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Abstract 

We study the minimal hypersurfaces and 𝐿2-, 𝐿𝑝- harmonic 1-

forms on submanifolds with finite total curvature on minimal 

hypersurfaces with finite total curvature, finite index and first 

eigenvalue of a stable minimal hypersurface. We also study the 𝐿𝑝 p-

harmonic 1-forms on submanifolds in a Hadamard manifold. We start 

by the Hardy inequality for functions vanishing on a part of the 

boundary to show the square roots of elliptic second order divergence 

operators on strongly Lipschitz domains on 𝐿2 and 𝐿𝑝 theory hence 

extended to 𝐿𝑝-estimates for the square root problem for second-order 

divergence form operators and of elliptic systems with mixed 

boundary conditions. The small ball probability and pointwise 

estimates for marginals of convex bodies with the Hastings additivity 

counterexample by Dvoretzky theorem are characterized. We deal 

with Dvoretzky theorem on almost spherical sections of convex 

bodies and for subspaces of the 𝐿𝑝-space.  
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 الخلاصة
 

 –، 𝐿2 –التوافقية  1 –قمنا بدراسة الفضاءات المفرطة الأصغرية والصيغ 

𝐿𝑝  على متعدد الطيات الجزئي على الفضاءات المفرطة الأصغرية مع الأنحناء

الكلي المنتهي والدليل المنتهي والقيمة الذاتية الأولي للفضاء المفرط الأصغري 

ً قمنا بدراسة الصيغ  على متعدد الطيات  𝐿𝑝 𝑝 -التوافقية  1-المستقر. أيضا

طيات هادامارد. بدأنا بواسطة متباينة هاردي للدوال المتلاشية  الجزئي في متعدد

على جزء  الحدية لتوضيح الجزر التربيعي لمؤثرات تباعد الرتبة الثانية الناقصية 

 𝐿𝑝 -ومن ثم التمديد لتقديرات  𝐿𝑝و  𝐿2على مجالات لبيشيتز القوية على نظرية 

الثانية و الأنظمة الناقصية  –رتبة لمسألة الجزر التربيعي لمؤثرات صيغ تباعد ال

مع شرط الحدية المختلط. تم تشخيص احتمالية الكرة الصغرى والتقديرات النقطية 

وحافات الاجسام المحدبة مع المثال العكسي الجمعي لهاستينجس بواسطة مبرهنة 

ً للأجسام  دفورتزكي. تعاملنا مع مبرهنة دفورتزكي على المقاطع الكروية تقريبا

 .𝐿𝑝 –بة و للفضاءات الجزئية لفضاءات المحد
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Introduction 

We show the minimal hypersurfaces with finite index was obtained. For 

𝑥 ∶  𝑀𝑚  →  𝑀,𝑚 ≥  3, be an isometric immersion of a complete noncompact 

manifold 𝑀 in a complete simply connected manifold 𝑀 with sectional 

curvature satisfying −𝑘2 ≤ 𝐾𝑀 ≤ 0, for some constant 𝑘. Assume that the 

immersion has finite total curvature in the sense that the traceless second 

fundamental form has finite 𝐿𝑚-norm. If 𝐾𝑀 ≡  0, assume further that the first 

eigenvalue of the Laplacian of 𝑀 is bounded from below by a suitable constant.  

We study 𝐿𝑝 estimates for square roots of second order elliptic non 

necessarily selfadjoint operators in divergence form 𝐿 =  − 𝑑𝑖𝑣 (𝐴𝛻) on 

Lipschitz domains subject to Dirichlet or to Neumann boundary 

conditions,pursuing [94] where we considered operators on ℝ𝑛. We obtain 

among other things ‖𝐿
1

2𝑓‖
𝑝
≤ 𝑐‖𝛻𝑓‖𝑝 for all 1 < 𝑝 < ∞ if 𝐿 is real symmetric 

and the domain bounded, which is new for 1 < 𝑝 < 2.  

Large deviation estimates are by now a standard tool in Asymptotic 

Convex Geometry, contrary to small deviation results. We present a novel 

application for a small deviations inequality to a problem that is related to the 

diameters of random sections of high dimensional convex bodies.  

We estimate the bottom of the spectrum of the Laplace operator on a 

stable minimal hypersurface in a negatively curved manifold. We also derive 

various vanishing theorems for 𝐿𝑝 harmonic 1-forms on minimal hypersurfaces 

in terms of the bottom of the spectrum of the Laplace operator. For 𝑀𝑚 (𝑚 ≥

3) be an 𝑚-dimensioanal complete noncompact oriented submanifold with 

finite total curvature, in a Hadamard manifold 𝑁𝑚+𝑛 with the sectional 

curvature satisfying −𝑘2 < 𝐾𝑁 ≤ 0, where 𝑘 is a positive constant. For 𝑁 be a 

complete simply connected Riemannian manifold with sectional curvature 𝐾𝑁 

satisfying −𝑘2 ≤ 𝐾𝑁 ≤ 0 for a nonzero constant 𝑘. We show that if 𝑀 is an 

𝑛(≥ 3)-dimensional complete minimal hypersurface with finite index in 𝑁, 

then the space of 𝐿𝑝 harmonic 1-forms on 𝑀 must be finite dimensional for 

certain 𝑝 > 0 provided the bottom of the spectrum of the Laplace operator is 

sufficiently large.  

We show the Kato conjecture for square roots of elliptic second order 

non-self-adjoint operators in divergence form 𝐿 = −𝑑𝑖𝑣(𝛻) on strongly 
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Lipschitz domains in ℝ𝑛, 𝑛 >  2, subject to Dirichlet or to Neumann boundary 

conditions. We show that, under general conditions, the operator (−𝛻 ·  𝜇𝛻 +

 1)
1

2 with mixed boundary conditions provides a topological isomorphism 

between 𝑊𝐷
1,𝑝
(Ω) and 𝐿𝑝(Ω), for 𝑝 ∈ ]1, 2[ if one presupposes that this 

isomorphism holds true for 𝑝 =  2. We focus on 𝐿𝑝-estimates for the square 

root of elliptic systems of second order in divergence form on a bounded 

domain. We treat complex bounded measurable coefficients and allow for 

mixed Dirichlet/Neumann boundary conditions on domains beyond the 

Lipschitz class. If there is an associated bounded semigroup on 𝐿𝑝0, then we 

show that the square root extends for all 𝑝 ∈ (𝑝0, 2) to an isomorphism between 

a closed subspace of 𝑊1,𝑝 carrying the boundary conditions and 𝐿𝑝. This result 

is sharp and extrapolates to exponents slightly above 2.  

We show a pointwise version of the multi-dimensional central limit 

theorem for convex bodies. Namely, let 𝜇 be an isotropic, log-concave 

probability measure on ℝ𝑛. For a typical subspace 𝐸 ⊂ ℝ𝑛 of dimension nc, 

consider the probability density of the projection of 𝜇 onto 𝐸. We show that for 

any 2 < 𝑝 < ∞ and for every n-dimensional subspace 𝑋 of 𝐿𝑝, represented on 

ℝ𝑛, whose unit ball 𝐵𝑋 is in Lewis’ position one has the following two-level 

Gaussian concentration inequality: ℙ(|‖𝑍‖ − 𝔼‖𝑍‖| >  𝜀𝔼‖𝑍‖)  ≤

𝐶 exp (−𝑐𝑚𝑖𝑛 {𝛼𝑝𝜀
2𝑛, (𝜀𝑛)

2

𝑝}), 0 < 𝜀 < 1, where 𝑍 is the standard 𝑛-

dimensional Gaussian vector, 𝛼𝑝 > 0 is a constant depending only on 𝑝 and 

𝐶, 𝑐 >  0 are absolute constants. We show optimal lower bound on the 

dimension of random almost spherical sections for these spaces. 
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Chapter 1 

Minimal Hypersurfaces and 𝑳𝟐-Harmonic 1-Forms  

 

We show that the space of the 𝐿2 harmonic 1-forms on M has finite dimension. 

Moreover, there exists a constant 𝛬 >  0, explicitly computed, such that if the total 

curvature is bounded from above by 𝛬 then there are no nontrivial 𝐿2-harmonic 1-forms on 

𝑀. 

Section (1.1): Finite Index 

In Cao-Shen-Zhu [2], they proved that a complete, immersed, stable minimal 

hypersurface 𝑀𝑛 of ℝ𝑛+1 with 𝑛 ≥ 3 must have only one end. 

When 𝑛 = 2, it was proved independently by do Carmo-Peng [3] and Fischer-

Colbrie-Schoen [5] that a complete, immersed, oriented stable minimal surface in ℝ3 must 

be a plane. Later Gulliver [7] and Fischer-Colbrie [4] proved that if a complete, immersed, 

minimal surface in ℝ3 has finite index, then it must be conformally equivalent to a 

compact Riemann surface with finitely many punctures. 

Fischer-Colbrie actually proved this for minimal surfaces in a complete manifold with 

non-negative scalar curvature. In any event, a corollary is that if a complete, immersed, 

oriented minimal surface in ℝ3 has finite index then it must have finitely many ends. We 

generalize this result for finitely many ends to higher dimensional minimal hypersurfaces 

in Euclidean space. We show that the first 𝐿2-Betti number of such a manifold must be 

finite. 

The strategy of Cao-Shen-Zhu was to utilize a result a Schoen-Yau [13] asserting 

that a complete, stable minimal hypersurface of ℝ𝑛+1 cannot admit a non-constant 

harmonic function with finite Dirichlet integral. Assuming that 𝑀 has more than one end, 

Cao-Shen-Zhu constructed a non-constant harmonic function with finite Dirichlet integral. 

This approach very much fits into the scheme studied in [11], [12]. In fact, they showed 

that the number of non-parabolic ends of any complete Riemannian manifold is bounded 

above by the dimension of the space of bounded harmonic functions with finite Dirichlet 

integral. 

The proof of Cao-Shen-Zhu can be modified to show that each end of a complete, 

immersed, minimal submanifold must be non-parabolic. Due to this connection 

with harmonic functions, we refine the argument of Schoen-Yau to obtain an estimate of 

the space of harmonic functions with finite Dirichlet integral. 

Unfortunately, our estimate depends on the geometry of 𝑀 on a compact subset, whose 

existence is guaranteed by the finite index assumption. While we succeeded in proving 

finite index implies finitely many ends, it is unclear if one can actually estimate the 

number of ends by the index directly. 

Let us first recall (see [12] and [10]) that an end 𝐸 of a complete manifold 𝑀 is non-

parabolic means that E admits a positive Green’s function with Neumann boundary 

condition. First, we will recall a theorem in [12]. 

Theorem (1.1.1)[1]: Let 𝑀 be a complete Riemannian manifold. Let ℋ𝐷
0(𝑀)denote the 

space of bounded harmonic functions with finite Dirichlet integral. Then the number of 

non-parabolic ends of 𝑀 is at most the dimension of ℋ𝐷
0(𝑀).Observing that if 𝑢 is a 

harmonic function with finite Dirichlet integral then its exterior differential du is an 𝐿2 

harmonic 1-form. Moreover, 𝑑𝑢 = 0  if and only if u is identically constant. Hence 

𝑑𝑖𝑚ℋ𝐷
0(𝑀) ≤ 𝑑𝑖𝑚𝐻1(𝐿2(𝑀))  +  1. 
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Using this inequality, we can state Theorem (1.1.1) in terms of the first 𝐿2 Betti number. 

Corollary (1.1.2)[1]: Let 𝑀 be a complete Riemannian manifold. Let 𝐻1(𝐿2(𝑀)) be the 

first 𝐿2-cohomology of 𝑀. Then the number of non-parabolic ends of M is bounded from 

above by 𝑑𝑖𝑚𝐻1(𝐿2(𝑀)) + 1. 

This corollary enables us to estimate the number of ends of a minimal hyper-surface 

if we can show that all its ends are non-parabolic. In fact, it was proved in [2] that this is 

the case for minimal submanifolds of ℝ𝑛+1. We provide a presentation which extract the 

main points of the proof and stated it for more general situations in terms of non-

parabolicity. 

Theorem (1.1.3)[1]: Let 𝑀𝑛 be a complete, immerse, minimal sub-manifold of ℝ𝑁. If 𝑛 ≥
3, then each end of 𝑀 must be non-parabolic. 

Proof. Let 𝐸 be an end of 𝑀. For 𝑅 sufficiently large, let us consider the set 𝐸𝑅 =  𝐸 ∩
𝐵𝑝(𝑅), where 𝐵𝑝(𝑅) is the geodesic ball of radius 𝑅 in 𝑀 centered at some point 𝑝 ∈ 𝑀. 

Let us denote by 𝑟 the distance function of 𝑀 to the point 𝑝. 

Suppose the function 𝑓𝑅 is the solution of the equation 

∆𝑓𝑅  =  0 𝑜𝑛 𝐸𝑅 , 
𝑓𝑅 = 1  𝑓𝑅   𝑜𝑛  𝜕𝐸, 

and 

𝑓𝑅 = 0 𝑜𝑛 𝐸 ∩ 𝜕𝐵𝑝(𝑅). 

By the maximum principle, 𝑓𝑅 is uniformly bounded between 0 and 1. This bound and the 

gradient estimate implies that the sequence 𝑓𝑅 converges uniformly on compact subsets of 

𝐸 to a harmonic function 𝑓 with boundary condition  

𝑓 = 1 𝑜𝑛 𝜕𝐸. 

Moreover, 𝑓 with satisfy the bounds 

0 ≤ 𝑓 ≤ 1. 

If we can show that 𝑓 is non-constant, then 𝐸 will be non-parabolic (see [11] and [10]). 

For a fixed 0 < 𝑅0 < 𝑅 such that 𝐸𝑅0 ≠ ∅, let Á be a non-negative cut-off function 

satisfying the properties that 

𝜙 = 1 𝑜𝑛 𝐸𝑅\𝐸𝑅0  , 

𝜙 = 0 𝑜𝑛 𝜕𝐸, 
and 

|𝛻𝜙| ≤ 𝐶1. 
The Sobolev inequality of Michael-Simon [13], integration by parts, and the fact that 𝑓𝑅 is 

harmonic, imply that 

(∫(𝜙𝑓𝑅)
2𝑛
𝑛−2

 

𝐸𝑅

)

𝑛−2
𝑛

≤ 𝐶 ∫|𝛻(𝜙𝑓𝑅)|
2

 

𝐸𝑅

=  𝐶 ( ∫|𝛻𝜙|2
 

𝐸𝑅

𝑓𝑅
2 + 2 ∫𝜙

 

𝐸𝑅

𝑓𝑅〈𝛻𝜙, 𝛻𝑓𝑅〉 + ∫𝜙2|𝛻𝑓𝑅|
2

 

𝐸𝑅

)

= 𝐶 (∫|𝛻𝜙|2
 

𝐸𝑅

𝑓𝑅
2 +

1

2
∫〈𝛻(𝜙)2, 𝛻(𝑓𝑅

2)〉

 

𝐸𝑅

+ ∫𝜙2|𝛻𝑓𝑅|
2

 

𝐸𝑅

 ) = 𝐶 ∫|𝛻𝜙|2
 

𝐸𝑅

𝑓𝑅
2. 

In particular, for a fixed 𝑅1 satisfying 𝑅0 < 𝑅1 < 𝑅, we have 
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∫ 𝑓𝑅
2𝑛
𝑛−2

 

𝐸𝑅1 𝐸𝑅0⁄

≤ 𝐶2 ∫𝑓𝑅
2

 

𝐸𝑅0

. 

If the limiting function 𝑓 is identically constant, then 𝑓 must be identically 1because of its 

boundary condition. Letting 𝑅 → ∞, we obtain 

(𝑉𝐸(𝑅1) − 𝑉𝐸(𝑅0))
𝑛−2
𝑛 ≤ 𝐶𝑉𝐸(𝑅0). 

where 𝑉𝐸(𝑟) denotes the volume of the set 𝐸𝑟. Since 𝑅1 > 𝑅0 is arbitrary, this implies that 

𝐸 must have finite volume. However, since an end of a minimal sub-manifold must have 

infinite volume, this contradicts the assumption that 𝑓 = 1, and the theorem is proved. 

It is clear in the above argument that this theorem can be generalized to an arbitrary 

Riemannian manifold. 

Corollary (1.1.4)[1]: Let E be an end of a complete Riemannian manifold. Suppose for 

some 𝑣 ≥ 1, E satisfies a Sobolev type inequality of the form 

(∫ |𝑢|2𝑣
 

𝐸

)

1
𝑣

≤ 𝐶 ∫ |𝛻𝑢|2
 

𝐸

 

for all compactly supported function 𝑢 ∈ 𝑊1,2(𝐸) defined on 𝐸, then 𝐸 must either have 

finite volume or be non-parabolic. 

We would like to remark that it was proved independently by Grigor’yan [6] and 

Varopoulos [14] that if a manifold is non-parabolic then its volume growth must satisfy 

∫
𝑡𝑑𝑡

𝑉𝑝(𝑡)

∞

𝑟

< ∞.                                                             (1) 

In particular, when combine with Corollary (1.1.4), this implies that if and end satisfies a 

Sobolev type inequality as hypothesized in Corollary (1.1.4), then it must either have finite 

volume or its volume growth must be at least quadratic satisfying (1). 

We prove the main result. 

Theorem (1.1.5)[1]: Let 𝑀𝑛 be a complete, immersed, oriented minimal hypersurface in 

ℝ𝑛+1 with 𝑛 ≥ 3. Suppose 𝑀 has finite index. Then 𝑀 must have finite first 𝐿2-Betti 

number, i.e. 𝑑𝑖𝑚𝐻1(𝐿2(𝑀))  <  ∞. In particular, 𝑀 must have finitely many ends. 

Proof. The assumption that 𝑀 has finite index implies that there exists a compact set Ω ⊂
𝑀 such that 𝑀\Ω is stable. In particular, we may assume that  Ω ⊂ 𝐵𝑝(𝑅0) for some 

geodesic ball centered at 𝑝 ∈ 𝑀 of radius 𝑅0. The monotonicity of eigenvalues implies 

that 𝑀\𝐵𝑝(𝑅0) is stable. In particular, if |𝐴|2 denotes the square of the length of the 

second fundamental form of 𝑀, then the stability inequality [13] asserts that 

∫  𝜓2
 

𝑀\𝐵𝑝(𝑅0)

|𝐴|2 ≤ ∫  |𝛻𝜓|2
 

𝑀\𝐵𝑝(𝑅0)

                                                      (2) 

for all compactly supported function 𝜓 on 𝑀\𝐵𝑝(𝑅0). 

For any 𝐿2 harmonic 1-form 𝜔 defined on 𝑀, let us denote 

ℎ = |𝜔| 
to be the length of the 𝜔. The Bochner formula (see [9]) asserts that 

 ∆ℎ2 ≥ 2𝑅𝑖𝑐(𝜔, 𝜔) + 2|𝛻𝜔|2                                                      (3) 
where Ric denotes the Ricci curvature of 𝑀 and 𝛻𝜔 is the covariant derivative of 𝜔. Using 

the Gauss curvature equation, we conclude that 
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      Ric(𝜔, 𝜔)  ≥ −|𝐴|2 ℎ2.                                                      (4) 
 Since 𝜔 is an 𝐿2 harmonic 1-form, it must be both closed and co-closed. In par-ticular, in 

terms of an orthonormal co-frame {𝜔1, … , 𝜔𝑛}, we can write 𝜔 = 𝑎𝑖𝜔𝑖. 
Then the closed condition is given by 

𝑎𝑖,𝑗 = 𝑎𝑗,𝑖  

and the co-closed condition is given by 

∑𝑎𝑖,𝑖

𝑛

𝑖=1

= 0. 

On the other hand, 

|𝛻𝜔|2 =∑𝑎𝑖,𝑗
2

 

𝑖,𝑗

 

≥∑𝑎1,𝑗
2

𝑛

𝑗=1

+∑𝑎𝛼,1
2

𝑛

𝛼=2

+∑𝑎𝛼,𝛼
2

𝑛

𝛼=2

 

≥∑𝑎1,𝑗
2

𝑛

𝑗=1

+∑𝑎𝛼,1
2

𝑛

𝛼=2

+
1

𝑛 −  1
𝑙𝑒𝑓𝑡 (∑𝑎𝛼,𝛼

𝑛

𝛼=2

right)

2

. 

Using both the closed and co-closed conditions, we conclude that 

|𝛻𝜔|2 ≥
𝑛

𝑛 − 1
∑𝑎1,𝑗

2

𝑛

𝑗=1

 .                                                      (5) 

However, at any fixed point 𝑥 ∈ 𝑀, if we choose an orthonormal co-frame such that 
|𝜔|𝜔1 = 𝜔, then 

|𝛻(ℎ2)|2 = 4∑(𝑎1𝑎1,𝑗)
2

𝑛

𝑗=1

 

≤ 4ℎ2∑𝑎1,𝑗
2

𝑛

𝑗=1

 . 

Combining with (3), (4), and (5), we obtain 

 ∆ℎ ≥ −|𝐴|2ℎ +
|𝛻ℎ|2

(𝑛 − 1)ℎ
.                                                      (6) 

By choosing  𝜓 = 𝜙ℎ with 𝜙 being a non-negative compactly supported function on 

𝑀\𝐵𝑝(𝑅0) (2) becomes 

∫ 𝜙2
 

𝑀\𝐵𝑝(𝑅0)

|𝐴|2ℎ2  ≤ ∫ |𝛻𝜙|2
 

𝑀\𝐵𝑝(𝑅0)

ℎ2 + 2 ∫ 𝜙ℎ〈𝛻𝜙, 𝛻ℎ〉

 

𝑀\𝐵𝑝(𝑅0)

 

+ ∫ 𝜙2
 

𝑀\𝐵𝑝(𝑅0)

|𝛻ℎ|2 

= ∫ |𝛻𝜙|2
 

𝑀\𝐵𝑝(𝑅0)

ℎ2 − ∫ 𝜙2
 

𝑀\𝐵𝑝(𝑅0)

ℎ∆ℎ. 

Combining with (6), we have 
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   ∫ 𝜙2
 

𝑀\𝐵𝑝(𝑅0)

|𝛻ℎ|2 ≤ (𝑛 − 1) ∫ |𝛻𝜙|2ℎ2
 

𝑀\𝐵𝑝(𝑅0)

.                                    (7) 

On the other hand, the Sobolev inequality for minimal submanifold [13] implies that 

( ∫ (𝜙ℎ)
2𝑛
𝑛−2

 

𝑀\𝐵𝑝(𝑅0)

)

𝑛−2
𝑛

≤ 𝐶 ∫ |𝛻(𝜙ℎ)|2
 

𝑀\𝐵𝑝(𝑅0)

= 2𝐶 ∫ 𝜙2
 

𝑀\𝐵𝑝(𝑅0)

|𝛻ℎ|2 

 +2𝐶 ∫ |𝛻𝜙|2
 

𝑀\𝐵𝑝(𝑅0)

ℎ2 

Combining with (7), we obtain 

 ( ∫ (𝜙ℎ)
2𝑛
𝑛−2

 

𝑀\𝐵𝑝(𝑅0)

)

𝑛−2
𝑛

≤ 2𝑛𝐶 ∫ |𝛻𝜙|2
 

𝑀\𝐵𝑝(𝑅0)

ℎ2.                  (8) 

For 𝑅 > 𝑅0 + 1, let us choose Á satisfying the properties that 

𝜙 = {

0 on𝐵𝑝(𝑅0)

1 on 𝐵𝑝(𝑅)\𝐵𝑝(𝑅0 + 1)

0 on 𝑀 \ 𝐵𝑝(2𝑅),

  

|𝛻𝜙| ≤ 𝐶3 on 𝐵𝑝(𝑅0 + 1)\𝐵𝑝(𝑅0) 

and 

|𝛻𝜙| ≤ 𝐶3𝑅
−1 on 𝐵𝑝(2𝑅)\𝐵𝑝(𝑅) 

for some constant 𝐶3 > 0. Applying this to (8), we have 

( ∫ ℎ
2𝑛
𝑛−2

 

𝐵𝑝(𝑅)\𝐵𝑝(𝑅0+1)

)

𝑛−2
𝑛

≤ 𝐶4 ∫ ℎ2
 

𝐵𝑝(𝑅0+1)\𝐵𝑝(𝑅0)

+ 𝐶4𝑅
−2 ∫ ℎ2

 

𝐵𝑝(2𝑅)\𝐵𝑝(𝑅)

. 

Since by the assumption ℎ is in 𝐿2, letting 𝑅 → ∞, the second term tends to 0 and we 

conclude that 

     ( ∫ ℎ
2𝑛
𝑛−2

 

𝑀\𝐵𝑝(𝑅0+1)

)

𝑛−2
𝑛

≤ 𝐶4 ∫ ℎ2
 

𝐵𝑝(𝑅0+2)\𝐵𝑝(𝑅0+1)

 .                  (9) 

On the other hand, the Schwarz inequality asserts that 

∫ ℎ2
 

𝐵𝑝(𝑅0+2)\𝐵𝑝(𝑅0+1)

≤ 𝑉𝑝

2
𝑛(𝑅0 + 2)( ∫ ℎ

2𝑛
𝑛−2

 

𝐵𝑝(𝑅)\𝐵𝑝(𝑅0+1)

)

𝑛−2
𝑛

 

Together with (9), we conclude that there exists a constant 𝐶5 > 0 depending on 𝑉𝑝(𝑅0 +

2) such that 

  ∫ ℎ2
 

𝐵𝑝(𝑅0+2)

≤ 𝐶5 ∫ ℎ2
 

𝐵𝑝(𝑅0+1)

.                                                      (10) 

The fact that ℎ satisfies the differential inequality (6) implies that we can apply the Moser 

iteration argument (see [9]) and conclude that 
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ℎ2(𝑥) ≤ 𝐶6 ∫ ℎ2
 

𝐵𝑥(1)

 

where 𝐶6 > 0 depends only on n and the upper bound of |𝐴|2 on 𝐵𝑥(1). In partic-ular, if 

𝑥 ∈ 𝐵𝑝(𝑅0 + 1)) has the property that 

ℎ2(𝑥) = sup
𝐵𝑝(𝑅0+1)

ℎ2 , 

𝑡ℎ𝑒𝑛 sup
𝐵𝑝(𝑅0+1)

ℎ2 ≤ 𝐶6 ∫ ℎ2
 

𝐵𝑝(𝑅0+2)

. 

Combining with (10), this implies that there exists constant 𝐶7 > depending only on 

𝑛, 𝑉𝑝(𝑅0  + 2), and sup
𝐵𝑝(𝑅0+1)

|𝐴|2 sup
𝐵𝑝(𝑅0+2)

 |𝐴|2, such that 

     sup
𝐵𝑝(𝑅0+1)

ℎ2 ≤ 𝐶7 ∫ ℎ2
 

𝐵𝑝(𝑅0+1)

.                                                      (11) 

We are now ready to show that 𝐻1(𝐿2(𝑀)) is finite dimensional. It suffices to show that 

any finite dimensional subspace 𝐾 of 𝐻1(𝐿2(𝑀)) must have its dimension bounded by a 

fixed constant. Let 𝑘 be the dimension of 𝐾. Let us consider the bi-linear form defined on 

𝐾 given by 

∫ 〈𝜔, 𝜃〉

 

𝐵𝑝(𝑅0+1)

. 

Note that if Z 

∫ |𝜔|2
 

𝐵𝑝(𝑅0+1)

= 0 

for some 𝜔 ∈ 𝐾, then by unique continuation𝜔 must be identically 0. This implies that the 

quadratic form is an inner product defined on 𝐾. 

According to Lemma 11 of [8], there exits an 𝜔 ∈ 𝐾 such that 

𝑘 ∫ |𝜔|2
 

𝐵𝑝(𝑅0+1)

≤ 𝑉𝑝(𝑅0 + 1)(min{𝑛, 𝑘}) sup
𝐵𝑝(𝑅0+1)

|𝜔|2 . 

However, combining with (11) we conclude that 

𝑘 ≤ 𝐶8 with 𝐶8 > 0 depending only on 𝑛, 𝑉𝑝(𝑅0 + 2), and sup
𝐵𝑝(𝑅0+2)

|𝐴|2. The theorem 

follows by applying Corollary (1.1.2) and Theorem (1.1.3). 

Section (1.2): Submanifolds with Finite Total Curvature  

For 𝑥:𝑀𝑚 → �̅� be an isometric immersion of an 𝑚-dimensional manifold 𝑀 in a 

Riemannian manifold.�̅�. Let I denote the second fundamental form and 𝐻 = 
1

𝑚
𝑡𝑟(𝕀) the 

mean curvature vector field of the immersion x. The traceless second fundamental form 

𝛷 is defined by  

𝛷(𝑋, 𝑌) = 𝕀(𝑋, 𝑌) − 〈𝑋, 𝑌〉𝐻, 
for all vector fields 𝑋, 𝑌 on 𝑀, where 〈, 〉is the metric of 𝑀. A simple computation shows 

that 

 |𝛷|2 = |𝕀|2  − 𝑚|𝐻|2. 
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In particular, |𝛷| ≡ 0 if and only if the immersion 𝑥 is totally umbilical. We say that the 

immersion x has finite total curvature if the 𝐿𝑚-norm of the traceless second fundamental 

form is finite (see [30]), that is, 

 ‖𝛷‖𝐿𝑚(𝑀) = (∫ |𝛷|
𝑚𝑑𝑀

 

𝑀

)

1
𝑚

< +∞, 

Where 𝑑𝑀 stands for the volume element of 𝑀. 
Topological and metric properties of complete submanifolds with finite total 

curvature have been a field of active research since the work of Gauss. For instance, let 

𝑀2 be a complete surface isometrically immersed in a Euclidean space 𝑅𝑛 with finite total 

curvature. By celebrated results of Huber [28], Osserman [33], and Chern–Osserman [36], 

it is known that if the immersion is minimal then it is proper, 𝑀 is homeomorphic to a 

compact surface 𝑀 punctured at finitely many points, and the Gauss map extends 

continuously to all points of ℳ. See also White [27] and Müller–˘Sverák [30] for the non-

minimal case. In higher dimension, the description of the topology is more involved, and 

there exist many interesting related to this subject (see, [9], [1], [32], [34], [32]). 

We are interested in the study of cohomological aspects of noncompact 

submanifolds with finite total curvature. More specifically, assume that 𝑀 is a complete 

noncompact manifold and consider the space of the 𝐿2-harmonic 1-forms on 𝑀 

ℋ1(𝑀) {= 𝜔| ∫𝜔 ∧∗ 𝜔

 

𝑀

= ∫|𝜔|2
 

𝑀

𝑑𝑀 < ∞and 𝑑𝜔 = 𝑑 ∗ 𝜔 = 0} . 

It is well known that the space ℋ1(𝑀) is isomorphic to the first-reduced 𝐿2-cohomology 

group of 𝑀 (see [35]). Moreover, the dimension of ℋ1(𝑀) gives an upper bound to the 

number of non-parabolic ends of𝑀. In fact, 𝑖𝑓ℋ𝐷
0(𝑀) denotes the space of the harmonic 

functions on 𝑀 with finite Dirichlet integral then 𝑢 ℋ𝐷
0(𝑀) 

if and only if its differential exterior 𝑑𝑢 ∈ ℋ1(𝑀). Thus 

 𝑑𝑖𝑚ℋ𝐷
0(𝑀) ≤ 𝑑𝑖𝑚ℋ1(𝑀) + 1. 

On the other hand, an important result of Li–Tam (Theorem 2.1 of [12]) states that the 

number 𝒆(𝑀) of nonparabolic ends of a complete manifold 𝑀 satisfies 𝒆(𝑀) ≤
dimℋ𝐷

0(𝑀). 
    In [35], Theorem 3.5, Carron proved that if 𝑀𝑚, 𝑚 ≥ 3, is a complete noncompact 

submanifold of ℝ𝑛 with finite total curvature and finite total mean curvature (i.e., the 𝐿𝑚-

norm of the mean curvature vector is finite) then each space of reduced 𝐿2-cohomology on 

𝑀 has finite dimension. Under the same conditions, and using techniques of harmonic 

functions as in [12], Fu and Xu also proved that ℋ1(𝑀)is finite dimensional (see [27]). 

Since the ends of complete noncompact submanifolds in ℝ𝑛 with finite total mean 

curvature are nonparabolic, they actually conclude that 𝑀 must have finitely many ends. 

Our first result is an improvement and a generalization of the Carron and Fu–Xu 

theorems. We recall that a Riemannian manifold is called a Hadamard manifold if it is 

complete, simply connected, and has nonpositive sectional curvature. 

Corollary (1.2.1) Let 𝑥:𝑀𝑚 → ℝ𝑛, 𝑚 ≥ 3, be an isometric immersion of a complete 

noncompact manifold 𝑀𝑚 in the Euclidean space ℝ𝑛. If the total curvature of 𝑥 satisfies 
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‖𝛷‖𝐿𝑚(𝑀) <

𝑚

(𝑚 − 1)√𝑆

√1 +
(𝑚 − 1)(𝑚 − 2)2

4(𝑚2 − 3𝑚 + 1),

 

then there are no nontrivial 𝐿2-harmonic 1-forms on 𝑀. 

Corollary (1.2.2) Let 𝑥:𝑀𝑚 → �̅�,𝑚 ≥ 3, be an isometric immersion of a complete 

noncompact manifold 𝑀 in a Hadamard manifold �̅� with sectional curvature satisfying 

−𝜅2 ≤ 𝐾�̅� ≤  0, for some constant 𝑘 ≠ 0. Assume that 𝜆1(𝑀) >
(𝑚−1)2𝑘2

𝑚
 If the total 

curvature of 𝑥 satisfies 

‖𝛷‖𝐿𝑚(𝑀) <
𝑚

(𝑚 − 1)√𝑆
1 − 

𝛬 =

𝑚

(𝑚 − 1)√𝑆
√1 −

(𝑚 − 1)2𝑘2

𝑚𝜆1(𝑀)

√
1 +

(𝑚 − 1)(𝑚 − 2)2

4 (𝑚2 − 3𝑚 + 1 +
(𝑚 − 1)2𝑘2

𝜆1(𝑀)
)

, 

then there are no nontrivial 𝐿2-harmonic 1-forms on 𝑀. 

We obtain a general inequality for 1-forms on𝑀 involving the geometry of 

immersion. We use such inequality to prove Theorem (1.2.3). We prove Theorem (1.2.4). 

We again use the inequality to give a proof of Theorem (1.2.4). 

Let 𝑥:𝑀𝑚 → �̅�,𝑚 ≥ 3, be an isometric immersion of a complete noncompact 

manifold M in a Hadamard manifold �̅� with sectional curvature satisfying −𝜅2 ≤ 𝐾�̅� ≤
0, for some constant 𝑘. We obtain an integral inequality for 𝐿2-harmonic 1-forms on M 

involving the geometry of 𝑥. 

Given 𝜔 ∈ ℋ1(𝑀), we recall the refined Kato’s inequality (see, for instance, Lemma 3.1 

of [37]): 

|𝛻|𝜔||2 ≤
𝑚 − 1

𝑚
|𝛻𝜔|2. 

A direct computation yields 

|𝛻𝜔|2 ≤ 2(|𝜔|∆|𝜔|  +  
𝑚 − 1

𝑚
|𝛻𝜔|2) . 

Using Bochner’s formula [31] (see also Lemma 3.2 of [9]), we obtain 

|𝜔|∆|𝜔| ≥
1

𝑚 − 1
|𝛻|𝜔||

2
+ 𝑅𝑖𝑐𝑀(𝜔#, 𝜔#),                                   (12) 

where 𝜔# is the dual vector field of 𝜔. Under our hypothesis on the sectional curvature of 

.�̅� we can estimate the Ricci curvature of 𝑀 by using Proposition 2 𝑜𝑓 [36]: 
𝑅𝑖𝑐𝑀(𝜔

#, 𝜔#) ≥ (𝑚 − 1)(|𝐻|2 − 𝑘2)|𝜔|2 

−
(𝑚 − 1)

𝑚
|𝛷|2|𝜔|2 −

(𝑚 − 2)√𝑚(𝑚 − 1)

𝑚
|𝐻||𝛷||𝜔|2.                (13) 

Using (12) and (13), we get 

|𝜔|∆|𝜔| ≥
1

𝑚 − 1
|𝛻𝜔|2 −

𝑚 − 1

𝑚
|𝛷|2|𝜔|2 + (𝑚 − 1)(|𝐻|2𝑘2)|𝜔|2  
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− 
(𝑚 − 2)√𝑚(𝑚 − 1)

𝑚
|𝐻||𝛷||𝜔|2                                       (14)  

Let 𝜂 ∈ 𝐶0
∞(𝑀) be a smooth function on M with compact support.We multiply both sides 

of (14) by 𝜂2 and integrate by parts. For the sake of simplicity, henceforth we will omit the 

volume element in the integrals. So, we obtain 

0 ≤ −2 ∫𝜂|𝜔|〈𝛻𝜂, 𝛻|𝜔|〉

 

𝑀

−
𝑚− 1

𝑚
∫𝜂2|𝛻|𝜔||

2

 

𝑀

 

+
(𝑚 − 2)√𝑚(𝑚 − 1)

𝑚
∫𝜂2|𝐻||𝛷||𝜔|2
 

𝑀

+
𝑚 − 1

𝑚
∫𝜂2|𝛷|2|𝜔|2
 

𝑀

 

+(𝑚 − 1) ∫𝜂2(|𝐻|2 − 𝑘2)|𝜔|2
 

𝑀

.                                             (15) 

For each 𝑎 > 0, we apply the Cauchy–Schwarz inequality in (15) to obtain 

0 ≤ −2 ∫𝜂|𝜔|〈𝛻𝜂, 𝛻|𝜔|〉

 

𝑀

−
𝑚− 1

𝑚
∫𝜂2|𝛻|𝜔||

2

 

𝑀

 

+ ∫((𝑚 − 1)𝑘2 + (−(𝑚 − 1) +
𝑎(𝑚 − 2)√𝑚(𝑚 − 1)

2𝑚
) |𝐻|2)

 

𝑀

𝜂2|𝜔|2

+ (
(𝑚 − 2)√𝑚(𝑚 − 1)

2𝑎𝑚
+
𝑚 − 1

𝑚
) ∫𝜂2|𝜙|2|𝜔|2

 

𝑀

.                                       (16) 

On the other hand, since 𝑚 ≥ 3, we use the Hölder, Hoffman–Spruck [29], and Cauchy–

Schwarz inequalities to get 

∫𝜂2
 

𝑀

|𝛷|2|𝜔|2 ≤ 𝜙(𝜂) (∫(𝜂|𝜔|)
2𝑚
𝑚−2

 

𝑀

)

𝑚−2
𝑚

   

≤ 𝑆𝜙(𝜂) ∫(|𝛻(𝜂|𝜔|)|2 + 𝜂2|𝜔|2|𝐻|2)

 

𝑀

 

≤ 𝑆𝜙(𝜂) ∫((1 +
1

𝑏
) |𝜔|2|𝛻𝜂|2 + (1 + 𝑏)𝜂2|𝛻|𝜔||

2
)

 

𝑀

 

+ 𝑆𝜙(𝜂) ∫𝜂2|𝜔|2
 

𝑀

|𝐻|2,                                                    (17) 

for all 𝑏 > 0, where 𝜙(𝜂) = (∫ |𝛷|𝑚
 

𝑠𝑢𝑝𝑝(𝜂)
)

2

𝑚
 and 𝑆 = 𝑆(𝑚) > 0 is the constant in the 

Hoffman–Spruck inequality. Thus, using (16) and (17), we have 

0 ≤ −2 ∫𝜂|𝜔|〈𝛻𝜂, 𝛻|𝜔|〉

 

𝑀

− 
𝑚

𝑚 − 1
∫𝜂2|𝛻𝜔|2
 

𝑀

+ 𝐴(𝑚, 𝑎) ∫ |𝐻|2𝜂2|𝜔|2
 

𝑀

 

+𝑆𝐵(𝑚, 𝑎)𝜙(𝜂) ∫((1 +
1

𝑏
) |𝜔|2|𝛻𝜂|2 + (1 + 𝑏)𝜂2|𝛻|𝜔||

2
)

 

𝑀
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+𝑆𝐵(𝑚, 𝑎)𝜙(𝜂) ∫𝜂2|𝜔|2|𝐻|2
 

𝑀

+ (𝑚 − 1)𝑘2 ∫𝜂2|𝜔|2
 

𝑀

,                      (18) 

where 𝐴(𝑚, 𝑎) and 𝐵(𝑚, 𝑎) are given by 

𝐴(𝑚, 𝑎) = −(𝑚 − 1) +
𝑎(𝑚 − 2)√𝑚(𝑚 − 1)

2𝑚
 

𝐵(𝑚, 𝑎) =  
(𝑚 − 2)√𝑚(𝑚 − 1)

2𝑎𝑚
+ 
𝑚 − 1

𝑚
.                              (19) 

We use the Cauchy–Schwarz inequality again to get 

2 |∫𝜂|𝜔|

 

𝑀

〈𝛻𝜂, 𝛻|𝜔|〉| ≤ 𝑐 ∫𝜂2
 

𝑀

|𝛻|𝜔||2 +
1

𝑐
∫ |𝜔|2|∇𝜂|2
 

𝑀

,             (20) 

for all 𝑐 > 0. Using (18) and (20), we obtain the following integral inequality: 

𝐶 ∫𝜂2|∇|𝜔||
2

 

𝑀

+ 𝐷 ∫|𝐻|2𝜂2|𝜔|2
 

𝑀

≤ 𝐸 ∫|𝜔|2|∇𝜂|2
 

𝑀

+ (𝑚 − 1)𝑘2 ∫𝜂2|𝜔|2
 

𝑀

,    

(21) 
where 

−𝐶 = −𝐶(𝑚, 𝑎, 𝑏, 𝑐, 𝜂) = 𝑐 + (1 + 𝑏)𝑆𝐵(𝑚, 𝑎)𝜙(𝜂) −
𝑚

𝑚 − 1
, 

−𝐷 = −𝐷(𝑚, 𝑎, 𝜂) = 𝐴(𝑚, 𝑎) + 𝑆𝐵(𝑚, 𝑎)𝜙(𝜂), 

𝐸 = 𝐸(𝑚, 𝑎, 𝑏, 𝑐, 𝜂) =
1

𝑐
+ (1 +

1

𝑏
)𝑆𝐵(𝑚, 𝑎)𝜙(𝜂).                   (22) 

Theorem (1.2.3)[15]: Let 𝑥:𝑀𝑚 → �̅�,𝑚 ≥ 3, be an isometric immersion of a complete 

noncompact manifold 𝑀 in a Hadamard manifold .𝑀 with sectional curvature satisfying 

−𝜅2 ≤ 𝐾�̅� ≤ 0, for some constant 𝑘. In the case 𝐾�̅� ≢ 0, assume further that the first 

eigenvalue of the Laplace–Beltrami operator of 𝑀 satisfies 

 𝜆1(𝑀) >
(𝑚 − 1)2

𝑚
(𝜅2 − inf |𝐻|2). 

There exists a positive constant 𝛬 such that if ‖𝛷‖𝐿𝑚(𝑀) < 𝛬 then there is no nontrivial 𝐿2-

harmonic 1-form on 𝑀. Furthermore, if k = 0 then Λ depends only on m; otherwise, 𝛬 

depends only on 𝑚, 𝑘, 𝜆1(𝑀), and inf |𝐻|. 
It is a natural question to ask about the best constant 𝛬 in Theorem (1.2.3). In the 

next result we present an explicit value for 𝛬 depending on the case. 

Proof. We will prove the existence of a positive constant 𝛬 such that if 

 ‖𝛷‖𝐿𝑚(𝑀) < 𝛬 then ℋ1(𝑀) = {0}. Choose 0 < 𝑑 <
1

2
 

, 𝑎 =  𝑎(𝑑) > 0, 𝑎𝑛𝑑 𝛬 = 𝛬(𝑑) > 0 satisfying: 

{
 
 

 
 𝑑 + (𝑚 − 1)(1 + 𝑑)𝑑 <

𝑚

𝑚 − 1
,

𝑎(𝑚 − 2)√𝑚(𝑚 − 1)

2𝑚
< (𝑚 − 1)𝑑,

𝑆𝐵(𝑚, 𝑎)𝛬2 < (𝑚 − 1)𝑑.

                                 (23) 

Now we set 

−𝐶̅ = −𝐶̅(𝑚, 𝛬, 𝑎, 𝑏, 𝑐) = 𝑐 + (1 + 𝑏)𝑆𝐵(𝑚, 𝑎)𝛬2 −
𝑚

𝑚−1
, and 

−�̅� = −�̅�(𝑚, 𝛬, 𝑎) =  𝐴(𝑚, 𝑎) + 𝑆𝐵(𝑚, 𝑎)𝛬2.                      (24) 
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Using (19) and choosing 0 < 𝑐 < 𝑑 and 0 < 𝑏 < 𝑑 we get: 

𝐶̅ >
𝑚

𝑚 − 1
− 𝑑 − (𝑚 −  1)(1 + 𝑑)𝑑 > 0, 

�̅� > (𝑚 −  1)(1 − 2𝑑) > 0. 
Assume that the total curvature of x satisfies ‖𝛷‖𝐿𝑚(𝑀) ≤ 𝛬. Plugging the above choices 

in (21) we obtain 

𝐶̅ ∫ 𝜂2|∇|𝜔||2
 

𝑀

+ �̅� ∫ |𝐻|2𝜂2|𝜔|2
 

𝑀

 

≤ �̅� ∫|𝜔|2|𝛻𝜂|2
 

𝑀

+ (𝑚 − 1)𝑘2 ∫𝜂2|𝜔|2
 

𝑀

,                               (25) 

where �̅� =
1

𝑐
+ (1 +

1

𝑏
) 𝑆𝐵(𝑚, 𝑎)𝛬2. 

In particular, if 𝑘 = 0, we obtain 

𝐶̅ ∫ 𝜂2|∇𝜔|2
 

𝑀

+ �̅� ∫ |𝐻|2𝜂2|𝜔|2
 

𝑀

≤ �̅� ∫ |𝜔|2|∇𝜂|2
 

𝑀

.                       (26) 

We will see later that this inequality is sufficient to prove our result in the case where 𝑘 =
0. In this case, we also note that 𝛬 = 𝛬(𝛾) depends only on m. In order to deal with the 

case where 𝑘 ≠ 0, we need to introduce a new ingredient. We recall that the first 

eigenvalue 𝜆1 = 𝜆1(𝑀) of the Laplacian of 𝑀 satisfies 

𝜆1 ∫𝜑
2

 

𝑀

≤ ∫|𝛻𝜙|2
 

𝑀

,                                             (27) 

for all 𝜑 ∈ 𝐶0
∞(𝑀). Applying (27) with 𝜑 = 𝜂|𝜔| and once more using the Cauchy–

Schwarz inequality we get for all 𝑒 > 0 

𝜆1 ∫𝜂
2|𝜔|2

 

𝑀

≤ (1 + 𝑒) ∫𝜂2|∇𝜔|2
 

𝑀

+ (1 +
1

𝑒
) ∫|𝜔|2|∇𝜂|2

 

𝑀

, 

which implies that 

𝐶̅ 𝜆1
1 + 𝑒

∫𝜂2|𝜔|2
 

𝑀

≤ 𝐶̅ ∫𝜂2|∇|𝜔||
2

 

𝑀

+
𝐶̅

𝑒
∫ |𝜔|2|∇𝜂|2
 

𝑀

.                    (28) 

Thus, using (25) and (28), we obtain 

𝐶̅ 𝜆1
1 + 𝑒

∫ 𝜂2|𝜔|2
 

𝑀

≤ 𝐶̅((𝑚 − 1)𝑘2�̅� inf |𝐻|2)∫ 𝜂2|𝜔|2
 

𝑀

(�̅� +
𝐶̅

𝑒
)∫ |𝜔|2|∇𝜂|2

 

𝑀

. 

Note that 

𝐶̅ 𝜆1
1 + 𝑒

− ((𝑚 − 1)𝑘2�̅� inf |𝐻|2) ≥ (
𝑚

𝑚 − 1
− 𝑑 − (𝑚 − 1)(1 + 𝑑)𝑑) 

𝜆1
1 + 𝑒

 

−(𝑚 − 1)𝑘2�̅� inf |𝐻|2).                                                    (29) 

Thus, if  𝜆1 >
(𝑚−1)2

𝑚
(𝑘2 −  inf |𝐻|2) then we can choose 𝑑 and e, sufficiently small and 

depending on 𝑚, 𝑘2, 𝜆1, and inf |𝐻|
2, so that. 

𝐶̅ 𝜆1

1+𝑒
− (𝑚 − 1)𝑘2 + �̅� inf |𝐻|2 > 0. 

Hence we get 

∫|𝜔|2𝜂2
 

𝑀

≤ �̅� ∫ |𝜔|2|∇𝜂|2
 

𝑀

,                            (30) 
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for some constant .�̅� > 0. In this case (𝑘 ≠ 0), the constant 𝛬 depends on 𝑚, 𝑘2, 𝜆1, and 

inf |𝐻|2. 

For each 𝑟 > 0, let 𝐵𝑟 denote the geodesic ball of radius 𝑟 on 𝑀 centered at some fixed 

point and let 𝜂𝑟 ∈ 𝐶0
∞(𝑀) be a smooth function such that 

{

0 ≤ 𝜂𝑟 ≤ 1 in𝑀,
𝜂𝑟 = 1 𝑖𝑛 𝐵𝑟  ,

𝑠𝑢𝑝𝑝(𝜂𝑟) = 𝐵2𝑟 .
|𝛻𝜂𝑟| ≤ 2𝑟

−1 𝑖𝑛 𝑀, 

If 𝑘 = 0 we use (26) with 𝜂𝑟 to obtain 

𝐶̅ ∫|𝛻|𝜔||2
 

𝐵𝑟

+ �̅� ∫ |𝐻|2|𝜔|2
 

𝐵𝑟

≤ �̅�
4

𝑟2
∫|𝜔|2
 

𝑀

. 

Taking 𝑟 → ∞we get |𝐻||𝜔| = |𝛻|𝜔|| = 0. Thus |ω| is constant. If ω is not identically 

zero then 𝐻 =  0. In this case, since .𝑀 is a Hadamard manifold it is well known that M 

has infinite volume, which is a contradiction, since∫ |𝜔|2
 

𝑀
< ∞. If 𝑘 ≠ 0 then using (30) 

with 𝜂𝑟 we get 

∫|𝜔|2
 

𝐵𝑟

≤  �̅�
4

𝑟2
∫|𝜔|2
 

𝑀

. 

Taking 𝑟 → ∞we have 𝜔 =  0 and it finishes the proof. 

Theorem (1.2.4)[15]: Let 𝑆 = 𝑆(𝑚, 2) be the constant of Sobolev’s inequality derived 

from [29]. Then the constant 𝛬 as in Theorem (1.2.3)can be given explicitly as  follows: 

(i)If 𝑘 = 0 and 𝐻 = 0 then 

𝛬 =
𝑚

(𝑚 − 1)√𝑆
. 

(ii) If 𝑘 = 0 and H is arbitrary then 

𝛬 =

𝑚

(𝑚 − 1)√𝑆

√1 +
(𝑚 − 1)(𝑚 − 2)2

4(𝑚2 − 3𝑚 + 1)

. 

(iii) If 𝑘 ≠ 0 and 𝐻 =  0 then 

𝛬 =
𝑚

(𝑚 − 1)√𝑆
√1 −

(𝑚 − 1)2𝜅2

𝑚𝜆1(𝑀)
. 

(iv) If 𝑘 ≠ 0 and inf |𝐻| > (1 −
𝑚

(𝑚−1)2
)
−
1

2
 |𝑘| then 

𝛬 =

𝑚

(𝑚 − 1)√𝑆

√1 +
(𝑚 − 2)(𝑚 − 1)2

4(𝑚2 − 3𝑚 + 1)
−
(𝑚 − 1)2𝑘2

inf |𝐻|2

. 

(𝑣) If 𝑘 ≠ 0,𝐻 is arbitrary and 𝜆1(𝑀) >
(𝑚−1)2𝑘2

𝑚
 then 
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𝛬 =

𝑚

(𝑚 − 1)√𝑆
√1 −

(𝑚 − 1)2𝑘2

𝑚𝜆1(𝑀)

√
1 +

(𝑚 − 2)(𝑚 − 1)2

4 (𝑚2 − 3𝑚 + 1 +
(𝑚 − 1)2𝑘2

𝜆1(𝑀)
)

. 

 (vi) If 𝑘 ≠ 0, inf|𝐻| ≤ (1 − 
𝑚

(𝑚−1)2
)
−
1

2
 
|𝑘|𝑎𝑛𝑑 𝜆1 ≤

(𝑚−1)2𝑘2

𝑚
  then 

𝛬 =
𝑚

(𝑚 − 1)√𝑆

√1 − 𝐵
(𝑚 − 2)2(𝑚 − 1)

4𝑚
inf |𝐻|2

(1 +
1
𝐵)
(𝜆1(𝑀) + inf |𝐻|

2
, 

where 𝐵 = −1 + √1 +
4𝑚𝐴

(𝑚−1)(𝑚−2)2 inf|𝐻|2
 and 𝐴 = 𝜆1 −

(𝑚−1)2

𝑚
 (𝑘2 − inf |𝐻|2). 

Proof. The key to the proof of Theorem (1.2.3)is the fact that there exists a constant 𝛬 > 0 

such that if  ‖𝛷‖𝐿𝑚(𝑀) < 𝛬 then one of the inequalities (26) or (30) holds. We also 

proved that 𝛬 depends only on 𝑚 in the case where 𝑘 = 0 and 𝛬 depends on 𝑚, 𝑘2, 𝜆1, and 

inf |𝐻| in the case where 𝑘 ≠ 0. The goal is to give explicit estimates to 𝛬. 

Using (19) and (24) we have 

− 𝐶̅(𝑚, 𝛬, 𝑎, 0, 0) = 𝑆𝛬2𝐵(𝑚, 𝑎) −
𝑚

𝑚 − 1

= 𝑆𝛬2 (1 +
(𝑚 − 2)

2𝑎
√

𝑚

𝑚− 1
)
𝑚 − 1

𝑚
− 

𝑚

𝑚 − 1
 

and 
−�̅�(𝑚, 𝛬, 𝑎) =  𝐴(𝑚, 𝑎) + 𝑆𝛬2𝐵(𝑚, 𝑎)

=
𝑚 − 1

𝑚
(−𝑚 +

𝑎(𝑚 − 2)

2
√

𝑚

𝑚− 1
+ 𝑆𝛬2 (1 +

(𝑚 − 2)

2𝑎
√

𝑚

𝑚− 1
)) . 

Thus, using (24) and the continuity of .𝐶̅ , it follows that there exist 𝛬 > 0 and 𝑎 >
0satisfying .𝐶 ̅ = 𝐶̅(𝑚, 𝛬, 𝑎, 𝑏, 𝑐) > 0, for some 𝑏 > 0 and 𝑐 > 0, sufficiently small, if and 

only if 

𝑆𝛬2 < 𝑓1(𝑎):=

𝑚2

(𝑚 − 1)2

1 + 
𝑚 − 2
2𝑎

√
𝑚

𝑚− 1

.                            (31) 

Note that the function 𝑓1: (0,∞) → ℝ is increasing and sup 𝑓1 =
𝑚2

(𝑚−1)2
 . Assume that 

‖𝛷‖𝐿𝑚(𝑀) < 𝛬1 ∶=
𝑚

(𝑚 − 1)√𝑆
 

and take 𝛬 > 0 so that  ‖𝛷‖𝐿𝑚(𝑀) < 𝛬 < 𝛬1. Since 𝑆𝛬2 < sup 𝑓1 and 𝜙(𝜂) < 𝛬2, 

there exists 𝑎1 = 𝑎1(𝑚, 𝛬) > 0 such that, for any 𝑎 > 𝑎1, there exist 𝑏 > 0 and 𝑐 > 0, 

sufficiently small, satisfying 𝐶 > 𝐶̅ > 0 (see (22) and (24)). Thus, if 𝑘 = 0 and 𝐻 = 0, we 

obtain from (21) that inequality (26) holds. Thus, item (i) is proved. 

Similarly, there exist𝛬 > 0 and𝑎 > 0 such that .𝐷 = . 𝐷(𝑚, 𝛬, 𝑎)  >  0 if and only if 
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𝑆𝛬2 < 𝑓2(𝑎):=
𝑚 −

𝑎(𝑚 − 2)
2

√
𝑚

𝑚 − 1

1 +
(𝑚 − 2)
2𝑎

√
𝑚

𝑚− 1

 .                             (32) 

The function 𝑓2: (0,∞) → ℝ is concave and max𝑓2 = 𝑓2 (√
𝑚

𝑚−1
) =

𝑚

𝑚−1
> 𝑓21 (√

𝑚

𝑚−1
) =

2𝑚

(𝑚−1)2
. Thus, the maximum value 𝛬2 > 0 that satisfies .𝐶̅ > 0 and �̅� > 0, for any 0 <

𝛬 < 𝛬2, and for some 𝑎 > 0, 𝑏 > 0, and 𝑐 > 0, is obtained in the intersection point 𝑎12 of 

the graphs of 𝑓1 and 𝑓2. Namely, 

𝑎12 =
2𝑚(𝑚2 − 3𝑚 + 1)

(𝑚 − 2)(𝑚 − 1)2√
𝑚

𝑚− 1

. 

Hence we set 

𝛬2: = √
𝑓2(𝑎12)

𝑆
=

𝑚

(𝑚 −  1)√𝑆
(1 +

(𝑚 − 2)2(𝑚 − 1)

4(𝑚2 − 3𝑚 + 1)
)

−
1
2

. 

If ‖𝛷‖𝐿𝑚(𝑀) < 𝛬 < 𝛬
2, then, taking 𝑎 = 𝑎12, we have 𝐶 > 𝐶̅ > 0 and 𝐷 > �̅� > 0, for 

suitable constants 𝑏 > 0 and 𝑑 > 0. Therefore, for 𝑘 = 0 and 𝐻 is arbitrary, inequality 

(26) holds. Thus, item (ii) is proved. 

Now, we deal with the case where 𝑘 ≠ 0 and 𝐻 = 0. Since we are assuming 𝜆1 >
(𝑚−1)2

𝑚
(𝑘2 − 𝑖𝑛𝑓 |𝐻|2) we immediately obtain that 𝜆1 > 0 and 0 < 

(𝑚−1)2

𝑚

𝑘2

𝜆1
< 1. 

Using (24) and the continuity of .𝐶̅ , we see that there exist𝛬 > 0 and 𝑎 > 0 satisfying  

𝐶̅ > 0 and. 
𝐶̅𝜆1

1+𝑒
− (𝑚 − 1)𝑘2 > 0, for some 𝑒 > 0, 𝑏 > 0, and 𝑐 > 0, sufficiently small, if 

and only if 𝛬 < 𝛬1 and 

𝑆𝛬2 < 𝑓3(𝑎):=
𝑚2

(𝑚 − 1)2

1 −
(𝑚 − 1)2

𝑚
𝑘2

𝜆1

1 +
(𝑚 − 2)
2𝑎

√
𝑚

𝑚− 1

.                  (33) 

The function 𝑓3: (0,∞) → ℝ is increasing and sup 𝑓3 =
𝑚2

(𝑚−1)2
( 1 −

(𝑚−1)2

𝑚

𝑘2

𝜆1
). 

Set 𝛬3: =
𝑚

(𝑚− 1)√𝑆
(1 +

(𝑚−1)2

𝑚

𝑘2

𝜆1
)
−
1

2
 and suppose that  ‖𝛷‖𝐿𝑚(𝑀) < 𝛬 < 𝛬3. Since 

𝑆𝛬2 < sup𝑓3 < 𝑆𝛬3
2 < 𝑆𝛬1

2and 𝜙(𝜂) < 𝛬2, there exists 𝑎3 = 𝑎3(𝑚, 𝑘, 𝜆1, 𝛬) > 0 0such 

that, for any 𝑎 > 𝑎3, there exist 𝑒 > 0, 𝑏 > 0, and 𝑐 > 0, sufficiently small, satisfying 𝐶 >

𝐶̅ > 0 and.
𝐶̅𝜆1

1+𝑒
− (𝑚 − 1)𝑘2 > 0. Thus, in the case 𝑘 ≠ 0 and 𝐻 = 0inequality (30) holds 

and hence item (iii) follows. 

Now, we assume that 𝐻 is arbitrary. Using (24) we have that there exist 𝛬 > 0 

and 𝑎 > 0 such that  𝐶̅ > 0, �̅� > 0, and. 
𝐶̅𝜆1

1+𝑒
− (𝑚 − 1)𝑘2 + �̅� inf|𝐻|2 > 0, for some 𝑒 >

0, 𝑏 > 0, and 𝑐 > 0, sufficiently small, if and only if 𝛬 < 𝛬2 and 
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𝑆𝛬2 < 𝑓4(𝑎):

=

𝑚2

(𝑚 − 1)2
(𝜆1 −

(𝑚 − 1)2

𝑚
(𝑘2 − inf |𝐻|2)) −

𝑎(𝑚 − 2)
2

inf |𝐻|2√
𝑚

𝑚− 1

(𝜆1 + inf |𝐻|
2) (1 + 

(𝑚 − 2)
2𝑎

√
𝑚

𝑚 − 1)

. 

By a simple computation, we can rewrite 𝑓4 in the following way: 

𝑓4 =
inf |𝐻|2

𝜆1 + inf |𝐻|
2
𝑓2 +

1

𝜆1 + inf |𝐻|
2
(𝜆1 −

(𝑚 − 1)2

𝑚
𝑘2) 𝑓1 

= 𝑓1 +
inf |𝐻|2

𝜆1 + inf|𝐻|
2
(𝑓2 − 𝑓1) −

(𝑚 − 1)2

𝑚
 𝑘2

𝜆1 + inf |𝐻|
2
𝑓1                              (34) 

= 𝑓2 +
𝜆1

𝜆1 + inf |𝐻|
2
(𝑓1 − 𝑓2) −

(𝑚 − 1)2

𝑚
 𝑘2

𝜆1 + inf |𝐻|
2
𝑓1.                         (35) 

Using (34) we obtain that 𝑓4 intersects 𝑓1 if and only if inf |𝐻|2 > (1 − 
𝑚

(𝑚−2)2
)
−1
𝑘2. 

In this case, the intersection point of 𝑓1 and 𝑓4 is 

𝑎14 =
2𝑚(𝑚2 − 3𝑚 + 1 −

(𝑚 − 1)2𝑘2

inf |𝐻|2
)

(𝑚 − 2)(𝑚 − 1)2√
𝑚

𝑚− 1

< 𝑎12. 

Using that 𝑓1 < 𝑓2 in (0, 𝑎12), we obtain from (35) that 𝑓4 < 𝑓2 in (0, 𝑎12). Thus, the 

maximum value 𝛬4 > 0 such that .𝐶̅ > 0, �̅� > 0, and. 
𝐶̅𝜆1

1+𝑒
− (𝑚 − 1)𝑘2  + �̅�inf |𝐻|2 > 0, 

for all 0 < 𝛬 < 𝛬4 and for some 𝑎 > 0, 𝑏 > 0, 𝑐 >  0, and 𝑒 > 0 is obtained considering 

𝑆𝛬4
2 = 𝑓4(𝑎14) =  

𝑚2

(𝑚 − 1)2 
(1 +

(𝑚 − 2)2(𝑚 − 1)2

4𝑚(𝑚2 − 3𝑚 + 1) −
(𝑚 − 1)2𝑘2

inf |𝐻|2

)

−1

. (36) 

Thus, assume that inf |𝐻|2 > (1 −
𝑚

(𝑚−1)2
)
−1
𝑘2 and ‖𝛷‖𝐿𝑚(𝑀) < 𝛬4 Take 𝛬 > 0 so that 

‖𝛷‖𝐿𝑚(𝑀) < 𝛬 < 𝛬4 and let 𝑎 = 𝑎14. We obtain that 𝐶 > 𝐶̅  > 0, 𝐷 >  �̅� > 0,And . 
𝐶̅𝜆1

1+𝑒
− (𝑚 − 1)𝑘2 +  �̅�inf |𝐻|2 > 0, for some 𝑒 > 0, 𝑏 > 0, and 𝑐 > 0, sufficiently small. 

This implies that the inequality (30) holds. Item (iv) is proved. 

Now, assume that inf |𝐻|2 ≤ (1 −
𝑚

(𝑚−1)2
)
−1
 𝑘2. This implies that 𝑓4 < 𝑓1, since 𝑓4does 

not intersect 𝑓1 and lim
𝑎→∞

𝑓4(𝑎) < lim
𝑎→∞

𝑓1(𝑎). Using (35) we obtain that 𝑓4 intersects 𝑓2 if 

and only if 𝜆1 > 0. In this case, the intersection point of 𝑓4and 𝑓2 is  

𝑎24 = 
2𝑚

(𝑚 − 2)√
𝑚

𝑚 − 1
 

(1 −
𝑚

(𝑚 − 1)2
𝑘2

𝜆1
)

 

. 

Note also that 𝑓2(𝑎) > 0 if and only if 0 < 𝑎 <
2𝑚

(𝑚−2)√
𝑚

𝑚−1

. This implies that 𝑓4(𝑎24) > 0 

if and only if𝜆1 >
(𝑚−1)2

𝑚
𝑘2. Thus, assume further that 𝜆1 >

(𝑚−1)2

𝑚
𝑘2 and‖𝛷‖𝐿𝑚(𝑀) <



16 

𝛬5: = √
𝑓4(𝑎24)

𝑆
 . Take 𝛬 > 0 so that ‖𝛷‖𝐿𝑚(𝑀) < 𝛬 < 𝛬4 and let𝑎 = 𝑎24. Using that 

𝜙(𝜂) < 𝛬2 and 𝑆𝛬2 < 𝑓2(𝑎24) =  𝑓4(𝑎24)  < 𝑓1(𝑎24) we obtain that𝐶 > 𝐶̅ > 0, 𝐷 > �̅� >

0, and. 
𝐶̅𝜆1

1+𝑒
− (𝑚 − 1)𝑐2 + �̅�inf|𝐻|2 > 0, for some 𝑒 > 0, 𝑏 > 0, and 𝑐 > 0, sufficiently 

small. This implies that inequality (30) holds. Item (v) is proved. 

To finish the proof of Theorem (1.2.4) we assume that 𝑘 ≠ 0, inf |𝐻|2 ≤ (1 −

𝑚

(𝑚−1)2
)
−1
𝑘2, and 𝜆1 ≤

(𝑚−1)2

𝑚
𝑘2. This implies that 𝑓4 < 𝑓1 and 𝑓4 < 𝑓2. Furthermore, it 

holds that inf |𝐻| > 0, since  

(𝑚 − 1)2

𝑚  
(𝑘2 − 𝜆1 + inf |𝐻|

2) < 𝜆1 ≤
(𝑚 − 1)2

𝑚
𝑘2. 

Thus, the maximum value 𝛬6 such that 𝐶̅ > 0, �̅� > 0, and 
𝐶̅𝜆1

1+𝑒
− (𝑚 − 1)𝑘2 +

�̅�inf |𝐻|2 > 0, for some suitable constants 𝑎 > 0, 𝑏 > 0, 𝑐 > 0, and 𝑒 > 0, is obtained 

considering 𝑆𝛬6
2 = sup𝑓4. Note also that sup 𝑓4 = 𝑓4(𝑎4), where 

𝑎4 =
(𝑚 − 2)

2
√

𝑚

𝑚− 1
ℬ, 

ℬ = −1 + 1 +
4𝑚𝐴

(𝑚 − 1)(𝑚 − 2)2 inf|𝐻|2
 

And 

 𝐴 = 𝜆1 −
(𝑚 − 1)2

𝑚
(𝑘2 − inf |𝐻|2). 

Thus, if 

‖𝛷‖𝐿𝑚 < √
𝑓4(𝑎4)

𝑆
=

𝑚

(𝑚 − 1)√𝑆
√
1 − ℬ

(𝑚 − 2)2(𝑚 − 1)
4𝑚

 inf |𝐻|2

(1 +
1
𝐵)
(𝜆1 + inf |𝐻|

2)
, 

Then, using similar arguments to the previous case and taking𝑎 = 𝑎4, we obtain suitable 

positive constants b, c, and e such that 𝐶 > 𝐶̅ > 0, 𝐷 > �̅� > 0, and . 
𝐶̅𝜆1

1+𝑒
− (𝑚 − 1)𝑘2 +

�̅�inf |𝐻|2 > 0. This implies that inequality (30) holds. Item (vi) is proved. 

Theorem (1.2.5)[15]: Let 𝑥:𝑀𝑚 → �̅�,𝑚 ≥ 3, be an isometric immersion of a complete 

noncompact manifold 𝑀 in a Hadamard manifold �̅� with sectional curvature satisfying 

−𝑘2 ≤ 𝐾�̅� ≤ 0, for some constant k. In the case 𝐾�̅� ≢ 0, assume further that the first 

eigenvalue of the Laplace–Beltrami operator of 𝑀 satisfies 

𝜆1(𝑀) >
(𝑚 − 1)2

𝑚
(𝑘2 − lim

𝑟(𝑝)→∞
inf |𝐻(𝑝)|2) , 

where 𝑟 stands for the distance in 𝑀 from a fixed point. If 𝑥 has finite total curvature, then 

the space ℋ1(𝑀)has finite dimension. 

An interesting result of Anderson [12] shows that, for all 𝑚 ≥ 3 and𝜅 > 𝑚 − 2, there 

exists a complete simply connected manifold 𝑀𝜅
𝑚 with sectional curvature 

satisfying−𝜅2 ≤ 𝐾 ≤ −1 and such that dimℋ1(𝑀𝜅
𝑚) = ∞. Since .�̅� = 𝑀𝜅

𝑚 ×ℝ is a 

Hadamard manifold satisfying −𝜅2 ≤ 𝐾�̅� ≤ 0, and 𝑀𝜅
𝑚 is a totally geodesic submanifold 

of 𝑀, we conclude that the hypothesis on the first eigenvalue in Theorem (1.2.5) is 

necessary. 
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    In [35] Carron proved a gap theorem on the dimension of ℋ1(𝑀). 
More precisely, Carron proved that there exists a constant 𝜀(𝑚) such that if  |𝕀| ≤ 𝜀(𝑚), 
then all spaces of 𝐿2-harmonic forms are trivial. In the next result we prove a gap theorem 

for immersion with small ‖𝛷‖𝐿𝑚(𝑀). This result is also a generalizationof [37]. 

Proof. Consider 0 < 𝑑 <
1

2
, 𝑎 = 𝑎(𝑑) > 0, and 𝛬 = 𝛬(𝑎) > 0 as given in (23). Assume 

that the immersion x has finite total curvature. Fix 𝑟0 > 0 so that 

‖𝛷‖𝐿𝑚(𝑀)(𝑀 − 𝐵𝑟0)√𝛬.                                           (37) 

Let 𝜂 = 𝜂𝑟0 ∈ 𝐶0
∞(𝑀) be any smooth function with compact support satisfying 

supp(𝜂) ⊂ 𝑀 − 𝐵𝑟0 .  Since 𝜙(𝜂) = ‖𝛷‖𝐿𝑚(supp(𝜂))
2 < 𝛬, we can proceed similarly as in 

(inequality (25)) to obtain 

𝐶 ∫𝜂2
 

𝑀

|𝛻|𝜔||
2
+ �̅� ∫|𝐻|2𝜂2

 

𝑀

|𝜔|2 ≤ 𝐸 ∫|𝜔|2|𝛻𝜂|2
 

𝑀

+ (𝑚 − 1)𝑘2 ∫𝜂2
 

𝑀

|𝜔|2, 

(38) 
for all 𝜔 ∈ ℋ1(𝑀), where �̅� = (𝑚 − 1)(1 − 2𝑑). 
To deal with the case where 𝑘 ≠ 0, we assume further that 

𝜆1 >
(𝑚 − 1)2

𝑚
𝑘2  − lim

𝑟(𝑝)→∞
inf |𝐻(𝑝)|2, 

where 𝑟 stands for the distance in 𝑀 from a fixed point. It is easy to see that we can also 

consider 𝑟0 > 0 sufficiently large satisfying 

𝜆1 >
(𝑚 − 1)2

𝑚
(𝑘2 − inf

𝑀−𝐵𝑟0
|𝐻|2) . 

We obtain 

∫ |𝜔|2𝜂2
 

𝑀

≤ �̅� ∫𝜔2
 

𝑀

|𝛻𝜂|2,                            (39) 

for some constant  �̅� > 0. 

It follows from the Cauchy–Schwarz and Hoffman–Spruck [29] inequalities that 

𝑆−1 (∫(𝜂|𝜔|)
2𝑚
𝑚−2

 

𝑀

)

𝑚−2
𝑚

≤ ∫|𝛻(𝜂|𝜔|)|2
 

𝑀

+ ∫𝜂2|𝜔|2|𝐻|2
 

𝑀

≤ (1 +  𝑠) ∫𝜂2
 

𝑀

|𝛻|𝜔||
2
+ (1 +

1

𝑠
) ∫|𝜔|2|𝛻𝜂|2

 

𝑀

 

+ ∫𝜂2
 

𝑀

|𝜔|2|𝐻|2,                                                                           (40) 

for any 𝑠 > 0. Using (38) and (40) we obtain 

𝑆−1 (∫(𝜂|𝜔|)
2𝑚
𝑚−2

 

𝑀

)

𝑚−2
𝑚

≤ ((1 + 𝑠)𝐶−1 �̅� + 1) ∫|𝐻|2𝜂2
 

𝑀

|𝜔|2 

+(1 +
1

𝑠
) ∫|𝜔|2|𝛻𝜂|2

 

𝑀
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≤ (1 +  𝑠)𝐶−1(𝑚 − 1)𝑘2 ∫𝜂2
 

𝑀

|𝜔|2,                        (41) 

for all 𝑠 > 0. Since 𝑚 ≥ 3, we can choose 𝑑 and s sufficiently small so that 

 (1 + 𝑠)𝐶−1�̅�  = (1 + 𝑠) (
𝑚

𝑚 − 1
− 𝑑 − (𝑚 − 1)(1 + 𝑑)𝑑)

−1

(𝑚 − 1)(2𝑑 − 1)  

< −1. (42) 
Thus, using (39) (in the case where𝑘 ≠ 0), (41), and (42) we obtain the following 

inequality: 

𝑆−1 (∫(𝜂|𝜔|)
2𝑚
𝑚−2

 

𝑀

)

𝑚−2
𝑚

≤ �̅� ∫|𝜔|2|𝛻𝜂|2
 

𝑀

,                  (43) 

for some constant �̅� = �̅�(𝑚) > 0, for all 𝜔 ∈ ℋ1(𝑀). 
From now on, the proof follows standard techniques (see, for instance, [1] after Eq. (2.7), 

[27] after Eq. (28), or [33] after Eq. (3.14)) and uses a Moser iteration argument and 

Lemma 11 of [8]. We include the proof here for the sake of completeness. 

Take 𝑟 > 𝑟0 + 1 and let 𝜂 be a smooth function satisfying the following conditions: 

{
 
 

 
 𝜂 = 0 𝑖𝑛 𝐵𝑟0 ∪

(𝑀 − 𝐵2𝑟),

𝜂 = 1 𝑖𝑛 𝐵𝑟  – 𝐵𝑟0+1,

|𝛻𝜂𝑟| ≤ 𝑐1 𝑖𝑛𝐵𝑟0+1 − 𝐵𝑟0 ,

|𝛻𝜂𝑟| ≤ 𝑐1𝑟
−1 𝑖𝑛 𝐵2𝑟 − 𝐵𝑟 ,

 

for some positive constant 𝑐1. Since supp(𝜂) ⊂ 𝑀 − 𝐵𝑟0 , it follows from (43) that 

( ∫ |𝜔|
2𝑚
𝑚−2

 

𝐵𝑟−𝐵𝑟0+1

)

𝑚−2
𝑚

≤ �̅� ∫ |𝜔|2
 

𝐵𝑟0+1−𝐵𝑟0

+
�̅�

𝑟2
∫ |𝜔|2
 

𝐵2𝑟−𝐵𝑟

 

Taking 𝑟 → ∞and using that |𝜔| ∈ 𝐿2(𝑀) we have 

( ∫ |𝜔|
2𝑚
𝑚−2

 

𝑀−𝐵𝑟0+1

)

𝑚−2
𝑚

≤ �̅� ∫ |𝜔|2
 

𝐵𝑟0+1−𝐵𝑟0

.                (44) 

Using Hölder’s inequality we obtain 

∫ |𝜔|2
 

𝐵𝑟0+2

≤ vol(𝐵𝑟0+2)
2

𝑚
( ∫ |𝜔|

2𝑚
𝑚−2

 

𝐵𝑟0+2−𝐵𝑟0+1

)

𝑚−2
𝑚

+ ∫ |𝜔|2
 

𝐵𝑟0+1

 

Define 𝐹 = (1 + �̅� vol(𝐵𝑟0+2)
2

𝑚) . It follows from (44) that 

∫ |𝜔|2
 

𝐵𝑟0+2

≤ 𝐹 ∫ |𝜔|2
 

𝐵𝑟0+1

.                                               (45) 

From inequality (14) we have the following: 

|𝜔|∆|𝜔| ≥
1

𝑚 − 1
|𝛻|𝜔||

2
− 𝛤|𝜔|2,                            (46) 

Where 𝛤:𝑀 → [0,∞) is the function given by 
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𝛤 = |(𝑚 − 1)(|𝐻|2 − 𝑘2) −
𝑚 − 1

𝑚
|𝛷|2 −

(𝑚 − 2)√𝑚(𝑚 − 1)

𝑚
 |𝐻||𝛷|. | 

Fix 𝑥 ∈ 𝑀 and take 𝜁 ∈ 𝐶0
1(𝐵1(𝑥)). Multiplying both sides of (46) by 𝜁2|𝜔|𝑝−2, with 𝑝 ≥

2, and integrating by parts we obtain 

−2 ∫ 𝜁|𝜔|𝑝−1〈𝛻𝜁, 𝛻|𝜔|〉

 

𝐵1(𝑥)

≥ (𝑝 − 1 +
1

𝑚 − 1
) ∫ |𝜔|𝑝−2𝜁2|𝛻|𝜔|2

 

𝐵1(𝑥)

− ∫ 𝛤𝜁2|𝜔|𝑝
 

𝐵1(𝑥)

.            (47) 

Using the Cauchy–Schwarz inequality (with 𝜀 = 𝑚 − 1) we have 

−2𝜁|𝜔|𝑝−1〈𝛻𝜁, 𝛻|𝜔|〉 = 2 〈−|𝜔|
𝑝
2𝛻𝜁, |𝜔|

𝑝
2
−1𝜁𝛻|𝜔|〉

≤ (𝑚 − 1)|𝜔|𝑝|𝛻𝜁 |2 +
1

𝑚 − 1
|𝜔|𝑝−2𝜁2 𝛻|𝜔|2. 

Applying this inequality in (47) we obtain 

(𝑝 − 1) ∫ |𝜔|𝑝−2𝜁2
 

𝐵1(𝑥)

|𝛻|𝜔|2 ≤ ∫ 𝛤𝜁2|𝜔|𝑝
 

𝐵1(𝑥)

+ (𝑚 − 1) ∫ |𝜔|𝑝
 

𝐵1(𝑥)

|𝛻𝜁|2.           (48)  

Using the Cauchy–Schwarz inequality (with 𝜀 = 1/2) we have 

∫ |𝛻 (𝜁|𝜔|
𝑝
2)|

2
 

𝐵1(𝑥)

≤ (𝑝 + 1) ∫ |𝜔|𝑝
 

𝐵1(𝑥)

|𝛻𝜁|2 

+
𝑝

4
(𝑝 + 1) ∫ |𝜔|𝑝−2

 

𝐵1(𝑥)

𝜁2|𝛻|𝜔||
2
.                           (49) 

Thus, using (48) and (49), we obtain 

∫ |𝛻 (𝜁|𝜔|
𝑝
2)|

2
 

𝐵1(𝑥)

≤ ∫ 𝐴𝛤𝜁2|𝜔|𝑝
 

𝐵1(𝑥)

+ ℬ|𝜔|𝑝|𝛻𝜁|2,           (50) 

where 𝒜 =
𝑝

4
(𝑝 + 1)(𝑝 − 1)−1 ≤ 𝑝and 

ℬ = 𝑝 + 1 + (𝑚 − 1)𝒜 ≤ 1 +𝑚𝑝. 
In particular, 𝐴, 𝐵 ≤ 2𝑚𝑝, since 𝑝 ≥ 2. Applying the Hoffmann-Spruck inequality [29] to 

the function 𝜁|𝜔|𝑝/2 and using (50) we get 

𝑆−1 ( ∫ (𝜁|𝜔|
𝑝
2)

2𝑚
𝑚−2

 

𝐵1(𝑥)

)

𝑚−2
𝑚

≤ ∫ |𝛻 (𝜁|𝜔|
𝑝
2)|

2

+ |𝐻|2 (𝜁|𝜔|
𝑝
2)
2

 

𝐵1(𝑥)

 

≤ ∫ ((𝐴𝛤 + |𝐻|2)𝜁2 + ℬ|𝛻𝜁|2
 
)

 

𝐵1(𝑥)

|𝜔|𝑝. 

For simplicity, we writ𝑒 

( ∫ (𝜁|𝜔|
𝑝
2)

2𝑚
𝑚−2

 

𝐵1(𝑥)

)

𝑚−2
𝑚

≤ 2𝑚𝑝𝑆 ∫ (𝐺𝜁2 + |𝛻𝜁|2
 
)

 

𝐵1(𝑥)

|𝜔|𝑝.      (51) 

Where 𝐺 = 𝛤 + |𝐻|2. 
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Given an integer 𝑘 ≥ 0, we set 𝑝𝑘 =
2𝑚𝑘

(𝑚−2)𝑘
 and 𝜌𝑘 =

1

2
+

1

2𝑘+1
 . Take a function 𝜁𝑘 ∈

𝐶0
∞(𝐵𝜌𝑘(𝑥)) satisfying: 0 ≤ 𝜁𝑘 ≤ 1, 𝜁𝑘 = 1 in 𝐵𝜌𝑘+1(𝑥) and |𝛻𝜁𝑘| ≤  2

𝑘+3. Using (51) 

with 𝑝 = 𝑝𝑘  and = 𝜁𝑘 , we obtain 

( ∫ |𝜔|𝑝𝑘+1

 

𝐵𝜌𝑘+1(𝑥)

)

1
𝑝𝑘+1

≤ (2𝑚𝑝𝑘𝑆)
1
𝑝𝑘 ∫ ((4𝑘+3 + 𝐺)|𝜔|𝑝𝑘)

1
𝑝𝑘

 

𝐵𝜌𝑘(𝑥)

≤ (2𝑚𝜌𝑘𝑆4
𝑘 (43 + sup

𝐵1(𝑥)
𝐺))

1
𝜌𝑘

( ∫ |𝜔|𝑝𝑘

 

𝐵𝜌𝑘(𝑥)

)

1
𝑝𝑘

≤ (𝜌𝑘)
1
𝜌𝑘(4𝑘+𝑘0)

1
𝜌𝑘 ( ∫ |𝜔|𝑝𝑘

 

𝐵𝜌𝑘(𝑥)

)

1
𝑝𝑘

, 

Where 𝑘0 is an integer such that2𝑚𝑆(43 + sup𝐵1(𝑥)𝐺) ≤ 4
𝑘0 . By recurrence we obtain 

‖𝜔‖𝐿𝑝𝑘+1(𝐵1
2
 (𝑥)) ≤∏𝑝ℓ

1
𝑝ℓ

𝑘

ℯ=0

4
ℓ
𝑝ℓ4

𝑘0
𝑝ℓ  ‖𝜔‖𝐿2(𝐵1(𝑥)). 

Notice that 𝑝ℓ

1

𝑝ℓ , 4
ℓ

𝑝ℓ ≤ 𝐵
ℓ

2
𝑎ℓ , and 4

𝑘0
𝑝ℓ ≤ 𝐵𝑏𝑎

ℓ
, where 𝑎 = (𝑚 − 2)/𝑚 and 𝐵, 𝑏 are suitable 

positive constants. Thus 

∏𝑝ℓ
1
𝑝ℓ

∞

ℯ=0

4
ℓ
𝑝ℓ4

𝑘0
𝑝ℓ  ≤ 𝐵∑ℓ

𝑎ℓ(ℓ+𝑏)
< 𝐷. 

Where 𝐷 > 0 depends only on m and sup𝐵1(𝑥)𝐺. Taking 𝑘 → ∞, we obtain 

‖𝜔‖
𝐿∞(𝐵1

2
 (𝑥))

≤ 𝐷‖𝜔‖𝐿2(𝐵1(𝑥)).                                  (52) 

Now, take 𝑦 ∈ �̅�𝑟0+1 so that sup𝐵𝑟0+1|𝜔|
2 = |𝜔(𝑦)|2. since 𝐵1(𝑦) ⊂ 𝐵𝑟0+2, using (52), we 

obtain 

sup
𝐵𝑟0+1

|𝜔|2 ≤ 𝐷‖𝜔‖𝐿2(𝐵1(𝑦))
2 ≤ 𝐷‖𝜔‖𝐿2(𝐵𝑟0+2)

2 . 

Thus, from (45), we have 

sup
𝐵𝑟0+1

|𝜔|2 ≤ ℇ‖𝜔‖𝐿2(𝐵𝑟0+1)
2 ,                                          (53) 

for all 𝜔 ∈ ℋ1(𝑀), where ℇ > 0 depends on 𝑚, 𝑣𝑜𝑙(𝐵𝑟0+2), and sup
𝐵𝑟0+2

𝐺. 

Finally, let 𝒱 be any finite-dimensional subspace of ℋ1(𝑀). According to Lemma 11 of 

[8] there exists 𝜔 ∈ 𝒱 such that 
dim𝑉

𝑣𝑜𝑙(𝐵𝑟0+1)
‖𝜔‖𝐿2(𝐵𝑟0+1)

2 ≤ sup
𝐵𝑟0+1

|𝜔|2 (min{𝑚, dim𝑉}).             (54) 

Using (53) and (54), we have that dim𝒱 ≤ 𝑐0, where𝑐0 depends only on 𝑚, 𝑣𝑜𝑙(𝐵𝑟0+2), 

and sup
𝐵𝑟0+2

𝐺 . This implies that ℋ1(𝑀) has finite dimension. This concludes the proof of 

Theorem (1.2.5).  
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Chapter 2 

Hardy Inequality and Square Roots of Elliptic Second Order Divergence Operators 

 

We develop a geometric framework for Hardy inequality on a bounded domain 

when the functions do vanish only on a closed portion of the boundary. We obtain similar 

results for perturbations of constant coefficients operators. The methods rely on a singular 

integral representation, Calderón-Zygmund theory and quadratic estimates. A feature of 

this study is the use of a commutator between the resolvent of the Laplacian (Dirichlet and 

Neumann) and partial derivatives which carries the geometry of the boundary. 

Section (2.1): Functions Vanishing on a Part of the Boundary 

Hardy’s inequality is one of the classical items in analysis [65], [80]. Two 

milestones among many others in the development of the theory seem to be the result of 

Necas [79] that Hardy’s inequality holds on strongly Lipschitz domains and the insight of 

Maz’ya [76], [77] that its validity depends on measure theoretic conditions on the domain. 

The geometric framework in which Hardy’s inequality remains valid was enlarged up to 

the frontiers of what is possible – as long as the boundary condition is purely Dirichlet, see 

[63], [66], compare also [79], [69], [86]. Moreover, over the last years it became manifest 

that Hardy’s inequality plays an eminent role in modern PDE theory, see e.g. [78], [83], 

[85], [89], [54], [61], [70], [72], [81], [84].  

      What has not been treated systematically is the case where only a part 𝐷 of the 

boundary of the underlying domain Ω is involved, reflecting the Dirichlet condition of the 

equation on this part – while on 𝜕Ω\ 𝐷 other boundary conditions may be imposed, 

compare [78], [84], [87], [62], [64]. We set up a geometric framework for the domain Ω 

and the Dirichlet boundary part 𝐷 that allow to deduce the corresponding Hardy inequality  

∫|
𝑢

𝑑𝑖𝑠𝑡𝐷
|
𝑝

𝑑𝑥

 

Ω

 ≤  𝑐 ∫|𝛻𝑢|𝑝 𝑑𝑥

 

Ω

.  

As in the well established case 𝐷 =  𝜕Ω we in essence only require that 𝐷 is 𝑙-thick in the 

sense of [66]. This condition can be understood as an extremely weak compatibility 

condition between 𝐷 and 𝜕Ω\ 𝐷.  

We reduce to the case 𝐷 =  𝜕Ω by purely topological means, provided two major 

tools are applicable: An extension operator 𝔈: 𝑊𝐷
1,𝑝
(Ω)  →  𝑊𝐷

1,𝑝
(ℝ𝑑  ), the subscript 𝐷 

indicating the subspace of those Sobolev functions which vanish on 𝐷 in an appropriate 

sense, and a Poincar�́� inequality on 𝑊𝐷
1,𝑝
(Ω) . This abstract result is established. The 

partly implicit conditions are substantiated by more geometric assumptions that can be 

checked – more or less – by appearance. In particular, we prove that under the mere 

assumption that 𝐷 is closed, every linear continuous extension operator 𝑊𝐷
1,𝑝
(Ω)  →

 𝑊 
1,𝑝(ℝ𝑑  ) that is constructed by the usual procedure of gluing together local extension 

operators preserves the Dirichlet condition on 𝐷. This result even carries over to higher-

order Sobolev spaces and sheds new light on some of the deep results on Sobolev 

extension operators obtained in [80].  

      It is ask, whether Hardy’s inequality also characterizes the space 𝑊𝐷
1,𝑝
(Ω) , i.e. 

whether the latter is precisely the space of those functions 𝑢 ∈  𝑊 
1,𝑝(Ω) for which 

𝑢/𝑑𝑖𝑠𝑡𝐷belongs to 𝐿𝑝(Ω). Under very mild geometric assumptions we answer this 

question to the affirmative.  
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We attend to the naive intuition that the part of 𝜕Ω that is far away from 𝐷 should 

only be circumstantial for the validity of Hardy’s inequality and in fact we succeed to 

weaken the previously discussed geometric assumptions considerably.  

We work in Euclidean space ℝ𝑑 , 𝑑 ≥  1. We use x, y, etc. for vectors in ℝ𝑑 and 

denote the open ball in ℝ𝑑 around x with radius 𝑟 by 𝐵(𝑥, 𝑟). The letter 𝑐 is reserved for 

generic constants that may change their value from occurrence to occurrence. Given 𝐹 ⊂
ℝ𝑑  we write 𝑑𝑖𝑠𝑡𝐹 for the function that measures the distance to 𝐹 and diam(𝐹 ) for the 

diameter of 𝐹.  

We denote the underlying domain and its Dirichlet part by Ω and 𝐷. The various 

side results that are interesting in themselves and drop off on the way are identified by the 

use of Λ and 𝐸 instead.  

We introduce the common first-order Sobolev spaces of functions ‘vanishing’ on a 

part of the closure of the underlying domain that are most essential for the formulation of 

Hardy’s inequality. 

Definition (2.1.1)[39]: If Λ is an open subset of ℝ𝑑 and 𝐸 is a closed subset of Λ̅, then for 

𝑝 ∈  [1,∞[ the space 𝑊𝐸
1,𝑝
(Λ) is defined as the completion of  

𝐶𝐸
∞(Λ) ∶=  {𝑣|Λ ∶  𝑣 ∈  𝐶0

∞(ℝ𝑑), 𝑠𝑢𝑝𝑝(𝑣)  ∩  𝐸 =  ∅}  

with respect to the norm 𝑣 ⟼ (∫  |𝛻𝑣|𝑝 + |𝑣|𝑝 𝑑𝑥
 

Λ
)
1

𝑝. More generally, for 𝑘 ∈ ℕ we 

define 𝑊𝐸
𝑘,𝑝
(Λ) as the closure of 𝐶𝐸

∞(Λ) with respect to the norm  ⟼

(∫ ∑  |𝐷𝑗𝑣|
𝑝
 𝑑𝑥𝑘

𝑗=0
 

Λ
)
1

𝑝 .  

      The situation we have in mind is of course when Λ = Ω and 𝐸 =  𝐷 is the Dirichlet 

part 𝐷 of the boundary 𝜕Ω.  

      As usual, the Sobolev spaces 𝑊𝑘,𝑝(Λ) are defined as the space of those 

𝐿𝑝(Λ) functions whose distributional derivatives up to order 𝑘 are in 𝐿𝑝(Λ), equipped with 

the natural norm. Note that by definition 𝑊0
𝑘,𝑝
(Λ)  =  𝑊𝜕(Λ)

𝑘,𝑝
 but in general 𝑊∅(Λ)

𝑘,𝑝
⊊

𝑊𝑘,𝑝(Λ), cf. [77]  

The following version of Hardy’s inequality for functions vanishing on a part of the 

boundary is our main result.  

Theorem (2.1.2)[39]: (A special Hardy inequality) Let Ω ⊂ ℝ𝑑 be a bounded domain and 

𝑝 ∈ ]1,∞[. Let 𝐷 ⊂  𝜕Ω be 𝑙-thick for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑] and assume that for every x 

∈ 𝜕Ω\𝐷̅̅ ̅̅ ̅̅ ̅ there is an open neighborhood 𝑈𝑥 of x such that Ω ∩ 𝑈𝑥 is a 𝑊1,𝑝-extension 

domain. Then there is a constant 𝑐 >  0 such that  

   ∫ |
𝑢

𝑑𝑖𝑠𝑡𝐷
|
𝑝

𝑑𝑥

 

Ω

 ≤  𝑐 ∫|𝛻𝑢|𝑝 𝑑𝑥

 

Ω

,        𝑢 ∈  𝑊𝐷
1,𝑝
(Ω). 

       Still, as we believe, the abstract framework traced out by the second and the third 

condition of Theorem (2.1.13) has the advantage that other sufficient geometric conditions 

for Hardy’s inequality – tailor-suited for future applications – can be found much more 

easily. In fact the second condition is equivalent to the validity of Poincaré’s inequality  

‖𝑢‖𝐿𝑝 ≤  𝑐‖𝛻𝑢‖𝐿𝑝(Ω),            𝑢 ∈  𝑊𝐷
1,𝑝
(Ω),  

that is clearly necessary for Hardy’s inequality (4). We give a detailed discussion of 

Poincaré’s inequality, see [88]. Concerning the third condition note carefully that we 

require the extension operator to preserve the Dirichlet boundary condition on 𝐷. Whereas 
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extension of Sobolev functions is a well-established business, the preservation of traces is 

much more delicate.  

We that under geometric assumptions very similar to those in Theorem (2.1.2) the 

space 𝑊𝐷
1,𝑝
(Ω) is the largest subspace of 𝑊 

1,𝑝(Ω)in which Hardy’s inequality can hold. 

This is made precise by the third main result.  

We give the proof of the general Hardy inequality from Theorem  

We recall the notions from geometric measure theory that are used to describe the 

regularity of the Dirichlet part 𝐷 in Hardy’s inequality. For 𝑙 ∈ ]0,∞[ the 𝑙-dimensional 

Hausdorff measure of 𝐹 ⊂ ℝ𝑑 is  

ℋ𝑙(𝐹 ):=  𝑙𝑖𝑚 inf
𝛿→0

{∑𝑑𝑖𝑎𝑚(𝐹𝑗)
𝑙

∞

𝑗=1

 ∶  𝐹𝑗  ⊂ ℝ
𝑑 , 𝑑𝑖𝑎𝑚(𝐹𝑗)  ≤  𝛿, 𝐹 ⊂  ⋃𝐹𝑗

∞

𝑗=1

}  

and its centered Hausdorff content is defined by  

ℋ𝑙
∞(𝐹 ) ∶=  𝑖𝑛𝑓 {∑𝑟𝑗

𝑙

∞

𝑗=1

∶  𝑥𝑗  ∈  𝐹, 𝑟𝑗  >  0, 𝐹 ⊂⋃ 𝐵(𝑥𝑗  , 𝑟𝑗)

∞

𝑗=1

} .  

Definition (2.1.3)[39]: Let 𝑙 ∈ ]0,∞[. A non-empty compact set 𝐹 ⊂ ℝ𝑑 is called 𝑙-thick 

if there exist 𝑅 >  0 and 𝛾 >  0 such that  

  ℋ𝑙
∞(𝐹 ∩  𝐵(𝑥, 𝑟)) ≥  𝛾 𝑟𝑙                                             (1)  

holds for all 𝑥 ∈  𝐹 and all 𝑟 ∈ ]0, 𝑅]. It is called 𝑙-set if there are two constants 𝑐0, 𝑐1  >
 0 such that  

𝑐0𝑟
𝑙  ≤ ℋ𝑙(𝐹 ∩  𝐵(𝑥, 𝑟))  ≤  𝑐1𝑟

𝑙  
holds for all 𝑥 ∈  𝐹 and all 𝑟 ∈ ]0, 1]. See ([71],[68])  

Definition (2.1.4)[39]: A set 𝐹 ⊂ ℝ𝑑 is porous if for some 𝜅 ≤  1 the following 

statement is true: For every ball 𝐵(𝑥, 𝑟) with 𝑥 ∈ ℝ𝑑 and 0 <  𝑟 ≤  1 there is 𝑦 ∈
 𝐵(𝑥, 𝑟) such that 𝐵(𝑦, 𝜅𝑟)  ∩  𝐹 =  ∅.  

∫ 𝑑𝑖𝑠𝑡(𝑥, 𝐹)𝑡−𝑑  𝑑𝑥

 

𝐵(𝑥,𝑟)

 ≤  𝑐𝑡𝑟
𝑡 ,       𝑥 ∈  𝐹, 𝑟 >  0.  

In particular, each 𝑙-set, 𝑙 ∈ ]0, 𝑑[, has Aikawa dimension equal to 𝑙 and thus is 

porous [67].  

       For a later use we include a proof of the following two elementary facts. We remark 

that the first lemma is also implicit in [82].  

Lemma (2.1.5)[39]: Let 𝑙 ∈ ]0,∞[. If 𝐹 ⊂ ℝ𝑑 is a compact 𝑙-set, then there are constants 

𝑐0, 𝑐1 >  0 such that  

𝑐0𝑟
𝑙 ≤ ℋ𝑙

∞(𝐹 ∩  𝐵(𝑥, 𝑟))  ≤  𝑐1𝑟
𝑙  

holds for all 𝑟 ∈ ]0, 1[ and all 𝑥 ∈  𝐹. In particular, 𝐹 is 𝑙-thick.  

Proof. We prove ℋ𝑙
∞(𝐴)  ≤ ℋ𝑙

 (𝐴)  ≤  𝑐ℋ𝑙
∞(𝐴) for all non-empty Borel subsets 𝐴 ⊂  𝐹.  

    First, fix 𝜀 >  0 and let {𝐴𝑗}𝑗∈ℕ be a covering of 𝐴 by sets with diameter at most 𝜀. If 

𝐴𝑗  ∩  𝐴 ≠  ∅, then 𝐴𝑗 is contained in an open ball 𝐵𝑗 centered in 𝐴 and radius such that 

𝑟𝑗
𝑙  =  𝑑𝑖𝑎𝑚(𝐴𝑗)

𝑙
 +  𝜀2−𝑗  . The so-obtained countable covering {𝐵𝑗} of 𝐴 satisfies  

∑ 𝑑𝑖𝑎𝑚(𝐴𝑗)
𝑙

𝑗∈ℕ
𝐴𝑗∩𝐴≠∅

≥ ∑ (𝑟𝑗
𝑙  −  𝜀2−𝑗  )

𝑗∈ℕ
𝐴𝑗∩𝐴≠∅

 ≥ ℋ𝑙
∞(𝐴)  −  𝜀. 
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Taking the infimum over all such coverings {𝐴𝑗}𝑗∈ℕand passing to the limit 𝜀 →  0 

afterwards, ℋ𝑙
∞(𝐴)  ≤ ℋ𝑙

 (𝐴) follows. Conversely, let {𝐵𝑗}𝑗∈ℕ be a covering of 𝐴 by open 

balls with radii 𝑟𝑗 centered in 𝐴. If 𝑟𝑗  ≤  1, then ℋ𝑙
 (𝐹 ∩ 𝐵𝑗  )  ≤  𝑐𝑟𝑗

𝑙 since by assumption 

𝐹 is an 𝑙-set, and if  𝑟𝑗  >  1, then certainly ℋ𝑙
 (𝐹 ∩  𝐵𝑗)  ≤  ℋ𝑙

 (𝐹 )𝑟𝑗
𝑙 . Note carefully that 

0 <  ℋ𝑙
 (𝐹 )  <  ∞ holds for 𝐹 can be covered by finitely many balls with radius 1 

centered in 𝐹. Altogether,  

∑𝑟𝑗
𝑙

∞

𝑗=1

≥  𝑐∑ℋ𝑙
 (𝐹 ∩  𝐵𝑗)

∞

𝑗=1

  ≥  𝑐ℋ𝑙
  ( 𝐹 ∩  ⋃𝐵𝑗

∞

𝑗=1

) ≥  𝑐ℋ𝑙
 (𝐴).  

Passing to the infimum, ℋ𝑙
∞(𝐴)  ≥  𝑐ℋ𝑙

 (𝐴) follows.  

Lemma (2.1.6)[39]: If 𝐹 ⊂ ℝ𝑑 is 𝑙-thick, then it is 𝑚-thick for every 𝑚 ∈ ]0, 𝑙[.  
Proof. Inspecting the definition of thick sets, the claim turns out to be a direct 

consequence of the inequality  

∑𝑟𝑗
𝑚

𝑁

𝑗=1

 ≥  (∑𝑟𝑗
𝑙

𝑁

𝑗=1

)

𝑚
𝑙

  

for positive real numbers 𝑟1, . . . , 𝑟𝑁 .  
The results rely on deep insights from potential theory and we shall recall the 

necessary notions beforehand, see [77].  

Definition (2.1.7)[39]: Let 𝛼 >  0, 𝑝 ∈ ]1,∞[ and let  𝐹 ⊂  ℝ𝑑 . Denote by 𝐺𝛼 ∶=

ℱ−1 ((1 +  |𝜉|2)−
𝛼

2) the Bessel kernel of order 𝛼. Then  

𝐶𝛼,𝑝(𝐹 ): =  𝑖𝑛𝑓 { ∫|𝑓|
𝑝

 

ℝ𝑑

 ∶  𝑓 ≥  0 𝑜𝑛 ℝ𝑑  𝑎𝑛𝑑 𝐺𝛼 ∗  𝑓 ≥  1 𝑜𝑛 𝐹}  

is called (𝛼, 𝑝)-capacity of 𝐹. The corresponding Bessel potential space is  

𝐻𝛼,𝑝(ℝ𝑑):=  {𝐺𝛼 ∗  𝑓 ∶  𝑓 ∈  𝐿
𝑝(ℝ𝑑)}  𝑤𝑖𝑡ℎ 𝑛𝑜𝑟𝑚 ‖ 𝐺𝛼 ∗  𝑓‖𝐻𝛼,𝑝(ℝ𝑑) = ‖ 𝑓‖𝑝.  

     It is well-known that for 𝑘 ∈ ℕ the spaces 𝐻𝑘,𝑝(ℝ𝑑) and 𝑊𝑘,𝑝(ℝ𝑑) coincide up to 

equivalent norms [83]. The capacities 𝐶𝛼,𝑝 are outer measures on ℝ𝑑 [77]. A property that 

holds true for all 𝑥 in some set 𝐸 ⊂  ℝ𝑑 but those belonging to an exceptional set 𝐹 ⊂  𝐸 

with 𝐶𝛼,𝑝(𝐹 )  =  0 is said to be true (𝛼, 𝑝)-quasieverywhere on 𝐸, abbreviated (𝛼, 𝑝)-𝑞.e. 

A property that holds true (𝛼, 𝑝)-𝑞.e. also holds true (𝛽, 𝑝)-𝑞.e. if 𝛽 < 0. This is an easy 

consequence of [77]. A more involved result in this direction is the following [77] 

Lemma (2.1.8)[39]: Let 𝛼, 𝛽 >  0 and 1 <  𝑝, 𝑞 <  ∞ be such that 𝛽𝑞 <  𝛼𝑝 <  𝑑. 

Then each 𝐶𝛼,𝑝-nullset also is a 𝐶𝛽,𝑞-nullset      

    There is also a close connection between capacities and Hausdorff measures, see [77] 

for an exhaustive discussion. Most important for us is the following comparison theorem. 

In the case 𝑝 ∈ ]1, 𝑑] this is proved in [77] and if 𝑝 ∈ ]𝑑,∞[, then the result follows 

directly from [77].  

Theorem (2.1.9)[39]: (Comparison Theorem) Let 1 < 𝑝 <  ∞ and suppose 𝛼, 𝑙 >  0 are 

such that 𝑑 −  𝑙 <  𝛼𝑝 <  ∞. Then every 𝐶𝛼,𝑝-nullset is also a ℋ𝑙
 - and thus a ℋ𝑙

∞-

nullset.  
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     Bessel capacities naturally occur when studying convergence of average integrals for 

Sobolev functions. In fact, if 𝛼 >  0, 𝑝 ∈ ]1,
𝑑

𝛼
] and 𝑢 ∈  𝐻𝛼,𝑝(ℝ𝑑), then (𝛼, 𝑝)-

quasievery 𝑦 ∈ ℝ𝑑 is a Lebesgue point for 𝑢 in the 𝐿𝑝-sense, that is  

                     lim
𝑟→0

1

|𝐵(𝑦, 𝑟)|
∫  𝑢(𝑥) 𝑑𝑥

 

𝐵(𝑦,𝑟)

= : 𝑢(𝑦)                                              (2) 

and  

  lim
𝑟→0

1

|𝐵(𝑦, 𝑟)|
∫  |𝑢(𝑥) − 𝑢(𝑦)|𝑝 𝑑𝑥

 

𝐵(𝑦,𝑟)

=  0                                      (3) 

hold [77]. The (𝛼, 𝑝)-quasieverywhere defined function 𝑢 reproduces 𝑢 within its 𝐻𝛼,𝑝-

class. It gives rise to a meaningful (𝛼, 𝑝)-quasieverywhere defined restriction 𝑢|𝐸 ∶=  𝑢|𝐸  

of 𝑢 to 𝐸 whenever 𝐸 has non-vanishing (𝛼, 𝑝)-capacity. For convenience we agree upon 

that 𝑢|𝐸 =  0 is true for all 𝑢 ∈  𝐻𝛼,𝑝(ℝ𝑑) if 𝐸 has zero (𝛼, 𝑝)-capacity. Note also that 

these results remain true if 𝑝 ∈ ] 
𝑑

𝛼
, ∞[, since in this case 𝑢 has a H�̈�lder continuous 

representative 𝑢 which then satisfies (2) and (3) for every 𝑦 ∈ ℝ𝑑  .  
     We obtain an alternate definition for Sobolev spaces with partially vanishing traces.  

Definition (2.1.10)[39]: Let 𝑘 ∈ ℕ, 𝑝 ∈ ]1,∞[ and 𝐸 ⊆ ℝ𝑑be closed. Define  

𝒲𝐸
𝑘,𝑝(ℝ𝑑):=  {𝑢 ∈ 𝒲 

𝑘,𝑝(ℝ𝑑): 𝐷𝛽𝑢|𝐸
=  0 ℎ𝑜𝑙𝑑𝑠(𝑘 − |𝛽|, 𝑝) −  𝑞. 𝑒. 𝑜𝑛 𝐸  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚𝑢𝑙𝑡𝑖𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝛽, 0 ≤  |𝛽|  

≤  𝑘 −  1}   

and equip it with the 𝒲 
𝑘,𝑝(ℝ𝑑)-norm.  

     The following theorem of Hedberg and Wolff is also called (𝑘, 𝑝)-synthesis.  

Theorem (2.1.11)[39]: ([77]) The spaces 𝒲 𝐸
𝑘,𝑝
(ℝ𝑑) and 𝒲 𝐸

𝑘,𝑝
(ℝ𝑑) coincide whenever 

𝑘 ∈ ℕ, 𝑝 ∈ ]1,∞[ and 𝐸 ⊂ ℝ𝑑 is closed.  

     Hedberg and Wolff’s theorem manifests the use of capacities in the study of traces of 

Sobolev functions. However, if one invests more on the geometry of 𝐸, e.g. if one assumes 

that it is an 𝑙-set, then by the subsequent recent result of Brewster, Mitrea, Mitrea and 

Mitrea capacities can be replaced by the 𝑙-dimensional Hausdorff measure at each 

occurrence.  

Theorem (2.1.12)[39]: ([80]) Let 𝑘 ∈  ℕ, 𝑝 ∈ ]1,∞[ and let 𝐸 ⊂ ℝ𝑑 be closed and 

additionally an 𝑙-set for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑]. Then  

𝒲 𝐸
𝑘,𝑝
(ℝ𝑑)  =  𝒲 𝐸

𝑘,𝑝
(ℝ𝑑)  

= { 𝑢 ∈  𝒲 
𝑘,𝑝(ℝ𝑑  ) ∶ 𝐷𝛽𝑢|𝐸  

=  0 ℎ𝑜𝑙𝑑𝑠 ℋ𝑑−1  −  𝑎. 𝑒. 𝑜𝑛 𝐸 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚𝑢𝑙𝑡𝑖𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝛽, 0 ≤  |𝛽|  

≤  𝑘 −  1}  ,  

where on the right-hand side 𝐷𝛽𝑢|𝐸 =  0 means, as before, that for ℋ𝑑−1-almost every 

𝑦 ∈  𝐸 the average integrals 
1

|𝐵(𝑦,𝑟)|
∫ 𝐷𝛽𝑢(𝑥) 𝑑𝑥
 

𝐵(𝑦,𝑟)
 vanish in the limit 𝑟 →  0. 

Theorem (2.1.13)[39]: Let Ω ⊂  ℝ𝑑 be a bounded domain, 𝐷 ⊂  𝜕Ω be a closed part of 

the boundary and 𝑝 ∈ ]1,∞[. Suppose that the following three conditions are satisfied.  

(i) The set 𝐷 is 𝑙-thick for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑].  

(ii) The space 𝑊𝐷
1,𝑝
(Ω) can be equivalently normed by ‖𝛻 ·‖𝐿𝑝(Ω).  

(iii) There is a linear continuous extension operator 𝔈: 𝑊𝐷
1,𝑝
(Ω)  →  𝑊𝐷

1,𝑝
(ℝ𝑑 ).  
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     Then there is a constant 𝑐 >  0 such that Hardy’s inequality  

                                     ∫ |
𝑢

𝑑𝑖𝑠𝑡𝐷
|
𝑝

𝑑𝑥

 

Ω

 ≤  𝑐 ∫|𝛻𝑢|𝑝 𝑑𝑥

 

Ω

                                      (4)  

holds for all 𝑢 ∈  𝑊𝐷
1,𝑝
(Ω).  

      Of course the conditions (ii) and (iii) in Theorem (2.1.13) are rather abstract and 

should be supported by more geometrical ones. This will be the content , where we shall 

give an extensive kit of such conditions. In particular, we will obtain the following version 

of Hardy’s inequality.  

Proof. We will deduce Theorem (2.1.13) from the following proposition that states the 

assertion in the case 𝐷 =  𝜕Ω.  

Proposition (2.1.14)[39]: ([66], see also [63]) Let Ω• ⊆ ℝ
𝑑  be a bounded domain and let 

𝑝 ∈ ]1,∞[. If 𝜕Ω• is 𝑙-thick for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑], then Hardy’s inequality is satisfied 

for all 𝑢 ∈  𝑊0
1,𝑝
 (Ω•), i.e. (4) holds with Ω replaced by Ω• and 𝐷 by 𝜕Ω•.  

      Below we will reduce to the case 𝐷 =  𝜕Ω  by purely topological means, so that we 

can apply Proposition (2.1.14) afterwards. We will repeatedly use the following 

topological fact.  

      (∎) Let{𝑀𝜆}𝜆be a family of connected subsets of a topological space. If  ⋂ 𝑀𝜆𝜆 ≠  ∅, 
then  ⋃ 𝑀𝜆𝜆  is again connected.  

As required in Theorem (2.1.13) let now Ω ⊆ ℝ𝑑 be a bounded domain and let 𝐷 be a 

closed part of 𝜕Ω. Then choose an open ball 𝐵 ⊇ Ω̅ that, in what follows, will be 

considered as the relevant topological space. Consider  

𝒞 ∶=  {𝑀 ⊂  𝐵 \ 𝐷 ∶  𝑀𝑜𝑝𝑒𝑛, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 Ω ⊂  𝑀}  
and for the rest of the proof put  

Ω• ∶= ⋃𝑀

𝑀∈𝒞

 . 

In the subsequent lemma we collect some properties of Ω•. Our proof here is not the 

shortest possible, cf. [81] but it has, however, the advantage to give a description of Ω• as 

the union of Ω, the boundary part 𝜕Ω\ 𝐷 and those connected components of 𝐵 \Ω̅ whose 

boundary does not consist only of points from 𝐷. This completely reflects the naive 

geometric intuition.  

Lemma (2.1.15)[39]: It holds Ω ⊆  Ω• ⊆  𝐵. Moreover, Ω• is open and connected and 

𝜕Ω•  =  𝐷 in 𝐵.  

Proof. The first assertion is obvious. By construction Ω• is open. Since all elements from 

𝒞 contain Ω the connectedness of Ω• follows by (∎). It remains to show 𝜕Ω• =  𝐷.  
     Let 𝑥 ∈  𝐷. Then x is an accumulation point of Ω and, since Ω ⊆ Ω•, also of Ω•. On the 

other hand, 𝑥 ∉ Ω• by construction. This implies 𝑥 ∈  𝜕Ω• and so 𝐷 ⊆  𝜕Ω•.  
     In order to show the inverse inclusion, we first show that points from 𝜕Ω \ 𝐷 cannot 

belong to 𝜕Ω•. Indeed, since 𝐷 is closed, for 𝑥 ∈  𝜕Ω \ 𝐷 there is a ball 𝐵𝑥  ⊆  𝐵 around x 

that does not intersect 𝐷. Since x is a boundary point of Ω , we have 𝐵𝑥  ∩ Ω ≠  ∅. Both Ω 

and 𝐵𝑥 are connected, so (∎) yields that Ω ∪ 𝐵𝑥 is connected. Moreover, this set is open, 

contains Ω and avoids 𝐷, so it belongs to 𝒞 and we obtain Ω ∪ 𝐵𝑥  ⊆ Ω•. This in particular 

yields 𝑥 ∈ Ω•, so 𝑥 ∉ 𝜕Ω• since Ω• is open.  

    Summing up, we already know that 𝑥 ∈ Ω̅  belongs to 𝜕Ω• if and only if 𝑥 ∈  𝐷. So, it 

remains to make sure that no point from 𝐵 \Ω̅ belongs to 𝜕Ω•.  
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    As 𝐵 \Ω̅ is open, it splits up into its open connected components 𝑍0, 𝑍1, 𝑍2, . . .. There are 

possibly only finitely many such components but at least one. We will show in a first step 

that for all these components it holds 𝜕𝑍𝑗  ⊆ 𝜕Ω. This allows to distinguish the two cases 

𝜕𝑍𝑗  ⊆  𝐷 and 𝜕𝑍𝑗  ∩  (𝜕Ω \ 𝐷) ≠  ∅. In Steps 2 and 3 we will then complete the proof by 

showing that in both cases 𝑍𝑗 does not intersect 𝜕Ω•. 

Step 1: 𝜕𝑍𝑗  ⊆  𝜕Ω for all 𝑗 .  

First note that 𝜕𝑍𝑗 ∩  Ω =  ∅ for all 𝑗 . Indeed, assuming this set to be non-empty and 

investing that Ω is open, we find that the set 𝑍𝑗  ∩ Ω cannot be empty either and this 

contradicts the definition of 𝑍𝑗  .  

     Now, to prove the claim of Step 1, assume by contradiction that, for some  , there is a 

point 𝑥 ∈  𝜕𝑍𝑗 that does not belong to 𝜕Ω. By the observation above we then have 𝑥 ∉ Ω̅ 

and consequently there is a ball 𝐵𝑥 around x that does not intersect Ω̅. Now, the set 𝐵𝑥  ∪
𝑍𝑗 is connected thanks to (5), avoids Ω̅ and includes 𝑍𝑗 properly. However, this contradicts 

the property of 𝑍𝑗 to be a connected component of  𝐵\Ω̅ .  

    Step 2: If 𝜕𝑍𝑗  ⊆  𝐷, then Ω̅• ∩ 𝑍𝑗  =  ∅.  

We first note that it suffices to show Ω• ∩ 𝑍𝑗  =  ∅. In fact, due to Ω̅•  = 𝜕Ω• ∪ Ω• we then 

get Ω̅• ∩ 𝑍𝑗  =  ∅ since 𝑍𝑗 is open.  

    So, let us assume there is some  𝑥 ∈ Ω• ∩ 𝑍𝑗 . Then Ω• ∪ 𝑍𝑗 is connected due to (∎). 

By assumption we have 𝜕𝑍𝑗  ⊆  𝐷 and by construction the sets 𝑍𝑗 and Ω• are both disjoint 

to 𝐷. So we can infer that 𝜕𝑍𝑗  ∩  (Ω• ∪ 𝑍𝑗)  =  ∅ and this allows us to write  

Ω• ∪ 𝑍𝑗 = (Ω•  ∪  𝑍𝑗) ∩ (𝑍𝑗  ∪  (𝐵 \�̅�𝑗  ) )  =  𝑍𝑗  ∪  (Ω•  ∩  (𝐵 \ �̅�𝑗) ) .  

This is a decomposition of Ω• ∪ 𝑍𝑗 into two open and mutually disjoint sets, so if we can 

show that both are nonempty then this yields a contradiction to the connectedness of Ω• ∪
𝑍𝑗  and the claim of Step 2 follows. Indeed, we even find  

Ω• ∩ (𝐵 \�̅�𝑗) =  Ω• \ �̅�𝑗  =  Ω• \ (𝜕𝑍𝑗  ∪ 𝑍𝑗) ⊃ \ (𝐷 ∪  𝑍𝑗  ) = Ω ≠  ∅,  

since both 𝐷 and 𝑍𝑗 do not intersect Ω .  

Step 3: If 𝜕𝑍𝑗  ∩  (𝜕Ω\ 𝐷) ≠  ∅, then 𝑍𝑗 ⊆ Ω•.  

Let 𝑥 ∈  𝜕𝑍𝑗  ∩  (𝜕Ω \ 𝐷), and let 𝐵𝑥 be a ball around x that does not intersect 𝐷. The 

point x is a boundary point of 𝑍𝑗 , so 𝐵𝑥  ∩ 𝑍𝑗 ≠  ∅ and we obtain that 𝐵𝑥 ∪ 𝑍𝑗 is 

connected by (∎). By the same argument, also the set 𝐵𝑥  ∪ Ω is connected and putting 

these two together a third reiteration of the argument yields that (𝐵𝑥  ∪ Ω ) ∪ (𝐵𝑥  ∪
𝑍𝑗  )  = Ω ∪ 𝐵𝑥  ∪ 𝑍𝑗 is again connected. This last set is open and does not intersect 𝐷, so 

it belongs to 𝒞 and we end up with Ω ∪ 𝐵𝑥  ∪  𝑍𝑗 ⊆ Ω•. In particular we have 𝑍𝑗  ⊆  Ω•.  

Remark (2.1.16)[39]: Conversely, it can be shown that the asserted properties 

characterize Ω• uniquely in the sense that if an open, connected subset Ξ ⊃ Ω of 𝐵 

additionally satisfies 𝜕Ξ =  𝐷, then necessarily Ξ =  Ω•. In fact, since Ξ ∩  𝐷 =  ∅ one 

has Ξ ⊂  Ω•, due to the definition of Ω•. In order to obtain the inverse inclusion we write  

Ω• = (Ω•  ∩ Ξ) ∪ (Ω• ∩  𝜕Ξ) ∪ (Ω• ∩ (𝐵\Ξ̅ )) = Ξ ∪ (Ω• ∩ (𝐵\Ξ̅ )),         (5) 

since Ω•  ∩  𝜕Ξ =  Ω•  ∩  𝐷 =  ∅. Both Ξ = Ξ ∩ Ω• and Ω•  ∩  (𝐵 \Ξ̅ ) are open in Ω•, 
and Ξ ⊃ Ω is non-empty. Since Ω• is connected and Ξ =  Ξ ∩ Ω• is clearly disjoint to Ω•  ∩
 (𝐵 \ Ξ̅), this latter set must be empty. Thus, (5) gives Ξ =  Ω•.  
Corollary (2.1.17)[39]: Consider Ω• as a subset of ℝ𝑑 . Then Ω• is open and connected. 

Moreover, either 𝜕Ω•  =  𝐷 or 𝜕Ω• =  𝐷 ∪  𝜕𝐵. 
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Proof. It is clear that Ω• remains open. Assume that Ω• is not connected. Then there are 

disjoint open sets 𝑈, 𝑉 ⊆  ℝ𝑑 such that Ω•  =  𝑈 ∪  𝑉 . However, the property Ω•  ⊆  𝐵 

then gives Ω•  =  Ω•  ∩  𝐵 =  (𝑈 ∩  𝐵)  ∪  (𝑉 ∩  𝐵), where 𝑈 ∩  𝐵 and 𝑉 ∩  𝐵 are open 

in 𝐵 and disjoint to each other. This contradicts Lemma (2.1.15).  

     For the last assertion consider an annulus 𝐴 ⊆  𝐵 that is adjacent to 𝜕𝐵 and does not 

intersect Ω̅. Let 𝑍𝑗 be the connected component of 𝐵 \Ω̅ that contains 𝐴. We distinguish 

again the two cases of Step 2 and Step 3 in the proof of Lemma (2.1.15): If 𝜕𝑍𝑗  ⊆  𝐷, we 

have shown in Step 2 that 𝑍𝑗 is disjoint to Ω• and this implies 𝜕Ω•  =  𝜕Ω•  ∩  𝐵 =  𝐷. In 

the second case, we infer from Step 3 in the above proof that 𝐴 ⊆  𝑍𝑗  ⊆  Ω• and this 

implies 𝜕Ω•  =  𝐷 ∪  𝜕𝐵.  
We conclude the proof of Theorem (2.1.13). We first observe that in both cases 

appearing in Corollary (2.1.17) the set 𝜕Ω• is 𝑚-thick for some 𝑚 ∈ ]𝑑 −  𝑝, 𝑑 −  1]. In 

fact, 𝐷 is 𝑙-thick for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑] by assumption and using its local representation 

as the graph of a Lipschitz function, it can easily be checked that 𝜕𝐵 is a (𝑑 −  1)-set, 

hence (𝑑 −  1)- thick owing to Lemma (2.1.5). The claim follows from Lemma (2.1.6). 

Altogether, Proposition (2.1.14) applies to our special choice of Ω•.  
    Now, let 𝔈 be the extension operator provided by Assumption (iii) of Theorem (2.1.13). 

In view of Corollary (2.1.17) we can define an extension operator 𝔈• ∶  𝑊𝐷
1,𝑝
(Ω)  →

 𝑊0
1,𝑝
(Ω•) as follows: If 𝜕Ω• =  𝐷, then we put 𝔈•𝑣 ∶=  𝔈𝑣|Ω•  and if 𝜕Ω• =  𝐷 ∪  𝜕𝐵, 

then we choose 𝜂 ∈  𝐶0
∞ (𝐵) with the property 𝜂 ≡  1 on Ω̅ and put 𝔈•𝑣 ∶=  (𝜂𝐸𝑣)|Ω• . 

This allows us to apply Proposition (2.1.14) to the functions 𝔈•𝑢 ∈  𝑊0
1,𝑝
(Ω•), where 𝑢 is 

taken from 𝑊𝐷
1,𝑝
(Ω). With a final help of Assumption (ii) in Theorem (2.1.13) this gives  

∫|
𝑢

𝑑𝐷
|
𝑝

𝑑𝑥

 

Ω

≤ ∫ |
𝑢

𝑑𝜕Ω•
|

𝑝

𝑑𝑥

 

Ω

≤ ∫ |
𝔈•𝑢

𝑑𝜕Ω•
|

𝑝

𝑑𝑥

 

Ω•

≤  𝑐 ∫|𝛻(𝔈•𝑢)|
𝑝 𝑑𝑥

 

Ω•

≤  𝑐‖𝔈•𝑢‖𝑊0
1,𝑝
(Ω•)

𝑝

≤  𝑐‖𝑢‖
𝑊𝐷(Ω)
1,𝑝

𝑝
 ≤  𝑐 ∫  |𝛻𝑢|𝑝 𝑑𝑥

 

Ω

   

for all 𝑢 ∈  𝑊𝐷(Ω)
1,𝑝

 and the proof is complete.  

     Finally, instead of its 𝑙-thickness we can also require that 𝐷 is an 𝑙-set – a condition that 

promises to be more common to applications. One access to such a result is to prove that 

the 𝑙-property of 𝜕Ω implies the 𝑝-fatness of ℝ𝑑  \Ω – a result which was first obtained by 

Maz’ya [78]. Knowing this, Hardy’s inequality may then be deduced from the results in 

[69] or [86]. Our approach is quite different and simply rests on Proposition (2.1.14) and 

Lemma (2.1.5). So we can record the following. 

Corollary (2.1.18)[39]: The assertion of Theorem (2.1.13) remains valid if instead of its 𝑙-
thickness we require that 𝐷 is an 𝑙-set.  

We discuss the second condition in the main result Theorem (2.1.13), that is the 

extendability for 𝑊𝐷
1,𝑝
(Ω) within the same class of Sobolev functions. We develop three 

abstract principles concerning Sobolev extension.  

(a) Dirichlet cracks can be removed: We open the possibility of passing from Ω to 

another domain Ω⋆ with a reduced Dirichlet boundary part, while Γ =  𝜕Ω\ 𝐷 

remains part of 𝜕Ω⋆. In most cases this improves the boundary geometry in the 

sense of Sobolev extendability, see the example in the following Figure.  
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(b) Sobolev extendability is a local property: We show that only the local geometry of 

the domain around the boundary part Γ plays a role for the existence of an extension 

operator.  

(c) Preservation of traces: We prove under very general geometric assumptions that the 

extended functions do have the adequate trace behavior on 𝐷 for every extension 

operator.  

We believe that these results are of independent interest and therefore decided to directly 

present them for higher-order Sobolev spaces 𝑊𝐸
𝑘,𝑝

 . In the end we review some feasible 

commonly used geometric conditions which together with our abstract principles really 

imply the corresponding extendability.  

As in Fig. (1) there may be boundary parts which carry a Dirichlet condition and 

belong to the inner of the closure of the domain under consideration. Then one can extend 

the functions on Λ by 0 to such a boundary part, thereby enlarging the domain and 

simplifying the boundary geometry. In the following we make this precise. 

 
Fig. (1)[39]:  the set ∑ does not belong to Ω, and carries-together with the striped parts –

the Dirichlet condition 

Lemma (2.1.19)[39]: Let Λ ⊂ ℝ𝑑 be a bounded domain and let 𝐸 ⊂  𝜕Λ be closed. 

Define Λ⋆ as the interior of the set Λ ∪  𝐸. Then the following hold true.  

(i) The set Λ⋆ is again a domain, Ξ:=  𝜕Λ \ 𝐸 is a (relatively) open subset of 𝜕Λ⋆ 
and 𝜕Λ⋆ =  Ξ ∪ (𝐸 ∩  𝜕Λ⋆).  

(ii) Let 𝑘 ∈ ℕ and 𝑝 ∈  [1,∞[. Extending functions from 𝑊𝐸
𝑘,𝑝
(Λ) by 0 to Λ⋆,one 

obtains an isometric extension operator Ext(Λ, Λ⋆) from 𝑊𝐸
𝑘,𝑝
(Λ) onto 

𝑊𝐸
𝑘,𝑝
(Λ⋆).  

Proof.  (i) Due to the connectedness of Λ and the set inclusion  Λ ⊂ Λ⋆ ⊂ Λ̅, the set Λ⋆ is 

also connected, and, hence a domain. Obviously, one has Λ⋆̅̅ ̅ = Λ̅. This, together with the 

inclusion Λ ⊂ Λ⋆ leads to 𝜕Λ⋆  ⊂  𝜕Λ. Since Ξ ∩ Λ⋆ =  ∅, one gets Ξ ⊂  𝜕Λ⋆. 
Furthermore, Ξ was relatively open in 𝜕Λ, so it is relatively open also in 𝜕Λ⋆.  
                    The last asserted equality follows from 𝜕Λ⋆ = (Ξ ∩  𝜕Λ⋆)  ∪ (𝐸 ∩ 𝜕Λ⋆) and 

Ξ ⊂  𝜕Λ⋆.  
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(ii) Consider any 𝜓 ∈  𝐶𝐸
∞(ℝ𝑑  ) and its restriction 𝜓|Λ to Λ. Since the support of 𝜓 

has a positive distance to 𝐸, one may extend 𝜓|Λby 0 to the whole of Λ⋆ without 

destroying the 𝐶∞-property. Thus, this extension operator provides a linear 

isometry from 𝐶𝐸
∞(Λ) onto 𝐶𝐸

∞(Λ⋆) (if both are equipped with the 𝑊𝑘,𝑝-norm). 

This extends to a linear extension operator Ext(Λ, Λ⋆) from 𝑊𝐸
𝑘,𝑝
(Λ) onto 

𝑊𝐸
𝑘,𝑝
(Λ⋆), see the two following commutative diagrams:  

 
     The above considerations suggest the following procedure: extend the functions from 

𝑊𝐸
𝑘,𝑝
(Λ) first to Λ⋆, and afterwards to the whole of ℝ𝑑 . The next lemma shows that this 

approach is universal.  

Lemma (2.1.20)[39]: Let 𝑘 ∈ ℕ and 𝑝 ∈  [1,∞[. Let Λ ⊂ ℝ𝑑 be a bounded domain, let 

𝐸 ⊂  𝜕Λ be closed and as before define Λ⋆ as the interior of the set Λ ∪  𝐸. Every linear, 

continuous extension operator 𝔉 ∶  𝑊𝐸
𝑘,𝑝
(Λ)  →  𝑊𝐸

𝑘,𝑝
(ℝ𝑑  ) factorizes as 𝔉 =

 𝔉⋆ 𝐸𝑥𝑡(Λ, Λ⋆) through a linear, continuous extension operator 𝔉⋆ ∶  𝑊𝐸
𝑘,𝑝
(Λ⋆)  →

 𝑊𝐸
𝑘,𝑝
(ℝ𝑑  ).  

Proof.  Let 𝔖 be the restriction operator from 𝑊𝐸
𝑘,𝑝
(Λ⋆) to 𝑊𝐸

𝑘,𝑝
(Λ). Then we define, for 

every  ∈  𝑊𝐸
𝑘,𝑝(Λ⋆), 𝔉⋆𝑓 ∶= 𝔉𝔖𝑓 . We obtain 𝔉⋆𝐸𝑥𝑡(Λ, Λ⋆) =  𝔉𝔖𝐸𝑥𝑡(Λ, Λ⋆)  =  𝔉.  

This shows that the factorization holds algebraically. However, one also has  

‖𝔉⋆𝐸𝑥𝑡(Λ, Λ⋆)𝑓‖𝑊𝐸
𝑘,𝑝
(ℝ𝑑)

= ‖𝔉𝑓‖
𝑊𝐸
𝑘,𝑝
(ℝ𝑑)

≤ ‖𝔉‖
ℒ(𝑊𝐸

𝑘,𝑝
(Λ); 𝑊𝐸

𝑘,𝑝
(ℝ𝑑))

‖𝑓‖
𝑊𝐸
𝑘,𝑝
(Λ)

 

                                        = ‖𝔉‖
ℒ(𝑊𝐸

𝑘,𝑝
(Λ); 𝑊𝐸

𝑘,𝑝
(ℝ𝑑))

‖𝐸𝑥𝑡(Λ, Λ⋆)𝑓‖𝑊𝐸
𝑘,𝑝
(Λ⋆)
.  

    Having extended the functions already to Λ⋆ one may proceed as follows: Since 𝐸 is 

closed, so is 𝐸⋆ ∶=  𝐸 ∩  𝜕Λ⋆. So, one can now consider the space 𝑊E⋆
1,𝑝
( Λ⋆) and has the 

task to establish an extension operator for this space – while afterwards one has to take 

into account that the original functions were 0 also on the set 𝐸 ∩ Λ⋆  and have not been 

altered by the extension operator thereon. However, note carefully that  E⋆ ∶=  𝐸 ∩  𝜕 Λ⋆ 
may have a worse geometry than 𝐸. For example, take Fig. (2) and suppose that this time 

only Σ forms the whole Dirichlet part of the boundary. Then 𝐸 is a (𝑑 −  1)-set whereas 

even ℋ𝑑−1(𝐸⋆)  =  0 holds.  

    To sum up, if one aims at an extension operator 𝔈 ∶  𝑊𝐸
𝑘,𝑝
(Λ)  →  𝑊𝐸

𝑘,𝑝
(ℝ𝑑  ), one is 

free to modify the domain Λ  to  Λ⋆. In most cases this improves the local geometry 

concerning Sobolev extensions and we do not have examples where the situation gets 

worse. Though we do not claim that this is, in a whatever precise sense, the generic case.  

Below, we make precise in which sense Sobolev extendability is a local property.  

Definition (2.1.21)[39]: A domain  Λ ⊂ ℝ𝑑 is a 𝑊𝑘,𝑝-extension domain for given 𝑘 ∈ ℕ 

and 𝑝 ∈  [1,∞[ if there exists a continuous extension operator 𝔈𝑘,𝑝 ∶ 𝑊 
𝑘,𝑝(Λ)  →
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𝑊 
𝑘,𝑝(ℝ𝑑  ). If  Λ is a 𝑊𝑘,𝑝-extension domain for all k ∈ N and all p ∈ [1,∞[ in virtue of the 

same extension operator, then is a universal Sobolev extension domain.  

Proposition (2.1.22)[39]: Let 𝑘 ∈ ℕ and 𝑝 ∈  [1,∞[. Let Λ be a bounded domain and let 

𝐸 be a closed part of its boundary. Assume that for every 𝑥 ∈  𝜕Λ\ 𝐸 ̅̅ ̅̅ ̅̅ ̅̅  there is an open 

neighborhood 𝑈𝑥 of x such that Λ ∩ 𝑈𝑥 is a 𝑊𝑘,𝑝-extension domain. Then there is a 

continuous extension operator  

𝔈𝑘,𝑝 ∶  𝑊𝐸
𝑘,𝑝
(Λ)  →  𝑊𝑘,𝑝(ℝ𝑑).  

Moreover, if each local extension operator 𝔈𝑥 maps the space 𝑊𝐸𝑥
𝑘,𝑝
(Λ ∩ 𝑈𝑥) into 

𝑊𝐸𝑥
𝑘,𝑝
(ℝ𝑑  ), where 𝐸𝑥 ∶=  𝐸 ∩  𝑈𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ⊂  𝜕(Λ ∩ 𝑈𝑥), then also  

𝔈𝑘,𝑝 ∶  𝑊𝐸
𝑘,𝑝
(Λ)  →  𝑊𝐸

𝑘,𝑝
(ℝ𝑑  ).  

Proof. For the construction of the extension operator let for every 𝑥 ∈  𝜕Λ\ 𝐸 ̅̅ ̅̅ ̅̅ ̅̅  denote 𝑈𝑥 

the open neighborhood of x from the assumption. Let 𝑈𝑥1  , . . . , 𝑈𝑥𝑛 be a finite subcovering 

of 𝜕Λ\ 𝐸 ̅̅ ̅̅ ̅̅ ̅̅ . Since the compact set 𝜕Λ\ 𝐸 ̅̅ ̅̅ ̅̅ ̅̅   is contained in the open set  ⋃ 𝑈𝑥𝑗𝑗   , there is an 

𝜀 >  0, such that the sets 𝑈𝑥1  , . . . , 𝑈𝑥𝑛 , together with the open set 𝑈 ∶=  {𝑦 ∈  ℝ𝑑  ∶

 𝑑𝑖𝑠𝑡(𝑦, 𝜕Λ\ 𝐸 ̅̅ ̅̅ ̅̅ ̅̅ )  >  𝜀}, form an open covering of Λ̅. Hence, on Λ̅ there is a 𝐶0
∞ -partition 

of unity 𝜂, 𝜂1, . . . , 𝜂𝑛, with the properties supp(𝜂)  ⊂  𝑈, supp(𝜂𝑗)  ⊂  𝑈𝑥𝑗 . 

    Assume 𝜓 ∈  𝐶𝐸
∞(Λ). Then 𝜂𝜓 ∈  𝐶0

∞(Λ). If one extends this function by 0 outside of 

Λ, then one obtains a function 𝜙 ∈  𝐶𝜕Λ
∞ (ℝ𝑑)  ⊂  𝐶𝐸

∞(ℝ𝑑)  ⊂  𝑊𝐸
𝑘,𝑝
(ℝ𝑑) with the property 

‖𝜙‖𝑊𝑘,𝑝(ℝ𝑑)  = ‖ 𝜂𝜓‖𝑊𝑘,𝑝(Λ).  

   Now, for every fixed 𝑗 ∈  {1, . . . , 𝑛}, consider the function 𝜓𝑗 ∶=  𝜂𝑗𝜓 ∈ 𝑊
𝑘,𝑝(Λ ∩

𝑈𝑥𝑗  ). Since Λ ∩ 𝑈𝑥𝑗  is a 𝑊𝑘,𝑝-extension domain by assumption, there is an extension of 

𝜓𝑗 to a 𝑊𝑘,𝑝(ℝ𝑑)-function 𝜙𝑗 together with an estimate ‖𝜙𝑗‖𝑊𝑘,𝑝(ℝ𝑑)
 ≤

 𝑐‖𝜓𝑗  ‖𝑊𝑘,𝑝(Λ∩𝑈𝑥𝑗)
, where 𝑐 is independent from 𝜓. Clearly, one has a priori no control on 

the behavior of 𝜙𝑗 on the set Λ\ 𝑈𝑥𝑗 . In particular 𝜙𝑗 may there be nonzero and, hence, 

cannot be expected to coincide with 𝜂𝑗𝜓 on the whole of Λ. In order to correct this, let 𝜁𝑗 

be a 𝐶0
∞(ℝ𝑑)-function which is identically 1 on supp(𝜂𝑗) and has its support in 𝑈𝑥𝑗 . Then 

𝜂𝑗𝜓 equals 𝜁𝑗𝜙𝑗 on all of Λ. Consequently, 𝜁𝑗  𝜙𝑗 really is an extension of 𝜂𝑗𝜓 to the 

whole of ℝ𝑑 which, additionally, satisfies the estimate  

‖𝜁𝑗  𝜙𝑗‖𝑊𝑘,𝑝(ℝ𝑑)
≤  𝑐‖𝜙𝑗  ‖𝑊𝑘,𝑝(ℝ𝑑)

≤  𝑐‖𝜂𝑗𝜓‖𝑊𝑘,𝑝(Λ∩𝑈𝑥𝑗)
≤  𝑐‖𝜓‖𝑊𝑘,𝑝(Λ), 

where 𝑐 is independent from 𝜓. Thus, defining 𝔈𝑘,𝑝(𝜓)  =  𝜙 + ∑ 𝜁𝑗  𝜙𝑗𝑗   one gets a 

linear, continuous extension operator from 𝐶𝐸
∞(Λ) into 𝑊𝑘,𝑝(ℝ𝑑). By density, 𝔈𝑘,𝑝 

uniquely extends to a linear, continuous operator  

𝔈𝑘,𝑝 ∶  𝑊𝐸
𝑘,𝑝
(Λ)  →  𝑊𝐸

𝑘,𝑝
(ℝ𝑑  ).  

     Finally, assume that the local extension operators map 𝑊𝐸𝑥𝑗
𝑘,𝑝
 (Λ ∩ 𝑈𝑥𝑗) into 𝑊𝐸𝑥𝑗

𝑘,𝑝
 (ℝ𝑑). 

Using the notation above, this means that 𝜙𝑗  can be approximated in 𝑊𝑘,𝑝(ℝ𝑑) by a 

sequence from 𝐶𝐸𝑥𝑗
∞ (ℝ𝑑). Since 𝜁𝑗 is supported in 𝑈𝑥𝑗  , multiplication by 𝜁𝑗  ∈  𝐶0

∞(ℝ𝑑) 

maps 𝐶𝐸𝑥𝑗
∞ (ℝ𝑑) into 𝐶𝐸

∞(ℝ𝑑) boundedly with respect to the 𝑊𝑘,𝑝(ℝ𝑑)-topology. Hence, 

𝜁𝑗𝜙𝑗  ∈ 𝑊𝐸
𝑘,𝑝
(ℝ𝑑). Since in any case 𝜙 ∈  𝑊𝐸

𝑘,𝑝
(ℝ𝑑), the conclusion follows.  
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Proposition (2.1.22) allows to construct Sobolev extension operators from 𝑊𝐷
𝑘,𝑝
(Ω) 

into 𝑊𝑘,𝑝(ℝ𝑑) and gives a sufficient condition for preservation of the Dirichlet condition. 

We show that in fact every such extension operator has this feature. Recall that this is the 

crux of the matter in Assumption (iii) of Theorem (2.1.13). The key lemma is the 

following.  

Lemma (2.1.23)[39]: Let 𝑘 ∈ ℕ and 𝑝 ∈ ]1,∞[. Let Λ ⊂ ℝ𝑑  be a domain, let 𝐸 ⊂  𝜕Λ 

be closed and let 𝔈𝑘,𝑝: 𝑊𝐸
𝑘,𝑝
(Λ)  →  𝑊𝑘,𝑝(ℝ𝑑) be a bounded extension operator. Any of 

the following conditions guarantees that 𝔈𝑘,𝑝 in fact maps into 𝑊𝐸
𝑘,𝑝
(ℝ𝑑).  

(i) For (𝑘, 𝑝)-quasievery 𝑦 ∈  𝐸 balls around 𝑦 in Λ have asymptotically 

nonvanishing relative volume, i.e.  

     𝑙𝑖𝑚 inf
𝑟→0

|𝐵(𝑦, 𝑟)  ∩  Λ)| 

𝑟𝑑
 >  0.                                                 (6) 

(ii) The set 𝐸 is an 𝑙-set for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑] and (6) holds for ℋ𝑙-almost every 

𝑦 ∈  𝐸.  
(iii) There exists 𝑞 > 𝑑 such that 𝔈𝑘,𝑝 maps 𝐶𝐸

∞(Λ) into 𝑊𝑘,𝑞(ℝ𝑑).  

Proof. As 𝐶𝐸
∞(Ω) is dense in 𝑊𝐸

𝑘,𝑝
(Λ) and since 𝔈𝑘,𝑝 is bounded, it suffices to prove that 

given 𝑣 ∈  𝐶𝐸
∞ the function 𝑢 ∶= 𝔈𝑘,𝑝𝑣 belongs to 𝑊𝐸

𝑘,𝑝
(ℝ𝑑). The proof of (i) is inspired 

by [88]. Easy modifications of the argument will yield (ii) and (iii).  

(i) Fix an arbitrary multiindex 𝛽 with |𝛽|  ≤  𝑘 −  1. Let 𝔇𝛽𝑢 be the representative 

of the distributional derivative 𝐷𝛽𝑢 of 𝑢 defined (𝑘 − |𝛽|, 𝑝)-q.e. on ℝ𝑑 via  

𝔇𝛽𝑢(𝑦):= lim
𝑟→0 

1

|𝐵(𝑦, 𝑟)|
∫  𝐷𝛽  𝑢(𝑥) 𝑑𝑥

 

𝐵(𝑦,𝑟)

 .  

Recall from (3) that then  

lim
𝑟→0 

1

|𝐵(𝑦, 𝑟)|
∫ | 𝔇𝛽  𝑢(𝑥) − 𝔇𝛽  𝑢(𝑦)| 𝑑𝑥

 

𝐵(𝑦,𝑟)

≤ lim
𝑟→0 

(
1

|𝐵(𝑦, 𝑟)|
∫ | 𝔇𝛽  𝑢(𝑥) − 𝔇𝛽  𝑢(𝑦)|

𝑝
 𝑑𝑥

 

𝐵(𝑦,𝑟)

)

1
𝑝

 =  0.              (7)  

holds for (𝑘 − |𝛽|, 𝑝) − 𝑞. 𝑒. 𝑦 ∈  ℝ𝑑 . Since (6) holds for (𝑘, 𝑝)-quasievery 𝑦 ∈  𝐸, it a 

fortiori holds for (𝑘 − |𝛽|, 𝑝)-quasievery such 𝑦. Let now 𝑁 ⊂  ℝ𝑑 be the exceptional set 

such that on ℝ𝑑\ 𝑁 the function 𝔇𝛽𝑢 is defined and satisfies (7) and such that (6) holds 

for every 𝑦 ∈  𝐸 \ 𝑁. Owing to Theorem (2.1.11) the claim follows once we have 

shown𝔇𝛽𝑢(𝑦)  =  0 for all 𝑦 ∈  𝐸 \ 𝑁.  
    For the rest of the proof we fix 𝑦 ∈  𝐸\𝑁. For 𝑟 >  0 we abbreviate 𝐵(𝑟) ∶=  𝐵(𝑦, 𝑟) 
and define  

         𝑊𝑗 ∶=  {𝑥 ∈  ℝ
𝑑\ 𝑁 ∶  |𝔇𝛽𝑢(𝑥)  − 𝔇𝛽  𝑢(𝑦)|  >  1/𝑗 }.                         (8) 

Thanks to (7) for each 𝑗 ∈ ℕ we can choose some 𝑟𝑗  >  0 such that |𝐵(𝑟)  ∩ 𝑊𝑗  |  <

 2−𝑗  |𝐵(𝑟)| holds for all 𝑟 ∈ ]0, 𝑟𝑗]. Clearly, we can arrange that the sequence {𝑟𝑗}𝑗 is 

decreasing. Now,  

    𝑊 ∶=⋃ {  ( 𝐵(𝑟𝑗) \ 𝐵(𝑟𝑗+1))  ∩  𝑊𝑗}

𝑗∈ℕ

                          (9)  
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has vanishing Lebesgue density at 𝑦, i.e. 𝑟−𝑑  |𝐵(𝑟)  ∩  𝑊| vanishes as 𝑟 tends to 0: 

Indeed, if 𝑟 ∈ ]𝑟𝑙+1 , 𝑟𝑙], then  

|𝐵(𝑟) ∩  𝑊| ≤  | (𝐵(𝑟) ∩ 𝑊𝑙)   ∪ ⋃ (𝐵(𝑟𝑗  ) ∩  𝑊𝑗)

𝑗≥𝑙+1

|  ≤  2−𝑙|𝐵(𝑟)| + ∑  2−𝑗  |𝐵(𝑟𝑗)|

𝑗≥𝑙+1 

≤ 2−𝑙+1 |𝐵(𝑟)|.  
Now, (6) allows to conclude  

𝑙𝑖𝑚 inf
𝑟→0

 |𝐵(𝑟)  ∩  Λ ∩ (ℝ𝑑\ 𝑊 ))|

𝑟𝑑
   >  0.  

Since 𝑢 is an extension of 𝑣 ∈  𝐶𝐸
∞(Λ) and 𝑦 is an element of 𝐸 it holds 𝔇𝛽  𝑢 =  0 a.e. 

on 𝐵(𝑟)  ∩ Λ with respect to the 𝑑-dimensional Lebesgue measure if 𝑟 >  0 is small 

enough. The previous inequality gives |𝐵(𝑟)  ∩ Λ  ∩ (ℝ𝑑  \ 𝑊 ))|  >  0 if 𝑟 >  0 is small 

enough. In particular, there exists a sequence {𝑥𝑗}𝑗 in ℝ𝑑\ 𝑊 approximating 𝑦 such 

that𝔇𝛽𝑢(𝑥𝑗  )  =  0 for all 𝑗 ∈ ℕ. Now, the upshot is that the restriction of 𝔇𝛽𝑢 to ℝ𝑑\𝑊 

is continuous at 𝑦 since if 𝑥 ∈  ℝ𝑑\𝑊 satisfies |𝑥 − 𝑦|  ≤  𝑟𝑗 then by construction 

|𝔇𝛽𝑢(𝑥)  − 𝔇𝛽𝑢(𝑦)|  ≤  1/𝑗 . Hence, 𝔇𝛽𝑢(𝑦)  =  0 and the proof is complete.  

(ii) If 𝐸 is an 𝑙-set for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑], then we can appeal to Theorem (2.1.12) 

rather than Theorem (2.1.11) and the same argument as in (i) applies.  

(iii) By assumption 𝑢 ∈  𝑊𝐸
𝑘,𝑞
(ℝ𝑑), where 𝑞 > 𝑑. By Sobolev embeddings each 

distributional derivative 𝐷𝛽  𝑢, |𝛽|  ≤  𝑘 −  1, has a continuous representative 

𝔇𝛼𝑢. As each 𝑦 ∈  𝐸 ⊂  𝜕Λ is an accumulation point of  Λ\ 𝐸 and since 

𝔇𝛼𝑢 = 𝔇𝛼𝑣 holds almost everywhere on Λ the representative 𝔇𝛼𝑢 must vanish 

everywhere on 𝐸 and Theorem (2.1.11) yields 𝑢 ∈  𝑊𝐸
𝑘,𝑝
(ℝ𝑑) as required see 

[60].  

     We can now state and prove the remarkable result that every Sobolev extension 

operator that is constructed by localization techniques as in Proposition (2.1.22) preserves 

the Dirichlet condition.  

Proposition (2.1.24)[39]:([56]) If a domain  Λ ⊂  ℝ𝑑  is a 𝑊𝑘,𝑝-extension domain for 

some 𝑘 ∈ ℕ and 𝑝 ∈  [1,∞[, then it is a 𝑑-set.  

Theorem (2.1.25)[39]: Let 𝑘 ∈ ℕ and 𝑝 ∈  [1,∞[. Let Λ be a bounded domain and let 𝐸 

be a closed part of its boundary. Assume that for every 𝑥 ∈  𝜕Λ\ 𝐸̅̅ ̅̅ ̅̅ ̅̅  there is an open 

neighborhood 𝑈𝑥 of x such that Λ ∩ 𝑈𝑥 is a 𝑊𝑘,𝑝-extension domain. Then there exists a 

continuous extension operator  

𝔈𝑘,𝑝 ∶  𝑊𝐸
𝑘,𝑝
(Λ)  →  𝑊𝐸

𝑘,𝑝
(ℝ𝑑).  

Proof. According to Proposition (2.1.22) it suffices to check that each local extension 

operator 𝔈𝑥 maps 𝑊𝐸𝑥
𝑘,𝑝
(Λ ∩ 𝑈𝑥) into 𝑊𝐸𝑥

𝑘,𝑝
(ℝ𝑑), where 𝐸𝑥 ∶=  𝐸 ∩ 𝑈𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ⊂  𝜕(Λ ∩  𝑈𝑥). 

Owing to Proposition (2.1.24)the 𝑊𝑘,𝑝-extension domain Λ ∩ 𝑈𝑥 is a 𝑑-set and as such 

satisfies (6) around every of its boundary points. So, Lemma (2.1.23).(i) yields the claim.  

We finally review common geometric conditions on the boundary part 𝜕Λ\ 𝐸̅̅ ̅̅ ̅̅ ̅̅  such 

that the local sets Λ ∩ 𝑈𝑥 really admit the Sobolev extension property required in 

Proposition (2.1.22). 

    A first condition, completely sufficient for the treatment of most real world problems, is 

the following Lipschitz condition.  
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Definition  (2.1.26)[39]: A bounded domain Λ ⊂ ℝ𝑑  is called bounded Lipschitz domain 

if for each 𝑥 ∈  𝜕Λ there is an open neighborhood 𝑈𝑥 of x and a bi-Lipschitz mapping 𝜑𝑥 

from 𝑈𝑥 onto a cube, such that 𝜑𝑥(Λ ∩ 𝑈𝑥) is the (lower) half cube and 𝜕Λ ∩ 𝑈𝑥 is 

mapped onto the top surface of this half cube.  

     It can be proved by elementary means that bounded Lipschitz domains are 𝑊1,𝑝 

extension domains for every 𝑝 ∈  [1,∞[, cf. e.g. [55] for the case 𝑝 =  2. In fact, already 

the following (𝜀, 𝛿)-condition of Jones [59] assures the existence of a universal Sobolev 

extension operator.  

Definition  (2.1.27)[39]: Let Λ ⊂ ℝ𝑑 be a domain and 𝜀, 𝛿 >  0. Assume that any two 

points 𝑥, 𝑦 ∈ Λ, with distance not larger than 𝛿, can be connected within Λ by a rectifiable 

arc 𝛾 with length 𝑙(𝛾), such that the following two conditions are satisfied for all points 𝑧 
from the curve 𝛾 : 

 𝑙(𝛾 ) ≤
1

𝜀
‖ 𝑥 −  𝑦‖,     𝑎𝑛𝑑    

‖𝑥 −  𝑧‖‖𝑦 −  𝑧‖

‖𝑥 −  𝑦‖
≤
1

𝜀
 𝑑𝑖𝑠𝑡(𝑧, Λ𝑐  ).  

Then Λ is called (𝜀, 𝛿)-domain.  

Theorem  (2.1.28)[39]: (Rogers) Each (𝜀, 𝛿)-domain is a universal Sobolev extension 

domain.  

    Plugging in Rogers extension operator into Theorem (2.1.25) lets us re-discover [80] in 

case of bounded domains and 𝑝 strictly between 1 and ∞. We even obtain a universal 

extension operator that simultaneously acts on all 𝑊𝐸
𝑘,𝑝

 -spaces and at the same time our 

argument reveals that the preservation of the trace is irrespective of the specific structure 

of Jones’ or Roger’s extension operators.    

    We believe that this sheds some more light also on [80] though the argument cannot 

disclose the fundamental assertions on the support of the extended functions obtained in 

[80] by a careful analysis of Jones’ extension operator. We summarize our observations in 

the following theorem.  

Theorem  (2.1.29)[39]: Let Λ be a bounded domain and let 𝐸 be a closed part of its 

boundary. Assume that for every 𝑥 ∈  𝜕Λ\ 𝐸̅̅ ̅̅ ̅̅ ̅̅  there is an open neighborhood 𝑈𝑥 of x such 

that Λ ∩ 𝑈𝑥 is a bounded Lipschitz or, more generally, an (𝜀, 𝛿)-domain for some values 

𝜀, 𝛿 >  0. Then there exists a universal operator 𝔈 that restricts to a bounded extension 

operator 𝑊𝐸
𝑘,𝑝
(Λ)  →  𝑊𝐸

𝑘,𝑝
(ℝ𝑑) for each 𝑘 ∈ ℕ and each 𝑝 ∈ ]1,∞[. 

We will discuss sufficient conditions for Poincar�́�’s inequality, thereby unwinding 

Assumption (ii) of Theorem (2.1.13). Our aim is not greatest generality as e.g. in [77] for 

functions defined on the whole of ℝ𝑑 , but to include the aspect that our functions are only 

defined on a domain. Secondly, our interest is to give very general, but in some sense 

geometric conditions, which may be checked more or less ‘by appearance’ – at least for 

problems arising from applications.  

     The next proposition gives a condition that assures that a closed subspace of 𝑊1,𝑝 may 

be equivalently normed by the 𝐿𝑝-norm of the gradient of the corresponding functions 

only. We believe that this might also be of independent interest, compare also [88]. 

Throughout 1 denotes the function that is identically one.  

Proposition (2.1.30)[39]: Let  Λ ⊂ ℝ𝑑 be a bounded domain and suppose 𝑝 ∈ ]1,∞[. 
Assume that 𝑋 is a closed subspace of 𝑊1,𝑝(Λ) that does not contain 𝟙 and for which the 

restriction of the canonical embedding 𝑊1,𝑝(Λ)  ↪  𝐿𝑝(Λ) to 𝑋 is compact. Then 𝑋 may 

be equivalently normed by 𝑣 ⟼ (∫ |𝛻𝑣|𝑝𝑑𝑥
 

Λ
)
1

𝑝.  
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Proof. First recall that both 𝑋 and 𝐿𝑝(Λ) are reflexive. In order to prove the proposition, 

assume to the contrary that there exists a sequence {𝑣𝑘}𝑘 from 𝑋 such that  
1

𝑘
 ‖𝑣𝑘‖𝐿𝑝(Λ) ≥ ‖𝛻𝑣𝑘‖𝐿𝑝(Λ).  

After normalization we may assume ‖𝑣𝑘‖𝐿𝑝(Λ) =  1 for every 𝑘 ∈ ℕ. Hence, {𝛻𝑣𝑘}𝑘 

converges to 0 strongly in 𝐿𝑝(Λ). On the other hand, {𝑣𝑘}𝑘 is a bounded sequence in 𝑋 and 

hence contains a subsequence {𝑣𝑘𝑙}𝑙
 that converges weakly in 𝑋 to an element 𝑣 ∈  𝑋. 

Since the gradient operator 𝛻 ∶  𝑋 → 𝐿𝑝(Λ) is continuous, {𝛻𝑣𝑘𝑙}𝑙
 converges to 𝛻𝑣 weakly 

in 𝐿𝑝(Λ). As the same sequence converges to 0 strongly in 𝐿𝑝(Λ), the function 𝛻𝑣 must be 

zero and hence 𝑣 is constant. But by assumption 𝑋 does not contain constant functions 

except for 𝑣 =  0. So, {𝑣𝑘𝑙}𝑙
 tends to 0 weakly in 𝑋. Owing to the compactness of the 

embedding 𝑋 ↪  𝐿𝑝(Λ), a subsequence of {𝑣𝑘𝑙}𝑙
 tends to 0 strongly in 𝐿𝑝(Λ). This 

contradicts the normalization condition ‖𝑣𝑘𝑙‖𝐿𝑝(Λ)
=  1.  

     In the case that 𝐸 is 𝑙-thick, the following lemma presents two conditions that are 

particularly easy to check and entail 𝟙 ∉  𝑊𝐸
1,𝑝
(Λ). Some knowledge on the common 

frontier of 𝐸 and 𝜕Λ\𝐸 is required: Either not every point of 𝐸 should lie thereon or 𝜕Λ 

must not be too wild around this frontier.  

Lemma (2.1.31)[39]: Let 𝑝 ∈ ]1,∞[, let Λ be a bounded domain and let 𝐸 ⊂  𝜕Λ be 𝑙-

thick for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑]. Both of the following conditions assure 𝟙 ∉ 𝑊𝐸
1,𝑝
(Λ).  

(i) The set 𝐸 admits at least one relatively inner point 𝑥. Here, ‘relatively inner’ is 

with respect to 𝜕Λ as ambient topological space.  

(ii) For every 𝑥 ∈  𝜕Λ\ 𝐸̅̅ ̅̅ ̅̅ ̅̅  there is an open neighborhood 𝑈𝑥 of x such that Λ ∩ 𝑈𝑥 is 

a 𝑊1,𝑝-extension domain. 

Proof. We treat both cases separately.  

(i) Assume the assertion was false and 𝟙 ∈ 𝑊𝐸
1,𝑝
(Λ). Let x be the inner point of 𝐸 

from the hypotheses and let 𝐵 ∶=  𝐵(𝑥, 𝑟) be a ball that does not intersect 𝜕Λ \

 𝐸. Put 
1

2
𝐵 ∶=  𝐵(𝑥,

𝑟

2
 ) and let 𝜂 ∈  𝐶0

∞(𝐵) be such that 𝜂 ≡  1 on 
1

2
𝐵. We 

distinguish whether or not x is an interior point of Λ̅.  

       First, assume it is not. For every 𝜓 ∈  𝐶𝐸
∞(Λ) the function 𝜂𝜓 belongs to 𝑊0

1,𝑝
(Λ ∩

 𝐵) and as such admits a 𝑊1,𝑝-extension 𝜂𝜓 ̂  by zero to the whole of ℝ𝑑 . In particular,  

𝜂𝜓 ̂ (  𝑦) =   {
𝜓(𝑦),    𝑖𝑓    𝑦 ∈

1

2
𝐵 ∩ Λ               

 0,    𝑖𝑓     𝑦 ∈
1

2
𝐵 \Λ            

   

and consequently,  

‖𝛻𝜂𝜓 ̂ ‖
𝐿𝑝(

1
2
𝐵)
= ‖𝛻𝜓‖

𝐿𝑝(
1
2
𝐵∩Λ)

.  

Since by assumption 𝟙 is in the 𝑊1,𝑝(Λ)-closure of 𝐶𝐸
∞(Λ) and since the mappings 

𝑊𝐸
1,𝑝
(Λ) ∋ 𝜓 ⟼  𝛻𝜂𝜓 ̂ ∈ 𝐿𝑝(

1

2
𝐵) and 𝑊𝐸

1,𝑝
(Λ) ∋ 𝜓 ⟼ 𝛻𝜓 ∈ 𝐿𝑝(Λ ∩

1

2
𝐵) are 

continuous, the previous equation extends to 𝜓 = 𝟙:  

‖𝛻𝜂 �̂�‖
𝐿𝑝(

1
2
𝐵)
 = ‖ 𝛻𝟙‖

𝐿𝑝(
1
2
𝐵∩Λ)

=  0.  
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On the other hand x is not an inner point of Λ̅ so that in particular 
1

2
𝐵 \Λ̅  is nonempty. 

Since this set is open, |
1

2
𝐵\Λ̅|  >  0. Recall that by construction 𝜂�̂�  ∈ 𝑊1,𝑝(𝐵) vanishes 

a.e. on 
1

2
𝐵 \Λ̅. Hence, for some 𝑐 >  0 the Poincar�́� inequality  

‖𝜂 �̂�‖
𝐿𝑝(

1
2
𝐵)
 ≤  𝑐 ‖𝛻𝜂 �̂�‖

𝐿𝑝(
1
2
𝐵)
,  

holds, cf. [88]. However, we already know that the right hand side is zero, whereas the left 

hand side equals |
1

2
𝐵 ∩ Λ |1/𝑝 , which is nonzero since 

1

2
𝐵 ∩ Λ is nonempty and open – a 

contradiction.  

     Now, assume x is contained in the interior of Λ̅. Upon diminishing 𝐵 we may assume 

𝐵 ⊂ Λ̅. For every 𝜓 ∈  𝐶𝐸
∞(ℝ𝑑) we have 𝜂𝜓 ∈  𝐶𝐸

∞(ℝ𝑑) with an estimate  

‖𝜂𝜓‖𝑊1,𝑝(ℝ𝑑)  ≤  𝑐‖𝜓‖𝑊1,𝑝(𝐵)  =  𝑐 (∫   |𝜓|
𝑝  +  |𝛻𝜓|𝑝 𝑑𝑥

 

𝐵

 )

1/𝑝

  

for some constant 𝑐 >  0 depending only on 𝜂 and 𝑝. By our choice of 𝐵 split  

𝐵 =  𝐵 ∩ Λ̅ =  (𝐵 ∩ Λ) ∪ (𝐵 ∩  𝜕Λ)  =  (𝐵 ∩ Λ) ∪ (𝐵 ∩  𝐸).  
Since 𝜓 vanishes in a neighborhood of 𝐸,  

‖𝜂𝜓‖𝑊1,𝑝(ℝ𝑑) ≤  𝑐 ( ∫   |𝜓|
𝑝  +  |𝛻𝜓|𝑝 𝑑𝑥

 

𝐵∩Λ

 )

1/𝑝

≤  𝑐‖𝜓‖𝑊1,𝑝(Λ).              (10)  

Taking into account 𝜂 ≡  1 on 
1

2
𝐵, the same reasoning gives 

     ∫|𝛻(𝜂𝜓)|𝑝 𝑑𝑥

 

1
2
𝐵

  = ∫|𝛻𝜓|𝑝 𝑑𝑥

 

1
2
𝐵

≤ ∫  |𝛻𝜓|𝑝 𝑑𝑥

 

Λ

 .                                    (11)  

By assumption there is a sequence {𝜓𝑗}𝑗  ⊂  𝐶𝐸
∞(Λ) tending to 𝟙 in the 𝑊1,𝑝(Λ)- topology. 

Due to (10) and the choice of 𝜂, the sequence {𝜂𝜓𝑗}𝑗 ⊂ 𝐶𝐸
∞(ℝ𝑑) then tends to some 𝑢 ∈

 𝑊𝐸
1,𝑝
(ℝ𝑑) satisfying 𝑢 =  1 a.e. on 

1

2
𝐵 ∩ Λ. Due to (11), 𝛻𝑢 =  0 a.e. on 

1

2
𝐵, meaning 

that 𝑢 is constant on this set. Since 
1

2
𝐵 ∩ Λ as a non-empty open set has positive Lebesgue 

measure, all this can only happen if 𝑢 =  1 a.e. on 
1

2
𝐵. Hence,  

lim
𝑟→0
 

1

|𝐵(𝑦, 𝑟)|
∫  𝑢 𝑑𝑥

 

𝐵(𝑦,𝑟)

   =  1  

for every 𝑦 ∈
1

3
𝐵 ∩  𝐸, which by Theorem (2.1.11) is only possible if 𝐶1,𝑝(

1

3
𝐵 ∩ 𝐸)  =

 0. By Theorem (2.1.11) this in turn implies ℋ𝑙
∞(

1

3
𝐵 ∩  𝐸)  =  0 in contradiction to the 𝑙-

thickness of 𝐸.  

(ii) Again assume the assertion was false. Then by (i) there exists some 𝑥 ∈  𝐸 that 

is not an inner point of 𝐸 with respect to 𝜕Λ. Hence x is an accumulation point of 

𝜕Λ \ 𝐸 and by assumption there is a neighborhood 𝑈 =  𝑈𝑥 of x such that  Λ ∩
 𝑈 is a 𝑊1,𝑝 extension domain. We denote the corresponding extension operator 

by 𝔈. We shall localize the assumption 𝟙 ∈  𝑊𝐸
1,𝑝
(Λ) within 𝑈 to arrive at a 

contradiction.  
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      To this end, let 𝑟0 >  0 be such that 𝐵(𝑥, 𝑟0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ⊂  𝑈 and let 𝜂 ∈  𝐶0
∞(𝑈 ) be such that 

𝜂 ≡  1 on 𝐵(𝑥, 𝑟0). Then also 𝜂 =  𝜂𝟙 ∈  𝑊𝐸
1,𝑝
(Λ) and in particular 𝜂|Λ∩𝑈 belongs to 

𝑊𝐹
1,𝑝 
(Λ ∩  𝑈 ), where 𝐹 ∶=  𝐵(𝑥, 𝑟0/2)  ∩  𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ⊂  𝜕(Λ ∩  𝑈 ). Recall from Proposition 

(2.1.24)that the 𝑊1,𝑝-extension domain  Λ ∩  𝑈 satisfies in particular  

lim 𝑖𝑛𝑓𝑟→0   
|𝐵(𝑦, 𝑟)  ∩ Λ ∩  𝑈 )|

𝑟𝑑
 >  0. 

around every 𝑦 ∈  𝜕(Λ ∩  𝑈 ). Thus, Lemma (2.1.23)(i) yields 𝑢 ∶=  𝔈(𝜂|Λ∩𝑈)  ∈

𝑊𝐹
1,𝑝 
(ℝ𝑑).  

     On the other hand, similar to the proof of Lemma (2.1.23) let 𝔲 be the representative of 

𝑢 that is defined by limits of integral means on the complement of some exceptional set 𝑁 

with 𝐶1,𝑝(𝑁)  =  0 and fix 𝑦 ∈  𝐹 \ 𝑁. Take 𝑊 as in (8) and (9). Repeating the arguments 

in the proof of Lemma (2.1.23) reveals that the restriction of 𝔲 to ℝ𝑑\ 𝑊 is continuous at 

y and that |𝐵(𝑦, 𝑟)  ∩ Λ ∩  𝑈 ∩  (ℝ𝑑\ 𝑊 )|  >  0 if 𝑟 >  0 is small enough. By 

construction 𝔲 =  1 a.e. on 𝐵(𝑦, 𝑟)  ∩ Λ ∩  𝑈 ∩  (ℝ𝑑\ 𝑊 ) if 𝑟 <  𝑟0. Hence, there is a 

sequence {𝑥𝑗}𝑗 approximating 𝑦 such that 𝔲(𝑥𝑗  )  =  1 for every 𝑗 ∈ ℕ. By continuity 

𝔲(𝑦) = 1 follows. This proves that 𝔲 =  1 holds (1, 𝑝)-quasieverywhere on 𝐹.  
      By Theorem (2.1.11) this can only happen if 𝐶1,𝑝(𝐹 )  =  0, which as in (i) contradicts 

the 𝑙-thickness of 𝐸.  

     Under the second assumption of Lemma (2.1.31) there exists a linear continuous 

Sobolev extension operator 𝔈 ∶  𝑊𝐸
1,𝑝
(Λ)  → 𝑊𝐸

1,𝑝
(ℝ𝑑), see Theorem (2.1.25). Then the 

compactness of the embedding 𝑊𝐸
1,𝑝
(Λ)  ↪  𝐿𝑝(Λ) is classical and owing to Theorem 

(2.1.30) we can record the following special Poincar�́� inequality.  

Proposition (2.1.32)[39]: Let 𝑝 ∈ ]1,∞[ and let Λ be a bounded domain. Suppose that 

𝐸 ⊂ 𝜕Λ is 𝑙-thick for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑] and that for each 𝑥 ∈  𝜕Λ\ 𝐸̅̅ ̅̅ ̅̅ ̅̅  there is an open 

neighborhood 𝑈𝑥 of x such that Λ ∩ 𝑈𝑥 is a 𝑊1,𝑝-extension domain. Then 𝑊𝐸
1,𝑝
(Λ) may 

equivalently be normed by 𝑣 ⟼ (∫ |𝛻𝑣|𝑝𝑑𝑥
 

Λ
)
1

𝑝.  

      Now, also Theorem (2.1.2) follows. In fact, this result is just the synthesis of the above 

proposition with Theorems (2.1.13) and 3.9.  

Theorem (2.1.33)[39]: Let Ω ⊂ ℝ𝑑 be a bounded domain and 𝑝 ∈ ]1,∞[. Let 𝐷 ⊂  𝜕Ω 

be porous and 𝑙-thick for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑]. Finally assume that for every x ∈ 𝜕Ω\𝐷̅̅ ̅̅ ̅̅ ̅ 
there is an open neighborhood 𝑈𝑥 of x such that Ω ∩ 𝑈𝑥 is a 𝑊 

1,𝑝-extension domain. If 

𝑢 ∈ 𝑊 
1,𝑝(Ω) is such that 𝑢/𝑑𝑖𝑠𝑡𝐷 ∈  𝐿

𝑝(Ω), then already 𝑢 ∈  𝑊𝐷
1,𝑝
(Ω).  

Proof. The strategy of proof is to write 𝑢 as the sum of 𝑣 ∈  𝑊1,𝑝(Ω) with 𝑣/𝑑𝑖𝑠𝑡𝜕Ω   ∈
 𝐿𝑝(Ω) and 𝑤 ∈  𝑊1,𝑝 with support within a neighborhood of 𝜕Ω \ 𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅. Then 𝑣 can be 

handled by the following classical result.  

Proposition (2.1.34)[39]: ([49]) Let ∅ ⊊ Λ ⊊  ℝ𝑑  be open and let 𝑝 ∈ ]1,∞[. Then if 

𝑢 ∈  𝑊1,𝑝(Λ) and 𝑢/ 𝑑𝑖𝑠𝑡𝜕Λ ∈  𝐿
𝑝(Λ), it follows 𝑢 ∈  𝑊0

1,𝑝
(Λ).  

     For 𝑤 we can – since local extension operators are available – rely on the techniques 

developed. A key observation is an intrinsic relation between the property 
𝑢

𝑑𝑖𝑠𝑡𝐷
 ∈  𝐿𝑝(Ω) 

and Sobolev regularity of the function log(𝑑𝑖𝑠𝑡𝐷). In fact, a formal computation gives  

𝛻(𝑢 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐷)) =  𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐷)𝛻𝑢 +
𝑢

𝑑𝑖𝑠𝑡𝐷
 𝛻 𝑑𝑖𝑠𝑡𝐷 .  

Details are carried out in the following five consecutive steps.  
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Step 1: Splitting 𝑢 and handling the easy term as in the proof of Proposition (2.1.22) for 

every 𝑥 ∈  𝜕Ω \ 𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅, let 𝑈𝑥 be the open neighborhood of x from the assumption, let 

𝑈𝑥1  , . . . , 𝑈𝑥𝑛 be a finite subcovering of 𝜕Ω \ 𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅ and let 𝜀 >  0 be such that the sets 

𝑈𝑥1  , . . . , 𝑈𝑥𝑛 , together with 𝑈 ∶=  {𝑦 ∈ ℝ𝑑 ∶  𝑑𝑖𝑠𝑡(𝑦, 𝜕Ω \ 𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅)  >  𝜀}, form an open 

covering of Ω̅. Finally, let 𝜂, 𝜂1, . . . , 𝜂𝑛 be a subordinated 𝐶0
∞ -partition of unity. The 

described splitting is 𝑢 =  𝑣 + 𝑤, where 𝑣 ∶=  𝜂𝑢 and 𝑤 ∶=  ∑  𝜂𝑗  𝑢
𝑛
𝑗=1  =  (1 − 𝜂)𝑢. 

Since  

𝑑𝑖𝑠𝑡𝜕Ω(𝑥)  ≥  𝑚𝑖𝑛{𝜀, 𝑑𝑖𝑠𝑡𝐷(𝑥)}  ≥  𝑚𝑖𝑛{𝜀 𝑑𝑖𝑎𝑚(Ω)
−1, 1}  ·  𝑑𝑖𝑠𝑡𝐷(𝑥)  

holds for every 𝑥 ∈  𝑠𝑢𝑝𝑝(𝜂)  ∩ Ω , the function 𝑣 ∈  𝑊1,𝑝(Ω) satisfies  

∫|
𝑣

𝑑𝑖𝑠𝑡𝜕Ω
|
𝑝

 𝑑𝑥

 

Ω

 ≤  𝑐 ∫ |
𝑣

𝑑𝑖𝑠𝑡𝐷
|
𝑝

 𝑑𝑥

 

Ω

 ≤  𝑐 ∫ |
𝑢

𝑑𝑖𝑠𝑡𝐷
|
𝑝

 𝑑𝑥

 

Ω

<  ∞  

by assumption on 𝑢. Now, Proposition (2.1.34) yields 𝑣 ∈ 𝑊0
1,𝑝
(Ω)  ⊂  𝑊𝐷

1,𝑝
(Ω).  

Step 2: Extending 𝑤 by assumption the sets Ω ∩ 𝑈𝑥𝑗  , 1 ≤  𝑗 ≤  𝑛, are 𝑊 
1,𝑝-extension 

domains. Since 𝑤 =  (1 −  𝜂)𝑢, where (1 −  𝜂) has compact support in the union of 

these domains, an extension �̂�  ∈ 𝑊 
1,𝑝(ℝ𝑑) of 𝑤 ∈ 𝑊 

1,𝑝(Ω) with compact support 

within ⋃ 𝑈𝑥𝑗
𝑛
𝑗=1   can be constructed just as in the proof of Proposition (2.1.22). Now, if we 

can show 𝑤 ∈   𝑊𝐷
1,𝑝
(Ω), then by Step 1 also 𝑢 =  𝑣 +  𝑤 belongs to this space.  

Step 3: Estimating the trace of �̂�  

To prove �̂�  ∈  𝑊𝐷
1,𝑝
(ℝ𝑑 ) we rely once more on the techniques used in the proof of 

Lemma (2.1.23). So, let �̂� be the representative of �̂� defined on ℝ𝑑\ 𝑁 via  

�̂�(𝑦):= lim
𝑟→0
 

1

|𝐵(𝑦, 𝑟)|
∫  �̂� 𝑑𝑥

 

𝐵(𝑦,𝑟)

 ,  

where the exceptional set 𝑁 is of vanishing (1, 𝑝)-capacity. Put  

𝑈⋆ ∶=⋃𝑈𝑥𝑗

𝑛

𝑗=1

,     Ω⋆: =  Ω ∩ 𝑈⋆,    𝑎𝑛𝑑    𝐷⋆  =  𝐷 ∩ 𝑈⋆̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ⊆  𝜕Ω⋆.  

Since �̂� has support in 𝑈⋆ it holds �̂�(𝑦)  =  0 for every 𝑦 ∈  𝐷 \𝐷⋆. For the rest of the 

step let 𝑦 ∈ 𝐷⋆ \ 𝑁.  

     By Proposition (2.1.24)each set Ω ∩ 𝑈𝑥𝑗 is a 𝑑-set and it can readily be checked that 

this property inherits to their union Ω⋆. Hence, Ω⋆ satisfies the asymptotically 

nonvanishing relative volume condition (6) around y with a lower bound c > 0 on the 

limes inferior that is independent of 𝑦 and – just as in the proof of Lemma (2.1.23) – a set 

𝑊 ⊂ ℝ𝑑 can be constructed such that the restriction of �̂� to ℝ𝑑\ 𝑊 is continuous at 𝑦 

and such that |𝐵(𝑦, 𝑟)  ∩ Ω⋆ ∩ (ℝ
𝑑  \ 𝑊 )|  ≥  𝑐𝑟𝑑/2 if 𝑟 >  0 is small enough. By these 

properties of 𝑊:  

|�̂�(𝑦)| = |lim
𝑟→0
 

1

|𝐵(𝑦, 𝑟) ∩ Ω⋆ ∩ (ℝ
𝑑\ 𝑊 )|

∫ �̂� 𝑑𝑥

 

𝐵(𝑦,𝑟)∩Ω⋆∩(ℝ
𝑑 \𝑊 )

|   

≤ lim𝑠𝑢𝑝𝑟→0
2

𝑐𝑟𝑑
 ∫ |�̂�|𝑑𝑥

 

𝐵(𝑦,𝑟)∩Ω⋆ 
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   = lim 𝑠𝑢𝑝𝑟→0  
2

𝑐𝑟𝑑
 ∫ |𝑤| 𝑑𝑥

 

𝐵(𝑦,𝑟)∩Ω⋆ 

.  

In order to force these mean-value integral to vanish in the limit 𝑟 →  0, introduce the 

function log(𝑑𝑖𝑠𝑡𝐷)
−1, which is bounded above in absolute value by | 𝑙𝑜𝑔 𝑟|−1 on 𝐵(𝑦, 𝑟) 

if 𝑟 <  1. It follows  

|�̂�(𝑦)| ≤  𝑐 lim sup
𝑟→0
 | 𝑙𝑜𝑔 𝑟|−1  (

1

𝑟𝑑
 ∫ |𝑤 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐷)| 𝑑𝑥

 

𝐵(𝑦,𝑟)∩Ω⋆ 

) .         (12)  

So, since | 𝑙𝑜𝑔 𝑟|−1 →  0 as 𝑟 →  0 the function �̂� vanishes at every 𝑦 ∈  𝐷⋆ \ 𝑁 for 

which the mean value integrals on the right-hand side remain bounded as 𝑟 tends to zero.  

Step 4: Intermezzo on 𝑤 log(𝑑𝑖𝑠𝑡𝐷)  
In this step we prove the following result.  

Proposition (2.1.35)[39]: ([60]) Let 𝑠 ∈ ]0, 1[, 𝑝 ∈ ]1,∞[ and let Λ ⊂ ℝ𝑑 be a 𝑑-set. 

Then there exists a linear operator 𝔈 that extends every measurable function 𝑓 on Λ that 

satisfies  

 ‖𝑓‖𝐿𝑝(Λ) + (∬
|𝑓(𝑥) −  𝑓(𝑦)|𝑝

|𝑥 −  𝑦|𝑑+𝑠𝑝
 𝑑𝑥 𝑑𝑦

 

𝑥,𝑦∈Λ
|𝑥−𝑦|<1

)

1
𝑝

<   ∞  

to a function 𝔈𝑓 in the Besov space 𝐵𝑠
𝑝,𝑝
(ℝ𝑑) of all measurable functions 𝑔 on ℝ𝑑 such 

that  

‖𝑔‖𝐿𝑝(ℝ𝑑)  + (∬
|𝑔(𝑥) −  𝑔(𝑦)|𝑝

|𝑥 −  𝑦|𝑑+𝑠𝑝
 𝑑𝑥 𝑑𝑦𝑥

 

𝑥,𝑦∈ℝ𝑑
)

1
𝑝

 <  ∞.  

Lemma (2.1.36)[39]: Let 𝑝 ∈ ]1,∞[, let Λ ⊂  ℝ𝑑 be a bounded 𝑑-set, and let 𝐸 ⊂  𝜕Λ be 

closed and porous. Suppose 𝑢 ∈  𝑊1,𝑝(Λ) has an extension 𝑣 ∈ 𝑊1,𝑝(ℝ𝑑) and satisfies 
𝑢

𝑑𝑖𝑠𝑡𝐸
∈  𝐿𝑝(Λ). If 𝑟 ∈ ]1, 𝑝[ and 𝑠 ∈ ]0, 1[, then the function |𝑢 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸)| defined on Λ 

has an extension in the Bessel potential space 𝐻𝑠,𝑟(ℝ𝑑) that is positive almost everywhere. 

     For the proof we need the following extension result of Jonsson and Wallin.  

Proof. It suffices to construct an extension in  𝐵𝑠
𝑝,𝑝
 (ℝ𝑑) with the respective properties. 

Moreover, by the reverse triangle inequality it is enough to construct any extension 𝑓 ∈
 𝐵𝑠
𝑝,𝑝
(ℝ𝑑) of 𝑢 log 𝑑𝑖𝑠𝑡𝐸  – then |𝑓| can be used as the required extension of 

|𝑢 𝑙𝑜𝑔 𝑑𝑖𝑠𝑡𝐸  |. These considerations and Proposition (2.1.35) show that the claim follows 

provided  

‖𝑢 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐷)‖𝐿𝑟(Λ)  

+  (∬
|𝑢(𝑥)𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸(𝑥))  −  𝑢(𝑦)𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸(𝑦))|

𝑟

|𝑥 −  𝑦|𝑑+𝑠𝑟
 𝑑𝑥 𝑑𝑦

 

𝑥,𝑦∈Λ
|𝑥−𝑦|<1

)

1
𝑟

   (13) 

is finite.  

   To bound the 𝐿𝑟 norm on the left-hand side of (13) choose 𝑞 ∈ ]1,∞[ such that 
1

𝑟
 =

1

𝑝
 +

1

𝑞
 and apply H�̈�lder’s inequality  

‖𝑢 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸)‖𝐿𝑟(Λ)  ≤  ‖𝑢‖𝐿𝑝(Λ)‖log(𝑑𝑖𝑠𝑡𝐷)‖𝐿𝑞(Λ).  
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For the second term on the right-hand we use that the Aikawa dimension of the porous set 

𝐸 is strictly smaller than 𝑑. This entails for some 𝛼 <  𝑑 and some 𝑥 ∈  𝐸 the estimate   

∫𝑑𝑖𝑠𝑡𝐸(𝑥)
𝛼−𝑑  𝑑𝑥

 

Λ

 ≤ ∫   𝑑𝑖𝑠𝑡𝐸(𝑥)
𝛼−𝑑  𝑑𝑥

 

𝐵(𝑥,2 𝑑𝑖𝑎𝑚 Λ)

 ≤  𝑐𝛼(2 𝑑𝑖𝑎𝑚 Λ)
𝛼 < ∞. 

Hence, some negative power of 𝑑𝑖𝑠𝑡𝐸  is integrable on Λ and by subordination of 

logarithmic growth 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸)  ∈  𝐿
𝑞(Λ) follows. Altogether, 𝑢 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸)  ∈  𝐿

𝑟(Λ) 
taking care of the first term in (13).  

      By symmetry the domain of integration for the second term on the left-hand side of 

(13) can be restricted to 𝑑𝑖𝑠𝑡𝐸(𝑥)  ≥  𝑑𝑖𝑠𝑡𝐸(𝑦). By adding and subtracting the term 

𝑢(𝑦)𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸(𝑥)) it in fact suffices to prove that  

                     (∫ ∫
|𝑢(𝑥) −  𝑢(𝑦)|𝑟

|𝑥 −  𝑦|𝑑+𝑠𝑟
 | 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸(𝑥))|

𝑟
 𝑑𝑥 𝑑𝑦

 

Λ 

 

Λ

)

1/𝑟

                     (14) 

and  

(

 
 
∫|𝑢(𝑦)|𝑟 ∫

| 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸(𝑥)) −  𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸(𝑦))|
𝑟

|𝑥 −  𝑦|𝑑+𝑠𝑟
𝑑𝑥 𝑑𝑦

 

𝑥∈Λ
 𝑑𝑖𝑠𝑡𝐸(𝑥)≥𝑑𝑖𝑠𝑡𝐸(𝑦)

 

Λ

)

 
 

1/𝑟

(15) 

are finite. Fix 𝑠 < 𝑡 <  1, write (14) in the form  

(∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑟| 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸(𝑥))|

𝑟

|𝑥 −  𝑦|
𝑑𝑟
𝑝
+𝑡𝑟
|𝑥 −  𝑦|

𝑑𝑟
𝑞
+𝑠𝑟−𝑡𝑟

𝑑𝑥 𝑑𝑦

 

Λ

 

Λ

 )

1
𝑟

  

and apply H�̈�lder’s inequality with 
1

𝑟
 =

1

𝑝
 +

1

𝑞
 to bound it by  

≤    (∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 −  𝑦|𝑑+𝑡𝑝
𝑑𝑥 𝑑𝑦

 

Λ

 

Λ

 )

1
𝑝

(∫∫
| 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸(𝑥))|

𝑞

|𝑥 −  𝑦|𝑑+(𝑠−𝑡)𝑞
𝑑𝑦 𝑑𝑥

 

Λ

 

Λ

 )

1
𝑞

≤ ‖𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸)‖𝐿𝑞(Λ)   (∫∫
|𝑢(𝑥) − 𝑢(𝑦)|𝑝

|𝑥 −  𝑦|𝑑+𝑡𝑝
𝑑𝑥 𝑑𝑦

 

Λ

 

Λ

 )

1
𝑝

( ∫
1

|𝑦|𝑑+(𝑠−𝑡)𝑞
 𝑑𝑦

 

|𝑦|≤𝑑𝑖𝑎𝑚(Λ)

)

1
𝑞

  

Now, 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐸)  ∈  𝐿
𝑞(Λ) has been proved above and the third integral is absolutely 

convergent since 𝑑 + (𝑠 −  𝑡)𝑞 <  𝑑. Finally note that by assumption 𝑢 has an extension 

𝑣 ∈  𝑊1,𝑝(ℝ𝑑). Since 𝑊1,𝑝(ℝ𝑑)  ⊂  𝐵𝑠
𝑝,𝑝
(ℝ𝑑) the middle term above is finite as well.  

We show that the most interesting term (15) is finite. Here, the additional 

assumptions on 𝑢, 𝑠, and 𝑟 enter the game. By the mean value theorem for the logarithm 

and since 𝑑𝑖𝑠𝑡𝐸  is a contraction, the 𝑟-th power of this term is bounded above by   

∫|𝑢(𝑦)|𝑟 ∫
| 𝑑𝑖𝑠𝑡𝐸(𝑥) −  𝑑𝑖𝑠𝑡𝐸(𝑦)|

𝑟

𝑑𝑖𝑠𝑡𝐸(𝑦)
𝑟|𝑥 −  𝑦|𝑑+𝑠𝑟

 𝑑𝑥 𝑑𝑦 

 

 𝑥∈Λ
𝑑𝑖𝑠𝑡𝐸(𝑥)≥𝑑𝑖𝑠𝑡𝐸(𝑦)

 

Λ

≤ ∫ |
𝑢(𝑦)

𝑑𝑖𝑠𝑡𝐸(𝑦)
|

𝑟

∫  
|𝑥 −  𝑦|𝑟

|𝑥 −  𝑦|𝑑+𝑠𝑟
 𝑑𝑥 𝑑𝑦

 

Λ

 

Λ
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≤ ∫|
𝑢(𝑦)

𝑑𝑖𝑠𝑡𝐸(𝑦)
|

𝑟

𝑑𝑦 ∫
1

|𝑥|𝑑+𝑟(𝑠−1)
 𝑑𝑥 

 

|𝑥|≤𝑑𝑖𝑎𝑚(Λ)

 

Λ

. 

Now, the integral with respect to x is finite since 𝑟(𝑠 −  1)  <  0. The integral with 

respect to y is finite since by assumption 
𝑢

𝑑𝑖𝑠𝑡𝐸
 is 𝑝-integrable on the bounded domain Λ 

and thus 𝑟-integrable for every 𝑟 < p 

       On noting that by Definition (2.1.4) a subset of a porous set is again porous, Lemma 

(2.1.36) applies to the bounded 𝑑-set Ω⋆ and the porous set D⋆ ⊂  𝐷. Moreover, 𝑤 =
 (1 −  𝜂)𝑢 ∈  𝑊1,𝑝(Ω⋆) has the extension �̂�  ∈  𝑊1,𝑝(ℝ𝑑) and satisfies  

∫|
𝑤(𝑥)

𝑑𝑖𝑠𝑡𝐷⋆(𝑥)
|

𝑝

𝑑𝑥

 

Ω⋆

 ≤  ‖1 −  𝜂‖∞  ∫ |
𝑤(𝑥)

𝑑𝑖𝑠𝑡𝐷(𝑥)
|

𝑝

𝑑𝑥

 

Ω 

<  ∞.  

Hence we can record:  

Corollary (2.1.37)[39]: For every  𝑟 ∈ ]1, 𝑝[  and every  𝑠 ∈ ]0, 1[ the function 

|𝑤 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐷⋆)| defined on Ω⋆ has an extension 𝑓𝑠,𝑟  ∈  𝐻
𝑠,𝑟(ℝ𝑑) that is positive almost 

everywhere. 

Step 5: Re-inspecting the right-hand side of (12)  

We return to (12). Given 𝑟 ∈ ]1, 𝑝[ and 𝑠 ∈ ]0, 1[ let 𝑓𝑠,𝑟  ∈  𝐻
𝑠,𝑟(ℝ𝑑) be as in Corollary 

(2.1.37). By (3) we can infer  

lim sup𝑟→0
1

𝑟𝑑
∫ |𝑤 𝑙𝑜𝑔(𝑑𝑖𝑠𝑡𝐷)| 𝑑𝑥

 

𝐵(𝑦,𝑟)∩Ω⋆

   ≤  lim sup𝑟→0
1

𝑟𝑑
∫  𝑓𝑠,𝑟  𝑑𝑥

 

𝐵(𝑦,𝑟)

 <  ∞  

for (𝑠, 𝑟)-quasievery 𝑦 ∈ 𝐷⋆ \ 𝑁. By the conclusion of Step 3 this implies �̂�(𝑦)  =  0 for 

(𝑠, 𝑟)-quasievery 𝑦 ∈ 𝐷⋆ \ 𝑁. To proceed further, we distinguish two cases:  

(i) It holds 𝑝 ≤  𝑑. Since the product 𝑠𝑟 <  𝑝 ≤  𝑑 can get arbitrarily close to 𝑝, 
Lemma (2.1.8) yields for every 𝑟 ∈ ]1, 𝑝[ that �̂� =  0 holds (1, 𝑟)-
quasieverywhere on 𝐷⋆ \ 𝑁. Moreover, since 𝐶1,𝑝(𝑁)  =  0 by definition, �̂� =

 0 holds even (1, 𝑟)-quasieverywhere on 𝐷⋆.  
(ii) It holds 𝑝 > 𝑑. Then �̂� is the continuous representative of �̂�  ∈ 𝑊1,𝑝(ℝ𝑑  ) and 

𝑁 is empty, see the beginning of Step 3. Moreover, we can choose 𝑠 and 𝑟 such 

that 𝑑 −  𝑙 <  𝑠𝑟 and conclude from the comparison theorem, Theorem (2.1.9), 

that �̂� vanishes 𝐻𝑙
∞ -a.e. on 𝐷⋆. Since 𝐷 is 𝑙-thick and 𝑈⋆ is open, for each 𝑦 ∈

 𝐷 ∩ 𝑈⋆ the set 𝐵(𝑦, 𝑟)  ∩  𝐷 ∩ 𝑈⋆ coincides with 𝐵(𝑦, 𝑟)  ∩  𝐷 provided 𝑟 >
 0 is small enough and thus has strictly positive 𝐻𝑙

∞ -measure. So, the continuous 

function �̂� has to vanish everywhere on 𝐷 ∩ 𝑈⋆ as well as on the closure of the 

latter set – which by definition is 𝐷⋆.  
      Summing up, �̂� =  0 has been shown to hold (1, 𝑟)-quasieverywhere on 𝐷⋆ for every 

𝑟 ∈ ]1, 𝑝[. From the beginning of Step 3 we also know that �̂� vanishes everywhere on 

𝐷 \ 𝐷⋆ and as �̂�  ∈  𝑊1,𝑝(ℝ𝑑) has compact support, H�̈�lder’s inequality yields 𝑤 ̂ ∈
 𝑊1,𝑟(ℝ𝑑).  
     Combining these two observations with Theorem (2.1.11) we are eventually led to  

                             �̂�  ∈  𝑊1,𝑝(ℝ𝑑) ∩ ⋂ 𝑊𝐷
1,𝑟(ℝ𝑑)

1<𝑟<𝑝

.                                       (16)  

We continue by quoting the following result of Hedberg and Kilpel�̈�inen.  
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Proposition (2.1.38)[39]: ([59]) Let 𝑝 ∈ ]1,∞[ and let  Λ ⊂  ℝ𝑑 be a bounded domain 

whose boundary is 𝑙-thick for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑]. Then 

𝑊1,𝑝(Λ)  ∩ ⋂ 𝑊𝐷
1,𝑟(Λ)

1<𝑟<𝑝

 ⊂  𝑊0
1,𝑝
(Λ). 

     In order to apply this result to the case of mixed boundary conditions, we proceed 

similarly to the proof of Theorem (2.1.13): With 𝐵 ⊂ ℝ𝑑 an open ball that contains the 

compact support of �̂� define again  

𝒞 ∶=  {𝑀 ⊂  𝐵 \ 𝐷 ∶  𝑀 𝑜𝑝𝑒𝑛, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 Ω ⊂  𝑀} 
and  

Ω• ∶= ⋃𝑀

𝑀∈𝒞

 .  

Then 𝜕Ω• ∈  {𝐷, 𝐷 ∪ 𝜕𝐵} by Corollary (2.1.17), subsequent to which it is also shown that 

𝜕Ω• is 𝑚-thick for some 𝑚 ∈ ]𝑑 −  𝑝, 𝑑]. Finally, let 𝜂 ∈  𝐶0
∞(𝐵) be identically one on 

the support of �̂�. As 𝜙 ⟼ (𝜂𝜙)|Ω• induces a bounded operator 𝑊𝐷
1,𝑝
(ℝ𝑑)  →  𝑊0

1,𝑝
(Ω•), 

it follows from (16) that  

�̂�|Ω• = (𝜂�̂�)|Ω• ∈  𝑊
1,𝑝(Ω•)  ∩ ⋂ 𝑊0

1,𝑟(Ω•)

1<𝑟<𝑝

  

and thus �̂�|Ω• ∈  𝑊0
1,𝑝
(Ω•) thanks to Proposition (2.1.38). Since by construction Ω ⊂ Ω• 

and 𝐷 ⊂  𝜕Ω•, we eventually conclude  

𝑤 = �̂�|Ω  ∈  𝑊𝐷
1,𝑝
(Ω)  

and the proof is complete.  

What is the most restricting condition in Theorem (2.1.13)?, the answer doubtlessly 

is the assumption that a global extension operator shall exist. Certainly, this excludes all 

geometries that include cracks not belonging completely to the Dirichlet boundary part as 

in Fig. (2).  

     Since the distance function 𝑑𝑖𝑠𝑡𝐷 measures only the distance to the Dirichlet boundary 

part 𝐷, points in 𝜕Ω that are far from 𝐷 should not be of great relevance in view of the 

Hardy inequality (4). In the following considerations we intend to make this precise. Let 

𝑈, 𝑉 ⊂ ℝ𝑑 be two open, bounded sets with the properties  

                            𝐷 ⊂  𝑈,    �̅�  ∩  𝐷 =  ∅,    Ω̅ ⊂  𝑈 ∪  𝑉.                                  (17) 
The philosophy behind this is to take 𝑈 as a small neighborhood of 𝐷 which – desirably – 

excludes the ‘nasty parts’ of 𝜕Ω \ 𝐷. More properties of 𝑈, 𝑉 will be specified below.  

 
Fig. (2)[39]: The domain Ω is the cube minus the triangle ∑. The Dirichlet boundary part 

𝐷 consists exactly of the six outer sides of the cube minus the droplet ϒ on the cover plate 
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Let 𝜂𝑈  ∈  𝐶0
∞(𝑈 ), 𝜂𝑉  ∈ 𝐶0

∞ (𝑉 ) be two functions with 𝜂𝑈  +  𝜂𝑉  =  1 on Ω̅ . Then one 

can estimate  

(∫  |𝑢|𝑝 𝑑𝑖𝑠𝑡𝐷
−𝑝
 𝑑𝑥

 

Ω

)

1
𝑝

 ≤ ( ∫ |𝜂𝑈𝑢|
𝑝 𝑑𝑖𝑠𝑡𝐷

−𝑝
 𝑑𝑥

 

 𝑈∩ Ω

)

1
𝑝

 + ( ∫  |𝜂𝑉𝑢|
𝑝 𝑑𝑖𝑠𝑡𝐷

−𝑝
 𝑑𝑥

 

𝑉 ∩Ω

)

1
𝑝

  . 

Since 𝑑𝑖𝑠𝑡𝐷 is larger than some 𝜀 >  0 on supp(𝜂𝑉  ) ⊂  𝑉 , the second term can be 

estimated by 
1

𝜀
(∫  |𝑢|𝑝𝑑𝑥
 

Ω
)
1

𝑝. If one assumes, as above, Poincar�́�’s inequality, then this 

term may be estimated as required. In order to provide an adequate estimate also for the 

first term, we introduce the following assumption.  

Assumption (2.1.39)[39]: The set 𝑈 from above can be chosen in such a way that Λ:=
Ω ∩  𝑈 is again a domain and if one puts Γ:=  (𝜕Ω \ 𝐷)  ∩  𝑈 and 𝐸 ∶=  𝜕Λ\Γ , then there 

is a linear, continuous extension operator 𝔉 ∶  𝑊𝐸
1,𝑝
(Λ)  →  𝑊𝐸

1,𝑝
(ℝ𝑑).  

    Clearly, this assumption is weaker than Condition (iii) in Theorem (2.1.13); in other 

words: Condition (iii) in Theorem (2.1.13) requires Assumption (2.1.39) to hold for an 

open set 𝑈 ⊃ Ω̅ .  
We discuss the sense of Assumption (2.1.39) in extenso. It allows to focus on the 

extension not of the functions 𝑢 but the functions 𝜂𝑈𝑢, which live on a set whose boundary 

does (possibly) not include the ‘nasty parts’ of 𝜕Ω \ 𝐷 that are an obstruction against a 

global extension operator. In detail: one first observes that, for 𝜂 =  𝜂𝑈  ∈ 𝐶0
∞(𝑈 ) and 

𝑣 ∈  𝑊𝐷
1,𝑝
(Ω), the function 𝜂𝑣|Λ even belongs to 𝑊𝐸

1,𝑝
(Λ), see [57]. Secondly, we have by 

the definition of 𝐸  

𝜕𝑈 ∩  Ω =  (𝜕𝑈 ∩  Ω) \  Γ ⊂  𝜕Λ\ Γ =  𝐸. 
This shows that the ‘new’ boundary part 𝜕𝑈 ∩ Ω of Λ belongs to 𝐸 and is, therefore, 

uncritical in view of extension. Thirdly, one has 𝐷 =  𝐷 ∩  𝑈 ⊆  𝜕Ω ∩  𝑈 ⊂  𝜕Λ, and it 

is clear that the ‘new Dirichlet boundary part’ 𝐸 includes the ‘old’ one 𝐷. Hence, the 

extension operator 𝔉 may be viewed also as a continuous one between 𝑊𝐸
1,𝑝
(Λ) and 

𝑊𝐷
1,𝑝
(ℝ𝑑). Thus, concerning 𝑣 ∶=  𝜂𝑢 =  𝜂𝑈  𝑢 one is – mutatis mutandis – again in the 

situation: 𝜂𝑢 ∈ 𝑊𝐸
1,𝑝
(Λ)  ⊂  𝑊𝐷

1,𝑝
(Λ) admits an extension 𝔉(𝜂𝑢)  ∈  𝑊𝐸

1,𝑝
(ℝ𝑑)  ⊆

 𝑊𝐷
1,𝑝
(ℝ𝑑), which satisfies the estimate ‖𝔉(𝜂𝑢)‖

𝑊𝐷
1,𝑝
(ℝ𝑑)

≤  𝑐‖𝜂𝑢‖
𝑊𝐷
1,𝑝
(Λ)
, the constant 𝑐 

being independent from 𝑢. This leads, as above, to a corresponding (continuous) extension 

operator 𝔉• ∶  𝑊𝐸
1,𝑝
(Λ)  →  𝑊0

1,𝑝
 (Λ•). Here, of course, Λ• has again to be defined as the 

connected component of 𝐵\𝐷 that contains Λ. Thus one may proceed again as in the proof 

of Theorem (2.1.13), and gets, for 𝑢 ∈  𝑊𝐷
1,𝑝
(Ω),  

 ∫ (
|𝜂𝑢|

𝑑𝑖𝑠𝑡𝐷
)

𝑝

𝑑𝑥

 

Ω

 =  ∫(
|𝜂𝑢|

𝑑𝑖𝑠𝑡𝐷
)

𝑝

𝑑𝑥

 

Λ

 ≤  ∫(
|𝔉•(𝜂𝑢)|

𝑑𝑖𝑠𝑡𝜕Λ•
)

𝑝

𝑑𝑥

 

Λ•

 ≤  𝑐‖𝛻(𝔉•(𝜂𝑢))‖𝐿𝑝(Λ•)
𝑝

 

≤  𝑐‖𝔉•(𝜂𝑢)‖𝑊 1,𝑝(Λ•)
𝑝

 ≤  𝑐‖𝜂𝑢‖
𝑊1,𝑝(Λ)
𝑝

 ≤  𝑐 (‖𝑢‖𝐿𝑝(Ω)
𝑝

+ ‖𝛻𝑢‖𝐿𝑝(Ω)
𝑝

), 

since 𝜂𝑢 belongs to 𝑊𝐸
1,𝑝
(Λ)  ⊂  𝑊𝐷

1,𝑝
(Λ). Exploiting a last time Poincar�́�’s inequality, 

whose validity will be discussed in a moment, one gets the desired estimate.  

     When aiming at Poincar�́�’s inequality, it seems convenient to follow again the 

argument in the proof of Proposition (2.1.30): as pointed out above, the property 𝟙 ∉
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𝑊𝐷
1,𝑝
(Ω) has to do only with the local behavior of Ω around the points of 𝐷, cf. Lemma 

(2.1.31). 

    Concerning the compactness of the embedding 𝑊𝐷
1,𝑝
(Ω)  ↪  𝐿𝑝(Ω), one does not need 

the existence of a global extension operator 𝔈 ∶ 𝑊𝐷
1,𝑝
(Ω) → 𝑊 

1,𝑝(ℝ𝑑). In fact, writing for 

every 𝑣 ∈ 𝑊𝐷
1,𝑝
(Ω) again 𝑣 =  𝜂𝑈 𝑣 +  𝜂𝑉  𝑣 and supposing Assumption (2.1.39), one 

gets the following:  

     If {𝑣𝑘}𝑘 is a bounded sequence in 𝑊𝐷
1,𝑝
(Ω), then the sequence {𝜂𝑈 𝑣𝑘|Λ}𝑘 is bounded 

in 𝑊𝐸
1,𝑝
(Λ). Due to the extendability property, this sequence contains a subsequence 

{𝜂𝑈  𝑣𝑘𝑙|Λ}𝑙
  that converges in 𝐿𝑝(Λ) to an element 𝑣𝑈 . Thus, {𝜂𝑈  𝑣𝑘𝑙}𝑙

 converges to the 

function on Ω that equals 𝑣𝑈 on Λ and 0 on Ω\Λ. The elements 𝜂𝑉𝑣𝑘 in fact live on the set 

Π:=  Ω ∩  𝑉 and are zero on Ω\V . In particular they are zero in a neighborhood of 𝐷. 

Moreover, they form a bounded subset of 𝑊1,𝑝(Π). Therefore it makes sense to require 

that Π is again a domain, and, secondly that Π meets one of the well-known compactness 

criteria 𝑊1,𝑝(Π)  ↪  𝐿𝑝(Π), cf. [77]. Keep in mind that such requirements are much 

weaker than the global 𝑊1,𝑝-extendability, and in particular include the example in Fig. 

(2), as long as the triangle Σ has a positive distance to the six outer sides of the cube. 

Resting on these criteria, one obtains again the convergence of a subsequence {𝜂𝑉𝑣𝑘𝑙)|Π}𝑙
 

that converges in 𝐿𝑝(Π) towards a function 𝑣𝑉 . The sequence {𝜂𝑉𝑣𝑘𝑙}𝑙
 then converges in 

𝐿𝑝(Ω) to a function that equals 𝑣𝑉 on Π and zero on Ω\ 𝑉 .  

     Altogether, we have extracted a subsequence of {𝑣𝑘}𝑘 that converges in 𝐿𝑝(Ω).  
     We summarize these considerations in the following theorem.  

Theorem (2.1.40)[39]: Let Ω ⊂ ℝ𝑑 be a bounded domain and 𝐷 ⊂  𝜕Ω be a closed part of 

the boundary. Suppose that the following three conditions are satisfied:  

(i) The set 𝐷 is 𝑙-thick for some 𝑙 ∈ ]𝑑 −  𝑝, 𝑑].  

(ii) The space 𝑊𝐷
1,𝑝
(Ω) can be equivalently normed by ‖𝛻 · ‖𝐿𝑝(Ω).  

(iii) There are two open sets 𝑈, 𝑉 ⊂  ℝ𝑑 that satisfy (17) and 𝑈 satisfies Assumption 

(2.1.39).  

Then there is a constant 𝑐 >  0 such that Hardy’s inequality  

∫|
𝑢

𝑑𝑖𝑠𝑡𝐷
|
𝑝

 𝑑𝑥

 

Ω

 ≤  𝑐 ∫|𝛻𝑢|𝑝 𝑑𝑥

 

Ω

   

holds for all 𝑢 ∈ 𝑊𝐷
1,𝑝
(Ω).  

Section (2.2): Strongly Lipschitz Domains 

We consider the following class of elliptic operators. Let 𝐴(𝑥) be an 𝑛 ×  𝑛 matrix 

function with bounded measurable complex-valued entries on ℝ𝑛 and assume the 

ellipticity condition 𝐴 + 𝐴∗  ≥  2𝛿 𝐼𝑑 almost everywhere for some δ > 0, let Ω be a 

strongly Lipschitz domain of ℝ𝑛 and 𝑉 =  𝐻0
1 (Ω) or 𝑉 =  𝐻1(Ω). Define 𝐿 =

 − div (𝐴𝛻) as the maximal accretive operator associated to the regularly accretive 

sesquilinear form  ∫  
Ω
 𝐴𝛻𝑓 𝛻𝑔 defined on × 𝑉 . Since the choice of the variational space 

defines the boundary condition,we shall speak of Dirichlet (𝑉 =  𝐻0
1 (Ω)) and Neumann 

(𝑉 =  𝐻1(Ω)). We write 𝐿 =  (𝐴, Ω, 𝑉 ) adopting the notation in [94],where we discussed 

the Kato problem for such operators,that is the comparisons between ‖𝐿1 2⁄ 𝑓‖
2
 and 

‖𝛻𝑓‖2.  



45 

We study the 𝐿𝑝 theory of the square root of 𝐿 for 𝑝 ≠ 2, that is,to compare 

‖𝐿1 2⁄ 𝑓‖
𝑝
 with ‖𝛻𝑓‖𝑝 or to compare the corresponding local norms obtained by adding 

‖𝑓‖𝑝 to both terms. These questions are important for at least two reasons: (i) identifying 

the 𝐿𝑝-domain of 𝐿1 2⁄  with a “geometric” Sobolev space, and (ii) solving elliptic or 

parabolic PDE’s associated with 𝐿 on cylinder domains in ℝ+
𝑛+1 with bottom boundary a 

Lipschitz set in ℝ𝑛. Let us recall what is known about this problem.  

First, in one dimension, this question is studied in [93] on the real line and, then, in 

[92] for any type of boundary condition on an interval: the above (local) 𝐿𝑝-norms are 

equivalent when 1 < 𝑝 <  ∞.  

When 𝑛 ≥  2 (which is assumed from now on),we showed in [94] the following 

result on ℝ𝑛: Assume that 𝛻𝐿−1 2⁄ ,the “Riesz transform associated to 𝐿”,is bounded on 

𝐿2(ℝ𝑛) and that the kernel 𝐾𝑡(𝑥, 𝑦) of 𝑒−𝑡𝐿 satisfies Gaussian upper bounds and Hölder 

regularity in the second variable for all 𝑡 >  0. Then 𝛻𝐿−1 2⁄  extends to a bounded 

operator on the Hardy space 𝐻1(ℝ𝑛),hence on 𝐿𝑝(ℝ𝑛) for 1 < 𝑝 <  2. Furthermore,one 

cannot hope for positive results when 𝑝 >  2 for the class of all elliptic operators by a 

counterexample of Kenig presented in [94]. Recently, using a generalization of Calderon-

Zygmund theory, Duong and McIntosh were able to remove the Hölder regularity 

assumption and to prove 𝐿𝑝(ℝ𝑛)-boundedness when 1 < 𝑝 <  2 by interpolation with a 

weak type (1,1) estimate. Their technique also applies on arbitrary domains provided a 

suitable heat kernel upper bound holds. This is the case on Lipschitz domains for real 

symmetric operators subject to Dirichlet or Neumann boundary condition [101]. Jerison 

and Kenig [104] proved earlier 𝐿𝑝-boundedness of the Riesz transform of the Dirichlet 

Laplacian (that is −∆ =  (𝐼 𝑑, Ω, 𝐻0
1 (Ω)) in our notation) on bounded Lipschitz domains 

for 1 < 𝑝 < 𝑝𝑜  for 𝑝𝑜 > 3 (for 2 < 𝑝 <  𝑝𝑜  this requires specific features of potential 

theory). We learned that similar results to that of Jerison and Kenig for the Neumann 

Laplacian (𝑖𝑒 − ∆ =  (𝐼 𝑑, Ω, 𝐻1(Ω))) on bounded Lipschitz domains are in Mendez and 

Mitrea [108]. 

Converse inequalities of the type ‖𝐿1 2⁄ 𝑓‖
𝑝
 ≤  𝑐‖𝛻𝑓‖𝑝 (∗) are consequences of 

inequalities ‖𝛻𝑓‖𝑝′  ≤  𝑐‖(𝐿
∗)1 2⁄ 𝑓‖

𝑝′
 in the dual range,so that one obtains no better than 

(∗) for 𝑝 ≥  2 by a duality argument. What about  <  2 ? In [94],we showed (∗) for 1 <

𝑝 <  ∞ in the ℝ𝑛 case provided that ‖𝐿1 2⁄ 𝑓 ‖
2
 ≤  𝑐‖𝛻𝑓‖2 holds and that the heat kernel 

𝐾𝑡(𝑥, 𝑦) has Gaussian upper bounds and is Hölder continuous in the first variable for all 

𝑡 >  0. The idea of proof is the construction of a Calderon-Zygmund operator 𝑈 for which 

𝐿1 2⁄ 𝑓 =  𝑈𝛻𝑓 when 𝑓 ∈  𝐻1(ℝ𝑛). On bounded Lipschitz domains,(∗) is proved with the 

full range of 𝑝’s for the Dirichlet Laplacian [104] and for the Neumann Laplacian [108] 

(see [106],Problem 3.3.16,for earlier results).  

We prove (∗) in the full range of 𝑝′ s on any strongly Lipschitz domain for Dirichlet 

or Neumann elliptic operators subject to the same hypotheses as the ones described for ℝ𝑛. 

Our method relies on a singular integral approach and leads to a precise representation of 

the square root of 𝐿 on special Lipschitz domains,namely 𝐿1 2⁄  =  𝑇1𝛻 + 𝑇2(−∆)
1 2⁄  +

 𝐻𝛻 +  𝐵𝑇 𝑟. Let us describe the terms: 𝑇1 and 𝑇2 are Calderon-Zygmund operators and 

the boundedness of 𝑇1 relies on a square function estimate; 𝐻 is an operator of Hardy type: 

it is bounded on 𝐿𝑝(Ω) when 1 < 𝑝 <  ∞;  𝑇𝑟 is the trace operator,known to extend 

boundedly from 𝑊1,𝑝(Ω) onto the Besov space 𝐵 1−1 𝑝⁄
𝑝,𝑝

(𝜕Ω) when 1 < 𝑝 <  ∞ (see [62]); 
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and 𝐵 is an operator of Hardy type on the boundary: it is bounded from 𝐵 1−1 𝑝⁄
𝑝,𝑝

(𝜕Ω) to 

𝐿𝑝(Ω). The last two terms arise from the study of a commutator (which appears in [95]) 

between partial derivatives and the resolvent of the Laplacian; their analysis bears on the 

geometry of the boundary. Here the Laplacian is taken with the same “boundary 

condition” as 𝐿 (ie the same variational space  ). In the case of strongly Lipschitz 

domains,the analysis of the first two terms remains unchanged,while error terms appear in 

the last two due to localisation, and this brings a term 𝑐‖𝑓‖𝑝 in the right hand side of (*).  

Our approach has two features. First,it applies in the same flow to the Laplacian and 

general operators. Indeed,if 𝐿 =  −∆ there is such a representation with 𝑇2  =  0. 

Secondly,except for technical arguments,the treatment of Dirichlet and Neumann 

boundary conditions is similar.  

The difficult part of such a program is to establish the 𝐿2 -boundedness of 𝑇1 

because we are unable to check that “𝑇1(20)” is in BMO,hence to apply the David-Journé 

theorem. This boundedness is, in fact, equivalent to the 𝑝 =  2 case of (*) via the use of 

quadratic functionals (when we assume heat kernel upper bounds).  

Finally, our representation of square roots requires appropriate heat kernel estimates 

the validity of which being studied in [96]. They give localized 𝐿2-estimates for the 

gradient of heat kernels, some of which are similar to the weighted 𝐿2-estimates 

encountered,for example,when dealing with the Laplace-Beltrami on a manifold and 

obtained in via differential inequalities [102]. Here the approach relies on parabolic 

Caccioppoli inequalities which turn out to be valid for any elliptic operator.  

We are given a complex elliptic operator 𝐿 =  (𝐴, Ω, 𝑉 ). The notation ‖. ‖𝑝 stands 

for the norm on 𝐿𝑝(Ω). In order to state the main results,let us discuss the required 

hypotheses on 𝐿.  

(H1)𝐿2 theory:  

‖𝐿1 2⁄  𝑓‖
2
 ≤  𝑐‖𝛻𝑓‖2, ∀ 𝑓 ∈  𝑉,                              (18) 

or  

‖𝐿1 2⁄  𝑓‖
2
 ≤  𝑐(‖𝛻𝑓‖2  +  ‖𝑓‖2), ∀ 𝑓 ∈  𝑉.          (19) 

(H2) Gaussian upper bound: there exists 𝜏 ∈  (0,∞] such that for all real                                                             

 𝑡 ∈  (0, 𝜏 ],the kernel of 𝑒−𝑡𝐿,denoted by 𝐾𝑡(𝑥, 𝑦),is a measurable function on Ω × Ω and 

there exist constants 𝐶𝐺  > 0 and α > 0 such that  

|𝐾𝑡(𝑥, 𝑦)|  ≤
𝐶𝐺

𝑡𝑛 2⁄
𝑒−
𝛼|𝑥−𝑦|2

𝑡  , 𝑡 ∈  (0, 𝜏 ], 𝑎. 𝑒. on Ω ×  Ω .                  (20) 

(H3) Hölder regularity in the first variable: there exists 𝜏 ∈  (0,∞] such that for all 𝑦 ∈
 Ω and all real 𝑡 ∈  (0, 𝜏 ], 𝑥 →  𝐾𝑡(𝑥, 𝑦) is a Hölder continuous function in Ω and there 

exist constants 𝐶𝐻  >  0 and   µ > 0 such that  

|𝐾𝑡(𝑥, 𝑦) − 𝐾𝑡(𝑥 , 𝑦)| ≤
𝐶𝐻

𝑡𝑛 2⁄

|𝑥 − 𝑥′|µ

𝑡µ 2⁄
 , 𝑡 ∈  (0, 𝜏 ], 𝑥, 𝑥′, 𝑦 ∈  Ω.            (21) 

(H4) Uniform 𝐿𝑝(Ω) boundedness of 𝑒−𝑡𝐿, 𝑡 >  0,for all 1 < 𝑝 <  ∞ if Ω unbounded.  

The hypothesis (H1) not only implies that 𝑉 ⊂ 𝒟(𝐿1 2⁄ ) which is a starting point,but 

is also equivalent to a key estimate proved.  

Added in proof: the 𝐿2-theory is now valid in full generality,hence (H1) is satisfied for all 

𝐿 as above (Square roots of elliptic second order divergence operators on strongly 

Lipschitz domains: 𝐿2-theory,preprint. P. Auscher and Ph. Tchamitchian). This improves 

the conclusions of our Theorem (2.2.2).  
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The hypotheses (H2) and (H3) are used to obtain size and regularity estimates for 

various kernels. Such hypotheses depend on the coef- ficients,the domain and the 

boundary condition (see [96]). For example,they hold for real coefficients (again, Ω is a 

strongly Lipschitz domain and 𝑉 =  𝐻1 or 𝐻0
1 ): the value of τ is always +∞ except when 

Ω is bounded and V = 𝐻1(Ω).  

The last hypothesis is the least important; it is fulfilled if (H2) holds with τ = ∞.  

Finally,it is no loss of generality to assume τ = 1 when it is finite.  

Let 1 < 𝑝 <  ∞. Define 𝑉𝑝 (resp. �̇�𝑝) as the completion of 𝑉 ∩ 𝑊1,𝑝(Ω) under 

‖𝛻𝑓‖𝑝 + ‖𝑓‖𝑝 (resp. ‖𝛻𝑓‖𝑝). Since Ω is Lipschitz, 𝑉𝑝  =  𝑊1,𝑝(Ω) when 𝑉 =  𝐻1(Ω) 

and 𝑉𝑝  =  𝑊0
1,𝑝
 (Ω) when 𝑉 =  𝐻0

1 (Ω). When Ω is furthermore bounded, �̇�𝑝  =  {𝑓 ∈

 𝑉𝑝;   ∫  
Ω
 𝑓 =  0} when 𝑉 =  𝐻1(Ω) and �̇�𝑝  =  𝑉𝑝 when 𝑉 =  𝐻0

1 (Ω).  

Corollary (2.2.1)[90]: Under the assumptions of Theorem (2.2.9), 𝐿1 2⁄  extends to a 

bounded operator from 𝑉𝑝 to 𝐿𝑝 (and from �̇�𝑝 to 𝐿𝑝 if the homogeneous inequality holds).  

We with our conclusions in the case of bounded domains. The case of other 

domains will be described.  

Theorem (2.2.2)[90]: Let Ω be a bounded Lipschitz domain with Lipschitz constant 

𝑀,𝐴 be an elliptic matrix with ellipticity constant δ and 𝐿 =  (𝐴, Ω, 𝑉 ) be subject to 

Dirichlet or Neumann boundary condition. Then for all 1 < 𝑝 <  ∞,  

‖𝐿1 2⁄  𝑓‖
𝑝
 ≤  𝑐‖𝛻𝑓‖𝑝, ∀ 𝑓 ∈  �̇�𝑝                                  (22) 

holds under one of the following conditions:  

(i) A is real-valued and symmetric,  

(ii) 𝑛 =  2 and 𝐴 ∈  𝐴𝐵𝑀𝑂𝜀(Ω) for some 𝜀 =  𝜀(𝛿,𝑀)  >  0,  

(iii) 𝑛 ≥  3, A real and 𝐴 ∈  𝐴𝐵𝑀𝑂𝜀(Ω) for some 𝜀 =  𝜀(𝑛, 𝛿,𝑀)  >  0,  

(iv) 𝑛 ≥  3, Ω is 𝐶1 or has small enough Lipschitz constant, and the distance in 𝐵𝑀𝑂 of 𝐴 

to vmo is small enough.  

Proof. It amounts to checking the hypotheses of Theorem (2.2.9) for each item. First, (H1) 

is trivial for item 1 and already observed for the other items. The validity of (H2-H3) in 

the four items can be read of Theorem 7 in [96].  

 The definition of the Lipschitz constant will be recalled. The class 𝐴𝐵𝑀𝑂𝜀(Ω) is 

introduced in [97]: given 𝜀 >  0, a function 𝑓 ∈  𝐵𝑀𝑂(Ω) belongs to 𝐴𝐵𝑀𝑂𝜀(Ω) if there 

exists 𝜂 >  0 such that  

∑ 

𝑖

 ∫  
𝑄𝑖∩Ω

 |𝑓 − 𝑚𝑄𝑖∩Ω 𝑓|
2
  ≤  𝜀|𝑄 ∩  Ω|, 

for all cubes 𝑄 ∈  𝑄Ω with sidelength ℓ(𝑄)  ≤  1 and for all families 𝑄𝑖 , 𝑖 ∈  𝐼 ,of 

subcubes of 𝑄 having disjoint interiors,such that ℓ (𝑄𝑖)  ≤  𝜂/(𝑄) and 𝑄𝑖  ∈  𝑄Ω. This 

class contains 𝐵𝑀𝑂-perturbations of the spaces 𝐵𝑈𝐶, vmo and 𝑀𝐻𝑠 whose elements are 

pointwise multipliers of the Sobolev space 𝐻𝑠 . Theorem 28 in [97] states that (𝐾loc) holds 

when the coefficients of 𝐿 belongs to some 𝐴𝐵𝑀𝑂𝜀(Ω) for small enough ε > 0,which 

implies that (H1) holds in item 2,3,and 4.  

Eventually, we obtain  

Theorem (2.2.3)[90]: Assume that one of the conditions in the above theorem holds. 

Then, there exists 𝜀 =  𝜀(𝐿)  >  0 such that for 1 < 𝑝 <  2 +  𝜀, the extension of  𝐿1 2⁄  to 

�̇�𝑝 is an isomorphism onto 𝐿𝑝(Ω), and ‖𝛻𝑓‖𝑝 and ‖𝐿1 2⁄ 𝑓 ‖
𝑝
 are two equivalent norms on 

�̇�𝑝.  
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This result is optimal in the class of elliptic operators by adapting Kenig’s 

counterexample (see [94]). Note that ε(−∆) > 1 if 𝑛 ≥ 3 for both the Dirichlet and 

Neumann Laplacians and ε(−∆) > 2 if 𝑛 = 2 for the Dirichlet Laplacian from [104] and 

[108].  

We denote by −∆ = (𝐼 𝑑, Ω, 𝑉) the negative Laplacian on Ω with same variational 

space (or,roughly,“same boundary condition”) as 𝐿 =  (𝐴, Ω, 𝑉 ). Let us begin with a 

formal analysis of 𝐿1 2⁄  whatever the choices of Ω and 𝑉 may be. We compute 𝐿1 2⁄ 𝑓 for 𝑓 

in an appropriate space, say 𝑉 or a dense subspace of 𝑉:  

𝐿1 2⁄  𝑓 =  𝑎 ∫  
∞

0

 𝑡3 𝐿2 𝑒−2𝑡
2𝐿𝑓
𝑑𝑡

𝑡
                                        (23) 

with 𝑎−1  =
1

2
 ∫  
∞

0
 𝜁1 2⁄ 𝑒−2𝜁𝑑𝜁 . The integral converges strongly in 𝐿2(Ω) by the general 

theory recalled provided we assume that 𝑉 ⊂  𝐷(𝐿1 2⁄ ). 
Pick 𝑇 ∈  (0,∞],so that  

𝐿1 2⁄  𝑓 =  𝑎 ∫  
𝑇

0

 𝑡3 𝐿2 𝑒−2𝑡
2𝐿𝑓

𝑑𝑡

𝑡
  +  𝑎 ∫  

∞

𝑇

𝑡3 𝐿2 𝑒−2𝑡
2𝐿𝑓
𝑑𝑡

𝑡
. 

For  ≤  𝑇 , write  

𝑎𝑡3 𝐿2 𝑒−2𝑡
2𝐿𝑓 =  �̃�𝑡 𝛻𝑓  

where  

�̃�𝑡  =  −𝑎𝑡
3 𝐿𝑒−2𝑡

2𝐿div 𝐴: 𝐿2 (Ω, ℂ𝑛)  →  𝐿2 (Ω).                       (24)  
Here, −div denotes the adjoint of ∇ : 𝑉 →  𝐿2(Ω, ℂ𝑛); it is the distributional divergence in 

the Dirichlet case but not in the Neumann case. Next, we decompose  

�̃�𝑡 𝛻𝑓 = �̃�𝑡 𝛻𝑓 + �̃�𝑡 𝑅𝑡𝛻𝑓 + �̃�𝑡 𝛻(𝐼 − 𝑅𝑡)𝑓 +  �̃�𝑡 [𝛻, 𝑅𝑡]𝑓 

where 𝑅𝑡  =  (𝐼 − 𝑡
2∆)−1. The commutator 𝒞𝑡  =  [𝛻, 𝑅𝑡] between the partial derivatives 

and the resolvent of −∆ is defined for 𝑓 ∈  𝑉 by  

𝒞𝑡𝑓 =  (𝐷𝑗  (𝐼 − 𝑡
2 ∆)−1 𝑓 − (𝐼 − 𝑡2 ∆)−1 𝐷𝑗𝑓) 1≤𝑗≤𝑛 ,            (25) 

 where 𝐷𝑗 =
𝜕

𝜕𝑥𝑗
  . Thus,we have formally obtained  

𝐿1 2⁄ 𝑓 =  ∫  
𝑇

0

 �̃�𝑡 𝑅𝑡𝛻𝑓
𝑑𝑡

𝑡
 + ∫  

𝑇

0

 �̃�𝑡 𝛻(𝐼 − 𝑅𝑡)𝑓
𝑑𝑡

𝑡
 +  ∫  

𝑇

0

 �̃�𝑡 [𝛻, 𝑅𝑡]𝑓
𝑑𝑡

𝑡
 

+  𝑎 ∫  
∞

𝑇

 𝑡3 𝐿2 𝑒−2𝑡
2𝐿𝑓
𝑑𝑡

𝑡
 .                                                                                (26) 

Remark (2.2.4)[90]: If Ω is a special Lipschitz domain, (18) holds and 𝜏 =  ∞ in (H2) 

and (H3),then take 𝑇 =  ∞ in (26) so that the last integral disappears. In all other cases 

choose 𝑇 = 1.  

When 𝐿 =  −∆, one can do the same thing. Begin with 

 (−∆)1 2⁄ 𝑓 =  𝑏 ∫  
∞

0

 𝑡3 ∆2 𝑒2𝑡
2∆(1 − 𝑡2 ∆)−1 𝑓

𝑑𝑡

𝑡
 

with 𝑏−1  =
1

2
  ∫  

∞

0
 𝜁1 2⁄ 𝑒−2𝜁(1 +  𝜁 )−1 𝑑𝜁 . Defining now �̃�𝑡  =  𝑏𝑡

3∆𝑒2𝑡
2∆2 div ,we 

have  

𝑏𝑡3∆2 𝑒2𝑡
2∆(𝐼 −  𝑡2 ∆)−1 𝑓 =  �̃�𝑡 𝛻𝑅𝑡𝑓 =  �̃�𝑡 𝑅𝑡𝛻𝑓 + �̃�𝑡 [𝛻, 𝑅𝑡]𝑓  

and we arrive at  
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(−∆)1 2⁄  𝑓 = ∫  
𝑇

0

 �̃�𝑡 𝑅𝑡𝛻𝑓
𝑑𝑡

𝑡
 + ∫

𝑇

0

 �̃�𝑡 [𝛻, 𝑅𝑡]𝑓
𝑑𝑡

𝑡
 

+  𝑏 ∫  
∞

𝑇

 𝑡3 ∆2 𝑒2𝑡
2∆(1 −  𝑡2∆)−1 𝑓

𝑑𝑡

𝑡
 .                                           (27)  

As it is similar to (26) with the exception that one term is missing,the study of (−∆)1 2⁄  is 

a byproduct of our forthcoming analysis,which can be summed up as follows.  

Lemma (2.2.5)[90]: If (H1), (H2) and (H3) hold then for all 1 < 𝑝 <  ∞   

   ‖∫  
𝑇

0

�̃�𝑡 𝑅𝑡𝛻𝑓
𝑑𝑡

𝑡
‖
𝑝

 ≤  𝑐‖𝛻𝑓‖𝑝                               (28)  

for all 𝑓 ∈  𝑉 ∩ 𝑊1,𝑝(Ω). 
Lemma (2.2.6)[90]: If (H2) and (H3) hold then for all 1 < 𝑝 <  ∞  

    ‖∫  
𝑇

0

 �̃�𝑡 𝛻(𝐼 − 𝑅𝑡)𝑓
𝑑𝑡

𝑡
‖
𝑝

 ≤  𝑐‖(−∆)1 2⁄ 𝑓‖
𝑝
                          (29) 

for all 𝑓 ∈  𝑉 such that (−∆)1 2⁄ 𝑓 ∈  𝐿𝑝(Ω).  
Lemma (2.2.7)[90]: If (H2) holds then for all 1 < 𝑝 <  ∞, 

     ‖∫  
𝑇

0

 �̃�𝑡 [𝛻, 𝑅𝑡]𝑓
𝑑𝑡

𝑡
 ‖
𝑝

 ≤  𝑐‖𝛻𝑓‖𝑝                                 (30) 

 for 𝑓 ∈  𝑉 ∩  𝑊1,𝑝(Ω) when Ω is a special Lipschitz domain and 

‖∫  
1

0

 �̃�𝑡 [𝛻, 𝑅𝑡]𝑓
𝑑𝑡

𝑡
‖
𝑝

 ≤  𝑐‖𝛻𝑓‖𝑝  +  𝑐 ‖𝑓‖𝑝                     (31) 

 for 𝑓 ∈  𝑉 ∩  𝑊1,𝑝(Ω) when Ω is a general strongly Lipschitz domain. 

Lemma (2.2.8)[90]: If (H4) holds when Ω is unbounded or if (H2) holds when Ω is 

bounded then 

‖∫  
∞

1

 𝑡3 𝐿2 𝑒−2𝑡
2𝐿𝑓
𝑑𝑡

𝑡
‖
𝑝

 ≤  𝑐‖𝑓‖𝑝                            (32) 

 for all 1 < 𝑝 <  ∞ and 𝑓 ∈  𝐿𝑝(Ω). Most is devoted to the proof of these results. Let us 

indicate how they imply the main theorem.  

Theorem (2.2.9)[90]: Let 1 < 𝑝 <  ∞. With the above notation, if (H1-4) hold then we 

have the a priori estimate  

‖𝐿1 2⁄  𝑓‖
𝑝
 ≤  𝑐‖𝛻𝑓‖𝑝  +  𝑐‖𝑓‖𝑝, ∀ 𝑓 ∈  𝑉 ∩ 𝑊1,𝑝(Ω).   (33) 

Proof. It follows from these lemmata and (26) that  

‖𝐿1 2⁄ 𝑓‖
𝑝
 ≤  𝑐 (‖𝛻𝑓‖𝑝  +  ‖(−∆)

1 2 ⁄  𝑓 ‖
𝑝
 +  ‖𝑓‖𝑝) 

for all 𝑓 ∈  𝑉 ∩ 𝑊1,𝑝(Ω) such that (−∆)1 2⁄ 𝑓 ∈  𝐿𝑝(Ω). Applying Lemma (2.2.5), 

Lemma (2.2.7) and a trivial modification of Lemma (2.2.8) to the terms in (27) shows that  

‖(−∆)1 2⁄ 𝑓‖
𝑝
 ≤  𝑐(‖𝛻𝑓‖𝑝  +  ‖𝑓‖𝑝)  

for all 𝑓 ∈  𝑉 ∩ 𝑊1,𝑝(Ω) . This proves (33).  

Since we use them quite often,it is simpler to recall known results. Let −∆ =
 (𝐼 𝑑, Ω, 𝑉) where Ω is Lipschitz and 𝑉 =  𝐻1(Ω) or 𝑉 =  𝐻0

1 (Ω).  
As mentioned before,the kernel of 𝑒𝑡∆ always fulfills (H2) and (H3),and 𝜏 =  ∞ in 

all cases except when Ω is bounded and 𝑉 =  𝐻1(Ω).  
As for the resolvent kernel 𝑅𝑡(𝑥, 𝑦) of 𝑅𝑡  =  (𝐼 −  𝑡^2∆) − 1,we have  
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|𝑅𝑡(𝑥, 𝑦)|  ≤  𝑐𝑡
−𝑛𝑤𝑛−2  (

|𝑥 −  𝑦|

𝑡
) 𝑒− 𝛾

|𝑥−𝑦|
𝑡  ,                        (34)  

|𝑅𝑡(𝑥, 𝑦)  − 𝑅𝑡(𝑥, 𝑦
′)|  ≤  𝑐𝑡−𝑛𝑤𝑛−2+µ  (

|𝑥 −  𝑦|

𝑡
 ) (
|𝑦 − 𝑦′|

𝑡
)

µ

 (35) 

when |𝑦 −  𝑦 | ≤ |𝑥 −  𝑦|/2,and  

|𝑅𝑡(𝑥, 𝑦) − 𝑅𝑡(𝑥′ , 𝑦)|  ≤  𝑐𝑡
−𝑛𝑤𝑛−2+µ (

|𝑥 −  𝑦|

𝑡
) (
|𝑥 − 𝑥′|

𝑡
)

µ

    (36)  

when |𝑥 −  𝑥 | ≤ |𝑥 −  𝑦|/2,for some constants 𝑐 >  0, 𝛾 >  0 and µ ∈  (0, 1) 
depending on the domain Ω. Here and subsequently we set 𝑤𝑠(𝑢)  =  𝑢 − 𝑠 if 𝑠 >  0 and 

𝑤0(𝑢) = ln  (𝑒 +  1/𝑢).  
These estimates hold for 𝑡 >  0 in all cases but when ∆ is the Neumann Laplacian 

on Ω bounded for which the restriction 𝑡 ≤  𝑡𝑜 for any positive real to (e.g., 𝑡𝑜 = 𝜏2) is 

necessary (see [100],[103],[99]).  

By routine arguments,these estimates are also valid for the kernel of (𝐼 −

 𝑡2𝑒𝑖
2𝜂∆)

−1
 uniformly for η in a compact subset of ]  −  𝜋/2, 𝜋/2[.  

We are given an operator 𝐿 =  (𝐴, Ω, 𝑉 ) with A elliptic with ellipticity constant δ, Ω a 

Lipschitz domain and 𝑉 =  𝐻0
1 (Ω) or 𝐻1(Ω). In what follows, 𝐼 is an interval (0,τ) with τ 

finite or infinite.  

Estimates in average on space derivatives of the heat kernel are of crucial 

importance. They follow from parabolic Caccioppoli inequalities. 

Proposition (2.2.10)[90]: (Parabolic Caccioppoli inequality) Given 𝑓 ∈  𝐿2(Ω), the 

solution 𝑢𝑡  =  𝑒
−𝑡𝐿𝑓 of the parabolic equation 

𝜕𝑢𝑡

𝜕𝑡
 =  −𝐿𝑢𝑡 in Ω satisfies  

∫ 
Ω

 |𝜑|2 |𝛻𝑢𝑡|
2  ≤  4𝛿−4  ∫  

Ω

 |𝑢𝑡|
2 |𝛻𝜑|2  +  2𝛿−1  ∫  

Ω

 |𝑢𝑡|
𝜕𝑢𝑡
𝜕𝑡
 |𝜑|2 ,    (37) 

for any 𝜑 ∈  𝐶1(ℝ𝑛), real-valued, bounded with bounded gradient. 

Proof. See [96].  

Let us also recall a well-known result that is a consequence of the analyticity of the 

semigroup generated by −𝐿. A proof can be found in many places. See, e.g.,[91],[99],[94].  

Lemma (2.2.11)[90]: There exists 𝜔 ∈  (0,
𝜋

2
) such that 𝐾𝑡(𝑥, 𝑦) has a holomorphic 

extension 𝐾𝑧(𝑥, 𝑦) on the open sector defined by 𝑧 ∈  ℂ∗ and |arg  𝑧 | ≤  𝜔. Furthermore, 

if (H2-3) hold then for any 𝜈 ∈  (0,
𝜋

2
–  𝜔) , 𝐾𝑧(𝑥, 𝑦) satisfies (20) and (21) for |arg  𝑧 | ≤

 𝜈 with Re 𝑧 <  𝜏 and one should replace 𝑡 by Re 𝑧 in the estimates. Consequently, for 𝑘 ∈

ℕ∗ , 𝑡𝑘 (
𝑑

𝑑𝑡
)
𝑘
𝐾𝑡(𝑥, 𝑦), which is the kernel of (−𝑡𝐿)𝑘𝑒−𝑡𝐿, satisfies the same estimates as 

𝐾𝑡(𝑥, 𝑦). 
Proposition (2.2.12)[90]: Assume that (H2) holds. Then, 

(i) For all 𝑡 ∈  𝐼 and almost all 𝑥 ∈  Ω, 𝑦 →  𝐾𝑡(𝑥, 𝑦)  ∈  𝑉 ∩ 𝑊
1,𝑝(Ω) when 1 < 𝑝 ≤

 2, and  

sup
𝑥∈Ω 

 ‖𝛻𝑦 𝐾𝑡(𝑥,·)‖𝑝  ≤  𝑐 𝐶𝐺  𝑡
−
1
2 𝑡

−
𝑛
2
(1−

1
𝑝
)
.                         (38) 

 (ii) For all 𝑥 ∈  Ω, 𝑡 ∈  𝐼 and 𝑟 >  0 one has   
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(∫  
𝑟≤|𝑥−𝑦|≤2𝑟

𝑦∈Ω

|𝛻𝑦𝐾𝑡(𝑥, 𝑦)|
2
 𝑑𝑦 )

1 2⁄

 ≤  𝑐 𝐶𝐺  𝑡
−
1
2
 −
𝑛
4  (

𝑟

√𝑡
)

𝑛−2
2
 𝑒−

𝛽𝑟2

𝑡  ,   (39) 

 where the constants 𝑐, 𝛽 depend on the constant α in (20), n and δ. (iii) Assume 

furthermore that (H3) holds. For all 𝑥, 𝑥′  ∈  Ω, 𝑧 ∈  ℝ𝑛, 𝑡 ∈  𝐼 and 𝑟 > 0, one has   

(∫  
|𝑧−𝑦|≤𝑟
𝑦∈Ω

 |𝛻𝑦𝐾𝑡(𝑥, 𝑦) − 𝛻𝑦𝐾𝑡(𝑥 , 𝑦)|
2
 𝑑𝑦)

1 2⁄

 

≤  𝑐 (𝐶𝐻  +  𝐶𝐺)𝑡
−
1
2
 −
𝑛
4
 (
|𝑥 − 𝑥′|

√𝑡
)

𝜂

inf   ((
𝑟

√𝑡
)

𝑛−2
2
 , 1) .                        (40) 

 The constants 𝑐, 𝜂 >  0 depend only on the constant α in (20), µ in (21), n and δ.  

Proof. For simplicity, we shall switch the roles of 𝑥 and 𝑦, that is, we shall take gradient 

and do integration with respect to the first variable rather than the second (which amounts 

to changing 𝐿 into its adjoint). Proof of (38). First ,the inequality (37) applies to 𝑢𝑡(𝑥)  =

 𝐾𝑡(𝑥, 𝑦) with 𝜑 =  1. Indeed, by the semigroup property 𝑢𝑡  =  𝑒
−𝑡2𝐿𝑢𝑡 2⁄  and 𝑢𝑡 2⁄  ∈

 𝐿2(Ω) from the property (H2). Since ‖𝑢𝑡‖2  ≤  𝑐𝐶𝐺𝑡
−𝑛 4⁄  and,by the analyticity of the 

semigroup on 𝐿2(Ω), ‖
𝑑𝑢𝑡

𝑑𝑡
‖
2
 ≤  𝑐𝐶𝐺𝑡

−1𝑡−𝑛 4⁄ ,we conclude that ‖𝛻𝑢𝑡‖2  ≤

 𝑐𝐶𝐺𝑡
−
1

2 𝑡−𝑛 4⁄ . This gives (38) for 𝑝 =  2. Next,we show that for fixed 𝑦 ∈  Ω and 𝑡 ∈
 𝐼 , 𝐾𝑡(·, 𝑦)  ∈  𝑊

1,𝑝(Ω) and estimate ‖𝛻𝑥𝐾𝑡(·, 𝑦)‖𝑝 when 1 ≤  𝑝 <  2. We do it for 𝑝 =

 1, the result follows by interpolation. It is clear that 𝐾𝑡(·, 𝑦)  ∈  𝐿
1(Ω) from (H2). Next, 

Cauchy-Schwarz inequality from (39), whose proof is given below, gives us  

∫  
𝑟≤|𝑥−𝑦|≤2𝑟

 𝑡1 2⁄  |𝛻𝑥𝐾𝑡(𝑥, 𝑦)| 𝑑𝑥 ≤  𝑐 (
𝑟

√𝑡
)
𝑛−1

𝑒−
𝛽𝑟2

𝑡  . 

 Summing these inequalities over  =  2𝑗 , 𝑗 ∈  𝑍, we find ‖𝛻𝑥𝐾𝑡(·, 𝑦)‖1 ≤  𝑐𝑡
−
1

2 .  

Proof of (39). We have to bound  ∫  
𝑟≤|𝑥−𝑦|≤2𝑟

|𝛻𝑥𝐾𝑡(𝑥, 𝑦)|
2 𝑑𝑥 (all integrals occur on Ω) 

for fixed 𝑦 ∈  Ω, 𝑡 ∈  𝐼 and 𝑟 >  0. Apply again the inequality (37) to 𝑢𝑡(𝑥)  =  𝐾𝑡(𝑥, 𝑦) 
and 𝜑(𝑥) supported in 𝑟/2 ≤  |𝑥 −  𝑦|  ≤  4𝑟 with 𝜑(𝑥)  =  1 if 𝑟 ≤  |𝑥 −  𝑦| ≤
 2𝑟, ‖𝜑‖∞  ≤  1 and ‖𝛻𝜑‖∞   ≤  𝑐/𝑟. On the support of 𝜑 we have  

|𝑢𝑡(𝑥)|  + |𝑡
𝜕𝑢𝑡(𝑥)

𝜕𝑡
| ≤  𝑐𝐶𝐺𝑡

−
𝑛
2  𝑒−

𝛼𝑟2

4𝑡  .  

Thus, we obtain  

∫  
𝑟≤|𝑥−𝑦|≤2𝑟 

𝑡 |𝛻𝑥𝐾𝑡(𝑥, 𝑦)|
2 𝑑𝑥 ≤

𝑐𝐶𝐺
2𝑟𝑛−2

𝑡𝑛−1
 (1 +

𝑟2

𝑡
) 𝑒−

𝛼𝑟2

2𝑡  

≤  𝑐𝐶𝐺
2 𝑡−

𝑛
2  (

𝑟

√𝑡
)
𝑛−2 

𝑒−
𝛽𝑟2

𝑡   

for any 𝛽 <  𝛼/2. This is (39).  

Proof of (40). We have to bound ∫  
|𝑥−𝑧|≤𝑟 

|𝛻𝑥𝐾𝑡(𝑥, 𝑦) − 𝛻𝑥𝐾𝑡(𝑥, 𝑦 )|
2 𝑑𝑥 where 𝑦, 𝑦′ ∈

 Ω, 𝑧 ∈  ℝ𝑛, 𝑡 ∈  𝐼 , 𝑟 >  0.  

Set 𝑢𝑡(𝑥)  =  𝐾𝑡(𝑥, 𝑦) − 𝐾𝑡(𝑥, 𝑦 ). The Hölder regularity in the second variable (since we 

switched variables) and interpolation with (20) gives us for any 𝑠 ∈ (0, 1), 
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𝑢𝑡(𝑥)|  + |𝑡
𝜕𝑢𝑡(𝑥)

𝜕𝑡
 |

≤  𝑐𝐶𝐻
𝑠  𝐶𝐺

1−𝑠 𝑡−
𝑛
2  (
|𝑦 − 𝑦′|

√𝑡
)

𝑠µ

× (𝑒−
 𝛼(1−𝑠)|𝑥−𝑦 |2

𝑡  +  𝑒−
𝛼(1−𝑠)|𝑥−𝑦′|

2

𝑡 ) . 

 Now, apply (37) to 𝑢𝑡(𝑥) and 𝜑 ≡  1 to obtain  

∫ 
Ω

 𝑡 |𝛻𝑥𝐾𝑡(𝑥, 𝑦) − 𝛻𝑥𝐾𝑡(𝑥, 𝑦 )|
2 𝑑𝑥 ≤  𝑐(𝐶𝐻

𝑠  𝐶𝐺
1−𝑠 )2 𝑡−

𝑛
2 (
|𝑦 −  𝑦′|

√𝑡
)

2𝑠µ

 

hence (40) when 𝑟2  ≥  𝑡.  
Next, assume 𝑟2  ≤  𝑡 and apply again (37) to 𝑢𝑡(𝑥) and 𝜑 (𝑥) supported in |𝑥 −

 𝑧|  ≤  2𝑟 with 𝜑(𝑥)  =  1 if |𝑥 −  𝑧|  ≤  𝑟, ‖𝜑‖∞  ≤  1 and ‖𝛻𝜑‖∞  ≤  𝑐/𝑟. Since  

|𝑢𝑡(𝑥)| + |𝑡
𝜕𝑢𝑡(𝑥)

𝜕𝑡
|  ≤  𝑐𝐶𝐻 𝑡

−
𝑛
2  (
|𝑦 − 𝑦′|

√𝑡
)

µ

  

we have  

∫  
|𝑥−𝑧|≤𝑟 

𝑡 |𝛻𝑥𝐾𝑡(𝑥, 𝑦) − 𝛻𝑥𝐾𝑡(𝑥, 𝑦 )|
2 𝑑𝑥 ≤  𝑐𝐶𝐻

2
𝑟𝑛−2

𝑡𝑛−1
 (1 +

𝑟2

𝑡
)(
|𝑦 − 𝑦′|

√𝑡
)

 2µ

 

≤  2𝑐𝐶𝐻
2  𝑡−

𝑛
2  (

𝑟

√𝑡  
)
 𝑛−2

(
|𝑦 −  𝑦′|

√𝑡
)

2µ 

.  

This is (40) in this case.  

We have  

�̃�𝑡 ∶  𝐿
2 (Ω, ℂ𝑛)  →  𝐿2 (Ω), �̃�𝑡 𝐹 =  −𝑎𝑡

3 𝐿𝑒−2𝑡
2𝐿 div (𝐴 𝐹). 

We also set 

 𝜃𝑡 ∶  𝐿
2 (Ω, ℂ𝑛)  →  𝐿2 (Ω), 𝜃𝑡𝐹 =  −𝑡𝑒

−𝑡2𝐿 div (𝐴 𝐹).  
By the functional calculus developed, they are well-defined and bounded operators with  

‖�̃�𝑡𝐹‖2  +  ‖�̃�𝑡 𝐹‖2  ≤  𝑐
(𝛿)‖𝐹‖2  

for all 𝑡 > 0, 𝑐(δ) depending only on ellipticity. Moreover,  

𝜃𝑡𝛻𝑓 =  𝑡𝑒
−𝑡2𝐿𝐿𝑓, 𝑓 ∈  𝑉 ,                                  (41) 

�̃�𝑡 𝛻𝑓 =  𝑎𝑡
3 𝐿𝑒−2𝑡

2𝐿𝐿𝑓 =  −
𝑎𝑡

4
 𝑡 (

𝑑

𝑑𝑡
) 𝑒−2𝑡

2𝐿𝐿𝑓, 𝑓 ∈  𝑉.    (42) 

 Let us study furthermore 𝜃𝑡 .  
Proposition (2.2.13)[90]: Assume that (H2) holds. For 𝐹 ∈  𝐿2(Ω, ℂ𝑛) and  ∈  𝐼 , we have  

𝜃𝑡𝐹(𝑥) =  𝑡 ∫ 
Ω

 𝐴(𝑦)𝐹(𝑦) ·  𝛻𝑦𝐾𝑡2  (𝑥, 𝑦)𝑑𝑦  

=  𝑡 ∑  

1≤𝑗,𝑘≤𝑛

 ∫  
Ω

 𝑎𝑗,𝑘(𝑦)𝐹𝑘(𝑦)
𝜕𝐾𝑡2(𝑥, 𝑦)

𝜕𝑦𝑗
  𝑑𝑦.    (43) 

Letting 𝜃𝑡(𝑥, 𝑦) be the distributional kernel of 𝜃𝑡 we have  

𝜃𝑡(𝑥, 𝑦) =  𝑡
𝑇  𝐴(𝑦)𝛻𝑦𝐾𝑡2 (𝑥, 𝑦),                          (44) 

 where 𝐴 
𝑇  is the real transpose of 𝐴. Furthermore, for 𝑡 ∈  𝐼 , 𝜃𝑡 extends to a bounded 

operator from 𝐿2(Ω, ℂ𝑛) into 𝐿∞(Ω) with  

‖𝜃𝑡𝐹‖∞  ≤  𝑐 𝐶𝐺  𝑡
−𝑛 2⁄ ‖𝐹‖2                                       (45)  

and from 𝐿∞(Ω, ℂ𝑛) into 𝐿∞(Ω) with  

‖𝜃𝑡𝐹‖∞  ≤  𝑐 𝐶𝐺  ‖𝐹‖∞.                                    (46) 



53 

 Proof. By definition of 𝜃𝑡 ,for any 𝜑 ∈  𝐶0
∞ (Ω) and 𝐹 ∈  𝐿2(Ω, ℂ𝑛), 〈𝜃𝑡𝐹, 𝜑〉  =

 〈𝐴𝐹 , 𝛻𝑒−𝑡
2𝐿∗𝜑〉!. Observe that  

|𝐴(𝑦)𝐹(𝑦) · 𝛻𝑦𝐾𝑡2 (𝑥, 𝑦)𝜑(𝑥)
̅̅ ̅̅ ̅̅ | 𝑑𝑥𝑑𝑦 ≤  ‖𝐴‖∞‖𝐹‖2 ‖‖𝛻 + 𝑦 𝐾𝑡2‖𝐿𝑦2‖𝐿𝑥∞

 ‖𝜑‖1, 

which is finite since ‖‖𝛻 + 𝑦 𝐾𝑡2‖𝐿𝑦2‖𝐿𝑥∞
 ≤ 𝑐𝑡−1 −

𝑛

2  . Thus,we have  

〈𝐴𝐹, 𝛻𝑒−𝑡
2𝐿∗𝜑〉  =  𝐴(𝑦)𝛻𝑓 (𝑦)   ·  𝛻𝑦𝐾𝑡2  (𝑥, 𝑦)𝜑(𝑥) 𝑑𝑥𝑑𝑦. 

 where the integral exists in the Lebesgue sense. The formula (43) then follows from 

Fubini’s theorem. The argument also yields (45). Lastly,(38) tells us that for almost all 𝑥 ∈ 

Ω and 𝑡 ∈ 𝐼 , 𝜃𝑡(𝑥, 𝑦) ∈  𝐿𝑦
1  with ‖𝜃𝑡(𝑥,·)‖1  ≤  𝑐 uniformly. Hence,(46).  

A similar result hold for �̃�𝑡 whose kernel is given by 

 �̃�𝑡  (𝑥, 𝑦) =  −
𝑎𝑡

4
 𝐴 
𝑇 (𝑦) 𝛻𝑦  [𝑡 (

𝑑𝑡

𝑡
 )𝐾2𝑡2  (𝑥, 𝑦)]  

Notice that neither 𝜃𝑡 nor �̃�𝑡 are bounded on 𝐿𝑝 for 𝑝 near 1. The smoothing 

procedure of the proposed algorithm to study 𝐿1 2⁄  circumvents this drawback. 

Most of the kernel analysis will be based on the following technical lemma. Here, Ω 

is an arbitrary open set in ℝ𝑛. 

Lemma (2.2.14)[90]: Assume we are given kernels 𝐴𝑡(𝑥, 𝑦) and 𝐵𝑡(𝑥, 𝑦) defined on Ω ×
 Ω, constants 𝜎, 𝑠, 𝜂 such that 𝜎 > 𝑠 +  𝜂 > 𝑠 ≥  0 and 𝑠 +  𝜂 ≥  𝑛 with the following 

requirements:  

(i) For all 𝑥, 𝑥 ∈  Ω, 𝑧 ∈  ℝ𝑛, 𝑟 >  0 and 𝑡 >  0,  

∫  
𝑟≤|𝑥−𝑦|≤2𝑟

 |𝐴𝑡(𝑥, 𝑦)|𝑑𝑦 ≤ (
𝑟

𝑡
)
𝜎

 𝑒−
𝑟
𝑡  ,                               (47) 

 ∫  
|𝑧−𝑦|≤𝑟 

|𝐴𝑡(𝑥 , 𝑦) − 𝐴𝑡(𝑥, 𝑦)| 𝑑𝑦 ≤ inf   ((
𝑟

𝑡
 )
𝜎

 , 1) (
|𝑥′ −  𝑥|

𝑡
)

𝜂

.  (48) 

 (It is understood that the variable of integration is in Ω).  

(ii) For all 𝑥, 𝑦, 𝑦 ∈  Ω and 𝑡 >  0,  

|𝐵𝑡(𝑥, 𝑦)| ≤  𝑡
−𝑛𝑤𝑠  (

|𝑥 −  𝑦|

𝑡
) 𝑒−

|𝑥−𝑦|
𝑡  ,                              (49) 

and if |𝑦 − 𝑦′| ≤ |𝑥 −  𝑦|/2, 
 |𝐵𝑡(𝑥, 𝑦)  −  𝐵𝑡(𝑥, 𝑦 )|  ≤  𝑡 − 𝑛𝑤𝑠 + 𝜂 |𝑥 −  𝑦| 𝑡 |𝑦 −  𝑦 | 𝑡 𝜂 .       (50) 

Then ∫  
+∞

0
∫  
Ω
 𝐴𝑡(𝑥, 𝑧)𝐵𝑡(𝑧, 𝑦)𝑑𝑧

𝑑𝑡

𝑡
 is a Calderón-Zygmund kernel on Ω × Ω.  

A typical application will be 𝜎 =  𝑛 −  1, 𝑠 =  𝑛 −  2 and 𝜂 ∈ (0, 1).  

Proof. Let us begin with some useful consequences of the hypotheses. The assumption 

(47) on 𝐴𝑡(𝑥, 𝑦) imply  

∫ 
Ω

 |𝐴𝑡(𝑥, 𝑦)| 𝑑𝑦 ≤  𝑐(𝑛, 𝜎 )                                (51) 

 and  

∫  
|𝑦−𝑧|≤𝑟 

|𝐴𝑡(𝑥, 𝑦)|𝑑𝑦 ≤  𝑐(𝑛, 𝜎 ) (
𝑟

𝑡
)
𝜎

.                           (52) 

 Indeed,(51) follows by summing (47) over all dyadic rings 2𝑗  ≤  |𝑥 − 𝑦|  <  2𝑗+1. Next 

observe that in (52), 𝑥 ∈ Ω and 𝑧 ∈  ℝ𝑛 are not correlated. If |𝑥 −  𝑧|  ≥  2𝑟 then 𝑟 ≤
 |𝑦 − 𝑧|  ≤  3𝑟 when |𝑦 − 𝑧|  ≤  𝑟 so that (47) gives (52). If |𝑥 − 𝑧|  ≤  2𝑟 then |𝑥 −



54 

 𝑦|  ≤  3𝑟 so that (52) follows by summing (47) over 𝑟2𝑗  ≤  |𝑥 −  𝑦|  <  𝑟2𝑗+1 for  =
 1, 0, −1, . .. .  
Now, let us show that 𝐶𝑡(𝑥, 𝑦)  =  ∫  Ω  𝐴𝑡(𝑥, 𝑧)𝐵𝑡(𝑧, 𝑦) 𝑑𝑧 satisfies  

|𝐶𝑡(𝑥, 𝑦)|  ≤  𝑐𝑡
−𝑛𝑤𝑠  (

|𝑥 −  𝑦|

𝑡
) 𝑒−

𝛾|𝑥−𝑦|
𝑡  ,                  (53) 

for some 𝑐, 𝛾 >  0. Once this is done, we get for 𝑥 ≠  𝑦  

∫  
+∞

0

 |𝐶𝑡(𝑥, 𝑦)|
𝑑𝑡

𝑡
 ≤

𝑐

|𝑥 −  𝑦|𝑛
 

 since 𝑠 <  𝑛 

Without loss of generality we may take Ω = ℝ𝑛 by setting 𝐴𝑡(𝑥, 𝑧)  =  𝐵𝑡(𝑧, 𝑦)  =
 0 if 𝑧 ∉  Ω and 𝑡 =  1 since it does not play any role. We drop the subscript 𝑡 in the 

notation and set 𝑑 =  |𝑥 −  𝑦|. We distinguish two regions of integration depending on  : 

(i) 𝑧 ∈  𝐸 defined by |𝑦 −  𝑧|  ≥  𝑑/2. We have |𝐵(𝑦, 𝑧)|  ≤  𝑤𝑠 (
𝑑

2
) 𝑒−𝑑 2⁄  by (49). 

Thus, by (51), 

∫ 
𝐸

 |𝐴(𝑥, 𝑧)𝐵(𝑧, 𝑦)|𝑑𝑧 ≤  𝑤𝑠(𝑑 2⁄ )𝑒
−𝑑 2⁄  ∫ 

Ω

 |𝐴(𝑥, 𝑧)| 𝑑𝑧 ≤  𝑐 𝑤𝑠(𝑑 2⁄ )𝑒
−𝑑 2⁄  .  

       (ii) 𝑧 ∈  𝐹 defined by |𝑧 −  𝑦|  ≤  𝑑/2. Decompose further 𝐹 as the union of the 

rings 𝐹𝑗 defined by 𝑑2−𝑗−2  <  |𝑧 −  𝑦| ≤  𝑑2−𝑗−1 with  =  0, 1, . .. . Then 

∫  
𝐹𝑗

 |𝐴(𝑥, 𝑧)𝐵(𝑧, 𝑦)| 𝑑𝑧 ≤  𝑤𝑠(𝑑2
−𝑗−2) |𝑧 − 𝑦| ≤ 𝑑2−𝑗−1 |𝐴(𝑥, 𝑧)| 𝑑𝑧. 

We have two bounds for 𝐴𝑗 = ∫  |𝐴(𝑥, 𝑧)|𝑑𝑧
|𝑧 − 𝑦|≤ 𝑑2−𝑗−1

. The first one comes from 

(52):  

𝐴𝑗  ≤  𝑐(𝑑2
−𝑗−1)

𝜎
;  

the second one from (47):  

𝐴𝑗  ≤  𝑐 (
𝑑

2
)
𝜎

 𝑒−𝑑 2⁄ , 

since on the support of the integral we have 𝑑/2 ≤  |𝑥 −  𝑧|  ≤  3𝑑/2. Hence, for 0 ≤
 𝜃 ≤  1 we have  

𝐴𝑗  ≤  𝑐(𝑑2
−𝑗−1)

𝜎𝜃 
((𝑑 2⁄ )𝜎  𝑒−𝑑 2⁄ )

1−𝜃
.  

Pick 𝑠/𝜎 <  𝜃 <  1,then summing over all 𝑗 ≥  0 yields  

∫ 
𝐹

|𝐴(𝑥, 𝑧)𝐵(𝑧, 𝑦)| 𝑑𝑧 ≤  𝑐 ((𝑑 2⁄ )𝜎𝑒−𝑑 2⁄ )
1−𝜃
 ∑  

∞

𝑗=0

(𝑑2−𝑗−1)
𝜎𝜃 
𝑤𝑠(𝑑2

−𝑗−2)  

≤  𝑐 𝑑𝜎𝑤𝑠(𝑑)𝑒
−(1−𝜃 )𝑑 2⁄ . 

Thus,(53) is proved.  

          Let us turn to the Hölder inequality in the second variable. It suffices to obtain  

|𝐶𝑡(𝑥, 𝑦) − 𝐶𝑡(𝑥, 𝑦
′)|  ≤  𝑐𝑤𝑠+𝜂  (

|𝑥 −  𝑦|

𝑡
) (
|𝑦 − 𝑦′|

𝑡
)

𝜂

           (54) 

 for 𝑥, 𝑦, 𝑦 ∈  Ω with |𝑦 − 𝑦′| ≤ |𝑥 −  𝑦|/2 since we can recover the exponential decay 

by interpolating with the upper bound (53),and then deduce (using 𝑠 + 𝜂 <  𝑛)  

∫  
+∞

0

|𝐶𝑡(𝑥, 𝑦) − 𝐶𝑡(𝑥, 𝑦 )|
𝑑𝑡

𝑡
 ≤
𝑐|𝑦 − 𝑦′|𝜂

′

|𝑥 −  𝑦|𝑛+𝜂
′   
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for 0 <  𝜂 <  𝜂. As before,set 𝑡 =  1. Observe that the inequality  

|𝐵(𝑧, 𝑦)  −  𝐵(𝑧, 𝑦 )|  ≤  𝑐 (𝑤𝑠+𝜂  (|𝑧 −  𝑦|)  + 𝑤𝑠+𝜂   (|𝑧 −  𝑦 |)) |𝑦 − 𝑦
′|𝜂 , for all 

𝑧, 𝑦, 𝑦′ ∈  Ω holds. Thus  

|𝐶(𝑥, 𝑦) −  𝐶(𝑥, 𝑦′)|  

≤  𝑐|𝑦 − 𝑦′|𝜂 (∫ 
Ω

 |𝐴(𝑥, 𝑧)|𝑤𝑠+𝜂  (|𝑧 −  𝑦|) 𝑑𝑧 

+  ∫ 
Ω

 |𝐴(𝑥, 𝑧)|𝑤𝑠+𝜂 (|𝑧 − 𝑦
′|)  𝑑𝑧) .  

Split each integral as before (where 𝑠 +  𝜂 replaces 𝑠) to obtain  

|𝐶(𝑥, 𝑦)  −  𝐶(𝑥, 𝑦′)|  ≤  𝑐|𝑦 − 𝑦′|𝜂  (𝑤𝑠+𝜂 (|𝑥 −  𝑦|) + 𝑤𝑠+𝜂 (|𝑥 − 𝑦
′|)), 

 for all 𝑥, 𝑦, 𝑦 ∈  Ω and (54) is proved.  

 It remains to obtain the Hölder inequality in the first variable. Assume that 

𝑥, 𝑥 , 𝑦 ∈  Ω and |𝑥 −  𝑥 | ≤ |𝑥 −  𝑦|/2. Set 𝑑 =  |𝑥 −  𝑦| and assume 𝑡 =  1. One has 

 |𝐶(𝑥, 𝑦) −  𝐶(𝑥′, 𝑦)|  ≤  ∫ 
Ω

|𝐴(𝑥, 𝑧) −  𝐴(𝑥 , 𝑧)||𝐵(𝑧, 𝑦)| 𝑑𝑧. 

 Now split the integral as above using the sets 𝐸, and 𝐹𝑗. If 𝑧 ∈  𝐸, then  

∫ 
𝐸

 |𝐴(𝑥, 𝑧)  −  𝐴(𝑥′, 𝑧)||𝐵(𝑧, 𝑦)| 𝑑𝑧 ≤  |𝑥 − 𝑥′|𝜂𝑤𝑠(𝑑/2).  

For 𝑗 ≤  0,  

∫  
𝐹𝑗

 |𝐴(𝑥, 𝑧) −  𝐴(𝑥′, 𝑧)||𝐵(𝑧, 𝑦)|𝑑𝑧 ≤  |𝑥 − 𝑥′|𝜂(𝑑2−𝑗−1)
𝜎
𝑤𝑠(𝑑2

−𝑗−2)  

and since 𝜎 < 𝑠 

∫ 
𝐹

|𝐴(𝑥, 𝑧) −   𝐴(𝑥′, 𝑧)|| 𝐵(𝑧, 𝑦)| 𝑑𝑧 ≤  𝑐|𝑥 − 𝑥′|𝜂𝑑𝜎𝑤𝑠(𝑑). 

Hence,  

|𝐶(𝑥, 𝑦) −  𝐶(𝑥′, 𝑦)|  ≤  𝑐|𝑥 − 𝑥′|𝜂 𝑤𝑠 (|𝑥 −  𝑦|).  
Interpolating with the upper bound (53) yields  

∫  
+∞

0

 |𝐶𝑡(𝑥, 𝑦) − 𝐶𝑡(𝑥
′, 𝑦)|

𝑑𝑡

𝑡
 ≤
𝑐|𝑥 − 𝑥′|𝜂

|𝑥 −  𝑦|𝑛+𝜂
                         (55)  

for 0 <  𝜂′ <  𝜂 since 𝑠 < 𝑛  

 Let us come to the analysis of 𝐿1 2⁄  and study the first two terms in (26) via 

Calderón-Zygmund theory. We shall need repeatedly the following lemma. 

Lemma (2.2.15)[90]: Assume that (H2) and (H3) hold.  

(i) Let 𝛹 (𝜁 )  =  𝑎𝜁2𝑒−2𝜁  where a is the constant defined in (23). Then, the kernel 

𝐿𝑡(𝑥, 𝑦) of 𝛹 (𝑡2𝐿) has upper bounds and Hölder estimates in the first variable 

as the ones for 𝐾𝑡2(𝑥, 𝑦) in (H2) and (H3).  

(ii) In the notation of Lemma (2.2.14), the kernels 𝜃𝑡(𝑥, 𝑦) and �̃�𝑡(𝑥, 𝑦) of  respectively 

𝜃𝑡  =  −𝑡𝑒
−𝑡2𝐿 div 𝐴 and �̃�𝑡  =  −𝑎𝑡

3𝐿𝑒−2𝑡
2𝐿 div 𝐴 are of the form 𝑐𝐴𝛼𝑡(𝑥, 𝑦) 

with parameter 𝜎 =  𝑛 − 1 where 𝑐, 𝛼 >  0 are some normalizing constants.  

Proof. The result on 𝛹 (𝑡2𝐿) follows from Lemma (2.2.11). Using the explicit formulæ for 

the kernels of 𝜃𝑡 and �̃�𝑡, (ii) is straightforward from Proposition (2.2.13),Proposition 

(2.2.12).  

The proof of Lemma (2.2.5) relies on 
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Proposition (2.2.16)[90]: (H1), (H2) and (H3) imply that 𝑇1  =  ∫  
𝑇

0
�̃�𝑡 𝑅𝑡

𝑑𝑡

𝑡
  is a 

Calderon-Zygmund operator. 

Proof. Let us first look at the kernel bounds: by the above lemma, the kernel of �̃�𝑡 is of the 

form 𝑐𝐴𝛼𝑡(𝑥, 𝑦) with 𝜎 =  𝑛 − 1 and 𝛼 >  0. Also the kernel of 𝑅𝑡 has the form 

𝑐𝐵𝛽𝑡(𝑥, 𝑦) with parameters 𝑠 =  𝑛 −  2 and 𝜂 =  µ, and 𝑐, 𝛽 > 0. The Calderon-Zygmund 

bounds on the kernel of 𝑇1 follow by the lemma.  

 The main point is the 𝐿2-boundedness of 𝑇1. As mentioned, we use a reduction to 

quadratic estimates: this is the reason for our initial choice of writing 𝐿1 2⁄ . First, factor 

�̃�𝑡 as 𝜓(𝑡2𝐿)𝜃𝑡 where 𝜃𝑡  =  −𝑡𝑒
−𝑡2𝐿div 𝐴 and 𝜓(𝜁 )  =  𝑎𝜁 𝑒−𝜁 . Fix 𝐹 ∈  𝐿2(Ω, ℂ𝑛) and 

𝑔 ∈  𝐿2(Ω). We have  

〈�̃�𝑡 𝑅𝑡𝐹, 𝑔〉 =  〈𝜃𝑡𝑅𝑡𝐹 , 𝜓(𝑡
2 𝐿∗)𝑔〉 

so that  

∫  
𝑇

0

 | 〈�̃�𝑡 𝑅𝑡𝐹, 𝑔〉|
𝑑𝑡

𝑡
  ≤ (∫  

𝑇

0

 ‖𝜃𝑡𝑅𝑡𝐹‖2
2
𝑑𝑡

𝑡
)

1
2

 ( ∫  
𝑇

0

 ‖𝜓(𝑡2 𝐿∗)𝑔‖2
2
𝑑𝑡

𝑡
)

1
2

 . 

 By functional calculus,  (∫  
∞

0
 ‖𝜓(𝑡2𝐿∗)𝑔‖2

2 𝑑𝑡

𝑡
 )

1

2
≤  𝑐‖𝑔‖2, so that everything reduces to 

the following result.  

Next, let us prove Lemma (2.2.6). It is a consequence of  

Proposition (2.2.17)[90]: For all 𝑓 ∈  𝑉 ,  

∫  
𝑇

0

 �̃�𝑡𝛻(𝐼 −  𝑅𝑡)
𝑑𝑡

𝑡
  =  𝑇2(−∆)

1
2  

where 𝑇2 is bounded on 𝐿2(Ω). Moreover, if (H2) and (H3) hold then 𝑇2 is a Calderon-

Zygmund operator.  

Proof. We begin with the 𝐿2-boundedness, following the same pattern as above. For 𝑓 ∈
 𝑉 ,write  

�̃�𝑡 𝛻 { 𝐼 − (𝐼 − 𝑡
2 ∆)−1} 𝑓 =  �̃�𝑡 𝑡 𝛻 �̃�(  −𝑡

2 ∆)(−∆)
1
2 𝑓 =  𝛹 (𝑡2𝐿)�̃�( −𝑡2 ∆)(−∆)

1
2 𝑓 

 where Ψ is defined in Lemma (2.2.15),i),and  

�̃�(𝜁 )   = (1 −
(1 +  𝜁 )−1

𝜁1 2⁄
 =

𝜁1 2⁄

1 +  𝜁
 .       

 Thus 𝑇2  =  ∫  
𝑇

0
𝛹 (𝑡2𝐿)�̃�(  −𝑡2∆)

𝑑𝑡

𝑡
 . Fix 𝑓 ∈  𝐿2(Ω) and 𝑔 ∈  𝐿2(Ω). Then,  

〈𝛹 (𝑡2 𝐿) �̃�( −𝑡2 ∆)𝑓, 𝑔〉 =  〈�̃�(  −𝑡2 ∆)𝑓,𝛹 (𝑡2 𝐿∗)𝑔〉 
 so that  

|〈𝑇2𝑓, 𝑔〉| ≤ (∫  
𝑇

0

 ‖�̃�(  −𝑡2 ∆)𝑓‖
2

2 𝑑𝑡

𝑡
)

1
2

  (∫  
𝑇

0

‖𝛹 (𝑡2 𝐿∗)𝑔‖2
2
𝑑𝑡

𝑡
)

1
2

. 

This is bounded by 𝑐‖𝑓 ‖2‖𝑔‖2 using square function estimates for 𝐿∗ and −∆. 

  Let us turn to kernel estimates. Using the Cauchy formula,one has  

�̃�(  −𝑡2 ∆)  =
1

2𝜋𝑖
 ∫ 
𝛾

 �̃�(𝜁 )(𝜁  + 𝑡2 ∆)−1 𝑑𝜁,  

where γ is the path described counterclockwise made of two half rays 𝜁 =  𝑟𝑒±𝑖𝜈 , 𝑟 ≥
 1,and of the circular arc 𝜁 =  𝑒𝑖𝜂 , |𝜂|  ≤  𝜈, for some fixed 𝜈 ∈  (0, 𝜋). Calling 𝑀𝑡(𝑥, 𝑦) 
the kernel �̃�(  −𝑡2∆),the estimates on the kernel of (𝜁 + 𝑡2∆)−1 and routine calculations 
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imply the existence of two constants 𝑐 ≥ 0 and 𝜂 ∈  (0, 1) such that for all 𝑡 > 0 (or for 

0 < 𝑡 <  1 when 𝑉 =  𝐻1(Ω) and Ω is bounded)  

|𝑀𝑡(𝑥, 𝑦)| ≤
𝑐

𝑡|𝑥 −  𝑦|𝑛−1(1 + |𝑥 −  𝑦| 𝑡⁄ )2
 , 𝑥, 𝑦 ∈  Ω,  

and 

|𝑀𝑡(𝑥, 𝑦) −  𝑀𝑡(𝑥, 𝑦
′)|  ≤

𝑐|𝑦 − 𝑦′|𝜂

𝑡|𝑥 −  𝑦|𝑛−1+𝜂(1 + |𝑥 −  𝑦| 𝑡⁄ )2
 ,   𝑥, 𝑦, 𝑦 ∈  Ω, 

with |𝑦 −  𝑦′| ≤ |𝑥 −  𝑦|/2. Since the kernel of 𝛹 (𝑡2𝐿) �̃�(  −𝑡2∆) is given by 

∫  
Ω
 𝐿𝑡(𝑥, 𝑧)𝑀𝑡(𝑧, 𝑦) 𝑑𝑧, the estimates of Lemma (2.2.15),i),on 𝐿𝑡(𝑥, 𝑧) for t ∈  (0, 𝑇) and 

the ones just obtained on 𝑀𝑡(𝑧, 𝑦) imply that 𝑇2 has a Calderon-Zygmund kernel. The 

computations are in spirit of Lemma (2.2.14) but technically simpler since 𝐿𝑡(𝑥, 𝑦) has 

pointwise upper bounds. We skip details.  

Theorem (2.2.18)[90]: Assume (H2) holds. Then (H1) implies that  

(∫  
𝑇

0

 ‖𝜃𝑡𝑅𝑡𝐹‖2
2
𝑑𝑡

𝑡
)

1
2

 ≤  𝑐‖𝐹‖2.                                 (56) 

  The proof of this result is the object. Note that it does not rely on the regularity of 

the heat kernel since (H3) is not assumed.  

Proof. First,the results show that (H1) is equivalent to 

 (∫  
𝑇

0

 ‖�̃�𝑡𝐹‖2
2 𝑑𝑡

𝑡
)

1
2

 ≤  𝐶1‖𝐹‖2.                             (57) 

  Next,we need to recall the notion of Carleson measure. Say that a cube 𝑄 is in 𝑄Ω if 

𝑄 has sides parallel to the axes and either (a) 𝑄 ⊂  Ω or (b) 𝑄 ∩ 𝜕Ω ≠  ∅, 𝑄 has centre in 

Ω and ℓ (𝑄)  ≤  𝜌0 for some constant 𝜌0 > 0 chosen so small to guarantee that 𝑄 ∩  𝜕Ω is 

(possibly up to a rotation in ℝ𝑛) contained in a Lipschitz graph. The choice of 𝜌0 is as 

follows.  

 If Ω is a special Lipschitz domain, set 𝜌0 = ∞. Otherwise, the part of 𝜕Ω outside a 

large enough ball 𝐵 is (possibly up to a rotation) contained in a Lipschitz graph. Since one 

can cover 𝜕Ω ∩ 𝐵 by finitely many parts of Lipschitz graphs (possibly up to rotations), a 

compactness argument provides us with some suitable finite value for 𝜌0.  

 As a consequence, there exists γ > 0 depending only on the Lipschitz constant of Ω 

such that if 𝑄 ∈  𝑄Ω then |𝑄|  ≤  𝛾 |𝑄 ∩  Ω|.  
 For function 𝑏(𝑥, 𝑡)  =  𝑏𝑡(𝑥) defined for (𝑥, 𝑡)  ∈  Ω × (0, 𝑇) and measurable, we 

set  

|𝑏𝑡|𝑐 ∶= sup(
1

|𝑄 ∩  Ω|
 ∫  

ℓ(𝑄)∧𝑇 

0

 ∫  
𝑄∩Ω

 |𝑏𝑡(𝑥)|
2
𝑑𝑥𝑑𝑡

𝑡
)

1
2

 , 

 where the supremum is taken over those cubes in 𝑄 ∈  𝑄Ω and ℓ(𝑄) stands for the 

sidelength of 𝑄. We do not indicate 𝑇 in the notation as the context will make it clear. The 

finiteness of |𝑏𝑡|𝑐 means that |𝑏𝑡(𝑥)|
2
𝑑𝑥𝑑𝑡

𝑡  is a Carleson measure on Ω × (0, 𝑇). With this 

definition, recall the Carleson inequality for later use:  

∫  
𝑇

0

 ∫ 
Ω

 |𝑃𝑡𝑓 (𝑥)|
2 |𝑏𝑡(𝑥)|

2
𝑑𝑥𝑑𝑡

𝑡
 ≤  𝑐(𝑛, 𝛾)|𝑏𝑡|𝑐

2  ∫  
Ω

 |𝑃∗ 𝑓 (𝑥)|2 𝑑𝑥,   (58) 
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 where (𝑃𝑡) is a family of operators and 𝑃∗𝑓 (𝑥) = sup   |𝑃𝑡𝑓 (𝑦)|,the supremum being 

taken over all (𝑦, 𝑡)  ∈  Ω × (0, 𝑇) with |𝑥 −  𝑦|  ≤  𝑡.  
 With this in hand,we can continue our discussion by stating a simple lemma.  

Lemma (2.2.19)[90]: Let 𝑘𝑡(𝑥, 𝑦) be kernels on Ω ×  Ω and 𝜀 > 0 such that  

∫  
𝑟≤|𝑥−𝑦|≤2𝑟

 |𝑘𝑡(𝑥, 𝑦)| 𝑑𝑦 ≤ (
𝑡

𝑟
)
𝑛+𝜀

 ,  

uniformly in 𝑡 ∈  (0, 𝑇), 𝑟 > 𝑡 and 𝑥 ∈  Ω. Assume there are operators 𝑘𝑡 uniformly 

bounded on 𝐿2(Ω) defined by 𝑘𝑡𝑓 (𝑥)  =   ∫Ω  𝑘𝑡(𝑥, 𝑦)𝑓 (𝑦) 𝑑𝑦 when  ∉  Supp  𝑓 . Let 

𝑄 ∈  𝑄Ω and χ be the characteristic function of 𝑄 ∩  Ω. Then  

1

|𝑄 ∩  Ω|
 ∫  

ℓ(𝑄)∧𝑇 

0

 ∫  
𝑄∩Ω 

|𝑘𝑡(𝑎(1 −  𝜒 ))(𝑥)|
2 𝑑𝑥𝑑𝑡

𝑡
 ≤  𝑐2 ‖𝑎‖∞

2 , 

 where 𝑐 > 0 depends on sup
0<𝑡<𝑇

  ‖𝑘𝑡‖2,2, 𝑛 and 𝜀.  

Proof. Extend 𝑘𝑡(𝑥, 𝑦) to be 0 if (𝑥, 𝑦)  ∉  Ω ×  Ω or 𝑡 ≥  𝑇 . The argument follows in 

part the proof of Lemma 15 in Chapter 2 of [94]. Observe in the end that |𝑄 ∩  Ω|  ≥
 𝛾 |𝑄| since 𝑄 ∈  𝑄Ω .  
 In view of this lemma applied to 𝜃𝑡(𝑥, 𝑦) thanks to (39) and of (57), we easily 

obtain 

 |𝜃𝑡(𝑒𝑗  )|𝑐  ≤  𝐶1  +  𝑐𝐶𝐺  =  𝐶2.                                     (59) 

 Here, (𝑒1, . . . , 𝑒𝑛) is the canonical basis of 𝐶𝑛, each vector being identified with a constant 

function. 

 The next step is to analyze 𝜃𝑡(𝑅𝑡)
𝑘 for some integer 𝑘 ∈  𝑁∗ chosen so as to insure 

good kernel estimates on (𝑅𝑡)
𝑘. More precisely, if 𝑘 >  𝑛/2 ,it follows from the estimates 

(34) and (35) and standard computations that, there exists constants 𝑐, 𝛼 >  0 and µ ∈
 (0, 1) such that for all 𝑥, 𝑦, 𝑦 ∈  Ω and 𝑡 ∈  (0, 𝑇),  

|𝑅𝑡
𝑘 (𝑥, 𝑦)|  ≤  𝑐𝑡−𝑛𝑒−

𝛼|𝑥−𝑦|
𝑡  ,                                       (60) 

 |𝑅𝑡
𝑘 (𝑥, 𝑦) − 𝑅𝑡

𝑘  (𝑥, 𝑦′)|  ≤  𝑐𝑡−𝑛 (
|𝑦 − 𝑦′|

𝑡
)

µ

 ,                     (61) 

 where 𝑅𝑡
𝑘  (𝑥, 𝑦) denotes the kernel of (𝑅𝑡)

𝑘. Thanks to the upper bound on its kernel,the 

maximal operator associated to (𝑅𝑡)
𝑘 is bounded on 𝐿2(Ω),hence by the Carleson 

inequality (58) and (59) 

 (∫  
𝑇

0

 ‖𝑀𝑡(𝑅𝑡)
𝑘 𝐹‖

2

2 𝑑𝑡

𝑡
)

1
2

 ≤  𝑐𝐶2‖𝐹‖2  =  𝐶3‖𝐹‖2,                         (62) 

 Where 𝑀𝑡 ∶  𝐿
2(Ω, ℂ𝑛) →  𝐿2(Ω) is defined for 𝐹 =  (𝐹1, . . . , 𝐹𝑛) by 𝑀𝑡𝐹 (𝑥)  =

 ∑  𝑛
𝑗=1 (𝜃𝑡(𝑒𝑗)) (𝑥)𝐹𝑗  (𝑥), for all 𝑥 ∈  Ω.  

 Now,we have the following lemma.  

Proposition (2.2.20)[90]: The kernel 𝑈𝑡(𝑥, 𝑦) of 𝑈𝑡  = { 𝜃𝑡  −  𝑀𝑡 }(𝑅𝑡)
𝑘 satisfies  

|𝑈𝑡(𝑥, 𝑦)|  ≤  𝑐𝐶𝐺𝑡
−𝑛𝑒−

𝛼|𝑥−𝑦|
𝑡  ,                                 (63𝑎) 

|𝑈𝑡(𝑥, 𝑦
′)  − 𝑈𝑡(𝑥, 𝑦)|  ≤  𝑐𝐶𝐺𝑡

−𝑛 (
|𝑦 − 𝑦′|

𝑡
)

µ

 ,               (63𝑏) 
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 for some 𝛼 >  0, µ ∈  (0, 1) and 𝑐 >  0 whenever 𝑡 ∈  (0, 𝑇) and 𝑥, 𝑦, 𝑦′ ∈  Ω. 

Moreover, for 1 ≤  𝑗 ≤  𝑛, |𝑈𝑡(𝑒𝑗)(𝑥)|
2 
 
𝑑𝑥𝑑𝑡

𝑡
 are Carleson measures on Ω × (0, 𝑇) and  

|𝑈𝑡(𝑒𝑗)|𝑐  ≤  𝑐𝐶𝐺                                                     (64) 

 with 𝑐 depending only on 𝑛, 𝛼 and the Lipschitz constant of Ω.  

Proof. 𝑈𝑡(𝑥, 𝑦) is ℂ𝑛-valued and its jth component is given by 

 𝑈𝑡,𝑗  (𝑥, 𝑦)  =  ∫ 
Ω

 (𝜃𝑡(𝑥, 𝑧) ·  𝑒𝑗)𝑅𝑡
𝑘 (𝑧, 𝑦) 𝑑𝑧 − (𝜃𝑡(𝑒𝑗)) (𝑥) 𝑅𝑡

𝑘 (𝑥, 𝑦). 

 By Proposition (2.2.13), the function (𝜃𝑡(𝑒𝑗)) (𝑥) is bounded on Ω uniformly in 𝑡 ∈

 (0, 𝑇). Hence the estimates for (𝜃𝑡(𝑒𝑗)) (𝑥)𝑅𝑡
𝑘 (𝑥, 𝑦) are immediate. 

 The estimates for the other part can be obtained on applying part of Lemma (2.2.14) 

(since only (H2) is assumed) by writing 𝜃𝑡(𝑥, 𝑧)  =  𝑐𝐴𝜈𝑡(𝑥, 𝑦) with 𝜎 =  𝑛 −  1 and 𝑐 
depending on 𝐶𝐺,and 𝑅𝑡

𝑘 (𝑥, 𝑦)  =  𝑐𝐵𝜈′𝑡 (𝑥, 𝑦) replacing 𝑤𝑠(𝑢) by 1 for all 𝑢 >  0.  

 Under Neumann boundary condition,it is known that (𝑅𝑡)
𝑘(20)  =  1 (conservation 

property),hence 𝑈𝑡(𝑒𝑗)  =  0 for all 𝑗 ,which proves (64). Under Dirichlet boundary 

condition, the Carleson measure estimate requires a specific argument that is postponed.  

 By the 𝑇 1-theorem for Carleson measures in [98] adapted to the space of 

homogeneous type (Ω, |. |, 𝑑𝑥) we deduce from the above result that 

 ∫  
𝑇

0

‖  {𝜃𝑡  −  𝑀𝑡 }(𝑅𝑡)
𝑘 𝐹‖

2

2 𝑑𝑡

𝑡
 ≤  𝑐𝐶𝐺

2‖𝐹‖2
2.  

Since 𝜃𝑡(𝑅𝑡)
𝑘  =  𝑀𝑡(𝑅𝑡)

𝑘  + {𝜃𝑡  −  𝑀𝑡} (𝑅𝑡)
𝑘 we have obtained  

∫  
𝑇

0

‖𝜃𝑡(𝑅𝑡)
𝑘 𝐹‖

2

2 𝑑𝑡

𝑡
 ≤  𝐶3‖𝐹‖2

2.                                (65) 

 The last step is to come back to 𝜃𝑡𝑅𝑡 : we use functional calculus again. Let 𝜓(𝜁)  =
 (1 +  𝜁 )−1  −  (1 +  𝜁 )−𝑘, and notice that |𝜓(𝜁 )|  ≤  𝑐 inf  (|𝜁 |, |𝜁 |−1) for 𝜁 >  0, we 

have  

∫  
∞

0

 ‖𝜓(−𝑡 2 ∆)𝑔‖2
2
𝑑𝑡

𝑡
  =  𝑎(𝜓)‖𝑔‖2

2,                     (66) 

 with 𝑎(𝜓) =
1

2
 ∫  
∞

0
 |𝜓(𝑡)|2

𝑑𝑡

𝑡
 <  ∞. This and the uniform 𝐿2-boundedness of 𝜃𝑡 (which 

depends only on ellipticity) give us  

∫  
𝑇

0

 ‖𝜃𝑡 {𝑅𝑡  −  (𝑅𝑡)
𝑘} 𝐹‖

2

2 𝑑𝑡

𝑡
 ≤  𝑐𝑎 (𝜓)𝐶𝐺

2‖𝐹‖2
2, 

 where 𝑐 depends only on 𝑛 and 𝛿.  

We have obtained that  

∫  
𝑇

0

 ‖𝜃𝑡𝑅𝑡𝐹‖2
2
𝑑𝑡

𝑡
 ≤  𝑐𝐶𝐺

2‖𝐹‖2
2.  

as desired.  

 Let us mention that Theorem (2.2.18) has a converse. Namely,(56) implies (H1) (the 

condition (H2) is not used). Here is a proof. 

We can write for all 𝑓 ∈  𝑉, 

 𝜃𝑡𝛻𝑓 =  𝜃𝑡𝑅𝑡𝛻𝑓 + 𝜃𝑡𝛻(𝐼 −  𝑅𝑡)𝑓 + 𝜃𝑡[𝛻, 𝑅𝑡]𝑓. 
 Let us look at each term. By hypothesis,  
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∫  
𝑇

0

 ‖𝜃𝑡𝑅𝑡𝛻𝑓‖2
2
𝑑𝑡

𝑡
 ≤  𝑐‖𝛻𝑓‖2

2. 

 Next,write  

𝜃𝑡𝛻 { 𝐼 − (𝐼 − 𝑡
2 ∆)−1} 𝑓 =  𝑒^ − 𝑡2𝐿𝑡2 𝐿 �̃�(−𝑡2 ∆)(−∆)

1
2 𝑓  

where �̃� is given in (38). Since 𝑒−𝑡
2𝐿𝑡2𝐿 extends boundedly to 𝐿2(Ω) uniformly in 𝑡,  

‖𝜃𝑡𝛻 { 𝐼 −  (𝐼 − 𝑡
2∆)−1}𝑓‖2  ≤  𝑐(𝛿) ‖�̃�( −𝑡

2 ∆)(−∆)
1
2 𝑓‖

2
.  

Hence,  

∫  
∞

0

‖ 𝜃𝑡𝛻 { 𝐼 − (𝐼 − 𝑡
2 ∆)−1} 𝑓‖2

2
𝑑𝑡

𝑡
 ≤  𝑐(𝛿)2 𝑎(�̃�)‖(−∆)1 2⁄  𝑓‖

2

2
,  

and we conclude for this term using that ‖(−∆)1 2⁄ 𝑓 ‖
2
 =  ‖𝛻𝑓‖2 for all 𝑓 ∈  𝑉 . For the 

last term,the uniform 𝐿2-boundedness of 𝜃𝑡 gives us for all 𝑡 >  0 

‖𝜃𝑡 [𝛻, 𝑅𝑡]𝑓‖2
2  ≤  𝑐(𝛿)‖ [𝛻, 𝑅𝑡]𝑓‖2

2, 
 and the quadratic estimate follows from the commutator inequality  

Proposition (2.2.21)[90]: ([95]) For all 𝑓 ∈  𝑉, 

 ∫  
𝑡0

0

 ‖[𝛻, 𝑅𝑡]𝑓‖2
2
𝑑𝑥𝑑𝑡

𝑡
 ≤  𝑐0‖𝛻𝑓‖2

2  +  𝑐1‖𝑓‖2
2,  

where 𝑐0 depends only on the Lipschitz constant of Ω and 𝑛. This is proved with 𝑡0  =  ∞ 

and 𝑐1  =  0 when Ω is a special Lipschitz domain and also when Ω is a bounded domain 

with 𝑡0 finite. The proof works for any other strongly Lipschitz domain with 𝑡0 finite.  

 Hence, we have proved for all 𝑓 ∈  𝑉  

∫  
𝑇

0

 ‖𝜃𝑡𝛻𝑓‖2
2
𝑑𝑥𝑑𝑡

𝑡
 ≤  𝑐‖𝛻𝑓‖2

2  +  𝑐 ‖𝑓‖2
2, 

 where 𝑐′ =  0 in the case of a special Lipschitz domain. This implies (H1) by Proposition 

(2.2.40).  

 We restrict our attention to the case of Dirichlet boundary condition. Set 𝑔𝑡 =
 (𝑅𝑡)

𝑘 (20) and 𝜃𝑡,𝑗  (𝑥, 𝑦)  =  𝜃𝑡(𝑥, 𝑦)  ·  𝑒𝑗  . Then for 𝑡 ∈  (0, 𝑇) and 𝑥 ∈  Ω  

(𝑈𝑡(𝑒𝑗)) (𝑥)  =  ∫ 
Ω

 𝜃𝑡,𝑗  (𝑥, 𝑦)(𝑔𝑡(𝑦) − 𝑔𝑡(𝑥)) 𝑑𝑦 

=  ∫ 
Ω

 𝜃𝑡,𝑗  (𝑥, 𝑦)(𝑔𝑡(𝑦)  −  1) 𝑑𝑦 + (1 − 𝑔𝑡(𝑥)) ∫ 
Ω

 𝜃𝑡,𝑗  (𝑥, 𝑦) 𝑑𝑦. 

 Denote by 𝑑(𝑥) =  dist (𝑥, Ω 
𝑐 ). That |𝑈𝑡(𝑒𝑗)(𝑥)

2 𝑑𝑥𝑑𝑡

𝑡
 is a Carleson measure on Ω ×

 (0, 𝑇) is a consequence of the following lemmata.  

Lemma (2.2.22)[90]: If 𝛼 >  0, then 𝑒−
𝛼𝑑(𝑥)

𝑡
𝑑𝑥𝑑𝑡

𝑡
 is a Carleson measure on Ω × ℝ+

∗   with 

norm that depends only on 𝑛, 𝛼 and the Lipschitz constant of Ω. 

Proof. It is based on the following geometrical observation. The Lipschitz condition on 

the boundary of Ω implies that for each cube 𝑄 ∈  𝑄Ω and each 𝑠 >  0,  

𝑚(𝑠)  =  |{𝑥 ∈  𝑄 ∩  Ω ;  𝑑(𝑥) <  𝑠}|  ≤  𝑐ℓ(𝑄)𝑛−1𝑠, 

 where 𝑐 depends only on n and the Lipschitz constant of Ω. Also, if 𝑓 (𝑥)  =  𝑒−
𝛼𝑑(𝑥)

𝑡  then 

𝑓 (𝑥)  >  𝜆 if, and only if, 𝑑(𝑥)  <  𝑠 with  =  𝑒−
𝛼𝑠

𝑡  . Therefore,  
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∫  
𝑄∩Ω

 𝑒−
𝛼𝑑(𝑥)
𝑡  𝑑𝑥 =  ∫  

1

0

 |{𝑓 > 𝜆}| 𝑑𝜆 =
𝛼

𝑡
 ∫  
+∞

0

 𝑚(𝑠)𝑒−
𝛼𝑠
𝑡  𝑑𝑠 ≤

𝑐ℓ(𝑄)𝑛−1𝑡

𝛼
 , 

 and thus  

∫  
ℓ(𝑄)

0

 ∫  
𝑄∩Ω 

𝑒−
𝛼𝑑(𝑥)
𝑡
𝑑𝑥𝑑𝑡

𝑡
 ≤
𝑐|𝑄|

𝛼
 ≤
𝑐𝛾|𝑄 ∩  Ω|

𝛼
 . 

 The last inequality follows from the fact that 𝑄 ∈  𝑄Ω .  

Lemma (2.2.23)[90]: If 𝑉𝑡 is a linear operator whose kernel satisfies for all 𝑟 >  0,  

sup
𝑥∈Ω

  ∫  
𝑟≤|𝑥−𝑦|≤2𝑟

𝑦∈Ω
 

 |𝑉𝑡(𝑥, 𝑦)| 𝑑𝑦 ≤ inf   ((
𝑟

𝑡
) 𝜀 , 𝑒−

𝛼𝑟
𝑡 )  

for some 𝛼, 𝜀 >  0, then there exists 𝛼 >  0 such that for all 𝑥 ∈  Ω 

 ∫ 
Ω

 |𝑉𝑡(𝑥, 𝑦)𝑒
−
𝛽𝑑(𝑦)
𝑡 | 𝑑𝑦 ≤  𝑐(𝑛, 𝛼, 𝛽)𝑒−

𝛽𝑑(𝑥)
𝑡   

for all 𝛽 ∈  (0, 𝛼 ).  
Proof. The proof is straightforward once we observe that |𝑑(𝑦) −  𝑑(𝑥)| ≤ |𝑦 −  𝑥|.  
Lemma (2.2.24)[90]: There is 𝛼 > 0 such that for all 𝑡 ∈  (0, 𝑇) and 𝑥 ∈  Ω,  

 |1 − 𝑔𝑡(𝑥)|  ≤  𝑐𝑒
−
𝛼𝑑(𝑥)
𝑡  , 

 where 𝑐 depends only on the Lipschitz constant of Ω. 

Proof. Write  

𝐼 −  (𝑅𝑡)
𝑘  =  ∑  

𝑘−1

𝑗=0

 (𝑅𝑡)
𝑗  ( 𝐼 − 𝑅𝑡) .  

It follows from (34) and easy calculations that Lemma (2.2.23) applies to each (𝑅𝑡)
𝑗 so 

that we are reduced to proving  

|𝑣𝑡(𝑥)| ≤  𝑐𝑒
−
𝛼𝑑(𝑥)
𝑡  , 𝑥 ∈  Ω, 0 <  𝑡 ≤  𝑇,                    (67) 

 where 𝑣𝑡  =  1 − 𝑅𝑡(20). This last estimate is obtained using elementary potential 

theory. Indeed, 𝑣𝑡 is a bounded solution of the problem  

{
𝑣𝑡  −  𝑡

2∆𝑣𝑡  =  0, 𝑖𝑛 Ω,
𝑣𝑡  =  1, 𝑜𝑛 𝜕Ω,              

   

 so that the minimum principle gives us 𝑣𝑡  ≥  0 in Ω. Next, denote by 𝐸(𝑥) the 

fundamental solution of 𝐼 − ∆ on ℝ𝑛 that vanishes at ∞. Hence, for 𝑡 > 0, 𝐸𝑡(𝑥)  =
 𝑡−𝑛𝐸(𝑥/𝑡) is the fundamental solution of 𝐼 − 𝑡2∆ on ℝ𝑛 vanishing at ∞. Set  

𝑟𝑡(𝑥)  =  ∫  
𝑐Ω

𝐸𝑡(𝑥 −  𝑦)𝑑𝑦, 𝑥 ∈  Ω, 𝑡 >  0. 

This function is well-defined by the properties of 𝐸 which we recall for convenience (see 

[109]): For all 𝑥 ≠  0, 𝐸(𝑥)  >  0,and there exist constants 𝑐1, 𝑐2, 𝛼1, 𝛼2  >  0 such that  

𝑐1𝑤𝑛−2(|𝑥|)𝑒
−𝛼1|𝑥|  ≤  𝐸(𝑥)  ≤  𝑐2𝑤𝑛−2(|𝑥|)𝑒

−𝛼2|𝑥| . 
 It is clear that 𝑟𝑡  −  𝑡

2∆𝑟𝑡  =  0 in Ω and that, by a direct estimate,  

𝑟𝑡(𝑥) ≤  𝑐𝑒
−
𝛼𝑑(𝑥)
𝑡  , 𝑥 ∈  Ω, 𝑡 >  0.  

We claim that there exists a number 𝜅 >  0 such that 𝑟𝑡  ≥  𝜅 on 𝜕Ω for all 𝑡 ∈  (0, 𝑇 ]. 
Admitting this claim, we deduce from the minimum principle that 𝜅−1𝑟𝑡 − 𝑣𝑡  ≥  0 in Ω. 

Hence,for all 𝑥 ∈  Ω and 𝑡 ∈  (0, 𝑇 ] 

 𝑣𝑡(𝑥)  ≤  𝜅
−1 𝑟𝑡(𝑥)  ≤  𝜅

−1 𝑐𝑒−
𝛼𝑑(𝑥)
𝑡 , 
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 which is (67). Proof of the claim. We distinguish the special domains from the other 

cases. When Ω is a special Lipschitz domain,it has the exterior infinite cone condition. 

That is, there is a fixed cone 𝛤 with vertex at 0 and aperture 𝑎 >  0 such that for each 𝑥 ∈
 𝜕Ω, 𝛤 (𝑥)  =  {𝑥}  +  𝛤 ⊂  Ω 

𝑐 . Since 𝛤 is invariant under change of scales,it follows that 

for 𝑥 ∈  𝜕Ω and 𝑡 >  0,  

𝑟𝑡(𝑥)  ≥  ∫  
𝛤(𝑥)

𝐸𝑡(𝑥 −  𝑦) 𝑑𝑦 =  ∫ 
𝛤

 𝐸𝑡(𝑧) 𝑑𝑧 =  ∫ 
𝛤

 𝐸(𝑧)𝑑𝑧 >  0.  

When Ω is a strongly Lipschitz domain (bounded or not), it has the exterior truncated cone 

condition. That is,one can find an aperture 𝑎 >  0 and a height ℎ >  0 such that for each 

𝑥 ∈  𝜕Ω there is a truncated cone cone 𝛤ℎ(𝑥) =  {𝑥} + 𝛤ℎ  ⊂  Ω 
𝑐  obtained from a fixed 

cone 𝛤ℎ with vertex at 0, aperture 𝑎 >  0 and height ℎ > 0 by translation and rotation in 

ℝ𝑛. Thus, for 𝑥 ∈  𝜕Ω,  

𝑟𝑡(𝑥)  ≥  ∫  
𝛤ℎ

 𝐸𝑡(𝑧) 𝑑𝑧 =  ∫  
𝛤ℎ 𝑡⁄  

 𝐸(𝑧) 𝑑𝑧 >  0, 𝑡 >  0. 

 This last quantity is a continuous function of t and it tends to  ∫  
𝛤
 𝐸(𝑧) 𝑑𝑧 >  0 as 𝑡 

tends to 0. Hence, inf  {𝑟𝑡(𝑥);  0 <  𝑡 ≤  1, 𝑥 ∈  𝜕Ω}  >  0.  

 Concerned with the analysis of the term in (26) involving the commutator 𝒞𝑡 
defined by (25),that is we prove Lemma (2.2.7). This is where the geometry of the 

boundary most enters. As indicated by this result,we begin with special Lipschitz 

domains,and then move to the general case. 

 Ω is a special Lipschitz domain. Let 𝜙 ∶  ℝ𝑛 −1  → ℝ satisfying ‖𝛻𝜙‖∞  =  𝑀 <
 ∞ such that Ω =  {(𝑥′, 𝑥𝑛)  ∈  ℝ

𝑛 ;  𝑥𝑛  >  𝜙(𝑥)}. The Lipschitz constant of Ω is 𝑀 by 

definition. If 𝑥 =  (𝑥′, 𝑥𝑛)  ∈  Ω then �̅� =  (𝑥 , 𝜙(𝑥′)) is its vertical projection on 𝜕Ω and 

𝑥∗  =  (𝑥 , 2𝜙(𝑥 )  − 𝑥𝑛) is its vertical symmetric across 𝜕Ω. We shall consistently use the 

notation �̅� to denote a point on 𝜕Ω (this confusion is convenient). Surface measure on 𝜕Ω 

is denoted by 𝜎 and 𝑁(�̅�) is the exterior unit normal at �̅�  ∈  𝜕Ω. We shall often perform 

integration over Ω by writing 𝑑𝑦 =  𝑑𝜎(�̅�)𝑑𝑢  for 𝑦 =  �̅�  +  𝑢𝑒𝑛, �̅�  ∈  𝜕Ω and 𝑢 > 0. 

Our analysis involves the following operators.  

Definition (2.2.25)[90]: We say that 𝐻 is a Hardy operator if 𝐻 is an integral operator of 

the form 𝐻𝑓 (𝑥)  =  ∫  
Ω
 𝐾(𝑥, 𝑦)𝑓 (𝑦) 𝑑𝑦 where |𝐾(𝑥, 𝑦)|  ≤  𝐶|𝑥 − 𝑦∗|−𝑛 for almost 

every (𝑥, 𝑦)  ∈  Ω ×  Ω.  

Definition (2.2.26)[90]: We say that 𝐵 is a boundary Hardy operator if it has the form 

𝐵𝑔(𝑥)  =  ∫  
𝜕Ω
 𝐾(𝑥, �̅�)(𝑔( �̅�) −  𝑔(�̅�)) 𝑑𝜎 ( �̅�) where |𝐾(𝑥, �̅�) |  ≤  𝐶|𝑥 − 𝑦|−𝑛 for 

almost every (𝑥, �̅�)  ∈  Ω ×  𝜕Ω.  

Proposition (2.2.27)[90]: For 1 < 𝑝 <  ∞,  
‖𝐻𝑓‖𝑝  ≤  𝑐(𝑝,𝑀)‖𝑓‖𝑝, ∀ 𝑓 ∈  𝐿𝑝(Ω).              (68) 

‖𝐵(𝑇𝑟𝑓 )‖𝑝  ≤  𝑐(𝑝,𝑀)‖𝛻𝑓‖𝑝, ∀ 𝑓 ∈  𝑊1,𝑝(Ω).         (69) 

 Here T r is the trace operator, which is bounded from 𝑊1,𝑝(Ω) onto the Besov space 

𝐵1−1 𝑝⁄
𝑝,𝑝

(𝜕Ω),so that the second inequality can be reformulated as the boundedness of 𝐵 

from that Besov space into 𝐿𝑝(Ω). The proof is postponed.  

 Let us come back to the commutators and distinguish each boundary condition.  

Dirichlet boundary condition. We begin with  

Lemma (2.2.28)[90]: ([95]) We have  

[𝛻, 𝑅𝑡]  =  [𝛻, 𝐻𝑡]                                                      (70) 
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 where 𝐻𝑡 is an integral operator with kernel 𝐻𝑡(𝑥, 𝑦) enjoying the upper bound  

|𝐻𝑡(𝑥, 𝑦)|  ≤ inf  (𝐸𝑡(𝑥 −  𝑦), 𝑐𝐸𝑎𝑡(𝑥 −  𝑦
∗ ))                        (71) 

 for all 𝑡 >  0 and 𝑥, 𝑦 ∈  Ω, for some constants 𝑐 and 𝑎 >  0 depending only on the 

Lipschitz constant of Ω. 

 The kernel 𝐸𝑡(𝑥) was defined earlier. The idea of (70) is that the commutator 

annihilates the convolution part of 𝑅𝑡 : in other words, Ht is nothing but 𝑅𝑡  −  𝐸𝑡 . 
Replacing 𝑅𝑡 by 𝐻𝑡 uses all the cancellation contained in the commutator, so it suffices to 

examinate the terms coming from 𝛻𝐻𝑡 and 𝐻𝑡𝛻 separately. Let us assume for the time 

being that 𝑓 ∈  𝐶0
1 (Ω).  

 First,write  

�̃�𝑡 𝛻𝐻𝑡(𝑓 ) =
1

𝑡
 𝛹(𝑡2𝐿)𝐻𝑡(𝑓 ).  

Since 𝑓 vanishes on 𝜕Ω,we have by the fundamental theorem of calculus that 𝑓 =

 𝐼𝑛(𝐷𝑛𝑓 ) where 𝐷𝑛  =
𝜕

𝜕𝑥𝑛
 and  

𝐼𝑛(𝑔)(𝑥)  =  𝐼𝑛(𝑔)(�̅�  +  𝑢𝑒𝑛)  =  ∫  
𝑢

0

 𝑔(�̅�  +  𝑣𝑒𝑛) 𝑑𝑣.                 (72) 

 Hence, we have established for all 𝑓 ∈  𝐶0
1 (Ω) that  

�̃�𝑡 [𝛻, 𝑅𝑡]𝑓 =
1

𝑡
 𝛹 (𝑡2𝐿)𝐻𝑡 𝐼𝑛(𝐷𝑛𝑓 )  − �̃�𝑡 𝐻𝑡(𝛻𝑓 ).  

In view of the next result, the above representation will extend to all of H1 0 (Ω) by 

density, and with the help of Proposition (2.2.27) this proves Lemma (2.2.7) in the case of 

Dirichlet boundary condition.  

Lemma (2.2.29)[90]: Under the condition (H2),  ∫  
𝑇

0

1

𝑡
 𝛹 (𝑡2𝐿)𝐻𝑡 𝐼𝑛

𝑑𝑡

𝑡
 and 

 ∫
𝑇

0
 �̃�𝑡 𝐻𝑡

𝑑𝑡

𝑡
 are Hardy operators.  

Proof. In the notation of Lemma (2.2.14), the upper bound |𝐻𝑡(𝑥, 𝑦)|  ≤  𝑐𝐸𝑎𝑡(𝑥 −
𝑦∗) shows that it is of the form 𝑐𝐵𝛽𝑡(𝑥, 𝑦

∗) with parameter 𝑠 =  𝑛 −  2 for some 𝑐, 𝛽 >

 0, and by Lemma (2.2.15), the kernels of 𝛹 (𝑡2𝐿) and �̃�𝑡 are of the form 𝑐𝐴𝛼𝑡(𝑥, 𝑦) for 

some 𝑐, 𝛼 > 0 with parameters 𝜎 =  𝑛 and 𝜎 =  𝑛 − 1 respectively. Following the proof 

of (53), this gives an upper bound of the form 𝑐𝐵𝛽𝑡(𝑥, 𝑦
∗) with parameter 𝑠 =  𝑛 −  2 for 

the kernels of both 𝛹 (𝑡2𝐿)𝐻𝑡 and �̃�𝑡 𝐻𝑡 . Next, use the remark that if 𝑆𝑡(𝑥, 𝑦) is the 

kernel of some operator St then the kernel of 𝑆𝑡 In is given by ∫  
∞

𝑦𝑛
 𝑆𝑡(𝑥, �̅�  +  𝑢𝑒𝑛) 𝑑𝑢. 

Direct calculations conclude the proof.  

 Neumann boundary condition.  

Lemma (2.2.30)[90]: ([95]) For 𝑓 ∈  𝐶0
1 (Ω) and 𝑥 ∈  Ω, we have 

 [𝛻, 𝑅𝑡]𝑓 (𝑥) =  2 ∫ 
Ω

𝐸𝑡(𝑥 − 𝑦
∗) 𝐷𝑛𝑓 (𝑦)�̃� (  �̅�)𝑑𝑦  − ∫ 

Ω

 𝐹𝑡(𝑥, 𝑦)𝛻𝑓 (𝑦)𝑑𝑦  

+ ∫ 
Ω

 𝛻𝑥𝐹𝑡(𝑥, 𝑦)𝑓 (𝑦)𝑑𝑦,                                         (73) 

with �̃� (�̅�)  =  √ 1 + |𝛻𝜙(𝑦)|2𝑁 (�̅�) , when �̅�  =  (𝑦′, 𝜙(𝑦′)). Here, 𝐹𝑡(𝑥,·)  ∈  𝐻
1(Ω), 

and satisfies the upper bound  

|𝐹𝑡(𝑥, 𝑦)|  ≤  𝑐 inf  (𝐸𝑎𝑡(𝑥 −  𝑦), 𝐸𝑎𝑡(𝑥 − 𝑦
∗)), 𝑡 >  0, 𝑥 ∈  Ω, 𝑦 ∈  Ω  

for some 𝑐 >  0 and 𝑎 >  0 depending on the Lipschitz constant of Ω, and  
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∫ 
Ω

 𝐹𝑡(𝑥, 𝑦) 𝑑𝑦 =  0, 𝑡 >  0, 𝑥 ∈  Ω.  

Let us remark that this lemma was proved under the assumption that Ω be smooth but easy 

limiting arguments show that this technical assumption can be removed. The idea of (73) 

is to compare 𝑅𝑡(𝑥, 𝑦) to the sum of 𝐸𝑡(𝑥 −  𝑦) and 𝐸𝑡(𝑥 − 𝑦
∗) so as to obtain the mean 

value property.  

In short, we write, for 𝑓 ∈  𝐶0
1 (Ω̅) 

 [𝛻, 𝑅𝑡]𝑓 =  2𝐸𝑡,∗(�̃�𝐷𝑛𝑓 )  −  𝐹𝑡(𝛻𝑓)  +  𝛻𝐹𝑡(𝑓) 
 so that  

�̃�𝑡 [𝛻, 𝑅𝑡]𝑓 =  2�̃�𝑡 𝐸𝑡,∗(�̃�𝐷𝑛𝑓 )  − �̃�𝑡 𝐹𝑡(𝛻𝑓 ) + �̃�𝑡 𝛻𝐹𝑡(𝑓 ).          (74) 

 Note that the multiplication by �̃� is harmless since it is bounded.  

 We focus on the last term in (74). Observe that  

�̃�𝑡 𝛻𝐹𝑡(𝑓 ) =
1

𝑡
 𝛹 (𝑡2 𝐿)𝐹𝑡(𝑓 ). 

 The same argument as above shows that the kernel 𝑆𝑡(𝑥, 𝑦) of 𝛹 (𝑡2𝐿)𝐹𝑡 has the same 

upper bound as 𝐹𝑡(𝑥, 𝑦). In particular, it is integrable with respect to y over Ω. 

Furthermore, by Fubini’s theorem  

∫ 
Ω

 𝑆𝑡(𝑥, 𝑦) 𝑑𝑦 =  ∫
Ω

 𝐿𝑡(𝑥, 𝑧)∫
Ω

 𝐹𝑡(𝑧, 𝑦) 𝑑𝑦 𝑑𝑧 =  0  

using the mean value property of 𝐹𝑡(𝑥, 𝑦). Hence, we have for 𝑥 ∈  Ω,   

𝛹 (𝑡2 𝐿)𝐹𝑡(𝑓 )(𝑥) =  ∫
Ω

 𝑆𝑡(𝑥, 𝑦)(𝑓 (𝑦) −  𝑓 (�̅�))𝑑𝑦.   

(Recall that �̅� is the vertical projection of �̅� onto Ω.) Using  

𝑓 (𝑦)  −  𝑓 (�̅�)  =  𝑓 (�̅�)  −  𝑓 (�̅�)  + 𝐼𝑛(𝐷𝑛𝑓 )(𝑦) 
 and performing integration over Ω by writing 𝑑𝑦 =  𝑑𝜎(�̅�)𝑑𝑢  for 𝑦 =  �̅�  +  𝑢𝑒𝑛 we 

obtain  
1

𝑡
 𝛹 (𝑡2 𝐿)𝐹𝑡(𝑓 )(𝑥) =  ∫  

𝜕Ω

 𝐵𝑡(𝑥, �̅�)(𝑓 ( �̅�) −  𝑓 (�̅�))𝑑𝜎 ( 𝑦) +
1

𝑡
 𝛹 (𝑡2𝐿)𝐹𝑡 𝐼𝑛(𝐷𝑛)(𝑥) 

so that  

�̅�𝑡  𝛻𝐹𝑡(𝑓)(𝑥) =  𝐵𝑡(𝑇𝑟𝑓)(𝑥) +
1

𝑡
 𝛹 (𝑡2 𝐿)𝐹𝑡 𝐼𝑛(𝐷𝑛𝑓 )(𝑥),         (75) 

 where  

𝐵𝑡(𝑥, �̅�) =
1

𝑡
 ∫  
∞

0

 𝑆𝑡(𝑥, �̅�  +  𝑢𝑒𝑛) 𝑑𝑢. 

 Combining (74) and (75) gives us a representation for �̃�𝑡 [𝛻, 𝑅𝑡](𝑓 ) valid for all 𝑓 ∈
 𝐶0
1 (Ω).  

Lemma (2.2.31)[90]: Under the condition (H2), the integrals ∫  
𝑇

0
 �̃�𝑡 𝐸𝑡,∗

𝑑𝑡

𝑡
 , ∫  

𝑇

0
 �̃�𝑡 𝐹𝑡

𝑑𝑡

𝑡
 

and ∫  
𝑇

0

1

𝑡
 𝛹 (𝑡2𝐿)𝐹𝑡 𝐼𝑛

𝑑𝑡

𝑡
 are Hardy operators, and ∫  

𝑇

0
 𝐵𝑡

𝑑𝑡

𝑡
 is a boundary Hardy 

operator.  

 To prove the lemma, it suffices to carry out upper bounds for kernels by invoking 

Lemma (2.2.14) as in Lemma (2.2.29). We skip details. In view of this lemma, a density 

argument shows that this representation extends to all of 𝐻1(Ω) and proves Lemma (2.2.7) 

in this case.  
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 To analyze �̃�𝑡 [𝛻, 𝑅𝑡] on general Lipschitz domains, we use a localization technique 

at the level of the commutator 𝐶𝑡  =  [𝛻, 𝑅𝑡]. This essentially involves comparing 

Laplacians defined on different sets and avoids the comparisons between general elliptic 

operators.  

 Recall that we assume (H2) with some 𝜏 finite, say τ = 1 for simplicity.  

 We begin with the domain decomposition, following [109]. There is an integer s, a 

number 𝑑 >  0 and for 0 ≤  𝑘 ≤  𝑠, 𝐶0
∞ (ℝ𝑛) real-valued functions 𝜒𝑘 and 𝜂𝑘, and open 

sets 𝑂𝑘 , 𝑃𝑘 , Ω𝑘 with the following properties:  

(i) 0 ≤ 𝑘 ≤ 𝑠 𝜒𝑘(𝑥)  =  1, for 𝑥 in a neighborhood of Ω;  

(ii) Ω0  =  ℝ
𝑛, Supp 𝜒0  ⊂  𝑂0  ⊂  𝑂0̅̅ ̅  ⊂  𝑃0  ⊂  𝑃0̅̅ ̅  ⊂  Ω;  

(iii) For 𝑘 ≥  1, Ω𝑘 is the image of a special Lipschitz domain under an orthogonal 

transformation in ℝ𝑛  such that Supp 𝜒𝑘  ∩  Ω ⊂  Ω𝑘  ∩  Ω;  

(iv) For 𝑘 ≥  1, 𝑂𝑘  and 𝑃𝑘 are open neighborhoods of Supp 𝜒𝑘 in ℝ𝑛 such that 𝑂𝑘̅̅̅̅  ⊂
 𝑃𝑘, 𝑃𝑘  ∩  Ω ⊂  Ω𝑘  ∩  Ω and 𝜕Ω ∩ 𝑃𝑘̅̅ ̅  =  𝜕Ω𝑘  ∩  𝑃𝑘̅̅ ̅,at most one of the latter possibly 

infinite;  

(v) For 𝑘 ≥  0,Supp 𝜂𝑘  ⊂  𝑃𝑘, 𝜂𝑘  =  1 on a neighborhood of 𝑂𝑘̅̅̅̅ , 𝜂𝑘  ≥  0 and ‖𝜂𝑘‖∞  =
 1;  

(vi) For 𝑘 ≥ 0, 𝑑(𝑂𝑘, 𝑃𝑘 
𝑐 )  ≥  𝑑 and 𝑑(Supp 𝜒𝑘, 𝑂𝑘 

𝑐 )  ≥  𝑑. 

Each patch (except for the 0th one) contributes to a Lipschitz constant 𝑀𝑘. The Lipschitz 

constant of Ω is by definition the least of max (𝑀1, . . . , 𝑀𝑠) taken over all such 

decompositions of Ω.  

 For 𝑘 =  0,let 𝑅𝑡,0  =  (𝐼 − 𝑡
2∆)−1 be the resolvent of the Laplacian on ℝ𝑛 and 

𝑉0  =  𝐻
1(ℝ𝑛). Since 𝑅𝑡,0 is a convolution operator, 𝐶𝑡,0  =  [𝛻, 𝑅𝑡,0]  =  0. For 𝑘 ≥  1,let 

𝐶𝑡,𝑘  =  [𝛻, 𝑅𝑡,𝑘] denote the commutator defined on functions on Ω𝑘 using the resolvent 

𝑅𝑡,𝑘  =  (𝐼 −  𝑡
2∆)−1 of the Laplacian −(𝐼𝑑, Ω𝑘 , 𝑉𝑘) where 𝑉𝑘  =  𝐻0

1 (Ω𝑘) (resp. 

𝐻1(Ω𝑘)) if 𝑉 =  𝐻0
1 (Ω) (resp. 𝐻1(Ω)) . For 𝑓 ∈  𝑉 , note that 𝜒𝑘𝑓 ∈  𝑉 ∩  𝑉𝑘  so that all 

operations will make sense. Now that these precautions are taken, fix 𝑓 ∈ 𝑉 and since 

𝑓 = ∑  𝜒𝑘𝑓 ,write for any 𝑡 >  0, 

 𝒞𝑡𝑓 =  ∑  

0≤𝑘≤𝑠

 𝜂𝑘𝒞𝑡,𝑘(𝜒𝑘𝑓 )  + ∑  

0≤𝑘≤𝑠

 (1 − 𝜂𝑘)𝒞𝑡(𝜒𝑘𝑓)  + ∑  

0≤𝑘≤𝑠

 𝜂𝑘(𝒞𝑡  − 𝒞𝑡,𝑘(𝜒𝑘𝑓)  

=  I +  II +  III,                                                   (58) 
 and to each of those terms apply �̃�𝑡  on the left. Fix a 𝑘 once for all.  

Term I. We assume that 𝑘 ≠  0, otherwise there is nothing to do since 𝒞𝑡,0  =  0. Up to a 

rotation in ℝ𝑛 we may and do assume that Ω𝑘 is a special Lipschitz domain.  

Dirichlet boundary condition: With obvious notation and according to Lemma (2.2.28),we 

have 𝒞𝑡,𝑘  =  𝛻𝐻𝑡,𝑘  −  𝐻𝑡,𝑘𝛻 so that  

�̃�𝑡 [𝜂𝑘𝒞𝑡,𝑘(𝜒𝑘𝑓)  =
1

𝑡
 𝛹 (𝑡2 𝐿) [𝜂𝑘𝐻𝑡,𝑘(𝜒𝑘𝑓 )]  −  �̃�𝑡 [(𝛻𝜂𝑘)𝐻𝑡,𝑘(𝜒𝑘𝑓)]  

+ �̃�𝑡[ 𝜂𝑘𝐻𝑡,𝑘𝛻(𝜒𝑘𝑓)].                                        (76) 
 Kernel analysis of each term yields Hardy type bounds in the set 𝑃𝑘 and exponential 

bounds away from 𝑃𝑘. Let us be more explicit by treating the case of the kernel 

𝑃(𝑥, 𝑦) of 𝑃 =   ∫  
1

0
 �̃�𝑡  𝜂𝑘𝐻𝑡,𝑘

𝑑𝑡

𝑡
 ,which is the most singular one. It is given by  

|𝑃(𝑥, 𝑦)| ≤  ∫  
1

0

 ∫ 
Ω

 |�̃�𝑡 (𝑥, 𝑧)𝜂𝑘(𝑧)𝐻𝑡,𝑘(𝑧, 𝑦)| 𝑑𝑧
𝑑𝑡

𝑡
 , 



66 

 where we restrict ourselves to 𝑥 ∈  Ω and 𝑦 ∈  Ω ∩ Supp 𝜒𝑘. First, replace 𝜂𝑘 by ‖𝜂𝑘‖∞ 

as this function plays no role. If 𝑥 ∈  𝑃𝑘, then we use |𝐻𝑡 , 𝑘(𝑧, 𝑦)|  ≤  𝑐𝐸𝑎𝑡(𝑧 − 𝑦
∗) so 

that 

 |𝑃(𝑥, 𝑦)|  ≤  𝑐|𝑥 − 𝑦∗|−𝑛 

from the results. If 𝑥 ∉  𝑃𝑘 then |𝐻𝑡,𝑘(𝑧, 𝑦)|  ≤  𝐸𝑡(𝑧 − 𝑦),Supp 𝜒𝑘  ⊂  𝑂𝑘  ⊂  𝑃𝑘 and 

𝑑(𝑂𝑘, 𝑃𝑘 
𝑐 )  ≥  𝑑 >  0 lead to  

|𝑃 (𝑥, 𝑦)|  ≤  𝑐(𝑑)𝑒−𝛼|𝑥−𝑦|.  
This easily yields ‖𝑃𝛻(𝜒𝑘𝑓)‖𝑝  ≤  𝑐‖𝛻(𝜒𝑘𝑓)‖𝑝.  
 We do the same thing for the other terms in (76) using also the trick with the 

operator In defined in (72) on writing 𝜒𝑘𝑓 =  𝐼𝑛𝐷𝑛(𝜒𝑘𝑓).  
 Eventually,we have     

 ‖∫  
1

0

 �̃�𝑡 𝜂𝑘𝒞𝑡,𝑘(𝜒𝑘𝑓)
𝑑𝑡

𝑡
‖
𝑝

 ≤  𝑐‖𝛻(𝜒𝑘𝑓)‖𝑝.  

and 𝑐 is proportional to 𝐶𝐺.  

Neumann boundary condition: This is similar using the operators 𝐹𝑡,𝑘, local Hardy and 

boundary Hardy estimates... We skip details.  

Term II. This term receives the same analysis under both boundary conditions as we only 

use size estimates on the kernel of 𝑅𝑡 . By definition of 𝒞𝑡 ,  

�̃�𝑡 (1 −  𝜂𝑘)𝒞𝑡(𝜒𝑘𝑓)  =  �̃�𝑡 (1 − 𝜂𝑘)𝛻𝑅𝑡(𝜒𝑘𝑓)  − �̃�𝑡 (1 − 𝜂𝑘)𝑅𝑡𝛻(𝜒𝑘𝑓) . 
 The analysis in the proof of Lemma (2.2.14) applies to the kernel of �̃�𝑡 (1 −  𝜂𝑘)𝑅𝑡 . 
Moreover,since the supports of 𝜒𝑘 and 1 − 𝜂𝑘 are at distance at least 𝑑,the integrand has 

support contained in |𝑦 −  𝑧|  ≥  𝑑 and we get  

|∫ 
Ω

 �̃�𝑡(𝑥, 𝑧)(1 − 𝜂𝑘)(𝑧)𝑅𝑡(𝑧, 𝑦)𝑑𝑧|  ≤  ∫  
|𝑦−𝑧|≥𝑑 

|�̃�𝑡 (𝑥, 𝑧)||𝑅𝑡(𝑧, 𝑦)| 𝑑𝑧 

≤  𝑐𝑡−𝑛𝑒  −
𝛽(|𝑥−𝑦|+𝑑)

𝑡  

for some 𝛽 >  0,whenever 𝑥 ∈  Ω, 𝑦 ∈  Ω ∩  Supp 𝜒𝑘, 𝑡 ≤  1. Hence, 

 ‖�̃�𝑡 (1 − 𝜂𝑘)𝑅𝑡𝛻(𝜒𝑘𝑓)‖𝑝  ≤  𝑐𝑒
−
𝛽𝑑
𝑡  ‖𝛻(𝜒𝑘𝑓)‖𝑝.  

The estimate for the kernel of �̃�𝑡 (1 − 𝜂𝑘)𝛻𝑅𝑡 requires a specific argument and  

∫ 
Ω

 �̃�𝑡  (𝑥, 𝑧)(1 − 𝜂𝑘)(𝑧)𝛻𝑧𝑅𝑡(𝑧, 𝑦)𝑑𝑧 ≤  𝑐(𝑑)𝑡
−𝑛−1 𝑒−

𝛽(|𝑥−𝑦|+𝑑)
𝑡    (77) 

 for some 𝛽 >  0,whenever 𝑥 ∈  Ω, 𝑦 ∈  Ω ∩ Supp 𝜒𝑘 and 𝑡 ≤  1. This implies  

‖�̃�𝑡  (1 −  𝜂𝑘)𝛻𝑅𝑡(𝜒𝑘𝑓)‖𝑝  ≤  𝑐𝑡
−1 𝑒−

𝛽𝑑
𝑡 ‖𝜒𝑘𝑓‖𝑝. 

Hence,  

∫  
1

0

‖�̃�𝑡 (1 − 𝜂𝑘)𝒞𝑡(𝜒𝑘𝑓)‖𝑝
𝑑𝑡

𝑡
 ≤  𝑐‖𝜒𝑘𝑓‖𝑝  +  𝑐‖𝛻(𝜒𝑘𝑓)‖𝑝. 

 In order to prove (77),we use the following estimates:  

∫  
|𝑦−𝑧|≥𝑟

 |𝑡𝛻𝑧𝑅𝑡(𝑧, 𝑦)|
2 𝑑𝑧 ≤ {

𝑐𝑡−𝑛  (
𝑡

𝑟
)
𝑛−2

 𝑒−
𝛼𝑟
𝑡  , if 𝑛 >  2,

𝑐𝑡−2 ln2  ( 𝑒 +
𝑡

𝑟
) 𝑒  −

𝛼𝑟
𝑡  , if 𝑛 =  2.

  (78) 

 ∫  
|𝑥−𝑧|∼𝑟 

|�̃�𝑡 (𝑥, 𝑧)|
2
 𝑑𝑧 ≤  𝑐𝑡−𝑛  (

𝑟

𝑡
)
𝑛−2

 𝑒
−
𝛼𝑟2

𝑡2  ,                   (79) 
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 ∫  
|𝑦−𝑧|≤𝑟

 |�̃�𝑡 (𝑥, 𝑧)|
2
 𝑑𝑧 ≤  𝑐𝑡−𝑛  (

𝑟

𝑡
)
 𝑛−2

 .                  (80)  

for some 𝑐 >  0 and α > 0 independent of 𝑟 > 0, 𝑡 ∈ (0, 2], 𝑥, 𝑦 ∈ Ω. The proof of (78) is a 

consequence of (34) and elliptic Caccioppoli’s inequality applied to 𝑢(𝑧)  =  𝑅𝑡(𝑧, 𝑦) that 

is a weak solution of 𝑢 − 𝑡2∆𝑢 =  0 in Ω \ {𝑦}. Indeed, Caccioppoli’s inequality reads  

∫  |𝛻𝑢|2 𝜑2  ≤  𝐶(𝛿, ‖𝐴‖∞) |𝑢|
2 |𝛻𝜑|2 

 for any real-valued smooth and bounded function with bounded gradient, and we choose 

𝜑 to be supported in |𝑦 −  𝑧| ≥  𝑟/2 and 𝜑 =  1 on |𝑦 −  𝑧|  ≥  𝑟. Equation (79) is 

nothing but a rewriting of (39). Eventually, (80) is a consequence of (79) when 𝑛 ≥ 3 

while it follows from the 𝐿2 − 𝐿∞ boundedness of �̃�𝑡 when 𝑛 =  2 (for 𝑛 =  2, these 

estimates are not sharp but they suffice for our purpose). Since 𝑦 ∈ Supp 𝜒𝑘, we have  

∫ 
Ω

 �̃�𝑡(𝑥, 𝑧)(1 − 𝜂𝑘)(𝑧)𝛻𝑧𝑅𝑡(𝑧, 𝑦) 𝑑𝑧 ≤  |𝑦 − 𝑧| ≥ 𝑑 |�̃�𝑡(𝑥, 𝑧)||𝛻𝑧𝑅𝑡(𝑧, 𝑦)| 𝑑𝑧. 

 Call 𝑄𝑡(𝑥, 𝑦) this last integral. Set 𝑅 =  |𝑥 −  𝑦|. Let us only consider the case 𝑛 >  2 to 

simplify matters. First, assume 𝑅 ≤  𝑑/2. By Cauchy-Schwarz  

𝑄𝑡(𝑥, 𝑦)  ≤  ∑  

𝑗≥0 

 (∫  
𝐹𝑗

|�̃�𝑡(𝑥, 𝑧)|
2
 𝑑𝑧)

1
2

( ∫  
𝐹𝑗

 |𝛻𝑧𝑅𝑡(𝑧, 𝑦)|
2 𝑑𝑧)

1
2

, 

where 𝐹𝑗 is the set of 𝑧 ∈  Ω such that 𝑑2𝑗  ≤  |𝑦 −  𝑧|  <  𝑑2𝑗+1. On 𝐹𝑗 we have |𝑥 −

 𝑧|  ∼  𝑑2𝑗 . Using (78) and (79) yields a bound of the form 𝑐𝑡−𝑛−1 ln   (𝑒 +
𝑡

𝑑
 ) 𝑒−

𝛼𝑑

𝑡  ≤

 𝑐(𝑑)𝑡−𝑛 −1𝑒−
𝛼𝑑

𝑡  as 𝑡 ≤  1.  
 Assume next that 𝑅 ≥  𝑑/2. The integral over |𝑦 −  𝑧|  ≥  2𝑅 can be dealt with as 

above where 𝐹𝑗 is now defined by 𝑅2𝑗+1  ≤  |𝑦 −  𝑧|  <  𝑅2𝑗+2. We obtain a bound 

𝑐(𝑑)𝑡−𝑛−1 ln  ( 𝑒 +
𝑡

𝑅
) 𝑒−

𝛼𝑅

𝑡 .  

 Next, if |𝑥 −  𝑧|  ≤  𝑅/2,we have 𝑅/2 ≤  |𝑦 −  𝑧|  ≤  3𝑅/2,hence by (78) and 

(80),  

∫  
|𝑦−𝑧|≥𝑑,|𝑥−𝑧|≤𝑅 2⁄

 |�̃�𝑡(𝑥, 𝑧)||𝛻𝑧𝑅𝑡(𝑧, 𝑦)| 𝑑𝑧 ≤  𝑐𝑡
−𝑛−1 𝑒−

𝛼𝑅
𝑡 . 

 Lastly, if 𝑑 ≤  |𝑦 −  𝑧|  ≤  2𝑅 and |𝑥 −  𝑧|  ≥  𝑅/2, then |𝑥 −  𝑧|  ≤  3𝑅 so that by (78) 

and (79)  

∫  
2𝑅≥|𝑦−𝑧|≥𝑑,|𝑥−𝑧|≥𝑅 2⁄

 . . . ≤  𝑐𝑡−𝑛−1  (
𝑅

𝑡
)

𝑛−2
2
 𝑒
−
𝛼𝑅2

𝑡2  (
𝑡

𝑑
)

𝑛−2 
2
𝑒−
𝛼𝑑
𝑡  ≤  𝑐(𝑑)𝑡−𝑛−1 𝑒−

𝛼𝑅
𝑡 .  

Term III. The computations are similar for both boundary conditions.  

 Let �̃�𝑘 be an open set such that 𝑂𝑘  ⊂  �̃�𝑘  ⊂  𝑃𝑘 and 𝑑(𝑐 �̃�𝑘, 𝑂𝑘)  ≥  𝑑/2, and let 

�̃�𝑘  ∈  𝐶0
∞ (𝑃𝑘) such that �̃�𝑘  =  1 on �̃�𝑘. Let also �̃�𝑘  ∈  𝐶0

∞ (𝑂𝑘) such that �̃�𝑘  =  1 on 

Supp 𝜒𝑘. We find  
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�̃�𝑡 [𝜂𝑘(𝒞𝑡  −  𝒞𝑡,𝑘(𝜒𝑘𝑓)  

=
1

𝑡
 𝛹 (𝑡2 𝐿)𝜂𝑘(𝑅𝑡  −  𝑅𝑡,𝑘)(𝜒𝑘𝑓) − �̃�𝑡 (𝛻𝜂𝑘)(𝑅𝑡  −  𝑅𝑡,𝑘)(𝜒𝑘𝑓 )

− �̃�𝑡 𝜂𝑘(𝑅𝑡  −  𝑅𝑡,𝑘)𝛻(𝜒𝑘𝑓)  

=
1

𝑡
 𝛹 (𝑡2𝐿)𝜂𝑘𝑆𝑡,𝑘(𝜒𝑘𝑓)  − �̃�𝑡 (𝛻𝜂𝑘)𝑆𝑡,𝑘(𝜒𝑘𝑓 )  

− �̃�𝑡 𝜂𝑘𝑆𝑡,𝑘𝛻(𝜒𝑘𝑓) ,                                                                                               (81)  

where 𝑆𝑡,𝑘 is the operator �̃�𝑘(𝑅𝑡  −  𝑅𝑡,𝑘)�̃�𝑘 defined a priori on 𝐿2(Ω). For 𝑔 ∈  𝐿2(Ω) set 

𝑢𝑡  =  𝑅𝑡(�̃�𝑘𝑔)  ∈  𝑉 , 𝑢𝑡,𝑘  =  𝑅𝑡,𝑘(�̃�𝑘𝑔)  ∈  𝑉𝑘  and 𝑤𝑡  =  �̃�𝑘(𝑢𝑡  −  𝑢𝑡,𝑘)  =  𝑆𝑡,𝑘𝑔 ∈
 𝑉 ∩ 𝑉𝑘 . We deduce from the equivalent definitions of 𝑢𝑡 and 𝑢𝑡,𝑘  by their variational 

formulation that  

∫ 
Ω

 (𝑢𝑡  −  𝑢𝑡,𝑘)𝜙 + 𝑡
2  ∫ 

Ω

 𝛻(𝑢𝑡  −  𝑢𝑡,𝑘)  ·  𝛻𝜙 =  0 

for all 𝜙 ∈  𝐻0
1 (𝑃𝑘)  ∩  𝑉 ∩  𝑉𝑘. Now, let 𝑣 be arbitrary in 𝑉. Then 𝜙 =  �̃�𝑘𝑣 ∈

 𝐻0
1 (𝑃𝑘)  ∩  𝑉 ∩ 𝑉𝑘,so that  

∫ 
Ω

 𝑤𝑡𝑣 + 𝑡
2∫ 
Ω

 𝛻𝑤𝑡  ·  𝛻𝑣 

=  𝑡2  ∫ 
Ω

 (𝑢𝑡  −  𝑢𝑡,𝑘)(𝛻�̃�𝑘  ·  𝛻𝑣)  − 𝑡
2  ∫ 

Ω

 𝑣𝛻 �̃�𝑘  ·  𝛻(𝑢𝑡  −  𝑢𝑡,𝑘). 

 Since this last equality holds for all 𝑣 ∈  𝑉 and that 𝑤𝑡  ∈  𝑉 ,this characterizes 𝑤𝑡 as  

𝑤𝑡  =  −𝑡
2 𝑅𝑡 div (𝛻�̃�𝑘)(𝑢𝑡  −  𝑢𝑡,𝑘)  −  𝑡

2 𝑅𝑡 (𝛻�̃�𝑘)𝛻(𝑢𝑡  −  𝑢𝑡,𝑘)   

=  −𝑡2 𝑅𝑡 div (𝛻�̃�𝑘)(𝑅𝑡  −  𝑅𝑡,𝑘)(�̃�𝑘𝑔)  

− 𝑡2 𝑅𝑡 (𝛻�̃�𝑘)𝛻(𝑅𝑡  −  𝑅𝑡,𝑘)(�̃�𝑘𝑔) ,  
where it should be recalled that −div is the adjoint of ∇ on 𝑉 .  

 At this point, the difference between 𝑅𝑡 and 𝑅𝑡,𝑘 in the last expression no longer 

plays any role, so that we obtain four terms to which we apply similar arguments. For 

example, the first one has kernel  

𝑡2  ∫  
Ω

 𝛻𝑧𝑅𝑡(𝑥, 𝑧)𝛻�̃�𝑘(𝑧)𝑅𝑡(𝑧, 𝑦)�̃�𝑘(𝑦) 𝑑𝑧. 

 Because of the presence of 𝜂𝑘 in (81), we take 𝑥 ∈  𝑂𝑘  ∩  Ω. Also 𝑦 ∈ Supp �̃�𝑘  ∩  Ω ⊂
 𝑂𝑘 ∩ Ω. Since Supp 𝛻_�̃�𝑘 ∩ �̃�𝑘 =  ∅ we have |𝑥 − 𝑧|  ≥  𝑑/2 and |𝑦 − 𝑧|  ≥  𝑑/2 on the 

support of the integrand. Hence this last integral is not singular and routine calculations 

using the estimates (34) and (78) valid for 𝑡 ≤  1 and 𝑥, 𝑦 ∈  𝑂𝑘  ∩ Ω.  

 Hence, the kernel of 𝑆𝑡,𝑘 satisfies  

|𝑆𝑡,𝑘(𝑥, 𝑦)|  ≤  𝑐(𝑑)𝑡
−𝑛+1𝑒−

𝛼(|𝑥−𝑦|+𝑑)
𝑡                               (82)  

whenever 𝑡 ≤  1 and 𝑥, 𝑦 ∈  𝑂𝑘  ∩  Ω.  

 Now, Lemma (2.2.14) applies to the kernels of 𝛹 (𝑡2𝐿)𝜂𝑘𝑆𝑡,𝑘 , �̃�𝑡 (𝛻𝜂𝑘)𝑆𝑡,𝑘 and 

�̃�𝑡 𝜂𝑘𝑆𝑡,𝑘. We obtain an upper bound of the form (82) valid for 𝑡 ≤  1, 𝑥 ∈  Ω and 𝑦 ∈
 𝑂𝑘  ∩  Ω. Gathering all terms we obtain  

‖�̃�𝑡 𝜂𝑘(𝐶𝑡  −  𝐶𝑡,𝑘)(𝜒𝑘𝑓)‖𝑝  ≤  𝑐𝑒
−
𝛼𝑑
𝑡  (‖𝛻(𝜒𝑘𝑓)‖𝑝  +  ‖𝜒𝑘𝑓‖𝑝).  

whenever 𝑡 ≤  1 for some 𝑐 > 0 and 𝛼 >  0. This concludes our argument.  

 Let us take 𝐿, satisfying (H1-4). On the kth patch as defined above, one could have 

tried to construct an operator 𝐿𝑘  =  (𝐴𝑘, Ω𝑘 , 𝑉𝑘) satisfying (H1-4) which “coincides with 
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𝐿 on Ω ∩ Ω𝑘” in order to apply the already proved result on special Lipschitz domains for 

each 𝐿𝑘. But we do not know how to extend 𝐴 on Ω𝑘 in the general case, the difficulty 

being to keep (H1) valid. However, this extension is possible for specific classes of 𝐿 such 

as the ones in items 1, 2 and 3 of Theorem (2.2.2) and it leads to a simplification of the 

localisation argument. Let us explain the case of real symmetric operators. 

  Assume that 𝐴 is real and symmetric on Ω with ellipticity constant 𝛿. Define �̃� by 

�̃�  =  𝐴 on Ω and �̃�  =  𝛿𝐼𝑑 on ℝ𝑛\ Ω̅. So that �̃�  is real and symmetric on ℝ𝑛 with 

ellipticity constant δ. Consider the domain decomposition as before and set 𝐿𝑘  =
 (𝐴𝑘, Ω𝑘 , 𝑉𝑘) with 𝐴𝑘 being the restriction of �̃� to Ω𝑘. 

  For 𝑓 ∈  𝑉, since 𝑓 =  �̃�𝑘𝑓 , we may write  

𝐿1 2⁄  𝑓 =  ∑  

0≤𝑘≤𝑠 

𝜂𝑘𝐿𝑘
1 2⁄  (𝜒𝑘𝑓)  + ∑  

0≤𝑘≤𝑠 

𝜂𝑘(𝐿
1 2⁄  −  𝐿𝑘

1 2⁄
)(𝜒𝑘𝑓)  

+ ∑  

0≤𝑘≤𝑠 

(1 − 𝜂𝑘)𝐿
1 2⁄ (𝜒𝑘𝑓).  

We have already established the 𝐿𝑝 estimates on ℝ𝑛 (see [94]) and on special Lipschitz 

domains and they are obviously invariant under rotations. Thus  

‖𝜂𝑘𝐿𝑘
1 2⁄  (𝜒𝑘𝑓)‖

𝐿𝑝(Ω𝑘)
 ≤  𝑐(𝑝, 𝛿, ‖𝐴‖∞,𝑀)‖𝛻(𝜒𝑘𝑓)‖𝐿𝑝(Ω𝑘).  

Looking at supports, one can replace 𝐿𝑝(Ω𝑘) by 𝐿𝑝(Ω).  
 Next, fix 𝑘 ∈  {0, . . . , 𝑛}. Set 𝑢𝑡

𝑘 = (1 + 𝑡2𝐿)−1𝐿(𝜒𝑘𝑓)  ∈  𝑉 , 𝑣𝑘 𝑡 =
 (1 + 𝑡2𝐿𝑘)

−1𝐿𝑘(𝜒𝑘𝑓)  ∈  𝑉𝑘  and 𝑤𝑘  𝑡 =  𝜂𝑘(𝑢𝑘 𝑡 − 𝑣𝑘 𝑡 ). One has that  

𝜂𝑘(𝐿
1 2⁄  −  𝐿𝑘

1 2⁄
)(𝜒𝑘𝑓)  =

2

𝜋
 ∫  

∞

0

 𝑤𝑡
𝑘
𝑑𝑡

𝑡2
.                               (83) 

 Since 𝑢𝑡
𝑘  =  𝜒𝑘𝑓 − (1 + 𝑡

2𝐿)−1(𝜒𝑘𝑓 ) and the similar expression for 𝑣𝑘 𝑡 ,it follows 

from the 𝐿𝑞 boundedness of the resolvents of 𝐿 and 𝐿𝑘 that for all 𝑡 >  0 and 1 ≤  𝑞 ≤
 ∞,  

‖𝑤𝑡
𝑘‖
𝐿𝑞 (Ω)

≤  𝑐‖𝜒𝑘𝑓‖𝐿𝑞 (Ω).                                         (84) 

 Applying Lemma 4 in [97], one sees that 

 ‖𝑤𝑡
𝑘‖
𝐿2(Ω)

 ≤
𝑐(𝑚, 𝑛, 𝛿)𝑡𝑚

𝑑𝑚
 ‖𝜒𝑘𝑓‖𝐿2(Ω)                               (85) 

 for all positive integer 𝑚 and all 𝑡 >  0,where 𝑑 appears in item 6 of the domain 

decomposition. Given 1 < 𝑝 <  ∞ and 𝑚 >  0, complex interpolation shows that 

 ‖𝑤𝑡
𝑘‖
𝐿𝑝(Ω)

 ≤
𝑐(𝑚, 𝑛, 𝛿, 𝑝)𝑡𝑚

𝑑𝑚
 ‖𝜒𝑘𝑓‖𝐿𝑝(Ω)                            (86) 

for all 𝑡 >  0 and one concludes from (83) that 

 ‖𝜂𝑘(𝐿
1 2⁄  −  𝐿𝑘

1 2⁄  )(𝜒𝑘𝑓)‖
𝐿𝑝(Ω)

 ≤
𝑐′

𝑑
 ‖𝜒𝑘𝑓 ‖𝐿𝑝(Ω).  

Lastly, using 𝑢𝑡
𝑘  =  𝜒𝑘𝑓 − (1 + 𝑡

2𝐿)−1(𝜒𝑘𝑓 ) and (1 − 𝜂𝑘)𝜒𝑘 =  0, one finds  

(1 − 𝜂𝑘)𝐿
1 2⁄  (𝜒𝑘𝑓)  =

2

𝜋
 ∫  
∞

0

 (1 −  𝜂𝑘)𝑢𝑡
𝑘
𝑑𝑡

𝑡2
 =  −

2

𝜋
 ∫  

∞

0

 𝑔𝑡
𝑘
𝑑𝑡

𝑡2
 

 where 𝑔𝑡
𝑘  =  (1 − 𝜂𝑘)(1 + 𝑡

2𝐿)−1(𝜒𝑘𝑓 ).Again boundedness of the resolvent yields 

‖𝑔𝑡
𝑘‖
𝐿𝑞 (Ω)

 ≤  𝑐‖𝜒𝑘𝑓‖𝐿𝑞 (Ω) for all 𝑡 >  0 and 1 ≤  𝑞 ≤  ∞, and an application of 



70 

Lemma 4 in [97] gives us ‖𝑔𝑡
𝑘 ‖

𝐿2(Ω)
 ≤

𝑐(𝑚,𝑛,𝛿)𝑡𝑚

𝑑𝑚
 ‖𝜒𝑘𝑓‖𝐿2(Ω) for all 𝑡 >  0 and positive 

integer 𝑚. Hence,by interpolation  

‖(1 − 𝜂𝑘)𝐿
1 2⁄  (𝜒𝑘𝑓)‖𝐿𝑝(Ω)  ≤

𝑐′′

𝑑
 ‖𝜒𝑘𝑓‖𝐿𝑝(Ω).  

Thus, 

 ‖𝐿1 2⁄ 𝑓‖
𝐿𝑝(Ω)

 ≤  ∑  

𝑠

𝑘=0

 𝑐‖𝛻(𝜒𝑘𝑓)‖𝐿𝑝(Ω)  +
𝑐

𝑑
 ‖𝜒𝑘𝑓‖𝐿𝑝(Ω).          (87) 

Here, we prove Proposition (2.2.27).  

 The following comments will simplify the proof. Since 𝜕Ω is a Lipschitz graph, by 

elementary geometry, any point 𝑥 ∈  Ω has a unique decomposition as 𝑥 =  𝑥  +  𝑢𝑒𝑛 

with �̅�  ∈  𝜕Ω and 𝑢 >  0. In such a case, we have 𝑥∗  =  𝑥  −  𝑢𝑒𝑛. It will be useful to 

consider �̅� and 𝑢 as independent variable (by sweeping Ω with parallels to ∂Ω). With this 

point of view any integral on Ω can be computed as  ∫  
Ω
 𝑓 (𝑥) 𝑑𝑥 =   𝑢 > 0  𝜕Ω 𝑓 (�̅�  +

 𝑢𝑒𝑛) 𝑑𝑢𝑑𝜎 (�̅�). Observe also that for all (𝑥, 𝑦)  ∈  Ω ×  Ω, |𝑥 − 𝑦∗| ∼ |𝑥∗  −  𝑦|  ∼
 |𝑥  − 𝑦|  +  𝑢 +  𝑣, where 𝑥 =  𝑥  +  𝑢𝑒𝑛, �̅�  ∈  𝜕Ω, 𝑢 >  0 and 𝑦 =  𝑦  +  𝑣𝑒𝑛, �̅�  ∈
 𝜕Ω, 𝑣 >  0, and the constants of comparisons depend only on the Lipschitz constant of Ω.  

 Let us prove (68). If 𝑥, 𝑦 ∈  Ω,write 𝑥 =  𝑥  +  𝑢𝑒𝑛 and 𝑦 =  𝑦  +  𝑣𝑒𝑛. Then, there 

exists a constant 𝑐 >  0 depending only on 𝑛 and the Lipschitz constant of Ω such that for 

𝑢, 𝑣 >  0 fixed,  

∫  
𝜕Ω

 |𝑥 − 𝑦∗|−𝑛 𝑑𝜎(�̅�) + ∫  
𝜕Ω

 |𝑥 − 𝑦∗ |−𝑛 𝑑𝜎(�̅�) ≤
𝑐

𝑢 +  𝑣
 . 

Hence we obtain from Schur’s lemma  

∫  
𝜕Ω

 ∫  
𝜕Ω

|𝑓 (�̅�  +  𝑢𝑒𝑛)||𝑔(�̅�  +  𝑣𝑒𝑛)|

|𝑥 − 𝑦∗|𝑛
 𝑑𝜎(�̅�)𝑑𝜎 ( 𝑥) ≤  𝑐

|𝐹 (𝑢)||𝐺(𝑣)|

 𝑢 +  𝑣
 ,  

where  

𝐹 (𝑢) =   (∫  
𝜕Ω

 |𝑓 (�̅�  +  𝑢𝑒𝑛)|
𝑝𝑑𝜎(�̅�))

1
𝑝

, 

 𝐺(𝑣) = (∫  
𝜕Ω

 |𝑔(�̅�  +  𝑣𝑒𝑛)|
𝑝 𝑑𝜎(�̅�))

1
𝑝

, 

 and 𝑝′ is the dual exponant to 𝑝. Integrating against 𝑑𝑢𝑑𝑣 yields  

|∫ 
Ω

𝐻𝑓𝑔|  ≤  𝑐 ∫  
𝑢>0 

∫  
𝑣>0

 ∫  
𝜕Ω

∫  
𝜕Ω
|𝑓 (𝑦)||𝑔(𝑥)|

|𝑥 − 𝑦∗|𝑛
 𝑑𝜎(�̅�)𝑑𝜎 ( 𝑥) 𝑑𝑢𝑑𝑣  

≤  𝑐 ∫  
𝑢>0

∫  
𝑣>0

|𝐹 (𝑢)||𝐺(𝑣)|

𝑢 +  𝑣
  𝑑𝑢𝑑𝑣 

≤  𝑐  (∫  
𝑢>0

 |𝐹 (𝑢)|𝑝𝑑𝑢)

1
𝑝

(∫  
𝑣>0

 |𝐺(𝑣)|𝑝
′
 𝑑𝑢 )

1
𝑝

 =  𝑐‖𝑓‖𝑝‖𝑔‖𝑝′ ,  

the last inequality being a consequence of Hardy inequality on ℝ.  

 We now prove (69). The trace theorem on Lipschitz domains (see [62]) asserts that 

any 𝑓 ∈  𝑊1,𝑝(Ω) has a trace on ∂Ω that belongs to a Besov space whose norm is given 

by the expression 𝐽 and  
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𝐽 =   (∫  
𝜕Ω

 ∫  
𝜕Ω

|𝑇𝑟𝑓 (�̅�) −  𝑇𝑟𝑓 (�̅�)|𝑝

|�̅�    −  �̅�| 𝑛−2+𝑝
 𝑑𝜎(�̅�)𝑑𝜎 ( 𝑥))

1
𝑝

 ≤  𝑐(𝑝,𝑀)‖𝛻𝑓‖𝑝. 

 It suffices to establish | ∫  
Ω
 𝐵𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥|  ≤  𝑐(𝑝,𝑀)𝐽 ‖𝑔‖𝐿𝑝 (Ω) for 𝑓 ∈  𝐶0

1(Ω) and to 

invoke the density of 𝐶0
1 (Ω) in 𝑊1,𝑝(Ω). Choose 𝛼, 𝛽, 𝛾 with the following requirements:  

𝑛 −  1

𝑝′
 < 𝛼 <

𝑛 −  1

𝑝′
 +
1

𝑝
 , 𝛽 =  𝑛 −  𝛼, 𝛾 =  𝛼 −

𝑛 −  1

𝑝
. 

Observe that 𝛼 <  𝛾𝑝 <  1 and 𝛽𝑝 +  𝛾𝑝 −  1 =  𝑛 −  2 +  𝑝. Writing as above 𝑥 =
 𝑥  +  𝑢𝑒𝑛 and using Hölder inequality, we have  

|∫ 
Ω

 𝐵𝑓 (𝑥)𝑔(𝑥)𝑑𝑥|  ≤  𝑐 ∫ 
Ω

 ∫  
𝜕Ω

|𝑓 (�̅�) −  𝑓 (�̅�)|

|𝑥 − 𝑦|𝑛
 |𝑔(𝑥)| 𝑑𝑥𝑑𝜎(�̅�)

≤  𝑐 (∫ 
Ω

 ∫  
𝜕Ω

|𝑓 (�̅�) −  𝑓 (�̅�)|𝑝

|𝑥 − 𝑦|𝛽𝑝
𝑑𝑥𝑑𝜎(�̅�)

𝑢𝛾𝑝
)

1
𝑝

 

× (∫ 
Ω

 ∫  
𝜕Ω

𝑢𝛾𝑝
′

|𝑥 − 𝑦|𝛼𝑝
′  |𝑔(𝑥)|

𝑝′  𝑑𝑥𝑑𝜎(�̅�))

1
𝑝′

. 

 Now writing 𝑑𝑥 =  𝑑𝜎(�̅�)𝑑𝑢  in the first term and integrating first with respect to u we 

obtain 𝑐𝐽 as an upper bound since  

∫  
∞

0

𝑑𝑢

|𝑥 − 𝑦|𝛽𝑝𝑢𝛾𝑝
 ≤

𝑐

| 𝑥  − 𝑦|𝛽𝑝+𝛾𝑝−1
 =

𝑐

| 𝑥  − 𝑦|𝑛−2+𝑝 
. 

 The second term is dominated by 𝑐‖𝑔‖𝑝′ since  

∫  
𝜕Ω

𝑢𝛾𝑝
′

|𝑥 − 𝑦|𝛼𝑝
′ 𝑑𝜎(�̅�) ≤  𝑐. 

 To finish the proof of Theorem (2.2.9),it remains to prove Lemma (2.2.8) which we 

do now.  

 Assume first that Ω is unbounded. The analyticity of the semigroup 𝑒−𝑡𝐿 on 𝐿2,(H4) 

and complex interpolation classically imply that the semigroup is bounded analytic on 𝐿𝑝 

for all 1 < 𝑝 <  ∞. Hence there exists a constant 𝑐𝑝 such that ‖𝑡4𝐿2𝑒−2𝑡
2𝐿 𝑓‖

𝑝
 ≤

 ‖𝑐𝑝𝑓‖𝑝 for all 𝑡 >  0 and 𝑓 ∈  𝐿𝑝(Ω). This yields the proposition in this case.  

 Next, assume that Ω is bounded. Set ℎ =   ∫  
∞

1
 𝑡3𝐿2𝑒−2𝑡

2𝐿𝑓
𝑑𝑡

𝑡
 . Since Ω is 

bounded, we have ‖ℎ‖1  ≤  |Ω|
1 2⁄ ‖ℎ‖2. Next, let 𝑔 =  𝐿1 2⁄ 𝑒−𝐿𝑓 and write  

ℎ =  ∫  
∞

1

 𝑡3 𝐿3 2⁄  𝑒−(2𝑡
2−1)𝐿𝑔

𝑑𝑡

𝑡
 =  ∫  

∞

0

 𝑚(𝑠)𝑠3 2⁄  𝐿3 2⁄  𝑒−𝑠𝐿𝑔
𝑑𝑠

𝑠
  

where we have set 𝑠 =  2𝑡2  −  1 and the change of variable shows that 𝑚(𝑠) is a 

bounded function on (0,∞). By 𝐻∞ functional calculus (see (93)),  this shows that 

‖ℎ‖2  ≤  𝑐‖𝑔‖2. Now, 𝐿1 2⁄ 𝑒−(1 2⁄ )𝐿 is bounded on 𝐿2(Ω) by functional calculus,hence 

‖𝑔‖2  ≤  𝑐‖𝑒
−(1 2⁄ )𝐿𝑓 ‖

2
. Lastly, (H2) implies that 𝑒−(1 2⁄ )𝐿  is bounded from 𝐿1(Ω) to 

𝐿2(Ω). Thus, we have ‖ℎ‖1  ≤  𝑐‖𝑓‖1 . Apply the same reasonning replacing 𝐿 with 𝐿∗ to 

obtain, by duality, ‖ℎ‖∞  ≤  𝑐‖𝑓‖∞. Interpolation finishes the proof.  

 Next,we complete the proof of Theorem (2.2.3). We begin with  
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Theorem (2.2.32)[90]: Assume that Ω is bounded. In addition to the hypotheses in 

Theorem (2.2.9), assume that 𝐿∗ satisfies (H1). Then, there exists 𝜀 >  0 (depending on 𝐿) 

such that 𝐿1 2⁄  extends to an isomorphism between �̇�𝑝  and 𝐿𝑝(Ω) for 1 < 𝑝 <  2 +  𝜀. 

Furthermore, ‖𝛻𝑓‖𝑝 and ‖𝐿1 2⁄ 𝑓‖
𝑝
 are equivalent norms on 𝑉𝑝.  

Proof. First the assumptions (H1) for 𝐿 and 𝐿∗ show that 𝐷(𝐿1 2⁄ )  =  𝑉 and that ‖𝛻𝑓‖2  ∼

 ‖𝐿1 2⁄ 𝑓‖
2
. Next, we have to show that ‖𝛻𝐿−1 2⁄ 𝑓‖

𝑝
 ≤  𝑐‖𝑓‖𝑝 for 𝑓 in a dense subspace 

of 𝐿𝑝(Ω),say 𝐿2(Ω)  ∩ 𝐿𝑝(Ω). Write  

𝛻𝐿−1 2⁄  𝑓 =  𝑐 ∫  
∞

0

 (𝑡𝛻)𝑒−𝑡
2𝐿𝑓
𝑑𝑡

𝑡
 

 where 𝑐−1  =   ∫  
∞

0
 𝑒−𝑡

2
 𝑑𝑡. The integral for 𝑡 small is handled by using Theorem 2 in 

[101] under the assumptions (H2) and (H1) for 𝐿∗,which are valid here (if 𝐿∗ also satisfies 

(H3),then this can be obtained from the usual Hormander condition, see [94],pp. 162-163). 

Hence      

‖∫  
1

0

 𝑡𝛻𝑒−𝑡
2𝐿𝑓
𝑑𝑡

𝑡
‖
𝑝

 ≤  𝑐‖𝑓‖𝑝.                                         (88) 

 The other part follows from  

Lemma (2.2.33)[90]: Under (H1) for 𝐿∗ and (H2),   ‖∫  
∞

1
 𝑡𝛻𝑒−𝑡

2𝐿𝑓
𝑑𝑡

𝑡
‖
𝑝
 ≤  𝑐‖𝑓‖𝑝 for 

all 1 ≤  𝑝 ≤  2 and 𝑓 ∈  𝐿2  ∩  𝐿𝑝(Ω).  

 Hence, ‖𝛻𝐿−1 2⁄ 𝑓‖
𝑝
 ≤  𝑐‖𝑓‖𝑝. Once this is established, it suffices then to adapt the 

arguments in [94], to obtain the 𝜀 (by analytic perturbation) and to prove invertibility. We 

skip details.   

Proof. Let ℎ =   ∫  
∞

1
 𝑡𝑒−𝑡

2𝐿𝑓
𝑑𝑡

𝑡
 . First, ‖𝛻ℎ‖1  ≤  |Ω|

1 2⁄ ‖𝛻ℎ‖2 since Ω is bounded. 

Next, (H1) for 𝐿∗ means by duality that ‖𝛻ℎ‖2  ≤  𝑐𝐿
1 2⁄ ‖ℎ‖2 (on a bounded domain one 

can remove ‖ℎ‖2). Now using the same idea as in the proof of Lemma (2.2.8),write  

𝐿1 2⁄  ℎ =  𝑐 ∫  
∞

1

 𝑡𝐿1 2⁄  𝑒−𝑡
2𝐿𝑓
𝑑𝑡

𝑡
 =  ∫  

∞

0

 𝑚(𝑠)𝑠1 2⁄  𝐿1 2⁄  𝑒−𝑠𝐿𝑒−(1 2⁄  )𝐿𝑓
𝑑𝑠

𝑠
 ,  

where 𝑚(𝑠) is a bounded function, so that ‖𝐿1 2⁄ ℎ‖
2
 ≤  𝑐‖𝑒−(1 2⁄ )𝐿𝑓 ‖

2
. It remains to 

invoke the 𝐿1 − 𝐿2 boundedness of 𝑒−(1 2⁄ )𝐿 by (H2). Hence ‖𝛻ℎ‖1  ≤  𝑐‖𝑓‖1. The 

inequality for 𝑝 = 2 is contained in the above argument and we conclude by y 

interpolation. 

 We summarize the study by the following result.  

Theorem (2.2.34)[90]: Let Ω be a special Lipschitz domain and 𝐿 =  (𝐴, Ω, 𝑉 ) for some 

𝐴 ∈ 𝒜 with Dirichlet or Neumann boundary condition. Assume that the hypotheses (18), 

(H2) and (𝐻3) with 𝜏 =  ∞ hold. Then for all 𝑓 ∈  𝑉,  

𝐿1 2⁄ 𝑓 =  𝑇1𝛻𝑓 + 𝑇2(−∆)
1 2⁄ 𝑓 +  𝐻𝛻𝑓 +  𝐵(𝑇𝑟𝑓),                     (89) 

 where 𝑇1, 𝑇2 are Calderón-Zygmund operators and 𝐻 is a Hardy operator and 𝐵 is 

boundary Hardy operator. As a consequence, for all 1 < 𝑝 <  ∞,  

‖𝐿1 2⁄ 𝑓‖
𝑝
 ≤  𝑐‖𝛻𝑓‖𝑝, 𝑓 ∈  𝑉 ∩ 𝑊1,𝑝(Ω).                               (90) 

 The decomposition of 𝐿1 2⁄  comes from the proof of the four Lemmata to obtain Theorem 

(2.2.9). Let us recall that 𝑇2  =  0 when 𝐿 =  (𝐼𝑑, Ω, 𝑉 ) is the negative Laplacian.  
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Theorem (2.2.35)[90]: In addition to the hypotheses in Theorem (2.2.34), assume that 𝐿∗ 
satisfies (𝐻1). Then, there exists 𝜀 >  0 (depending on 𝐿) such that for 1 < 𝑝 <  2 +

𝜀, 𝐿1 2⁄   extends to an isomorphism between �̇�𝑝 onto 𝐿𝑝(Ω), and ‖𝛻𝑓‖𝑝 and ‖𝐿1 2⁄ 𝑓‖
𝑝
 are 

equivalent norms on �̇�𝑝.  

Proof. From (H1) for 𝐿 and 𝐿∗ we have 𝒟(𝐿1 2⁄ )  =  𝑉 with ‖𝛻𝑓‖2  ∼ ‖𝐿
1 2⁄ 𝑓‖

2
 ∼

 ‖(𝐿∗)1 2⁄ 𝑓‖
2
. Hence 𝐿1 2⁄  extends to a bounded and invertible operator from �̇�2 to 𝐿2. The 

rest of the proof is as in that of Theorem (2.2.3) and the range of integration in the 

inequality (88) is to be changed to (0,+∞).  
Theorem (2.2.36)[90]: The conclusions of Theorem (2.2.35) are valid in any of the 

following situations:  

(i) A is real-valued and symmetric,  

(ii) A is an 𝐿∞ or BMO (complex) perturbation of a real-valued and constant elliptic 

matrix,  

(iii) A is an 𝐿∞ or BMO perturbation of a complex-valued and constant elliptic matrix and 

the domain has small enough Lipschitz constant.  

Proof. For real and symmetric operators (𝐾) is trivial,and (𝐻2) and (𝐻3) are satisfied as 

mentioned previously. For the two other items, (𝐻2) and (𝐻3) follow from [96], Theorem 

7. The problem is to obtain (18) and not just (19) as we proved in Theorem 2 of [97]. But a 

rescaling argument yields the better inequality. Indeed, denote by C the class of elliptic 

operators concerned with item 2: it is invariant under translations and dilations. For any f 

∈ 𝑉 and any 𝐿 =  (𝐴, Ω, 𝑉 )  ∈  𝐶,one has  

‖𝐿1 2⁄ 𝑓 ‖
2
 ≤  𝑐(‖𝛻𝑓‖2  +  ‖𝑓‖2) 

𝑐 =  𝑐(𝑛, 𝛿, ‖𝐴‖∞, ‖𝐴‖𝐵𝑀𝑂(Ω), 𝑀) where δ is the ellipticity constant of 𝐴 and 𝑀 is the 

Lipschitz constant of Ω. Without loss of generality,we may restrict our attention to 

domains with boundary containing the origin. Then a dilation 𝑥 →  𝜆𝑥 in ℝ𝑛 (ie 𝐴(𝑥) 
changes to 𝐴(𝜆𝑥)) preserves this class of domains and their Lipschitz constants,so that it 

leaves c unchanged,but leads to  

‖𝐿1 2⁄ 𝑓‖
2
 ≤  𝑐(‖𝛻𝑓‖2  +  𝜆

−1 ‖𝑓‖2) 

 for any 𝑓 ∈  𝑉 ,any 𝐿 ∈  𝐶 and any 𝜆 >  0. Letting 𝜆 go to ∞ gives (18).  

 The same reasoning applies to the class of operators concerned with item 3.   

 We quote without proof the following result analogous to Theorem (2.2.2) on 

bounded domains.  

Theorem (2.2.37)[90]: Let Ω be a special (or more generally unbounded) Lipschitz 

domain and 𝐿 =  (𝐴, Ω, 𝑉) be subject to Dirichlet or Neumann boundary condition. 

Assume that 𝐴 is real if 𝑛 ≥  3 and complex if 𝑛 =  2. There exists 𝜀 =  𝜀(Ω, 𝑛, 𝛿)  >  0 

such that if 𝐴 ∈  𝐴𝐵𝑀𝑂𝜀(Ω) then for 1 < 𝑝 <  ∞ 

 ‖𝐿1 2⁄ 𝑓‖
𝑝
  ≤  𝑐‖𝛻𝑓‖𝑝  +  ‖𝑓‖𝑝, 𝑓 ∈  𝑉 ∩ 𝑊1,𝑝(Ω).                   (91) 

 For 𝐿 be a one-one maximal-accretive operator of type 𝜔 for some 𝜔 ∈  [0, 𝜋/2) on 

a Hilbert space ℋ [105]. It has an 𝐻∞ functional calculus on 𝐿2(Ω). This means that for 

any µ ∈  (𝜔, 𝜋 ), for any 𝑓 ∈  𝐻∞(𝛤µ), that is 𝑓 holomorphic and bounded in 𝛤µ  =  {𝑧 ∈

ℂ \ {0}; | 𝑎𝑟𝑔 𝑧 |  <  µ} (where |arg 𝑧| is the argument in (−𝜋, 𝜋] of 𝑧 ∈ ℂ),one can 

define a bounded operator 𝑓 (𝐿) on 𝐿2(Ω), with 𝑓 (𝐿) ≤  𝑐µ‖𝑓‖𝐻∞(𝛤µ). In particular, 𝐿 has 

a bounded (in fact,contracting) analytic semigroup 𝑒−𝓏𝐿  on 𝐿2(Ω) defined on 𝛤𝜋 2⁄ −𝜔. 
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  Following [107],we say that 𝜓 ∈  𝛹 (𝛤µ) when 𝜓 ∈  𝐻∞(𝛤µ) and if there exists 

constants 𝑐, 𝑠 >  0 such that for all 𝜁 ∈  𝛤µ, |𝜓(𝜁 )|  ≤  𝑐|𝜁|
𝑠  (1 + |𝜁 |)−2𝑠 . If 𝜓 ∈

 𝛹 (𝛤µ), 𝜓(𝐿) can be computed using the Cauchy formula  

𝜓(𝐿) =
1

2𝜋𝑖
 ∫ 
𝛾

 (𝜁 −  𝐿)−1 𝜓(𝜁 ) 𝑑𝜁,                                  (92) 

where the path γ is made of two rays 𝑟𝑒±𝑖𝜈 , 𝑟 ≥  0 and 𝜔 < 𝜈 < 𝜇  , and is described 

counterclockwise. Such functions can be used to generate functions in 𝐻∞(𝛤µ). For 

example,if 𝜓 ∈  𝛹 (𝛤µ) and 𝑚: (0,+∞)  → ℂ is bounded and measurable then the integral 

𝑓 (𝜁 ) =  ∫  
∞

0

 𝜓(𝑡2 𝜁 )𝑚(𝑡)
𝑑𝑡

𝑡
                                       (93) 

defines a function in 𝐻∞(𝛤µ). Moreover, the integrals ∫  
𝑟

𝜀
 𝜓(𝑡2𝜁 )𝑚(𝑡)

𝑑𝑡

𝑡
 converge 

uniformly to f on compact subsets of 𝛤µ as 𝜀 →  0 and 𝑟 →  +∞, thus one has 

 𝑓 (𝐿)  = lim
𝜀→0
𝑟→+∞

  ∫  
𝑟

𝜀

 𝜓(𝑡2 𝐿)𝑚(𝑡)
𝑑𝑡

𝑡
 =  ∫  

∞

0

 𝜓(𝑡2 𝐿)𝑚(𝑡)
𝑑𝑡

𝑡
 ,     (94) 

 where the limit is in the strong topology of ℋ . In fact, for any 𝑓 ∈  𝐻∞(𝛤µ), there is such 

a representation for 𝑓 (𝐿). We shall not need this fact, see [107].  

 The class 𝛹 (𝛤µ) can also be used to obtain double sided quadratic estimates of 

great. Indeed, for 𝜓 ∈  𝛹 (𝛤µ) not identically 0,there exists 𝑐 =  𝑐(µ,𝜓) >  0  such that 

([101],[107]) 

 𝑐‖𝑢‖ℋ  ≤   (∫  
∞

0

 ‖𝜓(𝑡2 𝐿)𝑢‖ℋ
2
𝑑𝑡

𝑡
)

1
2

  ≤  𝑐−1 ‖𝑢‖ℋ , 𝑢 ∈  ℋ.  

Common choices for 𝜓 are often 𝑒−𝜁  𝜁1 2⁄  or (1 +  𝜁 )−1𝜁1 2⁄  where 𝜁1 2⁄  is the principal 

determination of the square root of 𝜁, but the freedom of choice is useful.  

 Note that if 𝐿 is self-adjoint and non negative, by the Borel functional calculus,if 𝜓 ∶
 [0,∞)  → ℂ is a Borel function satisfying  

𝑎(𝜓) =
1

2
 ∫  

∞

0

 |𝜓(𝑡)|2
𝑑𝑡

𝑡
 <  ∞ 

 then  

∫  
∞

0

 ‖𝜓(𝑡2 𝐿)𝑢‖ℋ
2
𝑑𝑡

𝑡
 =  𝑎(𝜓)‖𝑢‖ℋ

2 , 𝑢 ∈  ℋ. 

 Back to the general case, denote by 𝐿1 2⁄  the unique maximal-accretive square root of 𝐿. 

Call 𝐹(𝛤µ) the set of holomorphic functions 𝜑 in 𝛤µ for which there exists 𝑐 >  0 such that 

for all 𝜁 ∈  𝛤µ, |𝜑(𝜁 )|  ≤  𝑐(1 + |𝜁 |)
−1 . We shall constantly use the fact that for such 𝜑, 

we have  

𝜑(𝑡2 𝐿)𝑡2 𝐿𝑢 =  𝑡2 𝐿𝜑 (𝑡2 𝐿)𝑢, 𝑢 ∈ 𝒟(𝐿),  
the latter operator being bounded on ℋ uniformly in 𝑡 since 𝜁 𝜑(𝜁)  ∈  𝐻∞(𝛤µ). Hence, 

𝜑(𝑡2𝐿)𝑡𝐿 extends to a bounded operator on ℋ with 

 ‖𝜑(𝑡2 𝐿)𝑡𝐿𝑢‖ℋ  ≤
𝑐(𝛿, 𝜑)

𝑡
 ‖𝑢‖ℋ .                             (95) 

Lemma (2.2.38)[90]: Let 𝜑 ∈  𝐹(𝛤µ). If 𝜑 is not identically 0,  
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‖𝐿1 2⁄  𝑢‖
ℋ

2
 ∼  ∫  

∞

0

 ‖𝜑(𝑡2 𝐿)𝑡𝐿𝑢‖ℋ
2
𝑑𝑡

𝑡
 , 𝑢 ∈ 𝒟(𝐿).           (96) 

 If 𝑐(𝜑)  =
1

2
 ∫  
∞

0
 𝜑(𝜁 )𝜁−1 2⁄  𝑑𝜁 =  0 then  

‖𝐿1 2⁄ 𝑢‖  =  𝑐(𝜑)−1  ∫  
∞

0

 𝜑(𝑡2𝐿)𝑡𝐿𝑢
𝑑𝑡

𝑡
 , 𝑢 ∈ 𝒟(𝐿).                   (97) 

 Proof. Let 𝜓(𝜁 ) = 𝜑(𝜁 )𝜁1 2⁄ . Then 𝜓 ∈  𝛹 (𝛤µ) and 𝜓(𝑡2𝐿)𝐿1 2⁄ 𝑢 = 𝜑(𝑡2𝐿)𝑡𝐿𝑢 when 

𝑢 ∈ 𝒟(𝐿). Then, use the quadratic estimates for the first relation and ∫  
∞

0
 𝜓(𝑡2𝐿)

𝑑𝑡

𝑡
  =

 𝑐(𝜑)−1𝐼 in the strong topology of ℋ.  

 Now let us assume that 𝐿 =  𝐷∗𝐴𝐷. That is, given two Hilbert spaces ℋ and 𝒦, a 

one-one operator 𝐷:ℋ → 𝒦 with dense domain 𝑉 and a bounded and invertible accretive 

operator 𝐴:𝒦 → 𝒦 with 𝐴 + 𝐴∗  ≥  2𝛿𝐼 in the sense of self-adjoint operators for some δ 

> 0, 𝐿 is the unique maximal accretive operator on ℋ associated with the sesquilinear 

regularly accretive form 〈𝐴𝐷𝑢,𝐷𝑣〉, 𝑢, 𝑣 ∈  𝑉 . It can be shown that 𝐿 is of type 𝜔 with 

0 ≤  𝑤 <  𝜋/2, that 𝐿 =  𝐷∗𝐴𝐷 in the sense of unbounded operators on ℋ and that 𝒟(𝐿) 
is dense in 𝑉 equipped with the graph norm of 𝐷.  

 Let 𝜑 ∈  𝐹(𝛤µ) with 𝜑(𝜁 )  ≤  𝑐0(1 + |𝜁 |)
−1 for 𝜁 ∈  𝛤µ. One can define 

𝜑(𝑡2𝐿)𝑡𝐷∗𝐴 as a bounded operator from 𝒦 to ℋ and obtain  

‖𝜑(𝑡2𝐿)𝑡𝐷∗ 𝐴𝑤‖ℋ  ≤  𝑐‖𝑤‖𝒦   
uniformly over 𝑡 > 0,where 𝑐 depends on 𝑐0, µ, ‖𝐴‖ and δ. 

 Indeed, call 𝑉 the dual of 𝑉 ,extend 𝐷∗ from 𝒦 to 𝑉 so that one has an extension of  

𝐿 from 𝑉 into 𝑉′ . Let 𝑤 ∈ 𝒦 and define 𝑢𝑡  ∈  𝑉 as the unique solution of  

〈𝑢𝑡 , 𝑣〉  +  𝑡
2 〈𝐴𝐷𝑢𝑡 , 𝐷𝑣〉  =  𝑡 〈𝐴𝑤,𝐷𝑣〉 

 for all 𝑣 ∈  𝑉 . It is easy to show  

√‖𝑢𝑡‖ℋ
2  +  𝛿𝑡2‖𝐷𝑢𝑡‖𝒦

2 ≤
‖𝐴‖‖𝑤‖ℋ

𝛿1 2⁄
 . 

Setting (1 + 𝑡2𝐿)−1𝑡𝐷∗𝐴𝑤 =  𝑢𝑡 ,we obtain a bounded operator from 𝒦 to ℋ . Define 

then 𝜑(𝑡2𝐿)𝑡𝐷∗𝐴 =  �̃�(𝑡2𝐿)(1 + 𝑡2𝐿)−1𝑡𝐷∗𝐴 with �̃�(𝜁 )  =  (1 + 𝜁 )𝜑(𝜁 ). Since �̃�  ∈

 𝐻∞(𝛤µ), we have proved our claim. Remark that  

𝜑(𝑡2𝐿)𝑡𝐿𝑢 =  𝜑(𝑡2 𝐿)𝑡𝐷∗ 𝐴(𝐷𝑢), ∀ 𝑢 ∈ 𝒟(𝐿).             (98) 
 Indeed, it suffices to prove it when 𝜑(𝜁 )  =  (1 +  𝜁 )−1. In this case,  

𝑣𝑡  =  (1 + 𝑡
2 𝐿)−1 𝑡2 𝐿𝑢 =  𝑡2 𝐿(1 + 𝑡2 𝐿)−1 𝑢  
=  𝑢 − (1 + 𝑡2 𝐿)−1𝑢.                                                   (99) 

 Next, set 𝑢𝑡  =  (1 + 𝑡
2𝐿) − 1𝑡2𝐷∗𝐴(𝐷𝑢). By definition,  

〈𝑢𝑡 , 𝑣〉  + 𝑡
2 〈𝐴𝐷𝑢𝑡 , 𝐷𝑣〉  =  𝑡

2 〈𝐴𝐷𝑢, 𝐷𝑣〉  
for all 𝑣 ∈  𝑉 ,so that 

 〈(𝑢𝑡  −  𝑢), 𝑣〉  + 𝑡
2 〈𝐴𝐷(𝑢𝑡  −  𝑢), 𝐷𝑣〉 =  〈𝑢, 𝑣〉  

for all 𝑣 ∈  𝑉 . This shows that 𝑢𝑡  −  𝑢 ∈ 𝒟(𝐿) and that (1 + 𝑡2𝐿 )(𝑢𝑡  −  𝑢)  =
 𝑢, hence 𝑢𝑡  =  𝑣𝑡 as desired.  

 We know that 𝜑(𝑡2𝐿)𝑡𝐿 extends to all of ℋ,but the above remark shows that one 

can compute 𝜑(𝑡2𝐿)𝑡𝐿𝑢 for 𝑢 ∈  𝑉 using (98).  

 Now, we choose 𝜑(𝜁 )  =  𝑒 − 𝜁 for convenience. The following result is implicit in 

[94].  

Proposition (2.2.39)[90]: The following are equivalent:  

(i) ‖𝐿1 2⁄ 𝑢‖
ℋ
 ≤  𝑐‖𝐷𝑢‖𝒦  for all 𝑢 ∈ 𝒟(𝐿). 
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(ii)  ∫  
∞

0
‖𝑒−𝑡

2𝐿𝑡𝐷∗𝐴𝑤‖
ℋ

2 𝑑𝑡

𝑡
 ≤  𝑐‖𝑤‖𝒦

2  for all 𝑤 ∈ 𝒦.  

Proof. Using Lemma (2.2.38) and (98), it is quite clear that (ii) implies (i). Reciprocally, 

assume (i). This means that (ii) holds for any 𝑤 =  𝐷𝑢 when 𝑢 ∈ 𝒟(𝐿). Since 𝒟(𝐿) is 

dense in 𝑉 ,(ii) holds when 𝑢 ∈  𝑉.  

 Now,let 𝑤 ∈ 𝒦. Letting �̇� be the completion of 𝑉 under ‖𝐷𝑢‖_𝒦, one can solve 

the equation 𝐷∗𝐴𝑤 =  𝐷∗𝐴𝐷𝑢 for 𝑢 ∈  �̇� using the Lax-Milgram Lemma in �̇�. An 

approximation argument concludes the proof.  

 We deal with local analogues. 

Proposition (2.2.40)[90]: The following are equivalent:  

(i) ‖𝐿1 2⁄ 𝑢‖
ℋ
 ≤  𝑐(‖𝐷𝑢‖𝒦  +  ‖𝑢‖ℋ) for all 𝑢 ∈ 𝒟(𝐿).  

(ii)  For all 𝜏 >  0, ∫  
𝜏

0
‖ 𝑒−𝑡

2𝐿𝑡𝐷∗𝐴𝑤‖
ℋ

2 𝑑𝑡

𝑡
 ≤  𝑐(𝜏 )‖𝑤‖𝒦

2  for all 𝑤 ∈ 𝒦.  

(iii) There exists 𝜏 >  0 such that ∫  
𝜏

0
 ‖𝑒−𝑡

2𝐿𝑡𝐷∗𝐴𝑤‖
ℋ

2 𝑑𝑡

𝑡
 ≤  𝑐(𝜏 )‖𝑤‖𝒦

2  for all 

𝑤 ∈ 𝒦.  

Proof. Since ‖𝑒−𝑡
2𝐿𝑡𝐿𝑢‖

ℋ

2
 ≤  𝑐𝑡−2‖𝑢‖ℋ

2 ,  

∫  
∞

𝜏

‖ 𝑒−𝑡
2𝐿𝑡𝐿𝑢‖

ℋ

2 𝑑𝑡

𝑡
 ≤  𝑐𝜏−1  ‖𝑢‖ℋ

2 . 

 This shows the equivalence between (ii) and (iii).  

 If (iii) holds then, by (98),  

∫  
𝜏

0

 ‖𝑒−𝑡
2𝐿𝑡𝐿𝑢‖

ℋ

2 𝑑𝑡

𝑡
 ≤  𝑐‖𝐷𝑢‖𝒦

2 , 

for 𝑢 ∈ 𝒟(𝐿). Hence,(i) is proved.  

 Now, assume (i) and let us prove (iii) with 𝜏 =  1. Since, by functional calculus, 

‖𝐿1 2⁄ 𝑢‖
ℋ
 +  ‖𝑢‖ℋ  ∼ ‖ (𝐿 +  1)

1 2⁄ 𝑢‖_ℋ, we have ‖(𝐿 +  1)1 2⁄ 𝑢‖
ℋ
 ≤

 𝑐‖�̃�𝑢‖
𝒢
,where 𝒢 = 𝒦 ⊕ℋ and �̃�  =  (𝐷, 𝐼 ) from ℋ to 𝒢. Let �̃�  =  𝐴 ⊕  𝐼 on 𝒢. One 

can then write 𝐿 +  1 =  �̃�∗�̃��̃� . The proposition above applies and we obtain that  

∫  
∞

0

 ‖𝑒−𝑡
2(𝐿+1)𝑡�̃�∗ �̃��̃� ‖

ℋ

2 𝑑𝑡

𝑡
 ≤  𝑐‖�̃�‖𝒢

2, ∀ �̃�  ∈  𝒢.            (100) 

 Let 𝑤 ∈  𝐾 and �̃�  =  𝑤 (ie, 𝑢 =  0 ∈  𝐻). Then �̃�∗�̃��̃�  =  𝐷∗𝐴𝑤. Next,  

‖𝑒−𝑡
2𝐿𝑡𝐷∗ 𝐴𝑤‖

ℋ
 ≤  (1 − 𝑒−𝑡

2
)‖𝑒−𝑡

2𝐿𝑡𝐷∗ 𝐴𝑤‖
ℋ
 +  ‖𝑒−𝑡

2(𝐿+1) 𝑡𝐷∗ 𝐴𝑤‖
ℋ
 

≤  𝑐𝑡2 ‖𝑤‖𝒦  + ‖ 𝑒
−𝑡2(𝐿+1) 𝑡�̃�∗ �̃��̃�‖

ℋ
  

using the uniform boundedness of 𝑒−𝑡
2𝐿𝑡𝐷∗𝐴. This and (100) easily imply (iii).   
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Chapter 3 

Dvoretzky Theorem 

We show that the results imply an unexpected distinction between the lower and 

upper inclusions in Dvoretzky Theorem. A complete and rather simple proof of the famous 

Dvoretzky's theorem is presented. 

Section (3.1): Small Ball Probability  

In probability theory, the large deviation theory (or the tail probabilities) and the 

small deviation theory (or the small ball probabilities) are in a sense two complementary 

directions. The large deviation theory, which is a more classical direction, seeks to control 

the probability of deviation of a random variable 𝑋 from its mean 𝑀, i.e. one looks for 

upper bounds on Prob(|𝑋 −  𝑀|  >  𝑡). The small deviation theory seeks to control the 

probability of X being very small, i.e. it looks for upper bounds on 𝑃𝑟𝑜𝑏(|𝑋|  <  𝑡). There 

are a number of excellent texts on large deviations, see [113] and [118]. A recent 

exposition of the state of the art in small deviation theory can be found in [122].  

A modern powerful approach to large deviations is via the celebrated concentration of 

measure phenomenon.  One of the early manifestations of this idea was  𝑉. Milman’s 

proof of Dvoretzky Theorem in the 1970s. Recall that Dvoretzky Theorem entails that any 

𝑛-dimensional convex body of dimension c log n which is approximately a Euclidean ball. 

Since Milman’s  proof, the concentration of measure philosophy plays a major role in 

geometric functional analysis and in many other areas. A recent book by 𝑀. Ledoux [121] 

gives an account of many ramifications of this method. A standard instance of the 

concentration of measure phenomenon is the case of a Lipschitz function 

on the unit Euclidean sphere 𝑆𝑛−1   . In view of the geometric applications, we shall state it 

for a norm k · k on 𝑅𝑛 , or equivalently for its unit ball, which is a centrally-symmetric 

convex body 𝐾 ⊂  𝑅𝑛. We equip the sphere 𝑆𝑛−1 with the unique rotation invariant 

probability measure 𝜎. Two parameters are e response ble for many geometric properties 

of the convex body 𝐾; the maximal and the average values of the norm on the 

sphere 𝑆𝑛−1  :  

𝑏 =  𝑏(𝐾) =  sup x∈Sn−1||𝑥||,   𝑀 =  𝑀(𝐾) =  ∫  
 

𝑆 𝑛−1

  ||𝑥||𝑑𝜎(𝑥).             (1) 

The concentration of measure inequality, which appears 𝑒. 𝑔. in [128] states that the norm 

is close to its mean 𝑀 on most of the sphere. For any 𝑡 >  1,  

𝜎  {  𝑥 ∈  𝑆𝑛−1 ∶ | ||𝑥|| − 𝑀 |> 𝑡𝑀 } < exp (−𝑐𝑡2𝑘)      (2) 
Where 

                 𝑘 =  𝑘(𝐾)  =  𝑛 (
 𝑀(𝐾)

𝑏(𝐾)
)

2

 

Here and thereafter the letters 𝑐, 𝐶, 𝑐0 , �̃�, 𝑐1, 𝑐2 etc. denote some positive universal 

constants, whose values may be different in various appearances. The symbol ≈ denotes 

equivalence of two quantities up to an absolute constant factor, 𝑖. 𝑒. 𝑎 ≈  𝑏 if 𝑐𝑎 ≤  𝑏 ≤
 𝐶𝑎 for some absolute constants 𝑐, 𝐶 >  0. 

 The concentration of measure inequality can of course be interpreted as a large deviation 

inequality for the random variable ‖𝑥‖, and the connection to probability theory becomes 

even more sound when one recalls an analogous inequality for Gaussian measures, see 

[121]. The quantity 𝑘(𝐾) plays a crucial role in high dimensional convex geometry, as it is 

the critical dimension in Dvoretzky Theorem. We will call this dimension k(K) the 
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Dvoretzky dimension. Milman’s proof of Dvoretzky Theorem [126] (see also [128]) 

provides accurate information regarding the dimension of the almost spherical of 𝐾. 

Milman’s argument shows that if 𝑙 <  𝑐𝑘(𝐾), then with probability larger than 1 −

 𝑒−𝑐
′𝑙

, a random 𝑙-dimensional subspace 𝐸 ∈  𝐺𝑛,𝑙 satisfies 
𝑐

𝑀
 (𝐷𝑛  ∩  𝐸)  ⊂  𝐾 ∩  𝐸 ⊂  

𝑐 

𝑀
 (𝐷𝑛 ∩  𝐸),                                 (3)  

where 𝑀 =  𝑀(𝐾), 𝐷𝑛 denotes the unit Euclidean ball in 𝑅𝑛, and the randomness is 

induced by the unique rotation invariant probability measure on the grassmanian 𝐺𝑛,𝑙 of 𝑙-
dimensional subspaces in 𝑅𝑛. 

The Dvoretzky dimension 𝑘(𝐾) was proved in [129] to be the exact critical dimension for 

a random to satisfy (3), in the following strong sense. If a random 𝑙 −dimensional 

subspace 𝐸 ∈  𝐺𝑛,𝑙 satisfies (3) with probability larger than, say, 1 − 
 1

𝑛
 , , then 

necessarily 𝑙 <  𝐶𝑘(𝐾). Thus a random of dimension 𝑙 <  𝑐𝑘(𝐾) is close to Euclidean 

with high probability, and a random of dimension 𝑙 >  𝐶𝑘(𝐾) is typically far from 

Euclidean. These arguments completely clarify the question of the dimensions in which 

random of a given convex body are close to Euclidean. Once 𝑏(𝐾) and 𝑀(𝐾) are 

calculated, the behavior of a random is known. For instance, Dvoretzky dimension of the 

cube is ≈ 𝑙𝑜𝑔 𝑛, while the cross polytope 𝐾 =  {𝑥 ∈  𝑅𝑛   : 
 ∑  |𝑥𝑖  |  ≤  1} has Dvoretzky dimension as large as k(K) ≈n. 

We investigate Dvoretzky Theorem from a different direction, which does not 

involve the standard large deviations inequality (2). The second named conjectured that a 

phenomenon similar to the concentration of measure should also occur for the small ball 

probability, and he proved a weaker statement. The conjecture has been recently proved by 

𝑅. Lata la and 𝐾. Oleszkiewitz [120], using the solution to the 𝐵-conjecture by Cordero, 

Fradelizi and Maurey [112]: 

Theorem (3.1.1). (Small ball probability). For every 0 <  𝜀 <   
1

2
 , 

𝜎 { 𝑥 ∈  𝑆𝑛−1   ∶   ‖𝑥‖ <  𝜀𝑀}  <  𝜀𝑐𝑘 (𝐾) 
where 𝑐 >  0  is a universal constant. 

This theorem is related to the small ball probability (as a direction of the probability 

theory) in exactly the same way as the concentration of measure is related to large 

deviations. Here we apply Theorem (3.1.1) to study questions arising from Dvoretzky 

Theorem. We show that for some purposes, it is possible to relax the Dvoretzky dimension 

𝑘(𝐾), replacing it by a quantity independent of the Lipschitzness of the norm (which is 

quantified by the Lipschitz constant 𝑏(𝐾)). We wish to replace 𝑘(𝐾) by 

𝑑(𝐾)  =  𝑚𝑖𝑛{− 𝑙𝑜𝑔 𝜎 { 𝑥 ∈  𝑆𝑛−1 ∶  ‖𝑥 ‖ ≤  
1 

2
𝑀} , 𝑛}, 

where log stands for the natural logarithm.Selecting 𝑡 =  
1 

2
 in the concentration of 

measure inequality (2), we conclude that 𝑑(𝐾) must be at least of the same order of 

magnitude as Dvoretzky dimension 𝑘(𝐾):  
𝑑(𝐾)  ≥  𝐶𝑘(𝐾). 

The small ball Theorem (3.1.1) indeed holds with 𝑑(𝐾) (this is a part of the argument of 

Lata la and Oleszkiewicz, reproduced below). The resulting inequality can be viewed as 

Kahane-Khinchine type inequality for negative exponents: 

For positive exponents, this inequality was proved in [124]: for 0 <  𝑘 <  𝑐𝑘(𝐾), 
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cM <  (∫  
 

Sn−1  

 ‖x ‖k dσ(x))

1
k

 <  𝐶𝑀.                                                 (4) 

For negative exponents −1 <  ℓ <  0, inequality (4) follows from results of Guédon 

[117] that generalize Lovász-Simonovits inequality [123]. Proposition (3.1.3) extends (4) 
to the range [−𝑐𝑑(𝐾), 𝑐𝑘(𝐾)] (which of course includes the range [−𝑐𝑘(𝐾), 𝑐𝑘(𝐾)]). 
In Proposition (3.1.3), ‖𝑥‖−1 can be regarded as the radius of the one-dimensional of the 

body 𝐾. Combining this with the recent inequality for diameters of due to [119], we are 

able to lift the dimension and thus compute the average diameter of l-dimensional of any 

centrally-symmetric convex body 𝐾. 

The relation between Theorem (3.1.7) and Dvoretzky Theorem is clear. We show 

that for dimensions which may be much larger than 𝑘(𝐾), the upper inclusion in 

Dvoretzky Theorem (3) holds with high probability. This reveals an intriguing point in 

Dvoretzky Theorem. Milman’s proof of Dvoretzky Theorem focuses on the left-most 

inclusion in (3). Once it is proved that the left-most inclusion in (3) holds with high 

probability, the right-most inclusion follows almost automatically. 

Furthermore, Milman-Schechtman’s argument [129] implies in fact that the left-most 

inclusion does not hold (with large probability) for dimensions larger than the Dvoretzky 

dimension. The reason that a random l-dimensional is far from Euclidean when 𝑙 >
 𝑐𝑘(𝐾) is that a typical does not contain a sufficiently large Euclidean ball. In comparison, 

we observe that the upper inclusion in (3) holds for a much wider range of dimensions. 

 There are cases, such as the case of the cube, where the Dvoretzky dimension 

satisfies 𝑘(𝐾)  ≈  𝑙𝑜𝑔 𝑛, while 𝑑(𝐾) is a polynomial in 𝑛. Hence, while the cube of 

dimension 𝑛𝑐 are already contained in the appropriate Euclidean ball (for any fixed 𝑐 <
 1, independent of 𝑛), only when the dimension is ≈  𝑙𝑜𝑔 𝑛, start to “fill from inside”, and 

an isomorphic Euclidean ball is observed. The case of the cube is contained, using 

different terminology, in [125]. The fact that 𝑑(𝐾) is typically larger than 𝑘(𝐾) is a little 

unexpected. It implies that the correct upper bound for random of a convex body appears 

sometimes in much larger dimensions than those for which we have the lower bound. 

In the past decade, diameters of random lower-dimensional of convex bodies attracted a 

considerable amount of attention, see in particular [114], [115], [116]. Theorem (3.1.7) is a 

significant addition to this line of results. It implies that diameters of random are 

equivalent for a wide range of dimensions – starting from dimension one, when the 

random diameter simply equals 
1

 𝑀(𝐾)
 , and up to the critical dimension 𝑑(𝐾). Right after 

the proof of Theorem (3.1.7). 

We discuss the negative moments of the norm, proving Proposition (3.1.3) and 

Theorem (3.1.1) by the Lata la-Oleszkiewicz argument. We perform the “dimension lift” 

and compute the average diameters of random, proving Theorem (3.1.7). 

We begin by proving Proposition (3.1.3). This proposition is a reformulation of the 

“small ball probability conjecture”. It was recently deduced by 𝑅. Lata la and 𝐾. 

Oleszkiewicz [120] from the B-conjecture proved by Cordero, Fradelizi and Maurey 

[112]. We will reproduce the Lata laoleszkiewicz argument here. We start with a standard 

and well-known lemma, on the close relation between the uniform measure σ on the 

sphere 𝑆𝑛−1 and the standard gaussian measure 𝛾 on 𝑅𝑛 . We include its proof.  

Lemma (3.1.2)[111]: For every centrally-symmetric convex body 𝐾, 
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1

2
𝜎(𝑆𝑛−1  ∩  

1 

2
𝐾)  ≤  𝛾( √ 𝑛𝐾)  ≤  𝜎(𝑆𝑛−1  ∩  2𝐾)  + 𝑒−𝑐𝑛  

where 𝑐 >  0  is a universal constant. 

Proof. We will use the following two estimates on the Gaussian measure of the Euclidean 

ball, 

𝛾(2√ 𝑛𝐷𝑛 ) >  
1 

2
 , 𝛾 ( 

1 

2
 √ 𝑛𝐷𝑛 ) <  𝑒−𝑐𝑛 . 

The first estimate is simply Chebychev’s inequality, and the second follows from standard 

large deviation inequalities, 𝑒. 𝑔. Cramer’s Theorem [132]. Since 𝐾 is star-shaped, 

𝛾( √𝑛𝐾) ≥  𝛾(2√𝑛𝐷𝑛  ∩ √𝑛𝐾) 

≥  𝛾(2√𝑛𝐷𝑛 )𝜎1 (2√𝑛𝑆
𝑛 −1  ∩  √𝑛𝐾) 

where 𝜎1 denotes the probability rotation invariant measure on the sphere 2 √𝑛𝑆𝑛−1 , 

≥ 
1 

2
 𝜎 (𝑆𝑛−1  ∩  

1 

2
𝐾). 

This proves the lower estimate in the lemma. 

 For the upper estimate, note that no points of √𝑛𝐾  can lie outside both the ball 
1 

2
 √𝑛𝐷𝑛 

and the positive cone generated by 
1 

2
 𝑆𝑛−1  ∩  √𝑛𝐾 . Adding the two measures together, 

we obtain 

𝛾( √𝑛𝐾) ≤  𝛾 ( 
1  

2
√𝑛𝐷𝑛 ) + 𝜎2 ( 

1 

2
 √𝑛𝑆𝑛−1  ∩  √𝑛𝐾) 

where 𝜎2 denotes the probability rotation invariant measure on the sphere 
1  

2
√𝑛𝑆𝑛 −1 , 

≤ 𝑒−𝑐𝑛  +  𝜎(𝑆  𝑛−1   ∩  2𝐾) 
This completes the proof 

Proposition (3.1.3)[111]: (Negative moments of a norm). Assume that 0 < ℓ <  𝑐𝑑(𝐾). 
Then 

𝑐𝑀 <  ( ∫  
 

𝑆𝑛−1

 ‖𝑥‖−ℓ    𝑑𝜎(𝑥))

−  
1
ℓ
  

 <  𝐶𝑀 

where 𝑐, 𝐶 >  0 are universal constants. 

Proof. As usual, K will denote the unit ball of the norm k · k. The B-conjecture, proved in 

[112], asserts that the function 𝑡 →  𝛾(𝑒𝑡𝐾) is log-concave. This means that for any 

𝑎, 𝑏 >  0 and 0 <  𝜆 <  1, 

𝛾 (𝑎𝜆 𝑏 1−𝜆𝐾)   ≥  𝛾 (𝑎𝐾)𝜆 𝛾 (𝑏𝐾)1−𝜆 .                                                  (5) 

Let Med =  𝑀𝑒𝑑(𝐾) be the median of the norm ‖· ‖ on the unit sphere 𝑆  𝑛−1 . By 

Chebychev’s inequality, 𝑀𝑒𝑑 ≤  2𝑀(𝐾). Set 𝐿 = Med · √𝑛𝐾 . According to Lemma 

(3.1.2), 

𝛾(2𝐿)  ≥  
1 

2
 𝜎(𝑆𝑛−1 ∩  𝑀𝑒𝑑 ·  𝐾)  ≥

 1 

4
                                                      (6) 

by the definition of the median. On the other hand, again by Lemma (3.1.2), 

𝛾 ( 
1 

8
 𝐿) ≤  𝜎 (𝑆𝑛−1  ∩  

1 

4
𝑀𝑒𝑑 ·  𝐾) + 𝑒−𝑐𝑛 

=  𝜎 (𝑥 ∈  𝑆  𝑛−1 ∶  ‖𝑥‖  ≤  
1 

4
𝑀𝑒𝑑) + 𝑒−𝑐𝑛                (7) 
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          ≤  𝜎 (𝑥 ∈  𝑆𝑛−1   ∶  ‖𝑥 ‖ ≤  
1 

2
𝑀(𝐾)) +  𝑒  −𝑐𝑛  ≤  𝑒  −𝑑(𝐾) +  𝑒  −𝑐

′𝑛  

<  2𝑒  −𝐶𝑑(𝐾) 
because 𝑑(𝐾)  ≤  𝑛. We may assume that  <  𝑒^ − 3  , and apply (5) for 𝑎 =  𝜀, 𝑏 =  2, 𝜆 

= 
3 

𝑙𝑜𝑔
1

𝜀

 . This yields 

𝛾(𝜀𝐿) 
3 

𝑙𝑜𝑔(1/𝜀)
 𝛾(2𝐿) 1 −

 3 

𝑙𝑜𝑔(1/𝜀)
 ≤  𝛾 ( 𝜀 

3 

𝑙𝑜𝑔(1/𝜀)
 21  −

 3 

𝑙𝑜𝑔(1/𝜀)
𝐿 )  

≤  𝛾( 
1 

8
 𝐿) 

 
Combining this with (6) and (7), we obtain that 

𝛾 (𝜀𝐿)  ≤  8𝑒𝐶
′
𝑑(𝐾) 𝑙𝑜𝑔𝜀)  ≤  8𝜀^𝑐𝑑  (𝐾) <  (𝑐 ′ 𝜀)^𝑐𝑑(𝐾)  

and according to Lemma (3.1.2) we can transfer this to the spherical measure, obtaining 

𝜎(𝑥 ∈  𝑆 𝑛−1 ∶  ‖𝑥‖ <  𝜀𝑀)  <  (𝐶𝜀)𝑐𝑑(𝐾)  

By integration by parts, this yields that for any 0 <   ℓ <  
𝑐𝑑(𝐾)

10
, 

(∫  
 

 𝑆𝑛−1

 ‖
𝑥

𝑀
‖  −ℓ 𝑑𝜎(𝑥))

1
ℓ

 ≤  𝐶, 

which implies the left hand side of the inequality in Proposition (3.1.3). The right hand 

side follows easily by H¨older’s inequality. 

By Chebychev’s inequality, Proposition (3.1.3) yields the desired tail inequality for the 

small ball probability: 

Corollary (3.1.4)[111]: (The small ball probability). For every 0 <  𝜀 <  
1

2
,  

𝜎  {𝑥 ∈  𝑆𝑛−1 ∶  ‖𝑥 ‖ <  𝜀𝑀 } <  𝜀𝑐𝑑(𝐾)  <  𝜀𝑐
′𝑘(𝐾)   ,  

where 𝑐, 𝑐′ >  0 are universal constants.  

Theorem (3.1.1) is contained in Corollary (3.1.4). Let us give some interpretation of the 

expression in Proposition (3.1.3). For a subspace 𝐸 ⊂  𝑅𝑛, let 𝑆(𝐸) = 𝑆𝑛−1  ∩ 𝐸 and σE 

be the unique rotation invariant probability measure on the sphere 𝑆(𝐸). We will use the 

fact that 𝑉𝑜𝑙(𝐾) = 𝑜𝑙(𝐷𝑛 ) 𝑅 ∫  
 

𝑆𝑛−1
 ‖ 𝑥‖−𝑛 𝑑𝜎(𝑥). The volume radius of a k-dimensional 

set 𝑇 is defined as  

𝑣. 𝑟𝑎𝑑. (𝑇) =  ( 
𝑉𝑜𝑙(𝑇)

𝑉𝑜𝑙(𝐷𝑘)
 )

1
𝑘

 

Thus 

𝑣. 𝑟𝑎𝑑. (𝐾)  =  (∫  
 

(𝑆𝑛−1)

    ‖𝑥 ‖
–𝑛 𝑑𝜎(𝑥))

1/𝑛

  . 

By the rotation invariance of all the measures (as in [119]), we conclude that 

 ∫  
 

𝑆𝑛−1

   ‖𝑥‖−𝑘   𝑑𝜎(𝑥)  =  ∫  
 

 𝐺𝑛,𝑘

 ∫  
 

 𝑆(𝐸)

  ‖𝑥‖−𝑘  𝑑𝜎𝐸(𝑥) 𝑑µ(𝐸) 
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= ∫  
 

  Gn,k

  𝑣. 𝑟𝑎𝑑. (𝐾 ∩  𝐸)𝑘 𝑑µ(𝐸),                                      (8) 

where, as before, µ is the unique rotation invariant probability measure on 𝐺𝑛,𝑘. Thus 

Proposition (3.1.3) asymptotically computes the average volume radius of random. This 

perfectly fits the estimates for diameters in [119], to be applied next. 

We prove the main result, Theorem (3.1.7). We regard ‖𝑥‖−1 as the radius of the 

one-dimensional spanned by 𝑥; thus Proposition (3.1.3) is an asymptotically sharp bound 

on the diameters of random one-dimensional. Theorem (3.1.7) extends this bound to k-

dimensional, for all k up to the critical dimension 𝑑(𝐾). We start with a “dimension lift”, 

which is based on the “low 𝑀 estimate”, Proposition 3.9 in [119] (the case 𝜆 =  
1 

2
 there). 

Here we estimate the 𝐿𝑘 norm, rather than only the tail probability as in Proposition 3.9 

in [119]. 

In order to prove Theorem (3.1.3) we need a standard lemma on the stability of the 

average norm 𝑀. We are unaware of a reference for the exact statement we need (a similar 

result appears e.g. in Lemma 6.6 of [127]), so a proof is provided. The average norm on a 

subspace 𝐸 ∈  𝐺𝑛,𝑘 is denoted by 𝑀𝐸  =  ∫  
 

𝑆(𝐸)
 ‖𝑥‖𝑑𝜎𝐸(𝑥). 

Lemma (3.1.5)[111]: For every norm ‖· ‖ on 𝑅𝑛 and every integer 0 <  𝑘 <  𝑛 

 𝑐𝑀 < ( ∫  
 

𝐺𝑛,𝑘
 (𝑀𝐸)2𝑘 𝑑µ(𝐸))

1

2𝑘

 <  𝐶𝑀           (9) 

where 𝑐, 𝐶 >  0 are universal constants. 

Proof. The left hand size inequality in (9) follows easily from H¨older’s inequality. In the 

proof of the right hand side inequality, we will use a variant of Raz’s argument (see [131], 

[130]). We normalize so that 𝑀 =  1. 𝐿𝑒𝑡 𝑋1, . . , 𝑋𝑘 be 𝑘 independent random vectors, 

distributed uniformly on 𝑆𝑛−1 . It is well-known that a norm of a random vector on the 

sphere has a subgaussian tail (e.g. [124]. It actually follows from (2) above): 

𝐸 exp(𝑠‖𝑋𝑖‖)  <  𝑒𝑥𝑝 (𝑐𝑠
2)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑠 >  1 

which by independence implies 

𝐸 exp(𝑠 ·  
1 

𝑘
 ∑  

𝑘

𝑖=1

‖𝑋𝑖‖ ) < exp( 
𝐶𝑠2 

𝑘
 ) 𝑓𝑜𝑟 𝑠 >  1 

Using Chebychev’s inequality and optimizing over s (e.g. [128]), we obtain 

𝑃𝑟𝑜𝑏  {
1 

𝑘
∑ 

𝑘

𝑖=1

 ‖𝑋𝑖‖  >  𝐶𝑡} <  𝑒𝑥𝑝 (– 𝑡
2 𝑘)  𝑓𝑜𝑟 𝑡 >  1               (10) 

Let 𝐸 be the linear span of 𝑋1, . . , 𝑋𝑘 . Then E is distributed uniformly in 𝐺𝑛,𝑘 (up to an 

event of measure zero). Since for any two events one has 𝑃𝑟𝑜𝑏(𝐴)  ≤
 𝑃𝑟𝑜𝑏(𝐵) 

𝑃𝑟𝑜𝑏(𝐵|𝐴)
 , we 

conclude that  

𝑃𝑟𝑜𝑏 {𝑀𝐸  >  2𝑐𝑡} ≤  
𝑃𝑟𝑜𝑏𝑛 {

1 
𝑘
∑  𝑘
𝑖=1 ‖𝑋𝑖‖ >  𝑐𝑡} .

𝑃𝑟𝑜𝑏𝑛 {
1 
𝑘
 𝑃 ∑  𝑘

𝑖=1 ‖𝑋𝑖‖  >  𝑐𝑡 | | 𝑀𝐸  >  2𝑐𝑡}
         (11) 

The numerator in (11) is bounded by (10). To bound the denominator from below, note 

that ‖𝑋𝑖 ‖ <  𝐶 √ 𝑘𝑀𝐸 pointwise for all 𝑖; This is a consequence of a simple comparison 

inequality for the Gaussian analogs of 𝑀 and 𝑀𝐸 (see e.g. [128]). Let us fix a 
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subspace 𝐸 ∈  𝐺𝑛,𝑘. Note that, conditioning on 𝐸 = span{𝑋1, . . . , 𝑋𝑘}, each of the 

vectors 𝑋𝑖 is distributed uniformly in 𝑆(𝐸). Next, we estimate the robability probability 

𝑃𝐸  =  𝑃𝑟𝑜𝑏 {
1 

𝑘
 𝑃 ∑  𝑘

 𝑖=1 ‖𝑋𝑖‖  >  
𝑀𝐸

 2
 𝑠𝑝𝑎𝑛{𝑋1, . . , 𝑋𝑘}  =  𝐸}  via Chebychev’s inequality 

as  

𝑀𝐸  =  𝐸 (
1 

𝑘
 ∑  

𝑘

𝑖=1

 ‖𝑋𝑖‖   𝑠𝑝𝑎𝑛{𝑋1, . . , 𝑋𝑘}  =  𝐸) ≤  𝐶 √ 𝑘𝑀𝐸𝑃𝐸  +  
𝑀𝐸 

2
 (1 – 𝑃𝐸).  

 

Hence 𝑃𝐸 ≥ 
𝑐¯ 

√𝑘
 for every 𝐸 ∈  𝐺𝑛,𝑘. Thus, 

denominator in (11) ≥  𝑃𝑟𝑜𝑏 { (
 1

 𝑘
 ∑  𝑘
 𝑖=1  ‖𝑋𝑖  ‖ >  

𝑀𝐸 

 2
 |  𝑀𝐸  >  2𝑐𝑡)} 

= 
1 

𝑃𝑟𝑜𝑏{𝐸 ∈  𝐺𝑛,𝑘;  𝑀𝐸  >  2𝑐𝑡}
 ∫  
 

𝐸∈𝐺𝑛,𝑘;𝑀𝐸>2𝑐𝑡

  𝑃𝐸  𝑑µ(𝐸) 

≥ min
𝐸∈𝐺𝑛,𝑘

  𝑃𝐸  ≥
 𝑐

√𝑘
 . 

Combining this with (10) and (11) we get 

𝑃𝑟𝑜𝑏 {𝑀𝐸  >  2𝑐𝑡} <  𝑐 √𝑘𝑒
−𝑡2𝑘    <  𝑒−𝐶𝑡

2𝑘  𝑓𝑜𝑟 𝑡 >  1. 
By integration by parts we obtain the desired estimate. 
Proposition (3.1.6)[111]: (Dimension lift for diameters). Let 1 ≤  𝑘0  < 𝑛. Then for any 

integer 𝑘 < 𝑘0/  ,4, 

(∫  
 

𝐺𝑛,𝑘

  𝑑𝑖𝑎𝑚(𝐾 ∩  𝐸)𝑘 𝑑µ(𝐸))

1
𝑘

  ≤  𝐶𝑀(𝐾) (∫  
 

 𝑆𝑛−1

 ‖𝑥‖−𝑘0  𝑑𝜎(𝑥))

2
𝑘0

   . 

Proof. By H¨older inequality, the right hand side increases with 𝑘0, hence we may assume 

that 𝑘0  =  4𝑘. We shall rely on the main result in [119], which claims that for any 

centrally-symmetric convex body 𝑇 ⊂  𝑅𝑛, and for all 0 <  𝑘 ≤  𝑙 <  𝑛 

𝑣. 𝑟𝑎𝑑. (𝑇) >  𝐶 (∫  
 

𝐺𝑛,𝑘

 𝑣. 𝑟𝑎𝑑. (𝑇 ∩  𝐸)𝑙 𝑑𝑖𝑎𝑚(𝑇 ∩  𝐸)𝑛−𝑙 𝑑µ(𝐸))

1
𝑛

.                         (12) 

  We are going to apply (12) to 𝑇 =  𝐾 ∩  𝐸, for subspaces  ∈  𝐺𝑛,𝑘0  . Denote by 𝐺𝐸,𝑘 the 

grassmanian of all 𝑘-dimensional subspaces of 𝐸, equipped with the unique rotational 

invariant probability measure. Then by (8), (12) and the rotational invariance of all 

measures,    

∫  
 

 𝐸∈𝐺𝑛,𝑘

 𝑣. 𝑟𝑎𝑑. (𝐾 ∩  𝐸)2𝑘 𝑑𝑖𝑎𝑚(𝐾 ∩  𝐸)2𝑘 𝑑µ(𝐸)  

= ∫  
 

𝐸∈𝐺𝑛,4𝑘

 ∫  
 

𝐹𝐺𝐸,𝑘

 𝑣. 𝑟𝑎𝑑. (𝐾 ∩  𝐹)2𝑘 𝑑𝑖𝑎𝑚(𝐾 ∩  𝐹)2𝑘 𝑑µ𝐸(𝐹)𝑑µ(𝐸) 

≤  𝐶 𝑘0  ∫  
 

𝐸∈𝐺𝑛,𝑘0

 𝑣. 𝑟𝑎𝑑. (𝐾 ∩  𝐸)𝑘0  𝑑µ(𝐸)  =  𝐶𝑘0  ∫  
 

𝑆𝑛−1
  ‖𝑥‖−𝑘0 𝑑𝜎(𝑥). 

Also, by the Cauchy-Schwartz inequality, 
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(∫  
 

𝐸∈𝐺𝑛,𝑘

 𝑑𝑖𝑎𝑚(𝐾 ∩  𝐸)𝑘 𝑑µ(𝐸))

1
𝑘

  

≤ (∫  
 

𝐸∈𝐺𝑛,𝑘

𝑣. 𝑟𝑎𝑑. (𝐾 ∩  𝐸)2𝑘 𝑑𝑖𝑎𝑚(𝑘

∩  𝐸)2𝑘 𝑑µ(𝐸))

1
2𝑘

(∫  
 

𝐸∈𝐺𝑛,𝑘

 
1 

𝑣. 𝑟𝑎𝑑. (𝐾 ∩  𝐸)2𝑘
 𝑑µ(𝐸))

1
2𝑘

   

We will use the standard inequality 
1 

𝑣.𝑟𝑎𝑑.(𝐾∩𝐸)
 ≤  𝑀𝐸, which follows directly from 

𝐻¨older inequality. Then, 

(∫  
 

𝐸∈𝐺𝑛,𝑘

 𝑑𝑖𝑎𝑚(𝐾 ∩  𝐸)𝑘 𝑑µ(𝐸))

1
𝑘 

   

≤  𝐶 (∫  
 

 𝑆𝑛−1
 ‖𝑥‖−𝑘0  𝑑𝜎(𝑥))

2
𝑘0

 ( ∫  
 

𝐸∈𝐺𝑛,𝑘

(𝑀𝐸)2𝑘 𝑑µ(𝐸))

1
2𝑘

   

and the proposition follows by Lemma (3.1.5). 

Theorem (3.1.7)[111]: (Diameters of random). Assume that 0 < ℓ < cd(K). Select a 

random ℓ-dimensional subspace 𝐸 ∈  𝐺𝑛,.ℓ Then with probability larger than 1 −  𝑒  −𝑐′ ℓ, 

𝐾 ∩  𝐸 ⊂  
𝐶 

𝑀
 (𝐷𝑛  ∩  𝐸).                                     (13) 

Furthermore, 

𝑐¯ 

𝑀
 <  (∫  

 

𝐺𝑛,ℓ

  𝑑𝑖𝑎𝑚(𝐾 ∩  𝐸)ℓ  𝑑µ(𝐸))

1
ℓ

< 
𝐶¯ 

𝑀
                            (14) 

where µ is the unique rotation invariant probability measure on 𝐺𝑛,ℓ, and 𝑐, 𝑐′, 𝑐, 𝐶, 𝐶¯ >  0 

are universal constants. 

Proof. It is sufficient to prove (14), since (13) follows by Chebychev’s inequality. The 

left hand side inequality is clear. According to Proposition (3.1.6) and Proposition (3.1.3), 

the right hand side inequality of (14) follows, as 

(∫  
 

𝐺𝑛,ℓ

 𝑑𝑖𝑎𝑚(𝐾 ∩  𝐸)ℓ 𝑑µ(𝐸))

1
ℓ

<  𝐶𝑀(𝐾) (
  𝐶 

𝑀(𝐾)
)
2

 ≤  
𝐶′

𝑀(𝐾)
 . 

Remark (3.1.8)[111]: (Optimality). The estimate ℓ <  𝑐𝑑(𝐾) in Theorem (3.1.7) is 

essentially optimal, for any centrally-symmetric convex 𝐾 ⊂  𝑅𝑛. Indeed, suppose 

thatℓ >  𝑑𝑢(𝐾) for some 𝑢 ≫ 1. Then, 

( ∫  
 

 𝑆𝑛−1
 ‖𝑥‖−ℓ 𝑑𝜎(𝑥))

1
ℓ

  >  
𝑢 

𝑀
 𝑒 −1  ≫  

1 

𝑀
 .                           (15) 
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Since we always have diam(𝐾 ∩  𝐸)  ≥  2 𝑣. 𝑟𝑎𝑑. (𝐾 ∩  𝐸), then by (15) and (8),  

(∫  
 

𝐺𝑛,ℓ

𝑑𝑖𝑎𝑚(𝐾 ∩  𝐸)ℓ 𝑑µ(𝐸))

1
ℓ

  ≫  
1 

𝑀
 . 

Thus, (14) cannot hold for  ℓ >  𝑑𝑢(𝐾) when 𝑢 ≫ 1.  

Example (3.1.9)[111]: (of the cube). Suppose 𝐾 =  𝐵∞
𝑛  is a cube, the unit ball of 𝑙∞

𝑛 , and 

let us estimate 𝑑𝑢(𝐾). It is well-known that 𝑐 √
𝑙𝑜𝑔 𝑛 

𝑛
 <  𝑀(𝐵∞

𝑛)  <  𝐶 √
𝑙𝑜𝑔 𝑛 

𝑛
 . According 

to Lemma (3.1.2), we may equivalently carry out our computations in the Gaussian 

setting. Now, for 𝑡 >  0, 

𝛾 (𝑡√𝑙𝑜𝑔𝑛𝐵∞
𝑛   ) =  𝑌∏ 

𝑛

𝑖=1

𝑃𝑟𝑜𝑏{|𝑋| ≤  𝑡√𝑙𝑜𝑔 𝑛 } =  (1 –  2𝛷(𝑡 √𝑙𝑜𝑔 𝑛))
𝑛

 

where 𝑋 ∼  𝑁(0, 1) is a standard normal random variable, and 𝛷(𝑠)  =

 𝑅 ∫  
∞ 

𝑠
 
1

√2𝜋
𝑒  –  

𝑢2 

2
 𝑑𝑢. For 𝑠 >  1, a crude estimate gives 𝑒−𝑐1𝑠2  <  𝛷(𝑠)  <  𝑒−𝑐2𝑠2 . 

Thus, when  𝑡 >  
 10 

√𝑙𝑜𝑔 𝑛
 , 

𝑒𝑥𝑝(−𝑐1
′𝑛1 − 𝑐2

′  𝑡2 )  <  𝛾(𝑡 √𝑙𝑜𝑔𝑛𝐵∞
𝑛  )  <  𝑒𝑥𝑝(−𝑐1𝑛

1 − 𝑐2𝑡
2 ). 

Therefore, by Lemma (3.1.2), 

𝑐1𝑛
1 −

 𝑐1  

𝑢2
< 𝑑𝑢(𝐵∞

𝑛 ) <  𝑐2𝑛
1 − 

𝑐2 

𝑢2
 

for any 𝑢 >  1. Theorem (3.1.7) implies that random of this (polynomial!) dimension 

𝑑𝑢(𝐵∞
𝑛 ) have a diameter ≈

1 

𝑀(𝐵∞
𝑛 )

 .  

Example (3.1.10)[111]: (of the 𝑙𝑝 ball). Consider  =  𝐵𝑝
𝑛 , the unit ball of 𝑙𝑝

𝑛 , for some 

fixed 1 ≤  𝑝 <  ∞. In this case, the conclusion of Theorem (3.1.7) is well known. 

For 1 ≤  𝑝 ≤  2, we know that 𝑘(𝐵𝑝
𝑛) > 𝑐𝑛 (e.g. [128]), hence also 𝑑(𝐵𝑝

𝑛 )  >  𝑐𝑛 and the 

conclusion of the theorem follows from the classical Dvoretzky Theorem. In the case 

where 2 <  𝑝 <  ∞, we have 𝐵𝑝
𝑛  ⊂  

𝑐𝑝 

𝑀(𝐵𝑝
𝑛 )
𝐷𝑛, and thus the conclusion of Theorem 

(3.1.7) is obvious in this case (with constants depending on 𝑝), and 𝑑𝑐𝑝 (𝐵𝑝
𝑛 )  >  𝐶𝑝𝑛 , for 

some constants 𝑐𝑝, 𝐶𝑝 depending only on 𝑝. 

Section (3.2): Almost Spherical Sections of Convex Bodies 

The following deep result is due to A. Dvoretzky [134]. 

Theorem (3.2.1)[133]: For every 𝜀 > 0 and for every integer k there exists an integer 

𝑛(𝑘, 𝜀) such that every n-dimensional Banach space H, with 𝑛 ≧ 𝑛(𝑘, 𝜀), contains a k-

dimensional subspace E such that  

𝑑(𝐸, 𝐼2
𝑘) ≦ 1 + 𝜀 

where d denotes the Banach-Mazur distance. 

(In this and other standard notation we follow [138].) 

We present here a complete proof of Dvoretzky's Theorem. The original proof is 

sophisticated and difficult. (Moreover, an approximation argument used in [134] without 

proof is not obvious. The details of it were supplied by T. Figiel [135].) V. D. Milman 

[127] gave a simplified exposition of Dvoretzky's proof. This proof relies on an 
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isoperimetric inequality of Levy whose proof (at least in Levy's original presentation) is 

not complete. 

A functional analytic proof of Dvoretzky's theorem was recently given by L. Tzafriri [140] 

(his proof uses some results of Brunel and Sucheston). Tzafriri's proof shows only the 

existance of 𝑛(𝑘, 𝜀0) for all k and for a fixed positive 𝜀0. 

Our proof appears much simpler than the original one. Although we exploit most of 

Dvoretzky's ideas, the most difficult part of his proof has been replaced by a simple 

geometric argument.  

Let a norm ‖ ‖ be defined on a subspace E of 𝑅𝑚. We say that (𝐸, ‖ ‖) is e-euclidean if for 

some constant C, 

𝑐‖𝑥‖ ≦ ‖𝑥‖2 ≦ 𝑐(1 + 𝜀)‖𝑥‖    for all  𝑥 ∈ 𝐸. 
It is obvious that if E is e-euclidean, then  

𝑑(𝐸, 𝑙2
𝑑𝑖𝑚𝐸) ≦ 1 + 𝜀. 

We denote 𝑆𝐸 = {𝑥 ∈ 𝐸: ‖𝑥‖2 = 1}. 
We can assume without loss of generality that ‖ ‖ is uniformly smooth. Then there exists a 

unique mapping 

𝑇 = 𝑇𝐸 = 𝑇𝐸‖ ‖: 𝑆𝐸 → 𝑆𝐸 

such that 

(𝑥, 𝑇𝐸𝑥) = ‖𝑥‖ · ‖𝑇𝐸𝑥‖𝐸
∗  

Where 

‖𝑥∗‖𝐸
∗ = sup{(𝑥, 𝑥∗)‖𝑥‖−1: 𝑥 ∈ 𝐸}. 

T has a clear geometric meaning: 𝑇𝐸𝑥 𝜀 he normalized vector that is normal to the 

hyperplane (in E) that supports a sphere of ‖ ‖ If in x. It is obvious that 𝑇𝑥 = 𝑥 for all 𝑥 ∈
𝑆𝐸, if and only if ‖ ‖ is equal to 𝜆‖ ‖2 for some 𝜆. It is also intuitively clear that if T is not 

far from the identity, then ‖ ‖ should be 𝜀-euclidean for a small 𝜀. 
We shall proceed from this idea. Let us denote, by 𝜙𝐸(𝑥), the angle between x and 𝑇𝐸𝑥 

and, by 𝛼𝐸(𝑥), the cosine of this angle, that is, 

𝛼𝐸(𝑥) = (𝑥, 𝑇𝐸𝑥). 
By 𝛴𝐸 we shall denote the Stiefel manifold of all (ordered) pairs of orthonormal vectors in 

E. 

In 𝛴𝐸 we have 𝜎𝐸 , the unique rotation invariant normalized measure. For 〈𝑥, 𝑦〉 ∈ 𝛴𝐸 we 

put 

𝛼𝑦(𝑥) = 𝛼[𝑥,𝑦](𝑥). 

It is obvious that  

𝛼𝐸(𝑥) = inf{𝛼𝑦(𝑥): 𝑦 ⊥ 𝑥, 𝑦 ∈ 𝑆𝐸}.                             (16) 
To fix attention, let 

𝐴𝐸 = {〈𝑥, 𝑦〉 ∈ 𝛴𝐸: 𝛼𝑦(𝑥) > (1 − 𝛽
2)
1
2}.                         (17) 

It is intuitively clear that if 𝛽 is small enough and 𝜎(𝐴𝐸) is big enough, then E is 𝜀-
euclidean for a small 𝜀. This will be made precise in our Proposition (3.2.6). 

Now, let 𝑚 > 𝑘, let 𝑑𝑖𝑚 𝐹 = 𝑚, and let Γ be the Grassman manifold of all k-dimensional 

subspaces of F. In Γ we have 𝛾, the unique rotation invariant normalized measure. By 

uniqueness of 𝜎𝐹, we have 

𝜎𝐹(𝐴𝐹) = ∫𝜎𝐸(𝐴𝐸)𝑑𝛾(𝐸)
Γ

.                                             (18) 

But we have also, for the same reason, 
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𝜎𝐹(𝐴𝐹) = ∫ 𝜆𝑥(𝐴𝑥)𝑑𝜆(𝑥)
𝑆𝐹

                                     (19) 

where 𝜆 and 𝜆𝑥 are the normalized Lebesgue measures on 𝑆𝐹 and  

𝑆𝑥 = {𝑦 ∈ 𝑆𝐹: (𝑥, 𝑦) = 0}, 
respectively, and 

𝐴𝑥 = {𝑦 ∈ 𝑆𝑥: 〈𝑥, 𝑦〉 ∈ 𝐴𝐹}. 
We use now the well-known Dvoretzky-Rogers Theorem the following form (see [134]). 

Proposition (3.2.2)[133]: Let 𝑛 > 4𝑚2. There exists an m-dimensional subspace F of n 

that is isometric to 𝐹 = (𝑅𝑚, ‖ ‖) with 

‖𝑥‖2 ≧ ‖𝑥‖ ≧ ‖𝑥‖∞    𝑓𝑜𝑟   𝑥 ∈ 𝐹 = 𝑅
𝑚.                            (20) 

(Here ‖𝑥‖∞ = sup|𝑥𝑖| for 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ 𝑅
𝑚. )  From now on we shall deal with 

an F satisfying (20). 

It appears now that 𝜆𝑥(𝐴𝑥) can be suitably estimated in terms of 𝑚, ‖𝑥‖∞, and 𝛽 only. 

Using a simple geometric argument we obtain namely (refer to Proposition (3.2.7)) 

𝜆𝑥(𝐴𝑥) > 1 − 2𝛽
−1‖𝑥‖∞

−1 · 𝑚−
1
2.                                  (21) 

Hence 

𝜎𝐹(𝐴𝐹) > 1 − 2𝛽
−1 · 𝑚−

1
2‖𝑥‖∞

−1𝑑𝜆(𝑥).                        (22) 
The Last integral appears also in Dvoretzky's proof. A delicate Dvoretzky's inequality 

gives exactly what we need: 

∫ ‖𝑥‖∞
−1𝑑𝜆(𝑥)

𝑆𝐹

= 𝑜 (𝑚−
1
2) (ℎ𝑒𝑟𝑒 𝑚 = dim𝐹) 

or in its stronger version 

∫ ‖𝑥‖∞
−1𝑑𝜆(𝑥)

𝑆𝐹

= 𝑜 (
𝑚

2 log𝑚
)

1
2
.                                                  (23) 

(A short proof of (23) is presented in [135].) 

We obtain now that for big m, the integral in (18) is arbitrarily close to 1 and therefore we 

can find 𝐸 ⊂ 𝐹, 𝑑𝑖𝑚 𝐸 = 𝑘, with big enough 𝜎𝐸(𝐴𝐸). 
For 𝐸 ⊂ 𝐹 = 𝑅𝑚 we write: 

𝜆𝐸 = the normalized Lebesgue measure on 𝑆𝐸 = {𝑥 ∈ 𝐸: ‖𝑥‖2 = 1}; 
𝛴𝐸 = the Stiefel manifold, that is, 𝛴𝐸 = {〈𝑥, 𝑦〉 ∈ 𝑆𝐸 × 𝑆𝐸: (𝑥, 𝑦) = 0}; 
𝜎𝐸 = the normalized rotation invariant measure on 𝛴𝐸; 

𝐸𝑥
⊥ = {𝑦 ∈ 𝐸: (𝑥, 𝑦) = 0}; 
𝑆𝑥
𝐸 = 𝑆𝐸𝑥⊥ and 𝜆𝑥

𝐸 = 𝜆𝐸𝑥⊥. 

We shall drop the index E whenever it does not lead to confusion.  

On S we introduce the geodesic distance 𝜌, that is, 

𝜌〈𝑥, 𝑦〉 = 𝑎𝑟𝑐 cos(𝑥, 𝑦) , ‖𝑥 − 𝑦‖2 = 2 sin
1

2
𝜌〈𝑥, 𝑦〉 ≦ 𝜌〈𝑥, 𝑦〉. 

Let 𝑑𝑖𝑚 𝐸 = 𝑘. It is obvious that 𝜆𝐸 of the fl-neighbourhood of a point in 𝑆𝐸 depends only 

on k and 𝛽. The same can be said about 𝜆𝐸 of the 𝛽-neighbourhood of an equator in 𝑆𝐸 

(that is, of 𝑆𝐸 by a hyperplane passing through zero). We shall denote the first number by 

𝜇(𝑘, 𝛽) and the second one by 𝑣(𝑘, 𝛽). 
We have the following estimates for 𝜇 and v (see [127]).  

(𝑘, 𝛽) ≦ (𝑘 − 1)
1
2 sin𝑘−1 𝛽 ;                                               (24) 



88 

𝜇(𝑘, 𝛽) ≧ 𝑘
1
2 (
1

4
𝛽)

𝑘−1

;                                                        (25) 

𝑣(𝑘 + 2, 𝛽) ≧ 1 − √2 𝑒𝑥𝑝 (−
1

2
𝛽2𝑘) ≧ 1 − 𝛽−1 − 𝑘−1.       (26) 

Before we pass to Proposition (3.2.6), we shall need two lemmas. In their proofs we shall 

drop the subscript E wherever it should occur. We assume that 𝛽 and 𝜂 are sufficiently 

small. 

Lemma (3.2.3)[133]: lf B is a 𝛽-net on 𝑆𝐸 such that 

(1 + 𝜂) inf{‖𝑥‖: 𝑥 ∈ 𝐵} ≧ sup{‖𝑥‖: 𝑥 ∈ 𝐵} = 𝑟, 
then E is (2𝜂 + 5𝛽)-euclidean. 

Proof. We can assume that 𝑟 = 1. For every 𝑦 ∈ 𝑆 we have 

‖𝑦‖∗ ≧ 𝑠𝑢𝑝{(𝑥, 𝑦) · ‖𝑥‖−1: 𝑥 ∈ 𝐵} ≧ sup{(𝑥, 𝑦): 𝑥 ∈ 𝐵} ≧ cos𝛽 > (1 − 𝛽2)−
1
2. 

Therefore for every 𝑥 ∈ 𝑆 wc have 

‖𝑥‖ ≦ (1 − 𝛽2)−
1
2,                                                                 (27) 

Now, let 𝑧 ∈ 𝑆 and let 𝑥 ∈ 𝐵 be such that 𝜌〈𝑧, 𝑥〉 ≦ 𝛽. Let 𝑦 ∈ 𝑆 be such that 

‖𝑥‖ = (𝑥, 𝑦)(‖𝑦‖∗)−1. 
Thus we have for every 𝑧 ∈ 𝑆: 

‖𝑧‖ ≧ (𝑧, 𝑦)(‖𝑦‖∗)−1 = ‖𝑥‖ + (𝑧 − 𝑥, 𝑦)(‖𝑦‖∗)−1 ≧ (1 + 𝜂)−1 − ‖𝑧 − 𝑥 ‖2(1 − 𝛽
2)−

1
2

≧ 1 − 𝜂 − 2𝛽(1 − 𝛽2)−
1
2 > 1 − 𝜂 − 3𝛽.                                                         (28) 

Clearly, (27) and (28) imply 

𝑑(𝐸, 𝑙2
𝑑𝑖𝑚𝐸) < (1 − 𝛽2)−

1
2(1 − 𝜂 − 𝛽)−1 ≦ (1 + 𝛽)(1 + 𝜂 + 3𝛽)

= 1 + 𝜂 + 4𝛽 + 𝛽(𝜂 + 3𝛽) ≦ 1 + 2𝜂 + 5𝛽. 
Lemma (3.2.4)[133]: Let 𝛽 = 10−3𝜀. If the set  

𝐵 = {𝑥 ∈ 𝑆𝐸: 𝛼𝐸(𝑥) > (1 − 6
2𝛽2)

1
2} 

is a 𝛽-net in 𝑆𝐸, then E is ε-euclidean. 

Proof. Let 𝑧 ∈ 𝐵 be such that 

‖𝑧‖ = sup{‖𝑥‖: 𝑥 ∈ 𝐵}. 
Take an arbitrary 𝑥 ∈ 𝐵. Clearly there exists a sequence 𝑥0, … , 𝑥𝑝 ∈ 𝐵 such that  

𝑥0 = ±𝑧, 𝑥𝑝 = 𝑥, 𝑝 ≦
1

2
𝜋𝛽−1, 

𝜌〈𝑥𝑖 , 𝑥𝑖+1〉 ≦ 3𝛽   𝑓𝑜𝑟   𝑖 = 0,…𝑝 − 1. 
Since 

𝜌(𝑥𝑖 , 𝑇𝑥𝑖) ≦ 2(1 − 𝛼
2(𝑥𝑖))

1
2 < 12𝛽, 

We obtain for 𝑖 = 0, . . . , 𝑝 − 1 

𝜌(𝑥𝑖+1, 𝑇𝑥𝑖) ≦ 𝜌(𝑥𝑖 + 𝑥𝑖) + 𝜌(𝑥, 𝑇𝑥𝑖) < 15𝛽. 
Hence 

‖𝑥𝑖+1‖ ≧ (𝑥𝑖+1, 𝑇𝑥𝑖)(‖𝑇𝑥𝑖‖
∗)−1 ≧ (1 − 152𝛽2)

1
2‖𝑥𝑖‖𝛼

−1(𝑥𝑖) ≧ (1 − 15
2𝛽2)

1
2‖𝑥𝑖‖. 

Therefore (we use inequality 𝑒𝑡 ≦ 1 + 2𝑡 for 0 ≦ 𝑡 ≦ 1)  

‖𝑥‖ ≧ (1 − 152𝛽2)
1
2
𝑝‖𝑧‖ ≧ exp(− 225 𝛽) ‖𝑧‖ ≧ (1 + 450 𝛽)−1‖𝑧‖. 

We take now 𝜂 =  450𝛽 and apply Lemma (3.2.4). 

We have the following trivial lemma.  
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Lemma (3.2.5)[133]: Let 𝑥 ∈ 𝐸1 ⊂ 𝐸 and let 𝜋 be the orthoaonal projection from onto 𝐸1. 

Then  

𝑇𝐸1𝑥 = 𝜋(𝑇𝐸𝑥)/‖𝜋(𝑇𝐸𝑥)‖2. 

Consequently 

𝛼𝐸1(𝑥) = 𝛼𝐸(𝑥)/‖𝜋(𝑇𝐸𝑥)‖2. 

If now 

𝐸1 = [𝑥, 𝑦]    𝑤𝑖𝑡ℎ  〈𝑥, 𝑦〉 ∈ 𝛴, 
Then 

𝜋(𝑇𝐸𝑥) = (𝑥, 𝑇𝐸𝑥)𝑥 + (𝑦, 𝑇𝐸𝑥)    𝑦 = 𝛼𝐸(𝑥) · 𝑥 + (𝑦, 𝑇𝐸𝑥) · 𝑦. 
and finally 

𝛼𝑦(𝑥) = 𝛼𝐸(𝑥)(𝛼𝐸
2(𝑥) + (𝑦, 𝑇𝐸𝑥)

2)−
1
2.                                (29) 

Proposition (3.2.6)[133]: Let 𝑑𝑖𝑚 𝐸 = 𝑘 and let 𝛽 = 10−3𝜀. If 
𝜎𝐸(𝐴𝐸) > 1 − 𝜇(𝑘, 𝛽)𝜇(𝑘 − 1, 𝛽), 

then E is e-euclidean.  

Proof. Again we use uniqueness of 𝜎 and obtain  

𝜎(𝐴) = ∫𝜆𝑥(𝐴𝑥)𝑑𝜆(𝑥)                                            (30) 

where 𝐴𝑥 = {𝑦 ∈ 𝑆𝑥: 〈𝑥, 𝑦〉 ∈ 𝐴}. Put 𝐵 = {𝑥 ∈ 𝑆: 𝜆𝑥(𝐴𝑥) > 1 − 𝜇(𝑘 − 1,/𝛽}. us notice 

that 

𝐴𝑥 is a 𝛽-net in 𝑆𝑥 for every 𝑥 ∈ 𝐵. 

From (30) it follows that 

𝜆(𝐵) > 1 − 𝜇(𝑘, 𝛽) 
and thus B is a 𝛽-net in S. 

To apply Lemma (3.2.4) we should show that  

𝛼(𝑥) > (1 − 62𝛽2)
1
2 for every 𝑥 ∈ 𝐵.                                     (31) 

Let 𝑥 ∈ 𝐵, let 𝑧 ∈ 𝑆𝑥 be arbitrary, and let 𝑦 ∈ 𝐴𝑥 be such that 𝜌(𝑦, 𝑧) < 𝛽, hence ‖𝑦 −

𝑧‖2 < 𝛽. Assume 𝛽 <
1

4
; it follows easily from (29) that  

(𝑦, 𝑇𝑥) < 2𝛽, 𝛼(𝑥) = (𝑥, 𝑇𝑥) >
1

2
 and 

(𝑧, 𝑇𝑥) = (𝑧 −  𝑦, 𝑇𝑥) + (𝑦, 𝑇𝑥) ≦ ‖𝑧 −  𝑦‖2 + 2𝛽 < 3𝛽 < 6𝛽 · 𝛼(𝑥). 
Hence, by (29), 

𝛼𝑧(𝑥) > (1 − 6
2𝛽2)

1
2  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦   𝑧 ∈ 𝑆𝑥. 

This, by (32), gives us (31) and concludes the proof of Proposition (3.2.6).  

Proposition (3.2.7)[133]: Inequality (22) holds. 

Proof. It is clear that 𝜆𝑥(𝐴𝑥) depends only on 𝛼(𝑥); we have namely  

𝛼𝑦(𝑥) = 𝛼(𝑥)(𝛼
2(𝑥) + sin2 𝜃(1 − 𝛼2(𝑥))

−
1
2 

where 𝜃 is the angle between y and the hyperplane 𝐹𝑥
⊥ ∩ 𝐹𝑇𝑥

⊥ . Figures 1 and 2 should 

clarify the situation.  

Thus 𝛼𝑦(𝑥) > (1 − 𝛽
2)
1

2 is satisfied provided  

(1 + sin2 𝜃 𝑡𝑔2𝜙)−1 > 1 − 𝛽2.                                   (32) 
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Fig. (1)[133]: 

 
Fig. (2)[133]: 

(Here 𝜙 = 𝜙(𝑥) =  𝑎𝑟𝑐 cos 𝛼(𝑥)). Clearly, (32) is satisfied if 

|𝜃| < |𝛽 𝑐𝑡𝑔 𝜙|. 
From this and (26) it follows that (for 𝑚 ≧ 6) 

𝜆𝑥(𝐴𝑥) ≧ 𝑣(𝑚 − 1, |𝛽 𝑐𝑡𝑔 𝜙|) ≧ 1 − 2𝛽
−1𝑚

1
2|𝑡𝑔 𝜙|.                (33) 

By (20) we have ‖𝑇𝑥‖𝐹
∗ ≧ ‖𝑇𝑥‖2 = 1 and hence  

|𝑐𝑡𝑔 𝜙(𝑥)| > cos𝜙 (𝑥) = 𝛼𝐹(𝑥) = (𝑥, 𝑇𝑥) ≥ (𝑥, 𝑇𝑥)(‖𝑇𝑥‖𝐹
∗ )−1 = ‖𝑥‖

≧
1

2
‖𝑥‖∞.                                                                                                                (34) 

This gives (21) and, consequently, (22). 

This, together with (23), completes the proof of Dvoretzky's Theorem. 

A. An estimate for 𝑛(𝑘, 𝜀). It is natural to ask what is the best possible value for 

𝑛(𝑘, 𝜀) in Theorem (3.2.1). This problem has also been discussed in [134] and [127]. The 

following upper estimates have been obtained there.  

ln[1] , 𝑛(𝑘, 𝜀) ≦ exp(𝐶 · 𝜀−2𝑘2 ln2 𝑘), 
ln[6] , 𝑛(𝑘, 𝜀) ≦ exp(𝐶 · 𝜀−2𝑘 ln 𝜀−1). 

Here C is a constant. 

Notice that the exponential order of magnitude of these estimates cannot be improved. For, 

taking 𝐻 = 𝑙∞
𝑛 , we obtain the following lower estimate (see [127]): 

𝑛(𝑘, 𝜀) ≧ exp(𝑐 · 𝑘 𝑙𝑛 𝜀−1). 
Examining our proof, one obtains an estimate of essentially worse order of magnitude. We 

can, however, improve it by estimating more carefully the integral in (19).  

By (26), (33), and (34) we obtain namely 

𝜆𝑥(𝐴𝑥) ≧ 1 − 2exp (−
1

16
𝛽2‖𝑥‖∞

2 𝑚). 

Therefore, by (19),  

𝜎𝐹(𝐴𝐹) ≧ 1 − 2∫ exp ( −
1

16𝛽2
‖𝑥‖∞

2  𝑚)𝑑𝜆(𝑥).
𝑆𝐹

                     (35) 
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Thus we want to estimate the integral 

𝐿𝑚 = ∫ exp (−
1

16𝛽2
‖𝑥‖∞

2 𝑚)𝑑𝜆(𝑥)
𝑆𝑚

, 

where 𝑆𝑚 is the euclidean unit sphere in 𝑅𝑚 and 𝜆 = 𝜆𝑚 is the normalized Lebesgue 

measure on 𝑆𝑚. 

In the remarkable Theorem 3(B) in [134], it is proved that for every 𝜀 > 0 

lim
𝑛→∞

𝜆𝑚 {𝑥: (
𝑚

2 log𝑚 − (1 + 𝜀) log log𝑚
)

1
2
≦ ‖𝑥‖∞

−1 ≦ (
𝑚

2 log𝑚 − (1 + 𝜀) log log𝑚
)

1
2
}

= 1. 
This means that values of the function ‖𝑥‖∞

−1 defined on 𝑆𝑚 are assymptotically 

concentrated around the values (
𝑚

2 log𝑚
)

1

2
 or, more precisely, around  

(
𝑚

2 log𝑚 − log log𝑚
)

1
2
. 

In [135], Figiel proves a related result: For every function h of the form ℎ(𝑡) = 𝑡−𝛼 , 𝛼 >
0, we have 

∫ ℎ(‖𝑥‖)𝑑𝜆(𝑥)
𝑆𝑚

≦ ℎ((
𝑚

2 log𝑚
)

1
2
)(1 + 𝑂 ((log𝑚)−

1
2))           (36) 

It seems thus that the same relation should hold for all h in a wide class of functions.  

By a modification of Figiel's argument we shall strengthen his above-mentioned result. In 

the following lemma we actually prove more than is needed in applications to Dvoretzky's 

Theorem. We think, however, that the study of the integralgeometric properties of the 

function ‖𝑥‖ is of separate interest.  

Lemma (3.2.8)[133]: Let 𝑘 = 𝑘𝑚 = 𝑜(𝑚) and let  

𝐽𝑚 = ∫ ‖𝑥‖∞
−2𝑘𝑑𝜆(𝑥)

𝑆𝑚
. 

(i) If 𝜀 > 0 and 𝑘 ≦ 𝑚
𝜀

4, then 

𝐽𝑚 ≦ (
𝑚

2(1 − 𝑎) log𝑚
)
𝑘

(1 + 𝑜 (2−𝑚
𝜀
4)) ; 

(ii)  if 𝑘 = 𝑎𝑚(log𝑚)
1

2, where {𝑎𝑚} is bounded, then 

𝐽𝑚 ≦ (
𝑚

2 log𝑚
)
𝑘

(1 + 𝑎𝑚√𝜋 + 𝑜(𝛾
𝑚)), 

where 𝛾 is a universal constant less than 1. 

Proof. We consider a function f defined on 𝑅𝑚 by the formula 

𝑓(𝑥) = 𝜋−
𝑚
2 exp(−‖𝑥‖2

2) ‖𝑥‖∞
−2𝑘; 

and we put 

𝐼𝑚 = ∫ 𝑓(𝑥)𝑑𝑥
𝑅𝑚

. 

Let 𝑆(𝑡) = {𝑥 ∈ 𝑅𝑚: ‖𝑥‖2 = 𝑡} and let us denote by 𝑑𝐻𝑡, the (𝑚 − 1)-dimensional 

Hausdorff measure induced by dx on 𝑆(𝑡). We have 
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𝐼𝑚 = ∫ 𝑑𝑡
∞

0

∫ 𝜋−
𝑚
2 exp(−𝑡2) ‖𝑥‖∞

−2𝑘𝑑ℎ𝑡(𝑥)
𝑆(𝑡)

= ∫ 𝑒𝑥𝑝(−𝑡2)𝑡−2𝑘𝑡𝑚−1
∞

0

 ∫ ‖𝑥‖∞
−2𝑘𝑑𝐻1(𝑥)

𝑆(𝑡)

. 

We have 𝑑𝐻𝑡 = 2𝜋
𝑚

2 = (Γ(
𝑚

2
))
−1

𝑑𝜆 and therefore  

𝐼𝑚 = (Γ (
𝑚

2
))

−1

· 𝐽𝑚 · ∫ 2𝑡𝑚−2𝑘−1 exp(−𝑡2) 𝑑𝑡
∞

0

 = Γ(
1

2
𝑚 − 𝑘)/Γ (

1

2
𝑚) · 𝐽𝑚. 

Hence  

𝐽𝑚 =
Γ(
1
2
𝑚)

Γ (
1
2
𝑚 − 𝑘)

· 𝐼𝑚 ≦ 𝐼𝑚 · (
𝑚

2
)
𝑘

.                                        (37) 

We shall thus estimate 𝐼𝑚. Let 

Ψ(𝑡) = ∫ 𝑓(𝑥)𝑑𝑥
{𝑥:‖𝑥‖∞≦𝑡}

  𝑎𝑛𝑑  

𝜂(𝑡) = 𝜋−
𝑚
2 ∫ exp(−‖𝑥‖2

2) 𝑑𝑥
{𝑥:‖𝑥‖∞≦𝑡}

= ((
2

√𝜋
)∫ 𝑒−𝑢

2
𝑑𝑢

𝑡

0

)

𝑚

. 

 We have Ψ′(𝑡) = 𝑡−2𝑘𝜂′(𝑡). Integrating by parts, we obtain 

𝐼𝑚 = ∫ Ψ′(𝑡)𝑑𝑡
∞

0

= 2𝑘∫ 𝑡−2𝑘−1𝜂(𝑡)𝑑𝑡
∞

0

= 2𝑘∫ 𝑡−2𝑘−1 (
2

√𝜋
∫ 𝑒−𝑢

2
𝑑𝑢

𝑡

0

)

𝑚

𝑑𝑡
∞

0

. 

Let 𝜀 ≧ 0; let 𝐴 = ((1 − 𝜀) log𝑚)
1

2. We split the last integral in the following way: 

2𝑘∫ 𝑡−2𝑘−1 ((
2

√𝜋
)∫ 𝑒−𝑢

2
𝑑𝑢

𝑡

0

)

𝑚

𝑑𝑡
∞

0

= 2𝑘 (∫  
2

0

+∫ +
𝐴

2

∫  
∞

𝐴

). 

We will show that the two first integrals are of lower order of magnitude than the last one, 

which is estimated by 

2𝑘∫  
∞

0

≦ 2𝑘∫ 𝑡−2𝑘−1𝑑𝑡
∞

𝐴

= 𝐴−2𝑘 = ((1 − 𝜀) log𝑚)
−𝑘
. 

Concerning the first integral, put 𝛼 = (
2

√𝜋
)∫ 𝑒−𝑢

2
𝑑𝑢

2

0
< 1. We have clearly for every 𝑡 ∈

〈0,2〉, 

2𝑘∫  
2

0

≦ 𝑒−𝑢
2
𝑑𝑢 ≦ min {(

2

√𝜋
) 𝑡, 𝛼}. 

Let r be a number such that 𝛼𝑟 < √𝜋/2. then 

2𝑘∫  
2

0

≦ 2𝐾(
2

𝜋
1
2

)

2𝑘+1

𝛼𝑚−2𝑘−1 = 𝑂((
2

𝜋
1
2

)

3𝑘

𝛼𝑚−2𝑘−1 = 𝑂(𝛼𝑚−3𝑘(𝑟+1)). 

It is clear that the last number is 𝑜 (𝛼
𝑚

2 (log𝑚)−𝑘) provided 𝑘 = 𝑜(𝑚/ log 𝑙𝑜𝑔𝑚). 

To estimate the second integral, we consider two cases 

(a) 𝜀 > 0. Then 
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2𝑘∫  
𝐴

2

≦ ((
2

√𝜋
)∫ 𝑒−𝑢

2
𝑑𝑢

𝐴

0

)

𝑚

· 2𝑘∫ 𝑡−2𝑘−1𝑑𝑡
∞

2

= 2−2𝑘 (1 − (
2

√𝜋
)∫ 𝑒−𝑢

2
𝑑𝑢

∞

𝐴

)

𝑚

≦ 2−2𝑘 [1 − (
2

√𝜋
)((1 −

𝜀

2
)

1
2
− (1 − 𝜀)

1
2) (log𝑚)

1
2𝑒
−(1−

𝜀
2
)log
]

m

≦ 22𝑘 (1 −
𝜀

3(log𝑚)
1
2

· 𝑚
𝜀
2 · 𝑚−1)

𝑚

≦ 2−2𝑘 · 2
−(
𝜀
3
)(log𝑚)

1
2𝑚

𝜀
2
. 

It is clear that if 𝑘 ≦ 𝑚
𝜀

4, then the last number is 𝑜 (2−𝑚
𝜀
4 · (log𝑚)−𝑘). 

(b) 𝜀 = 0. We use a trick due to Figiel: 

2𝑘∫  
𝐴

2

= 2𝑘 (
𝑥

√𝜋2
) (𝑚 + 1)−1∫ 𝑡−2𝑘−1𝑒𝑡

2
·
𝑑

𝑑𝑡
((
2

√𝜋
)∫ 𝑒−𝑢

2
𝑑𝑢

𝑡

0

)

𝑚+1

𝑑𝑡
𝐴

2

≦ √𝑥𝑘(𝑚 + 1)−1 sup{𝑡−2𝑘−1𝑒𝑡
2
: 2 ≦ 𝑡 ≦ 𝐴} 

Since the function 𝜙(𝑡) = 𝑡−2𝑘−1𝑒𝑡
2
 is convex, the last supremum is attained either for 

𝑡 = 2 or for 𝑡 = 𝐴. We have (for 𝑘 > 10), 

√𝜋𝑘(𝑚 + 1)−1𝜙(2) = (√𝜋𝑘𝑒4)2−2𝑘−1 · (𝑚 + 1)−1 ≦ 𝑚−1  

√𝜋𝑘(𝑚 + 1)−1𝜙(𝐴) = √𝜋𝑘 · log𝑚
−
1
2 · ((

𝑚

𝑚
+ 1) log𝑚)

−𝑘

≦ 𝑎𝑚√𝜋(log𝑚)
−𝑘 . 

It is clear that the second number is bigger. 

These estimates, together with (37), prove respectively (i) and (ii) of Lemma (3.2.8).  

To estimate now our 𝐿𝑚, we use the following trivial inequality, valid for all 𝑘 > 0 and 

for all 𝑥 > 0: 

𝑒−𝑥
2
≦ 𝑘𝑘𝑒−𝑘𝑥−2𝑘 . 

(To prove it, we find that maximum of the function 𝑥2𝑘𝑒^ − 𝑥2 is attained for 𝑥 = 𝑘
1

2. ) 
 Thus we obtain 

𝐿𝑚 ≦ 𝑘
𝑘(16𝑒−1)𝑘𝛽−2𝑘𝑚−𝑘𝐽𝑚 

and, by Lemma (3.2.8)(i), with, 𝜀 =
1

2
,  

𝐿𝑚 ≦ 𝑘
𝑘(16𝑒−1)𝛽−2𝑘(log𝑚)−𝑡 

for every 𝑘 ≦ 𝑚
1

8. 

It is obvious that the right-hand side attains its minimum for 𝑘 = 1/16𝛽2 log𝑚 and then 

we obtain 

𝐿𝑚 ≦ exp(−
1

16𝛽2 𝑙𝑜𝑔𝑚
) = 𝑚

−
1

16𝛽2 . 

By Proposition (3.2.6) and inequality (9'), we obtain 

𝑚 ≧ (𝑘 (
𝛽

4
)
2𝑘

)

−
16
𝛽2

. 

If we now take into consideration Proposition (3.2.6), we obtain finally  
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𝑛(𝑘, 𝜀) ≦ 4 ·  𝑘
−16·

106

𝑡2 · (
4000

𝜀
)
32 ·

106𝑘
𝜀2

exp (𝐶 · 𝜀−2𝑘 ln 𝜀−1). 

This is precisely Milman's estimate. 

The complex case. With the following minor changes, our proof works also in the 

complex case. 

It is easy to check that the proof of the Dvoretzky-Rogers Theorem is valid also in the 

complex case. We can thus work with a complex space F that, considered as a real space, 

is isometric to (𝑅𝑚, ‖ ‖) with ‖ ‖ satisfying (20). We can also assume ‖ ‖ to be uniformly 

smooth. 

For every real subspace E of 𝐹 = 𝑅𝑚 we define 𝑇𝐸 , 𝛼𝐸 , 𝛴𝐸 , 𝜎𝐸 , 𝛼𝑦(𝑥) and finally 𝐴𝐸 

exactly as in the beginning. 

Let 𝑚 > 2𝑘 and let Γ𝑐 be the Grassman manifold of all k-dimensional complex subspaces 

of F. Let 𝛾𝑐 be the unique normalized measure on Γ𝑐 that is invariant under unitary 

transformations. By uniqueness of 𝜎𝐹, we have 

𝜎𝐹(𝐴𝐹) = ∫ 𝜎𝐸(𝐴𝐸)𝑑𝛾𝑐(𝐸)
Γ𝑐

 𝑎𝑛𝑑                                     (38) 

𝜎𝐹(𝐴𝐹) = ∫ 𝜆𝑥(𝐴𝑥)𝑑𝜆(𝑥)
𝑆𝐹

.                                               (39) 

The second formula is nothing but (19) and thus the argument of gives us again the 

inequality (22) (or (23), for better constant). If now  

𝑚 ≧ (4𝑘 (
𝛽

4
)
4𝑘

)

−
16
𝛽2

, 

the previous argument together with Proposition (3.2.6) and (38) ensure us the existence of 

a k-dimensional complex subspace E of F, that is 𝜀-euclidean. But this implies 

immediately that  

𝑑𝑐 (𝐸, 𝑙2
𝑘(𝐶)) < 1 + 𝜀. 

Here we denote 

𝑑𝑐(𝐸, 𝐸
′) = inf{‖𝑇‖‖𝑇−1‖: 𝑇 𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐸 𝑎𝑛𝑑 𝐸′} and  

𝑙2
𝑘(𝑐) = (𝐶𝑘, ‖ ‖2) 

Where 

‖(𝑧𝑖)‖2 = (∑|𝑧𝑖|
2

𝑘

𝑖=1

)

1
2

. 

C. Dvoretzky's Theorem in special cases. We have actually proved the following Theorem. 

Theorem (3.2.9)[133]: Let a norm ‖ ‖ in 𝑅𝑚 satisfy 

‖𝑥‖2 ≧ ‖𝑥‖ ≧ 𝜔(𝑥)    𝑓𝑜𝑟 𝑎𝑙𝑙   𝑥 ∈ 𝑅
𝑚. 

If 

∫ exp(−10−6𝜀2𝜔2(𝑥)𝑚)𝑑𝜆(𝑥)
𝑆𝑚

< 𝑘 (
𝜀

4
· 106)

2𝑘

, 

then there exists a k-dimensional subspace E of 𝑅𝑚 such that (𝐸, ‖ ‖) is 𝜀- euclidean. 

Thus, if we take in particular 

𝜔(𝑥) = ‖𝑥‖ = ‖𝑥‖𝑝, 

with 𝑝 > 2, we obtain  
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∫ exp(− 10−6𝜀2𝜔2(𝑥)𝑚)  𝑑𝜆(𝑥) 
𝑆𝑚

≦ exp (− 10−6𝜀2𝑚
2
𝑝) 

and therefore the numbers 𝑚𝑝(𝑘, 𝜀) = inf{𝑚: 𝑙𝑝
𝑚 ⊃ 𝐸, 𝑑(𝐸, 𝑙2

𝑘) < 1 + 𝜀} may be 

estimated by 

𝑚𝑝(𝑘, 𝜀) ≦ (10
7𝑘𝜀−2 log 𝜀−1)

𝑝
2 . 

Another interesting case is that of a distorted norm in 𝐼2
𝑚. Let namely ‖ ‖ be itself a 

(𝐾 − 1)-euclidean norm, that is, ‖𝑥‖ ≧ 𝜔(𝑥) = 𝐾−1‖𝑥‖2. We obtain then  

∫ exp(10−6𝜀2𝜔2(𝑥)𝑚)  𝑑𝜆(𝑥)
𝑆𝑚

≦ exp(− 10−6𝜀2𝐾−2𝑚) 

and 𝑚𝑘(𝑘, 𝜀) = inf {𝑚: every m-dimensional (𝐾 − 1)-euclidean space contains a k-

dimensional 𝜀-euclidean subspace}≦ 10𝜀−2 log 𝜀−1𝐾2 · 𝑘, that is, dependence is linear 

(this has been pointed out in [127]). 

The infinite dimensional version. It is clear that Dvoretzky's Theorem is not valid in 

the infinite dimensional case. In fact there exist Banach spaces that do not contain 

subspaces isomorphic to 𝑙2. It is natural therefore to consider only spaces that are 

isomorphic to 𝑙2. Then we face the following problem which has been discussed in [136], 

[137], [139]. 

A norm ‖ ‖ in 𝑙𝑝 is called distorted if there exists an 𝜀 > 0 such that the norms ‖ ‖ and 

‖ ‖𝑝 are not (1 + 𝜀)-equivalent on any ∞-dimensional subspace of 𝐼𝑝.   
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Chapter 4 

𝑳𝒑 𝒑-Harmonic 1-Forms 

 

We show that as consequences, the corresponding Liouville type theorems for 

harmonic functions with finite 𝐿𝑝 energy on minimal hypersurfaces in a Riemannian 

manifold are obtained. We show that if there exists point 𝑞 ∈ 𝑀 such that 𝐾𝑁(𝑞) ≠ 0, 

assume further that the first eigenvalue of the Laplace-Beltrami operator of 𝑀 is bounded 

by a suitable constant. We obtain that the dimension of 𝐻1,𝑝(𝑀) is finite, that is, 

dim  𝐻1,𝑝(𝑀)  <  ∞. In particular, M has finitely many ends. These results can be 

regarded as an extension of Li–Wang (2002). 

Section (4.1): First Eeigenvalue of a Stable Minimal Hypersurface 

Hodge theory plays an important role in the topology of compact Riemannian 

manifolds. Unfortunately, the Hodge theory does not work anymore in noncompact 

manifolds. However, the 𝐿2-Hodge theory works well in  noncompact cases [142], [153]. 

In this direction, there are various results for 𝐿2 harmonic1-forms on stable minimal 

hypersurfaces. Recall that a minimal hypersurface in a Riemannian manifold is called 

stable if the second variation of its volume is always nonnegative for any normal variation 

with compact support. More precisely, an n-dimensional minimal hypersurface 𝑀 in a 

Riemannian manifold 𝑁 is called stable if it holds that, for any compactly supported 

Lipschitz function 𝑓 on 𝑀, 

∫|∇𝑓|2
 

𝑀

− (|𝐴|2 + 𝑅𝑖𝑐̅̅ ̅̅ (𝑣, 𝑣))𝑓2𝑑𝑣 ≥ 0; 

where 𝑣 is the unit normal vector of 𝑀,𝑅𝑖𝑐̅̅ ̅̅ (𝑣, 𝑣) denotes the Ricci curvature of 𝑁 in the𝑣 

direction, |𝐴|2 is the square length of the second fundamental form 𝐴, and 𝑑𝑣 is the 

volume form for the induced metric on 𝑀. 

Using the nonexistence of 𝐿2 harmonic 1-forms, Palmer [170] proved that if there exists a 

codimension-one cycle on a complete minimal hypersurface 𝑀 in Euclidean space, which 

does not separate 𝑀,𝑀 is unstable. Using Bochner’s vanishing technique, Miyaoka [163] 

showed that a complete noncompact stable minimal hypersurface in a nonnegatively 

curved manifold has no nontrivial 𝐿2harmonic 1-forms. Pigola, Rigoli, and Setti [172] 

gave general Liouville type results and the corresponding vanishing theorems on the 𝐿2 co 

homology of stable minimal hypersurfaces. See [146], [173] for a survey in this area. 

While the 𝐿2 theory is quite well understood, in the case 𝑝 ≠ 2, the 𝐿𝑝 theory is less 

developed. See [176] for general 𝐿𝑝 theory of differential forms on a manifold. 

We estimate the smallest spectral value of the Laplace operator on a complete 

noncompact stable sminimal hypersurface in a Riemannian manifold under the assumption 

on 𝐿𝑝 norm of the second fundamental form. Secondly, we obtain various vanishing 

theorems for 𝐿𝑝 harmonic 1-forms on minimal hypersurfaces. 

For 𝑀 be a complete noncompact Riemannian manifold and let Ω be a compact 

domain in 𝑀. Let 𝜆1(Ω) > 0 denote the first eigenvalue of the Dirichlet boundary value 

problem 

{
∆𝑓 + 𝜆𝑓 = 0        𝑖𝑛Ω ,
𝑓 = 0                     𝑜𝑛 𝜕Ω,

 

where ∆ denotes the Laplace operator on 𝑀. Then the first eigenvalue 𝜆1(𝑀) is defined by 

𝜆1(𝑀) = inf
Ω
𝜆1(Ω), 
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where the infimum is taken over all compact domains in 𝑀. Cheung and Leung in [143] 

gave the first eigenvalue estimate for an n-dimensional complete noncompact submanifold 

𝑀 with the norm of its mean curvature vector bounded in the hyperbolic space. In 

particular, they proved that if 𝑀 is minimal, the first eigenvalue 𝜆1(𝑀)satisfies 
1

4
(𝑛 − 1)2 ≤ 𝜆1(𝑀). 

Note that this inequality is sharp because equality holds if M is totally geodesic 

[167]. This result was extended to an n-dimensional complete noncompact submanifold 

with the norm of its mean curvature vector bounded in a complete simply connected 

Riemannian manifold with sectional curvature bounded above by a negative constant. We 

have the following theorem. 

Theorem [143], [179]. Let 𝑁 be an n-dimensional complete simply connected Riemannian 

manifold with sectional curvature 𝐾𝑁 satisfying 𝐾𝑁 ≤ 𝑎
2 < 0 for a positive constant 𝑎 >

0. Let 𝑀 be a an m-dimensional complete noncompact submanifold with bounded mean 

curvature vector 𝐻 in 𝑁 satisfying |𝐻| ≤ 𝑏 < (𝑚 − 1)𝑎. Then 

   
1

4
[(𝑚 − 1) − 𝑏]2 𝜆1(𝑀).                           (1) 

  On the other hand, Candel [144] obtained an upper bound for the bottom of the spectrum 

of a complete simply connected stable minimal surface in 3-dimensional hyperbolic space. 

With finite 𝐿2 norm of the second fundamental form, one may estimate an upper bound for 

the bottom of the spectrum of a stableminimal hypersurface in a Riemannian manifold 

with pinched negative sectional curvature [154], [178]. We estimate the bottom of the 

spectrum of the Laplace operator on stable minimal hypersurfaces under the assumption 

on the 𝐿𝑝 norm of the second fundamental form. Indeed, we prove the following. 

Let 𝑁 be an (𝑛 + 1)dimensional complete simply connected Riemannian manifold 

with sectional curvature satisfying 𝐾1 ≤ 𝐾𝑁 ≤ 𝐾2, where 𝐾1, 𝐾2 are constants and 𝐾1 ≤
𝐾2 < 0. Let M be a complete stable non-totally geodesic minimal hypersurface in 𝑁. 

Assume that, for 

 1 − √2 𝑛⁄ < 𝑝 < 1 + √2 𝑛⁄ , 

lim
𝑅→∞

𝑅−2 ∫ |𝐴|2𝑝
 

𝐵(𝑅)

= 0, 

where 𝐵(𝑅)is a geodesic ball of radius 𝑅 on 𝑀. If  |∇𝐾|2 = ∑ 𝐾𝑖 𝑗𝑘𝑙𝐼𝑚
2

𝑖;𝑗;𝑘;𝑙;𝑚   ≤ 𝐾3
2|𝐴|2 

for some constant 𝐾3 ≥ 0, we have 

−𝐾2
(𝑛 − 1)2

4
≤ 𝜆1(𝑀) ≤

𝑛𝑝2(2𝐾3 − 𝑛(𝐾1 + 𝐾2))

2 − 𝑛(𝑝 − 1)2
. 

We proved that if 𝑀 is an n-dimensional complete stable minimal hypersurface in 

hyperbolic space with𝜆1(𝑀) > (2𝑛 − 1)(𝑛 − 1), there is no nontrivial 𝐿2 harmonic 1-

form on 𝑀. This result was generalized [154] to a complete stable minimal hypersurface in 

a Riemannian manifold with sectional curvature bounded below by a nonpositive constant. 

We prove an extended result for 𝐿𝑝 harmonic 1-forms on a complete noncompact stable 

minimal hypersurface as follows. 

Then there is no nontrivial 𝐿2𝑝 harmonic 1-form on 𝑀. Yau  proved that there are 

no nonconstant 𝐿𝑝 harmonic functions on a complete Riemannian manifold for 1 < 𝑝 <
∞. Li and Schoen [163] proved that Yau’s result is still true for 𝐿𝑝 harmonic functions on 

a complete manifold of 
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Non negative Ricci curvature when 0 <  𝑝 < ∞. In the case of harmonic forms, see [156], 

[157] announced nonexistence of nontrivial 𝐿𝑝 harmonic forms .(1 ≤ 𝑝 < ∞) on complete 

Riemannian and Kählerian manifolds of nonnegative curvature. See also [149], [150], 

[151], [164], [165] for Liouville type theorems for harmonic functions on a complete 

Riemannian manifold. The Liouville property holds also for harmonic functions on 

minimal hypersurfaces in a Riemannian manifold. For instance, Schoen and Yau proved 

the Liouville type theorem on minimal hypersurfaces as follows. 

Theorem (4.1.1)[141]: [13]. Let 𝑀 be a complete noncompact stable minimal 

hypersurface in a Riemannian manifold with nonnegative sectional curvature. If 𝑓 is a 

harmonic function on 𝑀 with finite 𝐿2 energy, 𝑓 is constant. 

Recall that a function 𝑓 on a Riemannian manifold M has finite 𝐿𝑝 energy if |∇𝑓| ∈
𝐿𝑝(𝑀). As an application of our theorem, we immediately obtain the following, which is a 

generalization of Schoen and Yau’s result (see Corollary (4.1.17)). 

Theorem (4.1.2)[141]: Let 𝑀 be a complete noncompact stable minimal hypersurface in a 

Riemannian manifold with nonnegative sectional curvature with 𝜆1(𝑀)  > 0. Then there is 

no nontrivial harmonic function on 𝑀 with finite 𝐿𝑝 energy for 0 < 𝑝 < 𝑛 (𝑛 − 1)⁄ +

√2𝑛. For 𝑛 ≥ 3, it is well known [2] that an n-dimensional complete stable minimal 

hypersurface M in Euclidean space cannot have more than one end. 

This topological result was generalized to minimal hypersurfaces with finite index in 

Euclidean space and stable minimal hypersurfaces in a nonnegatively curved manifold by 

[1], [166]. If we assume that 𝑀 has sufficiently small total scalar curvature instead of 

assuming that 𝑀 is stable, we can also have the same conclusion [30], [34]. See also [171] 

for more general results related with 𝐿𝑝 norm of the second fundamental form. In the same 

spirit, Yun [2002] proved that if 𝑀 ⊂ ℝ𝑛+1 is a complete minimal hypersurface with 

sufficiently small total scalar curvature, there is no nontrivial 𝐿2 harmonic 1-form on 𝑀. 

Yun’s result was generalized [154] to a complete noncompact stable minimal hypersurface 

in a complete Riemannian manifold with sectional curvature bounded below by a 

nonpositive constant. The corresponding vanishing theorems for 𝐿𝑝 harmonic 1-forms are 

obtained. 

     One crucial step in the proofs of our theorems is to obtain an inequality of Simons’ type 

for |𝜙|𝑝 rather than |𝜙|, where 𝜙 is a geometric quantity which we want to analyze. This 

kind of inequalities has been used in [152], [155], [180]. Equipped with this Simons’ type 

inequality, we extend the original Bochner technique to our cases. 

Let 𝑀 be an n-dimensional manifold immersed in an (𝑛 + 1)-dimensional 

Riemannian manifold 𝑁. We choose a local vector field of orthonormal frames 

𝑒1; … , 𝑒𝑛+1in 𝑁 such that the vectors 𝑒1; … , 𝑒𝑛 are tangent to 𝑀 and the vector 𝑒𝑛+1 is 

normal to 𝑀. With respect to this frame field of 𝑁, let 𝐾𝑖 𝑗𝑘𝑙 be a curvature tensor of 𝑁. 

We denote by 𝐾𝑖𝑗𝑘𝑙:𝑚 the covariant derivative of 𝐾𝑖𝑗𝑘𝑙 . We follow the notation of [175]. 

Theorem (4.1.3)[141]: Let 𝑁 be an (𝑛 + 1)-dimensional complete simply connected 

Riemannian manifold with sectional curvature satisfying 𝐾1 ≤ 𝐾𝑁 ≤ 𝐾2; where 𝐾1, 𝐾2are 

constants and 𝐾1 ≤ 𝐾2 < 0. Let 𝑀 be a complete stable non-totally geodesic minimal 

hypersurface in 𝑁. Assume that, for 1 − √2 𝑛⁄ < 𝑝 < 1 + √2 𝑛⁄  

lim
𝑅→∞

𝑅−2 ∫ |𝐴|2𝑝
 

𝐵(𝑅)

= 0. 
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where 𝐵(𝑅) is a geodesic ball of radius 𝑅 on 𝑀. If  |∇𝐾|2 = ∑ 𝐾𝑖 𝑗𝑘𝑙;𝐼𝑚
2

𝑖;𝑗;𝑘;𝑙;𝑚   ≤ 𝐾3
2|𝐴|2 

for some constant𝐾3 ≥ 0, we have 

𝐾2
(𝑛 − 1)2

4
≤ 𝜆1(𝑀) ≤

𝑛𝑝2(2𝐾3 − 𝑛(𝐾1 + 𝐾2))

2 − 𝑛(𝑝 − 1)2
. 

Proof. As mentioned in the introduction, one sees that the lower bound of𝜆1(𝑀) is given 

as −𝐾2(𝑛 − 1)
2/4 from inequality (1) [143], [179]. Namely, the first eigenvalue of an n-

dimensional minimal hypersurface in acomplete simply connected Riemannian manifold 

with sectional curvature bounded above by a negative constant 𝐾2 is bounded below by 

−𝐾2(𝑛 − 1)
2/4. Therefore, in the rest of the proof, we shall find the upper bound of the 

first eigenvalue 𝜆1(𝑀) 
By [175], we have 

|𝐴|∆|𝐴|2𝐾3|𝐴|
2 + (𝐾2 − 𝐾1)|𝐴|

2 + |𝐴|4 ≥∑ℎ𝑖𝑗𝑘
2 − |∇|𝐴||

2
 

at all points where|𝐴| ≠ 0. Because 𝐾2 − 𝐾1 ≥ 0, this inequality implies 

|𝐴|∆|𝐴|2𝐾3|𝐴|
2 − 𝑛𝐾2|𝐴|

2 + |𝐴|4 ≥∑ℎ𝑖𝑗𝑘
2 − |∇|𝐴||

2
= |∇𝐴|2 − |∇|𝐴||

2
. 

Applying the Kato-type inequality 

|∇𝐴|2 − |∇|𝐴||
2
≥
2

𝑛
|∇|𝐴||

2
, 

we get 

|𝐴|∆|𝐴| + (2𝐾3 − 𝑛𝐾2)|𝐴|
2 + |𝐴|4 ≥ −

2

𝑛
|∇|𝐴||

2
. 

 For a positive number 𝑝 > 0, we have 

|𝐴|𝑝∆|𝐴|𝑝 = |𝐴|𝑝𝑑𝑖𝑣(∇|𝐴|𝑝) 
 

= |𝐴|𝑝𝑑𝑖𝑣(p|𝐴|𝑝−1∇|𝐴|) 

= 𝑝(𝑝 − 1)|𝐴|2𝑝−2|∇|𝐴||
2
+ 𝑝|𝐴|2𝑝−1∆|𝐴| 

=
𝑝 − 1

𝑝
|∇|𝐴|𝑝|2 + p|𝐴|2𝑝−2|𝐴|∆|𝐴|. 

It follows from inequality (2) that 

|𝐴|𝑝∆|𝐴|𝑝 ≥
𝑝 − 1

𝑝
|∇|𝐴|𝑝|2 +

2𝑝

𝑛
|𝐴|2𝑝−2|∇|𝐴||

2
− 𝑝|𝐴|2𝑝+2 − 𝑝(2𝐾3 − 𝑛𝐾2)|𝐴|

2𝑝 

=
𝑝 − 1

𝑝
|∇|𝐴|𝑝|2 +

2

𝑛𝑝
|∇|𝐴|𝑝|2 − 𝑝|𝐴|2𝑝+2 − 𝑝(2𝐾3 − 𝑛𝐾2)|𝐴|

2𝑝.     (2) 

Thus 

|𝐴|𝑝∆|𝐴|𝑝 + 𝑝(2𝐾3 − 𝑛𝐾2)|𝐴|
2𝑝 + 𝑝|𝐴|2𝑝+2 ≥ (1 −

𝑛 − 2

𝑛𝑝
) |∇|𝐴|𝑝|2. 

Choose a Lipschitz function 𝑓 with compact support in a geodesic ball 𝐵(𝑅) of radius 𝑅 

centered at a point 𝑥 ∈  𝑀. Multiplying both sides by 𝑓2 and integrating over 𝐵(𝑅) we 

obtain 

∫ 𝑓2
 

𝐵(𝑅)

|𝐴|𝑝∆|𝐴|𝑝 + 𝑝(2𝐾3 − 𝑛𝐾2) ∫ 𝑓2
 

𝐵(𝑅)

|𝐴|2𝑝 + ∫ 𝑓2
 

𝐵(𝑅)

|𝐴|2𝑝+2

≥ (1 −
𝑛 − 2

𝑛𝑝
) ∫ 𝑓2

 

𝐵(𝑅)

|∇|𝐴|𝑝|2. 
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The divergence theorem yields 

∫ 𝑓2
 

𝐵(𝑅)

|𝐴|𝑝∆|𝐴|𝑝 = ∫ 𝑑𝑖𝑣(𝑓2|𝐴|𝑝∇|𝐴|𝑝)

 

𝐵(𝑅)

− ∫ 𝑓2
 

𝐵(𝑅)

|∇|𝐴|𝑝|2 − 2 ∫ 𝑓

 

𝐵(𝑅)

|𝐴|𝑝〈∇𝑓, ∇|𝐴|𝑝〉 

= − ∫ 𝑓2
 

𝐵(𝑅)

|∇|𝐴|𝑝|2 − 2 ∫ 𝑓

 

𝐵(𝑅)

|𝐴|𝑝〈∇𝑓, ∇|𝐴|𝑝〉. 

Therefore 

(1 −
𝑛 − 2

𝑛𝑝
) ∫ 𝑓2

 

𝐵(𝑅)

|∇|𝐴|𝑝|2 ≤ 𝑝(2𝐾3 − 𝑛𝐾2) ∫ 𝑓2
 

𝐵(𝑅)

|𝐴|2𝑝 + 𝑝 ∫ 𝑓2
 

𝐵(𝑅)

|𝐴|2𝑝+2 

− ∫ 𝑓2
 

𝐵(𝑅)

|∇|𝐴|𝑝|2 − 2 ∫ 𝑓

 

𝐵(𝑅)

|𝐴|𝑝〈∇𝑓, ∇|𝐴|𝑝〉                      (3) 

The stability of M implies that 

∫ |∇𝑓|2
 

𝐵(𝑅)

|𝐴|2 + 𝑅𝑖𝑐̅̅ ̅̅ (𝑒𝑛 + 1)𝑓
2 ≥ 0                                            (4) 

for any compactly supported Lipschitz function 𝑓 on 𝑀. From our assumption on the 

sectional curvature of 𝑁, we see that 

𝑛𝐾1 ≤ 𝑅𝑖𝑐̅̅ ̅̅ (𝑒𝑛+1) = 𝑅𝑛+1,𝑛+1,1+ +⋯+ 𝑅𝑛+1,𝑛+1,𝑛 ≤ 𝑛𝐾2. 
Hence the stability inequality (4) gives 

 ∫|∇𝑓|2
 

𝑀

− (|𝐴|2 + 𝑛𝐾1) 𝑓
2 ≥ 0                                            (5) 

for any compactly supported Lipschitz function 𝑓 on 𝑀. Choose a Lipschitz function 𝑓 

with compact support in a geodesic ball 𝐵(𝑅) ⊂ 𝑀, as before. Replacing 𝑓 by |𝐴|𝑝𝑓 in 

inequality (5), we have 

   ∫|∇|𝐴|𝑝𝑓|2
 

𝑀

− (|𝐴|2𝑝+2𝑓2 + 𝑛𝐾1|𝐴|
2𝑝) 𝑓2 ≥ 0 

Thus 

   ∫ |∇|𝐴|𝑝|2
 

𝐵(𝑅)

𝑓2 + ∫ |∇𝑓|2
 

𝐵(𝑅)

|𝐴|2𝑝 + 2 ∫ 𝑓

 

𝐵(𝑅)

|𝐴|𝑝〈∇𝑓, ∇|𝐴|𝑝〉 

≥ ∫ |𝐴|2𝑝+2𝑓2
 

𝐵(𝑅)

+ 𝑛𝐾1 ∫ |𝐴|2𝑝
 

𝐵(𝑅)

𝑓2.                                            (6) 

Combining the inequalities (3) and (6), we get 

     (1 −
𝑛 − 2

𝑛𝑝
) ∫ 𝑓2

 

𝐵(𝑅)

|∇|𝐴|𝑝| 
2

≤ 𝑝(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2) ∫ 𝑓2
 

𝐵(𝑅)

|𝐴|2𝑝(𝑝 − 1) ∫ 𝑓2
 

𝐵(𝑅)

|∇|𝐴|𝑝|2 

+𝑝 ∫ |∇𝑓|2
 

𝐵(𝑅)

|𝐴|2𝑝 + 2(𝑝 − 1) ∫ 𝑓

 

𝐵(𝑅)

|𝐴|𝑝〈∇𝑓, ∇|𝐴|𝑝〉.                       (7) 
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On the other hand, from the definition of 𝜆1(𝑀) and the domain monotonicity of 

eigenvalues, it follows that 

  𝜆1(𝑀)  ≤ 𝜆1(𝐵(𝑅)) 
∫ |∇𝑓|2
 

𝐵(𝑅)

∫ 𝑓2
 

𝐵(𝑅)

                                            (8) 

for any compactly supported nonconstant Lipschitz function 𝑓 on 𝑀. Substituting |𝐴|𝑝𝑓 

for 𝑓 in inequality (8), we see that 

 𝜆1(𝑀) ∫ 𝑓2
 

𝐵(𝑅)

|𝐴|2𝑝 ≤ ∫ 𝑓2
 

𝐵(𝑅)

|∇(|𝐴|𝑝𝑓)|2 

= +𝑝 ∫ 𝑓2|∇|𝐴|𝑝|2
 

𝐵(𝑅)

+ ∫ |𝐴|2𝑝|∇𝑓|2
 

𝐵(𝑅)

+ 2 ∫ 𝑓

 

𝐵(𝑅)

|𝐴|𝑝〈∇𝑓, ∇|𝐴|𝑝〉.                 (9) 

Plugging inequality (9) into (7), we have 

(1 −
𝑛 − 2

𝑛𝑝
) ∫ 𝑓2|∇|𝐴|𝑝|2

 

𝐵(𝑅)

≤
𝑝

𝜆1(𝑀)
(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2) 

( ∫ 𝑓2|∇|𝐴|𝑝|2
 

𝐵(𝑅)

+ ∫ 𝑓2|∇|𝐴|𝑝|2
 

𝐵(𝑅)

+ ∫ 𝑓

 

𝐵(𝑅)

|𝐴|𝑝〈∇𝑓, ∇|𝐴|𝑝〉) 

+(𝑝 − 1) ∫ 𝑓2|∇|𝐴|𝑝|2
 

𝐵(𝑅)

+ 𝑝 ∫ |∇𝑓|2|𝐴|2𝑝
 

𝐵(𝑅)

+ 2(𝑝 − 1) ∫ 𝑓

 

𝐵(𝑅)

|𝐴|𝑝〈∇𝑓, ∇|𝐴|𝑝〉. 

Thus 

(1 −
𝑛 − 2

𝑛𝑝
) ∫ 𝑓2|∇|𝐴|𝑝|2

 

𝐵(𝑅)

≤ (
𝑝

𝜆1(𝑀)
(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2) + 𝑝 − 1) ∫ 𝑓2|∇|𝐴|𝑝|2

 

𝐵(𝑅)

 

+(
𝑝

𝜆1(𝑀)
(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2) + 𝑝) ∫ |∇𝑓|2

 

𝐵(𝑅)

|𝐴|2𝑝                    

+2(
𝑝

𝜆1(𝑀)
(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2) + 𝑝 − 1) ∫ 𝑓

 

𝐵(𝑅)

|𝐴|𝑝〈∇𝑓, ∇|𝐴|𝑝〉      (10) 

Note that Young’s inequality yields 

2 ∫ 𝑓

 

𝐵(𝑅)

|𝐴|𝑝〈∇𝑓, ∇|𝐴|𝑝〉 ≤ 𝜀 ∫ |∇𝑓|2|𝐴|2𝑝
 

𝐵(𝑅)

+
1

𝜀
∫ 𝑓2|∇|𝐴|𝑝|2
 

𝐵(𝑅)

          (11) 

for any 𝜀 > 0. From inequalities (10) and (11), it follows that 

(1 −
𝑛 − 2

𝑛𝑝
) ∫ 𝑓2|∇|𝐴|𝑝|2

 

𝐵(𝑅)

≤ (
𝑝

𝜆1(𝑀)
(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2) + 𝑝 − 1) ∫ 𝑓2|∇|𝐴|𝑝|2

 

𝐵(𝑅)

 

+(
𝑝

𝜆1(𝑀)
(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2) + 𝑝 − 1)(𝜀 ∫ |∇𝑓|2|𝐴|2𝑝

 

𝐵(𝑅)

+
1

𝜀
∫ 𝑓2|∇|𝐴|𝑝|2
 

𝐵(𝑅)

). 

Which yields that 
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[1 −
𝑛 − 2

𝑛𝑝
(1 +

1

𝜀
) (

𝑝

𝜆1(𝑀)
(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2) + 𝑝 − 1)] ∫ 𝑓2|∇|𝐴|𝑝|2

 

𝐵(𝑅)

≤ [(1 + 𝜀) (
𝑝

𝜆1(𝑀)
(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2) + 𝑝) − 𝜀] ∫ |∇𝑓|

2|𝐴|2𝑝
 

𝐵(𝑅)

 

For a contradiction, we suppose that 

𝜆1(𝑀) >
𝑝(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2)

1 −
𝑛 − 2
𝑛𝑝

− (𝑝 − 1)
=
𝑛𝑝2(2𝐾3 − 𝑛(𝐾1 + 𝐾2))

2 − 𝑛(𝑝 − 1)2
 

Note the assumption that 1 − √2 𝑛⁄  <  𝑝 < 1 + √2 𝑛⁄  is equivalent to 

2 − 𝑛(𝑝 − 1)2 > 0. 
Choose a sufficiently large 𝜀 > 0 satisfying  

[1 −
𝑛 − 2

𝑛𝑝
(1 +

1

𝜀
) (

𝑝

𝜆1(𝑀)
(2𝐾3 − 𝑛𝐾1 − 𝑛𝐾2) + 𝑝 − 1)] > 0, 

Since |∇𝑓| ≤ 1/𝑅 by our choice of  , one can conclude that, by letting 𝑅 → ∞, 

∫|∇|𝐴|𝑝|2
 

𝑀

= 0, 

where we used the growth condition on ∫ |𝐴|2𝑝
𝐵(𝑅)

. Thus we see that  

|𝐴|2𝑝 is constant. 

Since the volume of 𝑀 is infinite [181], we get |𝐴| ≡ 0. This implies that 𝑀 is totally 

geodesic, which is impossible by our assumption. Therefore we obtain the upper 

bound𝜆1(𝑀): 

𝜆1(𝑀) ≤
𝑛𝑝2(2𝐾3 − 𝑛(𝐾1 + 𝐾2))

2 − 𝑛(𝑝 − 1)2
. 

Dung and [154] gave an estimate of the bottom of the spectrum for 

the Laplace operator on a complete noncompact stable minimal hypersurface M in a 

complete simply connected Riemannian manifold with pinched negative sectional 

curvature under the assumption on 𝐿2-norm of the second fundamental form 𝐴 of 𝑀. In 

Theorem (4.1.3), if we take 𝑝 = 1, we get the following. 

Corollary (4.1.4)[141]: [154]. Let 𝑁 be an(𝑛 + 1)-dimensional complete simply 

connected Riemannian manifold with sectional curvature satisfying 𝐾1 ≤ 𝐾𝑁 ≤ 𝐾2; where 

𝐾1, 𝐾2 are constants and 𝐾1 ≤ 𝐾2 < 0. Let 𝑀 be a complete stable non-totally geodesic 

minimal hypersurface in 𝑁. Assume that 

lim
𝑅→∞

𝑅2 ∫ |𝐴|2
 

𝐵(𝑅)

= 0, 

where 𝐵(𝑅)is a geodesic ball of radius 𝑅 on 𝑀. If |∇𝐾|2 = ∑ 𝐾𝑖,𝑗,𝑘,𝑙;𝑚
2

𝑖,𝑗,𝑘,𝑙,𝑚 𝐾3
2|𝐴|2 for 

some constant 𝐾3 > 0, we have 

−𝐾2
(𝑛 − 1)2

4
𝜆1(𝑀) ≤

(2𝐾3 − 𝑛(𝐾1 + 𝐾2))𝑛

2
. 

In particular, if N is the (𝑛 + 1)-dimensional hyperbolic space ℍ𝑛+1, one sees that 𝐾1 =
𝐾2 = −1, and hence |∇𝐾|2 = 0, that is, 𝐾3 = 0. Moreover, it follows from McKean’s 

result see [167] that the first eigenvalue  
𝜆1(𝑀) of any complete totally geodesic hypersurface 𝑀 ⊂ ℍ𝑛+1 satisfies 𝜆1(𝑀) =
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(𝑛 − 1)2 4⁄ . Therefore we have the following consequence which is an extension of the 

result in [178]. 

Corollary (4.1.5)[141]: Let 𝑀 be a complete stable minimal hypersurface in ℍ𝑛+1 R with 

∫ |𝐴|2𝑝
 

𝑀
𝑑𝑣 < ∞ for √2 𝑛⁄ < 𝑝 < 1 + √2 𝑛⁄ .. Then we have 

−𝐾2
(𝑛 − 1)2

4
𝜆1(𝑀) ≤

2𝑛2𝑝2

2 − 𝑛(𝑝 − 1)2
. 

As another application of Theorem (4.1.3), we have the following when 𝑛 < 8. 

Corollary (4.1.6)[141]: Let 𝑁 be an .(𝑛 + 1)-dimensional complete simply connected 

Riemannian manifold with sectional curvature satisfying 𝐾1 ≤ 𝐾𝑁 ≤ 𝐾2, where 𝐾1, 𝐾2 are 

constants and 𝐾1 ≤ 𝐾2 < 0 for 𝑛 < 8. Let 𝑀 be a complete stable non-totally geodesic 

minimal hypersurface in 𝑁. For 𝑝 = 1,2,3, if ∫ |𝐴|2𝑝
 

𝑀
< ∞, we have 

−𝐾2
(𝑛 − 1)2

4
𝜆1(𝑀) ≤

𝑛𝑝2(2𝐾3 − 𝑛(𝐾1 + 𝐾2))

2 − 𝑛(𝑝 − 1)2
. 

Proof. Since √2 𝑛⁄ > 1/2 when𝑛 < 8, the conclusion can be derived from 

Theorem (4.1.3).  

Before we prove the vanishing theorems for 𝐿𝑝  harmonic 1-forms on complete 

minimal hypersurface, we begin with some useful facts. 

Lemma (4.1.7)[141]: [162]. Let 𝑀 be an n-dimensional complete immersed minimal 

hypersurface in a Riemannian manifold 𝑁. If all the sectional curvatures of 𝑁 are bounded 

below by a constant 𝐾, 

𝑅𝑖𝑐 ≥ (𝑛 − 1)𝐾 −
𝑛 − 1

𝑛
|𝐴|2, 

Lemma (4.1.8)[141]: [37]. Let𝜔 be a harmonic 1-form on an n-dimensional Riemannian 

manifold M. Then 

|∇𝜔|2 − |∇|ω||
2
≥
𝑛 − 1

𝑛
|∇|ω||

2
.                                          (12) 

We also need the following well-known Sobolev inequality on a Riemannian 

Manifold. 

Lemma (4.1.9)[141]: [29]. Let 𝑀𝑛 be a c omplete immersed minimal submanifold in a 

nonpositively curved manifold 𝑁𝑛+𝑝 , 𝑛 ≥ 3. Then, for any 𝜙 ∈ 𝑊0
1,2(𝑀), we have 

  (∫|𝜙|2𝑛/(𝑛−2)
 

𝑀

𝑑𝑣)

(𝑛−2)/𝑛

≤ 𝐶𝑠 ∫|∇𝜙|
2

 

𝑀

𝑑𝑣,                      (13) 

where 𝐶𝑠 is the Sobolev constant which depends only on 𝑛 ≥ 3. 

A complete Riemannian manifold 𝑀 is called nonparabolic if it admits a nonconstant 

positive superharmonic function. Otherwise, 𝑀 is said to be parabolic. 

The following sufficient condition for parabolicity is well known. 

Theorem (4.1.10)[141]: [158], [159], [161], [14]. Let 𝑀 be a complete Riemannian 

manifold. If, for any point 𝑝 ∈ 𝑀 and a geodesic ball𝐵𝑝(𝑟),  

∫
𝑟

𝑉𝑜𝑙 (𝐵𝑝(𝑟))

∞

1

𝑑𝑟 = ∞ 

𝑀 is parabolic. 

It immediately follows from this result that if 𝑀 is nonparabolic, 



104 

∫
𝑟

𝑉𝑜𝑙 (𝐵𝑝(𝑟))

∞

1

𝑑𝑟 < ∞, 

and hence 𝑀 has infinite volume. Moreover, if  𝜆1(𝑀)  > 0,𝑀 is nonparabolic [160]. 

Therefore one can conclude the following. 

Proposition (4.1.11)[141]: Let 𝑀 be an n-dimensional complete noncompact Riemannian 

manifold with 𝜆1(𝑀) > 0. Then 𝑉𝑜𝑙(𝑀) = ∞. 

    Note that, in the case of submanifolds, see [147] proved that the volume 𝑉𝑜𝑙 (𝐵𝑝(𝑟)) of 

every complete noncompact submanifold 𝑀 in the Euclidean or hyperbolic space grows at 

least as a linear function of 𝑟 under the assumption that the mean curvature vector 𝐻 of 𝑀 

is bounded in absolute value. 

   We state and prove vanishing theorems for 𝐿𝑝  harmonic 1-forms on a complete 

noncompact stable minimal hypersurface. 

Theorem (4.1.12)[141]: Let 𝑁 be an(𝑛 + 1)-dimensional complete Riemannian manifold 

with sectional curvature satisfying 𝐾 ≤ 𝐾𝑁 where 𝐾 ≤ 0 is a constant. Let 𝑀 be a 

complete noncompact stable minimal hypersurface in 𝑁. Assume that, for 

0 < 𝑝 < 𝑛 (𝑛 − 1)⁄ + √2𝑛, 

𝜆1(𝑀) > −
2𝑛(𝑛 − 1)2 𝑝2𝐾

2𝑛 − [(𝑛 − 1)𝑝 − 𝑛]2
. 

Then there is no nontrivial 𝐿2𝑝 harmonic 1-form on𝑀. 

Proof. We consider two cases: 𝐾 < 0 and 𝐾 = 0. 

Case 1: 𝐾 < 0. Let𝜔! be an 𝐿2𝑝 harmonic 1-form on M, that is, 

∆ω = 0 𝑎𝑛𝑑 ∫|𝜔|2𝑝
 

𝑀

𝑑𝑣 < ∞. 

In an abuse of notation, we refer to both a harmonic 1-form and its dual harmonic vector 

field by𝜔,. Bochner’s formula yields 

∆|𝜔|2 = 2(|∇𝜔|2 + 𝑅𝑖𝑐(𝜔, 𝜔)). 
Moreover, 

∆|𝜔|2 = 2(|𝜔|∆|𝜔| + |∇|𝜔||
2
) . 

Applying Lemma (4.1.7) and the Kato-type inequality (12), we see that 

  |𝜔|∆|𝜔| +
𝑛 − 1

𝑛
|𝐴|2|𝜔|2(𝑛 − 1)𝐾|𝜔|2 ≥

1

𝑛 − 1
|∇|𝜔||

2
.                      (14) 

For any positive number p, we have 

|𝜔|𝑝∆|𝜔|𝑝 = |𝜔|𝑝𝑑𝑖𝑣(∇|𝜔|𝑝) = |𝜔|𝑝𝑑𝑖𝑣(𝑝|𝜔|𝑝−1∇𝜔)

= 𝑝(𝑝 − 1)|𝜔|2𝑝−2|∇|𝜔||
2
+ 𝑝|𝜔|2𝑝−1∆|𝜔|

=
𝑝 − 1

𝑝
 |∇|ω|p|2 + 𝑝|𝜔|2𝑝−2|𝜔|∆|𝜔|. 

Plugging inequality (14) into the above equality, we have 

|ω|p∆|ω|p + 𝑝(𝑛 − 1) (
|𝐴|2

𝑛
− 𝐾) |ω|p ≥ (1 −

1

𝑝
+

1

𝑝(𝑛 − 1)
) |∇|ω||

2
. 

Choose a Lipschitz function 𝑓 with compact support in a geodesic ball 𝐵(𝑅) of radius 𝑅 

centered at 𝑝 ∈ 𝑀. Multiplying both side by 𝑓2  and integrating over 

𝐵(𝑅), we obtain 
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(1 −
1

𝑝
+

1

𝑝(𝑛 −)
) ∫ 𝑓2

 

𝐵(𝑅)

|∇|ω||
2
 

≤ ∫ 𝑓2
 

𝐵(𝑅)

|ω|p∆|ω|p +
𝑝(𝑛 − 1)

𝑛
∫ 𝑓2
 

𝐵(𝑅)

|A|2|ω|2p −  𝑝(𝑛 − 1)𝐾 ∫ 𝑓2
 

𝐵(𝑅)

|ω|2p. 

The divergence theorem gives 

∫ 𝑓2
 

𝐵(𝑅)

|ω|p∆|ω|p = −∫ 𝑓2
 

𝐵(𝑅)

|∇|ω|p|2 − 2∫ 𝑓
 

𝐵(𝑅)

|ω|p〈∇f, ∇|ω|p〉. 

Thus 

(1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
)∫ 𝑓2

 

𝐵(𝑅)

|∇|ω|p|2

≤
𝑝(𝑛 − 1)

𝑛
∫ 𝑓2
 

𝐵(𝑅)

|A|2|ω|2p −  𝑝(𝑛 − 1)𝐾∫ 𝑓2
 

𝐵(𝑅)

|ω|2p. 

= −∫ 𝑓2
 

𝐵(𝑅)

|∇|ω|p|2 − 2∫ 𝑓
 

𝐵(𝑅)

|ω|p〈∇f, ∇|ω|p〉.                                         (15) 

Since 𝑀 is stable, 

∫ |∇f|2
 

𝑀

− (|𝐴|2 + 𝑅𝑖𝑐̅̅ ̅̅ (𝑒𝑛+1))𝑓
2 ≥ 0 

for any compactly supported Lipschitz function f on 𝑀. From the assumption on the 

sectional curvature of 𝑁, it follows that 

∫ |∇f|2
 

𝑀

− (|𝐴|2 + 𝑛𝐾)𝑓2 ≥ 0 

for any compactly supported Lipschitz function 𝑓 on 𝑀. Replacing 𝑓 by  
|ω|p𝑓 we have 

  ∫ 𝑓2
 

𝐵(𝑅)

|∇|ω|p|2 + ∫ |∇𝑓|2
 

𝐵(𝑅)

|ω|2𝑝 + 2∫ 𝑓
 

𝐵(𝑅)

|ω|p〈∇f, ∇|ω|p〉 ≥ ∫ 𝑓2
 

𝐵(𝑅)

|A|2|ω|2p 

(16) 
Combining the inequalities (15) and (16) gives 

(1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
)∫ 𝑓2

 

𝐵(𝑅)

|∇|ω|p|2

≤
𝑝(𝑛 − 1)

𝑛
[∫ 𝑓2

 

𝐵(𝑅)

|∇|ω|p|2 +∫ |∇𝑓|2
 

𝐵(𝑅)

|ω|2p

+ 2∫ 𝑓
 

𝐵(𝑅)

|ω|p〈∇f, ∇|ω|p〉 𝑝(𝑛 − 1) − 𝑛𝐾∫ 𝑓2|ω|2p
 

𝐵(𝑅)

] 

−𝑝(𝑛 − 1)𝐾∫ 𝑓2
 

𝐵(𝑅)

|ω|2p −∫ 𝑓2
 

𝐵(𝑅)

|∇|ω|p|2 − 2∫ 𝑓
 

𝐵(𝑅)

|ω|p〈∇f, ∇|ω|p〉. 

Hence 
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(1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
)∫ 𝑓2

 

𝐵(𝑅)

|∇|ω|p|2

≤ (
𝑝(𝑛 − 1)

𝑛
− 1)∫ 𝑓2

 

𝐵(𝑅)

|∇|ω|p|2 +
𝑝(𝑛 − 1)

𝑛
∫ |∇𝑓|2
 

𝐵(𝑅)

|ω|2p

− 2𝑝(𝑛 − 1)𝐾∫ 𝑓2|ω|2p
 

𝐵(𝑅)

 

+2(
𝑝(𝑛 − 1)

𝑛
− 1)∫ 𝑓

 

𝐵(𝑅)

|ω|p〈∇f, ∇|ω|p〉.                                                     (17) 

Moreover, using the definition of the bottom of the spectrum, we see that 

  𝜆1(𝑀)∫ |ω|2p𝑓2
 

𝐵(𝑅)

∫ |∇(|ω|p𝑓)|2
 

𝐵(𝑅)

 

= ∫ 𝑓2
 

𝐵(𝑅)

|∇|ω|p|2 +∫ |ω|2p|∇𝑓|2 + 2∫ 𝑓
 

𝐵(𝑅)

|ω|p〈∇f, ∇|ω|p〉
 

𝐵(𝑅)

,                      (18) 

From inequalities (17) and (18), it follows that 

(1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
)∫ 𝑓2

 

𝐵(𝑅)

|∇|ω|p|2 

≤ (
𝑝(𝑛 − 1)

𝑛
− 1 −

2𝑝(𝑛 − 1)𝐾

𝜆1(𝑀)
)∫ 𝑓2

 

𝐵(𝑅)

|∇|ω|p|2

+ (
𝑝(𝑛 − 1)

𝑛
− 1 −

2𝑝(𝑛 − 1)𝐾

𝜆1(𝑀)
)∫ |∇𝑓|2

 

𝐵(𝑅)

|ω|2p

+ 2(
𝑝(𝑛 − 1)

𝑛
− 1 −

2𝑝(𝑛 − 1)𝐾

𝜆1(𝑀)
)∫ 𝑓

 

𝐵(𝑅)

|ω|p〈∇f, ∇|ω|p〉. 

Applying Young’s inequality, we have 

2∫ 𝑓
 

𝐵(𝑅)

|ω|p〈∇f, ∇|ω|p〉 ≤ ε∫ 𝑓2
 

𝐵(𝑅)

|∇|ω|p|2 +
1

ε
∫ |∇𝑓|2
 

𝐵(𝑅)

|ω|2p 

for any 𝜀 > 0. Thus 

[2 −
1

𝑝
+

1

𝑝(𝑛 − 1)
+
2𝑝(𝑛 − 1)𝐾

𝜆1(𝑀)
−
𝑝(𝑛 − 1)

𝑛
− 𝜀 (

𝑝(𝑛 − 1)

𝑛
− 1 −

2𝑝(𝑛 − 1)𝐾

𝜆1(𝑀)
)] 

×∫ 𝑓2
 

𝐵(𝑅)

|∇|ω|p|2 

≤ [
𝑝(𝑛 − 1)

𝑛
−
2𝑝(𝑛 − 1)𝐾

𝜆1(𝑀)
+
1

𝜀
(
𝑝(𝑛 − 1)

𝑛
− 1 −

2𝑝(𝑛 − 1)𝐾

𝜆1(𝑀)
) ]∫ |∇𝑓|2

 

𝐵(𝑅)

|ω|2p. 

Since 

𝜆1(𝑀) >
−2𝑝(𝑛 − 1)𝐾

2 − 1 𝑝 + 1 (𝑝(𝑛 − 1)) − 𝑝(𝑛 − 1) 𝑛⁄⁄⁄
=

−2𝑛(𝑛 − 1)2𝑝2𝐾

2𝑛 − [(𝑛 − 1)𝑝 − 𝑛]2
 

by the hypothesis, one can choose a sufficiently small 𝜀 > 0 satisfying that 

[2 −
1

𝑝
+

1

𝑝(𝑛 − 1)
−
2𝑝(𝑛 − 1)𝐾

𝜆1(𝑀)
+
𝑝(𝑛 − 1)

𝑛
+ 𝜀 (

𝑝(𝑛 − 1)

𝑛
− 1 −

2𝑝(𝑛 − 1)𝐾

𝜆1(𝑀)
) ] > 0. 

Note that ∫ |𝜔|2𝑝
 

𝑀
< ∞, since ! is an 𝐿2𝑝 harmonic 1-form on 𝑀. Letting 𝑅 tend to 

infinity, we obtain 
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 ∫|∇|ω|p|2
 

𝑀

= 0, 

Which implies that|∇|ω|| ≡ 0.  Hence |ω| ≡ constant. From Proposition (4.1.11), 

itfollows that |ω| ≡ 0.. 
Case 2: 𝐾 = 0. Using the inequality (17) and Young’s inequality, we obtain 

[2 −
1

𝑝
+

1

𝑝(𝑛 − 1)
−
𝑝(𝑛 − 1)

𝑛
− 𝜀 (

𝑝(𝑛 − 1)

𝑛
− 1) ]∫ 𝑓2

 

𝐵(𝑅)

|∇|ω|p|2 

≤ [
𝑝(𝑛 − 1)

𝑛
+
1

ε
(
𝑝(𝑛 − 1)

𝑛
− 1) ]∫ |∇𝑓|2

 

𝐵(𝑅)

|ω|2p. 

Since 0 <  𝑝 < 𝑛 (𝑛 − 1)⁄ + √2𝑛, one may choose a sufficiently small 𝜀 > 0 satisfying 

2 −
1

𝑝
+

1

𝑝(𝑛 − 1)
−
𝑝(𝑛 − 1)

𝑛
+ 𝜀 (

𝑝(𝑛 − 1)

𝑛
− 1) > 0. 

Letting 𝑅 tend to infinity gives 

∫ |∇|ω|p|2
 

𝐵(𝑅)

= o, 

which implies that |ω| ≡  constant. From the assumption that𝜆1(𝑀) > 0 and Proposition 

(4.1.11), it follows that |ω| ≡ 0. 
   As a consequence of Theorem (4.1.12), given a complete noncompact stable minimal 

hypersurface in a nonnegatively curved Riemannian manifold, one has the following 

result. 

Corollary (4.1.13)[141]: Let 𝑁 be an.(𝑛 + 1)-dimensionalcomplete nonnegatively curved 

Riemannian manifold. Let 𝑀 be a complete noncompact stable minimal hypersurface in 𝑁 

with 𝜆1(𝑀) > 0. If𝑛 ≤ 11, there is no nontrivial 𝐿𝑝 harmonic 1-form on 𝑀 for any 0 <
𝑝 ≤ 𝑛. 

Proof. For 𝑛 ≤ 11, the inequality 2(𝑛 (𝑛 − 1)⁄ + √2𝑛) ≥ 𝑛 holds. _ 

Corollary (4.1.14)[141]: Let 𝑁 be an.(𝑛 + 1)-dimensional complete nonnegatively 

curved Riemannian manifold. Let 𝑀 be a complete noncompact stable minimal 

hypersurface in 𝑁 with𝜆1(𝑀) > 0. If 𝑛 ≤ 11, there is no nontrivial 𝐿2 harmonic 1-form on 

𝑀. 

  In the case of 𝐿2 harmonic 1-forms, Theorem (4.1.12) gives a generalization of [154] as 

follows. 

Corollary (4.1.15)[141]: Let 𝑁 be an (𝑛 + 1)-dimensional complete Riemannian 

manifold with sectional curvature satisfying 𝐾 ≤ 𝐾𝑁 where 𝐾 < 0 is a constant. Let 𝑀 be 

a complete noncompact stable minimal hypersurface in 𝑁. Assume that 

𝜆1(𝑀) >
2𝑛(𝑛 − 1)2𝐾

2𝑛 − 1
. 

Then there are no nontrivial 𝐿2 harmonic 1-forms on 𝑀. 

In particular, if 𝑁 is (𝑛 + 1)-dimensional hyperbolic space ℍ𝑛+1, Corollary (4.1.15) 

improves the previous result of [177]. Related to this result, Cavalcante, 

Mirandola, and Vitório [15] obtained the vanishing theorem for 𝐿2 harmonic 1-forms on 

complete noncompact submanifolds in a Cartan–Hadamard manifold. 

Palmer [170] showed that if there exists a codimension-one cycle in a complete 

minimal hypersurface 𝑀 in ℝ𝑛+1 which does not separate 𝑀,𝑀 is unstable. We obtain a 

generalization of Palmer’s result as follows. 
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Corollary (4.1.16)[141]: Let 𝑁 be an (𝑛 + 1)-dimensional complete Riemannian 

manifold with sectional curvature satisfying 𝐾 ≤ 𝐾𝑁where 𝐾 ≤ 0 is a constant. Let 𝑀 be a 

complete noncompact minimal hypersurface in 𝑁. Assume that 

𝜆1(𝑀) >
2𝑛(𝑛 − 1)2𝐾

2𝑛 − 1
. 

Suppose that there exists a codimension-one cycle in 𝑀 which does not separate 𝑀. 

Then M cannot be stable. 

Proof. Suppose that 𝑀 is stable in𝑁. From [153], there exists a nontrivial 𝐿2 harmonic 1-

form on 𝑀, which is a contradiction to Corollary (4.1.15). Let 𝑀 be a complete 

Riemannian manifold and let 𝑓 be a harmonic function on 𝑀 with finite 𝐿𝑝 energy. Then 

the total differential 𝑑𝑓 is obviously an 𝐿𝑝 harmonic 1-form on 𝑀. As another application 

of Theorem (4.1.12), we prove the following Liouville type theorem for harmonic 

functions with finite 𝐿𝑝 energy on a complete noncompact stable minimal hypersurface, 

which is a generalization of Schoen and Yau’s result [183], as mentioned. 

Corollary (4.1.17)[141]: Let 𝑁 be an (𝑛 + 1)-dimensional complete Riemannian 

manifold with sectional curvature satisfying 𝐾 ≤ 𝐾𝑁where 𝐾 ≤ 0 is a constant. Let 𝑀be a 

complete noncompact stable minimal hypersurface in𝑁. Assume that, for 0 < 𝑝 <

𝑛(𝑛 (𝑛 − 1)⁄ + √2𝑛), 

𝜆1(𝑀) >
2𝑛(𝑛 − 1)2𝑝2𝐾

2𝑛 − [(𝑛 − 1)𝑝 − 𝑛]2
. 

Then there is no nontrivial harmonic function on 𝑀 with finite 𝐿𝑝 energy. 

   So far, we have assumed that 𝜆1(𝑀) > 0 for a complete noncompact stable minimal 

hypersurface M in a nonnegatively curved Riemannian manifold. However, we do not 

know whether the assumption that 𝜆1(𝑀) > 0 is necessary or not. It would be interesting 

to remove the condition in these results. 

We prove a vanishing theorem for 𝐿𝑝 harmonic 1-forms on a complete stable 

minimal hypersurface 𝑀, assuming that 𝑀 has sufficiently small total scalar curvature 

instead of assuming that 𝑀 is stable. 

Theorem (4.1.18)[141]: Let 𝑁 be an (𝑛 + 1)-dimensional complete simply connected 

Riemannian manifold with sectional curvature 𝐾𝑁 satisfying that 𝐾1 ≤ 𝐾𝑁 ≤ 𝐾2 < 0, 
where 𝐾1, 𝐾2 are constants and 𝑛 ≥ 3. Let 𝑀 be a complete minimal hypersurface in 𝑁. 

Assume that 𝐾 ≔ 𝐾2 = 𝐾1 satisfies 

𝐾 >
4(𝑛 − 2)

(𝑛 − 1)2
. 

For 

(𝑛 − 1)𝐾

4
−
1

2
√
(𝑛 − 1)2𝐾2

4
− (𝑛 − 2)𝐾 

< 𝑝
(𝑛 − 1)𝐾

4
+
1

2
√
(𝑛 − 1)2𝐾

4
− (𝑛 − 2)𝐾, 

Assume that 

(∫|𝐴|𝑛
 

𝑀

)

𝑛 2⁄

<
𝑛(2𝑝(𝑛 − 1) − 𝑛 + 2 − 4𝑝2𝐾)

𝑝2(𝑛 − 1)2𝐶𝑠
, 
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where 𝐶𝑠 is the Sobolev constant in [29]. Then there are no nontrivial 𝐿2𝑝 harmonic 1-

forms on 𝑀. 

Proof. A similar argument as in the proof of Theorem (4.1.12) shows 

|ω|p∆|ω|p + 𝑝(𝑛 − 1) (
|𝐴|2

𝑛
− 𝐾1) |ω|

2p ≥ (1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
) |∇|ω|p|2 

for any Lipschitz function f with compact support in a geodesic ball 𝐵(𝑅) of radius 𝑅 

centered at a point 𝑝 ∈ 𝑀. Multiplying both sides by𝑓2, integrating over 𝐵(𝑅),and 

applying the divergence theorem, we see that 

(1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
) ∫ 𝑓2|∇|ω|p|2

 

𝐵(𝑅)

 

≤
𝑝(𝑛 − 1)

𝑛
∫ 𝑓2|A|2|ω|2p −

 

𝐵(𝑅)

𝑝(𝑛 − 1)𝐾1 ∫ 𝑓2|ω|2p
 

𝐵(𝑅)

 

− ∫ 𝑓2|∇|ω|p|2
 

𝐵(𝑅)

− 2 ∫ 𝑓|ω|p〈∇f, ∇|ω|p〉

 

𝐵(𝑅)

.                                       (19) 

On the other hand, the Sobolev inequality (13) implies that 

∫ 𝑓2|A|2|ω|2p
 

𝐵(𝑅)

(∫|𝐴|𝑛
 

𝑀

)

2 𝑛⁄

(∫(|ω|pf)(2𝑛) 𝑛−2⁄

 

𝑀

)

(𝑛−2) 𝑛⁄

≤ 𝐶𝑠 (∫|𝐴|
𝑛

 

𝑀

)

2 𝑛⁄

∫|∇(|ω|p𝑓)|2
 

𝑀

 

≤ 𝐶𝑠 (∫|𝐴|
𝑛

 

𝑀

)

2 𝑛⁄

( ∫ 𝑓2|∇|ω|p|2 + ∫ |∇𝑓|2|ω|2p
 

𝐵(𝑅)

 

𝐵(𝑅)

+ 2 ∫ 𝑓|ω|p〈∇f, ∇|ω|p〉

 

𝐵(𝑅)

). 

Plugging this inequality into (19) gives 

        (1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
) ∫ 𝑓2|∇|ω|p|2

 

𝐵(𝑅)

≤
𝑝(𝑛 − 1)𝐶𝑠

𝑛
(∫|𝐴|𝑛

 

𝑀

)

2 𝑛⁄

∫ 𝑓2|ω|2p
 

𝐵(𝑅)

 

+(
𝑝(𝑛 − 1)𝐶𝑠

𝑛
(∫|𝐴|𝑛

 

𝑀

)

2 𝑛⁄

− 1) ∫ 𝑓2|∇|ω|p|2
 

𝐵(𝑅)

 

+2(
𝑝(𝑛 − 1)𝐶𝑠

𝑛
(∫|𝐴|𝑛

 

𝑀

)

2 𝑛⁄

− 1) ∫ 𝑓|ω|p〈∇f, ∇|ω|p〉

 

𝐵(𝑅)

. 

−𝑝(𝑛 − 1)𝐾1 ∫ 𝑓2|ω|2p
 

𝐵(𝑅)

.                                                                         (20) 

 

An estimate (1) for the bottom of the spectrum yields 

𝐾2(𝑛 − 1)
2

4
≤ 𝜆1(𝑀) ≤

∫ |∇(|ω|pf)|2
 

𝐵(𝑅)

∫ (|ω|p𝑓)2
 

𝐵(𝑅)

, 

which gives 
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∫ (|ω|p𝑓)2
 

𝐵(𝑅)

≤
4

𝐾2(𝑛 − 1)
2
( ∫ 𝑓2|∇|ω|p|2

 

𝐵(𝑅)

+ ∫ 𝑢|∇f|2|ω|2p
 

𝐵(𝑅)

+ 2 ∫ 𝑓|ω|p〈∇f, ∇|ω|p〉

 

𝐵(𝑅)

). 

(21) 
Thus, from inequalities (20) and (21), it follows that 

(1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
) ∫ 𝑓2|∇|ω|p|2

 

𝐵(𝑅)

≤ 𝐵 ∫ 𝑓2|A|2|ω|2p + (B − 1)

 

𝐵(𝑅)

∫ 𝑓2|∇|ω|p|2
 

𝐵(𝑅)

+ 2(𝐵

− 1) ∫ 𝑓|ω|p〈∇f, ∇|ω|p〉

 

𝐵(𝑅)

. 

Where 

𝐵 =
𝑝(𝑛 − 1)𝐶𝑠

𝑛
(∫|𝐴|𝑛

 

𝑀

)

2 𝑛⁄

+
4𝑝

(𝑛 − 1)

1

𝐾
. 

Applying Young’s inequality 

2 ∫ 𝑓|ω|p〈∇f, ∇|ω|p〉

 

𝐵(𝑅)

≤ 𝜀 ∫ 𝑓2|∇|ω|p|2
 

𝐵(𝑅)

+
1

𝜀
∫ 𝑓2|A|2|ω|2p
 

𝐵(𝑅)

 

 

for any 𝜀 > 0, we see that 

(2 −
1

𝑝
+

1

𝑝(𝑛 − 1)
− 𝐵 − 𝜀(𝐵 − 1)) ∫ 𝑓2|∇|ω|p|2

 

𝐵(𝑅)

≤ (𝐵 +
1

𝜀
(𝐵 − 1)) ∫ |∇𝑓|2|ω|2p

 

𝐵(𝑅)

. 

From the assumption on the total curvature of 𝑀, one can make 

(2 −
1

𝑝
+

1

𝑝(𝑛 − 1)
− 𝐵 − 𝜀(𝐵 − 1)) > 0 

by choosing a sufficiently small 𝜀 > 0. Letting 𝑅 → ∞ and using that 𝜔 is an 𝐿2𝑝harmonic 

1-form, we conclude that 

∫|∇|ω|p|2
 

𝑀

= 0. 

The same argument as before shows that |𝜔| ≡ 0. 
Corollary (4.1.19)[141]: Let 𝑀 be a complete minimal hypersurface in ℍ𝑛+1 satisfying 
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(∫|𝐴|𝑛
 

𝑀

)

2 𝑛⁄

< 𝑛
(−4𝑝2 + 2𝑝(𝑛 − 1) − 𝑛 + 2)

𝑝2(𝑛 − 1)2𝐶𝑠
 

for 
1

2
< 𝑝 <

𝑛

2
− 1. Then there are no nontrivial 𝐿2𝑝 harmonic 1-forms on 𝑀. 

Corollary (4.1.20)[141]: Under the same conditions as in Theorem (4.1.18), there is no 

nontrivial harmonic function on 𝑀 with finite 𝐿𝑝 energy. 

When the 𝐿∞ norm of the second fundamental form of a complete minimal hypersurface is 

bounded, the following vanishing theorem holds. 

Theorem (4.1.21)[141]: Let 𝑁 be an.(𝑛 + 1)-dimensional complete simply connected 

Riemannian manifold with sectional curvature 𝐾𝑁 satisfying 𝐾1 ≤ 𝐾𝑁 ≤ 𝐾2 < 0,  where 

𝐾1, 𝐾2 are constants and 𝑛 ≥ 3. Let 𝑀 be a complete noncompact minimal hypersurface in 

𝑁. Assume that 𝐾 ≔ 𝐾2 𝐾1⁄ > 4(𝑛 − 2)/(𝑛 − 1)2 and the second fundamental form 𝐴 

satisfies 

|𝐴|2  ≤ 𝐶 <
4𝑝2𝐾1 − (2𝑝(𝑛 − 1) − 𝑛 + 2𝐾2

4𝑝2
 

For 

(𝑛 − 1)𝐾

4
−
1

2
√
(𝑛 − 1)2𝐾2

4
− (𝑛 − 2)𝐾 

< 𝑝 <
(𝑛 − 1)𝐾

4
+
1

2
√
(𝑛 − 1)2𝐾2

4
− (𝑛 − 2)𝐾. 

Then there are no nontrivial 𝐿2𝑝 harmonic 1-forms on 𝑀. 

Proof. A similar argument as before shows 

(1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
) ∫ 𝑓2|∇|ω|p|2

 

𝐵(𝑅)

 

≤
𝑝(𝑛 − 1)

𝑛
≤ ∫ 𝑓2|A|2|ω|2p −

 

𝐵(𝑅)

𝑝(𝑛 − 1)𝐾1 ∫ 𝑓2|ω|2p
 

𝐵(𝑅)

 

− ∫ 𝑓2|∇|ω|p|2
 

𝐵(𝑅)

− 2 ∫ 𝑓|ω|p〈∇f, ∇|ω|p〉

 

𝐵(𝑅)

. 

 
Since |𝐴|2 ≤ 𝐶, 

(2 −
1

𝑝
+

1

𝑝(𝑛 − 1)
) ∫ 𝑓2|∇|ω|p|2

 

𝐵(𝑅)

 

≤ (
𝑝(𝑛 − 1)𝐶

𝑛
− 𝑝(𝑛 − 1)𝐾1) ∫ 𝑓2|ω|2p

 

𝐵(𝑅)

− 2 ∫ 𝑓|ω|p〈∇f, ∇|ω|p〉

 

𝐵(𝑅)

. 

Using an estimate for the bottom of the spectrum and Young’s inequality again, we have 
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(1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
− 𝐷 − 𝜀(𝐷 − 1)) ∫ 𝑓2|∇|ω|p|2

 

𝐵(𝑅)

≤ (𝐷 +
1

𝜀
(𝐷 − 1)) ∫ |∇𝑓|2|ω|2p

 

𝐵(𝑅)

, 

Where 

 𝐷 =
−4

(𝑛 − 1)2𝐾2
(
𝑝(𝑛 − 1)𝐶

𝑛
− 𝑝(𝑛 − 1)𝐾1) . 

Since 

 𝐶 <
4𝑝2𝐾1 − (2𝑝(𝑛 − 1) − 𝑛 + 2)𝐾2

4𝑝2
, 

by our assumption, we may choose a sufficiently small 𝜀 > 0 satisfying 

(2 −
1

𝑝
+

1

𝑝(𝑛 − 1)
− 𝐷 − 𝜀(𝐷 − 1)) > 0. 

Thus we get 

∫ |∇|ω|p|2
 

𝐵(𝑅)

= 0. 

by letting 𝑅 tend to infinity. Hence 𝜔 ≡ 0. 
Corollary (4.1.22)[141]: Let 𝑀 be a complete minimal hypersurface in ℍ𝑛+1 with the 

second fundamental form 𝐴 satisfying 

|𝐴|2 ≤  𝐶 <
−4𝑝2 + 2𝑝(𝑛 − 1) − 𝑛 + 2

4𝑝2
, 

for 
1

2
< 𝑝 <

𝑛

2
− 1. Then there are no nontrivial 𝐿2𝑝 harmonic 1-forms on 𝑀. 

Corollary (4.1.23)[141]: Under the same conditions as in Theorem (4.1.21), there is no 

nontrivial harmonic function on 𝑀 with finite 𝐿𝑝 energy. 

We remark that there are lots of examples of minimal hypersurfaces with finite 𝐿𝑛 or 𝐿∞ 

norm of the second fundamental form in ℍ𝑛+1 [145], [169], [174], [178]. 

Section (4.2): Submanifolds in a Hadamard Manifold 
The geometric structure and topological properties of submanifolds in various 

ambient space have been studied extensively during past few years. In [2], Cao, Shen and 

Zhu showed that a complete connected stable minimal hypersurface in Euclidean space 

must have exactly one end. Its strategy was to utilize a result of Schoen-Yau asserting that 

a complete stable minimal hypersurface in Euclidean space can not admit a non-constant 

harmonic function with finite integral [13]. Later Ni [31] proved that if 𝑛-dimensional 

complete minimal submanifold M in Euclidean space has sufficient small total scalar 

curvature (i.e.∫  
𝑀
 |𝐴|𝑛  <  𝐶1), then 𝑀 has only one end. In [34], Seo improved the upper 

bound C1. Due to this connection with harmonic functions, this allows one to estimate the 

number of ends of the above submanifold by estimating the dimension of the space of 

bounded harmonic function with finite Dirichlet integral [165]. In [27], Fu and Xu proved 

that a complete submanifold 𝑀𝑚 with finite total curvature and some conditions on mean 

curvaute in an (𝑛 +  𝑝)-dimensional simply connected space form 𝑀𝑚+𝑝 (𝑐) must have 

finitely many ends. In [189], M.P. Cavalcante, H. Mirandola, F. Vitório proved that a 

complete submanifold 𝑀𝑚 with finite total curvature and some conditions on the first 
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eigenvalue of the Laplace-Beltrami operator of 𝑀 in an Hadamard manifold must have 

finitely many ends. For 𝑝-harmonic 1-forms, Zhang [189] obtained vanishing Manuscript 

results for 𝑝-harmonic 1-form. Chang [185] obtained the compactness for any bounded set 

of 𝑝-harmonic 1-forms.  

For (𝑀𝑚, 𝑔) be a Riemannian manifold, and let 𝑢 be a real 𝐶∞ function on Mm. Fix 

𝑝 ∈ ℝ, 𝑝 ≥  2 and consider a compact domain Ω ⊂  𝑀𝑚. The 𝑝-energy of 𝑢 on Ω, is 

defined to be  

𝐸𝑝(Ω, 𝑢) =
1

𝑝
 ∫ 
Ω

 |∇𝑢|𝑝 .  

The function u is said to be 𝑝-harmonic on 𝑀𝑚 if 𝑢 is a critical point of 𝐸𝑝(Ω,∗) for every 

compact domain Ω ⊂  𝑀𝑚. Equivalently, 𝑢 satisfies the Euler-Lagrange equation.  

𝑑𝑖𝑣(|𝛻|𝑝−2𝛻𝑢)  =  0.  
Thus, the concept of 𝑝-harmonic function is a natural generalization of that of harmonic 

function, that is, of a critical point of the 2-energy functional.  

Definition (4.2.1)[184]: A 𝑝-harmonic 1-form is a differentiable 1-form on 𝑀𝑚 satisfying 

the following properties:  

{
𝑑𝜔 =  0,

𝛿(|𝜔|𝑝−2𝜔)  =  0,
  

where 𝛿 is the codifferential operator. It is easy to see that the differential of a 𝑝-harmonic 

function is a 𝑝-harmonic 1-from.  

We investigate the properties for 𝑝-harmonic 1-form on noncompact submanifolds 

with finite total curvature. We assume that 𝑀𝑚 is a complete noncompact manifold and 

define the space of the 𝐿𝑝 𝑝-harmonic 1-froms on 𝑀 by  

𝐻1,𝑝(𝑀)  =  {𝜔 |∫  
𝑀

 |𝜔|𝑝 𝑑𝑣 <  ∞, 𝑑𝜔 =  0 and 𝛿(|𝜔|𝑝−2𝜔)  =  0}  

where 𝑝 ≥  2.  

Theorem (4.2.2)[184]: Let 𝑥 ∶  𝑀𝑚  →  𝑁,𝑚 ≥  3, be an isometric immersion of a 

complete noncompact manifold 𝑀 in a Hadamard manifold 𝑁 with the sectional curvature 

satisfying −𝑘2  ≤  𝐾𝑁  ≤  0 for some constant 𝑘. In the case there exists point 𝑞 ∈  𝑀 

such that 𝐾𝑁 (𝑞)  ≠  0, assume further that the first eigenvalue of the Laplace-Beltrami 

operator of 𝑀 satisfies  

𝜆1(𝑀) >
(𝑚 −  1)2𝑝2(𝑘2  −  lim𝜌→∞ inf |𝐻|

2)

4[(𝑚 −  1)(𝑝 −  1) +  1]
 .  

where 𝜌 stands for the distance in 𝑀 from a fixed point. If 𝑀𝑚 has finite total curvature, 

then the 𝑑𝑖𝑚𝐻1,𝑝(𝑀)  <  ∞ for 𝑝 ≥  2.  
Corollary (4.2.3)[184]: Let 𝑥 ∶  𝑀𝑚  →  𝑅𝑚+𝑛 , 𝑚 ≥  3, be an isometric immersion of a 

complete noncompact manifold 𝑀 in 𝑅𝑚+𝑛 . If 𝑀𝑚 has finite total curvature, then the 

𝑑𝑖𝑚𝐻1,𝑝(𝑀)  <  ∞ for 𝑝 ≥  2.  
Corollary (4.2.4)[184]: Let 𝑥 ∶  𝑀𝑚  →  𝐻𝑚+𝑛 (−1),𝑚 ≥  3, be an isometric immersion 

of a complete noncompact manifold 𝑀 in 𝐻𝑚+𝑛 (−1). Assume further that the first 

eigenvalue of the Laplace-Beltrami operator of 𝑀 satisfies  

𝜆1(𝑀) >
(𝑚 −  1)2𝑝2(1 −  lim𝜌→∞ inf |𝐻|

2)

4[(𝑚 −  1)(𝑝 −  1) +  1]
 .  

where 𝜌 stands for the distance in 𝑀 from a fixed point. If 𝑀𝑚 has finite total curvature, 

then the 𝑑𝑖𝑚𝐻1,𝑝(𝑀)  <  ∞ for 𝑝 ≥  2.  
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From the proof of Theorem (4.2.2), we can obtain the following result.  

Theorem (4.2.5)[184]: Let 𝑥 ∶  𝑀𝑚  →  𝑁,𝑚 ≥  3, be an isometric immersion of a 

complete noncompact manifold 𝑀 ia a Hadamard manifold 𝑁 with the sectional curvature 

satisfying −𝑘2  ≤  𝐾𝑁  ≤  0 for some constant 𝑘. In the case there exists point 𝑞 ∈
 𝑀 such that 𝐾𝑁 (𝑞)  ≠  0, assume further that the first eigenvalue of the Laplace-Beltrami 

operator of M satisfies  

𝜆1(𝑀) >
(𝑚 −  1)2𝑝2(𝑘2  −  inf |𝐻|2)

4[(𝑚 −  1)(𝑝 −  1) +  1]
 .  

If there exists a positive constant 𝛬 such that ‖Φ‖𝐿𝑚(𝑀)  <  𝛬, then 𝐻1,𝑝(𝑀)  =  {0} for 

𝑝 ≥  2. Furthermore, if 𝑘 =  0, then 𝛬 depends only on m, p; otherwise, Λ depends only 

on 𝑚, 𝑘, 𝑝 and inf |𝐻|.  
Corollary (4.2.6)[184]: Let 𝑥 ∶  𝑀𝑚  →  𝑅𝑚+𝑛 , 𝑚 ≥  3, be an isometric immersion of a 

complete noncompact manifold 𝑀 in 𝑅𝑚+𝑛 . If there exists a positive constant Λ 

depending on 𝑚, 𝑝, such that ‖𝛷‖𝐿𝑚(𝑀)  <  𝛬, then 𝐻1,𝑝(𝑀)  =  {0} for 𝑝 ≥  2.  

Corollary (4.2.7)[184]: Let 𝑥 ∶  𝑀𝑚  →  𝐻𝑚+𝑛 (−1),𝑚 ≥  3, be an isometric immersion 

of a complete noncompact manifold 𝑀 in 𝐻𝑚+𝑛 (−1). Assume further that the first 

eigenvalue of the Laplace-Beltrami operator of 𝑀 satisfies  

𝜆1(𝑀) >
(𝑚 −  1)2𝑝2(1 −  inf |𝐻|2)

4[(𝑚 −  1)(𝑝 −  1) +  1]
 .  

If there exists a positive constant Λ depending on 𝑚, 𝑝, inf |H|, such that ‖𝛷‖𝐿𝑚(𝑀)  < Λ, 

then 𝐻1,𝑝(𝑀)  =  {0} for 𝑝 ≥  2. 

Let 𝑀𝑚 be a complete submanifold immersed in a Riemmannian manifold 𝑁𝑚+𝑛 . 
Fix a pint 𝑥 ∈  𝑀 and a local orthonormmal frame {𝑒1,· · · , 𝑒𝑚+𝑛} of 𝑁𝑚+𝑛 such that 
{𝑒1,· · · , 𝑒𝑚} are tangent fields of 𝑀. For each 𝛼,𝑚 +  1 ≤  𝛼 ≤  𝑚 +  𝑛, define a line 

map 𝐴𝛼 ∶  𝑇𝑥𝑀 →  𝑇𝑥𝑀 by 〈𝐴𝛼𝑋, 𝑌〉  =  〈𝛻𝑋 𝑌, 𝑒𝛼〉, where 𝑋, 𝑌 are tangent fields and ∇ is 

the Riemannian connection of 𝑁𝑚+𝑛 . Denote by ℎ𝑖𝑗
𝛼  =  〈𝐴𝛼𝑒𝑖  , 𝑒𝑗〉. The squared norm 

|𝐴|2 of the second fundamental form and the mean curvature vector 𝐻 are defined by  

|𝐴|2  =  ∑  

𝑖𝑗𝛼

 (ℎ𝑖𝑗
𝛼)
2
    𝐻 =  ∑  

𝛼

 𝐻𝛼 𝑒𝛼  =
1

𝑚
 ∑ 

𝑖𝛼

 ℎ𝑖𝑖
𝛼𝑒𝛼 .  

The traceless second fundamental form Φ is defined by  

Φ(𝑋, 𝑌 )  =  𝐴(𝑋, 𝑌 )  − 〈𝑋, 𝑌〉 𝐻,  
for all vector fields X, Y on M. A simple computation shows that  

|Φ|2  =  |𝐴|2  −  𝑚|𝐻|2 ,  
which measures how much the immersion deviates from being totally umbilical. We say 

that 𝑀𝑚 has finite total curvature if  

‖Φ‖𝐿𝑚(𝑀)  =  (∫  
𝑀

 |Φ|𝑚𝑑𝑣)

1
𝑚

 <  ∞. 

We need the following results:  

Lemma (4.2.8)[184]: [8] Let 𝐸 be a finite dimensional subspace of the space 𝐿2 q-forms 

on a compact Riemannian manifold Mfm. Then there exists 𝜔 ∈  𝐸 such that  
𝑑𝑖𝑚𝐸

𝑉𝑜𝑙(�̃�)
 ∫  
�̃�

|𝜔|2 𝑑𝑣 ≤ min {(
 𝑚 
𝑞 ) , 𝑑𝑖𝑚𝐸} sup

�̃�
  |𝜔|2 . 

From the above Lemma, we can prove the following result. 
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Lemma (4.2.9)[184]: Let 𝐸 be a finite dimensional subspace of the space 𝐿𝑝 𝑞-forms on a 

compact Riemannian manifold �̃�𝑚. Then there exists 𝜔 ∈  𝐸 such that  
𝑑𝑖𝑚𝐸

𝑉𝑜𝑙(�̃�)
 ∫  
�̃�

|𝜔|𝑝 𝑑𝑣 ≤ min {(
 𝑚 
𝑞 ) , 𝑑𝑖𝑚𝐸} sup

�̃�
  |𝜔|𝑝 , 

where 𝐶𝑝 is a positive constant depending only 𝑝 and 𝑝 ≥  2.  

Proof. Let {𝜔𝑖}𝑖=1
𝑟 , 𝑟 =  𝑑𝑖𝑚𝐸, be a orthonormal basis of 𝐸. Define the function  

𝐹(𝑥)  =  [∑ 

𝑟

𝑖=1

 |𝜔𝑖(𝑥)|
2 ]

𝑝
2

 . 

 Clearly, 𝐹(𝑥) is well defined under orthogonal change of basis. Since 𝐸 ≠  0, 

‖𝐹‖𝐿∞(�̃�)  ≠  0. Let 𝑥0  ∈  �̃� such that 𝐹(𝑥0) =  ‖𝐹‖𝐿∞(�̃�) . Define the subspace 𝐸0 of 

𝐸 by  

𝐸0  =  {𝜔 ∈  𝐸|𝜔(𝑥0) =  0}. 
By the choice of 𝑥0, 𝐸_0 ≠  𝐸. We claim that the orthogonal complement 𝐸0

⊥ is of at most 

dimension (
𝑚 
𝑞 ). In fact, if {𝜔𝛼}𝛼=1

𝑠  form an orthonormal basis for 𝐸0
⊥ with 𝑠 >  (

 𝑚 
𝑞 ), 

then there exists (𝑎𝛼)𝛼=1
𝑠  ∈  𝑅𝑠 with (𝑎𝛼) ≠  0 such that ∑  𝑠

𝛼=1  𝑎𝛼𝜔𝛼(𝑥0)  =  0. This is 

true because the dimension of the vector space of antisymmetric 𝑝-tensors on m-

dimensional vector space is (
𝑚 
𝑞 ). This implies ∑  𝑠

𝛼=1  𝑎𝛼𝜔𝛼  ∈  𝐸0, which is a 

contradiction. Now we choose orthonormal basis for 𝐸 such that {𝜔𝛼}𝛼=1
𝑠  form an 

orthonormal basis for 𝐸0
⊥ and {𝜔𝑖}𝑖=𝑠+1

𝑟  an orthonormal basis for 𝐸0. Then  

𝑑𝑖𝑚𝐸 =  ∫  
�̃�

 ∑  |𝜔|𝑝 𝑑𝑣 ≤  ∫  
�̃�

 𝐹(𝑥)𝑑𝑣 ≤  ‖𝐹‖𝐿∞ (�̃�) 𝑉𝑜𝑙(�̃�)  =  𝐹(𝑥0)𝑉𝑜𝑙(�̃�)  

=  𝑉𝑜𝑙(�̃�)(∑  

𝑠

𝛼=1

 𝜔𝛼(𝑥0))

𝑝
2

 ≤  𝐶𝑝 (
 𝑚 
𝑞 )  𝑉𝑜𝑙(�̃�)max𝛼

  ‖𝜔𝛼‖𝐿∞(�̃�)
𝑝

 .  

Since ‖𝜔‖
𝐿𝑝(�̃�)
𝑝

 ≤  𝑉𝑜𝑙(�̃�)‖𝜔‖
𝐿∞(�̃�)
𝑝

 for all 𝜔 ∈  𝐸, this proves the Lemma. In the 

following, we obtain a Kato type inequality for 𝑝-harmonic 1-form.  

Lemma (4.2.10)[184]: Let 𝜔 be a 𝑝-harmonic 1-form on Riemannian manifold 𝑀𝑚. Then 

we have the following inequality  

|∇(|𝜔|𝑝−2𝜔)|2  ≥  (1 +
1

(𝑚 −  1)(𝑝 −  1)2
) |∇|𝜔|𝑝−1|2 ,            (22)  

where 𝑝 ≥  2.  
Proof. When 𝑝 =  2,𝜔 is a 2-harmonic 1-form, i.e. harmonic 1-form, (22) is true. So we 

only need to prove the case for 𝑝 >  2. We can choose a local orthonormal basis 𝑒1,· · ·
 , 𝑒𝑚 with the dual basis 𝜃1,· · · , 𝜃𝑚 of 𝑀𝑚 near a fixed point 𝑞 ∈  𝑀 such that 

𝛻𝑒𝑖  𝑒𝑗  (𝑞)  =  0,𝜔1(𝑞)  =  𝜔(𝑒1)(𝑞)  =  |𝜔|(𝑞) and 𝜔(𝑒𝑖) =  𝜔𝑖  =  0 for 𝑖 ≥  2. Writing  

𝜔 =  ∑ 

𝑚

𝑖=1

 𝜔𝑖𝜃𝑖  . 

We have  

𝑑𝜔 =  ∑  

𝑚

𝑖,𝑗=1

 𝜔𝑖𝑗𝜃𝑗  ∧  𝜃𝑖   
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and  

𝛿(|𝜔|𝑝−2𝜔)  =  −|𝜔|𝑝−2∑ 

𝑚

𝑖=1

 [(𝑝 −  2)𝛻𝑖(ln |𝜔|)𝜔𝑖  +  𝜔𝑖𝑖]  

Since 𝜔 is a p-harmonic 1-form, that is, 𝑑𝜔 =  0 and 𝛿(|𝜔|𝑝−2𝜔)  =  0, therefore  

𝜔𝑖𝑗 = 𝜔𝑗𝑖 

for 𝑖, 𝑗 =  1,· · · ,𝑚 and  

∑ 

𝑚

𝑖=1

 [(𝑝 −  2)𝛻𝑖(ln |𝜔|)𝜔𝑖  +  𝜔𝑖𝑖]  =  0  

and  

𝛻𝑒𝑖  |𝜔|  =  𝛻𝑖  |𝜔|  =  𝛻𝑖 ( √∑ 

𝑚

𝑗=1

 𝜔𝑗
2) =

∑  𝜔𝑗𝜔𝑖𝑗
|𝜔|

 =  𝜔1𝑖  .  

At the point 𝑞, we compute,  

|𝛻(|𝜔|𝑝−2𝜔)|  − |𝛻|𝜔|𝑝−1|  

= ∑  

𝑚

𝑖,𝑗=1

 |𝜔|2(𝑝−2)[(𝑝 −  2)𝛻𝑖(ln |𝜔|)𝜔𝑗  +  𝜔𝑖𝑗]
2
  

− ∑  

𝑚

𝑖,𝑗=1

 |𝜔|2(𝑝−2)[(𝑝 −  2)𝛻𝑖(ln |𝜔|)|𝜔| + 𝛻𝑖  |𝜔|]
2  

= ∑  

𝑚

𝑖,𝑗=1

 |𝜔|2(𝑝−2)[(𝑝 −  2)𝛻𝑖(ln |𝜔|)𝜔𝑗 + 𝜔𝑖𝑗]
2
 

− ∑  

𝑚

𝑖,𝑗=1

 |𝜔|2(𝑝−2)[(𝑝 −  2)𝛻𝑖(ln |𝜔|)𝜔1 + 𝜔1𝑖]
2 

≥ ∑ 

𝑖≠1

  |𝜔|2(𝑝−2)[(𝑝 −  2)𝛻1(ln |𝜔|)𝜔𝑖 + 𝜔1𝑖]
2  

+ ∑ 

𝑖≠1

  |𝜔|2(𝑝−2)[(𝑝 −  2)𝛻𝑖(ln |𝜔|)𝜔𝑖 + 𝜔𝑖𝑖]
2  

= ∑  

𝑖≠1

 |𝜔|2(𝑝−2)[𝜔1𝑖]
2  +  ∑  

𝑖≠1

 |𝜔|2(𝑝−2)[(𝑝 −  2)𝛻𝑖(ln |𝜔|)𝜔𝑖  +  𝜔𝑖𝑖]
2  

 ≥  ∑  

𝑖≠1

 |𝜔|2(𝑝−2)[𝜔1𝑖]
2  +

1

𝑚 −  1
 |𝜔|2(𝑝−2) [∑ 

𝑖≠1

 ((𝑝 −  2)𝛻𝑖(ln |𝜔|)𝜔𝑖 + 𝜔𝑖𝑖)]

2

  

= ∑ 

𝑖≠1

 |𝜔|2(𝑝−2)[𝜔1𝑖]
2  +

1

𝑚 −  1
 |𝜔|2(𝑝−2)[−(𝑝 −  2)𝛻1(ln |𝜔|)𝜔1 − 𝜔11]

2  

= ∑ 

𝑖≠1

 |𝜔|2(𝑝−2)[𝜔1𝑖]
2  +  (𝑝 −  1)2

1

𝑚 −  1
 |𝜔|2(𝑝−2)𝜔11

2   

≥ ∑ 

𝑖≠1

 |𝜔|2(𝑝−2)[𝜔1𝑖]
2  +

1

𝑚 −  1
 |𝜔|2(𝑝−2)𝜔11

2   
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≥
1

𝑚 −  1
 |𝜔|2(𝑝−2)∑ 

𝑚

𝑖=1

 𝜔1𝑖
2   

=
1

(𝑚 −  1)(𝑝 −  1)2
 |𝛻|𝜔|𝑝−1|2 .  

This proves the Lemma.  

Using Bochner’s formula [20], we have the following results.  

Lemma (4.2.11)[184]: Let 𝜔 be a 𝑝-harmonic 1-form on Riemannian manifold 𝑀𝑚. Then 

we have  
1

2
 △ |𝜔|2(𝑝−2)  

=  |𝛻(|𝜔|𝑝−2)𝜔|2  −  〈𝛿𝑑(|𝜔|𝑝−2𝜔), |𝜔|𝑝−2𝜔〉  

+  |𝜔|2(𝑝−2)𝑅𝑖𝑐𝑀(𝜔,𝜔).                                                                             (23)  
From (22) and (23), we have  

|𝜔|𝑝−1 △ |𝜔|𝑝−1  

≥
1

(𝑚 −  1)(𝑝 −  1)2
|𝛻|𝜔|𝑝−1|2  

− 〈𝛿𝑑(|𝜔|𝑝−2𝜔), |𝜔|𝑝−2𝜔〉,+|𝜔|2(𝑝−2)𝑅𝑖𝑐𝑀(𝜔,𝜔),                              (24)  
where 𝜔 is a 𝑝-harmonic 1-from on Riemannian manifold 𝑀𝑚.  

Lemma (4.2.12)[184]: [188] Let 𝑀𝑚 be an m-dimensional complete immersed minimal 

submanifold in a Hadamard manifold 𝑁 with the sectional curvature satisfying −𝑘2  ≤
 𝐾𝑁  ≤  0 for some constant 𝑘. Then the Ricci curvature of 𝑀 satisfies  

𝑅𝑖𝑐𝑀  ≥  (𝑚 −  1)(|𝐻|2 − 𝑘2)  −
𝑚 −  1

𝑚
 |Φ|2  −

(𝑚 −  2)√𝑚(𝑚 −  1)

𝑚
  |𝐻||Φ|   (25) 

Lemma (4.2.13)[184]: [29] Let 𝑀𝑚 be an m-dimensional complete immersed minimal 

submanifold in 𝑁 with nonpositive curvature, 𝑚 ≥  3. Then for any 𝜙 ∈  𝐶0
∞ (𝑀) we 

have  

( ∫  
𝑀

 |𝜙|
𝑚
𝑚−1 𝑑𝑣)

𝑚−1
𝑚

 ≤  𝐶′ (𝑚)∫  
𝑀

 (|𝛻𝜙| +  𝑚|𝐻||𝜑|)𝑑𝑣, (26)  

where 𝐶′ (𝑚) depends only on 𝑚. 

From Lemma (4.2.13), we have the following Sobolev inequality  

( ∫  
𝑀

 |𝜙|
2𝑚
𝑚−2𝑑𝑣)

𝑚−2
𝑚

 ≤  𝐶(𝑚)∫  
𝑀

 (|𝛻𝜙|2  +  |𝐻|2𝜑2 )𝑑𝑣, (27)  

where 𝐶(𝑚)  >  0 depends only on m.  

Lemma (4.2.14)[184]: Let 𝑓 ∶  𝑀𝑚  →  𝑅 be a smooth function on Riemannian manifold 

M, and 𝜔 be a closed 1-from on 𝑀. Then we  

|𝑑(𝑓𝜔)| ≤  |𝑑𝑓||𝜔|.  
Proof. We can choose a local orthonormal basis 𝑒1,· · · , 𝑒𝑚 with the dual basis 𝜃1,· · · , 𝜃𝑚. 
Writing  

𝑑(𝑓𝜔) =  𝑑𝑓 ∧  𝜔 =  ∑  

𝑚

𝑖,𝑗=1

 𝑓𝑖𝜔𝑗𝜃𝑖  ∧  𝜃𝑗  =  ∑  

𝑖<𝑗

(𝑓𝑖𝜔𝑗 − 𝑓𝑗𝜔𝑖)𝜃𝑖 ∧ 𝜃𝑗  . 

Now we compute 
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|𝑑𝑓|2 |𝜔|2  −  |𝑑𝑓 ∧  𝜔|2  =  (∑ 

𝑚

𝑖=1

 𝑓𝑖
2 ) (∑ 

𝑚

𝑗=1

 𝜔𝑗
2) − ∑ 

𝑖<𝑗

(𝑓𝑖𝜔𝑗 − 𝑓𝑗𝜔𝑖)
2
 

=∑ 

𝑚

𝑖=1

 𝑓𝑖
2𝜔𝑖

2 +∑ 

𝑚

𝑖≠𝑗

 (𝑓𝑖𝜔𝑖)(𝑓𝑗𝜔𝑗) = (𝑓1𝜔1, … , 𝑓𝑚𝜔𝑚) ≥ 0 

This proves the Lemma 

Theorem (4.2.15)[184]: Let 𝑥:𝑀𝑚 → 𝑁,𝑚 ≥ 3, be an isometric immersion of a complete 

noncompact manifold M in a Hadamard manifold 𝑁 with the sectional curvature satisfying  

−𝑘2 ≤ 𝐾𝑁 ≤ 0 for some constan 𝑘. In the case there exist point 𝑞 ∈ 𝑀 such that 𝐾𝑁(𝑞) ≠
0, assume further that the first eigenvalue of the Laplace-Beltrami operator of 𝑀 satisfies      

   𝜆1(𝑀) >
(𝑚 −  1)2𝑝2(𝑘2  −  lim𝜌→∞ inf |𝐻|

2)

4[(𝑚 −  1)(𝑝 −  1) +  1]
 .  

where 𝜌 stands for the distance in 𝑀 from a fixed point. If 𝑀𝑚 has finite total curvature, 

then the 𝑑𝑖𝑚𝐻1,𝑝(𝑀)  <  ∞ for 𝑝 ≥  2.  
Proof. Assume that 𝜔 is a 𝑝-harmonic 1-from on 𝑀𝑚, i.e. ω ∈ H1,p(M). From (24) and 

(25), we have  

|𝜔|𝑝−1 △ |𝜔|𝑝−1  

≥ −〈𝛿𝑑(|𝜔|𝑝−2𝜔), |𝜔|𝑝−2𝜔〉 +
1

(𝑚 −  1)(𝑝 −  1)2
 |𝛻|𝜔|𝑝−1|2  

+(𝑚 −  1)(|𝐻|2  −  𝑘2)|𝜔|2(𝑝−1)  −
𝑚 −  1

𝑚
 |Φ|2 |𝜔|2(𝑝−1)  

−
(𝑚 −  2)√𝑚(𝑚 −  1)

𝑚
 |𝐻||Φ||𝜔|2(𝑝−1)  

≥ −〈𝛿𝑑(|𝜔|𝑝−2𝜔), |𝜔|𝑝−2𝜔〉 +
1

𝑚 −  1

4

𝑝2
 |𝜔|𝑝−2  |𝛻|𝜔|

𝑝
2|
2

    

+(𝑚 −  1)(|𝐻|2 − 𝑘2)|𝜔|2(𝑝−1) −
𝑚 −  1

𝑚
 |Φ|2|𝜔|2(𝑝−1)  

−
(𝑚 −  2)√𝑚(𝑚 −  1)

𝑚
 |𝐻||Φ||𝜔|2(𝑝−1).  

So we have  

|𝜔| △ |𝜔|𝑝−1  ≥  −〈𝛿𝑑(|𝜔|𝑝−2𝜔),𝜔〉  +
1

𝑚 −  1

4

𝑝2
 |𝛻|𝜔|

𝑝
2|
2

  

+(𝑚 −  1)(|𝐻|2  −  𝑘2 )|𝜔|𝑝  −
𝑚 −  1

𝑚
 |Φ|2 |𝜔|𝑝            (28) 

 −
(𝑚 −  2)√𝑚(𝑚 −  1)

𝑚
 |𝐻||Φ||𝜔|𝑝 .  

Fixed a point 𝑥0  ∈  𝑀 and denote by 𝜌(𝑥) the geodesic distance on 𝑀 from 𝑥0 to 𝑥. Let us 

choose 𝜂 ∈  𝐶0
∞ (𝑀) satisfying  

𝜂 =

{
 
 

 
 0                                           on 𝐵𝑥0 (𝑟0) ∪ (𝑀\𝐵𝑥0 (2𝑟)),

𝜌(𝑥0, 𝑥)  − 𝑟0              on 𝐵𝑥0 (𝑟0 +  1) \𝐵𝑥0 (𝑟0),

1                                    on 𝐵𝑥0 (𝑟)\𝐵𝑥0 (𝑟0  +  1),

2𝑟 − 𝜌(𝑥0, 𝑥) 𝑟 on 𝐵𝑥0 (2𝑟)\𝐵𝑥0 (𝑟),
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where 𝑟 >  𝑟0  +  1 and 𝑟0 will be determined later. Multiplying (28) by η 2 and 

integrating over on 𝑀, we have  

−∫  
𝑀

 𝜂2𝛻|𝜔|𝛻|𝜔|𝑝−1   −  2 ∫  
𝑀

 𝜂|𝜔|〈𝛻𝜂, 𝛻|𝜔|𝑝−1 〉  + ∫  
𝑀

 𝜂2 〈𝛿𝑑(|𝜔|𝑝−2𝜔),𝜔〉 

≥ +
1

𝑚 −  1

4

𝑝2
 ∫  
𝑀

 𝜂2  |𝛻|𝜔|
𝑝
2|
2

 +  (𝑚 −  1)∫  
𝑀

 (|𝐻|2  −  𝑘2)|𝜔|𝑝 𝜂2  (29) 

−
𝑚 −  1

𝑚
  ∫  
𝑀

 |Φ|2  |𝜔|𝑝 𝜂2  −
(𝑚 −  2)√𝑚(𝑚 −  1)

𝑚
 ∫  
𝑀

 |𝐻||Φ||𝜔|𝑝 𝜂2 .  

From Lemma (4.2.14), we have  

|∫  
𝑀

 𝜂2 〈𝛿𝑑(|𝜔|𝑝−2𝜔),𝜔〉| =  | ∫  
𝑀

 〈𝑑(|𝜔|𝑝−2𝜔), 𝑑(𝜂2𝜔)〉|  

≤  ∫  
𝑀

 |𝑑(|𝜔|𝑝−2𝜔)||𝑑(𝜂2𝜔)|  ≤  2 ∫  
𝑀

 𝜂|𝑑𝜂||𝜔|2 |𝑑|𝜔|𝑝−2|             (30) 

=
4(𝑝 −  2)

𝑝
 ∫  
𝑀

 𝜂|𝛻𝜂||𝜔|
𝑝
2  |𝛻|𝜔|

𝑝
2|.  

By direct computation, we get  

−∫  
𝑀

 𝜂2𝛻|𝜔|𝛻|𝜔|𝑝−1  −  2 ∫  
𝑀

 𝜂|𝜔|〈𝛻𝜂, 𝛻|𝜔|𝑝−1〉  

= −
4(𝑝 −  1)

𝑝2
 ∫  
𝑀

 𝜂2  |𝛻|𝜔|
𝑝
2|
2

−
4(𝑝 −  1)

𝑝
 ∫  
𝑀

 𝜂 〈𝛻𝜂, 𝛻|𝜔|
𝑝
2〉 |𝜔|

𝑝
2    (31) 

)  ≤  −
4(𝑝 −  1)

𝑝2
 ∫  
𝑀

 𝜂2  |𝛻|𝜔|
𝑝
2|
2

 +
4(𝑝 −  1)

𝑝
 ∫  
𝑀

 𝜂|𝛻𝜂||𝜔|
𝑝
2  |𝛻|𝜔|

𝑝
2|.  

From (29), (30) and (31), we have  

0 ≤  −
4(𝑝 −  1)

𝑝2
 ∫  
𝑀

 𝜂2  |𝛻|𝜔|
𝑝
2|
2

 +
4(2𝑝 −  3)

𝑝
 ∫  
𝑀

 𝜂|𝛻𝜂||𝜔|
𝑝
2  |𝛻|𝜔|

𝑝
2|  

−
4

𝑝2(𝑚 −  1)
 ∫  
𝑀

 𝜂2  |𝛻|𝜔|
𝑝
2|
2

 +  (𝑚 −  1)∫  
𝑀

 (𝑘2  −  |𝐻|2)|𝜔|𝑝 𝜂2  (32) 

 +
𝑚 −  1

𝑚
 ∫  
𝑀

 |Φ|2 |𝜔|𝑝 𝜂2  +
(𝑚 −  2)√𝑚(𝑚 −  1)

𝑚
 ∫  
𝑀

 |𝐻||Φ||𝜔|𝑝 𝜂2  

For 𝜀1 >  0, 𝜀2  >  0, we apply the Cauchy-Schwarz inequality, we have  

[
4

𝑝2
(𝑚 −  1)(𝑝 −  1) +  1

𝑚 −  1
 −
4(2𝑝 −  3)

𝑝
 𝜀1] ∫  

𝑀

  𝜂2  |𝛻|𝜔|
𝑝
2|
2

  

≤
2𝑝 −  3

𝑝

1

𝜀1
 ∫  
𝑀

 |𝜔|𝑝 |𝛻𝜂|2                                     (33) 

+ ∫  
𝑀

 [(𝑚 −  1)𝑘2  +  (−(𝑚 −  1) +
(𝑚 −  2)𝜀2√𝑚(𝑚 −  1)

2𝑚
) |𝐻|2 ] 𝜂2 |𝜔|𝑝  

+(
𝑚 −  1

𝑚
 +
(𝑚 −  2)√𝑚(𝑚 −  1)

2𝑚𝜀2
) ∫  

𝑀

 |Φ|2 |𝜔|𝑝 𝜂2 . 

On the other hand, since 𝑚 ≥  3, we use Hölder, Sobolev inequality (27), and Cauchy- 

Schwartz inequalities to obtain  
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∫  
𝑀

 |Φ|2 |𝜔|𝑝 𝜂2  ≤  ( ∫  
supp(𝜂)

 |Φ|𝑚)

2
𝑚

 ( ∫  
𝑀

 (𝜂|𝜔|
𝑝
2  )

2𝑚
𝑚−2

)

𝑚−2
𝑚

  

≤  𝐶(𝑚)( ∫  
supp(𝜂)

 |Φ|𝑚)

2
𝑚

 ∫  
𝑀

 (|𝛻 (𝜂|𝜔|
𝑝
2  )|

2

 +  |𝐻|2 𝜂2 |𝜔|𝑝 )  

≤ 𝜙(𝜂) [(1 + 𝜀3)∫  
𝑀

 𝜂2  |𝛻|𝜔|
𝑝
2|  + (1 +

1

𝜀3
) ∫  

𝑀

 |𝜔|𝑝 |𝛻𝜂|2 ]   (34) 

+𝜙(𝜂)∫  
𝑀

 𝜂2 |𝜔|𝑝 |𝐻|2  

for 𝜀3  >  0, where 𝜙(𝜂)  =  𝐶(𝑚) ( ∫  
supp(𝜂)

 |Φ|𝑚)

2

𝑚
 and 𝐶(𝑚)  >  0 is the constant in 

the Hoffman-Spruck inequality. From (33) and (34), we have  

𝐴 ∫  
𝑀

 𝜂2  |𝛻|𝜔|
𝑝
2|
2

 +  𝐵 ∫  
𝑀

 𝜂2 |𝜔|𝑝 |𝐻|2  

≤  𝐶 ∫  
𝑀

 |𝜔|𝑝 |𝛻𝜂|2  +  (𝑚 −  1)𝑘2  ∫  
𝑀

 𝜂2 |𝜔|𝑝                         (35)  

where  

𝐴 =
4

𝑝2
(𝑚 −  1)(𝑝 −  1) +  1

𝑚 −  1
 −
4(2𝑝 −  3)

𝑝
 𝜀1  

−  (
𝑚 −  1

𝑚
 +
(𝑚 −  2)√𝑚(𝑚 −  1)

2𝑚𝜀2
)𝜙(𝜂)(1 + 𝜀3)  

𝐵 =  (𝑚 −  1) −
(𝑚 −  2)𝜀2√𝑚(𝑚 −  1)

2𝑚
 

− 𝜙(𝜂) (
𝑚 −  1

𝑚
 +
(𝑚 −  2)√𝑚(𝑚 −  1)

2𝑚𝜀2
)  

𝐶 =
2𝑝 −  3

𝑝

1

𝜀1
 + 𝜙(𝜂) (1 +

1

𝜀3
)(
𝑚 −  1

𝑚
 +
(𝑚 −  2)√𝑚(𝑚 −  1)

2𝑚𝜀2
)  

We choose 0 <  𝜀 < min {−(𝑚𝑝 + 5𝑝 − 12) +

√(𝑚−1)2(𝑝2+16𝑝−16)+8(𝑚−1)(2𝑝2−3𝑝+2)+16(2𝑝−3)2

2(𝑚−1)𝑝
 ,
1

2
 } , 𝜀2  =  𝜀2(𝜀) and a positive constant 

Λ(𝜀)  >  0 satisfying:  
4(2𝑝 −  3)

𝑝
 𝜀 + (𝑚 −  1)𝜀(1 +  𝜀) <

4[(𝑚 −  1)(𝑝 −  1) +  1]

(𝑚 −  1)𝑝2
  

(𝑚 −  2)𝜀2√𝑚(𝑚 −  1)

𝑚
 <  (𝑚 −  1)𝜀                                           (36) 

(
𝑚 −  1

𝑚
 +
(𝑚 −  2)√𝑚(𝑚 −  1)

𝑚𝜀2
)Λ2  <  (𝑚 −  1)𝜀.  

Since 𝑀 has finite total curvature, we can fix 𝑟1 large enough such that  
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( ∫  
𝑀\𝐵𝑥0 (𝑟1)

 |𝜙|𝑚)

2
𝑚

 <
Λ

𝐶(𝑚)
 .                                             (37) 

Take 𝑟0  >  𝑟1, thus supp(𝜂)  ⊂  𝑀\𝐵𝑥0 (𝑟1) and 𝜙(𝜂)  =  𝐶(𝑚) (∫  
supp(𝜂)

 |Φ|𝑚)

2

𝑚
 <  𝛬. 

Choosing 0 <  𝜀1  <  𝜀 and 0 <  𝜀3  <  𝜀, we have  

𝐴 >  �̃�  =
4[(𝑚 −  1)(𝑝 −  1) +  1]

(𝑚 −  1)𝑝2
 −
4(2𝑝 −  3)

𝑝
 𝜀 −  (𝑚 −  1)𝜀(1 +  𝜀) >  0 

 𝐵 >  �̃�  =  (𝑚 −  1)(1 −  2𝜀) >  0  

𝐶 <  �̃�  =
(2𝑝 −  3)

𝑝

1

𝜀1
 +  Λ2  (1 +

1

𝜀3
)(
𝑚 −  1

𝑚
 +
(𝑚 −  2)√𝑚(𝑚 −  1)

𝑚𝜀2
)  

From (35) and the above inequalities, we have  

�̃�  ∫  
𝑀

 𝜂2  |𝛻|𝜔|
𝑝
2|
2

 +  �̃�  ∫  
𝑀

 𝜂2 |𝜔|𝑝 |𝐻|2  

≤  �̃�  ∫  
𝑀

 |𝜔|𝑝 |𝛻𝜂|2  +  (𝑚 −  1)𝑘2  ∫  
𝑀

 𝜂2 |𝜔|𝑝 .                                   (38)  

If 𝑘 =  0, from (38) and the definition of η, we have  

�̃�  ∫  
𝑀

 𝜂2  |𝛻|𝜔|
𝑝
2|
2

 +  �̃�  ∫  
𝑀

 𝜂2 |𝜔|𝑝 |𝐻|2  ≤  �̃� ∫  
𝑀

 |𝜔|𝑝 |𝛻𝜂|2 .            (39)  

From (27) and the Cauchy-Schwarz inequality, we have  

𝐶(𝑚)−1  (∫  
𝑀

 (𝜂|𝜔|
𝑝
2|)

2𝑚
𝑚−2

 )

𝑚−2
𝑚

 ≤  ∫  
𝑀

 (|𝛻 (𝜂|𝜔|
𝑝
2  )|

2

 +  |𝐻|2 𝜂2 |𝜔|𝑝 )  

≤ (1 + 𝜀5)∫  
𝑀

 𝜂2  |𝛻|𝜔|
𝑝
2|
2

 +  (1 +
1

𝜀5
) ∫  

𝑀

 |𝜔|𝑝 |𝛻𝜂|2  +  ∫  
𝑀

 𝜂2 |𝐻|2 |𝜔|𝑝     (40)  

for any ε5 > 0. From (39) and (40), we have  

𝐶(𝑚)−1  ( ∫  
𝑀

 (𝜂|𝜔|
𝑝
2  )

2𝑚
𝑚−2

)

𝑚−2
𝑚

 ≤  (1 −
(1 + 𝜀5)�̃�

�̃�
 ) ∫  

𝑀

 𝜂2 |𝐻|2 |𝜔|𝑝  

+(1 +
1

𝜀5
 +  (1 + 𝜀5)

�̃�

�̃�
) ∫  

𝑀

 |𝜔|𝑝 |𝛻𝜂|2 .              (41)  

If 𝑘 ≠  0. We recall that the first eigenvalue 𝜆1(𝑀) of the Laplacian of 𝑀 satisfies  

𝜆1(𝑀)∫  
𝑀

 𝜑2  ≤  ∫  
𝑀

 |𝛻𝜑|2                                               (42)  

for any 𝜑 ∈  𝐶0
∞ (𝑀). Applying (69) with 𝜑 =  𝜂|𝜔|

𝑝

2 , we have  

𝜆1(𝑀)∫  
𝑀

 𝜂2 |𝜔|𝑝  ≤  ∫  
𝑀

 |𝛻 [𝜂|𝜔|
𝑝
2  ]|

2

 

=  ∫  
𝑀

 [𝜂2  |𝛻|𝜔|
𝑝
2|
 

 +  2𝜂|𝜔|
𝑝
2  〈𝛻𝜂, 𝛻|𝜔|

𝑝
2〉  + |𝜔|𝑝 |𝛻𝜂|2]  

By using the Cauchy-Schwartz inequality, we have for 𝜀4  >  0  

𝜆1(𝑀)∫  
𝑀

 𝜂2 |𝜔|𝑝  ≤  ∫  
𝑀

 [(1 + 𝜀4)𝜂
2  |𝛻|𝜔|

𝑝
2|
 

 +  (1 +
1

𝜀4
) |𝜔|𝑝 |𝛻𝜂|2]       (43)  

From (38) and (70), we have  
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[
�̃�𝜆1(𝑀)

1 + 𝜀4
 −  [(𝑚 −  1)𝑘2  −  �̃� inf

supp(𝜂)
  |𝐻|2 ]]  ∫  

𝑀

 𝜂2 |𝑑𝑢|𝑝  

≤  [�̃�  +
�̃�

𝜀4
] ∫  

𝑀

 |𝑑𝑢|𝑝 |𝛻𝜂|2                                                                        (44)  

Note that  

[
�̃�𝜆1(𝑀)

1 + 𝜀4
 −  [(𝑚 −  1)𝑘2  −  �̃� inf

supp(𝜂)
  |𝐻|2 ]]  

> [
4[(𝑚 −  1)(𝑝 −  1) +  1]

(𝑚 −  1)𝑝2
 −
4(2𝑝 −  3)

𝑝
 𝜀 −  (𝑚 −  1)𝜀(1 +  𝜀)]

𝜆1(𝑀)

1 + 𝜀4
 

 −(𝑚 −  1) (𝑘2  − (1 −  2𝜀) inf
supp(𝜂)

  |𝐻|2)  

Thus, if 𝜆1(𝑀) >
(𝑚−1)2𝑝2(𝑘2−inf𝜌→∞ |𝐻|

2 )

4[(𝑚−1)(𝑝−1)+1]
 , then we can choose 𝜀, 𝜀4 small enough and 

depending on 𝑚, 𝑝, 𝑘2 , 𝜆1(𝑀) and inf
supp(𝜂)

  |𝐻|2 , so that [
�̃�𝜆1(𝑀)

1+𝜀4
 −  [(𝑚 −  1)𝑘2  −

 �̃� inf
supp(𝜂)

  |𝐻|2 ]]  >  0. Then we have  

∫  
𝑀

 𝜂2 |𝜔|𝑝  ≤  �̃�  ∫  
𝑀

 |𝜔|𝑝 |𝛻𝜂|2 ,                                   (45)  

where De is a positive constant. From (38) and (40), we have  

𝐶(𝑚)−1  ( ∫  
𝑀

 (𝜂|𝜔|
𝑝
2)

2𝑚
𝑚−2

)

𝑚−2
𝑚

  ≤  (1 − (1 + 𝜀5)
�̃�

�̃�
) ∫  

𝑀

 𝜂2 |𝐻|2 |𝜔|𝑝  

+(1 +
1

𝜀5
+ (1 + 𝜀5) 

�̃�

�̃�
) ∫  

𝑀

 |𝜔|𝑝 |𝛻𝜂|2  

+  (1 + 𝜀5)(𝑚 −  1)𝑘
2
1

�̃�
 ∫  
𝑀

 𝜂2 |𝜔|𝑝 .                                                       (46) 

Since 𝑚 ≥  3 and 𝑝 ≥  2, we can choose 𝜀 and 𝜀5 small enough such that  

(1 + 𝜀5)
�̃�

�̃�
  >  1                                                               (47) 

From (41), (45), (46) and (47), we have  

𝐶(𝑚)−1  ( ∫  
𝑀

 (𝜂|𝜔|
𝑝
2|)

2𝑚
𝑚−2

)

𝑚−2
𝑚

 ≤  �̃�(𝑚, 𝑝)∫  
𝑀

 |𝜔|𝑝 |𝛻𝜂|𝑝          (48)  

for some constant �̃�(𝑚, 𝑝)  >  0, for all 𝜔 ∈  𝐻1,𝑝(𝑀).  
It follows from the definition of η and (48), we have  

( ∫  
𝐵𝑥0 (𝑟)\𝐵𝑥0 (𝑟0+1)

 (𝜂|𝜔|
𝑝
2|)

2𝑚
𝑚−2

)

𝑚−2
𝑚

 ≤  𝐶1  ∫  
𝐵𝑥0 (𝑟0+1)\𝐵𝑥0 (𝑟0)

|𝜔|𝑝   (49) 

 +
𝐶1
𝑟2
 ∫  
𝐵𝑥0 (2𝑟)\𝐵𝑥0 (𝑟)

 |𝜔|𝑝 .  

Since |ω| ∈ L p (M), taking r → ∞, we have  
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( ∫  
𝐵𝑥0 (𝑟)\𝐵𝑥0 (𝑟0+1)

 (𝜂|𝜔|
𝑝
2|)

2𝑚
𝑚−2

)

𝑚−2
𝑚

 ≤  𝐶1  ∫  
𝐵𝑥0 (𝑟0+1)\𝐵𝑥0 (𝑟0)

|𝜔|𝑝         (50)  

It follows from the Hölder inequality that  

∫  
𝐵𝑥0 (𝑟0+2)\𝐵𝑥0 (𝑟0+1)

 |𝜔|𝑝  

≤  𝑉𝑜𝑙(𝐵𝑥0 (𝑟0  +  2)) ( ∫  
𝐵𝑥0 (𝑟)\𝐵𝑥0 (𝑟0+1)

 (𝜂|𝜔|
𝑝
2|)

2𝑚
𝑚−2

)

𝑚−2
𝑚

.             (51)  

From (50) and (51), we have  

∫  
𝐵𝑥0 (𝑟0+2)

 |𝜔|𝑝  ≤  𝐶2( ∫  
𝐵𝑥0 (𝑟0+1)

 |𝜔|𝑝 ,                     (52)  

where 𝐶2 depends on Vol(𝐵𝑥0 (𝑟0  +  2)), m and p. From (28), we have  

|𝜔| △ |𝜔|𝑝−1  ≥  −〈𝛿𝑑(|𝜔|𝑝−2𝜔),𝜔〉  +
4

𝑝2(𝑚 −  1)
|𝛻|𝜔|

𝑝
2|
2

−  𝛼|𝜔|𝑝 , (53)  

where 𝛼 ∶  𝑀 →  [0,∞) is the function given by  

𝛼 =  |(𝑚 −  1)(|𝐻|2 − 𝑘2)  −
𝑚 −  1

𝑚
 |Φ|2  −

(𝑚 −  2)√𝑚(𝑚 −  1)

𝑚
  |𝐻||Φ|| .  

Fix 𝑥 ∈  𝑀 and take ξ ∈  𝐶0
1 (𝐵1(𝑥)) . Multiply both sides of (53) by 𝜉2 |𝜔|

𝑝𝑞

2
−𝑝 , with 

𝑞 ≥  2, and integrating by parts we obtain  

−
4(𝑝 −  1)

𝑝
 ∫  
𝐵𝑥(1)

 𝜉|𝜔|
𝑝𝑞
2
 −
𝑝
2  〈𝛻𝜉, 𝛻|𝜔|

𝑝
2〉  

≥  [
2(𝑝 −  1)(𝑞 −  1)

𝑝
 +

4

𝑝2(𝑚 −  1)
] ∫  

𝐵𝑥(1)

 |𝜔|
𝑝𝑞
2
 −𝑝  |𝛻|𝜔|

𝑝
2|
2

 𝜉2   

− 𝛼 ∫  
𝐵𝑥(1)

 𝜉2 |𝜔|
𝑝𝑞
2  −  ∫  

𝐵𝑥(1)

 〈𝑑(|𝜔|𝑝−2𝜔), 𝑑 (𝜉2 |𝜔|
𝑝𝑞
2
 −𝑝𝜔)〉 . (54) 

From Lemma (4.2.14) and Cauchy-Schwatz inequality, we have  

∫  
𝐵𝑥(1)

 |〈𝑑(|𝜔|𝑝−2𝜔), 𝑑 (𝜉2 |𝜔|
𝑝𝑞
2
 −𝑝𝜔)〉|  ≤  ∫  

𝐵𝑥(1)

 |𝑑(|𝜔|𝑝−2𝜔), 𝑑 (𝜉2 |𝜔|
𝑝𝑞
2
 −𝑝𝜔)|  

≤ ∫  
𝐵𝑥(1)

 |𝛻|𝜔|𝑝−2||𝜔|2  |[𝑑(𝜉2)|𝜔|
𝑝𝑞
2
 −𝑝  +  𝜉2 𝑑|𝜔|

𝑝𝑞
2
 −𝑝 ]|                 (55) 

≤
4(𝑝 −  2)

𝑝
 ∫  
𝐵𝑥(1)

 𝜉2 |𝜔|
𝑝𝑞
2
 −
𝑝
2  |𝛻𝜉| |𝛻|𝜔|

𝑝
2|  

+
2(𝑝 −  2)(𝑞 −  2)

𝑝
 ∫  
𝐵𝑥(1)

 𝜉2 |𝜔|
𝑝𝑞
2
 −𝑝  |𝛻|𝜔|

𝑝
2|
2

  

≤
2

𝑝2(𝑚 −  1)
 ∫  
𝐵𝑥(1)

 |𝜔|
𝑝𝑞
2
 −𝑝  |𝛻|𝜔|

𝑝
2|
2

 𝜉2  +  2(𝑝 −  2)2(𝑚 −  1)∫  
𝐵𝑥(1)

 |𝛻𝜉|2|𝜔|
𝑝𝑞
2   

+
2(𝑝 −  2)(𝑞 −  2)

𝑝
 ∫  
𝐵𝑥(1)

 𝜉2  |𝜔|
𝑝𝑞
2
 −𝑝  |𝛻|𝜔|

𝑝
2|
2

  

and  
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−
4(𝑝 −  1)

𝑝
 ∫  
𝐵𝑥(1)

𝜉   |𝜔|
𝑝𝑞
2
 −
𝑝
2  〈𝛻𝜉, 𝛻|𝜔|

𝑝
2〉  

≤
2

𝑝2(𝑚 −  1)
 ∫  
𝐵𝑥(1)

  |𝜔|
𝑝𝑞
2
 −𝑝  |𝛻|𝜔|

𝑝
2|
2

 𝜉2  

+ 2(𝑝 −  1)2 (𝑚 −  1) ∫  
𝐵𝑥(1)

(1)|𝛻𝜉|2 |𝜔|
𝑝𝑞
2  .               (56) 

From (54), (55) and (56), we have  

[
2(𝑝 −  1)(𝑞 −  1)

𝑝
 −
2(𝑝 −  2)(𝑞 −  2)

𝑝
 ] ∫  

𝐵𝑥(1)

  |𝜔|
𝑝𝑞
2
 −𝑝  |𝛻|𝜔|

𝑝
2|
2

 𝜉2  

≤  𝛼 ∫  
𝐵𝑥(1)

 𝜉2 |𝜔|
𝑝𝑞
2
  +  [2(𝑝 −  1)2  +  2(𝑝 −  2)2  ](𝑚 −  1)∫  

𝐵𝑥(1)

|𝛻𝜉|2  |𝜔|
𝑝𝑞
2
  .  

(57) 
By using the Cauchy-Schwarz inequality, we have  

∫  
𝐵𝑥(1)

 |𝛻 (𝜉|𝜔|
𝑝𝑞
4  )|

2

 =  ∫  
𝐵𝑥(1)

 |𝜔|
𝑝𝑞
2  |𝛻𝜉|2 +

𝑞2

4
 ∫  
𝐵𝑥(1)

 𝜉2 |𝜔|
𝑝𝑞
2
 −𝑝  |𝛻|𝜔|

𝑝
2|
2

  

+ 𝑞 ∫  
𝐵𝑥(1)

𝜉|𝜔|
𝑝𝑞
2
 −
𝑝
2  〈𝛻𝜉, 𝛻|𝜔|

𝑝
2〉                   (58) 

≤ (1 +  𝑞)∫  
𝐵𝑥(1)

 |𝜔|
𝑝𝑞
2  |𝛻𝜉|2  +

𝑞

4
 (𝑞 +  1) ∫  

𝐵𝑥(1)

 𝜉2 |𝜔|
𝑝𝑞
2
 −𝑝  |𝛻|𝜔|

𝑝
2|
2

.  

From (57) and (58), we have  

∫  
𝐵𝑥(1)

 |𝛻 (𝜉|𝜔|
𝑝𝑞
4  )|

2

 ≤  𝐶2  ∫  
𝐵𝑥(1)

 |𝜔|
𝑝𝑞
2  |𝛻𝜉|2  +  𝐶3  ∫  

𝐵𝑥(1)

 𝛼𝜉2 |𝜔|
𝑝𝑞
2  , (59)  

where  

𝐶2  =  1 +  𝑞 +
𝑞

4
 (𝑞 +  1)[2(𝑝 −  1)2  +  2(𝑝 −  2)2](𝑚 −  1)  

[
2(𝑝 −  1)(𝑞 −  1)

𝑝
 −
2(𝑝 −  2)(𝑞 −  2)

𝑝
 ]

−1

 ≤  𝐶(𝑝)𝑚𝑞,  

𝐶3  =
𝑞

4
 (𝑞 +  1) [

2(𝑝 −  1)(𝑞 −  1)

𝑝
 −
2(𝑝 −  2)(𝑞 −  2)

𝑝
 ]

−1

 ≤  𝐶(𝑝)𝑞, 

where 𝐶(𝑝) is a positive constant depending only on p. Applying (27) to 𝜉|𝜔|
𝑝𝑞

4  and using 

(59), we have  

(∫  
𝐵𝑥(1)

(𝜉|𝜔|
𝑝𝑞
4 )

2𝑚
𝑚−2

)

𝑚−2
𝑚

  

≤  𝐶(𝑚)∫  
𝐵𝑥(1)

 |𝛻 (𝜉|𝜔|
𝑝𝑞
4  )|

2

 +  𝐶(𝑚)∫  
𝐵𝑥(1)

 |𝐻|2 𝜉2 |𝜔|
𝑝𝑞
2   

≤ ∫  
𝐵𝑥(1)

 [𝐶(𝑚)𝐶3𝛼 +  𝐶(𝑚)|𝐻|
2]𝜉2 |𝜔|

𝑝𝑞
2  +  𝐶(𝑚)𝐶2  ∫  

𝐵𝑥(1)

 |𝜔|
𝑝𝑞
2  |𝛻𝜉|2  

so we have  
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(∫  
𝐵𝑥(1)

 (𝜉|𝜔|
𝑝𝑞
4 )

2𝑚
𝑚−2

)

𝑚−2
𝑚

 ≤  𝑞𝐶4  ∫  
𝐵𝑥(1)

 [𝜉2  +  |𝛻𝜉|2]|𝜔|
𝑝𝑞
2  , (60) 

for a constant 𝐶4  >  0 depending 𝑚, 𝑝, Vol(𝐵𝑥(1)), sup
𝐵𝑥(1)

 𝛼 and sup
𝐵𝑥(1)

  |𝐻|2 . Given an 

integer 𝑘 ≥  0, we set 𝑞𝑘  =
2𝑚𝑘

(𝑚−2)𝑘
 and 𝜌𝑘

  =
1

2
 +

1

2𝑘+1 
 . Take a function 𝜉𝑘  ∈

 𝐶0
∞ (𝐵𝑥(𝜌𝑘

 )) satisfying 𝜉𝑘  ≥  0, 𝜉𝑘  =  1 on 𝐵𝑥(𝜌𝑘+1) and |𝛻𝜉𝑘|  ≤  2
𝑘+3. Replacing 𝑞 

and 𝜉 in (60) by 𝑞𝑘 and 𝜉𝑘 respectively, we have  

( ∫  
𝐵𝑥(𝜌𝑘+1)

 |𝜔|
𝑝𝑞𝑘+1
2 )

1
𝑞𝑘+1

 ≤  (𝑞𝑘𝐶44
𝑘+4)

1
𝑞𝑘 ( ∫  

𝐵𝑥(𝜌𝑘)

 |𝜔|
𝑝𝑞𝑘
2 )

1
𝑞𝑘
 .   (61) 

Applying the Moser iteration to (61), we conclude that  

|𝜔|𝑝 (𝑥) ≤  ‖𝜔‖
𝐿∞(𝐵𝑥(

1
2
 ))

𝑝
 ≤  𝐶5  ∫  

𝐵𝑥(1)

 |𝜔|𝑝               (62)  

for a constant 𝐶5  >  0 depending only on 𝑚, 𝑝, Vol(𝐵𝑥(1)), sup
𝐵𝑥(1)

  𝛼 and sup
𝐵𝑥(1)

  |𝐻|2 . 

Take 𝑥 ∈  𝐵𝑥0  (𝑟0  +  1) such that  

|𝜔|𝑝 (𝑥) = sup
𝐵𝑥0(𝑟0+1)

  |𝜔|𝑝 .                                  (63) 

 From (62) and (63), we have  

sup
𝐵𝑥0(𝑟0+1)

  |𝜔|𝑝  ≤  𝐶5  ∫  
𝐵𝑥0(𝑟0+2)

 |𝜔|𝑝 .                 (64) 

From (52) and (64), we have  

sup
𝐵𝑥0(𝑟0+1)

  |𝜔|𝑝  ≤  𝐶6  ∫  
𝐵𝑥0(𝑟0+1)

 |𝜔|𝑝 ,               (65)  

where 𝐶6  >  0 is a constant depending on 𝑚, 𝑝, Vol(𝐵𝑥(𝑟0  +  2)), sup
𝐵𝑥(𝑟0+2)

  𝛼 and 

sup
𝐵𝑥(𝑟0+2)

  |𝐻|2 .  

Finally, let 𝑉 be any finite-dimensional subspace of 𝐻1,𝑝 (𝑀). From Lemma (4.2.9), 

there exists 𝜔 ∈  𝑉 such that  
𝑑𝑖𝑚𝑉

𝑉𝑜𝑙 (𝐵𝑥0  (𝑟0  +  1))
  ∫  
𝐵𝑥0(𝑟0+1)

 |𝜔|𝑝  ≤ min {𝐶𝑝 (
 𝑚 
𝑞 ) , 𝑑𝑖𝑚𝑉 } sup

𝐵𝑥0(𝑟0+1)
  |𝜔|𝑝 .       (66) 

From (65) and (66), we have 𝑑𝑖𝑚𝑉 ≤  𝐶7, where 𝐶7  >  0 depends only on on 

𝑚, 𝑝, 𝑉𝑜𝑙(𝐵𝑥(𝑟0  +  2)), sup
𝐵𝑥(𝑟0+2)

  𝛼 and sup
𝐵𝑥(𝑟0+2)

  |𝐻|2 . This implies that 𝐻1,𝑝(𝑀) has 

finite dimension.  

From the proof of the Theorem (4.2.15), we obtain the following result:  

Theorem (4.2.16)[184]: Let 𝑥 ∶  𝑀𝑚  →  𝑁,𝑚 ≥  3, be an isometric immersion of a 

complete noncompact manifold 𝑀 ia a Hadamard manifold 𝑁 with the sectional curvature 

satisfying −𝑘2  ≤  𝐾𝑁  ≤  0 for some constant 𝑘. In the case there exists point 𝑞 ∈
 𝑀 such that 𝐾𝑁 (𝑞)  ≠  0, assume further that the first eigenvalue of the Laplace-Beltrami 

operator of 𝑀 satisfies  
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𝜆1(𝑀) >
(𝑚 −  1)2𝑝2(𝑘2  −  inf |𝐻|2)

4[(𝑚 −  1)(𝑝 −  1) +  1]
 .  

If there exists a positive constant Λ such that ‖Φ‖𝐿𝑚(𝑀)  <  Λ, then 𝐻1,𝑝(𝑀)  =  {0} for p 

≥ 2. Furthermore, if 𝑘 =  0, then Λ depends only on 𝑚, 𝑝; otherwise, Λ depends only 

on 𝑚, 𝑘, 𝑝 and inf |𝐻|.  

Proof. Consider 0 <  𝜀 < min { −(𝑚𝑝 + 5𝑝 − 12) +

√(𝑚−1)2(𝑝2+16𝑝−16)+8(𝑚−1)(2𝑝2−3𝑝+2)+16(2𝑝−3)2

2(𝑚−1)𝑝
 ,
1

2
 } , 𝜀2  =  𝜀2(𝜀) and a positive constant 

Λ(𝜀)  >  0 as given in (36). Assume that ‖Φ‖𝐿𝑚(𝑀)  < Λ(𝜀). For a point 𝑥0 and take a cut-

off function η satisfying 0 ≤  𝜂 ≤  1, 𝜂 =  1 on 𝐵𝑥0  (𝑟), 𝜂 =  0 on 𝑀\𝐵𝑥0  (2𝑟) and 

|𝑑𝜂| ≤
𝑐

𝑟
 , where c is a positive constant. We can proceed similarly as in the proof of (38)  

𝐴𝑒 𝑍 𝑀 𝜂 2 |𝛻|𝜔| 𝑝 2 | 2 +  𝐵𝑒 𝑍 𝑀 𝜂 2 |𝜔| 𝑝 |𝐻| 2 
≤  𝐶𝑒 𝑍 𝑀 |𝜔| 𝑝 |𝛻𝜂| 2 + (𝑚 −  1)𝑘 2 𝑍 𝑀 𝜂 2 |𝜔| 𝑝 .                             (67)  

If 𝑘 =  0, from (67) and the definition of η, we have  

�̃� ∫  
𝐵𝑥0(𝑟)

 |𝛻|𝜔|
𝑝
2|
2

 +  �̃� ∫  
𝐵𝑥0(𝑟)

 |𝜔|𝑝 |𝐻|2  ≤  �̃�
𝑐2

𝑟2
 ∫  
𝑀

 |𝜔|𝑝       (68)  

Taking r → ∞, we have |𝛻|𝜔|
𝑝

2|  =  |𝐻||𝜔|
𝑝

2  =  0. Then |ω| is constant. If ω is not 

identically zero, then 𝐻 =  0. Since 𝑁 is a Hadamard manifold, we know that 𝑀 has 

infinite volume, which is a contradiction, since ∫  
𝑀
  |𝜔|𝑝  <  ∞. So we obtain that 𝜔 =

 0.  

If 𝑘 ≠  0. We recall that the first eigenvalue 𝜆1(𝑀) of the Laplacian of 𝑀 satisfies  

𝜆1(𝑀)∫  
𝑀

 𝜑2  ≤  ∫  
𝑀

 |𝛻𝜑|2                                              (69)  

for any 𝜑 ∈  𝐶0
∞ (𝑀). Applying (69) with 𝜑 =  𝜂|𝜔|

𝑝

2 , we have  

𝜆1(𝑀)∫  
𝑀

 𝜂2 |𝜔|𝑝  ≤  ∫  
𝑀

 |𝛻 [𝜂|𝜔|
𝑝
2]|

2

 

=  ∫  
𝑀

 [𝜂2  |𝛻|𝜔|
𝑝
2|  +  2𝜂|𝜔|

𝑝
2  〈𝛻𝜂, 𝛻|𝜔|

𝑝
2〉   +  |𝜔|𝑝 |𝛻𝜂|2] 

By using the Cauchy-Schwartz inequality, we have for 𝜀4  >  0  

𝜆1(𝑀) 𝑍 𝑀 𝜂 2 |𝜔| 𝑝 
≤  𝑍 𝑀 [(1 +  𝜀8)𝜂 2 |𝛻|𝜔| 𝑝 2 |  + (1 +  1 𝜀8 )|𝜔| 𝑝 |𝛻𝜂| 2 ]     (70)  

From (38) and (70), we have  

[
�̃�𝜆1(𝑀)

1 + 𝜀8
  − [(𝑚 − 1)𝑘2 − �̃� inf |𝐻|2]] ∫  

𝑀

 𝜂2 |𝑑𝑢|𝑝  

≤  [�̃�  +
�̃�

𝜀8
] ∫  

𝑀

 |𝑑𝑢|𝑝 |𝛻𝜂|2                                                                      (71)  

Note that  

[
�̃�𝜆1(𝑀)

1 + 𝜀8
  − [(𝑚 − 1)𝑘2 − �̃� inf |𝐻|2]] > 

 [
4[(𝑚 −  1)(𝑝 −  1) +  1]

(𝑚 −  1)𝑝2
 −
4(2𝑝 −  3)

𝑝
 𝜀 − (𝑚 −  1)𝜀(1 +  𝜀)]

𝜆1(𝑀)

1 + 𝜀8
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−(𝑚 −  1)(𝑘2  −  (1 −  2𝜀)inf |𝐻|2)  

Thus, if 𝜆1(𝑀) >
(𝑚−1)2𝑝2(𝑘2−inf |𝐻|2)

4[(𝑚−1)(𝑝−1)+1]
 ., then we can choose 𝜀, 𝜀8 small enough and 

depending on 𝑚, 𝑝, 𝑘2 , 𝜆1(𝑀) and inf |𝐻|2 , so that [
�̃�𝜆1(𝑀)

1+𝜀8
  − [(𝑚 − 1)𝑘2 −

�̃� inf |𝐻|2]]  >  0. Then we have  

∫  
𝑀

 𝜂2 |𝜔|𝑝  ≤  �̃� ∫  
𝑀

 |𝜔|𝑝 |𝛻𝜂|2                         (72)  

From the definition of 𝜂 and (72), we have  

∫  
𝐵𝑥0(𝑟)

 |𝜔|𝑝  ≤  �̃�
𝑐2

𝑟2
 ∫  
𝑀

 |𝜔|𝑝                               (73)  

Taking 𝑟 →  ∞, we have 𝜔 =  0.  
Section (4.3): Minimal Hypersurfaces with Finite 

It is well-known that a complete oriented stable minimal surface in ℝ3 must be a 
plane, which was independently proved by do Carmo–Peng [3] and Fischer-Colbrie–

Schoen [191]. Recall that a minimal submanifold is said to be stable if the second 

variation of its volume functional is always nonnegative for all normal variations with 

compact support. Later it was proved by Fischer-Colbrie [4] and Gulliver [7] that, for a 
complete oriented minimal surface inℝ3, the condition that it has finite index is equivalent 

to the condition that it has finite total curvature. This shows that a complete oriented 

minimal surface with finite index in ℝ3 must have finitely many ends. Furthermore, do 

Carmo–da Silveira [191] proved the same result for Bryant surfaces in the 3-dimensional 

hyperbolic space. Recall that a surface with constant mean curvature 1 in the 3-

dimensional hyperbolic space is called a Bryant surface. 

In higher-dimensional cases, Cao–Shen–Zhu [2] proved that an 𝑛(≥ 3)-dimensional 

complete stable minimal hypersurface in ℝ𝑛+1 has only one end. Later Li–Wang [1] 

generalized this result to minimal hypersurfaces with finite index inℝ𝑛+1. In fact, they 

proved that if 𝑀 is a complete minimal hypersurface with finite index in ℝ𝑛+1for𝑛 ≥ 3, 

then the dimension of the space of𝐿2 harmonic 1-forms on 𝑀 is finite. Since the number of 

ends of 𝑀 is controlled by the dimension of the space of 𝐿2 harmonic 1-forms [164], they 

were able to show that 𝑀 has finitely many ends. 

As mentioned in the above, 𝐿2 harmonic 1-forms on a minimal hypersurface are useful to 

analyze the topology of the hypersurface. Palmer [170] proved that if there exists a 
codimension one cycle in a complete minimal hypersurface 𝑀 inℝ𝑛+1which does not 

separate 𝑀, then 𝑀 must be unstable. In [168], Miyaoka proved that there is no nontrivial 

𝐿2 harmonic 1-forms on a complete stable minimal hypersurface in ℝ𝑛+1. In 2005, 

Pigola–Rigoli–Setti [172] obtained general Liouville type results and vanishing theorems 

on the 𝐿2cohomology of stable minimal hypersurfaces. See also [164],[173] for a survey 

related to this subject. The second-named author in [177] obtained vanishing theorems for 

𝐿2 harmonic 1-forms on a complete stable minimal hypersurface 𝑀 in hyperbolic 

spaceℍ𝑛+1 with an assumption on the first eigenvalue of then Laplace. Beltrami operator 

on𝑀. This result was extended to the case of stable minimal hypersurfaces in a 
Riemannian manifold with bounded sectional curvature [154]. While𝐿2 theory on manifold 

has been well understood, general 𝐿𝑝 theory is relatively less developed (see [176]). We 
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obtained vanishing results about𝐿𝑝 harmonic 1-forms on complete noncompact stable 

minimal hypersurfaces under the assumption on the bottom of the spectrum of the Laplace 

operator [141]. Recall that the bottom of the spectrum of the Laplace operator on a 
complete manifold 𝑀 is defined by 

𝜆1(𝑀) ≔ inf
Ω
𝜆1(Ω), 

where the infimum is taken over all compact domains in𝑀 and 𝜆1(Ω)denotes the first 

eigenvalue of the Dirichlet boundary value problem on a compact domain Ω ⊂ 𝑀 

{
∆𝑓 = −𝜆𝑓  in Ω
𝑓 = 0         on∂Ω.

 

Furthermore, Cavalcante-Mirandola-Vitorio [15] proved that if𝑀 is a complete 

noncompact submanifold in a Cartan-Hadamard manifold with finite total curvature under 

additional assumption on 𝜆1(𝑀), then the space of 𝐿2 harmonic 1-forms on 𝑀 is finite 

dimensional. Later Han.Pan [184] generalized their result to 𝐿𝑝 𝑝-harmonic 1-forms on 

submanifolds in a Cartan-Hadamard manifold. 

Motivated by Li-Wang's work [1], we investigate the space of𝐿𝑝 harmonic 1-forms 

on minimal hypersurfaces with finite index in a complete simply connected Riemannian 

manifold with nonpositive sectional curvature. We prove that if 𝑀 is a complete minimal 

hypersurface with finite index in a complete simply connected Riemannian manifold with 

nonpositive sectional curvature, then the dimension of the space of𝐿𝑝 harmonic 1-forms 

on 𝑀 is finite for certain 𝑝 > 0 provided 𝜆1(𝑀) is sufficiently large (see Theorem (4.3.3)). 

As a consequence of our main theorem, we are able to show that if 𝑀 is a complete 

minimal hypersurface with finite index in hyperbolic spaceℍ𝑛+1and if𝜆1(𝑀)is bigger than 

𝑛(𝑛 − 1), then the space of𝐿2 harmonic 1-forms on 𝑀 is finite dimensional, and hence 𝑀 

must have finitely many ends (see Corollary (4.3.7)). This can be regarded as a 
generalization of Li-Wang's result [1].  
We begin with the following useful facts in order to prove our main Theorem (4.3.4). 

Lemma (4.3.1)[190]: ([192]). Let 𝑀 be an 𝑛-dimensional complete noncompact 

Riemannian manifold. For𝑥 ∈ 𝑀 and a constant𝜅 ≥ 0, we assume that a Ricci curvature 

of 𝑀 satisfies 

Ric ≥ −(𝑛 − 1)𝜅 

on the geodesic ball 𝐵𝑥(4𝑟) centered at 𝑝 with radius 4𝑟. Let0 < 𝛿 <
1

2
 andλ > 0be fixed 

constants. Then there exists a positive constant𝐶 = 𝐶(𝑟, 𝛿, 𝜆, 𝜅) satisfying that if any 

nonnegative function 𝑓 ∈ 𝐶∞(𝐵𝑥(2𝑟))satisfying the differential inequality 

∆𝑓 ≥ −𝜆𝑓, 
then 

sup
𝐵𝑥((1−𝛿)𝑟)

𝑓2 ≤
𝐶

Vol(𝐵𝑥(𝑟))
∫ 𝑓2
 

𝐵𝑥

, 

where Vol(𝐵𝑥(𝑟)) denotes the volume of the geodesic ball 𝐵𝑥(𝑟). 

Lemma (4.3.2)[190]: ([13,21]). Let 𝐾 be a finite dimensional subspace of 𝐿2𝑝 harmonic 

𝑞-forms on an 𝑚-dimensional complete noncompact 

Riemannian manifold 𝑀 for any𝑝 > 0. Then there existsη ∈ 𝐾such that 

(dim𝐾)min(1,𝑝)∫ |𝜂|2𝑝
 

𝐵𝑥(𝑟)

≤ Vol(𝐵𝑥(𝑟))min {(
𝑚
𝑞 ) , dim𝐾}

min{1,𝑝}

. sup
𝐵𝑥(𝑟)

|𝜂|2𝑝 

for any 𝑥 ∈ 𝑀and𝑟 > 0. 
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Adapting the argument of Li-Wang [1], we are now able to prove our main Theorem 

(4.3.4). 

Theorem (4.3.3)[190]: Let 𝑁 be an (𝑛 + 1)-dimensional complete simply connected 

Riemannian manifold with sectional curvature 𝐾𝑁 satisfying−𝑘2 ≤ 𝐾𝑁 ≤ 0for a nonzero 

constant 𝑘 and𝑛 ≥ 3. Let 𝑀 be a complete noncompact minimal hypersurface with finite 

index in𝑁. For
𝑛−2

𝑛−1
< 𝑝 <

𝑛

𝑛−1
, assume that 

𝜆1(𝑀) > max {
𝑘2(𝑛 − 1)2𝑝2

𝑝(𝑛 − 1) − 𝑛 + 2
.
𝑘2𝑛(𝑛 − 1)𝑝

𝑛 − 𝑝(𝑛 − 1)
}. 

Then 

dimℋ1(𝐿2𝑝(𝑀)) < ∞, 

whereℋ1(𝐿2𝑝(𝑀))denotes the space of𝐿2𝑝 harmonic 1-forms on 𝑀. 

Proof. Let𝜔 be a nontrivial 𝐿2𝑝 harmonic 1-form on𝑀, i.e., 

∆𝜔 = 0  and∫ |𝜔|2𝑝
 

𝑀

< ∞. 

Denote by𝜔# the dual harmonic vector field of𝜔. From Bochner formula, we see that 

∆|𝜔|2 = 2(|∇𝜔|2 + Ric(𝜔#, 𝜔#)), 
where Ric denotes the Ricci curvature on 𝑀. We recall the following Ricci curvature 

estimate of minimal hypersurfaces by Leung [162] 

Ric(𝜔#, 𝜔#) ≥ −𝑘(𝑛 − 1)|𝜔|2 −
𝑛 − 1

𝑛
|A|2|𝜔|2. 

Thus 

∆|𝜔|2 ≥ 2 (|∇𝜔|2 − 𝑘(𝑛 − 1)|𝜔|2 −
𝑛 − 1

𝑛
|𝐴|2|𝜔|2).               (74) 

Moreover, since 

∆|𝜔|2 = 2(|𝜔|∆|𝜔| + |∇|𝜔||
2
), 

(74) becomes 

|𝜔|∆|𝜔| + 𝑘2(𝑛 − 1)|𝜔|2 +
𝑛 − 1

𝑛
|𝐴|2|𝜔|2 ≥ |∇𝜔|2 − |∇|𝜔||

2
≥

1

𝑛 − 1
|∇|𝜔||

2
, (75) 

where we used the Kato-type inequality [173] for harmonic 1-forms in the last inequality. 

Furthermore 

|𝜔|𝑝∆|𝜔|𝑝 =
𝑝 − 1

𝑝
|∇|𝜔|𝑝|2 + 𝑝|𝜔|2𝑝−2|𝜔|∆|𝜔| 

for any 𝑝 > 0(see also [141]). Combining with (75), we get 

|𝜔|𝑝∆|𝜔|𝑝 + 𝑝(𝑛 − 1) (
|𝐴|2

𝑛
+ 𝑘2) |𝜔|2𝑝 ≥ (1 −

1

𝑝
+

1

𝑝(𝑛 − 1)
) |∇|𝜔|𝑝|2. (76) 

Since 𝑀 has finite index, there exists a compact subsetΩ ⊂ 𝑀such thatM\Ω is stable (see 

[4], [193] for example). In other words, for any compactly supported Lipschitz function 𝑓 

on 𝑀\Ω, 

∫ |∇𝑓|2
 

M\Ω

− (Ric̅̅ ̅̅ (𝜈) + |𝐴|2)𝑓2 ≥ 0,                                              (77) 

where Ric̅̅ ̅̅ (𝜈) denotes the Ricci curvature of 𝑁 in the direction of the unit vector 𝜈 normal 

to 𝑀 and 𝐴 denotes the second fundamental form on 𝑀. We note that, for any geodesic 

ball 𝐵𝑥(𝑅0) ⊂ 𝑀centered at𝑝 ∈ 𝑀 of radius 𝑅0 containing the compact setΩ , the region 

𝑀\𝐵𝑥(𝑅0)is stable by the monotonicity of eigenvalues of the stability operator. Thus we 
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may assume that Ω = 𝐵𝑥(𝑅0) without loss of generality. The assumption on the sectional 

curvature of 𝑁 implies that 

Ric̅̅ ̅̅ (𝜈) ≥ −𝑛𝑘2. 
Therefore the stability inequality (77) becomes 

∫ |∇𝑓|2
 

M\𝐵𝑥(𝑅0)

− (|𝐴|2 − 𝑛𝑘2)𝑓2 ≥ 0                                      (78) 

for all compactly supported Lipschitz function 𝑓 on M\𝐵𝑥(𝑅0). Replacing 𝑓 

by𝑓|𝜔|𝑝in(5), we get 

∫ 𝑓2|ω|2𝑝|𝐴|2
 

M\𝐵𝑥(𝑅0)

− 𝑛𝑘2∫ 𝑓2|ω|2𝑝
 

M\𝐵𝑥(𝑅0)

≤ ∫ |∇(𝑓|𝜔|𝑝)|𝑝
 

M\𝐵𝑥(𝑅0)

.           (79) 

On the other hand, the domain monotonicity of eigenvalues implies that 

𝜆1(𝑀) ≤ 𝜆1(𝑀\𝐵𝑥(𝑅0)) ≤
∫ |∇𝑓|2
 

M\𝐵𝑥(𝑅0)

∫ 𝑓2
 

M\𝐵𝑥(𝑅0)

 

for any compactly supported nonconstant Lipschitz function 𝑓 on 𝑀\𝐵𝑥(𝑅0). 
Substituting𝑓|𝜔|𝑝for 𝑓 in the inequality, we have 

∫ 𝑓2|ω|2𝑝
 

M\𝐵𝑥(𝑅0)

≤
1

𝜆1(𝑀)
∫ |∇(𝑓|𝜔|𝑝)|2
 

M\𝐵𝑥(𝑅0)

.                       (80) 

 From (79) and (80), it follows that 

∫ 𝑓2|ω|2𝑝|𝐴|2
 

M\𝐵𝑥(𝑅0)

 

≤ (1 +
𝑛𝑘2

𝜆1(𝑀)
)(∫ 𝑓2|∇|𝜔|𝑝|2

 

M\𝐵𝑥(𝑅0)

+∫ |∇𝑓|2|𝜔|2𝑝
 

M\𝐵𝑥(𝑅0)

+ 2∫ 𝑓|ω|𝑝〈∇𝑓, ∇|𝜔|𝑝〉
 

M\𝐵𝑥(𝑅0)

). 

Applying the divergence theorem and using the relation(76), we get 

∫ 𝑓2|ω|2𝑝|𝐴|2
 

M\𝐵𝑥(𝑅0)

≤ (1 +
𝑛𝑘2

𝜆1(𝑀)
)(∫ |∇𝑓|2|𝜔|2𝑝

 

M\𝐵𝑥(𝑅0)

−∫ 𝑓2|ω|𝑝∆|𝜔|𝑝
 

M\𝐵𝑥(𝑅0)

) 

≤ (1 +
𝑛𝑘2

𝜆1(𝑀)
)∫ |∇𝑓|2|𝜔|2𝑝

 

M\𝐵𝑥(𝑅0)

 

−(1 +
𝑛𝑘2

𝜆1(𝑀)
)(1 −

1

𝑝
+

1

𝑝(𝑛 − 1)
)∫ 𝑓2|∇|𝜔|𝑝|2

 

M\𝐵𝑥(𝑅0)

 

+𝑝(𝑛 − 1) (1 +
𝑛𝑘2

𝜆1(𝑀)
)∫ (

|𝐴|2

𝑛
+ 𝑘2)𝑓2|ω|2𝑝

 

M\𝐵𝑥(𝑅0)

. 

Therefore 

(1 +
𝑛𝑘2

𝜆1(𝑀)
)(1 −

1

𝑝
+

1

𝑝(𝑛 − 1)
)∫ 𝑓2|∇|𝜔|𝑝|2

 

M\𝐵𝑥(𝑅0)

 

≤ (1 +
𝑛𝑘2

𝜆1(𝑀)
)∫ |∇𝑓|2|𝜔|2𝑝

 

M\𝐵𝑥(𝑅0)

 

+𝑝(𝑛 − 1)𝑘2 (1 +
𝑛𝑘2

𝜆1(𝑀)
)∫ 𝑓2|𝜔|2𝑝

 

M\𝐵𝑥(𝑅0)
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+((1 +
𝑛𝑘2

𝜆1(𝑀)
)
𝑝(𝑛 − 1)

𝑛
− 1)∫ 𝑓2|A|2|𝜔|2𝑝

 

M\𝐵𝑥(𝑅0)

. 

The assumption on𝜆1(𝑀) gives 

(1 −
1

𝑝
+

1

𝑝(𝑛 − 1)
)∫ 𝑓2|∇|𝜔|𝑝|2

 

M\𝐵𝑥(𝑅0)

 

≤ ∫ |∇𝑓|2|ω|2𝑝
 

M\𝐵𝑥(𝑅0)

+ 𝑝(𝑛 − 1)𝑘2∫ 𝑓2|ω|2𝑝
 

M\𝐵𝑥(𝑅0)

.           (81) 

Applying Young’s inequality in (80), we have 

∫ 𝑓2|ω|2𝑝
 

M\𝐵𝑥(𝑅0)

≤
1

𝜆1(𝑀)
(1 +

1

𝜀
)∫ |∇𝑓|2|ω|2𝑝

 

M\𝐵𝑥(𝑅0)

 

+
1 + 𝜀

𝜆1(𝑀)
∫ 𝑓2|∇|𝜔|𝑝|2
 

M\𝐵𝑥(𝑅0)

 

for any 𝜀 > 0. Combining this with (81) we get 

(1 −
1

𝑝
+

1

𝑝(𝑛 − 1)

𝑘2𝑝(𝑛 − 1)(1 + 𝜀)

𝜆1(𝑀)
)∫ 𝑓2|∇|𝜔|𝑝|2

 

M\𝐵𝑥(𝑅0)

 

≤ (1 +
𝑘2𝑝(𝑛 − 1)

𝜆1(𝑀)
(1 +

1

𝜀
))∫ |∇𝑓|2|ω|2𝑝

 

M\𝐵𝑥(𝑅0)

. 

Using the assumption on𝜆1(𝑀), we choose a sufficiently small𝜀 > 0 such that 

1 −
1

𝑝
+

1

𝑝(𝑛 − 1)

𝑘2𝑝(𝑛 − 1)(1 + 𝜀)

𝜆1(𝑀)
> 0. 

Then we obtain 

∫ 𝑓2|∇|𝜔|𝑝|2
 

M\𝐵𝑥(𝑅0)

≤ 𝐶0∫ |∇𝑓|2|ω|2𝑝
 

M\𝐵𝑥(𝑅0)

                                            (82) 

for some positive constant𝐶0  which depends only on 𝑝, 𝑛, 𝑘 and 𝜆1(𝑀). On the other 

hand, from the Sobolev inequality for minimal submanifolds [29], we have 

(∫ |𝑓|𝜔|𝑝|
2𝑛
𝑛−2

 

M\𝐵𝑥(𝑅0)

)

𝑛−2
𝑛

≤ 𝐶𝑆∫ |∇(𝑓|𝜔|𝑝)|2
 

M\𝐵𝑥(𝑅0)

 

≤ 2𝐶𝑆∫ 𝑓2|∇|𝜔|𝑝|2
 

M\𝐵𝑥(𝑅0)

 

+2𝐶𝑆∫ |∇𝑓|2|ω|2𝑝
 

M\𝐵𝑥(𝑅0)

                                                        (83) 

where the Sobolev constant𝐶𝑆 depends only on 𝑛. Combining (82) and(10), we get 

(∫ (𝑓|𝜔|𝑝)
2𝑛
𝑛−2

 

M\𝐵𝑥(𝑅0)

)

𝑛−2
𝑛

≤ 𝐶1∫ |∇𝑓|2|ω|2𝑝
 

M\𝐵𝑥(𝑅0)

,                           (84) 

for some constant𝐶1 ≥ 2𝐶𝑆(1 + 𝐶0). Now we choose our test function 0 ≤ 𝑓 ≤ 1 as 

follows: given𝑅 > 𝑅0 + 1, 
(a) 𝑓 = 1 on𝐵𝑥(𝑅)\𝐵𝑥(𝑅0 + 1) 

(b) 𝑓 = 0 on 𝐵𝑥(𝑅0)⋃(𝑀\𝐵𝑥(2𝑅)) 
(c) |∇𝑓| ≤ 𝐶2 on 𝐵𝑥(𝑅0 + 1)\𝐵𝑥(𝑅0) 

(d) |∇𝑓| ≤
𝐶𝑆

𝑅
 |on𝐵𝑥(2𝑅)\𝐵𝑥(𝑅) 
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for some constant𝐶2 > 0. Applying this test function 𝑓 to(84), we get 

(∫ |𝜔|
2𝑝𝑛
𝑛−2

 

𝐵𝑥(𝑅)\𝐵𝑥(𝑅0+1)

)

𝑛−2
𝑛

≤ 𝐶3∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+1)\𝐵𝑥(𝑅0)

+
𝐶3
𝑅2
∫ |ω|2𝑝
 

𝐵𝑥(2𝑅)\𝐵𝑥(𝑅)

. 

Letting 𝑅 → ∞and using the assumption that∫ |ω|2𝑝
 

𝑚
< ∞, we obtain 

(∫ |𝜔|2𝑝
 

𝑀\𝐵𝑥(𝑅0+1)

)

𝑛−2
𝑛

≤ 𝐶3∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+1)\𝐵𝑥(𝑅0)

. 

Moreover, since 

∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+2)\𝐵𝑥(𝑅0+1)

≤ Vol(𝐵𝑥(𝑅0 + 2))
2
𝑛 (∫ |𝜔|

2𝑝𝑛
𝑛−2

 

𝐵𝑥(𝑅0+2)\𝐵𝑥(𝑅0+1)

)

𝑛−2
𝑛

 

by Hölder inequality, we conclude that 

∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+2)\𝐵𝑥(𝑅0+1)

≤ 𝐶3. Vol(𝐵𝑥(𝑅0 + 2))
2
𝑛∫ |ω|2𝑝

 

𝐵𝑥(𝑅0+1)\𝐵𝑥(𝑅0)

,     (85) 

whereVol(𝐵𝑥(𝑅0 + 2))denotes the volume of the geodesic ball 𝐵𝑥(𝑅0 + 2) on 𝑀. Adding 

∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+1)\𝐵𝑥(𝑅0)

 

to both sides of (85), we get 

∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+2)\𝐵𝑥(𝑅0)

≤ (𝐶3. Vol(𝐵𝑥(𝑅0 + 2))
2
𝑛 + 1)∫ |ω|2𝑝

 

𝐵𝑥(𝑅0+1)\𝐵𝑥(𝑅0)

. 

Again adding∫ |ω|2𝑝
 

𝐵𝑥(𝑅0)
 

∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+2)

≤ 𝐶4∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+1)

,                                         (86) 

where 𝐶4 = 𝐶3. Vol(𝐵𝑥(𝑅0 + 2))
2

𝑛 + 1. 

On the other hand, since|𝜔| satisfies the differential inequality(76), Lemma (4.3.1) asserts 

that 

sup
𝐵𝑥((1−𝛿)(𝑅0+2))

|ω|2𝑝 ≤ 𝐶5∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+2)

 

for some positive constant𝐶5 = 𝐶5(𝑛, Vol(𝐵𝑥(𝑅0 + 2)) , sup𝐵𝑥(𝑅0+2)|𝐴|
2). For a 

sufficiently small𝛿 > 0 such that (1 − 𝛿)(𝑅0 + 2) > 𝑅0 + 1, 

sup
𝐵𝑥(𝑅0+2)

|ω|2𝑝 ≤ 𝐶5∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+2)

. 

Together with(86), we obtain 

sup
𝐵𝑥(𝑅0+1)

|ω|2𝑝 ≤ 𝐶6∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+1)

.                                           (87) 

where the constant𝐶6 > 0depends on 𝑝, 𝑘, 𝑛, 𝑅0, 𝜆1(𝑀), the volume of the geodesic ball 

𝐵𝑥(𝑅0 + 2), and the supremum of|𝐴|2 on 𝐵𝑥(𝑅0 + 2). 

In order to prove that dimℋ1(𝐿2𝑃(𝑀)) < ∞, let us consider any finite dimensional 

subspace𝐾 ⊂ ℋ1(𝐿2𝑃(𝑀)). It suffices to show that the dimension of 𝐾 is bounded above 

by a constant, which is independent of 𝐾. According to Lemma (4.3.2), we see that there 

exists an𝐿2𝑝 harmonic 1-form 𝜔 ∈ 𝐾such that 
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(dim𝐾)min(1,𝑝)∫ |ω|2𝑝
 

𝐵𝑥(𝑅0+1)

≤ Vol(𝐵𝑥(𝑅0 + 1))min{𝑛, dim𝐾}
min{1,𝑝} . sup

𝐵𝑥(𝑅0+1)
|ω|2𝑝. 

From (87), it follows that 

dim𝐾 ≤ (𝐶6. Vol(𝐵𝑥(𝑅0 + 1)))
1

min{1,𝑝}min{𝑛, dim𝐾}, 
which implies that dim𝐾 is bounded by a fixed constant. Since 𝐾 is an arbitrary subspace 

of finite dimension, we get the conclusion. 

Theorem (4.3.4)[190]: ([173], [194]). Let 𝑀 be a complete Riemannian manifold and let 

𝐸 be a Riemannian vector bundle of rank 1 over𝑀, whose sections are denoted byΓ(𝐸). 
Assume that 𝑉 ⊂ Γ(𝐸)is a subspace satisfying the following property: 

(i) every section 𝜉 ∈ 𝑉has the unique continuation property; 

(ii) there exist a function 𝑎 ∈ 𝐶0(𝑀)and constants 𝐴, 𝑝, 𝐻 ∈ ℝ satisfying 𝐻 ≥  𝑝 ≥ 𝐴 + 1 

and 𝑝 > 0 such that for each 𝜉 ∈ 𝑉, its norm𝜓 = |𝜉|satisfies 

{

𝜓∆𝜓 + 𝑎(𝑥)𝜓2 + 𝐴|∇𝜓|2 ≥ 0 weakly on𝑀

∫ |𝜓|2𝑝
 

𝐵𝑟

= 𝜊(𝑟2𝑝)𝑎𝑠 𝑟 → ∞.
 

If there exists a function𝜑 ∈ Liploc(𝑀) satisfying 

∆𝜑 + 𝐻𝑎(𝑥)𝜑 ≤ 0 

weakly outside a compact set 𝐾 ⊂ 𝑀, thendim𝑉 < ∞. 

Applying their theorem, one can obtain a finiteness result for our setting which is weaker 

than ours. To see this, let𝜔 be 𝑎 𝐿2𝑝 and the inequality (75). Choose 

𝐴 = −
1

𝑛 − 1
, 𝐻 = 𝑝 ≥

𝑛 − 2

𝑛 − 1
, 𝑎(𝑥) = 𝑘2(𝑛 − 1) +

𝑛 − 1

𝑛
|𝐴|2. 

Since the stability operator satisfies 

0 ≤ −∆ − (Ric̅̅ ̅̅ (𝜈, 𝜈) + |𝐴|2) 
≤ −∆ − (−𝑛𝑘2 + |𝐴|2) 

outside some compact set 𝐾 ⊂ 𝑀, the operator𝐿 = −∆ − 𝐻𝑎(𝑥) satisfies 

𝐿 = −∆ − 𝑘2𝑝(𝑛 − 1) −
𝑝(𝑛 − 1)

𝑛
|𝐴|2

=
𝑝(𝑛 − 1)

𝑛
(−∆ − |𝐴|2) −

𝑛 − 𝑝(𝑛 − 1)

𝑛
∆ − 𝑘2𝑝(𝑛 − 1)

≥
𝑝(𝑛 − 1)

𝑛
(−𝑛𝑘2) −

𝑛 − 𝑝(𝑛 − 1)

𝑛
∆ − 𝑘2𝑝(𝑛 − 1)

=
𝑛 − 𝑝(𝑛 − 1)

𝑛
(−∆ −

2𝑘2𝑛(𝑛 − 1)𝑝

𝑛 − 𝑝(𝑛 − 1)
) ≥ 0 

provided that, for
𝑛−2

𝑛−1
≤ 𝑝 ≤

𝑛

𝑛−1
, 

𝜆1(𝑀) ≥
2𝑘2𝑛(𝑛 − 1)𝑝

𝑛 − 𝑝(𝑛 − 1)
. 

Here the condition on 𝜆1(𝑀) is stronger than ours. Therefore our theorem can be regarded 

as an improvement of Pigola–Rigoli–Setti’s result for the space of𝐿𝑝 harmonic 1-forms on 

complete minimal hypersurfaces with finite index in a Cartan–Hadamard manifold with 

pinched sectional curvature. 

Let 𝑀 be an 𝑛(≥ 3)-dimensional complete minimal hypersurface in a complete simply 

connected Riemannian manifold of nonpositive sectional curvature. Then, applying the 

argument of Cao–Shen–Zhu [2], we can see that each end of 𝑀 is nonparabolic [1] (see 
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also [195], [181]). Recall that a complete Riemannian manifold M is called nonparabolic if 

𝑀 admits a nonconstant positive superharmonic function. Denote byℋ𝐷
0(𝑀)the space of 

bounded harmonic functions with finite Dirichlet (i.e.,𝐿2) energy. According to Li–Tam 

[164], we see that the number of nonparabolic end of 𝑀 is bounded above by the 

dimension ofℋ𝐷
0(𝑀), i.e., 

#(nonparabolic ends of 𝑀) ≤ dimℋ𝐷
0(𝑀).                             (88) 

We also note that if𝑓 ∈ ℋ𝐷
0(𝑀), then 𝑑𝑓 ∈ ℋ1(𝐿2(𝑀)).Furthermore, 𝑑𝑓 = 0 if and only 

if 𝑓 is constant. Therefore 

dimℋ𝐷
0(𝑀) ≤ dimℋ1(𝐿2(𝑀)) + 1.                                      (89) 

By (88) and(89), we obtain 

#(nonparabolic ends of 𝑀) ≤ dimℋ1(𝐿2(𝑀)) + 1, 

which was proved by Li–Wang [1]. In case of 𝐿2 harmonic 1-forms, we can obtain the 

following consequence, using the above observation and Theorem (4.3.3). 
Corollary (4.3.5)[190]: Let 𝑁 be an (𝑛 + 1)-dimensional complete simply connected 

Riemannian manifold with sectional curvature𝐾𝑁 satisfying −𝑘2 ≤ 𝐾𝑁 ≤ 0for a nonzero 

constant 𝑘. Let 𝑀 be a complete noncompact minimal hypersurface with finite index in 𝑁. 

Assume that𝜆1(𝑀) > 𝑘
2𝑛(𝑛 − 1). Then 𝑀 must have finitely many ends. 

Remark (4.3.6)[190]: In Euclidean space, Tysk [193] obtained that the index of a 
complete minimal hypersurface 𝑀 inℝ𝑛+1satisfies the following: 

lndex(𝑀) ≤ 𝐶𝑛∫ |𝐴|
𝑛

 

𝑀

,                                                        (90) 

where𝐶𝑛 depends only on the dimension 𝑛. The proof of (90) uses the method of Li–Yau 

[196]. In fact, this inequality is still valid on a complete noncompact minimal hypersurface 

𝑀 in a Cartan- Hadamard manifold 𝑁 with sectional curvature satisfying−𝑘2 ≤ 𝐾𝑁 ≤ 0. 

If the second fundamental form 𝐴 on 𝑀 has finite 𝐿𝑛-norm, then 𝑀 has finite index 

by(90), which implies that 𝑀 has finitely many ends by Corollary (4.3.5). This result was 

already obtained by Cavalcante–Mirandola–Vitório [15] (see also[184]). However, unlike 

the 2-dimensional case, it is unknown whether the condition that a complete noncompact 

minimal hypersurface 𝑀 in a Cartan–Hadamard manifold has finite index implies that the 

second fundamental form on 𝑀 has finite 𝐿𝑛-norm. 

When the ambient space is the hyperbolic spaceℍ𝑛+1of constant sectional curvature−1, 

one can conclude the following: 

Corollary (4.3.7)[190]: Let 𝑀 be an 𝑛-dimensional complete noncompact minimal 

hypersurface with finite index in hyperbolic spaceℍ𝑛+1. If𝜆1(𝑀) > 𝑛(𝑛 − 1), then 

dimℋ1(𝐿2(𝑀)) < ∞. 
Moreover, 𝑀 has finitely many ends. 

Corollary (4.3.8)[353]: Let 𝑁 be an (4 + 𝜖)-dimensional complete simply connected 

Riemannian manifold with sectional curvature𝐾𝑁 satisfying−𝑘𝑟
2 ≤ 𝐾𝑁 ≤ 0for a nonzero 

constant 𝑘𝑟 and 𝜖 ≥ 0. Let 𝑀𝑟 be a complete noncompact minimal hypersurface with 

finite index in 𝑁. For 𝜖 > 0, assume that 

(𝜆𝑟)1(𝑀𝑟) > max {𝑘𝑟
2(2 + 𝜖)2(1 + 𝜖)2.

𝑘𝑟
2(3 + 𝜖)(2 + 𝜖)(1 + 𝜖)

1 − 2𝜖 − 𝜖2
}. 

Then 
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dimℋ1 (𝐿2(1+𝜖)(𝑀𝑟)) < ∞, 

where ℋ1 (𝐿2(1+𝜖)(𝑀𝑟))denotes the space of 𝐿2(1+𝜖) harmonic 1-forms on 𝑀𝑟 . 

Proof. Let 𝜔𝑟 be a nontrivial 𝐿2(1+𝜖) harmonic 1-form on 𝑀𝑟, i.e., 

∆𝜔𝑟 = 0  and∫ |𝜔𝑟|
2(1+𝜖)

 

𝑀𝑟

< ∞. 

Denote by 𝜔𝑟
# the dual harmonic vector field of 𝜔𝑟. From Bochner formula, we see that 

∆|𝜔𝑟|
2 = 2(|∇𝜔𝑟|

2 + Ric(𝜔𝑟
#, 𝜔𝑟

#)), 

where Ric denotes the Ricci curvature on 𝑀𝑟. We recall the following Ricci curvature 

estimate of minimal hypersurfaces by Leung [162] 

Ric(𝜔𝑟
#, 𝜔𝑟

#) ≥ −𝑘𝑟(2 + 𝜖)|𝜔𝑟|
2 −

2 + 𝜖

3 + 𝜖
|A|2|𝜔𝑟|

2. 

Thus 

∆|𝜔𝑟|
2 ≥ 2(|∇𝜔𝑟|

2 − 𝑘𝑟(2 + 𝜖)|𝜔𝑟|
2 −

2 + 𝜖

3 + 𝜖
|𝐴|2|𝜔𝑟|

2).     (91) 

Moreover, since 

∆|𝜔𝑟|
2 = 2(|𝜔𝑟|∆|𝜔𝑟| + |∇|𝜔𝑟||

2
), 

(91) becomes 

|𝜔𝑟|∆|𝜔𝑟| + 𝑘𝑟
2(2 + 𝜖)|𝜔𝑟|

2 +
2 + 𝜖

3 + 𝜖
|𝐴|2|𝜔𝑟|

2 ≥ |∇𝜔𝑟|
2 − |∇|𝜔𝑟||

2

≥
1

2 + 𝜖
|∇|𝜔𝑟||

2
,                                                                                                   (92) 

where we used the Kato-type inequality [173] for harmonic 1-forms in the last inequality. 

Furthermore 

|𝜔𝑟|
1+𝜖∆|𝜔𝑟|

1+𝜖 =
𝜖

1 + 𝜖
|∇|𝜔𝑟|

1+𝜖|2 + (1 + 𝜖)|𝜔𝑟|
2𝜖|𝜔𝑟|∆|𝜔𝑟| 

for any 𝜖 ≥ 0 (see also [141]). Combining with (92), we get 

|𝜔𝑟|
1+𝜖∆|𝜔𝑟|

1+𝜖 + (1 + 𝜖)(2 + 𝜖) (
|𝐴|2

3 + 𝜖
+ 𝑘𝑟

2) |𝜔𝑟|
2(1+𝜖)

≥ (
ϵ(2 + 𝜖) + 1

(1 + 𝜖)(2 + 𝜖)
) |∇|𝜔𝑟|

1+𝜖|2.                                                                      (93) 
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Since 𝑀𝑟 has finite index, there exists a compact subset Ω ⊂ 𝑀𝑟 such that 𝑀𝑟\Ω is stable 

(see [4], [193] for example). In other words, for any compactly supported Lipschitz 

function 𝑓2 on 𝑀𝑟\Ω, 

∫ |∇𝑓2|2
 

𝑀𝑟\Ω

− (Ric̅̅ ̅̅ (𝜈𝑟) + |𝐴|
2)𝑓4 ≥ 0,                                                    (94) 

where Ric̅̅ ̅̅ (𝜈𝑟) denotes the Ricci curvature of 𝑁 in the direction of the unit vector 𝜈𝑟 
normal to 𝑀𝑟 and 𝐴 denotes the second fundamental form on 𝑀𝑟. We note that, for any 

geodesic ball 𝐵𝑥𝑟(𝑅0) ⊂ 𝑀𝑟centered at (1 + 𝜖) ∈ 𝑀𝑟 of radius 𝑅0 containing the compact 

set Ω , the region 𝑀𝑟\𝐵𝑥𝑟(𝑅0)is stable by the monotonicity of eigenvalues of the stability 

operator. Thus we may assume that Ω = 𝐵𝑥𝑟(𝑅0) without loss of generality. The 

assumption on the sectional curvature of 𝑁 implies that 

Ric̅̅ ̅̅ (𝜈𝑟) ≥ −(3 + 𝜖)𝑘𝑟
2. 

Therefore the stability inequality (94) becomes 

∫ |∇𝑓2|2
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

− (|𝐴|2 − (3 + 𝜖)𝑘𝑟
2)𝑓4 ≥ 0                             (95) 

for all compactly supported Lipschitz function 𝑓2 on 𝑀𝑟\𝐵𝑥𝑟(𝑅0). Replacing 𝑓2 by 

𝑓2|𝜔𝑟|
1+𝜖in(95), we get 

∫ 𝑓4|𝜔𝑟|
2(1+𝜖)|𝐴|2

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

− (3 + 𝜖)𝑘𝑟
2∫ 𝑓4|𝜔𝑟|

2(1+𝜖)
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

≤ ∫ |∇(𝑓2|𝜔𝑟|
1+𝜖)|1+𝜖

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

.                                                                       (96) 

On the other hand, the domain monotonicity of eigenvalues implies that 

(𝜆𝑟)1(𝑀𝑟) ≤ (𝜆𝑟)1 (𝑀𝑟\𝐵𝑥𝑟(𝑅0)) ≤
∫ |∇𝑓2|2
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

∫ 𝑓4
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

 

for any compactly supported nonconstant Lipschitz function 𝑓2 on 𝑀𝑟\𝐵𝑥𝑟(𝑅0). 

Substituting 𝑓2|𝜔𝑟|
1+𝜖for 𝑓2 in the inequality, we have 

∫ 𝑓4|𝜔𝑟|
2(1+𝜖)

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

≤
1

(𝜆𝑟)1(𝑀𝑟)
∫ |∇(𝑓2|𝜔𝑟|

1+𝜖)|2
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

.                  (97) 

 From (96) and (97), it follows that 
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∫ 𝑓4|𝜔𝑟|
2(1+𝜖)|𝐴|2

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

≤ (1 +
(3 + 𝜖)𝑘𝑟

2

(𝜆𝑟)1(𝑀𝑟)
)(∫ 𝑓4|𝛻|𝜔𝑟|

1+𝜖|2
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

+∫ |𝛻𝑓2|2|𝜔𝑟|
2(1+𝜖)

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

+ 2∫ 𝑓2|𝜔𝑟|
1+𝜖〈𝛻𝑓2, 𝛻|𝜔𝑟|

1+𝜖〉
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

). 

Applying the divergence theorem and using the relation(3), we get 

∫ 𝑓4|𝜔𝑟|
2(1+𝜖)|𝐴|2

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

≤ (1 +
(3 + 𝜖)𝑘𝑟

2

(𝜆𝑟)1(𝑀𝑟)
)(∫ |𝛻𝑓2|2|𝜔𝑟|

2(1+𝜖)
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

−∫ 𝑓4|𝜔𝑟|
1+𝜖∆|𝜔𝑟|

1+𝜖
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

)

≤ (1 +
(3 + 𝜖)𝑘𝑟

2

(𝜆𝑟)1(𝑀𝑟)
)∫ |𝛻𝑓2|2|𝜔𝑟|

2(1+𝜖)
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

− (1 +
(3 + 𝜖)𝑘𝑟

2

(𝜆𝑟)1(𝑀𝑟)
) (
1 + 𝜖

2 + 𝜖
)∫ 𝑓4|𝛻|𝜔𝑟|

1+𝜖|2
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

+ (1

+ 𝜖)(2 + 𝜖) (1 +
(3 + 𝜖)𝑘𝑟

2

(𝜆𝑟)1(𝑀𝑟)
)∫ (

|𝐴|2

3 + 𝜖
+ 𝑘𝑟

2)𝑓4|𝜔𝑟|
2(1+𝜖)

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

. 

Therefore 

(1 +
(3 + 𝜖)𝑘𝑟

2

(𝜆𝑟)1(𝑀𝑟)
) (
1 + 𝜖

2 + 𝜖
)∫ 𝑓4|∇|𝜔𝑟|

1+𝜖|2
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

≤ (1 +
(3 + 𝜖)𝑘𝑟

2

(𝜆𝑟)1(𝑀𝑟)
)∫ |∇𝑓2|2|𝜔𝑟|

2(1+𝜖)
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

+ (1

+ 𝜖)(2 + 𝜖)𝑘𝑟
2 (1 +

(3 + 𝜖)𝑘𝑟
2

(𝜆𝑟)1(𝑀𝑟)
)∫ 𝑓4|𝜔𝑟|

2(1+𝜖)
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

+ ((1 +
(3 + 𝜖)𝑘𝑟

2

(𝜆𝑟)1(𝑀𝑟)
)
(1 + 𝜖)(2 + 𝜖)

3 + 𝜖
− 1)∫ 𝑓4|𝐴|2|𝜔𝑟|

2(1+𝜖)
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

. 
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The assumption on (𝜆𝑟)1(𝑀𝑟) gives 

(
1 + 𝜖

2 + 𝜖
)∫ 𝑓4|∇|𝜔𝑟|

1+𝜖|2
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

 

≤ ∫ |∇𝑓2|2|𝜔𝑟|
2(1+𝜖)

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

+ (1 + 𝜖)(2 + 𝜖)𝑘𝑟
2∫ 𝑓4|𝜔𝑟|

2(1+𝜖)
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

.           (98) 

Applying Young’s inequality in (97), we have 

∫ 𝑓4|𝜔𝑟|
2(1+𝜖)

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

≤
1

(𝜆𝑟)1(𝑀𝑟)
(
1 + 𝜖

𝜖
)∫ |∇𝑓2|2|𝜔𝑟|

2(1+𝜖)
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

+
1 + 𝜖

(𝜆𝑟)1(𝑀𝑟)
∫ 𝑓4|∇|𝜔𝑟|

1+𝜖|2
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

 

for any 𝜖 > 0. Combining this with (98) we get 

(
𝜖

1 + 𝜖
+
𝑘𝑟
2(1 + 𝜖) 

(𝜆𝑟)1(𝑀𝑟)
)∫ 𝑓4|∇|𝜔𝑟|

1+𝜖|2
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

≤ (1 +
𝑘𝑟
2(1 + 𝜖)2(2 + 𝜖)

(𝜆𝑟)1(𝑀𝑟)𝜖
)∫ |∇𝑓2|2|𝜔𝑟|

2(1+𝜖)
 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

. 

Using the assumption on (𝜆𝑟)1(𝑀𝑟), we choose a sufficiently small 𝜖 > 0 such that 

𝜖

1 + 𝜖
+
𝑘𝑟
2(1 + 𝜖) 

(𝜆𝑟)1(𝑀𝑟)
> 0. 

Then we obtain 

∫ 𝑓4|∇|𝜔𝑟|
1+𝜖|2

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

≤ 𝐶0∫ |∇𝑓2|2|𝜔𝑟|
2(1+𝜖)

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

       (99) 

for some positive constant 𝐶0  which depends only on 1 + 𝜖, 3 + 𝜖, 𝑘𝑟 and (𝜆𝑟)1(𝑀𝑟). On 

the other hand, from the Sobolev inequality for minimal submanifolds [29], we have 

(∫ |𝑓2|𝜔𝑟|
1+𝜖|

2(3+𝜖)
1+𝜖

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

)

1+𝜖
3+𝜖

≤ 𝐶𝑆∫ |∇(𝑓2|𝜔𝑟|
1+𝜖)|2

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

 

≤ 2𝐶𝑆∫ 𝑓4|∇|𝜔𝑟|
1+𝜖|2

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

+ 2𝐶𝑆∫ |∇𝑓2|2|𝜔𝑟|
2(1+𝜖)

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

, (100) 
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where the Sobolev constant 𝐶𝑆 depends only on 3 + 𝜖. Combining (99) and(100), we get 

(∫ (𝑓2|𝜔𝑟|
1+𝜖)

2(3+𝜖)
1+𝜖

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

)

1+𝜖
3+𝜖

≤ 𝐶1∫ |∇𝑓2|2|𝜔𝑟|
2(1+𝜖)

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0)

,    (101) 

for some constant 𝐶1 ≥ 2𝐶𝑆(1 + 𝐶0). Now we choose our test function 0 ≤ 𝑓2 ≤ 1 as 

follows: given 𝑅 > 𝑅0 + 1, 

(a) 𝑓2 = 1 on𝐵𝑥𝑟(𝑅)\𝐵𝑥𝑟(𝑅0 + 1) 

(b) 𝑓2 = 0 on 𝐵𝑥𝑟(𝑅0)⋃(𝑀𝑟\𝐵𝑥𝑟(2𝑅)) 

(c) |∇𝑓2| ≤ 𝐶2 on 𝐵𝑥𝑟(𝑅0 + 1)\𝐵𝑥𝑟(𝑅0) 

(d) |∇𝑓2| ≤
𝐶𝑆

𝑅
 |on 𝐵𝑥𝑟(2𝑅)\𝐵𝑥𝑟(𝑅) 

for some constant𝐶2 > 0. Applying this test function 𝑓2 to(101), we get 

(∫ |𝜔𝑟|
2(3+𝜖)

 

𝐵𝑥𝑟(𝑅)\𝐵𝑥𝑟(𝑅0+1)

)

1+𝜖
3+𝜖

≤ 𝐶3∫ |𝜔𝑟|
2(1+𝜖)

 

𝐵𝑥𝑟(𝑅0+1)\𝐵𝑥𝑟(𝑅0)

+
𝐶3
𝑅2
∫ |𝜔𝑟|

2(1+𝜖)
 

𝐵𝑥𝑟(2𝑅)\𝐵𝑥𝑟(𝑅)

. 

Letting 𝑅 → ∞and using the assumption that ∫ |𝜔𝑟|
2(1+𝜖) 

𝑀𝑟
< ∞, we obtain 

(∫ |𝜔𝑟|
2(1+𝜖)

 

𝑀𝑟\𝐵𝑥𝑟(𝑅0+1)

)

1+𝜖
3+𝜖

≤ 𝐶3∫ |𝜔𝑟|
2(1+𝜖)

 

𝐵𝑥𝑟(𝑅0+1)\𝐵𝑥𝑟(𝑅0)

. 

Moreover, since 

∫ |𝜔𝑟|
2(1+𝜖)

 

𝐵𝑥𝑟(𝑅0+2)\𝐵𝑥𝑟(𝑅0+1)

≤ Vol (𝐵𝑥𝑟(𝑅0 + 2))

2
3+𝜖
(∫ |𝜔𝑟|

2(3+𝜖)
 

𝐵𝑥𝑟(𝑅0+2)\𝐵𝑥𝑟(𝑅0+1)

)

1+𝜖
3+𝜖

 

by Hölder inequality, we conclude that 

∫ |𝜔𝑟|
2(1+𝜖)

 

𝐵𝑥𝑟(𝑅0+2)\𝐵𝑥𝑟(𝑅0+1)

≤ 𝐶3. Vol (𝐵𝑥𝑟(𝑅0 + 2))

2
3+𝜖
∫ |𝜔𝑟|

2(1+𝜖)
 

𝐵𝑥𝑟(𝑅0+1)\𝐵𝑥𝑟(𝑅0)

,                     (102) 
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where Vol (𝐵𝑥𝑟(𝑅0 + 2))denotes the volume of the geodesic ball 𝐵𝑥𝑟(𝑅0 + 2) on 𝑀𝑟. 

Adding 

∫ |𝜔𝑟|
2(1+𝜖)

 

𝐵𝑥𝑟(𝑅0+1)\𝐵𝑥𝑟(𝑅0)

 

to both sides of (102), we get 

∫ |𝜔𝑟|
2(1+𝜖)

 

𝐵𝑥𝑟(𝑅0+2)\𝐵𝑥𝑟(𝑅0)

≤ (𝐶3. Vol (𝐵𝑥𝑟(𝑅0 + 2))

2
3+𝜖

+ 1)∫ |𝜔𝑟|
2(1+𝜖)

 

𝐵𝑥𝑟(𝑅0+1)\𝐵𝑥𝑟(𝑅0)

. 

Again adding ∫ |𝜔𝑟|
2(1+𝜖) 

𝐵𝑥𝑟(𝑅0)
 

∫ |𝜔𝑟|
2(1+𝜖)

 

𝐵𝑥𝑟(𝑅0+2)

≤ 𝐶4∫ |𝜔𝑟|
2(1+𝜖)

 

𝐵𝑥𝑟(𝑅0+1)

,                                     (103) 

where 𝐶4 = 𝐶3. Vol (𝐵𝑥𝑟(𝑅0 + 2))

2

3+𝜖
+ 1. 

On the other hand, since|𝜔𝑟| satisfies the differential inequality (93), Lemma 2.1 asserts 

that 

sup
𝐵𝑥𝑟((1−𝛿)(𝑅0+2))

|𝜔𝑟|
2(1+𝜖) ≤ 𝐶5∫ |𝜔𝑟|

2(1+𝜖)
 

𝐵𝑥𝑟(𝑅0+2)

 

for some positive constant𝐶5 = 𝐶5 (3 + 𝜖, Vol (𝐵𝑥𝑟(𝑅0 + 2)) , sup𝐵𝑥𝑟(𝑅0+2)
|𝐴|2). For a 

sufficiently small𝛿 > 0 such that (1 − 𝛿)(𝑅0 + 2) > 𝑅0 + 1, 

sup
𝐵𝑥𝑟(𝑅0+2)

|𝜔𝑟|
2(1+𝜖) ≤ 𝐶5∫ |𝜔𝑟|

2(1+𝜖)
 

𝐵𝑥𝑟(𝑅0+2)

. 

Together with(103), we obtain 

sup
𝐵𝑥𝑟(𝑅0+1)

|𝜔𝑟|
2(1+𝜖) ≤ 𝐶6∫ |𝜔𝑟|

2(1+𝜖)
 

𝐵𝑥𝑟(𝑅0+1)

.                                       (104) 

where the constant 𝐶6 > 0depends on 1 + 𝜖, 𝑘𝑟 , 3 + 𝜖, 𝑅0, (𝜆𝑟)1(𝑀𝑟), the volume of the 

geodesic ball 𝐵𝑥𝑟(𝑅0 + 2), and the supremum of|𝐴|2 on 𝐵𝑥𝑟(𝑅0 + 2). 

In order to prove that dimℋ1 (𝐿2(1+𝜖)(𝑀𝑟)) < ∞, let us consider any finite dimensional 

subspace 𝐾 ⊂ ℋ1 (𝐿2(1+𝜖)(𝑀𝑟)). It suffices to show that the dimension of 𝐾 is bounded 
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above by a constant, which is independent of 𝐾. According to Lemma (4.3.2), we see that 

there exists an 𝐿2(1+𝜖) harmonic 1-form 𝜔𝑟 ∈ 𝐾such that 

(dim𝐾)min(1,1+𝜖)∫ |𝜔𝑟|
2(1+𝜖)

 

𝐵𝑥𝑟(𝑅0+1)

≤ Vol (𝐵𝑥𝑟(𝑅0 + 1))min{3 + 𝜖, dim𝐾}
min{1,1+𝜖} . sup

𝐵𝑥𝑟(𝑅0+1)
|𝜔𝑟|

2(1+𝜖). 

From (104), it follows that 

dim𝐾 ≤ (𝐶6. Vol (𝐵𝑥𝑟(𝑅0 + 1)))

1
min{1,1+𝜖}min{3 + 𝜖, dim𝐾}, 

which implies that dim𝐾 is bounded by a fixed constant. Since 𝐾 is an arbitrary subspace 

of finite dimension, we get the conclusion.  
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Chapter 5 

On Strongly Lipschitz Domains with Mixed Boundary Conditions on 𝑳𝒑 

 

We show a method reling on a transference procedure from the recent positive result 

on ℝ𝑛 in [199]. We show that the domain Ω is assumed to be bounded, and the Dirichlet 

part 𝐷 of the boundary has to satisfy the well-known Ahlfors–David condition, whilst for 

the points from 𝜕Ω\𝐷̅̅ ̅̅ ̅̅ ̅ the existence of bi-Lipschitzian boundary charts is required. We 

obtain an optimal p-interval for the bounded 𝐻∞-calculus on 𝐿𝑝. Estimates depend 

holomorphically on the coefficients, thereby making them applicable to questions of (non-

autonomous) maximal regularity and optimal control. For completeness we also provide a 

short summary on the Kato square root problem in 𝐿2 for systems with lower order terms 

in our setting. 

Section (5.1): Square Roots of Elliptic Second Order Divergence Operators 

For Ω be an open subset of ℝ𝑛, A a bounded uniformly elliptic complex matrix on 

Ω, and 𝐿 =  −div(𝐴∇) the elliptic second order divergence operator defined as the 

maximal-accretive operator associated with a regularly accretive sesquilinear form on a 

closed subspace 𝑉 of 𝐻1(Ω) containing 𝐻0
1(Ω). The Kato conjecture amounts to showing 

that for any such 𝐿, the domain of the maximal-accretive square root 𝐿1/2 of 𝐿 agrees with 

𝑉 with equivalence of norms. One of Kato's questions was about perturbation theory for 

the square roots of real symmetric operators in order to study hyperbolic evolution 

equations with time-dependent coefficients. This conjecture is also related to other topics; 

see, e.g., [206].  

In one dimension, the conjecture is now completely settled: for any Ω, 𝑉 and 𝐿 as 

above, the domain of 𝐿1/2 agrees with 𝑉. The first solution when Ω = ℝ was given by 

Coifman, McIntosh and Meyer [201]. Their argument relied on translation invariance, so 

other methods needed to be devised when Ω ≠ ℝ. We used ad hoc wavelets in [200], 

while Auscher, McIntosh and Nahmod used a reduction from the case Ω =  ℝ  via [192]. 

In higher dimensions, when Ω =  ℝ𝑛 , [94] and for a discussion on progress over the years 

about this problem until 1998. Very recently, the conjecture has been established in 

arbitrary dimensions by Hofmann, Lacey and McIntosh along with us [199] after it was 

proved for 𝐿∞ of self-adjoint operators by Hofmann, Lewis and us [198].  

When Ω ≠ ℝn , geometry at the boundary plays a role which prevents a 

straightforward generalisation of results and methods in ℝ𝑛 . Not even the Kato conjecture 

for 𝐿∞-perturbations of the Laplacian is known. Mclntosh proved it when the coefficients 

are in the space MHS(Ω) of pointwise multipliers of the Sobolev space 𝐻𝑠(Ω) [205] for 

some 𝑠 >  0 and Ω strongly Lipschitz. This seems to be the best result currently available 

on strongly Lipschitz domains. We establish the following result.  

Theorem (5.1.1)[197]: If 𝑛 >  2, the Kato conjecture holds for any elliptic second order 

divergence operator -div( 𝐴 ∇) subject to a Dirichlet or Neumann boundary condition on a 

strongly Lipschitz domain.  

The meaning of a Dirichlet and Neumann boundary condition wilt be explained.  

Although square roots are non-local operators, the proof of Theorem (5.1.1) follows 

procedures which are customary for boundary value problems: we transfer the result from 

ℝ𝑛 to ℝ+
𝑛  by a reflection principle; then to special Lipschitz domains by a bilipschitz 

change of variables; and eventually to general strongly Lipschitz domains by localisation. 
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This last step relies upon a kind of "weak" comparison principle for solutions of complex 

elliptic operators.  

Our method does not seem to work for more general boundary conditions (e.g., for 

mixed Dirichlet-Neumann conditions).  

By a strongly Lipschitz domain, we mean an open connected set in ℝ𝑛 whose 

boundary is a finite union of parts of rotated graphs of Lipschitz maps, at most one of 

which parts is possibly infinite. These include special Lipschitz domains (the open set 

above a Lipschitz graph), bounded Lipschitz domains and exterior Lipschitz domains.  

For an open set Ω of ℝ𝑛, ‖𝑓‖𝑝 or ‖𝑓‖𝐿𝑝,(Ω) denotes the usual norm in the Lebesgue 

space 𝐿𝑝(Ω) equipped with Lebesgue measure. We write 𝐻1(Ω) for the usual Sobolev 

space with norm (‖∇𝑓‖2
2  +  ‖𝑓‖2

2) 1/= and 𝐻0
1(Ω) for the closure of 𝐶0

∞ (Ω) in 𝐻1 (Ω).  

Denote by 𝒜 the class of elliptic matrices in 𝐿∞(ℝ𝑛, 𝑀𝑛(𝒞)) with ellipticity 

constants 0 < 𝜆, Λ  < ∞ , that is, the best constants in the inequalities  

‖𝐴‖∞ ≤ Λ and   ∀𝜉 ∈ 𝒞
𝑛 Re 𝐴(𝑥)𝜉 ∙ 𝜉 ≥ 𝜆|𝜉|2, a. e. on ℝ𝑛. 

 If 𝐴 is merely given on Ω we tacitly require 𝐴 to be the 𝜆 times identity matrix 

elsewhere.  

Given 𝐴 ∈ 𝒜 , an open set Ω of ℝ𝑛 and a closed subspace 𝑉 of 𝐻1 (Ω) containing 

𝐻0
1 (Ω), denote by 𝐿 the maximal-accretive operator on 𝐿2(Ω), with largest domain 

𝒟(𝐿)  ⊂  𝑉, such that  

 〈𝐿𝑓, 𝑔〉  =  ∫  
Ω

𝐴∇𝑓 ∙ ∇𝑔, 𝑓 ∈ 𝒟(𝐿), 𝑔 ∈  𝑉.             (1) 

The domain of 𝐿 is characterized by the following condition. Let 𝑓 ∈  𝑉; then 𝑓 ∈ 𝒟(𝐿) if 
and only if there exists a constant c such that for all 𝑔 ∈  𝑉,  

|∫  
Ω

𝐴∇𝑓 ∙  ∇𝑔| ≤  𝑐‖𝑔‖2.                                               (2) 

It is known that 𝒟(𝐿) is dense in 𝑉 [203].  

Set -div = ∇∗∶  𝐿2(Ω, 𝒞𝑛) → 𝑉′ the adjoint of ∇: 𝑉 →  𝐿2(Ω, 𝒞𝑛). By density, we 

may extend 𝐿 continuously from 𝑉 to 𝑉′. We use the same letter to denote both 𝐿 or its 

extension depending on the context. Instead of the customary notation -div(𝐴∇), we prefer 

to write 𝐿 as the triplet (𝐴, Ω, 𝑉) to indicate the matrix of coefficients 𝐴, the domain Ω and 

the boundary condition determined by the space 𝑉.  
Any 𝐿 as above possesses a unique maximal-accretive square root 𝐿1/2, given by 

Kato's representation  

𝐿1/2𝑓 =
2

𝜋
 ∫  
∞

0

(1 + 𝑡2𝐿)−1𝑡𝐿𝑓
𝑑𝑡

𝑡
 , 𝑓 ∈ 𝒟(𝐿).            (3) 

For 𝑓 ∈ 𝒟(𝐿), we have  

(1 + 𝑡2𝐿)−1𝐿𝑓 =  𝐿(1 + 𝑡2𝐿)−1𝑓 =  𝑡−2(𝑓 −  (1 + 𝑡2𝐿)−1𝑓) ;    (4)  
hence, ‖(1 + 𝑡2𝐿)−1𝐿𝑓‖2  <  inf(‖𝐿𝑓‖2, 2‖𝑓‖2 𝑡

−2), since the resolvent is 𝐿2-

contractive. The above integral converges in 𝐿2(Ω)-norm. Observe that for each 𝑡 >
 0, (1 + 𝑡2𝐿)−1𝑡𝐿 extends to a bounded operator on 𝐿2(Ω) with  

‖(1 + 𝑡2𝐿)−1𝑡𝐿𝑓‖2 ≤
2

𝑡
‖𝑓‖2.                                     (5) 

Note also that 𝑓 ∈ 𝑉, then (1 + 𝑡2𝐿)−1𝑡𝐿𝑓 ∈ 𝑉. 
To tackle the Kato conjecture, it is enough to prove one of the inequalities  

 ‖𝐿1/2𝑓‖
2
≤  𝑐‖∇𝑓‖2, 𝑓 ∈  𝑉,                             (K)  
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 ‖𝐿1/2 𝑓‖
2
 ~ 𝑐(‖∇𝑓‖2  +  ‖𝑓‖2), 𝑓 ∈  𝑉      (Kloc)  

(it suffices to do it a priori for 𝑓 ∈ 𝒟(𝐿)). Indeed, it is well-known that (K) (resp. (Kloc) 
for 𝐿 and its adjoint imply that the domain of 𝐿1/2 is 𝑉 [204].  

Here, Dirichlet boundary condition means 𝑉 =  𝐻0
1 (Ω); Neumann: 𝑉 =  𝐻1(Ω). 

Assume Ω is strongly Lipschitz. In the first case, a function 𝑓 is in the domain of 𝐿 if 𝑓 ∈
 𝐻0
1(Ω) and the divergence of 𝐴∇𝑓 in the distributional sense on Ω belongs to 𝐿2(Ω). In the 

latter case, a function 𝑓 is in the domain of 𝐿 if 𝑓 ∈  𝐻1(Ω), the divergence of 𝐴∇𝑓 in the 

distributional sense on Ω belongs to 𝐿2(Ω) and the conormal derivative of 𝑓 at the 

boundary vanishes.  

One can think of (K) as a homogeneous or global inequality and (Kloc) as an 

inhomogeneous or local inequality.  

When Ω is unbounded (e.g., special Lipschitz or an exterior domain), this does make 

a difference. In particular, we do not obtain (K) on an exterior domain while we expect it. 

This suggests finding a different argument. In the case of bounded domains, there is no 

distinction between (K) and (Kloc). Indeed, when Ω is a bounded connected set with 

Lipschitz boundary, the Poincar- Wirtinger inequality yields that (∫  
Ω
 |∇𝑓|2)

1/2
 is a norm 

on 𝐻0
1 (Ω) or on the subspace of functions in 𝐻1(Ω) with vanishing mean. Thus, (K) and 

(Kloc) are the same in the Dirichlet case. In the Neumann case, they are the same on 

functions with vanishing mean; this is harmless as 𝑉 and 𝐿 annihilate constants and, in 

fact, 𝒩(∇)  = 𝒞 = 𝒩(𝐿). Another way of saying this is by factoring out 𝒞: write 

𝐿2 (Ω) =  𝐿0
2(Ω)⊕ 𝒞, where 𝐿0

2  (Ω) is the subspace of 𝐿2 (Ω) characterized by faf = 0; 

then the restriction of 𝐿 to 𝒟(𝐿)⋂  𝐿0
2(Ω) is one-one, and so is the restriction of V to 

𝐻1  ⋂  𝐿0
2(Ω).  

We consider that 𝐿 has the form 𝐷∗𝐴𝐷 with 𝐷 being a one-one operator and the 

abstract nonsense material contained in [94] applies.  

To prove Theorem (5.1.1), we establish (K) or (Kloc) (depending on Ω) for any 

elliptic operator 𝐿 =  (𝐴, Ω, 𝑉) as above: 𝐴 ∈ 𝒜,Ω is a strongly Lipschitz domain and 𝑉 is 

𝐻0
1(𝑄) or 𝐻1(Ω).  

By [199], (K) holds for all elliptic operators of the form (𝐴, ℝ𝑛 , 𝐻1 (Ω)). The 

argument to obtain the conclusion on any strongly Lipschitz domain contains four steps: 

localization, change of variables, multiplicative perturbations and the study on the upper 

half-space. We take them in reverse order.  

Step 1: Study on the upper half-space.  

Pick a coordinate system (𝑥1, . . . , 𝑥𝑛) in ℝ𝑛. Let  

Ω = ℝ+
𝑛  =  {𝑥 ∈ ℝ𝑛;  𝑥𝑛  >  0}.  

Define the orthogonai symmetry 𝑆 of ℝ𝑛 across 𝜕ℝ+
𝑛  by  

𝑆(𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛) ∶  (𝑥1, … , 𝑥𝑛−1, −𝑥𝑛).  
Denote by 𝐼(𝑓)(𝑥)  =  𝑓(𝑥) the identity operator and by 𝐽(𝑓)(𝑥)  =  𝑓(𝑆𝑥) the reflection 

operator for 𝑓 ∶  ℝ𝑛 → 𝒞. The transformation , defined by  

𝒥(𝑓)  =
1

√2
((𝐼 +  𝐽)(𝑓)|ℝ+𝑛 , (𝐼 −  𝐽)(𝑓)|ℝ+𝑛) 

is an isometry from 𝐿2(ℝ𝑛) to 𝐿2(ℝ+
𝑛)⨁𝐿2(ℝ+

𝑛) with  

∫  
ℝ𝑛
 |𝑓|2 =

1

2
∫  
ℝ+
𝑛
− |(𝐼 + 𝐽)(𝑓)|2 +∫  

ℝ+
𝑛
|(𝐼 − 𝐽)(𝑓)|2  

and from 𝐻1 (ℝ𝑛) to 𝐻1(ℝ+
𝑛)⨁𝐻0

1(ℝ+
𝑛) (homogeneous spaces) with  
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∫  
ℝ𝑛
 |∇𝑓|2 =

1

2
∫  
ℝ+
𝑛
− |∇(𝐼 + 𝐽)(𝑓)|2 +∫  

ℝ+
𝑛
|∇(𝐼 − 𝐽)(𝑓)|2 

This map is also onto in both cases, and its inverse is given by  

𝒥−1(𝜙, 𝜓) =
1

√2
(𝜙𝜖  + 𝜓𝑜),  

where for 𝑓 ∶  ℝ+
𝑛 → 𝒞, 𝑓𝑒 (resp., fo) is its even (resp., odd) extension to ℝ𝑛 defined by 

𝑓𝑒(𝑋)  =  𝑓(𝑆𝑥) (resp., 𝑓𝑜(𝑋) =  −𝑓(𝑆𝑥)) if 𝑥𝑛  <  0.  
Given 𝐴 ∈  −𝒜, define 𝐴# ∈  𝒜 by 𝐴#(𝑥) =  𝐴(𝑧) if 𝑥𝑛  >  0 and 𝐴#(𝑥) =

 𝑆𝐴(𝑆𝑥)𝑆 if 𝑥𝑛  <  0. Let 𝐿𝐷  =  (𝐴, ℝ
𝑛, 𝐻0

1(ℝ𝑛)), 𝐿𝑁  =  (𝐴,ℝ+
𝑛 , 𝐻1(ℝ+

𝑛)) and 𝐿# =

 (𝐴,ℝ𝑛, 𝐻 
1(ℝ𝑛)); and let 𝑄𝐷, 𝑄𝑁 and 𝑄# be the associated sesquilinear forms as in (1). 

The operator ,7 relates the forms by  

𝑄#(𝑓, 𝑔)  =  𝑄𝑁(𝑓𝑁 , 𝑔𝑁)  + 𝑄𝐷(𝑓𝐷, 𝑔𝐷),  
where 𝒥(𝑓)  =  (𝑓𝑁 , 𝑓𝐷) and 𝒥(𝑔)  =  (𝑔𝑁 , 𝑔𝐷). Using the characterization (2) of the 

domain of each operator, it is not difficult to show that  

𝒟(𝐿#)  = 𝒥−1(𝒟(𝐿𝐷)  ⊕ 𝒟(𝐿𝑁))  
and that It follows from the interpolation result of [204] that (K) holds for 𝐿 ~ if and only 

if it holds for both 𝐿𝑁 and 𝐿𝐷. Hence, we have proved that (K) holds for any 𝐿 = =
 (𝐴, ℝ+

𝑛 , 𝑉).  
Step 2: Perturbative multiplications. Assume that 𝑚 is a positive real-valued function 

with 𝑚,𝑚−1 ∈  𝐿∞(ℝ+
𝑛) and let 𝐿 =  (𝐴,ℝ+

𝑛 , 𝑉), The operator 𝑚𝐿 is well-defined on 

𝒟(𝐿) and has a square root. We have that (K) for L is equivalent to (K) for 𝑚𝐿. The proof 

of Lemma 14 in the Preliminaries of [94] given on ℝ𝑛 applies with the obvious changes.  

Step 3: Bilipschitz change of variables. Assume that Ω is a special Lipschitz domain: if 

Φ:ℝ𝑛−1 → ℝ is a defining Lipschitz function of 𝜕Ω the Lipschitz constant is, by 

definition, the quantity ‖∇Φ‖∞.  

Choose 𝜙:ℝ𝑛 → ℝ to be a bilipschitz change of variables with 𝜙(ℝ+
𝑛)  = Ω and 

𝜕𝜙(ℝ+
𝑛)  = 𝜕Ω. Define 𝑇𝑓 =  𝑓 ° 𝜙 . Let 𝐿 =  (𝐴, Ω, 𝑉). Then one has 𝒟(𝐿)  =

 𝑇−1 (𝒟(𝑚𝐿𝜙)) and  

𝐿 =  𝑇−1(𝑚𝐿𝜙)𝑇,  

where 𝐿𝜙  =  (𝐴𝜙, ℝ+
𝑛 , 𝑇−1(𝑉)) with, for 𝑥 ∈  ℝ+

𝑛 ,  

𝐴𝜙(𝑥)  = |det 𝐽𝜙(𝑥)|
𝑇
𝐽𝜙
−1(𝑥)𝐴(𝜙(𝑥)), 𝐽𝜙

−1(𝑥),  

𝐽𝜙
−1(𝑥) being the jacobian matrix of 𝜙 at 𝑥,  𝑇 𝐽𝜙(𝑥) its transpose and 𝑚(𝑥)  =

 |det 𝐽𝜙(𝑥)|
−1
. Note that 𝑇−1(𝑉)  =  𝐻0

1(ℝ+
𝑛) if 𝑉 =  𝐻 

1(Ω) and 𝑇−1(𝑉)  =

 𝐻0
1 (ℝ+

𝑛) if 𝑉 =  𝐻0
1(Ω).  

From the first two steps, we deduce that (K) is valid for 𝐿. 

Step 4: Localisation.  

This relies on three lemmas, the first of which we only need for 𝑘 =  2 being the key one. 

We stress that since the operators are complex, the usual comparison principles for weak 

solutions do not apply.  

Lemma (5.1.2)[197]: Let Ω be an open set of  ℝ𝑛 and 𝐴 ∈ 𝒜. Let 𝑉 be a closed subspace 

of 𝐻1(Ω) that contains 𝐻0
1(Ω) such that 𝑣 ∈  𝑉 and 𝜂 ∈ 𝒞0

∞(ℝ𝑛) imply 𝑣𝜂|Ω ∈  𝑉. Let 𝑃 

be an open set of ℝ𝑛 and, for 𝑡 >  0, let 𝑢𝑡 ∈  𝑉 be such that 
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∫  
Ω

𝑢𝑡 𝑣 + 𝑡
2  ∫  

Ω

 𝐴∇𝑢𝑡  ∙  ∇𝑣  =  0  

for all 𝑣 ∈  𝑉 such that supp 𝑣 ⊂  𝑃. Let 𝑂 be an open set with positive distance to cp (in 

particular, 𝑂 ⊂  𝑃). Then, for any 𝑘 ∈ 𝒩∗, we have  

∫  
𝑂⋂Ω

|𝑢𝑡|
2 ≤

𝑐𝑡2𝑘

𝑑2𝑘
∫  
𝑃∩Ω

|𝑢𝑡|
2,  

where 𝑑 =  𝑑(𝑐𝑃, 𝑂)  >  0 and 𝑐 depends on 𝑛, 𝑘 and the ellipticity constants of 𝐴.  

Proof. The argument uses a Caccioppoli-type inequality. Let 𝜂 ∈  𝒞0
∞ (ℝ𝑛), where 𝜂 is 

real-valued with sup 𝜂 ∩  𝑃; then 𝑣 =  𝑢𝑡𝜂|Ω
2  is an appropriate test function in 𝑉. A 

calculation gives  

∫  
Ω

|𝑢𝑡|
2𝜂2 + 𝑡2∫  

Ω

𝐴∇𝑢𝑡 ∙ ∇𝑢𝑡𝜂
2 = −2𝑡2∫  

Ω

𝐴(𝜂∇𝑢𝑡) ∙ 𝑢𝑡∇𝜂.  

Using ellipticity and 2|𝑎𝑏| ≤ 𝜖|𝑎|2 + 𝜖−1|𝑏|2,we ontain for all 𝜖 > 0  

Choosing 𝜖 = 𝜆/Λ leads to  

∫  
Ω

|𝑢𝑡|
2𝜂2 ≤ 𝛿𝑡2∫  

Ω

|𝑢𝑡|
2|∇𝜂|2. 

We have set 𝛿 = Λ2/𝜆. Observe that this is valid for all 𝜂 as above. Hence, applying this 

inequality to 𝜂𝑘 , 𝑘 integral, and iterating yields 

∫  
Ω

 |𝑢𝑡|
2𝜂2𝑘  ≤ 𝛿𝑡2∫  

Ω

|𝑢𝑡|
2𝑘2𝜂2(𝑘−1)|∇𝜂|2 

≤ 𝑘2𝛿‖∇𝜂‖∞
2 𝑡2∫  

Ω

|𝑢𝑡|
2𝜂2(𝑘−1) 

≤ (𝑘!)2(𝛿‖∇𝜂‖∞
2 𝑡2)𝑘−1∫  

Ω

|𝑢𝑡|
2𝜂2. 

≤ (𝑘!)2(𝛿‖∇𝜂‖∞
2 𝑡2)𝑘 ∫  

𝑃∩Ω

|𝑢𝑡|
2. 

It remains to choose 𝜂 =  1 on 𝑂 with ‖∇𝜂‖∞~ 1/𝑑 to conclude. 

This means that the well-known Gaffney Lemma [202] extends to any complex 

elliptic second order operator as above with the hypotheses on 𝑉 in the lemma. Of course, 

if Ω is strongly Lipschitz or ℝ𝑛 and 𝑉 =  𝐻0
1 (Ω) or 𝐻 

1(Ω), then the lemma applies.  

The first consequence is the treatment of operators with coefficients that agree on an 

open set. We use a formulation that takes into account interior and boundary estimates in 

the same flow.  

Lemma (5.1.3)[197]: (Comparison principle). Assume both domains Ω𝛼 and Ω𝛽 to be 

either ℝ𝑛 or strongly Lipschitz. Let 𝐴𝛼 , 𝐴𝛽 ∈  𝒜 such that 𝐿𝛼  =  −div(𝐴𝛼∇) and 𝐿𝛽  =

 −div(𝐴𝛽∇) are operators with 𝑉𝑖 ∶  𝐻
1(Ω) (resp., 𝑉𝑖 ∶  𝐻

1(Ωi))for 𝑖 ∶ 𝛼, Ω. Let 𝑃 be an 

open set of ℝ𝑛 such that 𝑃 ∩  𝜕Ω𝛼  =  𝑃 ∩ Ω𝛽  , 𝑃 ∩ Ω𝛽  ⊂ Ωα and that 𝐴𝛼  =  𝐴𝛽 on 𝑃 ∩

 Ω𝛽  . Then for any 𝜒 ∈  𝐶0
∞(𝑃) and for any open set 𝑂 of ℝ𝑛 such that 𝑑 =  𝑑( 𝑐𝑃,𝑂)  >

 𝑂, we have  

∫  
∞

0

‖(1 + 𝑡2𝐿𝛽)
−1
𝑡𝐿𝛽(𝜒𝑓) − (1 + 𝑡

2𝐿𝛼)
−1𝑡𝐿𝛼(𝑥𝑓)‖

𝐿2(𝑂∩Ω𝛽)
 
𝑑𝑡

𝑡
≤
𝑐‖𝜒𝑓‖𝐿2(Ω𝛽)

𝑑
  

for all 𝑓 ∈  𝑉𝛽, where 𝑐 depends only on 𝑛 and the ellipticity constants of 𝐴𝛽.  
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Proof. First, note that the assumptions on 𝑓 and 𝜒 insure that 𝜒𝑓 ∈  𝑉𝛼  ∩ 𝑉𝛽 (we are 

making a slight abuse of notation, as one should distinguish 𝑓𝛼  =  𝜒|Ω𝛼  𝑓 from 𝑓𝛽  =

 𝜒|Ω𝛽  𝑓. Set 𝑢𝑡
𝑖  = (1 + 𝑡2𝐿𝑖)

−1𝑡𝐿𝑖(𝜒𝑓) ∈ 𝑉𝑖 , for/= a,/~, and 𝑢𝑡  =  𝑢𝑡
𝛽
  − 𝑢𝑡

𝛼. Since 

‖𝑢𝑡
𝑖‖
𝐿2(Ω𝑖)

≤
2

𝑡
‖𝜒𝑓‖𝐿2(Ω𝑖) =

2

𝑡
‖𝜒𝑓‖𝐿2(Ω𝛽) 

∫  
∞

𝑑

‖𝑢𝑡
𝑖‖
𝐿2(Ω𝑖)

𝑑𝑡

𝑡
≤
2

𝑑
‖𝜒𝑓‖𝐿2(Ω𝛽), 

so it is enough to prove  

∫  
𝑑

0

‖𝑢𝑡
 ‖𝐿2(𝑂∩Ω𝛽)

𝑑𝑡

𝑡
≤
𝑐

𝑑
‖𝜒𝑓‖𝐿2(Ω𝛽). 

The variational formulation tells us that for all 𝑣 ∈  𝑉𝑖 , 

∫  
Ω𝑖

 𝑢𝑡
𝑖𝑣 +  𝑡2∫  

Ω𝑖

 𝐴𝑖∇𝑢𝑡
𝑖 ∙ ∇𝑣  = −𝑡∫  

Ω𝑖

 𝐴𝑖∇(𝜒𝑓) ∙ ∇𝑣; 

 and since 𝐴𝛼  =  𝐴𝛽 on 𝑃 ∩ Ω𝛽, we obtain  

∫  
Ω𝛽

 𝑢𝑡
 𝑣 +  𝑡2∫  

Ω𝛽

 𝐴𝛽∇𝑢𝑡
 ∙ ∇𝑣  = 0 

for all 𝑣 ∈  𝑉𝛽 such that Supp 𝑣 ⊂  𝑃. We deduce from the previous lemma that  

‖𝑢𝑡‖𝐿2(𝑂∩Ωβ)  <
𝑐𝑡2

𝑑2
‖𝑢𝑡‖𝐿2(𝑂∩Ωβ) ≤

4𝑐𝑡

𝑑2
‖𝜒𝑓‖𝐿2(Ω𝛽), 

and the conclusion follows readily.  

Next, we can also obtain estimates taking care of non-local terms.  

Lemma (5.1.4)[197]: (Off-diagonal estimates). Let Ω be a strongly Lipschitz domain or 

ℝ𝑛 and 𝐿 =  (𝐴, Ω, 𝑉) an elliptic operator on Ω with Dirichlet or Neumann boundary 

condition. Let E, F be two closed subsets of ℝ𝑛 such that 𝑑 =  𝑑( 𝐸, 𝐹)  >  0 and 𝜒 ∈
 𝐶0
∞ (𝐸). Then  

∫  
∞

0

‖(1 + 𝑡2𝐿)−1𝑡𝐿(𝜒𝑓)‖𝐿2(𝐹∩Ω )  
𝑑𝑡

𝑡
≤
𝑐‖𝜒𝑓‖𝐿2(Ω )

𝑑
 

for all 𝑓 ∈  𝑉. The constant c depends on 𝑛 and the ellipticity constants of 𝐴.  

Proof. Again, 𝜒𝑓 should be interpreted as 𝜒|Ω𝑓. Using (5), we have  

∫  
∞

𝑑

‖(1 + 𝑡2𝐿)−1𝑡𝐿(𝜒𝑓)‖𝐿2(Ω )  
𝑑𝑡

𝑡
≤ ‖𝜒𝑓‖𝐿2(Ω ). 

Next, using (4) and (Supp 𝜒)  ∩  𝐹 =  0, we obtain  

(1 +  𝑡2𝐿)−1𝑡𝐿(𝜒𝑓)  =
(1 + 𝑡2𝐿)−1(𝜒𝑓)

𝑡
 , on  𝐹 ∩ Ω 

Hence, it suffices to prove ,  

∫  
𝑑

0

1

𝑡
‖(1 + 𝑡2𝐿)−1(𝜒𝑓)‖𝐿2(𝐹∩Ω )  

𝑑𝑡

𝑡
≤
𝑐

𝑑
‖𝜒𝑓‖𝐿2(Ω ). 

Setting 𝑢𝑡 = (1 + 𝑡
2𝐿)−1(𝜒𝑓), we have for all 𝑣 ∈ 𝑉 such 𝑣 = 0 on 𝐹 

∫  
Ω 

 𝑢𝑡
 𝑣 +  𝑡2∫  

Ω 

 𝐴∇𝑢𝑡
 ∙ ∇𝑣  = 0 

 

By Lemma (5.1.2) applied with 𝑂 a neighborhood of 𝐹 and 𝑃 a neighborhood of 𝑂 such 

that 𝑑(𝐸, 𝑃)  =  𝑑(𝐸, 𝐹)/2 >  0, and the 𝐿2(Ω)-contractivity of the resolvent, we obtain  
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‖𝑢𝑡‖𝐿2(𝐹∩Ω)  <
𝑐𝑡2

𝑑2
‖𝑢𝑡‖𝐿2(𝑃∩Ω) ≤

𝑐𝑡2

𝑑2
‖𝜒𝑓‖𝐿2(Ω), 

The conclusion follows at once.  

We are now ready to prove that (Kloc) holds on all strongly Lipschitz domains. Let 𝐿 =
 (𝐴, Ω, 𝑉) be defined on the strongly Lipschitz domain Ω with boundary condition space 

given by 𝑉. Following [12], there exist an integer s, a number 𝑑 >  0 and for 0 <  𝑘 <
 𝑠, 𝐶0

∞(ℝ𝑛) real-valued functions 𝜒𝑘 and 𝜂𝑘, and open sets 𝑂𝑘, 𝑃𝑘, Ω𝑘 with the following 

properties:  

(i) ∑  0≤𝑘≤𝑠  𝜒𝑘(𝑥) = 1, for 𝑥 in a neighborhood of Ω ;  

(ii) Ω0 = ℝ
𝑛, Supp 𝜒0 ⊂ 𝑂0 ⊂ 𝑂0 ⊂ 𝑃0 ⊂ 𝑃0 ⊂ Ω; 

(iii) For 𝑘 ≥ 1, Ω𝑘 is the image of a special Lipschitz domain under an orthogonal 

transformation in ℝ𝑛 such that Supp 𝜒𝑘  ∩ Ω ⊂ Ω𝑘  ∩ Ω;  
(iv) for 𝑘 >  1, 𝑂𝑘 and 𝑃𝑘 are open neighborhoods of Supp 𝜒𝑘 in ℝ𝑛 such that 

𝑂𝑘  ⊂  𝑃𝑘 , 𝑃𝑘  ∩ Ω ⊂ Ω𝑘  ∩ Ω and 𝜕Ω ∩ 𝑃𝑘  =  𝜕Ω𝑘  ∩  𝑃𝑘, at most one of the 

latter possibly infinite;  

(v) for 𝑘 >  0, Supp 𝜂𝑘  ⊂  𝑃𝑘 , 𝜂𝑘  =  1 on a neighborhood of Ω𝑘, 𝜂𝑘  >  0 and 

‖𝜂𝑘‖∞ ; 
(vi) for 𝑘 ≥ 0, 𝑑(𝑂𝑘, 𝑃 

𝑐
𝑘)  >  𝑑 and 𝑑(Supp 𝜒𝑘, 𝑂 

𝑐
𝑘) ≥  𝑑.  

The Lipschitz constant of Ω is the infimum of max(𝑀1, . . . , 𝑀𝑠), where 𝑀𝑘 is the 

Lipschitz constant of Ω𝑘, taken over all possible decompositions of f~ in this way. 

Roughly, there is one interior piece and s boundary pieces to look at.  

For 0 <  𝑘 <  𝑠, set 𝐿𝑘  =  (𝐴, Ω𝑘 , 𝑉𝑘), where Ω0  =  ℝ
𝑛, 𝑉0  =  𝐻 

1(ℝ𝑛) and for 

𝑘 >  1, if 𝑉 =  𝐻 
1(Ω) (resp., 𝐻1(Ω)) then 𝑉𝑘  =  𝐻0

1 (Ω𝑘) (resp., 𝐻↓(Ω𝑘)). Note that if 

𝑓 ∈  𝑉, then 𝜒𝑘𝑓 ∈  𝑉 ∩ 𝑉𝑘 , so that all operations make sense.  

Now that these precautions are taken, fix 𝑓 ∈ 𝒟(𝐿)  ⊂  𝑉; since 𝑓 = ∑  𝜒𝑘𝑓, we may 

write  

𝐿1/2 𝑓 =∑ 𝜂𝑘𝐿𝑘
1/2
 (𝜒𝑘𝑓) + ∑  

0≤𝑘≤ 𝑠

(𝐿 
1/2 − 𝐿𝑘

1/2
)(𝜒𝑘𝑓) ∑  

0≤𝑘≤ 𝑠

(1 − 𝜂𝑘
 )𝐿1/2(𝜒𝑘𝑓). 

By the result on ℝ𝑛 and on special Lipschitz domains together with rotational invariance, 

the inequality (K) holds for 𝐿𝑘; hence  

‖𝜂𝑘𝐿𝑘
1/2
 (𝜒𝑘𝑓)‖

𝐿2(Ω)
 <  𝑐𝑘‖∇𝜒𝑘𝑓‖𝐿2(Ω). 

Note that 𝑐𝑘 depends on 𝑛, 𝜆 , Λ and also on 𝑀𝑘 if, in addition, 𝑘 >  1.  

Next, the comparison principle with 𝐿𝛼  =  𝐿𝑘 , 𝐿𝛽  =  𝐿, 𝑃 =  𝑃𝑘 , 𝑂 =  𝑂𝑘 , Ωα  =  Ω𝑘  and 

Ω𝛽  = Ω and the representation (3) for square roots yield  

‖𝜂𝑘(𝐿 
1/2  − 𝐿𝑘

1/2
) (𝜒𝑘𝑓)‖

𝐿2(Ω)
 <
𝑐′

𝑑
‖𝜒𝑘𝑓‖𝐿2(Ω). 

Finally, the off-diagonal estimates with 𝐸 =  Supp 𝜒𝑘 and 𝐹 =  𝑂 
𝑐
𝑘 and (3) imply  

‖(1 − 𝜂𝑘)𝐿 
1/2 (𝜒𝑘𝑓)‖𝐿2(Ω)  <

𝑐′′

𝑑
‖𝜒𝑘𝑓‖𝐿2(Ω). 

Hence (Kloc) follows for 𝐿. This concludes the proof of Theorem (5.1.1). 
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Section (5.2): The Square Root Problem for Second-Order, Divergence form 

Operators  

We identify the domain of the square root of a divergence form operator −𝛻 ·
 𝜇𝛻 +  1 on 𝐿𝑝(Ω) as a Sobolev space 𝑊1,𝑝 𝐷 (Ω) of differentiability order 1 for 𝑝 ∈
 ]1, 2]. (The subscript 𝐷 indicates the subspace of 𝑊1,𝑝(Ω )whose elements vanish on the 

boundary part 𝐷). Our focus lies on nonsmooth geometric situations in ℝ𝑑 for 𝑑 ≥  2. So, 

we allow for mixed boundary conditions and, additionally, deviate from the Lipschitz 

property of the domain in the following spirit: the boundary ∂ decomposes into a closed 

subset 𝐷 (the Dirichlet part) and its complement, which may share a common frontier 

within 𝜕Ω. Concerning 𝐷, we only demand that it satisfies the well-known Ahlfors–David 

condition (equivalently: is a (𝑑 − 1)-set in the sense of Jonsson/Wallin [234]), and only for 

points from the complement, we demand 𝑏𝑖-Lipschitzian charts around. As special cases, 

the pure Dirichlet (𝐷 =  𝜕Ω) and pure Neumann case (𝐷 = ∅) are also included in our 

considerations. Finally, the coefficient function μ is just supposed to be real, measurable, 

bounded and elliptic in general, cf. Assumption (5.2.5). Together, this setting should cover 

nearly all geometries that occur in real-world problems—as long as the domain does not 

have irregularities like cracks meeting the Neumann boundary part 𝜕Ω\𝐷. In particular, all 

boundary points of a polyhedral 3-manifold with boundary admit bi-Lipschitzian boundary 

charts—irrespective how ‘wild’ the local geometry is, cf. [233]. 

The identification of the domain for fractional powers of elliptic operators, in particular 

that of square roots, has a long history. Concerning Kato’s square root problem—in the 

Hilbert space 𝐿2—see, e.g. [199],[212],[242],[225] (here, only the non-selfadjoint case is 

of interest). Early efforts, devoted to the determination of domains for fractional powers in 

the non-Hilbert space case, seem to culminate in [245]. In recent years, the problem has 

been investigated in the case of 𝐿𝑝 (𝑝 ≠  2) for instance in 

[210],[94],[90],[232],[235],[104], but only the last three are dedicated to the case of a 

nonsmooth Ω =  ℝ𝑑 . In [90], the domain is a strong Lipschitz domain and the boundary 

conditions are either pure Dirichlet or pure Neumann. Our result generalizes this to a large 

extent and, at the same time, gives a new proof for these special cases, using more ‘global’ 

arguments. Since, in the case of a non-symmetric coefficient function 𝜇, for the 

nonsmooth constellations described above no general condition is known that assures 

(−𝛻 · 𝜇𝛻 + 1)1 2⁄  :𝑊𝐷
1,2Ω → 𝐿2(Ω) to be an isomorphism, this is supposed as one of our 

assumptions. This serves then as our starting point to show the corresponding 

isomorphism property of (−𝛻 ·  𝜇𝛻 +  1)1 2⁄ ∶  𝑊𝐷
1,𝑝(Ω)  →  𝐿𝑝(Ω) for 𝑝 ∈ ]1, 2[. For the 

case 𝑑 =  1, this is already known, even for all 𝑝 ∈ ]1,∞[ and more general coefficient 

functions 𝜇, cf. [211]. So we stick to the case 𝑑 ≥ 2.  

Whilst the isomorphism property is already interesting in itself, our original 

motivation comes from applications: having the isomorphism (−𝛻 · 𝜇𝛻 + 1)1 2⁄ ∶

 𝑊𝐷
1,𝑝(Ω)  → 𝐿𝑝(Ω) at hand, the adjoint isomorphism ((−𝛻 · 𝜇𝛻 + 1)1 2⁄ )

∗
 =

 (−𝛻 · 𝜇𝑇 𝛻 + 1)1 2⁄ ∶  𝐿𝑞  (Ω)  →  𝑊𝐷
−1,𝑞

 (Ω) allows to carry over substantial properties 

of the operators −𝛻 ·  𝜇𝛻 on the 𝐿𝑝-scale to the scale of 𝑊𝐷
−1,𝑞

 -spaces for 𝑞 ∈  [2,∞[. In 

particular, this concerns the 𝐻∞-calculus and maximal parabolic regularity, which in turn 

is a powerful tool for the treatment of linear and nonlinear parabolic equations, see, e.g. 

[244] and [59].  
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After presenting some notation and general assumptions, we introduce the Sobolev 

scale 𝑊𝐷
1,𝑝

 (), 1 ≤  𝑝 ≤  ∞, related to mixed boundary conditions and point out some of 

their properties. We define properly the elliptic operator under consideration and collect 

some known facts for it. The main result on the isomorphism property for the square root 

of the elliptic operator is precisely formulated. The following contain preparatory material 

for the proof of the main result, which is finished at the end. Some of these results have 

their own interest, such as Hardy’s inequality for mixed boundary conditions that is proved 

and the results on real and complex interpolation for the spaces 𝑊𝐷
1,𝑝
 (Ω), 1 ≤  𝑝 ≤  ∞, 

so we shortly want to comment on these.  

The proof of Hardy’s inequality heavily rests on two things: first one uses an 

operator that extends functions from 𝑊𝐷
1,𝑝
 (Ω) to 𝑊0

1,𝑝
 (Ω•), where Ω• is a domain 

containing . Then, one is in a situation where the deep results of Ancona [236], Lewis [70] 

and Wannebo [87], combined with Lehrbäck’s [67] ingenious characterization of pfatness, 

may be applied. 

The proof of the interpolation results, as well as other steps in the proof of the main 

result, is fundamentally based on an adapted Calderón–Zygmund decomposition for 

Sobolev functions. Such a decomposition was first introduced in [210] and has also 

successfully been used in [213], see also [214]. We have to modify it, since the main point 

here is, that the decomposition has to respect the boundary conditions. This is 

accomplished by incorporating Hardy’s inequality into the controlling maximal operator. 

This result, which is at the heart of our considerations, is contained. All these preparations, 

together with off-diagonal estimates for the semigroup generated by our operator, lead to 

the proof of the main result. We draw some consequences, as already sketched above. 

After having finished, we got to know of [237]. There, among other deep things, Lemma 

(5.2.3) and the interpolation results are also proved— and this in an even much broader 

setting than ours.  

We will use 𝑥, 𝑦, . .. for vectors in ℝ𝑑 and the symbol 𝐵(𝑥, 𝑟) stands for the ball in 

ℝ𝑑 around 𝑥 with radiusr. For , 𝐹 ⊆  ℝ𝑑 , we denote by 𝑑(𝐸, 𝐹) the distance between 𝐸 

and 𝐹, and if 𝐸 =  {𝑥}, then we write 𝑑(𝑥, 𝐹) or 𝑑𝐹(𝑥)instead. Regarding our geometric 

setting, we suppose the following assumption.  

Assumption (5.2.1)[206]: (i) Let 𝑑 ≥  2, let Ω ⊆ ℝ𝑑 be a bounded domain and let 𝐷 be a 

closed subset of the boundary 𝜕Ω (to be understood as the Dirichlet boundary part). For 

every 𝑥 ∈  𝜕Ω\𝐷̅̅ ̅̅ ̅̅ ̅, there exists an open neighbourhood 𝑈𝑥 of 𝑥 and a bi-Lipschitz map 𝜙𝑥 

from 𝑈𝑥 onto the cube 𝐾 ∶= ] − 1, 1[𝑑 , such that the following three conditions are 

satisfied:  

𝜙𝑥 (𝑥) =  0,  
𝜙𝑥 (𝑈𝑥  ∩ Ω) =  {𝑥 ∈  𝐾 ∶  𝑥𝑑  <  0}  = : 𝐾−,  
𝜙𝑥 (𝑈𝑥  ∩  𝜕Ω)  =  {𝑥 ∈  𝐾 ∶  𝑥𝑑  =  0}  = : Σ.  

(ii) We suppose that 𝐷 is either empty or satisfies the Ahlfors–David condition: there are 

constants 𝑐0, 𝑐1  >  0 and 𝑟𝐴𝐷  >  0, such that for all 𝑥 ∈  𝐷 and all 𝑟 ∈ ]0, 𝑟𝐴𝐷 ]   

𝑐0𝑟
𝑑−1  ≤ ℋ𝑑−1(𝐷 ∩  𝐵(𝑥, 𝑟)) ≤  𝑐1𝑟

𝑑−1,                     (6) 
 where ℋ𝑑−1 denotes (here and in the sequel) the (𝑑 −1)-dimensional Hausdorff measure, 

defined by  
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ℋ𝑑−1(𝐴):= lim inf
𝜀→0

  {∑ 

∞

𝑗=1

 diam (𝐴𝑗)
 𝑑−1

: 𝐴𝑗  ⊆  ℝ
𝑑 , diam(𝐴𝑗)  ≤  𝜀, 𝐴 ⊆  ⋃ 

∞

𝑗=1

 𝐴𝑗} . 

If 𝐵 is a closed operator on a Banach space 𝑋, then we denote by dom𝑋 (𝐵) the 

domain of this operator. ℒ(𝑋, 𝑌) denotes the space of linear, continuous operators from 𝑋 

into 𝑌 ; if 𝑋 =  𝑌 , then we abbreviate ℒ(𝑋). Furthermore, we will write 〈·,·〉𝑋′ for the 

pairing of elements of 𝑋 and the dual space 𝑋′ of 𝑋.  

Finally, the letters 𝑐 and 𝐶 denote generic constants that may change value from 

occurrence to occurrence.  

We will introduce the Sobolev spaces related to mixed boundary conditions and 

prove some results related to them that will be needed later.  

If ϒ is an open subset of ℝ𝑑 and 𝐹 a closed subset of ϒ̅, e.g. the Dirichlet part 𝐷 of 

𝜕Ω, then for 1 ≤  𝑞 <  ∞, we define 𝑊𝐹
1,𝑞
(ϒ) as the completion of  

𝐶𝐹
∞(ϒ):=  {𝜓|ϒ ∶  𝜓 ∈  𝐶0

∞ (ℝ𝑑), supp (𝜓) ∩  𝐹 =  ∅}              (7) 

with respect to the norm 𝜓 ↦ (∫  
ϒ
 |𝛻𝜓|𝑞  +  |𝜓|𝑞  𝑑𝑥 )

1 𝑞⁄
 . For 1 <  𝑞 <  ∞, the dual of 

this space will be denoted by 𝑊𝐹
−1,𝑞′

(ϒ) with 1/𝑞 +  1/𝑞′ =  1. Here, the dual is to be 

understood with respect to the extended 𝐿2 scalar product, or, in other words: 𝑊𝐹
−1,𝑞′(ϒ) is 

the space of continuous antilinear forms on 𝑊𝐹
1,𝑞(ϒ).  

Finally, we define the respective spaces for the case 𝑞 = ∞. We set 𝑊𝐹
1,∞(ϒ) ∶=

 Lip∞,𝐹(ϒ) with  

Lip∞,𝐹  (ϒ) ≔   {𝑓|ϒ ∶  𝑓 ∈  (𝐿
∞  ∩  Lip)(ℝ𝑑), 𝑓|𝐹 =  0 }  

= { 𝑓 ∈  (𝐿∞ ∩  Lip)(ϒ), 𝑓|𝐹 =  0 }.                            (8) 
 The norm on this space is  

‖𝑓‖𝐿∞(ϒ)  + sup
𝑥,𝑦∈ϒ,𝑥≠𝑦

 
| 𝑓 (𝑥)  −  𝑓 (𝑦)|

|𝑥 −  𝑦|
 . 

The last equality in (8) is a consequence of the Whitney extension theorem. We have 

Lip∞,𝐹  (ϒ) ⊆ {𝑓 ∈ 𝒲
1,∞(ϒ) ∶  𝑓|𝐹 = 0 } (𝒲

1,∞(ϒ) is defined using distributions) and 

the converse holds iff is uniformly locally convex by [32, Theorem 7]. 

In order to simplify notation, we drop the Ω in the notation of spaces, if 

misunderstandings are not to be expected. Thus, function spaces without an explicitly 

given domain are to be understood as function spaces on Ω.  

Lemma (5.2.2)[206]: Let ϒ ⊆  ℝ𝑑 be a bounded domain and 𝐹 a (relatively) closed 

subset of 𝜕ϒ, which is of Lebesgue measure 0. Then, 𝑊𝐹
1,∞ (ϒ)  ⊆  𝑊𝐹

1,𝑞(ϒ) for 1 ≤  𝑞 <
 ∞.  

Proof. Let (𝛼𝑛)𝑛 be the sequence of cut-off functions defined on ℝ+ by  

𝛼𝑛(𝑡)  = {

0,                if 0 ≤  𝑡 <  1/𝑛,
𝑛𝑡 −  1, if 1/𝑛 ≤  𝑡 ≤  2/𝑛,
1,                     if 𝑡 >  2/𝑛.                

  

 Remark that for 𝑡 ≠  0, the sequence 𝛼𝑛(𝑡) tends to 1 as 𝑛 →  ∞. Furthermore, for all 

𝑡 ≥  0, we have 0 ≤  𝑡𝛼𝑛
′ (𝑡)  ≤  2 and the sequence (𝑡𝛼𝑛

′ (𝑡))
𝑛

 tends to 0.  

For  ∈  ℝ𝑑 , we set 𝑤𝑛(𝑥) ∶=  𝛼𝑛(𝑑(𝑥, 𝐹)). Then, by the above considerations, 

𝑤𝑛  →  1 almost everywhere as 𝑛 →  ∞. The function 𝑑(·, 𝐹) is Lipschitzian with 

Lipschitz constant 1, and hence, it belongs to 𝑊loc
1,∞ (ℝ𝑑), cf. [245]. Since 𝛼 is piecewise 
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smooth, the usual chain rule for weak differentiation (cf. [29, Ch. 7.4 Thm. 7.8]) applies, 

which gives  

|𝛻𝑤𝑛(𝑥)|  = |𝛼𝑛
′ (𝑑(𝑥, 𝐹))| |𝛻𝑑(𝑥, 𝐹)|  ≤ |𝛼𝑛

′ (𝑑(𝑥, 𝐹))| 

almost everywhere on ℝ𝑑 . Thus, 𝑑(𝑥, 𝐹)|𝛻𝑤𝑛(𝑥)| is bounded and converges to 0 almost 

everywhere as 𝑛 → ∞.  

Let 𝑔 ∈  𝑊𝐹
1,∞  (ϒ), which we consider as defined on ℝ𝑑 . Since ϒ is bounded, we 

may assume that 𝑔 has compact support in some large ball 𝐵. Let 𝑔𝑛 ∶=  𝑔𝑤𝑛. Then, 𝑔𝑛 is 

compactly supported in 𝐵 and in ℝ𝑑\𝐹. We claim that 𝑔𝑛  →  𝑔 in 𝑊1,𝑞  (ℝ𝑑). Indeed, 

𝑔 − 𝑔𝑛  =  𝑔(1 − 𝑤𝑛) and, by the dominated convergence theorem, 𝑔(1 − 𝑤𝑛)  →  0 

in 𝐿𝑞  (ℝ𝑑), since 𝑤𝑛  →  1. Now, for the gradient, we have  

𝛻𝑔𝑛  −  𝛻𝑔 =  (𝑤𝑛  −  1)𝛻𝑔 +  𝑔𝛻𝑤𝑛. 
Again by the dominated convergence theorem, the first term converges to 0 in 𝐿𝑞 (ℝ𝑑). It 
remains to prove that ‖𝑔𝛻𝑤𝑛‖𝐿𝑞 (ℝ𝑑) converges to 0. We have  

(𝑔𝛻𝑤𝑛)(𝑥)  = {

0,                                         if 𝑥 ∈  𝐹,
𝑔(𝑥)

𝑑(𝑥, 𝐹)
𝑑(𝑥, 𝐹)𝛻𝑤𝑛(𝑥)       a. e. on ℝ

𝑑\𝐹
.        (9)  

Since g is Lipschitz continuous on the whole of ℝ𝑑 and satisfies 𝑔 =  0 on 𝐹, we find  

sup
 𝑥∈ℝ𝑑

  |
𝑔(𝑥)

𝑑(𝑥, 𝐹)
|  = sup

𝑥∈ℝ𝑑
 | 𝑔(𝑥) −

𝑔(𝑥∗)

𝑥 − 𝑥∗
| ≤ 𝐶,  

where 𝑥∗  ∈  𝐹 denotes an element of 𝐹 that realizes the distance of 𝑥 to 𝐹. So both factors 

on the right-hand side in (9) are bounded and 𝑑(𝑥, 𝐹)𝛻𝑤𝑛(𝑥) goes to 0 almost everywhere 

as 𝑛 →  ∞. Thus, since 𝑔 has compact support, the dominated convergence theorem yields 

𝑔𝛻𝑤𝑛 → 0 in 𝐿𝑞  (ℝ𝑑).  
Finally, it suffices to convolve this approximation with a smooth mollifying 

function that has small support to conclude 𝑔 ∈  𝑊𝐹
1,𝑞
 (ϒ).  

Next, we establish the following extension property for function spaces on domains, 

satisfying just part (i) of Assumption (5.2.1). This has been proved in [244] for 𝑞 =  2. 

We include a proof.  

Lemma (5.2.3)[206]: Let Ω and 𝐷 satisfy Assumption (5.2.1) (i). Then, there is a 

continuous extension operator 𝔈, which maps each space 𝑊𝐷
1,𝑞
 (Ω) continuously into 

𝑊𝐷
1,𝑞
 (ℝ𝑑  ), 𝑞 ∈  [1,∞]. Moreover, 𝔈 maps 𝐿𝑞  (Ω)  continuously into 𝐿𝑞  (ℝ𝑑) for 𝑞 ∈

 [1,∞].  
Proof. For every 𝑥 ∈  𝜕Ω\𝐷̅̅ ̅̅ ̅̅ ̅, let the set 𝑈𝑥 be an open neighbourhood that satisfies the 

condition from Assumption (5.2.1) (i). Let 𝑈𝑥1  , . . . , 𝑈𝑥ℓ be a finite subcovering of 𝜕Ω\𝐷̅̅ ̅̅ ̅̅ ̅ 

and let 𝜂 ∈  𝐶0
∞ (ℝ𝑑) be a function that is identically one in a neighbourhood of 𝜕Ω\𝐷̅̅ ̅̅ ̅̅ ̅ 

and has its support in 𝑈:= ⋃  ℓ
𝑗=1  𝑈𝑥𝑗.  

Assume 𝜓 ∈  𝐶𝐷
∞ (Ω); then, we can write 𝜓 =  𝜂𝜓 + (1 −  𝜂)𝜓. By the 

definition of 𝐶𝐷
∞ (Ω) and 𝜂, it is clear that the support of (1 −  𝜂)𝜓 is contained in , and 

thus, this function may be extended by 0 to the whole space ℝ𝑑—whilst its 𝑊1,𝑞  -norm is 

preserved. 

 It remains to define the extension of the function 𝜂𝜓, what we will do now. For 

this, let 𝜂1, . . . , 𝜂ℓ be a partition of unity on supp (𝜂), subordinated to the 

covering 𝑈𝑥1 , . . . , 𝑈𝑥ℓ . Then, we can write 𝜂𝜓 = ∑  ℓ
𝑟=1  𝜂𝑟𝜂𝜓 and have to define an 

extension for every function 𝜂𝑟𝜂𝜓. For doing so, we first transform the corresponding 
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function under the corresponding mapping 𝜙𝑥𝑟 from Assumption (5.2.1) (i) to 𝜂𝑟𝜂�̃�  =

 (𝜂𝑟𝜂𝜓) ∘ 𝜙𝑥𝑟
−1 on the half cube 𝐾−. Afterwards, by even reflection, one obtains a function 

𝜂𝑟𝜂𝜓 ∈  𝑊
1,𝑞(𝐾) on the cube 𝐾. It is clear by construction that supp (𝜂𝑟𝜂�̂�) has a 

positive distance to 𝜕𝐾. Transforming back, one ends up with a function 𝜂𝑟𝜂𝜓 ∈
 𝑊1,𝑞  (𝑈𝑥𝑟) whose support has a positive distance to 𝜕𝑈𝑥𝑟  . Thus, this function may also 

be extended by 0 to the whole of ℝ𝑑 , preserving again the 𝑊1,𝑞  norm. Lastly, one 

observes that all the mappings 𝑊1,𝑞  (𝑈𝑥𝑟  ∩ Ω)  ∋  𝜂𝑟𝜂𝜓 ↦  𝜂𝑟𝜂𝜓 ∈

 𝑊1,𝑞  (𝐾−),𝑊
1,𝑞  (𝐾−) ∋ 𝜂𝑟𝜂�̃�  ↦ 𝜂𝑟𝜂�̂�  ∈  𝑊

1,𝑞 (𝐾) and 𝑊1,𝑞(𝐾) ∋  𝜂𝑟𝜂�̂� ↦  𝜂𝑟𝜂𝜓  ∈

 𝑊1,𝑞  (𝑈𝑥𝑟) are continuous. Thus, adding up, one arrives at an extension of 𝜓 whose 

𝑊1,𝑞 (ℝ𝑑)-norm may be estimated by 𝑐‖𝜓‖𝑊1,𝑞 (Ω) with 𝑐 independent from 𝜓. Hence, 

the mapping 𝔈, up to now defined on 𝐶∞ 𝐷 (Ω), continuously and uniquely extends to a 

mapping from 𝑊𝐷
1,𝑞

 to 𝑊1,𝑞(ℝ𝑑).  

It remains to show that the images in fact even are in 𝑊𝐷
1,𝑞
 (ℝ𝑑). For doing so, one 

first observes that, by construction of the extension operator, for any 𝜓 ∈  𝐶𝐷
∞ (Ω), the 

support of the extended function 𝔈𝜓 has a positive distance to 𝐷—but 𝔈𝜓 need not be 

smooth. Clearly, one may convolve 𝔈𝜓 suitably in order to obtain an appropriate 

approximation in the 𝑊1,𝑞 (ℝ𝑑)-norm—maintaining a positive distance of the support to 

the set 𝐷. Thus, 𝔈 maps 𝐶𝐷
∞ (Ω) continuously into 𝑊𝐷

1,𝑞
 (ℝ𝑑), what is also true for its 

continuous extension to the whole space 𝑊𝐷
1,𝑞(Ω). 

It is not hard to see that the operator 𝔈 extends to a continuous operator from 

𝐿𝑞  (Ω)  to 𝐿𝑞(ℝ𝑑), where 𝑞 ∈  [1,∞].  
This Poincaré inequality entails that, whenever 𝐷 ≠  ∅, the norms given by 

‖ 𝑓‖
𝑊𝐷
1,𝑝 and ‖𝛻 𝑓‖𝐿𝑝 for 𝑓 ∈  𝑊𝐷

1,𝑝
 are equivalent. So, in this case, in all subsequent 

considerations, one may freely replace the one by the other. 

We now turn to the definition of the elliptic divergence form operator that will be 

investigated. Let us first introduce the ellipticity supposition on the coefficients.  

Assumption (5.2.4)[206]: The coefficient function 𝜇 is a Lebesgue measurable, bounded 

function on taking its values in the set of real, 𝑑 ×  𝑑 matrices, satisfying for some 𝜇•  >
 0 the usual ellipticity condition  

𝜉𝑇𝜇(𝑥)𝜉 ≥  𝜇•|𝜉|
2, for all 𝜉 ∈  ℝ𝑑  and almost all 𝑥 ∈ Ω. 

 The operator 𝐴 ∶  𝑊𝐷
1,2  →  𝑊𝐷

−1,2
 is defined by  

〈𝐴𝜓, 𝜑〉 𝑊𝐷
−1,2: =  𝑡(𝜓, 𝜑) ∶=  ∫  

Ω

𝜇𝛻𝜓 ·  𝛻𝜑 𝑑𝑥, 𝜓, 𝜑 ∈  𝑊𝐷 
1,2. 

 Often, we will write more suggestively −𝛻 ·  𝜇𝛻 instead of 𝐴. 

The 𝐿2 realization of 𝐴, i.e. the maximal restriction of 𝐴 to the space 𝐿2, will be 

denoted by the same symbol 𝐴; clearly, this is identical with the operator that is induced 

by the sesquilinear form 𝑡. If 𝐵 is a densely defined, closed operator on 𝐿2, then by the 

𝐿𝑝 realization of 𝐵 we mean its restriction to 𝐿𝑝 if 𝑝 >  2 and the 𝐿𝑝 closure of 𝐵 if 𝑝 ∈
 [1, 2[. (For all operators we have in mind, this L p-closure exists).  

As a starting point of our considerations, we assume that the square root of our 

operator is well behaved on 𝐿2.  
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Assumption (5.2.5)[206]: The operator (−𝛻 ·  𝜇𝛻 +  1)1 2⁄ ∶  𝑊𝐷
1,2 → 𝐿2 provides a 

topological isomorphism; in other words: the domain of (−𝛻 ·  𝜇𝛻 +  1)1 2⁄  on 𝐿2 is the 

form domain 𝑊𝐷
1,2

.  

Proposition (5.2.6)[206]: Let Ω ⊆ ℝ𝑑 be a domain and let 𝐷 ⊆  𝜕Ω (relatively) closed.  

(i) The restriction of −𝛻 ·  𝜇𝛻 to 𝐿2 is a densely defined sectorial operator. 

(ii) The operator 𝛻 ·  𝜇𝛻 generates an analytic semigroup on 𝐿2.  

(iii) The form domain 𝑊𝐷
1,2

 is invariant under multiplication with functions from 

𝑊1,𝑞 , if 𝑞 >  𝑑.  

Proof. (i) It is not hard to see that the form 𝑡 is closed and its numerical range lies in the 

sector {𝑧 ∈ ℂ ∶ |Im 𝑧|   ≤  
‖𝜇‖𝐿∞

𝜇•
 Re 𝑧} . Thus, the assertion follows from a classical 

representation theorem for forms, see [238].  

(ii) This follows from (i) and [238].  

(iii) First, for 𝑢 ∈  𝐶𝐷
∞ (Ω) and 𝑣 ∈  𝐶∞(Ω), the product uv is obviously in 𝐶𝐷

∞ (Ω)  ⊆

 𝑊𝐷
1,2

 . But, by definition of 𝑊𝐷
1,2

 , the set 𝐶𝐷
∞ (Ω) (see (5.2.2)) is dense in 𝑊𝐷

1,2
 and 

𝐶∞(Ω) is dense in 𝑊1,𝑞. Thus, the assertion is implied by the continuity of the mapping  

𝑊𝐷
1,2  ×  𝑊1,𝑞 ∋  (𝑢, 𝑣) ↦ 𝑢𝑣 ∈  𝑊1,2, 

because 𝑊𝐷
1,2

 is closed in 𝑊1,2.  

Proposition (5.2.7)[206]: Let Ω and 𝐷 satisfy Assumption (5.2.1) (i). Then, the semigroup 

generated by 𝛻 ·  𝜇𝛻 in 𝐿2 satisfies upper Gaussian estimates, precisely:  

(𝑒𝑡𝛻·𝜇𝛻𝑓)(𝑥)  =  ∫  
Ω

 𝐾𝑡(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦, for a. a.   𝑥 ∈ Ω , 𝑓 ∈  𝐿2, 

 for some measurable function 𝐾𝑡 ∶ Ω × Ω → ℝ+, and for all ε > 0, there exist constants 

𝐶, 𝑐 >  0, such that  

0 ≤  𝐾𝑡(𝑥, 𝑦) ≤
𝐶

𝑡𝑑 2⁄
 𝑒−𝑐

|𝑥−𝑦|2

𝑡  𝑒𝜀𝑡 , 𝑡 >  0, 𝑎. 𝑎. 𝑥, 𝑦 ∈ Ω .       (10) 

 Proof. A proof is given in [244]—heavily resting on [209], compare also [242].  

Proposition (5.2.8)[206]: Let Ω and 𝐷 satisfy Assumption (5.2.1) (i).  

(i) For every 𝑝 ∈  [1,∞], the operator 𝛻 · 𝜇𝛻 generates a semigroup of contractions 

on 𝐿𝑝. 

(ii) For all 𝑞 ∈ ]1,∞[ the operator −𝛻 ·  𝜇𝛻 +  1 admits a bounded 𝐻∞-calculus on 

𝐿𝑞 with 𝐻∞-angle arctan 
‖𝜇‖𝐿∞

𝜇•
 . In particular, it admits bounded imaginary 

powers.  

Proof. (i) The operator 𝛻 ·  𝜇𝛻 generates a semigroup of contractions on 𝐿2 (see [242]) as 

well as on 𝐿∞ (see [242]). By interpolation, this carries over to every 𝐿𝑞 with 𝑞 ∈ ]2,∞[ 
and, by duality, to 𝑞 ∈  [1, 2].  
(ii) Since the numerical range of −𝛻 · 𝜇𝛻 is contained in the sector {𝑧 ∈ ℂ ∶  | Im 𝑧|  ≤
‖𝜇‖𝐿∞

𝜇•
 Re 𝑧} , the assertion holds true for 𝑞 =  2, see [228]. Secondly, the semigroup 

generated by 𝛻 ·  𝜇𝛻 −  1 obeys the Gaussian estimate (10) with ε = 0. Thus, the first 

assertion follows from [223]. The second claim is a consequence of the first, see [219].  

We can now formulate our main goal, that is, to prove that the mapping 

 (𝐴 +  1)1 2⁄  =  (−𝛻 ·  𝜇𝛻 +  1)1 2⁄ ∶  𝑊𝐷
1,𝑞
 →  𝐿𝑞   

is a topological isomorphism for 𝑞 ∈ ]1, 2[. We abbreviate −𝛻 ·  𝜇𝛻 +  1 by 𝐴0. We 

want to show the following main result.  
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Theorem (5.2.9)[206]: Under Assumptions (5.2.1), (5.2.4) and (5.2.5), the following 

holds true: 

(i) For every 𝑞 ∈ ]1, 2], the operator 𝐴0
−1 2⁄

 is a continuous operator from 𝐿𝑞 into 𝑊𝐷
1,𝑞
 . 

Hence, its adjoint continuously maps 𝑊𝐷
−1,𝑞

 into 𝐿𝑞 for any 𝑞 ∈  [2,∞[.  

(ii) Moreover, if 𝑞 ∈ ]1, 2], then 𝐴0
1 2⁄

 maps 𝑊𝐷
1,𝑞
 continuously into 𝐿𝑞 . Hence, its adjoint 

continuously maps 𝐿𝑞 into 𝑊𝐷
−1,𝑞

 for any 𝑞 ∈  [2,∞[. 

 We can immediately give the proof of (i), i.e. the continuity of the operator 𝐴0
−1 2⁄ ∶

 𝐿𝑞  →  𝑊𝐷
1,𝑞
 . We observe that this follows, whenever  

1. The Riesz transform 𝛻𝐴0
−1 2⁄

 is a bounded operator on 𝐿𝑞, and, additionally,  

2. 𝐴0
−1 2⁄

 maps 𝐿𝑞 into 𝑊𝐷
1,𝑞

 . The first item is proved in [242], compare also [222]. 

It remains to show 2. The first point makes clear that 𝐴0
−1 2⁄

 maps 𝐿𝑞 continuously into 

𝑊1,𝑞 , and thus, one only has to verify the correct boundary behaviour of the images. If  ∈

 𝐿2  ↦  𝐿𝑞 , then one has 𝐴0
−1 2⁄  𝑓 ∈  𝑊𝐷

1,2  ↦  𝑊𝐷
1,𝑞

 , due to Assumption (5.2.5). Thus, the 

assertion follows from 1, and the density of 𝐿2 in 𝐿𝑞 .  

A major tool in our considerations is an inequality of Hardy type for functions in 

𝑊𝐷
1,𝑝

 , so functions that vanish only on the part 𝐷 of the boundary. We recall that, for a set 

 ⊆  ℝ𝑑 , the symbol 𝑑𝐹 denotes the function on ℝ𝑑 that measures the distance to 𝐹. The 

result we want to show is the following.  

Theorem (5.2.10)[206]: Under Assumption (5.2.1), for every 𝑝 ∈ ]1,∞[, there is a 

constant cp, such that  

∫  
Ω

 |
𝑓

𝑑𝐷
|
𝑝

 𝑑𝑥 ≤  𝑐𝑝  ∫  
Ω

|𝛻 𝑓|𝑝 𝑑𝑥 

 holds for all 𝑓 ∈  𝑊𝐷
1,𝑝

 .  

Since the statement of this theorem is void for 𝐷 =  ∅, we exclude that case for this 

entire. Please note that then the norm on the spaces 𝑊𝐷
1,𝑝

 may be taken as ‖𝛻 ·‖𝑝 in view 

of the Ahlfors–David condition of 𝐷.  

We quote the two deep results on which the proof of Theorem (5.2.10) will base. 

Proposition (5.2.11)[206]: (See [70],[87], see also [64]) Let Ξ ⊆  ℝ𝑑 be a domain whose 

complement 𝐾 ∶=  ℝ𝑑  \Ξ is uniformly 𝑝-fat (cf. [70] or [64]). Then, Hardy’s inequality  

∫ 
Ξ

 |
𝑔

𝑑𝐾
|
𝑝

 𝑑𝑥 =  ∫ 
Ξ

|
𝑔

𝑑𝜕Ξ
|
𝑝

 𝑑𝑥 ≤  𝑐 ∫ 
Ξ

|𝛻𝑔|𝑝 𝑑𝑥                     (11)  

holds for all 𝑔 ∈  𝐶0
∞ (Ξ) (and extends to all 𝑔 ∈  𝑊0

1,𝑝
 (Ξ), 𝑝 ∈ ]1,∞[ by density).  

Proposition (5.2.12)[206]: [67] Let Ξ ⊆  ℝ𝑑 be a domain and let ℋ𝑑−1
∞  denote the (𝑑 −

 1)-dimensional Hausdorff content, i.e.  

ℋ𝑑−1
∞ (𝐴):= inf  {∑ 

∞

𝑗=1

 𝑟𝑗
𝑑−1 ∶  𝑥𝑗  ∈  𝐴, 𝑟𝑗  >  0, 𝐴 ⊆  ⋃ 

∞

𝑗=1

 𝐵(𝑥𝑗 , 𝑟𝑗)} .  

If Ξ satisfies the inner boundary density condition, i.e.  

ℋ𝑑−1
∞  (𝜕Ξ ∩  𝐵(𝑥, 2𝑑𝜕Ξ(𝑥)))  ≥  𝑐 𝑑𝜕Ξ(𝑥)

𝑑−1, 𝑥 ∈  Ξ,          (12) 

 for some constant 𝑐 >  0, then the complement of Ξ in ℝ𝑑 is uniformly 𝑝-fat for all 𝑝 ∈
 ]1,∞[.  
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The subsequent lemma will serve as the instrument to reduce our case to the 

situation of a pure Dirichlet boundary.  

Lemma (5.2.13)[206]: Let 𝐵 ⊇ Ω be an open ball. We define Ω• as the union of all open, 

connected subsets of 𝐵 that contain Ω and avoid 𝐷. Then, Ω• is open and connected, and 

we have 𝜕Ω•  =  𝐷 or 𝜕Ω•  =  𝐷 ∪  𝜕 𝐵.  

Proof. The first assertion is obvious. The connectedness follows from the fact that all the 

sets that, by forming their union, generate Ω• contain Ω, and, hence, a common point. It 

remains to show the last assertion. Clearly, we have 𝜕Ω•  ⊆  𝐵.  

We claim that 𝐷 ⊆  𝜕Ω•: Let 𝑥 ∈  𝐷. As 𝐷 ⊆  𝜕Ω, we know that 𝑥 is an 

accumulation point of and thus also of Ω•, since Ω ⊆  Ω•. Furthermore, 𝑥 ∉ Ω•. Hence, 

𝑥 ∈  𝜕Ω•. We claim that 𝜕Ω•  ⊆  𝜕 𝐵 ∪  𝐷. Assume not. Then, there exists 𝑥 ∈  𝜕Ω• with 

𝑥 ∈  𝐵\𝐷. As 𝐵\𝐷 is open, it contains an open ball 𝐾𝑥 centred at 𝑥. Then, Ω•  ∪  𝐾𝑥 is an 

open and connected (since 𝑥 is a point of accumulation of Ω•, the set Ω•  ∩  𝐾𝑥 is not 

empty) set containing , contained in 𝐵 and not meeting 𝐷. As it strictly contains Ω•, this 

contradicts the definition of Ω•.  
We now consider an annulus 𝐾𝐵  ⊆  𝐵 that is adjacent to 𝜕 𝐵 and does not intersect 

Ω. If Ω•  ∩  𝐾𝐵  =  ∅, then 𝜕Ω•  ⊆  𝐵, and, consequently, 𝜕Ω•  =  𝐷. If Ω•  ∩  𝐾𝐵 is not 

empty, then Ω•  ∪  𝐾𝐵 is open, connected, contains Ω, avoids 𝐷 and is contained in 𝐵. 

Hence, Ω•  ∪  𝐾𝐵  ⊆  Ω•, what implies 𝜕 𝐵 ⊆  𝜕Ω•.  
The next lemma links the Hausdorff content, appearing in Proposition (5.2.12), to 

the Hausdorff measure, compare also [64].  

Lemma (5.2.14)[206]: If 𝐹 ⊆  ℝ𝑑 is bounded and satisfies the Ahlford–David condition 

(6), then there is a 𝐶 ≥  0 with ℋ𝑑−1
∞ (𝐸)  ≥  𝐶ℋ𝑑−1(𝐸) for every non-empty Borel set 

𝐸 ⊆  𝐹.  

Proof. Let {𝐵(𝑥𝑗 , 𝑟𝑗)}𝑗∈ℕ be a covering of 𝐸 by open balls centred in 𝐸. If 𝑟𝑗  ≤  1, then 

𝑟𝑗
𝑑−1 is comparable to ℋ𝑑−1 (𝐹 ∩  𝐵(𝑥𝑗 , 𝑟𝑗)), whereas if 𝑟𝑗 > 1, then certainly 

ℋ𝑑−1 (𝐹 ∩  𝐵(𝑥𝑗 , 𝑟𝑗))  ≤  ℋ𝑑−1(𝐹)𝑟𝑗
𝑑−1 . Note carefully that 0 <  ℋ𝑑−1(𝐹)  <  ∞ 

holds, since 𝐹 can be covered by finitely many balls with radius one centred in 𝐹. 

Altogether,  

∑ 

∞

𝑗=1

 𝑟𝑗
𝑑−1  ≥ 𝐶∑ 

∞

𝑗=1

 ℋ𝑑−1 (𝐹 ∩  𝐵(𝑥𝑗 , 𝑟𝑗)) ≥ 𝐶ℋ𝑑−1(𝐹 ∩ ⋃ 

∞

𝑗=1

𝐵(𝑥𝑗 , 𝑟𝑗))

≥ 𝐶ℋ𝑑−1(𝐸) 
with 𝐶 depending only on 𝐹. Taking the infimum, ℋ𝑑−1

∞ (𝐸)  ≥  𝐶ℋ𝑑−1(𝐸) follows.  

Let us now prove Theorem (5.2.10). One first observes that in both cases appearing 

in Lemma (5.2.13), the set 𝜕Ω• satisfies the Ahlfors–David condition: for the boundary 

part 𝐷, this was supposed in Assumption (5.2.1), and for 𝜕 𝐵, this is obvious. Thus, from 

the Ahlfors–David condition for 𝜕Ω•, we get constants r•  >  0 and 𝑐 >  0 with  

ℋ𝑑−1 (𝜕Ω•  ∩  𝐵(𝑦, 𝑟)) ≥  𝑐𝑟
𝑑−1, 𝑦 ∈  𝜕Ω•, 𝑟 ∈ ]0, 𝑟•  ]. 

This yields, invoking Lemma (5.2.14),  

ℋ𝑑−1
∞  (𝜕Ω•  ∩  𝐵(𝑦, 𝑟))  ≥  𝐶ℋ𝑑−1 (𝜕Ω•  ∩  𝐵(𝑦, 𝑟))  ≥  𝐶𝑐 (

𝑟•
diam(Ω•)

)
𝑑−1

𝑟𝑑−1, 𝑦 

∈  𝜕Ω•, 𝑟 ∈ ]0, 𝑑𝑖𝑎𝑚(Ω•)]. (6.3) 
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But (6.3) implies the inner boundary density condition (12), compare [47, p. 2195]. Thus, 

Proposition (5.2.11) and Proposition (5.2.12) imply that Hardy’s inequality in (11) is true 

for Ξ =  Ω• and all 𝑔 ∈  𝑊0
1,𝑝
  (Ω•).  

In view of Lemma (5.2.13), we can define an extension operator 𝔈• ∶  𝑊𝐷
1,𝑝
 (Ω)  →

 𝑊0
1,𝑝
  (Ω•) as follows: If 𝜕Ω•  =  𝐷, then we put 𝔈Ω•𝜓 ∶= 𝔈𝜓|• , where 𝔈 is the 

extension operator from Lemma (5.2.3). If 𝜕Ω•  =  𝐷 ∪ 𝜕 𝐵, then we choose an 𝜂 ∈

 𝐶0
∞ (𝐵) with 𝜂 ≡  1 on and put 𝔈•𝜓 ∶=  𝜂𝔈𝜓|Ω• . Now, let 𝑓 ∈  𝑊𝐷

1,𝑝
 (Ω). Then, we can 

use (11) for 𝔈• 𝑓 ∈  𝑊0
1,𝑝
 (Ω•), and we finally  find  

∫  
Ω

|
𝑓

𝑑𝐷
|
𝑝

 𝑑𝑥 ≤  ∫  
Ω

|
𝑓

𝑑𝜕Ω•
|

𝑝

 𝑑𝑥 ≤  ∫  
Ω•

 |
𝔈•𝑓

𝑑𝜕Ω•
|

𝑝

𝑑𝑥 ≤  𝑐 ∫  
Ω•

|𝛻(𝔈•𝑓)|
𝑝 𝑑𝑥 

≤  𝑐‖𝑓‖
𝑊𝐷
1,𝑝

𝑝
 ≤  𝑐 ∫  

Ω

|𝛻 𝑓|𝑝𝑑𝑥. 

This proves Theorem (5.2.10).  

The proof of Theorem (5.2.9) heavily relies on a Calderón–Zygmund decomposition 

for 𝑊𝐷
1,𝑝

 functions. The important point, which brings the mixed boundary conditions into 

play, is that we have to make sure that for 𝑓 ∈ dom𝐿𝑝  (𝐴0
1 2⁄ ), the good and the bad part of 

the decomposition are both also in this space. This is not guaranteed neither by the 

classical Calderón–Zygmund decomposition nor by the version for Sobolev functions in 

[5, Lemma (5.2.4)2]. This problem will be solved by incorporating the Hardy inequality 

into the decomposition.  

For ease of notation, we set 1/𝑑∅  =  0.  

We denote by 𝑄 the set of all closed axis-parallel cubes, i.e. all sets of the form 

{𝑥 ∈  ℝ𝑑 ∶  |𝑥 −  𝑚|∞  ≤ ℓ/2}  for some midpoint 𝑚 ∈  ℝ𝑑 and sidelength ℓ >  0. In 

the following, for a given cube 𝑄 ∈  𝑄, we will often write 𝑠 > 𝑄 for some 𝑠 >  0, 

meaning the cube with the same midpoint 𝑚, but sidelength 𝑠ℓ instead of ℓ.  

Furthermore, for every 𝑥 ∈  ℝ𝑑  , we set 𝑄𝑥 ∶=  {𝑄 ∈  𝑄 ∶  𝑥 ∈  𝑄
∘}. Now, we may 

define the Hardy–Littlewood maximal operator 𝑀 for all 𝜑 ∈  𝐿1(ℝ𝑑) by  

(𝑀𝜑)(𝑥)  = sup
 𝑄∈𝑄𝑥

 
1

|𝑄|
 ∫  
𝑄

 |𝜑|, 𝑥 ∈  ℝ𝑑  .                    (13) 

It is well known (see [246]) that M is of weak type (1, 1), so there is some 𝐾 >  0, such 

that for all 𝑝 ≥  1 

 |{ 𝑥 ∈ ℝ𝑑 ∶  |[𝑀(|𝜑|𝑝)](𝑥)|  >  𝛼𝑝}| ≤
𝐾

𝛼𝑝
 ‖𝜑‖𝑝_(𝐿𝑝(ℝ𝑑) , for all 𝛼 >  0 and 𝜑 

∈  𝐿𝑝(ℝ𝑑).  
(14) 

Lemma (5.2.15)[206]: Let and 𝐷 satisfy Assumption (5.2.1). Let 𝑝 ∈ ]1,∞[, 𝑓 ∈

 𝑊𝐷
1,𝑝
 and 𝛼 >  0 be given. Then, there exist an at most countable index set  , cubes 𝑄𝑗 ∈

 𝑄, 𝑗 ∈  𝐼 , and measurable functions 𝑔, 𝑏𝑗 ∶ → ℝ, 𝑗 ∈  𝐼 , such that for some constant 𝑁 ≥ 

0, independent of α and f ,  

(i) 𝑓 =  𝑔 + ∑  𝑗∈𝐼 𝑏𝑗  ,  

(ii) ‖𝛻𝑔‖𝐿∞  +  ‖𝑔‖𝐿∞  +  ‖𝑔 𝑑𝐷⁄ ‖𝐿∞  ≤  𝑁𝛼,  

(iii)supp(𝑏𝑗) ⊆  𝑄𝑗 , 𝑏𝑗 ∈ 𝑊𝐷
1,1 ∩𝑊1,𝑝 and ∫  

Ω
(|𝛻𝑏𝑗| + |𝑏𝑗|  +

|𝑏𝑗|

𝑑𝐷
 ) ≤ 𝑁𝛼|𝑄𝑗| for every 

𝑗 ∈ 𝐼, 
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(iv) ∑   𝑗∈𝐼  |𝑄𝑗|  ≤
𝑁

𝛼𝑝
 ‖ 𝑓‖

𝑊𝐷
1,𝑝

𝑝
 ,  

(v) ∑   𝑗∈𝐼 1𝑄𝑗(𝑥)  ≤  𝑁 for all 𝑥 ∈  ℝ
𝑑 ,  

(vi) ‖𝑔‖
𝑊𝐷
1,𝑝  ≤  𝑁‖𝑓‖

𝑊𝐷
1,𝑝 . If 𝐷 ≠  ∅, all the norms ‖𝑓‖

𝑊𝐷
1,𝑝 may be replaced by 

‖𝛻 𝑓 ‖𝐿𝑝.  

In order to verify the final statement, note that for 𝐷 ≠  ∅, the Ahlfors–David 

condition guarantees that the surface measure of 𝐷 is strictly positive. We will subdivide 

the proof of Lemma (5.2.15) into six steps.  

Step 1: Adapted maximal function. Let  ∈  𝑊𝐷
1,𝑝

 . Then, using the extension operator 𝔈• 

from the proof of Theorem (5.2.10), we find 𝔈• 𝑓 ∈  𝑊0
1,𝑝
 (Ω•). So we may extend this 

function again by zero to the whole of ℝ𝑑 , obtaining a function 𝑓  ∈  𝑊𝐷
1,𝑝
 (ℝ𝑑) that 

satisfies supp (𝑓)  ⊆  𝐵 for the ball 𝐵 and the estimate ‖𝑓‖
𝑊𝐷
1,𝑝  (ℝ𝑑)  ≤  𝐶‖𝑓‖𝑊𝐷

1,𝑝  with a 

constant 𝐶 that does not depend on 𝑓 . Furthermore, Hardy’s inequality  

‖𝑓 𝑑𝐷⁄ ‖
𝐿𝑝(ℝ𝑑)

 ≤  𝐶‖𝛻𝑓‖
𝐿𝑝(ℝ𝑑)

                                (15) 

 Holds.  

The easiest case is that of 𝐸 =  ∅. Then, we may take 𝐼 =  ∅ and  =  𝑓 , and the 

only assertion we have to show is (ii), the rest being trivial. So, let 𝑥 ∈ Ω be given. Since 

𝑥 is not in 𝐸, we have for almost all such 𝑥, by the fact that ℎ(𝑥)  ≤  (𝑀ℎ)(𝑥) for all 

Lebesgue points of an 𝐿1(ℝ𝑑) function ℎ,  

|𝛻𝑔(𝑥)| + |𝑔(𝑥)| + |𝑔(𝑥)| 𝑑𝐷⁄ (𝑥) =  |𝛻 𝑓 (𝑥)| + | 𝑓 (𝑥)| + | 𝑓 (𝑥)| 𝑑𝐷⁄ (𝑥)  
=  |𝛻 𝑓(𝑥)| + | 𝑓(𝑥)| + | 𝑓 (𝑥)| 𝑑𝐷⁄ (𝑥) ≤ [ 𝑀 ( |𝛻 𝑓 | +|𝑓 | + | 𝑓 | 𝑑𝐷⁄ (𝑥)  

≤  𝛼. 
This implies (ii). 

So, we turn to the case 𝐸 ≠  ∅. By Jensen’s inequality, (14), (15) and the continuity 

of the extension operator, we obtain  

|𝐸| ≤ |{𝑥 ∈  ℝ𝑑 ∶ [𝑀 (|𝛻 𝑓| + | 𝑓 | + | 𝑓 | 𝑑𝐷⁄ )
𝑝
](𝑥) > 𝛼𝑝}|  

≤
𝐾

𝛼𝑝
 ‖|𝛻 𝑓 | + | 𝑓 | + | 𝑓 | 𝑑𝐷⁄ ‖

𝐿𝑝(ℝ𝑑)

𝑝
 ≤

𝐶

𝛼𝑝
 ‖𝑓‖

𝑊1,𝑝(ℝ𝑑)

𝑝
 

≤
𝐶

𝛼𝑝
 ‖𝑓‖

𝑊𝐷
1,𝑝

𝑝
.                                                                                                        (16)  

In particular, this measure is finite, so 𝐹 ∶=  ℝ𝑑  \ 𝐸 ≠  ∅. This allows for choosing 

a Whitney decomposition of E, cf. [215], see also [246] and [247]. Thus, we get an at most 

countable index set 𝐼 and a collection of cubes 𝑄𝑗  ∈  𝑄, 𝑗 ∈  𝐼, with sidelength  ℓ𝑗 that 

fulfil the following properties for some 𝑐1, 𝑐2  ≥  1  

(i) 𝐸 =  ⋃  𝑗∈𝐼
8

9
 𝑄𝑗  . 

(ii) 
8

9
 𝑄𝑗
∘  ∩

8

9
 𝑄𝑘
∘  =  ∅ for all 𝑗, 𝑘 ∈  𝐼, 𝑗 ≠  𝑘.  

(iii) 𝑄𝑗 ⊆  𝐸 for all 𝑗 ∈  𝐼. 

(iv) ∑  𝑗∈𝐼 1𝑄𝑗  ≤  𝑐1.  

(v) 
1

𝑐2
 ℓ𝑗  ≤  𝑑(𝑄𝑗 , 𝐹)  ≤  𝑐2ℓ𝑗  for all 𝑗 ∈  𝐼.  

There are two immediate consequences of these properties that are important to 

observe. Firstly, the family 𝑄𝑗
∘  , 𝑗 ∈  𝐼, is an open covering of 𝐸 and, secondly, (v) implies 

that for some �̃�  >  1, independent of 𝑗, we have 
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(�̃�𝑄𝑗) ∩  𝐹 ≠  ∅    for all 𝑗 ∈  𝐼.                                     (17) 

 Now, (iv) immediately implies (v) and this, together with (16), allows to prove (iv) 

due to   

∑ 

𝑗∈𝐼

 |𝑄𝑗|  =  ∫ 
𝐸

 ∑  

 𝑗∈𝐼

 1𝑄𝑗  ≤  𝑐1|𝐸|  ≤
𝐶

𝛼𝑝
 ‖𝑓‖

𝑊𝐷
1,𝑝

𝑝
. 

Step 2: Definition of the good and bad functions. Let (𝜑𝑗)𝑗∈𝐼 be a partition of unity on 𝐸 

with  

(i) 𝜑𝑗  ∈  𝐶
∞(ℝ𝑑), 

(ii) supp (𝜑𝑗)  ⊆ 𝑄𝑗
∘ ,  

(iii) 𝜑𝑗  ≡  1 on
8

9
 𝑄𝑗  ,  

(vi) ‖𝜑𝑗‖𝐿∞ + ℓ𝑗‖𝛻𝜑𝑗‖𝐿∞ ≤  𝑐,  

for all 𝑗 ∈  𝐼 and some 𝑐 >  0. The construction of such a partition can be found, e.g. in 

[215].  

Let us distinguish two types of cubes 𝑄𝑗 . We say that 𝑄𝑗 is a usual cube, if 

𝑑(𝑄𝑗 , 𝐷) ≥  ℓ𝑗  and 𝑄𝑗 is a special cube, if 𝑑(𝑄𝑗 , 𝐷) ≥ ℓ𝑗  (In the case 𝐷 =  ∅, all cubes 

are seen as usual ones). Then, we define for every 𝑗 ∈  𝐼, using the notation ℎ𝑄 ∶=
1

|𝑄|
 ∫  
𝑄
ℎ, 

�̃�𝑗: = {
 (𝑓  − 𝑓𝑄𝑗)𝜑𝑗 ,           if 𝑄 𝑗 𝑖𝑠 𝑢𝑠𝑢𝑎𝑙,

   𝑓𝜑𝑗 ,                            if 𝑄𝑗  is special.
  

Setting �̃�: = 𝑓  − ∑  𝑗∈𝐼 �̃�𝑗  as well as 𝑏𝑗 ∶=  �̃�𝑗|Ω and 𝑔:= �̃�|Ω, these functions 

automatically satisfy (i). Note that there is no problem of convergence in this sum, due to 

(v).  

It is clear by construction that supp (𝑏𝑗)  ⊆  𝑄𝑗 and 𝑏𝑗  ∈  𝑊
1,𝑝(Ω) for all 𝑗 ∈  𝐼. 

The next step is to show that 𝑏𝑗  ∈  𝑊𝐷
1,1 , and since 𝑊1,𝑝 ↪ 𝑊1,1, we only have to 

establish the right boundary behaviour of 𝑏𝑗 .  

We start with the case of a usual cube 𝑄𝑗 . Then, 𝑏𝑗  =  ( 𝑓  − 𝑓𝑄𝑗)𝜑𝑗|Ω. Since 𝜑𝑗 

has support in 𝑄𝑗 and 𝑑(𝑄𝑗 , 𝐷)  ≥ ℓ𝑗 > 0, the function bj can be approximated by 

𝐶𝑐
∞ (ℝ𝑑 𝐷⁄ ) functions in the norm of 𝑊1,1. Thus, 𝑏𝑗 ∈  𝑊𝐷

1,1 . If 𝑄𝑗 is a special cube, we 

have 𝑏𝑗 =  𝑓 𝜑𝑗|Ω. The fact that 𝑓 ∈  𝑊𝐷
1,𝑝
 (ℝ𝑑) implies that there is a sequence ( 𝑓𝑘)𝑘  ⊆

 𝐶𝑐
∞(ℝ𝑑 𝐷⁄ ), such that 𝑓𝑘 → 𝑓 in 𝑊1,𝑝(ℝ𝑑). Therefore, (𝑓𝑘𝜑𝑗)𝑘 is a sequence in 

𝐶𝑐
∞(ℝ𝑑 𝐷⁄ ), and we show that it converges to 𝑓 𝜑𝑗 in 𝑊1,1, so that we can conclude that 

𝑏𝑗 ∈  𝑊𝐷
1,1 . This convergence follows from 𝜑𝑗  ∈  𝑊

1,𝑝(ℝ𝑑) by  

‖𝑓 𝜑𝑗  −  𝑓𝑘𝜑𝑗‖𝐿1  ≤  ‖𝑓  −  𝑓𝑘‖𝐿𝑝‖𝜑𝑗‖𝐿𝑝′  →  0 (𝑘 →  ∞)  

and the corresponding estimate for the gradient 

 ‖𝛻( 𝑓 𝜙𝑗)  −  𝛻( 𝑓𝑘𝜙𝑗)‖𝐿1  ≤  ‖𝛻( 𝑓  − 𝑓𝑘)𝜑𝑗‖𝐿1  + ‖ ( 𝑓  − 𝑓𝑘)𝛻𝜑𝑗‖𝐿1  

≤  ‖𝛻( 𝑓  − 𝑓𝑘)‖𝐿𝑝‖𝜑𝑗‖𝐿𝑝′ + ‖𝑓  − 𝑓𝑘‖𝐿𝑝‖𝛻𝜑𝑗‖𝐿𝑝′ →  0 
(𝑘 →  ∞).  

Step 3: Proof of (iii). After the above considerations, it remains to prove the estimate. We 

start again with the case of a usual cube, and for later purposes, we introduce some 𝑞 ∈



160 

 [1,∞[. On usual cubes, it holds 𝛻�̃�𝑗  =  𝛻 𝑓 𝜑𝑗  +  ( 𝑓  − 𝑓𝑄𝑗)𝛻𝜑𝑗 and using d) we 

obtain  

∫  
𝑄𝑗

 |𝛻�̃�𝑗|
𝑞
  ≤  ∫  

𝑄𝑗

(|𝛻 𝑓||𝜑𝑗| + | 𝑓  − 𝑓𝑄𝑗| |𝛻𝜑𝑗|
𝑞
)  

≤  𝐶 ∫  
𝑄𝑗

 (|𝛻 𝑓 |
𝑞
  |𝜑𝑗|

𝑞
 +  | 𝑓  − 𝑓𝑄𝑗|

𝑞
 |𝛻𝜑𝑗|

𝑞
)   

≤  𝐶 (∫  
𝑄𝑗

 |𝛻 𝑓 |
𝑞
  +

1

ℓ𝑗
𝑞∫  
𝑄𝑗

 | 𝑓  − 𝑓𝑄𝑗|
𝑞

) . 

In the second integral, we may now apply the Poincaré inequality, since 𝑓  − 𝑓𝑄𝑗 has zero 

mean on 𝑄𝑗 . This yields  

∫  
𝑄𝑗

 |𝛻�̃�𝑗|
𝑞
 ≤  𝐶 (∫  

𝑄𝑗

 |𝛻𝑓|
𝑞
 +
1

ℓ𝑗
𝑞  diam(𝑄𝑗)

𝑞
 ∫  
𝑄𝑗

 |𝛻 𝑓|
𝑞
)  ≤  𝐶 ∫  

𝑄𝑗

 |𝛻 𝑓|
𝑞
 .  

(18) 
We now specialize again to 𝑞 =  1, and invoking (17), we pick some 𝑧 ∈  �̃�𝑄𝑗  ∩  𝐹, and 

bring into play the maximal operator:  

∫  
𝑄𝑗

 |𝛻�̃�𝑗|  ≤  𝐶 ∫  
𝑐̃𝑄𝑗

|𝛻 𝑓 |  ≤  𝐶|𝑄𝑗|
1

|�̃�𝑄𝑗|
∫  
𝑐̃𝑄𝑗

(|𝛻 𝑓 |+|𝑓 | +
| 𝑓 |

𝑑𝐷
)

≤  𝐶|𝑄𝑗| sup
𝑄∈𝑄𝑧

 
1

|𝑄|
 ∫  
𝑄

 (|𝛻𝑓| + |𝑓|  +
|𝑓|

𝑑𝐷
)  

=  𝐶|𝑄𝑗| [𝑀 (|𝛻 𝑓 | + | 𝑓|   +
| 𝑓 |

𝑑𝐷
)] (𝑧).                                                       (19) 

 Now, we capitalize that 𝑧 ∈  𝐹 and obtain  

∫  
Ω

|𝛻𝑏𝑗|  ≤  ∫  
𝑄𝑗

|𝛻�̃�𝑗|  ≤  𝐶|𝑄𝑗|𝛼.                           (20) 

 For the corresponding estimate for |𝑏𝑗|, we use again the Poincaré inequality for 𝑓  − 𝑓𝑄𝑗   

on 𝑄𝑗 to obtain for all 𝑞 ∈  [1,∞[  

∫  
Ω

|𝑏𝑗|
𝑞
 ≤  ∫  

𝑄𝑗

 |�̃�𝑗|
𝑞
 =  ∫  

𝑄𝑗

 |𝑓  − 𝑓𝑄𝑗|
𝑞
 |𝜑𝑗|

𝑞
 ≤  𝐶 ∫  

𝑄𝑗

 | 𝑓  − 𝑓𝑄𝑗|
𝑞
 

≤  𝐶 ∫  
𝑄𝑗

 |𝛻 𝑓|
𝑞
 .                                                                                                 (21) 

 Note that the factor diam (𝑄𝑗) from the Poincaré inequality is bounded uniformly in 𝑗, 

since all 𝑄𝑗 with sufficiently large diameter are far away from 𝐷 and thus do not touch , so 

𝑏𝑗 then is zero. Proceeding as in (19) and (20), we find, specializing to 𝑞 =  1,  

∫  
Ω

|𝑏𝑗|  ≤  𝐶|𝑄𝑗|
𝛼
.                                             (22) 

For the third term |𝑏𝑗|/𝑑𝐷, we note that on a usual cube 𝑄𝑗 , we have 𝑑𝐷  ≥  

𝑗 . Thus, we get as before by the Poincaré inequality  

∫  
Ω

|𝑏𝑗|

𝑑𝐷
 ≤  ∫  

𝑄𝑗

|�̃�𝑗|

𝑑𝐷
 ≤
𝐶

ℓ𝑗
 ∫  
𝑄𝑗

 | 𝑓  − 𝑓𝑄𝑗|  ≤  𝐶 ∫  
𝑄𝑗

 |𝛻 𝑓 | 

 and we can again conclude as in (19) and (20).  
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So, we turn to the proof of the estimate in (iii) for the case of a special cube. Then, 

𝑏𝑗  =   𝑓 𝜑𝑗|Ω, and we get with the help of d)  

|𝛻�̃�𝑗|  ≤  |𝛻 𝑓||𝜑𝑗| + | 𝑓 ||𝛻𝜑𝑗|  ≤  𝐶 (|𝛻 𝑓 |  +
|𝑓|

ℓ𝑗
) . 

Since 𝑄𝑗 is a special cube, we get for every 𝑥 ∈  𝑄𝑗  

𝑑𝐷(𝑥)  =  𝑑(𝑥, 𝐷)  ≤  diam (𝑄𝑗) +  𝑑(𝑄𝑗 , 𝐷)  ≤  𝐶ℓ𝑗 + ℓ𝑗 ≤  𝐶ℓ𝑗    (23) 

and this in turn yields  

|𝛻�̃�𝑗|  ≤  𝐶 (|𝛻 𝑓|  +
|𝑓|

𝑑𝐷
) .                                      (24) 

 Since, obviously  

|�̃�𝑗| = | 𝑓 𝜑𝑗|  ≤  𝐶| 𝑓 | and
|�̃�𝑗|

𝑑𝐷
 =
| 𝑓𝜑𝑗|

𝑑𝐷
 ≤  𝐶

| 𝑓 |

𝑑𝐷
          (25)  

hold, we find by one more repetition of the arguments in (19) and (20) with some 𝑧 ∈
 �̃�𝑄𝑗  ∩  𝐹  

∫  
Ω

(|𝑏𝑗| + |𝛻𝑏𝑗|  +
|𝑏𝑗|

𝑑𝐷
)  ≤  𝐶 ∫  

𝑄𝑗

  (| 𝑓 |  + |𝛻 𝑓 |  +
| 𝑓 |

𝑑𝐷
)   

≤
𝐶|𝑄𝑗|

|�̃�𝑄𝑗|
∫  
𝑐̃𝑄𝑗

  (| 𝑓 |  + |𝛻 𝑓 |  +
| 𝑓 |

𝑑𝐷
) ≤  𝐶|𝑄𝑗|𝛼 .                         (26)  

Step 4: Proof of (ii): Estimate of |𝑔| and |𝑔|/𝑑𝐷. The asserted bound for |𝑔| and |𝑔|/𝑑𝐷 is 

rather easy to obtain on 𝐹 ∩ Ω , since on 𝐹 all functions �̃�𝑗 , 𝑗 ∈  𝐼, vanish, which means 

�̃�  =  𝑓 on 𝐹. This implies for almost all 𝑥 ∈  𝐹 ∩ Ω by the definition of 𝐹  

|𝑔(𝑥)|  +
|𝑔(𝑥)|

𝑑𝐷(𝑥)
=  | 𝑓 (𝑥)|  +

| 𝑓 (𝑥)|

𝑑𝐷(𝑥)
 ≤ [𝑀 (|𝛻 𝑓 | + | 𝑓 |  +

| 𝑓 |

𝑑𝐷
 )] (𝑥)  ≤  𝛼. 

 So, for the estimate of these two terms, we concentrate on the case 𝑥 ∈  𝐸. Setting 𝐼𝑢 ∶=
 {𝑗 ∈  𝐼 ∶  𝑄𝑗 usual} and 𝐼𝑠 ∶=  {𝑗 ∈  𝐼 ∶  𝑄𝑗 special}, we obtain on 𝐸 

 �̃�  =  𝑓  − ∑  

 𝑗∈𝐼𝑢

 �̃�𝑗  −  ∑  

𝑗∈𝐼𝑠

�̃�𝑗  =  𝑓  − ∑  

𝑗∈𝐼𝑢

 ( 𝑓  − 𝑓𝑄𝑗)𝜑𝑗  −  ∑  

𝑗∈𝐼𝑠

𝑓 𝜑𝑗  

=  𝑓  − 𝑓∑ 

𝑗 ∈𝐼

 𝜑𝑗  +  ∑  

 𝑗∈𝐼𝑢

𝑓𝑄𝑗  𝜑𝑗  =  𝑓1𝐹  +  ∑  

 𝑗∈𝐼𝑢

𝑓𝑄𝑗  𝜑𝑗  =  ∑  

𝑗∈𝐼𝑢

𝑓𝑄𝑗  𝜑𝑗  . 

 Now, we fix some 𝑥 ∈  𝐸. Let 𝐼(𝑥) ∶=  {𝑗 ∈  𝐼 ∶  𝑥 ∈  supp(𝜑𝑗)}, 𝐼𝑢,𝑥: =  𝐼𝑢  ∩  𝐼(𝑥) and 

Is, 𝑥 ∶=  𝐼𝑠  ∩  𝐼(𝑥). Then, the above estimate yields together with d) |  

|�̃�(𝑥)|  ≤  ∑  

𝑗∈𝐼𝑢

| 𝑓𝑄𝑗 | |𝜑𝑗(𝑥)|  ≤  𝐶 ∑  

 𝑗∈𝐼𝑢,𝑥

 | 𝑓𝑄𝑗|  =  𝐶 ∑  

𝑗∈𝐼𝑢,𝑥 

1

|𝑄𝑗|
|∫  
𝑄𝑗

 𝑓(𝑦)𝑑𝑦| 

≤  𝐶 ∑  

𝑗∈𝐼𝑢,𝑥 

1

|𝑄𝑗|
∫  
𝑄𝑗

 | 𝑓 (𝑦)| 𝑑𝑦.                      (27) 

Picking again some 𝑧𝑗  ∈  �̃�𝑄𝑗  ∩  𝐹, 𝑗 ∈  𝐼, this yields with the argument that we used 

already several times and since 𝐼𝑢,𝑥 is finite  
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| �̃�(𝑥)| ≤  𝐶 ∑  

𝑗∈𝐼𝑢,𝑥 

1

|�̃�𝑄𝑗|
 ∫  
𝑐̃𝑄𝑗

| 𝑓 (𝑦)|𝑑𝑦 ≤  𝐶 ∑  

𝑗∈𝐼𝑢,𝑥

 [𝑀( |𝑓| )](𝑧𝑗)  ≤  𝐶 ∑  

 𝑗∈𝐼𝑢,𝑥

 𝛼 

≤  𝐶𝛼. 
 In order to estimate �̃�/𝑑𝐷 on 𝐸, we estimate as in (27) for 𝑥 ∈  𝐸 

| �̃�(𝑥)|

𝑑𝐷(𝑥)
 =
|∑   𝑗∈𝐼𝑢 𝑓𝑄𝑗  𝜑𝑗(𝑥)|

𝑑𝐷(𝑥)
 ≤  ∑

 𝑗∈𝐼𝑢,𝑥 

| 𝑓𝑄𝑗|

𝑑𝐷(𝑥)
 ≤  𝐶 ∑  

𝑗∈𝐼𝑢,𝑥

1

|𝑄𝑗|
 ∫  
𝑄𝑗

| 𝑓 (𝑦)|

𝑑𝐷(𝑥)
 𝑑𝑦.  

Every cube in this sum is a usual one, so (𝑄𝑗 , 𝐷)  ≥ ℓ𝑗 . Furthermore, we have 𝑥 ∈  𝑄𝑗 for 

all 𝑗 ∈  𝐼𝑢,𝑥 by construction. This means that for every 𝑗 ∈  𝐼𝑢,𝑥 and all 𝑦 ∈  𝑄𝑗  , the 

distance between 𝑥 and 𝑦 is less than 𝐶ℓ𝑗  for some constant 𝐶 depending only on the 

dimension. Thus,  

𝑑𝐷(𝑦)  =  𝑑(𝑦, 𝐷)  ≤  𝑑(𝑦, 𝑥)  +  𝑑(𝑥, 𝐷)  ≤  𝐶 
 𝑗 +  𝑑𝐷(𝑥)  ≤  𝐶𝑑(𝑄𝑗 , 𝐷)  + 𝑑𝐷(𝑥)  ≤  𝐶𝑑𝐷(𝑥).  

Consequently, we get for some 𝑧𝑗  ∈  �̃�𝑄𝑗  ∩  𝐹 as before  

|𝑔(𝑥)|𝑑𝐷(𝑥) ≤  𝐶 ∑  

𝑗∈𝐼𝑢,𝑥

1

|𝑄𝑗|
∫  
𝑄𝑗

 | 𝑓 (𝑦)| 𝑑𝐷(𝑦)𝑑𝑦 ≤  𝐶 ∑  

𝑗∈𝐼𝑢,𝑥

1

|�̃�𝑄𝑗|
∫  
𝑐̃𝑄𝑗

| 𝑓 (𝑦)|

𝑑𝐷(𝑦)
 𝑑𝑦 

≤  𝐶 ∑  

 𝑗∈𝐼𝑢,𝑥

  [𝑀 (
| 𝑓|

𝑑𝐷
)] (𝑧𝑗)  ≤  𝐶𝛼. 

 Step 5: Proof of (ii): Estimate of |𝛻𝑔|. In order to estimate |𝛻𝑔|, it is not sufficient to 

know that ∑  𝑗∈𝐼 �̃�𝑗 converges pointwise as before. At least, we have to know some 

convergence in the sense of distributions to push the gradient through the sum. Let 𝐽 ⊆  𝐼 
be finite. Then, we have, due to (22) for usual cubes and (26) for special cubes  

‖∑ 

𝑗∈𝐽

 |�̃�𝑗|‖

𝐿1(ℝ𝑑) 

= ∫  
ℝ𝑑
 ∑  

𝑗∈𝐽

 |�̃�𝑗|  =  ∑  

𝑗∈𝐽

 𝑄𝑗  |�̃�𝑗|  ≤  𝐶𝛼  ∑  

𝑗∈𝐽

 |𝑄𝑗|  

with a constant 𝐶 that is independent of the choice of 𝐽 . Since ∑  𝑗∈𝐼  |𝑄𝑗| is convergent 

due to (iv), this implies that ∑  𝑗∈𝐼  |�̃�𝑗|  is a Cauchy sequence in 𝐿1(ℝ𝑑). In particular, 

∑  𝑗∈𝐼  �̃�𝑗 converges in the sense of distributions, so we get 𝛻 ∑  𝑗∈𝐼  �̃�𝑗  =  ∑  𝑗∈𝐼  𝛻�̃�𝑗  in the 

sense of distributions.  

In a next step, we show that the sum ∑   𝑗∈𝐼 𝛻�̃�𝑗 converges absolutely in 𝐿1. Investing 

the estimates in (18) and (24), respectively, we find  

∫  
𝑄𝑗

 |𝛻�̃�𝑗|  ≤  𝐶 ∫  
𝑄𝑗

 (|𝛻 𝑓|  +
|𝑓|

𝑑𝐷
). 

Thus, we obtain by (v) and the fact that 𝐸 has finite measure, cf. (16),  
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 ∑  

𝑗∈𝐼

‖𝛻�̃�𝑗‖𝐿1(ℝ𝑑)  =  ∑   

𝑗∈𝐼

‖𝛻�̃�𝑗‖𝐿1(𝑄𝑗)
 ≤  𝐶∑ 

𝑗∈𝐼 

 ∫  
𝑄𝑗

 (|𝛻 𝑓|  +
|𝑓|

𝑑𝐷
)  

=  𝐶 ∫  
𝐸 

 ∑  

𝑗∈𝐼 

1

𝑄𝑗
(|𝛻𝑓|  +

|𝑓|

𝑑𝐷
)  ≤  𝐶 ‖|𝛻 𝑓 |  +

| 𝑓 |

𝑑𝐷
‖
𝐿1(𝐸)

   

≤  𝐶 ‖|𝛻 𝑓|  +
| 𝑓 |

𝑑𝐷
‖
𝐿𝑝(𝐸)

 ≤  ‖𝛻 𝑓‖
𝐿𝑝(ℝ𝑑)

 + ‖
𝑓

𝑑𝐷
‖
𝐿𝑝(ℝ𝑑)

 . 

 Now, by Hardy’s inequality (15), this last expression is finite and yields the desired 

absolute convergence.  

This allows us to calculate  

𝛻 �̃� = 𝛻 𝑓  −  ∑  

𝑗∈𝐼

 𝛻�̃�𝑗  

= 𝛻 𝑓  − ∑  

𝑗∈𝐼𝑢

 (𝛻 𝑓𝜑𝑗  + ( 𝑓  − 𝑓𝑄𝑗)𝛻𝜑𝑗  )  − ∑  

 𝑗∈𝐼𝑠

(𝛻 𝑓 𝜑𝑗  +  𝑓 𝛻𝜑𝑗) . 

Note that the above considerations concerning the convergence of ∑  𝑗∈𝐼  𝛻�̃�𝑗 also yield 

that the sums over 𝛻 𝑓𝜑𝑗 , ( 𝑓  − 𝑓𝑄𝑗)𝛻𝜑𝑗 and 𝑓 𝛻𝜑𝑗  are absolutely convergent in 𝐿1, so  

𝛻 �̃�  =  𝛻 𝑓  − ∑  𝑗∈𝐼 𝛻𝑓 𝜑𝑗  − ∑  𝑗∈𝐼𝑢  ( 𝑓  −  𝑓𝑄𝑗)𝛻𝜑𝑗  −  ∑  𝑗∈𝐼𝑠  𝑓 𝛻𝜑𝑗  =  𝛻 𝑓 1𝐹  −

 ∑  𝑗∈𝐼𝑢  ( 𝑓  − 𝑓𝑄𝑗)𝛻𝜑𝑗  −  ∑  𝑗∈𝐼𝑠 𝑓 𝛻𝜑𝑗  .  

On 𝐹, we know that every summand in the above two sums vanishes, so by the 𝐿1- 

convergence shown above we see 𝛻�̃�  =  𝛻𝑓 on 𝐹. Thus, on 𝐹, we easily get the desired 

𝐿∞-estimate for 𝛻 �̃�, since for almost all 𝑥 ∈  𝐹  

|𝛻 �̃�(𝑥)| =  |𝛻 𝑓 (𝑥)|  ≤  𝑀(|𝛻 𝑓 |)(𝑥)  ≤  𝑀 ( |𝛻𝑓| + |𝑓| +
|𝑓|

𝑑𝐷
) (𝑥) ≤ 𝛼.  

So, we concentrate on 𝑥 ∈  𝐸. Since 𝐸 is open, all sums in  

𝛻 �̃�(𝑥)  =  − ∑  

𝑗∈𝐼𝑢

  (𝑓 (𝑥) − 𝑓𝑄𝑗)   𝛻𝜑𝑗(𝑥) − ∑  

𝑗∈𝐼𝑠

𝑓(𝑥)𝛻𝜑𝑗(𝑥) 

 are finite thanks to (v), and ∑  𝑗∈𝐼  𝜑𝑗  is constantly 1 in a neighbourhood of 𝑥. Thus, we 

may calculate for 𝑥 ∈  𝐸  

𝛻 �̃�(𝑥)  =  ∑  

𝑗∈𝐼𝑢

 𝑓𝑄𝑗  𝛻𝜑𝑗(𝑥) − 𝑓 (𝑥)∑ 

𝑗∈𝐼

 𝛻𝜑𝑗(𝑥)  =  ∑  

𝑗∈𝐼𝑢

 𝑓𝑄𝑗  𝛻𝜑𝑗(𝑥).  

We set on 𝐸 

ℎ𝑢 ∶=  ∑  

𝑗∈𝐼𝑢

𝑓𝑄𝑗  𝛻𝜑𝑗  and ℎ𝑠 ∶=  ∑  

 𝑗∈𝐼𝑠

𝑓𝑄𝑗  𝛻𝜑𝑗 

 and we will show in the following the estimates |ℎ𝑠(𝑥)|  ≤  𝐶𝛼 and |ℎ𝑢(𝑥)  + ℎ𝑠(𝑥)|  ≤
 𝐶𝛼 for all 𝑥 ∈  𝐸. Then, we have the same bound for hu and hence also for 𝛻 �̃� on 𝐸. In 

order to show the desired estimate for hs, we recall that by (23), we have 𝑑𝐷(𝑦)  ≤
 𝐶ℓ𝑗  for all y in a special cube 𝑄𝑗 . Using d) and this estimate, we find for all 𝑥 ∈  𝐸  
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|ℎ𝑠(𝑥)| ≤  ∑  

𝑗∈𝐼𝑠

 | 𝑓𝑄𝑗| |𝛻𝜑𝑗(𝑥)|  ≤  ∑  

𝑗∈𝐼𝑠,𝑥

𝐶

ℓ𝑗
 | 𝑓𝑄𝑗|  ≤  𝐶 ∑  

 𝑗∈𝐼𝑠,𝑥

1

|𝑄𝑗|
∫  
𝑄𝑗

| 𝑓 (𝑦)|

ℓ𝑗
 𝑑𝑦 

≤  𝐶 ∑  

 𝑗∈𝐼𝑠,𝑥

1

|𝑄𝑗|
 ∫  
𝑄𝑗

| 𝑓 (𝑦)|

𝑑𝐷(𝑦)
 𝑑𝑦. 

 Now, we use again that the above sum is finite, uniformly in 𝑥, so it suffices to estimate 

each addend by 𝐶𝛼. In order to do so, we once more bring into play the maximal operator 

in some point 𝑧𝑗  ∈  �̃�𝑄𝑗  ∩  𝐹:  

1

|𝑄𝑗|
∫  
𝑄𝑗

| 𝑓 (𝑦)|

𝑑𝐷(𝑦)
 𝑑𝑦 ≤  𝐶

1

| �̃�𝑄𝑗|
∫  
𝑐̃𝑄𝑗

| 𝑓 (𝑦)|

𝑑𝐷(𝑦)
 𝑑𝑦 ≤  𝐶 𝑀 ( |𝛻 𝑓 | + |𝑓|  +

|𝑓|

𝑑𝐷
)  (𝑧𝑗)  

≤  𝐶𝛼.  
We turn to the estimate of ℎ𝑢  +  ℎ𝑠. Let 𝑥 ∈  𝐸 and choose some 𝑖0  ∈  𝐼(𝑥). Then, for 

every 𝑗 ∈  𝐼(𝑥), we have 𝑥 ∈  𝑄𝑗  ∩  𝑄𝑖0 , so by property (v) of the Whitney cubes, the 

sidelengths ℓ𝑗 and ℓ𝑖0 are comparable with uniform constants. Thus, we can choose some 

𝜅 ≥  �̃�, such that 𝜅 𝑄𝑖0  ⊇  𝑄𝑗  for all 𝑗 ∈  𝐼(𝑥). Since ∑  𝑗∈𝐼  𝛻𝜑𝑗(𝑥)  =  0, one finds  

(ℎ𝑢  +  ℎ𝑠)(𝑥)  =  ∑  

𝑗∈𝐼 

𝑓𝑄𝑗  𝛻𝜑𝑗(𝑥)  =  ∑  

𝑗∈𝐼

 ( 𝑓𝑄𝑗  −  𝑓𝜅𝑄𝑖0) 𝛻𝜑𝑗
(𝑥).  

This implies thanks to d)  

|(ℎ𝑢  +  ℎ𝑠)(𝑥)|  ≤  ∑  

𝑗∈𝐼 

| 𝑓𝑄𝑗  −  𝑓𝜅𝑄𝑖0| |𝛻𝜑𝑗
(𝑥)|  ≤  ∑  

𝑗∈𝐼(𝑥)

 
𝐶

ℓ𝑗
 | 𝑓𝑄𝑗  −  𝑓𝜅𝑄𝑖0|.  

For every 𝑗 ∈  𝐼(𝑥), we have 

 | 𝑓𝑄𝑗  −  𝑓𝜅𝑄𝑖0|  = |
1

|𝑄𝑗|
 ∫  
𝑄𝑗

 𝑓(𝑦) 𝑑𝑦 − 𝑓𝜅𝑄𝑖0|  = |
1

|𝑄𝑗|
∫  
𝑄𝑗

 (𝑓(𝑦) − 𝑓𝜅𝑄𝑖0)𝑑𝑦 |  

≤
1

|𝑄𝑗|
∫  
𝑄𝑗

|𝑓 (𝑦) − 𝑓𝜅𝑄𝑖0| 𝑑𝑦 ≤ 𝐶
1

|𝜅𝑄𝑖0|
 ∫  
𝜅𝑄𝑖0  

 |𝑓 (𝑦) − 𝑓𝜅𝑄𝑖0|  𝑑𝑦, 

 since 𝑄𝑗 and 𝜅𝑄𝑖0  are of comparable size and 𝑄𝑗  ⊆  𝜅𝑄𝑖0 . Applying the Poincaré 

inequality on 𝑄𝑖0 , we further estimate by  

≤ 𝐶𝜅ℓ𝑖0
1

|𝜅𝑄𝑖0|
 ∫  
𝜅𝑄𝑖0

 |𝛻 𝑓 (𝑦)|𝑑𝑦 ≤  𝐶ℓ𝑗
1

|𝜅𝑄𝑖0|
 ∫  
𝜅𝑄𝑖0

 |𝛻 𝑓 (𝑦)|𝑑𝑦 

Since 𝜅 ≥  �̃�, there is again some point 𝑧 ∈  𝜅𝑄𝑖0  ∩  𝐹, and we may continue as above 

 ≤  𝐶ℓ𝑗  𝑀 (|𝛻𝑓| + |𝑓| +
|𝑓|

𝑑𝐷(𝑧)
≤  𝐶ℓ𝑗𝛼. 

 Putting everything together and investing that 𝐼(𝑥) is uniformly finite for every 𝑥 ∈  𝐸, 

we have achieved  

|𝛻 �̃�(𝑥)|  ≤  |ℎ𝑠(𝑥)|  + |(ℎ𝑢  +  ℎ𝑠)(𝑥)|  ≤  𝐶𝛼 

 and have thus proved (ii).  

Step 6: Proof of (vi). , We first estimate  



165 

‖𝑔‖
𝑊𝐷
1,𝑝  ≤ ‖�̃�‖

𝑊𝐷
1,𝑝
(ℝ𝑑)

 =  ‖𝑓  −∑ 

𝑗∈𝐼

�̃�𝑗  ‖

𝑊𝐷
1,𝑝
(ℝ𝑑)

 

≤  ‖𝑓‖
𝑊𝐷
1,𝑝
(ℝ𝑑)

 +  ‖∑ 

𝑗∈𝐼

�̃�𝑗‖

𝑊𝐷
1,𝑝
(ℝ𝑑)

 .  

By the continuity of the extension operator, we have  ‖𝑓‖
𝑊𝐷
1,𝑝
 (ℝ𝑑)

≤  𝐶‖𝑓‖_(𝑊𝐷
1,𝑝
 , so we 

only have to estimate the sum of the �̃�𝑗 , 𝑗 ∈  𝐼.  

Here, we again rely on (v) and the equivalence of norms in ℝ𝑁 to obtain  

 ‖∑ 

𝑗∈𝐼 

�̃�𝑗‖

𝐿𝑝(ℝ𝑑)

𝑝

  = ∫  
ℝ𝑑
| ∑ 

𝑗∈𝐼

 �̃�𝑗|

𝑝

 ≤  ∫  
ℝ𝑑
 (∑ 

𝑗∈𝐼

 |�̃�𝑗|)

𝑝

 ≤  𝐶 ∫  
ℝ𝑑
∑ 

𝑗∈𝐼

 |�̃�𝑗|
𝑝
 

=  𝐶 ∑  

𝑗∈𝐼

 ∫  
𝑄𝑗

 |�̃�𝑗|
𝑝
.                                                                                               (28) 

Investing the estimates in (21) for 𝑞 =  𝑝 and in (25) for usual and special cubes, 

respectively, we find  

∫  
𝑄𝑗

 |�̃�𝑗|
𝑝
 ≤  𝐶 ∫  

𝑄𝑗

 (|𝑓|
𝑝
 +  |𝛻𝑓|

𝑝
 .                            (29) 

 Combining the two last estimates, we thus have with the help of (v)  

‖∑ 

𝑗∈𝐼 

�̃�𝑗‖

𝐿𝑝(ℝ𝑑)

𝑝

 ≤  𝐶 ∑  

𝑗∈𝐼

 ∫  
𝑄𝑗

 (|𝑓|
𝑝
  +  |𝛻𝑓|

𝑝
) ≤  𝐶 ∫  

ℝ𝑑
 ∑  

𝑗∈𝐼

  1𝑄𝑗  (|𝑓|
𝑝
  +  |𝛻𝑓|

𝑝
) 

≤  𝐶‖𝑓‖
𝑊𝐷
1,𝑝
 (ℝ𝑑)

 .  

For the estimate of the gradient, we argue as in (28) and (29), in order to find thanks to the 

estimates in (18) for 𝑞 =  𝑝 and (24)  

‖∑ 

𝑗∈𝐼

 𝛻�̃�𝑗‖

𝐿𝑝(ℝ𝑑)

𝑝

≤  𝐶 ∑  

𝑗∈𝐼 

∫  
𝑄𝑗

 |𝛻�̃�𝑗|
𝑝
≤  𝐶∑ 

𝑗∈𝐼

 ∫  
𝑄𝑗

 (|𝛻 𝑓|
𝑝
 +
|𝑓|

𝑝

𝑑𝐷
𝑝 ) . 

 Investing again (v) and the Hardy inequality in (15), we end up with  

‖∑ 

𝑗∈𝐼 

𝛻�̃�𝑗‖

𝐿𝑝(ℝ𝑑)

𝑝

 ≤  𝐶 ∫  
ℝ𝑑
 ( |𝛻𝑓|

𝑝
 +
|𝑓|

𝑝

𝑑𝐷
𝑝 )  ≤  𝐶 ∫  

ℝ𝑑
 |𝛻𝑓|

𝑝
 ≤  ‖𝑓‖

𝑊𝐷
1,𝑝
 (ℝ𝑑)

 

and this finishes the proof, thanks to ‖𝑓‖
𝑊𝐷
1,𝑝
(ℝ𝑑)

 ≤  𝐶‖𝑓‖
𝑊𝐷
1,𝑝.  

Having the Calderón–Zygmund decomposition at hand, we can now show that it 

really respects the boundary condition on 𝐷.  

Corollary (5.2.16)[206]: Let 𝑝 ∈ ]1,∞[ and 𝑓 ∈  𝑊𝐷
1,𝑝
 be given. The functions 𝑔 and 

𝑏 =  ∑  𝑗∈𝐼 𝑏𝑗 from Lemma (5.2.15) have the following properties:  

(i) 𝑏 ∈  𝑊𝐷
1,1

 with ‖𝑏‖𝑊1,1  ≤  𝐶𝛼1−𝑝 ‖𝑓‖
𝑊𝐷
1,𝑝

𝑝
,  
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(ii) 𝑔 ∈  𝑊𝐷
1,∞

 with ‖𝑔‖𝑊𝐷
1,∞  ≤  𝐶𝛼,  

(iii) If  ∈  𝑊𝐷
1,2

 , then also 𝑔, 𝑏 ∈  𝑊𝐷
1,2

.  

Proof. (i) Thanks to (iii) in Lemma (5.2.15) we have 𝑏𝑗  ∈  𝑊𝐷
1,1(Ω) for all 𝑗 ∈  𝐼. 

Moreover, by the estimates in (iii) and (iv) of the same lemma,   

∑ 

𝑗∈𝐼

‖𝑏𝑗‖𝑊1,1 ≤  𝐶𝛼 ∑  

𝑗∈𝐼

|𝑄𝑗|  ≤  𝐶𝛼
1−𝑝 ‖𝑓‖

𝑊𝐷
1,𝑝

𝑝
 <  ∞.             (30)  

Thus, the sum in b is absolutely convergent in 𝑊1,1, which means that b satisfies the 

asserted norm estimate and lies in the closed subspace 𝑊𝐷
1,1

 . Thus, we have achieved (i).  

(ii) We first show that �̃� has a Lipschitz continuous representative and that the Lipschitz 

constant is controlled by 𝐶𝛼. From the proof of Lemma (5.2.15), we have �̃�  ∈  𝑊1,𝑝(ℝ𝑑) 
for all 1 ≤  𝑝 <  ∞. So, from [229], we can infer that for almost all 𝑥, 𝑦 ∈  ℝ𝑑   

|�̃�(𝑥) − �̃�(𝑦)|  ≤  𝐶|𝑥 −  𝑦|(𝑀(|𝛻 �̃�|𝑝)
1
𝑝(𝑥) +  𝑀(|𝛻�̃�|𝑝)

1
𝑝(𝑦) .  

The Hardy–Littlewood maximal operator is bounded on 𝐿∞(ℝ𝑑), so this implies  

sup
𝑥,𝑦∈ℝ𝑑 ,𝑥=𝑦 

 
| �̃�(𝑥) − �̃�(𝑦)|

|𝑥 −  𝑦|
≤  𝐶‖𝛻 �̃�‖𝐿∞(ℝ𝑑)  ≤  𝐶𝛼  

and we find �̃�  ∈  𝑊1,∞(ℝ𝑑)  =  (𝐿∞  ∩  Lip)(ℝ𝑑).  
It remains to prove the right boundary behaviour of �̃�, i.e. �̃�|𝐷  =  0. Then, by the 

Definition of 𝑊𝐷
1,∞

 , cf. (8), we find 𝑔 =  �̃�|Ω  ∈  𝑊𝐷
1,∞

 . Since 𝑓 , �̃�  ∈  𝑊𝐷
1,1 (ℝ𝑛), these 

two functions have zero trace on 𝐷 ℋ𝑑−1-almost everywhere, so the same is true for �̃� and 

we only have to get rid of the “almost everywhere”. Let 𝑥 ∈  𝐷 be given. Then, for every 

𝜀 >  0, by the Ahlfors–David condition (6), we have 𝜎 (𝐵(𝑥, 𝜀)  ∩  𝐷)  >  0, so there 

must be points in this set, where �̃� vanishes. But this means that 𝑥 is an accumulation 

point of the set {𝑦 ∈  𝐷 ∶  �̃�(𝑦)  =  0}. By the continuity of �̃�, this implies �̃�(𝑥)  =  0. (iv) 

By (ii) and Lemma (5.2.2), we have  ∈  𝑊𝐷
1,∞  ↪  𝑊𝐷

1,2
 , so with 𝑓 also 𝑏 is in this space. 

We establish interpolation within the set of spaces {𝑊𝐷
1,𝑝
 (Ω)}

𝑝∈[1,∞]
. There already 

exist interpolation results for spaces of this scale which incorporate mixed boundary 

conditions (compare [227],[241]) but not of the required generality concerning the 

Dirichlet part. The key ingredient for this generalization will be the Calderón–Zygmund 

decomposition proved.  

The main result is the following.  

Theorem (5.2.17)[206]: [216],[217] For any compatible couple of Banach spaces (𝑌0, 𝑌1), 
we have  

[(𝑌0, 𝑌1)𝜆0 ,𝑝0  , (𝑌0, 𝑌1)𝜆1,𝑝1]𝛼
 =  (𝑌0, 𝑌1)𝛽,𝑝  

for all 𝜆0, 𝜆1 and 𝛼 in (0, 1) and all 𝑝0, 𝑝1 in [1,∞], except for the case 𝑝0  =  𝑝1  =  ∞. 

Here, 𝛽 and 𝑝 are given by 𝛽 =  (1 −  𝛼)𝜆0 +  𝛼𝜆1  and 
1

𝑝
 =

1−𝛼

𝑝0
 +

𝛼

𝑝1
 .  

From this theorem and our real interpolation Theorem (5.2.22), a complex 

interpolation result for Sobolev spaces 𝑊𝐷
1,𝑝
 (Ω) follows.  

Corollary (5.2.18)[206]: Let Ω and 𝐷 satisfy Assumption (5.2.1). For 1 <  𝑝0  <  𝑝 <

 𝑝1  <  ∞ and 𝛼 =

1

𝑝0
 −
1

𝑝1
1

𝑝0
 −
1

𝑝1

 =
𝑝1(𝑝−𝑝0)

𝑝(𝑝1−𝑝0)
, we have  

[𝑊𝐷
1,𝑝0  (Ω),𝑊𝐷

1,𝑝1  (Ω)]
𝛼
 =  𝑊𝐷

1,𝑝
 (Ω). 
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See [215],[216] for details on the development of this theory. Here, we only recall 

the essentials to be used in the sequel. Let 𝑌0, 𝑌1 be two normed vector spaces embedded in 

a topological Hausdorff vector space 𝑉. For each 𝑎 ∈  𝑌0  +  𝑌1 and 𝑡 >  0, we define the 

𝐾-functional of interpolation by  

𝐾(𝑎, 𝑡, 𝑌0, 𝑌1)  = inf
𝑎=𝑎0+𝑎1

  (‖𝑎0‖𝑌0  +  𝑡‖𝑎1‖𝑌1). 

For 0 < 𝜃 <  1, 1 ≤  𝑞 ≤  ∞, the real interpolation space (𝑌0, 𝑌1)𝜃 ,𝑞 between 𝑌0 and 𝑌1 

is given by  

 {𝑎 ∈  𝑌0  +  𝑌1 ∶  ‖𝑎‖𝜃 ,𝑞 ∶= (∫  
∞

0

 (𝑡−𝜃𝐾(𝑎, 𝑡, 𝑌0, 𝑌1)
 )
𝑞 𝑑𝑡

𝑡
)

1
𝑞

< ∞ } .  

It is an exact interpolation space of exponent θ between 𝑌0 and 𝑌1, see [216].  

Definition (5.2.19)[206]: Let 𝑓 ∶  𝑋 → ℝ be a measurable function on a measure space 

(𝑋, 𝜇). The decreasing rearrangement of f is the function 𝑓∗ ∶ ]0,∞[ → ℝ defined by  

𝑓∗(𝑡) = inf   {𝜆 ∶  𝜇({𝑥 ∶ |𝑓 (𝑥)|  >  𝜆}  ≤  𝑡}.  
The maximal decreasing rearrangement of 𝑓 is the function 𝑓∗∗ defined for every 𝑡 >  0 

by  

𝑓∗∗ (𝑡) =
1

𝑡
  ∫  

𝑡

0

 𝑓∗(𝑠) 𝑑𝑠.  

We conclude by quoting the following classical result ([216]):  

Proposition (5.2.20)[206]: Let (𝑋, 𝜇) be a measure space with a 𝜎-finite positive 

measure 𝜇. Let 𝑓 ∈  𝐿1(𝑋)  +  𝐿∞(𝑋). We then have  

(i) 𝐾( 𝑓, 𝑡, 𝐿1, 𝐿∞)  =  𝑡 𝑓∗∗(𝑡) and  

(ii) for 1 ≤  𝑝0  <  𝑝 <  𝑝1  ≤  ∞ it holds (𝐿𝑝0  , 𝐿𝑝1)𝜃 ,𝑝  =  𝐿
𝑝 with equivalent 

norms, where 1/𝑝 =  (1 −  𝜃 )/𝑝0  +  𝜃/𝑝1 with 0 < 𝜃 <  1.  

The proof of Theorem (5.2.22) is based on the following estimates for the 𝐾-functional.  

Lemma (5.2.21)[206]: Let 1 <  𝑝 <  ∞. We have for all 𝑡 >  0  

𝐾( 𝑓, 𝑡,𝑊𝐷
1,1 ,𝑊𝐷

1,∞)  ≥  𝐶1𝑡 | 𝑓|
∗∗  (𝑡) + |𝛻 𝑓|∗∗(𝑡)for all 𝑓 ∈  𝑊𝐷

1,1  +  𝑊𝐷
1,∞

 

 and  

𝐾( 𝑓, 𝑡,𝑊𝐷
1,1 ,𝑊𝐷

1,∞)  ≤  𝐶2𝑡  (|𝛻 𝑓|
∗∗
(𝑡)  + |𝑓|

∗∗
(𝑡)  + (

|𝑓|

𝑑𝐷
)

∗∗

(𝑡))  for all 𝑓 ∈  𝑊𝐷
1,𝑝
 .  

The constants 𝐶1, 𝐶2 are independent of 𝑓 and 𝑡, and 𝑓  = 𝔈𝑓 is the Sobolev extension of f 

from Lemma (5.2.3). 

Proof. For the lower bounds, let 𝑓 ∈  𝑊𝐷
1,1  +  𝑊𝐷

1,∞
 be given. Then, due to Proposition 

(5.2.20) (i)  

𝐾( 𝑓, 𝑡,𝑊𝐷
1,1 ,𝑊𝐷

1,∞)  

≥ ( inf
𝑓 = 𝑓0+ 𝑓1

  (‖𝑓0‖𝐿1  +  𝑡‖𝑓1‖𝐿∞)  + inf
𝑓 = 𝑓0+ 𝑓1

  (‖𝛻𝑓0‖𝐿1  +  𝑡‖𝛻 𝑓1‖𝐿∞))   

≥  𝐶 ( 𝐾(|𝑓| , 𝑡, 𝐿1, 𝐿∞)  +  𝐾(|𝛻𝑓|, 𝑡, 𝐿1, 𝐿∞)  =  𝐶𝑡 (|𝑓|∗∗(𝑡) + |𝛻𝑓|∗∗(𝑡)) . 

Now, for the upper bound, we consider  ∈  𝑊𝐷
1,𝑝

 . For every 𝑡 >  0, we set  

𝛼(𝑡) ∶= ( 𝑀 ( |𝛻 𝑓| + |𝑓|  + |
𝑓

𝑑𝐷
|))

∗

(𝑡) 
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 and we recall from the proof of Lemma (5.2.15) the notation  

𝐸 =  𝐸𝑡  = {𝑥 ∈  ℝ
𝑑 ∶  𝑀 ( |𝛻 𝑓| + |𝑓|  + |

𝑓

𝑑𝐷
|) (𝑥) >  𝛼(𝑡)}. 

Remark that with this choice of 𝛼(𝑡), we have |𝐸𝑡|  ≤  𝑡 for all 𝑡 >  0. Furthermore, due 

to  applied with 𝑋 =  ℝ𝑑   

𝛼(𝑡)  ≤  𝐶 ( |𝛻 𝑓|
∗∗
 +  |𝑓|

∗∗ 
+ |

𝑓

𝑑𝐷
|

∗∗

) (𝑡).                       (31) 

 Now, we take the Calderón–Zygmund decomposition from Lemma (5.2.15) for f with this 

choice of 𝛼(𝑡). This results in a decomposition of 𝑓 ∈  𝑊𝐷
1,𝑝

 as 𝑓 =  𝑔 +  𝑏 with 𝑏 ∈

 𝑊𝐷
1,1

 and  ∈  𝑊𝐷
1,∞

 . Invoking Corollary (5.2.16) (ii), we have ‖𝑔‖𝑊𝐷
1,∞  ≤  𝐶𝛼(𝑡), and 

from (30), we deduce  

‖𝑏‖𝑊𝐷
1,1 ≤  𝐶𝛼(𝑡)∑  

𝑗∈𝐼

|𝑄𝑗|  ≤  𝐶𝛼(𝑡)|𝐸𝑡|  ≤  𝐶𝑡𝛼(𝑡). 

 Combining these estimates with (31), we find  

𝐾( 𝑓, 𝑡,𝑊𝐷
1,1 ,𝑊𝐷

1,∞)  ≤  ‖𝑏‖𝑊𝐷
1,1  +  𝑡‖𝑔‖𝑊𝐷

1,∞  ≤  𝐶𝑡𝛼(𝑡)  

≤  𝐶𝑡 (|𝛻 𝑓|
∗∗
(𝑡) + |𝑓|

∗∗
(𝑡) + (

|𝑓|

𝑑𝐷
)

∗∗

(𝑡)) .  

for all 𝑓 ∈  𝑊𝐷
1,𝑝

 and for all 𝑡 >  0, and this was the claim.  

Theorem (5.2.22)[206]: Let Ω and 𝐷 satisfy Assumption (5.2.1). Then, for all choices of 

1 ≤  𝑝0  <  𝑝 <  𝑝1  ≤  ∞, we have for 𝛼 =
(𝑝−𝑝0)𝑝1

(𝑝1−𝑝0)𝑝
  

𝑊𝐷
1,𝑝
 (Ω)   =  (𝑊𝐷

1,𝑝0  (Ω),𝑊𝐷
1,𝑝1  (Ω))

 𝛼,𝑝
 

Proof. By the reiteration Theorem (cf. [84]), it suffices to establish the special case of 

𝑝0  =  1 and 𝑝1  =  ∞, i.e. 𝑊𝐷
1,𝑝
 =  (𝑊𝐷

1,1 ,𝑊𝐷
1,∞)

1−
1

𝑝
,𝑝

 with equivalent norms for 1 <

 𝑝 <  ∞. First, since is bounded, we have 𝑊𝐷
1,𝑝
↪ 𝑊𝐷

1,1 ↪ 𝑊𝐷
1,1  +  𝑊𝐷

1,∞
. Moreover, for 

 ∈  𝑊𝐷
1,𝑝

 , we have due to Lemma (5.2.21)  

‖ 𝑓‖
1−
1
𝑝
,𝑝
 = ( ∫  

∞

0

 [𝑡1 𝑝⁄ −1𝐾( 𝑓, 𝑡,𝑊𝐷
1,1 ,𝑊𝐷

1,∞)]
𝑝
 
𝑑𝑡

𝑡
)

1
𝑝

 

≤  𝐶 (∫  
∞

0

 [𝑡1 𝑝⁄  ( |𝛻𝑓|∗∗(𝑡)  + |𝑓|
∗∗
 (𝑡) + (

|𝑓|

𝑑𝐷
)

∗∗

(𝑡))]

𝑝

𝑑𝑡

𝑡
)

1
𝑝

 

=  𝐶 ‖|𝛻 𝑓 |
∗∗ 
 +  |𝑓|∗∗  + (

| 𝑓 |

𝑑𝐷
)

∗∗

‖

𝐿𝑝(ℝ+
 )

 .  

Since ‖𝑔∗∗‖𝐿𝑝(ℝ+)  ∼ ‖ 𝑔
∗‖𝐿𝑝(ℝ+)  =  ‖𝑔‖𝐿𝑝 , this allows us to continue  

≤  𝐶 (‖𝛻 𝑓‖
𝐿𝑝(ℝ𝑑)

 +   ‖𝑓‖
𝐿𝑝(ℝ𝑑)

 +  ‖
𝑓

𝑑𝐷
‖
𝐿𝑝(ℝ𝑑)

 )  ≤  𝐶 ‖𝑓‖
𝑊𝐷
1,𝑝
(ℝ𝑑)

 ≤  𝐶 ‖𝑓‖
𝑊1,𝑝𝐷
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thanks to the Hardy inequality in (15) and the continuity of the extension operator that 

assigns 𝑓 to 𝑓.  

Conversely, let 𝑓 ∈  (𝑊𝐷
1,1 ,𝑊𝐷

1,∞)
1−

1

𝑝
,𝑝

. Then, invoking the lower estimate in 

Lemma (5.2.21), we find as above, investing that 𝑔 ↦  𝑔∗∗ is sublinear,  

 ‖𝑓‖
1−
1
𝑝
,𝑝
 ≥  𝐶 (∫  

∞

0

  [𝑡
1
𝑝 |𝑓|∗∗(𝑡) + |𝛻 𝑓|∗∗(𝑡)]

𝑝 𝑑𝑡

𝑡
)

1 𝑝⁄

 

=  𝐶 ‖|𝑓|∗∗  +  |𝛻 𝑓|∗∗‖𝐿𝑝(ℝ+)   ≥  𝐶 ‖(|𝑓|   + |𝛻𝑓|)
∗∗‖𝐿𝑝(ℝ+)  

≥  𝐶‖|𝑓|  +  |𝛻 𝑓|‖𝐿𝑝  ≥  𝐶 ‖𝑓‖𝑊1,𝑝  .  

It remains to check the right boundary behaviour of f , i.e. 𝑓 ∈  𝑊𝐷
1,𝑝

 . In order to do so, 

we use the fact that 𝑊𝐷
1,1  ∩  𝑊𝐷

1,∞ is dense in (𝑊𝐷
1,1 ,𝑊𝐷

1,∞)
1−

1

𝑝
,𝑝

, see [216]. If 𝑓 =

lim
𝑛→∞

   𝑓𝑛 for some sequence (𝑓𝑛) in 𝑊𝐷
1,1  ∩  𝑊𝐷

1,∞
 , then the limit is also in 𝑊1,𝑝(Ω) by 

the above inequality. As 𝑊𝐷
1,∞  ⊆  𝑊𝐷

1,𝑝
 by Lemma (5.2.2), we have 𝑓𝑛  ∈  𝑊𝐷

1,𝑝
 for every 

𝑛 ∈ ℕ. As this space is closed in 𝑊1,𝑝, this yields 𝑓 ∈  𝑊𝐷
1,𝑝

 and we find   

‖𝑓‖
𝑊𝐷
1,𝑝
 
=  ‖𝑓 ‖𝑊1,𝑝 ≤  𝐶 ‖𝑓‖

1−
1
𝑝
,𝑝
. 

As a next preparatory step towards the proof of Theorem (5.2.9), we show that the 

Gaussian estimates imply 𝐿𝑝 − 𝐿2 off-diagonal estimates for the operators 𝑇(𝑡) ∶=
 𝑒−𝑡𝐴0   and 𝑡 𝐴0𝑇 (𝑡). 
Lemma (5.2.23)[206]: Let 𝑝 ∈  [1, 2] and let 𝐸, 𝐹 ⊆ Ω be relatively closed. Then, there 

exist constants 𝐶 ≥  0 and 𝑐 >  0, such that for every ℎ ∈  𝐿2  ∩  𝐿𝑝 with supp (ℎ)  ⊆  𝐸, 

we have for all 𝑡 >  0  

(i) ‖𝑇(𝑡)ℎ‖𝐿2(𝐹) ≤ 𝐶𝑡
(𝑑 2⁄ −𝑑 𝑝⁄ ) 2⁄ 𝑒−𝑐

𝑑(𝐸,𝐹)2

𝑡  ‖ℎ‖𝐿𝑝  for 𝑝 ≥  1 and  

(ii) ‖𝑡 𝐴0𝑇 (𝑡)ℎ‖𝐿2(𝐹)  ≤  𝐶𝑡
(𝑑 2⁄ −𝑑 𝑝⁄ ) 2⁄ 𝑒−𝑐

𝑑(𝐸,𝐹)2

𝑡  ‖ℎ‖𝐿𝑝 for p > 1.  

Proof. (i) We denote the kernel of 𝑇 (𝑡) by 𝑘𝑡 . Since 𝐴0  =  −𝛻 ·  𝜇𝛻 +  1, using the 

notation of Proposition (5.2.7), we have 𝑘𝑡  =  𝑒
−𝑡 𝐾𝑡 . Thus, for 𝑘𝑡 , we have the 

Gaussian estimates 

 0 ≤  𝑘𝑡(𝑥, 𝑦)  ≤
𝐶

𝑡𝑑 2⁄
 𝑒−𝑐

|𝑥−𝑦|2

𝑡 , 𝑡 >  0, a. a. 𝑥, 𝑦 ∈ Ω ,  

without the term 𝑒𝜀𝑡 . Using these, a straightforward calculation shows  

‖𝑇 (𝑡)ℎ‖𝐿2(𝐹)
2  ≤

𝐶

𝑡𝑑
 𝑒−𝑐

𝑑(𝐸,𝐹)2

𝑡  ‖𝑒−𝑐
|·|2

2𝑡 ∗ |ℎ̃|‖
𝐿2(ℝ𝑑)

2

 ,  

where we denoted by ℎ̃ the extension by 0 of ℎ to the whole of ℝ𝑑 . Now, applying 

Young’s inequality to bound the convolution, one obtains the assertion.  

(ii) In a first step, we observe that it is enough to show the assertion in the case 𝑝 =  2. In 

fact, we have by the first part of the proof (set 𝐸 =  𝐹 = Ω and 𝑝 =  1)  

‖𝑡 𝐴0𝑇 (𝑡)ℎ‖𝐿2(𝐹)  ≤  ‖𝑇 (𝑡 2⁄ )𝑡 𝐴0𝑇 (𝑡 2⁄ )ℎ‖𝐿2 ≤  𝐶𝑡
−
𝑑
4  ‖𝑡 𝐴0𝑇 (

𝑡

2
)ℎ‖

𝐿1 

≤  𝐶𝑡−
𝑑
4‖ℎ‖𝐿1 , 

 since 𝑇 (𝑡) extrapolates to an analytic semigroup on 𝐿1 by the Gaussian estimates, cf. 

[234] or [208]. Admitting the assertion in the case 𝑝 =  2: 
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 ‖𝑡 𝐴0𝑇 (𝑡)ℎ‖𝐿2(𝐹)  ≤  𝐶 𝑒
−𝑐
𝑑(𝐸,𝐹)2

𝑡  ‖ℎ‖𝐿2 , 

 the result then follows by interpolation using the Riesz–Thorin Theorem. In order to 

prove the off-diagonal bounds in the case 𝑝 =  2, we apply Davies’ trick, following the 

proof of [210]. Since this procedure is rather standard, we just give the major steps. For 

some Lipschitz continuous function 𝜑 ∶ Ω → ℝ with ‖𝛻𝜑‖𝐿∞  ≤  1 and  𝜚 >  0, we define 

the twisted form  

𝑎(𝑢, 𝑣) = ∫  
Ω

 (𝜇𝛻(𝑒 − 𝜚𝜑 𝑢)  ·  𝛻(𝑒𝜚𝜑 �̅�) +  𝑢�̅� ) 𝑑𝑥, 𝑢, 𝑣 ∈  𝐷(𝑎𝜚) ∶=  𝑊𝐷
1,2 .  

Setting 𝜅 ∶=  2𝜚2𝜇𝐿∞ and estimating the real and imaginary part of the quadratic form 

𝑎 +  𝜅 −  1, one finds that the numerical range of 𝑎𝜚  +  𝜅 lies in the (shifted) sector 𝒮 +

 1, where 𝑆 ∶=   {𝜆 ∈ ℂ ∶   |Im 𝜆| ≤  +√
‖𝜇‖𝐿∞

𝜇•
 Re 𝜆}  and 𝜇• is the ellipticity constant 

from Assumption (5.2.4). 

In the following, we denote by 𝐴𝜚 the operator associated to the form 𝑎 in 𝐿2. Since 

𝐴𝜚  +  𝜅 −  1 is maximal accretive, cf. [238], its negative generates an analytic 𝐶0-

semigroup 𝑒−𝑡𝐴𝜚  on 𝐿2 and 𝐴𝜚 even admits a bounded 𝐻∞-calculus there, cf. [219] or 

[228]. Applying the functional calculus of 𝐴𝜚, for every =, we find  

‖𝑡 𝐴𝜚𝑒
−𝑡𝐴𝜚 ‖  ≤  ‖𝑡(𝐴𝜚  +  𝜅) 𝑒

−𝑡(𝐴𝜚+𝜅)‖𝑒𝑡𝜅  +  ‖𝑒−𝑡(𝐴𝜚+𝜅)‖𝑡𝜅 𝑒𝑡𝜅  ≤  𝐶 𝑒𝑡𝜅  + 𝐶 𝑒2𝑡𝜅  

≤  𝐶 𝑒4𝜚
2𝑡‖𝜇‖𝐿∞ .                                                                                                   (32) 

Recalling that the form domain 𝑊𝐷
1,2 is invariant under multiplications with 𝑒𝜚𝜑 by 

Proposition (5.2.6) (iii), it is easy to verify that for every 𝑓 ∈  𝐿2 with 𝑒−𝜚𝜑 𝑓 ∈  𝐷(𝐴0), 
we have 𝐴𝜚 𝑓 =  − 𝑒

𝜚𝜑 𝐴0 𝑒
−𝜚𝜑𝑓 . From this, we then deduce  

𝑅(𝜆, 𝐴𝜚)  =  𝑒
𝜚𝜑 𝑅(𝜆, 𝐴0) 𝑒

−𝜚𝜑 , for all 𝜆 > 𝜚2‖𝜇‖𝐿∞ ,  

which finally yields for every 𝑓 ∈  𝐿2  

𝑒−𝑡𝐴𝜚 𝑓 = lim
𝑛→∞ 

 [
𝑛

𝑡
 𝑅(𝑛 𝑡⁄ , 𝐴𝜚)]

𝑛

 𝑓 =  𝑒𝜚𝜑 lim
𝑛→∞

  [
𝑛

𝑡
 𝑅(𝑛 𝑡⁄ , 𝐴0)]

𝑛

 𝑒−𝜚𝜑 𝑓 

=  𝑒𝜚𝜑 𝑇 (𝑡) 𝑒−𝜚𝜑 𝑓. 
  Now, we specify 𝜑(𝑥)  =  𝑑(𝑥, 𝐸) for  ∈ Ω . Then, for every ℎ ∈  𝐿2 with support 

in 𝐸 and all 𝜚, 𝑡 >  0, we get  

𝑡 𝐴0𝑇 (𝑡)ℎ =  −𝑡
𝑑

𝑑𝑡
 𝑇 (𝑡)ℎ =  𝑡 𝑒−𝜚𝜑 𝐴𝜚 𝑒

−𝑡𝐴𝜚  𝑒𝜚𝜑ℎ =  𝑡 𝑒−𝜚𝜑 𝐴𝜚 𝑒
−𝑡𝐴𝜚  ℎ,  

as 𝜑 =  0 on the support of ℎ. This yields for all 𝜚, 𝑡 >  0 

 ‖𝑡𝐴0𝑇 (𝑡)ℎ‖𝐿2(𝐹)  =  ‖𝑡 𝑒
−𝜚𝑑(·,𝐸) 𝐴𝜚𝑒

−𝑡𝐴𝜚  ℎ‖
𝐿2(𝐹)

 ≤  𝑒−𝜚𝑑(𝐸,𝐹) ‖𝑡 𝐴𝜚 𝑒
−𝑡 𝐴𝜚  ℎ‖

𝐿2
 

≤  𝐶 𝑒4𝜚
2‖𝜇‖𝐿∞𝑡−𝜚𝑑(𝐸,𝐹) ‖ℎ‖𝐿2 , 

thanks to (32). Minimizing over  𝜚 >  0 finally yields the assertion with 𝑐 =
 (8‖𝜇‖𝐿∞)

−1.  

We now turn to the proof of Theorem (5.2.9). Building on the hypotheses that the 

assertion is true for 𝑝 =  2, cf. Assumption (5.2.5), we will show the corresponding 

inequality in a weak (p, p) setting for all 1 < p < 2. Then, our result follows by 

interpolation. We show the following.  

Proposition (5.2.24)[206]: Let Ω and 𝐷 satisfy Assumption (5.2.1), and let 𝜇 be such that 

Assumptions (5.2.4) and (5.2.5) are true. Then, there is a constant 𝐶 ≥  0, such that for all 

𝑝 ∈ ]1, 2[, for every 𝑓 ∈  𝐶𝐷
∞ and all 𝛼 >  0, we have      



171 

{𝑥 ∈ Ω ∶  |𝐴0
1 2⁄  𝑓 (𝑥)|  >  𝛼} ≤

𝐶

𝛼𝑝
  ‖𝑓‖

𝑊1,𝑝𝐷

𝑝
.                   (33) 

Proof. We follow the proof of [210]. Let 𝛼 >  0, 𝑝 ∈ ]1, 2[ and 𝑓 ∈  𝐶𝐷
∞ be given. We 

apply the Calderón–Zygmund decomposition from Lemma (5.2.15) to write 𝑓 = 𝑔 +
∑  𝑗∈𝐼  𝑏𝑗  . In all what follows the references (i)–(vi) will stand for the corresponding 

features in Lemma (5.2.15).  

Since 𝐶𝐷
∞  ↪  𝑊𝐷

1,2 = dom𝐿2(𝐴0
1 2⁄
), by Corollary (5.2.16) (iii) also the functions 𝑔 

and 𝑏 =  ∑   𝑗∈𝐼 𝑏𝑗  are in the 𝐿2-domain of 𝐴0
1 2⁄

 and 𝐴0
1 2⁄ 𝑏 =   ∑  𝑗∈𝐼  𝐴0

1 2⁄  𝑏𝑗 . Thus, we 

can estimate     

|{ 𝑥 ∈ Ω ∶ |𝐴0
1 2⁄  𝑓 (𝑥)|  >  𝛼  }|  

≤ |{𝑥 ∈ Ω ∶   | 𝐴0
1 2⁄ 𝑔(𝑥)|     >

𝛼

2
}| + |{𝑥 ∈ Ω ∶ |𝐴0

1 2⁄  𝑏  (𝑥)| >
𝛼

2
}|,       (34) 

We bound both terms on the right-hand side by 𝐶 ‖𝑓‖
𝑊𝐷
1,𝑝

𝑝
 /𝛼𝑝. The one containing 𝑔 is as 

always the easy part. We first note that thanks to (vi) and Corollary (5.2.16) we know  

‖𝑔‖
𝑊𝐷
1,𝑝  ≤  𝐶 ‖𝑓‖

𝑊𝐷
1,𝑝  and ‖𝑔‖_(𝑊𝐷

1,∞  ≤  𝐶𝛼.  

By interpolation, this yields 

 ‖𝑔‖
𝑊𝐷
1,2

2  ≤  𝐶‖𝑔‖
𝑊𝐷
1,𝑝

𝑝
 ‖𝑔‖

𝑊𝐷
1,∞

2−𝑝
 ≤  𝐶𝛼2−𝑝‖𝑓‖

𝑊𝐷
1,𝑝

𝑝
 .  

This implies, using the Tchebychev inequality and Assumption (5.2.5)      

|{𝑥 ∈ Ω ∶ |𝐴0
1 2⁄  𝑔(𝑥)| >

𝛼

2
}| ≤

𝐶

𝛼2
‖ 𝐴0

1 2⁄  𝑔‖
𝐿2

2
 ≤

𝐶

𝛼2
 ‖𝑔‖

𝑊𝐷
1,2 

2 ≤
𝐶

𝛼𝑝
 ‖𝑓‖

𝑊𝐷
1,𝑝

𝑝
. 

Lets turn to the estimate of the second part in (34). We first recall the integral 

representation of the square root  

𝐴0
1 2⁄  𝑢 =

2

√𝜋
 ∫  

∞

0

 𝐴0𝑒
−𝑡2𝐴0  𝑢 𝑑𝑡 for all 𝑢 ∈  dom𝐿2  (𝐴0

1 2⁄
),  

which can be deduced straightforwardly from the well-known formula (see [243])  

𝐴0
−1 2⁄  =

1

√𝜋
  ∫  

∞

0

 
𝑒−𝑡𝐴0

√𝑡
 𝑑𝑡. 

 This yields thanks to 𝐴0
1 2⁄  𝑏 =   ∑  𝑗∈𝐼  𝐴0

1 2⁄  𝑏𝑗 

|{𝑥 ∈ Ω ∶ | (𝐴0
1 2⁄  𝑏 (𝑥)) >

𝛼

2
}|  = |{𝑥 ∈ Ω ∶ |

2

√𝜋
∫  
∞

0

∑ 

𝑗∈𝐼

 (𝐴0 𝑒
−𝑡2𝐴0𝑏𝑗)(𝑥)𝑑𝑡| >

𝛼

2
}|

= lim  sup 
𝑚→∞

 |{𝑥 ∈ Ω ∶ |
2

√𝜋
∫  
∞

2−𝑚

∑ 

𝑗∈𝐼

 (𝐴0 𝑒
−𝑡2𝐴0𝑏𝑗)(𝑥)𝑑𝑡| >

𝛼

2
}| . 

In the following, we denote again by ℓ𝑗 the sidelength of the cube 𝑄 𝑗, 𝑗 ∈  𝐼, and we set 

𝑟𝑗 ∶=  2
𝑘 for that value of 𝑘 ∈ ℤ , such that 2𝑘 ≤ ℓ𝑗  <  2

𝑘+1. With this notation, we split 

the integral for every 𝑚 ∈ ℕ:  
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|{𝑥 ∈ Ω ∶ |
2

√𝜋
 ∫  
∞

2−𝑚

  ∑  

𝑗∈𝐼

  (𝐴0 𝑒
−𝑡2𝐴0𝑏𝑗)(𝑥) 𝑑𝑡| >

𝛼

2
}|

≤ |{ 𝑥 ∈ Ω ∶ |∑  

𝑗∈𝐼

 ∫  
𝑟𝑗∨2

−𝑚

2−𝑚
  𝐴0 𝑒

−𝑡2 𝐴0  𝑏𝑗(𝑥)𝑑𝑡| >
√𝜋𝛼

8
}|

+ |{ 𝑥 ∈ Ω ∶ |∑ 

𝑗∈𝐼

 ∫  
∞

𝑟𝑗 ∨2−𝑚
 𝐴0 𝑒

−𝑡2𝐴0  𝑏𝑗(𝑥)𝑑𝑡| >
√𝜋𝛼

8
}|.                    (35) 

 For the estimate of the first integral, we may restrict ourselves to the case 𝑟𝑗  >  2
−𝑚, 

since otherwise there is no contribution from this term. We do the usual trick to split off 

the union of the sets 4𝑄𝜄, 𝜄 ∈  𝐼 that does not produce any sort of problem due to  

|⋃  

𝜄∈𝐼

 4𝑄𝜄|  ≤  ∑  

𝜄∈𝐼

 |4𝑄𝜄| ≤  𝐶 ∑  

𝜄∈𝐼

 |𝑄𝜄|
(4)
≤

𝐶

𝛼𝑝
‖𝑓‖

𝑊𝐷
1,𝑝

𝑝
 . 

 So, we only have to estimate  

|{𝑥 ∈ Ω ⋃ 

𝜄∈𝐼

 4𝑄𝜄 ∶ |∑  

 𝑗∈𝐼 

∫  
𝑟𝑗

2−𝑚
 𝐴0 𝑒

−𝑡2 𝐴0  𝑏𝑗(𝑥)𝑑𝑡| >
√𝜋𝛼

8
}|  

= |{𝑥 ∈ Ω ∶ |1(∪𝜄∈𝐼 4𝑄𝜄)𝑐  ∑  

 𝑗∈𝐼

 ∫  
𝑟𝑗

2−𝑚
 𝐴0 𝑒

−𝑡2 𝐴0 𝑏𝑗(𝑥)𝑑𝑡 |  >
√𝜋𝛼

8
}| .  

By the Tchebychev inequality, we get 

 ≤
𝐶

𝛼2
‖ 1(∪𝜄∈𝐼4𝑄𝜄)𝑐  ∑  

𝑗∈𝐼

 ∫  
𝑟𝑗

2−𝑚
 𝐴0 𝑒

−𝑡2 𝐴0  𝑏𝑗  𝑑𝑡‖

𝐿2

2

 .                 (36) 

 In order to estimate this norm, we take 𝑢 ∈  𝐿2(Ω) with ‖𝑢‖𝐿2  =  1. Then, 

 |∫  
Ω

𝑢1(∪𝜄∈𝐼 4𝑄𝜄)𝑐   ∑  

𝑗∈𝐼

∫  
𝑟𝑗

2−𝑚
 𝐴0 𝑒

−𝑡2 𝐴0 𝑏𝑗  𝑑𝑡 |

≤  ∑  

𝑗∈𝐼

 |𝑢|1(∪𝜄∈𝐼 4𝑄𝜄)𝑐  |∫  
𝑟𝑗 

2−𝑚
 𝐴0 𝑒

−𝑡2 𝐴0 𝑏𝑗  𝑑𝑡 |. 

We now split the integration over into frame-like pieces and apply the Cauchy– Schwarz 

inequality. Note that the characteristic function results in the sum over 𝑙 starting only at 

𝑙 =  2.  

≤ ∑ 

𝑗∈𝐼 

∑ 

∞

𝑙=2 

∫  
(2𝑙+1𝑄𝑗 2⁄

𝑙
𝑄𝑗)∩Ω

 |𝑢| |∫  
𝑟𝑗

2−𝑚
 𝐴0 𝑒

−𝑡2 𝐴0  𝑏𝑗  𝑑𝑡|              (37) 

≤ ∑ 

𝑗∈𝐼

∑ 

∞

𝑙=2

 ‖𝑢‖
𝐿2((2𝑙+1𝑄𝑗 2

𝑙⁄ 𝑄)∩Ω)
 ‖∫  

𝑟𝑗

2−𝑚
 𝐴0 𝑒

−𝑡2 𝐴0  𝑏𝑗  𝑑𝑡‖
𝐿2((2𝑙+1𝑄𝑗 2⁄  𝑄)∩Ω)

. 
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In order to estimate the first factor of the last expression, we identify 𝑢 with its trivial 

extension by zero to ℝ𝑑. Then, we let appear the maximal operator to obtain for every 𝑦 ∈
 𝑄𝑗  

‖𝑢‖
𝐿2((2𝑙+1𝑄𝑗 2⁄ 𝑄)∩Ω)

2 ≤ ∫  
2𝑙+1𝑄𝑗

 |𝑢|2  ≤  𝐶2𝑑(𝑙+1) |𝑄𝑗|
1

|2𝑙+1𝑄𝑗|
∫  
2𝑙+1𝑄𝑗

 |𝑢|2  

≤  𝐶2𝑑𝑙ℓ𝑗
𝑑  [𝑀(|𝑢|2)](𝑦). 

 Applying the off-diagonal estimates for 𝑡2 𝐴0 𝑒
−𝑡2 𝐴0 from Lemma (5.2.23) with the set 

𝑄𝑗  ∩ Ω as 𝐸, (2𝑙+1 𝑄𝑗  2
𝑙⁄ 𝑄𝑗)  ∩ Ω as 𝐹, 𝑑/(𝑑 −  1) as 𝑝 and 𝑏𝑗 as ℎ, we get  

‖𝐴0 𝑒
−𝑡2 𝐴0  𝑏𝑗‖𝐿2((2𝑙+1𝑄𝑗 2𝑙⁄ 𝑄𝑗)∩Ω)

 ≤
𝐶

𝑡2
 𝑡𝑑 2⁄ −(𝑑−1)𝑒

 −𝑐
𝑑(𝐸,𝐹)2

𝑡2 ‖𝑏𝑗‖𝐿𝑑 (𝑑−1)⁄
 

≤
𝐶

𝑡1+𝑑 2⁄
 𝑒
−𝑐
4𝑙𝑟𝑗

2

𝑡2  ‖𝑏𝑗‖𝐿𝑑 (𝑑−1)⁄
, 

 since 𝑑(𝐸, 𝐹)  ≥  𝑑(𝑄 𝑗, 2𝑙+1 𝑄𝑗 2
𝑙⁄ 𝑄𝑗)  ≥  𝑐(2

𝑙ℓ𝑗  − ℓ𝑗)  ≥  𝑐(2
𝑙 −1)𝑟𝑗  ≥  𝑐2

𝑙 𝑟𝑗  thanks 

to 𝑙 ≥  2.  

According to (iii), the functions 𝑏𝑗 are from 𝑊𝐷
1,1

 . Exploiting the Sobolev 

embedding 𝑊𝐷
1,1  ↪ 𝐿𝑑 (𝑑−1)⁄   

‖𝑏𝑗‖𝐿𝑑 (𝑑−1)⁄
 ≤  𝐶‖𝑏𝑗‖𝑊1,1 

≤  𝐶𝛼|𝑄𝑗| ≤  𝐶𝛼ℓ𝑗
𝑑  .                       (38) 

 Putting all this together, we find for our second factor  

‖∫  
𝑟𝑗 

2−𝑚
 𝐴0 𝑒

−𝑡2 𝐴0  𝑏𝑗  𝑑𝑡‖
𝐿2((2𝑙+1𝑄𝑗 2

𝑙⁄ 𝑄𝑗)∩Ω)

 

≤  ∫  
𝑟𝑗 

2−𝑚
 ‖𝐴0 𝑒

−𝑡2 𝐴0 𝑏𝑗  ‖𝐿2((2𝑙+1𝑄𝑗 2𝑙⁄ 𝑄𝑗)∩Ω)
 𝑑𝑡 

≤  𝐶𝛼ℓ𝑗
𝑑  ∫  

𝑟𝑗

2−𝑚

1

𝑡1+𝑑 2⁄
𝑒
 −𝑐
4𝑙𝑟𝑗

2

𝑡2  𝑑𝑡 

=  𝐶𝛼ℓ𝑗
𝑑   ∫  

𝑐4𝑙 𝑟𝑗
2 4𝑚

𝑐4𝑙
  (
√𝑠

2𝑙𝑟𝑗
)

1+𝑑 2⁄

 𝑒−𝑠 2𝑙 𝑟𝑗𝑠
−3 2⁄  𝑑𝑠 

≤  𝐶𝛼ℓ𝑗
𝑑𝑟𝑗
−𝑑 2⁄  2−𝑙𝑑 2⁄ ∫  

∞

𝑐4𝑙
 𝑠−1+𝑑 4⁄  𝑒−𝑠 𝑑𝑠, 

which is now independent of 𝑚 ∈ ℕ. Since the integrand is positive and 𝑟𝑗  ≥  2ℓ𝑗 , we 

may continue  

≤  𝐶𝛼ℓ𝑗
𝑑 2⁄  2−𝑙𝑑 2⁄ 𝑒−𝑐4

𝑙
  ∫  

∞

𝑐4𝑙
 𝑠−1+𝑑 4⁄  𝑒−𝑠+𝑐4

𝑙
 𝑑𝑠 

=  𝐶𝛼ℓ𝑗
𝑑 2⁄  2−𝑙𝑑 2⁄ 𝑒−𝑐4

𝑙
  ∫  

∞

0

 (𝜎 +  𝑐4𝑙)−1+𝑑 4⁄   𝑒−𝜎  𝑑𝜎 

=  𝐶𝛼ℓ𝑗
𝑑 2⁄  4−𝑙 𝑒−𝑐4

𝑙
∫  
∞

0

 (𝜎4−𝑙 +  𝑐)−1+𝑑 4⁄  𝑒−𝜎  𝑑𝜎.  

This last integral is bounded uniformly in 𝑙 ≥  2. In fact, if 𝑑 >  4, then we estimate 

4−𝑙  ≤  4−2, and if 𝑑 ≤  4, we may just estimate by dropping out the whole 𝜎4−𝑙 . So, 

estimating once more 4−𝑙  ≤  4−2, we end up with  
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‖∫  
𝑟𝑗

2−𝑚
 𝐴0 𝑒

−𝑡2𝐴0  𝑏𝑗  𝑑𝑡‖
𝐿2((2𝑙+1𝑄𝑗 2

𝑙⁄  𝑄𝑗)∩Ω)

 ≤  𝐶𝛼ℓ𝑗
𝑑 2⁄  𝑒−𝑐4

𝑙
 . 

 Coming back to (37), we thus have  

∫  
(2𝑙+1𝑄𝑗 2

𝑙⁄ 𝑄𝑗)∩Ω

 |𝑢| |∫  
𝑟𝑗

2−𝑚
 𝐴0 𝑒

−𝑡2𝐴0  𝑏𝑗𝑑𝑡|

≤  𝐶2𝑙𝑑 2⁄  ℓ𝑗
𝑑 2⁄  ([𝑀(|𝑢|2)] (𝑦))

1 2⁄
𝛼ℓ𝑗

𝑑 2⁄  𝑒^ − 𝑐4𝑙 

 for every 𝑦 ∈  𝑄𝑗 . Averaging over 𝑦, the inequality remains valid, and we get 

 ∑  

𝑗∈𝐼

 ∑  

∞

𝑙=2

 ∫  
(2𝑙+1𝑄𝑗 2

𝑙⁄ 𝑄𝑗)∩Ω

|𝑢| |∫  
𝑟𝑗

2−𝑚
 𝐴0 𝑒0

−𝑡2𝐴 𝑏𝑗  𝑑𝑡|

≤  𝐶  ∑  

𝑗∈𝐼

 ∑  

∞

𝑙=2 

1

|𝑄𝑗|
  ∫  
𝑄𝑗

 𝛼2𝑙𝑑 2⁄ ℓ𝑗
𝑑𝑒−𝑐4

𝑙
 ([𝑀(|𝑢|2) (𝑦)])

1
2 𝑑𝑦 

≤  𝐶𝛼 ∑  

𝑗∈𝐼

 ∑  

∞

𝑙=2

 2𝑙𝑑 2⁄ 𝑒−𝑐4
𝑙
∫  
𝑄𝑗

 (([𝑀(|𝑢|2)])(𝑦))
1
2𝑑𝑦.  

The sum over 𝑙 now turns out to be convergent, so we continue  

≤  𝐶𝛼 ∫  
ℝ𝑑
 ∑  

𝑗∈𝐼

 1𝑄𝑗(𝑦)(([𝑀(|𝑢|
2)])(𝑦))

1
2 𝑑𝑦 ≤  𝐶𝛼 ∫  

⋃    𝑗∈𝐼 𝑄𝑗

 ([𝑀(|𝑢|2)](𝑦))
1
2 𝑑𝑦,  

where we used (v) in the last step. By the Kolmogorov inequality (cf. [247]), we have  

∫  
⋃  𝑗∈𝐼 𝑄𝑗

 ([𝑀(|𝑢|2)(𝑦)]
1
2 𝑑𝑦 ≤  𝐶 |⋃ 

𝑗∈𝐼

𝑄𝑗|

1
2

‖|𝑢|2‖
𝐿1(ℝ𝑑)

1
2 ≤  𝐶 (∑ 

𝑗∈𝐼

|𝑄𝑗|)

1
2

‖𝑢‖𝐿2  . 

Coming back to (36), we thus finally achieve (observe that ‖𝑢‖𝐿2  =  1) 

 |{𝑥 ∈ Ω \⋃ 𝜄∈𝐼 4𝑄𝜄 ∶ |∑  

𝑗∈𝐼 

∫  
𝑟𝑗

2−𝑚
 𝐴0 𝑒

−𝑡2𝐴0𝑏𝑗(𝑥)𝑑𝑡| >
√𝜋𝛼

8
}|  

≤
𝐶

𝛼2
‖1(⋃   𝜄∈𝐼 4𝑄𝜄)

𝑐  ∑  

𝑗∈𝐼

 ∫  
𝑟𝑗

2−𝑚
 𝐴0 𝑒𝑗

−𝑡2𝐴0𝑏 𝑑𝑡‖

𝐿2

2

 ≤  𝐶  ∑  

𝑗∈𝐼

 |𝑄𝑗|  

≤
𝐶

𝛼𝑝
  ‖𝑓‖

𝑊𝐷
1,𝑝

𝑝
  

by (iv).  

We turn to the estimate of the second addend on the right-hand side of (35). For this 

task, we will again need the notion of a bounded 𝐻∞-calculus. The definition and further 

information can be found in [219] or [228].  

We define the function  

𝜓(𝑧) ∶=  ∫  
∞

1

 𝑧 𝑒−𝑡
2
𝑧 𝑑𝑡, Re(𝑧)  >  0.  

We show that  
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𝜓 ∈  ℋ0
∞ (Σ𝜇) ∶

= {𝑓 ∶  Σ𝜇  →  𝐶 analytic and ∃𝜀 >  0 s. t. |𝑓(𝑧)|  

≤  𝐶
|𝑧|𝜀

(1 + |𝑧|)2𝜀
 for all 𝑧 ∈  𝜇 }  

for every 𝜇 ∈ ]0, 𝜋/2[, where Σ𝜇 ∶= {𝑧 ∈  𝐶 ∶ | arg  (𝑧)| <  𝜇}. In fact, we have 

substituting 𝜏 =  𝑡2 Re(𝑧)  −  Re(𝑧)  

|
(1 + |𝑧|)2𝜀

|𝑧|𝜀
 𝜓(𝑧)| ≤  ∫  

∞

1

 |𝑧|1−𝜀(1 + |𝑧|)2𝜀  𝑒−𝑡
2Re(𝑧) 𝑑𝑡 

=  ∫  
∞

0

 |𝑧|1−𝜀(1 + |𝑧|)2𝜀  𝑒−𝜏 𝑒−Re(𝑧)
1

2√Re(𝑧)(𝜏 +  Re(𝑧))

𝑑𝜏 

≤  𝐶|𝑧|
1
2 − 𝜀(1 + |𝑧|)2𝜀  𝑒−𝑐|𝑧|∫  

∞

0

𝑒−𝜏

√𝜏
𝑑𝜏,  

since Re(𝑧)  ∼  |𝑧|, thanks to | arg  (𝑧)|  <  𝜇 <  𝜋/2. Thus, we may choose 𝜀 ∈ ]0, 1/
2[. Furthermore, we have for every 𝑧 ∈ ℂ with Re(𝑧)  >  0 and every 𝑟 >  0  

1

𝑟
 𝜓(𝑟2𝑧)  =  ∫  

∞

𝑟

 𝑧 𝑒−𝑡
2𝑧 𝑑𝑡, 

so since 𝐴0 has a bounded 𝐻∞-calculus on 𝐿𝑞 , see Proposition (5.2.8) (ii), we have the 

equality of operators  

∫  
∞

𝑟

 𝐴0 𝑒
−𝑡2𝐴0𝑑𝑡 =

1

𝑟
 𝜓(𝑟2𝐴0) 

in 𝐿𝑞 for every 1 <  𝑞 <  2. Thus, denoting 𝐼𝑘 ∶=  {𝑗 ∈  𝐼 ∶  𝑟𝑗  ∨  2
−𝑚 = 2𝑘 } for every 

𝑘 ∈ ℤ, we get   

∑ 

𝑗∈𝐼

 ∫  
∞

𝑟𝑗 ∨2
−𝑚

 𝐴0 𝑒
−𝑡2𝐴0𝑏𝑗  𝑑𝑡 =  ∑  

𝑘∈ℤ

∑  

𝑗∈𝐼𝑘

1

𝑟𝑗  ∨  2
−𝑚
 𝜓  ((𝑟𝑗  ∨  2

−𝑚)
2
𝐴0)  𝑏𝑗  

=  ∑  

𝑘∈ℤ

 𝜓(4𝑘 𝐴0)  ∑  

𝑗∈𝐼𝑘

𝑏𝑗
𝑟𝑗  ∨  2

−𝑚
 .  

After these preparations, we actually start the estimate. Let 𝑞 ∶=  𝑑/(𝑑 −  1) be the 

Sobolev conjugated index to 1. Using the Tchebychev inequality for this 𝑞, we get  

|{𝑥 ∈ Ω ∶ |∑ 

𝑗∈𝐼

 ∫  
∞

𝑟𝑗 ∨2
−𝑚

 𝐴0 𝑒
−𝑡2𝐴0  𝑏𝑗(𝑥) 𝑑𝑡|  >

√𝜋𝛼

8
}|  

≤
𝐶

𝛼𝑞
 ‖∑ 

 𝑗∈𝐼

 ∫  
∞

𝑟𝑗 ∨2
−𝑚

𝐴0 𝑒
−𝑡2𝐴0𝑏𝑗  𝑑𝑡‖

𝐿𝑞

𝑞

 

=
𝐶

𝛼𝑞
 ‖∑ 

𝑘∈ℤ

 𝜓(4𝑘 𝐴0) ∑  

 𝑗∈𝐼𝑘

𝑏𝑗
𝑟𝑗  ∨  2

−𝑚
‖

𝐿𝑞

𝑞

.  

Observe that the sum over 𝑘 is in fact a finite sum, since 𝐼𝑘 is empty for 𝑘 <  −𝑚 by 

definition and for large 𝑘 by the finite measure of  𝐸, cf. (16). Thus, there is no 
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convergence problem in applying Lemma (5.2.26), which helps to estimate this expression 

further by  

≤
𝐶

𝛼𝑞 ‖
‖( ∑ 

𝑘∈ℤ

 |∑  

𝑗∈𝐼𝑘

𝑏𝑗
𝑟𝑗  ∨  2

−𝑚
|

2

)

1
2

‖
‖

𝐿𝑞

𝑞

 =
𝐶

𝛼𝑞
 ∫  
Ω

(∑ 

𝑘∈ℤ

 |∑  

𝑗∈𝐼𝑘

𝑏𝑗(𝑥)

𝑟𝑗  ∨  2
−𝑚
|

2

)

𝑞
2

𝑑𝑥. 

 Now, by (v), the sum over 𝑘 is finite for every 𝑥 ∈ Ω, and the number of addends is even 

bounded uniformly in 𝑥 and in m, so by the equivalence of norms in finite dimensional 

spaces, we may continue to estimate by  

≤
𝐶

𝛼𝑞
 ∫  
Ω

(∑ 

𝑘∈ℤ

 | ∑  

𝑗∈𝐼𝑘

𝑏𝑗(𝑥)

𝑟𝑗  ∨  2
−𝑚
|)

𝑞

𝑑𝑥 ≤
𝐶

𝛼𝑞
 ∫  
Ω

(∑ 

𝑗∈𝐼

|𝑏𝑗(𝑥)|

𝑟𝑗  ∨  2
−𝑚
)

𝑞

𝑑𝑥.  

Next, we estimate 𝑟𝑗  ∨  2
−𝑚 by 𝑟𝑗 , and using again the equivalence of norms in the finite 

sum over 𝑗, we get  

≤
𝐶

𝛼𝑞
∫  
Ω

∑ 

𝑗∈𝐼

 
|𝑏𝑗(𝑥)|

𝑞

𝑟𝑗
𝑞  𝑑𝑥 ≤

𝐶

𝛼𝑞
  ∑  

𝑗∈𝐼

 ℓ𝑗
−𝑞
 ∫  
Ω

|𝑏𝑗(𝑥)|
𝑞
 𝑑𝑥,  

since 𝑟𝑗  ∼ ℓ𝑗 . Using once more the Sobolev embedding 𝑊1,1  ↪  𝐿𝑑 (𝑑−1)⁄  =  𝐿𝑞 , we see 

as in (38)  

∫  
Ω

|𝑏𝑗(𝑥)|
𝑞
 𝑑𝑥 =  ‖𝑏𝑗‖𝐿𝑞

𝑞
 ≤  𝐶 (𝛼ℓ𝑗

𝑑)
𝑞
 =  𝐶𝛼𝑞ℓ𝑗

𝑑𝑞
. 

Summarizing, we have shown  

|{𝑥 ∈ Ω ∶ |∑ 

𝑗∈𝐼 

∫  
∞

𝑟𝑗 ∨2
−𝑚

 𝐴0 𝑒
−𝑡2𝐴0𝑏𝑗(𝑥)𝑑𝑡| >

√𝜋𝛼

8
}|  ≤

𝐶

𝛼𝑞
∑ 

 𝑗∈𝐼

 ℓ𝑗
−𝑞
 𝛼𝑞  ℓ𝑗

𝑑𝑞
 

= 𝐶 ∑  

𝑗∈𝐼

ℓ𝑗
𝑑  ≤  𝐶  ∑  

𝑗∈𝐼

 |𝑄𝑗|  ≤
𝐶

𝛼𝑝
 ‖ 𝑓‖

𝑊𝐷
1,𝑝

𝑝
,  

using one final time (iv).  

It remains to prove Lemma (5.2.26), which serves as a substitute  in [210]. We give 

a different proof that instead of  𝐿𝑝 − 𝐿2 off-diagonal estimates relies on the 𝐻∞ functional 

calculus of the operator and gives the assertion for the full range of 1 <  𝑞 <  ∞.  

In the proof of Lemma (5.2.26), we will use the following Lemma from [237] (see also 

[218]).  

Lemma (5.2.25)[206]: Let 1 <  𝑞 <  ∞ and let −𝐵 be the generator of a bounded 

analytic semigroup on 𝐿𝑞 , such that 𝐵 admits a bounded 𝐻∞-calculus on 𝐿𝑞 and let 𝜓 ∈
 𝐻0
∞ (Σ𝜙) for some 𝜙 ∈ ]𝜑𝐵

∞, 𝜋]. Then, there is a constant 𝐶 ≥  0, such that for every 

bounded sequence (𝛼𝑘)𝑘∈ℤ  ⊆ ℂ and every 𝑡 >  0, we have  

‖∑ 

𝑘∈ℤ

 𝛼𝑘𝜓(2
𝑘 𝑡 𝐵)‖

ℒ(𝐿𝑞)

 ≤  𝐶 sup
𝑘∈ℤ

  |𝛼𝑘|. 

 

Lemma (5.2.26)[206]: Let 1 <  𝑞 <  ∞, let −𝐵 be the generator of a bounded analytic 

semigroup on 𝐿𝑞 , such that 𝐵 and 𝐵′ admit bounded 𝐻∞-calculi on 𝐿𝑞 and 𝐿𝑞
′
, 
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respectively, and let 𝜓 ∈  𝐻0
∞ (Σ𝜙) for some 𝜙 ∈ ]𝜑𝐵

∞, 𝜋[ , where 𝜑𝐵
∞ is the 𝐻∞- angle of  

𝐵. Then, for every choice of functions 𝑓𝑘  ∈  𝐿
𝑞  , 𝑘 ∈ ℤ, we have  

‖∑ 

𝑘∈ℤ

 𝜓(4𝑘 𝐵)𝑓𝑘‖

𝐿𝑞

≤  𝐶 ‖(∑ 

𝑘∈ℤ

| 𝑓𝑘|
2)

1
2

‖

𝐿𝑞

,  

whenever the left-hand side is convergent. Before starting the proof, we observe that 

thanks to [237], the operator 𝐵 even has an ℛ-bounded 𝐻∞-calculus of angle 𝜑𝐵
∞ on 𝐿𝑞 , 

which means that for every 𝜙 > 𝜑𝐵
∞ and every bounded set of functions Ξ ⊆  𝐻∞(Σϕ), 

the set of operators {𝜉(𝐴) ∶  𝜉 ∈  Ξ} is ℛ-bounded in 𝐿(𝐿𝑞). Here, a set 𝒯 ⊆ ℒ(𝐿𝑞) is 

called R-bounded, if there is a constant 𝐶 ≥  0, such that for every 𝑁 ∈ ℕ, for every 

choice of functions 𝑓𝑘  ∈  𝐿
𝑞  , 𝑘 =  1, . . . , 𝑁, operators 𝑇𝑘  ∈ 𝒯 , 𝑘 =  1, . . . , 𝑁, and 

{−1, 1}-valued, symmetric and independent random variables 𝜀𝑘 , 𝑘 =  1, . . . , 𝑁, on some 

probability space 𝑆, we have  

‖∑  

𝑁

𝑘=1

 𝜀𝑘𝑇𝑘 𝑓𝑘‖

𝐿2(𝑆;𝐿𝑞)

 ≤  𝐶 ‖∑  

𝑁

𝑘=1

𝜀𝑘  𝑓𝑘‖

𝐿2(𝑆;𝐿𝑞)

. 

Proof. Since 𝜓 ∈  𝐻0
∞ (Σ𝜙), there exists an 𝜀 >  0 with |𝜓(𝑧)|  ≤  𝐶|𝑧|𝜀/(1 + |𝑧|)2𝜀 for 

all 𝑧 ∈  Σ𝜙. Let 𝛿 ∈ ]0, 𝜀[ and set  

𝜓1(𝑧):=
𝑧𝛿

(1 +  𝑧)2𝛿
 , 𝜓2(𝑧):=

(1 +  𝑧)2𝛿

𝑧𝛿
 𝜓(𝑧), 𝑧 ∈ Σ𝜙. 

 Then, we have 𝜓1, 𝜓2  ∈  𝐻0
∞ (Σ𝜙), 𝜓 =  𝜓1𝜓2 and (𝜓1(𝐵))

′
 =  𝜓1̅̅̅̅ (𝐵

′). Now, let 𝑁 ∈

ℕ and let 𝑔 ∈  𝐿𝑞
′
 with ‖𝑔‖

𝐿𝑞
′  = 1, where 1/𝑞 +  1/𝑞′ =  1. Then, for every family of 

{−1, 1}-valued, symmetric and independent random variables 𝜀𝑘 , 𝑘 =  −𝑁, . . . , 𝑁, on 

some probability space 𝑆, we have  

|∫  
Ω

∑  

𝑁

𝑘=−𝑁

  (𝜓(4𝑘 𝐵) 𝑓𝑘  )(𝑥)𝑔(𝑥)𝑑𝑥 |

= | ∫ 
𝑆

  ∑  

𝑁

𝑘=−𝑁

 𝜀𝑘
2 (𝜎) ∫  

Ω

 (𝜓2 (4
𝑘 𝐵)𝑓𝑘 )(𝑥)(𝜓1̅̅̅̅ (4

𝑘 𝐵′)𝑔 )(𝑥)𝑑𝑥 𝑑𝜎 | .  

Since the random variables 𝜀𝑘  , 𝑘 =  −𝑁, . . . , 𝑁, are independent and thus orthogonal in 

𝐿2(𝑆), we may write this as 

 = | ∫ 
𝑆

 ∑  

𝑁

𝑗,𝑘=−𝑁

 𝜀𝑘  (𝜎 )𝜀𝑗(𝜎 )∫  
Ω

 (𝜓2(4
𝑘 𝐵)𝑓𝑘) (𝑥)( 𝜓1̅̅̅̅ (4

𝑗  𝐵′)𝑔 )(𝑥)𝑑𝑥 𝑑𝜎|

≤  ∫ 
𝑆

 | ∑  

𝑁

𝑘=−𝑁

 𝜀𝑘  (𝜎 )(𝜓2(4
𝑘 𝐵)𝑓𝑘) (𝑥) ∑  

𝑁

𝑗=−𝑁

 𝜀𝑗(𝜎 )-(𝜓1̅̅̅̅ (4
𝑗  𝐵′)𝑔 ) (𝑥)𝑑𝑥 | 𝑑𝜎  

and using twice the Hölder inequality, we estimate by  

≤  𝐶 ‖ ∑  

𝑁

𝑘=−𝑁

𝜀𝑘(𝜓2(4
𝑘𝐵) 𝑓𝑘)‖

𝐿2(𝑆;𝐿𝑞 )

 ‖ ∑  

𝑁

𝑗=−𝑁 

𝜀𝑗𝜓1̅̅̅̅ (4
𝑗  𝐵′)𝑔‖

𝐿2(𝑆;𝐿𝑞
′
)

. 
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 Now, in the first factor, we use the ℛ-bounded 𝐻∞-calculus of 𝐵. Since the set of 

functions {𝜓2(4
𝑘  ·): 𝑘 ∈ ℤ } is bounded in 𝐻∞(Σ𝜙), we get  

‖ ∑  

𝑁

𝑘=−𝑁 

𝜀𝑘𝜓2(4
𝑘 𝐵)𝑓𝑘‖

𝐿2(𝑆;𝐿𝑞) 

≤  𝐶 ‖ ∑  

𝑁

𝑘=−𝑁 

𝜀𝑘  𝑓𝑘‖

𝐿2(𝑆;𝐿𝑞)

 ≤  𝐶 ‖( ∑  

𝑁

𝑘=−𝑁

| 𝑓𝑘|
2 )

1
2

‖

𝐿𝑞

, 

 where the last inequality follows from Khinchin’s inequality (cf. [220]). In order to 

estimate the second factor, we apply Lemma (5.2.25) and get  

‖ ∑  

𝑁

𝑗=−𝑁

 𝜀𝑗𝜓1̅̅̅̅ (4
𝑗  𝐵′)𝑔‖

𝐿2(𝑆;𝐿𝑞
′
)

 ≤ (∫ 
𝑆

 ‖ ∑  

𝑁

𝑗=−𝑁

 𝜀𝑗(𝜎)𝜓1̅̅̅̅ (2
2𝑗𝐵′)‖

𝐿(𝐿𝑞
′
)

2

 ‖𝑔‖
𝐿𝑞
′

2  𝑑𝜎 )

1
2

 

≤   (∫ 
𝑆

 (sup𝑗=−𝑁
𝑁   |𝜀𝑗(𝜎 )|)

2
 𝑑𝜎 )

1
2

 = 1. 

This implies  

‖ ∑  

𝑁

𝑘=−𝑁

 𝜓(4𝑘 𝐵)𝑓𝑘‖

𝐿𝑞

 = sup
𝑔∈𝐿𝑞

′
 ;‖𝑔‖

𝐿𝑞
′  =1

  | ∑  

𝑁

𝑘=−𝑁 

(𝜓(4𝑘 𝐵) 𝑓𝑘) (𝑥)𝑔(𝑥) 𝑑𝑥 |  

≤  𝐶 ‖( ∑  

𝑁

𝑘=−𝑁

 | 𝑓𝑘|
2)

1
2

‖

𝐿𝑞

 

for every 𝑁 ∈ ℕ. Letting 𝑁 →  ∞, the assertion follows.  

Let us now come to the final step of the proof of the second assertion of Theorem 

(5.2.9). Inequality (33) can be interpreted as follows: 𝐴0

1

2  is a continuous operator from 

𝐶𝐷
∞ (Ω)—equipped with the 𝑊1,𝑝-norm—into the Lorentz space 𝐿𝑝,∞, cf. [84]. The space 

𝐿𝑝,∞ is identical (as a set) with (𝐿∞, 𝐿1)1
𝑝
 ,∞

, and its quasinorm 𝑓 ↦ sup
𝑡≥0
  𝑡𝑝|{𝑥 ∶

 | 𝑓 (𝑥)|  >  𝑡}|  is equivalent to the (𝐿∞, 𝐿1)1
𝑝
 ,∞

-norm (see [84]), i.e. under a suitable 

renorming, 𝐿𝑝,∞ is an ordinary Banach space. Hence, 𝐴0

1

2  uniquely extends by density to a 

continuous operator from 𝑊𝐷
1,𝑝

 into 𝐿𝑝,∞. Thus, up to now, we have the two continuous 

mappings  

𝐴0

1
2 ∶  𝑊𝐷

1,2  →  𝐿2 

and  

𝐴0

1
2 ∶  𝑊𝐷

1,𝑝
 →  𝐿𝑝,∞ 

for all 1 <  𝑝 <  2. Let 𝑞 ∈ ]1, 2[ and choose 𝑝 ∈ ]1, 𝑞[. Using real interpolation, this 

gives the continuous mapping  

𝐴0

1
2 ∶ (𝑊𝐷

1,𝑝
 ,𝑊𝐷

1,2 )
 𝜃 ,𝑞
 → ( 𝐿𝑝,∞, 𝐿

2)
 𝜃 ,𝑞
. 

 Setting  =
2

𝑞

𝑞−𝑝

2−𝑝
 , the left-hand side is equal to 𝑊𝐷

1,𝑞
 by Theorem (5.2.22) and the 

righthand side equals 𝐿𝑞 according to [84]. This finishes the proof.  
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Corollary (5.2.27)[206]: Under the above assumptions, one has for 𝑝 ∈ ]1, 2] and𝛽 ∈
 ]0, 1/2 [  

dom𝐿𝑝  ( 𝐴0
𝛽
)   = [𝐿𝑝,𝑊𝐷

1,𝑝
]
2𝛽
.                               (39)  

Proof. The operator 𝐴0 admits bounded imaginary powers, according to Proposition 

(5.2.8) (ii). Hence, (39) follows from a classical result, see [84].  

Remark (5.2.28)[206]: In view of this result, it would be highly interesting to determine 

also the interpolation spaces in formula (39). We suggest the formula  

[𝐿𝑝,𝑊𝐷
1,𝑝
]
𝜃
 =

{
 

 𝐻𝜃 ,𝑝, if 𝜃 <
1

𝑝

𝐻𝐷
𝜃 ,𝑝
 , if 𝜃 >

1

𝑝
 ,

                            (40) 

𝐻𝜃,𝑝 being the space of Bessel potentials and 𝐻𝐷
𝜃 ,𝑝

 being the subspace, which is defined 

via the trace-zero condition on 𝐷. Unfortunately, we are not able to prove this at present, 

but in the more restricted context of so-called regular sets (40) is shown in [227]. Compare 

also [230] for a simple characterization of regular sets in case of space dimensions 2 and 3, 

and see also [241].  

We carry over results which are known for divergence operators, when acting on 𝐿𝑝 

spaces, to the spaces from the scale 𝑊𝐷
−1,𝑞

 , 𝑞 ∈  [2,∞[, compare also [90], [224], 

[59],[232]. In particular, this affects maximal parabolic regularity, which is an extremely 

powerful tool for the treatment of linear and nonlinear parabolic equations with nonsmooth 

data, see, e.g. [244] or [59]. The crucial point is that this allows to treat a discontinuous 

time-dependence of the right-hand side, which is relevant for applications. Moreover, the 

spaces 𝑊𝐷
−1,𝑞

 allow to include distributional right-hand sides; one may think, e.g. of 

electric surface densities, concentrated on interfaces between different materials—even 

when these interfaces move in time.  

Definition (5.2.29)[206]: Following [84], we call a densely defined operator 𝐵 on a 

Banach space 𝑋 positive, if it satisfies the resolvent estimate  

‖(𝐵 +  𝜆)−1‖ℒ(𝑋)  ≤
𝑐

1 +  𝜆
 

for a constant 𝑐 and all 𝜆 ∈  [0,∞[. (Note that a positive operator is sectorial in the sense 

of [19, Ch. 1.1]).  

We recall the notion of maximal parabolic regularity.  

Definition (5.2.30)[206]: Let 1 <  𝑠 <  ∞, let 𝑋 be a Banach space and let 𝐽 ∶= ]𝑇0, 𝑇 [ ⊆
ℝ be a bounded interval. Assume that B is a closed operator in 𝑋 with dense domain 𝒟 (in 

the sequel always equipped with the graph norm). We say that 𝐵 satisfies maximal 

parabolic 𝐿𝑠(𝐽 ;  𝑋) regularity, if for any 𝑓 ∈  𝐿𝑠(𝐽 ;  𝑋) there exists a unique function 𝑢 ∈
 𝑊1,𝑠(𝐽 ;  𝑋)  ∩  𝐿𝑠(𝐽 ;  𝐷) satisfying  

𝑢′  +  𝐵𝑢 =  𝑓, 𝑢(𝑇0)  =  0,  
where the time derivative is taken in the sense of 𝑋-valued distributions on 𝐽 (see [207]).  

Lemma (5.2.31)[206]: Let 𝑋, 𝑌 be two Banach spaces, where 𝑋 continuously and densely 

injects into 𝑌 . Assume that 𝐵 is a positive operator on 𝑋, such that 𝐵𝛽 ∶  𝑋 →  𝑌 is a 

topological isomorphism for some 𝛽 ∈ ]0, 1]. Then, the following holds true.  

(i) 𝐵 admits an extension �̃� on 𝑌 , which also is a positive operator there.  

(ii) If 𝐵 admits an 𝐻∞-calculus, then �̃� admits an 𝐻∞-calculus with the same 𝐻∞-

angle.  
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(iii) If 𝐵 satisfies maximal parabolic regularity on 𝑋, then �̃� satisfies maximal 

parabolic regularity on 𝑌 .  

Proof. The well-known Balakrishnan formula 𝐵−𝛽  =
sin   𝜋𝛽

𝜋
 ∫  
∞

0
 𝑡−𝛽(𝐵 +  𝑡)−1 𝑑𝑡 (see 

[243]) shows that the resolvent commutes with the fractional power 𝐵−𝛽. Hence, for 𝜓 ∈
 𝑋 and 𝜆 ≥  0, one can estimate  

‖(𝐵 +  𝜆)−1𝜓‖𝑌  =  ‖𝐵
𝛽(𝐵 +  𝜆)−1𝐵−𝛽𝜓‖

𝑌
 

≤  ‖𝐵𝛽‖
ℒ(𝑋;𝑌 )

‖(𝐵 +  𝜆)−1‖ℒ(𝑋)‖𝐵
−𝛽‖

ℒ(𝑌 ;𝑋)
‖𝜓‖𝑌  

≤  ‖𝐵𝛽‖
ℒ(𝑋;𝑌 )

‖𝐵−𝛽‖
ℒ(𝑌 ;𝑋)

 
𝑐

1 +  𝜆
 ‖𝜓‖𝑌.  

This shows that the resolvent of 𝐵 may be continuously extended to 𝑌 and that this 

extension admits the estimate ‖(𝐵 +  𝜆)̃ −1‖
ℒ(𝑌)

 ≤
𝑐̃

1+𝜆
 . Thus, one defines the extension �̃� 

of 𝐵 to 𝑌 as the inverse of 𝐵−1̃. Since 𝑋 ↪  𝑌, dom𝑋 (𝐵)  ↪  dom𝑌(�̃�). But dom𝑋 (𝐵) is 

dense in 𝑋 by the definition of a positive operator and 𝑋 was dense in 𝑌 by our 

assumption. Thus, dom𝑌(�̃�)  ⊃  dom𝑋 (𝐵) is also dense in  . For (ii), see [219]. Finally, 

assertion (iii) is proved in [232]. The main idea is again that the parabolic solution 

operator on 𝐿𝑟(𝐽 ;  𝑋) commutes with the fractional power 𝐵−𝛽.  

Theorem (5.2.32)[206]: Let Ω and 𝐷 satisfy the Assumption (5.2.1) and let 𝜇 satisfy 

Assumptions (5.2.4) and (5.2.5) and assume 𝑞 ∈  [2,∞[. Then, the extension of −𝛻 ·

𝜇𝛻 + 1 from 𝐿𝑞 to 𝑊𝐷
−1,𝑞

 (being identical with the restriction from 𝑊𝐷
−1,2

 ) has the 

following properties:  

(i) It induces a positive operator.  

(ii) It admits a bounded 𝐻∞-calculus with 𝐻∞-angle arctan 
‖𝜇‖𝐿∞

𝜇•
 ; in particular, it 

admits bounded imaginary powers.  

(iii) It satisfies maximal parabolic regularity; in particular, its negative generates an 

analytic semigroup.  

Proof.  The transposed coefficient function 𝜇𝑇 also satisfies Assumption (5.2.5). Hence, 

the operator  

(−𝛻 ·  𝜇𝑇  𝛻 +  1)
1
2 ∶  𝑊𝐷

1,𝑝
 →  𝐿𝑝                      (41) 

provides a topological isomorphism for all 𝑝 ∈ ]1, 2], according to Theorem (5.2.9). 

Clearly, the adjoint operator of (41), being identical with the operator (−𝛻 ·  𝜇𝛻 +  1)
1

2 ∶

 𝐿𝑞  →  𝑊𝐷
−1,𝑞

 , with 𝑞 =
𝑝

𝑝−1 
∈  [2,∞[, is also a topological isomorphism. Consequently, 

we need to know the asserted properties only on the spaces 𝐿𝑞 due to Lemma (5.2.31).  

In order to see this for (i), it suffices to note that on every space 𝐿𝑞 , 1 <  𝑞 <  ∞, 

the operator −𝛻 · 𝜇𝛻 generates a strongly continuous semigroup of contractions (see 

Proposition (5.2.8)), and hence, the operator admits the required resolvent estimate by the 

Hille–Yosida theorem.  

Assertion (ii) is discussed in Proposition (5.2.8), and concerning (iii), the 

contraction property of the semigroup on all 𝐿𝑞 spaces provides maximal parabolic 

regularity on these spaces due to a deep result of Lamberton (see [239]). 
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Section (5.3): 𝑳𝒑-Estimates for the Square Root of Elliptic Systems 

Elliptic divergence form operators are amongst the most carefully studied 

differential operators with variable coefficients. We contribute to the functional calculus of 

such operators with complex, bounded and measurable coefficients, formally given by 

𝐿𝑢 = − ∑
𝜕

𝜕𝑥𝑖
(𝑎𝑖𝑗

𝜕𝑢

𝜕𝑥𝑗
)

𝑑

𝑖,𝑗=1

−∑
𝜕

𝜕𝑥𝑖
(𝑎𝑖0𝑢)

𝑑

𝑖=1

+∑𝑎0𝑗
𝜕𝑢

𝜕𝑥𝑗

𝑑

𝑗=1

+ 𝑎00𝑢,      (41) 

on a bounded domain Ω ⊆ ℝ𝑑 , 𝑑 ≥ 2. We allow for mixed boundary conditions. Namely, 

u satisfies homogeneous Dirichlet boundary conditions on a closed part D of the boundary 

and natural boundary conditions on the complementary part 𝑁 = 𝜕Ω\𝐷. The geometric 

constellation can be ‘rough’ in that we require Lipschitz coordinate charts for 𝜕Ω only 

around the closure of N, whereas around D the domain can Ω merely be d-Ahlfors regular, 

and D itself has to be (𝑑 − 1)-Ahlfors regular. These notions, henceforth called 

assumptions 𝑁,Ω, and D. We include (𝑚 × 𝑚)-systems in our considerations, that is to 

say, u takes its values in ℂ𝑚 and each 𝑎𝑖𝑗 is valued in the space of matrices ℒ(ℂ𝑚). As in 

[268], we may have different Dirichlet boundary parts for each coordinate of u. These 

assumptions are amongst the most general ones that allow for a proper functional analytic 

framework for L [206], [272],[268],[58].  

As usual, we interpret L in the weak sense via the sesquilinear form  

𝑎(𝑢, 𝑣) = ∫ ∑ (𝑎𝑖𝑗
𝜕𝑢

𝜕𝑥𝑗
·
𝜕𝑣̅̅̅̅

𝜕𝑥𝑖
+ 𝑎𝑖0𝑢 ·

𝜕𝑣̅̅̅̅

𝜕𝑥𝑖
+ 𝑎0𝑗

𝜕𝑢

𝜕𝑥𝑗
· 𝑣 + 𝑎00𝑢 · �̅�) 𝑑𝑥

𝑑

𝑖,𝑗=1Ω

    (42) 

defined on 𝒟(𝑎) = 𝕎𝐷
1,2(Ω), where the subscripted D is reminiscent of the boundary 

conditions. Ellipticity is in the sense of a Gårding inequality, turning L into a maximal 

accretive operator on 𝐿2(Ω)𝑚. This way of understanding L is called ‘Kato’s form 

method’. Definitions are provided and see [271],[240]. Let us stress that our setup 

incorporates, for example, the Lamé system. We shall come back to that.  

The focus in lies on establishing 𝐿𝑝-estimates for the (unique) maximal accretive square 

root 𝐿
1

2 of L. We study for which 𝑝 ∈ (1,∞) it extends or restricts to a topological 

isomorphism  

𝐿
1
2:𝕎𝐷

1,𝑝(Ω)
≅
→ 𝐿𝑝(Ω)𝑚.                                              (43) 

Our results are the first of this kind for ‘rough’ divergence form systems on domains and 

provide optimal ranges of exponents.  

     Recent years have witnessed a vast number of applications of property (43). It is key to 

the approach of Rehberg and collaborators to quasilinear parabolic equations on 

distribution spaces via maximal regularity techniques originating from [58] and its 

extensions for example to optimal control problems [253] and quasilinear stochastic 

evolution equations [270], as well as recent progress on maximal regularity for the non-

autonomous Cauchy problem on Lebesgue spaces [265],[266] and distribution spaces 

[257], see also [247],[249],[256] for the case 𝑝 = 2. Aiming in a slightly different 

direction, [258] uses property (43) to prove Hölder continuity of solutions to quasilinear 

parabolic equations in rough domains.  

      The common idea in all of these applications is that (43) allows to switch between 

Lebesgue spaces and Sobolev spaces as well as their duals by means of an isomorphism 

that is build from L itself and hence commutes with the latter. This allows one to transfer 
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knowledge between any two of these spaces. Let us give two illustrating examples. If L 

corresponds to an equation (𝑚 = 1) with real coefficients, then L has a bounded 𝐻∞-

calculus and hence maximal regularity on 𝐿𝑝 for any 𝑝 ∈ (1,∞) due to Gaussian estimates 

[109],[221], and one asks for the same on 𝑊−1,𝑝′ to treat distributional right-hand sides in 

quasilinear equations. In the realm of non-autonomous Cauchy problems, an old result of 

Lions guarantees non-autonomous maximal regularity on 𝑊−1,2 but one wants to transfer 

this knowledge to 𝐿2 for example to make sense of boundary conditions [249],[256]. We 

stress that L itself cannot play the role of this transference operator because in general 

𝒟(𝐿) is not a Sobolev space of order two [275].  

     In the Hilbert space case 𝑝 = 2, having (43) means having 𝒟 (𝐿
1

2) = 𝒟(𝑎) with 

equivalent norms. If a is symmetric – which here amounts to 𝑎𝑖𝑗 = 𝑎𝑗𝑖
∗  for all 𝑖, 𝑗 – this is a 

property of closed densely defined sectorial forms that has nothing to do with differential 

operators [271]. The case of non-symmetric forms has a long history and became known 

as Kato square root problem, see for example [199],[94],[197]. Within our setup it has 

been settled in [262],[278] by a non-trivial refinement of the first-order method of 

Axelsson–Keith–McIntosh proposed in [250] and their pioneering application to mixed 

boundary value problems in [210]. It is somewhat unfortunate that [278] and [262] treat 

systems with lower-order terms only implicitly. He sees as the right moment to close this 

gap and shortly review the underlying methods to prove the following  

      Another possibility would have been to adapt the perturbation argument of [94]. Here, 

d and the number of equations m in (41) are referred to as dimensions. The constants λ and 

 Λ are the lower and upper bounds for the sesquilinear form in (42) and will be defined. 

They are referred to as ellipticity. Geometry refers to all constants implicit in those 

assumptions amongst D, N, and Ω that are used in the particular situation.  

     The literature with regard to 𝑝 ≠ 2 is much sparser. Pure Dirichlet and pure Neumann 

boundary conditions on a Lipschitz domain were first treated in [90] under size and 

regularity assumptions on the kernel of the semigroup generated by −L. This applies in 

particular to equations with real coefficients. Auscher–Badr–Haller-Dintelmann–Rehberg 

[206] have more recently established (43) in the range 𝑝 ∈ (1, 2) also for mixed boundary 

conditions on making the same geometric Assumptions D, N, and Ω. There are, however, 

no competing results available – even on more regular domains – if one is to consider 

mixed boundary conditions for operators with complex coefficients, let alone systems. The 

only exception is the case 𝑑 = 1 = 𝑚, where (43) is known to hold for all 𝑝 ∈ (1,∞) and 

all common two-point boundary conditions on an open interval [92].  

     A coherent treatment of 𝐿𝑝-estimates for the square root of elliptic systems with 

complex coefficients on ℝ𝑑 when 𝑑 ≥ 2 is found in [210]. On a large scale our approach 

is to incorporate the machinery of off-diagonal estimate from [210] into the fine geometric 

setup of [206] to compensate for the lack of Gaussian upper bounds for the kernel of the 

semigroup. (In fact, there might not be a kernel in any but the distributional sense.) This 

was left as an open problem on p. 66 in [210].  

We shall work in an L-adapted range of exponents  

𝒥(𝐿):= {𝑝 ∈ (1,∞): sup
𝑡>0
‖𝑒−𝑡𝐿‖𝐿𝑝→𝐿𝑝 < ∞,                         (44) 

that is to say, those 𝑝 ∈ (1,∞) for which there is a bounded (strongly continuous) 

semigroup associated with −L on 𝐿𝑝(Ω)𝑚. We postpone a detailed discussion of the size 

of 𝒥(𝐿) and mention for the moment only that 𝒥(𝐿) is an interval that contains at least 
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2∗: = 2𝑑/(𝑑 + 2) and 2∗: = 2𝑑/(𝑑 − 2). An obvious advantage of working with 𝒥(𝐿) is 

that any improvement on 𝐿𝑝 boundedness of the semigroup entails an improvement in our 

results for free.  

As our main result we obtain (43) in the best possible range below 2 (except for maybe the 

endpoints). For the sake of clarity let us introduce the array  

⟦𝑝⟧:= [𝑑,𝑚, 𝜆, , sup
𝑡>0
‖𝑒−𝑡𝐿‖𝐿𝑝→𝐿𝑝]                                  (45) 

to store all the constants that usually show up in our estimates.  

We note that Theorem (5.3.25).(i) in principle consists of two estimates. One is the 𝐿𝑝 

boundedness of the Riesz transform 𝛻𝐿−
1

2 expressed in the domination  

‖𝛻𝑢‖𝑝 ≲ ‖𝐿
1
2𝑢‖

𝑝
      (𝑢 ∈ 𝒟 (𝐿

1
2)). 

We present details of the (short) proof relying on Blunck–Kunstmann’s weak type 

criterion from [251],[252], see also [210], and 𝐿𝑝 → 𝐿2 off-diagonal estimates for the 

gradient of the semigroup, to be established. To avoid overloading with indications on 

how to modify and extract additional information from [210],[252]. Indeed, these 

references both treat the case Ω = ℝ𝑑 only and do not state an explicit dependence of 

implicit constants. But we do not claim much originality here. An interesting observation 

to keep in mind, however, is that for this part we shall not require assumption, that is, with 

the restricted Lebesgue measure need not be a space of homogeneous type.  

The other ingredient is the a priori inequality  

‖𝐿
1
2𝑢‖

𝑝
≲ ‖𝑢‖𝑝 + ‖𝛻𝑢‖𝑝          (𝑢 ∈ 𝕎𝐷

1,2(𝛺)). 

This will be handled by a careful modification of the main argument in [206]. It goes by a 

weak-type criterion and requires a new Calderón–Zygmund decomposition that we shall 

establish beforehand.  

      We remind that most aforementioned applications of (43) would invest this 

isomorphism along with maximal regularity on 𝐿𝑝. The latter is not known a priori but 

there is a way out: By Dore–Venni’s theorem [259] maximal regularity on 𝐿𝑝 follows 

from the bounded 𝐻∞-calculus on 𝐿𝑝 and this in turn is an easy consequence of methods 

used to get a grip on the Riesz transform, namely 𝐿𝑝 → 𝐿2 off-diagonal estimates. Again, 

this connection is not new in general but has not been exploited. It goes back to the 

seminal contribution [251] of Blunck and Kunstmann. 

Above, 𝜔 ∈ [0, 𝜋/2) is the angle of accretivity for L and 𝑆𝜓
+ is the open sector in 

the complex plane of opening angle 2𝜓 symmetric around the positive real axis.  

As far as 𝐿
1

2 is concerned, we have only dealt with exponents 𝑝 < 2 but a duality argument 

allows us to extrapolate (43) to some exponents above 2. We present a proof of  

      We did not try to find a characterization of the admissible exponents 𝑝 > 2 in (43) in 

terms of the semigroup (or rather its gradient √𝑡𝛻𝑒−𝑡𝐿) as in [210]. This is left as an 

independent open problem. However, already for the Riesz transform no exponent 𝑝 > 2 

works simultaneously for all real symmetric L subject to Dirichlet boundary conditions on 

a Lipschitz domain. This follows from combining the example on p. 120 in [94] with 

[277].  

     We have already noticed that we take special care of implicit constants. This is not 

because we are trying to be particularly pedantic or even annoying. Rather than that, we 
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need to prepare our results for the aforementioned applications to non-autonomous 

parabolic problems, where a family of operators 𝐿𝑡 with uniform ellipticity parameters in t 

acts in the spatial variables, and one needs the same uniformity on estimates for 𝐿𝑡

1

2 . This 

was asked for in [253],[265],[270]. It is only implicit in [206] and sometimes all but 

impossible to track. We shall comment on that issue. There is also an ‘inner’ application 

for having uniform constants with respect to ellipticity, as it allows us to obtain 

holomorphic dependence on the coefficients in all of our estimates by a simple application 

of Vitali’s theorem from complex analysis. To this end, let us denote by A(𝛺) the set of 

coefficient functions  

𝐴 = (𝑎𝑖,𝑗)0≤𝑖,𝑗≤𝑑: Ω →  𝐿
(ℂ𝑚)(𝑑+1)×(𝑑+1) 

that satisfy our ellipticity assumptions, which can canonically be identified with an open 

subset of 𝐿∞(𝛺)𝑚
2(𝑑+1)2. We shall say that a function h from some open subset of A(𝛺) 

into a complex Banach space X is holomorphic if for all holomorphic functions 𝜑 from an 

open subset of C into A(𝛺) the composition ℎ ∘ 𝜑 is holomorphic. Let us also write 𝐿𝐴 

instead of L and so on to stress the dependence on A.  

Theorem (5.3.1)[246]: Suppose 𝛺 ⊆ ℝ𝑑 is a bounded domain and let 𝑂 ⊆ A(𝛺) be open. 

(i) If sup
𝐴∈𝑂

sup
𝑡>0
‖𝑒−𝑡𝐿𝐴‖𝐿𝑝0→𝐿𝑝0 < ∞ and 𝜓 > sup

𝐴∈𝑂
𝜔(𝐿𝐴), then in the setting and with the 

notation of Theorem (5.3.20) for every 𝑓 ∈ 𝐻∞(𝑆𝜓
+) the function  

𝑂 → ℒ(𝐿𝑝(𝛺)𝑚), 𝐴 ⟼ 𝑓(𝐿𝐴) 
is holomorphic on O. 

(ii) If sup
𝐴∈𝑂

sup
𝑡>0
‖𝑒−𝑡𝐿𝐴‖𝐿𝑝0→𝐿𝑝0 < ∞, then in the setting and with the notation of 

Theorem (5.3.25) the function  

𝑂 → ℒ(𝕎𝐷
1,𝑝(𝛺), 𝐿𝑝(𝛺)𝑚), 𝐴 ⟼ 𝐿𝐴

1
2  

is holomorphic on O. The same holds for 𝑝 ∈ ⋂  𝐴∈𝑂 [2, 2 + 𝜀(𝐿𝐴)) in the setting of 

Theorem (5.3.29).  

     For divergence form operators on rough bounded domains this seems to be a new 

result. Let us remark that such kind of perturbation result usually necessitates the treatment 

of complex coefficients even if one aims at applying it in the realm of real equations only.  

     As for applications, all aforementioned results become more powerful the more is 

known about the set 𝒥(𝐿). Riesz–Thorin interpolation reveals that 𝒥(𝐿) is an interval and 

by maximal accretivity of L on 𝐿2(𝛺)𝑚 it contains 2. By means of Nash-type inequalities 

we shall prove the following  

We remind that 2∗: = 2𝑑/(𝑑 + 2) and 2∗: = 2𝑑/(𝑑 − 2) are the lower and upper Sobolev 

conjugates of 2, respectively. The above result for 𝑑 ≥ 3 is sharp, even for 𝑚 = 1, in the 

sense that no interval larger than [2∗, 2
∗] is contained in 𝒥(𝐿) for every elliptic equation L, 

even with pure Dirichlet boundary conditions on a smooth and bounded domain. This 

follows from [269]: Indeed, for p in the interior of 𝒥(𝐿) the semigroup generated by −L 

decays exponentially in 𝐿𝑝-norm due to Lemma (5.3.3) below and interpolation, hence 𝐿−1 

is bounded in 𝐿𝑝-topology, but [269] constructs for every 𝑝 > 2∗ an example such 𝐿−1 

does not even map 𝐶0
∞(𝛺) into 𝐿𝑝(𝛺). By duality we can argue likewise for 𝑝 < 2∗. 

Let us also mention that many applications to physically motivated models require the 

adjoint isomorphism to (43), that is  
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(𝐿∗)
1
2: 𝐿𝑝

′
(𝛺)𝑚

≅
→𝕎𝐷

−1,𝑝′(𝛺), 
for some p with Hölder conjugate 𝑝′ > 𝑑. This is granted by Theorems (5.3.25) and 

(5.3.16) in dimensions 𝑑 = 2, 3, 4 corresponding to (2∗)
′ = 2∗ = ∞, 6, 4. If 𝑚 = 1 and L 

has real coefficients, then 𝒥(𝐿) = (1,∞) by Gaussian estimates [109] and we recover the 

result in [206]. Improvements on 𝒥(𝐿) for certain systems with real coefficients were 

obtained in [276] and [281]. The Lamé system  

𝐿𝐷,0𝑢 = −𝜇∆𝑢 − 𝜇
′𝛻𝑑𝑖𝑣 𝑢 

fits into our framework provided 𝜇 > 0 and 𝜇 + 𝜇′ > 0, see [273]. In M. Mitrea and 

Monniaux consider 𝐿𝐷,0 with pure Dirichlet boundary conditions on a bounded domain 

satisfying an interior ball conditions and obtain maximal regularity on 𝐿𝑞(𝛺) in the range 

𝑞 ∈ (2∗, 2
∗). We remind that Assumption N is void if one considers pure Dirichlet 

conditions. Hence, by putting together Theorems (5.3.20) and (5.3.16) we are able to drop 

this geometric assumption and obtain even a bounded 𝐻∞-calculus for 𝐿𝐷,0 on any 

bounded domain, which in turn implies maximal regularity [259]. Some boundary 

regularity in the sense of Assumption D also allows us to increase the range for q. Let us 

stress, however, that the maximal regularity part has previously been obtained in a broader 

context by Tolksdorf [279], who uses a technique different to ours that does not pass 

through the bounded 𝐻∞-calculus and yields the range (2∗ − 𝜀, 2
∗ + 𝜀) without further 

geometric assumptions.  

We provide precise definitions of all assumptions and notation that have been dealt 

with rather intuitively up to now. The remaining are devoted to the proofs of our main 

results, Theorems (5.3.6)–(5.3.16). The order of proofs will slightly differ from the 

presentation above.  

Any Banach space X under consideration is over the complex numbers and 𝑋∗ is the 

(anti)-dual space of conjugate linear bounded functionals 𝑋 → ℂ. We write 〈· | ·〉 for 

duality pairings and (· | ·) for inner products on Hilbert spaces.  

    If B is an open ball of radius r, then we denoted by αB the concentric ball of radius αr 

and let 𝐶1(𝐵):= 4𝐵 as well as 𝐶𝒥(𝐵):= 2
𝑗+1𝐵\2𝑗𝐵 for 𝑗 = 2, 3, . . .. We use similar 

notation for cubes. We denote the semi-distance of sets E,𝐹 ⊆ ℝ𝑑 induced by the 

Euclidean distance on ℝ𝑑 by 𝑑(𝐸, 𝐹) and abbreviate 𝑑𝐹(𝑥):= 𝑑({𝑥}, 𝐹). Lebesgue 

measure on ℝ𝑑 is denoted |·|. 
     Henceforth we assume that 𝛺 ⊆ ℝ𝑑  , 𝑑 ≥ 2, is a bounded, open, and connected set, that 

is to say, a bounded domain. We remind that the elliptic operator L corresponds to a 

system of m equations and hence acts on functions 𝑢:Ω → ℂ𝑚. We can allow for different 

Dirichlet parts for each coordinate function 𝑢(𝑘), which we denote 𝐷𝑘, and which are 

assumed to be closed subsets of 𝜕Ω. Hence, L is subject to mixed boundary conditions  

𝑢(𝑘) = 0    𝑜𝑛 𝐷𝑘     𝑓𝑜𝑟 𝑘 = 1, . . . , 𝑚,                          (46) 
where the form method forces natural boundary conditions on the complementary parts 

𝑁𝑘: = 𝜕\𝐷𝑘 through a formal integration by parts. We put 𝐷:= ⋂ 𝐷𝑘
𝑚
𝑘=1  and 𝑁:=

𝜕Ω\𝐷 = ⋃ 𝑁𝑘
𝑚
𝑘=1 .  

Our results hold under the following three geometric assumptions. Sometimes not all of 

them shall be required. 

Assumption D. For every 𝑘 = 1, . . . , 𝑚 the set 𝐷𝑘 is closed and either empty or such that 

H𝑑−1(𝐵 ∩ 𝐷) ≃ 𝑟
𝑑−1 holds for all open balls B of radius 𝑟 < 1 centered in D. Here, 

H𝑑−1 is the (𝑑 − 1)-dimensional Hausdorff measure in ℝ𝑑.  
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Assumption N. Around every 𝑥 ∈ �̅� there is an open neighborhood 𝑈𝑥 and a bi-Lipschitz 

mapping Φ𝑥:𝑈𝑥 → (−1, 1)
𝑑 such that  

Φ𝑥(𝑈𝑥 ∩ Ω) = (−1, 0) × (−1, 1)
𝑑−1, Φ𝑥(𝑈𝑥 ∩ 𝜕) = {0} × (−1, 1)

𝑑−1. 
Assumption 𝛀. Comparability |𝐵 ∩ Ω| ≃ 𝑟𝑑 holds for all open balls B of radius 𝑟 < 1 

centered in Ω. 

Assumption D means that the 𝐷𝑘 are either empty or (𝑑 − 1)-Ahlfors regular. Likewise, 

Assumption means that Ω is d-Ahlfors regular. Assumption is sometimes called weak 

Lipschitz condition. It is strictly weaker than requiring that Ω has a Lipschitz boundary 

around �̅�, see [58] for a relevant example.  

We introduce Sobolev spaces on a domain Ξ ⊆ ℝ𝑑 with a vanishing trace condition 

on some closed subset 𝐹 ⊆ �̅�. This is understood in a very weak approximate sense but 

can be rephrased in a proper pointwise sense under minimal regularity assumptions 

[272],[263]. We shall not need such precision. Namely, for 1 < 𝑞 < ∞ we let 𝑊0𝐹
1,𝑞(𝛯) 

be the closure of  

𝐶𝐹
∞(𝛯) ≔ {𝜑|𝛯: 𝜑 ∈ 𝐶0

∞(ℝ𝑑), 𝑠𝑢𝑝𝑝(𝜑) ∩ 𝐹 = ∅} 

for the norm 𝜑 ⟼ (∫ |𝜑|𝑞 + |𝛻𝜑|0𝑞𝑑𝑥
𝛯

)
1

𝑞. The endpoint space 𝑊𝐹
1,∞(𝛯) consists of all 

bounded Lipschitz continuous functions 𝑢: �̅� → ℂ that vanish everywhere on F. It carries 

the norm 𝑢 ⟼ ‖𝑢‖∞ + 𝐿𝑖𝑝(𝑢), where 𝐿𝑖𝑝(𝑢) is the smallest Lipschitz constant for u on 

�̅�. 

Usually we encounter the spaces 𝑊𝐷𝑘
1,𝑝(𝛺). Under Assumption N there are bounded linear 

Sobolev extension operators 𝐸𝑘 that extend 𝑊𝐷𝑘
1,𝑝(𝛺) → 𝑊𝐷𝑘

1,𝑝(ℝ𝑑) and 𝐿𝑝(𝛺) → 𝐿𝑝(ℝ𝑑) 

for every 𝑝 ∈ (1,∞), see [58]. In particular, the usual embeddings of type 𝑊𝐷𝑘
1,𝑝
(𝛺) ⊆

𝐿𝑞(𝛺) hold. Usually, 𝑞 = 𝑝∗ is the upper Sobolev conjugate of defined by 1/𝑝∗ = 1/𝑝 −
1/𝑑. We also define a lower conjugate by 1/𝑝∗ = 1/𝑝 + 1/𝑑. In the particular situation 

they will be contained in (1,∞). 

Sobolev spaces adapted to the boundary conditions (46) are 𝕎𝐷
1,𝑝(𝛺):= ∏ 𝑊𝐷𝑘

1,𝑝(𝛺)𝑚
𝑘=1 . 

For 𝑝 ∈ (1,∞) we define corresponding spaces of negative order 𝕎𝐷
−1,𝑝(𝛺):=

(𝕎𝐷
1,𝑞(𝛺))

∗
, where 1/𝑝 + 1/𝑞 = 1. 

     General background and proofs of all relevant statements on the holomorphic 

functional calculus for sectorial operators can be found in [226]. Bisectorial operators can 

be treated almost identically but details have also been written down in [261]. Throughout 

we shall assume that X is a Hilbert space. 

A linear operator T in X is sectorial of angle 𝜙 ∈ [0, 𝜋) if its spectrum 𝜎(𝑇) is contained 

in the closure of the sector 𝑆𝜙
+: = {𝑧 ∈ ℂ: |arg 𝑧| < 𝜙} and if  

ℂ\𝑆𝜓
+̅̅̅̅ → ℒ(𝑋), 𝑧 ↦ 𝑧(𝑧 − 𝑇)−1 

is uniformly bounded for every 𝜓 ∈ (𝜙, 𝜋). We agree on 𝑆0
+: = (0,∞).  

For 𝜓 ∈ (𝜙, 𝜋) let 𝐻∞(𝑆𝜓
+) be the algebra of bounded holomorphic functions on 𝑆𝜓

+ and 

let 𝐻0
∞(𝑆𝜓

+) be the sub-algebra of functions g satisfying |𝑔(𝑧)| ≤ 𝐶min{|𝑧|𝑠, |𝑧|−𝑠} for 

some 𝐶, 𝑠 > 0 and all 𝑧 ∈ 𝑆𝜓
+. If 𝑓 (𝑧) = 𝑎 + 𝑏(1 + 𝑧)−1 + 𝑔(𝑧) for some 𝑎, 𝑏 ∈ ℂ and 

𝑔 ∈ 𝐻0
∞(𝑆𝜓

+), then 𝑓(𝑇) is defined as a bounded operator on X via  
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𝑓(𝑇) = 𝑎 + 𝑏(1 + 𝑇)−1 +
1

2𝜋𝑖
∫ 𝑔(𝑧)(𝑧 − 𝑇)−1𝑑𝑧
𝜕𝑆𝜈
+

,                    (47) 

where 𝜈 ∈ (𝜙,𝜓), the choice of which does not matter in view of Cauchy’s theorem, and 

𝜕𝑆𝜈
+ is oriented such that it surrounds 𝜎(𝑇) counterclockwise in the extended complex 

plane.  

     The definition of 𝑓(𝑇) is extended to larger classes of holomorphic functions by 

regularization: One defines the closed operator 𝑓(𝑇):= 𝑒(𝑇)−1(𝑒𝑓)(𝑇), if 𝑒(𝑇) and 
(𝑒𝑓)(𝑇) are already defined by the procedure above and 𝑒(𝑇) is one-to-one. This 

definition does not depend on the choice of e. The expected relations 𝑓(𝑇) + 𝑔(𝑇) ⊆
(𝑓 + 𝑔)(𝑇) and 𝑓(𝑇)𝑔(𝑇) ⊆ (𝑓𝑔)(𝑇) hold and there is equality if 𝑓(𝑇) is bounded. An 

example are fractional powers 𝑇𝛼 , 𝛼 > 0, which are defined on using 𝑒(𝑧) = (1 + 𝑧)−𝛼−1.  

If T is one-to-one, then 𝑒(𝑧) = 𝑧(1 + 𝑧)−2 regularizes any 𝑓 ∈ 𝐻∞(𝑆𝜓
+). Its 𝐻∞(𝑆𝜓

+)-

calculus is called bounded if for some constant 𝐶𝜓 > 0 it holds  

‖𝑓(𝑇)‖𝑋→𝑋 ≤ 𝐶𝜓‖𝑓‖𝐿∞(𝑆𝜓
+)       (𝑓 ∈ 𝐻

∞(𝑆𝜓
+)). 

It suffices to check this bound on 𝐻0
∞(𝑆𝜓

+). Indeed, for general 𝑓 ∈ 𝐻∞(𝑆𝜓
+) the 

convergence lemma states that 𝑓𝑛 = 𝑒
1

𝑛𝑓 ∈ 𝐻0
∞(𝑆𝜓

+) satisfy 𝑓𝑛 → 𝑓 pointwise, ‖𝑓𝑛‖∞ →

‖𝑓‖∞, and 𝑓𝑛(𝑇) → 𝑓(𝑇) strongly on X.  

We will frequently use that if T has a bounded 𝐻∞-calculus of angle ψ, then so has the 

adjoint 𝑇∗. This is a consequence of the identity 𝑓(𝑇)∗ = 𝑓∗(𝑇∗) for every 𝑓 ∈ 𝐻∞(𝑆𝜓
+), 

where 𝑓∗(𝑧):= 𝑓(𝑧̅)̅̅ ̅̅ ̅̅ .  

Bisectorial operators are defined similarly upon replacing sectors by double sectors 𝑆𝜙 =

𝑆𝜙
+ ∪ −𝑆𝜙

+ , where 𝜙 ∈ [0, 𝜋/2). In their calculus (𝑖 + 𝑇)−1 replaces (1 + 𝑇)−1. 

2.4. The divergence form operator  

We turn to the precise definition of the divergence form operator formally given by (41). 

The coefficients 𝑎𝑖𝑗: Ω → ℒ(ℂ
𝑚) are measurable and essentially bounded and we put 

Λ:= sup
0≤𝑖,𝑗≤𝑑

𝑒𝑠𝑠𝑢𝑝𝑥∈Ω‖𝑎𝑖𝑗(𝑥)‖ℂ𝑚→ℂ𝑚 . 

We remind the reader of the sesquilinear form  

𝑎(𝑢, 𝑣) = ∫ ∑ (𝑎𝑖𝑗
𝜕𝑢

𝜕𝑥𝑗
·
𝜕𝑣̅̅̅̅

𝜕𝑥𝑖
+ 𝑎𝑖0𝑢 ·

𝜕𝑣̅̅̅̅

𝜕𝑥𝑖
+ 𝑎0𝑗

𝜕𝑢̅̅̅̅

𝜕𝑥𝑗
· �̅� + 𝑎00𝑢 · �̅�)

𝑑

𝑖,𝑗=1

𝑑𝑥
Ω

 

acting on ℂ𝑚-valued functions. For all 𝑢 ∈ 𝕎𝐷
1,2(𝛺) we have |𝑎(𝑢, 𝑢)| ≤ Λ(𝑑 +

1)(‖𝑢‖2
2 + ‖𝛻𝑢‖2

2), where 𝛻𝑢:= (
𝜕𝑢

𝜕𝑥𝑖
)
𝑖
 is considered as a vector in (ℂ𝑚)𝑑 ≅ ℂ𝑑𝑚. Our 

ellipticity assumption is the following lower bound.  

Assumption L. There exists 𝜆 > 0 such that 𝑅𝑒 𝑎(𝑢, 𝑢) ≥ 𝜆(‖𝑢‖2
2 + ‖𝛻𝑢‖2

2) holds for all 

𝑢 ∈ 𝕎𝐷
1,2(𝛺). 

This implies that the numerical range {𝑎(𝑢, 𝑢): 𝑢 ∈ 𝒟(𝑎), ‖𝑢‖2 = 1} is contained in the 

closed sector 𝑆𝜙
+̅̅̅̅  of opening angle 𝜙 = arctan ((𝑑 + 1)Λ/𝜆). We define 𝜔 ∈ [0, 𝜋/2) to 

be the smallest such angle.  

The Lax–Milgram lemma associates with a the bounded and invertible operator  

ℒ:𝕎𝐷
1,2(𝛺) → 𝕎𝐷

1,2(𝛺)∗, 〈ℒ𝑢|𝑣〉 = 𝑎(𝑢, 𝑣). 
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We define L to be the maximal restriction of ℒ to the Hilbert space 𝐿2(𝛺)𝑚. Our 

assumptions entail that a is a closed densely defined sectorial form of angle ω in 𝐿2(𝛺)𝑚 

and hence L is maximal ω-accretive, see [271]. This is a stronger notion than sectoriality 

of angle ω. It is known that such operators admit a bounded 𝐻∞-calculus on any sector 

containing 𝑆𝜔
+̅̅̅̅ . This is due to Crouzeix–Delyon [254], see also [226].  

Proposition (5.3.2)[246]: Let 𝜓 ∈ (𝜔, 𝜋) and 𝑓 ∈ 𝐻∞(𝑆𝜓
+). Then ‖𝑓(𝐿)‖𝐿2→𝐿2 ≤ 4‖𝑓‖∞.  

Since L is maximal accretive on 𝐿2(𝛺)𝑚, the semigroup operators 𝑒−𝑧𝐿, 𝑧 ∈ 𝑆𝜋
2
−𝜔
+ , are 

contractions on 𝐿2(𝛺)𝑚, see [271]. It will be useful to have the following exponential 

stability which follows simply because 𝐿 − 𝜆/2 is still maximal accretive.  

Lemma (5.3.3)[246]: For every 𝑡 > 0 the bound ‖𝑒−𝑡𝐿‖𝐿2→𝐿2 ≤ 𝑒
−
𝜆𝑡

2 . In particular, L is 

invertible.  

Being maximal accretive, L has a unique maximal accretive square root denoted 𝐿
1

2 

and 𝒟(𝐿) is a core for 𝒟 (𝐿
1

2), see [271]. This is the same operator as given by the 

functional calculus [226] and since L is invertible, so is 𝐿
1

2 with inverse 𝐿−
1

2, see [226]. We 

also have the formula (𝐿
1

2)
∗

= (𝐿∗)
1

2 for the adjoints [226]. 

Since L has a bounded 𝐻∞-calculus of some angle 𝜔 ∈ [0,
𝜋

2
), we have a resolution of the 

identity in the sense of an improper Riemann integral  

𝑢 =
2

√𝜋
∫ 𝐿

1
2𝑒−𝑡

2𝐿𝑢 𝑑𝑡
∞

0

        (𝑢 ∈ 𝐿2(𝛺)𝑚),                      (48) 

see [226]. We can apply 𝐿
1

2 or 𝐿−
1

2 on both sides of (48) to obtain well-known integral 

formulæ for either of them.  

We survey the first-order formalism and its practicability to the operator L under 

our geometric assumptions developed in [262],[278]. This leads to Theorem (5.3.6) and 

the statements of Theorem (5.3.1) when 𝑝 = 2. Throughout we assume D, N, and Ω.  

We write the coefficients of L in matrix form 

[

𝑎00 [𝑎10  . . . 𝑎𝑑0]

[

𝑎10
⋮
𝑎𝑑0
] [

𝑎11  . . . 𝑎1𝑑
⋮  ⋮
𝑎𝑑1 . . . 𝑎𝑑𝑑

]
] = [

𝐴⊥⊥ 𝐴⊥∥
𝐴∥⊥ 𝐴∥∥

]  = 𝐴 

and define a closed operator 𝛻𝐷:𝕎𝐷
1,2(𝛺) ⊆ 𝐿2(𝛺)𝑚 → 𝐿2(𝛺)𝑑𝑚 through 𝛻𝐷𝑢 = 𝛻𝑢. For 

the gradient of ℂ𝑚-valued functions. An equivalent way of putting the definition of L 

through the form method is 𝐿 = [1 𝛻𝐷
∗]𝐴[1 𝛻𝐷]. 

On H = 𝐿2(𝛺)𝑚 × 𝐿2(𝛺)𝑚 × 𝐿2(𝛺)𝑑𝑚 we define operator matrices on their natural 

domains,  

Γ:= [
0   
1 0  
𝛻𝐷  0

] , 𝐵1 = [
1   
 0  
  0

] , 𝐵2 = [

0   
 𝐴⊥⊥ 𝐴⊥∥
 𝐴∥ ⊥ 𝐴∥∥

], 

and consider the perturbed Dirac operator ∏  𝐵 : = Γ + 𝐵1Γ
∗𝐵2. Indeed ∏  𝐵  is a Dirac 

operator in that its square contains L, namely  
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∏𝐵 = [
 [1 (𝛻𝐷)

∗𝐴]
1  
𝛻𝐷  

] , ∏𝐵
2 = [

𝐿  

 [
1 𝛻𝐷

∗

𝛻𝐷 𝛻𝐷𝛻𝐷
∗] 𝐴

]. 

Within this framework our ellipticity Assumption L can be rephrased as  

𝑅𝑒(𝐵2𝑢|𝑢) ≥ 𝜆‖𝑢‖H
2         (𝑢 ∈ ℛ(Γ)),                         (49) 

that is to say, 𝐵1 and 𝐵2 are accretive perturbations of Γ∗ and Γ, respectively. It follows 

that ∏  𝐵  is bisectorial of some angle 𝜔𝐵 ∈ (0, 𝜋/2) with resolvent estimates depending 

only on 𝜆, Λ, see [250]. The Kato square root problem has now become a question on the 

functional calculus for ∏  𝐵 – comparing 𝒟(𝐿
1

2) and 𝕎𝐷
1,2(𝛺) amounts to comparing (the 

first components of) 𝒟 ((∏  2𝐵 )
1

2) and 𝒟(∏  𝐵 ). 

On the abstract level, we have the following result from [261] or [262]. Explicit constants 

have not been stated there but pop up in the given proofs.  

Lemma (5.3.4)[246]: Let T be a bisectorial operator in a Hilbert space X. Suppose the 

restriction to the closure of its range ℛ(𝑇) has a bounded 𝐻∞(𝑆𝜓)-calculus for some 𝜓 ∈

(0, 𝜋/2). Then 𝒟 ((𝑇2)
1

2) = 𝒟(𝑇) and  

1

𝐶𝜓
‖𝑇 𝑢‖𝑋 ≤ ‖(𝑇

2)
1
2𝑢‖

𝑋
≤ 𝐶𝜓‖𝑇 𝑢‖𝑋          (𝑢 ∈ 𝒟(𝑇)), 

where 𝐶𝜓 is the bound for the functional calculus.  

      On the concrete level, the goal of [262] was to prove quadratic estimates for the 

particular choice of ∏  𝐵  under a set of hypotheses called (H1)–(H7). We do not need to 

recall them here see [262]. For the operators above, they have been verified in detail in 

[262] with two exceptions: The accretivity assumption (H2), which is precisely (49), and 

the regularity assumption (H7), whose verification in [262] was subject to an additional 

assumption called Assumption (E) that became a true theorem only later on in [31, Thm. 

(5.3.12)].  

This being said, [262] reads as follows.  

Proposition (5.3.5)[246]: For some constant 𝐶 ∈ (0,∞) depending on geometry, 

dimensions, and ellipticity, there are quadratic estimates  
1

𝐶
‖𝑢‖2

2 ≤ ∫ ‖𝑡𝛱𝐵(1 + 𝑡
2𝛱𝐵

2)−1𝑢‖2
2  
𝑑𝑡

𝑡

∞

0

≤ 𝐶‖𝑢‖2
2        (𝑢 ∈ ℛ(𝛱𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅). 

By McIntosh’s theorem [107] quadratic estimates as above imply boundedness of the 

𝐻∞(𝑆𝜓)-calculus of any angle 𝜓 ∈ (𝜔𝐵, 𝜋/2) for the restriction of 𝛱𝐵 to ℛ(𝛱𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅, which is 

a one-to-one bisectorial operator. See also [261]. The bound for the functional calculus 

depends on the angle and the resolvent bounds for 𝛱𝐵 as is easily seen from the proofs in 

[107] or [261]. Hence, we obtain the  

Theorem (5.3.6)[246]: Suppose Ω ⊆ ℝ𝑑 is a bounded domain that satisfies Assumptions 

D, N, and Ω. Then 𝒟 (𝐿
1

2) = 𝒟(𝑎) = 𝕎𝐷
1,2(Ω) and 

‖𝐿
1
2𝑢‖

2

2

≃ 𝑎(𝑢, 𝑢) ≃ ‖𝑢‖2
2 + ‖𝛻𝑢‖2

2     (𝑢 ∈ 𝕎𝐷
1,2(Ω)) 

with implicit constants depending on ellipticity, dimensions, and geometry.  
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Proof. We have just seen that Lemma (5.3.4) applies to 𝛱𝐵 and yields 𝒟((𝛱𝐵
2)
1

2) =

𝒟(𝛱𝐵) with equivalent graph norms. This implies 𝒟 (𝐿
1

2) = 𝕎𝐷
1,2(𝛺) with equivalent 

norms upon restricting to the first coordinate in the 3 × 3 operator matrices. Implied 

constants in this argument depend on geometry and ellipticity. 
We discuss holomorphic dependence in the spirit of Theorem (5.3.1) in the case 𝑝 =

2. We assume some familiarity with vector-valued holomorphic functions and see [248]. 

     Henceforth, let O ⊆ ℂ be an open set and A(z) be coefficient matrices as above that 

depend holomorphically on z ∈ O. We assume that all of them satisfy the ellipticity 

assumptions from the same parameters λ, Λ and we write 𝐿𝑧 for the corresponding 

operators defined through the sesquilinear forms 𝑎𝑧. By a slight abuse of notation, ω 

denotes the supremum of all accretivity angles of the operators 𝐿𝑧 so that 𝜎(𝐿𝑧) ⊆ 𝑆𝜔
+̅̅̅̅  for 

every z.  

      For all 𝑢, 𝑣 ∈ 𝕎𝐷
1,2(𝛺) also the map 𝑧 ⟼ 𝑎𝑧(𝑢, 𝑣) is holomorphic on O. This follows 

for example from Morrera’s theorem after changing the order of integration. Hence, we 

have a holomorphic family of sectorial forms in the sense of [271]. It follows that the 

associated operators 𝐿𝑧 are resolvent holomorphic, that is to say,  

𝑂 → ℒ(𝐿2(𝛺)𝑚), 𝑧 ⟼ (𝜇 − 𝐿𝑧)
−1 

is holomorphic for every 𝜇 ∈ ℂ\𝑆𝜔
+̅̅̅̅  . For a proof see [271] or the elegant argument 

presented in [280]. By superposition, this carries over to objects in the functional calculus 

for the operators 𝐿𝑧. Two important examples are as follows.  

Corollary (5.3.7)[246]: In the situation above, let 𝑓 ∈ 𝐻∞(𝑆𝜙
+) for some 𝜙 ∈ (𝜔, 𝜋). 

Then the map 𝑂 → ℒ(𝐿2(𝛺)𝑚), 𝑧 ⟼ 𝑓(𝐿𝑧) is holomorphic.  

Proof. If 𝑓 ∈ 𝐻0
∞(𝑆𝜙

+), then the claim follows from Morrera’s theorem after changing the 

order of integration in the integral representation of 𝑓(𝐿𝑧). In the general case we conclude 

by Vitali’s theorem: We can take a bounded sequence {𝑓𝑛}𝑛 in 𝐻0
∞(𝑆𝜙

+) that converges 

pointwise to f such that for every 𝑧 ∈ 𝑂 we have strong convergence 𝑓𝑛(𝐿𝑧) → 𝑓(𝐿𝑧) on 

𝐿2(𝛺)𝑚. The missing hypothesis for Vitali’s theorem, that is the uniform bound in n and z 

for the holomorphic functions 𝑧 ⟼ 𝑓𝑛(𝐿𝑧), is due to Proposition (5.3.2). 

Corollary (5.3.8)[246]: In the situation above the map 𝑂 → ℒ(𝕎𝐷
1,2(𝛺), 𝐿2(𝛺)𝑚), 𝑧 ⟼

𝐿𝑧

1

2  is holomorphic.  

Proof. The map under consideration is uniformly bounded on O thanks to Theorem 

(5.3.6). Hence, it suffices to check holomorphy of 𝑧 ⟼ 𝐿𝑧

1

2𝑢 for every 𝑢 ∈ 𝕎𝐷
1,2(𝛺), see 

[2, Prop. A.3] for this reduction. Applying 𝐿𝑧

1

2  on both side of (48) yields  

𝐿𝑧

1
2𝑢 = lim

𝑛→∞

2

√𝜋
∫ 𝐿𝑧𝑒

−𝑡2𝐿𝑧𝑢 𝑑𝑡
2𝑛

2−𝑛
=: 𝐹𝑛(𝐿𝑧)𝐿𝑧

1
2𝑢, 

with convergence in 𝐿2(𝛺)𝑚. Here, 𝐹𝑛(𝜇) =
2

√𝜋
∫ (𝑡2𝜇)

1

2𝑒−𝑡
2𝜇 𝑑𝑡

𝑡

2𝑛

2−𝑛
 are bounded 

holomorphic functions on any sector contained in the right complex halfplane and a 

substitution reveals a uniform bound in n and μ. By the first inequality above, 𝐿𝑧

1

2𝑢 is the 

pointwise limit of a sequence of holomorphic functions on O. And taking into account 
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Proposition (5.3.2) and Theorem (5.3.6), the second one means that this sequence is 

uniformly bounded in n and z. As before, Vitali’s theorem yields the claim. 

We establish 𝐿𝑝 → 𝐿2 off-diagonal estimates for the semigroup generated by −L and 

related families. They are the proper substitute for Gaussian kernel bounds in our context 

and play a crucial role in all subsequent. Here, they shall already lead us to the proof 

Theorem (5.3.16).  

Definition (5.3.9)[246]: Let 𝐽 ⊆ ℂ and T = {𝑇(𝑧)}𝑧∈𝐽 a family of bounded linear 

operators 𝐿2(Ξ)𝑚1 → 𝐿2(𝛯)𝑚2, where 𝑚1, 𝑚2 ∈ ℕ and 𝛯 ⊆ ℝ𝑑 is (Lebesgue) measurable. 

Given 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞, we say that T satisfies 𝐿𝑝 → 𝐿𝑞 off-diagonal estimates if for some 

constants 𝐶, 𝑐 ∈ (0,∞) the estimate  

‖𝑇(𝑧)𝑢‖𝐿𝑞(𝐹)𝑚2 ≤ 𝐶|𝑧|
𝑑
2𝑞
−
𝑑
2𝑝𝑒

−𝑐
𝑑(𝐸,𝐹)2

|𝑧| ‖𝑢‖𝐿𝑝(𝐸)𝑚1  

holds for all 𝑧 ∈ 𝐽 , all measurable sets 𝐸, 𝐹 ⊆ 𝛯, and all 𝑢 ∈ 𝐿𝑝(𝛯)𝑚1 ∩ 𝐿2(𝛯)𝑚1 that are 

supported in E. We say that T is 𝐿𝑝 → 𝐿𝑞 bounded if for all 𝑢 ∈ 𝐿𝑝(𝛯)𝑚1 ∩ 𝐿2(𝛯)𝑚1, 

‖𝑇(𝑧)𝑢‖𝐿𝑞(𝛯)𝑚2 ≤ 𝐶|𝑧|
𝑑
2𝑞
−
𝑑
2𝑝‖𝑢‖𝐿𝑝(𝛯)𝑚1 . 

In the case 𝑝 = 𝑞 we simply speak of 𝐿𝑝 off-diagonal estimates and 𝐿𝑝 boundedness  

We begin with 𝐿2 → 𝐿2 off-diagonal bounds.  

     This will follow by Davies’ perturbation method [210],[255],[272] and we shall 

indicate the major steps in order to help the reader through. To get the method running, we 

need the following invariance property.  

Lemma (5.3.10)[246]: Every Lipschitz continuous function 𝜑:ℝ𝑑 → ℝ induces a 

bounded multiplication operator on 𝕎𝐷
1,2(𝛺).  

Proof. Boundedness of the multiplication operator with respect to the 𝕎1,2(𝛺)𝑚-norm 

follows from the product rule. Hence, it suffices to check that the closed subspace 

𝕎𝐷
1,2(𝛺) is left invariant and by density this will follow from 𝜑𝑢|Ω ∈ 𝕎𝐷

1,2(𝛺) for 𝑢 ∈
∏ 𝐶𝐷𝑘

∞ (ℝ𝑑)𝑚
𝑘=1 . But in this case 𝜑𝑢 ∈ 𝑊1,2(ℝ𝑑)𝑚 with compact support and each of its 

components having support away from the respective Dirichlet part, so that approximants 

in ∏ 𝐶𝐷𝑘
∞ (ℝ𝑑)𝑚

𝑘=1  for the 𝑊1,2(ℝ𝑑)𝑚 topology can be constructed via mollification with 

smooth kernels. 

Proposition (5.3.11)[246]: Suppose that 𝛺 ⊆ ℝ𝑑 is a bounded domain. Let 𝜓 ∈ [0, 𝜋/2 −

𝜔). Then {𝑒−𝑧𝐿}𝑧∈𝑆𝜓
+  , {𝑧𝐿𝑒−𝑧𝐿}𝑧∈𝑆𝜓

+, and {√𝑧𝛻𝑒−𝑧𝐿}
𝑧∈𝑆𝜓

+ satisfy 𝐿2 off-diagonal estimates 

and implicit constants depend on ψ, ellipticity, dimensions, and the diameter of Ω. 

Proof. We begin with off-diagonal bounds for 𝑧 = 𝑡 > 0. Let 𝜑:ℝ𝑑 → ℝ be Lipschitz 

continuous with ‖𝛻𝜑‖∞ ≤ 1 and let 𝜌 > 0; both yet to be specified. Since by the 

preceding lemma 𝕎𝐷
1,2(𝛺) is invariant under multiplication with 𝑒±𝜌𝜑, we can define 

𝐿𝜌,𝜑: = 𝑒
𝜌𝜑𝐿𝑒−𝜌𝜑 by means of the form method using the bounded sesquilinear form 

𝑎𝜌,𝜑:𝕎𝐷
1,2(𝛺) ×𝕎𝐷

1,2(𝛺) → ℂ, (𝑢, 𝑣) ⟼ 𝑎(𝑒−𝜌𝜑𝑢, 𝑒𝜌𝜑𝑣). 

In order to see that 𝑎𝜌,𝜑 is sectorial, we multiply out the expression for 𝑎(𝑒−𝜌𝜑𝑢, 𝑒𝜌𝜑𝑢) 

obtained from the definition of a in (42), use boundedness and ellipticity of a, and control 

the error terms 𝑎(𝑢, 𝑢) − 𝑎(𝑒−𝜌𝜑𝑢, 𝑒𝜌𝜑𝑢) by means of Young’s inequality with ε. This 

results in the two estimates  

|𝑎𝜌,𝜑(𝑢, 𝑢)| ≤ 2Λ(𝑑 + 1)(‖𝑢‖2
2 + ‖𝛻𝑢‖2

2) + 𝑐(𝜌2 + 𝜌)‖𝑢‖2
2 

and  
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𝑅𝑒 𝑎𝜌,𝜑(𝑢, 𝑢) ≥
𝜆

2
(‖𝑢‖2

2 + ‖𝛻𝑢‖2
2) − 𝑐(𝜌2 + 𝜌)‖𝑢‖2

2,                     (50) 

where 𝑐 ∈ (0,∞) depends upon ellipticity and dimensions. Thus, 𝐿𝜌,𝜑 + 2𝑐(𝜌
2 + 𝜌) is 

maximal accretive with angle arctan (
4𝛬(𝑑+1)

𝜆
). The universal bound for its 𝐻∞-calculus 

yields  

‖𝑒−𝑡𝐿𝜌,𝜑‖𝐿2→𝐿2 + ‖𝑡 (𝐿𝜌,𝜑 + 2𝑐(𝜌
2 + 𝜌)) 𝑒−𝑡𝐿𝜌,𝜑‖

𝐿2→𝐿2
≤ 4𝑒2𝑐(𝜌

2+𝜌)𝑡(𝑡

> 0),                                                                                                                     (51) 
see Proposition (5.3.2). Moreover, we have by definition  

𝑎𝜌,𝜑(𝑢, 𝑢) + 2𝑐(𝜌
2 + 𝜌)‖𝑢‖2

2 = (𝐿𝜌,𝜑𝑢 + 2𝑐(𝜌
2 + 𝜌)𝑢|𝑢) (𝑢 ∈ 𝒟(𝐿𝜌,𝜑)) 

and as a holomorphic semigroup maps into the domain of its generator, the previous 

bounds along with the ellipticity estimate (50) imply  

‖√𝑡𝛻𝑒−𝑡𝐿𝜌,𝜑‖
𝐿2→𝐿2

≤ 4(
𝜆

2
)
−
1
2
𝑒2𝑐(𝜌

2+𝜌)𝑡      (𝑡 > 0).            (52) 

Now, let 𝐸, 𝐹 ⊆ Ω be measurable sets, and let 𝑢 ∈ 𝐿2(𝛺)𝑚 be supported in E. We 

specialize 𝜑(𝑥) = 𝑑(𝑥, 𝐸) and obtain  

𝑒−𝑡𝐿𝑢 = 𝑒−𝜌𝜑𝑒𝜌𝜑𝑒−𝑡𝐿𝑒−𝜌𝜑𝑢 = 𝑒−𝜌𝜑𝑒−𝑡𝐿𝜌,𝜑𝑢       (𝑡 > 0), 
where in the last step we used that the similarity of operators 𝐿𝜌,𝜑: = 𝑒

𝜌𝜑𝐿𝑒−𝜌𝜑 inherits to 

resolvents and hence to the functional calculi. From (51) we can infer  

‖𝑒−𝑡𝐿𝑢‖𝐿2(𝐹) ≤ 𝑒
−𝜌 𝑑(𝐸,𝐹)‖𝑒−𝑡𝐿𝜌,𝜑𝑢‖𝐿2(𝛺) ≤ 4𝑒

2𝑐(𝜌2+𝜌)𝑡−𝜌 𝑑(𝐸,𝐹)‖𝑢‖𝐿2(𝐸), 

which on choosing 𝜌:=
𝑑(𝐸,𝐹)

4𝑐𝑡
 and recalling that Ω is bounded, becomes the off-diagonal 

bound  

‖𝑒−𝑡𝐿𝑢‖𝐿2(𝐹) ≤ 4𝑒
−
𝑑(𝐸,𝐹)2

8𝑐𝑡 𝑒
𝑑(𝐸,𝐹)
2 ‖𝑢‖𝐿2(𝐸) ≤ 4𝑒

𝑑𝑖𝑎𝑚(𝛺)
2 𝑒−

𝑑(𝐸,𝐹)2

8𝑐𝑡 ‖𝑢‖𝐿2(𝐸). 

The estimates for 𝑡𝐿𝑒−𝑡𝐿 and √𝑡𝛻𝑒−𝑡𝐿 follow likewise from either (51) or (52).  

Finally, to treat the general case 𝑧 ∈ 𝑆𝜓
+, we replace L by 𝑒𝑖 arg 𝑧𝐿: Since |arg 𝑧| < 𝜋/2 −

𝜔, this is an operator in the same class as L and ellipticity constants of the corresponding 

form depend on 𝜆, Λ, 𝜓. Hence, the first part of the proof applies with 𝑡 = |𝑧| and the claim 

follows on noting 𝑒−𝑧𝐿 = 𝑒−𝑡𝑒
𝑖 arg𝑧𝐿. 

The subsequent proposition builds the bridge to 𝐿𝑝 → 𝐿𝑝 and 𝐿𝑝 → 𝐿2 estimates. Going 

through the cycle of all five implication shows that for the semigroup all concepts are 

more or less equivalent if one allows a small play in the Lebesgue exponents.  

Proposition (5.3.12)[246]: Assume Ω satisfies Assumption N. Let 𝑝 ∈ [1, 2). For 𝜓 ∈

[0, 𝜋/2 − 𝜔) put 𝑆 = {𝑒−𝑧𝐿}𝑧∈𝑆𝜓
+ and N = {√𝑧𝛻𝑒−𝑧𝐿}

𝑧∈𝑆𝜓
+. Then the following hold.  

(i) If {𝑒−𝑡𝐿}𝑡>0 is 𝐿𝑝 bounded, then S is 𝐿𝑝 → 𝐿2 bounded. 

(ii) If S is 𝐿𝑝 → 𝐿2 bounded, then so is N. 

(iii) If S is 𝐿𝑝 → 𝐿2 bounded and 𝑞 ∈ (𝑝, 2), then S satisfies 𝐿𝑞 → 𝐿2 off-diagonal 

estimates. 

(iv) If S satisfies 𝐿𝑝 → 𝐿2 off-diagonal estimates, then so does N. 

(v) If S and N satisfy 𝐿𝑝 → 𝐿2 off-diagonal estimates, then S and N are 𝐿𝑝 bounded, 

respectively.  

Proof. We begin with (i). Let 𝑢 ∈ 𝐿2(𝛺)𝑚 with ‖𝑢‖𝑝 = 1. First, we establish the 𝐿𝑝 → 𝐿2 

bounds for the semigroup in the case 𝑧 = 𝑡 > 0. We obtain the interpolation inequality  
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‖𝑣‖𝐿2(𝛺)
2 ≲ ‖𝑣‖

𝕎𝐷
1,2(𝛺)

2𝜃 ‖𝑣‖𝐿𝑝(𝛺)
2−2𝜃            (𝑣 ∈ 𝕎𝐷

1,2(𝛺)), 

where 1/𝜃 = 1 + 2𝑝/(2𝑑 − 𝑝𝑑), from the classical Gagliardo–Nirenberg inequality for 

functions on ℝ𝑑, see [274], and the boundedness of the extension operators 𝐸𝑘. Here, 

Assumption N was used. We apply this with 𝑣 = 𝑒−𝑡𝐿𝑢 and obtain from the assumption 

and ellipticity  

‖𝑒−𝑡𝐿𝑢‖2
2 ≲ ‖𝑒−𝑡𝐿𝑢‖

𝕎𝐷
1,2

2𝜃 ≲ (𝑅𝑒 𝑎(𝑒−𝑡𝐿𝑢, 𝑒−𝑡𝐿𝑢))
𝜃
= 𝑅𝑒(𝐿𝑒−𝑡𝐿𝑢|𝑒−𝑡𝐿𝑢)𝜃 . 

Hence, 𝑓(𝑡):= ‖𝑒−𝑡𝐿𝑢‖2
2 satisfies the differential inequality  

𝑓(𝑡) ≤ 𝐶(−𝑓′(𝑡))
𝜃
         (𝑡 > 0), 

where 𝐶 > 0 depends on geometry and ⟦𝑝⟧, see (45). If f vanishes at some point of the 

interval (𝑡/2, 𝑡), then 𝑓(𝑡) = 0 by the semigroup property and we are done. Otherwise, we 

obtain  

𝑡

2
≤ ∫

𝐶𝑓′(𝑠)

𝑓(𝑠)
1
𝜃

𝑑𝑠
𝑡

𝑡
2

≤
𝐶𝜃

1 − 𝜃
𝑓(𝑡)1−

1
𝜃 =

𝐶𝜃

1 − 𝜃
𝑓(𝑡)

−
2𝑝

2𝑑−𝑝𝑑 , 

which, by definition of f, is the required 𝐿𝑝 → 𝐿2 estimate. In order to extend this bound to 

𝑧 ∈ 𝑆𝜓
+, we put 𝜓:= (𝜓 +

𝜋

2
−𝜔)/2 and decompose 𝑧 = 𝑧′ + 𝑡, where |arg 𝑧| = 𝜓 and 

𝑡 > 0, so that |𝑧| ≃ |𝑧′| ≃ 𝑡 with implicit constants depending on ψ and ω. The claim then 

follows from the contractivity of the semigroup on 𝐿2 and the first part of the proof:  

‖𝑒−𝑧𝐿𝑢‖2 ≤ ‖𝑒
−𝑧𝐿‖𝐿2→𝐿2‖𝑒

−𝑡𝐿𝑢‖2 ≲ |𝑡|
𝑑
4
−
𝑑
2𝑝 ≃ |𝑧|

𝑑
4
−
𝑑
2𝑝. 

Next, (ii) follows from the semigroup law and the assertion for S. Indeed, it suffices to 

write  

√2𝑧𝛻𝑒−2𝑧𝐿 = √2(√𝑧𝛻𝑒−𝑧𝐿)𝑒−𝑧𝐿 

and concatenate the 𝐿2 bound of the first factor (Proposition (5.3.11)) with the assumed 

𝐿𝑝 → 𝐿2 bound for the second one.  

As for (iii), we interpolate by means of the Riesz–Thorin theorem the assumed 𝐿𝑝 → 𝐿2 

bound with the 𝐿2 off-diagonal estimates provided by Proposition (5.3.11). (Once we have 

fixed the sets E,F in the definition of off-diagonal estimates.)  

Assertion (iv) follows by a refinement of the argument for (ii). We let 𝐸, 𝐹 ⊆ Ω 

measurable sets, 𝑢 ∈ 𝐿2(𝛺)𝑚 with support in E and ∈ 𝑆𝜓
+. We also use a measurable set 

𝐺 ⊆ Ω to be specified yet. By the semigroup law we have  

‖√2𝑧𝛻𝑒−2𝑧𝐿𝑢‖
𝐿2(𝐹)

≤ √2(‖√𝑧𝛻𝑒−𝑧𝐿1𝐺𝑒
−𝑧𝐿𝑢‖

𝐿2(𝐹)
+ ‖√𝑧𝛻𝑒−𝑧𝐿1𝑐𝐺𝑒

−𝑧𝐿𝑢‖
𝐿2(𝐹)

) 

and hence by assumption and 𝐿2 off-diagonal estimates for the gradient of the semigroup, 

≤ 𝐶𝐶′|𝑧|
𝑑
4
−
𝑑
2𝑝 (𝑒

−𝑐
𝑑(𝐺,𝐹)2

|𝑧|
−𝑐′

𝑑(𝐸,𝐺)2

|𝑧| + 𝑒
−𝑐
𝑑( 𝐺 
𝑐 ,𝐹)2

|𝑧|
−𝑐′

𝑑(𝐸, 𝐺 
𝑐 )2

|𝑧| )‖𝑢‖𝐿𝑝(𝐸), 

where 𝐶, 𝐶′, 𝑐, 𝑐′ ∈ (0,∞). For the choice 𝐺 = {𝑥 ∈ Ω: 𝑑(𝑥, 𝐹) ≥ 𝑑(𝐸, 𝐹)/2} we have 

𝑑(𝐺, 𝐹) ≥ 𝑑(𝐸, 𝐹)/2 and 𝑑(𝐸, 𝐺 
𝑐 ) ≥ 𝑑(𝐸, 𝐹)/2, which in turn yields the claim.  

Eventually, (v) follows from the subsequent lemma applied to 𝑇 = 𝑒−𝑧𝐿 or 𝑇 = √𝑧𝛻𝑒−𝑧𝐿 

on choosing 𝑔(𝑟) = 𝐶|𝑧|
𝑑

4
−
𝑑

2𝑝𝑒
−
𝑐𝑟2

|𝑧|  and 𝑠 = √|𝑧|. 
Lemma (5.3.13)[246]: Let 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞ and T a bounded linear operator 𝐿2(𝛯)𝑚1 →
𝐿2(𝛯)𝑚2, where 𝑚1, 𝑚2 ∈ ℕ and 𝛯 ⊆ ℝ𝑑 is measurable. If T satisfies 𝐿𝑝 → 𝐿𝑞 off-

diagonal estimates in the form  
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‖𝑇𝑢‖𝐿𝑞(𝐹∩𝛯) ≤ 𝑔(𝑑(𝐸, 𝐹))‖𝑢‖𝐿𝑝(𝐸∩𝛯), 

whenever E, F are closed axis-parallel cubes in ℝ𝑑 and 𝑢 ∈ 𝐿𝑝(𝛯)𝑚1 ∩ 𝐿2(𝛯)𝑚1 is 

supported in 𝐸 ∩ 𝛯 and g is some decreasing function. Then T is 𝐿𝑝 bounded with norm 

bounded by 𝑠
𝑑

𝑝
−
𝑑

𝑞 ∑ 𝑔 (𝑠max {
|𝑘|

√𝑑
− 1, 0})𝑘∈ℤ𝑑  for any 𝑠 > 0 provided this sum is finite.  

This is essentially [210] but because of two somewhat confusing misprints,one in the 

statement and one in proof, we decided to include the argument.  

Proof. Let ∈ 𝐿𝑝(𝛯)𝑚1 ∩ 𝐿2(𝛯)𝑚1. We partition ℝ𝑑 into closed, axis-parallel cubes 

{𝑄𝑘}𝑘∈ℤ𝑑 of sidelength s with center sk and let 𝑢𝑘: = 1𝑄𝑘∩𝛯𝑢. From Hölder’s inequality 

and the assumption we obtain 

‖𝑇𝑢‖𝐿𝑝(𝛯)
𝑝

= ∑‖𝑇𝑢‖𝐿𝑝(𝑄𝑘∩𝛯)
𝑝

𝑘∈ℤ𝑑

≤ 𝑠
𝑑−
𝑑𝑝
𝑞 ∑‖𝑇𝑢‖𝐿𝑞(𝑄𝑘∩𝛯)

𝑝

𝑘∈ℤ𝑑

≤ 𝑠
𝑑−
𝑑𝑝
𝑞 ∑ (∑‖𝑇𝑢𝑗‖𝐿𝑞(𝑄𝑘∩𝛯)

𝑗∈ℤ𝑑

)

𝑝

𝑘∈ℤ𝑑

≤ 𝑠
𝑑−
𝑑𝑝
𝑞 ∑ (∑ 𝑔(𝑑(𝑄𝑗 ∩ 𝛯,𝑄𝑘 ∩ 𝛯)) ‖𝑢𝑗‖𝑝

𝑗∈ℤ𝑑

)

𝑝

𝑘∈ℤ𝑑

. 

Let |·|∞ be the ℓ∞ norm on ℝ𝑑 and 𝑑∞ the corresponding distance. We have 

𝑑∞(𝑄𝑗 , 𝑄𝑘) = max{|𝑠𝑗 − 𝑠𝑘|∞  − 𝑠, 0} and thus 𝑑(𝑄𝑗 ∩ 𝛯,𝑄𝑘 ∩ 𝛯) ≥ 𝑠max {
|𝑗−𝑘|

√𝑑
−

1, 0}. Since g is decreasing, we can infer  

‖𝑇𝑢‖𝐿𝑝(𝛯) ≤ 𝑠
𝑑
𝑝
−
𝑑
𝑞 (∑ (∑ 𝑔(𝑠max {

|𝑗 − 𝑘|

√𝑑
− 1, 0}) ‖𝑢𝑗‖𝑝

𝑗∈ℤ𝑑

)

𝑝

𝑘∈ℤ𝑑

)

1
𝑝

≤ 𝑠
𝑑
𝑝
−
𝑑
𝑞 (∑ 𝑔(𝑠max {

|𝑘|

√𝑑
− 1, 0})

𝑘∈ℤ𝑑

)(∑‖𝑢𝑗‖𝑝
𝑝

𝑗∈ℤ𝑑

)

1
𝑝

, 

where the second step is an application of Young’s inequality for (discrete) convolutions. 

The sum in j equals ‖𝑢‖𝐿𝑝(𝛯)
𝑝

 and the claim follows. see [210].  

The following lemma deals with the first part of Theorem (5.3.16).  

Lemma (5.3.14)[246]: Suppose  Ω satisfies Assumption N and let 𝑝 ∈ (2∗, 2
∗). Then 

{𝑒−𝑡𝐿}𝑡>0 is 𝐿𝑝 bounded with a bound depending on p, ellipticity, dimensions, and 

geometry.  

Proof. By duality we may restrict ourselves to 𝑝 ∈ (2, 2∗). We can use (iii) and (v) from 

Proposition (5.3.12) for 𝑝 > 2. The upshot is that it suffices to check 𝐿2 → 𝐿𝑝 

boundedness of the semigroup. By ellipticity and the Cauchy–Schwarz inequality we have 

for 𝑢 ∈ 𝐿2(𝛺)𝑚 and 𝑡 > 0,  

𝜆‖𝑒−𝑡𝐿𝑢‖
𝕎𝐷
1,2

2 ≤ 𝑅𝑒 𝑎(𝑒−𝑡𝐿𝑢, 𝑒−𝑡𝐿𝑢) = 𝑅𝑒(𝐿𝑒−𝑡𝐿𝑢|𝑒−𝑡𝐿𝑢) ≤ ‖𝐿𝑒−𝑡𝐿𝑢‖2‖𝑒
−𝑡𝐿𝑢‖2. 

On the other hand, we obtain for 𝑣 ∈ 𝕎𝐷
1,2(𝛺) the interpolation inequality  

‖𝑣‖𝑝 ≲ ‖𝑣‖𝕎𝐷
1,2

𝜃 ‖𝑣‖2
1−𝜃 , 
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where 1/𝑝 = (1 − 𝜃)/2 + 𝜃/2∗, from the classical Gagliardo–Nirenberg inequality for 

functions on ℝ𝑑, see [274], and the boundedness of the extension operators 𝐸𝑘. We pick 

𝑣 = 𝑒−𝑡𝐿𝑢 and obtain with the aid of the previous bound  

‖𝑒−𝑡𝐿𝑢‖𝑝 ≲ ‖𝑒
−𝑡𝐿𝑢‖

𝕎𝐷
1,2

𝜃 ‖𝑒−𝑡𝐿𝑢‖2
1−𝜃 ≲ 𝑡  −

𝜃
2‖𝑢‖2, 

where we have also used the semigroup properties ‖𝑒−𝑡𝐿𝑢‖2 ≤ ‖𝑢‖2, ‖𝐿𝑒
−𝑡𝐿𝑢‖2 ≲

𝑡−1‖𝑢‖2. Implicit constants depend on p, ellipticity, dimensions, and geometry. 

Substituting the value of θ, this turns out just to be 𝐿2 → 𝐿𝑝 boundedness of {𝑒−𝑡𝐿}𝑡>0. 

     We cite the following regularity result for the operator ℒ:𝕎𝐷
1,2(𝛺) → 𝕎𝐷

−1,2(𝛺), 
whose maximal restriction to 𝐿2(𝛺)𝑚 is L. Essentially, this follows from Šne˘ıberg’s 

theorem [278], see also [261], but tracking the interpolation constants in order to deduce 

the required uniformity of the bounds is a non-trivial task.  

Proposition (5.3.15)[246]: ([268]). Under Assumptions D and N there exists 𝜀′ > 0 such 

that ℒ extends/restricts to an isomorphism 𝕎𝐷
1,𝑝(𝛺) → 𝕎𝐷

−1,𝑝(𝛺) for all 𝑝 ∈ (2 − 𝜀′, 2 +
𝜀′). In addition, 𝜀′ and upper and lower bounds for ℒ can be given in terms of ellipticity, 

dimensions, and geometry.  

Now, we are ready to give the proof of Theorem (5.3.16). Let us stress that our argument 

essentially differs from the whole space case [210] in that it avoids a change of variables 

for the coefficients A. This is necessary since the resulting change of the underlying 

domain would affect geometric constants in an uncontrollable way.  

Theorem (5.3.16)[246]: If the bounded domain 𝛺 ⊆ ℝ𝑑 satisfies Assumption N, then  

𝒥(𝐿) ⊇ {
(1,∞)    𝑖𝑓 𝑑 = 2
(2∗, 2∗) 𝑖𝑓 𝑑 ≥ 3.

 

If in addition Assumption D is in power, then (2∗, 2
∗) can be replace with (2∗ − 𝜀, 2

∗ + 𝜀) 
if 𝑑 ≥ 3 and 𝜀 > 0 depends on ellipticity and geometry. For p in these sub-intervals of 

𝒥(𝐿) the 𝐿𝑝 bound for the semigroup depends on p, ellipticity, dimensions, and geometry.  

Proof. In view of Lemma (5.3.14) we only need to prove the extrapolation from the range 
(2∗, 2

∗) in the case 𝑑 ≥ 3 under Assumptions D and N.  

Let 𝜀′ > 0 be as provided by Proposition (5.3.15). We fix p, q, and r such that  

max{2 − 𝜀′, 2∗, 1
∗}  < 𝑝 < 𝑞 < 𝑟 <  2, 

which is possible since 𝑑 ≥ 3 implies 1∗ < 2. We will prove 𝑟∗ ∈ 𝒥(𝐿) with a bound 

depending on 𝑝, 𝑞, 𝑟, ellipticity, and geometry. This implies the claim: First, p, q,r share 

the same dependencies as 𝜀′ and therefore we have 𝑟∗ = 2∗ − 𝜀 for some 𝜀 > 0 depending 

on ellipticity, dimensions, and geometry. Second, Riesz–Thorin interpolation of the 𝐿𝑟∗ 
bound for the semigroup with the contractivity on 𝐿2 yields 𝐿𝑠 bounds for 𝑠 ∈ (𝑟∗, 2) 
without introducing further implicit constants. Third, the same argument with the same 

choice of parameters applies to 𝐿∗ and by duality we obtain 𝐿𝑠 boundedness for 𝑠 ∈
(2, (𝑟′)∗), where 1/𝑟′ = 1 − 1/𝑟.  

In order to prove 𝐿𝑟∗ boundedness, we let 𝑡 > 0 and take u in 𝐿𝑝
∗
, a dense subspace of 

𝐿2 ∩ 𝐿𝑟∗. By Cauchy’s integral formula and since ℒ extends L, we can write  

𝑒−𝑡𝐿𝑢 = 𝐿𝑒−𝑡𝐿𝐿−1𝑢 = −
1

2𝜋𝑖
∮

1

(𝑧 − 𝑡)2
𝑒−𝑧𝐿ℒ−1𝑢 𝑑𝑧

|𝑧−𝑡|=𝑅

, 

where 𝑅 = 𝑑(𝑡, 𝜕𝑆𝜓
+)/2 and 𝜓 = 𝜋/4 − 𝜔/2. We have 𝑝∗ ∈ (2, 2∗), so 𝑝∗ ∈ 𝒥(𝐿) thanks 

to Lemma (5.3.14). Proposition (5.3.12) implies 𝐿𝑞
∗
 boundedness of the semigroup for 
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complex times 𝑧 ∈ 𝑆𝜓
+ and in particular along the integration contour above. Thus, we 

have  

‖𝑒−𝑡𝐿𝑢‖𝑞∗ ≲ 𝑡
−1‖ℒ−1𝑢‖𝑞∗ . 

Now, ℒ extends to an isomorphism 𝕎𝐷
1,𝑞(𝛺) → 𝕎𝐷

−1,𝑞(𝛺) by choice of q. Since 1∗  < 𝑞 <
2, we obtain from Sobolev embeddings, 

‖ℒ−1𝑢‖𝑞∗ ≲ ‖ℒ
−1𝑢‖

𝕎𝐷
1,𝑞 ≲ ‖𝑢‖

𝕎𝐷
−1,𝑞 ≲ ‖𝑢‖𝑞∗ . 

Altogether, ‖𝑒−𝑡𝐿𝑢‖𝑞∗ ≲ 𝑡
−1‖𝑢‖𝑞∗, that is, the semigroup is 𝐿𝑞∗ → 𝐿𝑞∗ bounded. Riesz–

Thorin interpolation with the 𝐿2 off-diagonal estimates from Proposition (5.3.11) leads to 

𝐿𝑟∗ → 𝐿𝑠 offdiagonal estimatesforsome 𝑠 > 𝑟∗ determined by q and r, which in turn implies 

𝐿𝑟∗ boundedness (Lemma (5.3.13)).  
To obtain 𝐿𝑝 estimates for the functional calculus for L it will be convenient to 

calculate 𝑓(𝐿) in terms of the semigroup instead of the resolvent. This can be seen as some 

kind of Laplace transform inversion.  

Lemma (5.3.17)[246]: Let 𝜔 < 𝜃 < 𝑣 < 𝜋/2 and 𝑔 ∈ 𝐻0
∞(𝑆𝜓

+). Put Γ± = (0,∞)𝑒
±𝑖(

𝜋

2
−𝜃)

 

and 𝛾± = (0,∞)𝑒
±𝑖𝜈. Then 𝑔(𝐿) can also be computed as an 𝐿2(Ω)𝑚-valued Bochner 

integral  

𝑔(𝐿) = ∫ 𝑒−𝑧𝐿𝜂+(𝑧)𝑑𝑧
Γ+

−∫ 𝑒−𝑧𝐿𝜂−(𝑧)𝑑𝑧
Γ−

, 

where  

𝜂±(𝑧) =
1

2𝜋𝑖
∫ 𝑒𝑧𝜉𝑔(𝜉)𝑑𝜉
𝛾±

                   (𝑧 ∈ Γ±). 

Proof. Let 𝜉 ∈ 𝛾±. For 𝑧 ∈ Γ± we have |arg(𝑧𝜉)| =
𝜋

2
− 𝜃 +  𝜈 >

𝜋

2
. Consequently, 

(𝜉 − 𝐿)−1𝑒𝑧𝜉𝑒−𝑧𝐿 vanishes as |𝑧| → ∞ along the 𝑟𝑎𝑦 Γ± and we may compute, using the 

fundamental theorem of calculus,  

∫ 𝑒𝑧𝜉𝑒−𝑧𝐿𝑑𝑧
Γ±

= ∫
𝑑

𝑑𝑧
((𝜉 − 𝐿)−1𝑒𝑧𝜉𝑒−𝑧𝐿)𝑑𝑧

Γ±

= −(𝜉 − 𝐿)−1. 

By definition of the functional calculus  

𝑔(𝐿) = −
1

2𝜋𝑖
∫ 𝑔(𝜉)(𝜉 − 𝐿)−1𝑑𝜉
𝛾+

+
1

2𝜋𝑖
∫ 𝑔(𝜉)(𝜉 − 𝐿)−1𝑑𝜉
𝛾−

. 

From these two identities the claim follows by an application of Fubini’s theorem. 

Next, we recall an important weak type (𝑝, 𝑝) criterion for bounded operators on 𝐿2(𝛯) 
that goes back to [251]. If ℝ𝑑 , Proposition (5.3.18) below is exactly the simplified version 

presented in [210], see also the subsequent Remark (7) in [210] concerning vector-valued 

extensions. The result below on general measurable sets 𝛯 is not mentioned therein but 

follows easily: Take R as the canonical restriction ℝ𝑑 → 𝛯 and E as the extension 𝛯 → ℝ𝑑 

by zero. Then observe that the ℝ𝑑-version applies to 𝑇′: = 𝐸𝑇𝑅 and 𝐴𝑟
′ : = 𝐸𝐴𝑟𝑅 with the 

same parameters and that T and 𝑇′ have the same 𝐿𝑝 bound. 

Proposition (5.3.18)[246]: Let 𝑞 ∈ [1, 2). Let 𝑇: 𝐿2(𝛯)𝑚1 → 𝐿2(𝛯)𝑚2 be a bounded linear 

operator, where 𝑚1, 𝑚2 ∈ ℕ and 𝛯 ⊆ ℝ𝑑 is measurable. Assume there exists a family 

{𝐴𝑟}𝑟>0 of bounded linear operators on 𝐿2(𝛯)𝑚1 with the following properties: For 𝑗 ≥ 2, 

(∫ |𝑇(1 − 𝐴𝑟)𝑢|
2

𝐶𝑗(𝐵)∩𝛯

)

1
2

≤ 𝑔(𝑗)𝑟
𝑑
2
−
𝑑
𝑞 (∫ |𝑢|𝑞

𝐵∩𝛯

)

1
𝑞

              (53) 
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and for 𝑗 ≥ 1, 

(∫ |𝐴𝑟𝑢|
2

𝐶𝑗(𝐵)∩𝛯

)

1
2

≤ 𝑔(𝑗)𝑟
𝑑
2
−
𝑑
𝑞 (∫ |𝑢|𝑞

𝐵∩𝛯

)

1
𝑞

,                          (54) 

whenever 𝐵 ⊆ ℝ𝑑 is an open ball with radius r and 𝑢 ∈ 𝐿2(𝛯)𝑚1 has support in 𝐵 ∩ 𝛯. If 

∑:= ∑𝑔(𝑗)2
𝑑𝑗

2  is finite, then T is of weak type (𝑞, 𝑞) and hence 𝐿𝑝 bounded for 𝑝 ∈ (𝑞, 2) 
with a bound depending on 𝑞,𝑚1, 𝑚2, ∑, and an 𝐿2 bound for T. 

As a first application we prove  

Lemma (5.3.19)[246]: Suppose {𝑒−𝑡𝐿}𝑡>0 satisfies 𝐿𝑞 → 𝐿2 off-diagonal estimates for 

some 𝑞 ∈ (1, 2). Then 

‖𝑓(𝐿)𝑢‖𝑝 ≤ 𝐶‖𝑓‖∞‖𝑢‖𝑝           (𝑓 ∈ 𝐻0
∞(𝑆𝜓

+), 𝑢 ∈ 𝐿2(𝛺)𝑚), 

whenever 𝜓 ∈ (𝜔, 𝜋) and 𝑝 ∈ (𝑞, 2). Here, C depends on 𝜓, 𝑝, 𝑞, ellipticity, dimensions, 

geometry and constants implicit in the assumption.  

Proof. Without loss of generality we may assume 𝜓 < 𝜋/2. Let 𝑓 ∈ 𝐻0
∞(𝑆𝜓

+) be 

normalized such that ‖𝑓‖∞ = 1. We appeal to Proposition (5.3.18) with 𝑇 = 𝑓 (𝐿). We 

put 𝐴𝑟 = 1 − (1 − 𝑒
−𝑟2𝐿)

𝑛
, where 𝑛 ∈ ℕ has to be determined yet. Proposition (5.3.2) 

yields ‖𝑇‖𝐿2→𝐿2 ≤ 4 and we need to check (53) and (54).  

For the argument we put 𝛾:= 𝑑/𝑞 − 𝑑/2 > 0, let 𝐵 ⊆ ℝ𝑑 be an open ball with radius 𝑟 >
0, and 𝑢 ∈ 𝐿2(𝛺)𝑚 have its support in 𝐵 ∩ Ω. Having expanded  

𝐴𝑟 =∑(
𝑛
𝑘
) (−1)𝑘−1𝑒−𝑘𝑟

2𝐿

𝑛

𝑘=1

, 

the assumed 𝐿𝑞 → 𝐿2 off-diagonal estimates (with constants 𝐶, 𝑐 ∈ (0,∞))  yield for 𝑗 ≥
1, 

(∫ |𝐴𝑟𝑢|
2

𝐶𝑗(𝐵)∩𝛯

)

1
2

≤ 𝐶2𝑛𝑒
−
𝑐(2𝑗−2)

2

𝑛2 𝑟−𝛾 (∫ |𝑢|𝑞

𝐵∩𝛯

)

1
𝑞

. 

Hence, (54) holds with 𝑔(𝑗)2
𝑑𝑗

2  summable no matter the value of n. 

Turning to (53), we apply Lemma (5.3.17) to the function 𝑔(𝑧) = 𝑓 (𝑧)(1 − 𝑒^(−𝑟2𝑧)𝑛 

and write 

𝑇(1 − 𝐴𝑟)𝑢 = ∫ 𝜂+(𝑧)𝑒
−𝑧𝐿𝑢𝑑𝑧

Γ+

−∫ 𝜂−(𝑧)𝑒
−𝑧𝐿𝑢𝑑𝑧

Γ−

,             (55) 

Where 

𝜂±(𝑧) =
1

2𝜋𝑖
∫ 𝑒𝑧𝜉𝑔(𝜉)𝑑𝜉
𝛾±

           (𝑧 ∈ Γ±). 

For 𝑗 ≥ 2 we take 𝐿2(𝐶𝑗(𝐵) ∩ Ω)-norms in (55) and apply off-diagonal estimates to give  

(∫ |𝑇(1 − 𝐴𝑟)𝑢|
2

𝐶𝑗(𝐵)∩Ω

)

1
2

≲ (𝐼𝑗,+ + 𝐼𝑗,−) (∫ |𝑢|𝑞

𝐵∩Ω

)

1
𝑞

,              (56) 

where  

𝐼𝑗,± = ∫ 𝐶|𝜂±(𝑧)||𝑧|
−
𝛾
2𝑒
−
𝑐4𝑗−1𝑟2

|𝑧| 𝑑|𝑧|
Γ±

. 
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By the mean value theorem and the normalization of f we have |𝑔(𝜉)| ≤ min{2𝑛, 𝑟2𝑛|𝜉|𝑛} 
for 𝜉 ∈ 𝛾±. Consequently, 

|𝜂±(𝑧)| ≤ 𝛼|𝑧|
−1min{1, 𝑟2𝑛|𝑧|−𝑛} (𝑧 ∈ Γ±), 

where α depends on 𝜓,𝜔, 𝑛. Setting |𝑧| = 𝑡, we deduce that  

𝐼𝑗,± ≤ 𝛼𝑒
−
𝑐4𝑗−1

2 ∫ 𝑡−
𝛾
2𝑒−

𝑐4𝑗−1𝑟2

2𝑡
𝑑𝑡

𝑡

𝑟2

0

+ 𝛼𝑟2𝑛∫ 𝑡  −
𝛾
2
−𝑛𝑒−

𝑐4𝑗−1𝑟2

𝑡
𝑑𝑡

𝑡

∞

𝑟2
 

≤ 𝛼𝑟−𝛾2−𝛾(𝑗−1)(𝑒−
𝑐4𝑗−1

2 ∫ 𝑠−
𝛾
2𝑒−

𝑐
2𝑠
𝑑𝑠

𝑠

∞

0

+ 4−(𝑗−1)𝑛∫ 𝑠−
𝛾
2
−𝑛𝑒−

𝑐
𝑠
𝑑𝑠

𝑠

∞

0

. 

The remaining integrals in s are finite. Thus, we have found 𝐼𝑗,± ≤ 𝑔(𝑗)𝑟
−𝛾 with 

{2
𝑑𝑗

2 𝑔(𝑗)}
𝑗≥2

 summable provided 𝛾 + 2𝑛 > 𝑑/2. For such choice of n, (53) follows from 

(56). 

Now we can complete the  

Theorem (5.3.20)[246]: Suppose 𝛺 ⊆ ℝ𝑑 is a bounded domain that satisfies Assumption 

N and let 𝑝0 ∈ 𝒥(𝐿). If f is bounded and holomorphic on the sector 𝑆𝜓
+ , where 𝜓 ∈ (𝜔, 𝜋), 

then for all 𝑝 ∈ (𝑝0, 2) ∪ (2, 𝑝0),  
‖𝑓(𝐿)𝑢‖𝑝 ≤ 𝐶‖𝑓‖∞‖𝑢‖𝑝        (𝑢 ∈ 𝐿

2(𝛺)𝑚 ∩ 𝐿𝑝(𝛺)𝑚).           (57) 

Moreover, C depends on 𝜓, ⟦𝑝0⟧, 𝑝, and geometry.  

The above range for p is optimal in that (57) for some 𝑝 ∈ (1,∞), some 𝜓 ∈ (𝜔, 𝜋), and 

all f as above implies 𝑝 ∈ 𝒥(𝐿). 
Proof. The necessity part follows simply because we can take 𝑓(𝑧) = 𝑒−𝑡𝑧 in (57) for 

every 𝑡 > 0. 

By duality it suffices to treat the sufficiency part in the case 𝑝0 ∈ 𝒥(𝐿) ∩ [1, 2). Let 𝑝 ∈
(𝑝0, 2] and 𝜓 ∈ (𝜔, 𝜋). Proposition (5.3.12) provides 𝐿𝑞 → 𝐿2 off-diagonal estimates for 

the semigroup, for instance for the choice 𝑞 = (𝑝 + 𝑝0)/2, and implied constants depend 

on ⟦𝑝0⟧, 𝑝, and geometry. Lemma (5.3.19) yields  

‖𝑓(𝐿)𝑢‖𝑝 ≤ 𝐶‖𝑓‖∞‖𝑢‖𝑝        (𝑓 ∈ 𝐻0
∞(𝑆𝜓

+), 𝑢 ∈ 𝐿2(𝛺)𝑚), 

with C depending on ⟦𝑝0⟧, 𝑝, 𝜓, and geometry. This bound extends to 𝑓 ∈ 𝐻∞(𝑆𝜓
+) and 

𝑢 ∈ 𝐿2(𝛺)𝑚. Indeed, if 𝑓𝑛 ∈ 𝐻0
∞(𝑆𝜓

+) are such that 𝑓𝑛 → 𝑓 pointwise, ‖𝑓𝑛‖∞ → ‖𝑓‖∞, and 

𝑓𝑛(𝐿)𝑢 → 𝑓(𝐿)𝑢 in 𝐿2, then 𝑓𝑛(𝐿)𝑢 → 𝑓(𝐿)𝑢 also in 𝐿𝑝 since Ω is bounded. 
As a primer to Theorem (5.3.25) we study 𝐿𝑝 boundedness of the Riesz transform 

𝛻𝐿−
1

2. Due to Theorem (5.3.6) this is an 𝐿2 bounded operator. It follows from (48) that  

𝛻𝐿−
1
2𝑢 =

2

√𝜋
∫ 𝛻𝑒−𝑡

2𝐿𝑢 𝑑𝑡
∞

0

        (𝑢 ∈ 𝐿2(𝛺)𝑚)                (58) 

in the sense of an improper Riemann integral.  

Lemma (5.3.21)[246]: Suppose {𝑒−𝑡𝐿}𝑡>0 satisfies 𝐿𝑞 → 𝐿2 off-diagonal estimates for 

some 𝑞 ∈ (1, 2). Then 𝛻𝐿−
1

2 is 𝐿𝑝 bounded for every 𝑝 ∈ (𝑞, 2). The bound depends on p, 

q, ellipticity, dimensions, geometry and constants implicit in the assumption.  

Proof. We appeal to Proposition (5.3.18) with 𝑇 = 𝛻𝐿−
1

2 and 𝐴𝑟 = 1 − (1 − 𝑒
−𝑟2𝐿)

𝑛
, 

where 𝑛 ∈ ℕ has to be determined yet. We have seen that T is 𝐿2 bounded. From the proof 

of Lemma (5.3.19) we also know that 𝐿𝑞 → 𝐿2 off-diagonal estimates for the semigroup 

imply (54) for any choice of n. So, we only have to check (53).  
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For the argument we put 𝛾:= 𝑑/𝑞 − 𝑑/2 > 0, let 𝐵 ⊆ ℝ𝑑 be an open ball with radius 𝑟 >
0, and 𝑢 ∈ 𝐿2(𝛺)𝑚 have its support in 𝐵 ∩ Ω. We calculate 𝑇(1 − 𝐴𝑟)𝑢 via (58) and 

expand 𝐴𝑟 by the binomial theorem. This leads to the formula  

𝑇(1 − 𝐴𝑟)𝑢 =
2

√𝜋
∫ ∑(−1)𝑘 (

𝑛
𝑘
)𝛻𝑒−(𝑡

2+𝑘𝑟2)𝐿𝑢 𝑑𝑡

𝑛

𝑘=0

∞

0

, 

which, by substituting 𝑡2/𝑟2 + 𝑘, can more conveniently be written as  

𝑇(1 − 𝐴𝑟)𝑢 =
1

√𝜋
∫ 𝑔(𝑡)𝑟𝛻𝑒−𝑟

2𝑡𝐿𝑢 𝑑𝑡
∞

0

, 

where  

𝑔(𝑡) = ∑(
𝑛
𝑘
) (−1)𝑘

1(0,∞)(𝑡 − 𝑘)

√𝑡 − 𝑘

𝑛

𝑘=0

.                       (59) 

Proposition (5.3.12).(iv) yields 𝐿𝑞 → 𝐿2 off-diagonal estimates for {√𝑡𝛻𝑒−𝑡𝐿}
𝑡>0

. Let 

𝐶, 𝑐 ∈ (0,∞) be the implied constants they do not bring in further dependencies. Taking 

𝐿2(𝐶𝑗(𝐵) ∩ Ω)-norms in the above formula, we find for 𝑗 ≥ 2, 

(∫ |𝑇(1 − 𝐴𝑟)𝑢|
2

𝐶𝑗(𝐵)∩Ω

)

1
2

≤ 𝐶𝜋−
1
2𝑟−𝛾(𝐼− + 𝐼+) (∫ |𝑢|𝑞

𝐵∩Ω

)

𝑞

,             (60) 

where  

𝐼− = ∫ |𝑔(𝑡)|𝑡−
𝛾
2
−
1
2𝑒−

𝑐4𝑗−1

𝑡 𝑑𝑡
4𝑛

0

, 𝐼+ = ∫ |𝑔(𝑡)|𝑡−
𝛾
2
−
1
2𝑒−

𝑐4𝑗−1

𝑡 𝑑𝑡
∞

4𝑛

. 

It remains to bound these integrals. We begin with the crude estimate  

𝐼− ≤ 𝑒
−𝑐
4𝑗−1

8𝑛 ∫ |𝑔(𝑡)|𝑡−
𝛾
2
−
1
2𝑒−

𝑐
2𝑡𝑑𝑡

4𝑛

0

, 

where the remaining integral is finite since |𝑔| isintegrable on (0, 4𝑛) and the other factor 

remains bounded as 𝑡 → 0. As for 𝐼+, we first note that for 𝑡 > 4𝑛 all characteristic 

functions in (59) evaluate to 1. Hence, the residue theorem yields  

𝑔(𝑡) =
(−1)𝑛

2𝜋𝑖
∮

𝑛!

𝑧(𝑧 − 1) ··· (𝑧 − 𝑛)

1

√𝑡 − 𝑧
𝑑𝑧

|𝑧|=
𝑡
2

. 

Along the path of integration 𝑡 − 𝑧, 𝑧, 𝑧 − 1, . . . , 𝑧 − 𝑛 are of absolute value at least 𝑡/4 

each. Thus |𝑔(𝑡)| ≤ 𝛼𝑡−𝑛−
1

2 for some 𝛼 ∈ (0,∞) depending on n. In conclusion, 

𝐼+ ≤ 𝛼∫ 𝑡−
𝛾
2
−𝑛𝑒−

𝑐4𝑗−1

𝑡
𝑑𝑡

𝑡

∞

4𝑛

≤ 𝛼2−𝛾(𝑗−1)4−(𝑗−1)𝑛∫ 𝑠−
𝛾
2
−𝑛𝑒−

𝑐
𝑠
𝑑𝑠

𝑠

∞

0

, 

and the integral in s is finite. We have found 𝐼− + 𝐼+ ≤ 𝑔(𝑗)𝑟
−𝛾 with {2

𝑑𝑗

2 𝑔(𝑗)}
𝑗≥2

 

summable provided 𝛾 + 2𝑛 > 𝑑/2. For such choice of n, (53) follows from (60). 
Corollary (5.3.22)[246]: If 𝑝0 ∈ 𝒥(𝐿) ∩ [1, 2), then for every 𝑝 ∈ (𝑝0, 2) the lower 

bound  

‖𝑢‖
𝕎𝐷
1,𝑝 ≲ ‖𝐿

1
2𝑢‖

𝑝
        (𝑢 ∈ 𝕎𝐷

1,2(𝛺)). 

The implied constant depends on ⟦𝑝0⟧, 𝑝, and geometry 

Proof. Let 𝑝 ∈ (𝑝0, 2). Proposition (5.3.12) provides 𝐿𝑞 → 𝐿2 off-diagonal estimates for 

{𝑒−𝑡𝐿}𝑡>0, for instance for the choice 𝑞 = (𝑝 + 𝑝0)/2, and implied constants depend on 
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⟦𝑝0⟧, 𝑝, and geometry. Hence, Lemma (5.3.21) applies. An equivalent way of stating its 

conclusion is the estimate  

‖𝛻𝑢‖𝑝 ≲ ‖𝐿
1
2𝑢‖

𝑝
              (𝑢 ∈ 𝕎𝐷

1,2(𝛺)), 

where the implied constant shares the same dependencies. To add ‖𝑢‖𝑝 on the left-hand 

side, we first interpolate the assumed Lp0 bound for the semigroup with the exponential 

decay on 𝐿2 stated in Lemma (5.3.3). This yields ‖𝑒−𝑡𝐿‖𝐿𝑝→𝐿𝑝 ≤ ⟦𝑝0⟧
1−𝜃𝑒−

𝜆𝜃𝑡

2  for 𝑡 > 0, 

where 1/𝑝 = (1 − 𝜃)/𝑝0 + 𝜃/2. Now we can use (48) to give  

‖𝑢‖𝑝 ≤
2

√𝜋
∫ ⟦𝑝0⟧

1−𝜃𝑒−
𝜆𝜃𝑡2

2 ‖𝐿
1
2𝑢‖

𝑝
𝑑𝑡

∞

0

=
√2⟦𝑝0⟧

1−𝜃

√𝜆𝜃
‖𝐿
1
2𝑢‖

𝑝
. 

We shall craft a Calderón–Zygmund decomposition within 𝕎𝐷
1,𝑝

. We extend the 

approach from [206]. The crucial insight in was that the following Hardy inequality can be 

used to maintain Dirichlet boundary conditions for the ‘good’ and all ‘bad’ functions. For 

a proof see [206] or [58]. We agree on 𝑑(𝑥, ∅) = ∞ for 𝑥 ∈ ℝ𝑑 so that the estimate below 

holds trivially for empty Dirichlet parts.  

Proposition (5.3.23)[246]: Suppose Ω is a bounded domain that satisfies Assumptions D 

and N and let 𝑝 ∈ (1,∞). For every 𝑘 = 1, . . . , 𝑚 there is a Hardy-type inequality  

∫ |
𝑣

𝑑𝐷𝑘
|

𝑝

Ω

≲ ∫ |𝛻𝑣|𝑝

Ω

                    (𝑣 ∈ 𝑊𝐷𝑘
1,𝑝(𝛺)). 

We let 𝒬 be the system of closed axis-parallel cubes with non-empty interior in ℝ𝑑. The 

Hardy–Littlewood maximal operator M is defined for 𝑢 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑑) by  

(𝑀𝑢)(𝑥):= sup
𝑥∈𝑄∈𝒬

⨍|𝑢|
𝒬

          (𝑥 ∈ ℝ𝑑), 

Where ⨍  𝑄 : = |𝑄|
−1 ∫  

𝑄
denotes the average over 𝑄. Then |𝑢| ≤ 𝑀𝑢 holds almost 

everywhere and for some constant 𝑐𝑑 > 0 depending only on d there is a weak type 

estimate 

|{𝑥 ∈ ℝ𝑑: |(𝑀𝑢)(𝑥)| > 𝛼}| ≤
𝑐𝑑
𝛼
‖𝑢‖𝐿1(ℝ𝑑)          (𝛼 > 0, 𝑢 ∈ 𝐿

1(ℝ𝑑)), 

see for example [267]. Let us denote the coordinates of a ℂ𝑚-valued function v by 𝑣(𝑘). 
Lemma (5.3.24)[246]: Suppose Ω is a bounded domain with Assumptions D and N and let 

1 < 𝑝 < ∞. For every 𝑢 ∈ 𝕎𝐷
1,𝑝(𝛺) and every 𝛼 > 0 there exists a countable index set J, 

cubes 𝑄𝑗 ∈ 𝒬, 𝑗 ∈ 𝐽 , and measurable functions 𝑔, 𝑏𝑗: Ω →  ℂ
𝑚 such that for some 𝐶 ≥ 1, 

independent of u and α, the following hold.  

(i) 𝑢 = 𝑔 + ∑ 𝑏𝑗𝑗∈𝐽  pointwise almost everywhere.  

(ii) Each 𝑏𝑗 has support in Q𝑗 and each 𝑥 ∈ ℝ𝑑 is contained in at most 12𝑑 of the 𝑄𝑗. 

(iii) 𝑔 ∈ 𝕎𝐷
1,∞(𝛺) with ‖𝑔‖𝕎𝐷

1,∞(𝛺) + ∑ ‖
𝑔(𝑘)

𝑑𝐷𝑘
‖
𝐿∞(𝛺)

𝑚
𝑘=1 ≤ 𝐶𝛼. 

(iv) 𝑏𝑗 ∈ 𝕎𝐷
1,𝑝(𝛺) with ∫ (|𝛻𝑏𝑗|

𝑝
+ |𝑏𝑗|

𝑝
+ ∑ |

𝑏𝑗
(𝑘)

𝑑𝐷𝑘
|

𝑝

𝑚
𝑘=1 )

Ω
≤ 𝐶𝛼𝑝|𝑄𝑗|   for every 

𝑗 ∈ 𝐽. 

(v) ∑ |𝑄𝑗| 𝑗∈𝐽 ≤
𝐶

𝛼𝑝
‖𝑢‖

𝕎𝐷
1,𝑝
(𝛺)

𝑝
. 

(vi) 𝑔 ∈ 𝕎𝐷
1,𝑝(𝛺) with ‖𝑔‖

𝕎𝐷
1,𝑝
(𝛺)
≤ 𝐶 ‖𝑢‖

𝕎𝐷
1,𝑝
(𝛺)

. 
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(vii) If 𝑢 ∈ 𝐿𝑞(𝛺)𝑚 for some 𝑞 ∈ [1,∞), then also 𝑏𝑗 ∈ 𝐿
𝑞(𝛺)𝑚 for every 𝑗 ∈ 𝐽. 

(viii) For every subset 𝐽′ ⊆ 𝐽 the sum ∑ 𝑏𝑗𝑗∈𝐽′  converges unconditionally in 

𝕎𝐷
1,𝑝(𝛺). 

 Proof. The proof follows the classical pattern relying on a Whitney decomposition of an 

exceptional set determined by an adapted maximal function. It is divided into seven steps.  

Step 1: Adapted maximal function. Recall the bounded Sobolev extension operators 𝐸𝑘 

introduced. Then �̃�(𝑘): = 𝐸𝑘𝑢
(𝑘), 𝑘 = 1, . . . , 𝑚, defines an extension �̃� ∈ 𝕎𝐷

1,𝑝(ℝ𝑑) of u. 

Since Ω is bounded, a suitable smooth truncation far away from Ω̅ allows us to modify the 

extension in such a way that even the Hardy-type terms as in Proposition (5.3.23) are 

controlled, that is to say,  

∫ (|�̃�| + |𝛻�̃�| +∑ |
�̃�(𝑘)

𝑑𝐷𝑘
|

𝑚

𝑘=1

 )

𝑝

ℝ𝑑
≲ ∫(|𝑢| + |𝛻𝑢|)𝑝

Ω

.                  (61) 

The procedure is explained in detail on p. 176 of [206]. We define the open set  

𝑈:= {𝑥 ∈ ℝ𝑑:𝑀((|𝛻�̃�| + |�̃�| +∑ |
�̃�(𝑘)

𝑑𝐷𝑘
|

𝑚

𝑘=1

)

𝑝

) > 𝛼𝑝}. 

First we treat the case 𝑈 = ∅. Then for the choices 𝐽 = ∅ and 𝑔 = 𝑢 all assertions are 

immediate except for (iii). Referring to this, we use that �̃� is an extension of u and obtain 

for almost every 𝑥 ∈ Ω, 

(|𝛻𝑔(𝑥)| + |𝑔(𝑥)| +∑ |
𝑔(𝑘)(𝑥)

𝑑𝐷𝑘(𝑥)
|

𝑚

𝑘=1

)

𝑝

= (|𝛻�̃�(𝑥)| + |�̃�(𝑥)| +∑ |
�̃�(𝑘)(𝑥)

𝑑𝐷𝑘(𝑥)
|

𝑚

𝑘=1

)

𝑝

. 

The right-hand side is dominated almost everywhere by its maximal function, which in 

turn in globally bounded by 𝛼𝑝. We shall discuss at the end of the proof in the general case 

why this implies 𝑔 ∈ 𝕎𝐷
1,∞(𝛺). 

So, from now on we can assume that U is a non-empty open subset of ℝ𝑑. By the weak 

type estimate for the maximal operator and (61) we obtain  

|𝑈| ≲
1

𝛼𝑝
‖|𝛻�̃�| + |�̃�| +∑ |

�̃�(𝑘)

𝑑𝐷𝑘
|

𝑚

𝑘=1

‖

𝑝

𝑝

≲
1

𝛼𝑝
‖𝑢‖

𝕎𝐷
1,𝑝

𝑝
< ∞.            (62) 

In particular, 𝐹:= ℝ𝑑\𝑈 is non-empty. This allows for choosing a Whitney decomposition 

of U, that is, an at most countable index set J and a collection of cubes 𝑄𝑗 ∈ 𝒬, 𝑗 ∈ 𝐽 , with 

diameter 𝑑𝑗 that satisfy  

(𝐴)    𝑈 =⋃
8

9
𝑄𝑗

𝑗∈𝐽

,                           (𝐵)     
8

9
𝑄𝑗
∘ ∩
8

9
𝑄𝑘
◦ = ∅    𝑖𝑓    𝑗 ≠ 𝑘, 

(𝐶)  𝑄𝑗 ⊆ 𝑈 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗,                       (𝐷)   ∑1𝑄𝑗
𝑗∈𝐽

≤ 12𝑑 , 

(𝐸)  
5

6
𝑑𝑗 ≤ 𝑑(𝑄𝑗  , 𝐹) ≤ 4𝑑𝑗𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 

see [213] for this classical tool but replace the cubes Q by their enlarged counterparts 
9

8
𝑄 

therein. Here, 𝑄∘ denotes the interior of Q. Two important consequences can be recorded 

immediately: Firstly, (E) implies  
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12√𝑑𝑄𝑗 ∩ 𝐹 ≠ ∅        (𝑗 ∈ 𝐽).                                                     (63) 

Secondly, (D) in combination with (62) immediately implies (v) since  

∑|𝑄𝑗|

𝑗∈𝐽

≤ ∫ ∑1𝑄𝑗
𝑗∈𝐽𝑈

≤ 12𝑑  |𝑈| ≲
1

𝛼𝑝
‖𝑢‖

𝕎𝐷
1,𝑝
(𝛺)

𝑝
.                    (64) 

Step 2: Definition of the good and bad functions. Let {𝜑𝑗}𝑗∈𝐽 be a partition of unity on U, 

that is ∑ 𝜑𝑗𝑗∈𝐽 = 1 on U, with the properties 

(𝑎)     𝜑𝑗 ∈ 𝐶
∞(ℝ𝑑)                          (𝑏)   𝑠𝑢𝑝𝑝𝜑𝑗 ⊆ 𝑄𝑗

∘ 

(𝑐)    𝜑𝑗 = 1 𝑜𝑛
8

9
𝑄𝒥                        (𝑑)‖𝜑𝑗‖∞ + 𝑑𝑗‖𝛻𝜑𝑗‖∞ ≲ 1  

For all 𝑗 ∈ 𝐽, see [213] for the construction. Given 1 ≤ 𝑘 ≤ 𝑚, we distinguish between 

three properties a cube 𝑄𝑗 can have: 

(i) 𝑄𝑗 is k-usual if 𝑑𝑗 < 1 and 𝑑(𝑄𝑗 , 𝐷𝑘) ≥ 𝑑𝑗, 

(ii) 𝑄𝑗 is k-boring if 𝑑(𝑄𝑗 , 𝐷𝑘) ≥ 𝑑𝑗 ≥ 1,  

(iii) 𝑄𝑗 is k-special if 𝑑(𝑄𝑗 , 𝐷𝑘) < 𝑑𝑗 . 

Then we let �̃�𝑄𝑗
(𝑘)
: = ⨍ �̃�(𝑘) 𝑄𝑗  and define  

�̃�𝑗
(𝑘)
: = {

𝜑𝑗 (�̃�
(𝑘) − �̃�𝑄𝑗

(𝑘)
)     𝑖𝑓 𝑄𝑗  𝑖𝑠 k − usual             

𝜑𝑗�̃�
(𝑘)      𝑖𝑓 𝑄𝑗  𝑖𝑠 𝑘 − 𝑏𝑜𝑟𝑖𝑛𝑔 𝑜𝑟 𝑘 − 𝑠𝑝𝑒𝑐𝑖𝑎𝑙

 (1 ≤ 𝑘 ≤ 𝑚, 𝑗 ∈ 𝐽). 

Setting �̃�: = �̃� − ∑ �̃�𝑗𝑗∈𝐽  as well as 𝑏𝑗: = �̃�𝑗|Ω and : = �̃�|Ω, 𝑗 ∈ 𝐽, these functions 

automatically satisfy (i). Due to (D) there is no problem of convergence with this sum and 

also (ii) holds true. Moreover, (vii) holds since the extension operators 𝐸𝑘 are bounded 

𝐿𝑞(𝛺) → 𝐿𝑞(ℝ𝑑) for every 1 ≤ 𝑞 < ∞.  

Next, we check that the 𝑏𝑗 are contained in 𝕎𝐷
1,𝑝(𝛺): For fixed 1 ≤ 𝑘 ≤ 𝑚 we have �̃�𝑗

(𝑘)
∈

𝕎1,𝑝(ℝ𝑑) by construction. If 𝑄𝑗 is either k-usual or k-boring, then 𝑑(𝑄𝑗 , 𝐷𝑘) ≥ 𝑑𝑗 > 0 

and via mollification �̃�𝑗
(𝑘)

 can be approximated by 𝐶𝐷𝑘
∞ (ℝ𝑑)-functions in the norm of 

𝕎1,𝑝(ℝ𝑑). If 𝑄𝑗 is k-special, then �̃�(𝑘) ∈ 𝕎𝐷𝑘

1,𝑝(ℝ𝑑) implies �̃�𝑗
(𝑘)
= 𝜑𝑗�̃�

(𝑘) ∈ 𝕎𝐷𝑘

1,𝑝(ℝ𝑑). 

Step 3: Proof of (iv). After the considerations above it remains to prove the estimate. To 

this end, we fix a coordinate 1 ≤ 𝑘 ≤ 𝑚. 

We start with a k-usual cube, in which case 𝛻�̃�𝑗
(𝑘)
= 𝜑𝑗𝛻�̃�

(𝑘) + (�̃�(𝑘) − �̃�𝑄𝑗
(𝑘)
) 𝛻𝜑𝑗. Using 

(d), 

∫ |𝛻�̃�𝑗
(𝑘)
|
𝑝

𝑄𝑗

≲ ∫ (|𝜑𝑗𝛻�̃�
(𝑘)|

𝑝
+ |(�̃�(𝑘) − �̃�𝑄𝑗

(𝑘)
)𝛻𝜑𝑗|

𝑝

)
𝑄𝑗

≲ ∫ |𝛻�̃�(𝑘)|
𝑝

𝑄𝑗

+
1

𝑑𝑗
𝑝∫ |�̃�(𝑘) − �̃�𝑄𝑗

(𝑘)
|
𝑝

𝑄𝑗

,                                                         (65) 

where the rightmost integral can be estimated via Poincaré’s inequality  
1

𝑑𝑗
𝑝∫ |�̃�(𝑘) − �̃�𝑄𝑗

(𝑘)
|
𝑝

𝑄𝑗

≲ ∫ |𝛻�̃�(𝑘)|
𝑝

𝑄𝑗

.                                   (66) 

Invoking (63), we pick some 𝑧𝑗 ∈ 𝑄𝑗
∗  ∩ 𝐹, where 𝑄𝑗

∗ = 12√𝑑𝑄𝑗 , in order to bring into 

play the maximal operator: 
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∫ |𝛻�̃�𝑗
(𝑘)
|
𝑝

𝑄𝑗

≲ ∫ (|𝜑𝑗𝛻�̃�
(𝑘)|

𝑝
+ |(�̃�(𝑘)  − �̃�𝑄𝑗

(𝑘)
) 𝛻𝜑𝑗|

𝑝

)
𝑄𝑗

≲ ∫ |𝛻�̃�(𝑘)|
𝑝

𝑄𝑗
∗

≤ |𝑄𝑗
∗| ⨍ |𝛻�̃�(𝑘)|

𝑝

𝑄𝑗
∗

≲ |𝑄𝑗|𝑀(|𝛻�̃�|
𝑝)(𝑧𝑗).                                                          (67) 

Now, we capitalize 𝑧𝑗 ∈ 𝐹 to give 

∫ |𝛻𝑏𝑗
(𝑘)
|
𝑝

Ω

≤ ∫ |𝛻�̃�𝑗
(𝑘)
|
𝑝

𝑄𝑗

≲ 𝛼𝑝|𝑄𝑗| .                               (68) 

The corresponding estimate for |𝑏𝑗
(𝑘)
| can be derived similarly, starting from 

∫ |𝑏𝑗
(𝑘)
|
𝑝

Ω

≤ ∫ |�̃�𝑗
(𝑘)
|
𝑝

𝑄𝑗

= ∫ |�̃�(𝑘) − �̃�𝑄𝑗
(𝑘)
|
𝑝

|𝜑𝑗|
𝑝

𝑄𝑗

 

≲ 𝑑𝑗
𝑝
∫ |𝛻�̃�(𝑘)|

𝑝

𝑄𝑗

≤ ∫ |𝛻�̃�(𝑘)|
𝑝

𝑄𝑗

                               (69) 

and proceeding as in (67) and (68). For the third term 𝑏𝑗
(𝑘)
/𝑑𝐷𝑘  we note that on k-usual 

cubes 𝑑𝐷𝑘 ≥ 𝑑𝑗 holds and so by (66) and the same argument as in (67) and (68) we get 

∫ |
𝑏𝑗
(𝑘)

𝑑𝐷𝑘
|

𝑝

Ω

≤ ∫ |
�̃�𝑗
(𝑘)

𝑑𝐷𝑘
|

𝑝

𝑄𝑗

≲
1

𝑑𝑗
𝑝∫ |�̃�(𝑘) − �̃�𝑄𝑗

(𝑘)
|
𝑝

𝑄𝑗

≲ 𝛼𝑝|𝑄𝑗|. 

We turn to the k-boring cubes. Then �̃�𝑗
(𝑘)
= �̃�(𝑘)𝜑𝑗 and 𝑑𝐷𝑘 ≥ 𝑑𝑗 ≥ 1 a.e. on 𝑄𝑗 . By (d) 

we have 

|�̃�𝑗
(𝑘)
| + |𝛻�̃�𝑗

(𝑘)
| + |

�̃�𝑗
(𝑘)

𝑑𝐷𝑘
| ≤ |�̃�(𝑘)𝜑𝑗| + |𝜑𝑗𝛻�̃�

(𝑘)| + |�̃�(𝑘)𝛻𝜑𝑗| + |
𝜑𝑗�̃�

(𝑘)

𝑑𝐷𝑘
|

≲ |�̃�(𝑘)| + |𝛻�̃�(𝑘)| +
1

𝑑𝑗
|�̃�(𝑘)| + |

�̃�(𝑘)

𝑑𝐷𝑘
|     (𝑎. 𝑒. 𝑜𝑛 𝑄𝑗)                               (70) 

and the usual start of play for the maximal operator, following (67) and (68), leads to  

∫ (|𝑏𝑗
(𝑘)
|
𝑝
+ |𝛻𝑏𝑗

(𝑘)
|
𝑝
+ |
𝑏𝑗
(𝑘)

𝑑𝐷𝑘
|

𝑝

)
Ω

≤ ∫ (|�̃�𝑗
(𝑘)
| + |𝛻�̃�𝑗

(𝑘)
| + |

�̃�𝑗
(𝑘)

𝑑𝐷𝑘
|)

𝑝

𝑄𝑗

≲ ∫ (|�̃�(𝑘)| + |𝛻�̃�(𝑘)| +
1

𝑑𝑗
 |�̃�(𝑘)| + |

�̃�(𝑘)

𝑑𝐷𝑘
|)

𝑝

 
𝑄𝑗

 

≲ ∫ (|�̃�(𝑘)| + |𝛻�̃�(𝑘)| + |
�̃�(𝑘)

𝑑𝐷𝑘
|)

𝑝

𝑄𝑗

≲ 𝛼𝑝|𝑄𝑗| .                                              (71) 

Finally, if 𝑄𝑗 is k-special, then again �̃�𝑗
(𝑘)
 = �̃�(𝑘)𝜑𝑗 and we conclude as in (71) above 

with one crucial difference: This time we do not absorb the non-Hardy term |�̃�(𝑘)|/𝑑𝑗 into 

|�̃�(𝑘)|, but rather we use  

𝑑𝐷𝑘(𝑥) = 𝑑(𝑥, 𝐷𝑘) ≤ 𝑑𝑖𝑎𝑚(𝑄𝑗) + 𝑑(𝑄𝑗 , 𝐷𝑘) ≤ 2𝑑𝑗(𝑥 ∈ 𝑄𝑗),          (72) 

in order to absorb it into the Hardy-term |�̃�(𝑘)|/𝑑𝐷𝑘. 

Step 4: Non-gradient terms of the good function. Let 1 ≤ 𝑘 ≤ 𝑚. In this step we prove for 

almost every 𝑥 ∈ ℝ𝑑 the estimate 
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|�̃�(𝑘)(𝑥)|
𝑝
+ |
�̃�(𝑘)(𝑥)

𝑑𝐷𝑘(𝑥)
|

𝑝

≲ 𝛼𝑝. 

On F all bad functions �̃�𝑗 vanish. Hence, �̃� = �̃� on this set and the required estimate 

follows on controlling the left-hand side above by its maximal function. So, we can 

concentrate on 𝑥 ∈ 𝑈. Denoting by 𝐽𝑢, 𝐽𝑏, and 𝐽𝑠 the sets of those 𝑗 ∈ 𝐽 such that 𝑄𝑗 is k-

usual, k-boring, and k-special, respectively, we obtain on U that  

�̃�(𝑘) = �̃�(𝑘) −∑�̃�𝑗
(𝑘)

𝑗∈𝐽

= �̃�(𝑘) − ∑ 𝜑𝑗 (�̃�
(𝑘) − �̃�𝑄𝑗

(𝑘)
)

𝑗∈𝐽𝑢

− ∑ 𝜑𝑗�̃�
(𝑘)

𝑗∈𝐽𝑏∪𝐽𝑠

= ∑ �̃�𝑄𝑗
(𝑘)
𝜑𝑗

𝑗∈𝐽𝑢

, 

since ∑ 𝜑𝑗𝑗∈𝐽 = 1 on U. Now, let 𝑥 ∈ 𝑈 and let 𝐽𝑢,𝑥 be the set of those 𝑗 ∈ 𝐽𝑢  for which x 

is contained in the k-usual cube 𝑄𝑗. We recall from (D) that #𝐽𝑢,𝑥 ≤ 12
𝑑. Due to (d) and 

Hölder’s inequality for sequences we find  

|�̃�(𝑘)(𝑥)|
𝑝
≤ ( ∑ |�̃�𝑄𝑗

(𝑘)
|

𝑗∈𝐽𝑢,𝑥

)

𝑝

≲ 12𝑑(𝑝−1) ∑ (⨍|�̃�(𝑘)|
𝑄𝑗

)

𝑝

𝑗∈𝐽𝑢,𝑥

≲ ∑ ⨍|�̃�(𝑘)|
𝑝

𝑄𝑗𝑗∈𝐽𝑢,𝑥

.                                                                                                  (73) 

Picking again elements 𝑧𝑗 ∈ 12√𝑑𝑄𝑗 ∩ 𝐹, the same argument we have used several times 

before, for instance in (67) and (68), provides control on the right-hand side by 𝛼𝑝. This is 

the first required estimate on U. For the second one involving 𝑑𝐷𝑘, we first observe that if 

𝑦 ∈ 𝑄𝑗 for some 𝑗 ∈ 𝐽𝑢,𝑥, then since 𝑥 ∈ 𝑄𝑗 as well, 

𝑑𝐷𝑘(𝑦) ≤ 𝑑𝑖𝑎𝑚(𝑄𝑗) + 𝑑𝐷𝑘(𝑥) = 𝑑𝑗 + 𝑑𝐷𝑘(𝑥) ≤ 2 𝑑𝐷𝑘(𝑥) 

by the defining property of k-usual cubes. Combining this estimate with (73), we conclude 

as usual, 

|
�̃�(𝑘)(𝑥)

𝑑𝐷𝑘(𝑥)
|

𝑝

≲ ∑ ⨍ |
�̃�(𝑘)(𝑦)

𝑑𝐷𝑘(𝑥)
|

𝑝

𝑑𝑦
𝑄𝑗𝑗∈𝐽𝑢,𝑥

≤ 2𝑝 ∑ ⨍ |
�̃�(𝑘)(𝑦)

𝑑𝐷𝑘(𝑦)
|

𝑝

𝑑𝑦
𝑄𝑗𝑗∈𝐽𝑢,𝑥

≲ 𝛼𝑝. 

Step 5: Proofs of (vi) and (viii). In order to estimate 𝛻�̃� we have to make sure that the 

gradient can be pushed through the sum defining �̃�. We shall prove on the way the 

unconditional convergence stated in (viii). To this end, let 1 ≤ 𝑘 ≤ 𝑚. Also let 𝐽0 ⊆ 𝐽 be a 

finite set. Adopting the notation from Step 4 and arguing similarly to (73), we obtain     

‖∑ �̃�𝑗
(𝑘)

𝑗∈𝐽0

‖

𝑊1,𝑝

𝑝

≲ ∑ ∫ (|𝜑𝑗 (�̃�
(𝑘) − �̃�𝑄𝑗

(𝑘)
)|
𝑝
+ |𝜑𝑗𝛻�̃�

(𝑘)|
𝑝
+ |(�̃�(𝑘) − �̃�𝑄𝑗

(𝑘)
) 𝛻𝜑𝑗|

𝑝

)
𝑄𝑗𝑗∈𝐽𝑢∩𝐽0

 

+ ∑ ∫ (|𝜑𝑗�̃�
(𝑘)|

𝑝
+ |𝜑𝑗𝛻�̃�

(𝑘)|
𝑝
+ |�̃�(𝑘)𝛻𝜑𝑗|

𝑝
)

𝑄𝑗𝑗∈(𝐽𝑏∪𝐽𝑠)∩𝐽0

. 

Investing the estimates (65), (66), and (69) on k-usual cubes, (70) on k-boring cubes and in 

addition (72) on k-special cubes, we find 
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∑∫ (|�̃�(𝑘)| + |𝛻�̃�(𝑘)| + |
�̃�(𝑘)

𝑑𝐷𝑘
|)

𝑝

𝑄𝑗𝑗∈𝐽0

= ∫ ∑1𝑄𝑗(𝑥) (|�̃�
(𝑘)(𝑥)| + |𝛻�̃�(𝑘)(𝑥)| + |

�̃�(𝑘)(𝑥)

𝑑𝐷𝑘(𝑥)
|)

𝑝

𝑗∈𝐽0

𝑑𝑥
ℝ𝑑

. 

As a consequence of (D) the series ∑ 1𝑄𝑗𝑗∈𝐽0  converges pointwise to a function bounded 

everywhere by 12𝑑. Therefore Lebesgue’s theorem implies that the partial sums of 

∑ �̃�𝑗
(𝑘)

𝑗∈𝐽  form Cauchy sequences in 𝑊1,𝑝(ℝ𝑑). The limit is independent of the order of 

summation again by (D). The same applies to ∑ �̃�𝑗
(𝑘)

𝑗∈𝐽  for any 𝐽′ ⊆ 𝐽 and hence we obtain 

(viii).  

Revisiting the calculation above for 𝐽0 = 𝐽 and recalling (61), we find     

‖∑�̃�𝑗
(𝑘)

𝑗∈𝐽

‖

𝑊1,𝑝(ℝ𝑑)

𝑝

≲ ∫ (|�̃�(𝑘)(𝑥)| + |𝛻�̃�(𝑘)(𝑥)| + |
�̃�(𝑘)(𝑥)

𝑑𝐷𝑘(𝑥)
|)

𝑝

𝑑𝑥
ℝ𝑑

≲ ‖𝑢‖
𝑊𝐷
1,𝑝
(𝛺)

𝑝
.                                                                                                       (74) 

We recall from Step 2 that all �̃�𝑗
(𝑘)

 are contained in 𝑊𝐷𝑘
1,𝑝(ℝ𝑑). Since the latter is a closed 

subspace of 𝑊1,𝑝(ℝ𝑑), it also contains ∑ �̃�𝑗
(𝑘)

𝑗∈𝐽  and �̃�(𝑘) = �̃�(𝑘) − ∑ �̃�𝑗
(𝑘)

𝑗∈𝐽 . Restricting 

to gives �̃�(𝑘) ∈ 𝑊𝐷𝑘
1,𝑝(𝛺), that is, 𝑔 ∈ 𝑊𝐷

1,𝑝(𝛺). Finally, the estimate in (vi) follows 

directly from (74)  

Step 6: Gradient estimate of the good function. Let 1 ≤ 𝑘 ≤ 𝑚. The objective of this step 

is to prove |𝛻�̃�(𝑘)(𝑥)| ≲ 𝛼 for almost every ∈ ℝ𝑑. Thanks to (viii) we can compute  

𝛻�̃�(𝑘) = 𝛻�̃�(𝑘) − ∑ (𝜑𝑗𝛻�̃�
(𝑘) + (�̃�(𝑘) − �̃�𝑄𝑗

(𝑘)
)𝛻𝜑𝑗)

𝑗∈𝐽𝑢

− ∑ (𝜑𝑗𝛻�̃�
(𝑘) + �̃�(𝑘)𝛻𝜑𝑗)

𝑗∈𝐽𝑏∪𝐽𝑠

 

and all sums converge in 𝐿𝑝(ℝ𝑑). As in the previous step we write  

𝛻�̃�(𝑘) = 𝛻�̃�(𝑘) − 𝛻�̃�(𝑘)∑𝜑𝑗
𝑗∈𝐽

− �̃�(𝑘)∑𝛻𝜑𝑗
𝑗∈𝐽

+ ∑ �̃�𝑄𝑗
(𝑘)
𝛻𝜑𝑗

𝑗∈𝐽𝑢

.          (75) 

Now, on 𝐹 = ℝ𝑑\𝑈 all terms on the right-hand side vanish but the first one and we get  

|𝛻�̃�(𝑘)(𝑥)|
𝑝
= |𝛻�̃�(𝑘)(𝑥)|

𝑝
≤ 𝑀(|𝛻�̃�|𝑝)(𝑥) ≤ 𝛼𝑝    (𝑎. 𝑒. 𝑥 ∈ 𝐹). 

So, we can concentrate on the similar estimate on U. Due to (D) the sum ∑ 𝜑𝑗𝑗∈𝐽  

converges locally in 𝐿1 and by construction the limit is identically 1 on U. Thus, 

∑ 𝛻𝜑𝑗𝑗∈𝐽 = 0 on U in the sense of distributions and (75) collapses to  

𝛻�̃�(𝑘)(𝑥) = ∑ �̃�𝑄𝑗
(𝑘)
𝛻𝜑𝑗(𝑥)

𝑗∈𝐽𝑢

                    (𝑥 ∈ 𝑈). 

We will not estimate this sum directly. Instead, we define 

ℎ𝑢(𝑥):= ∑ �̃�𝑄𝑗
(𝑘)
𝛻𝜑𝑗(𝑥)

𝑗∈𝐽𝑢

, ℎ𝑠,𝑏(𝑥):= ∑ �̃�𝑄𝑗
(𝑘)
𝛻𝜑𝑗(𝑥)

𝑗∈𝐽𝑠∪𝐽𝑏

  (𝑥 ∈ 𝑈) 

and aim at proving |ℎ𝑠,𝑏(𝑥)|
𝑝
≲ 𝛼𝑝 and  |ℎ𝑢(𝑥) + ℎ𝑠,𝑏(𝑥)|

𝑝
≲ 𝛼𝑝 for almost every 𝑥 ∈ 𝑈. 

This of course implies the same bound for ℎ𝑢 = 𝛻�̃�
(𝑘) and the proof will be complete.  
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As for ℎ𝑠,𝑏(𝑥), we recall from (72) that 𝑑𝐷𝑘(𝑦) ≤ 2𝑑𝑗 holds for all y in a k-special cube 

𝑄𝑗 and that by definition the diameter of a k-boring cube is at least 1. With 𝐽𝑏,𝑥 and 𝐽𝑠,𝑥 the 

sets of those 𝑗 ∈ 𝐽 for which x is contained in the k-boring and k-special cube 𝑄𝑗, 

respectively, we obtain in analogy with (73) the bound  

|ℎ𝑠,𝑏(𝑥)|
𝑝
≲ ∑

1

𝑑𝑗
𝑝 |�̃�𝑄𝑗

(𝑘)
|
𝑝

𝑗∈𝐽𝑏,𝑥

+ ∑
1

𝑑𝑗
𝑝 |�̃�𝑄𝑗

(𝑘)
|
𝑝

𝑗∈𝐽𝑠,𝑥

≤ ∑ ⨍|�̃�(𝑘)|
𝑝

𝑄𝑗𝑗∈𝐽𝑏,𝑥

+ ∑ ⨍ |
�̃�(𝑘)(𝑦)

𝑑𝐷𝑘(𝑦)
|

𝑝

𝑑𝑦
𝑄𝑗𝑗∈𝐽𝑠,𝑥

. 

The usual maximal operator argument together with (D) provides control by 𝛼𝑝.  

Preliminary to the estimate of ℎ𝑢(𝑥) + ℎ𝑠,𝑏(𝑥) fix an index 𝑗0 ∈ 𝐽 such that ∈ 𝑄𝑗0. For any 

cube 𝑄𝑗 that contains x as well, we obtain from (E) that  

5

6
𝑑𝑗 ≤ 𝑑(𝑄𝑗 , 𝐹) ≤ 𝑑(𝑥, 𝐹) ≤ 𝑑(𝑄𝑗0 , 𝐹) + 𝑑𝑗0 ≤ 5𝑑𝑗0 .               (76) 

The same estimate is true with the roles of j and 𝑗0 interchanged. So, with 𝑄𝑗0
∗ : = 14√𝑑𝑄𝑗0 

every such cube satisfies 𝑄𝑗 ⊆ 𝑄𝑗0
∗ . Again denote by 𝐽𝑥 the set of all 𝑗 ∈ 𝐽 such that 𝑄𝑗 

contains x. Due to ∑ 𝛻𝜑𝑗𝑗∈𝐽 = 0 almost everywhere on U we find  

ℎ𝑢(𝑥) + ℎ𝑠,𝑏(𝑥) = ∑ �̃�𝑄𝑗
(𝑘)
𝛻𝜑𝑗(𝑥)

𝑗∈𝐽𝑥

= ∑ (�̃�𝑄𝑗
(𝑘)
− �̃�𝑄𝑗0

∗
(𝑘)
)𝛻𝜑𝑗(𝑥)

𝑗∈𝐽𝑥

 

and thus by (d) and Hölder’s inequality for sequences  

|ℎ𝑢(𝑥) + ℎ𝑠,𝑏(𝑥)|
𝑝
≲ 12𝑑(𝑝−1)∑

1

𝑑𝑗
𝑝 |�̃�𝑄𝑗

(𝑘)
− �̃�𝑄𝑗0

∗
(𝑘)
|
𝑝

𝑗∈𝐽𝑥

. 

Now, for 𝑗 ∈ 𝐽𝑥 we have  

|�̃�𝑄𝑗
(𝑘)
− �̃�𝑄𝑗0

∗
(𝑘)
|
𝑝
= |⨍ �̃�(𝑘)(𝑦) − �̃�𝑄𝑗0

∗
(𝑘)
𝑑𝑦

𝑄𝑗

|

𝑝

− ⨍ |�̃�(𝑘)(𝑦) − �̃�𝑄𝑗0
∗
(𝑘)
|
𝑝
𝑑𝑦

𝑄𝑗0
∗

 

since 𝑄𝑗 ⊆ 𝑄𝑗0
∗  and 𝑑𝑗0 ≤ 6𝑑𝑗 by (76) with the roles of j and 𝑗0 interchanged. By means of 

Poincaré’s inequality (66) on the cube 𝑄𝑗0
∗ , we finally find  

|�̃�𝑄𝑗
(𝑘)
− �̃�𝑄𝑗0

∗
(𝑘)
|
𝑝
≲ 𝑑𝑖𝑎𝑚(𝑄𝑗0

∗ )
𝑝
⨍ |𝛻�̃�(𝑘)|

𝑝

𝑄𝑗0
∗

≲ 𝑑𝑗
𝑝
⨍ |𝛻�̃�(𝑘)|

𝑝

𝑄𝑗0
∗

, 

leading to 

|ℎ𝑢(𝑥) + ℎ𝑠,𝑏(𝑥)|
𝑝
≤ ∑ ⨍ |𝛻�̃�(𝑘)|

𝑝

𝑄𝑗0
∗

𝑗∈𝐽𝑥

. 

As from now, the estimate by 𝛼𝑝 can be completed in the usual manner.  

Step 7: Proof of (iii). After all it remains to check 𝑔(𝑘) ∈ 𝑊𝐷𝑘
1,∞(𝛺) for 1 ≤ 𝑘 ≤ 𝑚 with 

appropriate bound. The statement of Steps 4 and 6 is  

‖�̃�(𝑘)‖
𝐿∞(ℝ𝑑)

+ ‖𝛻�̃�(𝑘)‖
𝐿∞(ℝ𝑑)

+ |
�̃�(𝑘)

𝑑𝐷𝑘
|
𝐿∞(ℝ𝑑)

≲ 𝛼.                   (77) 

So, �̃�(𝑘): ℝ𝑑 → ℂ is essentially bounded with essentially bounded distributional gradient. 

Thus, it has a Lipschitz continuous representative �̃�(𝑘) with Lipschitz norm bounded by 

generic multiple of α, see for example [264] for this classical result. Finally, �̃�(𝑘) vanishes 

everywhere on 𝐷𝑘 since every 𝑥 ∈ 𝐷𝑘 can be approximated by a sequence along which 
�̃�(𝑘)

𝑑𝐷𝑘
 

remains uniformly bounded.  
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Theorem (5.3.25)[246]: Suppose Ω ⊆ ℝ𝑑 is a bounded domain satisfying D, N, and Ω. 

(i) If 𝑝0 ∈ 𝒥 (𝐿) ∩ [1, 2), then 𝐿
1

2 extends to an isomorphism 𝕎𝐷
1,𝑝(Ω) → 𝐿𝑝(Ω)𝑚 

for every 𝑝 ∈ (𝑝0, 2). Upper and lower bounds of the extension depend on 

⟦𝑝0⟧, 𝑝, and geometry.  

(ii) The result in (i) is optimal in that if 𝐿
1

2 extends to an isomorphism 𝕎𝐷
1,𝑝(Ω) →

𝐿𝑝(Ω)𝑚 for some 𝑝 ∈ [1, 2), then already (𝑝, 2) ⊆ 𝒥(𝐿). 
Proof. We assume D, N, and Ω. Necessity is the easy part so let us begin with that.  

We borrow an idea from [210]. First of all, according to Theorem (5.3.16) we have 

(1, 2) ⊆ 𝒥(𝐿) if 𝑑 = 2 and [2∗, 2) ⊆ 𝒥(𝐿) if 𝑑 ≥ 3. Henceforth we only need to treat the 

case where 𝑑 ≥ 3 and 𝐿
1

2 extends to an isomorphism 𝕎𝐷
1,𝑝
→ 𝐿𝑝(𝛺)𝑚 for some 𝑝 ∈

[1, 2∗). We need to prove (𝑝, 2) ⊆ 𝒥(𝐿). 

First, we claim that 𝐿 − 1/2 extends to a bounded operator 𝐿𝑞(𝛺)𝑚 → 𝐿𝑞
∗
(𝛺) for every 

𝑞 ∈ [𝑝, 2]. Indeed, by Riesz–Thorin interpolation it suffices to check the endpoints and – 

keeping in mind the Sobolev embedding 𝕎𝐷
1,𝑞
(𝛺) ⊆ 𝐿𝑞

∗
(𝛺)𝑚 – we obtain the case 𝑞 = 𝑝 

from the assumption and the case 𝑝 = 2 from Theorem (5.3.6).  

This being said, we put 𝑝0: = 𝑝, 𝑝𝑗 = 𝑝𝑗−1
∗  for 𝑗 = 1, . .. and stop at the first number j with 

𝑝𝑗 ∈ (2∗, 2]. By construction this happens for some 𝑗 ≥ 1 and the above applies to =

𝑝0, . . . , 𝑝𝑗 . We find for every 𝑡 > 0 the chain of bounded mappings  

𝐿𝑝0(𝛺)𝑚
𝐿
−
1
2

→ 𝐿𝑝1(𝛺)𝑚 ···
𝐿
−
1
2

→ ··· 𝐿𝑝𝑗(𝛺)𝑚
𝑒
−
𝑡
2𝐿

→  𝐿2(𝛺)𝑚
𝐿
𝑗
2𝑒
−
𝑡
2𝐿

→    𝐿2(𝛺)𝑚, 

where the second to last arrow with operator norm controlled by 𝑡
𝑑

4
−
𝑑

2𝑝𝑗 is due to 

Proposition (5.3.12).(i) on noting that 𝑝𝑗 is an interior point of 𝒥(𝐿). The final arrow with 

operator norm controlled by 𝑡−
𝑗

2 follows from the bounded 𝐻∞-calculus on 𝐿2(𝛺)𝑚. But 

the chain above induces 𝑒−𝑡𝐿 and since 𝑑/𝑝 = 𝑑/𝑝𝑗 + 𝑗 holds by construction, we have 

shown its 𝐿𝑝 → 𝐿2 boundedness. Proposition (5.3.12) yields (𝑝, 2) ⊆ 𝒥(𝐿).  
We turn to (i) and claim that it suffices to prove the following key proposition.  

Let us first see how the proposition leads to the proof of the first part of Theorem (5.3.25).  

Thanks to Theorem (5.3.16) we can guarantee that 𝒥(𝐿) ∩ (1, 2∗) is non-empty and so the 

statement is non-trivial. Let it contain 𝑝0. Due to Proposition (5.3.26) and Theorem (5.3.6) 

we have at hand (extensions to) bounded operators  

𝐿
1
2:𝕎𝐷

1,𝑝0(𝛺) → 𝐿𝑝0,∞(𝛺)𝑚, 𝐿
1
2:𝕎𝐷

1,2(𝛺) → 𝐿2(𝛺)𝑚, 
where 𝐿𝑝0,∞ denotes the usual weak 𝐿𝑝0-space, see [84]. Now, let 𝑝 ∈ (𝑝0, 2) and 1/𝑝 =
(1 − 𝜃)/𝑝0 + 𝜃/2. By real interpolation this entails boundedness of  

𝐿
1
2: (𝕎𝐷

1,𝑝0(𝛺),𝕎𝐷
1,2(𝛺))

𝜃,𝑝
→ (𝐿𝑝0,∞(𝛺)𝑚, 𝐿2(𝛺)𝑚)𝜃,𝑝, 

see e.g. [84] for background on these notions. Up to equivalent norms the left-hand space 

is 𝕎𝐷
1,𝑝(𝛺), see [206]. The right-hand space is 𝐿𝑝(𝛺)𝑚 up to equivalent norms, see [84]. 

Thus,  

‖𝐿
1
2𝑢‖

𝐿𝑝(𝛺)𝑚
≲ ‖𝑢‖

𝕎𝐷
1,𝑝
(𝛺)
         (𝑢 ∈ 𝕎𝐷

1,2(𝛺)).                (78) 

(In [206] only the case 𝑚 = 1 was considered, but real interpolation interchanges with 

finite products of spaces by an abstract principle, see [84] or [261].) Since p is an interior 
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point of 𝒥(𝐿), Corollary (5.3.22) provides the estimate reverse to (78). This means that 𝐿
1

2 

extends to a one-to-one operator 𝕎𝐷
1,𝑝(𝛺) → 𝐿𝑝(𝛺)𝑚 with closed range. Furthermore, 

from Theorem (5.3.6) we know ℛ (𝐿
1

2) = 𝐿2(𝛺)𝑚. Hence, this extension has dense range 

and therefore is an isomorphism. We have picked up implicit constants depending on ⟦𝑝0⟧, 
geometry, and on p. The latter comes in particular from real interpolation.  

This completes proof of Theorem (5.3.16) modulo the  

Proposition (5.3.26)[246]: For 𝑝 ∈ (𝐿) ∩ (1, 2∗) the weak-type bound  

|{𝑥 ∈ Ω: |𝐿
1
2𝑢(𝑥)| > 𝛼}| ≲

1

𝛼𝑝
‖𝑢‖

𝕎𝐷
1,𝑝

𝑝
     (𝛼 > 0, 𝑢 ∈ 𝕎𝐷

1,2(𝛺)), 

with an implicit constant depending on ⟦𝑝⟧ and geometry.  

Proof. The argument follows the lines of [206] with two essential differences: A different 

Calderón–Zygmund decomposition and the presence of the technical condition 𝑝 < 2∗. 
The raison d’être for the latter is to have at our disposal 

(i) 𝐿𝑝
∗
→ 𝐿2 off-diagonal estimates for {𝑒−𝑡𝐿}𝑡>0 and  

(ii) 𝐿𝑝
∗
 boundedness of the 𝐻∞(𝑆𝜓

+)-calculus for L of some fixed angle 𝜓 ∈ (0, 𝜋/2). 

Indeed, since 𝑝 < 𝑝∗ < 2 the first property is a consequence of Proposition (5.3.12).(iii) 

and implicit constants depend only on ⟦𝑝⟧ and geometry. Similarly, the second property is 

due to Theorem (5.3.20) with the same dependence of implicit constants.  

To get started, let 𝛼 > 0 and 𝑢 ∈ 𝕎𝐷
1,2(𝛺). In particular we have 𝑢 ∈ 𝕎𝐷

1,𝑝(𝛺) and within 

this space we decompose  

𝑢 = 𝑔 + 𝑏, 𝑏 =∑𝑏𝑗
𝑗∈𝐽

 

according to Lemma (5.3.24). Since g is contained in 𝕎𝐷
1,2(𝛺), the above is also a 

decomposition in that space. In the further course of the proof (i)–(viii) will refer to the 

respective features of the Calderón–Zygmund decomposition. We then split      

|{𝑥 ∈ Ω: |𝐿
1
2𝑢(𝑥)| > 𝛼}|

≤ |{𝑥 ∈ Ω: |𝐿
1
2𝑔(𝑥)| >

𝛼

2
}| + |{𝑥 ∈ Ω: |𝐿

1
2𝑏(𝑥)| >

𝛼

2
}| .                    (79) 

Step 1: Estimate of the good part. The good function produces an easy-to-handle term. By 

Hölder’s inequality, (iii), and (vi) (or (77) as it were), we have  

‖𝑔‖
𝕎𝐷
1,2

2 ≲ 𝛼2−𝑝‖𝑔‖
𝕎𝐷
1,𝑝

𝑝
≲ 𝛼2−𝑝‖𝑢‖

𝕎𝐷
1,𝑝

𝑝
 

and the desired bound follows from Tchebychev’s inequality and Theorem (5.3.6): 

|{𝑥 ∈ Ω: |𝐿
1
2𝑔(𝑥)| >

𝛼

2
}| ≤ 4/𝛼2 ‖𝐿

1
2𝑔‖

2

2

≲
1

𝛼2
‖𝑔‖

𝕎𝐷
1,2

2 ≲
1

𝛼𝑝
‖𝑢‖

𝕎𝐷
1,𝑝

𝑝
. 

Step 2: Further decomposition of the bad part. We turn to the second term on the right-

hand side of (79). Here, we start out with the formula,  

𝐿
1
2𝑏 =

2

√𝜋
∫ 𝐿𝑒−𝑡

2𝐿𝑏 𝑑𝑡
∞

0

, 

which is a direct consequence of (48). Hence,      
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|{𝑥 ∈ Ω: |𝐿
1
2𝑏(𝑥)| >

𝛼

2
}| = |{𝑥 ∈ Ω: lim inf

𝑛→∞
|
2

√𝜋
∫ 𝐿𝑒−𝑡

2𝐿
𝑏(𝑥)𝑑𝑡

∞

2−𝑛
| >

𝛼

2
}|

≤ lim inf
𝑛→∞

|{𝑥 ∈ Ω: |
2

√𝜋
∫ 𝐿𝑒−𝑡

2𝐿𝑏(𝑥)𝑑𝑡
∞

2−𝑛
| >

𝛼

2
}| . 

Denote the sidelength of 𝑄𝑗 by ℓ𝑗 and write 𝑟𝑗 = 2
ℓ for the unique value ℓ ∈ ℤ that 

satisfies 2ℓ ≤ ℓ𝑗 < 2
ℓ+1. Then, we split the integral for every 𝑛 ∈ ℕ as 

|{𝑥 ∈ Ω: |
2

√𝜋
∫ 𝐿𝑒−𝑡

2𝐿𝑏(𝑥)𝑑𝑡
∞

2−𝑛
| >

𝛼

2
}|

≤ |{𝑥 ∈ Ω: |∑∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗(𝑥)𝑑𝑡

𝑟𝑗∨2
−𝑛

2−𝑛𝑗∈𝐽

| >
√𝜋𝛼

8
}|

+ |{ 𝑥 ∈ Ω: |∑∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗(𝑥)𝑑𝑡

∞

𝑟𝑗∨2
−𝑛

 𝑗∈𝐽

| >
√𝜋𝛼

8
}|,                                     (80) 

where sum and integral could be interchanged since on the one hand the sum over the 𝑏𝑗 

converges in 𝐿𝑝
∗
 due to (viii) and Sobolev embeddings (making use of the extension 

operators as usual) and on the other hand 𝐿𝑒−𝑡
2𝐿 is bounded on 𝐿𝑝

∗
 with norm under 

control by 𝑡−2 by the bounded 𝐻∞-calculus. We also note that the 𝑏𝑗 are in 𝐿2, see (vii).  

Step 3: Estimate of the first term on the right of (80). We may assume 𝑟𝑗 > 2
−𝑛. From 

Tchebychev’s inequality we can infer 

|{𝑥 ∈ Ω: |∑∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗(𝑥)𝑑𝑡

𝑟𝑗

2−𝑛𝑗∈𝐽

| >
√𝜋𝛼

8
}|

≤ |⋃4𝑄𝑗
𝑗∈𝐽

| +
64

𝜋𝛼2
‖1Ω\∪𝑗∈𝐽4𝑄𝑗∑∫ 𝐿𝑒−𝑡

2𝐿𝑏𝑗𝑑𝑡
𝑟𝑗

2−𝑛𝑗∈𝐽

‖

2

2

.                               (81) 

The union of the cubes 4𝑄𝑗 does not cause any problems since its measure can be 

controlled by ‖𝑢‖
𝕎𝐷
1,𝑝

𝑝
/𝛼𝑝, see (v). We start to estimate the leftover 𝐿2 norm by testing 

against 𝑣 ∈ 𝐿2(𝛺)𝑚 with ‖𝑣‖2 = 1: 

|∫ �̅�1Ω\∪𝑗∈𝐽4𝑄𝑗 (∑∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡

𝑟𝑗

2−𝑛𝑗∈𝐽

)𝑑𝑥
Ω

|

≤∑∫ |𝑣| |∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡

𝑟𝑗

2−𝑛
|

Ω\4𝑄𝑗

𝑑𝑥

𝑗∈𝐽

.                                                (82) 

For fixed j we split Ω\4𝑄𝑗 into annuli 𝐶𝑘(𝑄𝑗) ∩ Ω, where 𝐶𝑘(𝑄𝑗) = 2
𝑘+1𝑄𝑗\2

𝑘𝑄𝑗, and 

apply the Cauchy–Schwarz inequality to give 

∫ |𝑣| |∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡

𝑟𝑗

2−𝑛
| 𝑑𝑥

Ω\4𝑄𝑗

 

≤ ∑‖𝑣‖𝐿2(𝐶𝑘(𝑄𝑗)∩Ω) ‖∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡

𝑟𝑗

2−𝑛
‖
𝐿2(𝐶𝑘(𝑄𝑗)∩Ω)

∞

𝑘=2

.                              (83) 
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Identifying v with its extension by zero to ℝ𝑑, we obtain for every 𝑦 ∈ 𝑄𝑗 that  

‖𝑣‖𝐿2(𝐶𝑘(𝑄𝑗)∩Ω)
2 ≲ 2𝑑𝑘ℓ𝑗

𝑑𝑀(|𝑣|2)(𝑦). 

To control the other norm on the right-hand side of (83) we recall that as far as off-

diagonal estimates are concerned, we have 𝐿𝑝
∗
→ 𝐿2 for {𝑒−𝑡𝐿}𝑡>0. Since we also have 

𝐿2 → 𝐿2 for {𝑡𝐿𝑒−𝑡𝐿}𝑡>0 from Proposition (5.3.11), we obtain 𝐿𝑝
∗
→ 𝐿2 for {𝑡𝐿𝑒−𝑡𝐿}𝑡>0 by 

composition as in the proof of Proposition (5.3.12).(iv). All implied results contain a 

statement about implicit constants and so we may note without any pain that  

‖𝑡2𝐿𝑒−𝑡
2𝐿𝑏𝑗‖𝐿2(𝐶𝑘(𝑄𝑗)∩Ω)

≤ 𝐶𝑡
𝑑
2
−
𝑑
𝑝∗𝑒

−
𝑐4𝑘−1𝑟𝑗

2

𝑡2 ‖𝑏𝑗‖𝐿𝑝∗
(𝛺), 

where 𝐶, 𝑐 ∈ (0,∞) depend on ⟦𝑝⟧ and geometry, and we have used that 𝑏𝑗 is supported in 

𝑄𝑗, see (ii). From Sobolev embeddings and (iv) we can infer ⟦𝑏𝑗⟧𝑝∗ ≲ 𝛼ℓ𝑗

𝑑

𝑝
 so that 

altogether 

‖∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡

𝑟𝑗

2−𝑛
‖
𝐿2(𝐶𝑘(𝑄𝑗)∩Ω)

≤ ∫ ‖𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡‖𝐿2(𝐶𝑘(𝑄𝑗)∩Ω)

𝑑𝑡
𝑟𝑗

2−𝑛

≲ 𝛼ℓ
𝑗

𝑑
𝑝
∫ 𝑡

𝑑
2
−
𝑑
𝑝∗
−2
𝑒
−
𝑐4𝑘−1𝑟𝑗

2

𝑡2 𝑑𝑡
𝑟𝑗

0

 

=
1

2
𝛼ℓ
𝑗

𝑑
𝑝
(4𝑘𝑟𝑗

2)
𝑑
4
−
𝑑
2𝑝∗

−
1
2∫ 𝑠

−
𝑑
4
+
𝑑
2𝑝∗

−
1
2𝑒−

𝑐𝑠
4 𝑑𝑠

∞

4𝑘
, 

the last step being due to a change of variables 𝑠 = 4𝑘𝑟𝑗
2/𝑡2. Abbreviating 𝛾 = −𝑑/2 +

𝑑/𝑝∗ + 1 > 0 and using 2𝑟𝑗 ≥ ℓ𝑗, we obtain  

≤
1

2
𝛼ℓ
𝑗

𝑑
22−(𝑘−1)𝛾∫ 𝑠

𝛾
2
−1𝑒−

𝑐𝑠
4 𝑑𝑠

∞

4𝑘
≤
1

2
𝛼ℓ
𝑗

𝑑
22−(𝑘−1)𝛾𝑒−𝑐4

𝑘−3
∫ 𝑠

𝛾
2
−1𝑒−

𝑐𝑠
8 𝑑𝑠

∞

0

. 

The integral in s is finite. Coming back to (83), so far we have for every 𝑦 ∈ 𝑄𝑗 that 

∫ |𝑣| |∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡

𝑟𝑗

2−𝑛
| 𝑑𝑥

Ω\4𝑄𝑗

≲ 𝛼ℓ𝑗
𝑑(𝑀(|𝑣|2)(𝑦))

1
2∑2

(
𝑑
2
−𝛾)𝑘

𝑒−𝑐4
𝑘−3

∞

𝑘=2

, 

where the sum over k is finite. So, we can average with respect to y to give  

∫ |𝑣| |∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡

𝑟𝑗

2−𝑛
| 𝑑𝑥

Ω\4𝑄𝑗

≲ 𝛼∫ (𝑀(|𝑣|2)(𝑦))
1
2𝑑𝑦

𝑄𝑗

. 

Now, we re-insert this estimate on the right-hand of our starting point (82). Invoking the 

finite overlap property (ii) of the 𝑄𝑗, we obtain  

|∫ 𝑣1∪𝑗∈𝐽4𝑄𝑗 (∑∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡

𝑟𝑗

2−𝑛𝑗∈𝐽

)𝑑𝑥
Ω

| ≲ 𝛼∫ (𝑀(|𝑣|2)(𝑦))
1
2𝑑𝑦

∪𝑗∈𝐽𝑄𝑗

. 

From Kolmogorov’s inequality [260], (v), and the normalization of v we can infer  

∫ (𝑀(|𝑣|2)(𝑦))
1
2𝑑𝑦

∪𝑗∈𝐽𝑄𝑗

≲ |⋃𝑄𝑗
𝑗∈𝐽

|

1
2

‖|𝑣|2‖1

1
2 ≤ (∑|𝑄𝑗|

𝑗∈𝐽

)

1
2

‖𝑣‖2 ≲
1

𝛼
𝑝
2

‖𝑢‖
𝕎𝐷
1,𝑝

𝑝
2 . 

Going all the way back to the start, we have also bound the 𝐿2 norm occurring in (81) by 

𝛼2−𝑝‖𝑢‖
𝕎𝐷
1,𝑝

𝑝
 and therefore completed Step 3.  
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Step 4: Estimate of the second term on the right of (80). In preparation of the estimate, we 

define  

𝑓(𝑧) = ∫ 𝑧𝑒−𝑡
2𝑧𝑑𝑡

∞

1

                    (𝑅𝑒 𝑧 > 0) 

and note 𝑓 ∈ 𝐻0
∞(𝑆𝜓

+) for any angle 𝜓 ∈ (0,
𝜋

2
), see also [206]. We have bounded 

operators 𝑓(𝑟2𝐿) for 𝑟 > 0 on 𝐿2, which extend boundedly to 𝐿𝑝
∗
 as we have noted right 

at the start. By the very definition of the functional calculus and Fubini’s theorem we can 

write more conveniently  

𝑓(𝑟2𝐿) = ∫ 𝑟2𝐿𝑒−𝑡
2𝑟2𝐿𝑑𝑡

∞

1

= 𝑟∫ 𝐿𝑒−𝑡
2𝐿𝑑𝑡

∞

𝑟

. 

Introducing 𝐽𝑘: = {𝑗 ∈ 𝐽: 𝑟𝑗 ∨ 2
−𝑛 = 2𝑘} for 𝑘 ∈ ℤ, we therefore have  

∑∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡

∞

𝑟𝑗∨2
−𝑛

𝑗∈𝐽

=∑∑∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗𝑑𝑡

∞

2𝑘𝑗∈𝐽𝑘𝑘∈ℤ

=∑∑
1

2𝑘
𝑓(4𝑘𝐿)𝑏𝑗

𝑗∈𝐽𝑘𝑘∈ℤ

. 

We start the actual estimate with Tchebychev’s inequality 

|{𝑥 ∈ Ω: |∑∫ 𝐿𝑒−𝑡
2𝐿𝑏𝑗(𝑥)𝑑𝑡

∞

𝑟𝑗∨2
−𝑛

𝑗∈𝐽

| >
√𝜋𝛼

8
}| ≤

8𝑝∗

𝜋
𝑝∗

2 𝛼𝑝
∗

‖∑∑
1

2𝑘
𝑓(4𝑘𝐿)𝑏𝑗

𝑗∈𝐽𝑘𝑘∈ℤ

‖

𝑝∗

𝑝∗

. 

Since ∑ 𝑏𝑗𝑗∈𝐽𝑘  converges in 𝕎𝐷
1,𝑝(𝛺) by (viii) and hence in 𝐿𝑝

∗
, we may write 

=
8𝑝

∗

𝜋
𝑝∗

2 𝛼𝑝
∗

‖∑𝑓(4𝑘𝐿)(∑ 2−𝑘𝑏𝑗
𝑗∈𝐽𝑘

)

𝑘∈ℤ

‖

𝑝∗

𝑝∗

 

and obtain from Lemma (5.3.27) below the bound  

≲
1

𝛼𝑝
∗ ‖
‖(∑|∑ 2−𝑘𝑏𝑗

𝑗∈𝐽𝑘

|

2

𝑘∈ℤ

)

1
2

‖
‖

𝑝∗

𝑝∗

=
1

𝛼𝑝
∗∫ (∑|∑ 2−𝑘𝑏𝑗(𝑥)

𝑗∈𝐽𝑘

|

2

𝑘∈ℤ

)

𝑝∗

2

𝑑𝑥
Ω

. 

Here, implicit constants depend only on 𝑝∗ and a bound for the 𝐻∞-calculus for L on 𝐿𝑝
∗
 

(of some angle 𝜓 ∈ (0, 𝜋/2)). We have seen that the latter can be given in terms of ⟦𝑝⟧ 
and geometry. Due to 𝑝∗/2 < 1 we can continue by 

≤
1

𝛼𝑝
∗∫ ∑(∑|2−𝑘𝑏𝑗(𝑥)|

𝑗∈𝐽𝑘

)

𝑝∗

𝑘∈ℤ

𝑑𝑥
Ω

. 

As a consequence of (ii) the sum in j contains for fixed x at most 12𝑑 non-zero terms. 

Thus, we can replace the inner ℓ1-norm by an ℓ𝑝
∗
-norm at the expense of a constant 

depending on p and d in order to give  

≲
1

𝛼𝑝
∗∫ ∑∑ 2−𝑘𝑝

∗
|𝑏𝑗(𝑥)|

𝑝∗

𝑑𝑥

𝑗∈𝐽𝑘𝑘∈ℤΩ

≤
2𝑝

∗

𝛼𝑝
∗∑ℓ𝑗

−𝑝∗
∫ |𝑏𝑗(𝑥)|

𝑝∗

𝑑𝑥
Ω𝑗∈𝐽

, 

where we have used 
1

2
ℓ𝑗 ≤ 𝑟𝑗 ≤ 2

𝑘 for 𝑗 ∈ 𝐽𝑘. Finally, by Sobolev embeddings, (iv), and 

(v) we deduce  
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≲
1

𝛼𝑝
∗∑ℓ𝑗

−𝑝∗
‖𝑏𝑗‖𝕎𝐷

1,𝑝

𝑝∗

𝑗∈𝐽

≲∑ℓ−𝑝∗
𝑗

|𝑄𝑗|
𝑝∗

𝑝

𝑗∈𝐽

=∑|𝑄𝑗|

𝑗∈𝐽

≲
1

𝛼𝑝
‖𝑢‖

𝕎𝐷
1,𝑝

𝑝
. 

This completes the proof of the proposition modulo Lemma (5.3.27), which we prove 

below. 

Let us remark that for Ω = ℝ𝑑 the following lemma was obtained in [210] for 𝑝 < 2 by 

duality and a weak type criterion for 𝑝 > 2, which we do not have at our disposal. Later, 

in [206] it was proved for 𝑝 ∈ (1,∞) through profound ℛ-boundedness techniques for the 

functional calculi that make it hard to track implicit constants. Here, we present a more 

elementary approach.  

Lemma (5.3.27)[246]: Let 𝑝 ∈ (1,∞), 𝛯 ⊆ ℝ𝑑 be a measurable set, and 𝑛 ∈ ℕ. Let T be a 

one-to-one sectorial operator in 𝐿2(𝛯)𝑛 such that for some 𝜓 ∈ (0, 𝜋) it holds  

‖𝑓(𝑇)𝑢‖𝑝 ≤ 𝐶𝜓‖𝑓‖∞‖𝑢‖𝑝     (𝑓 ∈ 𝐻
∞(𝑆𝜓

+), 𝑢 ∈ 𝐿2(𝛯)𝑛 ∩ 𝐿𝑝(𝛯)𝑛).  

Let 𝑓 ∈ 𝐻0
∞(𝑆𝜓

+). Then there is a constant 𝐶 ∈ (0,∞) that depends on 𝑓, 𝜓, such that 

‖∑𝑓(4𝑘𝑇)𝑢𝑘
𝑘∈ℤ

‖

𝑝

≤ 𝐶𝐶𝜓 ‖(∑|𝑢𝑘|
2

𝑘∈ℤ

)

1
2

‖

𝑝

 

for every sequence {𝑢𝑘}𝑘∈ℤ ⊆ 𝐿
2(𝛯)𝑛 ∩ 𝐿𝑝(𝛯)𝑛 for which the right-hand side is finite.  

Proof. The adjoint 𝑇∗ has the same properties as T with p replaced by its Hölder conjugate 

q. This follows from the identity 𝑔(𝑇)∗ = 𝑔∗(𝑇∗), where 𝑔∗(𝑧) = 𝑔(𝑧)̅̅ ̅̅ ̅̅  and 𝑔 ∈ 𝐻∞(𝑆𝜓
+). 

Arguing by duality, it suffices to show 

‖(∑|𝑓∗(4𝑘𝑇∗)𝑣|
2

𝑘∈ℤ

)

1
2

‖

𝑞

≤ 𝐶𝐶𝜓‖𝑣‖𝑞     (𝑣 ∈ 𝐿
2(𝛯)𝑛 ∩ 𝐿𝑞(𝛯)𝑛).       (84) 

Let {𝑟𝑘}𝑘∈ℤ be a sequence of symmetric independent {−1, 1}-valued random variables on 

the unit interval and let 𝑁 ∈ ℕ. By orthogonality of the 𝑟𝑘 in 𝐿2(0, 1) we have 

‖( ∑ |𝑓∗(4𝑘𝑇∗)𝑣|
2

𝑁

𝑘=−𝑁

)

1
2

‖

𝑞

𝑞

= ∫ (∫ | ∑ 𝑟𝑘(𝑠)𝑓
∗(4𝑘𝑇∗)𝑣(𝑥)

𝑁

𝑘=−𝑁

|

2

𝑑𝑠
1

0

)

𝑞
2

𝑑𝑥
𝛯

. 

Kahane’s inequality [2] allows us to replace the 𝐿2 norm in s by an 𝐿1 norm at the expense 

of an absolute constant 𝐶 ∈ [1,∞). Then we can apply Jensen’s inequality to give 

≤ 𝐶 ∫ ∫ | ∑ 𝑟𝑘(𝑠)𝑓
∗(4𝑘𝑇∗)𝑣(𝑥)

𝑁

𝑘=−𝑁

|

𝑞

𝑑𝑠 𝑑𝑥
1

0𝛯

= 𝐶∫ ‖ ∑ 𝑟𝑘(𝑠)𝑓
∗(4𝑘𝑇∗)𝑣

𝑁

𝑘=−𝑁

‖

𝑞

𝑞

𝑑𝑠
1

0

≤ 𝐶 sup
|𝑎𝑘|≤1

‖ ∑ 𝑎𝑘𝑓
∗(4𝑘𝑇∗)𝑣

𝑁

𝑘=−𝑁

‖

𝑞

𝑞

, 

where the 𝑎𝑘 are complex numbers. The bounded 𝐻∞(𝑆𝜓
+)-calculus for 𝑇∗ yields     
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‖( ∑ |𝑓∗(4𝑘𝑇∗)𝑣|
2

𝑁

𝑘=−𝑁

)

1
2

‖

𝑞

≤ 𝐶𝐶𝜓‖𝑣‖𝑞 (sup
𝑧∈𝑆𝜓

+
∑ |𝑓∗(4𝑘𝑧)|

∞

𝑘=−∞

). 

In order to see that this estimate implies (84), let us recall that by assumption there exist 

𝐶′, 𝑠 > 0 such that |𝑓∗(𝑧)| ≤ 𝐶′min{|𝑧|𝑠, |𝑧|−𝑠} for all ∈ 𝑆𝜓
+. Hence, given z, we choose 

𝑘0 ∈ ℤ such that 4𝑘0 ≤ |𝑧| < 4𝑘0+1 and obtain 

∑ |𝑓∗(4𝑘𝑧)|

∞

𝑘=−∞

≤ 𝐶′ ∑ min{|4𝑘𝑧|
𝑠
 , |4𝑘𝑧|

−𝑠
}

∞

𝑘=−∞

≤ 𝐶′4𝑠 ∑ min{4(𝑘+𝑘0)𝑠, 4−(𝑘+𝑘0)𝑠}

∞

𝑘=−∞

≤
2𝐶′42𝑠

4𝑠 − 1
 

by a computation of the geometric series. 

To begin with, let us recall that L is the maximal restriction to 𝐿2(𝛺)𝑚 of the isomorphism 

ℒ:𝕎𝐷
1,2(𝛺) → 𝕎𝐷

−1,2(𝛺). 

Lemma (5.3.28)[246]: For 𝑢 ∈ 𝒟 (𝐿
1

2) and 𝑣 ∈ 𝐿2(𝛺)𝑚 the duality formula  

(𝐿
1
2𝑢|𝑣) = 〈ℒ𝑢|(𝐿∗)−

1
2𝑣〉. 

Proof. It suffices to take u in 𝒟(𝐿) since the latter is a core for 𝒟 (𝐿
1

2) = 𝕎𝐷
1,2(𝛺) and 

ℒ:𝒟 (𝐿
1

2) → 𝕎𝐷
−1,2(𝛺) is bounded. In this case ℒ𝑢 = 𝐿𝑢 ∈ 𝐿2(𝛺)𝑚 and the claim follows 

from the duality formula (𝐿
1

2)
∗

= (𝐿∗)
1

2 for the functional calculi. 

The subsequent proof was inspired by that of [257].  

Theorem (5.3.29)[246]: Suppose 𝛺 ⊆ ℝ𝑑 is a bounded domain satisfying Assumptions D, 

N, and Ω. There exists 𝜀(𝐿) > 0 such that 𝐿
1

2 restricts to an isomorphism 𝕎𝐷
1,𝑝(𝛺) →

𝐿𝑝(𝛺)𝑚 for every 𝑝 ∈ [2, 2 + 𝜀(𝐿)). Moreover, 𝜀(𝐿) depends on ellipticity, dimensions, 

and geometry. Upper and lower bounds of the restriction import at most an additional 

dependence on p.  

Proof. We pick 𝜀(𝐿) > 0 depending on ellipticity, dimensions, and geometry, such that 

for 𝑝 ∈ (2, 2 + 𝜀(𝐿)),  

(i) ℒ restricts to an isomorphism 𝕎𝐷
1,𝑝(𝛺) → 𝕎𝐷

−1,𝑝(𝛺) and  

(ii) (𝐿∗)
1

2 extends to an isomorphism 𝕎𝐷
1,𝑝′(𝛺) → 𝐿𝑝

′
(𝛺)𝑚. 

The former is rendered possible by Proposition (5.3.15), the latter by Theorem (5.3.25) 

and Theorem (5.3.16) for 𝐿∗. Upper and lower bounds of these isomorphisms import at 

most an additional dependence on p.  

Now, let 𝑢 ∈ 𝕎𝐷
1,𝑝(𝛺) and 𝑣 ∈ 𝐿2(𝛺)𝑚. By Lemma (5.3.28), (i), and (ii) we have  

|(𝐿
1
2𝑢|𝑣)| ≤  ‖ℒ𝑢‖𝕎𝐷

−1,𝑝 ‖(𝐿∗)−
1
2𝑣‖

𝕎𝐷
1,𝑝′
≲ ‖𝑢‖

𝑊𝐷
1,𝑝‖𝑣‖𝑝′ . 

Thus, 𝐿
1

2𝑢 ∈ 𝐿𝑝(𝛺)𝑚 and 𝐿
1

2 restricts to a bounded operator 𝕎𝐷
1,𝑝(𝛺) → 𝐿𝑝(𝛺)𝑚. As a 

restriction of an invertible operator it is already one-to-one. To show that it is also onto, let 
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𝑓 ∈ 𝐿𝑝(𝛺). There exists 𝑢 ∈ 𝕎𝐷
1,2(𝛺) such that 𝐿

1

2𝑢 = 𝑓 . Given an arbitrary 𝑤 ∈

𝕎𝐷
1,2(𝛺), we apply Lemma (5.3.28) with 𝑣 = (𝐿∗)

1

2𝑤 and use (i), (ii) to give  

|〈ℒ𝑢|𝑤〉| ≤ ‖𝐿
1
2𝑢‖

𝑝
‖(𝐿∗)

1
2𝑤‖

𝑝′
≲ ‖𝐿

1
2𝑢‖

𝑝

‖𝑤‖
𝕎𝐷
1,𝑝 = ‖𝑓‖𝑝‖𝑤‖

𝕎𝐷
1,𝑝′ . 

Thus ℒ𝑢 ∈ 𝕎𝐷
−1,𝑝(𝛺), which implies 𝑢 ∈ 𝕎𝐷

1,𝑝(𝛺) thanks to (i). 

We remind that for 𝑝 = 2 the holomorphic dependence of the 𝐻∞-calculus and the square 

root as stated in parts (i) and (ii) of Theorem (5.3.1) have already been obtained. Compare 

with Corollaries (5.3.7) and (5.3.8). For p as specified in (i) and (ii) of Theorem (5.3.1) 

they are at least locally bounded on O as we have proved in Theorems (5.3.20), (5.3.25), 

and (5.3.29), respectively.  

For 𝑝 ∈ (1,∞) let now 𝑋𝑝 denote either of the spaces 𝐿𝑝(𝛺)𝑚 and 𝕎𝐷
1,𝑝(𝛺). Then 𝑋𝑝 is 

reflexive and 𝑋𝑝 ∩ 𝑋2 is dense in both 𝑋2 and 𝑋𝑝. Hence, all statements of Theorem 

(5.3.1) are instances of the subsequent abstract result on vector-valued holomorphic 

functions. See [248] for general background. We say that two Banach spaces are 

compatible if they are included in the same linear Hausdorff space.  

Lemma (5.3.30)[246]: Let (𝑋1, 𝑋2) and (𝑌1, 𝑌2) be two pairs of compatible complex 

Banach spaces. Suppose that 𝑋1 ∩ 𝑋2 is dense in both 𝑋1 and 𝑋2, 𝑌1 ∩ 𝑌2 is dense in both 

𝑌1 and 𝑌2, and that 𝑌2 is reflexive. Let 𝑂 ⊆ ℂ be an open set and 𝑓: 𝑂 → ℒ(𝑋1, 𝑌1) 
holomorphic. If there is a finite constant C such that  

‖𝑓(𝑧)𝑥‖𝑌2 ≤ 𝐶‖𝑥‖𝑋2             (𝑧 ∈ 𝑂, 𝑥 ∈ 𝑋1 ∩ 𝑋2), 

then each 𝑓(𝑧) extends from 𝑋1 ∩ 𝑋2 to a bounded operator 𝑋2 → 𝑌2, denoted also 𝑓(𝑧), 
and 𝑓: 𝑂 → ℒ(𝑋2, 𝑌2) is holomorphic.  

Proof. The extension 𝑓: 𝑂 → ℒ(𝑋2, 𝑌2) comes from the assumption and since 𝑋1 ∩ 𝑋2 is 

dense in 𝑋2. For clarity let us call it g just in this proof. Our assumption guarantees 

‖𝑔(𝑧)‖ℒ(𝑋2,𝑌2) ≤ 𝐶 for all 𝑧 ∈ 𝑂, that is to say, g is bounded.  

Next we shall prove that the intersection 𝑌1
∗ ∩ 𝑌2

∗ has a meaning and is a dense subspace of 

𝑌2
∗. Since 𝑌1 and 𝑌2 are compatible, we can consider their sum  

𝑌1 + 𝑌2 = {𝑦1 + 𝑦2: 𝑦1 ∈ 𝑌1, 𝑦2 ∈ 𝑌2}, ‖𝑦‖𝑌1+𝑌2 = inf
𝑦1∈𝑌1,𝑦2∈𝑌2
𝑦=𝑦1+𝑦2

‖𝑦1‖𝑌1 + ‖𝑦2‖𝑌2 . 

This is again a Banach space [84]. Since 𝑌1 ∩ 𝑌2 is dense in both 𝑌1 and 𝑌2, it is also dense 

in 𝑌1 + 𝑌2. This justifies to interpret, by restriction of functionals, the inclusions  

(𝑌1 + 𝑌2)
∗ ⊆ 𝑌2

∗      and     (𝑌1 + 𝑌2)
∗ ⊆ 𝑌1

∗ ∩ 𝑌2
∗ 

within the ambient space (𝑌1 ∩ 𝑌2)
∗. The first inclusion is dense since 𝑌2 is reflexive: Any 

functional on 𝑌2
∗ that annihilates (𝑌1 + 𝑌2)

∗ is given by evaluation at some element of 𝑌2, 
which therefore has to vanish in 𝑌1 + 𝑌2. The second one is even an equality: Every 𝑦∗ ∈

𝑌1
∗ ∩ 𝑌2

∗ satisfies |𝑦∗(𝑦)| ≤ max{‖𝑦∗‖𝑌1∗ , ‖𝑦
∗‖𝑌2∗} ‖𝑦‖𝑌1+𝑌2 for all 𝑦 ∈ 𝑌1 ∩ 𝑌2 and hence 

extends by density to a functional on 𝑌1 + 𝑌2. The intermediate claim follows from these 

two observations. By the dense inclusions just alluded to, we can compute the norm of any 

𝑇 ∈ ℒ(𝑋2, 𝑌2) as 

‖𝑇‖ℒ(𝑋2,𝑌2) = sup
𝑥∈𝑋1∩𝑋2
‖𝑥‖𝑋2=1

sup
𝑦∗∈𝑌1

∗∩𝑌∗2

‖𝑦∗‖𝑌2
∗  =1

|〈𝑦∗|𝑇𝑥〉𝑌2∗,𝑌2| . 
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Since 𝑔 is bounded, the weak-strong principle for holomorphic functions entails that 

holomorphy of 𝑔 is equivalent to holomorphy of all functions ⟼ 〈𝑦∗| 𝑔(𝑧)𝑥〉𝑌2∗,𝑌2, where 

𝑥 ∈ 𝑋1 ∩ 𝑋2 and 𝑦 ∈ 𝑌1
∗ ∩ 𝑌2

∗, see [248]. But the latter follows from the holomorphy of f 

since we have  

〈𝑦∗|𝑔(𝑧)𝑥〉𝑌2∗,𝑌2 = 〈𝑦
∗|𝑓(𝑧)𝑥〉𝑌1∗,𝑌1  

by construction.  
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Chapter 6 

Pointwise Estimates and Hastings Additivity  

 

We show that the ratio between the probability density and the standard Gaussian 

density in 𝐸 is very close to 1 in large parts of 𝐸. Here 𝑐 > 0 is a universal constant. This 

complements a recent result by the second named author, where the total variation metric 

between the densities was considered. We show that Hastings’s counterexample to the 

additivity of minimal output von Neumann entropy can be readily deduced from a sharp 

version of Dvoretzky’s theorem. For any 2 <  𝑝 <  ∞ and every 𝑛-dimensional subspace 

𝑋 of 𝐿𝑝, the Euclidean space ℓ2
𝑘 can be (1 +  𝜀)-embedded into 𝑋 with 𝑘 ≥

𝑐𝑝min {𝜀
2𝑛, (𝜀𝑛)

2

𝑝}, where 𝑐𝑝 > 0 is a constant depending only on 𝑝. This improves upon 

the previously known estimate due to Figiel, Lindenstrauss and Milman. 

Section (6.1): Marginals of Convex Bodies 

Suppose 𝑋 is a random vector in ℝ𝑛 that is distributed uniformly in some convex set 

𝐾 ⊂  ℝ𝑛. For a subspace 𝐸 ⊂  ℝ𝑛 we denote by Proj𝐸 the orthogonal projection operator 

onto 𝐸 in ℝ𝑛. The central limit theorem for convex bodies [289],[290] asserts that there 

exists a subspace 𝐸 ⊂  ℝ𝑛, with dim(𝐸)  >  𝑛𝑐, such that the random vector Proj𝐸(𝑋) is 

approximately Gaussian, in the total variation sense. This means that for a certain 

Gaussian random vector Γ in the subspace 𝐸,  

sup
𝐴⊆𝐸

 |ℙ {𝑃𝑟𝑜j𝐸(𝑋) ∈  𝐴  − ℙ{𝛤 ∈  𝐴}| ≤
𝐶

𝑛𝑐
 ,                     (1)  

where the supremum runs over all measurable subsets A ⊆ E. Here, the letters 

𝑐, 𝐶, 𝑐1, 𝐶2, 𝑐
′ , �̃�, etc. denote some positive universal constants, whose value may change 

from one appearance to the next. The total variation estimate (1) implies that the density of 

Proj𝐸(𝑋) is close to the density of Γ in the 𝐿1-norm. We observe that a stronger conclusion 

is within reach: One may deduce that the ratio between the density of Proj𝐸(𝑋) and the 

density of Γ deviates from 1 by no more than 𝐶𝑛−𝑐 , in the significant parts of the subspace 

𝐸.  

We introduce some notation. Write |·| for the standard Euclidean norm in ℝ𝑛. A random 

vector 𝑍 in ℝ𝑛 is isotropic if the following normalization holds:  

𝔼𝑍 =  0, Cov(𝑍) =  𝐼𝑑                                           (2)  
where Cov(𝑍) stands for the covariance matrix of 𝑍, and 𝐼𝑑 is the identity matrix. The 

Grassman manifold 𝐺𝑛, of all -dimensional subspaces of ℝ𝑛 carries a unique rotationally-

invariant probability measure 𝜇𝑛,. Whenever we say that 𝐸 is a random -dimensional 

subspace in ℝ𝑛, we relate to the above probability measure 𝜇𝑛,. Under the additional 

assumption that the random vector 𝑋 is isotropic, the subspace 𝐸 for which Proj𝐸(𝑋) is 

approximately Gaussian may be chosen at random, and (1) will hold with high probability 

[289],[290].  

A function 𝑓 ∶ ℝ𝑛  →  [0,∞) is log-concave if log 𝑓 ∶ ℝ𝑛  →  [−∞,∞) is a concave 

function. The characteristic function of a convex set is log-concave. Throughout the entire 

discussion, the requirement that 𝑋 be distributed uniformly in a convex body could have 

been relaxed to the weaker condition, that 𝑋 has a log-concave density.  

Note that almost the entire mass of a standard ℓ -dimensional Gaussian distribution 

is contained in a ball of radius 10√ℓ about the origin. Therefore, (78) easily implies the 

total variation bound mentioned above. The history of the central limit theorem for convex 
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bodies goes back to the conjectures and results of Brehm and Voigt [286] and Anttila, Ball 

and Perissinaki [284], see [289]. The case ℓ =  1 of Theorem (6.1.9) was proved in [290] 

using the moderate deviation estimates of Sodin [295]. The generalization to higher 

dimensions is the main contribution. See also [285] and [1].  

The basic idea of the proof of Theorem (6.1.9) is the following. It is shown in [290], 

using concentration techniques, that the density of Proj𝐸(𝑋 +  𝑌) is pointwise 

approximately radial, where 𝑌 is an independent small Gaussian random vector. It is 

furthermore proved that the random vector 𝑋 +  𝑌 is concentrated in a thin spherical shell. 

We combine these facts to deduce, that the density of Proj𝐸(𝑋 +  𝑌) is not only radial, but 

in fact very close to the Gaussian density in 𝐸. We show that the addition of the Gaussian 

random vector 𝑌 is not required. That is, we prove that when a log-concave density 

convolved with a small Gaussian is almost Gaussian—then the original density is also 

approximately Gaussian.  

For a dimension 𝑛 and 𝑣 >  0 we write  

𝛾𝑛[𝑣](𝑥) =
1

(2𝜋𝑣)𝑛/2
exp(−

|𝑥|2

2𝑣
) ( 𝑥 ∈  ℝ𝑛) .                   (3) 

That is, 𝛾𝑛[𝑣] is the density of a Gaussian random vector in ℝ𝑛 with mean zero and 

covariance matrix 𝑣 𝐼𝑑. Let 𝑋 be an isotropic random vector with a log-concave density in 

ℝ𝑛, and let 𝑌 be an independent Gaussian random vector in ℝ𝑛 whose density is 𝛾𝑛[𝑛
−𝛼], 

for a parameter α to be specified later on. Denote by 𝑓𝑋+𝑌 the density of the random 

vector 𝑋 +  𝑌 . Our first step is to show that the density of the projection of 𝑋 +  𝑌 onto a 

typical subspace is pointwise approximately Gaussian. We follow the notation of [290]. 

For an integrable function 𝑓 ∶ ℝ𝑛  →  [0,∞), a subspace 𝐸 ⊆  ℝ𝑛 and a point 𝑥 ∈  𝐸 we 

write  

𝜋𝐸(𝑓 )(𝑥) =  ∫  
𝑥+𝐸⊥

 𝑓 (𝑦)𝑑𝑦,                                   (4) 

where 𝑥 + 𝐸⊥ is the affine subspace orthogonal to E that passes through the point 𝑥. In 

other words, 𝜋𝐸(𝑓 ): 𝐸 →  [0,∞) is the marginal of 𝑓 onto 𝐸. The group of all orthogonal 

transformations of determinant one in ℝ𝑛 is denoted by 𝑆𝑂(𝑛). Fix a dimension and a 

subspace 𝐸0  ⊂  ℝ
𝑛 with dim(𝐸0)  = ℓ. For 𝑥0  ∈  𝐸0 and a rotation 𝑈 ∈  𝑆𝑂(𝑛), set  

𝑀𝑓,𝐸0,𝑥0  (𝑈) =  log𝜋𝐸0  (𝑓 ° 𝑈)(𝑥0).                               (5) 

Define  

𝑀(|𝑥0|)   =  ∫  
𝑆𝑂(𝑛)

 𝑀𝑓𝑋+𝑌 ,𝐸0,𝑥0  (𝑈)𝑑𝜇𝑛(𝑈),                  (6)  

where 𝜇𝑛 stands for the unique rotationally-invariant Haar probability measure on 𝑆𝑂(𝑛). 
Note that 𝑀(|𝑥0|) is independent of the direction of 𝑥0, so it is well defined. We learned in 

[290] that the function 𝑈 →  𝑀𝑓𝑋+𝑌 ,𝐸0,𝑥0  (𝑈) is highly concentrated with respect to U in 

the special orthogonal group 𝑆𝑂(𝑛), around its mean value 𝑀(|𝑥0|). This implies that the 

function 𝜋𝐸(𝑓𝑋+𝑌 ) is almost spherically symmetric, for a typical subspace 𝐸. This 

information is contained in our next lemma, which is equivalent to [290]. 

Lemma (6.1.1)[282]: Let 1 ≤ ℓ ≤  𝑛 be integers, let 0 < 𝛼 < 105 and denote 𝜆 =
1

5𝛼+20
 . Assume that ℓ ≤ 𝑛𝜆. Suppose that 𝑋 is an isotropic random vector with a log-

concave density and that 𝑌 is an independent random vector with density 𝛾𝑛[𝑛
−𝛼𝜆]. 
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Denote the density of 𝑋 +  𝑌 by 𝑓𝑋+𝑌 . Let 𝐸 ∈  𝐺𝑛,ℓ be a random subspace. Then, with 

probability greater than 1 −  𝐶𝑒−𝑐𝑛
1/10

 of selecting 𝐸, we have  

|log𝜋𝐸(𝑓𝑋+𝑌)(𝑥) − 𝑀(|𝑥|)| ≤  𝐶𝑛
−𝜆,                               (7)  

for all 𝑥 ∈  𝐸 with |𝑥| ≤ 5𝑛𝜆/2. Here 𝑐, 𝐶 >  0 are universal constants.  

Proof. We need to follow in [290], choosing for instance, 𝑢 =
9

10
 , 𝜆 =

1

5𝛼+20
 , 𝑘 =

 𝑛𝜆 and 𝜂 =  1. Throughout the argument in [290], it was assumed that the dimension of 

the subspace is exactly 𝑘 =  𝑛𝜆, while in the present version of the statement, note that it 

could possibly be smaller, i.e., ℓ ≤ 𝑘 (note also that here, 𝑘 need not be an integer). [290], 

allowing the dimension of the subspace we are working with to be smaller than 𝑘, noting 

that the reduction of the dimension always acts in our favor.  

We the original argument in [290] for further details. 

See show that 𝑀(|𝑥|) behaves approximately like log 𝛾𝑛[1 + 𝑛
−𝛼𝜆](𝑥). Once we 

prove this, it would follow from the above lemma that the density of 𝑋 +  𝑌 is pointwise 

approximately Gaussian. Next we explain why no serious harm is done if we take the 

logarithm outside the integral in the definition of 𝑀(|𝑥|). Denote, for 𝑥 ∈  𝐸0,  

�̃�(|𝑥|)   =  ∫  
𝑆𝑂(𝑛)

𝜋𝐸0  (𝑓𝑋+𝑌 ∘  𝑈)(𝑥)𝑑𝜇𝑛(𝑈).                                (8)  

Lemma (6.1.2)[282]: Under the notation and assumptions of Lemma (6.1.1), for |𝑥| ≤
5𝑛𝜆/2 we have  

0 ≤ log �̃�(|𝑥|)   −  𝑀(|𝑥|) ≤
𝐶

𝑛15
 ,                  (9)  

where 𝐶 >  0 is a universal constant.  

Proof. Recall that 𝐸0  ⊂  ℝ
𝑛 is some fixed -dimensional subspace with 𝑛𝜆. Fix 𝑥0  ∈  𝐸0 

with |𝑥0| ≤  5𝑛
𝜆/2. Lemma 3.1 of [290] states that for any 𝑈1, 𝑈2  ∈  𝑆𝑂(𝑛),  

|𝑀𝑓𝑋+𝑌,𝐸0,𝑥0  (𝑈1)  − 𝑀𝑓𝑋+𝑌 ,𝐸0,𝑥0  (𝑈2)| ≤ 𝐶0𝑛
𝜆(2𝛼+2)  ·  𝑑(𝑈1, 𝑈2), (10)  

where 𝑑(𝑈1, 𝑈2) stands for the geodesic distance between 𝑈1 and 𝑈2 in 𝑆𝑂(𝑛). As 

mentioned before, Lemma 3.1 is proved in [290] under the assumption that the dimension 

of the subspace 𝐸0 is exactly 𝑛𝜆. In our case, the dimension might be smaller than 𝑛𝜆, but 

a close inspection of the proofs in [290] reveals that the reduction of the dimension can 

only improve the estimates. Hence (10) holds true. 

 

We apply the Gromov–Milman concentration inequality on 𝑆𝑂(𝑛), quoted as 

Proposition 3.2 in [290], and conclude from (10) that for any 𝜀 >  0, 

𝜇𝑛{𝑈 ∈ 𝑆𝑂(𝑛); |𝑀𝑓𝑋+𝑌 ,𝐸0,𝑥0  (𝑈) −  𝑀(|𝑥0|)| ≥ 𝜀} ≤ 𝐶
̅ exp (−

𝑐̅𝑛𝜀2

𝐿2
),                (11) 

with 𝐿 =  𝐶0𝑛
𝜆(2𝛼+2) . That is, the distribution of  

𝐹(𝑈) =
√𝑛

𝐿
  (𝑀𝑓𝑋+𝑌 ,𝐸0,𝑥0  (𝑈) −  𝑀(|𝑥0|)) (𝑈 ∈  𝑆𝑂(𝑛))  

on 𝑆𝑂(𝑛) has a subgaussian tail. Note also that ∫  
𝑆𝑂(𝑛)

 𝐹(𝑈)𝑑𝜇𝑛(𝑈)  =  0. A standard 

computation shows for any 𝑝 ≥  1,  

∫  
𝑆𝑂(𝑛)

 𝐹𝑝(𝑈)𝑑𝜇𝑛(𝑈) ≤ (𝐶
′ √𝑝 )

𝑝
,                          (12)  

where 𝐶′ is a universal constant. Hence, for any 0 <  𝑡 ≤  𝐶0,  
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∫  
𝑆𝑂(𝑛)

exp(𝑡𝐹(𝑈))  𝑑𝜇𝑛(𝑈) 

≤ 1 +  𝑡 ∫  
𝑆𝑂(𝑛)

 𝐹(𝑈)𝑑𝜇𝑛(𝑈) +∑ 

∞

𝑖=2

 (𝐶′ √𝑖 )
𝑖 𝑡𝑖

𝑖!
  

≤ 1 +∑ 

∞

𝑖=2

(�̃�𝑡2)
𝑖2

⌊
𝑖
2
⌋ !

  1 + (√𝐶0
2�̃�  +  1) ∑  

∞

𝑗=1

(�̃�𝑡2)
𝑗

𝑗!
 ∑  

∞

𝑗=0

(�̃�𝑡2)
𝑗

𝑗!
  = exp(�̃�𝑡2) .     (13)  

The left-hand side of (9) follows by Jensen’s inequality. We use (13) for the value  

𝑡 =
𝐿

√𝑛
 =  𝐶0𝑛

2𝛼+2
5𝛼+20

−
1
2 ≤ 𝐶0𝑛

−
1
10 ≤ 𝐶0,  

to conclude that  

�̃�(|𝑥0|) exp(𝑀(|𝑥0|))  =
∫  
𝑆𝑂(𝑛)

exp (𝑀𝑓𝑋+𝑌,𝐸0,𝑥0  (𝑈))𝑑𝜇𝑛(𝑈)

exp(𝑀(|𝑥0|))
 

=  ∫  
𝑆𝑂(𝑛)

 exp (𝑀𝑓𝑋+𝑌,𝐸0,𝑥0  (𝑈) − 𝑀(|𝑥0|)𝑑𝜇𝑛(𝑈) exp(�̂�𝑛
−1/5)  .  

Taking logarithms of both sides completes the proof.  
Let 𝑋, 𝑌, 𝛼, 𝜆, ℓ be as in Lemma (6.1.1). We choose a slightly different 

normalization. Define  

𝑍 =
𝑋 +  𝑌

√1 + 𝑛−𝜆𝛼
  ,                             (14) 

and denote by 𝑓𝑍 the corresponding density. Clearly 𝑓𝑍 is isotropic and log-concave. Next 

we define, for 𝑥 ∈  𝐸0,  

�̃�1 (|𝑥|)  ∶=  ∫  
𝑆𝑂(𝑛)

 𝜋𝐸0  (𝑓𝑍 ° 𝑈)(𝑥)𝑑𝜇𝑛(𝑈).                      (15)  

We show that the following estimate holds:  

|
�̃�1(|𝑥|)

𝛾ℓ[1](𝑥)
 −  1|  <  𝐶1𝑛

−𝑐1                                  (16)  

for all 𝑥 ∈ ℝ with |𝑥|  <  𝑐2𝑛
𝑐2 for some universal constants 𝐶1, 𝑐1, 𝑐2  >  0. We write 

𝑆𝑛−1  =  {𝑥 ∈  ℝ𝑛;  |𝑥| =  1}, the unit sphere in ℝ𝑛. Define:  

𝑓𝑍(𝑥)  =  𝑆
𝑛−1 𝑓𝑍 (|𝑥|𝜃)  𝑑𝜎𝑛(𝜃)  =  ∫  

𝑆𝑂(𝑛)

 𝑓𝑍(𝑈𝑥)𝑑𝜇𝑛(𝑈)(𝑥 ∈  ℝ
𝑛) (17)  

where 𝜎𝑛 is the unique rotationally-invariant probability measure on 𝑆𝑛−1. Since 𝑓𝑍 is 

spherically symmetric, we shall also use the notation 𝑓𝑍(|𝑥|)  =  𝑓𝑍(𝑥). Clearly, for any 

𝑥 ∈  𝐸0,  

�̃�1(|𝑥|)   =  ∫  
𝑆𝑂(𝑛)

 𝜋𝐸0  (𝑓𝑍 ° 𝑈)(𝑥)𝑑𝜇𝑛(𝑈) =  ∫  
𝑆𝑂(𝑛)

 𝜋𝐸0  (𝑓𝑍 ° 𝑈)(𝑥)𝑑𝜇𝑛(𝑈) 

= 𝜋𝐸0  (𝑓𝑍)(𝑥).                             (18)  

We will use the following thin-shell estimate, proved in [290].  

Proposition (6.1.3)[282]: Let 𝑛 ≥  1 be an integer and let 𝑋 be an isotropic random vector 

in ℝ𝑛 with a log-concave density. Then,  

ℙ{|
|𝑋|

√𝑛
−  1| ≥

1

𝑛1/15
}   <  𝐶 exp(−𝑐𝑛1/15)               (19)  
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where 𝐶, 𝑐 >  0 are universal constants. Applying the above for 𝑓𝑍, denoting 𝜀 =  𝑛−1/15, 
and defining  

𝐴 =  𝑥 ∈  ℝ𝑛;  √𝑛(1 −  𝜀) ≤  |𝑥|√𝑛(1 +  𝜀)} , 
we get,  

∫ 
𝐴

 𝑓𝑍(𝑥)𝑑𝑥 >  1 −  𝐶𝑒
−𝑐𝑛1/15  .                                 (20)  

From the definition of 𝑓𝑍, it is clear that the above inequality also holds when we replace 

𝑓𝑍 with 𝑓𝑍. In other words, if we define  

𝑔(𝑡) =  𝑡𝑛−1𝜔𝑛𝑓𝑍(𝑡)(𝑡 ≥ 0)                                        (21)  
where 𝜔𝑛 is the surface area of the unit sphere 𝑆𝑛−1 in ℝ𝑛, and use integration in polar 

coordinates, we get  

1 ≥ ∫  
√𝑛(1+𝜀)

√𝑛(1−𝜀)

 𝑔(𝑡)𝑑𝑡 >  1 −  𝐶𝑒−𝑐𝑛
1/15
 .                     (22)  

We apply the methods from Sodin’s [295] in order to prove a generalization of [295], for a 

multi-dimensional marginal rather than a one-dimensional marginal. We estimate will be 

rather crude, but suitable for our needs.  

Denote by 𝜎𝑛,𝑟 the unique rotationally-invariant probability measure on the 

Euclidean sphere of radius 𝑟 around the origin in ℝ𝑛. A standard calculation shows that 

the density of an ℓ-dimensional marginal of 𝜎𝑛,𝑟 is given by the following formula:  

𝜓𝑛,ℓ,𝑟(𝑥) =  𝜓𝑛,ℓ,𝑟   |𝑥| ∶=  𝛤𝑛,ℓ
1

𝑟ℓ
  (1 −

|𝑥|2

𝑟2
)

𝑛−ℓ−2
2

 1[−𝑟,𝑟]  |𝑥|            (23)  

where 

 𝛤𝑛,ℓ  = (
1

√𝜋
)
ℓ Γ (

𝑛
2)

Γ (
𝑛 − ℓ
2  )

                                       (24)  

and where 1[−r,r] is the characteristic function of the interval [−𝑟, 𝑟]. (see for 

example [287] on Remark 2.10). When ℓ ≪  √𝑛 we have 𝛤𝑛, (
2𝜋

𝑛
 )
ℓ/2
 ≈  1. By the 

definition (21) of 𝑔, and since 𝑓𝑍 is spherically symmetric, we may write  

𝜋𝐸0  (𝑓𝑍)(𝑥)  =  ∫  
∞

0

 𝜓𝑛,ℓ,𝑟  (|𝑥|) 𝑔(𝑟)𝑑𝑟 (𝑥 ∈  𝐸0).              (25)  

Indeed, the measure whose density is 𝑓𝑍 equals ∫  
∞

0
 𝑔(𝑟)𝜎𝑛,𝑟  𝑑𝑟, hence its marginal onto 

𝐸0 has density 𝑥 →  ∫  
∞

0
 𝜓𝑛,ℓ,𝑟(𝑥)𝑔(𝑟)𝑑𝑟. We will show that the above density is 

approximately Gaussian for 𝑥 ∈  𝐸0 when |𝑥| is not too large. But first we need the 

following technical lemma.  

Lemma (6.1.4)[282]: Let 𝑔 be the density defined in (21), and suppose that 𝑛 ≥ 𝐶′ and 

ℓ ≤ 𝑛1/20. For 𝜀 =  𝑛−1/15 denote 𝑈 =  {𝑡 >  0;  𝑡(1 +  𝜀)√𝑛 𝑜𝑟 𝑡 > (1 + 𝜀 )√𝑛 }. 
Then,  

∫  
𝑈

 𝑡−ℓ 𝑔(𝑡)𝑑𝑡 <  𝐶′ exp(−𝑐′𝑛1/15) .                      (26)  

Here, 𝑐′, 𝐶′  >  0 are universal constants.  

Proof. Define for convenience,  

ℎ(𝑡) =  𝑡−ℓ 𝑔(𝑡).                                       (27)  
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Denote  

𝐴 =   [0,
1

𝑛2
]  , 𝐵 = [

1

𝑛2
 , √𝑛(1 −  𝜀)]  ∪ [√𝑛(1 +  𝜀),∞),  

and write  

∫  
𝑈

 ℎ(𝑡)𝑑𝑡 =  ∫ 
𝐴

 ℎ(𝑡)𝑑𝑡 + ∫  
𝐵

 ℎ(𝑡)𝑑𝑡.                  (28)  

We estimate the two terms separately. For 𝑡 >
1

𝑛2
 we have  

ℎ(𝑡) ≤ 𝑛2ℓ 𝑔(𝑡) =  𝑒2ℓ  log 𝑛𝑔(𝑡).                      (29)  
Thus we can estimate the second term as follows:  

∫ 
𝐵

 ℎ(𝑡)𝑑𝑡 ≤ 𝑒2ℓ  log 𝑛  ∫  
𝐵

 𝑔(𝑡)𝑑𝑡 <  𝑒2ℓ log 𝑛𝐶𝑒−𝑐𝑛
1/15
 <  𝐶𝑒

1
2
𝑐𝑛1/15 , (30) 

where for the second inequality we apply the reformulation (22) of Proposition (6.1.3) 

(recall that 𝜀 =  𝑛−1/15 and that 𝑛1/20). To estimate the first term on the right-hand side of 

(28), we use the fact that 𝑓𝑍 is isotropic and log concave, so we can use a crude bound for 

the isotropic constant (see e.g. [293] in Theorem 5.14(e)] or [288] in Corollary 4.3]) which 

gives sup
ℝ𝑛
  𝑓𝑍  <  𝑒

𝑛 log 𝑛 ,thus, also sup
ℝ𝑛
  𝑓𝑍  <  𝑒

𝑛 log 𝑛. Hence we can estimate  

∫ 
𝐴

  ℎ(𝑡)𝑑𝑡 =  ∫  
1𝑛2

0

 𝑡−ℓ 𝑔(𝑡)𝑑𝑡 =  ∫  
1𝑛2

0

 𝑡𝑛−ℓ−1𝜔𝑛𝑓𝑍(𝑡)𝑑𝑡 <  𝑛
−2(𝑛−ℓ)𝜔𝑛 sup 𝑓𝑍

< 𝑒−1.5𝑛 log 𝑛+𝑛 log 𝑛  <  𝑒−𝑛, (31) 
as 𝜔𝑛  <  𝐶. The combination of (30) and (31) completes the proof. 

We show that the marginals of f˜ Z are approximately Gaussian. Note that by (18) 

and (25),  

|
�̃�1(|𝑥|)

𝛾[1](𝑥)
 −  1|  = |

∫  
∞

0
𝜓𝑛,ℓ,𝑟(|𝑥|)𝑔(𝑟)𝑑𝑟

𝛾ℓ[1](𝑥)
  −  1| .               (32) 

Our desired bound (16) is contained in the following lemma.  

Lemma (6.1.5)[282]: Let 1 ≤ ℓ ≤  𝑛 be integers, with 𝑛 ≤  𝐶 and 𝑛1/20. Let 𝑔 ∶ ℝ+  →
 ℝ+ be a function that satisfies (22) and (26). Then we have,  

|
∫  
∞

0
𝜓𝑛,ℓ,𝑟(|𝑥|)𝑔(𝑟)𝑑𝑟

𝛾ℓ[1](𝑥)
  −  1|   <  𝐶𝑛−1/60                             (33)  

for all 𝑥 ∈ ℝ with |𝑥|  <  2𝑛1/40 where 𝐶 >  0 is a universal constant.  

Proof. We begin by using a well-known fact, that follows from a straightforward 

computation using asymptotics of -functions: for |𝑥|  <  𝑛1/8,  

|
𝜓𝑛,ℓ,√𝑛(|𝑥|)

𝛾[1](𝑥)
 −  1|  = ||(

2𝜋

𝑛
)
ℓ2

 𝛤𝑛,ℓ  
(1 −

|𝑥|2

𝑛 )
(𝑛−ℓ−2)/2

𝑒 − |𝑥|2/2
  −  1|| ≤

𝐶

√𝑛
 .              (34) 

(We omit the details of the simple computation. An almost identical computation is done, 

for example, in [295] see Lemma 1. Note that in addition to the computation there, we 

have to use, e.g., Stirling’s formula to estimate the constants 𝜀𝑛.) Using the above fact 

(34), we see that it suffices to prove the following inequality:  

|
𝜓𝑛,ℓ,𝑟(|𝑥|)𝑔(𝑟) 𝑑𝑟

𝜓𝑛,ℓ,√𝑛(𝑥)
 −  1|  <  𝐶𝑛−

1
60                             (35)  
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for all 𝑥 ∈ ℝ with |𝑥|  <  2𝑛1/40. To that end, fix 𝑥0 ∈ ℝ with |𝑥0|  <  2𝑛
1/20, define  

𝐴 = [√𝑛  1 − 𝑛
−
1
15   , √𝑛 (1 + 𝑛

−
1
15)] , 𝐵 =  [0,∞) \ 𝐴,  

and write  

∫  
∞

0

 𝜓𝑛,ℓ,𝑟  |𝑥0| 𝑔(𝑟)𝑑𝑟 =  ∫ 
𝐴

 𝜓𝑛,ℓ,𝑟  |𝑥0| 𝑔(𝑟)𝑑𝑟 + ∫  
𝐵

 𝜓𝑛,ℓ,𝑟   |𝑥0| 𝑔(𝑟)𝑑𝑟.    (36) 

 We estimate the two terms separately. For the second term, we have,  

∫ 
𝐵

 𝜓𝑛,ℓ,𝑟  |𝑥0|  𝑔(𝑟)𝑑𝑟 =  𝛤𝑛,ℓ  ∫  
𝐵

1

𝑟ℓ
 (1 −

|𝑥0|
2

𝑟2
)

𝑛−ℓ−2
2

 1[−𝑟,𝑟]  |𝑥0|  𝑔(𝑟)𝑑𝑟 

<  𝛤𝑛,ℓ   ∫  
𝐵

1

𝑟ℓ
 𝑔(𝑟)𝑑𝑟 <  𝛤𝑛,ℓ 𝐶𝑒

−𝑐𝑛
1
15  ,                                                         (37)  

where the last inequality follows from (26). Therefore,  

∫ 
𝐵

 𝜓𝑛,ℓ,𝑟(|𝑥0|)𝑔(𝑟)𝑑𝑟 𝜓𝑛,ℓ,√𝑛(|𝑥0|)  <
𝐶𝑒−𝑐𝑛

1/15

(
1

√𝑛
)
ℓ

  (1 −
|𝑥0|

2

𝑛 )

𝑛−𝑙−2
2

 
 

< 𝐶𝑒−𝑐𝑛
1/15
|𝑥0|

2 +
1

2
ℓ log  𝑛 < 𝐶𝑒−𝑛

1/20
.                                                       (38) 

To estimate the first term on the right-hand side of (36), we will show that the following 

inequality holds:  

|
∫  
𝐴
𝜓𝑛,ℓ,𝑟(|𝑥0|)𝑔(𝑟) 𝑑𝑟

𝜓𝑛,ℓ,√𝑛(|𝑥0|)
 −  1|  <  𝐶𝑛−

1
60                   (39)  

for some constant 𝐶 >  0. For 𝑟 >  0 such that
|𝑥0|

2

𝑟2
 <

1

2
 , we have,  

|
𝑑

𝑑𝑟
log𝜓𝑛,ℓ,𝑟 (|𝑥0|)| = |−

ℓ

𝑟
 + (𝑛 −  ℓ −  2)

|𝑥0|
2

𝑟3
1

(1 − 
|𝑥0|

2

𝑟2
)
|     

<  
ℓ

𝑟
 +  2𝑛 

|𝑥0|
2

𝑟3
 .                                                                                   (40) 

Recalling that |𝑥0| <  2𝑛
1/40 and 𝑛1/20, the above estimate gives, for all 𝑟 ∈

 [
1

2
 √𝑛,

3

2
 √𝑛 ] , 

|
𝑑

𝑑𝑟
log𝜓𝑛,ℓ,𝑟 (|𝑥0|)| < 𝑛

1
20
−
1
2 + 16 𝑛1+

1
20
−
3
2 < 𝐶𝑛−

9
20            (41)  

which gives for 𝑟 ∈ [
1

2
√𝑛,

3

2
√𝑛], 

|
𝜓𝑛,ℓ,𝑟(|𝑥0|)

𝜓𝑛,ℓ,√𝑛(|𝑥0|)
 −  1|  < 𝐶𝑛−

9
20[𝑟 − √𝑛].                         (42) 

Recall that for 𝑟 ∈ 𝐴 we have [𝑟 − √𝑛] ≤ 𝑛13/60.Hence the last estimate yields 

|
𝜓𝑛,ℓ,𝑟(|𝑥0|)𝑔(𝑟) 𝑑𝑟

𝜓𝑛,ℓ,√𝑛(|𝑥0|) ∫  𝐴 𝑔(𝑟) 𝑑𝑟
 −  1| < 𝐶𝑛−

9
20𝑛

13
30 = 𝐶𝑛−

1
60.          (43) 

Combining the last inequality with (22) ,we get 

|
∫  
𝐴
𝜓𝑛,ℓ,𝑟(|𝑥0|)𝑔(𝑟) 𝑑𝑟

𝜓𝑛,ℓ,√𝑛(|𝑥0|)
 −  1| < �̃�𝑛−𝑐𝑛

1
15 + 𝐶𝑛−

1
60 < 𝐶′𝑛−

1
60.          (44) 
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From (38) and (44) we deduce (35), and the lemma is proved.  

Recall the definitions (8) and (15) of �̃�(|𝑥|) and �̃�1(|𝑥|) ; the only difference is the 

normalization of 𝑋 +  𝑌 . By an easy scaling argument, we deduce from (32) and Lemma 

(6.1.5) that when 𝑛 ≥  𝐶,  

|
�̃�(|𝑥|)

𝛾ℓ[1 + 𝑛
−𝜆𝛼](𝑥)

 −  1|  <  𝐶1𝑛
−
1
60                                (45)  

for all 𝑥 ∈ ℝ with |𝑥|  <  𝑛1/40, for 𝐶1  >  0 a universal constant. By substituting (9) and 

(45) into Lemma (6.1.1), we conclude the following. 

Proposition (6.1.6)[282]: Let 1 ≤ ℓ ≤  𝑛 be integers. Let 0 < 𝛼 <  105 and denote 𝜆 =
1

5𝛼+20
 . Assume that ℓ ≤ 𝑛𝜆. Suppose that 𝑓 ∶ ℝ𝑛  →  [0,∞) is a log-concave function that 

is the density of an isotropic random vector. Define 𝑔 =  𝑓 ∗  𝛾𝑛[𝑛
−𝜆𝛼], the convolution 

of 𝑓 and 𝛾𝑛[𝑛
−𝜆𝛼]. Let 𝐸 ∈  𝐺𝑛,ℓ be a random subspace. Then, with probability greater 

than 1 −  𝐶𝑒−𝑐𝑛
1/10

 of selecting 𝐸, we have  

|
𝜋𝐸(𝑔)(𝑥)

𝛾[1 + 𝑛−𝜆𝛼](𝑥)
 −  1| ≤  𝐶𝑛−𝜆                      (46)  

for all 𝑥 ∈  𝐸 with |𝑥|  <  𝑛𝜆/2, where 𝐶 >  0 is a universal constant.  

We assume that 𝑛 ≥  𝐶 in Proposition (6.1.6), since otherwise the proposition is 

vacuously true. We will show that the above estimate still holds without taking the 

convolution, though perhaps with slightly worse constants.  

We establish the following principle. Suppose that 𝑋 is a random vector with a log-

concave density, and that 𝑌 is an independent, Gaussian random vector whose covariance 

matrix is small enough with respect to that of 𝑋. Then, in the case where 𝑋 +  𝑌 is 

approximately Gaussian, the density of 𝑋 is also approximately Gaussian, in a rather large 

domain. We begin with a lower bound for the density of 𝑋.  

Note that the notation n in corresponds to the dimension of the subspace, that was 

denoted by ℓ in the previous.  

Lemma (6.1.7)[282]: Let 𝑛 ≥  1 be a dimension, and let 𝛼, 𝛽, 𝜀, 𝑅 >  0. Suppose that 𝑋 is 

an isotropic random vector in ℝ𝑛 with a log-concave density, and that 𝑌 is an independent 

Gaussian random vector in ℝ𝑛 with mean zero and covariance matrix 𝛼 𝐼𝑑. Denote by 𝑓𝑌 

and 𝑓𝑋+𝑌 the respective densities. Suppose that,  

𝑓𝑋+𝑌 (𝑥)(1 −  𝜀)𝛾𝑛[1 +  𝛼](𝑥)                                       (47)  
for all |𝑥| ≤  𝑅. Assume that 𝛼 ≤ 𝑐0𝑛

−8 and that  

100(2𝑛)max{3𝛽,3/2} 𝛼1/4  < 𝜀 <
1

100
.                                        (48)  

Then,  

𝑓𝑋(𝑥) ≥ (1 −  6𝜀)𝛾𝑛[1](𝑥)                                  (49) 

for all 𝑥 ∈  ℝ𝑛 with |𝑥| ≤  min{𝑅 −  1, (2𝑛)𝛽}. Here, 0 <  𝑐0  <  1 is a universal 

constant.  

Proof. Suppose first that 𝑓𝑋 is positive everywhere in ℝ𝑛, and that log fX is strictly 

concave. Fix 𝑥0  ∈  ℝ
𝑛 with |𝑥0|min{𝑅 −  1, (2𝑛)

𝛽}. Assume that 𝜀0  >  0 is such that  

𝑓𝑋(𝑥0) < (1 − 𝜀0)𝛾𝑛[1](𝑥0)                      (50) 
Let 𝐻 be an affine hyperplane that supports 𝐿 at its boundary point 𝑥0, and denote by 𝐷 

the open ball of radius 𝛼1/4 tangent to 𝐻 at 𝑥0, that is disjoint from the level set 𝐿. By 
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definition, 𝑓𝑋(𝑥)  <  𝑓𝑋(𝑥0)  for 𝑥 ∈  𝐷. Denote the center of 𝐷 by 𝑥1. Then, |𝑥1  −  𝑥0| ≤
𝛼1/4 with |𝑥0| ≤ (2𝑛)

𝛽 , and a straightforward computation yields  

||𝑥1|
2  −  |𝑥0|

2| ≤ (2(2𝑛)𝛽  +  𝛼1/4) 𝛼1/4 ≤
𝜀

2
 ,                (52)  

where we used (48). Note that |𝑥1| ≤  |𝑥0|  +  𝛼
1/4 ≤ 𝑅. Apply the last inequality and (47) 

to obtain,  

𝑓𝑋+𝑌 (𝑥1) ≥  (1 −  𝜀)𝛾𝑛[1 +  𝛼](𝑥0)𝑒
|𝑥0|

2−|𝑥1|
2

2(1+𝛼)  >  (1 −  2𝜀)𝛾𝑛[1 +  𝛼](𝑥0).           (53) 
By definition,  

𝑓𝑋+𝑌 (𝑥1)  =  ∫  
ℝ𝑛
 𝑓𝑋(𝑥)𝛾𝑛[𝛼](𝑥1  −  𝑥)𝑑𝑥  

= ∫  
𝑥∈𝐷

 𝑓𝑋(𝑥)𝛾𝑛[𝛼](𝑥1  −  𝑥)𝑑𝑥 + ∫  
𝑥∉𝐷

 𝑓𝑋(𝑥)𝛾𝑛[𝛼](𝑥1  −  𝑥)𝑑𝑥.    (54)  

We will estimate both integrals. First, recall that 𝑓𝑋(𝑥)  <  𝑓𝑋(𝑥0) for 𝑥 ∈  𝐷 and use (50) 

to deduce  

∫  
𝑥∈𝐷

 𝑓𝑋(𝑥)𝛾𝑛[𝛼](𝑥1  −  𝑥)𝑑𝑥 < 𝑓𝑋(𝑥0) <  ℙ(|𝐺𝑛| ≥
1

𝛼14
) sup

ℝ𝑛
  𝑓𝑋              (56)  

where 𝐺𝑛  ∼  𝛾𝑛[283] is a standard Gaussian random vector. To bound the right-hand side 

term, we shall use a standard tail bound for the norm of a Gaussian random vector,  

ℙ(|𝐺𝑛| > 𝑡√𝑛) < 𝐶𝑒
−𝑐𝑡2 ,                            (57) 

And following crude bound for the isotropic constant of 𝑓𝑋 (see, e.g., [293] in Theorem 

5.14(e)), 

sup
ℝ𝑛
  𝑓𝑋   <  𝑒

1
2
 𝑛 log 𝑛+6𝑛  <  𝑒𝐶𝑛 log 𝑛.                (58) 

Consequently,  

∫  
𝑥∉𝐷

 𝑓𝑋(𝑥)𝛾𝑛[𝛼](𝑥1  −  𝑥)𝑑𝑥 < 𝐶𝑒
−𝑐𝑛−1𝛼−1/2𝑒𝐶𝑛 log 𝑛 𝑒−𝛼

−1/3
, (59)  

for an appropriate choice of a sufficiently small universal constant 𝑐0  >  0 (so that all 

other constants are absorbed). Combining (54), (55) and (59) gives  

𝑓𝑋+𝑌 (𝑥1) <   (1 − 𝜀0  +
𝑒−𝛼

−1/3

𝛾𝑛[1](𝑥0)
)  𝛾𝑛[1](𝑥0).                   (60)  

Using the fact that 𝑛 + (2𝑛)2𝛽  <
𝛼−1/3

2
 , which follows easily from our assumptions, we 

have  

𝑒−𝛼
−1/3

𝛾𝑛[1](𝑥0)
 =  𝑒

|𝑥0|
2

2
 +
𝑛
2
 log(2𝜋)−𝛼−1/3  <  𝑒−

1
2
 𝛼−1/3 ≤ 2𝛼1/3  <

𝜀

2
 <
𝜀0
2
              (61)  

(for the last inequality, note that if 𝜀0  <  6𝜀 then (9) holds and we have nothing to prove. 

So we can assume that 𝜀0  >  𝜀). From (60) and (61) we obtain the bound  

𝑓𝑋+𝑌 (𝑥1) <   (1 −
𝜀0
2
) 𝛾𝑛[1](𝑥0).                         (62)  

Combining (53) and (62) we get,  

(1 −  2𝜀)𝛾𝑛[1 +  𝛼](𝑥0)   <   (1 −
𝜀0
2
) 𝛾𝑛[1](𝑥0).         (63)  

A calculation yields,  
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𝛾𝑛[1](𝑥0)

𝛾𝑛[1 +  𝛼](𝑥0)
≤

𝛾𝑛[1](0)

𝛾𝑛[1 +  𝛼](0)
 =  (1 +  𝛼)

𝑛
2  <  1 +  𝜀.        (64)  

From the above two inequalities, we finally deduce, 
1 − 𝜀0/2

1 −  2𝜀
 >

1

1 +  𝜀
 >  1 −  𝜀 ⇒  𝜀0  <  6𝜀,                  (65)  

which proves (9). The lemma is proved, under the additional assumption that log 𝑓𝑋 is 

strictly concave. The general case follows by a standard approximation argument.  
After proving a lower bound, we move to the upper bound. We will show that if we 

add to the requirements of the previous lemma an assumption that the density of 𝑓𝑋+𝑌 is 

bounded from above, then we can provide an upper bound for 𝑓𝑋.  

Lemma (6.1.8)[282]: Let 𝑛, 𝑋, 𝑌, 𝛼, 𝛽, 𝜀, 𝑅, 𝑐0 be defined as in Lemma (6.1.7), and 

suppose that all of the conditions of Lemma (6.1.7) are satisfied. Suppose that in addition, 

we have the following upper bound for  

𝑓𝑋+𝑌 ∶  𝑓𝑋+𝑌 (𝑥) <  (1 +  𝜀)𝛾𝑛[1 +  𝛼](𝑥)                    (66)  
for all |𝑥|  < ℝ. Then we have:  

𝑓𝑋(𝑥) <  (1 +  8𝜀)𝛾𝑛[1](𝑥)                          (67) 
for all 𝑥 with |𝑥|  <  min{(2𝑛)𝛽 , 𝑅}  −  3.  
Proof. Denote 𝐹(𝑥)  =  −log 𝑓𝑋(𝑥). Again we use the upper bound for the supremum of 

the density (58),  

𝐹(𝑥) >  6𝑛 −
1

2
 𝑛 log 𝑛 >  −𝑛 log𝑛, ∀𝑥 ∈  ℝ𝑛.          (68)  

Use the conclusion of Lemma (6.1.7) to deduce that for |𝑥| <  min{(2𝑛)𝛽 , 𝑅} −  1 the 

following holds:  

𝐹(𝑥) <  − log (
1

2
 𝛾𝑛[1](𝑥)) <  log 2 +

𝑛

2
 log(2𝜋)  + (2𝑛)2𝛽  

<  3(2𝑛)max{2𝛽,
3
2
} .                                                                                    (69)  

Next we will show that for 𝑥, 𝑦 ∈  𝐴 =  {𝑥 ∈  𝑅𝑛; |𝑥|  <  min{(2𝑛)𝛽 , 𝑅}  −  2}, the 

following Lipschitz condition holds:  

𝐹(𝑥)  −  𝐹(𝑦)5(2𝑛)𝑚𝑎𝑥{2𝛽,3/2} |𝑥 −  𝑦|.               (70)  

To that end, denote a =  5(2𝑛)max{2𝛽,
3

2
}  and suppose by contradiction that x,y ∈ A are 

such that  

𝐹(𝑦) −  𝐹(𝑥) >  𝑎|𝑦 −  𝑥|.                           (71)  
Since 𝐹(𝑦)  −  𝐹(𝑥)  <  𝑎 (as implied by (68) and (69)), we have |𝑦 −  𝑥|  <  1 and for 

the point  

𝑦1 ∶=  𝑥 +
𝑦 −  𝑥

|𝑦 −  𝑥|
 ,  

we have, using the convexity of 𝐹,  

𝐹(𝑦1) −  𝐹(𝑥)
𝐹(𝑦) −  𝐹(𝑥)

|𝑦 −  𝑥|
 > 𝑎.  

Note that |𝑦1| |𝑥|  +  1 <  min{(2𝑛)
𝛽, 𝑅}  −  1, thus we obtain a contradiction of (68) and 

(69). This proves (70).  

Therefore, given two points 𝑥, 𝑥0  ∈  𝐴 such that |𝑥0  −  𝑥|  <  𝛼
1/4, (70) implies,  

|𝐹(𝑥0) −  𝐹(𝑥)|  <  5𝛼
1/4(2𝑛)max{2𝛽,3/2}  <  𝜀/20.                (72) 

Recall that 𝐹 =  −log 𝑓𝑋, hence the above translates to  
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𝑓𝑋(𝑥0) − 𝑓𝑋(𝑥) <  2  (𝑒
𝜀/20  −  1) 𝑓𝑋(𝑥0) <

𝜀

4
 𝑓𝑋(𝑥0).      (73)  

Now, suppose 𝑥0  ∈  ℝ
𝑛 and 0 <  𝜀0  <  1 are such that  

𝑓𝑋(𝑥0) > (1 + 𝜀0)𝛾𝑛[1](𝑥0),                    (74)  

with |𝑥0|  <  min{𝑅, (2𝑛)
𝛽} − 3. Again, to prove the lemma it suffices to show that in fact 

𝜀0  <  8𝜀. Let 𝐷 be a ball of radius 𝛼1/4 around 𝑥0.  

Since we can assume that 𝜀0  >  𝜀 (otherwise, there is nothing to prove), we deduce 

from (73) and (74) that for all 𝑥 ∈  𝐷,  

𝑓𝑋(𝑥) >   (1 −
𝜀0
4
 ) (1 + 𝜀0)𝛾𝑛[1](𝑥0) > (1 +

𝜀0
2
) 𝛾𝑛[1](𝑥0).      (75)  

Thus,  

𝑓𝑋+𝑌 (𝑥0) =  ∫  
ℝ𝑛
 𝑓𝑋(𝑥)𝛾𝑛[𝛼](𝑥0  −  𝑥)𝑑𝑥 >  ∫  

𝑥∈𝐷

 𝑓𝑋(𝑥)𝛾𝑛[𝛼](𝑥0  −  𝑥)𝑑𝑥  

>  (1 +
𝜀0
2
)  𝛾𝑛[1](𝑥0) ·   (1 − ℙ  (|𝐺𝑛| >

1

𝛼14
))   >   (1 +

𝜀0
3
) 𝛾𝑛[1](𝑥0), (76)  

where in the last inequality we used the estimate (57) and the assumption 𝜀0  >  𝜀. Now, a 

computation yields,  

𝛾𝑛[1 +  𝛼](𝑥0)

𝛾𝑛[1](𝑥0)
 <  𝑒

1
2
(|𝑥0|

2−
|𝑥0|2

1+𝛼
 )
 =  𝑒

1
2
 |𝑥0|

2 
𝛼
1+𝛼  <  𝑒(2𝑛)

2𝛽𝛼  <  1 +  𝜀.  (77)  

We thus obtain, combining (66) and (76) and using (77), that  
1 + 𝜀0/3

1 +  𝜀
 <
𝛾𝑛[1 +  𝛼](𝑥0)

𝛾𝑛[1](𝑥0)
 <  1 +  𝜀,  

so 𝜀0  <  8𝜀, and the proof of the lemma is complete. 
The combination of the two lemmas above gives us the desired estimate for the 

density of 𝑋, as proclaimed in the beginning.  

Theorem (6.1.9)[282]: Let 𝑋 be an isotropic random vector in ℝ𝑛 with a log-concave 

density. Let ℓ ≤  𝑛𝑐1 be an integer. Then there exists a subset ℰ ⊆  𝐺𝑛,𝑙 with 𝜇𝑛,ℓ(ℰ) 1 −
 𝐶 exp(−𝑛𝑐2) such that for any 𝐸 ∈ ℰ, the following holds. Denote by 𝑓𝐸 the density of 

the random vector Proj𝐸(𝑋). Then,  

|
𝑓𝐸(𝑥)

𝛾(𝑥)
 −  1| ≤

𝐶

𝑛𝑐3
                                         (78)  

for all 𝑥 ∈  𝐸 with |𝑥| ≤ 𝑛𝑐4  . Here, 𝛾(𝑥)  =  (2𝜋)ℓ/2 exp(−|𝑥|2/2) is the standard 

Gaussian density in 𝐸, and 𝐶, 𝑐1, 𝑐2, 𝑐3, 𝑐4  >  0 are universal constants.  

Proof. We may clearly assume that 𝑛 exceeds some positive universal constant (otherwise, 

take ℰ =  ∅). Let 1 ≤ ℓ ≤  𝑛1/100 be an integer, and let 𝛿 ≥  0 be such that ℓ =  𝑛𝛿  . Set 

𝛼 =  10 and 𝜆 =
1

5𝛼+20
 =

1

70
 . Let Y be a Gaussian random vector in ℝ𝑛 with mean zero 

and covariance matrix n−αλ Id, independent of 𝑋. We first apply Proposition (6.1.6) for 

the random vector 𝑋 +  𝑌 with parameters and α (noting that ℓ ≤ 𝑛1/100  ≤ 𝑛𝜆). 

According to the conclusion of that proposition, if 𝐸 is a random subspace of dimension ℓ, 

then  

|
𝜋𝐸(𝑓𝑋+𝑌)(𝑥)

𝛾𝑛[1 + 𝑛
−𝛼𝜆](𝑥)

 −  1| ≤ 𝐶𝑛−1/100,                    (79)  

for all 𝑥 ∈  𝐸 with |𝑥|  <  𝑛1/200 , with probability greater than 1 −  𝐶𝑒−𝑐𝑛
1/10

 of 

selecting E. Next, we apply Lemmas (6.1.7) and (6.1.8) in the -dimensional subspace 𝐸, 
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with the parameters 𝛼 =  𝑛−10𝜆 ≤ 𝑛−120ℓ−8, 𝛽 =
1

600(𝛿+1/ log2   𝑛)
, 𝑅 =  𝑛1/200, 𝜀 =

 𝐶𝑛−1/100 where 𝐶 is the constant from (79). It is straightforward to verify that the 

requirements of these two lemmas hold, since n may be assumed to exceed a given 

universal constant. According to the conclusions of Lemmas (6.1.7) and (6.1.8), for any 

𝑥 ∈  𝐸 with |𝑥|  <  𝑛1/700 ,  

|
𝜋𝐸(𝑓𝑋)(𝑥)

𝛾𝑛[1](𝑥)
 −  1| ≤ 𝐶 𝑛−1/100.  

This completes the proof.  
We improve an estimate from [289],[290] which is related to Gaussian convolution. 

This improvement can be used to obtain slightly better bounds on certain exponents 

related to the central limit theorem for convex bodies. The following proposition was 

conjectured by Meckes [294].  

Proposition (6.1.10)[282]: Let 𝑛 ≥ 1 and 𝑓 ∶ ℝ𝑛  →  [0,∞) be an isotropic, log-concave 

density. Suppose that 𝜀 >  0 and denote 𝑔𝜀  =  𝑓 ∗  𝛾𝑛[𝜀
2], the convolution of f with 

𝛾𝑛[𝜀
2]. Then,  

‖𝑔𝜀  −  𝑓‖𝐿1(ℝ𝑛)  =  ∫  
ℝ𝑛
  |𝑔𝜀(𝑥) −  𝑓 (𝑥)|𝑑𝑥 ≤ 𝐶𝑛𝜀,  

where 𝐶 >  0 is a universal constant.  

Proposition (6.1.10) improves upon Lemma 5.1 in [289] and the results of Section 3 

in [294], and it admits a simpler proof. It is straightforward to adapt the argument in [290], 

and to use Proposition (6.1.10) in place of the inferior Lemma 5.1 of [289]. This leads to 

slightly better estimates. We conclude that whenever 𝑋 is a random vector with a log-

concave density in ℝ𝑛, one may find a subspace 𝐸 ⊂  ℝ𝑛 of dimension, say, 𝑐𝑛1/15  such 

that Proj𝐸(𝑋) is approximately Gaussian, in the total variation sense. The exponent 1/15 is 

probably far from optimal, yet it is better than previous bounds.  

Meckes has observed that Proposition (6.1.10) would follow from the next lemma. 

Lemma (6.1.11)[282]: Let 𝑓 ∶ ℝ𝑛  →  [0,∞) be a 𝐶∞-smooth, isotropic, log-concave 

density. Then,  

∫  
ℝ𝑛
 𝛻𝑓 (𝑥)𝑑𝑥 ≤ 𝐶′𝑛,  

where 𝐶′  >  0 is a universal constant.  

To see that Lemma (6.1.11) leads to Proposition (6.1.10), one only needs to apply 

an inequality from Ledoux [292]. In the notation of Proposition (6.1.10), it is proven in 

[292] that when 𝑓 is 𝐶∞-smooth,  

‖𝑔𝜀  −  𝑓‖𝐿1(ℝ𝑛) ≤ √2𝜀 ∫  
ℝ𝑛
 𝛻𝑓 (𝑥)𝑑𝑥.                 (80)  

Thus, Proposition (6.1.10) follows from Lemma (6.1.11) in virtue of (80), by 

approximating 𝑓 with a 𝐶∞-smooth function. Proposition (6.1.10) and Lemma (6.1.11) are 

tight, for small 𝜀, up to the value of the constants 𝐶, 𝐶′. This is shown, e.g., by the example 

of 𝑓 being close to the isotropic, log-concave function that is proportional to the 

characteristic function of the cube [−√3, √3]
𝑛
 .  

Proof. The case 𝑛 =  1 is covered, e.g., in [294]. We assume from now on that 𝑛 ≥  2. 

Our method builds on the main idea of the proof of Lemma 2.3 in [291]. Fix 𝑥 ∈  ℝ𝑛. We 

claim that  

|𝛻𝑓 (𝑥)| ≤ 𝐶1𝑛𝑓 (𝑥) − 𝐶2𝛻𝑓 (𝑥) ·  𝑥,                            (81)  
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for some universal constants 𝐶1, 𝐶2  >  0. Suppose first that 𝑓 (𝑥)  =  0. Since 𝑓 ≥  0 and 

𝑓 is 𝐶∞- smooth, then necessarily ∇f (x) = 0. Therefore (81) is trivial in this case. It 

remains to prove (81) for the case where 𝑓 (𝑥)  >  0. Denote 𝐹 =  −log 𝑓 . Then 𝐹 ∶
ℝ𝑛  →  (−∞,∞] is convex. Additionally, 𝐹 is finite and 𝐶∞-smooth in a neighborhood of 

𝑥. The graph of the convex function 𝐹 lies entirely above the supporting hyperplane to 𝐹 

at 𝑥. That is,  

𝐹(𝑥)  +  𝛻𝐹(𝑥)  ·  (𝑦 −  𝑥) 𝐹(𝑦) for all 𝑦 ∈  ℝ𝑛.  
Consequently, for any 𝑦 ∈  ℝ𝑛,  

𝛻𝐹(𝑥) ·  𝑦 ≤ [𝐹(𝑦) −  inf𝐹]   +  𝛻𝐹(𝑥)  ·  𝑥.  

By taking the supremum over all 𝑦 ∈  ℝ𝑛 with |𝑦| ≤
1

10
 , we see that 

|𝛻𝐹(𝑥)|

10
≤ 𝛻𝐹(𝑥) ·  𝑥 + sup

|𝑦|≤1/10
  𝐹(𝑦) − inf  𝐹.                             (82)  

Denote  

𝐾 = {𝑥 ∈  ℝ𝑛;  𝑓 (𝑥)𝑒−10𝑛 sup 𝑓 } .  
Then 𝐾 is clearly convex. Additionally, ∫  

𝐾
 𝑓 (𝑥)𝑑𝑥 ≥ 1 − 𝑒−5𝑛/4 ≥  9/10, by Corollary 

5.3 in [289] (we actually use the formulation from Lemma 2.2 in [290]). According to 

Lemma (6.1.4).4 from [289] we have the inclusion {𝑦 ∈  ℝ𝑛;  |𝑦| 1 10 }  ⊆  𝐾. Therefore,  

sup
|𝑦|≤1/10

  𝐹(𝑦) − inf  𝐹 ≤ sup
𝑦∈𝐾

  𝐹(𝑦) − inf  𝐹 ≤ [10𝑛 + inf  𝐹]  − inf  𝐹 =  10𝑛.  

Hence (82) implies that for any 𝑥 ∈  ℝ𝑛,  
𝛻𝐹(𝑥) ≤ 10(𝛻𝐹(𝑥) ·  𝑥) +  100𝑛.                     (83)  

Since 𝛻𝑓 (𝑥)  =  −𝑓 (𝑥)𝛻𝐹(𝑥), then (81) follows from (83). This completes the proof of 

(81). Next, we integrate by parts and see that  

−∫  
ℝ𝑛
  𝛻𝑓 (𝑥)  ·  𝑥𝑑𝑥 =  ∑  

−𝑛

𝑖=1

 ∫  
ℝ𝑛
 𝑥𝑖𝜕

𝑖  𝑓 𝑑𝑥1 . . . 𝑑𝑥𝑛  = ∑ 

𝑛

𝑖=1

 ∫  
ℝ𝑛
 𝑓 (𝑥)𝑑𝑥 =  𝑛.  

The boundary terms vanish, since |𝑥|𝑓 (𝑥)  →  0 as |𝑥| → ∞ (see, e.g., [291] in Lemma 

2.1). According to (81),  

∫  
ℝ𝑛
 𝛻𝑓 (𝑥)𝑑𝑥 ≤ 𝐶1𝑛 ∫  

ℝ𝑛
 𝑓 (𝑥)𝑑𝑥 − 𝐶2  ∫  

ℝ𝑛
 𝛻𝑓 (𝑥) ·  𝑥𝑑𝑥 =  (𝐶1  +  𝐶2)𝑛.  

Section (6.2): Counterexample by Dvoretzky Theorem 

A fundamental problem in Quantum Information Theory is to determine the 

capacity of a quantum channel to transmit classical information. The seminal Holevo–

Schumacher– Westmoreland theorem expresses this capacity as a regularization of the so-

called Holevo 𝜒-quantity (which gives the one-shot capacity) over multiple uses of the 

channel; see, e.g., [297]. This extra step could have been skipped if the χ-quantity had 

been additive, i.e., if  

𝜒 (Φ⊗Ψ) =  𝜒 (Φ) +  𝜒 (Ψ)                                          (84)  
for every pair (Φ,Ψ) of quantum channels. It would have then followed that the χ-quantity 

and the capacity coincide, yielding a single-letter formula for the latter. Determining the 

veracity of (84) had been a major open problem for at least a decade (see [298]). A 

substantial progress was made by Shor [299] who showed that (84) was formally 

equivalent to the additivity of the minimal output von Neumann entropy of quantum 

channels — a much more tractable quantity. Using this equivalence, the equality (84) was 

eventually shown to be false by Hastings [300], with appropriate randomly constructed 

channels as a counterexample.  
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We revisit Hastings’s counterexample from the viewpoint of Asymptotic Geometric 

Analysis (AGA). This field — originally an offspring of Functional Analysis — aims at 

studying geometric properties of convex bodies (or equivalently, norms) in spaces of high 

(but finite) dimension. More specifically, we show that (a variant of) Hastings’s analysis 

can be rephrased in the language of AGA, and his result deduced with only minor effort 

from a sharp version of Dvoretzky’s theorem [301] on Werner almost spherical sections of 

convex bodies — a fundamental result of AGA. This makes the argument much more 

transparent and will hopefully lead to a better understanding of the problem of capacity. 

Our approach is largely inspired by Brandao–Horodecki [302], who were able to 

reformulate Hastings’s analysis in the framework of concentration of measure.  

The letters 𝐶, 𝑐, 𝐶′, . .. denote absolute positive constants, independent of the instance 

of the problem (most notably of the dimensions involved), whose values may change from 

occurrence to occurrence. The values of these constants can be computed by reverse-

engineering the argument. We also use the following convention: whenever a formula is 

given for the dimension of a (sub)space, it is tacitly understood that one should take the 

integer part.  

For ℳ𝑘,𝑑 be the space of 𝑘 ×  𝑑 matrices (with complex entries), and ℳ𝑑  =
 ℳ𝑑,𝑑  . More generally, ℬ(ℋ) will stand for the space of (bounded) linear operators on the 

Hilbert space ℋ. We will write ‖·‖𝑝 for the Schatten 𝑝-norm ‖𝐴‖𝑝  = (Tr(𝐴 † 𝐴)
𝑝/2)

1/𝑝
 . 

The limit case ‖·‖∞ is the operator (or “spectral”) norm, while ‖·‖𝐻 𝑆  = ‖·‖2 is the 

Hilbert–Schmidt (or Frobenius) norm. Let 𝐷(𝐶𝑑  ) be the set of density matrices on 𝐶𝑑 , 

i.e., positive semi-definite trace one operators on 𝐶𝑑 (orstates on 𝐶𝑑 ). If 𝜌 is a state onCd , 

its von Neumann entropy 𝑆(𝜌) is defined as 𝑆(𝜌)  =  − Tr 𝜌 log ρ. If Φ: 𝑀𝑚 →  𝑀𝑘 is a 

quantum channel (completely positive trace preserving map), its minimal output entropy is  

𝑆min  (Φ) = min
𝜌∈𝐷(𝐶𝑚)

  𝑆(Φ(𝜌)). 

Concavity of 𝑆 implies that the minimum is achieved on a pure state.  

The crucial insight allowing to relate analysis of quantum channels to high-

dimensional convex geometry is the observation that there is an essentially one-to-one 

correspondence between channels and linear subspaces of composite Hilbert spaces. 

Specifically, let W be a subspace of 𝐶𝑘⊗ 𝐶𝑑  of dimension m. Then Φ:ℬ(𝒲)  →
 ℳ𝑘 defined by (𝜌)  =  Tr𝐶𝑑  (𝜌) is a quantum channel; here Tr𝐶𝑑 is the partial trace with 

respect to the second factor in 𝐶𝑘  ⊗ 𝐶𝑑 . Alternatively, and perhaps more properly, we 

could identify 𝒲 with 𝐶𝑚 via an isometry 𝑉 ∶  𝐶𝑚  →  𝐶𝑘  ⊗ 𝐶𝑑 whose range is 𝒲 and 

define, for 𝜌 ∈  ℳ𝑚, the corresponding channel Φ ∶  ℳ𝑚  →  ℳ𝑘 by  

Φ(𝜌) =  Tr𝐶𝑑  (𝑉𝜌𝑉
†).                    (85)  

It is now easy to define a natural family of random quantum channels. They will be 

associated, via the above scheme, to random m-dimensional subspaces 𝒲 of 𝐶𝑘  ⊗ 𝐶𝑑 , 

distributed according to the Haar measure on the corresponding Grassmann manifold (for 

some fixed positive integers 𝑚, 𝑑, 𝑘 that will be specified later). Note that all reasonable 

parameters of a channel defined by (85) such as 𝑆min  (Φ) depend only on the subspace 

𝒲 =  𝑉(𝐶𝑚) and not on a particular choice of the isometry 𝑉 (this will be also obvious 

from what follows). In particular, the language of “random 𝑚-dimensional subspaces of 

𝐶𝑘  ⊗ 𝐶𝑑  ” is equivalent to that of “random isometries from 𝐶𝑚 to 𝐶𝑘  ⊗ 𝐶𝑑  .”  

The following question has attracted considerable attention in the last few years: if 

Φ and are two quantum channels, is it true that  
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𝑆min  (Φ ⊗Ψ)  =  𝑆min  (Φ) + 𝑆min  (Ψ)                           (86)  
Shor [299] showed it to be formally equivalent to a number of central questions in 

quantum information theory, including the additivity of the χ-quantity mentioned.  

Note that the inequality “≤” always holds (consider product input states). However, 

as was first proved by Hastings using random constructions [300], the reverse inequality is 

false in general. The exegesis of Hastings’s argument has subsequently been carried out in 

[302] and [303]. We will show here that the analysis of (a variant of) Hastings’s example 

essentially amounts to applying the right version of Dvoretzky’s theorem and leads to the 

conclusion that high-dimensional random channels typically violate (86).  

Theorem (6.2.1)[294]: Let 𝑘 ∈  N, 𝑚 =  𝑐𝑘2 and 𝑑 =  𝐶𝑘2 (𝑐 and 𝐶 being appropriate 

absolute constants). Let 𝑉 ∶  𝐶𝑚  →  𝐶𝑘⊗ 𝐶𝑑 be a random isometry and Φ: ℳ𝑚  →
 ℳ𝑘 be the corresponding random channel given by (85). Then for 𝑘 large enough, with 

large probability,  

𝑆min  (Φ ⊗Φ )  <   𝑆min  (Φ) + 𝑆min  (Φ). 
The expression “with large probability” in Theorem (6.2.1) and in what follows may 

be understood as “with probability >  𝜃, where 𝜃 ∈  (0, 1)is arbitrary but fixed in 

advance” (note that, in particular, the threshold value of 𝑘 could then depend on θ). 

However, much stronger assertions are in fact true, for example the probability of the 

exceptional set in Theorem (6.2.1) can be majorized by exp(−𝑐′ 𝑚). Another comment: 

one only uses in the proof that m and d are comparable, and larger than 𝑐𝑘2. The proof 

will be based on separately majorizing 𝑆min  (Φ ⊗Φ) , which is done via a well-known 

and relatively simple trick, and on minorizing 𝑆min  (Φ)  =  𝑆min  (Φ) , which is the main 

point of the argument.  

A question analogous to (86) can be asked for the minimal output 𝑝-Rényi entropy 

(𝑝 >  1). For the additivity of Rényi entropy, random counterexamples were constructed 

earlier by Hayden–Winter [304]. It was shown in [305] that the Hayden–Winter analysis 

can also be simplified (at least conceptually) by appealing to Dvoretzky’s theorem. 

Working with the von Neumann entropy, however, requires more effort. First, while [305] 

relied on a straightforward instance of Milman’s “tangible” version [126],[306] of 

Dvoretzky’s theorem for Schatten classes that was documented in the literature already in 

the 1970’s, we now need a more subtle, sharp version (which appears in the literature only 

implicitly). Second, this sharp version is not applied in the most direct way and requires 

additional preparatory work (for which we mostly follow the approach of Brandao–

Horodecki [302]).  

We are consider channels with near-maximal minimal output entropy, the following 

simple inequality (Lemma III.1 in [302], or formula (40) in [300]) will allow to replace the 

analysis of the von Neumann entropy S by that of a smoother quantity.  

Lemma (6.2.2)[294]: For every state 𝜎 ∈ 𝒟(𝐶𝑘),  

𝑆(𝜎 ) ≥  𝑆 (
Id

𝑘
) −  𝑘   ‖ 𝜎 −

Id

𝑘
‖
𝐻 𝑆

2

 .  

Consequently, for every quantum channel Φ: ℳ𝑚  →  ℳ𝑘 ,  

𝑆min  (Φ) ≥  log(𝑘) −  𝑘 · max
𝜌∈𝒟(𝐶𝑚)

  ‖Φ(𝜌) −
Id

𝑘
‖
𝐻 𝑆

2

 .             (87)  
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It will be convenient to identify 𝐶𝑘  ⊗ 𝐶𝑑 (or, to be more precise, 𝐶𝑘  ⊗ 𝐶𝑑  —  𝑎 

distinction we will ignore) with ℳ𝑘,𝑑 via the canonical map induced by 𝑢 ⊗  𝑣 →

 |𝑢 ⟩⟨ 𝑣|. If 𝑥 ∈  𝐶𝑘  ⊗ 𝐶𝑑  is so identified with a matrix ℳ ∈  ℳ𝑘,𝑑  , then  

Tr𝐶𝑑  |𝑥 ⟩⟨ 𝑥|  =  𝑀 𝑀
†.                                            (88)  

By this identification, Schmidt coefficients of |𝑥⟩ coincide with singular values of 

𝑀. While the tensor and matrix formalisms are equivalent, the matrix formalism is 

arguably more transparent, which sometimes leads to simpler arguments.  

Denote by 𝒲 ⊂  𝐶𝑘  ⊗ 𝐶𝑑 the subspace inducing Φ. Note that the maximum in 

(87) is necessarily attained on pure states which, in this identification, correspond to unit 

vectors 𝑥 ∈ 𝒲. For such states the action of Φ is given — in the matrix formalism — by 

(88), and so the inequality (87) can be rewritten as  

𝑆min  (Φ) ≥  log(𝑘) −  𝑘 · max
𝑀∈𝒲,‖𝑀‖𝐻 𝑆=1

  ‖𝑀 𝑀†  −
Id

𝑘
‖
𝐻 𝑆

2

 .         (89) 

The idea will be to show that, for a random subspace 𝒲, the maximum on the right is very 

small; this will be formalized in the next proposition.  

The heart of the argument is the following proposition  

Proposition (6.2.3)[294]: There are absolute constants 𝑐, 𝐶, 𝐶′  >  0 so that for every 𝑘, 

for 𝑑 =  𝐶𝑘2 and 𝑚 =  𝑐𝑑 , a random Haar-distributed subspace 𝒲 of dimension 𝑚 in 

ℳ𝑘,𝑑 satisfies  

max
𝑀∈𝒲,‖𝑀‖𝐻 𝑆=1

  ‖𝑀 𝑀†  −
Id

𝑘
‖
𝐻 𝑆
 ≤
𝐶′

𝑘
                           (90)  

with large probability (tending to 1 when 𝑘 tends to ∞). From the proposition one quickly 

deduces that the pair (Φ,Φ )  is a counterexample to the additivity of minimum output von 

Neumann entropy. Indeed, a straightforward calculation shows that applying Φ⊗Φ to the 

maximally entangled state yields an output state with one eigenvalue greater than or equal 

to 
dim𝒲

dimℳ𝑘,𝑑
 =

𝑚

𝑘𝑑
 =

𝑐

𝑘
 ([304], Lemma III.3; see [307]). Then, a simple argument using just 

concavity of 𝑆(·) reduces the problem to calculating the entropy of the state with one 

eigenvalue equal to 
𝑐

𝑘
 and all the remaining ones identical, which yields 

 𝑆min  (Φ⊗Φ) ≤  2 log 𝑘 −
𝑐log𝑘

𝑘
 +
1

𝑘
 .  

On the other hand, Eq. (89) together with Proposition (6.2.3) implies  

𝑆min  (Φ) ≥  log(𝑘) −
𝐶′2

𝑘
 . 

 Since 𝑆min  (Φ)  =  𝑆min  (Φ), the inequality of Theorem (6.2.1) follows if k is large 

enough, as required.  

We wish to point out that while Proposition (6.2.3) will be derived from a 

Dvoretzky-like theorem for Lipschitz functions (Theorem (6.2.7) below), it can be 

rephrased in the language of the standard Dvoretzky’s theorem. Indeed, its assertion says 

that for every 𝑀 ∈ 𝒲 with ‖𝑀‖𝐻 𝑆  =  1 we have  

𝐶2

𝑘2
 ≥ ‖𝑀 𝑀†  −

Id

𝑘
‖
𝐻 𝑆

2

 =  Tr |𝑀|4  −
2Tr 𝑀𝑀†

𝑘
 +
Tr Id

𝑘2
 =  Tr |𝑀|4  −

1

𝑘
 ≥  0. (91) 

Consequently,  
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𝑘−1/4‖𝑀‖𝐻 𝑆  ≤  ‖𝑀‖4  ≤  𝑘
−1/4    (1 +

𝐶2

𝑘
)

1/4

 ‖𝑀‖𝐻 𝑆  

≤  𝑘−1/4  (1 +
𝐶2

4𝑘
)‖𝑀‖𝐻 𝑆                                                                                (92) 

for all 𝑀 ∈ 𝒲. In other words, 𝒲 is (1 +  𝛿)-Euclidean, with 𝛿 =
𝐶2

4𝑘
 , when considered 

as a subspace of the normed space (ℳ𝑘,𝑑  , ‖ ·‖4) , the Schatten 4-class.  

In [305] we similarly observed that the crucial technical step of the Hayden-Winter 

proof of non-additivity of p-Rényi entropy for 𝑝 >  1 can be restated as an instance of 

Dvoretzky’s theorem for the Schatten 2𝑝-class. There is an important difference, however. 

While in the case of 𝑝-Rényi entropy the needed Dvoretzky-type statement was known 

since the 1970s, for the statement of the type (92) needed in the present context, the “off 

the shelf” methods seem to yield only 𝛿 =  𝑂(𝑘−1/4) as opposed to 𝛿 =  𝑂(𝑘 − 1) 
above. This also suggests that while for the 𝑝-Rényi entropy derandomization of the 

example — i.e., supplying explicit channels for which the additivity fails — may be a 

feasible project (see [305]), the analogous task for the von Neumann entropy is likely to be 

much harder.  

We use the following definitions: if 𝑓 is a function from a metric space (𝑋, 𝑑) to R, 

and 𝜇 ∈  R, the oscillation of 𝑓 around 𝜇 on a subset 𝐴 ⊂  𝑋 is  

osc( 𝑓, 𝐴, 𝜇) = sup
𝐴
  | 𝑓 −  𝜇|. 

A function 𝑓 defined on the unit sphere 𝑆𝐶𝑛 is called circled if 𝑓 (𝑒𝑖𝜃 𝑥)  =  𝑓 (𝑥) for any 

𝑥 ∈  𝑆𝐶𝑛 , 𝜃 ∈  [0, 2𝜋]. If 𝑋 is a real random variable, we will say that μ is a central value 

of 𝑋 if μ is either the mean of 𝑋, or any number between the 1st and the 3rd quartile of 𝑋 

(i.e., if min{P(𝑋 ≥  𝜇), P(𝑋 ≤  𝜇)}  ≥
1

4
 ; this happens in particular if μ is the median of 

𝑋).  

We will need the following variant of Milman’s “tangible” version of Dvoretzky’s 

theorem.  

A striking application of the theorem above is to the case when 𝑓 is the gauge 

function of a convex body, or a norm: it leads to the fact that any high-dimensional convex 

body has almost spherical sections.  

At the heart of Dvoretzky-like phenomena lies the concentration of measure, which 

in our framework is expressed by  

Lemma (6.2.4)[294]: (Lévy’s lemma [308]). If 𝑓 ∶  𝑆𝑛−1  →  R is a 1-Lipschitz function, 

then for every 𝜀 >  0,  
𝑃(|𝑓 (𝑥) −  𝜇|  >  𝜀)  ≤  𝐶1 exp(−𝑐1𝑛𝜀

2),  
where 𝑥 is uniformly distributed on 𝑆𝑛−1, 𝜇 is any central value of 𝑓 , and 𝐶1, 𝑐1  >  0 are 

absolute constants.  

Results such as Theorem (6.2.7) or Lévy’s lemma are usually stated with μ equal to 

the median or the mean of 𝑓. However, once we know that the result is true for some 

central value (or, for that matter, for any 𝜇 ∈ R), it holds a posteriori for any such value 

(up to changes in the constants) as, for 1-Lipschitz functions, all central values differ at 

most by 𝐶 /√𝑛 .  
The obvious idea to prove Theorem (6.2.7) is to use Lévy’s lemma and an ε-net 

argument — using the fact that an ε-net in 𝑆𝐶𝑛 = 𝑆
2𝑛−1 can be chosen to have cardinality 
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≤ (1 + 2/𝜀)2𝑛 (see [309], Lemma 4.10). Indeed, this was essentially Milman’s original 

argument in [126]. However, one only obtains this way a subspace E of dimension 

𝑐𝑛𝜀2/ log(1/𝜀). For many applications (see [305]), this extra logarithmic factor is not an 

issue. However, in the present case, having the optimal dependence on ε is crucial.  

The classical framework of convex geometry is the real case (with or without the 

assumption “circled,” which in that context just means then that the function is even). In 

that setting, Theorem (6.2.7) was proved by Gordon [310] who used comparison 

inequalities for Gaussian processes. A proof based on concentration of measure was later 

given by Schechtman [311]. The complex case does not seem to appear in the literature. 

Actually, at the face of it, Gordon’s proof does not extend to the complex setting, while 

Schechtman’s proof does. We sketch Schechtman’s proof of Theorem (6.2.7). It is not 

clear whether the assumption “ f circled” in Theorem (6.2.7) can be completely removed; 

we do know that it is needed at most for very small values of 𝜀. 
For 𝑆𝐻 𝑆 be the Hilbert–Schmidt sphere in ℳ𝑘,𝑑 and let 𝑀 be a random matrix 

uniformly distributed on 𝑆𝐻 𝑆. Let �̃�(·) be the function defined on 𝑆𝐻 𝑆 by  

�̃�(𝑀)  = ‖ 𝑀 𝑀†  −
Id

𝑘
‖
𝐻 𝑆
 . 

The next well-known lemma asserts that the singular values of a very rectangular random 

matrix are very concentrated. This is a familiar phenomenon in random matrix theory that 

goes back to [312]. Versions of this lemma appeared in the QIT literature under the tensor 

formalism (see for example Lemma III.4 in [313]). However, these versions typically 

introduce an unnecessary logarithmic factor which would imply that the main proposition 

holds with 𝑑 =  𝐶𝑘2 log 𝑘 instead of 𝑑 =  𝐶𝑘2. For completeness, we include a proof of 

Lemma (6.2.11).  

We will use in the sequel the following immediate corollary of Lemma (6.2.11).  

Corollary (6.2.5)[294]: Under the hypotheses of Lemma (6.2.11) and denoting 𝐶0  =  3𝐶  

(a) with probability larger than 1 − exp(−𝑐𝑘), all eigenvalues of 𝑀 𝑀† differ from 1/𝑘 by 

less than 𝐶0 /√𝑘𝑑; consequently, the median (or any fixed quantile) of �̃� is bounded by 

𝐶0 /√𝑑 for 𝑘 large enough.  

(b) if 𝑑 ≥  𝐶2𝑘, the median (or any fixed quantile) of ‖𝑀‖∞ is bounded by 2 /√𝑘 for k 

large enough.  

We point out that while we chose to present statements (a) and (b) above as 

consequences of Lemma (6.2.11) for clarity and for “cultural” reasons (the lemma being 

familiar to the QIT community), more precise versions of these statements are available in 

(or can be readily deduced from) the random matrix literature. Re (a), the study of the 

distribution of �̃� is, by (91), equivalent to that of Tr |𝑀|4, and a closed formula for the 

expected value of the latter is known (up to terms of smaller order, its value is 1/𝑘 + 1/
𝑑); see, e.g., [314]. Re (b), sharp estimates on the tail of ‖𝑀‖∞ can also be found in [314] 

(proof of Lemma 7.3), in particular every fixed quantile is 1/ √𝑘 +  1 /√𝑑 up to terms of 

smaller order. This result can also be retrieved via methods of [315],[316], which focused 

on the real case.  

The function �̃� is 2-Lipschitz on 𝑆𝐻 𝑆, and Corollary (6.2.5)(a) implies that the 

median of �̃� is as small as we want for large d. However, a direct application of Theorem 

(6.2.7) yields only a bound of order 1 /√𝑘 in (90). The trick — already present in the 

previous approaches — is to exploit the fact that �̃� has a much smaller Lipschitz constant 
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when restricted to a certain large subset of 𝑆𝐻 𝑆. As we will see, this bootstrapping 

argument is equivalent to applying Theorem (6.2.7) twice.  

The following lemma appears in [302] with a rather long proof, but using the matrix 

formalism completely demystifies it.  

Lemma (6.2.6)[294]: The function g is ˜ 6/ √k-Lipschitz when restricted to the set  

Ω =  {𝑀 ∈  𝑆𝐻 𝑆 s. t ‖𝑀‖∞  ≤  3/ √𝑘}.  
Proof. The lemma is a consequence of the following chain of matrix inequalities 

‖𝑀 𝑀†  −
Id

𝑘
‖
𝐻 𝑆
 −  ‖𝑁 𝑁†  −

Id

𝑘
‖
𝐻 𝑆
 ≤  ‖𝑀 𝑀†  −  𝑁 𝑁†‖

𝐻 𝑆
  

≤ ‖ 𝑀(𝑀†  −  𝑁†) + (𝑀 −  𝑁)𝑁†‖
𝐻 𝑆
  

≤ ‖𝑀‖∞‖𝑀
†  −  𝑁†‖

𝐻 𝑆
 +  ‖𝑀 −  𝑁‖𝐻 𝑆‖𝑁

†‖
∞
  

≤ (‖𝑀‖∞  +  ‖𝑁‖∞)‖𝑀 −  𝑁‖𝐻 𝑆.  
 The function ‖·‖∞ is 1-Lipschitz on SH S. By Corollary (6.2.5)(b), its median is bounded 

by 2/ √𝑘 for 𝑑 ≥  𝐶2𝑘. (Note that Lévy’s lemma shows that the measure of the 

complement of Ω is very small.) An application of the standard Dvoretzky’s theorem 

(i.e.,Theorem (6.2.7) for norms) to 𝑓 = ‖·‖∞ with μ equal to the median of ‖·‖∞ and with 

𝜀 =  1/ √𝑘 (note that the dimension of the ambient space is 𝑛 =  𝑘𝑑) shows that the 

intersection of 𝑆𝐻 𝑆 with a random subspace of dimension 𝑐𝑑 in ℳ𝑘,𝑑 is contained in Ω 

with large probability.  

Let 𝑔 be a 6𝑘−
1

2-Lipschitz extension of �̃�|Ω to 𝑆𝐻 𝑆 — in any metric space 𝑋, it is 

possible to extend any 𝐿-Lipschitz function ℎ̃ defined on a subset Y without increasing the 

Lipschitz constant; use, e.g., the formula  

ℎ(𝑥) = inf
𝑦∈𝑌
  [ℎ̃(𝑦) +  𝐿 dist(𝑥, 𝑦)]. 

This formula also guarantees that the extended function g is circled. Since 𝑔 =  �̃� on most 

of 𝑆𝐻 𝑆, the median of g (resp., �̃�) is a central value of �̃� (resp., g). We apply Theorem 

(6.2.7) to 𝑔 with 𝜀 =  1/𝑘 and 𝐿 =  6𝑘−1/2 to get (μ being the median of �̃�)  

osc(g, SH S ∩ E, μ) ≤ 1/k on a random subspace 𝐸 ⊂  ℳ𝑘,𝑑 of dimension 𝑚 =  𝑐0  ·

 𝑘𝑑 ·  (𝑘−1/(6𝑘−1/2))
2
 =  𝑐𝑑. Using Corollary (6.2.5)(a), we obtain that 𝜇 ≤  1/𝑘 for 

𝑑 ≥  (𝐶0𝑘)
2. We then have  

osc(𝑔, 𝑆𝐻 𝑆  ∩  𝐸, 0)  ≤  2/𝑘.  
If 𝑆𝐻 𝑆  ∩  𝐸 ⊂ Ω (which, as noticed before, holds with large probability), 𝑔 and �̃� 

coincide on 𝑆𝐻 𝑆  ∩  𝐸 and therefore osc(�̃�, 𝑆𝐻 𝑆  ∩  𝐸, 0)  ≤  2/𝑘. This completes the proof 

of Proposition (6.2.3) and hence that of Theorem (6.2.1).  

Theorem (6.2.7)[294]: (Dvoretzky’s theorem for Lipschitz functions). If 𝑓 ∶  𝑆𝐶𝑛  →  R is 

a 1-Lipschitz circled function, then for every 𝜀 >  0, if 𝐸 ⊂  𝐶𝑛 is a random subspace 

(Haar-distributed) of dimension 𝑐0𝑛𝜀
2, we have with large probability  

osc( 𝑓, 𝑆𝐶𝑛  ∩  𝐸, 𝜇)  ≤  𝜀,  
where 𝜇 is any central value of f (with respect to the normalized Lebesgue measure on 

𝑆𝐶𝑛) and 𝑐0 is an absolute constant. If the function is 𝐿-Lipschitz, the dimension changes 

to 𝑐0𝑛(𝜀/𝐿)
2 .  

Proof. We sketch here a proof of Theorem (6.2.7), essentially following Schechtman 

[311]. As we already mentioned, a simple use of a ε-net argument gives a parasitic factor 

log(1/𝜀). This can be improved by a chaining argument, which goes back (at least) to 
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Kolmogorov — a way to use 𝜂-nets for all values of 𝜂 simultaneously. Consider the 

canonical inclusion 𝐶𝑚  ⊂  𝐶𝑛, and let 𝑈 ∈  𝑈(𝑛) be a random Haar-distributed unitary 

matrix. Then 𝐹 ∶=  𝑈(𝐶𝑚) is distributed according to the Haar measure on the Grassmann 

manifold of m-dimensional subspaces. If 𝑓 ∶  𝑆𝐶𝑛  → R is a 1-Lipschitz circled function 

with mean μ, we need to show that osc( 𝑓 ° 𝑈, 𝑆𝐶𝑚 , 𝜇)  ≤  𝜀 with large probability 

provided 𝑚 ≤  𝑐0𝑛𝜀
2. We first prove a lemma.  

Lemma (6.2.8)[294]: Let 𝑓 ∶  𝑆𝐶𝑛  → R be a 1-Lipschitz circled function and U ∈ U(n) be 

a Haar-distributed random unitary matrix. Then for any 𝑥, 𝑦 ∈  𝑆𝐶𝑛 with x = y and for any 

𝜆 >  0,  

𝑃(|𝑓 (𝑈 𝑥) −  𝑓 (𝑈 𝑦)|  >  𝜆)  ≤  𝐶 exp(−𝑐𝑛
𝜆2

|𝑥 −  𝑦|2
)  .  

Proof. Fix 𝑥, 𝑦 ∈  𝑆𝐶𝑛 . Since f is circled (and 𝑈 is C-linear), we may replace 𝑦 by 𝑒𝑖𝜃 𝑦 

and choose 𝜃 so that ⟨𝑥|𝑦⟩ is real nonnegative; note that this choice of 𝜃 minimizes |𝑥 −
 𝑦| and assures that 𝑥 +  𝑦 and 𝑦 −  𝑥 are orthogonal. (This is the only really new point 

needed to accommodate the complex setting.) Set 𝑧 =
𝑥+𝑦

2
 and 𝑤 =

𝑦−𝑥

2
 , then 𝑥 =  𝑧 +

𝑤 and 𝑦 =  𝑧 − 𝑤. Further, set 𝛽 =  |𝑤| =
1

2
 |𝑥 −  𝑦| (we may assume that 𝛽 ≠  0) 

and 𝑤′  =  𝛽−1𝑤. Then, conditionally on 𝑢 =  𝑈(𝑧), 𝑈(𝑤′) is distributed uniformly on 

the sphere 𝑆𝑢⊥ ∶=  𝑆𝐶𝑛  ∩  𝑢
⊥. Since 𝑈(𝑥)  =  𝑢 +  𝛽𝑈(𝑤′) and 𝑈(𝑦)  =  𝑢 −  𝛽𝑈(𝑤′), 

it follows that the conditional (on 𝑢 =  𝑈(𝑧)) distribution of 𝑓 (𝑈 𝑥)  −  𝑓 (𝑈 𝑦) is the 

same as that of 𝑓𝑢 ∶  𝑆𝑢⊥  → R defined by  

𝑓𝑢(𝑣)  =  𝑓 (𝑢 +  𝛽𝑣)  −  𝑓 (𝑢 −  𝛽𝑣).  
As is readily seen, 𝑓𝑢 is 2𝛽-Lipschitz and its mean is 0. From Lévy’s lemma, applied to 𝑓𝑢 

and to the (2𝑛 −  3)-dimensional sphere 𝑆𝑢⊥  , we deduce that, conditionally on 𝑢 =
 𝑈(𝑧),  

𝑃(|𝑓 (𝑈 𝑥) −  𝑓 (𝑈 𝑦)| >  𝜆)  ≤  𝐶1 exp(−𝑐1(2𝑛 −  2)𝜆
2/|𝑥 −  𝑦|2),  

and hence the same inequality holds also without the conditioning.   

The end of the proof (the actual chaining argument) is identical to that in 

Schechtman’s, so — rather than copying it — we present the general principle on which it 

is based. Let (𝑆, 𝜌) be a compact metric space and let (𝑋𝑠)𝑠∈𝑆 be a family of mean 0 

random variables (a stochastic process indexed by 𝑆). We say that (𝑋𝑠) is subgaussian if 

there are 𝐴, 𝛼 >  0 such that, for all 𝑠, 𝑡 ∈  𝑆 with 𝑠 =  𝑡 and for all 𝜆 ≥  0,  

𝑃(|𝑋𝑠  −  𝑋𝑡| ≥  𝜆)  ≤  𝐴 exp(−𝛼
𝜆2

𝜌(𝑠, 𝑡)2
)  .                  (93)  

Proposition (6.2.9)[294]: (Dudley’s inequality). If (𝑋𝑠)𝑠∈𝑆 satisfies (93) and some mild 

regularity conditions, then  

𝐸 sup
𝑠,𝑡∈𝑆

  |𝑋𝑠 − 𝑋𝑡|  ≤  𝐶
′ 𝐴 𝛼−1/2   ∫  

∞

0

 √ log 𝑁(𝑆, 𝜂) 𝑑𝜂,  

where 𝑁(𝑆, 𝜂) is the minimal cardinality of a η-net of S (in particular the integrand is 0 if 

𝜂 is larger than the radius of 𝑆).  

See [317], [318] for a generalization to the subgaussian case that is relevant here, 

and [319] for a book exposition; we also sketch a proof further below.  

In our case we choose 𝑆 =  𝑆𝐶𝑚  ∪  {0} (with the usual Euclidean metric), 𝑋𝑠  =
 𝑓 (𝑈𝑠)  −  𝜇 if 𝑠 ∈  𝑆𝐶𝑚 and 𝑋0  =  0 ; then  

osc( 𝑓 ° 𝑈, 𝑆𝐶𝑚 , 𝜇)  = sup
𝑠∈𝑆
  |𝑋𝑠|.  
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The underlying probability space is 𝑈(𝑛), and the subgaussian property is given by 

Lemma (6.2.8) if 𝑠, 𝑡 ∈  𝑆𝐶𝑚 and directly by Lévy’s lemma if s or t equals 0. Next, the 

bound 𝑁(𝑆𝐶𝑚 , 𝜂)  =  𝑁(𝑆
2𝑚−1, 𝜂)  ≤  (1 + 2/𝜂)2𝑚 mentioned in the comments 

following Lemma (6.2.4)leads to an estimate 2√𝑚 for the integral and to the bound  

𝐸 ∶=  E sup
𝑠∈𝑆
  |𝑋𝑠|  ≤  𝐸 sup

𝑠,𝑡∈𝑆
  |𝑋𝑠  −  𝑋𝑡| ≤  𝐶

′ 𝐶(𝑐𝑛)
−12  ·  2 √𝑚  =  𝐶′′√

𝑚

𝑛
 .  

(For readers confused by different quantities appearing on the left side in different forms 

of Dudley’s inequality, we point out that the first inequality above uses the fact that one of 

the variables 𝑋𝑡 equals 0, and that we always have sup
𝑠,𝑡
  |𝑋𝑠  −  𝑋𝑡| = sup

𝑠
  𝑋𝑠  +

sup
𝑡
 (−𝑋𝑡).) The assertion of Theorem (6.2.7) follows now from Markov’s inequality if 𝜀 

is sufficiently larger than E, which is assured by choosing 𝑐0 small enough. A slightly 

more careful argument (such as that given in [311], or see [319]) or an application of the 

appropriate concentration inequality (for functions on 𝑈(𝑛)) yields a bound of the form 

exp(−𝑐′ 𝜀2𝑛 ) on the probability of the exceptional set sup
𝑠∈𝑆
  |𝑋𝑠|  >  𝐶

′′√
𝑚

𝑛
 +  𝜀 (hence 

for the exceptional set from Theorem (6.2.7)).  

Let us comment here that the value of the constant 𝑐0 given by the proof of 

Theorem (6.2.7) is probably the single most important obstacle to showing Theorem 

(6.2.1) for “reasonable” values of 𝑘,𝑚. An adaptation of the proof from [310] (which 

yields good constants) to the complex case could be helpful here. Proof of Dudley’s 

inequality. For every 𝑘 ∈  𝑍, let 𝒩𝑘 be a 2−𝑘 -net of minimal cardinality for (S,ρ). Let 

𝑘0  ∈  𝑍 be such that the radius of S lies between 2−(𝑘0+1)  and 2−𝑘0  ; the net 𝒩𝑘0  consists 

of a single element s0. For every 𝑠 ∈  𝑆 and 𝑘 ∈  𝑍, let 𝜋𝑘 (𝑠) be an element of 𝒩𝑘 

satisfying 𝜌(𝑠, 𝜋𝑘  (𝑠))  ≤  2
−𝑘  . The chaining equation reads for every 𝑠 ∈  𝑆,  

𝑋𝑠  =  𝑋𝑠0  +  ∑  

𝑘≥𝑘0

 𝑋𝜋𝑘+1(𝑠)  −  𝑋𝜋𝑘(𝑠).                             (94)  

(It is here where some regularity of (𝑋𝑠) – path continuity – is used.) It follows that  

sup
𝑠,𝑡∈𝑆

  |𝑋𝑠  −  𝑋𝑡|  ≤  2 ∑  

 𝑘≥𝑘0

sup
𝑠∈𝑆
  |𝑋𝜋𝑘+1(𝑠)  −  𝑋𝜋𝑘(𝑠)|  ≤  2 ∑  

𝑘≥𝑘0

sup
𝑢,𝑢′

 |𝑋𝑢  −  𝑋𝑢′|, 

where the last supremum is taken over couples(𝑢, 𝑢′)  ∈  𝒩𝑘+1 ×𝒩𝑘  satisfying 

𝜌(𝑢, 𝑢′)  ≤  2−𝑘  +  2−(𝑘+1)  <  2−𝑘+1. It remains to bound the expectation of each term in 

the sum, using the following fact  

Fact (6.2.10)[294]: If 𝑁 ≥  2 and 𝑌1, . . . , 𝑌𝑁 are nonnegative random variables satisfying 

the tail estimate 𝑃(𝑌𝑖  ≥  𝑡)  ≤  𝐴 exp (−𝑡
2/2𝛽2) for all 𝑡 ≥  0, then  

 Emax
𝑌𝑖
  ≤  𝐶 𝐴𝛽  √log 𝑁.  

To bound E 𝑠𝑢𝑝 |𝑋𝑢  −  𝑋𝑢′|, we apply the above fact with β = 2−k+1α−1/2 and 

𝑁 =  card(𝒩𝑘)  ·  card(𝒩𝑘+1)  ≤  𝑁(𝑆, 2
−(𝑘+1))

2
. This gives  

E sup
𝑠,𝑡∈𝑆

  |𝑋𝑠  −  𝑋𝑡|  ≤  𝐶 𝐴𝛼
−1/2  ∑  

 𝑘≥𝑘0

 2−𝑘   √log𝑁(𝑆, 2−(𝑘+1)).  

The result now follows by relating the last series to the integral in Proposition (6.2.9) (a 

version of the integral test from calculus).   

Proof. We may assume 𝛽 =  1 by working with 𝑌𝑖  /𝛽. Then simply write  
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Emax
 
 𝑌𝑖  =  ∫  

∞

0

 P(max𝑌𝑖 ≥  𝑡)𝑑𝑡  

≤  √2 log 𝑁  +  𝐴𝑁  ∫  
∞

√2 log 𝑁

exp(−𝑡2/2) 𝑑𝑡 ≤   √2 log 𝑁  +  𝐴.  

The last inequality follows from  ∫  
∞

√2 log 𝑁
 exp(−𝑡2/2)𝑑𝑡 ≤   ∫  

∞

√2 log 𝑁
 𝑡 exp (−𝑡2/

2)𝑑𝑡 =  1/𝑁. Note that the hypotheses force 𝐴 ≥  1.   
Lemma (6.2.11)[294]: There exist absolute constants 𝐶, 𝑐 >  0 such that, if 𝑀 is 

uniformly distributed on the Hilbert–Schmidt sphere in ℳ𝑘,𝑑  (𝑑 ≥  𝐶2𝑘), then with 

probability larger than 1 − exp(−𝑐𝑘), 

spec(𝑀 𝑀†)  ⊂ [( 
1

√𝑘
−
𝐶

√𝑑
)
2

 , ( 
1

√𝑘
+
𝐶

√𝑑
)
2

]  .        (95) 

We note that inclusion (95) can be reformulated as follows: all singular values of 𝑀 

differ from 1 /√𝑘  by less than 𝐶 /√𝑑. (Recall that the singular values of 𝑀 correspond to 

the Schmidt coefficients of a random pure state in 𝐶𝑘  ⊗ 𝐶𝑑 .)  

Proof. The lemma will follow if we show that with large probability,  

‖∆‖∞  ≤
𝐶

√𝑘𝑑
 , 

 where  ∆=  𝑀 𝑀†  −  Id/𝑘 ∈ ℳ𝑘 and ‖·‖∞ is the operator (or spectral) norm. Let 𝒩  be 

a 
1

4
 -net of 𝑆𝐶𝑘 with cardinality bounded by (𝐶0)

𝑘 . One checks that if 𝑥 ∈  𝑆𝐶𝑘 and 𝑥  ∈

𝒩 satisfy |𝑥 − 𝑥|  ≤  1/4, then  

|⟨𝑥|∆|𝑥⟩|  ≤  |⟨𝑥|∆|𝑥⟩|  + ⟨|𝑥 − 𝑥||∆|𝑥⟩|   + |⟨𝑥|∆|𝑥 − 𝑥⟩ ≤   |⟨𝑥|∆|𝑥⟩|  +  2 ·
1

4
 ‖∆‖∞,  

so that taking supremum over 𝑥 ∈  𝑆𝐶𝑘 , we get  

‖∆‖∞  ≤  2 sup
𝑥∈𝒩

  |⟨𝑥|∆|𝑥⟩|. 

An application of the union bound gives  

P (‖∆‖∞  ≥
𝐶

√𝑘𝑑
)   ≤  (𝐶0)

𝑘  ·  P((|⟨𝑥0|∆|𝑥0⟩| ≥
𝐶

2√𝑘𝑑
)  

= (𝐶0)
𝑘  ·  P (|𝑀†𝑥0|

2
 ≥
1

𝑘
 +

𝐶

2√𝑘𝑑
)   

≤ (𝐶0)
𝑘  ·  P (|𝑀†𝑥0|  ≥

1

√𝑘
 +

𝐶

5√𝑑
)  ,  

where 𝑥0  ∈  𝐶
𝑘 is any fixed unit vector (remember that 𝑑 ≥  𝐶2𝑘). The probabilities 

above can be expressed in terms of Beta-type integrals, but it’s easier to estimate them 

using Lévy’s lemma. The function 𝑀 →  |𝑀†𝑥0| is 1-Lipschitz on the Hilbert–Schmidt 

sphere (if 𝑥0 is the first vector of the canonical basis, then 𝑀†𝑥0  is essentially the first row 

of 𝑀) and  

E |𝑀†𝑥0|  ≤   (E |𝑀
†𝑥0|

2
 )
1/2
 =   1/𝑘.  

Hence, by Lévy’s lemma (with 𝑛 =  2𝑘𝑑 and  =
𝐶

5√𝑑
 ), we get  

P (‖∆‖∞  ≥
𝐶

√𝑘𝑑
 )  ≤  exp(−𝑐𝑘)  

for some choice of the constants 𝐶, 𝑐 >  0, as required. 
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Section (6.3): Dvoretzky Theorem for Subspaces of 𝑳𝒑  

We study the classical result of Dvoretzky [301] on almost spherical sections of 

normed spaces in the case of subspaces of 𝐿𝑝. Grothendieck in [333], motivated by the 

well known Dvoretzky–Rogers lemma from [328], asked if every finite dimensional 

normed space has lower dimensional subspaces which are almost Euclidean and their 

dimension grows with respect to the dimension of the ambient space. Dvoretzky in [301] 

gave an affirmative answer in the above question by proving that for any positive integer k 

and every 𝜀 ∈ (0, 1) there exists 𝑁 = 𝑁(𝑘, 𝜀) with the following property: For every 𝑛 ≥
𝑁 and any n-dimensional normed space X there exists a k-dimensional subspace E which 

is (1 + 𝜀)-isomorphic to the Euclidean space ℓ2
𝑘. In modern functional analytic language 

this means that every infinite-dimensional Banach space contains ℓ2
𝑛’𝑠 uniformly. 

Dvoretzky’s proof in [301] provides the quantitative estimate 𝑁(𝑘, 𝜀) ≥
exp(𝑐𝜀−2𝑘2 𝑙𝑜𝑔2 𝑘) (see [349] for a related discussion), for some absolute constant 𝑐 > 0. 

However, the aforementioned estimate is not optimal. The optimal dependence with 

respect to the dimension was proved later by Milman, in his [27], where he obtained 

𝑁(𝑘, 𝜀) ≥ exp (𝑐𝑘𝜀−2 𝑙𝑜𝑔
1

𝜀
) (an alternative approach which yields the same estimate was 

presented by Szankowski in [349]). Equivalently, this states that for any 𝜀 ∈ (0, 1) there 

exists a function 𝑐(𝜀) > 0 with the following property: for every n-dimensional normed 

space X there exists 𝑘 ≥ 𝑐(𝜀) log 𝑛 and a linear map 𝑇: ℓ2
𝑘 → 𝑋 with ‖𝑥‖2 ≤ ‖𝑇𝑥‖𝑋 ≤

(1 + 𝜀)‖𝑥‖2 for all 𝑥 ∈ ℓ2
𝑘. In this case we say that ℓ2

𝑘 can be (1 + 𝜀)-embedded into X or 

that X has a k-dimensional subspace which is (1 + 𝜀)-Euclidean and we write ℓ2
𝑘
1+𝜀
→  𝑋. 

     The example of 𝑋 = ℓ∞
𝑛  shows that this result is best possible with respect to n (see 

[27] or [306]). The approach of [27] is probabilistic in nature and provides that the vast 

majority of subspaces (in terms of the Haar probability measure on the Grassmannian 

manifold 𝐺𝑛,𝑘) are (1 + 𝜀)-spherical, as long as 𝑘 ≤ 𝑐(𝜀)𝑘(𝑋), where 𝑘(𝑋) is the critical 

dimension of X. Nowadays this is customary addressed as the randomized Dvoretzky 

theorem or random version of Dvoretzky’s theorem. Milman revealed the significance of 

the concentration of measure as a basic tool for the understanding of the high-dimensional 

structures. That was the starting point for many applications of the concentration of 

measure method in high-dimensional phenomena. Since then, this tool has found 

numerous applications in various fields such as quantum information [296], combinatorics 

[326], random matrices [352], compressed sensing [329], theoretical computer science 

[26], geometry of high-dimensional probability measures [282] and more.  

     Another remarkable fact of Milman’s approach is that the critical quantity 𝑘(𝑋) can be 

described in terms of the global parameters of the space. In particular, 𝑘(𝑋) ≃
𝔼‖𝑍‖𝑋

2/𝑏2(𝑋) where Z is a standard Gaussian random vector in X and 𝑏(𝑋) =
max
‖𝜃‖2=1

‖𝜃‖𝑋. Then, one can find a good position of the unit ball of X for which 𝑘(𝑋) is 

large enough with respect to n (see [339]). It has been proved in [129] that this formulation 

is optimal with respect to the dimension 𝑘(𝑋), in the sense that the k-dimensional 

subspaces which are 4-Euclidean with probability greater than 
𝑛

𝑛+𝑘
, cannot exceed 𝐶𝑘(𝑋) 

(see [334]).  

The proof of [27] gave the estimate 𝑐(𝜀) ≥ 𝑐𝜀2/ log
1

𝜀
 and this was improved to 𝑐(𝜀) ≥

𝑐𝜀2 by Gordon in [331] and later, adopting the methods of Milman, by Schechtman in 

[311]. This dependence is known to be optimal in the setting of the randomized Dvoretzky 
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theorem; see [345]). The works of Schechtman in [344] and Tikhomirov in [350] 

established that the dependence on ε in the randomized Dvoretzky for ℓ∞
𝑛  is of the order 

𝜀/ log
1

𝜀
 and this is best possible. Optimal bounds on 𝑐(𝜀) in the randomized Dvoretzky for 

ℓ𝑝
𝑛, 1 ≤ 𝑝 ≤ ∞ have recently been studied in [341].  

     As far as the dependence on ε in the “existential version” of Dvoretzky’s theorem is 

concerned, Schechtman proved in [343] that one can always (1 + 𝜀)-embed ℓ2
𝑘 in any n-

dimensional normed space X with 𝑘 ≥ 𝑐𝜀 log 𝑛 / (log
1

𝜀
)
2
. Tikhomirov in [351] proved 

that for 1-symmetric space X one has ≥ 𝑐 log𝑛 /log 
1

𝜀
, thus complementing a result of 

Bourgain and Lindenstrauss from [327]. Tikhomirov’s result was subsequently extended 

by Fresen in [330] for permutation invariant spaces with bounded basis constant. For more 

detailed information on the subject, explicit statements and historical remarks see [323].  

We study the dependence on ε and dimension in Dvoretzky’s theorem for finite-

dimensional subspaces of 𝐿𝑞 , 2 < 𝑞 < ∞. The case of subspaces of 𝐿𝑞 , 1 ≤ 𝑞 < ∞ have 

been previously studied in [306] by Figiel, Lindenstrauss and Milman.  

     The approach in [306] is based on Milman’s asymptotic formula and the fact that the 

𝐿𝑝 spaces enjoy the cotype property. Let us recall that for 2 ≤ 𝑞 < ∞ the q-cotype 

constant of a normed space X in n vectors, denoted by 𝐶𝑞(𝑋, 𝑛), is defined as the smallest 

constant 𝐶 > 0 which satisfies 

(∑‖𝑧𝑖‖𝑋
𝑞

𝑛

𝑖=1

)

1
𝑞

≤ 𝐶𝔼‖∑𝜀𝑖𝑧𝑖

𝑛

𝑖=1

‖

𝑋

, 

for any n vectors 𝑧1, . . . , 𝑧𝑛 ∈ 𝑋. Then, the q-cotype constant of X is defined as 𝐶𝑞(𝑋):=

sup
𝑛
𝐶𝑞(𝑋, 𝑛). Following the terminology of Pisier, the notion of cotype is a super-

property, that is, it depends only on the finite dimensional subspaces of the space. It is also 

an isomorphic invariant and the spaces 𝐿𝑝, 1 ≤ 𝑝 < ∞ are of cotype 𝑞 = max{2, 𝑝} with 

𝐶𝑞(𝐿𝑝) = 𝑂 (𝑞
1

2) (see [322] for a proof). Therefore, for any finitedimensional subspace X 

of 𝐿𝑞 , 2 < 𝑞 <  ∞ we have 𝐶𝑞(𝑋) ≤ 𝐶√𝑞. The authors in [306], using the classical 

Dvoretzky–Rogers lemma, show that any n-dimensional normed space X of cotype q 

whose unit ball is in John’s position (see e.g. [306]) satisfies 𝑘(𝑋) ≥ 𝑐𝐶𝑞
−2(𝑋)𝑛

2

𝑞. It 

follows that if X is an n-dimensional subspace of 𝐿𝑞 , 2 < 𝑞 < ∞, whose unit ball is in 

John’s position, then 𝑘(𝑋) ≥ 𝑐𝑞−1𝑛
2

𝑞 and the standard concentration techniques yield 

(1 + 𝜀)-spherical sections of 𝐵𝑋 with dimension 𝑘 ≥ 𝑐𝑞−1𝜀2𝑛
2

𝑞 (see [306]). The same 

argument provides 𝑘(𝑋) ≥ 𝑐𝑛 for any n-dimensional subspace X of 𝐿𝑞 with 1 ≤ 𝑞 < 2 in 

John’s position, and thus ℓ2
𝑘 can be (1 + 𝜀)-embedded into X with 𝑘 ≥ 𝑐𝜀2𝑛, which is 

best possible. In the present note we show that for the range 2 < 𝑞 < ∞ the estimate can 

be considerably improved.  

Theorem (6.3.1)[320]: For any 2 < 𝑝 < ∞ there exists a constant 𝑐(𝑝) > 0 with the 

following property: for any n-dimensional subspace X of 𝐿𝑝 and for any 𝜀 ∈ (0, 1) there 

exists 𝑘 ≥ 𝑐(𝑝)min {𝜀2𝑛, (𝜀𝑛)
2

𝑝} so that ℓ2
𝑘 can be (1 + 𝜀)-embedded into X. 
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The approach is different and depends on a Gaussian functional analytic inequality rather 

than the spherical isoperimetric inequality that is used in the classical framework. The 

proof still depends on random methods, but the main tool is a variant of an inequality due 

to Pisier from [342].  

     To prove the above theorem, we have to bypass Milman’s asymptotic formula, which 

involves the Lipschitz constant of the norm. As several examples show this parameter is 

inadequate to describe efficiently phenomena in the almost isometric scale. Our argument 

outclasses the latter one, since it takes into account the order of magnitude of the length of 

the gradient of the norm. The idea of estimating averages of the Euclidean norm of the 

gradient of a function in order to get sharp concentration results seems to be only recently 

applied and was also successfully exploited in [341]. Moreover, the selection of the 

position of the unit ball of the space is different. Instead of using John’s position, we 

employ Lewis’ position for the unit ball of finite-dimensional subspaces of 𝐿𝑝. This 

permits us to express the norm in an integral form, with respect to some isotropic measure 

on the sphere, and therefore to use the aforementioned inequality. We derive Theorem 

(6.3.1) from a stronger statement the randomized Dvoretzky theorem for those spaces in 

Lewis’ position. Along the way, we prove that the norm of the underlying subspace in this 

position exhibits two-level Gaussian concentration and minimal fluctuations.  

Theorem (6.3.2)[320]: Let 2 < 𝑝 < ∞ and let X be an n-dimensional subspace of 𝐿𝑝, 

represented on ℝ𝑛, whose unit ball 𝐵𝑋 is in Lewis’ position. Then,  

ℙ(|‖𝑍‖ − 𝔼‖𝑍‖| > 𝜀𝔼‖𝑍‖) ≤ 𝐶 exp (−𝑐𝑚𝑖𝑛 {𝛼𝑝𝜀
2𝑛, (𝜀𝑛)

2
𝑝}) ,   0 < 𝜀 < 1. 

In particular, we have  

𝑉𝑎𝑟‖𝑍‖ ≤ 𝐶𝑝𝑛
2
𝑝
−1
, 

where 𝛼𝑝, 𝐶𝑝 > 0 are constants depending only on p and Z is the standard n-dimensional 

Gaussian vector. 

     It is worth mentioning that the Gaussian concentration and the variance estimate 

obtained for these spaces is best possible (up to constants of ℓ𝑝) as the example of p norms 

shows (see [341] for the exact formulation). Consequently, the random version of 

Dvoretzky’s theorem we prove for this position (or for this type of norms) is sharp in the 

sense that in the case of ℓ𝑝
𝑛 spaces the corresponding critical dimension is optimal (see 

[341]). In other words, the ℓ𝑝
𝑛 space occurs as the approximately extremal structure in this 

study, or is the worst subspace of 𝐿𝑝 with respect to the local almost Euclidean structure.  

     For our analysis is crucial the perspective of differently selecting the position of the 

unit ball of the underlying space and this is reflected in the improved estimates we obtain. 

To the best of our knowledge the concentration estimates we derive in Theorem (6.3.2) are 

new and it is also clear that the dimension 𝑘(𝑛, 𝑝, 𝜀) ≃𝑝 min {𝜀
2𝑛, (𝜀𝑛)

2

𝑝}, that one can 

find almost Euclidean subspaces, is always better than the previously known 𝜀2𝑛
2

𝑝 due to 

Figiel, Lindestrauss and Milman. In addition, the improved estimate for 𝑘(𝑛, 𝑝, 𝜀) yields 

“new dimensions” of almost Euclidean sections in the following sense: The previous 

setting was only permitting almost isometric embeddings of distortion 1 + 𝜀 with 𝜀 ≫ 𝑛
−
1

𝑝 

in order to achieve non-trivial dimensions. Now this phenomenon admits an improvement 

and one can find (1 + 𝜀)-linear embeddings with 𝜀 ≫ 𝑛−
1

2. It is worth mentioning that the 



241 

dimension 𝑘(𝑛, 𝑝, 𝜀) that one finds almost Euclidean sections for these spaces is given 

implicitly as function of ε and n rather than as function of separated variables as Milman’s 

formula suggests. This phenomenon had not been observed prior to this work and [341].  

    We show concentration results for the family of the 𝐿𝑞-bodies associated with an 

isotropic measure μ on the (𝑛 − 1)-dimensional Euclidean sphere. We provide the proof 

of the main result. Finally, we conclude with some further remarks.  

We work in ℝ𝑛 equipped with the standard Euclidean structure 〈·,·〉. The (𝑛 − 1)- 
dimensional Euclidean sphere is defined as 𝑆𝑛−1: = {𝑥 ∈ ℝ𝑛: 〈𝑥, 𝑥〉 = 1}. The ℓ𝑝 norm is 

defined as ‖𝑥‖𝑝: = (∑ |𝑥𝑖|
𝑝𝑛

𝑖=1 )
1

𝑝 for 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ ℝ
𝑛. We set ℓ𝑝

𝑛 = (ℝ𝑛, ‖·‖𝑝) and 

let 𝐵𝑝
𝑛 its unit ball. More generally, for any centrally symmetric convex body K on ℝ𝑛 we 

write  ‖·‖𝐾 for the norm induced by K. The n-dimensional Lebesgue measure (volume) of 

a body A is denoted by |𝐴|. The space 𝐿𝑝(𝛺, ℇ, 𝜇), 1 ≤ 𝑝 < ∞ consists of all ℇ-measurable 

functions 𝑓: 𝛺 → ℝ so that ∫ |𝑓|𝑝𝑑𝜇
𝛺

< ∞, equipped with the norm ‖𝑓‖𝐿𝑝(𝜇): =

(∫ |𝑓|𝑝𝑑𝜇
𝛺

)
1

𝑝. 

The n-dimensional (standard) Gaussian measure is denoted by 𝛾𝑛 and its density is  

𝑑𝛾𝑛(𝑥):= (2𝜋)
−
𝑛
2𝑒−

‖𝑥‖2
2

2 𝑑𝑥. 

More generally, let 𝑑𝛾𝑛,𝜎(𝑥):= (2𝜋𝜎
2)−

𝑛

2𝑒
−
‖𝑥‖2

2

2𝜎2𝑑𝑥 for 𝜎 > 0. Random vectors, usually 

distributed according to 𝛾𝑛, are denoted by 𝑍,𝑊. .. while the random variables by 𝑔𝑖 , 𝜉, . . .. 
The notation 𝔼(·) is used for the expectation. The moments with respect to 𝛾𝑛 of norms 

whose unit ball is the body K are denoted by  

𝐼𝑟(𝛾𝑛, 𝐾):= (𝔼‖𝑍‖𝐾
𝑟 )
1
𝑟 = (∫ ‖𝑧‖𝐾

𝑟 𝑑𝛾𝑛(𝑧)
ℝ𝑛

)

1
𝑟

 

and more generally, for an arbitrary probability measure ν as 𝐼𝑟(𝜈, 𝐾). Recall the pth 

moment 𝜎𝑝 of a standard Gaussian random variable g  

𝜎𝑝
𝑝
: = 𝔼|𝑔|𝑝 =

2
𝑝
2

√𝜋
𝛤 (
𝑝 + 1

2
) ∼ √

2

𝑒
 (
𝑝 + 1

𝑒
)

𝑝
2
, 𝑝 → ∞,        (96) 

where 𝑓 ∼ ℎ means 𝑓(𝑡)/ℎ(𝑡) → 1 as 𝑡 → ∞. We write 𝑓 ≲ ℎ when there exists absolute 

constant 𝐶 > 0 such that 𝑓 ≤ 𝐶ℎ. We write 𝑓 ≃ ℎ if 𝑓 ≲ ℎ and h f, whereas the notation 

𝑓 ≲𝑝 ℎ means that the involved constant depends only on p. The letters 𝐶, 𝑐, 𝐶1, 𝑐0, … are 

frequently used in order to denote absolute constants which may differ from line to line.  

The random version of Dvoretzky’s theorem due to Milman from [27] (for the optimal 

dependence on ε see [331] and [311]) reads as follows.  

Theorem (6.3.3)[320]: (Milman, Gordon). Let 𝑋 = (ℝ𝑛, ‖·‖) be a normed space. Define 

the critical dimension of X as the quantity  

𝑘(𝑋):=
𝔼‖𝑍‖2

𝑏2(𝑋)
, 𝑍 ∼ 𝑁(0, 𝐼𝑛) 

where 𝑏(𝑋):= max
𝜃∈𝑆𝑛−1

‖𝜃‖. Then, for every 𝜀 ∈ (0, 1) and for any 𝑘 ≤ 𝑐𝜀2𝑘(𝑋) the 

random (with respect to the Haar measure on the Grassmannian 𝐺𝑛,𝑘) k-dimensional 

subspace F of X is (1 + 𝜀)-spherical, i.e.  
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1 − 𝜀

𝑀
𝐵𝐹 ⊆ 𝐵𝑋 ∩ 𝐹 ⊆

1 + 𝜀

𝑀
𝐵𝐹 , 

with probability greater than 1 − 𝑒−𝑐𝜀
2𝑘(𝑋), where 𝑀 = 𝑀(𝑋) = ∫ ‖𝜃‖𝑑𝜎(𝜃)

𝑆𝑛−1
 and σ is 

the uniform probability measure on 𝑆𝑛−1. 

Let ν be a Borel probability measure on ℝ𝑛 which satisfies a log-Sobolev inequality 

with constant 𝜌 > 0 

𝐸𝑛𝑡𝜈(𝑓
2):= ∫𝑓2 log 𝑓2 𝑑𝜈 − ∫𝑓2𝑑𝜈 log (∫𝑓2𝑑𝑣) ≤

2

𝜌
∫ ‖𝛻𝑓‖2

2𝑑𝜈
ℝ𝑛

, 

for all smooth (or locally Lipschitz) functions 𝑓:ℝ𝑛 → ℝ. The n-dimensional Gaussian 

measure satisfies the log-Sobolev inequality with 𝜌 = 1 (see [121]). The next lemma can 

be found in [321]. However, we provide a sketch of proof.  

Lemma (6.3.4)[320]: (Aida–Stroock). Let ν be a Borel probability measure on ℝ𝑛 which 

satisfies a log-Sobolev inequality with constant ρ. Then, for any smooth function 𝑓:ℝ𝑛 →
ℝ we have  

‖𝑓‖𝐿𝑞(𝜈)
2 − ‖𝑓‖𝐿𝑝(𝜈)

2 ≤
1

𝜌
∫ ‖‖𝛻𝑓‖2‖𝐿𝑠(𝜈)

2 𝑑𝑠
𝑞

𝑝

,                    (97) 

for all 2 ≤ 𝑝 ≤ 𝑞. In particular, if f is Lipschitz continuous, then we have  

‖𝑓‖𝐿𝑝(𝜈)
2 − ‖𝑓‖𝐿𝑝(𝜈)

2 ≤
‖𝑓‖𝐿𝑖𝑝

2

𝜌
(𝑞 − 𝑝). 

It follows that  

‖𝑓‖𝐿𝑞(𝜈)/‖𝑓‖𝐿2(𝜈) ≤ √1 +
𝑞 − 2

𝜌𝑘(𝑓)
, 

for 𝑞 ≥ 2, where 𝑘(𝑓):= ‖𝑓‖𝐿2(𝜈)
2 /‖𝑓‖𝐿𝑖𝑝

2 . 

Proof. For 𝑝 ≥ 2 we define 𝐼(𝑝):= ‖𝑓‖𝐿𝑝. Differentiation with respect to p yields  

𝑑𝐼

𝑑𝑝
=
𝐸𝑛𝑡𝜈(|𝑓|

𝑝)

𝑝2𝐼(𝑝)𝑝−1
. 

Applying the log-Sobolev inequality for 𝑔 = |𝑓|
𝑝

2 we obtain  
𝑑𝐼

𝑑𝑝
≤

1

2𝜌𝐼(𝑝)𝑝−1
∫ |𝑓|𝑝−2‖𝛻𝑓‖2

2𝑑𝜈
ℝ𝑛

≤
1

2𝜌𝐼(𝑝)𝑝−1
𝐼(𝑝)𝑝−2‖‖𝛻𝑓‖2‖𝐿𝑝(𝜈)

2 , 

by Hölder’s inequality. This shows that (𝐼(𝑝)2)′ ≤
1

𝜌
‖‖𝛻𝑓‖2‖𝐿𝑝(𝜈)

2 . Integration over the 

interval [𝑝, 𝑞] proves (97). 

Given any finite Borel measure μ on 𝑆𝑛−1 (which is not supported in any hyperplane) and 

any 1 ≤ 𝑝 < ∞ we can equip ℝ𝑛 with the norm  

‖𝑥‖𝜇,𝑝: = (∫ |𝑥, 𝜃|𝑝𝑑𝜇(𝜃)
𝑆𝑛−1

)

1
𝑝

. 

It’s clear that the space 𝑋 = (ℝ𝑛, ‖·‖𝜇,𝑝) can be naturally embedded into 𝐿𝑝(𝑆
𝑛−1, 𝜇) via 

the linear isometry 𝑈:𝑋 → 𝐿𝑝(𝑆
𝑛−1, 𝜇) with 𝑈𝑥:= 〈𝑥,·〉.  

     Lewis’ fundamental result from [337], states that the previous situation can always be 

realized for finite-dimensional subspaces of 𝐿𝑝(𝜈) after a suitable change of the density ν 

(see also [347] for an alternative proof which extends to the whole range 0 < 𝑝 < ∞ and 
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arises as a solution of an optimization problem). The formulation we use here follows the 

exposition from [338].  

Theorem (6.3.5)[320]: (Lewis). Let 1 ≤ 𝑝 < ∞ and let X be an n-dimensional subspace 

of 𝐿𝑝. Then, there exists an even Borel measure μ on 𝑆𝑛−1 which satisfies  

‖𝑥‖2
2 = ∫ |〈𝑥, 𝜃〉|2𝑑𝜇(𝜃)

𝑆𝑛−1
,                                 (98) 

for all 𝑥 ∈ ℝ𝑛 and the normed space (ℝ𝑛, ‖·‖𝜇,𝑝) is isometric to X. 

     When X is an n-dimensional subspace of 𝐿𝑝, one can always find an invertible linear 

transformation T such that 𝑇(𝐵𝑋) = 𝐵𝑝(𝜇) for some μ as above. Then, we will say that 

𝑇(𝐵𝑋) is in Lewis’ position. It is clear that taking into account this representation for any 

finite-dimensional subspace of 𝐿𝑝, the problem of embedding ℓ2
𝑘 in subspaces of 𝐿𝑝 

reduces to spaces (ℝ𝑛, ‖·‖𝜇,𝑝) with μ satisfying the condition (98). Hence, the next 

paragraph is devoted to the study of these measures.  

An even Borel measure μ on 𝑆𝑛−1 is said to be isotropic if it satisfies the following 

condition:  

‖𝑥‖2
2 = ∫ |〈𝑥, 𝜃〉|2𝑑𝜇(𝜃)

𝑆𝑛−1
, 

for all 𝑥 ∈ ℝ𝑛. Equivalently, for all linear transformations 𝑇:ℝ𝑛 → ℝ𝑛 we have  

trace(𝑇) =  ∫ 〈𝜃, 𝑇𝜃〉 𝑑𝜇(𝜃)
𝑆𝑛−1

. 

For any such measure we may define the following family of centrally symmetric convex 

bodies 𝐵𝑝(𝜇) associated with μ and corresponding norms:  

𝑥 ↦ ‖𝑥‖𝐵𝑝(𝜇): = ‖〈𝑥,·〉‖𝐿𝑝(𝜇) = (∫ |〈𝑥, 𝑧〉|𝑝𝑑𝜇(𝑧)
𝑆𝑛−1

)

1
𝑝

, 1 ≤ 𝑝 < ∞. 

The corresponding spaces, whose unit ball is 𝐵𝑝(𝜇), will be denoted by 𝑋𝑝(𝜇). Under this 

terminology and notation, Lewis’ theorem reads as follows:  

Theorem (6.3.6)[320]: (Lewis). Let 1 ≤ 𝑝 < ∞ and let X be an n-dimensional subspace 

of 𝐿𝑝. Then, there exists an isotropic Borel measure μ on 𝑆𝑛−1 and a linear isometry 

𝑈:𝑋𝑝(𝜇) → 𝑋. 

In the next lemma we collect several properties for the bodies 𝐵𝑝(𝜇). To this end, recall 

the definition of 𝜎𝑞 from (96).  

Lemma (6.3.7)[320]: Let μ be a Borel isotropic measure on 𝑆𝑛−1 and let Z be an n-

dimensional standard Gaussian vector. Then, we have the following properties:  

(i) 𝔼‖𝑍‖𝐵𝑞(𝜇)
𝑞

= 𝜎𝑞
𝑞
𝜇(𝑆𝑛−1), for 0 < 𝑞 < ∞. 

(ii) 𝜇(𝑆𝑛−1) = 𝑛. 

(iii) For 𝑝 ≥ 2 we have ‖𝑥‖𝐵𝑝(𝜇) ≤ ‖𝑥‖2 and for 1 ≤ 𝑝 < 𝑞 < ∞ we have ‖𝑥‖𝐵𝑝(𝜇) ≤

𝑛
1

𝑝
−
1

𝑞‖𝑥‖𝐵𝑞(𝜇), for all 𝑥 ∈ ℝ𝑛. 

(iv) (K. Ball). For every 1 ≤ 𝑝 < ∞ we have |𝐵𝑝(𝜇)| ≤ |𝐵𝑝
𝑛|. 

(v) For the body 𝐵𝑞(𝜇), 𝑞 ≥ 1 we have 𝑘 (𝐵𝑞(𝜇)) ≥ 𝑐𝑛
min{

1,2

𝑞
}
. 
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(vi) There exists an absolute constant 𝑐 > 0 such that for all 2 ≤ 𝑞 ≤ 𝑐 log 𝑛, one has 

(𝔼‖𝑍‖𝐵𝑞(𝜇)
2 )

1

2
≃ 𝑞

1

2𝑛
1

𝑞. In particular, for those q’s one has 𝑘 (𝐵𝑞(𝜇)) ≥ 𝑐𝑞𝑛
2

𝑞. 

Proof. (i). We use Fubini’s theorem and the rotation invariance of the Gaussian measure to 

write  

𝔼‖𝑍‖𝐵𝑞(𝜇)
𝑞

= ∫ ‖𝑥‖𝐵𝑞(𝜇)
𝑞

𝑑𝛾𝑛(𝑥)
ℝ𝑛

= ∫ ∫ |〈𝑥, 𝜃〉|𝑞𝑑𝛾𝑛(𝑥)𝑑𝜇(𝜃)
ℝ𝑛𝑆𝑛−1

= 𝜎𝑞
𝑞
𝜇(𝑆𝑛−1). 

(ii). It follows from the above formula, applied for 𝑞 = 2, and by employing the isotropic 

condition. 

(iii). Let 𝑝 ≥ 2. Note that for all 𝑢 ∈ 𝑆𝑛−1 we have 

‖𝑢‖𝐵𝑝(𝜇)
𝑝

= ∫ |〈𝑢, 𝜃〉|𝑝𝑑𝜇(𝜃)
𝑆𝑛−1

≤ ∫ |〈𝑢, 𝜃〉|2𝑑𝜇(𝜃)
𝑆𝑛−1

= 1. 

For 1 ≤ 𝑝 ≤ 𝑞 we apply Hölder’s inequality 

‖𝑥‖𝐵𝑝(𝜇) = (∫ |〈𝑥, 𝜃〉|𝑝𝑑𝜇(𝜃)
𝑆𝑛−1

)

1
𝑝

≤ 𝜇(𝑆𝑛−1)
1
𝑝
−
1
𝑞 (∫ |〈𝑥, 𝜃〉|𝑞𝑑𝜇(𝜃)

𝑆𝑛−1
)

1
𝑞

. 

(iv). This result is proved by K. Ball in [324]. see[324] for the details. 

(v). First consider the case 1 ≤ 𝑞 ≤ 2. Using Hölder’s inequality we get   

(𝔼‖𝑍‖𝐵𝑞(𝜇)
2 )

1
2
≥ (𝔼‖𝑍‖𝐵𝑞(𝜇)

𝑞
)

1
𝑞
= 𝜎𝑞𝑛

1
𝑞 ≥ 𝑐𝑛

1
𝑞 , 

where we have also used (i) and (ii). Also note that (iii) implies 𝑏 (𝐵𝑞(𝜇)) ≤ 𝑛
1

𝑞
−
1

2 for 1 ≤

𝑞 ≤ 2.  

Now we turn in the range 2 < 𝑞 < ∞. Note that 𝑏 (𝐵𝑞(𝜇)) ≤ 1, by (iii). Furthermore,  

𝔼‖𝑍‖𝐵𝑞(𝜇)
2 ≥ 𝑛

2
𝑞
−1
𝔼‖𝑍‖2

2 = 𝑛
2
𝑞 , 

again by (iii). Combining the above and recalling the definition of 𝑘 (𝑋𝑞(𝜇)) we get the 

desired estimate.  

(vi). We define the parameter  

𝑞0 ≡ 𝑞0(𝜇):= max {𝑞 ∈ [2, 𝑛]: 𝑘 (𝐵𝑝(𝜇)) ≥ 𝑝, ∀𝑝 ∈ [2, 𝑞]}. 

The continuity of the map 𝑝 ⟼ 𝑘 (𝐵𝑝(𝜇)) and the fact that 𝑘 (𝐵𝑞(𝜇)) ≤ 𝑛 for all 𝑞 ≥ 2, 

whereas 𝑘(𝐵2(𝜇)) = 𝑛, implies that 𝑞0 = 𝑘 (𝐵𝑞0(𝜇)) and 𝑘 (𝐵𝑝(𝜇)) ≥ 𝑝 for 2 ≤ 𝑝 ≤ 𝑞0. 

Lemma (6.3.4) then, yields (𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

)

1

𝑝
≤ 𝑐1 (𝔼‖𝑍‖𝐵𝑝(𝜇)

2 )

1

2
 for all 2 ≤ 𝑝 ≤ 𝑞0. Thus, 

for all 2 ≤ 𝑝 ≤ 𝑞0 we get  

𝑘 (𝐵𝑝(𝜇)) =
𝔼‖𝑍‖𝐵𝑝(𝜇)

2

𝑏2 (𝐵𝑝(𝜇))
≥ 𝑐1

−2 (𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

)

2
𝑝
= 𝑐1

−2𝜎𝑝
2𝑛
2
𝑝 ≥ 𝑐2𝑝𝑛

2
𝑝, 

where we have also used that 𝑏 (𝐵𝑝(𝜇)) ≤ 1. In particular, for 𝑝 = 𝑞0, we obtain  

𝑞0 = 𝑘 (𝐵𝑞0(𝜇)) ≥ 𝑐2𝑞0𝑛
2
𝑞0 ⇒ 𝑞0 ≥ 𝑐3 log 𝑛. 
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This can be interpreted as 𝑘 (𝐵𝑞(𝜇)) ≥ 𝑐𝑘(ℓ𝑞
𝑛), provided that 2 ≤ 𝑞 ≤ 𝑐 log𝑛 for some 

absolute constant 𝑐 > 0. For a proof of the fact that 𝑘(ℓ𝑞
𝑛) ≃ 𝑞𝑛

2

𝑞 when 2 ≤ 𝑞 ≤ 𝑐 log 𝑛 

see [346]. 

Lemma (6.3.8)[320]: Let μ be a Borel isotropic measure on 𝑆𝑛−1. For 𝑞 ≥ 2 and for all 

𝑟 ≥ 1 we have  

𝐼𝑟𝑞 (𝛾𝑛, 𝐵𝑞(𝜇))

𝐼𝑞 (𝛾𝑛, 𝐵𝑞(𝜇))
≤ √1 +

𝑞(𝑟 − 1)

𝜎𝑞
2𝑛
2
𝑞

≤ √1 +
𝑐(𝑟 − 1)

𝑛
2
𝑞

, 

where 𝑐 > 0 is an absolute constant.  

Proof. Note that Lemma (6.3.7) (iii) implies |‖𝑥‖𝐵𝑞(𝜇) − ‖𝑦‖𝐵𝑞(𝜇)| ≤ ‖𝑥 − 𝑦‖2 for all 

𝑥, 𝑦 ∈ ℝ𝑛. Hence, if we use Lemma (6.3.4) we obtain  

(
𝐼𝑟𝑞
𝐼𝑞
)

2

≤ 1 +
𝑞(𝑟 − 1)

𝐼𝑞
2

= 1 +
𝑞(𝑟 − 1)

𝜎𝑞
2𝑛
2
𝑞

, 

where the last estimate follows from Lemma (6.3.7). Finally, using the fact that 𝜎𝑞 ≃ √𝑞 

we conclude the second estimate. 
The next inequality is due to Pisier (for a proof see [342]).  

Theorem (6.3.9)[320]: (Pisier). Let 𝜙:ℝ → ℝ be a convex function and let 𝑓:ℝ𝑛 → ℝ be 

𝐶1-smooth. Then, if Z, W are independent copies of a Gaussian random vector, we have  

𝔼𝜙(𝑓(𝑍) − 𝑓(𝑊)) ≤ 𝔼𝜙 (
𝜋

2
〈𝛻𝑓(𝑍),𝑊〉). 

     Here we prove a generalization of this inequality of Gaussian processes generated by 

the action of a random matrix with i.i.d standard Gaussian entries on a fixed vector in 

𝑆𝑛−1. The next inequality was stated in [341] without a proof.  

Theorem (6.3.10)[320]: Let 𝜙:ℝ → ℝ be a convex function and let 𝑓:ℝ𝑛 → ℝ be 𝐶1-

smooth. If 𝐺 = (𝑔𝑖𝑗)𝑖,𝑗=1
𝑛,𝑘

 is a Gaussian matrix and 𝑎, 𝑏 ∈ 𝑆𝑘−1, then we have  

𝔼𝜙(𝑓(𝐺𝑎) − 𝑓(𝐺𝑏)) ≤ 𝔼𝜙 (
𝜋

2
‖𝑎 − 𝑏‖2〈𝛻𝑓(𝑍),𝑊〉), 

where Z, W are independent copies of a standard Gaussian n-dimensional random vector.  

Proof. If 𝑎 = 𝑏 then, there is nothing to prove. If 𝑎 = −𝑏 then, by setting 𝐹(𝑧) = 𝑓(𝑧) −
𝑓(−𝑧) we may write  

𝔼𝜙(𝑓(𝐺𝑎) − 𝑓(𝐺𝑏)) = 𝔼𝜙(𝐹(𝑍)) ≤ 𝔼𝜙(𝐹(𝑍) − 𝐹(𝑊)), 
for Z, W independent copies of a standard Gaussian random vector, where we have used 

the fact 𝔼𝐹(𝑍) = 0 and Jensen’s inequality. Then, a direct application of Theorem (6.3.9) 

yields  

𝔼𝜙(𝐹(𝑍) − 𝐹(𝑊)) ≤ 𝔼𝜙(
𝜋〈𝛻𝑓(𝑍),𝑊〉 +  𝜋〈𝛻𝑓(−𝑍),𝑊〉

2
)

≤ 𝔼
(𝜙(𝜋〈𝛻𝑓(𝑍),𝑊〉) + 𝜙(𝜋〈𝛻𝑓(−𝑍),𝑊〉))

2
= 𝔼𝜙(𝜋〈𝛻𝑓(𝑍),𝑊〉), 

by the convexity of 𝜙. 

In the general case, fix 𝑎, 𝑏 ∈ 𝑆𝑘−1 with 𝑎 ≠ ±𝑏 and define 𝑝:=
𝑎+𝑏

2
. Note that since 

‖𝑎‖2 = ‖𝑏‖2 we have that the vector 𝑢:= 𝑎 − 𝑝 is perpendicular to p. Set 𝑊:= 𝐺(𝑢) and 
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𝑍:= 𝐺(𝑝) and note that W,Z are independent random vectors in ℝ𝑛 with 𝑊 ∼
𝑁(0, ‖𝑢‖2

2𝐼𝑛), 𝑍 ∼ 𝑁(0, ‖𝑝‖2
2𝐼𝑛). Since 𝐺(𝑎) = 𝑍 +𝑊 and 𝐺(𝑏) = 𝑍 −𝑊, we may 

write  

𝔼𝜙(𝑓(𝐺𝑎) − 𝑓(𝐺𝑏)) = 𝔼𝑍𝔼𝑊𝜙(𝑓(𝑍 +𝑊) − 𝑓(𝑍 −𝑊)). 
Denote 𝐹(𝑤, 𝑧):= 𝑓(𝑧 + 𝑤) − 𝑓(𝑧 − 𝑤). Then, we may write  

𝔼𝜙(𝑓(𝐺𝑎) − 𝑓(𝐺𝑏)) = ∬𝜙(𝐹(𝑤, 𝑧))𝑑𝛾𝑛,𝜎1(𝑤)𝑑𝛾𝑛,𝜎2(𝑧), 

where 𝜎1 = ‖𝑢‖2 > 0, 𝜎2 = ‖𝑝‖2 > 0. For fixed z, we may apply Theorem (6.3.9) to the 

function 𝑤 ⟼ 𝐹(𝑤, 𝑧) (note that  ∫𝐹(𝑤, 𝑧)𝑑𝛾𝑛,𝜎1(𝑤) = 0) to get 

∫𝜙(𝐹(𝑤, 𝑧))𝑑𝛾𝑛,𝜎1(𝑤) ≤ ∬𝜙(
𝜋

2
〈𝛻𝑤𝐹(𝑤, 𝑧), 𝑦〉) 𝑑𝛾𝑛,𝜎1(𝑤)𝑑𝛾𝑛,𝜎1(𝑦) 

≤∬
𝜙(𝜋〈𝛻𝑓(𝑤 + 𝑧), 𝑦〉) + 𝜙(𝜋〈𝛻𝑓(𝑧 − 𝑤), 𝑦〉)

2
𝑑𝛾𝑛,𝜎1(𝑤)𝑑𝛾𝑛,𝜎1(𝑦)

= ∬𝜙(𝜋〈𝛻𝑓(𝑤 + 𝑧), 𝑦〉)𝑑𝛾𝑛,𝜎1(𝑤)𝑑𝛾𝑛,𝜎1(𝑦), 

by the convexity of 𝜙. Integration with respect to 𝛾𝑛,𝜎2  over z provides    

∬𝜙(𝐹(𝑤, 𝑧))𝑑𝛾𝑛,𝜎1(𝑤)𝑑𝛾𝑛,𝜎2(𝑧)

≤ ∫[∬𝜙(𝜋〈𝛻𝑓(𝑤 + 𝑧), 𝑦〉)𝑑𝛾𝑛,𝜎1(𝑤)𝑑𝛾𝑛,𝜎2(𝑧)] 𝑑𝛾𝑛,𝜎1(𝑦)

= ∫[∫𝜙(𝜋〈𝛻𝑓(𝑥), 𝑦〉)𝑑(𝛾𝑛,𝜎1 ∗  𝛾𝑛,𝜎2)(𝑥)] 𝑑𝛾𝑛,𝜎1(𝑦)

=  ∬𝜙(𝜋𝜎1〈𝛻𝑓(𝑥), 𝑦〉)𝑑𝛾𝑛(𝑥)𝑑𝛾𝑛(𝑦), 

where we have used the fact that 𝛾𝑛,𝜎1 ∗ 𝛾𝑛,𝜎2 = 𝛾𝑛,𝜎12+𝜎22 ≡ 𝛾𝑛, 𝑠𝑖𝑛𝑐𝑒 𝜎1
2 + 𝜎2

2 = ‖𝑎‖2
2 =

1. The result follows. 
Remark (6.3.11)[320]: (i). Applying this for 𝜙(𝑡) = |𝑡|𝑟 , 𝑟 ≥ 1 and taking into account 

the invariance of the Gaussian measure under orthogonal transformations we derive the 

next (𝑟, 𝑟)-Poincaré inequalities  

(𝔼|𝑓(𝐺𝑎) − 𝑓(𝐺𝑏)|𝑟)
1
𝑟 ≤ 𝐶√𝑟‖𝑎 − 𝑏‖2(𝔼‖𝛻𝑓(𝑍)‖2

𝑟)
1
𝑟 ,           (99) 

for 𝑎, 𝑏 ∈ 𝑆𝑘−1, where Z is a standard Gaussian random vector in ℝ𝑛. 

(ii). Assuming further that f is L-Lipschitz we may apply Theorem (6.3.10) for 𝜙(𝑡) =
𝑒𝜆𝑡 , 𝜆 > 0 to get  

𝔼exp (𝜆(𝑓(𝐺𝑎) − 𝑓(𝐺𝑏))) ≤ 𝔼 exp(𝜆2
𝜋2

2
‖𝑎 − 𝑏‖2

2‖𝛻𝑓(𝑍)‖2
2) 

≤ exp(𝜆2 𝜋2
2‖𝑎 − 𝑏‖2

2𝐿2).                      (100) 
Then, Markov’s inequality yields Schechtman’s distributional inequality from [311]  

ℙ(|𝑓(𝐺𝑎) − 𝑓(𝐺𝑏)| > 𝑡) ≤ 𝐶 exp(−
𝑐𝑡2

‖𝑎 − 𝑏‖2𝐿2
),                  (101) 

for all 𝑡 > 0, where 𝑎, 𝑏 ∈ 𝑆𝑘−1. Let us note that (100) for f being a norm, has also 

appeared in [348]. 3. For 𝑎, 𝑏 ∈ 𝑆𝑘−1 with 𝑎, 𝑏 = 0 the matrix G generates the vectors 𝑍 =
𝐺𝑎 and W=Gb which are independent copies of a standard n-dimensional Gaussian 

random vector. For example, inequality (101) reduces to the classical concentration 

inequality 
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ℙ(|𝑓(𝑍) − 𝑓(𝑊)| > 𝑡) ≤ 𝐶 exp(−
𝑐𝑡2

𝐿2
),                             (102) 

for all 𝑡 > 0. 

A direct application of the Gaussian concentration inequality (102) for the norms  

‖·‖𝐵𝑝(𝜇), 2 < 𝑝 < ∞ implies 

ℙ(|‖𝑍‖𝐵𝑝(𝜇) − 𝐼1| > 𝑡𝐼1) ≤ 𝐶 exp(−𝑐𝑡
2𝐼1
2) ≤ 𝐶 exp (−𝑐𝑡2𝑛

2
𝑝),    (103) 

for all 𝑡 > 0, where 𝐼1 ≡ 𝐼1 (𝛾𝑛, 𝐵𝑝(𝜇)). It is known (see [341]) that the large deviation 

estimate (𝑡 ≥ 1) the inequality (103) provides is sharp (up to constants). 

     We prove that for 2 < 𝑝 < ∞ and μ isotropic Borel measure on 𝑆𝑛−1, the bodies 𝐵𝑝(𝜇) 

exhibit better concentration (0 < 𝑡 < 1) than the one implied by the Gaussian 

concentration inequality on ℝ𝑛 in terms of the Lipschitz constant. Later, this will be used 

to prove the announced dependence on ε and n in Dvoretzky’s theorem for any n-

dimensional subspace of 𝐿𝑝. Our main tool is the probabilistic inequality proved in 

Theorem (6.3.10) and as was formulated further in Remark (6.3.11).1.  

We apply inequality (99) for 𝑓(𝑥) = ‖𝑥‖𝐵𝑝(𝜇)
𝑝

= |〈𝑥, 𝜃〉|𝑝𝑑𝜇(𝜃). To this end, we have to 

compute the gradient. Note that  

‖𝛻𝑓(𝑥)‖2
2 = 𝑝2∑|∫ 𝜃𝑖|𝑥, 𝜃|

𝑝−1𝑠𝑔𝑛(〈𝑥, 𝜃〉)𝑑𝜇(𝜃)
𝑆𝑛−1

|

2𝑛

𝑖=1

. 

We also have the following: 

Claim (6.3.12)[320]: For almost every 𝑥 ∈ ℝ𝑛 we have  

‖𝛻𝑓(𝑥)‖2
2 ≤ 𝑝2‖𝑥‖𝐵2𝑝−2(𝜇)

2𝑝−2
. 

Proof. Let 𝑏𝑖 ≡ 𝑏𝑖(𝑥):= ∫ |〈𝑥, 𝑧〉|𝑝−1𝑠𝑔𝑛(〈𝑥, 𝑧〉)𝑧𝑖𝑑𝜇(𝑧)𝑆𝑛−1
. Using duality we may write  

∑(∫ |〈𝑥, 𝑧〉|𝑝−1𝑠𝑔𝑛(〈𝑥, 𝑧〉)𝑧𝑖𝑑𝜇(𝑧)
𝑆𝑛−1

)

2𝑛

𝑖=1

= max
𝜃∈𝑆𝑛−1

|∑𝑏𝑖𝜃𝑖

𝑛

𝑖=1

|

2

= max
𝜃∈𝑆𝑛−1

|∫ |〈𝑥, 𝑧〉|𝑝−1𝑠𝑔𝑛(〈𝑥, 𝑧〉)〈𝑧, 𝜃〉𝑑𝜇(𝑧)
𝑆𝑛−1

|

2

≤ ∫ |〈𝑥, 𝑧〉|2𝑝−2𝑑𝜇(𝑧)
𝑆𝑛−1

, 

where we have used the Cauchy–Schwarz inequality and the isotropic condition.  

Therefore, using the Claim and the inequality (99) we get for every 𝑎, 𝑏 ∈ 𝑆𝑘−1  

(𝔼|𝑓(𝐺𝑎) − 𝑓(𝐺𝑏)|𝑟)
1
𝑟 ≤ 𝐶𝑝𝑟

1
2‖𝑎 − 𝑏‖2 (𝔼‖𝑍‖𝐵2𝑝−2(𝜇)

𝑟(𝑝−1)
)

1
𝑟
,        (104) 

for all 𝑟 ≥ 1. Now employ Lemma (6.3.8) for r being 𝑟/2 ≥ 1 and for 𝑞 = 2𝑝 − 2 ≥ 2, in 

order to get 

(𝔼‖𝑍‖𝐵2𝑝−2(𝜇)
𝑟(𝑝−1)

)

1
𝑟
≤ (𝔼‖𝑍‖𝐵2𝑝−2(𝜇)

2𝑝−2
)

1
2
(1 +

(𝑟 − 2)(𝑝 − 1)

𝜎2𝑝−2
2 𝑛

1
𝑝−1

)

𝑝−1
2

. 

Taking into account Lemma (6.3.7).i, the previous estimate implies for 𝑟 ≥ 2, 

(𝔼‖𝑍‖𝐵2𝑝−2(𝜇)
𝑟(𝑝−1)

)

1
𝑟
≤ 𝜎2𝑝−2

𝑝−1
𝑛
1
2 (1 +

𝑟(𝑝 − 1)

𝜎2𝑝−2
2 𝑛

1
𝑝−1

)

𝑝−1
2
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≤ 𝜎2𝑝−2
𝑝−1

𝑛
1
22
𝑝−1
2 max{1,

𝑟
𝑝−1
2 (𝑝 − 1)

𝑝−1
2

𝜎𝑝−2

𝑝−1
2 𝑛

1
2

} .     (105) 

Combining (104) with (105) we get for all 𝑟 ≥ 2, 

(𝔼|𝑓(𝐺𝑎) − 𝑓(𝐺𝑏)|𝑟)
1
𝑟 < 𝐶𝑝‖𝑎 − 𝑏‖2𝜎2𝑝−2

𝑝−1
𝑛
1
22
𝑝−1
2 max{𝑟

1
2,
𝑟
𝑝
2(𝑝 − 1)

𝑝−1
2

𝜎𝑝−2

𝑝−1
2 𝑛

1
2

}. 

We define  

𝛼(𝑛, 𝑝, 𝑟):= max{𝑟
1
2,
𝑟
𝑝
2(𝑝 − 1)

𝑝−1
2

𝜎2𝑝−2
𝑝−1

𝑛
1
2

} , 𝑟 >  0             (106) 

and we summarize the above discussion in the following:  

Proposition (6.3.13)[320]: Let 2 < 𝑝 < ∞ and let μ be a Borel isotropic measure on 

𝑆𝑛−1. If 𝐺 = (𝑔𝑖𝑗)𝑖,𝑗
𝑛,𝑘
= 1 is a standard Gaussian matrix and 𝑎, 𝑏 ∈ 𝑆𝑘−1, then we have   

(𝔼 |‖𝐺𝑎‖𝐵𝑝(𝜇)
𝑝

− ‖𝐺𝑏‖𝐵𝑝(𝜇)
𝑝

|
𝑟

)

1
𝑟
≤ 𝐶𝑝‖𝑎 − 𝑏‖2𝜎2𝑝−2

𝑝−1
𝑛
1
22
𝑝
2  𝛼(𝑛, 𝑝, 𝑟), 

for all 𝑟 ≥ 2, where 𝛼(𝑛, 𝑝,·) is defined in (106) 

We prove the main result.  

Theorem (6.3.14)[320]: Let 2 < 𝑝 < ∞ and let μ be a Borel isotropic measure on 𝑆𝑛−1 

with 𝑛 > 𝑒𝑝. Then, we have 

ℙ(|‖𝑍‖𝐵𝑝(𝜇) − (𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

)

1
𝑝
| ≥ 𝜀 (𝔼‖𝑍‖𝐵𝑝(𝜇)

𝑝
)

1
𝑝
≤ 𝐶 exp(−𝑐𝜓(𝑛, 𝑝, 𝜀)), 

for every 𝜀 > 0, where 𝜓(𝑛, 𝑝,·) is defined by  

𝜓(𝑛, 𝑝, 𝑡):= min {
𝑡2𝑛

𝑝4
𝑝 , (𝑡𝑛)

2
𝑝} , 𝑡 >  0,                  (107) 

and 𝐶, 𝑐 > 0 are absolute constants. 

Proof. Using Proposition (6.3.13) for 𝑎, 𝑏 ∈ 𝑆𝑘−1 with 〈𝑎, 𝑏〉 = 0 and applying Jensen’s 

inequality we obtain   

(𝔼 |‖𝑍‖𝐵𝑝(𝜇)
𝑝

− 𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

|
𝑟

)

1
𝑟
≤ 𝐶𝑝𝜎2𝑝−2

𝑝−1
𝑛
1
22
𝑝
2𝛼(𝑛, 𝑝, 𝑟), 

for all 𝑟 ≥ 2. Therefore, Markov’s inequality yields  

ℙ(|‖𝑍‖𝐵𝑝(𝜇)
𝑝

− 𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

| > 𝜀) ≤ (
𝐶𝑝𝜎2𝑝−2

𝑝−1
𝑛
1
22
𝑝
2𝛼(𝑛, 𝑝, 𝑟)

𝜀
)

𝑟

.     (108) 

Note that the inverse of the map 𝑟 ⟼ 𝛼(𝑛, 𝑝, 𝑟) is given by  

𝛼−1(𝑛, 𝑝, 𝑠) = min

{
 

 
𝑠2,
𝑠
2
𝑝𝑛
1
𝑝𝜎2𝑝−2

2𝑝−2
𝑝

(𝑝 − 1)
𝑝−1
𝑝
}
 

 
, 𝑠 >  0. 

Hence, for every 𝜀 > 0 there exists 𝑟𝜀 > 0 such that 𝛼(𝑛, 𝑝, 𝑟𝜀) =
𝜀

𝑒𝐶𝑝𝜎2𝑝−2
𝑝−1

𝑛
1
22
𝑝
2

. One may 

check that  
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𝑟𝜀 = 𝛼
−1 (𝑛, 𝑝,

𝜀

𝑒𝐶𝑝𝜎2𝑝−2
𝑝−1

𝑛
1
22
𝑝
2

) ≃ min{
𝜀2

𝑛𝑝22𝑝𝜎2𝑝−2
2𝑝−2 ,

𝜀
2
𝑝

𝑝
}. 

As long as the range of 𝜀 > 0 satisfies 𝛼(𝑛, 𝑝, 𝑟𝜀) ≥ 𝛼(𝑛, 𝑝, 2) we may insert 𝑟𝜀 into the 

probabilistic bound (108) or else, 𝛼(𝑛, 𝑝, 𝑟𝜀) < 𝛼(𝑛, 𝑝, 2) ≃ max {1, (
𝑒𝑝

𝑛
)

1

2
} ≃ 1, provided 

that n is large enough with respect to p, and we may upper bound the aforementioned 

probability by an absolute constant 𝐶1 > 0. In each case we obtain  

ℙ(|‖𝑍‖𝐵𝑝(𝜇)
𝑝

− 𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

| > 𝜀) ≤ 𝐶1 exp(−𝑐1𝑚𝑖𝑛 {
𝜀2

𝑛𝑝22𝑝𝜎2𝑝−2
2𝑝−2 ,

𝜀
2
𝑝

𝑝
}), 

for every 𝜀 > 0. It follows that  

ℙ(|‖𝑍‖𝐵𝑝(𝜇)
𝑝

− 𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

| > 𝜀𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

)

≤ 𝐶1 exp(−𝑐1𝑚𝑖𝑛 {
𝜀2𝑛𝜎𝑝

2𝑝

𝑝22𝑝𝜎2𝑝−2
2𝑝−2 ,

(𝜀𝑛)
2
𝑝𝜎𝑝

2

𝑝
}), 

for every 𝜀 > 0. The asymptotic estimate (96) yields 𝜎𝑝
2𝑝
/𝜎2𝑝−2

2𝑝−2
≃ 𝑝2−𝑝 and 𝜎𝑝 ≃ 𝑝

1

2, 

thus we conclude  

ℙ(|‖𝑍‖𝐵𝑝(𝜇)
𝑝

− 𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

| > 𝜀𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

)

≤ 𝐶1 exp (−𝑐1
′ 𝑚𝑖𝑛 {

𝜀2𝑛

𝑝4𝑝
, (𝜀𝑛)

2
𝑝}),                                                              (109) 

for all 𝜀 > 0. This further implies that  

ℙ(|‖𝑍‖𝐵𝑝(𝜇) − (𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

)

1
𝑝
| > 𝜀 (𝔼‖𝑍‖𝐵𝑝(𝜇)

𝑝
)

1
𝑝
)

≤ 2𝐶1 exp(−𝑐1
′ 𝑚𝑖𝑛 {

𝜀2𝑛

𝑝4𝑝
, (𝜀𝑛)

2
𝑝}), 

for all 𝜀 > 0. In order to verify the latter we may write  

ℙ(‖𝑍‖𝐵𝑝(𝜇) > (1 + 𝜀) (𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

)

1
𝑝
) ≤ ℙ(‖𝑍‖𝐵𝑝(𝜇)

𝑝
> (1 + 𝜀)𝔼‖𝑍‖𝐵𝑝(𝜇)

𝑝
)

≤ 𝐶1 exp(−𝑐1
′ 𝑚𝑖𝑛 {

𝜀2𝑛

𝑝4𝑝
, (𝜀𝑛)

2
𝑝}), 

for all 𝜀 > 0 by the estimate (109). We argue similarly for the lower tail. 
We shall also need the next variant of Theorem (6.3.14).  

Theorem (6.3.15)[320]: Let 2 < 𝑝 < ∞ and let μ be a Borel isotropic probability measure 

on 𝑆𝑛−1 with 𝑛 > 𝑒𝑝. If 𝐺 = (𝑔𝑖𝑗)𝑖,𝑗=1
𝑛,𝑘

 is a Gaussian matrix and 𝑎, 𝑏 ∈ 𝑆𝑘−1, then  

ℙ(|‖𝐺𝑎‖𝐵𝑝(𝜇)
𝑝

− ‖𝐺𝑏‖𝐵𝑝(𝜇)
𝑝

| > 𝑡𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

) ≤ 𝐶 exp(−𝑐𝜓 (𝑛, 𝑝,
𝑡

‖𝑎 − 𝑏‖2
)), 

for all 𝑡 > 0, where 𝜓(𝑛, 𝑝,·) is defined in (107).  

Proof. The proof is similar to the proof of Theorem (6.3.14).  
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Using Proposition (6.3.13) we may derive an estimate for the variance of the norm 𝑥 ⟼
‖𝑥‖𝐵𝑝(𝜇). To this end, we will also need a result from [111].  

Theorem (6.3.16)[320]: (Klartag–Vershynin). Let  ‖·‖  be a norm on ℝ𝑛 with Dvoretzky 

number k. Then, for any 0 < 𝑟 < 𝑐𝑘 one has  

(𝐸‖𝑍‖−𝑟)−
1
𝑟 ≥ 𝑐𝔼‖𝑍‖, 

where Z is the standard Gaussian vector in ℝ𝑛 and 𝑐 > 0 is an absolute constant. 

     This fact complements the previously known result due to Litvak, Milman and 

Schechtman [124], which asserts that the same phenomenon occurs for the positive 

moments. Namely, we have the following:  

Theorem (6.3.17)[320]: (Litvak–Milman–Schechtman). Let  ‖·‖  be a norm on ℝ𝑛 with 

Dvoretzky number k. Then, for any 0 < 𝑟 < 𝑐𝑘 one has 

(𝔼‖𝑍‖𝑟)
1
𝑟 ≤ 𝐶𝔼‖𝑍‖, 

where Z is the standard Gaussian vector in ℝ𝑛 and 𝐶, 𝑐 > 0 are absolute constants.  

Note that the latter also follows from Lemma (6.3.4). By taking into account both of them, 

we derive the following unified estimate:  

(𝔼‖𝑍‖𝑟)
1
𝑟 ≤ 𝐶(𝔼‖𝑍‖−𝑟)−

1
𝑟 , 0 < 𝑟 < 𝑐𝑘.                           (110) 

This reverse Hölder estimate will be used in the sequel.  

We prove the aforementioned estimate.  

Theorem (6.3.18)[320]: (Gaussian variance for 𝐵𝑝(𝜇)). Let 1 ≤ 𝑝 < ∞ and let μ be an 

isotropic Borel measure on 𝑆𝑛−1. Then, 

𝑉𝑎𝑟‖𝑍‖𝐵𝑝(𝜇) ≤ 𝑒
𝑐𝑝𝑛

2
𝑝
−1
. 

In particular, we have  
𝑉𝑎𝑟‖𝑍‖𝐵𝑝(𝜇)

𝔼‖𝑍‖𝐵𝑝(𝜇)
2 ≤

𝑒𝑐𝑝

𝑛
, 

where Z is the standard Gaussian vector in ℝ𝑛. 

Proof. We may clearly assume that 𝑛 ≥ 𝑒𝐶𝑝 for some sufficiently large absolute constant 

𝐶 > 0, otherwise the conclusion is trivially true. In order to see that, first recall from 

Lemma (6.3.7) that  

𝑏 (𝐵𝑝(𝜇)) ≤ max {𝑛
1
𝑝
−
1
2, 1} , 𝔼‖𝑍‖𝐵𝑝(𝜇)

2 ≥ 𝑐𝑛
2
𝑝, 1 ≤ 𝑝 < ∞. 

Whence, in the light of (99) for 𝑟 = 2 and 〈𝑎, 𝑏〉 = 0, we get  

𝑉𝑎𝑟‖𝑍‖𝐵𝑝(𝜇) ≤ 𝐶𝔼‖𝛻‖𝑍‖𝐵𝑝(𝜇)‖2

2
≤ 𝐶𝑏2 (𝐵𝑝(𝜇)) ≤ 𝐶max {𝑛

2
𝑝
−1
, 1}. 

These estimates already prove the assertions when 1 ≤ 𝑝 ≤ 2. Thus, we may focus in the 

case 2 < 𝑝 < ∞ with 𝑛 ≥ 𝑒𝐶𝑝. We consider 𝑍′ an independent copy of Z to write 

2𝑉𝑎𝑟‖𝑍‖𝐵𝑝(𝜇) = 𝔼(‖𝑍‖𝐵𝑝(𝜇) − ‖𝑍
′‖𝐵𝑝(𝜇))

2
≤
1

𝑝2
𝔼(

‖𝑍‖𝐵𝑝(𝜇)
𝑝

− ‖𝑍′‖𝐵𝑝(𝜇)
𝑝

min {‖𝑍‖𝐵𝑝(𝜇)
𝑝−1

, ‖𝑍′‖
𝐵𝑝(𝜇)
𝑝−1

}
)

2

, 

where we have used the numerical inequality |𝑡𝑝 − 𝑠𝑝| ≥ 𝑝|𝑡 − 𝑠|min{𝑡𝑝−1, 𝑠𝑝−1} for 

𝑡, 𝑠 > 0 and 𝑝 > 1. The Cauchy–Schwarz inequality implies that  
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𝑉𝑎𝑟‖𝑍‖𝐵𝑝(𝜇) ≤
2

𝑝2

(𝔼 |‖𝑍‖𝐵𝑝(𝜇)
𝑝

− ‖𝑍′‖𝐵𝑝(𝜇)
𝑝

|
4

)

1
2

𝐼
−4(𝑝−1)
2(𝑝−1)

(𝛾𝑛, 𝐵𝑝(𝜇))
, 

where we have used the fact that 
1

min{𝑡,𝑠}
≤
1

𝑡
+
1

𝑠
, 𝑡, 𝑠 > 0. The numerator is directly 

estimated by Proposition (6.3.13) (for 〈𝑎, 𝑏〉 = 0). Standard computations, based on (96), 

yield the bound   

(𝔼 |‖𝑍‖𝐵𝑝(𝜇)
𝑝

− ‖𝑍′‖𝐵𝑝(𝜇)
𝑝

|
4

)

1
2
≤ 𝑒𝐶1𝑝𝑝𝑝𝑛.                            (111) 

For the denominator, we employ estimate (110) for the norm  ‖·‖𝐵𝑝(𝜇) (and for 𝑟 = 4(𝑝 −

1)) along with the fact 𝑘 (𝐵𝑝(𝜇)) ≥ 𝑐1𝑝𝑛
2

𝑝 for 𝑛 ≥ 𝑒𝐶2𝑝 (proved in Lemma (6.3.7).vi) to 

obtain  

𝐼−4(𝑝−1) (𝛾𝑛, 𝐵𝑝(𝜇)) ≥ 𝑐2𝐼𝑝 (𝛾𝑛, 𝐵𝑝(𝜇)) = 𝑐2𝜎𝑝𝑛
1
𝑝,            (112) 

where in the last step we have used Lemma (6.3.7).i, ii. Combining (111) with (112) we 

arrive at the estimate  

𝑉𝑎𝑟‖𝑍‖𝐵𝑝(𝜇) ≤
𝑒𝐶1𝑝𝑝𝑝𝑛

𝑒−𝐶3𝑝𝜎𝑝
2𝑝−2

𝑛
2−
2
𝑝

≤
𝑒𝐶4𝑝

𝑛
1−
2
𝑝

, 

where we have used once again that 𝜎𝑝
𝑝
≃ (

𝑝

𝑒
)

𝑝

2
. The result follows. 

We prove the improved estimate on Dvoretzky’s theorem for the subspaces of 

𝐿𝑝, 2 < 𝑝 < ∞.  

Theorem (6.3.19)[320]: Let 2 < 𝑝 < ∞ and let X be an n-dimensional subspace of 𝐿𝑝. 

For any 0 < 𝜀 < 1 there exist 𝑘 ≥ 𝑐𝑝𝜓(𝑛, 𝑝, 𝜀) and linear map 𝑇: ℓ2
𝑘 → 𝑋 such that 

‖𝑥‖2 ≤ ‖𝑇𝑥‖𝑋 ≤ (1 + 𝜀)‖𝑥‖2 for all 𝑥 ∈ ℓ2
𝑘, where 𝑐𝑝 > 0 is constant depending only on 

p and 𝜓(𝑛, 𝑝,·) is given by  

𝜓(𝑛, 𝑝, 𝑡) = min {
𝑡2𝑛

𝑝4𝑝
, (𝑡𝑛)

2
𝑝}. 

Clearly, the above theorem follows from the random version of Dvoretzky’s theorem for 

subspaces of 𝐿𝑝 whose unit ball is in Lewis’ position, or equivalently for the bodies 𝐵𝑝(𝜇) 

with μ being an isotropic measure on 𝑆𝑛−1. More precisely, we have the following:  

     We have established the concentration estimate of Theorem (6.3.14), then a standard 

net argument yields the result with an extra log (
1

𝜀
) term. Indeed; fix 𝑘 ≤ 𝑛 and let 𝐺 =

(𝑔𝑖𝑗)𝑖,𝑗=1
𝑛,𝑘

 be a Gaussian matrix with independent standard entries. Let 𝒟 be a δ-net on 

𝑆𝑘−1 with cardinality |𝒟| ≤ (
3

𝛿
)
𝑘
 (see [339] for the details). Then using the union bound, 

Theorem (6.3.14) and the fact that Gu is equidistributed to 𝑍 ∼ 𝑁(0, 𝐼𝑛) we obtain  

ℙ(∃ 𝑢 ∈ 𝒟: |‖𝐺𝑢‖𝐵𝑝(𝜇) − 𝔼‖𝑍‖𝐵𝑝(𝜇)| ≥ 𝜀𝔼‖𝑍‖𝐵𝑝(𝜇)) ≤ (
3

𝛿
)
𝑘

𝐶 exp(−𝑐𝜓(𝑛, 𝑝, 𝜀)). 

Choosing 𝛿 ≃ 𝜀 we find that with probability greater than 1 − 𝑒−𝑐
′𝜓(𝑛,𝑝,𝜀) the random 

operator G satisfies  
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|‖𝐺𝑢‖𝐵𝑝(𝜇) − 𝔼‖𝑍‖𝐵𝑝(𝜇)| ≤ 𝜀𝔼‖𝑍‖𝐵𝑝(𝜇), 

for all 𝑢 ∈ 𝒟, as long as 𝑘 ≲ (log
1

𝜀
)
−1
𝜓(𝑛, 𝑝, 𝜀). It’s routine to check that we may pass to 

the whole sphere 𝑆𝑘−1 at cost of an oscillation at most 2𝜀𝔼‖𝑍‖𝐵𝑝(𝜇), see e.g. [339].  

     Theorem (6.3.15) serves exactly the purpose of removing this term. Then we use this 

inequality along with a chaining method to conclude the logarithmic-free dependence on ε 

in our main result. This approach has been inspired by [311]. However, the method from 

[311] is not directly applicable here, since it lies in estimates involving the Lipschitz 

constant. As we have already explained such estimates would only yield suboptimal 

bounds and one has to keep track of the higher moments of the length of the gradient until 

the very last step. This forces us to establish the inequality in Theorem (6.3.10). In 

probabilistic terms Theorem (6.3.15) says that the process (‖𝐺𝜃‖𝐵𝑝(𝜇)
𝑝

− 𝐼𝑝
𝑝
)
𝜃∈𝑆𝑘−1

 has 

two-level tail behavior described by 𝜓(𝑛, 𝑝,·). 
We proving the main result.  

Theorem (6.3.20)[320]: Let 2 < 𝑝 < ∞ and let X be an n-dimensional subspace of 𝐿𝑝, 

represented on ℝ𝑛, whose unit ball 𝐵𝑋 is in Lewis’ position. Then, for any 𝜀 ∈ (0, 1) there 

exists 𝑘 ≥ 𝑐𝑝𝜓(𝑛, 𝑝, 𝜀) such that the random k-dimensional subspace F of X is (1 + 𝜀)-

spherical with probability greater than 1 − 𝑒−𝑐𝑝𝜓(𝑛,𝑝,𝜀), where 𝑐𝑝 > 0 depends only on p 

and 𝜓(𝑛, 𝑝,·) is defined in (107).  

Proof. We have to show that the ball 𝐵𝑝(𝜇) has random almost spherical k-dimensional 

with k as large as possible. Let {𝑔𝑖𝑗(𝜔)}𝑖,𝑗=1
𝑛,𝑘

be i.i.d. standard normals in some probability 

space (𝛺, ℙ) and consider the random Gaussian operator 𝐺𝜔 = (𝑔𝑖𝑗(𝜔))
𝑖,𝑗=1

𝑛,𝑘
: ℓ2
𝑘 →

𝑋𝑝(𝜇). We will prove that with overwhelming probability the operator G is (1 + 𝜀)-

isomorphic embedding when k is relatively large. To this end, we employ Theorem 

(6.3.15) and the chaining argument from [311]. For each 𝑗 = 1, 2,… consider 𝛿𝑗-nets N𝑗 

on 𝑆𝑘−1 with cardinality |N𝑗| ≤ (
3

𝛿𝑗
)
𝑘

 (see [339]). Note that for any 𝜃 ∈ 𝑆𝑘−1 and for all j 

there exist 𝑢𝑗 ∈ N𝑗 with ‖𝜃 − 𝑢𝑗‖2 ≤ 𝛿𝑗 and by the triangle inequality it follows that 

‖𝑢𝑗 − 𝑢𝑗−1‖2 ≤ 𝛿𝑗 + 𝛿𝑗−1. Moreover, if we assume that 𝛿𝑗 → 0 as 𝑗 → ∞ and (𝑡𝑗) is a 

sequence of numbers with 𝑡𝑗 ≥ 0 and ∑ 𝑡𝑗𝑗 ≤ 1 then, for any 𝜀 > 0 we have the next 

claim.  

Claim (6.3.21)[320]: If we define the following sets:  

𝐴:= {𝜔|∃𝜃 ∈ 𝑆𝑘−1: |‖𝐺𝜔(𝜃)‖𝐵𝑝(𝜇)
𝑝

− 𝐼𝑝
𝑝
| > 𝜀𝐼𝑝

𝑝
}, 

𝐴1: = {𝜔|∃𝑢1 ∈ N1: |‖𝐺𝜔(𝑢1)‖𝐵𝑝(𝜇)
𝑝

− 𝐼𝑝
𝑝
| > 𝑡1𝜀𝐼𝑝

𝑝
} 

and for 𝑗 ≥ 2 

𝐴𝑗: = {𝜔|∃𝑢𝑗 ∈ N𝑗, 𝑢𝑗−1 ∈ N𝑗−1: |‖𝐺𝜔(𝑢𝑗)‖𝐵𝑝(𝜇)
𝑝

− ‖𝐺𝜔(𝑢𝑗−1)‖𝐵𝑝(𝜇)
𝑝

| > 𝑡𝑗𝜀𝐼𝑝
𝑝
}, 

where 𝐼𝑝 ≡ 𝐼𝑝 (𝛾𝑛, 𝐵𝑝(𝜇)), then the inclusion 𝐴 ⊆ ⋃ 𝐴𝑗
∞
𝑗=1  holds. 

Proof. If 𝜔 ∉ ⋃ 𝐴𝑗
∞
𝑗=1  then for any j and any 𝑢𝑗 ∈ N𝑗 we have  

|‖𝐺𝜔(𝑢1)‖𝐵𝑝(𝜇)
𝑝

− 𝐼𝑝
𝑝
| ≤ 𝜀𝑡1𝐼𝑝

𝑝
         and 
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|‖𝐺𝜔(𝑢𝑗)‖𝐵𝑝(𝜇)
𝑝

− ‖𝐺𝜔(𝑢𝑗−1)‖𝐵𝑝(𝜇)
𝑝

| ≤ 𝜀𝑡𝑗𝐼𝑝
𝑝
, 𝑗 = 2, 3,… 

For any θ there exist 𝑢𝑗 ∈ N𝑗 such that ‖𝜃 − 𝑢𝑗‖2 < 𝛿𝑗 for 𝑗 = 1, 2, … Hence, for any 𝑁 ≥

2 we may write  

|‖𝐺𝜔(𝜃)‖𝐵𝑝(𝜇)
𝑝

− 𝐼𝑝
𝑝
|

≤ |𝐼𝑝
𝑝
− ‖𝐺𝜔(𝑢1)‖𝐵𝑝(𝜇)

𝑝
| +∑|‖𝐺𝜔(𝑢𝑗−1)‖𝐵𝑝(𝜇)

𝑝
− ‖𝐺𝜔(𝑢𝑗)‖𝐵𝑝(𝜇)

𝑝
|

𝑁

𝑗=2

+ 

+ |‖𝐺𝜔(𝑢𝑁)‖𝐵𝑝(𝜇)
𝑝

− ‖𝐺𝜔(𝜃)‖𝐵𝑝(𝜇)
𝑝

| ≤∑𝜀𝑡𝑗  𝐼𝑝
𝑝

𝑁

𝑗=1

+ 𝑝 · 𝛿𝑁 · ‖𝐺𝜔‖2→𝑋𝑝(𝜇)
𝑝

, 

which proves the assertion, since N is arbitrary.  

Fix 0 < 𝜀 < 1. Choose 𝛿𝑗 = 𝑒
−𝑗 , 𝑡𝑗 = 𝑗

𝑝

2𝑒−𝑗/𝑎𝑝 with 𝑎𝑝: = ∑ 𝑗
𝑝

2𝑒−𝑗∞
𝑗=1  (thus, ∑ 𝑡𝑗𝑗 ≤ 1). 

First note the following elementary property of 𝜓(𝑛, 𝑝,·): 

𝜓(𝑛, 𝑝, 𝑡𝑠) ≥ min {𝑠
2, 𝑠

2
𝑝}𝜓(𝑛, 𝑝, 𝑡), 𝑡, 𝑠 > 0.              (113) 

Then, if we employ the previous claim and Theorem (6.3.15) we may write  

ℙ(𝐴) ≤ 𝐶|N1| exp(−𝑐1𝜓(𝑛, 𝑝, 𝜀𝑡1)) + 𝐶∑|N𝑗−1| · |N𝑗| exp(−𝑐1𝜓(𝑛, 𝑝, 𝜀𝑡𝑗
𝑒𝑗

4
))

∞

𝑗=2

≤ 2𝐶∑(3𝑒𝑗)
2𝑘
exp(−𝑐1

′𝜓(𝑛, 𝑝, 𝜀𝑗
𝑝
2𝑎𝑝
−1))

∞

𝑗=1

, 

where we have used that |N𝑗| ≤ 𝑒
−𝑗 , ‖𝑢𝑗 − 𝑢𝑗−1‖2 ≤ 𝑒

−𝑗 + 𝑒𝑗−1 < 4𝑒−𝑗 and inequality 

(113) for 𝑠 = 1/4. Applying estimate (113) again, first for 𝑠 = 𝑎𝑝
−1 and then for 𝑠 = 𝑗

𝑝

2, 

we may further bound as follows: 

ℙ(𝐴) ≤ 𝐶1∑exp(𝑐2𝑗𝑘 − 𝑐2
′𝑎𝑝
−2𝜓 (𝑛, 𝑝, 𝜀𝑗

𝑝
2))

∞

𝑗=1

≤ 𝐶1∑exp(𝑐2𝑗𝑘 − 𝑐2
′𝑎𝑝
−2𝑗𝜓(𝑛, 𝑝, 𝜀))

∞

𝑗=1

≤ 𝐶1∑exp(−𝑐3𝑎𝑝
−2𝑗𝜓(𝑛, 𝑝, 𝜀))

∞

𝑗=1

≤ 𝐶2 exp (−𝑐3
′𝑎𝑝
−2𝜓(𝑛, 𝑝, 𝜀)), 

provided that 𝑘 ≤ 𝑐2
′(2𝑐2)

−1𝑎𝑝
−2𝜓(𝑛, 𝑝, 𝜀) ≲ (

2𝑒

𝑝
)
𝑝
𝜓(𝑛, 𝑝, 𝜀). Therefore, with probability 

greater than 1 − 𝑒−𝑐𝑎𝑝
−2𝜓(𝑛,𝑝,𝜀) the random operator G satisfies  

(1 − 𝜀)
1
𝑝𝐼𝑝‖𝑥‖2 ≤ ‖𝐺(𝑥)‖𝐵𝑝(𝜇) ≤ (1 + 𝜀)

1
𝑝𝐼𝑝‖𝑥‖2, 

for all 𝑥 ∈ ℝ𝑘. To conclude we have to recall that Im𝐺 = 𝐹 is Haar-distributed on 𝐺𝑛,𝑘 

(see [344]). 

If the isotropic measure μ on 𝑆𝑛−1 is the one supported on ±𝑒𝑖’s i.e. 𝑋𝑝(𝜇) ≡ ℓ𝑝
𝑛 , 

then Theorem (6.3.14) is optimal (up to constants depending on p) as was proved in [341]. 

Moreover, Theorem (6.3.20) is optimal, in the sense that if the typical k-dimensional 

subspace of ℓ𝑝
𝑛 is (1 + 𝜀)-spherical, then 𝑘 ≤ 𝐶𝑝(𝜀𝑛)

2

𝑝 for some absolute constant 𝐶 > 0 

(see [341]). We should mention that it is known, that for concrete values of p one can 
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embed ℓ2
𝑘 into ℓ𝑝

𝑛 even isometrically (see [336] for details). However, this is not a typical 

subspace.  

Embeddings of ℓ2
𝑘 into 𝐿𝑞 , 2 < 𝑞 < ∞ under different randomness have appeared in 

[325]. We consider large random matrices with independent Rademacher entries in order 

to K(q)-embed ℓ2
𝑘 into ℓ𝑞

𝑁 with 𝑁 ≃ 𝑘
𝑞

2, where 𝐾(𝑞) > 0 depends only on q. Then, they 

use this result in order to prove that for any 1 < 𝑝 < 2 there exists uncomplemented 

subspace of 𝐿𝑝 which is isomorphic to Hilbert space. It is worth mentioning, that one can 

prove a concentration result similar to that of Theorem (6.3.14) using other randomness 

than Gaussian. In particular, if ν is an isotropic Borel probability measure on ℝ𝑛 which 

satisfies a log-Sobolev inequality with constant 𝜌 > 0 then we may prove the following:  

Theorem (6.3.22)[320]: Let 2 < 𝑝 < ∞, let μ be a Borel isotropic measure on 𝑆𝑛−1 and 

let ν be an isotropic Borel probability measure on ℝ𝑛 which satisfies a log-Sobolev 

inequality with constant 𝜌 > 0. Then, we have 

(∬|‖𝑥‖𝐵𝑝(𝜇)
𝑝

− ‖𝑦‖𝐵𝑝(𝜇)
𝑝

|
𝑟
𝑑𝜈(𝑥)𝑑𝜈(𝑦))

1
𝑟
≤ 𝐶(𝑝, 𝜌)𝐼𝑝

𝑝
(𝜈, 𝐵𝑝(𝜇))max{(

𝑟

𝑛
)

1
2
,
𝑟
𝑝
2

𝑛
}, 

for all 𝑟 ≥ 2, where 𝐶(𝑝, 𝜌) > 0 is constant depending only on p and ρ.  

Having proved Theorem (6.3.22), we apply Markov’s inequality to get the corresponding 

concentration inequality. For the proof of Theorem (6.3.22) we argue as follows: Consider 

the function 𝑓(𝑥) = ‖𝑥‖𝐵𝑝(𝜇)
𝑝

 and define 𝐹 = 𝑓 − 𝔼𝜈𝑓. Then, a direct application of 

Lemma (6.3.4) yields  

‖𝐹‖𝐿𝑟(𝜈)
2 ≤ ‖𝐹‖𝐿2(𝜈)

2 +
1

𝜌
∫ ‖‖𝛻𝑓‖2‖𝐿𝑠(𝜈)

2 𝑑𝑠
𝑟

2

,                         (114) 

for all 𝑟 ≥ 2. Recall the known fact (e.g. see [121]) that if a measure ν satisfies a log-

Sobolev inequality with constant ρ, also satisfies a Poincaré inequality with constant ρ, 

that is  

‖ℎ − 𝔼𝜈ℎ‖𝐿2(𝜈)
2 ≤

1

𝜌
∫ ‖𝛻ℎ‖2

2𝑑𝜈
ℝ𝑛

=
1

𝜌
‖‖𝛻ℎ‖2‖𝐿2(𝜈)

2 , 

for any smooth function h. Therefore, (114) becomes  

‖𝐹‖𝐿𝑟(𝜈)
2 ≤

2

𝜌
∫ ‖‖𝛻𝑓‖2‖𝐿𝑠(𝜈)

2 𝑑𝑠
𝑟

2

≤
2𝑟

𝜌
‖‖𝛻𝑓‖2‖𝐿𝑟(𝜈)

2 , 

for all 𝑟 ≥ 3, where we have used the fact that 𝑠 ⟼ ‖ℎ‖𝐿𝑠  is non-decreasing function. 

Taking into account the Claim we get  

‖𝐹‖𝐿𝑟(𝜈)
2 ≤

2𝑝2𝑟

𝜌
(∫ ‖𝑥‖𝐵2𝑝−2(𝜇)

𝑟(𝑝−1)
𝑑𝜈(𝑥)

ℝ𝑛
)

2
𝑟

, 𝑟 ≥ 3.          (115) 

Again, Lemma (6.3.4) implies that 

(∫ ‖𝑥‖𝐵2𝑝−2(𝜇)
𝑟(𝑝−1)

𝑑𝜈(𝑥)
ℝ𝑛

)

2
𝑟

≤ 𝐼2𝑝−2
2𝑝−2

(𝜈, 𝐵2𝑝−2(𝜇))(1 +
(𝑟 − 2)(𝑝 − 1)

𝜌𝐼2𝑝−2
2 (𝜈, 𝐵2𝑝−2(𝜇))

)

𝑝−1

, 

for 𝑟 ≥ 2. Plug this back in (115) we obtain  
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‖𝐹‖𝐿𝑟(𝜈) < (
2𝑝2

𝜌
)

1
2

𝑟
1
2𝐼2𝑝−2
𝑝−1

(𝜈, 𝐵2𝑝−2(𝜇))(1 +
(𝑟 − 2)(𝑝 − 1)

𝜌𝐼2𝑝−2
2 (𝜈, 𝐵2𝑝−2(𝜇))

)

𝑝−1
2

, 

for all 𝑟 ≥ 3. Finally, we have  

𝑛 ≤ 𝐼𝑝
𝑝
(𝜈, 𝐵𝑝(𝜇)) ≤ (1 +

𝑝 − 2

𝜌
)

𝑝
2
𝑛, 

for all 𝑝 ≥ 2. Indeed; we may write  

𝐼𝑝
𝑝
(𝜈, 𝐵𝑝(𝜇)) = ∫ ∫ |〈𝑥, 𝜃〉|𝑝𝑑𝜈(𝑥)𝑑𝜇(𝜃)

ℝ𝑛𝑆𝑛−1
≥ ∫ (∫ 〈𝑥, 𝜃〉2𝜈(𝑥)

ℝ𝑛
)

𝑝
2

𝑑𝜇(𝜃)
𝑆𝑛−1

= 𝜇(𝑆𝑛−1), 
where we have used Hölder’s inequality and the isotropicity of ν. For the right-hand side, 

we fix 𝜃 ∈ 𝑆𝑛−1 and we apply Lemma (6.3.4) for 𝑥 ⟼ 〈𝑥, 𝜃〉 to get 

(∫ |〈𝑥, 𝜃〉|𝑝𝑑𝜈(𝑥)
ℝ𝑛

)

2
𝑝

≤ ∫ 〈𝑥, 𝜃〉2𝑑𝜈(𝑥)
ℝ𝑛

+
𝑝 − 2

𝜌
= 1 +

𝑝 − 2

𝜌
, 

where we have used the isotropicity again. Finally, integration with respect to μ yields  

𝐼𝑝
𝑝
(𝜈, 𝐵𝑝(𝜇)) = ∫ ∫ |〈𝑥, 𝜃〉|𝑝𝑑𝜈(𝑥)𝑑𝜇(𝜃)

ℝ𝑛𝑆𝑛−1
≤ ∫ (1 +

𝑝 − 2

𝜌
)

𝑝
2
𝑑𝜇(𝜃)

𝑆𝑛−1
, 

as asserted. Taking into account these estimates, we argue as to complete the proof.  

We point out that our method also provides upper estimate for the normalized 

variance of the norm of any finite dimensional subspace of 𝐿𝑝 in Lewis’ position. We 

should mention that the following estimate turns out to be optimal (up to constants of p) 

since it agrees with the ℓ𝑝
𝑛 case (see [341]).  

Corollary (6.3.23)[320]: Let 1 ≤ 𝑝 < ∞. Then, for any n-dimensional subspace X of 𝐿𝑝 

represented on ℝ𝑛, there exists a position �̃� of its unit ball 𝐵𝑋 such that the normalized 

variance is of minimal possible order (up to constants of p)  
𝑉𝑎𝑟‖𝑍‖�̃�

𝔼‖𝑍‖�̃�
2 ≤

𝐶𝑝

𝑛
, 

where Z is the standard Gaussian vector in ℝ𝑛 and 𝐶 > 0 is an absolute constant.  

Proof. If �̃� is a Lewis’ position of 𝐵𝑋, we may identify X with 𝑋𝑝(𝜇) for some Borel 

isotropic measure μ on 𝑆𝑛−1. Then, the result follows from Theorem (6.3.18). On the other 

hand note that the normalized variance is minimal since for every norm  ‖·‖  on ℝ𝑛 one 

has 𝑉𝑎𝑟‖𝑍‖ ≲ 𝔼‖𝑍‖2/𝑛. The latter may be easily checked by using integration in polar 

coordinates and the Cauchy–Schwarz inequality. 
The classical Johnson–Lindenstrauss lemma [335] asserts that any finite Hilbertian 

set S, i.e. 𝑆 ⊂ ℓ2, can be almost isometrically embedded into ℓ2
𝑚 , where m is 

logarithmically small with respect to the size of the set S. We can equivalently state this 

principle for subsets of the Euclidean sphere. We have the following: 

Theorem (6.3.24)[320]: (Johnson–Lindenstrauss). Let 𝑆 ⊂ 𝑆𝑛−1 and let 𝜀 ∈ (0, 1). Then, 

for every 𝑚 ≥ 𝑐𝜀−2 log|𝑆| there exists a linear map 𝑇: ℓ2
𝑛 → ℓ2

𝑚 such that  

1 − 𝜀 ≤ ‖𝑇𝑢‖2 ≤ 1 + 𝜀, 𝑢 ∈ 𝑆. 
Replacing the Euclidean target space by an arbitrary normed space 𝑋 = (ℝ𝑚, ‖·‖) one has 

the following variant:  
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Theorem (6.3.25)[320]: Let S be a finite subset of the Euclidean sphere 𝑆𝑛−1 and let  

𝐺𝑊(𝑆) = 𝔼 sup
𝑢∈𝑆
〈𝑢, 𝑍〉 , 𝑍 ∼ 𝑁(0, 𝐼𝑛), 

be the Gaussian width of S. If 𝑋 = (ℝ𝑚, ‖·‖) is a normed space and 𝜀 ∈ (0, 1) with 

𝐺𝑊(𝑆) ≤ 𝑐𝜀√𝑘(𝑋), then there exists a linear map 𝑇: ℓ2
𝑛 → 𝑋 such that  

1 − 𝜀 ≤ ‖𝑇𝑢‖ ≤ 1 + 𝜀, 𝑢 ∈ 𝑆. 
The latter follows from Gordon’s min-max theorem (in particular from [332] for 𝐸 = 𝑆 

and 𝛩 = 𝑆𝑋∗) in the spirit of his proof for the randomized Dvoretzky’s theorem. For an 

alternative approach, which rests on the majorizing measure theorem, see [343].  

Let us focus now in the case that X is an m-dimensional subspace of 𝐿𝑝, 1 ≤ 𝑝 < ∞. If we 

recall the fact that 𝐺𝑊(𝑆) ≲ √log|𝑆|, and assume further that X is in Lewis’ position, 

then one gets  

log|𝑆| ≤ 𝑐𝜀2𝑚
min{

1,2
𝑝
}
, 

which shows that 𝑚 ≥ 𝐶𝜀−2 log|𝑆|, when 1 ≤ 𝑝 ≤ 2 and 𝑚 ≥ 𝐶𝜀−𝑝(log|𝑆|)
𝑝

2, when 2 <
𝑝 < ∞. Let us mention that in the first case, the estimate matches the one given by JL 

lemma and it can also be obtained by invoking the classical concentration, directly.  

However, using Theorem (6.3.14), we may get improved estimates for low-dimensional 

embeddings of Hilbertian sets into any subspace of 𝐿𝑝 for 2 < 𝑝 < ∞. The following can 

be viewed as a Johnson–Lindenstrauss type result for target spaces which sit in 𝐿𝑝. 

Theorem (6.3.26)[320]: Let 2 < 𝑝 < ∞. For any 𝜀 ∈ (0, 1), for any 𝑆 ⊂ 𝑆𝑛−1 and for any 

m-dimensional subspace X of 𝐿𝑝 with 𝑚 ≳ max {𝑝4𝑝𝜀−2 𝑙𝑜𝑔|𝑆| , 𝜀−1(𝑙𝑜𝑔|𝑆|)
𝑝

2}, there 

exists a linear mapping 𝑇: ℓ2
𝑛 → 𝑋 such that  

1 − 𝜀 ≤ ‖𝑇𝑢‖𝑋 ≤ 1 + 𝜀, 𝑢 ∈ 𝑆. 
Proof. Fix 𝑝, 𝜀, 𝑋 and m as above. Then, by Theorem (6.3.6), there exists an isotropic 

measure on 𝑆𝑚−1 and a linear isometry 𝑈:𝑋𝑝(𝜇) → 𝑋. Then, by Theorem (6.3.14) we 

have 

ℙ(∃𝑢 ∈ 𝑆: |‖𝐺𝑢‖𝐵𝑝(𝜇) − (𝔼‖𝑍‖𝐵𝑝(𝜇)
𝑝

)

1
𝑝
| ≥ 𝜀 (𝔼‖𝑍‖𝐵𝑝(𝜇)

𝑝
)

1
𝑝
≤ |𝑆| exp(−𝜓(𝑚, 𝑝, 𝜀)), 

where 𝐺 = (𝑔𝑖𝑗)𝑖,𝑗=1
𝑚,𝑛

 is a matrix with standard Gaussian entries and Z is the standard 

Gaussian vector in ℝ𝑚. Assuming that 𝜓(𝑚, 𝑝, 𝜀) > log|𝑆| we may conclude the existence 

of a matrix 𝑀: ℓ2
𝑛 → 𝑋𝑝(𝜇) such that 

1 − 𝜀 ≤ ‖𝑀𝑢‖𝐵𝑝(𝜇) ≤ 1 + 𝜀, 

for all 𝑢 ∈ 𝑆. The desired linear map is 𝑇 = 𝑈𝑀. The estimate for m is obtained by finding 

the inverse function of 𝑚⟼ 𝜓(𝑚, 𝑝, 𝜀). 
Corollary (6.3.27)[353]: (Aida–Stroock). Let ν be a Borel probability measure on ℝ𝑛 

which satisfies a log-Sobolev inequality with constant ρ. Then, for any smooth function 

𝑓:ℝ𝑛 → ℝ we have  

‖𝑓‖𝐿2+𝜖(𝜈)
2 − ‖𝑓‖𝐿1+𝜖(𝜈)

2 ≤
1

𝜌
∫ ‖‖𝛻𝑓‖2‖𝐿𝑠(𝜈)

2 𝑑𝑠
2+𝜖

1+𝜖

,                    (116) 

for all 𝜖 ≥ 0. In particular, if 𝑓 is Lipschitz continuous, then we have  
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‖𝑓‖𝐿1+𝜖(𝜈)
2 − ‖𝑓‖𝐿2+𝜖(𝜈)

2 ≤
‖𝑓‖Lip

2

𝜌
(𝜖). 

It follows that  

‖𝑓‖𝐿2(1+𝜖)(𝜈)/‖𝑓‖𝐿2(𝜈) ≤ √1 +
2𝜖

𝜌𝑘(𝑓)
, 

for 𝜖 ≥ 0, where 𝑘(𝑓):= ‖𝑓‖𝐿2(𝜈)
2 /‖𝑓‖Lip

2 . 

Sketch of Proof. For 𝜖 ≥ 0 we define 𝐼(2 + 𝜖):= ‖𝑓‖𝐿2+𝜖. Differentiation with respect to 

2 + 𝜖 yields  

𝑑𝐼

𝑑(2 + 𝜖)
=

𝐸𝑛𝑡𝜈(|𝑓|
2+𝜖)

(2 + 𝜖)2𝐼(2 + 𝜖)1+𝜖
. 

Applying the log-Sobolev inequality for 𝑔 = |𝑓|
2+𝜖

2  we obtain  

𝑑𝐼

𝑑(2 + 𝜖)
≤

1

2𝜌𝐼(2 + 𝜖)1+𝜖
∫ |𝑓|𝜖‖𝛻𝑓‖2

2𝑑𝜈
ℝ𝑛

≤
1

2𝜌𝐼(2 + 𝜖)1+𝜖
𝐼(2 + 𝜖)𝜖‖‖𝛻𝑓‖2‖𝐿2+𝜖(𝜈)

2 , 

by Hölder’s inequality. This shows that (𝐼(2 + 𝜖)2)′ ≤
1

𝜌
‖‖𝛻𝑓‖2‖𝐿2+𝜖(𝜈)

2 . Integration over 

the interval [2 + 𝜖, 2 + 𝜖] proves (116). 

Corollary (6.3.28)[353]: Let μ be a Borel isotropic measure on 𝑆𝑛−1 and let Z be an n-

dimensional standard Gaussian vector. Then, we have the following properties:  

(i) 𝔼‖𝑍‖𝐵1+𝜖(𝜇)
1+𝜖 = 𝜎1+𝜖

1+𝜖𝜇(𝑆𝑛−1), for 0 ≤ 𝜖 < ∞. 

(ii) 𝜇(𝑆𝑛−1) = 𝑛. 

(iii) For 𝜖 ≥ 2 we have ‖𝑥2‖𝐵2+𝜖(𝜇) ≤ ‖𝑥
2‖2 and for 0 ≤ 𝜖 < ∞ we have 

‖𝑥2‖𝐵1+𝜖(𝜇) ≤ 𝑛
𝜖

(1+𝜖)(1+2𝜖)‖𝑥2‖𝐵1+2𝜖(𝜇), for all 𝑥2 ∈ ℝ𝑛. 

(iv) (K. Ball). For every 0 ≤ 𝜖 < ∞ we have |𝐵1+𝜖(𝜇)| ≤ |𝐵1+𝜖
𝑛 |. 

(v) For the body 𝐵1+𝜖(𝜇), 𝜖 ≥ 0 we have 𝑘(𝐵1+𝜖(𝜇)) ≥ (1 + 𝜖)𝑛
min{

1,2

1+𝜖
}
. 

(vi) There exists an absolute constant 𝜖 ≥ 0 such that for all 0 ≤ 𝜖 ≤ (1 +

𝜖) log 𝑛 − 2, one has (𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2 )

1

2 ≃ (2 + 𝜖)
1

2𝑛
1

2+𝜖. In particular, for those 2 + 𝜖 

one has 𝑘(𝐵2+𝜖(𝜇)) ≥ (1 + 𝜖)(2 + 𝜖)𝑛
2

2+𝜖. 

Proof. (i). We use Fubini’s theorem and the rotation invariance of the Gaussian measure to 

write  

𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 = ∫ ‖𝑥2‖𝐵2+𝜖(𝜇)

2+𝜖 𝑑𝛾𝑛(𝑥
2)

ℝ𝑛
= ∫ ∫ |〈𝑥2, 𝜃𝜖〉|

2+𝜖𝑑𝛾𝑛(𝑥
2)𝑑𝜇(𝜃𝜖)

ℝ𝑛𝑆𝑛−1

= 𝜎2+𝜖
2+𝜖𝜇(𝑆𝑛−1). 
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(ii). It follows from the above formula, applied for 𝜖 = 0, and by employing the isotropic 

condition. 

(iii). Let 𝜖 ≥ 0. Note that for all 𝑢 ∈ 𝑆𝑛−1 we have 

‖𝑢‖𝐵2+𝜖(𝜇)
2+𝜖 = ∫ |〈𝑢, 𝜃𝜖〉|

2+𝜖𝑑𝜇(𝜃𝜖)
𝑆𝑛−1

≤ ∫ |〈𝑢, 𝜃𝜖〉|
2𝑑𝜇(𝜃𝜖)

𝑆𝑛−1
= 1. 

For 𝜖 ≥ 0 we apply Hölder’s inequality 

‖𝑥2‖𝐵1+𝜖(𝜇) = (∫ |〈𝑥2, 𝜃𝜖〉|
1+𝜖𝑑𝜇(𝜃𝜖)

𝑆𝑛−1
)

1
1+𝜖

≤ 𝜇(𝑆𝑛−1)
𝜖

(1+𝜖)(1+2𝜖) (∫ |〈𝑥2, 𝜃𝜖〉|
1+2𝜖𝑑𝜇(𝜃𝜖)

𝑆𝑛−1
)

1
1+2𝜖

. 

(iv). This result is proved by K. Ball in [324]. The reader may consult [324] for the details. 

(v). First consider the case 0 ≤ 𝜖 ≤ 1. Using Hölder’s inequality we get   

(𝔼‖𝑍‖𝐵1+𝜖(𝜇)
2 )

1
2 ≥ (𝔼‖𝑍‖𝐵1+𝜖(𝜇)

1+𝜖 )
1
1+𝜖 = 𝜎1+𝜖𝑛

1
1+𝜖 ≥ (1 + 𝜖)𝑛

1
1+𝜖 , 

where we have also used (i) and (ii). Also note that (iii) implies 𝑏(𝐵1+𝜖(𝜇)) ≤ 𝑛
−

𝜖

(1+𝜖) for 

0 ≤ 𝜖 ≤ 1.  

Now we turn in the range 0 < 𝜖 < ∞. Note that 𝑏(𝐵2+𝜖(𝜇)) ≤ 1, by (iii). Furthermore,  

𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2 ≥ 𝑛−

𝜖
2+𝜖𝔼‖𝑍‖2

2 = 𝑛
2
2+𝜖 , 

again by (iii). Combining the above and recalling the definition of 𝑘(𝑋2+𝜖(𝜇)) we get the 

desired estimate.  

(vi). We define the parameter  

2 + 2𝜖 ≡ (2 + 2𝜖)(𝜇):

= max{2 + 𝜖 ∈ [2, 𝑛]: 𝑘(𝐵1+𝜖(𝜇)) ≥ 1 + 𝜖, ∀(1 + 𝜖) ∈ [2, 2 + 𝜖]}. 

The continuity of the map 1 + 𝜖 ⟼ 𝑘(𝐵1+𝜖(𝜇)) and the fact that 𝑘(𝐵2+𝜖(𝜇)) ≤ 𝑛 for all 

𝜖 ≥ 0, whereas 𝑘(𝐵2(𝜇)) = 𝑛, implies that 2 + 2𝜖 = 𝑘(𝐵2+2𝜖(𝜇)) and 𝑘(𝐵2+𝜖(𝜇)) ≥

2 + 𝜖 for 𝜖 ≥ 0. Corollary (6.3.27) then, yields (𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 )

1

2+𝜖 ≤ 𝑐1(𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2 )

1

2 for 

all 𝜖 ≥ 0. Thus, for all 𝜖 ≥ 0 we get  

𝑘(𝐵2+𝜖(𝜇)) =
𝔼‖𝑍‖𝐵2+𝜖(𝜇)

2

𝑏2(𝐵2+𝜖(𝜇))
≥ 𝑐1

−2(𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 )

2
2+𝜖 = 𝑐1

−2𝜎2+𝜖
2 𝑛

2
2+𝜖 ≥ 𝑐2(2 + 𝜖)𝑛

2
2+𝜖 , 

where we have also used that 𝑏(𝐵2+𝜖(𝜇)) ≤ 1. In particular, for 𝜖 = 0, we obtain  
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2 + 2𝜖 = 𝑘(𝐵2+2𝜖(𝜇)) ≥ 𝑐2(2 + 2𝜖)𝑛
2

2+2𝜖 ⇒ 2 + 2𝜖 ≥ 𝑐3 log 𝑛. 

This can be interpreted as 𝑘(𝐵2+𝜖(𝜇)) ≥ (1 + 𝜖)𝑘(ℓ2+𝜖
𝑛 ), provided that 0 ≤ 𝜖 ≤ (1 +

𝜖) log 𝑛 − 2 for some absolute constant 𝜖 ≥ 0. For a proof of the fact that 𝑘(ℓ2+𝜖
𝑛 ) ≃ (2 +

𝜖)𝑛
2

2+𝜖 when 0 ≤ 𝜖 ≤ (1 + 𝜖) log𝑛 − 2 the reader is referred to [346]. 

Corollary (6.3.29) [320].  Let μ be a Borel isotropic measure on 𝑆𝑛−1. For all 𝜖 ≥ 0 we 

have  

𝐼(1+𝜖)(2+𝜖)(𝛾𝑛, 𝐵2+𝜖(𝜇))

𝐼2+𝜖(𝛾𝑛, 𝐵2+𝜖(𝜇))
≤ √1 +

(2 + 𝜖)(𝜖)

𝜎2+𝜖
2 𝑛

2
2+𝜖

≤ √1 +
(1 + 𝜖)(𝜖)

𝑛
2
2+𝜖

, 

where 𝜖 ≥ 0 is an absolute constant.  

Proof. Note that Corollary (6.3.28) (iii) implies |‖𝑥2‖𝐵2+𝜖(𝜇) − ‖𝑦
2‖𝐵2+𝜖(𝜇)| ≤

‖𝑥2 − 𝑦2‖2 for all 𝑥2, 𝑦2 ∈ ℝ𝑛. Hence, if we use Corollary (6.3.27) we obtain  

(
𝐼(1+𝜖)2+𝜖

𝐼2+𝜖
)

2

≤ 1 +
(2 + 𝜖)(𝜖)

𝐼2+𝜖
2 = 1 +

(2 + 𝜖)(𝜖)

𝜎2+𝜖
2 𝑛

2
2+𝜖

, 

where the last estimate follows from Corollary (6.3.28). Finally, using the fact that 𝜎2+𝜖 ≃

√2 + 𝜖 we conclude the second estimate. 

Corollary (6.3.30)[353]: Let 𝜙:ℝ → ℝ be a convex function and let 𝑓:ℝ𝑛 → ℝ be 𝐶1-

smooth. If 𝐺 = (𝑔𝑖𝑗)𝑖,𝑗=1
𝑛,𝑘

 is a Gaussian matrix and 𝑎, (𝑎 + 𝜖) ∈ 𝑆𝑘−1, then we have  

𝔼𝜙(𝑓(𝐺𝑎) − 𝑓(𝐺(𝑎 + 𝜖))) ≤ 𝔼𝜙 (
𝜋

2
‖𝜖‖2〈𝛻𝑓(𝑍),𝑊〉), 

where Z, W are independent copies of a standard Gaussian n-dimensional random vector.  

Proof. If 𝜖 = 0 then, there is nothing to prove. If 𝑎 = −(𝑎 + 𝜖) then, by setting 𝐹(𝑧2) =
𝑓(𝑧2) − 𝑓(−𝑧2) we may write  

𝔼𝜙(𝑓(𝐺𝑎) − 𝑓(𝐺(𝑎 + 𝜖))) = 𝔼𝜙(𝐹(𝑍)) ≤ 𝔼𝜙(𝐹(𝑍) − 𝐹(𝑊)), 

for Z, W independent copies of a standard Gaussian random vector, where we have used 

the fact 𝔼𝐹(𝑍) = 0 and Jensen’s inequality. Then, a direct application of Theorem (6.3.9) 

yields  

𝔼𝜙(𝐹(𝑍) − 𝐹(𝑊)) ≤ 𝔼𝜙(
𝜋〈𝛻𝑓(𝑍),𝑊〉 +  𝜋〈𝛻𝑓(−𝑍),𝑊〉

2
)

≤ 𝔼
(𝜙(𝜋〈𝛻𝑓(𝑍),𝑊〉) + 𝜙(𝜋〈𝛻𝑓(−𝑍),𝑊〉))

2
= 𝔼𝜙(𝜋〈𝛻𝑓(𝑍),𝑊〉), 

by the convexity of 𝜙. 
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In the general case, fix 𝑎, (𝑎 + 𝜖) ∈ 𝑆𝑘−1 with 𝑎 ≠ ±(𝑎 + 𝜖) and define 2 + 𝜖:=
2𝑎+𝜖

2
. 

Note that since ‖𝑎‖2 = ‖𝑎 + 𝜖‖2 we have that the vector 𝑢:= 𝑎 − (2 + 𝜖) is 

perpendicular to 2 + 𝜖. Set 𝑊:= 𝐺(𝑢) and 𝑍:= 𝐺(2 + 𝜖) and note that W,Z are 

independent random vectors in ℝ𝑛 with 𝑊 ∼ 𝑁(0, ‖𝑢‖2
2𝐼𝑛), 𝑍 ∼ 𝑁(0, ‖2 + 𝜖‖2

2𝐼𝑛). Since 

𝐺(𝑎) = 𝑍 +𝑊 and 𝐺(𝑎 + 𝜖) = 𝑍 −𝑊, we may write  

𝔼𝜙(𝑓(𝐺𝑎) − 𝑓(𝐺(𝑎 + 𝜖))) = 𝔼𝑍𝔼𝑊𝜙(𝑓(𝑍 +𝑊) − 𝑓(𝑍 −𝑊)). 

Denote 𝐹(𝑤2, 𝑧2):= 𝑓(𝑧2 + 𝑤2) − 𝑓(𝑧2 −𝑤2). Then, we may write  

𝔼𝜙(𝑓(𝐺𝑎) − 𝑓(𝐺(𝑎 + 𝜖))) = ∬𝜙(𝐹(𝑤2, 𝑧2))𝑑𝛾𝑛,𝜎1(𝑤
2)𝑑𝛾𝑛,𝜎2(𝑧

2), 

where 𝜎1 = ‖𝑢‖2 > 0, 𝜎2 = ‖2 + 𝜖‖2 > 0. For fixed  𝑧2, we may apply Theorem (6.3.9) 

to the function 𝑤2⟼ 𝐹(𝑤2, 𝑧2) (note that  ∫𝐹(𝑤2, 𝑧2)𝑑𝛾𝑛,𝜎1(𝑤
2) = 0) to get 

∫𝜙(𝐹(𝑤2, 𝑧2))𝑑𝛾𝑛,𝜎1(𝑤
2) ≤ ∬𝜙(

𝜋

2
〈𝛻𝑤2𝐹(𝑤

2, 𝑧2), 𝑦2〉) 𝑑𝛾𝑛,𝜎1(𝑤
2)𝑑𝛾𝑛,𝜎1(𝑦

2) 

≤∬
𝜙(𝜋〈𝛻𝑓(𝑤2 + 𝑧2), 𝑦2〉) + 𝜙(𝜋〈𝛻𝑓(𝑧2 −𝑤2), 𝑦2〉)

2
𝑑𝛾𝑛,𝜎1(𝑤

2)𝑑𝛾𝑛,𝜎1(𝑦
2)

= ∬𝜙(𝜋〈𝛻𝑓(𝑤2 + 𝑧2), 𝑦2〉)𝑑𝛾𝑛,𝜎1(𝑤
2)𝑑𝛾𝑛,𝜎1(𝑦

2), 

by the convexity of 𝜙. Integration with respect to 𝛾𝑛,𝜎2  over 𝑧2 provides    

∬𝜙(𝐹(𝑤2, 𝑧2))𝑑𝛾𝑛,𝜎1(𝑤
2)𝑑𝛾𝑛,𝜎2(𝑧

2)

≤ ∫[∬𝜙(𝜋〈𝛻𝑓(𝑤2 + 𝑧2), 𝑦2〉)𝑑𝛾𝑛,𝜎1(𝑤
2)𝑑𝛾𝑛,𝜎2(𝑧

2)] 𝑑𝛾𝑛,𝜎1(𝑦
2)

= ∫ [∫𝜙(𝜋〈𝛻𝑓(𝑥2), 𝑦2〉)𝑑(𝛾𝑛,𝜎1 ∗  𝛾𝑛,𝜎2)(𝑥
2)] 𝑑𝛾𝑛,𝜎1(𝑦

2)

=  ∬𝜙(𝜋𝜎1〈𝛻𝑓(𝑥
2), 𝑦2〉)𝑑𝛾𝑛(𝑥

2)𝑑𝛾𝑛(𝑦
2), 

where we have used the fact that 𝛾𝑛,𝜎1 ∗ 𝛾𝑛,𝜎2 = 𝛾𝑛,𝜎12+𝜎22 ≡ 𝛾𝑛, since 𝜎1
2 + 𝜎2

2 = ‖𝑎‖2
2 =

1. The result follows. 

Corollary (6.3.31)[353]: Let 0 < 𝜖 < ∞ and let μ be a Borel isotropic measure on 𝑆𝑛−1 

with 𝑛 > 𝑒2+𝜖. Then, we have 

ℙ(|‖𝑍‖𝐵2+𝜖(𝜇) − (𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 )

1
2+𝜖| ≥ 𝜀(𝔼‖𝑍‖𝐵2+𝜖(𝜇)

2+𝜖 )
1
2+𝜖

≤ (1 + 𝜖) exp(−(1 + 𝜖)𝜓(𝑛, 2 + 𝜖, 𝜀)), 

for every 𝜀 > 0, where 𝜓(𝑛, 2 + 𝜖,·) is defined by  

𝜓(𝑛, 2 + 𝜖, 𝑡):= min {
𝑡2𝑛

(2 + 𝜖)4
2+𝜖 , (𝑡𝑛)

2
2+𝜖} , 𝑡 >  0,                  (117) 
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and 𝜖 ≥ 0 are absolute constants. 

Proof. Using Proposition (6.3.13) for 𝑎, (𝑎 + 𝜖) ∈ 𝑆𝑘−1 with 〈𝑎, 𝑎 + 𝜖〉 = 0 and applying 

Jensen’s inequality we obtain   

(𝔼|‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 − 𝔼‖𝑍‖𝐵2+𝜖(𝜇)

2+𝜖 |
2+𝜖
)

1
2+𝜖

≤ (1 + 2𝜖)(2 + 𝜖)𝜎2+2𝜖
1+𝜖 𝑛

1
22
2+𝜖
2 𝛼(𝑛, 2 + 𝜖, 2 + 𝜖), 

for all 𝜖 ≥ 0. Therefore, Markov’s inequality yields  

ℙ(|‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 − 𝔼‖𝑍‖𝐵2+𝜖(𝜇)

2+𝜖 | > 𝜀)

≤ (
(1 + 2𝜖)(2 + 𝜖)𝜎2+2𝜖

1+𝜖 𝑛
1
22
2+𝜖
2 𝛼(𝑛, 2 + 𝜖, 2 + 𝜖)

𝜀
)

2+𝜖

.           (118) 

Note that the inverse of the map 2 + 𝜖 ⟼ 𝛼(𝑛, 2 + 𝜖, 2 + 𝜖) is given by  

𝛼−1(𝑛, 2 + 𝜖, 𝑠) = min{𝑠2,
𝑠
2
2+𝜖𝑛

1
2+𝜖𝜎2+2𝜖

2+2𝜖
2+𝜖

(1 + 𝜖)
1+𝜖
2+𝜖

} , 𝑠 >  0. 

Hence, for every 𝜀 > 0 there exists 𝜖 ≥ 0 such that 𝛼(𝑛, 2 + 𝜖, 1 + 𝜖) =
𝜀

𝑒(1+2𝜖)(2+𝜖)𝜎2+2𝜖
1+𝜖 𝑛

1
22
2+𝜖
2

. One may check that  

1 + 𝜖 = 𝛼−1 (𝑛, 2 + 𝜖,
𝜀

𝑒(1 + 2𝜖)(2 + 𝜖)𝜎2+2𝜖
1+𝜖 𝑛

1
22
2+𝜖
2

)

≃ min{
𝜀2

𝑛(2 + 𝜖)222+𝜖𝜎2+2𝜖
2+2𝜖 ,

𝜀
2
2+𝜖

2 + 𝜖
}. 

As long as the range of 𝜀 > 0 satisfies 𝛼(𝑛, 2 + 𝜖, 1 + 𝜖) ≥ 𝛼(𝑛, 2 + 𝜖, 2) we may insert 

1 + 𝜖 into the probabilistic bound (118) or else, 𝛼(𝑛, 2 + 𝜖, 1 + 𝜖) < 𝛼(𝑛, 2 + 𝜖, 2) ≃

max {1, (
𝑒2+𝜖

𝑛
)

1

2
} ≃ 1, provided that n is large enough with respect to 2 + 𝜖, and we may 

upper bound the aforementioned probability by an absolute constant 𝜖 ≥ 0. In each case 

we obtain  

ℙ(|‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 − 𝔼‖𝑍‖𝐵2+𝜖(𝜇)

2+𝜖 | > 𝜀)

≤ (1 + 𝜖) exp(−𝑐1𝑚𝑖𝑛 {
𝜀2

𝑛(2 + 𝜖)222+𝜖𝜎2+2𝜖
2+2𝜖 ,

𝜀
2
2+𝜖

2 + 𝜖
}), 

for every 𝜀 > 0. It follows that  
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ℙ(|‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 − 𝔼‖𝑍‖𝐵2+𝜖(𝜇)

2+𝜖 | > 𝜀𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 )

≤ (1 + 𝜖) exp(−𝑐1𝑚𝑖𝑛 {
𝜀2𝑛𝜎2+𝜖

2(2+𝜖)

(2 + 𝜖)222+𝜖𝜎2+2𝜖
2+2𝜖 ,

(𝜀𝑛)
2
2+𝜖𝜎2+𝜖

2

2 + 𝜖
}), 

for every 𝜀 > 0. The asymptotic estimate (96) yields 𝜎2+𝜖
2(2+𝜖)

/𝜎2+2𝜖
2+2𝜖 ≃ (2 + 𝜖)−𝜖 and 

𝜎2+𝜖 ≃ (2 + 𝜖)
1

2, thus we conclude  

ℙ(|‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 − 𝔼‖𝑍‖𝐵2+𝜖(𝜇)

2+𝜖 | > 𝜀𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 )

≤ (1 + 𝜖) exp(−𝑐1
′ 𝑚𝑖𝑛 {

𝜀2𝑛

(2 + 𝜖)42+𝜖
, (𝜀𝑛)

2
2+𝜖}),                       (119) 

for all 𝜀 > 0. This further implies that  

ℙ(|‖𝑍‖𝐵2+𝜖(𝜇) − (𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 )

1
2+𝜖| > 𝜀(𝔼‖𝑍‖𝐵2+𝜖(𝜇)

2+𝜖 )
1
2+𝜖)

≤ 2(1 + 𝜖) exp(−𝑐1
′ 𝑚𝑖𝑛 {

𝜀2𝑛

(2 + 𝜖)42+𝜖
, (𝜀𝑛)

2
2+𝜖}), 

for all 𝜀 > 0. In order to verify the latter we may write  

ℙ(‖𝑍‖𝐵2+𝜖(𝜇) > (1 + 𝜀)(𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 )

1
2+𝜖) ≤ ℙ(‖𝑍‖𝐵2+𝜖(𝜇)

2+𝜖 > (1 + 𝜀)𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 )

≤ (1 + 𝜖) exp(−𝑐1
′ 𝑚𝑖𝑛 {

𝜀2𝑛

(2 + 𝜖)42+𝜖
, (𝜀𝑛)

2
2+𝜖}), 

for all 𝜀 > 0 by the estimate (119). We argue similarly for the lower tail. 

Corollary (6.3.32)[353]: (Gaussian variance for 𝐵1+𝜖(𝜇)). Let 0 ≤ 𝜖 < ∞ and let μ be an 

isotropic Borel measure on 𝑆𝑛−1. Then, 

Var‖𝑍‖𝐵1+𝜖(𝜇) ≤ 𝑒
(1+𝜖)2𝑛

1−𝜖
1+𝜖 . 

In particular, we have  

Var‖𝑍‖𝐵1+𝜖(𝜇)

𝔼‖𝑍‖𝐵1+𝜖(𝜇)
2 ≤

𝑒(1+𝜖)
2

𝑛
, 

where Z is the standard Gaussian vector in ℝ𝑛. 

Proof. We may clearly assume that 𝑛 ≥ 𝑒(1+𝜖)
2
 for some sufficiently large absolute 

constant 𝜖 ≥ 0, otherwise the conclusion is trivially true. In order to see that, first recall 

from Corollary (6.3.28) that  

(𝑎 + 𝜖)(𝐵1+𝜖(𝜇)) ≤ max {𝑛
1−𝜖
2(1+𝜖), 1} , 𝔼‖𝑍‖𝐵1+𝜖(𝜇)

2 ≥ (1 + 𝜖)𝑛
2
1+𝜖 , 0 ≤ 𝜖 < ∞. 
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Whence, in the light of (99) for 𝜖 = 0 and 〈𝑎, 𝑎 + 𝜖〉 = 0, we get  

Var‖𝑍‖𝐵1+𝜖(𝜇) ≤ (1 + 𝜖)𝔼‖𝛻‖𝑍‖𝐵1+𝜖(𝜇)‖2
2
≤ (1 + 𝜖)(𝑎 + 𝜖)2(𝐵1+𝜖(𝜇))

≤ (1 + 𝜖)max {𝑛
1−𝜖
1+𝜖 , 1}. 

These estimates already prove the assertions when 0 ≤ 𝜖 ≤ 1. Thus, we may focus in the 

case 0 < 𝜖 < ∞ with 𝑛 ≥ 𝑒(1+𝜖)(2+𝜖). We consider 𝑍′ an independent copy of Z to write 

2Var‖𝑍‖𝐵2+𝜖(𝜇) = 𝔼(‖𝑍‖𝐵2+𝜖(𝜇) − ‖𝑍
′‖𝐵2+𝜖(𝜇))

2

≤
1

(2 + 𝜖)2
𝔼(

‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 − ‖𝑍′‖𝐵2+𝜖(𝜇)

2+𝜖

min{‖𝑍‖𝐵2+𝜖(𝜇)
1+𝜖 , ‖𝑍′‖𝐵2+𝜖(𝜇)

1+𝜖 }
)

2

, 

where we have used the numerical inequality |𝑡1+𝜖 − 𝑠1+𝜖| ≥ (1 + 𝜖)|𝑡 − 𝑠|min{𝑡𝜖 , 𝑠𝜖} 
for 𝑡, 𝑠 > 0 and 𝜖 > 0. The Cauchy–Schwarz inequality implies that  

Var‖𝑍‖𝐵1+𝜖(𝜇) ≤
2

(1 + 𝜖)2

(𝔼|‖𝑍‖𝐵1+𝜖(𝜇)
1+𝜖 − ‖𝑍′‖𝐵1+𝜖(𝜇)

1+𝜖 |
4
)

1
2

𝐼
−4(𝜖)
2(𝜖)

(𝛾𝑛, 𝐵1+𝜖(𝜇))
, 

where we have used the fact that 
1

min{𝑡,𝑠}
≤
1

𝑡
+
1

𝑠
, 𝑡, 𝑠 > 0. The numerator is directly 

estimated by Proposition (6.3.13) (for 〈𝑎, 𝑎 + 𝜖〉 = 0). Standard computations, based on 

(96), yield the bound   

(𝔼|‖𝑍‖𝐵1+𝜖(𝜇)
1+𝜖 − ‖𝑍′‖𝐵1+𝜖(𝜇)

1+𝜖 |
4
)

1
2
≤ 𝑒(1+𝜖)

2
(1 + 𝜖)1+𝜖𝑛.                            (120) 

For the denominator, we employ estimate (110) for the norm  ‖·‖𝐵1+𝜖(𝜇) (and for 2 + 𝜖 =

4(𝜖)) along with the fact 𝑘(𝐵1+𝜖(𝜇)) ≥ 𝑐1(1 + 𝜖)𝑛
2

1+𝜖 for 𝑛 ≥ 𝑒𝐶2(1+𝜖) (proved in 

Corollary (6.3.28) (vi)) to obtain  

𝐼−4(𝜖)(𝛾𝑛, 𝐵1+𝜖(𝜇)) ≥ 𝑐2𝐼1+𝜖(𝛾𝑛, 𝐵1+𝜖(𝜇)) = 𝑐2𝜎1+𝜖𝑛
1
1+𝜖 ,            (121) 

where in the last step we have used Corollary (6.3.28) (i), (ii) Combining (120) with (121) 

we arrive at the estimate  

Var‖𝑍‖𝐵1+𝜖(𝜇) ≤
𝑒(1+𝜖)

2
(1 + 𝜖)1+𝜖𝑛

𝑒−𝐶3(1+𝜖)𝜎1+𝜖
2𝜖 𝑛

2𝜖
1+𝜖

≤
𝑒𝐶4(1+𝜖)

𝑛
2𝜖
1+𝜖

, 

where we have used once again that 𝜎1+𝜖
1+𝜖 ≃ (

1+𝜖

𝑒
)

1+𝜖

2
. The result follows. 

Corollary (6.3.33) [353]: Let 0 < 𝜖 < ∞ and let X be an n-dimensional subspace of 𝐿2+𝜖, 

represented on ℝ𝑛, whose unit ball 𝐵𝑋 is in Lewis’ position. Then, for any 𝜀 ∈ (0, 1) there 

exists 𝑘 ≥ 𝑐2+𝜖𝜓(𝑛, 2 + 𝜖, 𝜀) such that the random k-dimensional subspace F of X is 
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(1 + 𝜀)-spherical with probability greater than 1 − 𝑒−𝑐2+𝜖𝜓(𝑛,2+𝜖,𝜀), where 𝑐2+𝜖 > 0 

depends only on 2 + 𝜖 and 𝜓(𝑛, 2 + 𝜖,·) is defined in (117). 

Proof. We have to show that the ball 𝐵2+𝜖(𝜇) has random almost spherical k-dimensional 

with k as large as possible. Let {𝑔𝑖𝑗(𝜔
2)}

𝑖,𝑗=1

𝑛,𝑘
be i.i.d. standard normals in some 

probability space (𝛺, ℙ) and consider the random Gaussian operator 𝐺𝜔2 =

(𝑔𝑖𝑗(𝜔
2))

𝑖,𝑗=1

𝑛,𝑘
: ℓ2
𝑘 → 𝑋2+𝜖(𝜇). We will prove that with overwhelming probability the 

operator G is (1 + 𝜀)-isomorphic embedding when k is relatively large. To this end, we 

employ Theorem (6.3.15) and the chaining argument from [311]. For each 𝑗 = 1, 2,… 

consider 𝛿𝑗-nets N𝑗 on 𝑆𝑘−1 with cardinality |N𝑗| ≤ (
3

𝛿𝑗
)
𝑘

 (see [339]). Note that for any 

𝜃𝜖 ∈ 𝑆
𝑘−1 and for all j there exist 𝑢𝑗 ∈ N𝑗 with ‖𝜃𝜖 − 𝑢𝑗‖2 ≤ 𝛿𝑗 and by the triangle 

inequality it follows that ‖𝑢𝑗 − 𝑢𝑗−1‖2 ≤ 𝛿𝑗 + 𝛿𝑗−1. Moreover, if we assume that 𝛿𝑗 → 0 

as 𝑗 → ∞ and (𝑡𝑗) is a sequence of numbers with 𝑡𝑗 ≥ 0 and ∑ 𝑡𝑗𝑗 ≤ 1 then, for any 𝜀 > 0. 

Corollary (6.3.34)[353]: [320]. Let 0 ≤ 𝜖 < ∞. Then, for any n-dimensional subspace X 

of 𝐿1+𝜖 represented on ℝ𝑛, there exists a position �̃� of its unit ball 𝐵𝑋 such that the 

normalized variance is of minimal possible order (up to constants of 1 + 𝜖)  

Var‖𝑍‖�̃�

𝔼‖𝑍‖�̃�
2 ≤

(1 + 𝜖)1+𝜖

𝑛
, 

where Z is the standard Gaussian vector in ℝ𝑛 and 𝜖 ≥ 0 is an absolute constant.  

Sketch of Proof. If �̃� is a Lewis’ position of 𝐵𝑋, we may identify X with 𝑋1+𝜖(𝜇) for 

some Borel isotropic measure μ on 𝑆𝑛−1. Then, the result follows from Corollary (6.3.31). 

On the other hand note that the normalized variance is minimal since for every norm  ‖·‖  

on ℝ𝑛 one has Var‖𝑍‖ ≲ 𝔼‖𝑍‖2/𝑛. The latter may be easily checked by using integration 

in polar coordinates and the Cauchy–Schwarz inequality. 

Corollary (6.3.35)[353]: Let 0 < 𝜖 < ∞. For any 𝜀 ∈ (0, 1), for any 𝑆 ⊂ 𝑆𝑛−1 and for 

any m-dimensional subspace 𝑋 of 𝐿2+𝜖  with 𝑚 ≳ max {(2 +

𝜖)42+𝜖𝜀−2 𝑙𝑜𝑔|𝑆| , 𝜀−1(𝑙𝑜𝑔|𝑆|)
2+𝜖

2 }, there exists a linear mapping 𝑇: ℓ2
𝑛 → 𝑋 such that  

1 − 𝜀 ≤ ‖𝑇𝑢‖𝑋 ≤ 1 + 𝜀, 𝑢 ∈ 𝑆. 

Sketch of Proof. Fix 2 + 𝜖, 𝜀, 𝑋 and m as above. Then, by Theorem (6.3.6), there exists an 

isotropic measure on 𝑆𝑚−1 and a linear isometry 𝑈: 𝑋2+𝜖(𝜇) → 𝑋. Then, by Corollary 

(6.3.31) we have 
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ℙ(∃𝑢 ∈ 𝑆: |‖𝐺𝑢‖𝐵2+𝜖(𝜇) − (𝔼‖𝑍‖𝐵2+𝜖(𝜇)
2+𝜖 )

1
2+𝜖| ≥ 𝜀(𝔼‖𝑍‖𝐵2+𝜖(𝜇)

2+𝜖 )
1
2+𝜖

≤ |𝑆| exp(−𝜓(𝑚, 2 + 𝜖, 𝜀)), 

where 𝐺 = (𝑔𝑖𝑗)𝑖,𝑗=1
𝑚,𝑛

 is a matrix with standard Gaussian entries and Z is the standard 

Gaussian vector in ℝ𝑚. Assuming that 𝜓(𝑚, 2 + 𝜖, 𝜀) > log|𝑆| we may conclude the 

existence of a matrix 𝑀: ℓ2
𝑛 → 𝑋2+𝜖(𝜇) such that 

1 − 𝜀 ≤ ‖𝑀𝑢‖𝐵2+𝜖(𝜇) ≤ 1 + 𝜀, 

for all 𝑢 ∈ 𝑆. The desired linear map is 𝑇 = 𝑈𝑀. The estimate for m is obtained by finding 

the inverse function of 𝑚⟼ 𝜓(𝑚, 2 + 𝜖, 𝜀).  
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