
 الرحيم الرحمن الله بسم

Sudan University of Science &Technology 

College of Graduate Studies 

College of Computer Science and Technology 

 

 

 

Evaluation of Code Quality in Web Pages using Software 

Testing Tools  

اراختب أدوات الويب باستخدام صفحات البرنامج في جودة يمتقو  

البرامج   

 

Prepared by: 

Maaza Eldaleel Mustafa Eldaleel 

Supervisor 

Dr. Mohamed El-Ghazali Hamza Khalil 

       

A Thesis Submitted in Partial Fulfillment of the Requirements 

for the Degree Master of Computer Science  

 

 

November 2019 

 

http://taoxie.cs.illinois.edu/publications/icws07.pdf
http://taoxie.cs.illinois.edu/publications/icws07.pdf


 

 

Declaration 

 

I hereby declare that the work reported in this M.Sc. thesis titled as “An Evaluation of 

Test Coverage Code Quality Tools and Response Analysis in Web Pages” submitted 

at the Master of Science degree in Computer Science, is an authentic record of my 

work carried out under the supervision Dr. Mohammed Elghazali Hamza. I have not 

submitted this work elsewhere for any other degree. 

________________________  _____________________________ 

Maaza Eldaleel Mustafa Eldaleel  Dr Mohammed Al-Ghazali Hamza 

---------------------     Supervisor 

i.  



Acknowledgement 

 

I would first like to thank my thesis advisor Dr. Mohammed Elghazali Hamza Khalil 

of the Faculty of Computer Science at Sudan University of Science and Technology. 

The door to Dr. Elghazali office was always open whenever I ran into a trouble spot 

or had a question about my research or writing. He consistently allowed this research 

to be my own work, but steered me in the right direction whenever he thought I 

needed it. 

 

ii.  



Abstract 

 

Continuous improvement is a key factor for survival in today’s turbulent business 

environment. Correspondingly, in today’s business world, software is everywhere. In 

the whole process of software development, testing is a phase that is often forgotten. 

Everybody assumes that once the software is developed, it will work flawlessly. 

However, it often happens not to be so. Moreover, when it does not, we are all 

unsatisfied and frustrated. Problems with software are a frequent occurrence, but only 

a few people address them in their product. The problems caused by a bad code 

quality vary from bugs to project delays and in general cause issues with the project 

timeline and budget. Furthermore, software testing has come to play a vital role in the 

success of the business, it makes sure that the application’s performances are 

adequate and the customers are satisfied with it. When the delivered product is of 

quality, it helps in gaining the confidence of the customers. Through a load testing 

using webload and apache JMeter tools on a number of websites such as( Apple.com) 

and site from own design (pstore.com), interactive social site (noonpost.com), 

number of performance measurements based on the analysis results of the two tools 

were evaluated. This research presented also automated unit testing to provide 

dependable, periodic feedback to project developers. Constant feedback allows them 

to correct code as part of the development process and it reduces the checking time.   

 

 

 

 

 

 

iii.  



v 
 

صلستخالم  

 

 الآن أصةب  ، بالمثةل .اليةم  المضةررب  الأعمةا  بيئة  في للبقاء رئيسي المستمرعامل التحسين

 رعة  ، بأكملهةا البرمجيةا  ترةمرر عملية  فةي. مكةان كةل فةي البةرام  ، اليةم  الأعمةا  عةالم يف

 رعمةل مفس ، البرنام  ترمرر بمجرد أنه رفترض الجميع. نسيانها رتم ما غالبا   مرحل  الاختبار

 جميع ةا فإننةا ، ذلةك علة  عةوو . أخرةاء الأحيةان مةن كثيةر في رح ث ، ذلك ومع. عيمب ب ون

ا البةرام  مشةكو  تعة . ومحبرين راضين غيرنكمن  ا أمةر   مةن فقة  قلةيو   عة د ا لكةن ، متكةرر 

 . برامجهم في رعالجمنها الأشخاص

 وفةي المشةرو  تةأخيرا  إلة  الأخرةاء مةن الكةمد السةيء جةمد  عةن الناتج  المشكو  تختلف

 أصةب  ، ذلةك علة  عةوو . والميزانية  للمشةرو  الزمني لج و با مشاكل تتعلق العام  القضارا

ا رلعب البرمجيا  اختبار  وأن كاف   التربيق أداء أن رضمن فهم ، الأعما  نجاح في حيمر ا دور 

 فةةي رسةةاع  فإنةةه ، د الجةةم عةةالي تسةةليمه تةةم الةة   المنةةت  ركةةمن عنةة ما. عنةةه راضةةمن العمةةوء

 .العموء ثق  اكتساب

 مماقةع من ع د عل  apache JMeter و webload وا أد باستخ ا  الحمل اختبار خو  من

 الاجتمةةاعي والممقةةع ،تصةةميمي  مةةن ( pstore.com)  والممقةةع(Apple.com)مثةةل المرةةب

 تةةم الاداتةةين حليةةلت نتةةائ  إلةة  اسةةتناد ا الأداء قياسةةا مةةن  عةة د ،( noonpost.com) التفةةاعلي

 .هاتقييم

ةةا البحةة  هةة ا قةة    عليهةةا الاعتمةةاد رمكةةن ،دوررةة  تعليقةةا  لتةةمفير الآلةةي المحةة   اختبةةار أرض 

 مةةن كجةزء البرمجية  التعليمةا  تصةحي  المسةةتمر  الموحظةا  لهةم تتةي . المشةرو  لمرةمر 

 .الاختبار وقت وتقليل الترمرر عملي 

 

 

 

 

iv.  



vi 
 

v.  

TABLE OF CONTENTS 

Declaration ...................................................................................................................... vi  

Acknowledgements......................................................................................................... vi 

Abstract............................................................................................................................vi 

Table of contents ........................................................................................................... .vi 

List of figures ..................................................................................................................ix  

List of tables ...................................................................................................................xii 

List of abbreviation........................................................................... ………..................vi 

Chapter ONE...................................................................................................................1 

INTRODUCTION............................................................................................................2 

Overview...........................................................................................................................2 

1.1 Background of Research.............................................................................................3 

1.2 Problem Statement .....................................................................................................4  

1.3 Research questions......................................................................................................5 

1.4 Objectives....................................................................................................................5 

1.5 Scope of Research.......................................................................................................5 

1.6 Proposed solution........................................................................................................5 

1.7 Outlines the research ..................................................................................................5 

Chapter TWO.................................................................................................................6 

Literature Review.............................................................................................................6 

2.1 Introduction ...............................................................................................................7 

2.2 Continuous Integration...............................................................................................7  

2.3 Attributes of Good Code Quality..............................................................................8 

2.4 Dynamic Testing.........................................................................................................9  



vii 
 

2.5 Unit Testing................................................................................................................10  

2.6 WebLOAD Professional.............................................................................................10  

2.7 CI test.........................................................................................................................12  

2.8 Related Work .............................................................................................................12  

2.9 Summary.....................................................................................................................17 

Chapter THREE.............................................................................................................18  

3.1 Introduction.................................................................................................................19 

3.2 Research Methodologies and Software tool use..........................................................19  

3.2.1 Load test …………………………………………………………………………..20 

3.2.2 ApacheJMeter ………………………………………………………………........20 

3.2.3 Unit testing using Jasmine.......................................................................................22 

3.3 Summary....................................................................................................................22 

Chapter FOUR..............................................................................................................23  

4.1 Introduction.............................................................................................................. 24 

4.2 Performance testing with WebLOAD Professional…..............................................24 

4.2.1 First site https://www.apple.com/...........................................................................24 

4.2.2 Second site http://www.noonpost.com/.................................................................33 

4.2.3 Third site https://maazamustafa.webhostapp.com/Project/Project.........................42 

4.2.4 WebLOAD Cloud(Web Dashboard in earlier versions)....………………………47 

4.2.5 Jenkins Plugin CI test (Jenkins Plugin).........……………………………………48  

4.3 ApacheJMeter...……………………………………………………………………50 

4.4 Unit testing using Jasmine…………………………………………………………58 

4.5 Summary..................................................................................................................58 

 

vi.  

https://www.apple.com/


viii 
 

Chapter FIVE …..........................................................................................................59  

5.1 CONCLUSION..………………………………………………………………….60 

5.2 RECOMMENDATIONS FOR FURTHER RESEARCH….…………………….61 

       REFERENCE…………………………………………………………………….62 

       Appendix A……………………………………………………………………….66 

      Appendix B..………………………………………………………………………71 

       

vii.  



ix 
 

List of Figures 

 

 
2.1 Welcome to Webload 11 

3.1 Block diagram and Research method 19 

3.2 The workflow of JMeter stages 21 

3.3 Home screen Apache Jmeter 21 

4.1 Agenda for (apple.com) and Page View 25 

4.2 Agenda for(apple.com) and Javascript View 25 

4.3 Log Window (apple.com) 26 

4.4 Session Tree and default report with measurement type 

(apple.com) 

26 

4.5 Default Report (apple.com) 27 

4.6 Statistics Reports (apple.com) 27 

4.7 Dashboard (apple.com) 28 

4.8 Integrated Report (apple.com) 28 

4.9 measurement type (apple.com/) 29 

4.10 Dashboard (apple.com) 29 

4.11 WebLOAD Analytics Screen (apple.com) 30 

4.12  Log Summary, Tabular Data (apple.com) 30 

4.13 WebLOAD Analytics User Interface (apple.com) 31 

4.14 

4.15 

Transaction Counters (apple.com) 

HTTP Responses(apple.com) 

31 

31 

4.16 Agenda for(noonpost) and Page View 33 

viii.  



x 
 

4.17 Agenda for(noonpost) and Javascript View 34 

4.18 Log Window (noonpost) 34 

4.19 Data Drilling Report(noonpost) 35 

4.20 Statistics Reports(noonpost) 35 

4.21 Dashboard (noonpost) 36 

4.22 Integrated Report(noonpost) 36 

4.23 Performance Summary(noonpost) 37 

4.24 HTTP Responses (noonpost) 38 

4.25 Log Summary, Tabular Data (noonpost) 39 

4.26 Page time (noonpost) 39 

4.27 Session Summary(noonpost) 40 

4.28 Statistics based on response time and hits per second(noonpost) 41 

4.29 Agenda for(pstore) and Page View 42 

4.30 Agenda for(pstore) and Page View 42 

4.31 Log Window (pstore) 43 

4.32 Transactions Dashboard(pstore) 43 

4.33 Data Drilling Report(pstore) 43 

4.34 Statistics Reports(pstore) 44 

4.35 Dashboard (pstore) 44 

4.36 Integrated Report(pstore) 45 

4.37 Session Summary(pstore) 46 

4.38 Statistics based on throughput and errors(pstore) 47 

4.39 Dashboard Components 47 

ix.  



xi 
 

4.40 Execute WebLOAD session 48 

4.41 Generate WebLOAD Analytics Report 48 

4.42 Output of plugin WebLOAD 49 

4.43 Badboy software to record script(apple.com) 50 

4.44 Badboy software to record script(noonpost.com) 50 

4.45 Badboy software to record script(pstore) 51 

4.46 export script in Jmeter 51 

4.47 Create HTML Dashboard Reports from the command line 52 

4.48 Apache JMeter Dashboard(apple.com) 53 

4.49 Apache JMeter Dashboard(noonpost.com) 54 

4.50 Apache JMeter Dashboard(pstore) 55 

4.51 Jasmine Output 58 

 

x.  



xii 
 

List of Tables 

Table 1: Measurement based Transaction Counters(apple.com………………...........32 

Table 2: Measurement based HTTP Responses(apple.com)………………...………..33  

Table 3: Measurements Performance(noonpost)…………………………….………..38 

Table 4: Measurements comparison………………………………………….……….56 

 

 

 

 

 

 

 

 

xi.  



xiii 
 

List of Abbreviations 

 

CI  Continuous Integration.   

IDE  Integrated Development Environment  

ROI  Return on Investment.  

SDLC  Systems Development Life Cycle 

STLC  Software Testing Life Cycle. 

WA   Web Applications  

QA                  Quality assurance 

 ISP                 Internet service provider 

 DB                 Database 

AWS               Amazon Web Services 

SUT                System Under Test 

 

 

 

 

 

 

 

 

 

xii.  



1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter ONE 

    INTRODUCTION 

 

 

 

 

 



2 
 

Chapter One 

Introduction 

Overview 

        In the last years, web applications (WA) have become one of the very common ways 

people interact with computers thanks to the increasing internet speed. WA is capable of 

more complex operations and provides various functionalities. In many instances, they 

tend to replace classic desktop applications for many reasons, e.g. cross-platform 

compatibility support or ability to be easily updated and maintained.  

However, while providing many advantages, there are specific weaknesses of which one 

has to be aware when implementing such an application. The main disadvantage stems 

from the fact that developer does not know what the hardware, software and network the 

application will run on. For example, a general drawback of WA is their slower response 

to user actions when compared to a reaction speed of desktop applications. It is often 

caused by inappropriate front-end development. 

The levels of quality, scalability, and maintainability of software programs can be 

improved and measured through the utilization of functional and non-functional software 

testing tools throughout the software development process. One of the most important 

things on every project is keeping codebase consistent and ensure its quality over time, 

or, at least, build a road to achieve this goal in the future. Part of this job can be achieved 

automatically. In web-land, it seems more common to test back-end code than front-end 

this is probably changing as tooling gets better. 

Quality assurance can be done by manually operating and manipulating the SUT in 

different ways, using different inputs and comparing the actual outcome with the 

expectations and making sure that they align. Manual testing is by its very nature time-

consuming and prone to errors. If testing is carried out in this way, for example by the 

same software developer who wrote the software, there’s also a risk that the test cases 

may be chosen based on how the code is expected to work. In the worst-case scenario, if 

a formal testing protocol is not defined or properly followed, there is also a chance of 

parts or all the quality assurance process being neglected [1]. 

Performance is a huge subject, but it's not always a "back-end" or an "admin" subject: it's 

a Front-End responsibility too. The Front-End Performance Checklist is an exhaustive list 



3 
 

of elements check or at least be aware of, as a Front-End developer and apply to your 

project when (personal or professional) [2]. 

Web applications are a mixture of server-side and client-side code. Application can have 

performance problems on either side or both needs to be optimized. The client-side 

relates to performance as seen within the web browser. This includes initial page load 

time, downloading all of the resources, JavaScript that runs in the browser. Web 

performance optimization occurs by monitoring and analyzing the performance of your 

web application and identifying ways to improve it [3]. 

The motivation to enforce good code is to quality improve the image of the company and 

help to create long-lasting partnerships with clients. Discussed tools in this research, that 

help developers and companies deploy software with good quality code by automatically 

perform checks on different areas of front end development. 

Producing high-quality code is an aim that almost everyone in software development 

would say they support. Yet, long-term observations in the field reveal that many 

organizations do not back up thatworthy sentiment with the necessary resources 

(technology, budget,time, training, and management attention) or with the 

institutionalprocesses required to ensure that the quality of code is routinely 

maintained[4]. 

Software bugs have been around for as long as the software itself. Even for a program 

that has been thoroughly tested, the bugs are inevitable. The longer they are present in the 

code, the more expensive and difficult it is for them to be removed to boost front-end 

performance as much as possible for our developer. It is not so easy to convince every 

client to follow all of our performance guidelines. Correspondingly, to convince them by 

talking to them in their language, and explain the importance of performance for 

conversion or compare their performance to their main competitors. Our goal was to take 

control, focus on performance, be flexible for the future and to suggest recommendations 

for how to design, implement and administer tools for code quality in large-scale front-

end software development projects. 

1.1   Background of Research 

Every year, billions of dollars are lost due to software that does not perform as 

expected. While the conformance to the customer requirements is mostly validated by 



4 
 

functional testing, there is more to software quality than that. To cover the attributes 

like maintenance, readability, reusability or testability, that directly affect customers’ 

perception of the product’s quality, other inspection techniques need to be involved as 

well. There are different possibilities ranging from formal inspections of the code, peer 

code reviews, pair programming, to use of automated tools for static code analysis, 

which can be applied to ensure the quality of the code. The key to achieving quality 

software lies in the combination of these techniques [5]. 

According to this definition, quality assurance can simply be interpreted as assuring 

customer satisfaction [6]. According to IEEE Standard 610.12-1990, "IEEE Standard 

Glossary of Software Engineering Terminology" [7] “testing” is defined as: "The 

process of operating a system or component under specified conditions, observing or 

recording the results, and making an evaluation of some aspect of the system or 

component."  

Performance is a vital factor deciding the quality of a web application, most of the 

performance issues happen on the front-end because developers pay much more 

attentions on the back-end dealing with business logic and data interaction. Front-End 

checklist items are created to go over a web application to check and boost the 

performance before releasing it to customers [8]. 

Even bad code can function. but if code isn’t clean, it can bring a development 

organization to its knees. Every year, countless hours and significant resources are lost 

because of poorly written code. but it doesn’t have to be that way. Ensuring code quality 

when your software team is growing rapidly is a huge challenge. But even with a 

constant number of software developers, maintaining code quality can cause headaches 

[9]. Without tools and a consistent system, the whole project can accumulate a huge 

technical debt, causing more problems in the long-term than it solves in the short-term. 

1.2 Problem Statement 

The problems caused by a bad code quality vary from bugs to project delays and in 

general cause issues with the project timeline and budget. 

Low quality code can cause serious problems in the long term, which affect software 

quality attributes such as maintainability, performance and security of software systems. 

 



5 
 

1.3 Research questions 

1. How to select a specific tool to maximize the code quality? 

2. How to measure the performance in web pages through using the tools? 

1.4 Objectives 

• To determine specific tools to choose for maximizing code quality in software 

development  

• To select guideline or framework for firms for excellent tools that are available 

and explanation and shows effectively in results. 

1.5 Scope of Research 

The scope of the research includes only front-end software development related coding 

issues and tools. 

1.6 Proposed solution 

Assessments of tools through measurement performance for web pages to improve code 

quality in development projects, and to suggest recommendations for how to design, 

implement and administer tools for code quality in software development projects. 

1.7 Outlines the research 

This thesis is divided into five chapters. Chapter two discusses a group of different 

attributes and requirements for code quality, related work. Chapter three about the 

research methodology, inside this chapter research design and procedures, were 

presented as well as tools, Chapter four which contain result and discussion about the 

implementation of work and finally the conclusion and future work at Chapter five. 

 

 

 

 

 



6 
 

 

 

 

 

 

 

 

Chapter Two 

Literature Review 



7 
 

Chapter Two 

 Literature Review 

2.1 Introduction 

This chapter focuses on theoretical base information for the study such as code quality 

and front end. The first section briefly summarizes the concepts of software testing 

methodologies and our research based on briefly explains what is the web application is, 

the parts and the most important techniques used for development  of code quality. 

2.2 Continuous Integration 

Continuous Integration (CI) is a development practice that requires developers to 

integrate code into a shared repository several times a day.  

Continuous integration (CI) is a software engineering practice which reduces the blind 

spots of software development and leads to the process of building and delivering the 

software in rapid. At first, a daily build existed as standard. At present, each team 

member has to submit their work on daily basis and intended for a build to be 

accompanied with each significant alteration. When CI used by the book, provides 

constant feedback on the status of the product development. For the reason that CI 

discovers short ages initially during development process, defects are normally less 

significant, less complex and stress-free to resolve [10].  

In terms of software quality, CI can help to measure cyclomatic complexity, code 

duplication, dependencies and coding standards so that developers can proactively 

refactor code before a defect is introduced. If a defect is introduced into a code base, CI 

can provide feedback soon after, when defects are less complex and less expensive to fix. 

Also, when using an effective developer testing regimen, CI provides quick feedback, via 

regression tests, on software that was previously working and is adversely affected by a 

new change.  

Furthermore, to calculate how much time your team spends on fixing defects once the 

software is with the testing team, quality assurance, integration testing, etc. Of course, it 

costs considerably more once it enters production. When implementing effective CI 



8 
 

practices, can discover many of these defects as soon as they are introduced, which 

significantly decreases the cost of fixing each defect. 

The purpose of CI is to ensure required quality and consistency of the code in the 

development repository. Usually every code increment submitted by a developer is built 

with the newest code base and automatically checked against predefined criteria, like 

static code analysis and automated testing [11].  

2.3 Attributes of Good Code Quality 

Code quality is a combination of various attributes and conditions, which depend on the 

used business case. The following attributes are some of the most common ones for 

defining code quality, but there are tens of more attributes that can be used in addition 

depending on the code that is being evaluated: 

 Clarity: Easy to read and oversee for anyone who isn’t the creator of the code. If 

it’s easy to understand, it’s much easier to maintain and extend the code. Not just 

computers, but also humans need to understand it. 

 Maintainable: A high-quality code isn’t overcomplicated. Anyone working with 

the code has to understand the whole context of the code if they want to make any 

changes. 

 Documented: The best thing is when the code is self-explaining, but it’s always 

recommended to add comments to the code to explain its role and functions. It 

makes it much easier for anyone who didn’t take part in writing the code to 

understand and maintain it. 

 Refactored: Code formatting needs to be consistent and follow the language’s 

coding conventions. Some code refactoring tips here. 

 Well-tested: The fewer bugs the code has the higher its quality. Thorough testing 

filters out critical bugs ensuring that the software works the way it’s intended. 

 Extendible: The code received had to be extendible. It’s not really great when to 

have to throw it away after a few weeks. 

 Efficiency: High-quality code doesn’t use unnecessary resources to perform the 

desired action. 

 Tested: A code should have thorough tests to prevent any unwanted bugs from 

being introduced. Having well-written tests against the code will also enforce 

https://apiumhub.com/tech-blog-barcelona/code-refactoring-techniques/


9 
 

maintainability and extensibility as the programmers can modify the code with 

ease of mind knowing that the tests will more likely show if something gets 

broken. Testing can be performed at many different levels in the software 

development process. Each level has been designed to detect different types of 

issues. 

 Reliable: A code can be considered reliable when it works as expected and does 

not fail even in edge case situations. Reliable applications have fewer bugs and 

downtime and are therefore better for the business.  

 Follows Standards: The code should follow any rules and regulations set by the 

client organization. The other programmers will understand easier the code and its 

maintenance takes less effort when it is following common standards. Following 

coding standards creates more consistent and uniform code regardless of each 

programmer’s styles. 

 Reusability: Programming reuse is a decent cost productive and efficient 

advancement way. Distinctive code libraries classes ought to be sufficiently 

nonexclusive to utilize effectively in diverse application modules. Isolating 

application into diverse modules with the goal that modules can be reused over 

the application [12].  

 

2.4 Dynamic Testing 

Dynamic Testing is a kind of software testing technique using which the dynamic 

behaviour of the code is analyzed. For Performing dynamic, testing the software should 

be compiled and executed and parameters such as memory usage, CPU usage, response 

time and overall performance of the software are analyzed [13], is usually thought to 

have four different levels: unit testing, integration testing, system testing and acceptance 

testing.  

Dynamic testing involves validation and it usually asks or checks "Are you building the 

right thing?” The software should be compiled and executed and input values are given 

and output values are checked with the expected output [14]. 

 

 



10 
 

2.5 Unit Testing 

Unit testing is defined as a type of software testing where individual units/ components of 

software are tested. Unit testing of software applications is done during the development 

(coding) of an application. The objective of Unit Testing is to isolate a section of code 

and verify its correctness. In procedural programming, a unit may be an individual 

function or procedure. Unit testing is usually performed by the developer. 

In SDLC, STLC, V Model, Unit testing is the first level of testing done before integration 

testing. Unit testing is a White Box testing technique that is usually performed by the 

developer. Though, in a practical world due to time crunch or reluctance of developers to 

tests, QA engineers also do unit testing. Dynamic testing involves testing the software for 

the input values, and output values are analyzed. Dynamic testing is the Validation part of 

Verification and Validation. 

It is done at the lowest level. It tests the basic unit of software, which is the smallest 

testable piece of software. It is also called module or component testing. It refers to tests 

that verify the functionality of a specific section of code, usually at the function level. In 

an object-oriented environment, this is usually at the class level, and the minimal unit 

tests include the constructors and destructors [15]. 

 

2.6 WebLOAD Professional 

WebLOAD is a website and performance testing tool for performing enterprise-scale load 

testing. Through AWS or cloud providers, can generate massive virtual user load through 

its Load Generation Console on Windows and Linux devices both in the cloud or locally. 

What separates it from other solutions is it's Free Edition for 50 virtual users that include 

community support and all of its features. Developed by RadView Software, WebLOAD 

is capable of supporting hundreds of technologies and features flexible built-in scripting 

capabilities. 

Correspondingly, the side from offering extensive features for load testing web systems, 

WebLOAD is also capable of testing a variety of enterprise systems, including Oracle, 

SAP, and others. With WebLOAD, users can easily create and view their load script 

coupled with record and playback options, making test creation simple and efficient. The 

system implements multi-protocol support, enabling WebLOAD to replicate load 



11 
 

environments that number from hundreds to thousands of users and then provide accurate 

and detailed analysis of how the application behaves under load. With WebLOAD, 

businesses have a platform that allows them to perform load testing that is reliable, 

accurate, and efficient. The system offers an integrated development environment (IDE) 

that comes with a throng of useful features including correlation, 

The system comes with a set of predefined analysis reports that provides developers with 

a detailed breakdown of performance data. This allows users to determine the bottlenecks 

and quickly make adjustments to resolve issues. The reports can also be viewed off-site 

through the customizable web dashboard. 

WebLOAD also gathers critical information such as server-side statistics and other data 

from test runs. This helps users collect more information to apply within their root cause 

analysis. The platform is optimized for any device, ensuring that users can easily access 

the system from the desktop, laptop, and mobile phone, and analyze performance test 

results even if they are away from the office[34]. 

 

Figure 2.1: Welcome to Webload 

 



12 
 

2.7 CI test 

Continuous Integration (CI) has evolved to become an integral part of the software 

ecosystem. When the discussion pivots to CI, the first tool that comes to mind is Jenkins. 

Jenkins is the most popular of any of the CI tools used today by software teams and is 

playing a significant role in the accelerating the ‘Dev’ in DevOps. It is an open source CI 

platform built in Java and has thousands of native integrations with useful tools. Jenkins 

enables developers to build, deploy, and automate projects; thereby, improving time to 

market and product quality. 

As automation testing continues to help organizations scale their software quality efforts, 

it is imperative that automated tests are also part of the CI pipeline to achieve true 

continuous delivery. Most test types - including unit, integration, functional, and 

regression tests - are run via CI depending on the size of the test suite and the type of 

application under test. 

Advantages of Jenkins include: 

 It is an open source tool with great community support. 

 It is easy to install. and share with the community. 

 It is free of cost. 

 It has 1000+ plugins to ease work. If a plugin does not exist can code it  

 It is built with Java, and hence, it is portable to all the major platforms [35]. 

 

2.8 Related Work 

Many research articles are found regarding identify ways to improve and enforce code 

quality using automated tools. 

 In [16] defining the quality of software-defined infrastructures. The outcome of the 

interviews suggests that among other important quality characteristics, testing is a very 

important quality characteristic.  

On the other hand, [17] say in their research unit testing By definition and in practice, 

unit testing is done by the developer, not an independent tester or quality assurance 

person. Unit testing is based upon a structural view into the implementation code. Code 

coverage tools can be used to provide the programmer with insight into which part of the 



13 
 

code structure has been exercised by tests. However, developers often do not use code 

coverage information in their determination that they have tested enough. 

In [18] developed a framework and provide improvement suggestions for better quality 

optimization of current web page and further development process for same type of 

application.   

The research in [19] propose two case study analyses conducted on past large-scale 

software development projects. the projects included some tools to improve the quality of 

the code, but they both also failed in some quality areas. These analyses were utilized to 

first find out the common pain points in software development projects, which reduced 

the code quality and secondly to help to identify methods that could solve these issues. 

Could be solved by enforcing the code quality with automated tools, caused many of the 

problems in the past projects. The set up of the projects determined a lot of the type of 

issues that arose, but most of them could have been avoided with a better planning and 

implementation of the quality enforcement tools. The results and suggestions consist of a 

list of tools and guidelines for how to use them to solve the most common coding related 

challenges. 

In [20] in contrast, Avritzer and Weyuker introduced a new way to design an application-

independent workload for doing such a performance evaluation. It was determined that 

for the given project, the quantity of software and system availability requirements made 

it impossible to port the system to the new platform in order to do the performance 

testing. Therefore, a novel approach was designed in which no software was ported at all. 

Instead, a synthetic workload was devised by tuning commercially-available benchmarks 

to approximate resource usage of the actual system. 

The works in [21] discuss a case study describing the experience of using these 

approaches for testing the performance of a system used as a gateway in a large industrial 

client/server transaction processing application is presented. 

According to [22], if test execution is performed manually then it is considered as 

inefficient and error prone whereas test execution which is performed automatically 

increases the efficiency in such a way it reduces the work of the testers. Automated test 

case execution helps in reducing the cost because it decreases human involvement. 



14 
 

In [23] the aim of web performance testing is to evaluate performances of the web 

application and all the back-end systems (DB and application server) changing the load. 

Performance testing activity guarantees system performances according to a defined load, 

identifying where response time is too high. Automated tools are used to generate and 

emulate the load of the end users. These kinds of tests are very useful to verify, in test 

plant, new releases of the application or to stress it with a greater load (useful, for 

example, before the launch of a new advertising campaign). An artificial traffic is 

generated to reproduce the activity of a certain number of users of different types and, if 

long response time are measured, to find out all the system bottlenecks. After a first 

tuning activity, all the tests should be executed again. 

All the test activities can be executed on-site or in a remote way. The focus of the first 

kind of activity is the application (all the network involved between server web and 

browser is not considered) and it’s possible to extract lot of useful and detailed 

information (especially if, during the test, all the resources of the systems involved are 

under monitoring). With a remote test, as all the elements involved are considered (user 

browser, ISP, network and application) it’s possible to obtain an end-to-end measure of 

performance, but it’s impossible to get lot of details on every element. 

The study in [24] introduces a model that assesses test code quality by combining source 

code metrics that reflect three main aspects of test code quality: completeness, 

effectiveness and maintainability. The model is inspired by the software quality model of 

the software improvement group which aggregates source code metrics into quality 

ratings based on benchmarking. To validate the model we assess the relation between test 

code quality, as measured by the model, and issue handling performance. An experiment 

is conducted in which the test code quality model is applied to 18 open source systems. 

The test quality ratings are tested for correlation with issue handling indicators, which are 

obtained by mining issue repositories. In particular, we study the (1) defect resolution 

speed, (2) throughput and (3) productivity issue handling metrics. The results reveal a 

significant positive correlation between test code quality and two out of the three issue 

handling metrics (throughput and productivity), indicating that good test code quality 

positively influences issue handling performance. 



15 
 

In [25] discussed comparative analysis of various software performance testing tools and 

their limitations and a new approach for software performance testing. With an upbeat 

approach, we can produce software that can meet performance objectives and can be 

delivered on time and within budget, avoiding the project crises. 

In [26] provided a good insights of software testing practices  Most of the teams (6(8), 

75%) teams mentioned that their impression on the tool that they were using is 

satisfactory, Another team mentioned need of more tools to perform unit and integration 

testing, and also improvement in software testing repository. 

In [27] they mentioned software testing types there are various software testing 

techniques as per the research and study like a black box, white box, grey box, 

regression, reliability, usability, performance, unit, system, integration, security, smoke, 

sanity and object-oriented testing etc. It is impossible to perform all types of testing on a 

software as there is always fixed amount of time allocated for testing. Functional testing 

is very common, and lots of research is done on them in the past that’s why only in rare 

cases a site crashes due to lack of functional testing. The most recent failures that 

happened in the past are due to lack of Performance and Security testing. In 2014 Indian 

Railway site got crashed as it was not able to handle the load of customers. Another 

failure in 2014 is of Delhi University (DU) online application form web site crash on last 

day of submission due to excessive load on site. Then there were instances in 2013 when 

Indian government sites were hacked by some external agencies. After analyzing and 

survey of all these techniques, it is found that the right mix of testing types should be 

performed on a given software to ensure quality and overall reliable software.  

This research focuses on the main testing techniques like functional [F], performance [P] 

and security testing[S]. The right mix of testing should be included from all headers of F, 

P and S. Functionality is the first and foremost aspect of software testing which ensures 

the quality of software. verification and validation are done using static and dynamic 

testing respectively. static testing involves all types of reviews, inspections, and 

walkthroughs. dynamic testing or actual validation involves all functional and non-

functional testing types. 

Recommended [28] of a pilot case study aiming: (a) to understand the implications of 

structural quality; and (b) to figure out the benefits of structural quality analysis of the 



16 
 

code delivered by open source style development. To this end, we have measured quality 

characteristics of 100 applications written for Linux, using a software measurement tool, 

and compared the results with the industrial standard that is proposed by the tool. Another 

target of this case study was to investigate the issue of modularity in open source as this 

characteristic is being considered crucial by the proponents of open source for this type of 

software development. we have empirically assessed the relationship between the size of 

the application components and the delivered quality measured through user satisfaction. 

We have determined that, up to a certain extent, the average component size of an 

application is negatively related to the user satisfaction for 

this application. 

Discussed [29] web Performance testing is executed through testing campaigns for 

stressing the web site and back-end systems with the amount of load simulating the real 

conditions of the field or to evaluate if the site/application will support the expected load 

following special situations (e.g. an advertisement campaign). That allows you to 

guarantee system performances under that load and to identify and help in fixing possible 

issues. 

Web performance measurement aims at analysis and fast characterization of system and 

user behaviour in order to give fast feedback on any issues. In order to achieve that, 

TILAB has realized two tools: WEBSAT(WEB Server Application Time) and BMPOP. 

WEBSAT is based on web server log files and completes the tool suite of the commercial 

off the shelf products used for Web Performance Evaluation/Measurement activities. 

BMPOP (BenchMark Point Of Presence) is used for web performance measurement from 

the end-to-end perspective. 

The study [30] reported in this paper establishes a conceptual framework and some key 

initial results in the analysis of the characteristics of software quality. 

Explicit attention to characteristics of software quality can lead to significant savings in 

software life-cycle costs and the current software state-of-the-art imposes specific 

limitations on our ability to automatically and quantitatively evaluate the quality of 

software. 

Proposed [31] a performance testing methodology which copes with the afore mentioned 



17 
 

characteristics. the methodology consists of a set of methods and patterns to realize 

adequate workloads for multi-service systems. the effectiveness of this methodology is 

demonstrated throughout a case study on IP Multimedia Subsystem performance testing. 

In [32] analyzed source code version control system logs of popular open source software 

systems to detect changes marked as refactorings and examine how the software metrics 

are affected by this process, in order to evaluate whether refactoring is effectively used as 

a means to improve software quality within the open source community. 

Suggested [33] a framework for performance analysis and performance evaluation. So, 

we have discussed comparative analysis of various software performance testing tools 

and their limitations and a new approach for software performance testing. With an 

upbeat approach, we can produce software that can meet performance objectives and can 

be delivered on time and within budget, avoiding the project crises. 

2.9 Summary  

This chapter presents the theoretical information about what good code quality means, 

unit testing, dynamic testing, and continuous integration. Secondly, in next section 

describe the work related to software testing published by various researchers by 

highlighting their contributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

 

 

 

 

 

 

 

 

 

 

Chapter Three 

Methodology 

 

 



19 
 

Chapter Three 

Methodology 

3.1 Introduction 

This chapter provides the research method steps, and the explanation of the methodology 

to be followed to achieve the research objectives. In addition, listing concrete tools and 

methods for improving code quality. 

3.2 Research Methodologies and Software tool used 

To develop ways to improve code quality using automated software testing tools in 

development projects, first, existing knowledge about code quality was investigated 

mostly through literature reviews and how to improve and implement it will be explored. 

Secondly, implement the knowledge about what things enhancement of code quality by 

using different tools and framework, finally, the methods and tools are put into 

framework of software development and the technologies are explained in more detail 

together with concrete examples of how to use them [19]. 

   

  Definition of good code quality 

Literature review and List of available tools  

       Exiting knowledge 

  

  Results from using tools  

 Different free tool Analysis results 

   

 

 

  

 

Figure 3.1: Research method for the study using Block diagram 

 

 

Identification 

 

Implementation 

Suggestion 

guidelines for 

usage (framework) 

_ 

 

 

 



20 
 

3.2.1 Load test 

WebLOAD Cloud (Web Dashboard in earlier versions). The Dashboards tab enables 

viewing, analyzing and comparing load sessions, with full control and customization of 

the display. 

WebLOAD Cloud provides a single unified command and control interface where can 

create, execute, schedule, and analyze tests all directly from a web browser. It can be 

deployed on-premises or in the cloud, delivering greater visibility, control and 

collaboration to performance testing, QA, and DevOps teams. Some of the tasks can 

accomplish using the WebLOAD Cloud include: 

 Create and edit load tests 

 Upload, add and manage tests, resources, and sessions 

 Execute and schedule test runs 

 Analyze results using ready-made and self-configured dashboards 

 Share tests and results with peers 

 Manage access permissions for users and groups 

 Download test results to the local machine for further analysis with WebLOAD 

Analytics 

3.2.2 Apache JMeter 

The Apache JMeter TM is pure Java open source software, which was first developed by 

Stefano Mazzocchi of the Apache Software Foundation, designed to load functional test 

behaviour and measure performance.  

Used JMeter to analyze and measure the performance of web application or a variety of 

services. Performance Testing means testing a web application against heavy load, 

multiple and concurrent user traffic. JMeter originally is used for testing Web 

Application or FTP application. Nowadays, it is used for a functional test, database server 

test [35]. 

 

 

https://www.guru99.com/java-tutorial.html
https://www.guru99.com/apache.html
https://www.guru99.com/software-testing.html


21 
 

 

 Figure 3.2: Workflow of JMeter stages  

 

Figure 3.3: Home screen Apache JMeter 



22 
 

3.2.3 Unit testing using Jasmine 

Jasmine is one of the popular JavaScript unit testing frameworks which is capable of 

testing synchronous and asynchronous JavaScript code. It is used in BDD (behaviour-

driven development) programming which focuses more on the business value than on the 

technical details. Jasmine is a Behavior Driven Development testing framework for 

JavaScript. It does not rely on browsers, DOM, or any JavaScript framework. Thus it's 

suited for websites, Node.js projects, or anywhere that JavaScript can run. Jasmine Suite 

and Specs in Jasmine, there are two important terms – suite and spec. 

3.2.3.1 Suite 

A Jasmine suite is a group of test cases that can be used to test a specific behaviour of the 

JavaScript code (a JavaScript object or function). This begins with a call to the Jasmine 

global function describe with two parameters – the first parameter represents the title of 

the test suite and the second parameter represents a function that implements the test 

suite. 

3.2.3.2 Spec 

A Jasmine spec represents a test case inside the test suite. This begins with a call to the 

Jasmine global function it with two parameters – the first parameter represents the title of 

the spec and the second parameter represents a function that implements the test case. 

In practice, spec contains one or more expectations. Each expectation represents an 

assertion that can be either true or false. To pass the spec, all of the expectations inside 

the spec have to be true. If one or more expectations inside a spec are false, the spec fails 

[36].  

3.3 Summary 

This chapter provides a description of the research methodology using a block diagram. 

Also, show up the techniques have been applied in the research, in addition describe 

different tools and steps of a method used.  



23 
 

 

 

 

 

  

 

 

 

 

Chapter Four 

Implementation and Results  

 

 

 

 

 

 



24 
 

Chapter Four 

Implementation and Results  

4.1 Introduction 

This chapter shows the implementation details of code quality in web pages using 

software testing tool. It also shows the results of the study are presented and discussed 

concerning the aim of the study, which was to provide framework or suggestion for how 

to design, implement and administer tools for code quality in software development. First 

we applied tools that improve performance website, secondly, when the code is in 

operation mode, unit testing using jasmine framework is performed in the runtime 

environment. 

4.2 Performance testing with WebLOAD Professional 

In this study, three sites were tested in order to get more coverage of the results and 

compare them with another tool using the same sites. The sites used in this study are: 

Apple.com and pstore.com this site is designed by me and the interactive social site 

noonpost.com. 

4.2.1 First site https://www.apple.com/ 

The first steps to test the performance of the webload tool, WebLOAD Recorder. Is a 

visual environment for creating protocol test scripts (referred to as scripts). The snapshot 

of recorded agenda can switch the views from JavaScript View to Page View or HTML 

View or HTTP Headers View. 

 

 

https://www.apple.com/


25 
 

 

Figure 4.1: Agenda for (apple.com) and Page View 

 

 

 

Figure 4.2: Agenda for(apple.com) and Javascript View 

 



26 
 

 

Figure 4.3: Log Window (apple.com) 

 

The Log Window displays a summary of the test including all log messages detected by 

WebLOAD Console in run time that is generated by the Console, the JavaScript compiler 

and any user messages programmed in the test script. 

 

 

Figure 4.4: Session Tree and default report with measurement type (apple.com) 

 

The Session Tree displays in the left pane of the Console screen, and gives you a 

complete graphical overview of the test session including the Agendas run, and the hosts 

running each Agenda. The icons adjacent to the tree items enable you to view your test 

activity at a glance. 

 



27 
 

 

Figure 4.5: Default Report (apple.com) 

 

 

Figure 4.6: Statistics Reports (apple.com) 

 

WebLOAD collects approximately 35 different statistics during a test. Statistics Reports 

display the values for all of them. 

 

 

 



28 
 

 

 

 

Figure 4.7: Dashboard (apple.com) 

The Dashboard displays real-time statistical information about the test session including 

the number of Virtual Clients running, hits per day, pages per day and throughput. 

 

 

Figure 4.8: Integrated Report (apple.com) 



29 
 

 

 Figure 4.9: measurement type (apple.com/) 

 

 

Figure 4.10: Dashboard (apple.com) 

 

The last step, WebLOAD Analytics provides you with a simple yet comprehensive 

method of producing and publishing reports to fulfill all your analysis and reporting 

requirements. Using WebLOAD Analytics, you can create clear, accurate, and 

meaningful reports that enable you to analyze Load Session results and identify peaks, 

trends, and anomalies in your data. WebLOAD Analytics provides you with a variety of 



30 
 

predefined chart templates that enable you to produce focused reports on specific topics. 

You can edit these templates, and create new templates. 

 

 

Figure 4.11: WebLOAD Analytics Screen (apple.com) 

 

 

Figure 4.12: Log Summary, Tabular Data (apple.com) 

 



31 
 

 

Figure 4.13: WebLOAD Analytics User Interface (apple.com) 

 

 

Figure 4.14: Transaction Counters (apple.com) 



32 
 

 Measurement Name Type Total  

   

Successful Transaction1_OpenApp Transactions Sum 79 
 

    

    

   

Successful Transaction2_LOGIN Transactions Sum 1 
 

    

    

   

Failed Transaction1_OpenApp Transactions Sum 202 
 

    

    

   

Failed Transaction2_LOGIN Transactions Sum 77 
 

    

    

   

Failed Transaction3_FindItem Transactions Sum 1 
 

    

    

 

Table 1: Measurement based Transaction Counters(apple.com) 

 

This chart shows successful and failed transaction counts for each transaction in the 

session. 

 

Figure 4.15: HTTP Responses(apple.com) 

 

 

 



33 
 

 

 

 Measurement Name Type Total  

   

HTTP Response Status 200 Sum 974 
 

    

    

   

HTTP Response Status 302 Sum 13 
 

    

    

   

HTTP Response Status 303 Sum 38 
 

    

    

   

HTTP Response Status 404 Sum 2 
 

    

    

Table 2: Measurement based HTTP Responses(apple.com) 

 

This chart displays a summary of the HTTP response status messages received during the Load 

Session. For each response status, the template lists the number of responses received and what 

percentage it represents of all HTTP responses. Common response status codes - 200 OK, 302 

Found, 404 Not Found, 500 Internal Server Error. 

 

4.2.2 Second site http://www.noonpost.com/ 

 

  

Figure 4.16: Agenda for(noonpost) and Page View 

 



34 
 

 
 

Figure 4.17: Agenda for(noonpost) and Javascript View 

 

 

 

                                 Figure 4.18: Log Window (noonpost) 

 

 

 

 



35 
 

 

Figure 4.19: Data Drilling Report(noonpost) 

 

Data Drilling provides both a global and detailed account of hit successes and failures allowing 

you to verify the functional integrity of your Web application at the per client, per-transactions and 

per-instance level. The Data Drilling reports provide an extremely detailed yet easily accessible 

summary of all the statistical, timing, and performance information collected over the course of the 

test session. 

 

 

Figure 4.20: Statistics Reports(noonpost) 

 



36 
 

 
 

Figure 4.21: Dashboard (noonpost) 

 

 

 

Figure 4.22: Integrated Report(noonpost) 

 

WebLOAD Integrated Reports provide both a graphical and statistical view of the performance of 

your application as it is being tested. Integrated reports can be viewed while the test is in progress 

or saved for later analysis.  

 

 



37 
 

  

 
 

Figure 4.23: Performance Summary(noonpost) 

 

This chart and table below displays the main performance indicators and changes in Load Size, 

over time: 

- Load Size – The number of Virtual Clients running during the last reporting interval. 

- Page Time – The time it takes to complete a successful upper level request, in seconds.  

- Time to First Byte – The time it takes from when a request is sent until the Virtual Client receives 

the first byte of data. 

- Response Time –The time it takes the SUT to send the object of an HTTP request back to a 

Virtual Client, in seconds.  

- Hits Per Second – The number of times the Virtual Clients made an HTTP request, divided by 

the elapsed time.  

- Throughput – The average number of Mega bits per second, transmitted to the Virtual Clients 

running the Agenda. 

 



38 
 

 

Table 3: Measurements Performance(noonpost) 

 

 

Figure 4.24: HTTP Responses (noonpost) 

 

This chart displays a summary of the HTTP response status messages received during the Load 

Session. For each response status, the template lists the number of responses received and what 

percentage it represents of all HTTP responses. 

Common response status codes - 200 OK, 302 Found, 404 Not Found, 500 Internal Server Error 



39 
 

 

Figure 4.25: Log Summary, Tabular Data (noonpost) 

 

This chart displays a summary of the Load Session’s logged messages. Similar messages are 

grouped, and their total count shown. 

 

Figure 4.26: Page time (noonpost) 

 

This chart displays the Page Time, over time. Page Time is the time it takes to complete a 

successful upper level request, in seconds. It is the sum of the Connect Time, Send Time, 

Response Time, and Process Time for all the hits on a page. The template also displays the Load 

Size, for reference. 

 

 



40 
 

 

 

 

Figure 4.27: Session Summary(noonpost) 

 

 

 

 

 

 

 

 

 



41 
 

 

 

Figure 4.28:Statistics based on response time and hits per second(noonpost) 

 

 

 

 

 

 

 

 

 

 



42 
 

4.2.3 Third site: 

https://maazamustafa0000.000webhostapp.com/Project/Project/clothing.html 

 

Figure 4.29: Agenda for(pstore) and Page View 

 

 

Figure 4.30: Agenda for(pstore) and Javascript View 

 

 

https://maazamustafa0000.000webhostapp.com/Project/Project/clothing.html


43 
 

 

Figure 4.31: Log Window (pstore) 

 

 

Figure 4.32: Transactions Dashboard(pstore) 

The Transactions Dashboard displays real-time statistical information of the transactions in your 

test, in graphical format. 

 

Figure 4.33: Data Drilling Report(pstore) 



44 
 

 

Data Drilling provides both a global and detailed account of hit successes and failures allowing 

you to verify the functional integrity of your Web application at the per client, per-transactions and 

per-instance level. The Data Drilling reports provide an extremely detailed yet easily accessible 

summary of all the statistical, timing, and performance information collected over the course of the 

test session. 

 

Figure 4.34: Statistics Reports(pstore) 

 

 

 Figure 4.35: Dashboard (pstore) 

 



45 
 

 

Figure 4.36: Integrated Report(pstore) 

 

WebLOAD Integrated Reports provide both a graphical and statistical view of the performance of 

your application as it is being tested. Integrated reports can be viewed while the test is in progress 

or saved for later analysis.  



46 
 

 

Figure 4.37: Session Summary(pstore) 

 



47 
 

 

Figure 4.38:Statistics based on throughput and errors(pstore) 

 

4.2.4 WebLOAD Cloud(Web Dashboard in earlier versions) 

 

Figure 4.39: Dashboard Components 



48 
 

Predefined and customized dashboards make it easy to analyze the results of test runs. 

You can view results dynamically while a test session is running, compare multiple 

sessions on the same graph, drill down, and share reports and graphs with other team 

members. 

4.2.5 CI test (Jenkins Plugin) 

 

Figure 4.40: Execute WebLOAD session 

In Figure 4.41 once plugin Webload test in the side manages plugin, can easily add to the  

template file to be executed. 

 

 Figure 4.41: Generate WebLOAD Analytics Report 



49 
 

You can specify what the output of the result of report(Junit, pdf, XML, Doc,…etc), and  

the number of the comparison to previous session. 

 

 

 Figure 4.42: Output of plugin WebLOAD 

 

Once a WebLOAD session completes running, automated decisions can be made in 

Jenkis, based on the results such as: Failure or success of the entire session and 

Errors/warning Data validation results / Performance measurements. 

 

 

 

 

 

 

 

 

 

 

 



50 
 

4.3 Apache JMeter 

 
 

Figure 4.43: Badboy software to record script(apple.com) 

 

 
 

Figure 4.44: Badboy software to record script(noonpost.com) 

 



51 
 

 
 

Figure 4.45: Badboy software to record script(pstore) 

 

 

Figure 4.46: export script in JMeter 



52 
 

 

Figure 4.47: Create HTML Dashboard Reports from the command line 

 

One of advantages using JMeter is created full dashboard report by using non GUI 

JMeter to create a useful report about the performance of web site. 

C:\Users\Daleel\Documents\apache-jmeter-5.1\bin>jmeter –n –t 

:\Users\Daleel\Documents\apache-JMeter-5.1\Test.jmx 

:\Users\Daleel\Documents\apache-JMeter-5.1\Test.csv –e –o 

:\Users\Daleel\Documents\apache-jmeter-5.1\htmlreport\ 

In the next figure displayed a summary of performance testing in log file and from this 

log or the command line, I got the dashboard report in the HTML format. 



53 
 

 

 

Figure 4.48: Apache JMeter Dashboard(apple.com) 

 

 



54 
 

 

 

Figure 4.49: Apache JMeter Dashboard(noonpost.com) 



55 
 

 

 

Figure 4.50: Apache JMeter Dashboard(pstore) 

 

 

 

 

 

 



56 
 

 

Tools 

 

Measurements 

Performance 

                                   

                                Web pages  

Apple.come Noonpost.com Pstore  

 

Webloald  

Professional 

 

Hits Per Second 

  

0.412 hits/sec 

 

5.65 hits/sec 

 

0.438 

hits/sec 

 

Apache  JMeter 

 

Hits Per Second 

 

0.413 hits/sec 

 

5.62 hits/sec 

 

0.439 

hits/sec 

 

Webloald  

Professional 

 

 

Latency  

 

 

0.6s 

 

 

0.7s 

 

 

0.8s 

 

Apache  JMeter 

 

Response Time 

 

2.5s 

 

0.2s 

 

0.6s 

 

Table 4: Measurements comparison 

 

Results of the table explain hits/sec was almost matching and we were having different 

latencies on Jmeter and webload. 

Latency in Jmeter : JMeter measures the latency from just before sending the request to 

just after the first response has been received. Thus the time includes all the processing 

needed to assemble the request as well as assembling the first part of the response, which 

in general will be longer than one byte. 

The JMeter time should be closer to that which is experienced by a browser or other 

application client. Latency in Webload: The time that elapsed since a request was sent 

until the Virtual Client received the first byte of data. 



57 
 

As Jmeter is working from perspective of application client where it’s also considering 

the time taken on post processing of DOM, that may be the reason we are having 

increased time shown up in Jmeter which is in seconds. This is the way Jmeter works on 

the other hand Webload is showing time without processing of data, the time it takes to 

receive data in DOM, which is always in millisec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

4.4 Unit testing using Jasmine  

On opening the SpecRunn html file in the browser, specs are run, and the result is 

rendered in the browser as shown: 

 Figure 4.51: Jasmine Output 

 

4.5 Summary 

This chapter presented the results and findings of the study with regard to providing 

guideline or framework for a company to choose the best tool from a list of tools that are 

available and explanation on how to use them effectively for enhancement of code 

quality in front-end. In the beginning, applied the non-functional performance test using 

two tools: Webload Professional, JMeter to take advantage of the features of the two 

tools, and then unit testing which called functional testing, to test code after enters run-

time stage. 

 

 

 

 

 

 

 

 

 

 



59 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Five 

Conclusion and Recommendations  

 

 

 



60 
 

Chapter Five 

Conclusion and Recommendations  

 

5.1 CONCLUSION 

This section summarizes the findings of this study and provides answers to the research 

questions. The performance test is the test to determine how fast some aspect of a 

system performs under a particular workload. From run-through using performance test, 

it can also serve to validate and verify other quality attributes of the system, such as 

scalability, reliability and resource usage. Application performance has a major impact 

on the overall quality and popularity, especially in cases where organizations are 

dependent on IT for major business activities. Clients have a clear expectation when it 

comes to quality and has become more demanding. Every client looks for a reliable and 

fast application; performance testing ensures that all applications are performing 

optimally and are available and speedy. 

Correspondingly, the need for eliminating bottlenecks has become greater in this 

competitive business world. Performance testing ensures that bottlenecks are identified 

and eliminated before the application goes into the production stage. Breach in service 

level agreement conditions can be prevented through performance testing of applications. 

Through a load testing using webload and apache JMeter tool reached to quality 

assurance through inspects quality of code written in the development life cycle. It is a 

crucial part to identify if the development team needs special training to make more fine-

tuned code. And then we provided compare between analysis results from webload and 

jmeter using two of measurements performance, Hits Per Second and Latency to evaluate 

different ratios for measurements. 

 Using unit testing automated analysis provides dependable, periodic feedback to project 

developers. Constant feedback allows them to correct code as part of the development 

process and it reduces the checking time. Overall, it leads to improved company 

procedures and code practices. These processes improvements lead to higher quality 

products, more efficient project execution and finally to the greatest benefit of all higher 

profits for the company. 

 

http://www.gcreddy.com/2012/07/performance-testing.html
http://www.gcreddy.com/2012/07/performance-testing.html


61 
 

5.2   Recommendations  

 Test software such as integration testing, regression testing, Smoke testing, alpha 

testing, beta testing and other types of software testing. 

 Static analysis of the code can be integrated with an automated task (using Gulp 

for example) or Grunt JavaScript task runner that is added in workflow before 

releasing the code to quality assurance and production environments. 

 Jmeter is a popular open source load testing tool that can be used to check for a 

site’s performance. It can also be integrated into a CI server. 

  

 

 

  

 

 

https://jmeter.apache.org/


62 
 

References 

 

[1]  ANTTILA, H. 2018. Continuous Integration and System Test Automation: Case 

Exertus. 

 

[2]  Findbestopensource. (n.d.). Front-End-Performance-Checklist:  The only Front-

End Performance Checklist that runs faster than the others. [online] Available at: 

https://www.findbestopensource.com/product/thedaviddias-front-end-performance-

checklist [Accessed 12 Oct. 2018]. 

 

[3]  MATT WATSON. (2017, Dec 6). Web Performance Optimization: Top 3 Server 

and Client-Side Performance Tips. [online] Available at: https://stackify.com/web-

performance-optimization/[Accessed 2 Oct. 2018]. 

 

[4]  TIM WALKER, Y. K. 2017. Improving code quality : a survey of tools, trends, 

and habits across software organizations. 

 

[5]  DANKOVČÍKOVÁ, Z. 2017. Custom Roslyn Tool for Static Code Analysis. 

Masaryk University, Faculty of Informatics. 

 

[6]  OGBARI, M. & BORISHADE, T. T. 2015. Strategic imperatives of total quality 

management and customer satisfaction in organizational sustainability. 

International Journal of Academic Research in Business and Social Sciences, 5, 1-

22. 

 

[7]  MAJCHRZAK, T. A. 2012. Improving software testing: technical and 

organizational developments, Springer Science & Business Media. 

 

[8]  IMT Solutions. (2018, jun 13). Front-End Performance Optimization Checklist 

For Web Applications [Blog post]. Retrieved from https://www.imt-

soft.com/Blogs/Microsoft-Net/Front-End-Performance-Optimization-Checklist-For-Web-

Applications 

 

[9] MARTIN, R. C. 2009. Clean code: a handbook of agile software craftsmanship, 

Pearson Education. 

https://www.findbestopensource.com/product/thedaviddias-front-end-performance-checklist
https://www.findbestopensource.com/product/thedaviddias-front-end-performance-checklist
https://stackify.com/web-performance-optimization/
https://stackify.com/web-performance-optimization/
https://www.imt-soft.com/Blogs/Microsoft-Net/Front-End-Performance-Optimization-Checklist-For-Web-Applications
https://www.imt-soft.com/Blogs/Microsoft-Net/Front-End-Performance-Optimization-Checklist-For-Web-Applications
https://www.imt-soft.com/Blogs/Microsoft-Net/Front-End-Performance-Optimization-Checklist-For-Web-Applications


63 
 

[10] POORNALINGA, K. S. & RAJKUMAR, P. 2016. Survey on Continuous 

Integration, Deployment and Delivery in Agile and DevOps Practices. 

 

[11] VÄÄNÄNEN, M. 2012. Development of continuous integration framework for 

external partners. 

 

[12] SENTHILKUMAR, R. & ARUNKUMAR, T. 2016. A Survey on Prioritization of 

Software Quality Attributes. Indian Journal of Science and Technology, 9, 7. 

 

[13] tutorialspoint. (n.d.). What is Dynamic Testing?. [online] Available at: 

https://www.tutorialspoint.com/software_testing_dictionary/dynamic_testing.htm[

Accessed 11 Aug. 2018]. 

 

[14] MAILEWA, A., HERATH, J. & HERATH, S. A Survey of Effective and 

Efficient Software Testing.  The Midwest Instruction and Computing Symposium. 

Retrieved from http://www. micsymposium. 

org/mics2015/ProceedingsMICS_2015/Mailewa_ 2D1_41. pdf, 2015. 
 

[15] GHUMAN, S. S. 2014. Software Testing Techniques. International Journal of 

Computer Science and Mobile Computing, 3, 988-993. 
 

 

[16] SIEBERT, B., VAN EEKELEN, M. & VISSER, J. 2014. Evaluating the testing  

quality of software defined infrastructures. Thesis, Radboud University Nijmegen. 
 

 

 [17] WILLIAMS, L., KUDRJAVETS, G. & NAGAPPAN, N. On the effectiveness of 

unit test automation at microsoft.  2009 20th International Symposium on 

Software Reliability Engineering, 2009. IEEE, 81-89. 

 

[18] PATEL, C. & GULATI, R. 2014. Software Performance Testing Measures. 

International Journal of Management & Information Technology, 8, 1297-1300. 

 
[19] PAULASAARI, M. 2018. Tools for Code Quality in Front-end Software 

Development. 

 

 [20] WEYUKER, E. J. & VOKOLOS, F. I. 2010. Experience with performance testing 

of software systems: issues, an approach, and case study. IEEE transactions on 

software engineering, 26, 1147-1156. 

 

https://www.tutorialspoint.com/software_testing_dictionary/dynamic_testing.htm
http://www/


64 
 

[21] VOKOLOS, F. I. & WEYUKER, E. J. Performance testing of software systems.  

Proceedings of the 1st International Workshop on Software and Performance, 

2014. ACM, 80-87. 

 

[22] PATEL, C. & GULATI, R. 2014. Software Performance Testing Measures. 

International Journal of Management & Information Technology, 8, 1297-1300. 

 

[23] GOTTA, D. & BIFFI, L. 2013. PERFORMANCE EVALUATION OF WEB 

APPLICATIONS. 

 

[24] ATHANASIOU, D., NUGROHO, A., VISSER, J. & ZAIDMAN, A. 2014. Test 

code quality and its relation to issue handling performance. IEEE Transactions on 

Software Engineering, 40, 1100-1125. 

 

[25] PATEL, M. C. & GULATI, R. 2012. Software Performance Testing Tools–A 

Comparative Analysis. Int. J. Eng. Res. Dev, 3, 58-61. 

[26] KONKA, B. B. 2012. A case study on Software Testing Methods and Tools. 

 

[27] HOODA, I. & CHHILLAR, R. S. 2015. Software test process, testing types and 

techniques. International Journal of Computer Applications, 111. 

  

[28] STAMELOS, I., ANGELIS, L., OIKONOMOU, A. & BLERIS, G. L. 2002. Code 

quality analysis in open source software development. Information Systems 

Journal, 12, 43-60. 

 

[29] CASSONE, G., ELIA, G., GOTTA, D., MOLA, F. & PINNOLA, A. Web 

Performance Testing and Measurement: a complete approach.  CMG ITALIA 

2017 and CMG USA 2017 conference proceedings, 2017. 

 

[30] BOEHM, B. W., BROWN, J. R. & LIPOW, M. Quantitative evaluation of 

software quality.  Proceedings of the 2nd international conference on Software 

engineering, 2015. IEEE Computer Society Press, 592-605. 

 

[31] DIN, G. 2013. A Performance Test Design Method and its Implementation 

Patterns for Multi-Services Systems. 



65 
 

[32]  STROGGYLOS, K. & SPINELLIS, D. Refactoring--Does It Improve Software 

Quality?  Fifth International Workshop on Software Quality (WoSQ'07: ICSE 

Workshops 2016), 2016. IEEE, 10-10. 

 

[33]  PATEL, M. C. & GULATI, R. 2012. Software Performance Testing Tools–A 

Comparative Analysis. Int. J. Eng. Res. Dev, 3, 58-61. 

 

[34]      RadView Software. (October 2015). Load and Performance Load Testing. [online] 

Available at: https://www.radview.com/wp-content/uploads/2015/10/Load-

Testing-with-WebLOAD-KeyFeatures-white-paper.pdf  [Accessed 9 Jan. 2019]. 

 

[35]     Saurabh.  (Mar 18, 2019). What is Jenkins? Jenkins For Continuous Integration. 

[online] codementor.  Available at: https://www.codementor.io/saurabh426/what-is-

jenkins-jenkins-for-continuous-integration-t737vsxlb [Accessed 10 Feb. 2019]. 

 

 

 

 

  

 

 

https://www.radview.com/wp-content/uploads/2015/10/Load-Testing-with-WebLOAD-KeyFeatures-white-paper.pdf
https://www.radview.com/wp-content/uploads/2015/10/Load-Testing-with-WebLOAD-KeyFeatures-white-paper.pdf
https://www.codementor.io/saurabh426
https://www.codementor.io/saurabh426/what-is-jenkins-jenkins-for-continuous-integration-t737vsxlb
https://www.codementor.io/saurabh426/what-is-jenkins-jenkins-for-continuous-integration-t737vsxlb


66 
 

Appendix A 

A1: Installing and Setting up the Basic tools 

In order to Integrate JSHint, JSCS into Visual Studio Code editor, those tools 

are not enable by default like in other code editors. However, you can add 

them manually following the next steps. 

 

Figure : Visual Studio Code 

1. Download and install the latest version of Node.js 

2. Use npm (installed with Node.js) to install JSHint (option -g is to install it 

globally so you don't need to do it in every project) 

1 npm install-g jshint 

3. Use npm to install JSCS 

1 

     npm install -g jscs 

 

Figure: Install jshint and jscs global 

1. Open Visual Studio Code and press F1 

2. Enter the following command to install JSHint 

http://jscs.info/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/en/
https://www.npmjs.com/


67 
 

Jasmine Setup Configuration 

First download jasmine framework  and extract it inside your project folder. I will suggest to 

create a separate folder /jasmine under /js or /javascript folder which may be already 

present in your application. 

four folders/files in distribution bundle: 

1. /src : contains the JavaScript source files that you want to test 

2. /lib : contains the framework files 

3. /spec : contains the JavaScript testing files 

4. SpecRunner.html : is the test case runner HTML file 

You may delete /src folder; and reference the source files from their current location 

inside SpecRunner.html file. The default file looks like, and you will need to change the 

files included from /src and /spec folders. 

I have removed /src folder and will refer files from their current locations. The current 

folder structure in Figure : 

 

Figure: Folder Jasmine framework 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/jasmine/jasmine/releases


68 
 

Load Test in WebLOAD Cloud 

 

 

Figure :  WebLOAD Cloud Homepage 

 

 Figure: Selecting the ty 

pe of load test to create 

 

 

Creating a URL/API Load Test Use this option to instantly create a load test for testing a 

load on a URL and/or API. After entering the load test specifications, webload 

automatically creates a test according to the specifications. 

Select URL/API Test. 



69 
 

 

Figure: Creating a URL/API load test 

 

Creating a Script Load Test 

Use this option to create a load test based on a WebLOAD script that was created in 

WebLOAD Recorder. 

 



70 
 

 

Figure: Creating a Script load test 

 

Customize a new chart based on the Blank Template can create a new interactive chart 

based on the Blank Template. This template can be modified or you can use it to create 

additional custom interactive templates. 

 

Figure: Templates Gallery 



71 
 

Appendix B 

Code Java Script used in unit testing, log file 

SpecRunner.html in folder jasmine_stand _alone 

<!DOCTYPE html> 

<html> 

<head> 

    <meta charset="utf-8"> 

    <title>Jasmine Spec Runner v2.4.1</title> 

    <link rel="shortcut icon" type="image/png" href="lib/jasmine-

2.4.1/jasmine_favicon.png"> 

    <link rel="stylesheet" href="lib/jasmine-2.4.1/jasmine.css"> 

    <script src="lib/jasmine-2.4.1/jasmine.js"></script> 

    <script src="lib/jasmine-2.4.1/jasmine-html.js"></script> 

    <script src="lib/jasmine-2.4.1/boot.js"></script> 

        <!-- include source files here... --> 

    <script src="src/Player.js"></script> 

    <script src="src/Song.js"></script>     

    <!-- include spec files here... --> 

    <script src="spec/SpecHelper.js"></script> 

    <script src="spec/PlayerSpec.js"></script> 

</head> 

<body></body> 

</html> 

To concentrate on what Jasmine is capable of, I am created a simple JS file 

slider.js with function we will unit-test that function. 

vari=0; 

var imagefiles=['rbags4.jpg','rbags5.jpg','rbags7.jpg','rbags9.jpg','rbags12.jpg']; 

window.setInterval(startSlider,1500); 

 



72 
 

functionstartSlider() 

{ 

 document.getElementById("topimg").src="images/slider/"+imagefiles[i]; 

 i++; 

 if(i>4) 

 { 

  i=0; 

 } 

} 

And after adding file reference in SpecRunner.html, file content will be : 

<!DOCTYPEhtml> 

<html> 

<head> 

<metacharset="utf-8"> 

<title>Jasmine Spec Runner v3.1.0</title> 

 

<linkrel="shortcut icon"type="image/png"href="lib/jasmine-3.1.0/jasmine_favicon.png"> 

<linkrel="stylesheet"href="lib/jasmine-3.1.0/jasmine.css"> 

 

<scriptsrc="lib/jasmine-3.1.0/jasmine.js"></script> 

<scriptsrc="lib/jasmine-3.1.0/jasmine-html.js"></script> 

<scriptsrc="lib/jasmine-3.1.0/boot.js"></script> 

 

<!-- include source files here... --> 

<scriptsrc="scripts/login.js"></script> 

<scriptsrc="scripts/slider.js"></script> 

 

<!-- include spec files here... --> 

<scriptsrc="Tests/sliderTests.js"></script> 

</head> 

<body> 

</body> 

</html> 

Let’s start writing unit tests for slider.js to better understand suite and specs. We will 

write thesespecs inTests/ sliderTests.js. 

/// <reference path="../scripts/slider.js" /> 

//This will be called before running each spec 

beforeEach(function () { 



73 
 

varim = '<div id="topimg" ></div>'; 

document.body.insertAdjacentHTML('afterbegin', im); 

}); 

//This will be called after running each spec 

afterEach(function () { 

document.body.removeChild(document.getElementById("topimg")); 

}); 

//This is test suite 

describe('A suite', function () { 

//Spec for startSlider operation 

it('contains spec with an expectation', function () { 

startSlider(); 

    }); 

}); 

HTML Assertion 

HTML Assertion is used to verify that the response contains correct HTML syntax or not 

using JTidy (HTML Syntax Checker). It will fail the test in case of improper HTML 

syntax response. 

This is log file to collect the errors and warning of improper HTML syntax response. 

line 4 column 9 - Warning: <meta> lacks "content" attribute 

line 144 column 16 - Warning: unknown attribute "property" 

line 144 column 54 - Warning: unknown attribute "property" 

line 145 column 9 - Warning: <script> lacks "type" attribute 

line 155 column 1 - Warning: <link> isn't allowed in <body> elements 

line 156 column 1 - Warning: <link> isn't allowed in <body> elements 

line 157 column 1 - Warning: <link> isn't allowed in <body> elements 

line 158 column 1 - Warning: <style> isn't allowed in <body> elements 

line 205 column 15 - Warning: <style> isn't allowed in <body> elements 

line 209 column 15 - Warning: <style> isn't allowed in <body> elements 


