
 

 
 

Sudan University of Science & 
Technology 

 
College of Graduate Studies 

 
A comparison of Improved Meta-Heuristic 

Optimisation Based Speech-Enhancement Systems 
 

 

 
A Thesis Submitted for the Degree of Doctor of Philosophy in Computer Science 

 

 
By 

Taiser Mirgahni Fath Elrahman Taha 
 

 
Supervisor: Prof. Amir Hussain 

 
 

February 2021 



i  

 
 
 
 
 
 
 

ABSTRACT 

 

Speech enhancement has become an area of interest to researchers in 

the field of machine learning as a result of the development of digital 

signal processing applications. The goal of speech enhancement is to 

increase the quality of these digital speech devices and update them to 

handle all sorts of noises. In the case of dual-channel speech 

enhancement systems, an Adaptive Noise Cancellation (ANC) system 

contains an adaptive filter and an adaptation algorithm (optimisation 

procedure) for adjusting their parameters. This thesis investigates 

the use of meta-heuristic methods to propose a novel speech 

enhancement systems. This results in exploiting different meta-

heuristic optimisation techniques, such as Particle Swarm 

Optimisation (PSO), Gaussian Par- ticle Swarm Optimisation 

(GPSO), Accelerated Particle Swarm Optimi- sation (APSO), Bat 

Optimisation (BA), Gravitational Search Algorithms (GSA). This 

thesis presents the formulation of an ANC system based on 

Butterworth, and Elliptic filters, in the form of an optimisation task. 

PSO, GPSO, APSO, GSA,and BA are used to find the optimal filter 

coefficients, that optimise the perceptual evaluation of speech 

quality (PESQ), sig- nal distortion (C sig), overall signal quality (C 

ovrl), and Log-Likelihood Ratio (LLR), for the noise-free audio 
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signal and the filtered signal. This made it possible to build a system 

capable of enhancing speech, where we employed different sentences 

from the NOIZEUS data-set and ARABIC speech corpus under 

various Signal to Noise Ratio (SNR) values. Objec- 
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tive and subjective evaluation tests, were conducted on the meta-heuristic 

speech enhancement systems and showed encouraging results. The results 

of the proposed speech enhancement systems revealed that PSO generally 

outperformed APSO and GPSO at all levels of SNR. The optimised El- 

liptic filter by BA showed improved scores compared to the fixed filter, 

and the audio-only Wiener filter at all SNR levels. 

The results confirmed that meta-heuristic based acoustic noise cancella- 

tion models considered are capable of high performance. 
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 المستخلص
أصبح تحسين الكلام مجال اهتمام الباحثين في مجال التعلم الآلي نتيجة لتطوير تطبيقات معالجة 

الهدف من تحسين الكلام هو زيادة جودة أجهزة الكلام الرقمية هذه وتحديثها . الإشارات الرقمية

في أنظمة تحسين الكلام ثنائية القناة، يحتوي نظام إلغاء  .الضوضاء للتعامل مع جميع أنواع

 .الضوضاء التكيفي على مرشح متكيف وخوارزمية تحسين لضبط معلماتها

تراح أنظمة جديدة ما وراء الاستكشاف لاقتم التحقق في هذه الاطروحة من استخدام طرق  

لمثلى المختلفة مثل خوارزمية تحسين سرب نتج عن هذا استغلال تقنيات التحسين ا. لتحسين الكلام

 وخوارزميةوخوارزمية البحث عن الجاذبية  والمتسارع الكلاسيكي، القاوسي،الجسيمات 

على مرشحات بترورث  ةقائم ةنظم إلغاء ضوضاء تكيفي تطوير تمفي هذه الأطروحة . الخفافيش

رب الجسيمات الكلاسيكي، تقنيات التحسين كتحسين س .تحسين مثلى سائلوالناقصية، في شكل م

الخفافيش استخدمت للعثور  وخوارزميةوخوارزمية البحث عن الجاذبية  والمتسارعالقاوسي، 

على معاملات المرشحات المثلى، والتي تعمل على تحسين التقييم الإدراكي لجودة الكلام وتشويه 

لتا الإشارتين الخالية من لك الدخول،ونسبة احتمال تسجيل  للإشارة،جودة الإجمالية الالإشارة، و

 .والمصفاةالضوضاء 

أدى ذلك إلى بناء نظام قادر على تحسين الكلام حيث استخدمنا جمل كلام مختلفة من مجموعة 

ومجموعة النصوص العربية تحت قيم مختلفة للإشارة الى نسبة    NOIZEUSبيانات 

قياس التقييم الإدراكي لجودة باستخدام كل من موتم إجراء اختبارات تقييم موضوعية . الضوضاء

درجة الاستطلاع الرأي   شخصية كمتوسطواختبارات  مركبة،الشائع، وقياسات موضوعية  الكلام

نتائج  وأظهرت الاستكشاف ءطرق ما وراعلى أنظمة  الكلام أجريتاختبارات تقييم . الشخصي

مقارنة  أداءاً أفضل خوارزمية الخفافيشالمحسّن بواسطة  الإهليلجيمرشح الأظهر . مشجعة

 .نسب الإشارة للضجيجالصوتي فقط في جميع مستويات  وينرالثابت، ومرشح  مرشحبال

أكدت النتائج أن نماذج إلغاء الضوضاء الصوتية القائمة على طرق ما وراء الاستكشاف  

ً عالي اً أداءتوفر  وضعها في الاعتبارالأمثل التي تم   .ا
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Chapter 1 

Introduction 

1.1 Introduction 
 

Enhancing speech in our daily noisy world and its modern communication systems, 

such as teleconferencing systems, hearing aids, mobile communications is a challenging 

task. Due to constant interference in the environment, the quality of communication 

declines and speech intelligibility is affected. Hence, speech enhancement aims to 

enhance the intelligibility, and quality of degraded speech signal and enable success- 

ful and effective communication. Depending on the specific application, the goal of 

speech enhancement is to improve the quality of the degraded speech, reduce listener 

fatigue, increase speech intelligibility, or improve the performance of the communica- 

tion device. Over the past decades, several conventional speech-enhancement meth- 

ods have been applied to enhance speech, such as spectral-subtraction(Boll, 1979), 

Wiener filter (Wiener, 1949),or subspace approaches (Ephraim and Van Trees, 1995), 

(Hu and Loizou, 2002). These qualify as one-channel speech-enhancement strategies 

and have the disadvantage of underestimating noise and introducing musical noise to 

the enhanced signal. Recently, meta-stochastic approaches have shown their utility 

in designing dual-channel speech enhancement systems. 



2 

 

 

1.2 Thesis motivation 
 

The motivation for this research arose from the need to exploit meta-heuristic stochas- 

tic optimization methods for speech enhancement. Meta-heuristic optimisation meth- 

ods are both popular and applicable in various fields or disciplines. According to 

Mirjalili et al. (2014) meta-heuristic algorithms have become prominent because they 

assure these properties: simplicity, flexibility, derivation-free mechanisms, and es- 

caping local optima. First, meta-heuristic optimisation approaches are quite simple 

and inspired from nature (animal behaviour, physical phenomena, etc.). Second, they 

demonstrate flexibility, which means these algorithms can be applied to many different 

types of problems without much alteration. Third, most of these meta-heuristic algo- 

rithms have derivation-free processes; the algorithm starts with random solution(s), 

and to find the optimum, it is not required to calculate the derivative of the search 

spaces. Finally, these meta-heuristic methods can escape the local optima compared 

to conventional optimisation algorithms, because of their stochastic nature, which 

enables them to escape the stagnant local solutions, and exploit the entire search 

space. 

 
 

1.3 Problem statement 
 

There is a lack of such approaches in the literature on dual-channel speech enhance- 

ment based on meta-heuristic stochastic techniques. The commonly used methods 

are the gradient descent optimisation techniques, such as least mean-squares (LMS), 

normalised LMS (NLMS) and recursive least squares (RLS) (Widrow and Stearns, 

1985), (Gorriz et al., 2009), (Guopin et al., 2013). These methods have weaknesses 

in the sense that they are local and unable to converge and reach the global optimal 

solution (get stuck at local minima). To address the problem of getting stuck at lo- 

cal minima and convergence, approaches based on global meta-heuristic optimisation 

techniques have been used in the literature [ Karabu Ga and Cetinkaya (2011),Prajna 

et al. (2014b), Prajna et al. (2014a), (Tripathi and Ikbal, 2015), Loubna et al. (2018), 
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Ghibeche et al. (2019) Liu et al. (2020)]. These methods seek to minimise the mean 

square error. To the best of our knowledge, no method in the literature used an ob- 

jective function that related to signal quality measurements, such as the perceptual 

evaluation of speech quality(PESQ), log-likelihood ratio (LLR), signal distortion level 

C Sig. On the other hand, the methods using meta-heuristic algorithms have not 

provided clear methodology for how the parameters of their meta-heuristic methods 

are selected. 

 

1.4 Research aims and objectives 
 

The aim of this research is to develop a novel speech-enhancement system by using 

meta-heuristic optimisation techniques. Hence, the objectives of this thesis are as 

follows: 

• To investigate the use of meta-heuristic optimisation methods for speech en- 

hancement, and to propose a new speech-enhancement methods based on opti- 

misation. 

• To develop, formulate and utilise the Adaptive Noise Canceller problem as an 

optimization task. 

• To develop and formulate a fitness function based on signal quality measure- 

ments. 

• To evaluate and compare the performance of the proposed techniques with 

existing sate-of-art methods, by conducting both objective and subjective tests. 

 
 

1.5 Methodology 
 

We formulate a fitness (cost) function that depends on signal quality measurements 

including PESQ, LLR, C Sig and C ovrl. In order to find the optimal filter for 

noise cancellation, five meta-heuristic approaches are developed to adjust the But- 

terworth and the Elliptic filter coefficients.These optimisation techniques are: the 
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particle swarm optimization and its variants, the gravitation search algorithm, and 

the Bat algorithm. The grid search algorithm will be used to find the optimal set 

of parameters of the meta-heuristic algorithms. To evaluate the performance of the 

proposed systems the following are to be used: 

1. Objective evaluation measurements, which include the PESQ and composite 

measures. To find if the mean of the optimised signal is significant to the mean 

of the clean signal, the T test is used at the significant level of 0.05. 

2. Subjective evaluation measurements, where human volunteers are recruited to 

listen to the filtered sentences, through the Mean Opinion Score system. 

 
 

1.6 Thesis contributions 
 

1. A novel speech enhancement based on meta-heuristic optimization techniques 

was developed. 

2. A fitness function based on speech quality measurements is integrated. 

 
3. The grid search algorithm is used to select the parameters of meta-heuristic 

methods in order control the learning process of the proposed algorithms. 

 
 

1.7 Thesis scope 
 

• Conventional methods have many flaws; meta-heuristic expound on these to 

look for optimal solutions but very few are used in the literature. 

• Global optimisation techniques are successful in many applications, but few 

were used for speech enhancement. 

• The type of noise considered in this thesis is additive noise. 

 
• The method of speech enhancement considered is by adaptive filtering. 

 
• This research only considers the meta-heuristic optimisation algorithms. 
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1.8 Thesis structure 
 

This section provides the organisation of the thesis. 

Chapter 2 presents and details the literature review, and provides a summary of 

the existing categories of audio speech-enhancement methods based on the type of 

algorithm used; the input of channels involved uni-modal or multi-modal speech - 

enhancement is given. Then types of noises are identified. Followed by a review of a 

number of state-of-the-art speech-enhancement techniques, such as spectral subtrac- 

tion methods, statistical model-based algorithms, and subspace speech-enhancement 

methods. The pros and cons of these methods are also provided. The adaptive noise 

cancellation concept and its conventional methods are also revised. Adaptive filtering 

techniques, such as the least mean square and the recursive least squares algorithms, 

were reassessed. The last part of this chapter focuses on some of the machine learning 

approaches used in speech enchantment. Furthermore, a few prominent and recent op- 

timisation techniques with regard to speech enhancement are also addressed. Strong 

and weak points for every method are summarised as well. 

Chapter 3 details the research methodology, along with the approaches and tech- 

niques used to build the meta-heuristic speech-enhancement systems. 

Chapter 4 presents the design of the speech-enhancement system, based on PSO 

and its variants. A review about swarm systems is given. The proposed speech- 

enhancement system, employing ANC based on (PSO, APSO, and GPSO) algorithms 

is outlined. The stages of the proposed speech enhancement are described. Further- 

more, a comparison was drawn between the proposed methods and the state-of-the-art 

audio-only, dual speech-enhancement algorithms to determine which approach per- 

forms better. 

In chapter 5 gravitation search algorithm is utilised to introduce a speech enhance- 

ment system. This chapter describes and introduces the GSA and how it works. The 

structure and the components of the proposed novel GSA speech enhancement are 

presented, where the exploration ability of the GSA is utilised in the search space. The 

proposed system is tested in a noisy environment at various SNR levels, to evaluate 
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the performance of the proposed algorithm. 

In Chapter 6 a speech-enhancement system based on the Bat algorithm was de- 

veloped. The background and characteristics of the Bat algorithm are presented. 

The design and the implementation of the proposed BA speech-enhancement system 

are provided. The proposed system is tested in a noisy environment at various SNR 

levels, to evaluate the performance of the proposed algorithm. 

In Chapter 8 a comparison conducted for the previous methods that were intro- 

duced in the previous chapters. 

Finally, Chapter 8, provides the concluding remarks from the work conducted in 

this thesis, and discusses the recommendations for future research. 

 
 

1.9 Publications 
 

Taha, T. M., Wajid, S. K., & Hussain, A. Speech enhancement based on adaptive 

noise cancellation and Particle Swarm Optimization. Journal of Computer Science, 

15(5), 691-701,2019 

Taha, T. M., & Hussain, A. A Survey on Techniques for Enhancing Speech. Interna- 

tional Journal of Computer Applications, 179(17), 1-14, 2018 
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Chapter 2 

 
Review and Background to 

Speech-enhancement Methods 

 
In this chapter, we focus on the techniques featured in literature to enhance the 

speech signal. Various methods are used including Wiener filter, statistical methods, 

subspace method, and spectral subtraction. We will discuss various types of speech- 

enhancement methods along with their advantages and disadvantages. The discussion 

will also review the studies conducted by other researchers on other machine learning 

techniques, such as the neural network, Deep Neural Network ,Convolution Neural 

Networks, and optimisation techniques used for the enhancement of speech. 

 
 

2.1 Introduction 
 

Speech enhancement is a vital element to communication equipment. It refines speech 

and reduces noise, and it is used in a various domains for example to assist in hearing 

and other applications such as mobile phones, teleconferencing systems, hearing aids, 

and voice communication systems. 

Speech enhancement is closely related to speech restoration because it reconstructs 

and restores the signal after degradation(Banchhor et al., 2013). 

However, there is a slight difference between speech restoration and speech en- 

hancement. Speech restoration involves converting the noisy signal back to its origi- 
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nal form, prior to noise addition. Speech enhancement, on the other hand, helps in 

refining the original signal. Also, an original under-girded speech signal cannot be 

restored, but it can be enhanced (Ravi and Subbaiah, 2016). The aim of these speech- 

enhancement algorithms, to improve the perceptual aspects of the speech signal, is 

degraded by the additive noise, such as overall quality or intelligibility with the aim 

of reducing listener fatigue (Loizou, 2013b) (Panchmatia et al., 2016). 

Speech enhancement can be used in different settings, such as in areas where there 

is an interfering background noise in a building, or on noisy streets or roads where 

there are motor vehicles passing. These interference noises degrade the original speech 

quality in such a way that it does not remain clear anymore. An important context 

that needs to be addressed for speech enhancement includes the compression of speech 

bandwidth systems(D and K, 2015). This is mostly used in the decoding of digital 

channels of communication. This technique is also needed for the decoding of speech, 

which includes integration of data and voice networks, including speech bandwidth 

compression systems that play an important role in speech communication systems. 

Authors in (Ravi and Subbaiah, 2016) conducted a survey on single channel 

speech-enhancement methodologies,(Dixit and Mulge, 2014) considered single and 

multichannel speech enhancement in their review paper. (Chaudhari and Dhonde, 

2015) presented a review on the spectral subtraction method and its modification.The 

authors (Kulkarni et al., 2016) addressed time and transform domain speech-enhancement 

methods. Statistical techniques for speech enhancement are reviewed by (Sunnydayal 

et al., 2014). 

In this chapter, the authors classify speech-enhancement methods into four cat- 

egories: conventional methods, adaptive filtering methods, machine learning meth- 

ods (this includes adaptive filtering using optimisation techniques), and multi-modal 

methods. 
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Figure 2.1: Popular techniques reviewed in the current chapter 
 
 

This chapter is organised as follows: Section 2.1 gives an introduction to the 

problem and a general overview. Section 2.2 gives the reader an understanding of 

the types of audio- enhancement categories. Sections 2.4 - 2.6 discuss four basic 

approaches of speech enhancement. A Summary is then provided in Section 2.7 . 
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2.2 Categories of audio-enhancement methods 
 

According to (Lim and Oppenheim, 1979a) and (Loizou, 2013b), the classification of 

speech enhancement techniques based on the following: 

1. Type of the algorithm used, which can either be adaptive or non-adaptive. 

 
2. The input channels involved, which can either be single, dual, or multiple. 

 
3. Whether the speech -enhancement technique is uni-modal or multi-modal. 

 
The following sections, state the differences between the aforementioned techniques. 

 
 

2.2.1 Comparison between adaptive and non-adaptive speech 

enhancement 

If additive noise is present in a speech signal, then common practice is to pass it 

through a filter that removes the noise while minimally interfering with the original 

signal component. This is called direct filtering. Initial work in this domain of optimal 

filtering, was conducted by (Wiener, 1949) and was extended and enhanced by (Singh, 

2001) and others.The filters used for direct filtering can be either fixed or adaptive. 

• Fixed filters: to design these, it is important to have prior knowledge of both 

the signal and the noise. It passes frequencies present in the signal and discards 

the frequency band occupied by the noise. 

• Adaptive filters: can adjust their impulse response to filter out the correlated 

signal component in the speech input. They require almost no prior knowledge 

of the characteristics of signal and noise. (in case, the signal is narrow-band and 

the noise is broadband, or vice versa, no prior information is needed; otherwise 

it is necessary to know the desired response of the signal). They can adaptively 

track the signal in the presence of non-stationary conditions. 
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2.2.2 Comparison between monaural and binaural speech en- 

hancement 

Single-channel enhancement, also known as monaural enhancement, is for situations 

where only one input channel is present such as mobile telephony (Ravi and Subbaiah, 

2016). In multichannel speech enhancement, the noisy observations are obtained from 

two or more sensors. If there are only two channels in the multichannel system, then 

it is also called binaural enhancement. 

Multichannel algorithms show better performance with respect to substantial 

speech-reception threshold scores when the target signal and the noise source are 

separated (Mauger et al., 2014). However, in practical scenarios, these requirements 

might not always be fulfilled, and single-channel algorithms are preferred for devices, 

such as hearing aids in which the number of microphones is usually limited to two 

and the two microphones are on the same side of the head (thus recording the same 

signal) (Goehring et al., 2017). Multichannel speech enchantment can be employed 

in autonomic speech recognition, or hands-free telephone systems in cars Meyer and 

Simmer (1997). 

 
2.2.3 Comparison between uni-modal and multi-modal speech 

enhancement 

According to (Monaci, 2007), the use of internal stimuli in senses enables individuals 

to identify different perceptions in the environments that they live in. Humans inte- 

grate acoustic and visual signals(Driver, 1996) (McGurk and MacDonald, 1976)(Wal- 

lace et al., 2004) (Watkins et al., 2006) or tactile and visual inputs (Violentyev et al., 

2005) (Bresciani et al., 2006). 

If audio perception is enhanced using just the auditory sense, then this can be 

referred to as uni-modal audio enhancement. On the other hand, when audio percep- 

tion is enhanced by other senses, such as the auditory and the visual sense, then it is 

referred to as multi-modal speech enhancement. 
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2.3 Types of noise 
 

When processing a speech signal, we may come across a number of noise types that 

it may be contaminated with common types of noise that can be added to speech 

signals are listed by (Lakshmikanth et al., 2014): 

1. Background noise: environmental distortion or noise of cars on the road for 

example. 

2. Echo: that occurs in closed spaces with bad acoustics. 

 
3. Acoustic: also known as audio feedback: caused by electrical reflection on the 

circuits. 

4. Amplifier noise: if amplifier produces even a little additional thermal noise, 

it becomes hugely noticeable after amplification process. Such noise is called 

amplifier noise. 

5. Quantization noise: it is created as part of the transformation process of the 

signal from analogue to digital domain, interference occurs in sampling while 

rounding up real values of analogue signal. 

6. Loss of signal quality: caused by coding and speech compression. 

 
Because of the huge amount of works reported in this field, this thesis will only 

consider the case when the noise is additive and independent of the clean speech. 

Techniques purely for echo cancellation source separation case studies are not re- 

viewed in this research. Various speech-enhancement techniques have been imple- 

mented for the purpose of improving the perceptual aspects of a speech signal, that 

has been degraded by additive noise. These techniques improve overall quality and 

intelligibility, and reduce listener fatigue (Loizou, 2013b; Panchmatia et al., 2016) 

 

2.4 Conventional methods of speech enhancement 
 

This section will discuss different single-channel speech enhancement methods. 
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|Y (ω)|2−|D(̂ω)|2 if |Y (ω)|2> |D̂(ω)|2

 

2.4.1 Spectral subtraction method (single-channel speech en- 

hancement) 

Spectral subtraction method is one of the oldest methods of single-channel speech 

enhancement. It is considered to be among the first algorithms in this domain (Boll, 

1979). It is simple and effective in the elimination of stationary background noise. Its 

limitation is that it suffers from narrow-band tonal, commonly called ’musical noise’ 

(Vaseghi, 2008). Various modifications of spectral subtraction have been proposed to 

improve its results (Hu and Loizou, 2002). The signal corrupted by the noise y(n), 

composed of the clean speech signal x(n) and the additive noise signal d(n), i.e: 

 
y(n) = x(n) + d(n) (2.4.1) 

 
 

Since the speech signal is non-stationary, the noise component is processed frame- 

by-frame in the frequency domain (Hussain et al., 2007). The discrete time Fourier 

transform for both sides yields: 

 
Y (ω) = X(ω) + D(ω) (2.4.2) 

 
 

To obtain the spectrum of enhanced speech, the method by (Loizou, 2013b) is used: 
 

|X̂(ω)| =|Y (ω)|−|D̂(ω)| (2.4.3) 

Where |X̂(ω)| is the estimated short time speech magnitude, |Y (ω)| is the noisy short 

time speech magnitude and |D(ˆω)| is a noise spectral magnitude estimate computed 

during non-speech activity. The power spectrum subtraction is then given by: 
 
 

 

|X̂(ω)|2  = 

 0 otherwise 

(2.4.4) 

 

Much work has been done to suppress noise that occurs as a side product of 
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|Y (ω)|2−α|D̂(ω)|2 if |Y (ω)|2> (α + β)|D̂(ω)|2

 

|X̂i(k)|2  =  
ki < k < ki+1 

the spectral subtraction method using varied forms of spectral subtraction (Bahoura, 

2017),(Lu and Loizou, 2008), spectral over-subtraction (Berouti et al., 1979), multi- 

band spectral subtraction (Kamath and Loizou, 2002) non- linear spectral subtraction 

(Lockwood and Boudy, 1992), iterative methods (Ogata and Shimamura, 2001) and 

spectral subtraction based on perceptual properties (Virag, 1999).The following points 

explain these variants of spectral subtraction methods. 

1. Spectral over-subtraction method: A further modification in the basic 

spectral subtraction method (Boll, 1979) resulted in a variation commonly 

known as the spectral over-subtraction method (Berouti et al., 1979). The 

following parameters were introduced to reduce noise: 

(a) Over-subtraction factor: which has control over the amount of noise power 

spectrum subtracted from the noisy speech power spectrum. 

(b) Noise spectral floor: which restricts the resultant spectral component from 

increasing above a pre-set minimum spectral flow value (Loizou, 2013b). 

 
 

|X̂(ω)|2  = 

 β|D̂(ω)|2 otherwise 

(2.4.5) 

 

where α ≥ 1 and 0 ≥ β ≥ 1. 

2. Multi-band spectral subtraction: The Multi-band spectral subtraction is 

another variation of this type, where the speech spectrum is partitioned into 

several non-overlapping regions, and then spectral subtraction is applied on each 

band separately. The clean speech spectrum is represented by the following the 

mathematical model (Loizou, 2013b)(Kamath and Loizou, 2002): 

 
|Yi(k)|2−αiδi|D̂i(k)|2 if  |Yi(k)|2> 0, 

 

 β|Ŷi(k)|2 otherwise 

(2.4.6) 
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2 

where ki−1, and ki+1 are the beginning and the ending of the frequency bins of 

the ith frequency band, αi the over-subtraction factor of the ith band, and δi is 

a tweaking factor in the ith band. 

Band-specific over-subtraction is represented as a function of segmented SNRi 

of the ith frequency band. Its mathematical representation is provided below 

(Loizou, 2013b): 

 

5 if SNR ≤ −5 

αi  = 
 

4 −  3  SSNi if   − 5 ≤ SNRi ≤ 20 

 
 
 

 
(2.4.7) 

20 

 

 1 if  SNR > 20 

and δi the control of each band is calculated as: 

 

1 if fi ≤ 1kHz 

δi  = 
 

2.5   if  1kHz ≤ fi ≤ fs  − 2kHz 

 
 
 
 
 
 
 
 

 
(2.4.8) 

2 

 

 1.5   if  fi >  fs  − 2kHz 

 

where fi is the upper frequency of the ith band, and fs is the sampling frequency 

(Kamath and Loizou, 2002; Loizou, 2013b). 

3. Non-linear spectral subtraction: (Lockwood and Boudy, 1992) introduced 

a modified version of the over-subtraction by proposing a technique where the 

nature of the subtraction process is nonlinear and the over-subtraction factor 

frequency depends upon the frame SNR (Loizou, 2013b). 

Over the years, many modifications have been suggested to vary the original method 

of the spectral subtraction algorithm in order to reduce the musical noise that occurs. 

(Hu et al., 2002) proposed the combination of comb filtering and spectral smoothing 

along with formant intensification for the enhancement of noisy speech. This brings 
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significant improvements over the classical method in terms of perceived sound quality. 

A limitation was that these researchers only performed testing on two noise types 

(white Gaussian and car noise). A major drawback was that the simulation analysis 

showed a contradiction between objective and subjective measures. 

A further modified multi-band spectral subtraction (I-MBSS) algorithm was pro- 

posed in (Upadhyay and Karmakar, 2013) for the enhancement of the audio speech 

signal in different noise conditions. Here, the noise-speech spectrum is partitioned 

into K non-overlapping bands and the spectral over-subtraction method was applied 

independently on each band. The experimental analysis was conducted on different 

types of added noise. The data-set used for simulations was the NOIZEUS speech 

corpus. However, the simulations were not conducted on extremely low and high SNR 

levels. 

A new algorithm comprising generalized sidelobe cancellation (GSC) combined 

with spectral subtraction speech enhancement was put forth by (Yu and Su, 2015). 

Their research showed that the output signal from the GSC module removes the 

remaining non-coherent noise upon filtering. They selected the additive noise from 

NOISEX-92, and their method showed prominent improvement in speech quality. 

The method was feasible enough to yield stable results. 

(Cao et al., 2012) designed a modulated filter bank that was over-sampled to di- 

vide the time series into equal sub-spaced bands. The authors (Cai and Hou, 2012) 

used a weighted recursive averaging method to approximate the noise power spec- 

trum, after which a multi-band subtraction was applied on noise that was added to 

the speech signal. An auditory masking threshold was computed with the estimated 

speech signal. In this way, the subsequent associated subtraction factor was adjusted. 

Experimentation proved their algorithm to be effective enough to enhance a signal  

that had been corrupted by white noise and also by musical noise. The only draw- 

back was that they did not perform testing with multiple objective measures. They 

solely used the takura-saito distance (IS) objective measure to evaluate the proposed 

method. 

Another non-linear spectral subtraction technique for speech enhancement was 
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used by (Prabhakaran et al., 2014). Three types of noise were used to evaluate the 

proposed approach (pink noise, white noise, and Volvo noise). These samples were 

taken from the data-set of the TIMIT & NOIZEUS corpus. The authors (Islam et al., 

2014) conducted a study on a speech-enhancement approach that was formulated on 

the modified spectral subtraction process carried out on the time magnitude spectral. 

Extensive testing was done on the NOIZEUS database. The simulation results showed 

that their proposed method is only suitable for higher segmental SNR. 

In (Bharti et al., 2016) an adaptive method of noise cancellation and signal esti- 

mation that is based on short term energy is presented. In this technique, the noise 

spectrum is continuously updated. NOIZEUS speech corpus was used for the eval- 

uation of the proposed approach. This method works well for both stationary and 

non-stationary noise. The only drawback is that system performs poorly at 0 db 

stationary noise. Another effort was made by authors in (Zhang and Liu, 2018) to 

propose a multi-band spectral subtraction algorithm using mel-scale. Their algorithm 

outperforms the multi-band spectral subtraction with uniform segmentation and also 

the conventional spectral subtraction algorithm; however, they did not conduct sub- 

jective tests to evaluate the results. 

 
2.4.2 Statistical model-based algorithms 

 
Statistical model-based methods are considered among the common techniques for 

speech denoizing. The method from this type operates in the noisy domain. In this 

method, noise is reduced by modifying the frequency spectrum of the noise signal(Ding 

et al., 2004). The two algorithms of this category are: 

1. Wiener filter speech-enhancement method: The Wiener filter operates 

in the frequency domain. Its modified version, called the adaptive Wiener fil- 

ter, operates in the time domain. The original Wiener filter (Wiener, 1949) 

was introduced in 1949. It is quite similar in nature to the spectral subtrac- 

tion method. It trades the subtraction step of spectral subtraction with an 

approximation of the signal spectrum of clean signal with a minimum mean 
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square error (MMSE). It also involves the computation of short-time Fourier 

transform (STFT). The technique reduces the MSE between the approximated 

signal  magnitude  spectrum  D(̂ω)  and  the  original  signal  magnitude  spectrum 

D(ω). 
 

The optimal Wiener filter is represented by (Lim and Oppenheim, 1979b): 
 

  Ds(ω)  
H(ω) = 

Ds(ω) + Dn(ω) 

 
(2.4.9) 

 

where Ds(ω) and Dn(ω) are the estimated power spectra of the noise-free signal 

and the background noise(noise assumed to be uncorrelated and stationary). 

Finally, the speech is enhanced by: 

 

D̂(ω) = X(ω)H(ω) (2.4.10) 

 

(Almajai and Milner, 2011) proposed a visually derived Wiener filter for speech 

enhancement, which exploits the audio-visual correlation. Wiener filters have 

the additional point that they can be used for both single and dual/ multiple 

channels. 

Table 2.1: Pros and cons of Wiener filtering algorithms 
 

Pros Cons 

• The algorithm safeguards a de- 
reverberation performance that does 
not depend on the azimuth angle of the 
speech source 

• It preserves binaural cues 

• This algorithm is proficient enough 
to significantly reduce the effects of the 
reverberation especially in the rooms 
that are highly reverberant 

• The algorithm is less complex in terms 
of computing calculations 

There is a wide room for improvement 
in its performance in the rooms with 
moderate reverberation 
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The adaptive Wiener filter is dependent on the variation of the filter transfer 

function from sample to sample according to speech signal statistics (mean/variance). 

It was proposed by [(Abd El-Fattah et al., 2008),(El-Fattah et al., 2014)], and it 

works in the time domain instead of the frequency domain (the original Wiener 

filter works in the frequency domain). A recursive noise estimation approach 

is used for noise estimation. Authors in (Sulong et al., 2016) combined the 

compressing sensing method and Wiener filter for noise reduction. 

(Coto-Jimenez et al., 2018) presented hybrid method by combining the Wiener 

filter with a deep neural network; the hybrid system showed good results in 

terms of enhancing noisy speech at different SNR with different noise types. 

However, the main disadvantage of their proposed method is that consumes a 

lot of time and entails high computational costs. 

(Khaldi and Touati, 2018) initiated a new speech-enhancement method based 

on the Wiener filter and spectral subtraction. The method achieved higher SNR 

improvement than when using the Wiener filter or spectral subtraction methods. 

However, the authors need to do subjective listening tests and evaluate it under 

different experimental conditions. 

2. Maximum likelihood method: This method was brought forth by (Ephraim 

and  Malah,  1985),  (Cappé,  1994).    (Ephraim  and  Malah,  1984)  proposed  a 

method based on the estimation of the short-time spectral amplitude (STSA). 

The author derived the MMSE STSA estimator, based on modelling noise and 

speech spectral components as statistically independent Gaussian random vari- 

ables and analysed the performance of the proposed STSA estimator and com- 

pared it with Wiener-estimator-based STSA estimator. 

The MMSE STSA estimator is used to examine signals based on the quality 

or strengths in the deafening conditions and in the areas where there is un- 

certainty in the presence of the signals. To construct the enhanced signal, an 

MMSE STSA estimator is used with the compound exponential of the deafening 

segment. A priori, the probability distribution of the speech and noise Fourier 
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expansion coefficients should be known to derive the MMSE STSA estimator. 

The same authors (Ephraim and Malah, 1985) also proposed the short-time 

spectral amplitude (STSA) estimator for speech signals and inspect it in the 

context of enhancing noisy speech. The results indicated that the new estima- 

tor is good in improving noisy speech. The main Ephraim and Malah (1985) 

noise suppression rule is expressed in the following part. Neglecting the time 

and the frequency indexes(l, ω) for notation limitations, the suppression value 

was G(l, ω) applied to each short-time spectrum value X(l, ω) to give(Ephraim 

and Malah, 1984): 

G(l, ω) = 
π 1

 
   Rprio 

 

 

2 1 + Rpost 1 + Rprio  
(2.4.11) 

∗M
 
(1 + R 

 
 

post )   
   Rprio  
1 + R 

prio 

 

where M is a function based on the modified Bessel functions of zero and first 

order. 

M [θ] = exp(− 
θ 

)
 

(1 + θ)I 
 θ  

+ θI 
 θ 

(2.4.12) 
 

The formulations of the a-priori SNR (Rprio(l, ω)) and a-posteriori SNR (Rpost(l, ω)) 

respectively (for each value of the time and frequency indexes) are given below: 

|X(l, ω)|2
 

Rpost(l, ω) = 
D(ω) 

− 1 (2.4.13) 

 
 
 
 

Rprio(l, ω) = (1 − α)P [Rpost(l, ω)] + α 
G(l 1, ω)X(l 1, ω) 2 

(2.4.14) 
D(ω) 

 

where D(ω) is the noise power at frequency ω, with P [x] = x if x ≥ 0 and 

P [x] = 0 otherwise. (Rprio(l, ω)) is an estimate of the SNR that takes into 

account the current short-term frame with weight (1 − α) and the noise reduced 
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previous frame with weight α(Cappé, 1994). 

 
To improve speech intelligibility, (Jia et al., 2019) proposed a new method based 

on MMSE log spectral amplitude to estimate speech phases.For the purpose of ex- 

perimental evaluation authors’ data was selected from NOIZEUS and the noises are  

taken from the Noise-92 speech library at different SNR levels of 0db, 5db, 10db, 

and 15db. The evaluation results of their new method indicated that it can greatly 

improve the quality and intelligibility of speech. However, the authors did not run 

subjective evaluation tests. 

Another contribution was made by Soni and Vaghela (2017), where the authors 

proposed a hybrid speech-enhancement system based on MMSE and spectral sub- 

traction methods. The NOIZEUS database used for evaluation and different types of  

noises are taken from the AURORA database at various of SNR levels. The results are 

very promising, however the authors mentioned it produces musical noises. (Gouhar 

et al., 2017) introduced a new improved method for speech enhancement based on 

MMSE, based on the popular searching algorithm called binary search. The proposed 

algorithm is tested using car, babble, street, train and white Gaussian noises, which 

are added to sentences taken from the NOIZEUS corpus at different SNRs levels. The 

simulation results revealed that their proposed algorithm outperforms other MMSE 

algorithms. 

 
2.4.3 Subspace speech-enhancement methods 

 
Another type of speech-enhancement methods is when speech estimation is considered 

as a constrained optimisation problem. This approach was introduced by (Ephraim 

and Van Trees, 1995), and by (Hu and Loizou, 2002), where the noisy speech sig- 

nal vector cosmos is decayed into two subspaces i.e, a signal subspace and a noise 

subspace. The singular value decomposition (SVD) or the eigenvalue decomposition 

(EVD) is used to decompose the noisy signal into a noise signal and a speech signal. 

(Surendran and Kumar, 2016) proposed a signal subspace speech-improvement 

algorithm using the perceptual feature by using the frequency-disguising property 
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of the human auditory system (Jabloun and Champagne, 2003). A cue to spectral 

deviation ratio (SSDR) standardisation is used for the reduction of the spectral mis- 

representation. Samples of speech are used from the NOIZEUS database for the 

assessment of the introduced algorithm. The results of their experiments showed the 

effectiveness of their algorithm in speech enhancement compared to some benchmark 

speech-enhancement methods. 

An approach of the subspace method on the basis of the Karhunen-Loève trans- 

form and customs principal component analysis was proposed by (Yan et al., 2013) 

for the reduction of noise in different noisy environments. They used objective assess- 

ment measures (including segmental SNR (SegSNR), weighted spectral slope (WSS), 

the log-likelihood ratio (LLR), log spectral distance (LSD) and perceptual evaluation 

of speech quality (PESQ) to assess the performance of their algorithms. It was shown 

that their algorithm was more operative for white noise than coloured noise. The 

Performance was not good for SNR greater than 10dB. 

An effort was made by (SUN et al., 2016), to introduce an algorithm based on 

joint low-rank and sparse matrix decomposition (JLSMD). It is different from the 

preceding subspace algorithms in its decomposition nature. The results showed that 

their algorithm is better for improving the overall quality of the enhanced speech, 

however, noise reduction still had room for improvement. Table 2.2 summarises the 

advantages and disadvantages of the main conventional speech-enhancement meth- 

ods(Hifrin et al., 2014): 

 

2.5 Adaptive noise cancellation(ANC) 
 

Basically, an ANC denotes the electromechanical or electro-acoustic procedure of 

abandoning acoustic disruption to produce a softer environment (Lakshmikanth et al., 

2014). ANCs create and use an ’anti-noise’ signal with the same amplitude and op- 

posite phase. The adaptive noise canceller has been used in a number of applications 

such as hearing protectors, headsets, and so on. The ANC can be globalised to a 

multichannel system, which can be seen as a generalised beamforming system. The 
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Table 2.2: Advantages and disadvantages of main conventional speech-enhancement 
methods 

 

Speech en- 
hancement 

Advantages Disadvantages 

Spectral sub- 
traction 

The Spectral subtraction is effec- 
tive in 
computational and has modest 
contrivance 
to control the trade-off between 
speech 
misrepresentation and remaining 
noise 

The introduced musical noise 

 
is disadvantage 

MSSE esti- 
mator 

It has fewer computational assets 
and resources 

Absence of the mechanism 
 

to control trade-off between 
speech distortion and the remain- 
ing noise 

Wiener filter Reasonable computation load Absence of the mechanism 
to control trade-off between 
speech distortion and the remain- 
ing noise 

Subspace It delivers a mechanism to control 
the trade-off 
between speech distortion and the 
remaining noise 

It results in heavy computational 
loads 

 

adaptive noise canceller was initially introduced by (Widrow and Stearns, 1985). It 

requires minimum two microphones founded on the basis of the obtainability of orien- 

tation channel(s) which are features of associated samples or references of the polluted 

noise. An estimate of the noise is produced with the help of adaptive filter by utilis- 

ing the reference microphone output. Its output is then deducted from the primary 

microphone output (signal + noise). The output of the canceller is used to regulate 

the tap weights in the adaptive filter. With the help of an adaptation algorithm, 

the ANC minimises the mean square error value of the output. It generates output, 

which is the best approximation of the anticipated signal in the sense of the minimum 

mean square error (Taha et al., 2018). The ANC removes or suppresses a noisy signal 

by using adaptive filters and adjusting their parameters according to an optimisation 

algorithm. Many works reported in the literature use adaptive filters for noise reduc- 
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tion and cancellation (Akhaee et al., 2005), (Kalamani et al., 2014), (Nataraj et al., 

2017). 

Adaptive filters fine-tune their coefficients to diminish the error signal and can be 

grasped as finite impulse response (FIR), infinite impulse response (IIR), lattice and 

transform domain filters. The Least mean square (Singh, 2001) is the most common 

adaptive algorithm. The advantages and disadvantages of this method are listed 

below (Lakshmikanth et al., 2014). 

Table 2.3: Pros and cons of Adaptive noise canceller 
 

Pros Cons 

The customary wideband algorithms of 
ANC 

 

produce the best results in the lower 
frequency bands 

• As the bandwidth and the center fre- 
quency of the noise upsurges, 
their performance depreciates quickly. 

 
• The algorithms are not appropriate 
for the multimodal error surface, and 
they provide a single likely solution for 
each reiteration according to the 
generated error. 

 
• It is necessary to have a frequency 
dependent noise cancellation system to 
avoid adversely affecting the desired 
signal in order to combine 
the ANC system with other communi- 
cation and sound systems 

 
 
 

2.5.1 Adaptive filters 
 

An adaptive filter is a device used for computational purposes and it endeavours to 

create and establish the association between two signals in real time in an iterative 

style. An adaptive filter is defined by the following phases (Kunche and Reddy, 

2016b): 

1. The signal being treated by the filter. 
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2. The configuration that describes how the output signal of the filter is calculated 

from its input signal. 

3. The limitations within this structure that can be iteratively altered to change 

the filter’s input-output association 

4. The adaptive algorithm that defines how the limitations are attuned from one 

time prompt to the next. 

 

 

 
 

Figure 2.2: The adaptive filter (Das and Sarma, 2012) 
 

The parameters’ type and number to be adjusted are determined by selecting a certain 

adaptive filter form. The adaptive algorithm seeks to update the parameter values of 

the system: usually, it is derived as a form of optimisation operation to minimize an 

error. Figure 2.2 shows a block diagram of the adaptive filter, where a signal x(n) 

is fed into a device called an Adaptive Filter, where an output y(n) is computed by 

this device. This output signal is compared to a second signal d(n), called the desired 

response signal, and when subtracting the two signals at time n, the error signal e(n) 

is produced. 

e(n) = d(n) − y(n) (2.5.1) 
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= i=0  

i=0 i=0 

Then this error signal is fed into the adaptive algorithm (optimisation procedure) to 

adapt or alter the parameters of the filter from time n to (n + 1) in a well-defined 

way. This operation is referred to as ”Adaptation”, where by the parameters of the 

given system are changed from the time indexed at n to a time at (n + 1). 

The problem is to determine the general form of the structure of the adaptive 

filter, to determine the best linear relation between the input and the desired response 

signals. In most cases, this linear relation takes the form of FIR or IIR. An IIR is 

a linear digital filter that computes their output recursively and produces feedback, 

where the current output depends on the previous ones (Haykin, 1996). 

 
L M 

y(n) = 
   

aix(n − i) − 
  

biy(n − i) (2.5.2) 

 

where ai and bi are the coefficients of the filter, M ≥ L is the filter order. The transfer 

function of the Mth order filter, is given by: 

 
A(z) 

 

 

 L aiz−i 
 

  
 

The characteristics of the adaptive filter have to be modified so that the output of 

the adaptive filter looks like the desired response as much as possible. That is why 

the desired response of an adaptive filter is related in some way to the input signal 

and is made available to the filter. as closely as possible. 

The error is the difference between the adaptive and the desired and the adaptive 

filter response. 

e(n) = d(n) − y(n) (2.5.4) 

An optimisation process like the mean square error or any other fitness is used, to 

drive the error to zero. 

Conventional adaptive-filters include classic Butterworth filters, Chebyshev filters, 

and Elliptic filters. 

A Butterworth filter provides the maximum flat response and its calculations are 

comparatively simpler than for other forms of filters. This factor, combined with 

biz−i M 
i=0 

B(z) 
H(z) = (2.5.3) 
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the fact that it produces impressive performance for most applications, has made it a 

popular choice in the field of electronics-RF as well as with audio active filters (Adrio, 

2015). 

An Elliptic filter (also called a Cauer filter) has ripples in the pass-band well as 

in the stop-band (Adrio, 2013). Ripple levels in the pass-band and stop-band are 

independently adjustable during the design phase 

• When a ripple in the stop band approaches zero, the filter becomes a Chebyshev 

type I. 

• When a ripple in the pass-band approaches zero, then the filter becomes a 

Chebyshev type II. 

• When a ripple in both, the stop and the pass-bands approaches zero, the filter 

becomes a Butterworth type. 

 

2.5.2 Least mean squares (LMS) algorithm 
 

One of the extensively used techniques for adaptive filtering is the LMS algorithm. Its 

foundation is credited to (Widrow and Stearns, 1985) and (Haykin, 1996). It is based 

on the approximation of the gradient in the direction of the optimal solution using 

the arithmetical properties of the input signal. A noteworthy feature of the LMS 

algorithm is its straightforwardness. In this algorithm filter weights are rationalised 

with each new sample as required to meet the anticipated output. An acoustic echo 

canceller (AEC) is used to remove the acoustic response from the loudspeaker to the 

microphone in applications, such as hands-free telephony, tele-classing, and video- 

conferencing. 

Adaptive filters with thousands of coefficients are used for room acoustic echo 

cancellation. Transform domain adaptive filters result in a noteworthy decrease in 

computational weight. (Krishna et al., 2010) present Hirschman optimal transform 

(HOT) based adaptive filter for the elimination of echo from audio signals. In or- 

der to test the efficacy of the proposed method, adaptive algorithms based on LMS, 
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Normalised least mean squares(NLMS), discrete Fourier transform(DFT)-LMS and 

HOT-LMS were implemented and tested in this echo cancellation application. Their 

experiments proved that the HOT based LMS adaptive filter is computationally effec- 

tive and has fast convergence as compared to LMS, NLMS, and DFT-LMS. For the 

cancellation or suppression of the assorted noise, they used this spectrogram technique 

to sense and eradicate noise. Through the method described in this paper, 12dB or 

more SNR can be attained, and the noise reduction coefficient becomes greater than 

0.9.(XU et al., 2017)(Sayoud et al., 2017)(Arif et al., 2017) 

 
2.5.3 Recursive least squares (RLS) algorithm 

 
As the adaptive filter is based on the alteration of the treated signal, it uses an 

adaptive algorithm for the alteration of the filter limitations and structure (Guopin 

et al., 2013). Normally, it is just the filter coefficients that are altered and the re- 

mainder of the filter structure is stay the same. 

The RLS adaptive algorithm for noise cancellation uses the error signal to regulate 

the weight coefficients of the adaptive filter, and therefore attains a filter output that 

is an estimate of the interference signal, and then uses the mixed signal with the 

noise component to subtract the filter output in order to acquire the strong signal 

and achieve the output of eliminating the noise signal. 

This method was used by (Guopin et al., 2013) to conduct research on speech 

enhancement using signals which had periodic noise mixed with impulse noise. A 

time-frequency spectrogram was used by them in order to pre-process the noisy sig- 

nal, then they passed the signal through an RLS adaptive noise reduction system to 

terminate the noisy component. (Rakesh and Kumar, 2015) achieved the same results; 

this proved again that RMS is superior compared to NLMS for noise cancellation. 

A new dual forward blind source separation (FBSS) algorithm was introduced by 

(Djendi et al., 2016) based on the use of the recursive least square algorithm to update 

the cross-filters of the forward structure. This algorithm combines the good features 

of both- the FBSS and RLS algorithms. This DFRLS algorithm was used in speech 

enhancement and acoustic noise reduction applications. Their method showed good 
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results as compared to the dual forward normalised least mean square (DFNLMS) 

algorithm with respect to the segmental signal to noise ratio (SegSNR), the cepstral 

distance (CD), the system mismatch (SM), and the segmental mean square error 

(SegMSE). A summary is given in Table 2.4 for the advantages and dis-advantages 

of both the least mean square(LMS) and the recursive least square(RLS). 

Table 2.4: Advantages and dis-advantages of LMS and RLS 
 

 Pros Cons 

LMS 
• The implementation of the 

LMS algorithm is simple (Krishna 
et al., 2010). 

• The HOT based LMS adaptive 
filter is computationally 
effective and has fast convergence 
as compared to LMS, NLMS and 
DFT-LMS (Krishna et al., 2010) 

• Simple LMS has sluggish conver- 
gence and gradient noise amplifi- 
cation (Dewasthale et al., 2015) 

RLS 
• SNR can increase up to 10dB or 
more noise 

 

• The reduction coefficient can ex- 
ceed 0.9 (Guopin et al., 2013). 

• Good noise reduction can be 
achieved.(Djendi et al., 2016) 

• RLS has a quicker rate of con- 
vergence as 
compared to LMS(Dhiman et al., 
2013) 

• It has reduced steady-state er- 
rors(Dhiman et al., 2013) 

• Its spectral characteristics 
are better enhanced than for 
LMS(Rakesh and Kumar, 2015) 

• Its effects are mostly restricted 
to periodic noise, low-frequency 
noise signal (Guopin et al., 2013) 
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2.6 Machine learning approaches to speech enhance- 

ment 

2.6.1 Neural networks for speech enhancement 
 

A speech-enhancement algorithm was evaluated by (Goehringa, et al (Goehring et al., 

2017). It was based on neural networks speech enhancement (NNSE) to improve 

speech intelligibility in noise for cochlear implant (CI) users. The algorithm de- 

cays the noisy speech signal into time-frequency divisions, extracts a set of auditory 

characteristics, and inserts them into the neural network to yield an approximation of 

frequency channels that contain more perceptually significant statistics (higher signal- 

to-noise ratio). This approximation is used to reduce noise-dominated components 

and retain speech-dominated components for electrical stimulation. The architecture 

and low processing delay of the NNSE algorithm make it appropriate for application 

in hearing devices. 

A regression-based speech-enhancement framework was presented by (Xu et al., 

2014). It used deep neural networks (DNNs) with a deep architecture having multiple- 

layers. A restricted Boltzmann machine pre-training scheme was introduced to pre- 

pare the DNN. A huge training set is fundamental to learn the rich structure of the 

DNN. Using more acoustic framework statistics is shown to improve performance and 

make the enhanced speech less intermittent. Multi-condition training can address the 

speech augmentation of new speakers, hidden noise types, numerous SNR levels under 

different noise circumstances, and even cross-language generalisation. Compared with 

the SNN-based and log-MMSE methods, noteworthy enhancements were attained on 

the TIMIT corpus. On average, 76.35% subjective preference was attained due to the 

nonappearance of musical noise in improved speech. 

Subsequently, the same authors introduced an altered version of this work in(Xu 

et al., 2015). This was an administered technique to improve speech by means of 

finding a mapping function between noisy and clean speech signals based on deep 

neural networks (DNNs). This method can well suppress extremely non-stationary 
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noise, which is hard to handle in general. Additionally, the subsequent DNN model,  

trained with synthetically created data, is also effective in dealing with noisy speech 

data logged in real-world situations without the generation of the infuriating musical 

artifact usually seen in conventional enhancement methods. Multi-condition training 

with many kinds of noise categories can attain a good generalisation proficiency to 

hidden noise surroundings. By doing so, the proposed DNN framework is also influ- 

ential in managing the non-stationary noises in real-world situations. Compared with 

the log-MMSE technique, noteworthy enhancements were attained across different 

hidden noise situations. The sole disadvantage was that training data was too lim- 

ited to cover a wide range of various acoustic scenarios, such as speaker and language 

inconsistencies. 

Another attempt to use DNN for speech enhancement and less aggressive Wiener 

filtering as an additional DNN layer was made in (Saleem et al., 2019a), (Saleem 

and Khattak, 2020). The same author used an ideal binary mask (IBM) as a binary 

classification function in DNN (Saleem et al., 2019b). Their proposed algorithm 

outperformed the competing methods in the literature. A model based on a signal- to-

noise ratio (SNR) aware convolution neural network (CNN) was addressed for speech 

enhancement (SE) in (Fu et al., 2016), (Shi et al., 2018), (Pandey and Wang, 2019). 

This CNN model can efficiently handle the local temporal and spectral speech signals. 

Hence, the model can effectively separate the speech signals and noise from an input 

signal. Two SNR-aware algorithms were proposed using CNN with the intention 

of improving the generalisation capability and accuracy of these models. The first 

algorithm incorporates a multi-task learning (MTL) framework. The noisy speech 

signal is fed as input to the model. Given the input, the algorithm primarily restores 

noise-free speech signals. Then, the SNR level is estimated for the processed clean 

speech signals. The second algorithm is based on SNR adaptive denoizing. The 

algorithm initially computes the SNR level. Then, based on the calculated SNR level, 

an SNR-dependent CNN model is chosen for reducing the noise. It was found that 

max-pooling is not required here for speech enhancement due to its reduced 

capability in representing complex speech patterns. It is justified from the results 
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that the two proposed SNR-aware CNN models outperform the deep neural networks 

in terms of standardised objective evaluations, provided the number of layers and 

nodes are defined to be the same. Additionally, the SNR-aware CNN models possess 

enhanced denoising potential even with unseen SNR levels. This shows promising 

robust potential for real-world applications. 

Most recently, in 2017, another CNN model was proposed towards complex spec- 

trogram enhancement in order to solve the difficulty in phase estimation (Fu et al., 

2017). The proposed model identifies clean real and imaginary (RI) spectrograms 

from noisy spectrograms. These restored RI spectrograms are then utilised to gen- 

erate enhanced speech waveforms. These waveforms possess phase information with 

high accuracy. An objective function was formulated using multi-metric learning 

(MML) criterion such that more than one metric is deemed. The main idea be- 

hind MML is that any signal representation can be portrayed as a function of the 

RI spectrograms. With optimal selection of β, MML can boost multiple objective 

metrics ( log-spectral distortion(LSD) and segmental signal-to-noise ratio (SSNR)) 

concurrently. The lift in the performance can be justified by considering MML as a 

pseudo-layer over the original objective function. This process is believed to improve 

the generalisation capability of the original model. Table 2.5 presents the summary 

of the various kinds of neural networks in the field of speech enhancement. 
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Table 2.5: Pros and cons of machine learning methods 
 

 Pros Cons 

 

NN 
• Low computational complexity 

• Fewer processing delay s 

• Needs improvement in accuracy 

• Not exceptionally good in terms 
of generalisation performance un- 
der unpredictable conditions 

 
 
 
 
 

DNN 

• Better performance than SNN-based and L- 
MMSE methods (Xu et al., 2014) 

 
 

• Remarkable improvements in both objective and 
subjective metrics when compared with the con- 
ventional MMSE-based technique 

 
 

• Quite effective in handling real-world distorted 
noisy speech in various languages and across vary- 
ing recording conditions not observed during DNN 
training(Xu et al., 2015) 

• Effective suppression of highly non-stationary 
noise, which is usually difficult to handle. 

• Improvement needed in the gen- 
eralisation capability of DNN to- 
wards unseen noise (Xu et al., 
2015) 

• Demand for large training set 
to provide good coverage of dif- 
ferent acoustic environments such 
as speaker and language varia- 
tions(Xu et al., 2015) 

 
 
 
 
 

CNN 

• Higher performance than DNN(Fu et al., 2016) 

 
• Efficient in handling local spectral and temporal 
structures of speech signals.(Fu et al., 2016) 

• Effective decomposition of the speech and noise 
signals from the noisy input signals.(Fu et al., 
2016) 

• Lack of necessity for Max pooling(Fu et al., 2016). 

• Enhanced de-noising performance with unseen 
SNR levels(Fu et al., 2016) 

• Promising approach for real-world applications 

• Computationally expensive ap- 
proach(Fu et al., 2017) 
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2.6.2 Optimisation techniques for speech enhancement 
 

This section reviews a few prominent and recent optimisation techniques with regard 

to speech enhancement. All the optimisation techniques mentioned here consider that 

such a dual-channel enhancement is used where one channel is for pure noise while 

the other is dedicated to speech distorted by noise. 

1. Particle swarm optimisation and its variants 
 

(Mahbub et al., 2010) considered the variation in the total number of consid- 

ered particles in different acoustic environments. They conducted research on 

different kinds of noise and voices, and also under varied operating conditions. 

They compared the results of PSO with other adaptive algorithms, namely LMS 

and NLMS. Their experiments showed that PSO outperforms other techniques 

with respect to SNR improvement, and showed a satisfactory convergence rate 

under different acoustic conditions. (Asl and Nezhad, 2010) proposed a modi- 

fied PSO (MPSO) and compared it with PSO when used for adaptive filtering 

in the enhancement of speech signals. Their experimental results showed that 

MPSO is capable of a much faster search speed when finding an optimal so- 

lution. Moreover, MPSO improves SNR to a greater extent than the simple 

PSO. This improvement is more pronounced in the construction of higher order 

filters. 

APSO was used for speech enhancement in 2014 by (Prajna et al., 2014a). The 

authors conducted study on dual-channel speech enhancement and compared 

the results of APSO against PSO. For evaluation purposes they used objective 

measures of speech intelligibility (FAI), perceptual evaluation of speech qual- 

ity (PESQ) and signal to noise ratio (SNR). The noise types they considered 

were babble and factory noise, for which APSO proved to be far superior to 

PSO in terms of improved speech signal quality and intelligibility. The main 

drawback of using standard PSO is that in some cases, its convergence speed 

becomes very low. Its search space is also fairly limited (Kunche and Reddy, 

2016b). In (Yang, 2010) however, the authors provided a solution to these lim- 
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itations by proposing another modified form of PSO, termed the accelerated 

PSO or APSO and. This was shown to have a comparatively simpler imple- 

mentation and a much faster convergence speed. (Krohling, 2004) proposed a 

slightly modified MPSO technique, based on Gaussian probability distribution. 

It is termed Gaussian PSO or GPSO. In the standard PSO, a number of pa- 

rameters, such as accelerating constants, inertia weight, maximum velocity and 

the number of particles, need to be initially defined, which the GPSO does not 

require. The sole variable that needs to be initially defined is the total number 

of swarm particles. Comparative simulation results showed the superiority of 

GPSO over the standard PSO for the data that was considered. To the best 

of our knowledge, GPSO has never been used before for speech-enhancement 

problems. 

A learning-based particle swarm optimisation (LPSO), which is an improved 

stochastic optimisation algorithm, was introduced to devise an adaptive filter 

for dual-channel speech enhancement application by (Asl and Geravanchizadeh, 

2010). The search of regions around the best solution is performed using a dy- 

namic search method. The algorithm then involves adaptive local search on each 

particle. During the process, sub-swarms exchange the best solutions at regular 

intervals through a sub-population strategy. The simulation results prove that 

the proposed LPSO algorithm outperforms the standard particle swarm optimi- 

sation (SPSO), genetic algorithms (GA) and gradient-based NLMS algorithm 

with respect to SNR and stability. 

During another attempt in 2010, a hybrid optimisation algorithm was suggested 

to boost the distorted speech signals in the framework of dual-channel speech 

enhancement(Osgouei and Geravanchizadeh, 2010). The proposed hybrid algo- 

rithm θ-SSPSO combines the conventional θ-PSO and the shuffled sub-swarms 

particle optimisation (SSPSO) technique to exploit the advantages of both al- 

gorithms. Experimental results reveal that the θ-SSPSO algorithm is highly 

effective in terms of global convergence for adaptive filters. Global convergence 
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helped in achieving improved noise suppression in the candidate speech signal. 

The θ-PSO algorithm, however displays a better optimisation performance than 

the SPSO in the case of simple problems, but gets trapped in local optima when 

dealing with complex multi-objective functions. SSPSO overcomes this issue by 

increasing the diversity of particles in the search space thereby avoiding the 

local optima. 

(Selvi and Suresh, 2016) employed a hybridization of spectral filtering and 

an optimisation algorithm for speech enhancement, by combining MMSE and 

PSO. Their proposed method yielded better evaluation results compared to the 

Bayesian non-negative matrix factorization (BNMF), and MMSE approaches. 

A modified predator-prey particle swarm optimisation (MPPPSO) for noise can- 

cellation has been recently proposed by (Fisli et al., 2018a), (Fisli and Djendi, 

2018). The proposed algorithm showed good results compared to other meth- 

ods, such as the predator-prey particle swarm optimisation (PPPSO), and the 

normalised least mean square (NLMS) algorithm. (Singh and Bansal, 2018) 

proposed a low-pass IIR filter design utilising a hybrid PSO-GSA optimisa- 

tion algorithm. Their proposed algorithm shows improvement compared to 

traditional digital filters for the following performance evaluations: magnitude 

response, phase response, frequency response and group delay. 

2. BAT Algorithm A population-based meta-heuristic approach called the Bat 

algorithm (BA), motivated by the hunting behaviour of bats, was devised (Yang, 

2010). BA is rooted in the echolocation behaviour of micro-bats. The algorithm 

adopts frequency tuning to elevate the diversity of the solutions in the popula- 

tion. It also implements the automatic zooming characteristic of bats, such as 

the pulse emission rate and loudness on approaching the prey as the automatic 

adjustment capability in the algorithm. The capability attempts to balance 

exploration and exploitation during the search process by adapting from explo- 

ration to exploitation with the approaching of global optimality. This algorithm, 

being the first attempt to balance these important components, justifies itself 
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to be a very efficient optimisation technique when compared to other meta- 

heuristic algorithms (Prajna et al., 2014b), (Fisli et al., 2019), (Thaitangam 

et al., 2018a). 

Yet another attempt using the Bat algorithm (BA) towards dual-channel speech 

enhancement systems was put forth in (Kunche and Reddy, 2016e). In this 

approach, the BA is utilised in determining of the weights for the adaptive 

filter. The methodology initially involves segmenting the input signals into 

frames. Then, the objective function is formulated as the mean square error 

between the distorted speech and the estimated noise signal in each frame. 

Then, the optimisation of the filter co-efficient is conducted through the BA. 

The results justify that the BA portrays an improved performance in terms of 

improved quality and intelligibility of the enhanced speech when compared to 

the SPSO algorithm. 

The simulation results based on the BA were compared with those of the 

standard, accelerated PSO, gravitational search algorithm (GSA) and hybrid 

PSOGSA- based speech enhancement algorithms by (Kunche and Reddy, 2016b). 

The results evidently demonstrate the potential of the meta-heuristic BA over 

the other algorithms pertaining to the enhancement of speech signals. 

An  enhancement  was  formulated  to  the  original  BA  in  (Pérez  et  al.,  2015). 

The improvement pertains to adopting a fuzzy system to dynamically adapt its 

parameters, such as wavelength, loudness, low frequency, and high frequency 

unlike the usual parameter tuning, which is performed based on trial and error. 

The results provide a comparison of the proposed modified algorithm with the 

original BA and genetic algorithms, depicting the effectiveness of the modifi- 

cation. Tests were also carried out with benchmark mathematical functions to 

demonstrate the potential of the proposed enhancement. 

3. GSA Algorithm. An optimisation algorithm rooted in the law of gravity 

known as GSA was presented by (Prajna et al., 2014a). It is a population-based 

algorithm. Agents (individuals) are regarded as objects, and their performance 
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is estimated through masses. Objects attract each other due to the force of 

gravity. Objects with heavier mass have a higher gravitational force and tend 

to attract objects with lower mass. Hence, objects interact with each other 

by means of gravitational force. The objects with heavier mass are candidates 

for good solutions. These objects tend to move slower than the lighter ones, 

thereby improving exploitation. GSA achieves improved PESQ scores when 

compared to the SPSO algorithm. Although the SPSO finds good solutions, it 

suffers from the problem of the the local optimum. GSA yields better quality 

and intelligibility in the enhanced speech signals provided by SPSO algorithm. 

A hybrid PSOGSA was presented to enhance the noise distorted speech signals 

in dual-channel systems by (Kunche et al., 2015). Each agent in the swarm, 

representing the filter coefficients is deemed as a candidate solution. PSOGSA 

is adopted to optimise these coefficients of the adaptive filter. The performance 

of PSOGSA excelled the performance of both the GSA and SPSO. The hybrid 

algorithm possesses the exploration and exploitation capabilities of the GSA and 

PSO, respectively. Therefore, PSOGSA suppresses the unwanted background 

noise signals of the noisy input speech signals more effectively. Table2.6 shows 

the highlights of the optimisation methods reviewed. 

Having presented the machine-learning-based approaches towards speech en- 

hancement, the following table shows some highlights of the optimisation meth- 

ods for enhancing speech 
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Table 2.6: Highlights of optimisation methods for enhancing speech 
 

 Highlights 

LPSO(Asl and Geravanchizadeh, 2010) 
• Higher performance when compared 
to the SPSO, GA, and gradient-based 
NLMS algorithm in terms of SNR im- 
provement and stability. 

 
θ-PSO(Osgouei and Geravanchizadeh, 
2010) 

 

• Combination of advantages from both 
algorithms, θ-PSO and SSPSO 

• Quite effective in achieving global con- 
vergence for adaptive filters 

• Better suppression of noise in the in- 
put speech signal 

• Increased diversity of particles in the 
search space to avoid getting caught in 
local optima. 

• Better than the standard PSO, θ- 
PSO, and SSPSO with respect to con- 
vergence rate and SNR 
improvement 

• Possibility of getting trapped in local 
minima while dealing with 
complex or multi-mode functions. 

GSA(Prajna et al., 2014a) 
• Improved PESQ scores when com- 
pared to the SPSO algorithm 

PSOGSA(Kunche et al., 2015) 
• Better than GSA and SPSO 

BAT(Kunche and Reddy, 2016b) 
• Improved quality and intelligibility of 
enhanced speech 
compared to PSO, SPSO, APSO,,GSA, 
PSOGSA 

Modified BAT(Pérez et al., 2015) 
• Better than BAT and GA 
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2.7 Summary 
 

In this chapter, a survey of how researchers have tackled the issue of speech enhance- 

ment over the years has been presented. The earliest works done in this domain 

consist of the various kinds of spectral enhancement methods, statistical based algo- 

rithms, and subspace enhancement methods. These have performed well under test 

conditions, but in practical scenarios each comes with its own sets of drawbacks. 

Adaptive noise cancellation is another popular domain in this regard. It contin- 

ues to be a topic of interest for research by being customisable through the use of 

machine learning techniques of optimisation to tune its coefficients. Machine learning 

algorithms are quite vast in nature. It is not possible to cover them all within the 

scope of this chapter. We have discussed a few prominent ones and enlisted the strong 

points of each. 

Advances in the field of artificial intelligence have yielded fruitful results in speech 

enhancement. Neural networks have proven to be a strong tool in this regard. After 

simple NN, came DNN, which had better results but showed poor real world gen- 

eralisation upon encountering noise and speech signals that were unseen during the 

training phase. Then came the era of CNN, which has finally proven to be a reliable 

tool for generalisation of real world noise cancellation problems. It can effectively 

deal with noise signals of all kinds, whether seen or unseen during training phase. 
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Chapter 3 

 
Research Methodology 

 
 

3.1 Introduction 
 

This chapter discusses the approaches and techniques that are used to establish the 

speech-enhancement system. These phases include the generation of noisy data ap- 

plied to the audio speech corpora, filter selection, the meta-heuristic optimisation 

methods utilised to optimise the parameters of the filters, defining the objective func- 

tion that shall be optimised. Finally, the evaluation criteria used to evaluate and 

assess the performance of the speech-enchantment system will be considered. 

Figure 3.1 displays the schematic diagram of the proposed speech-enhancement 

framework, and the phases adopted to conduct this work. The phases of the overall 

framework will be discussed with further details in the following sections. 
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Figure 3.1: Schematic diagram of the proposed system 
 
 

The rest of this chapter is structured as follows: A description of the datasets 

used in this research is presented in Section 3.2; this includes the NOIZEUS and the 

ARABIC speech corpuses. This section is then followed by how the generation of noisy 

data is carried out, which is discussed in Section 3.3. The phase of filters selection 

is summarised in Section 3.4.1. The proposed meta-heuristic optimisation speech- 

enhancement system and the objective function is defined in 3.4.2. An evaluation of 

the proposed system discussion is given in Section 3.5 followed by a summary of this 
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chapter in Section 3.7. 
 

 
3.2 Data-set description 

 
There are several audio speech databases available to use as part of the proposed 

speech-enhancement system. Two different databases are selected and used for the 

experiments of this work; both are freely available. How these databases are recorded 

is provided in the next sections. 

 
3.2.1 NOIZEUS corpus 

 
A noisy speech corpus (NOIZEUS) was designed and developed to ease the comparison 

of speech-enhancement methods for researchers (Hu and Loizou, 2007). It has a total 

of 30 IEEE speech sentences (Rothauser, 1969), spoken by three females and three 

males. These sentences from the IEEE database were recorded in sound-proof booth 

using Tucker Davis Technologies (TDT) recording equipment. The IEEE sentences 

include all phonemes in American English language. The IEEE database contains 

phonetically balanced sentences with relatively low word-context predictability. The 

sentences were originally sampled at 25 kHz and down-sampled to 8kHz. Example of 

the sentences used are: ”The birch canoe slid on the smooth planks” and ” The boy 

was there when the sun rose ”, The database is easy to download and use. 

 
3.2.2 Arabic speech corpus 

 
The second speech corpus used for experimenting for a proposed system was an Arabic 

speech corpus (Halabi, 2016): it is a modern standard Arabic (MSA) speech corpus 

for speech synthesis, and was recorded in South Levantine Arabic (with a Damascane 

accent) using a professional studio. It contains 1813 wav files containing spoken 

utterances. 
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3.3 Generation of noisy data 
 

For this stage first we determine the type of noise to be added to the data. This type 

can be any one of the following: babble (crowd of people), airport, train, or factory. 

Then the SNR level is chosen, after which the signal is mixed with the noise at the 

selected SNR level after noise normalisation. 

There are many types of noise as mentioned above. The babble noise is chosen 

from the signal processing information Base (SPIB) (Johnson and Shami, 1993; SPIB, 

2013) and added to these clean signals at different SNRs for both data-sets. 

Speech sentences from the NOIZEUS corpus are combined with babble noise at 

a variety of different SNR levels,-10dB (a loud level of noise), 0dB,+5dB, +20dB (a 

quiet level of noise) to construct a noisy speech. The same applies to the Arabic 

Speech Corpus, where the clean speech sentences are mixed with the babble noise 

at a variety of different SNR levels -10dB, 0dB, +5dB, +20dB to produce a noisy 

speech. By determining which data-set to use and the generation of noisy data, the 

first phase of data preparation ends. The second phase involves the intelligent process 

and filter selection. This phase is to be discussed in the following section. 

 
 

3.4 Intelligent process and filter selection 

The purpose from this phase is to produce signal with improved quality. There are 

many criteria for measuring the quality of a speech signal. These quality measures 

include: perceptual evaluation of speech quality (PESQ), log-likelihood Ratio (LLR), 

signal distortion level (C sig), and scale of overall speech quality(C ovrl). PESQ 

returns a score value ranging from −0.5 to 4.5; the higher the value, the better the 

quality of the speech. The LLR is inversely related to the signal quality: the lower 

the value of LLR, the better signal quality. The C ovrl is a composite measure that 

combines different objective measures as defined in (Hu and Loizou, 2008). There is a 

proportional relationship between signal quality and the C ovrl, the higher the value 

of C ovrl, the better quality of the speech signal. Finally, C sig is also proportional 
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to the signal quality. A higher signal quality is associated with a high value of Csig. 

These relationships between signal quality and the three measures of PESQ, LLR, 

C sig and C ovrl motivate us to consider a fitness function of the form: 
 
 

C = min 
1 

+ 
PESQ 

2 
 

 

C Ovrl 

1 
+ 

C Sig 

 

+ LLR (3.4.1) 

 

In the fitness function it is assumed that PESQ, Csig, and LLR, have the same level 

of importance therefore they have the same weight in the fitness function. However, 

the C ovrl is assumed to be more important, that why it has more weights in the 

fitness function than the measurements. This phase aims to reduce or remove the 

noise from the noisy signal based on the above fitness function. This is done by 

applying two processes (filter selection and meta-heuristic optimisation). These two 

processes will be detailed in the coming sections. 

 
3.4.1 Filter selection 

 
In this phase, the system makes choice between two filters: The Butterworth filter or 

the Elliptic filter. These are among the conventional ANC which remove or suppress 

a noisy signal, adjusting their parameters according to an optimisation algorithm. 

The selection of the filter parameters is a crucial process that affects the performance 

of the filter. Because we are not sure about the suitable choice of filter parameters, 

we followed the recommended values stated in the Matlab help guidelines. 
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Figure 3.2: Filter selection stage of the proposed system 
 
 

Hence in the case of the Butterworth filter the parameter recommended by Matlab 

is: 
 

• the cut-off frequency = 0.5. 

 
And in the case of the Elliptic filter: 

 
• the filter order = 2. 

 
• peak-to-peak ripple in decibels = 0.5dB. 

 
• minimum stop band attenuation =20dB. 

 
• passband edge frequency =0.5dB. 

 
Hereafter, we used the term fixed filter coefficients to point to this case above. With 

the mentioned parameters the noisy signal is filtered. Finally, a comparison of the 

speech enhancement results with and without the use of optimised coefficients is 

carried out. 

However, looking for the optimal coefficients of the Butterworth and Elliptic filters 

will be our main focus in the next section. 

Filter Selection 

Butterworth Filter Elliptic Filter 
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3.4.2 The meta-heuristic optimisation selection 
 

The purpose of this process is to find the optimal filter coefficients of the adaptive 

filter, based on meta-heuristic optimisation algorithms. 

The meta-heuristic optimization algorithms considered in this thesis include five 

methods. The first three methods involve the particle swarm optimisation and two 

of its variants. These two variants are the accelerated and Gaussian particle swarm 

optimisation methods. Detailed discussions are presented in Chapter 4. The fourth 

method is the gravitational search algorithm, which is described in more details in  

Chapter 5. Finally, the Bat algorithm, presented in more detail in Chapter 6. 

 

 

Figure 3.3: Meta-heuristic optimisation algorithms stage of the proposed system 
 
 

Based on previous research in the literature, a range of values is determined for 

each parameter in a meta-heuristic algorithm. To select the best configuration of 

parameter values, a grid search method is implemented which runs through selected 

values for each parameter, and minimises the objective function as in Equation3.4.1. 

Subsequently, the parameters of the meta heuristic algorithm are fixed, using the 

grid search approach. The next step is to employ it to find the best (optimised) filter 
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coefficients. With these coefficients the noisy signal is filtered. 

Finally, a comparison of the speech enhancement results with and without the use 

of optimised coefficients is drawn. 

We have followed methods from the literature for the evaluation of our meta- 

heuristic system by considering both objective and subjective quality evaluation mea- 

surements. 

 
 

3.5 Speech enhancement evaluation methods 
 

In order to evaluate the performance of the speech-enhancement system proposed 

in this work, subjective and objective speech-quality measurements are conducted. 

Subjective speech quality measurements are the ideal choice, but require human vol- 

unteers to assess the quality of the speech(Hu and Loizou, 2008). Objective speech 

quality measurements are implemented, and they need a machine to be computed, 

compared to the subjective listening tests which are fast. Many different methods are 

available, such as PESQ (Rix et al., 2001), the log-likelihood ratio (LLR), Itakura- 

Saito(IS)(Hu and Loizou, 2008). Due to time limitations, for speech enhancement 

evaluation we only considered speech quality measures and not speech intelligibility. 

The coming sections describe these speech evaluation measures. 
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Figure 3.4: Evaluation stage of the proposed system 
 

 
3.5.1 Subjective speech quality evaluation measurement 

 
Among the natural methods for the listening tests is the subjective estimation of 

speech intelligibility. This subjective test is carried out by human volunteers by 

listening to some specific filtered speech sentences or short words and using a five- 

point numerical score, with 5 indicating the best and 1 indicating the worst speech 

quality. The listeners are requested to rate the speech utterance being tested using a 

five-scale category as shown in Table 3.1. The average of these scores is known as the 

mean opinion score (MOS). However, this MOS does not consider the distortion in the 

speech signal and the background noise which are introduced by speech-enhancement 

algorithms. In recent years, standardised approaches have been developed by the 

ITU-T Recommendation (Recommendation, 2001), with the aim of clearer guidance 

for the listeners for the evaluation of the speech materials. The ITU-T standard 

(P.835) addressed this problem by introducing 3 different scales to score: the speech 

distortion level in speech signal, the presence of back ground noise and finally overall 

speech quality. We will use theses scores in our evaluation. 
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Table 3.1: 3-Scale mean opinion scale 
 

Rating Speech signal quality Background noise Overall quality 

5 Not distorted Not noticeable Excellent 
4 Slightly distorted Slightly noticeable Good 
3 Somewhat distorted Noticeable but not intrusive Fair 
2 Fairly distorted Somewhat intrusive Poor 
1 Very distorted Very intrusive Bad 

 
3.5.2 Objective speech quality evaluation measurement 

Although subjective listening tests are the reliable way to assess the speech quality, 

they are time consuming and may cause listener fatigue, another problem is finding 

a suitable number of listeners (Loizou, 2013a), who have no problem with hearing, 

and also master the language of the speech we are testing. Because of these ob- 

stacles, objective speech quality measures are useful as they only require a machine 

(computer) and are easy to implement compared to the subjective MOS system. The 

log-likelihood ratio (LLR), Itakura-Saito(IS), time-domain segmental SNR (segSNR), 

the Cepstrum distance (CEP), and weighted spectral slope (WSS), are listed among 

the objective evaluation measurements. In this work, we will be using the perceptual 

evaluation of speech quality (PESQ). PESQ is a popular and widely used objective 

speech measure; recommended by ITU-T recommendations P.862(Recommendation, 

2001). It compares the clean signal to the degraded signal, and returns a score value 

ranging from −0.5 to 4.5. The higher the value, the better the quality of the speech. 

Other objective quality evaluation methods are the composite measures, where dif- 

ferent objective measures are combined. These three composite measures are defined 

in (Hu and Loizou, 2008). The first composite measure deals with signal distortion 

(C sig), the second composite measure is noise distortion (C bak), and the third com- 

posite measure is the overall signal quality(C ovrl). The values of these measurements 

are obtained by linearly combining the existing objective measures in the following 

way (Hu and Loizou, 2006): 
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Csig  = 3.093 − 1.029 · LLR + 0.603 · PESQ − 0.009 · WSS (3.5.1) 

Cbak = 1.634 + 0.478 · PESQ − 0.007 · WSS + 0.063 · segSNR (3.5.2) 

Covrl  =  1.594 + 0.805 · PESQ − 0.512 · LLR − 0.007 · WSS (3.5.3) 

 
3.5.3 Statistical analysis using the t test 

 
To investigate whether there are any significant differences between the means of the 

clean speech signal, the filter with a fixed coefficient, and the filter with an optimised 

coefficient, the t tests are applied to the resulting signals, at 0.05 level of significance. 

By letting µC, µFix, µOpt be the mean of a clean signal, the application of a filter 

with a fixed coefficient, and a filter with an optimised coefficient respectively, the null 

and alternate hypothesis is tested for the case of the filter with a fixed coefficient as 

follows: 

H0: the means of the clean signal and the signal obtained when applying a filter 

to it are equal. 

Ha: there is a significant difference between the means of the clean signal and a 

signal obtained by a filter with a fixed coefficient. 

The null and the alternate hypotheses for the case of a filter with an optimised 

coefficient as follows: 

H0: the means of the clean signal and the signal obtained when applying a filter 

to it are equal. 

Ha: there is a significant difference between the means of the clean signal and a 

signal obtained by a filter with an optimised coefficient. 

 
 

3.6 Software tool 
 

Matlab is a powerful and established high-performance language for technical com- 

puting. It involves the plotting of functions and data, graphical interactive tools, 
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and also supplies built-in functions. The toolbox of Matlab provides specialised func- 

tionality. E.g Excel link allows data to be written in a format recognised by Excel 

(Houcque and Otrs, 2005) 

 

All the experiments of this work are conducted on a computer with Intel(R) 

core(TM) i7-4700MQ, CPU 2.40- GHZ, RAM 8 GB, MATLAB 2017b. 

 
 

3.7 Summary 
 

This chapter discussed and presented the approaches and the methods adopted in 

this research. Therefore, it covered the methodology aspects that have assisted the 

present work. First, it gave an overview of the methodology followed in this work, 

followed by a description of the audio speech corpora, and generation of noisy data 

approach, followed by an explanation of several meta-heuristic optimisation methods, 

which are mainly used to tune the coefficients of the adaptive filter to reduce the 

noisy signal. Lastly, it is assessed how the performance and the evaluation of the 

research results is conducted. 
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Chapter 4 

 
Speech Enhancement Based on 

Adaptive Noise Cancellation using 

Particle Swarm Optimisation 

 
This chapter, explores the potential of different benchmark optimisation techniques, 

where we consider the particle swarm optimisation (PSO), and its variants in con- 

junction with the adaptive noise cancellation (ANC) approach, for delivering dual 

speech-enhancement. Hence section 4.1 introduces this chapter. Then section 4.2 

presents the background and related work. section 4.3 introduces the proposed op- 

timised speech-enhancement system. Comparative results and a discussion of the 

experimental set-up is presented in section 4.4. Finally, summary of this chapter is 

presented in Section 4.5. 

 
 

4.1 Introduction 
 

Many researchers have worked on the problem of noise cancellation over the past sev- 

eral decades (Mahbub et al., 2010; Aggarwal et al., 2016; Fisli et al., 2018b). Speech 

enhancement and noise cancellation have involved extensive applications in speech 

bandwidth compression, speaker verification and speech recognition (Gorriz et al., 

2009),(Lin, 2003). For speech recognition and speaker identification, signal enhance- 
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ment techniques improve the quality of the audio signal, which in itself is a funda- 

mental step towards achieving correct classification. 

If single channel applications are considered, spectral subtraction methods are 

most commonly used after noise estimation (Lin, 2003),(Lu and Loizou, 2008). In 

practical scenarios, however, these techniques have their own share of limitations. 

They can result in musical noise that might distort the signal in the process. Fur- 

thermore, such techniques are hugely dependent on properties of the noise signal, for 

they only work best when the additional noise is assumed to be constant or station- 

ary. These assumptions, however, do not hold true in actual operational situations 

where the properties and amplitudes of additional noise signals are varying, along 

with external factors, such as traffic noise, factory sounds and cafeteria babble. To 

deal with such problems, we make use of the ANC approach. The conventional ANC 

comprises two channels:the first captures the reference noise signal, and the second 

captures the primary signal source (with noise). This enables the ANC device to 

sense variations in the noise amplitude quite easily. A number of different algorithms 

have been proposed for ANC using such a dual channel set-up, (Kunche and Reddy, 

2016a). 

The most commonly used methods are least mean-squares (LMS) and normalized 

LMS (NLMS) (Widrow and Stearns, 1985), (Gorriz et al., 2009), (Mohammed, 2007), 

(Bai and Yin, 2010). However, these methods are not ideal for a multi-modal error 

surface as they have a tendency to get stuck in local optima (Ji et al., 2008). 

Stochastic optimisation algorithms have matured quite rapidly over the past few 

decades, and one possible application is for solving challenging noise reduction prob- 

lems. 

Stochastic approaches in fact, are far superior to gradient descent ones (Gen- 

tle et al., 2012). In general, there are two types of stochastic algorithms, namely, 

heuristics and meta-heuristics-based; heuristic means to find or to discover, whilst 

meta-heuristic is associated with random search algorithms (Yang, 2011a). 

Popular meta-heuristic optimisation techniques include: Particle Swarm optimisa- 

tion (PSO), accelerated particle swarm optimisation (APSO), and Gaussian particle 
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swarm optimisation (GPSO). In particular, the PSO, a hugely popular optimisation 

technique, has been applied in a growing range of applications. The use of PSO is not 

restricted to a simple function optimisation, but applied in many challenging appli- 

cations such as control systems and pattern classification systems (Geravanchizadeh 

and Asl, 2010). PSO and its variants are known for their quick convergence, robust 

global search and ease of implementation (Bai, 2010). 

The key contribution of this chapter is to formulate an ANC system based on But- 

terworth, and Elliptic filters, in the form of an optimisation task.Three meta-heuristic 

optimisation techniques (PSO, APSO, GPSO) are used to find the optimal filters co- 

efficients, that optimise the perceptual evaluation of speech quality (PESQ), signal 

distortion (C sig), signal overall quality (C ovrl), and log-likelihood ratio (LLR,) 

for the noise-free audio signal and the filtered signal. The results presented in this 

chapter are also published in paper by the author in (Taha et al., 2019). 

 
 

4.2 Background and related Work 
 

Swarm systems consist of nature-based computational methods (Kennedy and Eber- 

hart, 2001) that are based on the behavior of a group of birds. Swarm systems can 

solve complex problems with considerable efficiency (Poli, 2008). When a group of 

birds solves some given problem, it is said to be due to swarm intelligence; other com- 

mon examples are from colonies of social insects, such as bees, termites or ants. This 

section will present a review of popular meta-heuristic algorithms, namely classical 

PSO, and APSO, and GPSO 

 
4.2.1 Particle swarm optimisation and its variants 

 
PSO is an artificial intelligence technique, quite commonly used for optimisation pur- 

poses. It models the social behavior of a group of birds (a swarm) (Lee and Lee, 

2013). PSO provides an appropriate and best solution for a given optimisation prob- 

lem, using a population of candidate solutions (the particles are termed birds in this 

case). These birds then fly throughout the search space in accordance with mathe- 
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i i i i 

matical models determining their velocity and position. One of its main advantages 

is that it can handle very large search spaces with little or no assumptions about the 

problem at hand, and does not require the problem to be differentiable. Hence it is 

robust enough to deal with problems that have some factors changing over time (Lee 

and Lee, 2013). 

PSO has the ability to carry out a global search by adjusting the positions of 

particles (Subha and Himavathi, 2016). The position of each particle is determined 

by the current global best position and the personal best position. 

If xt and vt represent the current position and velocity vector respectively for par- 
i i 

ticle i, the subsequent velocity vector and the position of the particle are determined 

by the following equations: 

 

vt+1 = wvt + αE1(Gbest − xt) + βE2(Pbest − xt) (4.2.1) 
 

xt+1 = xt + vt+1 
 

(4.2.2) 
i i i 

 

where E1 and E2 are random numbers less than 1, α and β are the acceleration constants 

or the learning parameters are between 0≤ α, β ≤ 2 , and w is the inertia weight 

which controls the velocity and takes a value in between [0,1]. 
 

Algorithm 4.2.1 Finding optimal solution by using PSO 
 

1: For each particle in the population initializes positions and velocities in the search 
space 

2: while end criteria not reached do 
3: for each particle i do 
4: Calculate velocity of the particle using Eq. 4.2.1 
5: Update the position of the particle using Eq. 4.2.2 
6: Evaluate the fitness of each particle as in Eq. 3.4.1 
7: if fitness is better than its pBest in the history then 
8: set current value as the new pBest 
9: end if 

10: if fitness is better than its gBest then 
11:  set current value as the new gBest 
12: end if 
13: end for 
14: end while 
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Although it has numerous advantages, PSO nevertheless has the tendency to get 

trapped in local minima, in some cases, converging to solutions that are far from ideal  

(Farooq et al., 2017). 

The PSO algorithm has several parameters that are required to be appropriately 

set, in order to deliver a good solution. The choice of these fixed parameters is 

known to have a considerable effect on the quality of optimisation. Much research 

has been conducted to find appropriate methods which can assist in finding a suitable 

set of these parameters. GPSO, which is based on Gaussian distribution instead of 

a random distribution, enhances the convergence quality of PSO without the need 

for any kind of parameter adjustment, according to (Lee and Lee, 2013). Hence, the 

velocity equation is defined as follows (Wan et al., 2011): 

 

vt+1 = vt + β1(Gbest − xt) + β2(Pbest − xt) (4.2.3) 

 
where β1 and β2 are positive random number generated by a normal Gaussian distri- 

bution N (0, 1). 

The standard PSO uses both the global best and personal best position of the 

particles (Subha and Himavathi, 2016). The APSO algorithm is a simpler version of 

the PSO algorithm, which uses the global best only. Thus, in the APSO, the velocity 

vector is generated by the following simpler formula: 

 

vt+1 = vt + αE + β(Gbest − xt) (4.2.4) 

Where the value of E is a random number between 0 and 1. α and β the learning 

parameters and their typical values are 0.1 ≤ α ≤ 0.4, 0.1 ≤ β ≤ 0.7. The position 

of the particles can then be updated using equation 4.2.2. The next position of the 

particle is computed by combining equations 4.2.2 and 4.2.4: 

 

xt+1 = (1 − β)xt + βGbest + αE (4.2.5) 

Therefore, APSO is much simpler and results in faster convergence. 
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In this chapter, we aim to formulate the ANC problem in the form of an optimisa- 

tion task. Specifically, we optimise Butterworth and Elliptic adaptive filters for noise 

cancellation. Next, we outline our proposed speech enhancement system, employing 

ANC based on optimisation algorithms. 

 

4.3 Proposed speech enhancement system 
 

The purpose of this chapter is to compare the performances of PSO, APSO and 

GPSO for the tuning of coefficients of an adaptive filter to remove the noise from a 

speech signal. We are looking for the optimal set of filter parameters that optimise 

the perceptual evaluation of speech quality(PESQ), overall quality (C ovrl),signal 

distortion (C sig) , and Log-Liklihood Ratio (LLR) for noise-free audio signal and 

the filtered signal. 

 

 

 
 
 

Figure 4.1: Adaptive optimised filter 
 
 

Figure 4.2 explains the overall structure of the proposed speech-enhancement sys- 

tem. Here, the standard PSO and GPSO are utilised to obtain the optimum solution. 

The APSO can be obtained in the figure by ignoring the particle best (using the 
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global best only). 
 
 

4.3.1 Adaptive noise cancellation based on optimisation al- 

gorithms 

Each particle in the search space is considered a possible solution representing the 

coefficients of the filter. The proposed optimised speech-enhancement is carried out 

as follows: 

1. Initialize positions and velocities randomly for each particle in the search space. 

 
2. Evaluate the fitness function for each particle using Equation 3.4.1. 

 
3. Find the personal best, and the global best (for PSO; the global best is only for 

APSO). 

4. Update the velocity and the position of each article using Equations 4.2.1 and 

4.2.2 in the case of PSO ,4.2.4, 4.2.5 in the case of APSO, and 4.2.3 in case of 

GPSO. 

5. Repeat steps 2-4 until the stop criteria are met (the maximum no of iteration 

is reached or the optimal solution is found). 

 
4.3.2 Evaluation measurement 

 
In order to evaluate the proposed enhancement-system, the objective PESQ mea- 

surement is used. PESQ is based on mathematical comparison of the clean and the 

enhanced speech signals. The composite measures described in 3.5.2 are also used 

along with subjective evaluation measurements where human volunteers used to lis- 

ten to the filtered sentences. Previously listening tests included significantly different 

numbers of participants: 7 in Inai et al. (2015), 9 in Abel (2013), and 15 in Raitio 

et al. (2015). In this thesis, seven participants volunteer to do the test, three of 

them are females and four are males. A five point numerical scale is used where 
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Figure 4.2: The overall structure of the proposed speech-enhancement system 
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five means(excellent), and one means(bad), the averaged scores are called the mean 

opinion score (MOS). 

 
 

4.4 Results and discussion 

The performance of the proposed system was examined for different SNR values (- 

10db, 0db, 5db, 20db), for both benchmark data-sets. Further, it was compared to 

that of the state-of-the-art audio only, the audio only Wiener filter (AW) (Scalart 

et al., 1996). Matlab implementations of the audio-only Wiener method were used 

from (Loizou, 2013a). To find the best values for the parameters of all of the three 

algorithms PSO, APSO and GPSO, we perform a grid search to configure the optimal 

parameters of α and β to maximize the objective function. Where the α and β were 

in the range 0 ≤ α, β ≤ 2 for the PSO and in the range 0.1 ≤ α ≤ 0.4, 0.1 ≤ β ≤ 0.7 

for APSO. The simulation conditions for all the three algorithms were as follows: the 

population size was set to 20, total iterations set to 50, and other parameters set as 

follows: α = 1.5, β = 2 and α = 0.3, β = 0.5 for PSO and APSO respectively. The 

resulting waveforms of PSO and GPSO are presented in Figure 4.3, and Figure 4.4 

where an improved sound is seen to be produced when using both Butterworth and 

an Elliptic filters with optimised coefficients. The audio signal is corrupted by babble 

noise at 5 db SNR only.The spectrograms of the signals enhanced by PSO, APSO, 

clean speech and noise reference signals are shown Files were chosen randomly from 

the NOIZEUS data-set. 

Table 4.1 shows the results of experiments conducted with the NOIZEUS data-set. 

An optimised Butterworth filter with PSO, APSO, and GPSO is applied at 20db, 

5db, 0db and -10db SNRS. The averaged PESQ score were computed for all five 

speech-enhancement methods. The three optimised algorithms are seen to improve 

the PESQ score and outperform the butterworth fixed coefficient filter and the audio- 

only Wiener filter. Equal scores are obtained for PSO and APSO at SNRs of 20db, 

5db, 0db and -10db. This trend does not remain the same for GPSO, which performs 

the worst at -10db among all the methods. On the other hand, the fixed coefficient 
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filter performs better than the audio-only Wiener filter, and slightly worse than the 

optimised filter by PSO, APSO and GPSO. 

Table 4.1: PESQ comparing filters with a fixed coefficient (Coeff), a PSO, APSO, 
GPSO optimised coeff, and Wiener filter (AW).For the Butterworth filter to a signal 
at SNRs of 20db,5db,0db and -10 db in babble noise, NOIZEUS data-set 

 

SNR level Fixed Coeff PSO APSO GPSO AW 

20db 3.1961 3.3395 3.2789 2.9145 3.0209 

5db 2.5657 2.6852 2.6852 2.7900 2.2714 

0db 2.3089 2.4194 2.4194 2.1722 1.9581 

-10db 1.7656 1.7890 1.7890 0.3118 1.2835 

 

For Table 4.2 when the Elliptic filter is applied, the PSO outperforms all the 

other methods at all SNRs of 20db,5db, 0db, and -10db. Yet the optimised filter 

yields higher PESQ values compared to the audio-only Wiener filter. 

We carried out experiments for the Arabic speech corpus. The results are shown in 

Tables 4.3 and 4.4 for different SNRs of 20db, 5db, 0db and -10db, for the case of both 

Butterworth and Elliptic filters. The APSO is seen to perform the best, compared 

to PSO and GPSO, at 0db and -10db in Table 4.3, when applying the Elliptic filter. 

The APSO is also seen to outperform both the PSO and APSO, at 0db and 5db. 

Overall, applying optimised adaptive filter coefficients was found to enhance the 

results, compared to those achieved by applying a fixed adaptive coefficient filer, and 

state-of-the-art algorithms. 

Table 4.2: PESQ comparing filters with a fixed coeff, a PSO, APSO, GPSO opti- 
mised coeff, and Wiener filter (AW). For the Elliptic filter to a signal at SNRs of 
20db,5db,0db and -10 db in babble noise, NOIZEUS dataset 

 

SNR level Fixed Coeff PSO APSO GPSO AW 

20db 3.1593 3.5096 3.5462 3.2086 3.0209 

5db 2.5160 2.6015 2.5793 2.5142 2.2714 

0db 2.2537 2.3144 2.2853 2.2537 1.9581 

-10db 1.7018 1.8625 1.8477 1.8116 1.2835 
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Table 4.3: PESQ comparing filters with a fixed coeff, a PSO, APSO, GPSO opti- 
mised coeff, and Wiener filter (AW). The Butterworth filter to signal at SNRs of 
20db,5db,0db and -10 db in babble noise, Arabic speech corpus. 

 

SNR level Fixed Coeff PSO APSO GPSO AW 

20db 1.7548 1.2417 1.7554 2.1679 2.0836 

5db 1.3305 1.9657 1.9697 1.2004 0.5169 

0db 1.9401 2.7671 3.0092 2.0620 0.5417 

-10db 1.7030 1.8513 2.0905 1.7750 0.5155 

Table 4.4: PESQ comparing filters with a fixed coeff, a PSO, APSO, GPSO opti- 
mised coeff, and Wiener filter (AW). For the Elliptic filter to a signal at SNRs of 
20db,5db,0db and -10 db in babble noise, Arabic speech corpus. 

 

SNR level Fixed Coeff PSO APSO GPSO AW 

20db 1.7539 2.0834 1.7556 2.1367 2.0836 

5db 1.2641 2.0975 2.3168 1.5805 0.5169 

0db 1.8351 2.9864 2.9945 2.4303 0.5417 

-10db 1.7030 1.8513 2.0905 1.7750 0.5155 

 
The composite measures results which were discussed in more details in Chapter 3 

utilised in this thesis as an objective measure. The results are shown in figures 4.6, 4.7 

and 4.8, where C sig is the score of the speech signal distortion, C back is the score 

of the background noise intrusiveness, and C ovrl is the score of the speech overall 

quality. For the speech signal distortion, it can be seen that PSO optimised by Elliptic 

filter scores high at all SNR values except at -10db, where the Gaussian PSO scores 

slightly higher than PSO, compared to the other methods and audio-only wiener 

filter. At 0db, the optimised filter by PSO and Ellipse shows improvement over than 

the other APSO and, Gaussian PSO, without filtering signal and the audio-wiener 

filter. However, Gaussian performs worst at both SNRs of 5db and 20 db, followed 

by APSO and then PSO with Butterworth filter. 

The noise intrusiveness illustrated in figure 4.7 shows almost the same results.From 

that figure it can be seen at low SNR of -10db equal results are obtained with op- 

timised Elliptic filter by PSO, APSO, Gaussian , without filtering signal and audio 
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Figure 4.3: Audio signal filtered by a PSO optimised Butterworth coefficients, with 
babble noise at 10dB 
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With no noise 

Ellipse Filtered with:Gaussian PSO 

A
u

d
i
o

 
S

i
g

n
a

l
 
A

m
p

l
i
t
u

d
e

 
A

u
d

i
o

 
S

i
g

n
a

l
 
A

m
p

l
i
t
u

d
e

 

 
 
 
 
 

 
0.4 

File#1  
0.4 

File#1 

 

0.3 0.3 

 

0.2 0.2 

 

0.1 0.1 

 

0 0 

 

-0.1 -0.1 

 

-0.2 -0.2 

 

-0.3  
0 0.5 1 1.5 2 2.5 

Time axis 104 

-0.3 
0 0.5 1 1.5 2 2.5 

Time axis 104 

0.4 
File#1 

0.4 
File#1 

0.3 0.3 

0.2 0.2 

0.1 0.1 

0 0 

-0.1 -0.1 

-0.2 -0.2 

-0.3 
0 0.5 1 1.5 2 2.5 

Time axis 104 

-0.3 
0 0.5 1 1.5 2 2.5 

Time axis 104 

Figure 4.4: Audio signal filtered by a GPSO optimised Elliptic coefficients, with 
babble noise at 10dB 
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Audio Signal Spectrogram after optimized filtering 
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(a) Spectrogram of audio signal by an optimised PSO filter 
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(b) Spectrogram of audio signal by Butterworth filter 
 

Audio Signal Spectrogram for clean signal 
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(c) Clean audio speech signal spectrogram 
 

Audio Signal Spectrogram for noisy signal 
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(d) Noise source spectrogram with babble noise at 5dB 
 

Figure 4.5: Spectrogram of audio signal for clean, noisy and filtered signals 
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only Wiener algorithm, at the same SNR with optimised Butterworth filter by PSO, 

APSO and GPSO which performs the worst. This trend does not remain the same 

in the positive SNR at 0db,5db and 20db where the optimised Butterworth filter by 

PSO, APSO, and GPSO. The PSO and APSO outperforms the other algorithms at 

20db. 

 
 

 

Figure 4.6: The composite objective mean score for the noise distortion for optimised 
filter by (PSO, APSO, GPSO, Butterworth and Elliptic), speech without filtering, 
Wiener filtering. 

 
 

The overall scores presented in figure 4.8, are the most important scores to con- 

sider. At low SNR at -10db the optimised Elliptic filter by GPSO slightly outperforms 

the rest of methods (PSO, APSO, without any filtering, and audio Wiener algorithm) 

and outperforms the optimised filter by Butterworth. Equal scores are obtained at 

SNRs of 0db,5db, and 20db for the optimised Elliptic filter by PSO, APSO, GPSO 

and without any filtering speech. However, optimised Butterworth filter by PSO and 

APSO outperforms the other methods. 

Subjective tests were also used in order to confirm the composite objective mea- 

sures tests conducted above. Seven participants volunteered to do the listening test. 
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Figure 4.7: The composite objective mean score for the background noise intrusiveness 
for optimised filter by (PSO, APSO, GPSO, Butterworth and Elliptic) speech without 
filtering, Wiener filtering. 

 

 

 

Figure 4.8: The composite objective mean score for the overall speech quality for 
optimised filter by (PSO, APSO, GPSO, Butterworth and Elliptic) speech without 
filtering, Wiener filtering. 
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Figure 4.9: The mean opinion score for the speech signal distortion level for the 
optimised filter by (PSO Butterworth, and Elliptic), speech without filtering, Wiener 
filtering. 

 
 
 

 
 

Figure 4.10: The mean opinion score for the noise intrusiveness level for optimised 
filter by (PSO Butterworth, and Elliptic), speech without filtering, Wiener filtering. 
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Figure 4.11: The mean opinion score for the speech overall quality for optimised filter 
by (PSO Butterworth, and Elliptic), Speech without filtering, Wiener filtering. 

 

Each participant listened to the sentences at different SNRs levels(-10db, 5db, and 

20db). The subjective tests took part on quit room. All participants spoke English as 

second language. They were three females and four males. Each participant asked to 

fill a form stating their age, gender, if they have abnormality in their hearing (which 

is a requirement). Participant were given a demo about the three sentences they 

will listen to .Three versions of the utterance were used ,the noisy speech sentence 

without any filtering, the speech sentence filtered by audio only method the Wiener 

Filter (Loizou, 2013a), and the speech sentence filtered by the optimised adaptive 

filter presented in this thesis. They asked to score between 0 and 5 using the three 

criteria (speech signal distortion, noise intrusiveness level, and overall speech qual- 

ity). As it turned out from the composite measures scores the optimised filter by PSO 

outperformed the other methods, so we only apply the subjective tests on the PSO. 

Figures 4.9, 4.10, 4.11 illustrates the MOS results which were described in Section 

3.5.1. Looking at overall speech quality first, the optimised Elliptic filter by PSO 

gives the best performance at -10db, and an equal performance with an optimised 
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Butterworth filter at 5db, while the Wiener filter outperforms the other methods at 

5db and at 20db. This pattern is showed again at the speech distortion level and noise 

intrusiveness, where the optimised Butterworth filter and optimised Elliptic filter by 

PSO demonstrating large improvement at -10 db. At high SNR of 20db optimised 

Elliptic filter scores high, followed by the Wiener filter algorithm then the optimised 

Butterworth filter, this is for the speech distortion level.For noise intrusiveness levels 

the optimised Butterworth performs the best among the other algorithms at 20db. 

 
4.4.1 Statistical analysis using the t test 

 
The performance of the proposed algorithms applied to the noisy speech signal is 

compared with the clean speech signal using t test at a significant level of 0.05. That 

is to know, if there are any significant differences between the means of the clean 

speech signal, the filter with a fixed coefficient, and the filter with an optimised 

coefficient by PSO, APSO, and GPSO. 

The null and alternate hypotheses are tested for the case of the filter with a fixed 

coefficient as follows: 

H0: µC = µFix 

Ha: µC I= µFix 

The null and the alternate hypotheses for the case of a filter with an optimised 

coefficient by PSO, APSO, and GPSO are as follows: 

H0: µC = µOpt 

Ha: µC I= µOpt 

The t test result shown in Table 4.5 attests the significance of the optimised filters, 

compared to the non-optimised ones, and the noisy signal. 
 

 
4.5 Summary 

 
This chapter presented noise cancellation techniques with adaptive filter coefficients 

optimised using three meta-heuristic optimisation techniques, namely PSO, APSO 

and GPSO. The objective function is formulated such that the PESQ, Signal dis- 
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Table 4.5: The result of t test at the 0.05 level of significance 
 

 
 

Ha : µC − µFix I= 0 

 

Ha : µC − µFix 0 

 

Ha : µC − µFix I= 0 

 

Ha : µC − µfix 0 

 

Ha : µC − µFix I= 0 

Ha : µC − µfix I= 0 
 
 

tortion (Csig), and overall speech quality (Covrl) measures are maximized, and the 

log-likelihood ratio (LLR) is minimized. The algorithm searched for optimal parti- 

cles over different iterations, until the optimum solution is reached or the number of 

iterations is exceeded. 

The proposed algorithms were tested under various levels of SNR (20db,5db,0db,- 

10db). Benchmark NOIZEUS and Arabic data-sets were used to evaluate the pro- 

posed techniques using PESQ as a standard evaluation metric. The proposed methods 

were also compared with a state-of-the-art algorithm: the audio-only Wiener filter. 

For the NOIZEUS data-set, and for the case of both Butterworth and Elliptic 

filters, the results in Tables 4.1-4.2, showed that the PSO and APSO generally per- 

formed better than GPSO at all levels of SNR. Further, the three proposed algorithms 

outperform the audio-only Wiener filter, except at SNR of 5db, for the case of GPSO, 

which performed the worst among all methods. Similarly, for the ARABIC data-set, 

for the case of both Butterworth and Elliptic filters, Tables 4.3 and 4.4 showed that 

the performance of PSO and APSO is better than the other methods in comparison 

with GPSO at different SNRs. However, at 5db SNR, for the case of PSO and APSO, 

GPSO performed the worst among all methods. 

Dataset  Null hyp. H0 Alternate Hyp. H1 p value t value Decision 

 PSO H0: µC = µOpt 

H0: µC = µFix 

Ha : µC − µOpt I= 0 0.2690 
0.3799 

-1.1054 
-0.8780 

Accept H0 
Accept H0 

NOIZEUS 
Dataset 

APSO H0: µC = µOpt 

H0: µC = µFix 

Ha : µC − µOpt I= 0 0.2690 
0.3799 

-1.1054 
-0.8780 

Accept H0 
Accept H0 

 GPSO H0: µC = µOpt 

H0: µC = µFix 

Ha : µC − µOpt I= 0 0.3242 
0.3799 

-0.9858 
-0.8780 

Accept H0 
Accept H0 

 PSO H0: µC = µOpt 

H0: µC = µFix 

Ha : µC − µOpt I= 0 0.4982 
0.5038 

-0.6773 
-0.6684 

Accept H0 
Accept H0 

Arabic 
Corpus 

APSO H0: µC = µOpt 

H0: µC = µFix 

Ha : µC − µOpt I= 0 0.4982 
0.5038 

-0.6773 
-0.6684 

Accept H0 
Accept H0 

 GPSO H0: µC = µOpt 

H0: µC = µFix 

Ha : µC − µOpt I= 0 0.4955 
0.5038 

-0.6814 
-0.6684 

Accept H0 
Accept H0 
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The composite measures, outlined that the optimised Elliptic filter by PSO per- 

formed better than the other methods (GPSO and APSO) and the optimised PSO 

Butterworth filter. For the subjective evaluation measures it seemed the optimised 

Butterworth by PSO at higher SNRs is generally scored the best among the other 

method for overall quality test, but there is no clear conclusion about which method 

comes second in its performance. Furthermore, a statistical analysis was carried on 

the means of a clean speech signal, a filter with a fixed coefficient and a filter with an 

optimised coefficient respectively, and on the scores collected at each SNR level. The 

results showed there was no statistically significant difference at (p ≤0.05) amongst 

the enhancement methods and the clean speech. 



74 

 

 

 
 
 
 
 
 
 

Chapter 5 

 
Speech Enhancement Based on 

Adaptive Noise Cancellation using 

Gravitation Search Algorithm 

 
This chapter introduces GSA to the adaptive noise cancellation for speech-enhancement. 

Section 5.1 introduces this chapter and gives a motivation for using the GSA. In Sec- 

tion 5.2 background to the GSA and how the algorithm works are presented. Then 

Section 5.3 describes how the adaptive filter is modeled using the GSA optimisation 

method. Section5.4 then presents the results and discusses them, and finally, Section 

5.5 summarises this chapter. 
 

 
5.1 Introduction 

 
Nowadays, many real-world optimisation problems are sophisticated and difficult to 

solve. To deal with these problems, scientists tend to use optimisation though it might 

not be guaranteed to provide the optimal solution. Meta-heuristic algorithms have 

become robust tools for optimisation problems. (Fister Jr et al., 2013) classified these 

meta-heuristic methods into the following two types: nature-inspired and non-nature- 

inspired. The nature-inspired itself is further divided into (bio-inspired algorithms 

and physics/chemistry based algorithms), within the known bio-inspired method are 
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swarm-intelligence-based and evolutionary algorithms. 

The Physics/chemistry algorithms, however, are inspired by the mimicking of 

physical/chemical laws (Rashedi et al., 2018). An example of this is simulated an- 

nealing which simulates the principle of heating and cooling metals. Another ex- 

ample is the gravitational search algorithm, which depends on gravity and is among 

the population-based meta-heuristic algorithms. The advantage of any heuristic op- 

timisation algorithm is its ability to explore and exploit the search space efficiently.  

The standard PSO has the ability in exploration, but fails in the exploitation. GSA, 

however, is good in exploitation due to the slow movements of its heavier mass which 

will reach accurate solutions. 

In this chapter, the authors develop an ANC system that uses GSA to optimise 

the filter coefficients; the ANC is based on Elliptic and Butterworth filters. 

 
 

5.2 The background to GSA 
 

GSA is in another class of optimisation techniques with a different strategy for search- 

ing (Kunche and Reddy, 2016d). The GSA is primarily rooted in the law of gravity, 

and the idea of mass interactions (Rashedi et al., 2009)(Jiang et al., 2014).The advan- 

tage of this technique is that it considers the distance between the neighbour agents 

to update the position of the currently considered agent. 

In the GSA (Sabri et al., 2013), the agent constitutes four parameters, namely, 

position, inertial mass, active gravitational mass and passive gravitational mass. The 

position of the mass refers to the solution of the problem. The gravitational and 

inertial masses, are computed through a fitness function. The inertia mass parameter, 

which is used for updating the agent movement, is inversely proportional to the motion 

of the agent. A bigger inertia mass facilitates a slower motion of the agents in the 

search space. This leads to a more precise local search with increased diversity in the 

search space. 

However, the higher the gravitational mass, the higher the attraction of the agents, 

leading to a faster convergence. The algorithm proceeds by adjusting these two 
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masses, namely: the gravitational and inertia masses, for which each mass presents a 

solution. The masses are attracted by the heaviest mass. Hence, the heaviest mass 

presents an optimal solution in the search space. The masses should obey the two 

Newton laws, the law of gravitation, which states that each object attracts every 

other object in the universe with a force that is directly proportional to the product 

of their masses and inversely proportional to the square of the distance between their 

centers, and the law of motion, which states that the acceleration of any mass is equal 

to the force acting on the system divided by the inertia of the mass (Halliday et al., 

2013). The diagram of GSA is shown in Figure 5.1. 

In the Figure 5.1, G stands for global, M stands for mass, and a stand for accel- 

eration. The flow chart for GSA is presented in Figure 5.1. 

 
 
 

 

 

Figure 5.1: Flowchart of GSA optimisation algorithm by Sabri et al. (2013) 
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d i  

i 

i ij 

N 

j=1 

If GSA is a system with n agents, then GSA start randomly searching between 

these agents, the gravitational force is calculated as: 

 

 

F d(t) = 
G(t).Mpi(t) × Maj (t)

[xd(t) + xd(t)] (5.2.1) 
ij 

ij (t) + E j i
 

 

where : 

• Fij is the force acting on agent i from agent j at d dimension and t iteration, 

and is given by: 

Fd  =  
      

RandjFd (t) (5.2.2) 
 

 

where randj is a random number in the interval [0, 1]. 

 
• Maj is the active gravitation mass related to agent j. 

 
• Mpi is the passive gravitation mass related to agent i. 

 
• Rijis the Euclidean distance between two agents i and j at iteration t. 

 
• G(t) is the gravitational constant computed at iteration t and is calculated as: 

αt 
G(t) = G0 exp 

T 
(5.2.3) 

 

where: 

 
• G0 and α are initial values decreased with time to control the search accuracy. 

 
• t is the current iteration. 

 
• T is the maximum no of iterations. 

 
Then the agents acceleration at iteration t is calculated by: 

 

 Fd(t) 
a (t) = 

 
(5.2.4) 

i Mii(t) 
 

Where Mii is the initial mass of the agent. Fd is the total force acting on agent i 
 

R 
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given in Equation 5.2.2. 
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i i i 

i 

After that, the next velocity and the position of the agent at the next iteration 

t + 1is computed by: 
 
 

vd(t + 1) = rand × vd(t) + ad(t) (5.2.5) 

xd(t + 1) = xd(t) + vd(t + 1) (5.2.6) 
i i i 

 

The gravitational and the inertia masses, are computed for each agent at each iteration 

by: 

 

Mai = Mpi = Mii = Mi, i = 1, 2, ..., N (5.2.7) 
 

 

m (t) = 
fiti(t) − worst(t)  (5.2.8) 
best(t) − worst(t) 

 
  mi(t)  M (t) = 

 
 

 
(5.2.9) 

i N 

j=1 mj(t) 
 

where fiti is the fitness of agent i at iteration t, best(t) and worst(t) representing 

the best fitness value and worst fitness value of the agent at iteration t, respectively. 

The values of best(t) and worst(t) are calculated by: 

 

best(t) = min 
j=1...N 

fitj(t) (5.2.10) 

 
 

worst(t) = max 
j=1...N 

fitj(t) (5.2.11) 

 

this is for minimization, and given by the following for maximization: 
 

 
best(t) = max 

j=1...N 
fitj(t) (5.2.12) 

 
 

worst(t) = min 
j=1...N 

fitj(t) (5.2.13) 
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5.3 A Proposed speech enhancement system based 

on the GSA optimisation algorithm 

As mentioned in chapter 2.5.1, it is assumed that a noisy speech signal is present in 

one channel, and the reference noise signal is present in the second channel. Both 

signals are made available to the Adaptive filter. In this chapter the Adaptive filter 

is modeled using the GSA optimisation method. 

Each mass in the search space is considered as a possible solution representing the 

coefficients of the filter. The proposed GSA optimised speech enhancement system is 

performed by the Algorithm 5.3.1. 
 

Algorithm 5.3.1 Finding optimal solution by using GSA algorithm 
 

Randomly generate a group of n agents, where each agent represents coefficients of 
the adaptive 
Evaluate the fitness function for each agent using Equation 3.4.1. 
Generate randomly the initial velocity of each mass. 
while the maximum no of iteration is not reached or the optimal solution is not 
found do 

Calculate the fitness of ith on time t mass by 3.4.1, then find the best mass. 
Calculate G(t), best(t), worst(t), Mi(t), Fi(t), ai(t) and vi(t + 1) by Equations 

(5.2.1) (5.2.5) 
Update the position of each mass by Equation 5.2.6. 

end while 
 
 

Figure 5.2 depicts the overall structure of the proposed speech-enhancement sys- 

tem. Here, the GSA is used to generate the optimum solution. 
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Figure 5.2: The overall structure of the proposed speech enhancement system 
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5.4 Results and discussion 
 

To test the performance of the proposed system, different SNR values (-10db, 0db, 

5db, and 20db) were examined for both benchmark data-sets; the two benchmarks 

are discussed in Chapter3. Moreover, it was compared to a state-of-the art; the 

audio-only Wiener filter(AW)(Scalart et al., 1996). The parameters for simulation of 

the algorithm tabulated in Table 5.1. The implementations of the audio-only Wiener 

method by Matlab from (Loizou, 2013a) are used. 

Table 5.1: Simulation conditions for GSA algorithm 
 

Algorithm Parameter Value 
 

GSA Population 30 
 Iterations 50 
 α 20 

 G0 100 

 

Tables 5.2, and 5.3 shows the results of experiments for the NOIZEUS corpus, 

for both the Butterworth and Elliptic filters. First, the optimised Butterworth filter 

with GSA which was applied at 20db, 5db, 0db and -10db SNRS, The averaged PESQ 

score were computed for fixed filter coefficients(Fixed Coeff), an optimised filter coef- 

ficients(GSA),and AW. The GSA is seen to improve the PESQ score and outperform 

the audio-only Wiener speech-enhancement algorithm at SNRs of 20db,5db, 0db. 

Furthermore, at SNR of -10db, the fixed coefficient filter outperforms the GSA, the 

audio-only Wiener filter. However, the optimised filter by GSA performs better than, 

the audio-only Wiener filter. As for the optimised Elliptic filter in Table 5.3, the 

results are seen to improve the PESQ score, and outperform the Fixed Coeff, AW at 

SNRs of 20db,5db, 0db, and -10db. 

We also carried out experiments on an Arabic speech corpus, for which the results 

are shown in both Table 5.4 and Table 5.5 for both the Butterworth and Elliptic 

filters respectively, with noises at different SNRs 20db, 5db, 0db and -10db. It is 

clear that at Table5.4 the optimised filter by GSA outperforms both the Fixed filter, 

and the audio-only Wiener Filter, at all the different SNRs 20db,5db, 0db and -10db. 
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Figure 5.3: Audio signal filtered by a GSA optimised Butterworth coefficients 
 
 
 

 
Table 5.2: PESQ results comparing both Butterworth filter with a fixed coefficient, 
optimised coeff by GSA, Wiener filter(AW), to the signal of different SNRs in babble 
noise, for NOIZEUS data-set 
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Table 5.3: PESQ results comparing both Elliptic filters with a fixed coefficient, op- 
timised coeff by GSA, and Wiener filter(AW), to signal of different SNRs levels in 
babble noise, for NOIZEUS data-set 

 

SNR level Fixed Coeff GSA AW 

20db 3.2178 3.4722 3.0209 

5db 2.5160 2.5132 2.2714 

0db 2.2587 2.3007 1.9581 

-10db 1.7018 1.7274 1.2651 

 
Interestingly enough at SNR of -10db the optimised filter by GSA also outperformed 

the fixed coeff filter and the AW. This trend remains the same for the Elliptic filter 

in Table 5.5, in which the optimised filter by GSA performed well compared to the 

Fixed coeff filter and the audio-only Wiener filter, at all SNRs: 20db,5db, 0db, and 

-10db. The fixed coefficient filter performs better than the audio-only Wiener filter, 

and slightly worse than the optimised filter. 

Overall, applying optimised adaptive filter coefficients was found to enhance the 

results, compared to those achieved by applying a fixed adaptive coefficient filer, and 

state-of-the-art algorithms. 

The means of the composite objective quality measures, which are the speech 

distortion, background intrusiveness and overall speech quality, with different SNRs 

levels at -10db,0db,5db and 20db, are provided in Figures 5.4, 5.5, and 5.6 respec- 

tively. As it can be seen in Figure 5.4 for the negative SNR at -10db, the optimised 

Butterworth filter by GSA scores higher results than the optimised Elliptic GSA , 

without any filtering signal and the Wiener filter. However, the optimised Elliptic 

filter by GSA always outperforms the optimised Butterworth filter by GSA, without 

any filtering and the Wiener filter algorithm at 0db, 5db and 20db. As for the back- 

ground intrusiveness score it is shown in Figure 5.5, the optimised Elliptic filter by 

GSA and without any filtering signal scores, are very similar at all SNRs. The opti- 

mised Butterworth with GSA performed the worse with negative SNR at -10db,and 

at 0db. However, it performs the best compared to the other methods at high SNR 

value at 20db. The composite overall scores as can be seen in 5.6 are similar in that 
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Table 5.4: PESQ results comparing Butterworth filter with a fixed coefficient, opti- 
mised coeff by GSA, and Wiener filter(AW), to the signal of different SNRs levels in 
babble noise, for Arabic speech corpus 

 

SNR level Fixed Coeff GSA AW 

20db 2.1396 2.1436 2.0836 

5db 1.4497 1.4783 1.1630 

0db 1.3515 1.5026 0.9276 

-10db 1.2358 1.7747 0.1515 

 
at 0db,5db and 20db the optimised Elliptic filter by GSA performs the best compared 

to the rest of the methods. The optimised Butterworth by GSA performs the worst 

among the other methods. 

Table 5.5: PESQ results comparing both Elliptic filter with a fixed coefficient, opti- 
mised coeff by GSA, and Wiener filter(AW), to the signal of different SNRs levels in 
babble noise, for Arabic speech corpus 

 

SNR level Fixed Coeff GSA AW 

20db 2.1396 2.1436 2.0836 

5db 1.3737 1.4783 0.6647 

0db 1.2715 1.4739 0.0630 

-10db 1.1777 1.3410 0.1515 

 

The composite measures are used to evaluate the noisy sentences.Three versions 

of sentences were compared, the sentence processed by the optimised filter by both 

Butterworth and Elliptic proposed in this work, the signal processed by Wiener filter 

(Loizou, 2013a), and the noisy signal without any filtering. Figures 5.4, 5.5, and 5.6 

show the results of composite measures for the speech signal distortion (Csig), noise 

intrusiveness (Cback), and overall score (Covrl) respectively. 

For the speech signal distortion scores which are in Figure 5.4, it can be seen 

at negative SNR value the optimised Butterworth filter by GSA outperforms the 

Wiener filter algorithm and the optimised Elliptic filter. However, at positive SNRs 

values 0db, 5db and 20db the optimised Butterworth filter gives the lowest scores, 
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Figure 5.4: The composite objective mean score for the speech signal distortion 
for GSA-optimised filter (GSA ,Butterworth and Elliptic), speech without filtering, 
Wiener filtering. 

 

 

 

Figure 5.5: The composite objective mean score for the background noise intrusiveness 
for GSA-optimised filter (GSA, Butterworth, and Elliptic), speech without filtering, 
Wiener filtering. 
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Figure 5.6: The composite objective mean score for the overall speech quality for GSA- 
optimised filter (GSA, Butterworth, and Elliptic), speech without filtering, Wiener 
filtering. 

 

while the optimised Elliptic filter by GSA performs higher than the other methods. 

For the Background noise intrusiveness scores showed in Figure 5.5, the optimised 

Butterworth filter outperforms the other methods at high SNR value of 20db. An 

equal score can be seen for the optimised Elliptic filter and without filtering signal 

at all SNR values. For the overall scores in Figure 5.6, the optimised Elliptic filter 

scores the best at all SNR levels, except at negative value of -10db, where the Wiener 

filter algorithm slightly outperforms the optimised Elliptic filter. 

Although objective tests were provided, we will nevertheless supplement it with 

subjective tests for further justification. By using subjective listening tests, volunteer 

participants were employed. Seven participants were used. Four were male and three 

were female. Each participant listened to the sentences at different SNRs values(- 

10db,5db, 20db). For a comparison purpose, three versions of the utterance were 

used: firstly, the noisy speech sentence without any filtering, secondly, the speech 

sentence filtered by the audio only method, the Wiener Filter (Loizou, 2013a), and 



88 

 

 

 
 
 

 
 

Figure 5.7: The mean opinion score for the speech distortion level for GSA-optimised 
filter (GSA, Butterworth, and Elliptic), Speech without filtering, and Wiener filtering. 

 
 

 

 

Figure 5.8: The mean opinion score for the noise intrusiveness level for GSA-optimised 
filter (GSA, Butterworth, and Elliptic), Speech without filtering, and Wiener filtering. 
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Figure 5.9: The Mean Opinion Score for overall speech quality for GSA-optimised 
filter (GSA, Butterworth, and Elliptic), Speech without filtering,and Wiener filtering. 

 

thirdly, the speech sentence filtered by the optimised adaptive filter introduced in 

this chapter. Figures 5.7, 5.8, and 5.9 show the MOS results for the three different 

techniques mentioned in 3.5.1 ,the speech distortion level, the noise intrusiveness 

level, and the overall speech quality. As it can be seen in the speech distortion level, 

the optimised Butterworth by GSA outperforms the other methods at negative SNR 

of -10db, followed by the optimised Elliptic filter. At both SNRs of 5db and 20db 

the Wiener filter scores the highest, and also has an equal score with the optimised 

Elliptic at 20db. As for the background intrusiveness level it could be seen that the 

listeners were not able to listen to the sentences at low SNR of -10db, as they gave 

low scores for the optimised Butterworth filter by GSA. However, at low SNR of -10 

the optimised Elliptic filter produces high scores as the listeners were able to identify 

the sentences. At the high SNR values of 5db, and 20db all of the method scores were 

close and comparable. When it comes to overall scores the optimised Elliptic filter 

showed improved results at all the SNRs levels. The results obtained by the MOS, 

were closed to the results found by the objective composite measures. 
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5.4.1 Statistical analysis using the t test 
 

We applied the ttest to the computed results, for both the NOISUS and ARABIC 

data-sets. The t test was performed using a 0.5 level of significance. That was to 

know, if there were any significant differences between the means of the clean speech 

signal, the filter with a fixed coefficient, and the filter with an optimised coefficient 

GSA. The null and alternate hypotheses were tested for the case of the filter with a 

fixed coefficient as follows: 

H0: µC = µFix 

Ha: µC I= µFix 

The null and the alternate hypotheses for the case of a filter with an optimised 

coefficient by GSA were as follows: 

H0: µC = µOpt 

Ha: µC I= µOpt 

Table 5.6: The results from the t test at the 0.05 level of significance 
 

 
 

Ha : µC − µFix I= 0 

Ha : µC − µfix I= 0 
 
 

The t test result shown above in Table 5.6 attests to the significance of the op- 

timised filters by GSA. As it can be seen in this table the optimised filter by GSA 

generated better results compared to those produced by the non-optimised ones, and 

the noisy signal. 

 
 

5.5 Summary 
 

This chapter began by giving the background to the GSA and explaining where and 

how it had been inspired and how it currently operates. Then the meta-heuristic GSA 

algorithm was proposed as a means of solving the problem of adaptive noise cancel- 

Dataset  Null hyp. H0 Alternate Hyp. H1 p value t value Decision 

NOIZEUS 
Dataset 

GSA H0: µC = µOpt 

H0: µC = µFix 

Ha : µC − µOpt I= 0 0.4546 
0.3033 

-0.7467 
-1.0239 

Accept H0 
Accept H0 

Arabic 
Corpus 

GSA H0: µC = µOpt 

H0: µC = µFix 

Ha : µC − µOpt I= 0 0.9986 
0.9999 

0.0016 
-9.7121 

Accept H0 
Accept H0 

 



91 

 

 

lation in dual channel speech enhancement and in Section5.3, the overall structure 

of the proposed GSA speech enhancement system was described. The results of this 

comprehensive evaluation of the performance of this speech enhancement system were 

then presented in Section 5.4; where the objective and subjective tests used for a com- 

prehensive evaluation of the performance of the proposed speech enhancement system 

in noisy environments at different SNRs values(-10db,0db,5db,and 20db), using bab- 

ble noise. The results were then compared to ”without filtering” speech sentences and  

with a state-of-the-art algorithm: the audio-only Wiener Filter. The PESQ objective 

evaluation score results showed that, the optimised filter by GSA performs better 

than the Fixed filter at all SNRs levels, and that the Fixed filter performs better than 

the audio only Wiener filter. Furthermore, the composite objective measures revealed 

that the optimised Elliptic filter performed better than the Butterworth filter, and 

slightly better than the ”without filtering”. However, the audio-only Wiener filter 

scores higher than the optimised Butterworth filter in general, but giving lesser per- 

formance than the other methods. As for the subjective evaluation measures it seems 

that the optimised Elliptic generally scores the best among other methods, but there 

is still no clear conclusion about which method comes second in its performance. 
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Chapter 6 

 
Speech Enhancement Based on 

Adaptive Noise Cancellation using 

Bat Algorithm 

 
The Bat algorithm (BA) is a population-based algorithm that was recently devel- 

oped(Yang, 2011b). BA is inspired by the hunting behaviour of bats. This chapter 

proposed the use of the BA in the adaptive noise cancellation for speech enhancement. 

Hence Section 6.1 introduces this chapter. The following section gives a brief back- 

ground to the Bat algorithm and the way it works. Then, Section 6.3 presents how 

the BA method used to model the proposed speech-enhancement system. The results 

and discussion of the experiments are given in Section 6.4 and, finally Section6.5 sets 

out the summary of this chapter. 

 
 

6.1 Introduction 
 

The Bat algorithm was recently introduced by Yang, and it is based on the ability 

of bats to use echolocation to distinguish between prey, and background barriers, 

furthermore recognizing distance(Yang, 2011b). 

The idea behind the Bat algorithm is to control the movement direction and speed 

by adjusting the frequency of each Bat by changing its location. The way that the 
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BA controls the local search, is by controlling the loudness and the emission rate. BA 

expounds on other meta-heuristics by having a way to automatically balance between 

the exploration and the exploitation of the search space. 

In this chapter, we will formulate an ANC system based on Butterworth, and 

Elliptic filters, in the form of an optimisation task. The Bat algorithm is used to find 

the optimal filter coefficients. This chapter presents a novel dual speech-enhancement 

system based on the Bat algorithm. The results of the experiments are discussed with 

speech sentences from the NOIZUS database mixed with babble noise at a variety of 

different SNRs levels. Also, in this chapter, the performance of the proposed system 

is evaluated by using an objective and subjective listening test, and the results are 

discussed. Also it was compared to that of the state-of-the-art audio only. 

The rest of this chapter is divided into the following sections: A review and a 

background of the Bat algorithm and flow chart of the Bat algorithm is discussed 

in Section 6.2. The proposed optimised speech-enhancement system and the overall 

structure of this system is presented in Section 6.3. The results and a discussion of 

the experimental set-up along with an evaluation of the performance is summarised 

in Section 6.4, followed by summary of this chapter in Section 6.5. 

 
 

6.2 The background to Bat 
 

The Bat algorithm is a population-based meta-heuristic approach, put forth by (Yang, 

2010). The algorithm is inspired by the hunting behaviour of bats. It is rooted in the 

concept of the echolocation behaviour of micro bats. During the search for prey, the 

technique of pulse emission rate and loudness revealed by bats is mimicked in the Bat 

algorithm (Kunche and Reddy, 2016c). BA incorporates frequency tuning to elevate 

the diversity of the solution in the population, but at the same time, it adopts the 

automatic zooming concept and attempts to maintain a balance between exploration 

and exploitation during the search process. The auto zooming ability in micro bats 

is manifested as the automatic adjustment from exploration to exploitation upon 

approaching of the global optimality. The Bat algorithms is considered as one of the 
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first type of algorithms that balance these two key components in the search process. 

As a result, it proves to be a very efficient optimisation technique compared to all 

other meta-heuristic algorithms. This algorithm demonstrates effective solutions for 

a variety of problems. The binary version of the algorithm has been very successful in 

image processing and classification. The flow diagram of the Bat algorithm is given 

in Figure 6.1. 

The use of the Bat algorithm for enhancing speech was proposed in (Kunche 

and Reddy, 2016e) , who conducted a study on dual-channel speech enhancement 

and compared the results to APSO, GSA, and PSOGSA a hybrid algorithm. Their 

proposed algorithm outperforms the other algorithms in terms of improved speech 

signal quality and intelligibility. 

(Thaitangam et al., 2018b) utilised an adaptive filter optimised by the Bat algo- 

rithm. The proposed algorithm is compared to LMS and RLS, and to an adaptive 

filter optimised by PSO. Their results showed that their algorithm had less time 

complexity, stability, and better SNR than these algorithms. 

Figure 6.1 shows the flow chart of the Bat algorithm. At the beginning, the 

position xi and the velocity vi have to be initialised in the d-dimensional search 

space. The initial pulse frequency is updated by the following equation: 

 

fi = fmin + (Fmin − fmax)γ (6.2.1) 

 
Where γ ∈ [0, 1] is a random vector following the uniform distribution; here for our 

problem we put fmin = 0, fmax = 2. 

At each step, we update the velocity by: 
 

vt = vt−1 + (xit − x∗)fi (6.2.2) 

 
x∗ denotes the current best global solution(location). 

At each step, the new solution is xit 

 
 

xt = xt−1 + vit (6.2.3) 
i i 
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The loudness Ai and the rate ri of pulse emission are updated accordingly as the 

iterations proceed. For the local search part, using random walk, a new solution is 

generated randomly: 

xnew = xold + EAt (6.2.4) 

E ∈ [−1, 1] is a random number, At is the loudness of bats at time step t. According 

to the natural behaviour of bats, Ai decreases if the bat has found its prey, while the 

pulse rate ri increases. 

Ait+1 = αAi (6.2.5) 

 

rit+1 = ri0[1 − exp(−γt)] (6.2.6) 

where α ∈ (0, 1) and γ > 1, are defined according to the problem, if t → ∞ then 

Ait → 0, and rit → ri0 (6.2.7) 

 
ri0 ∈ [0, 1] can take any value according to Equation 6.2.6. Having presented the 

characteristics of the BA, the steps involved in this work are presented subsequently. 

 

 

6.3 Proposed speech enhancement system based 

on Bat optimisation algorithm 

In this section, a novel optimised speech-enhancement system that employs ANC is 

proposed. The aim of this research is to utilise Butterworth and Elliptic adaptive 

filters, and use of Bat for the tuning of coefficients of an adaptive filter to remove the 

noise from a speech signal. 

Figure 6.2 shows the overall structure of the proposed speech enhancement system. 

Here, the BA is utilized to obtain the optimum solution. 

The position of each bat in the search space is considered as a possible solu- 

tion, which represents the coefficients of the filter. The proposed optimised speech 

enhancement is represented in Algorithm 6.3.1. 
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Figure 6.1: Flowchart of Bat optimisation algorithm(Hafezi et al., 2015) 

 

6.4 Results and discussion 
 

To see how the proposed speech-enhancement system performs, the system was exam- 

ined for different SNR values at (-10db, 0db, 5db, and 20db), for both two data-sets. 

Further, a state-of-the art audio only, which is the Winer filter (AW) (Scalart et al., 

1996), was compared with the BA. The experimental conditions for simulation are 

tabulated in Table6.1. The implementations of the audio only Wiener method by 
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Figure 6.2: The overall structure of the proposed speech-enhancement system 
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Algorithm 6.3.1 Finding an optimal solution by using the Bat algorithm 

Initialize positions xi and velocities vi randomly for each particle in the search 
space. 
Initialize Frequency fi, Pulse rate ri and Loudness Ai. 
while t < Max number of iterations do 

Generate new solutions by adjusting frequency, 
Update velocities and locations/solutions using equations 6.2.1 to 6.2.3 
if rand > ri then 

Select a solution among the best solutions 
Generate a local solution around the selected best solution 

end if 
Generate a new solution by flying randomly 
if if rand < Ai & f (xi)<f (x∗) then 

Accept the new solutions 
end if 
Rank the bats and find the current best x∗ 

end while 
 

Matlab from (Loizou, 2013a) are used in this chapter. 
 

Table 6.1: Simulation conditions for the Bat algorithm 
 

Algorithm Parameter Value 
 

Bat Population 30 
 Iterations 50 
 r0 0.5 
 A0 0.5 

 

Table 6.2 displays the results of the experiments for the NOIZEUS corpus. An 

optimised Butterworth filter with BA is applied at different SNRs 20db, 5db, 0db and 

-10db. The averaged PESQ scores were computed for the Fixed Coeff, an optimised 

filter coefficient (BA), and AW. The BA is seen to improve the PESQ score and 

outperform the audio-only Wiener filter. On the other hand, the fixed coefficient 

filter performs better than the Audio-only Wiener filter, and slightly worse than the 

optimised filter by the BA. 

For Table 6.3, when the Elliptic filter is applied, the optimised filter by the BA 

outperforms all the other methods at all SNRs of 20db,5db, 0db, and -10db. Yet the 

optimised filter yields higher PESQ values compared to the audio-only Wiener filter. 
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Table 6.2: PESQ results comparing the filter with a fixed coefficient, a BA optimised 
coeff, and Wiener filter(AW), for the Butterworth filter to the signal of SNRs at 20db, 
5db, 0db and -10 db in babble noise, NOIZEUS data-set 

 

SNR level Fixed Coeff BA AW 

20db 3.5434 3.5631 3.0209 

5db 2.4521 2.6631 2.2714 

0db 2.2325 2.3347 1.9581 

-10db 1.6701 1.7276 1.2304 

Table 6.3: PESQ results comparing the filter with a fixed coefficient, BA optimised 
coeff, and Wiener filter(AW), for the Elliptic filter to the signal of SNRs at 20db, 5db,  
0db and -10 db in Babble noise, NOIZEUS data-set 

 

SNR level Fixed Coeff BA AW 

20db 3.2163 3.3905 3.0209 

5db 2.5160 2.6454 2.2714 

0db 2.2439 2.5308 1.9581 

-10db 1.7332 1.8826 1.2304 

 
The experiments are also conducted for the Arabic speech corpus, for different 

SNRs of 20db, 5db, 0db and -10db, and both the Butterworth and Elliptic filters. 

The results are shown in Tables 6.4 and 6.5. The optimised BA filter is seen to 

perform best, compared to the fixed coefficient filter, and audio-only Wiener filter 

algorithm, at 20db,0db, 5db and -10db. The optimised algorithm and the fixed filter 

coeff performs equally at 20db and almost equally at 5db with the Elliptic filter. 

Composite measures results that are based on Equations 3.5.13.5.23.5.3, with 

babble noise at SNRs of -10db,0db,5db and 20db are shown in Figures 6.3, 6.4, and 

6.5. Where C sig is the score of speech signal distortion, C back is the score of 

background noise intrusiveness, and C ovrl is the score of overall speech quality. As 

it can be seen, the optimised Elliptic filter scores high compared to the ’without 

filtering’ and Wiener filter in positive SNR values. For negative SNR values at - 

10db the optimized Butterworth filter outperforms the other methods for speech 

signal distortion. The optimised Butterworth filter is slightly better than the other 



100 

 

 

 
 
 
 
 
 

 

Table 6.4: PESQ results comparing the filter with a fixed coefficient, BA optimised 
coeff, and Wiener filter(AW), for the Butterworth filter to the signal of SNRs at 20db, 
5db, 0db and -10 db in babble noise, for Arabic speech corpus 

 

SNR level Fixed Coeff BA AW 

20db 2.1396 2.1452 2.0836 

5db 1.6389 1.7297 0.5170 

0db 3.1802 2.9521 0.4568 

-10db 2.4537 2.7926 0.5155 

 
 
 
 
 
 
 
 
 
 
 

 
Table 6.5: PESQ results comparing the filter with a fixed coefficient, BA optimised 
coeff, and Wiener filter(AW), for the Elliptic filter to the signal of SNRs at 20db, 5db, 
0db and -10 db in babble noise, for Arabic speech corpus 

 

SNR level Fixed Coeff BA AW 

20db 2.1358 2.1358 2.0836 

5db 2.8507 2.8549 0.5170 

0db 2.7068 3.4529 0.4568 

-10db 2.6339 3.2869 0.5155 
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Figure 6.3: The composite objective mean score for speech signal distortion for the 
BA-optimised filter (BA ,Butterworth and Elliptic), speech without filtering, Wiener 
filtering. 

 

 

 

Figure 6.4: The composite objective mean score for background noise intrusiveness 
for the BA-optimised filter (BA, Butterworth and Elliptic), Speech without filtering, 
Wiener filtering. 
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Figure 6.5: The composite objective mean score for overall speech quality for the 
BA-optimised filter (BA, Butterworth and Elliptic), Speech without filtering, Wiener 
filtering. 

 

methods for positive SNRs at 5db and 20db, when it comes to noise intrusiveness, 

but it is not the case at low SNRs of 0db and -10db, where it performs the worst. 

The overall scores, which are presented in Figure 4.8, indicate that, the optimised 

Elliptic filter shows improvement compared to without filtering, and the Wiener filter 

in the positive SNRs. However the optimised Butterworth shows the worst scores at 

all SNRs levels. 

To support the objective speech evaluation approaches conducted above, we also 

carried out subjective speech evaluation measures, where seven participants volun- 

teered to take the test and listen to the sentences.Babble noise was added at different 

SNRs levels (-10db, 5db and 20db). For comparison purposes, three versions of sen- 

tences were used: the noisy speech sentence without any filtering, the speech sentence 

filtered by audio-only method, the Wiener filter (Loizou, 2013a), and, the speech sen- 

tence filtered by the optimised adaptive filter introduced in this chapter. Participants 

were asked to score between 0 and 5, using the three criteria (speech signal distortion, 
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Figure 6.6: The mean opinion score for speech distortion level for the noise distor- 
tion for BA-optimised filter (Bat, Butterworth and Elliptic), speech without filtering, 
Wiener filtering. 

 
 
 

 

Figure 6.7: The mean opinion score for the noise intrusiveness level for BA-optimised 
filter (Bat, Butterworth and Elliptic), speech without filtering, Wiener filtering. 
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Figure 6.8: The mean opinion score for speech overall quality for noise distortion for 
BA-optimised filter (Bat, Butterworth and Elliptic), speech without filtering, Wiener 
filtering. 
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noise intrusiveness level, and overall speech quality). 

The speech distortion, noise intrusiveness, and overall quality of the MOS results 

are presented in Figures 6.6, 6.7, and 6.8 respectively. As it can be seen, for speech 

distortion (Csig), the optimised Butterworth filter by Bat scored the highest at a low 

SNR of -10db, followed by the optimised Elliptic filter. For the positive SNR values 

the Butterworth scores poorly compared to the other methods, while the optimised 

Elliptic filter outperforms the other methods at 5db, and the audio only Wiener 

filter outperforms the methods at 20db. This is almost the same when compared to 

the objective composite evaluation previously done. Regarding the noise intrusiveness 

shown in Figure 6.7, the optimised Butterworth filter performs very poorly at negative 

SNR, but comparably at positive SNRs. While the optimised Elliptic filter by Bat 

performs equally with the audio-only Wiener at 5db. For the overall scores, the 

optimised Butterworth filter once again performs the worst among the methods at all 

SNRs values, and an equal performance is seen at -10 SNR for the optimised Elliptic 

filter, without any filtering speech and the audio-only Wiener filter. The results agree 

with the objective scores previously calculated. 

 
6.4.1 Statistical analysis using the t test 

 
To investigate whether there are any significant differences between the means of the 

clean speech signal, the filter with a fixed coefficient, and the filter with an optimised 

coefficient by the BA, the authors applied t tests to the results, at the 0.05 level of 

significance. The null and alternate hypotheses were tested for the case of the filter 

with a fixed coefficient as follows: 

H0: µC = µFix 

Ha: µC I= µFix 

The null and the alternate hypotheses for the case of a filter with an optimised 

coefficient by Bat are as follows: 

H0: µC = µOpt 

Ha: µC I= µOpt 

The t test result shown above in Table 6.6 attests to the significance of the opti- 
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Table 6.6: The results from the t test at the 0.05 level of significance 
 

 
 

Ha : µC − µFix I= 0 

Ha : µC − µfix I= 0 
 
 

mised filters, compared to those produced by the non-optimised ones, and the noisy 

signal. 

 
 

6.5 Summary 
 

In this chapter, an optimised speech-enhancement system was presented, which en- 

hances noisy speech in different SNRs values. Being able to balance between the 

exploration and the exploitation during the search process makes the BA has a quick 

convergence rate compared to the previous algorithms. Hence, Section6.2 outlines the 

Bat algorithm and explains where it is inspired from. The overall structure of the pro- 

posed Bat speech-enhancement system was addressed in Section 6.3. A comprehensive 

evaluation of the performance of the proposed Bat speech enhancement system was 

presented in Section 6.4, where objective and subjective tests are both utilised, in a 

noisy environment, using babble noise at different SNR values of (-10db,0db,5db, and 

20db). To compare the results, without any filtering speech sentences and a state-of- 

the-art algorithm: the audio-only Wiener Filter are used. The results outlined that 

objective and subjective evaluation measurements agreed that, the optimized Elliptic 

filter by the BA performs better than all the other filters, followed by the Wiener 

filter, and finally the optimised Butterworth filter by the Bat algorithm. 

Dataset  Null hyp. H0 Alternate Hyp. H1 p value t value Decision 

NOIZEUS 
Dataset 

BA H0: µC = µOpt 

H0: µC = µFix 

Ha : µC − µOpt I= 0 0.2082 
0.2056 

-1.2583 
-1.2659 

Accept H0 
Accept H0 

Arabic 
Corpus 

BA H0: µC = µOpt 

H0: µC = µFix 

Ha : µC − µOpt I= 0 0.9998 
0.9999 

-0.0001 
-9.7121 

Accept H0 
Accept H0 
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Chapter 7 

 
Discussions and Analyses 

 
 

7.1 Introduction 
 

The work in this thesis utilised meta-heuristic optimisation approaches (PSO, APSO, 

GPSO, GSA and BA), to design an improved speech-enahancement filtering system, 

by making use of both Butterworth and Elliptic filters. The detailed system design 

was presented and discussed in chapter 4, chapter 5, chapter 6. This chapter will 

discuss the results obtained by the five methods used in the previous chapters. 

 
 

7.2 Discussions 
 

Tables 4.1, 5.2, and 6.2 the results of experiments conducted with the NOIZEUS 

data-set. An optimised Butterworth filter with PSO, APSO, GPSO, GSA and BA is 

applied at 20db, 5db, 0db and -10db SNRS. The averaged PESQ score were computed. 

As it can be seen the optimized filter by BA scored the highest value among all the 

methods at high SNR value of 20db, followed by the GSA optimized filter and PSO 

optimized filter. At SNR values of 5db and 0db, GSA outperforms the other methods 

followed by PSO, and at negative SNR value of -10db it seems PSO outperforms 

the other methods, followed by the BA algorithm. The PESQ scores in all methods, 

outperformed the fixed filter coefficient. 

As for the optimised Elliptic filter, with the NOIZEUS data-set, the results are 
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shown in Tables 4.2, 5.3, and 6.3 where it can be seen that, the optimized filter by 

PSO scores higher value of PESQ at high SNR of 20db. The optimized filter by BA 

seems to outperform all the other methods at the rest of SNR values(5db, 0,db, and 

-10db). 

When it comes to the ARABIC corpus, for which the results are shown in both 

Tables 4.3, 5.4, and 6.4 for different SNRs of 20db, 5db, 0db and -10db, for the case 

of Butterworth. Again, it can be seen the filter optimsed by BA outperforms the 

other methods in all SNR values except at 5db, where PSO scores the best among 

the methods. The BA is seen to perform the best, compared to PSO and GSA in 

Tables 4.4, 4.4 and 6.5 for the Elliptic filter. 

For C sig the score of speech signal distortion the first composite measure,results 

are shown in Figures 4.6, 5.4, and 6.3. The PSO ,GSA and BA seems to perform 

equally at high level of SNR 20db, for both Butterworth and Elliptic filters, as well 

as without any filtering signal, and this could be filtering introduced distortion makes 

the signal less clear. Both GSA and BA score the same at SNR of 5bd,0db and 

-10db. However, it can be seen that, the PSO outperform both BA and GSA for the 

butterworth filter, and have the worst performance at negative SNR value at -10db. 

When it comes to the background noise intrusiveness scores showed in Figures 

4.7, 5.5, and 6.2. An equal scores are seen for both GSA and BA for both filters the 

Butterworth and the Elliptic, at all SNR values. However, the PSO scores are higher 

than those scores obtained by both GSA and BA, for the Butterworth filter at 20db, 

5db. At negative value of -10db, the optimized filter by PSO scored the worst. 

The overall speech qualityscores, which are presented in Figure 4.8, 5.6, and 6.5 

indicated that both GSA and BA outperformed the PSO in all categories of SNR. 

But the PSO, seemed to to score high at negative SNR of -10db for the Ellipse filter. 

It is noticed scores were not high as expected at very low SNR levels of -10, for all 

the composite measures this could be due it was often impossible to recognise speech, 

and also because these algorithms were unable to identify sufficient level of speech in 

these levels to assign a quality score. 

The mean opinion scores are shown at Figures 4.11, 5.9, and 6.8 , if we start with 
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overall results, listeners were unable to hear speech filtered by Butterworth for all the 

three algorithms PSO, GSA, and BA at very low SNR levels. However, BA seemed 

to outperform PSO aand GSA and scores the best. 

For speech distortion levels, Figures 4.10, 5.7, and6.6, volunteers listeners assigned 

a higher MOS to signal filtered by the Wiener filter and a very similar score to noisy 

and by the PSO, GSA and BA methods . 

As for the noise intrusiveness scores, Figures 4.10, 5.8, and 6.7 listeners gave similar 

scores for all the three methods at high SNR value, where without any filtering speech 

scores the best. At SNR level of 5db optimized filter by Butterworth, scores higher 

than the Elliptic for PSO, GSA and BA algorithms. However at negative SNR value 

of -10db,the Elliptic filter outperformed the Butterworth filter. This could be because 

of the level of speech distortion introduced, gives a low overall score. 

 
 

7.3 Summary 
 

This chapter aimed to compare the results obtained by the different meta-heuristic 

speech enhancement systems The PESQ objective evaluation score results are pre- 

sented as well as the composite objective measures, which are the speech signal dis- 

tortion, background noise intrusiveness , and the overall speech quality. Furthermore, 

results obtained by MOS were presented. 
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Chapter 8 

 
Concluding Remarks and Future 

Directions 

 
This chapter draws the conclusions and summarises the findings of this thesis, by 

first giving a review of what was covered in previous chapters,. An overview of the 

research contributions is also given and potential future work directions are identified 

at the end of this chapter. 

 
 

8.1 Summary 
 

In this thesis, novel algorithms for speech enhancement have been developed by 

exploiting meta-heuristic approaches. We considered different techniques of meta- 

heuristic optimisation based on adaptive noise cancellation. Six novel methods are 

developed for speech-enhancement purposes. This thesis presented a review and 

a background to the research domain in Chapter 2. The authors categorised the 

speech-filtering techniques into four groups: conventional methods, adaptive filtering 

methods, machine learning methods (this includes adaptive filtering using optimi- 

sation techniques), and multi-modal methods. In this chapter, we also reviewed 

types of noises and also provided the difference between adaptive and non-adaptive, 

monaural and binaural, uni-modal speech-enhancement systems. The state-of-the-art 

speech-enhancement methods in the literature are provided. Statistical model-based 
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methods are also examined, and adaptive noise cancellation concepts were explored. 

Their advantages and disadvantages are also outlined. Another category that was 

reviewed consisted of machine- learning approaches to speech enhancement, which 

include optimisation techniques for speech enhancement. Their pros and cons are 

also addressed. 

After discussing the review and the background of this thesis, Chapter 3 presented 

the research methodology, the schematic overall speech enhancement system is pro- 

vided, and the phases of the framework are identified. NOIZEUS and Arabic speech 

corpuses are chosen to develop and test the system. The aim of this thesis is to formu- 

late the ANC problem in the form of an optimization task, hence Butterworth-filters, 

and Elliptic-filters are selected for this purpose. In order to perform the optimisa- 

tion meta-heuristic optimisation algorithms are exploited in this research, particle 

swarm optimisation and its variants such as the accelerated particle swarm optimi- 

sation and the Gaussian particle swarm optimization methods are utilised. Also this 

research considered the gravitational search algorithm, and lastly the Bat algorithm. 

Furthermore, subjective and objective speech quality evaluation measurements, and 

statistical analyses using the t test are discussed to assess the performance of the 

proposed speech-enhancement system. 

The original key contributions of this thesis were given in Chapters 4, 5, and 

Chapter 6. In Chapter 4, a description of novel PSO and its variant speech en- 

hancement system was detailed. The aim was to formulate an ANC system based 

on Butterworth, and Elliptic filters, in the form of an optimisation task and tuning 

of coefficients of an adaptive filter to remove the noise from a speech signal. The 

overall framework of the proposed speech-enhancement system is discussed at every 

stage on it and the algorithm is summarised. Then the results of the system were 

evaluated using subjective and objective tests along with the statistical analysis of 

the T test. The results obtained by the filter optimised by PSO and APSO outper- 

forms the GPSO, for both filters and both data-sets as well as for the results obtained 

by the fixed filter. For the composite measures, results outlined that the optimised 

Elliptic filter by PSO performs better than the other methods (GPSO and APSO) 
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and the optimised PSO Butterworth filter. 

In Chapter 5, a developed ANC system that utilised GSA to optimise the filter 

coefficients was introduced; the ANC is based on Elliptic and Butterworth filters. 

This GSA is based on the gravity concept, and here each mass in the search space 

is considered as a possible solution representing the coefficients of the filter. The 

proposed GSA optimised speech-enhancement system is outlined in this chapter with 

the overall structure of the system. Finally to test the performance of the proposed 

system, different SNR values (-10db, 0db, 5db, and 20db) are examined for both 

benchmark data-sets; also subjective and objective speech evaluation tests are con- 

ducted. The results revealed that, the optimised filter by GSA performs better than 

the Fixed filter at all SNRs levels, and that the fixed filter performs better than the 

audio only Wiener filter. Furthermore, the composite objective measures revealed 

that the optimised Elliptic filter performed better than the Butterworth filter, and 

slightly better than the ”without filtering” 

Another contribution of this research is presented in Chapter 6. The application 

of the Bat algorithm for speech enhancement was the subject of Chapter 6. The Bat 

algorithm utilised the concept of the echolocation behaviour of micro bats. With the 

ability of auto-zooming, micro bats demonstrate automatic adjustment from explo- 

ration to exploitation when reaching global optimal solutions. Hence, in this chapter, 

a novel optimised speech-enhancement system based on the Bat algorithm is deployed. 

The overall structure of the proposed speech-enhancement system is demonstrated. 

The evaluation of the results of the proposed system is presented, then subjective and 

objective tests were discussed. The results indicated that objective and subjective 

evaluation measurements agreed that, the optimized Elliptic filter by the BA per- 

forms better than all the other filters, followed by the Wiener filter, and finally the 

optimised Butterworth filter by the Bat algorithm. 
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8.2 Conclusions 
 

Based on the investigated meta-heuristic optimisation approaches , the experiments 

carried out with the meta-heuristic speech enhancement systems, and the evaluation 

of this novel speech enhancement systems, the following conclusions can be drawn: 

• This thesis investigated the use of meta-heuristic optimisation methods for 

speech enhancement, and to propose a new speech-enhancement methods based 

on optimisation. A fitness function based on signal quality measurements was 

formulated and utilised. The performance of the proposed techniques with ex- 

isting sate-of-art methods, is conducted , by using both objective and subjective 

tests. 

• It is worthy to say that most of the SNR levels considered in this thesis were 

high, with which, limited improvements to the speech signal were obtained. 

Compared to some state-of-art the results obtained in this thesis are slightly 

better. 

• Among the proposed filters, the Elliptic filter found to give better results than 

the Butterworth filter, that could be because it can provide degrees of freedom 

for controlling its response. 

• BA algorithm also showed the best performance amongst the other approaches, 

and that because BA is being able to balance between the exploration and the 

exploitation during the search process, which makes it has a quick convergence 

rate compared to the previous algorithms. 

• It can be seen that the meta-heuristic speech enhancement system presented 

in this thesis is capable of successfully enhancing noisy speech, as proven by 

PESQ, composite objective scores and subjective listening tests 
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8.3 Future directions 
 

There are other meta-heuristic algorithms to be explored such as galactic swarm opti- 

misation, genetic algorithms, ant colony optimisation ,equilibrium optimiser, seagull 

optimization algorithm, sooty tern optimisation algorithm . 

Further new meta-heuristic-based speech enhancement approaches by hybridising 

the existing methods to enhance the search performance require further research. 

In this research, the grid search is used for hyperparameter optimisation, another 

technique is to use automated hyper-parameter tuning (Bayesian optimization, or 

genetic algorithms). 

Also, there is the adoption of different cost functions like the mean square error 

to minimise cost based on other objective methods. 

Filters considered in this thesis are out band filters, where noise that does not 

overlap, in the frequencies of the desired signal. To overcome this, in the future a 

band pass or stop band filters are to be explored and utilized. 

It is also possible to extend the proposed framework to explore other machine 

learning techniques, like neural networks or convolutional recurrent networks. 
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