
1

Sudan University of Science and Technology

College of Graduate Studies

Balancing of Two Wheeled Robot Using PID Controller

 إتزاى الروبوت ذو العجلتيي بإستخدام الوتحكن التناسبي التكاهلي التفاضلي

A Thesis submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Engineering (Control and

Microprocessor)

Prepared by:

ISRAA AHMED MOHAMMED ZAIN AHMED

Supervisor:

Dr. AWADALLA TAIFOUR ALI ISMAIL

November/2018

i

 الآية

 قال تعالى:

 صدق الله العظيم

 سورة البقرة

 461الآية

ii

DEDICATION

All praise to Allah, today we fold the day’s tiredness and the errand summing

up between the cover of this humble work.

 To the utmost knowledge lighthouse, to our greatest and most honored

prophet Mohammed-May peace and grace from Allah be upon him.

To the spring that never stops giving, to my mother who weaves my

happiness with strings from her merciful heart…to my mother.

To whom he strived to bless comfort and welfare and never stints what he

owns push me in the success way who taught me to promote life stairs wisely

and patiently, to my dearest father.

 To whose love flows in veins and my heart always remembers them, to my

small family.

To those who taught us letters of gold works of jewel of the utmost and

sweetest sentences in whole knowledge. Who reworded to us their knowledge

simply and from their thoughts made a lighthouse the knowledge and success

path, to our honored teachers and professors.

iii

ACKNOWLEDEMENT

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for endowing me with health, patience, and

knowledge to complete this work.

I would like to express my appreciation to my supervisor Dr. Awadalla

Taifour Ali who has cheerfully answered my queries, provided me with

materials, checked my examples, assisted me in my myriad ways with the

writing and helpfully commented on earlier drafts of this thesis.

iv

ABSTRACT

Nowadays robots can be seen in our daily life. Recently, robotic applications

and their wide range of functionalities have drawn many engineers’

attentions. Robot with at least three wheels can achieve static stability further

simplifying dynamics. The inverted pendulum system is naturally unstable.

Two wheeled balancing robot is application of inverted pendulum that

requires a controller to maintain its upright position. This thesis will describe

the modeling of two wheeled balancing robot, design the robot controller

using Proportional-Integral-Derivative (PID) controller and implement the

controller on the robot. Micro-Processing Unit (MPU) is used, which

combines accelerometer and gyroscope measurement in order to estimate and

obtain the lilt of the robot. PID controller is applied to correct the error

between the desired set point and the actual tilt angle and adjust the Direct

Current (DC) motor speed according to balance the robot. The simulation

result of the model is compared with the developed hardware and

performance of the controller.

v

 هستخلص

في هذة الايام يمكن رؤية الروبوتات في حياتنا اليومية. فقد جزبت التطبيقات الالية و مجموعتها

الواسعة من الوظائف مؤخرا اهتمام كثير من المهندسين. يمكن لمروبوت ذو الثلاثة عجلات عمي الاقل

ثابتة لابسط الديناميكيات. نظام البندول المعكوس غير مستقر في وضعة ان يحقق استقرارية

الطبيعي. فاتزان الروبوت ذو العجمتين من تطبيقات البندول المعكوس مما يتتطمب نظام تحكم لمحفاظ

تصميم وحدة تحكم ٬عمي وضعه المستقيم. سيصف هذا البحث نمذجة لموازنة روبوت بعجمتين

لمروبوت باستخدام المتحكم التناسبي التاكممي التفاضمي وتنفيذ وحدة التحكم عمي الروبوت. يستخدم

الحساس الذي يجمع بين قياس التسارع وقياس جيروسكوب لتقدير والحصول عمي ميل الروبوت. يتم

الفعمية وضبط سرعة المحرك تطبيق وحدة التحكم لتصحيح الخطأ بين النقطة المحددة وزواية الميل

المستمر وفقا لتحقيق التوازن في الروبوت. كذلك يتم مقارنة نتيجة المحاكاة لنموذج مع المكونات واداء

 وحدة التحكم.

vi

TABLE OF CONTENTS

Subjects Page No.

 i الآية

Dedication ii

Acknowledgement iii

Abstract iv

 v مستخلص

Table of Contents vi

List of Figures ix

List of Tables x

List of Symbols xi

List of Abbreviations xii

CHAPTER ONE

INTRODUCTION

1.1 Background 1

1.2 Problem Statements 2

1.3 Objectives 3

1.4 Methodology 3

1.5 Layout 3

CHAPTER TWO

THEORETICAL BACKGROUND

2.1 Control System

 2.1.1 Open loop control systems

 2.1.2 Closed loop control systems

 2.1.3 State space representation

 2.1.4 Linear quadratic regulation

 2.1.5 Pole placement

4

4

4

5

5

6

2.2 Robot 6

vii

 2.2.1 Type of robots

 2.2.2 The two wheeled inverted pendulum

 2.2.3 A two wheel balancing robot

7

9

10

2.3 Proportional Integral Derivative

 2.3.1 The characteristics of PID controller

 2.3.2 PID tuning Ziegler-Nichols tuning

11

13

14

CHAPTER THREE

HARDWARE AND SOFTWAR CONSIDERATION

3.1 System Description

 3.1.1 Basic concepts

 3.1.2 Control schematic

18

18

20

3.2 Mathematical Modelling of Two Wheeled Robot

 3.2.1 Mathematical modeling of IP utilizing lagrangʼ s

approach

 3.2.2 State space equaction of the system

21

21

22

3.3 System Hardware

 3.3.1 MPU6050

 3.3.2 Arduino Nano

 3.3.3 DC motor

 3.3.4 L298 dual H-bridge motor drive

 3.3.5 Jumper wires

23

24

26

28

29

31

3.4 Software System

 3.4.1 Balancing

 3.4.2 MATLAB and SIMULINK

 3.4.3 Inter-intergrated circuit interface

31

31

32

32

CHAPTER FOUR

SYSTEM IMPLEMENTATION AND RESULTS

4.1 System Implementation

 4.1.1 Connection diagram

34

34

viii

 4.1.2 Building the robot

 4.1.3 Operation system

35

37

4.2 System Results

 4.2.1 MATLAB/SIMULINK

38

38

CHPTER FIVE

CONCLUSION AND RECOMMENDTIONS

5.1Conclusion 41

5.2 Recommendations 41

REFERENCES 42

APPENDIX : THE CODE 43

ix

LIST OF FIGURES

Figure Title Page No.

1.1 Views of the two wheeled balancing robot 2

2.1 Side and front of two wheeled inverted pendulum

system

9

2.2 PID controller 11

2.3 Unit step response of aplant and it is s-shape curve 15

2.4 Sustained oscillations with period pcr 16

3.1 Flowchart and iteration process of the study 19

3.2 Block diagram of control schematic 20

3.3 Position of IP structure 21

3.4 Block diagram of system hardware 23

3.5 MPU6050 board 25

3.6 Arduino Nano pins functions 28

 3.7 DC motor 29

3.8 L298 dual bridge driver 30

3.9 The conceptual design of the balancing software 32

 4.1 Connection diagram of the two wheeled robot 35

 4.2 Robot frame with tow DC motors 35

 4.3 Main circuit board Arduino Nano and MPUO6050 36

 4.4 Finally design of the two wheeled balancing robot 36

 4.5 Simple H-bridge 37

 4.6 MATLAB/SIMULINK model of the two wheeled

robot

39

 4.7 The output response of the robot using PID 39

 4.8 Output of the angle (θ) 40

x

LIST OF TABLES

Table Title Page No.

2.1 Effect of PID tuning 14

2.2 Controller parameters in Ziegler-Nichols open loop 16

2.3 Controller parameters in Ziegler-Nichols closed loop 17

3.1 The parameters of the two wheeled robot 22

3.2 Comparison between accelerometer and gyroscope 24

xi

LIST OF SYMBOLS

 ARFE Reference voltage

g Gravitational acceleration

L Length of the pendulum

m Mass of pendulum

M Mass of the robot

VCC Digital supply voltage

XDA Auxiliary serial data

XCL Auxiliary serial clock

x Position of robot

 Angle of the robot

xii

LIST OF ABBREVIATIONS

D Derivative

DC Direct Current

DOF Degree of Freedom

DMP Digital Motion Processor

EEPROM Electrically Erasable Programmable Read Only Memory

GND Ground

I Integral

 I
2
C Inter Intergrated Circuit

IP Inverted Pendulum

LED Light Emitting Diode

LQR Linear Quadratic Regulation

MATLAB MATrix LABoratoryis

MEMS Micro Electro Mechanical System

MIMO Multiple Input Multiple Output

MPU Micro-Processing Unit

P Proportional

PID Proportional Integral Derivative

PWM Pulse Width Modulation

RPM Revolutions Per Minute

SCL Serial Clock

SDA Serial Data

 SPI Serial Peripheral Interface

SRAM Static Random Access Memory

USB Universal Serial Bus

xiii

CHAPTER ONE

INTRODUCTION

1

CHAPTER ONE

INTRODUCTION

1.1 Background

Effective and efficient control system designs provide the robot with the

ability to control itself and operate autonomously, since PID control is

becoming a definite possibility with advancements in nonlinear control

systems. Improved synthetics and materials allow for robust and cosmetically

aesthetic designs to be implemented for the construction and visual aspects of

the robot. Two wheeled robots are one variation of robot that has become a

standard topic of research and exploration for young engineers and robotic

enthusiasts. They offer the opportunity to develop control systems that are

capable of maintaining stability of an otherwise unstable system. This type of

system is also known as an inverted pendulum. This research project aims to

bring this, and many of the previously mention aspects of a robot together

into the building of a two wheeled balancing robot with a nonlinear, PID

controller.

Two wheeled robot is a robot that is capable of balancing upright on its two

wheels is known as a two wheeled balancing robot. The following Figure 1.1

contains the physical view for the robot designed as part of this study. The

process of balancing is typically referred to as stability control. The two

wheels are situated below the base and allow the robot chassis to maintain an

upright position by moving in the direction of tilt, either forward or backward,

in an attempt to keep the center of the mass above the wheel axles. The

wheels also provide the locomotion thus allowing the robot to transverse

across various terrains and environments.

This type of robot provides a challenging problem and has resulted in many

useful and interesting designs being developed. One such two wheeled robot

that has become a commercial success is the Segway by Segway Inc.

2

The immediate impact has been within the personal transportation area where

an alternative to cumbersome wheelchairs is now available. Segway proves a

comfortable mobility opportunity for the elderly or people with disability thus

improving their individual sense of independence at the same time. The

theory used to maintain stability of these robots is based on the inverted

pendulum theory [1].

 Figure 1.1: Views of the two wheeled balancing robot

2.1 Problem Statement

Robots are increasingly implemented today and are used in a variety of

different application. Robot with at least three wheels can achieves static

stability, further simplifying dynamics. The inverted pendulum systems are

naturally unstable. Therefore, a suitable control system technique and method

need to be investigated to control the system. The two wheeled balancing

robot is application of the inverted pendulum that requires controller to

maintain its upright position. To achieve this controller needs to be designed

and implement on robot to balance the inverted pendulum. The robot is

inherently unstable without external control it would roll around the wheels

rotation axis and eventually fall. Various types of control were implemented

on two wheeled balancing robot nonlinear controller.

3

3.1 Objectives

The development of the two wheel robot based on the inverted pendulum

concept by using PID controller is the aim of this research. In order to achieve

this aim, the objectives as follows are formulated:

 i. To design and develop the prototype for two-wheel balancing robot with

PID controller.

ii. To perform the simulation of a two-wheeled balancing robot based on its

existing mathematical model with the robot’ actual parameters.

iii. To evaluate the performance of the developed self-balancing robot using a

standard approach.

4.1 Methodology

The system is divided into parts; hardware and software. In the hardware

circuit requires feedback sensors which are angle sensor and wheel encoder.

The control system for an inverted pendulum is applied when the wheelchairs

maneuvers a small step or road curbs. A software code is developed to control

the overall system functions. The code is written in C language using Basic

Compiler Arduino Nano is interconnected to the system.

1.5 Layout

This research consists of five chapters. The first chapter contains of

background, research problems, objectives and the scope of work

methodology. While the second chapter consists of the type of control system,

robot, two wheeled robot and PID controller. Chapter three covers the

hardware and software consideration of the project while chapter four

contains the implementation, simulation and result of the design. Chapter five

consists of the recommendations and conclusion.

4

CHAPTER TWO

THEORETICAL BACKGROUND

4

CHAPTER TWO

THEORETICAL BACKGROUND

2.1 Control System

 A control system is a collection of components that is designed to drive a

given system (plant) with a given input to a desired output. Control

engineering is based on the foundations of feedback theory and linear system

analysis it integrates the concepts of network theory and communication

theory. Therefore control engineering is not limited to any engineering

discipline but is equally applicable to aeronautical, chemical, mechanical,

environmental, civil and electrical engineering. A control system is an

interconnection of components forming a system configuration that will

provide a desired system response [2]. The main types of control systems are:

2.1.1 Open loop control systems

An open loop control system there is no automatic correction of the variation

in its output. That is in this type of system sensing of actual output and

comparing of this output with the desired input does not take place [3].

2.1.2 Closed loop control systems

A closed loop control system is a system where the output has an effect upon

the input quantity in such a manner as to maintain the desired output value.

An open loop control system becomes a closed loop control system by

including feedback. A feedback control system is a control system that tends

to maintain a prescribed relationship of one system variable to another by

comparing functions of these variables and using the difference as means of

control [4]. The main differences between the existing mathematical models

are what dynamic equations have been used to derive the model, as well as

how many degrees of freedom have been modeled.

5

2.1.3 State-space representation

When describing a dynamic system it is often helpful to use state-space

representation. The idea is that there all timed exists a vector, the state vector,

which fully represents the dynamic state of the system [2]. A linear state-

space representation is generally written as:

 ̇= A + B (2.1)

 = C + D (2.2)

Where is the state vector containing the state variables, and are the

system input and output respective, and the matrices A, B, C and D define the

state dynamics of the system. The state variables of the state vector are

usually chosen to be system variable of interest for desired control and

observation of the system. State space models are especially useful when

describing systems with multiple inputs and outputs, since the order of the

vectors and matrices only needs to be adjusted accordingly. A benefit with a

system that is represented by a state-space model is that it is possible to

evaluate the system’s stability by checking the eigenvalues of the matrix. If an

eigenvalue is not strictly negative and real it represents an unstable pole.

Another benefit is that the controllability is easily checked by evaluating the

controllability matrix, Mc= [B AB A
2
B … A

n-1
B]. The system is controllable

if Mc has full rank [3].

2.1.4 Linear-quadratic regulation

Linear Quadratic Regulation (LQR) is an optimization algorithm used to

control a system by minimizing the system’s deviations from desired values.

It is of great help when dealing with systems which are Multiple-Input

Multiple-Output (MIMO). The goal is to minimize the cost function

6

 ∫ ()

of the linear system ̇ = A + B and produce the

weighting matrix K for the feedback control = -K . Q and R are weighting

coefficient matrices which represent the relative importance of the control

signal and error value, respectively, for K is found to be K =

where is found by solving the Riccati equation + A - XB +

Q = 0. This procedure can be swiftly carried out with the help of software

tools like MATLAB [2].

2.1.5 Pole placement

The purpose of pole placement is just as with LQR, to find the weighting

coefficient matrix K for a system. Instead of using the Q and R matrices that

are created in LQR the poles of the system are placed at predetermined

locations in the s-plane. This is a convenient method since the placed poles

correlate directly to the system’s eigenvalues and therefore the stability of the

system. The principle can only be used on a controllable system and is done

by evaluating the existing characteristic equation for the full state feedback

system:

det [sI – (A - BK)] (2.3)

The K matrix is then picked by placing the poles and adapting the K matrix to

what it needs to be for the poles to be in the desired places [3].

2.2 Robot

A robot is a machine designed to execute one or more takes automatically

with speed and precision. Robots are sometimes grouped according to the

time frame in which they were first widely used. First-generation robots date

from the 1970s and consist of stationary, nonprogrammable,

7

electromechanical devices without sensors. Second-generation robots were

developed in the 1980s and can contain sensors and programmable

controllers. Third-generation robots were developed between approximately

1990s and the present. These machines can be stationary or mobile,

autonomous or insect type, with sophisticated programming, speed

recognition and/or synthesis, and other advanced features. Fourth-generation

robots are in the research-and-development phase, and development phase,

and include feature such as artificial intelligence, self-replication, self-

assembly and nanoscale size. Robots that resemble humans are known as

androids; however, many robots are not built on the human model. A robot

can be remote controlled by a human operator, sometimes from a great

distance. Robots are employed on production lines in factories, appeared as

intelligent machines to do specific task or used as commercial products [5].

2.2.1 Type of robots

Robots do a lot of different tasks in many filed and the number of jobs

entrusted to robots is growing steadily. So the best ways how to divide robots

into type is a division by their application there are:

 Industrial robots

Industrial robots are robots used an industrial manufacturing environment.

Usually these are articulated arms specifically developed for such applications

as wilding, material handling, painting and others.

 Mobile robot

Mobile robots have the capability to move around in their environment and

are not fixed to one physical location. An example of a mobile that is

common use today is the automated guided vehicle. There are two types of

mobile robotics are autonomous and non-autonomous robots. Autonomous

mobile robots can explore their environment without external guidance, while

guided robots use some type of guidance system to move, other semi-

8

stationary robots have a small range of movement. The field of mobile

robotics is important today as companies look at how to utilize artificial

intelligence. For instance, those looking at the consumer electronics world

might remark that although autonomous mobile robots have been around for a

while, they are not often represented in consumer offerings – for instance, in

items like Alexa and other virtual tools that are stationary rather than robotic.

 Medical robots

Robots used in medicine and medical institutions. First and foremost -surgery

robots. Also, some automated guided vehicles and maybe lifting aides.

 Domestic or household robots

Robots used at home. This of robots includes many quite different devices

such as robotic vacuum cleaners, robotic pool cleaners, sweepers, gutter

cleaners and other robots that can do different chores.

 Service robots

Robots those do not fall into other types by usage. These could be different

data gathering robots, robots made to show off technologies and robots used

for research.

 Military robots

Robots used in military. This type of robots includes bomb disposal robots,

different transportation robots and reconnaissance drones. Often robots

initially created for military purposes can be used in law enforcement, search

and rescue and other related fields.

 Entertainment robots

These are robots used for entertainment. This is a very broad category. It

starts with toy robots such as robosapien or running alarm clock and ends

9

with real heavyweight such as articulated robot arms used as motion

simulators [6].

2.2.2 The two wheeled inverted pendulum

Two-wheeled robots are based on the idea of the Inverted Pendulum (IP)

system. The idea of a mobile inverted pendulum robot has surfaced in recent

years and has attracted interest from control system researchers worldwide. In

this study the two wheeled inverted pendulum was provided a design and

implementation. Figure 2.1 shows both side and front of two wheeled inverted

pendulum system.

Figure 2.1: Side and front of two wheeled inverted pendulum system

It is required to balance the pendulum at a zero tilt angle. Once the system is

balanced, it may be ordered to move forward, backward, turn right or left. The

system consists of three main parts:

 The wheels: Moves the system backward or forward to balance the body

of the system.

 The chassis: Hold the motors, circuit and any parts required for system.

 The pendulum: The parts of system that causes the instability and need to

be stabilized. This part may be hidden inside the chassis [7].

10

2.2.3 A two wheel balancing robot

Dual-wheel robot has two wheels an upright body frame wheel all circuit are

placed. Two wheeled robots are harder to balance than other types because

they must keep moving to maintain upright. The center of gravity of the robot

body is kept below the axle; usually this is accomplished by mounting the

batteries below the body. They can have their wheels parallel to each other,

these vehicles are called dicycles, or one wheel in front of the other, tandemly

placed wheels. Two wheeled robots must keep moving to remain upright and

they can do this by driving in the direction the robots is falling. To balance,

the base of the robot must stay with under its center of gravity. For a robot

that has the left and right wheels, it needs at least two sensors. A tilt angle and

wheel encoders which keep track of the position of the platform of robot [5].

The uniqueness of inverted pendulum system has drawn interest from many

researches due the unstable nature of the system. The idea of a mobile

inverted pendulum robot has surfaced in recent years and has attracted interest

from control system researchers worldwide. A two wheeled differential drive

mobile robot based on the inverted pendulum mobile is built as a platform to

investigate the use of a Kalman filter to estimate the tilt angle. As the robot is

mechanically unstable, it becomes necessary to explore the possibilities of

implementing a control system to keep the system in equilibrium. This thesis

examines the suitability and evaluated the performance of a LQR and a pole-

placement controller uses in balancing the system. The LQR control uses

several weighting matrix to obtain the appropriate control force to be applied

to the system while the pole-placement requires the poles of the system to be

placed to guarantee stability. As the robot will be moving about on a surface,

a PID controller is implemented to control the trajectory of robot. The

instability of inverted pendulum systems has always been an excellent test

bed for control theory experimentation. Therefore it is also the aim of this

thesis to investigate the suitability and examine the performance of linear

11

control systems like the LQR and pole-placement controller in stabilizing the

system and compare it to modern approaches like fuzzy logic controller [7].

2.3 Proportional Integral Derivative

A PID is a generic control loop feedback mechanism widely used in industrial

control systems because PID controller is simple, provide good stability and

rapid response. A PID controller attempts to minimize the error value

between a measured process variable and a desired set point by calculating

and then outputting a corrective action that can adjust the process accordingly

such as the position of control value, a damper, or the power supplied to a

heating element to a new value by determined by a weight sum show in

Equation (2.7). Figure 2.2 is shown all of the three different parts of PID-

controller put their focus on reference and error with different relations to

time. The PID controller calculation (algorithm) involves three separate

parameters; the Proportional (P), the Integral (I) and Derivative (D) values

[8,9].

Figure 2.2: PID controller

 Proportional term

The proportional term produces an output value that is proportional to the

current error value. The proportional response can be adjusted by multiplying

12

the error a constant (Kp) called the proportional gain constant is given by:

 Pout = Kpe(t) (2.4)

 Integral term

The contribution from the integral term is proportional to both the magnitude

error and the duration of the error. The integral in a PID controller is the sum

of the instantaneous error over time and gives the accumulated offset that

should have been corrected previously. The accumulated error is then

multiplied by the integral gain (Ki) and added to controller output. The

integral term is given by:

Iout = Ki∫ ()

 (2.5)

 Derivative term

The derivative of the process error is calculated by determining the slope of

the error time and multiplying this rate of change by the derivative gain Kd.

The magnitude of the contribution of the derivative term to the overall control

action is termed the derivative gain Kd is given by:

Dout = Kd

e(t) (2.6)

 P controller the present error is reduced with a proportional change. The I

controller integrates over time and can reduce the error based on past errors.

The D controller derives and measures the present change of the error and

uses this to predict future errors. When all three controllers are used together

13

it is called a PID controller. Some application may require using one or two

terms to provide the appropriate system control. This is achieved by setting

the other parameters to zero. A PID controller will be called a PI, PD, P or I

controllers in absence of respective control action. It all depends on the

system at hand and how it needs to be controlled. The significance of three

parts of the controller on the control effort is determined by their respective

weighting coefficient; Kp, ki and kd. Through mathematical models and

methods for variable estimation it is possible to get reasonable values for the

K-variable. This is however very complex and time demanding, since the

model and the real system usually differ appreciably and the model therefore

needs to be heavily adjusted before presenting any useful results. One way to

avoid this is to search for an existing model for a system similar to the one at

hand, then start with that one and go straight on to the final calibrations [2].

U(t) = Kpe(t) + Ki ∫(())dt + kd (

) (2.7)

2.3.1 The characteristics of PID controller

There are four major characteristics of the closed-loop step response:

1. Rise time: The time it takes for the plant output to rise beyond 90% of the

desired level for the first time.

2. Overshoot: How much the peak level is higher than the steady state,

normalized against the steady-state.

3. Settling time: The time it takes for the system to converge to its steady

state.

4. Steady-state error: The difference between the steady-state output and

the desired output.

A proportional controller (Kp) will have the effect of reducing the rise time

and will reduce but never eliminate the steady-state error. An integral control

14

(Ki) will have the effect of eliminating the steady-state error for a constant or

step input, but it may make the transient response slower. A derivative control

(Kd) will have the effect of increasing the stability of the system, reducing the

overshoot and improving the transient response. The effects of each PID

controller parameters, Kp, Ki and Kd on a closed loop system are summarized

in the Table 2.1.

Table 2.1: Effect of PID Tuning

These correlations may not be exactly accurate because Kp, Ki and Kd are

dependent on each other. In fact, changing one of these variables can change

the effect of the other two.

2.3.2 PID tuning Ziegler-Nichols tuning

Ziegler-Nichols tuning rules have been widely used to tune PID controllers in

process control systems where the plant dynamics are not precisely known. It

also can be applied to plants whose dynamics are known. Ziegler-Nichols

method present two classical value of proportional gain, integral time and

derivative time based on transient response characteristics of a given plant or

system.

Response Rise Time Overshoot Settling

Time

Steady State

Error

Kp Decrease Increase Small

Change

Decrease

Ki

Decrease Increase Increase Eliminate

Kd Small

Change

Decrease Decrease No Change

15

 First method

Obtain a unit step response of the plant shown Figure 2.3. This method

applies if obtained response exhibit s-shape curve for unit step input

otherwise it can not be applied. This curve can be also obtained by dynamic

simulation of plant.

Figure 2.3: Unit step response of aplant and it is s-shape curve

The S-shaped curve also called the reaction curve. The response is

characterized by two parameters, L the delay time and T the time constant,

which are determined by drawing a tangent line at the inflection point of

curve and finding the intersections of the tangent line with the time axis and

the steady-state level line. Set parameters of Kp, Ti and Td in Ziegler-Nichols

based on the transient step response of plant values given from Table 2.2 for

three type of controllers.

16

Table 2.2: Controller parameters in Ziegler-Nichols open loop

 Type of Controller Kp Ti Td

P

 0

PI 0.9

 0

 PID

 1.2

 2L 0.5L

 Second method

The method is very similar to trial and error method where integral and

derivative terms are set to zero. I increase the proportional gain such that the

output exhibits sustained oscillations. If the system does not produce

sustained oscillations then this method can not be applied. Figure 2.4 shown

the gain at which sustained oscillations produced is called as critical gain

(Kcr).The sustain oscillations are produced, set the values of parameters Kp, Ti

and Td given from Table 2.3froP, PI and PID controllers based on critical gain

(Kcr) and critical period (pcr) [8,9].

Figure 2.4: Sustained oscillations with period pcr

17

Table 2.3: Controller parameters in Ziegler-Nichols closed loop

Type of Controller Kp Ti Td

P 0.5Kcr 0

PI 0.45Kcr

Pcr

0

 PID 0.6Kcr 0.5Pcr 0.125Pcr

18

CHAPTER THREE

HARDWARE AND SOFTWAR

CONSIDERATION

18

CHAPTER THREE

HARDWARE AND SOFTWAR CONSIDERATIO

3.1 System Description

The scientific way to solve a problem is to make sure that the right methods

are being used. The balancing robot is basically a simple inverted pendulum

on two wheels. This is one most widely used example in control classes. The

methodology of this study is divided into two parts namely the mechanical

design and software algorithm. This chapter describes the method for this

subject in order to achieve the desired objective. The study will be developed

based on a flowchart that determines all the necessary activities that has been

accomplished. The study has gone from planning to modeling, simulation,

choice of components, thereafter building and programming of the robot. This

study will be design the two wheeled robot with PID as the controller. A

system for balancing the two wheeled robot is programming by the Arduion

Nano using C language [10].

Figure 3.1 is shown the flow chart of the study, which begins with

information collection on topics related to two wheeled balancing robot

through literature review. After reviewing all the resources, next step is do the

modeling for the inverted pendulum as it provides the fundamental concept

for this study. MATLAB/SIMULINK will be used as a simulation tools to see

the performance of the controller. Next, is to design the robot. Finally the

robot will be tested [1].

3.1.1 Basic concepts

When the robot moves, the motion can be a combination of both forward

translational movements. There are two options for making course

corrections: Stopping to turn or turning while driving. The first is a pivot turn

19

Figure 3.1: Flowchart and iteration process of the study

 End

20

and the robot drives in a straight line unit it reaches the waypoint, or until

enough error is built up, then stops and turns using reverse motion on side and

forward motion on the other side. This type of turn is faster, but the overall

process is much slower and puts unnecessary wear on both the motor

controllers and wheels, because they are switching directions. The other

option, a differential turn, is to slow one side down while continuing forward

motion. Each type of turn can be useful, depending on the circumstances. The

two wheeled robot in this thesis was moved turning while driving [10].

3.1.2 Control schematic

Balancing of two wheeled robot control system is used the feedback control

system closed loop is shown in Figure 3.2. The sensor is used to measure the

actual value and then feeds it back to comparator with the input and the input

to controller and each output becomes the input to block diagram.

Figure 3.2: Block diagram of control schematic

21

3.2 Mathematical Modelling of Two Wheeled Robot

The IP on a robot by horizontal control force is shown in Figure 3.3. Where

 , is the distance from the pivot to the mass

center of the pendulum, M and m are the mass of the robot and pendulum

respectively, () is the position of the poivt in the coordinate, () is

position in the coordinate [11,12].

Figure 3.3: Position of IP structure

3.2.1 Mathematical modeling of IP utilizing lagrangʼ s

approach

The total kinetic energy and potential energy of IP are:

 (3.1)

 (3.2)

L = K–P =

M ̇2

+

m(̇2

+ ̇2
)+ ̇2 2

+2 ̇(̇ ̇)– g(z+) (3.3)

22

The lagrangeʼ s equations of the IP are:

(

 ̇
)- (

) = Fx (3.4)

(

 ̇
)- (

) = 0 (3.5)

() ̈ ̈ ̇ = Fx (3.6)

 ̈ ̇ g = 0 (3.7)

3.2.2 State space equaction of the system

System of IP is represented by a state-space model is:

 ̇ (3.8)

 ̇ (g
 +Fx) /() (3.9)

 ̇ = (3.10)

 ̇=(Fx
 ()g)/() (3.11)

Table 3.1 shows the parameters of the two wheeled robot.

Table 3.1: The parameters of the two wheeled robot

Parameter Value Descripition

M 0.5 Kg Mass of the robot

m 0.1 Kg Mass of pendulum

g 9.8 m/s
2

Gravitational acceleration

L 0.3 m Length of the pendulum

23

3.3 System Hardware

The design of the hardware system is crucial in bringing mechanism and

software to work together. The main components in the circuit of the

balancing robot are the MPU, Arduino controller and DC motor. Figure 3.4 is

shown the overall block diagram of the electronic system for the two

balancing robot. The MPU is used to measure the acceleration and the angular

rate of the robot and the output is processed into digital from. The raw inputs

from the MPU are further processed to obtain the tilt angle of the robot. This

tilt angle is then fed into the PID controller to generate the appropriate speed

to DC motor in order to balancing the robot [13].

Figure 3.4: Block diagram of system hardware

24

3.3.1 MPU6050

The MPU6050 is a Micro Electro Mechanical System (MEMS) which

consists of a 3-axis accelerometer and 3-axis gyroscope inside it. It us to

measure acceleration velocity, orientation, displacement and many other

motion related parameter of system or object. The MPU6050 is a 6 Degree of

Freedom (DOF) which means that it gives six values as output. This chip uses

Inter Integrated Circuit (I
2

C) protocol for communication. This module also

has a Digital Motion Processor (DMP) inside it which is powerful enough to

perform complex calculation and thus free up the work for microcontroller.

The Serial Data (SDA) and Serial Clock (SCL) pins are used to establish a

connection with the Arduino pins A4 and A5 to receive the accelerometer and

gyroscope data. The interrupt pin (INT) is to instruct the Arduino when to

read the data from the module and pin instruct the Arduino only when the

values change. MPU6050 also has well documented and revised libraries

available hence it is very easy to use with famous platforms like Arduino.

The MPU6050 can be used in RC car, drone, self balancing robot, humanoid

and biped. The DMP combines the raw sensor data and performs some

calculations onboard to minimize the errors in each sensor. Accelerometers

and gyros have different inherent limitations when used on their own as

indicate in Table 3.2 [10]. Figure 3.5 shows the MPU6050 board.

Table 3.2: Comparison between accelerometer and gyroscope

 MPU6050 Advantage Disadvantage

Accelerometer No bias Affected by object’s

acceleration

Gyroscope Unaffected by object’s

acceleration

Accumulated bias

25

Figure 3.5: MPU6050 board

Pin configuration:

Vcc: Is used for powering the MPU6050 module with respect to ground and

can be +3 to +5V.

GND: Connected to ground of system

SDA: SDA is used for data transferring between controller and MPU6050

module.

SCL: SCL is used for providing clock pulse of input.

XDA: Auxiliary Serial Data (XDA) is sensor 12C SCL data line for

configuring and reading from external sensors (optional).

XCL: Auxiliary Serial Clock (XCL) is sensor 12C SCL clock line for

configuring and reading from external sensors (optional).

INT: Interrupt pin to indicate that data is available for MCU to read.

AD0: If more than one MPU6050 is used a signal MCU, then this pin can be

used to vary the address.

26

3.3.2 Arduino Nano

The Arduino Nano is small, complete and breadboard-friendly board based on

the Atmega328 (Arduino Nana 3.o) or Atmega168 (Arduino Nano 2.x). It has

more or less same functionality of the Arduino Duemilanove, but in a

different package. It lacks only a DC power jack and works with a Mini-B

Universal Serial Bus (USB) cable instead of a standard one. The Nano was

designed and is being produced by Gravitech.

 Power

The Arduino Nano can be powered via the Mini-B USB connection 6-20V

unregulated external power supply (pin 30), or 5V regulated external power

supply (pin 27). The power source is automatically selected to the highest

voltage source.

 Memory

The Atmega168 has 16KB of flash memory for storing code and Atmega328

has 32KB. The Atmega168 has one KB of Static Random Access Memory

(SRAM) and 512 bytes of Electrically Erasable Programmable Read Only

Memory (EEPROM) and the Atmega328 has two KB of SRAM and one KB

of EEPROM.

 Input and output

There are totally 14 digital pins and 8 analog pins on Nano board:

 Digital pins

Each of the 14 digital on the the Nano can be used as input or output, using

pin mode(), digitalWrite() and digitalRead() functions. They operate at 5

volts. Each pin can provide or receive a maximum of 40mA and has an

internal pull-up resistor of 20-50 Kohms. In addition these pins apart from

serving their purpose can also be used for special purposes which are

discussed below:

27

 Serial (RX and TX): Pin (0) and pin (1) used to receive (RX) and

transmit (TX) TTL serial data. These pins are connected to the

corresponding pins of FTDI USB -to-TTL serial chip.

 External interrupts: Pin (2) and pin (3) can be configured to trigger an

interrupt on a low value, a rising or falling edge or change in value.

 Pulse Width Modulation (PWM): Pin (3, 6, 9, 10) provide 8-bit PWM

output with the analogWrite() function.

 Serial Peripheral Interface (SPI): These pins support SPI

communication which although provide by the underlying hardware, is not

currently included in the Arduino language.

 Light Emitting Diode (LED): There is a built-in LED connected to

digital pin (13). When the pin is high value, the LED is on, when the pin is

low, it is off.

 Analog pins

The Nano has 8 analog inputs, each of which provides 10 bits of resolution.

By default they measure from ground to 5 volt, though is it possible to change

the upper end of their range using the analog Reference() function.

Additionally, some pins have specialized functionality:

 I
2
C (SDA-SCL): Pin (4) and pin (5) support I

2
C (TWI) communication

using the write library.

 AREF: Reference voltage for the analog inputs.

 Reset: Bring this line low to reset the microcontroller. Typically used to

add a reset button to shield which block the board.

 Programming

The Arduino Nano can be programmed with the Arduino software. The

Arduino Nano is merely a set of C/C++ functions that can be called from the

code [10]. Once code is installed on the computer, USB is used to connect the

board with computer. Figure 3.6 shows the Arduino Nano pins functions.

28

Figure 3.6: Arduino Nano pins functions

3.3.3 DC motor

A DC motor works by converting electric power into mechanical work. This

is accomplished by forcing current through a coil and producing a magnetic

field that spins the motor. A DC motor is commonly used motor having two

input terminals, one is positive and the other is negative. If connect these

terminals with the voltage supply the motor will rotate. If change the polarity

then motor will be rotated in opposite direction. DC motor has a lot of

applications. It use in automation projects, for controlling static as well as

mobile robots, in transport system, in pumps, fans, bowers and for industrial

use as well. DC motor for making robots are light weight, high torque and

low Revolution per Minute (RPM). They can climb hills and have excellent

traction. Plus you can mount the wheel on either side of the motor with its

double sided output shaft [10]. The main specifications of the DC motor are:

29

- Motor voltage: 3-12V

- Motor current: 70mA (typical) – 250mA (max)

- Speed: Up to 170RPM

- Torque: up to 0.8Kg

- Gear ration: 1:48

Figure 3.7 shows the DC motor.

Figure 3.7: DC motor

3.3.4 L298 dual H-bridge motor driver

L298 H-bridge DC motor driver board using STʼ s l298N H-bridge DC motor

driver I
2
C which can be used to drive DC motors or bipolar stepper motors.

This driver board is small, light weight, but with a strong driver capability 2A

peak current and peak voltage of 46V. Driver performance can be increasing

by using a heat sink. Board has two current feedback detection interface to

take power within the logic selects the terminal, four pull-up resistor selection

terminal, 2-way and four-wire interfaces DC two phase stepper motor

30

interface, control motor direction indicator, four standard fixed mounting

holes. This driver board could be used with smart programmable trolley,

wheeled robots and variety of controllers [10]. The main specifications of the

L298 dual H-bridge motor driver are:

Driver: L298

Driver power supply: +5 - +46V

Driver Io: 2A

Logic power outputs Vss: +5 +7V (internal supply +5)

Logic current: 0 36mA

Controlling level: Low -0.3 1.5V, High 2.3 Vss

Max power: 25W

Driver weight: 48g

Other extensions such as current probe, controlling direction indicator, pull-

up resistor switch, logic, logic part power supply [12]. Figure 3.8 shows the

L298 dual bridge driver.

Figure 3.8: L298 dual bridge driver

31

3.3.5 Jumper wires

Jumper wires are used to make the connections between all of the

components. Use small pieces of the jumper wires in order to give a better

look to the designed circuit. Longer wires create complexity and cause many

problems while operating the circuit.

3.4 Software System

Software system describes the balancing of the two wheeled robot and

designing of the PID controller. The software development is the hardest the

most time consuming part of the project. It involves the simulation of the PID

controller in MATLAB to get optimum value Kp, Ki and kd. Then controller

will be integrated into the hardware.

3.4.1 Balancing

The balancing software is based on the simple algorithm is shown in Figure

3.9. The program starts with reading all the value of the state variable

(position, velocity, tilt angle). These are needed to determine the control

signal. The state variables are measured with the different sensors on robot as

stated above. If the state variables are all zero, then the control signal will

become zero as long as the reference signals (position and tilt angle) are zero,

because there is no need for driving the motors if the robot is already

balanced. However, if any of the state variables become non-zero there is a

need for driving the motors to stabilize and to balance the robot. This makes

the next step in the algorithm important, the calculation of the control signal.

The control signal is calculated using a specified control method. There are

different controls strategies to choice in this project will be used PID

controller. When the signal is determined it is applied to both motors in order

to make the wheels turn equally and make the robot balance. This process is

iterated as long as the robot should be balancing.

32

Figure 3.9: The conceptual design of the balancing software

3.4.2 MATLAB and SIMULINK

 MATrix LABoratoryis (MATLAB) a language for technical computing

developed by the Mathworks, Inc. It provides a single platform for

computing, visualization, programming and software development. All

problems and solutions in MATLAB are expressed in notation used in linear

algebra and essentially involve operations using matrices and vectors.

MATLAB can be used to solve problems in control systems. Simulink is a

tool for modeling, simulating and analyzing multi domain dynamic systems.

Its primary interface is a graphical block diagramming tool and a

customizable set of block libraries. Simulink is widely used in control theory

and digital signal processing for multi domain simulation and design [13].

3.4.3 Inter-intergrated circuit interface

Inter-Intergrated Circuit (I
2
C ptonounced I- squared- C) is a 2 wire serial bus

typically used to communicate with sensors and other small components. The

33

two lines of the I
2
C bus are SDA (data) and SCL (clock) which can be run in

parallel to communicate with several devices at once. I
2
C allowsup to 112

“slave“ devices to be controlled by single “master”.

Each slave device on the bus must have it is own unique adress so the master

can communicate directly with the intended device. Both master and slave

can transfer data over the I
2
C bus but that transfer is always controlled by the

master. These addresses are typically hard- coded into the slave device, but

often allow it to be changed by simply pulling one of pins of the sensor high

or low. This allows more than one of the same device to be on the same bus

without conflicting adresses [10].

34

CHAPTER FOUR

SYSTEM IMPLEMENTATION AND RESULTS

34

CHAPTER FOUR

SYSTEM IMPLEMENTATION AND RESULTS

4.1 System Implementation

There are two main electronic systems that were used to conduct this

research; first one is the robot itself as independent unit, second unit is how to

balance this robot by using Arduino Nano to control the robot using PID

controller. To design this model of the two wheeled robot there are many

steps are done for balancing the robot.

4.1.1 Connection diagram

There are many compounds systems that are used to design this model of the

two wheeled robot MPU6050, two DC motor, L298 H-bridge and Arduino

Nano to connect diagram of these compounds of the two wheeled robot , there

are many steps are used to connect the diagram first the MPU6050 is

connected to the Arduino Nano. Five connections of MPU6050 have done the

power supply (Vcc) and ground of MPU6050 to +5V and ground of Arduino.

SCL and SDA pins of MPU6050 are connected with Arduino analog pins (A4

and A5). INT pin of MPU6050 is connected to interrupt 0 of Arduino (D2).

Second L298 H-bridge is connected to Arduino to inverse the direction of

current flow through the motor. The enable A and enable B pins are

connected to Arduino digital pins (D3 and D6) to enable and control the speed

of the two motors. The input 1 and input 2 pins of L298 are connected to

Arduino digital pins (D4 and D5) to control the rotation direction of the motor

A, and input 3 and input 4 are connected to Arduino digital pins (D7 and D8)

to control the rotation direction of the motor B. Finally the output 1 and

output 2 of L298 are connected to motor A and the output 3 and output 4 of

L298 are connected to motor B. Figure 4.1 is shown all the connection

diagram of the two wheeled robot.

35

Figure 4.1: Connection diagram of the two wheeled robot

4.1.2 Building the robot

A design of the two wheeled robot consists from a two wheels and chassis.

The chassis holds two motors each driver a wheel. The motors are mounted

on the chassis shown in Figure 4.2.

Figure 4.2: Robot frame with tow DC motors

36

The chassis also holds the main circuit which consist from the sensor

(MPU6050) and controller (Arduino Nano) shown in Figure 4.3.

 Figure 4.3: Main circuit board Arduino Nano and MPUO6050

Power supply and driver (L298) are connected to the chassis. Figure 4.4

shown the finally design of the two wheeled balancing robot.

Figure 4.4: Finally design of the two wheeled balancing robot

37

4.1.3 Operation system

In the loop section the potentiometer value is read and the map value is get

from 0 to 1023, to a value from 0 to 255 for PWM signal. Analogwrite

function is sent the PWM signal to enable pin of the L298 board, which

actually drives the motor. The input 1 and input 2 pins are used for controlling

the rotation direction of the motor A and input 3 and input 4 for the motor B.

These pins are controlled the switches of H-bridge inside the L298N IC

shown in Figure 4.5. If input 1 is LOW and input 2 is HIGH the motor will

move forward and vice versa, if input 1 is HIGH and input 2 is LOW the

motor will move backward. In case both inputs are same, either LOW or

HIGH the motor will stop. The same applies for the inputs 3 and 4 for the

motor B.

Figure 4.5: Simple H-bridge

38

In this thesis the input (which is the desired tilt, in degrees) is set by software.

The MPU6050 is read the current tilt of the robot and feeds it to the PID

controller, which performs calculations to control the motor and keep the

robot in upright position. To find the PID parameters (Kd, Ki, Kd) there are

many step first Kp, Ki and Kd are maked equal to zero. Second Kp is adjusted,

too little Kp will make the robot fall over, because there is not enough

correction and too much Kp will make the robot go back and forth wildly. A

good enough Kp will make the robot go slightly back and forth (oscillate

little). Third the Kp is set, Kd is adjusted, A good Kd value will lessen the

oscillations until the robot is almost steady, also the right amount of Kd will

keep the robot standing, even if pused. Finally the Ki is set, the robot will

oscillate when turned on, even if the Kp and Kd are set, but will stabilize in

time and the correct Ki value will shorten the time it takes for the robot to

stabilize [13].

4.2 System Results

The result answers to goals of the thesis set in the purpose section. It covers

the all the result of system, from the early simulation results to the

construction, programming and final functions of the robot.

4.2.1 MATLAB/SIMULINK

From the state-space model show in Equations (3.12) and (3.13) and the

parameter is shown in Table 3.1, the model of the two wheeled robot for

MATLAB/SUMILINK is performed in Figure 4.6. The angle of the inverted

pendulum is initial by 0.5rad. The output of integrator 3 and integrator 4 are

the input of the two functions system. PID is added to control the position of

the pivot. In this step PID need not change any more. The parameters of PID

controller of the inverted pendulum are given as following: PID: Kp=39,

Ki=23.8, Kd=3. Figure 4.7 is shown the output response of the two wheeled

robot using PID controller and Figure 4.8 is shown the output of angle.

39

Figure 4.6: MATLAB/SIMULINK model of the two wheeled robot

 Figure 4.7: The output response of the robot using PID

40

Figure 4.8: Output of the angle (θ)

41

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

41

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The two wheeled robot system provides higher level of mobility and

maneuverability. The application of the two wheeled balancing robot varies

with environment and requirements. Understanding the classical theory of

inverted pendulum and its dynamic system are initial steps for developing two

wheeled robot. Safety and robustness of two wheeled products are so

important and these aspects are achieved by employing accurate sensor and

designing a precise control unit. This study has resulted in building emphasis

a working balancing mobile robot on two wheels. The robot successfully

balancing and driven using PID controller digital control algorithm optioned

for solving inverted pendulum controller system problem with reduced

oscillations and improved stability.

5.2 Recommendations

There are two different ways to begin develop this study. One is take a few

steps back and start with evaluating the mathematical model more closely and

the gather even more knowledge about the most simple balancing systems. In

this step the work can go on and after a while reach more complex and

interesting control systems and more relevant results and functions. Another

would be to evaluate the robot as it is right now and see how the current

modeling, programming, construction and tuning could be improved. When

the robot is functioning as expected and the goals of the project have been

fulfilled, there are plenty of ways to continue the study. Can be used many

types for controlling this study LQR, fuzzy logic, pole-placement and neural

networks.

42

REFERENCES

[1] A. Demetlika, “Self-Balancing Mobile Robot Tilter”, Vol. 3, pp. 23-32,

2012.

[2] J. R. Leigh, “Control Theory - A Guided Tour- Institution of Engineering

and Technology Control”, London, 3
rd

.Ed; 2012.

[3]T. Glad and L. Ljung, “Control Theory: Multivariable and Nonlinear

Methods”, Taylor and Francis, 1
st
.Ed; 2000.

[4] R. C. Rorf and R. H. Bishop, “Modern Control Sytems”, 10
th

.Ed; New

Jersey, 2015.

[5] Thomas. R.Kurfess, “Robotics and Automation Handbook”, Toylar and

Francis, 2005.

[6] M. W. Spong, S.Hutchinson and M. Vidyasagar, “Robot Modeling and

Control”, Wiley, 2006.

[7] Johan. W. Webb and Ronald. A.Resis, “Programmable Logic Controllers:

Principles and Applications”, Prentice Hall, 4
th

.Ed; 1999.

[8] A. N. K. Nasir, M .Z. M. Tumari, and M. R. Ghazali, “Performance

Comparison between Sliding Mode Controller and PID Controller for a

Highly Nonlinear Two-Wheeled Balancing Robot”, pp. 1403-1408, Nov.

2012.

[9] R. M. Miller, “A Long Range Predictive PID Controller with Application

to an Industrial Chemical Process”, IEEE Xplore Digital Library. 1997.

[10] S. Kalra, D. Patel and K. Stol, “Design and Hybrid Control of a Two

wheeled Robotic Platform”, New Zealand, 2004.

[11] B. Mahler and J. Haase, “Mathematical Model and Control Strategy of

Two Wheeled Self Balancing Robot”, Germany, 2013.

43

[12] F. Grasser. Dʼ arrigo, A. Colombi. S and A. C. Rufer, “A Mobile

Inverted Pendulum”, IEEE Transactions on Industrial Electronic, Vol. 49,

No.1, pp. 107- 114, Feb. 2002.

[13] W. An, Y. Li and S. Member, “Simulation and Control of a Two

Wheeled Self Balancing Robot”, pp. 456-461, Dec. 2013.

44

APPENDEX

THE CODE

#include <PID_v1.h>

#include <LMotorController.h>

#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

#include "Wire.h"

#endif

#define MIN_ABS_SPEED 20

MPU6050 mpu;

// MPU control/status vars

booldmpReady = false; // set true if DMP init was successful

uint8_tmpuIntStatus; // holds actual interrupt status byte from MPU

uint8_tdevStatus; // return status after each device operation (0 = success, !0 = error)

uint16_tpacketSize; // expected DMP packet size (default is 42 bytes)

uint16_tfifoCount; // count of all bytes currently in FIFO

uint8_tfifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars

Quaternion q; // [w, x, y, z] quaternion container

VectorFloat gravity; // [x, y, z] gravity vector

floatypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector

//PID

doubleoriginalSetpoint = 179.7;

45

doublesetpoint = originalSetpoint;

doublemovingAngleOffset = 0.1;

double input, output;

//adjust these values to fit your own design

doubleKp = 60;

doubleKd = 1.9;

double Ki = 200;

PID pid(&input, &output, &setpoint, Kp, Ki, Kd, DIRECT);

doublemotorSpeedFactorLeft = 0.6;

doublemotorSpeedFactorRight = 0.6;

//MOTOR CONTROLLER

int ENA = 3;

int IN1 = 5;

int IN2 = 4;

int IN3 = 8;

int IN4 = 7;

int ENB = 6;

LMotorControllermotorController(ENA, IN1, IN2, ENB, IN3, IN4, motorSpeedFactorLeft,

motorSpeedFactorRight);

volatileboolmpuInterrupt = false; // indicates whether MPU interrupt pin has gone high

voiddmpDataReady()

{

mpuInterrupt = true;

46

}

void setup()

{

// join I2C bus (I2Cdev library doesn't do this automatically)

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

Wire.begin();

TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)

#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE

Fastwire::setup(400, true);

#endif

Serial.begin(9600);

mpu.initialize();

devStatus = mpu.dmpInitialize();

// supply your own gyro offsets here, scaled for min sensitivity

mpu.setXGyroOffset(34);

mpu.setYGyroOffset(34);

mpu.setZGyroOffset(-14);

mpu.setZAccelOffset(1135); // 1688 factory default for my test chip

// make sure it worked (returns 0 if so)

if (devStatus == 0)

{

// turn on the DMP, now that it's ready

mpu.setDMPEnabled(true);

// enable Arduino interrupt detection

attachInterrupt(0, dmpDataReady, RISING);

47

mpuIntStatus = mpu.getIntStatus();

// set our DMP Ready flag so the main loop() function knows it's okay to use it

dmpReady = true;

// get expected DMP packet size for later comparison

packetSize = mpu.dmpGetFIFOPacketSize();

//setup PID

pid.SetMode(AUTOMATIC);

pid.SetSampleTime(15);

pid.SetOutputLimits(-200, 200);

}

else

{

// ERROR!

// 1 = initial memory load failed

// 2 = DMP configuration updates failed

// (if it's going to break, usually the code will be 1)

Serial.print(F("DMP Initialization failed (code "));

Serial.print(devStatus);

Serial.println(F(")"));

}

}

void loop()

{

// if programming failed, don't try to do anything

if (!dmpReady) return;

48

// wait for MPU interrupt or extra packet(s) available

while (!mpuInterrupt&&fifoCount<packetSize)

{

//no mpu data - performing PID calculations and output to motors

pid.Compute();

motorController.move(output, MIN_ABS_SPEED);

}

// reset interrupt flag and get INT_STATUS byte

mpuInterrupt = false;

mpuIntStatus = mpu.getIntStatus();

// get current FIFO count

fifoCount = mpu.getFIFOCount();

// check for overflow (this should never happen unless our code is too inefficient)

if ((mpuIntStatus& 0x10) || fifoCount == 1024)

{

// reset so we can continue cleanly

mpu.resetFIFO();

Serial.println(F("FIFO overflow!"));

// otherwise, check for DMP data ready interrupt (this should happen frequently)

}

else if (mpuIntStatus& 0x02)

{

// wait for correct available data length, should be a VERY short wait

while (fifoCount<packetSize) fifoCount = mpu.getFIFOCount();

// read a packet from FIFO

49

mpu.getFIFOBytes(fifoBuffer, packetSize);

// track FIFO count here in case there is > 1 packet available

// (this lets us immediately read more without waiting for an interrupt)

fifoCount -= packetSize;

mpu.dmpGetQuaternion(&q, fifoBuffer);

mpu.dmpGetGravity(&gravity, &q);

mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

input = ypr[1] * 180/M_PI + 180;

Serial.println(input);

}

}

