑ ݃

ୀ , and the second one to the remainder ݃	 = 	 ∑ ݃ஶ
ୀାଵ . By noting that 

∫ |߮௧(ݕ)|݀ݕஶ
ିஶ 	= ∫ and (ݐ)ܱ	 |߮௧ᇱᇱ(ݕ)|݀ݕஶ

ିஶ 	=  we obtain ,(ݐ)ܱ	

|
݀ଶ

ଶݔ݀
(߮௧ 	 ∗ |((ݔ)݃	 	= ଵିݐ)ܱ	 	 · ݐ	 2 + ଷିݐ ∙ ݐ



ୀଵ

 2ି
ஶ

ୀାଵ

) =  ,(ଵିݐ)ܱ

which proves (23) for ݐ	 ∈ 	 (0, 1]. If ݐ	 > 	1 we simply apply the second formula directly 
on the bound ‖݃‖ಮ(ℝ) 	< 	∞ and obtain ቛ ௗమ

ௗ௫మ
߮௧ ∗ 	݃ቛಮ(ℝ)

	≤ (ଶିݐ)ܱ	 	=  for (ଵିݐ)ܱ

	ݐ > 	1. 
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We then consider the Laplacian of the extension ݑ of ݃. Since ߰, ߰ᇱ ∈ 	ܹଶ,ଵ(ℝ), we 
obtain immediately from (23) that ቚ ௗ

మ

ௗ௫మ
,ݔ)ݑ ቚ(ݐ 	= 	ݔ uniformly in (ଵିݐ)ܱ	 ∈ 	ℝ. In turn, to 

consider differentiation with respect to ݐ, assume that ߶ ∶ 	ℝ	 → 	ℝ is smooth and (1	 +
 is integrable. Then (ݐ)߶(ଶ|ݐ|	

݀
ݐ݀
߮௧ 	 ∗ (ݔ)݃	 	= න ൫−	ିݐଶ߮௧(ݔ − (ݕ ݔ)ଷିݐ	− − ݔ)௧ᇱ߮(ݕ − ݕ݀(ݕ)൯݃(ݕ

ஶ

ିஶ
 

				= න (ݕ)݃
݀
ݕ݀

	ݔ)ଶିݐ) − 	ݔ)௧߮(ݕ	 − ݕ݀(((ݕ
ஶ

ିஶ
	 

																							

= ଵනିݐ−	
ஶ

ିஶ
	= 	 (߮ଵ)௧ 	 ∗ 	݃ᇱ(ݔ),				 

where ߮ଵ(ݕ) ∶= (ݕ)An iteration gives, by denoting ߮ଶ .(ݕ)߮ݕ−	 ∶= 	  ,(ݕ)ଶ߮ݕ
݀ଶ

ଶݐ݀
൫߮௧ 	 ∗ ൯(ݔ)݃	 = 	 (߮ଶ)௧ 	 ∗ 	݃ᇱᇱ(ݔ)																																																																														 

=
݀ଶ

ଶݔ݀
൫(߮ଶ)௧ 	 ∗  (24)																																																												൯.(ݔ)݃	

Since all the functions (ݐ)߰ݐ, ,(ݐ)ଶ߰ݐ ,(ݐ)߰ݐ  and their second derivatives are (ݐ)ଶ߰ݐ
integral, we may apply (24) and obtain as before the desired estimate for ௗ

మ

ௗ௧మ
,ݔ)ݑ  .(ݐ

The stated estimate for ∇ݑ is proven in a similar way. We use the fact that for in the 
decomposition ݃	 = ∑ ݃ஶ

ୀ , one may in addition demand that ฮ݃ᇱฮஶ 	≤ 	݆ for all ܥ	 ≥ 	1 
(see [155]), which yields as before for ݐ	 ∼ 	2ି 	< 	1 

ฬ
݀
ݔ݀

൫߮௧ 	 ∗ ൯ฬ(ݔ)݃	 	= 	ܱ ቌିݐଵ 	 · ݐ	 1 + ଶିݐ ∙ ݐ


ୀଵ

 2ି
ஶ

ୀାଵ

ቍ 

 
					= 	ܱ(log(ିݐଵ).						 

The case ݐ	 ≥ 	1 is trivial, and the case of the ݐ-derivative is reduced to estimating the ݔ-
derivative as before. 
After these preparations it is now a simple matter to produce the desired example. Let ݃ 
be a singular Zygmund function which is constant outside [−1, 1] so that Set ݃(ݔ) 	=
	ݔ	 + 	݃(ݔ) for ݔ	 ∈ 	ℝ. Then, as ݃ is Zygmund, the function ݃ is quasi symmetric. Then 
its Fefferman-Kenig-Pipher extension ݑ ∶ 	 ℂା 	→ 	ℂା is quasiconformal with non-
absolutely continuous boundary values over [−1, 1]. Since the extension of the linear 
function ݔ	 ↦  ,equal that of the extension of ݃ ݑ is linear, we see that the Laplacian of ݔ
and by the previous lemma we obtain the estimate 

	ݔ)ݑ∆| + |(ݐ݅	 	≤ 	ݔ	݈݈ܽ	ݎ݂	ଵିݐܥ	 + 	ݐ݅	 ∈ 	 ℂା. 
Let ℎ ∶ 	॰	 → 	Ωᇱ be conformal, where Ωᇱ is a bounded and smooth Jordan domain that is 
contained in the upper half space ℂା and contains [−2, 2] as a boundary segment. Next, 
set Ω	 = so that Ω is smooth by our construction. Finally, let ℎ෨ (Ωᇱ)ݑ	 ∶ 	Ω	 → 	॰ be 
conformal end set ݂ ∶= 	ݑ	 ∘ 	ℎ. Then ݂ satisfies all the requirements, as the main terms in 
the formula for the Laplacian of ݂ (compare to (19)) are |∆ݑ| and |∇ݑ|ଶ, and the previous 
lemma also yields suitable bounds for the gradient term. 
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Corollary (4.1.16)[137]: If ݂ is a quasiconformal mapping of the unit disk onto a Jordan 
domain with rectifiable boundary such that ∆݂	 ∈ 	 	 (॰) for someܮ > 	1, then |்݂ is an 
absolutely continuous function. The claim fails in general if 	 < 	1. 
Proof. The counterexample constructed above obviously works also for the Corollary. In a 
similar vain, hand, the proof of the positive direction of the Theorem also applies as such 
for the Corollary since it in fact used as a starting point the fact that ∆ݑ	 ∈ 	  (॰) forܮ
some 	 > 	1. 
However, it is an open problem whether Corollary (4.1.16) is true for the exponent 	 = 	1, 
as merely implementing the Kahane measures described above into our proof seems not to 
give enough extra decay for the Laplacian. 
Section (4.2): Harmonic ࡷ-Quasiconformal Mappings 
              A complex-valued function ݂(ݖ) of class ܥଶ is said to be a harmonic mapping, if 
it satisfies ௭݂௭̅ 	= 	0. Assume that ݂(ݖ) is a harmonic mapping defined in a simply 
connected domain Ω	 ⊆ 	ℂ. Then ݂(ݖ) has the canonical decomposition ݂(ݖ) 	= ℎ(ݖ) 	+
	are analytic in Ω. Let ॰ (ݖ)݃ and (ݖ)തതതതതത, where ℎ(ݖ)݃	 = 	 ݖ} ∶ 	 |ݖ| 	< 	1} be the unit disk; we 
consider harmonic mappings ݂(ݖ) in ॰. 
For ݖ	 ∈ 	॰, let 

Λ(ݖ) = max
ஸఏஸଶగ

ห ௭݂(ݖ) + 	 ݁ିଶఏ ௭݂̅(ݖ)ห 	= 	 | ௭݂(ݖ)| 	+ 	 | ௭݂̅(ݖ)| 
and 

(ݖ)ߣ = min
ஸఏஸଶగ

ห ௭݂(ݖ) + 	 ݁ିଶఏ ௭݂̅(ݖ)ห 	= 	 ห| ௭݂(ݖ)| −	ห ௭݂̅(ݖ)||. 
It is well known that ݂ is locally univalent and sense-preserving in ॰ if and only if its 
Jacobian satisfies 

(ݖ)ܬ 	= 	 (ݖ)Λ(ݖ)ߣ 	= 	 | ௭݂(ݖ)|ଶ 	− 	 | ௭݂̅(ݖ)|ଶ 	> 0	for	ݖ	 ∈ 	॰. 
Let 

ߚ 	= sup
௭,௪∈॰,௭ஷ௪

(ݖ)݂| − |(ݓ)	݂	
(ݓ,ݖ)ߩ  

be the Bloch constant of ݂, where ߩ denotes the hyperbolic distance in ॰, and (ݓ,ݖ)ߩ =
ଵ
ଶ
	ln	 ቀଵା

ଵି
ቁ where ݎ is the modulus of ௭ି௪

ଵି௭̅௪
. In [163], we see that the Bloch constant of 

݂	 = 	ℎ	 + 	 ݃̅ can be expressed in terms of the modulus of the derivatives of ℎ and ݃ as 
follows: 

ߚ 	= sup
௭∈॰

(1	 − 	 |(ݖ)ଶ)(|ℎᇱ|ݖ| + 	 |݃ᇱ(ݖ)|). 

For the extensive discussions on harmonic Bloch mappings, see [158]–[162], [167]. 
For ݒ	 ∈ 	 (0,∞), a harmonic mapping ݂ is called a harmonic ݒ-Bloch mapping if and only 
if 

‖݂‖ೡ ∶= 	 |݂(0)| + sup
௭∈॰

(1	 − 	 (ݖ)ଶ)௩Λ|ݖ| < ∞.																																(25) 

Harmonic mappings are nature generalizations of analytic functions. Many classical 
results of analytic functions under some suitable restrictions can be extended to harmonic 
mappings. One of the well-known results is the Landau-type theorems for harmonic 
mappings. Many have considered such an active topic. 
In [168], Liu proved the following theorems. 
Theorem (4.2.1)[157]: Suppose that ݂ is a harmonic mapping of ॰ with ݂(0) 	= 	 (0)ߣ −
1	 = 	0. 
If Λ(ݖ) 	≤ 	Λ for all ݖ	 ∈ 	॰, then 
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|ܽ| + 	 |ܾ| ≤
Λଶ 	− 	1
݊Λ

				݊	 = 	2, 3, . . . .																																						(26) 

The above estimates are sharp for all ݊	 ≥ 	2 with extremal functions ݂(ݖ) = 	 Λଶݖ	 −
∫

(ஃయିஃ)ௗ௭
ஃା௭షభ

௭
 . 

Theorem (4.2.2)[157]: Let ݂ be a harmonic mapping of ॰ with ݂(0) 	= 	 (0)ߣ 	− 	1	 =
	0, and Λ(ݖ) 	≤ 	Λ for all ݖ	 ∈ 	॰. Then ݂ is univalent in the disk ܦభ  with ݎଵ 	=

ଵ
ଵାஃିభ౻

 and 

ఙభܦ contains a schlicht disk (భܦ)݂  with 

ଵߪ 	=

⎩
⎨

⎧
1	 + ൬Λ	 −

1
Λ
൰ ln

Λ − 1
Λ

1 + Λ − 1
Λ
			Λ > 	1

1																																																			Λ = 1.

 

The result is sharp when Λ	 = 	1. 
Subsequently, in 2011, Chenetal. [161] proved the following theorems. 
Theorem (4.2.3)[157]: Let ݂	 = 	ℎ	 + 	 ݃̅ be a harmonic ݒ-Bloch mapping, where ℎ and ݃ 
are analytic in ॰ with the expansions 

ℎ(ݖ) 	= ܽݖ
ஶ

ୀଵ

(ݖ)݃	݀݊ܽ	 	= ܾݖ
ஶ

ୀଵ

.																																																			(27) 

If ߣ(0) 	= 	ߙ for some ߙ	 ∈ 	 (0, 1) and ‖݂‖ೡ ≤ 	ܯ for ܯ	 > 	0. Then for ݊	 ≥ 	2, 
|ܽ| + 	 |ܾ| ≤ ,ߙ)ܣ	 (ܯ,ݒ = inf

ழழଵ
 (ݎ)ߤ

where 

(ݎ)ߤ 	=
ଶܯ 	ଶ(1ߙ	− − ଶ)ଶ௩ݎ	

	ିଵ(1ݎ݊ − ܯଶ)௩ݎ	
. 

Particularly, if ݒ	 = 	ܯ	 = 	ߙ	 = 	1, then ܣଶ(1, 1, 1) = ,ଷ(1ܣ,0	 1, 1) = ଵ
ଷ
 and for ݊	 ≥ 	4, 

,(1ܣ 1, 1) 	< (ାଵ)ெ
ଶ

. The above results are sharp for ݊	 = 	2 and ݊	 = 	3. 
Theorem (4.2.4)[157]: Let ݂ be a harmonic mapping with ݂(0) 	= 	 (0)ߣ − 	ߙ = 	0 and 
‖݂‖ೡ ≤ 	ߙ and ܯ where ,ܯ ∈ 	 (0, 1] are constants. Then ݂ is univalent in ॰ఘబ , where 

ߩ = (ݎ)߰ = max
ழழଵ

 		,(ݎ)߰

(ݎ)߰ 	=
	1)ݎߙ − ܯ(ଶݎ	

	1)	ܯߙ − 	 ଶ)௩ݎ − 	ଶ(1ߙ − 	 ଶ)ଶ௩ݎ +  .ଶܯ

Moreover, ݂(॰ఘబ) contains a univalent disk ॰ோబ with 

ܴ 	= 	 	ߙ]ݎ +
ଶܯ 	− 	(1	ଶߙ	 − ଶ)ଶ௩ݎ	

	1)ܯ − 	 ଶ)௩ݎ log
ଶܯ 	ଶ(1ߙ	− − ଶ)ଶ௩ݎ	

	1)	ܯߙ − ଶ)௩ݎ	 	− 	ଶ(1ߙ	 − ଶ)ଶ௩ݎ	 + ଶܯ . 

The coefficient estimates are crucial in obtaining Landau-type theorems. By using 
Parseval equation, we first obtain the coefficient estimates for harmonic ݒ-Bloch 
mappings, and then for 0	 < 	ݒ	 < ଵ

ଶ
, we obtain its Landau-type theorems. 

Assume that 

(ݖ)݂ 	= (ݖ)[ܨ]ܲ	 	= න ,ݎ)ܲ 	ݔ − ݔ݀(ݔ)ܨ(߮	
ଶగ
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is a sense-preserving univalent harmonic mapping of ॰ with the boundary function 
(ݔ)ܨ 	= 	 ݁ఊ(௫) where 

,ݎ)ܲ 	ݔ − 	߮) 	=
1	 − ଶݎ	

	1)ߨ2 − 	ݔ)cos	ݎ2	 − 	߮) + 	  (ଶݎ

is the Poisson kernel and ݖ	 = ఝ݁ݎ	 	 ∈ 	॰. Then ݂(ݖ) is called a harmonic ܭ-
quasiconformal mapping if there exists a constant ݇ such that 

sup
௭∈॰

ቤ ௭݂̅(ݖ)

௭݂(ݖ)ቤ ≤ 	݇	 =
	ܭ − 	1
	ܭ + 	1

. 

For harmonic ܭ-quasiconformal mappings defined in ॰, there are many interesting results 
(See [164], [166], [14] and [171]–[174]). In [1], Partyka and Sakan proved the following 
theorem: 
Theorem (4.2.5)[157]: Given ܭ	 ≥ 	1 and let ݂(ݖ) 	= -ܭ be a harmonic (ݖ)[ܨ]ܲ	
quasiconformal mapping of ॰ onto itself, with the boundary function (ݐ)ܨ. If ݂(0) 	= 	0, 
then for a.e. ݖ	 = 	 ݁௧ 	 ∈ 	߲॰ 

(
2ହ(ଵିమ)/ଶ

ଶܭ) + 	ܭ	 − 	1) ≤ 	 ܨ|
ᇱ(ݐ)| 	≤ ଷ2ହቀଵିܭ	

ଵ
ቁ/ଶ.																																												(28) 

Using this theorem, we obtain the coefficient estimates for ݂	 =  :as follows [ܨ]ܲ	

|ܽ| + 	 |ܾ| ≤ (ܭ)ܤ	 =
4
ߨ݊

ଷ2ହቀଵିܭ
ଵ
ቁ/ଶ, ݊	 = 	1, 2, . . .. 

Theorem (4.2.6)[157]: Assume that ݂(ݖ) 	= 	ℎ(ݖ) 	+  Bloch-ݒ തതതതതത is a harmonic(ݖ)݃	
mapping such that ݂(0) 	= 	0 and ‖݂‖ೡ ≤ 	ܯ for some constants ܯ	 > 	0, where ℎ(ݖ) 
and ݃(ݖ) are given by (27). Then the following inequality 

|ܽ|ଶ 	+ 	 |ܾ|ଶ 	
≤ 																																																																																																																																																								(ܯ,ݒ)ܣ	
holds for all ݊	 = 	1, 2, 3, . . ., where 

(ܯ,ݒ)ܣ =

⎩
⎨

ܯ⎧
ଶ

݊
inf

ழ௧ழଵ

1 − (1 − ଶ)ଵିଶ௩ݐ

ଶ(1ݐ − (ݒ2 ݒ		 ≠
1
2

ଶܯ

݊
inf

ழ௧ழଵ

−ln(1 − (ଶݐ
ଶݐ

	ݒ										 =
1
2

. 

Furthermore, if 0	 < 	ݒ	 < 	1, then lim→ஶ (ܯ,ݒ)ܣ 	= 	0. If ݒ	 ≥ 	1, then ܣ(ܯ,ݒ) ≤
ெమ

ଶ௩ିଵ
(ାଵ)మೡషభିଵ


ቀ1	 + ଵ


ቁ


. 
Proof. Using the assumption that ݂(0) 	= 	0 and ‖݂‖ೡ ≤  according to (25), we have ,ܯ	

Λ(ݖ) = 	 |ℎᇱ(ݖ)| + 	 |݃ᇱ(ݖ)| ≤
ܯ

(1	 − 	 ଶ)௩|ݖ| ∶= 	 Λ 

holds for any ݖ	 = ఏ݁ݎ	 	 ∈ 	॰. Using ఏ݂(ݖ) 	= (ݖ)ℎᇱݖൣ݅	  തതതതതതതത൧ and applying Parseval(ݖ)ᇱ݃ݖ	−
equation, then 

1
ߨ2

න ห ఏ݂൫݁ݎఏ൯ห
ଶ
ߠ݀

ଶగ



=
1

ߨ2
න อ ݊ܽݎ݁ఏ

ஶ

ୀଵ

−ܾ݊തതതݎ݁ఏ
ஶ

ୀଵ

อ
ଶ

ߠ݀
ଶగ



 

									= ݊ଶ	(|ܽ|ଶ 	+ 	 |ܾ|ଶ)ݎଶ
ஶ

ୀଵ

. 

Applying | ఏ݂(ݖ)| 	≤ 	 (ݖ)Λ|ݖ| 	≤ Λݎ	 , we have 
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݊ଶ	(|ܽ|ଶ 	+ 	 |ܾ|ଶ)ݎଶ
ஶ

ୀଵ

ଶΛଶݎ	≥ ≤
ଶܯଶݎ

(1	 − ଶ)ଶ௩ݎ	 . 

This implies that 

݊ଶ	(|ܽ|ଶ 	+ 	 |ܾ|ଶ)ݎଶିଵ
ஶ

ୀଵ

≤
ଶܯݎ

(1	 −  							.ଶ)ଶ௩ݎ	

For any 0	 < 	ݐ	 < 	1, integrals from both sides give 

݊(|ܽ|ଶ 	+ 	 |ܾ|ଶ)
ଶݎ

2

ஶ

ୀଵ

≤ ଶනܯ	
ݎ

(1	 − 	 ଶ)ଶ௩ݎ ݎ݀
௧



∶=  (30)																																			.(ݐ)ଶ߮ܯ	

(i) For ݒ	 = ଵ
ଶ
. In this case, ߮(ݐ) 	= ି୪୬(ଵି௧మ)

ଶ
. It follows from (30) that 

|ܽ|ଶ 	+ 	 |ܾ|ଶ 	≤
ଶܯ

݊
− ln(1	 − 	 (ଶݐ

ଶݐ
. 

If ݊	 = 	1, then minழ௧ழଵ
ெమ


ି୪୬(ଵି௧మ)

௧మ
= 	݊ ଶ. Forܯ	 > 	1, since lim௧→

ି୪୬(ଵି௧మ)
௧మ

	= ∞ =

lim௧→ଵ
ି୪୬(ଵି௧మ)

௧మ
, we see that infழ௧ழଵ

ି୪୬(ଵି௧మ)
௧మ

 exists. Hence, 

|ܽ|ଶ 	+ 	 |ܾ|ଶ ܣ	≥ ൬
1
2

൰ܯ, 	=
ଶܯ

݊
inf

ழ௧ழଵ

−ln(1 − (ଶݐ
ଶݐ

. 

Let ݐ 	= ට 
ାଵ

. Then 

ܣ ൬
1
2

൰ܯ, ≤
ଶܯ

݊
−ln(1 − (ଶݐ

ଶݐ
=
	݊)ଶlnܯ + 	1)

݊
൬1	 +

1
݊
൰


.																																				(31) 

This implies that lim→ஶ ܣ ቀ
ଵ
ଶ

ቁܯ, 	= 	0. 

(ii) For ݒ	 ≠ ଵ
ଶ
. In this case, ߮(ݐ) 	= ଵି(ଵି௧మ)భషమೡ

ଶ(ଵିଶ௩) . It follows from (30) that 

|ܽ|ଶ + |ܾ|ଶ ≤
ଶܯ

݊
1	 − 	(1	 − ଶ)ଵିଶ௩ݐ	

(1	 − ଶݐ(ݒ2	
∶=

ଶܯ

݊
 .(ݐ)݉

If ݒ	 < ଵ
ଶ
, then infழ௧ழଵ݉(ݐ) = ଵ

ଵିଶ௩
. Hence, 

(ܯ,ݒ)ܣ ≤
ଶܯ

݊(1	 − (ݒ2	 , ൬ݒ	 <
1
2
൰ .																																								(32) 

For ݒ	 > ଵ
ଶ

(ݐ)݉, 	= ଵି(ଵି௧మ)మೡషభ

(ଵି௧మ)మೡషభ(ଶ௩ିଵ)௧మ
	> 0. If ݊	 = 	1, then infழ௧ழଵ݉(ݐ) = ݒ2	 − 1. 

Else if ݊	 > 	1, then since lim௧→݉(ݐ) = ∞ = lim௧→ଵ݉(ݐ) we see that infழ௧ழଵ݉(ݐ) 
exists. Therefore ܣ(ܯ,ݒ) = ெమ


infழ௧ழଵ݉(ݐ) and 

(ܯ,ݒ)ܣ ≤
ଶܯ

݊
(ݐ)݉ =

ଶܯ

	ݒ2 − 	1
(݊	 + 	1)ଶ௩ିଵ 	− 	1

݊
൬1	 +

1
݊
൰


, ൬ݒ	 >
1
2
൰ .								(33) 

It follows from (31), (32) and (33) that if ݒ	 < 	1, then lim→ஶ (ܯ,ݒ)ܣ 	= 	0. If ݒ	 = 	1, 
then ܣ(1,ܯ) 	≤ ଶܯ	 ቀ1	 + ଵ


ቁ


. If ݒ	 > 	1, then ܣ(ܯ,ݒ) ≤ ெమ

ଶ௩ିଵ
(ାଵ)మೡషభିଵ


	ቀ1	 + ଵ


ቁ


=
ܱ(݊ଶ௩ିଶ). 
This completes the proof. 
Example (4.2.7)[157]: For ݒ	 = 	1, we consider harmonic function: 
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(ݖ)݂ 	= ݖଶ
ஶ

ୀଵ

. 

Then 
|(ݖ)ᇱ݂ݖ|
1	 − 	 |ݖ| ≤ ൭ 2

	

ଶೖஸ

൱
ஶ

ୀଵ

|ݖ| 	≤  |ݖ|2݊
ஶ

ୀଵ

	=
|ݖ|2

(1	 − 	  ,ଶ(|ݖ|

Hence, 
(1	 − 	 |(ݖ)ଶ)|݂ᇱ|ݖ| 	≤ |ݖ|)					4	 	< 	1). 

It follows from (25) that ݂(ݖ) is a 1-Bloch harmonic function. Moreover, its coefficients 
do not tend to 0. 
Theorem (4.2.8)[157]: Let ݂(ݖ) 	= 	ℎ(ݖ) 	+ 	  Bloch mapping of ॰-ݒ തതതതതത be a harmonic(ݖ)݃
satisfying ݂(0) 	= 	 (0)ߣ 	− 	1	 = 	0 and 0	 < 	ݒ	 < ଵ

ଶ
. Then ݂ is univalent in the disk 

॰∗ ∶= 	 ݖ} ∶ |ݖ| 	< 	  :is the root of the following equation ∗ݎ where ,{∗ݎ
																																1	

− ඨܯ	
2

1	 − ݒ2	
Φ(ݎ) 	

= 0																																																			
and Φ(ݎ) ∶= ∑ √݊	 + ஶݎ1	

ୀଵ . 
Proof. Let ݖଵ 	= 	 ଵ݁ఏభݎ 	 ∈ 	॰ and ݖଶ 	= 	 ଶ݁ఏమݎ 	 ∈ 	॰ , where 0	 < 	ݎ	 < 	 ଵݖ and ∗ݎ 	≠ 	  .ଶݖ
For 0	 < 	ݒ	 < ଵ

ଶ
, applying Theorem (4.2.6), we have 

|ܽ| + 	 |ܾ| ≤ 	ඥ2(|ܽ|ଶ 	+ 	 |ܾ|ଶ) 	≤ ඨ
2

1	 − ݒ2	
ܯ
√݊

. 

Then 

(ଵݖ)݂| 	− |(ଶݖ)݂	 	≥ ଵݖ|(0)ߣ 	− |ଶݖ	 	− 	 ଵݖ| 	− |ଶ|(|ܽݖ	 + 	 |ܾ|)݊ݎିଵ
ஶ

ୀଶ

 

			≥ 	 ଵݖ| 	− 	ଶ|ቌ1ݖ	 − ඨܯ	
2

1	 − ݒ2	
√݊ݎିଵ
ஶ

ୀଶ

ቍ 

			= 	 ଵݖ| 	− 	ଶ|൮1ݖ	 − ඨܯ	
2

1	 − ݒ2	
Φ(ݎ)൲ 

			∶= 	 ଵݖ| 	−  .(ݎ)߮|ଶݖ	
Since ߮(ݎ) is a continuous decreasing function satisfying ߮(0) = 	1, lim→ଵష (ݎ)߮ 	=
	−∞, we see that equation ߮(ݎ) 	= 	0 has the root 0	 < 	 ∗ݎ 	< 	1. Then for any 0	 < 	ݎ	 <
(ଵݖ)݂| we have ,∗ݎ	 	− |(ଶݖ)݂	 	> 	0. This shows that ݂(ݖ) is univalent in the disk ܦ∗ . The 
proof is completed. 
For ܯ	 = 	1 and some constants ݒ	 ∈ ቀ0, ଵ

ଶ
ቁ, when calculated by computer, we obtain some 

 :which were shown by the following table ∗ݎ
 

M ݎ ݒ∗ 
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1 1/5 0.264534 
1 1/4 0.248227 
1 1/3 0.214222 
1 49/100 0.0650995 

Theorem (4.2.9)[157]: Given ܭ	 ≥ 	1, let ݂(ݖ) 	= (ݖ)[ܨ]ܲ	 	= 	ℎ(ݖ) 	+  തതതതതത be a(ݖ)݃	
harmonic K-quasiconformal self-mapping of ॰ satisfying ݂(0) 	= 	0 with the boundary 
function ܨ, where 

ℎ(ݖ) 	= ܽ	ݖ
ஶ

ୀଵ

(ݖ)݃	݀݊ܽ	 	= ܾ	ݖ
ஶ

ୀଵ

 

are analytic in ॰. Then 

|ܽ| + 	 |ܾ| ≤ :(ܭ)ܤ	 =
4
ߨ݊

	݊		ଷ2ହ(ିଵ/)/ଶܭ = 	1, 2, . . . .																					(35) 

In particular, if ܭ	 = 	1 then |ܽ| + 	 |ܾ| ≤ (1)ܤ	 = ସ
గ

. 
Proof. For every ݖ	 = ఏ݁ݎ	 	 ∈ 	॰, 

(ఏ݁ݎ)݂ 	= ܽݎ݁ఏ
ஶ

ୀଵ

	+ ܾതതതݎ݁ିఏ
ஶ

ୀଵ

. 

We find that 

ܽݎ 	=
1

ߨ2
න ݂൫݁ݎఏ൯݁ିఏ݀ߠ
ଶగ



, ݊	 = 	1, 2, . . . , 

ܾതതതݎ 	=
1

ߨ2
න ݂൫݁ݎఏ൯݁ఏ݀ߠ
ଶగ



, ݊	 = 	1, 2, . . . . 

For every ݊ (see [169] and [170]), we set ܽ 	= 	 |ܽ|݁ఈ	, ܾ 	= 	 |ܾ|݁ఉ  and ߠ 	=
ఈାఉ
ଶ

. 
Then 

				(|ܽ| + 	 |ܾ|)ݎ 	= ቮ
1

ߨ2
න ݂൫݁ݎఏ൯ൣ݁ିఏ݁ିఈ + ݁ఉ݁ఏ൧݀ߠ
ଶగ



ቮ 

= ቮ
1

ߨ2
න ݂൫݁ݎఏ൯ൣ݁ି(ఏାఏ) + ݁(ఏାఏ)൧݀ߠ
ଶగ



ቮ 

= ቮ
1

ߨ2
න ݂൫݁ݎఏ൯ cos݊(ߠ + ߠ݀(ߠ
ଶగ



ቮ.			 

Integrating by parts, we have 

(|ܽ| + 	 |ܾ|)ݎ 	= ቮ
1
ߨ݊

න ఏ݂൫݁ݎఏ൯ sin ߠ)݊ + ߠ݀(ߠ
ଶగ



ቮ .																									(36) 

In [165], Kalaj proved that the radial limits of ఏ݂ and ݂ exist almost everywhere and 
lim
→ଵష ఏ݂(݁ݎఏ) 	=  ,(ߠ)ܨ	
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for almost every ݖ	 = ఏ݁ݎ	 	 ∈ 	॰. Here ܨ is the boundary function of ݂. Hence, tending 
	ݎ → 	1ି in (36) and also using (28), we obtain: 

|ܽ| + |ܾ| ≤
1
ߨ݊

න ݊	sin	||(ߠ)ܨ| 	ߠ) + ߠ݀|(ߠ	
ଶగ



 

≤
2ହቀି	ଷܭ4

ଵ
ቁ/ଶ

ߨ݊
.										 

This completes the proof. 
Section (4.3): Quasiconformal Harmonic Mappings  

       One of central questions on harmonic mapping theory is under what condition a 
homeomorphism ܨ of the unit circle onto a Jordan curve ߛ generates, via Poisson integral 
a harmonic diffeomorphism. A fundamental result in this direction is the Rado–Choquet–
Kneser theorem which asserts that, if ߛ is convex and ܨ is a homeomorphism, then 
ݓ =  is a diffeomorphism. Further, an interesting question is that, under what [ܨ]ܲ
condition on ܨ and ݓ ,ߛ =  is quasiconformal. O. Martio was the first to observe such [ܨ]ܲ
a question. Pavlović in [14] solved this problem for ߛ being the unit disk. Kalaj solved this 
problem for ߛ being a convex Jordan curve of class ܥଵ,ఈ in [37] and for Dini’s smooth 
Jordan curve in [182]. Zhu in [174] considered this problem for general convex Jordan 
curve. For some different approaches in the plane concerning the class of q.c. harmonic 
mappings see [177], [180], [19]–[1], [187], [157]. Some recent optimal results on the 
generalization of this class has been done in [176], [137], [188]. We focus our attention in 
some quantitative estimates of quasiconformal constant of a mapping via its trace ܨ 
mapping the unit circle onto a strictly convex Jordan curve ߛ. This is done in Theorems 
(4.3.9), (4.3.10) and (4.3.11). One of main tools in the proof is Lemma (4.3.6), which 
makes itself an interesting result. 

The function  

,ݎ)ܲ (ݐ 	=
1	 − 	 ଶݎ

	1)ߨ2 − 	ݐ	cos	ݎ2	 + 	 (ଶݎ , 0	 ≤ 	ݎ	 < 	1, ݐ ∈ 	 [0,  ,[ߨ2

is called the Poisson kernel. The Poisson integral of a complex-valued function ܨ ∈  (܂)ଵܮ
is a complex-valued harmonic function given by 

(ݖ)ݓ 	= (ݖ)ݑ	 	+ (ݖ)ݒ݅	 = (ݖ)[ܨ]ܲ 	

= න ݐ݀(௧݁)ܨ(	߬	−,ݎ)ܲ
ଶగ



,																																																															(37) 

where ݖ = ఛ݁ݎ ∈ ࢁ Here .ࢁ ∶= ݖ} ∈  ∶ |ݖ| 	< 1} and ࢀ ∶= ݖ} ∈  ∶ |ݖ| 	= 1}. On the 
other hand the following claim holds: 
Claim (4.3.1)[175]: If ݓ is a bounded harmonic function, then there exists a function 
ܨ ∈ (ݖ)ݓ such that ,(܂)ஶܮ 	=  .(see e.g. [21]) (ݖ)[ܨ]ܲ
See Axler, Bourdon and Ramey [21] for good setting of harmonic functions. 
The Hilbert transformation of a function ߯	 ∈  is defined by the formula (܂)ଵܮ

߯(߬) = (߬)(߯)ܪ	 = 	−
1
ߨ
න
߯(߬	 + (ݐ	 − 	߯(߬	 − (ݐ	

2	tan(2/ݐ) ݐ݀
గ

శ
. 
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Here ∫ Φ(ݐ)݀ݐగ
శ ∶= limఢ→శ ∫ Φ(ݐ)݀ݐగ

ఢ . This integral is improper and converges for a.e. 
߬ ∈ [0,  this and other facts concerning the operator Hused can be found in the book of ;[ߨ2
Zygmund [189]. If ݂ is a complex-valued harmonic function then a complex-valued 
harmonic function ሚ݂ is called the harmonic conjugate of ݂ if ݂ + ݅ ሚ݂ is an analytic 
function. Notice that such a ሚ݂ is uniquely determined up to an additive constant. Let 
߯, ߯ ∈  Then .(܂)ଵܮ

ܲ[ ߯] 	= 	 ܲ[߯]෫,																																																																		(38) 
where ܲ[߯]෫  is the harmonic conjugate of ܲ[߯] (see e.g. [186]). 
Assume that ݖ = 	ݔ + ݕ݅ = ఛ݁ݎ ∈  The complex derivatives of a differential mapping .ࢁ
	ࢁ:ݓ →  :are defined as follows 

௭ݓ 	=
1
2
൬ݓ௫ 	+

1
݅
 ௬൰ݓ

and 

௭̅ݓ 	=
1
2
൬ݓ௫ 	−

1
݅
 .௬൰ݓ

The derivatives of win polar coordinates can be expressed as 

(ݖ)ఛݓ ∶=
(ݖ)ݓ߲
߲߬

	= ௭ݓݖ)݅	 	−  (௭̅ݓ̅ݖ	
and 

(ݖ)ݓ ∶=
(ݖ)ݓ߲
ݎ߲

	= 	 (݁ఛݓ௭ 	+ 	 ݁ିఛݓ௭̅). 
The Jacobian determinant of ݓ is expressed in polar coordinates as 

(ݖ)௪ܬ = 	 ௭|ଶݓ| − ௭̅|ଶݓ| =
1
ݎ
	Im(ݓఛݓതതതത) =

1
ݎ
	Re(݅ݓݓഥఛ).																														(39) 

Assume that ݓ =  Then there .ࢁ is a harmonic function defined on the unit disk (ݖ)[ܨ]ܲ
exist two analytic functions hand ݇ defined in the unit disk such that ݓ = ℎ	 + ത݇. 
Moreover ݓఛ = (ݖ)ℎᇱݖ)݅ 	− ݓݎ തതതതതതത) is a harmonic function and(ݖ)ᇱ݇̅ݖ = (ݖ)ℎᇱݖ 	+  തതതതതതത is(ݖ)ᇱ݇̅ݖ
its harmonic conjugate. 
Assume now that ܨ is Lipschitz continuous. Then ܨᇱ ∈  and by (37), using (܂)ଵܮ
integration by parts, it follows that ݓఛ equals the Poisson integral of ܨᇱ:  

(ఛ݁ݎ)ఛݓ 	= 	න ,ݎ)ܲ ߬	 − ݐ݀(ݐ)ᇱܨ(ݐ	
ଶగ



. 

Let 0	 < ߙ <  and define 2/ߨ
Γఈ 	= 	 ݖ} ∶ arg ݖ 	∈ 	 	ߨ] − 	ߨ,ߙ	 +  {[ߙ	

and 
Γఈ(ݏ) 	= 	ࢁ	 ∩ 	݁௦(߁ఈ 	+ 	1). 

That is, ߁ఈ(ݏ) is the wedge inside the unit disk with angle 2ߙ: whose axis passes between 
eisand zero. We say that a function ݂:ࢁ	 →  has a nontangential limit at ݁௦: if for 
0	 < ߙ <  the following limit exists 2/ߨ

(ݏ)݃ 	= lim
ഀ(௦)∋௭→ೞ

 (ݖ)݂

and do not depends on ߙ. 
We now recall Fatou’s theorem [21]: 
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Claim (4.3.2)[175]: If ܩ	 ∈ (ݖ)ܹ then the Poisson extension ,(ࢀ)ଵܮ 	= -has non (ݖ)[ܩ]ܲ
tangential limit at almost every ߞ ∈  .܂
By using Fatou’s theorem we have that the radial limits of ݓఛ exist a.e. and 

lim
→ଵష

(ఛ݁ݎ)ఛݓ 	= 	 .ܽ)		(߬)ᇱܨ ݁. ).																																																													(40) 
If ܨ is Lipschitz continuous, then Φ	 = ᇱܨ ∈  and by famous Marcel Riesz theorem ,(܂)ஶܮ
(see e.g. [4]), for 1	 < 	 < ∞ there is a constant ܣ such that 

(܂)‖(ᇱܨ)ܪ‖ 	≤  .(ࢀ)ᇱ‖ܨ‖ܣ	

It follows that Φ෩ = (ᇱܨ)ܪ 	∈ ఛݓ  is the harmonic conjugate ofݓݎ ଵ. Sinceܮ , according to 
(38), we have ݓݎ =  and by using again the Fatou’s theorem we have ,[(ᇱܨ)ܪ]ܲ

lim
→ଵష

(ఛ݁ݎ)ݓ 	= .ܽ)	(߬)(ᇱܨ)ܪ	 ݁. ).																																																																						(41) 
Suppose that ߛ is a rectifiable Jordan curve in the complex plane . Denote by ݈ the length 
of ߛ and let ݃: [0, ݈] 	↦  i.e. a parameterization ,ߛ be an arc length parameterization of ߛ
satisfying the condition: 

|݃ᇱ(ݏ)| 	= 	1	forall	ݏ	 ∈ 	 [0, ݈]. 
We will say that ߛ is of class ܥଵ,ఈ, 0	 < ߙ ≤ 1, if ݃ is of class ܥଵ and 

sup
௧,௦

|݃ᇱ(ݐ) −	݃ᇱ(ݏ)|
	ݐ| − ఈ|ݏ	 < ∞. 

Definition (4.3.3)[175]: Let ݂: [ܽ,ܾ] 	→  be a continuous function. The modulus of 
continuity of ݂ is 

(ݐ)߱ = 	 ߱(ݐ) = sup
|௫ି௬|ஸ௧

(ݔ)݂| −  .|(ݕ)݂	

The function ݂ is called Dini continuous if 

න
߱(ݐ)
ݐ

ݐ݀
	

శ
	< 	∞.																																																													(42) 

Here ∫ 		
శ : = ∫ 	  for some positive constant ݇. A smooth Jordan curve ߛ with the length 

݈ =  ଵ,ఈܥ is said to be Dini smooth if ݃ᇱ is Dini continuous. Observe that every smooth ,|ߛ|
Jordan curve is Dini smooth. 
Let 

,ݏ)ܭ (ݐ 	= 	Re[൫݃(ݐ) −  (43)																																																																[(ݏ)݅݃ᇱ	・	൯തതതതതതതതതതതതതതതതതതത(ݏ)݃	
be a function defined on [0, ݈] 	× [0, ݈]. By ݏ)ܭ ± ݈, ݐ ± ݈) 	= ,ݏ)ܭ  we extend it on (ݐ
܀ ×  is ߛ and therefore, if (ݏ)݃ at ߛ is the inner unit normal vector of (ݏ)Note that ݅݃ᇱ .܀
convex then 

,ݏ)ܭ (ݐ 	≥ 	0	forevery	ݏ	and	.ݐ																																																															(44) 
Suppose now that ࡾ:ܨ ↦  periodic Lipschitz function such that ߨis an arbitrary 2 ߛ
(,ଶగ]|ܨ ∶ [0, (ߨ2 	↦  is an orientation preserving bijective function. Then there exists an ߛ
increasing continuous function ݂: [0, [ߨ2 	↦ [0, ݈] such that 

(߬)ܨ 	= 	݃(݂(߬)).																																																																					(45) 
We will identify [0,  In view of the .(௦݁)ܨ with (ݏ)ܨ and ,ࢀ with the unit circle (ߨ2
previous convention we have for a.e. ݁ఛ ∈  that ࢀ

(߬)ᇱܨ 	= 	 ݃ᇱ(݂(߬))	・	݂ᇱ(߬), 
and therefore 

|(߬)ᇱܨ| 	= 	 |݃ᇱ(݂(߬))| 	 · 	 |݂ᇱ(߬)| 	= 	 ݂ᇱ(߬). 
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Along with the function ܭ we will also consider the function ܭி defined by 
,ݐ)ிܭ ߬) 	= 	Re[൫(ݐ)ܨ − ൯തതതതതതതതതതതതതതതതതതത(	߬)ܨ	 	 ·  .[(߬)ᇱܨ݅	

It is easy to see that 
,ݐ)ிܭ ߬) 	= 	 ݂ᇱ(߬	)(ݐ)݂)ܭ, ݂(߬	)).																																																														(46) 

Now we prove the following subtle lemma which can be of interest for its own right. 
We need the following lemma 
Lemma (4.3.4)[175]: For ݕ ∈ [0, 1] and ݔ	 ∈ (ݕݔ)we have sin [ߨ,0] 	− 	ݔsinݕ ≥ 0. 
Proof. Let ℎ(ݔ) 	= sin(ݕݔ) 	− (ݔ)Then ℎᇱ .ݔsinݕ 	= (ݕݔ)cosݕ 	− 	ݔcosݕ = (ݔݕ)cos)ݕ 	−
cosݔ) and so ℎᇱ(ݔ) 	≥ 0, because cos is decreasing on [0,ߨ]. Thus his an increasing 
function on [0, 1]. Since ℎ(0) 	= 0, we obtain that ℎ(ݔ) 	≥ 0. 
Lemma (4.3.5)[175]: For every bi-Lipschitz diffeomorphism ߶ ∶ [ߨ,0] 	→  we have ,[ߨ,0]

ess inf߶ᇱ(ݔ) ≤
sin	߶(ݔ)

sin	ݔ
	≤ 	ess	sup	߶ᇱ(ݔ).																																																															(47) 

Proof. Let 

ℎ(ݔ) 	=
(ݔ)߶	݊݅ݏ

sin	ݔ
.																																																																				(48) 

Then his differentiable in [0,ߨ]. Then 

ℎᇱ(ݔ) 	= 	−
cot	ݔ	
sin	ݔ

sin	߶(ݔ) 	+
cos	߶(ݔ)

sin	ݔ
߶ᇱ(ݔ). 

The stationary points of ℎ satisfy the equation 

߶ᇱ(ݔ)
cos	߶(ݔ)

sin	ݔ
−

cos	ݔ
sin	ݔ

ℎ	 = 0,																																																															(49) 
i.e. 

ℎଶ(ݔ) cosଶ ݔ 	= 	 ߶ᇱ(ݔ)ଶ cosଶ߶(ݔ). 
Since from (47) we have 

ℎଶ(ݔ) sinଶ ݔ =  ,(ݔ)߶	ଶ݊݅ݏ	
we obtain 

ℎଶ(ݔ) = 	 ߶ᇱ(ݔ)ଶ cosଶ߶(ݔ) + sinଶ  (50)																																																								.(ݔ)߶
Since 

	ߨ = (ߨ)߶	 	− 	߶(0) 	= 	න ߶ᇱ(ݔ)݀ݔ
గ



 

and ߶ᇱ(ݔ) 	≥ 0, we have that min௫൫߶ᇱ(ݔ)൯ 	≤ 1	 ≤ max௫൫߶ᇱ(ݔ)൯. Now in view of (50), it 
follows that 

min
௫
൫߶ᇱ(ݔ)൯

ଶ
≤ 	ℎଶ(ݔ) ≤ max

௫
൫߶ᇱ(ݔ)൯

ଶ
. 

Lemma (4.3.6)[175]: Assume that ݂: [0, [ߨ2 	→ [0, ,[ߨ2 ݂(0) 	= 0, (ߨ2)݂ 	=  is a ߨ2
diffeomorphism such that ݂ᇱ(0) 	= ݂ᇱ(2ߨ) and 

න ݁(௧)݀ݐ
ଶగ



	= 	0																																																										(51) 

and let ݉	 = min ݂ᇱ(ݔ) and ܯ = max ݂ᇱ(ݔ). Then the double inequality 
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	݉ ቮන sin(ݐ	 − ݐ݀(ݕ	
௫

௬

ቮ ≤ ቮන sin൫݂(ݐ) − ൯(ݕ)݂	 ݐ݀
௫

௬

ቮ 	

≤ ܯ	 ቮන sin(ݐ		ݕ) ݐ݀
௫

௬

ቮ 																																																																													(52) 

holds. 
Proof. Extend first the mapping ݂ to ࡾ by ݂(ݔ	 ± (ߨ2݇ 	= (ݔ)݂ 	± ݕ For .ߨ2݇ > 0 define 
the mapping ݃(ݐ) 	= 	ݐ)݂ + (ݕ 	− and observe that ݃(0) ,(ݕ)݂ 	= 0 and ݃(2ߨ) 	=  .ߨ2
Then we need to show that 

݉ ቮන sin ݐ ݐ݀

௫ି௬



ቮ ≤ ቮන sin݃(ݐ)݀ݐ

௫ି௬



ቮ ≤ 	ܯ	 ቮන sin ݐ ݐ݀

௫ି௬



ቮ. 

For simplicity use instead of ݔ	ݕ– the notation ݔ. We have ∫ ݁(௧)݀ݐଶగ
 = 0. Further, 

assume that ݃(ߨ) 	= ܽ	 ≥ (ݐ)In the contrary define ℎ .ߨ 	= ߨ2 − ߨ2)݃ −  and then ,(ݐ
(ߨ)݃ 	= ߨ2 − ܽ	 > 	ݔ and denote it as well by g. Assume first that ,ߨ ≤  Observe that .ߨ
ܯ = max௫ ݂ᇱ(ݔ) = max௫ ݃ᇱ(ݔ). Let ߶(ݐ) 	= గ


Then ߶(0) .(ݐ)݃ 	= 0 and ߶(ߨ) 	=  .ߨ

Thus the conditions of Lemma (4.3.5) are satisfied. It follows that 
sin	߶(ݐ) ≤

ߨ
ܽ
 ݐ	sin	ܯ

and consequently 
ܽ
ߨ
	sin	߶(ݐ) 	≤  .ݐ	sin	ܯ	

By Lemma(4.3.5) we have 
sin	݃(ݐ) ≤

ܽ
ߨ
	sin

ߨ
ܽ
(ݐ)݃	 =

ܽ
ߨ
	sin	߶(ݐ). 

Combining we obtain that for 0	 ≤ 	ݐ ≤ 	ݔ ≤  ,ߨ
sin	݃(ݐ) 	≤  .ݐ	sin	ܯ	

By integrating the previous inequality we obtain 

න sin	݃(ݐ)݀ݐ
௫



	≤ නܯ	 sin	ݐ݀ݐ
௫



.																																																																									(53) 

Since ݃(ߨ) 	= ܽ	 > 0, it follows that sin݃(ݐ) < 0 for ݐ	 ∈ ,ߨ) Further let ܽᇱ .(ߨ2 ∈  (ߨ,0)
such that ݃(ܽᇱ) 	=  This implies that .ߨ

න sin	݃(ݐ)݀ݐ
௫



≥ 	න sin݃(ݐ)݀ݐ
గ



	= 	−	න sin݃(ݐ) ݐ݀
ଶగ

గ

	≥ 	0, ݔ ∈ 	 (ܽᇱ  .(ߨ,

Having in mind the fact that for ݔ	 ∈ (0, ܽᇱ),∫ sin	݃(ݐ)݀ݐ௫
 	≥ 0, in view of (53) we have 

อන sin݃(ݐ)݀ݐ
௫



อ ≤ ܯ	 อන sin ݐ ݐ݀
௫



อ , ݔ ∈ 	  (54)																																																										.(ߨ,0)

If ߨ < 	ݔ < ߨthen 2 ߨ2 − 	ݔ <  and then we use (51). Namely ߨ

න sin݃(ݐ)݀ݐ
௫



= 	−	න sin݃(ݐ) ݐ݀
ଶగ

௫

	= 	− න sin݃(ݐ)݀ݐ


௫ିଶగ
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= න sin൫−݃(−ݐ)൯ ݐ݀
ଶ௫ି௫



, 

and the function ℎ(ݐ) 	=  satisfies as well the condition of the lemma. Then we (ݐ−)݃−
have 

න sin൫−݃(−ݐ)൯ ݐ݀
ଶ௫ି௫



≤ ܯ න sin ݐ ݐ݀
ଶ௫ି௫



, 

and so 

อන sin݃(ݐ) ݐ݀
௫



อ ≤ ܯ อන sin ݐ ݐ݀
௫



อ. 

The second part of (52), i.e. the part 

݉ อන sin ݐ ݐ݀
௫



อ ≤ อන sin ݐ݀(ݐ)݂
௫



อ 

can be proved similarly, but this case we assume that ݃(ߨ) 	= ܽ	 ≤ (ݐ)߶ Let .ߨ 	= గ

 .(ݐ)݃

Then ߶(ߨ) 	=  ,and by Lemmas (4.3.5) and (4.3.4) ߨ
݉
ߨ
ܽ
	sin	ݔ	 ≤ 	sin	߶(ݔ) = 	sin

ߨ
ܽ
(ݔ)݃ ≤

ߨ
ܽ
	sin	݃(ݔ), ݔ ∈ 	  .(ߨ,0)

The rest is similar to the previous proof. 
 
We consider quasiconformal harmonic mappings between the unit disk and strictly convex 
domains. Let ܦ be a convex domain with ܥଶ Jordan boundary ߛ. Let in addition ߢ௭ be the 
curvature of ߛ at ݖ ∈ ߢ and ߛ = min{ߢ ∶ 	 ∈ ଵߢ ,{ߛ = max{ߢ ∶ 	 ∈ 	then 0 ,{ߛ ≤
ߢ < ଵߢ < ∞. 
Lemma (4.3.7)[175]: Let ߛ be a ܥଶ strictly convex Jordan curve and let ܨ be an arbitrary 
parametrization. Let ݉	 = minఛ∈[,ଶగ]|ܨᇱ(߬)| and 
ܯ = maxఛ∈[,ଶగ]|ܨᇱ(߬)|. Then we have the following double inequalities  

ߢ 	≤
,ݐ)ܭ ߬	)

2 sinଶ ߬ − ݐ
2

 (55)																																																			ଵ,ߢ	≥

and 

݉ଷߢ 	≤
,ݐ)ிܭ ߬	)

2 sinଶ ߬ − ݐ
2

	≤ 	  (56)																																																									ଷ.ܯଵߢ

Proof. Let ݃ be arc length parametrization of the curve ߛ = ଵ
|ఊ|  is the length of |ߛ| where ,ߛ

ߢ̃ Let .ߛ = min௭∈ఊ ଵߢ̃ ௭ andߢ̃ = max௭∈ఊ ௭ߢ̃ , where ̃ߢ௭ is the curvature of ߛ at ݖ. It is clear 
that 

ఊ|௭|ߢ|ߛ| 	= 	  (57)																																																																		௭.ߢ̃
Let 

,ߪ)ܩ ߫) ∶=
〈 ݃(ߪ) − ݃(߫), ݅ ݃ᇱ(߫)〉

2 sinଶ ߪ − ߫
2

. 

Since ݃ᇱ(߫) is a unit vector and ߛ is a ܥଶ strictly convex curve, there exists a 
diffeomorphism ߚ:ܴ	 → (0)ߚ,ܴ 	= ߨ2)ߚ,0 + (ߪ 	= ߨ2 +  such that (ߪ)ߚ
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݃ᇱ(ߪ) 	= 	 ݁ఉ(ఙ) .																																																																					(58) 
Therefore 

,ߪ)ܩ ߫) =
∫ sin൫ߚ(߬) − ൯(߫)ߚ	 ݀߬ఙ
చ

2 sinଶ ߪ − ߫
2

.																																																																		(59) 

On the other hand from 
݃ᇱᇱ(߬) 	=  																																		)݁ఉ(ఛ)	ᇱ(߬ߚ݅	

it follows that 
(ఛ)ߢ 	= 	  (60)																																																																				ᇱ(߬).ߚ

According to (58), we obtain first that 

න ݁ఉ(ఙ)݀ߪ
ଶగ



= 	 ݃(0) 	− ݃(2ߨ) 	= 	0.																																																																								(61) 

Thus 

න sin((ߪ)ߚ)݀ߪ
ଶగ



= න cos((ߪ)ߚ)݀ߪ
ଶగ



= 	0.																																																																		(62) 

Therefore 

න sin(ߚ(߬	) 	− ߬݀((߫)ߚ	
ఙ

చ

	= 	 න sin(ߚ(߫) 	− ߬݀((	߬)ߚ	
	

[,ଶగ]\[చ,ఙ]

 

and using Lemma (4.3.6) we obtain that 
min
ఛ
(߬)ᇱߚ 	≤ ,ߪ)ܩ	 ߫) ≤ max

ఛ
 (63)																																																																										ᇱ(߬).ߚ

From (63) we obtain 
ߢ̃ 	≤ ,ߪ)ܩ	 ߫) 	≤ 	  (64)																																																											ଵ.ߢ̃

On the other hand there exists a homeomorphism ߪ: [0, [ߨ2 	→ [0,  such that [ߨ2
(߬)ܨ 	= 	 |ߛ| ݃(ߪ(߬)).																																																																							 

Thus 
(߬)ᇱܨ 	= 	 (߬)ᇱߪ|ߛ| ݃ᇱ(ߪ(߬))																																																					(65) 

and 
|(	߬)ᇱܨ| = 	  (66)																																																																			ᇱ(߬).ߪ|ߛ|

Thus 
,ݐ)ிܭ																										 ߬) = 	 (ݐ)ܨ〉 − ,തതതതതതതതതതതതതതതതത(	߬)ܨ	 〈(߬)ᇱܨ݅ 	

= 	 (߬)ᇱߪଶ|ߛ| 〈 ݃൫ߪ(߬)൯ − ݃൫(ݐ)ߪ൯തതതതതതതതതതതതതതതതതതതതതതതത, ݅ ݃ᇱ൫ߪ(߬)൯〉 	
= 	 ൯(	߬)ߪ,(ݐ)ߪ൫ܩ(߬)ᇱߪଶ|ߛ|

· 	2 sinଶ
(	߬)ߪ − (ݐ)ߪ	

2
.																															(67) 

By applying again Lemma (4.3.5) we obtain 

min
௧
൫ߪᇱ(ݐ)൯

ଶ
≤

2 sinଶ (	߬)ߪ − (ݐ)ߪ	
2

2 sinଶ ߬ − ݐ
2

≤ max
௧
൫ߪᇱ(ݐ)൯

ଶ
.																																					(68) 

Combining (64), (67) and (68) we obtain 
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(߬)ᇱߪߢଶ̃|ߛ|	 min
௧
൫ߪᇱ(ݐ)൯

ଶ
	≤

,ݐ)ிܭ ߬)

2 sinଶ ߬ − ݐ
2

≤ (߬)ᇱߪଵߢଶ̃|ߛ| max
௧
൫ߪᇱ(ݐ)൯

ଶ
.																																																						(69) 

Combining (69), (57) and (66) we obtain 

݉ଷߢ 	≤ 	
,ݐ)ிܭ ߬)

2 sinଶ ߬ − ݐ
2

≤ ଷܯଵߢ	 . 

This yields (56). In particular, if ܨ = ݃, where ݃ is natural parametrization of ߛ we obtain 
(55). 
By using (39) in [181] has been obtained the following 
Lemma (4.3.8)[175]: Let ߛ be a Dini smooth Jordan curve, denote by ݃ its arc-length 
parameterization and assume that (ݐ)ܨ 	=  is a Lipschitz homeomorphism from ((ݐ)݂)݃
the unit circle onto ߛ. If (ݖ)ݓ 	= (ݖ)ݑ 	+ (ݖ)ݒ݅ 	=  ,ܨ is the Poisson extension of (ݖ)[ܨ]ܲ
then for almost every ߬ ∈ [0,  exists the limit [ߨ2

:௪൫݁ఛ൯ܬ = lim
→ଵష

 																										ఛ൯݁ݎ௪൫ܬ
and there holds the formula 

௪(݁ఛ)ܬ 	= 	න
,ݐ)ிܭ ߬)

2 sinଶ ߬ − ݐ
2

ݐ݀
ߨ2

ଶగ



.																																																																									(70) 

From Lemma (4.3.7) and Lemma (4.3.8) we obtain following theorem. 
Theorem (4.3.9)[175]: If ݓ =  is a harmonic diffeomorphism of the unit disk onto a [ܨ]ܲ
convex Jordan domain ܦ = intߛ ∈  bi-Lipschitz, then (ܯ,݉) is ܨ ଶ, such thatܥ

݉ଷߢ 	≤ 	 ௪൫݁ఛ൯ܬ ≤ ଷܯଵߢ	 .																																																																												(71) 
Proof. From (70) we obtain 

௪(݁ఛ)ܬ 	= 	න
,ݐ)ிܭ ߬)

2 sinଶ ߬ − ݐ
2

ݐ݀
ߨ2

ଶగ



.																																																																										(72) 

From (72) and (56) we obtain (71). 
By using an approach of Jost, by constructing an one parameter family [179], see as well 
[178], and previous theorem and [36] we obtain 
Theorem (4.3.10)[175]: If ܨ is an a.c. homeomorphism of the unit disk ࢁ onto a convex 
Jordan domain bounded by the Jordan curve ߛ such that |߲௧ܨ(݁௧)| 	≥ ݉ and if ݓ =  [ܨ]ܲ
is a harmonic mapping defined on the unit disk, then for ݖ ∈  we have ࢁ

(ݖ)௪ܬ ≥ 	ࣤ ∶= max ቊ
݉	 · 	distଶ൫(0)ݓ,ߛ൯

4
 .݉ଷቋߢ,

Theorem (4.3.11)[175]: a) Assume that ߗ is a bounded convex domain containing 0 and 
let	ߛ = 	ߗ߲ ∈ ߢ ଶ and assume thatܥ  be the curvature of ߛ at ߞ ∈ ߢ Further let .ߛ =
min∈ఊ ߢ  and ߢଵ = max∈ఊ ߢ  and let ܨ be an absolutely continuous homeomorphism of 
the unit circle onto ߛ. Then ݓ = [ܨ]ܲ ∶ 	ࢁ →  is a quasiconformal mapping if and only if ߗ

0	 < 	݉	 = 	ess	inf	|ܨᇱ(߬)|,																																																				(73) 
ܯ ∶= 	ess	sup	|ܨᇱ(߬)| 	< 	∞																																																																					(74) 

and 
ℋ ∶= 	ess sup

ఛ
|(߬)(ᇱܨ)ܪ| 	< 	∞.																																																														(75) 
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b) If ܨ satisfies the conditions (73), (74) and (75), then ݓ =  ,quasiconformal ܭ is [ܨ]ܲ
where 

	ܭ ≤
ଶܯ 	+ ଶܪ	 	+ ඥ(ܯଶ 	+ ଶ)ଶܪ	 	− 	4ࣤଶ

ܬ2
.																																																																					(76) 

The constant ܭ is the best possible in the following sense, if ݓ is the identity or it is a 
mapping close to the identity, then ܭ = 1 or ܭ is close to 1 (respectively). 
c) Moreover, under conditions of a) the mapping ݓ is bi-Lipschitz with the bi-Lipschitz 
constant ܮ satisfying the inequality 

	ܮ ≤ maxܭ	 ൜ܯ,
1
݉
ൠ .																																																					(77) 

In particular ܮ is asymptotically sharp. 
Proof. The part a) of this theorem coincides with [37]. Prove the part b). We have to prove 
that under the conditions (73), (74) and (75) ݓ is ܭ quasiconformal, where ܭ is given by 
(76). This means that, we need to prove that the function 

(ݖ)ܭ 	=
|௭ݓ| + 	 |௭̅ݓ|
|௭ݓ| −	 |௭̅ݓ| 	=

1	 + 	 |ߤ|
1	 − 	 |ߤ| 																																																															(78) 

is bounded by ܭ. 
It follows from (40) and (41) that 

lim
→ଵష

ఛ൯݁ݎ൫ܨ 	= .ܽ)(߬)(ᇱܨ)ܪ	 ݁. ),																														 
and 

lim
→ଵష

ఛ൯݁ݎఝ൫ܨ = 	  																																																		.(߬)ᇱܨ
As 

௭|ଶݓ| 	+ 	 ௭̅|ଶݓ| 	=
1
2
	൭|ݓ|ଶ 	+

หܨఝห
ଶ

ଶݎ
൱,																													 

it follows that 

lim
→ଵష

௭|ଶݓ|) 	+ 	 (௭̅|ଶݓ| 	≤
1
2

ଶܯ) 	+ 	ℋଶ).																																																																															(79) 
On the other hand, by (71) 

lim
→ଵష

௭|ଶݓ|) 	+ 	 (௭̅|ଶݓ| ≥ 	ࣤ ∶= max ቊߢ݉ଷ,
݀(0, ଶ(ߛ

4
ቋ .																																																						(80) 

From (79) and (80) we obtain 

lim
→ଵష

|௭ݓ| + 	 |௭̅ݓ|
|௭ݓ| −	 |௭̅ݓ| ≤ ܥ	 ∶=

ଶܯ 	+ 	ℋଶ

2ࣤ
,																																																																								(81) 

i.e. 

lim
→ଵష

|௭̅ݓ|	
|௭ݓ| ≤

ඨ
	ܥ − 	1
	ܥ + 	1

.																																																										(82) 

By Lewy’s theorem, |ݓ௭̅|/|ݓ௭| is a subharmonic function bounded by 1. From (82) it 
follows that 

|௭̅ݓ|	
|௭ݓ| ≤

ඨ
	ܥ − 	1
	ܥ + 	1

. 

Further 
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	ܭ =
	ܥ√ + 1 + 	ܥ√ − 	1
	ܥ√ + 	1 	− 	ܥ√	 − 	1

	= 	ܥ	 + ඥܥଶ 	− 	1	 

=
ଶܯ 	+ 	ℋଶ 	+ ඥ(ܯଶ 	+ 	ℋଶ)ଶ 	− 	4ࣤଶ

2ࣤ
. 

The last quantity is equal to 1 for ܨ being identity because all the constants appearing at 
the quantity are 1 in this special case. Moreover, if ܨ is close to identity in ܥଶ norm, then 
the quantity is close to 1 (cf. Example (4.3.12)). 
It remains to prove the part c). As |ܨᇱ(ݐ)| 	≤ (ఛ݁ݎ)ݓsince ఛ߲ ,ܮ 	=  by ,(ఛ݁ݎ)[ᇱܨ]ܲ
maximum principle it follows that | ఛ߲ݓ(݁ݎఛ)| 	≤  is ݓ On the other hand, since .ܯ
|௭ݓ| quasiconformal, it follows that−ܭ 	+ |௭̅ݓ| 	≤ |௭ݓ|)ܭ 	− |௭ݓ| ௭̅|). Soݓ| 	+ |௭̅ݓ| 	≤
,ܯ}max	ܭ is ݓ Lipschitz. Similarly we obtain that-ܯܭ is ݓ and thus ,ܯܭ 1/݉} bi-
Lipschitz. 
Example (4.3.12)[175]: If ܨ is the arc-parametrization of a ܥଶ convex Jordan curve ߛ, 
then ݉	 = ஶ‖ܨ‖ = 1. We assume w.l.g. that the length of ߛ is 2ߨ. Further since ܨᇱ(߬ +
(ݐ 	= ݁ఉ(ఛା௧), by applying Lemma (4.3.5) again we obtain 

|(߬)[ᇱܨ]ܪ| 	= ቮ−
1
ߨ
න
	߬)ᇱܨ + (ݐ	 	߬)ᇱܨ	− − (ݐ	

2	tan(2/ݐ) ݐ݀
గ

శ
ቮ 

≤
1
ߨ
න
ห݁ఉ(ఛା௧) 	− 	݁ఉ(ఛି௧)ห

2	tan(2/ݐ) ݐ݀
గ

శ
 

=
1
ߨ
න

2 ቤ
sin൫	ߚ(߬ + (ݐ − ߬)ߚ − ൯(ݐ

2 ቤ

2	tan(2/ݐ) ݐ݀
గ

శ
 

≤ 	sup	|ܨᇱᇱ(ݏ)|
1
ߨ
න

sin	ݐ
tan(2/ݐ)݀ݐ

గ



	= 	  .ଵߢ

So 

	ܭ ≤
1	 + ଵଶߢ	 + ඥ(1	 + ଵଶ)ଶߢ	 	− ଶߢ4	

ߢ2
. 

If ߛ is the unit circle, then ߢ = 1	 =  ଵ. So the estimate (76) is asymptotically sharp; ifߢ
the curve ߛ approaches in ܥଶ topology to the unit circle centered at origin, then the 
quasiconformal constant tends to 1. 
In particular if ߛ is the ellipse ߛ = ,ݔ)} (ݕ ∶ ଶ/ܽଶݔ + ଶ/ܾଶݕ = 1},ܽ	 ≤ ܾ, |ߛ| 	=  then ,ߨ2
ߢ = 1/ܾ and ߢଵ = 1/ܽ and 

	ܭ ≤
1
2
ቌ1	 +

1
ܽଶ
	+ ඨ൬1	 +

1
ܽଶ
൰
ଶ

	−
4
ܾଶ
ቍܾ. 

Corollary (4.3.13)[240]: For ݕ ∈ [0, 1] and ݔ	 ∈ (ݕݔ)we have sin [ߨ,0] 	− 	ݔsinݕ ≥ 0. 
Proof. Let ℎ(ݔ) 	= sin(ݕݔ) 	− Then ℎᇱ .ݔsinݕ (ݔ) 	= (ݕݔ)cosݕ 	− 	ݔcosݕ =
(ݔݕ)cos)ݕ 	− cosݔ) and so ℎᇱ (ݔ) 	≥ 0, because cos is decreasing on [0,ߨ]. Thus his an 
increasing function on [0, 1]. Since ℎ(0) 	= 0, we obtain that ℎ(ݔ) 	≥ 0. 
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Corollary (4.3.14)[240]: For every bi-Lipschitz diffeomorphism ߶ ∶ [ߨ,0] 	→  we ,[ߨ,0]
have 

ess inf߶ᇱ(ݔ) ≤
sin	߶(ݔ)

sin	ݔ
	≤ 	ess	sup	߶ᇱ(ݔ).																	(83) 

Proof. Let 

ℎ(ݔ) 	=
(ݔ)߶	݊݅ݏ

sin	ݔ
.																																																(84) 

Then his differentiable in [0,ߨ]. Then 

ℎᇱ (ݔ) 	= 	−
cot	ݔ	
sin	ݔ

sin	߶(ݔ) 	+
cos	߶(ݔ)

sin	ݔ
߶ᇱ(ݔ). 

The stationary points of ℎ satisfy the equation 

߶ᇱ(ݔ)
cos	߶(ݔ)

sin	ݔ
−

cos	ݔ
sin	ݔ

ℎ 	= 	0,																						(85) 
i.e. 

ℎଶ(ݔ) cosଶ ݔ 	= 	 ߶ᇱ(ݔ)ଶ cosଶ߶(ݔ). 
Since from (83) we have 

ℎଶ(ݔ) sinଶ ݔ =  ,(ݔ)߶	ଶ݊݅ݏ	
we obtain 

ℎଶ(ݔ) = 	 ߶ᇱ(ݔ)ଶ cosଶ߶(ݔ) + sinଶ ߶(ݔ).																					(86) 
Since 

	ߨ = 	 ߶(ߨ) 	− 	߶(0) 	= 	න ߶ᇱ(ݔ)݀ݔ
గ



 

and ߶ᇱ(ݔ) 	≥ 0, we have that min௫ ቀ߶ᇱ(ݔ)ቁ 	≤ 1	 ≤ max௫ ቀ߶ᇱ(ݔ)ቁ. Now in view of 
(86), it follows that 

min
௫
ቀ߶ᇱ(ݔ)ቁ

ଶ
≤ 	ℎଶ(ݔ) ≤ max

௫
ቀ߶ᇱ(ݔ)ቁ

ଶ
. 

Corollary (4.3.15)[240]: Assume that ݂: [0, [ߨ2 	→ [0, (0)݂,[ߨ2 	= 0,݂(2ߨ) 	=  is ߨ2
a diffeomorphism such that ݂ᇱ(0) 	= ݂ᇱ(2ߨ) and 

න 	


݁ೝ(௧)݀ݐ
ଶగ



	= 	0																																																										(87) 

and let ݉	 = min ݂ᇱ(ݔ) and ܯ = max ݂ᇱ(ݔ). Then the double inequality 

݉ ቮන sin(ݐ	 − ݐ݀(ݕ	
௫

௬

ቮ ≤ ቮන	


sin൫݂(ݐ) −	݂(ݕ)൯ ݐ݀
௫

௬

ቮ	 

≤ ܯ	 ቮන sin(ݐ	 − (ݕ	 ݐ݀
௫

௬

ቮ 																																								(88) 

holds. 
Proof. Extend first the mapping ݂ to ࡾ by ݂(ݔ	 ± 2݇ߨ) 	= ݂(ݔ) 	± 2݇ߨ. For ݕ > 0 
define the mapping ݃(ݐ) 	= ݂(ݐ	 + (ݕ 	− ݂(ݕ), and observe that ݃(0) 	= 0 and 
݃(2ߨ) 	=  Then we need to show that .ߨ2
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݉ ቮන sin ݐ ݐ݀

௫ି௬



ቮ ≤ ቮන 	


sin݃(ݐ)݀ݐ

௫ି௬



ቮ ≤ 	ܯ	 ቮන sin ݐ ݐ݀

௫ି௬



ቮ. 

For simplicity use instead of ݔ	ݕ– the notation ݔ. We have ∫ ∑ 	 ݁ೝ(௧)݀ݐଶగ
 = 0. Further, 

assume that ݃(ߨ) 	= ܽ	 ≥ (ݐ)In the contrary define ℎ .ߨ 	= ߨ2 − ݃(2ߨ −  and then ,(ݐ
݃(ߨ) 	= ߨ2 − ܽ	 > 	ݔ and denote it as well by ݃. Assume first that ,ߨ ≤  Observe that .ߨ
ܯ = max௫ ݂

ᇱ(ݔ) = max௫ ݃
ᇱ(ݔ). Let ߶(ݐ) 	= గ


݃(ݐ). Then ߶(0) 	= 0 and ߶(ߨ) 	=

 Thus the conditions of Corollary (4.3.14) are satisfied. It follows that .ߨ
sin	߶(ݐ) ≤

ߨ
ܽ
 ݐ	sin	ܯ

and consequently 
ܽ
ߨ
	sin	߶(ݐ) 	≤  .ݐ	sin	ܯ	

By Lemma1.3we have 
sin	݃(ݐ) ≤

ܽ
ߨ
	sin

ߨ
ܽ
	݃(ݐ) =

ܽ
ߨ
	sin	߶(ݐ). 

Combining we obtain that for 0	 ≤ 	ݐ ≤ 	ݔ ≤  ,ߨ
sin	݃(ݐ) 	≤  .ݐ	sin	ܯ	

By integrating the previous inequality we obtain 

න sin	݃(ݐ)݀ݐ
௫



	≤ නܯ	 sin	ݐ݀ݐ
௫



.																													(89) 

Since ݃(ߨ) 	= ܽ	 > 0, it follows that sin݃(ݐ) < 0 for ݐ	 ∈ ,ߨ) Further let ܽᇱ .(ߨ2 ∈
such that ݃(ܽᇱ) (ߨ,0) 	=  This implies that .ߨ

න	


sin	݃(ݐ)݀ݐ
௫



≥ 	න	


sin݃(ݐ) ݐ݀
గ



	= 	−	න 	


sin݃(ݐ) ݐ݀
ଶగ

గ

	≥ 	0,

ݔ ∈ 	 (ܽᇱ,ߨ). 
Having in mind the fact that for ݔ	 ∈ (0, ܽᇱ),∫ sin	݃(ݐ)݀ݐ௫

 	≥ 0, in view of (89) we have 

อන	


sin݃(ݐ)݀ݐ
௫



อ ≤ ܯ	 อන sin ݐ ݐ݀
௫



อ , ݔ ∈ 	  (90)																			.(ߨ,0)

If ߨ < 	ݔ < ߨthen 2 ߨ2 − 	ݔ <  and then we use (87). Namely ߨ

න	


sin݃(ݐ) ݐ݀
௫



= 	−	න 	


sin݃(ݐ) ݐ݀
ଶగ

௫

	= 	− න 	


sin݃(ݐ)݀ݐ


௫ିଶగ

= න 	


sin൫−݃(−ݐ)൯ ݐ݀
ଶ௫ି௫



, 

and the function ℎ(ݐ) 	= −݃(−ݐ) satisfies as well the condition of the lemma. Then we 
have 

න 	


sin൫−݃(−ݐ)൯ ݐ݀
ଶ௫ି௫



≤ ܯ න sin ݐ ݐ݀
ଶ௫ି௫



, 

and so 
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อන	


sin݃(ݐ)݀ݐ
௫



อ ≤ ܯ อන sin ݐ ݐ݀
௫



อ. 

The second part of (88), i.e. the part 

݉ อන sin ݐ ݐ݀
௫



อ ≤ อන 	


sin ݂(ݐ)݀ݐ
௫



อ 

can be proved similarly, but this case we assume that ݃(ߨ) 	= ܽ	 ≤ (ݐ)Let ߶ .ߨ 	=
గ

݃(ݐ). Then ߶(ߨ) 	=  ,and by Corollaries (4.3.14) and (4.3.13) ߨ

݉
ߨ
ܽ
	sin	ݔ	 ≤ 	sin	߶(ݔ) = 	sin

ߨ
ܽ
݃(ݔ) ≤

ߨ
ܽ
	sin	݃(ݔ), ݔ ∈ 	  .(ߨ,0)

The rest is similar to the previous proof. 
Corollary (4.3.16)[240]: Let ߛ be a ܥଶ strictly convex Jordan curve and let ܨ  be an 
arbitrary parametrization. Let ݉	 = minఛ∈[,ଶగ]|ܨᇱ(߬)| and 
ܯ = maxఛ∈[,ଶగ]|ܨᇱ(߬)|. Then we have the following double inequalities  

(ߢ) 	≤
,ݐ)ܭ ߬	)

2 sinଶ ߬ − ݐ
2

≤	  (91)																																							ଵ,(ߢ)

and 

݉ଷ(ߢ) 	≤
,ݐ)ிೝܭ ߬	)

2 sinଶ ߬ − ݐ
2

	≤ 	  (92)																															ଷ.ܯଵ(ߢ)

Proof. Let ݃෪ be arc length parametrization of the curve ߛ = ଵ
|ఊ|ߛ, where |ߛ| is the length 

of ߛ. Let (ߢ)෫ = min௭∈ఊ(ߢ)෫௭ and (ߢ)෫ଵ = max௭∈ఊ(ߢ)෫௭, where (ߢ)෫௭ is the curvature of 
 It is clear that .ݖ  atߛ

ఊ|௭|(ߢ)|ߛ| 	= 	 ෫௭(ߢ) .																																																(93) 
Let 

,ߪ)ܩ ߫) ∶= 	


〈݃෪(ߪ) − ݃෪(߫), ݅݃෪ᇱ(߫)〉

2 sinଶ ߪ − ߫
2

. 

Since ݃෪ᇱ(߫) is a unit vector and ߛ is a ܥଶ strictly convex curve, there exists a 
diffeomorphism ߚ:ܴ	 → (0)ߚ,ܴ 	= ߨ(2ߚ,0 + (ߪ 	= ߨ2 +  such that (ߪ)ߚ

݃෪ᇱ(ߪ) 	= 	 ݁ఉೝ(ఙ).																																									(94) 
Therefore 

,ߪ)ܩ ߫) =
∫ ∑ 	 sin൫ߚ(߬) (߫)൯ߚ	− ݀߬ఙ
చ

2 sinଶ ߪ − ߫
2

.																									(95) 

On the other hand from 
݃෪ᇱᇱ(߬) 	=  )݁ఉೝ(ఛ)	ᇱ(߬ߚ݅	

it follows that 
ೝ෪(ߢ) (ఛ) 	= 	  (96)																																																			ᇱ(߬).ߚ

According to (94), we obtain first that 

න 	


݁ఉೝ(ఙ)݀ߪ
ଶగ



= 	


ቀ݃෪(0) − ݃෪(2ߨ)ቁ = 	0.																															(97) 
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Thus 

න 	


sin(ߚ(ߪ))݀ߪ
ଶగ



= න 	


cos(ߚ(ߪ))݀ߪ
ଶగ



= 	0.																									(98) 

Therefore 

න	


sin(ߚ(߬	) 	− ߬݀((߫)ߚ	
ఙ

చ

	= 	 න  	


sin(ߚ(߫) 	− ߬݀((	߬)ߚ	
	

[,ଶగ]\[చ,ఙ]

 

and using Corollary (4.3.15) we obtain that 
min
ఛ
(߬)ᇱߚ 	≤ ,ߪ)ܩ	 ߫) ≤ max

ఛ
 (99)																					ᇱ(߬).ߚ

From (99) we obtain 
෫(ߢ) 	≤ ,ߪ)ܩ	 ߫) 	≤ 	  (100)																																෫ଵ.(ߢ)

On the other hand there exists a homeomorphism ߪ: [0, [ߨ2 	→ [0,  such that [ߨ2
(߬)ܨ 	= 	  .((߬)ߪ)෪݃|ߛ|

Thus 
(߬)ᇱܨ 	= 	  (101)																											((߬)ߪ)ᇱ(߬)݃෪ᇱߪ|ߛ|

and 
|(	߬)ᇱܨ| = 	  (102)																																										ᇱ(߬).ߪ|ߛ|

Thus 
,ݐ)ிೝܭ ߬) = 	 	



(ݐ)ܨ〉 ,)തതതതതതതതതതതതതതതതതത	(߬ܨ	− 〈(߬)ᇱܨ݅ 	

= 	 	ᇱ(߬)ߪଶ|ߛ|


〈݃෪൫ߪ(߬)൯ − ݃෪൫(ݐ)ߪ൯തതതതതതതതതതതതതതതതതതതതതതതതതതത, ݅݃෪ᇱ൫ߪ(߬)൯〉	 

= 	 ൯(	߬)ߪ,(ݐ)ߪ൫ܩ(߬)ᇱߪଶ|ߛ| · 	2 sinଶ
(	߬)ߪ − (ݐ)ߪ	

2
.						(103) 

By applying again Corollary (4.3.14) we obtain 

min
௧
൫ߪᇱ(ݐ)൯

ଶ
≤

2 sinଶ (	߬)ߪ − (ݐ)ߪ	
2

2 sinଶ ߬ − ݐ
2

≤ max
௧
൫ߪᇱ(ݐ)൯

ଶ
.									(104) 

Combining (100), (103) and (104) we obtain 

(߬)ᇱߪ෫(ߢ)ଶ|ߛ| min
௧
൫ߪᇱ(ݐ)൯

ଶ
	≤

,ݐ)ிೝܭ ߬)

2 sinଶ ߬ − ݐ
2

 

≤ (߬)ᇱߪ෫ଵ(ߢ)ଶ|ߛ| max
௧
൫ߪᇱ(ݐ)൯

ଶ
.																									(105) 

Combining (105), (93) and (102) we obtain 

݉ଷ(ߢ) 	≤ 	
,ݐ)ிೝܭ ߬)

2 sinଶ ߬ − ݐ
2

≤ 	  .ଷܯଵ(ߢ)

This yields (92). In particular, if ܨ = ݃ , where ݃ is natural parametrization of ߛ we 
obtain (91). 
Corollary (4.3.17)[240]: If ݓ =  is a harmonic diffeomorphism of the unit disk [ܨ]ܲ
onto a convex Jordan domain ܦ = intߛ ∈ ܨ ଶ, such thatܥ  is (݉,ܯ) bi-Lipschitz, then 

݉ଷ(ߢ) 	≤ 	 ௪ೝ൫݁ఛ൯ܬ ≤ 	 ଷܯଵ(ߢ) .																																(107) 
Proof. From (106) we obtain 
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௪ೝ(݁ఛ)ܬ 	= 	න  	


,ݐ)ிೝܭ ߬)

2 sinଶ ߬ − ݐ
2

ݐ݀
ߨ2

ଶగ



.																															(108) 

From (108) and (92) we obtain (107). 
Corollary (4.3.18)[240]: a) Assume that ߗ is a bounded convex domain containing 0 and 
let	ߛ = 	ߗ߲ ∈ ߞ at ߛ  be the curvature of(ߢ) ଶ and assume thatܥ ∈  Further let .ߛ
(ߢ) = min∈ఊ(ߢ)  and (ߢ)ଵ = max∈ఊ(ߢ) and let ܨ  be an absolutely continuous 
homeomorphism of the unit circle onto ߛ. Then ݓ = [ܨ]ܲ ∶ 	ࢁ →  is a quasiconformal ߗ
mapping if and only if 

0	 < 	݉	 = 	ess	inf	|ܨᇱ(߬)|,																																				(109) 
ܯ ∶= 	ess	sup	|ܨᇱ(߬)| 	< 	∞																																		(110) 

and 
ℋ ∶= 	ess sup

ఛ
|(߬)(ᇱܨ)ܪ| 	< 	∞.																													(111) 

b) If ܨ  satisfies the conditions (109), (110) and (111), then ݓ =  ܭ is [ܨ]ܲ
quasiconformal, where 

	ܭ ≤
ଶܯ 	+ ଶܪ	 	+ ඥ(ܯଶ 	+ ଶ)ଶܪ	 	− 	4ࣤଶ

ܬ2
.																	(112) 

The constant ܭ is the best possible in the following sense, if ݓ is the identity or it is a 
mapping close to the identity, then ܭ = 1 or ܭ is close to 1 (respectively). 
c) Moreover, under conditions of a) the mapping ݓ is bi-Lipschitz with the bi-Lipschitz 
constant ܮ satisfying the inequality 

	ܮ ≤ maxܭ	 ൜ܯ,
1
݉
ൠ .																													(113) 

In particular ܮ is asymptotically sharp. 
Proof. The part a) of this theorem coincides with [37]. Prove the part b). We have to prove 
that under the conditions (109), (110) and (111) ݓ is ܭ quasiconformal, where ܭ is given 
by (112). This means that, we need to prove that the function 

(ݖ)ܭ 	=
|௭ݓ| + 	 |௭̅ݓ|
|௭ݓ| −	 |௭̅ݓ| 	=

1	 + 	 |ߤ|
1	 − 	 |ߤ| 																						(114) 

is bounded by ܭ. 
It follows from (40) and (41) that 

lim
ఢ→

൫(1ܨ − ߳)݁ఛ൯ 	= .ܽ)	(߬)(ᇱܨ)ܪ	 ݁. ), 
and 

lim
ఢ→

ఝ൫(1(ଵିఢ(ܨ)) − ߳)݁ఛ൯ = 	  .(߬)ᇱܨ
As 

௭|ଶݓ| 	+ 	 ௭̅|ଶݓ| 	=
1
2
	൭|ݓଵିఢ |ଶ 	+

ห(ܨ)ఝห
ଶ

(1 − ߳)ଶ
൱, 

it follows that 

lim
ఢ→

௭|ଶݓ|) 	+ 	 (௭̅|ଶݓ| 	≤
1
2

ଶܯ) 	+ 	ℋଶ).																			(115) 
On the other hand, by (107) 

lim
ఢ→

௭|ଶݓ|) 	+ 	 (௭̅|ଶݓ| ≥ 	ࣤ ∶= max ቊ(ߢ)݉ଷ,
݀(0, ଶ(ߛ

4
ቋ .												(116) 
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From (115) and (116) we obtain 

lim
ఢ→

|௭ݓ| + 	 |௭̅ݓ|
|௭ݓ| −	 |௭̅ݓ| ≤ ܥ	 ∶=

ଶܯ 	+ 	ℋଶ

2ࣤ
,																					(117) 

i.e. 

lim
ఢ→

|௭̅ݓ|	
|௭ݓ| ≤

ඨ
	ܥ − 	1
	ܥ + 	1

.																																				(118) 

By Lewy’s theorem, |ݓ௭̅|/|ݓ௭| is a subharmonic function bounded by 1. From (118) it 
follows that 

|௭̅ݓ|	
|௭ݓ| ≤

ඨ
	ܥ − 	1
	ܥ + 	1

. 

Further 

	ܭ =
	ܥ√ + 1 + 	ܥ√ − 	1
	ܥ√ + 	1 	− 	ܥ√	 − 	1

	= 	ܥ	 + ඥܥଶ 	− 	1	 

=
ଶܯ 	+ 	ℋଶ 	+ ඥ(ܯଶ 	+ 	ℋଶ)ଶ 	− 	4ࣤଶ

2ࣤ
. 

The last quantity is equal to 1 for ܨ being identity because all the constants appearing at 
the quantity are 1 in this special case. Moreover, if ܨ  is close to identity in ܥଶ norm, then 
the quantity is close to 1. 
It remains to prove the part c). As |ܨᇱ(ݐ)| 	≤ ((1ݓsince ఛ߲ ,ܮ − ߳)݁ఛ) 	= 1))[ᇱܨ]ܲ −
߳)݁ఛ), by maximum principle it follows that | ఛ߲ݓ((1 − ߳)݁ఛ)| 	≤  ,On the other hand .ܯ
since ݓ is ܭ−quasiconformal, it follows that |ݓ௭| 	+ |௭̅ݓ| 	≤ |௭ݓ|)ܭ 	−  ௭̅|). Soݓ|
|௭ݓ| 	+ |௭̅ݓ| 	≤   isݓ Lipschitz. Similarly we obtain that-ܯܭ  isݓ and thus ,ܯܭ
,ܯ}max	ܭ 1/݉} bi-Lipschitz.  
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Chapter 5 

Lattice Problem and Comments of Steinhaus 

We show that the argument cannot generalize to any lattice and, on the other hand, 
give some lattices to which this method applies. We also show there is no measurable 
Steinhaus set for a special honeycomb lattice, the standard tetrahedral lattice in ℝଷ. We 
show a slight generalisation of some as well as a very easy recovery of most of the known 
results using a unified treatment. 

Section (5.1): On a Lattice Problem 

      Sometime in the 1950’s, Steinhaus posed the following problem. Do there exist two 
sets ܣ and ܵ in the plane such that every set congruent to ܣ has exactly one point in 
common with ܵ? The trivial case where one of the sets is the plane and the other consists 
of a single point is ruled out. The first appearance of this problem seems to be in a 1958 of 
Sierpi݊́ski [200]. We showed the answer is yes, a result later rediscovered by Erd̈s [193]. 
There are many variants of this problem. For example, one could specify the set ܣ. In this 
direction, Komjܽ́th showed that such a set exists if ܣ	 = ℤ, the set of all integers [199]. 
Steinhaus also asked about the specific case where ܣ	 = 	 ℤଶ. This problem also seems to 
be Sierpi݊́ski’s 1958 where he mentions that in this case there is no set ܵ which is bounded 
and open or else bounded and closed. This specific problem has been widely noted (see 
[191], [192]), but has remained unsolved until now. We answer this question.  

Theorem (5.1.1)[190]: There is a set ܵ	 ⊆ ℝଶ such that for every isometric copy ܮ of the 
integer lattice ℤଶ we have |ܵ	 ∩ |ܮ	 	= 	1.  

We work in the theory ZFC; the usual axioms of set theory with the axiom of choice 
(AC). AC is used heavily in the main construction as we require, for example, an 
enumeration of the equivalence classes of the lattices under a certain equivalence relation. 
By “lattice” we mean a set in the plane which is isometric with the integer lattice ℤଶ	(a 
brief exception occurs in Lemmas (5.1.5), (5.1.6) where we consider scaled versions).  

We point out that there are several things proven which are stronger than what is 
needed to prove Theorem (5.1.1). Stronger forms of our two main technical lemmas, 
Lemma (5.1.13) (Lemma (5.1.3)) and Lemma (5.1.29) (Lemma (5.1.29)), are proven here 
than is required for the main theorem. In [196] a shorter argument is given for the main 
theorem. For example, a shorter proof of Lemma (5.1.13) is given there. Here we give a 
more involved induction argument. This argument, which uses only basic number theory 
and combinatorics, shows something much stronger and interesting in its own right. We 
feel that these stronger results may be useful in resolving whether the main theorem holds 
for other lattices and other dimensions.  

       We note that the geometric Lemma (5.1.29) is also stronger than what is required for a 
proof of the main theorem. A weaker alternative is also indicated. It is also quite possible 
that something like Lemma (5.1.29) may be needed to resolve the problem for other 
lattices. We note that theorems similar to Lemma (5.1.29) may be found in the theory of 
mechanical linkages [197]. Recall a four-bar linkage may be described as two circles 
,ଵ ଶ, and a rigid “bar” connecting two pointsܥ,ଵܥ  ଶܥ,ଵܥ ଶ constrained to lie on
respectively. If we consider a third point ଷ, and require that the triangle ∆ଵଶଷ be rigid, 
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then the locus of points traced out by ଷ is called a coupler curve for the linkage. We say 
the coupler point ଷ is non-trivial if it is not one of the endpoints ଵ,  ଶ. In this
terminology Lemma (5.1.29) is the statement that the curve traced out by a non-trivial 
coupler point of a four-bar linkage has, except in the degenerate case noted, a finite 
intersection with any circle. In particular, Lemma (5.1.29) is implicit in the analysis of 
Gibson and Newstead [195]. Their analysis uses a fair amount of machinery from 
algebraic geometry. However, since we were not able to find the precise statement of the 
lemma and as it is crucial to our methods, we give two very different elementary proofs of 
it.  

      We call a set ܵ as in Theorem (5.1.1) a Steinhaus set and note that whether there can 
be a Lebesgue measurable Steinhaus set remains unsolved. (We also do not know whether 
a Steinhaus set can be connected although one can prove that if it is measurable, then it is 
totally disconnected.) Concerning measurable Steinhaus sets, H. T. Croft [44] and, 
independently, J. Beck showed that there is no bounded measurable Steinhaus set [84] and 
Koulountzakis obtained some further refinements [198]. Also, Kolountzakis and Wolff 
showed that there is no measurable Steinhaus set for the higher dimensional version of 
Steinhaus’ problem [83]. It is relatively easy to see that no Steinhaus set can be a Borel set 
or even have the Baire property if one follows the arguments given by Croft. We briefly 
sketch this argument. Suppose ܵ has the Baire property. Since ℝଶ 	= ⋃ (ܵ	 + ௭∈ℤమ(ݖ	 	 ,ܵ 
cannot be meager. Fixing a ball with respect to which ܵ is comeager and noting that the 
gaps between successive lattice distances converge to 0, we see that there is some ball ܯ 
such that the part of ܵ outside this ball is meager. Let ܧ be the set of points where neither 
ܵ nor ℝଶ\ܵ is meager in any neighborhood. Then ܧ is a nonempty closed nowhere dense 
set and following the proof of Croft’s paper, we see that there is an isometric copy ܮ of ℤଶ 
which meets ܧ in exactly one point, . Thus, there is a ball (݀,)ܤ such that neither ܵ nor 
ℝଶ\ܵ is meager in that ball but ℝଶ\ܵ is comeager in ݔ)ܤ, ݀) for every ݔ	 ∈ ݔ with ܮ	 ≠  .	
But, this would mean there is a small translation of ܮ which would entirely miss ܵ. We 
also note that the question of whether there is a bounded Steinhaus set remains unsolved. 
Steinhaus’ problem and variants were discussed in some detail by Croft [44] and have 
been updated in [191]. In particular, Steinhaus also asked about sets meeting each copy of 
the lattice points in exactly ݊ points. The fact that the answer to this question is yes 
follows directly from our main theorem and is discussed in our concluding remarks.  

    We say a lattice distance is a real number of the form 	√݊ଶ 	+ 	݉ଶ	where ݊,݉	 ∈ ℤ. 
Theorem (5.1.1) is clearly equivalent to the existence of a set ܵ	 ⊆ ℝଶ satisfying the 
following two properties:  

     (i) For every isometric copy ܮ of ℤଶ,ܵ	 ∩ ܮ	 ≠ ∅.  

     (ii) For all distinct ݖଵ, ଶݖ 	 ∈ 	ܵ, ,ଵݖ)ߩ  denotes the ߩ ) is not a lattice distance, where	ଶݖ
usual Euclidean distance.  

      In fact, we prove a slight strengthening of Theorem (5.1.1):  

Theorem (5.1.2)[190]. There is a set ܵ	 ⊆ ℝଶ  satisfying:  

     (i) For every isometric copy ܮ of ℤଶ we have ܵ	 ∩ ܮ	 ≠ 	∅.	 
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     (ii) For all distinct ݖଵ, ଶݖ 	 ∈ 	ܵ, ,ଵݖ)ߩ )ଶ	ଶݖ ∉ ℤ.	 

     We call a set ܵ	 ⊆ ℝଶ satisfying (ii) of Theorem (5.1.2) a partial Steinhaus set.   

     The Steinhaus problem has a natural interpretation for smaller sets of lattices. Namely, 
given an arbitrary set ℒ of lattices (each of which is an isometric copy of ℤଶ), we may ask 
whether there is a partial Steinhaus set ܵ such that ܵ	 ∩ ܮ	 ≠ 	∅ for all ܮ	 ∈ ℒ. Indeed, 
establishing this restricted version of the problem for the case where ℒ is the (countable) 
family of rational translations of ℤଶ is a central step toward proving Theorem (5.1.2). 
Actually, we need a slight technical strengthening of this “rational translation” case, which 
we state below.  

    In proving Theorem (5.1.2), it is natural to proceed inductively. That is, we build the 
desired set ܵ in (transfinitely many) stages. At limit stages, we take unions, and at 
successor stages we enlarge ܵఈ 	to ܵఈାଵ so as to meet a new lattice, while at the same time 
keeping property (ii). Note that (ii) is then trivially satisfied at limit stages. If we can meet 
every lattice	ܮ along the way, then the final set ܵ	 = ⋃ ܵఈఈ	 	 will be as desired. While this 
is our general plan, there are several steps that must be taken to ensure its success. For 
example, we do not simply enumerate the lattices ℒ in type 2ఠ. To appreciate the 
difference, we note that there does exist a “finite obstruction”. That is, there is a finite set 
of points ܨ	 ⊆ ℝଶ (in fact ܨ	 ⊆ ℚଶ) which forms a partial Steinhaus set, but which cannot 
be extended to meet even the integer lattice ℤଶ and remain a partial Steinhaus set. For 
example the following set of 17 points forms such an obstruction (this set was constructed 
by considering a partial good permutation of 65 of size 17 which cannot be extended to a 
good permutation of 65; these concepts are explained):  

(216/5,2/5) (107/5,4/5)	 (283/5,1/5) (174/5,3/5)
				(677/13,5/13) 	(340/13,10/13) (744/13,2/13) (407/13,7/13)
				(70/13,12/13)
				(204/13,6/13)	
	(2601/65,57/65)	

(474/13,4/13)
(712/13,11/13)

	

(137/13,9/13)
(271/13,3/13)	

	

(541/13,1/13)
(779/13,8/13)

		

            

     Rather, it is important that we use the “hull construction” which has played an 
important role in several other theorems of this general character (see [64], [194]). The 
idea, described abstractly, is to consider a continuous elementary chain {ܯఈ}ఈழ	ଶഘ , of 
substructures (say of some large ܸ) with each ܯఈ of size < 	2ఠ, but ℝ	 ⊆ ⋃ ఈఈழଶഘܯ 	. Let 
ℒఈ denote the isometric copies of ℤଶ which are in ܯఈ. At successor steps, we now enlarge 
ܵఈ to ܵఈାଵ which meets all lattices ܮ ∈ 	ℒఈାଵ − ℒఈ, while of course keeping property (ii). 
While this gives us more to do at each successor step, it also provides us with a powerful 
inductive assumption, namely, the closure of ℒఈunder various operations. For the reader 
unfamiliar with the set-theoretic terminology, we may describe the idea as follows. We 
write the collection of lattices ℒ	 as an increasing union of sets ℒఈ where at limit stages we 
take unions, and we require each ℒఈ to be closed under certain finitary functions ܨ ∶
	(ℒ	)ழఠ 	→ ℒ	. We could specify in advance which functions ܨ	we need the ℒఈ to be 
closed under, but it is more convenient not to. We note that when the continuum is greater 
than ߱ଵ	, the actual construction we will use will be a bit more complicated, essentially an 
iteration of this hull construction.  



164 

    We now state precisely two lemmas, which we call Lemma (5.1.13) and Lemma 
(5.1.29), which we will need to carry out the plan sketched above. The first of these is the 
“rational translation” case mentioned above.  
Lemma (5.1.3)[190]. (A). Let ℒℚ		denote the set of rational translations of ℤଶ, that is, 
lattices of the form ℤଶ + 	 ,ݎ) ,ݎ where	(ݏ 	ݏ ∈ ℚ. Then there is a set ܵ	 ⊆ ℝଶ  satisfying the 
following:  
    (i) For every lattice ܮ	 ∈ ℒℚ,ܵ	 ∩ ܮ	 ≠ 	∅.  
    (ii) For all distinct ݖଵ, ଶݖ 	 ∈ 	ܵ, ,ଵݖ)ߩ )ଶ	ଶݖ ∉ ℤ.  
     Actually, we require a slight technical strengthening of Lemma (5.1.13), which we call 
Lemma (5.1.12)	. In this lemma, and for the rest, we adopt the following terminology. If 
ܮ ⊆ ℝଶ is a lattice, then by a “rational translation” of ܮ we mean a lattice of the form	ܮ +
ݎ ሬ⃗ݑ ,ݎ where ݒ⃗ݏ+ 	ݏ ∈ ℚ, and ݑሬ⃗ ,  In other words, we are .ܮ are the unit basis vectors for ݒ⃗
always referring to the coordinate system of the lattice ܮ.  
       The second lemma is a result in pure plane geometry, which arises in carrying out the 
hull construction mentioned above.  

We give the proof of Theorem (5.1.2) assuming Lemmas (5.1.12) and (5.1.29). We 
prove Lemma (5.1.12) , and we prove Lemma (5.1.29). We are self-contained and may be 
read independently. 

We prove Theorem (5.1.2) assuming Lemmas (5.1.12) and (5.1.29). Throughout, 
“lattice” will mean an isometric copy of ℤଶ.߱	denotes the first infinite ordinal, which we 
identify with the set of natural numbers.  
    Recall that by a “rational translation” of a lattice ܮ we are referring to the coordinate 
system of the lattice ܮ. By a rational rotation of ℤଶ we mean an operation of the form 
ℤଶ → 	ܴ(ℤଶ), where ܴ is a rotation of the plane whose corresponding matrix ܯோ 	=

ቀ
ଵଵݎ ଵଶݎ
ଶଵݎ must be of the form ቌ	ோܯ , has rational entries. In this case				ଶଶቁݎ


ௗ

− 
ௗ


ௗ


ௗ

ቍ	  , where 

ܽ, ܾ, ݀ are integers and ܽଶ 	+ 	 ܾଶ 	= ݀ଶ. For a general lattice ܮ, a rational rotation means a 
rotation about a point of ܮ which is rational in the coordinate system of ܮ.  
 
Definition (5.1.4)[190]. Two lattices are equivalent, ܮଵ 	 ∼ 	  ଶ can be obtained fromܮ ଶ, ifܮ
  .ଵ by rational rotations and translationsܮ
    This is equivalent to saying that in the coordinate system determined by ܮଵ, the isometry 
moving ܮଵ to ܮଶ is of the form  

൬
ݔ
ݕ
൰ 		→ 		 ቀ

ଵݍ ଶݍ
ଷݍ ସቁݍ 					 · 				 ൬

ݔ
ݕ
൰ 			+ 		 ൬

ହݍ
ݍ
൰			,	 

where all of the ݍ are rational. Equivalently, ܮଵ 	 ∼ 	  have	ଶܮ ଶ iff all of the points ofܮ
rational coordinates with respect to the coordinate system determined by ܮଵ (and vice-
versa). This is easily an equivalence relation, with each equivalence class countable.  
    We first prove a lemma which will help us deal with rotations.  
Lemma (5.1.5)[190]. Let ܮଵbe a lattice, and let ܮଶ be obtained from ܮଵ by a rational 
rotation. Let ܵ	 ⊆ ℝଶ satisfy the following:  
    (i) For every lattice ܮ	which is a rational translation of ܮଵ, ܵ	 ∩ ܮ	 ≠ 	∅.  
    (ii) For all distinct ݖଵ, ଶݖ 	 ∈ 	ܵ, ,ଵݖ)ߩ )ଶ	ଶݖ ∉ ℤ.  
Then for every lattice ܮ′ which is a rational translation of ܮଶ we have ܵ	 ∩ ᇱܮ	 ≠ 	∅.  
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Proof. Without loss of generality we may assume ܮଵ 	= ℤଶ. Let the rational rotation ܴ 

correspond to the matrix 	ܯ = ቌ

ௗ

− 
ௗ


ௗ


ௗ

ቍ	 , where ܽ, ܾ, ݀	 ∈ 	ℤ	, ݀	 > 	1, and ܽଶ 	+ 	ܾଶ 	=

	݀ଶ. ଶܮ 	= 	ܴ(ℤଶ) has standard basis vectors ݑሬ⃗ 	= 	 (
ௗ
	 , 
ௗ
	) and ⃗ݒ 	= 	 (− 

ௗ
	 , 
ௗ
	). It suffices to 

show, for any positive integer ݁ such that ݀|݁ and any rationals of the form ݎ	 = 

	 , 	ݏ = 


 

(݉, ݊ integers), that ܵ	 ∩ ,௦ܮ	
ᇱ ≠ 	∅, where ܮ	,௦

ᇱ 	= 	 ଶܮ 	+ ሬ⃗ݑݎ	 	+  is the rational	ݒ⃗ݏ	
translation of ܮଶ by (ݎ,  Fix a positive integer ݁ with ݀|݁. Consider the ݁ଶ set of points .(ݏ
of the form  


ሬ⃗ݑ	 	+ 


	where 0 ,ݒ⃗	 ≤ 	݉, ݊	 < 	݁. For each such point , we must show that 

there are integers	݇	 = 	 ݇, ݈	 = 	 ݈ such that 	 + ሬ⃗ݑ݇	 	+ ݒ݈⃗	 	 ∈ 	ܵ.  
     We require the following technical lemma whose proof we give below.  
Lemma (5.1.6)[190]. Let ݁ be a positive integer, and let	ܴ be the rational rotation with 

matrix ܯ	 = ቌ

ௗ

− 
ௗ


ௗ


ௗ

ቍ  , where ݀|݁. Let ܮଶᇱ 		=
ଵ

ܴ(ℤଶ). Then there are exactly ݁ଶ points 

of the scaled lattice ܮଶᇱ  which are of the form (ݕ,ݔ)	with 0	 ≤ ,ݔ	 	ݕ < 	1.  
     Granting the lemma, we finish the proof of Lemma (5.1.5). Let ܶ denote the ݁ଶ set of 
points in ܮଶᇱ of the form (ݕ,ݔ) with 0	 ≤ ,ݔ	 	ݕ < 	1. Note that each of these points has 
coordinates (ݔ,  .rational (in fact, their denominators can be taken to be de) ݕ and ݔ with (ݕ
By property (i) of ܵ, for each such point (ݔ, ,	′݇) there are integers (ݕ ݈′	) such that 
,ݔ) (ݕ + (݇′	, ݈′	) 	 ∈ 	ܵ. For each such (ݕ,ݔ), let (ݔ′	, (	′ݕ = ,ݔ) (ݕ + (݇′	, ݈′	) denote the 
corresponding point in ܵ. Clearly the map ݂(ݔ, (ݕ =  .from ܶ into ܵ is one-to-one (	′ݕ,	′ݔ)
Thus ݂[ܶ	]	is a subset of ܵ of size exactly ݁ଶ.	Note also that in the coordinate system 
determined by ܮଶ, each point of ݂[ܶ	] has coordinates in ଵ


ℤଶ (since this is true of the 

points in ܶ , and (݇′	, ݈′	) has coordinates with respect to ܮଶ which have denominators 
݀	and ݀|݁). For each point (ݔ′	, (	′ݕ 	∈ 	݂[ܶ	], let ݇′′, ݈′′ be integers such that (ݕ,′′ݔ′′)	. =
,	′ݔ)	 (	′ݕ 	+ ሬ⃗ݑ′′݇	 	+ ଶ of the form (ܮ has coordinates with respect to ݒ⃗′′݈	


	 , 

	), where 

0	 ≤ 	݉, ݊	 < 	݁. Let ݃ be the function defined on ݂[ܶ	] sending (′ݔ	ݕ,′	)	to (ݔ′′,  Note .(′′ݕ
that ݃	is one-to-one, or else we would violate property (ii) of ܵ. Thus,	(݃ ∘ 	݂)[ܶ	] consists 
of ݁ଶ points which in the ܮଶ coordinate system all have coordinates of the form (


	 , 

	) 

where 0	 ≤ 	݉, ݊	 < 	݁. Since there are only ݁ଶ  such points, (݃ ∘ ݂)[ܶ	] exhausts this set. 
By definition of ݃, we thus have for any point  having ܮଶ coordinates of the form 
(

	 , 

	), 0	 ≤ 	݉,݊	 < 	݁, that there are integers ݇	 = 	−݇′′, ݈	 = 	−݈′′ such that 	 + ሬ⃗ݑ݇	 	+

ݒ݈⃗	 	 ∈ 	ܵ. This completes the proof of Lemma (5.1.5).  
 
Proof . Scaling by ݁, the lemma follows immediately from the following well-known 
more general fact about lattices: Suppose ݒଵ, . . . ,  .ௗ are linearly independent vectors in ℤௗݒ
Let ܦ	 = ,ଵݒ)ݐ݁݀	 . . . ଵݒpoints of ℤௗ of the form ܽଵ ܦ ௗ). Then there are exactlyݒ, 	+	···
	+	ܽௗݒௗ where 0	 ≤ 	 ܽଵ, . . . , ܽௗ 	< 	1. To see this, let ܴ be the fundamental domain for the 
lattice determined by the ݒ. That is, ܴ	 = 	 {ܽଵݒଵ 	+	··· 	+	ܽௗݒௗ ∶ 	0	 ≤ 	 ܽଵ, . . . , ܽௗ 	<
	1, ܽ 	 ∈ ℝ}. Suppose there are ܦ′ points of ℤௗ in ܴ. Clearly any translation of ܴ of the 
form ܴ	 + 	݊ଵݒଵ 	+	··· 	+	݊ௗݒௗ, where the ݊  are integers, also contains exactly ܦ′ points 
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of ℤௗ. Thus, ܴ݊	 = 	 {ܽଵݒଵ 	+	··· 	+	ܽௗݒௗ ∶ 	0	 ≤ 	 ܽଵ, . . . , ܽௗ 	< 	݊, ܽ 	 ∈ ℝ} contains 
exactly (ܦᇱ)݊ௗ points of ℤௗ. On the other hand, a volume argument shows this number to 
be of the form ൫ܦ	 + ൯݊ௗ(1)	 .  
 
Lemma (5.1.7)[190]. Let ܮ be a lattice and ݖ	 ∈ ℝଶ. Suppose ݖ has coordinates (ݕ,ݔ) with 
respect to the lattice ܮ, where at least one of ݔ, 	݈ is irrational. Then there is a line ݕ =
ݓ and ܮ has rational coordinates with respect to ݓ such that if (ܮ,ݖ)݈	 ∉ 	݈, then 
,ݓ)ߩ ଶ(ݖ ∉ ℚ.  
 
Proof. Without loss of generality, suppose ܮ	 = 	 ℤଶ. Suppose ݖ	 = 	 ,ݔ)  with at least one (ݕ
of ݔ, 	ݓ irrational and ݕ = 	 (ܽ,ܾ) 	 ∈ ℚଶ. If ݓ)ߩ, ଶ(ݖ 	 ∈ ℚ, then (ݔ − ܽ)ଶ 	+ ݕ)	 − ܾ)ଶ 	 ∈
ℚ, and so  

ଶݔ 	+ ଶݕ	 	− 	ݔ2ܽ	 − 	ܾݕ2	 ∈ ℚ.		 
If ݓଵ 	= 	 (ܽଵ, ܾଵ) and ݓଶ 	= 	 (ܽଶ, ܾଶ) were two such points, then subtracting the 
corresponding equations we would have  

2(ܽଵ 	− 	ܽଶ)ݔ	 + 	2(ܾଵ 	− 	ܾଶ)ݕ	 ∈ ℚ.																																										(1) 
If ݓଷ 	= 	 (ܽଷ, ܾଷ) were a third such point, then we likewise have 

2(ܽଵ 	− 	ܽଷ)ݔ	 + 	2(ܾଵ 	− 	ܾଷ)ݕ	 ∈ ℚ.																																									(2) 
If ݓଵ,ݓଶ,ݓଷ were not collinear, then we could solve equations (1), (2) for ݔ and ݕ, and 
these numbers would both be rational, a contradiction. Thus, all such points ݓ (if any) 
must lie on a single line. 
 
Lemma (5.1.8)[190]. Let ܮଵ,  ଶ be lattices which are not equivalent. Then there is at mostܮ
one point which has rational coordinates with respect to both ܮଵ and ܮଶ.  
 
Proof. Assume without loss of generality that ܮଵ 	= ℤଶ. If there were two points in ℚଶ 
having rational coordinates with respect to ܮଶ, then the standard basis vectors ݑሬ⃗ ,  ଶܮ of ݒ⃗
would also have rational coordinates. Since one point of ܮଶ has rational coordinates, it 
follows that all of the points of ܮଶ have rational coordinates, that is, ܮଵ 	 ∼ 	   .ଶܮ
     
    We now turn to the proof of Theorem (5.1.2).  
     If ܮ	 ⊆ ℝଶ is an isometric copy of ℤଶ, let [ܮ] denote the equivalence class of ܮ under 
the equivalence relation ∼ of  Definition (5.1.4). Let े denote the family of all equivalence 
classes. By AC, let ℒ	 →  be a function which picks for each equivalence class ℒ a (ℒ)ܮ	
member ܮ(ℒ) 	 ∈ 	ℒ.	 
    To carry out the main construction, we first describe a particular enumeration of the 
equivalence classes of the lattices. Let ߢ(∅) = 2ఠ, and let {ܯఈ ∶ 	 ߙ 	<  be a	{(∅)ߢ	
continuous increasing chain of elementary substructures of a large ܸ 	( ఠܸାଵ will actually 
suffice) with |ܯఈబ 	| 	< ߙ for all (∅)ߢ	 	<  and such that every equivalence class of (∅)ߢ	
lattices is in some ܯఈబ  . Assume also ܯ 	= 	∅. Let ఈܰబ 	= ାଵ	ఈబܯ	 	− ఈబܯ	 	. In general, 
suppose that ܯఈሬሬ⃗  is defined for ⃗ߙ in a certain subtree of ܱܰழఠ. If ܯఈబ,⋯ఈೖ is defined, we 
assume also that 	ߙ)ߢ,⋯  .ିଵ) has been defined and is an uncountable cardinalߙ,
Furthermore, we assume in this case that ܯఈబ,⋯ఈೖషభ,ఉ is defined ߚ < ⋯,ߙ)ߢ		  ିଵ). Weߙ,
let ఈܰబ,⋯,ఈೖ denote ܯఈబ,⋯ఈೖశభ  .	ఈబ,⋯ఈೖܯ−
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    Suppose now that ܯఈబ,⋯ఈೖ is defined. If ఈܰబ,⋯ఈೖcontains only countably many 
equivalence classes of lattices, let ℒఈబ,⋯ఈೖ;enumerate them. In this case, (ߙ,⋯  ) is aߙ,
terminal node in the tree of indices ⃗ߙ for which ܯఈሬሬ⃗   is defined. Otherwise, let 
⋯,ߙ)ߢ	 (ߙ, 	= 	 ห ఈܰబ,⋯ఈೖ⋂	ेห and write 

ఈܰబ,⋯ఈೖ 	= ራ ఈబ,⋯ఈೖ,ఈೖశభܯ
ఈೖశభழ	(ఈబ,⋯,ఈೖ)

 

as a continuous, increasing union, where each ܯఈబ,⋯ఈೖ,ఈೖశభ is the intersection of ఈܰబ,⋯ఈೖ	 
with an elementary substructure of ܸ, and each ܯఈబ,⋯ఈೖ,ఈೖశభ contains fewer than 
⋯,ߙ)ߢ ఈబ,⋯ఈೖ;ܯ ) many equivalence classes of lattices. Assume alsoߙ, 	= ∅ ;. Easily, 
the tree of indices is well founded (since the ߢఈሬሬ⃗  are decreasing along any branch). 
     If ⃗ߙ is incompatible with ⃗ߚ , then ܰఈሬሬ⃗  and ܰఉሬሬ⃗  have no equivalence class of lattices in 
common. Furthermore, every equivalence class occurs as some ℒఈబ,⋯ఈೖ;. Thus, the 
ℒఈబ,⋯ఈೖ; precisely enumerate the equivalence classes of lattices. We consider the indices 
to be (well) ordered lexicographically. 
        The following simple lemma will be used. 
 
Lemma (5.1.9)[190]. Suppose ⃗ߙ is an index for which ܯఈሬሬ⃗  is de_ned. Let ܽଵ,⋯	ܽ 	 ∈
ఈሬሬ⃗ܯ		   and suppose b is definable from ܽଵ,⋯	ܽ in ܸ. Then ܾ ∈ ⋃ ఉሬሬ⃗ఉሬሬ⃗ܯ ஸఈሬሬ⃗ 	. 
 
Proof. Let ⃗ߙ = 	 ⋯,ߙ) ܾ ) and assumeߙ, ∉ ⋃ ఉሬሬ⃗ఉሬሬ⃗ܯ ஸఈሬሬ⃗ 	.. Since ܯఈబ,⋯ఈೖ is relatively 
closed under the skolem functions of ܸ inside of ఈܰబ,⋯ఈೖషభ, it follows that  ܾ ∉
ఈܰబ,⋯ఈೖషభ 	. Since  ܾ ∉ ܾ  ఈబ,⋯ఈೖషభ by assumption, we thus haveܯ ∉  .ఈబ,⋯ఈೖషభାଵܯ

Continuing, we eventually have  ܾ ∉  ఈబାଵ is a substructureܯ ఈబାଵ, a contradiction sinceܯ
of ܸ containing the ܽ. 
      Now fix a terminal index ⃗ߙ = 	 ⋯,ߙ)  . Assume inductively we have defined for	)ߙ,
each terminal index ⃗ߚ < a set ܵఉሬሬ⃗ ߙ⃗ ⊆ ℝଶ which satisfies the following: 

  (i) If ⃗ߚଵ 	< 	 ଶߚ⃗ 	< 	 then ܵఉሬሬ⃗ ,ߙ⃗ ଵ
⊆ ܵఉሬሬ⃗ ଶ

. 

  (ii) For every terminal index ⃗ߚ	less than ⃗ߙ,ܵఉሬሬ⃗  meets every lattice in every 
equivalence class ℒఉሬሬ⃗ ;	. 
  (iii) Every point of ܵఉሬሬ⃗ − ⋃ ܵఊሬሬ⃗ఊሬሬ⃗ ழఉሬሬ⃗ 	 lies on some lattice of the form ℒఉሬሬ⃗ ;	. 
  (iv) For all distinct ݖଵ, ଶݖ ∈ 	ܵఉሬሬ⃗ , ;ଵݖ)ߩ ଶ)ଶݖ	 ∉ ℤ. 

  (v) Suppose ⃗ߚଵ 	< 	 ଶߚ⃗ 	< 	 ݔ,ߙ⃗ ∈ ܵఉሬሬ⃗ భ, and ݕ ∈ 	 ܵఉሬሬ⃗ మ − ⋃ ܵఊሬሬ⃗ఊሬሬ⃗ ழఉሬሬ⃗ మ
. Then, if (ݕ,ݔ)ߩଶ ∈

ℚ,ݔ, both have rational coordinates with respect to some lattice of the form ℒఉሬሬ⃗ ݕ మ;	. 
Let ܵழఈሬሬ⃗ 	= ⋃ ܵఉሬሬ⃗ఉሬሬ⃗ ழఈሬሬ⃗ 	. We show how to extend  ܵழఈሬሬ⃗  a set  ܵఈሬሬ⃗  also satisfying (iv), (v) and 
such that ܵఈሬሬ⃗ 	meets every lattice in each equivalence class ℒఈሬሬ⃗ ,. This suffices to prove 
Theorem (5.1.2). 
    To  ease  notation, let  ℒ 	= ℒఈሬሬ⃗ ,, and  let  ܮ 	=  .From Lemma (5.1.5), it .(ℒ)ܮ	
Suffices  to maintain property (iv), to have property (v) when ⃗ߚଶ 	= and to have ܵఈሬሬ⃗ ,ߙ⃗   
meet every rational translation of each ܮ (recall a rational translation of ܮ refers to a 
motion which is a translation in the coordinate system of ܮ). 
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    For integers ݊,݀, ݅, ݆,	 let ܮ
ௗ,,,	denote the translation of ܮ by the amount ( 

ௗ
	 , 
ௗ
	) (in the 

coordinate system of ܮ). 
    Note for the following the simple fact that if two distinct points ݕ,  ,ܮ lie on a lattice ݖ
then ܮ is definable from ݕ and ݖ. In fact, there are only finitely many lattices containing 
both ݕ and ݖ. More generally, if ݕ,  then ,ܮ both have rational coordinates with respect to ݖ
 .ݖ and ݕ is definable from ܮ
 
Claim (5.1.10)[190]. For each ݊ and rationals  

ௗ
	 , 
ௗ
	, there is a finite set of lines ܩ( 

ௗ
	 , 
ௗ
	) 

with the following property: if ܿ ∈ 	 ܵழఈሬሬ⃗ 	 does not have rational coordinates with respect to 
ݖ , ifܮ ∈ ܮ

ௗ,,, , and if ߩ(ܿ, ଶ(ݖ ∈ ℚ, then ݖ ∈ )ܩ⋃	 
ௗ
	 , 
ௗ
	) 	 . 

        Suppose there is a ݖଵ ∈ ܮ	
ௗ,,, and a	ܿଵ ∈ 	ܵழఈሬሬ⃗ 	not rational with respect to ܮ such that 

,ଵݖ)ߩ ܿଵ)ଶ ∈ ℚ	(otherwise there is nothing to prove). Let ݈ଵ 	= 	݈(ܿଵ,ܮ
ௗ,,,	) be the line 

(necessarily through ݖଵ) given by Lemma (5.1.7). Suppose there is a ݖଶ ∉ 	 ݈ଵ, ଶݖ ∈ ܮ
ௗ,,,	, 

and a	ܿଶ ∈ ܵழఈሬሬ⃗  not rational with respect to ܮ with ݖ)ߩଶ	, ܿଶ)ଶ ∈ ℚ (necessarily ܿଶ ≠ 	 ܿଵ). 
Let  ݈ଶ 	= 	݈(ܿଶ, ܮ

ௗ,,,) be given by Lemma (5.1.7). Continuing, construct ݖ ∈
ܮ	
ௗ,,,	, ܿ ∈ 	ܵழఈሬሬ⃗  if possible so that ݖ ≠ 	 ݈ଵ⋃ 	⋯⋃ 	 ݈ିଵ and ݖ)ߩ; 	ܿ)ଶ ∈ ℚ. If the 

construction fails at some point, then the claim is proved. Assume toward a contradiction 
that we continue to produce an infinite sequence ݖଵ, ܿଵ, ,ଶݖ ܿଶ,⋯ . Note that the ܿ are 
distinct. Let ⃗ߚ 	= 	 ⋯,	ߚ⃗) ,  be the terminal index (where ݈ depends on ݉) such that	)	ߚ⃗
ܿ ∈ 	ܰఉሬሬ⃗  . Thus, ⃗ߚ 	< ሬሬሬ⃗ߙ	 . Easily, there is a ݇ᇱ ≤ 	݇ such that for infnitely many ݉ we 
have ߚ 	= 	 ᇲିଵߚ⋯,ߙ

 	= 	 ᇲߚ ᇲିଵ, andߙ
 		< 	 	′݇ ᇲ (we allowߙ = 	0, in which case we 

have  ߚ < ߛ⃗ ). Letߙ 	= 	 ⋯,ߙ) ᇲߙ, 	). Thus ⃗ߛ ≤  and for these infnitely many ݉ we ,ߙ⃗
have ܿ ∈ ఊሬሬ⃗	ܯ	 			. Let ݉ଵ,݉ଶ,݉ଷ be three such  ݉. Let  ݎଵ 	= భܿ)ߩ , భݖ 	), and similarly 
for ݎଶ	,   and theݎ ଷ. We apply Lemma (5.1.29) to the circles with centers at ܿ of radiiݎ
points  ݖ	 . Note that we are not in the exceptional case of Lemma (5.1.29), as otherwise 
we would have ݖ)ߩభ , (మݖ 	= ,ଵܿ)ߩ ܿమ 	). This contradicts the fact that 

,൫ܿଵߩ ܿమ 	൯
ଶ
∉ ℤ as they lie in ܵழఈሬሬ⃗  (note that ߩ൫ݖభ , మ൯ݖ

ଶ
∈ ℤ as ݖభ 	, మݖ  lie in ܮ

ௗ,,, 
). From Lemma (5.1.29), the points  ݖభ 	, యݖ , and	ଶݖ  are definable from ܿభ 	, ܿమ, and 
ܿయ . Since ܮ is definable from ݖభ 	, యݖ ଶ, andݖ  (in fact, from any two of them), ܮ is 
definable from ܿଵ, ܿమ , and ܿయ . It follows from Lemma (5.1.9) that ܮ lies in some ܯఉሬሬ⃗ , 
for  ⃗ߚ ≤ ܮ This contradicts .ߙ⃗ ∈ ܰఈሬሬ⃗ . 
        
     We next construct a sequence of points {ݔ}∈ఠ , which we view ‘’potential points’’ to 
be added to the set ܵழఈሬሬ⃗   to form  ܵఈሬሬ⃗ . We will in fact have  ܵఈሬሬ⃗ − ܵழఈሬሬ⃗ 	⊆ ݔ} ∶ 	݉ ∈ ߱}. 
     Let (݊, ݀, ݅, ݆, ܽ,ܾ, ( → (݊, ݀, ݅, ݆, ܽ,ܾ, ( ∈ 	߱ be a fixed bijection between ߱ and ߱. 
For ݉ ∈ ߱, let (݉), (݉)ଵ,⋯ be the ‘’decoding functions’’ for our bijection, that is, 
݉	 = 〈	(݉), (݉)ଵ,⋯	(݉)〉. If the integer ݉ is understood, we will write ݊ for (݉), ݀ 
for (݉)ଵ, etc. Let ܯ

ௗ,,,, ܮ	⊇
ௗ,,	be the sublattice of points whose coordinates in the ܮ 

system are of the form ( 
ௗ
	+ 	݇, 

ௗ
	+ 	݈), where ݇	 ≡ 	ܽ, ݈	 ≡ 	ܾ mod ݀. 

   We inductively construct the ݔ to satisfy the following (here ݊ denotes (݉), ݀ denotes 
(݉)ଵ, etc.): 
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      (i)	ݔ ∈ ܯ	
ௗ,,,, 

      (ii) If 	݉ଵ ≠ 	݉ଶ	, then ݔభ మݔ	≠  . 
      (iii) Suppose  ݉ଵ 	< 	݉ଶ. If ݔభ does not have rational coordinates with respect to 
మܮ 	(= మݔ ), then	(ଶ݉)ܮ	 ∉ భݔ)݈	 మܮ, 	), where ݈(ݔభ ,  .is as in Lemma (5.1.7)	మ)ܮ
      (iv) ݔ ∉ )ܩ⋃	 

ௗ
	 , 
ௗ
	)	. 

      Since at each step there are only finitely many points and lines to avoid, there is no 
problem defining the sequence {ݔ}. 
 
Claim (5.1.11)[190]. For each ݊, there is at most one point in ܵழఈሬሬ⃗ |(݉)ݔ}⋃ ≠ 	݊}	 
having rational coordinates with respect to ܮ. 
 
Proof. Suppose ݕ and ݖ were two such points. Suppose first both ݕ and ݖ were in 
ܵழఈሬሬ⃗ . Say ݕ ∈ 	 ܵఉሬሬ⃗ భ − ⋃ ܵఊሬሬ⃗ఊሬሬ⃗ ழఉሬሬ⃗ భ

, ݖ ∈ 	 ܵఉሬሬ⃗ మ −⋃ ܵఊሬሬ⃗ఊሬሬ⃗ ழఉሬሬ⃗ మ
  where ⃗ߚଵ ≤ ଵߚ⃗ ଶ. Ifߚ⃗ 	=  ଶ, thenߚ⃗

each of ݕ, lies on a lattice in ܰఉሬሬ⃗ ݖ మ . Since ܮ is definable from ݕ and ݖ,   is definableܮ

from two points which lie in some ܯఉሬሬ⃗ 	
	for some ⃗ߚ	 ≤ 	  From Lemma (5.1.9) it follows .ߙ⃗

that ܮ ∈ 	⋃ ఊሬሬ⃗ఊሬሬ⃗ܯ ஸ	ఈሬሬ⃗ , a contradiction. If  ⃗ߚ	ଵ 	< 	  then from inductive property (v) we	ଶ,	ߚ⃗
have either ݕ)ߩ, ଶ(ݖ ∉ ℚ which is impossible (as both ݕ,  have rational coordinates with ݖ
respect to ܮ), or else ݕ,  in ܮ both have rational coordinates with respect to some lattice ݖ
ܰఉሬሬ⃗ 	మ 	. This would again imply that ܮ ∈ 	⋃ ఊሬሬ⃗ఊሬሬ⃗ܯ ஸ	ఈሬሬ⃗ , a contradiction. Suppose next that 
ݕ ∈ ܵழఈሬሬ⃗  and ݖ	 = where (݉)	ݔ ≠ 	݊. Since ݕ and ݖ are rational with respect to ܮ we 
have  ݕ)ߩ, ଶ(ݖ ∈ ℚ . Since ݔ ∉ )బ()ܩ⋃	 

ௗ
	 , 
ௗ
	) (where ݀	 = 	 (݉)ଵ, ݅	 = 	 (݉)ଶ, ݆	 =

(݉)ଷ), we must have that ݕ is rational with respect to ܮ(݉) (as otherwise ݕ)ߩ, ଶ(ݖ ∉ ℚ). 
Thus, both ݕ and ݖ have rational coordinates with respect to both ܮ and (݉) , a 
contradiction to Lemma (5.1.8). Suppose now ݕ	 = 	 భݔ 		, 	ݖ = 	  మ, whereݔ
(݉ଵ), (݉ଶ) ≠ 	݊. Let ݊ଵ 	= 	 (݉ଵ), ݊ଶ 	= 	 (݉ଶ), and assume without loss of 
generality that ݉ଵ 	< 	݉ଶ. Again, ݕ)ߩ, ଶ(ݖ ∈ ℚ, as both are rational with respect to ܮ. 
From the definition of ݔమ 	, we must have that ݔଵ is rational with respect to ܮమ  (as 
otherwise ݕ)ߩ, ଶ(ݖ ∉ ℚ). 
Thus, both ݕ and ݖ are rational with respect to ܮ and ܮమ  , a contradiction. 
 
      Let ݓ, if it exists, be the unique point having rational coordinates with respect to ܮ 
which is either in ܵழఈሬሬ⃗ 	or of the form ݔ for some ݉ with (݉) ≠ 	݊ . 
       By induction on ݊ we define sets ܶ ⊆ ݔ} ∶ 	 (݉) 	= 	݊}. Assume ܶ,⋯ , ܶିଵ have 
been defined, and for ݅	 < 	݊, ܶ 	⊆ ݔ} ∶ 	 (݉) 	= 	݅}. Let ଵܲ 	= ݔ} ∶ 	 (݉) 	= 	݊}. Let 
ଶܲ 	= 	 ଵܲ − ݓ} ∶ 	݅	 < 	݊}. If ݓ exists and ݓ ∈ ܵழఈሬሬ⃗ 	⋃⋃ ܶழ , let ݓ	 =   andݓ	
ܲ	 = 	 ଶܲ	⋃{ݓ}.	 If ݓ exists, but ݓ ∉ ܵழఈሬሬ⃗ 	⋃⋃ ܶழ , let ܲ	 = 	 ଶܲ −  be ݓ and let {ݓ}
some point in ܲ. If ݓ does not exist, let ܲ	 = 	 ଶܲ and let ݓ be some point in ܲ. Now 
apply Lemma (5.1.12) to the lattice ܮ, the set ܲ, and the point ݓ. Let ܶ be the set 
produced from Lemma (5.1.12). 
     Let ܵఈሬሬ⃗ 	= 	 ܵழఈሬሬ⃗ ⋃⋃ ܶ .	Clearly ܵఈሬሬ⃗  meets each lattice in each ℒ, and ܵఈሬሬ⃗ ⊆
⋃ ⋃ℒఉሬሬ⃗ ,ఉሬሬ⃗ ஸఈሬሬ⃗ , . Thus, inductive property (ii) is still satisfied. Properties (i) and (iii) are 
trivially satisfied. By construction, if ݖ ∈ ܵఈሬሬ⃗ −	ܵழఈ (say ݖ ∈ 	 ܶ −	⋃ ܶழ ) and 
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ݕ ∈ ܵழఈሬሬ⃗ , then either ݕ)ߩ, ଶ(ݖ ∉ ℚ	or ݕ,  . Thusܮ are both rational with respect to ݖ
property (v) continues to hold. 
     To complete the proof, we show that ݕ)ߩ, ଶ(ݖ ∉ ℤ for any ݕ, ݖ ∈ ܵఈሬሬ⃗ . By induction, we 
may assume ݕ, do not both lie in ܵழఈሬሬ⃗ ݖ . Suppose first that ݕ ∈ ܵழఈሬሬ⃗  and ݖ ∈ 	 ܶ − ⋃ ܶழ . 
Say ݖ	 = 	 . Note that (݉)ݔ 	= 	݊ as otherwise ݖ	 =  , and this is impossible sinceݓ	
from the construction ݓ ∈ 	 ܶ	implies ݓ ∈ ⋃ ܶழ . If ݕ does not have rational 
coordinates with respect to ܮ	, then since ݔ ∈ 	ܲ	(ܲ as in the definition of ܶ) and 
ܲ	 ∩ (	⋃ )ܩ 

ௗ
	 , 
ௗ
	)	) 	= 	∅;, we would have ݕ)ߩ, ଶ(ݖ ∉ ℚ	. 

So, assume ݕ is rational with respect to ܮ, and hence ݕ	 =  ,in this case	. In defining ܶݓ	
we took ݓ	 = ݖ  in applying Lemma (5.1.12). Sinceݓ	 ∈ 	 ܶ, we therefore have 
,ݕ)ߩ ଶ(ݖ ∉ ℤ. Suppose next that y first appears in ܶభ , and ݖ first appears in ܶమ  . From the 
construction it again follows that ݕ	 = 	 భݔ  where (݉ଵ) 	= 	 ݊ଵ, and ݖ	 = 	  ଶ whereݔ
(݉ଶ) 	= 	 ݊ଶ (in fact, ݕ ≠ భݓ	  and ݖ ≠ మݓ 	). If ݊ଵ 	= 	 ݊ଶ, then from the definition of ܶభ  
we have ݕ)ߩ, ଶ(ݖ ∉ ℤ. Assume without loss of generality that ݊ଵ 	< 	 ݊ଶ. If ݔభ 	= మݓ	  , 
then by definition of ܶమ  we have ݕ)ߩ, ଶ(ݖ ∉ ℤ, so assume ݕ	 = 	 భݔ ≠ మݓ	 . By 
construction, ݖ	 = 	 మݔ ≠ భݓ	 , as ݊ଵ 	< 	 ݊ଶ (ݓభ cannot first get into ܶమ  as ݊ଵ 	< 	 ݊ଶ; 
recall the definition of ଶܲ). Thus, ݕ does not have rational coordinates with respect to ܮమ , 
and ݖ does not have rational coordinates with respect to ܮభ . If say ݉ଵ 	> 	݉ଶ (the other 
case being identical), it now follows from the definition of ݔభ  that ߩ൫ݔభ , మݔ 	൯

ଶ
∉ ℚ. 

       This completes the proof of Theorem (5.1.2), assuming Lemmas (5.1.12) and (5.1.29). 
 
Lemma (5.1.12)[190]: Let ܮ be a lattice, and let ݓ be a point having rational coordinates 
with respect to ܮ. Let ܲ be a (countable) set of points containing ݓ, all of which have 
rational coordinates with respect to ܮ, and satisfying the following: for all integers 
݀, ݅, ݆, ܽ, ܾ, there are infinitely many points of ܲ which have coordinates with respect to ܮ 
of the form ( 

ௗ
	+ ݇, 

ௗ
	+ ݈), where ݇, ݈ are integers with ݇	 ≡ 	ܽ mod ݀, ݈	 ≡ 	ܾ mod ݀. 

Then there is a set ܵ satisfying:  
    (i) For every rational translation ܮ′ of ܮ we have ܵ	 ∩ ᇱܮ	 ≠ 	∅.  
    (ii) For all distinct ݖଵ, ଶݖ 	 ∈ 	ܵ we have ݖ)ߩଵ, ଶ)ଶݖ ∉ ℤ.  
    (iii)	ݓ	 ∈ 	ܵ.  
    (iv) ܵ	 ⊆ 	ܲ.  
     Note that Lemma (5.1.12) immediately implies Lemma (5.1.13) taking ܲ to be the set 
of all points having rational coordinates with respect to ܮ.  
 
Proof : Our goal is to prove Lemma (5.1.12). Actually, we concentrate on proving Lemma 
(5.1.13), as a minor adjustment to this proof will prove Lemma (5.1.12). 
      Throughout we use the following notation. For ܽ,ܾ ∈ ℤ we write ܽ|ܾ for ′′ܽ divides 
ܾ′′. If ܾ	 > 	0, we write ܽ mod ܾ for the unique 0	 ≤ ܽ′	 < 	ܾ with ܽ′	 ≡ ܽ mod ܾ. For 
rationals ݎ, ,௦ܮ let ,ݏ 	= ℤଶ 	+ ,ݎ)	 ,ݎ) be the rational translation of ℤଶ by (ݏ  .(ݏ
      Recall the statement of Lemma (5.1.13): 
Lemma (5.1.13)[190]: Then there is a set ܵ	 ⊆ ℝଶ satisfying the following: 
       (i) For every rational ݎ, ,ݏ ,௦ܮ⋂	ܵ 	≠ ∅	;. 
       (ii) For all distinct ݖଵ, ଶݖ ∈ 	ܵ, ,ଵݖ)ߩ ଶ)ଶݖ ∉ ℤ. 
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        Let ܴ	 = ℚଶ 	⋂([0, 1) 	× 	 [0, 1)). For each positive integer ݀ let ܴௗ ⊆ ܴ be defined 
by ܴௗ 	= {( 

ௗ
	 , 
ௗ

) ∶ 	0	 ≤ 	݅; 	݆	 < 	݀}. 
        We may reformulate Lemma (5.1.13) as follows. For all (ݎ, (ݏ ∈ 	ܴ, there are integers 
݇	 = ,ݎ)݇	 	݈ and (ݏ = ,ݎ)݈	 	ܵ such that if (ݏ = 	ݎ)} + ,ݎ)݇	 ,(ݏ 	ݏ + ,ݎ)݈ ((ݏ ∶ ,ݎ	 ݏ ∈ ℚ}, 
then for all distinct ݖଵ, ଶݖ ∈ 	ܵ, ,ଵݖ)ߩ ଶ)ଶݖ ∉ ℤ (property (ii) of Lemma (5.1.13)). Thus, our 
problem is to define the integer valued functions ݇(ݎ, ,ݎ)݈ and (ݏ  .satisfying property (ii) (ݏ
     Our plan for defining these functions is to proceed inductively as follows. Assume we 
have defined the values ݇(ݎ, ,(ݏ ,ݎ)݈ ,ݎ) for all  (ݏ (ݏ ∈ 	ܴௗ	for some ݀	 > 	1. Assume that 
the partial functions ݇, ݈ so far defined satisfy property (ii), more precisely, assume:  
    	(∗)ௗ: For any distinct ቀభ

ௗ
	 , భ
ௗ
	ቁ , ቀమ

ௗ
	 , మ
ௗ
	ቁ ݅݊	ܴௗ, ଵݖ	݂݅ 	= 	 ቀభ

ௗ
	+ 	݇ଵ, భ

ௗ
	+ 	 ݈ଵቁ , ଶݖ 	=

ቀమ
ௗ
	+ 	݇ଶ, మ

ௗ
	+ 	 ݈ଶቁ where ݇ଵ = 	݇(భ

ௗ
	 , భ
ௗ
	), ݈ଵ 	= 	݈(భ

ௗ
	 , భ
ௗ
	)), and similarly for ݇ଶ, ݈ଶ, then 

,ଵݖ)ߩ ଶ)ଶݖ ∉ ℤ. 
    Let  be a prime and ݀′	 = ,݇ We then show that we can extend the .݀	 ݈ functions to 
rational pairs in ܴௗᇲ , maintaining property (ii). This clearly suffices to prove Lemma 
(5.1.13). 
    We note that in this inductive step of the proof, it is important that we assume 
that the	݇, ݈ functions are defined on all of the points ( 

ௗ
	 , 
ௗ

) in ܴௗ (and satisfy property 
(ii), of course). It is not true in general that functions ݇, ݈ which are defined on a subset of 
ܴௗᇲ (and satisfy property (ii)) can be extended to functions 
defined on all of ܴௗᇲ also satisfying property (ii). 
    We make the following simple general observation. If ݔ	 = 	 (భ

ௗ
	+ 	݇ଵ, భ

ௗ
	+ 	 ݈ଵ) and 

	ݕ = 	 (మ
ௗ
	+ 	݇ଶ, మ

ௗ
	+ 	 ݈ଶ), then	ݔ)ߩ, ଶ(ݕ ∈ ℤ iff 

 
(݅ଵ −	 ݅ଶ)ଶ 	+ 	 (݆ଵ −	݆ଶ)ଶ 	+ 	2݀[(݅ଵ − ݅ଶ)(݇ଵ − ݇ଶ) + 	(݆ଵ −	݆ଶ)(݈ଵ −	݈ଶ)] ∈ ݀ଶℤ.							(3) 

 
We use this frequently below. We will also frequently let ܽ denote ݅ଵ −	݅ଶ	and let ܾ  
denote  ݆ଵ −	݆ଶ, in which case our equation becomes 

(ܽଶ 	+ 	 ܾଶ) + 	2݀[ܽ(݇ଵ −	݇ଶ) + 	ܾ(݈ଵ − ݈ଶ)] ∈ 	݀ଶℤ.																													(4) 
        Since the general inductive step is somewhat technical, we feel it helps to illustrate 
the main points involved by considering a special case. Thus, we first show how to define 
the ݇, ݈ functions on the points in ܴ , for  a prime, and then show how to extend the 
functions from ܴ  to ܴశభ . [We could start with ݊	 = 	1, but this does not really simplify 
the argument, and would cause us to repeat part of the argument.] These arguments are not 
necessary for the general case, and we may choose to skip down to the general argument. 
     So, let ݀	 = 	 ଵݖ . Consider two points of the form 	= 	 ( భ


	+ ݇ଵ, భ


	+ ݈ଵ) and 

ଶݖ 	= ( మ

	+ ݇ଶ, మ


	+ ݈ଶ), where 0 ≤ 	 ݅ଵ, ݅ଶ, ݆ଵ, ݆ଶ 	< 	 , and ݇ଵ ݇ଶ, ݈ଵ, ݈ଶ are integers. 

Substituting into equation (4), we see that ݖ)ߩଵ, ଶ)ଶݖ ∉ ℤ unless 
 

(ܽଶ 	+ 	ܾଶ) + [ܽ(݇ଵ2	 −	݇ଶ) + 	ܾ(݈ଵ −	݈ଶ)]	 ≡  (5)																					ଶ.	݀݉		0	
     
      First note that if 	 = 	2 or  ≡ 	3 mod 4, then we may define the ݇, ݈ values arbitrarily 
and equation (5) will have no solutions. For clearly if equation (4) holds, then we must 
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have |ܽଶ 	+ 	 ܾଶ. Since 0 ≤ 	 ݅ଵ, ݅ଶ 	< 	 ,   does not  does not divide ܽ, and likewise
divide ܾ. Say ܽ	 = 	 ,ݑℯ ܾ	 = 	 ,where ℯ ,ݑ ݂	 < 	݊ and ݑ,  Suppose . are prime to 	ݒ
w.l.o.g. that ℯ ≤ ݂. Dividing equation (5) through by 	ଶℯ we get ݑଶ 	+ ଶݒଶିଶℯ	 ≡ 0 

mod . This implies ℯ	 = 	݂. Hence, ݑଶ 	+ ଶݒ	 ≡ 0	 mod . Thus, ቀ௩
௨
ቁ
ଶ
≡ −1	mod , a 

contradiction if  ≡ 3 mod 4, since −1 is not a square mod  in this case. If 	 = 	2, then 
since ݑ, ଶݑ ,are both odd ݒ 	+ 	 ଶݒ 	≡ 2 mod 4. Dividing equation (5) through by 	ଶℯ gives 
 

ଶݑ) 	+ (ଶݒ	 + ଵ݇)ݑ]ିℯ	2	 −	݇ଶ) + ଵ݈)ݒ	 −	 ݈ଶ)] ≡  .ଶ(ିℯ)		݀݉		0
 
This is impossible, however, as 4 divides the remaining terms in this equation. 
Thus, if 	 = 	2 or  ≡ 	3 mod 4, we may define the ݇, ݈ functions arbitrarily on ܴ 	 and 
property (ii) will be satisfied. For the rest of the special case we therefore assume  ≡
1	mod 4. 
    Recall that if  ≡ 1	mod 4, then there are exactly two square roots of −1 mod  for 
any ݉. Let ߣ, 	with 0 ,ߤ < ߤ,ߣ	 < 	  . Note that , be the two square roots of −1 mod
ߣ ≡ 	݇ . Note also that for any mod	ߤ− <  are the two (	݀݉	ߤ) and (	݀݉	ߣ) ,݊	
square roots of −1 mod . 
    As we remarked above, if equation (5) holds, we must have |ܽଶ 	+ 	ܾଶ. In this case, if 

,) ܽ) 	= 	1 (and hence also (,ܾ) 	= 	1), this gives	ቀ

	ቁ
ଶ
≡ −1 mod ,	and hence either 

ܾ ≡ ܾ , or mod ܽߣ ≡  or else equation (5)	,ܾ| and hence) ܽ| . Suppose now mod	ܽߤ
cannot hold). Say ܽ	 = 	 ,ݑℯ ܾ	 = 	 ,where ℯ ,ݒ ݂	 < 	݊,	and (, (ݑ 	= 	 ,) (ݒ 	= 	1. 
Assuming ℯ ≤ 	݂ (the other case being similar), putting these into equation (5), and 
dividing through by ଶℯ we have  
 

൫ݑଶ 	+ ଶ൯ݒ	ଶିଶℯ	 + ଵ݇)ݑିℯൣ	 −	݇ଶ) + 	 ଵ݈)ݒିℯ −	݈ଶ)൧ ∈ 	  .ଶିଶℯℤ
 
This clearly implies ℯ	 = 	݂. Also, using a previous remark, ݒ ≡  ିℯ or	mod	ݑߣ
ݒ ≡  ℯ, we conclude that in all cases for equationିℯ. Multiplying through by mod ݑߤ
(5) to hold, we must have either ܾ ≡ ܾ , or mod ܽߣ ≡  . mod ܽߤ
    Suppose, for example, that equation (5) holds and ܾ ≡  ,. Let ଔ̃ be the integer mod ܽߣ
0 ≤ ଔ̃ < 	 , such that ଔ̃ 	+ ଵ݅ߣ ≡	 ݆ଵ mod . Note that ଔ̃ 	+ ଶ݅ߣ ≡	 ݆ଶ  mod  as well. Let 
ଵ̅ܬ = ଔ̃ 	+ ଵ̅ܬ ଵ, and let ݉ଵ be such that݅ߣ 	= 	 ݆ଵ 	+  ଶ̅ and ݉ଶ. Noteܬ Likewise define	݉ଵ.
that  ܬଵ̅ − ଶ̅ܬ 	= ଵ݅)ߣ	 −	 ݅ଶ). Also, we may express the points ݖଵ,  ଶ now asݖ

ଵݖ 	= ൭
݅ଵ

	+ 	݇ଵ,

ଵ̅ܬ

	+ 	(݈ଵ −	݉ଵ)൱ , ଶݖ 	= ቆ

݅ଶ

	+ 	 ݇ଶ,

ଶ̅ܬ

	+ 	(݈ଶ −	݉ଶ)ቇ. 

 
Substituting into equation (3), and dividing through by  we obtain: 
 

(݅ଵ −	݅ଶ)ଶ ቆ
1 + ଶߣ


ቇ	+ 	2(݅ଵ − ݅ଶ)[(݇ଵ −	݇ଶ) + ଵ݈)ߣ − ݈ଶ −݉ଵ + ݉ଶ)	] ≡  .݀݉				0

Note that this makes sense as |(1	 + 	ݎ ଶ). Letߣ < 	݊ be such that ݅ଵ − ݅ଶ =  where ,ݑ
,) (ݑ 	= 	1. This equation is then equivalent to 
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(݅ଵ −	 ݅ଶ)	 ൬
1
2
൰ ቆ

1 + ଶߣ


ቇ	+ [(݇ଵ −	݇ଶ) + ଵ݈)ߣ − ݈ଶ −݉ଵ + ݉ଶ)	] ≡  .ି݀݉				0

Rearranging, this becomes 

(݇ଵ + (ଵ݈ߣ + 	 ݅ଵ ൬
1
2
൰ ቆ

1 + ଶߣ


ቇ −  ଵ݉ߣ

(6) 

																								≡ (݇ଶ + (ଶ݈ߣ + 	 ݅ଶ ൬
1
2
൰ ቆ

1 + ଶߣ


ቇ −  ି	݀݉					ଶ݉ߣ

     This suggests the following definition. 
Definition (5.1.14)[190]. A good permutation ߨ = 	 ⋯,(1)ߨ,(0)ߨ) )ߨ, − 1)) of length 
, is a permutation of the integers (0 1,⋯ ,  − 1) such that for all ݅ଵ ≠ 	 ݅ଶ with 
0 ≤	 ݅ଵ, ݅ଶ 	< 	 ݅ଵ	 if	, − ݅ଶ 	= 	 (ݑ,) where ݑ 	= 	1, then ߨ(݅ଵ) − (ଶ݅)ߨ ≢ 0	mod ି. 
        
     We use the following simple fact. 
Fact 1. There is a good permutation of length . 
 
Proof. If ݊	 = 	1, let ߨ = 	 (0, 1,⋯ , 	 − 1). For ݊	 > 	1, suppose ݅	 = 	 ܾ + ܾଵ + ܾଶଶ +
⋯+ ܾିଵିଵ	where 0 ≤ 	 ܾ < (݅)ߨ Set . 	= 	 ܾିଵ + 	ܾଵିଶ + ⋯+ ܾିଵ. This 
easily works. 
    
     With the above arguments as motivation, we are now in a position to state precisely and 
prove two lemmas which complete the analysis for the special case 
݀	 = 	  . that we are considering
Lemma (5.1.15)[190]. Let  be a prime and ݊	 ≥ 	1. There are integer functions ݇, ݈  
defined on ܴ such that for all distinct ( భ


	 , భ


), ( మ

	 , మ


) 	 ∈ 	ܴ  we have ݖ)ߩଵ, ଶ)ଶݖ ∉

ℤ, where ݖଵ 	= 	 ቀ భ

	+ 	݇ଵ, భ


+ 	 ݈ଵቁ , ଶݖ 	= ( మ


+ 	݇ଶ, మ


+ 	 ݈ଶ), and ݇ଵ = ݇ ቀ భ


	 , భ

ቁ ,

݈ଵ 	= 	݈( భ

	 , భ


), and similarly for ݇ଶ, ݈ଶ.  
Proof. If 	 = 	2 or 	 ≡ 	3	mod 4, the result is trivial (that is, we may define the 
݇, ݈	functions arbitrarily) as shown above. So assume 	 ≡ 	1 mod 4, and let ߣ, μ	be the two 
square roots of −1 mod . Let ߨ = 	 ⋯,(1)ߨ,(0)ߨ) )ߨ, − 1))  be a good permutation 
of length .  
    Suppose now 0	 ≤ 	݅, ݆	 < 	 ,݇ , and we define the ݈ values for the corresponding point 
( 

	 , 


). Let ଔ̃	be such that ଔ̃ 	+ 	݅ߣ	 ≡ 	݆ mod , and 0	 ≤ ଔ̃ < . Let ଔ̅ = ଔ̃ +  ݉ Let .݅ߣ
be the integer such that ଔ̅ = 	݆	 +  ݉. Consider then the equation
	݇	 + ݈ߣ ≡ (݅)ߨ + ݉ߣ	 − ଵ

ଶ
	ቀଵ	ାఒ

మ


ቁ       (7)																																			.	݀݉					݅

     Similarly, let ଔሚ̃ be such that ଔሚ̃ + ݅ߤ ≡ 	݆ mod , and let ଔ̅̅ 	= ଔሚ̃+  Let ݉′ be such that .݅ߤ
ଔ̅̅ = 	݆	 +  . Consider also the equation′݉	
 

݇	 + ݈ߤ ≡ (݅)ߨ + ′݉ߤ	 −
1
2
	ቆ

1	 + ଶߤ


ቇ  (8)																												.	݀݉					݅
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Equations (7) and (8) form a non-singular system mod , and we let (݇, ݈) be a solution 
(to be specific, say the unique solution with 0 ≤ 	݇, ݈ <  ). This completes the definition
of the ݇, ݈ functions on ܴ . 
     Suppose now that ( భ


	 , భ


) and ( మ

	 , మ


) are given with 0	 ≤ 	 ݅ଵ, ݅ଶ, ݆ଵ, ݆ଶ <  . Let

(݇ଵ, ݈ଵ) and (݇ଶ, ݈ଶ) be the corresponding values as defined above. Let ݖଵ 	= ( భ


+

	݇ଵ, భ

	+ 	 ݈ଵ) and similarly for ݖଶ. We must show that ݖ)ߩଵ, ଶ)ଶݖ ∉ ℤ.  

     Again let ܽ	 = 	 ݅ଵ 	− 	 ݅ଶ and ܾ	 = 	 ݆ଵ 	− 	 ݆ଶ. From equation (4), we must show that  
(ܽଶ 	+ 	ܾଶ) + [ܽ(݇ଵ2 	− 	݇ଶ) + 	ܾ(݈ଵ 	− 	 ݈ଶ)] ≢  	.ଶ	݀݉					0	

As we have already noted, this inequality is immediate unless ܾ	 ≡   or mod ܽߣ	
ܾ	 ≡ 	μܽ mod . Assume ܾ	 ≡  , the other case being similar. Let ଔ̃ be such mod ܽߣ	
that ଔ̃ + ଵ݅ߣ	 	≡ 	 ݆ଵ mod . Let ଔଵ̅ = ଔ̃ + ଵ, and let ݉ଵ be such that ଔଵ̅݅ߣ	 = 	 ݆ଵ 	+  .݉ଵ
Since ܾ	 ≡ , we also have that ଔ̃ mod ܽߣ	 + ଶ݅ߣ 	≡ 	 ݆ଶ mod . Let ଔଶ̅ = 	 ଔ̃ +  ଶ, and let݅ߣ
݉ଶ be such that	ଔଶ̅ = 	 ݆ଶ 	+ ݉ଶ. Note that ଔଵ̅ − ଔଶ̅ 	= ଵ݅)ߣ	 	− ݅ଶ). If we let ݎ	 < 	݊	be 
such that ݅ଵ −	 ݅ଶ 	= 	 ,) where	ݑ (ݑ 	= 	1, then as we showed above, this equation 
reduces to  

(݇ଵ + (ଵ݈ߣ	 + 	 ݅ଵ ൬
1
2
൰ ቆ

1	 + ଶߣ


ቇ −  (9)																																																								ଵ݉ߣ	

≢ (݇ଶ 	+ (ଶ݈ߣ	 + 	 ݅ଶ ൬
1
2
൰ ቆ

1	 + ଶߣ


ቇ −  .ି	݀݉					ଶ݉ߣ	

Substituting in the definitions of ݇ଵ, ݈ଵ, ݇ଶ, ݈ଶ (cf. equation (7); note that this equation holds 
mod , and so mod ି) this becomes ߨ(݅ଵ) 	≢  ,ି. This, however mod (ଶ݅)ߨ	
follows immediately from the definition of ݎ and the fact that ߨ is good.  
     The following remark on the proof just given will be used in the following arguments.  
Lemma (5.1.16)[190]. Suppose to all 0	 ≤ 	݅, ݆	 < 	   we have assigned a pair of integers
(݇, ݈) = (݇(݅, ݆), ݈(݅, ݆)) such that for any pair of distinct points of the form ݖଵ = ( భ


	+

݇(݅ଵ, ݆ଵ), భ

	+ ݈(݅ଵ, ݆ଵ)), ଶݖ 	= 	 ( మ


+ ݇(݅ଶ, ݆ଶ), మ


+ ݈(݅ଶ, ݆ଶ)) we have ݖ)ߩଵ, ଶ)ଶݖ ∉ ℤ. For 

each of the two square roots ߣ,μ of −1 mod , for each 0	 ≤ ଔ̃ <  , , and for each
0	 ≤ 	݅ < 	  , define 0 ≤ (݅)ఫ̃ఒߨ <    to be the integer such that

(݅)ఫ̃ఒߨ ≡ 	 ൫݇(݅, ݆) + ,݅)݈ߣ	 ݆)൯ − 	݉ߣ	 +
1
2
ቆ

1	 + ଶߣ	


ቇ  	.	݀݉								݅

Here 0	 ≤ 	݆ < 	 . is the integer such that ଔ̃ + 	݅ߣ	 ≡ 	݆ mod , and also ଔ̃ + 	݅ߣ	 = 	݆	 +
ఫ̃ఒߨ ,. Then݉	  is a good permutation of .  
Proof. Fix one of the roots, say ߣ, and a value of ଔ̃. Let ݅ଵ and ݅ଶ be distinct integers with 
0	 ≤ 	 ݅ଵ, ݅ଶ 	< 	  . Let ݆ଵ and ݆ଶ be as in the statement of the lemma for ݅ଵ and ݅ଶ
respectively. Let ݖଵ 	= 	 ( భ


	+ ݇(݅ଵ, ݆ଵ), భ


	+ ݈(݅ଵ, ݆ଵ)), and ݖଶ 	= ( మ


+ ݇(݅ଶ, ݆ଶ), మ


+

݈(݅ଶ , ݆ଶ)) . Note that if ܽ	 = 	 ݅ଵ 	− 	 ݅ଶ and ܾ	 = 	 ݆ଵ 	− 	 ݆ଶ, then we are in the case where 
ܾ	 ≡ . Let ଔଵ̅ mod ܽߣ	 = ଔ̃ + ଵ and ଔଶ̅݅ߣ	 = ଔ̃ + ,ݔ)ߩ ଶ. Since݅ߣ	 ଶ(ݕ ∉ ℤ, equation (3) 
becomes:  
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(݅ଵ − ݅ଶ)ଶ + ൫ߣ(݅ଵ − ݅ଶ) − (݉ଵ −݉ଶ)൯
ଶ
	

+ ൣ(݅ଵ2 − ݅ଶ)(݇ଵ − ݇ଶ) + ൫ߣ(݅ଵ − ݅ଶ) − (݉ଵ −݉ଶ)൯(݈ଵ − ݈ଶ)൧
≢  .ଶ	݀݉			0	

Dividing through by , this is equivalent to:  

(݅ଵ −	݅ଶ)ଶ ቆ
1	 + ଶߣ	


ቇ	− ଵ݅)ߣ2	 	− 	 ݅ଶ)(݉ଵ 	− 	݉ଶ)

+ 2[(݅ଵ −	݅ଶ)(݇ଵ −	݇ଶ) + ଵ݅)ߣ	 −	݅ଶ)(݈ଵ 	− 	 ݈ଶ)] ≢  	.	݀݉				0	
Suppose now ݅ଵ −	݅ଶ 	= 	 	ݎ where ݑ < 	݊ and (, (ݑ 	= 	1. Dividing through by 
2(݅ଵ −	 ݅ଶ)	we have:  

(݅ଵ −	 ݅ଶ)	
1
2
	ቆ

1	 + ଶߣ	


ቇ	− ଵ݉)ߣ 	− 	݉ଶ) + [(݇ଵ −	݇ଶ) + ଵ݈)ߣ	 	− 	 ݈ଶ)] ≢  .ି	݀݉					0	

Using the definitions of ߨఫ̃ఒ 	(݅ଵ) and ߨఫ̃ఒ(݅ଶ), this becomes ߨఫ̃ఒ(݅ଵ) 	≢  ,ି ఫ̃ఒ(݅ଶ) modߨ
and we are done. 
     Suppose now the ݇, ݈ functions have been defined at all points of ܴ  and satisfy (∗). 
We now show how to extend these functions to ܴశభ satisfying (∗)శభ . We again assume 
 ≡ 	1 mod 4, as otherwise the extension is arbitrary. Again let ߤ,ߣ denote the square 
roots of −1 mod . Let ߣ′,  ାଵ, chosen so that denote the square roots of −1 mod ′ߤ
ߣ ≡ ߤ  and mod ′ߣ ≡ . For each 0 mod ′ߤ ≤ ଔ̃ < ఫ̃ߨ,	ఫ̃ఒߨ , let

ఓ be the good 
permutations of length  from Lemma (5.1.16). 
    For each 0 ≤ ଔ̃ 	< 	 ఫ̃ఒߪ ାଵ we define good permutations

ᇲ
ఫ̃ߪ,

ఓᇲ 	 of length ାଵ. If  
does not divide ଔ̃	, let these be arbitrary good permutations of length ାଵ. It remains to 
define the permutations ߪఫ̃	ఒ

ᇲ
ఫ̃ߪ,	

ఓᇲ 	0	ݎ݂	 ≤ ଔ̃ 	<  .
    First, for any 0	 ≤ ݅	 < 	 ఒ	ఫ̃ߪ , we define

ᇲ
 This is defined as in the statement of .(݅)

Lemma (5.1.16), using ାଵ. To be specifc, let 0 ≤ ఒ	ఫ̃ߪ
ᇲ
(݅) 	< 	  ାଵ be such that

ఒ	ఫ̃ߪ
ᇲ (݅) ≡ 	 (݇	 + (ᇱ݈ߣ − ᇱ݉ᇱߣ + ൬

1
2
൰ ቆ

1 + ᇱଶߣ

ାଵ
ቇ݅									݀݉	ାଵ; 														(10) 

where ݇, ݈ are the values of the functions at the point ቀ 	
శభ

	 , 
శభ

ቁ ݆			, ≡ ଔ̃	 +  (݅)′ߣ
mod ାଵ, and ଔ̃ + (݅)′ߣ 	= 	݆	 + ݆ ାଵ݉′. Since we also have	 ≡ ଔ̃ +  , we mod ݅ߣ
also have 

ఒ	ఫ̃ߨ
	(݅) ≡ 	 (݇	 + (݈ߣ − 	݉ߣ + ൬

1
2
൰ ቆ

1 + ଶߣ


ቇ  ,	݀݉								݅

where these are the same ݇, ݈	values, and ଔ̃ + 	݅ߣ	 = 	݆	 + 	 ᇱߣ ݉. Say = ߣ	 +   Then	.݁
	݆ + 	′ାଵ݉ = ଔ̃	 + (݅)′ߣ 	= ଔ̃)	 + 	݅ߣ + (݅݁	 	= 	݆	 + ାଵ݉ +  , Hence	ାଵ݅.݁
݉′	 = 	݉	 + 	݁݅. Thus we have 

ఒ	ఫ̃ߪ				
ᇲ (݅) ≡ (݇	 + (݈ߣ	 − 	݉)ߣ	 + 	݁݅) + ൬

1
2
൰	ቆ	

1	 + 	 ଶߣ + ߣ2݁

ାଵ
ቇ  	݀݉				݅

≡ (݇	 + (݈ߣ	 − 	݉ߣ + ൬
1
2
൰ ቆ

1 + ଶߣ


ቇ  (11)																																				݀݉				݅

			≡ ఒ	ఫ̃ߨ
 																																																																					.		݀݉					(݅)	
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     We say a map ߪ from the integers ݅, 0 ≤ 	݅	 < 	  to the  ାଵ, which are divisible by
integers mod ାଵ is a partial good permutation if whenever 0 ≤ ݅ଵ, ݅ଶ 	<  ାଵ are
distinct integers with ݅ଵ − ݅ଶ 	= 	 ,) and ݑ (ݑ 	= 	1, then ߪ(݅ଵ) 	≢  .ାଵି mod (ଶ݅)ߪ
Since ߨఫ̃	ఒ

	
 is a good permutation of length , it follows now easily from the above 

equation that ߪఫ̃	ఒ
ᇲ	
is a partial good permutation. 

 
Lemma (5.1.17)[190]. If ߪ is a partial good permutation on ାଵ, then there is a good 
permutation of length ାଵ extending ߪ.  
 
Proof. For ݅ of the form ݅	 = 	 ݅ 	+ 	where 0 ݉	 ≤ 	 ݅ 	<  by defining ߪ extend ,
(݅)ߪ = (݉)ߪ + ݅. This easily works. 
      
     Now extend each ߪఫ̃ఒ

ᇲ
 to a good permutation of length ାଵ. Likewise we define the 

good permutations ߪఫ̃
ఓᇲ. Using these good permutations, we may define ݇, ݈ functions on 

ܴశభ  which satisfy (∗)శభ . Furthermore, for points of the form ( 
శభ

	 , 
శభ

), we may 
take the ݇, ݈ values already defined on ܴ , since by definition of the (partial) permutations 
ఫ̃ఒߪ

ᇲ
ఫ̃ߪ,

ఓᇲ, these values will be a solution to the two equations for ݇	 + 	݇ and ݈′ߣ	 + 	μ′݈	(the 
equation defining ݇	 +  for example, is just equation (10) rearranged). Thus, we have ,݈′ߣ	
extended ݇, ݈	functions satisfying (∗) to functions defined on all of ܴశభ 	and satisfying 
(∗)శభ . This completes the arguments for the special case ݀	 =   .
 
       We now give the general proof of Lemma (5.1.13), and note at the end how the proof 
also shows Lemma (5.1.12). The following lemma, whose proof occupies the rest, 
embodies what must be shown.  
 
Lemma (5.1.18)[190]. Let ݀ > 1, and suppose functions ݇, ݈	have been defined on ܴௗ and 
satisfy (∗)ௗ. Let  be a prime and ݀′ =  Then these functions may be extended to ܴௗᇲ .݀	
so as to satisfy (∗)ௗᇲ.  
     The proof will use the following definition and lemma, which generalize Definition 
(5.1.14)and Lemma (5.1.17).  
 
Definition (5.1.19)[190]. Let ݀ > 1, and let ݀	 = 	 ଵ

భ⋯
 be its prime decomposition. 

We say a permutation ߨ	 = ,(0)ߨ	) . . . ݀)ߨ, − 1)) of the set (0,1, . . . , ݀ − 1) is a ݀-
goodpermutation if whenever 0	 ≤ 	 ݅ଵ, ݅ଶ 	< ݀ are distinct and ݅ଵ 		− ݅ଶ 	= 	 ଵ

భ ⋯
ݒ 

where (ݒ,݀) 	= 	1, then ߨ(݅ଵ) ≢ ଵ mod (ଶ݅)ߨ	
ఎ(భିభ) ⋯

ఎ(ି) . Here, ߟ(݉) is 
defined to be ݉ if ݉	 ≥ 0, and 0 otherwise.  
     Note that the goodness conditions equivalent to saying that if ݅ଵ − ݅ଶ 	=  is ݑ where	ݒݑ	
a product of powers of primes dividing ݀ and (ݒ,݀) 	= 	1, then ߨ(݅ଵ) 	≢ mod ௗ (ଶ݅)ߨ	

௨
, 

where in writing ௗ
௨
 we adopt the convention that if any prime divides ݑ to a higher power 

than ݀, then that prime is removed completely from both the numerator and denominator. 
We also adopt this convention for the proof of the following lemma.  
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     Suppose ݀ > 1, ′݀ is a prime, and  = 	Suppose 0 .݀	 ≤ 	 ݅ௗ 	<  and by the ,
distinguished class we mean those	0 ≤ 	݅ < ݀′	with ݅	 ≡ 	 ݅ௗ mod . If ߨ(݅) is defined on 
the distinguished class and satisfies ߨ(݅ଵ) ≢ mod ௗ (ଶ݅)ߨ	

ᇲ

௨
 whenever ݅ଵ ≠ 	 ݅ଶ	are in the 

distinguished class (recall here our convention above) and ݅ଵ − ݅ଶ 	= ,ݒ	) where ݒݑ	 ݀′) 	=
	1, then we say ߨ is partially ݀′-good.  
    The next lemma is a general extension lemma which allows us to partially extend ݀′-
good permutations to good permutations.  
Lemma (5.1.20)[190]. Let ݀ > 1, let  be a prime, and let ݀′	 = Let 0 .݀	 ≤ ݅ௗ 	<  
represent a distinguished class mod . Let ߨ be defined on the distinguished class and be 
partially ݀′-good. Let ݑ be defined by ݀′ = ,ݑ) , whereݑ	 ( = 1. Let ݏ: ݀′ → 	݀′ be a 
function satisfying the following:  
     (i) If ݅ଵ 	≡ 	 ݅ଶ	mod , then ݏ(݅ଵ) =   .(ଶ݅)ݏ
     (ii) ݏ(݅) is divisible by ݑ for all ݅.  
     (iii) For ݅ in the distinguished class, ݏ(݅) = 0	.  
     (iv) For all ݅, ݅ + (݅)ݏ ≡ ݅ௗ mod .  
      Define ߪ by ߪ(݅) = 	݅)ߨ + (′݀	݀݉		(݅)ݏ	 + ௦()

௨
-′݀ and is ߨ extends ߪ Then .′݀	݀݉		݀

good.  
Proof. From (iii) it is clear that ߪ extends ߨ. To show goodness, suppose 0	 ≤ 	 ݅ଵ, ݅ଶ 	< ݀′. 
Let ݅ଵᇱ 	= 	 ݅ଵ 	+ ,′݀	݀݉			(ଵ݅)ݏ	 ݅ଶᇱ 	= 	 ݅ଶ 	+ Suppose first that ݅ଵ .′݀	݀݉			(ଶ݅)ݏ	 	≡ 	 ݅ଶ mod 
Then by (i), ݅ଵᇱ . 	− ݅ଶᇱ 	≡ 	 ݅ଵ 	− ݅ଶ	mod ݀′. Also, from the definition of ߪ,ߪ(݅ଵ) − (ଶ݅)ߪ ≡
ଵᇱ݅)ߨ	 ) − ଶᇱ݅)ߨ ) mod ݀′. Since ߨ is partially ݀′-good, the result follows.  
      Suppose now ݅ଵ 	− ݅ଶ is not divisible by . Say, ݅ଵ 	− ݅ଶ 	= 	 (′݀,ݒ) where ݒଵݑ = 1 and 
(,ଵݑ	) 	= 	1. Consider first the case where ݅ଵᇱ 	= 	 ݅ଶᇱ , with ݅ଵᇱ , ݅ଶᇱ  as above. Then ߪ(݅ଵ) 	−
(ଶ݅)ߪ	 	≡ 	௦(భ)ି௦(మ)

௨
݀. Since ݏ(݅ଵ) 	− (ଶ݅)ݏ	 	≢ 	0 mod  in this case, we have ߪ(݅ଵ) 	≢

	݀ : (note mod (ଶ݅)ߪ	 =  divides ௗ ିଵ). Sinceݑ	
ᇲ

௨భ
	(using our conventions), the result 

follows. Suppose finally that ݅ଵᇱ ≠ ݅ଶᇱ . From (ii) it follows that ݑଵ|(݅ଵᇱ 	− ݅ଶᇱ ). Also, |(݅ଵᇱ 	−
݅ଶᇱ ). So by partial goodness, ߪ(݅ଵᇱ ) 	≢ ଶᇱ݅)ߪ	 ) mod ௗ

ᇲ

௨భ
	= ௗ

௨భ
. Since ߪ(݅ଵ) 	≡  ,݀ mod (ଵᇱ݅)ߪ	

and likewise for ݅ଶ, it follows that ߪ(݅ଵ) 	≢ mod ௗ (ଶ݅)ߪ	
ᇲ

௨భ
, and hence are not equivalent 

mod ௗ
ᇲ

௨భ
.  

     We say that a prime is trivial if 	 = 	2 or 	 ≡ 	3 mod 4. Otherwise, we say  is non-
trivial. The next lemma shows that we need only consider the non-trivial primes.  
Lemma (5.1.21)[190]. If Lemma (5.1.18) holds for all d which are divisible by only non-
trivial primes, then the lemma holds for all ݀.  
Proof. Let ݀	 = 	 ଵ

భ ⋯
ݍଵ

భ ݍ⋯
	, where the  are non-trivial and the ݍ are trivial. 

We assume the ݇, ݈ functions are defined on ܴௗ and satisfy (∗)ௗ. Let ݀ᇱ =  and assume ,݀
first that  is non-trivial. Let ܲ	 = ଵ

భ⋯
 		,ܲ′	 = 	ܳ and ,ܲ	 = 	 ଵݍ

భ 	 ··· ݍ
  . Let ܩ be 

the subgroup of ℚ/ℤ × ℚ/ℤ	of elements of the form ( 
ௗ
	+ 	ℤ, 

ௗ
	+ ℤ), and likewise define 

) consisting of elements of the form ܩ be the subgroup of ܪ using ݀′. Let ′ܩ 

	+ ℤ, 


	+

ℤ), and likewise define ܪ′ using ܲ′. Let ܭ be the subgroup of elements of the form 
( 
ொ
	+ 	ℤ, 

ொ
	+ ℤ). Note that the given ݇, ݈ functions may be viewed as selector functions on 
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the group ܩ, that is, functions on ܩ with (݇(ݎ	 + ℤ, ݏ + 	ℤ), 	ݎ)݈ + ℤ, ݏ + 	ℤ)) 	 ∈ 	 	ݎ) +
	ℤ, ݏ + 	ℤ). We extend these selector functions to the group ܩ′. The cosets of ܪ′ in ܩ′ are 
exactly enumerated as ܪ′	 + 	ݎ	) + 	ℤ, ݏ + ℤ), where ݎ	 + 	ℤ, ݏ + 	ℤ	 ∈  ℤ. Consider such/ܭ	
a coset of ܪ′ in ܩ′, say ܥ′	 = 	′ܪ	 + 	ݎ	) + 	ℤ, ݏ + 	ℤ). The ݇, ݈ functions are already defined 
on the corresponding coset ܥ	 = 	ܪ	 + 	ݎ	) + 	ℤ, ݏ + ℤ) of ܪ. Since ܥ,ܥ′ are translations of 
,݇ we may by assumption extend the ,′ܪ,ܪ ݈ functions from ܥ to functions  ݇′, ݈′ on ܥ′ so 
as to satisfy (∗) on ܥ′ (that is, for any distinct cosets ݔ	 = ଵݎ	) 	+ 	ℤ, ଵݏ 	+ ℤ), 	ݕ =
ଶݎ	) 	+ ℤ, ଶݏ 	+ ℤ) ∈ ,ଵݖ)ߩ,ᇱܥ ଶ)ଶݖ ∉ ℤ,  where  ݖଵ 	= ,(ݔ)′݇	) ,((ݔ)′݈ ଶݖ 	= ,(ݕ)′݇	)  .(((ݕ)′݈
Doing this for each coset of ܪ′ in ܩ′ defines the ݇′, ݈′ functions on ܩ′.  
    To see that this works, let ݔ	 = ଵݎ	) 	+ 	ℤ, ଵݏ 	+ ℤ), 	ݕ = ଶݎ	) 	+ 	ℤ, ଶݏ 	+ ℤ) be distinct 
elements of ܩ′. Let ݖଵ 	= ,(ݔ)′݇	) ,((ݔ)′݈ ଶݖ 	= ,(ݕ)′݇	)  and we show that ,((ݕ)′݈
,ଵݖ)ߩ ଶ)ଶݖ ∉ ℤ. We may assume that ݕ,ݔ are in distinct cosets of ܪ′. Thus (	ܽ, ܾ) ଵݖ	≐ 	−
ଶݖ ∉ 	ܾ,ܽ The result now follows from the fact that if .′ܪ	 ∈ ℚ and ܽଶ + ܾଶ 	 ∈ ℤ, then ܽ, ܾ 
(when reduced) have denominators divisible only by non-trivial primes.     
     The case where  is trivial is similar but easier. Briefly, view ܩ′ now as a union of 
cosets of ܪ, with ܪ as above. For those cosets which are subsets of ܩ, the ݇, ݈ functions 
are already defined, and for the other cosets they are defined easily using the fact that these 
cosets are translations of ܪ (in this case we do not use our assumption that the result holds 
for ݀ divisible by only non-trivial primes). As above, the resulting ݇′, ݈′ functions satisfy 
(∗)ௗᇲ .  
     
     Returning to the proof of Lemma (5.1.18), by Lemma (5.1.21) be may assume that ݀ 
and ݀′ are divisible by only non-trivial primes. We make this standing assumption for the 
remainder of the proof of Lemma (5.1.18).  
      Let ݀	 = 	 ଵ

భ ⋯
 	, where all of the  are non-trivial primes. We prove two lemmas 

which characterize the existence of the functions ݇, ݈ on ܴௗ satisfying (∗)ௗ in terms of the 
existence of a family of permutations satisfying certain properties.  
      Suppose ݇, ݈ functions are given on ܴௗ. Since all of the  are non-trivial primes, there 
are exactly 2 classes ߣ mod ݀ such that ߣଶ 	≡ −1 mod ݀. We refer to such a ߣ as a ݀-
root. For each ݀-root ߣ, each 0 ≤ 	 ଔ̃ < ݀,	and each 0 ≤ 	݅ < ݀, define  

(݅)ఫ̃ఒߨ = (	݇	 + (݈ߣ − 	݉ߣ +
1
2
ቆ

1 + ଶߣ

݀
ቇ  (12)																														,݀	݀݉			(݅)

where (݇, ݈) are the values associated to ( 
ௗ

, 
ௗ

), where 0	 ≤ 	݆ < ݀, and ݆,݉	are defined by 
	݆	 = ଔ̃ 	+ ݅ߣ − ݉݀. 

     We introduce two conditions on the ߨఫ̃ఒ  .  
     (d-goodness) For each 0 ≤	 ଔ̃ < ݀	and each ݀-root ߨ,ߣఫ̃ఒ is a ݀-good permutation.  
    (d-consistency) Suppose 0	 ≤ ଔଵ̃, ଔଶ̃ < ݀ and ߣଵ,   is one ଶ are both ݀-roots. Supposeߣ
of the prime factors ଵ

భ 	, . . . , 
 	and ߣଵ 	≡ 	   . Then ଶ modߣ

ఫ̃భߨ	
ఒభ 	(݅) − ఫ̃మߨ

ఒమ(݅) ≡ −
ଔଵ̃)ߣ 	− ଔଶ̃)

݀
 (13)																																		݀݉						

for any 0 ≤ 	݅ < ݀ such that  
ଵߣ)݅ 	− (ଶߣ ≡ −(ଔଵ̃ 	− ଔଶ̃)							݉݀	݀																																						(14) 

(in equation (13),ߣ could be either ߣଵ or ߣଶ; note that this expression makes sense since 
|(ଔଵ̃ 	− ଔଶ̃)).  
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     Note that the values of ݅ satisfying equation (14) are precisely those 0	 ≤ 	݅ < ݀ such 
that if we define 0 ≤	 ݆ଵ, ݆ଶ 	< ݀ (and ݉ଵ,݉ଶ) by  

݆ଵ = ଔଵ̃ 	+ ଵ݅ߣ − ݉ଵ݀, 
	݆ଶ 	= ଔଶ̃ 	+ ଶ݅ߣ − ݉ଶ݀, 

then ݆ଵ 	= 	 ݆ଶ.  
Lemma (5.1.22)[190]. Let ݀	 = ଵ

భ 	, . . . , 
 where each  is non-trivial. Assume the 

݇, ݈	functions are defined on ܴௗ and satisfy (∗)ௗ, and the ߨఫ̃ఒ  are defined by equation (12). 
Then the ߨఫ̃ఒ  satisfy the ݀-goodness and ݀-consistency conditions. 
 
Proof. Fix 0 ≤ 	 ଔ̃ < ݀ and a ݀-root ߣ. We show that ߨఫ̃ఒdefined by equation (12) is ݀-good. 
Let 0 ≤ 	 ݅ଵ, ݅ଶ 	< ݀ be distinct. Let 0 ≤	 ݆ଵ, ݆ଶ 	< ݀ and ݉ଵ,݉ଶ be defined by  

݆ଵ = ଔ	̃ 	+ ଵ݅	ߣ −݉ଵ݀,																																	 
		݆ଶ 	= ଔ	̃ 	+ ଶ݅	ߣ −݉ଶ݀,																																																																(15) 

Let ݇ଵ, ݈ଵ be the values associated to the point ݓଵ 	= (భ
ௗ
	 , భ
ௗ
	), and ݇ଶ, ݈ଶ the values 

associated to ݓଶ 	= (మ
ௗ
	 , మ
ௗ
	). If ݖଵ 	= ଵݓ	 	+ (݇ଵ, ݈ଵ) and ݖଶ 	= ଶݓ	 	+ (݇ଶ, ݈ଶ), then since 

, ,ଵݖ)ߩ ଶ)ଶݖ ∉ ℤ we have  
 

(݅ଵ 	− ݅ଶ)ଶ 	+ (	݆ଵ 	− ݆ଶ)ଶ 	+ 2݀[(݅ଵ 	− ݅ଶ)(݇ଵ 	− ݇ଶ) + (	݆ଵ 	− ݆ଶ)(݈ଵ 	− ݈ଶ)]
≢  .ଶ݀	݀݉						0

Substituting from equation (15) we have  
(݅ଵ 	− ݅ଶ)ଶ(1 + 	 (ଶߣ − 2(݅ଵ 	− ݅ଶ)(݉ଵ 	− ݉ଶ)݀ߣ	 

+2݀[(݅ଵ 	− ݅ଶ)(݇ଵ 	− ݇ଶ) + ଵ݅)ߣ 	− ݅ଶ)(݈ଵ 	− ݈ଶ)] ≢  (16)																								ଶ.݀	݀݉			0
Since ݀ divides 1 +   ଶ, we may divide through by ݀ to getߣ

(݅ଵ 	− ݅ଶ)ଶ 	ቆ
1 + ଶߣ

݀
ቇ		− 2(݅ଵ 	− ݅ଶ)(݉ଵ 	− ݉ଶ)ߣ	 

+2[(	݅ଵ 	− ݅ଶ)(݇ଵ 	− ݇ଶ) + ଵ݅)ߣ 	− ݅ଶ)(݈ଵ 	− ݈ଶ)] ≢  (17)																.݀	݀݉					0
Say ݅ଵ − ݅ଶ 	= 	 ଵ

భ 	 ··· 
 ,ݑ) where ,ݑ	 ݀) 	= 	1. Dividing through by 2(݅ଵ − ݅ଶ) we have 

(݅ଵ 	− ݅ଶ)ଶ 	ቆ
1 + ଶߣ

2݀
ቇ		− (݉ଵ 	− ݉ଶ)ߣ + [(݇ଵ 	− ݇ଶ) + ଵ݈)ߣ 	− ݈ଶ)]	 

																≢ ଵ݀݉					0
ఎ(భିభ) 	 ··· 

ఎ(ି),		 
where we recall (ݎ)ߟ = 	ݎ	if ݎ ≥ 0,and (ݎ)ߟ 	= 	0 for ݎ < 0. Since ଵ

ఎ(భିభ) 	 ··· 
ఎ(ି) 

divides ݀, we have 

ఫ̃ఒ(݅ଵ)ߨ		 ≡ (݇ଵ 	+ (ଵ݈ߣ − ଵ݉ߣ 	+ ቆ
1 + ଶߣ

2݀
ቇ ݅ଵ				݉݀	ଵ

ఎ(భିభ) 	 ··· 
ఎ(ି)														 

≢ (݇ଶ 	+ (ଶ݈ߣ − ଶ݉ߣ 	+ ቆ
1 + ଶߣ

2݀
ቇ ݅ଶ			݉݀	ଵ

ఎ(భିభ) 	 ··· 
ఎ(ି)														(18) 

≡ ଵ	݀݉											ఫ̃ఒ(݅ଶ)ߨ
ఎ(భିభ) 	 ··· 

ఎ(ି)	.																																																			 
Thus, ߨఫ̃ఒ  is ݀-good.  
   To verify ݀-consistency, suppose ߣଵ and ߣଶ are both ݀-roots, and ߣଵ 	≡ 	  , ଶ modߣ
where  is one of the prime powers occurring in ݀. Let 0 ≤	 ଔ	̃ଵ, ଔ	̃ଶ 	< ݀, and let 0 ≤ 	݅ <
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݀ be such that ݅(ߣଵ 	− (ଶߣ 	≡ −(ଔ	̃ଵ 	− ଔ	̃ଶ) mod ݀. If we let 0 ≤ 	 ݆ଵ, ݆ଶ 	< ݀ and ݉ଵ,݉ଶ be 
defined by  

݆ଵ = ଔଵ̃	 	+ 	݅	ଵߣ −݉ଵ݀,													 
			݆ଶ 	= ଔଶ̃	 	+ 	݅	ଶߣ −݉ଶ݀	,	 

then ݆ଵ 	= 	 ݆ଶ, which we now denote by ݆. Say ߣଶ 	= 	 ଵߣ 	+   ,. Thus݁
ଔ	̃ଵ 	− ଔ	̃ଶ 	= ଵߣ)݅− 	− (ଶߣ + ݀(݉ଵ 	− ݉ଶ) = ݁݅ 	+ ݀(݉ଵ 	− ݉ଶ). 

Let ݇, ݈ be the values associated to the point ( 
ௗ

, 
ௗ

). From the definition of the ߨఫ̃ఒ we have: 

݇	 + 	ଵ݈ߣ ≡ ఫ̃భߨ	
ఒభ 	(݅) + ଵ݉ଵߣ −

1
2
ቆ

1 + ଵଶߣ

݀
ቇ  				,	݀݉									݅

݇	 + 	ଶ݈ߣ ≡ ఫ̃మߨ	
ఒమ 	(݅) + ଶ݉ଶߣ −

1
2
ቆ

1 + ଶଶߣ

݀
ቇ  							݀݉								݅	

										≡ 	 ఫ̃మߨ
ఒమ 	(݅) + ଵ݉ଶߣ −

1
2
ቆ

1 + ଶଶߣ

݀
ቇ  	݀݉										݅

								≡ 	 ఫ̃మߨ
ఒమ 	(݅) + ଵ݉ଵߣ 	+ ଵߣ ൬	

݁݅

݀
−
ଔଵ̃ 	− ଔଶ̃
݀

	൰ −
1
2
	ቆ

1 + ଵߣ) 	+ )ଶ݁

݀
ቇ  						݀݉			݅

																															≡ ఫ̃మߨ
ఒమ 	(݅) + ଵ݉ଵߣ −

1
2
ቆ

1 + ଵଶߣ

݀
ቇ 	݅ −

ଵ(ଔଵ̃ߣ 	− ଔଶ̃)
݀

 .	݀݉		

Note that  divides ଔଵ̃ 	− ଔଶ̃, so the last two equations make sense. Thus, we have: 

ఫ̃భߨ
ఒభ 	(݅) − ఫ̃మߨ

ఒమ(݅) ≡ −
ଵ(ଔଵ̃ߣ 	− ଔଶ̃)

݀
 .			݀݉							

This verifies ݀-consistency. 
    
     We now establish a converse to Lemma (5.1.22). Suppose that for each ݀-root ߣ and 
each 0	 ≤ 	 ଔ̃ < ݀,a ݀-good permutation ߨఫ̃ఒ  is given, and these permutations satisfy the ݀-
consistency condition. We show how to define the ݇, ݈ functions on ܴௗ so as to satisfy 
(∗)ௗ. Fix a point ( 

ௗ
, 
ௗ

), where 0	 ≤ 	݅, ݆	 < 	݀, and define the values of ݇, ݈ associated to 
that point. Let  be one of the prime powers occurring in ݀. For any ݀-root ߣ ,ߣೌ	. =  ߣ	
mod  is one of the two square roots of −1 mod . Fix for the moment such a ߣ and 
ೌߣ . Define 0 ≤ 	 ଔ̃ < ݀ and ݉ by  

݆	 = ଔ̃ 	+ ݅ߣ − ݉݀. 
Consider the following mod  equation: 

݇	 + 	ೌ݈ߣ ≡ (݅)	ఫ̃ఒߨ + ೌ݉ߣ −
1
2
ቆ

1 + ଶߣ

݀
ቇ  (19)														.	݀݉						݅	

     We claim that the right-hand side of this equation depends only on ߣೌ . For, let ߣଵ 	=
ଶߣ is also a ݀-root with	ଶߣ and suppose ,ߣ	 	≡ 	 ଶߣ,. Say ଵ modߣ 	= 	 ଵߣ 	+  . Let݁
ଔଵ̃	,݉ଵ	 be the values using ߣଵ, and ଔଶ̃,݉ଶ the values using ߣଶ. Since 

݆	 = ଔ	̃ଵ + ଵ݅ߣ − ݉ଵ݀	 = ଔ	̃ଶ 	+ ଶ݅ߣ − ݉ଶ݀,	 
we have ݅(ߣଵ 	− (ଶߣ ≡ −(ଔଵ̃ 	− ଔଶ̃)	mod ݀. Therefore, by consistency we have 

ఫ̃భߨ
ఒభ 	(݅) − ఫ̃మߨ

ఒమ(݅) ≡ −
ଵ(ଔଵ̃ߣ 	− ଔଶ̃)

݀
 .			݀݉							

Thus 



181 

ఫ̃భߨ
ఒభ 	(݅) + ೌ݉ଵߣ 	− ቆ

1 + ଵଶߣ

2݀
ቇ ݅	

≡ ఫ̃మߨ
ఒమ 	(݅) −

ଵ(ଔଵ̃ߣ 	− ଔଶ̃)
݀

	+ ೌߣ ൬݉ଶ 	+
ଔଵ̃ 	− ଔଶ̃
݀

+ ݅
ଵߣ 	− ଶߣ

݀
൰											 

−ቆ
1 + ଶߣ) 	+ )ଶ݁

2݀
ቇ  (20)																																																										݀݉			݅

																							≡ 	 ఫ̃మߨ
ఒమ 	(݅) + ೌ݉ଶߣ 	− ೌߣ݅

݁

݀
	− ቆ

1 + ଶߣ) 	+ )ଶ݁

2݀
ቇ  		݀݉				݅

			≡ ఫ̃మߨ
ఒమ(݅) + ೌ݉ଶߣ 	− ቆ

1 + ଶଶߣ

2݀
ቇ  																							.	݀݉				݅

      This verifies the claim. Thus, for each of the two square roots ߣೌ    of −1 modߣ−,
we have unambiguous values, say ݒଵ and ݒଶ, for the right-hand sides of equation (19). For 
each prime factor , and each of the two roots ±ߣೌ  mod , we solve the system 

	݇	 + 	ೌ݈ߣ ≡ 	  	,	݀݉				ଵݒ
݇ − 	ೌ݈ߣ ≡ 	 	݀݉				ଶݒ .	 

From the Chinese remainder theorem, we may choose (݇, ݈) so that all of these systems for 
the various  are simultaneously satisfied. This completes the definition of the ݇, ݈ 
functions.  
      To verify	(∗)ௗ, let 0 ≤	 ݅ଵ, ݆ଵ, ݅ଶ, ݆ଶ 	< ݀, and let ݓଵ 	= (భ

ௗ
	 , భ
ௗ
ଶݓ ,(	 = (మ

ௗ
	 , మ
ௗ
	). let 

ଵݖ 	= ଵݓ	 + (݇ଵ, ݈ଵ), ଶݖ 	= ଶݓ	 	+ (݇ଶ, ݈ଶ), where ݇ଵ, ݈ଵ are the values as defined above for 
,ଵ, and similarly for ݇ଶݓ ݈ଶ. We must show ݖ)ߩଵ, ଶ)ଶݖ ∉ ℤ. Toward a contradiction,assume 
,ଵݖ)ߩ ଶ)ଶݖ ∈ ℤ, which becomes as usual  

	(݅ଵ 	− ݅ଶ)ଶ + (	݆ଵ 	− ݆ଶ)ଶ + 2݀[(݅ଵ 	− ݅ଶ)(݇ଵ 	− ݇ଶ) + (	݆ଵ 	− ݆ଶ)(݈ଵ 	− ݈ଶ)]
≡  (21)																																																																																											ଶ.݀	݀݉							0

     Consider for the moment one of the prime powers  of d such that if  is the exact 
power of  dividing ݅ଵ − ݅ଶ, then ݁ < ܽ (such a factor must clearly exist since |݅ଵ 	− 	 ݅ଶ| 	<
݀). Write ݅ଵ 	− 	 ݅ଶ 	= 	 ,ݑ) where ݑ ( 	= 	1. Let ݂ be the exact power of  dividing 
݆ଵ 	− 	 ݆ଶ, and write ݆ଵ 		− 	 ݆ଶ 	= 	 ,ݒ) where ,ݒ ( 	= 	1. Since < ܽ , it follows easily from 
equation (21) that ݁	 = 	݂. Dividing through by ଶ shows that ݑଶ 	+ ଶݒ	 	≡ 	0 mod ି. 
Thus, there is a square root ̅ߣ of −1 mod ି such that ݒ	 ≡  ି. There is a mod ݑߣ̅
square root ߣೌ of −1 mod  such that ߣ	 ≡ 	ݒ,ି. Thus mod ߣ̅ ≡ 	  ି as mod ݑೌߣ
well. Hence ݆ଵ − ݆ଶ 	≡ 	 ೌ(݅ଵߣ − ݅ଶ) mod .  
     If  is a prime power occurring in ݀ for which ݁ ≥ 	ܽ, equation (21) implies that 
݂	 ≥ 	ܽ as well (using the notation above). Thus, for any square root ߣ  of −1 mod  the 
equation ݆ଵ 	− ݆ଶ 	≡ ೌ(݅ଵߣ 	− ݅ଶ)	mod  holds trivially.  
     Now let ߣ be a ݀-root such that for any prime power  occurring in ݀, ߣ ≡ 	   modߣ
ೌߣ , with  as in the cases above. It follows that ݆ଵ − ݆ଶ 	≡ ଵ݅)ߣ	 − ݅ଶ) mod ݀.  
     Let 0 ≤ ଔ̃ < ݀ and ݉ଵ be defined by  

	݆ଵ 	= ଔ̃ 	+ ଵ݅ߣ 	− ݉ଵ݀.																																																																(22) 
Since ݆ଵ − ݆ଶ 	≡ ଵ݅)ߣ	 − ݅ଶ)  mod ݀, it follows that there is an ݉ଶ	 such that  

	݆ଶ 	= ଔ̃ 	+ ଶ݅ߣ 	− ݉ଶ݀.																																																															(23) 
From the definitions of ݇ଵ, ݈ଵ (in which we use the above values of ଔ̃,  this is permissible ;ߣ
by ݀-consistency) we have  
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݇ଵ 	+ ଵ݈ߣ 	≡ ఫ̃ఒ(݅ଵ)ߨ + ଵ݉ߣ 	− ቆ
1 + ଶߣ

2݀
ቇ ݅ଵ				݉݀	,݀																												(24) 

since this equation holds mod each prime power 
 occurring in ݀. Likewise, 

	݇ଶ 	+ ଶ݈ߣ 	≡ ఫ̃ఒ(݅ଶ)ߨ + ଶ݉ߣ 	− ቆ
1 + ଶߣ

2݀
ቇ ݅ଶ						݉݀	.݀																												(25) 

Substituting equations (22), (23) into equation (21) and dividing through by 2݀	we obtain  

(݅ଵ 	− ݅ଶ)ଶ ቆ
1 + ଶߣ

2݀
ቇ	− ଵ݅)ߣ 	− ݅ଶ)(݉ଵ 	− ݉ଶ) 	+ [(	݅ଵ 	− ݅ଶ)(݇ଵ 	− ݇ଶ) + ଵ݅)ߣ 	− ݅ଶ)(݈ଵ 	

− ݈ଶ)] ≡  (26)																																																																																											.݀	݀݉								0
Dividing through by ݅ଵ 	− ݅ଶ gives  

(݅ଵ 	− ݅ଶ)	 ቆ
1 + ଶߣ

2݀
ቇ	− ଵ݉)ߣ 	− ݉ଶ) + [(݇ଵ 	− ݇ଶ) + ଵ݈)ߣ 	− ݈ଶ)]														 

≡ ଵ	݀݉								0
ఎ(భିభ) 	 ··· 

ఎ(ି),																																																					(27) 
where	݅ଵ − ݅ଶ 	= ଵ

భ 	 ··· 
ݑ and (ݑ, ݀) 	= 	1. Substituting equations (24) and (25) now 

gives ߨఫ̃ఒ(݅ଵ) − ఫ̃ఒ(݅ଶ)ߨ 	≡ 	0 mod ଵ
ఎ(భିభ) 	 ··· 

ఎ(ି) . This, however, contradicts the 
assumed ݀-goodness of the ߨఫ̃ఒ  .  
     Summarizing, we have shown the following converse to Lemma (5.1.22).  
 
Lemma (5.1.23)[190]. Let ݀	 = ଵ

భ 	 ··· 
 be a product of non-trivial primes. Assume 

that for each 0	 ≤ 	 ଔ̃ < ݀ and each ݀-root ߣ a ݀-good permutation ߨఫ̃ఒ  is given, and these 
permutations satisfy the ݀-consistency condition. Then we may associate to each 
( 
ௗ

, 
ௗ

), 0 ≤ ݅, ݆	 < 	݀, integer values ݇, ݈ such that for all ݀-roots ߣ and all 0 ≤ 	 ଔ̃ <
݀	satisfying ݆	 ≡ 	 ଔ̃ 	+ 	݆ mod ݀ (say ݅ߣ = ଔ̃ + ݅ߣ − ݉݀), we have  

݇	 + 	݈ߣ ≡ (݅)ఫ̃ఒߨ	 + ݉ߣ − ቆ
1 + ଶߣ

2݀
ቇ  .݀	݀݉					݅

Furthermore, these ݇, ݈ functions satisfy (∗)ௗ.  
      To unify notation, let us now write ݀	 = ଵ

భ 	 ··· 
  and ݀′	 = ଵ

భାଵଶ
మ 	 ··· 

(thus 
we do not assume these primes are in increasing order, and we allow ܽଵ 	= 	0). The case 
ܽଵ 	= 	0 differs in only trivial notational ways from the case ܽଵ 	≥ 1, so we assume below 
all of the ܽ are positive. We are assuming the ݇, ݈ functions have been defined on ܴௗ and 
satisfy (∗)ௗ, and we must extend them to functions ݇′, ݈′ on ܴௗᇲ satisfying (∗)ௗᇲ .  
      For each 0	 ≤ 	 ଔ̃ < ݀, and each ݀-root ߣ, let ߨఫ̃ఒ  be as in Lemma (5.1.22) using the 
given ݇, ݈ functions. Thus, each ߨఫ̃ఒ  is a ݀-good permutation, and this family satisfies the ݀-
consistency condition.  
     For each ଔ̃ with 0	 ≤ ଵଔ̃	 < ݀′, each ݀′-root ߣ′ (that is, ߣᇱమ 	≡ −1 mod ݀′), and each ݅ 
with 0 ≤ ଵ݅	 < ݀′, define  

భఫ̃ߪ
ఒᇲ (ଵ݅) = (	݇	 + (ᇱ݈ߣ − 	ᇱ݉ߣ +

1
2
	ቆ

1 + ᇱమߣ

݀ᇱ
ቇ  (28)																		ᇱ݀	݀݉										(ଵ݅)

where (݇, ݈) are the values already assigned to the pair ( 
ௗ

, 
ௗ

) = (భ
ௗᇲ

, భ
ௗᇲ
	), and ݆,݉	are 

defined by 
	ଵ݆ = 	 ଵଔ̃ 	+ (ଵ݅)′ߣ −݉݀′.																																																									(29) 
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This makes sense since the right-hand side is divisible by ଵ. Thus, each ߪభఫ̃
ఒᇲ  is a partial 

function in that it is only defined on the 0	 ≤ 	݅ < ݀′ which are divisible by ଵ. We will 
momentarily extend these to fully ݀′-good permutations satisfying the ݀′-consistency 
condition, but first we catalog the properties satisfied by these partial functions.  
     First note that if ߣ	 = భఫ̃ߪ mod ݀, then ′ߣ	

ఒᇲ (ଵ݅) ≡  ఫ̃ఒ(݅) mod ݀. To see this, letߨ
	′ߣ = 	ߣ	 + 	݁݀. Thus, ݆	 = ଔ̃ 	+ ݅′ߣ	 − ݉݀	 = ଔ̃ 	+ ݅ߣ	 − (݉ − ݁݅)݀. Hence, if ݇, ݈ are the 
values associated to the pair ( 

ௗ
, 
ௗ

), then 

భఫ̃ߪ
ఒᇲ (ଵ݅) = (	݇	 + (ᇱ݈ߣ − ᇱ݉ߣ +

1
2
		ቆ

1 + ᇱమߣ

݀ᇱ
ቇ  																												ᇱ݀	݀݉						(ଵ݅)

≡ (݇	 + (݈ߣ − 	݉ߣ +
1
2
	ቆ

1 + ᇱమߣ

݀ᇱ
ቇ  (30)																												݀	݀݉							(ଵ݅)

																					≡ (݇	 + (݈ߣ − ݉)ߣ − ݁݅) − ߣ݁݅ +
1
2
ቆ

(1 + 	ߣ) + ݁݀)ଶ	)
݀

ቇ  	݀	݀݉				݅	

≡ (݇	 + (݈ߣ − ݉)ߣ − ݁݅) +
1
2
ቆ

1 + ଶߣ

݀
ቇ  									݀	݀݉							݅

≡  																																																																			.݀	݀݉							(݅)ఫ̃ఒߨ
    We introduce now the following “partial” goodness and consistency conditions for the 
భఫ̃ߪ
ఒᇲ .  

    (partial ݀′-goodness) If 0	 ≤ 	 ଵଔ̃ < ݀ᇱ, 0 ≤ ଵ݅ଶ,ଵ݅ଵ	 	< ݀′, and (	ଵ݅ଵ − (ଵ݅ଶ =
ଵ
భ 	 ··· 

 (′݀,ݒ)	where ,ݒ	 	= 	1, then  
 

భఫ̃ߪ
ఒᇲ (ଵ݅ଵ) ≢ భఫ̃ߪ

ఒᇲ ଵ	݀݉								(ଵ݅ଶ)
ఎ(భାଵିభ) 	 ··· 

ఎ(ି)	.	 
     
      (partial ݀′-consistency) If  0 ≤ ,ଵଔଵ̃	 ଵଔଶ̃ 	< ݀′ and ߣଵᇱ , ଶᇱߣ  are ݀′-roots with ߣଵᇱ 	≡ 	 ଶᇱߣ  
mod  where  is one of the prime factors ଵ

భାଵ 	 ··· 
 of ݀′, then for any 0 ≤ ଵ݅	 <

݀′ with (ଵ݅)(ߣଵᇱ 	− ଶᇱߣ ) ≡ ଵଔଵ̃)	− −   ଵଔଶ̃) mod ݀′ we have
 

భఫ̃భߪ
ఒభᇲ (ଵ݅) − భఫ̃మߪ

ఒమᇲ (ଵ݅) ≡ −
ଵଔଵ̃)ᇱߣ − (ଵଔଶ̃

݀ᇱ
 	.	݀݉					

 
Lemma (5.1.24)[190]. The partial functions ߪభఫ̃

ఒᇲ  satisfy the ݀′-partial goodness and ݀′ 
partial consistency conditions. 
 
Proof. The proof is essentially identical to that of Lemma (5.1.22). For example, to verify 
partial ݀′-consistency, let ݆,݉ଵ

ᇱ ,݉ଶ
ᇱ  be defined by 

 
	ଵ݆ = 	 ଵଔଵ̃ 	+ ଵᇱߣ (ଵ݅) −݉ଵ

ᇱ݀ᇱ 
									= 	 ଵଔଶ̃ 	+ ଶᇱߣ (ଵ݅) −݉ଶ

ᇱ݀′. 
 
Let (݇, ݈) be the values associated to (భ

ௗᇲ
, భ
ௗᇲ
	), and let ߣଶᇱ 	= 	 ଵᇱߣ 	+   :. Then we have݁	
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భఫ̃భߪ
ఒభᇲ (ଵ݅) ≡ (݇	 + ଵᇱߣ ݈) − ଵᇱ݉ଵߣ 	+

1
2
ቆ

1 + ଵᇱߣ
మ

݀ᇱ
ቇ  																													݀݉					(ଵ݅)

≡ (݇	 + ଶᇱߣ ݈) − ଶᇱ݉ଶߣ 	− ଶᇱߣ 	
ଵ(ଔଵ̃ 	− ଔଶ̃) + ଵᇱߣ) − ଶᇱߣ (ଵ݅)(

݀ᇱ

+
1
2
ቆ

1 + ଶᇱߣ) − 	)ଶ݁
݀ᇱ

ቇ	(ଵ݅)				݉݀							 

															≡ (݇ + ଶᇱߣ ݈) − ଶᇱ݉ଶߣ +
1
2
	ቆ

1 + ଶᇱߣ
మ

݀ᇱ
ቇ (ଵ݅) 																																														

− 	
ଶᇱߣ ଵଔଵ̃) − (ଵଔଶ̃

݀ᇱ
 					݀݉			

≡ భఫ̃మߪ
ఒమᇲ (ଵ݅) −

ଶᇱߣ ଵଔଵ̃) − (ଵଔଶ̃
݀ᇱ

 																													.	݀݉				
 
     We now define the permutations ߪఫ̃ఒ

ᇲ
(݅) for all 0 ≤ ଔ̃ < ݀′, all ݀′-roots ߣ′, and all 

0 ≤ 	݅ < ݀′, and which extend the partial permutations so far defined (the ߪభఫ̃
ఒᇲ  .((ଵ݅) 

Since we do not need to refer to the ݀-roots anymore, we will henceforth use ߣ to refer to 
the ݀′ roots. Also, we refer to the ݅, ݆, ଔ̃ which are divisible by ଵ as “old”, and the other 
݅, ݆, ଔ̃ as “new”. Thus, ߪఫ̃ఒ

ᇲ
(݅) is currently defined for the old ଔ̃ and ݅, and we wish to extend 

to the new values.  
      We introduce two families of functions, ݎఫ̃ఒ and ݏఫ̃ఒ, from ݀′ to ݀′. These “shift” 
functions will tell us how to extend certain partially defined permutations to fully good 
permutations. These functions are defined for each ݀′ root ߣ. The ݎ functions are defined 
for old ଔ̃, and the ݏ functions for new ଔ̃. Actually, for the construction below it su�ces 
(though it is not necessary) to take ݎఫ̃ఒ functions which are independent of ଔ̃ and ߣ, that is, 
we have a single function ݎ ∶ 	݀′	 → 	݀′. In general, the properties we desire of the ݎ and ݏ 
functions are described in the following lemma.  
 
Definition (5.1.25)[190]. Let ߣ be a root mod ݀′, and let 0 ≤ 	 ଔ̃ < ݀′. By the ߣ, ଔ̃- 
distinguished class we mean the equivalence class mod ଵ of 0	 ≤ 	݅ < ݀′ satisfying 
ߣ)݅ − (ഥߣ	 	≡ −ଔ̃ mod ଵ	, where		̅ߣ is a root not equivalent to ߣ mod ଵ (so, 	ߣഥ 	≡  mod ߣ	−
  .(ଵ
      Note that for a given ଔ̃ , there are really only two distinguished classes, one for each of 
the two possible values of a root mod ଵ, and each of these classes is the negative of the 
other, mod ଵ.  
 
Lemma (5.1.26)[190]. There are functions ݎ, ఫ̃ఒݏ ∶ 	݀′	 → 	݀′ satisfying the following:        
     (i) For each 0 ≤ 	݅ < ݀′, ݅ + (݅)ݎ ଵ|݅, then ଵ. Further, if is divisible by (݅)ݎ = 0.   
    (ii) For each root ߣ, new ଔ̃, and 0 ≤ 	݅ < ݀′, ݅	 + 	 ,ߣ (݅) is in the	ఫ̃ఒݏ ଔ̃-distinguished class. 
Further, if ݅ is in the ߣ, ଔ̃-distinguished class, then ݏఫ̃ఒ(݅) = 0	.  
    (iii) ݎ(݅),   .ଵ and ݅ mod	(݅) only depend on the classes of  ଔ̃	ఫ̃ఒݏ
    (iv) ݏఫ̃ఒ(݅) depends only on the class of ߣ mod ଵ.  
    (v) ݎ(݅), =	 recall) ݑ ఫ̃ఒ(݅) are divisible byݏ 	 ଶ

మ 	 ··· 
  ).  
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    For the remaining statements we fix some notation. Let 0 ≤ ଔଵ̃, ଔଶ̃ 	< ݀′, with ଔଵ̃, ଔଶ̃ new. 
Let ߣଵ, ଵߣ ଶ be ݀′ roots withߣ 	≡ 	ଵ. Let 0 ଶ modߣ	− ≤ 	݅ < ݀′. Suppose ݅(ߣଵ − (ଶߣ ≡
−(ଔଵ̃ − ଔଶ̃) mod ଵ. 
    (vi) ݏఫ̃భ

ఒభ(݅) + 	݅)ݎ + ఫ̃భݏ
ఒభ(݅)) 	= 	 ఫ̃మݏ

ఒమ(݅) + 	݅)ݎ + ఫ̃మݏ
ఒమ(݅))	mod ݀′.  

    (vii) ݏఫ̃భ
ఒభ(݅) = 	݅)ݎ + ఫ̃మݏ

ఒమ 	(݅)).	 
    With the notation as fixed in the statement of the lemma, if we let ݏଵ abbreviate 
ఫ̃భݏ
ఒభ 	(݅), ଶݎ 	= 	݅)ݎ	 + 	 ఫ̃భݏ

ఒభ 	(݅)), ଶݏ 	= ఫ̃మݏ
ఒమ 	(݅),	and ݎଵ 	= 	݅)ݎ	 + ఫ̃మݏ

ఒమ(݅)), then the last two 
statements become  
    (vi) ݏଵ 	+ ଶݎ 	= 	 ଶݏ 	+  	.ଵݎ
    (vii) ݏଵ 	= 	  	.ଵݎ
     Of course, we also have in this case that ݏଶ 	= 	  .ଶݎ
 
Proof. We give an algorithm for constructing the ݎ, (݅)ݎ functions. First, let	ఫ̃ఒݏ =
	(− 

௨
	ݑ where ,ݑ(ଵ	݀݉	 = ଶ

మ 	 ··· 
 . Clearly (i) is satisfied.  

     Suppose that ߣ is a root and ଔ̃ is new. Let 0	 ≤ 	 ݅ௗ 	< ,ߣ ଵ represent the ଔ̃ distinguished 
class. Let ݏఫ̃ఒ(݅) be the unique value in {(0)ݎ, . . . , ଵ)ݎ − 1)} such that ݅ + (݅)ఫ̃ఒݏ ≡
	݅ௗ   .ଵ	݀݉		
      This completes the definition of the ݎ and ݏఫ̃ఒ functions. Property (ii) is clear, and (iii) 
is also since the ߣ, ଔ̃-distinguished class depends on the class of ଔ̃ mod ଵ. Likewise, this 
class depends only the value of ߣ mod ଵ, and so (iv) follows. (v) is immediate from the 
definitions.  
      To see (vi), fix	݅, ଔଵ̃, ଔଶ̃, ,ଵߣ ଵߣ ଶ withߣ 	≡ ଵߣ)݅ ଵ and ଶ modߣ− − (ଶߣ ≡ −(ଔଵ̃ − ଔଶ̃) mod 
,ଵݏ ଵ. Let ,ଶݎ ,ଶݏ be as above. Let ݅ଵ	ଵݎ 	= 	݅	 + 	 ,ଵߣ ଵ mod ݀′, so ݅ଵ is in theݏ ଔଵ̃-
distinguished class. Likewise, let ݅ଶ 	= 	݅	 + 	 ,ଶߣ ଶ mod ݀′, which is in theݏ ଔଶ̃ distinguished 
class. Since ݅ଵ is in the distinguished class we have ݅ଵ(ߣଵ − (ଶߣ ≡ −	ଔଵ̃ mod ଵ, and 
likewise we have ݅ଶ(ߣଶ − (ଵߣ ≡ −ଔଶ̃. Subtracting these equations gives  

(݅ଵ + ݅ଶ)(ߣଵ 	− (ଶߣ ≡ −(ଔଵ̃ 	− ଔଶ̃) ≡ ଵߣ)݅	 	−  	.ଵ	݀݉							(ଶߣ
Thus, ݅	 ≡ 	 ݅ଵ 	+ 	 ݅ଶ mod ଵ. Also, by definition of the ݎ function we have ݎଶ 	≡ −	݅ଵ mod 
ଵݎ ଵ and 	≡ −	݅ଶ mod ଵ. Thus, ݅	 + 	 ଶݎ 	≡ 	݅	 − 	 ݅ଵ 	≡ 	 ݅ଶ mod ଵ. From the definition of 
ଶݏ ଶ it now follows thatݏ 	= 	 ଵݎ ,ଶ. Similarlyݎ 	≡ −	݅ଶ mod ଵ and so ݅ + ଵݎ 	≡ 	݅ − ݅ଶ 	≡ ݅ଵ 
mod ଵ from which it follows that ݏଵ 	= 	  .ଵ. This verifies (vii) as wellݎ
    We now define the ߪఫ̃ఒ . First assume that ଔ̃ is old. In this case, ߪఫ̃ఒ(݅) is already defined 
for the old ݅. We extend the partial function ߪఫ̃ఒ to all values of ݅ using Lemma (5.1.20) and 
the ݎ function. Thus, 

(݅)ఫ̃ఒߪ = 	݅)	ఫ̃ఒߪ + (ᇱ݀	݀݉				(݅)ݎ + ቆ
(݅)ݎ
ݑ
ቇ݀						݉݀	݀′. 

It is immediate from Lemma (5.1.20) that ߪఫ̃ఒ is ݀′-good.  
    Suppose now ଔ̃ is new. Let ݅ௗ represent the congruence class mod ଵ of the 
distinguished class. We first define ߪఫ̃ఒ(݅) for ݅	 ≡ 	 ݅ௗ mod ଵ, that is, in the distinguished 
class. Fix such an ݅, and define ߪఫ̃ఒ(݅) by defining its congruence class mod ଵ

భାଵ	, . . . , 
  

. Consider one of these prime powers , and suppose first that  ≠  ଶ be a rootߣ ଵ. Let	
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with ߣଶ 	≡ ଶߣ  and mod ߣ 	≡ ߣ)݅ ଵ. Define ଔଶ̃ by mod ߣ− − (ଶߣ ≡ −(ଔ̃ − ଔଶ̃) mod ݀′. 
Note that since ݅ is in the distinguished class, ଵ|ଔଶ̃, that is, ଔଶ̃ is old. Then define 

(݅)ఫ̃ఒߪ ≡ ఫ̃మߪ
ఒమ 	(݅) −

ଔ̃)ߣ − ଔଶ̃)
݀ᇱ

 .	݀݉						
We check that this is well defined, that is, it does not depend on the choice of ߣଶ. Suppose 
ଷߣ ଷ is another root withߣ 	≡ ଷߣ  and mod ߣ	 	≡ ଷߣ ଵ, so mod ߣ− 	≡ 	 ଵ ଶ modߣ

భାଵ as 
well. Let ଔଷ̃ be such that ݅(ߣ − (ଷߣ ≡ −(ଔ̃ − ଔଷ̃) mod ݀′. Since 

ߣ)݅ − (ଶߣ ≡ −(ଔ̃ − ଔଶ̃)				ܽ݊݀				݅(ߣ − (ଷߣ ≡ −(ଔ̃ − ଔଷ̃)				݉݀	݀′,	 
it follows that  

ଶߣ)݅ 	− (ଷߣ ≡ −(ଔଶ̃ 	− ଔଷ̃)							݉݀	݀′.	 
Let ݅′	 = 	݅ + ଶߣ)′݅ mod ݀′. Then we also have (݅)ݎ 	− (ଷߣ ≡ −(ଔଶ̃ 	− ଔଷ̃) mod ݀′ since 
(݅ − ଶߣ)(′݅ 	− ,′݅ Since .(ݑ is divisible by (݅)ݎ recall) ′݀ ଷ) is divisible byߣ ଔଶ̃, ଔଷ̃ are old, by 
partial ݀′-consistency we therefore have 

ఫ̃మߪ
ఒమ(݅′) − ఫ̃యߪ

ఒయ 	(݅′) ≡ −
ଔଶ̃)ߣ 	− ଔଷ̃)

݀ᇱ
 .	݀݉									

Since ߪఫ̃మ
ఒమ 	(݅) − ఫ̃యߪ

ఒయ 	(݅) ≡ ఫ̃మߪ	
ఒమ(݅′) − ఫ̃యߪ

ఒయ 	(݅′) mod ݀′, it follows that  

ఫ̃మߪ
ఒమ 	(݅) − ఫ̃యߪ

ఒయ 	(݅) ≡ −
ଔଶ̃)ߣ 	− ଔଷ̃)

݀ᇱ
 .	݀݉								

Consequently, ߪఫ̃మ
ఒమ 	(݅) −	ఒ(ఫ̃ିఫ̃మ)

ௗᇲ
	≡ 	 ఫ̃యߪ

ఒయ 	(݅) − ఒ(ఫ̃ିఫ̃య)
ௗᇲ

 mod , and we are done.  
     For ݅ still in the ߣ, ଔ̃-distinguished class, we now define ߪఫ̃ఒ	(݅)	mod ଵ

భାଵ . Let ߨ be a 

fixed good permutation of length ଵ
భ  . For ݅ in the distinguished class let ݅′	 = ି(	ௗ	భ)

భ
. 

Then define ߪఫ̃ఒ	(݅) ≡ (′݅)ߨ	 −
ఒ൬ఫ̃ିቀఫ̃	ௗ	భ

ೌభశభቁ൰

ௗᇲ
ଵ	݀݉			

భାଵ	.  
     This defines ߪఫ̃ఒ(݅) for ݅ in the distinguished class. We extend this to a full permutation 
using the ݏఫ̃ఒ function. Thus, 

(݅)	ఫ̃ఒߪ ≡ ൫݅	ఫ̃ఒߪ + ᇱ൯݀	݀݉			(݅)	ఫ̃ఒݏ + ቆ
(݅)ఫ̃ఒݏ
ݑ

	ቇ  	.′݀	݀݉				݀

     This completes the definition of the ߪఫ̃ఒ functions. It remains to verify that they satisfy 
the goodness and consistency conditions.  
 
Lemma (5.1.27)[190]. The ߪఫ̃ఒ satisfy the ݀′-goodness condition.  
 
Proof. We have already observed that this is the case for old ଔ̃, so assume ଔ̃ is new. It is 
enough to check that ߪఫ̃ఒ restricted to the distinguished class is a partially good function. 
To see this, suppose ݅ଵ, ݅ଶ are in the distinguished class (in particular, ݅ଵ 	≡ 	 ݅ଶ mod ଵ). 
Let ݅ଵ 	− 	 ݅ଶ 	= 	 ଵ

భ 	. . . 
 ,ݒ) where ݒ	 ݀′) 	= 	1. Suppose first that ܾଵ 	< ܽଵ 	+ 	1. Let 

݅ଵᇱ , ݅ଶᇱ  correspond to ݅ଵ, ݅ଶ as in the definition of ߪఫ̃ఒ mod ଵ
భାଵ . So, ݅ଵᇱ 	− ݅ଶᇱ 	=

(భିమ)
భ

 . By 

goodness of ߨ, ଵᇱ݅)ߨ ) 	≢ ଶᇱ݅)ߨ	 ) mod ଵ
భି(భିଵ) 	= 	 ଵ

(భାଵ)ିభ  , and so ߪఫ̃ఒ(݅ଵ) ఫ̃ఒߪ	≢ 	(݅ଶ) 
mod ଵ

భାଵିభ 	, and thus also inequivalent mod ଵ
ఎ(భାଵିభ) 	 ··· 

ఎ(ି).   
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    Assume next that ܾଵ 	≥ 	 ܽଵ 	+ 	1. We must show that ߪఫ̃ఒ(݅ଵ) 	≢ ఫ̃ఒߪ 	(݅ଶ)	mod 	≐
ଶ	
ఎ(మିమ) 	 ··· 

ఎ(ି) . Let ߣଶ be the root with ߣଶ 	≡ ଵ  mod ߣ	−
భାଵ , but ߣଶ 	≡  mod ߣ	


 for ݅	 ≥ 	2. Let ଔଶ̃ be defined by ݅ଵ(ߣ	 (ଶߣ	− 	≡ −(ଔ	̃ 	− 	 ଔଶ̃) mod ݀′. Note then that we 

also have ݅ଶ(ߣ	 − (ଶߣ	 	≡ −(ଔ	̃ 	− 	 ଔଶ̃)  mod ݀′, as ଵ
భାଵ divides ݅ଵ − ݅ଶ. By the well-

definedness noted above, we may use ߣଶ and ଔଶ̃ in the definitions of both ߪఫ̃ఒ(݅ଵ) and 
 ఫ̃ఒ(݅ଶ) modulo any of the powersߪ

	, ݅	 ≥ 2. Let  denote one of these powers. From 
the definition of the ߪఫ̃ఒ we have 

ఫ̃ఒߪ 	(݅ଵ) ≡ ఫ̃మߪ
ఒమ 	(݅ଵ) −

̃	ଔ)ߣ 	− 	 ଔଶ̃)
݀ᇱ

 	݀݉												
and 

(݅ଶ)	ఫ̃ఒߪ ≡ ఫ̃మߪ
ఒమ 	(݅ଶ) −	

̃	ଔ)ߣ 	− 	 ଔଶ̃)
݀ᇱ

 ,	݀݉											
and thus 

(݅ଵ)	ఫ̃ఒߪ − (݅ଶ)	ఫ̃ఒߪ ఫ̃మߪ	≡
ఒమ(݅ଵ) − ఫ̃మߪ

ఒమ 	(݅ଶ)																	݉݀	.																					 
Since this is true for each of the prime powers , we also have  

(݅ଵ)	ఫ̃ఒߪ − ఫ̃ఒ(݅ଶ)ߪ ≡ ఫ̃మߪ	
ఒమ(݅ଵ) − ఫ̃మߪ

ఒమ 	(݅ଶ)																	݉݀	ݑ,																							 
where 	= 	 ଶ

మ 	 ··· 
 . Hence it is enough to show that ߪఫ̃మ

ఒమ(݅ଵ) 	≢ ఫ̃మߪ
ఒమ(݅ଶ) mod ݓ. Since 

݅ଵ 	≡ 	 ݅ଶ mod ଵ, ݎ(݅ଵ) = If ݅ଵ∗ denotes ݅ଵ .(ଶ݅)ݎ 	+  mod ݀′ and likewise for ݅ଶ∗ , then (ଵ݅)ݎ	
݅ଵ∗ − ݅ଶ∗ 	≡ 	 ݅ଵ − ݅ଶ mod ݀′, and also ߪఫ̃మ

ఒమ(݅ଵ) − ఫ̃మߪ
ఒమ 	(݅ଶ) ≡ ఫ̃మߪ

ఒమ 	(݅ଵ∗) − ఫ̃మߪ
ఒమ 	(݅ଶ∗) mod ݀′ from 

the definition of ߪఫ̃ఒ for the old ଔ	̃. So, it is enough to show that ߪఫ̃మ
ఒమ(݅ଵ∗) 	≢ 	 ఫ̃మߪ

ఒమ 	(݅ଶ∗) mod ݓ. 
This, however, follows immediately from the partial goodness of ߪఫ̃మ

ఒమ  and the fact that 
݅ଵ∗ − ݅ଶ∗ 	≡ 	 ݅ଵ − ݅ଶ mod ݀′.  
     We have now shown that ߪఫ̃ఒ restricted to the distinguished class is partially good. The 
goodness of the full function ߪఫ̃ఒ now follows immediately from the extension Lemma 
(5.1.20).  
 
Lemma (5.1.28)[190]. The ߪఫ̃ఒ functions satisfy the ݀′-consistency conditions.  
 
Proof. Fix ݅, ଔଵ̃, ଔଶ̃, ,ଵߣ ଵߣ)݅ ଶ withߣ 	− (ଶߣ	 	≡ −	(ଔଵ̃ −	ଔଶ̃) mod ݀′. Let  be a prime 
power with ߣଵ 	≡ 	 ,. We may assume that ଔଵ̃ ଶ modߣ ଔଶ̃ are not both old, and without loss 
of generality that ଔଵ̃ is new. For if ଔଵ̃, ଔଶ̃	are both old, then as in an argument above we 
would have ݅′(ߣଵ 	− (ଶߣ	 	≡ −	(ଔଵ̃ 	− 	 ଔଶ̃) mod ݀′ and ߪఫ̃భ

ఒభ 	(݅′) − ఫ̃మߪ
ఒమ 	(݅′) ≡ ఫ̃భߪ	

ఒభ 	(݅) −
ఫ̃మߪ
ఒమ 	(݅) mod ݀′, where ݅	 = 	݅ +   .mod ݀′. The result then follows (݅)ݎ

      Assume first that ଔଶ̃ is old. In this case we must have ݅ is new and ߣଶ 	≡  .ଵ ଵ modߣ	−
In particular,  ≠ ,ଵ. From well-definedness, we may use ଔଶ̃	 ఫ̃భߪ ଶ in the definition ofߣ

ఒభ(݅) 
mod . However, it is then immediate that 

ఫ̃భߪ
ఒభ 	(݅) − ఫ̃మߪ

ఒమ 	(݅) ≡ −
ଔଵ̃)ߣ − ଔଶ̃)

݀ᇱ
 ,	݀݉									

where ߣ denotes either ߣଵ or ߣଶ.  
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    Assume henceforth that ଔଵ̃, ଔଶ̃ are both new. Consider first the case 	 = 	  ,ଵ. Thus
ଵߣ 	≡ 	 ଵ ଶ modߣ

భାଵ , and so ଔଵ̃ ≡ 	 ଔଶ̃ mod ଵ
భାଵ . Thus, ݏఫ̃భ

ఒభ 	= 	 ఫ̃మݏ
ఒమ =  say. Let ,ݏ	

݅′	 = 	݅ + ,ଵߣ mod ݀′. Then ݅′ is in the (݅)ݏ	 ଔଵ̃-distinguished class, which is the same as the 
,ଶߣ ଔଶ̃-distinguished class. From the definition of the permutation extension, it follows that  

ఫ̃భߪ
ఒభ 	(݅) − ఫ̃మߪ

ఒమ 	(݅) ≡ ఫ̃భߪ
ఒభ 	(݅′) − ఫ̃మߪ

ఒమ  .′݀	݀݉															(′݅)	

Thus, it su�ces to show that ߪఫ̃భ
ఒభ 	(݅′) − ఫ̃మߪ

ఒమ(݅′) 	≡ − ఒ(ఫ̃భିఫ̃మ)
ௗᇲ

	mod ଵ
భାଵ . Let ݅∗ 	=

	ି(	ௗ	భ)
భ

 . Then 

ఫ̃భߪ
ఒభ(݅ᇱ) ≡ (∗݅)ߨ −

ߣ		 ቀଔଵ̃ 	− ൫ଔଵ̃					݉݀	ଵ
భାଵ	൯ቁ

݀ᇱ
ଵ	݀݉									

భାଵ	, 
where again ߣ denotes either ߣଵ or ߣଶ. Likewise 

ఫ̃మߪ
ఒమ 	(݅′) ≡ (∗݅)ߨ −

ߣ		 ቀଔଶ̃ 	− ൫ଔଶ̃					݉݀	ଵ
భାଵ	൯ቁ

݀ᇱ
ଵ	݀݉									

భାଵ		, 

and so ߪఫ̃భ
ఒభ 	(݅′) − ఫ̃మߪ

ఒమ(݅′) ≡ − ఒ(ఫ̃భିఫ̃మ)
ௗᇲ

ଵ	݀݉		
భାଵ	.	 

    Consider finally the case  ≠ ଵߣ ଵ. First, we argue that we may assume	 ≢  ଶ modߣ	
ଵ
భାଵ . For assume we can prove consistency in this case, and suppose ߣଵ 	≡ 	  ଶ modߣ
ଵ
భାଵ . Let ߣଷ 	≡ 	 ଵߣ 	≡ 	 ଷߣ , but ଶ modߣ 	≡ ଵߣ	− 	≡  ଵ. Define ଔଷ̃ by ଶ modߣ	−
ଵߣ)݅ 	− (ଷߣ ≡ −(ଔଵ̃ 	− ଔଷ̃) mod ݀′. Since ݅(ߣଵ 	− (ଶߣ ≡ −(ଔଵ̃ − ଔଶ̃) mod ݀′, it also follows 
that ݅(ߣଶ 	− (ଷߣ ≡ −(ଔଶ̃ 	− ଔଷ̃) mod ݀′. By assumption we can show that 

ఫ̃భߪ
ఒభ 	(݅) − ఫ̃యߪ

ఒయ 	(݅) ≡ −
ଔଵ̃)ߣ − ଔଷ̃)

݀ᇱ
 	,	݀݉										

and also 

ఫ̃మߪ
ఒమ 	(݅) − ఫ̃యߪ

ఒయ(݅) ≡ −
ଔଶ̃)ߣ − ଔଷ̃)

݀ᇱ
 .	݀݉										

Subtracting, it follows that 

ఫ̃భߪ
ఒభ 	(݅) − ఫ̃మߪ

ఒమ 	(݅) ≡ −
ଔଵ̃)ߣ − ଔଶ̃)

݀ᇱ
 .	݀݉									

      So, we may assume ߣଵ 	≡ ఫ̃భߪ ଵ. Consider first the definition of ଶ modߣ	−
ఒభ 	(݅). Let 

ଵݏ 	= ఫ̃భݏ
ఒభ(݅). Let ݅ଵ 	= 	݅	 +  ,ଵ mod ݀′. Thusݏ

ఫ̃భߪ
ఒభ 	(݅) ≡ ఫ̃భߪ

ఒభ 	(݅ଵ) + ቀ
ଵݏ
ݑ
ቁ݀								݉݀	݀′. 

Recall ݅ଵ is in the ߣଵ, ଔଵ̃-distinguished class. In defining ߪఫ̃భ
ఒభ 	(݅ଵ) mod , we may use the 

root ߣଶ as ߣଶ 	≡ 	 ଶߣ  and ଵ modߣ 	≡ ଵ ଵ modߣ	−
భାଵ . Let ଔଷ̃ be defined by ݅ଵ(ߣଵ 	−

(ଶߣ ≡ −(ଔଵ̃ 	− ଔଷ̃) mod ݀′. We then have  

ఫ̃భߪ
ఒభ 	(݅ଵ) − ఫ̃యߪ

ఒమ 	(݅ଵ) ≡ −
ଔଵ̃)ߣ − ଔଷ̃)

݀ᇱ
 	,	݀݉										

where again	ߣ denotes either ߣଵ or ߣଶ. Note that ଔଷ̃ is old. Let ݎଶ 	= 	′݅ Let .(ଵ݅)ݎ	 = 	 ݅ଵ 	+
  ଵ mod ݀′. Then again by definition we haveݎ	

ఫ̃యߪ
ఒమ 	(݅ଵ) − ఫ̃యߪ

ఒమ 	(݅ᇱ) ≡ ቀ
ଶݎ
ݑ
ቁ  				.ᇱ݀	݀݉							݀

Combining these, we get 
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ఫ̃భߪ																														
ఒభ 	(݅) ఫ̃యߪ	≡

ఒమ 	(݅ᇱ) + ൬
ଵݏ 	+ ଶݎ

ݑ
൰݀ −	

ଔଵ̃)ߣ − ଔଷ̃)
݀ᇱ

 .	݀݉				

Now consider ߪఫ̃మ
ఒమ 	(݅).	Let	ݏଶ 	= 	 ఒమݏ

ఫ̃మ 		(݅) and ݅ଶ 	= 	݅ +  ,ଶ mod ݀′. Soݏ

ఫ̃మߪ
ఒమ 	(݅) − ఫ̃మߪ

ఒమ 	(݅ଶ) ≡ ቀ
ଶݏ
ݑ
ቁ  							.ᇱ݀	݀݉					݀

In defining ߪఫ̃మ
ఒమ 	(݅ଶ), we may use ߣଵ as the auxiliary root. Let ଔସ̃ be defined by ݅ଶ(ߣଶ 	−

(ଵߣ ≡ −(ଔଶ̃ 	− ଔସ̃) mod ݀′. Thus we have  

ఫ̃మߪ				
ఒమ 	(݅ଶ) − ఫ̃రߪ

ఒభ 	(݅ଶ) ≡ −
ଔଶ̃)ߣ 	− ଔସ̃)

݀ᇱ
 .	݀݉			

Let	ݎଵ 	= 	′′݅ Let .(ଶ݅)ݎ	 = 	 ݅ଶ 	+ 	 	′݅ ଵ mod ݀′. Sinceݎ ≡ 	݅	 + 	 ଵݏ 	+ 	 	′′݅ ଶ mod ݀′ andݎ ≡
	݅	 + 	 ଶݏ 	+ 	 	′݅ ଵ mod ݀′, from (vi) of Lemma (5.1.26) it follows thatݎ = 	݅′′. We therefore 
have  

ఫ̃రߪ
ఒభ 	(݅ଶ) − ఫ̃రߪ

ఒభ 	(݅ᇱ) ≡ ቀ
ଵݎ
ݑ
ቁ݀					݉݀	݀ᇱ.										 

Combining, we get 

ఫ̃మߪ																						
ఒమ 	(݅) ≡ ఫ̃రߪ

ఒభ 	(݅ᇱ) −	
ଔଶ̃)ߣ 	− ଔସ̃)

݀ᇱ
+ ൬

ଶݏ 	+ ଵݎ
ݑ

൰݀				݉݀	. 
Thus, 

ఫ̃భߪ
ఒభ 	(݅) − ఫ̃మߪ

ఒమ 	(݅) ఫ̃యߪ	≡
ఒమ 	(݅ᇱ) − ఫ̃రߪ

ఒభ 	(݅ᇱ) +
ଔଷ̃)ߣ 	− ଔସ̃)

݀ᇱ
−
ଔଵ̃)ߣ 	− ଔଶ̃)

݀ᇱ
 .		݀݉				

We now claim that ݅′ satisfies the hypothesis of the consistency condition for ߣଶ, ଔଷ̃ and 
,ଵߣ ଔସ̃,	that is, we claim that ݅′(ߣଶ 	− ߣ − 1	) 	≡ −(ଔଷ̃ 	− ଔସ̃) mod ݀′. If so, then by partial 
consistency (note: ݅′, ଔଷ̃, ଔସ̃ are old) we have 

ఫ̃యߪ
ఒమ(݅ᇱ) − ఫ̃రߪ

ఒభ 	(݅ᇱ) ≡ −
ଔଷ̃)ߣ 	− ଔସ̃)

݀ᇱ
 .	݀݉				

It then follows that 

ఫ̃భߪ
ఒభ 	(݅) − ఫ̃మߪ

ఒమ 	(݅) ≡ −
ଔଵ̃)ߣ 	− ଔଶ̃)

݀ᇱ
 ,	݀݉					

and we are done.  
     It remains to show the claim. Collecting the above definitions we have (all the 
following equations are mod ݀′):  

ଵߣ)݅ 	− (ଶߣ ≡ −(ଔଵ̃ 	− ଔଶ̃),					 
݅ଵ(ߣଵ 	− (ଶߣ ≡ −(ଔଵ̃ 	− ଔଷ̃),			 
	݅ଶ(ߣଶ 	− (ଵߣ ≡ −(ଔଶ̃ 	− ଔସ̃),				 
݅ଵ 	≡ 	݅ +  																													,ଵݏ
	݅ଶ 	≡ 	݅ +  																													,ଶݏ

												݅ᇱ ≡ 	݅ + ଵݏ + ଶݎ 	≡ 	݅ + ଶݏ 	+  	.ଵݎ
Thus,  

ଶߣ)′݅ 	− (ଵߣ ≡ (݅ + ଶݏ 	+ ଶߣ)(ଵݎ 	− (ଵߣ ≡ (ଔଵ̃ 	− ଔଶ̃) + ଶݏ) 	+ ଶߣ)(ଵݎ 	−  	.(ଵߣ
On the other hand,  

−(ଔଷ̃ − ଔସ̃) ≡ −[ଔଵ̃ 	+ ݅ଵ(ߣଵ 	− (ଶߣ − ଔଶ̃ − ݅ଶ(ߣଶ 	−  [(ଵߣ
						≡ −(ଔଵ̃ 	− ଔଶ̃) − (݅ଵ 	+ ݅ଶ)(ߣଵ 	−  (ଶߣ

																																		≡ −(ଔଵ̃ 	− ଔଶ̃) − (2݅ + ଵݏ 	+ ଵߣ)(ଶݏ 	−  .ᇱ݀	݀݉			(ଶߣ
Thus,  

݅ᇱ(ߣଶ 	− (ଵߣ + (ଔଷ̃ 	− ଔସ̃)																																																																																														 
												≡ 2(ଔଵ̃ 	− ଔଶ̃) − ଶݏ) 	+ ଵߣ)(ଵݎ 	− (ଶߣ + (2݅ + ଵݏ 	+ ଵߣ)(ଶݏ 	−  (ଶߣ
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																				≡ ଵߣ)2݅	− 	− (ଶߣ − ଶݏ) 	+ ଵߣ)(ଵݎ 	− (ଶߣ + (2݅ + ଵݏ 	+ ଵߣ)(ଶݏ 	−  (ଶߣ
																				≡ ଵߣ) 	− ଵݏ)(ଶߣ 	−   .′݀	݀݉					(ଵݎ
From (vii) of Lemma (5.1.26) we have ݏଵ 	= 	 ଶߣ)′݅ ଵ, and soݎ − (ଵߣ + (ଔଷ̃ − ଔସ̃) ≡ 0 mod 
݀′, which gives the claim. 
    We now summarize and finish the proof of Lemma (5.1.18). Let ݀	 = 	 ଵ

భ 	 ··· 
	and 

݀′	 = 	 ,݇ ଵ݀. Assume the ݈ functions are defined on ܴௗ and satisfy (∗)ௗ. From Lemma 
(5.1.21), we may assume all of the  are non-trivial (congruent to 1 mod 4). By Lemma 
(5.1.22), we get ݀-good permutations ߨఫ̃ఒ  for all 0	 ≤ 	 ଔ̃ < ݀ and ݀-roots ߣ which satisfy 
the ݀-consistency condition. From Lemmas (5.1.27), (5.1.28), the family ߪఫ̃ఒ

ᇲ
	 for	0	 ≤ 	 ଔ̃ <

݀′,  a ݀′-root, satisfies the ݀′-goodness and ݀′-consistency conditions. From Lemma ′ߣ
(5.1.23), we have functions ݇′, ݈′	defined on ܴௗᇲ which satisfy (∗)ௗᇲ 	. Finally, without loss 
of generality, we may assume the ݇′, ݈′	functions extend the ݇, ݈ functions. This follows 
from ݀′-consistency, since for points of the form ( 

ௗ
, 
ௗ

) = (భ
ௗᇲ
	 , భ
ௗᇲ
	), by definition of the 

భఫ̃ߪ
ఒᇲ   the given values of ݇, ݈ for this point satisfy the defining equations for ݇′	 +  mod ′݈′ߣ	

each prime power of ݀′. More specifically, for any ݀′ root ߣ′, the definition of the ߪభఫ̃
ఒᇲ , 

equation (28), rewritten becomes  

(݇	 + (ᇱ݈ߣ ≡ భఫ̃ߪ
ఒᇲ (ଵ݅) + ᇱ݉ߣ −

1
2
ቆ

1 + ᇱమߣ

݀ᇱ
ቇ  (31)																ᇱ,݀	݀݉			(ଵ݅)

where ଔ̃ and ݉ are such that 0 ≤ 	 ଔ̃ < 	ଵ݆	݀݊ܽ	݀ = 	 ଵଔ̃ + ଵ݅ᇱߣ − ݉݀′. If  is a 
primepower occurring in ݀′ and ߣೌ

ᇱ 	=  , then mod ′ߣ	

൫݇	 + ೌߣ
ᇱ ݈൯ ≡ భఫ̃ߪ

ఒᇲ (ଵ݅) + ೌߣ
ᇱ ݉ −

1
2
ቆ

1 + ᇱమߣ

݀ᇱ
ቇ 	݀݉				(ଵ݅) ,															(32) 

and this is precisely equation (19) (with ߪభఫ̃
ఒᇲ  replacing ߨఫ̃ఒ  , and ߣ′ replacing ߣ), which is a 

typical defining equation for ݇′, ݈′.  
     This completes the proof of Lemma (5.1.18), and of Lemma (5.1.13). We now indicate 
the minor adjustments necessary to get Lemma (5.1.12). There are two di�erences 
between Lemma (5.1.13) and Lemma (5.1.12). First, in Lemma (5.1.12) there is a 
distinguished point (ݎ, (ݏ 	 ∈ ℚଶ ∩ ܴ for which there are prescribed values for the ݇, ݈ 
functions. Secondly, in Lemma (5.1.12)	we must arrange that all of the points ݖ	 +
,(ݖ)݇	) 	ݖ for ((ݖ)݈ ∈ ℚଶ 	∩ ܴ lie in the set ܲ as in the statement of Lemma (5.1.12).  
     Fix ݅, ݆, ݀ such that ݎ	 = 

ௗ
, 	ݏ = 

ௗ
. Let ݇ௗ, ݈ௗ be functions on ܴௗ satisfying (∗)ௗ. If we 

add constant values ݇, ݈	 to the ݇ௗ , ݈ௗ functions respectively, the new functions ݇ௗᇱ , ݈ௗᇱ  
also satisfy (∗)ௗ. We choose ݇, ݈ so that ݇ௗᇱ , ݈ௗᇱ  take the prescribed values at (ݎ,  .(ݏ
Inspecting equation (3), we see that if functions ݇ௗᇱᇱ, ݈ௗᇱᇱ satisfy ݇ௗᇱᇱ(ݖ) ≡ ݇ௗᇱ  mod ݀, 
݈ௗᇱᇱ(ݖ) 	≡ 	 ݈ௗᇱ  mod ݀ for all ݖ	 ∈ 	ܴௗ, then ݇ௗᇱᇱ, ݈ௗᇱᇱ	also satisfy (∗)ௗ. From the assumed 
property of ܲ, we may choose ݇ௗᇱᇱ, ݈ௗᇱᇱ so that ݖ	 + (݇ௗᇱᇱ(ݖ)	, ݈ௗᇱᇱ(ݖ)) ∈ ܲ for all ݖ	 ∈ 	ܴௗ . 
Similarly, at each step when we extend the ݇, ݈ functions from ܴௗ  to ܴௗᇲ, only the values 
of the extended functions mod ݀′ matter in determining (∗)ௗᇲ . We may therefore adjust 
these values mod ݀′ so that ݖ + ,(ݖ)݇) ((ݖ)݈ ∈ ܲ for all ݖ	 ∈ ܴௗᇲ. This completes the proof 
of Lemma (5.1.12). 
 



191 

Lemma (5.1.29)[190]. Let ܿଵ, ܿଶ, ܿଷ be three distinct points in the plane, and let 
,ଵݎ ,ଶݎ ଷݎ 	> 	0 be real numbers. Let ܥଵ be the circle in the plane with center at ܿଵ and radius 
,ܾ,ܽ ଷ. Letܥ ଶ andܥ ଵ, and likewise forݎ ܿ be three distinct points in the plane. Then, except 
for the exceptional case described below, there are only finitely many triples of points 
,ଵ) ,ଶ   in the plane such that	ଷ)
    (i) ଵ 	 ∈ 	 ,ଵܥ ଶ 	 ∈ 	 ଷ , and	ଶܥ 	 ∈ 	   .ଷܥ
    (ii) The triangle ଵ, ,ଶ  ଷ is isometric with the triangle ܾܽܿ (we allow the degenerate
case where the points ܽ, ܾ, ܿ are collinear).  
The exceptional case is when ݎଵ 	= 	 ଶݎ 	= 	   .ܿଶܿଷ	ଷ and the triangle ܾܽܿ is isometric with ܿଵݎ
 
Proof: We prove Lemma (5.1.29), which completes the proof of Theorem (5.1.2). First, 
we note that a weaker version of Lemma (5.1.29) due to Komjܽ́th (Lemma 1.1 of [199]) 
would su�ce for our main theorem. Specifically,  
 
Lemma (5.1.30)[190]. (Komjܽ́th). There is a bound ݏ	 ∈ 	߱ such that if ܿଵ, . . . , ܿ௦ are 
points in the plane with ߩ൫ܿ, ܿ	൯

ଶ
∉ ℤ for distinct ܿ, ܿ, and if ݖଵ, . . . ,  ௦ are colinearݖ

points with ߩ(ܿ, )ଶݖ 	 ∈ 	ℚ and ߩ൫ݖ, ൯ݖ
ଶ
	 ∈ 	ℤ, then the ݖ are definable from {ܿଵ, . . . , ܿ௦}; 

in fact, for fixed ܿଵ, . . . , ܿ௦, distances ߩ(ܿ, ,ݖ൫ߩ ) andݖ ൯ݖ
	
 there are only finitely many 

such {ݖଵ, . . . ,   .{௦ݖ
       To see this su�ces, consider (in the notation of Claim (5.1.10)) the set ܧ of points ݖ 
having rational coordinates with respect to ܮ such that ߩଶ(ܿ, (ݖ 	 ∈ ℚ for some ܿ	 ∈ 	 ܵழఈ , 
where ܿ	is not rational respect to ܮ. Using Lemma (5.1.30) it is easy to see that ܧ  is 
semi-small with respect to ܮ. By this we mean that for any rational translation ܮ of ܮ, 
there is a finite set ܨ of lines such that for any line ݈ ∉ ,ܨ	 ݈	 ∩ ܮ ∩    is finite. Then atܧ
each stage in the construction of the points ݔ	 (following Claim (5.1.10)) we must have 
  . avoid a certain semi-small set, which is no problemݔ
    Lemma (5.1.29) is implicit in the analysis of Gibson-New stead [195], although it is not 
explicitly stated there. New stead (private communication) pointed out the following 
argument. Consider the coupler curve traced out by the point ଷ, where triangle ∆ଵଶଷ 
is rigid and ଵ,  ଶ respectively. From [195], theܥ,ଵܥ ଶ are constrained to lie on circles
complexification of this curve is a degree 6 curve ܥ in the complex projective plane. They 
show it is the projection of a higher dimensional curve (the “residual curve”) also of 
degree 6, whose singularities they analyze. Thus, the irreducible components of ܥ 
precisely correspond to those of ܴ. The components of ܴ are analyzed in [195]. We gives 
two cases where ܴ (and thus ܥ) can have a component of degree two, namely:  

(i) ܿଵܿଶଶଵ is a parallelogram.  
(ii) ଵ 	= 	 ܿଶ or ଶ 	= 	 ܿଵ.  

The second case forces ܿଷ 	= 	 ܿଶ	or	ܿଷ 	= 	 ܿଵ, which is forbidden as we require ܿଵ, ܿଶ, ܿଷ to 
be distinct. The first case is our exceptional case of Lemma (5.1.29).  
     We now present two elementary proofs of Lemma (5.1.29). The first is a short algebraic 
proof using some computer algebra, and the second is a purely geometric argument. 
 
The following algebraic computations were performed using Maple.  
       We assume without loss of generality that ܥଵ is the circle centered at ܿଵ 	= 	 (0	,0) of 
radius 1, ܥଶ is the circle centered at ܿଶ 	= (ܽ, 0) of radius ݎ, and ܥଷ	is the circle centered at 



192 

(ܾ, ܿ) of radiuss. Let ଵ 	=  ଵ. If we let ݀ denote the fixed distanceܥ be a point on (ݕ,ݔ)
between ଵ and the point ଶ on ܥଶ, then we may coordinatize ଶ 	= ,ଶݔ)   ଶ) byݕ

ଶݔ 	= 	ݔ	 + ݀ cos(ߠ),	 
                                       

ଶݕ 	= 	ݕ	 +  (33)																																																		,(ߠ)݊݅ݏ	݀
where ߠ denotes the angle that ଵଶ makes with the horizontal, measured in the usual way. 
Let ߙ denote the fixed angle of the triangle ଵଶଷ, and let ݁	 = ,ଵ)ߩ	  ଷ). Thus, the
coordinates of ଷ are of the form  

ଷݔ = 	ݔ	 + 	ߙ)ݏܿ	݁ + (ߠ = 	ݔ + (ߠ)ݏܿ	ݑ −  																				,(ߠ)݊݅ݏ	ݒ
	          

ଷݕ 	= 	ݕ	 + 	ߙ)݊݅ݏ	݁ + (ߠ = 	ݕ + (ߠ)ݏܿ	ݒ +  (34)																													,(ߠ)݊݅ݏ	ݑ
where we let ݑ	 = 	ݒ and (ߙ)ݏܿ	݁	 = ,ଵ Since .(ߙ)݊݅ݏ	݁	 ,ଶ   ଷ, we haveܥ,ଶܥ,ଵܥ ଷ lie on

ଶݔ 	+ ଶݕ − 1 = 0	,										 
ଶݔ) 	− ܽ)ଶ 	+ ଶଶݕ − ଶݎ 	= 0	,																																																								(35) 

ଷݔ) 	− ܾ)ଶ + ଷݕ) 	− ܿ)ଶ − ଶݏ 	= 0	.																																									 
Subtracting the second and third equations from the first gives two linear equations for ݕ,ݔ 
in terms of ߠ: 
 

−1 − (ߠ)ݏܿ	݀	ݔ	2 + ܽ	ݔ	2 + ܽ	(ߠ)ݏܿ	݀	2 − ܽଶ 	− (ߠ)݊݅ݏ	݀	ݕ	2 − ݀ଶ + ଶݎ 	= 0	, 
−1 − ݔ	ݑ	(ߠ)ݏܿ	2 + ܾ	ݑ	(ߠ)ݏܿ	2 − ଶݒ + ݔ	ݒ	(ߠ)݊݅ݏ	2 − ܾ	ݒ	(ߠ)݊݅ݏ	2 + ܾ	ݔ	2 − ܾଶ 	

− ଶݑ 	− ݕ	ݑ	(ߠ)݊݅ݏ	2 + ܿ	ݑ	(ߠ)݊݅ݏ	2 − ݕ	ݒ	(ߠ)ݏܿ	2 + ܿ	ݒ(ߠ)ݏܿ	2 + ܿ	ݕ	2
− ܿଶ 	+ ଶݏ 	= 0	.			 

(36) 
Solving these two equations for ݔ,  :gives ݕ

 

	ݔ = −
1
2

(ߠ)݊݅ݏ	݀−) − ଶݎ	ݒ	(ߠ)ݏܿ 	+ ଶ݀	ݒ	(ߠ)ݏܿ + ଶܽ	ݒ	(ߠ)ݏܿ − ܿ − (ߠ)݊݅ݏ	݀	ଶݒ

+ 	ݑ	(ߠ)݊݅ݏ + 	ݒ	(ߠ)ݏܿ − ଶݎ	ݑ	(ߠ)݊݅ݏ 	+ ଶ݀	ݑ	(ߠ)݊݅ݏ 	+ ଶܽ	ݑ	(ߠ)݊݅ݏ 	
+ (ߠ)݊݅ݏ	݀	ଶݏ − ܿଶ	݀	(ߠ)݊݅ݏ − (ߠ)݊݅ݏ	݀	ଶݑ − ܾଶ	݀	(ߠ)݊݅ݏ + ܽ	(ߠ)ݏܿ	݀	ܿ	2
− ܿ	ܽଶ 	− ܿ	݀ଶ 	+ ଶݎ	ܿ 	− ܽ	݀	ݒ	2 + (ߠ)݊݅ݏ	݀	ܿ	ݒ	(ߠ)ݏܿ	2
− 	ܽ	(ߠ)ݏܿ	݀	ݑ	(ߠ)݊݅ݏ	2 + (ߠ)ଶ݊݅ݏ	ܽ	݀	ݒ	2 	− 2	sinଶ(ߠ)	ݒ	ܾ	݀
+ 2	sinଶ(ߠ)	ݑ	ܿ	݀ + ܽ	ܿ)	/((ߠ)݊݅ݏ	݀	ܾ	ݑ	(ߠ)ݏܿ	2 + (ߠ)݊݅ݏ	݀	ܾ	
− ܽ	ݑ	(ߠ)݊݅ݏ − ܽ	ݒ	(ߠ)ݏܿ − (ߠ)ݏܿ	݀	ܿ +  ,(	݀	ݒ

(37) 
 

	ݕ =
1
2

(ߠ)ݏܿ	݀−) + ܽ − ܾ + ݑ	(ߠ)ݏܿ − ݒ	(ߠ)݊݅ݏ − (ߠ)݊݅ݏଶ݀	ݒ + (ߠ)݊݅ݏଶݎ	ݒ
− (ߠ)݊݅ݏଶܽ	ݒ 	− ଶݎ	ݑ	(ߠ)ݏܿ 	+ ݀ଶܿ(ߠ)ݏ	ݑ	 + ଶܽ	ݑ	(ߠ)ݏܿ 	− ଶܿ	(ߠ)ݏܿ	݀ 	
− ଶܾ	(ߠ)ݏܿ	݀ − ଶݑ	(ߠ)ݏܿ	݀ 	+ ଶݏ	(ߠ)ݏܿ	݀ 	− ଶݒ	(ߠ)ݏܿ	݀ 	
− ܿ	ݑ	(ߠ)݊݅ݏ	ܽ	2 − (ߠ)sinଶ	݀	ܾ	ݑ	2 − (ߠ)sinଶ	݀	ܿ	ݒ	2 	+ 2	sinଶ(ߠ)	ݑ	݀	ܽ
− ܾ	ݒ	(ߠ)݊݅ݏ	(ߠ)ݏܿ	݀	2 − ܾ	ݑ	(ߠ)ݏܿ	ܽ	2 − ݀ଶ	ܾ + ଶݒ	ܽ 	+ ଶݑ	ܽ 	+ ܽ	ܿଶ 	
− ଶݏ	ܽ 	− ܽଶ	ܾ + ܾ	ଶݎ + ܽ	ܾଶ 	− ܽ	݀	ݑ	2 + ݀	ܾ	ݑ	2 + 	݀	ܿ	ݒ	2
+ ܿ	ݑ	(ߠ)݊݅ݏ	(ߠ)ݏܿ	݀	2 + (ߠ)݊݅ݏ	ܽ	ݒ	(ߠ)ݏܿ	݀	2 + ܾ	ݒ	(ߠ)݊݅ݏ	ܽ	2
− 	ܿ	ݒ	(ߠ)ݏܿ	ܽ	2 + ܽ	ܿ)/(ܾ	ܽ	(ߠ)ݏܿ	݀	2 + (ߠ)݊݅ݏ	݀	ܾ − ܽ	ݑ	(ߠ)݊݅ݏ
− ܽ	ݒ	(ߠ)ݏܿ − (ߠ)ݏܿ	݀	ܿ +  .(	݀	ݒ

(38) 
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Substituting these expressions back into the equation ݔଶ 	+ ଶݕ − 1 now gives a large 
rational function of (ߠ)݊݅ݏ,  Setting the numerator of this expression to 0 now .(ߠ)ݏܿ
gives an equation of the form 
 
ܼ 	+ (ߠ)݊݅ݏ	ଵݖ + (ߠ)ݏܿ	ଵݖ + (ߠ)݊݅ݏ(ߠ)ݏܿ	ଵଵݖ + (ߠ)cosଶ	ଶݖ + (ߠ)݊݅ݏ(ߠ)cosଶ	ଶଵݖ 	

+ (ߠ)cosଷ	ଷݖ = 0	, 
(39) 

where all of the ݖ are polynomials in ܽ, ܾ, ܿ,݀, ,ݒ,ݑ   .ݏ and ,ݎ
       The exceptional case of Lemma (5.1.29) corresponds to a motion of	ଵ, ,ଶ  ߠ where	ଷ
remains constant. Assuming we are not in this case, there will be infinitely many values of 
θ satisfying equation (39). Thus, the function of equation (39) is identically 0. Since the 
trigonometric polynomials of equation (39) are linearly independent, this implies that all 
of the ݖ are 0. 
      In fact, just the last two equations ݖଶଵ 	= 	0, ଷݖ 	= 	0 su�ce to finish the proof. These 
two expressions are:  
 
ଶଵݖ		 	= ܾ	݀ଶ	ଶܽ	ݒ	8 − ݀	ܾ	ݑ	ଶܽ	ݒ	16 + ܾ	ଶ݀	ܿ	ݑ	ܽ	16 − ܽଶ	ܿ	݀	ଶݒ	8 	+ ܽଶ	ܿ	݀	ଶݑ	8 	

− 8	ܾଶ	݀ଶ	ݒ	ܽ − ܾ	ܽ	݀	ଶݑ	ܿ	16 − ݀ଶ	ଶܿܽ	ݑ	8 	+ 8	ܿଶ	݀ଶݒ	ܽ − 	ݒ	ଶܽܿ	ݑ	݀	16
+ ݑ	ଶܾܽ	ݒ	݀	16 +  ,ܿ	ܽ	ܾ	ଶ݀ݒ	16

(40) 
ଷݖ 	= ݀	ܾ	ܿ	ݑ	ܽ	ݒ	32− + ଶܾ݀	ݒ	ܽ	ܿ	16 + 8	݀	ܿଶܽ	ݑଶ 	− ݀ଶ	ଶܿܽ	ݒ	8 	− 	ଶܽଶܾݒ	݀	8	

+ ݀	ܿ	ݒଶܽ	ݑ	16 + ܾଶ	ଶܽݒ	݀	8 	− 8	݀	ܿଶܽ	ݒଶ 	− ଶ݀ଶܾܽ	ݑ	8 + 8	ܽଶݑଶ݀	ܾ	
− 8	ܿଶ݀ଶݑ	ܽ − ܾଶ	ଶܽݑ	݀	8 	+ 8	݀ଶ	ܾଶݑ	ܽ.		 

     Computing a list of reduced Gr̈bner bases for this pair of equations yields the 
following (this means that the variety determined by the system ݖଶଵ = 	 ଷݖ 	= 	0	is the 
union of the subvarieties determined by the polynomials in each basis listed): 
  
[݀], [ܽ], ܽ	݀	ݑ	ܿ] − ܾ	ݒ	݀	ܽ − ݀	ܾ	ݑ	ܿ	2 + ଶܾ	ݒ	݀	2 	− ܿ	ଶܽݑ + ܾ	ݒ	ܽ	ݑ	2 + ܿ	ଶܽݒ

+ 	ଶܾݑ	ܿ	2 − ݑଶܾ	ݒ	4 − ,ܿ	ଶܾݒ	2 ݀	ܾ	ݑ	ܽ + ݀	ݒ	ܽ	ܿ − ଶܾ݀	ݑ	2 − ݀	ܿ	ݒ	ܾ	2
− ଶݑ	ܽ	ܾ 	− ܿ	ݑ	ܽ	ݒ	2 + ଶݒ	ܽ	ܾ + ଶܾଶݑ	2 	+ ܾ	ܿ	ݑ	ݒ	4 − ,ଶܾଶݒ	2 ܿଶ 	
+ ܾଶ], ,ݒ] ܿ, ܾ], [݀ − ,ݑ	2 ܿ,ܾ], 	ܽ	݀	ݑ] − ݀ܿ	ݒ + ଶݒ	ܽ	2 	+ ,ܿ	ݒ	ݑ	2 ܽ	݀	ݒ
+ ܿ	ݑ	݀ − ܽ	ݒ	ݑ	2 + ,ܿ	ଶݒ	2 ଶݑ 	+ ,[	ܾ,ଶݒ [݀ − ,ݑ ,[ܾ,ݒ ܽ	݀	ݑ] − ଶݑ	ܽ 	
+ ܽ	݀	ݒ,ܿ	ݒ	ݑ − ܽ	ݒ	ݑ + ܿ	ݑ−,ଶܿݒ − ݒ	ܽ + ܿ	݀, ܿଶ 	+ ܽଶ, ܾ	], ܽ	݀	ݑ	ܿ]
− ݀	ܾ	ݑ	ܿ − ܿଶ	݀	ݒ + ܿ	ଶܽݒ	2 + ݒଶܿ	ݑ	2 − ,ܿ	ଶܾݒ	2 ݀	ܾ	ݑ	ܽ − ݀	ଶܾ	ݑ
− ݀	ܿ	ݒ	ܾ + ଶݒ	ܽ	ܾ	2 	+ ܾ	ܿ	ݑ	ݒ	2 − ,ܾଶ	ଶݒ	2 ܽ	݀	ݒ + ܿ	ݑ	݀ − ܾ	ݒ	݀ − ܽ	ݒ	ݑ	2
+ ܾ	ݑ	ݒ	2 + ଶݑ,ଶܿݒ	2 	+ ,[ଶݒ ,ݑ] ,ݒ ܿ], [ܽ − ,ݒ,ܾ ܿ], [݀ − ,ݒ,ݑ ܿ], [݀
− ,[ݒ,ݑ ݀	ܾ	ݑ	ܽ] − ଶܾ݀	ݑ − ଶݑ	ܽ	ܾ 	+ ܾ	ܿ	ݑ	ݒ + 	ܽ	݀	ݒ,ܾଶ	ଶݑ − ܾ	ݒ	݀
+ ܾ	ݑ	ݒ − ܽ	ݒ	ݑ + ܿ	ݑ−,ܿ	ଶݒ + ܾ	ݒ − ݒ	ܽ + ܿ	݀,ܾଶ 	− 2	ܽ	ܾ + ܿଶ 	+ 	ܽଶ]. 

(41) 
Recalling that ݑଶ 	+ ଶݒ 	= 	 ݁ଶ, inspecting the bases in this list shows that they imply, in 
succession: ݀	 = 	0, ܽ	 = 	0, ܾ	 = 	ܿ	 = 	0, ܾ	 = 	ܿ	 = 	0, ܾ	 = 	ܿ	 = 	0, ݁	 = 	0, ݁	 = 	0,ܾ	 =
	ܿ	 = 	0, ݁	 = 	0, ݁	 = 	0, ܾ	 = 	ܽ	 andܿ	 = 	0, ݁	 = 	0, ݁	 = 	0, ܾ	 = 	ܽ	and ܿ	 = 	0. We have 
used here the fact that the equations ݀	 = 	ݒ and ݑ	 = 	0 imply that ଷ 	= 	  ଶ, and hence
݁	 = 	0. Since the centers ܿଵ, ܿଶ, ܿଷ are distinct, all of these cases are forbidden. This 
completes the algebraic proof of Lemma (5.1.29). 
 



194 

Let ܥଵ be the circle with center ܿଵ and radius ݎଵ, and ܥଶ the circle with center ܿଶ and radius 
,ଵ ଶ. Letݎ ଵ ଶ be distinct points with 	 ∈ ଶ ଵ andܥ	 	 ∈ 	 	݂ ଶ. Letܥ =  By a .(ଶ,ଵ)ߩ	
“motion” of (ଵ, ,(ݐ)ଵ ) we mean continuous functions	ଶ for 0 (ݐ)ଶ ≤ 	ݐ	 ≤ 	1	such that 
ଵ(0) = 	 ,	ଵ ଶ(0) 	= 	 ଶ , and for all ݐ from 0 to 1 we have ଵ(ݐ) ∈ (ݐ)ଶ,	ଵܥ ∈  ଶ, andܥ
((ݐ)ଶ,(ݐ)ଵ)ߩ 	= 	݂. We say (	ݍଵ,ݍଶ) is in the motion of (ଵ,  ଶ) if there is a motion
from (ଵ, ,ଵݍ	) ଶ) to  ଵ (and likewise for ଵ is in the motion ofݍ ଶ) We will also sayݍ
,ଶ ,ଵݍ) ଶ to some pair,ଵ ଶ) if there is a motion fromݍ  (ݐ)ଵߠ ଶ) For a given motion, letݍ
(and likewise for ߠଶ(ݐ)) be the continuous function such that ߠଵ(0) ∈  (ݐ)ଵߠ and ,(ߨ0,2]
mod 2ߨ is the angle ߠ such that ଵ(ݐ) = ܿଵ 	+ ,(ߠ)ݏܿ	ଵݎ	)   .((ߠ)݊݅ݏ	ଵݎ
      We say a motion (ଵ(ݐ),ଶ(ݐ)) is analytic if the coordinate functions ଵ(ݐ) =
,((ݐ)ଵݕ,(ݐ)ଵݔ)	 (ݐ)ଶ = ,(ݐ)ଶݔ)  .ݐ are analytic functions of ((ݐ)ଶݕ
 

 
 

Figure (1)[190]: 
Definition (5.1.31)[190]. We say (ݍଵ,ݍଶ)  is an extreme point in the motion of (	ଵ,  (ଶ
for ݍଵ (and likewise for ݍଶ) if it is in the motion of (	ଵ,ଶ), and any motion of (ݍଵ,  (ଶݍ
has, for su�ciently small ݐ,  ଵ moving in at most one of the two possible tangentialݍ
directions on ܥଵ (we refer to this side as the allowable side of ݍଵ). We will also refer to ݍଵ 
as being an extreme point in the motion of ଵ. We say an extreme point (ݍଵ, -ଶ) is nonݍ
trivial if there is a non-constant motion from (ݍଵ,ݍଶ). 
      If (ݍଵ,ݍଶ) is an extreme point in the motion of (	ଵ,ଶ) for ݍଵ, then ݍଵݍଶ must pass 
through ܿଶ. In fact, the non-trivial extreme points can be characterized as those points 
,ଶ passes through one of the centers ܿଵݍଵݍ such that (ଶݍ,ଵݍ) ܿଶ, but not the other.  
      Figure 1 illustrates a possible extreme configuration (it is also possible that ݍଶ lies on 
the other side of ܿଶ from ݍଵ).  
      The following lemma is not required for the proof of Lemma (5.1.29), but it helps to 
put the above definition in perspective.  
 
Lemma (5.1.32)[190]. Suppose ܿଶ lies outside of the circle ܥଵ, or ܿଵ lies outside ܥଶ. Then 
except for the exceptional case where ݎଵ 	= 	 (ଶ,ଵ	)ߩ ଶ andݎ = ,ଵܿ)ߩ ܿଶ), there must be an 
extreme point in the motion of (	ଵ,ଶ).  
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Proof. Without loss of generality we may assume ܿଵ 	= 	 (0	,0), and ܿଶ 	= (ܿ, 0) is on the 
ܿ)	ଵܥ axis and to the right of-ݔ > ଵݎ ଵ). First assumeݎ 	>  ଶ. We show there is an extremeݎ
point in the motion of ଵ. If not, then there is a motion of ଵ to the point (−ݎଵ, 0), and also 
a motion to the point (ݎଵ, 0). Note that ܥଶ lies entirely to the right of the line ݔ	 = 	0.	The 
fact that ଵ can be moved to (−ݎଵ, 0) shows that ݂	 ≥ 	ܿ	 + 	 ଵݎ 	−  ଵ can ଶ. The fact thatݎ
be moved to (ݎଵ, 0), however, shows that ݂	 ≤ 	ܿ	 + 	 ଶݎ 	−  ଵ, a contradiction. Assume nextݎ
that ݎଵ 	<  ଶ. Suppose not, so ଶ, and we show there is an extreme point in the motion ofݎ
	ܿ) ଶ can be moved to both + 	 ,ଶݎ 0) and (ܿ − ,ଶݎ 0). From the first fact it follows that 
݂	 ≥ 	ܿ	 + 	 ଶݎ 	− 	ܿ ଵ. Ifݎ − ଶݎ	 	≤ 	0, then the second fact implies ݂	 ≤ 	 ଵݎ 	+ 	 ଶݎ 	− 	ܿ. 
Hence ܿ	 ≤ 	 ܿ ଵ,a contradiction. Ifݎ − ଶݎ 	> 	0, the second fact implies ݂	 ≤ ܿ − ଶݎ 	+  .ଵݎ
Hence ݎଶ 	≤ 	 ଵݎ ଵ, also a contradiction. Finally, ifݎ 	= 	  ଶ, then the argument of the firstݎ
case also gives a contradiction unless ݂	 = 	ܿ, that is,ߩ(ܿଵ, ܿଶ) =  This is the .(ଶ,ଵ)ߩ
exceptional case of Lemma (5.1.29). 
 
Definition (5.1.33)[190]. We say a point (ݍଵ,ݍଶ) in the motion of (	ଵ,ଶ) is a double 
point for ݍଵ iff or all ݍଵᇱ  in a one-sided neighbourhood of ݍଵ on ܥଵ (which we call an 
allowable side; this may include both sides) except perhaps for ݍଵitself, there are two 
distinct points ݍଶᇱ , ଵᇱݍ)ߩ  such that	ଶܥ ଶᇱᇱ onݍ , ଶᇱݍ ) = ଵᇱݍ)ߩ,݂ (ଶᇱᇱݍ, = ݂ and there is an analytic 
motion from (ݍଵᇱ ଶᇱݍ, )to	(ݍଵᇱ ,  .(ଶᇱᇱݍ
      If (ݍଵ,ݍଶ) is a non-trivial extreme point for q1 in the motion of (	ଵ,  ଶ), then it is a
double point for ݍଵ. For if ݍଵᇱ  ଵ and on the allowable side ofݍ ଵ is su�ciently close toݍ	≠
ଶᇱݍ ଵ, then there will be two distinctݍ , ଵᇱݍ)ߩ ଶᇱᇱ such thatݍ ଶᇱݍ, ) = ଵᇱݍ)ߩ ,݂ , (ଶᇱᇱݍ = ݂, with 
ଶᇱݍ  is an analytic function (ݐ)ଶݍ ଶ. Ifݍ ଶ and lying on opposite sides ofݍ ଶᇱᇱ close toݍ,
moving from ݍଶᇱ  to ݍଶᇱᇱ along ܥଶ, then the corresponding motion of ݍଵ is also described by 
an analytic function ݍଵ(ݐ). [In general, if ݍଶ(ݐ) is an analytic motion along ܥଶ and ݍଵ(ݐ) is 
a motion along ܥଵ such that ݍ)ߩଵ(ݐ), ((ݐ)ଶݍ 	= 	݂ for all ݐ, then ݍଵ(ݐ) is necessarily 
analytic provided ݍଵ(ݐ)ݍଶ(ݐ) does not pass through ܿଵ for all ݐ.]  
    Note that in the definition of a double point, we do not require that in the analytic 
motion from (ݍଵᇱ ଶᇱݍ, ) to (	ݍଵᇱ , ଵᇱݍ stay in a small neighborhood of (ݐ)ଵݍ ଶᇱᇱ) the functionݍ . 
This is the case, however, if (ݍଵ,  ଵ, as the aboveݍ ଶ)is an extreme point in the motion ofݍ
argument shows.  
    We turn now to the proof of Lemma (5.1.29). Fix circles ܥଵ,ܥଶ with centers at ܿଵ, ܿଶ and 
radii ݎଵ, ଶ, and assume ܿଵݎ ≠	 ܿଶ. Fix ଵ 	 ∈ 	 ଶ,ଵܥ 	 ∈ 	 	݂ ଶ, and letܥ = ,ଵ	)	ߩ  ଶ) (we
assume ݂ > 0). Fix a triangle ܾܽܿ	with ݂	 =  We henceforth assume we are not in .(ܾ,ܽ)ߩ	
the exceptional case of Lemma (5.1.29), so either ݎଵ ݂ or	ଶݎ	≠ ≠ ,ଵܿ)ߩ	 ܿଶ). It su�ces to 
show that for any analytic motion ଵ(ݐ),  (ݐ)ଷ the corresponding motion ,(ଶ,ଵ	) of	(ݐ)ଶ
does not lie entirely on a circle ܥଷ. Here ଷ(ݐ) is the point such that the triangle 
,ଵ) is congruent to ܾܽܿ. To see this, suppose (ݐ)ଷ(ݐ)ଶ(ݐ)ଵ ,ଶ  ଷ) were infinitely
many triples with  	 ∈ ଵ ଷ congruent to ܾܽܿ. Letଶଵ  andܥ 	 ∈ 	 ଶ,ଵܥ 	 ∈ 	 ଷ,ଶܥ 	 ∈ 	  ଷܥ
be such that (ଵ, ,ଶ ,ଵ) ଷ) is a limit of a subsequence of the  ଷ). Consider an,ଶ
analytic motion ଵ(ݐ) on ܥଵ nearby ଵ. If ଵଶ does not pass through ܿଶ, then the 
corresponding motions ଶ(ݐ), ଷ(ݐ) are uniquely determined and also analytic. Since 
,(ݐ)ଷ)ߩ ܿଷ)ଶ is analytic and has infinitely many zeros in a neighborhood of ݐ	 = 	0 (we 
assume ଵ(0) 	= 	  lies  (ݐ)ଷ ଵ); this function must then be identically zero, and thus
entirely on ܥଷ. Suppose ଵଶ passes through ܿଶ. Let ଵ(ݐ) be an analytic motion on ܥଵ 
nearby ଵ moving in a direction from ଵ such that there are infinitely many ଵ in any 
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interval [ଵ(0),ଵ(ݐ)) for any ݐ > 0. There at two analytic functions ଶ(ݐ), ଶᇱ  such that (ݐ)
ଶ(0) 	= 	 (ݐ)ଶ ଶ and 	 ∈ 	 ((ݐ)ଶ,(ݐ)ଵ)	ߩ,ଶܥ 	= 	݂ for all ݐ. Furthermore, all (	ݍଵ	,  (ଶݍ
close enough to (ଵ,ଶ) with ݍଵ on the appropriate side of ଵ and such that ݍଵ 	 ∈ 	 ,ଵܥ ଶݍ 	 ∈
,ଵݍ)ߩ ଶ, andܥ	 (ଶݍ = ݂ must be of the form (ଵ	(ݐ),ଶ(ݐ)) or (ଵ(ݐ), ଶᇱ  .ݐ for some ((ݐ)
Without loss of generality, assume for infinitely many ݊ that (ଵ, (ଶ = ,(ݐ)ଵ	)  .((ݐ)ଶ
Let ଷ(ݐ)  be the analytic function corresponding to ଵ(ݐ),  Considering the function .(ݐ)ଶ
,(ݐ)ଷ)ߩ ܿଷ)ଶ as before now shows that ଷ(ݐ) lies entirely on ܥଷ.  
     We will consider several cases in the proof of Lemma (5.1.29).  
     Case I. There is a double point (ݍଵ, ,ଵ	) ଶ) in the motion ofݍ   .(ଶ
      If ݖଵ 	 ∈ 	  ଵ, then there are twoݍ ଵ and on an allowable side ofݍ ଵ is su�ciently close toܥ
points ݖଶ, ଶᇱݖ  which lie on ܥଶ and satisfy ݖ)ߩଵ, (ଶݖ = ,ଵݖ)ߩ (ଶᇱݖ = ݂. Furthermore, there is 
an analytic motion from (ݍଵ, ,ଵݖ	) ଶ) to eitherݍ ,ଵݖ	) ଶ) orݖ ,ଶݖ ଶᇱ). Note thatݖ ଶᇱݖ  are 
symmetrical with respect to the line from ݖଵ to ܿଶ. See Figure 2. Let ݖଷ, ଷᇱݖ  denote the 
corresponding values of ݖଷ. Since ݖଷ, ଷᇱݖ  both lie on ܥଷ, clearly the  

 
Figure (2)[190]: 
 
line through ݖଵ which bisects the segment ݖଷ	ݖଷᇱ  passes through ܿଷ. In other words, if ݈(ݖଵ) 
denotes the line through ݖଵ such that the angle between ݈(ݖଵ)  and ݖଵܿଶ is ߙ	 ≐ the angle 
cab, then ݈(ݖଵ) must pass through ܿଷ. To express this analytically, we coordinatize the 
circles by letting (without loss of generality) ܿଵ 	= (0	,0), ܿଶ 	= (ܽ, 0), and ݎଵ 	= 	1. Let 
ܿଷ 	= (ܿ,݀) and ߛ	 =  ଵܿଶ and theݖ be the angle between the segment ߚ Let .(ߙ)݊ܽݐ	
horizontal line from ݖଵ. Let ݖଵ = 	 ,(ߠ	)ݏܿ) (ߚ) ,Thus .((ߠ)݊݅ݏ = ௦(ఏ)

	ି௦(ఏ) . Note that 
	ߙ −  denotes the slope (ߠ)݉ ଵܿଷ. Ifݖ is the angle between the horizontal and the segment ߚ
of the line through ݖଵ and ܿଷ, then we have 

(ߠ)݉ = tan(ߙ − (ߚ =
(ߙ)݊ܽݐ −	 (ߠ)݊݅ݏ

	ܽ − (ߠ)ݏܿ

	1 + (ߙ)݊ܽݐ ൬ (ߠ)݊݅ݏ
	ܽ − ൰(ߠ)ݏܿ

 

																																						=
൫ܽߛ − ൯(ߠ)ݏܿ − (ߠ)݊݅ݏ
	൫ܽ − ൯(ߠ)ݏܿ + (ߠ)݊݅ݏߛ	

.	 

Thus, the equation of the line ݈(ݖଵ) is  
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	ݕ =
൫ܽߛ	 − ൯(ߠ)ݏܿ − (ߠ)݊݅ݏ
൫ܽ − ൯(ߠ)ݏܿ + (ߠ)݊݅ݏߛ	

	ݔ + ቈ(ߠ)݊݅ݏ − ൫ܿ(ߠ)ݏ൯	
൫ܽߛ − ൯(ߠ)ݏܿ − (ߠ)݊݅ݏ
	൫ܽ − ൯(ߠ)ݏܿ + (ߠ)݊݅ݏߛ	

	. 

Since all of these lines pass through (ܿ, ݀), it follows that  
൫ܽߛ − ൯(ߠ)ݏܿ − (ߠ)݊݅ݏ
	൫ܽ − ൯(ߠ)ݏܿ + (ߠ)݊݅ݏߛ	

	(ܿ − ((ߠ)ݏܿ + (ߠ)݊݅ݏ − ݀ 

 
is identically 0 for ߠ in some interval. This simplifies to  
 

	ߛ) + ܿܽߛ − ܽ݀) + (ܽ − ܿ − (ߠ)݊݅ݏ(݀ߛ + ܽߛ−) − ܿߛ + (ߠ)ݏܿ(݀ = 0	.	 
 
Since 1, ,(ߠ)݊݅ݏ   are linearly independent, we have (ߠ)ݏܿ

ܽߛܿ − ܽ݀	 + 	ߛ = 0	,	 
  −ܿ + ܽ − ݀ߛ = 0	,																																																		(42) 

	ߛܿ−			 + ݀ − ܽߛ = 0	.				 
       From the first and third equations it follows that either ߛ	 = 	0	or ܽ	 = 	1. If ߛ	 = 	0, 
then from the second equation we have ܿ	 = 	ܽ. Since ߙ	 = 	0 or ߨ in this case, we must 
therefore have ݀	 = 	0. That is,ܿଷ 	= 	 ܿଶ, a contradiction.  
       Assume now that ܽ	 = 	1. Solving the second and third equations for ܿ and ݀ gives 
ܿ	 = ଵିఊమ

ଵାఊమ
, ݀	 = ଶఊ

ଵାఊమ
. Thus, ܿଷ 	= (ܿ,݀) lies on the circle ܥଵ of radius 1. 

Since ܽ	 = 	1, ܿଶ also lies on ܥଵ. Recall ݂	 = ,ଵ)ߩ	 	݁ ଶ), and let = ,ଵ)ߩ	 	ݎ	ଷ). Let = 	  ଶݎ
be the radius of the second circle, and ݏ	 = 	  ଷ the radius of the third. Using the sameݎ
coordinatization and notation as above, except ߚ now denotes the angle ∠ݖଶݖଵܿଶ 	=
 ଵܿଷ, the law of cosines givesݖଷݖ∠	
(43)   

ଶݎ				 = ݂ଶ + sinଶ(ߠ) + (ߠ)ݏܿ) − ܽ)ଶ − 2݂ඥ݊݅ݏଶ(ߠ) + (ߠ)ݏܿ) − ܽ)ଶ cos(ߚ), 
ଶݏ										 = ݁ଶ 	+ ߠ)݊݅ݏ − ݀)ଶ + ߠ)ݏܿ − ܿ)ଶ

− 2݁ඥ((ߠ)݊݅ݏ− ݀)ଶ 	+ ߠ)ݏܿ) − ܿ)ଶ)ܿ(ߚ)ݏ.	 
This becomes  

	ݑ + (ߠ)ݏܿܽ

݂ඥ݊݅ݏଶ(ߠ) + (ߠ)ݏܿ) − ܽ)ଶ
	= 	

	ݒ + (ߠ)݊݅ݏ	݀ + 	(ߠ)ݏܿ	ܿ
݁ඥ((ߠ)݊݅ݏ− ݀)ଶ 	+ ߠ)ݏܿ) − ܿ)ଶ)

,															(44) 

 
where	2ݑ	 = 	 ଶݎ 	− ݂ଶ 	− ܽଶ 	− 1 and 2ݒ	 = ଶݏ − ݁ଶ − ܿଶ 	− ݀ଶ 	− 1. Substituting  
ܽ	 = 	1,cross-multiplying and squaring, this becomes  

ℎଵ 	+ ℎଶ	ܿ(ߠ)ݏ + ℎଷ	cosଶ(ߠ) + ℎସ	cosଷ(ߠ) + ℎହ	(ߠ)݊݅ݏ 	+ ℎ	(ߠ)ݏܿ(ߠ)݊݅ݏ
+ ℎ	(ߠ)݊݅ݏcosଶ(ߠ) = 0	,	 

where  
ℎଵ = ݁ଶݑଶ	݀ଶ 	+ ݁ଶݑଶ	ܿଶ 	− 2݂ଶ	ݒଶ 	− 2݂ଶ	݀ଶ 	+ ݁ଶݑଶ,							 

															ℎଶ 	= 2݂ଶݒଶ 	+ 2	݁ଶ	ݑ + 2	݁ଶ	ݑ	ܿଶ 	+ 2݁ଶ	ݑ	݀ଶ 	+ 2݂ଶ	݀ଶ 	− 4݂ଶ	ܿݒ − 2݁ଶ	ݑଶ	ܿ, 
											ℎଷ 	= 2݂ଶ	݀ଶ 	− 4݁ଶ	ܿݑ − 2݂ଶ	ܿଶ 	+ ݁ଶܿଶ + ݀ଶ	݁ଶ 	+ 4݂ଶ	ܿݒ + ݁ଶ, 
       		ℎସ 	= −2݂ଶ݀ଶ 	− 2݁ଶ	ܿ + 2݂ଶܿଶ,																																																																				(45) 

ℎହ 	= −4݂ଶ	݀ݒ − 2݁ଶ	ݑଶ	݀,																																																													 
ℎ 	= −4݁ଶ	݀ݑ − 4݂ଶ	݀ܿ + 4݂ଶ	ݒ	݀,																																													 
	ℎ 	= −2݁ଶ	݀	 + 4݂ଶ	݀ܿ.																																																																				 
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By linear independence, ℎଵ 	=	···	= 	 ℎ 	= 	0. From ℎ 	= 	0 we have either ݀	 = 	0, a 
contradiction as then ܿଷ 	= 	 ܿଶ, or ݁ଶ 	= 2	݂ଶܿ. Substituting into the fourth equation we 
have ݂ଶ(ܿଶ 	+ ݀ଶ) 	= 	0, hence ݂	 = 	0, a contradiction.  
     This completes the proof of Lemma (5.1.29) in Case I.  
     Case II. There is no point (ݍଵ	, ,ଵ) in the motion of	ଶ)ݍ  ଶ passesݍ	ଵݍ ଶ) such that
through both ܿଵ and ܿଶ.  
      We may assume by Case I that there is no double point, and hence no extreme point in 
the motion of (ଵ, ଵᇱ ଶ). Let , ଶᇱ  denote the reflections of ଵ,  axis, where-ݔ ଶ about the
we again assume ܿଵ 	= 	 (0	,0) and ܿଶ 	= (ܽ, 0). Let ߙ denote the acute angle between ଵଶ 
and the ray ܿଵଶ. See Figure 3.  
      Consider an analytic ଶ(ݐ) where ଶ(ݐ) moves from ଶ to ଶᇱ . Note that in any motion 
of (ଵ,  cannot pass through either ܿଵ or ܿଶ. For if it passed	ଶݍଵݍ ,(ଶݍ,	ଵݍ) ଶ) to a point
through exactly one of these, (ݍଵ	,ݍଶ)	would be a (non-trivial) extreme point in the motion 
of (ଵ,  .ଶ cannot pass through both centersݍଵݍ ,ଶ). Also, by the assumption of the case
This implies that there is a uniquely determined analytic function ଵ(ݐ) describing the 
corresponding motion of ଵ. Let (ݐ)ߙ denote the angle between ଶ(ݐ)ଵ(ݐ) and ܿଵଶ(ݐ) 
(so (0)ߙ 	= (ݐ)ߙ ,Thus .(ߙ	 ≠ 	0 for all ݐ	 ∈ 	 [0,1]. It follows that the terminal value of ଵ, 
namely ଵ(1), is not the reflected point ଵᇱ , but rather the point ଵᇱᇱ which is the reflection 
of ଵᇱ  about the line ܿଵଶᇱ . Thus, ଵᇱᇱ is obtained from ଵ by two reflections, first about the 
  axis, and then about the-ݔ

 
 

Figure (3)[190]: 
line ܿଵଶᇱ . Let ଷ(ݐ) be the analytic function corresponding to ଵ(ݐ),ଶ(ݐ). Since the 
composition of two reflections is orientation preserving, it follows that ଷ(1)	is obtained 
from ଷ(0) by the same two reflections. In particular, this shows that ଷ(0),  ଷ(1) are
equidistant from ܿଵ. Let ݈	 = ,ଵ)݈	  ,ଷ(1). Thusଷ(0) ଶ)  be the perpendicular bisector of
݈ passes through ܿଵ 	= 	 (0	,0) as well as through ܿଷ.  
    Consider now another point (ݍଵ	,  be the 	(ଶݍ,	ଵݍ)݈ and let ,(ଶ,ଵ) in the motion of	ଶ)ݍ
corresponding line. If ݈(ݍଵ	, (ଶݍ ≠ ,ଵ)݈	 , then ܿଷ	ଶ) 	= 	 ܿଵ, a contradiction. Thus, 
,	ଵݍ)݈ (ଶݍ 	= ݈ is independent of (ݍଵ	,  ,ଶ). This can be seen to be impossible. For exampleݍ
we may argue as follows. By taking a motion of (ଵ,ଶ), we may assume ଶ is on the ݔ-
axis. It follows that ݈ is the line through the origin and ଷ. Since the composition of the 
two reflections described above is just a rotation about the origin, it follows that if we 
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move (ଵ, ,	ଵݍ) ଶ)  to any  ଶܿଵݍ ଷ makes with ݈ is the same asݍଶ), then the angle that ܿଵݍ
makes with the ݔ-axis. Thus, if we rotate triangle ݍଵݍଶݍଷ about the origin by this angle, 
the resulting triangle ݍଵᇱݍଶᇱݍଷᇱ  will be such that ݍଶᇱ  is on the ݔ-axis, ݍଵᇱ  is on ܥଵ, and ݍଷᇱ  is on 
݈. This implies (for su�ciently small non-zero motions) that (ݍଵᇱ , ଶᇱݍ ଷᇱݍ, ) = ,ଵ	) ,ଶ  ଷ). In
other words, (ݍଵ, ,ଶݍ ,ଵ) is obtained from	ଷ)ݍ ,ଶ  ଷ) by a rotation about the origin. This
shows that ܿଶ 	= 	 ܿଵ 	= 	 (0	,0), a contradiction. 
     Case III. There is a point (ݍଵ	,  ଶ passesݍଵݍ such that (ଶ,ଵ) in the motion of	ଶ)ݍ
through both ܿଵ and ܿଶ.  
     Again, we may assume that in any analytic motion of (ଵ,ଶ), thereis no extreme point. 
Thus, as we take an analytic motion of ଵ to the point ݍଵ = 	 (1	,0),  ଶ moves in an analytic
manner to a point of intersection ݍଶ of ܥଶ with the ݔ-axis. It su�ces to show that no 
analytic motion (ݍଵ(ݐ),ݍଶ(ݐ)) of (ݍଵ	,ݍଶ)	can have the corresponding ݍଷ(ݐ) lying entirely 
on a circle ܥଷ. In fact, it clearly su�ces to show that if (ݍଵ(ݐ),  is an analytic motion  ((ݐ)ଶݍ
in which ݍଵ(ݐ) moves at a uniform rate (say, ݍଵ(ݐ) 	= 	 ,(ݐߨ)ݏܿ)  to the opposite (((ݐߨ)݊݅ݏ
point (−1,0), then ݍଷ(ݐ) cannot lie entirely on ܥଷ.	We can also check that the only case 
where there is not an obvious extreme point in the motion of (ݍଵ	,  occurs when	ଶ)ݍ
ଶݍ 	= 	ܽ	 − ܽ ଶ andݎ − ଶݎ 	< 	0.  
    The analytic motion (ݍଵ(ݐ), ݐ can be extended to ((ݐ)ଶݍ < 0 so that (	ݍଵ(−ݐ),ݍଶ(−ݐ)) 
is the reflection of (ݍଵ(ݐ), axis for 0-ݔ about the ((ݐ)ଶݍ ≤ 	ݐ	 ≤ 1. Thus, for 0 ≤ 	ݐ ≤
1,  (ݐ)ଵݍ ,from 0 to −1 ݐ moves counter-clockwise from (1,0) to (−1,0), and for (ݐ)ଵݍ
moves clockwise from (1,0) to (−1,0). The two terminal positions of ݍଶ(ݐ), namely, 
 axis. By-ݔ ଶ and are reflections of each other about theܥ ଶ(−1), lie onݍ ଶ(1) andݍ
continuity, for each ݍଵᇱ  near (−1,0),	there are points ݍଶᇱ , ଵᇱݍ)ߩ ଶ withܥ ଶᇱᇱ onݍ ଶᇱݍ, ) =
ଵᇱݍ)ߩ	 , (ଶᇱᇱݍ = ݂, and such that there is an analytic motion from (ݍଵᇱ ଶᇱݍ, ) to (ݍଵᇱ  ଶᇱᇱ) (noteݍ,
that this motion involves moving ݍଵᇱ  a full revolution around ܥଵ	). This shows that 
,ଵ(1)ݍ)  .ଵ(1), contrary to hypothesisݍ ଶ(1)) is a double point forݍ
 
       An immediate consequence of the existence of a Steinhaus set is the existence of an 
“݊-point” Steinhaus set.  
 
Theorem (5.1.34)[190]. For each integer ݊	 ≥ 	1 there is a set ܵ ⊆ ℝଶ	such that for every 
isometric copy ܮ of ℤଶ we have |ܵ 	∩ |ܮ = 	݊.  
 
Proof. Let ଵܵ 	= 	ܵ be the Steinhaus set from Theorem (5.1.1). Let ݖଵ, . . . ,   be ݊ distinctݖ
points in ℤଶ. Let ܵ = ⋃ ܵ	 + 	 ݖ

ୀଵ 	. Since ܵ is a Steinhaus set, the sets ܵ	 + 	   areݖ
pairwise disjoint. Each lattice ܮ clearly meets each ܵ	 + 	   in exactly one point, and theݖ
result follows.  
     There are many problems about Steinhaus sets that remain open. As we mentioned, a 
Steinhaus set ܵ	 ⊆ ℝଶ	 cannot be both bounded and measurable.  
Section (5.2): Comments about the Steinhaus Tiling Problem  

     The Steinhaus tiling problem, first proposed by Steinhaus in 1957, is whether there 
exists a set in the plane which, under any isometry, contains exactly one point of ℤଶ. 
Recently, Jackson and Mauldin [190] have constructed such a set. The question of whether 
such a subset of ℝଶ can be measurable remains open although there are several partial 
results [84], [44], [83]; in [83] it is shown that such a set cannot have the Baire property.  
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     Kolountzakis and Papadimitrakis [202] considered a variation of this problem: Does 
there exist a measurable subset ܧ of ℝௗ such that for almost every ݔ	 ∈ 	ℝௗ and almost 
every isometry ܵ, the set (ܵܧ	 +  contains exactly one point of ℤௗ? They showed the (ݔ	
answer to this question is no, for ݀	 ≥ 	3. This result had been shown earlier by 
Kolountzakis and Wolff [83] by more complicated means which also yield some stronger 
results. One purpose is to examine how far the argument given in [202] might extend. We 
begin by repeating the key aspect of this argument, by generalizing from the lattice ℤௗ, for 
݀	 ≥ 	3, to the lattice ܤℤௗ, where ܤ	 ∈  	.(ℝ,݀)ܮܩ	

     We call the above condition the “almost sure” Steinhaus property on ܤ or on the lattice 
 or on the	ܤ is said to have the almost sure Steinhaus property on ܧ Specifically, a set	ℤௗ.ܤ
lattice ܤℤௗ, where ܤ is an invertible matrix, provided that under almost every isometry ܵ 
and almost every point ܧܵ)| ,ݔ	 + (ݔ	 ∩ |(ℤଷܤ) 	= 	1. For the remainder we shall suppress 
the words almost sure. Observe that this property may be described as follows: 

 	1ௌா(ݔ	 − 	݊) = 	1
∈ℤ

	 , ܽ. 	ݔ.݁ ∈ ℝௗ ,ܽ. ݁.  (46)							.ܵ	ݕݎݐ݁݉ݏ݅

     Let ߉ 	= ℤௗܣ	 	⊂ ℝௗ , for ܣ	 ∈  and let ,ܣ be the lattice induced by ,(ℝ,݀)ܮܩ	
∗߉ 	= 	  ℤௗ be its dual lattice. From elementary harmonic analysis, we have that if ݂ is்ିܣ
an ܮଵ function, then  

 	ݔ)݂ − (ߣ	
	ఒ∈௸ಲ

= .ܽ					,ܥ	 ݁.  (47)																																																							,ݔ

if and only if its Fourier transform satisfies:  

	 መ݂(ߣ) = ߣ∀			,0 ∶ 	ߣ	 ∈ ∗߉	 	\	{0}.																																			(48) 
      By integrating both sides of (47) over the parallelepiped spanned by the columns of ܣ, 
we find that the constant ܥ equals the integral of ݂ times |݀݁ݐ(ିܣଵ)|.    

      It follows from this that a measurable set ܧ has the almost sure Steinhaus property on 
(ܧ)if and only if μ ܣ 	= 	 and 1ா ,ܧ is the Lebesgue measure of (ܧ)where μ ,|(ܣ)ݐ݁݀|  
vanishes on all points ݔ, such that ‖ݔ‖ = 	ߣ for some	‖ߣ‖ ∈ ∗߉	 , ߣ ≠ 	0. In view of this, 
given a matrix ܯ, let ࣞ(ܯ) 	= 	 	ݔ	|	ଶ‖ݔܯ‖} ∈ ℤௗ 	} be the set of possible square distances 
between points of the lattice ܯℤௗ .  

     We are now in a position to give sufficient conditions under which there is no 
measurable set with the almost sure Steinhaus property on ܤ. To this end, suppose we can 
find a matrix ܣ such that ࣞ(்ିܣ	) 	⊆ (	்ିܤ)ݐ݁݀/(	்ିܣ)ݐ݁݀ and such that ,(	்ିܤ)ࣞ 	=
 is not an integer. Now suppose, by way of contradiction, that a (ܣ)ݐ݁݀/(ܤ)ݐ݁݀	
measurable set ܧ has the Steinhaus property on ܤ. Then 1ா  vanishes on all nonzero points 
with norm square in ࣞ(்ିܤ	). So, 1ா  vanishes on all nonzero points with norm square in 
This means 1ா .(	்ିܣ)ࣞ  vanishes on ߉∗ 	\	{0}. This gives us  

 1ா(ݔ	 − (ߣ	
ఒ∈௸ಲ

		=
|(ܤ)ݐ݁݀|
|(ܣ)ݐ݁݀| 	,					ܽ. ݁.  (49)																																			.ݔ

     It is easy to see that the left side must be an integer, and we have supposed that the 
right side is not. We adopt a notation with which to state this result.  
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     If ܣ and ܤ are matrices such that ࣞ(ܣ) 	⊆  and ,ܣ norm dominates ܤ we say ,(ܤ)ࣞ
write ܤ	 ≻ 	ܣ or ܣ	 ≺ ܤ If .ܤ	 ≻  is irrational, we say (ܤ)ݐ݁݀/(ܣ)ݐ݁݀ and we have that ܣ	
ܤ and write ,ܣ strongly norm dominates ܤ ≻௦ ܤ If .ܣ	 ≻  (ܤ)ݐ݁݀/(ܣ)ݐ݁݀ and we have ܣ	
not an integer, we say ܤ weakly norm dominates ܣ, and write ܤ	 ≻௪  Finally, if .ܣ	
	ܤ ≻ (ܤ)ݐ݁݀/(ܣ)ݐ݁݀ and	ܣ	 	 ∈ ℤ, we say ܤ trivially norm dominates ܣ, and write 
ܤ ≻௧   .With this terminology in place, we have proven the following theorem .ܣ	

Theorem (5.2.1)[201]: Let ܤ	 ∈ 	ܣ and suppose there exists a matrix (ℝ,݀)ܮܩ	 ∈
்ିܤ where ,(ℝ,݀)ܮܩ	 ≻௪  Then there is no measurable set with the almost sure .ܣ	
Steinhaus property on ܤ.  

We deal with the question of when a matrix ܣ exists such that ܤ	 ≻௪  To this .ܣ	
end, it is useful to note the following two-part strategy: if we can find a matrix ܥ such that 
	ܥ ≻௧ 	ܤ and ܤ	 ≻௦ 	ܥ then ,ܣ	 ≻௦ 	ܥ ,and, of course ܣ	 ≻௪  Kouluntzakis and . ܣ	
Papadimitrakis [202] have resolved some issues about this strategy for the case ܤ	 =  .ܫ	
They show that in case ݀	 = 	2, there is no such ܣ so that this strategy cannot be applied. 
In case ݀	 > 	2, there is such an ܣ and so the strategy applies. We will not complete their 
proof here, but mention that, for ݀	 = 	3, their proof concludes by showing (under 
different terminology) that  


1

1
1
൩ ≻௪ 	 

√2 	 	
	 √6 	
	 	 √18

.	 

We prove that if ܣ்ܣ has rational entries, then there is a diagonal matrix ܤ such that 
ܣ ≻௧  .has rational entires. Thus, we can carry out the first part of the strategy ܤ	்ܤ and ܤ	
We demonstrate the limitation of the general method by exhibiting a class of diagonal 
matrices such that if ܣ ≻ 	ܣ then ,ܤ	 ≻௧  for ܪ We provide an example of a matrix .ܤ	
which the strategy works. Our proof uses some special quadratic forms and the method of 
descent.  

        Let us refer to an invertible matrix ܣ as norm rational if ܣ்ܣ has only rational entries. 
This is equivalent to saying that the inner product of any two columns of ܣ is rational and 
also equivalent to saying that ห|ݔܣ|ห

ଶ
 is rational for every ݔ	 ∈ ℤௗ. 

Theorem (5.2.2)[201]: Let ܣ	 ∈  be norm rational. Then there is a diagonal (ℝ,݀)ܮܩ	
norm rational matrix ܤ, also in ܮܩ(݀,ℝ) , such that ܣ ≻௧  .ܤ	

       Note that this theorem gives a halfway point toward showing that Theorem (5.2.1) 
applies to all norm rational matrices.  

      We prove the theorem in the case of ݀	 = 	3, indicating how to generalize where 
appropriate.  

Proof . First, if ܴ is any linear isometry, then ܤ ≻ ܤܴ if and only if ܣ	 ≻  since ,ܣ	
(ܤ)ࣞ 	=  ,is norm rational. Therefore ܣܴ is norm rational if and only if ܣ ,Also .(ܤܴ)ࣞ
we may assume ܣ is lower triangular and norm rational. Let us say 
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	ܣ	 = 	 
ܽଵ,ଵ 	 	
	ܽଶ,ଵ 		ܽଶ,ଶ 	
ܽଷ,ଵ ܽଷ,ଶ ܽଷ,ଷ

൩						.	 

     We show that general ܽ, may be written as ݍ,ඥ݊, for some ݍ, 	∈ ℚ,݊ 	 ∈ ℤ. To do 
this, we note that any number ݔ with ݔଶ 	 ∈ ℚ	may be written uniquely as ݍ	√݊, where ݍ is 
rational and ݊ is a square free integer. This implies that if ݔ	 = 	 ݊√	ଵݍ ≠ 	0 and ݕݔ	 ∈ 	ℚ, 
then ݕ	 = 	  .ଶݍ √݊, for some rational	ଶݍ

      We denote the ݅ݐℎ column of ܣ as ܣ. We have 〈ܣଷ,ܣଷ〉 = 	 ܽଷ,ଷ
ଶ 	 ∈ 	ℚ, so we may write 

ܽଷ,ଷ 	= 	 〈ଷܣ,ଵܣ〉 ඥ݊ଷ. Next, we have	ଷ,ଷݍ 	= 	 ܽଷ,ଵܽଷ,ଷ 	 ∈ 	ℚ and 〈ܣଵ,ܣଶ〉 	= 	 ܽଷ,ଵܽଷ,ଶ 	 ∈
	ℚ, so by the second above property, we may also write ܽଷ,ଵ 	= 	 ඥ݊ଷ,ܽଷ,ଶ	ଷ,ଵݍ 	=
(ܣ)ݐ݁݀ ඥ݊ଷ. This is valid since	ଷ,ଶݍ	 ≠ 	0 implies ܽଷ,ଷ ≠ 	0. Note that this gives ܽଷ,ܽଷ, 	 ∈
	ℚ for all ݅, ݆.  

     We now proceed to row 2. We have 〈ܣଶ,ܣଶ〉 	= 	 ܽଶ,ଶ
ଶ 	+ 	 ܽଷ,ଶ

ଶ 	 ∈ 	ℚ. Since we have 
ܽଷ,ଶ
ଶ ∈ 	ℚ, this gives ܽଶ,ଶ

ଶ 	 ∈ 	ℚ, so we may write ܽଶ,ଶ 	= 	 〈ଶܣ,ଵܣ〉 √݊ଶ. We have	ଶ,ଶݍ 	=
	ܽଶ,ଵܽଶ,ଶ 	+ 	ܽଷ,ଵܽଷ,ଶ 	 ∈ 	ℚ, which gives ܽଶ,ଵܽଶ,ଶ 	 ∈ 	ℚ. Again, we have ܽଶ,ଶ ≠ 	0, so we 
may write ܽଶ,ଵ 	= 	  .√݊ଶ	ଶ,ଵݍ

      Finally, we have 〈ܣଵ,ܣଵ〉 	= 	 ܽଵ,ଵ
ଶ 	+ 	ܽଵ,ଶ

ଶ + 	ܽଵ,ଷ
ଶ 	 ∈ 	ℚ, which gives ܽଵ,ଵ

ଶ 	 ∈ 	ℚ, so we 
may write ܽଵ,ଵ in the desired form.  

      The method for general dimension ݀ is similar to the above. We proceed row by row 
upwards, beginning with the diagonal element, which gives all other elements in the row. 

      We let ݒ be a common denominator of the entries ݍ, in row ݅, letting us write 
,ݍ 	=

௨,ೕ
௩
	, where ݑ, and ݒare integers. Now we examine  

(ܣ)ࣞ = 	 ଶ‖ݔܣ‖} ∶ 	ݔ	 ∈ ℤଷ} 

= 	 ቄ൫ܽଵ,ଵݔ൯
ଶ
	+ 	 ൫ܽଶ,ଵݔ	 + 	ܽଶ,ଶݕ൯

ଶ
	+ 	 ൫ܽଷ,ଵݔ	 + 	ܽଷ,ଶݕ	 + 	 ܽଷ,ଷݖ൯

ଶ
∶ 	 ݔ⃗ 	 ∈ ℤଷቅ 

	= 	 {
݊ଵ
ଵଶݒ
	൫ܽଵ,ଵݔ൯

ଶ
	+

݊ଶ
ଶଶݒ
	൫ܽଶ,ଵݔ	 + 	ܽଶ,ଶݕ൯

ଶ
	+

݊ଷ
ଷଶݒ
	൫ܽଷ,ଵݔ	 + 	ܽଷ,ଶݕ	 + 	ܽଷ,ଷݖ൯

ଶ
ݔ⃗	: 	 ∈ ℤଷ}.	 

     If ݔଵ,  ଵ are nonzero integers, we can consider the subset of the above whenݖ ଵ, andݕ
	ݔ and so on, and consider ,ݔ|ଵݔ = 	 ,ොݔଵݔ 	ݕ = 	 		ݖෝ	ݕଵݕ = 	   :The above continues as .ݖଵ̂ݖ

(50) 

⊇ 	ቊ
݊ଵ
ଵଶݒ
	൫ܽଵ,ଵݔଵݔො൯

ଶ
	+

݊ଶ
ଶଶݒ
	൫ܽଶ,ଵݔଵݔො 	+ 	 ܽଶ,ଶݕଵݕො൯

ଶ
	

+
݊ଷ
ଷଶݒ
	൫ܽଷ,ଵݔଵݔො 	+ 	ܽଷ,ଶݕଵݕො 	+ 	ܽଷ,ଷݖଵ̂ݖ൯

ଶ
ො⃗ݔ	: 	 ∈ ℤଷቋ.	 

(51) 



203 

= 	 {
	݊ଵܽଵ,ଵ

ଶ ଵଶݔ

ଵଶݒ
ଶ(ොݔ)	 	+

݊ଶܽଶ,ଶ
ଶ ଵଶݕ

ଶଶݒ
	ቆ
ܽଶ,ଵݔଵ
	ܽଶ,ଶݕଵ

ොݔ	 	+ ොቇݕ	
ଶ

		

+
݊ଷܽଷ,ଷ

ଶ ଵଶݖ

ଷଶݒ
	ቆ
ܽଷ,ଵݔଵ
ܽଷ,ଷݖଵ

ොݔ	 	+
	ܽଷ,ଶݕଵ
	ܽଷ,ଷݖଵ

ොݕ	 	+ 	 ቇݖ̂
ଶ

∶ 	 ො⃗ݔ 	 ∈ ℤଷ}.	 

   Suppose nonzero integers ݔଵ, ଵ have been chosen such that మ,భ௫భݖ and	ଵ,ݕ
మ,మ௬భ

		 , య,భ௫భ
య,య௭భ

	, and 
	య,మ௬భ
	య,య௭భ

 are integers. This is clearly possible; one method would be to let ݖଵ	be one, then 

choose ݕଵ such that the third is an integer, and then choose ݔଵ so that the first two are 
integers. (In the higher dimensional case, we have ௗ(ௗିଵ)

ଶ
 fractions which we wish to force 

to be integers. In that fraction which involves the ݅ݐℎ and ݆ݐℎ variable, with  ݅ < ݆, we will 
have the ݅ݐℎ variable on top, so that we may assign the parameters in decreasing order as 
in the case of ݀	 = 	3.) This allows a transformation which gives us 

 

= ቊ
	݊ଵܽଵ,ଵ

ଶ ଵଶݔ

ଵଶݒ
ଶ(ොݔ)	 	+

݊ଶܽଶ,ଶ
ଶ ଵଶݕ

ଶଶݒ
ଶ(ොݕ	)	 		+

݊ଷܽଷ,ଷ
ଶ ଵଶݖ

ଷଶݒ
ଶ(ݖ̂	)	 ∶ 	 ො⃗ݔ 	 ∈ ℤଷቋ =  (52)	(ܤ)ࣞ

where ܤ is defined by  

	ܤ = ࣞ

⎝

⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎢
⎡ܽଵ,ଵݔଵ√݊ଵ	

ଵݒ
	 	

	
ܽଶ,ଶݕଵ√݊ଶ	

ଶݒ
		 	

	 	
ܽଷ,ଷݖଵඥ݊ଷ

ଷݒ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎟
⎞

		. 

We have shown ܣ ≻  ଵ, and so is anݖଵݕଵݔ is (ܣ)ݐ݁݀/(ܤ)ݐ݁݀ and it is easy to check that	,ܤ	
integer, giving us ܣ	 ≻௧   .ܤ	

     Here, we should clear up some possible confusion over the application of Theorem 
(5.2.1). Theorem (5.2.1) will give us that there is no measurable set with the Steinhaus 
property over ܤ, if we have that ்ିܤ weakly norm dominates another matrix. For this 
reason, it is useful to note that ܤ	is a norm rational matrix if and only if ்ିܤ is a norm 
rational matrix, since ܤ்ܤ is rational if and only if its inverse, ିܤଵ்ିܤ 	=  is	,்ିܤ்(்ିܤ)
rational. This means that Theorem (5.2.2) is useful towards showing a matrix ܤ yields no 
set having the Steinhaus property on ܤ only if ܤ is norm rational. This will be examined 
further, where we will use this theorem to show that there is no Steinhaus set on the 
honeycomb lattice in ℝଷ. 

     Here, we show that the result or technique given cannot always be used to show that 
there is no measurable set with the Steinhaus property over any ܣ in ℝଷ. For the lattices 
described in the next theorem we do not know whether there can be a measurable almost 
sure Steinhaus set.  
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Theorem (5.2.3)[201]: There exists a matrix ܤ	 ∈  with the property that for any (ܴ,݀)ܮܩ	
matrix ܣ if ܣ	 ≺ 	ܣ then	,ܤ	 ≺௧   .ܤ	

Proof . Let the diagonal matrix ܤ have the form  

	ܤ = 	 
ඥߙଵ 	 	
	 ⋯ 	
	 	 ඥߙௗ

		, 

where ߙଵ, . . . 	ܣ ௗ are independent over ℚ. Suppose also thatߙ, ≺  as a ܣ We express .ܤ	
quadratic form:  

ଶ‖ݔ⃗ܣ‖ 	= (ݔ⃗)݂	 	= 	 	ܽ,ݔଶ
ௗ

ୀଵ

	+   	ܽ,ݔݔ

ௗ

ୀାଵ

ௗ

ୀଵ

		.																										(53) 

      From norm domination, we know that for any ⃗ݔ 	 ∈ ℤௗ, (ݔ⃗)݂ 	= 	 .+	ොଵଶݔଵߙ . .  ොௗଶ forݔௗߙ+
some ݔො⃗ 	 ∈ ℤௗ. It is clear that each of the ܽ,	are in the rational span of {ߙଵ, . . .  ,ௗ}. Thusߙ,
we may write ܽ, 	= 	 ܽ,,ଵߙଵ	+	. . . +	ܽ,,ௗߙௗ, where each of the ܽ,, are rational. Thus, 
we may write  

(ݔ⃗)݂ 	= 	 	ଵ(ߙ 	ܽ,,ଵݔଶ
ௗ

ୀଵ

	+   	ܽ,,ଵݔݔ

ௗ

ୀାଵ

ௗ

ୀଵ

	)	+	. . . 	ௗ(ߙ	+ 	ܽ,,ௗݔଶ
ௗ

ୀଵ

	

+   	ܽ,,ௗݔݔ

ௗ

ୀାଵ

ௗ

ୀଵ

	).	 

We denote the components of this representation as  

(ݔ⃗)݂ 		= 	 ଵߙ ଵ݂(⃗ݔ)		+	. . . ௗߙ	+ ௗ݂(⃗ݔ)	.	 

     Since the ݂ are rational valued, since ݂(⃗ݔ) 		= 	 .	+	ොଵଶݔଵߙ . . ො⃗ݔ ොௗଶ for someݔௗߙ	+ 	 ∈ ℤௗ , 
and since	ߙଵ	, . . .  .ௗ are independent over ℚ, then the ݂ are always integer square valuedߙ,
Here we state a lemma to be proven later.  

Lemma (5.2.4)[201]: Any quadratic form which is always integer square valued is the 
square of an integer linear form.  

      This means that the ݂ are squares of linear forms. We may then write  

(ݔ⃗)݂ = 	 .	+	ଵݔଵ൫±ඥܽଵ,ଵ,ଵߙ . . ±ඥ	ܽௗ,ௗ,ଵݔௗ൯
ଶ
	+	. . . .	+	ଵݔௗ൫±ඥܽଵ,ଵ,ௗߙ	+ . . ±ඥ	ܽௗ,ௗ,ௗݔௗ൯

ଶ
	

= 	
ቱ
ቱ

⎣
⎢
⎢
⎢
⎡±ඥ	ߙଵܽଵ,ଵ,ଵ 	±ඥߙଵܽଶ,ଶ,ଵ ⋯
	±ඥߙଶܽଵ,ଵ,ଶ 	±ඥߙଶܽଶ,ଶ,ଶ ⋯

⋯ ⋯ …
					
	±ඥߙଵܽௗ,ௗ,ଵ

	±ඥߙଶܽௗ,ௗ,ଶ
…

	±ඥߙௗܽଵ,ଵ,ௗ 	±ඥߙௗܽଶ,ଶ,ௗ ⋯						±ඥߙௗܽௗ,ௗ,ௗ
	 ⎦

⎥
⎥
⎥
⎤

ݔ⃗
ቱ
ቱ

ଶ

. 
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     We can see that the ඥܽ,, are integers, which gives us that the determinant of the 
above matrix is ඥߙଵ		. .  ௗ times the determinant of an integer matrix. Since this must alsoߙ.
be the determinant of ܣ, we have ݀݁(ܤ)ݐ݁݀/(ܣ)ݐ is an integer.  

    We now prove Lemma (5.2.4).  

Proof . We prove by induction on ݀, the number of variables in our quadratic form, 
beginning with our base case of ݀	 = 	2.  

    Suppose ݂(ݔ, (ݕ 	= ଶݔܽ	 	+ 	ݕݔܾ	 +  is integer square valued on ℤଶ. Our goal is to	ଶݕܿ	
show that this is a linear form or, equivalently, to show that ܾଶ 	− 	4ܽܿ	 = 	 ∆	=
	0.	Assume, by way of contradiction that ∆	≠ 	0.	Considering ݂(1, 0) gives that a is a 
square. We assume	ܽ ≠ 	0, as the alternative case is trivial. We have that ݂(−ܾ, 2ܽ) 	=
	ܽ(−∆) is a square, and since ܽ is a nonzero square, we have −∆ is a square. We also have 
that ݂(2ܽ∆	− 	ܾ, 2ܽ) 	= 	−∆ܽ(4ܽଶ(−∆) 	+ 	1) is a square. Since −∆ܽ	is a nonzero 
square, we then have (4ܽଶ(−∆) 	+ 	1) is a square. On the other hand, we have that 
4ܽଶ(−∆)	is a square. This gives us two squares whose difference is one, which implies 
that 4ܽଶ(−∆) 	= 	0, which yields a contradiction.  

     We now assume that any quadratic form in ݊ − 1 variables which is integer square 
valued on ℤିଵ is the square of a linear form, and show the case of ݊. Assume that	݂ is 
integer square valued, where ݂ is given by:  

,ଵݔ)݂ . . . (ݔ, 	= 	 	ܽ,ݔଶ


ୀଵ

	+ ݊  	ܽ,ݔݔ

ௗ

ୀାଵ

ିଵ

ୀଵ

	.	 

      By considering the case of all but two of the ݔ 	 are equal to zero and applying the case 
of ݀	 = 	2, we find that each of the ܽ, 	= 	±2ඥ	ܽ, ܽ, . We now write ݂	as  

,ଵݔ)݂ . . . , (ݔ = (		 	ܽ,ݔଶ
ିଵ

ୀଵ

	+ ݊  	ܽ,ݔݔ

ௗିଵ

ୀାଵ

ିଶ

ୀଵ

) 	+ 	ܽ,ݔݔ



ୀଵ

.	 

     The parenthetical of the above is ݂(ݔଵ, . . . ݔ, − 	1, 0),	which is a binary form on 
݊	 − 	1 variables, and which also is integer square valued. We apply our induction 
hypothesis to write:  

,ଵݔ)݂ . . . , (ݔ = ൭	 	 ܾݔ	
ିଵ

ୀଵ

൱

ଶ

	+ 	2ඥܽ,ݔ(		 	ܿݔ	
ିଵ

ୀଵ

) 	+ 	ܽ,ݔଶ,	 

where each of the ܾ 	= 	±ඥܽ, and each of the ܿ 	= 	±ඥܽ,.  

     Now, if for all ݅	we have ܾ 	= 	 ܿ, or if for all ݅ we have ܾ 		= 	−ܿ, then the above is 
the square of a linear form, and we are done. Suppose then, by way of contradiction, that 
ܾ 	= 	 ܿ ≠ 	0,	for some ݆, and ܾ 	= 	−ܿ ≠ 	0, for some ݇ ≠ 	݆. Now consider the case of 
ݔ 	= 	 ܾݐ, ݔ 	= 	 ܾݐ, and ݔ 	= 	0 for all ݅ not equal to ݆ or ݇. The above then reduces to  



206 

= 	4 ܾ
ଶ	ܾଶݐଶ 	+ 	 ܽ,ݔଶ,	 

which is a binary quadratic form on ݐ and ݔ and, again, remains square valued. The base 
case gives us that ∆	= 	−16 ܾ

ଶ	ܾௗଶܽ, 	= 	0. We have assumed ܾ ≠ 	0 ≠ 	ܾ, so we must 
have ܽ, 	= 	0, which gives us that our form on ݊ variables is actually a form on	݊	 − 	1 
variables. Our induction hypothesis then completes the proof.  

     This result and the result of the previous seem to indicate that the ability of a matrix ܣ 
to weakly norm dominate any matrix is related to the dimension of the entries of ்ܣ	ܣ in 
the rationals. A reasonable conjecture might be that, for ݀	 =  weakly norm dominates ܣ ,3	
another matrix if and only if ܣ is a constant times a norm rational matrix. This conjecture 
cannot hold in general dimension, however, by a counterexample in dimension 6. 
(Consider a diagonal matrix which has its diagonal comprised of two diagonal matrices 
from dimension 3 which do weakly norm dominate, one of which is rational, the other 
multiplied by a transcendental.)  

     Here we apply Theorem (5.2.1) to show that there is no measurable set with the 
Steinhaus property over the 3-dimensional standard tetrahedral lattice. The vectors which 
generate this  honeycomb lattice may be visualized by considering three edges of a regular 
tetrahedron which have a vertex in common. That is, they are three unit vectors, each pair 
of which has an angle of sixty degrees.  

Theorem (5.2.5)[201]: There is no measurable set with the Steinhaus property over the 
honeycomb lattice ܪ, where ܪ is given by:  

	ܪ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

	

1
1
2

1
2

	
√3
2

√3
6

	 	
√6
3 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

		 ்ିܪ, 	=

⎣
⎢
⎢
⎢
⎡

1 	 	

−
1
3
√3

2
3
√3 	

−
1
6
√6 −

1
6
√6

1
2
√6⎦
⎥
⎥
⎥
⎤
		.	 

Proof . 

 From Theorem (5.2.1), our goal is to find a matrix ܣ, such that ܣ	 ≺௪  ,To do this . ்ିܪ	
we actually find two matrices ܣ and ܤ, such that ܣ	 ≺௦ 	ܤ and ܤ	 ≺௧  We begin by .	்ିܪ	
going through the steps of the proof of Theorem (5.2.2) to find B.  

(	்ିܪ)ࣞ 	= 	 ଶݔ} +
1
3
	ݔ−)	 + ଶ(ݕ2	 	+

1
6
	ݔ−)	 − 	ݕ	 + ଶ(ݖ3	 ∶ 	 ݔ⃗ 	∈ ℤଷ} 	

⊇ 	 ଶ(ොݔ)ଵଶݔ} 	+
ଵଶݕ4

3
	൬	−

ଵݔ
ଵݕ2

ොݔ	 	+ ො൰ݕ	
ଶ
	+

ଵݖ3
2
	൬	−

ଵݔ
	ଵݖ3

ොݔ	 	−
ଵݕ

ଵݖ3
ොݕ	 	+ 	 ൰ݖ̂

ଶ

∶ 	 ො⃗ݔ 	 ∈ ℤଷ},	 

if ݔଵ, −  such that	ଵݖ ଵ, andݕ,ଵݔ ଵ are integers. We must chooseݖ ଵ, andݕ ௫భ
ଶ௬భ

	 ,− ௫భ
ଷ௭భ	

 , and 
௬భ
ଷ௭భ

 are integers. The simplest such choice is (ݔଵ, ,	ଵݕ (ଵݖ 	= 	 (6, 3, 1). This gives us  
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= 	 ൜36(ݔො)ଶ 	+ ොݔ−)12	 	+ ො)ଶݕ 	+
3
2
ොݔ2−)	 	− ොݕ	 	+ 	 ଶ(ݖ̂ ∶ 	 ො⃗ݔ 	 ∈ ℤଷൠ

= ࣞ൮൦

6 	 	
	 2√3 	

	 	
1
2
	√6

൪൲ 	=
3
2
ଶݔ24}	 	+ ଶݕ8	 	+ 	 ଶݖ ∶ 	 ݔ⃗ 	 ∈ ℤଷ}.	 

We now have shown:  

்ିܪ 	=

⎣
⎢
⎢
⎢
⎡

1 	 	

−
1
3
√3

2
3
√3 	

−
1
6
√6 −

1
6
√6

1
2
√6⎦
⎥
⎥
⎥
⎤
≻௧ 	 ൦

6 	 	
	 2√3 	

	 	
1
2
	√6

൪ =  	.ܤ	

     Now, we need a matrix ܣ, such that ܤ ≻௦ ்ିܪ From this we will have that .ܣ	 ≻௦  ܣ	
and the proof will be complete. Let us define ܣ as follows:  

	ܣ = 	

⎣
⎢
⎢
⎡2√3 	 	

	
√102

2
	

	 	 6⎦
⎥
⎥
⎤
. 

    We have that ݀݁(ܤ)ݐ݁݀/(ܣ)ݐ 	= 	√17/2 is irrational. We need to show that ࣞ(ܣ) 	⊆
  or that ,(ܤ)ࣞ	

ଶݔ12} 	+
51
2
ଶݕ 	+ ଶݖ36	 ∶ 	 ݔ⃗ 	 ∈ ℤଷ} ⊆ ଶݔ36} 	+ ଶݕ12	 	+

3
2
ଶݖ ∶ 	 ݔ⃗ 	∈ ℤଷ}.	 

Multiply both sides by ଶ
ଷ
 :  

ଶݔ8} 	+ ଶݕ17	 	+ ଶݖ24	 ∶ 	 ݔ⃗ 	 ∈ ℤଷ} ⊆ ଶݔ24} 	+ ଶݕ8	 	+ 	 ଶݖ ∶ 	 ݔ⃗ 	 ∈ ℤଷ}.  

     It has been shown (see [203]) that those positive integers which cannot be expressed as 
ଶݔ24 	+ ଶݕ8	 	+ 	 are exactly those integers of the form 4݊	ଶݖ + 	2, 4݊ + 	3, or 4(8݊ +
	5). By way of contradiction, let us suppose that 8ݔଶ 	+ ଶݕ17	 	+ ଶݖ24	 = 	4݊	 + 	2, 4݊	 +
	3, or 4(8݊ + 	5). We can immediately rule out 4݊	 + 	2 and 4݊	 + 	3 as we have 
ଶݔ8 	+ ଶݕ17	 	+ ଶݖ24	 	≡ 	   .(mod 4), and the quadratic residues mod 4 are 0 and 1	ଶݕ

    We consider the remaining case 8ݔଶ 	+ ଶݕ17	 	+ ଶݖ24	 	= 	4(8݊	 + 	5). We consider 
the values of ݇. 

    	݇	 = 	0 : Taking the equation mod 8 gives ݕଶ 	≡ 	5 (mod 8), which is a contradiction, 
as the only squares mod 8 are 0, 1, and 4.  

     ݇	 = 	1 : We have 8ݔଶ 	+ ଶݕ17	 	+ ଶݖ24	 = 	4(8݊	 + 	5). Since the left side is then 
even, ݕ must be even. Write ݕ	 = ଵଶݕ.	+	ଶݔଵ. Then, dividing by 4 gives 2ݕ2	 		+ ଶݖ6	 	≡
	5	(mod 8). The only squares mod 8 are 0, 1, and 4, and checking all cases shows that this 
is a contradiction.  
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     ݇	 ≥ 	2	: We have 8ݔଶ 	+ ଶݕ17	 	+ ଶݖ24	 	= 	4(8݊	 + 	5). We must have ݕ divisible 
by 4 for the left side to be divisible by 8, and we write ݕ	 = ଶݔ ଵ. This givesݕ4	 	+
ଵଶݕ34	 	+ ଶݖ3	 	= 	4ିଶ(16݊	 + 	10). We see that ݔ and ݖ are both odd, or both even. If 
they are both even, then we write ݔ	 = ,ଵݔ2	 	ݖ = 	ݕ ଵ, andݖ2	 =  ଶ and arrive atݕ2	
ଵଶݔ8 	+ ଶଶݕ17	 	+ ଵଶݖ24	 	= 	4ିଵ	(8݊	 + 	5), from which we may repeat the argument and 
descend until ݇	 < 	2 or ݔ,   .are odd ݖ

      Assume then that ݔ and ݖ are odd. We write ݔ	 = ଵݔ2	 	+ 	1, 	ݖ = ଵݖ2	 	+ 	1. This gives 
us 2ݔଵ(ݔଵ + 1) + ଵଶݕ17 + ଵݖ)ଵݖ6 + 1) + 2	 = 	4ିଶ(8݊ + 5). If ݇	 > 	2, then ݕଵ is even, 
which gives a contradiction, as 4 divides the right side, but not the left. So, assume ݇	 = 	2. 
We then have 2ݔଵ(ݔଵ 	+ 1) + ଵଶݕ + 1ݖ)ଵݖ6	 + 1) 	≡ 	3 (mod 8). For the left side to be 
odd, we must have ݕଵ	odd, which gives ݕଵଶ 	≡ 	1, giving 2ݔଵ(ݔଵ 	+ 	1) + ଵݖ)ଵݖ6	 	+ 	1) 	≡
	2 (mod 8). This yields ݔଵ(ݔଵ 	+ 	1) 	+ ଵݖ)ଵݖ3	 	+ 	1) 	≡ 	1(mod 4), which gives a 
contradiction, as the left side is even and the right is odd.  

     We now have ܣ	 ≺௦ 	ܤ and ܤ	 ≺௧ 	ܣ which gives	,	்ିܪ	 ≺௪  which, by Theorem ,	்ିܪ	
(5.2.1), completes the proof.  

      It is important to note that, in the above proof, we relied heavily on having a simple 
expression for those integers not of the form ݔଶ + ଶݕ8 +  ଶ. In [203], a ternaryݖ24
quadratic form of the form ܽݔଶ 	+ ଶݕܾ	 	+  ଶ is called regular if the set of positiveݖܿ	
integers not represented by it can be written as a union of arithmetic sequences. It is stated 
that there are exactly 102 regular forms when ݃ܿ݀(ܽ, ܾ, ܿ) 	= 	1,	which indicates that 
proofs like this one will not apply to general ܤ.  

     One of the simplest irregular forms is ݔଶ 	+ ଶݕ	 	+  There is empirical evidence to	ଶ.ݖ7	
suggest that  

ଶݔ} 	+ ଶݕ8	 	+ ଶݖ28	 ∶ ݔ⃗ 	 ∈ ℤଷ} ⊂ ଶݔ} 	+ 	 ଶݕ 	+ ଶݖ7	 ∶ 	 ݔ⃗ 	 ∈ ℤଷ}. 

Specifically, the subset relation holds when the images are restricted to the first 2000 
integers. This would give an example of strong norm domination of an irregular form by 
an irregular form, but no means of proving that the subset holds in general is obvious to 
us. 

Section (5.3): Smooth Partitions of Unity  

       Smooth partitions of unity are an important tool in the theory of smooth 
approximations (see [208]), smooth extensions, theory of manifolds, and other areas. 
Clearly a necessary condition for a Banach space to admit smooth partitions of unity is the 
existence of a smooth bump function. The sufficiency of this condition for a general 
Banach space is still an open problem. A positive answer was established in many cases, 
the most important of which are the following (i.e. if one of the conditions below is 
fulfilled, then the existence of a smooth bump function on ܺ implies that ܺ admits smooth 
partitions of unity): 

(i) ܺ has an SPRI (separable “projectional resolution of the identity”), [110].  
(ii) ܺ belongs to a ത࣪-class, [97].  
(iii) ܺ	 =   .compact, [207] ܭ for (ܭ)ܥ	
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(iv) ܺ has a subspace ܻ isomorphic to ܿ(߁) such that ܺ/ܻ admits smooth partitions 
of unity, [205].  

(v) ܺ∗ is weakly compactly generated (WCG), [211].  

For the definition and basic properties of an SPRI see [127] or [209]; for the definition of a 
ത࣪-class.  

      The original proofs of the results (i), (iv), and (v) use Toruńczyk’s characterisation of 
the existence of smooth partitions of unity by non-linear homeomorphic embedding into 
ܿ(߁) with smooth component functions (see e.g. [208]). The other two results use the 
following theorem of Richard Haydon:  

Theorem (5.3.1)[204]: ([97], see also [208]). Let ܺ be a normed linear space that admits a 
	݇ ,-smooth bump functionܥ ∈ ℕ	 ∪ 	{∞}. Let ߁ be a set and ߔ:	ܺ	 → 	 ܿ(߁) a continuous 
mapping such that for every ߛ	 ∈ ∗the function ݁ఊ ߁	 ∘  -smooth. For each finite	ܥ is	ߔ
	ܨ ⊂ let ிܲ	߁	 	 ∈ 	 ;ܺ)ܥ 	ܺ)	be such that the space span ிܲ	(ܺ)	admits locally finite ܥ-
partitions of unity. Assume that for each ݔ	 ∈ 	ܺ and each ߝ	 > 	0 there exists ߜ	 > 	0 such 
that ‖ݔ	 −	 ிܲ	(ݔ)‖ 	< 	ܨ if we set ߝ	 = 	 	ߛ} ∈ ;߁	 |(ߛ)(ݔ)ߔ|	 	≥  Then ܺ admits locally .{ߜ	
finite and ߪ-uniformly discrete ܥ-partitions of unity.  

      While pondering the applicability of Haydon’s theorem we were led to another 
characterisation of the existence of smooth partitions of unity. This characterisation allows 
very easy recovery of all the results above except for the (ܭ)ܥ case. In fact, an immediate 
consequence is a (at least formal) generalisation of (i), (ii), and (v) given in Corollary 
(5.3.6), which puts all these results under a common roof (this is either obvious or shown 
in Theorem (5.3.10) and Corollary (5.3.9)). There is also another tiny advantage for the 
insight into the problem when using Theorem (5.3.1): All the original proofs that use 
Toruńczyk’s characterisation (of course they all come from the same workshop) at some 
point invoke the completeness of the underlying space, but as we shall see here, the 
completeness is completely irrelevant to the problem.  

      Before we start, we fix some notation. By ܷ(ݔ, ,ݔ)ܤ	.resp ,(ݎ  ,we denote the open (ݎ
resp. closed ball centred at ݔ with radius ݎ. For a function ݂ ∶ 	ܺ	 → ℝ we denote 
	݂	ݑݏ = 	 ݂ିଵ(ℝ	\	{0}). For other unfamiliar notation or terminology see [208] or 
[206].  

      Now, the reason that Haydon’s theorem can be successfully used to prove the 
wonderful result (iii) is that there is a rich supply of projections of norm one on an 
Asplund (ܭ)ܥ space (formed by restrictions to clopen subsets of ܭ). So what do we have 
on an arbitrary Banach space? The projections onto one-dimensional subspaces, of course. 
This observation leads to the following characterisation: 

     We make a short technical intermission. Applications of Theorem (5.3.1) involve 
constructions of continuous mappings into ܿ(߁).	To avoid repeating the same argument in 
several of these constructions we will make use of the following simple lemma.  

Lemma (5.3.2)[204]: Let ܺ be a topological space, ߁ a set, and ߔ:	ܺ	 → ℝℕ×௰. Suppose 
that all the component functions ݔ	 ⟼ ,݊)(ݔ)ߔ	 ,݊)(ݔ)ߔare continuous, lim→ஶ (ߛ (ߛ 		=
	0 locally uniformly in ݔ	 ∈ 	ܺ	and uniformly in ߛ	 ∈ 	݊ and for each fixed ,߁	 ∈ ℕ, 	ݔ ∈ 	ܺ, 
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and ߝ	 > 	0 there are a neighbourhood ܷ of ݔ and a finite ܨ	 ⊂  such that ߁	
|(ߛ,݊)(ݕ)ߔ| 	< 	ݕ whenever ߝ	 ∈ 	ܷ	and ߛ	 ∈  is a continuous mapping into ߔ Then .ܨ	\	߁	
ܿ(ℕ	 ×  	.(߁	

Proof. Fix ݔ	 ∈ 	ܺ	and ߝ	 > 	0. There are ݊ 	 ∈ ℕ and a neighbourhood ܷ of ݔ such that 
|(ߛ,݊)(ݕ)ߔ| < ఌ

ଶ
 whenever ݊	 > 	 ݊,ݕ	 ∈ 	ܷ, and ߛ	 ∈ 	݊ For each .߁	 ∈ ℕ,݊	 ≤ 	݊ there 

are a neighbourhood ܸ 	⊂ 	ܷ	of ݔ and a finite ܨ 	⊂ |(ߛ,݊)(ݕ)ߔ| such that	߁	 < ఌ
ଶ
 

whenever ݕ	 ∈ 	 ܸ and ߛ	 ∈ ܨ\߁	 . Put ܨ	 = 	⋃ {݊} × ஸబܨ 	 and ܸ	 = 	⋂ ܸஸబ 	.	Then ܨ 
is finite and |(ߛ,݊)(ݕ)ߔ| < ఌ

ଶ
 whenever ݕ	 ∈ 	ܸ and (݊,ߛ) 	 ∈ ℕ	 ×  This shows that .ܨ	\	߁	

	maps into ܿ(ℕ ߔ × (ߛ,݊)(ݕ)ߔ| follows from the fact that ߔ The continuity of .(߁	 	−
,݊)(ݔ)ߔ	 |(ߛ 	< 	ݕ whenever	ߝ	 ∈ 	ܸ and (݊,ߛ) 	 ∈ 	ℕ	 ×  and from the continuity of ,ܨ	\	߁	
the functions ݕ	 ⟼ ,݊)(ݕ)ߔ	 ,(ߛ (ߛ,݊) 	 ∈   .ܨ	

Theorem (5.3.3)[204]: Let ܺ be a normed linear space and ݇	 ∈ ℕ	 ∪	{∞}. The following 
statements are equivalent:  

(i) ܺ admits locally finite and ߪ-uniformly discrete ܥ-partitions of unity.  
(ii) ܺ admits a ܥ-smooth bump and there are a set ߁, a continuous ߔ:	ܺ	 →

	ܿ(߁)	such that ݁ఊ∗ ∘ 	ߔ ∈ 	ߛ (ܺ) for everyܥ	 ∈ ఊൟఊ∈௰,∈ℕݔand vectors ൛ ,߁	
	⊂

	ܺ	such that ݔ	 ∈ ;ఊݔ}തതതതതതത݊ܽݏ	 (ߛ)(ݔ)ߔ	 ≠ 	0, ݊	 ∈ ℕ} for every ݔ	 ∈ 	ܺ.  

     Notice that the condition (ii) resembles a property of a strong Markushevich basis.  

Proof . For the purpose of the proof let us consider the following intermediate statement:  

(ii)’ ܺ admits a ܥ	-smooth bump and there are a set ߉, a continuous ߖ:	ܺ	 → 	 ܿ(߉) such 
that ఒ݁

∗ ∘ 	ߖ	 ∈ 	ߣ (ܺ) for everyܥ	 ∈ ௸∋ఒ{ఒݔ} and vectors ,߉	 	⊂ 	ܺ	such that ݔ	 ∈
;ఒݔ}	 (ߣ)(ݔ)ߖ	 ≠ 	0}തതതതതതതതതതതതതതതതതതതതതതതതത	for every ݔ	 ∈ 	ܺ. 

(ii)’⇒(i) Since ܺ admits a smooth bump, there are functions ℎ 	 ∈ 	 ;ܺ)ܥ 	[0, 1]) such that 
ℎ	ݑݏ 	⊂ 	ܷ(0, ଵ


	)	and ℎ(0) 	> 	0. Set ߁	 = 	ℕ	 × 	ܺ	:ߔ and define ߉	 → ℓஶ(߁) by  

,݊)(ݔ)ߔ (ߣ =
1
݊
	ℎ(ݔ	  .(ߣ)(ݔ)ߖ(ఒݔ	−

Then ߔ is a continuous mapping into ܿ(߁)	by Lemma (5.3.2). Clearly, ݁(,ఒ)
∗ ∘ 	ߔ	 ∈

,݊) (ܺ) for eachܥ	 (ߣ 	 ∈ 	ܨ Next, for each finite non-empty subset .߁	 ⊂  let us set ߁	
(ܨ)݉ 	= 	݊}ݔܽ݉	 ∈ 	ℕ; (݊, (ߣ 	 ∈ 	ߣ	݁݉ݏ	ݎ݂	ܨ	 ∈ (ܨ)ߙ let ,{߉	 	 ∈  be chosen ߉	
arbitrarily such that  (݉(ܨ),(ܨ)ߙ) 	 ∈ and let ிܲ ,ܨ	 ∶ 	ܺ	 → 	ܺ be the linear projection onto 
span{ݔఈ	(ி	)} of norm at most one. We also set ∅ܲ 	= 	0. We show that the assumptions of 
Theorem (5.3.1) are satisfied. Each one-dimensional subspace of ܺ admits locally finite 
	ݔ -partitions of unity ([208]). Givenܥ ∈ 	ܺ and ߝ	 > 	0 find ݉	 ∈ 	ℕ such that ଵ


	≤ ఌ

ଶ
 . By 

the assumption there is ߙ	 ∈ (ߙ)(ݔ)ߖ such that	߉	 ≠ 	0 and ݔఈ is so close to ݔ that 
ℎ(ݔ	 (ఈݔ	− 	> 	0. If we set ߜ	 = 	 	ܨ and |(ߙ,݉)(ݔ)ߔ| = 	 {(݊, (ߣ 	 ∈ ;߁	 ,݊)(ݔ)ߔ|	 |(ߣ 	≥
(ߙ,݉) then ,{ߜ	 	 ∈ (ܨ)݉ and hence ܨ	 	≥ 	݉. Further, |(ݔ)ߔ	)	((ܨ)ߙ,(ܨ)݉| 	≥ 	ߜ	 > 	0, 
and in particular ℎ(ி	)(ݔ − ()	ఈ(ிݔ 	> 	0. It follows that ฮݔ − )ฮ	ఈ(ிݔ < ଵ

(ி	)
	≤ ଵ


	≤ ఌ

ଶ
	. 
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Note that ிܲ	(ݔఈ(ி	)) 	= 	 ݔ‖ and therefore	)	ఈ(ிݔ − ிܲ	(ݔ)‖ 	≤ ฮݔ − )ฮ	ఈ(ிݔ +
ฮ ிܲ	(ݔఈ(ி	)) − ிܲ	(ݔ)ฮ 	<   .ߝ	

       (ii)⇒(ii)’ Put ߉	 = 	 ܿ
ℚ 	߁) × 	ℕ), i.e. the set of all vectors in ܿ(߁	 × 	ℕ) with rational 

coordinates. For each ߣ	 ∈ ఒݔ set ߉	 	= 	 ∑ ,ߛ)ߣ ఊఊ∈௰,∈ℕݔ(݊ 		. Clearly, {ݔఒ; 	ߣ	 ∈ {߉	 	=
;ఊݔ}ℚ݊ܽݏ	 	ߛ	 ∈ 	݊,߁	 ∈ 	ℕ}. Further, let ݍ ∶ ℚ	 → 	ℕ be some one-to-one mapping with 
(0)ݍ 	= 	1	and put ݉(ߣ) 	= 	݊}ݔܽ݉	 ∈ 	ℕ; ,ߛ)ߣ	 ݊) ≠ 	ߛ	݁݉ݏ	ݎ݂	0	 ∈ 	ߣ for {߁	 ∈
and ݉(0) {0}	\	߉	 	= 	1. Finally, define ߖ:	ܺ	 → ℝ௸ by  

(ߣ)(ݔ)ߖ =
1

∏(ߣ)݉ 	൯ఊ∈௰,∈ℕ(݊,ߛ)ߣ൫	ݍ
ෑ (ߛ)(ݔ)ߔ

		ఊ∈௰∶	∃,ఒ(ఊ,)ஷ

		.	 

We claim that ߖ is actually a continuous mapping into ܿ(߉).  

     Indeed, fix ݔ	 ∈ 	ܺ and ߝ	 > 	0. Since ߔ is continuous, there are a neighbourhood ܷ of 
	ܪ and a finite set ݔ ⊂ ‖(ݕ)ߔ‖ such that	߁	 	< 	 ‖(ݔ)ߔ‖ + 	1	and |(ߛ)(ݕ)ߔ| 	< 	1 for each 
	ݕ ∈ 	ܷ and ߛ	 ∈ ∏ Note that .ܪ	\	߁	 ∃,ఒ(ఊ,)ஷ	ఊ∈௰∶		|(ߛ)(ݕ)ߔ| ≤ 	 ‖(ݔ)ߔ‖) + 	1)|ு| for 
any ݕ	 ∈ 	ܷ and ߣ	 ∈  and the same holds if we omit any one of the factors in the ,߉	
product. Next, there are a neighbourhood ܸ of ݔ, ܸ	 ⊂ 	ܷ, and a finite set ܧ	 ⊂  such that	߁	
|(ߛ)(ݕ)ߔ| 	< ‖(ݔ)ߔ‖)/ߝ	 + 	1)|ு| for each ݕ	 ∈ 	ܸ	and ߛ	 ∈ 	ܰ Let .ܧ	\	߁	 ∈ 	ℕ be such 
that ଵ

ே
	< ‖(ݔ)ߔ‖)/ߝ	 + 	1)|ு| . Put  

ܨ = 	ߣ	} ∈ ;߉	 	ߣ	ݑݏ	 ⊂ 	ܧ	 × 	{1, . . . ((݊,ߛ)ߣ)ݍ	݀݊ܽ	{ܰ, 		≤ 	ߛ	݈݈ܽ	ݎ݂	ܰ	 ∈ ,߁	 ݊	 ∈ 	ℕ}  

and note that ܨ is finite. Now if ݕ	 ∈ 	ܸ and ߣ	 ∈ |(ߣ)(ݕ)ߖ| then ,ܨ	\	߉	 	<  It easily .ߝ	
follows that ߖ is a continuous mapping into ܿ(߉).  

     Clearly, ఒ݁
∗ ∘ 	ߖ ∈ 	ߣ (ܺ) for everyܥ	 ∈ 	ݔ Finally, given .߉	 ∈ 	ܺ and a neighbourhood 

ܷ of ݔ, by the assumption there is ߣ	 ∈ ఒݔ such that ߉	 	 ∈ 	ܷ and (ߛ)(ݔ)ߔ ≠ 	0 if 
(݊,ߛ)ߣ ≠ 0	for some ݊	 ∈ 	ℕ. Consequently, (ߣ)(ݔ)ߖ ≠ 	0.  

    (i)⇒(ii) The existence of a ܥ-smooth bump is clear (just take a partition of unity 
subordinated to a covering of ܺ by ܷ(0, 2) and ܺ	\	0)ܤ, 1)). Next, for each ݊	 ∈ 	ℕ let 
{߶ఒ}ఒ∈௸ be a locally finite ࣝ -partition of unity on ܺ subordinated to the uniform 
covering of ܺ by open balls of radius ଵ


 (clearly {߶ఒ}	can be constructed by scaling the 

domains of {߶ଵఒ} so that the index set is always the same). Without loss of generality we 
may assume that all the functions ߶ఒ are non-zero. We put ߁	 = ℕ	 ×  and define ߉	
	ܺ	:ߔ → ℓஶ(߁) by  

,݊)(ݔ)ߔ (ߣ =
1
݊
	߶ఒ(ݔ).	 

Then ߔ is a continuous mapping into ܿ(߁) by Lemma (5.3.2). To finish, choose any ݔఒ 
in each ݑݏ	߶ఒ. Fix ݔ	 ∈ 	ܺ and ߜ	 > 	0. Let ݊	 ∈ 	ℕ be such that ଶ


	<  There is .ߜ	

	ߣ ∈ 	ݔ such that ߉	 ∈ ݑݏ 	߶ఒ. Then (ݔ)ߔ(݊, (ߣ 	> 	0 and ‖ݔ	 ‖ఒݔ	− 	<
ଶ

	<  It .ߜ	

follows that ݔ	 ∈ ;ఒݔ}	 ,݊)(ݔ)ߔ	 (ߣ ≠ 	0}തതതതതതതതതതതതതതതതതതതതതതതതതതതതത.	 
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      As a first application we show how the above characterisation can be used to rather 
easily obtain the result (iv). Not only that our proof is substantially shorter than the 
original, but it also does not use any fancy tools like lifting, Bartle–Graves selectors, etc. 
The stripped-down proof clearly exposes the three main ideas behind it: the use of linear 
functionals on the subspace  , so that they can be extended to the whole space; the use of a 
fundamental biorthogonal system in ܻ , which allows to link these extensions to 
functionals on ܺ/ܻ	; and the crucial property of the norm on ܿ(߁): if we drop all small 
coordinates, the vector stays close.  

Corollary (5.3.4)[204]: ([205]). Let ܺ be a normed linear space and ܻ	 ⊂ 	ܺ a subspace 
isomorphic to ܿ(߁) for some ߁. If the quotient ܺ/ܻ admits locally finite ࣝ-partitions of 
unity for some ݇	 ∈ 	ℕ	 ∪	{∞}, then ܺ admits locally finite and ߪ-uniformly discrete ࣝ-
partitions of unity.  

Proof. By extending the equivalent norm from ܻ we may assume without loss of 
generality that ܻ is actually isometric to ܿ(߁). Let ܳ:	ܺ	 → 	ܺ/ܻ	be the canonical quotient 
mapping. Let ൛൫݁ఊ; 	 ఊ݂൯ൟఊ∈௰ be the canonical basis of ܿ(߁) and further assume that each 

ఊ݂ is actually a norm-one functional on ܺ (use the Hahn–Banach theorem). For each 
݊	 ∈ 	ℕ let {߰ఒ}ఒ∈௸ be a locally finite ࣝ-partition of unity on ܺ/ܻ subordinated to the 
uniform covering of ܺ/ܻ by open balls of radius ଵ


 (clearly {߰ఒ} can be constructed by 

scaling the domains of {߰ଵఒ} so that the index set is always the same). Without loss of 
generality we may assume that all the functions ߰ఒ are non-zero. Choose ݖఒ 	 ∈
ݑݏ	 	߰ఒ and ݔఒ 	 ∈ 	ܺ such that ܳ(ݔఒ) 	= 	 ߠ ఒ. Letݖ 	 ∈ 	 ;ஶ(ℝܥ 	 ቂ0, ଵ


	ቃ	),݊	 ∈ 	ℕ be 

Lipschitz functions satisfying ߠ(ݐ) 	= 	0 if and only if |ݐ| ≤ ଶ

	. We define a mapping 

	ܺ	:ߔ → ℓஶ	(ℕ	 × 	߉	 × 	߁	 ∪ 	ℕ	 ×   by (߉	

,݊)(ݔ)ߔ (ߛ,ߣ = 	 ߠ ቀ		 ఊ݂(ݔ	  ,	൯(ݔ)ܳ	߰ఒ൫	ఒ)ቁݔ	−

,݊)(ݔ)ߔ	 (ߣ =
1
݊
	߰ఒ൫ܳ(ݔ)൯	.																															 

      First we show that ߔ is actually a continuous mapping into ܿ(ℕ	 × 	߉	 × 	߁	 ∪ 	ℕ	 ×
	ݔ Fix .(߉	 ∈ 	ܺ and ߝ	 > 	0. Clearly, 0	 ≤ ,݊)(ݕ)ߔ	 (ߛ,ߣ 	< 	and 0 ߝ	 ≤ ,݊)(ݕ)ߔ	 (ߣ 	<  ߝ	
for ݊	 > ଵ

ఌ
 and all ߣ	 ∈ 	ߛ,߉	 ∈ ,߁	 	ݕ ∈ 	ܺ. Now fix ݊	 ∈ 	 [1, ଵ

ఌ
	]. Since {߰ఒ}ఒ∈௸ is locally 

finite, there is a neighbourhood ܸ of ܳ(ݔ) and a finite ܨ	 ⊂ such that ߰ఒ ߉	 	= 	0 on ܸ 
for ߣ	 ∈ (ܷ) such that ݔ Further, there is a neighbourhood ܷ of .ܨ	\	߉	 	⊂ 	ܸ . Then clearly 
,݊)(ݕ)ߔ ,ߣ (ߛ 	= ,݊)(ݕ)ߔ	 (ߣ 	= 	0 for ݕ	 ∈ 	ܷ and ߣ	 ∈ ,ܨ	\	߉	 	ߛ ∈ 	ߣ Now fix .߁	 ∈  .ܨ	
Assume that ߰ఒ൫ܳ(ݔ)൯ ≠ 	0.	Then ‖ܳ(ݔ) 	− ‖ఒݖ	 	<

ଶ

	. Put ܪ	 = 	 	ߛ} ∈ ;߁	 	ห ఊ݂(ݔ	 −

ఒ)หݔ	 ≥ ଶ

	}. We claim that ܪ is finite. Indeed, if ܪ is infinite, then by the w∗-compactness 

there is a w∗-accumulation point ݂	 ∈ ∗  of ൛ܤ	 ఊ݂ൟఊ∈ு.	Then ݂| 	= 	0, since {(݁ఊ; 	 ఊ݂)} is 
a fundamental biorthogonal system in ܻ . In particular, ݂ can be considered also as a 
member of ቀ


ቁ
∗
	, and so ଶ


	≤ 	 	ݔ)݂| |(ఒݔ	− = 	 (ݔ)ܳ)݂| |(ఒݖ	− ≤ (ݔ)ܳ‖	 ‖ఒݖ	− 	<

ଶ

	,	 a contradiction. Thus (ݔ)ߔ(݊, ,ߣ (ߛ 	= 	0	for	ߛ	 ∈  Since the family of functions .ܪ	\	߁	
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	ݕ ⟼ ,݊)(ݕ)ߔ	 	ߛ,(ߛ,ߣ ∈  such ݔ is equi-continuous, there is a neighbourhood ܹ of ,߁	
that |(ݕ)ߔ(݊, |(ߛ,ߣ 	< 	ݕ whenever ߝ	 ∈ 	ܹ and ߛ	 ∈  Thus we may apply Lemma	.ܪ	\	߁	
(5.3.2).  

      Next, we set ݔఒఊ 	= 	 ݁ఊ. Fix any ݔ	 ∈ 	ܺ and ߝ	 > 	0. There is 	݊ ∈ ℕ, ݊	 ≥ ଼
ఌ
 , and 

	ߣ ∈ ((ݔ)ܳ)such that ߰ఒ ߉	 	> 	0	and ‖ܳ(ݔ) 	− ‖ఒݖ	 	<
ఌ
ସ
	. Thus there is ݑ	 ∈ 	ܻ such 

that ‖ݔ	 ఒݔ	− 	− ‖	ݑ	 < ఌ
ସ
	. Put ܨ	 = 	 	ߛ} ∈ ;߁	 	 ห ఊ݂(ݑ)ห > ఌ

ଶ
	},	which is a finite set 

(possibly empty), and ݒ	 = ∑ ఊ݂(ݑ)݁ఊఊ∈ி 	. Then ‖ݑ	 − ‖ݒ	 	≤ ఌ
ଶ
 (we have the supremum 

norm here) and so ‖ݔ	 ఒݔ)	− 	+ ‖	(ݒ	 ≤ 	 	ݔ‖ ఒݔ	− 	− ‖	ݑ	 + 	 	ݑ‖ − ‖ݒ	 	<  Note that .ߝ	
ห ఊ݂(ݔ	 ఒ)หݔ	− ≥ 	 ห ఊ݂(ݑ)ห − 	 ห ఊ݂(ݔ − ఒݔ − ห(ݑ > ఌ

ଶ
	− ݔ‖ − ఒݔ − ‖ݑ 	> ఌ

ସ
	≥ ଶ


	for 

	ߛ ∈ ,݊)(ݔ)ߔ ,Consequently .ܨ	 ,ߣ (ߛ 	> 	0	for ߛ	 ∈  It follows that .ܨ	
	ݔ ∈ 	 ;ఒݔ}തതതതതതത݊ܽݏ ,݊)(ݔ)ߔ	 (ߣ ≠ 	0} 	∪ 	 ;ఒఊݔ} ,݊)(ݔ)ߔ	 ,ߣ (ߛ ≠ 	0}		.  

     Each component of ߔ is clearly ࣝ-smooth and the space ܺ admits a ࣝ--smooth bump 
by [205]. Thus we may conclude the proof by using Theorem (5.3.3).  

     Before going further, we review some notions useful in the study of the (linear) 
structure of non-separable Banach spaces. Let ࣲ be a class of Banach spaces. We say that 
ࣲ is a ࣪-class if for every non-separable ܺ	 ∈ 	ࣲ	there exists a projectional resolution of 
the identity { ఈܲ}ఈ∈[ఠ,ఓ] on ܺ such that ( ఈܲାଵ 	− 	 ఈܲ)(ܺ) 	 ∈ 	ࣲ	for all ߙ <  We say that .ߤ
ࣲ is a ത࣪-class if for every non-separable ܺ ∈ ࣲ there exists a projectional resolution of 
the identity { ఈܲ}ఈ∈[ఠ,ఓ] on ܺ such that ఈܲ(ܺ) 	 ∈ ࣲ for all ߙ <  ࣲ Note that if a class .ߤ
admits PRI and is closed under complemented subspaces, then ࣲ is both ࣪-class and ത࣪-
class. Therefore reflexive, WCG, WCD, and WLD are all both ࣪-classes and ത࣪-classes, as 
are 1-Plichko spaces ([209]; proof of [210] combined with [210]), spaces with a 1-
projectional skeleton (Ondřej Kalenda, private communication; [210]), and duals of 
Asplund spaces ([99]). Recall that any space from a ࣪-class has an SPRI ([209]), and any 
space with an SPRI has a strong Markushevich basis (see also [209]or the proof of 
Theorem (5.3.8)). 

    Although the characterisations of the existence of smooth partitions of unity are 
inherently non-linear, in all the results from the introduction, except for the (ܭ)ܥcase, the 
constructions are based on the linear structure in a substantial way. Naturally suggests the 
following definition: 

Definition (5.3.5)[204]: Let ܺ be a normed linear space. We say that a system 
൛൫ݔఊ; 	 ఊ݂൯ൟఊ∈௰ 	⊂ 	ܺ	 × 	ܺ∗ is a fundamental coordinate system if ܶ(ݔ) 	= 	 ቀ ఊ݂(ݔ)ቁ

ఊ∈௰
 is a 

bounded linear operator from ܺ to ܿ(߁) and ݔ	 ∈ 	 ;ఊݔ}തതതതതതത݊ܽݏ 	 ఊ݂(ݔ) ≠ 	0} for each ݔ	 ∈ 	ܺ.  

      Note that the operator ܶ from the definition is necessarily one-to-one and ൛ ఊ݂ൟఊ∈௰ is 
bounded (by ‖ܶ‖). The following corollary of Theorem (5.3.3) is now obvious.  

Corollary (5.3.6)[204]: Let ܺ be a normed linear space with a fundamental coordinate 
system and such that it admits a ࣝ-smooth bump, ݇	 ∈ ℕ	 ∪	{∞}.	Then ܺ admits locally 
finite and ߪ-uniformly discrete ࣝ-partitions of unity.  
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      If ܺ has a strong Markushevich basis, then it also has a fundamental coordinate system 
(take normalised coordinate functionals). Thus we have an immediate generalisation of the 
result (i). On the other hand, as we shall see below (Corollary (5.3.9)), the space ܮܬ, 1	 <
		 < 	∞, has a fundamental coordinate system but it does not have a Markushevich basis 
([209]).  

     In connection with Corollary (5.3.6) and Corollary (5.3.4) we remark that the space 
 is a Ciesielski-Pol compact, does not continuously linearly inject into any ܭ where ,(ܭ)ܥ
ܿ(߁) (and so it does not have a fundamental coordinate system), although it has a 
subspace ܻ isometric to ܿ(߁ଵ) such that the quotient (ܭ)ܥ/ܻ is isomorphic to ܿ(߁ଶ), 
[99].  

     Concerning the result (i) we note that for spaces with an SPRI we do not have to rely 
on the full construction of a strong Markushevich basis (which is rather hard): Let 
{ ఈܲ}ఈ∈[ఠ,ఓ) be an SPRI on ܺ. For each ߙ	 ∈ 	 [߱, put ܳఈ (ߤ 	= 	 ఈܲାଵ 	− 	 ఈܲ , let {ݕఈ}∈ℕ	be 
a dense subset of the separable space ܳఈ(ܺ), and let {݃ఈ}∈ℕ 	⊂ 	ܳఈ(ܺ)∗ be separating 
for ܳఈ(ܺ). Put ఈ݂ 	= 	 ݃ఈ ∘ 	ܳఈ/(‖݃ఈ ∘ 	ܳఈ‖ 	+ 	߁,(1	 = 	 [߱, (ߤ 	× 	ℕ	 × 	ℕ, and define 
ܶ ∶ 	ܺ	 → ℓஶ(߁) by ܶ(ݔ)(ߙ,݇, ݊) = ଵ


	 ఈ݂(ݔ). Then ܶ is clearly a bounded linear 

operator.  

    Further, set ݔఊ 	= 	 	ߛ ఈ forݕ = 	 ,ߙ) ݇, ݊) 	∈ 	ݔ Fix .߁	 ∈ 	ܺ. Since ܳఈ(ݔ) ≠ 	0 if and 
only if there is ݇	 ∈ ℕ such that ݃ఈ൫ܳఈ(ݔ)൯ ≠ 	0, which is equivalent to ఈ݂(ݔ) ≠ 	0, we 
have  

	ݔ ∈ ;(ݔ)തതതതതതത{ܳఈ݊ܽݏ	 	ߙ	 ∈ 	 {(ߤ,߱] = 	 ;(ݔ)തതതതതതത{ܳఈ݊ܽݏ 	ߙ	 ∈ 	 [߱, (ݔ)ఈܳ,(ߤ ≠ 	0}							 

																																												⊂ 	 ;∈ℕതതതതതതതതതതതത{ఈݕ}	തതതതതതത൛݊ܽݏ 	ߙ	 ∈ 	 [߱, 	݇∃,(ߤ ∈ ℕ:	 ఈ݂(ݔ) ≠ 	0ൟ 
																												= 	 ;ఈݕ}തതതതതതത݊ܽݏ 	݊	 ∈ ℕ,ߙ	 ∈ 	 [߱, 	݇∃,(ߤ ∈ 	ℕ:	ܶ(ݔ)(ߙ, ݇, ݊) ≠ 	0} 

= 	 ;ఊݔ}തതതതതതത݊ܽݏ (ߛ)(ݔ)ܶ	 ≠ 	0}.																																					 

      Note that ܳఉ ∘ 	ܳఈ 	= ߚ	ݎ݂	0	 ≠ 	ߙ Hence, given .ߙ	 ∈ 	 [߱, 	݊ and (ߤ ∈ 	ℕ, we have 
,ߚ)(ఈݕ)ܶ ݇,݉) = ଵ


	 ఉ݂(ݕఈ) = ଵ


	 ఉ݂൫ܳఈ(ݕఈ)൯ = ଵ


	݃ఉ(ܳఉ	൫	ܳఈ(ݕఈ)൯)	/

	(ฮ݃ఉ ∘ 	ܳఉฮ	+ 	1) 	= 	0	 for ߚ ≠ |(݉,݇,ߙ)(ఈݕ)ܶ| ,Also .ߙ	 = ଵ

	| ఈ݂(ݕఈ)| ≤

ଵ

(ఈݕ)ܶ	Thus	ఈ‖.ݕ‖	 	 ∈ 	 ܿ(߁). Since we have seen above that  ܺ	 = ;ఈݕ}തതതതതതത݊ܽݏ	 	ߙ	 ∈

	[߱, ,(ߤ ݊	 ∈ ℕ}, it follows that ܶ maps into ܿ(߁)	and so ܺ has a fundamental coordinate 
system. 

     We proceed by deducing the result (v) from Corollary (5.3.9) and the result (ii) from 
Theorem (5.3.10). We start with an easy observation.  

Fact (5.3.7)[204]: Let ܺ be a normed linear space and ൛൫ݔఊ; 	 ఊ݂൯ൟఊ∈௰ 	⊂ 	ܺ	 × 	ܺ∗. Then 

	ݔ ∈ 	 ;ఊݔ}തതതതതതത݊ܽݏ 	 ఊ݂(ݔ) ≠ 	0} for every ݔ	 ∈ 	ܺ if and only if ݂	 ∈ 	 ∗തതതതതതത௪݊ܽݏ 	{ ఊ݂; 	݂൫ݔఊ൯ ≠ 	0} 
for every ݂	 ∈ 	ܺ∗.  

Proof. ⇒ Assume that it is not true for some ݂	 ∈ 	ܺ∗. Denote ܣ	 = 	 	ߛ} ∈ ;߁	 	݂൫ݔఊ൯ ≠ 	0}. 
By the separation theorem there is ݔ	 ∈ 	ܺ	such that ݂(ݔ) ≠ 	0 and ఊ݂(ݔ) 	= 	0 for each 
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	ߛ ∈ 	ݔ It follows that .ܣ	 ∈ 	 ;ఊݔ}തതതതതതത݊ܽݏ 	 ఊ݂(ݔ) ≠ 	0} 	⊂ ;ఊݔ}തതതതതതത݊ܽݏ	 	ߛ	 ∈ {ܣ	\	߁	 	⊂ 	 {݂}ୄ,	a 
contradiction.  

    ⇐ Assume that it is not true for some ݔ	 ∈ 	ܺ.	Denote ܣ	 = 	 	ߛ} ∈ ;߁	 	 ఊ݂(ݔ) ≠ 	0}. By 
the separation theorem there is ݂	 ∈ 	ܺ∗	such that ݂(ݔ) ≠ 	0 and ݂൫ݔఊ൯ 	= 	0	for each 
	ߛ ∈ 	݂ It follows that .ܣ	 ∈ 	 ∗തതതതതതത௪݊ܽݏ 	{ ఊ݂; 	݂൫ݔఊ൯ ≠ 	0} 	⊂ 	 ∗തതതതതതത௪݊ܽݏ 	{ ఊ݂; 	ߛ	 ∈ {ܣ	\	߁	 	⊂
  .a contradiction ,ୄ{ݔ}	

    The first part of the next theorem is probably folklore among experts.  

Theorem (5.3.8)[204]: Let ܺ be a WCG Banach space and let ܭ	 ⊂ 	ܺ be a weakly 
compact convex symmetric set that generates the space ܺ. Then ܺ has a strong 
Markushevich basis ൛൫ݔఊ; 	 ఊ݂൯ൟఊ∈௰ 	⊂ 	ܭ	 × 	ܺ∗. Such a basis has the following properties: 

ܶ(݂) 	= 	 ቀ݂൫ݔఊ൯ቁఊ∈௰
 is a bounded linear operator from ܺ∗ to ܿ(߁) and ݂	 ∈

∗തതതതതതത௪݊ܽݏ	 	{ ఊ݂; 	݂൫ݔఊ൯ ≠ 	0} for each ݂	 ∈ 	ܺ∗.  

Proof. We prove the first part by transfinite induction on dens ܺ. Suppose first that ܺ is 
separable. Let {ݖ}∈ℕ 	⊂  and {ℎ}∈ℕ a norming set in ܺ∗. Note ܭ be a dense set in ܭ	
that ݊ܽݏതതതതതതത{ݖ} 	= 	ܺ. By [206] there is a Markushevich basis {(ݕ; 	݃)}∈ℕ of ܺ such that 
{ݕ}݊ܽݏ 	= {݃}݊ܽݏ and {ݖ}݊ܽݏ	 	=  .In particular, this basis is norming .{ℎ}݊ܽݏ	
Hence by [209] there is a strong Markushevich basis {(ݔ; 	 ݂)}∈ℕof ܺ such that {ݔ} 	⊂
{ݕ}݊ܽݏ	 	= {ݖ}݊ܽݏ Since .{ݖ}݊ܽݏ	 	⊂ ⋃ ∈ℕ	ܭ݊ , by scaling we may assume that 
{ݔ} 	⊂   .ܭ	

    Now assume that dens ܺ > ߱ and the statement is true for all WCG spaces of density 
less than dens ܺ. By [206] there is a PRI { ఈܲ}ఈ∈[ఠ,ఓ]	on ܺ such that ఈܲ(ܭ) 	⊂  for each ܭ	
ߙ ∈ Denote ܳఈ .[ߤ,߱] 	= 	 ఈܲାଵ 	− 	 ఈܲ. For each ߙ	 ∈ 	  the space ܳఈ(ܺ) is of density (ߤ,߱]
at most card ߙ	 <  and is generated by the weakly compact convex symmetric set	ܺ	ݏ݊݁݀	
ଵ
ଶ
ܳఈ(ܭ). Thus by the inductive hypothesis ܳఈ(ܺ) has a strong Markushevich basis 

൛൫ݔఊఈ	; 	݃ఊఈ 	൯ൟఊ∈௰ഀ 	such that ൛ݔఊఈ	ൟఊ∈௰ഀ 	⊂ ଵ
ଶ
ܳఈ(ܭ) 	⊂ Put ఊ݂ .ܭ	

ఈ 	= 	 ݃ఊఈ ∘ ܳఈ . We claim that 

൛൫ݔఊఈ	; 	 ఊ݂ఈ		൯ൟఈ∈[ఠ,ఓ),ఊ∈௰ഀ
 is a strong Markushevich basis of ܺ.  

   Indeed, ܳఈ(ݔఎ
ఉ	) 	= 	 ܳఈ(ܳఉ(ݔఎ

ఉ 	)) 	= 	0 and hence ఊ݂
ఈ	(ݔఎ

ఉ 	) 	= 	 ݃ఊఈ 	(ܳఈ(ݔఎ
ఉ	)) 	= 	0 for 

ߙ ≠ Further, ఊ݂ .ߚ	
ఈ	(ݔఎఈ	) 	= 	 ݃ఊఈ 	(ܳఈ(ݔఎఈ	)) 	= 	 ݃ఊఈ ఎఈݔ)	 	) 	= 	  .ఊ,ఎ (the Kronecker delta)ߜ

Fix any ݔ	 ∈ 	ܺ.	Then 
ܳఈ(ݔ) 	 ∈ ;	ఊఈݔ}തതതതതതത݊ܽݏ	 	ߛ	 ∈ ఈ߁	 ∶ ݃ఊఈ 	൫ܳఈ(ݔ)൯ ≠ 	0} 	= ఊఈݔ}തതതതതതത݊ܽݏ	 	; 	ߛ	 ∈ ఈ߁	 ∶ ఊ݂

ఈ	(ݔ) ≠ 	0}. 

Hence ݔ	 ∈ 	 ;(ݔ)തതതതതതത{ܳఈ݊ܽݏ 	ߙ	 ∈ 	 [߱, {(ߤ 	⊂ 	 തതതതതതത݊ܽݏ 	⋃ ;ఊఈݔ}തതതതതതത݊ܽݏ 	ߛ	 ∈ ఈ߁	 :	 ఊ݂ఈ	(ݔ) ≠ఈ∈[ఠ,ఓ)
	0} 	⊂ 	 ఊఈݔ}തതതതതതത݊ܽݏ 	; 	ߙ	 ∈ 	 [߱, 	ߛ,(ߤ ∈ ఈ߁	 ∶ 	 ఊ݂ఈ	(ݔ) ≠ 	0}	. Finally, note that this strongness 
property implies that the biorthogonal system is total.  

     To prove the second part of the theorem, denote by ߬ the topology on ܺ∗ given by the 
uniform convergence on ܭ. Put ܶ(݂) 	= 	 ቀ݂൫ݔఊ൯ቁఊ∈௰

 for ݂	 ∈ 	ܺ∗. Then ܶ is clearly a 

bounded linear operator from ܺ∗ to ℓஶ(߁). Since ‖ܶ(݂)	‖ = supఊ∈௰ |(ఊݔ)݂| 	≤
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sup௫∈ 	߬ the operator ܶ is moreover ,	|(ݔ)݂| − ‖	·	‖	continuous. Further, ܶ( ఈ݂) 	 ∈ 	 ܿ(߁) 
for every ߙ	 ∈ }	തതതതതതതఛ݊ܽݏ ,By the Mackey–Arens theorem .߁	 ఈ݂} 	= 	 ∗തതതതതതത௪݊ܽݏ 	{ ఈ݂} 	= 	 ܺ∗. 
Consequently, ܶ(ܺ∗) 	= }		തതതതതതതఛ݊ܽݏ)ܶ	 ఈ݂}) 	⊂ )ܶ}തതതതതതത݊ܽݏ	 ఈ݂)} 	⊂ 	 ܿ(߁). The rest follows 
from Fact (5.3.7).  

      We remark that the heart of the construction of a strong Markushevich basis lies in the 
separable case and is seriously difficult. The strongness of the PRI then arranges the rest. 
However, for our purpose (the second part of the previous theorem), the full strongness 
(and even the biorthogonality) of the Markushevich basis is not necessary. It would be 
sufficient to carry the required properties through the transfinite induction and use just the 
strongness provided by the PRI. The weak compactness is indispensable though.  

Corollary (5.3.9)[204]: Let ܺ be a normed linear space such that ܺ∗ is WCG. Then ܺ has 
a fundamental coordinate system.  

Proof. Let ൛൫ ఊ݂; ఊ൯ൟఊ∈௰ܨ	 	⊂ 	ܺ
∗ 	× 	ܺ∗∗ be a Markushevich basis from Theorem (5.3.8). 

Note that ൛ ఊ݂ൟఊ∈௰	is bounded. Fix ߛ	 ∈ ఊܨ Then by the Goldstine theorem .߁	 	 ∈ ത௪ܤ	
∗ for 

some ball ܤ	 ⊂ 	ܺ. Since ܺ∗ has the property C ([206]), by [206] there is a countable set of 
vectors ൛ݔఊൟ∈ℕ 	⊂ ఊܨ such that ܤ	 	 ∈ 	 ∗തതതതതതത௪ݒ݊ܿ 	൛ݔఊൟ∈ℕ. We claim that 

ቄቀݔఊ; ଵ

	 ఊ݂ቁቅఊ∈௰,∈ℕ

 is a fundamental coordinate system.  

      Indeed, ܶ(ݔ) = ൬ଵ

	 ఊ݂(ݔ)൰

	ఊ∈௰,∈ℕ
 is a bounded linear operator from X to ܿ(߁ × ℕ), 

as ቀ ఊ݂(ݔ)ቁ
ఊ∈௰

	 ∈ 	 ܿ(߁) by Theorem (5.3.8). Fix ݔ	 ∈ 	ܺ and denote ܣ	 = 	 ;ఊݔ} 	 ఊ݂(ݔ) ≠

	0, ݊	 ∈ 	ℕ}. Theorem (5.3.8) implies that ܨ	 ∈ ∗തതതതതതത௪݊ܽݏ	 ;ఊܨ}	 )ܨ	 ఊ݂) 	≠ 	0}	for any ܨ	 ∈ 	ܺ∗∗ 
and so  

	ݔ ∈ 	 ∗തതതതതതത௪݊ܽݏ 	൛ܨఊ ; 	 ఊ݂(ݔ) ≠ 	0ൟ ⊂ 	 ∗തതതതതതത௪݊ܽݏ ራ ∗തതതതതതത௪ݒ݊ܿ	 	൛ݔఊൟ∈ℕ
ఊ∈௰∶	ം	(௫)ஷ

		= ∗തതതതതതത௪݊ܽݏ  	.ܣ	

But since ݔ	 ∈ 	ܺ and ݊ܽݏ	ܣ	 ⊂ 	ܺ, this means that ݔ	 ∈ 	ܣ	തതതതതതത௪݊ܽݏ =  	.ܣതതതതതതത݊ܽݏ	

    We note that there is a Banach space ܺ such that it is a second dual space, it has an 
equivalent ܥଵ-smooth norm, ܺ∗ is a subspace of a Hilbert-generated space (in particular a 
subspace of a WCG space), and there is no bounded linear one-to-one operator from ܺ to 
ܿ(߁), [123]. Therefore there is no hope for generalising the result (v) beyond the dual 
being WCG using the approach above (or the original proof as well – both result in a 
linear injection into ܿ(߁)). 

Theorem (5.3.10)[204]: Every Banach space that belongs to a ത࣪-class has a fundamental 
coordinate system.  

Proof. Let ࣲ be a ത࣪-class and 	∈ 	ࣲ . We use transfinite induction on dens ܺ. If ܺ is 
separable, then we can use the existence of a strong Markushevich basis. However, this 
difficult result is not necessary. A direct construction is as follows: Let {ݕ}∈ℕ 	⊂ 	ܺ be 
dense in ܺ and let {݃}∈ℕ 	⊂ 	ܺ∗ be such that it separates the points of ܺ and ‖݃‖ 	≤

ଵ

	. 
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For ݇, ݊	 ∈ 	ℕ put ݔ 	= 	  and ݂ݕ 	=
ଵ

	݃. Then {(ݔ , ݂)},∈ℕ is a fundamental 

coordinate system: Fix ݔ	 ∈ 	ܺ. Then | ݂(ݔ)| ≤ ଵ

	݉ Also, there is .‖ݔ	‖ ∈ 	ℕ such that 

݃(ݔ) ≠ 	0	and	so	ݔ	 ∈ 	 ;ݕ}തതതതതതത݊ܽݏ 	݊	 ∈ 	ℕ} 	= ;ݔ}തതതതതതത݊ܽݏ	 	݊	 ∈ 	ℕ} 	⊂
;ݔ}തതതതതതത݊ܽݏ	 	 ݂(ݔ) ≠ 	0}.	 

     Now assume that dens ܺ > ߱ and every space in ࣲ of density less than dens ܺ has a 
fundamental coordinate system. Let { ఈܲ}ఈ∈[ఠ,ఓ] be a PRI on ܺ such that ఈܲ(ܺ) 	 ∈ ࣲ for 
ߙ ∈ Put ܳఈ .(ߤ,߱] 	= 	 ఈܲାଵ 	− 	 ఈܲ .	By the inductive hypothesis, for each ߙ	 ∈ 	 [߱,  there (ߤ
is a fundamental coordinate system ൛൫ݔఊఈ 	;݃ఊఈ 	൯ൟఊ∈௰ഀ 	݊	 ఈܲ(ܺ) and there is ܭఈ 	> 	0 such 

that ൛݃ఊఈ 	ൟఊ∈௰ഀ 	⊂ (ܺ)Since ܳఈ .(ఈܭ,0)ܤ	 	⊂ 	 ఈܲାଵ(ܺ), we may set ఊ݂
ఈାଵ 	= ଵ

ഀశభ
	݃ఊఈାଵ ∘

ܳఈ and note that ฮ ఊ݂
ఈାଵฮ 	≤ 	2. We claim that ൛൫ݔఊఈାଵ	; ఊ݂

ఈାଵ	൯ൟ
ఈ∈[ఠ,ఓ),ఊ∈௰ഀ శభ

 is a 
fundamental coordinate system on X.  

      Indeed, the formula ܶ(ݔ) = 	 ቀ ఊ݂
ఈାଵ(ݔ)ቁ

ఈ∈[ఠ,ఓ),ఊ∈௰ഀ శభ
	clearly defines a bounded linear 

operator from ܺ to ℓஶ	(߁), where ߁	 = ⋃ {ߙ} 	× 	 (ఈାଵఈ∈[ఠ,ఓ߁ 	. Now fix ݔ	 ∈ 	ܺ and 
	ߝ > 	0.	Then the set ܣ	 = 	 	ߙ} ∈ 	 [߱, ;(ߤ 	‖ܳఈ(ݔ)‖ 	> is finite. So, ห {ߝ	 ఊ݂ఈାଵ	(ݔ)ห ≤
ଵ

ഀశభ
ฮ	݃ఊఈାଵ	ฮ‖ܳఈ(ݔ)‖ 	≤ 	ߙ whenever ߝ	 ∈ 	 [߱, 	ߛ and ܣ	\	(ߤ ∈  ,ఈାଵ. On the other hand߁	

if ߙ	 ∈ 	ߛthen the set ൛ ,ܣ	 ∈ ;ఈାଵ߁	 	ห ఊ݂ఈାଵ	(ݔ)ห > ൟߝ	 = 	ߛ} ∈ ;ఈାଵ߁	 	|݃ఊఈାଵ	(ܳఈ(ݔ))| 	>
 is finite by the definition of a fundamental coordinate system. Finally, as  {ߝఈାଵܭ	
ܳఈ(ݔ) ∈ 	 ఈܲାଵ(ܺ),	theassumption gives ܳఈ(ݔ) 	∈ ൯(ݔ);݃ఊఈାଵ൫ܳఈ	ఊఈାଵݔ}തതതതതതതതതത݊ܽݏ	 ≠ 	0} 	=
;	ఊఈାଵݔതതതതതതത൛݊ܽݏ	 	 ఊ݂ఈାଵ	(ݔ) ≠ 	0ൟ. Therefore 
ݔ ∈ ;(ݔ)തതതതതതത{ܳఈ݊ܽݏ 	ߙ	 ∈ 	 [߱, {(ߤ ⊂ തതതതതതത݊ܽݏ	 ⋃ ;	ఊఈାଵݔതതതതതതത൛݊ܽݏ		 	 ఊ݂ఈାଵ	(ݔ) ≠ 	0ൟఈ	∈	[ఠ,ఓ)} ⊂
;	ఊఈାଵݔ}തതതതതതത݊ܽݏ 	 ఊ݂ఈାଵ	(ݔ) ≠ 	0}.	  
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Chapter 6 

Smooth Norms with Banach Spaces and their Duals 

 

We show that if ܺ admits a norm, equivalent to the supremum norm, with locally 
uniformly convex dual norm, then ܺ also admits an equivalent norm that is of class ܥஶ 
(except at 0). It is shown that a Banach space with locally uniformly convex dual admits 
an equivalent norm that is itself locally uniformly convex. We investigate Banach spaces 
satisfying a property, which we call (S), and characterise them by means of a new 
geometric property of the unit sphere which allows us to show, e.g., that all strictly convex 
norms have (S), there are plenty of non-strictly convex norms satisfying (S). We also study 
the corresponding renorming problem. 

Section (6.1): Approximation in Banach Spaces of the Type ऍ(ࡷ)  

      We shall show two results about smoothness in Banach spaces of the type ࣝ(ܭ). Both 
build upon earlier of [213], [214].We first establish a special case of a conjecture that 
remains open for general Banach spaces and concerns smooth approximation. We recall 
that a bump function on a Banach space ܺ is a function	ߚ ∶ 	ܺ	 → ℝ which is not 
identically zero, but which vanishes outside some bounded set. The existence of bump 
function of class ࣝଵ implies that the Banach space ܺ is an Asplund space, which, in the 
case where ܺ	 =  is scattered. It is a major unsolved ܭ is the same as saying that ,(ܭ)ࣝ
problem to determine whether every Asplund space has a ࣝଵ bump function. Another open 
problem is whether the existence of just one bump function of some class ࣝ on a Banach 
space ܺ implies that all continuous functions on ܺ	may be uniformly approximated by 
functions of class ࣝ. It is to this question that we give a positive answer (Theorem 
(6.1.7)) in the special case of ܺ	 =   .(ܭ)ࣝ	

      Our second result represents some mild progress with a conjecture made by the second 
author in [102]. The analysis of compact spaces constructed using trees suggests that for a 
compact space K, the existence of an equivalent norm on ࣝ(ܭ), which is of class ࣝଵ 
(except at 0 of course), might imply the existence of such a norm that is of class ࣝஶ. 
Certainly, this is what happens with norms constructed using linear Talagrand operators as 
in [101], [97], [102]. The other important (and older) method of obtaining ࣝଵ  norms is to 
construct a norm with locally uniformly rotund (LUR) dual norm. What we show in 
Theorem (6.1.5) is that whenever ࣝ(ܭ) admits an equivalent norm with LUR dual norm, 
there is also an infinitely differentiable equivalent norm on ࣝ(ܭ). 

     For background on smoothness and renormings in Banach spaces, including an account 
of Asplund spaces, see [99]. In particular, an account is given there of the connection 
between smooth approximability of continuous functions and the existence of smooth 
partitions of unity. Following what seems to be standard practice in the literature, we have 
chosen to state the formal version of our first theorem (Theorem (6.1.5)) in terms of 
partitions of unity, rather than approximation.  

      Formalizing a definition that appears implicitly in [97], [102], we shall say that a 
mapping ܶ ∶ (ܭ)ࣝ	 	→ 	 ܿ(ܭ	 × 	Γ) is a (nonlinear) Talagrand operator of class ࣝ  if  
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      (i) for each non-zero ݂	 ∈ 	ݐ there exist ,(ܭ)ࣝ	 ∈ 	ݑ,ܭ	 ∈ Γ such that |݂	(ݐ)| = ‖݂‖ஶ 
and (݂ܶ	)(ݐ, (ݑ ≠ 	0;  

      (ii) each coordinate function ݂	 ⟼	  is of class ࣝ  on the set where it is not (ݑ,ݐ)(	݂ܶ)
zero.  

       It follows from [97] that if ࣝ(ܭ)admits a Talagrand operator of class ࣝ, then 
 has a bump function of the same class. It is shown in [97] or [101], that if(ܭ)ࣝ
 .admits an equivalent ࣝஶ norm(ܭ)ࣝ admits a linear Talagrand operator, then(ܭ)ࣝ
Although there certainly exist examples of compact ܭ such that ࣝ(ܭ) has a ࣝஶ renorming 
but no linear Talagrand operator (for instance, the Cieselski–Pol space [99]), it is worth 
noting that, by the first of the theorems, a nonlinear Talagrand operator exists whenever 
there is a bump function.  

We consider a non-empty compact scattered space ܭ. The derived set ܭ′ is defined as 
usual to be the set of points ݐ in	ܭ	that are not isolated in ܭ. Successive derived sets ܭ(ఈ) 
are defined by the transfinite recursion  

()ܭ 	= (ఉ)ܭ														,ܭ	 	= ሩ ′((ఈ)ܭ)
	ఈழ	ఉ

,	 

There is an ordinal ߜ such that ܭ(ఋ) is non-empty and finite (so that ܭ(ఋାଵ) 	= 	∅). For 
each ݐ	 ∈ (ݐ)ߙ there is a unique ordinal ,ܭ	 	≤ 	ݐ such that ߜ	 ∈  Since . (ఈ(௧)ାଵ)ܭ	\	൫ఈ(௧)൯ܭ	
	ܸ such that ܭ ൫ఈ(௧)൯, there is a compact open subset ܸ ofܭ is an isolated point of ݐ ∩
൫ఈ(௧)൯ܭ	 	= 	 and call it ௧ܸ	we choose such a ܸ ;{ݐ}  . For finite subsets ܤ of ܭ we set 
ܸ 	= 	⋃ ௧ܸ௧∈ 	 .  

Lemma (6.1.1)[208]: Let ܤ be a non-empty finite subset of ܭ and let ߙ	 =  be (ܤ)ߙ	
maximal subject to ܤ	 (ఈ)ܭ	∩ ≠ 	∅. Then ܸ 	∩ (ఈ)ܭ	 	= 	ܤ	 ∩ and hence ܸ (ఈ)ܭ	 	∩
(ఈାଵ)ܭ	 	= 	∅.  

Proof . Let ݐ be in ܤ. If (ݐ)ߙ 	< then ௧ܸ ,ߙ	 	∩ (ఈ)ܭ		 	= 	∅, whereas if (ݐ)ߙ 	=  then ,ߙ	
௧ܸ 	∩ (ఈ)ܭ		 	= 	 Thus ܸ .{ݐ} 	∩ (ఈ)ܭ		 	= 	ܤ	 ∩   .as claimed ,(ఈ)ܭ		

     We shall say that a finite subset ܣ of ܭ is admissible if ݏ	 ∉  are ݐ and ݏ whenever	(ݐ)	ܸ	
distinct elements of ܣ.  

Lemma (6.1.2)[208]: Let ܭ be a compact scattered space and let ܪ be a non-empty, 
closed subset of ܭ. There is a unique admissible set ܣ with the property that ܣ	 ⊆ 	ܪ	 ⊆
  .(ܣ)	ܸ	

Proof . We start by describing a recursive procedure that constructs one possible 
admissible ܣ with the required property. Let ߙ 	= ߙ}ݔܽ݉	 ∶ 	ܪ	 (ఈ)ܭ		∩ ≠ 	∅}; thus, 
	ܪ ⊇	 . Ifܣ is a non-empty finite set, which we shall call (ఈబ)ܭ		∩ 	 ܸబ , we set ܣ	 = 	  ܣ
and stop. Otherwise, we set ܪଵ 	= \ܪ	 ܸబ ଵߙ,	 	= ߙ}	ݔܽ݉ ∶ ଵܪ	 	∩ (ఈ)ܭ		 ≠ ଵܣ,{∅	 	=
ଵܪ	 	∩  and continue. In this way, we construct a decreasing (and so, necessarily (ఈభ)ܭ		
finite) sequence ߙ 	> 	 ଵߙ 	>	···	> 	 ܣ  of ordinals, and finite setsߙ 	= 	ܪ	 ∩ \	൫ఈೕ൯ܭ		
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	 ܸబ∪···∪ೕషభ , in such a way that ܪ	 ⊆ 	 ܸబ∪···∪ . By construction, ܣ	 = 	 ܣ   is anܣ	∪···∪	
admissible set.  

       We now show uniqueness. It will be convenient to proceed by transfinite induction on  
	ܤ be admissible and suppose that ܤ . Letߙ ⊆ 	ܪ	 ⊆ 	 ܸ.  By  Lemma (6.1.1), (ܤ)ߙ 	=
	ܤ and	ߙ	 (ఈబ)ܭ	∩ 	⊆ 	ܥ	 ∩ (ఈబ)ܭ 	⊆ 	 ܸ 	∩ (ఈబ)ܭ	 	= 	ܤ	 ∩ ܣ Thus .	(ఈబ)ܭ 	⊆  We .ܤ	
now have a closed set ܪଵ 	= 	\	ܪ	 ܸబ  and an admissible set ܤଵ 	= ଵܤ  withܣ	\	ܤ	 	⊆
ଵܪ	 	⊆ 	 ܸభ . Since ߙଵ 	= ߙ}ݔܽ݉	 ∶ ଵܪ	 	∩ (	ఈ)ܭ	 ≠ 	∅} 	< 	  , we may use our inductiveߙ
hypothesis to deduce that ܤଵ 	= 	ܤ , whenceܣ	\	ܣ	 =   .ܣ	

Let ܺ be a Banach space that admits a bump function of class ࣝ; so there is a function 
	ߙ ∈ 	ࣝ(ܺ) such that (0)ߙ 	= 	1, whereas (ݔ)ߙ 	= 	0 for ‖ݔ‖ 	≥ 	1. By forming ߚ, 
where	(ݔ)ߚ 	= 	ܴ with ,((ܴ/ݔ)ߙ)߮	 > 	0 and ߮ ∶ ℝ	 → ℝ suitably chosen, we obtain a 
function of class ࣝ, taking values in [0, 1] satisfying  

(ݔ)ߚ = 	 ൝
‖ݔ‖	ℎ݁݊ݓ					1	 	≤ 	1,

	
‖ݔ‖	ℎ݁݊ݓ							0 	≥ 	ܴ.

		 

Of course, if ܺ admits partitions of unity of class ࣝ, then (starting with a partition of 
unity each of whose members has support of diameter at most ߳ ) we easily obtain a 
function ߚ satisfying the above conditions, with ܴ	 = 	1	 + ߳  and ߳  an arbitrarily small 
positive real number. In general, we do not know whether a bump function can always be 
‘improved’ in this way. We devoted to showing how to achieve such an improvement in 
the case where ܺ is a space ࣝ(ܭ) equipped with the supremum norm. We start with an 
elementary and no doubt well-known exercise in calculus, in which we use the notation to 
be found for instance in [212].  

Lemma (6.1.3)[208]: Let ܭ be a compact space and let ߠ ∶ ℝ	 → ℝ be of class ࣝ. Then 
the mapping  Θ:ࣝ(ܭ) 	→ (	݂)given by Θ (ܭ)ࣝ	 = ߠ	 ∘ 	݂ is of class ࣝ.  

Proof. We proceed by induction on ݉. For ݉	 = 	0, we are merely assuming ߠ to be 
continuous, and continuity Θ of follows from the uniform continuity of ߠ on bounded 
subsets of ℝ.  

      If ݉	 ≥ 	1, we consider ݂,ℎ in ࣝ(ܭ)and apply the mean value theorem point by point 
to obtain  

(ݐ)	݂)	ߠ 	+ 	ℎ(ݐ)) 	− ((ݐ)	݂)	ߠ	 	= (ݐ)	݂)	′ߠ	 	+  	,(ݐ)ℎ((ݐ)ℎ(ݐ)	ߞ	

with 0	 < (ݐ)	ߞ	 	< 	1. The uniform continuity of ߠ′ on bounded subsets of ℝ now tells us 
that the right-hand side of the above equality equals ݂)′ߠ	((ݐ) 	+  So Θ is .(ℎ‖ஶ‖)	
differentiable with  

(	݂)Θܦ 	 · 	ℎ	 = 	 ᇱߠ) ∘ 	݂	) 	× 	ℎ.	 

The linear mapping ܦΘ	(݂	) ∶ (ܭ)ࣝ	 	→  ఏᇲ∘ of multiplicationܯ is thus the operator (ܭ)ࣝ	
by ߠᇱ ∘ 	݂ . Thus the derivative ܦΘ ∶ (ܭ)ࣝ	 → ℒ(ࣝ(ܭ)) may be factored as follows:  

(ܭ)ࣝ 	→ (ܭ)ࣝ	 → ℒ(ࣝ(ܭ)), 
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where the first factor is ݂	 ⟼ ᇱߠ ∘ 	݂	and the second is the linear isometry ݃	 ⟼  . Our	ܯ
inductive hypothesis tells us that the first of these is of class ࣝିଵ. So ܦΘ	is of class ࣝିଵ 
and Θ of class ࣝ. 

Proposition (6.1.4)[208]: Let ܭ be a compact space such that ࣝ(ܭ) admits a bump 
function of class ࣝ. Then, for all real numbers ߟ > ߦ > 	0, there is a function ߚక	,ఎ ∶
(ܭ)ࣝ 	→ 	 [0, 1]	of class ࣝ such that  

(	݂),ఎ	కߚ = 	 ൝
‖݂‖ஶ	ℎ݁݊ݓ					1	 	≤ ,	ߦ	

	
‖݂‖ஶ	ℎ݁݊ݓ				0 	≥ .ߟ	

		 

Proof . By hypothesis, there exists a function ߙ ∶ (ܭ)ࣝ 	→ ℝ, of class ࣝ, such that 
(0)ߙ 	= 	1, whereas ߙ(݂	) 	= 	0	for ‖݂‖ஶ 	≥ 	1. As in our introductory remarks, we may 
assume that	ߙ takes values in [0, 1]. We define ߚక	,ఎ	by  

(	݂),ఎ	కߚ 	= ߠ)ߙ	 ∘ ݂	),	 

where ߠ ∶ ℝ → ℝ is a function of class ࣝஶ chosen so that  

(ݔ)	ߠ = 		 ൝
|ݔ|	ℎ݁݊ݓ								0 	≤ ,	ߦ	

	
|ݔ|	ℎ݁݊ݓ									1 	≥ .ߟ	

		 

We devoted to a proof of the following theorem.  

Theorem (6.1.5)[208]: Let ܭ be a compact space and let ݉ be a positive integer or ∞.	The 
following are equivalent:  

     (i) ࣝ(ܭ) admits a bump function of class ࣝ;  

     (ii) ࣝ(ܭ) admits a Talagrand operator of class ࣝ;  

     (iii) ࣝ(ܭ) admits partitions of unity of class ࣝ . 

       It will be enough to prove that (i) implies both (ii) and (iii). We start by showing how 
to construct a Talagrand operator, starting with a bump function on ࣝ(ܭ). As we 
remarked, the existence of a smooth bump function forces ܭ to be scattered. So we can use 
the notion of admissible sets as developed above. We let ࣫ be the set of all triples 
,ߟ,	ߦ) 	with 0	in ℚଷ (	ߞ < ߦ < ߟ < 	∞.	and write	ࣛ for the set of all admissible subsets of 
,	ߦ)ܿ Choose positive real numbers .ܭ ,ߟ ∑ with	(	ߞ ,	ߦ)ܿ ,ߟ ࣫∋(	,ఎ,	క)(	ߞ 		< 	∞. For 
0	 < ߦ < 	,ఎ be as in Proposition (6.1.4), and, finally, for 0	కߚ let ,ߟ < ߟ <  క,ఎ be asߚ let ,ߟ	
in Proposition (6.1.4), and, finally, for 0	 < 	ߟ	 < let ߮ఎ, ,ߞ	 ∶ ℝ	 → 	 [0, 1] be of class ࣝஶ 
with 

߮ఎ,	(ݔ) 	= ൝
|ݔ|	ℎ݁݊ݓ								0 	≤ ,ߟ	

	
|ݔ|	ℎ݁݊ݓ							1 	≥ .	ߞ	

 

       We define ܶ ∶ (ܭ)ࣝ	 	→ ℓ∞(ܭ	 × ࣫	 × ࣛ) by 
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,ݏ)(	݂ܶ) ,ߦ ,ߟ (ܣ,ߞ 	= ,ߟ,ߦ)ܿ	 	క,ఎ൫݂ߚ(	ߞ × 	 ߯\ಲ 	൯ෑ߮ఎ,	൫݂	(ݐ)൯߯(ݏ)
௧∈

. 

We notice that, for this expression to be non-zero, we need ܣ	 ⊆ 	ܨ	 ⊆ 	 ܸ, where ܨ is the 
closed set {ݐ	 ∈ ܭ	 ∶ 	 |(ݐ)	݂| 	≥   and ߟ Now, we know by Lemma (6.1.2) that, for given .{ߟ	
, there is just one ܣ for which this is true. It follows easily that ܶ	takes values in	ܿ(ܭ	 ×
࣫	 × ࣛ). It is also clear that each coordinate of ܶ, that is to say each mapping ݂	 ⟼
,ݏ)(	݂ܶ)	 ,	ߦ ,ߟ   .ࣝ	is of class ,(ܣ,ߞ

     To show that ܶ has the Talagrand property, we consider ݂ ≠ 	0 and set ܨ	 = 	 	ݐ} ∈ ܭ	 ∶
|(ݐ)	݂|	 	= 	 ‖݂‖ஶ}. Let ܣ be the admissible set for which ܣ	 ⊆ 	ܨ	 ⊆ 	 ܸ	and choose 
rationals 0	 < ߦ < ߟ < ߦ	 such thatߦ < ‖݂‖ஶ and ߦ	 > 	 ฮ݂	 × 	 ߯\ಲ 	ฮஶ. For any	ݏ	 ∈  ܣ	
we have |݂	(ݏ)| = ‖݂‖ஶ and (݂ܶ	)(ݏ, ,	ߦ ,ߟ (	ߞ ≠ 	0.	 

      We now pass to the construction of partitions of unity. We shall proceed by transfinite 
recursion on the derived length of ܭ. Recall from that there is an ordinal ߜ	such that ܭ(ఋ) 
is finite and non-empty, so that ܭ(ఋାଵ) is the first empty derived set of ܭ. We assume 
inductively that if ܸ is a compact space with ܸ(ఋ) 	= 	∅ and such that ࣝ(ܸ	)	has a bump 
function of class ࣝ, then ࣝ 	(ܸ	) admits ࣝ partitions of unity. We need to show that 
 also admits ࣝ partitions of unity. To do this, it will be enough to construct(ܭ)ࣝ
partitions of unity on the finite-codimensional subspace ܺ	 = 	 {݂	 ∈ (ܭ)ࣝ	 ∶ (ݐ)	݂	 	=
	ݐ	݈݈ܽ	ݎ݂	0	 ∈   .We shall use the following result .{(ఋ)ܭ	

Proposition (6.1.6)[208]: [97] Let ܺ be a Banach space, let ܮ be a set and let ݉ be a 
positive integer or ∞. Let ܶ ∶ 	ܺ	 → 	 ܿ(ܮ) be a function such that each coordinate 
	ݔ ⟼  ,ܮ of ܨ ఊ is of class ࣝ on the set where it is non-zero. For each finite subset(ݔ)	ܶ	
let ܴி ∶ 	ܺ	 → 	ܺ be of class ࣝ and assume that the following hold:  

       (i) for each ܨ, the image ܴி	[ܺ] admits ࣝ partitions of unity;  

       (ii) ܺ admits a ࣝ bump function;  

       (iii) for each ݔ	 ∈ 	ܺ and each 	߳ > 	0, there exists ߣ	 > 	0	such that ‖ݔ	 −	ܴி	ݔ‖ 	< ߳	 
if we set ܨ	 = 	 	ݑ} ∈ ܮ	 ∶ 	 |(ݑ)(ݔ	ܶ)| 	≥   .{ߣ	

Then ܺ admits ࣝ partitions of unity.  

       In applying this result, we shall take ܮ to be ܭ	 × ࣫		 × ࣛ, where ࣛ consists of the 
admissible subsets ܣ such that	ܣ	 ∩ (ఋ)ܭ	 	= 	∅. The operator ܶ is the Talagrand operator 
constructed above (though with the argument ܣ restricted to lie in ࣛ). We have already 
shown that ܶ takes values in ܿ(ܮ) and that the coordinates of ܶ are of class ࣝ. We 
define the reconstruction operators	ܴி as follows: if ܨ	 ⊂  has elements ܮ	
,ݏ) ,ߦ ߟ , 	(0	)ܣ,ߞ ≤ 	݅	 < 	݊), we set ܸ	(ܨ	) 	= ⋃ ܸழ  and define ܴி 	(݂	) 	= ݂	 ×
	߯	(ி). So ܴி ∶ 	ܺ	 → 	ܺ is a bounded linear operator and the image ܴி may be identified 
with ࣝ(ܸ	(ܨ	)) which, by our inductive hypothesis, admits partitions of unity of class ࣝ. 

     It only remains to check that (iii) holds, so let ݂	 ∈ 	߳ and (ܭ)ࣝ	 > 	0 be given. Let ܪ 
be the set {ݐ	 ∈ ܭ	 ∶ 	 |(ݐ)	݂| 	≥ 	߳} and let ܣ be the admissible set such that ܣ	 ⊆ 	ܪ	 ⊆
	 ܸ.	For suitably chosen 0	 < 	ߦ	 < 	ߟ	 < 	ߞ	 < 	߳ we have 
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,ݏ)(	݂ܶ) ,ߦ ,ߟ (ܣ,ߞ 	= ,ߦ)ܿ	 ,ߟ (	ߞ 	> 	0	 

for all ݏ	 ∈ 	ߣ We set .ܣ	 = ,ߟ,	ߦ)ܿ	 (	ܨ)	ܸ and note that	(	ߞ 	⊇ 	 ܸ. So  

‖݂	 −	ܴி	݂‖ஶ 	= 	 ฮ݂	 × 	߯\	(ி	)ฮஶ 

																																	≤ 	 ฮ݂	 × 	߯\ಲฮஶ < ߳	.	 

We shall now prove the second theorem. 

Theorem (6.1.7)[208]: Let ܭ be a compact space such that ࣝ(ܭ)admits an equivalent 
norm with locally uniformly rotund dual norm. Then ࣝ(ܭ)admits an equivalent which is 
of class ࣝஶ on ܺ	\	{0}.  

      The norm which we construct will be a generalized Orlicz norm, defined on the whole 
of ℓஶ(ܭ), which we shall show to be infinitely smooth on the subspace ࣝ(ܭ). We recall 
some definitions. Suppose that, for each ݐ	 ∈ we are given a convex function ߮௧ ,ܭ	 =
(·,ݐ)߮ ∶ 	 [0,∞) 	→ 	 [0,∞) satisfying ߮(ݐ, 0) = 	0, lim௫→ஶ ,ݐ)߮ (ݔ 	= 	∞	(that is, to say an 
Orlicz function). The generalized Orlicz space,	ℓఝ(·)(ܭ), is defined to be the space of all 
functions ݂ ∶ 	ܭ	 → ℝ such that ∑ ,ݐ)߮ ௧∈(ߩ/|(ݐ)	݂| 		< 	∞ for some ߩ	 ∈ 	 (0,∞). The 
generalized Orlicz norm of such a function is defined to be  

‖݂	‖ఝ(·) 	= 	݂݅݊	 ൝	ߩ	 > 	0 ∶ 	߮ ቆ
,ݐ (ݐ)	݂|

ߩ/
ቇ

௧∈

			≤ 	1ൡ	.	 

      The first of the following lemmas is elementary and the second uses the familiar 
idea of ‘local dependence on finitely many coordinates’.  

Lemma (6.1.8)[208]: Suppose that there exist positive real numbers ܴ	 < 	ܵ such that 
(ܴ,ݐ)߮ = 0 and ߮(ݐ,ܵ) ≥ 1 for all	ݐ	 ∈ (ܭ)(·)ℓఝ	 Then .ܭ	 = ℓ∞	(ܭ)	and 

ܴ‖݂	‖ఝ(・) 	≤ 	 ‖݂‖∞ 	≤ 	ܵ‖݂‖ఝ(・)		. 

Lemma (6.1.9)[208]: Let ߮(・),ܴ and ܵ be as in Lemma (6.1.8) and let ܺ be a linear 
subspace of ℓ∞	(ܭ). Suppose that, whenever ݂	 ∈ 	ܺ and ‖݂‖ఝ(・) = 	1, there exist a 
positive real number ߜ and a finite subset ܨ of ܭ such that ݃(ݐ) 	= 	0 whenever 
݃	 ∈ 	ܺ, ‖݂	 − 	݃‖∞ 	< ݐ	and ߜ	 ∉  (·,ݐ)߮ Assume further that each of the functions . 	ܨ	
is of class ࣝஶ. Then the generalized Orlicz norm ‖·‖ఝ(·) is of class ࣝஶ on ܺ	\	{0}.  

Proof . If ݂	,ܨ and ߜ are as in the statement of the lemma, then the function Φ defined 
by  

Φ(݃) 	= 	߮(ݐ, (|(ݐ)݃|
௧∈

			 

is of class ࣝஶ on {݃	 ∈ 	ܺ ∶ 	 ‖݂	 − 	݃‖ஶ 	<  since it coincides with the finite sum	,{ߜ	
	∑ ,ݐ)߮ ௧∈ி(|(ݐ)݃|  of given ࣝஶ functions. Thus our hypothesis says that there is an 
open subset ܷ of ܺ containing the set {݂	 ∈ 	ܺ ∶ 	 ‖݂‖ఝ(・) 	= 	1} and such that Φ is ࣝஶ 
on ܷ. We define ܸ	 = 	 {ℎ, (ߩ 	 ∈ 	 (ܺ	\	{0}) 	× 	 (0,∞) ∶ 	 	ଵℎିߩ ∈ 	ܷ}, an open set in ܺ. 
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On ܸ we define Ψ(ℎ, (ߩ 	= 	Φ(ିߩଵℎ),	which is of class ࣝஶ. For each ℎ	 ∈ 	ܺ	\	{0}, 
there is a unique ߩ	 = ‖ℎ‖ఝ(・) such that (ℎ,ߩ) 	 ∈ 	ܸ and Ψ(ℎ,ߩ) 	= 	1. Moreover, we 
may calculate the partial derivative  

,ଶΨ(ℎܦ (ߩ 	= (|(ݐ)|ℎ	ଵିߩ)ଶ߮௧ᇱିߩ−	
௧

	 

and note that this is non-zero when ߩ	 = 	 ‖ℎ‖ఝ(・)	, since ߮௧ᇱ(ݔ) 	> 	0 whenever 
߮௧(ݔ) 	> 	0. Thus, the implicit function theorem may be applied to conclude that 
‖·‖ఝ(·) is of class ࣝஶ on ܺ	\	{0}.	 

     To choose suitable Orlicz functions ߮௧ in our theorem, we shall need to use the 
special properties of ܭ. The assumption that ࣝ(ܭ)∗ has an equivalent LUR dual norm 
implies (and, by a theorem of Raja [104], is actually equivalent to) the compact space 
 ,ܭ  ofܦ discrete. So we may assume that there are pairwise disjoint subsets-ߪ being ܭ
each one discrete in its subspace topology, with ܭ	 = 	⋃ ∈ఠܦ 	.	We note in passing that 
we are not assuming ܦ to be closed, merely that ܦ has empty intersection with its 
derived set ܦᇱ. We fix positive real numbers ݎ 	< 	1 with ∏ ∈ఠݎ 	> 	0	and, for ݐ	 ∈  ,ܭ	
define two real numbers  

(ݐ)ߙ = 	ෑ{ݎ ∶ 	ݐ	 ∈  ,{ഥܦ	

(ݐ)ߚ	 	= ෑ{ݎ ∶ 	ݐ	 ∈  	.{ᇱܦ	

We notice that (ݐ) 	= (ݐ)ߙ	 	× 	   , where ݆ is the (unique) natural number such thatݎ
ݐ ∈   . (Note that it is here, and only here that we use the discreteness hypothesis  thatܦ
ܦ 	∩ ᇱܦ	 	= 	∅.). In particular, therefore, 0	 < (ݐ)ߙ	 	< (ݐ)ߚ	 	< 1. So we may choose 
an infinitely differentiable Orlicz function ߮௧ such that  

߮௧(ݔ) 	= 	 ൝
	ݔ	ℎ݁݊ݓ								0 ≤ ,(ݐ)ߙ	

	
> 	ݔ	ℎ݁݊ݓ						1	 ≥ .(ݐ)ߚ	

 

     We are going to show that Lemma (6.1.9) may be applied to these Orlicz functions 
and the subspace ࣝ(ܭ) of ℓஶ	. It is convenient to state one of the ingredients of this 
proof as a property of the functions α and β.  

Lemma (6.1.10)[208]: Let (ݐ) be a sequence of distinct elements of	ܭ which 
converges to some ݐ ∈ (ݐ)ߚ Then .ܭ 	≤   .(ݐ)ߙ݂݊݅	݈݉݅	

Proof. By taking subsequences and diagonalizing, we may assume that ߙ(ݐ) tends to a 
limit as ݊	 → 	∞ and also that, for each ݅	 ∈ 	߱, either all of ݐାଵ, ,ାଶݐ ... are in ܦഥ or else 
none is. Let ܯ be the set of natural numbers ݅	such that ݐାଵ, . .. are in ܦഥ .Then for each 
݊ we have   

ෑ ݎ
ழ,∈ெ

		× ෑݎ
ஹ	

	≤ (ݐ)ߙ	 	≤ෑݎ
∈ெ

			, 
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whence ߙ(ݐ) 	→ ∏ ∈ெݎ   as ݊ → ∞ . On the other hand, since the ݐ are distinct and 
ݐ 	 ∈ 	݊  wheneverܦ	 > 	݅	 ∈  ᇱܦ is in the derived set ݐ it must be that the limit point ,ܯ	
whenever ݅	 ∈  Thus .ܯ	

(ݐ)ߚ	 = ݎ}∏	 ∶ 	ݐ	 ∈ {ᇱܦ	 	≤ 	∏ ∈ெݎ .																																					  

      To complete the proof of the theorem, we consider ݂	 ∈ (・)with ‖݂‖ఝ (ܭ)ࣝ	 = 	1. 
If no ߜ and ܨ exist with the property of Lemma (6.1.9), there exist a sequence ( ݂) in 
 such that ܭ of (ݐ) converging uniformly to ݂ and a sequence of distinct elements(ܭ)ࣝ
,ݐ)߮ | ݂(ݐ)|) 	> 	0 for all ݊. For this to be the case it must be that | ݂(ݐ)| 	≥  .(ݐ)ߙ	
Extracting a subsequence, we may suppose that the sequence (ݐ) converges to some 
	ݐ ∈ (ݐ)	݂ , we have	݂	Now by uniform convergence and the continuity of .ܭ	 =
lim ݂(ݐ)	, so that |݂	(ݐ)| 	≥ ,ݐ)߮ by Lemma (6.1.10). Thus (ݐ)ߚ	 (|(ݐ)	݂| 	> 	1 and 
‖݂‖ఝ(・) 	> 	1, a contradiction, which ends the proof. 

Section (6.2): Locally Uniformly Convex Norm  

       If we consider a real Banach space ܼ under a norm ‖·‖ and its dual space	ܼ∗, equipped 
with the dual norm ‖·‖∗, there are important and well-established connections between 
convexity properties of ‖·‖∗ and smoothness properties of ‖·‖	. Indeed, strict convexity of 
‖·‖∗ implies Gâteaux-smoothness of ‖·‖	, locally uniform convexity of ‖·‖∗ implies 
Fréchet-smoothness of ‖·‖	 and uniform convexity of	‖·‖∗ is equivalent to uniform 
smoothness of ‖·‖	. On the other hand, there would seem to be, a priori, no reason why a 
convexity condition in the dual space ܼ∗ should imply any sort of convexity in ܼ. 
However, it is a consequence of the Enflo–Pisier renorming theorem [219], [226], or [99] 
that uniform convexity of	‖·‖∗ implies that there exists a norm ||| 	 · 	 ||| on ܼ, equivalent to 
the given norm, which is itself uniformly convex. One can even arrange that this new 
norm be both uniformly convex and uniformly smooth.  

      It is natural to ask whether a similar result about equivalent norms holds for the weaker 
properties of strict convexity and locally uniform convexity. A counterexample to one of 
these questions was given in [102]: there is a Banach space ܼ, ‖·‖	 with strictly convex 
dual, but such that no equivalent norm on ܼ is strictly convex. That the situation may be 
better for the third property, locally uniform convexity, was suggested by a theorem of 
Kenderov and Moors [223]. This states that a Banach space with locally uniformly convex 
dual has the topological property of being ߪ -fragmentable. The main result is an 
affirmative answer to the full question about locally uniform convexity.  

Theorem (6.2.1)[216]: Let ܼ,	‖·‖	 be a Banach space such that the dual norm ‖·‖∗ on ܼ∗ is 
locally uniformly convex. There exists an equivalent norm ||| 	 · 	 ||| on ܼ which is locally 
uniformly convex. Moreover, ||| 	 · 	 ||| may be chosen to have locally uniformly convex 
dual norm ||| 	 · 	 |||∗	.  

        The “moreover” statement in Theorem (6.2.1) is an immediate consequence of the 
technique of Asplund averaging, see [99]. Now it is known [99] that a Banach space with a 
norm which is locally uniformly convex and has locally uniformly convex dual norm 
admits ࣝଵ-partitions of unity: equivalently, on such a space every continuous real-valued 
function may be uniformly approximated by functions of class ࣝଵ. We thus have the 
following corollary.  
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Corollary (6.2.2)[216]: Let ܼ be a Banach space with locally uniformly convex dual. 
Every continuous realvalued function on ܺ may be uniformly approximated by functions 
of class ࣝଵ.  

      We note that for general Banach spaces ܼ it is still not known whether the existence on 
ܼ of an equivalent Fréchet-smooth norm (or, more generally, a “bump function” of class 
ࣝଵ) implies ࣝଵ approximability as in the above corollary. In the special case of spaces 
ܼ	 = 	 ࣝ  this implication has been established in [207]. It is also unknown whether ,(ܭ)	
Fréchet-renormability of ܼ implies LUR renormability.  

      Spaces of the type ࣝ  play an important part in our proof of Theorem (6.2.1). It is (ܭ)	
of course always the case that we may identify ܼ with a subspace of ࣝ  is the ܭ	where ,(ܭ)	
unit ball of the dual space ܼ∗, equipped with the ݇ܽ݁ݓ∗ topology. When the dual norm 
‖·‖∗ is locally uniformly convex, this ܭ belongs to what Raja [104] has called the class of 
Namioka–Phelps compacts. Theorem (6.2.1) will thus follow from the following ࣝ -(ܭ)	
renorming theorem.  

Theorem (6.2.3)[216]: Let ܭ be a Namioka–Phelps compact. Then there is a norm on 
ࣝ   .equivalent to the supremum norm, which is locally uniformly convex ,(ܭ)	

       The rest is devoted to a proof of (a mild generalization of) Theorem (6.2.3). The 
definition of a Namioka–Phelps compact, as well as of the various other topological and 
renorming properties with which we are concerned, will be given. We then move on to 
develop some topological machinery before defining a norm. The remaining contain the 
proof that this norm is locally uniformly convex. We note the crucial role played by 
general topology in the proof that follows: though Theorem (6.2.1) clearly has some kind 
of geometrical content, there is actually surprisingly little geometry in the proof. The key 
is the topological concept of a descriptive space, due to Hansell [222], and a careful 
analysis of the σ -isolated networks which exist in such spaces. I see Hispano–Bulgarian 
school of geometric functional analysis, and [118], [104], [227].  

      Let ܼ	be a real vector space and let ߮ be a non-negative real-valued convex function 
on ܼ. When ݂	 ∈ 	ܼ and ݂ 	 ∈ 	ݎ)	ܼ	 ∈ 	߱), we shall say that the LUR hypothesis holds for 
߮ (and ݂ , and the sequence ( ݂)) if  

1
2
	߮(݂	)ଶ 	+

1
2
	߮( ݂)ଶ 	− 	߮ ቆ

1
2
	(݂	 + 	 ݂)ቇ

ଶ

	→ 	0.	 

When the function ߮ is positively homogeneous, this statement is equivalent to saying that 
both ߮( ݂) and ߮(ଵ

ଶ
	(݂	 + 	 ݂)) tend to	߮(݂	) as ݎ	 → 	∞. This is recorded as Fact II.2.3 in 

[99], where it is also noted that, if the function ߮ is an ℓଶ-sum ߮ଶ 	= 	 ∑ ߮ଶஶ
ୀଵ 	 of non-

negative convex functions and if the LUR hypothesis holds for ߮,	then it holds for each of 
the ߮. We shall make repeated use of this observation. We say that a norm ‖	. ‖ is locally 
uniformly rotund at a given element ݂ if, whenever the LUR hypothesis holds for	‖	. ‖,݂ 
and a sequence ( ݂), we necessarily have ‖݂	 −	 ݂‖ 	→ 	0. This brings us back to a 
completely standard definition: we say that a norm on ܺ is locally uniformly convex (the 
term “locally uniformly rotund” and its abbreviation LUR are also used) if it has this 
property at each ݂	 ∈ 	ܺ.  
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      We introduce the topological properties that are relevant to our results. Most of these 
ideas are due to Hansell [222]. Our terminology follows [225], [227], where succinct 
accounts can be found of all the results that we need. A crucial notion is that of a network 
for a topology: a collection ࣭ of subsets of ܺ is said to be a network for the topology ࣮	if 
every set in ࣮ is a union of sets in ࣭: that is to say, whenever ݔ	 ∈ 	ܷ	 ∈ 	࣮ , there exists 
ܰ	 ∈ ࣭ such that ݔ	 ∈ 	ܰ	 ⊆ 	ܷ. A family of sets ℐ is said to be isolated for a topology ࣮ if, 
for each ܰ	 ∈ ℐ, there exists ܷ	 ∈ 	࣮ such that ܰ	 ⊆ 	ܷ and ܷ	 ∩ 	ܯ = 	∅ for all ܯ	 ∈
ℐ	\{ܰ}; equivalently, ܰ	 ∩ ⋃ℐ	\	{ܰ}തതതതതതതതതതത = ∅. A family ࣭ is said to be ߪ -isolated if it can be 
expressed as ࣭	 = 	⋃ ℐ∈ఠ 	 with each	ℐ isolated.  

      Let (ܺ,࣮	) be a topological space and let ݀ be a metric on ܺ inducing a topology finer 
than  . We say that the property ܲ(݀,࣮	)	holds if there is a sequence (ܤ)∈ఠ of subsets of 
ܺ such that the topology generated by ࣮	 ∪ 	݊	:ܤ}	 ∈ 	߱} is finer than the topology ௗ࣮ 
induced by the metric ݀. An equivalent formulation is that there exists a sequence 
ܣ ∈ఠ of subsets of ܺ such that the intersections(ܣ) 	∩ 	ܷ, with ܷ	 ∈ 	࣮ , form a 
network for ௗ࣮ . When ܲ(݀,࣮	) holds, there is a network ࣭ for the metric topology ௗ࣮ 
which is ߪ -isolated for the topology  . An equivalent formulation of this statement is that, 
for each ߳ > 	0, there is a covering ࣭	of ܺ, which is ߪ -isolated for ࣮ and which consists of 
sets with ݀-diameter at most ߳. A compact topological space (ܭ,࣮) which has property 
ܲ	(݀,࣮) for some metric ݀ is said to be descriptive. There is an intrinsic characterization 
of this property: ܭ is descriptive if and only if there is a network for ࣮ which is ࣮ -ߪ -
isolated. Hansell’s general notion of descriptive space [222] is a space ܺ which is ܥሙech-
analytic and has a ߪ -isolated network: we are only concerned with descriptive compact 
spaces in. Raja [227] shows that the unit ball of a dual Banach space ܼ∗ is descriptive for 
its weak∗ topology if and only if ܼ admits an equivalent norm with “weak∗ LUR” dual 
norm.  

       If (ܭ,࣮	) is compact and has ܲ(݀,࣮	) for some ࣮ -lower semicontinuous metric ݀, 
then ܭ is called a Namioka–Phelps compact. Raja [104] has shown that unit ball of a dual 
Banach space ܼ∗	is a Namioka–Phelps compact (in the weak∗ topology) if and only if ܼ 
admits an equivalent norm with LUR dual norm. The hard part of this theorem is the “only 
if” implication. We just use the easy “if” implication. 

      As has already been mentioned, we shall obtain our main theorem from a renorming 
result for ࣝ(ܭ) where ܭ is a Namioka–Phelps compact. In fact we prove something 
slightly more general.  

Theorem (6.2.4)[216]: Let (ܭ,࣮	) be a (descriptive) compact space which has property 
ܲ(݀,࣮	) for a metric ݀. There is a norm ‖·‖ on ࣝ(ܭ), equivalent to the supremum norm, 
which is locally uniformly rotund at ݂ , whenever ݂ is both ࣮ -continuous and d-uniformly 
continuous.  

   Theorem (2.4.6) shows that there is a LUR norm on ࣝ(ܭ)	provided the metric ݀ can be 
chosen in such a way that all ࣮ -continuous functions are ݀-uniformly continuous. A 
metric with this property has been called a Reznichenko metric. It is easy to see that a 
lower semi-continuous metric is Reznichenko, which is why Theorem (6.2.4) implies 
Theorem (6.2.3).  
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          Consider a topological space (ܺ,࣮	), equipped with a metric inducing a topology 
finer than  . The space ܺ is said to be fragmented by the metric ݀ if, for every non-empty 
subset ܻ of ܺ and every ߳	 > 	0, there exists ܷ	 ∈ 	࣮ such that the intersection ܻ	 ∩ 	ܷ is 
non-empty and of ݀-diameter at most ߳. Theorem 2.2 of [225] shows that if (ܺ,࣮	) is a 
descriptive compact that is fragmented by a metric ݀ then property ܲ(݀,࣮	) holds.  

      If ܺ is compact and is fragmented by some lower semicontinuous metric, we say that ܺ 
is a Radon–Nikodym compact. A compact space is Namioka–Phelps if and only if it is 
both descriptive and Radon–Nikodym. see [127], [119] for more about this interesting 
class of spaces. The outstanding open problem is whether every continuous image of a 
Radon–Nikodým compact is again Radon–Nikodým. If we relax the definition of a 
Radon–Nikodým compact by asking only that ܺ be fragmented by some Reznichenko 
metric we have Reznichenko’s defi- nition of a strongly fragmented compact space. Every 
continuous image of a Radon–Nikodým compact is strongly fragmented. There are other 
definitions [217], [221] which have recently been shown to be equivalent to strong 
fragmentability [218], [224] and Arvanitakis’s terminology in which strongly fragmented 
compacta are called quasi-Radon–Nikodým seems to have become standard. It is not 
known whether every quasi-Radon–Nikodým compact is Radon–Nikodým; a positive 
answer would of course settle the problem of continuous images. see [220] for a survey of 
all this material.   

        As has already been remarked, Theorem (6.2.4) leads to a LUR renorming of 
 is ܭ has property ܲ for some Reznichenko metric, or equivalently when ܭ when(ܭ)ࣝ
descriptive and quasiRadon–Nikodým. We do not know whether such spaces are 
necessarily Namioka–Phelps, but at any rate we may state a theorem which may (or may 
not!) be a generalization of Theorem (6.2.3) as follows.  

Theorem (6.2.5)[216]: If ܭ is descriptive and is a continuous image of a Radon–Nikodym 
compact then ࣝ(ܭ)admits a LUR renorming.  

       We do not know whether ࣝ(ܭ)is LUR-renormable for all descriptive compacta ܭ. By 
Raja’s results the corresponding question about Banach spaces would be whether a space 
ܼ for which the dual norm on ܼ∗ is ݓ∗LUR has itself an equivalent LUR norm. The most 
we can get in this direction (using Theorem (6.2.5), Raja’s Theorem (6.2.1) and Theorem 
1.5.6 of [220]) is the following. 

Corollary (6.2.6)[216]: Let ܼ be a Banach space such that the dual norm on ܼ∗ is ݓ∗LUR. 
If, in addition, ܼ is a subspace of an Asplund-generated space then ܼ admits an equivalent 
LUR norm.  

      We develop some additional structure in a descriptive compact space. We start by 
making some general observations about isolated and ߪ -isolated families, which are valid 
without any compactness assumption. Let ܭ be a topological space and let ℐ be an isolated 
family of subsets of ܭ. Then, by definition, we have  

ܰ	 ∩ራℐ\{ܰ}
തതതതതതതതതതതത

= ∅,	 

for all ܰ	 ∈ ℐ. If we set  
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෩ܰ = 	 ഥܰ	\ራℐ\{ܰ}
തതതതതതതതതതതത

,	 

and ܫሚ 	= 	 { ෩ܰ:	ܰ	 ∈ ℐ} then it is clear that ܫሚ is again an isolated family. If ܰ	 = 	 ෩ܰ for all 
ܰ	 ∈ ℐ, we shall say that ℐ is a regular isolated family.  

      We shall now introduce some notation for regular isolated families, which will be 
employed consistently in all that follows. If ℐ is a regular isolated family we write ܫ for the 
union of the family ℐ, that is  

	ܫ = 	ራℐ,	 

and we define  

	ܬ = 	 	ݐ} ∈  .{ℐ	݂	ݏݎܾ݁݉݁݉	ݓݐ	ݐݏ݈ܽ݁	ݐܽ	ݏݐ݁݁݉	ݐ	݂	݀ℎݎݑ݊݁݅݃ℎܾ	ℎܿܽ݁	:ܭ

By virtue of its definition, ܬ is a closed set. Moreover, the closure ܫ ̅ is the union of its 
disjoint subsets ܫ and  ; that is to say, ܬ	 = 	   .	ܫ	\̅	ܫ

        We consider a space with a covering ࣭, which is the union of countably many regular 
isolated families ℐ(݅)	(݅	 ∈ 	߱). In accordance with the notation above, we write  

(݅)	ܫ = 	ራℐ(݅) (݅)	ܬ								, 	= 	  	.(݅)	ܫ	\	(݅)̅	ܫ

We now make a recursive definition of further families ℐ(݅) 	= ℐ(݅, . . . , ݅), together with 
the associated sets ܬ	(݅), when ݅	 = 	 (݅, . . . , ݅) 	 ∈ 	߱ழఠ	is a finite sequence of natural 
numbers.  

,݅)	ܫ … , ݅) = 	ራℐ(݅, … , ݅), 

,݅)	ܬ																 … , ݅) = 	 ,݅)̅	ܫ … , ݅)\ܫ	(݅, … , ݅), 

																															ℐ(݅, . . . ݅ , ݅ାଵ) 	= {	ܰ	 ∩ ,݅)	ܬ	 . . . , ݅):	ܰ	 ∈ ℐ(݅ାଵ)	}.	 

Lemma (6.2.7)[216]: If ݅	 = 	 (݅, … , ݅)	and 0 ≤ 	݈ < 	݇ then 

,݅)ܫ … , ݅) 	⊆ ,݅)	ܬ	 … , ݅) 	⊆  	.(݅)	ܬ	

If the natural numbers ݅, ݅ଵ, . . . , ݅ are not all distinct then ܫ	(݅, . . . , ݅) 	= 	∅.  

Proof. By definition  

,݅)	ܫ . . . , ݅ାଵ) 	= (ାଵ݅)	ܫ	 	∩ ,݅)	ܬ	 . . . , ݅),	 

so that  

,݅)	ܫ . . . , ݅ାଵ) 	⊆ ,݅)	ܬ	 . . . , ݅).	 

Now	ܬ	(݅, . . . , ݅) is a closed set, so we have  

,݅)	ܬ . . . , ݅ାଵ) 	⊆ 	 ,݅̅)ܫ . . . , ݅ାଵ) 	⊆ ,݅)ܬ	 . . . , ݅).	 
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Since this is true for all ݉, we easily obtain  

,݅)	ܫ . . . , ݅) 	⊆ ,݅)	ܬ	 . . . , ݅)	 

for 0	 ≤ ݈ < ݇ .  

     To see that ܬ	(݅, . . . , ݅) 	⊆ 	ݐ consider ,(݅)	ܬ	 ∈ ,݅)	ܬ	 . . . , ݅).	Every neighbourhood of ݐ 
meets at least two members of the family	ℐ(݅, . . . , ݅), and hence at least two members of 
the family ℐ(݅), so that ݐ	 ∈   .(݅)	ܬ	

     Finally, suppose that ݅ 	= 	 ݅ for some 0 ≤ 	݉	 < ݈ ≤ 	݇. We have  

,݅)	ܫ . . . , ݅) 	⊆ (݅)	ܫ	 	∩ ,݅)	ܬ	 . . . , ݅) 	⊆ (݅)	ܫ	 	∩  	,(݅)	ܬ	

which is empty since ܫ	(݅) 	∩ (݅)	ܬ	 	= 	∅ for all ݅.  

    We shall be concerned especially with the sets ܫ(݅) when the sequence ݅ is strictly 
increasing. We shall write ߑ for the set of all such sequences ݅	 = (݅, . . . , ݅)	with ݇ ≥ 	0 
and ݅ 	< 	 ݅ଵ 	<	···	< 	 ݅ . We equip ߑ with a total order ≺, defined by saying that ݅	 =
	(݅, . . . , ݅) 	≺ 	݆	 = 	 (݆, . . . , ݆) if either  

(i) there exists ݎ ≤ 	݉݅݊{݇, ݈} such that ݅௦ 	= 	 ݆௦	for 0 ≤ ݏ	 < and ݅,ݎ < ݆	or  

(ii) ݇ > ݈	and ݆௦ 	= 	 ݅௦  for 0	 ≤ ݏ ≤ 	݈.  

Rephrasing this definition, we may say that ݅	 ≺ 	݆ if either ݅	 < 	݆	for the lexicographic 
order, or ݅ is a proper extension of ݆. I am grateful to Gilles Godefroy who pointed out that 
the order ≺	may be regarded as just the usual lexicographic order if we think of our finite 
sequences as infinite sequences terminating in a long run of	∞’ݏ.  

Lemma (6.2.8)[216]: Let	݆	 = 	 (݆, . . . , ݆) 	 ∈   and write ߑ	

ଵܣ 	= ራ ,݆̅)ܫ … , ݆ିଵ, ݅),
ஸஸ

ೝషభழழೝ

 

ଶܣ																														 = ራ ,݆̅)ܫ	 . . . , ݆, ݅ାଵ, . . . , ݅)
வ

ೖவೖషభவ···வశభவ

		. 

Then  

	ራܫ(̅݅)
≺

		= 	 ଵܣ 	∪ ଶܣ	 	= ଵܣ	 	∪  	.(݆)	ܬ	

In particular ⋃ ≺(݅̅)ܫ  is a closed subset of ܭ.  

Proof. It is clear that ܣଶ is exactly the union of the sets ܫ(̅݅) where ݅ satisfies clause (ii) in 
the definition of the relation ≺.	If ݅	 = 	 (݅, . . . , ݅) satisfies clause (i) of that definition, 
then we have  

,݅̅)ܫ . . . , ݅) 	⊆ 	 ,݅̅)ܫ . . . , ݅) 	= 	 ,݆)̅	ܫ . . . , ݆ିଵ݅) 	⊆  	.ଵܣ	
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It follows that ܣଵ is exactly the union of the sets ܫ	(݅) where ݅ satisfies (i).  

      It is clear from the definitions that ܣଶ 	⊆  so, to prove the second equality, it will ,(݆)	ܬ	
be enough to show that ܬ	(݆) 	⊆ ଵܣ	 	∪ 	ݐ ଶ. Suppose then thatܣ	 ∈  for some ݅, we ;(݆)	ܬ	
have ݐ	 ∈ (݆)	ܬ and i is not equal to any of the ݆௦, since ,(݅)	ܫ	 	⊆ (݅)	ܫ and (௦݆)	ܬ	 	∩ (݅)	ܬ	 	=
	∅. There are now two cases. If	݅ > ݆ then  

	ݐ ∈ ,݆)	ܫ	 . . . , ݆ , ݅) 	⊆  	.ଶܣ	

If 	݅ < 	 ݆ we choose ݎ minimal with respect to ݅ < 	 ݆, noting that 	݅ > ݆ିଵ, and observe 
that  

	ݐ ∈ ,݆)ܫ	 . . . , ݆ିଵ, ݅) 	⊆  	.ଵܣ	

It is immediate that our set is closed, since we have shown it to be the union of the closed 
set ܬ	(݆)	with finitely many closures ܫ	ഥ(݅).  

     Given ݆ and a finite subset ℳ of ℐ(݆) we shall write  

(ℳ,݆)ܩ 	= \ܭ	 	ቌራܫ(̅݅) 	∪ራℐ(ଔ)	\ℳ
തതതതതതതതതതതതതതത

≺

ቍ	,	 

noting that this is an open subset of ܭ.  

Lemma (6.2.9)[216]: Let ݐ be any element of ܭ. There is a ≺-minimal element ݆∗ of ߑ 
with ݐ	 ∈ 	   .(∗݆)̅	ܫ

Proof. Since ࣭	 = ⋃ ℐ(݅)∈ఠ  covers ܭ, there is some ݅	 ∈ 	߱ with ݐ	 ∈  let ݅∗ be the ;(݅)	ܫ	
minimal such ݅. Now let ݆ be minimal subject to ݐ	 ∈ 	 ഥ(݆). Certainly ݆	ܫ ≤	 ݅∗, and if 
݆ 	= 	 ݅∗ we are finished: indeed any ݅	 ∈ 	ݐ with ߑ	 ∈ 	 	݅ ഥ(݅) and	ܫ ≺ 	 (݆) must be a proper 
extension of (݆), by minimality of ݆; but ܫ(̅݅) 	⊆ (݆)ܬ	 	=  for any such ݅ and (∗݅)	ܬ	
	ݐ ∉ (∗݅)	ܫ since (∗݅)ܬ	 	∩ (∗݅)	ܬ	 	= 	∅; thus ݆∗ 	= 	 (݆) 	= 	 (݅∗) is the minimal element of ߑ 
satisfying ݐ	 ∈ 	 	ݐ ,Otherwise .(∗݆̅)ܫ ∈ ,݆)	ܫ	 ݅∗) and we let ݆ଵ be minimal subject to 
	ݐ ∈ 	 ,݆)̅	ܫ ݆ଵ), then continue in a similar fashion. Eventually we obtain ݆ 	< 	 ݆ଵ 	<	···	<
	݆ 	= 	 ݅∗, where, for each ݎ ≤ 	݇, ݆	is minimal subject to ݐ	 ∈ 	 ,ഥ(݆	ܫ . . . , ݆). Arguing as 
above, we see that ݆∗ 	= 	 (݆, ݆ଵ, . . . , ݆) is the minimal element of ߑ satisfying ݐ	 ∈ 	   .(∗݆)̅	ܫ

     Finally, we have a lemma which needs compactness of the space	ܭ. 

Lemma (6.2.10)[216]: Let ܭ be a compact space and let ࣭	 = ⋃ ℐ(݅)∈ఠ  be a covering of 
 be a non-empty closed subset ܪ which is the union of regular isolated families ℐ(݅). Let ܭ
of ܭ.	Then there exists a minimal ݆	 ∈ 	ܪ with ߑ	 ∩ (݆)̅	ܫ	 ≠ 	∅. Moreover, ܪ	 ∩ ഥ	ܫ	 (݆) 	⊆
	and there is a non-empty, finite ℳ (݆)	ܫ	 ⊆ 	ℐ(݆) such that ܪ	 ∩ ܯ	 ≠ 	∅ for all ܯ	 ∈
ℳ	and ܪ	 ⊆   .(ℳ,݆)ܩ	

Proof. Let ࣤ	 = 	 {݆	 ∈ 	ܪ	:ߑ	 ∩ (݆)̅	ܫ	 ≠ 	∅} and for ݆	 ∈ ࣤ define ܪ	(݆) 	= 	ܪ	 ∩ ⋃ ≺(݅̅)ܫ 	. 
By Lemma (6.2.8), each ܪ	(݆)	is a closed set, and the sets ܪ	(݆) form a downward directed 
family because the set ߑ is totally ordered by ≺. I claim that  
 ⋂ ࣤ∋(݆)	ܪ 		= 	∅: indeed, otherwise let ݐ be in this intersection and let ݆∗ be as in Lemma 
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(6.2.9); since ݐ	 ∈ 	ܪ	 ∗݆ we have (∗݆̅)ܫ	∩ ∈ ࣤ , and so ݐ	 ∈ 	⋃ ∗≺(݅)̅	ܫ 	, contradicting 
minimality of ݆∗. By compactness, we now see that there is some ݆	 ∈ ࣤ such that ܪ	(݆) 	=
	∅. For this ݆ we have ܪ	 (݆)̅	ܫ	∩ ≠ 	∅ and ܪ	 ∩ (݅)	ഥܫ	 	= 	∅	whenever ݅	 ≺ 	݆.  

     Continuing to work with our minimal ݆, we have ܫ	̅(݆) 	= (݆)	ܫ	 	∪  and by Lemma (݆)	ܬ	
(݆)	ܬ ,(6.2.8) 	⊆ ⋃ ≺	(݅̅)ܫ 	. Thus ܪ	 ∩ (݆)	ܬ	 	= 	∅ and so ܪ	 (݆)̅	ܫ	∩ 	= 	ܪ	 ∩  The .(݆)	ܫ	
compact set ܪ	  is thus covered by the family ℐ(݆), the elements of which are 	(݆)̅	ܫ	∩
disjoint and open, relative to ܫ	ഥ(݆). Thus, if we define ℳ	 = 	 	ܯ} ∈ ℐ(݆):	ܯ	 ∩ ܪ	 ≠ 	∅}, it 
must be that ℳ is finite and ܪ	 ∩ തതതതതത(ଔ)	ܫ	 	⊆ 	⋃ℳ. Finally, to see that ܪ	 ⊆  we ,(ℳ,݆)ܩ	
need to show that ܪ	 ∩ 	⋃ ≺(݅)̅	ܫ = 	ܪ	 ∩ ⋃ ℐ(ଔ)	\ℳതതതതതതതതതതതതതത 	= 	∅. The first of these is just the 
minimality of ݆ again; the second is immediate when we recall that ܪ	 ∩ (݆)̅	ܫ 	⊆ ⋃ℳ and 
that ⋃ℳ ∩⋃ℐ(ଔ)	\ℳ	തതതതതതതതതതതതതത = 	∅	because the family ℐ(݆) is isolated. 

     When ܭ is a descriptive compact space having property ܲ with some metric ݀ then 
there exists, for each natural number l, a ߪ -isolated covering ࣭ 	= ⋃ 	ℐ(݅)	∈ఠ 	of ܭ, 
consisting of sets that are of ݀-diameter at most 2ି . When ݀ is lower semi-continuous, 
the sets ෩ܰ defined at the start are also of diameter at most 2ି . In general, this is not the 
case: however, each ෩ܰ is contained in the ࣮ -closure of some set (namely ܰ) of ݀-
diameter at most 2ି . We may summarize the situation in the form of a proposition.  

Proposition (6.2.11)[216]: Let (ܭ,࣮	) be a compact space equipped with a metric ݀ such 
that property ܲ(݀,࣮	) holds. Then, for each ݈	 ∈ 	߱,	there is a covering ࣭  of ܭ, which is 
the union ⋃ 	ℐ(݅)∈ఠ  of regular isolated families 	ℐ(݅), such that each ܰ	 ∈ ࣭ is 
contained in the ࣮ -closure of some set of ݀-diameter at most 2ି .  

      From now on, we shall assume ࣭ = ⋃ (݅)∈ఠܫ	 	 to be as above, and shall construct 
the associated ℐ 	(݅), ܫ 	(݅), ܬ 	(݅) and ܩ 	(݅,ℳ)	as described.  

     We now set about constructing a norm on ऍ(ܭ)when ܭ is a descriptive compact space. 
As well as the topological machinery set up, we shall need one more ingredient. Let ܮ be a 
closed subset of ܭ, let ݈ be a natural number, let ݉, ݊ be positive integers and let ݅, ݆	 ∈  ;ߑ	
we write ℬ(ܮ, ݈, ݅, ݆,݉, ݊) for the set of all pairs (ℳ,ࣨ	) of finite subsets of ℐ 	(݅), ℐ(݆), 
respectively, which satisfy #ℳ	 = 	݉, #ࣨ	 = 	ܯ,݊	 ∩ ܮ	 ≠ 	∅ for all ܯ	 ∈ 	ℳ,ܰ	 ∩ ܮ	 ≠
	∅ for all ܰ	 ∈ ࣨ , and  

ራℳ
തതതതതതതത

∩	ራࣨ
തതതതതതതത

	= 	∅. 

If ݂	 ∈ ऍ(ܭ) and ܮ,ℳ,ࣨ	are as above, we set  

,݂)ߔ (	ࣨ,ℳ,ܮ =
1
2
	൭݊ିଵ 	  max 	ܮ]݂ ∩ 	 ഥܰ]

ே∈ࣨ

	− 	݉ିଵ 	  min 	ܮ]݂ [ഥܯ	∩
ெ∈ℳ

൱
ା

	, 

noticing that ߔ is a non-negative, positively homogeneous, convex function of its 
argument ݂ and that  

(	ࣨ,ℳ,ܮ,݂)ߔ ≤
1
2
(ܮ|݂)ܿݏ	 ≤  	.ஶ‖ܮ|݂	‖
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     Whenever (ℳ,ࣨ	) is a pair of finite sets as above, satisfying  

ራℳ
തതതതതതതത

∩	ራࣨ
തതതതതതതത

	= 	∅,	 

we fix, once and for all, a pair of closed subsets (ܺ(ℳ,ࣨ	),ܻ	(ℳ,ࣨ	)) such that  

ܺ(ℳ,ࣨ	) ∪ 	ܻ	(ℳ,ࣨ	) = (	ࣨ,ℳ)ܺ								,ܭ	 	∩ 	ራࣨ 	= 	ܻ	(ℳ,ࣨ	) 	∩ራℳ 		= 	∅.	 

     In the definition of our norm, we shall also need to fix positive real numbers ܿ(݅)	(݅	 ∈
∑ with (ߑ	 ܿ(݅)∈ఀ ≤ 	1. We could, for instance, take  

ܿ(݅, ݅ଵ, . . . , ݅) = 	2ିଶబିଶభି···ିଶೖ 	.	 

Proposition (6.2.12)[216]: There are unique non-negative real-valued functions 
,݂)ߗ ,ܮ ,݂)߆,(݈ ,ܮ ݈, ݅, ݆,݉, ,݂)߆,(݊ ,ܮ ݈, ݅, ݆,݉, ,ܮ,݂)߆,(݊ ݈,ℳ,ࣨ)	ܽ݊݀	ߖ	(݂, ,ܮ ݈,ℳ,ࣨ	), 
defined for functions ݂	 ∈ 	ऍ(ܭ), , closed subsets ܮ of ܭ, natural numbers 
݈,݉, ݊, ,݅ elements	, ݆	of ߑ, and (ℳ,ࣨ	) 	 ∈ ,ܮ)ܤ	 ݈, ݅, ݆,݉, ݊), which are convex in their 
argument ݂ , and which satisfy the inequalities  

,ܮ,݂)ߗ ,ܮ,݂)߆,(݈ ݈, ݅, ,݂)߆,(݊,݉,݆ ,ܮ ݈, ݅, ݆,݉,݊),	 

,ܮ,݂)߆ ݈,ℳ,ࣨ	),ߖ	(݂, ,ܮ ݈,ℳ,ࣨ	) ≤  	,ஶ‖ܮ|݂‖	

as well as the relations  

,݂)ߗ6 ,ܮ ݈)ଶ 	= ஶଶ‖ܮ	|	݂	‖ 	+  ଶ(ܮ	|	݂)ܿݏ	

+  ܿ(݅)ܿ(݆)
,∈ఀ

  2ିିܮ,݂)߆, ݈, ݅, ݆,݉,݊)ଶ
ஶ

ୀଵ

ஶ

ୀଵ

,	 

,݂)߆ ,ܮ ݈, ݅, ݆,݉,݊)ଶ 	=  2ି߆(݂,ܮ, ݈, ݅, ݆,݉,݊)ଶ
ஶ

ୀଵ

,																																												 

,݂)߆				 ,ܮ ݈, ݅, ݆,݉,݊) = sup
(ℳ,ࣨ)∈ℬ(,,,,,)

,݂)߆ ,ܮ ݈,ℳ,ࣨ)	,																																	 

,݂)߆2		 ,ܮ ݈,ℳ,ࣨ)ଶ 	= ,݂)ߔ	 ,ܮ ݈,ℳ,ࣨ	)ଶ 	+ 	 ,݂)	ߖଵି ,ܮ ݈,ℳ,ࣨ)ଶ,																	 

,݂)	ߖ3	 ,ܮ ݈,ℳ,ࣨ	)ଶ = ,݂)	ߗ	 	ܮ ∩ 	ܺ(ℳ,ࣨ	), ݈)ଶ + 	ܮ,݂)	ߗ	 ∩ 	ܻ	(ℳ,ࣨ), ݈)ଶ	. 

We may define a norm ‖. ‖ on ऍ(ܭ), equivalent to the supremum norm, by setting  

‖݂‖ଶ 	= 	2ିିଵܭ,݂)ߗ, ݈)ଶ
ஶ

ୀଵ

	.	 

Proof. The functions ߆ and ߆ are defined in terms of ߖ and the known function ߔ 
defined earlier. Hence all we have to show is that the mutual recursion in the definitions of 
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 really does define something. We do this by applying a fixed-point theorem, as in ߖ and ߗ
[102].  

      Let ܼ be the set of all tuples (݂, ,ܮ ݈,ℳ,ࣨ	) with ݂	 ∈ 	ऍ(ܭ), ܮ a closed subset of ܭ, ݈ 
a positive integer and (ℳ,ࣨ	) 	∈ 	⋃ ,ܮ)ܤ ݈, ݅, ݆,݉, ݊),,, 	. Let ࣴ be the set of all pairs 
,݂)ߗ of non-negative real-valued functions (	ߖ,ߗ) ,ܮ ,ܮ,݂)	ߖ,(݈ ݈,ℳ,ࣨ	), which are 
convex, symmetric and positively homogeneous in their argument  , and which satisfy the 
inequalities  

,݂)ߗ ,ܮ ,ܮ,݂)	ߖ,(݈ ݈,ℳ,ࣨ	) ≤ ‖	݂‖ஶ. 

Define a metric ߩ	on ࣴ by setting  

,(	ߖ,ߗ)	ߩ (	′ߖ,	′ߗ) 		
= ,݂)ߗ|		}ݔܽ݉	ݑݏ	 ,ܮ ݈)ଶ 	− ,݂)ᇱߗ	 ,ܮ ݈)ଶ|		, ,݂)	ߖ		| ,ܮ ݈,ℳ,ࣨ	)ଶ 	
− ,݂)ᇱߖ	 ,ܮ ݈,ℳ,ࣨ	)ଶ|}			,	 

where the supremum is taken over all ܮ, ݈,ℳ,ࣨ and all ݂ with ‖݂‖ஶ ≤ 	1. It is clear that 
this makes ࣴ a complete metric space.  

       Now define a mapping ܨ ∶ ࣴ	 → ࣴ by setting ܨ	ߖ,ߗ)	( 	= 	 ෨ߗ) ,   )  , where	෩ߖ

,݂)	෩ߖ3 ,ܮ ݈,ℳ,ࣨ	)ଶ 	= ,݂	)ߗ	 	ܮ ∩ 	ܺ(ℳ,ࣨ	), ݈)ଶ + ,݂	)ߗ	 	ܮ ∩ 	ܻ	(ℳ,ࣨ	), ݈)ଶ	,	 

and  

ሬ⃗ߗ6 (݂, ,ܮ ݈)ଶ 	=																																																 

ஶଶ‖ܮ	|	݂	‖ 	+ ଶ(ܮ	|	݂)ܿݏ	 + 	  ܿ(݅)ܿ(݆)
,∈ఀ

  2ିି߆(݂, ,ܮ ݈, ݅, ݆,݉, ݊)ଶ
ஶ

ୀଵ

ஶ

ୀଵ

,	 

the function ߆ being obtained from ߖ via the formulae in the statement of the proposition. 
It may be noted that, though the function ߆ is not symmetric in  , we do have  

,݂−)߆ ,ܮ ݈, ݅, ݆,݉, ݊) 	= ,݂)߆	 ,ܮ ݈, ݅, ݆, ݊,݉),	 

so that ߗ෨ is symmetric.  

        It is easy to check that ܨ)ߩ	ߖ,ߗ)	ܨ,(	′ߗ)	′ߖ,	(( 	≤ ଶ
ଷ
,(	ߖ,ߗ))ߩ  ܨ so that ,((′ߖ,	′ߗ)

has a unique fixed point, by Banach’s fixed point theorem. This fixed point yields the 
functions that we want, and hence enables us to define the norm ‖·‖.   

         It is the norm defined in Proposition (6.2.12) that we shall show to be locally 
uniformly rotund in the case where ݀ is a lower semi-continuous (or, more generally, 
Reznichenko) metric fragmenting the descriptive compact space ܭ. By the discussion at 
the end it will be enough to prove the following theorem. 

Theorem (6.2.13)[216]: Let	(ܭ,࣮	) be a descriptive compact space and let d be a metric 
on ܭ such that property ܲ(݀,࣮	) holds. Let the norm ‖·‖ be defined as in Proposition 
(6.2.12). If ݂ be a function in ࣝ(ܭ)	which is ݀-uniformly continuous then the norm ‖·‖ is 
locally uniformly convex at  .  
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      The proof of this theorem will occupy the remainder. We shall consider a 
sequence	( ݂) in ࣝ(ܭ) which satisfies  

1
2
‖	݂‖ଶ 	+

1
2
	‖ ݂‖ଶ 	− ฯ

1
2
	(݂	 + 	 ݂)ฯ

ଶ

	→ 	0,	 

as ݎ	 → 	∞. In the language introduced earlier, we are assuming that the LUR hypothesis 
holds for‖	·‖ (and our given ݂ and ݂). We have to prove that ݂ converges to ݂ uniformly 
on ܭ. Given ߳	 > 	0, we may use uniform continuity of ݂ to choose a positive integer ݈ 
such that  

(ݑ,ݐ)݀ ≤ 2ି 	⇒ (ݐ)	݂		| − |(ݑ)	݂	 	≤
1
3
߳	. 

Lemma (6.2.14)[216]: If ܰ	 ∈ ࣭ then the oscillation of ݎ on ܰ is at most ଵ
ଷ
߳ .  

Proof. As in Proposition (6.2.10), we are supposing that for each ܰ	 ∈ ࣭ there is some set 
 The uniform .ܯ of ݀-diameter at most 2ି such that ܰ is contained in the ࣮ -closure of ܯ
continuity estimate tells us that the oscillation of ݎ on ܯ is at most ଵ

ଷ
߳	 and the ࣮ -

continuity of ݂ enables us to extend this to ܰ.  

      The definition of our norm as an ℓଶ-sum  

‖݂	‖ଶ 	= 	2ିିଵܭ,݂)ߗ, ݇)ଶ
ஶ

ୀଵ

		 

implies, thanks to an observation we made earlier, that the LUR hypothesis holds for each 
of the functions (݇,ܭ,·)ߗ and in particular for ܭ,·)ߗ, ݈). This is all we shall use in our 
proof that ‖݂	 −	 ݂‖ஶ is eventually smaller than ߳.  

     Let ܮ be a closed subset of ܭ, let ݉,݊ be positive integers and let ݅, ݆	 ∈  Recall that) .ߑ	
݂	, ߳	and ݈ are now fixed.) For a pair (ℳ෩ , ෩ࣨ) 	 ∈ ,ܮ)ܤ	 ݈, ݅, ݆,݉, ݊), we define the following 
real numbers:  

	ܣ = min ݂  	,[ܮ]

																ܽ	 = max
ெ∈ℳ෩

	ܮ]	݂݂݊݅ ∩  	,[ഥܯ

	ߙ																		 = min ܩ\	ܮ	ൣ݂ 	൫݅,ℳ෩ ൯൧	, 

	ߚ	 = max ܩ\	ܮൣ݂ 	൫݆, ෩ࣨ ൯൧, 

							ܾ	 = 	݉݅݊ே∈ ෩ࣨ 	ܮ]	݂	ݑݏ	 ∩	 ഥܰ], 

	ܤ =  																			.[ܮ]	݂	ݔܽ݉	

Of course, we have ܽ ≥ ߙ,ܣ	 ≥ ,ܣ	 ܾ	 ≤ ߚ and ܤ ≤ We shall say that the pair (ℳ෩ .ܤ	 , ෩ࣨ) 
is a good choice (of type (݅, ݆,݉, ݊)) on ܮ if  

݊ିଵ(ܤ	 − (ߚ	 > 	 	ܤ) − 	ܾ) + 	(ܽ	 −  	݀݊ܽ(ܣ	
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݉ିଵ(ߙ	 − (ܣ	 	> 	 	ܤ) − 	ܾ) 	+ 	(ܽ	 −  	.(ܣ	

Lemma (6.2.15)[216]: If ܮ is a closed subset of ܭ and the oscillation of ݂ on ܮ is at least ߳  
then there is at least one good choice on ܮ.  

Proof. Let ܪଵ 	= 	 	ݐ} ∈ (ݐ)	݂	:ܮ	 	=  and apply Lemma (6.2.10). There exist {[ܮ]	݂	ݔܽ݉	
݆	 ∈ and a finite subset ෩ࣨ ߑ	  of ℐ 	(݆) such that ܪଵ 	∩ 	ܰ ≠ 	∅	for all ܰ	 ∈ 	 ෩ࣨ  and ܪଵ 	⊆
ܩ	 	(݆, ෩ࣨ). It follows that, in the notation just established, we have ܤ	 = 	ܾ and ܤ >  A .ߚ
similar argument applied to the set ܪଶ 	= 	 	ݐ} ∈ (ݐ)	݂	:ܮ	 	= yields ݅ and ℳ෩ {[ܮ]	݂	݊݅݉	  
such that ܣ	 = 	ܽ and ܣ < To finish showing that (ℳ෩ .ߙ , ෩ࣨ) is a good choice, we need to 
check that (ℳ෩ , ෩ࣨ) is in ܮ)ܤ, ݈, , ഥܯ and what remains to be proved is that ,(݊,݉, 	∩
	തܰതത 	= ∅ for all ܯ	 ∈ ℳ෩ 	and all ܰ	 ∈ ෩ࣨ . 

     Our choice of ݈ ensures that the oscillation of ݂ on each ܯ	 ∈ 	ℳ෪  and on each ܰ	 ∈ ෩ࣨ  
is at most ߳/3, and, by continuity of ݂ , the same holds for each ܯഥ and each ഥܰ. Hence 

[ഥܯ]݂	ݔܽ݉ 	≤ 	ܣ	 + ߳/3, 

݉݅݊	݂[ ഥܰ] 	≥ 	ܤ − 	߳/3, 

for all such ܯ,ܰ. Since we are assuming that the oscillation ܤ	 −  ,߳ is at least ܮ of ݂ on ܣ	
we deduce that ܯഥ 	∩ 	തܰതത 	= ∅  as claimed. _ 

Lemma (6.2.16)[216]: Let ܮଵ	, ,ଶܮ . .. be a decreasing sequence of non-empty closed 
subsets of ܭ with intersection ܮ. If (ℳ෩ , ෩ࣨ) is a good choice on ܮ, then it is a good choice 
on ܮ௦ for all sufficiently large values of ݏ. 

Proof. Let us define ߚ,ߙ,ܤ,ܣ,  as above and set ܤ,ܾ

௦ܣ 	=  ,[	௦ܮ]݂	݊݅݉	

																		ܽ௦ 	= 	max
ெ∈ℳ෩

௦ܮ]	݂݂݊݅ 	∩  	,[ഥܯ

௦ߙ																		 	= min ܩ\	௦ܮ	ൣ݂ 	൫݅,ℳ෩ ൯൧	, 

with analogous definitions for ߚ௦	, ܾ௦	,ܤ௦	. Standard compactness arguments show that 
௦ܣ 	→ 	ݏ as ܣ → ∞, and so on. Hence the inequalities defining a good choice for ܮ௦ do 
hold for all sufficiently large ݏ. 

      The third lemma reveals why good choices are so named: it is a “rigidity condition” of 
a type that occurs commonly in LUR proofs. It will be convenient to state it in terms of 
“strong attainment” of a certain supremum, a notion with which most will be familiar, but 
which we shall nonetheless define explicitly. If (ߛ 	)∈ூ is a bounded family of real 
numbers, we shall say that the supremum sup∈ூ ߛ 	 is strongly attained at ݆ if 
sup∈ூ\{	} ߛ	 < 	 ߛ 	. This of course implies that if (݅) is a sequence in ܫ and ݅ߛ 	→
sup∈ூ ߛ 	ݎ	ݏܽ	 → 	∞, then	݅ 	= 	݆ for all large enough ݎ.  

Lemma (6.2.17)[216]: Let ܮ be a closed subset of ܭ and suppose that there exists a good 
choice (ℳ෩ , ෩ࣨ)  of type (݉,݊, ݅, ݆) on ܮ. Then the supremum 
sup	{ߔ(݂, )	(ℳ,ࣨ	):	ℳ,ࣨ,ܮ 	 ∈ ,ܮ)ܤ	 ݈, ݅, ݆,݉, ݊)} is strongly attained at (ℳ෩ , ෩ࣨ) . 
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Proof. Let us write ܣ, ,ߚ,ߙ,ܽ for the quantities associated with (ℳ෩ ܤ,ܾ , ෩ࣨ)  in the 
definition of a good choice. So we have ݉݅݊	݂[ܮ	 [ഥܯ	∩ ≤ 	ܽ and ݉ܽݔ	݂	ܮ]	 ∩ ഥܰ] ≥ ܾ for 
all ܯ	 ∈ 	ℳ෩  and all ܰ	 ∈ ෩ࣨ . Thus 2ߔ(݂, ℳ෩,ܮ , ෩ࣨ) ≥ 	ܾ	 − 	ܽ.  

       Now suppose that (ℳ,ࣨ) is in ܮ)ܤ, ݈, ݅, ݆,݉,݊) and that ℳ ≠ℳ෩ . Since ℳ and ℳ෩  
have the same number of elements, namely ݉, ℳ must have at least one element ܯ 
which is not in ℳ෩ . It follows from the definition of ܩ(݅,ℳ෩ ) that ܯഥ ∩ ℳ෩,݅)ܩ	 ) 	= 	∅ so 
that ݂݉݅݊[ܮ	 ∩ [ഥܯ ≥ 	݉ For the other .ߙ − 	1 elements of ℳ, we certainly have 
	ܮ]݂	݊݅݉ [ഥܯ	∩ ≥ 	ܮ]݂	ݔܽ݉ and of course ,ܣ	 ∩ 	 ഥܰ] ≤ 	ܰ for all ܤ	 ∈ ࣨ . Hence  

,݂]ߔ2 [	ࣨ,ℳ,ܮ ≤
1
݊
	ܤ݊	 −

1
݉
	ߙ)	 + 	(݉	 − (ܣ(1	 = 	ܤ	 − 	ܣ	 −

1
݉

	ߙ) −  	.(ܣ	

By the definition of a good choice, this is strictly smaller than ܾ	 − 	ܽ, Similarly, we show 
that if ܰ ≠ ࣨ then  

[	ࣨ,ℳ,݂]ߔ2 ≤ 	ܤ	 − 	ܣ	 −
1
݊
	ܤ)	 −  ,(ߚ	

another quantity which is known to be smaller than	ܾ	 − 	ܽ.  

   We record for convenience the following version of [99].  

Lemma (6.2.18)[216]: Let (߮)∈ூ and (߰)∈ூ be two pointwise-bounded families of non-
negative, realvalued, convex functions on a real vector space ܼ. For ݅	 ∈  and positive ܫ	
integers  define functions ߠ,,ߠ and ߠ by setting  

ଶ(ݔ),ߠ2 	= 	 ߮(ݔ)ଶ 	+  	,ଶ(ݔ)ଵ߰ି	

(ݔ)ߠ = sup
∈ூ

 															,(ݔ),ߠ	

ଶ(ݔ)	ߠ 	= 	2ିߠ(ݔ)ଶ
ஶ

ୀଵ

	.									 

Let ݔ and ݔ	(ݎ	 ∈ 	߱)	be elements of ܼ and assume that  

1
2
ଶ(ݔ)ߠ	 	+

1
2
ଶ(ݔ)ߠ	 	− ߠ	 ቆ

1
2
	ݔ)	 + )ቇݔ	

ଶ

	→ 	0 

as	ݎ	 → 	∞. Then there is a sequence (݅) of elements of ܫ such that  

߮݅	(ݔ) → sup
∈ூ

߮(ݔ) 			ܽ݊݀	 

1
2
	߰݅	(ݔ)ଶ 	+

1
2
	߰݅	(ݔ)ଶ 	− 	߰݅ ቆ

1
2
	ݔ)	 + )ቇݔ	

ଶ

	→ 	0	 

as ݎ	 → 	∞.  

Corollary (6.2.19)[216]: If, in addition to the hypotheses of Lemma (6.2.18), we assume 
that the supremum sup∈ூ ߮(ݔ) is strongly attained at ݆ , then we may conclude that  
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1
2
߰ ଶ(ݔ)	 	+

1
2
	߰	(ݔ)ଶ 	− 	߰ ቆ

1
2
	ݔ)	 + )ቇݔ	

ଶ

→ 	0.	 

Proof. This is of course automatic, since the assumptions imply that a sequence (݅)	for 
which  

߮݅	(ݔ) 	→ 	 sup
∈ூ

߮(ݔ)	 

as ݎ	 → 	∞ must necessarily satisfy ݅ 	= 	݆ for all large enough ݆ .  

    We may rephrase the statement of this corollary by saying that if the LUR hypothesis 
holds for ߠ and the supremum sup∈ூ ߮(ݔ)is strongly attained at  , then the LUR 
hypothesis holds for ߰ . It is precisely this formulation that we shall be applying in the 
next result, where we return to the proof of Theorem (6.2.13) and where of course we are 
still dealing with fixed ݂	, ݂ , ߳  and ݈.  

Proposition (6.2.20)[216]: Let ܮ be a closed subset of ܭ and assume that the LUR 
hypothesis holds for ܮ,·)ߗ, ݈). If (ℳ෩ , ෩ࣨ) is a good choice on ܮ then the LUR hypothesis 
holds for ߗ(·, 	ܮ ∩ 	ܺ(ℳ෩ , ෩ࣨ), 	ܮ,·)ߗ	݀݊ܽ	(݈ ∩ 	ܻ	(ℳ෩ , ෩ࣨ), ݈).  

Proof. Let (ℳ෩ , ෩ࣨ)be of type (݅, ݆,݉, ݊). The expression for ߗ(·, ,ܮ ݈) as an ℓଶ-sum 
implies that the LUR hypothesis holds for ߆(·, ,ܮ ݈, ݅, ݆,݉, ݊), which is readily recognizable 
as a function to which we may apply Deville’s lemma. Moreover, by Lemma (6.2.17), we 
are in the situation where the supremum sup(ℳ,ࣨ	)∈(,,,) ,݂)ߔ ,ܮ ݈,ℳ,ࣨ	)	 is strongly 
attained at (ℳ෩ , ෩ࣨ). So, by the above corollary, the LUR hypothesis holds for ߖ	(·
, ,ܮ ݈,ℳ෩ , ෩ࣨ).	The formula for this as an ℓଶ sum now shows that the LUR hypothesis holds 
for ߗ(·, 	ܮ ∩ 	ܺ(ℳ෩ , ෩ࣨ), ݈) and ܮ,·)ߗ	 ∩ 	ܻ	(ℳ෩ , ෩ࣨ), ݈), as claimed.   

Lemma (6.2.21)[216]: Let ܮ be a closed subset of ܭ on which the oscillation of ݂ is 
smaller than ߳. If the LUR hypothesis holds for ܮ,·)ߗ, ݈) then ‖(݂	 −	 ݂)|	ܮ‖ஶ 	< ߳  for 
all large enough ݎ.  

Proof. From the formula for ߗ as an ℓଶ-sum, we see that the LUR hypothesis holds for the 
convex functions ݃	 ⟼ 	݃ ஶ and‖ܮ	|݃	‖ ⟼ ‖ ,So in particular .(ܮ	|݃)ܿݏ	 ݂ ஶ‖ܮ	|	 	→
ஶ,ቛଵ‖ܮ	|݂‖	

ଶ
	(݂	 + 	 ݂)|	ܮቛ

ஶ
	→ )ܿݏ ஶ and‖ܮ	|݂‖ ݂|	ܮ) 	→ 	ݎ	ݏܽ	(ܮ	|	݂)ܿݏ	 → 	∞. The 

required result follows from a fairly standard argument. Let us write |݂)ܿݏ	(ܮ 	= ߳	 −  ߟ4	
and suppose that ݎ is large enough for us to have 

‖ ݂	|	ܮ‖ஶ < ஶ‖ܮ	|݂‖ 	+  					,ߟ	

ฯ
1
2
	(݂	 + 	 ݂)|	ܮฯ

ஶ
> ஶ‖ܮ	|݂‖ 	−  																			,ߟ	

)ܿݏ ݂|	ܮ) 		< 	߳	 −  																.ߟ3	

There exists ݐ	 ∈ | with ܭ	 ଵ
ଶ
	(݂	 + ݂)(ݐ)| 	> ஶ‖ܮ	|݂‖ 	−  and we may assume that ,ߟ

(݂	 + ݂)(ݐ) 	> 	0. It follows that  
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݂(ݐ) > ஶ‖ܮ	|݂‖2	 − 	ߟ2	  	ஶ‖ܮ	|݂‖	−

= 	 ஶ‖ܮ	|݂‖ −  	,ߟ2	

(ݐ)	݂ > ஶ‖ܮ	|݂‖2	 − 	ߟ2	 −	‖ ݂|	ܮ‖ஶ 

> ஶ‖ܮ	|݂‖ −  																.ߟ3	

Now for any ݑ	 ∈   we have ܮ	

(ݑ)	݂ ≥ (ݐ)	݂ −  					(ܮ|	݂)ܿݏ	

																				> ஶ‖ܮ	|݂‖ − 	ߟ3	 − 	߳ +  ߟ4	

											= ஶ‖ܮ	|݂‖ − 	߳	 +  				,ߟ	

(ݑ)	݂	 ≤  																								,ஶ‖ܮ	|݂‖

݂(ݑ) ≥	 ݂(ݐ) 	− )ܿݏ	 ݂|	ܮ)	 

																					> ஶ‖ܮ	|݂‖ − 	ߟ2	 − ߳	 +  	ߟ3	

								= ஶ‖ܮ	|݂‖ − 	߳	 +  	,ߟ	

݂(ݑ) ≤  																							ஶ‖ܮ	|݂‖

< ஶ‖ܮ	|݂‖ +   																																																										.ߟ	

It follows immediately that |݂	(ݑ) 	− 	 ݂(ݑ)| 	< ߳	.  

Proposition (6.2.22)[216]: There is a finite covering ℒ of ܭ with closed subsets such that 
the LUR hypothesis holds for ܮ,·)ߗ, ݈) and the oscillation of ݂ on ܮ is smaller than ߳, for 
each ܮ	 ∈ ℒ.  

Proof. We shall define a tree ߓ whose elements will be certain pairs (ܮ,  a closed ܮ with	(ݏ
subset of ܭ and ݏ a natural number. We shall give a recursive definition which will specify 
which such pairs are nodes of our tree, and shall define the tree ordering by saying which 
(if any) nodes are the immediate successors of a given (ܮ,  To do this, we shall need to .(ݏ
fix a mapping ߬ ∶ ߱	 → 	ߑ	 × 	ߑ	 × 	߱	 × 	߱ with the property that each quadruple 
(݅, ݆,݉,݊) occurs as ߬	(ݏ) for infinitely many ݏ	 ∈ 	߱. 

       It will be ensured during the construction that, whenever (ܮ, (ݏ 	 ∈  the LUR ,	ߓ	
hypothesis holds for ܮ,·)ߗ, ݈). We start by declaring that there is one minimal node (ܭ, 0). 
(Notice that our hypotheses do ensure that the LUR hypothesis holds for ܭ,·)ߗ, ݈).) If 
,ܮ)   :is a node of our tree then there are three possibilities (ݏ

(i) if the oscillation of ݂ on ܮ is smaller than ߳ then (ܮ,  has no immediate successors in (ݏ
the tree (that is to say, (ܮ,   ;(is a maximal element (ݏ

(ii) if the oscillation of ݂ on ܮ is at least ߳ and there is a good choice (ℳ,ࣨ	) of type 
	ܮ) ,two immediate successors ߓ then we introduce into ܮ on (ݏ)	߬ ∩ 	ܺ(ℳ,ࣨ), 	ݏ + 	1) 
and (ܮ	 ∩ 	ܺ(ℳ,ࣨ), 	ݏ + 	1), of (ܮ,  notice that, by Proposition (6.2.20), the LUR) (ݏ
hypothesis holds for the ߗ functions associated with these two new nodes);  
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(iii) if the oscillation of ݂ on ܮ is at least ߳ but no good choice of type ߬	(ݏ) exists, then we 
introduce just one immediate successor (ܮ, 	ݏ + 	1) of (ܮ,   .into the tree (ݏ

     We shall now show that the tree ߓ we have just constructed has only finitely many 
elements. By König’s lemma, it will be enough to show that ߓ has no infinite branch. So 
suppose, if possible, that there is a sequence (ܮ௦)௦∈ఠ of closed subsets of ܭ such that the 
pairs (ܮ௦ , ,௦ାଵܮ) ,ݏ and such that, for each ߓ are nodes of (ݏ 	ݏ + 1) is an immediate 
successor of (ܮ௦,  ;ܭ ௦ form a decreasing sequence of closed subsets ofܮ The sets .	ߓ in	(ݏ
let us write ܮ for their intersection. By a compactness argument, the oscillation ܿݏ(݂	|ܮ௦) 
tends to ݂)ܿݏ	|	(ܮ as ݏ	 → 	∞. Since each (ܮ௦,  has successors in  , we have (ݏ
(௦ܮ|	݂)ܿݏ ≥ (ܮ	|	݂)ܿݏ and we can thus deduce that ,ݏ for each 	ݏ ≥ ߳ . So, by Lemma 
(6.2.15), there is a good choice (ℳ,ࣨ	) on ܮ, of type (݅, ݆,݉, ݊) say. By Lemma 
(6.2.16),	(ℳ,ࣨ	) is also a good choice on ܮ௦ for all sufficiently large ݏ. Recalling that 
(ݏ)	߬ 	= 	 (݅, ݆,݉, ݊) for infinitely many values of ݏ, we see that we can choose ݏ such that 
(ℳ,ࣨ	) is a good choice on ܮ௦ of type ߬	(ݏ). The way we constructed the tree ߓ means 
that ܮ௦ାଵ is one or other of the two sets ܮ௦ 	∩ 	ܺ(ℳ,ࣨ) and ܮ௦ 	∩ 	ܻ	(ℳ,ࣨ	). So one or 
other of ܮ௦ାଵ 	∩ ⋃ࣨ and ܮ௦ାଵ 	∩ 	⋃ℳ	is empty. But this is absurd, since ܮ௦ାଵ	 ⊇  and ܮ	
the sets ܮ	 ∩ 	ܮ,ܯ	 ∩ 	ܰ are non-empty for all ܯ	 ∈ 	ℳ and ܰ	 ∈ ࣨ	.  

    Having proved that ߓ is finite, we define ℒ to be the set of all ܮ such that there is a 
maximal element of ߓ of the form (ܮ,  Our construction ensures that the LUR .(ݎ
hypothesis holds for ܮ,·)ߗ, ݈) for each such ܮ, and, by maximality, the oscillation of ݂ on 
any such ܮ is smaller than ߳. We just need to show that ⋃ℒ =  This is most easily .ܭ	
proved by induction: for each ݏ let ℒ௦ 	= 	 ,ܮ)	:ܮ} (ݏ 	 ∈ ℒ⋃ ,ݏ I claim that, for all ;{	ߓ	 ∪
	⋃ℒ௦ = 	ݏ Certainly this is true for .ܭ	 = 	0 since ℒ 	= 	  To deal with the inductive .{ܭ}
step let ݐ	 ∈ 	⋃ ℒ ∪	⋃ℒ௦ be given. If ݐ	 ∈ ⋃ℒ there is no problem, so assume that ݐ	 ∈  ܮ	
for some ܮ	 ∈ ℒ௦. By the construction of ߓ, one of (i), (ii) and (iii) occurs for the pair 
,ܮ) 	ݐ If it is (i) then .(ݏ ∈ 	ܮ	 ∈ ℒ. If it is (ii) then ݐ is one or other of the two sets ܮ	 ∩ 	ܺ 
and ܮ	 ∩ 	ܻ which themselves are members of ℒ௦ାଵ. Finally if it is (iii) then ݐ	 ∈ 	ܮ	 ∈
	ℒ௦ାଵ. In all cases, we have ݐ	 ∈ 	⋃ ℒ	 ∪	⋃ℒ௦ାଵ, which completes our proof by induction. 
Since ߓ is finite, ℒ௦ is empty for large enough ݏ, which shows that ⋃ℒ	 =   .ܭ	

     We can now finish the proof of Theorem (6.2.13). Indeed, by Proposition (6.2.22), ܭ is 
the union of finitely many subsets ܮ, for each of which sup௧∈ | ݂(ݐ) 	−  is |(ݐ)	݂	
eventually smaller than ߳. So ‖ ݂ 	− 	݂‖ஶ is eventually smaller than ߳, which is what we 
wanted to prove.  

Section (6.3): Steinhaus’Lattice-Point Problem 

      The following feature of the integer lattice in the Euclidean plane was probably first 
observed by Steinhaus [238]: for any natural number ݊ one may find a circle surrounding 
exactly ݊ lattice points. Zwoleński [239] generalised this fact to the setting of Hilbert 
spaces in the following manner. He replaced the set of lattice points by a more general 
quasi-finite set, i.e., an infinite subset 	ܣ of a metric space ܺ such that each ball in ܺ 
contains only finitely many elements of ܣ. His result then reads as follows.  
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Theorem (6.3.1)[228]: ([239]). Let ܣ be a quasi-finite subset of a Hilbert space ܺ. Then 
there exists a dense subset ܻ	 ⊂ 	ܺ	such that for every ݕ	 ∈ 	ܻ and ݊	 ∈ ℕ there exists a ball 
	ܣ| with ݕ centred at ܤ ∩ |ܤ	 	= 	݊.  

     We distill the property that we will term Steinhaus’ property (S). A metric space ܺ has 
this property if, by definition, 

(S) for any quasi-finite set ܣ	 ⊂ 	ܺ there exists a dense set ܻ	 ⊂ 	ܺ such that for all ݕ	 ∈ 	ܻ 
and ݊	 ∈ ℕ there exists a ball ܤ centred at ݕ with |ܣ	 ∩ |ܤ	 	= 	݊.  

We translate condition (S), formulated above, into three equivalent statements concerning 
the geometry of the unit ball of a Banach space. They require that, locally, the unit sphere 
of ܺ does not look the same at any two distinct points. This approach will be particularly 
beneficial, as it will allow us to identify spaces that share that property with Hilbert 
spaces, yet of a very different nature. Our first main result then reads as follows.  

      We employ the announced equivalence to extend Zwoleński’s result to strictly convex 
Banach spaces (Corollary (6.3.4)). It is well-known that not every Banach space admits a 
strictly convex renorming, just to mention the examples of ℓஶ(߁) for any uncountable set 
 or the quotient space ℓஶ/ܿ ([230]). This motivates the question (see [231] and [232]) ߁
of whether strict convexity and property (S) are equivalent at the level of renormings, and 
a negative answer is a part of our next result.  

        Solovay ([237]) proved that the assertion that the continuum is a real-valued cardinal 
is equiconsistent with the existence of a two-valued measurable cardinal number, therefore 
its consistency cannot be proved in ZFC alone (assuming of course that ZFC itself is 
consistent). Interestingly, our construction in this universe is possible because the real-
valued measurability of the continuum implies the failure of the Continuum Hypothesis 
([229]) and we take advantage not only of pleasant measure-theoretic properties of the 
continuum but also of the existence of an uncountable cardinal number below it.  

       It seems unlikely that real-measurability of the continuum is really necessary to show 
that there exist Banach spaces with (S) but which do not have a strictly convex renorming. 
This leaves the question of possibility of such constructions in ZFC open.  

Theorem (6.3.2)[228]: Let ܺ be a Banach space. The following assertions are equivalent:  

(S) ܺ has Steinhaus’ property;  

( ଵܵ) for any quasi-finite set ܣ	 ⊂ 	ܺ there exists a dense set ܻ	 ⊂ 	ܺ	such that for every 
	ݕ ∈ 	ܻ there exists a ball ܤ centred at ݕ with |ܣ	 ∩ |ܤ	 	= 	1;  

(S’) for all ݕ,ݔ	 ∈ 	ܺ with ݔ ≠ ‖ݔ‖,ݕ	 = 	 ‖ݕ‖ = 	1 and each ߜ	 > 	0 there exists ܽ	ݖ	 ∈ 	ܺ 
with ‖ݖ‖ < 	ݔ such that one of the vectors ߜ	 + 	ݕ and ݖ	 +  ,has norm greater than 1 ݖ	
whereas the other has norm smaller than 1;  

(S”) for all ݔ, 	ݕ ∈ 	ܺ with ݔ ≠ ,ݕ	 ‖ݔ‖ = 	 ‖ݕ‖ = 	1 and each ߜ	 > 	0 there exists ܽ	ݖ	 ∈ 	ܺ 
with ‖ݖ‖ < 	ݔ‖ such that ߜ	 + ‖ݖ	 ≠ 	 	ݕ‖ +  	.‖ݖ	

         In other words, condition (S”) means exactly that one cannot find a ‘neighbourhood’ 
of parallel line segments on the unit sphere of equal length. This seems to be a new 
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geometric property which, as we will see, is essentially weaker than strict convexity. 
Notice that, in contrast to many other classical properties, property (S) is not inherited by 
subspaces and, in a sense, is neither local nor global.  

       Properties (S’) and (S”) are related to another (weaker) property of ‘non-flatness’ of 
the unit sphere:  

(F) the unit sphere ܵ of ܺ does not contain any flat faces, that is to say, there is no non-
empty subset of ܵ, open in the relative norm topology, that is contained in a hyperplane.  

Here by a hyperplane of ܺ we understand a translation of a subspace of ܺ of codimension 
1, i.e., a set of the form ݔ	 + 	ݔ for some (∗ݔ)ݎ݁݇	 ∈ 	ܺ and ݔ∗ 	 ∈ 	ܺ∗. Note, however, that 
(F) does not imply (S”) that is witnessed by the norm 
,ݔ)‖ ,ݕ ‖(ݖ = ଶݔ	ඥ}ݔܽ݉	 	+ ,ଶݕ	 ,ݔ)	ݎ݂	{|ݖ| ,ݕ (ݖ 	 ∈ ℝଷ (consider the points (1, 0, 0) and 
(1, 0, ଵ

ଶ
	)). However, whether every Banach space admits a renorming satisfying (F) seems 

to be an attractive open problem.  

Proof . Since the implications (S) ⇒ ( ଵܵ) and (S’) ⇒ (S”) hold true trivially, it is enough to 
prove that ( ଵܵ) ⇒ (S’), (S’) ⇒ (S) and (S”) ⇒ (S’).  

) Suppose that :(’S) ⇒ (ࡿ) ଵܵ) holds. Fix any ߜ	 > 	0 and ݕ,ݔ	 ∈ 	ܺ with	ݔ ≠ ,ݕ	 ‖ݔ‖ 	=
‖ݕ‖	 = 	1. Consider any quasi-finite set ܣ	 ⊂ 	ܺ	such that ܣ	 ∩	 (1	 + ܤ(ߜ	 	= 	 ,ݔ}  ,{ݕ
where ܤ stands for the closed unit ball of ܺ. According to ( ଵܵ), there is a ݑ	 ∈ 	ܺ, ‖ݑ‖ <
	ݎ such that for some ,2/ߜ	 > 	0 the open ball ݑ)ܤ,  .ܣ contains exactly one element of (ݎ
Suppose there is an ܽ	 ∈ ,ݔ}	\	ܣ	 ,ݑ)ܤ belonging to {ݕ  Then .(ݎ

	ݎ > 	 ‖ܽ	 − ‖ݑ	 ≥ 	‖ܽ‖ − ‖ݑ‖ > 	 (1	 + (ߜ	 −
ߜ
2
	= 1 +

ߜ
2
	,	 

hence ‖ݔ	 − ‖ݑ	 < 	ݔ that is ,ݎ	 ∈ ,ݑ)ܤ	 ,ݑ)ܤ ,a contradiction. Consequently ;(ݎ  contains (ݎ
exactly one of the points ݔ and ݕ, say ݔ	 ∈ ,ݑ)ܤ	 	ݕ and (ݎ ∉ ,ݑ)ܤ	   Then .(ݎ

1	 −
ߜ
2
	< 	 	ݔ‖ − ‖ݑ	 < 	ݎ	 ≤ 	ݕ‖ − ‖ݑ	 < 	1	 +

ߜ
2
	.	 

Suppose that ݎ	 ≤ 1, 	ݎ = 	1	 − 	ߝ with some	ߝ	 ∈ 	 [0,  ߩ and take any number (2/ߜ
satisfying  

0	 < ߩ < 	݉݅݊ ൜	ݎ	 − 	ݔ‖	 − ,‖ݑ	
ߜ
2
	−  	.		ൠߝ	

Obviously, we may find ݒ	 ∈ 	ܺ with ‖ݒ‖ ≤ 	ߝ + 	ݕ‖ such that ߩ	 −	 	ݑ) + ‖(ݒ	 ≥ 	ݎ +
	ߝ	 + 	ߩ	 > 	1. Then we also have  

ݔ‖ 	ݑ)	− + ‖(ݒ	 ≤ 	ݔ‖	 − ‖ݑ	 	+ 	 ‖ݒ‖ 	< 	ݎ	 − 	ߩ	 + 	 ‖ݒ‖ ≤ 1.	 

Therefore, setting ݖ	 = 	ݑ)−	 +  completes the proof of our claim, since we have the (ݒ	
estimate	‖ݑ	 + ‖ݒ	 	< 	ߝ	 + 	ߩ	 + 	2/ߜ	 <  We proceed similarly in the case where .ߜ	
	ݎ > 	1 so the proof of ( ଵܵ) ⇒ (S’) is then complete.  
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(S’) ⇒ (S): Let ܺ be a Banach space ܺ that satisfies (S’) and let ܣ	 ⊂ 	ܺ	be a quasi-finite 
set. For any ݊	 ∈ ℕ set  

ܩ 	= 	ݔ	} ∈ 	ܺ ∶ 	 	ܣ| ∩ ,ݔ)ܤ	 |(ݎ 	= 	ݎ	݁݉ݏ	ݎ݂	݊	 > 	0}		.	 

It is evident, in view of the definition of a quasi-finite set, that each ܩ is an open subset of 
ܺ. We shall prove that it is also dense.  

       Assume, in search of a contradiction, that there is an open ball ܷ	 = ,ݔ)ܤ	  ܺ in	)ݎ
not intersecting ܩ. Rescaling ܷ if necessary, we may suppose that ܣ	 ∩ 	ܷ	 = 	∅. With 
any point ݔ	 ∈ 	ܷ we associate two integers ݉(ݔ) 	< 	݊ and ݇(ݔ) ≥ 	2 defined as follows: 
Since ݔ ∉ (ݔ)݉ , there is the largest non-negative integerܩ	 	< 	݊ for which there exists 
	ݍ > 	0 with |ܣ	 ∩ ,ݔ)ܤ	 |(ݍ 	= 	ݏ Then, for every .(ݔ)݉	 > 	ܣ| we have either ݍ	 ∩
,ݔ)ܤ	 |(ݏ 	= 	ܣ|	ݎ	(ݔ)݉	 ∩ ,ݔ)ܤ	 |(ݏ 	> 	݊. Define  

	ݏ = 	inf	{ݐ	 > 	ܣ|	:0	 ∩ ,ݔ)ܤ	 |(ݐ 	> 	݊}	.	 

Then exactly ݉(ݔ) points ܽଵ, . . . ,ܽ(ݔ) 	 ∈ ,ݔ)ܤ lie in the ball ܣ	  whereas at least two ,(ݏ
such points lie on the boundary of ݔ)ܤ, ,let us call them ܾଵ ;(ݏ . . . , ܾ, where ݇ ≥ 	2. In this 
way we define ݇(ݔ) 	= 	݇.  

       Now, we shall use an infinite descent argument to obtain a desired contradiction. Let 
ܽଵ, . . . , ܽ ,ܾଵ, . . . , ܾ be as above for ݔ	 = 	 	݉ , whereݔ = 	݇ and (ݔ)݉	 =  Pick .(ݔ)݇	
any ߜ	 > 	0 such that  

{ܽ ∶ 	1 ≤ 	݅ ≤ 	݉} 	⊆ ݔ)ܤ	 	+ ,ݑ	 (ݏ 	∩ 	ܣ	 ⊆ 	 {ܽ , ܾ ∶ 	1 ≤ 	݅ ≤ 	݉, 1 ≤ 	݆
≤ 	ݑ	ݕݎ݁ݒ݁	ݎ݂	{݇	 ∈ ‖ݑ‖	ℎݐ݅ݓ	ܺ	 <  .ߜ	

Define ߩ	 = ܽ‖}ݔܽ݉	 	− 1	‖:ݔ	 ≤ 	݅ ≤ 	݉} 	< 	ߛ and set	ݏ	 = 	ݏ	 −  Each of the .ߩ	
vectors ( ܾ 	− 	݆)	ݏ/(ݔ	 = 	1, . . . , ݇) lies in the unit sphere. Applying the hypothesis (S’) to 
any two of them (e.g., to	݆	 = 	1, 2), we obtain a point ݖ	 ∈ 	ܺ	with  

‖ݖݏ‖ 	< ,ߜ}݊݅݉	  	{2/ߛ

such that one of the vectors: ܾ 	− ݔ	 	− 	݆)	ݖݏ	 = 	1, 2) has norm greater than ݏ, whereas 
the other has norm smaller than ݏ. By decreasing ߜ, if necessary, we may also assume that 
the point ݔ ∶= 	 ݔ 	+ ,ݔ)ܤ still lies in ܷ. Therefore the ball ݖݏ	  ܷ with the centre in (ݏ
contains all ܽ 1)	ݏ’ ≤ 	݅ ≤ 	݉) and at least one but not all among ܾ 	1)	ݏ’ ≤ ݆ ≤
	݇).	Observe also that by our choice of ݖ, we have  

‖ܽ 	− ‖ݔ	 ≤ ‖ܽ 	− ‖ݔ	 	+ 	 ‖ݖݏ‖ < 	ߩ	 +
ߛ
2

= 	ݏ	 −
ߛ
2
1	ℎܿܽ݁	ݎ݂	 ≤ 	݅ ≤ 	݉	 

and  

ฮ ܾ 	− ฮݔ	 ≥ ฮ ܾ 	− ฮݔ	 	+ ‖ݖݏ‖	 > 	ݏ	 −
ߛ
2
1	ℎܿܽ݁	ݎ݂		 ≤ 	݆ ≤ 	݇. 

Therefore, by suitably rescaling the ball ݔ)ܤ,  which ݔ we obtain a new ball centred at ,(ݏ
contains all of ܽ and whose boundary contains some but not all of ܾ ݏ’  This shows that .ݏ’
we have either ݉(ݔ) 	> (ݔ)݇	or (ݔ)݉	 	<   replaced byݔ This construction (with .(ݔ)݇	
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	ݑ will ultimately lead to a contradiction, as we finally arrive at a point (ݔ ∈ 	ܷ with 
(ݑ)݉ ≥ 	݊		or	݇(ݑ) 	< 	2. Therefore, all the sets ܩ	(݊	 ∈ ℕ) are open and dense.  

       By the Baire Category Theorem, the set ܻ	 = 	⋂ ஶܩ	
ୀଵ 	 is dense in ܺ and, obviously, 

for each ݕ	 ∈ 	ܻ and ݊	 ∈ ℕ	there is a ball ܤ centred at ݕ with |ܣ	 ∩ |ܤ	 	= 	݊. This 
completes the proof of (S).  

(S”) ⇒ (S’): Assume the negation of (S’) and choose distinct unit vectors ݔ, 	ݕ ∈ 	ܺ	and 
	ߜ > 	0 so that there is no vector ݖ	 ∈ 	ܺ with ‖ݖ‖ <  for which exactly one of the ߜ	
vectors ݔ	 + 	ݕ and ݖ	 + 	ݑ lies inside the unit ball of ܺ. For every ݖ	 ∈ 	 ܵ define  

௨ܸ 	= 	ݖ		} ∈ 	 ܵ ∶ 	 	ݑ‖ + ‖ݖߙ	 < 	ߙ	݁݉ݏ	ݎ݂	1	 > 	0}		 

and  

(ݖ)௨ߣ 	= 	min	{	ߜ, 	ߙ}݂݊݅ > 	ݑ‖	:0	 + ‖ݖߙ	 ≥ 	ݖ)				{{1	 ∈ 	 ௨ܸ).	 

By the assumption, we have ௫ܸ 	= 	 ௬ܸ  and ߣ௫(ݖ) 	= 	 	ݖ for every (ݖ)௬ߣ ∈ 	 ௫ܸ, which means 
that the unit sphere looks locally the same at ݔ and ݕ (via the translation by ݕ	 −  ,(ݔ	
namely, 

	ݕ − 	ݔ	 + ,ݔ)ܤ)	 (ߜ 	∩ 	ܵ) 	= ,ݕ)ܤ	 (ߜ 	∩ 	ܵ.																																				(1) 

Pick ߟ	 > 	0 so small that      

	ฯݔ	 −
	ݔ + ݖ	
	ݔ‖ + ‖ݖ	

ฯ < 			݀݊ܽ			ߜ	 ฯݕ	 −
	ݕ + ݖ	
	ݕ‖ + ‖ݖ	

ฯ < ‖ݖ‖			݂݅		ߜ	 <  (2)																					.ߟ	

     Now, using (S”), choose a vector ݖ	 ∈ 	ܺ with ‖ݖ‖ < 	ݔ‖	so that ߟ	 + ‖ݖ	 ≠ 	 	ݕ‖ +  .‖ݖ	
We have then two possibilities: either ‖ݔ	 + ‖ݖ	 ≤ 	1 and ‖ݕ	 + ‖ݖ	 ≤ 	1,	or ‖ݔ	 + ‖ݖ	 ≥ 1  
and ‖ݕ	 + ‖ݖ	 ≥ 	1. We shall consider the former case; for the latter one the argument is 
similar.  

       With no loss of generality we can assume that ‖ݔ	 + ‖ݖ	 > 	 	ݕ‖ +  Consider the .‖ݖ	
function ݃ ∶ 	 [0,∞) 	→ 	 [0,∞) given by  

(ߙ)݃ 	= 	 	ݔ‖ + 	ݖ	 + 	ݕ)ߙ	 −  	‖(ݔ	

which is convex, as can be easily verified. In view of (1) and (2), we have     

		ฯݕ − ݔ +
	ݔ + ݖ	
	ݔ‖ + ‖ݖ	

ฯ 			= 	1,	 

that is, ݃(‖ݔ	 + (‖ݖ	 	= 	 	ݔ‖ + We have also ݃(0) .‖ݖ	 = 	 	ݔ‖ + and ݃(1)‖ݖ	 	=
	ݕ‖ + ‖ݖ	 < 	 	ݔ‖ +  :This is a contradiction with the convexity of ݃, as the arguments .‖ݖ	
0, 	ݔ‖ +    .and 1 lie in this order on the real line ‖ݖ	

We will demonstrate some applications of Theorem (6.3.2) in concrete situations. 
We begin with a strengthening of Zwoleński’s result.  

      Given two elements ݔ,  തതത the line segmentݕݔ in a real vector space ܺ, we denote by ݕ
between ݔ and ݕ, i.e., ݕݔതതത 	= 	 	ݔߣ} + 	 (1	 − ݕ(ߣ	 ∶ 	ߣ	 ∈ 	 [0, 1]}.  
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Proposition (6.3.3)[228]: Let ܺ be a Banach space and suppose that ݕ,ݔ	 ∈ 	ܺ are distinct 
unit vectors. If ݕݔതതത 	⊈ ܵ, then for each ߜ	 > 	0 there is ݖ	 ∈ 	ܺ with ‖ݖ‖ <  such that one ߜ	
of the vector ݔ	 + 	ݕ,ݖ	 +  has norm greater than 1 whereas the other one has norm	ݖ	
strictly less than 1.  

Proof. Let ߜ	 > 	0 and ݕ,ݔ	 ∈ 	ܺ with ݔ ≠ ‖ݔ‖,ݕ	 = 	 ‖ݕ‖ = 	1 be given. Then each point 
inside the segment ݕݔതതത, joining ݔ and ݕ, has norm smaller than 1, whereas each point lying 
on the straight line passing through ݔ and ݕ, but outside ݕݔതതത, has norm larger than 1. 
Therefore, any point ݖ	 ∈ 	ܺ satisfying 0	 < 	 ‖ݖ‖ < 	ݔ and ߜ	 + 	ݖ	 ∈ 	    .തതത does the jobݕݔ

Corollary (6.3.4)[228]: Every strictly convex Banach space ܺ satisfies (S).  

      Now, we will see that strictly convex spaces do not exhaust the whole class of Banach 
spaces satisfying Steinhaus’ condition. In fact, these two classes differ already in 
dimension three. The following construction will also serve as a base for the proof of 
Theorem (6.3.10).  

Example (6.3.5)[228]: We claim that there exists a norm ||| 	 · 	 ||| in ℝଷ such that (ℝଷ, ||| 	 ·
	|||) contains ℓஶଶ  isometrically (and hence is not strictly convex), nonetheless it satisfies 
condition (S). We are indebted to the referee for suggesting the following example which 
significantly simplified our original construction. 

      First, observe that the negation of (S”) easily implies that there are two different points 
	ߜ on the unit sphere and ݕ and ݔ > 	0 so that ‖ݔ	 + ‖ݖ	 = 	ݓ‖ + ‖ݖ‖ whenever ‖ݖ	 <  ߜ	
and ݓ	 ∈ 	  തതത. In other words, if a given Banach space fails Steinhaus’ condition, thenݕݔ
there must be a ‘neighbourhood’ of segments on the unit sphere. Having this in mind we 
set  

	ܤ = 	 ,ଵݔ)} ,ଶݔ (ଷݔ ∈ 	 [−1, 1]ଷ ∶ 	 |ଷݔ| ≤  	,{(ଶݔ,ଵݔ)݂

where ݂ ∶ 	 [−1, 1]ଶ 	→ 	 [0, 1] is any continuous function satisfying the equations 
݂(0, 0) 	= 	1 and ݂(−ݔଵ,−ݔଶ) 	= ,ଵݔ)݂	 ,ଶ) which vanishes on the boundary of [−1ݔ 1]ଶ 
and is strictly concave on (−1, 1)ଶ. For example, we can take (ݔଵ,ݔଶ) 	= 	 (1	 −
	ଵ|)(1ݔ|	 − 	 	0	ଶ|) withݔ| < 		 < ଵ

ଶ
 . Then, let ||| 	 · 	 ||| be the norm on ℝଷ defined as the 

Minkowski functional of ܤ. Since there are only four segments lying on the unit sphere 
(the edges of the square [−1, 1]ଶ 	× 	{0}), the Banach space (ℝଷ, ||| 	 · 	 |||) satisfies 
Steinhaus’ condition due to the remark above.  

      It is worth noticing a simple geometrical feature of ܤ which makes |||. |||	satisfy 
condition (S’). Namely, considering any two different points ݔ	 = 	 ,ݐ) 1, 0) and ݕ	 =
,ݑ)	 1, 0)	with 0 ≤ 	ݐ	 < 	ݑ	 < 	1 we see that the curve lying on ܤ that starts at ݔ and is 
parallel to the ݔଶݔଷ-plane is flatter at the point ݔ than its counterpart at the point ݕ. 
Therefore, for a given ߜ	 > 	0, one can take a vector ݖ	 ∈ 	ℝଷ with ‖ݖ‖ <  of the form ߜ	
	ݖ = 	 (0,  to guarantee that exactly one (more precisely: the latter one) of the vectors (ݓ,ݒ
ݔ + ݕ,ݖ +  For any other two points our claim is either trivial or .ܤ goes outside of ݖ
analogous. The upper part of the ball ܤ defined as above with = ଵ

ଷ
 , as well as some 

contour lines illustrating the above-mentioned flattening effect, are depicted in the two 
figures below.  
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Figure (1)[228]: 

     The next corollary demonstrates that the classical ܮଵ(ߤ) −spaces for atomless measures 
 also satisfy Steinhaus’ condition, giving thus another class of examples of non-strictly ߤ
convex spaces with this property. Recall that a set ܣ in a measure space is called an atom 
if (ܣ)ߤ 	> 	0	and	(ܤ)ߤ 	 ∈ 	 {0,  .ܣ of ܤ for every measurable subset {(ܣ)ߤ

Proposition (6.3.6)[228]: Let (ߑ,ߗ,  (ߤ)ଵܮ be a measure space. Then, the space (ߤ
satisfies (S) if and only if ߗ contains at most one atom (up to measure-zero sets).  

Proof. By Luther’s theorem [235], there is a decomposition ߤ	 = 	 ଵߤ 	+  ଵ beingߤ ଶ withߤ	
semi-finite (i.e., for each ܣ	 ∈ (ܣ)ଵߤ with ߑ	 	= 	∞, there is a subset ܤ	 ∈  such that ܣ of ߑ	
0	 < 	 (ܤ)ଵߤ 	< 	∞) and ߤଶ being degenerate (i.e., the range of ߤଶ is contained in {0,∞}). 
The space ܮଵ(ߤ) is then isometrically isomorphic to ܮଵ(ߤ)  (for any ݂	 ∈ 	  we have (ߤ)ଵܮ
(ݔ)݂	:ݔ})ଶߤ ≠ 	0}) 	= 	0, thus the identity map yields the desired isometry). Therefore, we 
consider only the case where ߤ	is semi-finite.  

      First, suppose that (ߑ,ߗ, 	݃,݂ is atomless. Fix two functions (ߤ ∈ ݂ with  (ߤ)ଵܮ ≠ 	݃ 
and ‖݂‖ = 	 ‖݃‖ = 	1, and let ߜ	 > 	0 be given. Interchanging ݂ and ݃, if necessary, we 
may assume that there is a set ܨ	 ∈ 	such that 0 ߑ	 < (ܨ)ߤ	 	< 	∞ and ݂(߱) 	> 	݃(߱) for 
߱	 ∈   Since .ܨ	

	ܨ = 	ራ{߱	 ∈ ܨ	 ∶ 	݂(߱) > 	݃(߱) +
1
݊

}
ஶ

ୀଵ

				,	 

we may also suppose that for some ߝ	 > 	0 and all ߱	 ∈ (߱)݂ we have	ܨ	 	> 	݃(߱) 	+  .ߝ	
Approximating ݂ and ݃ by step functions we may find a measurable set ܨ′ ⊂  with ܨ	
(	′ܨ)ߤ 	> 	0 and some ܿ	, ܿ 	 ∈ ℝ such that  

ห݂(߱) −	ܿ	ห <
ߝ
5
					ܽ݊݀					ห݃(߱) −	ܿห <

ߝ
5
						(߱	 ∈  	.(	′ܨ	

Hence, ܿ 	> 	 ܿ + ଷ
ହ
and ݉	ߝ	 	> ܯ	 	+

ଵ
ହ
where ݉ ,ߝ	 	= ܯ and (′ܨ)݂݂݊݅	ݏݏ݁	 =

  :We have three possibilities .(′ܨ)݃	ݑݏ	ݏݏ݁	

(i) ݉ 	> 	0	and ܯ ≥ 	0,  
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(ii) ݉ 	> 	0	and	ܯ 	< 	0,  
(iii) ݉ ≤ 	0	and	ܯ 	< 	0.	 

With no loss of generality suppose that either (i) or (ii) occurs (the case (iii) is analogous 
to (i)). Then there is a positive number ݀ such that |݉ 	− 	݀| 	< ݉ and |ܯ 	− 	݀| 	>
	݀ |; indeed, in the former case we shall take anyܯ|	 ∈ 	 ,ܯ2) 2݉	), while in the latter 
one any sufficiently small	݀ does the job.  

       Now, observe that for almost all ߱	 ∈   we have ′ܨ	

|݂(߱) − 	݀| < 	 |݂(߱)|									ܽ݊݀								|݃(߱) 	− 	݀| 	> 	 |݃(߱)|.																										(3) 

Indeed, for the first inequality note that in the case where ݂(߱) ≥ ݀	 > 	0 it holds trivially 
true, while in the opposite case we have  

|݂(߱) − 	݀| = 	݀	 − 	݂(߱) ≤ ݀	 −	݉ ≤ 	 ห݀	 −	݉	ห < 	݉ ≤ 	 |݂(߱)|.	 

For the other one observe that since ܯ 	< 	݀ (recall |ܯ 	− 	݀| 	> 	  |), we haveܯ|
݃(߱) 	< 	݀, thus in the case where ݃(߱) ≥ 0 we have  

|݃(߱) − 	݀| = 	݀	 − 	݃(߱) ≥ 	݀	 ܯ	− 	= 	 ห݀	 − หܯ	 > 	 หܯห ≥ ݃(߱) 	= 	 |݃(߱)|,	 

whereas in the case where ݃(߱) 	< 	0 this inequality is trivial.  

      By the Darboux property of finite atomless measures ([236], see also [233]), there is a 
measurable set ܪ	 ⊂ 	with 0 ′ܨ	 < (ܪ)ߤ	 	< 	݀‖ Then .݀/ߜ	 · 	1ு‖ 	<  where 1ு stands ,ߜ	
for the characteristic function of ܪ, while inequalities (3) imply that ‖݂	 − 	݀	 · 	1ு 	‖ <
	1	ܽ݊݀	‖݃	 − 	݀	 · 	1ு	‖ > 	1.	This proves assertion (S’), and hence also (S). 

       In the case where there is exactly one atom ܣ	 ⊂  either ,(up to measure-zero sets) ߗ	
(ܣ	\	ߗ)ߤ 	= 	0, which means that ܮଵ(ߤ) 	≅ ℝ isometrically, or there exists an atomless 
part ܤ	 ⊂ 	ߗ of positive measure so that ߗ	 = 	ܣ	 ∪ 	݃,݂ In the latter case, fix any .ܤ	 ∈
݂ with (ߤ)ଵܮ	 ≠ 	݃ and ‖݂‖ 	= 	 ‖݃‖ = 	1. First, assume that ݂| = 	 ݃| outside a set of 
measure zero. Both ݂ and ݃ are constant almost everywhere on ܣ; denote those constant 
values as ܿ and ܿ, respectively. Since ‖݂‖ = 	 |ܿ	|(ܣ)ߤ 	+ 	∫ 	ߤ݀	|݂|

  and ‖݃‖ =
	|ܿ|(ܣ)ߤ 	+ ∫ 	ߤ݀	|݂|

 , we have | ܿ	| 	= 	 |ܿ|	and ܿ ≠ 	ܿ. So, assuming that ܿ 	> 	0 and 
ܿ 	< 	0, for any given ߜ	 > 	0 we have ‖݂	 + 	ߜ	 · 	1‖ > 	1 and ‖݃	 + 	ߜ	 · 	1‖ 	< 	1. In 
the case where ݂| and ݃|  do not coincide almost everywhere, we repeat the argument 
from the first part of the proof for the atomless measure space (ߑ,ܤ′,  ), where	ᇱఀ|ߤ
′ߑ = 	 	ܤ} ∩ ܥ	 ∶ 	ܥ	 ∈  has property (S) whenever the underlying (ߤ)ଵܮ ,Consequently .{ߑ	
measure space contains at most one atom.  

      Finally, suppose ߗ contains two disjoint atoms, say ܣଵ and ܣଶ. Consider the functions 
݂	 = ଵ

ଶ
	(1భ 	+ 1మ 	) and 	= ଵ

ସ
1భ 	+

ଷ
ସ

1మ  . Obviously, for ߜ	 ∈ 	 (0, ଵ
ସ
	) there is no function 

ℎ with ‖ℎ‖ < 	݂ so that exactly one of ߜ	 + 	ℎ	and	݃	 + 	ℎ has norm larger than 1, thus in 
this case (S) fails to hold.  
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     Theorem (6.3.2) gives an immediate answer to the question about Steinhaus’ property 
for ܥ(ܭ)-spaces, and it is unsurprisingly negative except the trivial case where the 
considered space is one-dimensional.  

Corollary (6.3.7)[228]: Let ܭ be a locally compact Hausdorff space that contains at least 
two points. Then the space ܥ(ܭ)consisting of scalar-valued functions on ܭ vanishing at 
infinity does not have property (S).  

Proof. Pick any two distinct points ݑ, 	ݒ ∈  .	ܸ and their disjoint neighbourhoods ܷ and ,ܭ	
Since ܭ is completely regular, there is a continuous map ߶:	ܭ	 → 	 [0, 1] such that ߶(ݑ) 	=
	1 and ߶|\ 	= 	0. Similarly, since ܭ	\ܷ is also completely regular, there is a continuous 
map ߶ଵ ∶ 	ܷ\	ܭ	 → 	 [0, 1/2] such that ߶ଵ(ݒ) 	= 	1/2	and ߶ଵ|\(∪	) 	= 	0. Then the 
mapping ߰:	ܭ	 → 	 [0, 1] defined by  

(ݔ)߰ 	= 		 ൜߶
	ݔ	ݎ݂			(ݔ) ∈ 	ܷ,								

߶ଵ(ݔ)			݂ݎ	ݔ	 ∈  	,ܷ	\	ܭ	

is continuous and, of course, ߶ ≠ 	߰. So, both functions ߶	and ߰ belong to the unit sphere 
of ܥ(ܭ), but for any ߜ	 ∈ 	 (0, 1/2) condition (S’) is violated.  

Theorem (6.3.8)[228]: Assume that ܿ is a real-valued cardinal number and let ߁ be a set 
with cardinality less than ܿ. Then the Bochner space ܺ	 = 	 ,ߤ)ଵܮ ℓஶ(߁)) has property (S) 
for some atomless, probability measure ߤ.	 

Proof. As ܿ is assumed to be a real-valued cardinal number, there exists an atomless 
probability measure space	((ߗ)℘,ߗ,  is a set with the cardinality of the ߗ where ,(ߤ
continuum and ߤ is ܿ-complete. Then ߤ is the required measure.  

     Let ݂ ≠ 	݃ be two norm-one elements of ܺ. Since members of ܺ are equivalence 
classes of the relation of equality almost everywhere, let us work with concrete 
representatives ݂,݃ ∶ 	ߗ	 → ℓஶ(߁). Fix ߜ	 > 	0. There exists ݊ 	 ∈ ℕ such that ܨ)ߤబ 	) 	>
	0, where  

బܨ 	= {߱	 ∈ (߱)݂‖	:ߗ	 − 	݃(߱)‖ℓಮ(௰) 	>
1
݊

}		.	 

For each ߛ	 ∈   let ߁	

ఊܩ 	= ൜߱	 ∈ బܨ	 ∶ 	 (ߛ)(߱)݂| − |(ߛ)(߱)݃	 >
1
݊
ൠ.		 

 

Since ߤ is defined on the power set of ߗ, there is no problem with measurability of the sets 
	ߛ)	ఊܩ ∈ |߁|	is ܿ-complete and ߤ Also, as .(߁	 	< 	ܿ, the set ܩఊబ  has positive measure for 
some ߛ 	 ∈   Interchanging ݂ with ݃, if necessary, we may suppose that the set .߁	

	ܨ = {߱	 ∈ ఊబܩ	 ∶ (ߛ)(߱)݂	 > (ߛ)(߱)݃	 +
1
݊

}		 

has positive measure. Now, we proceed as in the proof of Proposition (6.3.6).  
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     Approximating the functions ߱	 ⟼ 	߱ and	(ߛ)(߱)݂	 ⟼ 	߱)	(ߛ)(߱)݃	 ∈  by step (ߗ	
functions we may find a set ܨ′	 ⊂ (	′ܨ)ߤ with ܨ	 	> 	0 and some ܿ	, ܿ 	 ∈ ℝ such that for 
almost all ߱	 ∈   we have ′ܨ	

ห݂(߱)(ߛ) −	ܿ	ห <
1

5݊
				ܽ݊݀			ห݃(߱)(ߛ) −	ܿห <

1
5݊

	.	 

Hence, ܿ 	> 	 ܿ 	+
ଷ
ହబ

 and ݉ 	> ܯ	 	+
ଵ
ହబ

 , where ݉ 	= ܯ and (	′ܨ)݂	݂݊݅	ݏݏ݁	 	=
  :We have then three possibilities .(	′ܨ)݃	ݑݏ	ݏݏ݁	

(i) ݉ 	> ܯ	݀݊ܽ	0	 ≥ 0,		 
(ii) ݉ 	> ܯ	݀݊ܽ		0	 	< 	0, 
(iii) ݉ ≤ ܯ		݀݊ܽ	0	 < 	0,	 

which we tackle completely analogously as in the proof of Proposition (6.3.6) (here 
 play the rôle of ݂(߱) and ݃(߱), respectively). Therefore (ߛ)(߱)݃ and (ߛ)(߱)݂
(assuming either (i) or (ii) holds true), we observe that for some ݀	 > 	0 and almost all 
߱	 ∈   we have	′ܨ	

(ߛ)(߱)݂| − 	݀| < 	 (ߛ)(߱)݃|		݀݊ܽ			|(ߛ)(߱)݂| − 	݀| > 	  (4)															.|(ߛ)(߱)݃|

       Since ߤ is atomless, there is a measurable set ܪ	 ⊂ 	with 0 ′ܨ	 < (ܪ)ߤ	 	<  Then .݀/ߜ	
ฮ݀	 · 	 ఊబߜ 	 · 	1ுฮ 	< ఊబߜ where ,ߜ	 	 ∈ ℓஶ(߁) stands for the element that is zero apart from 
the ߛ௧ coordinate where it assumes value 1. Hence, (4) imply that ฮ݂ − ݀	 · 	 ఊబߜ 	 ·
	1ுฮ < 	1 and ฮ݃ − ݀	 · ఊబߜ	 	 · 	1ுฮ > 	1, as desired.  

Corollary (6.3.9)[228]: Under the assumptions of Theorem (6.3.8), for every uncountable 
set ߁	with cardinality less than the continuum, the Banach space ܺ	 = 	 ,ߤ)ଵܮ ℓஶ(߁)) has 
(S), yet it lacks a strictly convex renorming.  

      We have thus proved the first assertion of Theorem (6.3.10); clause (i) has been also 
already observed. It remains to prove clause (ii).  

Theorem (6.3.10)[228]: Assuming that the continuum is a real-valued measurable 
cardinal, there exists a non-strictly convexifable Banach space whose norm satisfies (ܵ). 
Moreover, for any Banach space ܺ we have:  

(i) if dim ܺ ≤ 	2, then ܺ has property (ܵ) if and only if ܺ is strictly convex;  
(ii) if dim ܺ	 > 	2 and ܺ admits a renorming with property (ܵ), then it also admits a 

non-strictly convex renorming with property (ܵ). 

Proof.  

     Here, we shall construct a Banach space with property (S) but without any strictly 
convex renorming. Assume that the continuum ܿ is a real-valued cardinal number. This 
implies that there is an atomless, ܿ-complete probability measure ߤ defined on the power 
set of a set ߗ with the cardinality of the continuum (see, e.g., [234])—here, by a ߣ-
complete measure ߤ (ߣ is an uncountable cardinal) we understand a measure satisfying the 
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following condition: for every cardinal ߢ	 <  ఈழ  of(ఈܣ)  and for every family ߣ	
measurable sets, their union ܣ is measurable and  

(ܣ)ߤ 	= 	sup	{	ߤ(ራ	ܣఈ
ఈ∈ி

		) ∶ 	ܨ	 ⊂  	.{݁ݐ݂݅݊݅	ߢ	

The statement that the continuum is a real-valued cardinal is equiconsistent with the 
existence of a two-valued measurable cardinal ([237]), which is stronger than the 
consistency of ZFC alone. Banach and Kuratowski ([229]) proved that if such a measure 
exists, then the Continuum Hypothesis fails to hold, hence there exists at least one 
uncountable cardinal below the continuum. We will show that for any set ߁ with |߁| 	< 	ܿ, 
the Bochner space ܮଵ(ߤ, ℓஶ(߁)) satisfies Steinhaus’ condition. In particular, if ߁ is 
uncountable, such space does not have a strictly convex renorming as it contains ℓஶ(߁) 
embedded via constant functions and this space does not have such a renorming by a result 
of Day ([231], see also [232]).  

     Assume that a Banach space ܺ with dim ܺ	 > 	2	has a norm ‖·‖	satisfying (S); we can 
assume that this norm is in fact strictly convex, as otherwise we are done. In the case 
where dim ܺ	 = 	3, the assertion is proved by Example (6.3.5), so assume that dim ܺ	 >
	3. Choose any subspace ܻ	 ⊂ 	ܺ	of codimension 2 so that we have ܺ	 = 	ܻ	 ⊕ ℝ⊕ℝ and 
every element ݔ	 ∈ 	ܺ may be typically written as (ߚ,ߙ,ݕ) with ݕ	 ∈ 	ߚ,ߙ,	ܻ	 ∈ ℝ. (In 
fact, the symbols ℝ formally stand for some fixed one-dimensional subspaces of ܺ.) Note 
that ܻ is a strictly convex space of dimension at least 2. Let ‖·‖′ be a new norm on ܺ given 
by the decomposition ܺ	 = 	 ൫ܻ	 ⊕ℓభ 	ℝ൯⊕ℓమ

ℝ, that is  

ᇱ‖ݔ‖ = ඥ	(‖ݕ‖ 	+ 	 ଶ(|ߙ| 	+ 	 	ݔ)														ଶ|ߚ| = 	  	.((ߚ,ߙ,ݕ)

As any two finite direct sums of the same normed spaces are isomorphic, this defines an 
equivalent norm on ܺ which obviously fails to be strictly convex. Next, we shall show that 
it has property (S).  

      For, suppose ݔଵ 	= 	 ଶݔ and (ଵߚ,ଵߙ,ଵݕ) 	= 	  are two distinct points from the (ଶߚ,ଶߙ,ଶݕ)
unit sphere of	(ܺ, ‖·‖′	). If ߚଵ ≠  are two (ଶߚ,‖(ଶߙ,ଶݕ)‖) and (ଵߚ,‖(ଵߙ,ଵݕ)‖) ଶ, thenߚ	
distinct points on the unit circle, where the norm symbol stands for the ℓଵ-norm on ܻ	 ⊕
ℝ. Thus, by manipulating the coordinates ߙ and ߚ we obtain a vector ݖ	of the form 
	ݔ‖ and of arbitrarily small length, so that ,(ߚ,ߙ,0) + ᇱ‖ݖ	 ≠ 	ݕ‖ +  	.	′‖ݖ	

     Now, suppose that ߚଵ 	= 	 ‖ଵݕ‖ ଶ and henceߚ + |ଵߙ| 	= 	 ‖ଶݕ‖ + ଵݕ	If	ଶ|.ߙ| 	= 	  ଶ, thenݕ
it must be ߙଵ 	= ଶߙ−	 ≠ 	0, whence we easily find a desired vector ݖ being of the form 
,ߙ,0) 0). So, assume we have ݕଵ ≠  with the aid of ݖ ଶ. In this case, we can findݕ	
following simple observation:  

Claim (6.3.11). Since ܻ is strictly convex and dim ܻ ≥ 	2, for every pair of distinct 
vectors ݕଵ, ଶݕ 	 ∈ 	ܻ and every ߜ	 > 	0 there exists ݖ	 ∈ 	ܻ	such that ‖ݖ‖ 	< ଵݕ‖ and ߜ	 	+
‖ݖ	 	− ‖ଵݕ‖	 ≠ ଶݕ‖	 	+ ‖ݖ	 	−   .‖ଶݕ	‖

Indeed, if the vectors ݕଵ and ݕଶ are linearly independent, we take ݖ	 =  ଵ for suitablyݕߟ	
small ߟ	 > 	0. Then, ‖ݕଵ 	+ ‖ݖ	 	− ‖ଵݕ‖	 	= ଶݕ‖ ଵ‖ and this is equal toݕ‖ߟ	 	+ ‖ݖ	 	−
ଶݕ‖ if and only if	ଶ‖ݕ	‖ 	+ ‖ݖ	 = ‖ଶݕ	‖ +  which is impossible as the norm is strictly ,‖ݖ‖
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convex. In the case where	ݕଶ 	= 	ߛ ଵ for someݕߛ	 ∈ ℝ, we pick any vector ݖ that is linearly 
independent of ݕଵ and satisfies ‖ݖ‖ <  Then, assuming with no loss of generality that .ߜ	
|ߛ| ≥ 1, the required condition becomes ‖ݕߛଵ 			+ ‖ݖ	 ≠ 	 |ߛ|) − ‖ଵݕ‖(1	 	+ 	 ଵݕ‖ 	+  ‖ݖ	
which again follows from the strict convexity of  . The claim (6.3.11) has been thus 
proved.  

     Now, take a vector ݖ	 ∈ 	ܻ as in the above claim (6.3.11). Then we have:  

ଵݕ‖ 	+ ,ݖ)	 0, 0)‖ᇱ ≠ ଶݕ‖ 	+ ,ݖ)	 0, 0)‖ᇱ
														
ሯልልሰ 

ଵݕ‖ 	+ ‖ݖ	 	+ 	 |ଵߙ| ≠ ଶݕ‖ 	+ ‖ݖ	 	+ 	 |ଶߙ|
														
ሯልልሰ		 

ଵ‖ᇱݕ‖	݁ݏݑܾܽܿ݁)																																																 = 	 ଵߚ	ଶ‖ᇱܽ݊݀ݕ‖ 	= 	  (ଶߚ

ଵݕ‖ 	+ ‖ݖ	 − ‖ଵݕ‖ ≠ ଶݕ‖ 	+ ‖ݖ	 −  	,‖ଶݕ‖

which is true. Therefore, we have checked that (ܺ, ‖·‖′	) satisfies condition (S”).  
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List of Symbols 

symbol  page 
 ଵ  Hardy Space 1ܪ
  Essential Hardy Space 1	ஶܪ
 Homeomorphism 2 ݉ܪ
Im  Imaginary 2 
Re  Real 2 
a.e  almost everywhere   2 
Sup supremum 4 
inf  infinmum 4 
max  maximum 11 
qc quasi conformal  12 
qr  quasi regular  12 
P - qch P – harmonic quasi conformal 12 
P - qrch P – harmonic quasi regular 12 
e - qch euclidean  12 
h – qch hyperbolic harmonic quasi conformal 12 
Belt Beltrami 14 
dist distance  15 
arg argument 19 
mod modular 20 
min minimum 20 
Int Interior  21 
Lip Lipschitz 21 
CH Continuous Hypothesis   34 
ZFC Zermelo – Fraenkel with the axioms of choice 45 
ZF Zermelo – Fraenkel axioms 47 
AD Adjiont action 48 
DC Axioms of dependent choice 48 
 ଵ Lebesgue an the read line  50ܮ
 ଶ Hilbert Space   50ܮ
 ஶ Essential Lebesgue space 50ܮ
Card Cardinality  53 
ܹ,ఈ Sopolev space 60 
  Lebesgue space 60ܮ
supp Support 61 
diam diameter 72 
LUR Locally uniformly rotund  95 
⨂ Tensor product 95 
 ஶ essential Banach space  96ܮ
⊕ Direct sum  96 
⊙ Algebraic Tensor product 100 
WCD Weakly Countably Determined 113 
co closure 113 
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WUR Weakly uniformly rotund  117 
WCG Weakly compactly generator 117 
  Dual of Lebesgue space 127ܮ
ess essential  145 
AC Axiom of choice 159 
det determinate  163 
SPRI Separable projectional resolution of the Identity  206 
PRI projectional resolution of the Identity 211 
osc oscillation 230 
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