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Abstract

The bi-Lipschitz type inqualities with the quasi — isometries of harmonic
quasiconformal mappings and between smooth Jordan domains are studied. The
quasiconformal maps with controlled Laplacian and coefficients estimates for harmonic v
— Bloch mappings and harmonic k- quasiconformal mappings with the curvature of the
boundary are considered. We give the smooth functions, partitions of unity, lines and
spaces and partitions of unity on certain Banach spaces. We show the dual locally
uniformaly rotund and convex norms, the structure of WUR Banach spaces. Smooth
norms and approximation in Banach spaces of type C(k). the three lattice — point problems

of Steinhaus and Steinhaus tilling problem for Banach spaces are dealt with.
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Introduction

Pavlovic [14] proved that any quasiconformal and harmonic selfmapping F of the
unit disk is bi-Lipschitz with respect to the Euclidean metric. We present some recent
results on the topic of quasiconformal harmonic maps. The main result is that every
quasiconformal harmonic mapping w of C1# Jordan domain Q, onto C1# Jordan domain
Q is Lipschitz continuous, which is the property shared with conformal mappings.

A decade ago the late Professor Steinhaus sent a sequence of communications
proposing certain problems about the number of points of the Cartesian lattice covered by
congruent copies of a plane set S. We consider a set, L, of lines in R n and a partition of L
into some number of sets: L = L; U...U L,. We seek a corresponding partition R" =
S1U...U S, such that each line | in L; meets the set S; in a set whose cardinality has some
fixed bound, w;. We show several results related to a question of Steinhaus: is there a set
E < R? such that the image of E under each rigid motion of R? contains exactly one
lattice point

We present a lemma about partitions of unity. It is an open problem whether a non-
separable Banach space with a ¢* norm (or, more generally, a ¢* “bump function”)
admits C* partitions of unity, though many partial results in this direction are known. We
show that the existence of an equivalent dual LUR norm on a dual Banach space can be
characterized by a topological property similar to the fragmentability. We present an
example of a Banach space E admitting an equivalent weakly uniformly rotund norm and
such that thereisno @ : E — c,(I'), for any set I, linear, one-to-one and bounded.

We establish that every K-quasiconformal mapping of w of the unit disk D onto a
C? -Jordan domain Q is Lipschitz provided that Aw € LP (D) for some p > 2. We also
show that if in this situation K — 1 with [|Aw||»py = 0, and @ — D in C1*-sense with

a > 1/2, then the bound for the Lipschitz constant tends to 1. For f(z) = h(2) + g(2)
be a harmonic v-Bloch mapping defined in the unit disk D with ||f[[g, < M, where
h(z) = Y7-1 a, z" and g(z) = ¥7-; b, z™ are analytic in D. We obtain the coefficient
estimates for f as follows: |a,|? + |b,|*? < A,(v,M), where A,(v,M) is given.
Furthermore, we show that for v < 1, lim,_, 4,(v,M) = 0 and for v > 1,
A,(v,M) < 0(n*¥ — 2). We estimate the Jacobian of harmonic mapping of the unit disk
onto a smooth and convex Jordan domain by the boundary function and the boundary
curvature of the image domain.

We work in the theory ZFC; the usual axioms of set theory with the axiom of choice

(AC). AC is used heavily in the main construction as we require, for example, an

enumeration of the equivalence classes of the lattices under a certain equivalence relation.

Recently, using Fourier transform methods, it was shown that there is no measurable

Steinhaus set in R3, a set which no matter how translated and rotated contains exactly one
\"



integer lattice point. We show a new characterisation of the existence of smooth partitions
of unity on a Banach space.

Results are proved about the Banach space X = C(K), where K is compact and
Hausdorff. We concern smooth approximation: let m be a positive integer or co; we show
that if there exists on X a non-zero function of class €™ with bounded support, then all
continuous real-valued functions on X can be uniformly approximated by functions of
class C™. Steinhaus proved that given a positive integer n, one may find a circle
surrounding exactly n points of the integer lattice. This statement has been recently
extended to Hilbert spaces by Zwolenski, who replaced the integer lattice by any infinite
set that intersects every ball in at most finitely many points.
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Chapter 1
Bi-Lipschitz Type Inequalities with Quasi-lsometries and Quasiconformal

We find explicit estimations of bi-Lipschitz constants for F that are expressed by
means of the maximal dilatation K of F and |F~1(0)]. Under the additional assumption
F(0) = 0 the estimations are asymptotically sharp as K — 1, so F behaves almost like a
rotation for sufficiently small K. We show versions of the Ahlfors—Schwarz lemma for
quasiconformal euclidean harmonic functions and harmonic mappings with respect to the
Poincaré metric. In addition, if - has C%# boundary, then w is bi-Lipschitz continuous.
These results have been considered.

Section (1.1): Quasiconformal Harmonic Mappings

SetD:={z€eC:lz| <1}, T,.={z€C:|z| = r}forr >0and T: = T;.

Given K =1 and domains Q; and Q,in C write QC(Q,,Q,; K) for the class of all K-
quasiconformal mappings of Q, onto Q, and let QC(Q,Q,;K) be the class of all
mappings in QC(Q4,Q,; K) that are harmonic on{;. In case Q, = Q,we write shortly
QC(Qy; K) = QC(Qy,Qy;K) and QCH(Qy; K): = QCH(Qy, Qy; K).

There are a lot of results providing intrinsic characterizations of the boundary Valued
mapping f for a mapping F € QC(D): = Ug<; QC(D; K) ; cf. e.g. [6], [10] and S [18]. A
similar problem may be posed in the case where € QCH(D) := Ug<1 QC(D; K). In [9]
and [11] several results were established that provide intrinsic characterizations of f in
terms of the Cauchy and Cauchy-Stieltjes singular integrals involving f. The results also
provide motivation for the further study of such integrals. We express the Cauchy singular
integral of the derivative f' by means of two functions V[f] and V*[f] defined in (13) and
(14), respectively; cf. Theorem (1.1.2). It is done in the case where f is a sense-preserving
homeomorphic self-mapping of T and f is absolutely continuous on T. The rest part with
estimating V[f] under the additional assumption that f is the boundary valued mapping of
F e QC(D) and F(0) = 0; see Theorem (1.1.4) and Corollary (1.1.6). We gather a few
results related to formal derivatives dF and dF of F € QC(D) in the context of Hardy
spaces H1(D) and H®(D). They seem to be known, but we prove them for the sake of
completeness of our considerations, where we present applications of Corollary (1.1.6).
We prove Theorem (1.1.10) which gives asymptotically sharp estimations for V[f] and
V*[f]las K = 1 tends to 1, provided F € QCH(D; K): =. We use them for the bi-Lipschitz
type estimations for f (Theorem (1.1.11)) and F (Theorems (1.1.12) and (1.1.13)) under
the additional assumption F(0) = 0. All the estimations are asymptotically sharp as
K — 1. These theorems combined with [11] essentially improve the eminent results by
Pavlovic [14].

We recall that the Cauchy singular integral C;[f] of a function f: T - C
Lebesgue integrable on T is defined for every z € T as follows:

_ 1 (f@) 1 fw
Crlf1(z) = PVZ_m'T_[

du = lim — du (D)

u-—z e-0% 27l u-—z
T/T(z€)
Whenever the limit exists and Cr[f1(z) := 0 otherwise, where T(e™ e):={e" €
T:|t—x| < e}. Here and subsequently, integration along any arc I c T is understood
under counterclockwise orientation and the limit operator is understood in C with the

Euclidian distance. Given a function f:T — C and z € 2 T we define




f'(z): = Iimw 2)
u—z -
Provided the limit exists and f'(z):= 0 otherwise. Write Hom+(T) for the class of all

sense-preserving homeomorphic self-mappings of T. Each f € Hom+(T) defines a unique
continuous function f satisfying 0 < £(0) < 2m and

f(e) = elf®  teRr (©))
Actually, f is an increasing homeomorphism of R onto itself satisfying
f(t +2n)—f(t)=2n, tER, (4)

Moreover, from (3) it follows that for every t € R, f is differentiable at e iff f is
differentiable at t, and for every such point t,

fl(eit)eit — f/(t)eif(t) — |f’(€it)|f(€it). (5)
Thus by Lebesgue’s classical theorem on the differentiation of a monotonic function, for
each f € Hom™(T) the limit in (2) exists fora.e. z € T.
Lemma (1.1.1)[1]: Suppose that f € Hom™(T) is absolutely continuous on T and that f is
differentiable at a point z € T. Then both the following limits exist and

zf(z "(u 1 u) — f(2)|?
lim Re f(_) f f'( )du I f lf (W) — f(2)| dul. (6)
£—0+ i u—z e-0+ 21T lu — z|?
T/T(z,€) T/T(z,€)
Moreover, both the following limits simultaneously exist or not and in the first case
zf (z "(u 1 u)f(z
lim Im f(,) f Ut )du = — lim — f Mldul. (7
£—0+ Tl u-—2z £—0+ T lu — z|?
T/T(z,€) T/T(z,€)

Proof. Fix z=¢e"* € T and ¢ € (0; 7). Since f is absolutely continuous on T, we see,
integrating by parts, that

ffw) d 1
= | @ - @] d
7@ FED 1) £ - 1)
_f@Z) -1z zg) — f(z u) — f(z
S a | T ®
T/T(z,€)
Where z.: = ¢!+ and z’ := ¢!*~9) Furthermore,
zf (2) fW-f@ , 1 2-2f(2)f(u)
i S @ | Tl ®)
T/T(z,€) _T/T(z)
_ 1 f IfWI? = 2f(2)f () + |f (2)]? \dul
T 2m lu — z|? ul
T/T(z,€)

Thus combining (8) and (9) we obtain

o e
T/T(z,) € €
1 If (W) - f(2)]? 1 Im|f (W)f (2)|
T/T(z,) T/T(z,£)

Assume now that f is differentiable at z. Then
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i [f(ZZ)_]Z”(Z) f(zg) f(Z)] - @ =0 an
as well as
1 If (w) - f(2)I? If (W) - f(2)]?
el—|>0+27'[ /_(]- ) lu — z|? |du| = 27‘[ lu — z|2 ldu| < +c0 (12)

Thus combining (10) with (11) and (12) we obtain the assertion of the lemma, which ends
the proof.
Given a continuous function f: T — C and z € T set

1 _ 2
vinter=ip o [ L2, (3
T/T(z,€)
1
riner=-jip L [ VO, 14)
T/T(z,€)

provided the limits exist as well as V[f](z): = +oo and V*[f](z) := 0 otherwise.
Theorem (1.1.2)[1]: If f € Hom™ (T) is absolutely continuous on T, then for a.e.z € T the
limit in (1) with f replaced by f' and the limits in (13) and (14) exist, and

2C7[f'1(2) = zf (D (VIf1(2) +iV*[f1(2)). (15)
Proof. Since f(T) =T is a rectifiable curve, it follows that f' is a Lebesgue integrable
function on T. Then by [4] we see that the limit

L (et) cot . 16
D7 eot f f(et) cor— (16)
_ e<|t—x|=m
exists for a.e. z = e** € T. Moreover, as shown in the proof of [9], the following equality
1 f'w)
— 17
2mi f u—z du a7
T/T(z€)
1 . [ . x—t
- ! it _ ! it
e f f(e )dt+4n f f(e )cot > dt
e<|t—x|=m e<|t—x|=m

Holds for all z = e** € T ande € (0; m]. Thus the limit in (1) with f replaced by f’ exists
for a.e. z € T and the theorem follows directly from Lemma (1.1.1).
We recall that for each K > 0 the Hersch—Pfluger distortion function @ is defined by the
equalities

P (r):=pu  (u(r)/K),0 <r <1; x(0):=0; Ox(1):= 1, (18)
Where u stands for the module of the Grotzsch extremal domain D /[0; r]; cf. [5] and [7].
Lemma (1.1.3)[1]: For every K > 1 the following inequalities hold:

1/V2

1+1/K
1< M, = f CI)K(r) dr < K225(1—1/K2)/2 (19)
—_ K- T[ r ,—1 — r2 —_
0
and
1/V2

4f <‘D1/K(T)>1+1/K dr K 25(1-1/K?)/(2K) 20)

1> Ly =— >
R Vi—r2_  K:2+K-1

0
In particular, Ly —1and My » lasK — 17,

3
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Proof. Fix K > 1. Substituting r: = sin t we have

/4
T @(sin )\ 1)
K= sint
0
and
/4 )
L :ff M v dt (22)
K= n sin t '

0
Since sint > (4t)/(mV2) fort € [0; /4], we conclude from the Hiibner inequality (cf.

[2] or [7])

/K < O, (r) < 41-1/K rl/K, 0<r<1K?2=>=21, (23)
That
d . (sint 4t MK
< Ks(int ) < 41-1/K <n\/§_) o<t<m/4.

This together with (21) yields (19). From (18) it follows that the composition @y o @4/ is
the identity function on [0; 1]. Hence and by (23),

> @y (r) = 417K K, 0<r<l1K:=1 (24)
Using once more the estimation sint > (4t)/(mv2) for t € [0; /4] we conclude from
(24) that

1> MZ 41—1/K<i)1( 1,0 <t< 71-/4.
sint 2
This together with (22) yields (20). From the estimations (19) and (20) it easily follows
that Ly, — 1 and M, —» 1 as K — 1%, which ends the proof.
Given a continuous function f: T — C and z € T set

fT(z) = sup ) - /() € [0; +oo], (25)
T ) - F @)

B . f(u) —f(z e

f(2) = ueITD/Ez} u—=z € [0; +c0). (26)

Theorem (1.1.4)[1]: Given K =1 and F € QC(D;K) let f be the boundary valued
function of F. If F(0) = 0, then
1- 1/K

_ -1/
L(F~ @) """ < VIFl2) £ MK(f*(2)) zZET. @7)
Proof. Since F € QC(D; K) andF (0) = 0, we see by the quasi-invariance of the harmonic
measure that forevery t € [0 — ;0 + 1],
£ () —f(9)|>.

WOk f(9)|
4

(28)

t—0
Dy /xfc < C0S— — SdJK(cos

see e.g. [8]. Applying now the identity ([2])
2
Op(r)? + @y (VI-72) =10<r<1, (29)

We obtain for everyt € [0 — m; 6 + m],

< 1f () - f(@)l) 0 < If () - f(9)|>

D/l (30)

z = %x\® 4
Given 6 €R and te[8—m 6 +m] set a:=(t—0)/2 and B:= (f(t) — f(8))/2.
Then |a| < /2 and |B]| € m. from (28) and (30) it follows that
4



2
< < < <
la] < [Bl =1 ol < il and ] s
sin - sin = C0S COS -
and
D,y K<Sln7) sml’BI COS 1] Dy (COS%)
la| = 18] = < <— 2 <1and 1< 2 —
sin 12l sinl2l cos 12l coslel
2 2 2 2
Hence
min ,
SlnM cosM
2 2
sin Dy (Sln %) % (cos %)
< | . | < max , (31)
Sina smM cosM
2 2

From [2] it follows that for any fixed K = 1,(0;1] 3t — ®(t) t/X is a decreasing
function and (0; 1] 3 ¢t +— @4 (¢t) t ¥ is an increasing function. Then (31) yields

. a
CI>1/K <sm%) 3 sinf 3 Oy <5m|2|)

el “lsina | T |l |
sin &= sin

Fixz = e® € T.If f*(2) = +oo, then the second inequality in (27) is obvious.
So we may assume thatf *(z) < +oo. Applying (32), (13) and (25) we obtain

V[f]()——fM

u-— z

f(f ())1 1/K

o+m [ . f(t) — f(6)
1 e e
=(f+(z))1‘1/’(§ f - tz dt (33)

60— sin

(32)

|dul

1+1/K

f(u) f( ) |

1+1/K

6+m t— oy VK

1 D (sin )

< (f+ 1-1/K _—_ f 2 .

<@ 5 Y] dt
O—-1 Sin T

Thus substituting s:=¥ and using (21) we derive the second inequality in (27).

Applying now (32), (13), (26) and following calculations from (33) we obtain

_ 1+1/K

- 1-1/K 1
VIfI@) = e | | —— dt.

0= sin —z—




Thus substituting s: = % and using (22) we derive the first inequality in (27), which

completes the proof.
Lemma (1.1.5)[1]: Suppose that f € Hom*(T) is absolutely continuous on T. Then

sup f*(z) = ef: = ess suplf'(2)]. (34)
zZ€T zZ€T
as well as
inf f7(2) = dy = ess inf|f'(2)]. (35)
Proof. From (25) and (26) it follows that
fF@O<If'@AI=<f"(2) (36)
for each z € T such that the limit (2) exists. Hence
iQ;f_(Z) <d; <efsupf(z). (37)
z Z€T

Assume now that f is absolutely continuous on T. If ef = +co, then (37) yields (34). Thus
we may confine considerations to the case ef < +co. Then

/@) - f0)| = ff’(s) ds| < eflt—x| tx€R. (38)

Fixu = e''; z=e™ €T. Since e; > 1 and the function sin is increasing and concave on
[0; /2], we conclude from (38) that

If (W) — f(2)| = 2sin ‘M

Provided |t — x| < /ef .If m/ef < |t — x| < m,then

. D t—x
< 2sines | < 2esin |T| = erlu — z|

e hu — 2| = 2¢gsin [ ] 2 2ef%|t7x| >2>|f(w) - f).
Thus
lf(w) —f(@)| <eflu—z, wuzeT. (39)
Combining (39) with (37) we obtain (34).
If dr = 0, then (37) yields (35). So we may assume that dy > 0. Then

t
|f(t)—f(x)| = ff’(s)ds > de|t — x|, t,x €R,

and so the inverse mapping f~! is also absolutely continuous on T. Then for a.e. z €
T,(f"1'(z) = 1/f' (f'(2)) and, in consequence, e;-1 = 1/d,. Applying now (39) with
f replaced by f~1 we get forany u,z € T,
delu —z| = de|f T (f (W) = FH(F(2))] < dpep-1jlf (W) — f(2)]
=|f(w) - f(2I. (40)

Combining (40) with (37) we obtain (35), which completes the proof.
Corollary (1.1.6)[1]: Given K > 1 and F € QC(D;K) let f be the boundary valued
function of F. If F(0) = 0 and f is absolutely continuous on T, then

Lid; ™ < VIf1(2) = 2 Re[zf @) Crlf ()] < Mycdy ™" (41)
for a.e.z €T, where Mg, Lk, efand df are defined by (19), (20), (34) and (35),

respectively.
Proof. The corollary follows directly from Theorems (1.1.4) and (1.1.2) and Lemma
(1.1.5).



We collect results that seem to be known. However, we prove them for the sake of
completeness of our considerations.
Lemma (1.1.7)[1]: Given K =1 and a domainQ in C letF € QCH(D,Q;K). If Qis
bounded by a rectifiable Jordan curverl’, then

K+1
sup | |[0F(2)lldz] < IT']4, (42)
0<r<i
Ty
And
K—-1
sup | |[0F(2)lldz] < IT']4, (43)

0<r<1

Where |T'|; is the length of T. In particular, dF,dF € H'(D).
Proof. Write f for the boundary valued function of F. Then

2n
F(z) = PIfl(2):= f f(eis) P.(t —s)ds, z=re' €D, (44)
Where i
1 1+re
P.(6): = —Re 0<r<160€R, (45)

1— 19 !
is the Poisson kernel function. Since the functlon P IS symmetric, we get

0 0
—P.(t—s)=——P(t—s), t,sER.

ot ds
Then integrating by parts we conclude from (44) that
2T
0
—F(re‘t) f f(e‘s) P (t —s)ds = —f f(e‘s)gPr(t —s)ds (46)

0
27‘[

:f P.(t —s)df(e”), 0<r<1te€R,

0 .
Because the function s — f(e**) is of bounded variation on [0; 2m]; the last integral is

regarded as the Stieltjes one. Fix r € (0;1). Then by (46),
n

%F(reit) = Al_rl]o B (t — 2k /n)[f(e?™¥/m) — f(e2™k=DU/n)| t € R.  (47)

k=1
Hence, applying Fatou’s limiting integral lemma, we obtain
2T

0 .
f |a F(re‘t)
0

dt

2T n
= f lim "B (¢ = 2k /m)[f(e2™/m) = f(e2m¢-Dim)]| de (48)
0 k=1
2T n
< timinf | )" (e = 2ke/n) [f(e2™/m) — (e k- 0im)] | ar
0o lk=1

Since



M:

P (t _ Zﬂk/n) [f(BZTEki/n) _ f(BZTE(k—l)i/n)] dt

=~
I

IA

1
21

['Ic(eani/n) — f(e2mle-Di/m)| f |B(t — 2mk/n)|dt
0

f

IA

20

(82nkz/n) f(BZn(k 1)L/n)| |F|1

k=
and since for z = ret

1]
FH—‘

d . _
aF(re‘t) = i[zaF(z) — Z_aF(z)], (49
we conclude from (48) that

f(laF(z)l dF (2))|dz| < f |z0F (z) — zOF (2)| dt < |T|;. (50)

By the assumptlon the mapping F is K- quasmonformal which means that
(K + 1)|0F(2)| < (K — D)|oF (2)],z € D. (51)
Hence by (50),

f(|ap(z)| +|0F())ldz] < K f(a|p(z)| 167 (2)|)ldzl < KITl,.

Combmmg this with (50) and (51) leads to (42) and (43).

Corollary (1.1.8)[1]: Given K > 1 and a domain Q in C let F € QCH(D,Q;K). If Q is
bounded by a rectifiable Jordan curvel, then the boundary valued function fof F is
absolutely continuous.

Proof. From Lemma (1.1.7) it follows that 0F, dF € H*(D). The classical result of Riesz
[3] says that there exist functions H,G: D — C continuous on D, holomorphic on D and
absolutely continuous on T and such that H'(z) = dF(z) and G'(z) = 0F(z), z € D, i.e.
H and G are primitive functions to dF and dF on D, respectively. Moreover, F has a
continuous extension to D. Hence for each z € T,

f(z)—F(0) = f dF (w)du + dF (u)du (52)

= f H' (Wdu + G @du = H(z) — H(O) + G&) = G0),
14 B
where y(t): = tz,t € [0;1]. From (52) we see that f(z) =H(z) + G(z) + F(0) —
H(0) — G(0) for z € T. Thus f is an absolutely continuous function on T.
Modifying the proof of Lemma (1.1.7) we may easily derive the following lemma.

Lemma (1.1.9)[1]: Given K = 1 and a Jordan domain Q in C let F € QCH(D, Q; K).
If the boundary valued function f of F satisfies the inequality

If(w) — fW)| <Llu—v|, wverT, (53)
for some positive constant L, then

sup|oF(2)| <

z€D

1
L, (54)




And
_ K—1
sup|aF(z)| < — L. (55)

z€D
In particular, dF,0F € H* (D).
Proof. From (53) it follows that € is bounded by a rectifiable Jordan curvel'. Hence the
function s — f(e*) is of bounded variation on [0;27] and, as in the proof of Lemma
(1.1.7), the equality (47) holds. From (53) it also follows that for all n € N and k =
1i2i inl
|f(62nki/n) _ f(BZn(k—l)i/n)| < L|62nki/n _ eZn(k—l)i/n| (56)

= 27” = L(n/m)sin(m/n).

Fix r € (0;1). Since(n/m)sin(w/n) - 1 as n — oo, we conclude from (47) and (56) that

forevery t € R,
2T

|6 F(re®)| <L Ilm L(n/m)sin(mt/n) z B.(t— 27tk/n)— = Lf P.(t —s)ds
= L. " (57)
Since for z = re't the equality (49) holds, we conclude from (57) that
r(laF(z)l — |5F(Z)|) < |Z@F(z) — z_c'_iF(z)| <L (58)
By the assumption, the mapping F is K-gc., which means that (51) holds. Hence by (58),
r(0|F (2)| — |0F (2)]) < rK(|0F ()| — |0F (2)|) < KL. (59)

Combining the inequalities (58) and (59) with (51) we obtain the inequalities (54) and
(55), because both the functions 9F and dF are holomorphic on D.

Theorem (1.1.10)[1]: Given K <1 and F € QCH(D; K) let f be the boundary valued
function of F. Then fora.e.z € T,

VIfI(2) +iv'[f1(z) -5 (K + =) f'(2)| <
| 2 (%)

In particular forae.z€eT,

|17 @1 Vi@ < KiF @] and W@ <3 (k-2) F'@)| (62)

Proof. From [11] it follows that f'(z) # O for a.e. z € T. By Corollary (1.1.8), f is
absolutely continuous onT. Hence and by [9] we obtain

(K - —) IF' @)1 (60)

Crlf'1(z) Crlf'1(z)
(K+l)l—2w S(K—l)‘l—ZW fora.e.z €T,
which leads to
Crlf'1(z) 1 1 1 1
‘2 (2) 2<K +—)‘ 2<K _E) fora.e.z€T,. (62)

From Theorem (1.1.2) and (5) it follows that for a.e. z € T

Crlf 1) _ 2f(2) et
2y = iy VU@ + 7 [71(@) = lf()l(V[f](Z)+lV [F1)

This combined with (62) yields (60)). The inequalities (61) follow directly from (60)),
which ends the proof.

Theorem (1.1.11)[1]: Given K =1 and F € QCH(D; K) let f be the boundary valued
function of F. If F(0) =0, thenfora.e.z € T,

9



25(1—1(2)/2
K+ K_DE~ (Lx/K)E < If'(2)] < (MK)X < K3K25K=1/K)/2 (63)

where My and Ly are defined by (19) and (20), respectively.
Proof. By Corollary (1.1.8), f is absolutely continuous on T. Then Corollary (1.1.6) and

the first inequality in (61) show that for a.e. z € T, LKd}_l/K < K|f'(2)| and |f'(2)| <
1-1/K

KMye, , Where e and dy are defined by (34) and (35), respectively.
Hence LKd}_l/K < Kdy ande; < KMKefl_l/K , and consequently, we obtain the following
implications

[0 <d; = (Lg/K)* < df|and [ef < +00 = e < (MgK)¥]. (64)

For any n € N let D, :={z € C:|z| <n/(n+ 1)} and ¢, be the conformal mapping
from D onto F~1(D,)) such that ¢,(0) =0 and ¢;,(0) > 0. Then E;:= (1 + 1/n)F o
¢, € QCH(D;K) andE,(0) =0,n € N. Fix n € N. Since F is a C?-diffeomorphic self-
mapping of D we see that F~1(D,,) is a domain bounded by a C2-Jordan curve. Applying
Kellogg-Warschawski theorem ([16], [17]) we see that ¢, has a continuous extension v,
to the closed disk D and ,,(z) # O for allz € D. Thus the boundary valued function f,, of
E, is a Cl-diffeomorphic self-mapping ofT, and so0 < dr < er < +oo. By (64) and
Lemma (1.1.5) we see that for all u,z € T,u # z,

" lu — 2|
Setting F,: = F we conclude from [7] that
|E,(2) — E,(w)]| < 16|z — w|YX.z,w €D,n=012, ...
Hence forall z € T andw € D,

u2) ~ )1 < 3212 — 0]Y¥ + 16lg,(0) ~ 0K+ nEN.  (66)

From [15] it follows that ¢, (w) - w as n — o for each w € D. Thus given ¢ > 0 and
z € T we can choose w € D and &, € N such that the right hand side in (66) is less than ¢
as n > n,. This means that for every z € T, f,,(z) = f(z)as n — 0. Since f is absolutely
continuous on T, (65) and Lemma (1.1.5) then show that (L, /K)¥ < dr <ef < (M K)K.
This and Lemma (1.1.3) yield (63), which ends the proof.
Theorem (1.1.12)[1]: Given K = 1 and F € QCH (D; K) assume thatF(0) = 0.
Then forall z,w € D,

IF(2) — F(w)| < K(McK)¥|z — w| < K3K+125(K=1/K)/2|, _ )] (67)
As well as

e, < (MgK)X n€N. (65)
fn

?{K 25(1—K2)(3+1/K)/2
|F(z) — F(w)| = WV ] = K3K+H1(K2 + K — 1)3F

Where My and Ly are defined by (19) and (20), respectively.
Proof. Fixz, w € D. Settingy(t) := z+ t(w — z),t € [0,1], we get
1

|z — w], (68)

d
IFG) = F@) = | [ 2 Fr®)de
0

- f OF(y(t) +y' () +IF(r(®)y'®dt|  (69)
0
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< f (16F (v ()] +7'©) + [3F©®)]) dt |2 - wl

0 -
< sug(laF(u)I +|0F (W)|) Iz — wl.
ue
From Corollary (1.1.8) and Lemmas (1.1.5) and (1.1.9) it follows that
Sup(laF(u)l + |5F(u)|) |z — w| < Key, (70)
Uu€eD

Where f is the boundary valued function of F. Combining (69) and (70) we conclude from
Theorem (1.1.11) that the estimation (67) holds. Setting now y°(t) := F~1(z + t(w —
z)),t € [0,1], We get

1

1

2 - ol = [ | F0@) [t = [[or(©) + v © + 3 ()7 @] at
0

0

> [ (10F (r@)lly' ©1 - |37 () [ @) e (71)
0

> Lilg)(laF(u)I — |5F(u)|)f|y’(t)ldt
0

i |0F (W)|? — |5F(u)|2
~ued |9F (u)| + |0F (w)|
From [12] it follows that |0F (u)|? — |5F(u)|2 > diforallu € D.
Hence and by (71) and (70) we get

IF~1(2) — F~ ().

i
|F@) = F@)l 2 lz ol (72)

Applying now Theorem (1.1.11) we obtain the estimation (68), which ends the proof.
Applying a variant of Heinz’s inequality from [13] we derive an alternative estimation to
(68) like below.

Theorem (1.1.13)[1]: Given K = 1 and F € QCH (D; K) assume that F(0) = 0.

Then for allz, w € D,

1 2
|F(z) — F(w)] ZEmaX{E,L",}}lz—wl, (73)
Where
D1/ (1/V2)?
L= 2 f at (74)
Com O (VE) @1/ (VI—t)

Proof. From (71), (51) and [13] we see that
1

- 2
12— 0l 2 jnf (107 GOl = [3F]) [ Iy Ol de = 7 nfloF@IIF @) - F~ ()]
0

>1 2 * -1 -1
_Emax{E,LK}lF (z) — FY(w)],

which leads to (73).
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Section (1.2): Harmonic Quasiconformal Mappings
It is convenient to give a few comments about the notation.
Let U = {z € C:|z| < 1}denote the unit disc.

We write qc, qr,p-qch, and p-grh instead of quasiconformal, quasiregular, p —harmonic
quasiconformal and p-harmonic quasiregular, respectively and e-qch, h-qch instead of
euclidean and hyperbolic harmonic quasiconformal. Basic definitions will be given.

The Schwarz lemma attracted a lot of attention and found numerous applications in
geometric function theory.

It seems that investigations concerning the Schwarz lemma have been primarily
concerned with the following question:

For our purpose the following are relevant.
Lemma (1.2.1)[19]: If p >0 is a C? function (metric density)on U and the Gaussian
curvature satisfies K, < —1, then p < 1.

Sometimes we refer to this result as the Ahlfors—Schwarz lemma.

In [30], Yau mentioned that in order to draw a useful conclusion in the case of harmonic
mappings between Riemannian manifolds, one has to assume the mapping Iis
quasiconformal. Wan [29] was the first one who showed a result in a special situation
concerning Yau’s suggestion:

Lemma (1.2.2)[19]: (Wan). Every hyperbolic harmonic quasiconformal diffeomorphism
from U onto itself is a quasi-isometry of the Poincaré disc.

In particular, the method of the proof is interesting. It provides at least a partial motivation
to study this approach and raises the following question:

[24], proved an inequality of opposite type of the Ahlfors—Schwarz lemma:

Lemma (1.2.3)[19]: If H >0 is a C? metric density on U for which the Gaussian
curvature satisfies K;; = —1land if H(z) tends to+oo, when |z| tendsto 1 —, then 1 < H.

We will use this lemma together with the Ahlfors—Schwarz lemma.

We prove an analogue of the Lemma (1.2.2) holds for quasiconformal euclidean
harmonic mappings and we generalize it to quasiregular harmonic mappings with respect
to the metric p, whose curvature is bounded from above by a negative constant.

It is interesting that we have a similar estimate of the hyperbolic distance for qc
euclidean harmonic mappings and harmonic mappings with respect to the Poincaré metric,
which are different in many respects.

Let f be aK-gc euclidean harmonic diffeomorphism from a domain D on to itself. We
show that f is a(1/K, K) quasi-isometry with respect to the Poincaré distance in the case
where D is the isc or the upper-half plane. We refer to these results as the unit disc and the
half plane euclidean-gch versions, respectively.

The proofs of these cases cannot be transferred to one another using conformal mappings
because the euclidean metric is not invariant under them.

Theorem (1.2.4)[19]: (The half plane and the unit disc e-qch versions). Let f be aK-qc
euclidean harmonic diffeomorphism from the upper half plane H(or the unit disc) onto
itself. Then f is a(1/K, K) quasi-isometry with respect to the Poincaré distance.

It is interesting that we use completely different techniques for the disc and the half plane.
In the case of the unit disc we use a curvature estimate (see below). In the case of the
upper half plane, the following known fact plays an important role:
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Lemma (1.2.5)[19]: Let f be an euclidean harmonic 1-1 mapping of the upper half-plane
H onto itself, continuous onH, normalized by f(o0) = coand v = Imf. Then v(z) =
cIm z, where c is apositive constant. In particular, v has bounded partial derivatives on H.
This lemma is a corollary of the Herglotz representation of the positive harmonic function
v(see for example [21]).
For information regarding the quasi-isometries, with respect to the hyperbolic metric for e-
gch mappings with general codomains, see [27].
We extend Wan’s result to grp-harmonic mappings:
Theorem (1.2.6)[19]: (p-grh version). Let R be a hyperbolic surface with the Poincaré
metric density 4,5 a hyperbolic surface with metric density and let the Gaussian curvature
of the metric ds? = p(w)|dw|?be uniformly bounded from above on S by the negative
constant —a. Then any p-harmonic k-quasiregular map f from R into S decreases
distances up to a constant de-pending only on a and k.

The basic properties of p-harmonic functions will be briefly discussed.
A proof of the above result can be based on an application of the uniformization theorem
with the fact that p, = a(1 — k?)p o f|f,|? is an ultrahyperbolic metric density.

Using the conformal automorphisms ¢,(z) =

pseudo-hyperbolic distance on U by 6(a, b) = Iqba(b)l a b € [U
The hyperbolic metric on the unit discUisA|dz|?, where

2
Mz) = (1 |z|2) '
We say that Ais the hyperbolic metric density. The hyperbolic distance on the unit disc U

IS

1+5(Z,(1)): n1+|1—zw
1-6(z,w) 1_|

d,(z,w) =In

1-Zw
We also use the notation dinstead of d;.
The classical Schwarz lemma states: If f: U — U is an analytic function and if f(0) =0
then |f(z)| < |z| and |f'(0)| < 1. Equality|f(z)| = |z|, with z # 0O, or|f'(0)] = 1 can
occur only for f(z) = e**z, where «a is a real constant.
It was noted by Pick that the result can be expressed in invariant form. See following
result as the Schwarz—Pick lemma.
Theorem (1.2.7)[19](Schwarz—Pick lemma). Let F be an analytic function from the unit
disc into itself. Then F does not increase the corresponding hyperbolic (pseudo-
hyperbolic) distances.
A Riemannian metric given by the fundamental form

ds? = p(dx? + dy?) = p|dz|?
ords = \/,B|dz|,p > 0, is conformal to the euclidean metric. We call p a metric density
(scale) and denote by d,, the corresponding distance.

If p >0 is a C?function on U, the Gaussian curvature of a Riemannian metric with
density p on U is expressed by the formula
1
K=K, = —zln p.
We also write K(p) instead of K,,.Ifs > 0 is a constant, it is clear that K(sp) = s 1K (p).

A metric p|dz|? p =0, is said to be ultrahyperbolic in a region 2 c C if it has the
following properties:
13



(@) p is upper semicontinuous; and

(b) at every z, withp(z,) > O there exists a supporting metric density p,,0f class C? in a
neighborhood Vof z,, such that py < p and K, < —1inV, while py(z,) = p(z)-

If a metric p|dz|? is ultrahyperbolic in a region 2 c C we say that p is an ultrahyperbolic
metric density.

Ahlfors (see [20]) proved a stronger version of the Schwarz-Pick lemma and of the
Ahlfors—Schwarz lemma.

Theorem (1.2.8)[19] (Ahlfors—Schwarz lemma). Suppose p is an ultrahyperbolic metric
on the unit discU.Then p < A.

Sometimes we refer to this result as the Ahlfors—Schwarz lemma or the non-analytic
form of the Schwarz lemma. If we wish to be more specific, we refer to this result as the
Ahlfors ultrahyperbolic lemma.

Now, we can state Theorem (1.2.8) in the following form: If p is a metric density on U
such that K,,(z) < —a, for some a > 0, then the metric a p is ultrahyperbolic and therefore
ap < 1.

The notation of an ultrahyperbolic metric makes sense and the theorem remains valid if 2
is replaced by a Riemann surface.

In a plane region 2 whose complement has at least two points, there exists a unique
maximal ultrahyperbolic metric and this metric has constant curvature of —1.

The maximal metric density is called the Poincarémetric (density) in £ and we denote it by
Aq. It is maximal in the sense that every ultrahyperbolic metric density p satisfies p < 4,
throughout 0.

Ultrahyperbolic metrics (without the name) were introduced by Ahlfors. They found
many applications in the theory of several complex variables.

Let R and S be two surfaces. Let o(z)|dz|? and p(w)|dw|? be metrics with respect to the
isothermal coordinate charts on R and S, respectively, and let f be a C%-map from R to S.
It is convenient to use the notation in local coordinates:

df = pdz+ qdz,wherep = f,andq = f .
We also introduce the complex (Beltrami) dilatation

uf = Belt[f] = %

where it is defined.
We say that a C%-map f from R to S is p-harmonic (harmonic with respect to the metric
density P or, shortly, harmonic) if f satisfies the following equation:
fzz + (logp)y ° qu =0.
For basic properties of harmonic maps and for further information see Jost [22] and
Schoen and Yau [28].

Note that if R and S are domains in the complex plane and if o and p are the euclidean
metric densities (that is ¢ = p = 1), then f is euclidean harmonic.

If f:U — Uis a A-harmonic mapping, we call f a hyperbolic harmonic or a harmonic
mapping with respect to the Poincaré metric.

Let R and S be two Riemann surfaces and f: R — S be a C%-mapping. If P is a point on
R,P = f(P) € S,¢ a local parameter on R defined near P and 1 a local parameter on S
defined near P, then the map w = h(z) defined byh = o f o ¢~ 1|, (Vis a sufficiently
small neighborhood of P) is called a local representation of fat P.The map f is called k-
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quasiregular if there is a on stant k € (0,1) such that for every representation h, at every
point of R, |h;|k|h,|.
If a k-qr apping is one-to-one, we call it a k-gc mapping. Also, if f is a k-qc mapping, we

use the notation K = %’; and we also write that fis K-qc.

We write:
Ly = Ly(2) = |£(2)] + | ,(2)] andly = () = I£(2)] = Io(2)],
If £,(z) andf;(z) exist.
The following statements are useful in applications:

L(2) 1
f
<c . Z €
1-1f@IF~ " 1-|z?
Then dp (f (1), f(22)) < c1dn(21, 22).
2 2 C2 2!
1-1f(2)I 1-|z|
Then dn(f (21), f(22)) = c2dn(21,22).
The proofs are straightforward. Note that in the proof of 3A it is convenient to consider the
hyperbolic geodesic joining z;and z, and in the proof of 3B the hyperbolic geodesic
joining f(z,) and f(z,).
Proposition (1.2.9)[19]: (The wunit disc euclidean-qch version). Let f be ak-
quasiconformal Euclidean harmonic apping from the unit disc U into itself. Then for all
z € U we have

U, (75)

z €U, (76)

1-1f@)I?
@) ST

Notice that as a corollary we get(1— |Z|2)Lf(z)4de(z), where  df(z) =
dist(f (z),0U).

Proof. Let us define a(z) = (1 — k)?A(f (2)|f,(2)|?,z € U. Since f is harmonic
inU,l.e. f;,(z) =0,z € U, then £, is holomorphic in U. By Lewy’s theorem f, does not
vanish and hence the mapping =z~ log|f,(z)] is harmonic inU.
Therefore, (Aloga )(z) = (Alog(A -~ f))(z),for all z € U. A straightforward calculation
gives

(Aloga )(z) = log(L o £)(2) = 4(log (A © £)) 2, (2)
8l , (F@) @@
‘(1—|f(z)|2)2<1+'“(z)' +2Re< ok ))
(F@) @) (z ')'|>> |

= 20(2) 1+ |u(2)|?* + 2Re<
(1 - k)2 |f2(2)1?

Hence, the Gaussian curvature of the conformal metric ds? = o(z)|dz|? satisfies

(1 + |u(2)|? + 2Re <(f(z)) fz(Z)fZ(Z)l)) (77)

K(o)(z) = - 1

for all z € U. On the other hand we have

(F@) E@FE@I (F@) L@@
Re( rar )| = @

|12(2)I

< lu@)l,  (78)

SO we obtain

15



(f (2))* £ (2) fz(2)]
Re( ok ) =~k
Therefore,
1 1- 2
K(0)(2) < —ml +u(2)|? = 2|u(2)| = . a l_“gf))zl) <-1

and hence, using the Ahlfors—Schwarz lemma, we get o(z) < A(z),z € U, or equivalently
1 - k)?Af@)If(2]? < A(2) (79)

for all z € U. Now, the claim follows easily from (79).

Theorem (1.2.10)[19]: Let f be ak-quasiconformal euclidean harmonic mapping from the

unit discU into itself. Then for any two points z;and z,in U we have
1+k

dnf(21).f (22) < Edh(zl’zz)’
where d;, is the hyperbolic distance function induced by the hyperbolic metric in U.
Note that this statement follows from Proposition (1.2.9).
Notice that, in order to get the opposite inequality in Proposition (1.2.9), we need to
assume that f is onto.
Theorem (1.2.11)[19]: Let f be ak-quasiconformal euclidean harmonic mapping from the
unit disc U onto itself. Then for all z € U we have

1-f(2)I?
D 2 e
and duf (z:), f(22)) = T dn (21, 22).

Proof. By (77) and (78)
__1 2 _ @D 2
K(0)(2) 2 — o5z A+ @) + 2lu@)) = = 55— = K2

In [26], it has been proved that there is a constant ¢ > 0 such that|f,| = c on U. Hence, ¢
tends to +oo, when |z| tends to 1 —. Thus, by Lemma (1.2.3),(1 + k)?A(f )£, (2)|? =
A(z) and therefore, since (1 — k)|f;(z)|,wehave Kz/l(f(z))l]? > A,le. K/T(f(z))lf =
A, where 1 = V1.

Now, an application of 3B immediately yields d, f(z,), f (z,) = gdh(zl, Zy).

For a € C and r > 0 we define B(a;r)z:|z — a| < r}. In particular, we writeU,. instead
of B(0;r).

Theorem (1.2.12)[19] (The half plane euclidean-gch version). Let f be K-qc euclidean
harmonic diffeo-morphism rom H onto itself. Then fis(1/K,K) quasi-isometry with
respect to the Poincaré distance.

We first show that, by precomposition with a linear fractional transformation, we can
reduce the proof to the case f(o0) = co.If f(o0) # oo, there is a real number a such that
f(a) = co.

On the other hand, there is a conformal automorphism A of H such that A(o) = a. Since
A is an isometry of H onto itself and f o A is a K-qc euclidean harmonic diffeomorphism
from H onto it self, the proof is reduced to the case f (o) = co.

It is well known that f has a continuous extension toH (see [7]).

Hence, by Lemma (1.2.5),f = u + ic Imz, where c is a positive constant. Using the linear
mapping B, defined by B(w) = w/c, and a similar consideration as the above, we can
reduce the proof to the case ¢ = 1. Therefore we can write f in the form f = u + ilmz =
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%(F (z) +z+ F(z) — z), where F is a holomorphic function in H. Hence, us(z) =

F'(2)-1 1oy _ LHup(2)
F'(2)+1 and F'(z) = 1-pus(z)’

Define w = 5(0) = g Then, S(U,) = By, = B(ay; R,), Where q; = %(K + 1/K) and
Ry = 2 (K — 1/K).

Since f is k-qc, then us(z) € Uy and therefore F'(z) € By, for z € H. This yields, first,
K+1=2|F'(z) +1| =21+ 1/K, K-1|F'(z) —1] =1 - 1/K, and then, 1 < Lg(z) =
~(IF'(2) + 1] + [F'(z) - 1]) < K.

So we have l¢(z)Ls(z)/K = 1/K. Thus, we find

z € H.

% <1(2) < Li(z) < K. (80)

Since A(f(z)) = A(2),z € H, using (80) and the corresponding versions of 3A and 3B for
HI, we obtain

1-k 1+k

1+ kdh(Z1,Zz) < dh(f(Z1),f(Zz)) < mdh(zbzz)-

It also follows from (80) that

1
Elzz_zllSf(Zz)—f(Z1)SK|22_Z1|, Z41,Z € H.
This estimate is sharp (see also [23] for an estimate with some constant c(K)).

We first need some properties of harmonic mappings.

Let R and S be two surfaces. Let o(z)|dz|? and p(w)|dw|? be metrics with respect
to the isothermal coordinate charts on R and S, respectively, and let f be C2-map from R to
S.

We use the following notation:

w=Beltlf]=- 10 = 1L |Of | =217 () = lor P - |af T
and the Bochner formula (see [28])

Aln |0f| = —K5J (f) + K. (81)
Let us briefly explain how we apply the Bochner formula: Let f be ap-harmonic
mapping,p *= pf = p o f|p|*and K* = K,-the Gaussian curvature of p*. Recall, if ¢ is
the Euclidean metric density (that is ¢ = 1), it follows from the Bochner formula (81) that
K™ = Ks(1— |ul?).

Note that the Bochner formula is useful tool (for p-harmonic mappings if the Gaussian
curvature of p is negative), but it does not give new information for euclidean harmonic
mappings.

Namely, if ogand p are euclidean metrics densities (that is o = p = 1), then f is
Euclidean harmonic and application of the Bochner formula yields Aln|df| = 0. Also, this
IS an easy consequence of the fact that df is an analytic function.

Theorem (1.2.13)[19]: (Hyperbolic-qch version). Let f be ak-quasiconformal harmonic
mapping from the unit discU onto itself with respect to the Poincaré metric. Then for any
two points z;and z, in U we have

1+k
(A -k)dy(z,2,) < dh(f(zp)f (Zz)) < %dh(zlizz)’ (82)
1-k
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Where dis the hyperbolic distance induced by the hyperbolic metric in U.

We now consider a generalization of Theorem (1.2.13). We are actually concerned with a
generalization of the right inequality in (82) and we postpone a more general discussion.
We have the following lemma.

Lemma (1.2.14)[19]: Let ¢ and p be two metric densities on U, which define the
corresponding metrics ds = a(z)|dz|?andds = p(w)|dw|?, and let f:U - U be a C!-
mapping. Ifp(f (2))L3(2)co(z),z € U, thend,(f(z;).f(21)) < cdy(23,2,), for all
Zy,Z1 €U

The proof of this result, which is a generalization of 3A.

A version of the following result was announced in [25].

Theorem (1.2.15)[19]: (p-grh version). Let R be a hyperbolic surface with the Poincaré
metric density A, S another with a metric density p and let the Gaussian curvature of the
metric ds? = p(w)|dw]|? e uniformly bounded from above on S by the negative constant
—a,a > 0. Then any p-harmonic k-quasiregular map f from R into S decreases distances
up to a constant depending only on a and k:

1 /1 k
dp(f(zl’)f (ZZ)) < \/_a ]_-I__—kdh(zl’ZZ)’ (83)

where d, is the corresponding distance induced by the metric ds 2=p(w)|dw|2 on S.
Proof. By the uniformization theorem we can suppose that R and S are the unit discs.
Let p* =po flp|* po = a(l —k?*)p*and K, = K(p,) the Gaussian curvature of p,.
Set K* = K(p*). First, we show thatp, is an ultrahyperbolic metric density. Namely,
ifpo = O(that is p(z,) = f,(z,) # 0), then there is a neighborhood W of z, such that f is
one-to-one in W.
Using the fact that K* = K.(1 — |u|?), we conclude that K* — a(1 — k?) and therefore
K, < —lon W. Thus, p, is an ultrahyperbolic metric on U. Hence, by the Ahlfors
ultrahyperbolic lemma, a(1—k?*)p* < Aand a(l —k?*)pf(2)L7(z) < K?A,z€U. An
application of Lemma (1.2.14) immediately yields the result.
Note that one can show that there is a gc mapping g and an analytic function F such that
f=Feg.
Using the uniformization theorem, some results can be extended to a more general setting
including Riemann surfaces, more general functions and metrics on both domains and
codomains.
Section (1.3): Harmonic Mappings between Smooth Jordan Domains

For D and G be subdomains of the complex plane C: A homeomorphism f: D +— G;
where is said to be K-quasiconformal (K-g.c), K = 1, if f is absolutely continuous on

almost every horizontal and almost every vertical line and
2

af 2 |af < <K+ l) D (84)
0x oyl — K Jra.e.onD;
Where ] is the Jacobian of f (cf. [32]). Note that the condition (84) can be written as
K—-1 1+k
| < = . e. = —
Ifz| < klf,| a.e.on D where k K+1l€K -

A function w is called harmonic in a region D if it is of the form w = u + iv where u and
v are real-valued harmonic functions in D. If D is simply-connected, there exist two
analytic functions g and h defined on D such that w has the representation
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w=g+h.

If w is a harmonic univalent function, then by Lewy's theorem (see [42]), w has a non-
vanishing Jacobian and consequently, according to the inverse mapping theorem, w is a
diffeomorphism.

Let
1—1r?
2 (1 — 2r cos(x — @) + r?)
denote the Poisson kernel. Then every bounded harmonic function w defined on the unit
disk U: = {z: |z| < 1}g has the representation
2T
w() = PIAIG) = | POx - p)f(e™) dx (85)

. 0
Where z = re'? and f is a bounded integrable function defined on the unit circle S?.

Suppose y is a rectifiable, directed, differentiable curve given by its arc-length
parametrization g(s),0 < s <, where | is the length of y. Then |g'(s)| =1 and s =
[19'®)] at; forall s € [0,1].

If y is a twice-differentiable curve, then the curvature of y at a point p = g(s) is given by
K,(p) = |g (s)|: Let
K(s.t) = Re [(g(t) — 9(5)).ig'(s)] (86)
be a function defined on [0,1] <X [O,I]. By K(sx[,t £1) = K(s,t) we extend it on
R % R. Note that ig'(s) is the unit normal vector of y at g(s) and therefore, if y is convex
then
K(s,t) = 0foreverysandt: (87)
Wesaythaty € C** 0<pu<1,ifg e C'and
’ t _ ’
y 9@ -9’ _
ts |t — s|#
Lety € C1* be a Jordan curve such that the interior of ° contains the origin.
Let f be a C1* function from the unit circle onto y and let F(x) = f(e'*),x € [0, 2n).
Then the functions p(x) = |F(x)| and 8(x) = arg F(x) mod 2m on (0,2r] have C1#
extension on R. We will use f and F interchangeably and will write f'(x) instead of
F'(x).
Suppose now that f:R+>y is an arbitrary 2m periodic C! function such that
flo2m)- [0,2m) + v is an orientation preserving bijective function.
Then there exists an increasing continuous function s: [0,2rr] +— [0, [] such that

f(@) = g(s()). (88)
f'(@) = g'(s(9)).s (9),
I (@] =19 (s(@)]-|s'(@)] = |s'(@)]

Along with the function K we will also consider the function Ky defined by

Kr (¢,x) = Re [(f(x) — f(9)).if (p)].

P(r,x — @) =

Hence

and therefore

It is easy to see that

Ky (9.x) = s'(@)Re [(9(s()) — 9(5(0))).ig (s(0))| = s (@)K (s().5(x)). (89)
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The following lemma is a slight modiffications of the corresponding lemma in [37].
Lemma (1.3.1)[31]: Let y be a C'*Jordan curve. Let g:[0,l]— y be a natural
parametrization and f: [0,2rt] — v, be arbitrary parametrization of y. Then

K¢ (s, t)| < Cys'(9) min{ls(p) — s@)I*™ (1 - Is(p) — s(x))+#}, (90)
and
|K: (¢, x)| < C,s'(9) min{|s(p) — s@)*** (I — |s(p) — s(x)) 4}, (91)
Where
o=t g @©) —g'(s)|

V'Ll +postesst It — s|TH
Here d, (f(ei‘p),f(eix)) = min{|s(@) — s(x)], (I — |s(p) —s(x)|}) is the distance
(shorter) between f(e'?) and f(e™) along ywhich satisfies the relation
)~ Fe)] = (7(e) 1) = 6,1(e) = ()]
Moreover if y has a bounded curvature then the relations (90) and (91) are true for

C, = {sup |ky (g(s))|/2 :s € [0, l]}
and u = 1. In this case

i KGO _6(gO)

tos (s — )2 2
And
. Ke(p,x) |k, (9(s)| .
G -s@y 2 P

and the constant C,, is the best possible.
Proof. Note that

K(s.t) = Re [(g(t) = g(5)).ig ()]
= re[G@O=go0 1[50 - L5212

t—s

and
t

g(@) —g(s) :fg'(s)—g'(T)dT.

t—s t—s

g'(s) -

S
If ¥ has a bounded curvature then g is bounded and

t ’ ’
' t - - T
g(s)_g( ) =96 _ (lg&) -9 .
t—s t—s
t ’ ’
, g@s)—g @) 1 .
< sup |g" ()| , dT =3 sup |g"(x)| (t —s).
s<xst < -S s<x<t
On the other hand
lg@®) —g(s)| < sup |g' )t —9)|=(-5),
S<x<t
and thus
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1 "
K(s.t)l <5 sup |g"()|(s — )2,

2 Ss<xst

It follows that the inequality (90) holds for C, = sup,, | k,(p)|/2 and u = 1.
From (90) and (89) we obtain (91). Since

5 .
EK(S’ t) = Re[ (g(t) — g(s)).ig (s)],

it follows that

Kyt _ | Re [ (9(®) = 9(s)).19"(s)]
tos (s — t)2  tos 2(s —t)
=Re[-g'(s).ig (s)1/2 =¢|g"(s)|/2 = k,(s)/2,
Here e = 1if k, > 0and ¢ = —1if k, < O: Similarly we can prove the case °y € cl#,
Lemma (1.3.2)[31]: [37] Let w = u + iv be a differentiable function defined on U. Then:

]w(rei(p = UxVy — UyUy = |wz|2 - |wz‘|2 — ;(urvgo - uqovr) (92)
And
2
. do.wl|?> |0,w
D()(re™®) = la, 2 + Jusl? = 2 | ;”rz' (93)
If in addition we suppose that w = P[f](z), where f € C1*, f:S1 +— y, then
there exist continuous functions J,, and D(w) on the unit circle de ned by:
], (') = Iim]w(rei¢) (94)
r-1
And
: 2 ' 2
o o (e |7 ()
ip) — ip) —
D(w)(e ) Ll_rn D(w) (e ) Ll_rn > + o2 (95)

Proposition (1.3.3)[31]: (Kellogg). Let ¥ € C* be a Jordan curve and let Q = Int(D).
If w is a conformal mapping of U onto Q , then " and In w" are in Lipﬂ. In particular,

|w’| is bounded from above and below by positive constants on U.

For the proof, see for example [41].

The following lemma is a generalization of Mori's Theorem, (cf. [32]).

Lemma (1.3.4)[31]: If w is a K quasiconformal function between the unit disk and a
Jordan domain Q with C1* boundaryy, then there exists a constant C depending only on
y and on w(0) such that

_1-k
C1+k
Note that the constant « is the best possible (in general case).
We give some estimates for the Jacobian of a harmonic univalent function. It is a slight
improvement of [37].

Lemma (1.3.5)[31]: Let w = P[f](z) be a harmonic function between the unit disk U and
the Jordan domain Q-, such that f is injective, f € C1#, and dQ = f(S') € C1#. Then for

@ u|j@)—jﬁﬂ
A0 e (-0

|w(Z1) - w(Zz)l < CK|Z1 - Zzla, a 21,22 € U.

C1

one has

21



dy (F(e9*0) fe )

x2

lim J,(2) C1|f ()| f (96)
r—e'¥
i —TT

for all e'¥ € S1.

Proof. Since f € C1#, by the proof of the Lemma (1.3.2) it follows that the partial
derivatives of the function w have continuous extensions on the boundary. Since

F(x) = p(x)e'™;

we obtain

ur(ei‘p) =lim,_ i u,(2), v,(e“") =lim,_i» v,(2),

d : ' .
lim u,(z) = Re 30 (p(0e®@))) = p'(p)cos 8(p) — p(9)6'(¢)sind ()

and

d : :
lim, vp(2) = Im 5 (p(9e'*P) ) = p'(g) sind(p) = p(#)0 (P)c050(p)

z—el®
Observe that u(e'?) = p(¢)cos 0(p) and v(e*?) = p(¢)sind(p) . Thus:

TELTL](p]w(z) (re'?) = Ll_rg; (urv(p — u(pvr)

(u(rei‘p) — u(ei‘p))

= T p'(9)sind () + p(¢)6' (p)cos
(v(re®) —v(e®)) | |
—lim 1—r p (¢)cosb(p) + p(@)8 (p)sinb (@)
= lim fo(x @) Plrg—x) (i;x) dx
k P(r, x)

= lim fo(x+<p (p)

r—-1
-1t

According to (91)

|Kr(x + 0,0)| < Cyf '(9)dy (f(X9+), f(ei)) 1+ 1
On the other hand, using the inequality|t| < m/2 | sin t| fort/2 < t < /2, we obtain
(r x) 1+r 1 s

1 —r 2n(l+712— 2rcosx) — n((l — r)2 +4rsin? x/2) ~ 41‘x2
ForO<r <1andx € [—m, m]. Thus,
Y

_ i(p+x) i 1+
lim fK(x,<p)P(er)denTCV|f'((p)|f d,(f(e¢*0),f (e'¥)) “

1- x2

—TT
The inequality now holds for
= — " lg'(s) — g" (o)l
VAl ) s (s o)H

Using Lemma (1.3.2), Proposition (1.3.3), Lemma (1.3.4) and Lemma (1.3.5) we obtain:
Theorem (1.3.6)[31]: [37] Let w = P[f](z) be a K g.c. harmonic function between the
unit disk and a Jordan domainQ, such that w(0) = 0. Ify = Q € C1#, then there exists a
constant C' = C'(y, K) such that

| f'(@)] < C' for almost every ¢ € [0,27], (97)
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And
lw(z,) — w(z,)| < KC'|zy — z,]| for z,,2, € U. (98)
Notice that Theorem (1.3.6) is a generalization of the corresponding result for the
harmonic g.c. of the unit disk onto itself, see [14]. Theorem (1.3.6) has its extension to the
class of g.c. mappings satisfying the differential inequality |Aw| < M|w,||w,| (see [40]).
Example (1.3.7)[31]: ([33]). Let B, be a regular njpolygon. Then the function
VA

w(z) =@ -2z")"2" dz
|

is a conformal mapping of the unit disk onto the polygon B,. However w'(z) =
(1 — z™)~2/™ is an unbounded function on the unit disk and thus the condition y € C%* in
Theorem (1.3.6) is important.
Corollary (1.3.8)[31]: [37] Let w be a quasiconformal harmonic mapping between Jordan
domains Q andQ,, such that w(0) =0. If y =0Q € C** and y;, =0Q, € Ct*1,0<
U, uy < 1, then there exist the constants C and C; depending on and °1 such that
|w(21) — w(z)| < Clzy — 2z,| (99)

and

D(w)(2) = |w,(2)|*> + |w,(2)|? < C;. (100)
The following theorem provides a necessary and sufficient condition for the g.c. harmonic
extension of a homeomorphism from the unit circle to a C*# convex Jordan curve. It is an
extension of the corresponding theorem of Pavlovifc ([14]):
Theorem (1.3.9)[31]: [37] Let f:S'+ ybe an orientation preserving absolutely
continuous homeomorphism of the unit circle onto a convex Jordan curve ° 2C1;t. Then
w = P[f] is a quasiconformal mapping if and only if

0 < essinf|f'(¢)], (101)
ess sup |[f'(@)| < (102)
and
Vi
1f'(p + OIIf' (p — 1)
: 1
ess;up tan /2 dt| < oo (103)

0
We note that the hypothesis "absolutely continuous™ in the previous theorem is needed,

although this theorem appeared in [37] without this hypothesis.
Example (1.3.10)[31]: ([36]). Let
0(p) = 2+ b(cos(loglpl) — sin(log |ol)) 0
2 + b(cos(log m) — sin(log m)) "
where 0 < b < 1. Then the function w(z) = P[f](2z) = P[e*(?)](z) is a quasiconformal
mapping of the unit disk onto itself such that f'(¢) does not exist for ¢ = 0.
Hence a g.c. harmonic function does not have necessarily a C! extension to the
boundary as in conformal case.
Corollary (1.3.11)[31]: [37] Let w be a K quasiconformal harmonic function between a
Jordan domain Q and a convex Jordan domain ,, such that w(0) =0 and 0Q,0Q, €
C1#, Then w is bi-Lipschitz, i.e. there exists a constant L > 1 such that

¢ € [-m, ],

L7z, — 2] < |w(zy) — w(2)| < Llzy — 25,24, z,. (104)
Moreover, there exists C, = C(K,Q, Q) = 1 such that
1/Cp, < D(w)(z) <Cp, forzeq (105)
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We have the following theorem. It is an extension of Corollary (1.3.11) for a nonconvex
case.

Theorem (1.3.12)[31]: [38] Let w = f(z) be a K quasiconformal harmonic mapping
between a Jordan domain Q with C'# boundary and a Jordan domain Q; with C%H
boundary. Let in addition a € Q and b = f(a). Then w is bi-Lipschitz. Moreover there
exists a positive constant ¢ = c(K, Q,Q4,a,b) = 1 such that

1
E|Z1 — 7| < 1f(z0) — f(2)| < clzy — 25|, 21,2, € Q. (106)

We write Ly = Lg(2) = |0f (2)| + |01 (2)| and I = I;(2) = [0f (2)| + |0f (2)|, if 0f (2)
and df (z) exist.

In [19], the following results have been obtained (see also [25]).

Theorem (1.3.13)[31]: Let f be a k-qc euclidean harmonic difeomorphism from the upper

half-plane H onto itself and g Then f is a (1/K , K) quasi-isometry with respect to the

Poincare distance d,,.
Outline of the proof: Precomposing f with a linear fractional transformation, we can
suppose that f(co) = oo and therefore we can write f in the form f=u+ iy =

%(F(z) +z + F(z) — z), where F is a holomorphic function in H.
Hence the complex dilatation

F'(z) -1 1. ,
b = prpy 1 @ =5 (F @ + 1 +F'@) - 1))
and
1
lr(2) = E(IF’(Z) + 1|+ |F'(2) — 1));
which yields

1+1/K<|F'(z)+1]<K+1 1-1/K<|F'(z)-1]<K-1
and therefore it follows
1
1< Lp(2) = 5(IF () + 1] + |F'(2) - 1)) < K,

and consequently
Now using a known procedure, we obtain

1
Elzz -zl < 1f(z5) — f(z2)| < Klz; — 21| 21,2, €H, (107)
1-k 1+k
1+ k dp(z,,2,)6 dh(f(zl),f(zz)) < mdh(ZLZz)ZLZz € H. (108)
Both estimates are sharp (see also [23], [35] for an estimate with some constantc(K) in
(107)).

The following generalization of Theorem (1.3.12) will appear in [43].
It is partially based on the results obtained in [38] and on Bochner formula for harmonic
maps.
Theorem (1.3.14)[31]: [43] Let w be a C? K quasiconformal mapping of the unit disk
onto a C2% Jordan domain. Let p be a C* metric onQ of non-negative curvature and w ¥s-
harmonic, that is

Wzy T (log p)wwzwz = 0.

Then ], # 0 and w is bi-Lipschitz.
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Finally, notice that the proof of Theorem (1.3.9), which was published in [37], can
be also based on the results presented in [26] and [27].
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Chapter 2
Three Lattice-Point Problem and Partitions

We determine equivalences between the bounds on the size of the continuum,
2% < wg, and some relationships between p, w,; and wg. Assuming measurability we
answer the analogous question in higher dimensions in the negative, and we improve on
the known partial results in the two dimensional case. We also consider a related problem
involving finite sets of rotations.

Section (2.1): Problems of Steinhaus

We shall use the following notation, u will denote the Lebesgue measure of a set,
plane or linear as appropriate; any metnion of u will imply measurability of the set in
question; u,, u* will denote inner, outer measure when we deal with non-measurable sets,
in Theorem (2.1.9). p will be a rigid motion of the plane (without reflection); as in [57], it
IS sometimes convenient to regard the set S as moving and the points L of the Cartesian
lattice as fixed, sometimes the opposite. Then [p(S) nL]| = |Snp~1(L)| counts the
number of points of L covered by the congruent copy p(S) of S. Following [52] and [57],
we denote the supremum, infimum of this function (taken over all such p) by M(S), m(S)
respectively. But if the p are restricted to be translations only, we write M (S), m4(S).

Then Steinhaus' problems may be shortly expressed thus:
(@) If u(S) is finite, is m(S) necessarily finite?
(b) If w(S) is infinite, then is the supremum M (S) = oo necessarily attained for some p?

(c) Does there exist an S for which M(S) = m(S) (= n say)? In fact (a) has already been
solved: the idea, though without the concept of measure, goes back to Blichfeldt [46]; and
Niven and Zuckerman [57] obtained a stronger relation, replacing m(S) by m;(S),
essentially restated as Theorem (2.1.1) below. The contributions here give partial solutions
to (b) and (c); partial in the sense that we require extra conditions on S in each of the main
Theorems (2.1.1) and (2.1.8). It seems that new and deeper ideas are needed to enable us
to jettison these conditions: (b) and (c) as they stand are still resistant.

The generalization of the solution of (a) referred to above is:

Theorem (2.1.1)[44]: if u(S) < oo, then m(S) < [u(S)]; and M (S) = {u(S)}; where
[ 1.{} denote rounded down, rounded up, respectively, to the nearest integer.

The proof in [57] consists of the straightforward application of Fubini's Theorem to the
characteristic function of S: we deduce that u(S) is the 'average' of |[p(S) n L| over all
translations, and, since my, My are integers, the result follows. A fortiori, we trivially
deduce the same result for m, M.

We next note that the simple Fubini argument above applied to the case where u(S) = oo
produces only M, (S) as a supremum, not necessarily attained. Indeed for translations it
may not be so attained: a counterexample is given (in Cartesian coordinates) by the open
set
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S = U {(mm+m™1) x (n,n+n"1)}.

m>0n>0
For rigid motions the best result | can prove in the direction of answering (b) is:

We need 2 lemmas.

Lemma (2.1.2)[44]: Let P be the set of points Y > X* whereY =y —ax, X = x + ay,
where « is a fixed irrational. Let L' be the set of lattice points L n P, with moduli 7y, 15,.. .,
suchthatry <r, <ry3 <--.Thenr, ., —1;, > 0asi — oo,

Proof. The result will follow if there is a sequence of points of L’ with Y-coordinates
Y; = oo with Y;,; — Y; = 0. For then we have (since L' c P)

1 1 4
(1 + a®)2(ripqr) < V3, + Y2 )2 = ¥, =0,

as desired.

We now suppose that Y;,; — Y; » 0, and deduce a contradiction. If this were so, then there
would exist some € > 0, such that there would be a sequence of rectangles, free of points
of L', and all with width at least &, and with lengths tending to oo, all lying parallel to
Y = 0. Any such rectangle. R; may be translated any integer distance parallel to the
original x- and y-axes and remain free of points of L, and in particular moved so that its
longer axis cuts X = O and lies along Y =t;, where |z;| <c, some constant. By a
compactness argument on the t;, we see that there must exist a strip of the plane of infinite

length, of thickness at least %e, parallel to Y = 0, and free of points of L. But this

contradicts a well-known consequence of Kronecker's theorem, namely that any line of the
formy = ax + B with airrational passes arbitrarily close to points of L.

Corollary (2.1.3)[44]: If we consider the r, to refer not to points of L' = P n L, but to
points of L" = Q N L, where Q is any fixed sector, given in polar coordinates by 6, >
8 > 6,, say, then the conclusion r;,; — r; = 0 remains valid.

For any fixed Q contains all the points of some such P (as in the lemma) which are
sufficiently distant from the origin.

Lemma (2.1.4)[44]: If an S, satisfying (1), has lattice points Ly, L, ..., L, lying in S°, then
it is possible to make a rigid motion of S so small that each of these L; remains in S°, and
yet also so that S° covers a further lattice point L. ;.

Proof. Let the distance of L; from fr S be y; (> 0). We restrict consideration to rigid
motions so small that they move each L; by a distance at most 27%~1 (i = 1,2,...,k).
Such motions certainly contain as a subset M all motions described in the following way

1
(for some certain small ¢, &,): a translation t;,, of magnitude (é2 +n?)z2 < ¢, followed
by a rotation p, about 0, of magnitude |p| < &,. By the corollary to Lemma (2.1.2) above,

in any sector Q: 0, > 6 > 0,, so small that 8, — 9, < %52, say, the set {p~1(L)}, for
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|p| < &,, contains a set of circular arcs, centre O, radii r; with r; T oo and r;,.; —1; = 0O,
and sweeping across the sector from 8 = 6, to 8 = 6,. It follows that the set

Wenp T (L): [tey| < enlpl < &)

covers all sufficiently distant points in Q, and so (since the plane is covered by a finite
number of sectors like Q) all sufficiently distant points of the plane; and in particular some
point A € S°. Thus for some rigid motion p € M, p(4) is a lattice point L, as desired.

Theorem (2.1.5)[44]: Let S° the interior of S satisfy:
S9 is unbounded:; @)
then M(S) = oo Is attained.

Proof. We progress inductively using Lemma (2.1.4). Trivially the sum of the successive
rigid motions performed to ‘capture’ successive new points of L has a limiting motion; and
none of the points L; once captured 'escapes' in later motions or in passing to the limit,
since Y5, 2 %1y, <y;. Inthe limit infinitely may L; are captured,

We see from Lemma (2.1.4) above that the set of p € II for which |p(S) n L| < n, for any
integer n, is a nowhere dense set (for any neighbourhood contains a neighbourhood in the
complementary set), and hence their union is a set of the first category in II; that is, the set
of rigid motions satisfying Theorem (2.1.5) is not only non-empty, but is a residual set in
I1.

This last fact inclines one to the view that the whole phenomenon belongs to category
theory rather than measure theory and suggests in particular that the appropriate
generalization of condition (1), instead of being u(S) = oo, might perhaps be: 'the part of
S outside some large circle possesses the property of Baire and is of the second category'.
See [58] especially ch. 4, 19, 20, 21, for such translations from measure to category. (The
ambience of the result here is reminiscent of a previous 1-dimensional theorem of [48]: let
E c R* have unbounded interior, then there exists a dense set of values of h whose
multiples {nh} lie infinitely often in E. Professor J. F. C. Kingman pointed out that this
was indeed a category result. It has been re-discovered several times; see [59], where it is
characterized a ‘folk-theorem’; and [53] for some applications and extensions. Here it is
known that the measure-theoretic analogue is false: see Haight [50], [51], Lekkerkerker

[54].)

The category theory aspect suggests faintly that the question (b) in its original measure-
theoretic fomulation should have a negative answer.

Contrariwise, a full-blooded variant of (b) in measure-theoretic terms, much stronger (and
so perhaps easier to disprove) would read:

Conjecture (2.1.6)[44]:(b"). Let u(S) < oo. Let M., be the set of points in I for which
|p(S) N L] = oo. Then its measure (in 1) =(M,,) = 0.

This we must also leave open. However, it is easy to prove:

Theorem (2.1.7)[44]: If u(S) < oo, then t(M,,) = 0.
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This result follows immediately on applying the Fubini technique of Theorem (2.1.1), but
now in the 3 variables 8, X,Y.

We note that the results of Theorem (2.1.7) and (the category extension of) Theorem
(2.1.5) overlap: if both S° is unbounded and u(S) < oo, then M, is a* residual set but of
measure 0 in the space II.

The 'expanded rotated lattice L, ¢ denotes, for fixed A(> 0), 6, the set of points

U {(A[m cos 8 + nsin@],A[-msin 6 + ncos 0])}

The 'expanded translated' lattice L, ¢ ,, denotes, for fixed A (= 0), ¢, 7, the set of points
U {Am + & An + n}
mn

Then another variant of Theorem (2.1.5) is obtained by using the first of these:
Theorem (2.1.8)[44]: Let S° be unbounded. Then for some 4, 6, we have |S N L, ¢| = .

Proof. The analogous result to the Corollary to Lemma (2.1.2) is immediate in this case,
and the arguments of Lemma (2.1.4) and after it, apply mutatis mutandis. The category-
theoretic comments are similarly applicable.

However, we have, for the second variant above,

Theorem (2.1.9)[44]: There exists an open set S; with u(S) = oo, such that
|SN Lygn| isfinite for each 2, &, 7.

Proof. The set of points whose Cartesian coordinates satisfy0 < xy < 1
clearly provides such an example.

Note the contrast between Theorem (2.1.8), with a positive conclusion, although it has 2
‘degrees of freedom' and Theorem (2.1.9), negative yet it has 3.

It is interesting to see that the analogue of Conjecture (b) fails for the lattices L, .

Theorem (2.1.10)[44]: There exists a set S with u(S) = oo, such that |S N L, | is finite
forall 4,6.
Proof. Let H c R* denote Haight's set of [51], constructed with his set G being

{/(m? + n?):m,nintegers}. Let S be given in polar coordinates by {(r,0):r € H}.
Then u(S) = oo, since u(H) = oo. And we see by construction that |S N Ly g| must be

always finite, since Haight's condition (B) gives A -+/(m?2 + n?) € H has only finitely
many solutions for any 1 > 0.

For another possible variation of the lattice, see Macbeath [55].
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Once we allow non-measurable S, other possibilities come alive. We can of course deduce
trivial corollaries from Theorems (2.1.1) and (2.1.2) by the use of measurable kernels and
measurable envelopes, but, as one might guess, there are ‘paradoxical’ results, not
envisaged there; specifically:

Theorem (2.1.11)[44]: (i). There exists an S with u,(S) = 0, but m(S) = oo.
(i1) There exists an S with u*(S) = oo, but M(S) = 1.

Proof. (i) The exhibited S will be of the shape J < (—o0, ). This will contain infinitely
many lattice points on each non-vertical line of p(L) (p a rigid motion), and hence in total,
provided that J satisfies the condition:

J is a linear set that contains infinitely many members of every arithmetic progression
{a + kb:a,b real, k integral}; we also need J non-measurable with u,(J) = O.

We construct first a set J; thus: either by considering a Hamel basis (see e.g. [62], 443-
449) of the reals, with one member of it a rational, or by considering the reals as a vector
space over the rationals and using the Axiom of Choice, we may decompose any real x
into x, + x, with x, € Q, the rationals, and such that x, = x ifx e Qand (x + y), =
xq+yg; forall x,y. Let I = Ujeyenli,j + 1), and set J; = {x: x, € I}.

We prove that J; has nearly all the properties claimed for J. First, if it were measurable, a
standard argument, as in the usual demonstration of a non-measureable set, produces

u(J; n[—N,N])~N as N — co. But also J; has arbitrarily small periods, namely ty for
any t € Q, and y # 0 any fixed real with y, = 0. And we know that measurable sets with
arbitrarily small periods have either full or empty measure. Hence J; is nonmeasurable,
and, again using the periodicity, we find that we must have u,(J;) = 0. Also, for any real
a,b, we have k, + b € J; ifand only if ka, + b, = I, and this always occurs for infinitely
many k (both positive and negative) except in the case a, an even integer, and integer [b,]
odd.

Similarly if J, be the complement of /; then ka + b € ], for infinitely many k unless a,
be an even integer and [b,] even. Thus, finally, we see that all the desired properties are
possessed by the set

J=(J1n(0,0)) U (J; N (~,0)).
(if) We proceed by transfinite induction, using the idea of [63] as a model.

The closed sets F of positive measure in the plane are of cardinality ¢, and may be well-
ordered

FO’Fl’FZ""’Fa""’(a<'QO)’

where (, is the smallest transfinite ordinal corresponding to the power of the continuum.
We construct the points

P1:P2y s Pay ooy (a < 'Q'O)
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that will constitute S by transfinite induction, as follows. Given any index a < Q,, we
suppose that the points pz(¢ < a) have been determined, and we show how to construct
pq- Since F, has positive measure, there exists some line [ for which u(l n F;) > 0, and so
[ N E, has cardinality c.

Consider the set of points g on [ which lie on some circle centre some p; (¢ < «), radius

1
(m? + n?)z (m,n some integers). Each such circle cuts [ at most twice, and hence the set
of such g has cardinal less than that of the continuum. Thus I may, and do, choose a
pq € L N E, not on any such circle. Clearly S, the totality of points thus chosen has no pair

1
of points pg, p, ever at any distance (m?* + n?)z apart, so trivially M(S) = 1. And | say
that since SN E, # 0 for any a, necessarily u*(S) = oo. For if u*(S) were finite, the
measurable envelope of S would have a complementary set which would contain some
closed set of positive measure.

Of course, the proofs of both (i), (ii) necessitate the Axiom of Choice, as they must.
We come now to consider Conjecture (c). The best result that we can prove is:
We need 2 lemmas and a definition of some independent interest.

Lemma (2.1.12)[44]: Let E be a non-empty plane set with u(E) = 0. Then there exists a
rigid motion p such that [p(E) N L| = 1 exactly.

The proof will be by contradiction. We assume that there exists an E such that whenever E
and p~1(L) have 1 common point they must have at least 2, and deduce that such an E
must have positive plane measure.

As the last sentence indicates, it is convenient here to picture E as fixed and apply the p's
to L.

Take first the origin O at an arbitrary point of E, and rotate L about it; by the supposition,
at each orientation, E contains at least 1 of the other points of L. Since there are but
countably many points of L (each of which we assume keeps its identity throughout the
rotation), necessarily then E contains some set of positive measure of some circular arc
(centre 0) on which some lattice point, say L; moves. We may restrict ourselves by talcing
a subset of this on an arc of small length; L, will denote a generic point of this set of
positive linear measure. We now repeat the argument, with L, in place of O as centre for
swinging the lattice round.

Thus, again, for each such L; there is a set of positive linear measure on some circular arc

(centre L, radius some /(r? + s2),r,s integers not both 0) lying in E. Let L, be a
generic point of this set. By restricting consideration to one pair out of the countable
number of combinations of r and s, we may take L,L, of some constant length. Let
OL, L L, be at angles 8, ¢, respectively to some fixed line. To each fixed 8, there
corresponds an &,(8), such that there is a positive subset of ¢ of the above type satisfying
also |sin (6 — ¢)| = £,(08). Thus restricting to further subsets if necessary, there is a set
of 6 of measure at least &, to each of which corresponds a set of ¢ of measure at least ¢,,
and such that each relevant &,(0) is at least some fixed &;. As a final restriction, we
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choose one or other (whichever gives the larger measure of the set of L,) of the choices:
6 — ¢(mod 2r) lies in (0,m) or (m, 2m). Then we see that this means that we have a
(1, 1)-relation between the points L, and the pair (8,¢). So finally the set of L, thus
characterized has a real measure at least €;&,65. SO E has positive measure: the desired
contradiction.

Definition (2.1.13)[44]: Let S be a measurable set. Then the set E of points at which the
metric density of S is neither 0 nor 1 is the metrical boundary of S.

(The exact definition of density is of little consequence; we take it to be the limit, if it
exists, of u(Sn Q)/8% as § » 0, where Q is a square of side &, oriented along some
appropriate Cartesian axes, and centred at the point in question.)

The following result is an immediate corollary of the standard 'density theorem': u(E) =
0, for any measurable S, bounded or not. See e.g. [61],(128-131); or simpler, observe that
the proof of [47], (83), using Vitali's covering theorem, is valid in any number of
dimensions.

We now have a result 'in the other direction’; this result may be known.

Lemma (2.1.14)[44]: Let E be the metrical boundary of a plane set S with u(S) >0,
u(R?\S) > 0; then E # 0.

Proof. Let Qs(x) be the closed square of side § and centre x. Then Dg(x) = u(Sn
Qs(x))/68% is continuous in x, for fixed §; and since, by the density theorem quoted above
(see the same references), we have that there exist points y,,y,, and a §; such that

Ds, (y1) > % > D, (y2), it follows by continuity that there is an x; such that Ds_(x;) = %

Now, working only in Qs (x;), we observe that for 6/, sufficiently small, the average
value of Qs(x) over Qs,_s(x;) is near to % (since the edge effect becomes insignificant as
8/6, = 0). Thus there exists a 6,(0 < §, < §,) such that this average lies between
%i e (for a given fixed €). Since Ds,(x) is continuous in x, we find that for some x, €

1
Qs,-s,(x), we have [Ds (x;) — Sl<e
Proceeding thus inductively, we obtain sequences x; and §; such that

Xi+1 € Qs,-s,,, and

1 .
Ds,,, (xi41) ) <e+ef++e<e/(l-¢) (2

The squares Dgs,(x;) are a decreasing nested sequence, and, assuming, as we may, that
§; — 0, we obtain, by compactness, a z with x; —» z = N{° Qs,(x;). | say that z € E. For
consider D25i(x). As z € Qgi(xi), we have ngi(z) ) Qgi(xi); so taking the two extreme
possibilities of S N (Q,s,(2)\Qs,(x;)) having empty, full measure, we get

u(S N (Qs,(x))) < u(S N Q25,(2)) < p(S N Qs,(x;)) + u(Q2s,(2)\Qs, (%)),
and so, on dividing by 457 and using (2), we obtain:
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11 11 3
2(5—8/(1—8)) < D,5,(2) Sz(§+€/(1—€))+z-

Hence Ds(z) cannot have limit 0 or 1 as § — O: either the limit is strictly between 0 and 1
or does not exist. This proves the lemma.

Theorem (2.1.15)[44]: Suppose that
S is measurable and essentially bounded, 3)
then it is impossible to have M(S) = m(S) = n for any integer n.

Proof. Let S satisfy the given conditions, and also the negative of the conclusion, so that
|p(S) n L| = n for all rigid motions p;

we shall deduce a contradiction. The first step is to show the existence of some p for
which

lp~' (L) NE[=1 (4)
exactly, where E denotes the metrical boundary of S.

For, by a Fubini argument as in Theorem (2.1.1), we have that the (measurable) set S must
have measure exactly n. Hence Lemma (2.1.14) is applicable to it, and S has a non-empty
metrical boundary E that is of measure 0. And Lemma (2.1.12) applied to this E gives (4),
as desired.

Finally, we start from the position of the lattice just guaranteed, i.e. satisfying (4).
Let L, be the one point specified there. We consider making small translations ¢ ,,, say

with [&], |n] < &, of the lattice from this position (with S remaining fixed throughout). It is
now convenient to use the language of probability theory, supposing these translations to
be made randomly with equal-area probability in the square |¢], |n| < 6.

Since S is essentially bounded, we may restrict consideration (by ignoring sets of measure
0 in (&,7n)) to a finite number K of specified (moving) lattice points. Given small fixed
g, & > 0, the definitions of density and of the metrical boundary E of S imply:

(i) for each of the K lattice points mentioned, except Ly, the probability of ¢, shifting the

status of the point from being in S to being not in S, or vice versa, is less than &: this is true
for all sufficiently small &, and for all sufficiently small § = §(¢);

(ii) for L, the probability of its shifting its status as above is greater than &’: this is true for
all sufficiently small &', and some small 6 = §(&’).

Thus, if we arrange that (1 —&)X~1 > 1 — ¢, as we may, then, by simple probability
considerations, there is some &, n for which the K — 1 lattice points each remain in or out
of S, but for which L, is either ‘captured’, or else ‘escapes'. For such a t;, we may take p
as its inverse to obtain:

Ip(S)NLI=[Snp " (L)=n%1,
the desired contradiction with the supposition |S np~1(L)| = n for all p.
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On the other hand, jettisoning measurability renders the problem of a quite different
nature. We inclined to believe that the Conjecture (c) has an affirmative answer, at least if
we assume sufficient axioms of set theory, although a simple-minded attempt to build up
such an S using transfinite induction fails.

We recall the (compact) space Il, defined above, of rigid motions p, characterized
by the 3 parameters 6, x, y; let = denote measure in this 3-dimensional space, and let M,
denote the set of pell for which |p(S) N L] = n exactly. If M,, is non-empty, we say S
represents the integer n; if m(M,,) > 0, we say S represents n essentially.

Conjecture (2.1.16)[44]: Let S be a plane measurable set. If 7(M,,_,)) > 0 and

m(M,.+s) > 0 (some ,s > 1), then necessarily m(M,) > 0. That is, the (finite) set of
integers essentially represented by S consists of a set of consecutive integers. (We might
even hope for some inequalities between the w(M;,) for different n.)

Corollary (2.1.17)[44]: If u(S) = n (integral), then there exists some rigid motion p
such that |[p(S) N L] = n.

Proof of Corollary (2.1.17) from Conjecture (2.1.16). Let =" denote 2-dimensional
measure in (x,y) of sets in subspaces 8 = 6, of the space Il. Suppose, if possible, that
the corollary were false; then Il consists of 2 sets M+, M~ being sets of points
representing p's for which |p(S) N L] is greater than, respectively less than, n. Fubini's
Theorem gives us that the ‘average' number of lattice points covered by p(S) (with p now
a translation, 8 = 6, throughout) is n. So 7*(M'*) > 0,z*(M ™) > 0, for each 6,. Hence
m(M*) > 0,7(M~) > 0, and the conjecture is then untrue.

We observe that the corollary fails if ‘rigid motion p' is replaced by ‘translation t' in its
statement. For a counter-example, we may take S to be a square (open or closed) of side

/3 with axes parallel to those of L.

Further, Conjecture (2.1.16) fails even for 'nice’ sets if the word 'essentially’ is omitted: for
S a closed disc of radius v/5, the integers represented include 17 and 21, but not 18, 19, or

20; for S an open punctured disc of radius v/5 with the centre removed, they include 12
and 14 but not 13.

One way to tackle Conjecture (2.1.16) is perhaps to show that the common metrical
boundary of the 2 sets Uy <n My , Ur>n M 1S 'large’, in particular 2-dimensional.

(But we do not even know simpler results about metrical boundaries for sets in R?; e.g.
what sets E ¢ R? of measure 0 are metrical boundaries of some set S? We might simple-
mindedly hope, for example, that such an E is a regular, linearly-measurable set, in the
sense of Besicovitch [45] (see also [60] 128-130, and [56]), and that its ‘length' A satisfied
the isoperimetrical inequality A% > 4mu(S).)

A further conjecture not involving lattice points, but with a similar underlying theme is:

Conjecture (2.1.18)[44]: Let S be plane measurable with 0 < u(S) < o. Then there
exists a & = §(S) > 0 such that for each x (0 < x < §), there is a line | such that the
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linear measure u(S N 1) = x; and, moreover, we can choose [ to vary continuously with x
intherange 0 < x < 6.

The obvious approach here is to prove that u(S n 1) is continuous in L at [ = [, if u(E n
l,) = 0 where E is the metrical boundary of S, and then show that u(E nl,) > 0 for only
a small set of [,, and apply a connectivity argument in the space of lines [. Unfortunately
the possibility of E's containing a Besicovitch set (i.e. one having plane measure 0 but
containing a unit line-segment in every direction) or something similar, seems to render
this approach at least complicated.

One curious aspect of Conjecture (2.1.18) is that the d (= 3) dimensional analogue (with
hyperplanes replacing lines) has an easy affirmative answer.

This is an immediate consequence of some recent work of Falconer [49]: he proves, in
R4(d > 3), that if F(6, t) is the 'sectional integral' of a measurable bounded function f of
compact support, i.e. the (d —1)- dimensional integral of the function f over a
hyperplane, at orientation 8, and distance t, then F is continuous in t, for p.p. 6. Letting f
be the characteristic function of our d-dimensional set S, we obtain what we need by
merely moving the hyperplane at constant orientation 8, providing we avoid a set of 6 of
measure 0.

This disparity between d = 2 and d > 2 dimensions is in sharp and curious contrast
with the theorems and lemmas whose proofs generalize immediately to higher dimensions
(although a little care is needed with Lemma (2.1.12)).

Finally, Dr. Falconer proposes the following

Conjecture (2.1.19)[44]: Let K, be the set of vertical lines in the plane given by
{(x,¥):x = nh, n€Z,y € R}; let S have 0 < u(S) < . Suppose that for all rigid
motions p, we have that p(S) N K; has linear measure c, where ¢ is independent of p; then
c = 0.

He observes that this would imply Theorem (2.1.15) above. Further, he believes that he
can show, with the use of Fourier transforms, the equivalence of the hypotheses:

‘p(S)N L is constant for all p’ and ‘p(S) N K, is constant for all p, for r =1/
J(m? +n?) forallmn e zZ*’.

Section (2.2): Partitions of Lines and Space

In 1951, Sierpinski [77] showed that the continuum hypothesis is equivalent to the
following: for the partition of the lines in R3 parallel to one of the coordinate axes into the
disjoint sets L,,L,, and L3, where L; consists of all lines parallel to the ith axis, there is a
partition of R3 into disjoint sets, S;, S,, and S, such that any line in L; meets at most
finitely many points in S;. He also showed that the corresponding statement for R*, using
Ly, L, Ly and L, and four sets S;,S,,S; and S,, is equivalent to 2* < w,. Also, the
corresponding statement for R?, using sets of lines L; and L, and sets S; and S,, is false.
He obtained analogous results by replacing “finite” by *“countable”. Thus, CH is
equivalent to the assertion that R? can be divided into two disjoint sets S; and S, with
each line in L; meeting S; in a countable set [76]. He showed that the countable version for
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R3 with three sets is equivalent to 2% < w,. These theorems were generalized by
Kuratowski [75] and Sikorski [78]. Erd"os [69] raised the issue of whether these results
could be further strengthened by considering partitions of all lines rather than just those
lines parallel to some coordinate axis. Davies [67] showed that an analogous result is
obtained if one partitions the lines in R*  k > 2, which are parallel to one of L, .. Ly,
where Ly,...,L, are fixed pairwise non-parallel lines (and one partitions the lines
according to which L; it is parallel to). This result was extended by Simms [80], who
considered translates of linear subspaces instead of just lines. Simms’ result also
generalizes Sikorski’s result, and gives best possible bounds for the type of partitions it
considers. Davies [68] later removed the restriction that the lines in R¥ be partitioned in
the special manner referred to above. Bagemihl [65] has also extended some of these
results. See Simms [79] for an extensive historical survey.

We develop a general framework within which these theorems can be obtained as
corollaries. Our framework deals with arbitrary partitions of all lines (or planes, or more
general objects) and not necessarily special partitions or families of lines. The central
Issues are the number of sets of lines in the partition, the allowed size of the intersection of
a line in a given set with the corresponding set in the decomposition of the space, and the
value of the continuum. Galvin and Gruenhage [72], and independently Bergman and
Hrushovski (cf. Proposition 19 of [66]), have previously obtained results which imply
special cases of some of our results. In particular, those results yield (a)=(b) for the case
6 = 0andp = s + 2. Corollary (2.2.21) also follows from [68] and unpublished results
of [72]. We deal with some perhaps surprising phenomena arising from infinite partitions.
In particular, we show that some interesting set-theoretic properties come into play.

We should mention that some of the key ideas of our arguments go back to combinatorial
arguments of Erd"os and Hajnal [71.

_If t is a positive integer, then card(4) = |4] < w_, means A is finite. If 6 =
6 + s,where & > 0isa limitordin and s is an integer, and t is an integer with t > s,
then |A] < wg_; means |A] < wy.

Before we prove Theorem (2.2.5), let us make some comments and derive some
corollaries.

The first corollary yields Sierpinski’s theorem as a special case and answers question a) in
[69].

Corollary (2.2.1)[64]: The following are equivalent:
(i) CH , the continuum hypothesis, holds: 2 = w;.

(i) If the lines in R3 are decomposed into three sets L; (i = 1,2,3), then there exists a
decomposition of R3 into three sets S; such that the intersection of each line of L; with the
corresponding set S; is finite.

Proof. Take & = 1,n = 3and p = 3 in Theorem (2.2.5). Then each line in L; meets S;
in a set of size at most wg_,; = w_4, Which by our convention means finite.
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The second corollary yields the Bagemihl-Davies theorem [79] as a special case and notes
that the condition that we be in R3 in Corollary (2.2.1) is not necessary. This also answers
question b) in [69].

Corollary (2.2.2)[64]: The following are equivalent:
() 2¢ = w,.

(i) If the lines in R? are decomposed into three sets L; (i = 1,2,3), then there exists a
decomposition of R? into three sets S; such that the intersection of each line of L; with the
corresponding set Si is finite.

Proof. Take8 = 1,n = 2andp = 3in Theorem (2.2.5).
The next corollary is a theorem of Kuratowski [75].

Corollary (2.2.3)[64]: Let n € w, and & be a limit ordinal or zero. The following two
statements are equivalent:

(i) 2° < wp.

(ii) There is a partition of R™*! R"*1 = S U...U S,,4, such that |l N S;| < wg
whenever | is parallel to the i —th axis.

Proof. As Kuratowski mentions, the casen = Oiseasy. Ifn > 0O,take6 = 6 + (n —
1) and p = n + 1 in Theorem (2.2.5). Thus, 2* < wy < wj if and only if R**! =
UM Si, where |l N S;| < wg_p+1 = wg provided | is parallel to the ith axis. This
means, by our convention, that [l N S; | < wg, as required.

This yields Davies’ theorem:

Corollary (2.2.4) (Davies). Letn = 2, and let l4,...,L,,p = 2, be nonparallel lines in

R™. Then the following are equivalent:

(i) 29 < wp.

(if) There is a partition R" = Ule S; of the points in R™ such that for every line [
parallelto [; , |l N S; | < wg_p41.

Theorem (2.2.5)[64]: Let 6 be an ordinal, 8 = 8 + s > 1, where 8 is 0 or a limit

ordinal, and let s € w. The following statements are equivalent:

(@) 29 < w,.

(b) Foreachn > 2 and for e a c h partition of L, the set of all lines in R™, intop > 2

disjoint sets, L = L; U L, U...U Ly, there is a partition of R™ into p disjoint sets,
R™ = 8§; U S, U...U 5y, suchthat each line in L; meets S; in a set of size < wg_p41.

(c)Forsomen = 2, somep,withs + 2 > p > 2, and s 0 m e non-parallel lines

li,....,1, in R" if we let L; be the set of all lines in R™ parallel to [; , then there is a
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partition R™ = S§; U...U S, such that every line in L; meets S; in a set of size <

Wo-p+1-
Proof. We introduce an auxiliary Proposition (2.2.6) for integer p > 2.

Proposition (2.2.6)[64]: For each ordinal 9, if A is a set of lines and points in R™ of size at
most wg, and the set of lines in A, which we call L, is divided into k disjoint sets, L =
L; U...U L, where k = p, and if f is a function with domain S, the set of points in A,
such that forall x € S,f(x) € {1,...,k}and |f(x)] < k — p, then there is a partition
of Sinto k sets, S = S§; U...U S, such that for eachx € S:

aA)x & S, ifa € f(x).
b) Each line [ in L; meets at most wg_p44 PoInts in S; .

We think of f(x) as being forbidden “colors” for x. Thus, the hypothesis of Q (p) requires
there to be at least p non-forbidden colors for each point x € A. Note that Q(p) for all
p = 2 yields (a) = (b) of Theorem (2.2.5) by taking k = p and f the function with
constant value @.

We establish Q(p), working in ZFC, by induction on p. So, assume firstthatp = 2. Let A
be a set of points and lines in R™ of size < wg, for some ordinal 6 (we allow 6 = 0). Let
L = L; U...U L, be a partition of the lines in A with k > p, and let f be as in the
statement of Q(p). We define the partition S = §; U...U S, of the points in A as
required. Let {I¢},...,{lf }and {x® },@ < wy, enumerate the lines in L,,..., L, and the
points of S, respectively. We inductively decide to which S; we add x“. Suppose we are at
step @ < wy and we have decided for all 8 < a to which S; we add x# . Consider the
following cases.

Case I. Forsome 1 < i < ksuchthati ¢ f(xa), andall 8 < a,xa ¢ lf. In this
case add x* to S; (choose i arbitrarily if the above is satisfied for more than one i).

Casell.Foralll < i < kwithi & f(x a),x* lies on some lf(i) , with B(i) < a. Let
B (i) in fact be the least such ordinal < a. Leti, € f(x%) be such that B(i,) = B (i) for
alli & f(x%). We then add x* to S;, .

Thus, we have defined a partition S = S; U...U S;. Fix now a line lf € L. We show
that [S; N 18| < wg_pr1 = wg_q (this means, by our convention, that |S; N 17| <
wg). First, we need only consider those points x* with @ > §, since there are < wy
points x% with a < §. If x% were put in S; by virtue of Case I, then x* would not lie on
lf . Suppose then that x*, a« > §, is putin S; by virtue of Case Il. Thus, B; () is defined
for each j € f(x a). Since x® is put into S; , we have B;(a) = sup{B; (a): j €
F(xOY. If B;(a) > &, then by Definition (2.2.7), x* & 1. Thus, we need only consider
x® for which 6 = Bi(a) = sup{B; (a): j & f(x%)}. There are < wy possibilities for
the set {B; (a)}. Since k — f(x a) has at least two elements, and two lines determine a
point, it follows that the set of such x® has size < wg. This completes the proof of Q(2).
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Note, in particular, that @(2) holds when 8 = 0, that is, when A is countable. However,
for countable A, Q(2) easily implies Q(p) for all p = 2 as well (since in this case
|l NS;| < wg_p+1 Means the same thing, i.e.,, I N S; is finite, forallp > 2).

Before giving the inductive step in the proof of Q(p), we introduce a basic Definition
(2.2.7).

Definition (2.2.7)[64]: If A is a collection of lines and points in R™, we call 4 good if it
satisfies the following:

a) For any two distinct points x,Y € A, the line determined by x and y is also in A.
b) For any two distinct intersecting lines in A, the point of intersection is also in A.

Clearly, for any infinite set A of lines and points in R"™, the good set generated by A has
the same cardinality as A.

Assume now that Q (p) holds, and we show Q(p + 1). Let A be a collection of lines L and
points S in R™ with size wg, and let L = L, U...U L, be a partition of L withk > p +
1. We may assume 8 = 1 by our note above. Without loss of generality, we may also
assume that A isgood. Let f: § — {1,...,k} begivenwith |[f(x)] <k — (p + 1) =
k — p — 1. Express A as an increasing union, A = Ug<, Aq- Where each A, is good,
and |[Aq| < wg_1. Wecallalinel € A, “new” ifl € A,\U g, Ap. and otherwise call
[ “old” (relative to a). We label the points of A, as new and old in the same fashion. We
define at step o the partition of S, the set of new points in A,, S, = S U...U S,
Suppose we are at step @ < wy. Enumerate L, ;, the new lines of L; in A,, and points of

A, Into type w,(a) < wg, Say lg,i,xfﬁ < wys1 < i < k. Note that for each f <
Wg(q) » €ach xﬁ lies on at most one old line, since each Ay is good. Thus, for f < wg(q) .
set fa(xg) = f(ng) U {j}, where j is such that xﬁ lies on an old line in L; if one exists,

and otherwise set fa(xg) = f(xg). Thus, fo maps the new points of A, into {1,...,k}
and |fo(x)] < k — p. Now, by the induction hypothesis Q(p) applied t0 w,(y) , We may

partition the points in S,,S, = S{¥ U...US¢, so that any new line lg,z intersects at most
Wes(a)-p+1 POINts from S, and xﬁ ¢ S& forany a € fa(xg). Note that ws(g)-p+1 <

(l)g_p.

This defines our partition of S. To show this partition works, fix a line [ in A, say l €
L; . Let a be the least such that | € L,; so that [ is a new line at step a. We must show

that < wg_, points in §; = S¥. in Si cannot lie on [, since then i € fy(x;f ), but, by
construction, x{f ¢ S;.So, we may assume y < a. Now, there is at most one point x;f for
Y < a on the line [, since otherwise [ would not be new at a. Thus, we need only
consider points of the form xg@ < Wg(q) - However, from the Definition (2.2.7) of the set
S{' /< Wg(a)-p+1 OF these points lieon I € L, ;.

[
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Thus, each line in L; intersects < wg_, points of S; . Since fa(ng) ) f(xg) for all

xﬁ € S, we also have xﬁ ¢ S,ifa € f(ng). This completes the proof of the proposition

Q(p + 1) and, as mentioned, the proof that (a) implies (b).

Since (b) clearly implies (c), it only remains to prove (c) implies (a). Assume now (c)

holds, with 8 = 6 + sand 2 < p < s + 2. Towards a contradiction, assume 2 >
wg4q. Let Ly,..., [, and Ly,...,L, and S;,..., 5, be as in (c). Foreach i,2 < i < p, let
v; be a vector parallel to [; with ||Ui|| = 1. We construct sets By, ..., B, as follows. Let
By €13 = {xo + t,;: t €R} be any set of size w@g-_pr1)+1 = we. Assume 1 <
i < p — 1and B; has been defined with |B; | = w@_p+1)+i < 2. Let D; be the set of
all distances between two distinct points of B; . So, |D; | = |B; |. Let C;,, be a subset of R
such that |Citq] = w@—p+1)+a+1) and (Ciyqy — Ciy) N D; = @ (where A — B :=
{a — b:a€AbceB}). Let Biv1 = Ucec,,, [cvis1 + Bi]l = Uyes, [x+ x €
B; Ucec,,, cvi+1]. Thus, B4 consists of wg_p+1)++1) translates of B; in the direction
of ;4. Also, notice that these translates of B; form a pairwise disjoint family. Finally,
since 2° = wgy1 = W@-p+1)+p: Bp is defined.

Consider first B,_;. Since |B,_;| = wg, and since each line parallel to [, through a point
of B,,_, intersects S, in at most wg_,; points, [S, N B,| < wy. But, since B, consists
of wy,; disjoint translates of B,_,, there is some ¢, € C, such that c,v, + B,_; S
S1 U...U S,_4. If p = 2, stop; otherwise, continue. So, in general, suppose 3 < j < p
and we have produced numbers ¢; € C;, forj < i < p,suchthate; + B;_; S §; U
.U Sj_q1, where e; = cpvp +cpqVpgt. ;. Now, ¢+ By = Ucec;, e
cvj -1 + Bj_,], the translates in this union being pairwise disjoint, and |C;_;| = wg —p +
j . Since §;_; contains at most wg — p + j~1 points of this union, there is some Ci—1 €
Cj—l such that ej + Cj—1Vj -1 + Bj—2 c Sl u...U S]—Z_ Finally, we have El =_€2 +
By = cpvp + CpqVp_1 +...+ 0, + B € 51, As By is a translate of By, |B;| =
|B1] = wg_p42. But, also, B, is a subset of the line through x, + e, parallel to [;. Thus,
|B;| < wg—p+1. This is a contradiction.

+

Further generalizations are possible. The only properties of lines that were used in the
preceding argument were that two distinct lines determine at most one point and two
distinct points determine a line. We generalize this as follows. Definition (2.2.7). Let
H < P(R™) be a family of subsets of R™. Let r and s be positive integers. We say that H
Is (r, s) finitely determined if the following are satisfied:

(a) The intersection of any r distinct elements of H is finite.

(b) For any s distinct points in R™, there are at most finitely many h € H which contain
all those points.

Example (2.2.8)[64]: The set H of all circles in R™ (n = 2)is (2, 3) finitely determined.
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Example (2.2.9)[64]: The set H of all hyperplanes in R™ perpendicular to a coordinate
axis is (n, 1) finitely determined. Somewhat more generally still, we introduce the notion
of a partition being (r, s) finitely determined.

Definition (2.2.10)[64]: Given H < P(R™), we say a partition H = H; U...U Hy (k
can be infinite here) is (r, s) finitely determined if:

(@) The intersection of r distinct elements of H lying in different H; is finite.

(b) For any s distinct points in R™, there are at most finitely many h € H containing these
s points.

Note that if H € P(R") is an (r, s) finitely determined family of sets, then any partition
of H is (r, s) finitely determined.

Theorem (2.2.5) may be generalized as follows, where our convention is still in force.
Theorem (2.2.11)[64]: Let & = 1 be an ordinal. The following are equivalent:

(i) 29 < wp.

(ii) For each positive integer t, foreachn > 1, and for any r >
..U Hyis ay (r,s) finitely determined partition of some H € P(R") into p = t(r —
1) + 1 disjoint sets, then there is a partition of R®, R" = §; U...U §,, such that

|lh NnS;| < wg_,forallh € H;,1 < i < p.

2,s 2 1ifH = H; U

Proof. The proof that (i) implies (ii) is similar to that of Theorem (2.2.5). As there, we
formulate an auxiliary Proposition (2.2.12), for t > 1, which we prove in ZFC by
induction on t.

H = H, U...U H,is an (r,s) finitely determined partition of H < P(R") into k >
t(r —1) + 1pieces, thenif A € H U R" is a set consisting of some elements of H and
points, S, of R™ with |A] < wy, and f is a function from S into P({1,..., k}) such that for
all x € S we have |f(x)] < k — [t(r — 1) + 1], then there is a partition of S into k
sets, S = §; U...U S, suchthat foreachx € S,x ¢ S,ifa € f(x),andifh € H; N
A, then |h N Sll < a)g_t,forl <i<k

Proposition (2.2.12)[64]: For each ordinal 6,k, and integers n = 1,r = 2,5 > 1,if

The proof for t = 1 proceeds exactly as the proof of Theorem (2.2.5) for p = 2. Again,
the determination of which set x® should be placed into breaks into two cases. In the first
case, for some i & f(x%*) we have x% ¢ h}’ for all y < a, and x* is placed in some S;
with i in this set. For the x% in the second case, one obtains a function x%* -
(B((a)),...,B(ig(a))), where g = r and the i; (a) list the i’s such that x“ lies on
some h}’ , Withy < a, and B(i; («)) is the least such y. This function is not necessarily
one-to-one as in Theorem (2.2.5), but, from the first condition of being (r,s) finitely
determined, the function is finite-to-one. This is sufficient for the argument.

Note, as in Theorem (2.2.5), that if & = 0, then R(1) easily implies R(t) for all t. Thus,
we may assume in the inductive step that 8 > 1.
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The inductive step for obtaining R(t + 1) from R(t) is similar to that for Q(p). Perhaps it
should be noted that in obtaining R(t + 1) from R(t), one builds, as before, an increasing
transfinite sequence of “good” sets, Ay, With A = Ug<y, Aq and ||[4,] < wg being
good now means that if hy,..., h, are elements of distinct sets A, N H;,then N h; S A,
and for any s distinct points of A, the finitely many elements of H containing these points
are in A,. Since the partition of H is (r, s) finitely determined, the cardinality of the good
set generated by an infinite set does not increase. The argument then proceeds as before.

To prove (ii) implies (i), take t = 1 and n = 2. Let H; be the set of lines parallel to the
ith axis. So, the partition is (2, 1) finitely determined. Applying (ii) to this family, we have
p=r=2and t = p — 1 So, there is a partition R? = §; U S, such that |h n
Si| < wg_t = wg—_p41. Since (c) implies (a), 2 < wy.

Corollary (2.2.13)[64]: (Sikorski). The continuum hypothesis is equivalent to the
following statement. The points in R3 can be partitioned into three sets S;, S, and S5 such
that each plane perpendicular to the x; axis meets S; in at most countably many points.

Proof. If H = planes in R3 perpendicular to a coordinate axis, then H is (3, 1) finitely
determined. Now, take & = 1 = tin Theorem (2.2.11). The proof of the converse may
be found in [78] or done directly. Of course, our proof also works for any partition of the
planes in R3 which is (3, s) finitely determined for some s.

As another example, consider the analog of Corollary (2.2.4) where “countable” is
replaced by “finite”. We first show that four “colors” are not sufficient (note: Lemma
(2.2.14) and one direction of Corollary (2.2.16) follow of [79], [80], but are included here
for the sake of completeness).

Lemma (2.2.14)[64]: There are four unit vectors, v, v,,v; and v,, in R such that if
H; = {h: his a plane with normal v;}, then the partition H; U...U H, is (3, 1) finitely
determined, and yet there is no partition R> = §; U...u S, such that |h N S;| <
w, forallh € H;.

Proof. Let v;,i = 1,2,3, be the canonical unit basis vectors for R3. Let v, =
0,—+2/2,\2/2 .Let A;, A, € Rwith |4;] = w, and |4,] = w4, and let A; = Q, the
rationals. Let G € R be such that |G| = w; and (G — G) N Q = {0} Let W =
{(O,t,t): t € G} Let B = A; X A, X Az and E = B + W. The following claim
(2.2.15) suffices to finish the proof of the lemma.

Claim (2.2.15)[64]: Foreachu = (uy,uy,u3) € R3 E +u ¢ S; U...US,, where each
S; meets each plane with normal v; in a finite set.

Proof. Fix u, and assume such sets S; exist. For each Y € A,, let Ey = [A; x{Y} %
As]+W +u. Then E+u = Uyes, Ey. To see that these sets are disjoint, notice that
otherwise we would have (a,,Y;,q,) +wy; = (az,¥2,q2) + wo, With w; # w,. But
this would imply t; —t, € Q for some two distinct elements of G. Now, for each
x, € Ay, the plane x = x; + u,; meets only finitely many points of S;. Thus, S; N
(E +u) is countable and so there is some Y, € A, such that EY, € S, U S3 U S,.
For each (x,z) € A; x Q, the plane h(x,Y,, z) passing through (x,Y,,z) + u with
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normal v, meets only finitely many points of S,. But Eyyo = Upew [(A1 % {Yo} %
A3) + w + u] and the sets in this union are disjoint. So, there is some w, € W such
that (A; x {Yo} x A3) +w, +u S S, US;. But this set lies in a plane with normal
v,. S0, only finitely many points of this set are in S,. Thus, there is some z, € Q such that
(A x {Yo} x {30}) + w, +u S S5. But this set is an infinite subset of a plane with
normal v; and S; meets this plane in a finite set.

Corollary (2.2.16)[64]: The continuum hypothesis is equivalent to the following
statement. If H is a set of planes in R3> and H = H; U...U H: is a partition of H which for
some s is (3, s) finitely determined, then there is a partition R®> = S; U...U Ss such that
each plane in H; meets S; in a finite set. More generally, the hypothesis 2 < w, is
equivalent to the above statement, where H = H; U...U Hg is replaced by H = H; U
U Hypys,

Proof. If 2 = w,, take & = 1 and t = 2 and apply Theorem (2.2.11). To prove the
converse in this case, assume 2 > w,. Let us follow the same notation used in the proof
of Lemma (2.2.14). Let vg be a unit vector, vs # v;,1 < i < 4,and H; ={h: hisa
plane normal to vs}. Let F < {x: (x,vg) = O} suchthat (F — F) n (E — E) = {0}
and |F| = w,.LetSy,...,Ss be the required partition of R3. Set M = Ufer E+ f =
Ueeg e + F,the sets in each union being disjoint. Foreache € E||Ss N (e + F)| <
wo.S0,|Ss N F| < w4. Thus, there is a vector f € F suchthat E + f € §; U...U

S,. This contradicts the Claim (2.2.15) in the proof of Lemma (2.2.14).

The argument for this direction can be strengthened slightly. We may take F € {ax :
a € R}, where (x,vs) = O.Letvg # v4,...,v, be perpendicular to ve, and define Hg
accordingly. Let G < {ay: a € R}, where (y,vg) = 0, be such that |G| = w, and
G —-6)n M — M) = {0} Set N = Ugeg M + g. Itis easy to check then that if
R3 = S§; U...U S, is a partition of R3, for some f € F,g € G we have E + f +
g € S; U...U S, acontradiction. Thus, the following statement implies the continuum
hypothesis: for every partition H = H, U...U Hy of planes which is (3,s) finitely
determined for some s, there is a partition R® = §; U...U Sg with each plane in H;
meeting S; in a finite set.

If 2 = w,, apply Theorem (2.2.11) with 6 = nand t = n + 1 to obtain one
direction. The converse direction (which follows from Simms) can be obtained by
extending the above argument, assuming 2¢ > w,,q, and using vectors
Vs, Vg, -+, Vantar Vanes. THIS, In fact, gives the stronger result that the stated partition
property using 2n + 4 sets H; , S; implies 2¢ < w,.

Theorem (2.2.11) may be refined in several different ways. For some families H € R",
the value of p in (ii) of Theorem (2.2.11) is not the best possible. For example, in R* , for
each A = {iy,i,} € {1,2,3,4} with i; # i,, let H; consist of all planes of the form
Xj1 = aq and x;, = a,, where a;,a, € R.

Notice that H = U, H, is a (4, 3) finitely determined partition of some planes into 6
sets. Sikorski [78] showed, as a particular case of a general theorem, that there is a
corresponding partition R* = U S, such that if h € Hy, then h N S, is finite. A direct
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application of Theorem (2.2.11) requires partitioning R* into 7 sets. One can refine
Theorem (2.2.11), however, to obtain Sikorski’s theorem.

Theorem (2.2.28).9 of Simms [80] extends Sikorski’s result by obtaining the best possible
value of pin the case where H is the family of translates of a fixed finite number of
subspaces of R™, and the elements h of H are partitioned according to which subspace
they are a translate of. His results are stated in terms of the least integer n such that the
collection of subspaces is “n —good”. In fact, we may refine the argument of Theorem
(2.2.11) to obtain Simms’ result, and also allow general partitions of the family H. We
briefly sketch the argument.

Let IT be a finite set of linear subspaces of R"™, for some n > 2. Let H be the family of
translates of these subspaces. That is, every h € H is of the form h = V + u, where
V € II and u € R™ Following Simms, we say that IT is t —good if for every linear
ordering < of II, there is a subset S of IT of size t such that forall V € II,T{V' < V:

—-3V" € Ssuchthat V' < V" < V }is finite. We thus have:

Corollary (2.2.17)[64]: Let n = 2, and 8 = 1 be an ordinal. The following are
equivalent:
(@) 29 < wy.

(b) For every non-empty set IT of size k of non-trivial linear subspaces V of R™ which is
t—good, ifH ={V +u:V € II,u € R"}is partitioned into k sets H = H; U...U
H,, then there is a partition R® = S; U...U S, suchthatforeveryh € H;,|Jh N S;| <
a)g_t f

(c) There is a non-empty set IT = {V;,...,V,} of non-trivial linear subspaces of R™ which
is not (t + 1) —good and for which there is a partition R"n = S§; U...U S such that
Vi <i<kVueR"|(Wi+u)NnS;| < wygy_:. Remark The fact that (c)
implies (a) is half of [80], and will not be proven here. The special case of (a)=(b) for the
partition of (c) is the other half of that theorem.

Sketch of proof. Assume 2 < wg, and let IT and H = H; U...U Hj be as in (b)

above. As in the proof of Theorem (2.2.11), we prove in ZFC an auxiliary Proposition
(2.2.12) (which suffices to prove the corollary).

n = {Vy,...,V,} be a set of non-trivial subspaces of R"™ which is t-good, H = H; U...U
Hy beapartitionof H = {V + u: V € II,u € R*"},andlet A < R™ U H be a set of
size < wg. Then there is a partition S = A N R® = §; U...U S, such that for all
heAn Hi’lh N Sll < Wo_t .

Proposition (2.2.18)[64]: R(t). Let 6 be an ordinal, n = 2,t = 1,k > 1 be integers,

If t = 1, then the hypothesis that ITis 1 —good simply says that N, V; is finite. It
follows that the intersection of any k distinct elements of H is also finite. Thus, the given
partition of H is (k, 1) finitely determined. Theorem (2.2.11) then finishes this case. Since
IT being t-good implies IT is t" —good for all t' < t, we see that R(t) also holds for all t
when 8 = 0. So, we may assume 8 > 1. Likewise, in proving R(t) we may assume that
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8 =6 + (t — 1) for some ordinal 6. We callasetA € R™ U H good provided: (a) for
any hy,....h, € A N H,if N, hiis finite, then N, h; € 4 and (c) for any
x € R™ n A, the finitely many h € H which contain x also lie in A.

Without loss of generality, we may assume A is good, and |A| = wg.

Write A = Ug,<w, Aq, @S an increasing union, where each A4, is good and has size
< wg_1. Similarly, we write each A, as an increasing union A, = Ug,<ws-1 Aa,a,
where each A, ., is good of size < wg_,. Continuing, we define good sets
Ag,ay Q-1 Tor all a; < wg,..., a1 < wg_(t—z), such that each A, 4,,..., &t
has size < wg_¢41 = wg. Write also Ay, o,, = Ug<wz4a,,..a » Where each

Up<a, Aay.ajip There is clearly a unique sequence a; = a;(x),...,a; = a:(x)
such that x is new relative to a4, ..., a;.

For x € A, we now describe the S; into which we place x. Let ; = a;(x),...,a; =
a.(x). Let hl ,...,hf(l) enumerate the h € H n A on which x lies which are old relative
to a;. Let hl ,...,hg(2> be those h € H n A on which x lies which are new relative to a,

but old relative to a4, a,, and continuing, hl ,...,h?(t) those h € H N A on which x lies
which are new relative to ay,...,a;_,but old relative to a,,...,a;. Clearly,
a(l) +...+a(t) < k. If there is some “color” 1 < i < k not taken on by any of the
h} , put x into one such S; . Note that this includes the case where a(1) + ...+ a(t) < k.

Otherwise, let ht ..., h%Y pd .. h3@ . nl .. h¥Y correspond to the subspaces
Wi, ...,Wy of Il (so,W;,...,W, is a permutation of V;,...,V}). This determines a linear
ordering < =< (x) of II1. By t-goodness, there are b(1) <...< b(t) such that for all

0<j<t, nfrfi;g) W, is finite (where we interpret b(0) as 1). Note first that b(1) >
a(1)

a(1), as otherwise hi N...n hy would be finite. This would contradict the fact that x
is new relative to a4, and all of the Ag are good. Without loss of generality, we may
assume that b(1) = a(1l) + 1.1t then follows by similar reasoning that b(2) > a(2),
and again we may assume that b(2) = a(2) + 1. Continuing, we may assume that
b(t — 1) = a(t — 1) + 1. Thus, hl n...n h?(t) Is finite. Also, by our above remarks,
we may assume that a(l) +...+a(t) = k, and each color 1 < i < k is taken on
exactly once in the sequence h} ,...,h?(t) (that is, for each i, there is exactly one h in this
sequence which lies in H;). Foreach 1 < j < a(t), let ,B(h{) < wg be the ordinal such
that h{ IS new relative to a,..., at_l,,B(h{ ). Finally, put x into S; , where h! € H; and I
is such that (AL ) = sup{B(h]): 1 < j < a(t)}

To show this works, fix anh € H; N A. We show that |h N S;| < wg. Suppose
lhnS;| = wg. Let ay = ay(h),...,a; = ay(h), i.e.,, his new relative to ay, ..., a;. If
x & Ag, ,and x lies on h, then by Definition (2.2.7) of our coloring, x & S;. There are
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no old (relative to a;) points x which lie on h, since the Ag are good. Thus there must be
> wg points x € S; which are new at a; which lie on h. Continuing, we see that >
wg points x € S; which are new at a4,...,a,_1 lie on h. There are < wg points in
Ag,, ..., a;, hence we need only consider x new at ay,..., a;—q, 5, Where f > a.. If such

an x lies on h, then the values of the ,B(h{ ),1 < j < a(t),as computed for x, are all

< a, from the Definition (2.2.7)s of the ,B(h{ ) and our coloring. Since h} N...N h?(t) IS
finite, it follows that there are < wg such x, a contradiction.

We consider results related to partitions of lines and points into infinitely many pieces.
The analog of Theorem (2.2.11) becomes the following.

Theorem (2.2.19)[64]: (ZFC) Letn = 1. Forany r = 2,s = 1and any (r,s) finitely
determined partition H = Ug., H,ofH < P(R™),there is a partition R" =
Uk<ow Sk suchthatlh n S;| < wforalli < wandh € H;.

Proof. First, one proves in ZFC, by induction on € ON , the following proposition:

Proposition (2.2.20)[64]: If A is a collection of elements of H and points in R", |A| <
wp,and A N H = Uy, A, isapartition which is (r,s) finitely determined, and if f
Is a function with domain S = points in A such that vx € f(x) € w,|f(x)] < w then
there is a partition S = U<, S, such that each h € A, intersects S,, in a finite set,
and, foralllx € S,x ¢ S, foranya € f(x).

Notice that P(2“) implies Theorem (2.2.19).

In proving P(n), we may assume that A is good, that is, if hy,..., h, lie in different 4,,
then N;_; h; € A and if points x;,...,x, are in A, then so are the finitely many h in H
which contain them. Note that P(0) is essentially trivial (see the proof of Corollary
(2.2.23) below). For n > 1, the proof that P(n) holds is broken into cases depending on
whether 7n is successor or limit. In each case, we write A as an increasing union of good
sets, the argument then being essentially identical to those given earlier.

As a special case of Theorem (2.2.19), we have:

Corollary (2.2.21)[64]: (ZFC) If the lines L in R™ (n = 2) are partitioned into w disjoint
pieces L = Uy<, Lir then there is a partition R = Uy, Sk . such that each line
[ € L; meets S; in a finite set, forall i € w.

Still further generalizations are possible. For example, we may define H € P(R") as
being (r, s, k) determined (or a partition being (r, s, k) determined) where x is an infinite
cardinal as before, except that we now require that the intersection of r distinct elements
of H (or the intersection of r elements of H lying in different H,)) has size < k, and for
any s distinct points at most k many h € H contain these points. Then we have:

Theorem (2.2.22)[64]: (ZFC) Let n = 1,r = 2,s = 1 be integers, x an infinite
cardinal. Let H < P(R™) be (r, s, k) determined. Then for any partition H = U,.x H,
into k disjoint sets, there is a partition R™ = U, S, of R™ into k disjoint sets such that

|lh nS,;| < wforallh € H,.
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The proof is a trivial generalization of that of Theorem (2.2.19); just start with good sets of
size k.

Of course, since the last theorem and previous corollary are proved in ZFC only, their
conclusions imply no bound on the continuum.

Corollary (2.2.21) may be modified in a curious manner, which reintroduces set-theoretic
connections. The case p = 0 follows from Davies [68].

Corollary (2.2.23)[64]: Suppose m is a positive integer and 2 < w,,. If the set L of
lines in R™,n > 2, is partitioned into w sets, L = U<, Li. then there is a partition
R™ = Ug<o Sk-such that any line in L, meets Sy in a set of size at most m + 1. More
generally, if 2° < w,,, and the lines are partitioned into w,, sets, L = Ug<, Lg. for
p € w, then we may partition the points, R"® = Uy, Sg- S0 that |[L, N S, < m —
p + lforalla < w,.

set of lines and points in R™® (n > 2) of size < w;,, L = Ug<ew Lg, IS a partition of the
lines in A, and f is a function which assigns to each x € S = A n R" a finite subset of
wy, then we may partition the set S of points in 4,S = S write A = Uy, S, , SO that
each line | € L, intersects S, in a set of size at most m — p + 1 and that for all
x € S,x ¢ S, forall a € f(x). For m < p the result is trivial (assign colors to the
points of S in a one-to-one manner avoiding the forbidden colors). If A is a good set of size
om, m > p,writt A = SUg, Ap,witheach AB good of size < w,,_1. FOr f < wy,
consider the new points of Ag. Each such point lies on at most one old line. For each such
point, let f(x) = f(x) U {j}, where x lies on an On old line in L; if one exists (otherwise

set f(x) = f(x)). By induction, we may partition the new points at 8 so that for any
x € S, new at B,x lies on at most m — p lines new at 8 in L,, and also a ¢ f(x).
Since any line new at £ has at most one old point which lies on it, it is easy to see that this
partition of S works.

Sketch of Proof. We show by induction on m > 0 (working in ZFC) that if A is a good

Considering the converse direction to Corollary (2.2.23) leads to some interesting
questions. For example, assuming CH, given a partition L = Ug<, Lr then we may
partition the points, R*> = Uy, Sk SO that for each | € L;,|l n S;| < 2 . Davies
showed in [68], answering a question of [69], that we may not always get |L n S; | < 1,
even assuming CH. We will strengthen this result. It is natural to ask, then, whether this
partition property implies CH, or has any strength beyond ZF at all.

Question. Is it true (or consistent) in ZFC that if the lines in the plane are partitioned into
countably many sets, L = Ux<,, Lji then we may partition the points, R? = Ug<, Sk
so that for each [ € L; |l n §;| < 2? Is the analogous statement for R™ true (or
consistent)? More generally, do the converse implications to Corollary (2.2.23) hold?

We begin by considering the question of whether the hypothesis 2¢ < w,,, is necessary
in Corollary (2.2.23). Suppose that 2 = w,. The argument of Corollary (2.2.23) shows
that we still have the “two-point” partition property (i.e., for each line [ € L;,|l n
S; |< 2) provided we have the following:
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(x) For every set A € L U R" of lines and points in R™ of size w,, and any partition
AN L = Ugew Li ofthelinesin A, there is a partition A N R™ = Uk, Sk such that
foreachlinel € Ly, |l N S| <1 .

Our previous argument showed that () fails assuming CH, but it is not immediately clear
(%) fails assuming just ZFC. We show below, however, that this is the case. We first
reformulate (*) into purely set-theoretic partition properties. Consider the following
partition statements about w; (F. Galvin pointed out to us that the properties
P(w,),Q(w,) were introduced earlier in [70], where they were shown to be false
assuming CH):

P(w,) For every partition P : (w;)? —» w, there is an h: w; — w such that for all
a < f < wq,ifP(a,B) = i,thenat least one of h(a), h(B) + i.

Lemma (2.2.24)[64]: (ZFC) (*) & P(w,).

Proof. Assuming (x), let P : (w;)?> — w be a partition. Let B € R" be an independent
set of size w4, i.e., no three points of A are colinear. Let A = B U L, where L is the set of
lines through two points of B. Applying now (*) to A produces an h: w; = w as
required by P(w,), identifying w,; with B. Assuming P(w-), let A, L be as in the statement
of (). Let {x,} enumerate the points of A. Define P : w; —» w by P(a,B) = i iff the
line between x, and xz lies in L; . Applying P(w,) then produces an h : w; — w. This
defines a corresponding partition of the x, which easily works.

Note that it makes sense to consider P(w,) in just ZF. We reformulate P(w,) in a more
suggestive manner of usual partition type properties:

Q(w,) For any partition Q : (w{)? = o, we may write w; = Uk<, Ay SO that for all
k, Q([A,]?) is co-infinite.

Note that in Q(w,) there is no loss of generality in assuming the A, are disjoint.
Lemma (2.2.25)[64]: (ZF) P(w;) © Q(w,).

Proof. Assume first P(w4), and let Q : (w;)? — w be given. Let r: w — w be onto
with 71 (i) infinite for all i € w. Let P(a,B) = r(Q(a,p)). Let h: w; = w be as
given by P(w;) for P. Let Ay = {a < w;: h(a) = k}. Then, for
a,fp € Apr(Qa,B)) =k, hence Q(a,B) & r~1 (k). Then, for
a,B € Ak,r(Q(a,,B)) + k, hence Q(a,B) & r~1 (k). Assume now Q(w,), and let
P: (wy)? — w be given. Let {4, : k € w} be as given by Q(w,) for the partition P.
Let ng,ny,... be distinct integers such that n, & P([4,]?) for all k. Let h(a) = n, for
all @ € Aj. This easily works.

The following theorem of Todor cevi¢ (see [81]) immediately implies that Q (w,) is false
in ZFC.

Theorem (2.2.26)[64]: (Todor cevié). Assume ZFC. There is a partition ¢ : [w{]? =
such that c([C]?) = w for all uncountable ¢ S w;.
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Corollary (2.2.27)[64]: (ZFC) (x), P(w,), Q(w,) are all false.

From the failure of P(w,), it follows (in ZFC) that there is a partition L = Uy, Ly Ofa
set L of lines in R?, with |[L] = w,, such that for every partition R 2 = U<, Sk We
have |l N S,| = 2 for some n and [ € L, (cf. the proof of Lemma (2.2.24)). This
strengthens a result of Davies mentioned earlier. Todor cevi¢’s theorem is proved in ZFC,
and thus it remains possible that Q(w,) (or, equivalently, P(w,)) is consistent with ZF.
We in fact show that Q(w,) is a theorem of AD, and thus holds in L(RR) assuming ZFC +
large cardinal axioms. In fact, we show a much stronger version of Q(w;) under these
hypotheses. Consider the following strengthening of Q (w-):

Q° (w,) For every partition Q : [w]° —» w, we may writt w; = Uy, AgWhere
Q([A,]1?) is finite forall k € w.

Theorem (2.2.28)[64]: (ZF + AD + DC)Q°® (w,) holds.

Proof. We sketch two proofs. The first uses only the theory of indiscernibles for L(x),x €
R. The second uses the analysis of measures on w; of [73]. The second proof, however,
extends to cardinals other than w;.

Let Q : [w{]> » w be given. From AD, there is an x € R such that Q € L(x). Let
C = {&,: a € ON } be the canonical closed unbounded set of (Silver) indiscernibles for
L(x). Below, T, 0 denote terms in the language of set theory with x as a parameter. Let T
be a term such that Q = 7%(x) (&,...., &0, B0, .-, Bm) Where &y <...< &, < w; <
Bo <...< B, € C.For each a < w; we canonically choose a representation a =
o(a) L(x) (6y(),...,0,(a) (@), for some term g(a) and Gy(a) <...< O6,(a) (a) <
w; In C. For each a < w,, let p(a) € w be an integer which codes the term
o(a), m(a), and the manner in which the two sequences of ordinals
(o, ¢2), (Bg(),...,0,,(a) (@) are interlaced (including which of them are equal).
For a,f < w, let g(a,B) € w be an integer which codes how the two sequences of
ordinals ~8(a),~6(B) are interlaced. Let A, = {a < w;: p(a) = k}. To see this
works, fix k € w, and consider Q[ [4,]? . Note that q([4,]?) is finite. It thus suffices to
show that if « < B,y < &§ are in Ay, and q(a,B) = q(y,?d), then Q(a,B) = Q(y, ).
However, from the fact that a,S,v,6 € A, and q(a,B) = q(y,d), it follows that the
manner in which (EO,...,En),é(a), and 5(,8) are interlaced is the same as that for the

sequences (&g, ..., &), 5()/), 5(6). It thus follows by indiscernibility that

Qe B) = (T(x) Cor-- & Bov - Bm)) (0" (x) (6(@)), oL(x) (6(B)))

= (T (%) o s &n Bor - Br)) (@ (%) (6 (), oL(x) (6(5)))
= Q(y,96).

For the second proof, fix again Q : [w,]> —» w.LetJ < P(w,) be the countably additive
ideal consisting of all A € w; such that A € U<, Sx Where each S, S w; is such
that Q ([S,]?) is finite. Assume by way of contradiction that | is a proper ideal (i.e.,
w, & I). By Kunen, from AD, any countably additive ideal on an ordinal k < @ can be
extended to a measure (i.e., countably additive ultrafilter) on . (Proof: Let p be the Martin
measure on the Turing degrees D . By the coding lemma, let w: R — J be onto. For
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d € D, set o(d) = least « < k not in Uyeq m(x). This is well-defined since 7 is
proper. Then o(u) is a measure on k giving measure 0 to all I € J, where o(n)(4) =

Liff u({d €D : o(d) € A}) = 1.)

The claim of Section 2 of [73] analyzes, assuming AD, all measures v on w;. The result
(somewhat restated) is that there is a function f : [w;]m — w; for some m € w such
that for all B € w,,v(B) = 1 iff there is a c.u.b. C € w, such that f(6;,...,6,,,) €
Bforall §; <...< §,, € C. By applying the finite exponent partition property on w;
(with exponent 2m) finitely many times, we get a c.u.b. C S w; such that for all pairs of
increasing sequences of length m from C (aq,....,a;),(B1,...,Bm), the value
P(f(ay,....,an), f(B1 ..., Bm)) depends only on the manner of interlacing of the two
sequences. This C, however, then defines a measure one set with respect to v on which Q
takes only finitely many values, a contradiction.

Corollary (2.2.29)[64]: P(w,), ]Q(w,) are consistent with ZF.

Finally, we state without proof some extensions of the above ordinal partition properties.
For cardinals x, &, let P(x, §) be the statement that for any partition P : [k]> — &, there is
an h: k — & suchthat forany a < B < k, at least one of h(a), h(B) is different from
P(a,B). Let Q(x,8) be the statement that for any Q : [k]*> — &, we may write k =
Uics Azwhere for each2, 6 —Q([4,]?)is infinite. Let also Q° (x, &) be
as Q(x, 8) except that we write k = Ug<, Ak and we require each Q([4,]?) to be
finite.

The same argument given before shows that v,., 6§ (P(k,8) < Q(k,6)). Also, in Q(k, §),
we may replace “6 — Q([4,]?) is infinite” by “§ — Q([A,)?) has size §”. The second
proof given above for Q% (w;) when combined with the analysis of measures on &3, .4
(see [74] for the case n = 1) yields:

Theorem (2.2.30)[64]: (ZF + AD + DC) Forall§ < 63,,1,0° (63,,1,6) holds.

It is again easy to see that Q° (k, &) fails in ZFC for all uncountable x and infinite §. We
believe, however, that the Steel-Van Wesep-Woodin forcing [82] for recovering w; —DC
can be used to show the following: (ZFC + ADL(R) ) There is a model of ZF + w; —
DC + V6 < 63,.1(Q° (63,,1,6) holds). Thus, Q° (x,8) is consistent with small
amounts of choice.

As S. Todor cevi¢ pointed out to us, one can show that Q(w,), and hence Qs (w,), have
consistency strength beyond ZFC. In fact, Q(w,) implies w, is inaccessible to L. For if

not, then for some x € R,w; = wf(x) .Let c: [w{]? = w be the Todor cevi¢ partition
defined in L(x). Applying Q, let A S w4,|A|] = w; be such that ¢([4]?) is co-infinite.
The proof of Todor“cevi¢’s theorem shows that in L(x,A),c retains the property that
c([B]?) = wforall B S w, of size w,. This contradicts c([4]? ) being co —infinite.

The failure of P(w) in ZFC rules out one approach for showing the “two-point” partition
property (as in Corollary (2.2.23)) in ZFC, or even from 2 = w,. The original question,
stated at the end, however, remains. Note, however, that the consistency of ZF + -CH +
Q(w,) shows that the “ordinal version” of the two-point partition problem is consistent
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with ZF + —CH. Here “lines” refers to subsets of w, satisfying the usual properties, i.e.,
two ordinals less than w, determine a line, and two distinct lines intersect in at most one
ordinal.

Section (2.3): Steinhaus Tiling Problem

By a rotation and translation of a set E ¢ R% we mean of course a set of the form
pE + x for some p € SO(d) and x € R? It is natural to consider Steinhaus’ question
separately for measurable and nonmeasurable sets. Both the measurable and
nonmeasurable cases are presently open, but will be concerned only with the measurable
case, which leads to some attractive questions in harmonic analysis. Accordingly we
define a Steinhaus set to be a measurable set E ¢ R¢ with the property that every rigid
motion pE + x contains exactly one lattice point. Croft [44] showed that a Steinhaus set
cannot be bounded and Beck [84] gave a Fourier analysis proof of this result. One of the
present authors showed in [91] that if E is a Steinhaus set (in R?), then [_ | x|* = oo for all

a > ? The case of closed sets has also been considered; see [86] and [92].

For a given lattice A, the condition that every translate of E contain exactly one point of A
IS equivalent to requiring that the translates of E under the elements of A form a tiling.
Note in particular that a Steinhaus set must have measure 1. More generally, one can

consider tilings by functions instead of sets; we will say that an L! function f tiles with a
lattice A if

z f (x — u) is constant a. e. (dx)

VEA

One purpose is to solve the higher dimensional analogue of the (measurable) Steinhaus
problem:

Theorem (2.3.1)[83]: Suppose that d > 3 and that : R — R is an L* function which tiles
with every rotation of Z¢, i.e.
z f(x—pv)

vezd

is constant a. e. for each p € SO(d) . Then f agrees a. e. with a continuous function.

In particular this means that f cannot be the indicator function of a set with positive
measure, SO we obtain

Corollary (2.3.2)[83]: There are no Steinhaus sets in three or more dimensions.

We have been unable to prove a similar result in R? but we will improve on the bound in
[91] in the following way:
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Thus the result of [89] (5 = >+ &) implies that if E is Steinhaus then (28) holds
for all a >§; this is the best that we know unconditionally. The conjectured result

(B = % + ¢, see e.g. [90] or [93]) on (27) would imply (28) for all @ > 1. This same range
a > 1 also arises in another way- see the remark after the proof of Corollary (2.3.9).

Property (28) with a = 2 can be proved by an argument similar to [91] but based on
L? — L? instead of L' — L estimates. We give this argument in Corollary (2.3.9) below.
The relevant L? estimate, Corollary (2.3.8)(b), is quite simple and may be of some
independent interest. Theorem (2.3.1) and Theorem (2.3.14) (in the case a < 2) is proved.
Both proofs use bounds for exponential sums.

We also consider a related problem for finite sets of rotations. It is natural to ask whether
there are sets E which have the Steinhaus property relative to a large finite set of rotations
{p:}, i.e., whether it is possible to have Y, _,a xz (x — p;v) = 1 for each i. This question
was answered in the affirmative in [92] for a more precise statement. We will prove an
analogue of the Croft-Beck unboundedness result in this context and more generally for
images of Z¢ under linear maps with determinant 1 rather than just rotations:

It is based on uniform distribution modulo 1 and a theorem of Ronkin [94] and
Berndtsson [85] on the real zeros of entire functions of exponential type in C¢.

We let o, be the surface measure on the sphere in R of radius t, and will normalize the
Fourier transform via f(£) = [ f (x)e~?™*$dx. We note also that a (Schwarz function”

will mean a function belonging to the Schwarz space as defined (say) in [88], p. 160,
Definition 7.1.2.

Lemma (2.3.3)[83]: Assume d > 2. Let q: R = R be a Cy° function supported in E 2],
and let b € (0,1]. Define Ky : R% - C

1 vn+b\
KN(x)=zn: r+bq< nN )J\/n+b(x)

Then for large N there is an estimate

N
((vjxp=10 if 1< [2] < N

Kyl =y a2

it >N
™ Tixl =5

Proof. This will follow from the asymptotics for the Fourier transform of surface measure
and a simple form of the vander Corput method for estimating exponential sums. We

52



remark that if |[x] = N% with « > 1 then the bound can be improved by using exponent
pairs, but Lemma (2.3.3) as stated is enough for the proof of Theorem (2.3.5).

It is well known (e.g. [95] p. 50) that 7(x) = re(B(|x|)) where B(r) = a(r)e* ", with
a(r) being a complex valued function satisfying estimates
d*a _a-1_, 5
— < 2
ldil =T ( )
Hence also 4;(x) =re (td‘lB(tlxl)). Define t, = max (¢,0),and let r = |x|.In the

calculation below, we use that g(t) = 0 when t < %; this implies that various integrals
may be taken interchangeably over R and over (0, o) . We have

1 vn+b\, — . d-1
nzomq< N >( n+b) B(rvn+b)
= 2((11 + b)+)¥ q <—“(n;l_b)+> a (1‘ /(n + b)+) eZnir,/(n+b)+
nez
= z f ((y + b)+)% q <—“(y;l_b)+> a (1‘ /(y + b)+)  2mir (y+b)+e—2nivydy
VEZ R

— zf(Nz)d_zq(z)a(rNZ)eZ”iere_Z”iV(Nz Z_b)d(NZ 2 _ b)
R

VEZ
- r_%N%zf(p(Z)BZniere—Zniv(Nz 2-b) 4, (6)
ver "R
d-1

where ¢(z) =224 1(rN) 2 a(rNz)q(z). We used the Poisson summation formula and

then the change of variables z = —”';b. We note that the estimate (5) implies that the

functions ¢ = ¢y ,- belong to a compact subset of C°; this means that the estimates below
are uniform in r and N.

We rewrite the sum (6) isolating the v =0 term and making some algebraic
manipulations:

_d-1 d+1 .
(6) =r 2 NTJ- ® (Z)eZ””dez
R
_d-1 d+1 27Ti(vb+ﬁ) —27TivN2(z—L)2
+7r 2 N 2 z e 4v f(p(z)e 2Nv) dz @)
vEIN{0} R
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The first term in (7) is equal to r — —Nﬂ @(—Nr), hence S r — —NE(N )~k for

any k. In particular, it is << (Nr)~ 100 if r > 1. The terms in the sum in (7) may be
evaluated via the asymptotics for Gaussian Fourier transforms ([88], Lemma 7.7.3); the
vth term is equal to

m-1

)Y ¢, on g (5) + 0 (o)) ®)

k=0
for any m; here ¢, are fixed constants and the ¢, are certain derivatives of ¢. All the
terms in the sum over k vanish if v ¢ [L,i] so that
4N N

1
vN?)72 ifve
wefo el
vN ) 2 ifve [m —
Accordingly the sum in (7) is
1 1
< card (Z n [4— ~|) ez + Ny Tz

Taking m sufficiently large we obtain

d-2
Q d+1 (<ﬁ) 2 |fT 2 ﬁ
(N sr 2 N> "card (Zn [4— —]) (rN)~ 2+(rN) 100. <{ 2
k(rN)‘lOO ifl<r< %

The lemma follows since Ky is the real part of the quantity (7).
We need one more lemma, an easy consequence of the Poisson summation formula.

Lemma (2.3.4)[83]: Let k = 2 be an integer, let g be a fixed C;° function supported in
EZ] let b € [0,1) and let h = h(t) be a function on the line satisfying the following
estimate:

dt

when 0 < j < k and % < t < 100N. Then for large N

P e G R RO

where the implicit constant depends on g only.
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Proof. Set g(x) = E/_b) and (x) = q(";:b

derivatives of a satisfy

) . Then a is supported in x ~ N? and

I I SNV (10)

dx’

since the functions q(vx +bN —2) belong to a compact subset of Cg° and a(x) is
obtained from q(vx + bN~2) by dilating by N? When x ~ N2, derivatives of g satisfy

| I| < RN-0+D) (11)

dxJ

when j < k. Namely, it is easy to show by induction on j that the jth derivative of g is a

hl('“ ) where h® = ith
(\/x+b)

derivative of h, withi < jand £ > j + 1. Estimate (11) is then obvious.

sum of finitely many terms each of which has the form

The left side of (9) is (make the change of variables t = vx + b) equal to
1> atg® - | a@ge@ax
n

By Poisson summation this is

(12)

> @)

v+0

and if we integrate by parts k times and use (10) and (11), we bound the uth term in the
sum (12) by

k 2N?2
lv]|~ "fl (a g) xS Ivl"‘f RN-(+k) gy

0
S |v| RN~ (-1
Hence (12) RN ~%~1 and the proof is complete.

We prove Theorem (2.3.1). The argument is Fourier analytic and is based on the following
observation: let f be a function satisfying the hypotheses of Theorem (2.3.1). Then f
vanishes identically on any sphere centered at the origin which contains a point of Z¢
When d = 2, this observation was made in [84] (and used also in [91]) and the proof
extends immediately to higher dimensions. Since every integer is the sum of four squares
and every integer congruent to 1 mod 8 is the sum of three squares, we see that it suffices
to prove the following:
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Theorem (2.3.5)[83]: Assume that d > 3 and let a and b be positive real numbers. Let
f:R% = C be an L' function such that f vanishes identically on the sphere centered at the
origin with radius vam + b for every positive integer m. Then f is continuous.

Proof : We may clearly assume thata =1 and b < 1.

We let g € C5°(R) be supported in = 2| and such that the functions q.,;} form a
0 2 2’) o

partition of unity on (0, ) ; here we have defined q,;(x) = ¢q (Zx—]) . We define Ky as in
Lemma (2.3.3) using this q.

Fix a ball D with radius 1; we will show that f is continuous on D. Let D be the concentric
ball with radius 2, and let f; = x5f and f, = xra\5/ Where xg is the indicator function of

the set E. By assumption, o ;73 * f Vvanishes identically for any positive integer n and
therefore Ky * f vanishes identically for any N.

Claim (2.3.6)[83]: Suppose n > 0 is given. Then, provided k is large enough, we have
PNLARAOTEY (13)
j=k

forally € D.

Namely, by the preceding remarks it suffices to prove this with f; replaced by f,. If
|y — z| = 1, then Lemma (2.3.3) implies that

a-2
- ~100 2/ \ 2z
Yieo-al< > @y-d " Y ()
: . L ly = z|
jz0 ji2)z2|y—z| ji2ls2|y-z|
Since d = 3, it follows easily that for a suitable constant C,
PRLA R (14)

JEN
forall y € D and z € R*\D. Now fix a number R > 2 which is large enough that

n
| fl <5~
fRd\DR 2C

where Dy, is the ball concentric with D and with radius R. Then, using Lemma (2.3.3) as in
the proof of (14), if k is sufficiently large then
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21Kt =2l < g

jzk

forall y € D and z € DR\D. It follows that

DKy k< |

j=k

PIEACERICTES |

RY\Dg 4

Z Ky = DIIf @I

R\

U
Alflle +Co- 5= =1
2|If||1 T

as claimed.

We now fix y € D and define

h(r) f e?™8 f(§)do,(§) = rd‘lf

o f f (2)e?™6=2¢ dzd g, (§)
1

The estimates below will be uniform in y € D. Using I"ourier inversion, we have

1 vn+b RN
00100 = Y s (F) [ £ 70 @

1 b
= n+bq<‘V”N+ )h(m)

If y € D, then the second form of the definition of h shows that h and all its derivatives
are O(N%~ 1) when r € [% 1OON]. Accordingly, Lemma (2.3.4) with a large value of k
implies

[ h@a(5)at =55« £6) + o(r=100) 1)

Now define y: R — R via

B © =g (2)

Then, using I'ourier inversion and the definition of h, we have

) = [ e q (B
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- [ron(f)a

On the other hand 1 belongs to the Schwarz space, and ;. Py () =1 when [€] is
large. Accordingly, the function ¢,« defined via

GO =1- §2 ()
j=k
belongs to the Schwarz space. We have

) = 9 fi3) = D i)

j=k

- 3 frong)e

=k
! —-100k
= Eszf*fi(}’)"'O(z )
=k
by (15). We conclude using (13) that
/i) — e x f; ()] < z | Ky * fi(y)| + 27100k
=k
S 2n

for any given n provided k is sufficiently large. Hence, on D, f is the uniform limit of the
continuous functions ¢« * f; and therefore continuous.

If E is a nice enough set in R then it is well known that the indicator function y; cannot

1
belong to the Sobolev space Wz, i.e. the integral fRd | €112z (8)|>dé must be infinite. In
fact, there is an asymptotic expression which implies in particular that

fl EOF ~ R (16)
>R

as R — oo, This is often used in connection with irregularities of distribution; see e.g. [93].

We will not use (16), but we will need to know that the lower bound in (16) is valid
without any regularity assumptions on the set E. This is not difficult but does not seem to
be in the literature, so we prove it in Corollary (2.3.8) below.
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Let ¢ be a Schwarz class function in R with $(0) = 1; ¢ will be kept fixed for the rest.
Let ¢, be the corresponding approximate identity defined by ¢.(x) = e %@ (s 1x) .

Lemma (2.3.7)[83]: Suppose that E is a set in R® with |E| =1 and |EnD| > 0 for a
certain ball D with radius 1. Let D be the concentric ball with radius C,;. Then

1 3
frebg <o n =)l e

provided that ¢ is sufficiently small; the implicit constants may depend on E.

Proof. We will use the following well-known fact:

IV (pe * xa)loo S €71 (17)

To prove (17), let Yy =Ve, let C = ||, and define Y.(x) = e %P(e 1x)
Differentiation under the integral sign leads toV (¢, * xz) = € 11, * yz. On the other
hand, for any x € R%, we have |1, * g (x)| < [[Well1llxelle = lIWll1, Which proves that
IV (@; * xg)lloo < Ce™1, as claimed.

It follows by the mean value theorem that if ¢, * yz(x,) = % then ¢, * yg(x) € E%] for

all x € D(xy,Ce). We let o be surface measure onS?!; here we take it to be
normalized so that o(S%~1) = 1. We also let E€ be the complement of the set E.

Choose once and for all a point of density of E n D, which we may assume to be the
origin. Let A be the set of all w € S¢~* such that the ray {rw : 1 <r < C,} contains a

point of density of E€. Since E has measure 1 it is clear that A must have measure 2%

provided C, is large enough. If w € A then we let p,, = r,,w be the corresponding point of
density of E€ In a similar way we can choose a small sphere centered at 0,x =
{pw:w € S* 1} where p < 1 in such a way that q, = pw is a point of density of E for all

1 - 3
w € B where B c S%71 s a set of measure > "

By Egoroff’s theorem, we can find subsets A* ¢ A with measure > % and B* ¢ B with

2 .
measure > gand a number g, such that if ¢ < g, then

|E N D(p,, &)l
< 107° for all w € A* 18
1Dy 0] f (18)
and
|E€ nD(q,, €)|
<107° for all w € B* 19
1D(q0, 0] f (19)

Note |A* n B*| >

w |-

59



Now fix € < g, let w € A* N B* and consider ¢, * yz as a function on the line segment
{tw:p <t <r,} Its value at pis>1 — 10"°and its value at 7, is < l0~®Accordingly,

there must be a value of t,, € (p,7,) where @, * yg(t,w) = 2 Then by the remarks at the
2

beginning of the proof, ¢, * yz(tw) € G%) for all w € A* n B* and all t in the interval

centered at t,, with length C~1e. Using polar coordinates it now follows that the set

{x: @, * yp(x) € G%)} has measure = ¢ where the constant is independent of ¢

provided ¢ is small.

Corollary (2.3.8)[83]: If E c R% is a set with finite nonzero measure and if ¢, is as in
Lemma (2.3.7) then

1
@) ll@e * xg — xell2 = Cz ez for small &.
(b) fIEIZR | 51> = (CzR) ™! for a certain constant C; depending on E and all sufficiently
1
large R. In particular, yz & Wz,

Proof. Part (a) is immediate from Lemma (2.3.7), since is @e * xp(x) S% implies

loe * xp(x) — xg(x)]| = %. Part (b) follows easily from (a). By (a) we have

| XD [@(RTE) — 1]°d§ = (CeR)™ (20)
Rn

uniformly in R, and if ¢ has been chosen to be nonnegative, then |@(R™1&) — 1] is
bounded away from zero when |¢]| = R.

From Corollary (2.3.8) we can obtain a form of Theorem (2.3.14) where a = 2:

Corollary (2.3.9)[83]: If E = R? is Steinhaus then [_ | x|?dx = oo.

Proof. As was done in [91], we use the elementary estimate (which is also the only known
estimate) for the maximum gap between sums of two squares:

(G): If r € [1,00) then for a suitable fixed constant C; there is u € Z? such that |r —
1

lv]| < Cir =
We also use the following form of the Poincare inequality, which is well-known.

(PI): Let Q be a square in the plane with side r and let y be a Jordan arc contained in Q,
such that the distance between the endpoints of y is > C;!r. Let f be a function which
vanishes on y. Then

[ 177 < cor? [ 1717
Q Q
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where C, depends on C; only.

Fix a large number N and define Ay & {§ € R?: N < || < 2N}. Let C be a large
1

enough constant and cover A, with nonoverlapping squares Q of side CN z. If E is
Steinhaus, f = xg, then (G) implies that each square will satisfy the hypothesis of (PI).
We conclude that

[15r s v [ 1vzr
Q Q
for each Q and therefore
| X1 s N~ | | Vgl
AN Ay

where A} is the union of the squares and is contained in {¢ € R*: N —1 < |§| < 2N +
1}. Consequently

1$NE@I?dS < | | VXEl?
AN Ay
If we now sum over dyadic values of N and use that no point belongs to more than two
AyS, we obtain

| 1snm@©rds s | 1vgrds -1
]RZ ]RZ

Hence by Corollary (2.3.8)(b), [o. | VXz|* = oo, i.e. [ | x|*dx = oo see [87].

If 1 <p<ooanda >0, then we let WP:* be the LP Sobolev space with a derivatives. If

1
E is any set with positive measure, then y cannot belong to W¥». This is because Lemma

1

(2.3.7) implies that ||xz — @ * x|, = P, which implies that y cannot belong to any
p

1
Besov space A9 with g < . Since A? contains WP’ when g > max (p, 2) it follows
1 q 1 q p
p p

1
that y cannot belong to W’ 7.

We note that Croft’s proof [44] that Steinhaus sets are unbounded was based on
considering points which are density points neither of E nor of its complement. Corollary
(2.3.8) is basically a quantitative version of existence of such points.

We now prove a further technical result, which we will need for the proof of Theorem
(2.3.14). It says roughly that the lower bounds on ||, * xg — xz||, obtained (as above) by
considering large values are always sharp. If E ¢ R? is a set of finite measure, then we
define
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AE(E) = |los * xg — xell1

BE(E) = |lpe * Xk _XE”%

1
C(B) = I{x € R% [, * 2 () — x5 (0) = 51

It is easy to see that
C(E) s B.(E) s A(E) (21)
forany E and «.

Lemma (2.3.10)[83]: For any given set E c R with |E| < oo there is a sequence
& = 27k - 0 such that Agj(E) < ng(E) ; the constants here (and in (21)) depend only
ond and ¢.

Proof. We may assume that |E| = 1. If D = D(x, p) is the ball with center x and radius p
then we define

a(D) = min (JE n D|,|E€ n D)
B(D) = ) 2710 o(2/Dp)
2

Here we have used the notation E€ = R*\E and (x, p) = D(x,7p) .

Let C, be a large constant. If D is any ball of radius C; 1< then we claim that the following
are valid:

L l@e * xe — XEll L2y = B(D)
1
[ {x €D+ | * x5(x) = x5 ()] = 1} 2 a(D) .

In fact, 1l follows easily from (17). Namely, if C, is large then (17) implies via the mean
value theorem that the difference between the maximum and minimum values of ¢, * xg

on the ball D is less than % It follows that one of the following must hold
(i) @, * x(x) < %for allx € D, or
(i), * x(x) = S forall x € D.

In case (i) we have |{x € D: |, * xg(x) — xg(x)| = %}I > |EnD| = a(D) and in case

(ii) we have | {x € D:|¢; * x5(x) — xz ()] 2 7}| E 0 D| = a(D),i.e. Il holds in either
case.
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To prove |, we express ¢ as a synthesis of C,° functions, say

j=0

where supppd < D(0,(2C,)7*27),9,(0) =1, |lgjll;<C and a; < €271, Let

<pg(x) = ¢ %pJ (e 1x) . It follows by Minkowski’s inequality and the support properties
that

ol * xp — Xellpy SIEN (ZjD)l
and therefore also
||‘Pé *Xg — Xelliip) S “(ZjD)
since the left side is unchanged when E is replaced by E€ | now follows by summing over
j.
Let (¢) = fRda(D(x, Cyle))dx, J(e) = fRd,B (D(x,Cye))dx. Integrating 1 and 11 over
R% we get

e (e) S C(E) S A (E) s e 9(e) (22)

Let k be a large positive integer and consider the sums

(0.0)

9 = z 2542 [(2¢-K)

£=0

Jk — 2—5d{’](2{’—k)

For any k, we have

Je = z z p-d(56+10)) (pt+i=k)
2=0j=0

< z 2—5dm1(2m—k) — jk
m=0

On the next to last line, we set m = j + £ and used that ¥, ., 2~ 4(5¢+10/)< p=5dm,
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Now observe that J(e) = 4% for small €, e.g. by (22) and Corollary (2.3.8)(a), and that
I(¢) < €% for any & (even when & > 1), e.g. by (22). It follows that J, = 2~(@+Dk and
that 3, _« 2754t |, is small compared with 2~(@*+Dk Accordingly

2

<2—5d{’](2{’—k) < 2—5d{’1(2{’—k)
2, 2,

k
gsi fSE

which implies there is a value 2% <2 —k with J(2°7%) < 1(2¢7%) . This and (22)
prove the lemma.

We assume that the Schwarz function ¢ satisfies the following conditions:

1
supp § € D(0.1), ¢(5) = 1if £ €D <O’§) (23)

We set ¢o(x) = p(x) —2%p(2x) ; thus y is a Schwarz function with supp ¥
D(0,2)\D (O,%) . We define y.(x) = e~ %p(e~1x) , so that YizoWo-je* f=@exf = f
for any f and &, as may be seen bytaking Fourier transforms. Property (23) implies that no

point belongs to the support of fb; for more that three values of j, so it follows by the
Plancherel theorem that

D Moo+ P2 2 11f = 0+ £13 (24)
=0

Furthermore,
l2mje* Flla S IIf = 0 * £l (25)

Namely, the support property (23) makes it possible to represent y,_; = g; * (§ — ¢)
with ||g;|l; < C (here § is the Dirac delta function). Indeed if j = 1 then JZ: and @ have
disjoint support so we can take g; = ,_;, and when j = O,@'_\] =) is obtained from
1 — @ by multiplication by the Cs° function m defined via m(¢) = —1 when |¢] < 1 and

% when || = 1. It follows using dilations that y,-;, = g; . * (6 — @) where [ <1
and when ||gj, €ll; = |lg < C.

Accordingly  [[1,-ic * fll1 = 1gje * (6 = @) * flli = 11gje * (f = @ * Pl < ClIf -
¢ * f ||, which is (25).
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Corollary (2.3.11)[83]: Assume that ¢ satisfies (23) and define y as above. If E is a set of
finite measure then there is a sequence & — O such that, for each j, (i) ||1,b€j * el S

2
1 -
(109 2) e, * 13 and G e, = 213 = 25

Proof Let & be such that A.(E) S B.(E) . If n = 27%¢ then ||y, * xlls S A:(E) by
(25) and Yy<o Il ¥y, * X213 = B:(E) by (24). Hence, for some k we must have

max ((k + 1) 72|y, * xglly, (k + 1)72B(E)) S Iy, * 252

Also B.(E) > & ~ by Corollary (2.3.8)(a), so (k +1)"?B.(E) = n;, and (k+1)"2=
-2
(Iog i) We conclude that
Nk

max << log %)

i.e. that there are arbitrarily small numbers ¢; such that (i) and (ii) hold.

-2

Iy, * XE|I1J7R> S 1y, * xell3

The following fact will be used repeatedly below, so we formulate it as a lemma.
Lemma (2.3.12)[83]: If N = 1 thenforany e >0andr >0
r
_ —-100 £ _
z (L + Nl = [l < €N max (1-,1)
VEZ2

Proof Because of the rapid decay of (1 + Nt)~1%° when ¢t > % it is easy to show that it
suffices to prove the following estimate for all r:

n (r + %) —n(r) < N€ max (%, 1) (26)

where n(r) is as in (27). To prove (26), consider two cases.

(i) r < N3 The number of lattice points on a circle is bounded by any given power of the
radius, hence a circle of radius p € (r,r +%) contains < r3 < N° lattice points. There

are S max(%, 1) values of p for which it contains some lattice point and (26) follows.

(i) » = N3. In this case we use (l) with the classical exponent g = % Thus n (r + %) —

2
T -
< — 4+ ~
Tl(T') ~ r3

z |~

The proof of Theorem (2.3.14) will be like the proof of Theorem (2.3.1) insofar as it is
also based on using an appropriate “fundamental solution” However, we must replace the
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kernel in Lemma (2.3.3) by an analogous one involving a sum only over circles which
contain lattice points. We will use the obvious choice where one counts each circle
according to the number of lattice points it contains.

Let p be a nonnegative C* function of one variable supported in t < 1 and with p(t) =1
1 .
when t < 7 Define

1 i
K@= D @ ()
VEZZ2 v+0
where r = |x|.
We will use complex notation when convenient and define operators T, on L*(R?)

viaT,f(x) = [ f(x+ peie)g, i.e. T,,f is the circular mean over the circle of radius p.

Lemma (2.3.13)[83]: Let E c R? be a Steinhaus set and let 1 be a Schwarz function in
R? with ((0) = 0. Let f = yg. Then

Prf== > T @f)
VEZ2,v#0
Proof The Steinhaus property gives after convolving with vy that
Pef@== ) Prflx+eiv)
VEZ2,v#0
for all & and x. The lemma follows by integrating with respect to 6.

Theorem (2.3.14)[83]: Assume a bound of the form
n(r) =nr? +0(rf) 27)

where (r) = card((Z*\{0}) n D(0,7)) . Then any Steinhaus set E c R? must satisfy

f | x|%dx = oo (28)

foralla>i

1-B
Proof. We let § be such that (27) is true and assume toward a contradiction that E is
B

Steinhaus and [, | x|* < co for some a > 5
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Fix a Schwarz function ¢ satisfying (23) and set (x) = @(x) —4¢(2x) . Thus supp
¥ < D(0,2)\D (O%) . Let Yr(x) = R?*yY(Rx) . Also fix a function p as in Lemma
(2.3.22). Applying Lemma (2.3.13) with ¥, we get for any M

Yr * Xg = —Au(Wr * X5) — By (g * XE) (29)

where the operators A,, and B,, are defined by

5= (1 () )

v
Note that A,, and B,, are convolution operators and the convolution kernel of A, is
supported in |x| < M.

The strategy of the proof is to show that the right side of (29) is too small to be equal to
the left side, and we start by making appropriate L? — L? and L' — L* estimates for the
operators A,, and B,, respectively. We state the estimates in a “localized” form for the
sake of the application below.

Claim (2.3.15)[83]: Assume that M < R and that supp(g) < D(0,2R)\D (O,g) . Then,
given (27), there is an estimate

||AM9||L2(D(a,M)) S MR_(l_ﬁ)”g”LZ(D(a,lO,M)) + R gll,
for any a € R?

Namely, let /& and J® be the annuli {f:
respectively. The estimate

<|él<3R} and {¢: 2<|¢| <4R)

supp § < JR = ||[Augll. s MR=O=B)|g]|, (30)

Is immediate from Lemma (2.3.22): A,, is a convolution operator, and the corresponding
multiplier is the function K,;, whose L* norm on D(0,4R)\D (O,g) is < MR-(-F) py
Lemma (2.3.22).

The localized form follows in a standard way using that the convolution kernel of A, is
supported in |x| < M: we may suppose a = 0, and we let p € C;° be such that p = 1 on

D(0,10) . Define py(x) = p(M~1x) . Let y be a Schwarz function whose Fourier
transform is supported in J* and equal to 1 on /3 and define yz(x) = R%y(Rx) .
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The support property of the convolution kernel implies that A,,g(x) = A, (gpy)(x) when
€ D(0, M) . Accordingly

1AMz (po.my) = ||(AM(XR * (HPM))HZ + “AM(g,DM —XR* (HPM))HZ

s MR gpyll, + M2|lgom — x& * (9pm)ll2 (31)

where we used (30), that ||xgll1 = |lxll1 < C, and the trivial estimate [|Ayfll, <

M?||f|l, (since A, is convolution with a sum of O(M?) probability measures) in the
second term. On taking Fourier transforms we see that ||gpy — xr * (g2 =
12 = xR)Pm * Gllo. < 115w * Gll 2(ronyz) S (MR)™1?||gll,, where the last inequality

follows since § is supported in = < [¢| < 2R and |py(n)| < M?(M|n[)~2%°. Claim
(2.3.15) follows by substituting this bound into (31).

Claim (2.3.16)[83]: If M < R, supp § < D(0,2R) then for any £ > 0,
IBMg()| S REcllgll ./, ey + R-0llg]
> 19 oy 1

For this, we fix a Schwarz function p such that p =1 on D(0,2) and define pgr(x) =
R?p(Rx) . Then g = pgp * g, SO

Byg = z <1 -p <|Mi|)> Tiw)(or * 9)

4

=2 <1 P <|;T|)> V1™ (0 * o) * 9 (32)

4

where gy, is arclength measure on the circle centered at O with radius |v]. We let H be the
convolution kernel in (32), i.e. H(x) =3, (1 —p (%)) ||~ pg * op (%) .
Uniformly in v we have

lor * 01 ()] S R(L+ Rl = )" (33)

This is well known and is easy to prove using that o},|(D(a,t)) < ¢ uniformly inv, a and

t. We now sum over v and use that p(t) = 1whent < % Thus
R

|v|>M|v|
=2

[HY)| = (L +R|lv| = lyID7

It is clear that
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R R
Y S @HRIPI- DTS Y (RIS R0

|v] , vl

vizZ [vlz

Ivl-lyli>12

Accordingly,

100 R -100 v
HOI SR+ 5 @Rl =) -l < g5 (34)

Ivlz%
[Iol-Iyl[>1
If |y| < %then the sum in (34) is empty, so
|[H(y)| s R71%° (35)

If |y| > % then we observe that |v| > % for all u in the sum (34), and then apply Lemma
(2.3.12) with r = |y| and N = R obtaining

R
[HO S R0 +00 > (L Rllw] = Iy ID ™
v

R
< — - R€ max <M1>
54 R

< RE— (36)

Claim (2.3.16) follows from formula (32) and the estimates (35), (36) for the convolution
kernel H.

We now continue with the main proof. By Corollary (2.3.11), we can find arbitrarily large
numbers R such that ||y * xz|l5 = (log R)“?||Yr * xg||; and also ||Yg * x£||5 = R~ In
the subsequent argument R is taken to be a sufficiently large number with these properties.

We fixy with1 — g >y > ﬁ and define

M = RY (37)
To ease the notation we also define

g =Yr*xg

Note that supp(g) < D(0,2R)\D (O,g) : this fact will be used without mention below.
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We subdivide R? in squares Q of side 107°M taking one of them to be centered at the
origin. We will denote the square centered at the origin by Q,. Let Q be the disc concentric

withQwith radius 1—10M and Q the concentric disc with radius M. Define a square Q to be

good if ||g||fz(Q) > (log R)_4||g||L1(Q) and bad otherwise. The reason for making this
definition is as follows:

Claim (2.3.17)[83]: If Q is a good square and h : Q@ — C is a function on Q such that
1]l < 5 (log R)™* then
lg + ki) = (log R)*lIglI% 5,
Namely, let Y = {y € Q: |g(y)| = 2||h||}. Then
||g||L2(Q\y) ||g||L°°(Q\Y)||g||L1(Q\Y)
< 2||hlle gl o)

< 2(log R)*|IhllwllgliZ2(g)

1 2
= 59l

so that ||9||L2(y) ||g||L2(Q) If y ey, then |g(y) +h(y)| = |g(}’)| so we have

|g+h||L2(Y) ||g||L2(Y) ||g||L2(Q) Claim (2.3.17) now follows since ||g||L2(Q)

(log R)” 4IIgIILl(Q) z (log R)™*llgll}2 5y

Next we have

Claim (2.3.18)[83]: There is a good square Q with the following two additional properties:
gl ey S (log R)*°M~* (38)

gl = R™° (39)

For this, we let G and B be the unions of the good and bad squares respectively and let B
be the union of the é’s corresponding to bad Q’s. We note that any given point y belongs
to 5 for only a bounded number of Q’s. We have

gl + Nglls s < llglls
< (log R)?lgll5
= (log R)*|lgllfz¢) + (log R)?|I gl 72z
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< (log R)?||gll 2 + (log R)_2||g|IL1(§)

so that [|gll.(5) S (log R)?|lgll1(g) and therefore

lglly = (log R)*[lgll . g) (40)

Next define G, to be the union of all good squares @ which have property (38). We will
show that

lgll2g.) = (log R)?lIglly (41)
Namely, our decay assumption on the set E implies that
Nglligey S M~ (42)

Now consider two cases:
.. 1 100 _
(i) gz < 5( log R)**°M~“

. 1 _
(i) Ngllircoy) = 5( log R)**°M~“

In case (i), (42) implies that all squares Q satisfy (38) so (41) follows tautologically from
(40). In case (i), (42) implies that

||g||L1(Qg) < (log R)_100||g”L1(Q0) (43)

If Q, were bad, then (43) would imply that ||g||,1) S (log R)™*°|lg|l;, contradicting
(40) if R is large enough So Q, must good, and therefore contained in G, by (42).

) (log R)100
Accordingly ||gll 1(g«) = 1912 ¢gp)~ = T+ (log ()10

from (43). This is stronger than (41), which has therefore been proved in both cases (i) and
(ii).

Now let X be the union of all squares @ such that ||g||;1(g) < R™°9 Then, taking (say)
T = R10,

[lg1l1.where the last inequality follows

||g||L1(X) < ||g||L1(XnD(0,T)) + ||g||L1(XnD(0,T)C)

2
< R—50 <Z) + T«
R
S R—lO
S R7lglly
This and (41) imply that G, cannot be contained in X, which gives Claim (2.3.18).
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Let Q be the square in Claim (2.3.18). If x € Q, then D(x,%)c is disjoint from Q.
Accordingly, by Claim (2.3.16) and then (38) and (37), forany € > 0

R
1Bu (Do) < R 57 IIQIILl(EC) + R glly
< RI77*€ (log R)100M @
= (log R)100R1-y-vate
If £ is small, then the exponent of R here is negative. It follows by Claim (2.3.17) that
”g + BM(Q)“iZ(Q) z (log R)‘4||g||i2(5) (44)
On the other hand,
19 + Bu(@llziy = Il = An(@llzz(q)
s (MR=OP) lglifzq) + R
S R_n”g“iz(é) + R720 (45)

where n = 2(1 — B —y) > 0. We used Claim (2.3.15) and (37). Combining (44) and (45)
we get

—4 2 -n 2 -200
(log R) ”g”LZ(Q) SR “g”LZ(Q) +R
and therefore ||g||iz(Q) < R™'? Since Q is good it follows that ||g|l.1¢p) < R™'°%, which
contradicts (39) so the proof of Theorem (2.3.14) is complete.
Before proving Theorem (2.3.19) we will make some further remarks about the question.

If A c R? is a lattice then let A* ={& € R? : &-x € ZVx € A} be the dual lattice. We
note that a function f tiles with the lattice A precisely when f vanishes on A*\{0}.

The Steinhaus problem asks for a subset of R® that tiles with all rotations of the lattice Z¢
It seems reasonable instead to ask for a set E ¢ R¢ that tiles with a given finite collection
of lattices, say A4, . .., A,. I'or lattices with volume 1 and with no nontrivial relation of
the type

M+ + 1, =04 €A

it is shown in [92] that measurable such sets exist. The existence question is of course very
easy if instead of trying to tile with a subset of R¢ we try to find a function f € L'(R%)
that tiles simultaneously with a given collection of lattices, that is
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zf(x—/l) = Consty, for a.e. x € RY, (46)
AEA

and for all lattices A in the collection under consideration. Indeed, say we are dealing with
the finite collection A4, . . ., A,, assume that D; is a fundamental parallelepiped for the
lattice A;, and write

f=Xp, **Xp, (47)

Since tiling with a lattice A is equivalent with the vanishing of the Fourier Transform on
A"\{0}, and since it is clear that yp, tiles with the lattice A;, it follows that the function f

defined in (47) tiles with all A4;,i =1,...,n.

The problem becomes nontrivial if we try to find such a function f that tiles with A4, . . .,
A,, which has small support. It is easy to see that, whenever the A; have volume 1, no
matter what the choice of the D;, the function f defined in (47) necessarily has support of
diameter at least Cn, where C depends only on the dimension.

Theorem (2.3.19) gives a lower bound for the diameter of the support of a function
f € LY(R%) that tiles with a given finite number of trivially intersecting unimodular
lattices.

Theorem (2.3.19)[83]: There is a constant B = B(d) making the following true. Suppose
that the lattices A;,i = 1, ..., n, have volume 1 and that

A;nA; ={0}, foralli =+ j (48)

Let f € L*(R%) be a function which tiles with all the 4;, and assume that £(0) # 0. Then

1
the diameter of the support of f is at least Bna.

Proof. All constants below may depend only on the dimension d. We note that A, N A, =
{0} implies that the lattice A7 is uniformly distributed mod A3. This can be proved using
Weyl’s lemma-see for example [92].

We shall make use of a theorem of Ronkin [94] and Berndtsson [85] which concerns the
zero set on the real plane of an entire function of several complex variables which is of
exponential type. We formulate it as a lemma:

Lemma (2.3.20)[83]: ([94],[85]) Assume that E c R® is a countable set with any two
points having distance at least h and let

4= i |E nD(O,r)]
A S DIOND)]
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be its “upper density” Assume that g : C* — C is an entire function vanishing on E which
is of exponential type

o < A(d)h?1dy.

Then g is identically 0. (Here A(d) is an explicit function of the dimension d)

When d = 1 this is classical and follows from Jensen’s formula.

Assume that : R? — Cis as in Theorem (2.3.19). Then f vanishes on (U; A;\{O}. Write
a = diam supp f

We may assume that supp f is contained in a disc of radius < a centered at the origin,
since the assumptions are unaffected by a translation of coordinates. Then f can be
extended to C% as an entire function of exponential type Ce, in fact

If (x + iy)| < Cre®W| for x + iy € €.

Furthermore, f vanishes on

n
7= U A\{o},
i=1

Observe that, since every lattice A; is uniformly distributed mod every A;, j # i, the
density of points in each A; which are also in some A; is 0 and therefore the density of the
set Z is n.

In order to use Lemma (2.3.20) we have to select a large (in terms of upper density), well-
separated subset of Z. Notice first that we can assume that for each i all points of A; are at

1 1
least distance n 4 apart. For if u, v € A; have |[u — v| < n" < then for a suitable constant
c, the one-dimensional version of Lemma (2.3.20) implies that the function f on the

1
subs,pace E= C(u — v) cannot be of exponential type < cnd. Note also that the
assumption f(0) # 0 precludes f vanishing identically on this subspace. But f restricted
to E is the Fourier transform of f : E — C defined by fz(x) = [ , .. f (¥)dy (here E* is

X
1
the orthogonal complement of E N R™ in R™). Hence a > diam supp f= Cna, which is
what we want to conclude about a.

Suppose now that we want to extract a subset of Z whose elements are at least h distance
apart, for some h > 0 to be determined later. We shall say that point x of lattice A; is
killed by point y of lattice A; if |x —y| < h. Then, we define the subset Z" of Z as those
points of Z which are not killed by any point of the other lattices. This set clearly has all its
points at distance at least h apart, provided that

74



1 1
h<-min |u—v|<Cn74d, (49)
U, VEA;
so that no point of a lattice may Kill a point of the same lattice. Let us see how many points
of A3 are killed by some point of A7. We use the uniform distribution of A5 mod A7.

Fix a fundamental parallelepiped D, of A3. It is clear that only a fraction p(h) < Ch¢ of
D, = R%/A; has distance from 0 that is less than h (this distance is measured on the torus
D;). As A3 is uniformly distributed mod A7 the subset of points of A5 which are killed by
some point of A3 has density (h) . Hence the density of those points of A3 that are killed
by any other lattice is at most (n — 1)p(h) < Ch%n. We deduce that the density of Z' is at

1
least (1 — Cnh®)n. We now choose h = cn™4, for a sufficiently small constant c, to
ensure that the density of Z' is at least Cn. Applying Lemma (2.3.20) with g = f and
E = 7' we get

_Q.I =

a > CAhYIn > Cn

We first let g be a nonnegative Cy° function supported in the interval EZ] and
define a kernel J analogously to K replacing p by g:

@ =Y (L) (50)

N
VEZ2

Lemma (2.3.21)[83]: With notation as above there is a Schwarz function v, such that i
vanishes in a neighborhood of the origin, and making the following true. Let r = |x|. If

(say) r = %and N > %then

Iv(x) = Nr_% z |v|_%1,b(N(|v| — r)) +0 <N_(1‘€)r_1 + N%r_%) (51

VEZ2 v#0

forany € > 0.

Proof : First let : R = R be any C,° function supported in the interval E 2]. Define

2T o
I(T, H) — f f @ (r)e—ZniTr(u— cos e)deH
0 0

We will show that there is a Schwarz function y such that ¥ vanishes in a neighborhood of
O and such that, foru >0and T > %

17,0 = T2¢(T e = 1)) + 0 (1720 + Tl = 1)) (52)
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To prove (52), note first of all that ¢ is an entire function and satisfies
|p(x +iy)| < (1+ |x])72%0%e™

when y < 0. Making a change of variable and using contour integration,

I(T,u) = ané (T(u— cos 6))do
0

2f1A(T( )
= —S
_1‘P u T—s2
= ]+]]
where
«© dt
I=2if O(T(u+1-—it)
t=0 ( )\/1—(—1+it)2
«© dt
II=—2if ¢ (T(u—-1-it)
t=0 ( )\/1—(1+it)2

Using that u > 0, we have

© d
n=2f 160er1-)z

—200 7 dt
< (1+T@+p) j;_oe_””ﬁ

_1 -200 _3 ~100
ST2(1+TQ+w) ST 2L +T|u—1)
On the other hand,

i OOA(T( —1—it)) ——
V=1 RS l \/2t+1t2
._2i (o) ~ 00 ~ .
==]_0 (T(u—-1- lt))_ +0 <LO| P(T(u—1~- lt))lx/fdt>

since | | < +/t. The second term in (53) satisfies

\/2t+Lt2 V2t

fe'e) o 1
f |¢(T(w—1—it))Vtdt s (1 +T|u— 1|)‘1°°f e Tt t2dt
t=0 t=0

3
~ T2+ Tlu = 1)
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The first term in (53) is by change of variable ¢ — Tt equal to T 2y (T (1 — 1)) where

x(x)—;—z_l ) 0"’("‘“)7—

x is a Schwarz function, and the support of its inverse I'ourier transform is contained in

the support of ¢- in fact ¥(y) is a constant multiple of %. This proves (52).

To prove Lemma (2.3.21) we use the first term in the asymptotic expansion of &;: let
r = |x|. Then

1 s 3
6,(x) = 2vV2nr~2 cos (27TT — Z) + 0 (r_Z)

See e.g. [88], Theorem 7.7.14 or [96], Lemma IV. 3.11 and the preceding discussion
relating Bessel functions to a;. It follows that

1 3
lv|~t6p(r) = 2v2r(r|v]) 72 cos (27tr|v| — %) +0 ((r|v|)—z) (54)
Substituting (54) into the definition of J, we find that

(2v27) " Ju(x)

= > o oo (zartol - 3)a () +0| Y a(F) eron

VEZ? veZ?\{0}

1 3
The second term here is S Nz2r ™2 since there are O(N?) lattice points v with g <|v| <

2N. We rewrite the first term using the Poisson summation formula, obtaining

-1 1 h , 1 : Iy 13
(2v2r) Jy(x) =12 E re el4f e2mvy |y| 2e72mrIYlg <W) dy | + 0<N2r 2)
R2

VEZ2

3 1 .TT . 1 1 3
= Nerz Z ' <elzf eamNGTyY) Iyl‘fq(y)dy> o <N Eﬁ)
R2

VEZ2
3 1 Zlevlt( cos 9) 1 3
= N2r zz re e4f f @ (t)e ™ dtdo +0<N2r 2)
v#0

1
where (t) = tzq(t) . Here the second line followed by change of variables y — Ny, and
on the last line we introduced polar coordinates with 8 = £v0y, and used that the

T 3 1
contribution from v =0 is equal to re <e‘ZNEr‘E¢)(Nr)> and therefore O((Nr)~19) .
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Now we apply (52) to the terms in the sum, with = N|v|, u =é. Letting y(t) =

re (eiix(t)) we conclude that

(2v2r) Jw(@)
3 1 1
= N2r2 ) (V) 2 (N (vl - 1)

v+0

3 1 3 1 3

+0 <N5r‘5 z(zv|v|)‘i (1 + N|Jv| - r|)—10°> +0 (Nir‘f)
v+0

The second term is < r"2N¢ max (NLd 1), since the contribution to the sum from terms

with [v] <~ is clearly very small and the contribution from |v] >~ can be estimated by

Lemma (2.3.12). (51) follows from this on replacing ¥ by 2v2m.

Lemma (2.3.22)[83]: Assume the bound (27). Then
Ky ()| S Nlx|~0F) (55)
if [x] =N > 1.

Proof. We first prove the estimate (55) with K, replaced by Jy. We define (t) =

t zp(N(t — 7)) , with ¥ as in Lemma (2.3.21). Since y is in the Schwarz space it is
easily seen using the product rule that for any fixed g > 0O,

1

f S If'(®)ldt s rf2 (56)
t=1

uniformly in N > %and = % Now consider the quantity (r > % N = %)

1 2Nl =P) = [ f(©dn(@)

VEZ2 v£0 t=0

- f Comtf@de+ [ f@dn) - nt?)
t=0

t=0
- f 2rtf()dt + [ (n(e) — mt2) F/(D)dt (57)
t=0 t=0
The first term in (57) is easily seen to be very small:
(0] (0] 1
| 2ntf (t)dt| = 2m| (t +7)2yY(Nt) dt|
t=0 t=—r
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= 2n] f " (e + TPV + 0((rN)100)

1

sz Jdp@nlac ey
t=—o0

_1
~ 7T ZN_Z

Here the second line followed since v is in the Schwarz space and the third line followed
1 1 1
since (r+t)z2=rz+0 (r‘5|t|) and y(0) =0. The second term in (57) iss

% _1 . .
ftzltﬁ If'(®)|dt + ftlzo t2|f'(t)|dt s P72 by (56) and an obvious estimate for the
contribution from t < 1. Now we use (51). Let r = |x|. We’ve assumed that r > N, so the
error term in (51) is < r~! Hence

UNGAL S N2l > [l Fp(N Qo] — )] +

VEZZ v+0

1111
S Nr2-r" 2+Nr 2.-r 2N 2+¢71

When t >0 we can express p in the form p(t) = ¥;50q (2/t) where g is supported in

EZ] Observe that if %<% then the sum defining J~ is empty. Hence |Ky(x)| <
i

YilJn()] s Zj% lx|~ =8 < N|x|~(1=A) and the proof is complete.
2

Corollary (2.3.23)[240]: Assume € > 0. Let g:R = R be a C;° function supported in
E 2], and let 0 < e < 1. Define Ky: R**¢ - C

JVn+1—e(x)

_ 1 Vvn+1l—¢€
KN(x)-—‘zgz GITFTT:?E(1< N )

Then for large N there is an estimate

N
((lel)‘100 if 1<|x|< >

LG TR S
k<m) if x| = =

Proof: This will follow from the asymptotics for the Fourier transform of surface measure
and a simple form of the vander Corput method for estimating exponential sums. We
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remark that if |x] > N1*€ with e > 0 then the bound can be improved by using exponent
pairs, but Corollary (2.3.23) as stated is enough for the proof of Theorem (2.3.5).

It is well known (e.g. [95] p. 50) that &;(x) =re(B(|x|)) where B(1+¢) =
a(l + €)e?™(1+€) with a(1 + €) being a complex valued function satisfying estimates

2+ e)ka
2+e)(1+e)k

1+€

Ss(Q+e)z ¥ (58)

Hence also 6;(x) = re(t**¢B(¢t|x|)). Define t, = max (¢,0),and let 1 + € = [x|.In the
calculation below, we use that g(t) = 0 when t < %; this implies that various integrals
may be taken interchangeably over R and over (0, o) . We have

1 Vvn+1l—e¢€
Em"< N

nz=0
= Y m+1-0.)% g (J(n L E)+) a(@

N
nez

+ E)\/(n +1 — E)+) eZni(1+e),/(n+1—e)+

= f ((1+x)+)%q<—“(1+x)+>a((1
R

N
VEZL

+JA 1), +x)+)ezm(1+e) ()1 g =2mivlx+e) g (x + ¢)

) (\/n +1— e)1+eB((1 +e)Vn+1— e)

= z f (N(x +2€))¢ q(x +2€)a((1 + €)N(x
R

VEZL

+ 26))82ni(1+e)N(x+26)e—Zniv(NZ(x+Ze)2—(1—e))d(N2(x + 26)2 _ (1 _ E))

R

VEL

+ 2¢) (59)

where  @(x + 2€) = 2(x + 26)™€((1 + e)N) = a((1 + )N (x + 2€))q(x + 2¢). We
“11:x . We

note that the estimate (58) implies that the functions ¢ = ¢y 14, belong to a compact
subset of C;;°; this means that the estimates below are uniform in (1 + €) and N.

used the Poisson summation formula and then the change of variables x + 2e =
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We rewrite the sum (59) isolating the v =0 term and making some algebraic
manipulations:

_1+e 3+e¢ .
(59 = W+ 2N | g G+ 20) M ArNEI i + 26)
R
( )2 1+€ ?
. 1+€ _ 2 L

+ eZm(v(l—e)+ T )f o (x + 2¢)e 2mivN ((X+26) 2Nv> e

vEIN{0} R
+ 2¢) (60)

The first term in (60) is equal to 1+ ¢ — fNE $(—N(1 +¢€)), hence S1+¢e—

ﬁNE(N(l +¢€))7F for any k. In particular, it is < (N(1+ €))7 if e > 0. The

terms in the sum in (60) may be evaluated via the asymptotics for Gaussian Fourier
transforms ([88], Lemma 7.7.3); the v th term is equal to

m—1

(e, (1+€)? 1 1+¢ 1
ezm(v(1 AT ) z ¢, (WN2)2g, <_2Nv) +0 ((UNZ)_m_E) (61)

k=0

for any m; here ¢, are fixed constants and the ¢, are certain derivatives of ¢. All the

terms in the sum over k vanish if v ¢ [He 1+e] so that
1 l1+€ 1+¢€
(wN2)Z  ifve [ | ]
(61) < 4N N
~ on—m—1 l1+¢€¢ 1+¢€
(vN*4) 2 ifve N ]

Accordingly the sum in (60) is

[1+e 1+e€

< card (Z N ,
4N N

)@+ M) Z+(@+ N2

Taking m sufficiently large we obtain

_lte\3+e l1+e 1+e¢
S(Q+e¢) 2 anrd<Zn[4N, m

(, N \2 _ N
{<1+e) ifl+e>—
<

k((l +€e)N) 190 jfl<l+e< >

) (@+ N2+ (L + V)

N
=
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The lemma follows since Ky is the real part of the quantity (60).

We need one more lemma, an easy consequence of the Poisson summation formula (see
[83]).

Corollary (2.3.24)[240]: Let € = 0 be an integer, let g be a fixed C;° function supported
in E 2], let 0 < e <1 and let h = h(t) be a function on the line satisfying the following
estimate:

d’h

—| <R
dtJ | —

when0<j <2 +eand%§ t < 100N. Then for large N

lz 1 <\/n+l—e
CVn+i-c'\ N

where the implicit constant depends on g only.

)h(\/n T1-¢)-2 f q (%) h(t)dt| < RN-(+9(62)

Proof Set g(x) = hgﬁﬁ:) and (x) = ('xjvl_e

derivatives of a satisfy

) . Then a is supported in x ~ N2 and

dla

| SN (63)

since the functions q(\/x +(1—¢€)N — 2) belong to a compact subset of C5° and a(x) is
obtained from q(y/x + (1 — €)N~2) by dilating by N?. When x ~ N2, derivatives of g
satisfy

| | < RN-O+) (64)

when j < 2 + €. Namely, it is easy to show by induction on j that the jth derivative of g is

POCTHIZE) | here h® = jth
Va+i- e)

derivative of h, withi < jand £ > j + 1. Estimate (64) is then obvious.

a sum of finitely many terms each of which has the form

The left side of (62) is (make the change of variables t = vVx + 1 — €) equal to

1> amgm - f 0 () g (x)dx]

By Poisson summation this is
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> @) (65)

v+0

and if we integrate by parts k times and use (63) and (64), we bound the uth term in the
sum (65) by

d¥(a 2N2
|v|—’<f | d(x,;q) ldx S |v|—’<f RN-O+0gyx < |v|"*RN~(-1)
0

Hence (65) RN ~~1 and the proof is complete.

Corollary (2.3.25)[240]: Suppose that e > 0 and that f: R3*¢ > R is an L! function
which tiles with every rotation of Z3*€ i.e.

z f (x—pv)

UEZ3+E

is constant a. e. for each p € SO(3 + ¢€) . Then f agrees a. e. with a continuous function.

Proof: (see [83]). We may clearly assume that a = 1 and € > 0.

We let g € C5°(R) be supported in = 2| and such that the functions q.,;} form a
0 2 2/) o

partition of unity on (0, ) ; here we have defined g,;(x) = g (Zx—]) . We define Ky as in

Corollary (2.3.23) using this q.

Fix a ball D with radius 1; we will show that f is continuous on D. Let D be the concentric
ball with radius 2, and let f; = y5f and f, = yre+e\5f Where yg is the indicator function

of the set E. By assumption, o ;77— * f Vvanishes identically for any positive integer n
and therefore Ky * f vanishes identically for any N.

Corollary (2.3.26)[240]: Suppose that E is a set in R3*€ with |E|=1 and |[ENnD| >0
for a certain ball D with radius 1. Let D be the concentric ball with radius Cs., .. Then

1 3
frebg <o n =)l e

provided that ¢ is sufficiently small; the implicit constants may depend on E.
Proof We will use the following well-known fact:
17(pe * xE)loo S €77 (66)

To prove (66), let ¥ = Ve, let C = |[y||; and define . (x) = e C+IyY(e~1x) .
Differentiation under the integral sign leads toV (¢, * yz) = € 11, * yz. On the other
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hand, for any x € R3*€, we have [, * xz(x)| < [Well1llxzlle = ll]l1, which proves that
IV (0. * x|l < Ce™1, as claimed.

It follows by the mean value theorem that if ¢, * yz(x,) = 1, then ¢, * yg(x) €
” Pe

E,ﬂ for all x € D(x,, C~1e). We let o be surface measure on S%*€; here we take it to be
normalized so that (S%*€) = 1. We also let E€ be the complement of the set E.

Choose once and for all a point of density of E n D, which we may assume to be the
origin. Let A be the set of all w € S2*€ such that the ray {(1 + €)w:1 <1+ € < C3,.}

contains a point of density of E€. Since E has measure 1 it is clear that A must have
measure >% provided Cs,. is large enough. If w € A then we let p, =r,w be the

corresponding point of density of E¢ In a similar way we can choose a small sphere
centered at 0, x = {pw: w € S?*€}, where p < 1 in such a way that q,, = pw is a point of

density of E for all w € B where B c $%*€ is a set of measure > %.

By Egoroff’s theorem, we can find subsets A* ¢ A with measure > % and B*c B

with measure > %and a number g, such that if € < g, then

|E N D(p,, &)l
<107° forall w € A* 67
D o)] 67)
and
|E€ n D(q,, €)|
< 107° forall w € B* 68
D7y )| (88)

Note |A* n B*| =

SN

Now fix € < g, let w € A* N B* and consider ¢, * yz as a function on the line
segment {tw:p <t <r7,}. Its value at pis >1—10"%and its value at r, is <

10~%Accordingly, there must be a value of t,, € (p,7,,) Where ¢, * yg(t,w) = %.Then by

the remarks at the beginning of the proof, ¢, * yz(tw) € G%) forall w € A* N B* and all
t in the interval centered at t,, with length C1e. Using polar coordinates it now follows
that the set {x: @, * yg(x) € G%)} has measure = & where the constant is independent
of & provided ¢ is small.

Corollary (2.3.27)[240]: If E c R3*€ is a set with finite nonzero measure and if ¢, is as
in Corollary (2.3.26) then

1
@) llpe * xg — xell2 = Cz ez for small &.
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(b) f|f|22+e|)/(E|2 > (Cz(2 + €)™t for a certain constant Cp depending on E and all
1
sufficiently large 2 + €. In particular, yz & W=.

Proof Part (a) is immediate from Corollary (2.3.26), since %S @, * xg(x) S% implies

loe * xp(x) — xg(x)]| = %. Part (b) follows easily from (a). By (a) we have

| X192+ €)718) — 1|?d¢ = (Cz(2 + €)™ (69)
]RTL
uniformly in 2 + €, and if ¢ has been chosen to be nonnegative, then |@((2 + €)~1&) — 1|
is bounded away from zero when |¢] = 2 + €.

From Corollary (2.3.27) we can obtain a form of Corollary (2.3.33) where ¢ = 1:

Corollary (2.3.28)[240]: If E ¢ R? is Steinhaus then [, | x|*dx = oo,

Proof As was done in [91], we use the elementary estimate (which is also the only known
estimate) for the maximum gap between sums of two squares:

(G): If 0 < € < o then for a suitable fixed constant C; there is u € Z? such that |1 + € —
1
V|| < C1(1 +€) =

We also use the following form of the Poincare inequality, which is well-known.

(PI): Let Q be a square in the plane with side 1 + ¢ and let y be a Jordan arc contained in
Q, such that the distance between the endpoints of y is > C;1(1 + €). Let f be a function
which vanishes on y. Then

[ 1 <caror [ 1o
Q Q

where C, depends on C; only.

Fix a large number N and define Ay & {§ € R2: N < || < 2N}. Let C be a large enough
1

constant and cover A, with nonoverlapping squares Q of side CN z. If E is Steinhaus,
f = Xz, then (G) implies that each square will satisfy the hypothesis of (Pl). We conclude
that

f Tl < N-lf Terlc
Q Q

for each Q and therefore
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f Tl < N-lf Terlc
A

E3
N AN

where A} is the union of the squares and is contained in {¢ € R%: N — 1 < || < 2N + 1}.
Consequently

| 16uE©ra s [ 1vme

Ay Ay

If we now sum over dyadic values of N and use that no point belongs to more than two
AyS, we obtain

| rim©ras s [ 17zrds
]RZ ]RZ

Hence by Corollary (2.3.27)(b), [, | VXE|* = oo, ie. [ | x]|*dx = oo,

Corollary (2.3.29)[240]: For any given set E c R3*€ with |E| < o there is a sequence
& = 27k - 0 such that Agj(E) < ng(E) ; the constants here (and in (21)) depend only
on 3+ e and ¢.

Proof: We may assume that |E| = 1. If D = D(x, p) is the ball with center x and radius p
then we define

(L +¢€)(D) = min(JE nD|,|E€ n DJ)
B(D) = ) 271G+ (1 +¢€)(2/D)
2

Here we have used the notation E€ = R3*€\E and (x,p) = D(x, (1 + €)p) .

Let C, be a large constant. If D is any ball of radius C; e then we claim that the following
are valid:

L l@e * xe — XEll L2y = B(D)
11 {x € D lge * xe () = xs(] 2 311 2 A+ )(D) .

In fact, 1l follows easily from (66). Namely, if C, is large then (66) implies via the mean
value theorem that the difference between the maximum and minimum values of ¢, * g

on the ball D is less than % It follows that one of the following must hold

(i) @, * x(x) < %for allx € D, or
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(i), * y(x) = %for allx € D.

In case (i) we have |{x € D: |, * xg(x) — xg(x)| = }l >|EnD|=(1+¢€)(D) and in

1
4
|

case (i) we have |{x € D: |0, * xp(x) — xp(x)]| = %} E€ N D| = (1 + €)(D),ie. Il holds

in either case.

To prove |, we express ¢ as a synthesis of C,° functions, say

j=0

where suppgp?d c D(0,(2C,)*27),9,(0) =1, |lg;ll, < C and a; < C2710G+J | Let

9l (x) = e B+Igpi(e~1x) . It follows by Minkowski’s inequality and the support
properties that

ol * xp — Xellpy SIEN (ZjD)l
and therefore also
ol * xp — Xellppy S (1 + E)(ZjD)
since the left side is unchanged when E is replaced by E€ | now follows by summing over
j.
Let (€) = [orc@+ ) (D(x.Cie))dx,  J(€) = [rae B (D(x, Cyle))dx.
Integrating | and Il over R3*€ we get
e~ G*I(e) S CAE) S A(E) < B+ (¢) (70)

Let k be a large positive integer and consider the sums

7 = z 2-5G+O (2t-k)
=0

T = z 2-5G+O)t j(2t-k)
=0

For any k, we have

T = z z 2-(+e)(50+10)) [(ot+/-K) < z 2-5(@+e)m [(om—k) = g,
£=0j=0 m=0
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On the next to last line, we set m =j+¢ and used that ¥;,,_,, 2" GtOEH+10) <
2—5(3+e)m

Now observe that J(¢) = £**€ for small ¢, e.g. by (70) and Corollary (2.3.27)(a), and that
I(g) S €3*€ for any € (even when & > 1), e.g. by (70). It follows that J, = 2-“#*+€) and

that 3, _« 275G+ [, is small compared with 2-¢#+% Accordingly

2

z < 2—5(3+e){’](2{’—k) < z 2—5(3+e){’1(2{’—k)
k

k
fSE fSE

which implies there is a value 2°7% < v2 —k with J(2¢7%) s 1(2°7%) . This and (70)
prove the corollary.

We assume that the Schwarz function ¢ satisfies the following conditions:

1
supp @ € D(0,1), p(€) = Lif € € D (0’5) (71)

We set @(x) = @(x) — 23 €p(2x) ; thus i is a Schwarz function with supp ¢ c
D(0,2)\D (O,%) . We define y.(x) = e C*yp(ex) , so that X2 oho_je * [ = @, *
f — f forany f and &, as may be seen bytaking Fourier transforms. Property (71) implies

that no point belongs to the support of fb; for more that three values of j, so it follows by
the Plancherel theorem that

zllwz-je*fIIZZ Zf =@ *fll5 (72)
j=0
Furthermore,
No—je * flli S IIf — @ flla (73)

Namely, the support property (71) makes it possible to represent y,_; = g; * (6 — ¢)
with ||g;|l; < C (here § is the Dirac delta function). Indeed if j = 1 then JZ: and @ have
disjoint support so we can take g; = 1,_;, and when j = O,@'_\] =) is obtained from
1 — @ by multiplication by the C4° function m defined via m(¢) = —1 when |¢] < 1 and

% when || = 1. It follows using dilations that y,-;, = g; . * (6 — @) where [ <1

and when ||gj, €ll; = |lg < C.

Accordingly  [[1,-ic * fll1 = 1gje * (6 = @) * flli = 11gje * (f = @e * Pl < ClIf -
¢ * f ||, which is (73).
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Corollary (2.3.30)[240]: Assume that ¢ satisfies (71) and define ¥ as above. If E is a set
of finite measure then there is a sequence ¢ — 0 such that, for each j, (i) e, * xells =

2
1 -
(109 2) e, * 13 and G e, = 213 = 25

Proof: Let € be such that A.(E) < B.(E) . If g, = 27 then ||y, * xzlls S A:(E) by
(73) and Yy<o Il ¥, * X213 = B:(E) by (72). Hence, for some k we must have

max ((k + 1) 72|l * xglly, (k + 1)72B(E)) S Iy, * 2512

Also B.(E) > & ~ by Corollary (2.3.27)(a), so (k +1) %2B.(E) = n,, and (k+1)"2 =
-2
(Iog i) We conclude that
Mk

max << log %)

i.e. that there are arbitrarily small numbers ¢; such that (i) and (ii) hold.

-2

Iy, * XE|I1J7R> S 1y, * xell3

Corollary (2.3.31)[240]: If e > 0

Y a+ra+olt+e—wl) " < C+e)f max (1, 1)

VEZ2
Proof: Because of the rapid decay of (1 + (1 + €)t) %% when t > i it is easy to show
that it suffices to prove the following estimate for all 1 + €:

<2+26+62
n ———————————————————————————

1+e )-n(1+6) S(@A+e)¥max(1,1) (74)

where n(1 + €) is as in (75). To prove (74), consider two cases.

(i) r < (1 + €)3 The number of lattice points on a circle is bounded by any given power of
the radius, hence a circle of radius p € (r,r +i) contains S r3 < (1 +¢€)° lattice

points. There are < max(i, 1) values of p for which it contains some lattice point and
(74) follows.

(i) 7 = (1 + €)3. In this case we use (I) with the classical exponent g = % Thus n (r +

1 T 2 T
—)—n(r) S—+rix—,
1+e 1+e 1+e

The proof of Corollary (2.3.33) will be like the proof of Corollary (2.3.25) insofar
as it is also based on using an appropriate “fundamental solution” However, we must
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replace the kernel in Corollary (2.3.23) by an analogous one involving a sum only over
circles which contain lattice points. We will use the obvious choice where one counts each
circle according to the number of lattice points it contains.

Let p be a nonnegative C* function of one variable supported in t < 1 and with p(t) =1
1 .
when t < 7 Define

1 |v]
= 3 B (L)
VEZZ v+0

where r = |x|.

Corollary (2.3.32)[240]: Let E c R? be a Steinhaus set and let 1 be a Schwarz function
in R? with 1p(0) = 0. Let f = yz. Then

Pef@== ) T/

VEZ2 v#0

Proof The Steinhaus property gives after convolving with vy that

Pef@== ) Prflx+eiv)

VEZZ v+0
for all & and x. The lemma follows by integrating with respect to 6.
Corollary (2.3.33)[240]: Assume a bound of the form
n(r) = nr? +0(r¥) (75)

where n(r) = card((Z2\{0}) n D(0,7)) . Then any Steinhaus set £ c R? must satisfy
B _re
f | x|1-F "dx = o0 (76)
E

for all e > 0.
Proof: We let £ be such that (75) is true and assume toward a contradiction that E is

i
. —“—+e
Steinhaus and [ | x[*-f"" < oo for some € > 0.

Fix a Schwarz function ¢ satisfying (71) and set (x) = @(x) — 4¢(2x) . Thus supp
¥ < D(0,2)\D (O%) CLet Py, (x) = (2 + €)*Y((2 + €)x) . Also fix a function 1 + € as
in Corollary (2.3.36). Applying Corollary (2.3.32) with ¥, ., we get for any M
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Vare * Xg = —AuW2ie * X5) — Bu(W24e * XE) (77)

where the operators A,, and B,, are defined by

Corollary (2.3.34)[240]: There is a constant B = B(3 + ¢) making the following true.
Suppose that the lattices A;,i =1, ..., n, have volume 1 and that

Ai N A] = {O}, forall i -_/:] (78)

Proof: (See [83]). All constants below may depend only on the dimension 3 + €. We note
that A; N A, = {0} implies that the lattice A3 is uniformly distributed mod A%. This can be
proved using Weyl’s lemma-see for example [92].

Corollary (2.3.35)[240]: With notation as above there is a Schwarz function i, such that
1 vanishes in a neighborhood of the origin, and making the following true. Let 1 + € =
|x]. If (say) € = O then

]%Jre(x)
~G+ Y (9 (m-G+))
+0 <<% 4 e)_(l_g)_2> (79)
forany € > 0.

Proof: First let ¢: R = R be any C,° function supported in the interval E 2]. Define

2w 00 1 1 1
I(T, H) — f f © <§ + E) e—ZTL'lT(E+6)(M_ cos e)d <§ + E) de
0 0

We will show that there is a Schwarz function y such that ¥ vanishes in a neighborhood of
O and such that, foru >0and T > %

17,0 = T2¢(TGe = 1)) + 0 (T2 + Tl = 1)) (80)

To prove (80), note first of all that ¢ is an entire function and satisfies
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|p(x +i(x + €))| S (1+ |x|)"200em(x+€)

when x + ¢ < 0. Making a change of variable and using contour integration,

T B L _ ds
I(T,u) = ZL (p(T(,u coS 9))d9 = 2[_1<p (T(,u S))\/l_is2 =1+11
where
Y R . dt
I = ZLj;zofp (T(,u +1— lt))\/l —(—1r )2
I L dt
Il = —2i ft=0<p (T(u—-1 lt))\/l o

Using that u > 0, we have

& dt 00 (. dt
Il < zf 19(T(u+1—-it))|—=< (1+TQ +p) Zoof Tt
t=0 \/E t=0

=l

_1 -200 _3 ~100
S T2(1+TQ+w) ST 2L +T|u—1)
On the other hand,

—2i [®
= \/?l t=0(p (T -1-10)) o= \/2t + [t?

—2l o ~ 0 R .
= = tzo(p (T(u-1- lt)) — + O <LO| P(T(p—1- lt))lﬁdt) (81)

since | — \/iz_tl < +/t. The second term in (81) satisfies

1
V2t+it?
(0]

© 1
f |¢(T(w—1—it))Vtdt s (1 +T|u— 1|)‘1°°f e Tt t2dt
t=0

t=0

3
~ T2+ Tlu = 1)

The first term in (81) is by change of variable ¢ — Tt equal to T 2y (T (i — 1)) where

—2i
x(x) = = 0<p (x — lt)\/—_

x Is a Schwarz function, and the support of its inverse Fourier transform is contained in the

support of @- in fact y(x + €) is a constant multiple of ‘p\;x_ This proves (80).
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To prove Corollary (2.3.35) we use the first term in the asymptotic expansion of &;: let
%+ € = |x|. Then

3

0 =205 () o ar )5 w0 )

See e.g. [88], Theorem 7.7.14 or [96], Lemma IV. 3.11 and the preceding discussion
relating Bessel functions to a;. It follows that

1
vl 5+ )
1

-2 (b ) e ol -3

+ 0 <<% + E) |v|>_% (82)

Substituting (82) into the definition of J1__ we find that

(2V2m) 1, ()

1

D (11 R N

VET2 5 +e€

3

o 3 o))’

ver?\{o} \3 T €

1 2
The second term here is < G + e) since there are O (G + e) ) lattice points v with

~te : : . . .
27 <|v| <2 G+ e). We rewrite the first term using the Poisson summation formula,
obtaining

(2V2m) 1, ()

= <1+ e) : z re ei%f e 2TV (x+€) |
2 ]RZ

VEZ2

1 (1 + 1 -1
+ el_ie_zm(EJre)lirelq —lylc el d(x+¢€) |+ 0 <<§ + E) )

V€
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1 i —Zm +e)|x+e| —v- (x+e)> 1
=<—+e e4f e |x + €] 2q(x + €)d(x + €)
VEZ? R?

1+e
1 —27i +e)|v|t T —cos 6
= (E + E) re| e 4f f @ (t)e dtdo
770 /

co((5+e) )

1
where ¢(t) = tzq(t). Here the second line followed by change of variables x + ¢ —
G + e) (x + €), and on the last line we introduced polar coordinates with 8 = £v0(x +

.TC 2
€), and used that the contribution from v = 0 is equal to re <e‘1 G + e) 0, (G + e) ))

2y —100
and therefore O <<G+ e) ) ) . Now we apply (80) to the terms in the sum, with

( + e) lv], u = _I_I Letting ¥ (t) =re <e 4)((1:)) we conclude that

(2v2r) " Ju ()

—2+€
max <12—e 1), since the contribution to the sum
(3+€)3+e

The second term is < G + e)
1

1

~+e€ ~+e€
from terms with |v| < 2— Is clearly very small and the contribution from |v| > 2— can be

estimated by Corollary (2.3.31). (79) follows from this on replacing ¥ by 2\/_1/J.
Corollary (2.3.36)[240]: Assume the bound (75). Then

1K1 e(x)] s (L+€)|x|"CA (83)
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iflx| >1+¢e> 1.

Proof: We first prove the estimate (83) with K (L+e) replaced by Ji, . We define (t) =
t 2y (G + e) (t — (% + e))) , with ¥ as in Corollary (2.3.35). Since v is in the Schwarz
space it is easily seen using the product rule that for any fixed g > 0O,

p3

fio tBIf ()]dt < <%+e) (84)

uniformly in € > 0. Now consider the quantity (e = 0, > 0)

D |v|‘%¢<(%+e)<|v|—(%+e))>= -/ ©an

VEZ2 v#0

= f Comtf@de+ [ f@©dn) - nt?)
t=0

t=0

- f oozntf(t)dt"‘ w(n(t)—ntz)f’(t)dt (85)
t=0

t=0

The first term in (85) is easily seen to be very small:

- f j_(%ﬁ) (e+ % * E)%I/’
- f_o:o (¢ = ) v <<% +e) t) de|+0 <<<; + E)2>_1OO>
s (% N E)_E f:_oo It] | <<% + E) t) dt + <<% + E)2>_1 . e N E)‘z

Here the second line followed since v is in the Schwarz space and the third line followed

1 1 1

since G + € + t)E = G + E)E + 0 <G + e)_E |t|> and ¥(0) = 0. The second term in

foo 2mtf (t)dt
t=0

1
2

1

(0.0)

B
(85) iss [2 tP I (O)ldt+ [_ t?|f'()ldt < (;+€) * by (84) and an obvious

t
estimate for the contribution from t < 1. Now we use (79). Let %+e = |x|. We’ve

-1
assumed that e = 0, so the error termin (79) is < G + 26) Hence
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1

by 1 () Gr2) 1Y oG (- (22)
VEZ2,v#0
)
(o) ra) ()
G20 Ge) ooz (oG

When t >0 we can express p in the form p(t) = ;50 q (2/t) where g is supported in

-1

1

GGz

-(1-p)

b3

1
[1,2]. Observe that if Z < X then the sum defining J1, _is empty. Hence |K1, (x)| <
2 2] 2 2_+E 2+e

2]

1
~+
i 1, ()]s % —22].6 |x|~ 1A < G + e) || ~~#) and the proof is complete.
2+

2]
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Chapter 3

Smooth Functions with Dual Locally and Structure

We show that the space C,[0, Q) admits C* partitions of unity for every ordinal (.
The compact spaces homeomorphic to weak* compact subsets of a dual LUR Banach
space have the same properties as the class of Radon-Nikodym compact spaces.

Section (3.1): Partitions of Unity on Certain Banach Spaces

In [101], a method, based on the use of “Talagrand operators”, for defining infinitely
differentiable equivalent norms on the spaces C,(L) for certain locally compact, scattered
spaces L. A special case of this result was that a C* renorming exists on Cy(L) for every
countable locally compact L. Recently, Hajek [100] extended this result by showing that a
real normed space X admits a C* renorming whenever there is a countable subset of the
unit ball of X* on which every element of X attains its norm, that is to say, a countable
boundary. This suggested that the locally compact topology on L was perhaps not essential
in [101], and we shall develop the methods of that work in a way that does not require
such a topology. We obtain infinitely differentiable norms on certain (typically non-
separable) Banach spaces X as well as on some certain injective tensor products X @, E.

We present a lemma about partitions of unity. It is an open problem whether a non-
separable Banach space with a ¢* norm (or, more generally, a ¢* “bump function”)
admits C* partitions of unity, though many partial results in this direction are known. Our
lemma enables us to show that the answer is yes for classes of Banach spaces that admit
projectional resolutions of the identity. In particular, we show that the space C,[0, Q)
admits C* partitions of unity for every ordinal Q. Results from are used in [102] to give
examples of Banach spaces admitting infinitely differentiable bump functions and
partitions of unity but no smooth norms.

We have followed the conventions of [99]. Although that work contains everything that
we will need in order to understand the present, we recall for convenience a few facts and
definitions. It should be noted that we are concerned only with real, as opposed to
complex, Banach spaces. When we refer to a function on a Banach space as being of class
ck , where k is a positive integer, it is the standard (Fréchet) notion of smoothness that we
are employing. Making a mild abuse of language, we shall say that a norm || -|| on a
Banach space X is of class C¥ if the function x +— ||x|| is of that class on the set X \ {0}.
(Of course, no norm is differentiable at 0.)

A bump function on a Banach space X is a function ¢ : X — R with bounded, non-
empty support. On finite-dimensional spaces, C* bump functions are plentiful (and
fundamental to the theory of distributions). The existence of a ¢tbump function on an
infinite-dimensional Banach space X is already a strong condition.

For a separable space X, it is equivalent to separability of the dual space X*, and to the
existence of an equivalent ¢! norm. More generally, the existence of a ¢! bump on X
implies that X belongs to the important class of Asplund spaces. Whether every Asplund
space admits a €1 bump is an open problem, as is the relationship between existence of a

97



c* bump and of a ¥ norm on a separable space once k is greater than 1. On the other
hand, the equivalences in the following proposition are very easy to establish.

Proposition (3.1.1)[97]: For a real Banach space X and k € N U {oo}, the following are
equivalent:

(i) X admits a ¢* -bump function;

(ii) there exists a real number R > 1 and a functiony : X — R, of class C* , such that
0 <y < 1LyYx) = 0when|lx|| < Oand ||x|| = 1 when||x|]| = R;

(iii) there is a function 8 : X — R, of class C* , such that 8(x) — oo as ||x|| = co.
Proof. ()= (ii):

Let ¢ be a ¢* bump function with ¢(0) = 1. There exist positive real numbers & and
M such that (x) = = when ||x|| < & and ¢(x) = Owhen |lx|| > M.Letm: R - [0,1]
be a C* function with (t) = Ofort > % and(t) = 1fort < % . Then the function ¥
defined by

P(x) = m(p(5x))

has the required properties, with R = §~1M.

(ii) = (iii):

Given R and o as in (ii), we may define

0() = ) W(R ).
n=0

noting that on each ball {x € X : ||x|| < N} the sum has only finitely many nonzero
terms.

(i) = (i):

Given 8, we define ¢(x) = n(08(x) — 6(0)),where mw: R — R is the function
already used above.

Many of our results concern spaces that are subspaces of the space ¢, (L) of bounded
real-valued functions on a set L. For elements f of £, (L) we use “coordinate” notation,
writing (f;):¢, and thinking of the f; as coordinates. A certain class of very nice functions,
already well-established, will be of particular importance. We shall say that a function ¢,
defined on a subset D of £,,(L), depends locally on finitely many coordinates if, for each
f°in D, there exist an open neighbourhood G of £° in D and a finite subset M of L such
that, for f € G, the value of ¢ (f) depends only on f; (t € M).

Theorem (3.1.2)[97]: Let L be a set and let U(L) be the subset of the direct sum
L(L) @ co(L) consisting of all pairs (f,x) such that ||f]|l, and ||x||. are both strictly
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less than |||f| +% [x| || . The space £, (L) @ cy(L) admits an equivalent norm || -|| with
the following properties:

(i) || -|l is a lattice norm, in the sense that [|(g, Y)II < II(f,x)|| whenever |g| < |f]
and |y| < |x|;

(i) || -1 is infinitely differentiable on the open set U(L);

(iii) locally on U(L), ||(f,x)|| depends on only finitely many non-zero coordinates;
that is to say, for each (f°,x°) € U(L) there is a finite N € L and an open
neighbourhood V of (f°,x°) in U(L), such that for (f,x) € V the norm ||(f,x)| is
determined by the values of f; and x, with t € N and such that f; #= 0,x, # O for all
such (f,x) and t.

We start the proof of Theorem (3.1.2) by fixing a strictly increasing C* function w :
[0,2) — [0,) such that w(u) - oasu T 2and w(u) = 0 foru < 1. The inverse
function w1 is ¢* and strictly increasing from (0,) onto (1,2). We define 6 :
[0,00 — [0, ) by

9 _ f dv
(C) - w_l(v) y
0
and start by recording some facts about this function.

Lemma (3.1.3)[97]:

(i) The function @ is strictly increasing and strictly concave from [0, o) onto [0, o). It
is of class ¢* on (0, ), with 8'(c) = /@~ 1(c) (¢ > 0), and differentiable at 0 with
0'(0) = IiIB] /o 1(c) = 1

c

(if) The composite function 6 o w: [0,2) — [0, o) is infinitely differentiable, with

0)
0)

ulw’'(u) (u

0 cm)(w) = | “

(iii) We have% c < cO'(c) < 0(c) < cforall positive c.

v

The next lemma can be regarded as the finite-dimensional part of the proof of Theorem
(3.1.2).

Lemma (3.1.4)[97]: Let N be a finite set, let n be a positive real number and and let W be
the  subset of RN xRM  consisting of all (fx) such  that

[1£1+> xI|| > max{lifllc, lxllo} + 7. Let the functions F:RY xRV x
[0,0)Y >R G: RV x R¥Y - R be defined by

F(f,x,c) = exp [_z Ct]z[ctlftl + 0(c)|xe]

teN teN
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G(f,x) = sup F(f xc).

c€[0,00)N

If (f,x) € W then the supremum in the definition of G (f, x)is attained at a unique c; this
c has the property that c, = O whenever |f;| < nor|x;| < 7. The function G is of class
C®on .

Proof. To start with, let us consider a fixed (f,x) € W. We have

a_cs = eXp[ z Ct] [lfsl +6'(cs) x| — z[ctlftl + H(Ct)lxtl]]

teN teN

< exp [—z Ct

teN

[(A = cOlfsl + (8'(cs) — O(cs)lxsll

which is non-positive when ¢, = 1. Thus the supremum in the definition of G (f, x) may
be taken over the compact set [0, 1]V rather than over [0, o) ; this supremum is thus
attained at some c. By elementary calculus, any ¢ at which the supremum is attained
satisfies, for all s, either

(ia) ¢cs >0 and |f]+ 0'(c)lxsl = v

(ib) or ¢, =0 and |f]+ 68'(0)|x,| < v

where v = Y ,enleelfel + 0(ce)lx¢]] . In case (ia) we have

.. — ||

(i) s = @ (v—lfsl)

because @ is the function inverse to 1/6’ . In fact, this equality holds in case 1b as well
because then |fi| + |x:| = If:]l + 0'(0)|x:] < v, whence |x:|/(v — |f:]) < 1 and
D(|x: /(v = |f:])) = 0 = ¢, Thus v is a solution of

_ || ||

(“I) 14 _ZtEN [w( |f|) |ft|+ 0 o ZD-( _lftl) |xt|]

Since the right hand side of this equation is a decreasing function of v it has only one
solution. By equation (ii), we now see that c; (s € N) are uniquely determined too.
Because (f,x) € W, there is some s such that |f;| + = |x5| > max{||fllco, |/ llco} +

n; since 6'(cy) > - ~ we havev > |f] +> > |xs| by (i) and (ib). Thus v > [f¢| +n and

v > |x;| + n for aII t. So if either |xt| n or |f:] < n it must be that (ib) holds,
withc, = 0.

We now move on to consider the behaviour of v = v(f,x) and of ¢; = c;(f,x) as (f,
X) varies over W. We consider the function H defined on the open set V = {(f,x,v) :
(f,x) € Wandv > max{||flle lxllo} + n}of RY xRY xR by

ax0) =3 [o (=23 00 (25 |-

teN
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We have already noted that for each (f,x) € W there is a uniqgue v = v((f, x) such that
H(f,x,v) = 0. Itis also easy to verify that Z—I: > 1 everywhere on V. Thus the infinite

differentiability of (f,x) — v(f,x) will follow from the Implicit Function Theorem
provided we can show that H is itself infinitely differentiable. The absolute value signs
appear to present a problem on a neighbourhood of a point where one of the variables f; or
x; 1S zero. However, as soon as either |f;] or |x.| is smaller than n, the terms

|xt| o |xt| . .
w (v_ Iftl) If:] and 6 o @ (v_ Iftl) |x;| vanish, showing that we do not have a problem at

all.

Once we have shown that v varies in an infinitely differentiable fashion with (f,x), it
follows from (ii) that the same is true for all the c; and hence for G.

We now take up the proof of the theorem. We define a norm || -|| on £,(L) @®, (L) by

I(f, )l = sup {e_ztEL a z[dtlftl + 0(d)|x|]: dt = O forallt and d,

tel

= O for all but finitely many t } :

and claim that this has the properties we require. It is clear that || -|| is a lattice norm and
that

1
e~! max {“f”oo’z IIxIIoo}S IGF00 < e Iflleo + lxlleo).

For (f,x) € U(L) we define

) = 171+ 5 1ol = maxi e el
MG = {t e FOI+ kOI i1+ 1] ]

1 1
NG = e e L IFO1+ @1 = || 1145 1| -3 00

and note that N(f,x) is a finite set, because x € co(L) and N(f,x) € {t: |x;| =
% &(f,x)}. We shall show first that in the definition of ||(f,x)]| it is enough to take the

supremum over families d = (d;) such that d, = 0 for all t ¢ M(f,x). Indeed, let
(f,x) be in U(L), and suppose that d = (d).e, is such that d. > 0 for some t; ¢

M(f,x). Let t, be chosen so that |f(t,)] +% lx(to)| = || If] +% |x||| and let d' =
(d;) be defined by

dt lft e {tOitl}
de, +de,  ift =ty

101



We note that ¥,d; =Y.d, and that 6(d; )-— 9(dt0)>%dt1, because 6’ is
everywhere greater than % :

D Ll + 0(@Dlxll = Y [d.lfil + 6(d)lx.]

teL teL
= dt1[|fto| - |ft1|] + (e(déo) - H(dto)) |xto| - H(dt1)|xt1|
> dy, [|fio] +5 Ixe,| = Ifer] = Ixe,]

and this is strictly positive by our assumptions about t, and ¢t;. In this way, we may reduce
to O all coordinates d; with t& M(f,x) while increasing the value of

[— X dt] [Eedelfel + 0(@)]xl].

We now set about finding the neighbourhoods V' and finite sets N referred to in (iii).
Given (f°,x%) € U(L),wesetN = N(f°,x°) and define V to be the open set

1
V=AF 0 = fOllo llx = 20l <= (7, 2°)}

It is easy to check that if (f,x) € V then &(f,x) >% E(f°,x°) and M(f,x) S N. By
what we have already proved, this shows that on the open set IV our norm depends only on
coordinates in the finite set N.

Moreover, for (f,x) € V we have

N0l = sup F(e,(f)een  (xt)een)

c€[0,00)N

where F : [0,00)Y x RN x RV is the function

F(d f x) =exp <_zdt> z[dtlftl + 0(dp)lx|].

teN teN

We can thus apply Lemma (3.1.4) (with n =% E(f°,x%)) to conclude that || - || is
infinitely differentiable on V.

In the following corollary to Theorem (3.1.2) we use the above remark to deduce a
renorming result about injective tensor products. We recall some facts about such
products. If X and E are Banach spaces and &,n are elements of the dual spaces X*, E*
respectively, then a linear form & @ n may be defined on the algebraic tensor product
X ®E by

¢ ® U)(z xi @ e) = z(f,xj Xn, e;) .
j=1 J

The injective tensor product X @, E is defined to be the completion of X ® E for the
norm defined by
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lzlle = max{|{(§¢ & n).2)|: § € ballX" ,n € ball E* }.

The elementary tensor forms ¢ @ n extend by continuityto X @, Eand {¢ ® n: & €
ball X,n € ball E}is a weak* compact subset of ball (X @, E)* on which every
element of X @, E attains its norm.

IfQ: X; » X,and R: E; — E, are bounded linear operators then a bounded linear
operator Q @ R: X; Q. E; —» X, Q. E, is determined by (Q & R)(x ® e) =
(0x) @ (Re). A special case is the so-called “slice map” Iy ® n: X Q E - X
derived from an element n of E* and given by (Iy @ n)(x ® e) = (n,e)x. By our
earlier remark about the attainment of norms on elementary tensor forms, we see that for
any z € X ®,. E thereissomen € ball E* with||z|l. = || (Ix & n)(2)Il.

In the special case where X is a space £,(L), then X ®. E identifies isometrically
with a subspace of the vector-valued function space ¢, (L; E) (the elementary tensor
(xt)eer @ e correspondingtot — x.e). The effect of aslice maponz € £,(L) ®, E
regarded as an element (z,).c; of £, (L; E) is simply

(I, (L) ® M)(2) = ((n.2Nter:

Corollary (3.1.5)[97]: Let X be a Banach space and let L be a set. Suppose that there exist
a linear homeomorphic embedding S : X — £, (L) and a linear operator T : X — cy(L)
with the property that (S(x),T (x)) is in the set U(L) of Theorem (3.1.2) whenever x is a
non-zero element of X. Then X admits an equivalent ¢* norm. Moreover, whenever the
Banach space E admits an equivalent ¥ norm so does the injective tensor product

X ®. E.

Proof. It is clear that, using the norm on ¢, (L) @ c,(L) that we defined in Theorem
(3.1.2), we may set

llxll = [[(SCx), T CONII
and obtain an infinitely differentiable norm on X.

Now let E be a Banach space with a ¢ norm || ||z . For f € €4 (L; E) we define
Nf € £, (L) by
(NO)e = lfelle .

The operators S and T induce S Q I and T  Ig, taking the injective tensor product
X Q. E to (L) ®, E and ¢y(L) ®,. E respectively. ldentifying c,(L) ®, E with
co(L; E) and £ (L) ®,. E with a subspace of ¢,(L; E), we may define a norm on
X ®. E by

lz|l = | (N((S &® Ig)(2)) (N((T &® Ig)@)Il.
The coordinate  maps x +— (N((S X IE)(x)))t =1 (S ® Iz)(x).land x

(N((T R I )(x)))t = || (T ® Iz)(x),|]| are of class C* except where they vanish.

Thus, by the above remark, we shall be able to conclude that we have a C¢* norm on
X ®. E provided we can show that (N((S @ I5)(2)),(N((T ® Iz)(z))) is in
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U(L) whenever z € (X @, E)\{0}. This is not really difficult, being just a matter of
disentangling tensor notation.

For such a z we choose some n € ball E* with ||I,_1) ® mM((S ® Ig )(z))||oo =

1S ® Ig)(2)lleo. We then note that (I, ) @ n)e (S ® Ig) = So (Iy ® n).0Our
hypothesis about S and , applied to x = (Iy ® n)(z) tells us that there is somet € L
with

|s(tx ® M@),|+3 1T (Ux @ M@),1 > [I5(Ux @ M@,
Thus

1
NS ® 1)), +5N((T ® I5)(2),
=1 ® D@l +5 1T ® 1)@l

2 10, ® 1)@l +5 1.7 @ 1))
1
= (o) ® M @ Ie)@e| +5 (o) @ (T & I5)(2)e]

= [S((x ® N)(2), .2 T (Ux ® M),
2

> [Is(tx ® m@)||,

=1 (S ® Ig)(2)llo

A similar argument involving an 5 chosen so that ||(Ic,) ® MT & Iz )(2)|| is equal
to |[(T ® Ig)(z)|| enables us to finish the proof.

The above corollary allows us to reprove Hajek’s theorem from [100], though not,
of course, the more recent, and very strong, result of [98], according to which any norm on
a Banach space with countable boundary may be approximated by analytic norms.

Corollary (3.1.6)[97]: [Hajek]. Let X be a Banach space which admits a countable
boundary. Then X admits a ¢ renorming and X ®. E admits a C* renorming whenever
E does.

Proof. Let {¢,, : n € N} be a countable boundary for X and define S : X - ¢, (N) and
T: X - ¢o(N) by (Sx),, = (&, x),(Tx),, = 27™(&,,,x). It is easy to see that
(5(x),T (x)) € U(L) when x is a non-zero element of X, since for any x there exists n
with (S, x) = [lx]l.

Extending slightly the terminology of [101], we shall say that a bounded linear operator
T from a subspace X of £, (L) into cy(L) is a Talagrand operator for X if for every non-
zero x in x there exists t € L with |x;] = ||x|l and (Tx), # O. It is clear that Corollary
(3.1.5) is applicable to any such space, taking S to be the identity operator. In the
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particular case where L is equipped with a locally compact topology and X is the space
Co(L) of continuous functions, vanishing at infinity, we retrieve the results of [101]. The
classic example of a Talagrand operator is defined on the space C,([0, 1), where Q is an
ordinal, by

(Tf)a = fa - fa+1-

This has the required property since for any non-zero f € C,([0,Q)) there is a maximal «
with |fz| = Ilflle- A non-linear version of a Talagrand operator is used in [101] to give
an example of a space admitting a C* bump function but no smooth norm. The earlier ¢?
version of this result appears as Theorem VI1.6.1 of [99]. The relevant application of our
theorem is the following.

Corollary (3.1.7)[97]: Let X be a Banach space and let L be a set. Suppose that there exist
continuous mappings S : X — (L), T : X — co(L) with the following properties:

(i) for all x € X the pair (Sx,Tx)isin U(L) u {0};

(i) the coordinates of S and of T are all ¢* functions on the sets where they are non-
zero;

(i) ||ISx[leo = o0 as[|x|[ - oo.
Then X admits a ¢* bump function.

Proof. Let 8 : [0,0) — [0,0) be a C* function which vanishes on [0,1] and which
tends to infinity with its argument. The formula

p(x) = 6(ll(Sx, Tx)l)
defines a ¥ function on X which tends to infinity with ||x]|.

We do not know whether the results of Corollary (3.1.5) about injective tensor products
extend to the non-linear set-up of Corollary (3.1.7). However, in the special case of spaces
of continuous functions we have the following proposition.

Proposition (3.1.8)[97]: Let L be a locally compact space such that there exists a function
T :Cy(L) = co(L) satisfying

(i) forall f € Cy(L) the pair (f,Tf)isinU(L) v {0},

(ii) each coordinate of T is a C* function depending locally on finitely many
coordinates.

Let E be a Banach space admitting a ¢* bump function. Then the space Cy(L; E) also
admits such a function. In particular, if each of the spaces L,..., L, IS homeomorphic to
an ordinal then Cy(L; % - -- % L,; E) admits a ¢* bump function.

Proof. Let 8 be a ¢*function on E such that 8(x) — o as ||x|| = oo. For f € Cyo(L; E)
the composition o f is in Cy(L) and the pair (8o f,T(6¢°f)) is in U(L)U{0}.
Moreover, for t € L, the coordinate maps f +— (6o f), and f — T (6o f), are of
class C*on Cy(L; E). Let p: R — R be a C*® function such that p(u) = 0 foru < 1
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and p(u) - o as u — oo, It is easy to check that the function ¢ : Cy(L; E) —
R defined by

o(f) = p (B £, T (6 I

is of class ¢*and tends to infinity with the norm of its argument.

When L is an ordinal Q (identified with the set [0, Q) of ordinals smaller than itself), an
operator T of the type considered above does exist. Indeed, we may use the Talagrand
operator (Tf), = fiy — fas1. Thus Co([0,Q); E) admits a ¢* bump function whenever
E does. Since Cy(L; *:--xL,; E)may be identified with Cy(Ly;Co(Ly % - - X
L,; E)), an easy induction argument finishes the proof.

We say that a subset H of a Banach space X admits partitions of unity of class ¢* if, for
every open covering V of H, there is a locally finite partition of unity on H, subordinate to
the covering V, and consisting of the restrictions to H of functions that are of class ¢*on
X. Once again, see [99], for the connection between partitions of unity and approximation
by smooth functions and for Torunczyk’s criterion: H admits C* partitions of unity if and
only if there is a o-locally finite base for the topology of X consisting of C*-cozero sets
(that is to say, sets of the form {x € H: @(x) # 0} with ¢ € C*(X)). It is not known
whether C* partitions of unity necessarily exist on every space that admits a C* bump
function, though many partial results. The following theorem has hypotheses that are
involved but of fairly wide applicability.

Theorem (3.1.9)[97]: Let X be a Banach space, let I' be a set and let k be a positive
integer or co. Let T : X — co(I") be a function such that each coordinate x +— T (x), is

of class ¢* on the set where it is non-zero. For each finite subset F of I', let R : X — X
be of class ¢* and assume that the following hold:

(i) for each F, the image Rz[X] admits C* partitions of unity;
(ii) X admits a ¢* bump function;

(iii) for each x € X and each € > O there exists § > 0 such that ||[x — Rpx|| <e€ if
wesetF = {y € I': |(Tx)(y)| = 6}.

Then X admits C*partitions of unity.

Proof. By Torunczyk’s Criterion, it is enough to show that there is a o-locally finite base
for the topology of X, consisting of C*-cozero-sets. By hypothesis, each R[X] admits a o-
locally finite base Vy consisting of C*-cozero-sets. Since X admits a ¢*- bump function,
there is a neighbourhood base of 0 in X consisting of C*-cozero-sets, say U, (n € N). We
introduce the covering W of ¢y (I") consisting of Wy = ¢, (I"), together with all sets

Wggr = {y € co(I):minly(y)| > rand sup |ly(¥)| < q}
YEF YE\F

with F a finite non-empty subset of I, and g, r positive rational numbers with g < r. We
note that W is o-locally finite, and that its members are C*-cozero-sets.

In X we consider the family of all sets of the form
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T_l [WF,q,r] N Rl?l [V] N (RF - 1)_1 [Um]

with m a positive integer, F a finite subset of I, g, r positive rationals with ¢ < r and
V € Vy . Itis easy to check that this family is a o-locally finite family of ¢* cozero sets.
We have to show that it forms a base for the topology of X.

Let x be in X and let e > 0 be given. We fix m so that
1
U, S 3 € ball X,

and, using (iii), choose § > 0 so that
x — Rp (x) € U,

whenwe set F = {y € I': |(Tx)(y)| = 6} Because Tx € c, there exist rationals q,r
with 0 < g < r < § such that |[(Tx)(y)| < q whenever y € I'\F. Thus x is in
T-1 [WE 4] Since Vg is a base for the topology of Ry [X], there exists V' € Vf such that

1
Rr(x) € V € Rp (x) +§ € ball X.
It follows that x is in the set

T [Wen| 0 RFEIVI N (Re — 172 [Un]
If x" is any other member of this set, then we have
IRF (x) — RF (xX)|| < €/3
because Rp(x") € V , while
IRe(x) — x'|| < €/3,
because (Rp(x) — x') € U,,. Thus||x — x'|| < €, which is what we wanted to prove.

It should be noted that the mappings T and Ry in the theorem are not assumed to be
linear; a non-linear T is used in [102] to give an example where C* partitions of unity
exist on a space with no smooth norm. However, the theorem offers some improvements
on existing results even when only linear operators are involved. A special case of the
corollary that follows occurs when the R, form a “projectional resolution of the identity”
on X. It is thus a result that is more general, as well as a bit simpler to prove, than the
implication (vi) = (v) in Theorem V11.3.2 of [99].

Corollary (3.1.10)[97]: Let X be a Banach space admitting a C* bump function. Let Q be
an ordinal and let R, (¢ < Q) be a family of ¢* functions from X to X having the
property that, for every x € X, the function Rx: [0,Q] — X defined by (Rx), =
Ryx (@ < Q), (Rx)q = x is continuous. If for each « the image of R, admits C¥
partitions of unity then so does X.
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Proof. Since X admits a C* bump function there exists a function ¢ : X — [0, 1], of class
ck and such that ¢(x) = 0 on some neighbourhood of O in X, while ¢(x) = 1
whenever ||x|| = 1. WesetI’ = Q xNanddefineT: X - £,(I") by

(Tx)(a.n) = 27"¢(2" (Rg+1% — RqX)).

By construction, there is some n > 0 such that ¢(x) = 0 whenever ||x|| < n. Given
x € X and ¢ > 0 we fix m such that 27" < ¢ and then note that, because of the
continuity of @ — R x, the quantity ||R,,1x — R,x|| can exceed 27™n only for a in
some finite set H. We thus have |(Tx),| < € exceptwheny € H x{0,1,2,...,m — 1}.
This shows that T takes its values in ¢y (I").

To define the “reconstruction operators” Rr we set Ry = Rg and Rp = Ry (r)+1 Where,
for a finite non-empty subset F of I', a(F) = max{a : An with (a,n) € F}. We shall
show that Condition (iii) of Theorem (3.1.9) is satisfied. Given x € X and € > 0, it may
be that [|[x — Ryx|| <€ for all @« < Q; in this case there is clearly no problem.
Otherwise, by the continuity of @ +— R,x on [0, Q], there is a maximal f < Q with
|x — Rgx|| = €. Again by the continuity of @ — R,x, we know that there is some

y > B such that |R,,.1x — R,x|| takes a strictly positive value, n say. Now we fix n
such that 2"n > 1, noting that (Tx)(y,n) = 27", and set § = 27" If F is the set
{(a,m) € Q xN: |(Tx)(a,m)|] = 6} then (yyn) € F and so a(F) =2y >
B, whence ||x — Ry x|| < €, as required.

Corollary (3.1.11)[97]: Let Q be an ordinal and let E be a Banach space admitting
C*partitions of unity. Then the space C([0, Q]; E) also admits ¢* partitions of unity.

Proof. Proceeding by transfinite induction, we may suppose that C([0,y]; E) admits C*
partitions of unity whenever y is an ordinal smaller than Q. If we define
Ry : C([0,9]; E) - C([0,Q]; E) by

_ (/s B <)
(Byf)y = {fy B >7)

then the range of R, is isomorphic to C([0,I']; E) and so admits ck partitions of unity.
Moreover, the continuity hypothesis in the preceding corollary is certainly satisfied, so that
the proof will be finished if we know that ([0, ]; E) admits a ¢* bump function. This is
true by Proposition (3.1.8), since C([0, Q]; E) isisomorphicto X = C,([0,Q); E) @ E.

Section (3.2): Uniformly Rotund Norms

A Banach space X is said to be Asplund if every convex function on X is Fréchet
differentiable on a dense Gs-set. If a Banach space has an equivalent Fréchet differentiable
norm then it is Asplund, but the converse is not true; see [106], for example. The Smulyan
criterion provides a method to construct an equivalent Fréchet differentiable norm on X:
any equivalent norm on X is Fréchet differentiable provided that its dual norm on X* is
locally uniformly rotund (see [106]).
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Definition (3.2.1)[104]: Let X be a Banach space endowed with a norm || .|| and let Sy
denote its unit sphere. The norm || .|| is said to be locally uniformly rotund (LUR), if
limg ||x — x|l = O whenever x,x;, € Sy are such that limg|[x + x, || = 2.

We study how close is the property of being the dual of an Asplund space to having an
equivalent dual LUR norm. We shall need the following topological definitions. The first
one has been introduced by Jayne and Rogers in [115].

Definition (3.2.2)[104]: Let (X, t) be a topological space and let d be a metric on X. We
say that X

(i) is fragmentable by d if for every € > 0 and every nonempty A c X thereis U € T
suchthat AN U # @ and diam(4 NnU) < e.

(i) has property P(d, t) if there is a sequence (A,,) of subsets of X, such that for every
x € X and every €¢> 0, there is n€ N and U € 7 such that x € 4, nU and
diam(4, n U) < e.

Namioka and Phelps showed in [120] that a Banach space X is Asplund if and only if
the unit ball of X* endowed with the weak* topology is fragmented by the norm. They
also showed [120] that if a dual Banach space X* has an equivalent w*-Kadec norm, that
Is, the weak* and the norm topologies agree on the unit sphere, then X is Asplund.
Property P was introduced in [121] for pairs of topologies, but when stated as above it is
equivalent to properties introduced and studied by Hansell [111] and Jayne, Namioka and
Rogers [113]. The main result is the following theorem which says that dual LUR
renormability of a dual space X* is a nonlinear topological property.

Theorem (3.2.3)[104]: Let X* be a dual Banach space. The following conditions are
equivalent:

(i)  X™ admits an equivalent dual LUR norm.
(i)  X* admits an equivalent w*-Kadec norm.
(iii) X" has P(|| .|l ,w™).

Statement (iii) above completes the characterizations of renormability given in [122].
Let us mention that there are no analogous results in Banach spaces for the weak
topology. There exists a Banach space having a Kadec norm but with no equivalent
strictly convex norm [102]. It is unknown whether every o-fragmentable Banach space (in
particular, if X has P(|| . || ,w)) has an equivalent Kadec norm [113].

We prove an interpolation result in the spirit of the results by Davis, Figiel, Johnson
and Pelczynfiski for Eberlein compaeta [108] and Namioka for Radon-Nikody;m
compacta [108], [119]. It can also be regarded as a "reciproque” of the transfer technique
of Godefroy, Troyanski, Whitfield and Zizler for LUR renorming [110], [21].

Theorem (3.2.4)[104]: Let X be a Banach space, and let K ¢ X™ be a w*-compact subset
which has P(|| .|| ,w™). Then there exists a Banach space Y such that Y* has a dual LUR
norm and a bounded linear operator T: X — Y with dense range such that K < T* (By-).

A compact Hausdorff space is said to be a Radon-Nikodym compact if it is
homeomorphic to a weak*-compact subset of a dual Banach space having the Radon
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Nikodym property. A result of Namioka states that a weak*-compact subset of a dual
Banach space X™* which is fragmented by the norm of X* is a Radon- Nikodym compact.
All these facts suggest that we introduce the following class of compact Hausdorff spaces.

Definition (3.2.5)[104]: A compact Hausdorff space K is called a Namioka-Phelps
compact if it is homeomorphic to a weak*-compact subset of a dual Banach space having
a dual LUR norm.

Clearly, any Namioka-Phelps compact space is Radon-Nikodym. Namioka
characterizes internally the Radon-Nikodym compacta as those compact Hausdorff spaces
which are fragmented by a lower semicontinuous metric. We will prove an analogous
result.

Theorem (3.2.6)[104]: A compact Hausdorff space K is Namioka-Phelps if and only if it
has property P(d, t) with some z-lower semicontinuous metric d.

If K is a Radon- Nikodym compact, then the space C(K) is weak-Asplund, that is,
every convex function on C(K) is Gateaux differentiable on a dense Gs-set. Similarly, we
obtain the following result.

Theorem (3.2.7)[104]: If K is a Namioka Phelps compact space, then C(K) has an
equivalent Gateaux differentiable norm.

We study compact spaces having the property P with some metric showing the
analogue with the properties of fragmentable compact spaces studied by Namioka in
[119]. We prove the main result concerning the characterization of the existence of
equivalent dual LUR norms in a dual Banach space. Finally, we study embedding
properties of the Namioka-Phelps compact spaces.

A network of some topology is a family of subsets such that any open set is a union
of subsets from that family. In [121] we introduced the property P for a couple of
topologies. If X is a set and § and 7 topologies on X, we say that X has P(&, t) if there is a
sequence (4,,) of subsets of X such that for every x € X and every V € § with x € V,
thereisn € Nand U € Tsuchthat x € A,, n U < V. This property can be reformulated in
terms of networks as follows: X has P(6,7) if {A,NU:n € N,U € t} is a network for §.
One can observe that this definition of property P extends Definition (3.2.2). We say that a
topological space X has property P(8,7) with  -closed sets, if the sets A,, € X can be
taken 7 -closed. The following is in [121].

Lemma (3.2.8)[104]: Suposse that a set X has P(d, t) with a sequence of subsets (4,,). If

the metric d is T -lower semicontinuous, then X has P(d,7) with the sequence (A_nr) In
particular, X has P(d,t) with 7 -closed sets.

Proposition (3.2.9)[104]: Let X be a set, § and T two topologies on X. The following
statements are equivalent:

(i) X has P(8, 1) with 7 -closed sets.
(i)  There is a t-lower semicontinuous function F: X — R such that for every net
(x,) with z-lim, x, = x and lim F(x,) = F(x), then §-limx, = x.
w w
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A real function with the property stated in (ii) will be called a Kadec function.

Proof: (ii) = (i) Forevery x e X and every V € § with x € V thereis U € tand e > 0
such that if y € Uand |F(y) — F(x)| < ¢, then y € V. Let (1,,) be an enumeration of
the rational numbers. Define

Ap ={ye X:F(y) < m. }

The sets A,, are T-closed because F is t-Isc. We claim that X has P (6, t) with the sequence
A,,. Indeed, take rationals r;;, < F(x) < r, and , — 1,;, < €. Consider the t-open set
U' = U\A,,. Then we have that

x€A,NnU cV,
which proves the claim.

(i) = (i) Let =, be the characteristic function of the set A. Consider the series
F(x) = 24_"5X\An(x).
n=1

It follows that F is t-Isc. Let (x,) be a net with z-lim, x,, = x and lim F(x,) = F(x).
w
We claim that §-lim x,, = x. Indeed, a simple reasoning gives us that
w

lim Sy, () = Exa, ()

for every n € N. Now, for every §-neighbourhood V of x there is n and U € t such that
x € A, NU c V. Since Ex\y (x,) must be constant for w big enough, we deduce that
X, € Ay Also, for w big enough, x,, € U. Thus x,, € V. This shows the §-convergence
of (x,) to x. |

The following result compares with [119].

Corollary (3.2.10)[104]: Every weak compact subset of a Banach space has P(]| .||, w),
and every Eberlein compact space is Namioka-Phelps.

Proof: Without loss of generality, we assume that X = span!I(K). Then the space X
will have an equivalent LUR norm ||]. |||, which is in particular a Kadec norm. Then apply
Proposition (3.2.9). Any Eberlein compact space is isomorphic to a weak compact subset
of a reflexive space, which has an equivalent LUR norm which clearly is dual.

A family of subsets of a topological space is said to be isolated if every point
belonging to a subset of the family has a neighbourhood that does not meet another
member of the family. A family of subsets is said to be o-isolated if it is the union of a
countable number of isolated families. Hansell studied in [111] the class of topological
spaces having a o-isolated network as a natural generalization of metrizable spaces; see
also [118]. The following result is a consequence of the work of Hansell, and it shows the
relation between fragmentability and property P.

Theorem (3.2.11)[104]: Let (K, t) be a compact Hausdorff space and let d be a t-lower
semicontinuoas metric on K. The following are equivalent:
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(i) Khas(d,1).
(i)  d has a network which is g-isolated with respect toz.
(i) 7 has a g-isolated network and d fragments (K, 7).

Proof: (i) = (iii) Any z-Isc metric on K is finer than z. Let B = U=, B,, be a basis of d
such that every family B, is d-discrete. Fix n,m € N and E € B,,,. Define

Hy={x€ A,;3UEts.t.xe A, NnU c E}.

It is easy to see that 9, ,, = {Hg: E € B,,} is t-isolated and 9t = U, p, N, 1y IS @ Network
of d. Since 7 is coarser than d, we have that 9t is a o-isolated network of . On the other
hand, it is shown in [121] that if K has P(d, t), then (K, 1) is o-fragmented by d. Since d
is T-Isc and (K, 7) is compact, a result from [114] states that (K, t) is fragmented by d.

(ii)= (i) If (K, 1) has a o-isolated network, then it is in particular hereditarily weakly 6-
refinable, that is, every family of open sets in X has a o-isolated (not necessary open)
refinement. Hansell shows [111] that if a hereditarily weakly 6-refinable space is
fragmented (or o-fragmented) by some metric d, then the topology of d has a network
N = Uj=q I, such that every 9, is o-isolated respect to .

(i) = () IfN = U=, N, ,is anetwork of d such that every 9, is o-isolated with respect
to 7, then it is easy to verify that K has P(d, t) with the sequence of sets 4,, =U t,,

Corollary (3.2.12)[104]: If X™ is a dual Banach space and K < X* is a w*-compact
subset having P(]|.||,w™),then K is fragmentable by the norm. In particular, if X* has
P(l.l,w™), then X* has the Radon- Nikodym property.

The following result compares with [119].

Theorem (3.2.13)[104]: Let (K;, t;) be compact spaces for i = 1,2 and let d; be metrics
on K;. Suppose that there is a surjection T: K;, — K, such that T is T; — T, continuous and
d.-d, continuous. If K; has P(d, t;) with t,-closed sets, then K, has P(d, ,1,) with 7,-
closed sets.

Proof: If K; has P(d,, t,) with 7,-Closed sets, there is a 7,-Isc function F;: K; — [0, 1]
with the Kadec property by Proposition (3.2.9). Define a function F,:K, — [0,1] as
follows:

F,(x) = inf{F,(x"):T(x") = x}.

Since F; is t4-Isc, this infinmum is attained. We claim that F, is 7,-1sc. Indeed, suppose
that limx, = x in (K,,7,) and F,(x,) < rfor every w.Take points x, € K; such

w
that T(x,,) = x, and F;(x,) = F,(x,). Letx" € K, be a cluster point
of (x,,). Since F; ist;-Isc  we have thatF,(x') <r.On the other hand, by
continuity, T(x') = x,s0 F,(x) < F;(x"). This shows that F,(x) <r and the claim is
proved. We claim now that F, has the Kadec property and then the result will follow from
Proposition (3.2.9). Suppose not, that is, there is a net (x,) in K, with 7,-limit a point x
such that limF,(x,) = F,(x), and there is ¢ > 0 such that d,(x,,x) > &. Take points

w
x,, € K; such that T(x,) = x, and F;(x;) = F,(x,). Let x’ be a cluster point of (x_,).
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Without loss of generality we can assume that (x,,) is t,-converging to x'. Clearly, we
have that T(x") = x and the following inequalities,

limF, () = Fy(x) < Fy(x') < lim £y (x;,) = lim Fy(x,,).

We deduce that lim, F,;(x,,) = F;(x"). By the Kadec property of F; we have that
lim,d,(x,,x)= 0, and from the d;-d, continuity of T we deduce that
lim, d,(x,,x) = 0, which is a contradiction to our supposition.

Corollary (3.2.14)[104]: Let T:X* — Y™ be a bounded linear operator between dual
spaces which is w* —w* continuous. If K ¢ X* is a w*-compact subset having
P(l-1l,w™), then T(K) has P(]|. I, w") in Y.

The following result compares with [119].

Lemma (3.2.15)[104]: Let (K, t,) be compact spaces for i € N and let d,, be a metric on
K,, such that K,, has P(d,, t,) with t,,-closed sets for every n € N. Let 7 be the topology
product of the 7,,-topologies on K = [[,=1 K,, and let d be a metric compatible with the
product of the d,,-topologies on K. Then K has P(d, t) with t-closed sets.

Proof: Take for every n € N a t,,,-Isc Kadec function F,;: K,, — [0,1]. An easy lower
semicontinuity argument shows that

FG) = ) 27, ()

Is a -Isc Kadec function on K linking d with 7, where x = (x,,).

The following result can be regarded as a topological version of the transfer technique
of Godefroy-Troyanski-Whitfield-Zizler [110], [106].

Theorem (3.2.16)[104]: Let (X,7) be a topological space and let d be a t-lower
semicontinuous metric on X. Suppose that there exist T-compacts sets K,, € X having

P(d, t) such that U,‘ff:lKnd = X. Then X has P(d, 7).

Proof: We can suppose the sequence (K,) increasing and the metric d bounded. By
Proposition (3.2.9), for every n € N there is a t-Isc Kadec function E,: K,, — [0, 1]. We
define the functions f,, on X as follows,

fa(x) = inf{d(x,y) + E,(y):y € Kp}.

Note that the infimum is attained. We claim that f,, is t-Isc. Indeed, suppose that T -
limx, = x and f,,(x,) < r for every w. Take points y, € K,, such that f,(x,) =

w
d(x,,v,) + E,(y,). Lety € K, be acluster point of (y,). Then we have that
)< dlxy)+ BG)<r

because of the lower semicontinuity of d and E,. Now we define a function F on X by the
formula
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F) = ) 27 fu().

We claim that F has the Kadec property. Indeed, suppose not. We can take a net (x,) in X
with t -limit a point x such that limF(x,) = F(x), and there ise > 0 such that
w

d(x,,x) > e. A standard argument of lower semicontinuity gives that limf,(x,) =
w

fn(x) for every n € N. Fix n € N such that 1/n < ¢/3 and d(x,K,) < &/3. We can
take points y,, € K, such that

falxe) = d(xe, Y0) + F(¥0).

Let y € K, be a cluster point of (y,). Without loss of generality we can assume that -
limy, = y. Since
w

d(x’y) + Fn(y) < Ii{[)nfn(xw) - fn(x) < d(x’y) + Fn(y)
we have that
imld(xy,70) + 0] = dCxy) + BO).

Using the lower semicontinuity, we deduce that limd(x,, y,) = d(x,y) < &/3 and
w

limE,(y,) = E,(y). The last equality gives that limd(y,,y) = 0, thus for w big enough

w w

we have that d(x,,y,) < &/3and d(y,,y) < &/3. Since d(x,y) < &/3 we have that
d(x,,x) < &, whichis a contradiction.

Given a Banach space X, a bounded subset Z < X™ is said to be norming if there is
A > 0 such that A||x|| < sup{|x*(x)|: x* € Z} for all x € X. Notice that the supremun
defines an equivalent norm on X which is lower semicontinuous for the topology of
convergence on Z, denoted o(X,Z). A linear subspace Z < X™is said to be norming if
By~ N Z is a norming subset.

The following result compares with [119].

Proposition (3.2.17)[104]: Let X be a Banach space, let Z < X* be a norming subset and
let K € X*be a bounded o(X,Z)-compact subset which has P(||.||,0(X,Z)). Then
spanl(K) and aca®* A (K) have P(|l. ||, o (X, Z) ).

Proof: Let I(n,m) = [-m,m] %...x [—m,m] (n times) with the usual topology of R".
Let K,y = I(m,n) x K x...xK (n times). If 7 is the product topology when K is
endowed with o (X, Z), then K,, ,,, is T-compact. If K is endowed with the norm topology,
then the product topology is metrized by a metric that we call d. By Lemma (3.2.15), K, 1,
has P(d,t). The map T,,,, from K, ., to X defined by T,,,, (ay,...,an,x1,.... %) =
axy + -+ apx, i1s clearly t-a( X,Z) continuous and d-||.|| continuous, thus every
o(X,Z)-compact set T, (Kym) has P(|l.[,o(X,Z)) by Theorem (3.2.13). Since
span(K) = Unm Tnm (Knm), We have that span!l(K) has P(||.|l, o (X, Z) )by Theorem
(3.2.16). The result for the o( X, Z)- closed absolutely convex hull follows from the fact
that aco’®2 (K) = aco'l(K) because K is fragmentable by the norm; see [119].
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The following result compares with [119].

Theorem (3.2.18)[104]: If K is a Namioka-Phelps compact, then (B¢ w™) is also a
Namioka-Phelps compact.

Proof. In the proof of [119] it is shown that if K is a Radon-Nikodym compact, then there
is a dual Banach space X* and a bounded injective w*-w*-continuous linear operator
T:C(K)* - X* such that T(K) is fragmented by the norm ||. || of X*. If K is moreover
Namioka-Phelps, then T(K) has P(||.|l,w*). Then T(Bcy-) = acol'l(T(K)) has
P(]l.ll, w*) by Proposition (3.2.17), and thus T'(B¢()+) is Namioka-Phelps.

A dual Banach space X* having a dual LUR norm has the Radon- Nikodym
property. The space C[0,w;] shows that the converse is not true. Fabian and Godefroy
proved [FG] that a dual Banach space with the Radon- Nikodym property has an
equivalent LUR norm (not necessarily dual, of course). The LUR norm in that case can be
made a dual norm under additional hypothesis, e.g., if the predual X is WCD, or the space
X" is itself WCD; see [106]. Following Hansell [111], we say that a dual Banach space X*
Is dual-descriptive if it has the Radon -Nikodym property and the weak* topology has a o-
isolated network. The class of dual-descriptive spaces coincides with the dual Banach
spaces having a countable cover by sets of local small diameter in the sense of Jayne,
Namioka and Rogers [113]. A dual Banach space with a w*-Kadec norm is dual-
descriptive [111]. Our main result states that the existence of an equivalent dual LUR
norm is a topological property. Partial results in this direction were obtained in [122], in
the spirit of the Molté-Orihuela-Troyanski characterization of LUR renormability [117].

Theorem (3.2.19)[104]: Let X* be a dual Banach space. The following conditions are
equivalent:

(i)  X™ admits an equivalent dual LUR norm.

(i)  X* admits an equivalent norm such that weak topology and the weak* topology
coincide on its unit sphere.

(i) X™ is dual-descriptive.

(iv) X™ (resp. Sx+) has P(]|. ||, w").

Proof: (i) < (ii) It is proved in [122].
(i) = (iv) It follows from Proposition (3.2.9).
(iv) & (iii) It follows from Theorem (3.2.11).

(iv) = (i) If a dual Banach space X* has P(]|.||,w"), then X* has the Radon -Nikodym
property, by Corollary (3.2.12). A result from [121] establishes that there is a w*-lower
semicontinuous real function F on X*with ||.|| < F(.) < 3||. ]| such that the norm and the
w*-topology coincide onthe set S = {x* € X*:F(x*) = 1} Let = {x* € X" F(x*) <
1} . Since X* has the Radon-Nikodym property, co'l(K) will be a w*-compact set,
symmetric and with nonempty norm interior, that is the unit ball of some equivalent dual
norm on X*.Without loss of generality we can suppose X* endowed with that norm,
namely By- = call(K). We will show that the norm and the w*-topology coincide on
Sy
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Suppose not, that is, there is some ¢ > 0 and some net (x;,) in Sx- w*- converging to
a point x* € Sy~ such that ||x;, — x*|| > &. Take Radon probabilities x,, on K such that
X, = fK Idu, (integrals are taken in the sense of Bochner, see [107]). Without loss of

generality we can suppose that (u,,) converges in (C(K)*,w*) to a Radon probability x on
K. We must have that x* = [ Tdu .

Since ||x;, || = |lx*|| = 1, we have that u, and u are supported by Sy- N K < S. We
can take disjoint norm compact sets K; c S fori = 1,...,n with diameter n less than /7
such that (Ui, K;) > 1 — &/12. We can take a norm compact set K, c S disjoint
from UL, K; such that u(UL,K;) > 1 — &/12n. Take disjoint norm open sets V; for
i =0,...,n with K; € V; and the diameter of V; for i = 1,...,n less that ¢/6. Since the
norm and the w*-topology coincide on S, we can take w*-open sets U; suchthat U; n § =
v.n S,

By Urysohn's Lemma, we can take w*-continuous functions f; for i = O,...,n from
By~ to [0,1] such that f;|x, = 1 and f;|x~\y, = O. Since fodew converges to foidu >

u(K;)) for i = 0,...,n we will have, for w big enough, thatpu,(V;) = u,U;) =
J fiduy = u(K;) —e/12n* for i=0,...,n. On the other hand, we must have
uo (Vi) < u(k;) +e/6n. 1f not, then p,, (Vi) = u(K;) + e/6n for some j. Summing the
above inequalities for i# j we will have u,(UiLoV:) > u(UiLoK;) + &/6n —
ne/12n? > 1— &/12n + &/6n — &/12n = 1 which is a contradiction. Thus we have
that |u, (V; ) — u(K;)| < e/6nand p,, (UL, V;) > 1 — &/6.

Fix any i = 1,...,n. We can take points x;,x; € co''l (v;) such that u(K;)x: =
Ji 1du, and p,(Vi)x; = [, Tdu,,. Since the diameter of V; is less than &/6, then [|xj —

x3|| < /6. We have that

f ldy, — f Idul| = lluw V)x5 — u(K)x]]

Vi K;
< uo (V) — w1 x|l + wK)xi — %31l < (W\n + p(K;) ) (%)

We will show that ||x;, — x*|| < € to get the final contradiction

f]ld,uw —f]ld,u
K K

llxe — x7Il =

n
< f Idu,, — f Idul| + f]ld,uw— f]ld,u
K\UL,V; K\U, K; =1 ||v; K;
n
£ £ 1
< —+—+ —+ u(K —)<
<Gt LG (G) <

This shows that the norm ||. || is w*-Kadec. .
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Corollary (3.2.20)[104]: Let X be a Banach space such that its dual X* satisfies any of the
statements of Theorem (3.2.19). Then X has an equivalent Fréchet differentiable norrll.

Let X be an Asplund Banach space. We shall consider the following construction on its
dual X*. For any weak*-compact convex subset B € X*and € > 0, take

(B), = {x* € B:vU € w*,x* € U,diam(B n U) > &}.
Define by transfinite induction the sets (BY) as follows:
Bg = By-,
BE* = (BY),

BgzﬂBf.

f<a

Now take Sz(X,e) = inf{a: B¢ = @,and Sz(X) = supd,(X,&)}. The ordinal number
£>0
Sz(X) is called the Szlenk index of X. The following result was proved by Lancien [116]

using a Kunen-Martin type argument.

and, for a a limit ordinal,

Corollary (3.2.21)[104]: (Lancien): If X is a Banach space with Sz(X) < w,, then X*
has an equivalent dual LUR norm.

The following is a transfer result for LUR renorming of Godefroy —Troyanski-
Whitfield-Zizler [110], [106]. A topological version of it is Theorem (3.2.16).

Theorem (3.2.22)[104]: (Godefroy, Troyanski, Whitfield & Zizler): Let X be a Banach
space, let Z ¢ X* be a norming subset, let Y* be a dual Banach space having a dual LUR
norm and let T: Y* — X be a bounded linear operator w*-o(X, Z) continuous. Then X has
an equivalent o(X,Z)-lower semicontinuous norm which is LUR at the points of

T,

We shall prove the following interpolation result in the spirit of the Davis-Figiel-
Johnson-Pelczynski Theorem, that can be regarded as a reciprocal of Theorem (3.2.22).

Theorem (3.2.23)[104]: Let X be a Banach space, let Z c X* be a norming subset and let
K c X be a bounded o(X,Z)-compact subset which has P(||.|,o(X,Z)). Then there
exists a dual Banach space Y™ having a dual LUR norm and a bounded one-to-one linear
operator T: Y* — X which is w*- ¢ (X, Z) continuous such that K ¢ T (By-).

Proof: After Lemma (3.2.17) we know that K, = @co !l (K) is an absolutely convex
compact set with P(||.||,a(X,Z)). Thus K, is fragmented by the norm. Following
Namioka [119], there is an Asplund space Y and a bounded injective linear operator
T:Y* - X which is w*- o(X, Z) continuous such that K, c T(By+) ¢ 2"K, + B[0,1/2"]
for every n € N. By Theorem (3.2.16) we have that T (By-) will be a descriptive o(X, Z)-
compact subset of X. Since T is a homeomorphism when restricted to By~, we deduce that
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(By+,w") has a o-isolated network. Thus Y* is dual-descriptive and it has an equivalent
dual LUR norm by Theorem (3.2.19).

Corollary (3.2.24)[104]: Let X be a Banach space, let Z c X* be a norming subset and let
K c X be a bounded a(X, Z)-compact subset which has P(||. ||, o (X, Z)).

Then X has an equivalent (X, Z)-lower semicontinuous norm which is LUR at the points
of span''! (K).

Proof: Apply Theorems (3.2.23) and (3.2.22). |

The following extends a well-known result of Deville [105] concerning the dual LUR

renorming of C(K)*, where K is a scattered compact space such that K (1) = @: see also
[106].

Corollary (3.2.25)[104]: Let K be a Hausdorff compact space. The following are
equivalent:

(i)  C(K)* has an equivalent dual LUR norm.
(i) K is a countable union of relatively discrete subsets.

Proof: Suppose that C(K)* has an equivalent dual LUR norm. Then C(K)*has P(||.||,w*)
and, in particular, K has P(]|.||,w") with some sequence of subsets (4,,). The following
sets

D, = {x€ A,:3U € w',x € U,diam(4, n U) < 1}

are relatively discrete and cover K. Conversely, assume that K is a countable union of
relatively discrete subsets. Then it is easy to see that K has P(d, ) where d is the discrete
metric. By Theorem (3.2.11), K is d-fragmentable, so K must be scattered. Regarding K as
a subset of C(K)*, it has P(||.||,w*) and C(K)* = span'! (K) has an equivalent dual
LUR norm by Corollary (3.2.24).

Proposition (3.2.26)[104]: Let K be Hausdorff compact space. The following statements
are equivalent:

(i) K is Namioka-Phelps.
(i)  There is a lower semicontinuous metric d such that K has P(d, t).
(il) K is Radon-Nikodym and it has a o-isolated network.

Proof: (i) & (iii) = (i) Itis clear after Theorem (3.2.11).

(i) = (i) Let d be a lower semicontinuous metric on (K,7) such that K has
P(d,t). There is a dual space X* containing K as w*-compact subset in such a
way that the metric d is induced by the norm [112]. Then the result will follow
from Theorem (3.2.23).
Theorem (3.2.27)[104]: Let K be a Namioka-Phelps compact space. Then C(K)*has an
equivalent W*LUR norm. In particular, C(K) has an equivalent Gateaux differentiable
norm.

Proof: The proof of [119] shows that if K is a Radon-Nikodym compact, then there is a
dual Banach space X* and a bounded injective w*-w*- continuous linear operator
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T:C(K)* - X* such that T(K) is fragmented by the norm ||. || of X*. If K is Namioka-
Phelps, we have that T(K) has P(]|.||,w"). By Corollary (3.2.24), we can suppose that X*
is endowed with a dual norm which is LUR at the points of T(C(K)*). Define an
equivalent dual norm ||. || on C(K)* by the formula |||x][|? = [|x]|* + |IT(x)]|?. We claim
that ||. || is W*LUR. To see that, take points x, x,, in C(K)* with |||x]|| = Illx,,]lIl = 1 and
Iignlllxn + x||| = 2. By a standard convexity argument [106], we have that IiTEnllT(xn)ll =

IT ()| and lim ||T(x,) + T(x)|l = 2||T(x)]|. Since ||.|| is LUR at T(x), we have that
n

lim [|T(x,,) + T(x)|| = O. In particular, T (x,) is w*-convergent to T'(x), and hence (x;,)

n

is w*-convergent to x because of the w*-continuity of T~* on T (B¢ x)).

Section (3.3): WUR Banach Spaces

Our motivation for the present work was two questions posed to us, in Paseky’s
conference (2004), by G. Godefroy and V. Zizler. We suspected that one of the examples
of [125] is a possible candidate for answering both questions. Furthermore, discussing
with S. Troyanski during his visit in Athens, we realized that Zizler’s question is closely
related to a problem posed by M. Fabian, G. Godefroy, P. Hajek and V. Zizler [130]. Thus
we show that the second example of [125] answers negatively the following two questions.

Q1. Let X be a Banach space with a WUR norm. Does there exist a bounded, linear,
one-to-one operator @ : X — co(I'), for some set I'?

Q2. Let X be a Banach space such that X is a subspace of a WCG and also there exists
a norm-one projection P : X** — X. Isthen X a WCG space?

The example from [125] answering the aforementioned questions is a subspace Y of a
Banach space X with the following properties.

(i)  The space X is WCG and it does not contain #;.

(i) Both spaces X and Y are duals, X** = X @ ¢,(I') and Y™ =Y @ ¢,(I).
In particular X** is WCG.

(ii)  The space Y is not WCG and X/Y is reflexive.

The space X is of the form (3=, J(T;,)), , where (T;,),, is the remarkable Rezni¢enko
sequence of trees. This is a sequence of trees with each T, of height w and which satisfy a
strong Baire property. The original construction of (T;,),, was based on a transfinite (for
¢ < w;) recursive argument. We provide a new construction with the use of a coding
function ¢. Each T,, consists of all g-admissible sequences with first element the natural
number n, ordered by the initial segment inclusion. It is worth pointing out that the space
X is also a James tree space with T = U;~; T, , which shows that the WCG J(T) spaces
are not hereditarily WCG. The following is the key property for our results.

Proposition (3.3.1)[123]: Let Y be the subspace of X mentioned before. Then there is no
@ : Y - co(I) linear, one-to-one and bounded.

This proposition in conjunction with the property that X** is Hilbert-generated yields a
negative answer to Q1. Let us recall that if E admits an equivalent WUR norm, then E* is
a subspace of a WCG ([128]). In particular, if E is isomorphic to Y™ for some Banach
space , then Y could not contain ;. This actually shows that any example Y™ answering in
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negative Q1, should satisfy the following properties. First £; does not embed in Y and
second, Y** is a non-WCG subspace of a WCG Banach space. Namely the space Y must
satisfy the basic properties of the example presented here.

We start with the construction of the sequence (T;,),, mentioned above. First we fix a
well ordering < of the set R of real numbers.

Let{l,: a < c},with |I,] = cfor a < c, be a disjoint family of subsets of the set
R\ N, where ¢ denotes the cardinality of the continuum. We denote by £ the set of all
sequences S = (sq,S5,...) with the following properties:

(i) for every k € N, s, = (to,ty,...,tq,), Where ¢y € N,d, = 0,¢; € R\N for
l<i<sdgt#tforl <i<j<dgand

(i)sy N s, = Ofork < m.

Fix a one-to-one mapping o : L — [0,c), where [0,c)is the interval of all ordinals
smaller than c.

Definition (3.3.2)[123]: A finite sequence (to,t;,...,tz), Where t, EN,d > 1, t; €
R\N for 1 < i < d, is said to be g-admissible if t; < t; <---< t; and for all
i =12...,d,thereexists s; € Lsuchthat (ty,ty,...,t;—1) €S;andt; € Iy, -

Define for every k € N a partial order <;, in R as follows:

If t,s € R, then t <, s iff there exist a o—admissible sequence (ty,t;,...,t;z) With
to = kand0 < i < j < dsuchthatt = t;ands = t;.

Set T, = {t e R\N:k <, t}uU {k} for k € N. Then the sequence of partially
ordered sets (Ty, <), k € N, has the properties of a sequence of Reznicenko trees (see
also Proposition 3.2 in [125]). In fact we have the following

Theorem (3.3.3)[123]: (i) For every k € N, the partially ordered set (T}, <) is a tree of
height w with root k.

(i) If ky # ky and [; isasegmentof Ty, i = 1,2, then [l N [, | < 1.

(iii) For every non empty subset M of N and I, initial segment of T,,, n € M, such
that I, n I, = @ for n# m, there exist uncountable many t € R\ N such that
t € Smax 1, » foralln € M, (where for t € T, we denote by S§ the set of all immediate
successors of t in the tree Ty).

Proof: (i) Let us observe that the definition of the og-admissible sequences yields that for
any k € N and every pair (k = tg, ty,...,tq,), (kK = S¢,81,...,84,) Of o- admissible
sequences, there exists 0 < i, < min{d,,d,} such that for all i < i, we have t; = s;

and the sets {t; 41,...,tq,} {Sij+1.- .. Sq,} are disjoint. This shows that (T), <x) is a tree
of height w.

(if) By (i), it is enough to show the property only for initial segments. Let k; # k, and
(ky t1,.. tq,), (kz,81,...,5q,) be  o-admissible  sequences.  Assume  that
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k1, t1,. .. ta, } N{kz,51,..., 54,3 = 2. Namely, there exist 1 < iy < i, < d; and
1 <j; <j, <dgsuchthat{t; ,t;,} = {sj,,s;,}. Since t;, <t; ands; < s; forthe
fixed well ordering < of R, we conclude that ¢; = s; and ¢;, = s;, . This yields a
contradiction since the o-admissible sequences (ky,ty,...,t;,—1), (k2,51,...,5;,—1) have
common g-extension although they are not disjoint. (iii) It follows immediately from the
definitions of the function ¢ and the o- admissible sequences.

Any sequence of trees Ty, k € N, satisfying the assertions (i) to (iii) of the above
theorem is called a sequence of Reznicenko trees. As it is shown in [125] (Proposition
3.3), any sequence of Reznicenko trees satisfies a sort of Baire category property. To this
end we need the following definition.

Definition (3.3.4)[123]: Let T be a tree. A subset D of T is said to be successively dense
in T if there exists t, € T such that foreveryt € T witht, < twe have D NS, # Q.

Let us point out that if T has the additional property that for eacht € T S; # @, then
every successively dense subset D of T must contain an infinite segment. Under the above
terminology we have the following fundamental property of Reznicenko sequences of
trees.

Theorem (3.3.5)[123]: Let T,,,n = 1 be any sequence of Reznicenko trees, so that each

T,, has as a root the numberne€ Nand T = U, T,,. If D,,n = 1 is any sequence of
subsets of T with T = Uyp_; D, then there exists k, € N such that the set Dy is

successively dense in Ty . In particular, there exists t, € S,’:;’ such that for every
t € Ty, witht, <, twehave|S/° n Dy | = w;.

The proof follows the arguments of [125], [124].

Theorem (3.3.6)[123]: There exists a WCG Banach space X such that X** is also WCG
not containing £;. Moreover there exists a closed subspace Y of X such that:

(a) the spaces Y and Y™** are not WCG;
(b) the quotient X/Y is a reflexive space.

We first recall the definition of a James space J(T), for a given tree (T, <). So J(T) is
the completion of the linear space cyo(T) of finitely supported real functions on T under
the norm

1/2
n

x|l ;¢ry = sup z z x(t)? :S1,..., S, are disjoint segments of (T,<)

i=1 \teS;

The space X in the above theorem is of the form (3D X,,,),, Where X,,, is the James
space J(T,, * {m})and T,,,m = 1, is a sequence of Reznicenko trees. Since each tree
T,,, is of height w, each X,,, has the following properties:

(i) X, isaWCG, X,, = Z;, and X;,/Z,, = £*(B,,), where Z,,, is the closed
linear span of the set {e;; ) : t € Ty} in X3, and By, the set of branches of
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the tree T, (clearly Z,, is a WCG, since the set {e;;,,): t € Ty} U {0} is
weakly compact in X;,,).
Using properties of Dixmier’s projection By, : Z;,* — Z,, we find that,

i) X, =X, © £,(B,,) (cf.[129]).
Set Z = (Pom =1 @ Zm)2. Then using properties (i) and (ii) (and
Dixmier ’s projection P : Z =*x — Z =) we get that,

(i) X =272 X*/Z= ¢,(B) and X" = X @ ¥,(B), where B = Upm=1Bnm.
It follows in particular that X is complemented in X** by Dixmier’ s projection
P: X" - X.

We notice that, it follows for the definition of X and properties (i) and (iii) that both of
the spaces X and X**are WCG. These spaces have the additional property to be Hilbert-
generated. We recall that a Banach space Z is Hilbert generated if there exists a bounded
linear operator from a Hilbert space onto a dense subspace of Z (see [130]).

Lemma (3.3.7)[123]: The spaces X and X **are Hilbert generated.

Proof: It clearly follows from the definition of X and property (iii) that it is enough to
show that each James space Z = J(T), where T is any tree of height w, is Hilbert-
generated. Indeed, let T(n) be the n-th level of T,n > 0. Then T = U;-,T(n) and each
of the subspaces Z,, = span{e; : t € T(n)} of Z is isometric to the Hilbert space

£,(T(n)) . Since the union of U;-,Z, generates Z, it is easily verified that the operator
F: £,(T) — Z defined by F(x) = I35, where x, = x|peny for x € £,(T) and

n = 0, makes Z a Hilbert-generated space.
The space Y is defined as follows: forevery t € T = Uj,=1 Ty, Set
1
Di ={m eN:teT,} and x; = z Sm7z €(tm) -
meD,

Finally set, Y = span{x, : t € T} c X. Then the following facts can be proved
(see [125]).

(i) There exists a family {f; : t € T} < Y~ so that the family {(x;,f;): t € T} is

an M-basis for Y , where fort € T andm € D, f; =22 I"(e¢y) and I : Y — X'is
the natural embedding of Y into X.

(i) Letm € Nand b = {t; <...< t, <...} be any branch of the tree T;,, . Then
the series Y-, f;, is weakx convergentin Y™ .

Facts (i) and (ii) together imply that Y is not WCG.
(iYy*=Y & ¢,(B).

Since Y is not a WCG, it clearly follows from fact (iii) that neither Y** is WCG. The
following lemma is the analogue for trees T of height w of a known property of the James
tree space [132].
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Lemma (3.3.8)[123]: The space Y is complemented in Y** by a norm-one projection and
hence it is a dual space of a WCG space Y, (having a shrinking M-basis).

Proof: Let P: X™ = X @ ¢,(B) — X be Dixmier’s projection and y** € Y™ c X*.
Then y** =y + w, where y € X and w € £,(B). Since from fact (iii), Y™ = Y @
£o(B)wefindthat X N Y™ =Y ,soy =y —w € X n Y™ =Y . Therefore the
restriction of P on the subspace Y** of X** is a norm-one projection of Y** onto Y.

We define Y, to be the closed linear span of the set {f; : t € T} in the space Y*. We
shall show that Y5 = Y . So we define the operator F : Y — Y5 by (y) = ypy, - Itis
clear that F is a well defined linear bounded (||F(y)I|| < |ly|l) operator and since the
family {f; : t € T} separates the points of Y it is also one-to-one.

A

Let g € Y5 . Then by Hahn-Banach theorem there exist § € Y™ : gy, =g and
llgll = Ilg]ll. Set P(§) = y;thenclearly y € Y and

w =g —y € £,(B).
So we have that forallt € T,

9g(fe) = g(f) = &0 + w)(f) = y(f) + w() = y(fo),

because w(f;) = O, for every t € T (recall that, f; =22 I"(e(; ), for m € D;). It

follows that g(y*) = y(y*) for all y* € Y,, which implies that F(y) = g. Therefore the
operator F is surjective and thus an isomorphism between the spaces Y and Yy .

It is obvious from the above that the family {(f;,x;) : t € T} is a shrinking M-basis
for Y,.

Now we are able to prove the main result.

Proposition (3.3.9)[123]: There is no bounded linear one-to-one operator F: Y* —
co(I') forany set I.

Proof: Assume, for the purpose of contradiction, that there exists a bounded linear one-to-
one operator F : Y* — co(I') forsome set I". Let F* : £,(I") — Y** be the dual operator
of F. Then we may assume without loss of generality that F*(e;) # 0 for all y € I' and
note that the set {F*(e; ) : v € I'} U {0} is a weak+ compact (and weak= total) in Y™,
so that for every sequence (y;,),, of distinct points of I" we have that w* — limF*(e; ) =

n—->oo

0. By Lemma (3.3.8), the M-basis {(f;,x;) : t € T} of the predual Y, of Y is shrinking,
therefore the set

QO = {L it E T} is weakly discrete and the set Q)

lIfell
U {0} is weakly compact in'Y,.
We consider the map

®: T xT ->R: o, y)=F(e )(fy) for (t,y) €T xT.
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It follows that there exist partitions {Ts: 6 € A} and {[5: & € A} of T and I' into
countable sets, such that for every 6;,6, € A with §; # &, and foreveryt € Ts ,y €
Is, , we have that @(t,y) = O (see [127] and [125]).

We enumerate each Iy and Ts as {y0 : n = 1},{tS : n > 1} and for n,m € N we
put

Dpm ={t € T: t =t3 forsome§ € Aand thereexistsy € I3 : |®(t,y)]
Lym ={y €ET:y =y forsomed € Aand there existst € Ts: |®(t,y)]

Set D,, = Up=1Dnm and I, = Uyp=q I,y for m € N. Then we have
@ T =Upn=1Dm ;

(b) if (t,y) € T x I and ®&(t,y) # O then there exists m € N such that (¢t,y) €
D,, x I, and

(c) foreverym e Nandx € D,, U I, thereexistsy € D,, U I, such that,
1
either x € D,,,, y € I, and |®(x,y)| 2;

or x € I, y € D, and |®(y,x)| 2%.

We get from fact (iii) that for every y € I' there exists a unique pair y, € Y and
w, € ¢,(B) such that F*(e)";) =y, +w,.

Let my; € N be such that Dy, is successively dense in the tree T,, (see Theorem
(3.3.5) and also (a)). Using this fact and also properties (a)-(c) above, we can choose by
induction sequences (y,), € [, and (t,), € Tp, such that:

(d) {t; <...< t, <...}isaninfinite segment of the tree T,  ;

(e) foreveryn = 1,|®P(t,11, Vns)| = mio and t,,., & b for all branches b € B with
w,, (b) # 0. Note that w), € £,(B) thus the set {b € B: w,(b) # O} is at most
countable.

Fact (ii) and (d) above imply that the series Y}, f;, is weakx -convergent in Y™, say
x* = w" — Y= ft, - Italso follows from (e) that w, (x*) = Oforalln > 1. We shall

show that the sequence (F*(e;;n )) is not weakly* null. Indeed
n
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F*(ey )" ) = (wy, + 3, )&™) = 3, (") = lim zftk(yyn = fta O

= Wy, + ¥, )f2,) =F (e, )(f1,) = <P(tn,)/n)

Therefore

1
= |®o(t, v =— forall n = 1,
mo

which proves the claim and so the proof of the theorem is complete, [99], [135].

We first recall that a norm || - || of a Banach space X is said to be weakly uniformly
rotund (WUR for sort) if w — lim(x,, — y,) = 0 whenever |[x,|| = ||y,|| = 1 for all
n and lim||x,, + y,|| = 2. Fabian, Hajek, and Zizler have proved that if X is a WUR
Banach space, then its dual X™ is a subspace of a WCG. More exactly, they proved that the
space X admits an equivalent WUR norm if and only if the bidual unit ball By+ of X™ in
its weak* topology is a uniform Eberlein compact space ([128]). The following result is an
easy consequence of the theorem of Fabian, Hajek and Zizler.

Corollary (3.3.10)[123]: Let E be a Banach space such that E* is a subspace of a Hilbert
generated F. Then E admits a WUR renorming.

Proof: We simply observe that (Bg+,w™) is a continuous image of a uniform Eberlein
compact space (i.e., of the ball of (Bz+,w™) of F* ), hence a well-known result of
Benyamini, Rudin and Wage yields that the space (Bg+,w") is a uniform Eberlein
compact ([126]). Now by the above mentioned result of Fabian, Hajek and Zizler we get
the conclusion.

Summing up all the previous results, we get a negative answer to the problem of
Fabian, Godefroy, Hajek and Zizler mentioned in the introduction as question Q1.

Theorem (3.3.11)[123]: There exists a WUR renormable Banach space E that does not
admit any bounded, linear, one-to-one operator into some cy(I").

Proof: Set E = Y™ , where Y is the space of Proposition (3.3.9), so there is no bounded,
linear, one-to-one operator from E to cy(I"). On the other hand, E* = Y™* is a subspace of
the Hilbert generated space X** (see Lemma (3.3.7)) and hence, by the above corollary, E
admits a WUR renorming. The proof of the theorem is completed.

The following describes a peculiar property of James tree spaces.
Proposition (3.3.12)[123]: Let T be a tree. Then the following are equivalent.

(i)  J(T) is weakly countably determined.

(i)  There exists a sequence (4,),en Such that each A, is an antichain of T and
T =U%,4,.

(i) J(T) is Hilbert generated (hence it is WCG).

Proof: (i)=(ii) Let us observe that every branch b of T is at most countable (otherwise the
ordinal w; will be subset of B;(r)- yielding a contradiction) and moreover the set
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D = {S§*: S isasegment of T}

is a w*-compact subset of B;(r)- . Hence D is a Gulko compact subset of 2{0, 1} . Clearly
the adequate closure of D,

D={AcT:35 €D with A c S}

remains Gulko compact. This follows from Theorem 3.6 [135], [134] yields that T =
Us=1 A, with each A4,, an antichain of T.

(i)=(iii)) As we have mentioned in Lemma (3.3.7), for A antichain of T, the space
span{e; : t € A} is isometric to £,(A). The result follows from arguments similar to the
proof of Lemma (3.3.7).

(iii)=(i) Obvious.

126



Chapter 4

Quasiconformal Maps and Coefficients Estimate for Harmonic v-Bloch Mappings
with Curvature of the Boundary

We provide a quasiconformal analogue of the Smirnov absolute continuity result
over the boundary. Moreover, if f is a harmonic K-quasiconformal self-mapping of D,
then |a,| + |b,,| < B, (K), where B, (K) is given such that lim,,. B,(K) = 0 and
B,(1) = 4nm. We make some asymptotically sharp estimates of constant of
quasiconformality for harmonic diffeomorphisms between the unit disk and the convex
domains by their boundary mappings.

Section (4.1): Controlled Laplacian

The mapw : D — C of the unit disc to the complex plane is quasiconformal if it is
a sense preserving homeomorphism that has locally L?-integrable weak partial derivatives,
and it satisfies for almost every z € D the distortion inequality |w,| < k|w,|, where
k < 1. In this situation we say that w is K-quasiconformal, with K := (1 + k)/(1 —
k).We refer to [32] and [139] for basic notions and results of the quasiconformal theory.
Quasiconformal mappings, even when C2-smooth, can be far from being Lipschitz maps.

However, in the situation where w : D — D is a quasiconformal homeomorphism
that is also harmonic Pavlovi¢ [14] proved that f is bi-Lipschitz.

Many generalisations of this result for harmonic maps heve been proven see [149]
and [140].

The addresses the following question: how much one can relax the condition of
harmonicity of the quasiconformal map w, while still being able to deduce the Lipschitz
property of w - in this situation it is less natural to inquire w to be bi-Lipschitz. Answers to
this kind of questions ought to be useful also in applications to non-linear elasticity. A
natural measure for the deviation from harmonic functions is to consider ||[Aw ||, »(py for
some p = 1 and ask whether finiteness of this quantity enables one to make the desired
conclusion. Our first main result yields the following:

The second main result shows that in the setting of Theorem (4.1.3) the Lipschitz
constant of f becomes arbitrarily close to 1 if the image domain Q approaches the unit disc
in a suitably defined C1“%-sense, and if both K close to one is and the deviation from
harmonicity are small enough. Below we identify [0, 2r) and T in the usual way.
Theorem (4.1.1)[137]: Let p > 2 and assume that w,, : D — n is a K,,-quasi-conformal
normalised map normalised by w(0) = 0, and with

lim K, = 1and Ai_II]OHAW”Lp(D) = 0.

n—oo
Moreover, we assume that for each n > 1 the bounded Jordan domain Q,, approaches the
unit disc in the C1*-bounded sense. More precisely, there is a parametrisation
0Q, = {(8) |6 € T},
where f,, satisfies for some ¢ > 1/2

|£.(6) — ei9||L°o(T) - 0 asn - o and sup|lf,(8)|lcre < oo.
nz1
Then for large enough n the function w,, is Lipschitz, and moreover its Lipschitz constant

tendstolasn — oo;
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lim [|Vw |y = 1. @)
This result will be obtained as a corollary of slightly more general results. Together, our
Theorems (4.1.3) and (4.1.1) considerably improve the main result of the first author and
Pavlovi¢ from [151], where it was instead assumed that Aw € C(ID). Other related results
are contained in [150], see [141] for other type of connections between quasiconformal
and Lipschitz maps.

In order to state our last theorem, we recall the result of V. I. Smirnov, stating that a
conformal mapping of the unit disk U onto a Jordan domain Q with rectifiable boundary
has a absolutely continuous extension to the boundary. This implies in particular that if
E c T is a set of zero 1-dimensional Hausdorff measure then its image f(E) is a set of
zero 1-dimensional Hausdorff measure in dQ. Further, this result has been generalized for
the class of g.c. harmonic mapping by several authors (see e.g. [1], [147]). On the other
hand if we assume that f is merely quasiconformal, then its boundary function need not be
in general an absolutely continuous function. We prove the following generalization of
Smirnov’s theorem for quasiconformal mappings, subject again to an size condition on
their Laplacian:

Further comments, generalisations and open questions related to the above results are
included.

Lipschitz-property of qc-solutionsto Af = g.

In what follows, we say that a bounded Jordan domain < C has C?-boundary if it
is the image of the unit disc D under a C2-diffeomorphism of the whole complex plane
onto itself. For planar Jordan domains this is well-known to be equivalent to the more
standard definition, that requires the boundary to be locally isometric to the graph of a C?2-
function on R. In what follows, Aw always refers to the distributional Laplacian. We shall
make use of the following well-known fact, whose proof we recall:

Lemma (4.1.2)[137]: Assume that w € C(D) is such that ||[Aw || ppy < oo withp > 1.
(i) In case p > 2 one has ||Vw||Loo(B(0,r)) < oo for any r < 1. Moreover, if wjgp =0,
then there is C,, < oo so that

VWl oy < CpllAwW||p(my.
(i) If Wiop = O,and1 < p < 2,then ”VWHZp/(Z—p) < 00,
Proof. By the classical representation we have for |z] < 1

w(z)

1 2T

= — ip ip
27 ), P(z,e )W(e )d(p

+ f 6 (2 0)Aw(w)dA(w). @)
U

1-zw

where P stands for the Poisson kernel and G(z, w) :=ilog|z_w for the Green’s

function of . We observe first that since G is real-valued, |VG| = 2|d,G| so that
1 - 1
=__ — < . 3
VG (z )l 2nl — zo z — w "~ mz — W] G)
Hence an application of Holder’s inequality shows that the second term in (2) has
uniformly bounded gradient in D. To conclude part (i) it suffices to observe that the first
term vanishes if w;ap = 0, and in the general case it has uniformly bounded gradient in

128



compact subsets of D. Finally, part (ii) follows immediately from (3) by the standard
mapping properties of the Riesz potential I; with the kernel |z — w|™?1, see [154].
Theorem (4.1.3)[137]: Assume that g € LP(ID) and p > 2. If w is a K-quasiconformal
solution of Aw = g, mapping the unit disk onto a bounded Jordan domain Q < C with
C2-boundary, then w is Lipchitz continuous. The result is sharp since it fails in general if
p = 2

Proof. It would be natural to try to generalise the ideas in [150] where differential
inequalities were applied while treating related problems.

However, it turns out that by introducing appropriate new ideas the approach of [148],
where the use of distance functions was initiated, is flexible enough for further
development.

By our assumption on the domain, we may fix a diffeomorphism : Q — D that is C2 up
to the boundary. Denote H := 1 — |i|?, whence H is C%-smooth in and vanishes on 09
with [VH| = 1 ina neighbourhood of 9Q.

We may then define h : D — [0, 1] by setting

h(z) ;= H o w(z) = 1 — |1/J(W(Z))|2 forz € D.
The quasiconformality of f and the behaviour of VH near dQ imply that there is ry €
(0, 1) so that the weak gradients satisfy
[Vh(x)| = |[Vw(x)|forr, < |x| < 1. 4
Moreover, by Lemma (4.1.2)(i) we have |Vh(x)| < |[Vw(x)| < C for |x| < . It follows
that for any g € (1, o] we have that

Vh € Li(D)if and only if Vvw € LI(DD). (5)
A direct computation, simplified by the fact that H is real valued, yields that
Ah = A(H ow)
= (AH)W)(Iw,|* + lwg|?) + 2Re(H,, (W)w,w, + H,(w)Aw. (6)
Especially, since H € €?(D) and the function w is bounded we have
|AR] < [Vw|? + |gl. (7)

The higher integrability of quasiconformal self-maps of D makes sure that V(y) o w) €
Li(D) for some g > 2, which implies that Vw € L7(ID).
By combining this with the fact that g € LP(ID) with p > 2, we deduce that Ah €
L' (D) with r = min(p,q/2) > 1. This information is not enough to us in case g < 4,
but we will actually show that one may improve the situation to ¢ > 4 via a
bootstrapping argument based on the following observation: in our situation

if v'w € L9(D) with 2 < g < 4,then actually Vw € L?9/¢-a(D), (8)
In order to prove (8), assume that Vw € L7(ID) for an exponent g € (2,4). Then (7) and
our assumption on g verify that Ah € L3%(D). Since h vanishes continuously on the
boundary oD, we may apply Lemma (4.1.2)(ii) to obtain that VA € L?3/(4~9(D) which
yields the claim according to (5).
We then claim that in our situation one has case Vw € LI(ID) with some exponent
q > 4. For that end, fix an exponent q, > 2 obtained from the higher integrability of the
quasiconformal map w so that Vw € L% (D). By diminishing g, if needed, we may well
assume that q, € (2,4) and

n
qo E{ﬁ for n = 3,4,...}.
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Then we may iterate (8) and deduce inductively that Vw € Lk (]D)) for k =0,1,2...ky,
where the indexes g, satisfy the recursion gy, = =

qk, > 4. Suchan index exists since we may epr|C|tIy solvefork > O
2

Te =T 72k@ = 2/q0)
Thus we may assume that Vw € L1(ID) with g > 4. At this stage (7) shows that Ah €
LPMa’2)(D). Asp A (q/2) > 2, Lemma (4.1.2)(ii) verifies that Vh is bounded. Finally,
by (5) we have the same conclusion for Vw, and hence w is Lipschitz as claimed.
In order to verify the sharpness of the result, consider the following map

wo(z) = zlog® <I |2)

where a € (0,1/2) is fixed. Then w, is a self-homeomorphism of D that is
quasiconformal with even continuous Beltrami-coefficient since we may

easily compute wy(z) = zlog%~ 1(| |2)Iog (lllza) and (wy); = —a- Ioga 1(W) o)
that the complex dilatation of w0 satisfies

z el-a\\ ™! a
_aE_<Iog<|Z|2>> <

“1—a

<1.

|'uWo(Z)| =

In addition, we see that AWO € L*(D) since

awo @)1 = [12.00), )| = [ S10g° (5 |2)<(a—1) o9 (7 |)>‘

s lel™ ('Og <| |2))a_1'

Finally, it remains to observe that w is not Lipschitz at the origin.

We start with an auxiliary lemma.
Lemma (4.1.4)[137]: There exists a function 1y : (1,2) » R* with the following
property: If w: D — D is a K-quasiconformal self-map normalised with ¥ (0) = O,
then

llw, 1> + lwzl? = 1y < P(K).
Moteover, limy,_+ ¥(K) = 0.
Proof. By the sharp area distortion ||[Vw||sqpy < 8 for K < 3/2. By reflecting w over the

boundary dD we may also assume that w extends to a K-quasiconformal map (still
denoted by w) to the whole plane. By rotation of needed, we may also impose the
condition that w(1) = 1. Furthermore, we may even assume that weyg(g 3w is the

identity map, since we may use standard quasiconformal surgery (choose k = (K —
1)/(K + 1) and _ = 2k in [139] to produce %—quasiconformal modification (still
denoted by w) that equals to w in D and is satisfies w(z) = z for |z] = e3”

Especially, it is a principal solution. Since % — 1l as K — 1, and we are interested

only on small values of K, it is thus enough to prove the corresponding claim for principal
solutions with complex dilatation supported in B(0, e3™).

Denote by M the norm of the Beurling operator on L8(C). Fix R, > 0 and consider a
principal solution w to the Beltrami equation w; = uw, with |u| < k < 1/2M. Then
we have the standard Neumann-series representation
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w;, = u + uTu + uTuTu+... and w, — 1 = Tw;.

We thus obtain that
2

k k
Iwelluso) < Nelliscoy (1 ot (o) ) < 2llullys() < CkS

and, a fortiori [lw, — 1|l s(c) < MCk¥® = C'k/®. We obtain the desired

L3-estimate for |f;|? since k - Oas K — 1. The estimate for |f,|*> — 1 follows by noting
that ||51> — 1] < |f, — 11(lf, — 1| + 2) and applying Holder’s inequality.
Before proving the more general convergence result stated in the introduction it is useful
to consider first the case where the image domain is fixed, and in fact equals D.
Proposition (4.1.5)[137]: Assume that p > 2. There exist a function
[1,00) % [0,00) 3 (K,u) — Cp(K,u)
with the property: if w: D — D is a K-quasiconformal self map of the unit disc,
normalised by w(0) = 0, and with Aw € LP(ID), then one has
VWil < Cp(K, llAWlly).

Moreover, the function C, satisfies

lim C,(Ku) = 1. 9

K-1*t u-ot
Proof. We follow the line to the proof of Theorem (4.1.3), in particular we employ its
notation, but this time we strive to make the conclusion quantitative.
We may well assume that p < 3. Let us then assume that w is as in the assumption of the
Proposition with K < 1 + 1/100, say. In addition, we may freely assume that w(1) =
1. As the image domain is D, the function h from the proof of Theorem (4.1.3), takes the
form
h(z) = 1 — |w(2)|%
Let us write ho(z) = 1 — |z|?, which corresponds to h when w is the identity map. An
application of (6) and Lemma (4.1.4) allow us to estimate
IACh — ho)llpy = 140w, 1> — 1) + 4|lw;|* + 2Re(Wg) |l p(m)
< 414w, > = 1) + 4lwzl?ll 3y + lgllr )
< 4Y(K) + lgllLr ). (10)
Lemma (4.1.2) implies that
IVh — Vholl < c,(¥(K) + llgllemy)-
The quasiconformality of w verifies a.e. that
[Vh(2)| = K~ [(Vho)(w(2)[IVw(2)].
Since |Vhy(z)| = 2|z|, we obtain by considering the annulus 1 —e& < |z| <1 with
arbitrarily small e > 0O that

: K
lim sup |-~ [Vw(2)|| < E“m SUP|z»1-(IVh — Vho| + [Vhel)

c, K
< =) + llglhrm) + K. (11)
Let us then write w in terms of the standard Poisson decomposition w = u + f, where u
is harmonic with ujap = wjgp, the term f has vanishing boundary values and it satisfies
Af = Aw = g in D. Then maximum principle applies to the subharmonic function

|[Vu| = |u,| + |uz] =|a’| +|b’|, where a and b are analytic functions such that u =
a + b, together with 1 shows that [Vw| is bounded by cl|gll.»(p)- All, in all combing

these observations with (11) we deduce that
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sup |Vw(z)| < lim supy,-1-1Vul + sup|Vf(2)] < limsupj,-1-IVw]+ 2 sup |[Vf(2)|
|zl<1 |z|<1 |z|<1

<2 Y(K) + + K + 2 12
=75 ( (K) ”g“Lp(]D))) Cp”g“Lp(]D))' (12)
We may thus choose for small enough K

_ c, K c,(K + 4
C,(K.t) = K +p71/;(1() +¥t,
which has the desired behavior.
Below Id stands for the identity matrix Id := ((1) (1))

Definition (4.1.6)[137]: Let p > 2. We say that the sequence of bounded Jordan domains
Q, c Csuchthat0 € Q, foreachn > 1 converge in W2P-controlled sense to the unit
disc D if there exist sense-preserving diffeomorphisms ¥, : D — Q,, normalized by
Y, (0) = 0, such that for some M, < oo it holds that

1im ||D, — 1]l =y = O,
and ||Wy, llgw2r(p) < Mg foralln =1, (13)
together with
|A¥,|[py = O as n - oo, (14)
One should observe that above since ¥,, € W2P(D) withp > 2, it follows automatically
that VW, is continuous, so asking ¥,, to be a diffeomorphism makes perfect sense in terms
and, in particular, ¥, is a bi-Lipschitz map for large enough n. Also, each Q,, is a bounded
C1-Jordan domain in the plane.
It turns out that the above condition is in a sense symmetric with respect to the domains D
and Q:
Lemma (4.1.7)[137]: Assume that Q,, tends to D in a controlled sense and (W¥,,) is the
associated sequence of diffeomorphisms satisfying the conditions of Definition (4.1.6).
Then the inverse maps ®,, := ¥;1: Q, — D satisfy
lim [|[D®y, — 1dll2q,) = O,
and ||y llwzr,) < Mg foralln = 1, (15)
together with
|A®,([pq,) = Oasn — oo (16)
Proof. Conditions (15) follows easily by employing the formulas for the derivatives
implicit function, after first approximating by smooth functions.
Note, in regards condition (16), that in general the inverse of a harmonic diffeomorphism
needs not to be harmonic, so (16) is not a direct consequence of (14). However, the first
condition in (13) tells us the our functions are asymptotically conformal, the maximal
complex dilatation k,, of ¥, tendsto O as n — oo, so that ¥,, is asymptotically conformal.
This makes (16) more plausible, and indeed a direct computations shows that for C2-diffeo
¥: D - Q with maximal dilatation k and controlled derivative |Dy|, |(Dy) | <
C, it holds that
AD = A o P,
where (recall that the Jacobian has the formula Jy = |¥,]|? — |¥;]?)

A =

TPE [-9:(T )y — T, (T,¥,, + V,¥,, - T,¥,, — W,7,,))
+ ¥, (_LE—Z_J‘P - vz(vijzz_ + Lpzip;z_ - Wz‘q"zf - LPZ_LEZ:))]
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We next recall that ¥, is bounded and |¥;| < kW,, and observe that above in the right
hand side the terms that do not directly contain either W, or W; as a factor sum up to
U, (y — [V, [?) = =P, |¥;]%,
We obtain that
|A] S |kD?¥| + |AY,
and (16) follows by applying this on ¥,,.
We may now generalize Proposition (4.1.5) to include variable image domains that
converge to the unit disc in controlled sense.
Theorem (4.1.8)[137]: Let p > 2 and assume that the planar Jordan domains €,
converge to D in W2P-controlled sense. Moreover, assume that w,, : D — Q, is a K,-
quasi-conformal normalised map normalised by w(0) = 0, and with
lim K, = 1and Ai_I;Tgo”AWn”Lp(D) =0.

n—oo

Then for large enough n the function w,, is Lipschitz, and moreover its Lipschitz constant
tendstolasn — oo;
lim [[Vw|e=py = 1. (17)
Proof. Let ¥,,: D — Q, be the maps as in Definition (4.1.6). By renumbering, if
needed, we may assume that that |¥,(z) — 1] < 1/2 for all n and z € D. Write
@, = ¥, !and define
Wp:=%1low, =d,0w,: D> D,
Then W, is K,,-quasi-conformal, with K, —» 0 as n — oo by the first condition in (13).
Fix an index g € (2,p). Again by the just mentioned condition, in order to prove (17)
Proposition (4.1.5) shows that we just need to verify that
lim [|Aw, [|Lap) = 0. (18)
A simple computation yields that
AW,
- (Aq)n)(wn)(l(wn)zlz + |(Wn)Z|2)
+ 4((q)n)zz(W)(Wn)z(Wn)z_ + (q)n)ﬁ(wn)(wn)z(wn)z_)
+ (D), (W) Aw,, + (@) z(wy)Awr,)
=:A+ B+ (19)
Since |D®,,| remains uniformly bounded and we know that ||Aw, || »@py — O, we see that
ICll.»(py tends to zero as n — oo, whence the same is true for the L?-norm. Set § :=

Jqp so that g < § < p. Since W, is a normalized K,,-quasiconformal self-map of the

unit disc D, and K,, — 0, we may assume, again by discarding small values of n and
relabeling, if needed, by the higher integrability of quasiconformal maps that

/ !
Jp| VW |2(€9/0" < ¢ and fQ(]ng)(p ¢D dA(z) < C for all n. Here (eq/q)’ stands for
the dual exponent.

Denoting k,, = (K,, — 1)/(K,, + 1) we thus obtain for any measurable function F on Q
1

) a 2(3) 7
.]-lF ° Wnl(Wn)zlzlqu(Z) = <_f |F o Wnlqu(Z)> <—f Va4 dA(Z)>ql
D D D
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Q

S <fD|F 0 wn|‘7dA(z)>

Q

< ( | |F|‘71W,;1dA(z))

"’ 4 a/(@(p/q)") 1

< ( [ |F|PdA(z)) ( [[Gui)@ dA(z)) < ( [ |F|PdA(z)) |
Q Q Q

By employing this formula and Lemma (4.1.7) we obtain immediately that
IAllLa)y S IAP,llLpe) = 0 as n — oo

<Q

!

Moreover,
IBllLap)y Sk, > 0 as n - oo
This ends the proof of the Theorem.
We next examine what kind of convergence of the boundaries 0Q,, — oD imply W?2?-
controlled convergence of the domains itself. First of all, given
Y, : D - Qas in Definition (4.1.6) we have ¥,, € W2P?(ID), so that by the trace theorem
1

2__
of the Sobolev spaces the induced map on the boundary satisfies ¥, jop € Bp,p”(]D)). On
the other hand, for p > 2 we may pick a,a’ € (1/2,1) so that
1

cL¥ (D) c B;,pp(]D)) c C'*(oD),
see [156]. Hence about the best one can hope is to have a theorem where the boundary
converges if C1* for some a« > 1/2. In fact, this can be realised:
Theorem (4.1.9)[137]: Let (Q,,) be a a sequence of bounded Jordan domains in C such
that there is the parametrisation
00, = {f(6) |6 € (0,2m)}

for each n, where f,, satisfies for some a > 1/2

|£.(0) — ei9||L°o(T) — Oasn — oo and sup||f,,(0)|lcre < oo. (20)

nz1
Then the sequence (£,,) converges to D in W2P-controlled manner. In particular, the

conclusion of Theorem (4.1.8) holds true for the sequence (Q2,,).
Proof. Let us first observe that instead of (20) we may fix @’ € (1/2,a) and assume that
|.(0) — 6“9”(:1'“, - Oasn - oo.

Namely this follows applying interpolation on (20). Write g,(6) = f,(8) — €. By
relabeling, if needed, we may assume that for all n > 1 we have ||£,(6) — €| .. <

1/10, say. Since Id: T — C is 1-bi-Lipschitz, and Lip(g) < 1/5, we obtain that

fn: T = 0Q, is adiffeomorphism. We simply define ¥,, as the harmonic extension
21

1 (2¢ . . 1 . .
@) =5 [ PV =2+ 5 [ P(ane)gn ()i

= z + G,(2), z € D.
Since |lgnlle — O and ||Hg,lle — O (recall that the Hilbert transform H is continuous
in C%, we may also assume that |DG,(z)] < 1/2 for all n, and we have
lim, o lIDGyll oy = 0. Especially, ¥, : D - Q, is bi-Lipschitz, hence
diffeomorphism. The first condition in (13) follows immediately, and condition (14) is
Immediate since W,, is harmonic. It remains to verify the second condition in (13). For that
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end observe that by [154] the fact that ||gpllcieqy < C for all n implies (actually is
equivalent to) that the Poisson extension satisfies

ID2G (D)l <

!

(1 = [zD*=«
which obviously yields the desired uniform bound for |[|D*G,(2)|lr@) if p <
1-a) L
Another condition is obtained by specialising to Riemann maps — the proof of the
preceding theorem could also be based on the following lemma:
Lemma (4.1.10)[137]: Let p > 2. The sequence of bounded Jordan domains Q, c C
converges in W1P-controlled sense to the unit disc D if the Riemann maps
E,: D - Q, (normalized by E,(0) = 0and arg F,(0) > 0) satisfy

rlli_rjgolan’ — 1,0 = 0,and ||[F) lLp)y < Mo foralln = 1, (21)
with some M, < oo,
Proof. Obvious after the definition of controlled convergence.
Theorem (4.1.11)[137]: Assume that f is a quasiconformal mapping of the unit disk onto
a Jordan domain with rectifiable boundary such Aw is locally integrable and satisfies

|Af(2)] < C(1 —|z])™

for some constants a < 1, and C < oo. Then f; is an absolutely continuous function.
The result is optimal: there is a quasiconformal self-map of w: D — D, with non-
absolutely continuous boundary values, and such that f € C*(D) and with |Af(2)| <
cC1 - |zD7tinD.
Proof. We first assume that f is as in the theorem so that Af(z) < (1 — |z|)~® with
a € (0,1). Then we are to show that the boundary map induced by w is absolutely
continuous. For that end we need two simple lemmas.
Lemma (4.1.12)[137]: Assume that u € C(D) is a harmonic mapping of the unit disk
into € such that the f := w;y is @ homeomorphism and f(T) = T is a rectifiable Jordan

curve. Then T, | := [} |dgu(re'®)|d6 is increasing in r so that |T,.| < |T'|. Especially, the
angular derivative of u satisfies dgu(z) € h'.
Proof. By differentiating the Fourier-series representation

u(rei®) = z G, rInlgind
n=-—oo

we see immediately that dgu(z) is the harmonic extension to U of the distributional
derivative dgg. By assumption, g is of bounded variation, and hence dgg is a finite
(signed) Radon measure, which implies that dgu € hl.
It is well-known (see [153]) that for functions in h' the integral average [, [dpu(re'®)|d6
IS increasing in .
Lemma (4.1.13)[137]: Let g € LP(U) withp > 1. Then there is a unique solution to the
Poisson equation Av = g such that v € C(U) and vy = 0. Moreover, the weak
derivative Dv can be modified in a set of measure zero so that

2T
f |Du(re®)|dd < C(g) < o for r € (1/2,1).
0

Proof. The classical regularity theory for elliptic equations (see [138], [144] yields a quick
approach, as it guarantees that our Poisson equation has a unique solution v in the Sobolev
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space W2P(U), and continuity up to the boundary follows from the inclusion WP (U) c
C(U). Then the derivatives satisfy d,,0; € W1P(U). Especially, we then have
IDv|lyy12(B(0,7)) < C' forany r € (1/2,1). At this stage the trace theorem (see e.g.
[156]) for the space W1P(U) and a simple scaling argument shows that for a suitable
representative of Dv it holds that

”(DU)r”Wl—l/p,p(T) < C'forr € (1/2, 1)
Here (Dv), stands for the function T 3 6 = v(re'?). The claim follows by observing
the continous imbeddings W1=YPP(T) c LP(T) c LY (T).
Recall also that any analytic (or anti-analytic) function in h' can be represented as the
Poisson integral of an L*-function, see [153] or [145]. In order to proceed towards the
absolute continuity of boundary values of f, write f = a + b + v, where v solves
Av = g:= Af withvr = 0and a and b are analytic in the unit disk. Since u := a +
b = P[fir], where fir is a homeomorphism, it follows from Lemma (4.1.12) that
d,u = i(za' —zb") € h'(U), because f(T) is a rectifiable curve. Further, the weak
derivatives satisfy

f, = a +vz, f; = b + v,

Now we use that

=

-1
K+ 1

Izl < klfzl, k=
which implies that
la" + v,| < k|b" + 73],
As
Z [
b' =-a —-1ug
Z Z
we obtain for z # 0 that

Z _ [
&' < k|-a" =~ + Tz + vl
This yields for |z] = 1/2 the inequality, valid almost everywhere

o' < 37— Qluel + 1wzl + [v).

Our assumption on the size of the Laplacian of f yields that Af € LP(ID) for some
p > 1. By combining this with above inequality, and noting that

u; € h' by Lemma (4.1.12), we infer from (and simple argument that uses Fubini as the
above inequality holds only for a.e. z) that a’ € H'. Then the relation b’ = ga’ — éu_t
verifies that also b € H'. Thus d,u is the Poisson integral of an L! function, and we
conclude that fir = wr is absolutely continuous.

In order to prove the optimality of Theorem (4.1.11), we are to construct quasiconformal
maps with non-absolutely continuous boundary values, but with not too large Laplacian.
For that end it is easier to work in the upper half space C* := {z: Imz > 0}. We need to
produce quasisymmetric functions on R which can be quasiconformally extended to the
upper half plane with not too large Laplacian, so somehow the function itself should be as
smooth as possible while its derivative still possessing a singular part.

We will produce the desired functions with the help of Zygmund measures.

Recall first that a bounded and continuous function g : R — R is Zygmund if

lgx + )+ g(x — t) — 2g(x)| < CJt| forallx,t € R.
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The smallest possible C above is the Zygmund norm of g. If g is increasing, its derivative
is a positive finite Borel measure, g' = u, on R and we call g a singular Zygmund
function if, in addition, u is singular. It is well-known that there exists singular Zygmund
measures, see [152] or [146]. [142].

We next recall a modified version of the Beurling-Ahlfors extension, due to Fefferman,
Kenig and Pipher [143]. For that end denote the Gaussian density by ¥(x) :=

(2m)Y2e=**/2 and notice that —’(x) = —x(x). As usual, for t > 0 we define the
dilation . (x) := t~ 1y (x/t), and y; is defined in analogous way. Then the extension u
of and (at most polynomially) increasing homeomorphism g : R — R is defined by
setting

ulx +it):= (P, * g)(x) + i(—y; * g)(x), forallx + it € C*. (22)
Obviously, u is smooth in C* and it has the right boundary values. We have:
Lemma (4.1.14)[137]: ([143]). If g: R — R is quasisymmetric, then the extension u
defined via (22) defines a quasiconformal homeomorphism of
C* whose boundary map coincides with g.
We need one more auxiliary result:
Lemma (4.1.15)[137]: Assume that g : R — R is Zygmund. Then the extension (22) of
g satisfies

|Au(x + it)] < Ct™! forallx € R t > 0, and
[Vu(x,it)] < Clog(max(e,t_l)) forall x € R, t >0,

where C > 0 is a constant.
Proof. Let us first observe that if g is Zygmund, then for any ¢ € W21(R) (i.e. ¢, " €
LY(R)) we have
d2
TP * g =0@™Y), forallt > 0. (23)
L®(R)
We note that this follows easily from the mere definition of Zygmund functions if ¢ is
even, but for general ¢ we shall use the fact that g can be decomposed as the sum

9 =Xi09j where [|g;]| . = 0(277) and |g] ”L°°(1R) =0(2)) for all j = 0, see
[154]. We may compute in two ways

d2 [e's)
2oz (Pexg() = t_lf oc(x — ¥)g" (y)dy

=t f o (x — ¥)g(y)dy.

By assuming first that t < 1 with t ~ 27% we apply the first formula above to the sum

g =Z§=Ogj, and the second one to the remainder g = X524, 9; By noting that
f_wwlgot(y)ldy = 0(t) and [7_ lof' (»)ldy = 0(t), we obtain

k oo
L s gl = 0 - Y 2w Y 2y = o,
dx _
j=1 j=k+1
which proves (23) for t € (0,1]. If t > 1 we simply apply the second formula directly
= -2y — -1
on the bound ||gll,=@ < c and obtain ||dx2 0, * g”Lw(R) < 0(t™?) =0(t™Y) for

t > 1.
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We then consider the Laplacian of the extension u of g. Since ¥, ¥’ € W21(R), we
2
obtain immediately from (23) that |%u(x,t)| = 0(t™1) uniformly inx € R. Inturn, to

consider differentiation with respect to t, assume that ¢ : R — R is smooth and (1 +

[t]?)@(t) is integrable. Then
d (0]
29 * 9(x) = f_ (—t72p(x —y) — t3(x — ¥)i(x — ¥))g(y)dy

(0.0)

d
_ f_mg(y)@(t—%x — Mee(x —y))dy

oo
= —t_l f
—

= (¢1)¢ * g'(x),

where ¢, (y) := —y@(y). An iteration gives, by denoting ¢, (y) := y?¢(y),
d2
W(% x g(x)) = (@) * g" (x)

d2
= W(((Pz)t * g(x)). (24)
Since all the functions ty(t), t2y(¢t), ty(t), t?y(t) and their second derivatives are
integral, we may apply (24) and obtain as before the desired estimate for %u(x, t).

The stated estimate for Vu is proven in a similar way. We use the fact that for in the
decomposition g = Y72, g;, one may in addition demand that ||gj|| < C forallj = 1

(see [155]), which yields as before fort ~ 27% < 1

k co
d .
|a(<pt * g(x))| =0t tzl+t_2-t z 27

= 0(log(t™1).
The case t > 1 is trivial, and the case of the t-derivative is reduced to estimating the x-
derivative as before.
After these preparations it is now a simple matter to produce the desired example. Let g,
be a singular Zygmund function which is constant outside [—1,1] so that Set g(x) =
x + go(x) for x € R. Then, as g, is Zygmund, the function g is quasi symmetric. Then
its Fefferman-Kenig-Pipher extension u: C* —» C* is quasiconformal with non-
absolutely continuous boundary values over [—1,1]. Since the extension of the linear
function x - x is linear, we see that the Laplacian of u equal that of the extension of g,
and by the previous lemma we obtain the estimate

|Au(x + it)] < Ct™ forallx + it € C*.

Leth: D — Q' be conformal, where Q' is a bounded and smooth Jordan domain that is
contained in the upper half space C* and contains [—2,2] as a boundary segment. Next,
set O = u(Q') so that Q is smooth by our construction. Finally, let A: Q — D be
conformal end set f := u o h. Then f satisfies all the requirements, as the main terms in
the formula for the Laplacian of f (compare to (19)) are |Au| and |Vu|?, and the previous
lemma also yields suitable bounds for the gradient term.
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Corollary (4.1.16)[137]: If f is a quasiconformal mapping of the unit disk onto a Jordan
domain with rectifiable boundary such that Af € LP(D) for some p > 1, then fir is an
absolutely continuous function. The claim fails in general if p < 1.
Proof. The counterexample constructed above obviously works also for the Corollary. In a
similar vain, hand, the proof of the positive direction of the Theorem also applies as such
for the Corollary since it in fact used as a starting point the fact that Au € LP(ID) for
somep > 1.
However, it is an open problem whether Corollary (4.1.16) is true for the exponentp = 1,
as merely implementing the Kahane measures described above into our proof seems not to
give enough extra decay for the Laplacian.
Section (4.2): Harmonic K-Quasiconformal Mappings

A complex-valued function f(z) of class C? is said to be a harmonic mapping, if
it satisfies f,; = 0. Assume that f(z) is a harmonic mapping defined in a simply
connected domain Q < C. Then f(z) has the canonical decomposition f(z) = h(z) +
g(2), where h(z) and g(z) are analytic in Q. Let D = {z: |z| < 1} be the unit disk; we
consider harmonic mappings f(z) in D.
Forz € D, let

Ap(z) = 02?92)2(11'](2(2) + e 20f(2)| = IL@)] + 12|
and

Ar(z) = min |fz(z) + e_Ziefz—(Z)| = ||fz(Z)| — |fZ(Z)||'

0<f0<2m
It is well known that f is locally univalent and sense-preserving in D if and only if its

Jacobian satisfies
Jr(2) = 2(2D)Ar(2) = I,(DI* = |fz(2)|> >0forz € D.
Let
If(z) — f (W)l

ﬁh _.LWEDziml P(Z,WO
be the Bloch constant of f, where p denotes the hyperbolic distance in D, and p(z,w) =

% In (F) where 7 is the modulus of % In [163], we see that the Bloch constant of

f = h + g can be expressed in terms of the modulus of the derivatives of h and g as
follows:

B =Sl€JH|§(1 = 121U D] + 19’ @D.

For the extensive discussions on harmonic Bloch mappings, see [158]-[162], [167].
For v € (0, ), a harmonic mapping f is called a harmonic v-Bloch mapping if and only
if

Iflls, := 1f(0)] +su]§(1 — |21*)" A (2) < 0. (25)

VAS

Harmonic mappings are nature generalizations of analytic functions. Many classical
results of analytic functions under some suitable restrictions can be extended to harmonic
mappings. One of the well-known results is the Landau-type theorems for harmonic
mappings. Many have considered such an active topic.
In [168], Liu proved the following theorems.
Theorem (4.2.1)[157]: Suppose that f is a harmonic mapping of D with f(0) = 4,(0) —
1=0.
IfAr(z) < Aforallz € D, then
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2

lan| + byl < n=23.. (26)

The above estimates are sharp for all n > 2 with extremal functions f,(z) = A%z —
fz (A3-A)dz
0 A+zn"1°

Theorem (4.2.2)[157]: Let f be a harmonic mapping of D with f(0) = 4,(0) — 1 =
0,and Af(z) < Aforallz € D. Then f is univalent in the disk D,. withr; = H—j\_land

f (D) contains a schlicht disk D, with

( 1 A—%
5 =1 +(a-F)n—2D7 a> 1
1 A 1+A_K

k1 A=1.

The result is sharp when A = 1.

Subsequently, in 2011, Chenetal. [161] proved the following theorems.

Theorem (4.2.3)[157]: Let f = h + g be a harmonic v-Bloch mapping, where h and g
are analytic in D with the expansmns

h(z) = z a,z" and g(z) = z b,z" (27)

If 1:(0) = a for some a € (0,1) and || flg, < MforM > 0.Thenforn > 2,
< =
la,| + [bnl < Ap(a,v, M) = Oy;“]il'u(r)
where
~ M2 — a2(1 _ r2)2v
ulr) = nr1(1 — r2)vmM -
Particularly, if v = M = a = 1, then 4,(1,1,1) = 0,45(1,1,1) =§and for n > 4,
A,(1,1,1) <M The ahove results are sharp forn = 2andn = 3.
Theorem (4.2.4)[157]: Let f be a harmonic mapping with f(0) = A;(0) —a = 0 and
|fllg, < M, where M and @ € (0,1] are constants. Then f is univalent in D, , where
po =P(ro) = max Y(r),
B ar(l — r?)M
¥ = aM (1 — r2)V —a?(1 — r?2)?2¥ + M?
Moreover, f(ID,, ) contains a univalent disk D with
M2 — 2 (1 _ r2)2v| M2 — a2(1 _ r2)2”
0 :
MA — 12" 9aM (L — D) — a2(L — 12)? + M?
The coefficient estimates are crucial in obtaining Landau-type theorems. By using
Parseval equation, we first obtain the coefficient estimates for harmonic v-Bloch

mappings, and thenfor0 < v < % we obtain its Landau-type theorems.
Assume that

Ry = rola +

21T

f(z) = PIF1(z) = f P(r.x — @)F(x)dx

0
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IS a sense-preserving univalent harmonic mapping of D with the boundary function
F(x) = ™ where
1 — r?

Pirix = ¢) = 2 (1 — 2rcos(x — @) + r?)
is the Poisson kernel and z = re!” € D. Then f(z) is called a harmonic K-
quasiconformal mapping if there exists a constant k such that
fz(Z) K-1

sup = :

z€eD fz( ) K+1
For harmonic K-quasiconformal mappings defined in D, there are many interesting results
(See [164], [166], [14] and [171]-[174]). In [1], Partyka and Sakan proved the following
theorem:
Theorem (4.2.5)[157]: Given K = 1 and let f(z) = P[F](z) be a harmonic K-
quasiconformal mapping of D onto itself, with the boundary function F(t). If £(0) = 0,

then fora.e. z = et € 9D
25(1—1(2)/2 1
((K2 T K DFS |F'(t)] < K3k 5172, (28)

Using this theorem, we obtain the coefficient estimates for f = P[F] as follows:
4 1
laal + Il < Bu(K) = — k325002 p= 12

Theorem (4.2.6)[157]: Assume that f(z) = h(z) + g(z) is a harmonic v-Bloch
mapping such that f(0) = 0 and [|f|lz, < M for some constants M > O, where h(z)
and g(z) are given by (27). Then the following inequality

lan|? + 1bnl?

< Ap(v, M)
holds foralln = 1,2,3,..., where
( - 1— (1 _ t2)1—2v 1
— inf 2n vV FE =
A (U M) :{ n o<t<1 t (1—217) 2
Y Mz —In@ - %) 1
n OLI;:]<1 t2n v 2
Furthermore, if 0 < v < 1, then lim,, A,,(v,M) = 0. If v > 1, then A,(v,M) <

M? (n+1)?v"1-1 1\"
(g 42y
2v—-1 n n

Proof. Using the assumption that f(0) = Oand [[f||s, < M, according to (25), we have

A @) = W@+ 19 () < % = A

holds for any z = re’® € D. Using fp(z) = i[zh'(z) — zg'(z)] and applying Parseval

equation, then
(0]
na rneme z rie in6@
n

n:

:Zn (lanl? + 1By 2yren
n=1

Applying |fg(2)| < |zIAf(z) < rA,, we have

21T

= f e fan=z [ |

OO

do
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(00)

r2M?

z n® (la,|? + [by|>)r*" < r2A7 < 1 -0
] (1 )2Y
n:
This implies that
. rM?
D (al? + bt < e
n=1

Forany 0 < t < 1, integrals from both sides give
t

°° 2n

zn(|an|2 + |bn|2)r7S sz(l_rwdr = M2o(t). (30)

0
— 12
(i) Forv = % In this case, ¢(t) = In(1-t%)

. It follows from (30) that
—In(1 - t?)

tZTL

lan|? + 1byl* <

M? —In(1-t
If n = 1, then MiNgcieq — ~ n(tz D=

: ~In
lim;_ % we see that infyc,cq —

—In(1-t?)
tZTL

Il
8
Il

= M? For n > 1, since lim,_,

In(1-t?)
t2

exists. Hence,

1 M? —In(1 — t?
la, > + |b,|* < A4, (E’M) = — inf ¥

n o<t<1i t2n
Lett, = /ﬁ Then
n

1 M? —In(1 —t?) len(n + 1) 1
A"<_’M)_ n tam n <1 " ) '

(31)

This implies that lim,,_.c 4, (3, M) = 0.

_(1_$2)1-2v
Q=7 1t follows from (30) that
2(1-2v) )
1 _ (1 2)1—217 M
2 + 2 < — — t f
|a,| |b,,] e R " m(t)

1 .
Ifv < > then infy.;cq m(t) = E' Hence,

(i) Forv # % In this case, ¢(t) =

A,(v,M) < (v < 1) (32)

n(l — 2v)’ 2
1—(1—¢2)2v-1 _ ] B
12y 1 (zo— D" >0. If n =1, then infycicqm(t) = 2v — 1.
Else if n > 1, then since lim;,,m(t) = o =lim;_; m(t) we see that infy.;., m(t)

For v >%,m(t) =

2
exists. Therefore A, (v, M) = MT infyc;<qy m(t) and

M? M? ) | 1\" 1
An(w, M) < —=mlto) = 57— 1(n - )n (1 +E) ! <U >§)' (33)

It follows from (31), (32) and (33) that if v < 1, then lim,,,, A,(v,M) = 0. Ifv = 1,

M? (n+1)?""1-1 1\"
then 4,,(1, M) < M? (1 + ) Ifv > 1 then A, (v, M) < 2= (1 +-) =

O(nZv—Z)l
This completes the proof.
Example (4.2.7)[157]: For v = 1, we consider harmonic function:
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fz) = i 7",

1zf'(2)| < X 2
T S z<z 2k> 12| Snzlzanl = T

n=1 \2k<n

Then

Hence,
@ - 1zZ5)If' @] <4 (2] < 1).

It follows from (25) that f(z) is a 1-Bloch harmonic function. Moreover, its coefficients
do not tend to O. L
Theorem (4.2.8)[157]: Let f(z) = h(z) + g(z) be a harmonic v-Bloch mapping of D
satisfying f(0) = 4¢(0) — 1 =0and 0 < v <%. Then f is univalent in the disk
D, := {z:|z| < n} where r, is the root of the following equation:

1

- M

1= 2,00

=0
and ®(r) := Xy Vn + 1r™, _
Proof. Letz; = re!®t € D,andz, = ez € D, where0 < r < r,andz; # z,.
ForO < v <%, applying Theorem (4.2.6), we have

2 M
1 — 2vn

lan| + |bpl < V2(lan|? + [ba]?) <
Then

() = F@N =4Oz = 2] = |y = 221 ) (] + Ibplnrm?

/ 2
2'21_22|1—M1_

n=2
z \/ﬁrn—l
2v
n=2
2

= — 1—M’
|z Z | 1 — 2p

= |z1 = z]e(r).
Since @(r) is a continuous decreasing function satisfying @ (0) = 1,lim, - @(r) =
—oo, we see that equation ¢(r) = O hastheroot0 < r, < 1. Thenforany 0 < r <
1., we have |f(z;) — f(zz)| > 0. This shows that f(z) is univalent in the disk D,.. The

proof is completed.
For M = 1 and some constants v € (O, %) when calculated by computer, we obtain some
. which were shown by the following table:

d(r)

M v T,
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1 1/5 0.264534
1 1/4 0.248227
1 1/3 0.214222
1 49/100 0.0650995

Theorem (4.2.9)[157]: Given K > 1, let f(z) = P[F](z) = h(z) + g(z) be a
harmonic K-quasiconformal self-mapping of D satisfying f(0) = 0 with the boundary

function F, where
h(z) = z a, z" and g(z) = z b, z™
n=1

n=1
are analytic in . Then

4
lan| + |bn] < Bn(K):=EI(3K25(K‘1/K>/2 n=12.. (35)

In particular, if K = 1 then |a,| + |b,| < B,(1) = :—n
Proof. For every z = re € D,

f(reie) z rie inf 23— ne —mH
n=1

n:

We find that
1 2
0 _
a,r"* = > f(re‘e)e inbgg n=12...,
0
1 21
b,r"* = 27‘[ f(re®®)e®dg, n=12...

For every n (see [169] and [170]), we set a, = |a,le!* b, = |b,le'n and 6, =

An+PBn

2n
Then

2T
1 . ) . . .
(lanl + 1b,Dr™ = > f(ret?)[e"Me~tan 4 gthneinb]qp

0
21

— Zi f(reie)[e—in(6+6n) + ein(e+9n)]d9
T
0271'

1

= Ef f(re®®)cosn(d + 0,) do|.

0
Integrating by parts, we have

(laal + o)™ = |~ [ fo(re®)sinn(o +6,)a0|. (36)

0
In [165], Kalaj proved that the radial limits of f and £, exist almost everywhere and
lim fo(re'®) = F (),
Y d
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for almost every z = re'® € D. Here F is the boundary function of f. Hence, tending

r — 17 in (36) and also using (28), we obtain:
2T

1
lanl + Il < — | [F@)Isinn(o + 6,)Ido
0
4K31( 25(1(—%)/2

_ nm
This completes the proof.

Section (4.3): Quasiconformal Harmonic Mappings

One of central questions on harmonic mapping theory is under what condition a
homeomorphism F of the unit circle onto a Jordan curve y generates, via Poisson integral
a harmonic diffeomorphism. A fundamental result in this direction is the Rado-Choquet—
Kneser theorem which asserts that, if y is convex and F is a homeomorphism, then
w = P[F] is a diffeomorphism. Further, an interesting question is that, under what
condition on F and y, w = P[F] is quasiconformal. O. Martio was the first to observe such
a question. Pavlovi¢ in [14] solved this problem for y being the unit disk. Kalaj solved this
problem for y being a convex Jordan curve of class €% in [37] and for Dini’s smooth
Jordan curve in [182]. Zhu in [174] considered this problem for general convex Jordan
curve. For some different approaches in the plane concerning the class of g.c. harmonic
mappings see [177], [180], [19]-[1], [187], [157]. Some recent optimal results on the
generalization of this class has been done in [176], [137], [188]. We focus our attention in
some quantitative estimates of quasiconformal constant of a mapping via its trace F
mapping the unit circle onto a strictly convex Jordan curve y. This is done in Theorems
(4.3.9), (4.3.10) and (4.3.11). One of main tools in the proof is Lemma (4.3.6), which
makes itself an interesting result.

The function

1—r?
2n(l — 2rcost + r2)’
is called the Poisson kernel. The Poisson integral of a complex-valued function F € L(T)
Is a complex-valued harmonic function given by

w(z) = u(z) + iv(z) = P[F](2)

= f P(r,— t)F(e)dt, (37)
0
where z=re" € U. Here U:={z€C:|z|] <1} and T:={z€ C:|z| =1}. On the
other hand the following claim holds:
Claim (4.3.1)[175]: If w is a bounded harmonic function, then there exists a function
F € L”(T), such that w(z) = P[F](z) (see e.g. [21]).
See Axler, Bourdon and Ramey [21] for good setting of harmonic functions.

The Hilbert transformation of a function y € L*(T) is defined by the formula
Y
N 1 x@+t)— x(@ —0)
7@ = Hoo@ = -+ [ e ar
0+

P(r,t) =

0<r«<]1, t € [0, 2n],
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Here fo’i d(t)dt = lim_y+ f:qb(t)dt. This integral is improper and converges for a.e.
T € [0, 2r]; this and other facts concerning the operator Hused can be found in the book of
Zygmund [189]. If f is a complex-valued harmonic function then a complex-valued
harmonic function f is called the harmonic conjugate of f if f+if is an analytic
function. Notice that such a f is uniquely determined up to an additive constant. Let
x, ¥ € L}(T). Then

- PLY] = PO (38)
where P[x] is the harmonic conjugate of P[] (see e.g. [186]).
Assume that z = x + iy = re'® € U. The complex derivatives of a differential mapping
w:U — C are defined as follows:

1 1
we =3 (we +7w)

and

1 1
W; = E <Wx - TWy)
The derivatives of win polar coordinates can be expressed as

ow(z) _
wy(z) = e = i(zw, — zZw;)
and

ow(z) . .

wy(2) := p = (e"w, + e 'w;).

The Jacobian determinant of w is expressed in polar coordinates as

1 1
Jw(@) = lw,? = w2 = = Im(w,#7) = = Re(iw, ). (39)

Assume that w = P[F](z) is a harmonic function defined on the unit disk U. Then there
exist two analytic functions hand k defined in the unit disk such that w = h + k.
Moreover w, = i(zh'(z) — zk'(z)) is a harmonic function and rw, = zh'(2) + zk’(z) is
its harmonic conjugate.

Assume now that F is Lipschitz continuous. Then F’' € L'(T) and by (37), using

integration by parts, it follows that w, equals the Poisson integral of F’:
2T

w,(re’?) = f P(r,t — t)F'(t)dt.
0

Let0 < a <m/2 and define

[, ={z:argz € [ — a,m + «a]}
and

I,(s) = U n eI, + 1)

That is, I,(s) is the wedge inside the unit disk with angle 2a: whose axis passes between
eisand zero. We say that a function f:U — C has a nontangential limit at e: if for
0 < a < n/2 the following limit exists

g(s) = _lim f(2)

I, (s)3z—e's
and do not depends on a.
We now recall Fatou’s theorem [21]:
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Claim (4.3.2)[175]: If G € L'(T), then the Poisson extension W(z) = P[G](z) has non-
tangential limit at almost every ¢ € T.
By using Fatou’s theorem we have that the radial limits of w, exist a.e. and

lim we(re') = F'(z) (a.e.). (40)
If F is Lipschitz continuous, then ® = F’' € L*(T), and by famous Marcel Riesz theorem
(seee.g. [4]), for 1 <p < oo there is a constant A, such that

NHF) eery < AQlIF |y

It follows that & = H(F') € L'. Since rw, is the harmonic conjugate of w,, according to
(38), we have rw,. = P[H(F")], and by using again the Fatou’s theorem we have
IiT_ w,(re™) = H(F')(1) (a.e.). (41)
Tr—

Suppose that y is a rectifiable Jordan curve in the complex plane C. Denote by [ the length
of y and let g:[0O,l] ~ y be an arc length parameterization of y, i.e. a parameterization
satisfying the condition:
lg’(s)] = 1lforalls € [O,1].
We will say that y is of class C1*,0 < a < 1, if g is of class C* and
lg'(€) — g’ (s)|
< o0
t,s [t — s|*
Definition (4.3.3)[175]: Let f:[a,b] — C be a continuous function. The modulus of
continuity of f is

w(t) = we(t) = Sup lf(x) = fFOI.

x—ylst
The function f is called Dini continuous if

f wa(t)dt < o (42)
0+

Here f0+ = fok for some positive constant k. A smooth Jordan curve y with the length
[ = |y|, is said to be Dini smooth if g’ is Dini continuous. Observe that every smooth €1
Jordan curve is Dini smooth.

Let

K(s,t) = Re[(g(t) — g(s)) - ig'(s)] (43)
be a function defined on [0,[] < [0,l]. By K(sx[,t £1) = K(s,t) we extend it on
R x R. Note that ig’(s) is the inner unit normal vector of y at g(s) and therefore, if y is
convex then

K(s,t) = Oforeverysandt. (44)
Suppose now that F:R — y is an arbitrary 2m periodic Lipschitz function such that
Fipo.2m) : [0,2m) ~ v is an orientation preserving bijective function. Then there exists an
increasing continuous function f: [0, 2] ~ [0, ] such that
F(r) = g(f (@) . (45)
We will identify [0,27) with the unit circle T, and F(s) with F(e"). In view of the
previous convention we have for a.e. e’* € T that

Fi(r) = g'(F (@) - f'(0),

IF'@) = 1g'(FENl - If' I = f ().
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Along with the function K we will also consider the function K defined by

Kr(t,7) = Re[(F(¢t) — F(x)) - iF' ()]

It is easy to see that

Ke(t,t) = f'(DKF@®),  f(T)). (46)
Now we prove the following subtle lemma which can be of interest for its own right.
We need the following lemma
Lemma (4.3.4)[175]: For y € [0,1] and x € [0, r] we have sin(xy) — ysinx = 0.
Proof. Let h(x) = sin(xy) — ysinx. Then h'(x) = ycos(xy) — ycosx = y(cos(yx) —
cosx) and so h'(x) =0, because cos is decreasing on [0,7]. Thus his an increasing
function on [0, 1]. Since h(0) = 0, we obtain that h(x) = 0.
Lemma (4.3.5)[175]: For every bi-Lipschitz diffeomorphism ¢ : [0, ] — [O, ], we have

_ sin ¢(x)

essinf¢’(x) < S x < esssup ¢’ (x). 47)

Proof. Let
_ sin ¢(x)
Then his differentiable in [0, ]. Then
" _ cotx N cos ¢p(x)
() = - sinx o Px) sinx 7 (x).
The stationary points of h satisfy the equation
cos cos
¢’ (x) $lx) _cosx h =0, (49)

_ sin x sin x
ie.
h%(x)cos?x = ¢'(x)?cos? ¢ (x).
Since from (47) we have
h?(x)sin? x = sin? ¢(x),
we obtain

h?(x) = ¢'(x)? cos? ¢(x) + sin® ¢ (x). (50)

Since

n = $(m) — $0) = f ¢’ (x)dx

0
and ¢’(x) = 0, we have that min,(¢'(x)) <1 < max,(¢'(x)). Now in view of (50), it
follows that

mxin(gb’(x))2 < h?(x) < mfx(gb’(x))z.
Lemma (4.3.6)[175]: Assume that f:[0,2r] — [0,2%],f(0) =0,f(2r) =2 is a
diffeomorphism such that f'(0) = f'(2m) and
2T
f ef®dr = 0 (51)

0
and letm = min f’(x) and M = max f'(x). Then the double inequality
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X X

m fsin(t _ y)dt| < fsin(f(t)— F()) de

y y
x

<M fsin(t y) dt (52)

y
holds.

Proof. Extend first the mapping f to R by f(x *2kr) = f(x) £ 2km. For y > 0 define
the mapping g(t) = f(t +y) — f(y), and observe that g(0) =0 and g(2r) = 2m.

Then we need to show that
xX=y xX=y x-=y

m f sintdt| < f sing(t)dt| < M f sin t dt|.
0 0 0
For simplicity use instead of x —y the notation x. We have fozne"g(t)dt = 0. Further,

assume that g(r) = a = m. In the contrary define h(t) =2r — g(2m — t), and then
g(m) =2m —a > m, and denote it as well by g. Assume first that x < m. Observe that

M = max, f'(x) = max, g'(x). Let ¢(t) = gg(t). Then ¢(0) =0 and ¢(m) =m.
Thus the conditions of Lemma (4.3.5) are satisfied. It follows that
sin ¢(t) < EM sint
and consequently *
% sing(t) < Msint.
By Lemma(4.3.5) we have
: a 1w a .
sing(t) < - sma g(t) = - sin ¢ (t).

Combining we obtainthatfor0 <t <x <m,
sing(t) < Msint.
By integrating the previous inequality we obtain
X X

fsin gt)dt < Mfsin tdt. (53)

0 0
Since g(m) = a > 0, it follows that sin g(t) < 0 for t € (m, 2r). Further let a’ € (0, )
such that g(a’) = m. This implies that
X

fsin g(t)dt = fsing(t) dt = — f sing(t)dt = 0, x € (a',m).
0 0 s

Having in mind the fact that for x € (0,a’), [, sin g(t)dt > 0, in view of (53) we have

X X

fsing(t) dt| < M fsintdt : x € (0, ). (54)
0 0
If Tt <x <2mthen 2m — x < m and then we use (51). Namely
X 21 0

fsing(t) dt = — f sing(t)dt = — f sing(t) dt

0 X X—2T
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2x—x

= f sin(—g(-t)) dt,
0
and the function h(t) = —g(—t) satisfies as well the condition of the lemma. Then we
have
2X—Xx 2X—Xx
f sin(—g(=t))dt <M f sint dt,
0

0

and so
X X
fsing(t)dt <M fsintdt .
0 0
The second part of (52), i.e. the part
X X
m fsintdt < fsinf(t)dt

0 0
can be proved similarly, but this case we assume that g(mr) = a < m. Let ¢p(t) = gg(t).

Then ¢ () = m and by Lemmas (4.3.5) and (4.3.4),
VA VA
mg sinx < sin¢g(x) = sin Eg(x) < - sin g(x), x € (0,m).
The rest is similar to the previous proof.

We consider quasiconformal harmonic mappings between the unit disk and strictly convex
domains. Let D be a convex domain with €2 Jordan boundary y. Let in addition x, be the
curvature of y at z€y and ko =min{k, : p €y}, Ky = max{k, : p €y}, then 0 <
Ko < K; < 00,

Lemma (4.3.7)[175]: Let ¥ be a C? strictly convex Jordan curve and let F be an arbitrary
parametrization. Let m = min ¢y 27|F'(7)] and

M = max;e[o 271 F' (). Then we have the following double inequalities

K(t,7)
Ko S——7—f¢< Ku (55)
2 sin? 5
and
Ke(t, T
Kom> < % < x M3, (56)
2 sin? 5
Proof. Let g be arc length parametrization of the curve y = Flly’ where |y] is the length of

y. Let Ky = min, ey K, and K; = max,ey K, Where K, is the curvature of  at z. It is clear
that

|y|K|Y|z = K. 57
Let ~ ~ -
6(o.c) = T —_g(;),_ag )
2 sin? 5

Since §'(¢) is a unit vector and y is a C? strictly convex curve, there exists a
diffeomorphism g:R —» R,£(0) = 0,52 + 0) = 2r + (o) such that
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§'(a) = €@,

J7sin(B@ — B(9)) dr

. ,0—C
2sin 5

Therefore

G(o,¢) =

On the other hand from
g'(x) = ip'(r)eF®
it follows that
K = B'(7).
According to (58), we obtain first that

2T

f etfds = §(0) — G(2n) = O.
0

Thus

2T 2T

f sin(f(0))do =f cos(B(o))do = 0.
Therefo(r)e ’

g

[ sins@) - penar = [ sin(s(o) - B
¢ [0.2]\[¢,0]
and using Lemma (4.3.6) we obtain that
mTin B'(r) < G(o,¢) < max B’ (7).
From (63) we obtain
Ky < G(o,¢) < K.
On the other hand there exists a homeomorphism o: [0, 2] — [0, 2] such that

F(r) = lvlg(a(2)).

Thus

F'(r) = lylo'(v)g'(o(2))
and

|F'(z)| = lylo'(x).
Thus

Kp(t,7) = (F(t) — F(z),iF' (7))
lyl26’(2) (§(c(2) — (o (), ig' (o(r)))
ly120’ (2)G(0(t),0(x))

_,0(t)— a(®)
- 28In :
By applying again Lemma (4.3.5) we obtain

., 0(1)— o(t)
2sin g\t 20

2sinz L=¢

Combining (64), (67) and (68) we obtain

(67)

mtin(cr’(t))2 <

< mgx(a’(t))z.
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ly|I?Ro0' (z) mtin(cr'(t))2 < M

2sin2 L E L
< yI?#;0" (1) max(o' (8) (69)
Combining (69), (57) and (66) we obtain
Kom3 < szt < kM3
2sin? 5
This yields (56). In particular, if F = g, where g is natural parametrization of y we obtain
(55).

By using (39) in [181] has been obtained the following
Lemma (4.3.8)[175]: Let y be a Dini smooth Jordan curve, denote by g its arc-length
parameterization and assume that F(t) = g(f(t)) is a Lipschitz homeomorphism from
the unit circle onto y. If w(z) = u(z) +iv(z) = P[F](z) is the Poisson extension of F,
then for almost every t € [0, 2] exists the limit

Ju(e®):= lim J,,(re®)
and there holds the formula

2T
. K-(t,t) dt
Jw(e™) = f %2— (70)
5 2sin2——<"

From Lemma (4.3.7) and Lemma (4.3.8) we obtain following theorem.
Theorem (4.3.9)[175]: If w = P[F] is a harmonic diffeomorphism of the unit disk onto a
convex Jordan domain D = inty € C?, such that F is (m, M) bi-Lipschitz, then

kom® < J,(e") < kM3 (71)
Proof. From (70) we obtain
2T
. K-(t,7) dt
Jw(e™) = f %2— (72)
5 2sin?—— T

From (72) and (56) we obtain (71).
By using an approach of Jost, by constructing an one parameter family [179], see as well
[178], and previous theorem and [36] we obtain
Theorem (4.3.10)[175]: If F is an a.c. homeomorphism of the unit disk U onto a convex
Jordan domain bounded by the Jordan curve y such that |0,F (e‘*)| = m and if w = P[F]
Is a harmonic mapping defined on the unit disk, then for z € U we have
ict2

Jw(z) = J := max {m dISt4(y’W(O)),KOm3}.
Theorem (4.3.11)[175]: a) Assume that 2 is a bounded convex domain containing O and
lety =00 € C? and assume that Kk be the curvature of y at { € y. Further let k, =
Mminge, K and k; = MaXx,¢, k¢ and let F be an absolutely continuous homeomorphism of
the unit circle onto y. Thenw = P[F] : U — £ is a quasiconformal mapping if and only if

0 < m = essinf|F'(7)], (73)
M := esssup |F'(t)| < o (74)
and
H := esssup|H(F')(1)] < oo. (75)
T
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b) If F satisfies the conditions (73), (74) and (75), then w = P[F] is K quasiconformal,
where
M? + H?* +,/(M? + H?)? — 472

K < i i’ -4 (76)
The constant K is the best possible in the following sense, if w is the identity or it is a
mapping close to the identity, then K = 1 or K is close to 1 (respectively).
c) Moreover, under conditions of a) the mapping w is bi-Lipschitz with the bi-Lipschitz
constant L satisfying the inequality

L < Kmax{M,%}. 77)

In particular L is asymptotically sharp.
Proof. The part a) of this theorem coincides with [37]. Prove the part b). We have to prove
that under the conditions (73), (74) and (75) w is K quasiconformal, where K is given by
(76). This means that, we need to prove that the function
dwgl+ w1+

Cwal = w1~

K(2)

Is bounded by K.
It follows from (40) and (41) that

lim Fr(reif) = H(F)()(a.e.),

(78)

r-1-
and
lim F,(re") = F'(0).
AsS
2 2 _1 2 |F€0|2
wol? + Iwsl? =5 w2 + 25 ),

it follows that
1
lim (Jw, 2 + [ws?) <5 (M2 + 32), (79)
r—
On the other hand, by (71)

d(0,y)?
Iir?_(lwzl2 + w3 = J:= max{lcom3, (4)/) } (80)
r—
From (79) and (80) we obtain
lim lw, | + |wgl M? + H? (81)
im——< C:i=——,
=17 [wy | — |wl 2J

i |WZ| < c -1 (82)
m .
-1 |lw,| T 4|C + 1

By Lewy’s theorem, |w;|/|w,]| is a subharmonic function bounded by 1. From (82) it
follows that

Further
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VC +1++4C -1
K = =C ++C* -1

NC+1-VC -1
_M? + K+ (M2 + H2)2 — 472
= 57 .

The last quantity is equal to 1 for F being identity because all the constants appearing at
the quantity are 1 in this special case. Moreover, if F is close to identity in C? norm, then
the quantity is close to 1 (cf. Example (4.3.12)).
It remains to prove the part c). As |F'(t)| <L, since d,w(re'®) = P[F'](re*®), by
maximum principle it follows that |d,w(re‘®)] < M. On the other hand, since w is
K—quasiconformal, it follows that |w,| + |w;| < K(|lw,| — |lwz|). So |w,| + |w;]| <
KM, and thus w is KM-Lipschitz. Similarly we obtain that w is K max{M,1/m} bi-
Lipschitz.
Example (4.3.12)[175]: If F is the arc-parametrization of a C? convex Jordan curve y,
then m = ||F|l, = 1. We assume w.l.g. that the length of y is 2. Further since F'(t +
t) = P+ py applying Lemma (4.3.5) again we obtain
Vi
, 1 (FFx +t)— F'(x — t)
IHIFI@I] = s f 2 tan(t/2) at

dt

0+
1 ”|eiﬁ(r+t) — i)
-]
i 2 tan(t/2)
0+

sin(,B(T+t) —,B(T—t))
— 1 i %
T 0[ 2 tan(t/2) dt
1 si
< sup |F”(S)|Ef%dt = Kq.

0
So

i+ K} + (L + 1K2)? — 42

2K

If y is the unit circle, then k; = 1 = k;. So the estimate (76) is asymptotically sharp; if
the curve y approaches in C? topology to the unit circle centered at origin, then the
quasiconformal constant tends to 1.

In particular if y is the ellipse y = {(x,y) : x*/a? + y*/b?> = 1},a < b,|y| = 2m, then
kKo =1/b and k;, = 1/a and

K < ! 1+ ! + 1+ ! i 4

—2 a? < a2) b2

Corollary (4.3.13)[240]: For y € [0,1] and x € [0, ] we have sin(xy) — ysinx = 0.
Proof. Let h,(x) =sin(xy) —ysinx. Then h;.(x) = ycos(xy) — ycosx =
y(cos(yx) — cosx) and so h,(x) = 0, because cos is decreasing on [0, ]. Thus his an
increasing function on [0, 1]. Since h,.(0) = 0, we obtain that h,.(x) = 0.
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Corollary (4.3.14)[240]: For every bi-Lipschitz diffeomorphism ¢" : [0, 7] — [O, ], we
have

sin ¢" (x) ,
essinfo” (x) < e < esssup ¢’ (x). (83)
Proof. Let '
() =28 (84)
Then his differentiable in [0, r]. Then
W _ cotx L C0s97(x) cos ¢ (x) o
@) =~ sin g7 (@) + = —— ¢ (x).

The stationary points of h,. satisfy the equation

cos p"(x) cosx

7 () sinx sinxh’” =0 (85)

ie.
h2(x)cos?x = ¢" (x)? cos? p” (x).
Since from (83) we have
h2(x)sin? x = sin? ¢"(x),
we obtain

h?(x) = @7 (x)? cos? @7 (x) + sin® p7 (x). (86)

Since
=T - 970 = [ @7 @dx
0
and ¢”'(x) =0, we have that min, (qb’”'(x)) <1 < max, (qb’”’(x)). Now in view of
(86), it follows that
2 2
mxin (qb’”’(x)) < h%(x) < max (qb’”’(x)) .

Corollary (4.3.15)[240]: Assume that f’” [0,27] — [0,27],f"(0) =0, f"(2r) =2m is
a diffeomorphism such that 7" (O) = f"'(2m) and

f z if"®dr = 0 (87)

and let m = min 7’ (x) and M max f"' (x) Then the double inequality

fsm(t _ y)dt| < fz sin(f7(8) — f()) dt
y
<M fsin(t — y)dt (88)
y

holds.

Proof. Extend first the mapping f" to R by f"(x £ 2k,m) = f"(x) £ 2k,m. Fory >0
define the mapping g"(t) = f"(t +y) — f"(y), and observe that g"(0) =0 and
g"(2m) = 2m. Then we need to show that
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x-=y x-=y x-=y

m f sintdt| < f z sing"(t)dt| < M f sint dt|.

0 0 r 0
For simplicity use instead of x —y the notation x. We have fozn Y. eld" gt = 0. Further,

assume that g" (m) = a = m. In the contrary define h,.(t) =2m — g" (2 — t), and then
g"(m) =2m —a > m, and denote it as well by g". Assume first that x < m. Observe that

M = max, f" (x) = max, g" (x). Let " (t) = gg’”(t). Then ¢"(0) =0and ¢" () =
7. Thus the conditions of Corollary (4.3.14) are satisfied. It follows that

sin ¢ (t) < EM sint
and consequently *

% sing”(t) < Msint.
By Lemmal.3we have
sin g7(£) < = sin= g7(t) = — sin ¢7(t).

Combining we obtain that for 0 < tns X Cé T, i

sing"(t) < Msint.
By integrating the previous inequality we obtain

fsmg (Hdt < Mfsm tdt. (89)

Since g"(r) =a >0, it follows that sing”(t) <0 for t € (m 2m). Further let a’ €
(0,m) such that g"(a’) = m. This implies that

fxz sin g" (t)dt > fnz sing"(t)dt = — Trz sing”(t) dt > 0,
o T 0o T T T

x € (a',m).
Having in mind the fact that for x € (0, a’), fox sing" (t)dt = 0, in view of (89) we have

fxz sing”(t) dt x
0o T

<M fsintdt :
If Tt <x <2mthen 2m — x < m and then we use (87). Namely
0

0
fxz sing”(t)dt = — f z sing™(t)dt = — f z sin g7 (t) dt
o T x T

x=2w T

x € (0,m). (90)

2x—x

:f z sin(—g"(-t)) dt,

0
and the function h,(t) = —g" (—t) satisfies as well the condition of the lemma. Then we

have
2X—X 2X—X

f z sin(—g’”(—t))dtst sin t dt,
0 r 0
and so
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X

fsintdt.

<M

X
fz sing”(t) dt
o 7 0
The second part of (88), i.e. the part
X X
m fsintdt < fz sin f7(t) dt
0 0o T

can be proved similarly, but this case we assume that g"(m) =a <m. Let ¢"(t) =
g g7 (t). Then ¢" () = m and by Corollaries (4.3.14) and (4.3.13),

T ) . T m
m-— sinx < sing™(x) = smag’”(x) < - sin g" (x), x € (0,m).

The rest is similar to the previous proof.

Corollary (4.3.16)[240]: Let ¥ be a C? strictly convex Jordan curve and let E. be an
arbitrary parametrization. Let m = min ¢ 271F (7)] and

M = max;e[o 271l F (). Then we have the following double inequalities

K(t
(Kr)o < % < (k)1 (91)
sin?
2
and
Gedom® < T < ey (92)
2sin 5

Proof. Let g™ be arc length parametrization of the curve y = l—lly, where |y| is the length

of y. Let (k) = mlnzey(;cr)z and (x,); = maxzey(;cr)z, where (k,), is the curvature of
v at z. It is clear that

h/l(Kr)IyIz — (Kr)z- (93)
Let

o) _z (g7 (0) — g7 (), ig" (c))

2 sin2 g ¢

Since fg""(g) is a unit vector and y is a C? strictly convex curve, there exists a
diffeomorphism 8":R — R,B"(0) =0,8"(2nr + o) = 2r + B" (o) such that

g (o) = e, (94)
Therefore
’ r [ r( )_ r( ) d
G-(o,¢) = fc > Sm(ﬁ. Ta —CIB V) T' (95)
2 sin2 5

On the other hand from

~”(T) = iB"'(r)ef" @
it follows that

() gy = B7 (D). (96)
According to (94), we obtain first that
2T

f z eiﬁr(“)da:z (7@ -g(em) = 0 (97)
0 r r
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Thus

}nz sin(8"(0))do = }nz cos(B™(c))do = O, (98)
0 r 0 r

Therefore

[ singr@) = grenar = [ sin(o) - prar
¢ T [0.2\[¢.0] T
and using Corollary (4.3.15) we obtain that
mrinﬁ’”'(f) < G(o,6) < mgx,l?’”'(r)- (99)
From (99) we obtain

5550 < G (0,¢) < 6‘751- (100)
On the other hand there exists a homeomorphism o: [0, 2] — [0, 2] such that

E@) = lylg" (e ().

Thus

E(7) = lylo'(@)g" (o(x)) (101)
and

|E (@) = lylo' (7). (102)
Thus

Kr(tD) = ) (B = R, IR @)

= WPo'®@ ) (G (@) -7 (¢0).i7" (e@))

5 o(t) — o(t)
5 .

= lyl?e’ ()G, (a(t),0(z)) - 2sin
By applying again Corollary (4.3.14) we obtain

(103)

,0(1)— a(t)
2

2sinz L= ¢

2sin

min(o' ()" < <max(o'(9)".  (104)

Combining (100), (103) and (104) we obtain
o K ()
VI2Ce)oo’ (@) min(o' ()" < ———
t 2sin? —
p— 2
< IyI20)10" (2) max(” (1)) (105)
Combining (105), (93) and (102) we obtain
Kx (t,7)
% < (k) M°.
2 sin? 5
This yields (92). In particular, if F. = g", where g" is natural parametrization of y we
obtain (91).
Corollary (4.3.17)[240]: If w" = P[E.] is a harmonic diffeomorphism of the unit disk
onto a convex Jordan domain D = inty € C?, such that E. is (m, M) bi-Lipschitz, then

(kr)om® < Jyr(e™) < () M>. (107)

(Kr)0m3 <

Proof. From (106) we obtain
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Jur(ef) = f z Kr (D) dt (108)

25|n2T 2ginz Lo t2m

From (108) and (92) we obtain (107).
Corollary (4.3.18)[240]: a) Assume that {2 is a bounded convex domain containing O and
lety =00 € C? and assume that (r); be the curvature of y at ¢ € y. Further let

(rr)o = Minge, (k) and (k)1 = Maxee, (k,), and let F. be an absolutely continuous

homeomorphism of the unit circle onto y. Then w" = P[E.] : U — Q is a quasiconformal
mapping if and only if

0 < m = essinf|E! (7)], (109)
M := esssup |F (1) < o (110)

and
H := esssup|H(E)(1)| < oo. (111)

T
b) If E. satisfies the conditions (109), (110) and (111), then w" =P[E.] is K
quasiconformal, where

M2+H2+ M2+H22_42
K < V(¢ 2] ) J (112)
The constant K is the best possible in the following sense, if w” is the identity or it is a
mapping close to the identity, then K = 1 or K is close to 1 (respectively).
c) Moreover, under conditions of a) the mapping w’ is bi-Lipschitz with the bi-Lipschitz

constant L satisfying the inequality

1
L < Kmax{M,—}. (113)
m

In particular L is asymptotically sharp.
Proof. The part a) of this theorem coincides with [37]. Prove the part b). We have to prove
that under the conditions (109), (110) and (111) w" is K quasiconformal, where K is given
by (112). This means that, we need to prove that the function

lwz |+ [wzl _ 1+ |yl

K(z 114
@ == TT =l (114)
Is bounded by K.
It follows from (40) and (41) that
lim £ ((1 - €)e™) = HEN @) (a.e.),
€—
and
Iei_T)((E”)l—e)qo((l —€)e'") = E(1).
As
1 (B
_ m)o
wiI? + Iwf|? =3 <IWI_6I2 + (1_6)2)
it follows that
1
lim(jwz1* + w7 %) SE(MZ + H?). (115)
E—
On the other hand, by (107)
d(0,y)?
Iirr(1)(|wz’”|2 + [wl®) = J:= max{(lcr)om3, (4)/) } (116)
E—
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From (115) and (116) we obtain
. |wr |+ |wyl M? + H?
lim < Ci=———,
-0 lwy | — |wgl 2J

imavzl € =1 (118)
m .
e wi] =T+ 1

By Lewy’s theorem, |wl|/|w]]| is a subharmonic function bounded by 1. From (118) it
follows that

(117)

wil _ [c -1

wil = JC +1
Further
VC +1++4C -1
K = =C +C? -1
ve +1-+vC -1
M? + H? +. /(M2 + F2)2 — 472
= 27 .

The last quantity is equal to 1 for E. being identity because all the constants appearing at
the quantity are 1 in this special case. Moreover, if E. is close to identity in €2 norm, then
the quantity is close to 1.

It remains to prove the part c). As |E/(t)| <L, since a,w"((1 —€)e’®) = P[E/1((1 —
€)e'™), by maximum principle it follows that |3,w"((1 — €)e'*)| < M. On the other hand,
since w” is K—quasiconformal, it follows that |w]| + |w]l| < K(|w}] —|w]]). So
Iwl] +|wi| < KM, and thus w" is KM-Lipschitz. Similarly we obtain that w” is
K max{M, 1/m} bi-Lipschitz.
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Chapter 5
Lattice Problem and Comments of Steinhaus

We show that the argument cannot generalize to any lattice and, on the other hand,
give some lattices to which this method applies. We also show there is no measurable
Steinhaus set for a special honeycomb lattice, the standard tetrahedral lattice in R3. We
show a slight generalisation of some as well as a very easy recovery of most of the known
results using a unified treatment.

Section (5.1): On a Lattice Problem

Sometime in the 1950’s, Steinhaus posed the following problem. Do there exist two
sets A and S in the plane such that every set congruent to A has exactly one point in
common with S? The trivial case where one of the sets is the plane and the other consists
of a single point is ruled out. The first appearance of this problem seems to be in a 1958 of
Sierpinski [200]. We showed the answer is yes, a result later rediscovered by Erdos [193].
There are many variants of this problem. For example, one could specify the set A. In this
direction, Komjath showed that such a set exists if A = Z, the set of all integers [199].
Steinhaus also asked about the specific case where A = Z?2. This problem also seems to
be Sierpinski’s 1958 where he mentions that in this case there is no set S which is bounded
and open or else bounded and closed. This specific problem has been widely noted (see
[191], [192]), but has remained unsolved until now. We answer this question.

Theorem (5.1.1)[190]: There is a set S € R? such that for every isometric copy L of the
integer lattice Z* we have |S n L] = 1.

We work in the theory ZFC; the usual axioms of set theory with the axiom of choice
(AC). AC is used heavily in the main construction as we require, for example, an
enumeration of the equivalence classes of the lattices under a certain equivalence relation.
By “lattice” we mean a set in the plane which is isometric with the integer lattice Z? (a
brief exception occurs in Lemmas (5.1.5), (5.1.6) where we consider scaled versions).

We point out that there are several things proven which are stronger than what is
needed to prove Theorem (5.1.1). Stronger forms of our two main technical lemmas,
Lemma (5.1.13) (Lemma (5.1.3)) and Lemma (5.1.29) (Lemma (5.1.29)), are proven here
than is required for the main theorem. In [196] a shorter argument is given for the main
theorem. For example, a shorter proof of Lemma (5.1.13) is given there. Here we give a
more involved induction argument. This argument, which uses only basic number theory
and combinatorics, shows something much stronger and interesting in its own right. We
feel that these stronger results may be useful in resolving whether the main theorem holds
for other lattices and other dimensions.

We note that the geometric Lemma (5.1.29) is also stronger than what is required for a
proof of the main theorem. A weaker alternative is also indicated. It is also quite possible
that something like Lemma (5.1.29) may be needed to resolve the problem for other
lattices. We note that theorems similar to Lemma (5.1.29) may be found in the theory of
mechanical linkages [197]. Recall a four-bar linkage may be described as two circles
C;,C,, and a rigid “bar” connecting two points p;,p, constrained to lie on C;,C,
respectively. If we consider a third point ps, and require that the triangle Ap,p,p5 be rigid,
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then the locus of points traced out by p5 is called a coupler curve for the linkage. We say
the coupler point p; is non-trivial if it is not one of the endpoints p;,p,. In this
terminology Lemma (5.1.29) is the statement that the curve traced out by a non-trivial
coupler point of a four-bar linkage has, except in the degenerate case noted, a finite
intersection with any circle. In particular, Lemma (5.1.29) is implicit in the analysis of
Gibson and Newstead [195]. Their analysis uses a fair amount of machinery from
algebraic geometry. However, since we were not able to find the precise statement of the
lemma and as it is crucial to our methods, we give two very different elementary proofs of
It.

We call a set S as in Theorem (5.1.1) a Steinhaus set and note that whether there can
be a Lebesgue measurable Steinhaus set remains unsolved. (We also do not know whether
a Steinhaus set can be connected although one can prove that if it is measurable, then it is
totally disconnected.) Concerning measurable Steinhaus sets, H. T. Croft [44] and,
independently, J. Beck showed that there is no bounded measurable Steinhaus set [84] and
Koulountzakis obtained some further refinements [198]. Also, Kolountzakis and Wolff
showed that there is no measurable Steinhaus set for the higher dimensional version of
Steinhaus’ problem [83]. It is relatively easy to see that no Steinhaus set can be a Borel set
or even have the Baire property if one follows the arguments given by Croft. We briefly
sketch this argument. Suppose S has the Baire property. Since R? = U,ez2(S + 2) ,S
cannot be meager. Fixing a ball with respect to which S is comeager and noting that the
gaps between successive lattice distances converge to 0, we see that there is some ball M
such that the part of S outside this ball is meager. Let E be the set of points where neither
S nor R%\S is meager in any neighborhood. Then E is a nonempty closed nowhere dense
set and following the proof of Croft’s paper, we see that there is an isometric copy L of Z?
which meets E in exactly one point, p. Thus, there is a ball B(p, d) such that neither S nor
R2\S is meager in that ball but R2\S is comeager in B(x, d) forevery x € L withx # p.
But, this would mean there is a small translation of L which would entirely miss S. We
also note that the question of whether there is a bounded Steinhaus set remains unsolved.
Steinhaus’ problem and variants were discussed in some detail by Croft [44] and have
been updated in [191]. In particular, Steinhaus also asked about sets meeting each copy of
the lattice points in exactly n points. The fact that the answer to this question is yes
follows directly from our main theorem and is discussed in our concluding remarks.

We say a lattice distance is a real number of the form vVn? + m? where n,m € Z.
Theorem (5.1.1) is clearly equivalent to the existence of a set S € R? satisfying the
following two properties:

(i) For every isometric copy L of Z2,S n L # @.

(it) For all distinct z,,z, € S,p(z4,2,) is not a lattice distance, where p denotes the
usual Euclidean distance.

In fact, we prove a slight strengthening of Theorem (5.1.1):
Theorem (5.1.2)[190]. There isaset S < R? satisfying:

(i) For every isometric copy L of Z? we have S n L # @.
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(ii) For all distinct z;,z, € S,p(z1,2,)? & Z.
We call aset S < R? satisfying (ii) of Theorem (5.1.2) a partial Steinhaus set.

The Steinhaus problem has a natural interpretation for smaller sets of lattices. Namely,
given an arbitrary set £ of lattices (each of which is an isometric copy of Z?), we may ask
whether there is a partial Steinhaus set S such that S N L # @ for all L € L. Indeed,
establishing this restricted version of the problem for the case where £ is the (countable)
family of rational translations of Z? is a central step toward proving Theorem (5.1.2).
Actually, we need a slight technical strengthening of this “rational translation” case, which
we state below.

In proving Theorem (5.1.2), it is natural to proceed inductively. That is, we build the
desired set S in (transfinitely many) stages. At limit stages, we take unions, and at
successor stages we enlarge S, to S,,; SO as to meet a new lattice, while at the same time
keeping property (ii). Note that (ii) is then trivially satisfied at limit stages. If we can meet
every lattice L along the way, then the final set S = U, S, will be as desired. While this
is our general plan, there are several steps that must be taken to ensure its success. For
example, we do not simply enumerate the lattices £ in type 2“. To appreciate the
difference, we note that there does exist a “finite obstruction”. That is, there is a finite set
of points F € R? (in fact F < Q?) which forms a partial Steinhaus set, but which cannot
be extended to meet even the integer lattice Z? and remain a partial Steinhaus set. For
example the following set of 17 points forms such an obstruction (this set was constructed
by considering a partial good permutation of 65 of size 17 which cannot be extended to a
good permutation of 65; these concepts are explained):

(216/5,2/5) (107/5,4/5) (283/5,1/5) (174/5,3/5)
(677/135/13)  (340/13,10/13) (744/13,2/13) (407/13,7/13)

(70/1312/13)  (474/13,4/13) (137/13,9/13) (541/13,1/13)

(204/136/13)  (712/13,11/13) (271/13,3/13) (779/13.8/13)
(2601/65,57/65)

Rather, it is important that we use the “hull construction” which has played an
important role in several other theorems of this general character (see [64], [194]). The
idea, described abstractly, is to consider a continuous elementary chain {M,},<,«, of
substructures (say of some large V,.) with each M, of size < 2 but R € Ugeyo M, . Let
L, denote the isometric copies of Z2 which are in M. At successor steps, we now enlarge
Sy 10 S,+1 Which meets all lattices L € £,,.; — L,, while of course keeping property (ii).
While this gives us more to do at each successor step, it also provides us with a powerful
inductive assumption, namely, the closure of L, under various operations. For the reader
unfamiliar with the set-theoretic terminology, we may describe the idea as follows. We
write the collection of lattices £ as an increasing union of sets £, where at limit stages we
take unions, and we require each £, to be closed under certain finitary functions F :
(L)< - L£. We could specify in advance which functions F, we need the £, to be
closed under, but it is more convenient not to. We note that when the continuum is greater
than w, , the actual construction we will use will be a bit more complicated, essentially an
iteration of this hull construction.

163



We now state precisely two lemmas, which we call Lemma (5.1.13) and Lemma
(5.1.29), which we will need to carry out the plan sketched above. The first of these is the
“rational translation” case mentioned above.

Lemma (5.1.3)[190]. (A). Let Lg denote the set of rational translations of Z2, that is,

lattices of the form Z? + (r,s) where r,s € Q. Then there isaset S € R? satisfying the
following:

(i) For every lattice L € Lo, S N L # 0.

(ii) For all distinct z;,z, € S, p(z1, 2, )?* € Z.

Actually, we require a slight technical strengthening of Lemma (5.1.13), which we call
Lemma (5.1.12) . In this lemma, and for the rest, we adopt the following terminology. If
L € R? is a lattice, then by a “rational translation” of L we mean a lattice of the form L +
r U +sv where r,s € Q, and u, v are the unit basis vectors for L. In other words, we are
always referring to the coordinate system of the lattice L.

The second lemma is a result in pure plane geometry, which arises in carrying out the
hull construction mentioned above.

We give the proof of Theorem (5.1.2) assuming Lemmas (5.1.12) and (5.1.29). We
prove Lemma (5.1.12) , and we prove Lemma (5.1.29). We are self-contained and may be
read independently.

We prove Theorem (5.1.2) assuming Lemmas (5.1.12) and (5.1.29). Throughout,
“lattice” will mean an isometric copy of Z2. w denotes the first infinite ordinal, which we
identify with the set of natural numbers.

Recall that by a “rational translation” of a lattice L we are referring to the coordinate
system of the lattice L. By a rational rotation of Z? we mean an operation of the form

7% — R(Z?), where R is a rotation of the plane whose corresponding matrix M, =
b

a
a
a
a,b,d are integers and a® + b? = d?. For a general lattice L, a rational rotation means a

rotation about a point of L which is rational in the coordinate system of L.

T T
( 1tz . where

) has rational entries. In this case, M; must be of the form
21 T22

Qaloale

Definition (5.1.4)[190]. Two lattices are equivalent, L, ~ L,, if L, can be obtained from
L, by rational rotations and translations.
This is equivalent to saying that in the coordinate system determined by L, the isometry

moving L, to L, is of the form
0G5 0.
y 43 d4 y ds

where all of the g; are rational. Equivalently, L, ~ L, iff all of the points of L, have
rational coordinates with respect to the coordinate system determined by L, (and vice-
versa). This is easily an equivalence relation, with each equivalence class countable.

We first prove a lemma which will help us deal with rotations.
Lemma (5.1.5)[190]. Let L,be a lattice, and let L, be obtained from L, by a rational
rotation. Let S € R? satisfy the following:

(i) For every lattice L which is a rational translation of L;,S N L # @.

(ii) For all distinct z;,z, € S, p(z1, 2, )?* & Z.
Then for every lattice L’ which is a rational translation of L, we have S n L' # @.
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Proof. Without loss of generality we may assume L; = Z2. Let the rational rotation R
b

correspond to the matrix M = 41  where a,b,d € Z,d > 1, and a®? + b? =

a

d

d2.L, = R(Z?) has standard basis vectors i = (% ,%) and ¥ = (—% ,%). It suffices to

show, for any positive integer e such that d|e and any rationals of the form r = % s ==

e
(m,n integers), that S n L,y # @, where L., = L, + ru + svis the rational
translation of L, by (r, s). Fix a positive integer e with d|e. Consider the e? set of points
of the form % i +§ ¥, where 0 < m,n < e. For each such point p, we must show that

there are integers k = k,,,l = [, suchthatp + ku + v € S.
We require the following technical lemma whose proof we give below.

Lemma (5.1.6)[190]. Let e be a positive integer, and let R be the rational rotation with
b

d
a

d
of the scaled lattice L', which are of the form (x,y) with0 < x,y < 1.

Granting the lemma, we finish the proof of Lemma (5.1.5). Let T denote the e? set of
points in L%of the form (x,y) with O < x,y < 1. Note that each of these points has
coordinates (x, y) with x and y rational (in fact, their denominators can be taken to be de).
By property (i) of S, for each such point (x,y) there are integers (k',l') such that
(x,y) + (k' ,I') € S. For each such (x,y), let (x",y") = (x,y)+ (k',l') denote the
corresponding point in S. Clearly the map f(x,y) = (x',y") from T into S is one-to-one.
Thus f[T ]is a subset of S of size exactly e2. Note also that in the coordinate system

determined by L,, each point of f[T ] has coordinates in iZZ (since this is true of the

points in T , and (k’,l") has coordinates with respect to L, which have denominators
d and d|e). For each point (x',y") € f[T], let k",l" be integers such that (x",y") .=
(x',y') + k"% + U"% has coordinates with respect to L, of the form (% ,g), where
0 < m,n < e. Let g be the function defined on f[T ] sending (x’,y" ) to (x",y"). Note
that g is one-to-one, or else we would violate property (ii) of S. Thus, (g o f)[T ] consists
of e? points which in the L, coordinate system all have coordinates of the form (% ,g)
where 0 < m,n < e. Since there are only e? such points, (g o f)[T ] exhausts this set.
By definition of g, we thus have for any point p having L, coordinates of the form
(% ,g),o < m,n < e, that there are integers k = —k"”,1 = —I" such thatp + ki +
[v € S. This completes the proof of Lemma (5.1.5).

Qaloale

matrix M = , Where de. Let L', = iR(ZZ). Then there are exactly e? points

Qaloala

Proof . Scaling by e, the lemma follows immediately from the following well-known
more general fact about lattices: Suppose vy, ..., v, are linearly independent vectors in Z¢.
Let D = det(vy,...,v4). Then there are exactly D points of Z¢ of the form a,v; + -
+azvy where 0 < aq,...,ag < 1. To see this, let R be the fundamental domain for the
lattice determined by the v;. That is, R = {av; + +azv;: 0 < aq,...,a5 <
1,a; € R}. Suppose there are D’ points of Z¢ in R. Clearly any translation of R of the
form R + nyv; + - +nyv,, where the n; are integers, also contains exactly D' points
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of Z% Thus, nR = {ayv; + - +auvg: 0 < ay,...,a; < n,a; €R} contains
exactly (D")n? points of Z¢. On the other hand, a volume argument shows this number to
be of the form (D + 0(1))n%.

Lemma (5.1.7)[190]. Let L be a lattice and z € R?. Suppose z has coordinates (x,y) with
respect to the lattice L, where at least one of x,y is irrational. Then there is a line [ =
l(z,L) such that if w has rational coordinates with respect to L and w ¢ [, then

p(w,z)? ¢ Q.

Proof. Without loss of generality, suppose L = Z2. Suppose z = (x,y) with at least one
of x,y irrational and w = (a,b) € Q2. If p(w,z)? € Q, then (x —a)? + (y —b)? €
Q, and so

x* + y? — 2ax — 2yb € Q.
If w;, = (aq,b;) and w, = (a,,b,) were two such points, then subtracting the
corresponding equations we would have

2(a; — az)x + 2(by — b))y €Q. 1)
If w3 = (a3, b3) were a third such point, then we likewise have
2(a; — az)x + 2(by — b3)y €Q. @)

If wy,w,, w3 were not collinear, then we could solve equations (1), (2) for x and y, and
these numbers would both be rational, a contradiction. Thus, all such points w (if any)
must lie on a single line.

Lemma (5.1.8)[190]. Let L,, L, be lattices which are not equivalent. Then there is at most
one point which has rational coordinates with respect to both L, and L,.

Proof. Assume without loss of generality that L; = Z2. If there were two points in Q2
having rational coordinates with respect to L,, then the standard basis vectors 1, v of L,
would also have rational coordinates. Since one point of L, has rational coordinates, it
follows that all of the points of L, have rational coordinates, that is, L; ~ L.

We now turn to the proof of Theorem (5.1.2).

If L € R? is an isometric copy of Z?2, let [L] denote the equivalence class of L under
the equivalence relation ~ of Definition (5.1.4). Let £ denote the family of all equivalence
classes. By AC, let L — L(L) be a function which picks for each equivalence class L a
member L(L) € L.

To carry out the main construction, we first describe a particular enumeration of the
equivalence classes of the lattices. Let k(@) =2, and let {M,,: ay, < x(@)}be a
continuous increasing chain of elementary substructures of a large V. (V,,,+, will actually
suffice) with |[M, | < k(@) for all oy < k(@) and such that every equivalence class of
lattices is in some M, . Assume also M, = @. Let N, = M, 41 — Mg, . In general,
suppose that My is defined for @ in a certain subtree of ON<®. If M, ..., is defined, we
assume also that k(ag,:-,ar—1) has been defined and is an uncountable cardinal.
Furthermore, we assume in this case that My .., , g is defined B < k(ag, -, ax_1). We
let N, ....q, denote My .o, . — Mg, ..q -

k—
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Suppose now that M, .. is defined. If N, ... contains only countably many
equivalence classes of lattices, let L, .., ne€numerate them. In this case, (ao, -, ax) is a
terminal node in the tree of indices a for which Mz is defined. Otherwise, let
k(ag, -, ag) = |Na0,...akﬂ 8| and write

Nao,-~-ak - l I Mao,"'ak,akﬂ

- - - - ak+1< K(a()"”’ak) - - -
as a continuous, increasing union, where each My ...q, o, IS the intersection of Ny .o,

with an elementary substructure of V., and each M, ..., q,,, contains fewer than
k(ag, -, ax) many equivalence classes of lattices. Assume also My ...q,.0 = @ ;. Easily,
the tree of indices is well founded (since the kg are decreasing along any branch).

If @ is incompatible with E , then Nz and N7 have no equivalence class of lattices in

common. Furthermore, every equivalence class occurs as some L, .q,.n- Thus, the
L, .--apn Precisely enumerate the equivalence classes of lattices. We consider the indices

to be (well) ordered lexicographically.
The following simple lemma will be used.

Lemma (5.1.9)[190]. Suppose @ is an index for which Mgz is de ned. Let a;,--- a,, €
Mz and suppose b is definable from a,, -+ a,, in V.. Then b € Uga Mp .

Proof. Let @ = (g, -+, a;) and assume b & Ugg Mz Since Mgy, ..q, is relatively

closed under the skolem functions of V. inside of Ny ..., ., it foIIows that b ¢
Ng,.ap_, - SiNCE b & Mgy ..o . Dy assumption, we thus have b €& My ..,  +1.
Continuing, we eventually have b ¢ M, ., a contradiction since M,_,, is a substructure
of . containing the a;.

Now fix a terminal index @ = (ag, -+, a)) . Assume inductively we have defined for

each terminal index,[? < ¢ aset SE c R? which satisfies the following:

(i) For every terminal index ,8 less than &,SE meets every lattice in every
equivalence class LE;

(iii) Every point of S Uﬁ<ﬁ lies on some lattice of the form LE

(iv) For all distinct z, z, € S, p(Zl, z,)% ¢ I.

(v) Suppose ,81 < ,82 < a,x € Sz X and y € Sz, — Us3, 7 Then, if p(x,y)? €
Q, x, y both have rational coordinates W|th respect to some Iattlce of the form LE

Let S.z = Uz i Sﬁ We show how to extend S_z a set Sz also satisfying (iv), (v) and

such that Sz meets every lattice in each equivalence class Lz,. This suffices to prove
Theorem (5.1.2).
To ease notation, let £, = Lz,,and let L, = L(L,). From Lemma (5.1.5), it.

Suffices to maintain property (iv), to have property (v) when ,§2 = ¢, and to have Sz
meet every rational translation of each L, (recall a rational translation of L,, refers to a
motion which is a translation in the coordinate system of L,,).
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For integers n,d, i,j, let Li’i’j’ denote the translation of L,, by the amount (é ,é) (in the

coordinate system of L,,).

Note for the following the simple fact that if two distinct points y, z lie on a lattice L,
then L is definable from y and z. In fact, there are only finitely many lattices containing
both y and z. More generally, if y, z both have rational coordinates with respect to L, then
L is definable from y and z.

Claim (5.1.10)[190]. For each n and rationals é ,é , there is a finite set of lines Gn(é ,é)
with the following property: if c € S<z does not have rational coordinates with respect to
L, ifze€ Ld” ,and if p(c,z)? € Q, thenz € U Gn(d E)

Suppose there isa z; € Li"” "and a c; € Sz not rational with respect to L,, such that
p(z;,c1)? € Q (otherwise there is nothing to prove). Let [, = l(cl,Li’i’j’) be the line
(necessarily through z,) given by Lemma (5.1.7). Suppose there isa z, & l;,z, € Li'i'j' :
and a c2 € Sz not rational with respect to L,, with p(z,,c,)? € Q (necessarily c, # c¢;).
Let [, = l(c,, L d’i’j’) be given by Lemma (5.1.7). Continuing, construct z,, €

LAY ¢, € Sz if possible so that z, # I, U U Ly_qy and p(zp) cn)* € Q. If the
construction fails at some point, then the claim is proved. Assume toward a contradiction

that we continue to produce an infinite sequence z,,cy, 25,5, -+ . Note that the c¢; are
distinct. Let Em = (Eo ,Elm ) be the terminal index (where [ depends on m) such that
Cm € Ngm . Thus, ,Bm “a. Easily, there is a k' < k such that for infnitely many m we
have ,80 = qg,>Bri_y = ap’—q,and B;7 < a; (we allow k' = 0, in which case we

have BI" < ay). Lety = (ag, -, a,’ ). Thus y < @, and for these infnitely many m we
have ¢, € M3 . Let my,m,, ms be three such m. Let r; = p(cp,, Zm, ), and similarly
for r, , 5. We apply Lemma (5.1.29) to the circles with centers at c,,,, of radii r; and the
points z,,, . Note that we are not in the exceptional case of Lemma (5.1.29), as otherwise

we would have p(zpy,,Zp,) = p(Cmq.Cm, ). This contradicts the fact that

p(CmysCm, ) ¢ Z as they lie in S.z (note that p(zy,, .z, ) €7 8S zy,, 2y, lie in LY

). From Lemma (5.1.29), the points z,, ,Zzp,, , and z,,, are definable from c,, ,cp,,, and
Cm, - Since Ly, is definable from z,, , z,,,, and z,,, (in fact, from any two of them), Ly, is
definable from c;,,, ¢y, , and ¢y, . It follows from Lemma (5.1.9) that L,, lies in some Mz,

for § < &. This contradicts L,, € N.

We next construct a sequence of points {x,,}.mec., Which we view “’potential points’” to
be added to the set Sz to form Sz. We will in fact have Sz —S.z € {x,, : m € w}.

Let (n,d,i,j,a,b,p) » (n,d,i,j,a,b,p) € w be a fixed bijection between w’ and w.
For m € w, let (m),, (m),--- be the “’decoding functions’” for our bijection, that is,
m = ((m)y, (m), - (m)g). If the integer m is understood, we will write n for (m),, d
for (m),, etc. Let M>/ 4P ¢ Ld "7 be the sublattice of points whose coordinates in the L,
system are of the form (— + k =+ [),wherek = a,l = b modd.

We inductively construct the xm to satisfy the following (here n denotes (m),, d denotes
(m),, etc.):
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(i) x, € MW P

(i) If mq = my, thenx,, # X, .
(iii) Suppose m; < m,. If x,;, does not have rational coordinates with respect to
L,, (= L(my), ), then Xm, € l(xm,, Ly, ), Where I[(x, , Ly ) isasin Lemma (5.1.7).

(lV) Xm ¢ U Gn(d E)
Since at each step there are only finitely many points and lines to avoid, there is no
problem defining the sequence {x,,}.

Claim (5.1.11)[190]. For each n, there is at most one point in S.z U{x,,|(m), # n}
having rational coordinates with respect to L,,.

Proof. Suppose y and z were two such points. Suppose first both y and z were in
S<z Say y € S Uﬁ , Z € S Uﬁ S where ,81 < ,82 If ,81 —,82, then

each of y,z Iles on a Iattlce in Nﬁz Smce L, |s defmable from y and z, L,, is definable

from two points which lie in some ME for some ,§ < a. From Lemma (5.1.9) it follows

that L, € Uy<gz My, a contradiction. If El < EZ, then from inductive property (v) we
have either p(y,z)? & Q which is impossible (as both y,z have rational coordinates with
respect to L,,), or else y, z both have rational coordinates with respect to some lattice L in
NEZ This would again imply that L, € Uy<z My, a contradiction. Suppose next that
y € S.z and z = x,,, where (m), # n. Since y and z are rational with respect to L, we
have p(y,z)? € Q . Since x,, & UG(m)o( ) (where d = (m),, i = (m),, j

(m)3), we must have that y is rational with respect to L(m), (as otherwise p(y,z)? ¢ Q).
Thus, both y and z have rational coordinates with respect to both L, and (m), , a
contradiction to Lemma (5.1.8). Suppose NOW Yy = Xp. ,Z = X, Where
(my)o, (Mmy)o # n. Let n; = (my)g, n, = (M), and assume without loss of
generality that m; < m,. Again, p(y,z)? € Q, as both are rational with respect to L,,.
From the definition of x,, , we must have that x,,, is rational with respect to L, (as
otherwise p(y, z)? ¢ Q).

Thus, both y and z are rational with respect to L,, and L,,, , a contradiction.

Let w,, if it exists, be the unique point having rational coordinates with respect to L,
which is either in Sz or of the form x,,, for some m with (m), # n.

By induction on n we define sets T,, € {x,, : (m), = n}. Assume T,---,T,,_, have
been defined, and fori < n, T; € {x,, : (m), = i}. Let P, ={x,, : (m), = n}. Let
P, =P, —{w;: i <n} If w, exists and w, € S.zUU;,T;, let w = w, and
P = P, U{w}. If w, exists, but w, € S.z U U;<, T, let P = P, —{w,} and let w be
some point in P. If w,, does not exist, let P = P, and let w be some point in P. Now
apply Lemma (5.1.12) to the lattice L,, the set P, and the point w. Let T, be the set
produced from Lemma (5.1.12).

Let Sz = S.zUU,T,. Clearly Sz meets each lattice in each £,, and Sz <
Uﬁsa’,kULﬁ,k- Thus, inductive property (ii) is still satisfied. Properties (i) and (iii) are

trivially satisfied. By construction, if z€ Sz — S., (say z€ T, — Upen ) and
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y € Sz, then either p(y,z)?> € Qor y,z are both rational with respect to L,. Thus
property (v) continues to hold.

To complete the proof, we show that p(y,z)? & Z for any y, z € Sz. By induction, we
may assume y, z do not both lie in S_g. Suppose firstthat y e S.zand z € T,, — Ui T;-
Say z = x,,. Note that (m), = n as otherwise z = w,,, and this is impossible since
from the construction w, € T, implies w, € U;.,T;. If y does not have rational
coordinates with respect to L, , then since x,, € P (P as in the definition of T,) and

Pn(U Gn(é ,é)) = @;, we would have p(y,z)? ¢ Q.

So, assume vy is rational with respect to L,,, and hence y = w,,. In defining T, in this case,
we took w = w, in applying Lemma (5.1.12). Since z € T,, we therefore have
p(y, z)? & Z. Suppose next that y first appears in T,,, and z first appears in T,,, . From the
construction it again follows that y = x,, where (m;), = ny, and z = x,,, Where
(my)o = mny (infact, y # wy,_ and z # wy, ). If n; = ny, then from the definition of T,
we have p(y,z)* & Z. Assume without loss of generality that n; < n,. If x,,, = wy, ,
then by definition of T, we have p(y,z)* € Z, so assume y = x,, # wy,. By
construction, z = x,,,, ¥ wy, a8 n; < n, (w,, cannot first get into T, as ny; < ny;
recall the definition of P,). Thus, y does not have rational coordinates with respect to Ly, ,
and z does not have rational coordinates with respect to L, . If say m; > m; (the other

case being identical), it now follows from the definition of x,,, that p(x,,, X, )2 ¢ Q.
This completes the proof of Theorem (5.1.2), assuming Lemmas (5.1.12) and (5.1.29).

Lemma (5.1.12)[190]: Let L be a lattice, and let w be a point having rational coordinates
with respect to L. Let P be a (countable) set of points containing w, all of which have
rational coordinates with respect to L, and satisfying the following: for all integers
d,i,j,a,b, there are infinitely many points of P which have coordinates with respect to L

of the form (é + k, é + [), where k, [ are integers with k = a mod d,Il = b mod d.

Then there is a set S satisfying:

(i) For every rational translation L' of L we have S n L' # @.

(ii) For all distinct z;,z, € S we have p(z,,2,)? & Z.

(ilw € S.

(iv)S < P.

Note that Lemma (5.1.12) immediately implies Lemma (5.1.13) taking P to be the set
of all points having rational coordinates with respect to L.

Proof : Our goal is to prove Lemma (5.1.12). Actually, we concentrate on proving Lemma
(5.1.13), as a minor adjustment to this proof will prove Lemma (5.1.12).

Throughout we use the following notation. For a,b € Z we write a|b for "a divides
b". If b > 0, we write a mod b for the unique 0 < a’ < b with a’ =a mod b. For
rationals r, s, let L, ¢ = Z* + (r,s) be the rational translation of Z* by (r, s).

Recall the statement of Lemma (5.1.13):

Lemma (5.1.13)[190]: Then there is a set S < R? satisfying the following:

(i) For every rational r,s,S NL,s # @ ;.

(ii) For all distinct z;,z, € S, p(z,,2,)* € Z.
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Let R = Q2 N([0,1) x [0,1)). For each positive integer d let R; S R be defined
by Ra ={G 2): 0 < i;j < d}.
We may reformulate Lemma (5.1.13) as follows. For all (r, s) € R, there are integers
k = k(r,s) and | = I(r,s) such that if S ={(r + k(r,s),s +1(r,s)): r,s € Q},
then for all distinct z;, z, € S, p(z,,2,)? & Z (property (ii) of Lemma (5.1.13)). Thus, our
problem is to define the integer valued functions k(r, s) and [(r, s) satisfying property (ii).
Our plan for defining these functions is to proceed inductively as follows. Assume we
have defined the values k(r,s), l(r,s) for all (r,s) € R, for some d > 1. Assume that
the partial functions k, [ so far defined satisfy property (ii), more precisely, assume:

(*)q: For any distinct (% %)(lﬁ ,%)in Ry if z; = (% + kl’% + 11),22 =

(2 + ko2 + 1) where ey = k(2 2),1, = 12, 2)), and similarly for ky, I, then
,0(21,22)2 ¢ Z.

Let p be a prime and d' = pd. We then show that we can extend the k, [ functions to
rational pairs in R4, maintaining property (ii). This clearly suffices to prove Lemma
(5.1.13).

We note that in this inductive step of the proof, it is impor@ant that we assume
that the k, I functions are defined on all of the points (é ,é) in R; (and satisfy property

(ii), of course). It is not true in general that functions k, [ which are defined on a subset of
R, (and satisfy property (ii)) can be extended to functions
defined on all of R ;- also satisfying property (ii).

J1

We make the following simple general observation. If x = % + ki, =

il ) and

y = (%2 + kz,% + 1,), then p(x,y)? € Z iff

(i — i)* + (i1 — j2)? + 2d[(i; — i) (ky — ky) + (i — jo)(l4 — )] €d?’Z. (3)

We use this frequently below. We will also frequently let a denote i; — i, and let b
denote j; — j,, in which case our equation becomes
(a®* + b?) + 2d[a(k, — k;) + b(l; — ;)] € d*Z. 4)
Since the general inductive step is somewhat technical, we feel it helps to illustrate
the main points involved by considering a special case. Thus, we first show how to define
the k, 1 functions on the points in R,», for p a prime, and then show how to extend the
functions from R,» to Rn+1. [We could start with n = 1, but this does not really simplify
the argument, and would cause us to repeat part of the argument.] These arguments are not
necessary for the general case, and we may choose to skip down to the general argument.

So, let d = p™. Consider two points of the form z, = (;—11 +k1,;—; +1,) and
zZ, = (;—Zn + kz,;—fl +1,), where 0 < iy, iy, j;, jo < p™and kq, k,, 11, 1, are integers.
Substituting into equation (4), we see that p(z;, z,)? & Z unless

(a®> + b?) + 2p™a(k, — k) + b(ly — 1,)] = 0 mod p*™. ®)

First note that if p = 2 or p = 3 mod 4, then we may define the k, [ values arbitrarily
and equation (5) will have no solutions. For clearly if equation (4) holds, then we must
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have p™|a? + b2.Since 0 < iy,i, < p™ p™ does not divide a, and likewise p™ does not
divide b. Say a = p®u, b = p/u, where e,f < n and u,v are prime to p. Suppose
w.l.o.g. that e < f. Dividing equation (5) through by p?¢ we get u? + p?/~2¢p2 =0

2
mod p. This implies e = f. Hence, u?> + v =0 mod p. Thus, (E) =—1mod p, a

contradiction if p = 3 mod 4, since —1 is not a square mod p in this case. If p = 2, then
since u, v are both odd, u?> + v? = 2 mod 4. Dividing equation (5) through by p?¢ gives

W? + v2) + 2p"°ulk, — k) + v(l; — 1,)] =0 mod p?"~).

This is impossible, however, as 4 divides the remaining terms in this equation.

Thus, if p = 2 or p = 3 mod 4, we may define the k, [ functions arbitrarily on R,» and
property (ii) will be satisfied. For the rest of the special case we therefore assume p =
1 mod 4.

Recall that if p = 1 mod 4, then there are exactly two square roots of —1 mod p™ for
any m. Let A, u, with 0 < A,u < p", be the two square roots of —1 mod p™. Note that
A = —pmod p™. Note also that for any k < n, (1 mod p*) and (u mod p¥) are the two
square roots of —1 mod p*.

As we remarked above, if equation (5) holds, we must have p™|a® + b?. In this case, if

2
(p,a) = 1 (and hence also (p,b) = 1), this gives (g) = —1 mod p™, and hence either

b = Aa mod p™, or b = ua mod p™. Suppose now p|a (and hence p|b, or else equation (5)
cannot hold). Say a = p°u, b = p/v, where e, f < n,and (p,u) = (p,v) = 1.
Assuming e < f (the other case being similar), putting these into equation (5), and
dividing through by p?¢ we have

(uz + p2f—2e vz) + pn_e[u(kl — k) + pf_ev(ll — lz)] € pih2eZ,

This clearly implies e = f. Also, using a previous remark, v = Au mod p™~¢ or
v = uu mod p™~¢. Multiplying through byp¢, we conclude that in all cases for equation
(5) to hold, we must have either b = Aa mod p™, or b = ua mod p™.

Suppose, for example, that equation (5) holds and b = Aa mod p™. Let j be the integer,
0<j< p" suchthatj + Ai; = j; mod p™. Note that j + Ai, = j, mod p™ as well. Let
J1 =] + iy, and let m; be such that J; = j; + p™m,. Likewise define J, and m,. Note
that J; —J, = A(i; — iy). Also, we may express the points z,, z, NOw as

_(u J1 e J2
Zl —_ <p_n + kl,p_n + (ll - m1)>, Z2 —_ <p_n + kz,p_n + (l2 - m2)>

Substituting into equation (3), and dividing through by p™ we obtain:

1+ A2
(il - i2)2 < pn ) + 2(l1 - lz)[(kl - kz) + /’l(ll - l2 - m1 + mz)] = O mOdpn.

Note that this makes sense as p™|(1 + 4?). Let r < n be such that i; — i, = p"u, where
(p,u) = 1. This equation is then equivalent to
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(iy — ip) <%) <1 ;_n/1 ) +[(ky — ko) + ALy — l; —my +my) ] =0 modp™™

Rearranging, this becomes

L\ 1+ 22
(kg + Aly) + iy <_) o) Amy

2

1\ 1+ 22 .
= (k, + Al,) + i, <§) o)~ Am, modp

(6)

This suggests the following definition.
Definition (5.1.14)[190]. A good permutation = = (7 (0), (1), ---,m(p™ — 1)) of length
p™ is a permutation of the integers (0,1, -, p™ — 1) such that for all i; # i, with
0< iyi, <phifiy—i, = p"uwhere (p,u) = 1, then w(i;) —m(i;) £ 0mod p™ 7.

We use the following simple fact.
Fact 1. There is a good permutation of length p™.

Proof. Ifn = 1, letw = (0,1,-,p —1). Forn > 1, suppose i = by + b;p + b,p? +
«+b,_p" Twhere 0< b;<p. Set mw(i) = bep™ '+ byp" %+ --+b,_;. This
easily works.

With the above arguments as motivation, we are now in a position to state precisely and
prove two lemmas which complete the analysis for the special case
d = p™" that we are considering.
Lemma (5.1.15)[190]. Let p be a prime and > 1. There are integer functions k, [

defined on R,n such that for all distinct (= ,2%), (l2 22y € R,n we have p(zy,2,)? ¢

n’n pnpn

L+ k1,;_1+ l1) Zy _(12 + kz,]z + 1), and Ky —k(l1 h),

Z, where z; = (pn n o pn

I, = l( =l n) and similarly for k5, L,.

Proof. If p =2 or p = 3mod 4, the result is trivial (that is, we may define the
k, L functions arbitrarily) as shown above. So assume p = 1 mod 4, and let A, u be the two
square roots of —1 mod p". Let m = (w(0), (1), --,m(p™ — 1)) be a good permutation
of length p™.

Suppose now 0 < i,j < p", and we define the k, I values for the corresponding point

(n, n) Let jbe suchthat j + Ai = jmod p™, and 0 <j<p". Letj=j+Ai. Letm
be the integer such that j = j + p™m. Consider then the equation

. 1 (142%).
k +Al =n(i) + Am—;(;n)L mod p™. @)

Similarly, let j be such that j + pi = j mod p™, and let j = j + pi. Let m’ be such that
j=j + m'p™ Consider also the equation

_ , 11 +p? n
k+,ul=7t(l)+,um—§ o i modp™ (8)
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Equations (7) and (8) form a non-singular system mod p™, and we let (k, 1) be a solution
(to be specific, say the unique solution with 0 < k, 1 < p™). This completes the definition
of the k, [ functions on R yn.

Suppose now that (;—; ,;—;) and (;—Zn ’;—i) are given with 0 < iy iy, j1,jo < p™. Let
(ki,ly) and (k,,1,) be the corresponding values as defined above. Let z; = (;—11+

kl,;—; + 1) and similarly for z,. We must show that p(z;, z,)? € Z.

Againleta = i; — i, andb = j; — j,. Fromequation (4), we must show that
(a®> + b?)+2p™a(k; — ky)+ b(l; — L)1 # 0 mod p*™.
As we have already noted, this inequality is immediate unless b = Aa mod p™" or
b = pa mod p™. Assume b = Aa mod p", the other case being similar. Let j be such
that j + Ai; = j; mod p™. Let j; =j+ Aiy, and let m,; be such that j; = j; +p"m,.
Since b = Aa mod p™, we also have that j + Ai, = j, mod p™. Let j, = j+ Ai,, and let
m, be such thatj, = j, +p™m,. Note that j; —, = A(i; —i,). If we let r < nbe
such that i; — i, = p"uwhere (p,u) = 1, then as we showed above, this equation

reduces to
A\ (1 + 22
(kg + Aly) + 0y <§) o)~ Amy 9)

1
# (ky, + L)+ i, <§)< o )— Am, modp™ ",

Substituting in the definitions of k4, [, k,, [, (cf. equation (7); note that this equation holds
mod p™, and so mod p™ ") this becomes m(i;) # m(i,) mod p™". This, however,
follows immediately from the definition of r and the fact that r is good.

The following remark on the proof just given will be used in the following arguments.
Lemma (5.1.16)[190]. Suppose to all 0 < i,j < p™ we have assigned a pair of integers

(k, 1) = (k(i,j),L(i,j)) such that for any pair of distinct points of the form z; = (;—11 +

k(il’jl)’;_il + l(il’jl))’zz = (;_Zn + k(iz,jz),;_i + l(lz,]z)) we have p(Zl,Zz)Z e Z. FOI’
each of the two square roots A, of —1 mod p", for each 0 <j <p™", , and for each
0 <i<pm",define0< nj’l(i) < p™ to be the integer such that

nj’l(i) = (k(i,j) + Al(i,j)) — Am +E<1 ;_nll )i mod p™.

2

Here 0 < j < p™. is the integer such that j+ Ai = j mod p™, and also j+ Ai = j +
mp™. Then, 7t]~’1 is a good permutation of p™.

Proof. Fix one of the roots, say A, and a value of j. Let i; and i, be distinct integers with
0 < iy,i; < p™ Letj; and j, be as in the statement of the lemma for i; and i,
respectively. Let z; = (;—11 +k(i1,j1),;—1l +1(iy,j1)), and z, = (;—Zn+k(i2,j2 ,;—fl+
l(i,,j;)) . Note that if a = i; — i, and b = j; — j,, then we are in the case where
b = Aa mod p". Let j; =j+ Ai; and J, =]+ Ai,. Since p(x,y)? & Z, equation (3)
becomes:
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(iy — ip)? + (A0, — i) — p™(my — m,))”
+ ZPn[(i1 — i)k — kp) + (/1(1'1 — i) —p™(my — mz))(l1 - lz)]
£ 0 mod p*™.
Dividing through by p™, this is equivalent to:
1+ A2
(i, — i2)2< P ) — 2A(i; — ip)(my — myp)
+2[(l1 - l2)(k1 - kz) + /’l(ll - lz)(ll - lz)] Z 0 mod pn.
Suppose now i; — i, = p'u where r < n and (p,u) = 1. Dividing through by
2(i; — i) we have:
1/1+ 22
(il - l2) ~ < ) - /1(m1 - mz) + [(kl - kz) + /’l(ll - lz)] J_E O mOd pn_r.

n

Using the definitions of n~ (i,) and 7] 2(i,), this becomes TT; Ai,) # T[~'1(12) mod p™~
and we are done.

Suppose now the k, [ functions have been defined at all points of R,,» and satisfy (x),,x.
We now show how to extend these functions to R,n+1 satisfying (x),»+1. We again assume
p = 1 mod 4, as otherwise the extension is arbitrary. Again let A, u denote the square
roots of —1 mod p™. Let A', u’ denote the square roots of —1 mod p"+1 chosen so that
A=21 mod p™ and u=pu' mod p™. For each 0 <j<p" let n n~ be the good
permutations of length p™ from Lemma (5.1.16).

For each 0 <j < p™*! we define good permutations ¢ ,aj“ of length p™*1. If p
does not divide j, let these be arbitrary good permutations of length p™*1. It remains to
define the permutations ;5 ay; for 0 <j <p".

First, forany 0 <i < p", we define o (pl) ThIS is defined as in the statement of

Lemma (5.1.16), using p™**. To be specifc, Iet 0<o (pl) < p™*1 be such that

A . ! I 1 1+ /1,2 . +1
Opj (pi)= (k +2'D)—2Am' + <—) o pi mod p" (10)

2
where k,l are the values of the functions at the point ( n+i1 ,piil) pj = pj + A'(pi)

mod p™*?, and pj + A'(pi) = pj + p™tlm’. Since we also have j = j + Ai mod p™, we
also have
@)= (k+AD) -2 +<£) =) dp"
T[]~ l) = m 5 pn l moayp-,
where these are the same k,l values, and j+ Ai = j + p"m. Say A’ = A+ ep™ Then
pJ +Pn+1 = pj+A'(pi) = p(G+Ai + ep™) = pj +p"t'm+ep™tti.  Hence,
m' = m + ei. Thus we have

' 1\ [ 1+ A% + 2eAp™
a;j )=k + A) — A(m + ei) + <§) < o P )pi mod p"
1\ [1+ 2%\ .
=(k + A) —Am + <§) o i modp (11)

= 1 A (i) mod p™
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We say a map o from the integers i,0 < i < p™*!, which are divisible by p to the
integers mod p™*! is a partial good permutation if whenever 0 <i;,i, <p™*! are
distinct integers with i; —i, = p"u and (p,u) = 1, then o(i;) % o(i,) mod p™t1~",

Since 7t]~’1 is a good permutation of length p™, it follows now easily from the above

equation that "1311: Is a partial good permutation.

Lemma (5.1.17)[190]. If o is a partial good permutation on p™*1, then there is a good
permutation of length p™** extending o.

Proof. For i of the form i = iy, + pm where 0 < i, <p, extend ¢ by defining
a(i) = a(pm) + iyp™. This easily works.

Now extend each o "to a good permutation of length p™*1. Likewise we define the

good permutations J]ft'_ Using these good permutations, we may define k,l functions on
R,n+1 which satisfy (x),n+1. Furthermore, for points of the form (pfil ,piil
take the k, [ values already defined on R,», since by definition of the (partial) permutations

051][, a;‘j', these values will be a solution to the two equations for k + A'l and k + p'l (the
equation defining k + A'l, for example, is just equation (10) rearranged). Thus, we have
extended k, [ functions satisfying (+), to functions defined on all of R =+ and satisfying

(*),n+1. This completes the arguments for the special case d = p™.

), we may

We now give the general proof of Lemma (5.1.13), and note at the end how the proof
also shows Lemma (5.1.12). The following lemma, whose proof occupies the rest,
embodies what must be shown.

Lemma (5.1.18)[190]. Let d > 1, and suppose functions k, [ have been defined on R; and
satisfy ()4. Let p be a prime and d' = pd. Then these functions may be extended to R,
S0 as to satisfy (*),.

The proof will use the following definition and lemma, which generalize Definition
(5.1.14)and Lemma (5.1.17).

Definition (5.1.19)[190]. Let d > 1, and let d = p;*---p,™ be its prime decomposition.

We say a permutation m = (m(0),...,n(d — 1)) of the set (0,1,...,d—1) is a d-
goodpermutation if whenever 0 < i;,i, <d are distinct and i; —i, = pfl---pznv

where (v,d) = 1, then m(i;) # n(i,) mod p!@ 20 ..pM@n=b) = Here n(m) is
defined to be m if m > 0, and 0 otherwise.
Note that the goodness conditions equivalent to saying that if i; — i, = uv where u is

a product of powers of primes dividing d and (v,d) = 1, then n(i;) # mn(i,) mod %,

where in writing %we adopt the convention that if any prime divides u to a higher power

than d, then that prime is removed completely from both the numerator and denominator.
We also adopt this convention for the proof of the following lemma.
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Suppose d >1,p is a prime, and d' = pd. Suppose 0 < iy <p, and by the
distinguished class we mean those 0 < i < d'with i = ld mod p. If m(i) is defined on

the distinguished class and satisfies m(iy) # m(i,) mod < whenever iy # i, are in the

distinguished class (recall here our convention above) and 11 —i, = uv where (v,d") =
1, then we say = is partially d’-good.

The next lemma is a general extension lemma which allows us to partially extend d'-
good permutations to good permutations.
Lemma (5.1.20)[190]. Let d > 1, let p be a prime, and let d' = pd. Let 0<i; <p
represent a distinguished class mod p. Let m be defined on the distinguished class and be
partially d’-good. Let u be defined by d' = up™, where (u,p) = 1. Lets: d' > d' bea
function satisfying the following:

(i) If iy = i, mod p, then s(i;) = s(i,).

(ii) s(i) is divisible by u for all i.

(iii) For i in the distinguished class, s(i) =0

(iv) Forall i,i + s(i) = iy mod p.

Define o by o(i) = (i + s(i) mod d") + ﬂd mod d'. Then o extends rr and is d'-
good.
Proof. From (iii) it is clear that o extends 7. To show goodness, suppose 0 < i,i, <d'.
Leti; = i; + s(i;) modd' i, = i, + s(i;) mod d'. Suppose first that i; = i, mod
p. Then by (i), iy —i; = i; — i, mod d'. Also, from the definition of g, 0(i;) — a(i,) =
(i) — m(i3) mod d'. Since 7 is partially d'-good, the result follows.

Suppose now i; — i, is not divisible by p. Say, i; — i, = u,v where (v,d") =1 and
(uq,p) = 1. Consider first the case where i; = ij, with ij, i, as above. Then o(i;) —
o(i,) = Wd. Since s(i;) — s(i,) £ 0 mod p in this case, we have o(i;) #

a(i,) mod p™ (note: d = up™1). Since p™ divides Z— (using our conventions), the result
1
follows. Suppose finally that i; # i;. From (ii) it follows that u,|(i{ — i3). Also, p|(i1 —

‘i =i Since a(iy) = a(i;) mod d,
1
and likewise for i, it follows that (i) # o(i,) mod and hence are not equivalent

mod —.
Uq

We say that a prime is trivial if p = 2 or p = 3 mod 4. Otherwise, we say p is non-
trivial. The next lemma shows that we need only consider the non-trivial primes.
Lemma (5.1.21)[190]. If Lemma (5.1.18) holds for all d which are divisible by only non-
trivial primes, then the lemma holds for all d.
Proof. Let d = py*--py"q;* -+ q,™ , where the p; are non-trivial and the g; are trivial.
We assume the k, [ functions are defined on R, and satisfy (x),. Let d’ = pd and assume
first that p is non-trivial. Let P = p;" - p;" ,P' = pP, and Q . g™ . Let G be

the subgroup of Q/Z x Q/Z of elements of the form (— + Z = + Z) and likewise define

G' using d'. Let H be the subgroup of G consisting of elements of the form (; + Z,; +
Z), and likewise define H' using P’. Let K be the subgroup of elements of the form
(é + Z,é + 7). Note that the given k, [ functions may be viewed as selector functions on
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the group G, that is, functions on G with (k(r +Z,s + Z),l(r +Z,s+ 7)) € (r +
Z,s + 7). We extend these selector functions to the group G'. The cosets of H' in G’ are
exactly enumerated as H' + (r + Z,s +Z), where r + Z,s + Z € K/7Z. Consider such
acosetof H'inG',sayC' = H + (r + Z,s + 7). The k, [ functions are already defined
on the corresponding coset C = H + (r + Z,s + Z) of H. Since C, C’ are translations of
H, H', we may by assumption extend the k, [ functions from C to functions k', I' on C’ so
as to satisfy (x) on C' (that is, for any distinct cosets x = (ry + Z,s; +7Z),y =
(ry +Zs; + 1) € C',p(z1,2,)* € Z, where z; = (k'(x),lI'(x)).zz = (K'y).I'(y))).
Doing this for each coset of H' in G’ defines the k', I’ functions on G'.

To see that this works, let x =(ry + Z,s; +Z),y =(r, + Z,s, + 7Z) be distinct
elements of G'. Let z; = (k'(x),l'(x)),z, = (k'(¥),l'(y)), and we show that
p(zy,2z,)? & Z. We may assume that x,y are in distinct cosets of H'. Thus (a,b) = z; —
z, & H'. The result now follows from the fact that if a,b € Q and a® + b € Z, then a, b
(when reduced) have denominators divisible only by non-trivial primes.

The case where p is trivial is similar but easier. Briefly, view G' now as a union of
cosets of H, with H as above. For those cosets which are subsets of G, the k, [ functions
are already defined, and for the other cosets they are defined easily using the fact that these
cosets are translations of H (in this case we do not use our assumption that the result holds
for d divisible by only non-trivial primes). As above, the resulting k', I functions satisfy

(*)d’-

Returning to the proof of Lemma (5.1.18), by Lemma (5.1.21) be may assume that d
and d’ are divisible by only non-trivial primes. We make this standing assumption for the
remainder of the proof of Lemma (5.1.18).

Letd = pf‘1 ---pff” , Where all of the p; are non-trivial primes. We prove two lemmas
which characterize the existence of the functions k, I on R, satisfying (*), in terms of the
existence of a family of permutations satisfying certain properties.

Suppose k, 1 functions are given on R;. Since all of the p; are non-trivial primes, there

are exactly 2™ classes A mod d such that 22 = —1 mod d. We refer to such a 1 as a d-
root. For each d-root A, each0 < j <d,and each 0 < i < d, define
10 1/1+2%\
s @AD)=(k +A) —Am + 5 7 (i) modd, (12)

where (k, 1) are the values associated to (é,é), where 0 < j < d, and j, m are defined by
j =j+2Ai—md.
We introduce two conditions on the 7t]~’1 :
(d-goodness) For each 0 < j < d and each d-root 4, 7t]~’1 Is a d-good permutation.

(d-consistency) Suppose 0 < Jj;,j, <d and A,, 4, are both d-roots. Suppose p® is one
of the prime factors p;* ,...,p," and A; = A, mod p®. Then

A1 — J2)
A . AN 1 2
njll (i) — T[jzz(l) = -0 mod p® (13)
forany O < i < d such that

iy =) =-(1 —J2) modd (14)
(in equation (13),4 could be either A; or A,; note that this expression makes sense since

(1 — J2))-
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Note that the values of i satisfying equation (14) are precisely those 0 < i < d such
that if we define 0 < j;,j, <d (and m,m,) by
Ji=J1 Al —md,
J2 =J2 Al —myd,
then j; = js.
Lemma (5.1.22)[190]. Let d =p;*,...,p," where each p; is non-trivial. Assume the
k.l functions are defined on R, and satisfy (*),, and the 7t]~’1 are defined by equation (12).

Then the 7t]~’1 satisfy the d-goodness and d-consistency conditions.

Proof. Fix 0 < j < d and a d-root 4. We show that 7] Adefined by equation (12) is d-good.
LetO < i;,i, <d bedistinct. Let0 < j;,j, <d and m,, m, be defined by
J1=] + A —md,
j2 =] i, —myd, (15)
Let ki, 1, be the values associated to the point w, = (l1 ]1) and k,, L, the values

iy ]2

associated to w, = (
,p(z1,2,)% & 7 we have

) If zz = wy +(kyly) and z, = w, + (k,,1,), then since

(iy —i2)? + (ji —j2)* +2d[(iy —ix)(ky — k) + (J1 —j2)(l1 —12)]
=0 modd?
Substituting from equation (15) we have

(i; —i)?(1+ 2%) —2(i; —ix)(my —my)dA

+2d[(iy — i)y — k) + A(iy —i)(l4 — 1)1 £0 mod d?. (16)
Since d divides 1 + A2, we may divide through by d to get
1+ 22
(i, - i2)2 < d ) —2(i; —i)(m; —my)A
+2[(iy — i) (ke — k) + A0 — i)y —L)]£E0 modd. a7)
Sayi; —i, = pfi pﬁ" u, where (u,d) = 1. Dividing through by 2(i; — i,) we have
1+ 22

(i, —iy)? < >d ) —(my —myA+[(ky — k) +A(l; —1,)]

=0 modp"(al b)) . n(an—by)

" Pn )
where we recall 7(r) = r ifr > 0,and 7(r) = 0 for r < 0. Since p7(4722) ... pN(@n=bn)

divides d, we have

Af: 1+2%) . n(a;—by)  _ nlan—by)
i (i) = (ky +4l) —Amy + T mod p, " Pn
1+ 22
# (ky, +Al,) — Am, + < >d )lz mod pn(a1 bi) p,’Z(an bn) (18)
— 7T~ (12) mod pn(al b1) pg(an bn)

Thus, nj IS d -good.

To verify d-consistency, suppose A, and A, are both d-roots, and 4, = 1, mod p<,
where p® is one of the prime powers occurring ind. Let0 < j ,j, <d,andlet0< i <
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d be suchthat i(4; —4;) = -, —j,) mod d. If we let 0 < j;,j, <d and m;, m; be
defined by
ji=h tA i —myd,
J2 =] +Ai —myd,
then j; = j,, which we now denote by j. Say 1, = A, + ep®. Thus,
Ji =T, =—i(4y —23) +d(m; —my) =iep® +d(m; —my).

Let k, [ be the values associated to the point (é : é). From the definition of the nj'1 we have:

A g 1(1+27),
k+M4l =t () +Aymy 5\ )¢ mod p?¢,
1/1+ 23
k + 21,1 = nj'lz (i)+/12m2—§< 7 2)1’ mod p?¢

A 1(1+23), a
= m (l)+/11m2—§ 7 i mod p

(iep“ J1 —]z) 11+ (1 +ep?)?
d d 2 d
. 11+21\ . 4G —J2)
Eﬂj/zz(l)+/11m1—§< 7 1)1—%
Note that p® divides j; — J,, so the last two equations make sense. Thus, we have:
M1 —J2)
Aoy Aoy —  M1V1 2 a
njll (i) 7T]~22(l) = -0 mod p<.

)i mod p?¢

mod p®.

This verifies d-consistency.

We now establish a converse to Lemma (5.1.22). Suppose that for each d-root A and
each 0 < j < d,a d-good permutation 7t]~’1 Is given, and these permutations satisfy the d-
consistency condition. We show how to define the k, [l functions on R,; so as to satisfy
(x)4. Fix a point (é,é), where 0 < i,j < d, and define the values of k, | associated to
that point. Let p® be one of the prime powers occurring in d. For any d-root A, A, .= A
mod p“ is one of the two square roots of —1 mod p®. Fix for the moment such a 1 and
Apa. Define 0 < j < d and m by

j =j + i —md.
Consider the following mod p® equation:

1<1+/12

k + Ayal = nj’l () + Apam — 5\ 73 ) i modp% (19

We claim that the right-hand side of this equation depends only on A,. For, let 4; =
A, and suppose 4, is also a d-root with 4, = A1; mod p%. Say,A, = A; +ep?®. Let
j1,my be the values using A,, and j,, m, the values using A,. Since
j=j rAhi—md =], + 0 —myd,
we have i(4;, — 1,) = —(j; — j») mod d. Therefore, by consistency we have
e (i) — w2 (0) = _Al —F)

7 mod p<.

Thus
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2d
A =T i —7J A=A
Eﬂjlzz (i) — 1(]1d J2) + e <m2 +]1 J2 i 2)
1+ (1, +ep®)?
—< (22d p)>i mod p?¢ (20)

1+ (1, +ep®)?
(22d p)>i mod p?¢

1+ 2%
't (i) + Apamy —< 1>i

e a
ET[~ 2 (i) + Apamy, — ilpa%—<

= 2(l)+/1 m, — <1+/1%>i mod p?¢
=, am, >d p-.

This verifies the claim. Thus, for each of the two square roots A,a, —4,n of —1 mod p¢
we have unambiguous values, say v; and v,, for the right-hand sides of equation (19). For
each prime factor p%, and each of the two roots 4,,« mod p%, we solve the system

k +Apal = v; mod p?,
k—2, al = v, mod p%.
From the Chinese remainder theorem, we may choose (k, [) so that all of these systems for

the various p® are simultaneously satisfied. This completes the definition of the k, [
functions.

To verify (x)4, let 0 < iy,j1,iz,jo <d, and let w, = (‘1 e =), wy = (‘2 ’2)
z; = wy +(ky, 1), z, = w, + (ky, 1), where kq,1; are the values as deﬁned above for
wy, and similarly for k,, I,. We must show p(z,,z,)? & Z. Toward a contradiction,assume
p(zy,2,)? € Z, which becomes as usual

Gy —i)*+ (Jy —j)* +2d[(y —ix)(ky — k) + (i —Jj)(l —1p)]
=0 modd? (21)

Consider for the moment one of the prime powers p® of d such that if p¢ is the exact
power of p dividing i; — i,, then e < a (such a factor must clearly exist since |i; — i,| <
d). Write i; — i, = p°u where (u,p) = 1. Let f be the exact power of p dividing
j1 — j», and write j; — j, = p’v, where (v,p) = 1. Since < a , it follows easily from
equation (21) that e = f. Dividing through by p?¢ shows that u?> + v = 0 mod p%~°.
Thus, there is a square root 2 of —1 mod p®~¢ such that v = Au mod p®~¢. There is a
square root 1,a of —1 mod p® such that 1 = 2 mod p@~¢. Thus,y = Ayeu mod p® ¢ as
well. Hence j; — j, = A,a(iy — i) mod p?.

If p® is a prime power occurring in d for which e > a, equation (21) implies that
f = aas well (using the notation above). Thus, for any square root A,» of —1 mod p® the
equation j; — j, = Apa(iy — i) mod p holds trivially.

Now let A be a d-root such that for any prime power p® occurring in d,A = A,» mod
p®, with A,a as in the cases above. It follows that j; — j, = A(i; — i) mod d.

Let 0 < j < d and m, be defined by

j1 =] iy —mqd. (22)
Since j; —j, = A(i; —i,) mod d, it follows that there is an m, such that
j2 =] + i —m,d. (23)

From the definitions of k4, [; (in which we use the above values of j, 4; this is permissible
by d-consistency) we have
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ky + Al =7ft(iy) +Amy — <1 ;_d/12>i1 mod d, (24)

since this equation holds mod each prime power piai occurring in d. Likewise,

ky + Al = (i,) + Am, — <1 ;_d/12>i2 mod d. (25)

Substituting equat;ons (22), (23) into equation (21) and dividing through by 2d we obtain
(iy —iy)? <1 ;dll ) — Ay —i)(my —my) +[(iy —i)(ky —ky) +A(, — i)

~1,)]=0 modd. (26)

Dividing through by i; — i, gives
_ o (1+ 22
(iy —iy) —Amy —my) +[(ky — k) + A, —15)]

2d
=0 mod p?(al_bl) pg(a"_b"), (27)
wherei; — i, = pfi pﬁ"u and (u,d) = 1. Substituting equations (24) and (25) now
gives 7' (i) — 7' (i) = 0 mod pl(@=b)  pn@n=bn) This however, contradicts the

assumed d-goodness of the 7t]~’1 :
Summarizing, we have shown the following converse to Lemma (5.1.22).

Lemma (5.1.23)[190]. Let d = p;* - p,™ be a product of non-trivial primes. Assume
that for each 0 < j < d and each d-root 1 a d-good permutation 7t]~’1 is given, and these
pgrmutations satisfy the d-consistency condition. Then we may associate to each

é,é),o <i,j < d, integer values k,I such that for all d-roots A and all 0 < j <
d satisfyingj = j +Aimodd (sayj =j+ Ai —md), we have

. 1+ 2%\
k+/1l=7t]~(l)+/1m— TRk mod d.

Furthermore, these k, [ functions satisfy (x),.

To unify notation, let us now write d = p{* - pi™ and d’ = p{*™'pS2 .- pin(thus
we do not assume these primes are in increasing order, and we allow a; = 0). The case
a, = 0 differs in only trivial notational ways from the case a; = 1, so we assume below
all of the a; are positive. We are assuming the k, [ functions have been defined on R; and
satisfy (x),, and we must extend them to functions k', I’ on R satisfying (x) .

For each 0 < j < d, and each d-root A, let 7t]~’1 be as in Lemma (5.1.22) using the
given k, [ functions. Thus, each 7t]~’1 Is a d-good permutation, and this family satisfies the d-
consistency condition.

For each J with 0 < p,j < d’, each d’-root A’ (that is, A’ = —1 mod d’), and each i
with 0 < p,i < d’, define

, 1 /1+2°
A . J— ! !
Jplj(pll)—(k + A1) —Am +§< T

where (k,l) are the values already assigned to the pair (é,é) = (
defined by

) (pqi) mod d’' (28)

Pii paj :

TR ), and j,m are

pd = pJ + A (pii) —md'. (29)
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This makes sense since the right-hand side is divisible by p,. Thus, each "1311,7 is a partial

function in that it is only defined on the O < i < d’ which are divisible by p;. We will
momentarily extend these to fully d’-good permutations satisfying the d’-consistency
condition, but first we catalog the properties satisﬁed by these partial functions.

First note that if A = A" mod d, then o, ](pll) = 11} A(i) mod d. To see this, let
A=A+ ed Thus, j =7 + {11— md =j + Ai — (m—el)d Hence, if k,l are the
values associated to the pair (é , é), then

A . / ! 1 1+ /1,2 /
aplj(p11)=(k +/1l)—/1m+§ (pyi) modd

=(k +A) — Am +%<1 AI)(pll) mod d (30)
= (k +Al) — A(m — ei) — l€/1+2<(1+(/1d+ed) )>i mod d
1/1+ 2%
E(k+/1l)—/1(m—ei)+§< 7 )i mod d

= nj’l(i) mod d.
We introduce now the following “partial” goodness and consistency conditions for the
A,
P1J
(partial d'-goodness) If 0 < p,;j<d', 0< piiy,pyi, <d', and (pyi; —pqiy) =
pfi pzn v, where (v,d") = 1, then

2 1) 2 opy(prip)  mod p T L p (@m0,

(partial d'- conS|stency) If 0< pj1,pij, <d and A}, A, are d'-roots with 17 = A,
mod p® where p® is one of the prime factors pa1+1 n" of d’, then forany 0 < p,i <
d" with (p,1)(1; — 23) = — (pJ1 — p1j2) Mod d’ we have

A (P1j1 - Pljz)
dl

AI
Uplljl(Pl i) — U ji (P1 ) =— mod p“.

Lemma (5.1.24)[190]. The partial functions a satlsfy the d'-partial goodness and d’
partial consistency conditions.

Proof. The proof is essentially identical to that of Lemma (5.1.22). For example, to verify
partial d'-consistency, let j, mi, m; be defined by

P1]:1 + /1’1(2911:) - m’1d:
p1j2 + Ao (pri) — mapd'.

23]

Pyl P1]

Let (k, ) be the values associated to (-, —

—),and let 7, = A; + ep®. Then we have:
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2
, 1/1+ A3 _ .
(P1l) = (k +210) —Aim; + > pL (p1i) modp

p1 (1 —J2) + (A1 — 25) (1)
dl

)(P1i) mod p*

= (k + A1) — /12m2 — A,
1+ I a2
+_ (A2 — ep®)

2 d’

1/1+Ay
= (k+ 230 — 2;m, + > < )(Pﬂ)

A5(pj1 — piJ
. 2(291]1, P1J2) mod p®
A5(p1J1 — puJ2)

dl

= o’ (p,i) —
— P12 b1

mod p®.

We now define the permutations aﬂ'(i) for all 0 <j<d’, all d'-roots /1’ and all

0 < i <d’, and which extend the partial permutations so far defined (the o ] (p11)).
Since we do not need to refer to the d-roots anymore, we will henceforth use A to refer to
the d’ roots. Also, we refer to the i, j,j which are divisible by p; as “old”, and the other
i,j,Jas “new”. Thus, 07,1'(1-) Is currently defined for the old j and i, and we wish to extend
to the new values.

We introduce two families of functions, »* and sj’l, from d' to d'. These “shift”

J
functions will tell us how to extend certain partially defined permutations to fully good

permutations. These functions are defined for each d’ root A. The r functions are defined
for old j, and the s functions for new j. Actually, for the construction below it sullces
(though it is not necessary) to take rj’1 functions which are independent of j and A, that is,

we have a single function r : d' — d'. In general, the properties we desire of the r and s
functions are described in the following lemma.

Definition (5.1.25)[190]. Let A be a root mod d’, and let 0 < j<d'. By the A,j-
distinguished class we mean the equivalence class mod p; of 0 < i <d’ satisfying
i(A— 1) = —jmod p; , where A is a root not equivalent to 4 mod p; (so, 4 = — 1 mod

P1)-
Note that for a given j , there are really only two distinguished classes, one for each of

the two possible values of a root mod p;, and each of these classes is the negative of the
other, mod p;.

Lemma (5.1.26)[190]. There are functions r, s~ : d' - d'satisfying the foIIowmg

(i) Foreach0 < i< d' i+ r(i)is dIVISIb|e by p,. Further, if p,|i, then r(i) =

(ii) For eachroot A, new j,and 0 < i <d',i + s~’1 (i) is in the A,j—distinguished class.
Further, if i is in the 4, J-distinguished class, then s; (l) =

(iii) (i), s~ (i) only depend on the classes of jand i mod p1.

(iv) s7 20) depends only on the class of 2 mod p1

(v) T(l), sf (i) are divisible by u (recall = p,? - py™).
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For the remaining statements we fix some notation. Let 0 < j;,j, < d’, with j;,, new.
Let A,,4, be d’ roots with ;, = — 21, mod p;. Let 0 < i <d'. Suppose i(1; — 1,) =
—(J1 — J2) mod p;.

(vi) 572 (@) + (i + sﬂl(i)) = s72(i) + r(i +s2(i)) mod d".

(vii) S 1(L) =r( + S~ 2 (1)).

With the notation as ﬁxed in the statement of the lemma, if we let s; abbreviate
S~1 (i), r, = r@ + S~1 (i), s, = S~ 2(@),and r; = r(i +S~2(l)) then the last two
statements become

(vi)s; +r, = s, +17.

(vil)s; = ry.

Of course, we also have in this case that s, = .

Proof. We give an algorithm for constructing the r,sj’1 functions. First, let r(i) =

(—i mod p;)u, where u = py2 - po . Clearly (i) is satisfied.

Suppose that A is a root and j is new. Let 0 < i; < p, represent the 4, distinguished
class. Let s7 A(i) be the unique value in {r(O) ., 7(p; — 1)} such that i+sj’1(i) =
iy mod p,.

This completes the definition of the r and sj’1 functions. Property (ii) is clear, and (iii)
Is also since the A, j-distinguished class depends on the class of j mod p;. Likewise, this
class depends only the value of A mod p,, and so (iv) follows. (v) is immediate from the
definitions.

To see (vi), ix i, j;,J2, A1, A, with 4; = —A1, mod p; and i(4; — 4,) = —(j; — J,) mod
p,. Let sq, 75,5, be as above. Let i; =i +s; mod d', so i; is in the Ay, J;-
distinguished class. Likewise, leti, = i + s, mod d’, which is in the 4,, j, distinguished
class. Since i; is in the distinguished class we have i;(4; —4,) = —j; mod p,, and
likewise we have i, (1, — 4;) = —J,. Subtracting these equations gives

(i +i)(M4 =) =-(01 —J2) = i(4y — 1)  modp,.

Thus, i = i; + i, mod p,. Also, by definition of the r function we have r, = —i; mod
p,and r; = —i, mod p;. Thus, i + r, = i — i; = i, mod p;. From the definition of
s, it now follows that s, = r,. Similarly, , = —i, modp, andsoi+nr, = i—i, =i,

mod p; from which it foIIows that s; = ry. This verifies (vii) as well.
We now define the a . First assume that j ] is old. In this case, 0"1(1) is already defined

for the old i. We extend the partial function aj to all values of i using Lemma (5.1.20) and
the r function. Thus,

aj’l(i) = let (i +r() modd') + < i)> d modd'.

It is immediate from Lemma (5.1.20) that o7 is d’-good.
Suppose now j is new. Let id represent the congruence class mod p; of the
distinguished class. We first define o7 A(i) for i = iz mod p,, that is, in the distinguished

class. Fix such an i, and define o5 (i) by deﬁmng its congruence class mod p11+1 e PR
. Consider one of these prime powers p%, and suppose first that p # p,. Let 1, be a root
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with A, = A1 mod p® and 1, = —1 mod p,. Define j, by i(A —21,) = —(j —j,) mod d'.
Note that since i is in the distinguished class, p, |j,, that is, j, is old. Then define
. ~ A1)
(i) = 0 (i) — TZ
We check that this is well defined, that is, it does not depend on the choice of 4,. Suppose
As is another root with 2; = A2 mod p® and 1; = —4 mod p,, S0 1; = A, mod pf1+1 as
well.  Let j; be such that i(A—A3)=—-(G—j3) mod d'. Since
iA=2)=-(G—J2) and i(A—-23)=-(—J3) modd,
it follows that

mod p®.

i(A; —A3)=—-(, —J3) modd"
Let i’ = i+r(i) mod d'. Then we also have i'(A, —A3) = —(j, —j3) mod d’ since
(i —i"N(A, — A3) is divisible by d’ (recall r(7) is divisible by u). Since i',j,, j; are old, by
partial d’-consistency we therefore have
M2 —Js)

Ay Az ron —
o, ()= 0,7 () = ==
since 072 (i) — 0,* (i) = 07*(i') — ;. (i) mod d', it follows that
A(z —J3)
A . A N\ 2 3
g, -0t ()= ————

Consequently, 07/212 (i) — 20772 - 0}/:3 (i) — 205

mod p®.

mod p®.

mod p%, and we are done.

a’ a’
For i still in the A, j-distinguished class, we now define crj’1 (i) mod pf1+1 .Letm bea
fixed good permutation of length pfl . For i in the distinguished class let i' = l_(”:;—()dpl).
1

Ali=(7 d il1+1
Then define 07/1 ) = =n@@') - (] (] m;, P ))

This defines ij(i) for i in the distinguished class. We extend this to a full permutation
using the si* function. Thus,

a+1
mod p;* .

2 2 2 Sil(i)
o7 (i) = o7 (i + 57 (i) mod d’) + d modd'
u

This completes the definition of the crj’1 functions. It remains to verify that they satisfy
the goodness and consistency conditions.

Lemma (5.1.27)[190]. The crj’1 satisfy the d’-goodness condition.

Proof. We have already observed that this is the case for old j, so assume j is new. It is
enough to check that crj’1 restricted to the distinguished class is a partially good function.
To see this, suppose i,, i, are in the distinguished class (in particular, i; = i, mod p,).
Let iy — i, = pfi ...pﬁ" v where (v,d") = 1. Suppose first that b; <a,; + 1. Let

, , , , . . 1 . . i1 —1
i1, i, correspond to iy, i, as in the definition of ¢* mod py**" . So, ij — i} = % . By

1
goodness of 7, m(i}) # m(iy) mod pi~ "1 = plat=br anq 5o i (iy) # o} (iz)

mod p™**7P1 | and thus also inequivalent mod p‘@+1=01) ... pn(@n=bn),
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Assume next that b, = a; + 1. We must show that o Aiy) # cr~ (i,) mod =
pg(az b2) . p@n=bn) | et 2, be the root with 4, = — A mod pa1+1 but A, = A mod
pl “fori > 2. Letj, be defined by i;(1 — A,) = —( — J,) mod d'. Note then that we
also have i,(A — 4,) =—-(G — j,) mod d', as pf1+ divides i; —i,. By the well-
definedness noted above, we may use 4, and J, in the definitions of both o; A(i,) and
i (i,) modulo any of the powers pi " i = 2. Let p® denote one of these powers. From

the definition of the cr~’1 we have

U~ (11)—0 (1)‘@ mod p*
and
of (i) = ;7 (i) = % mod p*,
and thus
o (i) = of (i) = 02(i1) = 07" (iz) mod p*.
Since this is true for each of the prime powers p?, we also have
o (i) — 6'(ix) = 072(iy) — 07 (iz) mod u,

where = p,? - p,™ . Hence it is enough to show that crjjz(il) * crjjz(iz) mod w. Since
iy, = i, mod pq, r(iy) = r(i,). If i denotes i1 + r(i;) mod d’ and likewise for i; , then
ii —iy = i; —i, mod d’, and also o; 2(11) — a~ * (i) = o, A2 (i1) — o5, A2 (i3) mod d’ from
the definition of aj forthe old j. So, it is enough to show that ajzz(ll) * crjzz (i) mod w.

This, however, follows immediately from the partial goodness of 07/212 and the fact that
ii—iy =i, —i, modd"

We have now shown that crj’1 restricted to the distinguished class is partially good. The
goodness of the full function crj’1 now follows immediately from the extension Lemma
(5.1.20).

Lemma (5.1.28)[190]. The crj’1 functions satisfy the d’-consistency conditions.
Proof. Fix i,j;,j,, 41,4, with i(4; — A,) =—(; — j,) mod d'. Let p® be a prime

power with 4; = A, mod p%. We may assume that j,, j, are not both old, and without loss
of generality that j; is new. For if j;,j, are both old, then as in an argument above we

would have i'(1; — 4,) =— (@, — J2) mod d' and o (i) — 072 (') = o (i) -
07/212 (i) mod d’, where i = i+ r(i) mod d’. The result then follows.
Assume first that j, is old. In this case we must have i is new and 1, = — 4; mod p;,.

In particular, p # p,. From well-definedness, we may use j,, 4, in the definition of 0'7/11(1')
mod p®. However, it is then immediate that

11 - _ 12 ] —t
0-71 (l) 0-72 (l) -

where A denotes either A, or A,.

A1 —J2)

7 mod p*?,
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Assume henceforth that j,j, are both new. Consider first the case p = p;. Thus,
Ay = A, mod pf1+1 , and so j; = j, mod pf1+1 . Thus, 57/11 = 57'12 = s, say. Let

i" = i+ s(i) mod d'. Then i’ is in the A4, j;-distinguished class, which is the same as the
A,, Jo-distinguished class. From the definition of the permutation extension, it follows that

Moy Ay — Mgy Ao g ,
a5, (i) o5 (l)_cr]~1 (9 o5 (9 o mod d’.
Thus, it sullces to show that crj'}l (i')—crjjz(i') = —%mod pflﬂ . Let i =
Z(tmodpy) e
P1
A Ja —(j1 mod Pa1+1)
Ujil(i') =n(i*) — ( 7 - ) mod pflﬂ ,
where again A denotes either 1, or A,. Likewise
2o = modp*h))
A2 (i — ey 1 a,+1
o (") = n(i*) T mod p; ,
and so aj’}l i) - aj’zz(i’) = ——'1(’;7]2) mod p* ™t
Consider finally the case p # p,. First, we argue that we may assume A; # 1, mod
pf1+1 . For assume we can prove consistency in this case, and suppose 4, = A, mod
pi™t Let 3 = 4, = 1, mod p% but 13 =—A;, =—1, mod p,. Define j; by

i(A; —2A3) = —(; —J;3) mod d'. Since i(1; —A,) = —(j; —j,) mod d’, it also follows
that i(1, — A3) = —(j, —Jj3) mod d’. By assumption we can show that

A1 —J3)
Aoy A3y — V13 a
ajll (i) aj: (i) = —g mod p?,
and also
AG2 —J3)
A2 oy _ Azry — 2 3 a
ajzz (i) aj:(l) = - mod p?.
Subtracting, it follows that
A1 —J2)
Aoy Aoy — 1 2 a
ajll (i) ajzz (i) = —g mod p?.
So, we may assume 1; = — A, mod p;. Consider first the definition of aj’}l (i). Let

S; = sj’il(i). Leti; = i +s; modd'. Thus,
Mg — Aq s S1 p
ajll (i) = ajll (i) + (E) d mod d'.
Recall i; is in the A4, j;-distinguished class. In defining aj’}l (i) mod p“%, we may use the
root A, as A, = A; mod p% and 1, = — 4, mod pf1+1 . Let j; be defined by i;(1; —
A,) = —(j; —Jj3) mod d’. We then have
A1 — Js)
A . A . _ 1 3
o, (W) =g () = ———
where again A denotes either A, or A,. Note that j; is old. Let r, = r(i;). Leti’ = i; +
r, mod d’. Then again by definition we have

A . A .y — r2 !
aj32 (i) — aj32 (i) = (E) d modd'.
Combining these, we get

mod p?,
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+ G, — J
rz)d_ (1 —J3) mod p°.

Moy — Ay g S1
G ()= ol () + (T -
Now consider 07/212 (i). Lets, = ’2 (i) andi, = i+s, modd'. So,
A 2 )
ajzz (i) — a~ 2 (i,) = (u) d modd'.
In defining 07/212 (i,), we may use A, as the auxiliary root. Let j, be defined by i,(1, —
A1) = —(, —J,4) mod d'. Thus we have

A — 7
072 (ip) — 07 (i) = —% mod p®.

Letr, = r(i,). Leti" =i, + r; mod d.Sincei' =i+ s, + T2 mod d and i" =

i + s, + r, mod d’, from (vi) of Lemma (5.1.26) it follows that i" = i". We therefore

have

r
ajil (i,) — ajil (i) = (i) d modd'.

Combining, we get
Sy + 1

()= ol () - (d Ja) | ( )d mod p°.

u

Thus,
ot () =02 () = 02 (i) =t () + (d 2 M’ld,_”) mod p®.

We now claim that i' satisfies the hypothesm of the consistency condition for A,,j; and
A1, Ja, that is, we claim that i'(A, —2—1) = —(j; —J,) mod d'. If so, then by partial
consistency (note: i’, j5, j, are old) we have

12 «f _ 11 «f —
% ()=, ()=

AT — 7
(]3d, Ja) mod p®.

It then follows that
/1(]1 - j2)

Moy A2y = a
0-711 (l) 0-722 (l) - d’ mod p-

and we are done.
It remains to show the claim. Collecting the above definitions we have (all the
following equations are mod d’):
i —22) =—=(1 —J2),
(4 —22) = =1 —J3),
(A2 —A1) = =2 — Ja),
= [+ 5y,
I, = 1+s,,
= i+s,+r, = i+s, +1;.
Thus,
'(A =) =((+5; +1)(A; — A1) = (1 —J2) + (52 +1)(A2 — 4y).
On the other hand,
_(j3 _j4-) _[jl + il(/11 - /12) _j2 - i2(/12 - /11)]
—(1 —J2) — (i +i)(A —2y)
—(1 —J2) — Qi+s; +5)(4; —A;) modd’.

Thus,
i'"(Ay —A) + (3 —Ja)
=201 —j2) —(sz +1)(A; —2) + (2i +51 +5,)(A; — 4y)
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=—2i(4 —A) — (52 +1)(A; — ) + Qi +51 +5)(4 —1y)
=y —A,)(s; —7r) modd'
From (vii) of Lemma (5.1.26) we have s; = ry, and so i'(A, — ;) + (j3 — j,) = 0 mod
d’, which gives the claim.

We now summarize and finish the proof of Lemma (5.1.18). Let d = pfl . pa™ and
d' = p,d. Assume the k, [ functions are defined on R; and satisfy (x),;. From Lemma
(5.1.21), we may assume all of the p; are non-trivial (congruent to 1 mod 4). By Lemma
(5.1.22), we get d-good permutations nj’1 forall 0 < j<d and d-roots A which satisfy

the d-consistency condition. From Lemmas (5.1.27), (5.1.28), the family 07,1' for0 < j<

d',A" a d'-root, satisfies the d’-goodness and d’-consistency conditions. From Lemma
(5.1.23), we have functions k', I’ defined on R4 which satisfy (x), . Finally, without loss
of generality, we may assume the k', 1’ functions extend the k,l functions. This follows
from d’-consistency, since for points of the form (é,é) = (% ,pd%]), by definition of the
"1311,7 the given values of k, [ for this point satisfy the defining equations for k' + A'l’ mod
each prime power of d'. More specifically, for any d’ root A’, the definition of the ol

P’
equation (28), rewritten becomes

1 <1 + 27

(k + ') = g;;j(pli) +A'm — s\~ )(pli) mod d’, (31)

where j and m are such that 0< j<dandp,j = p;j+Api—md’. If p% is a
primepower occurring in d' and 4, = A" mod p¢, then

, : , 1/1+2°
(k +Anal) = 0] (p10) + Ayam ——< T

> ) (p1i) mod p?, (32)

and this is precisely equation (19) (with ¢'; replacing 7 , and A’ replacing 1), which is a
typical defining equation for k', I,

This completes the proof of Lemma (5.1.18), and of Lemma (5.1.13). We now indicate
the minor adjustments necessary to get Lemma (5.1.12). There are two dilJerences
between Lemma (5.1.13) and Lemma (5.1.12). First, in Lemma (5.1.12) there is a
distinguished point (r,s) € Q> n R for which there are prescribed values for the k, 1
functions. Secondly, in Lemma (5.1.12) we must arrange that all of the points z +
(k(2),1(2)) for z € Q? N R lie in the set P as in the statement of Lemma (5.1.12).

Fix i,j,d such that r = é, s = é. Let kg4, 1, be functions on R, satisfying (x)4. If we

add constant values k, 1, to the k4,1; functions respectively, the new functions kg, 1
also satisfy (x);. We choose kg, 1, so that k;,1; take the prescribed values at (r,s).
Inspecting equation (3), we see that if functions kj,l; satisfy k/(z) =k; mod d,
lj(z) = 1l; mod d for all z € Ry, then kj,1j also satisfy (x),. From the assumed
property of P, we may choose kg, l; so that z + (k;(z),l;(z)) e P forall z € R, .
Similarly, at each step when we extend the k, ! functions from R; to R , only the values
of the extended functions mod d’ matter in determining (*),. We may therefore adjust
these values mod d’ so that z + (k(2),1(z)) € P forall z € R,;. This completes the proof
of Lemma (5.1.12).

190



Lemma (5.1.29)[190]. Let c;,c,,c3 be three distinct points in the plane, and let
r1, 75,73 > 0 be real numbers. Let C; be the circle in the plane with center at c; and radius
r1, and likewise for C, and C5. Let a, b, c be three distinct points in the plane. Then, except
for the exceptional case described below, there are only finitely many triples of points
(p1,p2,p3) in the plane such that

() py € Ci,p; € C;,andp3 € Cs.

(ii) The triangle p,, p,, p3 IS isometric with the triangle abc (we allow the degenerate
case where the points a, b, ¢ are collinear).
The exceptional case is when r; = r, = r5 and the triangle abc is isometric with c¢; c,c3.

Proof: We prove Lemma (5.1.29), which completes the proof of Theorem (5.1.2). First,
we note that a weaker version of Lemma (5.1.29) due to Komjath (Lemma 1.1 of [199])
would sulce for our main theorem. Specifically,

Lemma (5.1.30)[190]. (Komjath). There is a bound s € w such that if c;,...,cg are
points in the plane with p(c;, ¢ )2 ¢ Z for distinct ¢, ¢;, and if z,...,z; are colinear

points with p(c;, z;)? € Q and p(z;, Zj)z € Z, then the z; are definable from {c,..., c};
in fact, for fixed cq,...,cs, distances p(c;,z;) and p(zi,zj) there are only finitely many
such{z,,..., zs}.

To see this sullces, consider (in the notation of Claim (5.1.10)) the set E,, of points z
having rational coordinates with respect to L,, such that p2(c,z) € Q for some ¢ € S,
where c is not rational respect to L,,. Using Lemma (5.1.30) it is easy to see that E,, Iis
semi-small with respect to L,. By this we mean that for any rational translation L of L,,
there is a finite set F of lines such that for any line L ¢ F,l nL N E, is finite. Then at
each stage in the construction of the points x,,, (following Claim (5.1.10)) we must have
X, avoid a certain semi-small set, which is no problem.

Lemma (5.1.29) is implicit in the analysis of Gibson-New stead [195], although it is not
explicitly stated there. New stead (private communication) pointed out the following
argument. Consider the coupler curve traced out by the point p;, where triangle Ap;p,ps
Is rigid and p,,p, are constrained to lie on circles C,, C, respectively. From [195], the
complexification of this curve is a degree 6 curve C in the complex projective plane. They
show it is the projection of a higher dimensional curve (the “residual curve”) also of
degree 6, whose singularities they analyze. Thus, the irreducible components of C
precisely correspond to those of R. The components of R are analyzed in [195]. We gives
two cases where R (and thus C) can have a component of degree two, namely:

()  cycop,pq 1S a parallelogram.

(i) p1 = cy0rp; = c1.

The second case forces c; = ¢, orc; = ¢4, which is forbidden as we require c4, c,, c3 t0
be distinct. The first case is our exceptional case of Lemma (5.1.29).

We now present two elementary proofs of Lemma (5.1.29). The first is a short algebraic

proof using some computer algebra, and the second is a purely geometric argument.

The following algebraic computations were performed using Maple.
We assume without loss of generality that C; is the circle centered at c; = (0,0) of
radius 1, C, is the circle centered at c, = (a, 0) of radius r, and C5 is the circle centered at
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(b, c) of radiuss. Let p; = (x,y) be a point on C;. If we let d denote the fixed distance
between p; and the point p, on C,, then we may coordinatize p, = (x,,y,) by
x, = x +dcos(8),

y2 = y +dsin(9), (33)
where 6 denotes the angle that p, p, makes with the horizontal, measured in the usual way.
Let a denote the fixed angle of the triangle p,p,p3, and let e = p(p;,p3). Thus, the
coordinates of p5 are of the form

x3 = x +ecos(a +60) =x +ucos(f) — vsin(h),

y3 =y +esin(a +60) =y +vcos(0) +usin(0), (34)
where we let u = e cos(a) and v = e sin(a). Since p,, p,, p3 lie on Cy, C,, C3, We have
x? +y2—-1=0,
(x; —a)? +y; —1r* =0, (35)
(x3 =b)*+(y3 —c)*—s® =0.
Subtracting the second and third equations from the first gives two linear equations for x,y
in terms of 6:

—1-2xdcos(@)+2xa+2dcos(0)a—a* —2ydsin(8)—d*+r? =0,
—1—-2cos(@ux+2cos(@)ub—v?>+2sin(@)vx—2sin(@)vb+2xb—b?
—u? =2sin(@)uy+2sin(@)uc—2cos(@)vy+2cos(@)vc+2yc
2 4g2 =
(36)
Solving these two equations for x, y gives:

1
X = _E(_d sin(0) — cos(@) vr? + cos(8) v d? + cos(0) va? — c —v? d sin(0)

+ sin(@) u + cos(0) v —sin(@) ur? +sin(@) ud? +sin(0) u a?
+ 52 d sin(8) — c? d sin(0) — u? d sin(8) — b? d sin(0) + 2 c d cos(0) a
—ca? —cd? +cr? —2vda+2cos(8)vcdsin(8)
—2sin(@)udcos(@)a +2vdasin?(0) —2sin?(@)vbd
+2sin?(@)ucd+2cos(8) ubdsin(8))/ (ca+ bdsin(9)
—sin(@)ua—cos(@)va—cdcos(@)+vd),

37)

1
y =3 (=d cos(0) + a—b + cos(0) u — sin(0) v — v d?sin(0) + v r2sin(0)

—va?sin(0) —cos(@) ur? +d?cos(@) u + cos(8) ua? —d cos(8) c?
—d cos(0) b? —d cos(0) u? + d cos(0) s> —d cos(8) v?
—2asin(@)uc—2ubdsin?(8) —2vcdsin?(8) +2sin?(0)uda
—2dcos(8) sin(B)vb—2acos(@)ub—-d?*b+av?® +au® +ac?
—as? —a’?b+r’b+ab? —2uda+2ubd+2vcd
+2d cos(0) sin(@)uc+2dcos(B)vasin(0) +2asin(@) vb
—2acos(@)vc +2dcos(@)ab)/(ca+bdsin(0) —sin() ua
—cos(@)va—cdcos(@)+vd).

(38)
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Substituting these expressions back into the equation x? +y? — 1 now gives a large
rational function of sin(6@),cos(6). Setting the numerator of this expression to 0 now
gives an equation of the form

Zoo + Zoy Sin(0) + z1y cos(0) + z14 cos(0)sin(0) + z,, c0s%(0) + z,, c0s?(8)sin(0)
+ 730 c0s3(8) =0,
(39)
where all of the z;; are polynomials in a, b, ¢, d,u,v,r, and s.

The exceptional case of Lemma (5.1.29) corresponds to a motion of p;, p,, p3 Where 6
remains constant. Assuming we are not in this case, there will be infinitely many values of
0 satisfying equation (39). Thus, the function of equation (39) is identically 0. Since the
trigonometric polynomials of equation (39) are linearly independent, this implies that all
of the z;; are 0.

In fact, just the last two equations z,; = 0,z3, = 0 sullce to finish the proof. These
two expressions are:

Zyy =8va?d?’b—-16va?ubd+16aucd?b—-8v?dca? +8u?dca?
—8b%?d?va—-16cu*dab—-8ua’cd? +8c?d?*va—-16duc?av
+16dvb*au+16vidbac,

(40)

Z30 = —32vauchd+16cavd?h+8dc*au® —8va*cd? — 8dv?a®b

+16ua’vcd+8dv?ab? —8dc?av? —8ua?d?b +8a’u?db
—8c%d*ua—8du%ab? +8d?b*ua.
Computing a list of reduced Grobner bases for this pair of equations vyields the
following (this means that the variety determined by the system z,; = z3, = Ois the
union of the subvarieties determined by the polynomials in each basis listed):

[d].[al.[cuda—advb—2cubd+2dvb? —ulac+2uavb+viac
+2cu’h —4vb*>u—2v?bc,aubd+cavd—-2ub?*d—2bvcd
—bau® —2vauc+bav®+2u®b? +4vuch—2v?b? c?
+ b?],[v,c,b],[d —2u,c,b],Juda —ved+2av?® +2uvcvda
+duc—2uva+2vicu® +v3b][d—uvb][uda—au?
+uvcvda—uva+vic,—uc—av+cd,c? +a?b]l[cuda
—cubd—-c*dv+2vlac+2uc’v—2v?bc,aubd—ub?*d
—bvcd+2bav? +2vucbhb—-2v?b*vda+duc—dvb—2uva
+2vub+2vicu? +v?,[uv.cla—bvc]l[d—uvc][d
—u,v],[aubd—ub?d—bau? +vucb+u?*b® vda —dvb
+vub—uva+vic,—uc+vb—av+cdb?* —2ab+c? + a?]
(41)
Recalling that u? + v2 = e?, inspecting the bases in this list shows that they imply, in
succession: d = 0,a =0b =c=0b=c=0b=c=0e =0e=0b>b-=
c =0,e =0e =0b=a andc = 0,e = 0,e = 0,b = aand ¢ = 0. We have
used here the fact that the equations d = w and v = O imply that p; = p,, and hence
e = 0. Since the centers cq,cy,c3 are distinct, all of these cases are forbidden. This
completes the algebraic proof of Lemma (5.1.29).
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Let C; be the circle with center ¢, and radius r, and C, the circle with center ¢, and radius
r,. Let py,p, be distinct points with p; € C; and p, € C,. Let f = p(p,,p,). By a
“motion” of (p;,p, ) we mean continuous functions p,(t),p,(t) for 0 < t < 1 such that
p1(0) = p;,p,(0) = p,, and for all ¢ from 0 to 1 we have p,(t) € C; ,p,(t) € C,, and
p(p1(t),p,(t)) = f. We say (q4,q9,) is in the motion of (p,,p,) If there is a motion
from (p1,p,) 10 (q1,9,) We will also say g, is in the motion of p; (and likewise for
P2, q>) if there is a motion from p,, p, to some pair (g4, q,) For a given motion, let 8,(t)
(and likewise for 8,(t)) be the continuous function such that 8,(0) € [0,2m), and 6,(t)
mod 2 is the angle 6 such that p,(t) = ¢; + (1, cos(8), 1, sin(0)).

We say a motion (p,(t),p,(t)) is analytic if the coordinate functions p,(t) =
(x1(t), y1 (1)), p2(t) = (x,(t), y,(t)) are analytic functions of t.

Figure (1)[190]:

Definition (5.1.31)[190]. We say (q;,q,) Is an extreme point in the motion of ( p;,p,)
for g, (and likewise for g,) if it is in the motion of ( p;,p,), and any motion of (q4, q,)
has, for sullciently small t,q; moving in at most one of the two possible tangential
directions on C; (we refer to this side as the allowable side of q,). We will also refer to g,
as being an extreme point in the motion of p;. We say an extreme point (g4, g,) is non-
trivial if there is a non-constant motion from (q4, q,).

If (q1,q,) 1s an extreme point in the motion of ( p,,p,) for g4, then q;q, must pass
through c,. In fact, the non-trivial extreme points can be characterized as those points
(91, 9,) such that g, q, passes through one of the centers c;, c,, but not the other.

Figure 1 illustrates a possible extreme configuration (it is also possible that g, lies on
the other side of ¢, from q,).

The following lemma is not required for the proof of Lemma (5.1.29), but it helps to
put the above definition in perspective.

Lemma (5.1.32)[190]. Suppose c, lies outside of the circle C;, or c; lies outside C,. Then

except for the exceptional case where r, = r, and p(p;,p2) = p(cy, ), there must be an
extreme point in the motion of ( py,p,).

194



Proof. Without loss of generality we may assume ¢; = (0,0), and ¢, = (c,0) is on the
x-axis and to the right of C; (¢ > ry). First assume r; > r,. We show there is an extreme
point in the motion of p;. If not, then there is a motion of p, to the point (—ry, 0), and also
a motion to the point (r;,0). Note that C, lies entirely to the right of the line x = 0. The
fact that p, can be moved to (—r4,0) shows that f > ¢ + r; — r,. The fact that p; can
be moved to (r,0), however, shows that f < ¢ + r, — r;, a contradiction. Assume next
that r; < r,, and we show there is an extreme point in the motion of p,. Suppose not, so
p, can be moved to both (¢ + r,,0) and (c —r,,0). From the first fact it follows that
f=zc+r,—r.If c —r, <0, then the second fact implies f < r, + r, — c.
Hence ¢ < ry,a contradiction. If c —r, > 0, the second fact implies f <c—1r, + 1.
Hence r, < ry, also a contradiction. Finally, if r, = r,, then the argument of the first
case also gives a contradiction unless f = c, that is,p(cq,¢2) = p(p1,p,). This is the
exceptional case of Lemma (5.1.29).

Definition (5.1.33)[190]. We say a point (gq,,q,) in the motion of ( p,,p,) is a double
point for g, iff or all g; in a one-sided neighbourhood of g, on C; (which we call an
allowable side; this may include both sides) except perhaps for q,itself, there are two
distinct points g5, g5 on C, such that p(q1,q93) = f,p(q1,92 ) = f and there is an analytic
motion from (q1,93)t0 (g1, q3).

If (q1,93) is a non-trivial extreme point for g1 in the motion of ( p{,p,), then it is a
double point for q,. For if g1 # g, is sulciently close to g, and on the allowable side of
q1, then there will be two distinct q3,q; such that p(q:,q93) = f, p(q1,93) = f, with
q,,q5 close to g, and lying on opposite sides of g,. If g,(t) is an analytic function
moving from g; to g3 along C,, then the corresponding motion of g, is also described by
an analytic function g, (t). [In general, if g, (t) is an analytic motion along C, and q,(t) is
a motion along C; such that p(q,(t),q,(t)) = f for all t, then q,(t) is necessarily
analytic provided g, (t)q,(t) does not pass through ¢, for all t.]

Note that in the definition of a double point, we do not require that in the analytic
motion from (q1,93) to (q1,q3) the function g,(t) stay in a small neighborhood of q;.
This is the case, however, if (q,, g;)is an extreme point in the motion of q,, as the above
argument shows.

We turn now to the proof of Lemma (5.1.29). Fix circles C, C, with centers at ¢4, ¢, and
radii ry,7,, and assume c; # c,. Fix p; € C;,p, € C,, and let f =p (p1,py) (We
assume f > 0). Fix a triangle abc with f = p(a, b). We henceforth assume we are not in
the exceptional case of Lemma (5.1.29), so either r; # r, or f # p(cq,c,). It sullces to
show that for any analytic motion p, (t), p,(t) of ( p,,p>), the corresponding motion p;(t)
does not lie entirely on a circle C;. Here p5(t) is the point such that the triangle
p1(&)p2(t)ps(t) is congruent to abc. To see this, suppose (pf, pY, p¥) were infinitely
many triples with p; € C; and pi'p}p% congruent to abc. Letp; € Cy,p, € Cp,p3 € C5
be such that (p,,p,,p3) is a limit of a subsequence of the (pi,p%,p%). Consider an
analytic motion p;(t) on C; nearby p;. If p;p, does not pass through c,, then the
corresponding motions p,(t), ps(t) are uniquely determined and also analytic. Since
p(p5(t), c3)? is analytic and has infinitely many zeros in a neighborhood of t = 0 (we
assume p,(0) = p;); this function must then be identically zero, and thus p;(t) lies
entirely on C5. Suppose p;p, passes through c,. Let p,(t) be an analytic motion on C;
nearby p; moving in a direction from p; such that there are infinitely many p{* in any
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interval [p,(0),p,(t)) for any t > 0. There at two analytic functions p,(t), p,(t) such that
p2(0) = p, and p,(t) € Cy,p (p1(t),p,(t)) = f for all t. Furthermore, all (q,,q,)
close enough to (p4,p,) with g, on the appropriate side of p; and such that g, € C;,q, €
C,, and p(q4,q,) = f must be of the form (p, (t),p,(t)) or (p.(t),pz(t)) for some t.
Without loss of generality, assume for infinitely many n that (pt, p?) = (p,(t,). p2(t,)).
Let p5(t) be the analytic function corresponding to p,(t), p,(t). Considering the function
p(p5(t), c3)? as before now shows that p5(t) lies entirely on Cs.

We will consider several cases in the proof of Lemma (5.1.29).

Case |. There is a double point (g4, ;) in the motion of ( p;, p,).

If z;, € C; issullciently close to g, and on an allowable side of g,, then there are two
points z,,z, which lie on C, and satisfy p(z;,2,) = p(z4,2;) = f. Furthermore, there is
an analytic motion from (q,,q,) to either (z;,z,) or (z;,z3). Note that z,,z, are
symmetrical with respect to the line from z; to c,. See Figure 2. Let z3,z; denote the
corresponding values of z5. Since z3, z5 both lie on C3, clearly the
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Figure (2)[190]:

line through z; which bisects the segment z5 z; passes through c5. In other words, if I(z;)
denotes the line through z; such that the angle between I(z;) and z;c, is @ = the angle
cab, then [(z;) must pass through c3. To express this analytically, we coordinatize the
circles by letting (without loss of generality) ¢; = (0,0),c, = (a,0), and r; = 1. Let
c3 = (c,d) and y = tan(a). Let B be the angle between the segment z;c, and the

horizontal line from z;. Let z; = (cos(8),sin(0)). Thus, (B) = sin®) _ Note that

a—cos(0)
a — B is the angle between the horizontal and the segment z, c5. If m(8) denotes the slope
of the line through z, and c5, then we have

tan(a) — s;m&
m(9) = tan(a — B) = a SiCnO('S;)H)
1+ tan(a) (m)

_ y(a—cos(8)) — sin(6)
~ (a - cos(6)) + ysin(6)

Thus, the equation of the line I(z,) is
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y(a — cos(@)) — sin(0)
(a — cos(@)) + ysin(8)|’

B y(a — cos(@)) — sin(0)
Y= (a — cos(@)) + ysin(0)
Since all of these lines pass through (c, d), it follows that

— 0)) — sin(6
e -

x + |sin(8) — (cos(@))

Is identically O for 8 in some interval. This simplifies to
(y +yac —ad) + (a — c —yd)sin(0) + (—ya — yc +d)cos(6) =0.

Since 1, sin(0), cos(0) are linearly independent, we have
cya—ad +y =0,
—c+a—yd =0, (42)
—cy +d—ya=0.

From the first and third equations it follows that either y = Oora = 1. If y = 0,
then from the second equation we have ¢ = a. Since « = 0 or « in this case, we must
therefore have d = 0. That is,c; = c,, a contradiction.

Assume now that a = 1. Solving the second and third equations for ¢ and d gives
c = 1_’/2 d ==L Thus, c; = (c,d) lies on the circle C; of radius 1.

1+y 1+y
Sincea = 1,c, also lieson C;. Recall f = p(p;,p,),and lete = p(p;,p3). Letr =,
be the radius of the second circle, and s = r; the radius of the third. Using the same
coordinatization and notation as above, except f now denotes the angle 2z,z;c, =
4737 C3, the law of cosines gives
(43)

r?2 = f2 +sin?(8) + (cos(8) — a)? — 2f+/sin2(0) + (cos(P) — a)? cos(pB),
s? =e? +sin(0 — d)? + cos(6 — ¢)?

— Ze\/(sin(e) —d)? + (cos(6 — c)?)cos(p).

This becomes
u + acos(6) B v +d sin(0) + ¢ cos(0)

, 44
f/sin2(8) + (cos(8) —a)? ey (sin(8) — d)? + (cos(8 — c)?) 4D

where2u = r2 —f2 —a? —1 and 2v =s?—e?—c%? —d? —1. Substituting
a = 1,cross-multiplying and squaring, this becomes
h, + h, cos(8) + hs cos?(0) + h, cos3(0) + hs sin(0) + hg sin(8)cos(8)
+ h, sin(8)cos?(0) =0,

where

hy = e?u? d? +e?u?c? —2f?v? —2f%d? + e?u?,

h, =2f%v? +2e?u+2e%uc? +2e?ud? +2f?d?> —4f?vc—2e*u?c,
hy =2f2d? —4e?uc —2f%c? +e?c?+d?e? +4f?vc+ e?,

h, = —2f2d2 —2¢2 ¢ + 2f2c?, (45)
hs = —4f%vd — 2e® u? d,

hg = —4e?ud —4f%dc+4f%vd,

h, = —2e2d +4f2dc.
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By linear independence, h; == h, = 0. From h, = 0 we have either d = 0, a
contradiction as then ¢; = c,, or e? = 2 f?¢. Substituting into the fourth equation we
have f2(c? +d?) = 0, hence f = 0, a contradiction.

This completes the proof of Lemma (5.1.29) in Case I.

Case Il. There is no point (g ,q,) in the motion of (p4,p,) such that q, q, passes
through both ¢, and c,.

We may assume by Case | that there is no double point, and hence no extreme point in
the motion of (p;,p,). Let pi,p; denote the reflections of p,, p, about the x-axis, where
we again assume ¢; = (0,0) and ¢, = (a,0). Let a denote the acute angle between p;p,
and the ray c,p,. See Figure 3.

Consider an analytic p,(t) where p,(t) moves from p, to p,. Note that in any motion
of (p1,p,) to a point (q,,9,), 919, cannot pass through either c; or c,. For if it passed
through exactly one of these, (q; ,g,) would be a (non-trivial) extreme point in the motion
of (p1,p,). Also, by the assumption of the case, g;q, cannot pass through both centers.
This implies that there is a uniquely determined analytic function p,(t) describing the
corresponding motion of p,. Let a(t) denote the angle between p,(t)p,(t) and c;p,(t)
(so a(0) = a). Thus, a(t) # 0 forall t € [0,1]. It follows that the terminal value of p,,
namely p, (1), is not the reflected point p;, but rather the point p;" which is the reflection
of p; about the line c;p;. Thus, p;" is obtained from p,; by two reflections, first about the
x-axis, and then about the

Figure (3)[190]:

line c;p;. Let p5(t) be the analytic function corresponding to p,(t),p,(t). Since the
composition of two reflections is orientation preserving, it follows that p;(1) is obtained
from p3(0) by the same two reflections. In particular, this shows that p;(0), ps(1) are
equidistant from c,. Let I = I(p,,p,) be the perpendicular bisector of p;(0)p3(1). Thus,
[ passes through c¢; = (0,0) as well as through c5.

Consider now another point (g, , g,) in the motion of (p,,p,), and let I(q, ,q,) be the
corresponding line. If 1(q;,q,) # l(py,p;), then c¢c3 = ¢4, a contradiction. Thus,
l(q1 ,q;) = Lis independent of (g, ,q,). This can be seen to be impossible. For example,
we may argue as follows. By taking a motion of (p,,p,), we may assume p, is on the x-
axis. It follows that [ is the line through the origin and p5. Since the composition of the
two reflections described above is just a rotation about the origin, it follows that if we
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move (p;,p,) toany (q;,q,), then the angle that ¢, q; makes with [ is the same as g,c;
makes with the x-axis. Thus, if we rotate triangle g;q,q5 about the origin by this angle,
the resulting triangle q;q;q3 will be such that g; is on the x-axis, q; is on C;, and g3 is on
L. This implies (for suTlciently small non-zero motions) that (q1, q3,q3) = (p1, P2, p3). In
other words, (g1, g5, q3) is obtained from (p,, p,, p3) by a rotation about the origin. This
shows that c, = ¢; = (0,0), a contradiction.

Case 11l. There is a point (g, ,q) in the motion of (p;,p,) such that q,q, passes
through both ¢, and c,.

Again, we may assume that in any analytic motion of (p;, p,), thereis no extreme point.
Thus, as we take an analytic motion of p, to the point g; = (1,0), p, moves in an analytic
manner to a point of intersection g, of C, with the x-axis. It sullces to show that no
analytic motion (g, (t), g, (t)) of (g, ,q,) can have the corresponding qs(t) lying entirely
on a circle C5. In fact, it clearly sullces to show that if (g, (t), g, (t)) is an analytic motion
in which g, (t) moves at a uniform rate (say, q;(t) = (cos(mt), sin(mt))) to the opposite
point (—1,0), then g5(t) cannot lie entirely on C5. We can also check that the only case
where there is not an obvious extreme point in the motion of (q,,q,) occurs when
g, = a—nranda—-—r, <O0.

The analytic motion (q4(t), q,(t)) can be extended to t < 0 so that ( g;(—t),g,(—t))
is the reflection of (q,(t),q,(t)) about the x-axis for 0 < t < 1. Thus, for 0 <t <
1,q,(t) moves counter-clockwise from (1,0) to (—1,0), and for ¢t from 0 to —1, q,(t)
moves clockwise from (1,0) to (—1,0). The two terminal positions of g,(t), namely,
q,(1) and g,(—1), lie on C, and are reflections of each other about the x-axis. By
continuity, for each g; near (—1,0),there are points q5,q; on C, with p(qi1,q3) =
p(q1,93) = f, and such that there is an analytic motion from (q1,q5) to (q1.q3) (note
that this motion involves moving gq; a full revolution around C;). This shows that
(q1(2),g,(1)) is a double point for g;(1), contrary to hypothesis.

An immediate consequence of the existence of a Steinhaus set is the existence of an
“n-point” Steinhaus set.

Theorem (5.1.34)[190]. For each integer n > 1 there is a set S,, € R? such that for every
isometric copy L of Z* we have |S, N L] = n.

Proof. Let S; = S be the Steinhaus set from Theorem (5.1.1). Let z,, ..., z, be n distinct
points in Z%. Let S, = UL,;S + z . Since S is a Steinhaus set, the sets S + z; are
pairwise disjoint. Each lattice L clearly meets each S + z; in exactly one point, and the
result follows.

There are many problems about Steinhaus sets that remain open. As we mentioned, a
Steinhaus set S < R? cannot be both bounded and measurable.
Section (5.2): Comments about the Steinhaus Tiling Problem

The Steinhaus tiling problem, first proposed by Steinhaus in 1957, is whether there
exists a set in the plane which, under any isometry, contains exactly one point of Z2.
Recently, Jackson and Mauldin [190] have constructed such a set. The question of whether
such a subset of R? can be measurable remains open although there are several partial
results [84], [44], [83]; in [83] it is shown that such a set cannot have the Baire property.
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Kolountzakis and Papadimitrakis [202] considered a variation of this problem: Does
there exist a measurable subset E of R? such that for almost every x € R® and almost
every isometry S, the set (SE + x) contains exactly one point of Z%? They showed the
answer to this question is no, for d = 3. This result had been shown earlier by
Kolountzakis and Wolff [83] by more complicated means which also yield some stronger
results. One purpose is to examine how far the argument given in [202] might extend. We
begin by repeating the key aspect of this argument, by generalizing from the lattice Z¢, for
d > 3, to the lattice BZ%, where B € GL(d,R).

We call the above condition the “almost sure” Steinhaus property on B or on the lattice
BZ?. Specifically, a set E is said to have the almost sure Steinhaus property on B or on the
lattice BZ%, where B is an invertible matrix, provided that under almost every isometry S
and almost every point x, |(SE + x) n (BZ3)| = 1. For the remainder we shall suppress
the words almost sure. Observe that this property may be described as follows:

z lgz(x — n) =1 ,a.e.x € R a.e.isometryS. (46)
neBZ4
Let A, = AZ* cR% , for A € GL(d,R), be the lattice induced by A, and let
Ay = A7TZ9 be its dual lattice. From elementary harmonic analysis, we have that if f is
an L! function, then

zf(x—ﬂ)= ., a.e.x, (47)
if and only if its Fourier transform satisfies:

f(A) =0, vi: 21 € A\ {0} (48)
By integrating both sides of (47) over the parallelepiped spanned by the columns of A,
we find that the constant C equals the integral of f times |det(A™1)].

It follows from this that a measurable set E' has the almost sure Steinhaus property on
A if and only if p(E) = |det(A4)|, where p(E) is the Lebesgue measure of E, and 1
vanishes on all points x, such that ||x|| = ||A]| for some A € A}, A # 0. In view of this,
given a matrix M, let D(M) = {||[Mx||?> | x € Z%} be the set of possible square distances
between points of the lattice MZ .

We are now in a position to give sufficient conditions under which there is no
measurable set with the almost sure Steinhaus property on B. To this end, suppose we can
find a matrix A such that D(A™7) € D(B~T), and such that det(4~T )/det(B~T) =
det(B)/det(A) is not an integer. Now suppose, by way of contradiction, that a
measurable set E has the Steinhaus property on B. Then 1 vanishes on all nonzero points
with norm square in D(B~T). So, 1z vanishes on all nonzero points with norm square in
D(A™T). This means 15 vanishes on A} \ {0}. This gives us

z 1:(x — 1) —M (49
r(x _|det(A)|’ ae.x.

It is easy to see that the left side must be an integer, and we have supposed that the
right side is not. We adopt a notation with which to state this result.
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If A and B are matrices such that D(4) < D(B), we say B norm dominates A, and
write B > AorA < B.If B> A and we have that det(A4)/det(B) is irrational, we say
B strongly norm dominates A, and write B >_ A. If B > A and we have det(A4)/det(B)

not an integer, we say B weakly norm dominates A, and write B >, A. Finally, if
B > Aand det(A)/det(B) € Z, we say B trivially norm dominates A, and write
B >, A. With this terminology in place, we have proven the following theorem.

Theorem (5.2.1)[201]: Let B € GL(d,R) and suppose there exists a matrix A €
GL(d,R), where B~T >, A. Then there is no measurable set with the almost sure
Steinhaus property on B.

We deal with the question of when a matrix A exists such that B >,, A. To this
end, it is useful to note the following two-part strategy: if we can find a matrix C such that
C >, B and B >¢ A, then C >; A and, of course, C >, A . Kouluntzakis and

Papadimitrakis [202] have resolved some issues about this strategy for the case B = 1.
They show that in case d = 2, there is no such A so that this strategy cannot be applied.
Incase d > 2, there is such an A and so the strategy applies. We will not complete their
proof here, but mention that, for d = 3, their proof concludes by showing (under
different terminology) that

. .

We prove that if ATA has rational entries, then there is a diagonal matrix B such that
A >, B and BT B has rational entires. Thus, we can carry out the first part of the strategy.
We demonstrate the limitation of the general method by exhibiting a class of diagonal
matrices such that if A> B, then A >, B. We provide an example of a matrix H for
which the strategy works. Our proof uses some special quadratic forms and the method of
descent.

Let us refer to an invertible matrix A as norm rational if ATA has only rational entries.
This is equivalent to saying that the inner product of any two columns of A is rational and

. . 2 . .
also equivalent to saying that ||Ax]| is rational for every x € Z4.

Theorem (5.2.2)[201]: Let A € GL(d,R) be norm rational. Then there is a diagonal
norm rational matrix B, also in GL(d,R) , such that A >; B.

Note that this theorem gives a halfway point toward showing that Theorem (5.2.1)
applies to all norm rational matrices.

We prove the theorem in the case of d = 3, indicating how to generalize where
appropriate.

Proof . First, if R is any linear isometry, then B > A if and only if RB > A, since
D(B) = D(RB). Also, A is norm rational if and only if RA is norm rational. Therefore,
we may assume A is lower triangular and norm rational. Let us say
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a1
A= |01 azo»
ass

asq1 Az

We show that general a; ; may be written as Qi,j\/TTi’ for some q;; € Q,n; € Z. Todo

this, we note that any number x with x? € Q may be written uniquely as q vn, where q is
rational and n is a square free integer. This implies that if x = g, vVn # O and xy € Q,
theny = g, +/n, for some rational g,.

We denote the ith column of A as 4;. We have (43,43) = a5; € Q, SO we may write
azs = (33 \/11_3 Next, we have (A;,A43) = azjaz3 € Q and (4,,4;) = az,a3; €
Q, so by the second above property, we may also write az; = q31+/N3,a32 =
qs.2 \/11_3 This is valid since det(A) # 0 implies az 3 # 0. Note that this gives a3 ;a3 ; €
Q forall i, ;.

We now proceed to row 2. We have (4,,4,) = a5, + a5, € Q. Since we have
a5, € Q, this gives a5, € Q, so we may write a,, = g, n,. We have (4;,4,) =
a0, + azias, € Q, which gives a,qa,, € Q. Again, we have a,, # 0, so we
may write a; ;1 = g1 Vn,.

Finally, we have (4;,4;) = af,; + a%,+ af; € Q, which gives af, € Q, so we
may write a, 4 in the desired form.

The method for general dimension d is similar to the above. We proceed row by row
upwards, beginning with the diagonal element, which gives all other elements in the row.

We let v; be a common denominator of the entries q; ; in row i, letting us write
Ui i . .
q;; =—=, where u; ; and v;are integers. Now we examine

Vi

D(4) = {llAx||* : x € Z°}

= {(a1,1x)2 + (a2,1x + az,z}’)z + (a3,1x + azp;y + a3,3z)2: X € Zg}

n n n .
= {_; (al,lx)z +_§ (az1x + a2,2y)2 +_2 (azax + azpy + a3,3z)2:x € Z°}.
(%1 %) 12

If x;,y,, and z; are nonzero integers, we can consider the subset of the above when
x1|x, and so on, and consider x = x;X,y = y,¥z = z;Z. The above continues as:

(50)
ny N2 N “ ~\2
=2 {_2 (a1,1x1x) +— (a2,1x1x + az,z}’1}’)
Uy U,
n3 A A A 2_ /_\) 3
+? (a3,1x1x + az,y,y + a3,3zlz) X EZ° ;.
3
(51)
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2 2 2 .2 2
_ cmaiixy ., +n2a2,23’1 az1X1 + o
- { 2 (X) X y

Uy ) az2Y1
n3a2 z3 as1X1 as.y1 ?
3,321 , ~ , ~ A 2
+—= < X+ + z) 1 X € L3}
U3 a3 371 Qa3 3Z1

a,1X az1X
Suppose nonzero integers x;,y,,and z; have been chosen such that a21y1 ﬁ and
2,271 3,341

2227 are integers. This is clearly possible; one method would be to let z, be one, then

az3Z;

choose y; such that the third is an integer, and then choose x; so that the first two are
integers. (In the higher dimensional case, we have d(dz_l) fractions which we wish to force

to be integers. In that fraction which involves the ith and jth variable, with i < j, we will
have the ith variable on top, so that we may assign the parameters in decreasing order as
in the case of d = 3.) This allows a transformation which gives us

2

n a2 x2 n-a n a Z
={ 1HAXL vz 112 22Y1 (9)? + u (2)?: % 623} D(B) (52)
vy vy v3

where B is defined by
/_a1,1x1\/n_1 \

az2y1VNn;

U

\_ a3,3Z1\/n_3_/

U3

We have shown A > B, and it is easy to check that det(B)/det(A) is x;y,z,, and so is an
integer, givingus A >; B.

Here, we should clear up some possible confusion over the application of Theorem
(5.2.1). Theorem (5.2.1) will give us that there is no measurable set with the Steinhaus
property over B, if we have that BT weakly norm dominates another matrix. For this
reason, it is useful to note that B is a norm rational matrix if and only if B~T is a norm
rational matrix, since BT B is rational if and only if its inverse, B"1B~T = (B"T)TBTis
rational. This means that Theorem (5.2.2) is useful towards showing a matrix B yields no
set having the Steinhaus property on B only if B is norm rational. This will be examined
further, where we will use this theorem to show that there is no Steinhaus set on the
honeycomb lattice in R3.

Here, we show that the result or technigue given cannot always be used to show that
there is no measurable set with the Steinhaus property over any A4 in R3. For the lattices
described in the next theorem we do not know whether there can be a measurable almost
sure Steinhaus set.
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Theorem (5.2.3)[201]: There exists a matrix B € GL(d, R) with the property that for any
matrix A if A < B,then A <; B.

Proof . Let the diagonal matrix B have the form

Ja

al

where a4,..., a4 are independent over Q. Suppose also that A < B. We express A as a

quadratic form:
d d
14ZI? = f@@) = Z ax? + ) >y (53)

=1 i=1j=i+1

From norm domination, we know that for any ¥ € Z4, f(X) = a X2 +...+ay%3 for
some # € Z4. It is clear that each of the a; j are in the rational span of {a, ..., a4}. Thus,

we may write a; ; = a;j a1 +...+a;jqaq, Where each of the a; ; are rational. Thus,
we may write

d i d d
fx) = a1(z a;i1%f "'z z ai,j,lxixj)+---+ad(z Qi ; axf
: : . L

1=1 i=1 ]=l+1
d d
i=1j=i+1

We denote the components of this representation as
f@) = fi(x) +...+ agfa(X).

Since the f; are rational valued, since f(¥) = ;%% +...+ a,%% for some £ € Z¢,
and since a4 ,..., a4 are independent over Q, then the f; are always integer square valued.
Here we state a lemma to be proven later.

Lemma (5.2.4)[201]: Any quadratic form which is always integer square valued is the
square of an integer linear form.

This means that the f; are squares of linear forms. We may then write

f& = ai(xfag 110 +... x5/ a 1xd) +.oF “d("'\/ A1a% F .. E ad:d'dxd)z
[/ aa,11 EJa1a524 */1aqq1 |
B 1/61261112 \/azazzz e 0042

+ [aga
*/aqa11q4 FAq224 d¥d.dd
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We can see that the ,/a;;; are integers, which gives us that the determinant of the

above matrix is \/a; ...a, times the determinant of an integer matrix. Since this must also
be the determinant of A, we have det(A)/det(B) is an integer.

We now prove Lemma (5.2.4).

Proof . We prove by induction on d, the number of variables in our quadratic form,
beginning with our base case of d = 2.

Suppose f(x,y) = ax? + bxy + cy?is integer square valued on Z2. Our goal is to
show that this is a linear form or, equivalently, to show that b? — 4ac = A=
0. Assume, by way of contradiction that A # 0. Considering f(1,0) gives that a is a
square. We assume a # 0, as the alternative case is trivial. We have that f(—b,2a) =
a(—A) is a square, and since a is a nonzero square, we have —A is a square. We also have
that f(2aA — b,2a) = —Aa(4a®(—A) + 1) is a square. Since —Aais a nonzero
square, we then have (4a?(—A) + 1) is a square. On the other hand, we have that
4a?(—A) is a square. This gives us two squares whose difference is one, which implies
that 4a®(—A) = 0, which yields a contradiction.

We now assume that any quadratic form in n — 1 variables which is integer square
valued on Z™"1 is the square of a linear form, and show the case of n. Assume that f is
integer square valued, where f is given by:

n-—1

d
flxg,. . xy) = z agxi + ) n z aj jXiXj .

i=1 i=1 j=i+1

By considering the case of all but two of the x; are equal to zero and applying the case
ofd = 2, we find that each of the a; ; = *2./ a;;a; ; . We now write f as

-1 n-—2

fQeqxn) = ( axf + ) n a; jx;jx;) + z Aj XX
1 i=1

S
QU
=

n

I
=
+

i i=1 j=i

The parenthetical of the above is f(xi,...,x, — 1,0),which is a binary form on
n — 1 variables, and which also is integer square valued. We apply our induction
hypothesis to write:

n-1 2

flxg,...oxp) = <z bx) + 2,/ @ nXn( z cix;) + annxn’

l_

where each of the b; = *+,/a;; and each of the ¢; = *./a;;.

Now, if for all i we have b; = c;, or if for all i we have b; = —c;, then the above is
the square of a linear form, and we are done. Suppose then, by way of contradiction, that
bj = ¢j # 0, forsome j, and b, = —c, # O, for some k # j. Now consider the case of

Xj = byt,x, = bjt,and x; = O forall i not equal to j or k. The above then reduces to
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— 2 1,2,2 2

which is a binary quadratic form on t and x,, and, again, remains square valued. The base
case gives us that A = —16bj2 bian, = 0. We have assumed bj # 0 # by, so we must

have a,,, = 0, which gives us that our form on n variables is actually a formonn — 1
variables. Our induction hypothesis then completes the proof.

This result and the result of the previous seem to indicate that the ability of a matrix A
to weakly norm dominate any matrix is related to the dimension of the entries of AT 4 in
the rationals. A reasonable conjecture might be that, for d = 3, A weakly norm dominates
another matrix if and only if A is a constant times a norm rational matrix. This conjecture
cannot hold in general dimension, however, by a counterexample in dimension 6.
(Consider a diagonal matrix which has its diagonal comprised of two diagonal matrices
from dimension 3 which do weakly norm dominate, one of which is rational, the other
multiplied by a transcendental.)

Here we apply Theorem (5.2.1) to show that there is no measurable set with the
Steinhaus property over the 3-dimensional standard tetrahedral lattice. The vectors which
generate this honeycomb lattice may be visualized by considering three edges of a regular
tetrahedron which have a vertex in common. That is, they are three unit vectors, each pair
of which has an angle of sixty degrees.

Theorem (5.2.5)[201]: There is no measurable set with the Steinhaus property over the
honeycomb lattice H, where H is given by:

_1 1 1_
2 2 11 )
p=| Y3 V8| |33 33
2 6| 1 1 1
V6 =58 —5¥6 38
3_

Proof .

From Theorem (5.2.1), our goal is to find a matrix A4, such that A <,, H~T . To do this,
we actually find two matrices A and B, such that A <, B and B <, H~T. We begin by
going through the steps of the proof of Theorem (5.2.2) to find B.

1 1
DHT) = {x2+§ (—x + 2y)? +3 (—x — y + 32)%: % € 73}

4vy?2 2 3 2
2{xlz(j?)2_|_3’1< x19?+}7) +Zl< x1A_}’1}A]+ZA)

— | —= — b
3 2y, 2 3z, 374
: £ €73},
if x,,v,, and z, are integers. We must choose x;,y;, and z; such that —x—yl ,—;Tl , and
1 1

:71 are integers. The simplest such choice is (x4,y; ,2z,) = (6,3,1). This gives us
1
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3 ]
= {36(9?)2 +12(-2 +9) +5 (28 = 9 + D7 F € 23}

6
3
=D 2V3 1 == {24x? + 8y? + z?: X € Z3}.
2
~ 6
2
We now have shown:
1
V3 2y3 C s
HT =| 3 3 >, V3 L = B.
1 1 1 — 6
|-5V8 —<VB 5B >

Now, we need a matrix A, such that B >; A. From this we will have that H™" >_ A
and the proof will be complete. Let us define A as follows:

[2\/§

2 = @]

2
I 6l
We have that det(A)/det(B) = V17/2 is irrational. We need to show that D(4) <
D(B), or that

51 3
{12x2 +7y2 + 36z2%: ¥ € Z3} € {36x?% + 12y2 +§z2 : X € 73}

Multiply both sides by§ :
{8x? + 17y% + 24z%: X € Z3} € {24x* + 8y? + z%?: X € Z3}.

It has been shown (see [203]) that those positive integers which cannot be expressed as
24x?% + 8y? + z2are exactly those integers of the form 4n + 2, 4n + 3, or 4%(8n +
5). By way of contradiction, let us suppose that 8x? + 17y% + 24z% = 4n + 2,4n +
3, or 4%(8n+ 5). We can immediately rule out 4n + 2 and 4n + 3 as we have
8x? + 17y% + 24z? = y? (mod 4), and the quadratic residues mod 4 are 0 and 1.

We consider the remaining case 8x? + 17y% + 24z% = 4%(8n + 5). We consider
the values of k.

k = 0 : Taking the equation mod 8 gives y? = 5 (mod 8), which is a contradiction,
as the only squares mod 8 are 0, 1, and 4.

k = 1 : We have 8x? + 17y% + 24z? = 4(8n + 5). Since the left side is then
even, y must be even. Write y = 2y,. Then, dividing by 4 gives 2x> +.y? + 6z? =
5 (mod 8). The only squares mod 8 are 0, 1, and 4, and checking all cases shows that this

IS a contradiction.
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k > 2:We have 8x2 + 17y? + 24z? = 4%(8n + 5). We must have y divisible
by 4 for the left side to be divisible by 8, and we write y = 4y,. This gives x? +
34y? + 3z2 = 4%2(16n + 10). We see that x and z are both odd, or both even. If
they are both even, then we write x = 2x;,z = 2z,, and y = 2y, and arrive at
8x2 + 17y% + 24z2 = 4*1(8n + 5), from which we may repeat the argument and
descend until k < 2 or x, z are odd.

Assume then that x and z are odd. We write x = 2x; + 1,z = 2z, + 1. This gives
us 2x;(x; +1) + 17y% + 6z,(z; + 1) +2 = 4,_,(8n +5). If k > 2, then y, is even,
which gives a contradiction, as 4 divides the right side, but not the left. So, assume k = 2.
We then have 2x;(x; +1) +y?+ 6z,(z1+1) = 3 (mod 8). For the left side to be
odd, we must have y, odd, which gives y = 1, giving 2x,(x; + 1)+ 6z,(z; + 1) =
2 (mod 8). This vyields x;(x; + 1) + 3z,(z; + 1) = 1(mod 4), which gives a
contradiction, as the left side is even and the right is odd.

We now have A <, B and B <, H™T ,which gives A <,, HT, which, by Theorem
(5.2.1), completes the proof.

It is important to note that, in the above proof, we relied heavily on having a simple
expression for those integers not of the form x2 + 8y? +24z%. In [203], a ternary
quadratic form of the form ax? + by? + cz? is called regular if the set of positive
integers not represented by it can be written as a union of arithmetic sequences. It is stated
that there are exactly 102 regular forms when gcd(a,b,c) = 1, which indicates that
proofs like this one will not apply to general B.

One of the simplest irregular forms is x> + y? + 7z2 There is empirical evidence to
suggest that

{x* + 8y% + 28z% : ¥ € Z3} c {x? + y* + 7z%: X € Z3}.

Specifically, the subset relation holds when the images are restricted to the first 2000
integers. This would give an example of strong norm domination of an irregular form by
an irregular form, but no means of proving that the subset holds in general is obvious to
us.

Section (5.3): Smooth Partitions of Unity

Smooth partitions of unity are an important tool in the theory of smooth
approximations (see [208]), smooth extensions, theory of manifolds, and other areas.
Clearly a necessary condition for a Banach space to admit smooth partitions of unity is the
existence of a smooth bump function. The sufficiency of this condition for a general
Banach space is still an open problem. A positive answer was established in many cases,
the most important of which are the following (i.e. if one of the conditions below is
fulfilled, then the existence of a smooth bump function on X implies that X admits smooth
partitions of unity):

(i) X has an SPRI (separable “projectional resolution of the identity”), [110].
(ii) X belongs to a P-class, [97].
(i) X = C(K) for K compact, [207].
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(iv) X has a subspace Y isomorphic to cy(I") such that X/Y admits smooth partitions
of unity, [205].
(v)  X*is weakly compactly generated (WCG), [211].

For the definition and basic properties of an SPRI see [127] or [209]; for the definition of a
P-class.

The original proofs of the results (i), (iv), and (v) use Torunczyk’s characterisation of
the existence of smooth partitions of unity by non-linear homeomorphic embedding into
co(I") with smooth component functions (see e.g. [208]). The other two results use the
following theorem of Richard Haydon:

Theorem (5.3.1)[204]: ([97], see also [208]). Let X be a normed linear space that admits a
C.-smooth bump function, k € N U {oo}. Let " be asetand @: X — c,(I") a continuous
mapping such that for every y € I' the function ey o @ is C* -smooth. For each finite

F c I'let P € C*(X; X) be such that the space span Pr (X) admits locally finite C*-
partitions of unity. Assume that for each x € X and each ¢ > 0 there exists § > 0 such
that ||[x — Pr (x)|]| < eifwesetF = {y € I'; |2(x)(y)| = 6} Then X admits locally
finite and o-uniformly discrete C*-partitions of unity.

While pondering the applicability of Haydon’s theorem we were led to another
characterisation of the existence of smooth partitions of unity. This characterisation allows
very easy recovery of all the results above except for the C(K) case. In fact, an immediate
consequence is a (at least formal) generalisation of (i), (ii), and (v) given in Corollary
(5.3.6), which puts all these results under a common roof (this is either obvious or shown
in Theorem (5.3.10) and Corollary (5.3.9)). There is also another tiny advantage for the
insight into the problem when using Theorem (5.3.1): All the original proofs that use
Torunczyk’s characterisation (of course they all come from the same workshop) at some
point invoke the completeness of the underlying space, but as we shall see here, the
completeness is completely irrelevant to the problem.

Before we start, we fix some notation. By U(x,r), resp. B(x,r) we denote the open,
resp. closed ball centred at x with radius r. For a function f: X — R we denote
supp, f = f Y(R\{0}). For other unfamiliar notation or terminology see [208] or
[206].

Now, the reason that Haydon’s theorem can be successfully used to prove the
wonderful result (iii) is that there is a rich supply of projections of norm one on an
Asplund C(K) space (formed by restrictions to clopen subsets of K). So what do we have
on an arbitrary Banach space? The projections onto one-dimensional subspaces, of course.
This observation leads to the following characterisation:

We make a short technical intermission. Applications of Theorem (5.3.1) involve
constructions of continuous mappings into c,(I"). To avoid repeating the same argument in
several of these constructions we will make use of the following simple lemma.

Lemma (5.3.2)[204]: Let X be a topological space, I" a set, and @: X — RN*I'. Suppose
that all the component functions x +— @(x)(n,y) are continuous, lim,,_,, ®(x)(n,y) =
0 locally uniformly in x € X and uniformly iny € I', and for each fixed n € N,x € X,
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and € > 0 there are a neighbourhood U of x and a finite F < I' such that
|[2(y)(n,¥)| < € whenevery € Uandy € '\ F. Then @ is a continuous mapping into
co(N x TI).

Proof. Fix x € Xand € > 0. There are n, € N and a neighbourhood U of x such that
lo(y)(n,y)| <§whenever n > nyy € U,andy € I'. Foreachn € N,n < n, there

are a neighbourhood ¥V, ¢ Uof x and a finite E, c I'such that |®(y)(n,y)| <§
whenever y € 1, and y € I'\E;,. Put F = Up<p {n} < E, and V. = Np<n, V- Then F
is finite and |[@(y)(n,y)| < g whenever y € V and (n,y) € N x '\ F. This shows that
@ maps into co(N x I'). The continuity of @ follows from the fact that |®(y)(n,y) —

®@(x)(n,¥)| < ewhenevery € Vand (n,y) € N x '\ F, and from the continuity of
the functions y — @(y)(n,y),(n,y) € F.

Theorem (5.3.3)[204]: Let X be a normed linear space and k € N U {oo}. The following
statements are equivalent:

(i) X admits locally finite and o-uniformly discrete C*-partitions of unity.
(i) X admits a C*-smooth bump and there are a set I', a continuous @:X —
co(I) such that ey o @ € C*(X) for every y € I', and vectors {xyn},,

erneN

X suchthat x € span{x, _; ®(x)(y) # 0,n € N}forevery x € X.
Notice that the condition (ii) resembles a property of a strong Markushevich basis.
Proof . For the purpose of the proof let us consider the following intermediate statement:

(i)’ X admits a C* -smooth bump and there are a set 4, a continuous ¥: X — c,(A) such
that ej o ¥ € Ck(X) for every A € A, and vectors {x;};c4 © Xsuch that x €
{x3; ¥(x)(1) # 0} forevery x € X.

(ii)’=(i) Since X admits a smooth bump, there are functions h,, € C*(X; [0, 1]) such that
supp, h, U(O,%)and h,(0) > 0.SetI’ = N x A and define @: X — £,,(I') by

1
®(x)(n, 1) = — ha(x = 2)¥(x)(2).

Then @ is a continuous mapping into co(I") by Lemma (5.3.2). Clearly, e, 1y @ €
Cck(X) for each (n,1) € I'. Next, for each finite non-empty subset F < I' let us set
m(F) = max{n € N;(n,A) € F forsomeA € A}, let a(F) € A be chosen
arbitrarily such that (m(F),a(F)) € F,and let P : X — X be the linear projection onto
span{x, (r)} of norm at most one. We also set P; = 0. We show that the assumptions of
Theorem (5.3.1) are satisfied. Each one-dimensional subspace of X admits locally finite

C*-partitions of unity ([208]). Givenx € X and ¢ > 0 find m € N such thati < g By

the assumption there is @ € Asuch that ¥(x)(a) # 0 and x, is so close to x that
ho(x — x,) > 0. Ifwesetd = |[o(x)(m,a)|and F = {(n,1) € T; |P(x)(n,1)| =
5}, then (m,a) € F and hence m(F) = m. Further, |®(x) (m(F),a(F))| = § > 0,

. . 1 1
and in particular hyn(e (¥ — xa(r)) > 0. It follows that [|x — xe(r)|| < 775 <+
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Note that Pp (Xqr)) = Xayand therefore  |lx — Pp ()| < ||x — xa|| +
”PF (xa(F)) — Pg (x)” < &.

(i)=>(ii)’ Put A = cg%(F x N), i.e. the set of all vectors in cyo(I" > N) with rational
coordinates. For each 1 € A set x; = Y, ernenA(y,n)x, . Clearly, {x;; 1 € A} =
spang{x, ;v € I''n € N} Further, let g : Q — N be some one-to-one mapping with
q(0) = 1and put m(1) = max{n € N; A(y,n) # 0 forsomey € I'} for 1 €
A\ {0} and m(0) = 1.Finally, define ¥: X — R4 by

1

Y@ = m(21) HyeF,neN q (/1()/,11))

P(x)(¥) -

yer: in,A(y,n)+0
We claim that ¥ is actually a continuous mapping into c,(A).

Indeed, fix x € X and € > 0. Since @ is continuous, there are a neighbourhood U of
x and a finite set H < I such that ||@(y)| < ||@(x)||+ 1and |2(y)(y)] < 1 for each
y € U and y € I'\H. Note that [T yer:snaqm)=ol @)W < (@) + DH! for
any y € U and 4 € A, and the same holds if we omit any one of the factors in the
product. Next, there are a neighbourhood V of x, V < U, and a finite set E < I such that
l2()W)| < e/(|@x)|| + 1) for each y € Vand y € '\ E. Let N € N be such

that% < /(o) + 1) . Put

F={A1 € A;suppA c E x{1,...,N}and q(A(y,n)) < N forally € I''n € N}

and note that F is finite. Now if y € V and 1 € A\F, then |[¥(y)(1)]| < e. It easily
follows that ¥ is a continuous mapping into cy(A).

Clearly, e; o ¥ € Ck(X) forevery 2 € A. Finally, given x € X and a neighbourhood
U of x, by the assumption there is 2 € A such that x; € U and ®(x)(y) # O if
A(y,n) # 0forsomen € N. Consequently, ¥(x)(1) # O.

(i)=(ii) The existence of a C*-smooth bump is clear (just take a partition of unity
subordinated to a covering of X by U(0,2) and X \ B(0,1)). Next, for each n € N let
{b,1}1e4 be a locally finite ¢* -partition of unity on X subordinated to the uniform

covering of X by open balls of radius % (clearly {¢,,2} can be constructed by scaling the

domains of {¢,;} so that the index set is always the same). Without loss of generality we
may assume that all the functions ¢,,; are non-zero. We put ' =N x A and define
D X - L,(I") by

1
?(x)(n, ) = - Pna(x).

Then @& is a continuous mapping into c,(I") by Lemma (5.3.2). To finish, choose any x,;
in each supp, ¢na. Fix x € X and § > 0. Let n € N be such that% < §. There is

A € A such that x € supp, ¢pns. Then @(x)(n,2) > 0 and [lx — xull <% < 5. It
follows that x € {x,;; ®(x)(n,1) # O}
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As a first application we show how the above characterisation can be used to rather
easily obtain the result (iv). Not only that our proof is substantially shorter than the
original, but it also does not use any fancy tools like lifting, Bartle-Graves selectors, etc.
The stripped-down proof clearly exposes the three main ideas behind it: the use of linear
functionals on the subspace , so that they can be extended to the whole space; the use of a
fundamental biorthogonal system in Y , which allows to link these extensions to
functionals on X/Y ; and the crucial property of the norm on c,(I"): if we drop all small
coordinates, the vector stays close.

Corollary (5.3.4)[204]: ([205]). Let X be a normed linear space and Y < X a subspace
isomorphic to co(I") for some I'. If the quotient X/Y admits locally finite C*-partitions of
unity for some k € N U {oo}, then X admits locally finite and o-uniformly discrete C*-
partitions of unity.

Proof. By extending the equivalent norm from Y we may assume without loss of
generality that Y is actually isometric to cy,(I"). Let Q: X — X/Y be the canonical quotient
mapping. Let {(ey; fy)}yer be the canonical basis of c,(I") and further assume that each

fy is actually a norm-one functional on X (use the Hahn-Banach theorem). For each
n € N let {1} 1e4 e a locally finite ¢*-partition of unity on X/Y subordinated to the
uniform covering of X/Y by open balls of radius % (clearly {1,,,} can be constructed by

scaling the domains of {y;,} so that the index set is always the same). Without loss of
generality we may assume that all the functions y,, are non-zero. Choose z,; €

Supp, Wna and x,; € X such that Q(x,,) = z,;. Let 8, € C*(R; [O,%] ),n € N be
Lipschitz functions satisfying 6,,(t) = 0 if and only if |t] < % We define a mapping
P X - ¢, (NxAxT UN x A)by

@M AY) = 0, ( f,Gc = 2)) Ya( Q).

1
P(x)(n,2) =~ Pna(Q()).

First we show that @ is actually a continuous mapping into ¢c,(N x A x ' U N X
A).Fixx € Xand e > 0. Clearly, 0 < &(y)(n,4,y) < e¢and 0 < @(y)(n, 1) < ¢

forn >§and allA € A,y e I''y € X. Now fixn € [1%]. Since {Y,,1}1e4 is locally

finite, there is a neighbourhood V of Q(x) and a finite F < A such that ¢, = OonV
for A € A\F. Further, there is a neighbourhood U of x such that (U) < V . Then clearly
o(y)(n,A4,y) = &(y)(n,A) = 0fory € Uand A € A\NF,y € I'. Now fix 1 € F.

Assume that ¥,2(Q(x)) # 0.Then [[Q(x) — zull <%. Put H ={y e I; |f,(x —
xnx)| > %}. We claim that H is finite. Indeed, if H is infinite, then by the wx-compactness
there is a wx-accumulation point f € Bx- of {f,} .- Then fly = 0, since {(e,; f,)} is

ye
a fundamental biorthogonal system in Y . In particular, f can be considered also as a

member of (é) , and so % < If(x = 2 )= 1f(Q(x) — zp)| < 11Q(x) — zll <
%, a contradiction. Thus @(x)(n,A,y) = Ofory € I' \ H. Since the family of functions
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y — @(y)(n,A,y),y € I, is equi-continuous, there is a neighbourhood W of x such
that |@(y)(n,4,y)| < € whenever y € W and y € '\ H. Thus we may apply Lemma
(5.3.2).

Next, we set x,y, = e,. Fixany x € X and ¢ > 0. There is n € N,n 2% , and
A € A such that ¥,,;(Q(x)) > Oand ||Q(x) — zll <§. Thus there is u € Y such
that flx — x,; — ull <§. Put F ={y €I;|f,)] >§}, which is a finite set
(possibly empty), and v =¥, cr f,(We, . Then [lu — vl sg (we have the supremum
norm here) and so |[x — (xu + V)< |llx — xu — u||+ |lu — v|| < & Note that
I, G = xad| 2 |f,@)] = [f G = xma — )] > % = llx =22 —ull > = 2for

y € F.  Consequently, @(x)(n,A,y) > Ofor y € F. It follows that
x € span{x,;; @(x)(n,A) # 0} U {xp;; ®(x)(n,4,y) # 0} .

Each component of @ is clearly ¢*-smooth and the space X admits a C*--smooth bump
by [205]. Thus we may conclude the proof by using Theorem (5.3.3).

Before going further, we review some notions useful in the study of the (linear)
structure of non-separable Banach spaces. Let X be a class of Banach spaces. We say that
X is a P-class if for every non-separable X € X there exists a projectional resolution of
the identity {P,}efw g ON X such that (P4 — Pp)(X) € X for all @ < u. We say that
X is a P-class if for every non-separable X € X there exists a projectional resolution of
the identity {P,}4e[w, ON X such that P,(X) € X for all & < u. Note that if a class X
admits PRI and is closed under complemented subspaces, then X is both P-class and P-
class. Therefore reflexive, WCG, WCD, and WLD are all both P-classes and P-classes, as
are 1-Plichko spaces ([209]; proof of [210] combined with [210]), spaces with a 1-
projectional skeleton (Ondifej Kalenda, private communication; [210]), and duals of
Asplund spaces ([99]). Recall that any space from a P-class has an SPRI ([209]), and any
space with an SPRI has a strong Markushevich basis (see also [209]or the proof of
Theorem (5.3.8)).

Although the characterisations of the existence of smooth partitions of unity are
inherently non-linear, in all the results from the introduction, except for the C(K)case, the
constructions are based on the linear structure in a substantial way. Naturally suggests the
following definition:

Definition (5.3.5)[204]: Let X be a normed linear space. We say that a system
{(xy; fy)}yer C X x X*is a fundamental coordinate system if T(x) = (f”(x))yer is a

bounded linear operator from X to ¢o(I") and x € span{x,; f,(x) # 0} foreach x € X.
Note that the operator T from the definition is necessarily one-to-one and {fy}yer is
bounded (by ||T||). The following corollary of Theorem (5.3.3) is now obvious.

Corollary (5.3.6)[204]: Let X be a normed linear space with a fundamental coordinate
system and such that it admits a ¢*-smooth bump, k € N U {o}. Then X admits locally
finite and o-uniformly discrete C*-partitions of unity.
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If X has a strong Markushevich basis, then it also has a fundamental coordinate system
(take normalised coordinate functionals). Thus we have an immediate generalisation of the
result (i). On the other hand, as we shall see below (Corollary (5.3.9)), the space JL,, 1 <
p < oo, has a fundamental coordinate system but it does not have a Markushevich basis

([209]).

In connection with Corollary (5.3.6) and Corollary (5.3.4) we remark that the space
C(K), where K is a Ciesielski-Pol compact, does not continuously linearly inject into any
co(I') (and so it does not have a fundamental coordinate system), although it has a
subspace Y isometric to cy(I7) such that the quotient C(K)/Y is isomorphic to cy(I3),
[99].

Concerning the result (i) we note that for spaces with an SPRI we do not have to rely
on the full construction of a strong Markushevich basis (which is rather hard): Let
{P2}ac[w ) De an SPRIon X. Foreach a € [w,u) put Qp = Pyy1 — Py, let {yan}nen be

a dense subset of the separable space Q,(X), and let {g x}xen € Qn(X)* be separating
for Qu(X). Put far = gar ° Qa/(llgar ° Qull + 1), I = [w,u) x N x N, and define

T: X >4, by T(x)(a k,n) =$fak(x). Then T is clearly a bounded linear
operator.

Further, set x, = y,, for y = (a,k,n) € I'. Fix x € X. Since Q,(x) # O if and

only if there is k € N such that g, (Q.(x)) # 0, which is equivalent to £, (x) # 0, we
have

x € spaniQq(x); a € [w,p)} = span{Q.(x); a € [w,u) Q(x) # 0}

c 5pan{ {Yantnen: @ € [w,u), 3k € N: fr(x) = 0}
= span{yyn; n € N,a € [w,u),3k € N:T(x)(a, k,n) # 0}
= span{x,; T(x)(y) # O}.
Note that Qg o Q, = O for f # a. Hence, given a € [w,u) and n € N, we have
TGan) (B kM) = — f5Van) = = f5(QaOan)) = o 9p1(Qp ( QaWian))) /
(lgpee Qgll + 1) =0 for g+ a Also, |TGun)(@km)|=— |fuxGun)l <

i | Venll. Thus T(yn) € co(I'). Since we have seen above that X = Sspan{y,,; a €

[w, ), n € N}, it follows that T maps into c,(I") and so X has a fundamental coordinate
system.

We proceed by deducing the result (v) from Corollary (5.3.9) and the result (ii) from
Theorem (5.3.10). We start with an easy observation.

Fact (5.3.7)[204]: Let X be a normed linear space and {(x,; £,)} .. © X x X". Then

x € span{x,; f,(x) # O} forevery x € X ifandonly if f € span"’ {f,; f(x,) # 0}
forevery f € X".

Proof. = Assume that it is not true for some f € X*. Denote 4 = {y € I'; f(x,) # O}.
By the separation theorem there is x € X such that f(x) # 0 and f,(x) = O for each
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y € A. It follows that x € span{x,; f,(x) # 0} c span{x,; y € '\A} c {f},.a
contradiction.

& Assume that it is not true for some x € X.Denote A = {y € I'; f,(x) # 0}. By
the separation theorem there is f € X*such that f(x) = 0 and f(x,) = O for each
y € A. It follows that f € span* {f,; f(x,) # O} < span* {f,; v € I'\A}
{x}*, a contradiction.

The first part of the next theorem is probably folklore among experts.

Theorem (5.3.8)[204]: Let X be a WCG Banach space and let K < X be a weakly
compact convex symmetric set that generates the space X. Then X has a strong
Markushevich basis {(x,; fy)}yer c K x X*.Such a basis has the following properties:

T(f) = (f(x”))yer iIs a bounded linear operator from X* to co(I') and f €

span*’ {fy: f(xy) + 0} foreach f € X*.

Proof. We prove the first part by transfinite induction on dens X. Suppose first that X is
separable. Let {z,},eny © K be a dense set in K and {h,},cy @ norming set in X*. Note
that span{z,} = X. By [206] there is a Markushevich basis {(v,,; gn)}nen Of X such that
span{y,} = span{z,} and span{g,} = span{h,}. In particular, this basis is norming.
Hence by [209] there is a strong Markushevich basis {(x,,; f;,)}nenof X such that {x,,} c
span{y,} = span{z,}. Since span{z,} < U,eynK, by scaling we may assume that
{x,} c K.

Now assume that dens X > w and the statement is true for all WCG spaces of density

less than dens X. By [206] there is a PRI {P,}4¢[,, 1 ON X such that P,(K) < K for each

a € [w,u]. Denote Q, = P,,; — P,. Foreach a € [w,u) the space Q,(X) is of density
at most card @ < dens X and is generated by the weakly compact convex symmetric set

%Qa(K). Thus by the inductive hypothesis Q,(X) has a strong Markushevich basis
{(x%; g8 )}yer such that {x }yer c %Qa(K) c K.Put £ = g%o Q. We claim that

a . a - . .
(O 1 )}ae[w,u),yEI‘a is a strong Markushevich basis of X.

Indeed, Q,(xf ) = Qu(Qp(xF)) = 0 and hence £% (xF ) = g& (Qu(x)) = 0 for
a # B. Further, £ (x7) = gy (Qu(xy)) = gy (x5 ) = &, (the Kronecker delta).
Fix any x € X.Then
Qu(x) € span{xy; v € I : g7 (Qu(x)) # 0} =span{xy;y € I : f;/ (x) # O}

Hence x € Span{Q.(x); @ € [w,u)} © Span Ugepp ) SPan{x,, v € I f¥ (x) #
0} c span{x; ; a € [w,u),y € I, : £, (x) # 0}. Finally, note that this strongness
property implies that the biorthogonal system is total.

To prove the second part of the theorem, denote by t the topology on X* given by the

uniform convergence on K. Put T(f) = (f(xy)) for f € X*. Then T is clearly a
yer

bounded linear operator from X* to £,(I). Since [IT(f) Il =supyerlf(x)l <
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SUP,ek |f(x)], the operator T is moreover t — || - || continuous. Further, T(f,) € coo(I")
for every a« € I'. By the Mackey—Arens theorem, span’ {f,} = span* {f,} = X".
Consequently, T(X*) = T(span® {f,}) < span{T(f,)} < co(I'). The rest follows
from Fact (5.3.7).

We remark that the heart of the construction of a strong Markushevich basis lies in the
separable case and is seriously difficult. The strongness of the PRI then arranges the rest.
However, for our purpose (the second part of the previous theorem), the full strongness
(and even the biorthogonality) of the Markushevich basis is not necessary. It would be
sufficient to carry the required properties through the transfinite induction and use just the
strongness provided by the PRI. The weak compactness is indispensable though.

Corollary (5.3.9)[204]: Let X be a normed linear space such that X* is WCG. Then X has
a fundamental coordinate system.

Proof. Let {(f: F,,)}yer c X* x X** be a Markushevich basis from Theorem (5.3.8).

Note that {fy}yer is bounded. Fix y € I'. Then by the Goldstine theorem F, € B"" for

some ball B c X. Since X* has the property C ([206]), by [206] there is a countable set of
vectors  {x,n,} < B such that F, € conv” {x,n} . We claim that

1 . .
{(xyn, ~ fy)}yemEN is a fundamental coordinate system.

Indeed, T(x) = (1 fy(x)) is a bounded linear operator from X to ¢, (I" % N),
n Y€Er' neN

as (fy(x))yef € co(I') by Theorem (5.3.8). Fix x € X and denote A = {x,,; f,(x) #

0,n € N}. Theorem (5.3.8) implies that F € span*" {F,; F(f,) # O}forany F € X**
and so

x € span"”’ {E; f,(x) # 0} c span"’ U conv™’ {xyn}neN = span” A.
YET: f, (x)#0

But since x € X and span A c X, this means that x € Span"' A = "spanA.

We note that there is a Banach space X such that it is a second dual space, it has an
equivalent C*-smooth norm, X* is a subspace of a Hilbert-generated space (in particular a
subspace of a WCG space), and there is no bounded linear one-to-one operator from X to
co(I'), [123]. Therefore there is no hope for generalising the result (v) beyond the dual
being WCG using the approach above (or the original proof as well — both result in a
linear injection into ¢y (I)).

Theorem (5.3.10)[204]: Every Banach space that belongs to a P-class has a fundamental
coordinate system.

Proof. Let X be a P-class and € X . We use transfinite induction on dens X. If X is
separable, then we can use the existence of a strong Markushevich basis. However, this
difficult result is not necessary. A direct construction is as follows: Let {y,},en © X be

dense in X and let {g, },ey © X be such that it separates the points of X and || g, || < %
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For k, n € N put xp,, = y,, and f,, = % 9r- Then {(xkn, fin)}knen is @ fundamental

coordinate system: Fix x € X. Then |fi,(x)]| < i | x||. Also, there is m € N such that
gm(x) # 0andsox € span{y,; n € N} = span{x,,,; n € N} c
span{xin; fin(x) # O}

Now assume that dens X > w and every space in X of density less than dens X has a
fundamental coordinate system. Let {P,},e[s 1 P€ @ PRI on X such that P,(X) € X for

a € [w,u). Put Q, = P,,; — P,.By the inductive hypothesis, for each ¢ € [w, 1) there
is a fundamental coordinate system {(x¥ ; g% )}yer on P,(X) and there is K, > 0 such

. 1
that {g¢ }yera c B(0,K,). Since Qu(X) C Puy1(X), we may set £, = P gytto

Q. and note that ||f,***| < 2. We claim that {(x%**;£***)} is a

) a€lw,u) Vel 41
fundamental coordinate system on X.

Indeed, the formula T(x) = ( y““(x)) S clearly defines a bounded linear
ae w,n ,]/E a+1

operator from X to ¢, (I'), where I' = Uge[o wia} X Iz+1. Now fix x € X and
¢ > 0.Then the set A = {a € [w,u); [|Q,(xX)|| > &€} is finite. So, |f),“+1 (x)| <
a” & 11Qa(x)l < & whenever @ € [w,u)\A and y € I,. On the other hand,
if @ € A, then the set {y € Ipyy; |51 ()| > e} ={r € Luuai 198 (Qu(®))] >
K,.,€} is finite by the definition of a fundamental coordinate system. Finally, as
Qu(x) € Pyyq1(X), theassumption gives Qu(x) € span{xf*™; gt (Qq(x)) = 0} =
span{xf*tt; £ (x) = 0}, Therefore
X € W{Qa(x); a € [wuu)} C span Uae[w,u)} W{xfﬁ-l ; fya+1 (x) # O} c
span{xytt; £ (x) = 0}
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Chapter 6

Smooth Norms with Banach Spaces and their Duals

We show that if X admits a norm, equivalent to the supremum norm, with locally
uniformly convex dual norm, then X also admits an equivalent norm that is of class C*
(except at 0). It is shown that a Banach space with locally uniformly convex dual admits
an equivalent norm that is itself locally uniformly convex. We investigate Banach spaces
satisfying a property, which we call (S), and characterise them by means of a new
geometric property of the unit sphere which allows us to show, e.g., that all strictly convex
norms have (S), there are plenty of non-strictly convex norms satisfying (S). We also study
the corresponding renorming problem.

Section (6.1): Approximation in Banach Spaces of the Type C(K)

We shall show two results about smoothness in Banach spaces of the type C(K). Both
build upon earlier of [213], [214].We first establish a special case of a conjecture that
remains open for general Banach spaces and concerns smooth approximation. We recall
that a bump function on a Banach space X is a functionf : X — R which is not
identically zero, but which vanishes outside some bounded set. The existence of bump
function of class ¢! implies that the Banach space X is an Asplund space, which, in the
case where X = C(K), is the same as saying that K is scattered. It is a major unsolved
problem to determine whether every Asplund space has a ¢* bump function. Another open
problem is whether the existence of just one bump function of some class C™ on a Banach
space X implies that all continuous functions on X may be uniformly approximated by
functions of class C™. It is to this question that we give a positive answer (Theorem
(6.1.7)) in the special case of X = C(K).

Our second result represents some mild progress with a conjecture made by the second
author in [102]. The analysis of compact spaces constructed using trees suggests that for a
compact space K, the existence of an equivalent norm on C(K), which is of class ¢?
(except at 0 of course), might imply the existence of such a norm that is of class C*.
Certainly, this is what happens with norms constructed using linear Talagrand operators as
in [101], [97], [102]. The other important (and older) method of obtaining C* norms is to
construct a norm with locally uniformly rotund (LUR) dual norm. What we show in
Theorem (6.1.5) is that whenever C(K) admits an equivalent norm with LUR dual norm,
there is also an infinitely differentiable equivalent norm on C(K).

For background on smoothness and renormings in Banach spaces, including an account
of Asplund spaces, see [99]. In particular, an account is given there of the connection
between smooth approximability of continuous functions and the existence of smooth
partitions of unity. Following what seems to be standard practice in the literature, we have
chosen to state the formal version of our first theorem (Theorem (6.1.5)) in terms of
partitions of unity, rather than approximation.

Formalizing a definition that appears implicitly in [97], [102], we shall say that a
mapping T : C(K) — co(K = I') is a (nonlinear) Talagrand operator of class C™ if
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(i) for each non-zero f € C(K), there exist t € K,u € I' such that |f (t)| = ||fll»
and (Tf )(t,u) # 0O;

(ii) each coordinate function f +— (Tf )(t,u) is of class C™ on the set where it is not
zero.

It follows from [97] that if C(K)admits a Talagrand operator of class C™, then
C(K)has a bump function of the same class. It is shown in [97] or [101], that if
C(K)admits a linear Talagrand operator, then C(K)admits an equivalent C¢* norm.
Although there certainly exist examples of compact K such that C(K) has a C* renorming
but no linear Talagrand operator (for instance, the Cieselski—Pol space [99]), it is worth
noting that, by the first of the theorems, a nonlinear Talagrand operator exists whenever
there is a bump function.

We consider a non-empty compact scattered space K. The derived set K’ is defined as

usual to be the set of points ¢ in K that are not isolated in K. Successive derived sets K (©)
are defined by the transfinite recursion

KO = g KB = ﬂ (K@Y

a<f

There is an ordinal & such that K is non-empty and finite (so that K*1 = @). For
each t € K, there is a unique ordinal a(t) < & such that t € K(@®)\ g@®+1)  gjnce
t is an isolated point of K (“(t)), there is a compact open subset VV of K such that V n
K(@®) = {t}: we choose such a V and call it V, . For finite subsets B of K we set
Vg = UtepVt -

Lemma (6.1.1)[208]: Let B be a non-empty finite subset of K and let « = a(B) be

maximal subject to B N K® = @. Then V3 N K@ = B n K@ and hence V3 N
K(a+1) — @

Proof . Let t be in B. If a(t) < a, then V, n K@ = @, whereas if a(t) = a, then
Ve, n K@ = {t}. ThusVz n K@ = B n K@ asclaimed.

We shall say that a finite subset A of K is admissible if s & V (t) whenever s and t are
distinct elements of A.

Lemma (6.1.2)[208]: Let K be a compact scattered space and let H be a non-empty,
closed subset of K. There is a unique admissible set A with the property that A € H <
V (A).

Proof . We start by describing a recursive procedure that constructs one possible
admissible A with the required property. Let @y = max{a: H n K@ = ¢}: thus,
H n K@) is a non-empty finite set, which we shall call 4. If < V,_ , we setA = 4,
and stop. Otherwise, we set H, = H\V, ,a; =max{a: H; n K@ = ¢} A, =
H, n K@) and continue. In this way, we construct a decreasing (and so, necessarily
finite) sequence a, > a; >--> «; of ordinals, and finite sets A; = H N K@)\
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Vagu--ua;_y » insuchaway that H S Vj y..ua, - By construction, A = A, U---U 4 isan
admissible set.

We now show uniqueness. It will be convenient to proceed by transfinite induction on
a,. Let B be admissible and suppose that B € H < Vz. By Lemma (6.1.1), a(B) =
agand B n K@ c ¢ nK@ c v, n K@) =B nK@ Thus 4, € B. We
now have a closed set H; = H\V, and an admissible set B; = B\ A, with B; <
H, S Vg, . Since a; = max{a: H; n K“) # ¢} < a,, we may use our inductive
hypothesis to deduce that B, = A\ A,, whence B = A.

Let X be a Banach space that admits a bump function of class C™; so there is a function
a € C™(X) such that a(0) = 1, whereas a(x) = 0 for |[x|| = 1. By forming B,
where f(x) = @(a(x/R)), with R > 0 and ¢ : R — R suitably chosen, we obtain a
function of class C™, taking values in [0, 1] satisfying

1 whenl|x|| < 1,

B(x) =

0O when||x|| = R.

Of course, if X admits partitions of unity of class C™, then (starting with a partition of
unity each of whose members has support of diameter at most € ) we easily obtain a
function g satisfying the above conditions, with R = 1 +¢€ and € an arbitrarily small
positive real number. In general, we do not know whether a bump function can always be
‘improved’ in this way. We devoted to showing how to achieve such an improvement in
the case where X is a space C(K) equipped with the supremum norm. We start with an
elementary and no doubt well-known exercise in calculus, in which we use the notation to
be found for instance in [212].

Lemma (6.1.3)[208]: Let K be a compact space and let 8 : R — R be of class C™. Then
the mapping 0:C(K) — C(K) givenby ©(f ) = 6 o f is of class C™.

Proof. We proceed by induction on m. For m = 0, we are merely assuming 6 to be
continuous, and continuity © of follows from the uniform continuity of 8 on bounded
subsets of R.

If m > 1, we consider f,h in C(K)and apply the mean value theorem point by point

to obtain

6 (f () + h(t)) — 6 (f () = 6 (f (&) + J()r())h(0),

with O < ¢ (t) < 1. The uniform continuity of 8’ on bounded subsets of R now tells us
that the right-hand side of the above equality equals 8'(f (t)) + o(]|hll). SO O is
differentiable with

DO(f) - h = (8" f) x h.

The linear mapping DO (f ) : C(K) — C(K) is thus the operator Mg/, of multiplication
by 6’ o f . Thus the derivative DO : C(K) — L(C(K)) may be factored as follows:

C(K) —» C(K) - L(c(K)),
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where the first factor is f +— 6" o f and the second is the linear isometry g — M, . Our

inductive hypothesis tells us that the first of these is of class €™~1. So D@ is of class ¢™1
and O of class C™.

Proposition (6.1.4)[208]: Let K be a compact space such that C(K) admits a bump
function of class C™. Then, for all real numbers n > ¢ > 0, there is a function f; , :
C(K) — [0,1]of class €™ such that

1 when||flle < ¢,

ﬁf ,n(f) —
0 when||fllc =2 7.

Proof . By hypothesis, there exists a function a : C¢(K) — R, of class C™, such that
a(0) = 1, whereas a(f ) = Ofor ||f|l = 1. As in our introductory remarks, we may
assume that a takes values in [0, 1]. We define §; ,, by

Ben(f) = a(Bof),
where 8 : R —» R is a function of class C* chosen so that

0 whenlx| < ¢,
6 (x) =
1 when |x| = 7.

We devoted to a proof of the following theorem.

Theorem (6.1.5)[208]: Let K be a compact space and let m be a positive integer or co. The
following are equivalent:

(i) ¢(K) admits a bump function of class C™;
(ii) ¢(K) admits a Talagrand operator of class C™;
(iii) C(K) admits partitions of unity of class ™.

It will be enough to prove that (i) implies both (ii) and (iii). We start by showing how
to construct a Talagrand operator, starting with a bump function on C(K). As we
remarked, the existence of a smooth bump function forces K to be scattered. So we can use
the notion of admissible sets as developed above. We let Q be the set of all triples
(¢,1n,0)inQ3with0 <& <n < o.and write A for the set of all admissible subsets of
K. Choose positive real numbers c(&,n,{)with Xz peryepc(E,n,{) < o. For
0 <¢& <n,let B; , be as in Proposition (6.1.4), and, finally, for 0 <n < n, let B¢, be as
in Proposition (6.1.4), and, finally, for 0 < n < ¢, let ¢, : R — [0, 1] be of class C*
with

0 whenlx| < n,

Pne x) =
1 when|x| = (.

We define T : C(K) » £7(K xQ xA) by
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(Tf )(S’E’U’Z’A) — C(E’n’()ﬁf,n(f X XK\V, )l—l(pn,( (f (t))XA(S)

teA

We notice that, for this expression to be non-zero, we need A < F < V,, where F is the
closedset {t € K: |f (t)] = n}. Now, we know by Lemma (6.1.2) that, for given n and
, there is just one A for which this is true. It follows easily that T takes values incy(K X
Q % A). It is also clear that each coordinate of T, that is to say each mapping f —
(Tf )(s,é,n,¢,A), is of class C™.

To show that T has the Talagrand property, we consider f = Oandset F = {t € K :
If ®)] = lIfllo} Let A be the admissible set for which A € F < V,and choose
rationals 0 < ¢ <n < &such that § < ||flle and & > ||f x xpwy, || . For anys € 4

we have |f (s)| = [If |l and (Tf )(s,&,n,{) # O.

We now pass to the construction of partitions of unity. We shall proceed by transfinite
recursion on the derived length of K. Recall from that there is an ordinal & such that K ()
is finite and non-empty, so that K*1 is the first empty derived set of K. We assume

inductively that if V is a compact space with V) = @ and such that ¢(V ) has a bump
function of class ¢™, then ¢ (V) admits C™ partitions of unity. We need to show that
C(K)also admits C™ partitions of unity. To do this, it will be enough to construct
partitions of unity on the finite-codimensional subspace X = {f € C(K): f (t) =
0 forallt € K®?} We shall use the following result.

Proposition (6.1.6)[208]: [97] Let X be a Banach space, let L be a set and let m be a
positive integer or o. Let T: X — cy(L) be a function such that each coordinate
x — T (x), is of class C™ on the set where it is non-zero. For each finite subset F of L,
let R : X — X be of class C™ and assume that the following hold:

(i) for each F, the image Ry [X] admits C¥ partitions of unity;
(i) X admits a C* bump function;

(iii) foreach x € X and each € > 0, there exists A > Osuchthat ||x — Rpx|| <e€
ifwesetF = {u € L: |(Tx)(w)| = 1}.

Then X admits C™ partitions of unity.

In applying this result, we shall take L to be K < Q x A,, where A, consists of the
admissible subsets A such that A n K = @. The operator T is the Talagrand operator
constructed above (though with the argument A restricted to lie in A,). We have already
shown that T takes values in c,(L) and that the coordinates of T are of class C™. We
define the reconstruction operators R as follows: if F < L has elements
(56,80 61, 4;) (0 < i < n), we set V(F) =U;<nVy, and define Rp (f) =f %
Xv (F)- SO Rp : X — X is a bounded linear operator and the image R may be identified
with C(V (F )) which, by our inductive hypothesis, admits partitions of unity of class C™.

It only remains to check that (iii) holds, so let f € C(K) and € > 0 be given. Let H
be the set {t € K: |f (t)] = €} and let A be the admissible set such that A € H <
V,. For suitably chosen0 < & < n < { < e we have
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(Tf)(s.én ¢ 4) = c(§nd) >0
foralls € A.WesetA = c(§,n,{)andnotethatV (F) 2 V,. So

If — Re fllw = ”f X XK\V(F)”OO

< |If * xewall, <€
We shall now prove the second theorem.

Theorem (6.1.7)[208]: Let K be a compact space such that ¢(K)admits an equivalent
norm with locally uniformly rotund dual norm. Then C(K)admits an equivalent which is
of class ¢ on X \ {0}.

The norm which we construct will be a generalized Orlicz norm, defined on the whole
of £°(K), which we shall show to be infinitely smooth on the subspace C(K). We recall
some definitions. Suppose that, for each t € K, we are given a convex function ¢; =
@(t,) : [0,0) - [0, ) satisfying ¢(t,0) = O,lim,_ @(t,x) = oo (that is, to say an
Orlicz function). The generalized Orlicz space, ) (K), is defined to be the space of all
functions f: K — R such that Y;cx @ (t, |f (t)|/p) < oo for some p € (0,). The
generalized Orlicz norm of such a function is defined to be

If oy = inf {p >0 Zq)(”” 'f;”) < 1}.

texK

The first of the following lemmas is elementary and the second uses the familiar
idea of ‘local dependence on finitely many coordinates’.

Lemma (6.1.8)[208]: Suppose that there exist positive real numbers R < S such that
@(t,R) =0and ¢(t,S) = 1forallt € K. Then £,,(K) =£ (K) and

RIIf lpc-y = Nflleo = Sllfllpc -y -

Lemma (6.1.9)[208]: Let @( - ),R and S be as in Lemma (6.1.8) and let X be a linear
subspace of £~ (K). Suppose that, whenever f € X and ||f||,( -y = 1, there exist a
positive real number 6 and a finite subset F of K such that g(t) = O whenever
g € X INf — glle < dandt & F . Assume further that each of the functions ¢(t,-)
is of class ™. Then the generalized Orlicz norm |||, is of class C* on X \ {0}.

Proof . If f,F and ¢ are as in the statement of the lemma, then the function ® defined
by

2(9) = ) ot lg®D

texK

isofclass C” on{g € X: [|f — glle < &}, since it coincides with the finite sum
Yeer @(t, |g(®)]) of given ¢* functions. Thus our hypothesis says that there is an
open subset U of X containing the set {f € X : ||f|l,(-) = 1} and such that ® is C*
on U. We define V = {h,p) € (X\{0}) x (0,»): p~th € U}, an open set in X.
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On V we define W(h,p) = ®(p~1h), which is of class ¢*. For each h € X \ {0},
there is a unique p = ||h|,( -y such that (h,p) € V and W(h,p) = 1. Moreover, we
may calculate the partial derivative

D¥(hp) = =p72 ) gi(p™ KO

and note that this is non-zero when p = ||h|[,( .y, since ¢:(x) > O whenever
@:(x) > 0. Thus, the implicit function theorem may be applied to conclude that
Il .y is of class €= on X \ {O}.

To choose suitable Orlicz functions ¢, in our theorem, we shall need to use the
special properties of K. The assumption that C(K)* has an equivalent LUR dual norm
implies (and, by a theorem of Raja [104], is actually equivalent to) the compact space
K being o-discrete. So we may assume that there are pairwise disjoint subsets D; of K,
each one discrete in its subspace topology, with K = U;¢, D; . We note in passing that
we are not assuming D; to be closed, merely that D; has empty intersection with its
derived set D;. We fix positive real numbers r; < 1 with [[;e,,7; > Oand, fort € K,
define two real numbers

a(t) = {ri: t € D},

L. A

ﬁ(t) = {Ti: t € Dl,}

L. A

We notice that (t) = a(t) x r; , where j is the (unique) natural number such that
t € D;. (Note that it is here, and only here that we use the discreteness hypothesis that
D; n Dj’ = @.). In particular, therefore, 0 < a(t) < F(t) < 1. So we may choose
an infinitely differentiable Orlicz function ¢, such that

0 whenx < a(t),
Pe(x) =
> 1 whenx = B(t).

We are going to show that Lemma (6.1.9) may be applied to these Orlicz functions
and the subspace C(K) of £ . It is convenient to state one of the ingredients of this
proof as a property of the functions a and .

Lemma (6.1.10)[208]: Let (t,) be a sequence of distinct elements of K which
convergestosome t € K. Then B(t) < liminfa(t,).

Proof. By taking subsequences and diagonalizing, we may assume that a(t,) tends to a
limitasn — oo and also that, for each i € w, either all of t;,4,t;,,... are in D; or else
none is. Let M be the set of natural numbers i such that ¢;,,... are in D; .Then for each

n we have
1—[ T xl—lri < a(t,) Sl—[n’ ,

i<n,ieM izn iEM
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whence a(t,) — [liey1; @ n — <o . On the other hand, since the t,, are distinct and
t, € D; whenevern > i € M, it must be that the limit point ¢ is in the derived set D;
wheneveri € M. Thus

B(t)=[l{r;: t € D;} < [liem™:-

To complete the proof of the theorem, we consider f € C(K) with ||f|l,¢.) = 1.
If no § and F exist with the property of Lemma (6.1.9), there exist a sequence (f,,) in
C(K)converging uniformly to f and a sequence of distinct elements (¢t,,) of K such that
o(ty, |f(t,)]) = 0 for all n. For this to be the case it must be that |f,(t,,)| = a(t,).
Extracting a subsequence, we may suppose that the sequence (t,) converges to some
t € K. Now by uniform convergence and the continuity of f, we have f (t) =
lim,, £,,(t,,)), so that |f (t)] = B(t) by Lemma (6.1.10). Thus ¢(t,|f (t)|) > 1 and
Iflloc -y = 1, acontradiction, which ends the proof.

Section (6.2): Locally Uniformly Convex Norm

If we consider a real Banach space Z under a norm ||-|| and its dual space Z*, equipped
with the dual norm |[|-||*, there are important and well-established connections between
convexity properties of ||-||* and smoothness properties of ||-|| . Indeed, strict convexity of
||-]* implies Gateaux-smoothness of |||, locally uniform convexity of ||:||* implies
Fréchet-smoothness of ||-|| and uniform convexity of ||-||* is equivalent to uniform
smoothness of ||-|]| . On the other hand, there would seem to be, a priori, no reason why a
convexity condition in the dual space Z* should imply any sort of convexity in Z.
However, it is a consequence of the Enflo—Pisier renorming theorem [219], [226], or [99]
that uniform convexity of [|-||* implies that there exists a norm ||| - ||] on Z, equivalent to
the given norm, which is itself uniformly convex. One can even arrange that this new
norm be both uniformly convex and uniformly smooth.

It is natural to ask whether a similar result about equivalent norms holds for the weaker
properties of strict convexity and locally uniform convexity. A counterexample to one of
these questions was given in [102]: there is a Banach space Z, ||-|| with strictly convex
dual, but such that no equivalent norm on Z is strictly convex. That the situation may be
better for the third property, locally uniform convexity, was suggested by a theorem of
Kenderov and Moors [223]. This states that a Banach space with locally uniformly convex
dual has the topological property of being o -fragmentable. The main result is an
affirmative answer to the full question about locally uniform convexity.

Theorem (6.2.1)[216]: Let Z, ||-|| be a Banach space such that the dual norm ||-||* on Z* is

locally uniformly convex. There exists an equivalent norm ||| - ||| on Z which is locally
uniformly convex. Moreover, ||| - ||| may be chosen to have locally uniformly convex
dual norm ||| - |II*.

The “moreover” statement in Theorem (6.2.1) is an immediate consequence of the
technique of Asplund averaging, see [99]. Now it is known [99] that a Banach space with a
norm which is locally uniformly convex and has locally uniformly convex dual norm
admits ¢1-partitions of unity: equivalently, on such a space every continuous real-valued
function may be uniformly approximated by functions of class ¢1. We thus have the
following corollary.
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Corollary (6.2.2)[216]: Let Z be a Banach space with locally uniformly convex dual.
Every continuous realvalued function on X may be uniformly approximated by functions
of class C!.

We note that for general Banach spaces Z it is still not known whether the existence on
Z of an equivalent Fréchet-smooth norm (or, more generally, a “bump function” of class
c1) implies ¢! approximability as in the above corollary. In the special case of spaces
Z = C (K), this implication has been established in [207]. It is also unknown whether
Fréchet-renormability of Z implies LUR renormability.

Spaces of the type C (K) play an important part in our proof of Theorem (6.2.1). It is
of course always the case that we may identify Z with a subspace of C (K), where K is the
unit ball of the dual space Z*, equipped with the weak™ topology. When the dual norm
||-1]* is locally uniformly convex, this K belongs to what Raja [104] has called the class of
Namioka—Phelps compacts. Theorem (6.2.1) will thus follow from the following C (K)-
renorming theorem.

Theorem (6.2.3)[216]: Let K be a Namioka—Phelps compact. Then there is a norm on
C (K), equivalent to the supremum norm, which is locally uniformly convex.

The rest is devoted to a proof of (a mild generalization of) Theorem (6.2.3). The
definition of a Namioka—Phelps compact, as well as of the various other topological and
renorming properties with which we are concerned, will be given. We then move on to
develop some topological machinery before defining a norm. The remaining contain the
proof that this norm is locally uniformly convex. We note the crucial role played by
general topology in the proof that follows: though Theorem (6.2.1) clearly has some kind
of geometrical content, there is actually surprisingly little geometry in the proof. The key
Is the topological concept of a descriptive space, due to Hansell [222], and a careful
analysis of the o -isolated networks which exist in such spaces. | see Hispano—Bulgarian
school of geometric functional analysis, and [118], [104], [227].

Let Z be a real vector space and let ¢ be a non-negative real-valued convex function
onZ.Whenf € Zand f, € Z(r € w), we shall say that the LUR hypothesis holds for
@ (and f , and the sequence (f;.)) if

1 1 1 2
5 o(f)? +5 o(f,)?* — <p<§ (f + fr)> - 0.

When the function ¢ is positively homogeneous, this statement is equivalent to saying that
both ¢ (f;-) and (p(% (f + f,))tendto@(f)asr — oo. This is recorded as Fact I1.2.3 in

[99], where it is also noted that, if the function ¢ is an £2-sum @2 = Y, @2 of non-
negative convex functions and if the LUR hypothesis holds for ¢, then it holds for each of
the ¢,,. We shall make repeated use of this observation. We say that a norm || . || is locally
uniformly rotund at a given element f if, whenever the LUR hypothesis holds for || .||, f
and a sequence (f,.), we necessarily have ||f — f-l| — 0. This brings us back to a
completely standard definition: we say that a norm on X is locally uniformly convex (the
term “locally uniformly rotund” and its abbreviation LUR are also used) if it has this
property at each f € X.
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We introduce the topological properties that are relevant to our results. Most of these
ideas are due to Hansell [222]. Our terminology follows [225], [227], where succinct
accounts can be found of all the results that we need. A crucial notion is that of a network
for a topology: a collection § of subsets of X is said to be a network for the topology T if
every set in 7 is a union of sets in §: that is to say, whenever x € U € T , there exists
N € Ssuchthatx € N < U. A family of sets 7 is said to be isolated for a topology T if,
for each N € 7, there exists U € T suchthat N € U and U nM = @ for all M €
J\{N}; equivalently, N n U7\ {N} = @. A family S is said to be o -isolated if it can be
expressed as § = Upen Iy With each 7, isolated.

Let (X,T ) be a topological space and let d be a metric on X inducing a topology finer
than . We say that the property P(d,T ) holds if there is a sequence (B,,) ., Of subsets of
X such that the topology generated by T U {B,:n € w} is finer than the topology 7;
induced by the metric d. An equivalent formulation is that there exists a sequence
(Ap)new Of subsets of X such that the intersections A, N U, with U € T , form a
network for 7; . When P(d,7 ) holds, there is a network § for the metric topology 7
which is o -isolated for the topology . An equivalent formulation of this statement is that,
for each € > 0, there is a covering § of X, which is o -isolated for 77 and which consists of
sets with d-diameter at most €. A compact topological space (K,7) which has property
P (d,T) for some metric d is said to be descriptive. There is an intrinsic characterization
of this property: K is descriptive if and only if there is a network for T which is T -o -
isolated. Hansell’s general notion of descriptive space [222] is a space X which is Cech-
analytic and has a o -isolated network: we are only concerned with descriptive compact
spaces in. Raja [227] shows that the unit ball of a dual Banach space Z* is descriptive for
its weak= topology if and only if Z admits an equivalent norm with “weak+ LUR” dual
norm.

If (K,T) is compact and has P(d,7 ) for some T -lower semicontinuous metric d,
then K is called a Namioka—Phelps compact. Raja [104] has shown that unit ball of a dual
Banach space Z* is a Namioka—Phelps compact (in the weakx* topology) if and only if Z
admits an equivalent norm with LUR dual norm. The hard part of this theorem is the “only
If”” implication. We just use the easy “if” implication.

As has already been mentioned, we shall obtain our main theorem from a renorming
result for C(K) where K is a Namioka—Phelps compact. In fact we prove something
slightly more general.

Theorem (6.2.4)[216]: Let (K,7 ) be a (descriptive) compact space which has property
P(d,T ) for a metric d. There is a norm ||-|| on C(K), equivalent to the supremum norm,
which is locally uniformly rotund at f , whenever f is both 7 -continuous and d-uniformly
continuous.

Theorem (2.4.6) shows that there is a LUR norm on C(K) provided the metric d can be
chosen in such a way that all 77 -continuous functions are d-uniformly continuous. A
metric with this property has been called a Reznichenko metric. It is easy to see that a
lower semi-continuous metric is Reznichenko, which is why Theorem (6.2.4) implies
Theorem (6.2.3).
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Consider a topological space (X,7 ), equipped with a metric inducing a topology
finer than . The space X is said to be fragmented by the metric d if, for every non-empty
subset Y of X and every ¢ > 0, there exists U € 7 such that the intersection Y n U is
non-empty and of d-diameter at most €. Theorem 2.2 of [225] shows that if (X,7 ) is a
descriptive compact that is fragmented by a metric d then property P(d,T ) holds.

If X is compact and is fragmented by some lower semicontinuous metric, we say that X
Is @ Radon—-Nikodym compact. A compact space is Namioka—Phelps if and only if it is
both descriptive and Radon-Nikodym. see [127], [119] for more about this interesting
class of spaces. The outstanding open problem is whether every continuous image of a
Radon-Nikodym compact is again Radon-Nikodym. If we relax the definition of a
Radon—Nikodym compact by asking only that X be fragmented by some Reznichenko
metric we have Reznichenko’s defi- nition of a strongly fragmented compact space. Every
continuous image of a Radon—Nikodym compact is strongly fragmented. There are other
definitions [217], [221] which have recently been shown to be equivalent to strong
fragmentability [218], [224] and Arvanitakis’s terminology in which strongly fragmented
compacta are called quasi-Radon—Nikodym seems to have become standard. It is not
known whether every quasi-Radon—Nikodym compact is Radon—-Nikodym; a positive
answer would of course settle the problem of continuous images. see [220] for a survey of
all this material.

As has already been remarked, Theorem (6.2.4) leads to a LUR renorming of
C(K)when K has property P for some Reznichenko metric, or equivalently when K is
descriptive and quasiRadon-Nikodym. We do not know whether such spaces are
necessarily Namioka—Phelps, but at any rate we may state a theorem which may (or may
not!) be a generalization of Theorem (6.2.3) as follows.

Theorem (6.2.5)[216]: If K is descriptive and is a continuous image of a Radon—Nikodym
compact then C(K)admits a LUR renorming.

We do not know whether ¢(K)is LUR-renormable for all descriptive compacta K. By
Raja’s results the corresponding question about Banach spaces would be whether a space
Z for which the dual norm on Z* is w*LUR has itself an equivalent LUR norm. The most
we can get in this direction (using Theorem (6.2.5), Raja’s Theorem (6.2.1) and Theorem
1.5.6 of [220]) is the following.

Corollary (6.2.6)[216]: Let Z be a Banach space such that the dual normon Z* is w*LUR.
If, in addition, Z is a subspace of an Asplund-generated space then Z admits an equivalent
LUR norm.

We develop some additional structure in a descriptive compact space. We start by
making some general observations about isolated and o -isolated families, which are valid
without any compactness assumption. Let K be a topological space and let 7 be an isolated
family of subsets of K. Then, by definition, we have

N N Uy\{zv} =,
forall N € 7. If we set
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N= N\ U I\{N}.
and I = {N: N € 7} then it is clear that [ is again an isolated family. If N = N for all

N € 7, we shall say that 7 is a regular isolated family.

We shall now introduce some notation for regular isolated families, which will be
employed consistently in all that follows. If 7 is a regular isolated family we write I for the
union of the family 7, that is

=1

J] = {t € K: each neighbourhood of t meets at least two members of J}.

and we define

By virtue of its definition, J is a closed set. Moreover, the closure I is the union of its
disjoint subsets I and ;thatistosay,/ = I\I.

We consider a space with a covering S, which is the union of countably many regular
isolated families 7(i) (i € w). In accordance with the notation above, we write

1) = Uﬂ(i), J(@) = TGO\ ).

We now make a recursive definition of further families 7(i) = 7(iy,..., i), together with
the associated sets J (i), when i = (iy,..., i) € w<“is a finite sequence of natural
numbers.

I(io, ""ik) - Uj(lOa "'!ik),

RGN R N (AT 9 AV (7S 79 }
I(g, - ik iger) ={N 0 J (s i)' N € I(iks1) }
Lemma (6.2.7)[216]: If i = (iy,...,i;)and 0 < [ < k then
IGig, .. k) € J (o, i) € T (00).
If the natural numbers iy, i4,..., i are not all distinct then I (iy,...,i;) = @.
Proof. By definition

I(iO""’im+1) - I(lm+1) N ](iO""’im)’

so that

I (igy - ime1) € J Gior- - im).

Now J (iy,...,i;,) IS a closed set, so we have

J (orovvime1) € TG0, imer) S J(or-. im).
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Since this is true for all m, we easily obtain

I(iO""’ik) c .](iO""’il)
forO0 <l<k.

To see that J (iy,...,i;) € J (i;), consider t € J (iy,...,i;). Every neighbourhood of ¢
meets at least two members of the family 7(i,, ..., i;), and hence at least two members of
the family 7(i;), sothat ¢t € J (i;).

Finally, suppose that i, = i; forsome0 < m <[ < k. We have

which is empty since I (i) n J (i) = @ forall i.
We shall be concerned especially with the sets I(i) when the sequence i is strictly

increasing. We shall write X' for the set of all such sequences i = (iy,..., i) with k = 0
and iy < i; <--< i, . We equip X~ with a total order <, defined by saying that i =

(ig,..vix) < J = (o,...,j;) ifeither
(i) there exists r < min{k, [} suchthati, = j;for0 < s<r,and i, <j,or
(ik>landj, = isfor0 <s< L

Rephrasing this definition, we may say that i < j if either i < j for the lexicographic
order, or i is a proper extension of j. | am grateful to Gilles Godefroy who pointed out that
the order < may be regarded as just the usual lexicographic order if we think of our finite
sequences as infinite sequences terminating in a long run of o’s.

Lemma (6.2.8)[216]: Letj = (jo,...,j;) € 2 and write

Al — U I—(jO""’jT—l’i)’
0o=<rsl
Jr-1<i<Jy

n= TGor- v itsts- - ik) -

k>l
Ue>lg—1> >l 1>]1

Then
Uz‘(i) = 4, U4, = 4, U ] ().
i<j

In particular U, 1(i) is a closed subset of K.

Proof. It is clear that A, is exactly the union of the sets I(i) where i satisfies clause (ii) in
the definition of the relation <. If i = (iy,..., i) satisfies clause (i) of that definition,
then we have

I, i) S (o, i) = T (o jr-aiy) S A
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It follows that A, is exactly the union of the sets I (i) where i satisfies (i).

It is clear from the definitions that A, < ] (j), so, to prove the second equality, it will
be enough to show that J (j) € A; U A,. Suppose then that t € ] (j); for some i, we
have t € I (i), and i is not equal to any of the j;, since J (j) € J (js)and I (i) n J (i) =
@. There are now two cases. If i > j; then

t € 1(o....ji) € A4,

If i < j; we choose r minimal with respect to i < j,, noting that i > j,_,, and observe
that

t € IGo,. Jr-1,1) S 4.

It is immediate that our set is closed,_since we have shown it to be the union of the closed
set J (j) with finitely many closures I (7).

Given j and a finite subset M of 7(j) we shall write

GG M) = K\ Uz‘(i) UU?(])\]VL” |

i<j
noting that this is an open subset of K.

Lemma (6.2.9)[216]: Let t be any element of K. There is a <-minimal element j* of X
witht € I ().

Proof. Since § = U;¢,, I(i) covers K, there is some i € w witht € I (i); let i* be the
minimal such i. Now let j, be minimal subject to t € I (j,). Certainly j, < i*, and if
jo = i* we are finished: indeed any i € X witht € I (i) andi < (j,) must be a proper
extension of (j,), by minimality of j,; but I(i) € J(j,) = J (i*) for any such i and
t & J(@i*)sincel (i) n J(i*) = @;thusj* = (o) = (i*) is the minimal element of ~
satisfying t € I(j*). Otherwise, t € I (jo,i*) and we let j; be minimal subject to
t € I (jo jy), then continue in a similar fashion. Eventually we obtain j, < j; <<
jx = i*, where, for each r < k,j, is minimal subject to t € I (jo,...,j,). Arguing as
above, we see that j* = (jo.j1,...,jx) is the minimal element of X satisfying t € I (j*).

Finally, we have a lemma which needs compactness of the space K.

Lemma (6.2.10)[216]: Let K be a compact space and let § = U;¢,, 7(i) be a covering of
K which is the union of regular isolated families 7(i). Let H be a non-empty closed subset
of K. Then there exists a minimal j € ¥ with H n I (j) # @. Moreover, H n I (j) S
I (j) and there is a non-empty, finite M < J(j) such that H n M + @ for all M €
MandH < G(j,M).

Proof. Let J = {j € :H n I (j) # @} and for j € J define H (j) = H nU;<;I(0).
By Lemma (6.2.8), each H (j) is a closed set, and the sets H (j) form a downward directed
family because the set XY is totally ordered by <. | claim that
NjegH (j) = @:indeed, otherwise let ¢t be in this intersection and let j* be as in Lemma
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(6.2.9); since t € H n I(j*) we have j*€ J , and so t € U;<;-I (i), contradicting
minimality of j*. By compactness, we now see that there is some j € J such that H (j) =
@. For thisjwehave H N I (j) # @and H n I (i) = @ wheneveri < j.

Continuing to work with our minimal j, we have I (j) = 1 (j) U J (j) and by Lemma
(6.28), J(j) S U;;I(Q). Thus Hn J(j) = @ and so H n I (j) = H n I(j). The
compact set H n I (j) is thus covered by the family 7(j), the elements of which are
disjoint and open, relative to I (j). Thus, if we define M = {M € 7(j): M n H # @}, it
must be that M is finite and H N 1 () S U M. Finally, to see that H S G(j, M), we
need to show that H N U;<;7 (i) = H nUJI() \M = @. The first of these is just the
minimality of j again; the second is immediate when we recall that H n 1 (j) € UM and
that UM NnUI(G) \M = @ because the family 7(j) is isolated.

When K is a descriptive compact space having property P with some metric d then
there exists, for each natural number |, a o -isolated covering S = U ;¢ 7'(i) of K,
consisting of sets that are of d-diameter at most 2~¢ . When d is lower semi-continuous,
the sets N defined at the start are also of diameter at most 2~ . In general, this is not the
case: however, each N is contained in the 7 -closure of some set (namely N) of d-
diameter at most 2 . We may summarize the situation in the form of a proposition.

Proposition (6.2.11)[216]: Let (K,T ) be a compact space equipped with a metric d such
that property P(d, T ) holds. Then, for each | € w, there is a covering S* of K, which is
the union Uje, (i) of regular isolated families 7'(i), such that each N € S! is
contained in the T -closure of some set of d-diameter at most 27 .

From now on, we shall assume S = U;e,, I*(i) to be as above, and shall construct
the associated 7° (i), 1" (i), (i) and G* (i, M) as described.

We now set about constructing a norm on €(K)when K is a descriptive compact space.
As well as the topological machinery set up, we shall need one more ingredient. Let L be a
closed subset of K, let [ be a natural number, let m, n be positive integers and let i,j € X;
we write B(L, 1, i,j, m,n) for the set of all pairs (M, V') of finite subsets of 7¢ (i), 7}(}),
respectively, which satisfy #M = m#N = n M N L+ @ foralM € M,N n L #

@forall N € vV, and
(Joen [Jo =0

If f € C(K)and L, M,V are as above, we set

O LM N ) = <n-1 z max f[L N N] — m~? z min F[L N M]) |

2
NeN MeM

noticing that & is a non-negative, positively homogeneous, convex function of its
argument f and that

1
O(f, L, M, N) <= osc(fIL) < |l fILIloo-
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Whenever (M, V') is a pair of finite sets as above, satisfying

Jmn|Jw =0

we fix, once and for all, a pair of closed subsets (X(M, NV ),Y (M, NV')) such that

XM N)UY (M N)= K, XOMN) N U]\f — Y (M, ) nUM _

In the definition of our norm, we shall also need to fix positive real numbers c(i) (i €
2) with };ex c(i) < 1. We could, for instance, take

. .\ _ A=—2l0_2i1_.._2i
c(ip,iq,...,i;) = 2 .

Proposition (6.2.12)[216]: There are unique non-negative real-valued functions
QL 1D,6(f,LLijmn),6,( LlLijmmn)60,( LILMN)and ¥ (f,L, 1, M,N),
defined for functions f € C(K), , closed subsets L of K, natural numbers
[,m,n,p,elements i,j of X, and (M, V') € B(L,1,i,j,m,n), which are convex in their
argument f, and which satisfy the inequalities

‘Q(fi Li l)i Q(f’ Li li iiji min)i Qp(fi Li li iiji min)i
Op(f LM, )W (f L LM,V ) < |If|Llloo,
as well as the relations

60(f,L,D)* = Il f LIS + osc(f | L)?

+ z c()c(j) i i 2-mn@(f,L,1,i,j,mn)?,

i,jJEX m=1n=1

Q(fiLi l’ iijimin)z = z 2_p9p(fiLilii!jim’n)2i
p=1

Qp(fiLiliiijimin)z Sup Qp(fiLiliMiN)i
(M N)eB(L,Li,jmn)

20,(f L,L, M, N)? = &(f, L, M, N )*> + p~'¥ (f,L, |, M, N)?,
W (f,LILMN)=0(LnXMN)D*+ 2 L nYy (M N)I)?.

We may define a norm ||. || on €(K), equivalent to the supremum norm, by setting

(0.0)

I =) 2710 (f K, D3,

=1

Proof. The functions @ and 0, are defined in terms of ¥ and the known function &
defined earlier. Hence all we have to show is that the mutual recursion in the definitions of
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N and ¥ really does define something. We do this by applying a fixed-point theorem, as in
[102].

Let Z be the set of all tuples (f,L,[, M,V ) with f € €C(K), L a closed subset of K, [
a positive integer and (M, V') € U;jmnB(L,1,i,j,m n). Let Z be the set of all pairs
(2,¥) of non-negative real-valued functions Q(f,L,01),%¥ (f,L,[,M,N), which are
convex, symmetric and positively homogeneous in their argument , and which satisfy the
inequalities

QF LDYFLLMN) <l flle.
Define a metric p on Z by setting

p(2,¥), @ \Y¥")
= sup max{ |2(f,L,1)> — 2'(f,L,D?| ,| ¥ (f,L, [, M, N )?
- lp,(f’L!l!M’N)zl} )

where the supremum is taken over all L,l, M, V" and all f with ||f]|, < 1. Itis clear that
this makes Z a complete metric space.

Now define a mapping F : Z — Z by setting F (2, %) = (2, ¥) , where
3P (f,LLM,N)? = 0(f,L n X(M,N),D*+ 2(f,L nY (M N)ID?,

and

602(f, L, 1)% =

IFILIE + osc(f 1LY+ > c@e() Y. > 27 0(f L, L j,m,n)?

i,jJEX m=1n=1

the function @ being obtained from ¥ via the formulae in the statement of the proposition.
It may be noted that, though the function @ is not symmetric in , we do have

O(—f,L i jmmn) = 0(f,L,11ijnm),

so that 2 is symmetric.

It is easy to check that p(F (2,¥),F (' ,¢')) < %p((ﬂ,ll’ ), (2", ¥")), so that F

has a unique fixed point, by Banach’s fixed point theorem. This fixed point yields the
functions that we want, and hence enables us to define the norm ||-||.

It is the norm defined in Proposition (6.2.12) that we shall show to be locally
uniformly rotund in the case where d is a lower semi-continuous (or, more generally,
Reznichenko) metric fragmenting the descriptive compact space K. By the discussion at
the end it will be enough to prove the following theorem.

Theorem (6.2.13)[216]: Let (K,T ) be a descriptive compact space and let d be a metric
on K such that property P(d,7 ) holds. Let the norm ||-|| be defined as in Proposition
(6.2.12). If f be a function in C(K) which is d-uniformly continuous then the norm [|-|| is
locally uniformly convex at .
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The proof of this theorem will occupy the remainder. We shall consider a
sequence (f,-) in C(K) which satisfies

2

- 0,

1 1 1
SIAE +5 1507 =[5 ¢ + £)

as r — oo. In the language introduced earlier, we are assuming that the LUR hypothesis
holds for|| -|| (and our given f and f,.). We have to prove that £, converges to f uniformly
on K. Given € > 0, we may use uniform continuity of f to choose a positive integer [
such that

dit,u) <2t = | F @) - f W] S%e.

Lemma (6.2.14)[216]: If N € S! then the oscillation of r on N is at most%e :

Proof. As in Proposition (6.2.10), we are supposing that for each N € S! there is some set
M of d-diameter at most 27! such that N is contained in the 7" -closure of M. The uniform

continuity estimate tells us that the oscillation of » on M is at most %e and the T -
continuity of f enables us to extend this to N.

The definition of our norm as an £2-sum

(0.0)

IFIZ =) 2750 K, k)2

k=1

implies, thanks to an observation we made earlier, that the LUR hypothesis holds for each
of the functions 2(:, K, k) and in particular for 2(:,K,1). This is all we shall use in our
proof that ||f — f,l|. IS eventually smaller than €.

Let L be a closed subset of K, let m,n be positive integers and let i,j € X. (Recall that
f,eand [ are now fixed.) For a pair (M, N) € B(L,l,i,j, m,n), we define the following
real numbers:

A =minf[L],

a = max inff [L nM]

a =min f[L\G' (i, M)],
B =max f[L\G' (j, )],
b = minyeq sup f [L N NJ,
B = max f [L].

Of course, we have a > A,a > A,b < B and f < B. We shall say that the pair (M, NV')
Is a good choice (of type (i, j,m,n)) on L if

n (B —pB)> (B — b)+ (a — A)and
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mY(a — A) > (B — b) + (a — A).

Lemma (6.2.15)[216]: If L is a closed subset of K and the oscillation of f on L is at least €
then there is at least one good choice on L.

Proof. Let H, = {t € L: f (t) = max f [L]} and apply Lemma (6.2.10). There exist
j € X and a finite subset N of 7¢ (j) such that H;, N N = @forall N € N and H, S
G' (j, ). It follows that, in the notation just established, we have B = b and B > 3. A
similar argument applied to the set H, = {t € L: f (t) = min f [L]} yields i and M
such that A = a and A < a. To finish showing that (M, V') is a good choice, we need to
check that (M, ) is in B(L,lL,i,j,m,n), and what remains to be proved is that M n
‘N =¢forallM e Mandall N € V.

Our choice of [ ensures that the oscillation of f on each M 6_3\7[ and oneach N € N
Is at most €/3, and, by continuity of f , the same holds for each M and each N. Hence

max f[M] < A +€/3,
min f[N] =B — €/3,

for all such M, N. Since we are assuming that the oscillation B — A of f on L is at least €,
we deducethat M N N = @ as claimed. _

Lemma (6.2.16)[216]: Let L,,L,,... be a decreasing sequence of non-empty closed
subsets of K with intersection L. If (M, N) is a good choice on L, then it is a good choice
on L for all sufficiently large values of s.

Proof. Let us define A, B, a, B, b, B as above and set
As = min f[Ls ],

a;, = maxinff [Ly n M],
MEM

as =min f[ L; \G' (i, M)],

with analogous definitions for S, ,bs,Bs . Standard compactness arguments show that
A; - A ass — <o, and so on. Hence the inequalities defining a good choice for L, do
hold for all sufficiently large s.

The third lemma reveals why good choices are so named: it is a “rigidity condition” of
a type that occurs commonly in LUR proofs. It will be convenient to state it in terms of
“strong attainment” of a certain supremum, a notion with which most will be familiar, but
which we shall nonetheless define explicitly. If (y;);e; is a bounded family of real
numbers, we shall say that the supremum sup;¢;y; IS strongly attained at j if
SUP;engj} ¥i < ¥; - This of course implies that if (i,) is a sequence in I and yi, -
Sup;e; v; asr — oo, theni, = j for all large enough r.

Lemma (6.2.17)[216]: Let L be a closed subset of K and suppose that there exists a good
choice (M, ) of type (mmn,ij) on L. Then the supremum
sup {@(f, L, M, N): (M, N) € B(L,1,i,jm,n)}is strongly attained at (M, V) .
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Proof. Let us write A,a,a,B,b,B for the quantities associated with (M, ) in the
definition of a good choice. So we have min f[L N M] < a and max f [L N N] = b for
alM € Mandall N € NV. Thus 2&(f,L,M,N) > b — a.

Now suppose that (M, N") is in B(L,l,i,j,m,n) and that M = M. Since M and M
have the same number of elements, namely m, M must have at least one element M,
which is not in M. It follows from the definition of G (i, M) that M, N G(i, M) = @ so
that minf[L N My] = a. For the other m — 1 elements of M, we certainly have
min f[L N My] = A, and of course max f[L n N] < Bforall N € V. Hence

2@D[f,L,JVL”,]\f]S1nB —i(a + (m - 1A =B - A —i(a — A).
n m m

By the definition of a good choice, this is strictly smaller than b — a, Similarly, we show
that if N = IV then

1
20[f M, N]< B - A - (B - B),
another quantity which is known to be smaller than b — a.

We record for convenience the following version of [99].

Lemma (6.2.18)[216]: Let (¢;);c; and (¥;);¢; be two pointwise-bounded families of non-
negative, realvalued, convex functions on a real vector space Z. For i € [ and positive
integers p define functions 6, ,,, 6,, and 6 by setting

20, ,(x)* = @;(x)* + p~lh;(x)?,
6, (x) = sup 6;,(x),

i€l
0 () =) 2776,(x)*.

p=1
Let x and x, (r € w) be elements of Z and assume that

0 +3 601,)? - e(% (x + xr)) 50

asr — oo, Then there is a sequence (i,) of elements of I such that

@iy (x) > sup@;(x) and

i€l
2
%lpir (x)z +% Yi, (xr)z — Pi, <% (x + xr)) -0

asr — oo,

Corollary (6.2.19)[216]: If, in addition to the hypotheses of Lemma (6.2.18), we assume
that the supremum sup;¢; @;(x) is strongly attained at j , then we may conclude that
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1 1 1 2
S¥; (x)? S ¥ (x)? — 1; <§ (x + xr)) - 0.

Proof. This is of course automatic, since the assumptions imply that a sequence (i,) for
which

@iy (x) - sup@;(x)
1€l
asr — oo must necessarily satisfy i,, = j for all large enough j .

We may rephrase the statement of this corollary by saying that if the LUR hypothesis
holds for 6 and the supremum sup;¢; @;(x)is strongly attained at , then the LUR
hypothesis holds for i; . It is precisely this formulation that we shall be applying in the
next result, where we return to the proof of Theorem (6.2.13) and where of course we are
still dealing with fixed f, f,,€ and L.

Proposition (6.2.20)[216]: Let L be a closed subset of K and assume that the LUR
hypothesis holds for 2(-,L,1). If (M, V') is a good choice on L then the LUR hypothesis
holds for 2(:,L N X(M,N), 1) and 2(-,L n Y (M, N),1).

Proof. Let (M, N)be of type (i,j,m,n). The expression for 2(:,L,1) as an £?-sum
implies that the LUR hypothesis holds for (-, L, 1, i, j, m,n), which is readily recognizable
as a function to which we may apply Deville’s lemma. Moreover, by Lemma (6.2.17), we
are in the situation where the supremum supue xyes(mm.i.j) @, L, L, M, V") is strongly
attained at (M, N'). So, by the above corollary, the LUR hypothesis holds for ¥ (-
L, 1, M, N). The formula for this as an £? sum now shows that the LUR hypothesis holds
for (¢, L n X(M,N), D) and 2(-,L n Y (M, N),1), as claimed.

Lemma (6.2.21)[216]: Let L be a closed subset of K on which the oscillation of f is
smaller than €. If the LUR hypothesis holds for 2(:,L,1) then ||(f — f)| Ll <€ for
all large enough r.

Proof. From the formula for 2 as an #2-sum, we see that the LUR hypothesis holds for the
convex functions g — || g| L|ll, and g +— osc(g|L). So in particular, [|f-|Lllec —

W1 Lo |3 G + MIL]| = If1Llleo and osc(f]L) — osc(f|L)asT — oo. The

required result follows from a fairly standard argument. Let us write osc(f|L) =€ — 4n
and suppose that r is large enough for us to have

I el < U1 Ll +
|5 ¢+ more]_ =1t - n

osc(f|L) < € — 3n.

There exists t € K with |% f + )@ > IfI Ll —n, and we may assume that
(f + f)() > 0. It follows that
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@) > 2lf| Ll — 27 = lIf] Ll
= |IfI Lllec = 27,
f@® > 2f|Lllo — 2n = llfr] Ll
> |If| Ll — 3n.
Now for any u € L we have
f@=f()— osc(fIL)
>flLllec = 3n — €+ 4n
= IfI Lllc — € + m,
f @) < f[ Ll
fr(w) =2 f(t) — osc(fr| L)
>flLllc— 2n —€ + 31
= IfI Lllwc — € + m,
fr@ < If] Llle
< IIfILllco + 7.
It follows immediately that |f (u) — f-(u)]| <€.

Proposition (6.2.22)[216]: There is a finite covering £ of K with closed subsets such that
the LUR hypothesis holds for 2(:, L, 1) and the oscillation of f on L is smaller than ¢, for
each L € L.

Proof. We shall define a tree Y whose elements will be certain pairs (L, s) with L a closed
subset of K and s a natural number. We shall give a recursive definition which will specify
which such pairs are nodes of our tree, and shall define the tree ordering by saying which
(if any) nodes are the immediate successors of a given (L, s). To do this, we shall need to
fix a mapping 7:w — XY X XY X w X w with the property that each quadruple
(i,j,m,n) occurs as 7 (s) for infinitely many s € w.

It will be ensured during the construction that, whenever (L,s) € Y, the LUR
hypothesis holds for 2(:, L, ). We start by declaring that there is one minimal node (K, 0).
(Notice that our hypotheses do ensure that the LUR hypothesis holds for 2(, K,1).) If
(L, s) is a node of our tree then there are three possibilities:

(i) if the oscillation of f on L is smaller than € then (L, s) has no immediate successors in
the tree (that is to say, (L, s) is a maximal element);

(i) if the oscillation of f on L is at least € and there is a good choice (M, V') of type
T (s) on L then we introduce into ¥ two immediate successors, (L N X(M,N),s + 1)
and (L N X(M,N),s + 1), of (L,s) (notice that, by Proposition (6.2.20), the LUR
hypothesis holds for the 2 functions associated with these two new nodes);
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(iii) if the oscillation of f on L is at least € but no good choice of type t (s) exists, then we
introduce just one immediate successor (L,s + 1) of (L, s) into the tree.

We shall now show that the tree Y we have just constructed has only finitely many
elements. By Konig’s lemma, it will be enough to show that ¥ has no infinite branch. So
suppose, if possible, that there is a sequence (L,).¢,, Of closed subsets of K such that the
pairs (Lg,s) are nodes of ¥ and such that, for each s, (Ls;;,s +1) is an immediate
successor of (Lg,s) inY . The sets L form a decreasing sequence of closed subsets of K;
let us write L for their intersection. By a compactness argument, the oscillation osc(f |Ls)
tends to osc(f|L) as s — oo. Since each (Lg,s) has successors in , we have
osc(f |Lg) = s for each s, and we can thus deduce that osc(f | L) = € . So, by Lemma
(6.2.15), there is a good choice (M,N) on L, of type (i,j,m,n) say. By Lemma
(6.2.16), (M, V") is also a good choice on L for all sufficiently large s. Recalling that
T (s) = (i,j,m,n) for infinitely many values of s, we see that we can choose s such that
(M, V) is a good choice on Lg of type 7 (s). The way we constructed the tree Y means
that Lg,, is one or other of the two sets Ly N X(M',N) and Ly N Y (M, V). So one or
other of Lg,; NUN and Lg,.; N UM is empty. But this is absurd, since L,,; 2 L and
thesets L. N M,L n N are non-empty forallM € M and N € V.

Having proved that Y is finite, we define £ to be the set of all L such that there is a
maximal element of Y of the form (L,r). Our construction ensures that the LUR
hypothesis holds for 2(:, L, 1) for each such L, and, by maximality, the oscillation of f on
any such L is smaller than e. We just need to show that U £ = K. This is most easily
proved by induction: for each s let L; = {L:(L,s) € Y }; | claim that, for all s, UL U
U L; = K. Certainly this is true for s = 0 since £, = {K}. To deal with the inductive
steplett € ULU U L be given. If t € U L there is no problem, so assume that t € L
for some L € L,. By the construction of Y, one of (i), (ii) and (iii) occurs for the pair
(L,s). Ifitis(i)thent € L € L. Ifitis (ii) then t is one or other of the two sets L N X
and L n Y which themselves are members of L,,,. Finally if it is (iii) then t € L €
Le,q. Inall cases, we have t € UL U U L4, which completes our proof by induction.
Since Y is finite, L is empty for large enough s, which shows that U £L = K.

We can now finish the proof of Theorem (6.2.13). Indeed, by Proposition (6.2.22), K is
the union of finitely many subsets L, for each of which sup:e. |f,-(t) — f (t)] is
eventually smaller than €. So ||, — fll Is eventually smaller than e, which is what we
wanted to prove.

Section (6.3): Steinhaus’Lattice-Point Problem

The following feature of the integer lattice in the Euclidean plane was probably first
observed by Steinhaus [238]: for any natural number n one may find a circle surrounding
exactly n lattice points. Zwolenski [239] generalised this fact to the setting of Hilbert
spaces in the following manner. He replaced the set of lattice points by a more general
quasi-finite set, i.e., an infinite subset A of a metric space X such that each ball in X
contains only finitely many elements of A. His result then reads as follows.
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Theorem (6.3.1)[228]: ([239]). Let A be a quasi-finite subset of a Hilbert space X. Then
there exists a dense subset Y < X such that forevery y € Y and n € N there exists a ball
B centred at y with |[A n B| = n.

We distill the property that we will term Steinhaus’ property (S). A metric space X has
this property if, by definition,

(S) for any quasi-finite set A c X there exists a dense set Y < X such that forall y € Y
and n € N there exists a ball B centred at y with |A N B| = n.

We translate condition (S), formulated above, into three equivalent statements concerning
the geometry of the unit ball of a Banach space. They require that, locally, the unit sphere
of X does not look the same at any two distinct points. This approach will be particularly
beneficial, as it will allow us to identify spaces that share that property with Hilbert
spaces, yet of a very different nature. Our first main result then reads as follows.

We employ the announced equivalence to extend Zwolenski’s result to strictly convex
Banach spaces (Corollary (6.3.4)). It is well-known that not every Banach space admits a
strictly convex renorming, just to mention the examples of £, (I") for any uncountable set
I' (see [231] and [232]) or the quotient space ¢, /c, ([230]). This motivates the question
of whether strict convexity and property (S) are equivalent at the level of renormings, and
a negative answer is a part of our next result.

Solovay ([237]) proved that the assertion that the continuum is a real-valued cardinal
Is equiconsistent with the existence of a two-valued measurable cardinal number, therefore
its consistency cannot be proved in ZFC alone (assuming of course that ZFC itself is
consistent). Interestingly, our construction in this universe is possible because the real-
valued measurability of the continuum implies the failure of the Continuum Hypothesis
([229]) and we take advantage not only of pleasant measure-theoretic properties of the
continuum but also of the existence of an uncountable cardinal number below it.

It seems unlikely that real-measurability of the continuum is really necessary to show
that there exist Banach spaces with (S) but which do not have a strictly convex renorming.
This leaves the question of possibility of such constructions in ZFC open.

Theorem (6.3.2)]228]: Let X be a Banach space. The following assertions are equivalent:
(S) X has Steinhaus’ property;

(S;) for any quasi-finite set A < X there exists a dense set Y < X such that for every
y € Y there exists a ball B centred at y with |[A n B| = 1;

(S’) forall x,y € X withx # y,||[x|]| = ||yll| = 1and each § > O thereexistsaz € X
with [|z|| < & such that one of the vectors x + z and y + z has norm greater than 1,
whereas the other has norm smaller than 1;

(S") forall x,y € Xwithx # y,||x|| = |lyll = 1andeach§ > O thereexistsaz € X
with ||z|| < 6 suchthat ||[x + z| = ||y + z]|.

In other words, condition (S”) means exactly that one cannot find a ‘neighbourhood’
of parallel line segments on the unit sphere of equal length. This seems to be a new
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geometric property which, as we will see, is essentially weaker than strict convexity.
Notice that, in contrast to many other classical properties, property (S) is not inherited by
subspaces and, in a sense, is neither local nor global.

Properties (S’) and (S”) are related to another (weaker) property of ‘non-flatness’ of
the unit sphere:

(F) the unit sphere Sy of X does not contain any flat faces, that is to say, there is no non-
empty subset of Sy, open in the relative norm topology, that is contained in a hyperplane.

Here by a hyperplane of X we understand a translation of a subspace of X of codimension
1, i.e., aset of the form x + ker(x™) for some x € X and x* € X*. Note, however, that
(F) does not imply  (S”)  that IS witnessed by  the norm

(x,y, 2)|| = max{y/ x2 + y2|z|} for (x,v,z) € R3 (consider the points (1,0,0) and
(1,0, % )). However, whether every Banach space admits a renorming satisfying (F) seems
to be an attractive open problem.

Proof . Since the implications (S) = (S;) and (S’) = (S”) hold true trivially, it is enough to
prove that (§;) = (S°), (§’) = (S) and (S”) = (S°).

(1) = (S°): Suppose that (S;) holds. Fix any § > 0 and x,y € X withx # y,||x|| =
llyll = 1. Consider any quasi-finite set A < Xsuch that A n (1 + &§)By = {x,y},
where By stands for the closed unit ball of X. According to (S;), thereisau € X, ||ul| <
6/2, such that for some r > 0 the open ball B(u,r) contains exactly one element of A.
Suppose there isan a € A\ {x, y} belonging to B(u,r). Then

) )
r>lla = ull 2 llall = flull > (1 + ) —5 =1+,

hence ||[x — ul|| < r,thatis x € B(u,r); a contradiction. Consequently, B(u, r) contains
exactly one of the points x and y,say x € B(u,r)andy ¢ B(u,r). Then

o) o)
LS <lx—ul<r<ly-ul<1i+3

Suppose that r <1,r = 1 — ewith some ¢ € [0,6/2) and take any number p
satisfying

)
0 <p< min{r — |lx — ull,z — e} :
Obviously, we may find v € X with ||v|| <& + p such that |ly — (u + v)|| =r +
¢ + p > 1. Then we also have
lx— (u + V)< flx —ull + vl <r—-p+[vlisl

Therefore, setting z = —(u + v) completes the proof of our claim, since we have the
estimate ||lu + v|| < ¢ + p + 6/2 < 6. We proceed similarly in the case where
r > 1 so the proof of (S;) = (S’) is then complete.
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(S’) = (S): Let X be a Banach space X that satisfies (S’) and let A < X be a quasi-finite
set. Forany n € N set

G, ={x € X: |A n B(x,r)] = nforsomer > 0} .

It is evident, in view of the definition of a quasi-finite set, that each G,, is an open subset of
X. We shall prove that it is also dense.

Assume, in search of a contradiction, that there is an open ball U = B(xy,19) in X
not intersecting G,,. Rescaling U if necessary, we may suppose that A n U = @. With
any point x € U we associate two integers m(x) < n and k(x) = 2 defined as follows:
Since x € Gy, there is the largest non-negative integer m(x) < n for which there exists
q > 0 with |[A n B(x,q)] = m(x). Then, for every s > g we have either |[A N
B(x,s)| = m(x) or |A n B(x,s)| > n. Define

s = inf{t > 0:|A n B(x,t)|] > n}.

Then exactly m(x) points a4,...,a,,(x) € A lie in the ball B(x, s), whereas at least two
such points lie on the boundary of B(x, s); let us call them b,,..., by, where k > 2. In this
way we define k(x) = k.

Now, we shall use an infinite descent argument to obtain a desired contradiction. Let
ai,...,Qm, by, ..., by be as above for x = x,, where m = m(x,) and k = k(x,). Pick
any & > 0 such that

fa;: 1<si<m} < B(x +us)ynAdc{agb:1lsi<mls<j
< k} foreveryu € X with ||u|]| < 6.
Define p = max{|]la; — xpl|:1 < i< m} < sand set y = s — p. Each of the

vectors (b; — x¢)/s (j = 1,...,k) lies in the unit sphere. Applying the hypothesis (S’) to
any two of them (e.g., toj = 1,2), we obtain a point z € X with

lIsz|l < min{8,y/2}

such that one of the vectors: b; — x, — sz (j = 1,2) has norm greater than s, whereas

the other has norm smaller than s. By decreasing 8, if necessary, we may also assume that
the point x := x, + sz still lies in U. Therefore the ball B(x,s) with the centre in U
contains all a;’s (1< i< m) and at least one but not all among b;'s (1 <j <
k). Observe also that by our choice of z, we have

la; — x|l < lla; — xoll + l[sz]l < p +g= S —gforeachlﬁ i<m

and

1b; = x[| = [|b; — x| + llszll > s —g foreachl1< j< k.

Therefore, by suitably rescaling the ball B(x, s), we obtain a new ball centred at x which
contains all of a;’s and whose boundary contains some but not all of b;’s. This shows that

we have either m(x) > m(x,) or k(x) < k(x,). This construction (with x, replaced by
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x) will ultimately lead to a contradiction, as we finally arrive at a point u € U with
m(u) = n ork(u) < 2. Therefore, all the sets G,, (n € N) are open and dense.

By the Baire Category Theorem, the set Y = N,;~; G, is dense in X and, obviously,
for each y € Y and n € Nthere is a ball B centred at y with |[A n B] = n. This
completes the proof of (S).

(S”) = (S’): Assume the negation of (S”) and choose distinct unit vectors x,y € X and
& > 0 so that there is no vector z € X with ||z|| < & for which exactly one of the
vectors x + zand y + z lies inside the unit ball of X. For every u € Sy define

V, ={z € Sy: |lu + az|| < 1for somea > 0}
and
A(2) = min{§,inf{a > 0:|lu + az| = 1}} (z € V).

By the assumption, we have V,, = V}, and 1,(z) = 4,(z) forevery z € V,, which means

that the unit sphere looks locally the same at x and y (via the translation by y — x),
namely,

y —x + (B(x,6) n Sx) = B(y.6) N Sx. (€Y
Pick n > 0 so small that
”x _XF 2o s and ”y —y—”” < 5 if |zl < n. )
llx + z|| ly + zI|

Now, using (S”), choose a vector z € X with ||z|| < n so that |[x + z|| = ||y + z]|.
We have then two possibilities: either [|x + z|| < land ||y + z|| < l,or||lx + z|| =1
and ||y + z|| = 1. We shall consider the former case; for the latter one the argument is
similar.

With no loss of generality we can assume that [|x + z|| > ||y + z||. Consider the
function g : [0,0) — [0, ) given by
g@) = |lx +z + aly — x)l|
which is convex, as can be easily verified. In view of (1) and (2), we have

x t+ z

+— | =1
llx + z|| |

=

that is, g(llx + z||) = ||lx + z|. We have also g(0) = ||x + z|land g(1) =
ly + z|| < |lx + z||. This is a contradiction with the convexity of g, as the arguments:
0, |lx + z|| and 1 lie in this order on the real line.

We will demonstrate some applications of Theorem (6.3.2) in concrete situations.
We begin with a strengthening of Zwolenski’s result.

Given two elements x,y in a real vector space X, we denote by xy the line segment
betweenxand y,i.e.,xy = {Ax + (1 — D)y: 1 € [0,1]}.
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Proposition (6.3.3)[228]: Let X be a Banach space and suppose that x,y € X are distinct
unit vectors. If xy & Sy, then for each § > Othereis z € X with ||z|| < § such that one
of the vector x + z,y + zhas norm greater than 1 whereas the other one has norm
strictly less than 1.

Proof. Let § > Oand x,y € X with x # y,|lx|| = |lyl| = 1 be given. Then each point
inside the segment Xy, joining x and y, has norm smaller than 1, whereas each point lying
on the straight line passing through x and y, but outside xy, has norm larger than 1.
Therefore, any point z € X satisfying0 < ||z|| < §and x + z € Xy does the job.

Corollary (6.3.4)[228]: Every strictly convex Banach space X satisfies (S).

Now, we will see that strictly convex spaces do not exhaust the whole class of Banach
spaces satisfying Steinhaus’ condition. In fact, these two classes differ already in
dimension three. The following construction will also serve as a base for the proof of
Theorem (6.3.10).

Example (6.3.5)[228]: We claim that there exists a norm ||| - ||| in R3 such that (R3,]|| -
[|]) contains #2, isometrically (and hence is not strictly convex), nonetheless it satisfies
condition (S). We are indebted to the referee for suggesting the following example which
significantly simplified our original construction.

First, observe that the negation of (S”) easily implies that there are two different points
x and y on the unit sphere and § > 0 so that ||[x + z|| = [|lw + z|| whenever ||z|| < §
and w € Xy. In other words, if a given Banach space fails Steinhaus’ condition, then
there must be a “‘neighbourhood’ of segments on the unit sphere. Having this in mind we
set

B = {(xl,xz,x3) € [_1’ 1]3 : |x3| < f(xl’xZ)}’

where f: [-1,1]> - [0,1] is any continuous function satisfying the equations
£(0,0) = 1 and f(—xy,—x;) = f(x1,x,) which vanishes on the boundary of [—1, 1]?
and is strictly concave on (—1,1)2. For example, we can take (x;,x;) = (1 —
|1 DP(X — |x])P with0 < p < % . Then, let ||| - ||| be the norm on R3 defined as the

Minkowski functional of B. Since there are only four segments lying on the unit sphere
(the edges of the square [—1,1]*> x {0}), the Banach space (R3[| - |||) satisfies
Steinhaus’ condition due to the remark above.

It is worth noticing a simple geometrical feature of B which makes ||].]|] satisfy
condition (S’). Namely, considering any two different points x = (¢,1,0) and y =
(u,1,0)with 0 < t < u < 1 we see that the curve lying on B that starts at x and is
parallel to the x,x;-plane is flatter at the point x than its counterpart at the point y.
Therefore, for a given § > 0, one can take a vector z € R3 with ||z|]| < § of the form
z = (0,v,w) to guarantee that exactly one (more precisely: the latter one) of the vectors
x + z,y + z goes outside of B. For any other two points our claim is either trivial or

analogous. The upper part of the ball B defined as above with =§ , as well as some

contour lines illustrating the above-mentioned flattening effect, are depicted in the two
figures below.
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Figure (1)[228]:

The next corollary demonstrates that the classical L,(u) —spaces for atomless measures
u also satisfy Steinhaus’ condition, giving thus another class of examples of non-strictly
convex spaces with this property. Recall that a set A in a measure space is called an atom
if u(4) > Oand u(B) € {0, u(A)} for every measurable subset B of A.

Proposition (6.3.6)[228]: Let (2,X,u) be a measure space. Then, the space L;(u)
satisfies (S) if and only if 2 contains at most one atom (up to measure-zero sets).

Proof. By Luther’s theorem [235], there is a decomposition u = p; + u, with u,; being
semi-finite (i.e., foreach A € X with u;(A) = oo, there is a subset B € X of A such that
0 < uy(B) < o) and u, being degenerate (i.e., the range of u, is contained in {0, co}).
The space L, (u) is then isometrically isomorphic to L;(u) (for any f € L,(u) we have
u,({x: f(x) # 0}) = 0, thus the identity map yields the desired isometry). Therefore, we
consider only the case where u is semi-finite.

First, suppose that (2,2, 1) is atomless. Fix two functions f,g € L;(u) with f # g
and |[f]l = llgll = 1, and let § > O be given. Interchanging f and g, if necessary, we
may assume that there isaset F € X suchthat 0 < u(F) < oo and f(w) > g(w) for
w € F.Since

F = nUl{w € F: f(w)> g(w)+%} ,

we may also suppose that for some ¢ > O and all w € F we have f(w) > g(w) + e
Approximating f and g by step functions we may find a measurable set F' ¢ F with
u(F') > 0andsome cf,c; € R such that

|f(w)_ Cr | <§ and |g(a))— Cg| <§ ((1) € FI)

3 1 - , ! —
Hence, ¢, > cg+g e and ms > M, +E e, Where ms = ess inff(F') and M, =
ess sup g(F"). We have three possibilities:
(i) my; > 0and M, = O,
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(i) my > Oand M, < O,
(ili) my < Oand M, < O.

With no loss of generality suppose that either (i) or (ii) occurs (the case (iii) is analogous
to (i)). Then there is a positive number d such that |m; — d| <m; and |M; — d| >
|Mg[; indeed, in the former case we shall take any d € (2M,, 2m, ), while in the latter
one any sufficiently small d does the job.

Now, observe that for almost all w € F’ we have

If(w) = dl< If(@)] and |g(w) — d| > |g(w)I. 3

Indeed, for the first inequality note that in the case where f(w) = d > 0 it holds trivially
true, while in the opposite case we have

lf(@)—dl=d - flw)<d —mpg< |d — mp | < mp < |f ()]

For the other one observe that since M, < d (recall |M; — d| > [M]), we have
g(w) < d, thus in the case where g(w) = 0 we have

lgw)—dl=d — glw)=d — My = |d — My| > |My| = g(w) = |g(w)I,
whereas in the case where g(w) < 0 this inequality is trivial.

By the Darboux property of finite atomless measures ([236], see also [233]), there is a
measurable set H ¢ F' with 0 < u(H) < §/d. Then ||d - 14| < &, where 1 stands
for the characteristic function of H, while inequalities (3) imply that ||f — d - 1y || <
land||g — d - 1y || > 1. This proves assertion (S’), and hence also (S).

In the case where there is exactly one atom A < 2 (up to measure-zero sets), either
u(2\A) = 0, which means that L,(u«) = R isometrically, or there exists an atomless
part B c 0 of positive measure so that 2 = A U B. In the latter case, fix any f,g €
Ly(u) with f += g and ||f]| = llgll = 1. First, assume that f|z = g|g outside a set of
measure zero. Both f and g are constant almost everywhere on A; denote those constant
values as ¢, and cg4, respectively. Since [[f|l = [cf|u(A) + fB |f|du and |lgll =
lcglu(A) + fB |f] du, we have |cs | = |cg|land c; # c4. So, assuming that ¢, > 0 and
cg < 0, forany given§ > Owehave [[f + & - 14| > 1land |lg + & - 14| < 1. 1In
the case where f|z and g|z do not coincide almost everywhere, we repeat the argument
from the first part of the proof for the atomless measure space (B, u|s, ), where

Y'={B n C: C € X} Consequently, L,(u) has property (S) whenever the underlying
measure space contains at most one atom.

Finally, suppose £ contains two disjoint atoms, say A; and A,. Consider the functions
f =% (14, +14,)and = %1/11 +%1A2 . Obviously, for § € (O,%) there is no function
h with ||h|| < & so that exactly one of f + hand g + h has norm larger than 1, thus in
this case (S) fails to hold.
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Theorem (6.3.2) gives an immediate answer to the question about Steinhaus’ property
for Co(K)-spaces, and it is unsurprisingly negative except the trivial case where the
considered space is one-dimensional.

Corollary (6.3.7)[228]: Let K be a locally compact Hausdorff space that contains at least
two points. Then the space Cy(K)consisting of scalar-valued functions on K vanishing at
infinity does not have property (S).

Proof. Pick any two distinct points u, v € K, and their disjoint neighbourhoods U and V.
Since K is completely regular, there is a continuous map ¢: K — [0, 1] such that ¢(u) =
1 and ¢|x\y = 0. Similarly, since K \U is also completely regular, there is a continuous
map ¢;: K\U - [0,1/2] such that ¢,(v) = 1/2and ¢qlxk\@wur) = 0. Then the
mapping ¥: K — [0, 1] defined by

_ (p(x) forx € U,
Ylx) = {qbl(x) forx € K\U,

Is continuous and, of course, ¢ # Y. So, both functions ¢ and y belong to the unit sphere
of Cy(K), but forany § € (0,1/2) condition (S’) is violated.

Theorem (6.3.8)[228]: Assume that c is a real-valued cardinal number and let I be a set
with cardinality less than c. Then the Bochner space X = L;(u,€-(I")) has property (S)
for some atomless, probability measure .

Proof. As c is assumed to be a real-valued cardinal number, there exists an atomless
probability measure space (2, fo(2), 1), where 2 is a set with the cardinality of the
continuum and u is c-complete. Then u is the required measure.

Let f # g be two norm-one elements of X. Since members of X are equivalence
classes of the relation of equality almost everywhere, let us work with concrete
representatives f,g : 2 — £ (). Fix § > 0. There exists n, € N such that u(F, ) >

0, where

1
E,, ={w € 2:|f(w) — g(w)lle ) >n—0} :

Foreachy € I let

1
6, ={o € Ry IF@H) - 9@ >}

Since u is defined on the power set of (2, there is no problem with measurability of the sets
G, (v € I'). Also, as u is c-complete and |[I'| < ¢, the set G, has positive measure for
some y, € I'. Interchanging f with g, if necessary, we may suppose that the set

1
F ={0 € Gy, [(@)¥) > g(@)¥ro) + )
0
has positive measure. Now, we proceed as in the proof of Proposition (6.3.6).
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Approximating the functions w — f(w)(yy) and w — g(w)(yy) (w € N) by step
functions we may find a set F* < F with u(F’) > 0 and some ¢ ,c, € R such that for

almost all w € F' we have

1 1
|f () (o) — cr | <5—no and |g(w)(y,) — Cg| <5—no,

Hence, ¢s > ¢, +5370 and my > M, +i , where my = essinf f(F') and M, =

ess sup g(F'). We have then three possibilities:
(i) my > 0and M, =0,

(i) my; > 0andM, < 0O,
(iii) my < Oand M, < 0,

which we tackle completely analogously as in the proof of Proposition (6.3.6) (here
f(w)(yy) and g(w)(y,) play the réle of f(w) and g(w), respectively). Therefore
(assuming either (i) or (ii) holds true), we observe that for some d > 0 and almost all
w € F'we have

|f (@)(vo) — dl < |f(@)(¥o)l and |g(w)(yo) — dl > |g(w)(¥o)l. (4)

Since u is atomless, there is a measurable set H ¢ F' with0 < u(H) < &/d. Then
ld - 8y, - 1ul, < & where &, € £.,(I') stands for the element that is zero apart from

the y" coordinate where it assumes value 1. Hence, (4) imply that ||f —d -6, -
1|, < 1and |lg —d - &, - 14|, > 1, as desired.

Corollary (6.3.9)[228]: Under the assumptions of Theorem (6.3.8), for every uncountable
set I" with cardinality less than the continuum, the Banach space X = L;(u, (")) has
(S), yet it lacks a strictly convex renorming.

We have thus proved the first assertion of Theorem (6.3.10); clause (i) has been also
already observed. It remains to prove clause (ii).

Theorem (6.3.10)[228]: Assuming that the continuum is a real-valued measurable
cardinal, there exists a non-strictly convexifable Banach space whose norm satisfies ().
Moreover, for any Banach space X we have:

(i) ifdimX < 2, then X has property (S) if and only if X is strictly convex;
(i) ifdimX > 2 and X admits a renorming with property (S), then it also admits a
non-strictly convex renorming with property (S).

Proof.

Here, we shall construct a Banach space with property (S) but without any strictly
convex renorming. Assume that the continuum c is a real-valued cardinal number. This
implies that there is an atomless, c-complete probability measure u defined on the power
set of a set N with the cardinality of the continuum (see, e.g., [234])—here, by a A-
complete measure u (A is an uncountable cardinal) we understand a measure satisfying the
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following condition: for every cardinal k < A and for every family (4,)4<, Of
measurable sets, their union A is measurable and

u(4) = sup{ ,u(U A, ): F c k finite}.

a€EF

The statement that the continuum is a real-valued cardinal is equiconsistent with the
existence of a two-valued measurable cardinal ([237]), which is stronger than the
consistency of ZFC alone. Banach and Kuratowski ([229]) proved that if such a measure
exists, then the Continuum Hypothesis fails to hold, hence there exists at least one
uncountable cardinal below the continuum. We will show that for any set I" with |I'| < c,
the Bochner space L;(u,?f.(I")) satisfies Steinhaus’ condition. In particular, if I' is
uncountable, such space does not have a strictly convex renorming as it contains £,(I")
embedded via constant functions and this space does not have such a renorming by a result
of Day ([231], see also [232]).

Assume that a Banach space X with dim X > 2 has a norm ||-|| satisfying (S); we can
assume that this norm is in fact strictly convex, as otherwise we are done. In the case
where dim X = 3, the assertion is proved by Example (6.3.5), so assume that dim X >
3. Choose any subspace Y c X of codimension 2 so thatwe have X = Y @ R@ R and
every element x € X may be typically written as (y,a,B) with y € Y ,a,f € R. (In
fact, the symbols R formally stand for some fixed one-dimensional subspaces of X.) Note
that Y is a strictly convex space of dimension at least 2. Let ||-]|" be a new norm on X given

by the decomposition X = (¥ @, R)_ R, thatis
€2

lxll =y iyl + lal)? + |BI? (x = (. B)).

As any two finite direct sums of the same normed spaces are isomorphic, this defines an
equivalent norm on X which obviously fails to be strictly convex. Next, we shall show that
it has property (S).

For, suppose x; = (y;,a4,61) and x, = (y,, ay, ) are two distinct points from the
unit Sphere of (X’ “”,) If ﬁl 2 621 then (”(yl’al)”’ﬁl) and (“(yZ’aZ)”’ﬁZ) are two
distinct points on the unit circle, where the norm symbol stands for the #;-normon Y @
R. Thus, by manipulating the coordinates @ and f we obtain a vector z of the form
(0,a, B), and of arbitrarily small length, so that ||x + z||" # ||y + z||".

Now, suppose that 8; = B, and hence ||y,|| + |a;| = Il + |ay]. Ify; = y,, then
it must be @¢; = —a, # 0, whence we easily find a desired vector z being of the form
(0,2,0). So, assume we have y; # y,. In this case, we can find z with the aid of
following simple observation:

Claim (6.3.11). Since Y is strictly convex and dim Y > 2, for every pair of distinct
vectors y;,y, € Y and every § > O there exists z € Y such that ||z|| < 6 and ||y, +

z|l = Nyl # llyz + zll =l y2ll.

Indeed, if the vectors y; and y, are linearly independent, we take z = ny; for suitably

small n > 0. Then, |ly; + z|l — lly.ll = nlly.ll and this is equal to |y, + z|| —

| v21| if and only if ||y, + z|| = |[ y2|| + ||z]|, which is impossible as the norm is strictly
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convex. In the case where y, = yy, for some y € R, we pick any vector z that is linearly
independent of y; and satisfies [|z|| < §. Then, assuming with no loss of generality that
lyl = 1, the required condition becomes |lyy; + z|l # (lyl — Dllyvill + lly; + zl|
which again follows from the strict convexity of . The claim (6.3.11) has been thus
proved.

Now, take a vector z € Y as in the above claim (6.3.11). Then we have:
ly: + (z,0,01" # |ly, + (2,0,0)|| =
lyy + zll + lagl # lly, + zll + lay| &=
(because ||y11|" = lly2ll'and B; = f)
lyy + zll = Nyl = lly2 + zll = lly-ll,

which is true. Therefore, we have checked that (X, ||-||") satisfies condition (S™).
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