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ABSTRACT- In the last few years, Ultrasound Computed Tomography (USCT) techniques has become 

an attractive and hot research area. Herein, we present a robust iterative USCT reconstruction algorithm, 

which based on bent ray theory. The object to be imaged is encircled by uniformly distributed transduc-

ers, whereas one transducer acts as a transmitter and the remains work as receivers. The travel-time meas-

urements can be used to estimate the sound speed distribution by solving a nonlinear system of equations. 

Our proposed scheme is based on the straight ray approximation, which is valid for breast ultrasound 

tomographic imaging. On this basis, we have formulated a cost function that defines the difference be-

tween the measured first arrivals and those calculated for a given velocity model in the least squares 

sense. Then, the sound speed image can be obtained by finding the best solution which minimize this dif-

ference. Our method is able to resolve very fine details even in very complex structured objects. The pre-

sented results approve the accuracy and robustness of our approach for breast screening applications. 
 

Keywords: Breast Ultrasound; Transmission Tomography; Travel Time Inversion; Iterative Method; Gauss-

Newton. 
 

 خزابت بسث ينطمت( USCT) انصٌحٍت فٌق بانًٌخاث انًمطؼً انخصٌٌش حمنٍاث أصبسج ، انًاضٍت انمهٍهت انسنٌاث فً -انًسخخهص
 انًشاد اندسى ازاطت ٌخى. انًنسنً انشؼاع نظشٌت ػهً حؼخًذ USCT لٌٌت حكشاسٌت بناء إػادة خٌاسصيٍت نمذو انبسث ىزا فً. ًساخنت
 ًلج لٍاساث اسخخذاو ًٌكن. كًسخمبلاث انبمٍت ٌؼًم بٍنًا إسسال كدياص ًازذ يسٌل ٌؼًم ينخظى، بشكم يٌصػت بًسٌلاث حصٌٌشه

 انشؼاع حمشٌب ػهى انًمخشذ يخططنا ٌؼخًذ. انخطٍت غٍش انًؼادلاث ين نظاو زم طشٌك ػن انصٌث سشػت حٌصٌغ نخمٍٍى الاسخمبال
 بٍن انفشق حؼشف حكهفت دانت بصٍاغت لًنا ، الأساس ىزا ػهى. نهثذي انصٌحٍت فٌق بانًٌخاث انًمطؼً نهخصٌٌش صانر ًىٌ ، انًسخمٍى

 صٌسة ػهى انسصٌل ًٌكن ثى ين ً. الاصغش انًسافو بًفيٌو يؼٍن سشػت ننًٌرج انًسسٌبت حهك بٍن ً الأًائم ًصٌل صين لٍاس
 فً زخى خذًا انذلٍمت انخفاصٍم زم ػهً بمذسحيا ىزه طشٌمخنا حًخاص. انفشق ىزا ين حمهم انخً انسهٌل أفضم إٌداد خلال ين انصٌث سشػت

.انثذي يسر حطبٍماث فً انطشٌمو ىزه ًلٌة دلت ػهى حبشىن انًمذيت اننخائح. خذا انًؼمذة انبنٍو راث الاخساو

INTRODUCTION 

Breast cancer has become one of the most preva-

lent types of cancers which affecting women. 

Since 2008, 1.4 million cases have been registered. 

Half of these cases occurred in the developing 

countries.   In the same year 458,400 deaths oc-

curred due to breast cancer
[1]

. In 2012, 229,060 

(2,190 male, and 226,870 female) new cases have 

been estimated in US
[2]

. Numerous studies have 

proven that the detection of cancer in early stages 

limits the rate of mortality
[3, 4]

. Various techniques 

are in use to detect breast cancer i.e., x-ray mam-

mography, Magnetic Resonance Imaging (MRI), 

B-Mode Ultrasound etc. 

X-ray mammography has a valuable impact in re-

ducing the breast cancer mortality rate, especially 

in 50-69 years old women. Despite it is effective-

ness, mammography has several drawbacks. It has 

a high rate of false-positive, which leads to addi-

tional biopsies and in most of the cases these extra 

operations show no sign of breast cancers. Having 

a mammogram subjects the patient to X-rays, 

which has significant radiation hazards. Besides 

hazardousness, it requires the breast to be com-

pressed, which it is not comfortable to the patient 

and more often women avoid mammogram tests. 

In addition, this compression process for mam-

mography also leads to an inaccurate cancer posi-

tioning. To address the mentioned shortcomings of 

mammography, MRI comes into play
[5~7]

 but it is 

terrifically expensive and makes its use impracti-

cal, especially in the developing countries. On the 

other hand, conventional B-Mode ultrasound helps 

in differentiating cysts from the solid mass. How-
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ever, it fails to discriminate be- tween benign and 

malignant tumors. Recently, the use of Ultrasound 

Computed Tomography (USCT) techniques has 

become an interesting research area since the work 

done by Greenleaf et al.
[8]

. In their state-of-the-art 

work, it has been demonstrated that using ultra-

sound transmission tomography to reconstruct 

physical parameters of the breast (sound speed and 

attenuation coefficient) can help to distinguish 

benign from malignant masses. Since then, many 

studies have been done while exploiting the poten-

tial of ultrasound in detection of the breast lesions 
[9~15]

. 

Image reconstruction methods in USCT can be 

divided by means of the sound propagation model. 

Commonly, there are two models in practice, the 

first one is Wave-based Model, and the other one 

is derived from the Ray theory. The former model 

is the most accurate one, since there is no approx-

imation to the wave equation. Hence, in the wave-

based USCT, all the effects (diffraction, refraction, 

scattering, and attenuation etc.) have to be taken 

into account (without approximation) while the 

wave is propagating through different me- dia. 

Due to the actual considerations of various effects, 

wave-based USCT suffers mainly from two prob-

lems. Firstly, solving the full wave equation is im-

practically expensive and secondly, there exists a 

demand for huge amount of memory for computa-

tional algorithms
[16]

. To address these problems, a 

number of re- searchers have considered various 

approximations and assumptions. Authors in
[17, 18]

 

have pointed out the fact that earlier studies have 

shown that the diffraction effects are not signifi-

cant when ultrasound waves propagate through the 

female breast. Therefore, one of the most common 

assumptions in ultra- sound diffraction tomogra-

phy is that the scattered field is far smaller than the 

incident field (Born and Rytov approximations)
[19, 

20, 21]
. Consequently, it has been considered appro-

priate to make the straight ray approximation (ray- 

based model) valid for breast ultrasound tomo-

graphic technique. In this work, we have devel-

oped and investigated a novel technique for solv-

ing the inverse problem, which is related to the 

USCT. As numerous researchers did, we consid-

ered the object to be imaged, it is the female breast 

in this case, is immersed in a water tank, and sur-

rounded by a ring shaped transducer. While one 

transducer transmitting an ultrasound signal, the 

remains receive the transmitted, scattered, and re-

flected signals
[22, 23]

. Regarding the reconstruction 

of the USCT image, in the past two decades, vari-

ous methods have been developed to generate im-

ages of the physical parameters of the concerned 

object. These properties strongly affect the travel-

ing waves through that medium. One of these 

methods is the travel time tomography. This tech-

nique has been used in wide range of applications, 

especially in geophysics and seismology
[24~27]

. 

Basically, travel time tomography involves solving 

an inverse problem. 

The paper outlines are as follows. The first section 

a brief introduction about ultrasound computed 

tomography. The theory of our algorithm for 

sound speed image reconstruction, including the 

derivation of forward and inverse problems, is pre-

sented in the second section. In the third section, 

numerical results have been discussed. We con-

clude this study in the fourth section. 

Travel Time Tomography  

In general, the travel-time tomography attempts to 

estimate a velocity model from the time of flight 

measurements that calculated from the received 

signals. Solution of such problem can be obtained 

by minimizing the absolute error be- tween the 

measured data and the simulated data. This pro-

cess can be modeled as a cost function of the least 

squares defined between the observed time of 

flight (t
obs

) and those calculated for a given veloci-

ty model (t
cal

). Likewise, the travel time tomogra-

phy can be formulated as solving an inverse prob-

lem in the high frequency approximation of ray 

theory
[28]

. Principally, the procedure of obtaining a 

tomographic image of an object from the travel-

time data can be accomplished by the following 

steps: 

a) object parameterization; 

b) solving the forward (direct) problem; 

c) solving the backward (inverse) problem. 

Figure 1 describes the relationship between the 

direct and the inverse problems. 

Travel Time Computation (Forward problem) 

The forward step has been used to estimate the 

Time of Flight (TOF) between the transmitter and 

receiver, for a specific sound speed distribution in 

the media, along certain path.  Although, the re-

flecting boundaries results in a multiple ray paths, 

we only consider the path with minimum travel-
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time because first-arrivals are easier to extract 

from the ultrasound signal. 

 
Figure 1: The direct and inverse problems that re-

lated to the travel-time tomography, which relates a 

velocity model to the TOF 

The TOF between a source S and a receiver R is 

related to the speed of sound v(x) by the following 

equation: 

 

  ∫  ( )  

 

 (1) 

where   is the TOF and the slowness  ( )   
    ( ) is the reciprocal of the velocity  ( ) .  is 

the ray path between the source and the receiver. It 

is assumed that the computational domain has 

been divided into   number of cells. Here, we 

considered that each cell exhibits constant sound 

speed. Mathematically, the discretized version of 

Equation (1) is given by: 

 

   ∫      

 

   

               (2) 

where    is the TOF between the source S and the 

receiver R along the path     , sj is the slowness at 

position  , and M is number of transmitter/receiver 

pairs. In matrix from, the equation appears in (2) 

can be written as: 

    ( )    (3) 

where, now,   is a vector of size     represent-

ing the first arrivals,   is the slowness of size 

     , and   refers to the ray-length matrix of 

size     .  

The forward problem step is followed by the in-

verse problem step. The goal of the subsequent 

step is to find a slowness distribution   which ul-

timately used to minimize the cost function. 

 

Travel Time Inversion 

In this step, given an accurate set of travel times 

  (          ) and the estimated distance trav-

eled within each cell, the main objective is to cal-

culate an accurate slowness vector which mini-

mize the following cost function: 

 

 
Figure 2: Breast phantom: a) female breast anato-

my, b) sound speed phantom of the female breast 

 

 ( )  
 

 
∑(  

      
   )

 
 

   

 (4) 

Our purpose is to minimize  ( ). Concerning this, 

we have exploit the use of the Gauss-Newton 

(GN) methods. GN starts with an initial guess   , 

and iteratively find out the best values for s that 

minimize J , as follow 

             (5) 

In order to find     , we introduced a ray-length 

matrix    that corresponds to a reference slowness 

model   , which ultimately provides arrival time 

  . For sake of linearization, it is assumed that the 

real slowness model is equal to 

          (6) 
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Here,     is a small perturbation with associated 

travel time t. Fermat’s principle states that small 

perturbation in the slowness does not affect the 

arrival time
[29]

. In other words, the ray path re-

mains stationary with small perturbation in the 

slowness model, as given below 

 
Figure 3: Breast phantom: a) female breast anato-

my, b) sound speed phantom of the female breast 

 
Figure 4: Breast phantom taken from CT scan 

                         (7) 

Accordingly, a linearized form can be concluded 

by setting          in expression 7. Then, we 

obtain 

            (8) 

Then the update step     can be obtained by solv-

ing the linear system of equations shown in equa-

tion (8). That is to say, the highly nonlinear prob-

lem is transformed to a sparse linear system, 

which can easily be solved by the available numer-

ical methods. 

The proposed travel time inversion solution can be 

summarized in the following steps: 

1. set the initial slowness model    

2. compute the arrival time corresponding to the 

initial model:     ( )     

3. compute the TOF difference             
4. calculate the δs0 by solving the linear system: 

     ( )      

5. update the GN step           

6. if ‖   ‖         ‖  
 ‖     stop. Other-

wise, set       and go to step 2 

In the proposed algorithm, the most significant 

point is the step (4), which is related to solving the 

linear system. It is important to be noted that the 

number of rays is far greater than the number of 

cells. This means, the system      ( )      is 

an overdetermined. Hence, there is no exact solu-

tion, and this becomes a linear least square prob-

lem. 

B-USCT reconstruction algorithm 

The diagram shown in Figure (2) outlines the main 

algorithmic steps determines the disruption of 

slowness     for each iteration of the G-NM. 

From a current model of slowness   , solving the 

direct problem for N shooting points (emitters) 

provides maps of the first arrival time at all grid 

points. For all source positions (source/receiver), a 

path of rays subsequently allows the construction 

of the Fréchet derivative matrix. This matrix and 

residuals, calculated from the observed time at the 

receivers’ positions, are then used for iterative so-

lution of linear tomographic system.  

RESULTS AND DISCUSSION 

Breast phantoms: To test our reconstruction algo-

rithm, we have used two computer generated 

phantoms.  The first one is taken from a female 

breast photograph. Figure (3-a) shows a female 

breast anatomy and Figure (3-b) shows sound 

speed phantom of the female breast. 

TABLE 1: SOUND SPEED DISTRIBUTION IN THE FE-

MALE BREAST 

Tissues Type Speed of sound [m/s] 

Water 1500 

Lobules 1450-1475 

Fatty tissues 1375-1400 

Lesions 1530-1560 

Skin 1600 

 

The second phantom is more realistic as shown in 

Figure (4), which was designed from a Computer 

Tomography (CT) image
[30]

. Next, we have 

mapped the CT scan image to the corresponding 

sound speed distribution. The distributions for the 

different breast tissues have been given in Table 

(1). The red circles in Figure (3) and Figure (4) 

represent the receivers positions, and the cross 

symbol (×) illustrates the  emitter’s  position. 
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As already has been discussed in the previous sec-

tion,  the most important step in our algorithm is 

step (4), where the system of linear equations have 

to be solved. It should be noted that the ray-path 

matrix G is a very large and sparse. In this work, 

we have assessed several methods for solving 

large sparse systems. Explicitly, Bi-Conjugate 

Gradients (BCG), Stabilized Bi-Conjugate Gradi-

ents (SBCG), Quasi-Minimal Residual (QMR), 

Generalized Minimum Residual (GMR), Least 

Squares (LSQR), Minimum residual (MR), Pre-

conditioned Conjugate Gradients (PCG), Symmet-

ric LQ  

 

Figure 5: Number of iterations vs. errors 

 

Figure 6: The number of iterations when we used 

each of the above methods 

(SymLQ), and Transpose-free quasi-minimal re-

sidual (TFQMR). To test the impact of each meth-

od to our algorithm convergence, we have used the 

phantom shown in Figure (3) of size 128x128, 

with 150 emitters and 150 receivers. At the first 

step, we have fixed the number of iterations (10, 

15, and 20). 

In Figure (5), the error represents the difference 

between the real (measured) data and calculated 

(simulated) data. It becomes evident from this fig-

ure that SymLQ shows better results in terms of 

error at all number of iterations. On the other 

hand, although LSQR with higher error rate shows 

low performance at all number of iterations, it is 

observed that LSQR is much faster than other.  

Figure (6) shows the number of iterations that our 

algorithm takes to achieve the desired error, which 

is equal to 1×10
−6

.  Results displayed in this figure 

demonstrates that for a fixed error rate the SymLQ 

method used lower number of iterations. 

TABLE 2: THE EFFECT OF CHANGING THE NUMBER 

OF RECEIVERS 

number 

of Re-

ceivers 

Error  
number of 

iterations 

Elapsed 

time (s) 

50 9.96E-07 44 1 

100 9.59E-07 91 4 

150 9.07E-07 90 5 

200 9.75E-07 83 6 

250 8.17E-07 117 11 

TABLE 3: THE EFFECT OF CHANGING THE NUMBER OF 

TRANSMITTERS 

number of 

Transmit-

ters 

Error 
number 

of itera-

tions 

Elapsed 

time (s) 

50 9.98E-07 56 2 

100 9.64E-07 69 3 

150 9.97E-07 86 5 

200 9.93E-07 98 7 

250 8.17E-07 117 11 

 

Figure 7: The absolute error for phantom 1: a) The 

original breast phantom of size 256x256. 

b) The travel time reconstruction. c) The absolute 

difference 

 

Figure 8: The absolute error for phantom 2: a) The 

original breast phantom of size 256x256. 

b) The travel time reconstruction. c) The absolute 

difference 

Also we have measured the reconstruction time of 

this technique, it is found that the LSQR is fast 

and effective in terms of time consumption and 

computational complexity. Although it needs more 
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number of iterations, it takes less than two seconds 

to reconstruct a 128 × 128 image. 

The number of transmitters and receivers also is a 

significant factor. In order to investigate the effect  

of changing the number of transmitters and receiv-

ers, we used the phantom shown in Figure (4) of 

different sizes (128×128, 256×256, and 512×512), 

with number of transmitters\receivers ranging 

from 50 to 250. Tables 2 and 3 show the obtained 

results when the image size is (256×256). We have 

found that the acceptable number of transmit-

ters\receivers  

TABLE 4:  QUALITY MEASUREMENT PARAMETERS FOR 

THE TWO PHANTOMS APPEAR IN FIG.7 AND FIGURE (8) 

Phantom/ 

QMP 
MSE PSNR CC SSIM 

Phantom (1) 5.757 40.5311 0.9922 0.8531 

Phantom (2) 11.7847 37.4176 0.9746 0.8317 

depends on the required resolution. Typically, the 

best option of the number of transmitters and re-

ceivers is equal to the required resolution. In other 

words, if the desired resolution of the reconstruct-

ed image is 256×256 pixels, we should use 256 

transducers. 

It is interesting to compare the reconstructed im-

ages with respect to the original speed distribution. 

As an assessment to the results obtained by our 

algorithm we define the following quality meas-

urements parameters (QMP): 

 Absolute Relative Error (ARE): defined as: 
           

     
 

 Mean Square Error (MSE): is the measure of 

average squared difference between the origi-

nal sound speed SSorg and the reconstructed 

sound speed SSrec It is defined as: 

    
 

 
∑[     ( )       ( )]

 
 

   

 

 Peak Signal to Noise Ratio (PSNR) : is the 

measure of the beak error, it defines the ratio 

between the maximum value of SSorg and the 

MSE 

          [   (
     

   
)] 

 Correlation Coefficient (CC): measure the 

similarity between SSorg  and SSrec 

   
(          )(          )

√(          )
 
(          )

 

 

 Structural Similarity Index (SSI): measure the 

similarity structure
[31]

, SSI can be defined as:  

    
[         ][       ]

[  
    

    ][  
    

    ]
 

Where 
         are the means of the original and recon-

structed images respectively. 

  
        

  are the variance of the original and recon-

structed images respectively. 

    is the covariance. 

   (   )
 , and    (   )

  

in this paper we took k1 = 0.01 , k1 = 0.03 , and L 

is the dynamic range of the pixel values. 

Furthermore, we have analyzed the quality of the 

reconstructed image by calculating the absolute 

error, i.e. the absolute difference between the 

breast phantom and its reconstructed image. For 

illustration purposes, Figures (7) and (8) show the 

obtained results, we have noticed that with the 

same number of pixels, and number of transmitters 

receivers, the error is larger for the high-contrast 

media. However, the image quality can be im-

proved by increasing the number iterations. 

CONCLUSIONS 

We have implemented the travel time tomography, 

which applicable under certain conditions. Previ-

ous studies have pointed out that the diffraction 

effects are not significant when ultrasound waves 

propagate through the female breast. Therefore, 

these approaches exploited the straight ray approx-

imation, which is valid for breast ultrasound 

tomographic imaging. We have formulated the 

problem of the tomographic breast imaging by 

constructing a cost function. This function defines 

the difference between the observed first arrivals, 

and those calculated for a given velocity model in 

the least squares sense. Then, we have employed 

G-NM iterative scheme to minimize this function. 

We have proposed a robust iterative scheme for B-

USCT. Each iteration of the proposed method in-

volves solving a large linear system. Accordingly, 

we have tested different available method for sol-

ing large sparse system of equations. The numeri-

cal results showed that SymLQ method gives bet-

ter results (minimum error). Although LSQR with 

higher error rate shows low performance, it is ob-

served that LSQR is much faster than other meth-
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ods. Finally, many quality parameters can been 

estimated, which show that this approach is supe-

rior to the DT and wave-bast tomography. 
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