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Abstract 

Schrodinger equation for particle in a finite media with uniform potential 

inside abox has been solved the solution which is based on the fact that the 

particle exists gives complex and cosine wave function with energy 

relations different from that of the ordinary sine solution. 

Maxwell distribution law has been also found using the expression for the 

wave function in a frictional medium, quantum energy average and 

integration by parts, another approach has been tackled using the general 

expression for quantum average and the ordinary differentiation. 

Using Maxwell distribution Quantum law, and the Newtonian energy 

relation continuity and momentum fluid equation was done by 

differentiation the number density with respect to time and to coordinate. 

The momentum equation derivation requires the coefficient of the energy 

in the exponential power is equal to the thermal kinetic energy. This 

conforms with the statically value proposed by Maxwell distribution but 

with a positive sign. This number density function can successfully 

describes lasing. This is since it predict population inversion and intensity 

of amplified light. These fluid derived equations can be suitable for 

superfluid’s, since they are free from frictional term and conforms with 

statistical physics and quantum laws. 
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 مستخلص

 

ِعادٌح ششودٔجش ٌٍجسُّاخ داخً وسط ِذذود ِع جهذ ِىدذ داخً صٕذوق . اٌذً اٌزٌ  دٍُد 

َسرٕذ عًٍ دمُمح وجىد اٌجسُّاخ َعطً داٌح ِىجح جُة اٌرّاَ اٌّشوثح ِع علالاخ طالح ِخرٍفح 

عًٍ ذىصَع ِاوسىًَ ِٓ ذعثُش داٌح عٓ ذٍه اٌّرعٍمح تذٍىي اٌجُة اٌعادي. ذُ اَضا اٌذصىي 

اٌّىجح فٍ وسط ادرىاوً وِرىسط وُّح اٌطالح تاٌرىاًِ اٌجضَئ ، ِع ِعاٌجح اٌرعثُش اٌعاَ 

 ٌّرىسط اٌىُ تاٌرفاضً اٌعادي .

أشرُمد ِعادٌح الأذفاع والاسرّشاس ِٓ ذىصَع ِاوسىًَ اٌىًّ تّفاضٍح وثافح اٌجسُّاخ تإٌسثح  

ٌٍضِٓ واٌّىضع . دُث الرضً اشرماق ِعادٌح الأذفاع أْ َىىْ ِعاًِ اٌطالح فً اٌذاٌح الأسُح 

ع ِاوسىًَ ِساوَا ٌٍطالح اٌذشاسَح اٌذشوُح . وهزا َرىافك ِع اٌمُّح اٌثاترح اٌرً الرشدها ذىصَ

وٌىٓ تاشاسج ِىجثح. وّا اذضخ اْ داٌح وثافح اٌعذد ذصف تٕجاح اٌفعً اٌٍُضسي  ورٌه لأها 

ذصف الأملاب اٌسىأً وشذج اٌضىء اٌّضخُ . هزج اٌّعادلاخ اٌّسرٕثطح ٌٍّائع َّىٓ أْ ذىىْ 

 صائُح واٌّىائع .ِٕاسثح ٌٍّىائع اٌفائمح ٌخٍىها ِٓ دذ الادرىان واذسالها ِع لىأُٓ اٌفُضَاء الإد
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Chapter one 

Introduction 

1.1 Fluids: 

 Fluids is a state of matter that describes liquids and gases, Super-fluidity 

is a state of matter in which the matter behaves like a fluid with zero 

viscosity, where it appears to exhibit the ability to self-propel and travel in 

a way that defies the forces of gravity and surface tension. Superfluity is 

found in astrophysics, high energy physics, and theories of quantum 

gravity. The phenomenon is related to Bose-Einstein condensation, but 

neither is a specific type of the other, not all super-fluids are Bose-Einstein 

condensates [1, 2]. 

1.1.1 Super-fluidity of liquid helium:  

Super-fluidity was originally discovered in liquid helium, by Pyotr Kapitsa 

and John F. Allen .It has since been described through phenomenology 

and microscopy theories. Inliquid helium-4, the super-fluidity occurs at far 

higher temperatures than it does in helium-3. Each atom of helium-4 is a 

boson particle, by virtue of its integer spin. A helium-3 atom is a fermions 

particle; it can form bosons only by pairing with itself at much lower 

temperatures. This process is similar to the electron pairing in 

superconductivity [1, 2, 3]. 

1.1.2 Ultracold atomic gases: 

Super-fluidity in an ultra-cold fermionic gas was experimentally proven by 

Wolfgang Ketterle and his team who observed quantum vortices in
 6
Li at a 

temperature of 50 nk at MIT in April [2] Such vortices had previously 

been observed in an ultra-cold bosonic gas using 
87

Rb in 2000, [3] and 

more recently in two-dimensional gases.[4] As early as 1999 Lene Hau 
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created such a condensate using sodium atoms [5] for the purpose slowing 

light, and later stopping it completely .[6] Her team then subsequently 

used this system of compressed light[7] to generate the super-fluid 

analogue of shock waves and tornadoes . These dramatic excitations result 

in the formation of solitonis that in turn decay into quantized vortices 

created far out equilibrium in Paris of opposite circulation revealing 

directly the process of super-fluid breakdown in Bose-Einstein 

condensates. With a double light-roadblock setup, we can generate 

controlled collisions between shock waves resulting in completely 

unexpected, nonlinear excitations. We have observed hybrid structures 

consisting of vortex rings embedded in dark solitonic shells. The vortex 

rings act as ' phantom propellers ' leading to very rich excitation dynamics. 

[8]. 

1.1.3 Super-fluidity in astrophysics: 

The idea that super-fluidity exists inside neutron stars was first proposed  

by Arkady Migdal [9][10]  By analogy with electrons inside 

superconductors forming Cooper pairs due to electron-lattice interaction, it 

is expected that nucleons in a neutron star at sufficiently high density and 

low temperature can also from Cooper pairs due to the long-range 

attractive nuclear force and lead to super-fluidity and superconductivity 

[11]. 

1.1.4 Super-fluidity in high-energy physics and quantum gravity: 

Super fluid vacuum theory (SVT) is an approach in theoretical physics and 

quantum mechanics where the physical vacuum is viewed as super-fluid. 

The ultimate goal of the approach is to develop scientific modes that unify 

quantum mechanics with gravity.  This makes SVT a candidate for the 

theory of quantum gravity and an extension of the standard Model. It is 
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hoped that development of such theory would unify into a single 

consistent model of all fundamental interactions, and to describe all known 

interactions and elementary particles as different manifestations of the 

same entity, super-fluid vacuum [10]. 

1.2 Newton’s Laws with Relation to Quantum and statistical 

Physics:  

The concept of field is related to force. Force is related to momentum time 

.momentum is a valuable tool for predicting the future of physical system 

because it related to physical quantity that controlled a system, like force 

and energy. According to Newton's second law the resultant force is equal 

to the rate of change of momentum. The momentum is a conserved vector 

quantity. Scalar quantity, and to forces, which are only conserved locally. 

In quantum mechanics the energy cannot be continuous for a particle. The 

energy of quantum particle can have minimum value but cannot be zero. 

The importance of momentum in quantum mechanics results from the 

uncertainty principle and De Broglie hypothesis. Also the equation of 

motion as Schrödinger equation can be extracted from it {1, 2, and 3}. 

The momentum also plays an important role in statistical physics. In a 

dynamical system theory, a phase space is a space in which all possible 

states of a system are represented, with each possible state corresponding 

to unique point in the phase space. For mechanical systems, the phase 

space usually consists of all possible values of position and momentum 

variables of {4, 5}. In statistical mechanics, any choice of a generalized 

coordinates for the position defines conjugate generalized momentum 

which together define coordinates on the phase space the momentum 

representation, wave functions are Fourier transforms of the equivalent 
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real-space wave functions. The continuity equation governs the 

conservation of mass, charge and probability of any closed system. 

This equation involves the spatial distribution of the flux density that is 

related to the temporal variation of the particle density (charge, mass). 

Ordinary, this equation is derived from the equation of motion. The 

motion of any continuous charge/mass distribution can be thought of as a 

continuum (field or fluid). The continuity equation guarantees that there is 

no loss or gain of such quantities. This equation provides us with 

information about the system. The information is carried from one point to 

another by a particle (field wave) [6, 7].  

The continuity and momentum beside lasing equations are derived from 

Newton's laws. Different attempts were made to derive statistical laws and 

lasing equations [8, 9, 10]. 

This work is conceived with new derivation of this these equations using 

quantum wave function and Maxwell distribution. This is done in section 

(2), sections (3) and (4). Are conserved with discussion and conclusion. 

      Quantum mechanics is fundamental theory in physics which describes 

nature at the smallest scales of energy levels of atoms and subatomic 

particles equation that describes the changes over time of a physical 

system which is affected by the surrounding. This equation is considered 

as a back bone of quantum mechanics, which succeeded in describing the 

behavior of single particle but, but it fails to describe quantum system of 

many –body, because of the complex interaction between particles. As a 

consequence, the wave function of the system is complicated in nature 

having a large amount of information. On the other hand statistical 

mechanics is a branch of physics that uses method of probability theory 

and statistics to describe atoms and elementary particles. It uses 
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mathematical tools for dealing with large amounts of particle in the 

physical system in solving physical problems. It can descried a wide of 

fields that consists of randomly be having particles. Its applications 

include electronics, laser and material science it is main purpose is to 

clarify the properties of matter in aggregate, in terms of the microscopic 

properties of individual constituents of the system. These properties of 

statistical physics make it in close link with fluids a fluid is a collection of 

molecules that are randomly arranged and held together by weak cohesive 

forces like liquids and gases. This branch of physics has two parts static 

and dynamic fluid. In fluid dynamic, the equation of motion is performed 

by principles of conservation in physics like mass, energy and momentum 

conservation, Bernoulli's equation is one of important equations describing 

fluid in motion, which can be obtained by principles of energy and 

momentum conservation. There are equivalence between the laws of fluid, 

quantum and classical mechanics because all of them depend on principles 

of conservations, and deals with very small particles. This encourages 

doing this work which is devoted to derive fluid continuity and momentum 

equation from quantum and statistical laws. This is done in section (3), 

section (2) is conserved with deriving and expression of the wave function 

in a homogenous media, and discussion and conclusion are done in 

sections (4). 

1-3 Quantum Mechanics:  

In 1900 Max Planck introduced the concept of quantum energy. He argued 

that the energy exchange between an electromagnetic wave of certain 

frequency and matter occurs only in integer multiples of a quantities 

which is proportional to the frequency, this energy is called quanta [1, 2]. 
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In 1905 Einstein provided a powerful consolidation to Black's quantum 

concept. In trying to understand the photoelectric effect, he posited that the 

light is made of discrete bits of energy called photons [3, 4]. 

 After discovering atomic nucleus by Rutherford's experimental in 1911, 

and combining Rutherford's atomic model, Blank's quantum concept, and 

Einstein's photons, Bohr introduced in 1913 his model of the hydrogen 

atom. Compton made an important discovery in 1923 that gave the most 

conclusive confirmation for the corpuscular aspect of light. By scattering 

X-rays with electrons, he confirmed that the X- ray photons behave like. 

De Broglie introduced in 1923 another powerful new concept that classical 

physics could not reconcile: he postulate that not only does radiation 

exhibit particle like behavior but, conversely, material particles themselves 

display wave-like behavior. This concept was confirmed experimentally in 

1927 by Davisson and Germer; they showed that interference patterns, a 

property of waves, can be obtained with material particles such as 

electrons [5, 6, 7]. 

Heisenberg present first formulation called matrix mechanics to develop 

atomic structure in 1925, the second formulation, called wave mechanics, 

was due to Schrodinger 1926. In 1927 Max Born proposed his 

probabilistic interpretation of wave mechanics: he took the square moduli 

of wave functions that are solutions of Schrodinger equation and he 

interpreted them as probability density [8, 9, 10, and 11]. 

Combining special relativity with quantum mechanics, Dirac derived in 

1928 an equation which describes the motion of electrons [5, 12, 13]. 

1.4 Literature Review: 

The theory of the condensate of a weakly interacting Bose gas is 

developed. The condensate is described by a wave function normalized to 

the number of particles. It obeys a nonlinear self‐consistent field equation. 

The solution in the presence of a rigid wall with the boundary condition of 
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vanishing wave function involves a de Broglie length. This length depends 

on the mean potential energy per particle. The self‐consistent field term 

keeps the density uniform except in localized spatial regions. In the hydro-

dynamical version, a key role is played by the quantum potential. A theory 

of quantized vortices and of general potential flows follows immediately. 

In contrast to classical hydrodynamics, the cores of vortices are 

completely determined by the de Broglie length and all energies are finite. 

Non-stationary disturbances of the condensate correspond to phonons, 

rotons, vortex waves etc. They can exchange momentum with rigid 

boundaries. This is compatible with the vanishing of the wavefunction at a 

boundary. This condition fully determines the dynamics of the system. 

These points are illustrated by considering the motion of a foreign ion in a 

Bose gas, a rotating container of fluid, and the Landau criterion for Super-

fluidity [3]. 

This paper presents an attempt of explaining the phenomenon of Super-

fluidity on the basisof the theory of degeneracy of a non-perfect Bose-

Einstein gas. [4].  

By using the method of the second quantization together with an 

approximation procedurewe show that in the case of the small interaction 

between molecules the low excited states of thegas can be described as a 

perfect Bose-Einstein gas of certain “quasi-particles” representingthe 

elementary excitations, which cannot be identified with the individual 

molecules.The special form of the energy of a quasi-particle as a function 

of its momentum is shown to beconnected with the Super-fluidity. [6] 

We consider the superfluid phase transition that arises when a Feshbach 

resonance pairing occurs in a dilute Fermi gas. We apply our theory to 

consider a specific resonance in potassium (40 K), and find that for 



8 
 

achievable experimental conditions, the transition to a superfluid phase is 

possible at the high critical temperature of about 0.5T F   . Observation of 

Super-fluidity in this regime would provide the opportunity to 

experimentally study the crossover from the superfluid phase of weakly 

coupled fermions to the Bose-Einstein condensation of strongly bound 

composite bosons. [9]. 

A theory is developed to describe grid turbulence in a superfluid in the 

case where the normal fluid is held stationary, as would be the case for 

super fluid He 3 −B in which the normal fluid is very viscous. The theory 

is a straightforward development of earlier work, reviewed by Vinen and 

Niemela [5] and it shows that on large length scales the turbulence is 

strongly damped by mutual friction. A comparison is made with recent 

work by Volovik and his colleagues [6].which was developed while our 

work was in progress [2]. 

1.5 Research Problem: 

Quantum, statistical physics and fluid laws seems to be not correlated 

although they all describe huge number of particles there is no full theory 

for relating them to each other. 

(1-6) Aim of the Work: 

The aim of the work is to construct quantum model based on Newton’s 

laws to relate quantum, statistical physics and fluids laws to each other. 
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1.7 Thesis Layout: 

The thesis consists of four chapters. Chapter one is the introduction. 

Chapter two is the theoretical background. Chapter three and four are 

concerned with the literature review and the contribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

Chapter Two 

Theoretical Background 

2.1 Introduction: 

In this chapter one will be derive the basic equations of motion for fluid, 

conservation of mass and conservation of momentum, Maxwell 

distribution, and superfluid’s. 

2.2 Fluid laws: 

In this section one will derive the partial differential equation representing 

conservation of mass in a fluid flow, the so-called continuity equation .we 

will then, in a sense, "work backwards" to recover an integral form, often 

called the "control-volume" form, that can be applied to engineering 

calculations in an approximate, but very useful, way we will then consider 

some specific examples of employing this equation [17, 18]. 

2.2.1 Derivation of the continuity equation: 

We begin this section with the general statement of conservation of mass, 

and arrive at the differential form of the continuity equation via a 

straightforward analysis involving application of the general transport 

theorem and Gauss's theorem [18, 19, 20]. 

2.2.2 Conservation of mass: 

We start by considering a fixed mass   of fluid contained in an arbitrary 

region    . As we have already hinted, we can identify this region with a 

fluid element, but in some cases we will choose to associate this with a 

macroscopic domain. In either case, the boundary           can in 

general move with time. Any such region is often termed a system, 

especially in thermodynamics contexts, and it might be either open or 
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closed. From our point of view it is only important that it have fixed mass; 

it does not matter whether it is the same mass at all times – only that the 

amount is the same[21].  

It is convenient for our purposes to relate the mass of the system to the 

density of the fluid comprising it via  

  
∫   

    
                                                                                         

We emphasize that     and   may both change with time, but they must 

do so in a way that leaves   unchanged if we are to have conservation of 

mass.  An example of this might be a balloon filled with hot air 

surrounded by cooler. As heat is transferred from the balloon to its 

surroundings, the temperature of the air inside the balloon will decrease, 

and the density will increase (equation of state for a perfect gas). At the 

same time the size of the balloon will shrink, corresponding to a change in 

R (t). But the mass of air inside the balloon remains constant- at least if 

there are no leaks [21]. 

We can express this mathematically as: 

  

  
 

 

  

∫   

    
                                                                                                

That is, conservation of mass simply means that the time rate of change of 

mass of a system must be zero [17, 18 19]. 

(2.2.3)The differential continuity equation: 

We now recall that region R (t) was arbitrary (i.e., it can be made 

arbitrarily small-within the confines of the continuum hypothesis), and this 

implies that the integrand must be zero everywhere within R (t). If this 
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were not so (e.g., the integral is zero because there are positive and 

negative contributions that cancel), we could subdivide R (t) into smaller 

regions over which the integral was either positive or negative, and hence 

violating the fact that it is actually zero. Thus, we conclude that  

  

  
 

 

  
      

 

  
(   )  

 

  
                                                          

This is the differential form of the continuity equation, the expression for 

mass conservation in a flowing system [21, 22].  

2.2.4 Momentum balance-the Navier-Stokes equations: 

In this section we will derive the equations of motion for incompressible 

fluid flows, i.e., the Navier-Stokes (N-S) equations. We begin by stating a 

general force balance consistent with Newton's second law of motion, and 

then formulate this specifically for a control volume consisting of a fluid 

element. Following this we will employ the Reynolds transport theorem 

which we have already discussed, and an argument analogous to that used 

in deriving the continuity equation to obtain the differential form of the 

momentum equation. We then develop a multi-dimensional form of 

Newton's law of viscosity to evaluate surface forces papering in this 

equation and finally arrive at the N-S. Equations [21, 22, 23]. 

2.2.5 A basic force balance; Newtown's second of motion: 

We begin by recalling that because we cannot readily view fluids and 

consisting of point masses, it is not appropriate to apply Newton's second 

law of motion in the usual form    . Instead, we will use a more 

general form expressed in words as  

{Time rate of change of momentum of a material region}= {sum of forces 

acting on the material region} 
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The somewhat vague terminology "material region" is widely used, and 

herein it will usually be simply a fluid element. But later when we develop 

the control-volume momentum equation the material region will be any 

region of interest in a given flow problem. We also remark that we are 

employing the actual version of Newton's second law instead of the one 

usually presented in elementary physics. Namely, if we recall that 

momentum is mass times velocity, e.g.,    in ID, then the general 

statement of Newton's second law is 

  
     

  
                                                                                           

Which collapses to the usual       in the case of point masses that are 

independent of time. At this point it is worthwhile to recall the equation 

for conservation of mass, equation (2.3), which we write here in the 

abbreviated form 

                                                                        

Containing the dependent variables              It will be convenient to 

express the momentum equations in terms of these same variables, and to 

this end we first observe that the product, e.g.,    is momentum per unit 

volume (since   is mass per unit volume ). Thus, yet another alternative 

expression of Newton's second law is  

 

 
 

 

  
                                                                                          

Or force per unit volume is equal to time-rate of change of momentum per 

unit volume. We are now prepared to develop formulas for the left-and 

right-hand sides formula given above [28, 29, 30 31].  
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2.2.6 Time-Rate of change of momentum: 

As was the case in deriving the differential equation representing 

conservation of mass, it will agian be convenient here to choose a fluid 

region corresponding to a fluid element. In contrast to what was done 

earlier, we will restrict our region R(t) to be a fluid element from the start . 

If, in addition, we utilize an Eulerian view of the fluid flow we recognize 

that the substantial derivative should be employed to represent 

acceleration or, in our present case, to calculate the time-rate of change of 

momentum. As noted above, it is convenient for later purposes to consider 

the momentum per unit volume, rather than the momentum itself; so for 

the   component of this we would have  

 

  

∫    

    
 

The equivalent of mass   acceleration .Then for the complete velocity 

vector U we can write  

 

  

∫    

    
 {                                     }        

We remind the reader that application of the substantial derivative 

operator to a vector is accomplished by applying it to each component 

individually, so the above expression actually contains three components, 

each of the form of that for   momentum[36,37]. 

2.2.7 Sum of forces: 

We next consider the general form of the right hand side of the word 

equation given earlier, via, the sum of forces acting on the material region 
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(fluid element in the present case). There are two main types of forces to 

analyze: 

i) Body forces acting on the entire region R (t), denoted 

∫    

    
                                                                , and 

ii) Surface forces  

∫    

    
                                                      

Acting only on the surface S (t) of R (t). 

It is useful to view the surface S (t) as dividing the fluid into two distinct 

regions: one that is interior to S (t), i.e., R (t), and one that is on the 

outside of s(t). This implies that when we focus attention on R (t) alone, as 

it will be convenient to do, we must somehow account for the fact that we 

have discarded the outside which interacts with R (t). We do this by 

representing these effects as surface forces acting on S (t).  

2.3 The Maxwell Boltzmann Distribution: 

Scottish physicist James clerk Maxwell developed his kinetic theory of 

gases in 1859. Maxwell determined the distribution of velocities among 

the molecules of a gas. Maxwell's finding was later generalized in 1871 by 

a German physicist, Ludwig Boltzmann to express the distribution of 

energies among the molecules [32, 33, 34]. 

Maxwell in the gas assuming to consist of billions of molecules moving 

rapidly at random , colliding with each other and the walls of the 

container. This was qualitatively consistent with the physical properties of 

gases, if we accept the notion that raising the temperature causes the 
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molecules to move faster and collide with the walls of the container more 

frequently. 

Maxwell made four assumptions: 

1) The collisions between molecules conserve energy. 

2) The diameter of the molecules is much smaller than the distance 

between them. 

3) The positions and velocities of the molecules are initially at random. 

4) The molecules move between collisions without interacting as a 

constant speed in a straight line. 

We will derive the Maxwell Boltzmann distribution, which will prove 

useful information about the energy.  

Why use statistical mechanics to predict molecule behavior? Why not just 

calculate the motion of the molecules exactly? 

Even though we are discussing classical physics, there exists a degree of 

"uncertainty" with respect to the fact that the motion of every single 

particle at all times cannot be determined in practice in any large system. 

Even if we were only dealing with one mole of gas, we would still have to 

determine characteristics of        molecules!! 

Maxwell's theory was based on statistical averages to see if the 

microstates, (I.e. measurable, observable) could be predicted from the 

microstates. 

In these section it was determined that the thermal equilibrium is 

established when the temperature of the subsystem are equal. So… 
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What is the nature of the equilibrium distribution for a system of N non-

interacting gas particles?  Consider the simplest case, a system of N non-

interacting classical gas particles. 

-Classical system: 

. There are no restrictions on how many particles can be put into any one 

state simultaneously 

 . The particles are distinguishable, i.e. each particle is labeled for all time  

First, well need to determine the number of microstate within any given, 

i.e. the number of ways in which N objects can be arranged into   distinct 

groups, also called the multiplicity function. 

 The multiplicity function- determines the number of ways in which N 

objects can be arranged into   containers. 

Consider the first twelve letters of the alphabet:                           

Arrange the letters into 3 containers without replacement. Containers 1 

holds 3 letters, containers 2 holds 4 letters, and containers 3 holds 5 letters. 

|     |        |       |        |          | 

For the 1
st
 slot, there are 12 possibilities. 

For the 2
nd

 slot, there are 11 possibilities. 

For the 3
rd

 slot there are 10 possibilities. 

Etc … 

There are 12! Possibilities arrangements if the containers are ignored. 

The multiplicity function determined the number of ways in which N 

objects can be arranged into   containers. Since we care about the 
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containers but we don’t care about the order of the letters within each 

container, we divide out the number of arrangements within each given 

container, resulting in: 

   

      
        

There are 27,720 ways of partitioning 12 letters into the 3 containers  

In general, the number of distinct arrangements of N particles into   

groups containing               objects becomes: 

  

               
             Where    is the number of objects in container I 

The multiplicity function.    

               
  

               
 

  

∑    
   

          

In general, the possible arrangements of     particles into     sub-

containers is:    
   

Therefore, if our system has a particular state that has a particular 

degeneracy, there is an additional multiplicity of   
   for that particular 

state. Therefore the total multiplicity function for a collection of classical 

particles is: 

               {
  

∑    
   

} ∑   
   

                                         

There are two physical constraints on our classical system: 

1- The total number of particles must be conserved 

     ∑      
     

2- The total energy of the system must be conserved   
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  ∑      

 

   

                                                                                                      

From previous slide: 

               {
  

∑    
   

} ∑   
   

     

This equation will be easier to deal with if we take the logarithm of both 

sides: 

         ∑        ∑      
 
   

 
                                                         

Applying starling's approximation, for large: 

                                                                                                            

          

∑        
 
   

∑        
 
   

∑    
 
                                                                                                                            

In order to maximize, we need to make use of Lagrange multipliers and 

constraints 1 and 2: 

 

   
     

  

   
  

  

   
                                                                            

Substituting in     and constraints 1 and 2: 

 

   
        ∑        ∑        ∑   

 
   

 
   

 
     

 
 

   
 ∑   

 
      

 

   
 ∑     
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Taking the derivative, noting that   is const ant and the only terms that are 

nonzero are when i= j: 

     (            
 

  
)                             

                                                                                                

  
  
  

                                                                                                            

 (  )  
  
  

                                                                                                

The equation (2-20) called Maxwell Boltzmann distribution. Energy To 

find  , we need to determine the total number of particles,  , in the 

system and the total energy, E, of the system . 

If the states are closely spaced in energy, they form a quasi continuum and 

the total number of particles, N, is given by: 

  ∫           
 

 

                                                                                              

Where      is the density of states function.   

From previous slide: 

  ∫           
 

 

                                                                                            

     
  
  

                                                                                                  

     
    √  
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    √  

    
  ∫ √     

 

 

                                                                   

Using the stander integral: 

∫       
 

 

   
      

    
                                                                              

  
 

 
 √ 

    
  

  
 
 
 

 
 
 

                                                                                            

The average energy per particle is given as: 

 ̅

 
 
 

 
                                                                                                               

              
  

 
                                                                                          

Where     is the Boltzmann constant. 

Equation the average energy per particle with the ratio of our equations for 

E and N: 

 

 
 

 
 
 √ 

      
  
 
 
 

 
 
 

 
 
 √ 

      
  
 
 
 

 
 
 

 
 

 
   

 
 ̅
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(1+z)=z (z) 

 

  
 
 

 
    

  
 

   
                                                                                                               

Now we have   but we still need  . 

  
 

   
                                                                                                                      

Where   is the chemical potential. We will find out that the chemical 

potential,  , is exactly equal to the Fermi Energy,    leaving us with an   

of: 

  
  
   

                                                                                                                        

From previous slides: 

 (  )  
  
  

                                                                                                

  
 

   
                                                                                                                      

Substituting   and   into     : 

 (  )  
  
  

  
     
                                                                                            

From previous silde: 

 (  )  
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Reversing terms in the numerator of the exponent: 

 (  )  
  
  

  
        

                                                                                        

The distribution gives the number of particles in the j state, where the     

state has degeneracy,     

If we want to find the probability of finding the particle in the     state, we 

need to normalize, well start by dividing the number of particles in the     

state.     by the total number of particles, N. 

Using constraint 1 and f (E): 

  ∑  

 

   

   ∑   
       

 

   

                                                                     

Solving for  : 

   
 

∑    
        

   

  

Substituting   into     : 

 (  )        
                                                           

   
    

       

∑    
        

   

                                                                                               

Normalizing: 

  
 

 
   

       

∑    
        

   

                                                                                                

From previous slide: 
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∑    
        

   

                                                                                                

This normalized distribution is the probability,  , of finding the particle in 

the     stat with energy  : 

   
  
 

 
   

       

∑    
        

   

                                                                            

Since j is just a dummy index, the probability of a particle having energy 

   is: 

   
   

       

∑    
        

   

                                                                                                

If the degeneracy factor is 1, i.e. no repeatable arrangements, the 

probability become: 

   
        

∑          
   

                                                                                        

 The mean value of a physical observable: 

 ̅  
∑      
∑    

                                                                                                        

The mean energy of a system can be determined by: 

 ̅  
∑          

∑          
                                                                                                

The classical partition function: 

  ∑        

 

         
 

   
         ∑     
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We can use the classical partition function to easily calculate the mean 

value of the energy. 

First, we need to note the following relationships: 

∑  
 

       ∑
 

  
     

 

 

 ∑
 

  
 

       
 

  
 ∑        

 

  
 

 

 

Substituting into the mean energy equation: 

 ̅  
 

 
  

 

 
                                                                                                              

 ̅   (
 

 
)
 

  
                                                                                                          

The mean energy equation: 

 ̅   
 

  
                                                                                                     

2.4 Maxwell’s solution for wave propagation in a conductive 

medium: 

   According to GSR model the linear energy is given by 

     
   

    
     

    
    

     
 (  

 

   
 
)

  (  
 

   
 
)                                                       

Where  
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Multiplying both side of equation (2.4.1) by   gives 

    (  
 

 
)     (  

 

 
)     

      (  
 

 
)      (  

 

 
)     

                         
                                            

                      
        

     

Where 

      
 

  
   ,   and     ̂  

 

 
 ⃗⃗                                                             

From equation (2.4.2) and (2-4-3) 

   
   

   
       ⃗⃗  (

  

  
)   

 

 
    ⃗⃗         

  (
  

  
)

     
                                                                                  

From (2-4-4), by suggesting a solution 

                       
  
 
 
 

  

  
         ,    

   

   
                                                                          

A direct substitution of (2.4.5) in (2.4.4) gives  

                       ⃗⃗       
      

     
                                                                                      

Where 
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This time decaying exponential term can be cancelled on both sides to get 

                                                                 

This can be written as 

                                                                           

Where  

                               

                                                                                                                     

Travelling wave solution 

                                                                                                                

               ( )                                                                                  

                                                                                               

             [ ]                                                                          

Equation coefficients of u and Vu, yields  

             
    

       
                                                                  

From equation (2.4.11) 

    
         

       
                                                                                  

                                                                                                     

           
  
  
  

  
  

        
  

    
   

       
                                                                                            

The first expression for  in equation (2.4.12) where               
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The second expression for k in equation (2.4.12) where      gives  

                                                                                               

Consider the outer most shell where electrons occupy this sell when the 

radius of the atom is a. In this case 

|    |     

                                                                                                                            

                                                                                                    

Thus  

                             

There fore  

   
   

 
                                                                                                              

Thus the momentum is given by  

      
  

 
                                                                                                      

Hence the energy takes the form  

          
                                                                                                

 

   
      

  
   

                                                                                           

This liner energy is given by  

           
  

  
    

 
     

                                                                                             

It is very interesting to note that the velocity is given by 
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Becomes infinite when  

              

                                                                                                                      

Where equation (2.4.27) gives 

                                                                                                                       

In this case equation (2.4.2.16) gives 

                                                                                                                        

Thus equation (2.4.19) become in the form 

 =A                                                                                                                    

 This represent a stationary oscillating wave. Fortunately equations 

(2.4.29) and (2.4.31) describe the behavior of biophotons which are 

stationary waves that spread themselves simultaneously through the 

surrounding media [44, 45].  

2.5 Super Fluids: 

 Superfluidity is closely related to Bose-Einstein condensation. In a 

phenomenological level, superfluid can flow through narrow capillaries or 

slits without dissipating energy. Superfluid does not possess the shear 

viscosity. The superfluid of liquid 
4
He, below the so-called λ-point, was 

discovered by Kapitza and independently by Allen and Misener. Soon 

after Landau explained that if the excitation spectrum satisfies certain 

criteria, the motion of the fluid does not cause the energy dissipation. 

These Landau criteria are met by the Bogoliubov excitation spectrum 

associated with the Bose-Einstein condensate consisting of an interacting 

Bose gas and thus establish the first connection between superfluidity and 

BEC. The connection between the two phenomena is further established in 

a deeper level through the relationship between irrotationality of the 

superfluid and the global phase of the BEC order parameter. This is the 

first subject of this chapter. The second subject of this chapter is the 
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rotational properties of the irrotational superfluid, with special focus on 

the quantized vortices.[11,13,14] 

 

2.5.1 Landau’s criteria of super fluidity: 

 Landau’s theory of super fluids is based on the Galilean transformation of 

energy and momentum. Let E and P be the energy and momentum of the 

fluid in a reference frame K. If we try to express the energy and 

momentum of the same fluid but in a moving frame K
/
, which has a 

relative velocity   with respect to a reference frame K, we have the 

following relations: 

                                                                                                             

   
|  |

 

  
 

 

  
|    |  

       
 

 
 | |                                                                                         

where  
|  |

 

  
 and M is the total mass of the fluid. 

We first consider a fluid at zero temperature, in which all particles are in 

the ground state and flowing along a capillary at constant velocity  . If the 

fluid is viscous, the motion will produce dissipation of energy via friction 

with the capillary wall and decrease of the kinetic energy. We assume that 

such dissipative processes take place through the creation of elementary 

excitation, which is the Bogoliubov quasi-particle for the case of an 

interacting Bose gas. Let us first describe this process in the reference 

frame K which, rather confusingly, moves with the same velocity v of the 

fluid. In this reference frame, the fluid is at rest. If a single elementary 

excitation with a momentum p appears in the fluid, the total energy of the 

fluid in the reference frame K is E0 + ε(p), where E0 and ε(p) are the 

ground state energy and the elementary excitation energy. Let us move to 

the moving frame K
/
, in which the fluid moves with a velocity   but the 

capillary is at rest. In this moving frame K
0 
which moves with the velocity 
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−  with respect to the fluid, the energy and momentum of the fluid are 

given, setting      in (2.5.2.2) and (2.5.2.1), by 

                    

                
 

 
                                                                

The above results indicate that the changes in energy and momentum 

caused by the appearance of one elementary excitation are          and 

p, respectively. Spontaneous creation of elementary excitations, i.e. energy 

dissipation, can occur if and only if such a process is energetically 

favorable. This means if the energy of an elementary excitation, in the 

moving frame K
0 

where the capillary is at rest, so that a thermal 

equilibrium condition is satisfied, is negative: 

                                                                                                            

The dissipation of energy occurs. The above condition is satisfied when 

| |  
    

| |
 and      , i.e. when the elementary excitation has the 

momentum   opposite to the fluid velocity   and the fluid velocity | | 

exceeds the critical value, 

       
    

| |
                                                                                                

where the minimum is calculated over all the values of p. If instead the 

fluid velocity   is smaller than (2.5.2.6), then no elementary excitation 

will be spontaneously formed. Thus, the Landau’s criteria of superfluidity 

is summarized as the relative velocity between the fluid and the capillary 

is smaller than the critical value,    . 

One can easily conclude that the weakly interacting Bose gas at zero 

temperature satisfies the Landau’s criteria of super fluidity and that the 
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critical velocity is given by the sound velocity. Strongly interacting fluids 

such as liquid 
4
He also fulfil the Landau criteria but in this case the critical 

velocity is smaller than the sound velocity due to the complicated 

excitation spectrum. It is easily understood that the critical velocity 

decreases with the decrease in the particle-particle interaction and 

disappears in the limit of an ideal gas because        
    

| |
     for 

    
  

  
.The particle-particle interaction is a crucial requirement in the 

appearance of superfluidity. 

2.5.2 Superfluidity at finite temperatures: 

Let us next consider a uniform Bose-Einstein condensed fluid at a finite 

temperature. We assume the thermodynamic properties of the system are 

described by the Bogoliubov quasi-particles in thermal equilibrium 

distributions. According to the above argument, no new excitations can be 

created directly by the condensate due to the motion of the superfluid with 

respect to the capillary. However, the quasi-particles are excited thermally 

and the fluid associated with the quasi-particles is not superfluid but 

normal fluid. These elementary excitations can collide with the capillary 

walls and dissipate their energies and momenta. Thus, we have the two 

fluid components at a finite temperature: a superfluid without viscosity 

and a normal fluid with viscosity. Collisions establish thermodynamic 

equilibrium in the normal fluid in the frame where the capillary is at rest 

(capillary frame). 

If the energy and momentum of the quasi-particle are ε(p) and p in the 

frame where the superfluid is at rest (superfluid frame), the energy of the 

same quasi-particle in the capillary frame becomes          where    is 

the relative velocity of the superfluid and the capillary. The Bogoliubov 

quasi-particles obey the thermal equilibrium distribution in the capillary 



33 
 

frame (not in the superfluid frame). Thus, the quasi-particle population is 

given by 

   
 

   [
         

   
]   

                                                                         

If           , i.e|  |      
    

| |
 the quasi-particle population Np is 

positive for all values of p. Therefore, we can conclude the coexistence of 

the two fluids becomes possible. Notice that the condition for the positive 

  ,        
    

| |
 is identical to the Landau’s criteria of 

superfluidity[15,16,17]. 
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Chapter Three 

Literature Review 

3.1 Introduction: 

Many attempts were made to modify Schrodinger equation to describe 

bulk matter [1, 17, 18, and 19]. Same of them uses the approach of 

complex many body problem [20, 21, 22], will some uses expression of 

energy in a frictional medium [23, 24, 25]. Some attempts link quantum 

laws with statistical physics and fluid or superfluid laws [26, 27,31 and 

41]. Some of these attempts are exhibited here. 

3.2 Potential Dependent Frictional Schrodinger Equation:  

By treating particles as harmonic oscillator is obtained the friction energy 

related to the momentum. The energy and the corresponding Newtonian 

operator is found. This result in a new Schrodinger equation accounting 

for the effect of friction. This new equation shows that the energy and 

mass are quantized, if one treats particles as strings. The radioactive decay 

law and collision probability is also derived [2, 9,24,36]. 

3.2.1 Schrodinger equation for frictional medium: 

According to Plank and de Broglie hypothesis the quantum quanta are 

treated as wave packets.  

Pure waves is a wave packet consisting of single wave having specific 

wave length .while a localized particle is a wave packet having a very 

large of interfering waves having different wave lengths . This means that 

any quantum system is a single or aggregate of oscillators. Moreover, 

according to string theory matter building blocks are treated as vibrating 

string. Motivated by all there hypothesis, the energy dissipated by fraction 
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can be derived consider now a fractional force    in terms of mass m, 

relaxation time   and velocity   to be 

   
  

 
                                                                                                                

Considering matter building blocks as oscillators 

     
                                                                                                                

Thus, the displacement is given by: 

  ∫      ∫       
  
  

     
 

  
                                                  

The total dissipative energy    is given by: 

   ∫      
 

   
∫    

   

    
 
     

   
 
  

  
(
 

 
   )

 
  

  
.
  

  
/                                                                                   

But according to Newtonian mechanics the total energy can be expressed 

in terms of the kinetic and potential energy V in the form  

      
  

  
                                                                                      

Thus according to Eq. (3-3-5) and Eq. (3-3-4)    is given by   

   
  

  
                                                                                                     

But using plank hypothesis the energy E is given by 

                                                                                                                     

In view of Eqs. (3.3.6) and (3.3.7) the frictional energy is given by 
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(
 

 
  )                                                                                                

Thus the Hamiltonian classical relation for a particle in a fractional 

medium is given by   

    
  

  
   

  

 
(
 

 
  )

 
  

  
   

  

 
(
   

 
)                                                         

Therefore 

   .
  

  
  /  

  

 
                                                                         

To find the Schrodinger equation corresponding to this relation multiplies 

both sides of Eq. (3-3-10) by   to get: 

    .
  

  
  /   

  

 
                                                               

Considering the wave function   

    
 
 
                                                                                                          

Hence  
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Similarly differentiating the wave function respect to x yields   

  

  
 

 

 
   

  
  

  
    

   

   
 

  

  
      

   
   

   
                                                                                                

Thus inserting Eqs. (3.2.1.13), (3.2.1.14) and (3.2.1.15) into Eq. (3.2.1.11) 

yields 

   
   

   
  .

  

  
    /   

  

  
 
  

 
(   

  

  
   ) 

   
   

   
   .

   

  
    /

  

  
 
  

 

  

   
 
  

 
              

3.2.2 Harmonic oscillator solution: 

To see how fraction force consider the solution of Eq. (3.2.1.12) in the 

form 
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A direct substitution in Eq. (3.2.1.16) gives  

       . 
  

  
      / (

   

 
)   

   

  
  

  
 

 
                                                                                           

Dividing both sides of Eq. (3.2.2.2) by f yields 

      . 
  

  
      /   

  

 
   

 

 
                                          

Dividing both sides of Eq. (3.2.2.3) by +E yields   

(  
  

 
)    

  

  
     (  

  

  
)  

 
  

  
                                                                                              

Where  

     
  

  
 

     
  

 
                                                                                                          

For harmonic oscillator one finds  

  
 

 
                                                                                                                 

Thus substituting this expression in Eq. (3.2.2.4) gives  
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Let now  

                                                                                                                       

Therefore equation (3.2.2.7) became  

 
  

  
    

 

 
   

                                                                                     

Thus substituting Eq. (3.2.2.5) into Eq. (3.2.2.9) gives   

     
  

 
 (  

 

 
)                                                                               

  (  
 

 
)   

  

 
                                                                                       

The frequency is given according to Eq. (3.2.2.8) and Eq. (3.2.2.5) to be  

        

    (  
  

  
)      

(  
  

  
)                                                                                              

Thus 

  .
   

 
  /

  

 

  

                                                                                      

From (3.2.1.12) and (3.2.1.13)  

   
   

 
 (  

 

 
)           
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  4  
 

    
 
 
 
5

 

  
                                                                                

Thus, from Eq. (3.2.2.14) one finds the mass is quantized 

3.2.3 Radioactive decay low and collision probability: 

Consider now Eq. (3.2.1.16) for constant potential  𝜊  

Using the separation of variables let the wave function Ψ be in the form  

                                                                                                    

A direct substitution of equation (3.2.3.1) in equation (3.2.1.16) gives  

    
   

   
 . 

  

  
     / (  

  

  
)  

  

 
     

  

 
 
  

  
 

Thus 

.    
   

   
 
  

 
    

  

 

  

  
/ 

 . 
  

  
     / (  

  

  
)                                                    

Divide both sides of Eq. (3.2.3.2) by fu to get    

(  
  

  
)
  

.    
   

   
 
    

 
  

  

 

  

  
/  

 

 
.
  

  
     / 

                                                                                                    

Taking the time part of Eq. (3.2.3.3) only gives   

   
   

   
 
    

 
  

  

 

  

  
     

  

  
                                                            

Consider the case when the potential vanishes   

                                                                                                                         

Hence  
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Consider now a solution   

     
 
 
  

 

  

  
  

 

 
   

   

   
 
  

  
     

  

  
                                                                                      

Inserting Eq. (3.2.3.7) in Eq. (3.2.3.6) yields 

    
  

 
       ( 

 

 
  )                                                                         

Dividing both sides of Eq. (3.2.3.8) by   gives    

   
  

 
                                                                                                       

Rearranging both sides of Eq. (3.2.3.9) gives   

   (   
  

 
)                                                                                                

Dividing both sides of Eq. (3.2.2.4) by E gives 

  (   
  

 
)                                                                                                    

Inserting Eq. (3.2.3.1) in Eq. (3.2.37) gives   

    
 
 
 
(   

  
 
 ) 

    
 
   

 
 
    

Hence  
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Since the probability and number of particles are given by   

  | |          
  
                                                                                

Eq. (3.2.3.13) is the ordinary radioactive decay low with   

  
 

 
                                                                                                          

i.e.  

     
                                                                                                              

This expression also gives collision probability p with   

                  

   
 

 
                                                                                                                   

To get 

     
 
 
                                                                                                              

Eq. (3.2.3.17) is the ordinary collision probability relation [47, 48, and 

49]. 

3.3 Quantum Schrodinger String Theory for  

Frictional Medium and Collision:  

Maxwell's equation for decaying wave due to friction, beside aclassical 

and quantum expression for oscillating string energyare used to derive a 

useful expression for particle energy in frictional resistive media. This 

expression is used to derive Schrodinger equation for oscillating string in 

resistive media. This new quantum reduces to the ordinary. Schrodinger 

equation in the absence of friction it also gives collision probability similar 
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to that obtained by transport equation. This new equation is used to derive 

an expression for energy lost by friction by the vibrating string. This 

energy is shown to be quantized [30,33,50]. 

3.3.1 Maxwell's Equations for Time Decaying Wave 

in Resistive Medium: 

Consider an electromagnetic wave enters a medium of  conductivity σ, and 

electric polarization Ṗ . Maxwell's equations  for this medium are given by  

           ⁄          ⁄      Ṗ    ⁄  (3.3.1.1) 

The electric field intensity decays in this case and can be described by the 

relation 

    
                                                                                                          

The corresponding displacement is given by 

     
               

  
  

                                                                           

The electric polarization terms is defined to be 

Ṗ        
  
  

                                                                                              

With the aid of equations           and           of equation  

          becomes 

   
   

 

  
 
  

  
     

      

  
     

 
         

  
                                                                                

Equation           can be simplified by using the relation 
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And by assuming 

                                                                                                                        

Where   is the speed of light in vacuum which is large. Thus  

equation           becomes 

       
      

  
           

  
  

                                                        

Comparing real parts on both sides of equation           yields 

            
  
  

                                                                                         

3.3.2 Friction Coefficient and Relaxation:  

It is quite natural to relate frictional coefficient    to the relaxation time τ. 

This due to the fact that by physical intuition are one can deduce that 

shorter the relaxation time, the bigger frictional coefficient. This can show 

also mathematics, by using the expression of energy dissipated by friction, 

which for oscillation particle is given by 

     
 

 
                                                                                                           

      
    

  
 

     

   
 

 

  
                                                                               

Where the effective displacement and velocity   , are related to the 

maximum displacement by A by  

   
 

√ 
            

  

√ 
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Where the classical energy of the oscillator is 

  
 

 
                                                                                                               

The oscillator frequency for classical and quantum system is the same. 

Thus one can write the quantum oscillator energy as 

                                                                                                                      

Thus inserting           in           yields 

   
  

   
 
 

 
                                                                                                     

3.3.3 Derivation of frictional Schrodinger equation on the basis of 

frictional energy equation: 

Ordinary Schrodinger is based on the postulates. The first postulate is 

related to the nature of micro particles. In this case the wave function takes 

the form 

                                                                                                                

Using the fact that  

        And                                                                                           

Therefore 

    
 
 
                                                                                                           

The second postulate is based on the classical expression of energy 

  
  

  
                                                                                                           

Using these tow postulates one can derive Schrodinger equation, where 
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Thus in three dimensions 

  
  

  
 

  

  
                                                                                            

The expression of energy Eqn.           in the presence of fiction is given, 

with the aid of equation           to be 

        
  

  
   

  

 
                                                                           

Multiply both sides by    one gets  

   
  

  
     

  

 
                                                                                   

But 

  

  
  

 

 
   

  
  

  
    

  

  
 

 

 
   

   

   
  

  

  
  

In three dimensions 
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Inserting Eqn.           in Eqn.          , one gets 

   
  

  
  

  

  
        

 

 
                                                                       

Which is the Schrodinger equation or resistive media. One can solve this 

to do let equation for harmonic oscillator  

                                                                                                               

Inserting in Eqn.           yields 

 
 

 

  

  
  

  

   
       

 

 
    

Hence  

  
  

  
                                                                                                             

For harmonic oscillator string vibrating in one dimension the potential is 

given by 

  
 

 
    

Thus Eqn.           reads 

 
  

  
    

 

 
     (    

 

 
)                                                     

This is the ordinary harmonic oscillator equation, with have quantized 

energy 

 

 (   
 

 
)                                                                                                     
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For Eqn.           one can suggest the solution  

                                                                                                                 

         

The periodicity condition requires  

                                                                                                            

Hence from Eqn.            

                        

                              

             

     
 

 
 
    
 

       

Eqn.              

                                                                                                                  

 In view of equation             

      
 

 
                                                                                                       

Using Eqns.                        and            yields 

(   
 

 
)         

 

 
 

 

 
 [        

 

 
 ]  [   

 

 
]  

     
(  

 
 )

 
    (  

 

 
)                                                                
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 The physical meaning of complex relaxation can be known from Eqn. 

            

      
 

 
       

Thus the energy lost due to friction is given by 

     
 

 
 (  

 

 
)                                                                                    

The minus sign indicates that the energy is lost by the particle. 

3.4 Quantum and Generalized Special Relativistic Model for 

Electron Charge Quantization:  

Explanation of electron self-energy and charge quantization is one of the 

challenging problems facing quantum electrodynamics. In this work one 

quantizes electron and elementary particles charges on the basis of 

electromagnetic Hamiltonian in a curved space-time at vacuum stage of 

the universe, using quantum spin angular momentum and Klein-Gordon 

equation beside generalized special relatively. Electron charge is found to 

be quantized and the electron self-energy is finite. The radius of the 

electron is also found [31,47,75]. 

3.4.1 Electromagnetic Hamiltonian in curved space time and vacuum 

energy: 

According general relativity (GR) any energy form cause space to be 

curved. Thus electromagnetic field can cause space to be curved. 

According to GR, the time-component of the metric is gives by 

     .  
   

  
/                                                                                         

Where   is the gravity potential per unit mass and is related to electric 

potential   and electron charge e through the relation [3.4.1.13] 
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Thus equation (3.4.1.1) becomes 

     .  
   

   
/                                                                                       

At early stage of the universe electric charge is generated due to the 

electromagnetic (e.m) field at vacuum stage. This requires minimizing the 

Hamiltonian (H) w.r.t electric potential   to find the electric charge and 

see how it is generated. Since the Hamiltonian part representing charge 

itself can be neglected as for as they are independent of   . The charge 

field interactions are neglected for simplicity. One also assumes electric 

charge to be at rest. This means that the magnetic field is not generated. 

Therefore 

                                                                                               

To find the Hamiltonian in curved space, one generalized the space one 

[3.4.1.14] [3.4.1.15]  

                   
                                                                                

To be written in a curved space in the form [3.4.1.16][3.4.1.17]  

     
              

                                                                                  

From equation (3.2.1.3) one gets 

  (   
   

   
 )

 

                                                                                      

Thus minimization condition requires: 

  

  
   (  

   

   
) (

  

   
)                                                                      

  
   

   
        

     

  
                                                                           

Assuming the mass energy to be resulting from electric field energy 

density    where        
  Inside electron of radius   , one gets 
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The vacuum energy potential which results from electric charge becomes  

       
  

       
                                                                                         

according to a vacuum energy potential which takes the form [3.4.1.18]  

     0.
    

  
   

 /    1

  

                                                                            

Thus combining Equations (3.4.2.10) and (3.4.2.11) yields 

  

       
 0.

    

  
   

 /    1

  

 

Thus the electric charge is given by  

  *(
    

  
   

 )    +
 
 

 
         

                                                                  

Setting to be equal to zero, for simplification. The electric charge is given 

by 

            
 

  
    

  
                                                                                      

r0 is the electron radius and x0  is the universe radius. Thus the electron 

radius can be found by assuming that the electron energy results from its 

spinning, where the spin angular momentum is given by 

    [      ]    
√  

 
                                                                           

Where for electron 
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At vacuum stage we choose minimums lower value. 

   
 

 
                                                                                                                 

Assume that rest mass is neglected in relativistic expression to get 

                                                                                                            

                                                                                                                     

The same relation can hold for Newtonian mechanics by considering wave 

nature of electrons, where the maximum velocity vm is related to the 

effective value v through the relations  

  
  

√ 
                                                                                                                 

By assuming 

                                                                                                                             

Thus the Newtonian expression for free particle takes the form 

  
 

 
   

      
    

 
 
  

 
                                                               

If one believes in relativistic energy mass relation, one gets 

      
  

 
 

Thus one gets: 

                                                                                                        

Since the momentum p is related to L according to the   
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It follows from equation (3.4.2.21) that 

  
  

    

Using equation (3.4.1.16) one gets 

   
  
  

 
 

   
                                                                                               

Substituting the values of h, m and c, the electron radius can be calculated. 

The electric charge is assumed to be born at very early stages of the 

universe where vacuum exist and the minimum radius is x0 where 

[3.4.1.18] 

                

The electric charge is numerically given by             . It can be 

obtained by adjusting the quantum numbers n and n0 to be 

 

  
 

 

  
[(

 

      
)
 

]                                                                                      

Similarly, the charges of quarks and charged leptons can be found by 

adjusting the quantum numbers n and n0  

Equation (2.4.1.10) shows that vacuum energy is repulsive due to the 

existence of positive sign. This can form with cosmological models, which 

suggests repulsive vacuum energy. Inflation models suggest also very 

large vacuum energy. If one believes in this model, such that  

  
  

  
 

  

 
                                                                                                    

In this case according to generalized special relativity model the electron 

mass is given by 
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    .  
   

  
/                                                                                 

Assume for simplicity 

                                                                     

From Equations (3.4.1.16), (3.4.1.21) and (3.4.1.22) the electron radius 

can be given to be  

   
 

   
 

 

    
 

          

                
 

                                                                                                    

Which is quite reasonable as far as nucleus or proton radius for very light 

atoms are  

                        

 

3.5 Classical Newtonian model for destruction of 

superconductors by magnetic field: 

Newton second law is used to describe the destruction of super 

conductivity for type 1 & type 2.The electron is assumed to be affected by 

external electric and magnetic field as well as the internal magnetic field. 

The conductivity and resistance depends on the internal as well as external 

magnetic field. For type 1 the super conducting state is destroyed when the 

external magnetic field exceeds the maximum internal field. For type 2 the 

superconductivity is destroyed partially in the region where the local 

maximum field is the lowest, and enters completely when the external 

field exceeds the maximum local internal field [32,58,77].  
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3.5.1 Classical Model to Describe Magnetic Destruction of Super 

Conductivity by the External Magnetic Field: 

The equation of motion of the electron moving inside matter under the 

action of external electric and magnetic field intensities E and density B is 

given by 

 
  

  
                                                                                            

Where    is the internal field since the electrons move with constant 

velocity, hence 

  

  
   

And 

                                                                                                         

Therefore the velocity is given by   

  
  

       
                                                                                                   

Thus the current density takes the form  

      
   

       
                                                                                       

Where n stand for the charge density. The conductivity   is thus given by 

  
  

    
                                                                                                           

  
      

  
                                                                                                      

Where the internal field can be written in terms of the field per atom as  
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   Here represents the magnetic field induced by one atom, while    

represent the number of diamagnetic atoms that induces magnetic field 

that opposes the external field B.  

The conductivity becomes zero in type I, due to the fact that the induced 

internal field density    increases and when the external flux density 

increases such that always    equals  ,  .    

                                                                                                                      

According to equations (3.4.1.5) and (3.4.1.6) 

                                                                                                                       

Thus the material becomes superconducting till all atoms    in a unit 

volume become magnetized. But when the external field B exceeds the 

maximum value 

   

                                                                                                              

i.e. when 

                                                                                                                    

In this case no more atoms can be magnetized to oppose and cancel . In 

this case 

  
  

     
                                             

  
     

  
                                                                                                 

And the whole superconductor becomes conducting 
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For type II superconductor, one can assume that there are regions where 

the densities of atoms are law and equals   . In such regions the increase 

of B increase    till 

                                                                                                                

When B is less than      

                                                                                                                      

And an equation (3.4.1.5) and (3.4.1.6) 

                                                                                                                               

                                                                                                                        

But when 

                                                                                                                               

  
  

     
                                                                                                          

  
     
  

                                                                                                  

And these regions become ordinary conductors, while other regions are 

still superconductors. The same hold for other regions with higher 

concentration than    . They become ordinary conductors, when B 

exceeds their local maximum internal field. This process continues till the 

external field enters regions where the densities of atoms are high and 

equals   . In this region the increase of B increases    till  

                                                                                                                    

In these case when 
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According to equations (3.5.1.5) and (3.5.1.6). But when 

                                                                                                                     

In this case 

  
  

     
                                                                                                          

  
     
  

                                                                                                  

Thus when the external field B exceeds     the SC becomes partially 

ordinary conductor in regions where the diamagnetic atoms have law 

density. Upon increasing  , such that 

                                                                                                                      

More regions become ordinary conductors, till all SC material become 

ordinary conductor when 

Thus for type II, one have two critical magnetic fields             

Another explanation may also explain the behavior of type II SC. This 

approach is based on assuming that the matter density is homogeneous but 

the magnetic field of atoms are randomly oriented such that the net 

magnetic field in some regions is the lowest and in gradually increases and 

attains its maximum value in another region. According to this model the 

increase of external field in the lowest    value increases    according to 

the Langevin equation 
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Where 𝑍0 is the number of electrons in the outer most sheet. By 

considering electrons moving in a circular orbit one gets the internal 

magnetic field in the form (here one assumes only outer most electrons 

can produce induced magnetic field)  

   
  

  
 
     
    

                                                                                         

The internal field    is given by  

   ∑                                                                                                               

This internal field increases upon increasing the external one, till the 

electron kinetic energy exceeds electron binding energy   ,.  .  

 
 

 
                                                                                                             

i.e 

  
 

 
√
   
 

 

The electron becomes free. In this case the electron will no longer revolve 

around the nucleus. Thus it cannot produce internal magnetic field. Thus 

the maximum produced atomic field is  

     
   

  
 

Where the maximum current produced is 

   
     

  
 

Where  
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√
   
 

 

Thus the internal field attains maximum value 

    ∑    

When B exceeds this maximum value in the region of lowest   , i.e. 

       

The resistivity will no longer vanishes according to equation (3.5.1.6), 

where  

  
      

  
   

The same hold for the region having maximum internal field value due to 

large orientation of magnetic field of atoms in the opposite direction of the 

external one. In such region the external magnetic field B is balanced by 

the internal one   , till electrons energy exceeds binding energy. 

 

3.6 Energy-Momentum Relation and Eigen Equations In a 

Curved Space Time:  

 Using the expression of time and distance in a curved space time a useful 

expression of energy and momentum Eigen equation similar to that is a 

curved space is found. These relations can be used to derive the 

corresponding relations in the Euclidean space. The corresponding on of 

Energy-Momentum relations for both curved and Euclidian space gives a 

relation between energy and momentum typical to that obtained from the 

energy and momentum Eigen equations. The expression of mass in a 

curved space is similar to that of the generalized relativity [33,71,76].   



61 
 

The energy within the framework of the GSR and SR are given by: 

    
      

       
   

                                                                                    

  
    

      
                                                                                                  

Where  0 is the ordinary SR energy. Thus the GSR energy  is given by  

     
    

                                                                                                            

The wave function in the curved space is thus   

     
 
 
                                                                                                          

Energy Eigen equation and time independent Schrodinger equation in the 

Euclidean space takes the form   

  
  

  
                                                                                                              

Also the momentum Eigen equation in the Euclidian space is given by 

 

 
   

 

 

  

  
                                                                                                  ) 

     
 
 
  √      √                                                                                                

Where 

    √            √                                                                     

Schrodinger equation in the curved space, where the time is denoted by  , 

can read  
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√     
 

  

√   
[ 

 

 
√     ]  

  

√   

  

  
 

 

√   
         

 
√   

√   
                                                                               

 

Thus  

  
  

   
                                                                                                               

But from (3) 

  
  

   
                                                                                                               

This is completely consistent with equation (3.6.8). Conversely from 

(3.6.6), (3.6.9) and (3.6.2)   

  
  

   
   

  

 √   
                                                                                              

 

  
  

  
 √                                                                                                    

   √                                                                                                              

The momentum Eigen equation for the momentum in Euclidean space 

takes the form 

 

 

 

  
                                                                                                            

In a curved space, the momentum Eigen equation becomes   
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With 

    √                                                                                                          

Thus  

 

 

  

√     
                                                                                                      

Thus, one can write   

 

 

 

  
  √                                                                                                    

Comparing this relation with (3.6.11) yields 

   √                                                                                                            

Where 

   √                                                                                                            

Thus equations (3.6.14) and (3.6.15.a) gives  

 

 

 

  
                                                                                                           

This is the ordinary momentum Eigen equation in the Euclidian space.  

The velocity in a curved space is define to be   

  
√    

√    

  

  
 
√    

√    
                                                                                    

But the momentum in a curved space and Euclidean   
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Using equation (3.6.15)   

       
                                                                                                                 

Thus 

        
                                                                                                         

  
√    

 √    
  
   

√    

    
                                                                          

Since in driving GSR, one assumes that 

                                                                                                                       

It follows that 

                                                                                                                  

But the mass in GSR is given by 

  
     

√    
  

  

                                                                                                  

For the mass at rest 

                                                                                                                                 

  
     

√   
 √                                                                                          

This relation is consistent with equation. 

To find the expression, which relates E to P in a curved space-time one 

uses the relation 
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    (
  

  
)  0       

  
 

  
1                                                                        

Thus 

             
       

 

√       
  
 

  

                                                         

But from (16) 

     
     

                                                                                                                  

  
      

  

√    
      

   
                                                                                           

    
      

       
   

                                                                                    

    
      

       
   

                                                                            

Setting 

  
      

   
      

                                                                                     

One gets 

  
   

      
                                                                                                      

However, when one replaces        in equation (3.6.23), one gets 

    0       
  
 

  
1

   

                                                                                  

As a result, energy becomes 
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√       
  

  

 
      

 

√    
        

     

    

                                               

 
      

 

√    
      

   

  

                                                                                                     

  
      

  

√    
      

   
                                                                                           

    
      

       
    

                                                                                  

    
      

       
    

                                                                          

By setting 

  
      

   
      

                                                                                             

      

 
        √                                                                              

One gets  

  
    

     
                                                                                                     

Where 

                                                                                                                 

Harmonic oscillator in a curved space: 

The Schrodinger equation in a curved space is given 

  
  

   
                

  

 √   
                                                                             

  
  

  
 √                                                                                            
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For harmonic oscillator in Euclidean space 

   (  
 

 
)                                                                                                   

                                                                                                                

For     

  

  
                                                                                                                     

     
 
 
     ( 

 

 
)
  

  
                                                                                         

     
 
 
  (  

 

  
)                                                                                           

This approximation is justifiable since 
   

   
                 

Which means that the total energy is the greater than potential energy. 

Thus equation (3.6.30) gives   

         
 
 
    (  

 

  
)                                                                        

  (  
 

 
) (  

 

  
)                                                                                           
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)    
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    (  
 

  
)    (  
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3.7 summary for other attempts: 

Similar attempts and some which are not related directly to this work was 

done by others [34, 35, and 36]. For example in the work done An O (N) 

algorithm is proposed for calculating linear response functions of non-

interacting electrons. This algorithm is simple and suitable to parallel- and 

vector- computation. Since it avoids O(N
3
) computational effort of matrix 

diagonalization, it requires only O(N) computational efforts where N is the 

dimension of the statevector. The use of this O(N) algorithm is very 

effective since otherwise we have to calculate large number of eigenstates, 

i.e., the occupied one-electron states up to the Fermi energy and the 

unoccupied states with higher energy. The advantage of this method 

compared to the Chebyshev polynomial method recently developed by 

Wang (L.W. Wang, Phys. Rev. B 49, 10154 (1994);L.W. Wang, Phys. 

Rev. Lett. 73, 1039 (1994) ) is that our method can calculate linear 

response functions without any storage of huge statevectors on external 

storage. etal [47,49,57]. 

Also another work was done by with the use a variant of the method of 

separation of the method of separation We analyze the quantum dynamics 

of radiation propagating in a single mode optical fiber with dispersion, 

nonlinearity, and Raman coupling to thermal phonons. We start from a 

fundamental Hamiltonian that includes the principal known nonlinear 

effects and quantum noise sources, including linear gain and loss. Both 

Markovian and frequency-dependent, non-Markovian reservoirs are 

treated. This allows quantum Langevin equations to be calculated, which 

have a classical form except for additional quantum noise terms. In 

practical calculations, it is more useful to transform to Wigner or +P 

quasi-probability operator representations. These result in stochastic 

equations that can be analyzed using perturbation theory or exact 
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numerical techniques. The results have applications to fiber optics 

communications, networking, and sensor technology. etal [38,49,70]. 

A useful work was also done by With the use of a variant of the method of 

separation of variables, the initial value problem for the time-dependent 

linear Schrodinger¨ equation is solved exactly for a large class of potential 

functions related to multisoliton interactions in the vector nonlinear 

Schrodinger¨ equation. Completeness of states is proved for absolutely 

continuous initial data in L1. Copyright © 1998 Elsevier Science B.V etal 

[41,61,65],   

A new approach was also faceted by A new method is presented for the 

solution of the time dependent Schrodinger equation, expressed in polar or 

spherical coordinates. The radial part of the Laplacian operator is com- 

puted using a Fast Hankel Transform. An algorithm for the FHT is 

described, based on the Fast Fourier Transform. The accuracy of the 

Hankel method is checked for the two- and three-dimensional harmonic 

oscillator by comparing with the analytical solution. The Hankel method is 

applied to the system H + H, with Delves hyperspherical coordinates and 

is com- pared to the Fourier method. 6 1985 Academic Press, Inc.  etal 

[43,55,59,62] . 
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Chapter Four 
The model of fluid and lasing equations from quantum 

and statistical equation: 

4.1 Introduction:  

In this chapter quantum expression for the wave function in a frictional 

medium has been used to derive statistical physical laws, beside fluid 

laws. This link makes possibility to describe super fluid behavior. 

(4.2) New Maxwell Quantum Distribution law and new 

Energy relation for particle in a medium:  

Schrodinger equation for particle in a finite media with uniform potential 

was solved. 

 The solution which is based on the fact that the particle exists gives 

complex and cosine wave function with energy relations different from 

that of the ordinary sine solution. 

Maxwell distribution law has been also found using the expression for the 

wave function in a frictional medium, quantum energy average and 

integration by parts, another approach has been tackled using the general 

expression for quantum average and the ordinary differentiation 

 Keywords: Schrodinger equation, finite medium, Maxwell quantum 

distribution, friction. 
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4.3Quantum and statistical laws to derive fluid and lasing 

equations: 

The equation of motion of a particle moving in a field of potential V and a 

frictional medium with relaxation time T is given by : 

  
  

  
    

  

  

  

  
  

  

  
  

  

  
 
 

 
                                                     

Considering the practical as vibrating string  

     
     

                                                                                                               

Thus: 

m∫      ∫   
 

   
∫      

 

 
m  =   +

 

    
                                                                                                  

Sine the kinetic energy oscillator is k=
 

 
    and the potential energy is 

V=
 

 
    

 

 
    

 

 
    

 

 
                                                            

On the other hand equation (3) yields 

    
 

   
                                                                                              

This constant of motion is the total energy E of the system, which takes 

the form 

      
  

  
    

  

  
                                                                                  

Where the non-frictional energy takes the form 

                                                                                                           

Thus 

E=    
  

  
     

   

  
                                                                                  

IF the relation time is assumed to be proportional to the periodic time T, 

such that T=τα   

It follows that E=    
 

  
                              



72 
 

Therefore 

 E=
  

  
                                                                                                       

For particle in a box Schrodinger equation in a frictional medium is given 

by: 

  
  

  
   

  

  
                                                                            

Where   the potential barrier and T is a relaxation time .sing the method 

of separation of variables one can write: 

φ                                                                                                  

A direct substitution in equation (4.3.11) gives: 

   
  

  
 2   

  

  
            3    

Rearranging gives 

 
 

 
 
  

  
            

  

   
                                                                  

 

 
 
  

  
                                                                                                

  
  

  
                                                                                                 

The solution of equation (4.3.14) can be given by : 

     
 
   
     

 
 
 
             

    
        

 
 
                                                                        

Two possible solutions can be suggested for equation (4.3.15). In one of 

them  

                                                                                                                  

To get :   
  

  
              τ  √

    

  
 

√     

 
                                           

For a one dimensional box of length L just outside the box  

| |  | |                                                                                                       
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Thus :       τ      

Using (18) gives     
    

  
 

      

    
                                                              

   
    

    
                                                                                                                      

The other solution of equation (4.3.15) can be  

      
                                                                                                              

This with the aid equation (4.3.15), gives: 

  

  
         

This solution with be consist with the first solution and gives the same 

energy relation when are assumes that the probability is equal are at the 

bound any just inside the box at (     

i.e.  

        
                                                                                   

Which requires: 

           

                                                                                                                  

This requires: 

τ                   τ  
   

 
                                                                      

 Thus according to equation (4.3.18) equation (4.3.16) gives 

      
    

       

  
  

   
    

    
                                                                                                               

This equation is not completely conforming to equation (4.3.22), the full 

complete agreement requires rewriting (4.3.11) by suggesting  

τ                                                                                                                    

Which also satisfies equation (4.3.27) to get again: 
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 Another boundary condition can be obtained by suggesting that at the 

boundary just inside the box (medium) the probability of finding the 

particle inside the box is finite and is equal to   . This requires  

 |    |        

       √                                                                                                            

Thus:            
                                                         

             √      ,          
√  

  
     ,                     ,      τ        

This requires: 
√  

  
                                                                             

Where for  

                                          

And for 

                                                                                                     

   

This requires  

    √                                                                                                              

This means that   is real and is given by  

                                                                                                                  

But this is not consistent with the solution  

 =                                                                                                                    

Since they give different probability distributions. To have solutions 

typical to each other consider  

                                                                                                                

This satisfies 

|    |                                                                                                              

And gives also           

                  √                                                                               

This means that  
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                                 √                                                               

This requires 

                                      √                                                               

             

  
   

 

 
   

 
                                                                                                             

Which gives the energy in the form 

   
   

 

 
    

    
                                                                                                          

Another solution based on the existence of particles inside the box can be 

suqqested by assuming  

                                           

                                                                                                        

  Inserting this expression in equation (4.3.15) gives  

  

  
                           

√    

 
                                                                     

Since just inside the box at (x=L) the box at       the box the particle 

exist, it flows that  

|      |  |       |
                                                                         

Which means that the probability of existence of the particle is     . One of 

the possible solution is to suggest  

               √         ,       √                                                      

                                                                                                                    

                                                                                                                    

According to equation (4.3.4)  
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 √    

 
         ,           

    

    
                                                                    

This solution gives the same energy from as that proposed by the 

exponential solution with real wave function shown in equation        , 

(4.3.27) {see equation (4.3.27)} In view of equations (4.3.12), (4.3.16) and 

(4.3.23) the wave function in excited state takes the form  

     
                                                                                                          

Where the collision for time   cause it to go in energy to be in an excited 

state with energy E and    

  
            

 
                                                                                                                   

Here one assumes that all particles are in the ground state with    

         

Thus when they are excited their energy is. Can write the wave function 

as: 

                                                                                                                    

Where                                                                                                           

      
                                                                                                              

  
∫      
 

 

∫     
 

 

 
| | ∫  

 

 
       

| | ∫      
 

 
  

                                                         

Using the identity: ∫       ∫                                                         

With: 
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∫           
 

  
     

 

 
| 
 
 

 

  
∫        
 

 
   

  
    

  
 

    

  
 

 

   
     | 

 
  

       
 

   
{       }  

 
 

   
                                                                                                                        

Also: 

∫          
 

  
     | 

 

 

 
  

  
 

  
{       }  

 
 

  
                                                                                                                         

Thus: 

 ̅  
  

   
 

 

  
                                                                                                     

In view of equation (4.3.53) the wave function takes the form  

    
 
 
  ̅                                                                                                             

Thus the number of particle are given by  

    ̅      
 

 ̅  

    
                                  

 ̅
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The statistical laws can also be found by using equation (4.3.56) to get  

 ̅  
∫  ̅    
 

 

∫  ̅   
 

 

 
∫     
 

 

∫    
 

 

 
∫     
 

 

 
                                                   

Where: 

  ∫    
 

 

                                                                                                          

But one can write equation (4.3.64) in the form: 

 ̅  
    

   
 

    

  

  

   
 

 

 

  

   
                                                                                

This means that {compeer (4.3.64) and (4.3.66)} 

  

   
 ∫                                                                                                            

But from (4.3.66)       ∫     ∫  ̅    

    ∫  ̅               ,              ∫  ̅           ∫  ̅     

     
∫  ̅                                                                                                           

For constant  ̅  

     
   ̅                                                                                                              

When all values are near the average value  

     
                                                                                                                

But from (4.2.64): 

  ∫
  

  
   ∫                                                                                         
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Thus from (4.3.70) and (4.3.71): 

  
  

  
 
  
  

                                                                                          

But from (4.3.66) and (4.3.70) 

 ̅  
 

 

  

   
 
 

 
                                                                                           

Hence from (4.272): 

     
 

 ̅                                                                                                                

Another approach is based on defining [see (4.3.67)] 

  

   
   ∫     

 

 
∫     ∫

  

   
          

This means that: 

  

   
 
 

 
                                                                                                               

From (4.3.72) and (4.3.75) 

  

  
  

  

   
                                                                                                           

Thus 

 

 

   

  
 
  

  
                                                                                                           

From (4.3.75): 

  
  

  
 

  

(
  

   
)   
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∫
  

 
 ∫          

       ∫      

      ∫        
∫                                                                                     

Assuming   to be independent of    , one gets: 

     
                                                                                                                

Thus: 

   
  

   
  

  

  

  

   
      

   (
 

 
)  

     
   

 
                                           

                                                                                                                 

4.4 String model To Derive Continuity and Momentum Fluid 

Equations from Quantum and Maxwell Distribution Laws 

and Lasing Process:  

    Using Maxwell distribution Quantum law, and the Newtonian energy 

relation continuity and momentum fluid equation was done by 

differentiation the number density with respect to time and to coordinate. 

The momentum equation derivation requires the coefficient of the energy 

in the exponential power is equal to the thermal kinetic energy. This 

conforms with the statically value proposed by Maxwell distribution but 

with a positive sing. 

This number density function can successfully describes lasing. This is 

since it predict population inversion and intensity of amplified light. 

Key words: Maxwell statistical distribution, energy, continuity equation, 

momentum equation, Fluid, Energy. 

4.5 String Model for Fluid Equations and Lasing: 
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Consider the particles as small vibrating strings with kinetic and potential 

energies given by  

   
 

 
   

                                                                                                                 

   
 

 
   

  
 

 
     

                                                                                         

Where the effective values are related to the maximum valves according to 

the relations  

   
 

√ 
       ,       

 

√ 
                                                                                                      

Since                                                                                                      

                                                                                        

                                                                                                                    

Thus:  

  
  

  
 

 
 
    

 

 
     

                                                                                 

  
  

  
 

 
                                                                                                                  

From equations (4.5.1) and (4.5.2):  

 

 
    

 

 
     

                                                                                            

Thus the total energy E is given to be  

            
                                                                         

One can also treat strings as subjected only to kinetic force such that its 

energy is related to the maximum velocity,  

  
 

 
   

                                                                                                             

Where m is the mas and    is assumed to represent the maximum 

velocity, such that the average velocity is given by: 

  
  

√ 
                                                                                                                    

Hence from (4.5.11) and (4.5.12) one can write the energy to be given by: 

       (  
    

    
 )                                                                        

Since the momentum   is given by: 
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Thus one can write 

                                                                                                            

In the x – direction  

     
                                                                                              

Now multiply both sides by the Quantum expression for the particle 

density for resistive bulk matter which is given by: 

                                                                                                               

To get  

                                                                                                                    

Thus    
  

  
      

   
  

 
 
  

  
                                                                                                        

   

  
  

  

  
   

  

  
                                                                                           

  

  
                                                                                                                    

Here one assumes in (4.5.17) that        is independent of coordinates 

thus  
  

  
   

  

  
             

  

  
                                                                               

Thus equation (4.5.22) and (4.5.10) beside (4.5.11) gives  

   

  
                                                                                                              

Since the matter density   is given by 

ρ                                                                                                                      

And assuming uniform fluid particles with constant mass m equation 

(4.5.19), (4.5.23) and (4.5.18) gives 

 
 

 

  

  
 
 

 

   

  
                                                                               

 

 

   

  
 
 

 

  

  
                                                                                                  

For: 

                                                                                                                           

One gets the continuity equation  

   

  
 
  

  
                                                                                                              

The momentum equation can be derived also from number density 

expression of Maxwell distribution   
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Where the mass density is given by   

              
                                                                                 

Where the energy is given by  

  
 

 
    

                                                                                                       

And  

  

  
 
  
 
 
   

  

  
 
  

  
                                                                                         

But from (4.5.29) 

  

  
     

  

 
2. 

  
 

 
    

 

  
  

  

  
/3                                                                     

  

  
   ,

 

 
  
   

  
 

 

 
 
   

 

  
 

  

  
-  

 ρ ,
 

 
  
   

  
    

   

  
 

  

  
-                                                                                                                            

Since the force F is real ted to the potential according to the relation: 

   
  

  
                                                                                                              

Rearranging (4.5.23) gives: 

{
 

 
 

 

 
   

 }
  

  
    

    

  
                                                                             

     
    
  

 
    
  

  

  
   

    
  

                                                                             

By using the laws of statistical physics: 

 

 
    

 

 
   

                                                                                                   

Thus equation (4.5.35) gives: 

   
   
  

  
  

  
                                                                                            

If one assumes that: 

   
  

 
   
  

                                                                                                            

Then equation (4.5.38) gives: 

ρ  
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Which is the ordinary momentum fluid equation .Another more direct 

approach can be obtained from equation (4.5.28) to get: 

        
                                                                                                    

Where that total differentiation ω        gives: 

  

  
     

  
  

  
   

  

  
                                                                               

Using the expression (4.5.20) 

  

  
 
  

  
 

 
  

 
  

  
                                                                                              

   
  
 

 
 

  
 

 

 
  
   

  
    

   

  
 

 

 
  
   

  
  

  

  

   

  
 

 

 
  
   

  
 

 
   

  
                                                                                                                        

Assuming that the potential depends on x only: 

  

  
 
  

  
                                                                                                       

Inserting (4.5.44) and (4.5.45) in (4.5.43) 

  

  
 
 

 
  
 
  

  
  

   
  

                                                                                 

With the aid of equation (4.5.46) equation (4.5.32) give: 
 

 

  

  
 

 

 
   

   

  
   

   

  
        

( 
 

 
 

 

 
   

  
  

  
   

   

  
                                                       

 

Thus  

    
 

 
 = 

 

 
   

      ,      
   

  
                                                                               

A third approach can also be tackled by differentiating (4.5.41)       (t) 

 To get: 

  

  
    

  

  
                                                                                                    

In view of equation (4.5.30) 

  

  
 

 

 

    
 

  
   

  

  
    

   

  
 

  

  

  

  
 

 

 
  
   

  
   

=    
   

  
 

 

 
  
   

  
   

  

  
                                                                             

Inserting (4.5.50) in (4.5.49) gives  
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  ,   

   

  
 

 

 
  
   

  
   

  

  
-  ,

 

 
 

 

 
   

 -
  

  
    , 

   

  
 

  

  
-                                                                                                                             

One of the possible solutions is to set  

 

 
 
 

 
   

                                                                                                      

Thus equation (4.5.51) gives  

 
   
  

   
  

  
   

  

  
                                                                              

Which again represents the ordinary fluid momentum equation, according 

to equation (4.5.28) the light intensity is given by: 

                    
                                                                       

Thus at ground state (E=0)  

                                                                                                                         

But at excited state                                                                     

Thus population inversion takes place. If one assumes that at ground state 

the energy is only due to potential part. Thus state the energy is only due 

to potential part. 

 Thus                                                                                                              

If it collide and gain kinetic energy: 

     
 

 
                                                                         

Thus from (4.5.28): 

    
  
         

   
                                                                                    

Where:           ,                

  
 

 
                                                                                                                      

This means that   at excited state increases with life and relaxation time in 

  which agrees with laser theory. 
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4.6 Discussion: 

Using the equation of motion of a particle in a frictional medium in 

equation (4.3.1) a useful expression for energy of string in a frictional 

medium was found in equation (4.3.8). This expression is used to find 

Schrodinger equation (4.3.11) in a frictional media. Using separation of 

variables for particle in a box subjected to constant potential the 

expressions of the wave functions were found in equation (4.3.16) and 

(4.3.17). Assuming that just outside the bulk matter (the box) no particles 

exist (see equation (4.3.20)). The energy is shown to be quantized, in this 

approach the spatial wave function. One can use an exponential spatial 

wave function to find the same energy expression by assuming that just 

inside the bulk matter the practical exists as shown by equations (4.3.24) a 

new energy expression (4.3.27) is found by assuming   to be real. The 

same expression in (4.3.50) can be obtained it   is a cosine function as 

shown by equation (4.3.44).However it   is imaginary as equation (4.3.37) 

shows another  energy quantization expression is found in equation 

(4.3.43).  

The statistical distribution Maxwell equation can be found by using the 

wave function (4.3.53) for frictional media. Using the quantum average 

(4.3.56) 

The number of particles was found in equation (4.3.63) by using 

integration by parts. Another useful expression for Maxwell distribution 

was found use ordinary differentiation and the quantum expression for 

average physical quantity in (4.3.64) to get the number of particles in 

equations (4.3.63) and (4.3.81). 

When deriving continuity equation deals only with the relation between 

the changes of fluid density with its motion. Thus the kinetic term is 

important and one can ignore the role of potential energy. This is done by 

assuming that particles as in the form of strings. In this care the potential 

energy effective value is equal to the effective value of the kinetic energy 

as shown by equation (4.5.9). Thus equation (4.5.10) gives the total 

energy, in terms of the kinetic energy. Another typical energy from can be 

also found by assuming the string energy to be purely kinetic and related 

to the maximum velocity as shown by equation (4.5.11). The energy 

relation (16) resembles (4.5.11). 
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Treating strings as travelling quantum waves moving in a medium , the 

number density is given in equation (4.5.17) as function of energy and 

momentum differentiating this expression       space and time the 

ordinary continuity equation (4.5.27) for the fluid has been found . On the 

other hand the Maxwell distribution law was derived by some of this paper 

authors from quantum wave function. This expression (4.5.28) is used to 

derive the fluid momentum equation. This is done by using Newtonian 

energy density equation (4.5.31) , then multiplying both sides by   to find 

matter density (see equation (4.5.29) .A direct differentiation of the matter 

density partially        (see equation (4.5.33)) .gives fluid momentum 

equation (4.5.40) This requires the parameter   to be equal to the kinetic 

thermal energy as shown by equation (4.5.37) .this conforms with what 

proposed in statistical physics . the same results can be obtained by 

differentiating the matter density         to   and   totally as shown by 

equations (4.5.48) and (4.5.53) .In all cases , equations (4.5.37) , (4.5.48) 

and (4.5.52) shows that the parameter   is equal to kinetic thermal energy . 

these results agree with that proposal by statistical mechanics . 

However the distribution law in this model has exponential coefficient 

with a positive sign, which is a like that of Maxwell with a negative sing. 

But for fortunately this relation can describe light amplification and lasing 

process. This is very clear from equation (4.5.55) and (4.5.56), where the 

number of particles in the excited state is larger than the number in the 

ground state. This means that population inversion takes place. 

The intensity relation in equation (4.5.54) and the number expression 

(4.5.59) show also that the light intensity increases when the life time of 

metastable state increases. This again agrees with the laser theories. 
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(4.7) Conclusion: 

The probability distribution for particle in a box or a medium with 

constant potential was found for complex wave function as well as cosine 

wave function using the fact that the particle exists inside the medium. 

This gives new different probability distribution and different energy 

relations. The Maxwell distribution was found also by using wave function 

for frictional medium and quantum average as well as integration by parts. 

The same distribution was found by using the quantum energy average and 

ordinary differentiation laws. 

Using quantum laws and statistical physical laws continuity equation and 

momentum were derived. A new statistical law capable of describing 

lasing process was also obtained. 

It is very interesting to note that the fluid equations being derived from 

quantum and statistical physics laws and being free from frictional term 

can suitably describe super fluids.  
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