
i

Sudan University of Science and Technology

Collage of Postgraduate

Improving the Accuracy of Robotic Arm position using

Fuzzy Logic Controller

 رساع آلً بإستخذام الوتحكن الونطقً الغاهض هوقغ تحسٍي دقة

A thesis Submitted for Partial Fulfillment for the Requirement of M.Sc.

Degree in Mechatronics Engineering

November- 2019

 Presented by:-

Azza Ali Mohamed Ali

Supervisor:-

Dr. Awadalla Taifour Ali

i

 اٌَة

 :قال تؼالى

لنََا ػَلىَ كَثٍِشٍ هِيْ ﴿ ِ الهزِي فضَه ٍْوَاىَ ػِلْوًا وَقاَلََ الْحَوْذُ لِِلّه ٍْناَ دَاوُودَ وَسُلَ]51 [انًُم: ﴾ ػِباَدِهِ الْوُؤْهِنٍِيَ وَلقَذَْ آتَ

 صذق الله الؼظٍن

ii

Dedication

To the souls of the martyrs of the glorious December’s Revolution, may Allah

forgive and accept them and bless our country with peace and stability.

iii

Acknowledgment

All praises to Allah for the strengths and His blessing in completing this thesis. This

thesis has been kept on track and has been seen through to completion with the

support and encouragement of numerous people.

Threshold I would like to express my deepest appreciation to all those who provided

me with the possibility to complete this thesis starting with my advisor

Dr.AwadallaTaifour Ali and special gratitude I give toEng. Ahmed YosifAbd-

ALbarri for all what he has done and the great effort that he exerted and Eng:

Musab as well.

Last and not the least, I do like to express my sincere gratitude tomy source of

inspiration, my source of strength and my strong pillarsmy family and my friends

for their persistence presence firstly and fortheir love, support, understanding and

good wishes whenever I needed throughout my life , so many thanks.

iv

Abstract

Robots are the latest technologies used to facilitate agricultural, industrial and

medical tasks for humans and to make their life more stable and to accomplish tasks

with utmost accuracy. Therefore, scientific studies continue to improve and develop

the structure of robots and control methods, and has always been the mainly goal is

to achieve the desired accuracy and the safety of enterprises and workers.

Robots can be guided by an external control device or the control may be embedded

within.

The aim of this thesis is to improve the accuracy of a robotic arm position. This robot

works with five motors and variable resistors that control the movement of the arm

and a position sensor which connected to the microcontroller Arduino and controlled

by the Proportional Integral Differential controller (PID).

The control method is changed to fuzzy logic controller with the same robot’s

hardware components. After sensing the robotic arm current position using

MPU5060 sensor, a fuzzy controller compared the current position with the desired

value that adjusted with the potentiometer then detected the error and corrected it and

gave the desired output and the robotic arm performance was improved.

v

 وستخلصال

الأرسع الآنيت يٍ أحذد انخمُياث انحذيثت انًسخخذيت نخسٓيم انًٓاو انضساعيت ، انصُاعيت ٔانطبيت عهي الإَساٌ

انًٓاو بذلت يخُاْيت. نزا حخٕاني انذساساث انعهًيت في ححسيٍ ٔحطٕيش ْيكم ٔنجعم حياحّ أكثش إسخمشاساً ٔلإَجاص

الأرسع الآنيت ٔطشق انخحكى بٓا، ٔنطانًا كاٌ انٓذف الأساسي انٕصٕل نهذلت انًشجٕة ٔححميك سلايت انًُشآث

 ٔانعايهيٍ.

خحكى يضًُاً في بٕاسطت جٓاص ححكى خاسجي أٔ لذ يكٌٕ عُصش ان يًكٍ انخحكى عهى الأرسع الآنيتيًكٍ

 انذاخم.

يحشكاث ٔيمأياث يخغيشة حخحكى في حشكت انزساع تخًسب دلت رساع آني يعًميٓذف ْزا انبحذ نخحسيٍ

بٕاسطت انًخحكى انخُاسبي انخفاضهي ٔيخحكى فيّ))أٔسدٔيُٕذليك انًخحكى انٔيخحسس يٕلع انزساع يخصم ب

، فبعذ انًُطمي انغايض بُفس يكَٕاث انشٔبٕث انًهًٕستفخى حغييش طشيمت انخحكى إني انًخحكى . انخكايهي

، حًج يماسَت انًٕضع انحاني بانميًت PMUS060اسخشعاس انٕضع انحاني نهزساع بإسخخذاو انًسخشعش

انًطهٕبت انخي حى ضبطٓا بإسخخذاو انًمأياث انًخغيشة ٔحى إيجاد َسبت انخطؤ ٔحصحيحٓا ٔانحصٕل عهى انُخيجت

 زساع الآني نذلت أعهي ٔححسٍ أداءِ.انًطهٕبت ٔٔصم ان

vi

LIST OF CONTENTS

NO Title Page

 i الآيت

 Dedication ii

 Acknowledgement iii

 Abstract iv

 v يسخخهص

 Table of Contents vi

 List of Figures viii

 CHAPTER ONE

INTRODUCTION

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives 2

1.4 Methodology 2

1.5 Thesis Layouts 2

 CHAPTER TWO

THEORETICAL BACKGROUND AND LITERATURE REVIEW

2.1 Robot 4

2.1.1 The robotic arms parameters 4

2.1.2 fuzzy fundamental 7

2.2 Control System 14

2.2.1 Classical and modern controllers 14

2.3 Microcontroller 15

2.3.1 Arduino UNO 16

2.4 Literature Review 19

 CHAPTER THREE

SYSTEM CONTROL DESIGN

3.1 Robot Arm 21

3.1.1 System’s components 21

3.2 Fuzzy controller design 24

3.3 System’s Flowchart 26

 CHAPTER FOUR

SYSTEM IMPLEMENTATION, TESTING AND RESULTS

4.1 System Implemenntation 27

4.2 System Results 30

vii

 CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions 32

5.2 Recommendations 32

 References 33

 APPENDICES

 Appendix A: Rules 35

 Appendix B: Code 39

 Appendix C: The robot arm pictures 61

 Appendix D: MPU60X0 Data sheet 65

 Appendix E: Driver L298 66

viii

LIST OF FIGURES

NO Title Page

2-1 The main Fuzzy regions 10

2-2 The Fuzzy Logic Controller sequences 11

2-3 Arduino Uno microcontroller board 17

2-4 Arduino power supply entrance 18

3-1 The used module 21

3-2 Connection of dc motor through driver l298 with Arduino 22

3-3 PMU connection 23

3-4 Block diagram represent the case study’s component 24

3-5 The set point’s membership function plot 24

3-6 The current position’s membership function plot 25

3-7 The output plot 25

3-8 The overall system’s flow chart 26

4-1 Fuzzy library in MATLAB 27

4-2 The input function adjustment 27

4-3 The set point representation 28

4-4 The current position representation 28

4-5 The output representation 28

4-6 Rules representation 29

4-7 Matlab fuzzy inference system to Arduino converter program 29

4-8 Code compiling in Arduino 30

4-9 The testing results1 30

4-10 The testing results 2 31

4-11 The results using PID 31

i

CHAPTER ONE

INTRODUCTION

1

CHAPTER ONE

INTRODUCTION

This chapter shows a brief general introduction of the study, define the problem

statements, the proposed solutions, the methodology and the research layout.

1.1 Introduction

Robots are mechanical or virtual artificial agents, typically guided by a computer

program or electronic circuitry and robotics is an interdisciplinary branch of

engineering and science that includes mechanical engineering, electronics

engineering, computer science, and others. Robotics deals with the design,

construction, operation, and use of robots, as well as computer systems for their

control, sensory feedback, and information processing. As more and more robots are

designed for specific tasks like Agricultural robots ,

domestic robots (cleaning and

caring for the elderly) , medical robots (performing low-invasive surgery) ,

household robots (with full use) , nano robots,….etc[1].

Generally for robots, a controller is used to modify the behavior of the physical

system according to the input value through computations and actuations. Over the

early decade, numerous control techniques and methodologies have been proposed to

control the motion of the robot manipulators such as point-to-point, sequencing

“continuous path”, speed and incremental motions. As an example, the first control

method capable for stopping at several different programmed positions, it can be

used to pick and place operations. The required control method is chosen depending

on the type of the robot manipulator and its possible applications. Varity of robot

manipulators and their architectures influence the control methodology, for example,

to control the robot manipulator movement between two points x and y (point to

point) needs a different controller than the continuous path tracking. On the other

hand, the mechanical design of the manipulator affects the controller type.

Although robot manipulators have variety of tasks in all applications, it has limited

behavior as compared with human. Therefore, the control technique must apply to

achieve the desired behavior [1].

https://en.wikipedia.org/wiki/Interdisciplinarity
https://en.wikipedia.org/wiki/List_of_engineering_branches
https://en.wikipedia.org/wiki/Branch_of_science
https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Electronic_engineering
https://en.wikipedia.org/wiki/Electronic_engineering
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Sensory_feedback
https://en.wikipedia.org/wiki/Information_processing
https://en.wikipedia.org/wiki/Agricultural_robot
https://en.wikipedia.org/wiki/Domestic_robot
https://en.wikipedia.org/wiki/Medical_robot
https://en.wikipedia.org/wiki/Household_robot
https://en.wikipedia.org/wiki/Nanorobot

2

1.2 Problem Statement

Mainly robots are designed to help humans in many of their life aspects (e.g.

Automotive industries, medical laboratories, agriculture, nuclear energy... etc) and to

apply the required functions in a perfect way we should continue progressing the

robot’s designs and their controller and caring about the accuracy and the safety.

Here we have a pick and place robotic arm using PID controller which has a good

performance in specific limitation for the position but PID controller is not sufficient

to obtain the desired tracking control performance because of the nonlinearity of the

robot manipulator.

1.3 Objectives

Design a controller which can overcome the PID missing in order to enhancement

and increase the accuracy of the robotic arm is needed, so the main objectives of this

thesis are to:-

1- Design and implement a fuzzy logic controller for a pick and place robotic arm.

1.4 Methodology

After sensing the robotic arm position using MPU5060 sensor a fuzzy logic

controller is designed and applied to improve the accuracy of the pick and place

robotic arm which programmed using Arduino then the results are going to set and

compared with PID controller results.

1.5 Thesis Layout

This thesis has made up of five chapters as following:

Chapter One shows a brief general introduction of the study, define the problem

statements, the proposed solutions, the methodology and the research layout. While

Chapter Two shows the theoretical background before applying the practical part,

which introduces information and more knowledge about the robot, the fuzzy

fundamentals, control system and a view of the microcontroller followed with the

previous studies.

3

Chapter Three gives a view about the used module , the connection and the used

fuzzy rules for its programming followed with Chapter Four which shows the system

implementation and its testing to figure out whether the goal is achived or no.

Eventually the results which compared with the previous work’s results as a

conclusion, and the recommendations for the forth coming researchers showed in

Chapter Five.

CHAPTER TWO

THEORETICAL BACKGROUND AND

LITERATURE REVIEW

CHAPTER TWO

THEORETICAL BACKGROUND AND LITERATURE

REVIEW

Chapter Two shows the theoretical background before applying the practical part,

which introduces information and more knowledge about the robot, the fuzzy

fundamentals, control system and a view of the microcontroller followed with the

previous studies.

2.1 Robot

The Robotic Institute of America defined the concept of robotic as a re-

programmable multi-functional manipulator designed to move materials, parts, tools,

or specialized devices through variable programmed motions for the performance of

a variety of tasks, which also acquire information from the environment and move

intelligently in response. While ISO 8373 defined it as an automatically controlled,

reprogrammable, multipurpose manipulator programmable in three or more axes,

which may be either fixed in place or mobile for use in industrial automation

applications [1].

robots are designed for specific tasks like Agricultural robots ,

Domestic robots

(cleaning and caring for the elderly) , Medical robots (performing low-invasive

surgery) , Household robots (with full use) , Nano-robots,….etc [2]. also welding,

painting, assembly, pick and place for printed circuit boards, packaging and labeling,

palletizing, product inspection, and testing; all accomplished with high endurance,

speed, and precision. They can help in material handling and provide interfaces [3].

2.1.1The robotic arms parameters

The robotic arm builds on the coming parameters:

 Number of axes: Two axes are required to reach any point in a plane; three axes are

required to reach any point in space. To fully control the orientation of the end of the

arm (i.e. the wrist) three more axes (yaw, pitch, and roll) are required. Some designs

(e.g. the SCARA robot) trade limitations in motion possibilities for cost, speed, and

accuracy.[4]

 Degrees of freedom : It is usually the same as the number of axes.

https://en.wikipedia.org/wiki/Agricultural_robot
https://en.wikipedia.org/wiki/Domestic_robot
https://en.wikipedia.org/wiki/Medical_robot
https://en.wikipedia.org/wiki/Household_robot
https://en.wikipedia.org/wiki/Nanorobot
https://en.wikipedia.org/wiki/Robot_welding
https://en.wikipedia.org/wiki/Pick_and_place
https://en.wikipedia.org/wiki/Printed_circuit_board
https://en.wikipedia.org/wiki/Packaging_and_labeling
https://en.wikipedia.org/wiki/Palletizer
https://en.wikipedia.org/wiki/Yaw,_pitch,_and_roll
https://en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

5

 Working envelope: Describes the region of space that a robot can reach.

 Kinematics : Is the actual arrangement of rigid members and joints in the robot,

which determines the robot's possible motions. Classes of robot kinematics include

articulated, Cartesian, parallel and SCARA.

 Carrying capacity or payload: Describes how much weight a robot can lift.

 Speed: Shows how fast the robot can position the end of its arm. This may be

defined in terms of the angular or linear speed of each axis or as a compound speed

i.e. the speed of the end of the arm when all axes are moving.[4]

 Acceleration: Describes how quickly an axis can accelerate. Since this is a limiting

factor a robot may not be able to reach its specified maximum speed for movements

over a short distance or a complex path requiring frequent changes of direction.

 Accuracy: Tells you how closely a robot can reach a commanded position. When

the absolute position of the robot is measured and compared to the commanded

position the error is a measure of accuracy. Accuracy can be improved with external

sensing for example a vision system or Infra-Red. See robot calibration. Accuracy

can vary with speed and position within the working envelope and with payload (see

compliance).[4]

 Repeatability: Describes how well the robot will return to a programmed position.

This is not the same as accuracy. It may be that when told to go to a certain X-Y-Z

position that it gets only to within 1 mm of that position. This would be its accuracy

which may be improved by calibration. But if that position is taught into controller

memory and each time it is sent there it returns to within 0.1mm of the taught

position then the repeatability will be within 0.1mm.

 Motion control: For some applications, such as simple pick-and-place assembly,

the robot need merely return repeatedly to a limited number of pre-taught positions.

For more sophisticated applications, such as welding and finishing (spray painting),

motion must be continuously controlled to follow a path in space, with controlled

orientation and velocity.[4]

 Power source: Some robots use electric motors, others use hydraulic actuators. The

former are faster, the latter are stronger and advantageous in applications such as

spray painting, where a spark could set off an explosion; however, low internal air-

https://en.wikipedia.org/wiki/Working_envelope
https://en.wikipedia.org/wiki/Robot_kinematics
https://en.wikipedia.org/wiki/Joint
https://en.wikipedia.org/wiki/Parallel_robot
https://en.wikipedia.org/wiki/Cargo
https://en.wikipedia.org/wiki/Robot_calibration
https://en.wikipedia.org/wiki/Spray_painting
https://en.wikipedia.org/wiki/Electric_motor
https://en.wikipedia.org/wiki/Hydraulics
https://en.wikipedia.org/wiki/Explosion

6

pressurization of the arm can prevent ingress of flammable vapors as well as other

contaminants.

 Drive: Some robots connect electric motors to the joints via gears; others connect

the motor to the joint directly (direct drive). Using gears results in measurable

'backlash' which is free movement in an axis. Smaller robot arms frequently employ

high speed, low torque DC motors, which generally require high gearing ratios; this

has the disadvantage of backlash. In such cases the harmonic drive is often used.

 Compliance: This is a measure of the amount in angle or distance that a robot axis

will move when a force is applied to it. Because of compliance when a robot goes to

a position carrying its maximum payload it will be at a position slightly lower than

when it is carrying no payload. Compliance can also be responsible for overshoot

when carrying high payloads in which case acceleration would need to be reduced

[4].

A- The robot’s advantages and disadvantages

Any technological equipment has its advantages and dis advantages.

i- The robot’s advantages:

 Increase productivity

 Use equipment effectively.

 Reduce working costs .

 Flexibility at work .

 Get the job done in the shortest time.

 Provide good returns on investment .

 Better accuracy in performance .

 Ability to work in risky ways and make it safer.

ii- The robot’s disadvantages:

 Cause unemployment for manual workers .

 High initial cost .

 Designed Arm to perform specific tasks and not comparable to the human hand.

 Difficulty programmed to perform accurate tasks.

 Needed a large number of sensors and high accuracy to perform the Complex

tasks.

https://en.wikipedia.org/wiki/Gear
https://en.wikipedia.org/wiki/Harmonic_drive

7

 And other technical problems (especially in the fields of artificial intelligence and

machine vision) [5].

2.1.2 Fuzzy fundamental

Fuzzy logic idea is similar to the human being’s feeling and inference process.

Unlike classical control strategy, which is a point-to-point control, fuzzy logic

control is a range-to-point or range-to-range control. The output of a fuzzy controller

is derived from fuzzifications of both inputs and outputs using the associated

membership functions.

 A crisp input will be converted to the different members of the associated

membership functions based on its value. From this point of view, the output of a

fuzzy logic controller is based on its memberships of the different membership

functions, which can be considered as a range of inputs.

Fuzzy ideas and fuzzy logic are so often utilized in our routine life that nobody even

pays attention to them. For instance, to answer some questions in certain surveys,

most time one could answer with 'Not Very Satisfied' or 'Quite Satisfied', which are

also fuzzy or ambiguous answers. Exactly to what degree is one satisfied or

dissatisfied with some service or product for those surveys? These vague answers

can only be created and implemented by human beings, but not machines. Is it

possible for a computer to answer those survey questions directly as a human beings

did? It is absolutely impossible. Computers can only understand either '0' or '1', and

'HIGH' or 'LOW'. Those data are called crisp or classic data and can be processed by

all machines. Is it possible to allow computers to handle those ambiguous data with

the help of a human being? If so, how can computers and machines handle those

vague data? The answer to the first question is yes. But to answer the second

question, we need some fuzzy logic techniques and knowledge of fuzzy inference

system.[6]

The idea of fuzzy logic was invented by Professor L. A. Zadeh of the University of

California at Berkeley in 1965. This invention was not well recognized until Dr. E.

H. Mamdani, who is a professor at London University, applied the fuzzy logic in a

practical application to control an automatic steam engine in 1974, which is almost

ten years after the fuzzy theory was invented. Then, in 1976, Blue Circle Cement and

8

SIRA in Denmark developed an industrial application to control cement kilns . That

system began to operation in 1982. More and more fuzzy implementations have been

reported since the 1980s, including those applications in industrial manufacturing,

automatic control,18 Advanced Fuzzy Logic Technologies in Industrial Applications

automobile production, banks, hospitals, libraries and academic education. Fuzzy

logic techniques have been widely applied in all aspects in today’s society [6].

 Fuzzy sets originated in the year 1965 and this concept was proposed by Lofti

A.Zadeh. Since then it has grown and is found in several application areas.

According to Zadeh, The notion of a fuzzy set provides a convenient point of

departure for the construction of a conceptual framework which parallels in many

respects of the framework used in the case of ordinary sets, but is more general than

the latter and potentially, may prove to have a much wider scope of applicability,

specifically in the fields of pattern classification and information processing.”

A- Some of the fuzzy terminologies

 Fuzzy logics are multi-valued logics that form a suitable basis for logical

systems reasoning under uncertainty or vagueness that allows intermediate

values to be defined between conventional evaluations like true/false, yes/no,

high/low, etc. These evaluations can be formulated mathematically and

processed by computers, in order to apply a more human-like way of thinking in

the programming of computers.

 Fuzzy set is a set containing elements that have varying degrees of membership

in the set. Each element is mapped to [0, 1] by membership function

 µA : X [0,1] where X is the universal set.(2.1)

 A fuzzy set is fully characterized by its membership function. There are

two kinds of representations of fuzzy set one discrete and the other continuous.

A fuzzy set A in X may be represented as a set of ordered pairs of generic

element x and its grade of membership function is given below [6].

(2.2)

(2.3)

9

The concept of a fuzzy set is an extension of the concept of a crisp set. Similar

to a crisp set a universe set U is defined by its membership function from U to

[0,1]. Consider U to be a non-empty set also known as the universal set or

universe of discourse or domain. A fuzzy set on U is defined as

 μA(x) : U → [0, 1] (2.4)

Here:

 μA is known as the membership function.

 μA(x) is known as the membership grade of x.

 Membership function: is the degree of truth or degree of compatibility. The

membership function is the crucial component of a fuzzy set. Therefore all the

operations on fuzzy sets are defined based on their membership functions [8].

 Core: The core of a fuzzy set A is the set of all points with unit membership

degree in A and is represented as:

core(A) = {x e X / µA (x) = 1} (2.5)

 Normal: A fuzzy set A of X is called normal if there exists at least one element

x in X such that µA (x) = 1. A fuzzy set A is normal if its core is nonempty. A

fuzzy set that is not normal is called subnormal.

 Height: The height of a fuzzy set A is the largest membership grade of any

element in A.

Height (A) = Max µA(x) for all x in X (2.6)

 Support: The support of a fuzzy set A is the set of all points with nonzero

membership degree in A. It is denoted by:

Supp(A) = {x ϵ X/µA(x) > 0} (2.7)

 Crossover point: The crossover points of a membership function are defined as

the elements in the universe for which a particular fuzzy set A has values equal to

0.5.

 Alpha Cut: It is one of the most important concepts of fuzzy sets. For a fuzzy set

A and for a ϵ [0,1] the α-cut Aα ={xϵX/µA(x)>α} (2.8)

The strong α-cut Aα= {x ϵ X/µA(x) > α}. (2.9)

The α-cut set is a crisp set. This threshold cut restricts the domain of the

fuzzy set.

10

Two main reasons why α -cuts are important are:

1- The alpha level set describes a power or strength that is used by fuzzy models to

decide whether or not a truth value should be considered equivalent to zero. This

is a facility that controls the execution of fuzzy rules as well as intersection of

multiple fuzzy sets.

2- The strong α -cut at zero defines the support set for a fuzzy set [7].

Fig 2.1 shows the regions in the universe compromising the core, support,

crossover points and alpha cut of a typical fuzzy set.

Figure 2-1: The main Fuzzy regions

B- Fuzzy logic controller

Fuzzy logic controllers are based on the combination of fuzzy set theory and fuzzy

logic. Systems are controlled by fuzzy logic controllers based on rules instead of

equations. This collection of rules is known as the rule base usually in the form of

IF-THEN-ELSE statements. Here the IF part is known as the antecedent and the

THEN part is the consequent. The antecedents are connected with simple Boolean

functions like AND,OR, NOT etc.,

As shown in the Figure 2-2, in the fuzzy logic controller sequence outputs from a

system are converted into a suitable form by the fuzzification block. Once all the

rules have been defined based on the application, the control process starts with the

computation of the rule consequences. The computation of the rule consequences

takes place

11

within the computational unit. Finally, the fuzzy set is defuzzified into one crisp

control action using the defuzzification module. The decision parameters of the fuzzy

logic controller are as follows:

 Input Unit : Factors to be considered are the number of input signals and

scaling of the input signal.

 Fuzzification Unit: The number of membership functions, type of membership

functions are to be considered and convert classical data or crisp data into

fuzzy data or Membership Functions (MFs)

 Rule Base: The total number of rules, type of rule structure (Mamdani or

Takagi), rule weights etc. are to be considered.

 Fuzzy Inference Process: combine membership functions with the control

rules to derive the fuzzy output

 Defuzzification Unit: Type of defuzzification procedure is to be considered

use different methods to calculate each associated output [6] [8].

Figure 2-2: shows the Fuzzy Logic Controller sequences

C- Fuzzy logic advantages

 Fuzzy logic provides an inference morphology that enables approximate human

reasoning capabilities to be applied to knowledge-based systems. The theory of

fuzzy logic provides a mathematical strength to capture the uncertainties

associated with human cognitive processes, such as thinking and reasoning.

 Fuzzy systems are suitable for uncertain or approximate reasoning, especially for

the system with a mathematical model that is difficult to derive.

 Fuzzy logic allows decision making with estimated values under incomplete or

uncertain information

 fuzzy systems are very useful in two general contexts:

Fuzzification Computational

Unit

Defuzzification

Rule base

Input Out put

12

1- In situations involving highly complex systems whose behaviours are not well

understood,

2- In situations where an approximate, but fast, solution is warranted.

D- The important characteristics of fuzzy logic controllers

1- User defined rules, which can be changed according to the application.

2- Robust.

3- Can be applied to control non-linear systems also.

4- Simple design.

5- Overall cost and complexity is low [9].

E- Representation of Membership Functions

In many practical instances fuzzy sets can be represented explicitly

by families of parameterized functions, the most common being the

following:

i. Triangular Function

The membership definition for a triangular function is given as:

where and a and b denote the lower and upper bounds, respectively, for nonzero

values of A(x).

ii. S-Function

The membership definition for a S-function is given as:

iii. Trapezoidal function

The membership definition for a trapezoidal function is given as:

(2.10)

(2.11)

13

iv. Gaussian Function

The membership definition for a Gaussian function is given as:

v. Exponential Function

The membership definition for a exponential function is given as:

Or:

F- Fuzzy inference

Fuzzy inference is the process of formulating the mapping from a given input to an

output using fuzzy logic. The mapping then provides a basis from which decisions

can be made, or patterns discerned. The process of fuzzy inference involves all the

topics such as fuzzification, defuzzification, implication, and aggregation. Expert

control/modelling knowledge, experience, and linking the input variables of fuzzy

controllers/models to output variable (or variables) are mostly based on fuzzy rules.

A fuzzy expert system consists of four components namely, the fuzzifier, the

inference engine, and the defuzzifier, and a fuzzy rule base [8].

G- Fuzzy implication methods

There are various techniques in which fuzzy implication may be defined. These

relationships are mostly derived from multivalued logic theory. The following are

some of the common techniques of fuzzy implication:

(2.12)

(2.13)

(2.14)

(2.15)

14

 Mamdani system

This method is widely accepted for capturing expert knowledge. It allows us to

describe the expertise in more intuitive, more human like manner. However,

Mamdani type FIS entails a substantial computational burden.

 TSK model

The Takagi-Sugeno-Kang (TSK) model was introduced by T.Takagi and

M.Sugeno .This model reduce the number of rules required by Mamdani model,

especially for complex and high dimensional problems. To achieve this goal, the

TSK model replaces the fuzzy sets in the consequent part (then-part) of the

Mamdani rule with a linear equation of the input variables.

 The standard additive model (SAM)

The structure of fuzzy rules in SAM is identical to that of the Mamdani model. It

was introduced by B.Kosko.There are four differences between the inference

scheme of these two models:

1- SAM assumes the inputs are crisp, while Mamdani model handles both crisp

and fuzzy inputs.

2- SAM uses the scaling inference method while Mamdani uses the clipping

method.

3- SAM uses addition to combine the conclusion of fuzzy rules, while the

mamdani model uses max.

4- SAM includes the centroid defuzzification technique, while the Mamdani

model does not insist on a specific defuzzification method [9].

2.2 Control System

A Control System is a device, or a collection of devices that manage the behaviour of

other devices. Some devices are not controllable. A control system is an

interconnection of components connected or related in such a manner as to

command, direct, or regulate itself or another system.

2.2.1 Classical and modern controllers

Classical and Modern control methodologies are named in a misleading way,

because the group of techniques called “Classical” was actually developed later than

the techniques labelled "Modern". However, in terms of developing control systems,

15

Modern methods have been used to great effect more recently, while the Classical

methods have been gradually falling out of favor. Most recently, it has been shown

that Classical and Modern methods can be combined to highlight their respective

strengths and weaknesses.[10]

Some of the classical methods are methods involving the Laplace Transform domain.

 Physical systems are modelled in the so-called "time domain", where the response of

a given system is a function of the various inputs, the previous system values, and

time. As time progresses, the state of the system and its response change. However,

time-domain models for systems are frequently modelled using high-order

differential equations which can become impossibly difficult for humans to solve and

some of which can even become impossible for modern computer systems to solve

efficiently. To counteract this problem integral transforms, such as the Laplace

Transform and the Fourier Transform, can be employed to change an Ordinary

Differential Equation (ODE) in the time domain into a regular algebraic polynomial

in the transform domain. Once a given system has been converted into the transform

domain it can be manipulated with greater ease and analysed quickly by humans and

computers alike.

Modern Control Methods, instead of changing domains to avoid the complexities of

time domain ODE mathematics, converts the differential equations into a system of

lower order time domain equations called State Equations, which can then be

manipulated using techniques from linear algebra.

Control Methods were designed to try and incorporate the emerging power of

computer systems into previous control methodologies. A special transform, known

as the ZTransform, was developed that can adequately describe digital systems, but

at the same time can be converted (with some effort) into the Laplace domain. Once

in the Laplace domain, the digital system can be manipulated and analyzed in a very

similar manner to Classical analog systems [10].

2.3 Microcontroller

A microcontroller is essentially an inexpensive single chip computer . Single chip

means the entire computer system lies within the confines of a sliver of silicon

encapsulated inside the plastic housing of an integrated circuit.

16

 The microcontroller has features similar to those of a standard personal computer.

The microcontroller contains:

 Central Processing Unit (CPU).

 Random Access Memory (RAM).

 Read Only Memory (ROM).

 Input and Output lines (I/O).

 serial and parallel ports.

 Timers.

 sometimes other built in peripherals such as analog to digital (A/D) and digital to

analog (D/A) converters.

 The key feature

 The microcontroller’s capability of uploading, storing, and running a

program[11].

2.3.1 Arduino UNO

Arduino Uno shown in Figure 2.3, is a microcontroller board based on the

ATmega328P . It has 14 digital input/output pins (of which 6 can be used as PWM

outputs), 6 analogue inputs, a 16 MHz quartz crystal, a USB connection, a power

jack and a reset button. It contains everything needed to support the microcontroller;

simply connect it to a computer with a USB cable or power it with a AC-to-DC

adapter or battery to get started.. You can tinker with your UNO without worrying

too much about doing something wrong, worst case scenario you can replace the chip

for a few dollars and start over again[13].

17

Figure 2-3: Arduino Uno microcontroller board

A- Arduino programming

The Arduino Uno can be programmed with the Arduino Software (IDE).The

ATmega328 on the Arduino Uno comes pre-programmed with a bootloader that

allows you to upload new code to it without the use of an external hardware

programmer. It communicates using the original STK500 protocol.

B- Arduino power

The Arduino Uno board can be powered via the USB connection or with an external

power supply. The power source is selected automatically.

External (non-USB) power shown in Figure 2.4 can come either from an AC-to-DC

adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm

center-positive plug into the board's power jack. Leads from a battery can be inserted

in the GND and Vin pin headers of the power connector [11].

18

Figure 2-4: shows Arduino power supply entrance

C- Arduino Memory

The ATmega328 has 32 KB (with 0.5 KB occupied by the bootloader). It also has 2

KB of SRAM and 1 KB of EEPROM

D- Arduino development

The Arduino Integrated Development Environment (IDE) is a cross-platform

application written in Java, and is derived from the IDE for the Processing

programming language and the Wiring projects. It is designed to introduce

programming to artists and other newcomers unfamiliar with software development.

It includes a code editor with features such as syntax highlighting, brace matching,

and automatic indentation, and is also capable of compiling and uploading programs

to the board with a single click. There is typically no need to edit make files or run

programs on a command-line interface [11].

Arduino programs are written in C or C++ The Arduino IDE comes with a software

library called "Wiring" from the original Wiring project, which makes many

common input/output.

Operations much easier. Users only need define two functions.

To make a runnable cyclic executive program:

 Setup (): a function run once at the start of a program that can initialize

settings.

19

 Loop (): a function called repeatedly until the board powers off.

2.4 Literature Review

An incalculable number of researches were done in the same sphere to robotic arms

for several purposes using different controlling programs for their performances and

accuracy.

 In January 2013 Journal of Theoretical and Applied Information Technology

published a paper titled with (Position Control Of Arm Mechanism Using PID

Controller) [12].

Here The rotary encoder was successfully used as the feedback signal to the PIC

microcontroller. PID controller was successfully applied in the lifting system of

robotic arm and used to replace the ON and OFF controller.

which produced a more stable and consistent output compared to the ON and OFF

controller system. With the PID controller system, the movement for lifting robotic

arm is greatly smooth and reached to the desired position precisely.

 In October 2013 the International Journal of Mechanical & Mechatronics

Engineering IJMME-IJENS a paper titled by (Development of a Prototype Robot

Manipulator for Industrial Pick-and-Place Operations) [13].

The construction of a robot arm for simple pick-and-place operations has been

considered in this paper. The system hardware and software have been highlighted

and discussed, and tests carried out on the complete assembly shows that the

implementation is satisfactory. This work uses the independent joint control method

for the pick-and-place operations.

 In June 2016 the international journal of scientific and technology research

published paper titled by (Position Control Method For Pick And Place Robot

Arm For Object Sorting System) [14].

In this journal forward and reverse kinematic methods has been fully explained

and calculated with mathematically .From the result of this, articulated robot arm

has been tested by Arduino Software with experimentally. When testing the robot

arm for pick up and place operation, there is little error occurs. The occurrence of

this error is because of the limitation of selected servo motors and some

20

mechanism structure of robot arm. Whenever, the maximum rotating angle of the

chosen servo motors cannot exactly rotate 180◦.

 In April 2017 IOSR Journal of Electrical and Electronics Engineering (IOSR-

JEEE) published a paper titled with (Pick and Place Robotic Arm Implementation

Using Arduino) [15].

Here a robotic arm is implemented using arduino to pick and place objects more

safely without incurring much damage. The robotic arm used here contain a soft

catching gripper which safely handle the object. The use of soft catching gripper and

low power wireless communication technique like Bluetooth makes our system

more effective when compared to other systems. The proposed system is capable of

lifting only small weights.

 In Sep -2017 the International Research Journal of Engineering and Technology

(IRJET) published a paper titled with (Development of Pick and Place Robot for

Industrial Applications) [16].

The main task of this project was to program the AVR microcontroller on both the

base station and the robot interfaced to the radio packet controller module which

would enable to wirelessly control the robot and to program the GUI application

which would enable us to serially control the base station. The design and

development of pick and place robot has been carried out. A prototype was

confirmed functional working of robot system. A robotic arm is implemented

using Atmega16 in pick and place objects more safely without incurring much

damage.

 In June 2018 Cristina I. Muresan and others published a paper which titled with

(Experimental Validation of a Novel Auto-Tuning Method for a Fractional Order

PI Controller on an UR10 Robot) [17].

This paper presents an experimental validation of a novel auto-tuning method for

robust fractional order controllers.

A case study has been used consisting of a pick and place movement of an UR10

robot. The experimental results, considering two different robot configurations,

demonstrate that the designed fractional order PI controller is indeed robust Further

work includes comparisons with other auto-tuning methods to demonstrate the

benefits of using the proposed algorithm.

CHAPTER THREE

SYSTEM CONTROL DESIGN

CHAPTER THREE

SYSTEM CONTROL DESIGN

Tis chapter gives a view about the used module , the connection and the fuzzy rules

that used for module programming.

3.1 Robot Arm

In the current module of the robot arm , shown in Figure 3-1 the MPU5060 sensor

was used to sense the robotic arm position which will sense the angle of the robotic

arm then the signal will be send to the arduino UNO microcontroller.

The robot was programmed by using arduino UNO while the potentiometers were

used to control the movement of the motors of the robotic arm and the sensor.

Figure 3-1: The used module

3.1.1 System’s components

The system is made up of the following component:

 Five DC motors

(DCM1): is a DC motor to open and close the gripper, bidirectional

(DCM2): is a DC motor to band the hand.

(DCM3): is a DC motor to rotate hand (5 RPM).

22

(DCM4): is a DC motor to move hand (2 RPM).

(DCM5): it is a DC motor to rotate the gripper.

Depending on the size of the motor, we can simply connect an Arduino PWM output

to the base of transistor or the gate of a MOSFET and control the speed of the motor

by controlling the PWM output. The low power Arduino PWM signal switches on

and off the gate at the MOSFET through which the high power motor is driven.

PWM, or pulse width modulation is a technique which allows us to adjust the

average value of the voltage that’s going to the electronic device by turning on and

off the power at a fast rate. The average voltage depends on the duty cycle, or the

amount of time.

Figure 3-2: Connection of dc motor through driver l298 with Arduino

 Potentiometers

In arduino the three potentiometer’s wires were connected to the board. The

first goes from one of the outer pins of the potentiometer to ground. The second

goes from the other outer pin of the potentiometer to 5 volts. The third goes

from the middle pin of the potentiometer to the analog pin A0.

23

 Motion Processing Unit (MPU6050)

The MPU 6050 communicates with the Arduino through the I2C protocol. The

MPU 6050 is connected to Arduino as shown in Figure 3-3

Figure 3-3: PMU connection

 Arduino UNO

The robotic arm movements are controlled by changing the angles through the

potentiometers. when the direction of the potentiometer is changed to specific

angle then the concerned motor will move accordingly. The first potentiometer is

connected to a motion processing unit sensor type MPU6050 first then the reading

of the sensor will be processed by the controller and then actuate the first motor.

Here DCM2, DCM3, DCM4 depend on the DCM1 motion and all of them are

connected to L298 driver as shown in figure 3-4 which describes the system

components and how they are connected including the input and output devices

with the interfacing too

24

9

Figure 3-4: Block diagram represent the case study’s component

3.2 Fuzzy Controller Design

For fuzzy implication to the case study, Mamdani model technique was used and the

membership functions of the inputs, outputs and 49 rules were applied using

MATLAB.

The Figuers 3-5, 3-6, 3-7 represent the inputs and the out put with their membership

functions.

Figure 3-5 : The set point’s membership function plot

ArduinoUno

Motor 1

MPU6050 Potentiometer

Motor 5

Motor 4

Motor 3

Motor 2

Driver l298

Driver l298

Driver l298

Potentiometer

Potentiometer

Potentiometer

Potentiometer

25

Figure 3-6 : The current position’s membership function plot

Figure 3-7 : The output plot.

26

3.2.3 System Flowchart

The overall system is represent as a flowchart that shown all system steps starting

from the current position which compared to the desired value till detecting the error

and correct it as in Figure 3-8

START

Is the

desired

part

move as

it should

be?

Turn on the desired

potentiometer

The fuzzy controller

compares the current position

(MPU6050 value) and the

desired value (pot value) to

generate the error

Figure 3-8: The overall system flow chart

Initialize MPU6050

Read the movement of the

arm through the MPU6050

sensor

The detected error will be

corrected to give the desired

output

No

END

Yes

CHAPTER FOUR

SYSTEM IMPLEMENTATION , TESTING AND

RESULTS

CHAPTER FOUR

SYSTEM IMPLEMENTATION , TESTING AND RUSELTS

Chapter Four shows the system implementation and its testing to figure out whether

the goal is achived or no.

4.1 System Implemenntation Steps

Using MATLAB the fuzzy library was opened by writing (fuzzy) on the command

window then the window was appered as shown in Figure 4-1

Figure 4-1: Fuzzy library in MATLAB

The input and output functions were adjusted with the suitable function

representation where input-1 represents the set point and input-2 for the current-

position while the output for the PMW as shown in figures 4-2 to 4-5.

Figure 4-2: The input function adjustment

28

Figure 4-3: The set point representation

Figure 4-4: The current position representation

Figure 4-5: The output representation

29

The rules were added and FIS file were saved as shown in the figuer 4-6 .

Figure 4-6: Rules representation

The FIS file is converted into Arduino form using Matlab Fuzzy Inference System

(FIS) to Arduino converter program as shown in Figure 4-8

Figure 4-7: Matlab Fuzzy Inference System to Arduino converter program

30

Enentually the code were opened with Arduino software , compilied, uploaded to the

robot arm, tested and the results were showed in Figure 4-8

Figure 4-8: Code compiling in Arduino

4.2 System Results

For different positions the accuracy was perfect as shown in figures 4-9 – 4-11 which

shows that there is an improvement to the previous model’s performance.

Figure 4-9: The testing results1

31

Figure 4-10: The testing results 2

Figure 4-11: The results using PID

 From Figures 4-9 , 4-10 and 4-11 it is obvious that the Fuzzy logic controller

has achieved higher accuracy than PID controller.

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

Chapter Five shows the results which compared with the previous work’s results as a

conclusion, and the recommendations for the forth coming researchers.

5.1 Conclusion

As we continuously search for implementing the suitable controller of the robotic

arms to improve the accuracy of them in order to achieve high response and

performance, here by using hardware and software components the degree of the arm

is read by the sensor Motion Processing Unit (MPU6050) and the Fuzzy Inference

System which can deal with the nonlinearity and overcome the PID missing is used,

the accuracy of the robotic arm which is controlled with Proportional Integral

Differential controller (PID) is improved and a higher performance of the robotic

arm is achieved after comparing the current results with the previous study for the

same robotic arm using the PID controller’s results.

5.2 Recommendations

For the forth researchers the upcoming points are highly recommended which can

help in improving the accuracy and the performance of the robot’s arm as well:

 A concerted modeling and control efforts are needed together with the

development of good hardware to make arms and hands that can perform

anything but the simplest of pick and place operation that are prevalent in

industry .The pick and place robot is having the very vast area of application.

 Increasing the number of the motors to increase the degree of freedom

 Connecting the MPU 6050 sensor very close because the length of the wire

effect on the reading of the sensor

 Using more developed connection between MPU 6050 sensor and the system

to avoid the noise.

33

References

1- Prof. Alessandro De Luca, “ Industrial Robotics” , 2016.

2- Ahmed Zakari Alassar, “Modeling and Control of 5DOF Robot Arm Using

Supervisory Control” , March 2010.

3- RK Mittal and IJ Nagarath, “Robotics and Control”, BITS Pilani, 2003.

4- LazoRoljić , "History of Industrial Robots" , October 2012.

5- Al teef etal, “Design and the mechanism of controlling a robotic arm”, Syrian

Private University Faculty of computer & Informatics Enineering , August 2015.

6- Ying Bai and Dali Wang, “ Fundamentals of Fuzzy Logic Control – Fuzzy

Sets,Fuzzy Rules and Defuzzifications”, Springer- Verlag London,2006

7- http://shodhganga.inflibnet.ac.in/bitstream/10603/101833/11/11_chapter%201.pd

f 26
th

.Dec.2018.

8- S. Sumathi, Surekha Paneerselvam, “Computational Intelligence Paradigms:

Theory & Applications using MATLAB” ,

9- http://shodhganga.inflibnet.ac.in/bitstream/10603/134769/9/09_chapter%203.pdf

25
th

.Jan.2019.

10- Patrick Anderson, “Control Systems ClassicalControl”, First Edition, Published

by:Global Media1819- Bhagirath Palace-Chandni Chowk, 2009 .

11- John Iovine, “PIC Robotics A Beginner’s Guide to Robotics Projects Using the

PICmicro”, 2004.

12- Asnor Juraiza et al, “Position control of Arm Mechanism Using PID Controller”,

Journal of Theoretical and Applied Information Technology, 20th January 2013.

13- Ayokunle A. Awelewa et al, “Development of a Prototype Robot Manipulator for

Industrial Pick and Place Operations”, International Journal of Mechanical and

Mechatronics Engineering IJMME-IJENS, October 2013.

14- Khin Moe Myint et al, “Position Control Method For Pick And Place Robot Arm

For Object Sorting System”, International Journal of Scientific and Technology

Research volume5- issue6 , June 2016 .

15- Ashly Baby et al, “ Pick and Place Robotic Arm Implementation Using Arduino”,

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), April

2017.

https://web.archive.org/web/20121224213437/http:/www.ifr.org/uploads/media/History_of_Industrial_Robots_online_brochure_by_IFR_2012.pdf
http://shodhganga.inflibnet.ac.in/bitstream/10603/101833/11/11_chapter%201.pdf
http://shodhganga.inflibnet.ac.in/bitstream/10603/101833/11/11_chapter%201.pdf
http://shodhganga.inflibnet.ac.in/bitstream/10603/134769/9/09_chapter%203.pdf

34

16- Vishakha Borkar, Prof G.K.Andurkar, “Development of Pick and Place Robot for

Industrial Applications”, International Research Journal of Engineering and

Technology (IRJET) - Volume: 04 Issue: 09 , Sep -2017

17- Cristina I. Muresan et al, “Experimental Validation of a Novel Auto-Tuning

Method for a Fractional Order PI Controller on an UR10 Robot”, 30 June 2018.

APPENDICES

35

Appendix (A)

Rules

- If (set point is Extremly_low) and (current position is Extremly_low pitch) Then

(PMW is Extremly_slow speed)

- If (set point is Extremly_low) and (current position is Very_low pitch) Then

(PMW is Extremly_slow speed)

- If (set point is Extremly_low) and (current position is low pitch) Then (PMW is

Very_slow speed)

- If (set point is Extremly_low) and (current position is Mediem pitch) Then (PMW

is Very_slow speed)

- If (set point is Extremly_low) and (current position is High pitch) Then (PMW is

Slow speed)

- If (set point is Extremly_low) and (current position is Very_High pitch) Then

(PMW is Slow speed)

- If (set point is Extremly_low) and (current position is Extremely_High pitch)

Then (PMW is Medium speed)

- If (set point is Very_low) and (current position is Extremly_low pitch) Then

(PMW is Extremly_slow speed)

- If (set point is Very_low) and (current position is Very_low pitch) Then (PMW is

Very_slow speed)

- If (set point is Very_low) and (current position is low pitch) Then (PMW is

Very_slow speed)

- If (set point is Very_low) and (current position is Mediem pitch) Then (PMW is

Very_slow speed)

- If (set point is Very_low) and (current position is High pitch) Then (PMW is

Slow speed)

- If (set point is Very_low) and (current position is Very_High pitch) Then (PMW

is Medium speed)

- If (set point is Very_low) and (current position is Extremely_High pitch) Then

(PMW is High speed)

- If (set point is Low) and (current position is Extremly_low pitch) Then (PMW is

Very_Slow speed)

36

- If (set point is Low) and (current position is Very_low pitch) Then (PMW is

Very_Slow speed)

- If (set point is Low) and (current position is low pitch) Then (PMW is Slow_

speed)

- If (set point is Low) and (current position is Medium pitch) Then (PMW is

Slow_speed)

- If (set point is Low) and (current position is High pitch) Then (PMW is Medium_

speed)

- If (set point is Low) and (current position is Very_High pitch) Then (PMW is

High_speed)

- If (set point is Low) and (current position is Extremely_High pitch) Then (PMW

is High_ speed)

- If (set point is Medium) and (current position is Extremly_low pitch) Then

(PMW is Very_slow speed)

- If (set point is Medium) and (current position is Very_low pitch) Then (PMW is

Slow_ speed)

- If (set point is Medium) and (current position is Low_ pitch) Then (PMW is

Slow_ speed)

- If (set point is Medium) and (current position is Medium_ pitch) Then (PMW is

Medium_ speed)

- If (set point is Medium) and (current position is High_ pitch) Then (PMW is

High_speed)

- If (set point is Medium) and (current position is Very_High pitch) Then (PMW is

High_ speed)

- If (set point is Medium) and (current position is Extremely_High pitch) Then

(PMW is Very_High speed)

- If (set point is High) and (current position is Extremly_low pitch) Then (PMW is

Slow_ speed)

- If (set point is High) and (current position is Very_low pitch) Then (PMW is

Slow_ speed)

- If (set point is High) and (current position is Low_ pitch) Then (PMW is

Medium_ speed)

37

- If (set point is High) and (current position is Medium_ pitch) Then (PMW is

High_ speed)

- If (set point is High) and (current position is High_ pitch) Then (PMW is

High_speed)

- If (set point is High) and (current position is Very_High pitch) Then (PMW is

Very_High_ speed)

- If (set point is High) and (current position is Extremely_High pitch) Then (PMW

is Very_High speed)

- If (set point is Very_High) and (current position is Extremly_low pitch) Then

(PMW is Slow_ speed)

- If (set point is Very_High) and (current position is Very_low pitch) Then (PMW

is Medium_ speed)

- If (set point is Very_High) and (current position is Low_ pitch) Then (PMW is

High_ speed)

- If (set point is Very_High) and (current position is Medium_ pitch) Then (PMW

is High_ speed)

- If (set point is Very_High) and (current position is High_ pitch) Then (PMW is

High_speed)

- If (set point is Very_High) and (current position is Very_High pitch) Then (PMW

is Very_High_ speed)

- If (set point is Very_High) and (current position is Extremely_High pitch) Then

(PMW is Extremly_High speed)

- If (set point is Extremly_High) and (current position is Extremly_low pitch) Then

(PMW is Medium_ speed)

- If (set point is Extremly_High) and (current position is Very_low pitch) Then

(PMW is High_ speed)

- If (set point is Extremly_High) and (current position is Low_ pitch) Then (PMW

is High_ speed)

- If (set point is Extremly_High) and (current position is Medium_ pitch) Then

(PMW is Very_High_ speed)

- If (set point is Extremly_High) and (current position is High_ pitch) Then (PMW

is Very_High_speed)

38

- If (set point is Extremly_High) and (current position is Very_High pitch) Then

(PMW is Extremly_High_ speed)

- If (set point is Extremly_High) and (current position is Extremely_High pitch)

Then (PMW is Extremly_High speed)

39

Appendix (B)

Code

//***

// Matlab .fis to arduino C converter v2.0.1.25122016

// - Karthik Nadig, USA

// Please report bugs to:

// https://github.com/karthiknadig/ArduinoFIS/issues

// If you don't have a GitHub account mail to karthiknadig@gmail.com

//***

#include "fis_header.h"

// Number of inputs to the fuzzy inference system

const int fis_gcI = 2;

// Number of outputs to the fuzzy inference system

const int fis_gcO = 1;

// Number of rules to the fuzzy inference system

const int fis_gcR = 49;

40

FIS_TYPE g_fisInput[fis_gcI];

FIS_TYPE g_fisOutput[fis_gcO];

// Setup routine runs once when you press reset:

void setup()

{

 // initialize the Analog pins for input.

 // Pin mode for Input: Set_Point

 pinMode(0 , INPUT);

 // Pin mode for Input: Current_Position

 pinMode(1 , INPUT);

 // initialize the Analog pins for output.

 // Pin mode for Output: PWM

 pinMode(2 , OUTPUT);

}

// Loop routine runs over and over again forever:

41

void loop()

{

 // Read Input: Set_Point

 g_fisInput[0] = analogRead(0);

 // Read Input: Current_Position

 g_fisInput[1] = analogRead(1);

 g_fisOutput[0] = 0;

 fis_evaluate();

 // Set output vlaue: PWM

 analogWrite(2 , g_fisOutput[0]);

}

//***

// Support functions for Fuzzy Inference System

//***

42

// Triangular Member Function

FIS_TYPE fis_trimf(FIS_TYPE x, FIS_TYPE* p)

{

 FIS_TYPE a = p[0], b = p[1], c = p[2];

 FIS_TYPE t1 = (x - a) / (b - a);

 FIS_TYPE t2 = (c - x) / (c - b);

 if ((a == b) && (b == c)) return (FIS_TYPE) (x == a);

 if (a == b) return (FIS_TYPE) (t2*(b <= x)*(x <= c));

 if (b == c) return (FIS_TYPE) (t1*(a <= x)*(x <= b));

 t1 = min(t1, t2);

 return (FIS_TYPE) max(t1, 0);

}

// Trapezoidal Member Function

FIS_TYPE fis_trapmf(FIS_TYPE x, FIS_TYPE* p)

{

 FIS_TYPE a = p[0], b = p[1], c = p[2], d = p[3];

 FIS_TYPE t1 = ((x <= c) ? 1 : ((d < x) ? 0 : ((c != d) ? ((d - x) / (d - c)) : 0)));

 FIS_TYPE t2 = ((b <= x) ? 1 : ((x < a) ? 0 : ((a != b) ? ((x - a) / (b - a)) : 0)));

 return (FIS_TYPE) min(t1, t2);

43

}

FIS_TYPE fis_min(FIS_TYPE a, FIS_TYPE b)

{

 return min(a, b);

}

FIS_TYPE fis_max(FIS_TYPE a, FIS_TYPE b)

{

 return max(a, b);

}

FIS_TYPE fis_array_operation(FIS_TYPE *array, int size, _FIS_ARR_OP pfnOp)

{

 int i;

 FIS_TYPE ret = 0;

 if (size == 0) return ret;

 if (size == 1) return array[0];

44

 ret = array[0];

 for (i = 1; i < size; i++)

 {

 ret = (*pfnOp)(ret, array[i]);

 }

 return ret;

}

//***

// Data for Fuzzy Inference System

//***

// Pointers to the implementations of member functions

_FIS_MF fis_gMF[] =

{

 fis_trimf, fis_trapmf

};

45

// Count of member function for each Input

int fis_gIMFCount[] = { 7, 7 };

// Count of member function for each Output

int fis_gOMFCount[] = { 7 };

// Coefficients for the Input Member Functions

FIS_TYPE fis_gMFI0Coeff1[] = { -30, 0, 30 };

FIS_TYPE fis_gMFI0Coeff2[] = { 0, 30, 60 };

FIS_TYPE fis_gMFI0Coeff3[] = { 30, 60, 90 };

FIS_TYPE fis_gMFI0Coeff4[] = { 60, 90, 120 };

FIS_TYPE fis_gMFI0Coeff5[] = { 90, 120, 150 };

FIS_TYPE fis_gMFI0Coeff6[] = { 120, 150, 180 };

FIS_TYPE fis_gMFI0Coeff7[] = { 150, 180, 210 };

FIS_TYPE* fis_gMFI0Coeff[] = { fis_gMFI0Coeff1, fis_gMFI0Coeff2,

fis_gMFI0Coeff3, fis_gMFI0Coeff4, fis_gMFI0Coeff5, fis_gMFI0Coeff6,

fis_gMFI0Coeff7 };

FIS_TYPE fis_gMFI1Coeff1[] = { -120, -90, -60 };

FIS_TYPE fis_gMFI1Coeff2[] = { -90, -60, -30 };

FIS_TYPE fis_gMFI1Coeff3[] = { -59.99, -30.01, 0 };

FIS_TYPE fis_gMFI1Coeff4[] = { -30.01, 0, 30.01 };

46

FIS_TYPE fis_gMFI1Coeff5[] = { 0, 30.01, 59.99 };

FIS_TYPE fis_gMFI1Coeff6[] = { 30, 60, 90 };

FIS_TYPE fis_gMFI1Coeff7[] = { 60, 90, 120 };

FIS_TYPE* fis_gMFI1Coeff[] = { fis_gMFI1Coeff1, fis_gMFI1Coeff2,

fis_gMFI1Coeff3, fis_gMFI1Coeff4, fis_gMFI1Coeff5, fis_gMFI1Coeff6,

fis_gMFI1Coeff7 };

FIS_TYPE** fis_gMFICoeff[] = { fis_gMFI0Coeff, fis_gMFI1Coeff };

// Coefficients for the Output Member Functions

FIS_TYPE fis_gMFO0Coeff1[] = { -28.33, -14.17, 14.17, 28.33 };

FIS_TYPE fis_gMFO0Coeff2[] = { 14.17, 28.33, 56.67, 70.83 };

FIS_TYPE fis_gMFO0Coeff3[] = { 56.67, 70.83, 99.17, 113.3 };

FIS_TYPE fis_gMFO0Coeff4[] = { 99.17, 113.3, 141.7, 155.8 };

FIS_TYPE fis_gMFO0Coeff5[] = { 141.7, 155.8, 184.2, 198.3 };

FIS_TYPE fis_gMFO0Coeff6[] = { 184.2, 198.3, 226.7, 240.8 };

FIS_TYPE fis_gMFO0Coeff7[] = { 226.7, 240.8, 269.2, 283.3 };

FIS_TYPE* fis_gMFO0Coeff[] = { fis_gMFO0Coeff1, fis_gMFO0Coeff2,

fis_gMFO0Coeff3, fis_gMFO0Coeff4, fis_gMFO0Coeff5, fis_gMFO0Coeff6,

fis_gMFO0Coeff7 };

FIS_TYPE** fis_gMFOCoeff[] = { fis_gMFO0Coeff };

// Input membership function set

47

int fis_gMFI0[] = { 0, 0, 0, 0, 0, 0, 0 };

int fis_gMFI1[] = { 0, 0, 0, 0, 0, 0, 0 };

int* fis_gMFI[] = { fis_gMFI0, fis_gMFI1};

// Output membership function set

int fis_gMFO0[] = { 1, 1, 1, 1, 1, 1, 1 };

int* fis_gMFO[] = { fis_gMFO0};

// Rule Weights

FIS_TYPE fis_gRWeight[] = { 1,

1, 1 };

// Rule Type

int fis_gRType[] = { 1,

1, 1 };

// Rule Inputs

int fis_gRI0[] = { 1, 1 };

int fis_gRI1[] = { 1, 2 };

int fis_gRI2[] = { 1, 3 };

int fis_gRI3[] = { 1, 4 };

48

int fis_gRI4[] = { 1, 5 };

int fis_gRI5[] = { 1, 6 };

int fis_gRI6[] = { 1, 7 };

int fis_gRI7[] = { 2, 1 };

int fis_gRI8[] = { 2, 2 };

int fis_gRI9[] = { 2, 3 };

int fis_gRI10[] = { 2, 4 };

int fis_gRI11[] = { 2, 5 };

int fis_gRI12[] = { 2, 6 };

int fis_gRI13[] = { 2, 7 };

int fis_gRI14[] = { 3, 1 };

int fis_gRI15[] = { 3, 2 };

int fis_gRI16[] = { 3, 3 };

int fis_gRI17[] = { 3, 4 };

int fis_gRI18[] = { 3, 5 };

int fis_gRI19[] = { 3, 6 };

int fis_gRI20[] = { 3, 7 };

int fis_gRI21[] = { 4, 1 };

int fis_gRI22[] = { 4, 2 };

int fis_gRI23[] = { 4, 3 };

49

int fis_gRI24[] = { 4, 4 };

int fis_gRI25[] = { 4, 5 };

int fis_gRI26[] = { 4, 6 };

int fis_gRI27[] = { 4, 7 };

int fis_gRI28[] = { 5, 1 };

int fis_gRI29[] = { 5, 2 };

int fis_gRI30[] = { 5, 3 };

int fis_gRI31[] = { 5, 4 };

int fis_gRI32[] = { 5, 5 };

int fis_gRI33[] = { 5, 6 };

int fis_gRI34[] = { 5, 7 };

int fis_gRI35[] = { 6, 1 };

int fis_gRI36[] = { 6, 2 };

int fis_gRI37[] = { 6, 3 };

int fis_gRI38[] = { 6, 4 };

int fis_gRI39[] = { 6, 5 };

int fis_gRI40[] = { 6, 6 };

int fis_gRI41[] = { 6, 7 };

int fis_gRI42[] = { 7, 1 };

int fis_gRI43[] = { 7, 2 };

50

int fis_gRI44[] = { 7, 3 };

int fis_gRI45[] = { 7, 4 };

int fis_gRI46[] = { 7, 5 };

int fis_gRI47[] = { 7, 6 };

int fis_gRI48[] = { 7, 7 };

int* fis_gRI[] = { fis_gRI0, fis_gRI1, fis_gRI2, fis_gRI3, fis_gRI4, fis_gRI5,

fis_gRI6, fis_gRI7, fis_gRI8, fis_gRI9, fis_gRI10, fis_gRI11, fis_gRI12, fis_gRI13,

fis_gRI14, fis_gRI15, fis_gRI16, fis_gRI17, fis_gRI18, fis_gRI19, fis_gRI20,

fis_gRI21, fis_gRI22, fis_gRI23, fis_gRI24, fis_gRI25, fis_gRI26, fis_gRI27,

fis_gRI28, fis_gRI29, fis_gRI30, fis_gRI31, fis_gRI32, fis_gRI33, fis_gRI34,

fis_gRI35, fis_gRI36, fis_gRI37, fis_gRI38, fis_gRI39, fis_gRI40, fis_gRI41,

fis_gRI42, fis_gRI43, fis_gRI44, fis_gRI45, fis_gRI46, fis_gRI47, fis_gRI48 };

// Rule Outputs

int fis_gRO0[] = { 1 };

int fis_gRO1[] = { 1 };

int fis_gRO2[] = { 2 };

int fis_gRO3[] = { 2 };

int fis_gRO4[] = { 3 };

int fis_gRO5[] = { 3 };

int fis_gRO6[] = { 4 };

int fis_gRO7[] = { 1 };

51

int fis_gRO8[] = { 2 };

int fis_gRO9[] = { 2 };

int fis_gRO10[] = { 3 };

int fis_gRO11[] = { 3 };

int fis_gRO12[] = { 4 };

int fis_gRO13[] = { 5 };

int fis_gRO14[] = { 2 };

int fis_gRO15[] = { 2 };

int fis_gRO16[] = { 3 };

int fis_gRO17[] = { 3 };

int fis_gRO18[] = { 4 };

int fis_gRO19[] = { 5 };

int fis_gRO20[] = { 5 };

int fis_gRO21[] = { 2 };

int fis_gRO22[] = { 3 };

int fis_gRO23[] = { 3 };

int fis_gRO24[] = { 4 };

int fis_gRO25[] = { 5 };

int fis_gRO26[] = { 5 };

int fis_gRO27[] = { 6 };

52

int fis_gRO28[] = { 3 };

int fis_gRO29[] = { 3 };

int fis_gRO30[] = { 4 };

int fis_gRO31[] = { 5 };

int fis_gRO32[] = { 5 };

int fis_gRO33[] = { 6 };

int fis_gRO34[] = { 6 };

int fis_gRO35[] = { 3 };

int fis_gRO36[] = { 4 };

int fis_gRO37[] = { 5 };

int fis_gRO38[] = { 5 };

int fis_gRO39[] = { 5 };

int fis_gRO40[] = { 6 };

int fis_gRO41[] = { 7 };

int fis_gRO42[] = { 4 };

int fis_gRO43[] = { 5 };

int fis_gRO44[] = { 5 };

int fis_gRO45[] = { 6 };

int fis_gRO46[] = { 6 };

int fis_gRO47[] = { 7 };

53

int fis_gRO48[] = { 7 };

int* fis_gRO[] = { fis_gRO0, fis_gRO1, fis_gRO2, fis_gRO3, fis_gRO4, fis_gRO5,

fis_gRO6, fis_gRO7, fis_gRO8, fis_gRO9, fis_gRO10, fis_gRO11, fis_gRO12,

fis_gRO13, fis_gRO14, fis_gRO15, fis_gRO16, fis_gRO17, fis_gRO18, fis_gRO19,

fis_gRO20, fis_gRO21, fis_gRO22, fis_gRO23, fis_gRO24, fis_gRO25, fis_gRO26,

fis_gRO27, fis_gRO28, fis_gRO29, fis_gRO30, fis_gRO31, fis_gRO32, fis_gRO33,

fis_gRO34, fis_gRO35, fis_gRO36, fis_gRO37, fis_gRO38, fis_gRO39, fis_gRO40,

fis_gRO41, fis_gRO42, fis_gRO43, fis_gRO44, fis_gRO45, fis_gRO46, fis_gRO47,

fis_gRO48 };

// Input range Min

FIS_TYPE fis_gIMin[] = { 0, -90 };

// Input range Max

FIS_TYPE fis_gIMax[] = { 180, 90 };

// Output range Min

FIS_TYPE fis_gOMin[] = { 0 };

// Output range Max

FIS_TYPE fis_gOMax[] = { 255 };

54

//***

// Data dependent support functions for Fuzzy Inference System

//***

FIS_TYPE fis_MF_out(FIS_TYPE** fuzzyRuleSet, FIS_TYPE x, int o)

{

 FIS_TYPE mfOut;

 int r;

 for (r = 0; r < fis_gcR; ++r)

 {

 int index = fis_gRO[r][o];

 if (index > 0)

 {

 index = index - 1;

 mfOut = (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]);

 }

 else if (index < 0)

 {

 index = -index - 1;

55

 mfOut = 1 - (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]);

 }

 else

 {

 mfOut = 0;

 }

 fuzzyRuleSet[0][r] = fis_min(mfOut, fuzzyRuleSet[1][r]);

 }

 return fis_array_operation(fuzzyRuleSet[0], fis_gcR, fis_max);

}

FIS_TYPE fis_defuzz_centroid(FIS_TYPE** fuzzyRuleSet, int o)

{

 FIS_TYPE step = (fis_gOMax[o] - fis_gOMin[o]) / (FIS_RESOLUSION - 1);

 FIS_TYPE area = 0;

 FIS_TYPE momentum = 0;

 FIS_TYPE dist, slice;

 int i;

56

 // calculate the area under the curve formed by the MF outputs

 for (i = 0; i < FIS_RESOLUSION; ++i){

 dist = fis_gOMin[o] + (step * i);

 slice = step * fis_MF_out(fuzzyRuleSet, dist, o);

 area += slice;

 momentum += slice*dist;

 }

 return ((area == 0) ? ((fis_gOMax[o] + fis_gOMin[o]) / 2) : (momentum / area));

}

//***

// Fuzzy Inference System

//***

void fis_evaluate()

{

 FIS_TYPE fuzzyInput0[] = { 0, 0, 0, 0, 0, 0, 0 };

 FIS_TYPE fuzzyInput1[] = { 0, 0, 0, 0, 0, 0, 0 };

 FIS_TYPE* fuzzyInput[fis_gcI] = { fuzzyInput0, fuzzyInput1, };

57

 FIS_TYPE fuzzyOutput0[] = { 0, 0, 0, 0, 0, 0, 0 };

 FIS_TYPE* fuzzyOutput[fis_gcO] = { fuzzyOutput0, };

 FIS_TYPE fuzzyRules[fis_gcR] = { 0 };

 FIS_TYPE fuzzyFires[fis_gcR] = { 0 };

 FIS_TYPE* fuzzyRuleSet[] = { fuzzyRules, fuzzyFires };

 FIS_TYPE sW = 0;

 // Transforming input to fuzzy Input

 int i, j, r, o;

 for (i = 0; i < fis_gcI; ++i)

 {

 for (j = 0; j < fis_gIMFCount[i]; ++j)

 {

 fuzzyInput[i][j] =

 (fis_gMF[fis_gMFI[i][j]])(g_fisInput[i], fis_gMFICoeff[i][j]);

 }

 }

 int index = 0;

 for (r = 0; r < fis_gcR; ++r)

58

 {

 if (fis_gRType[r] == 1)

 {

 fuzzyFires[r] = FIS_MAX;

 for (i = 0; i < fis_gcI; ++i)

 {

 index = fis_gRI[r][i];

 if (index > 0)

 fuzzyFires[r] = fis_min(fuzzyFires[r], fuzzyInput[i][index - 1]);

 else if (index < 0)

 fuzzyFires[r] = fis_min(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]);

 else

 fuzzyFires[r] = fis_min(fuzzyFires[r], 1);

 }

 }

 else

 {

 fuzzyFires[r] = FIS_MIN;

 for (i = 0; i < fis_gcI; ++i)

 {

59

 index = fis_gRI[r][i];

 if (index > 0)

 fuzzyFires[r] = fis_max(fuzzyFires[r], fuzzyInput[i][index - 1]);

 else if (index < 0)

 fuzzyFires[r] = fis_max(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]);

 else

 fuzzyFires[r] = fis_max(fuzzyFires[r], 0);

 }

 }

 fuzzyFires[r] = fis_gRWeight[r] * fuzzyFires[r];

 sW += fuzzyFires[r];

 }

 if (sW == 0)

 {

 for (o = 0; o < fis_gcO; ++o)

 {

 g_fisOutput[o] = ((fis_gOMax[o] + fis_gOMin[o]) / 2);

 }

60

 }

 else

 {

 for (o = 0; o < fis_gcO; ++o)

 {

 g_fisOutput[o] = fis_defuzz_centroid(fuzzyRuleSet, o);

 }

 }

}

61

Appendix (C)

Robot Arm pictures

62

63

64

65

Appendix (D)

MPU60X0 data sheet

Motion Interface™ is becoming a “must-have” function being adopted by smart

phone and tablet manufacturers due to the enormous value it adds to the end user

experience. In smart phones, it finds use in applications such as gesture commands

for applications and phone control, enhanced gaming, augmented reality, panoramic

photo capture and viewing, and pedestrian and vehicle navigation. With its ability to

precisely and accurately track user motions, Motion Tracking technology can convert

handsets and tablets into powerful 3D intelligent devices that can be used in

applications ranging from health and fitness monitoring to location-based services.

Key requirements for Motion Interface enabled devices are small package size, low

power consumption, high accuracy and repeatability, high shock tolerance, and

application specific performance programmability – all at a low consumer price

point.

The MPU-60X0 is the world’s first integrated 6-axis Motion Tracking device that

combines a 3-axis gyroscope, 3-axis accelerometer, and a Digital Motion

Processor™ (DMP) all in a small 4x4x0.9mm package. With its dedicated I2C

sensor bus, it directly accepts inputs from an external 3-axis compass to provide a

complete 9-axis Motion Fusion™ output. The MPU-60X0 Motion Tracking devices,

with its 6-axis integration, on-board Motion Fusion™, and run-time calibration

firmware, enables manufacturers to eliminate the costly and complex selection,

qualification, and system level integration of discrete devices, guaranteeing optimal

motion performance for consumers. The MPU-60X0 is also designed to interface

with multiple non-inertial digital sensors, such as pressure sensors, on its auxiliary

I2C port. The MPU-60X0 is footprint compatible with the MPU-30X0 families.

66

Appendix (E)

Driver L298 data sheet

The L298 is an integrated monolithic circuit in a 15-lead Multi watt and PowerSO20

packages. It is a high voltage, high current dual full-bridge driver designed to accept

standard TTL logic levels and drive inductive loads such as relays, solenoids, DC

and stepping motors. Two enable inputs are provided to enable or disable the device

independently of the input signals. The emitters of the lower transistors of each

bridge are connected together and the corresponding external terminal can be used

for the connection of an external sensing resistor. An additional supply input is

provided so that the logic works at a lower voltage.

