قال تعالى:

{ وَتَرَى الْجِبَالَ تَحْسِبُهَا جَامِدَةً وَهِيَ تَمْرِرَ الْسَّحَابَ صَنَعَ الَّذِي اتقن كُلَّ شَيْءٍ اِنَّهُ خَبِيرٌ بِمَا تَفْعَلُونَ }

صدق الله العظيم

النمل - الآية 88
DEDICATION

To my Mother

To my Father’s Soul

To my husband

To my children’s

To my brothers and Sisters

To my Friends
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Professor Abd Elrahman Elzubair. I am greatly indebted to him for the challenges he has placed upon me as well as his invaluable guidance throughout this research.

I would also like to thank my parent’s, brothers and sisters for their support and care provided to me throughout my education. Their support has been invaluable and the reason I have succeeded to be where I am today as a person and scholar.

I am grateful to my lovely husband Dr. Ibrahim Younis, Plastic Engineering Department, for his valuable suggestions, encouragement, kind help and support for carrying out this work.

I finally would like to thank my friends in Sudan University of Science and Technology.
ABSTRACT

This study presents an evaluation of use of the cement waste as chemical stabilizers and recycling fiber glass wastes and plastic waste (PET Bottles) as soil reinforcement, for improving the strength and stability of soils. An experimental program was conducted to investigate the effect of materials waste and evaluate the efficiency of their use on clay soil as stabilizers, this was achieved based on a study of the effect of materials waste on the properties of clay soil such as optimum moisture content (OMC), maximum dry density and shear strength parameters (cohesion\(c\) and angle of friction \(\phi\)). The aim was to determine the optimum content of each of these materials waste and consequently, to reduce the pollution which results from accumulation of (plastics waste (PET: Polyethylene Teraphathalate), fiber glass and cement waste). A series of laboratory compaction, triaxial and California Bearing Capacity (CBR) tests were carried out.

Various percentages of cement waste (3, 6, 9, 12 and 15%) of dry weight of soil was added to clay soil and tested. Also soil was reinforced randomly by different percentage (0.5, 1.5, 3, 6, 9 and 12 %) of dry weight of soil by fiber glass (length 10-30mm) and Plastic (PET) bottles strips waste (length and width (5-10mm)). Soil specimens were compacted at maximum dry density.

Results of soil treated by cement waste indicate that addition of cement waste increased the shear strength (385.38 \(mPa\) at age 2hours) and CBR ()to a maximum value for up to 9% addition, when the percentage of addition of cement waste was equal to or greater than 9% soil became non plastic. The OMC decreased with an increase of more than 12% of cement
waste content. The dry density of the soil decreased from 1.56 to 1.48 g/cm^{3} with an increasing of cement waste content.

Results of soil reinforced by fiber glass and PET bottle indicate that an increasing of fiber glass and plastic bottle content decreased the maximum dry density and increased the OMC. The highest increase in strength value (386.82 mPa) was achieved when the soil was reinforced by 3.0% of fiber glass content and (386 mPa) when the soil was reinforced by 1.5% of plastic bottle content and the highest CBR value was achieved at 3.0% of fiber glass and PET bottle content respectively.

The highest CBR value was 8.3 times the CBR of natural clay soil for soil treated by cement waste, 3.6 times the CBR of natural clay soil for soil reinforced by fiber glass and 2.1 times the CBR of natural clay soil for reinforced by PET bottle waste.

As a result of this study it is recommended to use not more than 9% of cement waste, 3% fiber glass waste and (1.5% to 3%) PET bottle waste as stabilizers to improve the shear strength and CBR of clayey soil.
المستخلص

تعرض هذه الدراسة تقييم استخدام مخلفات الأسمنت كمثبت كيميائي و مخلفات الفاير قلاس و البلاستيك (زجاجات البولي إيثيلين ترفثلات) كمادة تسليح للترة الطينية لتحسين مقاومة و استقرار التربة. تم عمل إختبارات معملية لنقيم أثر استخدام مخلفات المواد و كفاءتها كمثبت للترة الطينية و هذا اعتمادا على دراسة أثر مخلفات المواد على خواص التربة الطينية مثل المحتوى المائي الأمثل (OMC) و الكثافة الجافة القصوى (MDD) و معاملات القص (التماسك (c) و زاوية الإحتكاك (φ) . و بالتالي تقليل التلوث الناتج من تراكم مخلفات البلاستيك و الفاير قلاس و الأسمنت. تم إنجاز سلسلة من فحوصات الدمك، الضغط الثلاثي المحاور و نسبة تحميل كاليفورنيا.

تمت إضافة نسبة مختلفة من مخلفات الأسمنت (3،6،9 و 15)% من الوزن الجاف للتربة للترة الطينية و تم اختبارها في عمر ساينتين و ثلاثة أيام. أيضا تم تسليح التربة على شكل مختلفة الأسمنت (0.5،1،5،3،6 و 9)% من الوزن الجاف للتربة) بالفاير قلاس (الطول من 10 إلى 30) مم و مخلفات البلاستيك (زجاجات البولي إيثيلين ترفثلات) (الطول و العرض (5-10) مم). عينات التربة تم دمكها عند الكثافة الجافة القصوى.

تشير نتائج التربة المحملة بالأسمنت إلى أن إضافة مخلفات الأسمنت تزيد من مقاومة التربة للقص و نسبة تحميل كاليفورنيا حتى قيمة مضافة تساوي 9%، وعندما نسبة المضاف من مخلفات الأسمنت تساوي أو أكبر من 9% تصبح التربة غير قادرة. المحتوى المائي الأمثل يقل مع زيادة مضافة أكثر من 12% من مخلفات الأسمنت. الكثافة الجافة القصوى تقل من 1.56 إلى 1.48 جم/سم³ مع زيادة مخلفات الأسمنت.

تشير نتائج التربة المسلحة بمخلفات ألياف الفاير قلاس و زجاجات البولي إيثيلين ترفثلات إلى أن زيادة ألياف الفاير قلاس و زجاجات البولي إيثيلين ترفثلات تقلل من الكثافة الجافة القصوى و تزيد المحتوى المائي الأمثل. أقصى قيمة في زيادة المقاومة يتحصل عليها عندما يتم تسليح التربة ب 3% من مخلفات الفاير.
قياس و 1.5% من مخلفات زجاجات البولي إيثيلين ترفثلات و أقصى قيمة في نسبة تحميل كاليفورنيا تتحصل عليها عند نسبة 3% من مخلفات الفايبر قلاس و زجاجات البولي إيثيلين ترفثلات على التوالي.

أقصى قيمة بنسبة تحميل كاليفورنيا تساوي 8.3 أضعاف نسبة تحميل كاليفورنيا للتربة الطينية الطبيعية للتربة المحشونة بمخلفات الأسمنت، 3.6 أضعاف نسبة تحميل كاليفورنيا للتربة الطينية الطبيعية للتربة المسلحة بمخلفات الفايبر قلاس و 2.1 أضعاف نسبة تحميل كاليفورنيا للتربة الطينية الطبيعية للتربة المسلحة بمخلفات زجاجات البولي إيثيلين ترفثلات.

نتائج هذه الدراسة توصي بعدم استخدام أكثر من 9% من مخلفات الأسمنت و 3% من مخلفات الفايبر قلاس و 1.5% إلى 3% من مخلفات زجاجات البولي إيثيلين ترفثلات كمثبت للتربة لتحسين مقاومة القص و نسبة تحميل كاليفورنيا للتربة الطينية.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>الآية</td>
<td>Acknowledgement</td>
</tr>
<tr>
<td></td>
<td>Dedication</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
</tr>
<tr>
<td>المستخلص</td>
<td>Table of Content</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
</tr>
<tr>
<td></td>
<td>Symbols and abbreviations</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.2</td>
<td>Statement of the Research Problem</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives of Study</td>
</tr>
<tr>
<td>1.4</td>
<td>Methodology of Study</td>
</tr>
<tr>
<td>1.5</td>
<td>Thesis Outline</td>
</tr>
</tbody>
</table>

CHAPTER TWO: LITERATURE REVIEW

Part One: Soil Stabilization

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Definition of Soil Stabilization</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Mechanisms of stabilization</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Guidelines for Stabilizer Selection</td>
</tr>
</tbody>
</table>

~ VIII ~
3.2.4 Cement Kiln Dust.. 49
3.2.3 Fiber Glass Waste... 51
3.2.2 Plastic Waste.. 52
3.3 Test Program... 55
3.4 Preparation of Soil Mixes.. 56

CHAPTER FOUR: RESULTS AND DISCUSSIONS
4.1 Introduction... 58
4.2 Density of Clay Soil and Stabilizers Materials.. 58
4.3 Liquid and Plastic Limits... 58
4.4 Particle Size Distribution... 59
4.5 Standard Proctor Compaction Test.. 62
4.5.1 Clay soil.. 62
4.5.2 Soil and Soil Treated by Cement Waste.. 63
4.5.3 Clay Soil Reinforced by Fiber Waste... 66
4.5.4 Clay Soil Reinforced by PET Waste.. 70
4.6 Triaxial Test Results.. 75
4.6.1 Clay Soil.. 75
4.6.2 Soil and Soil Treated by Cement Waste.. 76
4.6.3 Clay Soil Reinforced by Fiber Waste... 84
4.6.4 Clay Soil Reinforced by PET Waste.. 93
4.7 CBR Test Results... 101
4.7.1 Clay Soil.. 101
4.7.2 Soil and Soil Treated by Cement Waste.. 102
4.7.3 Clay Soil Reinforced by Fiber Waste... 106
4.7.4 Clay Soil Reinforced by PET Waste .. 109
4.8 Swelling Results ... 112

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary ... 114
5.2 Conclusions ... 114
5.2 Recommendations .. 117
References ... 119
Appendixes .. 131
LIST OF TABLES

Table 2.1: Possible usage of industrial waste products..........................18

Table 2.2 Typical Composition of Cement Kiln Dust24

Table 2.3 Examples of thermoplastics and thermoplastics and Thermosetting...41

Table 2.4 Compositions of waste tire cord.................................43

Table 3.1: Properties of Soil...49

Table 3.4: Chemical Composition of the cement kiln dust........50

Table 3.5: Properties of the cement kiln dust..............................50

Table 3.3 Properties of Fiber Waste..51

Table 3.2 Properties of Plastic Waste (PET Bottle) Strips.............55

Table 4.1: Results of Density of soil and waste materials according to ASTM D 792...58

Table 4.2: Results of liquid and plastic Limit.............................59

Table 4.3: Results of sieve analysis test (clay soil).......................61

Table 4.4: Results of compaction test (different % of cement Waste)......63

Table 4.5: Results of compaction test (Different % s of Fiber Waste......67

Table 4.6: Results of compaction test (Different % s of PET Waste).......71

Table 4.7: Results of compaction test. (Clay soil, cement waste, fiber waste and PET waste)..74

Table 4.8: Results of cohesion and Angle of friction (cement waste)......78

Table 4.9: Results of shear stress % of cement waste after 2 hours.......83

~ XII ~
Table 4.10: Results of cohesion and Angle of friction (fiber waste).........86
Table 4.11: Results of shear stress of 3 specemnts (fiber waste)...........92
Table 4.12: Results of cohesion and Angle of friction (PET waste).........93
Table 4.13: Results of shear stress of 3 specements (PET waste).........99
Table 4.14 Results of CBR test of soil treated by cement waste.........102
Table 4.15 Results of CBR test of soil reinforced by fiber glass waste...107
Table 4.16 Results of CBR test of soil reinforced by PET waste.........................108
Table 4.17 Results of swelling test of soil and soil stabilized by waste materials...113
LIST OF FIGURES

Fig 2.1 Decision tree for selecting stabilizers for use in subgrade soils….15
Fig 2.2 Decision tree for selecting stabilizers for use in Base materials….16
Fig.2.3: material acceptability tree...20
Fig 2.4: Different procedures of soil reinforcement..................................21
Fig. 2.5 Aridness cracking (X) unreinforced sample (Y) reinforced sample..22
Figure 2.6 Dust control device (Courtesy of Capitol Cement)..23
Fig 2.7 Polypropylene fiber...32
Fig.2.8 Natural fiber..36
Figure 2.9 MSW Generation Rates from 1960 to 2006 (EPA 2007, Municipal Solid Waste Generation, Recycling and Disposal in the United States)...42
Fig 2.10 Recycled textile fiber from used tires ...44
Fig 3.1: Clay soil (collection site)...48
Fig 3.2: Clay soil preparation (air dried sieve no 4).................................48
Fig 3.3: Quartering method ...48
Fig 3.4: samples of clay soil ...48
Fig 3.5: Collection of fiber waste...51
Fig 3.6: fiber waste used in the study...52
Fig 3.7: PET water and bottles...53
Fig 3.8: Collection of PET water and bottles Wastes..............................53

~ XIV ~
Fig 3.9: Sorting of PET water and bottles Wastes…………………………….53
Fig 3.10: Crushing of PET water and bottles ……………………………….54
Fig 3.11: washing of PET bottles……………………………………………..54
Fig 3.12: PET bottles used in the study……………………………………….55
Fig 3.13 Plain Soil mixed with fiber, Plastic Strips and cement waste………56
Fig 3.14 Fig 3.14 segregation and cracks on fiber glass samples………….57
Fig 4.1: Relation between the density and soil and materials waste……….58
Fig 4.2: Relation between MC and no of blows for clay soil………………..59
Fig4.3: Relation between MC and no of blows for clay soil + 3% cement…………………………………………………………………………60
Fig 4.4: Relation between MC and no of blows for clay soil + 6% cement waste………………………………………………………………………..60
Fig 4.5: Relation between MC and % of cement wastes………………….60
Fig 4.6: Relation between PI and % of cement wastes…………………….61
Fig 4.7: Sieve analysis chart …………………………………………………..62
Fig 4.8: Relation between dry density and moisture content (clay soil)…62
Fig 4.9: Relation between dry density and moisture content (soil+ 3% cement waste)…………………………………………………………….64
Fig 4.10: Relation between dry density and moisture content (soil+ 6% cement waste) ……………………………………………………………….64
Fig 4.11: Relation between dry density and moisture content (soil+ 9% cement waste) ……………………………………………………………….64
Fig 4.12: Relation between dry density and moisture content (soil+ 12% cement waste) ……………………………………………………………….65

~ XV ~
Fig 4.13: Relation between moisture content and dry density (soil+ 15% cement waste) ...65

Fig 4.14 Relation between moisture content and dry density (soil treated by different % of cement waste) ...65

Fig 4.15 Relation between OMC and % of cement waste 66
Fig 4.16 Relation between MDD and % of cement waste66
Fig 4.17 Relation between MC and DD (soil + 3% fiber waste)..............67
Fig 4.18 Relation between MC and DD (soil + 6% fiber waste).............68
Fig 4.19 Relation between MC and DD (soil + 9% fiber waste)68
Fig 4.20 Moisture content and dry density (soil + 12% fiber waste)68
Fig 4.21 Moisture content and dry density (soil + 15% fiber waste)69
Fig 4.22 Relation between moisture content and dry density69
Fig 4.23 Relation between OMC and % of fiber waste69
Fig 4.24 Relation between MDD and % of fiber waste70
Fig 4.25 Relation between MC and DD (soil +3% PET waste)71
Fig 4.26 Relation between MC and DD (soil +6% PET waste)71
Fig 4.27 Relation between MC and DD (soil +9% PET waste)72
Fig 4.28 Relation between MC and DD (soil +12% PET wastes)72
Fig 4.29 Relation between MC and DD (soil +15% PET wastes)72
Fig 4.30 Relation between DD and M C (soil + % of PET waste)73
Fig 4.31 Relation between OMC and % of PET waste73
Fig 4.32 Relation between MDD and % of PET waste73
Fig 4.33 Relation between OMC and % of materials waste74
Fig 4.34 Relation between MDD and % materials waste75
Fig 4.35 Relation between stress and strain (clay soil)76

~ XVI ~
Fig 4.36 Relation between shear and total stress (clay Soil)…………………………………………………………………………………..76
Fig 4.37 Relation between stress and strain (clay soil + 3% cement waste)………………………………………………………………….78
Fig 4.38 Relation between shear and total stress (clay Soil with 3% cement waste)……………………………………………………….79
Fig 4.39 Relation between stress and strain (clay soil with 6% cement waste)……………………………………………………………………79
Fig 4.40 Relation between shear and total stress (clay Soil with 6% cement waste)…………………………………………………………….79
Fig 4.41 Relation between stress and strain (clay soil with 9% cement waste)……………………………………………………………………80
Fig 4.42 Relation between shear and total stress (clay Soil with 9% cement waste)…………………………………………………………….80
Fig 4.43 Relation between stress and strain (clay soil with 12% cement waste)……………………………………………………………………80
Fig 4.44 Relation between shear and total stress (clay Soil with 12% cement waste)…………………………………………………………….81
Fig 4.45 Relation between stress and strain (clay soil with 15% cement waste)……………………………………………………………………81
Fig 4.46 Relation between shear and total stress (clay Soil with 15% cement waste)…………………………………………………………….81
Fig 4.47 Relation between cohesion and % of cement waste………………..82
Fig 4.48 Relation between angle of friction and % of cement waste……….82
Fig 4.49 Relation between shear stress and % of cement waste after 2 hours……………………………………………………………………………….83
Fig 4.50 Relation between compressive strength and % of cement waste..83

~ XVII ~
Fig 4.51 Shape of failure for soil treated by cement waste (buckling and cracks)...83
Fig 4.52 Relation between stress and strain (clay soil+ 0.5 fiber waste).....86
Fig 4.53 Relation between shear and total stress (clay Soil with 0.5% fiber waste)...86
Fig 4.54 Relation between stress and strain (clay soil with 1.5 fiber waste)..87
Fig 4.55 Relation between shear and total stress (clay Soil with 1.5% fiber waste)...87
Fig 4.56 Relation between stress and strain (clay soil with 3 %fiber waste)..87
Fig 4.57 Relation between shear and total stress (clay Soil with 3% fiber waste)...88
Fig 4.58 Relation between stress and strain (clay soil+ 6% fiber waste).....88
Fig 4.59 Relation between shear and total stress (clay Soil +6% fiber waste)..88
Fig 4.60 Relation between stress and strain (clay soil+ 9% fiber waste)....89
Fig 4.61 Relation between shear and total stress (clay Soil +9% fiber waste)..89
Fig 4.62 Relation between stress and strain (clay soil+ 12% fiber waste)...89
Fig 4.63 Relation between shear and total stress (clay Soil +12% fiber waste)...90
Fig 4.64 Relation between stress and strain (clay soil+ 15% fiber waste)..90
Fig 4.65 Relation between shear and total stress (clay Soil +15% fiber waste)...90
Fig 4.66 Relation between shear stress and % of fiber glass waste.......91
Fig 4.67 Relation between angle of cohesion and % of cement waste
Fig 4.68 Relation between angle of friction and % of fiber glass waste
Fig 4.69 Relation between compressive strength and % of fiber glass waste
Fig 4.70 Shape of failure on soil Reinforced by fiber glass waste (Cracks failure)
Fig 4.71 Relation between stress and strain (clay soil +0.5 PET wastes)
Fig 4.72 Relation between shear and total stress (clay Soil+0.5 PET waste)
Fig 4.73 Relation between stress and strain (clay soil +1.5 PET wastes)
Fig 4.74 Relation between shear and total stress (clay Soil+1.5 PET waste)
Fig 4.75 Relation between stress and strain (clay soil +3 PET wastes)
Fig 4.76 Relation between shear and total stress (clay Soil+3 PET waste)
Fig 4.77 Relation between stress and strain (clay soil +6 PET wastes)
Fig 4.78 Relation between shear and total stress (clay Soil+6 PET waste)
Fig 4.79 Relation between stress and strain (clay soil +9PET wastes)
Fig 4.80 Relation between shear and total stress (clay Soil+9 PET waste)
Fig 4.81 Relation between shear stress and % of PET waste
Fig 4.82 Relation between cohesion and % of PET waste
Fig 4.83 Relation between angle of friction and % of PET waste
Fig 4.84 Relation between compressive strength and % of PET waste
Fig 4.85 Relation between shear strength and % of materials waste
Fig 4.86 Relation between penetration and bearing (clay soil)101
Fig 4.87 Relation between CBR and dry density (clay soil)102
Fig 4.88 Relation between penetration and bearing (clay soil + 3% cement waste) ...103
Fig 4.89 Relation between CBR and dry density (clay soil + 3% cement waste)..103
Fig 4.90 Relation between penetration and bearing (clay soil + 6% cement waste) ...103
Fig 4.91 Relation between CBR and dry density (clay soil + 6 cement waste)..104
Fig 4.92 Relation between penetration and bearing (clay soil + 9% cement waste) ...104
Fig 4.93 Relation between CBR and dry density (clay soil + 9% cement waste)..104
Fig 4.94 Relation between penetration and bearing (clay soil + 12% cement waste) ...105
Fig 4.95 Relation between CBR and dry density (clay soil + 12% cement waste)..102
Fig 4.97 Relation between penetration and bearing (clay soil + 15% cement waste) ...105
Fig 4.98 Relation between CBR and dry density (clay soil + 15% cement waste)..106
Fig 4.99 Relation between CBR and % cement waste)......................106
Fig 4.100 Relation between Penetration and Bearing (clay soil + 1.5% fiber glass waste) ...107
Fig 4.101 Relation between Penetration and Bearing (clay soil + 3% fiber glass waste) ...107

~ XX ~
Fig 4.102 Relation between Penetration and Bearing (clay soil+ 6% fiber glass waste) ... 108
Fig 4.103 Relation between Penetration and Bearing (clay soil+ 9% fiber glass waste) ... 108
Fig 4.104 Relation between CBR and % fiber glass waste) 108
Fig 4.105 Relation between Penetration and Bearing (clay soil+ 1.5% PET waste) ... 109
Fig 4.106 Relation between Penetration and Bearing (clay soil+ 3% PET waste) ... 110
Fig 4.107 Relation between Penetration and Bearing (clay soil+ 6% PET waste) ... 110
Fig 4.108 Relation between Penetration and Bearing (clay soil+ 9% PET waste) ... 110
Fig 4.109 Relation between CBR and % PET waste 111
Fig 4.110 Relation between CBR and % of materials waste 112
Fig 4.111 Relation between swelling and % of materials waste 113
Symbol and abbreviation

ASTM: American Society of Testing Material

AASHTO: American association society of highway and transportation organization

C: Cohesion

CKD: cement kiln dust

CBR: California Bearing Ratio

ECC: Engineered Cementitious Composites

HDPE: high density polyethylene

LKD: Lime kiln dust

LOI: low loss on ignition

LDPE: low density polyethylene

MSW: municipal solid waste

OMC: optimum moisture content

OPC: ordinary Portland cement

PC: Percentage of cement waste

PET: polyethylene terephthalate

PI: plasticity index

PP: polypropylene

PP: Percentage of PET waste

PF: Percentage of fiber glass waste

PS: Polystyrene

PVA: poly (vinyl) alcohol
PVC: poly (vinyl) chloride
RDFS: randomly distributed reinforced fibre soil
RHA: Rice Husk Ash
USCS: united soil classification system
UCS: unconfined compressive strength
USEPA: U.S. Environmental Protection Agency
WBC: waste-based cement
ϕ: Angle of friction