

1

Sudan University of Science and Technology

College of Postgraduate Studies

INVESTIGATION OF SOFTWARE DEFINED

NETWORK FOR VIRTUAL PRIVATE NETWORKS

الافتراضية الخاصة الشبكات المعرفة بالرمجة للشبكات تحقيق

A research submitted in partial fulfillment for the requirements of the M.Sc.

Degree in Computer and Network Engineering.

By:

Asmaa Mubarak Altayeb Awad Alkareem

Supervisor:

Dr. Ibrahim khider

March, 2019

2

 إلا ق ليلاً(الْعِلْمِ مِّنَ أوُتيِتُم وَمَا)
 (58) الإسراء

3

DEDICATION
To:

The spirit of my hero, Altayeb M.Ibrahim,

My teacher Wayser S.koko,

My Extended family,

My small family,

My friends,

My little Angel…

4

ACKNOWLEDGMENTS

I wish to express my appreciation and gratitude to Dr. Ibrahim Khider who,

through his ideas, suggestions and advice improved this project. Thanks to him,

not only for his help in general but also for his trust and guidance during the

revision process. My deepest thanks to all the staff in electronic department at

Sudan University of Science and Technology, who, in many ways contributed in

making this project a memorable and an enriching experience. Finally, I thank

my family, Co-workers, friends for their patience and understanding during the

days of writing and revising this project.

5

ABSTRACT
 The traditional networks face so many problems including: time-

consuming, Multi-vendor environments require a high level of expertise and

complicate network segmentation, inconvenience and difficulty of learning to

manage such a huge systems and devices and more. Software-defined network

continues to be one of the most hyped technology evolutions in information and

communication technology that provide a centralized management of the network

controlled by one controller and it promise to offer an easy to manage, scalable

and high performance networks.

In this study, Mininet simulator and python programming language are used to

emulate a software defined network for an Internet service provider in two

different models and implement virtual private local area network service

networks for three customers-two sites per customer, then begin to scale the

network by double the number of sites per every customer using different

scenarios in every model in order to evaluate the connectivity and performance of

the software defined network controller by observing the number of flows in the

flow table that the controller used in data transfer and we observed that: as we

scale the network by double the flow table number be scale approximately by

three times as in the first model or one and half time as in the next model. Which

means that the scalability problem takes place also in SDN networks and it needs

more studies.

6

 المستلخص

 عليها أن كما ، طويلا ا وقت تستغرق أنها :منها المشكلات من العديد تواجه التقليدية الشبكات إن
 لأنها الشبكة إدارة صعوبة كذلك الخبرة من عالي مستوى يتطلب مما مختلفة؛ بيئات في تعمل أن

 .ذلك من وأكثر الضخمة والأجهزة النظم هذه كل لإدارة التعلم وصعوبة مجزئة تكون
 تكنولوجيا في ا تأثير التكنولوجية التطورات أكثر من واحدة بالبرمجيات المعرفة الشبكات تعتبر

 متحكم عبر فيها التحكم سيكون حيث للشبكة مركزية إدارة توفر والتي والاتصالات المعلومات
 .عالي وبأداء للتوسع قابلة الإدارة سهلة شبكات بتوفير بذلك وعدت وقد واحد
 شبكة لعمل)بايثون(البرمجة ولغة)نت ميني(المحاكاة برنامج استخدام تم الدراسة هذه في

 المحلية الشبكة خدمة وتطبيق مختلفين نموذجين في انترنت خدمة لمزود بالبرمجة معرفة
 عدد مضاعفة عبر الشبكة بتوسيع بدأنا ثم مشترك، لكل بموقعين مشتركين لثلاثة الافتراضية

 وأدائية توصيل تقييم بغرض نموذج كل في مختلفة سناريوهات باستخدام مشترك لكل المواقع
 الذي التدفق جدول مدخلات عدد ملاحظة طريق عن بالبرمجة، المعرفة الشبكات في المتحكم
 بمقدار الشبكة توسعت كلما أنه لاحظنا وقد البيانات، لتوصيل إليه الرجوع المتحكم علي يجب

 في كما ونصف مرة أو الأول، النموذج في كما ا تقريب أضعاف بثلاثة التدفق جدول توسع الضعف
 وتحتاج ا أيض بالرمجة المعرفة الشبكات في قائمة الشبكة توسع مشكلة أن يدل مما الثاني، النموذج

 .كثيرة دراسات إلى

7

LIST OF TABLES
Table 2.1 Difference between Traditional and Software Defined Networking

Types...25

Table 3.1 Simulation Parameters..30

Table 4.1 Model One Results..34

Table 4.2 Model Two Results...37

8

LIST OF FIGURES
Figure 2.1 VPN Connection between Server and Client....................................6

Figure 2.2 Functions of Network Management System.....................................8

Figure 2.3 MPLS Architecture..11

Figure 2.4 MPLS Labeling..12

Figure 2.5 MPLS Process.. 13

Figure 2.6 Traditional Architecture..15

Figure 2.7 SDN Architecture..16

Figure 2.8 SDN Controller..18

Figure 2.9 Open Flow Instruction Set...21

Figure 3.1 Model 1 Scenario 1..27

Figure 3.2 Model 1 Scenario 2..28

Figure 3.3 Model 1 Scenario 3..28

Figure 3.4 Model 2 Scenario 1..29

Figure 3.5 Model 2 Scenario 2..29

Figure 3.6 Model 2 Scenario 3..30

Figure 4.1 Model 1 Scenario 1 Implementation...32

Figure 4.2 Model 1 Scenario 1 PING Test...32

Figure 4.3 Model 1 Scenario 2 Implementation...33

Figure 4.4 Model 1 Scenario 2 PING Test...33

Figure 4.5 Model 1 Scenario 3 Implementation...34

Figure 4.6 Model 1 Scenario 3 PING Test...34

Figure 4.7 Model 2 Scenario 1 Implementation...35

Figure 4.8 Model 2 Scenario 1 PING Test...35

Figure 4.9 Model 2 Scenario 2 Implementation...36

Figure 4.10 Model 2 Scenario 2 PING Test...36

Figure 4.11 Model 2 Scenario 3 Implementation...37

Figure 4.12 Model 2 Scenario 3 PING Test...37

9

GLOSSARY

Abbreviation Definition:
SDN Software Defined Networks

API Application Programmer Interface

WAN Wide Area Network

VPN Virtual Private Network

IP Internet Protocol

MPLS Multi-Protocol Label Switching

VPLS Virtual Private Local Area Network

Service

ISP Internet Service Providers

ONOS Open Network Operating System

CLI Command Line Interface

VPDN Virtual Private Dial-up Network

LAN Local Area Network

ID Identity

IPsec Internet Protocol Security

L2TP Layer Two Tunneling Protocol

PPTP Point-to-Point Tunneling Protocol

SSL Secure Sockets Layer

TLS Transport Layer Security

SSH Secure Shell

SNMP Simple Network Management Protocol

L2 Layer Two

L2VPN Layer Two Virtual Private Network

L3VPN Layer Three Virtual Private Network

CE Customer Edge

PE Provider Edge

LSP Label Switched Path

AS Autonomous Systems

VE Virtual Private Local Area Network

Service Edge

STP Spanning Tree Protocol

IETF Internet Engineering Task Force

RSVP Resource Reservation Protocol

OSPF Open Shortest Path First

ATM Asynchronous Transfer Mode

LSR Label Switch Router

P Provider

BGP Border Gateway Protocol

ONF Open Network Foundation

QoS Quality of Service

NAT Network Address Translation

OSGi Open Services Gateway Initiative

10

SAL Service Abstraction Layer

I/O Input/Output

ASIO Asynchronous Input/Output

OS Operating System

OPENSIG Open Signaling Working Group

GSMP General Switch Management Protocol

ForCES Forwarding and Control Element

Separation

TCP Transmission Control Protocol

VM Virtual Machine

11

TABLE OF CONTENTS
Title Page...i

Dedication..iii

Acknowledgments...iv

Abstract...v

List of Tables..vii

List of Figures..viii

Glossary...ix

CHAPTER ONE: INTRODUCTION..1

1.1 Preface...1

1.2 Problem Statement..2

1.3 Objectives...2

1.4 Methodology...3

1.5 Thesis Outlines..3

CHAPTER TWO: BACKGROUND...4

2.1 Introduction..4

2.2 VPN Characteristics...5

2.3 VPN Types...5

2.3. 1 Remote-Access also called a Virtual Private Dial-up Network

(VPDN) ..5

2.3.2 Site-to-Site...5

2.4 VPN Design...6

2.4.1 Security..6

2.4.2 VPN Reliability..7

2.4.3 VPN Scalability...7

2.4.4 Network Management..8

2.4.5 Policy Management...9

2.4.6 Virtual Private LAN Service (VPLS)..9

2.5 Multi-Protocol Label Switching MPLS...10

2.5.1 MPLS Architecture..11

2.5.2 Labels and Label Bindings...11

2.5.3 The MPLS Process...12

2.5.4 MPLS L2VPN VS L3VPN..13

2.6 SDN Network...13

2.6.1 SDN Architecture...14

2.6.2 SDN Applications..17

2.6.3 SDN Controller..18

2.6.3.1 Open Daylight..18

2.6.3.2 NOX-MT..19

2.6.3.3 Floodlight controller..20

2.6.3.4 Open Network Operating System Controller.....................20

2.6.4 Open Flow Protocol...20
XII

2.6.4.1 Activities around SDN/Open Flow....................................22

12

2.6.4.2 Open Flow Messages...23

2.7 Traditional Networking VS SDN...25

CHAPTER THREE: MODELLING VIRTUAL PRIVATE NETWORK...........26

3.1 Overview..26

3.2 Models’ Scenarios..27

3.2.1 Model 1 Scenario 1..27

3.2.2 Model 1 Scenario 2..27

3.2.3 Model 1 Scenario 3..28

3.2.4 Model 2 Scenario 1..29

3.2.5 Model 2 Scenario 2..29

3.2.6 Model 2 Scenario 3..30

CHAPTER FOUR: SIMULATION AND RESULTS..31

4.1 Simulation Description..31

4.2 Results..31

CHAPTER FIVE: RESULTS AND DISCUSSION...38

5.1 Discussion..38

CHAPTER SIX: CONCLUSION AND RECOMMENDATION........................39

6.1 Conclusion...39

6.2 Recommendation...39

REFRENCES..40

APPENDICES

A. Paython Script for Model 2 Scenario 1...41

B. Paython Script for Model 2 Scenario 2...42

C. Paython Script for Model 2 Scenario 3..43

D. Ubuntu CLI..46

E. ONOS CLI..46

F. Mininet CLI..47

13

1. Introduction

1.1 Preface:

 Computer networks are typically built from a large number of network

devices such as routers, switches and firewalls with many complex protocols

implemented on them. Network operators are responsible for configuring policies

to respond to a wide range of network events and applications. They have to

manually transform these high-level policies into low-level configuration

commands while adapting to changing network conditions. The fact that network

devices are usually vertically integrated so network operators and administrators

have to make this task so many time and that the challenge they are always

facing.

 Other challenge, the Internet practitioners and researchers facing is that the

Internet infrastructure have to evolve current and emerging services and

applications as well as its protocols and performance. Traditional networks have

various problems, it is very complex, difficult to manage and control; adding new

features means new protocols and new hardware (vender dependent) so

innovation costs a lot.

 The limitations of traditional networking technologies make it harder to

determine where security devices such as firewalls should be deployed in the

network.

 Programmable networks are proposed to resolve traditional network

approaches problems and adding new features. One of the programmable

networks is Software Defined Networks (SDN). SDN is currently attracting

significant attention from both academic and industrial field. SDN is a new

networking paradigm in which the forwarding hardware is decoupled from

control decisions it decouples the data plane from control plane and connect them

throw a protocol like open flow in Application Programmer Interface (API).

 SDN can overcome the classic problem by implementing a central firewall in

the network, and thereby network administrators can route all traffic through a

14

central firewall. With the help of SDN, a vendor independent control from a

single logical point can be obtained.

 In SDN, the network intelligence is logically centralized in software-based

controllers (the control plane), and network devices become simple packet

forwarding devices (the data plane) that can be programmed via an open

interface. It promises to dramatically simplify network management and enable

innovation and evolution. A group of network operators, service providers, and

vendors have recently created the Open Network. Centralized the management in

a controller make it easy and flexible to manage but at the same time it have to

approve that it can add scalability to applied on the Wide Area Network (WAN)

[1].

 Virtual Private Network (VPN) services are considered to be widely used in

Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) networks for

connecting customers’ remote sites. However, service providers struggle with

many challenges to provide these services. Management complexity, equipment

costs, and last but not least, scalability issues emerging as the customers increase

in number, are just some of these problems. SDN is an emerging paradigm that

can solve aforementioned issues using a logically centralized controller for

network devices [4].

1.2 Problem Statement:

 Traditional networks, MPLS VPN and Virtual Private Local Area Network

Service (VPLS) services impose some serious issues: The distributed architecture

of control plane causes complexity in configuration of the network done in

advice by device manner. For Internet Service Providers (ISP) high-performance

routers are needed to meet the demands of vertically integrated, customers’

numerous IP prefixes which costs a lot.

1.3 Objectives:

The objectives of this thesis are to:

1. Verify the efficiency of SDN in scalability issue.

15

2. Implement different SDN VPLS scenarios simulating to show challenges

face SDN networks in the term of scalability when it is used at WAN.

1.4 Methodology:

 In this study we will implement two different models using Mininet simulator

and SDN Open Network Operating System (ONOS) controllers configured by

Command Line Interface (CLI).

1.5 Thesis Outlines:

 This thesis contains a total of six chapters, the brief outline of these chapters is

as follows:

Chapter 1: presents the introduction and contains the problem which carries out

this thesis and the project goals. At the end of this chapter the methodology used

to work in this thesis is illustrated.

Chapter 2: gives a background about the virtual private networks.

Chapter 3: presents the modeling of the software defined network for a virtual

private network.

Chapter 4: explains the simulating software defined network for the virtual

private network.

Chapter 5: presents the obtained results and a brief discussion.

Chapter 6: includes the thesis conclusion and recommendations.

16

2. Background

2.1 Introduction:

 Simply, a Virtual Private Network, or VPN, is a group of computers (or

discrete networks) networked together over a public network—namely, the

internet VPN is a network that allow you to create a secure connection to another

network over the Internet. It provides inter-connectivity to exchange information

among various entities that belong to the VPN. It is private, so that it has all the

characteristics of a private network.

 VPN is a generic term used to describe a communication network that uses

any combination of technologies to secure a connection tunneled through an

otherwise unsecured or untrusted network. Instead of using a dedicated

connection, such as leased line, a "virtual" connection is made between

geographically dispersed users and networks over a shared or public network,

like the Internet. Data is transmitted as if it were passing through private

connections [2].

 There are a number of systems that enable you to create networks using the

Internet as the medium for transporting data. A VPN secures the private network,

using encryption and other security mechanisms to ensure that only authorized

users can access the network and that the data cannot be intercepted. The primary

reason for deploying VPN is cost savings. VPN technology provides a way of

protecting information being transmitted over the Internet, by allowing users to

establish a virtual private “tunnel” to securely enter an internal network,

accessing resources, data and communications via an insecure network such as

the Internet. There is an increasing demand nowadays to connect to internal

networks from distant locations. Employees often need to connect to internal

private networks over the Internet (which is by nature insecure) from home,

hotels, airports or from other external networks. Security becomes a major

consideration when staff or business partners have constant access to internal

networks from insecure external locations [4].

17

2.2 VPN Characteristics:

1) Supports a closed community of authorized users, allowing them to access

various network related services and resources.

2) The traffic originating and terminating within a private network traverses

only those nodes that belong to the private network.

3) The traffic corresponding to this private network does not affect nor is it

affected by other traffic extraneous to the private network.

4) Virtual topology is built on an existing, shared physical network

infrastructure. However, the virtual topology and the physical network are

usually administered by different administrative bodies.

2.3 VPN Types:

 There are two common types of VPNs:

2.3.1 Remote-Access also called a Virtual Private Dial-up Network

(VPDN):

 This is a user-to-Local Area Network (LAN) connection used by a company

that has employees who need to connect to the private network from various

remote locations. Typically, a corporation that wishes to set up a large remote-

access VPN provides some form of Internet dial-up account to their users using

an ISP.

 The telecommuters can then dial a 1−800 number to reach the Internet and

use their VPN client software to access the corporate network. A good example

of a company that needs a remote-access VPN would be a large firm with

hundreds of sales people in the field. Remote-access VPNs permit secure,

encrypted connections between a company's private network and remote users

through a third party service provider.

2.3.2 Site-to-Site:

 Through the use of dedicated equipment and large scale encryption, a

company can connect multiple fixed sites over a public network such as the

18

Internet. Each site needs only a local connection to the same public network,

thereby saving money on long private leased-lines.

 Site-to-site VPNs can be further categorized into intranets or extranets. A site-

to-site VPN built between offices of the same company is said to be an intranet

VPN, while a VPN built to connect the company to its partner or customer is

referred to as an extranet VPN [3].

2.4 VPN Design:

 Features are needed in a well-designed VPN:

2.4.1 Security:

 When using public network security techniques are needed, to be effective, a

VPN must address the following basic requirements: Data integrity, to verify that

the contents of a datagram were not changed in transit, either deliberately or due

to random errors. Data confidentiality, to conceal the clear text of a message by

using encryption. Replay protection, to ensure that an attacker cannot intercept a

datagram (containing, for example, an encrypted user Identity ID and password)

and play it back at some other time. Key management to ensure that your VPN

policy can be implemented throughout the extended network with little or no

manual configuration. Interoperability, to ensure that VPN uses standard-based

technologies to maintain interoperability with other VPN vendors. Figure 2.1

illustrates a VPN connection between a server and a client [8].

Figure 2.1: VPN Connection between Server and Client

19

 VPN technology is based on the idea of tunneling. VPN tunneling

involves establishing and maintaining a logical network connection. On

this connection, packets constructed in a specific VPN protocol format

are encapsulated within some other base or carrier protocol, then

transmitted between VPN client and server, and finally de-encapsulated

on the receiving side. There are six VPN tunneling protocols:

1) Internet Protocol Security (IPsec)

2) Layer Two Tunneling Protocol (L2TP)

3) Point-to-Point Tunneling Protocol (PPTP)

4) Secure Sockets Layer (SSL) and Transport Layer Security (TLS)

5) OpenVPN.

6) Secure Shell (SSH)

2.4.2 VPN Reliability:

 Reliability is a function of time. The way in which time is specified varies

considerably depending on the nature of the system under consideration. For

example, if a system is expected to complete its mission in a certain period of

time, like in case of a spacecraft, time is likely to be defined as a calendar time or

as a number of hours. For software, the time interval is often specified in so

called natural or time units. A natural unit is a unit related to the amount of

processing performed by a software-based product, such as pages of output,

transactions, telephone calls, jobs or queries [5].

2.4.3 VPN Scalability:

 There are several different tunneling protocols that can be used to create VPN

connections: Point to Point Tunneling Protocol (PPTP), Layer 2 Tunneling

Protocol (L2TP), Internet Protocol Security (IPsec) and Secure Sockets Layer

(SSL). Some VPN solutions support more than one of these protocols others are

more limited. Scalability needs will affect which tunneling protocols are most

appropriate. Remote access users must have the proper client software to support

20

the protocols you choose. For site-to-site VPNs, the VPN gateways at each end

must support a common protocol [9].

2.4.4 Network Management:

 Network management as monitoring, testing, configuring, and troubleshooting

network components to meet a set of requirements defined by an organization.

These requirements include the smooth, efficient operation of the network that

provides the predefined quality of service for users. To accomplish this task, a

network management system uses hardware, software, and humans. In this

chapter, first we briefly discuss the functions of a network management system.

Then we concentrate on the most common management system, the Simple

Network Management Protocol (SNMP).

 The functions performed by a network management system can be divided

into five broad categories: configuration management, fault management,

performance management, security management, and accounting management

[7].

Figure 2.2: Functions of Network Management System

21

2.4.5 Policy Management:

 The management of network infrastructure in an enterprise is a complex and

daunting affair. In an era of increasing technical complexity, it is becoming

difficult to find trained personnel who can manage the new features introduced

into the various servers, routers, and switches. Policy-based network

management provides a means by which the administration process can be

simplified and largely automated. In this article we look at a general policy-based

architecture that can be used to simplify several new technologies emerging in

the context of IP networks.

2.4.6 Virtual Private LAN Service (VPLS):

 Virtual Private LAN Service (VPLS) is an SDN application that enables

operators to create Layer Two (L2) broadcast overlay networks on-demand, on

top of Open Flow infrastructures. The application connects into overlay broadcast

networks hosts connected to the Open Flow data plane.

 VPLS, in its implementation and configuration, has much in common with a

Layer Two Virtual Private Network (L2VPN). In VPLS, a packet originating

within a service provider customer’s network is sent first to a Customer Edge

(CE) device (for example, a router or Ethernet switch). It is then sent to a

Provider Edge (PE) router within the service provider network. The packet

traverses the service provider network over an MPLS Label Switched Path

(LSP). It arrives at the egress PE router, which then forwards the traffic to the CE

device at the destination customer site. The difference is that, for VPLS, packets

can traverse the service provider networks in point-to-multipoint fashion,

meaning that a packet originating from a CE device can be broadcast to all the PE

routers participating in a VPLS routing instance.

 In contrast, a L2VPN forwards packets in point-to-point fashion. The paths

carrying VPLS traffic between each PE router participating in a routing instance

are called pseudo wires. VPLS multi-homing enables you to connect a customer

site to multiple PE routers to provide redundant connectivity while preventing the

formation of L2 loops in the service provider network. A VPLS site that is multi-

22

homed to two or more PE routers provides redundant connectivity in the event of

a PE router-to-CE device link failure or the failure of a PE router. When multi-

homing a VPLS site (potentially in different Autonomous Systems [ASs]), the PE

routers connected to the same site can either be configured with the same VPLS

Edge (VE) device identifier or with different VE device identifiers. If you are

using different VE device identifiers, you must run the Spanning Tree Protocol

(STP) on the CE device, and possibly on the PE routers, to construct a loop-free

VPLS topology [9].

2.5 Multi-Protocol Label Switching MPLS:

 Software Defined Network SDN is a new network architecture that can be

implements at both WAN and LAN networks. In our research we are focusing on

WAN network so before we study SDN one must understand the current WAN

technology which will be work concurrently with SDN before complete

replacement.

 MPLS is an Internet Engineering Task Force (IETF)–specified framework

that provides for the efficient designation, routing, forwarding, and switching of

traffic flows through the network. MPLS performs the following functions:

 Specifies mechanisms to manage traffic flows of various granularities,

such as flows between different hardware, machines, or even flows

between different applications.

 Remains independent of the Layer-2 and Layer-3 protocols.

 Provides a means to map IP addresses to simple, fixed-length labels used

by different packet-forwarding and packet-switching technologies.

 Interfaces to existing routing protocols such as Resource Reservation

Protocol (RSVP) and Open Shortest Path First (OSPF)

 Supports the IP, Asynchronous Transfer Mode (ATM), and frame-relay

Layer-2 protocols.

23

2.5.1 MPLS Architecture:

 Provider Edge (PE) router –also known as an Ingress/Egress Label Switch

Router (LSR), is a router between one network service provider's area and

areas administered by other network providers/customers.

 Provider (P) router –is a Label Switch Router (LSR) that functions as a

transit router of the core network. The P Router is typically connected to

one or more PE Routers.

 Customer Edge (CE) router–The customer edge (CE) is the router at the

customer premises that is connected to the provider edge of a service

provider IP/MPLS network. CE peers with the Provider Edge (PE) and

exchanges routes with the corresponding VRF inside the PE. The routing

protocol used could be static or dynamic (an interior gateway protocol like

OSPF or an exterior gateway protocol like Border Gateway Protocol-

BGP).

Figure 2.3: MPLS Architecture

2.5.2 Labels and Label Bindings:

 A label, in its simplest form, identifies the path a packet should traverse. A

label is carried or encapsulated in a Layer-2 header along with the packet. The

receiving router examines the packet for its label content to determine the next

hop. Once a packet has been labeled, the rest of the journey of the packet through

24

the backbone is based on label switching. The label values are of local

significance only, meaning that they pertain only to hops between LSRs.

Figure 2.4: MPLS Labeling

2.5.3 The MPLS Process:

There are four scenarios detailing how LSRs forward packets:

1) An unlabeled IP packet is received, and is routed unlabeled to the next

hop.

2) An unlabeled IP packet is received, a label is inserted in the header, and is

switched to the next hop.

3) A labeled IP packet is received, the label is swapped, and is switched to the

next hop.

4) A labeled IP packet is received, the label is stripped off, and is routed to

the next hop or destination.

Frame-mode MPLS performs as follows:

1) An edge LSR receives a packet.

2) The edge LSR performs a routing table lookup to determine the next hop

(or exit interface).

3) If destined for the MPLS network, the edge router inserts the label between

the Layer-2 and Layer-3 headers.

4) The edge LSR forwards the labeled packet to the core LSR.

5) Core LSRs will route solely based on the label, and will not perform a

routing table lookup [10].

25

Figure 2.5: MPLS Process

2.5.4 MPLS L2VPN VS L3VPN:

 L3VPN uses IP routing, L2VPN uses circuit switching approach.

 In L3 MPLS VPN the customer traffic consist of IP frames, in L2 MPLS

VPN the customer traffic is tagged or untagged Ethernet frames.

 In L3 MPLS VPN the inner label is a label containing the final virtual

routing and forwarding table, in L2 MPLS VPN the inner label is virtual

circuit tag

 L3 MPLS VPN uses standard routing protocols such as BGP to create

route maps, L2 MPLS VPN resamples a virtual circuit type service.

2.6 SDN Network:

 Software-defined networking (SDN) is a new networking architecture that

comes after MPLS Technology is proposed as a facilitating technology for

network evolution and network virtualization. It has attracted significant attention

from both academic researchers and industry.

 One of the main organizations that contribute to the development of SDN is

the Open Network Foundation (ONF) which is a non-profit industry consortium

26

of network operators, service providers and vendors that promotes the SDN

architecture and drives the standardization process of its major elements.

 ONF defines SDN as a technology where “network control is decoupled from

forwarding and is directly programmable”. It concentrates the network

intelligence in software-based central controllers, which aims to bring better and

more efficient control, customizability and adaptability.

 The main benefits that the SDN technology might offer are: Centralized

unified control of network devices from different vendors, better automation and

control, as an abstraction of the real network is created simplified and quicker

implementation of innovations, as the network control is centralized and there is

no need every individual device to be reconfigured. Improved network reliability

and security, because of fewer configuration errors and unified policy

enforcement, provided by the automated management and the centralized control

Ability to easily adapt the network operation to changing user needs, as

centralized network state information is available and can be exploited.

2.6.1 SDN Architecture:

 Software-defined networking (SDN) has been primarily discussed as network

architecture where Layer2 technologies implemented. However, the network, like

the economy, is global and the enterprise wide area network (WAN) becomes an

essential component of that global network. SDN programmability within the

datacenter will only solve one aspect of the larger issue. That programmability

needs to extend all the way across the WAN to realize true benefits of software

defined networks. As they say, you are as good as your weakest link.

 Let us first try and peel back the layers of SDN and how it impacts

networking. Networking typically involves a collection of switches and routers

that work in harmony to achieve end to end communication. The key functions of

these network elements can be segmented into layers of management, data plane

and control plane. The traditional way of making these nodes work with each

other is by implementing protocols running at each of these nodes to exchange

information. This creates a distributed architecture, where every node across the

27

network needs to be at a similar state to get the desired end result. In addition,

these protocols are very rigid in what they can and cannot do. The result is a very

static network architecture that is not adaptive to change as presented in Figure

2.6

Figure 2.6: Traditional Architecture

 Now consider what would happen if we remove the protocols and instead

open up a standard set of APIs. Then, build a centralized control plane that uses

these APIs to program the network elements. This control plane will have a

global view of the network and can make smart decisions. For example, how can

one carve out a dedicated path between 2 servers? If we had switches opening up

APIs indicating the flow to the output port mapping it is a matter of programming

all the elements with that information. Imagine trying to do that with the

spanning tree protocol instead! This is just a very high level concept, but the

fundamental idea is that network elements need to be programmable and cannot

be static within a fluid environment like the Cloud, where provisioning needs to

happen on demand and elasticity is a key requirements presented in Figure 2.7

28

Figure 2.7: SDN Architecture

 Moving the same concept into enterprise networking, Firewalls, VPN, WAN

optimization solutions and Quality of Service (QoS) are some of the aspects of

WAN technologies built on a foundation of L3 routing. L3 routing is destination

based and is not flow aware. It does have significant benefits over L2 networks,

like support for multi-pathing, VPNs but is built on protocols running in a

distributed manner and lacking programmability.

 SDN has been designed to simplify network configuration and facilitate

innovation. SDN paradigm decouples the control plane and the data plane and

concentrates the data forwarding decisions into a centralized software controller.

As a result, the underlying network devices’ functions are reduced to simple data

forwarding. Instead of programming thousands of devices the network

configuration is performed on simplified network abstraction. This allows the

implementation of various software modules that can exert dynamic control on

the network functions, also the centralized control function of the SDN

architecture allows consistent Policies to be enforced with ease. Common

networking functionalities can also be configured via the supported APIs. The

deployment of services, such as routing, security, access control, bandwidth

management, traffic engineering, quality of service, energy optimization can be

configured much easily. The goal of the SDN developers is to ensure multi-

vendor support.

29

2.6.2 SDN Applications:

 The SDN architecture is claimed to greatly simplify network management and

provide an immense number of new services via the programmable software

modules. A summary of the application scenario that will benefit from employing

the Open Flow architecture are described in and briefly summarized as following:

 Enterprise networks: the centralized control function of SDN can be

particularly beneficial for enterprise networks in different ways. For

example, network complexity can be reduced by removing middle boxes

and configuring their functionality within the network controller. Different

network functions implemented via SDN include Network Address

Translation (NAT), firewalls, load balancers and network access control.

An approach for realizing consistent network upgrade, using high-level

abstractions.

 Data centers: power consumption management is a major issue in data

centers, as they often operate below capacity in order to be able to meet

peak demands. A network power manager is described that turns off a

subset of switches in a way to minimize power consumption while

ensuring the required traffic conditions. A real life example of SDN

application in the context of data centers is presented. They describe SDN-

based network connecting Google data centers worldwide. The

deployment was motivated by the need of customized routing and traffic

engineering, as well as scalability, fault tolerance and control that could

not be achieved with traditional WAN networks.

 Infrastructure-based wireless access networks: an SDN solution for

enterprise wireless LAN networks is proposed. The solution builds an

abstraction of the access point infrastructure that separates the association

state from the physical access point. The purpose is to ensure proactive

mobility management and load balancing.

30

2.6.3 SDN Controller:

 The controller is the core of an SDN network. It lies between network devices

at one end and applications at the other end. Any communications between

applications and devices have to go through the controller [11]. SDN controllers

are based on protocols, such as Open Flow to configure network devices and

choose the optimal network path for application traffic and to allow servers to tell

switches where to send packets as presented in Figure 2.8.

Figure 2.8: SDN Controller

2.6.3.1 Open Daylight:

 Open Daylight SDN Controller has several layers. The top layer consists of

business and network logic applications, the middle layer is the framework layer

and the bottom layer consists of physical and virtual devices. The middle layer is

the framework in which the SDN abstractions can manifest. This layer hosts

north-bound and southbound APIs. The controller exposes open northbound APIs

which are used by applications. Open Daylight supports the Open Services

Gateway Initiative (OSGi) framework and bidirectional REST for the

northbound API. The business logic resides in the applications above the middle

layer. These applications use the controller to gather network intelligence, run

31

algorithms to perform analytics, and then use the controller to orchestrate the new

rules, if any throughout the network. Open daylight is created with an objective

of reducing vendor, locking therefore it supports protocols other than Open Flow.

The southbound interface is capable of supporting multiple protocols such as

Open Flow and BGP-Link State as separate plugins. The Service Abstraction

Layer (SAL) determines how to fulfill the requested service irrespective of the

underlying protocol used between the controller and the network devices [12].

2.6.3.2 NOX-MT:

 NOX, whose measured performance motivated several recent proposals on

improving control plane efficiency has a very low flow setup throughput and

large flow setup latency. Fortunately, this is not an intrinsic limitation of the SDN

control plane: NOX is not optimized for performance and is single-threaded. We

present NOX-MT, a slightly modified multi-threaded successor of NOX, to show

that with simple tweaks we were able to significantly improve NOX’s throughput

and response time. The techniques we used to optimize NOX are quite well-

known including: Input/Output (I/O) batching to minimize the overhead of I/O,

porting the I/O handling harness to Boost Asynchronous I/O (ASIO) library

(which simplifies multi-threaded operation), and using a fast multiprocessor-

aware malloc implementation that scales well in a multi-core machine. Despite

these modifications, NOX-MT is far from perfect. It does not address many of

NOX’s performance deficiencies, including but not limited to: heavy use of

dynamic memory allocation and redundant memory copies on a per request basis,

and using locking were robust wait-free alternatives exist. Addressing these

issues would significantly improve NOX’s performance. However, they require

fundamental changes to the NOX code base and we leave them to future work.

To the best of our knowledge, NOX-MT was the first effort in enhancing

controller performance and motivated other controllers to improve. [14]

2.6.3.3 Floodlight controller:

32

 Floodlight is not just an Open Flow controller. Floodlight is an Open Flow

controller (the "Floodlight Controller") and a collection of applications built on

top the Floodlight Controller.

 The Floodlight Controller realizes a set of common functionalities to control

and inquire an Open Flow network, while applications on top of it realize

different features to solve different user needs over the network. The figures

below show the relationship among the Floodlight Controller, the applications

built as Java modules compiled with Floodlight, and the applications built over

the Floodlight REST API. When you run Floodlight, the controller and the set of

Java module applications (those loaded in the floodlight properties file, see

Module Applications for examples) start running. The REST APIs exposed by

all running modules are available via the specified REST port (8080 by default).

Any REST applications, written in any language, can now retrieve information

and invoke services by sending http REST commands to the controller REST

port 8080 [13].

2.6.3.4 Open Network Operating System Controller:

 Open Network Operating System (ONOS) controller, is an SDN Operating

System (OS) proposed with many features: performance, scalability, and

availability requirements of large operator networks.

 The evaluation of the first ONOS controller indicated that needs to design a

more efficient data model, reduce the number of expensive data store operations,

and provide fast notifications and messaging across nodes. Additionally, the API

needed to be simplified to represent the network view abstraction more clearly

without exposing unnecessary implementation details.

2.6.4 Open Flow Protocol:

 Open Flow is currently the only open standard for implementing SDN and it

is a standardized protocol that defines the communication between the control

and the data forwarding plane in the SDN architecture. It moves the control out

of the networking devices (routers, switches, etc.) into the centralized controller.

33

The protocol uses the concept of flows that use match rules to determine how the

packets will be handled. The protocol is configured on both sides – the device

and the controller. The forwarding. Device in an Open Flow scenario is an Open

Flow switch that contains one or more flow tables and an abstraction layer that

communicates with the controller. The flow tables are filled with flow entries

which define how the packet will be forwarded, depending on the particular flow

they are part of.

 In order to understand the role of Open Flow and its building blocks, and how

it can be used for Open Flow-based network application development, it is

important to provide a brief introduction of Open Flow and how it works. This

chapter shapes the required knowledge prior to the actual setup of SDN/Open

Flow-enabled experimental and development environment. Open Flow can be

considered as one of the early implementations of the SDN concept. Therefore,

before going through Open Flow, it is worth giving a brief introduction to the

SDN and the related activities around it.

 The flow entries have the following fields: Match fields, might contain

information from the packet headers, ingress port or metadata and matches the

packets to a certain flow. Counters collect statistic about the particular flow.

Actions, define how the incoming packets to be handle. An example of the Open

Flow instruction set is presented on Figure 2.12

34

Figure 2.12: Open Flow instruction set

 SDN is possible without using the Open Flow standard, but proprietary

alternatives would lock an operator into vendor-defined solutions, capabilities

and pricing. This would greatly reduce the value of SDN as it would result in the

loss of both device interoperability and multi-network Interoperability. An Open

Flow switch essentially receives data packets, extracts the packet header and

matches the value to the entries in the flow table. If the value is found the packet

is forwarded according to the instructions in the actions fields. In case the value

does not match any of the entries, the packet is handled according to the

instructions defined in the table-miss entry.

 The packet can be either dropped, forwarded to the next flow table or send to

the Open Flow controller via the control channel. Another possibility, employed

in switches that have both Open Flow and non-Open Flow ports, is to forward the

packet using standard IP-forwarding schemes. The Open Flow switch

communicates with the controller over a secure channel. The controller adds,

removes or updates the entries in the flow table [6].

2.6.4.1 Activities around SDN/Open Flow:

 While Open Flow has received a considerable amount of industry attention, it

is worth mentioning that the idea of programmable networks and decoupled

35

control plane (control logic) from data plane has been around for many years.

The Open Signaling Working Group (OPENSIG) initiated a series of workshops

in 1995 to make ATM, Internet, and mobile networks more open, extensible, and

programmable. Motivated by these ideas, an Internet Engineering Task Force

(IETF) working group came up with General Switch Management Protocol

(GSMP), to control a label switch. This group is officially concluded and

GSMPv3 was published in June, 2002. The Active Network initiative proposed

the idea of a network infrastructure that would be programmable for customized

services. However, Active Network never gathered critical mass, mainly due to

practical security and performance concerns. Starting in 2004, the 4D project

advocated a clean slate design that emphasized separation between the routing

decision logic and the protocols governing the interaction between network

elements. The ideas in the 4D project provided direct inspiration for later works

such as NOX, which proposed an operating system for networks in the context of

an Open Flow-enabled network. Later on in 2006, the IETF Network

Configuration Protocol working group proposed NETCONF as a management

protocol for modifying the configuration of network devices. The working group

is currently active and the latest proposed standard was published in June, 2011.

The IETF Forwarding and Control Element Separation (ForCES) working

group is leading a parallel approach to SDN. SDN and Open Networking

Foundation share some common goals with ForCES. With ForCES, the internal

network device architecture is redefined as the control element is separated from

the forwarding element, but the combined entity is still represented as a single

network element to the outside world. The immediate predecessor to Open Flow

was the Stanford's SANE/Ethane project which, in 2006, defined a new network

architecture for enterprise networks. Ethane's focus was on using a centralized

controller to manage policy and security in a network.

2.6.4.2 Open Flow Messages:

 The communication between the controller and switch happens using

the Open Flow protocol, where a set of defined messages can be

36

exchanged between these entities over a secure channel. The secure

channel is the interface that connects each Open Flow switch to a

controller. The Transport Layer Security (TLS) connection to the user-

defined (otherwise fixed) controller is initiated by the switch on its power

on. The controller's default TCP port is 6633. The switch and controller

mutually authenticate by exchanging certificates signed by a site-specific

private key. Each switch must be user-configurable with one certificate

for authenticating the controller (controller certificate) and the other for

authenticating to the controller (switch certificate).

 Traffic to and from the secure channel is not checked against the flow table

and therefore the switch must identify incoming traffic as local before checking it

against the flow table. In the case that a switch loses contact with the controller,

as a result of an echo request timeout, TLS session timeout, or other

disconnection, it should attempt to contact one or more backup controllers. If

some number of attempts to contact a controller (zero or more) fail, the switch

must enter emergency mode and immediately reset the current TCP connection.

Then the matching process is dictated by the emergency flow table entries

(marked with the emergency bit set). Emergency flow modify messages must

have timeout value set to zero. Otherwise, the switch must refuse the addition and

respond with an error message. All normal entries are deleted when entering

emergency mode. Upon connecting to a controller again, the emergency flow

entries remain. The controller then has the option of deleting all the flow entries,

if desired.

 The controller configures and manages the switch, receives events from the

switch, and sends packets out to the switch through this interface. Using the Open

Flow protocol, a remote controller can add, update, or delete flow entries from

the switch's flow table. That can happen reactively (in response to a packet

arrival) or proactively. The Open Flow protocol can be viewed as one possible

implementation of controller switch interactions (southbound interface), as it

defines the communication between the switching hardware and a network

controller. For security, Open Flow 1.3.x provides optional support for encrypted

37

TLS communication and a certificate exchange between the

switches/controller(s); however, the exact implementation and certificate format

is not currently specified. Also, fine-grained security options regarding scenarios

with multiple controllers are outside the scope of the current specification, as

there is no specific method to only grant partial access permissions to an

authorized controller [6].

2.7 Traditional Networking VS SDN:

Table 2.1: Difference between Traditional and Software Defined Networking

Types [12]

NM Traditional Networking Software Defined Networking

1 They are Static and Inflexible

networks. They are not useful

for new business ventures.

They possess little agility and

flexibility

They are programmable networks

during deployment time as well as at

later stage based on change in the

requirements. They help new

business ventures through flexibility,

agility and virtualization.

2 They are Hardware appliances. They are configured using open

software.

3 They have distributed control

plane.

They have logically centralized

control plane.

4 They use custom ASICs and

FPGAs.

They use merchant silicon.

5 They work using protocols. They use APIs to configure as per

need.

38

3. Modelling Virtual Private Network

3.1 Overview:

 Mininet simulator and SDN ONOS1.13.2 controller are used in the thesis

network models experiments. We will implement two different scenarios of SDN

VPLS, in the first one we will use one Open Flow switch connected to the

controller, configure 3 VPLS customers beginning with small number of sites per

customer (two sites) then begin to add new sites for every VPLS customer and

reed the total number of flow entries the controller use to forward data. In the

next model we will repeat the experiment we did at the first model but using two

Open Flow switches connecting to the controller.

 In scenario one we use Mininet CLI to simulate the networks and use ONOS

CLI to configure VPLS. In scenario two we will use python scripts to implement

networks and use ONOS controller CLI to make VPLS configuration.

To implement the two network topologies scenarios and make the VPLS

configuration and test them we follow the next steps:

1) We download and install Oracle Virtual Machine (VM) VirtualBox.

2) We install SDN Hub tutorial VM 64-bit with Docker as a virtual machine

(Ubuntu 16.04 with Mininet and a default controller installed on it).

3) Download ONOS 1.13.2, use CLI to run it.

4) We implement the network topologies using CLI or python scripts and

connect it to ONOS remote controller.

5) Test the connectivity between Mininet and the controller by using PING

test (ONOS controller choose IP 127.0.0.1 and 6633 port number if it run

in other port number it should change because Mininet is only connect to

in this port, also the open flow feature must be activated on the controller).

6) Activate VPLS application on ONOS controller.

7) Use CLI to create VPLS, add interfaces to ONOS controller, and associate

interfaces to it is VPLS.

8) Use ONOS CLI to check the configuration.

9) Use Mininet PING tests to make sure the network is work probably.

39

3.2 Models’ Scenarios:

 Models and their scenarios will be as flow:

3.2.1 Model 1 Scenario 1:

 In this scenario we will use ONOS controller connecting to an Open Flow

switch, add three VPLS customer everyone has two sites one host per site as

shown in figure 3.1, make VPLS configuration and read the number of flows in

the controller.

Figure 3.1: Model 1 Scenario 1

3.2.2 Model 1 Scenario 2:

 In this scenario we will use ONOS controller connecting to an Open Flow

switch, add three VPLS customer everyone has four sites one host per site as

shown in figure 3.2, make VPLS configuration and read the number of flows in

the controller.

40

Figure 3.2: Model 1 Scenario 2

3.2.3 Model 1 Scenario 3:

 In this scenario we will use ONOS controller connecting to an Open Flow

switch, add three VPLS customer everyone has eight sites one host per site as

shown in figure 3.3, make VPLS configuration and read the number of flows in

the controller.

41

Figure 3.3: Model 1 Scenario 3

3.2.4 Model 2 Scenario 1:

 In this scenario we will use ONOS controller connecting to an Open Flow

switch, add three VPLS customer everyone has two sites one host per site as

shown in figure 3.4, make VPLS configuration and read the number of flows in

the controller.

42

Figure 3.4: Model 2 Scenario 1

3.2.5 Model 2 Scenario 2:

 In this scenario we will use ONOS controller connecting to an Open Flow

switch, add three VPLS customer everyone has four sites one host per site as

shown in figure 3.5, make VPLS configuration and read the number of flows in

the controller.

43

Figure 3.5: Model 2 Scenario 2

3.2.6 Model 2 Scenario 3:

 In this scenario we will use ONOS controller connecting to an Open Flow

switch, add three VPLS customer everyone has eight sites one host per site as

shown in figure 3.6, make VPLS configuration and read the number of flows in

the controller.

44

Figure 3.6: Model 2 Scenario 3

 After implementing the three scenarios of each model the results will be

retested on the table below:

Table 3.1: Simulation Parameters

Model/Scenario Number of

switches

Number of

VPNs

Number of

sites/VPN

Flow

table size

1 3 2

2 3 4

3 3 8

45

4. Simulation & Results

4.1 Simulation Description:

 In order to VPLS establish connectivity two or more hosts, different things

need to happen:

1) A VPLS needs to be defined.

2) At least two interfaces need to be configured in the ONOS interfaces

configuration.

3) At least two interfaces need to be associated to the same VPLS.

4) At least two hosts need to be connected to the Open Flow network Hosts

participating to the same VPLS can send in packets tagged with the same

VLAN Ids, different VLAN IDs, and no VLAN Ids at all.

 When conditions 1, 2 and 3 are satisfied, hosts attached to the VPLS will be

able to send and receive broadcast traffic. This is needed to make sure that all

hosts get discovered properly, before establishing unicast communication. When

4 gets satisfied-meaning that ONOS discovers at least two hosts of the same

VPLS-unicast communication is established.

 After implementing, configuring, testing the connectivity (by using PING

tests) of the VPLS different models, the results will registered on a table to be

analyzed and observed.

4.2 Results:

 As we explained in the previous chapter we make our experiments on two

scenarios with three models. Now we will showing the implementation,

configuration, and the connectivity tests that we made for each model and finally

showing the results.

46

Figure 4.1: Model 1 Scenario 1 Implementation

Figure 4.2: Model 1 Scenario 1 PING Test

47

Figure 4.3: Model 1 Scenario 2 Implementation

Figure 4.4: Model 1 Scenario 2 PING Test

48

Figure 4.5: Model 1 Scenario 3 Implementation

Figure 4.6: Model 1 Scenario 3 PING Test

49

Table 4.1: Model One Results

Scenario Number of

switches

Number of

VPNs

Number

of

sites/VPN

Flow table

size

1 1 3 2 16

2 1 3 4 52

3 1 3 8 150

Figure 4.7: Model 2 Scenario 1 Implementation

50

Figure 4.8: Model 2 Scenario 1 PING Test

51

 Figure 4.9: Model 2 Scenario 2 Implementation

52

Figure 4.10: Model 2 Scenario 2 PING Test

Figure 4.11: Model 2 Scenario 3 Implementation

53

Figure 4.12: Model 2 Scenario 3 PING Test

Table 4.2: Model Two Results

Scenario Number of

switches

Number of

VPNs

Number

of

sites/VPN

Flow table

size

1 2 3 2 27

2 2 3 4 74

3 2 3 8 192

54

5. Results & Discussion

5.1 Discussion:

 Althought we use in our study only one switch as in the first scenario and two

switches as in the second one, and only three VPLSs with maximum eight sites

per every one witch is very simple part of WAN network it seem to be an ISP

having two PEs routers,and the customer sites represented by only one host and

there is no Qos configured or even routing protocols or security polices like what

is happened in reaility the site may be ahuge data center with large number of

servers with very complicated security polices Qos and more than one routing

protocol, we opsarved that from first scenario the total number of flowes increse

more than three times when the the sites scales to daboule.The flowes also

increse (about daboule)when the number of Open Flow switches dabouled.

 The emerging paradigm of SDN promises to simplify network

management,and build reialable and scaleable network.in this study we opsarve

that network management is mutch eyseir because it centrlized in the

controller.but as we disscused the scalabilty is aserios issue for SDN because as

anetwork scale the controller must be deail with large amount of flowes

concurently witch need repotness at booth software and hardware of the

controllers.

55

6. Conclusion & Recommendation

6.1 Conclusion:

 In this study, we extended the observation of the reliability and scalability

issues to an SDN that is beyond the controllers. This calls for attention to such

issues of controller performance and controllers clustering and way that the

controllers must be connected when VPLS customers’ sites distributed among

more than one controller.

6.2 Recommendation:

 The next steps would be developing the methods and metrics to evaluate SDN

controllers’ performance and SDN WAN design and SDN related frameworks,

and to seek and establish general guidelines in designing and implementing the

frameworks without jeopardizing the scalability in SDN.

56

REFERENCES

[1] Behzad Mirkhanzadeh, Naeim Taheri, Siavash Khorsandi, “SDxVPN: A Software-Defined

Solution for VPN Service Providers” Network Operations and Management Symposium

(NOMS) February 2016.

[2] Shuhao Liu and Baochun Li “On Scaling Software-Defined Networking in Wide-Area

Networks” June 2015 TSINGHUA SCIENCE AND TECHNOLOGY.

[3] Barath Raghavan, Teemu Koponen, Ali Ghodsi, “Software-Defined Internet Architecture:

Decoupling Architecture from Infrastructure” Proceedings of the 11th ACM Workshop on

Hot Topics in Networks.

[4] Nick Feamster, Jennifer Rexford, Ellen Zegura, “The Road to SDN: An Intellectual

Historyof Programmable Networks” ACM SIGCOMM Computer Communication

Review April 2014.

[5] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, V. Maglaris, “ Combining

OpenFlow and sFlow for an effective and scalable Anomaly Detection and Mitigation

mechanism on SDN Environments” Computer Networks April 2014.

[6] Foundation, O.N.: Openflow switch specification version 1.3.1. Tech. rep., “Open

Networking Foundation” (September 2012)

[7] GR Wright,WR Stetevens”TCP IP",1995

[8] Z Fu,SF Wu,H Huang,K Loh,F Gong “IPSec/VPN Security Policy: Correctness, Conflict

Detection and Resolution”Springer,20017

[9] Understanding the virtual private LAN Service, Article available at :

https://www.juniper.net/documentation/en_US/releaseindependent/nce/topics/concept/vpl

s-understanding.html

[10] LUC GHEIN “MPLS fundamentals” November 21, 2006.

[11] Muntaner, G.: Evaluation of OpenFlow Controllers. Master’s thesis (October 2012)

[12]. https://www.opendaylight.org/ecosystem-solutions

[13] Article available at : http://www.projectfloodlight.org/documentation/

[14] Y Zhao, “On Controller Performance in Software-Defined Networks” IEEEXplor,2015

https://www.juniper.net/documentation/en_US/releaseindependent/nce/topics/concept/vpls-understanding.html
https://www.juniper.net/documentation/en_US/releaseindependent/nce/topics/concept/vpls-understanding.html
http://www.projectfloodlight.org/documentation/

57

 APPENDICES

A. Paython Script for Model 2 Scenario 1:

from mininet.net import Mininet

from mininet.node import RemoteController

from mininet.cli import CLI

from mininet.log import setLogLevel, info

def treeTopo():

 net = Mininet(controller=RemoteController)

 info('*** Adding controller\n')

 net.addController('c0')

 info('*** Adding hosts\n')

 h1 = net.addHost('h1')

 h2 = net.addHost('h2')

 h3 = net.addHost('h3')

 h4 = net.addHost('h4')

 h5 = net.addHost('h5')

 h6 = net.addHost('h6')

 info('*** Adding switches\n')

 s1 = net.addSwitch('s1')

 s2 = net.addSwitch('s2')

 info('*** Creating links\n')

 net.addLink(h1, s1)

 net.addLink(h2, s1)

 net.addLink(h3, s1)

 net.addLink(h4, s2)

 net.addLink(h5, s2)

 net.addLink(h6, s2)

 net.addLink(s1, s2)

58

 info('*** Starting network\n')

 net.start()

 info('*** Running CLI\n')

 CLI(net)

 info('*** Stopping network')

 net.stop()

if __name__ == '__main__':

 setLogLevel('info')

 treeTopo()

B. Paython Script for Model 2 Scenario 2:

from mininet.net import Mininet

from mininet.node import RemoteController

from mininet.cli import CLI

from mininet.log import setLogLevel, info

def treeTopo():

 net = Mininet(controller=RemoteController)

 info('*** Adding controller\n')

 net.addController('c0')

 info('*** Adding hosts\n')

 h1 = net.addHost('h1')

 h2 = net.addHost('h2')

 h3 = net.addHost('h3')

 h4 = net.addHost('h4')

 h5 = net.addHost('h5'

 h6 = net.addHost('h6')

 h7 = net.addHost('h7')

 h8 = net.addHost('h8')

 h9 = net.addHost('h9')

 h10 = net.addHost('h10')

 h11 = net.addHost('h11')

59

 h12 = net.addHost('h12')

 info('*** Adding switches\n')

 s1 = net.addSwitch('s1')

 s2 = net.addSwitch('s2')

 info('*** Creating links\n')

 net.addLink(h1, s1)

 net.addLink(h2, s1)

 net.addLink(h3, s1)

 net.addLink(h4, s2)

 net.addLink(h5, s2)

 net.addLink(h6, s2)

 net.addLink(h7, s1)

 net.addLink(h8, s1)

 net.addLink(h9, s1)

 net.addLink(h10, s2)

 net.addLink(h11, s2)

 net.addLink(h12, s2)

 net.addLink(s1, s2)

 info('*** Starting network\n')

 net.start()

 info('*** Running CLI\n')

 CLI(net)

 info('*** Stopping network')

 net.stop()

if __name__ == '__main__':

 setLogLevel('info')

 treeTopo()

C. Paython Script for Model 2 Scenario 3:

from mininet.net import Mininet

from mininet.node import RemoteController

60

from mininet.cli import CLI

from mininet.log import setLogLevel, info

def treeTopo():

 net = Mininet(controller=RemoteController)

 info('*** Adding controller\n')

 net.addController('c0')

 info('*** Adding hosts\n')

 h1 = net.addHost('h1')

 h2 = net.addHost('h2')

 h3 = net.addHost('h3')

 h4 = net.addHost('h4')

 h5 = net.addHost('h5')

 h6 = net.addHost('h6')

 h7 = net.addHost('h7')

 h8 = net.addHost('h8')

 h9 = net.addHost('h9')

 h10 = net.addHost('h10')

 h11 = net.addHost('h11')

 h12 = net.addHost('h12')

 h13 = net.addHost('h13')

 h14 = net.addHost('h14')

 h15 = net.addHost('h15')

 h16 = net.addHost('h16')

 h17 = net.addHost('h17')

 h18 = net.addHost('h18')

 h19 = net.addHost('h19')

 h20 = net.addHost('h20')

 h21 = net.addHost('h21')

 h22 = net.addHost('h22')

 h23 = net.addHost('h23')

 h24 = net.addHost('h24')

61

 info('*** Adding switches\n')

 s1 = net.addSwitch('s1')

 s2 = net.addSwitch('s2')

 info('*** Creating links\n')

 net.addLink(h1, s1)

 net.addLink(h2, s1)

 net.addLink(h3, s1)

 net.addLink(h4, s2)

 net.addLink(h5, s2)

 net.addLink(h6, s2)

 net.addLink(h7, s1)

 net.addLink(h8, s1)

 net.addLink(h9, s1)

 net.addLink(h10, s2)

 net.addLink(h11, s2)

 net.addLink(h12, s2)

 net.addLink(h13, s1)

 net.addLink(h14, s1)

 net.addLink(h15, s1)

 net.addLink(h16, s2)

 net.addLink(h17, s2)

 net.addLink(h18, s2)

 net.addLink(h19, s1)

 net.addLink(h20, s1)

 net.addLink(h21, s2)

 net.addLink(h22, s2)

 net.addLink(h23, s2)

 net.addLink(h24, s2)

 net.addLink(s1, s2)

 info('*** Starting network\n')

62

 net.start()

 info('*** Running CLI\n')

 CLI(net)

 info('*** Stopping network')

 net.stop()

if __name__ == '__main__':

 setLogLevel('info')

 treeTopo()

D. Ubuntu CLI:

ubuntu CLI Description

ubuntu@sdnhubvm:~[06:09]$ cd

Desktop/onos-1.13.2/bin

Go to directory: Desktop/onos-

1.13.2/bin

ubuntu@sdnhubvm:~/Desktop/onos-

1.13.2/bin[06:09]$ sudo su

running as root user

root@sdnhubvm:/home/ubuntu/Deskt

op/onos-1.13.2/bin# ./service-start

RUN ONOS controller

root@sdnhubvm:/home/ubuntu/Deskt

op/onos-1.13.2/bin# sudo mn --topo

single,6 --controller remote

open mininet immplement anetwork

topology with one switch and six

hosts connceted to acntrollet with

IP127.0.0.1 in port number 6633

63

E. ONOS CLI:

ONOS CLI Description

onos> app activate

org.onosproject.openflow

activate open flow application

onos> cfg set

org.onosproject.openflow.controller.i

mpl.OpenFlowControllerImpl

openflowPorts 6633

change controller port to be 6633

onos> app activate

org.onosproject.vpls

activate VPLS application

onos> create vpls 1 create VPLS and name it 1

onos> interface-add

of:0000000000000001/1 h1

connect h1 to port 1 in the controller

onos> vpls add-if 1 h1 associate h1 to VPLS 1

onos> vpls list list all configured VPLSs

onos> vpls show Show all configured VPLSs in details

F. Mininet CLI:

Mininet CLI Description

pingall ping test from every host to all other

hosts in the network

