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Abstract 

Malaria is one of the most prevalent and debilitating diseases afflicting humans in 

Africa, and it is responsible for the fifth greatest number of deaths due to infectious 

diseases in the world and it is from the most ten infectious diseases that causing 

deaths In Sudan. That’s why the study of infectious diseases represents one of the 

richest areas in mathematical biology. The infectious diseases need fast responses, 

and appropriately modeling, also predicting the outcome of disease spread over 

time and across space is a critical step toward informed development of effective 

strategies for public health intervention and decision making. Using mathematical 

representations for infectious diseases let the essential elements grasped quickly, 

and captured well. A lot of difficulties face the responsible organization in the 

process of collecting infectious diseases data by traditional ways in addition to the 

presence of more than 1500 health center in Sudan, as well; there is no applied 

method in Sudan to predict the spread of infectious diseases. Determine the best 

and most efficient mathematical model for predicting the new cases of infectious 

diseases in Khartoum, Al-Gadaref and Sennar based on the previous (history) data 

and visualize diseases distribution development (ArcMap) is important thing to 

save lives. 

Using time series analysis (Auto Regressive model, Moving Average model, 

Mixed Model, and Exponential Smoothing model) found that the simple models 

(AR and MA) represented the data better in Khartoum, Al-Gadaref and Sennar 

states in the seasonal data and Sennar in the non-seasonal data. While the 

Exponential Smoothing and Mixed model (ARIMA) are better in representing 

Khartoum and Al-Gadaref non-seasonal data. Which prove that; not all data can be 

representing using the same forecasting model. 
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 المستخلص
،لوهددللمودد ولا لاددألكدد مدلثر ددملاددا لمددألفددللرفم ا دد لمددألثر ددملمضمددمم لملابددللتردد  لملا  ددمتعددالملاريا دد ل

ملاوف  تلبو  لمضممم لملارعاي لفللملاع لاملوهللمألثر ملا ملثممم لمعاي لتو  لملاوف ةلفللملاودو م. لهد مل
فللالملمضح د  لملام  يدل لتابد  للملارج لاتهولملاو  لفللث.ل امس لمضممم لملارعاي لتر للومحاةلمألثغنىل

مددموالملاو دد للمدد لبنب جدد لماب دد الملارددم ل،لوملابن دد لملارعايدد لرلاددىلمسددبج ب تلسددم ع ل،لوار ةدد لمن سدد  مضمددمم ل
ملااددددمما لمسددددب ام لل ا للملارددددا لملاع مدددد لو ددددنك لا لهددددللكحددددوةلح سددددر لااددددولتحددددو مللايسددددبممت ج  تلملا ع لادددد للاب دددد

ملابا طه لب دلللة دا لتومةد لولل س  لبإ امره لبوما للالعن  ملمضسلملابر  يتلملام  ي  للالأممم لملارعاي لتورح
ملاك  ملمألملارعوب تلفللارل  لةر لب  اد تلمضمدمم لملارعايد لبد لاحمتلملابال ايد لب  يد ف لملارو ولا للملاجه ت

فدددللملاودددو م.للالبن ددد للم ح  اددد لالتوةدددالطم اددد للممكدددحل ددداللفدددللملاودددو م.،لكددد لا ل0011ر دددملمدددألرلادددىلوةدددو لث
مددمم لملارعايدد  لتاافددالثفذددللارددوأ لا  يددللوثر مهدد لك دد  ةللالبن دد لب لاادد لاتلملاجافدداةللالأمددمم لب اب دد المض

ملارعايدددد لفددددللملا مطددددو لوملااذدددد ا لوسددددن المسددددبن  متلرلاددددىلملا   ادددد تلملاودددد با لوترددددوالتحددددو ملتو  دددد لمضمددددمم ل
(ArcMap). 

ربادم ل،لملانردوأ لملار دبل ل،لمسب ام لتال للملاويسللملاحمن د ل)اردوأ لملااادامالملابلاد  لل،لاردوأ لملاربوسد لملا
دددل(لوةدددالث.لملانرددد أ لملا وددد ح ل) (لم لددد لملا   اددد تلب دددلللثفذدددللفدددللولايددد تلMAوللARاردددوأ لملابنعددد ملمضس 

ملا مطو لوملااذد ا لوسدن الفدللملا   اد تلملاروسدر  لوسدن الفدللملا   اد تلغ دململاروسدر   لفدللحد ألث.لملانردوأ ل
للوملار دبل ل) لاللثاد لغ دململاروسدر   لمرد لف  د ل الذد  مطدو لوملاا(لثفذدللفدللتر  دللب  اد تلملاARIMAمضس 

ل للةر  لملا   ا تلب سب ام لاروأ لملابن  لا و  ر ليرلألث.لت ل
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CHAPTER ONE 

INTRODUCTION 

 



1 
 

1.1 General Review 

Surveillance of emerging infectious diseases is vital for the early identification 

of public health threats and the infectious disease spread is a major threat to 

public health and economy. Based on the statistics of the World Health 

Organization (WHO), 25% of human death is caused by infectious diseases. 

The spread of an infectious disease involves characteristics of the agent such as 

virus and bacteria, the host, and the environment in which transmissions take 

place. That’s why the study of infectious diseases represents one of the richest 

areas in mathematical biology. In the study of infectious diseases, the essential 

elements are quickly grasped, and well-captured within mathematical 

representations and we need this because the infectious diseases can be 

classified as sporadic (occurs occasionally), endemic (constantly present in a 

population), epidemic (many cases in a region in short time), and pandemic 

(worldwide epidemic) which need fast responses, and appropriately modeling 

and actually predicting the outcome of disease spread over time and across 

space is a critical step toward informed development of effective strategies for 

public health intervention and decision making. And web-based surveillance 

tools and epidemic intelligence methods, used by all major public health 

institutions, are intended to facilitate risk assessment and timely outbreak 

detection [1-3]. 

1.2 Problem Statement 

A lot of difficulties face the responsible organization in the process of collecting 

infectious diseases data by using the traditional ways in addition to existence of 

more than 1500 health centers in Sudan. As well, there is no applied method in 

Sudan to predict the spread of infectious diseases which is important thing to 

save lives, by planning the significant procedures and determine the best time to 

take the vaccinations. 

1.3 Objectives  

There are two categories of the research objectives: 

1.3.1 General Objective 

Determine the best and most efficient mathematical model as proposed model 

for predicting the new Malaria cases in Sudan based on the previous (history) 

data. 
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1.3.2 Specific Objectives 

1. To compare between the mathematical models to find the suitable one for 

each state. 

2. To predict the new cases of Malaria using the efficient model (AR, MA, 

ARIMA, or Exponential Smoothing). 

3. To visualize Malaria distribution in Sudan. 

1.4 Research Methodology 

      This research is a qualitative and quantitative research which used the in-

depth interviews with the staff of the epidemiological administration in the 

Ministry of Federal Health to study the procedures of collecting data process 

and identify the key challenges and difficulties of conducting this process. The 

analysis mainly focused on identifying the major challenges to proposed 

forecasting model to predict the new cases. 

The goals of this research are mainly achieved by dividing the research 

methodology into two stages as shown in figure 1.1 and figure 1.2: 

 

Figure 1.1 Stage 1 of the Malaria Model Predictor 
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Figure 1.2 Stage 2 of the Malaria Model Predictor  

1.5 Thesis Organization 

         The thesis consists of seven chapters. The sticky chapter discusses the 

problem definition, justification for carrying out the research and objectives. 

Chapter two reviews some of the previous studies related to infectious diseases 

mapping, distribution, spread and prediction . 

Introduction to infectious disease, how we classified it, the principle of disease 

transmission, how to control infection, the importance of predicting infectious 

diseases, spatial analysis and statistical modeling of infectious diseases, have 

been discussed in chapter three. 

Chapter four described a detailed description of the research methodology 

which includes theories, models, materials, methods used, the data collection 

and analysis techniques. 

The model design, have been viewed in chapter five. Whilst the main results 

and discussions have been included in chapter six viewed. However, chapter 

seven included the conclusions and recommendations. 
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2.1 Introduction 

           The first application of mathematical modeling in the area of infectious 

diseases appears to have emerged by Daniel Bernoulli during the 18th century. 

Bernoulli's formula for the endemic prevalence of susceptible has so far escaped 

attention. It involves the lifetime risk of the infection, the force of infection and the 

life expectancy at birth. A new formula for the basic reproduction number is 

derived which involves the average force of infection, the average case fatality and 

the life expectancy at the time of infection. One can use this estimate to assess the 

gain in life expectancy if only a fraction of the population is immunized [4]. 

Therefore, the following sections seek to review recent literature related to 

infectious diseases modeling and predicting methods, as well time series 

forecasting techniques. 

2.2 Visualization and Predicting using Geographical Information 

System (GIS) 

Several studies concentrated on using GIS, the research that done by Norstrøm and 

Madelaine used GIS in the field of surveillance and monitoring of animal diseases 

by recording and reporting disease information and visualized on a map, and in the 

case of an outbreak they used GIS for identifying the location of the case farm and 

all farms at risk within a specified area of the outbreak and used programs 

packages as @Risk integrated with the GIS for simulation and find risk factors for 

the spread of the modeled disease [5]. 

Other research studies, concerned on using GIS software in combination with 

remote sensing images/data to detect potential breeding ponds by using the image 

from SPOT 5 and converted into proper format, then, they used ArcView software 

and calculated mosquito density and evaluated cross-potential risks [6]. While [7] 

the surveillance study using Geographical information system and remote sensing 

was initiated in Jodhpur Cantonment area for mapping the distribution of malaria 

vectors. Using Survey of India toposheet 1 : 50,000 base map has been prepared. 

Using hand-held GPS, the area was surveyed and important landmarks which 

include major roads, drains, water bodies, major mosquito breeding sites, etc. were 

geo-referenced. Contour layers have also been digitized. The indoor and outdoor 

densities of adult mosquitoes were recorded from various GPS registered localities 
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using manual aspirators (per man hour density) and CDC light traps. The larval 

density of mosquitoes from different water bodies was recorded by using ladle. 

Different species of mosquitoes collected from each sector were identified for 

species composition. Village wise map of District Dhar had been digitized using 

GIS software ARC/View 3.2 and attribute data were collected from state health 

authorities, NVDA and Survey of India had been attached. Thematic maps of 

altitude, soil, rainfall, forest cover, temperature, etc. have also been prepared. 

Trend analysis of epidemiological data from 2002– 2004 had been done.  

Submerged villages under Indira Sagar Dam have been mapped. The data on 

various entomological and parasitological parameters are being collected through 

periodic surveys and are regularly entered in GIS-based framework to view the 

impact of the construction of dams in space and time. 

2.3 Mathematical Modeling 

Other researchers focused on describing mathematical model for a susceptible-

infectious epidemic that simulates spatial and temporal patterns of disease spread. 

The parameterized model was implemented in a GIS to simulate disease spread [8]. 

While [9] discussed and presented main mathematical approaches of modeling 

used for the surveillance and predicting infectious disease outbreaks which allow 

rapid assessment, and those methods are namely, statistical methods for 

surveillance of outbreaks and identification of spatial patterns in real epidemics, 

mathematical models within the context of dynamical systems (also called state-

space models) used to prediction the evolution of an on-going epidemic spread, 

and machine learning/ expert methods for the prediction too. A latter research 

performed areal co-kriging interpolation in ArcGIS 10.1 Geostatistical Analyst, 

predictive values and their associated standard errors were calculated for all areas 

within and between input polygons. It works by estimating values based on data 

collected in polygons and predicts values for a new set of polygons in the same 

data domain that differ in size and shape from the original [10]. 

2.4 Internet 

In the systematic review that done by Christakiab and Eirini focused on finding 

new methods for regional and global infectious disease surveillance and in 

epidemic modeling to predict and prevent future infectious diseases. The review 
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discuss plenty manners of surveillance and prediction, namely event-based 

surveillance, agent-based models, structured metapopulation models, mobile phone 

for movement track, social media for data collection and remote sensing for 

diseases prediction. Some of these methods used risk factors, environmental 

change and population movements. The review was found that, many papers 

discuss surveillance and prediction, but the main challenge is sophisticated 

software for data acquisition and analysis and the high cost of using some methods 

[3]. 

The researchers used different ways to test validation and evaluate model 

performance in the GIS by examining the correspondence between predicted 

patterns of disease spread and over 1000 geo-located field observations of disease 

presence. Additionally, they examined the nature of prediction errors by eco-

region, vegetation composition, and climate [8]. 

Upon validation, the areal co-kriging model produced root-mean-square 

standardized errors close to 1, indicating valid prediction errors. Mean 

standardized errors (the average difference between the measured and predicted 

values) were close to 0, and root-mean-square error (indicating how closely the 

model predicts the measured value) and average standard errors (average of the 

prediction standard errors) were low, with little difference between them [10]. 
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3.1 Introduction 

Infectious disease spread is a major threat to public health and economy. Based on 

the statistics of the World Health Organization (WHO), 25% of human death is 

caused by infectious diseases. The spread of an infectious disease involves 

characteristics of the agent such as virus and bacteria, the host, and the 

environment in which transmissions take place. The study of the distribution of 

determinants of disease and injury in human populations call epidemiology, it’s a 

discipline that includes both infectious and noninfectious diseases. Most 

epidemiologic studies of infectious diseases have concentrated on the factors that 

influence acquisition and spread, because this knowledge is essential for 

developing methods of prevention and control. Historically, epidemiologic studies 

and the application of the knowledge gained from them have been central to the 

control of the great epidemic diseases, such as cholera, plague, smallpox, yellow 

fever, and typhus. An understanding of the principles of epidemiology and the 

spread of disease is essential to all medical personnel, whether their work is with 

the individual patient or with the community. Appropriately modeling and actually 

predicting the outcome of disease spread over time and across space is a critical 

step toward informed development of effective strategies for public health 

intervention. Given the ongoing risk of infectious diseases worldwide, it is 

important to develop appropriate analysis methods, models, and tools to assess and 

predict the disease spread and evaluate the disease risk [2] & [11]. 

3.2 Infection 

Infection is the invasion and multiplication in/on body tissue of microorganisms 

that produce signs and symptoms along with an immune response. Such 

reproduction injures the host either by causing cellular damage from 

microorganism-produced toxins or intracellular multiplication or by competing 

with host metabolism. The host’s own immune response may increase tissue 

damage, which may be localized (as in infected pressure ulcers) or systemic. The 

very young and the very old are most susceptible to infections. Microorganisms 

that cause infectious diseases are difficult to overcome for many reasons:  

 Some bacteria develop a resistance to antibiotics.  
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 Some microorganisms, such as human immunodeficiency virus (HIV), include 

many different strains, and a single vaccine can’t provide protection against 

them all.  

 Most viruses resist antiviral drugs.  

 Some microorganisms localize in areas that make treatment difficult, such as 

the central nervous system and bone. 

 New infectious agents, such as HIV and severe acute respiratory syndrome–

coronavirus, occasionally arise.  

 Opportunistic microorganisms can cause infections in immune compromised 

patients.  

 Much of the world’s ever-growing population has not received 

immunizations.  

 Increased air travel by the world’s population can speed a virulent 

microorganism to a heavily populated urban area within hours.  

 Biological warfare and bioterrorism with organisms such as anthrax, plague, 

and smallpox are an increasing threat to public health and safety throughout 

the world. 

 Invasive procedures and the expanded use of immunosuppressive drugs 

increase the risk of infection for many [12]. 

3.3 Routes of disease transmission  

Various transmissible infections may be acquired from others by direct contact, by 

aerosol transmission of infectious secretions, or indirectly through contaminated 

inanimate objects or materials. Some, such as malaria, involve an animate insect 

vector. These routes of spread are often referred to as horizontal transmission, in 

contrast to vertical transmission from mother to fetus. 

3.4 Infectious diseases, their transmission and research needs 

 Infectious diseases are also known as transmissible diseases or communicable 

diseases. The illness of infectious diseases is caused by the infection, presence, and 

growth of pathogenic biological agents (known as pathogens) in an individual host 

organism. Pathogen is the microorganism (or microbe) that causes illness. 

Infectious pathogens include viruses, bacteria, fungi, protozoa, multicellular 

parasites, and aberrant proteins known as prions. These pathogens are the cause of 
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disease epidemics, in the sense that without the pathogen, no infectious epidemic 

occurs. The organism that a pathogen infects is called the host. In the human host, 

a pathogen causes illness by either disrupting a vital body process or stimulating 

the immune system to mount a defensive reaction [11]. 

3.5  Stages of infection 

The infection divided into four stages: 

3.5.1 Stage I: Incubation  

The duration of this stage can range from instantaneous to several years. Pathogen 

is replicating, and the infected person becomes contagious, thus capable of 

transmitting the disease.  

3.5.2 Stage II: Prodromal stage  

In this stage the host makes vague complaints of feeling unwell and is still 

contagious.  

3.5.3 Stage III: Acute illness  

Microorganisms actively destroy host cells and affect specific host systems in this 

stage. As well, patient recognizes which area of the body is affected.  

3.5.4 Stage IV: Convalescence  

This stage begins when the body’s defense mechanisms have contained the 

microorganisms, and when damaged tissue is healing [12]. 

Based on the frequency of occurrence, infectious diseases can be classified as 

sporadic (occurs occasionally), endemic (constantly present in a population), 

epidemic (many cases in a region in short period), and pandemic (worldwide 

epidemic). An infectious disease is termed contagious if it is easily transmitted 

from one person to another. The transmission mechanisms of infectious diseases 

can be categorized as contact transmission, vehicle transmission, and vector 

transmission. Contact transmission can occur by direct contact (person-to-person) 

between the source of the disease and a susceptible host, indirect contact through 

inanimate objects (such as contaminated soils), or droplet contact via mucus 
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droplets in coughing, sneezing, laughing or talking. Vehicle transmission involves 

a media. Based on the media type in transmission, the infectious diseases can be 

categorized as airborne (diseases transmitted through the air such as influenza, 

anthrax, measles), foodborne (diseases transmitted through the foods such as 

Hepatitis A and E), and waterborne (diseases transmitted through the water such as 

Cholera) [11 & 12].  

3.6 Malaria  

Malaria is one of the most prevalent and debilitating diseases afflicting humans. 

It’s responsible for the fifth greatest number of deaths due to infectious diseases. It 

is endemic in Central and most of South America, most of Africa, the Middle East, 

India, and Southeast Asia, including southern China in which most areas including 

uplands report malaria transmission throughout the year, though it increases during 

and soon after the rainy season. It’s considered the most important vector-borne 

disease, causing an estimated 190 –311 million clinical episodes, and 708,000 - 

1,003,000 deaths in 2008 worldwide (CDC). And Sudan is highly affected by 

malaria with 7.5 million cases and 35,000 deaths every year. The entire population 

is at risk of malaria epidemics with a very high burden on government and 

population. The usefulness of forecasting methods in predicting the number of 

future incidences is needed to motivate the development of a system that can 

predict future incidences. Immunologically vulnerable populations are generally 

afflicted by malaria epidemics and people of all age groups remain susceptible to 

the full range of its clinical effects. Its spread in a community poses unique 

intervention strategies. Prophylaxis Malaria is a parasitic infection caused by 

Plasmodium spp. characterized by fever, headache, and hemolytic anemia. It is 

transmitted by the Anopheles mosquito. There are four species: P. malariae, P. 

vivax, P. ovale, and P. falciparum. The most lethal form of malaria is caused by P. 

falciparum. Most P. falciparum are resistant to the tradition prophylaxis agent, 

chloroquine. Generally P. malariae, P. vivax, and P. ovale are sensitive to 

chloroquine. There are, though, increasing reports of chloroquine-resistant P. vivax 

in Southeast Asia [13 & 14]. 

The best prevention against malaria is avoidance of mosquito bites. Travelers to 

malarious regions should be advised that the Anopheles sp. mosquito bites from 

dusk to dawn, and nighttime outdoor activity should be limited. Medical 
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prophylaxis against malaria depends on the region of the world, length of stay in 

the endemic area, and activities of the traveler. Prophylactic agents are taken 

before travel to ensure adequate blood levels during travel and post travel to 

eradicate protozoa potentially in the bloodstream. Since prophylaxis is not 

completely effective and only approximately 50% of travelers fully adhere to their 

prophylactic regimens, travelers should be educated about the symptoms of malaria 

(unexplained fever with or without headache, chills, weakness, vomiting, and 

diarrhea). All travelers to endemic areas need to recognize that malaria can be fatal 

unless treated early and prompt medical evaluation is necessary for symptoms 

suggestive of malaria. Areas of drug-resistant P. falciparum malaria are rapidly 

changing. Throughout most of the world, the traditional prophylactic agent, 

chloroquine sulfate, can no longer be used to prevent malaria [13]. 

3.7 Epidemics  

The characterization of epidemics and their recognition in a community involve 

several quantitative measures and some specific epidemiologic definitions. 

Infectivity, in epidemiologic terms, equates to attack rate and is measured as the 

frequency with which an infection is transmitted when there is contact between the 

agent and a susceptible individual. The disease index of an infection can be 

expressed as the number of persons who develop the disease divided by the total 

number infected. The virulence of an agent can be estimated as the number of fatal 

or severe cases per the total number of cases. Incidence, the number of new cases 

of a disease within a specified period, is described as a rate in which the number of 

cases is the numerator and the number of people in the population under 

surveillance is the denominator. This is usually normalized to reflect a percentage 

of the population that is affected. Prevalence, which can also be described as a rate, 

is primarily used to indicate the total number of cases existing in a population at 

risk at a point in time. 
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3.8 Control of epidemics  

The first principle of control is to be aware of the existence of an epidemic. This 

awareness is sometimes immediate because of the high incidence of disease, but 

often the evidence is obtained from routine disease reports to health departments 

and records of school and work absenteeism. The causative factors must be 

identified and studies to determine the route of transmission (eg, food poisoning) 

must be initiated. Measures must then be adopted to control the spread and 

development of further infection [15]. 

3.9 Infection control and treatment 

3.9.1 Control 

The best way to control infections is to break the weakest link in the chain of 

infection (usually the mode of transmission). Many strategies exist to prevent or 

control the transmission of infectious agents, and they fall into four general 

categories:  

 Control or elimination of infectious agents by appropriate sanitation, 

disinfection, and sterilization  

 Control of transmission through proper hand hygiene, effective ventilation, 

and aseptic technique  

 Reservoir control. In health care settings, a number of interventions are 

directed at controlling or destroying infectious reservoirs: 

 - Using disposable equipment and supplies whenever possible. 

 - Disinfecting or sterilizing equipment as soon as possible after use. 

- Using appropriate equipment for each patient. 

- Handling and disposing of patient secretions, excretions, and exudates 

properly. 

- Helping to identify and treat persons who are infection carriers. To help 

reduce the number of reservoirs in both the community and the health care 

setting, patients should be encouraged to obtain active and passive 

immunizations, to practice positive health behaviors, to avoid high-risk 

behavior, and to maintain first-line defenses.  
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 Isolating infected patients, according to Centers for Disease Control and 

Prevention (CDC) recommendations, to limit the chance that they will 

transmit the infection. 

3.9.2 Treatment 

Treatment for infections can vary widely. Vaccines may be administered to 

induce a primary immune response under conditions that won’t cause disease. If 

infection occurs, treatment is tailored to the specific microorganism causing the 

infection. Drug therapy should only be used when appropriate. Supportive 

therapy can play an important role in fighting infections.  

 Antibiotics work in a variety of ways, depending on the class of drug used. 

Antibiotic action is either bactericidal or bacteriostatic. Antibiotics may 

inhibit cell wall synthesis, protein synthesis, bacterial metabolism, or nucleic 

acid synthesis or activity, or they may increase cell membrane permeability.  

 Antifungal drugs destroy the invading microorganism by increasing cell 

membrane permeability. The antifungal binds sterols in the cell membrane, 

resulting in leakage of intracellular contents, such as potassium, sodium, and 

nutrients.  

 Antiviral drugs stop viral replication by interfering with DNA synthesis. 

Almost any infectious disease, under certain circumstances, may be considered to 

be a true emergency [12]. 

3.10  Surveillance of emerging infectious diseases 

Surveillance of emerging infectious diseases is vital for the early identification of 

public health threats. Emergence of novel infections is linked to human factors 

such as population density, travel and trade and ecological factors like climate 

change and agricultural practices. A wealth of new technologies is becoming 

increasingly available for the rapid molecular identification of pathogens but also 

for the more accurate monitoring of infectious disease activity. Web-based 

surveillance tools and epidemic intelligence methods, used by all major public 

health institutions, are intended to facilitate risk assessment and timely outbreak 

detection [3]. 
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3.11 Time Series 

A time series is a sequence of measurements over time. Time series is anything 

which is observed sequentially over the time at regular interval like hourly, daily, 

weekly, monthly, quarterly etc. Time series data is important when you are 

predicting something which is changing over the time using past data. In time 

series analysis the goal is to estimate the future value using the behaviors in the 

past data. 

3.11.1  Components of a Time Series 

•Secular Trend 

The long-term trends of sales, employment, stock prices, and other business and 

economic series follow various patterns. Some move steadily upward, others 

decline, and still others stay the same over time. 

• Cyclical Variation 

A typical business cycle consists of a period of prosperity followed by periods of 

recession, depression, and then recovery with no fixed duration of the cycle. There 

are sizable fluctuations unfolding over more than one year in time above and below 

the secular trend. 

• Seasonal Variation 

The patterns of change within a year, typically repeating themselves. 

• Residual Variation 

The residual fluctuations, often called chance fluctuations, are unpredictable, and 

they cannot be identified. 

3.11.2 Time series analysis 

Time series analysis is done by computer, not by hand. Many of the computations 

are not difficult but can be extremely tedious if done by hand. Consider calculating 

full and partial autocorrelations between pairs of scores at 25 to 30 different lags. 

Several researchers are devoted to time- series analysis, some of them highly 

mathematical. The primary method for ARIMA models is Box, et al. (1994). The 

methods that demonstrate at least some of the equations with numbers are Glass, 

Wilson, and Gottman (1975) and McDowall, et al. (1980). A few less 

mathematical, more computer- oriented sources are Cryer (1986); McCleary and 

Hay (1980); and McCain and McCleary (1979). [16] 
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3.12 Forecasting Process 

Forecast is to predict or estimate a future activity level. A forecast is dependent on 

the analysis of historic and/or current data to produce these estimates. 

3.12.1 Approaches to forecasting  

The process of forecasting can be broadly categorized into two approaches: 

objective or quantitative forecasts and subjective or qualitative forecasts.  

3.12.1.1 Subjective forecasts  

Subjective or qualitative forecasts rely to a large extent on an in-depth knowledge 

of the activity being forecast by those responsible for producing the forecast. The 

forecast might be created by reading reports and by consulting experts for 

information and then using this information in a relatively unspecified or 

unstructured way to predict a required activity. The main problem with this 

approach is that there is no clear methodology which can be analyzed to test how a 

forecast may be improved in order that past mistakes are avoided. As a subjective, 

or qualitative, the forecast is very dependent on the individuals involved, it is prone 

to problems when the key players responsible for the forecasting process change. 

This method of forecasting does not usually require much mathematical input and 

therefore a spreadsheet will play an accompanying role as opposed to a central 

role. 

3.12.1.2 Objective forecasts 

An objective or quantitative approach to forecasting requires a model to be 

developed which represents the relationships deduced from the observation of one 

or more different numeric variables. This is generally achieved by first recording 

historic data and then using these historical facts to hypothesize a relationship 

between the items to be forecast and the factors believed to be affecting it. The 

spreadsheet is clearly an ideal tool for this type of analysis and thus can play a 

central role in the production of such forecasts. 

Objective forecasting methods are sometimes considered to be more dependable 

than subjective methods because they are less affected by what the forecasters 

would like the result to be. Furthermore, forecasting models can incorporate means 
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of assessing the accuracy of the forecast by comparing what actually happened 

with what were forecast and adjusting the data to produce more accurate figures in 

the future, and the objective forecasting methods: 

3.12.1.2.1 Simple Moving Average (SMA) 

A simple moving average (SMA) is the simplest type of technique of forecasting. 

Basically, a simple moving average is calculated by adding up the last ‘n’ period’s 

values and then dividing that number by ‘n’. So the moving average value is 

considering as the forecast for next period. Moving averages can be used to 

quickly identify whether selling is moving in an uptrend or a downtrend depending 

on the pattern captured by the moving average. 

3.12.1.2.2 Exponential Smoothing (SES) 

This is the second well known method to produce a smoothed Time Series. 

Exponential Smoothing assigns exponentially decreasing weights as the 

observation get older. Exponential smoothing is usually a way of “smoothing” out 

the data by removing much of the “noise” (random effect) from the data by giving 

a better forecast. 

3.12.1.2.3 Types of Exponential Smoothing Methods 

3.12.1.2.3.1 Simple Exponential Smoothing 

If you have a time series that can be described using an additive model with 

constant level and no seasonality, you can use simple exponential smoothing to 

make short-term forecast. 

3.12.1.2.3.2 Holt’s Exponential Smoothing 

Holt’s exponential smoothing can be used to make short-term forecasts if the time 

series can be described using an additive model with increasing or decreasing trend 

and no seasonality. 

3.12.1.2.3.3 Winters’ Three Parameter Linear and Seasonal Exponential 

Smoothing 
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Holt-Winters exponential smoothing can be used to make short-term forecasts if 

the time series can be described using an additive model with increasing or 

decreasing the trend and seasonality. 

3.12.1.2.4 Autoregressive Integration Moving Average (ARIMA) 

A statistical technique uses time series data to predict future. The parameters used 

in the ARIMA is (P, d, q) which refers to the autoregressive, integrated and 

moving average parts of the data set, respectively. ARIMA modeling will take care 

of trends, seasonality, cycles, errors and non-stationary aspects of a data set when 

making forecasts. 

ARIMA is mainly used to project future values using historical time series data. Its 

main application is in short forecasting with minimum 38-40 historical data points 

with minimum number of outliers. 

3.12.1.2.5 Neural Network (NN) 

Artificial neural network (ANN) is basically machine learning approach that 

models human brain and consists of a number of artificial neurons. Their ability to 

learn by example makes them very flexible and powerful. 

Neural networks, has its own strength to derive meaning from complicated or 

imprecise data, and most of the time can be used to detect the pattern and trend in 

the data, which cannot be detectable easily from human eye or any computer 

techniques. We also have some of the advantage of NN like Adaptive learning, 

self-organization, real-time operation, fault tolerance. [17-20] 

3.13 GIS for Early Detection and Response to Infectious Disease  

Successful understanding and response to infectious disease outbreaks depend 

greatly on the ability to consider the surrounding context. Disease spreads 

geographically, and interventions occur in relation to human, institutional, climatic, 

and other kinds of landscapes. Because GIS technology relates many kinds of data 

to geographic location, it excels in tracking not only disease spread but also 

laboratory specimen and medical supply whereabouts, hospital bed availability, 

testing facility proximity, vulnerable population locations, and medical personnel 

distribution. Built-in GIS analysis tools provide effective early warning systems 

and preparedness programs that generate meaningful information that public health 
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officials need to make effective decisions—at the community, national, and global 

levels. During an outbreak, GIS provides tools that speed the collection of accurate 

field data. Complex statistical and other analyses applied with GIS technology 

provide relevant information to support sound decisions [21]. 
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METHODOLOGY & DATA ANALYSIS 
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4.1  Methodology 

The methodology that is follow in the research is as following: 

4.1.1 Study design 

This research is a qualitative and quantitative research which studies the 

procedures of infectious diseases data collection process and identifies the key 

challenges and difficulties of conducting this process. Besides, propose a 

forecasting model to predict the new cases. 

4.1.2 Study area 

This study was conducted in Khartoum. It is the capital and largest city of Sudan 
 

4.1.3 Study setting 

The study concentrated on the epidemiological administration in the Ministry of 

Federal Health. 

4.1.4 Study population 

The staff of the epidemiological administration in the Ministry of Federal Health 

are the study population. 
 

4.1.5 Methods 

In the qualitative approach the In-depth interviews was used as the data collection 

method to study the procedures of collecting data process and identify the key 

challenges and difficulties of conducting this process. 
 

While the quantitative approach is conducted by the three following stages: 

i. The first stage concern with gathering of   data of the infectious diseases in 

Sudan from epidemiological administration in the Ministry of Federal Health 

and to use Excel and SPSS softwares to find the suitable mathematical 

model to predict the new cases. 

ii. The second stage focused on using the suitable mathematical model and 

maps it using Arcmap software to visualize the development and spread of 

the diseases. 

iii. The third stage clarifies the integration and the linkage between Arcmap 

software and an online website (ESRI) for online and direct new cases 

entering in addition to entering the information that has relation with the 

disease. 
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4.2 Data analysis 

The study was conducted to verify the existence of the research problem and to 

demonstrate the importance of the research objective (designing a forecasting 

program). The analysis mainly focused on identifying major challenges in 

collecting and processing the data of the infectious diseases. 

 

4.2.1 Analysis of the in-depth interviews 

Through the results of the analysis of the in depth interviews that were conducted 

with the personnel those responsible for collecting and processing the data of the 

infectious diseases found that the procedures of this process and the key challenges 

and difficulties of conducting it are as follows: 

 

4.2.1.1 Data collection methods 

 The data is collecting from about 1,500 centers out of a total of more than 

5000 centers using traditional ways such as telephone and e-mails. 

 The data is collecting daily or weekly depending on the classification of the 

disease. 

 The role of the State Ministry of Health in each state in Sudan with regard to 

the data collection process of infectious diseases from its affiliated health 

facilities is that it works to collect data in its daily and annual profiles and 

then send these data to the Federal Ministry of Health and the figure (4.1) 

below shows the sequence of the data collection process: 
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Figure 4.1 The sequence of the data collection process 

4.2.1.2 Data processing and presentation methods 

The Data that has been collected in the daily and weekly forms it coordinated in 

monthly form and displayed on maps using the Arcmap program and in the form of 

tables containing all the states of Sudan and all diseases and their statistics. 

4.2.1.3 Difficulties and problems facing them: 

The key challenges and difficulties that facing these institutions in the process of 

obtaining the information that enable them to meet the requirements of the 

management of the infectious diseases are as follows: 

1- The number of health centers is large and geographically distant and scattered. 
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2- The methods used to collect data are traditional, therefore can’t cover all health 

centers. 

3- The data do not represent all health centers in Sudan. 

4- The actions taken on the basis of this data are inaccurate. 

5- The paper-based methods of data collection are ineffective because they need 

large storage spaces relative to the large number of data and can be lost or 

damaged. 

4.3 Final Result 

The analysis found that, in addition to the difficulty of the collection process, 

predictive methods are not used to obtain future values for the spread of the 

disease. 

In fact, the prediction process is relying on the experience, where the existence of 

the previous data and other variables is taken advantage of. Therefore, there is a 

real need for a program predicting the new cases, because through this program 

there is: 

 The possibility of entering data from the health centers to the program directly 

without the need for Traditional ways of communication. 

 The feature of analyzing the data by program to obtain future values based on 

the previous data. 
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5.1 Introduction 

Finding the suitable model for a time series is a difficult task that needs a lot of 

search and experience. The next steps show how to choose, test and validate the 

certain model to use it in the forecasting for Malaria cases in Khartoum, Al-

Gadaref and Sennar states. 

5.2 Non Seasonal Model – Yearly 

Choosing the suitable model for the three states; using the data for the years (1996 

up to 2016). 

5.2.1 Khartoum 

5.2.1.1 Time Series Stability 

The ARIMA (auto-regressive, integrated, moving average) model of a time series 

is defined by three terms (p, d, q). The middle element in the model; d, is 

investigated before p and q. The goal is to determine if the process is stationary 

and, if not, to make it stationary before determining the values of p and q. Recall 

that a stationary process has a constant mean and variance over the time period of 

the study. 

The first step in the analysis is to plot the time series; Figure 5.1 shows cases of the 

Malaria in Khartoum State.  The two relevant features of the plot are central 

tendency and dispersion. 

 

Figure 5.1 Yearly cases of the Malaria in Khartoum State 
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It is obvious that there is a shift in both the trend and the dispersion over time for 

the series. If the mean is changing, the trend is removed by differencing once or 

twice. If the variability is changing, the process can be made stationary by 

logarithmic transformation. 

Differencing is the easiest way to make a non-stationary mean stationary (flat). The 

number of times you have to difference to make the process stationary determines 

the value of d. If d = 0, the model is already stationary and has no trend. When the 

series is differenced once, d=1 and linear trend is removed. When the difference is 

then differenced, d=2 and both linear and quadratic trend are removed. For non-

stationary series, d values of 1 or 2 are usually adequate to make the mean 

stationary. 

To see if the process is stationary after linear trend is removed, the first difference 

of the cases plotted against years, as seen in Figure 5.2. 

 

Figure 5.2 the first difference of Khartoum State yearly cases 
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It is clear that the series is still has the shift in the mean, so second differencing 

appear necessary which is shown in Figure 5.3 

 

Figure 5.3 the second difference of Khartoum State yearly cases 

The series now appears stationary with respect to central tendency, however, the 

variability seems to be increasing and decreasing over time. As we have mentioned 

earlier, the changing in variability can be made stationary by logarithmic 

transformation. The transformed difference is plotted in Figure 5.4. 
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Figure 5.4 the natural logarithm and first difference of Khartoum State yearly cases 

5.2.1.2 Model Identification 

This stage is one of the most important and most difficult stages of the model 

building. The difficulty lies in determining the variables that must be included in 

the model or should be excluded from it. 

As it is mentioned before, the ARIMA (auto-regressive, integrated, moving 

average) model of a time series is defined by three terms (p, d, q). Identification of 

a time series is the process of finding integer, usually very small (0, 1, or 2), values 
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of p, d, and q that model the patterns in the data. When the value is 0, the element 

is not needed in the model. 

5.2.1.2.1 ACFs and PACFs 

Autocorrelation functions (ACFs) and partial autocorrelation functions (PACFs) 

are examined to see which of the three patterns (AR, MA & ARIMA) are present 

in the data. Autocorrelations are self- correlations of the series with itself, removed 

one or more periods in time; partial autocorrelations are self- correlations with 

intermediate autocorrelations partialed out. Various auto- regressive and moving 

average patterns leave distinctive footprints on the autocorrelation and partial 

autocorrelation functions. 

Both autocorrelations and partial autocorrelations are computed for sequential lags 

in the series. The first lag has an autocorrelation between Y t-1 and Yt, the second 

lag has both an autocorrelation and partial autocorrelation between Yt -2 and Yt, 

and so on. ACFs and PACFs are the functions across all the lags. 

Examine the ACF and PACF of the logarithmic, first difference series as shown in 

Figure 5.5 and Figure 5.6 respectively. 

 

Figure 5.5 the ACF of the natural logarithm and second difference of Khartoum 

State yearly cases 
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Figure 5.6 the PACF of the natural logarithm and second difference of Khartoum 

State yearly cases 

5.2.1.2.2 Auto- Regressive Components (AR) 

The auto- regressive components represent the memory of the process for 

preceding observations. The value of p is the number of auto- regressive 

components in an ARIMA (p, d, q) model. The value of p is 0 if there is no 

relationship between adjacent observations. When the value of p is 1, there is a 

relationship between observations at lag 1 and the correlation coefficient 1 is the 

magnitude of the relationship. When the value of p is 2, there is a relationship 

between observations at lag 2 and the correlation coefficient 2 is the magnitude 

of the relationship. Thus, p is the number of correlations you need to model the 

relationship and the equation is shown in Eq. 5.1. 

�̂�𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 + 𝑎𝑡            Eq. 5.1 

When the PACF of the differenced series displays a sharp cutoff and/or the lag-1 

autocorrelation is positive that mean adding an AR term to the model is needed. 
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The lag at which the PACF cuts off is the indicated number of AR terms. Thus, 

examine the PACF in Figure 5.5 lead us to propose model AR (1), which define by 

Eq. 5.2, 

�̂�𝒕 = ∅𝟏𝒀𝒕−𝟏 + 𝒂𝒕      Eq. 5.2 

5.2.1.2.3 Moving Average Components (MA) 

The moving average components represent the memory of the process for the 

preceding random shocks. The value q indicates the number of moving average 

components in an ARIMA (p, d, q) model. When q is zero, there are no moving 

average components. When q is 1, there is a relationship between the current score 

and the random shock at lag 1, and the correlation coefficient Ɵ1 represents the 

magnitude of the relationship. When q is 2, there is a relationship between the 

current score and the random shock at lag 2, and the correlation coefficient Ɵ2 

represents the magnitude of the relationship and the equation is shown in Eq. 5.3. 

𝑋𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞           Eq. 5.3 

When the ACF of the differenced series displays a sharp cutoff and/or the lag-1 

autocorrelation is negative that mean adding an MA term to the model is needed. 

The lag at which the ACF cuts off is the indicated number of MA terms. Thus, 

examine the ACF in Figure 5.5 lead us to propose model MA (1), which define by 

Eq. 5.4. 

𝑿𝒕 = 𝒂𝒕 − 𝜽𝟏𝒂𝒕−𝟏       Eq. 5.4 

5.2.1.2.4 Mixed Model (ARIMA) 

Sometimes a series has both auto- regressive and moving average components so 

both types of correlations are required to model the patterns and the equation is 

shown in Eq. 5.5. 

�̂�𝑡 = 𝑎𝑡+∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞    Eq.     

5.5 

And if we look again at the two Figures 5.5, we propose a model ARIMA (1,2,1) 

because p is 1, q is 2, and we have applied the first difference to the series, which 

define by the equation shown in 5.6. 
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�̂�𝒕 = ∅𝟏𝒀𝒕−𝟏 − 𝜽𝟏𝒂𝒕−𝟏 + 𝒂𝒕     Eq. 5.6 

5.2.1.2.5 Exponential Smoothing (SES) 

Simple Exponential Smoothing is given by equation 5.7. 

St+1 = α yt + (1−α) St                0 < α ≤ 1, t > 0     Eq. 5.7 

Where, 

St+1: Next point Forecasting. 

yt: Actual value for period t. 

St: Forecast value for period t. 

5.2.1.3 Model Estimation (Fitting) 

Estimating the values of the parameters in models consists of estimating the ∅ 

parameters from an auto- regressive model or the θ parameters from a moving 

average model, and the following rules apply: 

 Parameters must differ significantly from zero and all significant parameters 

must be included in the model. 

 All auto- regressive parameters, ∅ must be between -1 and 1. 

If there are two such parameters (p=2) they must also meet the following 

requirements: 

∅1 +∅2 < 1 and 

                                                              ∅2 -∅1 < 1 

These are called the bounds of stationarity for the auto- regressive parameters. 

 All moving average parameters, θ must be between -1 and 1. If there are two 

such parameters (q = 2), they must also meet the following requirements:  

θ1 + θ2 < 1 and 

                                                 θ2 – θ1 < 1 

These are called the bounds of invertibility for the moving average parameters. 
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5.2.1.3.1 Estimating the model AR (1) with the second series differencing 

Estimating the model AR (1) with the second series differencing gives the model 

ARIMA (1,2,0) where the results of the estimation are shown using the statistical 

software SPSS 17.0 in the Table 5.1 

Table 5.1 the results of the AR (1) estimation of Khartoum State yearly cases 

     Estimate SE t Sig. 

Khartoum-

Model_1 

Khartou

m 

 Constant 103.705 1195.824 .087 .932 

AR Lag 1 -.562 .196 -2.864 .011 

Difference 2    

From Table 5.1 it is clear that AR coefficient is between -1 and 1, and p value of 

0.011 < 0.05 indicates that the correlation is significantly different from zero. 

Thus, the coefficients in the Table 5.1 form the equation shown in Eq. 5.8. 

�̂�𝒕 = 𝒂𝒕 − 𝟎. 𝟓𝟔𝟐 𝒀𝒕−𝟏    Eq. 5.8 

5.2.1.3.2 Estimating the model MA (1) with the second series 

differencing 

Estimating the model MA (1) with the second series differencing gives the model 

ARIMA (0,2,1) where the results of the estimation are shown using the statistical 

software SPSS 17.0 in the Table 5.2. 

Table 5.2 the results of the MA (1) estimation of Khartoum State yearly cases 

     Estimate SE t Sig. 

Khartoum-Model_1 Khartoum  Constant -5.347 318.560 -.017 .987 

Difference 2    

MA Lag 1 1.000 218.666 .005 .996 

From Table 5.2 the θ =1 and p value of 0.996 > 0.05 indicates that the correlation 

isn’t significantly different from zero. 

5.2.1.3.3 Estimating the model ARIMA (1,2,1)  

The results of the estimation are shown using the statistical software SPSS 17.0 in 

the Table 5.3. 



31 
 

Table 5.3 the results of the ARIMA (1,2,1) estimation of Khartoum State yearly 

cases 

     Estimate SE t Sig. 

Khartoum-Model_1 Khartou

m 

 Constant -71.345 262.224 -.272 .789 

AR Lag 1 -.102 .288 -.354 .728 

Difference 2    

MA Lag 1 .986 3.215 .307 .763 

From Table 5.3 the AR coefficient -0.102 is between -1 and 1, the MA coefficient 

0.986 is between -1 and 1 and their p values 0.728 > 0.05 and 0.763 > 0.05 

respectively indicate that the correlation isn’t significantly different from zero. 

5.2.1.3.4 Estimating SES model 

The results of the estimation are shown using the statistical software SPSS 17.0 in 

the Table 5.4. 

Table 5.4 The result of estimating SES for Khartoum State yearly cases 

Model Estimate SE t Sig. 

Khartoum-Model_1  Alpha (Level) .856 .219 3.902 .001 

From Table 5.4 it is clear that alpha 0.856 ≤ 1, and p value of 0.001 < 0.05 

indicates that the correlation is significantly different from zero. Thus, the 

coefficients in the Table 5.1 form the equation shown in Eq. 5.9. 

St+1 = .856 yt + (1−.856) St    Eq. 5.9 

5.2.1.4 Model Diagnosis 

Ljung-Box test is the series correlation test applied to ensure that the proposed 

model is appropriate, and since the ARIMA (0,2,1) and ARIMA (1,2,1) aren’t 

significantly different from zero we’ll not make the test for them. 

5.2.1.4.1 ARIMA (1,2,0) model 

Table 5.5 shows the result of Ljung-Box test for ARIMA (1,2,0) using the software 

SPSS 17.0. 

Table 5.5 the result of Ljung-Box test of ARIMA (1,2,0) for Khartoum State yearly 

cases 

Model 

Ljung-Box Q(18) 

Statistics DF Sig. 
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Model 

Ljung-Box Q(18) 

Statistics DF Sig. 

Khartoum-Model_1 14.902 17 .603 

The Ljung-Box test as shown in the Table 5.5 indicates that there is no self-

correlation between the errors (sig. 0.603 > 0.05), and this is confirmed by the 

auto-correlations and partial auto-correlations of the residuals as in Figure 5.7. 

 

Figure 5.7 the ACF and PACF residuals of ARIMA (1,2,0) for Khartoum State 

yearly cases  

5.2.1.4.2 Simple Exponential Smoothing (SES) model 

Table 5.6 shows the result of Ljung-Box test for Simple Exponential Smoothing 

using the software SPSS 17.0. 

Table 5.6 the result of Ljung-Box test of SES for Khartoum State yearly cases 

Model Ljung-Box Q(18) 
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Statistics DF Sig. 

Khartoum-Model_1 9.833 17 .910 

The Ljung-Box test as shown in the Table 5.4 indicates that there is no self-

correlation between the errors (sig. 0.910 > 0.05), and this is confirmed by the 

auto-correlations and partial auto-correlations of the residuals as in Figure 5.8. 

 

Figure 5.8 the ACF and PACF residuals of SES for Khartoum State yearly cases  
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5.2.2 Al-Gadaref 

5.2.2.1 Time Series Stability 

The first step in the analysis is to plot the time series; Figure 5.9 shows cases of the 

Malaria in Al-Gadaref State. 

 

Figure 5.9 Yearly cases of the Malaria in Al-Gadaref State 

It is obvious that there is a shift in both the trend and the dispersion over time for 

the series.  

To see if the process is stationary after linear trend is removed, the first difference 

of the cases plotted against years, as seen in Figure 5.10. 
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Figure 5.10 the first difference of Al-Gadaref State yearly cases 

It is clear that the series is still has the shift in the mean, so second differencing 

appear necessary which is shown in Figure 5.11 
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Figure 5.11 the second difference of Al-Gadaref State yearly cases 

The series now appears stationary with respect to central tendency; however, the 

logarithmic transformation is plotted in Figure 5.12. 

N
o

. o
f 

ca
se

s
 



37 
 

 

Figure 5.12 the natural logarithm and second difference of Al-Gadaref State yearly 

cases 

5.2.2.2 Model Identification 

For determine AR, MA, and ARIMA components. 

5.2.2.2.1 ACFs and PACFs 

Examine the ACF and PACF of the second difference series as shown in Figure 

5.13 and Figure 5.14 respectively. 
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Figure 5.13 the ACF of the natural logarithm and second difference of Al-Gadaref 

State yearly Cases 

 

Figure 5.14 the and PACF of the natural logarithm and second difference of Al-

Gadaref State yearly Cases 



39 
 

5.2.2.2.2 Auto- Regressive Components (AR) 

Examine the PACF in Figure 5.14 lead us to propose model AR (0). 

5.2.2.2.3 Moving Average Components (MA) 

Examine the ACF in Figure 5.13 lead us to propose model MA (0). 

5.2.2.2.4 Mixed Model (ARIMA) 

While there is no AR and MA component the model will be ARIMA (0,2,0). 

5.2.2.2.5 Brown Exponential Smoothing (BES) 

The BES is representing by equation 5.10. 

               Level equation            ℓt=αyt+(1−α)(ℓt−1+bt−1)  

               Trend equation            bt=β∗(ℓt−ℓt−1)+(1−β∗)bt−1 

               Forecast equation     �̂�t+h|t=ℓt+hbt                                    Eq. 5.10 

Where,  

ℓt denotes an estimate of the level of the series at time t. 

bt denotes an estimate of the trend (slope) of the series at time t. 

α is the smoothing parameter for the level, 0≤α≤1. 

β∗ is the smoothing parameter for the trend, 0≤β∗≤1.  

5.2.2.3 Model Estimation (Fitting) 

While AR and MA components are 0 then we’ll not make the estimation for them. 

5.2.2.3.1 Estimating the model ARIMA (0,2,0) 

The results of the ARIMA (0,2,0) model estimation are shown using the statistical 

software SPSS 17.0 in the Table 5.7. 

Table 5.7 the results of the ARIMA (0,2,0) model estimation of Al-Gadaref State 

yearly cases 
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    Estimate SE t Sig. 

Al_Gadaref-Model_1 Al_Gadaref  Constant 348.000 419.414 .830 .418 

Difference 2    

5.2.2.3.2 Estimating BES model 

The results of the BES estimation are shown using the statistical software SPSS 

17.0 in the Table 5.8. 

Table 5.8 the results of the BES model estimation of Al-Gadaref State yearly cases 

Model Estimate SE t Sig. 

Al_Gadaref-Model_1  Alpha (Level and 

Trend) 

.875 .088 9.959 .000 

From Table 5.8 it is clear that alpha 0.875 ≤ 1, and p value of 0.000 < 0.05 

indicates that the correlation is significantly different from zero. Thus, the 

coefficients in the Table 5.1 form the equation shown in Eq. 5.11. 

St+1 = .875 yt + (1−.875) St         Eq. 5.11 

5.2.2.4 Model Diagnosis 

5.2.2.4.1 ARIMA (0,2,0) model 

Table 5.9 shows the result of Ljung-Box test for ARIMA (0,2,0) using the software 

SPSS 17.0. 

Table 5.9 the result of Ljung-Box test of ARIMA (0,2,0) for Al-Gadaref State 

yearly cases 

Model 

Ljung-Box Q(18) 

Statistics DF Sig. 

Al_Gadaref-Model_1 25.346 18 .116 

The Ljung-Box test as shown in the Table 5.9 indicates that there is no self-

correlation between the errors (sig. 0.116 > 0.05), and this is confirmed by the 

auto-correlations and partial auto-correlations of the residuals as in Figure 5.15. 
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Figure 5.15 the ACF and PACF residuals of ARIMA (0,2,0) for Al-Gadaref State 

yearly cases 

5.2.2.4.2 Brown Exponential Smoothing BES model 

Table 5.10 shows the result of Ljung-Box test for Brown Exponential Smoothing 

using the software SPSS 17.0. 

Table 5.10 the result of Ljung-Box test of BES for Al-Gadaref State yearly cases 

Model 

Ljung-Box Q(18) 

Statistics DF Sig. 

Al_Gadaref-Model_1 21.036 17 .225 

The Ljung-Box test as shown in the Table 5.10 indicates that there is no self-

correlation between the errors (sig. 0.225 > 0.05), and this is confirmed by the 

auto-correlations and partial auto-correlations of the residuals as in Figure 5.16. 
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Figure 5.16 the ACF and PACF residuals of BES for Al-Gadaref State yearly cases  
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5.2.3 Sennar 

5.2.3.1 Time Series Stability 

The first step in the analysis is to plot the time series; Figure 5.17 shows cases of 

the Malaria in Sennar State. 

 

Figure 5.17 Yearly cases of the Malaria in Sennar State 

It is obvious that there is a shift in both the trend and the dispersion over time for 

the series. The first difference of the cases plotted against years, as seen in Figure 

5.18. 
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Figure 5.18 the first difference of Sennar State’s Cases 

The series now appears stationary with respect to central tendency, so second 

differencing does not appear necessary. However, the variability seems to be 

increasing and decreasing over time. 

The transformed difference is plotted to see if both mean and variance are now 

stabilized, as seen in Figure 5.19. 
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Figure 5.19 the natural logarithm and first difference of Sennar State yearly cases 

5.2.3.2 Model Identification 

To determine the components of AR, MA, and ARIMA models. 

5.2.3.2.1 ACFs and PACFs 

Examine the ACF and PACF of the first difference series as shown in Figure 5.20 

and Figure 5.21 respectively. 
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Figure 5.20 the ACF of the natural logarithm and first difference of Sennar State 

yearly cases 

 

Figure 5.21 the PACF of the natural logarithm and first difference of Sennar State 

yearly cases 
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5.2.3.2.2 Auto- Regressive Components (AR) 

Examine the PACF in Figure 5.16 lead us to propose model AR (1), which define 

by Eq. 5.12. 

�̂�𝒕 = ∅𝟏𝒀𝒕−𝟏 + 𝒂𝒕      Eq. 5.12 

5.2.3.2.3 Moving Average Components (MA) 

Examine the ACF in Figure 5.16 lead us to propose model MA (1), which define 

by Eq. 5.13. 

𝑿𝒕 = 𝒂𝒕 − 𝜽𝟏𝒂𝒕−𝟏       Eq. 5.13 

5.2.3.2.4 Mixed Model (ARIMA) 

And if we look at the two Figures 5.16, we propose a model ARIMA (1,1,1) 

because p is 1, q is 1, and we have applied the first difference to the series, which 

define by the equation shown in 5.14. 

�̂�𝒕 = ∅𝟏𝒀𝒕−𝟏 − 𝜽𝟏𝒂𝒕−𝟏 + 𝒂𝒕     Eq. 5.14 

5.2.3.3 Model Estimation (Fitting) 

Insure that; the models coefficients are significantly differ from zero.  

5.2.3.3.1 Estimating the model AR (1) with the first series differencing 

Estimating the model AR (1) with the first series differencing gives the model 

ARIMA (1,1,0) where the results of the estimation are shown using the statistical 

software SPSS 17.0 in the Table 5.11. 

Table 5.11 the results of the ARIMA (1,1,0) estimation of Sennar State yearly 

Cases 

     Estimate SE t Sig. 

Sennar-Model_1 Sennar  Constant .025 .049 .521 .608 

AR Lag 1 -.519 .199 -2.607 .018 

Difference 1    
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From Table 5.11 it is clear that AR coefficient is between -1 and 1, and p value of 

0.018 < 0.05 indicates that the correlation is significantly different from zero. 

Thus, the coefficients in the Table 5.10 form the equation shown in Eq. 5.15. 

�̂�𝒕 = −𝟎. 𝟓𝟏𝟗 𝒀𝒕−𝟏 + 𝒂𝒕       Eq. 5.15 

5.2.3.3.2 Estimating the model MA (1) with the first series differencing 

Estimating the model MA (1) with the first series differencing gives the model 

ARIMA (0,1,1) where the results of the estimation are shown using the statistical 

software SPSS 17.0 in the Table 5.11. 

Table 5.12 the results of the ARIMA (1,1,0) estimation of Sennar State yearly 

Cases 

     Estimate SE t Sig. 

Sennar-Model_1 Sennar  Constant .038 .021 1.862 .079 

Difference 1    

MA Lag 1 .808 .254 3.173 .005 

From Table 5.12 it is clear that MA coefficient is between -1 and 1, and p value of 

0.005 < 0.05 indicates that the correlation is significantly different from zero. 

Thus, the coefficients in the Table 5.11 form the equation shown in Eq. 5.16. 

𝑿𝒕 = 𝒂𝒕 − 𝟎. 𝟖𝟎𝟖 𝒂𝒕−𝟏          Eq. 5.16 

5.2.3.3.3 Estimating the model ARIMA (1,1,1)  

The results of the estimation are shown using the statistical software SPSS 17.0 in 

the Table 5.13. 

Table 5.13 the results of the ARIMA (1,1,1) estimation of Sennar State yearly 

cases 

     Estimate SE t Sig. 

Sennar-Model_1 Sennar  Constant .037 .024 1.549 .140 

AR Lag 1 -.206 .342 -.602 .555 

Difference 1    

MA Lag 1 .648 .332 1.953 .067 
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From Table 5.13 the AR coefficient -0.206 is between -1 and 1, the MA coefficient 

0.648 is between -1 and 1 and their p values 0.555 > 0.05 and 0.067 > 0.05 

respectively indicate that the correlation isn’t significantly different from zero. 

5.2.3.3.4 Estimating HES model 

The results of the HES estimation are shown using the statistical software SPSS 

17.0 in the Table 5.14. 

Table 5.14 the results of the BES model estimation of Sennar State yearly cases 

Model Estimate SE t Sig. 

Sennar-Model_1  Alpha (Level) .099 .099 1.001 .329 

Gamma (Trend) 1.744E-6 .043 4.061E-5 1.000 

From Table 5.14 it is clear that alpha 0.099 ≤ 1, and p value of 0.329 > 0.05 and p 

value of gamma 1 > 0.05, indicate that the correlation isn’t significantly different 

from zero. 

5.2.3.4 Model Diagnosis 

Insure that; there is no self-correlation between the errors. 

5.2.3.4.1 ARIMA (1,1,0) 

Table 5.15 shows the result of Ljung-Box test. 

Table 5.15 the result of Ljung-Box test of ARIMA (1,1,0) 

Ljung-Box Q(18) 

Statistics DF Sig. 

23.189 17 .143 

The Ljung-Box test as shown in the Table 5.15 indicates that there is no self-

correlation (sig. 0.143 > 0.05) between the errors, and this is confirmed by the 

auto-correlations and partial auto-correlations of the residuals as in Figure 5.22. 
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Figure 5.22 the ACF and PACF residuals of ARIMA (1,1,0) for Sennar State 

yearly cases 

5.2.3.4.2 ARIMA (0,1,1) 

Table 5.16 shows the result of Ljung-Box test. 

Table 5.16 the result of Ljung-Box test of ARIMA (0,1,1) 

Ljung-Box Q(18) 

Statistics DF Sig. 

18.431 17 .362 

The Ljung-Box test as shown in the Table 5.16 indicates that there is no self-

correlation (sig. 0.362 > 0.05) between the errors, and this is confirmed by the 

auto-correlations and partial auto-correlations of the residuals as in Figure 5.23. 
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Figure 5.23 the ACF and PACF residuals of ARIMA (1,1,0) for Sennar State 

yearly cases 
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5.3 Seasonal Model – Monthly 

Choosing the suitable model for the three states; using the monthly data for the 

years (2015 up to 2018). 

5.3.1 Khartoum 

5.3.1.1 Time Series Stability 

The ARIMA (auto-regressive, integrated, moving average) model of a seasonal 

time series is defined by terms (p, d, q)(P,D,Q). The capital elements in the model; 

investigated the seasonal part of the model. 

The first step in the analysis is to plot the seasonal time series; Figure 5.24 shows 

monthly cases of the Malaria in Khartoum State. 

 

Figure 5.24 Monthly cases of the Malaria in Khartoum State 
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It is obvious that there is a shift in both the trend and the dispersion over time for 

the series. 

To see if the process is stationary after linear trend is removed, the first difference 

of the non-seasonal part plotted against months, as seen in Figure 5.25. 

 

Figure 5.25 the first difference of Khartoum State monthly non-seasonal part 

It is clear that the series is still has the shift in the mean in seasonal (it is clear in 

every April in the last figure) part, so first differencing appear necessary for 

seasonal part which is shown in Figure 5.26. 
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Figure 5.26 the first difference of Khartoum State monthly seasonal and non-

seasonal parts 

The series now appears stationary with respect to central tendency, however, the 

variability seems to be increasing and decreasing over time. As we have mentioned 

earlier, the changing in variability can be made stationary by logarithmic 

transformation. The transformed difference is plotted in Figure 5.27. 
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Figure 5.27 the natural logarithm and first difference of Khartoum State monthly 

Cases 

5.3.1.2 Model Identification 

Determine the components of the models (AR, MA, and ARIMA). 

5.3.1.2.1 ACFs and PACFs 

Examine the ACF and PACF of the logarithmic, first difference series as shown in 

Figure 5.28 and Figure 5.29 respectively. 
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Figure 5.28 the ACF of the natural logarithm and first difference of Khartoum 

State monthly cases

 

Figure 5.29 the PACF of the natural logarithm and first difference of Khartoum 

State monthly cases 
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5.3.1.2.2 Auto- Regressive Components (AR) 

Examine the PACF in Figure 5.23 lead us to propose model AR (1), which define 

by Eq. 5.17. 

�̂�𝒕 = ∅𝟏𝒀𝒕−𝟏 + 𝒂𝒕      Eq. 5.17 

5.3.1.2.3 Moving Average Components (MA) 

Examine the ACF in Figure 5.23 lead us to propose model MA (1), which define 

by Eq. 5.18 

𝑿𝒕 = 𝒂𝒕 − 𝜽𝟏𝒂𝒕−𝟏       Eq. 5.18 

5.3.1.2.4 Mixed Model (ARIMA) 

And if we look again at the two Figures 5.23, we propose a model ARIMA 

(1,1,1)(0,1,0) because p is 1, q is 1, and we have applied the first difference to the 

seasonal and non-seasonal series, which define by the equation shown in 5.19. 

�̂�𝒕 = ∅𝟏𝒀𝒕−𝟏 − 𝜽𝟏𝒂𝒕−𝟏 + 𝒂𝒕     Eq. 5.19 

5.3.1.2.5 Winters' Multiplicative 

It is extend for Holt’s method to capture seasonality. The Holt-Winters seasonal 

method comprises the forecast equation and three smoothing equations; one for the 

level ℓt, one for the trend bt, and one for the seasonal component st, with 

corresponding smoothing parameters α, β∗ and γ as shown in Eq. 5.20.   

Eq. 5.20 

5.3.1.3 Model Estimation (Fitting) 

Insure that; the models coefficients significantly differ from zero. 

5.3.1.3.1 Estimating the model AR (1) with the first series differencing 
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Estimating the model AR (1) with the first series differencing gives the model 

ARIMA (1,1,0)(0,1,0) where the results of the estimation are shown using the 

statistical software SPSS 17.0 in the Table 5.17. 

Table 5.17 the results of the AR (1) estimation of Khartoum State monthly cases 

     
Estimate SE t Sig. 

Khartoum-Model_1 Khartoum  Constant 53.774 47.466 1.133 .267 

AR Lag 1 -.534 .158 -3.380 .002 

Difference 1    

Seasonal Difference 1    

From Table 5.17 it is clear that AR coefficient is between -1 and 1, and p value of 

0.002 < 0.05 indicates that the correlation is significantly different from zero. 

Thus, the coefficients in the Table 5.18 form the equation shown in Eq. 5.21. 

�̂�𝒕 = 𝒂𝒕 − 𝟎. 𝟓𝟑𝟒 𝒀𝒕−𝟏   Eq. 5.21 

5.3.1.3.2 Estimating the model MA (1) with the first series differencing 

Estimating the model MA (1) with the first series differencing gives the model 

ARIMA (0,1,1)(0,1,0) where the results of the estimation are shown using the 

statistical software SPSS 17.0 in the Table 5.18. 

Table 5.18 the results of the MA (1) estimation of Khartoum State monthly cases 

     Estimate SE t Sig. 

Khartoum-Model_1 Khartoum  Constant 49.687 41.009 1.212 .236 

Difference 1    

MA Lag 1 .465 .171 2.714 .011 

Seasonal Difference 1    

From Table 5.19 MA coefficient is between -1 and 1, and p value of 0.011 < 0.05 

indicates that the correlation is significantly different from zero. Thus, the 

coefficients in the Table 5.18 form the equation shown in Eq. 5.22. 

𝑿𝒕 = 𝒂𝒕 − 𝟎. 𝟒𝟔𝟓 𝒂𝒕−𝟏      Eq. 5.22 

5.3.1.3.3 Estimating the model ARIMA (1,1,1)(0,1,0) 
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The results of the estimation are shown using the statistical software SPSS 17.0 in 

the Table 5.19. 

Table 5.19 the results of the ARIMA (1,1,1)(0,1,0) estimation of Khartoum State 

monthly cases 

     Estimate SE t Sig. 

Khartoum-

Model_1 

Khartoum  Constant 52.959 44.768 1.183 .247 

AR Lag 1 -.445 .315 -1.413 .169 

Difference 1    

MA Lag 1 .127 .354 .359 .722 

Seasonal Difference 1    

From Table 5.19 the AR coefficient -0.445 is between -1 and 1, the MA coefficient 

0.127 is between -1 and 1 and their p values 0.169 > 0.05 and 0.722 > 0.05 

respectively indicate that the correlation isn’t significantly different from zero. 

5.3.1.3.4 Estimating Winters’ Multiplicative model 

The results of the winters' Multiplicative estimation are shown using the statistical 

software SPSS 17.0 in the Table 5.20. 

Table 5.20 the results of the winter’s Multiplicative model estimation of Khartoum 

State monthly cases 

Model Estimate SE t Sig. 

Khartoum-Model_1  Alpha (Level) .101 .025 4.061 .000 

Gamma (Trend) .926 .318 2.911 .006 

Delta (Season) .229 .057 4.033 .000 

From Table 5.20 it is clear that alpha, gamma and delta (0.101, 0.926 and 0.229 

respectively) ≤ 1, and the p values (0.000, 0.006 and 0.000 respectively) < 0.05 

which indicates that the correlation is significantly different from zero. 

5.3.1.4 Model Diagnosis 

Since the ARIMA (1,1,1)(0,1,0) isn’t significantly different from zero we’ll not 

make the test for it. 

5.3.1.4.1 ARIMA (1,1,0)(0,1,0) 

Table 5.21 shows the result of Ljung-Box test for ARIMA (1,1,0)(0,1,0) using the 

software SPSS 17.0. 
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Table 5.21 the result of Ljung-Box test of ARIMA (1,1,0)(0,1,0) for Khartoum 

State monthly cases 

Model 

Ljung-Box Q(18) 

Statistics DF Sig. 

Khartoum-Model_1 20.399 17 .254 

The Ljung-Box test as shown in the Table 5.21 indicates that there is no self-

correlation between the errors (sig. 0.254 > 0.05), and this is confirmed by the 

auto-correlations and partial auto-correlations of the residuals as in Figure 5.30. 

 

Figure 5.30 the ACF and PACF residuals of ARIMA (1,1,0)(0,1,0) for Khartoum 

State monthly cases 
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5.3.1.4.2 ARIMA (0,1,1)(0,1,0) 

Table 5.22 shows the result of Ljung-Box test for ARIMA (0,1,1)(0,1,0) using the 

software SPSS 17.0. 

Table 5.22 the result of Ljung-Box test of ARIMA (0,1,1)(0,1,0) for Khartoum 

State monthly cases 

Model 

Ljung-Box Q(18) 

Statistics DF Sig. 

Khartoum-Model_1 22.934 17 .151 

The Ljung-Box test as shown in the Table 5.22 indicates that there is no self-

correlation between the errors (sig. 0.151 < 0.05), and this is confirmed by the 

auto-correlations and partial auto-correlations of the residuals as in Figure 5.31. 

 

Figure 5.31 the ACF and PACF residuals of ARIMA (0,1,1)(0,1,0) for Khartoum 

State monthly cases 
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5.3.1.4.3 Winters’ Multiplicative 

Table 5.23 shows the result of Ljung-Box test for winters' Multiplicative using the 

software SPSS 17.0. 

Table 5.23 the result of Ljung-Box test of winters' Multiplicative for Khartoum 

State monthly cases 

Model 

Ljung-Box Q(18) 

Statistics DF Sig. 

Khartoum-Model_1 20.805 15 .143 

The Ljung-Box test as shown in the Table 5.23 indicates that there is no self-

correlation between the errors (sig. 0.143 < 0.05), and this is confirmed by the 

auto-correlations and partial auto-correlations of the residuals as in Figure 5.32. 

 

Figure 5.32 the ACF and PACF residuals of winters' Multiplicative for Khartoum 

State monthly cases 
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5.3.2 Al-Gadaref 

5.3.2.1 Time Series Stability 

The first step in the analysis is to plot the seasonal time series; Figure 5.33 shows 

monthly cases of the Malaria in Al-Gadaref State. 

 

Figure 5.33 Monthly cases of the Malaria in Al-Gadaref State 

It is obvious that there is a shift in both the trend and the dispersion over time for 

the series. 

To see if the process is stationary after linear trend is removed, the first difference 

of the non-seasonal part plotted against months, as seen in Figure 5.34. 
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Figure 5.34 the first difference of Al-Gadaref State monthly non-seasonal part 

It is clear that the series is still has the shift in the mean in seasonal (it is clear in 

every June in the last figure) part, so first differencing appear necessary for 

seasonal part which is shown in Figure 5.35. 
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Figure 5.35 the first difference of Al-Gadaref State monthly seasonal and non-

seasonal parts 

The series now appears stationary with respect to central tendency, however, the 

variability seems to be increasing and decreasing over time. As we have mentioned 

earlier, the changing in variability can be made stationary by logarithmic 

transformation. The transformed difference is plotted in Figure 5.36. 
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Figure 5.36 the natural logarithm and first difference of Al-Gadaref State monthly 

Cases 

5.3.2.2 Model Identification 

Determine the components of the models (AR, MA, and ARIMA). 

5.3.2.2.1 ACFs and PACFs 

Examine the ACF and PACF of the logarithmic, first difference series as shown in 

Figure 5.37 and Figure 5.38 respectively. 
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Figure 5.37 the ACF of the natural logarithm and first difference of Al-Gadaref 

State monthly cases 

  

Figure 5.38 the PACF of the natural logarithm and first difference of Al-Gadaref 

State monthly cases 
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5.3.2.2.2 Auto- Regressive Components (AR) 

Examine the PACF in Figure 5.23 lead us to propose model AR (1), which define 

by Eq. 5.23 

�̂�𝒕 = ∅𝟏𝒀𝒕−𝟏 + 𝒂𝒕      Eq. 5.23 

5.3.2.2.3 Moving Average Components (MA) 

Examine the ACF in Figure 5.23 lead us to propose model MA (1), which define 

by Eq. 5.16, 

𝑿𝒕 = 𝒂𝒕 − 𝜽𝟏𝒂𝒕−𝟏       Eq. 5.24 

5.3.2.2.4 Mixed Model (ARIMA) 

And if we look again at the two Figures 5.23, we propose a model ARIMA 

(1,1,1)(0,1,0) because p is 1, q is 1, and we have applied the first difference to the 

seasonal and non-seasonal series, which define by the equation shown in 5.17. 

�̂�𝒕 = ∅𝟏𝒀𝒕−𝟏 − 𝜽𝟏𝒂𝒕−𝟏 + 𝒂𝒕     Eq. 5.24 

5.3.2.2.5 Simple Seasonal Exponential Smoothing (SSES) 

It is exponential smoothing with level and seasonality as shown in equations 5.25. 

                                 Lt=α(Yt−St−s)+(1−α)Lt−1  

                                 St=δ(Yt−Lt)+(1−δ)St−s 

                                 Yt=Lt+St                                                      Eq. 5.25 

5.3.2.3 Model Estimation (Fitting) 

Insure that; there is no self-correlation between the errors. 

5.3.2.3.1 Estimating the model AR (1) with the first series differencing 

Estimating the model AR (1) with the first series differencing gives the model 

ARIMA (1,1,0)(0,1,0) where the results of the estimation are shown using the 

statistical software SPSS 17.0 in the Table 5.24. 

Table 5.24 the results of the AR (1) estimation of Al-Gadaref State monthly Cases 
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     Estimate SE t Sig. 

Al_Gadaref-

Model_1 

Al_Gadaref  Constant .019 .044 .427 .673 

AR Lag 1 -.436 .174 -2.497 .019 

Difference 1    

Seasonal Difference 1    

From Table 5.24 it is clear that AR coefficient is between -1 and 1, and p value of 

0.019 < 0.05 indicates that the correlation is significantly different from zero. 

Thus, the coefficients in the Table 5.18 form the equation shown in Eq. 5.26. 

�̂�𝒕 = 𝒂𝒕 − 𝟎. 𝟒𝟑𝟔 𝒀𝒕−𝟏   Eq. 5.26 

5.3.2.3.2 Estimating the model MA (1) with the first series differencing 

Estimating the model MA (1) with the first series differencing gives the model 

ARIMA (0,1,1)(0,1,0) where the results of the estimation are shown using the 

statistical software SPSS 17.0 in the Table 5.25. 

Table 5.25 the results of the MA (1) estimation of Al-Gadaref State monthly Cases 

     
Estimate SE t Sig. 

Al_Gadaref-Model_1 Al_Gadaref  Constant .011 .017 .645 .524 

Difference 1    

MA Lag 1 .724 .138 5.238 .000 

Seasonal Difference 1    

From Table 5.25 MA coefficient is between -1 and 1, and p value of 0.000 < 0.05 

indicates that the correlation is significantly different from zero. Thus, the 

coefficients in the Table 5.19 form the equation shown in Eq. 5.27. 

𝑿𝒕 = 𝒂𝒕 − 𝟎. 𝟕𝟐𝟒 𝒂𝒕−𝟏      Eq. 5.27 

5.3.2.3.3 Estimating the model ARIMA (1,1,1)(0,1,0) 

The results of the estimation are shown using the statistical software SPSS 17.0 in 

the Table 5.26. 

Table 5.26 the results of the ARIMA (1,1,1)(0,1,0) estimation of Al-Gadaref State 

monthly cases 

 

     Estimate SE t Sig. 
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Al_Gadaref-Model_1 Al_Gadaref  Constant .011 .017 .635 .531 

AR Lag 1 .023 .278 .084 .934 

Difference 1    

MA Lag 1 .739 .192 3.844 .001 

Seasonal Difference 1    

From Table 5.26 the AR coefficient -0.023 is between -1 and 1, the MA coefficient 

0.739 is between -1 and 1 and their p values 0.934 > 0.05 and 0.001 < 0.05 

respectively indicate that the correlation isn’t significantly different from zero. 

5.3.2.3.4 Estimating SSES model 

The results of the SSES estimation are shown using the statistical software SPSS 

17.0 in the Table 5.27. 

Table 5.27 the results of the SSES model estimation of Khartoum State monthly 

cases 

Model Estimate SE t Sig. 

Al_Gadaref-Model_1  Alpha (Level) .300 .113 2.656 .011 

Delta (Season) 2.428E-6 .267 9.094E-6 1.000 

From Table 5.27 it is clear that alpha 0.300 ≤ 1 and the p value 0.011 < 0.05 but 

delta > 1 and the p value =1 which indicates that the correlation isn’t significantly 

different from zero. 

5.3.2.4 Model Diagnosis 

Since the ARIMA (1,1,1)(0,1,0) isn’t significantly different from zero we’ll not 

make the test for it. 

5.3.2.4.1 ARIMA (1,1,0)(0,1,0) 

Table 5.28 shows the result of Ljung-Box test for ARIMA (1,1,0)(0,1,0) using the 

software SPSS 17.0. 

Table 5.28 the result of Ljung-Box test of ARIMA (1,1,0)(0,1,0) for Al-Gadaref 

State monthly cases 

 

Ljung-Box Q(18) 

Statistics DF Sig. 
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Ljung-Box Q(18) 

Statistics DF Sig. 

26.055 17 .073 

The Ljung-Box test as shown in the Table 5.28 indicates that there is no self-

correlation between the errors (sig. 0.73 > 0.05), and this is confirmed by the auto-

correlations and partial auto-correlations of the residuals as in Figure 5.39. 

 

Figure 5.39 the ACF and PACF residuals of ARIMA (1,1,0)(0,1,0) for Al-Gadaref 

State monthly cases 

5.3.2.4.2 ARIMA (0,1,1)(0,1,0) 

Table 5.29 shows the result of Ljung-Box test for ARIMA (0,1,1)(0,1,0) using the 

software SPSS 17.0. 

Table 5.29 the result of Ljung-Box test of ARIMA (0,1,1)(0,1,0) for Khartoum 

State monthly cases 
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Ljung-Box Q(18) 

Statistics DF Sig. 

15.858 17 .534 

The Ljung-Box test as shown in the Table 5.22 indicates that there is no self-

correlation between the errors (sig. 0.534 > 0.05). 
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5.3.3 Sennar 

5.3.3.1 Time Series Stability 

The first step in the analysis is to plot the seasonal time series; Figure 5.40 shows 

monthly cases of the Malaria in Sennar State. 

 

Figure 5.40 Monthly cases of the Malaria in Sennar State 

It is clear that the series is still has the shift in the mean in seasonal (it is clear in 

every June in the last figure) part, so first differencing appear necessary for 

seasonal part which is shown in Figure 5.41. 
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Figure 5.41 the first difference of Sennar State monthly seasonal and non-seasonal 

parts 

The series now appears stationary with respect to central tendency, however, the 

variability seems to be increasing and decreasing over time. As we have mentioned 

earlier, the changing in variability can be made stationary by logarithmic 

transformation. The transformed difference is plotted in Figure 5.41. 
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Figure 5.42 the natural log and first difference of Sennar State monthly non-

seasonal part 

5.3.3.2 Model Identification 

Determine the models (AR, MA, and ARIMA) components. 

5.3.3.2.1 ACFs and PACFs 

Examine the ACF and PACF of the logarithmic, first difference series as shown in 

Figure 5.43 and Figure 5.44 respectively. 
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Figure 5.43 the ACF of the natural logarithm and first difference of Sennar State 

monthly cases 

   

Figure 5.44 the ACF and PACF of the natural logarithm and first difference of 

Sennar State monthly cases 
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5.3.3.2.2 Auto- Regressive Components (AR) 

Examine the PACF in Figure 5.23 lead us to propose model AR (1), which define 

by Eq. 5.28. 

�̂�𝒕 = ∅𝟏𝒀𝒕−𝟏 + 𝒂𝒕      Eq. 5.28 

5.3.3.2.3 Moving Average Components (MA) 

Examine the ACF in Figure 5.23 lead us to propose model MA (1), which define 

by Eq. 5.29. 

𝑿𝒕 = 𝒂𝒕 − 𝜽𝟏𝒂𝒕−𝟏       Eq. 5.29 

5.3.3.2.4 Mixed Model (ARIMA) 

And if we look again at the two Figures 5.23, we propose a model ARIMA 

(1,1,1)(0,1,0) because p is 3, q is 1, and we have applied the first difference to the 

seasonal and non-seasonal series, which define by the equation shown in 5.30. 

�̂�𝒕 = ∅𝟏𝒀𝒕−𝟏 − 𝜽𝟏𝒂𝒕−𝟏 + 𝒂𝒕     Eq. 5.30 

5.3.3.2.5 Winters' Multiplicative 

5.3.3.3 Model Estimation (Fitting) 

Insure that; there no self-correlation between the errors. 

5.3.3.3.1 Estimating the model AR (1) with the first series differencing 

Estimating the model AR (1) with the first series differencing gives the model 

ARIMA (1,1,0)(0,1,0) where the results of the estimation are shown using the 

statistical software SPSS 17.0 in the Table 5.30. 

Table 5.30 the results of the AR (1) estimation of Sennar State monthly Cases 

     Estimate SE t Sig. 

Sennar-Model_1 Sennar  Constant -.013 .047 -.274 .786 

AR Lag 1 -.576 .153 -3.758 .001 

Difference 1    

Seasonal Difference 1    
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From Table 5.30 it is clear that AR coefficient is between -1 and 1, and p value of 

0.001 < 0.05 indicates that the correlation is significantly different from zero. 

Thus, the coefficients in the Table 5.18 form the equation shown in Eq. 5.31. 

�̂�𝒕 = 𝒂𝒕 − 𝟎. 𝟓𝟕𝟔 𝒀𝒕−𝟏   Eq. 5.31 

5.3.3.3.2 Estimating the model MA (1) with the first series differencing 

Estimating the model MA (1) with the first series differencing gives the model 

ARIMA (0,1,1)(0,1,0) where the results of the estimation are shown using the 

statistical software SPSS 17.0 in the Table 5.31. 

Table 5.31 the results of the MA (1) estimation of Sennar State monthly Cases 

     
Estimate SE t Sig. 

Sennar-Model_1 Sennar  Constant -.015 .008 -1.960 .060 

Difference 1    

MA Lag 1 .999 12.611 .079 .937 

Seasonal Difference 1    

From Table 5.31 MA coefficient is between -1 and 1, and p value of 0.937 > 0.05 

indicates that the correlation isn’t significantly different from zero. 

5.3.3.3.3 Estimating the model ARIMA (1,1,1)(0,1,0) 

The results of the estimation are shown using the statistical software SPSS 17.0 in 

the Table 5.32. 

Table 5.32 the results of ARIMA (1,1,1)(0,1,0) estimation of Sennar monthly cases 

 

     Estimate SE t Sig. 

Sennar-Model_1 Sennar  Constant -.015 .008 -1.953 .061 

AR Lag 1 .004 .217 .017 .986 

Difference 1    

MA Lag 1 .993 1.656 .599 .554 

Seasonal Difference 1    

From Table 5.32 the AR coefficient 0.004 is between -1 and 1, the MA coefficient 

0.993 is between -1 and 1 and their p values (0.986 and 0.554 respectively) > 0.05 

indicate that the correlation isn’t significantly different from zero. 
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5.3.3.3.4 Estimating SSES model 

The results of the SSES estimation are shown using the statistical software SPSS 

17.0 in the Table 5.33. 

Table 5.33 the results of the SSES model estimation of Khartoum State monthly 

cases 

Model Estimate SE t Sig. 

Sennar-Model_1  Alpha (Level) .300 .123 2.435 .019 

Delta (Season) 2.645E-6 .260 1.019E-5 1.000 

From Table 5.33 it is clear that alpha 0.300 ≤ 1 and the p value 0.019 < 0.05 but 

delta > 1 and the p value =1 which indicates that the correlation isn’t significantly 

different from zero. 

5.3.3.4 Model Diagnosis 

Since the ARIMA (1,1,1)(0,1,0) isn’t significantly different from zero we’ll not 

make the test for it. 

5.3.3.4.1 ARIMA (1,1,0)(0,1,0) 

Table 5.34 shows the result of Ljung-Box test for ARIMA (1,1,0)(0,1,0) using the 

software SPSS 17.0. 

Table 5.34 the result of Ljung-Box test of ARIMA (1,1,0)(0,1,0) for Al-Gadaref 

State monthly cases 

 

Model 

Ljung-Box Q(18) 

Statistics DF Sig. 

Sennar-Model_1 26.894 17 .060 

The Ljung-Box test as shown in the Table 5.34 indicates that there is no self-

correlation between the errors (sig. 0.60 > 0.05). 
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RESULTS & DISCUSSION 
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6.1 Results 

6.1.1 Non Seasonal Model - Yearly 

6.1.1.1 Khartoum 

6.1.1.1.1 Comparison of the predictability of the four models 

Table 6.1 the result of the comparison between the four models for Khartoum 

yearly cases 

Model ARIMA 

(1,2,0) 

ARIMA 

(0,2,1) 

ARIMA 

(1,2,1) 

Simple Exponential 

Smoothing α=.856 

MAPE(%) 42.935 43.981 41.088 42.934 

6.1.1.1.2 Forecasting using the proposed model 

Table 6.2 the result of the forecasting SES model for the years (2017-2020) for 

Khartoum yearly cases 

Model 2017 2018 2019 2020 

Khartoum-Model_1 Forecast 4162 4162 4162 4162 

UCL 16625 20564 23725 26442 

LCL -8301 -12240 -15402 -18119 

6.1.1.2 Al-Gadarif 

6.1.1.2.1 Comparison of the predictability of the two models 

Table 6.3 the result of the comparison between the ARIMA (0,2,0) and Brown 

Exponential smoothing for Al-Gadaref yearly cases 

 ARIMA (0,2,0) Exponential Smoothing 

α=0.875 

MAPE 15..11 16.400 

6.1.1.2.2 Forecasting using the proposed model 

Table 6.4 the result of the forecasting using BES for the years (2017-2020) for Al-

Gadaref yearly cases 

Model 2017 2018 2019 2020 

Al_Gadaref-Model_1 Forecast 8561.04 10203.60 11846.17 13488.73 

UCL 12076.72 17292.00 23184.27 29668.88 

LCL 5045.35 3115.20 508.06 -2691.42 
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6.1.1.3 Sennar 

6.1.1.3.1 Comparison of the predictability of the four models 

Table 6.5 the result of the comparison between the four models for Sennar yearly 

cases 

Model ARIMA 

(1,1,0) 

ARIMA 

(0,1,1) 

ARIMA 

(1,1,1) 

Holt Exponential 

Smoothing α=.856 

MAPE(%) 30.688 26.097 27.035 22.684 

6.1.1.3.2 Forecasting using the proposed model 

Table 6.6 the result of the forecasting using ARIMA (0,1,1) model for the years 

(2017-2020) for Sennar yearly cases 

Model 2017 2018 2019 2020 

Sennar-Model_1 Forecast 21921.51 22812.23 23739.14 24703.71 

UCL 38653.26 40612.47 42662.48 44807.56 

LCL 11429.79 11743.78 12068.80 12405.15 

6.1.1.4 Display the yearly forecasting results using ArcMap 

 

Figure 6.1 The yearly (1996-2016) forecasting results using ArcMap 
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6.1.2 Seasonal Model - Monthly 

6.1.2.1 Khartoum 

6.1.2.1.1 Comparison of the predictability of the four models 

Table 6.7 the result of the comparison between the four models for Khartoum 

monthly cases 

Model 

ARIMA 

(1,1,0)(0,1,0) 

ARIMA 

(0,1,1)(0,1,0) 

ARIMA 

(0,1,1)(0,1,0) 

Winters’ 

Multiplicative 

 MAPE % 26.462 27.194 26.687 15.082 

6.1.2.1.2 Forecasting using the proposed model 

Table 6.8 the result of the forecasting winters' Multiplicative model for the years 

(2015-2018) models for Khartoum monthly cases 

Model Aug 2018 Sep 2018 Oct 2018 Nov 2018 Dec 2018 

Khartoum-

Model_1 

Forecast 960.67 1188.29 987.00 1090.09 1367.49 

UCL 1426.84 1667.93 1479.64 1624.79 2012.81 

LCL 494.50 708.64 494.37 555.39 722.17 

6.1.2.2 Al-Gadaref 

6.1.2.2.1 Comparison of the predictability of the four models 

Table 6.9 the result of the comparison between the four models for Al-Gadaref 

monthly cases 

Model ARIMA 

(1,1,0)(0,1,0) 

ARIMA 

(0,1,1)(0,1,0) 

ARIMA 

(1,1,1)(0,1,0) 

SSES 

MPAE % 32.627 27.952 27.985 14.473 

6.1.2.2.2 Forecasting using the proposed model 

Table 6.10 the result of the forecasting Simple Exponential Smoothing model for 

the years (2015-2018) models for Al-Gadaref monthly cases 

Model Aug 2018 Sep 2018 Oct 2018 Nov 2018 Dec 2018 

Al_Gadaref-

Model_1 
Forecast 1563.21 2221.86 2366.20 2387.73 2393.88 

UCL 2826.15 4099.05 4450.85 4575.86 4670.81 

LCL 783.95 1083.83 1123.66 1104.66 1079.71 
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6.1.2.3 Sennar 

6.1.2.3.1 Comparison of the predictability of the four models 

Table 6.11 the result of the comparison between the four models for Sennar 

monthly cases 

Model ARIMA 

(1,1,0)(0,1,0) 

ARIMA 

(0,1,1)(0,1,0) 

ARIMA 

(1,1,1)(0,1,0) 

SSES 

MPAE % 36.637 33.090 33.139 20.233 

6.1.2.3.2 Forecasting using the proposed model 

Table 6.12 the result of the forecasting ARIMA (1,1,0)(0,1,0)  model for the years 

(2015-2018) models for Sennar monthly cases 

Model Aug 2018 Sep 2018 Oct 2018 Nov 2018 Dec 2018 

Sennar-

Model_1 
Forecast 180.48 212.27 173.67 168.68 205.27 

UCL 377.70 469.85 445.91 464.02 615.83 

LCL 73.53 79.45 51.15 44.07 45.73 

6.1.2.4 Display the monthly forecasting results using ArcMap 

 

Figure 6.2 The Monthly (2015-2018) forecasting results using ArcMap 
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6.2 Discussion 

In this study the ARIMA and Exponential models were applied for three states 

(Khartoum, Al-Gadaref and Sennar). 

6.2.1 Non-Seasonal Model- Yearly 

6.2.1.1 Khartoum 

In Khartoum state in the estimating step the p value of the AR coefficient of the 

first model ARIMA (1,2,0) and the p value of the alpha of the fourth model SES is 

less than 5% which indicates that the correlations are significantly different from 

zero. But the p value of the MA coefficient of the second model ARIMA (0,2,1) 

and the p value of the ARIMA coefficients of the third model ARIMA (1,2,1) is 

more than 5% which indicates that the correlations aren’t significantly different 

from zero. Therefore, the diagnosis step didn’t apply to the last two models. And in 

the diagnosis step the p value of the AR coefficient of the first model ARIMA 

(1,2,0) and the p value of the alpha of the fourth model SES is more than 5% which 

indicates that there is no self-correlation between the errors. 

The comparison of the predictability of the first and the fourth models showed that 

the SES is best model between the four models with very small different from 

ARIMA (1,2,0) to present and forecast Khartoum State yearly Malaria cases. 

 

6.2.1.2 Al-Gadaref 

In Al-Gadaref state since the values of AR and MA were zero that is mean  the p 

values of the AR and MA coefficients had no effect in the estimating step.  While 

the p value of the alpha of the fourth model Brown Exponential Smoothing (BES) 

is less than 5% which indicates that the correlation is significantly different from 

zero. Whilst in the diagnosis step the p value of the AR coefficient of the model 

ARIMA (0,2,0) and the p value of the alpha of the fourth model BES is more than 

5% which indicates that there is no self-correlation between the errors. 

The comparison of the predictability of the ARIMA (0,2,0) and the BES models 

showed that the BES is best model between the four models to present and forecast 

Khartoum State yearly Malaria cases. 
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6.2.1.3 Sennar 

In Sennar state in the estimating step the p value of the AR coefficient of the first 

model ARIMA (1,1,0) and the p value of the MA coefficient of the second model 

ARIMA (0,1,1) is less than 5% which indicates that the correlations are 

significantly different from zero. But the p value of the ARIMA coefficients of the 

third model ARIMA (1,1,1) and the p value of the alpha of the fourth model Holt 

Exponential Smoothing (HES) is more than 5% which indicates that the 

correlations aren’t significantly different from zero. Therefore, the diagnosis step 

didn’t apply to the last two models. And in the diagnosis step the p value of the AR 

coefficient of the first model ARIMA (1,1,0) and the p value of the second model 

ARIMA (0,1,1) is more than 5% which indicates that there is no self-correlation 

between the errors. 

The comparison of the predictability of the first and the second models showed that 

the ARIMA (0,1,1) is best model between the four models to present and forecast 

Khartoum State yearly Malaria cases. 

 

6.2.2 Seasonal Model – Monthly 

6.2.2.1 Khartoum 

In Khartoum state in the estimating step the p value of the AR coefficient of the 

first model ARIMA (1,1,0)(0,1,0), the p value of the second model ARIMA 

(0,1,1)(0,1,0) and the p value of the winters’ multiplicative coefficients of the 

fourth model  are less than 5% which indicates that the correlations are 

significantly different from zero. But the p value of the third model ARIMA 

(1,1,1)(0,1,0) is more than 5% which indicates that the correlations isn’t 

significantly different from zero. Therefore, the diagnosis step didn’t apply to the 

last model. And in the diagnosis step the p value of the AR coefficient of the first 

model ARIMA (1,1,0)(0,1,0) is more than 5% which indicates that there is no self-

correlation between the errors. While the p value of the second model ARIMA 

(0,1,1)(0,1,0) and the p values of the fourth model winters’ multiplicative is less 

than 5% which indicates that there is self-correlation between the errors. 



88 
 

The comparison of the predictability of the four models showed that the ARIMA 

(1,1,0)(0,1,0) is best model between the models to present and forecast Khartoum 

State monthly Malaria cases. 

6.2.2.2 Al-Gadaref 

In Al-Gadaref state in the estimating step the p value of the AR coefficient of the 

first model ARIMA (1,1,0)(0,1,0) and the p value of the MA coefficient of the 

second model ARIMA (0,1,1)(0,1,0) is less than 5% which indicates that the 

correlations are significantly different from zero. But and the p value of the 

ARIMA coefficients of the third model ARIMA (1,1,1)(0,1,0) and the p values of 

the fourth model SSES is more than 5% which indicates that the correlations aren’t 

significantly different from zero. Therefore, the diagnosis step didn’t apply to the 

last two models. And in the diagnosis step the p value of the AR coefficient of the 

first model ARIMA (1,1,0)(0,1,0) and the p value of the of the second model 

ARIMA (0,1,1)(0,1,0) is more than 5% which indicates that there is no self-

correlation between the errors. 

The comparison of the predictability of the first and the second models showed that 

the ARIMA (0,1,1)(0,1,0)  is best model between the four models to present and 

forecast Al-Gadaref State monthly Malaria cases. 

6.2.2.3 Sennar 

In Sennar state in the estimating step the p value of the AR coefficient of the first 

model ARIMA (1,1,0)(0,1,0) is less than 5% which indicates that the correlations 

are significantly different from zero. But the p value of the MA coefficients of the 

second model ARIMA (0,1,1)(0,1,0), the p value of the ARIMA coefficient of the 

third model ARIMA (1,1,1)(0,1,0) and the p value of the fourth model SSES is 

more than 5% which indicates that the correlations aren’t significantly different 

from zero. Therefore, the diagnosis step didn’t apply to the last three models. And 

in the diagnosis step the p value of the AR coefficient of the first model ARIMA 

(1,1,0)(0,1,0)  is more than 5% which indicates that there is no self-correlation 

between the errors. 

The comparison of the predictability of the four models showed that the ARIMA 

(1,1,0)(0,1,0) is best model between the models to present and forecast Sennar 

State monthly Malaria cases. 
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7.1 Conclusion 

Time series is anything which is observed sequentially over the time at regular 

interval like hourly, daily, weekly, monthly, quarterly etc. Time series data is 

important when you are predicting something which is changing over the time 

using past data. In time series analysis the goal is to estimate the future value using 

the behaviors in the past data. 

Using time series found that the simple models (AR and MA) represented the data 

better in Khartoum, Al-Gadaref and Sennar states in the seasonal data and Sennar 

in the non-seasonal data. While the Exponential Smoothing and Mixed model 

(ARIMA) are better in representing Khartoum and Al-Gadaref non-seasonal data. 

Which prove that; not all data can be representing using the same forecasting 

model. 

7.2 Recommendation 

1. Expand the study by increasing the number of the states used in the study. 

2. Increase the number of the yearly data. 

3. Adding other variables like temperature, humidity or rainwater level, in 

order to produce more accurate results. 

4. Establish a program to enter the data online from the all states of Sudan with 

the inclusion of predication equations to predict data directly, either monthly 

or annually. 
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