Dedication

This research is dedicated with love and affection
To my parents,
my brothers and my sister
Weeping may endure for a night but joy comes in the morning. I thank the Almighty God for His unprecedented love and grace upon me. I would like to express my sincere gratitude to the Sudan university of science and technology (SUST) for granting me this wonderful opportunity to do a high graduate studies (MSC) in mathematical sciences. A million thanks to Academy of Engineering Science for making Academy of Engineering Science a global reality. My loving kindness goes to my parents, brothers and my sister. I would like to give a special appreciation to my supervisor, Prof. Mohammed Ali Basheir, for his steadfast love, guidance and support in making this research a success. I love you all and I pray that you guys will always be there for me. One love!!

Abstract
In this research we discussed the application of differential form to Maxwell’s equations.

Maxwell's equations, which depict classical electromagnetic theory, are pulled apart and brought together into a modern language of differential geometry. A background of vector fields and differential forms on a manifold is introduced, as well as the Hodge star operator, which eventually lead to the success of rewriting Maxwell's equations in terms of differential forms. In order to appreciate the beauty of differential forms, we first review these equations in covariant form which are shown afterwards to be consistent with the differential forms when expressed explicitly in terms of components. I declaration, the undersigned, hereby declare that the work contained in this research is my original work, and that any work done by others or by myself previously has been acknowledged and referenced accordingly.

الخلاصة

في هذا البحث ناقشنا تطبيق الصيغ التفاضلية لمعادلات ماكسويل.
معادلات ماسکویل وهي المعادلات التي تصور النظرية الكهرومغناطيسية الكلاسيكية والتي جمعت في لغة حديثة وهي الهندسة التفاضلية، عرضنا خلفية عن فضاءات المتجه والصيغ التفاضلية وكذلك مؤثر موجي والتي تؤدي في النهاية إلى نجاح إعادة صياغة معادلات ماسکویل في صورة صيغ تفاضلية. اولاً استعرضنا هذة المعادلات في شكل متغير مشارك والتي تظهر بعد ذلك لتكون متسقة مع الصيغ التفاضلية من حيث المركبات. أما الموقع اذن أعلن ان العمل الوارد في هذا البحث هو عملى وإن أي عمل قمت به او قام به اخرون معترف به ومشار إليه.

The Contents

Dedication...
... I
Acknowledgments ..
... II
Abstract.. III

... III
Chapter One
Differential Manifold and Tensor Calculus
1.1 Introduction to Manifolds..............3
1.2 Tangent vector and tangent space.................................8
1.3 Covector and cotangent space......................................12
1.4 Tensors space..............13
1.5 Definitions and Examples of Riemannian Metrics..................15

Chapter Two
Algebra of Differentiable Forms
2.1 Exterior differential forms.................................19
2.2 Integration on manifold..28
2.3 The curvature forms and the equation of structure..............34
2.4 Exterior differential system.................................37

Chapter Three
Application of Differential Forms
3.1 Introduction to Maxwell’s Equations..............................42
3.2 The Metric and Star Operator..45
3.3 Differential form of Maxwell’s equations..........................53

Conclusions...64
References ...65