
1

SUDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

COLLEGE OF GRADUATE STUDIES

Investigating the Performance of ASYCUDA System Based

on RMI and REST Technology
 "REST" و "RMIتقنيتي "اً على التحقق من آداء نظام الاسيكودا بناء

A Thesis Submitted in Partial Fulfillment of the Requirements of Master

Degree in Computer Science

By:

 Mohammed Ashraf Ibrahim Ahmed

Supervised By:

 Dr. Nisreen Beshir Osman

2019

2

3

4

5

Acknowledgment

I extend my heartfelt thanks and gratitude to the University of Sudan for

giving me this great opportunity to be among its students and to have the

opportunity to receive a great deal of knowledge.

I also thank all the teachers who taught during this period and added to me a

lot of experience and knowledge maturity that appeared in my career and how my

scientific and practical abilities evolved.

I especially thank my supervisor for this research, who took my hand and

helped me correct my various mistakes. Finally, I thank the Sudanese customs

authority, the institution I am currently working on, which has given me the

necessary administrative help.

6

Abstract

Sudan Customs uses “ASYCUDA” [2] software for customs clearance, it

follows the architecture of n-tier, the application is split into three separate units in

a make server and the user's PC share their messages through the web by using

RMI technology, this leading the investigate on how can we enhance the current

Sudan Customs System “ASYCUDA” performance through reduce it‟s time

response by using a new framework different to RMI. Related works shows that a

REST Json based web service could be the best alternative choice for RMI

replacement, it indicates that REST Json-base web service are more faster because

of that, this research investigate exactly on time response comparison between

RMI which represents the current framework that ASYCUDA based on it, two

experimental models were designed, the first model represents the use of RMI

technology and the second model represents the use of REST JSON based web

service technology. Models consist of two parts, server application and client

application. Results of those two models showed that RMI still better than REST in

time response. We searched again for scientific justification; we explained it at the

end of this research.

7

 المستخلص

 اىطبقاث ٍؼَاسٌت ٌتبغ اىزي و اىجَشمً، ىيتخيٍص الاسٍنىدا تطبٍق تستخذً اىسىداٍّت اىجَاسك

 ٍِ اىبٍاّاث بتباده اىَستخذٍٍِ اجهضة و ىيَخذً تسَح ٍستقيت وحذاث ثلاثت اىً ٌْقسٌ اىتطبٍق اىَتؼذدة،

 تقيٍو خلاه ٍِ اىحاىً الاسٍنىدا ّظاً آداء تحسٍِ مٍفٍت فً اىتحقق اىً قادّا ٍا هزا .RMIاه تقٍْت خلاه

 اه أُ اىسابقت اىذساساث أظهشث .RMIىو بذٌيت تقٍْت ٍْظىٍت استخذاً خلاه ٍِ رىل و الاستجابت صٍِ

REST web service ًاه مائِ تستخذً اىت Json اُ اىَقاسّاث اظهشث حٍث ، الافضو اىبذٌو هً تؼذ

 تصٌٍَ تٌ اىبحث هزا فً. الاسٍنىدا ّظاً فً اىَستخذٍت تيل ٍِ الاستجابت صٍِ ّاحٍت ٍِ اسشع الاخٍشة تيل

 REST Json اه تقٍْت ػَو ٌحامً الاخش و RMIاه تقٍْت ػَو ٌحامً َّىصج الاوه ػَيٍٍِ َّىصجٍِ

based web service. اىَتىقغ ػنس ػيى. تابغ تطبٍق و ٍخذً تطبٍق ٍِ ٌتنىّاُ اىَْىصجٍِ ملا

 ٍشة باىبحث قَْا ، الاستجابت سشػت ّاحٍت ٍِ افضو ّتائجا تؼطً RMIاه تقٍْت اُ اىؼَيٍت اىْتائج اظهشث

 .اىبحث ّهاٌت فً ششحها و اىْتائج ىهزٓ اىؼَيً اىتفسٍش ػِ اخشي

8

Table of the Contents

Title Page

II. َاىنشٌَت ٌتا ..

III. Dedication ..

IV. Acknowledgment ...

V. Abstract ..

VI. اىَستخيص ...

VII. Table of Contents ..

Chapter1: Introduction

 1.1. Overview ... 9

 1.2. Research Problem .. 9

 1.3. Research Significance .. 9

 1.4. Research Objectives ... 10

 1.5. Structure of the Thesis ... 10

Chapter 2: Literature Review

 2.1 Remote Method Invocation (RMI) ... 11

 2.2 REST JSON based web service .. 13

2.3. RMI, SOAP, REST Comparison .. 14

 2.4 ASYCUDA Technical Overview ... 15

 2.5 SOClass™ Framework ... 15

 2.6 Related work ... 17

Chapter 3: Methodology

 3.1 Models design ... 20

 3.1.1 RMI Model .. 21

 3.1.1.1 RMIInterface .. 21

 3.1.1.2 RMIServer ... 21

 3.1.1.3 RMIClient .. 23

 3.1.2 REST WS Model ... 26

 3.1.2.1 RestWS .. 26

 3.1.2.2 RestWSClient .. 27

 3.2 Conduct experiments .. 29

 3.3 Measurements and results ... 30

 3.3.1 RMI .. 30

9

 3.3.2 REST WS .. 32

Chapter 4 : Results and Discussions

 4.1 Results …………….. 36

 4.2 Discussions …….. 37

Chapter 5 : Conclusions and Recommendations

 5.1 Conclusions ... 38

 5.2 Recommendations ... 38

 References ……………...

10

Chapter One

1. Introduction

1.1. Overview

According to ISO/IEC 25010 [1], Time-behavior beside resource utilization

and capacity are the sub-characteristics of the performance efficiency

characteristic. Response time is the key and the most important factor in time-

behavior.

Time is an important factor in the process of customs clearance. The

economy of countries depends largely on the movement of export and import of

exported goods, and this requires customs clearance procedures. Traders are losing

huge sums because of the congestion of goods at the port. There are goods that do

not bear delays in customs clearance. Because of that this research focuses only on

the time response.

1.2. Research Problem

1. There is a need to enhance the performance of the ASYCUDA.

2. There is no study that investigated the performance enhancement of the

ASYCUDA.

1.3. Research importance

The importance of the research was related to improving the quality of the

current ASYCUDA system, because the time factor is very important in reducing

the time of clearance and satisfaction of clearance partners like Customs authority,

clearance agents, importers, exporters and Taxation chamber, and Because

acceleration of customs clearance may be a reason for increasing the commercial

activity of exported and imported goods, which leads to the increase of customs

and tax revenues, which may lead to a reduction in the rates of duties imposed on

goods because the realization of the estimated financial ceiling annually and

imposed by the Ministry of Finance relative availability. Briefly the importance is

improving the quality and its impact on the system and the organization.

11

This research will help identify techniques proactively, before risking

starting the process of reengineering an existing system

1.4. Research Objectives

 Design two experimental models; one of them uses RMI and the other uses

REST Json base web service.

 Perform experiments and analyze results.

 Compare the two technologies (RMI and REST) according to these

experimental results.

1.5. Structure of the thesis

The first chapter introduces this thesis by explaining what is the “Response

Time” and its importance in this research. And then we have explained the

problem field of investigation and its importance.

The second chapter gives theoretical background on the investigated

technologies, namely “RMI” and “REST Json Based Web Service”, explain their

components, and how they works. This chapter also explains what the ASYCUDA

system is, and the technical framework it uses and its relationship to the mentioned

technologies. Related works presents at the end of this chapter and how they were

used in this investigation.

Chapter three concerned with the methodology by explaining the two

experimental models, RMI and REST Json based models and how they were

designed, there is a comprehensive documentation of these models. And then how

experiments were performed and measurements recorded.

Chapter 4 means the results of the measurements recorded from the

experiments conducted in the previous chapter. It also includes analyzing the

results of these measurements, investigating their causes and searching for

scientific justifications.

The final outcome of this investigation, in addition to the recommendations,

is presented In Chapter 5.

12

Chapter 2

2. Literature Review

2.1. Remote Method Invocation (RMI)

RMI is part of the core Java API and has been enhanced for JDK 1.2 (Java 2

platform) in recognition of the critical need for support for distributed objects in

distributed application development [3].

With RMI, you can get a reference to an object that “lives” in a remote

process on remote hosts and invoke methods on it as if it were a local object

running within the same Java virtual machine as your code. Each remote object

implements a remote interface that specifies which of its methods can be invoked

by clients. All object interfaces are written in Java since RMI is a Java-only

distributed object scheme. Java RMI provides the following elements:

Remote objects implementations.

Client interfaces, or stubs, to the remote object.

1. A remote object registry for finding objects on the network.

2. A network protocol for communication between remote objects and their

client (this protocol is the JRMP, i.e. Java Remote Method Protocol).

3. A facility for automatically (activating) remote objects on demand.

Prior to RMI, a distributed application involved socket programming, where

a raw communication channel was used to pass messages and data between two

remote processes. The programmer needed to define a low-level message protocol

and data transmission format between processes in the distributed application.

With RMI, you can “export” an object as a remote object, so that other remote

processes/agents can access it 566 directly as a Java object. RMI handles all the

underlying networking needed to make the remote method calls work.

There are three layers that comprise the basic RMI architecture.

1. The stub-skeleton layer, which provides the interface that client and server

application objects use to interact with each other.

2. The remote reference layer, which is the middleware between the

stubkkeleton layer and the underlying transport protocol.

3. The transport protocol layer, which is the binary data protocol that sends

remote object requests over the wire. The client uses the client-side stub to

make a request of the remote object.

13

The stub forwards the method invocation request through the remote reference

layer by marshaling the method arguments into serialized form and asking the

remote reference layer to forward the method request and arguments to the

appropriate remote object. The remote reference layer converts the client request

into low-level RMI transport requests, i.e., into a single network-level request and

sends it over the wire to the remote object. On the server, the server-side remote

reference layer receives the transport-level request and converts it into a request for

the server skeleton that matches the referenced object. The skeleton converts the

remote request into the appropriate method call on the actual server object.

This involves un-marshaling the method arguments into the server

environment and passing them to the server object. Arguments sent as remote

references are converted into local stubs on the server, and arguments sent as

serialized objects are converted into local copies of the originals. If the method

calls generates a return value or an exception, the skeleton marshals the object for

transport back to the client and forwards it through the server reference layer.

RMI provides some basic object services on top of its remote object

architecture that can be used by the distributed application designer. These services

are:

1. Naming registry Service. A server process needs to register one (or more)

RMI-enabled objects with its local RMI registry using a name that clients

can use to reference it. A client can obtain a stub reference to the remote

object by asking for the object by name.

2. Distributed Garbage Collection. This is an automatic process that the

application developer does not have to worry about.

3. Object Activation Service. This service is new to RMI as of version 1.2 of

the Java 2 platform. It provides away for a server object to be activated

automatically when a client requests it.

4. The stub is an object, acts as a gateway for the client side. All the outgoing

requests are routed through it. It resides at the client side and represents the

remote object.

When the caller invokes method on the stub object, it does the following tasks:

1. It initiates a connection with remote Virtual Machine (JVM).

2. It writes and transmits (marshals) the parameters to the remote Virtual

Machine (JVM).

14

3. It waits for the result.

4. It reads (unmarshals) the return value or exception.

5. It finally, returns the value to the caller.

The skeleton is an object, acts as a gateway for the server side object. All the

incoming requests are routed through it. When the skeleton receives the incoming

request, it does the following tasks:

1. It reads the parameter for the remote method

2. It invokes the method on the actual remote object, and

3. It writes and transmits (marshals) the result to the caller.

In the Java 2 SDK, a stub protocol was introduced that eliminates the need for

skeletons.

Figure 2.2: RMI structure.

In the Java 2 SDK, a stub protocol was introduced that eliminates the need for

skeletons.

In the RMI application, both client and server interact with the remote

interface. The client application invokes methods on the proxy object; RMI sends

the request to the remote JVM. The return value is sent back to the proxy object

and then to the client application.

2.2. REST JSON Based Web Service

The term representational state transfer was introduced by Roy Fielding. REST

style architecture is client server architecture in which client sends request to

15

server then server process the request and return responses. These request and

responses build around the transfer of representations of resources. A resource is

something that is identified by URI. Representation of resource is typically a

document that captures the current or intended state of a resource. REST is less

strongly typed than SOAP. The REST language is based on the use of nouns and

verbs. REST does not require message format like envelope and header which is

required in SOAP messages. So as XML parsing is also not required bandwidth

requirement is less. Design principle of REST is as follows- addressability,

statelessness and uniform interface. Addressability- REST models the datasets to

operate on as resources where resources are marked with URI. A uniform and

standard interface is used to access the rest resources i.e. using fixed set of HTTP

methods. Every transaction is independent and unrelated to the previous

transaction as all data required to process the request is contained in that request

only, client session data is not maintained on server side therefore server responses

are also independent.

These principles make the REST application simple and lightweight. The web

application which follows the REST architecture we call it as RESTful web

service. Restful web services uses GET, PUT, POST and DELETE http methods to

retrieve, create, update and delete the resources [4].

2.3. RMI, SOAP, REST Comparison:

Refer to “Figure 2.1”, by putting these three system‟s communication

technologies (RMI, SOAP, REST) in balance; we found that the SOAP xml based

web services were on average ~4.3 (4 for best case) times larger than RMI JRMP

messages, on other hand Rest JSON base web service were also 5 to 6 (5 for worse

case) times lesser than SOAP xml based web services, by putting these all in one

balance we can say that Rest JSON base web service are ~ 1 time less than RMI .

But before going into this comparison the subject of this research, we must

look deeply at these techniques, so that we understand the structure and how to

work. Why did we compare the three technologies together and did not just a direct

comparison between RMI which represent the current framework of ASYCUDA

and the REST Json Based WS which represent the suggested recently the

recommend replacement of the past one RMI? Simply because these two

16

technologies did not appear at the same time so we had to find a mediator

compares the two of them which is SOAP technology.

Figure 2.1: RMI, SOAP, REST Comparison

2.4. ASYCUDA Technical Overview

The ASYCUDA World systems are written entirely in Java; it is internet-

based and uses Java web start to provide the latest Client applicants using your

favorite web browser.

The ASYCUDA World general architecture is a state of the art n-tier system

composed of modular products. Final user products are e-Document applications.

It is based on SOClass™ framework which respects the four major aspect of

system security as described overleaf.

Current edition of ASYWorld developed using SO-Class Framework,

designed to offer solutions based on an 3-tier application model, in which user

interface application resides on the end-users‟ computers, business logic resides on

a centralized computer, and data requirements are handled by another computer

managing a database.

2.5. SOClass™ Framework

SOClass framework is designed by Strategy Object Company to offer

solutions based on an n-tier model. An n-tier application program is distributed

2

6

1

0

1

2

3

4

5

6

7

Response Time

RMI SOAP (XML) REST(JSON)

17

among three or more separate computers or logical layers in a distributed network

environment. The most common form of n-tier (meaning „some number of tiers‟) is

the 3-tier application, in which user interface application resides on the end-users‟

computers, business logic resides on a centralized computer, and data requirements

are handled by another computer managing a database [5].

In addition to their induced orderliness of programming, n-tier applications

have the obvious advantage that any of the tiers can run on a most appropriate

processor or operating system, offering great scalability and capacity of evolution.

Figure 2.3: SOClass framework distributed systems.

As SOClass is an entirely Java system, it faithfully observes the popular “run

anywhere” concept, as popularized by Java vendors. The distinct advantage for

customers, and in particular governments, being that SOClass implementations can

comply with IT development policies, previously established. For example,

SOClass can work with any type of database management system supporting a

JDBC driver or an ODBC driver trough a JDBC-ODBC bridge.

As a data-centric object, the e-document revolves around the data and logic

it embeds. The SOClass data model is an hierarchical representation of the data

contained in the e-document. Data can be viewed as a tree made of branches and

data leaves – or data elements. This hierarchical representation proves natural and

facilitates the analysis of the functional requirements. In addition, it eases the

coding of the business logic through rules attached as adequate to tree nodes or

leaves.

18

The Graphic User Interface (GUI) tier can be specific to each application,

and each document, or harmonized around SOClass standard design. SOClass

visual tools and examples allows beginners to quickly develop great document

visual interfaces – or document skins – but also render possible for advanced

programmers to plug-in more complex proprietary ones. The standard SOClass

visual representation of a document comprises one or more forms, each comprising

one or more pages. Finally the main thing here in this part is that SOClass

Framework based on RMI, Remote Method Invocation, provides client-server

communication interface.

2.6. Related Work

Performance comparison of RMI had been done, (SOAP) Web services

using a subset of the performance assessment framework. They measured the

round trip method invocation times and the instantiation times, the round trip

time expresses the overhead of remote method invocation [6].

Web services have been on average ~9 times slower than RMI. While the

size of the RMI binary messages is related to the actual binary size of the data,

the size of SOAP messages is related to the lexical length of data, data type and

variable names (which are used for tag names and for xsi:type attributes). For

creating and reading of SOAP messages Web services use XML serialization.

Binary serialization is an order of magnitude more efficient than XML

serialization. Web services SOAP messages were on average ~4.3 times larger

than RMI JRMP messages. When transferred over HTTP additional header

information is added which further increases the message size.

This article analyses two most commonly used distributed models in Java

(SOAP) Web services and RMI (Remote Method Invocation). The paper

19

contributes to the understanding of functional and performance related

differences between SOAP WS and RMI.

Performance comparison on of SOAP based and RESTful web services

based on different metric for mobile environment and multimedia conference is

taken into consideration [7].

Evaluates the performance of both web services which provides the same

functionalities in mobile computing environment. Two benchmarks are

implemented based on float and string data type as parameter to the web

service. The service client runs on mobile emulator. Results are captured for

SOAP and RESTful web services in terms of total response time and message size.

Message size in RESTful web services (in both cases) is 9 to 10 times lesser

than size of SOAP based web services message. Similarly time required for

processing and transmission is also 5 to 6 times lesser than SOAP based web

services.

Lin, et al. compare the data transmission efficiency of JSON and XML, test

environment was setup respectively, using these two data interchange format to

transfer a same set of data from server-side, and gradually increase the amount of

data to observe the changes of record delivery time, and thus indirectly to compare

data transmission efficiency of them [8].

Table 2.1: Performance Result Of SOAP and REST Web Services in Mobile Applicaton

From the test results, we can see JSON in the client's efficiency is much

higher than the XML, and with the amount of data increases, the JSON‟s

20

deserialization time-consuming has no significant increase. However, XML with

the amount of data increases, the client parse time appears to grow significantly.

Automated performance testing is very important for large scale and

distributed applications. Unsatisfactory performance may create functional and

non-functional problems which must lead to inference in terms of time and

resources [9].

As per ISO/IEC 9126 performance is measure in terms of efficiency

meanwhile the parameters for measure are time behavior, resource utilization

and efficiency compliance. In 2010 ISO/IEC FDIS 25010:2010(E)

slandered efficiency changes to performance efficiency and the parameters are time

behavior, resource utilization and capacity. Time behaviors refer to response time

and throughput. Paper review some of the methodologies and tools used for

software performance assessment and techniques used for gathering and capturing

performance parameters (data), which are highly dynamic and uncertain.

21

Chapter 3

3. Methodology

We designed two experimental models. The first model represents the use of

RMI technology and the second model represents the use of REST JSON based

web service technology. Models consist of two parts, server application and client

application.

Both models were designed using the Java programming language

specifically JDK 1.7.0_80 and using NetBeans 8.1 as an IDE, server application

run on Windows7 64 bit run on PC processor core i5,and 4 GB of RAM while

client application run on PC with a dual core processor and OS Windows7 32 bit

and 2 GB of RAM.

Of course, the two models were basically designed for time response

comparison, so they work on same environment and same conditions. Client‟s

applications are functionality similar to each other but they are different in way of

server remotely calling, both server and client are in one LAN, so they connected

together through intranet.

3.1. Models Design
The models idea is that a user interface represents clients which sends two

literal strings to a server application, and then the server application returns a string

to the user interface again, in these steps, we put two points to measure the system

time response indicated by the sequence of operations as follows:

 Point 1: Time when a message was sent to the server application.

 Point 2: The time when the client gets the result from the server.

Figure 3.1: RMI Experimental Model

22

Figure 3.2: REST Experimental Model

We have implemented two models that simulate the same idea, but in two

different ways, the first using the RMI and the other using REST JSON based.

We used the synchronization concept to emulate a certain number of users

who are invoking a same function relies on server at the same time, we have

achieved this by using multithreading calling ,of course the number of users has

been taken into account in these experiments, finally we put our two types of

clients in other PC before starting our experimental models.

3.1.1. RMI Model

This model is designed based on the RMI technique, which we explained

early in the first chapter of this research. Depending on the needs of this

technology in order to work we created three java “.jar” applications, the first one

was “RMIInterface” application which represent the source of the remote

interface, second one was “RMIServer” to provide the implementation of the

remote interface and play the server role and the last application was “RMIClient”

which represent the client where the object should invoked remotely. No additional

java libraries needed, just the standard JDK1.7.

3.1.1.1 RMIInterface

This application includes just the remote interface called

“RMIInterface.java”, the project main source package “rmiinterface” contains a

remote interface extend the java RMI Remote interface, is only one method named

concat() and it declares RemoteException. Because the interface is a contract, we

23

designed it to be an independent application, and then built as a “.jar” project and

then we included in the application‟s project library for both “RMIServer” and

“RMIClient” applications.

By looking at “RMIInterface.java” (Figure 3.1) skeleton object has one

method called “great()”, method signature‟s parameters and it‟s returned value

indicate that how the skeleton object could be invoked remotely and which type of

value it will return.

1 package rmiinterface;

2

3 import java.rmi.Remote;

4 import java.rmi.RemoteException;

5

6 public interface RMIInterface extends Remote{

7 public String great(String clientID , String clientMessage) throws

RemoteException ;

8 }

Figure (3.1): RMIInterface.java

3.1.1.2 RMIServer

RMIServer source package contains RMIServer.java (Figure 3.2) class,

which implement RMIInterface interface by extend the UnicastRemoteObject

class. Because we extend the UnicastRemoteObject class, we must define a

constructor that declares RemoteException. As you see at line 16, the server class

override great() RMIInterface interface method, here is skeleton application logic,

as you see this method return the result of String message contains “clientID” and

“clientMessage” which were send as parameters. We added at line 19 a print

message to determine the time when the server received this message from the

client (Point 2). Line 25 will start the registry service on port “4444”. Line 26

binds the remote object to the new name.

1 package rmiinterface;

2 import java.rmi.RemoteException;

3 import java.rmi.registry.LocateRegistry;

24

4 import java.rmi.registry.Registry;

5 import java.rmi.server.UnicastRemoteObject;

6 import java.text.SimpleDateFormat;

7 import java.util.Date;

8

9 public class server extends UnicastRemoteObject implements RMIInterface

{

10
11 public server() throws RemoteException {

12 }

13
14 @Override

15 public String concat(String clientID, String clientMessage) throws

RemoteException {

16 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS");

17 System.out.println(" Point 2 , Receipt " + clientMessage + " from " +

clientID + "\t@:" + sdf.format(new Date()));

18 return clientID +" Server Replay your message was : " +

clientMessage ;

19 }

20
21 public static void main(String[] s) throws RemoteException

22 {

23 Registry reg = LocateRegistry.createRegistry(4444) ;

24 reg.rebind("hi_server", new server());

25 System.out.println(" server is ready ... ");

26 }

27 }
Figure (3.2): RMIServer.java

3.1.1.3 RMIClient

This application consists of two classes and as we mentioned previously the

“RMIInterface.jar” file. The first class is DoRMI Class and the other one is

RMIClient class.

25

 DoRMI (shown in Figure 3.3) Class represent one user or client invoke

great() method on the server remotely. Each instance of this class defines a new

instance of RMIInterface and it extends Thread class because we need of

synchronization. As you see at line 27,28 we print when the client start calling the

RMI method (Point 1), and when the client receipt the result from server (Point 3).

1

2 package rmiclient;

3

4 import java.rmi.RemoteException;

5 import java.text.SimpleDateFormat;

6 import java.util.Date;

7 import java.util.logging.Level;

8 import java.util.logging.Logger;

9 import rmiinterface.RMIInterface;

10
11 public class DoRMI extends Thread {

12 static int serial ;

13 String clientName ;

14 RMIInterface ad ;

15
16 public DoRMI(String clientName) {

17 this.clientName = clientName;

18 }

19
20 @Override

21 public void run() {

22 String name = Thread.currentThread().getName();

23 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS");

24 try {

25 Thread.sleep(0);

26 synchronized (this) {

27 Date D1 = new Date() ;

28 System.out.println("<= Point 1,\t" + clientID + " start calling @ " +

sdf.format(new Date()) + ", Duration "+ (new Date().getTime() -

D1.getTime()));

29 System.out.println("=> Point 3,\t" + ad.great(clientID, clientMessage)

26

+ "\t:@" + sdf.format(new Date()));

30 }

31 } catch (InterruptedException e) {

32 System.out.println(e.getMessage());

33 } catch (RemoteException ex) {

34 Logger.getLogger(DoRMI.class.getName()).log(Level.SEVERE,

null, ex);

35 }

36
37 }

38 }

39
Figure (3.3): DoRMI.java

The RMIServer class (shown in Figure 3.4) lookup for RMIInterface hold

the registry name “hi_server”, existed on a server with IP “localhost” on port

“4444”.

1 package rmiclient;

2

3 import java.rmi.NotBoundException;

4 import java.rmi.RemoteException;

5 import java.rmi.registry.LocateRegistry;

6 import java.rmi.registry.Registry;

7 import java.text.SimpleDateFormat;

8 import java.util.Date;

9 import java.util.logging.Level;

10 import java.util.logging.Logger;

11 import rmiinterface.RMIInterface;

12
13 public class RMIClient {

14 public static void main(String[] args) {

15 Registry reg;

16 RMIInterface ad;

17 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS");

18
19 try {

27

20 reg = LocateRegistry.getRegistry("localhost", 4444);

21 ad = (RMIInterface) reg.lookup("hi_server");

22 for (int i = 0; i < 10; i++) {

23 DoRMI t = new DoRMI("client " + i);

24 t.ad = ad;

25 t.start();

26 } catch (RemoteException | NotBoundException ex) {

27 Logger.getLogger(RMIClient.class.getName()).log(Level.SEVERE,

null, ex);

28 }

29 }

30 }

Figure (3.4): RMIServer.java

3.1.2. REST WS Model

This second experimental model consist of two applications, the RestWS as

web service application and the RestWSClient as a user client interface, here we

used additional external APIs needed to apply java web service technology which

was JAX-RS 2.0.

We used apache-tomee-webprofile-7.0.1 as web server application. On the

client side we used Jersey 2.5.1 (JAX-RS RI) .

3.1.2.1 RestWS

According to the Rest web service technology concept we put our “greet()”

method as a resource over a service path, which receipt two parameters “clientID”

and “clientMessage” from the service path URL, and return a server String

message. (Fig 3.5) display the source code of “RestWS” web resource.

1 package logic;

2

3 import java.text.SimpleDateFormat;

4 import java.util.Date;

5 import javax.ws.rs.core.Context;

6 import javax.ws.rs.core.UriInfo;

7 import javax.ws.rs.Consumes;

8 import javax.ws.rs.PUT;

9 import javax.ws.rs.Path;

28

10 import javax.ws.rs.GET;

11 import javax.ws.rs.PathParam;

12 import javax.ws.rs.Produces;

13 import javax.ws.rs.core.MediaType;

14
15 @Path("ws")

16 public class WsResource {

17
18 @Context

19 private UriInfo context;

20
21 @GET

22 @Produces(MediaType.APPLICATION_JSON)

23 @Path("great/{clientID},{clientMessage}")

24 public String great(@PathParam("clientID") String clientID

,@PathParam("clientMessage") String clientMessage) {

25 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS");

26 System.out.println(" Point 2 , Receipt " + clientMessage + " from " +

clientID + "\t@:" + sdf.format(new Date()));

27 return clientID +" Server Replay your message was : " +

clientMessage ;

28 }

29
30 @PUT

31 @Consumes(MediaType.APPLICATION_JSON)

32 public void putJson(String content) {

33 }

34 }

Fig 3.5: RestWS resource

3.1.2.2 RestWSClient

Our Rest WS client application consist of two java classes , “DoRESTCall”

the class that representatives 10 users calling the above RestWS at the same time

by using Threads (see Fig:3.6) , and the project class that trigging that class (see

Fig:3.7).

1 package restclient;

29

2

3 import java.text.SimpleDateFormat;

4 import java.util.Date;

5 import javax.ws.rs.client.Client;

6 import javax.ws.rs.client.WebTarget;

7

8 public class DoRESTCall extends Thread {

9

10 private WebTarget webTarget;

11 private Client client;

12 String clientID;

13 String clientMessage;

14
15 public DoRESTCall(WebTarget webTarget, Client client, String clientID,

String clientMessage) {

16 this.client = client;

17 this.webTarget = webTarget;

18 this.clientID = clientID;

19 this.clientMessage = clientMessage;

20
21 }

22
23 public void close() {

24 client.close();

25 }

26
27 @Override

28 public void run() {

29 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS");

30 try {

31 Thread.sleep(0);

32 synchronized (this) {

33 Date D1 = new Date() ;

34 System.out.println("<= Point 1,\t" + clientID + " start calling @ "

+ sdf.format(new Date()));

35 WebTarget resource =

webTarget.path(java.text.MessageFormat.format("great/{0},{1}", new

Object[]{clientID, clientMessage}));

30

36 String result =

resource.request(javax.ws.rs.core.MediaType.APPLICATION_JSON).get(St

ring.class);

37 System.out.println("=> Point 3,\t" +result + "\t:@" +

sdf.format(new Date()) + ", Duration "+ (new Date().getTime() -

D1.getTime()));

38 }

39 } catch (InterruptedException e) {

40 System.out.println(e.getMessage());

41 }

42 }

43 }

Fig: 3.6: DoRESTCall.java

1 package restclient;

2

3 import javax.ws.rs.client.Client;

4 import javax.ws.rs.client.WebTarget;

5

6 public class RestWSClient {

7

8 public static void main(String[] args) {

9 String BASE_URI = "http://localhost:8080/RestWS/webresources";

10
11 for (int i = 0; i < 10 ; i++) {

12 Client client = javax.ws.rs.client.ClientBuilder.newClient();

13 WebTarget webTarget = client.target(BASE_URI).path("ws");

14 DoRESTCall c = new DoRESTCall(webTarget, client, "c" + i,

"Greating NO. " + i);

15 c.start();

16 }

17 }

18 }

Fig: 3.7: RestWSClient main class

3.2. Conduct experiments

When we run RMIClient application, we get Point‟s times through printing

on the application consol. These times represent two kind of points, lines start with

31

“=>” indicates times of type Point 1, and that start with “<=” indicate times of

type Point 3. Any kind of the two types of points existed for the 10 number of

instances or by other word transactions starting at the same time. The results show

the normal non-ordering starting / finishing remote method invocation of each

instance because of using thread‟s synchronizations.

3.3. Measurements and results

3.3.1. RMI

1st attempt Client Console

<= Point 1, c1 start calling @ 2018-08-07 10:57:39.925

<= Point 1, c4 start calling @ 2018-08-07 10:57:39.925

<= Point 1, c3 start calling @ 2018-08-07 10:57:39.925

<= Point 1, c2 start calling @ 2018-08-07 10:57:39.925

<= Point 1, c7 start calling @ 2018-08-07 10:57:39.925

<= Point 1, c6 start calling @ 2018-08-07 10:57:39.925

<= Point 1, c0 start calling @ 2018-08-07 10:57:39.925

<= Point 1, c9 start calling @ 2018-08-07 10:57:39.925

<= Point 1, c8 start calling @ 2018-08-07 10:57:39.925

<= Point 1, c5 start calling @ 2018-08-07 10:57:39.925

=> Point 3, c0 Server Replay your message was : Greating NO. 0

 :@2018-08-07 10:57:40.346 Duration was :421

=> Point 3, c7 Server Replay your message was : Greating NO. 7

 :@2018-08-07 10:57:40.346 Duration was :421

=> Point 3, c8 Server Replay your message was : Greating NO. 8

 :@2018-08-07 10:57:40.346 Duration was :421

=> Point 3, c1 Server Replay your message was : Greating NO. 1

 :@2018-08-07 10:57:40.346 Duration was :421

=> Point 3, c2 Server Replay your message was : Greating NO. 2

 :@2018-08-07 10:57:40.346 Duration was :421

=> Point 3, c4 Server Replay your message was : Greating NO. 4

 :@2018-08-07 10:57:40.346 Duration was :421

=> Point 3, c9 Server Replay your message was : Greating NO. 9

 :@2018-08-07 10:57:40.346 Duration was :421

=> Point 3, c3 Server Replay your message was : Greating NO. 3

 :@2018-08-07 10:57:40.346 Duration was :421

=> Point 3, c6 Server Replay your message was : Greating NO. 6

 :@2018-08-07 10:57:40.346 Duration was :421

32

=> Point 3, c5 Server Replay your message was : Greating NO. 5

 :@2018-08-07 10:57:40.346 Duration was :421

2
nd

 attempt Client Console

<= Point 1, c1 start calling @ 2018-08-07 10:58:15.498

<= Point 1, c5 start calling @ 2018-08-07 10:58:15.498

<= Point 1, c4 start calling @ 2018-08-07 10:58:15.498

<= Point 1, c9 start calling @ 2018-08-07 10:58:15.498

<= Point 1, c8 start calling @ 2018-08-07 10:58:15.498

<= Point 1, c2 start calling @ 2018-08-07 10:58:15.498

<= Point 1, c6 start calling @ 2018-08-07 10:58:15.498

<= Point 1, c3 start calling @ 2018-08-07 10:58:15.498

<= Point 1, c0 start calling @ 2018-08-07 10:58:15.498

<= Point 1, c7 start calling @ 2018-08-07 10:58:15.498

=> Point 3, c0 Server Replay your message was : Greating NO. 0

 :@2018-08-07 10:58:15.888 Duration was :390

=> Point 3, c8 Server Replay your message was : Greating NO. 8

 :@2018-08-07 10:58:15.888 Duration was :390

=> Point 3, c5 Server Replay your message was : Greating NO. 5

 :@2018-08-07 10:58:15.888 Duration was :390

=> Point 3, c4 Server Replay your message was : Greating NO. 4

 :@2018-08-07 10:58:15.888 Duration was :390

=> Point 3, c2 Server Replay your message was : Greating NO. 2

 :@2018-08-07 10:58:15.904 Duration was :406

=> Point 3, c3 Server Replay your message was : Greating NO. 3

 :@2018-08-07 10:58:15.904 Duration was :406

=> Point 3, c1 Server Replay your message was : Greating NO. 1

 :@2018-08-07 10:58:15.920 Duration was :422

=> Point 3, c6 Server Replay your message was : Greating NO. 6

 :@2018-08-07 10:58:15.920 Duration was :422

=> Point 3, c7 Server Replay your message was : Greating NO. 7

 :@2018-08-07 10:58:15.920 Duration was :422

=> Point 3, c9 Server Replay your message was : Greating NO. 9

 :@2018-08-07 10:58:15.920 Duration was :422

3
rd

 attempt Client Console

<= Point 1, c0 start calling @ 2018-08-07 10:58:39.401

<= Point 1, c9 start calling @ 2018-08-07 10:58:39.401

33

<= Point 1, c1 start calling @ 2018-08-07 10:58:39.401

<= Point 1, c6 start calling @ 2018-08-07 10:58:39.401

<= Point 1, c3 start calling @ 2018-08-07 10:58:39.401

<= Point 1, c4 start calling @ 2018-08-07 10:58:39.401

<= Point 1, c2 start calling @ 2018-08-07 10:58:39.401

<= Point 1, c7 start calling @ 2018-08-07 10:58:39.401

<= Point 1, c8 start calling @ 2018-08-07 10:58:39.416

<= Point 1, c5 start calling @ 2018-08-07 10:58:39.416

=> Point 3, c2 Server Replay your message was : Greating NO. 2

 :@2018-08-07 10:58:39.806 Duration was :405

=> Point 3, c0 Server Replay your message was : Greating NO. 0

 :@2018-08-07 10:58:39.806 Duration was :405

=> Point 3, c7 Server Replay your message was : Greating NO. 7

 :@2018-08-07 10:58:39.806 Duration was :405

=> Point 3, c6 Server Replay your message was : Greating NO. 6

 :@2018-08-07 10:58:39.806 Duration was :405

=> Point 3, c5 Server Replay your message was : Greating NO. 5

 :@2018-08-07 10:58:39.806 Duration was :390

=> Point 3, c1 Server Replay your message was : Greating NO. 1

 :@2018-08-07 10:58:39.806 Duration was :405

=> Point 3, c8 Server Replay your message was : Greating NO. 8

 :@2018-08-07 10:58:39.806 Duration was :390

=> Point 3, c4 Server Replay your message was : Greating NO. 4

 :@2018-08-07 10:58:39.806 Duration was :405

=> Point 3, c9 Server Replay your message was : Greating NO. 9

 :@2018-08-07 10:58:39.806 Duration was :405

=> Point 3, c3 Server Replay your message was : Greating NO. 3

 :@2018-08-07 10:58:39.806 Duration was :405

3.3.2. REST WS

1st attempt Client Console

<= Point 1, C0 start calling @ 2018-08-07 11:11:31.055

<= Point 1, C1 start calling @ 2018-08-07 11:11:31.055

<= Point 1, C2 start calling @ 2018-08-07 11:11:31.055

<= Point 1, C3 start calling @ 2018-08-07 11:11:31.055

<= Point 1, C6 start calling @ 2018-08-07 11:11:31.055

<= Point 1, C7 start calling @ 2018-08-07 11:11:31.055

<= Point 1, C4 start calling @ 2018-08-07 11:11:31.055

<= Point 1, C5 start calling @ 2018-08-07 11:11:31.055

34

2
nd

 attempt Client Console

<= Point 1, C6 start calling @ 2018-08-07 11:12:54.378

<= Point 1, C2 start calling @ 2018-08-07 11:12:54.378

<= Point 1, C1 start calling @ 2018-08-07 11:12:54.378

<= Point 1, C5 start calling @ 2018-08-07 11:12:54.378

<= Point 1, C0 start calling @ 2018-08-07 11:12:54.378

<= Point 1, C8 start calling @ 2018-08-07 11:12:54.378

<= Point 1, C7 start calling @ 2018-08-07 11:12:54.378

<= Point 1, C3 start calling @ 2018-08-07 11:12:54.378

<= Point 1, C9 start calling @ 2018-08-07 11:12:54.378

<= Point 1, C4 start calling @ 2018-08-07 11:12:54.378

=> Point 3, C6 Server Replay your message was : Greating NO. 6

 :@2018-08-07 11:12:54.378 Duration was :0

=> Point 3, C5 Server Replay your message was : Greating NO. 5

 :@2018-08-07 11:12:54.394 Duration was :16

<= Point 1, C8 start calling @ 2018-08-07 11:11:31.055

<= Point 1, C9 start calling @ 2018-08-07 11:11:31.055

=> Point 3, C3 Server Replay your message was : Greating NO. 3

 :@2018-08-07 11:11:31.102 Duration was :47

=> Point 3, C4 Server Replay your message was : Greating NO. 4

 :@2018-08-07 11:11:31.102 Duration was :47

=> Point 3, C8 Server Replay your message was : Greating NO. 8

 :@2018-08-07 11:11:31.102 Duration was :47

=> Point 3, C6 Server Replay your message was : Greating NO. 6

 :@2018-08-07 11:11:31.102 Duration was :47

=> Point 3, C9 Server Replay your message was : Greating NO. 9

 :@2018-08-07 11:11:31.102 Duration was :47

=> Point 3, C2 Server Replay your message was : Greating NO. 2

 :@2018-08-07 11:11:31.102 Duration was :47

=> Point 3, C7 Server Replay your message was : Greating NO. 7

 :@2018-08-07 11:11:31.102 Duration was :47

=> Point 3, C5 Server Replay your message was : Greating NO. 5

 :@2018-08-07 11:11:31.102 Duration was :47

=> Point 3, C1 Server Replay your message was : Greating NO. 1

 :@2018-08-07 11:11:31.102 Duration was :47

=> Point 3, C0 Server Replay your message was : Greating NO. 0

 :@2018-08-07 11:11:31.243 Duration was :188

35

=> Point 3, C8 Server Replay your message was : Greating NO. 8

 :@2018-08-07 11:12:54.394 Duration was :16

=> Point 3, C0 Server Replay your message was : Greating NO. 0

 :@2018-08-07 11:12:54.394 Duration was :16

=> Point 3, C1 Server Replay your message was : Greating NO. 1

 :@2018-08-07 11:12:54.394 Duration was :16

=> Point 3, C7 Server Replay your message was : Greating NO. 7

 :@2018-08-07 11:12:54.394 Duration was :16

=> Point 3, C9 Server Replay your message was : Greating NO. 9

 :@2018-08-07 11:12:54.394 Duration was :16

=> Point 3, C4 Server Replay your message was : Greating NO. 4

 :@2018-08-07 11:12:54.394 Duration was :16

=> Point 3, C2 Server Replay your message was : Greating NO. 2

 :@2018-08-07 11:12:54.394 Duration was :16

=> Point 3, C3 Server Replay your message was : Greating NO. 3

 :@2018-08-07 11:12:54.394 Duration was :16

3
rd

 attempt Client Console

<= Point 1, C1 start calling @ 2018-08-07 11:13:16.393

<= Point 1, C3 start calling @ 2018-08-07 11:13:16.393

<= Point 1, C2 start calling @ 2018-08-07 11:13:16.393

<= Point 1, C4 start calling @ 2018-08-07 11:13:16.393

<= Point 1, C0 start calling @ 2018-08-07 11:13:16.393

<= Point 1, C7 start calling @ 2018-08-07 11:13:16.393

<= Point 1, C8 start calling @ 2018-08-07 11:13:16.393

<= Point 1, C9 start calling @ 2018-08-07 11:13:16.393

<= Point 1, C6 start calling @ 2018-08-07 11:13:16.393

<= Point 1, C5 start calling @ 2018-08-07 11:13:16.393

=> Point 3, C1 Server Replay your message was : Greating NO. 1

 :@2018-08-07 11:13:16.393 Duration was :0

=> Point 3, C3 Server Replay your message was : Greating NO. 3

 :@2018-08-07 11:13:16.393 Duration was :0

=> Point 3, C4 Server Replay your message was : Greating NO. 4

 :@2018-08-07 11:13:16.393 Duration was :0

=> Point 3, C0 Server Replay your message was : Greating NO. 0

 :@2018-08-07 11:13:16.393 Duration was :0

=> Point 3, C7 Server Replay your message was : Greating NO. 7

 :@2018-08-07 11:13:16.393 Duration was :0

=> Point 3, C5 Server Replay your message was : Greating NO. 5

36

 :@2018-08-07 11:13:16.393 Duration was :0

=> Point 3, C2 Server Replay your message was : Greating NO. 2

 :@2018-08-07 11:13:16.393 Duration was :0

=> Point 3, C6 Server Replay your message was : Greating NO. 6

 :@2018-08-07 11:13:16.393 Duration was :0

=> Point 3, C9 Server Replay your message was : Greating NO. 9

 :@2018-08-07 11:13:16.408 Duration was :15

=> Point 3, C8 Server Replay your message was : Greating NO. 8

 :@2018-08-07 11:13:16.408 Duration was :15

37

Chapter 4

4. Results and Discussions

4.1. Results

 attempt C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

1 188 47 47 47 47 47 47 47 47 47

2

16 16 16 16 16 16 0 16 16 16

3 0 0 0 0 0 0 0 0 15 15

Average 102 31 31 31 31 31 23 31 39 39

Figure (4.1): RMI time response duration in Milliseconds

Figure (4.1) shows that RMI time response duration in milliseconds, the time

durations of the three attempts for the 10 threads (clients), then we calculated the

average time response duration for each client and then we calculated the total

average, note that the first attempt (C0) took much more time than the following

attempts because RMI transport layer opens direct sockets to remote object hosts

and uses binary protocol for communication and cashing the remote object in the

jvm registry and this step doesn‟t needed for the following attempts, the total

average of time response for RMI model was ≈ 38 milliseconds.

 attempt C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

1 421 421 421 421 421 421 421 421 421 421

2

390 422 406 406 390 390 422 422 390 422

3 405 405 405 405 405 390 405 405 390 405

Average 405 416 410 410 405 400 416 416 400 416

Figure (4.2): REST WS time response duration in Milliseconds

Figure (4.2) shows that REST WS time response durations, the total average

of time response for REST WS model was ≈ 409 milliseconds. These results show

that the REST JSON base web service was ≈ 10 times slower than RMI service.

38

Looking at the results recorded in the experimental model, it can be seen that

the time spent in the RMI model is decreasing with repeated attempts, noting that

the first attempt took an exceptional time because the JRMP protocol cashing the

registry in client‟s jvm, in contrast to the REST WS model, the times are almost

too close because the HTTP protocol starts the same steps of communication with

the server in each web service consuming attempt.

4.2. Discussions

The main difference between RMI and Web services in performance is the

payload, the message protocol that uses for exchange data between distributed java

virtual machines. RMI uses binary protocol with binary data that makes use of the

Java object serialization for calling and returning the data.

RMI transport layer usually opens direct sockets to remote object hosts and

uses binary protocol for communication it is JRMP (Java Remote Method

Protocol) which is a Java proprietary protocol and it uses the TCP/IP as the

underlying protocol. When transferred over HTTP additional header information

is added which further increases the message size.

Java directly supports distributing java objects from any java application

through Remote Method Invocation (RMI).This distributed-objects package

simplifies communication among Java applications on multiple machines [10].

REST WS uses HTTP over TCP/IP, “there are two different roles: server

and client. In general, the client always initiates the conversation; the server

replies. HTTP is text based; that is, messages are essentially bits of text, although

the message body can also contain other media. Text usage makes it easy to

monitor an HTTP exchange.

HTTP messages are made of a header and a body. The body can often

remain empty; it contains data that you want to transmit over the network, in order

to use it according to the instructions in the header. The header contains metadata,

such as encoding information; but, in the case of a request, it also contains the

important HTTP methods. In the REST style, you will find that header data is often

more significant than the body [11].

39

Chapter 5

5. Conclusions and Recommendations

5.1. Conclusions

Is the ASYCUDA should be faster if we re-engineering it‟s architectural

design from using RMI to be a REST JSON based web service ?, the answer is no.

Experimental model shows that RMI is faster than REST WS, because the

size of the binary serialized object is smaller than the same object as an XML or

JSON representation, and because of difference of way of intercommunication

between RMI and REST WS.

For all I agree with the opinion that says the web service is not a substitute

or replacement of RMI technology. Each of these two methods has an advantages

and disadvantages; different scope of work depends on the functional and technical

requirements like compatibility and integration. Performance is also not just a

quick time response.

Information security also requires other arrangements and studies. The

development of ASYCUDA is my main concern. I will continue to research and

study in this context.

5.2. Recommendations

The need to investigate security enhancement still exist. Because

performance and security go in opposite directions, that requires exploration in

different sources of knowledge. May be different quality factor could be

investigated in future.

40

References

[1] Product Quality ISO/IEC 25010, 2011.

[2] asycuda.org (2018). ASYCUDA Software Versions [Online]. Available:

https://asycuda.org/software/#

[3] Sanjay P. Ahuja and Renato Quintao, “Performance Evaluation of Java RMI: A

Distributed Object Architecture for Internet Based Applications,” Department of

Computer and Information Sciences, University of North Florida, Jacksonville,

2000.

[4] Snehal Mumbaikar and Puja Padiya, “Web Service Based On SOAP and REST

Principls,” Department of Computer Engineering, R. A. I. T., Ramrao Adik

Institute of Technology, India , 2013.

[5] Strategy Object (2018). Java Technologies in SOClass [Online]. Available:

https://www.strategyobject.com/technologies/java-technologies/

[6] Matjaz B. Juric, Ivan Rozman, Bostjan Brumen, Matjaz Colnaric, Marjan

Hericko, “Comparison of performance of Web services, WS-Security,RMI, and

RMI-SSL” , Institute of Informatics, Faculty of Electrical Engineering and

Computer Science, University of Maribor, Maribor, Slovenia, 2005.

[7] Smita Kumari, and Puja Padiya, “Performance comparison of SOAP and REST

based Web Services for Enterprise Application Integration,” Department of

Computer science and Engineering, National Institute of Technology, Rourkela,

INDIA, 2015.

[8] Boci Lin , Yan Chen , Xu Chen and Yingying Yu, “Comparison between Json

and XML in applications on AJAX”, International Conference on Computer

Science and Service System, Transportation Management College Dalian Maritime

University Dalian, China , 2015.

[9] Muhammad Sadiq , Muhammad Shahid Iqbal , Amizah Malip , Wan Ainun

Mior Othman, “A Survey of Most Common Referred Automated Performance

Testing Tools , ARPN Journal of Science and Technology ISSN”, Faculty of

https://asycuda.org/software/
https://www.strategyobject.com/technologies/java-technologies/

41

Computing (RIU) Islamabad , School of Computer Science, Anhui University,

Hefei, China , Institute of Mathematical Science, University of Malaya, 2015.

[10] Larry Brown and Marty Hall (2002), Creating Clients and Servers with Java

Sockets [Online]. Available:

http://www.informit.com/articles/article.aspx?p=26350

[11] Ludovico Fischer (2013), A Beginner‟s Guide to HTTP and REST [Online].

Available: https://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--

net-16340

http://www.informit.com/articles/article.aspx?p=26350
https://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340
https://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340

