

 SUDAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

COLLEGE OF GRADUATE STUDIES

A Concerns-Based Reverse Engineering Methodology

for Partial Software Architecture Visualization

الجزئي للتصور ندسة العكسية القائمة على الإهتماماتـالهمنهجية
 مارية البرمجيات ـلمع

 A thesis Submitted to the College of Graduate Studies,

College of Computer Science and Information Technology,

Sudan University of Science and Technology

In Partial Fulfillment of the Requirements for the degree of

DOCTOR OF PHILOSOPHY in Computer Science

By

Hind Alamin Mohamed Hassan

Supervisor

Dr.Hany Hussein Ammar, Professor

October 2020

iners Approval

Declaration of the Status of Thesis
(By Student)

I signing here-under, and declare that the contents of this dissertation represent

my own work, and that the dissertation has not previously been submitted for

academic examination towards any qualification. Furthermore, it represents

my own opinions, which is an original intellectual work.

Candidate’s Name: Hind Alamin Mohamed Hassan.

Candidate’s Signature: Hind A. M.

Date: October 2020

Declaration of the Status of Thesis

(By Main Supervisor)

I signing here-under, and declare that I’m the supervisor of the sole author of
the Ph.D. dissertation entitled:

A Concerns-Based Reverse Engineering Methodology

for Partial Software Architecture Visualization

Supervisor’s Name: Prof. Hany Hussein Ammar.

Supervisor’s Signature: Hany H. Ammar

Date: October 2020

Assigning the copy-right to CGS

I signing here-under, and declare that I’m the sole author of the Ph.D.

dissertation entitled:

A Concerns-Based Reverse Engineering Methodology

for Partial Software Architecture Visualization

This is an original intellectual work. Willingly, I assign the copyright of this

work to the College of Graduate Studies (CGS), Sudan University of Science

and Technology (SUST).

Accordingly, SUST has all the rights to publish this work for scientific

purposes.

Candidate’s Name: Hind Alamin Mohamed Hassan

Candidate’s Signature: Hind A. M.

Date: October 2020

Đ11(الآيه ادلةسورة ا(

i

ƅ ُالحمَد

 على والسلام الصـلاة و الإسـلام بدين علينا وبنعمته ،صفاته وكمال سـلطانه عظيم و بجلاله يليق حمداً ƅ الـحمد

 الى بسنته إستن و ،đديه إهتدى من و صحبه و آلـه على و راً ـذيون بشيـراً كـافة للناس أُرسل الذي المرسلين خـاتم

 الـعقـل بنعمة علينا نعمأ الذي ƅ الحمد، يعلم لم ما الإنسان علم ،ʪلقلم علم الذي ƅ الحمد ،الـدين يوم

 داً..ــاً وأبـمـمد ƅ دائـحـالو ت..الصالحا تتم بنعمته الذي ƅ حمدـالو ،الـبصـر و والـسمـع

ii

DEDICATION

To those whom always remember me to believe in myself and continuous to

provide me their constant love, unlimited support and encouragement for

advancement and success throughout my PhD journey and my life in general.

I could not have done it without your support. I am extremely grateful to

My Heartbeat (Mum and Dad),

My Sweet Sisters (Hiba, Sara and Salam),

 My Lovely Husband and little Angle (My Son, Abdulrahman),

All My Big Family,

Special People in my heart we lost them, but their souls are always with us

(Uncle Ahmed Abdalla, Uncle Tahar Osman and Uncle Mohamed Abdalla).

To those who enlighten our way with knowledge since the first steps and

throughout the whole of the education stages.

My Supervisor and My Teachers..

To those whom we spent with them all the enjoyable moments, happy times and

been touch with all meaning of Friendship and Encouragement.

My best friends and My Colleagues..

iii

ACKNOWLEGDMENT

Firstly, “Alhamdulillah”..

I would like to extend my sincere thanks and appreciation to a number of people for

their participation and cooperation to accomplish this research:

Firstly, special thanks to my supervisor Prof. Hany Ammar, Who had afforded and

guided me with all the needed instructions and information, inspiration,

encouragement, guidance, reading drafts and many technical discussions which have

improved the expected outcomes, and providing feedback to complete the aim of

this research. Honestly; it was really great honor for me to work under his

supervision.

My gratitude and appreciation to a number of people (Dr.Ibrahim Abdallah

Mohamed, Dr.Yahia Abdallah Mohamed, Dr.Hisham M.Abushama, Dr.Wafaa

F.Mukhtar, Dr.Mohamed Mustafa Ali, Dr.Afaf Madani, Miss.Intsar Ibrahim,

Dr.Amar Ibrahim and Dr.Hitham A.Moneim) for their encouragement and

continuous support me throughout my PhD journey.

I am extremely grateful to my colleagues and all members at the College of

computer science and information technology at SUDAN University of Science

and Technology for their unlimited support and encouragement.

Moreover; I place my sincere thanks to Scientific Affair and College of

Graduation Studies at SUNAN University for their supporting, coordinating and

following up through my PhD scholarship.

Last but not least, I would like to thank my special friends (Dr.Amal Hassan,

Dr.Asma, Wafaa Ali, Hind Ahmed, Hiba A.Maki, Bodoor Ali, Nahla Murtada, Sara

Abdalla, Hyba Abdu, Eman A.moneim, and Bothyna Moneer) and all my friends

around the world and my colleagues for their moral help and support, and for their

understanding during my PhD journey. I am lucky to have such special friends and

colleagues! Thank you all.

Hind Alamin Mohamed

iv

ABSTRACT

The use of reverse engineering (RE) is increasingly spreading and becoming one

of the essential engineering trends for software evolution and maintenance. RE is used

to support the process of analyzing and recapturing the design information in legacy

systems or complex systems during the maintenance phase. The major problem

stakeholders might face in understanding the architecture of existing software systems

is that the knowledge of software architecture information is difficult to obtain because

of the size of the system, and the existing architecture document often missing or does

not match the current implementation of the source code of software system. Therefore,

much more effort and time are needed from multiple stakeholders such as developers,

maintainers and architects for obtaining and re-documenting and visualizing the

architecture of a target system from its source code files. Hence, most of the current

work is mainly focused on the developer’s viewpoint.

To contribute in solving the mentioned problems for obtaining and re-

documenting the architecture of target system; this research presents a RE methodology

for visualizing architectural information for multiple stakeholders and viewpoints by

applying a reverse engineering process on specific parts of the source code. The process

is driven by eliciting stakeholders' concerns on specific architectural viewpoints to

obtain and visualize the architectural information related to these concerns. In this

research the proposed RE methodology’s phases have been illustrated and validated

using a case study of a legacy web application system.

The main contributions of this research are three folds: firstly; the

RE methodology is based on IEEE1471 standard for architectural description and

supports concerns of stakeholder including the end-user and maintainer; secondly; it

supports the visualization of a particular part of the target system by providing a visual

model of the architectural representation which highlights the main components needed

to execute specific functionality of the target system and finally; the methodology also

uses architecture styles to organize the visual architecture information, this architectural

v

representation helps stakeholders to inspect the dependencies of the different parts of

the architecture obtained from specific source code segments of the target system.

vi

 المستخلص
هندسية الأساسية لتطوير ـأحد الاتجاهات ال يمُثل بشكل متزايد وأصبح ستخدام الهندسة العكسيةإنتشر إ

لأنظمة ل تصميمت العلومامستعادة إهندسة العكسية فى دعم عملية التحليل و ـستخدم التُ حيث البرمجيات وصيانتها.
خلال مرحلة الصيانة لها. تتمثل المشكلة الرئيسية التي يتم مواجهتها من قبل التى تم تطويرها القديمة أو الأنظمة المعقدة

وذلك بسبب عمارية النظام صعوبة الحصول ومعرفة المعلومات الخاصة بمو المستفيدين من النظام فى أصحاب المصلحة
أو (ظام مفقود أو أنه لا يتوافق مع التنفيذ الحالي لـمصدرالحالية للنلمعمارية نه غالبًا ما يكون التوثيق لألنظام، كما اجم ح

زيد من الجهد والوقت من جانب العديد من أصحاب المصلحة نجد أنه يتم بذل الملذلك البرʭمج المتوفر للنظام.شفرة)
النظام ومعمارية بنية لتصور التوثيق و الوإعادة صول على معمارية النظام لحفى ا مهندسي الصيانة والمعمارينالمطورين و :مثل

لعكس الحالية المقدمة و الأعمال نجد أن . مصدر(شفرة) البرʭمج الخاصة ʪلنظامملفات خلال التركيز على المستهدف من
 أو المبرمج للنظام. رعلى وجهة نظر المطو أساسيبشكل و ركز تُ معمارية النظام المستهدف

يقدم النظام المستهدف؛ لمعماريةتوثيق الوإعادة ذكورة للحصول على معمارية النظام الم شاكلالممساهمة في حل لل
بناءً أصحاب المصلحة للعديد من المعلومات المعمارية تصور الهندسة العكسية لتعتمد على إستخدام هذا البحث منهجية

. لبرʭمجامصدر أو شفرة ء محددة من أجزاعلى تطبيق عملية الهندسة العكسية الخاصة đم من خلال وجهات النظر على
ϥ نظر محددة ليتم وجهاتوتحديد صحاب المصلحةهذه العملية تكون موجهة من خلال إستخلاص الاهتمامات الخاصة

في هذا البحث تم لاهتمامات التى تم تحديدها.المتعلقة đذه اة المعلومات المعمارياعتمادها فى وضع التصور لجزء محدد من
 ة.الويب القديم اتتطبيق وتطبيقها على أحد أنظمةدراسة حالة والتحقق منها ϵستخدام المقترحة نهجيةالماحل توضيح مر

 أولاً؛ تستند منهجية الهندسة العكسية على معيار هى المنهجية المقترحةلهذه سهامات الرئيسيةالإمن أهم
تدعم اهتمامات أصحاب كما ، معمارية الأنظمة البرمجية التى يتم تطويرها صفالمستخدم لو IEEE1471 أساسي هو

النظام التصور لجزء محدد من نهجية الم؛ تدعم ʬنياً نظمة.الألهذه صيانة الومهندس المستخدم النهائيالمصلحة بما في ذلك
نفيذ اللازمة فى تت الرئيسية المكوʭتوضيحى للتمثيل المعماري و الذى يستعرض المستهدف من خلال توفير نموذج

المعلومات وتمثيل محدد لتنظيم طريقة و نمط المقترحة المنهجية تستخدمإ؛ ختاماً ، و المستهدف ددة للنظامالمحوظائف ال
لتي تم الحصول عليها من ا أصحاب المصلحة على فهم ومتابعة هذه المعلومات المعماريةيساعد هذا التمثيل حيث المعمارية
 ستهدف.وفقا لطبيعة النظام المالبرʭمج شفرة /من مصدرمحددة ومقاطع كيز على أجزاء خلال التر

vii

TABLE OF CONTENTS

Ϳ ُالحَمد ... i

DEDICATION .. ii

ACKNOWLEGDMENT .. iii

ABSTRACT .. iv

 vi .. المستخلص

TABLE OF CONTENTS ... vii

LIST OF TABLES ... xi

LIST OF FIGURES ... xii

LIST OF FIGURES .. xiii

LIST OF ABBREVIATIONS ... xiv

LIST OF PUPLICATIONS .. xv

LIST OF APPENDICES ... xvi

CHAPTER I ... 1

INTRODUCTION ... 1

1.1. Introduction ... 1

1.2. Problem Statement ... 2

1.3. Research Questions ... 3

1.4. Research Hypotheses ... 3

1.5. Research Objectives .. 4

1.6. Research Scope .. 4

1.7. Research methodology .. 5

1.8. Research Contributions ... 5

1.9. Thesis Organization ... 6

viii

CHAPTER II ... 7

BACKGROUND AND RELATEDWORK .. 7

2.1. Introduction ... 7

2.2. Reverse Engineering Definitions ... 7

2.3. Software Architecture Definition .. 8

2.4. Literature Review .. 9

2.4.1. Reverse Engineering for Understanding Software Artifacts 10

2.4.2. Model Driven Reverse Engineering (MDRE) 11

2.4.3. Documenting of Architectural Design Decisions (ADDs) 12

2.4.3.1. Collecting of Architectural Design Decisions 13

2.4.3.2. Scenario-Based Documentation and Evaluation Method 14

2.4.3.3. UML Metamodel ... 14

2.4.4. Comparison of Existing Architectural Design Decisions Models ... 15

2.5. Comparison with Related Work .. 16

2.6. OPEN ISSUES .. 22

2.7. Chapter Summary .. 23

CHAPTER III .. 24

CONCERNS-BASED RE METHODOLOGY FOR EXTRACTING

PARTIAL SOFTWARE ARCHITECTURE ... 24

3.1. Introduction ... 24

3.2. Overview of the Proposed RE Methodology 24

3.3. The Principles of RE Methodology ... 25

3.4. The Main Phases of RE Methodology .. 27

ix

3.4.1. Define stakeholders concerns based on architectural viewpoint 28

3.4.1.1. Select viewpoint from a given catalog .. 28

3.4.1.2. Categorize stakeholder’s concerns related to selected viewpoint . 30

3.4.2. Elicit specific stakeholder concern ... 32

3.4.3. Extract related requirement information based on elicited concern 34

3.4.3.1. Extraction of related requirement information 37

3.4.3.1.1. Define Full-Text Index... 37

3.4.3.1.2. Select Full-Text searching mode: .. 38

3.4.3.1.3. Relevance in Full-Text searching: ... 38

3.4.3.2. Traceability among specific concern and its related information . 41

3.4.4. RE for extracting particular architectural information 41

3.4.4.1. RE process for extracting specific source code files 41

3.4.4.2. Representation of the particular architectural information 43

3.4.4.2.1. Mapping extracted code into a component architecture 44

3.4.4.2.2. Visualizing architectural information using ArcheType 44

3.5. Chapter Summary .. 47

CHAPTER IV .. 49

IMPLEMENTATION OF RE METHODOLOGY TO CASE STUDY 49

4.1. Introduction ... 49

4.2. Selecting Software System for a Case Study 49

4.3. Applying RE Methodology Phases to the Case Study 51

4.3.1. Define a set of stakeholders concerns .. 51

4.3.2. Elicit a specific stakeholders concern: ... 52

x

4.3.3. Extract requirements information based on elicited concern 52

4.3.4. Extracting architectural information .. 54

4.3.4.1. Extracting specific source code files ... 54

4.3.4.2. Representation and Visualization of architectural information 56

4.4. The Main Results and Discussion ... 60

4.5. Chapter Summary .. 62

CONCLUSION AND FUTURE WORK .. 63

APPENDICES ... 66

APPENDIX A .. 66

APPENDIX B .. 71

APPENDIX C .. 73

APPENDIX D .. 75

REFERENCES .. 76

xi

LIST OF TABLES

Table 2.1 Examples of some methodologies and approaches for documenting

software architecture

18

Table 2.2 Summarization of important related approaches and methodologies 21

Table 3.1 Functional Viewpoint Catalog 30

Table 3.2 Functional viewpoint: Stakeholders and Concerns 31

Table 3.3 Summary of Phase(1) of RE Methodology 32

Table 3.4 The application archetypes summary from MICROSOFT

Architecture guide

45

Table 4.1 TMS source code overview 51

xii

LIST OF FIGURES

Figure 2.1 RE thorough Complementary Software View 10

Figure 2.2 MoDisco Framework’s Architecture 12

Figure 2.3 Triple View Model Framework 13

Figure 3.1 Overview of RE Methodology 25

Figure 3.2 IEEE1471 Conceptual Framework 26

Figure 3.3 The RE Methodology’s Phases 27

Figure 3.4 The Viewpoints Catalog 29

Figure 3.5 The Phase(2) of RE Methodology 32

Figure 3.6 Elicitation specific stakeholder’s concern(s) 33

Figure 3.7 The Phase(3) of RE Methodology 34

Figure 3.8 Example of the Requirement repository information 35

Figure 3.9 Tracing Specific Concern to its Related Requirement Information 36

Figure 3.10 Calculation formula for the weight in MySQL Database 39

Figure 3.11 The Phase(4) of RE Methodology 41

Figure 3.12 The Code Analyzer Process 42

Figure 3.13 Example of Mapping Code’s Element into Component 44

xiii

LIST OF FIGURES

Figure 3.14 Example of Visualizing Architectural Information using Layered

Architecture Model

47

Figure 4.1 An overview of the main contents of TMS system 50

Figure 4.2 Elicit a specific stakeholder functional concern 52

Figure 4.3 Extraction of related Requirements Information 53

Figure 4.4 Traceability among specific concerns and related Requirement

Information

54

Figure 4.5 Applying Code Analyzer Process 55

Figure 4.6 Extracted Call Graph for executing “TMS_Req2.20” functionality 55

Figure 4.7 Mapping extracted code elements into Components Architecture 56

Figure 4.8 Visualizing particular architectural information using Layered

Architecture Model

58

Figure 4.9 Representation of particular Architectural Information based on

stakeholder’s Functional Concern

 59

Figure 4.10 Example of the main components that implement the core

functionality

60

Figure 4.11 Example of how to determine and decide a new feature for a

target system

61

xiv

LIST OF ABBREVIATIONS

RE Reveres Engineering

RQs Research Questions

ROs Research Goals

MDRE Model Driven Reverse Engineering

ADDs Architectural Design Decisions

UML Unified Modeling Language

SBSE Search Based Software Engineering

TVM Triple View Model

EA tool Enterprise Architect tool

ATM Automatic Teller Machine

TMS Timetable Management System

GUI Graphical User Interface

CID Functional Concern ID

PML Process Modelling Language

FR Functional Requirement

IEEE Std1471-2000

Institute of Electrical and Electronics Engineers Standard

1471-2000 (also known as Conceptual framework for

architectural description)

MySQL Database

MySQL is one of the most popular open-source database

systems. It based on a universal language known as SQL

(Structured Query Language) which has been developed

and accepted as the definitive model for relational

database management systems (RDBMS).

PHP

Personal Home Page is an open source technology that is

supported by large community of users and developers

and becoming one of the most popular server side

scripting language for creating dynamic web pages.

xv

LIST OF PUPLICATIONS

 Hind Alamin M. and Hany. H Ammar, "Reverse Engineering for Documenting

Software Architectures, a Literature Review", International Journal of Computer

Applications Technology and Research, vol. 3(2014), no.12, pp. 785 - 790,

Dec 2014, ISSN: 2319-8656 (Online).

 Hind Alamin M. and Hany. H Ammar, "Concerns-Based Reverse Engineering

for Partial Software Architecture Visualization", International Journal on

Informatics Visualization, vol. 4(2020), no.2, pp. 58 - 68, Apr 2020,

ISSN: 2549-9610 (Online).

xvi

LIST OF APPENDICES

APPENDIX A The Execution of GUI Prototype Tool 67

APPENDIX B Timetable Management System (TMS): The detailed
description of the Privileges of System's Users

72

APPENDIX C Viewpoint Catalog (Rozanski & Woods, 2011) 74

APPENDIX D Certification of Publication 76

1

CHAPTER I

INTRODUCTION

1.1. Introduction

The use of reverse engineering (RE) is increasingly spreading and becoming one

of the essential engineering trends for software evolution and maintenance.

Generally; RE is defined as the way of analyzing an existing software system to

identify its current components and the dependencies between these components to

recover design information, and create new forms of system representations

(Chikofsky & James, 1990) (Rosenberg & Lawrence, 1996) (Penta & Massimiliano,

2008) (Garg & Jindal, 2009).

 Furthermore; software architecture is defined by the recommended practice of

(ANSI/IEEE Std1471-2000) as the fundamental organization of a system, embodied

in its components, their relationships to each other and the environment, and the

principles governing its design and evolution. Therefore, software architecture

focuses on how the major elements and components within software application are

used by or interact with other elements and components (Institute of Electrical and

Electronics Engineers, 2000) (R.Hilliard, D. Emery, M. Maier, 2007).

The core of RE consists of extracting information from the available software

artifacts (such as: source code) and representing it into visual models to be

understandable by stakeholders (Harman, et al., 2013). The main objectives of RE

are focused on generating alternative views of system's architecture, recapture

design information, re-documentation of software system, facilitate software

system’s reuse, and represent software systems at higher level of abstractions (by

putting the system’s users in the maintenance loop so that users can give feedback

on the information related to the target system) (Garg & Jindal, 2009).

2

The software documentation is essential for the system’s stakeholders (such as:

developers, end-users, testers, maintainers, architects, system administrators) to

decide on activities in order to evolve and maintain the software system. For

example source code is considered as the detailed documentation for the software

system implementation, and in most cases, it is the only source of information that

up to date and available for legacy software systems (Rosenberg & Lawrence, 1996)

(Garg & Jindal, 2009).

Recovering and documenting software architectures (either fully or partially) has

been an area of active research where programmers, architects, maintainers, testers

and software engineers spend a lot of time using their expertise in resolving such

problems of mapping existing source code of a target system into architecture

components and for supporting the understand-ability and maintainability of

software systems.

1.2. Problem Statement

The RE is used to support recapturing the design information for restructuring

the architecture into more maintainable architecture. Hence, most of the companies

rely on reengineering the legacy systems which are important for their business

process and keep them in operations (Rosenberg & Lawrence, 1996) (Harman, et

al., 2013).

The major problem stakeholders might face in understanding the architecture of

existing software systems is that the knowledge of software architecture information

is difficult to obtain because of the size of the system, and the existing architecture

document often missing or does not match the current implementation of the source

code of software system. Therefore, much more efforts and time are needed from

multiple stakeholders such as developers, maintainers and architects for obtaining

and re-documenting and visualizing the architecture of a target system from its

source code files. Hence, most of the current work is mainly focused on the

developer viewpoint.

3

Previous research made great progress to overcome the problems of

documenting and recovering software architectures to reflect the system’s changes

at the code level. However to deal with complex legacy systems, there is a

significant need to develop new RE approaches or methods for documenting the

partial architecture of the target system in order to simplify and visualize the

available information of complex architectures.

Additionally, these approaches should be based on stakeholders concerns and

their decisions about the architecture of the target system. Hence, it's important to

determine what to look for and focus in obtaining specific information on the

architecture of the implemented software system.

1.3. Research Questions

The following are the research questions (RQs) of this research:

 RQ(1): Which Industry standard that will be used for visualizing the

architectural Information of software system?

 RQ(2): How this standard could be used to develop RE Methodology for

architecture description?

 RQ(3): How to visualize particular architectural information, so it can

support such a stakeholder’s concern for end-user and maintainer?

1.4. Research Hypotheses

The hypothesis behind the proposed methodology of this research concerns with

the possibility to represent a flexible reverse engineering methodology for obtaining

and re-documenting the architecture of a target system from its source code files.

The methodology will focus on extracting and visualizing the architectural

information for multiple stakeholders and viewpoints based on applying the RE

process on specific parts of the implemented source code of the target software.

Accordingly, the extraction and visualization of information documenting the partial

of the architecture in order to simplify and visualize the available information of

4

complex architectures. As the result, this visual architecture information will

support the understand-ability and the maintainability process for particular parts of

the software system.

1.5. Research Objectives

The general goal is mainly to design an RE methodology for extracting a

particular architectural information based on applying the RE process on existing

source code of a target system. Additionally; the other specific objectives are

highlighted as follows:

 Investigate the current state of existing work related to the reverse

engineering methodologies and the documenting approaches for software's

architecture.

 Develop a methodology based on the industry standard of architecture

description to visualize the architectural information.

 Implement and validate a methodology’ phases in a case study of a legacy

system.

1.6. Research Scope

This research will propose a methodology that focuses on using the RE approach

on source code for visualizing and re-documenting the architecture of software.

Besides that adapting of the extraction of the architectural information on specific

stakeholders' concerns about the target system. The proposed methodology will be

based on the industry standard of architecture description to visualize the

architectural information, and validate by applying the proposed methodology’s

phases using a case study of a legacy web application system. The reason for

choosing these types of applications is that it became well known and most of

existing applications were developed based on them.

5

1.7. Research methodology

This research starts to investigate the existing work related to the reverse

engineering methodologies and approaches and the documenting approaches for

software's architecture; then present a survey to determine the gaps and the

suggested challenges that will need to focus on as a research area.

Based on the results of a survey, propose RE methodology as an alternative solution

for extracting and visualizing the architectural information of the target system from

its source code files. The proposed RE methodology will base on the conceptual

framework in IEEE1471-2000 standard for the architectural description; also known

as the conceptual framework for architectural description (Institute of Electrical and

Electronics Engineers, 2000).

Generally; the extraction process of the proposed methodology will be totally driven

by addressing specific stakeholder’s concern about the target system for extracting a

particular architectural information. Furthermore; the proposed methodology will

extend additional stakeholders beside the developer viewpoints to supports the

understandability and maintainability of legacy software systems. Finally, validate

the main phases of proposed methodology using a case study in a legacy software

system.

1.8. Research Contributions

The main contributions of this research can be summarized as follows:

 A new methodology that supports the IEEE1471 standard for architectural

description and, supports the concerns of stakeholder including End-user

and Maintainer.

 Prototype tool to support the main phases of methodology.

 Verification of the methodology using a legacy web application system,

(called Timetables Management System).

6

1.9. Thesis Organization

The rest of this thesis is organized as the following chapters: Chapter II explains

the main concepts of the revere engineering and the software architecture definition,

and outlines the main objectives of RE, investigates some of the related works on

the reverse engineering from different perspective and highlights the summarization

of important related work. Chapter III presents an overview of the proposed

methodology (RE Methodology); discusses the principles of the proposed

methodology, and describes the detailed design of the main phases of the

methodology. Chapter IV describes how to apply the proposed RE methodology’s

phases to a practical case study, and discusses the main results from applying the

methodology’s phases to a practical case study. Chapter VI concludes with the main

contributions and highlights the future research based on the methodology

verification results. Finally, the end of thesis presents the references and the

appendices.

7

CHAPTER II

BACKGROUND AND RELATEDWORK

2.1. Introduction

This chapter describes an overview of the revere engineering definitions,

software architecture definition, and outlines the main objectives of RE. The

following section presents a literature review of common existing research on the

reverse engineering from different perspectives that form the current state of the art

in documenting software architectures. Finally; the last section highlights the new

research areas as open issues for future works, and concludes with summarizing the

main contributions and the future research.

2.2. Reverse Engineering Definitions

The reverse engineering (RE) has become one of the major engineering trends for

software evolution. RE is defines as the process of analyzing an existing system to

determine its current components and the relationship between them. This process

extracts and creates the design information and new forms of system representations

at a higher level of abstraction (Garg & Jindal, 2009).

According to the main RE concepts; some of the researches classified RE into two

types: hardware and software reverse engineering. Hardware reverse engineering is

based on expertise and concerns with taking a part of the device to show how it

works, with respected to the copyright and trade secrets with the original design.

While software reverse engineering concerns with studying how the program

performs its operations, investigate and correct errors or limitations. Furthermore,

software reverse engineering allows the retrieving and generating the source code of

program in case the code is lost or for recapturing the design information of a target

system (Garg & Jindal, 2009; Rosenberg & Lawrence, 1996).

Garg et al. categorized the software engineering into forward engineering and

reverse engineering; and both of these types are essential in the software

8

development life cycle. The forward engineering refers to the traditional process for

developing software which includes: gathering requirements, designing and coding

process till reach the testing phase to ensure that the developed software satisfied the

required needs. While reverse engineering defined as the way of analyzing an

existing system (without changing its overall functionality) to identify its current

components and the dependencies between these components to recover the design

information, and other forms of system representations (Garg & Jindal, 2009).

However, some of the researches suggested integrating the reverse and forward

engineering processes for large systems to achieve long term evolution and increase

the productivity of these systems as discussed in (Chikofsky & James, 1990; Penta

& Massimiliano, 2008; Rosenberg & Lawrence, 1996).

Legacy systems are old existing systems which are important for business process.

Companies rely on these legacy systems and keep them in operations. Therefore,

reverse engineering is used to support the software engineers in the process of

analyzing and recapturing the design information of complex and legacy systems

during the maintenance phase (Rosenberg & Lawrence, 1996; Harman, et al., 2013).

2.3. Software Architecture Definition

Software architecture is defined by the recommended practice (ANSI/IEEE

Std1471-2000) as: the fundamental organization of a system, embodied in its

components, their relationships to each other and the environment, and the

principles governing its design and evolution (Institute of Electrical and Electronics

Engineers, 2000; R.Hilliard et al., 2007).

The recovering and documenting software architectures (either fully or partially) has

been an area of active research where programmers, architects, maintainers, testers

and software engineers spend a lot of time using their expertise in resolving such

problems of mapping existing source code of a target system into architecture

components and for supporting the understand-ability and maintainability of

software systems.

9

Furthermore; previous research such as (Chikofsky & James, 1990; Garg & Jindal,

2009; Harman, et al., 2013; Kumar, 2013) made great progress to overcome the

problems of documenting and recovering software architectures to reflect the

system’s changes at the code level. However to deal with complex legacy systems,

there is a significant need to develop a new RE approaches or methods for

documenting the only part of the architecture in order to simplify and visualize the

available information of complex architectures. This should be based on

stakeholders concerns and their decisions about the architecture of the target system.

Hence, it's important to determine what to look for and focus in obtaining specific

information on the architecture of the implemented software system.

The main objectives of RE are focused on generating alternative views of system's

architecture, recapture design information, re-documentation of software system,

facilitate software system’s reuse, and represent software systems at higher level of

abstractions (by putting the system’s users in the maintenance loop so that users can

give feedback on the information related the target system). Furthermore; RE is used

to support recapturing the design information for restructuring the architecture into

more maintainable architecture (Chikofsky & James, 1990; Garg & Jindal, 2009;

Harman, et al., 2013).

The following sections of this chapter present a literature review of the common

existing researches on reverse engineering from different perspectives, and

highlights the new research areas as open issues for future works. Finally, the last

section concludes with summarizing the main contribution and the future research.

2.4. Literature Review

Program understanding plays a vital role in most of software engineering tasks.

In fact; the developers use the software documentation to understand the structure

and behavior of existing systems (Harman et al., 2014; Kumar, 2013). However, the

main problem that developers face is that the design document or others software

artifacts were out-of-date to reflect the system's changes. As a result, more effort

and time needed for understanding the software rather that modifying it.

10

The following sub sections will introduce the most common reverse engineering

approaches that focused in documenting the architecture of software from different

perspectives.

2.4.1. Reverse Engineering for Understanding Software Artifacts

The developers should understand the source code based on the static

information and dynamic information as described in (Kumar, 2013). The static

information explained the structural characteristic of the system. While dynamic

information explained the dynamic characteristics or behaviors of the system.

Hence, these details help the developers on understanding the source code in

order to maintain or evaluate the system. However, Kumar clarified that few

reverse engineering tools supported both of dynamic and static information.

Therefore, presented alternative methodology to extract the static and dynamic

information from existing source code.

This methodology focused on using one of the RE tools; namely, Enterprise

Architect (EA) to extract the static and dynamic views. Additionally, all of the

extracted information was represented in form of Unified Modeling Language

(UML) models. The main purpose was to get the complementary views of

software in form of state diagrams and communication diagrams. The stages of

this methodology are summarized and shown in Figure 2.1.

Figure 2.1 RE thorough Complementary Software Views (Kumar, 2013)

11

The Kumar’s proposed methodology was very useful for supporting developers

to understand the software artifacts of existing software systems. However, the

methodology needs to support additional stakeholder beside the developers in

order to identify the stakeholders' concerns and their decisions about the whole

system.

2.4.2. Model Driven Reverse Engineering (MDRE)

MDRE was proposed as described in (Hugo, et al., 2014) to improve the

traditional reverse engineering activities and legacy technologies. It is used to

describe the representation of derived models from legacy systems to understand

their contents. However, most of MDRE solutions focused on addressing several

types of legacy system scenarios, but these solutions are not complete and they

do not cover the full range of legacy systems. The work also introduced several

reverse engineering processes such as: the technical/functional migration,

processes of MDRE (Hugo, et al., 2014).

Recently, Hugo et al. presented a generic and extensible MDRE framework

called "MoDisco". This framework is applicable to different refactoring and re-

documentation techniques (Hugo, et al., 2014).

The architecture of MoDisco is represented in three layers, each layer is

comprised of one or more components (see Figure 2.2). The components of each

layers provided high adaptability because they are based on the nature of legacy

system technologies and the scenario based on reverse engineering.

However, MoDisco framework was limited to traditional technologies such as:

JAVA, JEE (including JSP) and XML. This framework needs to be extended to

support additional technologies and to add more advanced components to

improve the system comprehension, and expose the key architecture design

decisions.

12

Figure 2.2 MoDisco Framework’s Architecture (Hugo, et al., 2014, p.9)

2.4.3. Documenting of Architectural Design Decisions (ADDs)

Historically, Shaw and Garlan introduced the concepts of software architecture

and defined the system in terms of computational components and interactions

between these components as indicated in (Nicholas, 2005). Furthermore, Perry

and Wolf defined software architecture in terms of elements, their properties,

and the relationships among these elements. They suggested that the software

architecture description is the consequence of early design decisions as indicated

in (Nicholas, 2005).

The software architecture development is based on a set of architectural design

decisions (ADDs). This is considered as one of the important factors in

achieving the functional and non-functional requirements of the system as

introduced in (Che, 2013). Che explained that the process of capturing and

representing ADDs is very useful for organizing the architecture knowledge and

reducing the possibility of missing this knowledge (Che, 2013).

Furthermore, the previous research focused on developing tools and approaches

for capturing, representing and sharing of the ADDs. However, Che clarified

that most of the previous research proposed different methods for documenting

13

ADDs, and these methods rarely support architecture evaluation and knowledge

evaluation in practice (Che, 2013).

Furthermore, (Che & Dewayne, 2011) presented an alternative approach for

documenting and evaluating ADDs. This approach proposed solutions described

in the following subsections:

 Collecting of Architectural Design Decisions

 Scenario-Based Documentation and Evaluation Method

 UML Metamodel

2.4.3.1. Collecting of Architectural Design Decisions

The first solution focused on creating a general architectural framework for

documenting ADDs called the Triple View Model (TVM). The framework

includes three different views for describing the notation of ADDs as shown

in Figure 2.3. It also covers the features of the architecture development

process.

Figure 2.3 Triple View Model Framework (Che, 2013, p.1374)

As it shown in Figure 2.3; the Element View describes the elements that

should be defined to develop the architecture; such as: computation elements,

data elements, and connector elements. The Constraint View explains how

the elements interact with each other by defining what the system should do

14

and not to do, the constraint(s) on each element of the element view.

Additionally, define the constraints on the interaction and configuration

among the elements.

Finally, the Intent View includes the rationale decision that made after

analyzing all the available decisions, Moreover, the selection of styles and

patterns for the architecture and the design of the system (Che, 2013).

2.4.3.2. Scenario-Based Documentation and Evaluation Method

The second solution called SceMethod is based on the TVM framework. The

main purpose is to apply the TVM framework by specifying its views

through the end-user scenarios; then manage the documentation and the

evaluation needs for ADDs as discussed in (Che & Dewayne, 2012; Che,

2013).

2.4.3.3. UML Metamodel

The third solution is focused on developing the UML Metamodel for the

TVM framework. The main purpose was to make each view of TVM

specified by classes and a set of attributes for describing ADD information.

Accordingly, this solution provided the following features as discussed in

(Che, 2013): a) establish traceable evaluation of ADDs, b) apply the

evaluation related to the specified attributes, c) support multiple ways on

documenting during the architecture process and allow explicit evaluation

knowledge of ADDs.

Furthermore, TVM and SceMethod solution was validated in using a case

study to ensure the applicability and the effectiveness. Supporting the ADD

documentation and evaluation in geographically separated software

development (GSD) is currently work in progress as mentioned and stated in

(Che, 2013).

15

2.4.4. Comparison of Existing Architectural Design Decisions Models

Researchers made a great of effort to present related tools and models for

capturing, managing, and sharing the ADDs. These proposed models were based

on the concept of architectural knowledge to promote the interaction between the

stakeholders and improve the architecture of the system as mentioned in

(Shahin, et al., 2009; Che, 2013).

Accordingly (Shahin, et al., 2009) presented a comparison study that is based on

surveying and comparing the existing architectural design decisions models.

Their comparison included nine ADD models and used six criteria based on

desired features as discussed in (Shahin, et al., 2009). The main reason was to

investigate the ADD models to decide if there are similarities and differences in

capturing the ADDs. Moreover, the study aimed at finding the desired features

that were missed according to the architecture needs.

The authors in (Shahin, et al., 2009) classified the ADD elements into two

categories: major elements and minor elements. The major elements refer to the

consensus on capturing and documenting ADDs based on the constraints,

rationale, and alternative decisions. While the minor elements refer to the

elements that used without consensus on capturing and documenting the ADDs,

such as: stakeholders, problem, group, status, dependency, artifacts, and

phase/iteration.

The main observations of this comparison study in (Shahin, et al., 2009) are

highlighted as the following points: 1) all of the selected ADD models included

the major elements and used different terms to express similar concepts of the

architecture design; 2) most of ADD models used different minor elements for

capturing and documenting ADDs; 3) all the selected ADD models deal with the

architecture design as a decision making process; 4) While not all of them are

supported by tools, some were based on only textual templates for capturing and

documenting ADDs; 5)The main important observation was that most of

existing ADD tools do not provide support for ADD personalization which

16

refers to the ability of stakeholders to communicate with the stored knowledge

of ADD in (Shahin, et al., 2009) that based on their own profile.

2.5. Comparison with Related Work

The core of RE consists of extracting information from the available software

artifacts such as source code and translating it into abstract representations to be

understandable by the stakeholders (Chikofsky & James, 1990; Rosenberg &

Lawrence, 1996; Harman, et al., 2013).

Accordingly; (Stringfellow et al., 2006) discussed that reverse architecting is a

specific type of reverse engineering, and stated that the RE process should consist of

three phases starting with an extraction phase where we extract information from the

source code and document it in documentation, and documented system history. The

process also include an abstraction phase which abstracts the extracted information

based on the objectives of RE activity, then elicits the extracted information into a

manageable amount of information. And finally a presentation phase that represents

the abstracted data in a way suitable for the stakeholders.

Software architecture consists of the description of components and their

relationships and interactions, both statically and behaviorally as described in

(Clements, et al., 2010; Riva & Yang, 2002; Stringfellow, et al., 2006; Che, 2013).

Chikofsky et al. discussed that the RE process helps to generate the documentation

to recover the design information of the system by analyzing the software to identify

the components and the interrelationships between these components, and to create

a representations of the software system (Chikofsky & James, 1990).

Previous research made great strides to overcome the problem of documenting and

recovering the software architecture to reflect the system’s changes. Therefore,

several approaches, methods, frameworks and RE methodologies have been

proposed form different perspectives such as the following works (Harman, et al.,

2013; Clements, et al., 2010; Riva & Yang, 2002; Stringfellow, et al., 2006; Len

Bass & Celements, 2003; Lau & Tran, 2012; Panas , et al., n.d.; Razavizadeh , et al.,

17

2009; Demeyer, et al., 2008; Arshad & Lau , 2017). The most important of these

proposed approaches were based on the concept of architectural knowledge as

discussed in (Che, 2013; Shahin, et al., 2009). They promote the interactions

between the stakeholders to improve the architecture of the software system.

Moreover; some of the recent approaches and techniques considered the perspective

of getting the executable architecture from existing source code of software system

as in (Lau & Tran, 2012; Maras, et al., 2009; Arshad & Lau , 2017). These

techniques considered every line of code for extracting the architecture of a target

system. However, these extracted architecture were reflected every functionality

exists in the original source code. For example; Arshad et al. proposed a RE model

called (X-MAN) for extracting executable architecture in form of component model

based on object oriented source code (Arshad & Lau , 2017).

The executable architecture contains structural and behavioral aspects of software

system in analyzed manner, and the extracted components can be used to support

the re-usability of component and integrated them with other systems as described

in (Lau & Tran, 2012; Arshad & Lau , 2017).

 For further information; we presented a survey paper indicated in (Alamin &

Ammar, 2014). This survey paper reflects the current state of art in documenting

and recovering software architectures using RE techniques. We highlighted and

compared set of existing RE methods and approaches based on their findings and

limitations (for more information see Table 2.1). However, the main observation

indicates that most of these existing methods and approaches are mainly focused on

the developer viewpoint as the main stakeholder; and based to reflect the whole

architecture of software system(see Table 2.2 the summarization of important

approaches and methodologies).

Furthermore, the recent approaches and methods discussed the need for alternative

solutions to extend additional stakeholders. The solutions should focus to

communicate with the stored architectural information by applying the scenario

based documentation through stakeholders’ scenarios and managing the

18

architecture’s documentation of software system. However; these issues should

simplify and classify the architectural information based on identifying

stakeholders’ concerns and viewpoints about the target system, and visualize the

architectural information in a proper level of abstractions based on these

stakeholders’ concerns.

 Table 2.1 Examples of some related methodologies and approaches for documenting
software architecture adapted from (Alamin &Ammar, 2014, p.788)

(y
ea

r)

Problem
Statement Proposed Solution(s) Results and

Findings Limitation(s)

K
u

m
ar

 (
20

13
)

RE method for
understanding
the software
artifacts

Alternative methodology
to extract the static and
dynamic information
from the source code.

The main purpose is to
get complementary views
of software systems.

Supports the
developers to
achieve RE
goals in order
to understand
the artifacts of
software
systems.

This methodology needs
to support additional
stakeholder beside the
developers in order to
identify the stakeholders'
concerns and their
decisions about the whole
system.

H
u

go
 e

t
al

. (
20

14
)

Understanding
the contents of
the legacy
systems using
model driven
reverse
engineering
(MDRE)

Generic and extensible
MDRE framework called
"MoDisco".

This framework is
applicable to different
types of legacy systems.

MoDisco
provided high
adaptability
because it is
based on the
nature of
legacy system
technologies
and scenario(s)
based on RE.

MoDisco should extend to
support additional
technologies and include
more advanced
components to improve
system comprehension.

C
he

 e
t

al
. (

20
11

)

Collecting
architectural
design
decisions
(ADDs)

Triple View Model
(TVM) an architecture
framework for
documenting ADDs.

TVM framework
includes three
different views
for describing
the notation of
ADDs.

TVM covers the
main features of
the architecture
process.

TVM framework should
extend to manage the
evaluation and
documentation of ADDs
by specifying its views
through the stakeholders'
scenarios.

19

Table 2.1 Examples of some related methodologies and approaches for documenting
software architecture adapted from (Alamin &Ammar, 2014, p.788)

(y
ea

r)

Problem
Statement Proposed Solution(s) Results and

Findings Limitation(s)
C

he
 e

t
al

.(
20

12
)

Managing the
documentation
and evolution
of the
architectural
design
decisions

Scenario based method
(SceMethod) for
documenting and
evaluating ADDs.

This solution is based on
TVM. The main purpose
is to apply TVM for
specifying its views
through end-user
scenario(s).

Manage
documentation
and the
evaluation needs
for ADDs
through
stakeholders'
scenario(s).

There is a need to support
multiple ways on
managing and
documenting the ADDs
during the architecture
process.

C
he

 (
20

13
)

Documenting
and evolving
the
architectural
design
decisions

Developed UML
Metamodel for the TVM
framework.

The main purpose was to
make each view of TVM
specified by classes and a
set of attributes for
describing ADDs
information.

Apply the
evaluation
related to the
specified
attributes and
establish
traceable
evaluation of
ADDs.

Allow explicit
evaluation
knowledge of
ADDs.

Support multiple
ways for
documenting
ADDs during
the architecture
process.

This solution is focused
on the developers view
point and their work is
currently in progress to
support the ADD
documentation and
evaluation in
geographically separated
software development.

20

Table 2.1 Examples of some related methodologies and approaches for documenting
software architecture adapted from (Alamin &Ammar, 2014, p.788)

ye
ar

Problem

Statement Proposed Solution(s) Results and
Findings Limitation(s)

S
ha

h
in

 e
t

al
. (

20
09

) A survey of
architectural
design
decision
models and
tools

The purpose of this
survey was to investigate
ADD models to decide if
there are any similar
concepts or differences
on capturing ADD.

The survey classified
ADD concept into two
categories: Major
elements refer to the
consensus on capturing
and documenting ADD
based on the constraint,
rationale and alternative
of decision. While the
Minor elements refer to
the elements that used
without consensus on
capturing and
documenting ADD.

Moreover, to clarify the
desired features that are
missed according to the
architecture needs

- All selected
ADD models
include the
major elements.

- Most of ADD
models are
based on using
different minor
elements for
capturing and
documenting the
ADD.

- All selected
ADD models
deal with the
architecture
design as the
decision making
process.

- Not all models
were supported
by tools. Hence,
some of these
ADD based on
text template for
capturing and
documenting
ADDs.

However, most
of existing ADD
tools do not
support the
ability of
stakeholders to
communicate
with the stored
knowledge of
ADD.

There is a need to focus
on stakeholder to
communicate with the
stored knowledge of
ADDs. This could be
achieved by applying
the scenario based
documentation and
evaluation methods
through stakeholders'
scenario(s) to manage
the documentation and
the evaluation needs for
ADDs.

21

Table 2.2 Summarization of important related approaches and methodologies adapted
from (Alamin &Ammar, 2020, p.67)

Author
(year)

General Description

Documenting
Architecture

Whole/
Particular

Addressing
stakeholder

concern

Organizing Extracted
information

M
ar

as
 e

t
al

.
 (

20
09

)

PHPModeler tool for
legacy PHP Web
applications

Whole
Architecture

developer
concern

Static UML diagrams
(such as: dependency
models for
representing resources
of the current page, its
functions and
dependencies).

R
az

av
iz

ad
eh

 e
t

al
.

(2
00

9)

Framework for
extracting the
architectural views
from object-oriented
source code.

Whole
Architecture

developer
concern

Conceptual model for
representing the
architectures’
viewpoints.

C
he

 e
t

al
.

(2
01

1)

An approach for
collecting the
architectural design
decisions (ADDs)

Whole
Architecture

developer
and
Architect
concern

Using triple view
model framework
(TVM) which includes
three different views
for describing the
notation of ADDs.

C
he

 e
t

al
.

(2
01

2)

An approach for
managing the
documentation and
evolution of
architectural design
decisions

Whole
Architecture

developer
and
architect
concern

TVM framework for
specifying its views
through the end-user
scenario(s).

22

Table 2.2 Summarization of important related approaches and methodologies adapted
from (Alamin &Ammar, 2020, p.67)

2.6. OPEN ISSUES

This section describes the open issues that require further research based on the

research work, these issues are described in our survey paper (Alamin & Ammar,

2014) as follows:

Author
(year)

General Description

Documenting
Architecture

Whole/
Particular

Addressing
stakeholder

concern

Organizing Extracted
information

K
u

m
ar

(2

01
3)

RE methodology for
understanding
software artifacts.

Whole
Architecture

developer
concern

UML models such as
(state diagram and
communication
diagram).

H
u

go
 e

t
al

.
(2

01
4)

Framework for
understanding the
contents of legacy
systems using model
driven RE.

Whole
Architecture

developer
concern

By three layers and the
components of each
layer are based on the
nature of legacy
system technologies.

A
rs

ha
d

et
 a

l.
(2

01
7)

RE model for
extracting the
architecture of
object oriented
source code.

Whole/
Particular
Architecture

Developer
concern

Component model for
representing the
architecture.

St
ar

ke
 e

t
al

.
 (

20
17

)

Arc24 Template for
documentation of
software and system
architecture

Whole
Architecture

Developer
and
architect
concern

Textual document
includes several
sections: underlying
business goals,
essential features and
functional
requirements for the
system, quality goals,
the relevant
stakeholders and their
expectations.

23

 There is a significant need to develop alternative approaches of reverse

engineering for documenting the architectures that should simplify and

classify all of the available information based on identifying the stakeholders'

concerns and their decisions about the system.

 Improve the system's comprehension by establishing more advanced

approaches for understanding the software artifacts. These approaches should

help in documenting the architecture at different levels of abstractions and

granularities based on the stakeholders concerns.

 Finally, it’s important to support multiple methods and guidelines on how to

use the general ADDs framework in the architecting process. These methods

should base on the architecture needs, context and challenges in order to

evaluate the ADDs in the architecture development and evolution processes.

2.7. Chapter Summary

This chapter described an overview of the revere engineering definitions, software

architecture definition, and outlines the main objectives of RE process. The second

section presented a literature review of common existing research on reverse

engineering from different perspectives that form the current state of the art in

documenting software architectures. The next section compared the important

related work based on the findings and limitations. Finally; the last section

highlighted several open issues for future work.

24

CHAPTER III

CONCERNS-BASED RE METHODOLOGY FOR EXTRACTING

PARTIAL SOFTWARE ARCHITECTURE

3.1. Introduction

Generally, this chapter represents an overview of the proposed reverse

engineering methodology (RE Methodology); discusses the principles of proposed

methodology, and describes the detailed design of the main phases of the

methodology. The last section of this chapter concludes with a summary that

highlights the main activities of each phase of proposed RE methodology.

3.2. Overview of the Proposed RE Methodology

The main goal of the proposed methodology is to design a reverse a RE

methodology for extracting particular architectural information based on applying

the RE process on implemented source code to support the understand-ability and

maintainability of a target system.

The RE methodology is based on three main concepts in IEEE1471-2000 standard

for architectural description such as (stakeholder, viewpoint and concern). The main

idea is to elicit stakeholders' concern on specific architectural viewpoint of target

system; then apply RE process to extract and document a particular architectural

information about the target software system driven by the elicited concern that held

by one or more stakeholder(s).

The extraction process of RE methodology is driven by addressing the specific

concern by stakeholder(s) for extracting only partial architectural information.

Therefore, it’s doesn’t address the RE of the whole architecture of target software

system.

25

The general overview of RE methodology is shown in Figure 3.1; the inputs are the

source code and documentation as well as the stakeholders concerns regarding the

software system. The output is a model of a particular architectural information

based on the specific concerns.

Figure 3.2 Overview of RE Methodology

3.3. The Principles of RE Methodology

The principles of RE methodology are summarized as:

 RE methodology is based on three concepts defined in the IEEE1471-2000

standard for architectural description (see Figure 3.2). These concepts are

described in (Institute of Electrical and Electronics Engineers 2000, R.Hilliard

et al. 2007, Clements et al. 2010) as:

 Stakeholder is a person, group or entity with an interest in the

realization of the architecture.

 Concern is related to specific functional or non-functional

requirements of the software system is defined as: a concern to a

26

requirement, an objective, an intention, or aspiration which a

stakeholder has for the software system.

 Viewpoint defines the perspective from which the view is taken; and

each viewpoint covers a set of concerns related to one or more

stakeholder(s).

 RE methodology extends additional stakeholders such as: end-user,

maintainer, analyst, architect and tester.

 The RE methodology supports the understand-ability and maintainability of

legacy software systems.

Figure 3.2 IEEE1471 Conceptual Framework. Adapted from (Institute of Electrical
and Electronics Engineers, 2000, p.15)

27

3.4. The Main Phases of RE Methodology

The RE methodology consists of four phases (see Figure 3.3) described as follows:

 Phase(1): Define stakeholders concerns based on the architectural viewpoints.

 Phase(2): Elicit specific stakeholder’s concern.

 Phase(3): Extract related requirement information based on the elicited concern.

 Phase(4): Apply RE process for extracting the particular architectural

information driven by the extracted requirement information.

Figure 3.3 The RE Methodology’s Phases

28

As shown in Figure 3.3; the phases of RE methodology is described using a process

modelling language. The following paragraphs of this chapter elaborate on the

detailed design of each phase of the proposed RE methodology.

3.4.1. Define stakeholders concerns based on architectural viewpoint

This phase is based on the definition of “stakeholders” and “concerns” in

IEEE1471-2000 standard for architectural description. The phase follows the

classification of architectural viewpoints that are presented in literature. The

activities in this phase includes the following two steps:

 Select viewpoint from a given catalog which describes specific

architectural viewpoint for the target software system.

 Categorize common stakeholders related to the selected viewpoint.

3.4.1.1. Select viewpoint from a given catalog

The definitions of stakeholders’ concerns are based on a set of architectural

viewpoints about software system. These viewpoints have been considered

by several researchers form different perspectives (Kruchten 1995), (Riva &

Yang 2002), (Woods 2004), (Nicholas 2005), (Rozanski & Woods, 2005),

(Clements 2005), (Henk & Vliet 2006), (R.Hilliard et al. 2007), (Clements et

al. 2010), (Rozanski & Woods 2011).

The selection step is based on the classification of viewpoints catalog that

were presented by (Rozanski & Woods 2005, 2011). They developed a set of

core viewpoints which are based on extending the well-known “4+1”

standard view model of software architectures (Logical, Process, Physical,

and Development) that was defined by Philippe Kruchten in (Kruchten,

1995).

The viewpoint catalog includes six core viewpoints for information systems

architecture, namely: Functional viewpoint, Information viewpoint,

Concurrency viewpoint, Development viewpoint, Deployment viewpoint,

29

and Operational viewpoint (see Figure 3.4). Each one of these viewpoint

defines a set of concerns related to one or more stakeholder(s).

Figure 3.4 The Viewpoints Catalog (Rozanski & Woods 2005, 2011)

Summarized the viewpoints catalog in Figure 3.4; the first three viewpoints:

Functional viewpoint, Information viewpoint and Concurrency viewpoint

characterize the fundamental organization of the software system. The

development viewpoint exists to support the system’s construction. The

deployment and operational viewpoints characterize the system’s runtime

environment (Rozanski & Woods 2005, 2011). The last three viewpoints

mainly covers the concerns of the developers and maintainers stakeholders.

The RE methodology is focused on the “Functional viewpoint” from the

catalog of (Rozanski & Woods, 2011). The justification for selecting the

“Functional viewpoint” is that it is applicable to all types of software

systems; and reflects the essential architectural information for most of the

stakeholders (such as: maintainer, end-user, developer, system administrator,

tester, acquirer, assessor and communicator).

Furthermore, the functional viewpoint includes a set of general stakeholders’

concerns which reflect and realize the essential and basic architectural

information about the software system. This information include the internal

structure which determines the main elements of software system, the

30

responsibilities of each element and primary interactions between elements,

the functional capabilities that defines what the specific action(s) that system

should take in a given situation, and the functional design philosophy that

reflects how the system will work step by step from the user’s perspective as

represented in Table 3.1.

Table 3.1 Functional Viewpoint Catalog (Rozanski & Woods, 2011)

Functional Viewpoint

Description Describes the system’s runtime functional

elements and their responsibilities, interfaces,

and primary interactions between these elements.

General

Concerns

 Internal structure

 Functional capabilities

 Functional design philosophy

 The external interfaces

Related

Stakeholders

 End-User,

 Maintainer,

 Developer,

 Tester,

 Acquirer,

 System Administrator,

 Assessor,

 Communicator.

3.4.1.2. Categorize stakeholder’s concerns related to selected viewpoint

This step includes the categorization of common stakeholders and their

architectural concerns based on selected viewpoint catalog. The main idea is

to address the following points: who are the stakeholders of target software

system; and which concerns do they have according to the selected

31

viewpoint. Table 3.2 represents the categorization of stakeholder’s and their

architectural concerns based on the selected functional viewpoint catalog as

following:

Table 3.2 Functional Viewpoint: Stakeholders and Concerns adapted from
(Rozanski & Woods, 2011)

To summarize; the Phase(1) includes two key points, the first one is to select

specific architectural viewpoint; and the second one is to categorize common

stakeholders related to the selected functional viewpoint, accordingly the main

output of this phase is the list of the stakeholders’ concerns (see Table 3.3).

32

Table 3.3 Summary of the Phase(1) of RE Methodology

3.4.2. Elicit specific stakeholder concern

This phase is called “Phase(2)” which includes the elicitation process for

specific concern that needed to take and decide where to handle such a concern

from the general architectural concerns that addressed in methodology Phase(1).

Figure 3.5 The Phase(2) of RE Methodology

33

The elicitation process performs by eliciting specific concern of stakeholder

from the functional requirements of a target software system (that addressed in

use case diagram). Accordingly, each elicited concern should be in a form of

question format and has two elements (see Figure 3.6):

 CIDn: refers to concern ID (where n is an integer number), which written

in dotted diamond box.

 Question: refers to elicited concern from the functional scenario of a

target software system, and written in dotted rectangular box.

Figure 3.6 describes the association between the functional requirement (FR)

and elicited concern appears with dotted lines in the use case diagram of the

target system. Moreover, it’s possible to have multiple elicited concerns for one

FR which are numbered as CID1, CID2,…, CIDn.

Figure 3.6 Elicitation Specific Stakeholder’s Concern(s)

34

3.4.3. Extract related requirement information based on elicited concern

In “Phase(3)” which describes how to extract the related requirement

information related to the elicited functional concern produced in Phase(2). The

stakeholder’s functional concern should be focused on the functionality offered

by the target software system, as follow:

Figure 3.7 The Phase(3) of RE Methodology

Therefore, it’s important to note that, this phase assumes that all of system’s

requirements are already existed in a requirement repository. The requirement

repository contains detailed descriptions for all the requirements of software

system as follow:

 RID (Requirement code)

 Description of requirement

 Type of Requirement: either “F > Functional” or ”NF >Non Functional”

 The creation date of requirement in form of (dd-mm-yyyy)

 Status

 Author

 Additional comments

35

Figure 3.8 Example of the Requirement Repository Information

To support the activities of this phase, the development of a prototype tool is

adopted which has a graphical user interface (GUI). The tool allows stakeholders

to enter a specific concern in form of a “query”. The specific concern will be

elicited from the functional requirements repository assumed to be available for

the target software system.

The tool extracts a set of related requirement information based on elicited

concern, and creates a trace link between elicited concern and its relevant

information (see APPENDIX A for more detailed about the execution of GUI

prototype tool). The Figure 3.9 shows screen shots of GUI prototype tool

described as follow:

36

Figure 3.9 Tracing Specific Concern to its Related Requirement Information

The following paragraphs elaborate on the detailed of the main activities of the

Phase(3) as follow:

 Extraction of related requirement information, and

 Traceability among specific concern and its related information.

37

3.4.3.1. Extraction of related requirement information

The extraction process starts by accessing the requirement repository and

filtering all relevant information related the specified concern. Furthermore,

the extraction process is achieved using the Full-Text indexing and searching

mode technique.

Furthermore, the Full-Text indexing and searching technique is supported by

MySQL database since version 3.23.23 and above. It allows to implement

keyword based filtering and sorting; and provides several searches mode

such as (Natural Language, Boolean and Query expansion).

The implementation techniques to adopt the extraction process requires the

following key steps which are adapted and configured from (MySQL 5.7

Reference Manual Document, 2017). The following paragraphs describe the

detailed design of these key steps:

 Define Full-Text Index

 Select Full-Text searching mode

 Relevance in Full-Text searching

3.4.3.1.1. Define Full-Text Index

The definition of Full_Text index is compulsory in the MySQL database

before executing of the Full_Text query. Technically, Full-Text index in

MySQL is an index of type “FULLTEXT”; this index is used with

MyISAM tables, and can be created only for CHAR, VARCHAR, or

TEXT columns.

In case of large data sets in the database, it is much faster to load the

data into a table that has no FULLTEXT index and then create the index

after that, than to load data into a table that has an existing FULLTEXT

index. Accordingly; the FULLTEXT index had been created on the

requirements repository after load the data into the table according the

38

adapted instructions from (MySQL 5.7 Reference Manual Document,

2017, section 12.9.1).

3.4.3.1.2. Select Full-Text searching mode:

The Full-Text searching is performed using the following syntax:

MATCH (col1, col2, …) AGAINST (expr [search_ modifier])

Where

 MATCH: a function takes the name of the column(s) to be

searched.

 AGAINST(expr): this function takes a string to search for. The

search modifier indicates what type of search from the

following options:

o Natural language search: interprets the search for string as

a phrase in natural human language.

o Boolean search: interprets the search for string using the

rules of a special query language. The string contains the

words to search for and additional operators that used to

determine the present or absent of word in matching rows.

o Query expansion search: the search string is used to

perform a natural language search. Then words from the

most relevant rows returned by the search are added to the

search string and the search is done again.

3.4.3.1.3. Relevance in Full-Text searching:

MySQL database uses the ranking with Vector spaces technique for

ordinary Full-Text queries adapted from (MySQL 5.7 Reference Manual

Document, 2017). The relevance (R) is a number that describes how the

match of text is, the basic formula for R which stands for either rank or

relevance as follow: R = w * qf

39

 Where

 w: is the weight, which goes up if the term occurs more often in

a row, and goes down if the term occurs in many rows on a

target table. This is depending on whether the number of

unique words in a row is fewer or more than average.

 qf: is the number of times the term appears in the AGAINST

expression.

Additionally, the term weight(w) is what MySQL stores in the index,

and the calculation of weight is done using the following formula:

Figure 3.10 Calculation formula for weight in MySQL. Adapted
from (MySQL Reference Manual Document 2017, section 10.7)

Generally, the calculation formula in Figure 3.10 has three parts:

 Base part: is the left part of the formula; the idea of base part is

totally depends on two values: the number of times that the

term appears in the document and the summation of all terms

which appear in the document.

40

 Normalization factor: is the middle part, the idea of this factor

is that: if the document is shorter than average length then

weight goes up, if its average length then weight stays the

same, and if it longer than average length then weight goes

down. The constant 0.0115 is a pivot value that uses in MySQL

source code, which known as pivoted unique normalization

factor, and the measure of document length is based on the

unique terms in the document.

 Global multiplier: is the final part and it used to make a better

guess of the probability that a term will be relevant.

According to these mentioned technical key points; the searching techniques

of GUI prototype tool is achieved using the natural language searching

mode which interprets the search for specific functional concern (in form of

user query); then performs filtering process and ranking of the relevant

information related to the specified concern.

The main results from the GUI prototype are displayed in a dropdown menu

and sorted into three categories and each one highlighted with a specific

color as follow:

 High weight: appears in green color and represents highly relevant

requirement information related the specified functional concern,

 Medium weight: appears in yellow color and represents the medium

relevance requirement information related the specified functional

concern,

 Low weight: represents low relevance values of requirement

information, and appears in red color.

41

3.4.3.2. Traceability among specific concern and its related information

The traceability process is performed after the extraction process. The main

idea is to create a trace link among the extracted concerns and its relevant

information using the tool as shown in Figure 3.9.

3.4.4. RE for extracting particular architectural information

The final phase, “Phase(4)” is based on using the extracted requirement

information that produced from the previous phases as shown in Figure 3.11.

This phase includes two key activities as follows:

 RE process for extracting specific source code files,

 Representation of the particular architectural information based on the

extracted code files.

Figure 3.11 The Phase(4) of RE Methodology

3.4.4.1. RE process for extracting specific source code files

The RE process is achieved by applying a code analyzer process which

performs static analysis on source code files to determine and trace which set

of code files are used to implement specific functionality reflected by the

42

extracted requirement information in Phase(3). The code analyzer process

includes three key steps (see Figure 3.12).

Figure 3.12 The Code Analyzer Process

The following paragraphs describe these three key steps (see Figure 3.12):

 Select the starting point for tracking the execution of a specific

functionality represented by extracted requirement information. For

examples: page file, class, method or function from code elements.

Notably, the selection of a starting point can be performed by using

references from existing documents such as the user manual, or the

software testing document.

43

 Track the execution of selected starting code element and analyze the

code extraction contents and gather all related code elements.

 Extract related code elements in form of main code element and its

related elements. The relation between code elements can be

describes as following:

o require relation is used to describe the relations between code

files and show the dependences of these files within the

software system, or

o contain relation is used to describe that code file contains a set

of functions that are used to execute specific functionality of

the system, or

o call relation is used to describe the relation between code

elements and how different functions interact with each other.

As summarized; the whole process of code analyzer is achieved by using a

static analyzer tool called Doxygen tool. The Doxygen tool is used to extract

code structure from the existing source code files, and visualize the relations

between various code elements according the type of source code of target

software system in the form of function call graphs, or dependency graphs, or

inheritance diagrams, or collaboration diagrams, which are all generated

automatically by the tool (Doxygen Reference Manual Document, 2016).

3.4.4.2. Representation of the particular architectural information

The representation process includes two key steps; mapping the extracted

code elements into a component model; and visualizing the architectural

information using architecture styles. The following paragraphs describe the

details of these steps:

44

3.4.4.2.1. Mapping extracted code into a component architecture

This step involves the process of organizing the extracted code elements

into a component model to make an explicit mapping between software

architecture and the code elements of the target system. It is important to

note that this process assumes that the term “component” can be

associated with a code element such as a code file, a webpage file, a

class, a class method, a function, or either as a group of related methods

or functions which are used frequently together in the execution of

specific system’s functionality.

For example, suppose the given code element is a webpage source file

called page_Layout.php, this webpage file can be mapped into a “Page

Layout” component which contains the set of functions or methods that

are used to execute specific system’s functionality as in the following

example shown in Figure 3.12.

Figure 3.13 Example of Mapping Code’s Element into Component

3.4.4.2.2. Visualizing architectural information using ArcheType

The whole purpose of this process is to create a logical model, so that

the architectural information is visualized and represented in the form of

logical component model which helps the stakeholders to gain insight of

the architecture information related to their functional concerns about a

target system.

The visualization process starts by selecting the structure of the

architecture which is mainly based on the application’s type called

45

archetypes. The Microsoft guide for application architecture defines

these archetypes as in Table 3.4.

Table 3.4 Application Archetypes Summary adapted from (MICROSOFT
Architecture Guide, 2009, P.226).

As summarized in Table 3.4; the application archetypes includes the

architecture’s structure for common types of applications such as web

applications, rich client applications, rich internet applications, service

applications and mobile applications. However, beside these archetypes,

46

the Microsoft’s guide also contains details of some specialized

application types such as hosted and cloud services, and office business

applications.

The architecture of each of the archetype application can be defined using

architecture styles. For example, the guide (MICROSOFT® Architecture

guide, 2009) describes a layered architecture style for web applications.

The visualization process is performed using these architectural styles.

This is based, for example, on grouping related components in web

applications as a three-layered architecture which consists of a

presentation layer, business layer and data layer as the shown example in

Figure 3.14. Each layer should include specific components described as

follows:

 Presentation Layer: responsible for managing user interaction

with software system, and generally consists of components that

provide a common bridge into the core business logic that

encapsulated in the business layer.

 Business Layer: which implements the core functionality of

software system, and encapsulates the relevant business logic. It

generally consists of components, some of which may expose

service interfaces that other callers can use.

 Data Access Layer: provides access to data hosted within the

system, and data exposed by other networked systems; perhaps

accessed through services.

To summarize; Phase(4) includes two key steps. The first step deals with

organizing the extracted code elements into a component model to make an

explicit mapping between the system’s architecture and code elements. The

second step deals with using archetypes and architecture styles to visualize the

47

architecture model and give an example of a layered architectural style for web

applications.

Figure 3.14 Example of Visualizing Architectural Information using Layered
Architecture Model

3.5. Chapter Summary

This chapter represented an overview of the proposed RE methodology; then

discussed the principles of proposed methodology and described the detailed design

of the main phases of proposed methodology. To summarize the main activities of

each RE Methodology phase: Phase(1) includes the selection of specific

48

architectural viewpoint and categorize common stakeholders related to the selected

viewpoint, accordingly the main output is the list of the stakeholders’ concerns.

Phase(2) performs the elicitation process for specific concern that needed to take

and decide where to handle such a concern from the general architectural concerns

that addressed in previous phase.

In Phase(3) the development of a GUI prototype tool is adopted. The tool allows

stakeholders to enter a specific concern in form of a “query”. The specific concern

will be elicited from the functional requirements repository assumed to be available

for the target software system. The tool extracts a set of related requirement

information based on elicited concern, and creates a trace link between elicited

concern and its relevant information.

The final phase; Phase(4) involves the organization of the extracted code elements

into a component model and using archetypes and architecture styles to visualize

the architecture model. As a result, the visual model represents the extraction of the

partial architectural information in the form of a logical model. This architectural

information helps stakeholders to answer their architectural concerns about a target

system. The next chapter will describe how to apply the methodology phases to a

practical case study.

49

CHAPTER IV

IMPLEMENTATION OF RE METHODOLOGY TO CASE STUDY

4.1. Introduction

Generally, this chapter describes how to implement the RE methodology phases

using a legacy web application as a practical case study. The first section starts by

giving an overview of the selected software system, and describes the main reasons

for selecting this system. The second section describes the details of applying each

phase of the methodology to the case study. The third section represents main

benefits of the extracted architectural information for stakeholders; and the last

section concludes with the chapter summary.

4.2. Selecting Software System for a Case Study

A practical case study had been implemented in a web application system called

Timetable Management System (TMS). TMS was developed by the Computer

Center at Sudan University of Science and Technology (SUST) in 2008.

TMS is a Web-based open source system which was built for Sudanese Universities

using MySQL database and PHP web page language with Arabic interface; and it

provides high flexible features for managing and controlling the scheduling of

lectures’ times for students at Sudanese universities (adapted from TMS Manual

Document, 2009).

Moreover; TMS is flexible to accept changes that occur in schedules for all colleges

at the university during the academic year without an overlap in specified slot times

between these colleges. The main reports are the extraction timetables and schedules

for students according the academic year, the scheduling timeslots for the lecture

rooms and laboratories per week and the timetable for teachers per semester (see

Appendix B for more details about the privileges of system’s users).

50

The selection of TMS for the following reasons; TMS software is a diverse software

implemented as a combination of both front-end PHP, JavaScript and HTML code

plus a back-end MySQL database. It is an example of an application with multiple

components implemented with different technologies. TMS is considered to be a

legacy system implemented with more than 10 years old technologies (since 2008).

The documentation of TMS’s architecture is missing, and the system documentation

needs to reflect its current architectural representation in order to be reengineered

with new technologies. Recovering the particular architectural information of the

system is essential to support the system’s understand-ability and maintainability.

The following Figure 4.1 represents the general description of the main contents of

TMS.

Figure 4.1 an overview of the main contents of TMS, adapted from (Developer’s
Documentation, 2009)

51

The general description about TMS’s source code contents represented in Table

4.1 as follow:

Table 4.1 TMS Source Code Overview

System Name Timetable Management System(TMS)

Description

The core of source code is mainly PHP
webpage source files (written with PHP
procedural function code style, and its
non-object oriented code style).

PHP Source Files 110

Total LOC 30364

Number of
Functions Code

148

4.3. Applying RE Methodology Phases to the Case Study

The following paragraphs elaborate on the details of applying each phase of RE

methodology:

4.3.1. Define a set of stakeholders concerns

Apply Phase(1) to define a set of stakeholders’ concerns base on the Functional

viewpoint of the TMS system. The primary TMS’s stakeholders are:

 End-User: who defines the system’s functionality and ultimately make

use of it. TMS has three end-users such as (College Admin, Teachers, and

Students).

 Maintainer: who manages the reengineering and improvements of the

TMS system.

52

4.3.2. Elicit a specific stakeholders concern:

The elicitation process is focused on a selecting a particular functional concern

related to a use-case or a major functionality offered by the system to different

type of users. The main idea is to elicit a specific concern such as “CID1” shows

in the Figure 4.2 bellow.

Figure 4.2 Elicit a specific stakeholder functional concern

4.3.3. Extract related requirements information based on elicited concern

TMS has 34 functional requirements; this phase assumes that all of TMS’s

functional requirements are already existed in a “requirement repository” (see

Figure 3.8). The extraction process starts by accessing the requirement

repository and filtering all of relevant information based on the elicited concern.

Then create a trace link between its relevant information. The phase is achieved

by using the tool as described in section 3.4.3.1 and section 3.4.3.2 in the

previous chapter.

53

Using the developed prototype tool and obtain the results shown in Figure 4.3.

The results of the search shows ten requirements information that displayed in

a dropdown menu and sorted by ranking using three following categories as:

 High weight (2) appears in green color,

 Medium weight (7) appears in yellow color, and

 Low weight (1) appears in red color.

Figure 4.3 Extraction of related Requirements Information

Additionally, the creation of a trace link is performed in order to link the elicited

concern with its relevant information produced from the extraction process in

Figure 4.4 as follow:

54

Figure 4.4 Traceability among specific concerns and their related Requirement
Information

4.3.4. Extracting architectural information

This final phase is achieved by applying the RE process at code level to

perform following key steps:

 Extracting specific source code files

 Representation and visualization of architectural information

4.3.4.1. Extracting specific source code files

The code extraction process is performed by using a static code analyzer as

described in section 3.4.4.1. Using the existing TMS source code file, to

determine which set of source code files are used to implement the specific

functionality of the system specified in the previous steps.

Notably, the selection of a starting point for the extraction process is

performed by returning to TMS’s user manual document in order to track the

starting point for “TMS_Req2.20” execution. The main output of this process

is to extract the call graph to obtain and visualize the dependencies between

the function elements which are used to execute specific functionality in the

system as described in Figure 4.5 and Figure 4.6 below.

55

Figure 4.5 Applying Code Analyzer Process

Figure 4.6 Extracted Call Graph for executing “TMS_Req2.20” functionality

56

4.3.4.2. Representation and Visualization of architectural information

This process includes two steps: The first step deals with mapping the

extracted code elements into architectural components. The selected code

elements in Figure 4.7 (for webpages and functions) are mapped into thirteen

components architecture as following:

Figure 4.7 Mapping extracted code elements into Components Architecture

57

The second step is visualizing and representing particular architectural

information using a web application layered architecture style.

The selection of the architecture type is based on Web Application

Archetype which is applicable with the TMS system. The core of the Web

application is the server-side logic which is visualized in a three-layer

architecture.

Figure 4.8 shows the main components in each layer that are used to describe

and represent “TMS_Req2.20” functionality as following:

 Presentation layer includes three components such as (TMS Main

Menu, Reporting Form and Page Layout component). These

components are responsible for managing the End-user interaction

with TMS system.

 Business layer includes nine components which implement the core

functionality of TMS system. The first four components such as

(Preparation of Teacher Report, College Timeslots, Report Detail

component and DeptBackground Theme component). These

Components are concerned with the retrieval, processing,

transformation, and management of TMS’s data; business rules and

policies. The others five components called “business entities” which

encapsulate the business logic and data necessary to present the real

world elements within TMS system, such as (Academic Class Group,

Lecture Room, Teacher, Subject and Department).

 Data access layer consists of the database connection component

which provides access to the data hosted within TMS system.

To summarized Phase(4), the layered architecture model is used to visualize and

represent the extraction of particular architectural information into a graphical model

for stakeholders which helps to answer their architectural concerns about specific

functionality of the TMS system.

58

Figure 4.8 Visualizing particular Architectural Information using Layered Architecture
Model

59

Moreover, the architectural model provides an abstract level of architectural

representation for stakeholders which highlights which set of components are needed to

execute specific functionality of the system. This is shown here as the functionality of

the mechanism for managing the scheduling of Teachers lectures as in Figure 4.9.

Figure 4.9 Representation of particular Architectural Information Based on Stakeholder’s
Functional Concern

60

4.4. The Main Results and Discussion

The extraction of architectural representation is very useful and helps the

stakeholders especially (developer, maintainer, architect and tester) for obtaining the

as built architecture of implemented software system based on its existing source

code, and supporting the understand-ability and maintainability phase for the target

systems.

For example; the architectural representation can be used by the maintainer to

support the understand-ability for particular part of the system; by tracing the related

requirement information through its implemented code elements and highlighted

which components were needed to represent specific functionality of the target

system as described in Figure 4.9.

Furthermore; in case of improving or re-engineering the legacy software system into

new technology such as (object oriented system or cloud based application system);

the architectural representation helps the maintainer to identify which set of

components that implement the core functionality of legacy system, and encapsulate

the relevant business logic, or either to decide how to manage and migrate the

executable components into cloud based environment, as the following example:

Figure 4.10 Example of the main components that implement the core functionality

61

Additionality, the extracted architectural information can be used by the end-

user to support the understand-ability for particular part of the system by providing a

proper level of architectural diagram that highlighted which components are needed

to describe specific functionality. Actually, this is very important point by putting

the end-user in the maintenance loop so that end-user can give feedback on the

information related the target system, or either to determine and decide in case of

re-engineering specific functionality of legacy software system through adding new

features for the target system.

Figure 4.11 Example of how to determine and decide a new feature for a target system

To summarize; the extraction of architectural representation is very useful and

helps the stakeholders for obtaining the as built architecture of implemented

software system based on its existing source code, and supporting the understand-

ability and maintainability phase for these existing or legacy systems. Generally; the

main benefits of this extracted architectural representation summarized as follow:

 Basis for re-documenting the architecture document of legacy software

systems, in case of the document is out of date or the nonexistent of

document;

62

 Determine what to look for and focus in the extracted architectural

information and help in identifying which set of components can be used for

reuse; for example in case of reusing specific components to others software

system.

 Starting point for re-engineering the legacy systems to a new desired

architecture, or managing and upgrading them to a new technology.

4.5. Chapter Summary

This chapter described how to implement the RE methodology phases using a

practical case study. The first section presented an overview of the selected software

system, and described the main reasons for selecting the system. The second section

described the details of applying each phase of the proposed RE methodology to a

case study. The final section highlighted the main benefits of the extracted

architectural information for stakeholders and discussed the main contributions of

applying the proposed RE methodology.

63

CONCLUSION AND FUTURE WORK

The main contributions drawn from this research are: firstly; a new RE

Methodology follows IEEE 1471 standard of architectural description and support

concerns of stakeholder including end-user and maintainer. Secondly; GUI prototype

tool to support the steps of Methodology. It supports the visualization of a particular

part of the target system by providing a visual model of the

architectural representation which highlights the main components needed to execute

specific functionality of the target system. Finally; the verification of the methodology

using legacy web application system.

Further information; the extraction of architectural representation helps stakeholders

especially (maintainer, end-user, architect, tester and developer) for obtaining the as

built architecture from its implemented source code elements, and supporting the

understand-ability and maintainability phase for the target system.

For example; the architectural representation can be used by the maintainer to support

the understand-ability for particular part of the system; by tracing the related

requirement information through its implemented code elements and highlighted which

components were needed to represent specific functionality of the target system as

described in a case study.

Furthermore; in case of improving or re-engineering the legacy software system into

new technology such as (object oriented system or cloud based application system); the

architectural representation helps the maintainer to identify which set of components

that implement the core functionality of legacy system, and encapsulate the relevant

business logic, or either to decide how to manage and migrate the executable

components into cloud based environment.

The extracted architectural information can be used by the end-user to support the

understand-ability for particular part of the system by providing a proper level of

64

architectural diagram that highlighted which components are needed to describe

specific functionality. Actually, this is very important point by putting the end-user in

the maintenance loop so that end-user can give feedback on the information related the

target system, or either to determine and decide in case of re-engineering specific

functionality of legacy software system through adding new features for the target

system.

RECOMMENDATIONS FOR FUTURE WORK

This section presents some recommendations for future work. While many

issues related to this area of research remain to be explore. Therefore, this thesis could

be extended in several directions to cover additional related issues. These issues can be

highlighted as the following key points:

 There is a need to extend the proposed RE methodology to support and apply

additional architectural viewpoints beside the selected “Functional

viewpoint” based on a given classification of viewpoints catalog (such as: the

information viewpoint, the deployment viewpoint, and the operational

viewpoint),

 The development of automated tool is needed to support and include the

whole phases of the proposed RE methodology,

 Furthermore; the proposed RE methodology can be apply in different

application domains beside the legacy software systems such as: the robotics

systems and smart object systems to support the understand-ability and

maintainability process for the particular parts of these systems,

 The proposed RE methodology can be extremely important for iterative

migration of legacy systems. Accordingly; the extraction of architectural

representations from the proposed RE methodology were based on the

layered architecture model. This model is used to visualize and represent the

extraction of particular architectural information into a graphical model to

answer the stakeholder's concerns about specific functionality of the target

65

system. Furthermore; this architectural representation will help stakeholders

such as the maintainer, architect, tester and developer to inspect the

dependencies of the different parts of the architecture obtained from specific

source code segments of the legacy system. This will support the understand-

ability process by identifying which set of components implement the core

functionality of the target legacy system. The visual models also encapsulate

the relevant business logic. This information is needed to manage and

migrate the executable components into the desired cloud based environment

or either into mobile based environment.

 The important concepts of the container technology and the microservices

architecture style show the importance of the proposed RE methodology in

migrating legacy systems architectures to scalable cloud applications

architectures. Accordingly; the layered architecture model from the proposed

RE methodology will support the understand-ability process by identifying

which set of components that implement the core functionality of the target

legacy system can be migrated as microservices in containers. This will help

the stakeholders decide how these components can be factored out as

microservices and allocated to different containers.

66

APPENDICES

APPENDIX A

The Execution of GUI Prototype Tool

The prototype tool is a Web-based tool which has a graphical user interface (GUI), and

built by using MySQL database and PHP web page language. The prototype tool allows

stakeholders to enter a specific concern in form of a “query”. The specific concern will

be elicited from the functional requirements repository assumed to be available for the

target software system. The main functions of prototype tool is to extract a set of related

requirement information based on the elicited concern, and create a trace link between

elicited concern and its relevant information. The following is the execution of the

prototype tool:

 A.1: Main Page of Prototype Tool

 A.2: Extraction of Related Requirement information

 A.3: Review the suggested Results

 A.4: Create a trace link

A.1: Main Page of Prototype Tool

67

A.2: Extraction of Related Requirement information

68

A.3: Review the suggested Results

69

70

A.4: Create a trace link

71

APPENDIX B

Timetable Management System (TMS)

 The Privileges of System's Users:

B.1: System Administrator

Administrator

Login and
Accessing System

Registration of Universities

Extracting Reports

Specifying the
Lectures start

time

Change password

Registration of Colleges

Registration of Lecture rooms

Registration of Laboratories

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

72

 The privileges of System's Users:

B.2: Administrator of College (CollegeAdmin)

B.3: Teachers and Students

College Admin

Registration of Departments
and sections

Specifying Subjects and Courses

Registration of college's Teachers

Registration of the new year

Specifying Lectures rooms and
laboratories per each semester

Insert the scheduling of study

Extraction Reports

Login and
Accessing System

pages

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Teachers
and

Students

Display the schedules of study
for students

Display the schedules of study
for Teachers

Display the schedules of study
for Lectures

Display the schedules of study
for Laboratories

73

APPENDIX C

Viewpoint Catalog (Rozanski & Woods, 2011)

Description

Functional

Describes the system’s functional elements, their responsibilities,
interfaces, and primary interactions. A Functional view is the
cornerstone of most ADs and is often the first part of the description
that stakeholders try to read. It drives the shape of other system
structures such as the information structure, concurrency structure,
deployment structure, and so on. It also has a significant impact on the
system’s quality properties such as its ability to change, its ability to be
secured, and its runtime performance.

Information

Describes the way that the architecture stores, manipulates, manages,
and distributes information. The ultimate purpose of virtually any
computer system is to manipulate information in some form, and this
viewpoint develops a complete but high-level view of static data
structure and information flow. The objective of this analysis is to
answer the big questions around content, structure, ownership, latency,
references, and data migration.

74

Description

Concurrency Describes the concurrency structure of the system and maps functional
elements to concurrency units to clearly identify the parts of the system
that can execute concurrently and how this is coordinated and
controlled. This entails the creation of models that show the process and
thread structures that the system will use and the interprocess
communication mechanisms used to coordinate their operation.

Development Describes the architecture that supports the software development
process. Development views communicate the aspects of the
architecture of interest to those stakeholders involved in building,
testing, maintaining, and enhancing the system.

Deployment Describes the environment into which the system will be deployed,
including capturing the dependencies the system has on its runtime
environment. This view captures the hardware environment that your
system needs (primarily the processing nodes, network
interconnections, and disk storage facilities required), the technical
environment requirements for each element, and the mapping of the
software elements to the runtime environment that will execute them.

Operational Describes how the system will be operated, administered, and supported
when it is running in its production environment. For all but the
simplest systems, installing, managing, and operating the system is a
significant task that must be considered and planned at design time. The
aim of the Operational viewpoint is to identify system-wide strategies
for addressing the operational concerns of the system’s stakeholders and
to identify solutions that address these.

75

APPENDIX D

Certification of Publication

76

REFERENCES

Alamin, H. & Ammar, H., 2014. Reverse Engineering for Documenting Software

Architectures, a Literature Review. International Journal of Computer Applications

Technology and Research, Dec, 3(12), pp. 785-790, ISSN: 2319-8656 (Online).

Alamin, H. & Ammar, H., 2020. Concerns-Based Reverse Engineering for Partial

Software Architecture Visualization, International Journal on Informatics Visualization,

vol. 4(2020), no.2, Apr 2020, pp. 58 - 68, ISSN: 2549-9610 (Online).

Anquetil , N. & C. Lethbridge, T., 1999. Recovering Software Architecture from the

Names of Source Files. Journal of Software Maintenance: Research and Practice, 3(11),

pp. 201-221.

Arshad, R. & Lau , K. K., 2017. Extracting Executable Architecture From Legacy Code

Using Static Reverse Engineering. s.l., s.n., pp. 55-59.

Che, M., 2013. An Approach to Documenting and Evolving Architectural Design

Decisions. San Francisco, CA, USA, IEEE, pp. 1373-1376.

Che, M. & Dewayne, E. P., 2011. Scenario-based architectural design decisions

documentation and evolution. In Proceedings of Engineering of Computer Based

Systems (ECBS'11), IEEE, 2011, 27-29 Aprilpp. 216-225.

Che, M. & Dewayne, E. P., 2012. Managing architectural design decisions

documentation and evolution. In Proceedings of 6th International Journal of Computers,

pp. 137-148.

Chikofsky, E. J. & James, H. C., 1990. Reverse Engineering and Design Recovery: A

Taxonomy. IEEE Software, 13-17 January, 7(1), pp. 13-17.

77

Clements, P., 2005. Comparing the SEI’s Views and Beyond Approach for

Documenting Software Architectures with ANSI-IEEE 1471-2000, Carnegie Mellon

University: Software Engineering Institute.

Clements, P., Bachmann, F., Bass, L. & Ga, D., 2010. Prologue: Software Architectures

and Documentation. [Online] [Accessed 26 April 2014].

Demeyer, S., Stéphane, D. & Nierstrasz, 2008. Object Oriented Reengineering Patterns.

In: Switzerland: Square Bracket Associates, pp.338.

Garg, M. & Jindal, M. K., 2009. Reverse Engineering Roadmap to Effective Software

Design. International Journal of Recent Trands in Engineering, May.1(2).

Harman, M., Langdon, W. B. & Weimer, W., 2013. Genetic Programming for Reverse

Engineering. Koblenz, Germany, IEEE.

Heesch, D. v., Copyright © 1997-2016. Doxygen Tool website and Doxygen

Documentation. [Online] Available at: http://www.doxygen.org/download.html

Henk, K. & Vliet, H. V., 2006. A method for defining IEEE Std 1471 viewpoints.

Journal of Systems and Software, ELSEVIER, 79(1), pp. 120-131.

Hugo, B., Cabot, J., Dupé, G. & Madiot, F., 2014. MoDisco: A Model Driven Reverse

Engineering Framework. Information and Software Technology, 56(8), pp. 1012-1032.

Imam Ya’u , B. & Yusuf, M. N., February 2018. Building Software Component

Architecture Directly from User Requirements. International Journal Of Engineering

And Computer Science, 7(2), pp. 23557-23566.

78

Institute of Electrical and Electronics Engineers, 2000. IEEE Recommended Practice

for Architectural Description of Software Intensive Systems. [Online]

Available at: http://cabibbo.dia.uniroma3.it/ids/altrui/ieee1471.pdf [Accessed 9 July

2014].

Khadka, R., A., S., S., J. & J., H., 2013. A structured legacy to SOA migration process

and its evaluation in practice. 2013 IEEE 7th International Symposium in Maintenance

and Evolution of Service-Oriented and CloudBased Systems (MESOCA), pp. 2-11.

Kim, W., Chung, S. & Endicott Popovsky, B., October 15–18, 2014, ACM. Software

Architecture Model Driven Reverse Engineering Approach to Open Source Software

Development. Atlanta, Georgia, USA, ACM, pp. 9-14.

Kruchten, P., 1995. Architectural Blueprints: The “4+1” View Model of Software

Architecture. IEEE Software, 6(12), p. 42–50.

Kumar, N., 2013. An approach for Reverse Engineering thorough Complementary

Software Views. In Proceedings of International Conference on Emerging Research in

Computing, Information, Communication and Applications (ERCICA'13), pp. 229-234.

Lau, K. & Tran, C. M., 2012. X-man: An mde tool for Component based System

Development. IEEE, IEEE, pp. 158-165.

Len Bass, R. K. & Celements, P., 2003. Software Architecture in Practice. 2nd ed.

s.l.:Addison Wesley Professional.

Liang, G. & Yu, L., December, 2013. Quality Driven Re-engineering Framework,

Sweden: Blekinge Institute of Technology.

79

M. Harman, W. B. Langdon, and W. Weimer, 2013. Genetic Programming for Reverse

Engineering. Koblenz, Germany, IEEE.

M. Harman, Yue J., W. B. Langdon, J. Petke, Iman H. Moghadam, Shin Y. and F. Wu.,

2014. Genetic Improvement for Adaptive Software Engineering. s.l., In Proceedings of

9th International Symposium on Software Engineering for Adaptive and Self-Managing

System.

Maras, J., Štula , M. & Crnkovic, I., 2009. PHPModeler- a Web Model Extractor. IEEE

Computer Society (Nov2009), s.n., pp. 660-661.

MI C R O S O F T ® Architecture guide, 2009. MI C R O S O F T ® Application

Architecture Guide(patterns & practices Developer Center), Application ArcheTypes,

Chapter 20: Choosing an Application Type. [Online]

Available at: https://msdn.microsoft.com/en-us/library/ee658104.aspx

MySQL 5.7 Reference Manual Document, 2017. MySQL 5.7 Reference Manual

Document /Full-Text Search Functions/Full-Text Restricitions. [Online]

Available at: https://dev.mysql.com/doc/refman/5.7/en/ [Accessed 28 March 2017].

MySQL 5.7 Reference Manual Document, 2017. MySQL 5.7 Reference Manual

Document/Full-Text Search Functions/Natural Language Full-Text Searches. [Online]

Available at: https://dev.mysql.com/doc/refman/5.7/en/fulltext-natural-language.html

[Accessed 25 March 2017 at 8:00AM].

MySQL Reference Manual, n.d. MySQL Reference Manual/Important Algorithms and

Structures/10.7-Full-TextSearch. [Online] Available at:

https://dev.mysql.com/doc/internals/en/full-text-search.html [Accessed 1 April 2017 at

05:30PM].

80

Nicholas, M., 2005. A survey of Software Architecture Viewpoint Models. s.l., s.n., pp.

13-24.

Panas , T., Lowe, W. & Aßmann , U., n.d. Towards the Unified Recovery Architecture

for Reverse Engineering. [Online] Available at: https://ai2-s2-

pdfs.s3.amazonaws.com/b8e1/c9bd8cf3360b82de68e8049b281a1e2f4a25.pdf

[Accessed 30 October 2017].

Penta, G. C. & Massimiliano , D., 2008. Frontiers of Reverse Engineering: a

Conceptual Model. pp. 38-47.

R.Hilliard, D. Emery, M. Maier, 2007. All About IEEE Std 1471. [Online]

Available at:

http://www.csee.wvu.edu/~ammar/CU/swarch/lectureslides/slidesstandards/all-about-

ieee-1471.pdf

Razavizadeh, A., Verjus, H., Cimpan, S. & Ducasse, S., 2009. Multiple Viewpoints

Architecture Extraction. 2009 IEEE/IFIP WICSA/ECSA, pp. 329-332.

Riva, C. & Yang, Y., 2002. Generation of architectural documentation using XML.

IEEE Computer Society Press, In Proceedings of the 9th Working Conference on

Reverse Engineering (WCRE02), pp. 161-169.

Rosenberg, L. H. & Lawrence, E. H., 1996. Software re-engineering. [Online]

Available at: http://www.scribd.com/doc/168304435/Software-Re-Engineering1

[Accessed 26 April 2014].

Rozanski, N. & Woods, E., 2005. Software Systems Architecture: Working with

Stakeholders Using Viewpoints and Perspectives. 2nd ed. s.l.:Addison Wesley.

81

Rozanski, N. & Woods, E., 2011. Applying viewpoints and views to software

architecture. [Online] Available at: http://www.viewpointsandperspectives.info/vpandp

/wpcontent/themes/secondedition/doc/VPandV_WhitePaper.pdf

[Accessed 14 June 2015].

Rozanski, N. & Woods, E., 2011. Viewpoints and Concerns. [Online] Available at:

http://www.viewpoints-andperspectives.info/home/viewpoints

[Accessed 10 November 2015].

Rozanski, N. & Woods, E., n.d. Viewpoints and Perspectives Reference Card. [Online]

Available at: http://www.viewpoints-and-perspectives.info/home/viewpoints/functional-

viewpoint/ [Accessed 10 November 2015].

Saeidi, A., 2013. Migrating a large scale legacy application to SOA: Challenges and

lessons learned. In Reverse Engineering (WCRE), 2013 20th Working Conference, pp.

425-432.

Shahin, M., Liang, P. & Khayyambashi, M., 2009. A Survey of Architectural Design

Decision Models and Tools. Technical Report SBU-RUG-2009-SL-01. [Online]

Available at: http://www.cs.rug.nl/search/uploads/Publications/shahin2009sad.pdf

[Accessed 8 July 2014].

Shahin, M., Liang, P. & Khayyambashi, M., 2009. Architectural Design Decision:

Existing models and tools. In Proceedings of Software Architecture, 2009 & European

Conference on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP

Conference 2009, pp. 293-296.

Somasegar, D. H. S. & Guthrie, S., 2009. MICROSOFT APPLICATION

ARCHITECTURE GUIDE (Patterns & Practices Developer Center), s.l.: s.n.

82

Starke, G. & Hruschka, P., 2017. Arc24 Template for documentation of software and

system architecture. [Online] Available at: http://www.arc24.de

Stringfellow, C., Amory, C. D. & Potnur, D., 2006. Comparison of software

architecture reverse engineering methods. In Proceedings of Information and Software

Technology, July, 7(48), pp. 484-497.

Woods, E., 2004. Experiences Using Viewpoints for Information Systems Architecture:

An Industrial Experience Report. European Workshop on Software Architecture, May,

pp. 182-193.

Zalazar, A., Gonnet, S. & Leone, H., 2015. Migration of Legacy Systems to Cloud

Computing. Electronic Journal of SADIO (EJS), Issue 14, pp. 42-55.

