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ABSTRACT 

In this thesis we studied one of the most important properties of a 

submanifold, namely the curvature that describes different geometrical and 

topological properties of a submanifold. We have three classes of 

submanifolds in a manifold 𝛭, and these classes are: 𝑖𝑚𝑚𝑒𝑟𝑠𝑒𝑑, 𝑖𝑚𝑏𝑒𝑑𝑑𝑒𝑑, 

𝑎𝑛𝑑 𝑟𝑒𝑔𝑢𝑙𝑎𝑟. We discussed the basic equations for submanifold and 

fundamental theorems of submanifolds. We also investigated some special 

submanifolds, namely, minimal, totally geodesic, totally umbilical, totally 

real, CR (Cauchy Riemann) and parallel. In particular submanifolds of finite 

type in Euclidean space and Chen’s inequality have been treated and some 

results have been obtained. 
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INTRODUCTION 

The research presented in this thesis, is situated in one of the most important 

topics of differential geometry, namely the study of submanifolds. This is the 

generalization of the study of curves and surfaces to higher dimensional 

Euclidean space of arbitrary dimensions and codimensions and arbitrary 

ambient space. 

The simplest space is the Euclidean space. This is a space such that at every 

point all sectional curvatures are zero. 

There are two aspects of geometry of submanifolds, namely, intrinsic 

geometry and extrinsic geometry of submanifolds. 

Intrinsic differential geometry of submanifolds describes the geometry inside 

the submanifolds. Extrinsic geometry of submanifolds deals with the shape of 

submanifolds as subsets of the ambient space. 

An important result connecting intrinsic and extrinsic geometry of 

submanifolds is the1956 J. F. Nash embedding theorem which states that 

every Riemannain manifold can be isometrically embedded in a Euclidean 

space with sufficient high codimension. 

According to B. Y. Chen, one of the basic problems in submanifold theory is 

to find simple relationships between the main intrinsic invariants and the 

main extrinsic invariants of submanifolds. 

Problems in submanifold theory have been studied since the invention of 

calculus and it was started with differential geometry of plane curves. In the 

modern theory of submanifolds, the study of the relations between local and 

global properties has also attracted the interest of much geometry. 

The theory of submanifolds as a field of differential geometry is as old as 

differential geometry itself.  A study of submanifolds of a manifold is a very 

interesting field of differential geometry. 

 B. Y. Chen (1981), D. E. Blair (1976), A. Bejancu (1986), M. H. Sahid 

(1994–1995), and some others have studied different properties of 

submanifolds. 
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The objective of this thesis is to devote a self-contained study of Chen’s 

inequalities for submanifolds.  Submanifolds are solutions of differential 

equations where a submanifold is a constraint reflected geometrically 

curvature condition whereas algebraically it is given by equations. 

The whole thesis is divided into five chapters. In chapter one we study the 

differentiable manifolds, Riemannian manifolds. Chapter two provides a 

study of the theory of submanifolds. In chapter three we study some special 

submanifolds while in chapter four we study submanifolds of finite type. 

Lastly in chapter five we study Chen’s Inequality and some invariants.  
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LIST OF SYMBOLS AND ABBREVIATION 

  ℝ                         real numbers 

  ℝ                        Euclidean space of dimension 𝑛 

               point in ℝ  

𝐶∞
                         smooth or infinitely differentiable 

𝐶∞ 
(𝑀)                  space of smooth functions on the manifold 

𝑇  𝑀                     tangent space at   of a smooth manifold 

𝑇𝑀                       tangent bundle of a smooth manifold 

𝑇 
 𝑀                     cotangent space at   of a smooth manifold 

𝑇 𝑀                     cotangent bundle of a smooth manifold 

〈   〉                   inner product of two tangent vectors   and   

 〈   〉                derivative of a function 〈   〉 along a vector field   

∇                      covariant derivative of vector field   along the vector field   

[   ]                   Lie bracket for vector fields   and   

∂𝑖                         the basis vector fields 

  

   
                        partial derivative with respect to 𝑥𝑖 

∇X                        covariant derivation with respect to   

𝑓                       pullback via the map 𝑓. 

∇𝑓                       gradient of the function 𝑓. 
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