Characterization of Flavonoids
From Combretum aculeatum Root, Dichrostachys cinera Leaves and Antimicrobial Activity of Combretum aculeatum

A Thesis Submitted in Fulfillment of the Requirements of the Ph.D. Degree in Chemistry

By:
Hunaida Eltayeb Ahmed Mohamed
(B.Sc. in chemistry, M.Sc. in Chemistry)

Supervisor:
Prof: Mohamed Abdel Karim Mohamed

July, 2019
الآستهلال

بِسْمِ اللّهِ الرَّحْمَنِ الرَّحِيمِ

فَلْيَنظُرِ الإنسانُ إلى طَعَامِهِ (٢٤) أَنَا صَبَبْتُها أَلْمَاءً صَبًّا (٢٥) ثُمَّ شَقَّقْنَا الأَرْضَ شَقًّا (٢٤) فَأَنبَتْنَا فِيهَا حَبًّا (٢٤) وَعِنَبًا وَقَضْبًا (٢٤) وَزِيَّتُونَا وَنَحْلاً (٢٨) وَحَدَائِقَ غَلِبًا (٣٠) وَفَاكِهَةً وَأَبًًا (٣٠) مَّتَاعًا لَّكُمْ (٤٠) وَلَأَنْعَامٍ مُّكَّمِنْ (٣٢) سورة عبس
DEDICATION

Dedicated to:

My loving parents, Malak and Eltayeb

my husband, Haythem

my father in-law Hassona

my sons, wael, Mohanned, Hala and Hadeel
Acknowledgement

First and foremost, I must acknowledge my limitless thanks to Allah, the Ever-Magnificent; the Ever-Thankful, for His helps and bless.

I am grateful to some people, who worked hard with me from the beginning till the completion of the present research particularly my supervisor Dr. Mohamed Abdel Karim, who has been always generous during all phases of the research, and I highly appreciate the efforts expended by my co-supervisor, Dr. Amira Abdel Aziz.

I owe a deep debt of gratitude to the Sudan University of Science and Technology for giving us an opportunity to accomplish this work.

I would like to take this opportunity to say warm thanks to all my beloved friends, who have been so supportive along the way of doing my thesis.

I also would like to express my whole hearted thanks to my family, specially my father and my husband for their generous support. They provided me throughout my entire life and particularly through the process of pursuing the PhD degree.
Abstract

The flavonoids of two key species in Sudanese ethnomedicine have been investigated and three compounds (I-III) have been isolated.

Compound I was isolated from Combretum aculatum roots via paper chromatography, while compounds II and III were isolated from the leaves of Dichrostachys cinerea. The structures of these flavonoids have been partially characterized by their spectral data (UV and 1HNMR).

\[\text{Compound I} \]

\[\text{Compound II} \]

\[\text{Compound III} \]
The methanolic extract of *Combretum aculeatum* was assessed for its antimicrobial activity. It showed significant activity against *Escherichia coli* and *Pseudomonas aeruginosa*. It also showed moderate activity against *Bacillus subtilis* and *Staphylococcus aureus*. The extract also exhibited significant antifungal activity against the fungi: *Candida albicans* and *Aspergillus niger* (Table 1).
المستخلص

درس الفلافونويدات لأثنان من النباتات المستخدمة في الطب الشعبي السوداني هما نبات الشحيط والكداد، حيث تم فصل ثلاثة مركبات. تم فصل المركب I من جذور نبات الشحيط، أما المركبان II,III فقد فصلا من نبات الكداد. وقد اقترحت تراكيب مبدئية لهذه المركبات بناءً على البيانات الطيفية (طيف الاشعة فوق البنفسجية وطيف الرنين النووي المغنتيسي).

في اختبار مضاد الميكروبات أعطى المستخلص الميثانولي للنبات الشحيط فعالية عالية ضد Escherichia coli and Pseudomonas aeruginosa كما وابدى هذا المستخلص فعالية معتدلة ضد Bacillus subtilis and Staphylococcus aureus. Candida albicans and Aspergillus niger:
Table of contents

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>الادية</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>Dedication</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>Abstract (Arabic)</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>List of figures</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>List of tables</td>
<td>xi</td>
<td></td>
</tr>
</tbody>
</table>

Chapter One : Introduction

1 Introduction 1
1.1 General overview 1
1.2 Biosynthesis of flavonoids 13
1.3 Role of flavonoids in plant 16
1.4 The Medicinal uses of flavonoids 18
1.4.1 Anti-cancer activity 18
1.4.2 Anti-microbial activity 19
1.4.3 Anti-inflammatory activity 19
1.4.4 Antiviral activity 20
1.4.5 Anti-oxidant activity 20
1.4.6 Anti-diabetes mellitus agents 21
1.4.7 Hepatoprotective agents 21
1.4.8 Other biological activities 21
1.5 Flavonoids from some Sudanese medicinal plants 22
1.6 *Dichrostachys cinerea* 29
1.7 *Combretum aculeatum* 32
1.7.1 Distribution and habitat 32
1.7.2 Uses 33
1.7.3 Medicinal uses 33
1.7.4 Botanical description 34
<table>
<thead>
<tr>
<th>Chapter Two : Materials and Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Materials and Methods</td>
</tr>
<tr>
<td>2.1 Materials</td>
</tr>
<tr>
<td>2.1.1 Plant Material</td>
</tr>
<tr>
<td>2.1.2 Equipment’s</td>
</tr>
<tr>
<td>2.2 Methods</td>
</tr>
<tr>
<td>2.2.1 Flavonoid and phenolic test reagents</td>
</tr>
<tr>
<td>2.2.2 Test for flavonoids</td>
</tr>
<tr>
<td>2.2.3 Isolation of flavonoids from Combretum aculeatum</td>
</tr>
<tr>
<td>2.2.4 Extraction and isolation of flavonoids from Dichrostachys cinerea</td>
</tr>
<tr>
<td>2.2.5 Stepwise procedure for use of shift reagents for UV</td>
</tr>
<tr>
<td>2.2.6 Preparation of plant extract for phytochemical screening</td>
</tr>
<tr>
<td>2.2.7 Antimicrobial assay</td>
</tr>
<tr>
<td>2.2.7.1 Preparation of bacterial suspensions</td>
</tr>
<tr>
<td>2.2.7.2 Preparation of fungal suspensions</td>
</tr>
<tr>
<td>2.2.7.3 Testing for antibacterial activity</td>
</tr>
<tr>
<td>2.2.7.4 Testing for antifungal activity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Three : Results and discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Results and Discussion</td>
</tr>
<tr>
<td>3.1 Combretum aculeatum</td>
</tr>
<tr>
<td>3.1.1 Characterization of compound I</td>
</tr>
<tr>
<td>3.1.2 Antimicrobial assay of Combretum aculeatum</td>
</tr>
<tr>
<td>3.2 Dichrostachys cinerea</td>
</tr>
<tr>
<td>3.2.1 Identification of compound II</td>
</tr>
<tr>
<td>3.2.2 Identification of compound III</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
</table>
List of figures

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The most common anthocyanidins</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Biosynthesis of flavonoids</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>UV spectrum of compound I</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Sodium methoxide spectrum of compound I</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>Sodium acetate spectrum of compound I</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Aluminium chloride spectrum of compound I</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>Boric acid spectrum of compound I</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>1HNMR spectrum of compound I</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>UV spectrum of compound II</td>
<td>53</td>
</tr>
<tr>
<td>10</td>
<td>Sodium methoxide spectrum of compound II</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>Aluminium chloride spectrum of compound II</td>
<td>54</td>
</tr>
<tr>
<td>12</td>
<td>AlCl3 /HCl spectrum of compound II</td>
<td>54</td>
</tr>
<tr>
<td>13</td>
<td>Boric acid spectrum of compound II</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>1HNMR spectrum of compound II</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>UV spectrum of compound III</td>
<td>57</td>
</tr>
<tr>
<td>16</td>
<td>Sodium methoxide spectrum of compound III</td>
<td>57</td>
</tr>
<tr>
<td>17</td>
<td>Sodium acetate spectrum of compound III</td>
<td>57</td>
</tr>
<tr>
<td>18</td>
<td>Aluminium chloride spectrum of compound III</td>
<td>58</td>
</tr>
<tr>
<td>19</td>
<td>Aluminium chloride / HCl spectrum of compound III</td>
<td>58</td>
</tr>
<tr>
<td>20</td>
<td>Boric acid spectrum of compound III</td>
<td>58</td>
</tr>
<tr>
<td>21</td>
<td>Methanol/sodium methoxide spectrum</td>
<td>59</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>22</td>
<td>Sodium acetate / boric acid in sodium acetate spectra</td>
<td>59</td>
</tr>
<tr>
<td>23</td>
<td>Aluminium chloride / Aluminium chloride / HCl spectra</td>
<td>59</td>
</tr>
<tr>
<td>24</td>
<td>1HNMR spectrum of compound III</td>
<td>60</td>
</tr>
</tbody>
</table>
List of tables

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inhibition zones for methanol extract</td>
<td>52</td>
</tr>
</tbody>
</table>
Chapter One

Introduction
1. Introduction

1-1: General overview
Flavonoids are a group of naturally occurring polyphenolic compounds ubiquitously found in the plant kingdom1,2,3,4,5,6 and prokaryotes7,8. Thus far, approximately 9000 different flavonoids have been identified and they form the largest group of naturally occurring polyphenols9. This list is constantly growing owing to the enormous structural diversity associated with these compounds.

The original "flavonoid" research apparently began in 1936, when Hungarian scientist Albert Szent-Gyorgi was uncovering a synergy between pure vitamin C and as yet unidentified cofactors from the peels of lemons, which he first called "citrine," and, later, "vitamin P"10.

Flavonoids are low molecular weight11,12 bioactive polyphenols13 which play a vital role in photosynthesizing cells3. The biosynthesis of flavonoids occurs in higher plants through the shikimic acid and malonic acid pathways14,15,16. Flavonoids are found in vegetables, fruits, nuts, grains, seeds, flowers,17 bark, roots, stems, leaves7,18, black tea19, green tea20, herbs, spices, cocoa21,22 and soybean23,24,25. These are an integral part of our daily diet26,27,28.
Flavonoids are secondary metabolites29,30 characterized by flavan nucleus12 and C\textsubscript{6}-C\textsubscript{3}-C\textsubscript{6} carbon-skeleton31,32. These are group of structurally related compounds with a chromane-type skeleton having phenyl substituent in C\textsubscript{2}-, C\textsubscript{3}- or C\textsubscript{4}-position33. The basic structural feature of flavonoid is 2-phenyl-benzo-\(\gamma\)-pyrane nucleus consisting of two benzene rings (A and B) linked through a heterocyclic pyran ring (C) as shown below3,34,35.

![Flavonoid Structure](image)

Flavonoids are polyphenolic compounds comprising fifteen carbons, with two aromatic rings connected by a three-carbon bridge1. They are differing in their arrangement of hydroxyl, methoxy and glycosidic side groups and in the conjunction between A and B rings12.

Flavonoids have been divided into several sub-classes based on their C-ring structure 36,37,38. According to their molecular structure, they are divided into eight classes; flavones (1), flavonols (2), flavanones (3), dihydroflavonols (4), chalcones (5), anthocyanidins (6), isoflavones (7) and catechins (8)32:
Flavones (1) have a very close structural relationship to flavonols. Although flavones, such as luteolin (3',4',5, 7-tetrahydroxyflavone)(9) and apigenin (4',5,7-trihydroxyflavone) (10), have A- and C-ring substitutions, they lack oxygenation at C₃. A wide range of substitutions is also possible with flavones, including hydroxylation, methylation, O- and C-alkylation, and glycosylation. Most flavones occur as 7-O-glycosides. Unlike flavonols, flavones are not distributed widely with significant occurrences being reported in only celery, parsley and some herbs. In addition, poly methoxylated flavones, such as tangeretin (4',5,6,7, 8- penta methoxy flavone) (11), have been found in citrus species. The animal research shows the potential of tangeretin as a cholesterol lowering agent. A hamster study showed potential protective effects against Parkinson's disease. Flavones in millet have been associated with goiter in West Africa.

Flavones and their 3-hydroxy derivatives flavonols, including their glycosides, methoxides and other acylated products on all three rings, make this the largest subgroup among all polyphenols.
Flavonols (2) are arguably the most widespread of the flavonoids, being dispersed throughout the plant kingdom with the exception of fungi and algae. The distribution and structural variations of flavonols are extensive and have been well documented. Flavonols such as myricetin (12), quercetin (13),
isorhamnetin (14) and kaempferol (15) are most commonly found as O-glycosides. Conjugation occurs most frequently at the 3 position of the C-ring but substitutions can occur at the 5,7,4, 3 and 5 positions of the carbon ring. Although the number of aglycones is limited there are numerous flavonol conjugates with more than 200 different sugar conjugates of kaempferol alone41. There is information on the levels of flavonols found in commonly consumed fruits, vegetables and beverages42,43.

![Chemical structures of isorhamnetin and kaempferol](image-url)
Another class of flavonoids – the flavanones – are based upon structure (3) – 2-phenyl-benzopyran-4-one – which is the flavanone itself. They are interesting compounds, since they are obligate intermediates in flavonoid biosynthesis. They are dietary components that are present in especially high concentrations in citrus fruits.44,45

The naturally occurring flavanones will be treated according to their B-ring hydroxylation pattern, e.g. naringenin (16) and hesperetin (17). Hesperetin is a bioflavonoid and, to be more specific, a flavanone. Hesperidin (a flavanone glycoside) is water-soluble due to the presence of the sugar part in its structure, so on ingestion it releases its aglycone, i.e, hesperetin. This flavonoid is found in Citrus fruits.

Naringenin is a flavanone, a type of flavonoid, that is considered to have a bioactive effect on human health as antioxidant, anti-inflammatory, carbohydrate metabolism promoter, and immune system modulator. It is the predominant flavanone in grapefruit.46 The sources of naringenin are; grapefruit, oranges, and tomato. Grapefruit juice can provide much higher plasma concentrations of naringenin than orange juice47, and can be absorbed from cooked tomato paste48.
The dihydroflavonols, another class of flavonoids, are constructed upon the same fundamental ring system (4) as the flavonones and are 2-phenyl-3-hydroxy-benzopyran-4-ones. The numbering system is the same as that for the flavonones. 7-Hydroxydihydroflavonol is the simplest known naturally occurring member of the series. Dihydroflavonols having one B-ring hydroxyl, dihydrokaempferol (18). Aromadendrin occurs as the free phenol in a wide variety of plants. Dihydroflavonols having two B-ring hydroxyls e.g. fustin (19) which possesses stereoisomers: (-)-Fustin and (+)-Fustin.
Chalcone (5) belong to the flavonoids. They are aromatic ketone that forms the central core for a variety of important biological compounds, which are known collectively as chalcones. They show antibacterial, antifungal and anti-inflammatory properties. Some chalcones demonstrated the ability to block voltage-dependent potassium channels. The open-ring chalcones are found in fruits such as apples and hops or beers. An example of chalcones having three B-ring hydroxyls is robtein (20) – 2’, 4’,3,4, 5- penta hydroxychalcone known from the heartwood of Acacia.

![Chemical Structure of Robtein](image)

The anthocyanidins (6) constitute an important class of flavonoids. About 90% of anthocyanins are based on the structure of cyanidin, delphinidin and pelargonidin and their methylated derivatives (Fig.1). A total of more than 500 anthocyanins are known depending on the hydroxylation,
methoxylolation patterns on the B ring, and glycosylation with different sugar units53,54.

Anthocyanidins, principally as their conjugated derivatives, anthocyanins, are widely dispersed throughout the plant kingdom, being particularly evident in fruit and flower tissue where they are responsible for red, blue and purple colours. In addition they are also found in leaves, stems, seeds and root tissue. They are involved in the protection of plants against excessive light by shading leaf mesophyll cells and also have an important role to play in attracting pollinating insects.

![Anthocyanidin Structure](image)

<table>
<thead>
<tr>
<th>Anthocyanidin</th>
<th>(R_1)</th>
<th>(R_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanidin</td>
<td>-OH</td>
<td>-H</td>
</tr>
<tr>
<td>Delphinidin</td>
<td>-OH</td>
<td>-OH</td>
</tr>
<tr>
<td>Pelargonidin</td>
<td>-H</td>
<td>-H</td>
</tr>
<tr>
<td>Malvidin</td>
<td>-OCH(_3)</td>
<td>-OCH(_3)</td>
</tr>
<tr>
<td>Peonidin</td>
<td>-OCH(_3)</td>
<td>-H</td>
</tr>
</tbody>
</table>

Fig. 1: The most common anthocyanidins

Another category of flavonoids is known as Isoflavones (7) having their B ring attached to the C\(_3\) position of ring C. They are mostly found in the leguminous family of plants55. Since beans, particularly soybean, are a major part of the diet in many cultures, the role of isoflavones have, thus, great impact on human health.
Genistein and daidzein are the two main isoflavones found in soy along with glycetein, biochanin A and formononetin56,57. They are also found in red clovers58. Flavanols or flavan-3-ols-an important class of flavonoids- is often commonly called catechins. Different from most flavonoids, there is no double bond between C\textsubscript{2} and C\textsubscript{3}, and no C\textsubscript{4} carbonyl in ring C of flavanols. This and the hydroxylation at C\textsubscript{3} allows flavanols to have two chiral centers on the molecule (on C\textsubscript{2} and C\textsubscript{3}), thus four possible diastereoisomers exist. Catechin is the isomer with \textit{trans} configuration and epicatechin is the one with \textit{cis} configuration. Each of these two configurations has two steroisomers, i.e., (+)-catechin, (−)-catechin, (+)-epicatechin and (−)-epicatechin. (+)-catechin and (−)-epicatechin are the two isomers often found in food plants. Flavanols are found in many fruits, particularly in the skins of grapes, apple and blueberries51. Monomeric flavanols (catechin and epicatechin) and their derivatives (e.g., gallocatechins) are the major flavonoids in tea leaves and cacao bean (chocolate)59,60. Neoflavonoids are a class of polyphenolic compounds. They are not often found in food plants, but dalbergin (21) is the most common and relatively widely distributed neoflavone in the plant kingdom61.
1-2: Biosynthesis of flavonoids

The B-ring and part of the heterocyclic ring of the flavonoid skeleton are provided by a suitable hydroxy-cinnamic acid-CoA ester, usually 4-coumaroyl-CoA, whereas the A-ring originates from three acetate units via malonyl-CoA (Fig. 2). Both precursors are derived from carbohydrates. Malonyl-CoA is formed from acetyl-CoA and CO₂ catalyzed by acetyl CoA carboxylase. 4-Coumaroyl-CoA and related hydroxy cinnamic acid esters are supplied by the first steps of the general phenylpropanoid pathway. This pathway starts from the aromatic amino acid phenylalanine, which is synthesized via the shikimate arogenate pathway. The key reaction is the deamination of phenylalanine catalyzed by phenylalanine ammonialyase (PAL). This enzyme links the primary metabolism with the phenylpropanoid pathway. The product of the reaction, trans- cinnamate, is hydroxylated to 4-coumarate by cinnamate 4-hydroxylase, a cytochrome P450 mixed-
function mono oxygenase. Activation of 4-coumarate by formation of the CoA ester is catalyzed by 4-coumarate-CoA ligase. 4-Coumaroyl-CoA can be hydroxylated in position 3 to caffeoyl- CoA, which may serve as a substrate for chalcone formation besides 4-coumaroyl-CoA in some plant species. Three different enzyme activities have been demonstrated for caffeoyl- CoA formation from 4-coumaroyl-CoA.

The key enzyme for the formation of the flavonoid skeleton is chalcone synthase (CHS), which catalyses the stepwise condensation of three acetate units from malonyl- CoA with 4-coumaroyl-CoA to the fifteen carbon intermediate 2´,4´,6´,4-tetrahydroxychalcone (Fig. 2). The respective 6´-deoxychalcone, isoliquiritigenin, is likewise synthesized from malonyl- CoA and 4-coumaroyl-CoA by chalcone synthase but in coaction with a reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase. Both chalcone types may be the direct precursors for aurones and other diphenyl propanoids. The enzymes involved in these reactions are still unknown. But, in particular, the 6´-hydroxy- and 6´deoxychalcones are the immediate precursors for all flavonoid compounds. The stereo specific cyclization of the chalcone, catalyzed by chalcone isomerase, provides 25-flavanones with the typical flavonoid skeleton (Fig 2). Two types of chalcone isomerases are known: one catalyzing cyclization of 6´-hydroxy-chalcone to 5-hydroxy flavanone and another isomerizing both 6´-hydroxy- and 6´-
deoxychalcone to 5-hydroxy-and 5-deoxyflavan-one, respectively.

Flavanones are the direct precursors for other natural products, such as the large class of flavones, isoflavones that are involved in phytoalexin synthesis, and the two flavonoid intermediates, the flavan-4-ols and the dihydroflavonols. Flavones are synthesized from flavanones by introduction of a double bond between C-2 and C-3. Two types of enzymes, flavone synthase I, (a 2-oxoglutarate-dependent dioxygenase), and flavone synthase II, (a cytochrome P450 mixed-function monoxygenase), were found to catalyze this reaction. Formation of isoflavones from flavanones is catalyzed by 2-hydroxy-isoflavanone synthase, another cytochrome P450 mixed-function mono oxygenase, coating with a dehydrates protein. The enzyme accepts both 5-hydroxy- and 5-deoxyflavanones as substrates. The reaction involves an oxidative rearrangement of the flavanone, including a shift of the aryl ring from position 2 to 3.

The reduction of the carbonyl group of flavanones gives rise to flavan-4-ols. The reaction is catalyzed by flavanone-4-reductase and provides the immediate precursors for the formation of 3-deoxy-anthocyanins (Fig. 2).
Finally, flavanones can be hydroxylated in position 3 to dihydroflavonols, which are biosynthetic intermediates in the formation of flavonols, catechins, proanthocyanidins and anthocyanidins. This reaction is catalyzed by flavanone 3-hydroxylase, a 2-oxoglutarate-dependent dioxygenase. Dihydroflavonols are the direct substrates for most of the flavonols and flavan-3,4-diols, which are also known as leucoanthocyanidins62,63.

1-3: Role of flavonoids in plant

Flavonoids have long been reported as serving multiple functions in plants64. They are important for the survival of a
plant in its environment; they regulate plant growth, inhibit or kill many bacterial strains, inhibit major viral enzymes, destroy some pathogenic protozoans, stimulants for germination of spores and protect the plants from insects. Also, they act in plants as visual attractors, feeding repellents, photoreceptors. Flavonoids act as signal molecules, phytoalexins, detoxifying agents, pigmentation, stimulation of nitrogen-fixing nodules. They play significant activities in seed germination, act as UV filters. Flavonoids are also involved in temperature acclimation and in drought resistance and they act as allelochemical agents.

Anthocyanin pigment present in flowers provide colour to it contributing to pollination. Flavonoids present in leaves promote physiological survival of plant by protecting it from fungal infections. In addition, flavonoids are involved in photosensitisation, energy transfer, respiration and photosynthesis control, morphogenesis, sex determination, energy transfer.

Flavonoids protect plants against various biotic and abiotic stresses and exhibit a diverse spectrum of biological functions and play an important role in the interaction between the plant and their environment. Recent evidence of a nuclear location of flavonoids (as well as of enzymes of flavonoid biosynthesis) supports that flavonoids are capable of modulating the activity
of proteins involved in cell growth. Flavonoids may therefore act as transcriptional regulators.

1- 4: The Medicinal uses of flavonoids

Up to date, flavonoids have been found only in plants. Being not only colored pigments, but also enzyme inhibitors and stimulants, metal chelators and reducing agents. In addition, several papers including epidemiological studies and meta-analyses report on their beneficial effects on human health. Flavonoids possess a wide range of biological activities, medicinal and pharmacological effects. Their medicinal and pharmacological effects and their contributions to human health have made them prominent in the past 10 years. Many flavonoids are active principles of medicinal plants and exhibit pharmacological effects.

The most important medicinal properties of the flavonoids are briefly discussed below:

1- 4- 1: Anti-cancer activity

Recently, epidemiological studies have strongly suggested that consumption of plant flavonoids contributes to reducing the risk or incidence of some cancers, slow the division of tumor cells, can also be preventive agents against cancer, because they have ability to modulate enzyme activities resulting in decreased carcinogenicity of xenobiotics that are responsible for oxidative stress- induced
cancer111. Fruits and vegetables having flavonoids have been reported as cancer chemo preventive agents112,113. Flavonoids can slow or protect against certain kinds of cancerous processes114,115,116,117,118. Flavanols, flavonols and anthocyanins are relatively abundant in human diet and possibly are involved in prevention of cancers110,119,120,121,122. Flavonoids for a long time have been part of the herbal treatment by lay practitioners, but they were recognized only recently as effector substances. Examples of herbal preparations owing their growing recognition as effective anticancer drugs to flavonoids are propolis and Essiac66.

\textbf{1- 4- 2: Anti-microbial activity}

Flavonoids have been used extensively since centuries for the treatment of various diseases. Propolis has been referred even in old testament for its healing properties. The antimicrobial activity3 of propolis has been attributed to its high flavonoid content. Galangin is a flavonol commonly found in propolis. It has been reported to possess inhibitory actions against \textit{Aspergillus tamarii}, \textit{Aspergillus flavus}, \textit{Cladosporium sphaerospermum}, \textit{Pencillium digitatum}, \textit{Penicillium italicum}3.

\textbf{1- 4- 3: Anti-inflammatory activity}

Flavonoids are known to exhibit anti-inflammatory activity123,124,125,126,127. A number of flavonoids such as hesperidin, apigenin, luteolin, and quercetin are reported to possess anti-inflammatory and analgesic effects. Flavonoids
may affect specifically the function of enzyme systems critically involved in the generation of inflammatory processes, especially tyrosine and serine-threonine protein kinases128-132.

1- 4- 4: Antiviral activity

Naturally occurring flavonoids with antiviral activity133 have been recognized since the 1940s and many reports on the antiviral activity of various flavonoids are available134.

1- 4- 5: Anti-oxidant activity

The polyphenolic nature of flavonoids equates with ready oxidation and the formation of stable radicals and it is widely believed that flavonoids protect against free radical damage (caused by photolytically generated singlet oxygen and metabolic processes in living organisms)135. Also, more and more attention has been focused on the antioxidant activity of medicinal plants, fruits and vegetables that contain plentiful flavonoid compounds. However, the content of flavonoid compounds is influenced by many factors, including the genus, the place of the plant growth, the extraction conditions and technology136.

Flavonoids are known to inhibit lipid-peroxidation, platelet aggregation, capillary permeability and fragility, cyclooxygenase and lipoxygenase enzyme activities. They exert these effects as antioxidants2,3,12,85,108,135,137,138,139,140,141,142,143,144,145, free radical scavengers135,137,139,140,141,142,143,144,145,146, chelators of divalent cation26, 37,147.
1- 4- 6: Anti-diabetes mellitus agents
Diabetes mellitus is a serious chronic disease. Effective control of the blood glucose level is a key step in preventing or reversing diabetic complications and improving the quality of life in both types 1 and 2 diabetic patients. Flavonoids showed prospective benefits in the treatment and/or ease of symptoms of several serious illnesses such as diabetes.

1- 4- 7: Hepatoprotective agents
Flavonoid compounds, which are a large group of secondary metabolites in higher plants, are known to be responsible for hepatoprotective potential. Several flavonoids such as catechin, apigenin, quercetin, naringenin, rutin, and venoruton are reported for their hepatoprotective activities.

1- 4- 8: Other biological activities
Flavonoids have been reported to exert wide range of biological activities. These includes: antiallergic, cytotoxic antitumour, treatment of neurodegenerative diseases, vasodilatory action, antithrombotic, antimutagenic activities, reducing the risk of cardiovascular disease, stroke, reduced risk for certain chronic diseases, antiosteoporotic, and antihepatotoxic actions, reduced risk of coronary heart disease, premature aging and immunomodulator activities.
Flavonoids exhibit also beneficial effects on capillary fragility167 and an ability to inhibit human platelet aggregation163, antiulcer168,169 properties. In addition, reduce hypertension170,171, as well as protect and strengthen vascular walls172,173, asthma bronchiale66, gastro-intestinal ulcers168,174 due to their immunomodulatory, pain-killing, and smooth muscle relaxant effects3,66,135,155,175. Flavonoids also render valuable help in minor problems e.g. wounds, bites, burns, or common cold66,176. Their modulatory role in several biological processes has also been identified like detoxification of enzymes, apoptosis, host immune system and several others. Their potential to interfere with numerous cellular processes such as protection of genomic vitality suggest that flavonoids may used as dietary compounds for chronic degenerative diseases108.

Animal studies have declared that, flavonoids cause the inhibition of degranulation of mast cells, basophils and neutrophils. These could protect the rat brain from LPS (lipo poly saccharide) induced shock through attenuation of lipid peroxidation and nitric oxide generation177. Furthermore, they have shown improved biological actions upon combination with each other that indicates their potential to form synergisms178.

1- 5: Flavonoids from some Sudanese medicinal plants
Abdel Karim and Haga179 reported the isolation and structural elucidation of three flavonoids: (i) compound A from the leaves of \textit{Coriandrum sativum} (ii) compound B from the roots of \textit{Bauhinia}
rufescens and (iii) compound C from the stem bark of *Albizia amara*. Two of these compounds have also been tested for their antimicrobial inhibitory effect against some clinically isolated microbes (*Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Condida albicans*).

On the basis of its spectral data the following partial structure was proposed for compound A:

![Compound A](image)

The following partial structure was suggested for compound B:

![Compound B](image)

Compound C was assigned the following tentative structure:

![Compound C](image)
Two Flavones have been isolated180 from the seeds of \textit{Lepidium sativum} and the following partial structures have been proposed on the basis of some spectral data:

![Flavone Structure 1]

Another flavones was reported180 from \textit{Ammi visnaga} and the following tentative structure has been suggested:

![Flavone Structure 2]

The ethanol extract of \textit{Smilax regelii} was purified by thin layer chromatography where flavonoids - compound I - was isolated181 and partially characterized by spectral data (UV, 1HNMR).
From the ethanolic extract of *Acacia nilotica* var. *adstringens* a flavonoid has been isolated181 and characterized via some spectral data and it was assigned the following partial structure:

![Partial structure of a flavonoid from *Acacia nilotica* var. *adstringens*]

From *Acacia seiberiana* stems a dihydrochalcone has been isolated181 and its structure partially characterized:

![Partial structure of a dihydrochalcone from *Acacia seiberiana*]

A flavonoid has been isolated181 from the leaves of *Acacia tortilis* and it following structure was proposed:

![Partial structure of a flavonoid from *Acacia tortilis*]
Shaza reported182 the isolation of a flavonoid from the pods of \textit{Acacia nilotica} subsp. \textit{nilotica} and the following structure has been suggested on the basis of its spectral data:

From the leaves of \textit{Leptadenia pyrotechnica} a dihydrochalcone has been isolated182 and a partial structure has been proposed:

Another dihydrochalcone has been reported182 from the stems of \textit{Acacia polacantha} and the following tentative structure has been suggested:

Acetylated flavones have been isolated182 from \textit{Acacia polyacantha}. The following tentative structure was deduced on the basis of some spectral data:
A Methylated flavonol was isolated183 from the barks of \textit{Acacia nilotica} var. \textit{tomentoza} and it was assigned the following partial structure on the basis of some spectral data:

\[
\text{Indigofera oblongifolia} \] was screened for major secondary metabolites and then the flavonoids of this species were investigated. An acetylated flavonol was isolated183 by paper chromatography and its structure has been partially characterized:

A Methylated chalcone has been isolated183 from \textit{Acacia ehrenbergiana} growing in Sudan and following tentative structure was proposed:
Two flavonoids – compounds I and II were isolated from the leaves of *Cajanus cajan* by thin layer chromatography. Depending on their spectral data they were assigned the following tentative structures:

![Compound I](attachment:image1.png)

Compound I

![Compound II](attachment:image2.png)

Compound II

Phytochemical screening of the roots of *Acacia nilotica* revealed the presence of flavonoids, tannins, saponins and glycosides in both species. A silica gel column and thin layer chromatography eluted with methanol: chloroform allowed isolation of two
flavonoids (I, II). The structures of the isolated flavonoids were deduced on the basis of their spectral data (UV, NMR and MS).

1-6: *Dichrostachys cinerea*

Dichrostachys cinerea (L.) **Wight and Arn.** belongs to the family- Mimosaceae. It is leguminous shrub commonly known in Sudan as Kadad \(^\text{186}\).

Dichrostachys cinerea is more common at low altitudes where it grows in a wide variety of soils in wooded grasslands. *Dichrostachys cinerea* is a spiny Acacia-like tree-let, common in Africa, from the sub-Saharan part to the south \(^\text{187}\). It grows in disturbed areas and impoverished soils and is sometimes planted as a defensive thorny fence. In some places, it forms invasive and impenetrable thickets and represents a nuisance. The tree often forms secondary bush on impoverished ground. The bark is dark grey-brown, the stems often twisted and
seamed and the branches intertwined giving thick matted appearance. Dwarf lateral shoots are modified to form short compact spines. Leaves are often compound with 4-13 pairs of pinnae, each carrying up to 27 pairs of leaflets. Leaflets are narrowly obovate to lancelote, up to 10 x 3 mm, dark green, rather glossy above but dull below. Glands are conspicuous on the petiole and on the rachis. Flowers are in auxiliary spikes, all floral parts in fives, stamens, pink, sterile staminodes and the other half formed by yellow fertile flowers. The fruits are in the form of a cluster of pods, each up to 10 x 1 cm twisted, contorted and indehiscent. They fall from the tree rot on the ground. It is found in Sudan and the north, west, central, east and southern regions of Zimbabwe. Traditionally, the roots are chewed and placed on the sites of snake bites and scorpion stings. The leaves, which are believed to produce a local anesthetic effect, are used as a remedy for sore eyes and tooth ache. *Dichrostachys cinerea* is also used to treat influenza, cough, scabies, leprosy and oedema. *Dichrostachys cinerea* plant extracts have been examined and found to possess appreciable antibiotic activity. Earlier claims reported that the roots are bitter, astringent, acrid, anti-inflammatory, anodyne, lithnotriptic and diuretic. It is also reported that, roots are also used in urinary calculi and renal troubles, disease of vagina, uterus, and pain in joint. Tender shoots of the plant are bruised and applied to eyes in case of
ophthalmia. The antibacterial activity of leaves and fruits of plant were reported. Methanolic extract of root of *Dichrostachys cinerea* was investigated as a natural remedy for sexually transmitted diseases (STD).

Numerous uses have been found for *Dichrostachys cinerea* in traditional medicine. The roots are used as a diuretic, febrifuge, antivenom, and antirheumatic and against leprosy. The trunk bark is believed to be antivenom and antidysenteric and to be active against tooth decay and leprosy.

The leaves are used to treat eczema, abscesses, measles, and rheumatism. Fresh twigs with leaves are recommended to prevent miscarriage. The fruit is utilized for the prevention of otitis, umbilical hernia, and malaria in children. Despite all these interesting properties, chemical investigations on the plant are scant and mostly limited to tannins, with the noticeable exception of a very recent preliminary report on the antitumor activity of some still unidentified constituents.

Dichrostachys cinerea is endowed with free radical scavenging molecules, such as vitamins, terpenoids, phenolic acids, lignins, stilbenes, tannins, flavonoids, quinones, coumarins, alkaloids, amines, betalains, and other metabolites, which are rich in antioxidant activity. Studies have shown that many of these antioxidant compounds possess anti-inflammatory, anti-atherosclerotic, antitumor, antimutagenic,
anticarcinogeni, antibacterial, and antiviral activities200,201.

\textbf{1- 7: \textit{Combretum aculeatum}}

\textbf{Classification:}

\begin{itemize}
 \item Phylum Magnolioph
 \item Class Magnoliopside
 \item Order Matales
 \item Family Combretaceae
 \item Genus Combretum
\end{itemize}

Synonyms: \textit{Combretum leuconili} Schweinf., \textit{C. holstii}

Vernacular/common names: Bularal, laonadi, laongi, (Peulh), agersigil (Tamachek), kodentabga (Mooré), shihheit (Sudan), gedajedo, mardaf (Somali).

\textbf{1- 7- 1: Distribution and habitat}

\textit{Combretum aculeatum} is sub-Saharan dry zone species with a distribution range stretching across Africa from Senegal and Mauritania, to Somalia and Tanzania. It is widespread in dry areas, in bushland, woodland, savannah, and wooded grassland. It is often found along rivers, riverine forest and ground water forests, as well as on rocky slopes. It grows in bushland on fixed dunes, on sandy alluvium or in rocky places. It has a wide edaphic adaptation growing on alluvial soils and sandy, stony or clay soils. It can grow at altitudes of up to 1800 miles. It is reported to withstand flooding; however in the seasonally flooded areas of Sudan, it is restricted to termite mounds, which are generally above the flood level. Its distribution is irregular and is locally common. There is no recorded threat to \textit{C.}
aculeatum; however, the species is strongly browsed and regeneration suffers in heavily overgrazed areas202.

1- 7- 2: Uses

C. aculeatum is important source of nutrients for animals, which consume the leaves, flower and young shoots. Its appreciated for its nutritive value and also for its palatability to stall fed and browsing sheep. The green leaves and young branches are much sought after as browse by both wild and domestic animals, and even the fallen leaves are eaten. Seeds of *C. aculeatum* are edible and in some places used for consumption, they are also eaten by wild and domestic animals203.

1- 7- 3: Medicinal uses

The plant is used for its purgative and diuretic properties. It is used to treat blennorrhoea, colic, diarrhea, intestinal worms, wounds, fever, gastritis, and loss of appetite. Some more speculative traditional uses include treatment against female sterility and mental disorders. Water in which the leaves have been boiled is drunk in northwest Senegal to promote micturition in cases when venereal disease obstructs the urethra. It is also used in Burkina Faso and Senegal for leprosy. In Senegal, the Soce tribe claims that a root decoction has a well-established reputation in the treatment of catarrha; the Serer tribe uses sap from the center of the stem for eye troubles. The boiled roots are taken in Kenya for stomach upsets. Also the macerations of the roots of *C. aculeatum* are used to enhance
wounds healing and the water extract of its roots is used as a
purgative and as a poultice for skin tuberculosis in Sudan. 202-204.

1- 7- 4: Botanical description

Combretum aculeatum is a climbing shrub that subsists often on
its annual shoots after been eaten. It can grow up to 4 m, even
taller if support is available. The bark is fibrous grey-beige or
dark red, with brown rhytidome, greenish or pale yellow slash.
It often has long sarmentose branches. The leaves are alternate
to sub-opposite. They can vary in size on the same branch. The
blades can grow up to 7 cm long and 5 cm wide, but are usually
smaller. They are elliptic, obovate or orbicular with acute to
emarginated apex; both surfaces are pubescent. The nerves are
pinnate, more or less prominent, with 4-6 pairs of mostly fused
Lateral nerves. Petioles are 1-10 mm long, and persist after the
rest of the leaf has fallen, forming a recurved spine that is up to
30 mm long. Its hairy branches with curved thorns allow the
plant to hook onto surrounding trees and shrubs. The yellowish-
white fragrant flowers are bisexual, with greenish to dark red
sepals. The petals are 4-8 mm long by 1-2 mm wide,
oblanceolate to obovate to spatulate, and pubescent on the back.
The inflorescence is spike like, from the axils of the leaves. The
amenfilaments are longer than the petals. 204

Flowering occurs at the end of the dry season and during rainy
season. In Sudan flowering occurs from March to June and
fruits from July to November. A tree can bear flowers and ripe fruit simultaneously.
The pale yellow or pale reddish fruit is an ovoid samara. It is 5-winged, 1-2 by 1-3 cm, and with a stalk 0.6-1 cm long. The papery, yellow-brown wings are 0.4-0.6 cm wide202.

\textit{Combretum aculeatum}

Preliminary phytochemical screening of \textit{Combretum aculeatum} leaves revealed that it is rich of tannins, unsaturated sterols and or triterpenes and flavonoids. Also there is presence of coumarins in low concentration and trace of alkaloids205.
Extracts of leave and root show anti-cercarial activity against cercariae of *Schistosoma mansonia*205. Extracts of *C. aculeatum* showed anti-microbial activity against Gram-positive bacteria (*Bacillus subtilis* and *staphylococcus aureus*) and Gram negative bacteria (*Escherichia coli*, *Pseudomonas aeruginosa* and *Proteus vulgaris*)206.

In Sudan, the genus *Combretum* represents a common constituent of forests on high drained rainfall savanna on wells or alluvial soils along streams, rivers and valleys in south Kassala, Kordofan and south Darfur207.

Phytochemical studies carried out in the genus *Combretum* have demonstrated the occurrence of many classes of constituents, including triterpenes, flavonoids, lignans and amino acids. Also phenanthrene, dihydrophenanthrene, methoxylated flavonoids, stibenes were reported from the different species208.

About 24 different species of *Combretum* are well known in traditional medicine and used for treatment of an array of human disorders, such as abdominal pain, back-pain, cough, cold, conjunctivitis, diarrhea, dysmenorrhea, earache, fever, headache, fighting worms, infertility in women, fattening babies, leprosy, eumonia, swelling caused by mumps, scorpion stings and snake bites209-211.

Since the 1970s, several unusual compounds have also been isolated from *Combretum* species, for example, 9, 10-dihydrophenanthrenes and a substituted bibenzyl from *C.*
molle212 was isolated. Eleven triterpenes and their glycosides were isolated from \textit{C. laxum} among them, oleanane -, ursane-glycosides, arjunolic acid, arjunglucoside II, bellericoside, chebuloside II, quadranoside IV, asiatic acid and betulinic acid135. Alkaloids (combretine and betonicine) were isolated from the leaves of \textit{C. micranthum}213. Some flavonoids, rhamnoctrin, quercetin-5, 3'-dimetylether, ramnazi and kaempferol were isolated from \textit{C. erythrophyllum}213, as well as quercetrin, kaempferol and pinocembrin (flavanone) from \textit{C. apiculatum C rdamonin}. A Chalcone was also isolated from \textit{C.apiculatum}214 and ellagic acid derivatives from \textit{C. kraussii}215. Combretastatins, a group of stilbenes, have been isolated from several species of \textit{Combretum}216. Several phytochemical investigations on this genus focus mainly on pentacyclic triterpenoids, various polyphenols like flavonoids and stilbenoids217. GC/ MS showed presence of triterpenoids and stilbenoids in dichloromethane fractions of leaf and stem bark of \textit{C. aculeatum}, \textit{C. glutinosum} and \textit{C. micranthum}. Ursolic acid was identified in the leaf extracts of all the three species whereas combretastatin A4 was found in small amounts only in the bark extract of \textit{C glutinosum} species218. Oleanene-type of pentacyclic terpenoids containing 29-carboxyl-1α-hydroxyl groups were isolated from various species of \textit{Combretum} e.g. \textit{C.molle} and \textit{C. imberbe} confirming
chemotaxonomically significant bifurcation in triterpenoids synthesis in *Combretum* species218.
Aim of this study

This study was designed to fulfill the following:

- Extraction of flavonoids from two medicinal plants- *Combretum aculeatum* and *Dichrostachys cinerea*.

- Isolation of pure flavonoids via some analytical tools.

- Elucidation of structures of the isolated compounds via some spectral tools.

- Evaluation of the antimicrobial potential of the target plants.
Chapter Two

Materials and Methods
2. Materials and Methods

2- 1: Materials

2- 1- 1: Plant Material

The roots of *Combretum aculatum* were collected from a forest reserve around Hawata western Sudan. *Dichrostachys cinerea* leaves were collected from Alnohud - western Kordufan -Sudan. The plants were identified and authenticated by the Institute of Aromatic and Medicinal Plants-Sudan.

2- 1- 2: Equipments

Ultraviolet spectra were recorded in spectroscopic methanol on a Shimadzu UV -Visible Spectrophotometer. HNMR spectra were measured on a Bruker AM 500 spectrophotometer (Germany) operating at 500 MHz in spectroscopic grade DMSO-d$_6$.

2- 2: Methods

2- 2- 1: Flavonoid and phenolic test reagents

- Aluminum chloride solution

1 g of aluminum chloride was dissolved in 100 ml methanol
- **Potassium hydroxide solution**

1 g of potassium hydroxide was dissolved in 100 ml distilled water.

- **Ferric chloride solution**

1 g of ferric chloride was dissolved in 100 ml methanol.

2- 2- 2: **Test for flavonoids**

20 ml of the (PE) was evaporated to dryness on water bath. The cooled residue was defatted with petroleum ether and then dissolved in 30 ml of 30% aqueous methanol and filtered. The filtrate was used for the following tests:

- To 3 ml. of filtrate a fragment of magnesium ribbon was added, shaken and then few drops of concentrated hydrochloric acid were added. Red colour was observed.
- To 3 ml. of the filtrate few drops of aluminium chloride solution were added. A dark yellow colour was formed.
- To 3 ml. of the filtrate few drops of potassium hydroxide solution were added. A dark yellow colour was observed.

2- 2- 3: **Isolation of flavonoids from *Combretum aculeatum***

Powdered roots of *Combretum aculeatum* (950g) were macerated with 95% ethanol for 72 hours. The solvent was evaporated under reduced pressure. The resulting extract was applied on Whatman No. 3mm papers as concentrated narrow
zones. The bands were developed with BAW (4:1:5;V:V:V). The developed papers were air-dried and examined under long wavelength UV light (λ_{max} 366nm). The equivalent bands from each paper were combined, cut into small pieces and the product was eluted with methanol. The solvent was evaporated to give a powder -compound I.

Different UV shift reagents (sodium methoxide, sodium acetate and aluminium chloride) were used to elucidate the hydroxylation pattern on the nucleus of the isolated flavonoid.

2- 2- 4: Extraction and isolation of flavonoids from *Dichrostachys cinerea*

Powdered shade-dried leaves of *Dichrostachys cinerea* (450g) were defatted with petroleum ether and macerated with 70% methanol for 48h. The solvent was removed under reduced pressure and the residue was dissolved in water (150ml) and filtered. The filtrate was partitioned with successive portions of n-hexane, chloroform, ethyl acetate and n-butanol.

The n-butanol extract which was rich in flavonoids, was concentrated to dryness to yield a dark amorphous material. This extract was chromatographed on polyamide column eluted by H$_2$O/ EtOH (3:4;v:v) where three sub fractions (i), (ii) and (iii) were obtained. Fraction (iii) was chromatographed on a Sephadex LH-20 column using 50% methanol as an eluant. Thus two flavonoids (compounds II and III were isolated. The
isolated flavonoids were further purified before spectral analysis by paper chromatography eluted with BAW (n-BuOH-HOAc-H$_2$O 4:1:5, upper layer).

2- 2- 5: Stepwise procedure for use of shift reagents for UV
- The UV spectrum of the compound in methanol was first recorded.
- 3 drops of NaOMe reagent were added to the sample and the NaOMe spectrum was recorded, and after 8 minutes the NaOMe spectrum was re-recorded.
- 6 drops of AlCl$_3$ reagent were added to the fresh sample and the AlCl$_3$ spectrum was recorded, 3 drops of HCl were added and after mixing, the AlCl$_3$/ HCl spectrum was recorded.
- Powdered NaOAC was then added to the fresh sample, the mixture was shacked and the NaOAC spectrum was recorded. NaOAC/ H$_3$BO$_3$ spectrum was then recorded after adding H$_3$BO$_3$.

2- 2- 6: Preparation of plant extract for phytochemical screening
(100g) of powdered shade-dried plant material were extracted with 80% methanol (Soxhlet) for 6 hours. The cooled solution was filtered and evaporated to dryness. This prepared extract (PE) was subjected to preliminary phytochemical screening for the presence of flavonoids.
2- 2- 7: Antimicrobial assay

The methanolic extract and ethyl acetate fraction were screened for their antimicrobial activity against six standard human pathogens (*Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans*) using the cup plate agar method with some minor modifications.

2- 2- 7- 1: Preparation of bacterial suspensions

One ml. aliquots of 24 hours broth culture of the test organisms were distributed onto agar slopes and incubated at 37° C for 24 hours.

The bacterial growth was harvested and washed off with sterile normal saline, and finally suspended in 100 ml of normal saline to produce suspension containing about 10^8 - 10^4 colony forming units per ml. The suspension was stored in refrigerator at 4° C until used. The average number of viable organism per ml of the saline suspension was determined by means of the surface viable counting technique.

Serial dilutions of the stock suspension were made in sterile normal saline in tubes and one drop volume (0-02 ml) of the appropriate dilutions were transferred by adjustable volume micropipette onto the surface of dried nutrient agar plates. The plates were allowed to stand for two hours at room temperature to dry, and then incubated at 37° C for 24 hours.
2- 2- 7- 2: Preparation of fungal suspensions

Fungal cultures were maintained on dextrose agar incubated at 25°C for four days. The fungal growth was harvested and washed with sterile normal saline, and the suspension was stored in the refrigerator until used.

2- 2- 7- 3: Testing for antibacterial activity

The cup plate agar diffusion method was adopted with some minor modification, to assess the antibacterial activity of the methanolic extract and ethyl acetate fraction of *Combretum aculeatum*. Two ml of the standardized bacterial stock suspension were mixed with 200 ml of sterile molten nutrient agar which was maintained at 45°C in water bath.

(20 ml) Aliquots of the incubated nutrient agar were distributed into sterile Petri dishes and the agar was left to settle in each of these plates which were divided into two halves. Two cups in each half (10 mm in diameter) were cut using sterile cork borer (No. 4). Each of the halves was designed for one of the extracts.

The agar discs were removed and cups were filled with (0.1) ml of each extract using adjustable volume micro titer pipette and allowed to diffuse at room temperature for two hours. The plates were then incubated in the upright position at 37°C for 24 hours.
The above procedure was repeated for different concentrations of the extracts and the standard antimicrobial chemotherapeutics. After incubation the diameters of the resultant growth inhibition zones were measures.

2- 2- 7- 4: Testing for antifungal activity

The above mentioned method was adopted for antifungal activity, but instead of nutrient agar dextrose agar was used. Samples were used here by the same concentrations used above.
Chapter three

Results and Discussion
3. Results and Discussion

In most cases, the UV spectra of flavonoids are a valuable tool that can distinguish the class of a specific flavonoid. Some flavonoids exhibit two UV absorption bands: band II – due to benzoyl chromophore – and band I – due to cinnamoyl chromophore. Band II appear in the range 230-290 nm, while band I occur usually in the range 300-400 nm. Those flavonoids which are characterized by conjugation between the carbonyl function and the aromatic B ring of flavonoids exhibit both bands. Thus flavones, flavonols, chalcones and aurones show both bands. Other classes of flavonoids – flavanones, isoflavones, dihydrochalcones and dihydroflavonols – exhibit only one band (band II) due to loss of conjugation between the carbonyl group and ring B.
3- 1: *Combretum aculatum*

3- 1- 1: Characterization of compound I

Compound I, which was isolated from *Combretum aculatum* roots via paper chromatography, was partially characterized by its spectral data. The UV spectrum of compound I showed (Fig. 3) λ_{max} (MeOH) 281, 340 (sh.) nm. The appearance of only one band- band II – together with a shoulder at 340nm suggests an isoflavone.

The hydroxylation pattern of this compound was studied using the UV shift reagents; sodium methoxide (diagnostic of 3- and 4`-OH); sodium acetate (diagnostic of 7-OH); aluminium chloride (diagnostic of 3- and 5-OH and catechol systems) and boric acid (diagnostic of catechol moieties). The sodium methoxide spectrum (Fig. 4) showed a bathochromic shift without decrease in intensity indicating a 4`-OH function. The sodium acetate spectrum (Fig. 5) did not reveal any
bathochromic shift indicating absence of a 7-OH. Also no bathochromic shifts were observed in the aluminium chloride (Fig. 6) and boric acid (Fig. 7) spectra. Such findings suggest absence of 3-, 5-OH groups as well as catechol systems.

Fig. 3: UV spectrum of compound I

Fig. 4: Sodium methoxide spectrum of compound I
Fig. 5: Sodium acetate spectrum of compound I

Fig. 6: Aluminium chloride spectrum of compound I

Fig. 7: Boric acid spectrum of compound I
The 1HNMR spectrum (Fig. 8) showed δ (ppm): 1.25 (assigned for a methyl); 2.90 (Acetyl); 4.00-5.50 (assigned for a sugar residue-not identified in this study); 6.60 - 7.40 (multiplet, Ar. protons), 7.50 and 7.70 (Ar. protons). The signal at δ2.50 and δ3.50 is due to solvent (DMSO) residual protons and residual water respectively.

![Fig. 8: 1HNMR spectrum of compound I](image)

On the basis of its spectral data, the following partial structure was proposed for the aglycone of compound I:

![Compound I](compound)

3- 1- 2: Antimicrobial assay of Combretum aculeatum

The methanol extract and of *Combretum aculeatum* was screened for antimicrobial potential against six standard human pathogenic
(Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger). The methanolic extract showed significant activity against Escherichia coli and Pseudomonas aeruginosa. It also showed moderate activity against Bacillus subtilis and Staphylococcus aureus. The extract also exhibited significant antifungal activity against the fungi: Candida albicans and Aspergillus niger (Table 1).

<table>
<thead>
<tr>
<th></th>
<th>Ec</th>
<th>Pa</th>
<th>Bs</th>
<th>Sa</th>
<th>Ca</th>
<th>An</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanolic Extract</td>
<td>22</td>
<td>30</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>22</td>
</tr>
</tbody>
</table>

*Ec= Escherichia coli
Bs = Bacillus subtilis
Sa = Staphylococcus aureus
Pa = Pseudomonas aeruginosa
Ca = Candida albicans
An = Aspergillus niger

3- 2: Dichrostachys cinerea

3- 2- 1: Identification of compound II

The UV spectrum (Fig. 9) of compound II showed λ_{max} 253,347nm.
Such absorption is characteristic of (i) flavones (ii) flavonols and (iii) chalcones. However, the UV shift reagent – sodium methoxide – gave a bathochromic shift (Fig. 10) with decrease in intensity indicating a 3-OH function which is a characteristic feature of flavonols.

![UV spectrum of compound II](image1)

Fig. 9: UV spectrum of compound II

![Sodium methoxide spectrum of compound II](image2)

Fig. 10: Sodium methoxide spectrum of compound II

Next, the hydroxylation pattern of the isolated flavonol was investigated by using the shift reagent – aluminium chloride which raveled a bathochromic shift indicative of 3-, 5-OH functions and
catechol systems.
The shift reagent aluminium chloride gave a bathochromic shift diagnostic of a 3-OH group (Fig. 11) - the spectrum was quite stable in acidic media (Fig. 12). It is known that catechol form acid labile complexes with aluminium chloride.

![AlCl3 spectrum](image1.png)

Fig. 11: Aluminium chloride spectrum of compound II

![AlCl3/HCl spectrum](image2.png)

Fig. 12: AlCl$_3$/HCl spectrum of compound II

The boric acid spectrum failed to reveal any bathochromic shift indicating absence of catechol moieties (Fig. 13).
Fig. 13: Boric acid spectrum of compound II

The 1HNMR spectrum (Fig. 14) showed δ (ppm): 1.14 (Integrating for six protons and assigned for two methyl groups); 3.85 (6H, assigned for two methoxyl functions); 5.12, 5.31 (accounting for a sugar moiety which was not identified in this study); 6.38 (1H, attributed to C$_6$-H); 6.82 (1H, assigned for C$_8$ proton). Other aromatic protons appeared at 6.91, 7.39 and 7.56ppm.

Fig. 14: 1HNMR spectrum of compound II
On the basis of the above argument, the following partial structure was suggested for compound II:

![Compound II](image)

3-2-2: Identification of compound III

The UV spectrum of compound III showed (Fig. 15) λ_{max} (MeOH) 289,323nm. Such absorption suggests a flavone. The hydroxylation pattern of this compound was studied using different UV shift reagents; sodium methoxide (diagnostic of 3- and 4`-OH); sodium acetate (diagnostic of 7-OH); aluminium chloride (diagnostic of 3- and 5-OH and catechol systems) and boric acid (diagnostic of catechol moieties).

The sodium methoxide spectrum (Fig. 16) showed a bathochromic shift in band I with increase in intensity indicating a 4`-OH function. The sodium acetate spectrum (Fig. 17) failed to afford a bathochromic shift suggesting absence of a 7-OH group. The aluminium chloride spectrum (Fig. 18) gave a 6nm bathochromic shift in band I. This shift is diagnostic of a catechol system (the aluminium complex decomposed on addition of HCl as suggested by (Fig. 19). Further evidence in favor of a catechol moiety comes from the boric acid
spectrum (Fig 20) which revealed a bathochromic shift (see also figures 21-23).

Fig. 15: UV spectrum of compound III

Fig. 16: Sodium methoxide spectrum of compound III

Fig. 17: Sodium acetate spectrum of compound III
Fig. 18: Aluminium chloride spectrum of compound III

Fig. 19: Aluminium chloride / HCl spectrum of compound III

Fig. 20: Boric acid spectrum of compound III
Fig. 21: Methanol/sodium methoxide spectrum

Fig. 22: Sodium acetate / boric acid in sodium acetate spectra

Fig. 23: Aluminium chloride /Aluminium chloride/HCl spectra
The 1HNMR spectrum (Fig. 24) showed δ (ppm): 1.18 (assigned for a methyl group); 2.66, 2.81 (2 acetyl groups); 4.31 (methoxyl); 6.18-7.21-multiplet (Ar. protons); 7.91 (Ar. proton).

![Fig. 24: 1HNMR spectrum of compound III](image)

On the basis of its spectral data, the following partial structure was proposed for compound III:

![Compound III](image)
Conclusion

The flavonoids of two key species in Sudanese ethnomedicine have been investigated and three flavonoids (I-III) have been isolated. Compound I was isolated from *Combretum aculatum* roots via paper chromatography, while compounds II and III were isolated from the leaves of *Dichrostachys cinerea*. The structures of these flavonoids have been partially characterized by their spectral data (UV and 1HNMR). The methanolic extract of *Combretum aculeatum* was assessed for its antimicrobial activity. It showed significant activity against *Escherichia coli* and *Pseudomonas aeruginosa*.

Recommendations

The following is recommended:

1-The structures of the isolated flavonoids may fully be characterized by a future 2D NMR measurement.

2-The isolated flavonoids could be evaluated for their biological activity.

3-Other phytochemicals of the target species may be isolated, characterized and then screened for their biological activity.
References
References

46. http://ajpgi.physiology.org/content/279/6/G1148.short
47. http://jn.nutrition.org/content/131/2/235.abstract?ijkey=6cd7e72885072c7f69948835b6c36c6ef4ab0e35&keytype2=t f_ipsecsha
48. http://jn.nutrition.org/content/132/11/3349.full

113. C. T. Ho, T. Osawa, M. T. Huang, and R. T. Rosen, Food Phytochemicals for Cancer Prevention II. Teas, Spices,
and Herbs, American Chemical Society, Oxford University Press (1994).

121. Atmani D, Chafer N, Atmani D, Berboucha M, Debbache N, Boudaoud H., Flavonoids in human health:

136. Mao, W. H.; Han, L. J.; Shi, B. Optimization of microwave-assisted extraction of flavonoid from Radix

192. Kirthikar KR and Basu B.D. Indian Medicinal Plants. Publications and Information Division, vol II, CSIR,

200- Sala A, Recio MD, Giner RM, Manez S, Tournier H, Schinella G, Rios JL , Anti-inflammatory and

204- Sanon, Mathurin, Sacande, Moctar, Schmidt Combretum aculeatum vent *Seed leaf let*, 127 (2007).

Fyhrquist, P. Traditional medicinal uses and biological activities of some plant extracts of African Combretum

212- Angeh J.E. Isolation and characterization of antibacterial compound present in members of Combretum section, Hypocrateropsis. A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in the Phyto medicine programme, Department of paraclinical sciences, faculty of veterinary sciences, University of Peritori. (2006).

216- Martini, N.D.; Katerere, D.R.P.; Eloff, J.N. Biological activity of five antibacterial from *Combretum*
