

SUDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

COLLEGE OF GRADUATE STUDIES

A CONTAINER- BASED ARCHITECTURE

FOR THE DESIGN OF PORTABLE CLOUD

APPLICATIONS

 ةسحابيتطبيقات اللاتصميم ل الحاويةعلى المعمارية المبنية

 المتنقلة

A thesis Submitted to the College of Graduate Studies,

Faculty of Computer Science and Information Technology,

Sudan University of Science and Technology

In Partial Fulfillment of the Requirements for the degree of

DOCTOR OF PHILOSOPHY in Computer Science

By

Amar Ibrahim Elhaj Sharaf Eldein

Supervisor

Professor

Dr. Hany Hussein Ammar

March 2019

 :قال تعالى

 (.58)الآية -سورة الإسراء

 :قال تعالى

 (.11)الآية -سورة المجادلة

Examiners Approval

Declaration of the statues of Thesis

(By Student)

I hereby declare that the contents of this dissertation represent my own work, and

that the dissertation has not previously been submitted for academic examination

towards any qualification. Furthermore, it represents my own opinions, which is an

original intellectual work.

Candidate’s name: Amar Ibrahim Elhaj Sharaf Eldein

Candidate’s signature: _____________________________

 Date:_____________________________

Declaration of the statues of Thesis

(By Main Supervisor)

I, the signing here-under, declare that I’m the supervisor of the sole author of the

Ph.D. dissertation entitled:

A Container-Based Architecture for the Design of Portable Cloud Applications

Supervisor’s name: Prof. Hany Ammar

Supervisor’s signature:

 Date:

Assigning the copy-right to CGS

I, the signing hereunder, declare that I’m the sole author of the Ph.D. dissertation

entitled:

A Container-Based Architecture for the Design of Portable Cloud Applications

This is an original intellectual work. Willingly, I assign the copyright of this work to

the College of Graduate Studies (CGS), Sudan University of Science and

Technology (SUST).

Accordingly, SUST has all the rights to publish this work for scientific purposes.

Candidate’s name: Amar Ibrahim El Haj Sharaf Eldein

Candidate’s signature:

 Date:

i

DEDICATION

I would like to dedicate my work to

My loving parents, for their prayers,

My brother Mohammed,

My sister Rihab,

Whom have given me all the support for my success.

My teachers,

My colleagues, and

All who assist, support, and encouragement me.

ii

ACKNOWLEDEMENT

 First Alhamdulillah. I will thank Almighty GOD, who kindly helped me to

complete my thesis. Carrying out a research work and writing the PhD thesis may

become a lifelong experiential journey that reacts and face the challenges. It is a

journey through uncharted routes to a destination, which is not clear and by no

means visible when you set off. You have a direction, but you are not aware of

where exactly you will end up and which path you need to follow to reach your goal.

There are moments you feel that you found your way to your destination, followed

by the ones that you lose it again. Nevertheless, when you reach the end of your

journey, there is only one feeling left, that is fulfillment, you feel that you have

fulfilled the promise to yourself.

Nevertheless, it would be unfair if I didn’t mention that throughout my studies there

were several people who were always standing next to me and supporting me with

their own unique way. However, the gratitude I feel for those people cannot fit

within the limits of this section.

Therefore, I would express my deep gratitude personally and with a special way to

each one of those persons.

I would like to gratefully and sincerely thank my supervisor, Professor Dr. Hany

Husain Ammar, for his priceless guidance, continuous support, inspiration,

motivation, encouragement, and immense knowledge. Throughout my studies Prof.

Hany taught me everything I know about conducting academic research, and

provided all the needed to support my research.

Many thanks to all members of the college of Computer Science and Information

technology of the Sudan University of Science and Technology for hospitality,

generosity, and helps.

I would like to extend my thank to the Qatar Research Fund (a member of Qatar

Foundation) NPRP under grant # [7-662-2-247] for funding my research paper's

publication.

Last but not least, I would like to express my deepest gratitude to all my friends for

their continuous encouragement.

AMAR IBRAHIM

iii

ABSTRACT

 Cloud computing has recently emerged as a new technology paradigm for

hosting and delivering Information Technology (IT) services to users over the

Internet. Cloud Computing provide optimal and efficient computing through

collaboration, agility, availability and scalability.

 Cloud platforms provide essential benefits for organizations such as greater

elasticity. These platforms eliminate the requirement for users to plan ahead for

resource provisioning, faster delivery times. They provide faster delivery times to

through the use of cloud-based data centers and services. However, cloud computing

brings challenges alongside its benefits. First, developers often produce cloud

applications for a specific cloud platform, and does not support portability to

Multiclouds environments. The evolving this application to cloud services end up

with major complexity issues.

 To contribute to solving these problems, we proposed a model driven design

approach, relying on development for portability-based design of cloud application

architecture. This architecture can be easily deployed on Multicloud platforms,

avoiding related portability or cloud service provider vendor lock-in problems.

 In this dissertation, we present a framework for cloud application architecture

development which encompasses strategic planning, architecture design,

deployment, and evaluation phases. This thesis, within focuses on the architecture

design phase and propose new scenarios based iterative process for architecture

design. We introduce the concept of a scenario container at the architecture design

level and develop the architecture iteratively as an integrated set of containers. In

each iteration, we define the container of application components for one application

scenario.

 The proposed development process guides the architect in designing

containerized portable cloud application architectures. We finally propose new

container design patterns that integrate with selected cloud application patterns to

support the development of scenario-based containerized architecture.

 We validate the design approach by applying it to two different case studies:

a Student Academic Result Record system, and Hajj and Umrah mobile healthcare

iv

system. In the second case study, we compare our new architecture development

approach with the (TOGAF) enterprise architecture framework.

 We verify the deployment of portable architectures on multicloud platforms

using the CloudMIG simulation tool, for migrating e-commerce online pet store case

study to cloud environments. We present simulation results for cloud deployment

options (CDO) based on a medium response time (MRT) of the case study,

considering multiple cloud platform deployment selection.

v

 المستخلص

ً الحوسبة السحابية ظهرت خدمات تقديمستضافة وكنموذج تكنولوجي جديد لإحديثا

على الحوسبة السحابية تعمل. للمستخدمين عبر الإنترنت (IT) تكنولوجيا المعلوماتلتطوير

 المرونة لقابليةوقابلية التوسع , توفير الموارد, لتعاونا من خلالالمثلى الفعالة الحوسبة تقديم

 . ستخدام التطبيقات والأنظمة والخدمات السحابيةإ التطويربواسطة

متطلبات المستخدمين توفيرمثل ؤسساتفوائد أساسية للم المنصات السحابيةتقدم

من خلال استخدام مراكز وخدمات الوقت توفر السرعة و, لتزويد المواردللخطط المستقبلية

ديات إلى تح تواجهومع ذلك ، فإن الحوسبة السحابية . على الحوسبة السحابية ةعتمدالبيانات الم

لمنصة سحابة هذه التحديات متمثله في إنتاج التطبيقات من قبل المطورين أول. جانب منافعها

إلى فتضمين هذه التطبيقات , (Multicloud)أخرى نقل إلى بيئاتتدعم قابلية التمعينة ، ولا

 .التعقيدات ى فيكبر يؤدي الى مشاكلالخدمات السحابية

، بالاعتماد على المقادصميم نموذج الت للمساهمة في حل هذه المشاكل ، اقترحنا نهج

 معماريةيمكن نشر هذه ال. نقلتعلى قابلية ال معتمدةال يةالسحابالحوسبة معماريةتطوير تصميم

مزود ل قابلية النقل ذات الصلةمشاكل ، وتجنب Multicloud متعددة بسهولة على منصات

 .الخدمة السحابية

 على مراحل إطارًا لتطوير بنية تطبيقات السحابة التي تشمل اقدمنفي هذه الرسالة ،

على زتركهذه الأطروحة ، . ، النشر ، و التقييم معماريةتصميم ال، تخطيط الإستراتيجيال

التكرارية قتراح سيناريوهات جديدة تقوم على العملية ق إعن طري معماريةمرحلة تصميم ال

حاوية على مستوى تصميم وتطوير سيناريو المفهوم قدمنا. للتطبيقات لتصميم هندسة المعمارية

في كل عملية تكرار ، نحدد حاوية مكونات . البنية بشكل متكرر كمجموعة متكاملة من الحاويات

في تصميم بنية معماري النظم ترشد عملية التطوير المقترحة .التطبيق لسيناريو واحد للتطبيق

أنماط تصميم حاويات جديدة أخيراً قمنا بإقتراح . تطبيقات السحابة المحمولة على الحاويات

لدعم تطوير بنية الحاوية القائمة على ختارةالم حوسبة السحابيةتتكامل مع أنماط تطبيقات ال

 .السيناريو

 على دراستي تصميم من خلال تطبيقهنهج القمنا بالتحقق من صحة ،في هذا البحث

نظام سجل النتائج الأكاديمية للطلاب ونظام الرعاية الصحية المتنقلة للحج : مختلفتين تينحال

 لعم راإط مع ديدلجا ءلبناا ريطوت نهجقمنا بمقارنة ، لثانيةا سةدراحالة ال في. والعمرة

 .(TOGAF) تسساؤلما

التي تدعم تهجير ، CloudMIGستخدام أداة محاكاة إب تنقلةمال للمعماريةنشر المن تم التحقق

تقييم تقديم نتائج تم . الإلكتروني دراسة حالة متجر التسوق الأنظمة إلى البيئات السحابية عبر

بالإعتماد لدراسة الحالة (MRT) لمتوسط زمن الإستجابة (CDO) خيارات النشر السحابية

 .للنشرعلى إختيار العديد من المنصات السحابية

vi

TABLE OF CONTENTS

DEDICATION .. i

ACKNOWLEDGEMENT ... ii

ABSTRACT IN ENGLISH .. iii

ABSTRACT IN ARABIC ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS ... xiii

LIST OF APPENDICES ... xiv

CHAPTER I: ..………………………………………………………………………..

INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Problem Statement ... 2

1.3 Research Questions .. 3

1.4 Research Hypotheses ... 3

1.5 Research Objectives ... 3

1.6 Research Scope .. 4

1.7 Research Methodology... 4

1.8 Research Contributions .. 5

1.9 Thesis Organization ... 6

CHAPTER II:………………………………………………………………………...

BCKGROUND AND RELATED WORK ... 7

2.1 Introduction .. 7

2.2 Cloud Computing Architecture .. 7

 2.2.1 Cloud Computing Definitions .. 7

 2.2.2 Cloud Service Models ... 9

 2.2.3 Cloud Deployment Models ... 10

 2.2.4 Cloud Computing Characteristics ... 13

 2.2.5 Cloud Computing Challenges and Issues .. 13

 2.2.6 Cloud Computing Applications ... 16

2.3 Cloud Application Architecture ... 17

 2.3.1 Cloud Computing Reference Architecture .. 17

 2.3.2 Cloud Service Management .. 19

 2.3.3 Software Architecture for Cloud Application Development 19

vii

 2.2.3.1 Software Architecture Definitions .. 20

 2.2.3.2 Software Architecture Goals ... 21

 2.2.3.3 Software Architecture Limitations .. 21

 2.2.3.4 Software Architecture Design ... 21

 2.3.4 Model-based Approaches for Cloud Application Development 22

 2.2.4.1 Model Driven Architecture ... 23

 2.2.4.2 Cloud Design Patterns ... 26

2.4 Related Work ... 27

 2.4.1 Literature Selection ... 28

 2.4.2 Summary of a Related work .. 31

 2.4.3 Result Analysis .. 33

2.5 Summery .. 34

CHAPTER III:………………………………………………………………….……

METHODOLOGY FOR PORTABILITY-BASED DEVELOPMENT CLOUD

APPLICATION ARCHITECTURE DESIGN .. 35

3.1 Introduction .. 35

3.2 Cloud Application Portability Analysis ... 36

 3.2.1 Portability Definitions ... 36

 3.2.2 Cloud Portability Adoption ... 37

 3.2.3 Cloud Application Portability Scenarios ... 38

 3.2.4 Cloud Portability PaaS Issues ... 40

 3.2.5 Portability PaaS Solutions ... 40

3.3 Cloud Application Architecture Design patterns ... 41

 3.3.1 Fundamental Cloud Application Design Patterns 41

 3.3.2 Cloud Design Patterns Portability Support ... 43

3.4 Framework for Development Cloud Application architecture............................. 45

 3.4.1 The proposed framework Phases ... 46

3.5 Container-based Design of Portable Cloud Applications 48

 3.5.1 Container Benefits ... 48

 3.5.2 Container for Portable Cloud Application ... 48

 3.5.3 Container Comparison with Related work .. 48

3.6 Container-based Architecture Design Solutions .. 50

 3.6.1 Development Process for container-based Design 50

 3.6.2 Development of Independent scenario-based Container Design 52

 3.6.3 Multiple Scenarios Integration .. 55

3.7 Proposed Container Design Patterns for Portable cloud application 56

 3.7.1 Interface Container Design Pattern ... 56

 3.7.2 Communication Container Design Pattern .. 57

viii

 3.7.3 Data based Container Design Pattern .. 58

 3.7.4 Application Scenarios Container Design Pattern .. 58

 3.7.5 Chain Container Design Pattern .. 60

3.8 Proposed method Evaluation.. 60

3.9 Summery .. 61

CHAPTER IV:………….……………………………………………………………

CASE STUDY1: ARCHITECTURE DESIGN OF MIGRATING STUDENT

ACADEMIC RESULTS WEB SERVICE TO THE CLOUD…... 62

4.1 Introduction .. 62

4.2 SAAR architecture ... 63

4.3 Multiple scenarios-based development .. 65

 4.3.1 Scenario1: on Student to view Academic Results 65

 4.3.2 Scenario2: on Academic Officer to upload Results 67

 4.3.3 Container-based architecture design for multiple Integration Scenarios 69

4.4 Summery .. 69

CHAPTER V: …………………………………………………………………….…..

CASE STUDY2: SCENARIO-BASED FOR HAJJ AND UMRAH MOBILE

HEALTHCARE SYSTEM (HUMS) .. 71

5.1 Introduction .. 71

 5.1.1 Electronic Health Records ... 71

 5.1.2 Mobile Technology ... 72

 5.1.3 Mobile Cloud Healthcare .. 73

5.2 HUMS Architecture ... 74

5.3 Enterprise Architecture (EA) Development Approach 76

 5.3.1 Enterprise Architecture Definition .. 76

 5.3.2 TOGAF Development Approach .. 76

 5.3.3 The ArchieMate Tool .. 78

 5.3.4 HUMS Architecture Design uses EA Approach ... 78

5.4 Scenario-based Container Architecture Design Approach 81

 5.4.1 HUMS Architecture .. 81

 5.4.2 Independent Scenario-based Development ... 81

 5.4.3 Scenario-based Development Process for retrieving medical records 82

 5.4.4 HUMS Container-based Architecture design ... 82

5.5 A comparison between Development Approaches .. 83

5.6 Summery .. 84

ix

CHAPTER VI:………………………………………………………………………

CASE STUDY3: VERIFICATION OF METHODOLOGY USING

SIMULATION TOOL FOR MIGRATING ONLINE PETSTORE 85

6.1 Introduction .. 85

6.2 Cloud MiG Xpress Tool ... 85

 6.2.1 Features ... 86

 6.2.2 Activities ... 87

6.3 The Pet Store web-based Application Service ... 87

 6.3.1 Overview ... 87

 6.3.2 Requirements and Specification .. 88

 6.3.3 Use case for Customer interactions ... 89

 6.3.4 Pet Store Architectural Design .. 90

6.4 Verification Method for Migrating Pet Store Application to the Cloud 91

 6.4.1 Select Cloud Candidates .. 92

 6.4.2 Create Utalization Model .. 92

 6.4.3 Create Cloud Deployment Options ... 93

 6.4.4 Cloud Deployment Options Simulation .. 94

6.5 Results and Discussion ... 95

6.6 Summery .. 96

CONCLUSION AND FUTURE WORK ... 97

REFERENCES ... 99

APPENDICES .. 105

LIST OF PUPLICATIONS ... 122

x

LIST OF TABLES

Table 2.1 Cloud Deployment Services overview………………………….. 9

Table 2.2 Comparison Cloud Deployment Benefits and Risks…………… 12

Table 2.3 Actors in Cloud Computing……………………………………… 18

Table 2.4 Cloud uses support by MDA Taxonomy………………………… 28

Table 2.5 Summary of related MDA for Cloud application development… 31

Table 3.1 QoS Cloud Patterns Support……………………..……………….. 44

Table 3.2 A summary of related work for container……..…………………. 49

Table 3.3 Interface container pattern………………………………………… 56

Table 3.4 Communication Container pattern………………………………... 57

Table 3.5 Database container pattern………………………………………... 58

Table 3.6 Cloud app scenarios container design…………………………….. 59

Table 3.7 Chain container pattern…………………………………………..... 60

Table 4.1 Summary for cloud application pattern selection…………………. 66

Table 6.1 Summary for customer actions and description…………………... 90

Table 6.2 Median Response Time Simulation Results………………………. 95

xi

LIST OF FIGURES

Figure 2.1. Cloud computing Architecture……………………………..…… 9

Figure 2.2. Cloud computing NIST architecture..……………...……............. 18

Figure 2.3. Cloud Services Management……………………………...……... 19

Figure 2.4. PIM to PSM Models…………..…………………………...……. 25

Figure 2.5. PIM to PSM Transformation example…………………...…….... 26

Figure 3.1. Research Methodology………………………………………...… 35

Figure 3.2. Portability Scenario Classification…………………………….… 38

Figure 3.3. Portability between Cloud Providers……………………………. 39

Figure 3.4. Cloud Application Design Patterns……..………………………. 43

Figure 3.5. A framework for cloud Application Architecture development… 46

Figure 3.6. The Proposed framework Phases……...………………………… 46

Figure 3.7. Container-based for Cloud Application Architecture Design…… 51

Figure 3.8. Development Process for Independent Cloud Application

Architecture Design…………………………………………………………..

52

Figure 3.9. Pattern Oriented Analysis Approach……………………………. 53

Figure 3.10. A container-based development Patterns for cloud application... 55

Figure 3.11. Integration container Interface Pattern………………………... 56

Figure 3.12. Communication container Interaction…………………………. 57

Figure 3.13. Scenario-based for Integrating specific container scenario…... 59

Figure 3.14. Chain container to get Deployment…………………………… 60

Figure 4.1. Layer architecture for student Academic Results Records Web

based cloud application……………………………..……………………….

62

Figure 4.2. Overview of the Student Academic Results Records Web based

cloud application. ……………………………..……………………………..

63

Figure 4.3. Use case diagram for the Academic Result system service….….. 64

Figure 4.4. Scenario-based view student Academic Results Records…….…. 65

Figure 4.5. Container-based design for view student Academic Results

Records use case……..…………….…..……………………………..…...….

67

Figure 4.6. Scenario-based uploading student Academic Results Records….. 67

Figure 4.7. An annotated container design for Academic officer to upload

Student Examinations Results on cloud……………………………..………

68

Figure 4.8 An annotated container design for migrating Students

Examination Results on clouds………………………………………………

69

Figure 5.1 The importance of the electronic health record (EHR)…………... 72

Figure 5.2. Mobile Cloud Computing Architecture.………………………… 73

Figure 5.3. Cloud Health Exchange.……………………………..………….. 74

Figure 5.4 HUMH system Use case Diagram.……………………………..... 75

Figure 5.5 Enterprise Architecture development phases.……………………. 77

Figure 5.6 Mobile Application Architecture.……………………………..…. 79

Figure 5.7 HUMS using Enterprise Architecture development… 79

xii

Figure 5.8 Scenario-based for retrieving EHR overview………….……….... 81

Figure 5.9 Annotated scenario-based container design for retrieving EHR…. 82

Figure 6.1 CloudMIG Xpress main screen………………………………...… 86

Figure 6.2 Home page for online Pet Store web application……………….... 88

Figure 6.3 Use case diagram for Pet Store Application…………………...… 88

Figure 6.4 Use Case between the Customer and the Web Site………………. 90

Figure 6.5 Sequence diagram for Pet store using Model View Controller…... 91

Figure 6.6 The selection of Candidate cloud environments…………………. 92

Figure 6.7 Workload profile using synthetic approach……………………… 93

Figure 6.8 Automatic Optimized method used to create CDOs……………... 94

Figure 6.9 Different optimization process parameters simulated……………. 95

xiii

LIST OF ABBREVIATIONS

ADM Architecture Development Method

API Application Programming Interface

ARTIST Advanced software-based service provisioning and migration of

legacy Software

CAAP Cloud Application Architectural Pattern

CCRA Cloud Computing Characteristics and Reference Architecture

CDO Cloud Deployment Options

CEC Cloud Environment Constraints

EA Enterprise Architecture

EHR Electronic Health Record

ERP Enterprise Resource Planning

HUMS Hajj and Umrah Mobile Healthcare System

IaaS Infrastructure as a Service

IT Information Technology
MCC Mobile Cloud Computing

MDA Model Driven Architecture

MID Mobile Internet Devices

MRT Median Response Time

MVC Model Viewer Controller

NIST National Institute of Standards and Technology

OMG Object Management Group

PaaS Platform as a Service

PIM Platform Independent Model

PSM Platform Specific Model

QoS Quality of Service

REMICS Reuse and Migration of legacy applications to Interoperable

Cloud Services

SA Software Architecture

SaaS Software as a Service

SDO Standards Development Organization

SLA Service Level Agreement

SMEs Small and Medium Enterprises

TOGAF The Open Group Application Framework

UML Unified Modeling Language

xiv

LIST OF APPENDICES

APPENDIX A: Re-engineer Student Academic Results System for web-

based cloud app service ………………………………………………………

105

APPENDIX B: Archimate Views for Developing Hajj and Umrah Mobile

Healthcare System ………………………………………………………

110

APPENDIX C: Simulation of Cloud Deployment Options (CDO) for Online

Pet Store………………………………………………………………………...

115

APPENDIX D: Summary of cloud Application Architecture Patterns………... 121

APPENDIX E: List of Participations…………………………………...……... 122

1

CHAPTER I

INTRODUCTION

1.1 Introduction

 Cloud Computing has recently emerged as a paradigm for managing and

delivering reliable services over the internet and promises to rapidly changing the

landscape of information technology, ultimately turning utility computing into a

reality, and enable users be able to access applications and data from a Cloud

anywhere in the world (Shawish & Salama 2014).

 As a result, most of critical applications migrate to cloud computing. While

Cloud computing has been gaining more popularity, but poses a threat from both

business and technical that affect the cloud success. On the technical side, one of the

main reasons for success or failure is the architectural design of the system. In

addition, customers want to avoid risk and increase flexibility through the movement

of applications and data among cloud providers (Dimitrov 2015).

 Software architecture aimed to support system design, architectural patterns,

and process changes as an important concept applied to cloud computing. There is a

need for a software architecture design and development approach to mitigate the

undesirable effects of technology change in clouds for the application components to

provide the best software and hardware configuration to ensure the architecture

design for cloud application is portable to reduce the effects of building and easily

deploying cloud applications between platforms with minimal requirements

modifications, without compromising the efficiency, and utilization of the whole

system (Dimitrov 2015).

 Cloud applications using software architecture through architectural cloud

patterns as one of the significant solution, that capture practical knowledge and give

a general solution on how to cope with software architectural problems, based on

using model driven design approach for development and design of cloud application

architecture as an active area of research, since design architecture approach ensuing

software solutions that are more robust, flexible and agile for evolving

applications(Sharma & Sood 2011).

2

1.2 Problem Statement

 Cloud providers produce cloud applications for their a specific cloud

platform, that lock-in enterprise customer and does not support portability across

multiple cloud environments (Ferry et al. 2013; Beslic et al. 2013).

This problem has negatively impacted for cloud provider and enterprises (victims of

the problem). The core solution is applying a new set of processes for designing

portable cloud application architecture for deployment across multicloud platforms.

More challenges for cloud application portability are represented in:-

(1) Cloud providers (e.g. Rack space) promoting options to facilitate portability,

while other not care to accommodating it.

(2) The lack of standardization in cloud computing (Rimal et al. 2011), makes the

task of portability of applications between clouds challenging.

(3) Limited Support for the Migration plan of Enterprise Software Systems to the

Cloud (Gholami et al. 2016).

(4) The portability of applications across various clouds, impose a level of a

complexity, that need additional efforts for developing and to move an

application to/ from one cloud service to another.

 Platform as a Service (PaaS): lack of a consistent platform definition among

PaaS Providers: Some PaaS providers pose greater risks than others, required

major changes in software and caused delays and productivity losses

problems, developers have to address them to create portable applications.

 If providers make different selections, then applications use different features

can't be ported, and if provider customized the PaaS features to move the

application back to the same platform on-premises will be difficult.

 Infrastructure as a Service (IaaS): lack of alternative providers of a platform:

developers providing all of the software needed for their applications to work

with IaaS, since platform moves with the application from one IaaS provider

to another and can be ported back to a virtual machine on premises.

(5) Enterprises software system with limited plan to face new technologies and

requirements, such as migrate to the Cloud.

3

1.3 Research Questions

 To conduct the design review objectively, The research aims to answer the

following research questions (RQs) regarding to portability for cloud application

architecture bellows:

(1) RQ1: What are the framework phases to develop a portable cloud application

architecture?

(2) RQ2. What are new design patterns to support the development of cloud

application architecture?

(3) RQ3. How to improve the deployment of portable architecture using a simulation

tool?.

1.4 Research Hypotheses

The hypotheses of this research are formulated as follows:

 The nature of Cloud is dynamic, so number, size, and complexity of

applications need to communicate via a number of domains.

 The process of software architecture design insufficient understood, needs to

use driven techniques with highlighting its importance.

 There is no standard for cloud patterns, we used different concepts in the cloud

patterns solution.

 The proposed methodology is expected to give promising results as it will be

applied in different applications and domains such as web-based application

and Mobile application.

1.5 Research Objectives

The general goal is mainly to focus on using existing development processes

to propose a framework for Cloud Application Architecture development, that ensure

the architecture design for cloud application is portable, easily without affecting the

efficiency and utilization of the whole system. In addition, the specific objectives are

outlined as follows:-

(1) To look at the current status of a large needs of portable cloud applications which

use of the architectural design. This objective has been achieved through:

defining the portability of cloud applications, defining portability scenarios in

4

cloud computing, and determine the suitable development approaches for cloud

application architecture design.

(2) To propose and develop a portability-based methodology, that can used to

enhance previous works on cloud application architecture design.

(3) To evaluate the proposed development framework for portable cloud application

architecture.

1.6 Research Scope

We are concerned with the development of SaaS application design phase,

the research study does not include the second part of operation phase. Our study

assumes that cloud environment is an interface to existing case studies architectures.

 The proposed approach focuses on iterative development process to guide in

designing scenarios-based container architecture of portable cloud applications; We

used annotated UML diagrams to understand the application architecture at early

design stages; We proposed containers design patterns developed within identified

cloud application architecture patterns, that can be used to be easily deployed in

multicloud environments.

1.7 Research methodology

 Cloud applications are complex and composed of multiple services. In

addition, there is no standard approach for a portable cloud application design that can

be used to face development challenges. We involve strategic design for the process

to develop our architectural design.

Firstly, we surveyed the existing related works in this area; as well, we analyzed the

issues and challenges that have been emerging in various works.

Based on the results of a survey, we set up our framework for portable cloud

application architecture development and its phases, using a model driven

approach.The model driven design (MDD) process is defined outlining the

different phases with a brief description. Each phase contains a set of

activities. The development process used to describe the phases that support the

research method as follows:

5

(1) Strategic plan: describe system behavior and requirements. Requirements as a

reference for a process to design and deploy portable cloud applications on

different cloud environment.

(2) Develop Architecture Design: define architecture design to be easily

understood and implement changes during run time.

(3) Deployment architecture design: verify portability deployment options using

simulation tools for multiclouds.

(4) Portability evaluation: validate proposed methodology using case studies.

Generally two common domains academia and healthcare.

1.8 Research Contributions

This thesis, focuses within the architectural design phase. The contributions of this

thesis can be summarized as follows:-

(1) We make a comprehensive survey to highlight future research problems in

this area.

(2) Propose a framework for cloud application development to support cloud

application architecture portability.

(3) Propose scenarios-based container architecture design approach, based on an

iterative process for development.

(4) Propose a new containers design pattern, integrate with identified cloud

application architecture patterns, that can be used to support cloud

application architecture development, to be easily deployed on different cloud

environments.

(5) Validate a methodology, using a scenario-based for case studies:-

 Migrate Students Academic Result Records Web base Service to the

cloud.

 Hajj and Umrah Mobile Healthcare System.

(6) Present an integrated enterprise architecture views model based on (TOGAF)

development method, and compared with our proposed method for case study

(Hajj and Umrah Mobile Healthcare System).

(7) Verify deployment using a simulation tool for case study (Migrating Online

Pet Store Application to IaaS cloud).

6

1.9 Thesis Organization

The rest of the thesis is organized in six chapters as follows:

 Chapter II presents a theoretical background information for studies.

Explains the following concepts: Cloud Computing, Cloud application design

patterns, cloud application architecture development methods, covers the concepts of

cloud application portability. In addition, a review for some related works of cloud

application architecture development.

 Chapter III introduces and explains the framework of portable cloud

application development phases, focuses in architecture design phase. In addition,

describes our proposed scenarios-based container architecture design approach, and

illustrate new design patterns investigated for portable cloud application architecture

design support.

 Chapter IV introduces a case study of web base service Migrating Students

Academic results record to the cloud, we model a system into annotated UML

sequence diagrams, then development processes used to develop multiple scenarios

of case study, using scenarios-based container architecture design for a portable

cloud application.

 Chapter V introduces a case study of Hajj and Umrah Mobile Healthcare

System, we describe application architecture, focus on using scenario based for

retrieving patient's Electronic Health Records, then we developed mobile application

using Enterprise architecture using TOGAF development approach. Then we

validate the application using independent scenario-based container design

architecture. We compare our new architecture development approach with the

TOGAF approach.

 Chapter VI illustrates the verification of methodology using the CloudMiG

Xpress simulation tool with case study migrating Online Pet Store application to the

cloud and describes the deployment approach, and present the simulation results and

discussion about these results.

 At the end, we presented the conclusion and the future work based on the

methodology validation and verification results mentioned the open issues for

researchers. In addition to references and appendices.

7

CHAPTER II

BACKGROUND AND RELATEDWORK

2.1 Introduction

 This chapter aims to give an overview of cloud computing. It also includes

the general concepts of cloud application architecture development. The chapter

describes the preliminary concepts and presents current approaches for design cloud

application architecture. Next, it presents the related works of cloud application

architecture development. A summary of related work is shown in this chapter after

the detailed analysis, based on the driven architecture as new software development

adopted for cloud application architecture design.

2.2 Cloud Computing Architecture

Cloud computing is the new perspective that changes the way we perceive

Information Technology and its applications. Therefore, this chapter presents its

main benefits, main roles in different sectors and how all this can come together

under the perspective. This dissertation considers the technology needed to bring the

idea of software architecture solutions to be developed in a manner that is

independent of technology change, and to design and develop portable cloud

application architecture. The design of application architecture can be deployed on

heterogeneous cloud platforms, giving it the ability to scale easily (Ardagna 2015).

This is different than other forms of cloud computing which may give the user

software applications for them to use.

2.2.1 Cloud Computing Definitions

 There is no unique definition for cloud computing. While there may be

confusion about the right definition of cloud computing, it should be underlined for

the gullible readers that cloud computing is not a technology revolution, but rather a

process and business revolution on how we use these technologies that enable cloud

computing as it exists today.

8

 There are different cloud computing(CC) definitions in use, the state-of-the-

art definition from the National Institute of Standards and Technology (NIST) has

been adopted in this thesis.

Definition 1: According to NIST, cloud computing is " a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or

service provider interaction". (Mell & Grance 2011; Ghanam et al. 2012; Ardagna et

al. 2012). This cloud model is composed of five essential characteristics, three

service models, and four deployment models.

Definition 2: “A Cloud is a type of parallel and distributed system consisting of a

collection of interconnected and virtualized computers that are dynamically

provisioned and presented as one or more unified computing resource(s) based on

service level agreements established through negotiation between the service

provider and consumers.”. Using virtualization techniques, these virtualized

resources, such as hardware, platforms, or services, are dynamically allocated to

scale on demand according to customers’ needs. If a cloud service provider (CSP)

fails to offer the demand, the CSP may outsource to other cloud service providers

(Cheng & Lai 2012).

Definition 3: According to the IEEE computer society cloud computing is: "A

paradigm in which information is permanently stored in servers on internet and

cached temporarily on clients that include desktops, entertainment centers, table

computers, notebooks, wall computers handhelds, etc." so cloud computing provide

every facility as a service, provides infrastructure as a service, software as a service

and platform as a service (Ghanam et al. 2012). In other form is a source for the

dynamic provisioning of computing services, supported by data centers containing a

group of networked Virtual Machines (Cheng & Lai 2012).

Definition 4: Sosinsky (2011) defined it as “Cloud computing(CC) refers to

applications and services that run on a distributed network using virtualized

resources and accessed by common Internet protocols and networking standards. It

is distinguished by the notion that resources are virtual and limitless and that details

of the physical systems on which software runs are abstracted from the user”.

9

Figure 2.1 Cloud computing architecture (Zhang et al. 2010).

2.2.2 Cloud Computing Service Models

 The NIST categories cloud computing into three service models, as shown in

Figure 2.1, and described below

Infrastructure as a Service (IaaS) model provides infrastructure components to

clients ranging from CPU power to storage are exposed as a resource over the

Internet. Clients dynamically align their infrastructure per their needs, while

resources are provided on demand. The consumer does not manage or control the

underlying cloud infrastructure but has control over operating systems, storage

deployed applications, and limited control of select networking components (e.g.,

host firewalls).

Platform as a Service (PaaS) model delivers a pre-built application platform to the

client; consists of application development platforms, remotely accessible through

the web and able to connect to locally execute frameworks and IDEs, allowing fast

development and deployment of applications. The consumer has control over the

deployed applications and possibly application hosting environment.

Software as a Service (SaaS) provides software solutions, allows providers to

expose stand-alone applications, running on a distributed cloud infrastructure

completely hidden from customers, as resources through the Internet. The consumer

10

mange for limited user-specific application configuration settings (Zhang et al.

2010).

2.2.3 Cloud Deployment Models

 A deployment models defines the purpose of the cloud and the nature of how

the cloud is located. Acording to the NIST definition, four deployment models are

defined , and described below (Mell & Grance 2011; Ghanam et al. 2012; Ardagna et

al. 2012; Zhang et al. 2010).

A. Public Cloud

A cloud in which service providers offer their resources as services to the general

public. Known as external cloud and describes the conventional meaning of cloud

computing: scalable, dynamically provisioned, often virtualized resources available

over the Internet from an off-site third- party provider, owned by an organization

selling cloud services.

B. Private Cloud

Referred as corporate internal Cloud. Used to denote a proprietary computing

architecture, providing hosting services for private networks. Designed for exclusive

use by a single organization. A private cloud may be built and managed by the

organization or by external providers. A private cloud offers the highest degree of

control over performance, reliability and security.

C. Community Cloud

The cloud infrastructure is shared by several organizations and supports a specific

community that has shared concerns (e.g., mission, security requirements, policy,

and compliance considerations).

D. Hybrid Cloud

Compose of two or more clouds mentioned above (private, community, or public)

that remain unique entities but are bound together. A hybrid cloud environment

combining resources from both internal and external providers to become the most

popular choice for enterprises. In a hybrid cloud, part of the service infrastructure

runs in private clouds while the remaining part runs in public clouds. Hybrid clouds

offer more flexibility than both public and private clouds. Specifically, they provide

tighter control and security over application data compared to public clouds, while

still facilitating on-demand service expansion and contraction (Zhang et al. 2010).

11

Table 2.1 Public Versus Private and Hybrid Cloud Computing Services (Goyal

2014).

Public cloud Private cloud Hybrid Cloud

C
h

a
r
a

c
te

r
is

ti
c
s

Available to users from

a third-party provider,

made available via the

Internet and may be

free or inexpensive to

use, such as Amazon

Web Services(AWS),

providing services

across open, public

networks.

Provide many benefits

same as “public”, but

managed within the

organization. Are

unburdened by network

and availability issues, or

by the potential security

offer, associated with

public clouds.

Benefits for risks, ICT

functions (e.ge, email,

document production, or

business application

runtime), handled in

lower-cost public clouds.

Functions such as data

storage or mission-critical

business applications may

be kept in-house.

B
e
n

e
fi

ts

Provide best practices,

key benefit: greater

elasticity and lowest

cost.

Private clouds can offer

the provider and user

greater control, security,

and resilience than public

clouds.

Hybrid clouds offer greater

architectural flexibility.

Key benefit: offers greater

business choice and avoids

all-or-nothing approach.

R
is

k
s

Greater risks in terms

of security, resiliency,

transparency, and

performance.

Potentially less risk

security, resiliency,

infrastructure, and

support processes will

not differ from the

current environment.

Risks and costs fall

between public and private

models.

12

Table 2.2 A comparison: Private cloud vs Public cloud vs Hybrid cloud.

Deployment

models
Public cloud Private cloud Hybrid Cloud

Cloud

environment

Multi-Tenancy-

Shared

environment.

Single tenancy-

only for single use

of an organization.

Both single tenancy and multi –

tenancy. Data stored delivers a

multi - tenant environment, data

from multiple organizations is

stored in a shared environment,

whereas when data is stored in a

private cloud, it is kept private

for the use of a single

organization.

Data center

location

Anywhere –

where the cloud

service

provider’s

services are

located.

Inside the

organization’s

network.

Inside the organization’s

network for private cloud

services as well as wherever

service provider’s services are

there for public cloud services.

Resource

sharing

Server

hardware,

network and

storage are

shared by

multiple users

in the cloud.

No sharing of

resources.

Hardware, storage

and network are

dedicated to the

use of a single

client.

Very secure; integration options,

add an additional layer of

security.

Cloud

storage

Delivers

storage as a

service on a pay

per use. Best

for backups for

disaster

recovery. E.g.

One Drive.

Delivers internal

cloud storage that

runs on a

dedicated

infrastructure in a

data center.

Manages streamlined

storage that uses both local and

off-site resources and serves as a

gateway between on premise

and public cloud storage.

Scalability
Instant and

unlimited.

Sacrifices

scalability, but

provides greater

control and

security.

On demand unlimited resources.

Pricing

structure

Charged on the

usage basis.

Comparatively

expensive.

High but delivers competitive

advantage.

Cloud

Security

Good, but

depends on the

security

measures of the

service

provider.

Most secure. Secure.

Performance
Low to

medium.
Very High. Very High.

13

2.2.4 Cloud Computing Characteristics

The essential cloud characteristics highlight as follows:-

 On-demand Self Service: a consumer can provision computing capabilities,

such as server time and network storage, as needed automatically without

requiring human interaction with each service provider.

 Broad Network Access: capabilities are reachable over the network and

accessed through standard mechanisms that promote use by heterogeneous thin

or thick client platforms (e.g., mobile phones, laptops, and PDAs).

 Resource Pooling: provider’s computing resources are pooled to serve multiple

consumers using a multi-tenant model by assigning the physical and virtual

resources according to consumer demand. There is a notice of location

independence in that the customer generally has no control or knowledge over

the exact location of the provided resources, but may be able to specify location

at a higher level of abstraction.

 Rapid Elasticity: capabilities can be rapidly and flexibly provided, in some

cases automatically, to quickly scale out, and rapidly released to quickly scale in.

To the consumer, the capabilities available for provisioning often appear to be

limitless and can be purchased in any quantity at any time.

 Measured Service: cloud systems automatically control and optimize resource

used by supplying a metering capability at some level of abstraction appropriate

to the type of service. Resource usage can be monitored, controlled, and reported

for both the provider and consumer of the utilized service by providing

transparency (Mell & Grance 2011).

2.2.5 Cloud Computing Challenges & issues

 Cloud computing has been widely adopted, benefits such as agility, elasticity,

availability, and cost efficiency requires software engineered for cloud platforms.

However, due to the concept’s recent development, is still at an early stage. Many

open existing issues surround the use of software services from the cloud (Grundy

2012) have not been fully addressed, while new challenges keep emerging from

applications (Zhang et al. 2010).

14

In this section below, we summarize some of the research challenging issues in cloud

computing of meeting the requirements for cloud computing architecture , also the

challenges of allowing applications and development platforms to take advantage.

Some research issues are given below:-

 Lack of Service Level Agreements (SLA’s): that allow several instances of one

application to be replicated on multiple servers if need arises; A big challenge for

the Cloud customers is to evaluate SLAs of Cloud vendors (Kuyoro et al. 2011).

Currently, SLA prevents wide adoption of cloud computing. Cloud computing

infrastructure services such as EC2 are not yet able to sign the SLA needed by

companies that want to use cloud computing for serious business deployment

(Tsai et al. 2010; Jamshidi et al. 2015). Moreover, business is dynamic. Static

SLA is not able to adapt to the changes in business needs as cloud computing

promises.

 Cloud Data Management & Security: cloud data can be very large,

unstructured or semi-structured, and typically append-only with rare updates.

Data must rely on the infrastructure provider to achieve full data security.

 Migration of virtual Machines: various programs may run on one machine

using virtualization or many machines may run one program. Migration lacks the

agility to respond to workload changes. Moreover, the in memory state should be

transferred consistently and efficiently, with integrated consideration of resources

for applications and physical servers (Kuyoro et al. 2011).

 Lack of Multi-tenancy supports: Multi-tenancy can support multiple client

tenants simultaneously to achieve the goal of cost effectiveness. Currently, one

has three types of multitenancy enablement approaches: virtualization, mediation

and sharing (Jamshidi et al. 2015). There are multiple types of cloud applications

that users can access through the Internet, that have increased security

requirements based on the type of data being stored on the software vendor's

infrastructure. These application requests require multi-tenancy for many

reasons, the most important is cost. Multiple customers accessing the same

services, may affect response times and performance for other customers.

 Novel cloud application architectures: most of the clouds are implemented in

large data centers and operated in a centralized fashion. Although this design

achieves economy-of-scale and high manageability, it also comes with its

15

limitations such high energy expense and high initial investment for constructing

data centers.

 Quality Assurance attributes: are met for cloud services, such as performance,

scalability, security, and availability; Cloud performance can vary at any point in

time. Elasticity may not ramp at desired speeds. Given the criticality of many

business applications, analytical techniques are needed to predict QoS and to

reason on software system properties at design-time, but also run-time

mechanisms and policies able to provide end-to-end quality(Ardagna et al. 2012);

 Risk Management: there are several concerns such as payment models, security,

legal and contractual, quality and integration with the enterprises architecture and

culture. Thus, proper tools to support such choice could be beneficial and limit

serious financial consequences for a Small and Medium Enterprise (SME).

However, while risk management presents only tools and decision support

methods exists to support selecting and binding to a specific target Cloud, or

taking a decision to move from Cloud to Cloud in case requirements or services

change. Binding to a specific target Cloud can decrease project failure risks, and

not supported neither on the design nor in the run-time level (Ardagna et al.

2012);

 Platform Management: platform challenges in delivering middleware

capabilities for building, deploying, integrating and managing applications in a

multi-tenant, elastic and scalable environments. One of the most important parts

of cloud platforms provide various kind of platform for developers to write

applications that run in the cloud, or use services provided from the cloud, or

both. This new way of supporting applications has great potential, such as

development for what that application needs already exists (Kuyoro et al. 2011).

In addition important issue is migrating from one vendor to another based on

changing needs, i.e., the problem of vendor lock-in (Ghanam et al. 2012).

 Open standards and Interoperability: most research on issues and challenges

with cloud computing recognize interoperability as a major adoption barrier

because of the risk of a vendor lock-in. Amongst the many problems being

discussed are: the lack of standard interfaces and open APIs, and the lack of open

standards for VM formats and service deployment interfaces. These issues result

in integration difficulties between services obtained from different cloud

16

providers as well as between cloud resources and internal legacy systems

(Ghanam et al. 2012).

 Application Portability: for application portability, the biggest challenges are to

build applications for PaaS platforms. For IaaS cloud services, there are in

practice a number of standards that enable portability of applications, while PaaS

platforms can vary widely between different providers (Council 2014). A major

issue is the current difference between the vendor approaches, and lack of

portability and interoperability between cloud platforms at different service

levels, affecting the cloud in several ways, for developers application increases

application design and operational requirements need to react in real time

throughout the application lifecycle and insure quality need (Di Martino,

Cretella, et al. 2015).

2.2.6 Cloud Applications

 Applications today are often composite, multi tier applications, consisting of

application components such as user interfaces (UIs), services, workflows and

databases as well as middleware components such as application servers, workflow

engines and database management systems. When moving such a composite

application into the cloud, decisions must be made about putting which tier and even

which component of such an application to which cloud drivers for these decisions

include functional properties of a cloud such as the possibility to run a specific

required middleware and nonfunctional properties such as data privacy, cost and

offered quality of service by a specific cloud provider. Effectively, moving an

application to the cloud is a rearrangement of the application's deployment topology

in which component dependencies are captured.

 Cloud computing supports some application features better than others. To

determine Whether application will port successfully, should perform a functionality

mapping exercise. The Process involves determining the critical application features

and then matching them to the cloud provider offering to see if those features can be

supported. The criticality of applications needed to predict Quality of Services and to

reason on software system properties at design time, also run time mechanisms and

policies able to provide end to end quality.

17

 The need for developers to be able to design their software systems for

multiple Clouds and for operators to be able to deploy and redeploy these systems on

various Clouds based on the convenience (Ardagna et al. 2012).

2.3 Cloud Application Architecture Development

 The development of cloud computing technology is an important issue need

more attention. Software Architecture (SA) and models are helpful for describes

systems structure and its major components (Naumann et al. 2015). Software

architecture and design reflect multiple contributions.

 There is a need for developing system architecture and application

development environments that can simplify and benefits from cloud adoption to

improve the tasks, change in clouds for the application provisioned to compute the

best software and hardware configuration to ensure the quality of services (QoS),

without compromising the efficiency and utilization of whole system.

2.3.1 Cloud Computing Reference Architecture

 While there is confusion about the right definition of cloud computing, Cloud

Computing Reference Architecture (CCRA) provides a technical blueprint for a system

with a well-defined scope, the requirements it satisfies, and the architectural

decisions, also ensures consistency and quality across the development (Liu et al.

2011). The CCRA is a natural extension to the NIST cloud computing definition, is a

powerful tool used for discussing the requirements, structures, and operations of

cloud computing. It defines a set of actors, activities, and functions that can be used

in the process of developing cloud computing architectures, as well as provide

guidelines for creating a cloud environment, as shown in Figure 2.2.

18

Figure 2.2 The NIST Cloud Reference Architecture (Liu et al. 2011).

 The NIST cloud computing reference architecture defines five major actors:

cloud consumer, cloud provider, cloud carrier, cloud auditor and cloud broker. Each

actor is an entity (a person or an organization) that participates in a transaction or

process and/or performs tasks in cloud computing (Liu et al. 2011), as shown in

Table 2.3, breifly list the actors in the NIST reference architecture.

Table 2.3 Actors in Cloud computing.

Actor Definition

Cloud Consumer
A person or organization that maintains a business

relationship with, and uses service from, Cloud Providers.

Cloud Provider
A person, organization, or entity responsible for making a

service available to interested parties.

Cloud Auditor

A party that can conduct an independent assessment of cloud

services, information system operations, performance and

security of the cloud implementation.

Cloud Broker

An entity that manages the use, performance and delivery of

cloud services, and negotiates relationships between Cloud

Providers and Cloud Consumers.

Cloud Carrier
An intermediary that provides connectivity and transport of

cloud services from Cloud Providers to Cloud Consumers.

19

2.3.2 Cloud Service Management

 Cloud Service Management includes all of the service-related functions that

are necessary for the management and operation of those services required by or

proposed to cloud consumers (Liu et al. 2011).

Figure 2.3 Cloud Service Management (Liu et al. 2011).

 As shown in Figure 2.3, cloud service management can be described from the

perspective of business support, provisioning and configuration, and from the

perspective of portability and interoperability requirements. However, the CCRA

focuses on the requirements of what cloud service providers, not does not represent

the system architecture of a specific system; instead, it is a tool for discussing, and

developing the system-specific architecture (Hogan et al. 2011). Moreover, the role

of a “cloud service developer” has not been included in NIST CCRA.

2.3.3 Software Architecture for cloud applications Development

 The development of a software system involves a large number of design

decisions that eventually lead to an executable specification of its behavior, typically

in the form of source code. For a long time, it has been realized that, next to

behavior, it pays off to be also concerned with a software system’s structure and

organization for reasons of dependability, understandability, and maintainability.

20

Therefore, for large systems, these design decisions not only consider the behavior,

but also the structures of the software system. The key principles on which the

design of software architectures is based are separation of concerns [Dijkstra, 1974]

and abstraction. For complexity of software systems, multiple levels of abstraction

are necessary to ensure designs remain comprehensible (Graaf 2007). This gives rise

to several types of design. Two levels of design are detailed design involve the

decisions related, and higher level of abstraction, design is called software

architecture design, which is the primary key of this thesis.

2.3.3.1. Software Architecture Definitions

 It is difficult to capture the notion of software architecture in a single

definition. The software architecture is described in terms of components and

connectors, which can be deployed to distribute configurations (Shin & Gomaa

2007). A software architecture is a description of the subsystems and components of

a software system and the relationships between them. A software architecture is

subsystems and components are typically specified in different views to show the

relevant functional and non-functional properties of a software system. The software

system is an artifact. It is the result of the software design activity.

 A more recent definition of software architecture can be found in IEEE- 1471

[2000]: The fundamental organization of a system embodied in its components, their

relationships to each other, and to the environment, and the principles guiding its

design and evolution.

An alternative definition that is frequently used is given (Bass et al. 2003): The

software architecture of a program or computing system is the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them (Hutchinson 2011).

The software architecture developed several methods and techniques to support the

architectural design process. One of the key differentiating aspects of the design

methods developed by the SA researchers and practitioners is that they elevate ASRs

from being almost totally ignored to being an important consideration during SA

design. Each of architecture-centric design methods has its strengths and weaknesses.

One way of leveraging their strengths and overcoming weak points is to select

different approaches and techniques from different methods and apply them based on

contextual requirements.

21

2.3.3.2. Software Architecture Goals

The primary goal of the architecture is to identify requirements that affect the

structure of the application. A well-laid architecture reduces the business risks

associated with building a technical solution and builds a bridge between business

and technical requirements (Witt et al. 1993). Some of the other goals are as follows:

 Expose the structure of the system, but hide its implementation details.

 Realize all the use-cases and scenarios.

 Try to address the requirements of various stakeholders.

 Handle both functional and quality requirements.

 Reduce the goal of ownership and improve the organization’s market position.

 Improve quality and functionality offered by the system.

 Improve external confidence in either the organization or system.

2.3.3.3. Software Architecture Limitations

 Software architecture is still has the following limitations:-

 Lack of tools and standardized ways to represent architecture.

 Lack of analysis methods to predict whether architecture will result in an

implementation that meets the requirements.

 Lack of awareness of the importance of architectural design to software

development.

 Lack of understanding of the role of software architect and poor communication

among stakeholders.

 Lack of understanding of the design process, design experience and evaluation of

the design (Witt et al. 1993).

2.3.3.4. Software Architecture Design

 The architecture design (AD) is typically the most difficult task an architect

undertakes, can be called the 'solution phase' of the life cycle because it defines the

software in terms of the major software components and interfaces (Gorton 2006).

The 'Architectural Design' must cover all the requirements in the software

requirements design (SRD). The goal of software architecture design is to define the

constraints for dependent design and implementation activities that result in the

development of a system that fulfills its functional and other quality goals.

22

 The design stage has two steps, which are iterative in nature. The first

involves choosing an overall strategy for the architecture, based around proven

architecture patterns. The second involves specifying the individual components that

make up the application, showing how they fit into the overall framework and

allocating them responsibilities. The output is a set of architectural views that capture

the architectural design, and a design document that explains the design (Gorton

2006).

2.3.4 Model-based Approaches for Cloud Application Development

 As the demand on software system increases, new software methodologies

and techniques are growing to build reliable software, reduce the development effort,

and produce high quality software. Reusing software becomes the main concern of

modern software design methods. Different strategies have been proposed to utilize

the notion of software reuse during different software engineering stages, but our

interest is on the most common and influential two approaches, models and patterns.

 Models are used to predict system properties, changes in some parts that will

affect the rest of a system, and communicate key system characteristics to various

stakeholders. The models developed as a paradigm or blueprint prior to

implementing the physical system, or they may be derived from an existing system

or a system in development, as an aid to understanding its behavior (Karakostas

2008), e.g. Model driven architecture (MDA); and cloud design patterns. The main

benefits of MDA from a cloud prespective are the facilitation of portability,

interoperability, and reusability of parts of the system that can be easily moved from

one platform to another, as well as the maintenance of the system through

human‐readable and reusable specifications at various levels of abstraction. In the

context of cloud computing, model‐driven development can be helpful in allowing

developers to design a software system in a cloud and to be supported by model

transformation techniques in the process of instantiating the system into specific and

multiple clouds (Di Martino, Cretella, et al. 2015). The two different techniques are

introduced and explained in more details in the following section.

23

2.3.4.1. Model Driven Architecture (MDA)

 Traditional software design and development processes create applications

for deployment to a specific technology platform, MDA is a model-based approach

to development of software systems, that introduces higher levels of abstraction,

enabling organizations to create models that are independent of any particular

technology platform.

 Model Driven Architecture (MDA) is a new paradigm of software

development aimed at raising the abstraction and re-use levels. MDA is adopted as

standard by The Object Management Group (OMG) as an attempt to develop

applications in establishing domain without entirely writing new code (Gavras et al.

2004). Model driven architecture (MDA) is a recent re-using approach in the

software development technique.

MDA Definitions

 There are a number of definitions used to describe the use of MDA in

software development, are:-

Definition 1: The MDA is an Initiative proposed by the Object Management Group

(OMG), is an open, vendor neutral, approach to software development which is

characterized by the use of models as the primary artifacts of understanding, design,

construction, deployment, operation, maintenance and modification of a system. It

reflects separation of concerns by separating business functionality from the

implementation technology (Wojcik et al. 2006).

Definition 2: Model Driven Architecture (MDA) is a software development

approach where the models are used as prime artifacts throughout the process of

software development. These models are defined at different levels of abstraction to

represent various aspects of the system (Kleppe et al. 2003). Besides, they are formal

in nature and can be machine processed. The transformation of models from one

level of abstraction to another, or the transformation of models to executable code is

performed by using (semi) automated transformation tools (Wojcik et al. 2006;

Sharma & Sood 2011).

Definition 3: Is the Attribute Driven Design (ADD) method is an approach to

defining a software architecture in which the design process is based on the software

quality attribute requirements, follows a recursive process that decomposes a system

24

or system element by applying architectural tactics and patterns that satisfy its

driving requirements (Wojcik et al. 2006).

MDA Models

 A model is useful if it helps to gain a better understanding of the system. In

an engineering context, a model is useful if it helps deciding the appropriate actions

that need to be taken to reach and maintain the system’s goal.

Models of software requirements, structure and behavior at different levels of

abstraction help all stakeholders deciding how this goal should be accomplished and

maintained transformations (Mens & Van Gorp 2006).

Models are specified at different levels of abstraction, tools are used for

transformations between the levels (model to model and model to code).

MDA defines software application at three different abstraction levels:-

1. Computation Independent Model (CIM): specify the computation

independent view of the system, capture system requirements in a vocabulary

familiar to domain practitioners. Software independent business domain model

that bridges the gap between business experts and system experts.

2. Platform Independent Model (PIM): specify the system at the next lower

level of abstraction; capture a platform independent view, focusing on the

operation of the system while hiding specific details. Specifies the functionality

of the system independent of the technology that would be used for its

implementation.

3. Platform Specific Model (PSM): defined at the next lower level of abstraction,

focusing on the details the use of a particular platform, providing a platform

specific view of the system. Specifies the system in terms of implementation

constructs that are specific to the implementation technology.

 A single PIM can be transformed into one or more PSMs (Sharma & Sood

2011), as shown in figure 2.4. Each PSM is specific to the technology platform on

which the system would finally be implemented (Kleppe et al. 2003).

25

Figure 2.4 PIM to PSM models (Sharma & Sood 2011).

The key to the success of MDA lies in automated (model-code) or semi-

automated models (model-to-model). Automatiomated model genertae architecture

views from source code (Haitzer & Zdun 2014), while semi-automated approach

demand identified tool for software development process to reduce the efforts that

manual approach (Pilar et al. 2014). The transformation tool executes a

transformation definition that is specified for the purpose of transforming higher-

level, platform independent business models into lower level platform specific

models and finally into executable code. A transformation definition is a set of

transformation rules that together describe how a model in the source language can

be transformed into a model in the target language (Sharma & Sood 2011). The

important concerns the source and target artifacts of model transformation, if

artifacts are programs (i.e., source code, byte code or machine code), we use the term

program transformation, and if software artifacts are models, we use the term model

transformation (Mens & Van Gorp 2006).

MDA for Clouds

 MDA architecture used for Design, provisioning, execution, or migration to

the Cloud, is a model-based approach for the development of software systems that

aims at separating the platform-independent design of a software application from its

implementation on a given platform. From the cloud perspective, the main feature

and benefits of MDA are the enablement of portability, interoperability, and

reusability of (parts of) the system, as well as its easy maintenance, through human-

readable and reusable specifications at various levels of abstraction (Di Martino,

Cretella, et al. 2015). Model-driven development in the context of cloud computing,

26

allows developers and enterprise architects to design software systems in a cloud-

agnostic manner. Particularly relevant in designing and managing applications across

multiple clouds, as well as migrating them from one cloud to another. Combining

MDA in the cloud computing domain is currently the focus of several research

groups and projects, such as MODAClouds (Ardagna et al. 2012), ARTIST (Troya

Castilla et al. 2015) and REMICS.

Figure 2.5 An example of the transformation that takes single(PIM) for cloud

software application mapped to several (PSM) based on defining rules (Sharma &

Sood 2011).

 While traditional software design and development processes create

applications for deployment to a specific technology platform, MDA introduces

higher levels of abstraction, enabling organizations to create models that are

independent of any particular technology platform. The strength of MDA lies in the

fact that it is based on widely used industry standards for visualizing, storing and

exchanging software designs and models.

2.3.4.2. Cloud Design Patterns

 Cloud computing patterns are logical descriptions of the physical and virtual

assets that comprise a cloud computing solution (Opara-Martins 2017), capturing

best practices on how system applications should be designed. The cloud patterns

benefits development of cloud application architecture (Adewojo et al. 2015),

27

describe how different application components can be integrated to provide

architecture design solution (Yacoub & Ammar 2001), that can be deploying on

clouds.

Cloud patterns arise from the need to provide both general and specific

solutions to recurring problems in the definition of the architectures for cloud

applications. While classical design patterns deal with problems related to different

aspects of software development, cloud patterns mainly focus on the architecture of

the cloud application. Despite the poor flexibility of any vendor-specific patterns,

cloud patterns still represent a valuable means to enhance portability and

interoperability between cloud platforms. Patterns can be used to describe and model

existing cloud applications in a very easily understandable manner, tracing back

cloud implementations to a set of well-known and stable solutions. In this way, it

becomes easier to understand the exact functionalities and responsibilities of a

specific cloud application component, which can later be substituted with a

compliant one having the sam+e or similar characteristics. This approach can be

exploited also in the case of porting non-cloud applications (i.e. Traditional

enterprise applications), describable through classic design patterns, to a cloud

environment, provided a mapping between design and cloud patterns’ participants

exists (Di Martino, Cretella, et al. 2015).

2.4 Related work

 Modeling of cloud-based applications is a new research topic, we present our

method based on Model Driven Architecture (MDA) as the most important

paradigms, because the MDA approach becomes an evident choice for ensuring

software solutions developing cloud applications that are robust and flexible. The

main objective of this section, is to present a survey analysis on crosscutting

concerns within the MDA. We analyze the current published research on MDA with

respect to cloud application development. We first classify the research work

accordingly to literature selection, Data filtering and analysis. We discuss some open

issues and challenges that need further research in developing cloud applications

based on MDA, such as cloud application portability.

28

2.4.1 Literature Selection

 In this section we survey related work and determined different ways to

compare achievements in development methodologies for cloud applications. We

present a taxonomy of eight categories, according to more cloud uses, as shown in

the Table 2.4.

Table 2.4 Cloud uses support by MDA taxonomy.

Category Purpose Papers

No

1

Interoperability
 The ability of computer systems to access, and

exchange resources with one or more other performers

and to use resources to accomplish its performed

activities according to expected criteria.

3

2

Deployment Help developers to be able design their software

systems for multiple clouds and for operators to deploy

and re-deploy these systems on various clouds.

3

3 Development
 Development of software to mitigate unfavorable

effects of technology changes.

4

4

Evolution

 Used as a process of developing software as a service

initially on the basis of some requirements, also to

model requirements from iterations to be evolving.

 Used to improve dynamic cloud service in a heuristic

manner with healthiness validated.

3

5

Quality

attributes

 Multi tenancy helps to determine the number of

resource provisioning to meet Service Level

Objectives.

3

 To run and manage multi-cloud systems, allows cloud

solution that optimizes the performance, availability

and cost of the applications.

1

 Achieves Reliability and scalability 1

 Achieves Resource Scalability &Provisioning 2

6

SOA
 Deliver services to other users or other services;

created to satisfy business goals, using web services to

handle communications.

3

7

Migration
 Provide a holistic view to inform decisions when

migrating to clouds.

 Benefits organizations to select efficient transition

architectures to increase productivity and reduce

complexity.

3

8

Evaluation
 To analyze the impact of cloud adoption to identify

potential risks and verify that the quality requirements

have been addressed in the design, also to determine

the robustness of systems.

1

Recently, many researchers presented in different studies approaches to use MDA to

develop cloud applications.

29

Hugo & Manu Sood (2010) explore the interaction between service oriented

engineering and model driven engineering. The presented modeling as a service

(MaaS) allows the deployment and execution for services on the cloud (Bruneliere et

al. 2010), however, model driven used as part of service oriented architecture (SOA)

(Jamshidi et al. 2015), but there is no general agreement on the right set of models,

languages, model transformations and software processes in the model driven

development of SaaS systems. Furthermore, legacy system needs to evolve and be

adapted to be executed as a service.

Frey and Hasselbring (2010) presents a framework to facilitate the migration

of legacy software to the cloud. The steps begin from existing legacy systems, extract

the actual architecture, then use a Meta-model to generate the target model to system

migration (Frey & Hasselbring 2010a). A reference model starts from the cloud

platform to extract elements and vocabulary to create the cloud Meta-model.

However, The model needs to refine the syntax and create a platform independent

modeling language for cloud applications.

Mohammad Hamdaqa et al (2011) presents a model driven approach for

building cloud application solutions. The proposed approach presents a Reference

model (Meta model) that facilitates cloud application development from the design to

implementation without depending on specific PaaS or IaaS components. This

approach can be used by developers to better understand cloud applications

independent of any specific cloud development environment. Moreover, the

approach can improve developers to select a cloud vendor before porting the legacy

application to the cloud.

Ritu & Manu Sood (2011) implement the MDA approach for the

development of Online Hotel Reservation System (OHRS) that runs as services in

the cloud. An approach based on levels of abstraction, enabling to create models that

are independent of any particular technology platform(Sharma & Sood 2011).

However, the requirement model for Cloud Independent Model (CIM) level

proposed to produce the required systems, but in actual practice the requirements

model needs to be refined into a computational model to generate the process.

However, the platform independent model (PIM) of the OHRS describes the

attributes and operations in a mode that is entirely independent of any programming

30

language or operating system in which the system would finally be implemented.

However, the service useful for building utilized by scale enterprise, but do not

develop the software for the purpose.

 FrancescoMoscatoe.tal (2012) their method uses Model driven Engineering

and Model Transformation Techniques to analyze services, focused on using

ontology to build modeling profiles that help to analyze complexity of systems, by

developing open source platform that enables applications to negotiate cloud services

requested by users via interface and targeted platform for developing multi cloud

applications (Moscato et al. 2012). One of the main goals is to enable access of

heterogeneous cloud resources and to avoid locked-in problems. However, using an

ontology achieves interoperability, but requires addition efforts for other quality

services.

Lin and Chang (2012) their approach goals is to achieve architecture design

for evaluating the system performance and determine its robustness based on

measuring the system reliability of a cloud computing system (CCS) (Lin & Chang

2012).

Ardagna et al. (2012) implemented model driven approach for the design and

execution of applications on multiple Clouds (MODACLOUDS) that aims to support

system developers and operators in exploiting multiple Clouds and in migrating

systems from cloud to cloud as needed (Ardagna et al. 2012). They presented

framework used for developing and deploying applications in multi Clouds. In

addition, to enable risk analysis for the selection of Cloud providers, and for the

evaluation of the cloud impact on internal business processes. Furthermore, the work

offers a runtime environment for observing the system under execution and for

enabling a feedback loop with the design environment that allows system developers

to affect performance change and to redeploy applications on different Clouds.

However, there are many challenges such as vendor lock-in (Antoniades et al. 2015)

, applications portability, and cloud data migration are not addressed. In addition,

Risk Management uses primitive tools. However, need to offer Cloud providers for

auto scaling mechanism for interoperability and federation between Clouds.

Nicolas Ferry et al. (2013) proposed Cloud Modeling language (CloudML)

explains that model driven techniques and methods facilitating the specification of

31

provisioning and deployment concerns of multi cloud systems, this will enable the

continues evolution of system between design time and run time activities (Ferry et

al. 2013), argue model driven is suitable for developing complex systems.

There are several projects that aim at addressing challenges by providing

solutions for provisioning, deployment, monitoring and adoption of cloud systems

such as Modeling QoS constraints. In the addition time consuming services are

identified as a challenge for adaptive systems. Moreover, there is a lack of a

systematic engineering process and tools supported by reusable architectural artifacts

(Zhang & Zhang 2009).

2.4.2 Summary of Related work

Table 2.5 Summary of using MDA for cloud application development.

Author/s Approach Advantages Limitations Domain

1

Hugo et al.

2010

Modeling as a

Service (MaaS) to

provide modeling

and model driven

engineering

services from the

cloud.

 Using Model

Driven

Engineering

(MDE) for the

development of

SaaS

applications.

 Using SaaS to

deploy modeling

services in the

cloud.

 No general

agreement on

the right set of

models,

languages,

model

transformations

and software

processes in the

model driven

development of

SaaS systems.

SaaS

application

(SOA)

2

Ritu Sharma

&

Manu Sood

2011

The MDA

approach an asset

facilitates creation

of good designs

that easily cope

with multiple

implementation

Technologies and

drive process of

software

development.

 MDA approach

need in the

development of

cloud, SaaS in

order to minimize

the time, cost and

efforts in

application

development and

to enhance the

Return on

development.

 Need an

approach for

ensuring

interoperability

among the

models of cloud

software

services.

Web base

application

(SaaS app)

32

Author/s Approach Advantages Limitations Domain

3

Danilo

Ardagna et

al.

2012

MODACLOUDS,

model Driven

Approach for the

design and

execution of

applications on

multiple Clouds.

Allows early

definition and

assessment of

quality at design

time.

 Supporting system

developers and

operators in

exploiting

multiple Clouds.

 Migrating

applications from

Cloud to Cloud

(performance).

 Inform evolution

process to design

time.

 Vendor lock in

on cloud

customer to

decide on

adoption model.

 Risk

management

used primitive

tools.

 Quality need

mechanisms to

be able to deploy

and redeploy

systems.

Business

Application

4

Mohammad

Hamdaqa et

al.

2011

Defining A

Reference Model

(Meta model) for

developing cloud

application

environment.

 The present Meta

model shows

main cloud

vocabulary,

design elements,

configuration

rules and

semantic

interpretation.

 Facilitates cloud

application

development

from the design to

implementation.

 The lack of

standardization

and

terminologies

challenges

portability and

migration

between different

cloud

environments.

Cloud

Application

5

Francesco

Moscato et

al

2012

MOSAIC

Ontology

methodology and

Framework, aims

at creating,

promoting, open

source (API) and

platform for

developing multi

cloud oriented

applications.

Frameworks

enhance modeling

profile for

verification QoS of

cloud services.

 Simple access to

heterogeneous

resources.

 Design interface

for users and

implemented

existing services.

 Enable intelligent

service discovery.

 (QoS) given for

users to avoid

locked-in and for

providers to build

on demand

services.

 Do not provide

approaches to

model and verify

dependability

during all phases

of the life cycle.

 Difficult to

achieve

interoperability.

Multi

Agent

System

6

Nicolas

Ferry et al

2013

Cloud Modeling

language

(CloudML) aims

at facilitating the

provisioning,

deployment,

monitoring and

adaptation of multi

cloud systems.

 Enables the

evolution of

system between

design time and

run time

activities.

 Enables

developers to

work at a higher

 Model under

development and

many challenges

identified, such

as.

 Time consuming

development

activities for

adaptation.

Multi

Cloud

Systems

33

level of

abstraction of

cloud concerns

rather than

implementation

details.

 Techniques and

methods to

prevent failure.

 Data movements

from region to

another without

legal

consequences.

2.4.3 Result Analysis

We provide a survey analysis on MDA with respect to cloud application

development (Ibrahim & Hany 2015). We outline literature selection based on cloud

taxonomy issues as shown in Table 2.4. Furthermore, we compare different MDA

used for cloud application development as shown in Table 2.5, and discuss some

issues and challenges that need further research in developing cloud applications

based on MDA as follows:

 There is no generic cloud software architecture for designing and building

cloud applications (Hamdaqa et al. 2011), applications with cloud need new

technologies (Gohad et al. 2012) to differentiate the cloud development

paradigm from the existing ones.

 Developers argue for the need for model driven approaches and supporting

tools to facilitate the specification (Ferry et al. 2013) of provisioning,

deployment, monitoring and adaptation concerns at design time and at run

time. The need to bind configuration management in order to minimize the

shortcomings (Gitzel et al. 2007).

 Need to build cloud applications that offer cloud providers for auto scaling

mechanism for interoperability between clouds (Ardagna et al. 2012).

 The lack of standardization and common terminologies that challenges

portability, also need to migrate application's components between cloud

providers as needed (Ardagna et al. 2012).

 Lack of interoperability and portability (Gonidis et al. 2012), the difference

between the individual vendor approaches, cause Vendor Lock-in problem.

The risk of lock-in is a major concern for cloud customers. Cloud providers,

in fact, offer proprietary solutions that force cloud customers to decide, at the

early stages of software development the design and deployment models to

34

adopt (e.g., public vs. hybrid Clouds) as well as the technology stack (e.g.,

Amazon Simple DB vs. Google Big table). Thus, the portability of

applications and data between clouds be addressed (Anderson & Rainie

2010).

 The Quality of applications poses a need for developers to be able to design

their applications and for operators to operate, monitor and assure

performance change of cloud applications to be able to deploy and redeploy

on multi Cloud environments.

The above described effort in the area of applications on clouds, the current

literature, indicates that the topic still requires research on new programming

abstractions, developing and presents best solutions.

2.5 Summery

In this chapter, the theoretical background for Cloud Computing has been

presented. Firstly, the chapter explored Cloud computing architecture. These stages

are: cloud definitions, cloud services, deployment models, cloud characteristics,

cloud challenges and issues, and cloud application development. Many efforts have

been reported for solving the problem of developing cloud application architecture.

Different state-of-the-art methods apply different software approaches, techniques

and patterns to design and develop cloud application architecture.

Surveyed research work on using model driven approaches for cloud

application development are explained, based on model driven architecture (MDA).

We covered the major methods, and summarized their features. We also discussed

several open research issues, that provide a better understanding the principles and

challenges of developing applications in the clouds, that help developers, architects

and researchers support, evaluate and predict different methods and techniques.

MDA approaches that promise to reduce the overhead of developing,

configuring, deploying and maintaining cloud applications. Moreover, help of

architecture that can easily improve the quality of the system thus can develop a

product with quality attribute such as portability, interoperability, and reusability of

parts of the system that can be easily moved from one platform to another, as well as

the maintenance of the system through human‐readable and reusable specifications at

various levels of abstraction.

35

CHAPTER III

METHODOLOGY FOR PORTABILITY-BASED DEVELOPMENT

OF CLOUD APPLICATION ARCHITECTURE DESIGN

3.1 Introduction

This chapter describes the methodology applied in this research. As Figure

3.1 shows, this research is accomplished through a number of steps. It begins with a

study on related works in the literature. Then, problem statement and research

objectives are explained. In the next step, cloud application requirements are needed

to support the development of portable cloud application architecture. The details of

the proposed framework phases are presented. It includes the architecture design

phase of the proposed framework. Finally, the evaluation methods of the portability

framework are presented.

Figure 3.1. Research Methodology.

Review related literature

Problem Statement

Define Research objectives

•Cloud application requirements architecture

Analysis of portable cloud
application

•Framework phases

Develop a framework for Portable cloud application

•To achive portable cloud application architecture design

Propose container-based scenario approach

•Verification and Validation for cloud application portability

Evaluate a framework

36

3.2 Cloud Application Portability Analysis

 Chapter 2 presents a background study and extensive literature review about

the overview of cloud computing, cloud application, and models for cloud

application. In order to achieve the first objective, we need to provide cloud

application portability analysis, to help in developing our proposed framework.

Portability defines the ease of ability to which application components are

moved and reused elsewhere, regardless of provider, platform, operating

system, infrastructure, location, storage, data format, or API’s. Portability is

based on a set of attributes that design on the ability of software to be transferred

from one environment to another (Kolb & Wirtz 2017).

3.2.1 Cloud Portability Definitions

As mentioned before, portability is about the ability to move an entity from

one system to another (Council 2014). Cloud portability is a concept that also

concerns both the cloud customer and provider to avoid lock-in of cloud offerings

(Hill & Humphrey 2010).

Definition 1: Cloud portability is defined as the ability to migrate a cloud-

deployed asset to a different provider, and it is a direct benefit of overcoming

vendor lock-in (Opara-Martins et al. 2014).

Definition 2: Cloud Application Portability refers to the ability to move any

component of any of the three cloud service models across cloud platforms (Gonidis

et al. 2012).

Definition 3: Cloud Applications’ Portability is a desirable feature for Cloud

Developers, prevent an effective utilization of multiple cloud providers’ services and

offers among cloud platforms, at different service levels (Di Martino, Esposito, et al.

2015).

Cloud Application Portability enables the reuse and migration of entire applications,

or of some of their components, across cloud PaaS services or even from on premise

environments to the cloud, to minimize efforts when migrating an application, data

or service from one cloud to another, which reduce the need for re-designing and

rewriting parts of the application.

37

3.2.2 Cloud Application Portability Adoption

 Enterprises and cloud service providers need to adopt cloud portability,

because cloud application designs increasingly span multiple cloud providers'

platforms, need to ensure designing new applications to run effectively in such

"Multiclouds" application architectures while avoiding related portability or vendor

lock-in problems (Petcu & Vasilakos 2014). There are many reasons, that let

application portability in clouds is an important concern.

 Economic reasons: is necessary for several reasons.

 The customers of the cloud would gain protection over their investments in

their application development. Due to the heterogeneity of the cloud, the

migration of a software application, along with its data, from one cloud to

another, often requires the rewriting of large parts of both the services and the

application, all in order to comply with the new environment to which the

application is migrating.

 The cloud service providers interested in enhancing the opportunity for

application portability in order to promote their own attractiveness within a

highly dynamic and demanding market.

 Allows the development of third party organizations which would be able to

mediate between the cloud customer and multiple cloud providers. Enable

deployments depending on the customer’s requirements, and all kinds of

necessary adaptations would be provided by the third party.

 Technical reasons: cloud portability is of immense importance in order to

exploit the cloud elasticity to a maximum extent, as well as to ensure the

continuity in a given application along with its functionality of a service.

Throughout a lifetime of an application, a point might come at which external

resources are required from a public cloud, and so it needs to be redeployed from

a private cloud. This kind of a porting process is triggered by the cloud customer.

Furthermore, in order to achieve continuity, precaution measures such as regular

backups must be made, not only of data, but of application instances as well. This

implies that an application must be able to use various cloud services which in

turn will aid the replication of the application as well as its data. This kind of a

porting process is most commonly in accordance with the provider’s agreements,

and is usually considered in the design phase.

38

 Legal reasons: the laws within a country may change rather abruptly, triggering

the need for software to be deployed from one cloud system to another. A cloud

service provider may also provide faulty service which in turn would call for

immediate redeployment of applications on another cloud platform. In this sense,

efficient portability mechanisms are essential for fast recovery. Situations like the

aforementioned one are also attempting to be avoided by creating contracts which

guarantee a sufficient contingency plans if the cloud provider.

3.2.3 Cloud Application Portability Scenarios

 Cloud application portability issues differ according to the target service level

(Di Martino, Cretella, et al. 2015), we have identified five major portability scenarios

for cloud application, discussed in different scenarios as shown in Figure 3.2.

Figure 3.2. Portability scenario classification (Di Martino, Cretella, et al. 2015).

1) CSCC S1: Customer Switches Providers for a Cloud Service

Scenario addresses the case of customers currently using a cloud service provided

by provider A, wish to switch to an equivalent service from provider B. They are

able to transfer their data or applications within multiple cloud environments with

reasonable expense and minimum disturbance (Rezaei et al. 2014).

Interoperability and portability are illustrated in Figure 3.2 below.

39

Figure 3.3. Portability of an application between cloud providers (Rezaei et al. 2014).

Interoperability refers to the ability of two or more systems or applications to

exchange information, whereas portability refers to ability to move an entity from

one system to another so that it is usable on the target system.

 This scenario touches many of the issues associated with portability, as

explained below:-

A. CCUC 1: Cloud Customer Changing SaaS Vendors

The data handled by one vendor’s software should be importable by the

second vendor’s software, which means that both applications need to support

common formats. Standard APIs for different application types will also be

required.

B. CCUC 2: Cloud Customer Changes cloud middleware vendors.

Existing data, queries, message queues, and applications must be exportable

from one vendor and importable by the other. The requirement to achieve this

porting is a common API for cloud middleware. Cloud database vendors have

enforced certain restrictions to make their products more elastic and to limit

the possibility of queries against large data sets taking significant resources to

process.

C. CCUC 3: cloud customer changing VM Hosts.

Cloud customer wants to take virtual machines, built on one cloud vendor’s

system, and run them in another cloud vendor’s system. The main

requirement of this operation is a common format for virtual machines.

40

2) CSC-CB: Cloud Bursting

Focusing on interoperability issues at the IaaS level, describes a scenario where

multiple cloud platforms need to work together. Similar to CCUC3.

3) CSCC 5: Migration of Customer Capabilities into Cloud Services.

This scenario addresses the case of a customer, currently running an application

or service on-premise, who wants to move that capability to a public cloud

environment (Di Martino, Cretella, et al. 2015).

3.2.4 Cloud Application Portability PaaS Issues

For application portability, the biggest challenges are for applications built for PaaS

platforms (Council 2014). We focus on cloud applications to be ported across

different platforms, exposed by supporting platform, enabling the application to use

services, also providing access to the capabilities that support the application. PaaS

portability issues are caused by:-

[1] Lack of a shared platform defined among PaaS providers; each provider chooses

the operating system and middleware elements, it will support, if we make

different selections then applications using those features cannot be ported.

[2] Lack of alternative providers of a platform; a provider may make a cloud

version of a server platform available. Providers have been adding services to

their platform, as there are no standards using the added services could lock

applications to a cloud provider.

[3] Portability between the development and operational environments (DevOps).

3.2.5 Platform as a Service (PaaS) Portability Solutions

 PaaS generally provide mechanisms for deploying applications, designing

applications for the cloud, pushing applications to their deployment environment,

using services, migrating databases, mapping custom domains, IDE plugins, or a

build integration tool (Pahl 2015). The Following are existing solution approaches

used to achieve PaaS portability:-

[1]. Adopt container technology, such as Docker, for application hosting (Pahl et al.

2017).

[2]. Involved the definition of a common set of standards that need to be adopted by

platform vendors in order to provide uniform services (Gonidis et al. 2012), in

addition hrough protocols, used APIs or through abstraction layers which

41

decouple application development from specific target Clouds (Petcu &

Vasilakos 2014).

[3]. Use a cloud technology that deploys PaaS on IaaS or bare-metal servers. Cloud

Foundry and Open Shift are examples of these tools, but newer products, such as

Morpheus, are gaining attention.

[4]. Service Orchestration: involves microservices architecture to developing a single

applicationas a suit of small services. Organizations could take application

components that need specialized middleware and make them into services that

are called on demand by the rest of the application (Pahl 2015).

3.3 Cloud Application Architecture Design Patterns

Cloud application architecture patterns describe how applications have to be

designed to benefit from a cloud environment, also described how applications

themselves can be offered as configurable cloud services (Zhao et al. 2012). In

addition pattern approach provide solutions to cloud application challenges and

requirements (Erl et al. 2015), guide application developers during the design and

implementation of applications components that use cloud offerings and are

deployed to different cloud types. Benefit cloud application development, reduce

development time, deploy multiple applications, test, configure and integrated

solutions (Brandle et al. 2014).

3.3.1 Fundamental Cloud Application Architecture Design patterns

The following section addresses design patterns taxonomy for cloud application

architecture (Ibrahim & Eldein 2016) as in figure3.3. Based on (Fehling et al. 2014)

cloud design patterns based taxonomy as follows phases, which describe abstract

solutions to problems in how cloud application can build on top of an elastic

platform. We cover the fundamental architectural styles that architects and

developers have to be aware of when building a cloud native application categorize

to:-

A. Loose Coupling Architecture: communication separates application

functionality from concerns of communication partners regarding their location,

implement the platform, the time of communication, and the used data format.

http://searchcloudcomputing.techtarget.com/tip/Evaluating-OpenShift-vs-Cloud-Foundry-for-open-source-PaaS
http://searchcloudcomputing.techtarget.com/tip/Evaluating-OpenShift-vs-Cloud-Foundry-for-open-source-PaaS
http://searchcloudcomputing.techtarget.com/answer/Why-should-I-consider-a-microservices-architecture

42

By using Broker solution that can communicate components and multiple

integrated applications to decouple from each other's.

B. Distributed Application Architecture: describe how the application's

functionality may decompose to be distributed among several resources. Cloud

application solutions rely on dividing provided functionality among multiple

application components that can be scaled out independently, redundant

resources ensure that the unavailability of one resource does not affect the

application as a whole.

C. Cloud Application component patterns: patterns of this category refine how

the functionality of a cloud application can be implemented in separate

components. Applications components are developed specifically for cloud

offering and requirements because they are not explicitly specified (Fehling et

al. 2012). Cloud component patterns characterized by three central patterns.

 User interface components: provide application functionality to users.

 Processing components: handle computational tasks.

 Data access components: handle data stored in storage offerings. They can

deal with storage offerings at different cloud providers with different

consistency levels. Data access components can further be adjusted to

inherently support eventual consistency by abstracting data to hide that there

may be data inconsistencies.

D. Multi-tenancy patterns: Multi Tenancy "refers to the capability to host a

single instance of a software solution that serves multiple clients.”. Describe

how cloud applications and individual components can be shared by multiple

customers on different levels of the application stack. Can support multiple

client tenants simultaneously, that achieves the goal of cost effectiveness.

 The shared component: provides functionality to different tenants without

maintaining a notion of tenants itself.

 The tenant-isolated component: does the same, but ensures that tenants do

not influence each other while they access shared functionality.

 The dedicated component pattern: enables some functionality to be

provided exclusively to tenants without sharing it with others.

E. Cloud Integration patterns: describe special application components to enable

the communication across cloud boundaries, as applications are often not

43

standalone and must be integrated with other cloud applications and non-cloud

applications (Fehling et al. 2014).

Figure 3.4 Design patterns for cloud applications architecture (Ibrahim & Hany

2015) overview.

3.3.2 Cloud Application Patterns Portability Support

 Architectural styles and patterns applied to a cloud application, to describe

the structure of the solutions provided to play a basic role in designing and

developing different components of cloud application for different platforms to

deploy and redeploy on the various Clouds (Di Martino, Esposito, et al. 2015). Cloud

design patterns focusing on a general and reusable solution can be applied to any

target environment for cloud computing (Fehling et al. 2011), understanding the

changes to apply, and to enhanced an application architecture (Jiang & Mu 2011).

Architecture include quality attributes such as “efficiency”, "portability”, “usability”,

“maintainability”, etc. We give some overview of many cloud patterns, that support

cloud application portability as shown in Table 3.1.

Design Patterns for Cloud application

BIZ Roles

Ops
Mang

e

Application
Component
s patterns

Multi
Tenancy

components
patterns

Integration
patterns

Tier layers

Application
Management

 Communication
service

 Storage service
 Process service

Deployment Model
Public / Private

Services support
1)SaaS2)PaaS

44

Table 3.1 A summary of Cloud application architecture patterns QoS Support.

C

lo
u

d
 A

p
p

lic
at

io
n

 A
rc

h
it

ec
tu

re
 P

at
te

rn
s

Category Pattern Name

S
ca

la
b

il
it

y

E
la

st
ic

it
y

A
cc

es
si

b
il

it
y

In
te

g
ri

ty

P
er

fo
rm

a
n

ce

F
le

x
ib

il
it

y

S
ec

u
ri

ty

M
a
in

ta
in

a
b

il
it

y

R
eu

sa
b

il
it

y

P
o

rt
a

b
il

it
y

In
te

r
o
p

e
r
a
b

il
it

y

Fundamental

Architectures

Loose Coupling ++ ++ - + ++ ++ ++ ++ ++ ++ ++

Distributed Application ++ ++ +
++ + + + + ++ ++

+

Cloud

Application

Components

Stateful Component ++ + + + + + ++ ++ + + +

Stateless Component + ++ + + ++ ++ + + ++ ++ ++

User Interface Component ++ ++ ++ + ++ ++ ++ ++ ++ ++ +

Processing Component ++ ++ + + ++ ++ ++ ++ ++ ++ ++

Data Access Component
++ ++ ++

++ + ++ ++ ++ ++
+

Multi-

Tenancy

Shared Component ++ ++ ++ - ++ + + ++ ++ ++

Isolated Component ++ ++ + + ++ ++ ++ + + -

Dedicated Component
+ ++ +

+ + ++ ++ + +
+

Cloud

Integration

Restricted Data Access - ++ ++ ++ - + ++ - - - -

Message Mover - - ++ ++ - + + + ++ ++

Application Component Proxy ++ ++ ++ ++ + + + + + ++ +

Compliant Data Replication ++ + ++ ++ ++ + + + ++ + ++

Integration Provider ++ + ++ ++ + + + ++ + + ++

 Legend

 (++): Strong support and achieve QoS; (+): Partially support and achieve

QoS; (-): Not achieving QoS.

Since cloud application is in terms of components, it results in high maintainability

and portability. Also, we can easily attach a new component on demand, it will be

easy to scale up an application (Sharma et al. 2015).

We give some overview of many cloud patterns, that support cloud application

portability as below:-

a. Pattern coupling: effects on maintainability, factorability, and reusability when

patterns are coupled in various ways. Patterns are loosely tied together with few

connections, making it easier to separate the patterns. They should promote

quicker, simpler future design changes (McNatt & Bieman 2001).

b. Distributed application: divided functionality among multiple application

components that can be scaled out independently, and support portability

(Fehling et al. 2014).

c. Stateless component: multiple components can share a common external state,

make application most tolerant to component failures, support performance by

reducing requests to the central data store and component instances keep replicas

of central store state information, this can strongly support for application

portability to multiple cloud environments. In stateful application component

45

synchronize their internal state (instances replicate among all instances), this

strong support for scalability, security, maintainability and partially support for

portability and reusability.

d. Multitenancy patterns: is one of software architectural styles and patterns

consists of a single instance of an application with multiple tenants, describe how

application components comprising a SaaS application can be shared between

different customers (Sharma et al. 2015).

e. A restricted data access component: extends the functionality of the data access

component to incorporate data obfuscation if sensitive data may not be retrieved

completely from a less secure environment. Alternatively, data may be replicated

between environments

3.4 A Framework for Development Cloud Application Architecture

 Developing cloud application raises portability challenges, requires a

methodical approaches that define and support application portability to the cloud. In

order to establish portable architecture design to cover portability requirements, there

is a need for a development portability framework for cloud applications.

 The framework for portable cloud application architecture development, aims

at supporting system developers in designing portable architecture for cloud

applications which can easily migrate (part of)/ system and deploying in multiclouds

platforms as needed. A framework encompasses four phases, strategy and plan

phase, architecture design phase, deployment phase, and evaluation phase.

For the architecture design phase, since there is no standard approach for portable

cloud application architecture design that can be used, the architecture design

approach of portable cloud application is required (as in Figure 3.9). The

architecture design approach based on proposed containers patterns and cloud

application patterns for development. Methodology achieves the following goals:-

 Design quality: to achieve Portability by applying capability for cloud

application component, that minimizes efforts for developers, in addition to

reduce implementation time.

 Run-time quality: to achieve agilely for system operation by communicating

and exchange information to be reused for development (DevOps).

46

Figure 3.5 A Framework for cloud application architecture development overview.

3.4.1 The Proposed framework Phases

 The initial methodology steps involve proposing a development framework to

achieve the second research objectives. The proposed framework divided into

following phases, as shown in Figure 3.6.

Figure 3.6 The Proposed framework phases for developing a portable Cloud

Application Architecture.

analysis

mapping

testing refinement

refinement

modification

1: Strategy Phase

2: Design Phase

3: Deployment

phasePhase

 4: Evaluate Phase

Identify Architecture Drivers

Design Portable cloud app architecture

Deployment Model

Evaluate Architecture Portability

47

Phase 1: Portability Strategy Plan

 A process need to identify and specify architecture drivers; Identify and select

cloud portability scenario; Describe the behavior and requirements of a system;

Provide a generic description of the application.

Phase 2: Design portable application architecture

 Need to adopt an appropriate architecture design for specific application.

Identifying, using cloud design patterns that specifically apply to provide an

application architecture design to deploy on the clouds.

Phase 3: Portable cloud application Deployment

 The solution is to develop a portable deployment model to be ported and

deploy to cloud platform, also ported from one cloud platform to another.

Development based on Cloud patterns with a driven design method for mapping

between models.

Phase 4: Evaluation architecture portability

 To achieve the third objective (evaluate the proposed portability architecture),

the evaluation is to ensure portable cloud application requirements are met, using

validation and verification.

 During the architecture process, the aim of the validation is to increase the

confidence that the architectural design support portability for deployment.

Scenarios-based used as evaluation criteria to support architects and developers

during the evaluation process (Ionita et al. 2002). Scenarios are a technique

developed through manual evaluation and testing. Scenarios are related to

architectural concerns such as quality attributes, and they aim to highlight the

consequences of the architectural decisions that are encapsulated in the design

(Gorton 2006). Thus, we evaluate the applicability of our approach in practice by

uses of case studies.

 Validating an architecture design poses some tough challenges. The tools for

architecture for a new application, implement and test data required from developed

step to deploy target application on different cloud platforms. We use CloudMiG

simulation tool to evaluate deployment options using a case study.

48

3.5 Container-based Architecture Design of Portable Cloud Applications

We are focusing on phase 2: design portable cloud application architecture.

This is because there is no standard process approach that can used to face challenges

like tightly coupling and poorly designed interfaces.

3.5.1 Container benefits

Containers are used for deployment, but a more concern is needed for

designing portable cloud applications to build better and faster deployment

containers on multicloud PaaS. Container benefits represent in:-

1) Ability to achieve portability with containers (Pahl et al. 2017) .

2) Reduced complexity through container abstractions; allow applications to be

localized within the container, and then ported to other public and private cloud

providers that support the container standard (Linthicum 2016), such as Docker.

3.5.2 Container for portable cloud application

Container is a new technology for portable cloud platform, allow the sharing

of the underlying platform and infrastructure in a secure way. It holds packaged self-

contained, ready-to-deploy parts of applications, to run the applications (Pahl et al.

2017). Container is a standard way to package an application and all its

dependencies that can be moved between environments and run without changes.

Containers work by isolating the differences between applications inside the

container, eliminating the need for instruction level emulation (Dua et al. 2014), so

that everything outside the container can be standardized.

3.5.3 Comparison of a container Related work

 Containers are used for deployment, but a more concerns is needed for

designing portable cloud applications to build better and faster deployment

containers on different PaaS. Several works and experiences uses containers,

summarized in the Table 3.2.

49

Table 3.2: A summary of related work for container used.

Author/s Context Problem Proposed solution

Pahl,

Claus,

and Brian

Lee.

2015

Edge cloud

architecture,

Various devices

such as IOT, is

the context of

edge cloud

computing.

Virtual devices to

host application and

platform services,

and the logistics still

required to manage

architecture setting.

 Edge cloud environment,

application and service

orchestration can help to manage

and orchestrate applications

through containers as an

application packaging

mechanism.

 Facilitate applications through

distributed multi-cloud platforms

build from a range of networked

nodes.

Kang,

e.tal 2016

Identifies the

key challenges

of

containerizing

infrastructure

services.

It is difficult to use

containers to

manage the cloud

infrastructure,

without sacrificing

many container

offers.

 Redesign Open Stack

deployment architecture to

enable dynamic service

registration and discovery.

 Explore different ways to

manage service state in

containers, and enable containers

to access the host kernel and

devices.

Burns,

e.tal

2016

Container

architectures

leading to

design patterns

for container-

based

distributed

systems

Distributed system

development, need

for enabling a

standardization and

regularization.

 Identified three types of patterns:

single-container patterns for

system management, single-node

patterns of closely-cooperating

containers, and multi-node

patterns for distributed

algorithms,

Kozhirba

yev, e.tal.

2017

Container based

technologies

such as Docker

allow hosting of

micro-services

on Cloud

infrastructures

Cloud computing

has overheads and

can constrain the

scalability and

flexibility,

especially when

diverse users with

different needs wish

to use the Cloud

resources.

 Compare and contrast a range of

existing container-based

technologies such as Docker for

the Cloud and evaluate pros and

cons and overall performances.

Jain,

Rakesh,

et al.

2018

Migrate a

composite

application to a

container-based

environment

How software

components to be

composite applied?

 Creating a plurality of

containers, and communications

channels between the plurality of

containers, for the software

components of the composite

application based on the

containerization plan.

 In comparison to the related work for containers (Pahl & Lee 2015; Kang et

al. 2016; Burns & Oppenheimer 2016; Kozhirbayev & Sinnott 2017), all Containers

technology solutions discussed above focus on deployment at run time, such as

50

Docker and Kubernetes for application hosting on the cloud, while the (Jain et al.

2018) is relevant to our work, but concern in provisioning to run the migrate

application on the specific cloud environment. However, to the best of our

knowledge, there is no related work that suggests the use of application containers at

the architecture design phase.

3.6 Container-based Architecture Design Solutions

 The proposed approach depends mainly on the architecture design phase of a

framework for developing portable cloud application architecture, as in figure 3.6.

Need to adopt and develop appropriate architectural design solutions depend on the

scenarios-based container design approach, that group application behavior to several

application scenarios in a container, each scenario is a solution using container

patterns to describe cloud application architecture design. Benefits outcome is to

reduce the complexity, minimize dependence, avoid vendor lock-in, and exploits the

functionality benefits that can be achieved through multi cloud architectures. Our

solutions represent in:-

1) Propose Development process to guide in designing containerized portable

cloud applications, for easier and better deployment on multiple cloud

platforms.

2) Propose and uses new container design patterns to describe architecture

design.

3) Present a development patterns approach for designing Scenarios-based

container, that group application behavior to several application scenarios in a

container, each scenario container is a solution that the system can be used,

reducing the complexity.

3.6.1 Development process for Container-based Design

 Foe cloud application design, loosely couple identified as design criteria with

application components, that individual application components can use different

cloud offerings requirements. The loose coupling depend on (interdependence,

differentiation, and integration), provide a basis for developing the definition

(Pinelle & Gutwin 2005).

51

 Loose coupling is a design strategy which allows us to reduce the

interdependencies between components of a system with the goal of reducing the risk

that changes in one component will require changes in any other component. It’s all

about thinking a problem in generic manner and which intended to increase the

flexibility of a system, make it more maintainable, and makes the entire framework

more stable.

Loose Coupling provides many advantages, such as:-

 Components in a loosely coupled system can be replaced with alternative

implementations that provide the same services, to the same platform,

language, operating system, or build environment.

 In the design of organizational processes, a modular approach with loosely

coupled components produce flexibility, helps to create the ability to

reconfigure the system by enabling new functional process variations.

 Adaptability: future functional requirements to take advantage of the existing

loosely coupled module than build a new, redundant module.

 Process approach based on cloud design pattern development to describe

architecture components for cloud application to be configured, mapping between

patterns, identifying and selecting required patterns to decrease the level of

development (Cretella & Di Martino 2012) to gain container design for portable

cloud application. The design process is composed of iterative refinement

development process steps as shown in Figure 3.7.

Figure 3.7 The iterative development process for multiple scenarios.

1:

Select Scenario
for application

2:

 Develop
Scenario-based

Container
design

3:

Integrate
current
scenario

architecture

4:

Verify
Deployment

Scenario

52

[1]. Select Scenario for application: based on application analysis, metric of selecting

scenario with a high frequency of usage.

[2]. Develop scenario-base container design: based on proposed container patterns,

the development process for independent scenario steps as shown in Figure 3.8.

Figure 3.8 The development process for independent scenario-based container

design.

[3]. Integrate current scenario architecture: integrate step 2, in addition to multiple

develop scenarios with their dependencies into a portable cloud application

container design, as shown in Figure 4 for deployment.

[4]. Verify deployment Scenario: approach based on using approaches and tools to

check deployment options for running cloud applications on multiple clouds.

3.6.2 Development of Independent Scenario-based Container Design

The steps of the development independent scenario-based design are:-

Step 1: Select architecture style for application

Architecture styles characterize families of architectures sharing common

characteristics specification, benefits in:-

• Identify Application type.

• Identify relevant architecture design for application support, based on annotated

UML diagrams to describe software system.

PaaS provide set of capabilities, using PaaS portability as evaluation criteria private/

public to specific applications.

1: Select

architecture style
2: Define application

scenario components

4: Container patterns

Refine

Scenario-based

Container design for

cloud application

architecture

5:Integration

3: Cloud patterns

Selections

53

Step 2: Define Application components for the scenario

 To gain a flexible design need to benefit from loose coupling to allow reuse

and improve portability. Container: focuses on design application components that

represent well-defined communication interfaces containing methods, events, and

properties to be tightly coupled for deployment.

Step 3: Cloud pattern selection

 Select adaptive cloud application patterns for scenario, to provide optimal

solutions, and to meet the scenario changes during development.

Pattern oriented analysis approach based on requirements analysis is used (Amar

Ibrahim 2016), consists of major steps. Requirements analysis, is important activities

(Lin et al. 2016), identifying app components and relevant cloud patterns. Adapted

cloud patterns include refinement to trace candidate selected cloud patterns to a

lower level of abstraction to give scalable design.

Figure 3.9 Pattern Oriented Analysis approach overview (Amar Ibrahim 2016).

54

This section discussed patterns oriented analysis approach (Amar Ibrahim 2016)

steps as follow:-

1) Application Requirements: Application requirements are a detailed description

of application services can be required from a customer, system and software for

a design or implementation.

2) Components Requirements Analysis: Analyze the existing application

requirements to identify problems to be solved and to determine conceptual

components.

Process: finding components to functionally identify problem and generate use

case diagrams. Identify application component (logical level), if the application is

large analyzed into subsystems and subsystem analyzed in more details. Need to

iterate with other analytical activities:-

 Acquaintance activity: to identify sets of cloud design patterns will be used

in application design (from pattern library) patterns database activity.

 Retrieval: retrieve from patterns repository related patterns, process focus on

how to select given patterns, matching if related patterns should be selected,

to set as candidate design patterns.

3) Identify Scenario: Set of conceptual components for selected system use cases.

4) Cloud pattern selection: Select a set of cloud design patterns that will be used in

the cloud architecture design of each component, based on studying the

relationship between patterns.

Overall output selection of set of cloud design patterns will be used in design for the

various parts of the system.

Step 4: Container patterns Refinement

 New candidate design patterns for cloud application architecture generate for

a solution put in a template-based container design patterns deal with how container

be designed to benefit a cloud application.

[5]. Integrate current scenario architecture: integrate step 2, in addition to multiple

develop scenarios with their dependencies into a portable cloud application

container design, as shown in Figure 4 for deployment.

[6]. Verify deployment Scenario: approach based on using approaches and tools to

check deployment options for running cloud applications on multiple clouds.

55

3.6.3 Multiple Scenarios Integration

 Move application to another cloud provider, require to build an application in

small containers, that make application to work better, easier on multiple platforms.

We present development patterns for designing portable cloud applications in

containers. The presented design approach, group cloud application behavior to

several application scenarios of components in a container, as in Figure 3.10. The

development processes based on driven design for reuse multiple components of the

cloud application scenario to reduce the complexity. First cloud application

components should be loosely coupled into scenarios of containers to reduce the

dependencies among components. For each independent scenario-based container

design there are fundamental container patterns, as proposed in section 3.6.4 to use

with related cloud patterns, that help in developing container scenario functionalities.

The developed containers scenarios integrate to be portable and easily allow multiple

container scenarios/ independent container scenario for deployment of multiclouds

platforms.

Figure 3.10 A Container based patterns for Portable cloud application design

overview.

DB Container

Design

UI Container
Design

Communication
Container Design

Related Design
Patterns for DB

container

Related Design

Patterns for UI

container

Related Design
Patterns for DB

container

Cloud1

Cloud2

Deploy all app scenarios

or part of app scenarios

App containers

scenarios

PaaS Application

services

Application container scenarios-

based design patterns

Cloud Application
Architecture

Multiple scenarios
integration

56

3.7 Proposed Container design patterns for Cloud Application Architecture

We investigate fundamental Container design patterns for Cloud application

architecture, generate for a solution put in template based container design patterns

deal with how container be designed to benefit a cloud application.

3.7.1 Interface container design pattern

Table 3.3 Cloud Application Interface container design pattern

Category Fundamental Container design patterns for Cloud app architecture

 Pattern Name 2. Interface Container

Intent
Scenario container dependencies to other containers, that should be explicit

by defining interfaces to be used by different containers.

Design

Problem

How can scenario containers be accessed decoupled from the other

container scenario?.

Design

Solution

 Create segregate container interface for each scenario design and multiply

inherit them into application container.

 Interfaces for each container serves as a bridge between the synchronous

access of the specific scenario container and the asynchronous

communication with other containers scenarios.

Related

Patterns

1. Communication Container scenario based Patterns.

2. User Interface.

3. Data abstractor.

4. Adapter pattern.

Reference

Diagram

Figure 3.10: Integration container interface pattern.

Figure 3.11 Integration container Interface pattern, for each container scenario work

synchronously and for other scenarios works asynchronously.

57

3.7.2 Communication container pattern

Table 3.4 Communication container.

Category Fundamental Container design patterns for Cloud app architecture

 Pattern Name 3. Communication Container

Intent Scenarios containers share application container interface, that want to

collaborate for specific scenarios .

Design

Problem

How can Container scenario communicate with another scenario container

and isolate scenarios containers from complexity?

Design

Solution

 Collaboration containers proxy scenario communication to and from

the application container. Simplifies and standardizes the outside of the

application container.

 Enables the heterogeneous of legacy and open-source applications to

present a uniform interface without requiring modification of the

original application container.

Related

Patterns

1. Adapter pattern

2. Load Balancer

3. Interface container scenario design

4. Data access.

5. Chain container.

Reference

Diagram

Figure 3.11: Scenario based for integrating specific container scenario into

application container

Figure 3.12 Communication container interaction with scenario container using

interface container.

58

3.7.3 Database container design pattern

Table 3.5 Data Base container.

Category Fundamental Container design patterns for Cloud app architecture

 Pattern Name 4. Data Base Container

Intent Functionality to store and access data elements is provided by special components

that isolate complexity of data access, enable additional data consistency, and

ensure adjustability of handling data elements to meet different customer

requirements

Design

Problem

How can the complexity of data storage due to access data consistency be hidden

and isolated while ensuring data structure configure?

Design

Solution

 Access to different data sources is integrated by a Data Access Component.

 Component coordinates all data manipulation.

 In case a storage offering replaced or the interface of a storage offering

change, the Data Access Component is the only component that has to be

adjusted, ensuring loose coupling between application and cloud offerings.

Related

Patterns

1. Communication container pattern.

2. Interface Container pattern.

3. Stateless pattern.

4. Stateful pattern

5. Storage pattern

3.7.4 Application scenarios container design pattern

 Scenarios derive the characteristics of architecture directly from the high-

level requirements of the business. They are used to help identify and understand

business needs, and thereby to derive the business requirements that architecture

development has to address. Scenario describes business process, application, or set

of applications that can be enabled by the architecture, and the people (called

“actors”) who execute the scenario (Desfray & Raymond 2014).

59

Table 3.6 Cloud Application scenarios container design

Category Fundamental Container design patterns for Cloud application architecture

Pattern Name 1. Application Scenarios container

Intent
Cloud application divides functionality requirements among multiple

application components , using multiple scenarios for certain use case.

Design

Problem

How can we design the application architecture to define an executable

release that can be migrated easily in multiple cloud platforms?

Design Solution
Define the application architecture design such that we allocate tightly

coupled functional scenarios to one container.

Related

Patterns

1. Distributed application patterns.

2. Layer-based.

Reference

Diagram

Figure 3.9: Scenario based for integrating specific container scenario into

application container

Figure 3.13. Scenario based for integrating specific container scenario into

application container.

cloud app devloper

60

3.7.5 Chain container design pattern

Table 3.7 Chain container.

Category Fundamental Container design patterns for Cloud app architecture

 Pattern Name 5. Chain Container

Intent Multiple scenarios containers, binding into a cloud application container design for

cloud deployment demand in a specific order.

Design

Problem

How Application container interacts with other containers and get deployed?

Design

Solution

The operational scheduling logic is pre-defined in a chain configuration that

enables containers to be bound with various scenarios supported, including the

option of having pushed for deployment and suspend dependently of a scenario.

Related

Patterns

1. Communication container pattern.

2. Interface Container pattern.

3. Scenario container

Reference

Diagram

Figure 3.14: Scenario based for integrating specific container scenario into

application container

Figure 3.14 Chain container to get deployed.

3.8 Proposed Method Evaluation

Proposed method evaluation based on the following approaches:-

1) Validate a methodology using scenario- based container design discussed in

chapter 4 and chapter 5 of case studies:-

 Migrating Students Academic Result Records Web base Service to the

cloud.

 Hajj and Umrah Mobile Healthcare System.

2) Verification deployment using a simulation tool, as in chapter 6 of case

study:-

 Migrating Online Pet Store Application to IaaS cloud.

61

3.9 Summery

In this chapter, we discussed the methodology adopted for this research. A

research methodology was proposed as an approach to achieve the research

objectives. The proposed research methodology is explained according to the

framework of portable cloud application architecture. The framework development

phases have been explained in detail. For architecture design phase, the development

process for the container design approach has been proposed for multiple scenario

development. In addition, new container design patterns have been proposed for

architecture development support. The next two chapters present the evaluation in

architectural design of case studies for portable cloud applications.

62

CHAPTER IV

PORTABLE ARCHITECTURE DESIGN OF MIGRATING STUDENT

ACADEMIC RESULT RECORDS TO THE CLOUD

4.1 Introduction

There is a little concern for portability to benefit migrating existing

applications to cloud. Migrating application, data or services require efforts pose

many challenges such as data handling, architecting of the web applications to move

among different cloud platforms (Murugesan & Bojanova 2016). Layer architecture

provides features for designing cloud applications; these features decompose the

application into logical layers that benefits, enhance reusability, improve portability,

scalability, and support application changes for migrating (Council 2016) and

deployment in the cloud environments, act as loosely coupling solution to a gain a

flexible portable architecture design.

Figure 4.1 Layer architecture for student Academic Results Record Web service.

Business layer

Presentation

Academic Web <Interface>

Student
Academic Results Tenants

Academic
Results

Service Queue

Data layer

Graduate
Certificate service

Amazon container-based for

portable cloud app arch

design

Azure

Scientific Affair
service

Student Academic
Records service

Academic

Results process
Academic Results

functions

Data Access Data
process

Load Balancer

63

 Presentation layer enables Academic officer and the system administrator to

add and update Academic Results; Students of college can view their academic

Result Records; Services layer to interact and select academic Examination Result

service; Business layer consists of implementing an application component. For

validation of methodological approaches, a case study had to be designed as

scenarios-based container for migrating to the cloud.

4.2 SAAR Architecture

 The case study is motivated by our experience of Students Academic Result

Records System (SARR) for academic college with two different branches, need to

migrate examination results into the cloud, because the application lack of resource

sharing, and time consuming for producing reports. First, we reengineer application

into a web-based, because web application use for developing, deploying, and

maintaining. In addition Web applications is simple to use, scalable to service

requests, and has built-in data store and a flexible interface (Soliman et al. 2013).

 Our architecture is based on Cloud computing that provides storage and

computing resources to to produce new Academic service for students. Our Web

application is categorized into two main parts: a front-end and a back-end. The front-

end serves as a Web interacting with students to review their academic results

records. The back-end serves as computing services for storage services for the

migrated data storing , based on public cloud deployment model.

Figure 4.2 Overview of the Student Academic Results Records Web based cloud

application.

64

 To better understand the needs of migration to cloud for the case study,

application architecture has been analyzed, defines detailed requirements mapped to

UML scenarios, described a high level includes actors, use cases and sequence

diagrams. Using UML notation as follows:-

(i) Use Case diagram: to describe the functional requirements of application

architecture.

(ii) Sequence diagram: address the dynamic behavior of a system. Used to

understand an interaction scenarios for the system.

Figure 4.3 Use case diagram for the Academic Result system service.

 The use case diagram illustrates the system objects, to determine the

scenarios of system. The system actors represent in:

1) Academic Officer: login the system, manage every branch students account,

create and update student result, search students' records, adds examination

results for students, entering student examination marks, and generate results

reports;

2) The administrator can view academic results, system maintenance,

aggregating different branches students result records, producing different

Results services in each college branch, and generate system reports; Students

login the system to query and view their academic result details.

 uc Main Use Case

Student Academic Result Records System

System

configuration

Administrator

Login

View Academic

Results

Generate

SystemReports

Student

Upload

Examination

Results

Academic Officer

Generate Result

Reports

All actors need to verify their password for login system

Update Academic

Officers

65

4.3 Multiple Scenarios-based Development

 To better understand, and develop the case study migrating Student academic

for examination results, the requirements for application described using UML

notation. The presented case study developed according to the proposed iterative

development process for multiple scenario steps as in Figure 3.7.

4.3.1 Scenario 1: Scenario-based on Student to view academic results

 In regard of the academic result service, we considered that the number of

students remains constant in order to view academic results from different branches.

The requests are submitted to a web server, and the web server interacts with a cloud

server that consists of Multitenancy shared database. Finally, students view the

generated academic result records.

Figure 4.4 Scenario-based for view student Academic Results Records use case.

 The diagram represents the dynamic view of the system architecture. In

addition, it presents the searching scenario for a specific student. Based on student-

ID, the query moves from the service web to cloud database.

[1]. Scenario1 development using cloud application patterns

Selected cloud patterns for application facilitate application developing, application

decomposes into isolated layers of components. Each layer consists of application

66

components providing certain function. Patterns selection based on pattern analysis

for cloud application requirements approach (Amar Ibrahim 2016).

Table 4.1 Summary for cloud application pattern selection.

Acquainta

nce
Retrieval

Solution

1 Fundamental

Architectures
Loose Coupling

Makes the system flexible to run different

components on different cloud.

2

Cloud

Application

Components

Stateful Component
A synchronized internal state; Replication

Internal state.

3
Stateless Component

Storage Offerings (external); Increase

Elasticity.

4
User Interface

Component

Reduce Dependencies; e.g. Elastic Load

Balancer: to spread traffic to web server

auto scaling group.

5
Processing Component

Processing functions to meet different

customers, Split into separate functional

blocks (stateless).

6

Data Access Component

Integrity of data and coordinates. Allow

multiple customers access the single

instance of the DB.

7

Transaction-based

Processor

Ensure messages receive are processed

successfully and altered data successfully

after processing. Deliver services to

enhance portability.

8

Multi-

Tenancy
Shared Component

To improve resource sharing and user’s

access to the system.

Deploying components on selected

clouds; Deploying solution mechanism

over clouds; Optimize requirements for

clouds.

9

Tenant-isolated

Component

Ensure isolation between branches by

controlling tenant access, processing

performance used, and separation of

stored data.

10
Dedicated Component

Provided exclusively for each tenant using

the application.

67

[2]. Scenario1 Container-based architecture design

Figure 4.5 An annotated proposed scenario-based container design for web-based

Student Results service on clouds.

 The figure above present scenario based architecture design diagram. The

diagram explains the use of container patterns with related cloud design patterns, for

specific student to searching academic result records. Based on student-ID, the query

moves from the web service to cloud database.

4.3.2 Scenario 2: Scenario-based on academic officer

 An academic officer manages every branch of students account, upload

exams results, updates and maintains student results. Also view student Academic

result details.

Figure 4.6 Scenario-based for uploading student Academic Results Records.

Scenario1-container design

Interface

container

communication

container

DB

container

UI pattern

Student

LB pattern
Student query

Data
access

Search record

Stateless DB1

Stateless DB2

Stateless DB3

Get student

Record

68

[1]. Scenario 2 Development using cloud application patterns

 Based on cloud patterns selection (Amar Ibrahim 2016) and application

component, each layer provides certain functions. Through user interface pattern:

login to specific college branch via web base service; then check the status of

academic officer requests, through elastic load balancer; The processing component

pattern used to perform specific academic Result tasks, such as result entry, modify,

upload exam data records, generate reports, query via the Service user interface.

[2]. Scenario2 Container-based architecture design

Figure 4.7 An annotated proposed container design for an Academic officer to

upload Student Examinations Results on a cloud.

For an academic officer to upload students' exam records, we use a Broker to access

different data sources (branch web server). Cloud's side based on stateful pattern: to

create an instance of exam results; Multitenancy patterns used for shared different

college branches database, that help in reducing complexity of separate web

application into self contained services to interact with instances directly using

queue pattern.

Scenario2-container

design

Interface

containe

r

communication

container

DB

container

UI pattern

A
c
a

d
e
m

ic o
ffice

r

LB pattern

Task query

Broker

specify Exam records

Stateless DB1

Stateless DB2

Stateless DB3

Instance

copied

Extract Exam

records
LB pattern

Officer login

uploading on

dedicate DB

Chain
container

69

4.3.3 Container-based architecture design for multiple integration scenarios

 Multiple scenarios of usage for a case study, integrate into a container for

designing portable cloud application architecture.

Figure 4.8 An annotated proposed container design for migrating Students

Examination Results on clouds.

 Figure 4.8, explain the coupling of multiple scenario dependencies'

architecture design for case study. The diagram is driven design that integrates the

scenarios-based development in a cloud application container design, to facilitate the

portable architectural container designed of case study for deploying on multiple

cloud platforms.

4.4 Summary

In this chapter, we presents Web-base service migrating Student Academic

Examination Results Records on clouds (SAAR) case study. Case study used to

validate our methodology for portability-based of cloud application architecture

design.

We applied our scenario- based development approach on a case study of a

web-based service for student academic result records service to validate our portable

architecture design. First step, we studied the legacy application to migrate students'

records in the cloud, because porting legacy applications, data or services, requiring a

App container Scenarios-

base design

Interface

container

communication

container

DB

container

UI pattern

M
u

lti u
ser

s LB pattern

Processes

Broker

multi login
Chain

container

Scenario1

container

Scenario2

container

Stateless cloud DB1

Stateless cloud DB2

Deployment Adapter
pattern

70

significant effort to be invested in putting into in the cloud environment. In the

second step, the system requirements described using UML diagrams.

According to the scenario-based development process, the case study is

evaluated through iterative development steps for multiple system scenarios using

cloud patterns. Multiple scenarios integrated into a container for designing portable

architecture. The portable architecture design solution act as pluggable design,

provides a flexible cloud application architecture that can be easily deployed to

specific cloud / multiple clouds. Moreover, easing the development process,

minimize migration efforts, and prevent lock-in within cloud application.

71

CHAPTER V

PORTABLE ARCHITECTURE DESIGN FOR HAJJ & UMRAH MOBILE

HEALTH CARE SYSTEM (HUMS)

5.1 Introduction

Information and Communication Technology (ICT) and Internet of Things

(IOT) technologies used to connect human life from different perspectives, such as

smart connectivity, smart home connectivity and smart cities, are forecasted to grow

at an astounding rate. In addition, these devices are expected to accelerate benefits

for major social and environmental needs such as improved healthcare using smart

mobile technology, that supports the backbone of enhancing quality of life (Kuo &

Hsu 2017) .

The Smart Mobile device requires a great deal of effort to benefit from

capabilities such as, Wi-Fi, cameras, storage, GPS and speed processors. As a result,

developers build more complex mobile applications (Elgendy et al. 2014). We

motivate to benefit from smart mobile capabilities (Ahmad et al. 2017) for patient

healthcare in large crowd events.

5.1.1 Electronic Health Records (EHRs)

Electronic Health Record (EHR) is defined as “a longitudinal electronic

record of patient health information generated by one or more encounters in any

care delivery setting". Included patient demographics, progress notes, problems,

medications, vital signs, past medical history, immunizations, laboratory data, and

radiology reports. Another definition “the set of components that forms the

mechanism by which EHRs are created, used, stored, and retrieved”, allow sharing

health information between different systems in different Care Delivery

Organizations (Youssef 2014). The key benefit, as shown in Figure 5.1, with the

access of medical information that will improve patient safety, enhanced accuracy

health Information, decrease cost and medical errors, more thorough documentation

and increased quality of care and better patient notification.

72

Figure 5.1 The importance of the electronic health record(EHR), with integrated

information from multiple resources (Amar & Hany 2017).

5.1.2 Mobile Technology

 Mobile Device is a generic term used to refer to a variety of devices that

allow people to access data and information from where ever they are (Kottari et al.

2013). Mobile phones present applications that have been developed to provide

various services and facilities to assist healthcare professionals such as: information

and time management; health record maintenance and access; patient management

and monitoring; clinical decision-making; and medical education and training. In

addition mobile technology provides a number of important benefits to healthcare

such as improve geographic coverage by providing patient care through information

exchange and better connect to healthcare professionals anywhere and anytime

(Ventola 2014), communication capabilities, information sharing facilitate faster

diagnoses and treatment and reducing paper consumption for both hospitals and

healthcare professionals.

Moreover, Smart Mobile technology enables users to access data and services for

patients in the health domain. Mobile Health is an emerging field of medical

technology, where mobile applications developed to provide many tasks and

functions on mobile devices, such as assist the public health activities. Mobile health,

defined as “mobile computing, medical sensor, and communication technologies for

healthcare,” refers as a new approach to health care based on mobile communication

devices such as cell phones and tablets to collect data which increases patients’

information, reduces medical centers efforts, and reduces costs (Duarte et al. 2015).

73

5.1.3 Mobile Cloud Healthcare

 Mobile Cloud Computing (MCC) define as an emergent mobile cloud

paradigm which leverage mobile computing, networking, and cloud computing to

study mobile service models, develop mobile cloud infrastructures, platforms, and

service applications for mobile clients (Huang 2011). Mobile Cloud Computing has

many advantages such as improving data storage capacity and processing power

(Lo’ai et al. 2016), improving reliability and availability, scaled to meet

unpredictable user demands, allows portable communication, and integrated different

services from different providers easily to meet the users' demands.

Figure 5.2. Mobile Cloud Computing Architecture (Lo’ai et al. 2016).

 The traditional healthcare method is being replaced by smarter healthcare

such as Mobile Healthcare (Lee et al. 2015). The combination of cloud computing

and mobile networks bring benefits for mobile users, network operators and cloud

providers.

The existing health information systems suffer from many challenges to developing

such as standards for information sharing, high cost of creating independent systems,

management problems, updating and maintenance issues (Setareh et al. 2014).

Solutions depend on the adoption of cloud computing technology in healthcare to

analyze and provide patients’ information from multiple EHR repositories

accurately, securely and fast, to exchange HER as shown in Figure 5.3.

74

Figure 5.3. Cloud Health Exchange (Amar & Hany 2017).

5.2 Hajj and Umrah Mobile Healthcare System (HUMS) Architecture

The role of Information and Communication Technology (ICT) for large

crowd events in smart cities will continue to grow with the growing service demands.

An important service is Healthcare’s use of smart mobile technologies for patients’.

One of the important event is Hajj and Umrah for Muslims.

Hajj is a hard journey and requires great effort. The Hajj is an Islamic event

once every year, while Umrah continues during a year. Muslims from all over the

world arrive to Kingdom of Saudi Arabia (KSA) for the purpose of Hajj or Umrah

or for seasonal work surrounding the holy cities and visiting the historical sites. The

Ministry of Health established hospitals, health centers and employ qualified medical

staff to provide all levels of healthcare to pilgrims such as emergencies for adults,

women and children. To obtain an entry visa for Hajj and Umrah, it is necessary to

get health requirements such as a vaccination certificate for Yellow fever,

Meningococcal meningitis, Poliomyelitis, Seasonal influenza and Zika virus disease

and Dengue (Al-Tawfiq & Memish 2014). In addition, health education is required to

protect pilgrims against infectious and communicable diseases, such as chronic

diseases, hygiene and general cleanliness, protection against food poisoning and heat

exhaustion, managing with the crowds.

75

The following present the requirements with the help of a UML notation, to describe

a high level system architecture includes main system stakeholders and use cases as

follow:-

Figure 5.4 HUMH system use case diagram.

The different use case for actors' interaction with Hajj and Umrah Healthcare System

(Amar & Hany 2017) are:-

 View patient profile: patient mange and edit his account login password,

initial information includes (trip visa information, hosting agency, location

address Hajji will be transported to, hosting agency and medical record

information).

 Mange Application: used to maintain the records and provide off premises

repository for health information.

 Support EHR Services: when a service used, the request firstly goes to a

service gateway to meet the requirements and then sends the result to the

user.

 Mange Patient Status: include all or part of retrieving medical history for

what a patient is suffering from, provide patient reports for diagnostic test

result and update patient statues, statues can be:-

 Diagnose the problem to give the patient the proper treatment.

 Approve: add or edit new patient status.

 Review: for current patient status.

Support EHR Services

 MangePatients Status

 Search Patient

 Update Patient Records

 Provide Patient Reports

 M.Staff M.Staff

 Operators Operators

 Mobile Cloud Health Stackeholders

 Retrieve Medical History

 Mange Application HUMH
 Patient Patient

View Patient Profile

operator

Medical Staff

76

5.3 Enterprise Architecture (EA) Development Approach

 Many enterprises have started to develop their architecture capabilities to

utilizing IT resources and deliver business values, based on EA to achieve the vision

and strategic goals by providing the enterprise views used to integrate technology

and business.

There exists a gap between smart mobile technology and development needs

for healthcare companies (Elgendy et al. 2014) that continue to possess increasing

levels of complexity.

Our goal is to develop an architectural container-based design facilitates the

process of getting healthcare services over cloud environment efficient and increase

electronic collection of health information.

5.3.1 Enterprise Architecture (EA) Definition

Enterprise Architecture is a practical management approach, which offers

improvement to an enterprise in many ways. An enterprise architecture is a

conceptual blueprint that defines the structure and operation of an organization,

determines how an organization can achieve effectively its current and future

objectives (Pescosolido et al. 2016).

Enterprise architecture as a planning tool that can be used to design the new

dimension of services which provides solutions to improve the productivity of

enterprises. Without an enterprise architecture, the result could be a source of

duplication, lack of integration, inefficient information exchange, or ineffective

technology support (Ahsan et al. 2010).

5.3.2 TOGAF Development Approach

The Open Group Architecture Framework (TOGAF), describes required

business and ICT architecture. In addition, Provides a step by step approach in

building and implementing EA (Yuliana & Rahardjo 2016); Focuses on the process

to develop and implement architectures.

TOGAF has long been recognized as a major reference in the field of

enterprise architecture. It meets a real need: the need for a common framework that

77

will facilitate the capitalization and mutualization of architectural practices

throughout a community (Desfray & Raymond 2014). More specifically,

 TOGAF is positioned as a generic method, which groups together a set of

techniques focusing on the transformation of enterprise architecture.

 TOGAF can be applied to all types of architecture, including architecture

based on enterprise resource planning systems.

 TOGAF provides a pragmatic view of enterprise architecture, while

highlighting the central role of the organization.

Figure 5.5 Enterprise Architecture development phases (Desfray & Raymond 2014).

 Architecture Development Method (ADM) is the main entry point to the

TOGAF. The aim of an ADM cycle is to successfully complete a transformation

project, whose aim is to enable the enterprise to respond to a set of business goals.

ADM presents the structure of the method with its phases and transitions (Desfray &

Raymond 2014). The phases define the high-level work stages, which consume and

provide products (deliverables). Each of the phases contributes to achieving

determined strategic objectives. The development phases are:-

1) Business Architecture phase

Based on the required processes to offer services for business applications,

describing application components and interaction, logical data entities and

relationships. Covers strategy, goals, business processes, functions, and

organization.

78

2) Application Architecture phase

Defines software components (applications and data) that support their

interactions of business capabilities and functions. For Data architecture,

dedicated to the organization and management of information.

3) Technology Architecture phase

Describes the techniques and components deployed, as well as networks and

the physical infrastructure upon which the applications and data sources run.

5.3.3 The ArchiMate Tool

 The ArchiMate is a visual modeling standard for enterprise and solution

architecture, published by The Open Group. An Open Group standard aligned with

the TOGAF framework for enterprise architecture. The ArchiMate modeling

language is dedicated to enterprise architecture modeling, provides a representation

for models to support the complete architecture development cycle. Added concepts

for modeling strategy, capability-based planning and related domains. Adapting

existing standards, both in order to benefit from tools and to address a wide

community of practitioners familiar with UML and BPMN (Desfray & Raymond

2014).

5.3.4 HUMS Architecture Design uses Enterprise Architecture Approach

 We are focusing on application architecture phase. For application

architecture phase, we are adapting TOGAF with architecture development method

(ADM) to propose a high level HUMS architecture design view. Details architecture

views of an ArchiMate model illustrated in Appendix B.

The development steps are:-

Step1: Mobile Application Architecture design

 Need to create architecture that, minimizes costs and maintenance,

requirements. Mobile application be structured as a multilayered application

consisting of presentation, business, and data layers. Each layer is separation of

concern with distinct features. Moreover, layer promotes usability , extendibility,

maintainability and portability for mobile application (Meier et al. 2008).

79

Figure 5.6 Layer Architecture for Mobile Application (Meier et al. 2008).

Step2: TOGAF Development

The TOGAF and Architecture Development Method (ADM) are used.

Figure 5.7 Enterprise Mobile healthcare application capabilities based design.

Based on the figure above, mobile healthcare application architecture consists of:-

 Application Capabilities: represent in:-

 Collection: by extending access to information and processes to mobile,

ensures that business continues to run efficiently.

80

 Preparation: prepares all data in the mobile featured service from an

enterprise geographical database (EHR).

 Diagnostic Analytics: provide accurate analytics on mobile health app

users, measure customer in app behavior events, can make data driven

decisions to increase connection and monetization for Health app.

 Visualization: to give the best and accurate data, analyze multiple

sources from anywhere with instance mobile and easily create

integration.

 Access: describes a general Mobile Access (MA) capabilities solution to

make work much easier, depending on implementing the solution to

protect across either an un-trusted network or a network of a different

classification level.

 Application Process: consist of:-

 Gather Data: Gather Patient Mobile Medical Record.

 Link Data: Link EHR.

 Health status: from the patient profile, determine health status scale,

such as high risk, low risk, etc.

 Prepare for Visualization: describe any effort to help people understand

the significance of data by placing it in a visual context.

 Data Objects: consist of the following:-

 Input data object: includes mobile health, activity, mobile medical record

and patient profile. For enterprise goals, patient profile is a demographic

data collected to build and generate a profile for the enterprise's patients

to be used for medical purposes by specialists.

 Data lake object: using cloud data storage, to store an amount of online

data, where data are remotely maintained, managed and backed up.

 Intermediate data set object: using patient identity for improving cloud

efficiency.

81

5.4 Scenario-based Container Architecture Design Approach

 We use our proposed method to evaluate a case study based on selecting

application scenario for development.

5.4.1 HUMS Architecture

 Hajj and Umrah Mobile Healthcare System (HUMS), provide services for

online access to health records for specific patients, maintains the medical history

records aim to assist medical staff to aid pilgrims by accessing their Electronic

Health Records and gather data for patient's to provide accurate and quality services

(Amar Ibrahim et al. 2017). Electronic Health Records are in the cloud database,

shared from multiple healthcare organizations, allow patient to view their health

record profile and for medical staff to view and mange patient healthcare status.

5.4.2 Independent Scenario-based Development

 In this thesis, the metric of selecting application scenario depend on a high

frequency of usage. The UML notation in Figure 5.8, for medical staff to retrieve

patient medical records.

Figure 5.8 Scenario-based for the retrieve medical history use case.

82

The scenario represents the management of access to electronic health record,

supports medical staff and professionals for better patient diagnosis, checking patient

history records, and collaborating with other enterprises such as the patient’s

physician offices, Emergency Medical Services (EMS) and the World Health

Organizations for data exchange over the cloud.

5.4.3 Scenario-based Development process

 Scenario-based development process, based on Figure 3.8 for independent

scenario-based container design is adopted. The steps as follows:-

Step 1: Select Architecture style:

Layer architecture is used as shown in Figure 5.6. And we used Hybrid cloud

platform as portability criteria for deploying our application.

Step 2: Independent Scenario Development

Applying cloud patterns for scenario, based on (Amar Ibrahim 2016) to select cloud

application patterns, that used with proposed container patterns for development.

Step 3: Container-based Architecture Design

Integrate step2 into a mobile cloud application container design.

Figure 5.9 Annotated scenario-based container Architecure Design, for searching,

retrieving / adding diagnose EHR.

MCC-container scenario

design

Interface

container

communication

container

DB

container

UI pattern

M
e
d

ica
l S

ta
ff M

o
b

A
p

p
 c

o
n

ta
in

e
r

LB

Check

patient

EHR

Stateful

EHR Data

services

Stateless DB1

Stateless DB2

Stateless DB3

Update patient record

Enterprises network
M. Queue

MCC login

Retrieve

from /Add

to medical

records

processing

83

 Based on the high frequency of usage, scenario-based for retrieving medical

history records has been selected. Medical staff for Hajj and Umrah push mobile

application over a public network, based on communication container services to

connect through a mobile network provider using interface container pattern as

gateway, based on the load balancer to sending requests. To retrieve patient health

information, we used database container for cloud data service providers, that store

instances of EHR for enterprise health organizations with stateful pattern support.

Then, based on authentication through data access for enterprise health network to

check stateless enterprise database for retrieving patient information record scenario,

in addition we also achieve patient records update by adding new diagnoses and

treatment. The architecture provides flexible services that improve the patient’s

quality of life.

5.5 A comparison of two development approaches with different Design

 An architecture design method provides support for a design process to meet

the development goal. The proposed method is compared with Enterprise

Architecture (EA) for development of portable cloud applications. We summarize the

comparison as follows:-

 EA is a business oriented approach provide views, from different

application's functionality to support business processes, while our

container is a scenario-based approach for architecture evaluation.

 Both EA and Container-based approaches use model driven design (MDD)

for a development based on capabilities.

 EA design is developed using TOGAF architecture, defined based on strategy

to represent deployment and allow application components to communicate

and exchange data, while our method based on iterative scenario generate

based on requirements influence by certain stakeholder, that improve the

interaction during system development process (Ionita et al. 2002).

 EA goals and capabilities take more time to facilitate architecture, while

scenario is driven architecture to specific services in less time.

 Container-based design evolve container patterns with cloud application

patterns techniques for development and deployment support, while EA

84

collaborate based on capability based planning for deployment target

architecture.

In our experience, scenario-based assessment is particularly useful for

development portable cloud application architecture design through develop

scenarios.

5.6 Summery

This chapter presents a detailed explanation of the scenario-based container

design that has been designed for Hajj and Umrah Mobile Healthcare System

(HUMS) case study. The main objective is to validate our methodology container-

based design for portable cloud application architecture.

Two papers have been published with support in the case study. The first one

presents a Requirements model for HUMS event case study. The objective of the

model is to improve health care procedures during Hajj and Umrah.

The second paper, used Enterprise Architecture to design standard

architecture views for mobile healthcare generic events and integrate ICT services

from different enterprises to retrieve health information, that improved accuracy and

help to make healthcare duties more efficiently.

To validate HUMS case study, the development process for independent

scenario-based container design approach has been designed for portable cloud

application architecture design. In addition, another development approach for the

case study has been designed, based on the TOGAF framework. The comparison for

two development approach has been presented.

85

CHAPTER VI

MIGRATING ONLINE PET STORE APPLICATION TO CLOUD

6.1 Introduction

In the previous two chapters, the architectural design of portable cloud

applications has been validated. This chapter elaborates the details of verifying

deployment options, for case study migrating (an Online Pet store application) to the

cloud. The systems were built on a cloud to benefit it's capabilities for enabling

scalability and cost effectiveness, for migration to IaaS and PaaS environments.

 There exist different cloud deployment options (CDOs) tools that can be used

to verify cloud deployment options (CDOs), but appropriate support for comparing

CDOs is missing. The CloudMIG simulation tool is used. CloudMIG from OMG’s

Architecture-Driven Modernization (ADM), that supports SaaS providers to migrate

existing enterprise software systems to IaaS and PaaS-based cloud environments.

The reason behind choosing a simulation tool, that it is much more powerful, clearer,

and occupies with multiple cloud applications.

6.2 CloudMIG Xpress

 CloudMIG Xpress is a Graphical User Interface (GUI) application that

provides tool support for cloud migration approach. CloudMIG aims at supporting

SaaS providers to semi-automatically migrate existing enterprise software systems

for scalability and resource efficient PaaS and IaaS-based applications. A focus lies

on the migration of client/ server enterprise systems as those often exhibits varying

user demand. CloudMIG Xpress is developed to support (future) cloud users during

the process of migrating software systems in a cloud environment and allows

conformance checks between deployments and cloud offerings (Bergmayr et al.

2014).

86

Figure 6.1 CloudMIG Xpress main screen.

The CloudMIG Xpress addresses those kinds of challenges and provides tool support

for the comparison and planning phases to migrate software systems to PaaS or IaaS-

based clouds.

6.2.1 CloudMIG Xpress Features

 Focuses on the technical challenges of a migration, also provide tool support

for cloud migration approach.

 Bases on the Eclipse client platform and can be used with several databases.

 Extract code models from Java-based software

 Model the current system deployment

 Create workload profiles from real monitoring data

 Simulate various cloud deployment options

 Graph-based visualization of detecting cloud environment constraints

(CECs).

 Compare the suitability of different cloud profiles (e.g., Costs and CECs).

 Estimate future costs, response times, and SLA violations

87

6.2.2 CloudMIG Xpress Activities

 CloudMIG is composed of six main activities for migrating an enterprise

system to a cloud environment. It provides model-driven generation of considerable

parts of the system’s target architecture (Frey & Hasselbring 2010b).

1) Extraction of a model which defines the architecture and an SMM model for

relevant metrics.

2) Selection of a cloud provider, which is defined according to a Cloud

Environment Metamodel.

3) Generation of the target architecture.

4) An Adaptation of the target architecture to accommodate user-specific

requirements.

5) Evaluation of the target architecture using CloudSIM.

6) The transformation of the legacy system to match the target architecture.

6.3 The Pet Store Web-based Application Service

 Pet Store is an open source web-based shop system for selling pets like birds

and fishes. It is mainly written in Java and JSP and comprises only 24 Java classes

and 1,432 lines of Java code. We selected pet store as a case study for evaluation.

6.3.1 Pet Store Overview:

Pet Store is an e-commerce application where customers can buy pet products in

various categories online. The application has a Web site through which it presents

an interface to customers.

The Pet Store is original Java based web application powered by Sun

MicroSystems, was built to provide a working model of various components

integrated together and also to demonstrate how different technologies could be used.

The Java Pet Store application demonstrates certain models and design patterns

(Nambiar 2005).

The Pet Store contains three sample applications:

 Java Pet Store: The main Blueprints application.

 Pet Store Administrator: The administrator module for the Java Pet Store.

 Blueprints Mailer: A mini-application that presents some of the Blueprints

design guidelines in a smaller package.

88

Figure 6.2 Home page for online Pet Store web application

The figure view how users interact with the application,

that allows customers to buy items online.

6.3.2 Requirement & Specifications

In the Pet Store other than the customer, there are other users. Each class of

users has access to specific categories of functionality, and interact with it using

specific user interface (Nambiar 2005). We describe the pet store architecture using

UML notation, as in Figure 6.3.

Figure 6.3 Use case diagram for Pet Store Application.

89

 Customer: A Customer will need some links on the page so as to get quick

access to all tasks. It also requires a catalog and a search mechanism to get an

organized view of items and providing a way to locate items. For the products

all the detail showing their price, availability, picture should be available. A

shopping cart to add and remove items, and a checkout bill showing the total

order cost and billing information.

 Administrator: requires all the features of a customer, modifying options for

the product and the inventory status, such as maintaining inventory is

committed to the database and performing other managerial tasks, and

associated businesses such as suppliers.

 Business: requirement and specifications are mostly related to security.

Hence user authentication is important so that a user is identified to access a

protected area. Some kind of user information, such as a credit card number,

must be transmitted confidentially to the application and some kind of user

administrations must be present for the growing number of users.

6.3.3 Use case for customer Interactions

A customer connects to the application's home page. The customer can browse

through the catalog to see a list of all the products or search for products, the

customer can sign into the application by providing an account identifier and a

password. When the customer signs in, the application can recall information about

the customer such as a preferred shipping address and billing information, buying

preferences, and so on.

The customer then selects a particular product in the list resulting in the detailed

information like image of the product along with pricing information of the product.

When the customer decides to purchase using the shopping cart to order the items in

the shopping cart at any time. When the customer confirms the order, the application

begins to gather shipping and billing information for the order. First, it presents a

form, where the customer can enter shipping information (Nambiar 2005). Finally

the customer confirms the order and the application accepts the order for delivery. A

receipt including a unique order number and other order details is presented to the

customer. The application validates credit card and other information, updates its

inventory database, and optionally sends a confirmation message via email.

90

Figure 6.4 Use Case between the Customer and the Web Site.

Table 6.1 Summary for customer actions and description.

 ACTOR ACTION DESCRIPTION
Customer Browse catalog Each category has several products associated

with it

Customer Browse Detail Each product variant has detailed view that

displays the product description, a product image,

price, and the quantity in stock.

Customer Browse Item Each Item is viewed.

Customer Browse Products If we now select a product the application will

display all variants of the product.

Customer Update Cart This allows the user to manipulate the shopping

cart (add, remove, and update line items).

Customer Update Personal Info This allows user to update his personal

information

Customer Update Account The checkout page displays the shopping cart.

Customer Submit Order The billing and the shipping addresses are

displayed.

Customer Purchase Order The final step wherein the order is committed to

the database.

6.3.4 Pet Store Architectural Design

 The Pet Store application is based on the Model View Controller pattern,

separates data presentation, data representation, and application behavior. The

architecture consists of three components: the model, the view and the controller.

91

The model encapsulates the core data and business functionality of the application.

The view encapsulates the task of displaying the information to the user i.e. data

presentation. Each view has an associated controller, which encapsulates the

interaction of the user with the system, and abstracts the system behavior by sending

service requests to the model for some operation on the data. By separating business

and control logic from data presentation, the architecture provides the flexibility to

handle such application complexity. The architecture provides flexibility, reusability,

testability, extensibility, and clear design roles for application components (Nambiar

2005).

Figure 6.5 Sequence diagram for Pet store using MVC model, adpated from

(Nambiar 2005).

6.4 Verification Method for migrating Pet Store to the cloud

The objective of this section, to answer the third research question, using and

explores the CloudMIG Xpress simulation tool to verify cloud application portability

on multiclouds. As mentioned in chapter III, a framework for cloud application

development. For deployment phase the developed Architecture design needs to

verify various deployment options to achieve portability on multiple cloud platforms.

In the following subsections, we will discuss the case study verification

through the stage’s steps, using various approaches for simulation to estimated

attributes for deployment as follows:-

92

6.4.1 Select cloud Candidates

 Portability achieved by selecting a cloud profiles for Public cloud

environments Google App for Java, Microsoft Windows Azure's virtual machine,

and Eucalyptus cloud.

Figure 6.6 The selection of Candidate cloud environments.

Cloud profiles selection, used to evaluate the possibilities of a migration to a specific

provider or many providers.

6.4.2 Create Utilization Model (workload profile)

 Workload profiles specify a particular user demand. There are two

approaches, workload synthetic and from monitoring data. We used the first

approach. We used, workloads from synthetic Data approach to be correlated with

the computational capacity of the machine that was used to run the software.

93

Figure 6.7 Workload profile using synthetic approach.

 Model period: time period spanning the modeled time framework and a unit of

time.

 Method workload characteristic (MWC) : describes the characteristic values for

modeling a user demand for one or more procedures, functions, or methods.

 Arrival Rate (AR) function: to specify the workload, get assigned to one or more

methods and take a time designation as their argument. AR function has Custom

and Predefined method.

6.4.3 Create Cloud Deployment Option (CDO)

 Cloud deployment options (CDOs), comprises a combination of a specific

cloud environment, deployment architecture, and runtime reconfiguration rules for

dynamic resource scaling (Frey et al. 2013).

Methods to create CDOs are either manual or automatic that are comprised of the

code elements of virtual machines included in that cloud environment, and

reconfiguration rules that allow to specify starting and stopping criteria for virtual

machines.

94

Figure 6.8 Automatic Optimized method used to create CDOs.

Our created workload profile (Pet Store (synthetic)) is used as an input to evaluate a

CDO with selected mode configuration. CDO determines which cloud environment,

cloud resource types, deployment architecture, and runtime reconfiguration rules for

exploiting the cloud’s elasticity should be used

6.4.4 CDO Simulation

 The optimization process using Cloud Deployment Option Simulator

(CDOSim), and method (Optimized) to evaluate CDOs, and computes potential

costs, response times, and number of SLA violations. Automatic Optimized creating

CDOs for IaaS-based cloud profiles that are selected as the input for the simulator.

Figure 6.9 Different optimization process parameters simulated for case study data

using many (cloud environment) candidates.

95

6.5 Results Discussion

This section shows the results of the experiments which were carried out

based on CloudMIG Xpress methods that directly reflect the verification of cloud

deployment options (CDO). The simulation verifying of a case study against

different deployment locations and different attributes scale (Cost, Medium response

time, and SLA violation). Based on the results, the evaluation criteria Medium

Response Time (MRT) was used. Furthermore, the detailed analysis of results is also

provided, as presented in Table 6.2.

Table 6.2 Median Response Time (MRT) Simulation Results for Pet Store data.

Simulation Result

Cloud

Candidates

MRT

(Ms)

Better than

all

1

2 1758.89ms 48%

2

3 1758.89ms 64.8%

3

4 1753.46ms 48.1%

4

5 1753.46ms 0.3%

5

6
1753.46ms

48.1%

96

The results of the experiment verification are shown in Table 6.2 with

different simulation for response time of the case study, and illustrates the using

many cloud candidates. Even though these factors depend on network locality and

traffic congestion, the main purpose is to show the difference in response time

depending on different conditions. For our case response time includes the send a

request from a client, the time to redirect the request by a load balancer (if there are

several role instances), the time to process it by the application, and to get a response

back from the server. Method cope with all types of cloud environments for

deployment.

6.6 Summery

This chapter has presented the evaluation for case study migrating Online Pet

Store application on the cloud using a simulation tool for verifying deployment

options. Requirements and architectural design for case study have been introduced,

to give a detailed understanding of the cloud application migration.

The CloudMIG Xpress tool has been implemented to verify and support

migrating a case study to the cloud, because there is a lack of tool support to

automate migration tasks. Cloud application portability achieved by selecting

multiple candidate PaaS profiles, each profile includes the corresponding cloud

resources, pricing model, and CEC definitions.

 The CloudMIG tool has been simulated for cloud deployment options. The

verification results show different deployment option parameters, we focus on

identifying median response time (MRT), which compared with multiple candidate

cloud profiles.

. There are some drawbacks for the CloudMIG Xpress simulation tool, that

the current version not composed of multiple languages for systems integration. In

addition, Workload profile for monitoring not support interleaved data from several

nodes. Since the tool is available, but its source code has not been published.

Moreover, tool lack of consideration for cloud database migration.

Overall, the CloudMig simulation tool is satisfactory and encouraging,

moreover, provide important insights into future work to support different

programming language to handle the migration of all types of application.

97

CONCLUSION AND FUTURE WORK

One of the important issues that need to be widely adopted against cloud

computing is a portability affect the cloud applications. Cloud application portability

is classified into two parts of vertical PaaS portability and horizontal PaaS

portability, our concern is to architecting and developing cloud applications to be

ported to Multiclouds platform.

An effective development framework for portable cloud applications has been

proposed, and applied for this purpose. The proposed framework for cloud

application architecture has been developed, composed of four phases: strategic

planning, architecture design, deployment, and evaluation. To come up with this, a

comparative survey involving several studied for cloud application architecture

development has been conducted.

The research began with the review of the concepts of cloud computing,

portability, and related works on cloud application portability. The architecture

design phase chosen as a research area, to develop portable cloud application

architecture design that can be used to achieve application portability on multiple

cloud platforms.

To achieve the objective, scenarios-based container design methodology and

new container pattern are performed.

In this research, efforts at designing portable cloud application architecture

include: propose development process to guide in designing containerized portable

cloud applications, propose and uses new container design patterns, and present

scenarios-based container approach, that group application behavior to several

application scenarios in a container to describe architecture design.

Accordingly, the evaluation of the proposed framework has been achieved

through validate two case studies uses scenario-based. The first case study on a web-

based for migrating Student Academic Records to the cloud has been developed,

using multiple scenario development process, while the other case study Hajj and

Umrah Mobile Healthcare System (HUMS) has been developed based on

98

independent scenario development process. The proposed container patterns and

cloud application design patterns applied to support the development of portable

cloud application architecture design. In addition, the second case study HUMS, has

been developed using Enterprise Architecture , based on TOGAF approach.

 Assessing the deployment of the proposed framework for cloud application

portability has been verified. The verification of deployment has been approved for

case study migrating Online Pet Store application on the cloud using the CloudMIG

Xpress simulation tool, results verification for a Median Response Time (MRT) has

been achieved.

Future Work

This section presents some recommendations for future work. While many

issues related to this area of research remain to be explored, moreover, this thesis

could be extended in several directions. These issues and directions can be addressed

as follows:

 Develop Automate migration containers for applications to migrate from

cloud to cloud as needed to support the application’s requirements.

 Focus on maintainability during application development to facilitate easier

portability between different architectural platforms (DevOps).

 The developmental design process used various methods and techniques,

need more attention to be standard for easily developing.

 Enterprise Architecture (EA) development approach can be used in a wide

range of health area, such as remote patient monitoring. We are planning to

propose an adaptive model to adopt variations of different events.

 In case study student academic result records, college need to benefit from

integrated student academic results, by reuse the existing application

component to develop new services, that can assist academic officer to gain

online student's transcript, and certificate services from the system. Need for

adopting Software Product Line (SPL) Development.

99

REFERENCES

Adewojo, A.A. et al., 2015. Cloud deployment patterns: Migrating a database driven

application to the cloud using design patterns. In Proceedings of the World

Congress on Engineering and Computer Science.

Ahmad, A., Altamimi, A.B. & Alreshidi, A., 2017. TOWARDS ESTABLISHING

ACatalogue OF PATTERNS FOR ARCHITECTING MOBILE CLOUD

SOFTWARE. Computer Science & Information Technology, p.19.

Ahsan, K., Shah, H. & Kingston, P., 2010. Healthcare modelling through enterprise

architecture: a hospital case. In Information Technology: New Generations

(ITNG), 2010 Seventh International Conference on. IEEE, pp. 460–465.

Al-Tawfiq, J.A. & Memish, Z.A., 2014. Mass gathering medicine: 2014 Hajj and

Umra preparation as a leading example. International Journal of Infectious

Diseases, 27, pp.26–31.

Anderson, J.Q. & Rainie, H., 2010. The future of cloud computing, Pew Internet &

American Life Project Washington, DC.

Antoniades, D. et al., 2015. Enabling Cloud Application Portability. In Utility and

Cloud Computing (UCC), 2015 IEEE/ACM 8th International Conference on.

IEEE, pp. 354–360.

Ardagna, D., 2015. Cloud and multi-cloud computing: current challenges and future

applications. In Principles of Engineering Service-Oriented and Cloud Systems

(PESOS), 2015 IEEE/ACM 7th International Workshop on. IEEE, pp. 1–2.

Ardagna, D. et al., 2012. Modaclouds: A model-driven approach for the design and

execution of applications on multiple clouds. In Proceedings of the 4th

International Workshop on Modeling in Software Engineering. IEEE Press, pp.

50–56.

Bass, L., Clements, P. & Kazman, R., 2003. Software architecture in practice,

Addison-Wesley Professional.

Bergmayr, A. et al., 2014. Cloud Modeling Languages by Example. 2014 IEEE 7th

International Conference on Service-Oriented Computing and Applications,

pp.137–146. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6978602

[Accessed May 26, 2015].

Brandle, C. et al., 2014. Cloud computing patterns of expertise, IBM Redbooks.

Bruneliere, H., Cabot, J. & Jouault, F., 2010. Combining model-driven engineering

and cloud computing. In Modeling, Design, and Analysis for the Service Cloud-

MDA4ServiceCloud’10: Workshop’s 4th edition (co-located with the 6th

European Conference on Modelling Foundations and Applications-ECMFA

2010).

Burns, B. & Oppenheimer, D., 2016. Design Patterns for Container-based

Distributed Systems. In HotCloud.

Cheng, F.-C. & Lai, W.-H., 2012. The impact of cloud computing technology on

legal infrastructure within internet—focusing on the protection of information

privacy. Procedia Engineering, 29, pp.241–251.

Council, C.S.C., 2014. Interoperability and portability for cloud computing: a guide.

Council, C.S.C., 2016. Migrating applications to public cloud services: roadmap for

success.

100

Cretella, G. & Di Martino, B., 2012. Towards automatic analysis of cloud vendors

APIs for supporting cloud application portability. In Complex, intelligent and

software intensive systems (CISIS), 2012 sixth international conference on.

IEEE, pp. 61–67.

Desfray, P. & Raymond, G., 2014. Modeling enterprise architecture with TOGAF: A

practical guide using UML and BPMN, Morgan Kaufmann.

Dimitrov, D., 2015. Towards cloud application architectural patterns: transfer,

evolution, innovation and oblivion.

Dua, R., Raja, A.R. & Kakadia, D., 2014. Virtualization vs containerization to

support paas. In Cloud Engineering (IC2E), 2014 IEEE International

Conference on. IEEE, pp. 610–614.

Duarte, J.M.G., Cerqueira, E. & Villas, L.A., 2015. Indoor patient monitoring

through Wi-Fi and mobile computing. In New Technologies, Mobility and

Security (NTMS), 2015 7th International Conference on. IEEE, pp. 1–5.

Eldein, A.I.E.S., Ammar, H.H. & Dzielski, D.G., 2018. Enterprise architecture of

mobile healthcare for large crowd events. 2017 6th International Conference on

Information and Communication Technology and Accessbility, ICTA 2017,

2017–Decem, pp.1–6.

Elgendy, M.A., Shawish, A. & Moussa, M.I., 2014. MCACC: New approach for

augmenting the computing capabilities of mobile devices with Cloud

Computing. In Science and Information Conference (SAI), 2014. IEEE, pp. 79–

86.

Erl, T., Cope, R. & Naserpour, A., 2015. Cloud computing design patterns, Prentice

Hall New York, NY.

Fehling, C. et al., 2011. An architectural pattern language of cloud-based

applications. In Proceedings of the 18th Conference on Pattern Languages of

Programs. ACM, p. 2.

Fehling, C. et al., 2014. Cloud computing patterns: fundamentals to design, build,

and manage cloud applications, Springer.

Fehling, C. et al., 2012. Pattern-based development and management of cloud

applications. Future Internet, 4(1), pp.110–141.

Ferry, N. et al., 2013. Towards model-driven provisioning, deployment, monitoring,

and adaptation of multi-cloud systems. In Cloud Computing (CLOUD), 2013

IEEE Sixth International Conference on. IEEE, pp. 887–894.

Frey, S., Fittkau, F. & Hasselbring, W., 2013. Search-based genetic optimization for

deployment and reconfiguration of software in the cloud. In Software

Engineering (ICSE), 2013 35th International Conference on. IEEE, pp. 512–

521.

Frey, S. & Hasselbring, W., 2010a. Model-Based Migration of Legacy Software

Systems into the Cloud: The CloudMIG Approach.

Frey, S. & Hasselbring, W., 2010b. Model-based migration of legacy software

systems to scalable and resource-efficient cloud-based applications: The

cloudmig approach.

Gavras, A. et al., 2004. Towards an MDA-based development methodology. In

European Workshop on Software Architecture. Springer, pp. 230–240.

Ghanam, Y., Ferreira, J. & Maurer, F., 2012. Emerging issues & challenges in cloud

computing—a hybrid approach. Journal of software engineering and

applications, 5(11), p.923.

Gitzel, R., Korthaus, A. & Schader, M., 2007. Using established Web Engineering

knowledge in model-driven approaches. Science of Computer Programming,

101

66(2), pp.105–124.

Gohad, A., Ponnalagu, K. & Narendra, N.C., 2012. Model driven provisioning in

multi-tenant clouds. In SRII Global Conference (SRII), 2012 Annual. IEEE, pp.

11–20.

Gonidis, F., Paraskakis, I. & Kourtesis, D., 2012. Addressing the challenge of

application portability in cloud platforms. In 7th South-East European Doctoral

Student Conference. pp. 565–576.

Gorton, I., 2006. Essential software architecture, Springer Science & Business

Media.

Goyal, S., 2014. Public vs private vs hybrid vs community-cloud computing: a

critical review. International Journal of Computer Network and Information

Security, 6(3), p.20.

Graaf, B., 2007. Model-driven evolution of software architectures, IEEE.

Grundy, J., 2012. Software Engineering for the Cloud. In IEEE Sof. IEEE, pp. 26–30.

Haitzer, T. & Zdun, U., 2014. Semi-automated architectural abstraction

specifications for supporting software evolution. Science of Computer

Programming, 90, pp.135–160.

Hamdaqa, M., Livogiannis, T. & Tahvildari, L., 2011. A Reference Model for

Developing Cloud Applications. In CLOSER. pp. 98–103.

Hill, Z. & Humphrey, M., 2010. CSAL: A cloud storage abstraction layer to enable

portable cloud applications. In Cloud Computing Technology and Science

(CloudCom), 2010 IEEE Second International Conference on. IEEE, pp. 504–

511.

Hogan, M. et al., 2011. Nist cloud computing standards roadmap. NIST Special

Publication, 35, pp.6–11.

Huang, D., 2011. Mobile cloud computing. IEEE COMSOC Multimedia

Communications Technical Committee (MMTC) E-Letter, 6(10), pp.27–31.

Hutchinson, J.E., 2011. An empirical assessment of model driven development in

industry.

Ibrahim, A. & Eldein, E.S., 2016. Pattern Oriented Analysis for Web Based

Applications on Cloud. , 9(1), pp.1–12.

Ibrahim, A., Eldein, E.S. & Ammar, H.H., 2017. Requirements Model For Hajj and

Umrah Mobile Healthcare System (HUMHS). , 5(1), pp.53–62.

Ibrahim, A. & Hany, A., 2015. Model-Driven Architecture for Cloud Applications

Development , A survey. , 4(9), pp.698–705.

Ionita, M.T., Hammer, D.K. & Obbink, H., 2002. Scenario-based software

architecture evaluation methods: An overview. In Workshop on methods and

techniques for software architecture review and assessment at the international

conference on software engineering. pp. 19–24.

Jain, R. et al., 2018. Container provisioning based on communications patterns

between software components.

Jamshidi, P., Pahl, C. & Chinenyeze, S., 2015. Service-Oriented Computing - ICSOC

2014 Workshops. , 8954, pp.6–19. Available at:

http://link.springer.com/10.1007/978-3-319-22885-3.

Jiang, S. & Mu, H., 2011. Design patterns in object oriented analysis and design. In

Software Engineering and Service Science (ICSESS), 2011 IEEE 2nd

International Conference on. IEEE, pp. 326–329.

Kang, H., Le, M. & Tao, S., 2016. Container and microservice driven design for

cloud infrastructure devops. In Cloud Engineering (IC2E), 2016 IEEE

International Conference on. IEEE, pp. 202–211.

102

Karakostas, B., 2008. Engineering Service Oriented Systems: A Model Driven

Approach: A Model Driven Approach, IGI Global.

Kleppe, A.G. et al., 2003. MDA explained: the model driven architecture: practice

and promise, Addison-Wesley Professional.

Kolb, S. & Wirtz, G., 2017. Data Governance and Semantic Recommendation

Algorithms for Cloud Platform Selection. In Cloud Computing (CLOUD), 2017

IEEE 10th International Conference on. IEEE, pp. 664–671.

Kottari, V. et al., 2013. A survey on mobile cloud computing: Concept, applications

and challenges. International Journal of Advances and Innovative Research,

2(3), pp.487–492.

Kozhirbayev, Z. & Sinnott, R.O., 2017. A performance comparison of container-

based technologies for the cloud. Future Generation Computer Systems, 68,

pp.175–182.

Kuo, Y.-H. & Hsu, W.H., 2017. De-hashing: server-side context-aware feature

reconstruction for mobile visual search. IEEE Trans. Circuits Syst. Video Techn,

27(1), pp.139–148.

Kuyoro, S.O., Ibikunle, F. & Awodele, O., 2011. Cloud computing security issues

and challenges. International Journal of Computer Networks (IJCN), 3(5),

pp.247–255.

Lee, Y.S. et al., 2015. Hybrid cloud service based healthcare solutions. In Advanced

Information Networking and Applications Workshops (WAINA), 2015 IEEE

29th International Conference on. IEEE, pp. 25–30.

Lin, J., Lin, L.C. & Huang, S., 2016. Migrating web applications to clouds with

cloud-based MVC framework. In Computer, Consumer and Control (IS3C),

2016 International Symposium on. IEEE, pp. 1039–1042.

Lin, Y. & Chang, P., 2012. Evaluation of system reliability for a cloud computing

system with imperfect nodes. Systems Engineering, 15(1), pp.83–94.

Linthicum, D.S., 2016. Moving to autonomous and self-migrating containers for

cloud applications. IEEE Cloud Computing, 3(6), pp.6–9.

Liu, F. et al., 2011. NIST cloud computing reference architecture. NIST special

publication, 500(2011), pp.1–28.

Lo’ai, A.T. et al., 2016. Mobile cloud computing model and big data analysis for

healthcare applications. IEEE Access, 4, pp.6171–6180.

Di Martino, B., Cretella, G. & Esposito, A., 2015. Cloud Portability and

Interoperability: Issues and Current Trends, Springer.

Di Martino, B., Esposito, A. & Cretella, G., 2015. Semantic representation of cloud

patterns and services with automated reasoning to support cloud application

portability. IEEE Transactions on Cloud Computing.

McNatt, W.B. & Bieman, J.M., 2001. Coupling of design patterns: Common

practices and their benefits. In Computer Software and Applications

Conference, 2001. COMPSAC 2001. 25th Annual International. IEEE, pp. 574–

579.

Meier, J.D. et al., 2008. Mobile application architecture guide. Pattern & Practices,

Microsoft.

Mell, P. & Grance, T., 2011. The NIST definition of cloud computing.

Mens, T. & Van Gorp, P., 2006. A taxonomy of model transformation. Electronic

Notes in Theoretical Computer Science, 152, pp.125–142.

Moscato, F., Di Martino, B. & Aversa, R., 2012. Enabling model driven engineering

of cloud services by using mosaic ontology. Scalable Computing: Practice and

Experience, 13(1), pp.29–44.

103

Murugesan, S. & Bojanova, I., 2016. Encyclopedia of Cloud Computing, John Wiley

& Sons.

Nambiar, R., 2005. Java PetStore: A Case Study.

Naumann, S. et al., 2015. Sustainable software engineering: Process and quality

models, life cycle, and social aspects. In ICT Innovations for Sustainability.

Springer, pp. 191–205.

Opara-Martins, J., 2017. A decision framework to mitigate vendor lock-in risks in

cloud (SaaS category) migration.

Opara-Martins, J., Sahandi, R. & Tian, F., 2014. Critical review of vendor lock-in

and its impact on adoption of cloud computing. In International Conference on

Information Society (i-Society 2014). IEEE, pp. 92–97.

Pahl, C. et al., 2017. Cloud container technologies: a state-of-the-art review. IEEE

Transactions on Cloud Computing.

Pahl, C., 2015. Containerization and the paas cloud. IEEE Cloud Computing, 2(3),

pp.24–31.

Pahl, C. & Lee, B., 2015. Containers and clusters for edge cloud architectures--A

technology review. In Future Internet of Things and Cloud (FiCloud), 2015 3rd

International Conference on. IEEE, pp. 379–386.

Pescosolido, L. et al., 2016. An IoT-inspired cloud-based web service architecture

for e-health applications. In Smart Cities Conference (ISC2), 2016 IEEE

International. IEEE, pp. 1–4.

Petcu, D. & Vasilakos, A. V, 2014. Portability in clouds: approaches and research

opportunities. Scalable Computing: Practice and Experience, 15(3), pp.251–

270.

Pilar, M., Simmonds, J. & Astudillo, H., 2014. Semi-automated tool recommender

for software development processes. Electronic Notes in Theoretical Computer

Science, 302, pp.95–109.

Pinelle, D. & Gutwin, C., 2005. A groupware design framework for loosely coupled

workgroups. In ECSCW 2005. Springer, pp. 65–82.

Rezaei, R. et al., 2014. A semantic interoperability framework for software as a

service systems in cloud computing environments. Expert Systems with

Applications, 41(13), pp.5751–5770.

Setareh, S. et al., 2014. A cloud-based model for hospital information systems

integration. In Telecommunications (IST), 2014 7th International Symposium

on. IEEE, pp. 695–700.

Sharma, A., Kumar, M. & Agarwal, S., 2015. A Complete Survey on Software

Architectural Styles and Patterns. Procedia Computer Science, 70, pp.16–28.

Sharma, R. & Sood, M., 2011. Enhancing cloud SaaS development with model

driven architecture. International Journal on Cloud Computing: Services and

Architecture (IJCCSA), 1(3), pp.89–102.

Shawish, A. & Salama, M., 2014. Cloud computing: paradigms and technologies. In

Inter-cooperative collective intelligence: Techniques and applications.

Springer, pp. 39–67.

Shin, M.E. & Gomaa, H., 2007. Software requirements and architecture modeling for

evolving non-secure applications into secure applications. Science of Computer

Programming, 66(1), pp.60–70.

Soliman, M. et al., 2013. Smart home: Integrating internet of things with web

services and cloud computing. In 2013 IEEE 5th international conference on

cloud computing technology and science. IEEE, pp. 317–320.

Troya Castilla, J. et al., 2015. ARTIST: model-based stairway to the cloud. PS-STAF

104

2015: Projects Showcase, part of the Software Technologies: Applications and

Foundations 2015 (2015), p 1-8, pp.1–8.

Tsai, W.-T., Sun, X. & Balasooriya, J., 2010. Service-oriented cloud computing

architecture. In Information Technology: New Generations (ITNG), 2010

Seventh International Conference on. IEEE, pp. 684–689.

Ventola, C.L., 2014. Mobile devices and apps for health care professionals: uses and

benefits. Pharmacy and Therapeutics, 39(5), p.356.

Witt, B.I., Baker, F.T. & Merritt, E.W., 1993. Software architecture and design:

principles, models, and methods, John Wiley & Sons, Inc.

Wojcik, R. et al., 2006. Attribute-driven design (ADD), version 2.0, CARNEGIE-

MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST.

Yacoub, S.M. & Ammar, H.H., 2001. UML support for designing software systems

as a composition of design patterns. In International Conference on the Unified

Modeling Language. Springer, pp. 149–165.

Youssef, A.E., 2014. A framework for secure healthcare systems based on big data

analytics in mobile cloud computing environments. Int J Ambient Syst Appl,

2(2), pp.1–11.

Yuliana, R. & Rahardjo, B., 2016. Designing an agile enterprise architecture for

mining company by using TOGAF framework. In Cyber and IT Service

Management, International Conference on. IEEE, pp. 1–6.

Zhang, L.-J. & Zhang, J., 2009. Architecture-driven variation analysis for designing

cloud applications. In Cloud Computing, 2009. CLOUD’09. IEEE International

Conference on. IEEE, pp. 125–134.

Zhang, Q., Cheng, L. & Boutaba, R., 2010. Cloud computing: state-of-the-art and

research challenges. Journal of internet services and applications, 1(1), pp.7–

18.

Zhao, L. et al., 2012. An architecture framework for application-managed scaling of

cloud-hosted relational databases. In Proceedings of the WICSA/ECSA 2012

Companion Volume. ACM, pp. 21–28.

105

APPENDICES

APPENDIX A

Reengineer Student Academic Results System for Web-based Cloud

Application Service

 Legacy application face many challenges to be used and benefit from recent

technology such as cloud technology. In chapter 3, Student academic result record

case study is a desktop application need to benefit from cloud for application data to

provide as a service benefit main college with two branches students to log in and

querying their academic records.

 For the realization of this proof of concept a specific multi-tier application

service analyzed using UML for modeling requirements to understand the

application architecture for evaluation methodology; Assistant migration tools for

extracting and migrate application data with PHP- MySql Database have been used,

and the Graphic user interface (GUI) had been designed using Artisteer and Dream

weaver web Design tools. The GUIs are explained as follows:

Explains the license plate detection an extraction stage, and present the experiments

results and discussion about these results.

 Collecting a data set for (126) students, from the legacy application. The data

set can be used in the field of Migration legacy application to a PHP MySql database.

106

A.1 Data mapping for student result records

Figure A.1: Extracting Data from legacy system.

A.2 A.4 License Plate Characters Segmentation

Figure A.2: Data Filtering.

107

A.3 The assistant migration tool

Figure A.3: Converted data mapping using the assistant migration tool.

A.4 Uploading Data

Figure A.4: Uploading data

108

A.5 Upload Data

Figure A.5: Data has been uploaded successfully.

A.6 Target database

Figure A.6: Display loaded in MySql database (target).

109

A.7 Main Interface

Figure A.7: Main GUI for Student Academic Result Records Web Portal.

A.8 Multi Users Interface

Figure A.8: Users login enable cloud web portal user to access functionality into

custom Web sites.

110

A.9 Student Academic Examination Results Service view

Figure A.9: Secure student login to view the selected semester exams record.

A.10 Student Academic Examination Results Service view

Figure A.10: Secure student login to view all semester records results.

111

APPENDIX B

A view's model for developing Hajj and Umrah Mobile Healthcare System

Enterprise Architecture is adopted for healthcare solutions to influence and

guide changes in business procedure and information technology. Business models

are used to represent the organization structure and services, business rules and

processes.

The Overall objective is to: Present views of an ArchiMate model for

developing Mobile healthcare for large crowd Events System (MHES) for case study

Hajj and Umrah Mobile Healthcare System, using the TOGAF framework scenario

to describe Enterprise Architecture. Secondary goals, find a suitable Architecture to

help Healthcare services adjust to the Cloud environment; Describe scenario and its

applicability in the new business environment; Facilitate communication between

healthcare providers.

B.1 Enterprise Architecture development phases

Figure B.1: Secure student login to view all semester records results (Eldein et al.

2018).

 1: Identify Problem and Motivation

Analysis solution for Mobile Health events

 2: Define Objectives

Design Enterprise Architecture Framework

 3: Design and Development

Mobile Design Patterns

 4: Software & Hardware

Deployment on Cloud Environment

 5: Implementation & Migration

Evaluate solution & Migration plan

Strategy &

Motivation

Business

Architecture

Application

Architecture

Technology

Architecture

Demonstration

112

Enterprise Architecture development phases are represented as follows:-

B.2 Strategy and Motivation Phase

Figure B.2:Capture business requirements and a set of capabilities

To support and use of mobile solutions.

B.3 Strategy and Motivation Phase

Figure B.3: Strategy analysis goals for healthcare Events

113

B.4 Phase 2: Business Architecture Stakeholders

Figure B.4: Hajj and Umrah Mobile Healthcare analysis roles.

B.5 Phase 2: Business Architecture Services Integration

Figure B.5: Hajj and Umrah Healthcare Services.

114

B.6 Phase 2: Business Architecture Capabilities and Resources

Figure B.6: Hajj and Umrah Mobile Health management capabilities.

B.7 Phase 3: Application Architecture

Figure B.7: Mobile Application design and development process.

115

APPENDIX C

CDO Verification uses CloudMiG Xpress for migrating

Online Pet Store Application to the cloud

CloudMIG Xpress provides tool support for the comparison and planning

phases to migrate software systems to PaaS or IaaS-based clouds. It originates from

an academic prototype and is built to support research in cloud migration, aims at

supporting SaaS providers to semi-automatically migrate existing enterprise software

systems for scalability and resource efficient PaaS and IaaS-based applications.

The deployment options steps for migrating on multiple clouds are explained

as follows:

C.1 Main Interface

Figure C.1: CloudMIG Xpress Main GUI.

116

C.2 Source code Extraction

Figure C.2: Extract Knowledge Discovery Meta model (KDM) from source code.

C.3 Deployment model creation

Figure C.3: Deploy Extracted model to server machine.

117

C.4 Create Utalization Model

Figure C.4: Synthetic Workload profile with Arrival Time (AR) simulation result.

C.5 Cloud candidates Selection

Figure C.5: Candidates cloud selected , and Cloud environment Constrains (CEC)

defined in the cloud environment profile.

118

C.6 Cloud Deployment Option (CDO) Creation

Figure C.6: Simulation result for 2 candidates cloud deployment options in

comparison.

C.7 Cloud Deployment Option (CDO) creation

Figure C.7: Simulation result for 3 candidates cloud deployment options in

comparison.

119

APPENDIX D

A summary of Cloud Application Architecture Design Patterns

Category Pattern Name Problem Solution
1 Fundamental

Cloud

Architectures

Loose Coupling

Reduce dependencies between Distributed

Applications and between individual

components.

Broker: to communicating components and decouple

multiple integrated applications from each other.

2

Distributed Application

How can application functionality be

decomposed to be handled by separate

application components?

The functionality of the application is divided into multiple

independent components that provide a certain function

3

Cloud

Application

Components

Stateful Component A synchronized internal state Replication Internal state

4 Stateless Component Increase Elasticity (Failures) Storage Offerings (External)

5 User Interface Component Reduce Dependencies Elastic Load Balancer

6
Processing Component

Processing functions to meet different

customers' requirements
Split into separate functional blocks (stateless)

7
Batch Processing Component

Asynchronous processing delayed Stored (asynchronous) until conditions are optimal for their

processing

8
Data Access Component

Hide & isolate data while ensuring data

configuration.
Integrity of data and coordinates

9

Data Abstractor

How consistent data be presented and

inconsistencies hidden from another

application (components and users)?

Consistent state is unknown by approximating values or

abstracting them into more general ones, such as change

tendencies (increase / decrease).

10
Idempotent Processor

Presented of consistent data

Duplicate function execution

Adjusted to allow retrieved data to be consistent

(inconsistency detection)

11

Transaction-based Processor

Ensure messages receive are processed

successfully and altered data successfully

after processing

Transaction-based Delivery

12 Timeout-based Message

Processor

Process messages, guaranteeing all messages

handled or processed at-least-once

Timeout-based message processor sends acknowledgement

after has successfully processed the message.

13

Multi-Component Image

Virtual server provides functionality of

multiple application components

Multiple application components hosted on a single virtual

server (to ensure running virtual servers may be used for

different purposes without making provision or

decommissioning operations necessary).

120

Category Pattern Name Problem Solution

14

Multi-Tenancy
Shared Component

Shared between multiple tenants(individual

configuration)

Optimize portion of the app_ stacks and app components

deployed equally to all tenants.

15 Tenant-isolated Component

Shared between multiple tenants enabling

individual configuration and tenant-isolation

regarding performance, data volume, and

access privileges

Ensure isolation between tenants by controlling tenant

access, processing performance used, and separation of

stored data.

16 Dedicated Component
Not shared components be integrated into a

multi-tenant app

Dedicated application components are provided exclusively

for each tenant using the application.

17

Cloud

Integration

Restricted Data Access

Component

Need component alter provide DB on

Accesses restriction on different

environments

Defined privileges for each data element, separate

restriction data access

18 Message Mover

Message queues of different providers be

integrated

Message Mover integrates message queues hosted in

different environments, receiving messages from one queue

and transferring it to a queue in other environments.

19 Application Component Proxy

Application component be accessed directly

to its hosting environment is restricted.

Synchronous and asynchronous communication with proxy

component is initiated and maintained from the restricted

environment access the unrestricted environment directly.

20 Compliant Data Replication

Replicated between environments, how some

environments, handle subsets of the data due

to laws and corporate regulation?

Message filters are used to delete and obfuscate certain data

elements in these messages.

Information about the data manipulations stored in a storage

offering.

21 Integration Provider

How can application components in different

environments, belonging to different

companies, be integrated through a third-

party provider?

Using integration components offered by a third party

provider.

121

APPENDIX E

List of Participations

The research study detailed in this thesis has yielded several conference and

workshop presentation participant, these include:-

E.1 Conferences

1. Amar Ibrahim Eldein, Hany Ammar ,and Dale Dzielski, 2017, December.

"Enterprise architecture of mobile healthcare for large crowd events."

Information and Communication Technology and Accessibility (ICTA), 2017

6th International Conference on, Muscat, Oman, Sultan Gabous University,

19-21 Dec.2017.

2. Amar Ibrahim Eldein, E.S. & Ammar, H.H., 2017. "Requirements Model

For Hajj and Umrah Mobile Healthcare System (HUMHS)",

4thInternational Conference on Islamic Applications in Computer Science

And Technology, 20-22Dec 2016, Sudan.

http://unitechkl.com/iman/pres/37.ppsx, online.

E.2 Work Shop

1. Amar Ibrahim Elhaj Sharaf Eldein. "A framework for Development Cloud

Application Architecture Environment", Software Engineering

Applications, Challenges Workshop, 10 TH International Computing in

Arabic (ICIA), 12-14 March 2016, Khartoum, Sudan.

ورشة , "بيئة تطبيقات الحوسبة السحابية إطار تطوير", عمار ابراهيم الحاج شرف الدين

الدورة : المؤتمر الدولي لعلوم و هندسة الحاسوب, تحديات و تطبيقات هندسة البرمجيات

 .الخرطوم السودان 1122مارس 21-21, العاشرة

122

LIST OF PUBLICATIONS

The research study detailed in this thesis has yielded several internationally

recognized peer-reviewed journals in the areas of cloud computing, information and

communication technologies (ICT), and software architecture. These include:-

[1] Eldein, A.I.E.S., Ammar, H.H. and Dzielski, D.G., 2017, December. Enterprise

architecture of mobile healthcare for large crowd events. In 2017 6th

International Conference on Information and Communication Technology and

Accessibility (ICTA) (pp. 1-6). IEEE.

[2] Ibrahim, A., Eldein, E.S. & Ammar, H.H., 2017. Requirements Model For Hajj

and Umrah Mobile Healthcare System (HUMHS). , 5(1), pp.53–62.

[3] Ibrahim, A. & Eldein, E.S., 2016. Pattern Oriented Analysis for Web Based

Applications on Cloud. , 9(1), pp.1–12.

[4] Ibrahim, A. & Hany, A., 2015. Model-Driven Architecture for Cloud

Applications Development , A survey. , 4(9), pp.698–705.

