Dedication

I dedicate this thesis to God Almighty my creator, my of inspiration, pillar, my source wisdom, strong knowledge and understanding. He has been the source of my strength throughout this program and on His wings only have I soared. This work is also dedicated to my parents, Amaal and Mohammed Tom, who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve. To myfriend, Zeinab .A .Mustafa who has been a constantsource of support and encouragement during the doctoral program. I am truly thankful for having you in my life. To my children Hassan and Dorrar who have been affected in every way possible by this quest .Thank you. My love for you all can never be quantified. God bless you.

ACKNOWLEDGEMENTS

First and foremost, I thank God (Allah), the Almighty for endowing his immense blessing that helped me in each step of my progress towards the successful completion of my research work.

I am deeply grateful to my Project supervisor Dr.Alnazier O. Hamza., Ph.D., Professor, Department of biomedical Engineering, for his canalized guidance, dedication, constant inspiration and encouragement. I also extend my whole hearted thanks to my project supervisor for his valuable advice and innovative ideas, which lead me in the right path in doing this research work I convey my heartfelt thanks to my friend Dr.Zeinab A. Mustafa Ph.D. assistant Professor, Department of biomedical Engineering for her kind support during the doctoral program and for having provided me with their valuable suggestions to complete the work successfully.

I am greatly indebted to Dr.AkramIsmaeal, Ph.D., assistant Professor, Head of the Department of biomedical Engineering, for his kind cooperation to complete my doctoral program I wish to express my deep sense of appreciation to my friend Dr. Banazeir Ahmed Ibrahim PhD, assistant Professor, Department of biomedical Engineeringfor her, encouragement and support

ii

throughout my work. Last I wish to express my sincere thanks to all myfamily members and friends for their timely help, moral support and encouragement.

Table of Contents

Content	
	page
Dedication	i
Acknowledgement	ii
Table of contents	iii
List of tables	x
List of figures	xi
Glossary	xvii
Abstract	xx
المستخلص	xxi
CHAPTER ONE: INTRODUCTION	
1.1INTRODUCTION	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Significance of the Study	3

1.5 Dissertation Layout	5
CHAPTER TWO: Literature Survey	6
CHAPTER THREE: THEORETICAL BACKGROUND	
3.1 Anatomy of the brain	21
3.2 Types of brain tumors	25
3.2.1 Secondary (Metastatic) Malignant Brain Tumors	26
3.2.2 Primary Brain Tumors	26
3.2.3 Glioma	28
3.2.3.1 Statistics	31
3.2.3.2 Prognosis and Survival rates	31
3.2.3.3 Diagnosis	32
3.2.3.4 Treatment	32
3.3 Imaging Techniques	32
3.3.1 Magnetic Resonance Imaging Basic Principles	35
3.3.1.1 Conventional MRIs	36
3.3.1.2 Applications of MR Imaging in Neoplastic CNS Lesions	41
3.3.1.3 Clinical Practice of Brain Tumor Imaging	43
3.3.1.4 MR Image Representation	44
3.3.2Advanced MRI scans	45

3.3.2.2 Functional MRI	45
3.3.2.3 Diffusion MRI	46
3.3.2.4 Diffusion-Tensor Imaging	47
3.3.2.5 Perfusion-weighted MRI	49
3.3.3 Noise in MR Imaging	50
3.3.3.1 Different Noise Models	52
3.3.4 Partial volume effect	54
3.3.5 Intensity in-homogeneities	56
3.4 Pattern recognition in computer-assisted diagnosis of brain tumors	56
3.5 Segmentation	57
3.5.1 Segmentation methods	57
3.6 TEXTURE features	65
3.6.1.1 TEXTURE ANALYSIS TYPES	66
3.6.1.1.1 STRUCTURAL APPROACH	66
3.6.1.1.1 STRUCTURAL APPROACH	67
3.6.1.1.2 MODEL BASED APPROACH	67
3.6.1.1.3 TRANSFORM BASED APPROACH	67
3.6.1.1.4 STATISTICAL APPROACH	68
3.7 Feature selection and classification	68

3.7.1 Artificial Neural Networks	71
3.7.1.1 Modes of Operation	72
3.7.1.1.1 Training mode	73
3.7.1.1.2 Operating mode	73
3.7.1.2 Testing	73
3.7.1.3 Main Types of Neural Network	74
3.7.1. 3.1 Feed forward Back propagation Network	74
3.7.1.3.2 Hopfield Neural Network	75
3.7.1.3.3 Self Organizing Map	75
3.8 Box plot and its uses	76
CHAPTER FOUR :ALGORITHM METHODOLOGY AND IMPLEMENTATION	
4.1 MATLAB SOFTWARE	78
4.2 IMAGE PROCESSING TOOLBOX	78
4.3 METHODOLOGY	78
4.3.1 Data collection	79
4.3.2 Histogram equalization	79
4.3.3 Image De-noising	80
4.3.3.1 ADAPTIVE FILTER	81

4.3.3.2Median Filter	81
4.3.3.3 MODIFIED HYBRID MEDIAN FILTER	82
4.4.3.3.4. WAVELET FILTER	83
4.3.3.5. Bilateral Filtering	84
4.3.4 Problems Encountered In MRI Technique	85
4.3.5Types of Noises in MR images:	86
4.3.5.1 Salt-and-pepper noise	86
4.3.5.2 Gaussian noise	86
4.3.5.3 Rician noise	86
4.3.5.4 Thermal Noise	86
4.3.6. Quality Metrics for Judging the Noise Level in Image	87
4.3.6.1Mean-Squared Error (MSE)	88
4.3.6.2Peak Signal-to-Noise Ratio (PSNR)	88
4.3.6.3Signal-to-Noise Ratio (SNR)	88
4.3.6.4 Structured Similarity Index Method (SSIM)	88
4.3.6.5 Normalized Absolute Error (NAE)	89
4.3.7 Image segmentation	90
4.3.7.1 \ Threshold Segmentation	90
4.3.7.1 .1\ Otsu's method	91

4.3.7.1.2 \ Fast marching method	91
4.3.7.1.3 \ Gray Scale Difference Weight Method	92
4.3.7.2\Watershed Segmentation	93
4.3.7.2.1\ Marker -controlled watershed segmentation	95
4.3.7.3/ Active Contour method	97
4.3.8\ Morphological operations	97
4.3.8.1 Skull stripping	98
4.3.9 Texture Analysis and Feature Extraction	98
4.3.9.1 GLCM based second order statistics	99
4.3.9.1.1 GLCM Construction	101
4.3.9.1.2 CALCULATING TEXTURE MEASURES FROM THE GLCM	103
4.3.9.1.2.1 ENERGY	103
4.3.9.1.2.2 ENTROPY	104
4.3.9.1.2.3 CORRELATION	104
4.3.9.1.2.4 Variance	105
4.3.9.1.2.5 HOMOGENEITY	105
4.3.10 Feature selection and feature set formulation	106
4.3.11 Classification	106
4.3.11.1 Feed forward Back propagation algorithm	108

4.3.11.2 Cascade forward Back propagation algorithm	109
4.3.11.3 Generalized Neural network (GRNN)	110
4.3.11.4 Probabilistic neural network (PNN)	111
CHAPTER FIVE: RESULTS AND DISCUSSIONS	
5.1 Results	114
5.1.1 Results for Image Preprocessing and Enhancement	115
5.1.2 Result of Pattern Recognition and Classification	124
5.1.2.1 Result of watershed segmentation and morphological operation	124
5.1.3 Texture Analysis and Feature Extraction	127
5.1.3.1 Results of feature extraction of Second order Statistics	130
5.1.4 Feature selection	136
.4.1 Results of feature selection of Second order Statistics	136
5.1.5 Classification	147
5.1.5.1 Performance Assessment with Receiver Operating	147
5.1.5.2 Confusion matrix	155
5.1.5.3 Obtained results	156
CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS	
6.1 Conclusion	169
6.2 Recommendations	170

List of Tables

Table. Number	Table Name
Table 3.1	Monochrome Image Segmentation Techniques
Table 5.1	Comparison of PSNR, SNR, SSIM and MSE(salt&pepper)
Table 5.2	Comparison of PSNR, SNR and MSE (Gaussian noise)
Table 5.3	PSNR of different filtering methods (Salt & Pepper Noise)
Table 5.4	PSNR of different filtering methods (Gaussian Noise)
Table 5.5	The performance result of segmentation
Table 5.6	STATISTICAL TEXTURE FEATURES OBTAINED FROM
	GLCM(normal image)
Table 5.7	STATISTICAL TEXTURE FEATURES OBTAINED FROM
	GLCM (benign image)
Table 5.8	STATISTICAL TEXTURE FEATURES OBTAINED
	FROM GLCM(malignant image)
Table 5.9	Typical values of second order statistical features of the same
	set of normal brain images
Table 5.10	Typical values of second order statistical features of the
	same set of Benign brain tumor
Table 5.11	Typical values of second order statistical features of
	the same set of malignant brain tumor
<i>Table 5.12</i>	Summary of detection performance
<i>Table 5.13</i>	Summary of classification performance
<i>Table 5.14</i>	Evaluation metric values for classification of brain tumor for
	the proposed method
Table 5.15	Evaluation metric values for detection of brain tumor for the
	proposed method
Table 5.16	the Comparisons of Various Results

List of Figures

Figures Number	Figures Name
Figure 3.1	Anatomy of the Brain
Figure 3.2	primary brain tumor
Figure 3.3	A Brain image slice showing glioma tumor
Figure 3.4	An MRI of a patient with two separate types of brain tumor,
Figure 3.5	An MRI (Magnetic resonance imaging) of the brain
Figure 3.6	Conventional MR image slices
Figure 3.7	MRI views in three planes
Figure 3.8	An MR image sequence with 5.5 mm spacing between slices
Figure 3.9	Diffusion weighted Imaging (DWI) slices
Figure 3.10	Diffusion Tensor Imaging (DTI) slices
Figure 3.11	Perfusion weighted Imaging
Figure 3.12	A common example of Partial volume effect

Figure 3.13	Morphological Dilation of a Binary Image
Figure 3.14	morphological Dilation of a Grayscale Image
Figures 3.15	Origin of a Diamond-Shaped Structuring Element
Figure 3.16	A basic multilayer neural network
Figure 3.17	Box plot and its properties
Figure 4.1	Histogram equalization
Figure 4.2	The sub windows of proposed method
Figure 4.3	Direction of GLCM generation
Figure 4.4	The illustration for overall process of fast marching method
Figure 4.5	Direction of GLCM generation
Figure 4.6	Construction of GLCMs
Figure 4.7	Feed Forward Back propagation Network
Figure 4.8	Cascade Forward Back propagation Network
Figure 4.9	Architecture of Probabilistic Neural Network
Figure 4.10	The proposed algorithm flow chart.

Figure 5.1	Sample images from the image database
Figure 5.2	image preprocessing
Figure 5.3	Results of Filters on Salt and Pepper Noise
Figure 5.4	Results of Filters on Gaussian Noise.
Figure 5.5	The image quality evaluation metrics for MR image using Adaptive filter
Figure 5.6	The image quality evaluation metrics for MR image using Median Filter
Figure 5.7	The image quality evaluation metrics for MR image using Modified Hybrid Median Filter
Figure 5.8	The image quality evaluation metrics for MR image using Wavelet Filter
Figure 5.9	The image quality evaluation metrics for MR image using Bilateral Filter
Figure 5.10	Different segmentation methods
Figure 5.11	watershed segmentation and morphological operation
Figure 5.12	Box plots of Contrast
Figure 5.13	Box plots of Difference Entropy

Figure 5.14	Box plots of Difference Variance
Figure 5.15	Box plots of Information measure of correlation1
Figure 5.16	Box plots of Information measure of correlation2
Figure 5.17	Box plots of Sum Average
Figure 5.18	Box plots of Sum Entropy
Figure 5.19	Box plots of Sum Variance
Figure 5.20	Box plots of correlation
Figure 5.21	Box plots of Energy
Figure 5.22	Box plots of Entropy
Figure 5.23	Box plots of Homogeneity
Figure 5.24	Box plots of Variance
Figure 5.25	confusion matrix Format
Figure 5.26	ROC curve: regions of a ROC graph
Figure 5.27	ROC curves
Figure 5.28	Feed forward back propagation Neural Net Work
	Training Confusion Matrix

Figure 5.29	Cascade forward back propagation Neural Net Work Training Confusion Matrix
Figure 5.30	Generalized regression Neural Net Work Training Confusion Matrix
Figure 5.31	Probabilistic Neural Net Work Training Confusion Matrix
Figure 5.32	Feed forward back propagation Neural Net Work
	Training Receiver operating characteristics
Figure 5.33	Cascade forward Back propagation Neural Net Work
	Training Receiver operating characteristics
Figure 5.34	Generalized regression Neural Net Work Training
	Receiver operating characteristics
Figure 5.35	Probabilistic Neural Net Work Training Receiver
	operating characteristics
Figure 5.36	Feed forward back propagation Neural Net Work
	Training Performance.
Figure 5.37	Cascade forward back propagation Neural Net
	Work Training Performance.
Figure 5.38	Feed forward back propagation Neural Net Work
	Training Error Histogram

Figure 5.39	Cascade forward Back propagation Neural Net
	Work Training Error Histogram
Figure 5.40	Feed forward back propagation Neural Net Work
	Training regression
Figure 5.41	Cascade forward Back propagation Neural Net
	Work Training regression
Figure 5.42	Probabilistic Neural Net Work Training regression

Glossary

CBTUS	Central Brain Tumor Registry of the United
Csf	Cerebrospinal Fluid
GBM	Glioblastomanultiforme
MRI	magnetic resonance imaging
СТ	computed tomography
PET	positron emission tomography
SPECT	Single photon emission tomography
MEG	Magneto encephalography
NMR	nuclear magnetic resonance
GE	gradient echo
SE	spin echo
IR	Inversion recovery
TE	echo time
TR	repetition time
RF	radio frequency
PD	Proton Density
PWI	perfusion-weighted imaging
DWI	diffusion-weighted imaging
MRS	Magnetic resonance spectroscopy
FMRI	Functional MRI
DTI	Diffusion Tensor Imaging
CBF	Cerebral blood flow
CBV	cerebral blood volume
MTT	mean transit time
MRA	magnetic resonance angiography
SNR	signal-to-noise ratio
PDF	probability density function
AWGN	additive white Gaussian noise

PVE	partial volume effect
SAR	synthetic aperture radar
ROI	Regions of Interest
VOI	Volume of Interest
VTK	Visualization Tool Kit
EM	expectation-maximization
ANNs	Artificial Neural Networks
KNN	k nearest neighbor
MRF	Markov Random Field
3 D	Three-dimensional
2D	TWO dimensional
EG	Energy
СО	Correlation
EN	Entropy
IN	Inertia
IDM	Inverse difference moment
SA	sum average
SE	Sum entropy
DE	Difference entropy
IMOC1	Information measures of correlation1
IMOC2	Information measures of correlation2
VA	Variance
СТ	Computed Tomography
CAT	Computed Axial Tomography
PET	Positron Emission Tomography
MRI	Magnetic Resonance Imaging
MATLAB	Matrix Laboratory
NN	Neural Network

BP	Back-Propagation
CAD	Computer Aid Diagnoses System
SOM	Self-Organizing Map
GLCM	Gray-Level Co-occurrence Matrices
MSE	Mean Square Error
SE	Sensitivity
SP	Specificity
PPV	Positive Predictive Value
NPV	Negative Predictive Value
ТР	True Positives
TN	True Negatives
FP	False Positives
FN	False Negatives
ROC	Receiver operating characteristics
TPR	True positive rate
FPR	false positive rate
CFNN	cascade forward back propagation
GFNN	Generalized regression Neural network
PNN	probabilistic neural network
FFNN	Feed forward back propagation

Abstract

Brain tumor is the major cause of cancer deaths in human which is due to uncontrollable cells growth in brain portion. It is evident that the chances of survival can be increased if the tumor is detected and classified correctly at its early stage. Conventional methods involve invasive techniques such as biopsy, lumbar puncture and spinal tap method, to detect and classify brain tumors into benign (non-cancerous) and malignant (cancerous). A computer aided diagnosis algorithm has been designed so as to increase the accuracy of brain tumor detection and classification, and thereby replace conventional invasive and time consuming techniques. This study introduces an efficient method of brain tumor detection and classification, where, the real Magnetic Resonance (MR) images are classified into normal, non-cancerous (benign) brain tumor and cancerous (malignant) brain tumor. MATLAB have been used through every procedures made. These include image processing and ANN procedures. In image processing procedures, process image Pre-processing, histogram equalization, image filtering, such as segmentation, and feature extraction have been discussed in detail, followed by the methods used for classification process using ANN. Image preprocessing have been used to improve the signal-to-noise ratio and to eliminate the effect of unwanted noise. It is important to distinguish the ROI from its surroundings. This can be done by using different segmentation methods and morphological operations. The segmented ROI was considered for texture analysis. By considering the entire segmented tumor region a set of textural descriptors was calculated for each ROI using Gray Level Co-occurrence Matrices (GLCM) based second order statistics. The discriminant features that are suitable for properly differentiating the two tumor types were selected from these descriptors. The results of Co-occurrence matrices are then fed into four neural networks for further classification and tumor detection. The system was able to achieve an accuracy of 99.0%, sensitivity 98.7%, specificity 100%, and an overall accuracy of classification 99.3% and of detection 99.2 %. The created systems have therefore, proved to effectively enhance the quality of the brain images and discriminate between normal and abnormal with an effective level of precision.