DEDICATION

To my Husband

To my Family
Acknowledgement

I would like to express my deep appreciation for my supervisor Professor Nafie Abdellatif for supervising this research and for his continuous guidance during the course. Also my thanks are extended for my co-supervisor Professor M. Ali Hussein for his kind assistance and support. I have also benefited by advice and guidance from prof Adam who also always kindly grants me his time even for answering some of my unintelligent questions about beam lines and chemical catalysis issues.

Many thanks go in lap research to Ustaz Babicker and to Sffa. Also thank Mohamed’s family for accepting me as a member of the family, warmly. Furthermore, to Haj Awadalla with his thoughtful support, thank you.

Special thanks to my husband M.osman for his unlimited patience and lovely caring for our children during the course. Thanks to everyone who assisted willingly to make this research a reality.

Yasmeen Hafiz
Contents

Dedication..i
Acknowledgement...ii
Contents...iii
List of tables..vi
List of figures...vii
Abstract (English)...x
Abstract (Arabic)...xi

Chapter One
Introduction and Basic Concepts
1.1 Introduction...1
1.2 Definition of laser..1
1.3 Absorption ..2
1.4 Spontaneous emission ...2
1.5 Stimulated emission ..3
1.6 Population inversion ..4
1.7 Laser active medium ..4
1.8 Pumping source ..4
1.9 Feedback mechanism ...5
1.10 Properties of lasers ..5
1.10.1 Coherence ..5
1.10.2 Monochromaticity ...6
1.10.3 Directionality ..6
1.10.4 High power and radiance ..7
1.11 Common types of lasers ...7
1.11.1 Solid state lasers ..7
1.11.2 Gas lasers ...8
Chapter Two
Experimental Part
2.1 Introduction...13
2.2 Materials...13
2.2.1 Zinc oxide (ZnO)...13
2.2.1.1 Physical properties...13
2.2.1.2 Chemical properties...14
2.2.2 Iron oxide (Fe₂O₃)...14
2.2.2.1 Physical properties...15
2.2.2.2 Chemical properties...15
2.2.3 Phenols...15
2.2.3.1 Physical properties...16
2.2.3.2 Chemical properties...16
2.2.3.3 Health and environmental effects of phenol..............18
2.3 Equipments, tools and setup..19
2.3.1 UV laser source...19
2.3.2 Light emitting diode (LED)...20
2.3.3 Quartz cell...21
2.3.4 The magnetic stirring...22
2.3.5 UV/Visible spectrophotometer..................................22
2.4 Experimental procedure..23
Chapter Three

Results and Discussion

3.1 Introduction..............................25
3.2 Spectrum of phenol in 100 ml water with neither semiconductor nor irradiation ..25
3.3 Phenol degradation using UV laser.................................26
3.4 Spectra of phenol and Fe_2O_3 after irradiation by LED for different time ...27
3.5 Spectra of phenol and Fe_2O_3 with different LED beam diameters...30
3.6 Spectra of phenol mixed with different amounts of Fe_2O_3 after the irradiation by LED..32
3.7 Spectra of phenol and ZnO after irradiation by LED for different times...33
3.8 Spectra of phenol with different amounts of ZnO after irradiation by LED...35
3.9 Discussion..36
3.10 Conclusions..39
3.13 Recommended for future work.................................39

References...40

List of tables
Table (3.1): The absorption intensity peak without and with irradiation by UV laser beam and (600 mg) of ZnO semiconductor.

Table (3.2): The absorption intensity of phenol and Fe_2O_3 (300mg) with diameter 4 cm for different exposure times.

Table (3.3): The absorption intensity peaks of phenol and Fe_2O_3 (400mg) with diameter 2.3 cm for different exposure times.

Table (3.4): The absorption intensity of phenol and Fe_2O_3 (400mg) irradiation with 15 minutes with different beam diameters.

Table (3.5): The absorption intensity peaks of phenol and Fe_2O_3 (400mg) with 20 minutes exposure time for different beam diameters.

Table (3.6): The absorption intensity of phenol and different weight of Fe_2O_3 with constant diameter and constant exposure time.

Table (3.7): The absorption intensity of phenol with ZnO (400 mg) with diameter 4 cm and for different exposure times.

Table (3.8): The absorption intensity of phenol and ZnO (600 mg) with diameter 2.3 cm for different exposure times.

Table (3.9): The absorption intensity peaks of phenol using different weight of ZnO with constant diameter 2.3 cm and exposure time.
List of figures

Figure (1.1) Laser simplest form .
Figure (1.2) Absorption process diagram .
Figure (1.3) Spontaneous emission phenomena .
Figure (1.4) The stimulated emission from excited level .

Figure (1.5) Coherent light waves.
Figure (1.6) Incoherent light waves.
Figure (1.7) Comparison between the wavelengths emitted from normal light source and laser source.
Figure (1.8) Comparison between the directionality of the light emitted from a laser light source and normal light source.
Figure (1.9) Electron energetics for a photocatalytical reaction .

Figure (2.1) Chemical structure of phenol.
Figure (2.2) Block diagram of the two setups used in this work.
Figure (2.3) UV laser, quartz cell and nonlinear crystal.
Figure (2.4) UV LED with 395nm.
Figure (2.5a) First Quartz cell.

Figure (2.5b) Second quartz cell.

Figure (2.6) The UV/Visible spectrophotometer.

Figure (3.1) The absorption spectrum of pure phenol in 100 ml water without any irradiation or semiconductor added.

Figure (3.2) The absorption spectrum of phenol and 600 mg of ZnO with and without irradiation by UV laser for 15 minutes.

Figure (3.3) The absorption spectra of phenol mixed with 300 mg Fe$_2$O$_3$ irradiated by LED with 4 cm beam for different exposure times.

Figure (3.4) The absorption spectra of phenol mixed with 400 mg Fe$_2$O$_3$ irradiated by LED with 2.3 cm beam for different exposure times.

Figure (3.5) The absorption of phenol mixed with constant weight with 400 mg Fe$_2$O$_3$ for different beam diameters (2.3 and 4 cm).

Figure (3.6) The absorption of phenol mixed with constant weight of 400 mg Fe$_2$O$_3$ for different beam diameters (2.3 and 4 cm).

Figure (3.7) The absorption of phenol mixed with different amount of Fe$_2$O$_3$ (300 and 600 mg).
Abstract

In this research study, a simple and active photo-catalysis system was assembling. It consists of a UV monochromatic light
source, quartz cell (which is transparent to UV) to hold the sample and magnetic stirrer. The functions of the light source are: (i) to achieve photo activation of the chemical reactions (ii) to obtain certain chemical yields (iii) removing toxic phenol out of water. The later was achieved by adding a semiconductor material to stimulate the chemical reactions of materials as they interact with the applied light, simulation of the state existence the phenol in wastewater. The semiconductors were Iron Oxide and Zinc Oxide with different weights. In this work laser light producing 532 nm with BBO non-linear crystal producing UV laser with 266nm, and a LED of $\lambda = 375$ nm were used. Absorption spectra of samples were recorded before and after irradiation. The influence of the interacted material weights, diameter of the monochromatic light, exposure time were studied. The later parameters were investigated to optimize conditions needed to completely remove phenol. It is shown from this study that phenol removal is increased when increasing weight of the stimulating material (semiconductor), exposure time, and light beam diameter. It is shown that the best result was attained at 30 minutes exposure time, 600 mg of the Fe_2O_3 and 2.3 cm diameter of light. The samples which were exposed to laser irradiation showed less efficiency as compared to those exposed to light emitted diode irradiation. This is due to the higher power of LED (1watt) as compared to the 6mW of the laser power.

المستخلاص
في هذا البحث تم تجميع منظومه بسيطة وفعاله تتكون من مصدر ضوئي احادى الطول الموجي في المنطقه الفوق البنفسجيه من
الطيف وخلية كوارتز لامعًا وشاعرًا فوق بنفسه وحرك مغناطيسي لأحداث تنشيط ضوئي للتفاعلات الكيميائية، وتوجه سير التفاعل الكيميائي ضوئيًا للحصول على نواتج محددة من التفاعلات الكيميائية. وازالة نواتج أخرى ومنع حدوثها، وقد كان الهدف من العمل هو إزالة مادة الفينول السامة من الماء وذلك بأضافة مادة من أشباه الموصلات كمحفز للتفاعل الكيميائي محاكاة لحالة وجود الفينول في الماء الملوث.

تم استخدام مادتي أكسيد الحديد وأكسيد الزنك كأشباه موصلات للتحفيز الضوئي وبأوزان مختلفة.

تم استخدام نوعين من المصادر الضوئية في المنطقة فوق البنفسجية احدهما مشاكله، طوله الموجي 662 نانومتر وهو التوافقية الثانية الناتجة من ليزر الثنائي ذي الطول الموجي 532 نانومتر. باستخدام بلوره بصري غير خطيه من مادة BBO. والمصدر الثاني هو الثنائي الباعث للضوء ذي الطول الموجي 395 نانومتر. سجلت اطيف الفينول لعينات من الفينول والماء ومادة شبه الموصله قبل وبعد التشعيع وتم دراسة اثر وزن المادة شبه الموصله واثر قطر حزمة المصدر الضوئي. اثر زمن ت_HERE

بنت نتایج هذه الدراسة أنه بزيادة وزن المادة المحفزة (شبه الموصل) وزيادة زمن تعرض المادة المحفزة للضوء، ونقصان قطر ضوء أحادي اللون المحفز، تزداد فعالية أزالة الفينول السام من الماء.
بينت النتائج كذلك ان أفضل قيم للمعاملات التي حدثت عندها
ازالة تامه للفينول كانت عند زمن تشعيع 30دقيقه بالثنائي الباعث
للضوء، 600 ملجرام من وزن مادة اكسيد الحديد، 2.3 سنتيمتر
قطرالشعاع.
اعتلت النتائج المتحصله من التشعيع بالليزر كفاءه أقل من تلك المتحصله
بالتشعيع بالثنائي وذلك نسبة الى القدرة الواطه للليزر (6mW) مقارنة
بقدرة الثنائي (1W)