

Sudan University of Science and Technology

College of Post Graduates Studies

A Framework for Evaluating

Reusability of Core Assets using SPL

and SOA

الأساسيت لأصولل ستخذاملان إعادة اتقويإطار ل

 خذهيتباستخذام خط إنتاج البرهجياث والوعواريت

 التوجه

A Thesis Submitted in Partial Fulfillment of the Requirements of M.Sc. in

Computer Science

 November 2018

Sudan University of Science and Technology

College of Post Graduates Studies

A Framework for Evaluating

Reusability of Core Assets using SPL

and SOA
الأساسيت باستخذام لأصوللستخذام لان إعادة اويإطار لتق

 خط إنتاج البرهجياث والوعواريت خذهيت التوجه

A Thesis Submitted in Partial Fulfillment of the Requirements of M.Sc. in

Computer Science

Prepared By: Alaa Ramadan Suliman Ali

SUPERVISORS:

Dr. Almahdi Ibrahim

Dr. Arafat Abdulgader

Date……./...…. /…...

i

 الآيت

ٌَّ الله أَزلَ يٍ انسًَّاء ياءً فأخشخُا تّ ثًشاخٍ يُخْرهفاً أنٕآَُا ٔيٍ ﴿ أنى ذشََ أ

 اندثالِ خُذدٌَ تٛضٌ ٔحًشٌ يخرهفٌ أنٕآَُا ٔغشاتٛةُ سُٕدٌ ﴾

 صذق الله العظين

72سورة فاطر: الآيت

ii

DEDICATION

Special dedication to my family members especially to my beloved father and

mother who always give me the encouragement in my life, my study and the support

to finish my project.

To my Supervisor

Dr. ALmahadi Ibrahim

To all SUST‟s teachers

and all my friends out there

Thank You for your supporting and teaching

Thank You for everything you gave during my studies and the knowledge that we

 shared together.

THANK YOU SO MUCH

iii

ABSTRACT

Software reusability is one of the quality attributes that illustrate the

importance of software to software developers and the return of investment for this

software. Accordingly, it is very important taking into consideration all sub

attributes which may affect the calculation of final reusability value, therefore it is

good to provide a framework for evaluating reusability based on sub attributes that

have direct contribution in reusability value. The research focus on designing

framework for evaluating reusability in software product line (SPL) and service

oriented architecture (SOA) approaches, where the two approaches are supporting

the reusability concept. This is expected to be greatly reused when the two concepts

are combined. All that mentioned above because the current quality models do not

address the reusability of most important characteristic resulting from the integration

of the two concepts, which are the core assets from software product line

methodology and the web service from service oriented architecture methodology.

The framework was designed by selected quality attributes from key feature

of core assets and web service, also defined metrics for each attributes, and then

applied the framework on the selected target system. Finally calculated the final

result of reusability after applied the framework steps. The designed framework

defined a systematic method for calculating the reusability of core assets as web

service, where each attribute is calculated by reference to the related metric and

artifact, which artifacts were defined previously before applying the framework. As

in research case study, the case study was defined according to FODA, FAST and

KOBRA methodology, and according to WSDL, XML and SOAP standard. Thus,

all attributes was contributing in calculating the final value of reusability. At last,

studied the final framework result to make an appropriate decision.

The framework was applied to the Bank third party services which are credit

recharge, electricity buying and water billing. The final result was obtained is 82.8%

and is considered a high value compared with reusability values used in previous

studies when applying the reuse calculation model for each methodology.

iv

 الوستخلص
انرٙ ذٕضح أًْٛح انثشيدٛاخ نًطٕس٘ خصائص اندٕدجيٍ إػادج إسرخذاو انثشيدٛاخ ٔاحذج خاصٛح

انثشيدٛاخ ٔانؼائذ يٍ ْزِ انثشيدٛاخ. ٔفقا نزنك َدذ أَّ يٍ انًٓى خذا اٌ َضغ فٙ الاػرثاس كم انخصائص

انفشػٛح انرٙ ذؤثش أٔ ذساْى فٙ انقًٛح انُٓاٚح لإػادج الإسرخذاو, نزا يٍ اندٛذ ٔخٕد إطاس ٚقٕو ترقٛٛى إػادج

انثحث خذاو تالإػرًاد ػهٙ انخصائص انفشػٛح انرٙ نٓا ذأثٛش يثاشش ػهٙ قًٛح إػادج الإسرخذاو انُٓائٛح. الإسر

, خذيٛح انرٕخّ انًؼًاسٚحرقٛٛى إػادج الإسرخذاو فٙ يُٓٛح خظ إَراج انثشيدٛاخ ٔٚشكزػهٙ ذصًٛى إطاس ن

كم يا كم كثٛش ػُذ ديح انًفٕٓيٍٛ يؼا.ذذػًاٌ يفٕٓو إػادج الإسرخذاو. ٔٚرٕقغ إػادج إسرخذاو تشانًُٓدٛراٌ

, ركش أػلاِ لأٌ ًَارج اندٕدج انحانٛح لا ذذسس إػادج الاسرخذاو لأْى انخصائص انُاذدح يٍ ديح انًفٕٓيٍٛ

ًؼًاسٚح خذيٛح ذرًثم فٙ الأصٕل الأساسٛح انراتؼح نًُٓدٛح خظ إَراج انثشيدٛاخ ٔخذيح انٕٚة انراتؼح ن ٔانرٙ

 انرٕخّ.

 الإطاس تئخرٛاس خصائص اندٕدج يٍ انًؼانى الأساسٛح نلأصٕل ٔخذيح انٕٚة, ٔأٚضا ذىذى ذصًٛى

ػهٙ انُظاو انز٘ ذى إخرٛاسِ كذساسح حانح. ٔأخٛشا ذى , ٔتؼذ رنك طثق الإطاسذؼشٚف يؼادلاخ نكم خاصٛح

شٚقح يُظًح . الإطاس انًصًى ٕٚضح طتؼذ ذطثٛق خطٕاخ الإطاس حساب انقًٛح انُٓائٛح لإػادج الإسرخذاو

نحساب إػادج إسرخذاو الأصٕل الأساسٛح كخذيح ٔٚة, حٛث ٚرى حساب كم خاصٛح تانشخٕع إنٗ انًؼادنح

انًقاتهح نٓا ٔأٚضا تانشخٕع إنٗ انٕثٛقح أٔ انًسرُذ, أ٘ يسرُذ ٚرى ذؼشٚفّ ساتقا قثم ذطثٛق الإطاس. كًا فٙ حانح

ٔأٚضا تئذثاع FASTٔال FODAٔال KOBRAل دساسح اندذٔ٘, ذى ذؼشٚف انًسرُذاخ تئذثاع يُٓدٛح ا

. ْٔكزا َدذ اٌ كم انخصائص ساًْد فٙ حساب انقًٛح انُٓائٛح SOAPٔال XMLٔال WSDLيؼٛاس ال

 انُٓائٛح لإذخار قشاس يُاسة. َرٛدح الإطاسلإػادج الإسرخذاو. ٔأخٛشا ذذسس

ء ٔخذيح شحٍ انشصٛذ ٔخذيح دفغ ذى ذطثٛق الإطاس ػهٙ خذياخ انثُك انثإَٚح)خذيح ششاء انكٓشتا

ٔذؼرثش قًٛح ػانٛح يقاسَح تقٛى إػادج الإسرخذاو انرٙ %82.8 ٔكاَد َرٛدح إػادج إسرخذايٓافٕاذٛش انًٛاِ(,

 ذُأنرٓا انذساساخ انساتقح ػُذ ذطثٛق ًَٕرج حساب إػادج الإسرخذاو نكم يُٓدٛح ػهٗ حذٖ.

v

Table of Contents
 i ... اٜٚح

DEDICATION .. ii

ABSTRACT ... iii

 iv .. المستخلص

Table of Contents .. v

Table of Figure ... viii

Table of Tables ... ix

Table of Abbreviations .. x

Chapter One: Introduction ..

1.1 Introduction ... 1

1.2 Problem statement ... 1

1.3 Significance ... 1

1.4 Hypothesis ... 2

1.5 Objectives.. 2

1.6 Scope ... 2

1.7 Thesis layout ... 2

Chapter Two: Literature Review and Related work ..

2.1 Introduction ... 4

2.2 Software Product line .. 4

2.2.1 Meta-model of core asset ... 5

2.2.1 Software product line approach ... 6

2.3 Service Oriented Architectures ... 7

2.3.1 Key Elements of a Service-Oriented Architecture ... 7

2.3.2 Basic and Architectural Principles of a Service Oriented Architecture 8

2.4 Combining SPL and SOA approaches .. 9

2.5 Software reusability .. 9

2.6 Related work ... 10

file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314266
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314267
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314268
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314269
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314270
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314271
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314272
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314271
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314275
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314282
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314283
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314284
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314285
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314286
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314287
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314288
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314291
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314294
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314295
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314296
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314296
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314295
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314296
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314296
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314295
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314295
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314304

vi

Chapter Three: Methodology ..

2.1 Introduction ... 13

2.2 Methodology ... 13

3.2.1 Key Features of core assets in software product line and web services in

service oriented architecture .. 14

3.2.2 Quality attributes of reusability .. 16

3.2.3 Metrics for Reusability of service core assets oriented.................................... 19

3.2.4 Build the reusability framework... 26

3.2.5 Build the target core asset web service .. 29

Chapter Four: Framework Implementation and Results ...

4.1 Introduction ... 31

3.2 Artifacts using in core asset service model ... 31

3.2.1 Product line scope .. 31

3.2.2 Decision model ... 33

3.2.2.1 Requirements specification Document .. 33

3.2.2.2 Decision model artifact ... 37

3.2.3 Document Conformance .. 39

3.2.4 Check list .. 39

3.3 Applying model on core asset service .. 41

3.3.1 Functional commonality ... 41

3.3.2 Non Functional commonality ... 43

3.3.3 Modularity .. 44

3.3.4 Variability richness .. 44

3.3.5 Applicability ... 45

3.3.6 Standard conformance .. 45

3.3.7 Tailorability .. 47

3.3.8 Component replicability ... 48

3.3.9 Discoverability ... 49

3.3.10 Reusability .. 50

file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314305
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314308
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314309
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314310
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314310
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314311
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314312
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314314
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314315
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314317
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314322
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314323
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314324
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314326
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314327
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314402
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314555
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314559
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314561
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314562
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314564
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314565
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314566
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314568
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314569
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314578
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314588
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314599
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314604

vii

4.3 Result summary .. 51

Chapter Five: Conclusion and Recomendations ..

5.1 Conclusion .. 53

5.2 Recommendations ... 53

6 Reference ... 54

file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314606
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314608
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314611
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314612
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314627

viii

List of Figures

Figure (2.1) Meta-model of core asset ... 5

Figure (2.2) Basic SOA architecture .. 8

Figure (3.1) explains the structure of working mechanism. ... 13

Figure (3.2) Common functionality and variability ... 15

Figure (3.3) Mapping between key features and quality attributes of reusability. 19

Figure (3.4) Feature dealt within FC, NFC and CV .. 22

Figure (3.5) Mapping between quality attributes of reusability and metrics. 26

Figure (3.7) Mapping between quality attributes, metrics and artifacts 27

Figure (3.6) Frame work steps to evaluate reusability of core assets web service 28

Figure (3.8) Example of framework execution ... 29

Figure (4.1) Illustrate WSDL Definition ... 46

Figure (4.2) Illustrate soap request ... 47

Figure (4.3) illustrate function description in WSDL definition 50

file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628

ix

List of Tables

Table (4.1) illustrate product line scope ... 31

Table (4.2) illustrate Decision model ... 37

Table (4.3) illustrate Mandatory and Optional standards for core assets web service 39

Table (4.4) illustrate Check list evaluation .. 40

Table (4.5) illustrate the result of FC .. 41

Table (4.6) illustrate important and according weight for each attributes 50

Table (4.7) illustrate comparison final value of reusability .. 52

file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628
file:///K:/M_project2/All%20-%20Copy%20(2).docx%23_Toc527314628

x

List of Abbreviations

Abbreviation Terms
SPL Software Product Line

SOA Service Oriented Architecture

PLE Product Line Engineering

ROI Return Of Investment

PL Product Line

SPLE Software Product Line Engineering

DRM Decision Resolution Model

XML Extensible Markup Language

WSDL Web Services Description Language

BPMN, BPEL, UDDI, WS-

Security, OAI-PMH,

SRW/U and ESB

Web Service Standards

SynCSI Syntactic Completeness of Service Specification

SemCSI Semantic Completeness of Service Specification

FC Function Coverage

NFC Non-Functional Commonality

AC Architectural Commonality

NC Nonfunctional Coverage

MD Modularity

CV Coverage Variability

CA Cumulative Applicability

SC Standard Conformability

TL Tailorability

VP Variation Point

ET Effectiveness Tailoring

TC Tailorability of Closed variability

TO Tailorability of Open variability

CC Component Compliance

DC Discoverability

RE Reusability

KOBRA, FODA and FAST Software Product Line Methodologies

Chapter One

Introduction

1.1 Introduction

1.2 Problem Statement

1.3 Research Significance

1.4 Hypothesis

1.5 Research Objective

1.6 Research Scope

1.7 Research Organization

1

1.1 Introduction
Software Product Line (SPL) and Service Oriented Architecture (SOA) are

one of the recent and effective reuse approaches, where applications are generated

by instantiating a core assets which are a large-grained reuse unit in SPL, also

applications are built by subscribing web services which are most popular SOA

implementation that can be reused by web service consumers. Hence, core assets

and web services are a key element of SPL and SOA sequentially, therefore

reusability of the core assets based web service largely determines the success of

projects
[13]

.

However, the current quality models aren‟t adequately addressing the

reusability for unique characteristics of incorporate two concepts core assets and

web services.

 Our argument to demonstrate this research that how this framework helps in

achieving the better reusability and high return on investment.

1.2 Problem statement
The main research problem that the current quality models do not address the

reusability of most important characteristic resulting from the integration of the two

concepts. AS result for that :

 Industrial practice is still in its infancy and applying the previous model

hasn‟t had a direct impact on investment.

 The evaluating criteria were built for reusing core asset of a single

programming language.

1.3 Significance
This research provides these main advantages:

- Assess reusability of software systems before publishing in

market.

- Ensure reusing core assets regardless of the programming

language.

- Define weakness point that helping enhances the effectiveness

of reuse.

- Giving clear decision about the feature of product.

2

1.4 Hypothesis
The derived attributes from key feature of core assets and web services,

which support maximum reuse resulting in calculation high reusability value.

1.5 Objectives
1- Investigate in evaluation reusability of core asset web service in software

product line based service oriented architecture approach.

2- Select quality attributes which supports reusability purpose.

3- Define metric for each attributes.

4- Develop framework to evaluate reusability of core asset web service using

software product line and service oriented architecture approach.

5- Evaluate our framework in light of research domain.

1.6 Scope
This research for building reusability framework based on SPL and SOA

methodologies, the framework is applied on core asset web service. Framework

attributes have relation with reusability of core asset and web service. We don‟t

include the treatment of return of investment ROI.

1.7 Thesis layout
The research contains five chapters as shown below:

Chapter one: Introduction

It gives introduction about the project, defining the problem, significance,

hypothesis, objectives and Scope of research.

Chapter two: Literature reviews and related work

It consists of two parts; part one represents a general background about the

topic and parts two is the related studies.

3

Chapter three: Methodology

It describes the mechanisms used in this research from selecting key feature

characteristic to define metrics for derived attributes, then building the reusability

framework and defining the case study.

Chapter four: Framework implementation and result

It is representing the applying framework in case study, show the result of

reusability and detecting from hypothesis.

Chapter five: Conclusions and Recommendations

Chapter Two

Literature Review & Related Work

2.1 Introduction

2.2 Software Product Line

2.3 Service Oriented Architectures

2.4 Combining SPL and SOA Approaches

2.5 Software Reusability

2.6 Related Work

4

2.1 Introduction

This chapter consists of two parts; part one represents a general background in

software product line, service oriented architecture, combine software product line

with service oriented architecture approaches and software. Part two shows the

related studies.

2.2 Software Product Line

A software product line (SPL) is defined as a set of software systems sharing

explicitly defined and managed common and variable features and relying on the

same domain architecture to meet the common and variable needs of specific

markets
[4]

. It is also defined as a set of software-intensive systems sharing a

common, managed set of features that satisfy the specific needs of particular market

segment or mission and that are developed from a common set of core assets in a

prescribed way
[5]

. There is different process models exist for the development

process of product lines mention in
[6]

, the common one is software product line

engineering (SPLE) is a systematic method to develop and use a software product

line for a particular product domain, which consists of two essential activities, the

first is domain engineering (product line architecture) to develop the core assets, the

second is application engineering (product line members) to develop products using

the core assets. SPLE provides guidance for the three essential activities, including

29 good practices, which are categorized into three practices areas: software

management, technical management, and organizational management
[7]

.

Product line scope and product line analysis define the boundaries and

requirements of the software product line, based on the business goals of the

organization. The scope identifies the characteristics of the defined systems as being

inside or outside the boundaries of the software product line. The scope also helps

identify the common aspects of the systems, as well as expected ways in which they

may vary
[13]

.

Composition elements of product line products are the product line core assets

artifacts or resources used in the production of products in an SPL. A core asset may

be the architecture, a software component, a process model, a plan, a document, or

any other artifact useful in building a system. Each core asset has an attached

process that describes how the core asset is used in product production, including

variant information. For example, the product line architecture must include

mechanisms to support the explicitly allowed variations in the products within the

product line scope; the attached process defines how that variation mechanism is

used to generate the architecture for a specific product variant
[13]

.

5

2.2.1 Meta-model of core asset
The term, core asset, has been defined largely conceptually reuse asset that

captures commonality and variability among products in product line. As shown in

figure (2.1), it is plays a key role in PLE, and it has architecture which is generic to

products, a component model capturing components and interfaces, and a decision

model defining variability realization. We assume that it is detailed design model

not implement source code
[6]

.

Figure (2.1) Meta-model of core asset

[6]
.

Product line (PL) architecture represents architectural decisions that are

common among applications in a product line. It is models and realizes architectural

decisions that are variable among applications. Hence, it is used as a reference

architecture that would be instantiated for the specific requirement of each

application. According to the perspective to highlight the PL architecture, views

such as Module View, C&C View and Deployment View can be decided. Several

styles of a view can be applied to model PL architecture. Two main elements of PL

architecture, element and inter-element relationship, are derived from the

requirements and guided by styles. These elements further refer to components and

relationships of component model
[6]

.

Component model realizes functionality derived from functional and non-

functional requirements of a core asset. Therefore, the component model is referred

from elements and inter-element relationships in PL architecture. A component is

6

represented with structural and behavioral model of objects, inter-object

relationships, and interfaces it conforms to. Components also realize variable

requirements among applications in a product line
[6]

.

A decision model is a specification of variability in a core asset, and it consists

of variation points, their associated variants, effects, and attached tasks. A variation

point is a place where there exists a minor variation and variants are valid values

which fill in a variation point. Effects are results of setting the variants, which are

post conditions, side effects, or affected variation points. Attached tasks are action

tasks or resolution mechanisms that have to be performed to set the variant.

Variability listed in the decision model is eventually reflected and realized in a PL

architecture, component models and interfaces. PLE supports closed and open

variability since potential applications as well as known applications are considered.

To generate applications based on a core asset, it is instantiated by resolving

variability of a core asset by applying a Decision Resolution Model (DRM) which

specifies application specific variants. A PL architecture and a component model of

a core asset are specialized with a DRM
[6]

.

2.2.2 Software product line approach
Adopting SPL approach implies performing two main activities

[25]
:

 Domain Engineering

This activity is twofold:

- Collecting, organizing, and storing past experiences in building systems in

the form of reusable assets in a particular domain.

- Providing an adequate means for reusing these core assets when building

new systems.

The term developing for reuse is often used to characterize the Domain

Engineering. It can be divided in three main processes: Domain Analysis,

Domain Design, and Domain Implementation. The domain analysis consists

in capturing information and organizing it as a model. The domain design

consists in establishing the product line architecture. The domain

implementation consists in implementing the architecture defined during the

domain design as software components.

 Application Engineering

This activity consists of building systems based on the results of Domain

Engineering. The requirements are selected from the existing domain model,

which matches the customer‟s needs. We assemble applications from the

existing reusable components. The application engineering activity consists

in building systems based on the results of Domain Engineering. During

application requirements of a new system, we select the requirements from

the existing domain model, which matches the customer‟s needs. We

assemble applications from the existing reusable components. The term

developing by reuse is used to characterize the application engineering

activity.

7

2.3 Service Oriented Architectures
“SOA is a conceptual business architecture where business functionality, or

application logic, is made available to SOA users, or consumers, as shared, reusable

services on an IT network. „Services‟ in an SOA are modules of business or

application functionality with exposed interfaces, and are invoked by messages”
[8]

.

A SOA is essentially a collection of services. These services communicate with each

other. The communication can involve either simple data passing or it could involve

two or more services coordinating some activity. Component-based development

proceeds by composing software systems from pre-fabricated components (often

third-party black-box software). A typical component-based system architecture

comprises a set of components that have been purposefully designed and structured

to ensure that they fit together (i.e. have pluggable interfaces) and have an

acceptable match with a defined system context. Service-oriented development on

the other hand proceeds by integrating disparate heterogeneous software services

from a range of providers
[9]

. A SOA is a means of designing software systems to

provide services to either end user applications or other services through published

and discoverable interfaces.

2.3.1 Key Elements of a Service-Oriented Architecture
A Service-oriented Architecture comprises several key elements. Its elements

work together to more closely link business needs with IT. The following list covers

the essential ingredients of an SOA
[8]

:

 Conceptual SOA vision – An SOA is a business concept, which includes

clearly defined business, IT and architectural goals.

 Services – An SOA enfolds all possible services in the organization

alongside a service design model to assure reusability, interoperability and

integration across all business processes and technology platforms. Services

are indeed the central artifact of a Service-oriented Architecture.

 Enabling technology – The technology must ensure that your services

operate reliably and securely in support of the stated business objectives.

 SOA governance and technologies – The SOA governance model defines

the various governance processes, organizational roles, standards and policies

adhered to in the conceptual architecture.

 SOA metrics – The SOA metrics include Service-Level-Agreements

(SLAs) for individual services, as well as usage metrics, business and return

on investment metrics as well as process metrics.

 Organizational and behavioral model

Generally, systems based on an SOA have many users and providers, where

certain users also act as providers to other users. Most SOA- systems are

considerably more complex than the one in Figure (2.2), which illustrates the most

basic SOA architecture, but they all follow the same basic principles.

8

Figure (2.2) Basic SOA architecture [8].

2.3.2 Basic and Architectural Principles of a Service

Oriented Architecture
There are several guiding principles that define the ground rules for

development, maintenance and usage of the SOA. The guiding principles cover
[10]

:

• Reuse, granularity, modularity, composability, componentization, and

interoperability.

• Compliance to standards (both common and industry-specific).

• Services identification and categorization, provisioning and delivery, and

monitoring and tracking.

The following specific architectural principles for design and service definition

focus on specific themes that influence the intrinsic behavior of a system and the

style of its design. They are derived from the guiding principles and cover
[11]

:

 Service Encapsulation - Accessing functionality through some well-

defined interface, the application being seen as a black box to the user.

 Service Loose coupling - Services maintain a relationship that minimizes

dependencies and only requires that they maintain an awareness of each

other.

 Service contract - Services adhere to a communications agreement, as

defined collectively by one or more service description documents.

 Service abstraction - Beyond what is described in the service contract,

services hide logic from the outside world.

 Service reusability - Logic is divided into services with the intention of

promoting reuse.

 Service composability - Collections of services can be coordinated and

assembled to form composite services.

 Service autonomy – Services have control over the logic they encapsulate.

 Service statelessness – Services minimize retaining information specific

to an activity
[10]

.

9

 Service discoverability – Services are designed to be outwardly

descriptive so that they can be found and assessed via available discovery

mechanisms.

So we can say the SOA infrastructure is connection mechanism between

services and service consumers. It usually implements a loosely coupled,

synchronous or asynchronous, message-based communication model. The

infrastructure often contains elements to support service discovery, security, data

transformation, and other operations. One common SOA infrastructure is an

enterprise service bus (ESB) to support SOA environments
[13]

.

2.4 Combining SPL and SOA Approaches

Meeting business goals through a product line or a set of service-oriented

systems requires variation management of assets, including services. Variation

management ― comprises all activities to explicitly model, manage, and document

those parts, which vary among the products of a product line. Variation management

applies to services in both the service-oriented and product line contexts. In both

types of systems, variation points may be implemented either in a single service

(where a service interface may offer parameterization or some other variation

mechanism) or through similar services to address variation
[13]

.

Whereas variation and variation management are key to an SPL approach, they

are not highlights of an SOA approach. Yet, SOA approach can be employed as a

variation mechanism when core assets and products are developed in a product line.

In an SPL approach, developers of software core assets would package desired

capability as a service. That service may have built-in variation points that are

accessible through parameterized service calls, or the service registry may identify

variations among related service components that may include both the newly

packaged capabilities and existing services from the enterprise
[13]

. The SOA

infrastructure provides an invocation mechanism to the needed service core asset for

product development. Variation management in this context allows the tailored use

of services to provide the exact, desired capability for a specific product. The

dynamic nature of service invocation may support adaptation and more dynamic

growth of a product line‟s scope. SOA may also support a more opportunistic

response to changing market conditions with product line adaptation or new product

lines. All mention above support and increase the concept of reusability
[13]

.

2.5 Software Reusability

Software reusability refers to the probability of reuse of software. Another

definition, “characteristics of an asset that make it easy to use in different contexts,

10

software systems, or in building different assets”. The potential benefits of software

reuse and the maturity of reusability concepts leads us to think about how we might

measure them
[10]

.

The definition of service reusability is derived from conventional definition on

reusability which is the degree to which the service can be used in more than one

business process or service application without having much overhead to discover,

configure and invoke it
[12]

.

2.6 Related Work

2.6.1 A framework for evaluating reusability of core asset in product line

engineering

 Jin, Ji, Sang, Sung and Soo
[2]

 presented comprehensive framework for

evaluating the reusability of core assets. They drove a set of quality attributes that

characterizes the reusability of core assets depending on key characteristics of core

assets (functional commonality, applicability, non-functional commonality,

variability richness, and tailorability) and ISO/IEC 9126 framework

(Understandability and component replaceability). Then, they define metrics for

each quality attribute and finally present practical guidelines for applying the

evaluation framework in PLE. Moreover, they applied the metrics with case study

(Rental core asset) which is developed using PLE process, DREAM. And get result

that the rental core asset is 81.9% reusable. To validate the metrics, they performed

theoretical analysis according to Kitchenham‟s approach (Barbara Kitchenham,

Shari Pfleeger, and Norman Fenton‟s validation framework) and assessed the

proposed framework in the perspective of six criteria which are derived by Ejiogu‟s

criteria and validity criteria of IEEE Std 1061
[2]

.

The reusability rate of above quality framework may be increased If reusing

core assets isn‟t depend on specific environment and every family member able to

operate the functions in his own environment.

2.6.2 A Quality Model for Evaluating Reusability of Services in SOA

 Si Won Choi and Soo Dong Kim
[12]

 presented comprehensive quality model

for evaluating reusability of web services. They defined Key Features of web

services in SOA and derived from it reusability attributes such as business

commonality, modularity, adaptability, standard conformance and discoverability. In

addition, they defined metrics for all attributes to collect the reusability. At last they

applied this model on the domain of flight management which includes Flight

Inquiry service, Flight Reservation service, and Flight Purchase service
[12]

.

11

The final reusability value is 0.23, so it is very low compare with the

expected output from SOA approaches, therefore there is very important individual

attributes (business commonality) which it need to be revised more because it have

direct effect in final reusability value.

2.6.3 Reusability Assessment of Open Source Components for Software

Product Lines

 Mahmood, Ahmad and Alan
[16]

 presented exploratory study to explore the

factors affecting the reusability of open source software (OSS) in SPL environment.

They defined reusability assessment model contains six attributes related to the

reusability of an SPL component: flexibility; maintainability; portability; scope

coverage; understandability; variability. These emerged from the exploratory study

(using interview and result was obtained using the grounded theory approach).

These attributes are selected due to their internal nature. Also, they define metrics

for any attribute, most of these came from literature review, however, a small

number were devised by their selves like variability metric due to there is no

measure available to variability. In addition to all that, they validate the metrics by

conducting survey to collect data using questionnaire and compare results of

reusability assessment by human evaluators against proposed model
[16]

.

2.6.4 A survey and Proposed Reusability Assessment Framework for

Aspect Oriented Product Line Core Assets

 Mahmood, Ahmad [17]
 presented a survey of aspect oriented implementation

of SPL reusability evaluation. They spoke about two frameworks one for reusability

of core assets and the second for reusability and maintainability of aspect oriented

program they address the lake in both and proposed new frame work but not

implemented physically
[17]

.

2.6.5 Combining Service Orientation with Product Line Engineering

Lee, Jaejoon, and Gerald
[18]

 integrated the concept of software product line

engineering(SPLE) with service oriented(SO) to create a new approach which is a

service-oriented product line (SOPL) is a dynamic software product lines DSPL

application domain that‟s built on services and a service-oriented architecture to

develop core assets. The paper spoke about challenges to build SOPL approach

which is:

 Different Notions of First-Class Objects (feature and service are two different

notions of key engineering drivers in software development under the SPLE

and SO paradigms). As result of comparison between feature and service that

is dynamic and automated feature binding considering the features‟ quality

12

attributes is basically missing in SPLE. And product line variations are

difficult to capture explicitly using the notion of services in SO.

 Dynamic characteristics of a service-based system, the dynamic characteristic

of SO is closely related to Quality of service(QoS) and dynamic-service

orchestration, SPLE usually addresses quality issues statically during system

design and implementation depend on Static quality management

approaches(predicting resources of constituent view). So they define QoS in

terms of features (define maximum limit of available resources) to select

available services at runtime when starts negotiating with service providers.

In addition to all that, Most SPLE focus on configuring product line

variations before deployment and don‟t consider dynamic-service

composition, so they specify static services, along with the tasks that

constitute them, as workflows, and thus also specify these services‟ pre- and

post-conditions, invariants, and dynamic-service interfaces. Finally, by

integrating and parameterizing dynamic services at runtime, their solution lets

users access static services with dynamic ones.

 Involvement of Third-Party Service Providers which was out of scope for

SPLE but the closest thing to it might be the use of commercial off-the-shelf

(COTS) components. Third-Party Service Providers have several advantages

in (SO), including service negotiations, service monitoring, and service repu-

tation systems which SOPL should incorporate them. Therefore, we propose

a QoS-aware framework that provides automated runtime support for them.

 Variation Control and Management aim to provide flexibility through a

layered structure and modular components, called bricks. They establish an

explicit mapping relation between features and architectural components

(bricks) so that selecting the features for a product generates a corresponding

product configuration. After that the developer integrates reusable

components into each brick by following the specifications described in the

components.

2.6.6 Software product line case study for bank third party services Water

billing, Electricity buying and Credit recharge

The research
[19]

 spoke about developing SPL using kobra methodology and

other methodologies like FODA and FAST to develop part of system, the use of

kobra is to consolidate reusability and developing strong architecture system. Those

methodologies are used to develop software product line that provide essential

service for bank third party services, it applied on credit card recharge system,

electricity buying services system and water billing system
[19]

.

The product comply the recent era demand to family member with short

delivery time but just in android and java language.

Chapter Three

Methodology

3.1 Introduction

3.2 Methodology

13

3.1 Introduction
This chapter is representing the methodology applied in this research to build

reusability framework, which include defining the reusability framework attributes

from key feature of web services in service oriented architecture and core assets in

software product line, also including defining metrics for each attribute derived from

characteristics and defining steps for applying the framework to calculate the final

value of reusability. Finally represent introduction about case study plus artifacts

used for measuring each attributes.

3.2 Methodology
Reusability framework for core assets web service is derived from two reusable

model one belong to software product line approach and other belong to service

oriented architecture approach. So below steps which it was followed to build the

final framework, as shown in figure (3.1):

 Figure (3.1) explains the structure of working mechanism.

1. Define key features of core assets and web services, to define well

applicable evaluation framework we must define all key features may

effect on reusability of core assets in SPL and web services in SOA.

2. Define quality attributes and related metrics, after defining the key

features for both core assets and web services we derived quality

attributes from these features. Then define direct metrics for each

attributes.

14

3. Build reusability framework, defining steps to apply the framework

and all conditions before apply the frame work.

4. Select the target system, give introduction about bank third party

services and how it works as web service. In addition give reason for

selecting this system as case study.

5. Apply the framework on target case study and get final result,

getting the last result of reusability by applying reusability framework

steps at target case study.

We select the mention above two model duo to their popularity for reusing.

And select the reusability attribute due to it‟s important after studying systematic

review of quality attributes and measurement
[14]

.

3.2.1 Key Features of core assets in software product

line and web services in service oriented

architecture
To define a reusability framework for evaluate core assets web service; key

features should first be identified, from [12, 2] we derive the following features:

1- Providing common functionality: by developing and publishing common

core asset which should capture common functionalities among family

members to increase the inter-organizational consumer reuse. A set of family

members consumer and common functionalities that will be provided by the

core asset are defined in a PL scope
[2]

.

2- Capturing variability among products: We should design the core asset to

invoke each product of families by capturing variability. As shown in figure

(3.2), the boundary of variability is not independent of commonality but

within commonality. Variability is a minor variation within commonality and

is composed of closed and open variability
[2]

. A mechanism to capture

variability in a product line is a decision model. A decision model is a

specification of variations in core assets and includes variation points,

variants, effects, and attached task
[2]

.

3- Providing architectural genericity: A core asset consists of components and

their relationships that are affected by PL architecture. Software architecture

is used for developing a single application. However, PL architecture of a

core asset is used for developing a number of applications. Also, PL

architecture includes architectural variability to be used by various

applications. In addition, in PLE literatures, architecture in PLE is defined as

a single element of a core asset. Such architecture will describe architectural

aspects for a set of target applications in the product line. Here, the

architecture is defined separately from internal design of components (called

component model), and the decision model
[2]

.

15

Figure (3.2) Common functionality and variability

[2]
.

4- Application-level core asset: A core asset defined in this paper is a reuse

unit larger than a component but smaller than a complete application and it is

composed of PL architecture, components, and decision model. Also, a core

asset is developed to be reused by several family members in the same

domain. Thus, we can develop applications by instantiating a single core

asset service and adding application specific information to the instantiated

core asset service. Therefore, we call the granularity of a core asset service as

the application level
[2]

.

5- Supporting open variability as well as closed: Scope of variability in PLE

is the cardinality of the variants for each variation point, which can be closed

and open depending on the identified variants. For the closed scope, the

variants for the variation point are known, and for the open scope, the

variants for the variation point are unknown. Since the open scope does not

decide variants, it is possible to add new variants for unknown application
[2]

.

On the other side, closed variability fixes variants for applications.

6- Instantiation mechanism for core asset to target applications: In the view

of a variability resolution mechanism, PLE defines its own term for the

mechanism. Core asset service is instantiated to application specific assets by

resolving variability and it is called instantiation
[2]

. The main activity of

instantiation is to define DRM and bind the defined variants to each variation

points.

7- Embedding components: To define a practical quality model, a core assets

web service needs to be defined as a collection of concrete elements such as

objects or components. In this research, the core assets web service case

study includes a set of components and some of them can be replaced by in-

house components or COTS components that are supplied by the third party.

Since component follows the standard interface, we can replace designed

component to other components when only functionality of designed

component matches with functionality of the existing component and when

component conforms to the component model
[2]

.

16

8- Well-defined Interfaces: Core assets web service defines by selecting

multiple features belong to one application, and they provide a well-defined

interface which allows service consumers to use capabilities of services
[12]

.

9- Modularity of Services: core assets web service is a highly modularized unit

of capability, so they can be composed in various business processes without

much complication
[12]

.

10- Loosely-Coupled Nature: Providers publish core assets web service and

consumers subscribe the core assets web service without an advanced

knowledge on the other party
[12]

.

11- Standardization: Due to the heterogeneity, conformance to SOA standards

becomes essential. This is the reason why there exist a number of standards in

SOA such as BPMN, BPEL, WSDL, UDDI, SOAP, and ESB
[12]

.

12- Subscription-based Invocation: Web services in SOA are discovered,

invoked and paid for the usage. Hence, consumers subscribe core assets web

services, rather than purchasing and owning them permanently
[12]

.

3.2.2 Quality attributes of reusability
It is possible and feasible for an organization to use core assets as reusable web

services, so reusability model are derived from key features as shown in figure

(3.3), to evaluate the reusability of core assets web service using the following

attributes:

1- Functional commonality

Functional commonality measures commonalities of functions among

product line scope applications. The rationale for defining this attributes that

the functions developed by providers should be common to all application

defined in product line requirement specification. If core assets web service

provides number of superior functionality, it will not be extensively

subscribed by consumer and will not be extensively reused unless those

functions are common among all applications
[2]

.

2- Nonfunctional commonality

Nonfunctional commonality measures commonalities of nonfunctional

requirements which it provided by core assets web service to family members

define in product line scope. Quality attributes are identified by determining

common nonfunctional requirements which is the main driver of the product

line architectures, so if nonfunctional requirements are common, the product

line architectures will be common to all family members. The rational for

defining this attributes that the reusing of architecture is the most important

concept in product line engineering comparison with other reusable

approaches
[2]

.

3- Modularity

Modularity measures the extent of core assets to provide separate

functionality without reliance on other core assets. There for to increase

easily reusability of functionality, the core assets must be modularized, that

17

means reducing coupling and increasing in cohesion. This feature of core

assets can be achieved by separation of concern about service interface and

implement. The rational for defining this attributes that if the core assets is

depend on other core assets, the consumer must subscribe all core assets have

relationship with it, Also the load will be on consumer by increasing the

complexity of composition. Therefore, modularity is a key factor which

affects the reusability of a service
[12]

.

4- Variability richness

Variability richness measures if core assets in web service comprehend all

variability in product line scope, if the variability is sufficiently captured in

the core assets web service, then larger number of consumer can reuse the

core assets web service by selecting better scope and identifying specific

variability for consumer application. The rational for defining this attributes

that if we define suitable number of variability the core assets web service

will be more reusable but if we define restricted number of variability then it

will reduce the reusability so the big challenge waylays in defining suitable

number of variability that motive reusing mechanism by huge number of

family member
[15]

. In addition, if the boundary of variability is confined,

then it will be reused by a restricted number of applications
[2]

.

5- Applicability

Applicability measures the capability of family member to apply core assets

web service. So we must determine all applications which can reuse these

core assets obviously. The rational for defining this attributes that the large

number of family member applying the core assets web service attests

increasing in reusability rate. This attribute derived from functional

commonality, nonfunctional commonality and variability richness. It can‟t be

apply if consumer doesn‟t find it expectation correctly and in our case the

consumer will found all that which they need because it define previously

before implementing the core assets web service
[2]

.

6- Standard conformance

Standard conformance measures the extent of conforming international

industry standards that are widely accepted and used, so that this attribute

help in understanding core assets web service which lead to increase in

reusability. The rational for defining this attributes is that large number of

family member will composite core assets web service effectively without

complication due to applying standard. By applying standard, specification

will be widespread acceptance which it makes the communication and

understanding between family member and core assets web service are

possible and available, all that goes towards increasing the concept of

reusability. This means that the core assets web service with high standard

conformance provides the high probability of high reusability
[12]

.

18

7- Tailorability

Tailorability measures the capability of core assets web service to provide

functionality which it fits all or meet all family member application mention

in PL scope. The tailoring of core assets web service functionality is very

necessary because it encourage this web service to be widely used by family

member which led to increasing reusability. The rational for defining this

attributes that the subscribing for core assets service is available for every

family member
[2]

.

8- Component replicability

Component replicability measures possibility of replace embedding

component by COTS or in-house component without changing in product

line architecture; the change in product line architecture by replacing other

component will change core assets web service design so invocation process

may cause some unexpected problems. The rational for defining this

attributes is that the core assets web service is embedding components. As

there for the important for this attribute shown clearly when we find new

application not in PL scope and we can replace some core assets by suitable

replaced component
[2]

.

9- Discoverability

Discoverability measure the extent of family member to find core assets web

service which they are expecting or looking for easily and correctly. Family

member can search for any core assets web service depend on their

specifications and the query return the ideal results about their searching.

More over the process of discovering the ideal services need pre preparation

from service provider, as well as they must define core assets web service

specifications which should be specified in easily understandable manner

firstly. Then it can be feasibly and correctly comprehended by family

member. The rational for defining this attributes is that if service provider

well-define core assets web service specifications then the family member

can more easily understand the web service specifications and provide a high

possibility to be discover duo to demonstration all necessity to family

member, so that it will provide the high possibility of reuse by family

member
[12]

.

19

Figure (3.3) Mapping between key features and quality attributes of

reusability.

3.2.3 Metrics for Reusability of service core assets

oriented
In this section, we define metrics for each attribute in terms of metric

description, formula, value range, and relevant interpretations. Figure (3.5) shows

the corresponding metrics for quality attributes:

1- Functional commonality

This attributes is measure by Functional Coverage (FC) metric, FC measures

the average of commonality for each functional feature in core assets web

service, commonality of each feature can be measure by calculating the

degree of family member using each functional feature
[2]

. This can be

computed as;

 (∑

)

Where n is total number of functional feature.

[2]

20

The range degree of FC between 0 and 1, 1 mean the all functional feature are

common among all application in product line scope and 0 mean there is no

common feature are shareable.

2- Nonfunctional commonality
This attributes measure by Architectural Commonality (AC) and

Nonfunctional Coverage (NC) metrics, where AC measures nonfunctional

requirement that are tackled by PL architecture and NC measures the average

of non-functional commonness feature that are not involve in product line

architecture
[2]

.

The range degree of AC between 0 and 1, hence 1 is mean all of application

sharing the PL architecture and 0 there is no application share the PL

architecture.

 (∑

)

Where n is the number of non-functional feature that are not handled

by PL architecture.

The range of NC between 0 and 1, 1 means all non-functional features that

are not handled are common among consumer member
[2]

.

From the above two metrics we can calculate Non-Functional commonality

(NFC) as
[2]

:

Where are the weights for each metric which the

summation of both 1.

The value of each weight is getting by considering the ratio of non-functional

that are handled and not handled by PL architecture.

The value of NFC between 0 and 1, 1 means the application has large

applicability; hence it used PL architecture and non-functional feature
[2]

.

3- Modularity

This attributes measure by Modularity (MD) metric, MD measures the degree

to which a core assets is independent of others core assets
[12]

.

 (

)

[2]

[2]

[2]

[12]

21

The range of MD between 0 and 1, the value 1 means all core asset with in

core asset web service are independent; so the core asset web service are self-

contain.

4- Variability richness

This attributes measure by Coverage Variability (CV) metric, where CV is

measures the rate of variation point realized in core asset web service and

variation point in product line scope
[2]

.

 (

)

Where the denominator is the number of variation point identified

from SRS and included in the scope of product line.

The range of CV between 0 and 1, hence the value 1 means all variations

point in PL scope are realized in core asset; that a pones which let a lot of

family member consumer to reuse this core asset.

5- Applicability

This attributes measure by Cumulative Applicability (CA) metric, CA is

measures the ability of core assets web service to develop various application

by family member. This attributes is composite metric which depend on FC,

NFC and CV metrics
[2]

, therefore it can compute as;

Where are the weights for each metric which the

summation of them 1.

The value of weight for each metrics calculated as it mention in [2]. The

author divides the feature to four categories as shown in figure (3.4), after

that he calculate the weight as following
[2]

:

 () () ()
Let x be the multiplicative constant for calculating , and

then each weight has the value of () () () . Through

these formulas x is () Therefore the value of weights as

following:

 () ()
 () ()
 () ()

[2]

[2]

22

Figure (3.4) Feature dealt within FC, NFC and CV

[2]
.

The range of CA between 0 and 1, therefore 1 mean lager number of

application will be developed by family member from reusing service core

asset.

6- Standard conformance

This attributes measure by Standard Conformability (SC) metric, SC

measures degree of core assets web service conformity to relevant standards.

There are two types of standards, the first one is mandatory standard which

the core assets web service must conform to, and the second type is optional

standard which core assets web service should conform to
[12]

. So we can

calculate SC as:

 (

)

 (

)

Where is the number of core assets web

service must conform to standard, is the

number of core assets web service should conform to standard,

 is the total number of mandatory standard

evaluated by quality evaluator, is the total

number of optional standard evaluated by quality evaluator,

 is the weight for number of mandatory service core

asset and is the number of optional service core asset.

[12]

23

The value of summation for weight is 1. There for the range of SC between 0

and 1. 1 means the service core asset is conforming to all relevant standards.

7- Tailorability

This attribute measures by Tailorability (TL) metric, which is measure the

number of variation point (VP) that can be effectively tailored, that mean the

number of valid VP after tailoring. TL is composite metrics so; we calculated

from Effectiveness Tailoring (ET) metric, Tailorability of closed variability

(TC) metric and Tailorability of open variability (TO) metric. The first is ET

metrics which is measure how many VP are resolved efficiently before

subscribing mechanism
[2]

 as following:

 (

)

Where variation point are effectively resolvable when the subscribe

mechanism for each variation point is appropriately and efficiently

defined considering the constraint of the variation point.

The range of this metric is difficult to quantitatively measure effectively

resolvable VP, so we used check list for deciding if each VP is effective to

resolve or not. We define checklists considering type and scope of each VP

such Binary, optional, alternative and open variability
[2]

.

The second is TC metric which is measure the degree of subscribing closed

VP in Decision Resolution Model (DRM) without side effect or fault after

subscribing mechanism. The closed VPs are known and every one of them

has effect on core asset web service to produce different application
[2]

, so we

calculate it as:

∑ ()

∑ ()

Where VPi is ith closed variant point among effective resolvable

variation point.

The range of TC between 0 and 1, the higher value of TC 1 means larger

number of clothed variation points are validity resolved.

The last metric is TO which is measure the degree of subscribing open VP in

DRM without side effect or fault after subscribing mechanism. The open VPs

are unknown
[2]

, so we can calculate it as:

 (

)

Where the denominator is the number of open variation point among

effectively evolvable variation point.

The range of TO between 0 and 1, and 1 value indicates larger number of

open variation points are validity resolves.

[2]

[2]

[2]

24

By using the preceding metrics, the final value of TL measure as
[2]

:

 ()

Where ratio of closed variation is points among the total

effectively evolvable variation points and is ration of open

variation point among the total effectively evolvable variation points,

the sum of these weights is 1.

The range of TL is between 0 and 1, hence 1 means tailoring mechanism for

each VP is effectively defined and each VP can be resolved without outside

effect.

8- Component replicability

This attribute measure by Component compliance (CC) metric, it measures

the ability to replace the core asset components in core asset web service

without complication. These components may be from COTS or pre develop

in-house
[2]

.

 (

)

The range of CC between 0 and 1, as well as 1 means all core asset

components are replaced without complication.

9- Discoverability

This attributes is measure by Discoverability (DC) which it measures the

ability to discover core assets web service easily and correctly by family

member. For easily and correctly discovering DC is measure by two metric,

the first is Syntactic Completeness of Service Specification (SynCSS) and the

second is Semantic Completeness of Service Specification (SemCSS). The

completeness means the number of elements that are open-faced to family

member because they are well specified in core assets web service

specification
[12]

.

SynCSS measures how many syntactic elements are well specified in the core

assets web service as following
[12]

:

 (

)

Where the numerator is element that exposes to family member and

the denominator is total number of syntactic element in core assest

web service specification.

The range of SynCSS between 0 and 1, and 1 indicate contents of all tags

related to signature of core assets web service operations.

[2]

[2]

[12]

25

SemCSS measures how many semantic elements are well specified in the

core assets web service as following
[12]

:

 (

)

Where the numerator is element that exposes to family member

consumer and the denominator is total number of semantic element in

core assets web service specification.

The range of SemCSS between 0 and 1, and 1means the content of semantic

information for core assets web service operation are defined in human

language. Finally we can combine the DC by combine the two above metrics
[12]

 as following:

Where is the weight for SynCSS and is the weight for

SemCSS. The summation of the weights is1.

The higher value of DC indicates a better discoverability.

10- Reusability

The final value of reusability can be calculated by Reusability (RE) metric

from the nine metrics mention above as following:

Where , , , , , , and are weight for

each metric. And the summation for this weight equal 1.

The last range of total reusability is from 0 to 1, 1 indicates better reusability.

[12]

[12]

26

Figure (3.5) Mapping between quality attributes of reusability and metrics.

3.2.4 Build the reusability framework

This framework is built to help any developer to assess the reusability of core

assets web service before it will be instantiate by consumers. Also to help them

improve weakness area by defining the lowest framework attributes value. So to

apply this framework we should be sure that the proposed system which we want

measure its reusability using software product line and service oriented architecture

approaches, then apply the following step as shown in figure (3.6):

1- Define artifact that will be used in measuring, artifacts are define as high-

level model which it is not relevant to specific programing language. Figure

(3.7) show the corresponding artifacts for each framework attributes and

metrics.

27

Figure (3.7) Mapping between quality attributes, metrics and artifacts

2- Select the attributes which support the reusability, the attributes aren‟t

selected randomly, but it is derived from core assets and web services

characteristic which serves reusability.

3- Apply the predetermine metric for each attributes. The metrics have formulas

which computed from direct artifact, each metric is destined to specific

attribute. We have two types of metrics direct metrics and complex metric,

which is depend on other metrics.

4- Calculate the final result. The final value of reusability is computed according

to reusability a formula which is calculated from other metrics.

5- Discuss the result. In the discussion we represent the result of reusability and

its sub attributes. Also, we highlight on lowest value of sub attributes, which

effect on final value of the reusability. Therefore we can investigate

enhancement chances for reusing core assets web service.

6- Take final decision. According to the judgment from discussion the result

step, the developer decides whether to publish this core assets web services or

28

not. The Interpretation for reusability value is high if it is near 1 and low if it

is near 0.

 Figure (3.6) Framework steps to evaluate reusability of core assets web service

In order as to applying steps in figure (3.6); we represent framework execution

example as shown in figure (3.8) to calculate functional commonality attribute refer

to product line scope artifact and using functional coverage metric, the output of this

metric contribute in final reusability result. All reusability attributes in the

framework model are calculated as same way except applicability attribute which is

calculated from three metrics (Functional coverage, Non-functional commonality

and Coverage Variability). It is indicating the consumer must find its expectation or

their need correctly to apply this core assets web service, in spite of its important

that is not used in final value of reusability; because its sub metrics are calculated

individually in final reusability result. Therefore, to avoid repeating metrics it‟s not

used in final reusability metrics in the framework model.

29

Figure (3.8) Example of framework execution

3.2.5 Build the target core asset web service

The Bank Third Party Services (Credit recharge, Electricity buying and Water

billing) were built since 2013 as software product line which it used combinations of

best software product line methodologies including KOBRA, FODA and FAST, also

it developed as mobile app using android and desktop application using java langua

ge
[19]

. Water billing application is merging with electricity buying application now a

day, but we use it as separate application in this research
[19]

.

The traditional working mechanism for third party services system that the

family members enter to website after authentication and pickup or select core asset

features according to the selected application that will generate, after that press

download button to keep .exe desktop application or .apk mobile application. Our

contribution in working mechanism, instead of using web site; bank third party

system will be available as web services with ability to preselect core asset features

and consume the response by family member in any platform.

30

We select third party services because it building in java or android so the

reusing for this core asset feature must be work with the same language

environment, and this is the point that our research is solving which is make the

reusing environment for core asset is dynamic that means not depend on specific

language Environment. All that increasing the spread of services which support our

main goal the reusability.

Chapter Four

Framework Implementation &

Results

4.1 Introduction

4.2 Artifacts using in Reusability Framework

4.3 Applying Framework on core asset service

4.4 Result Summary

31

4.1 Introduction
This chapter applying reusability framework on the target system and getting

the final result of reusability compared with reusability from other model.

4.2 Artifacts Using in Reusability Framework

4.2.1 Product line scope
Is artifact which displays the feature of product and specifies the

commonality and variability used for this model as shown in table (4.1).

Table (4.1) illustrate product line scope
[19]

Feature Application Commonality/
variability Requireme

nt type
Domain ID Feature name Electricity Water billing Mobile

balance

Functional
features

Service
activation

F1 Reset login
authentication
information

X x X commonality

F2 Login X x X commonality
F3 Registration for

company
X x X commonality

F4 Registration for
user

X x X commonality

F5 Activation using
bank account
number

X x X commonality

F6 Activation using E-
wallet number

X x X commonality

F7 Sail point user X

X variability

F8 Normal user X x X commonality
F9 Special user X x X commonality
F10 Passport number X x variability

F11 Nationality number X x X commonality
F12 Card ID X x X commonality
F13 Preferences X x X commonality

Message
forwardin
g engine

F14 Inter transaction
messages

X x X commonality

F15 Send bank account
number

X x X commonality

F16 Receive bank
server response

X x X commonality

F17 Send service
information

X x X commonality

F18 Send generated tag X x X commonality
F19 Receive service

number

X

X variability

F20 Receive bill number

x

variability

32

F21 Encrypting
forwarded data

x x x commonality

F22 Decrypting
forwarded data

X x X commonality

Providing
service

F23 Request service
number

X

X variability

F24 Request bill number

x

variability
F25 Provide service

amount category
X

X variability

F26 Receive service
result

X x X commonality

F27 Generate service
temporarily tag

X x X commonality

F28 Selection to paying
using bank account

X x X commonality

F29 Selection to paying
using E-wallet
number

X

X variability

F30 Confirmation X x X commonality

categoriz
ation

F31 Give user normal
user category

X x X commonality

F32 Give user sail point
category

X

X variability

F33 Give user special
user category

X x X commonality

F34 Purchase by
specify the amount
of service

X

X variability

F35 Purchase by
specify the money
amount

X x X commonality

Communi
cation
with third
party
companie
s

F36 Creating third party
account

X x X commonality

F37 Sends service
number to the user

X

X variability

F38 Send bill number to
the user

x

variability

F39 Set minimum and
maximum limit to
the service

X

X variability

F40 Set advertisement X x X commonality

F41 Set offers X

X variability

Payment F42 Payment per month
or per year

x

variability

F43 User card value

X variability

Display F44 Android view X x X commonality

F45 Web language X x X commonality

reports F46 Report view X x X commonality

F47 Report duration X x X commonality

33

Service
gate

F48 Xml vend X

variability

F49 Phone third party

X variability

F50 Water third party

x

variability

Nonfunctio
nal
features

Security Nfr51 Username and
password

X x

variability

Nfr52 Certificates

X variability

Availabilit
y

Nfr53 Health monitor to
diagnose the
system

X x X commonality

4.2.2 Decision model
Decision model is artifact which represent variation point and related variant as

shown in table (4.2), it consist of:

1- Domain-related questions to be answered in developing products.

2- The set of possible answers/decisions to each question.

3- References to the affected artifacts and variation points, or references to the

affected decisions (the reference took from requirements specification

document).

4- Descriptions of the effect on the assets for each decision, or descriptions of

the effects on the answer sets of the affected decisions.

4.2.2.1 Requirements specification Document:

This document specifies the software product line requirements in term of

commonality and variability
[19]:

1. Service Activation:

1 C1 each user wants to complete the Service Activation to the system must fill

up his/her user name.

1 C2 each user wants to activate the application must fill up his/her bank account

number.

1 C3 On activation completion system must show message informing user that

the process complete.

1 C4 On completion of activation the system should automatically transform user

to application page.

34

1 V5 each user wants to have Service Activation to the system must determine

what type is:

 1 C5.1 he/she is working in Bank Company.

 1 C5.2 he/she is working in the point of sale.

 1 C5.3 he/she is working as normal user.

 1 V5.4 user can change its type after service activation.

1 V6 each user wants to have service activation to the system must determine the

user identity:

 1 C6.1 by ID card.

 1 C6.2 by National Number.

 1 C6.3 by passport number.

1 V7 Service Activation varies according to user type:

1 C7.1 Service Activation for company that represent a user to identify

special user.

1 C7.2 Service Activation for normal user with different category.

2. Providing services:

2 C1 each user bank account must be activated.

2 C2 each user must have sufficient bank account balance.

2 C3 each user must determine the type of services.

2.1 Application screen

2.1.1 Water Application screen

2.1.1 C1 user chooses to pay water bill over fixed period of time.

2.1.1 C1.1 system display message to the user if he want to pay per

month or per year

2.1.1 C1.2 the user should enter home number

35

2.1.1 V1.2.1 the system should show message to the user by the

amount of bill to be paid per month.

2.1.1 V1.2.2 the system should show message to the user to tell

him/her if he/she want to save home number.

2.1.1 V1.2.3 the user chooses to save home number or not.

2.1.2 Electricity application screen

2.1.2 C1 the user should enter electricity counter number machine.

2.1.2 V2 the user should identify the provided power by money or by kilo

byte.

2.1.2 C2.1 system should display a message to the user if he/she want

to save the user counter number machine or not.

 2.1.2 C2.2 user chooses to save electricity counter number machine.

2.1.3 Balance recharge application screen

2.1.3 C1 the user should enter phone number.

2.1.3 V2 the system display a message to the user if he/she want to save

the phone number or not.

2.1.3 C3 display categories of available credit cards for the user to choose

from them.

2.1.3 C4 the user should select the card value.

2.1.3 V5 user selection may be from the given range of charge.

2.2 Payment

2.2 C1 the user should pay for any service by his/her Tag number.

2.2 C2 the user must have sufficient account when she/he requests a service.

2.2 V3 user should be granted to service or not according to validity of tag

number through Service secret number or Bill amount manipulation.

36

2.2 V4 payment transaction may be completed either by e-wallet number or

account number.

 2.2 C4.1 when payment is done by e-wallet user must enter his/her e-

wallet number.

2.2 C4.2 when payment is done by account number user must enter

his/her account number.

2.3 Notifications

2.3 C1 when user completes his/her transaction successfully the system

should send a message to the user to tell him/her the transaction successfully

completed.

2.3 C2 when the user has not sufficient account the system should send a

message to the user to tell him/her the balance not sufficient to fit the service.

2.3 C3 if user chooses to cancel the operation the system should display

verification message.

2.3 V4 the user may confirm to cancel or not.

2.3 C5 if e-wallet number is wrong system must be notified that it‟s wrong to

try again.

 2.3 V5.1 user may try again and enter the number again or not.

2.3 V6 notification may be offers or advertisement.

 2.3 V6.1 offers are provided either by bank or Service Company.

 2.3 V6.2 advertisements are provided only by Service Company for

special occasion.

2.4 Display

2.4V1 display of the system to the user may vary in either android or web

language (PHP, Html and CSS).

2.5 Reports

2.5 V1 reports may be visual or literal per fixed period of time.

37

2.5 V2 user may choose a period of time to be viewed at.

2.6 Message forwarding

2.6 V1 to exchange message between different components of the system the

method to do so may be via web service or internally.

2.7 Bank service connection

2.7 V1connection to get service may be done through.

 2.7 V1.1 in case of electricity via xml vend.

 2.7 V1.2 in case of water through water third party.

 2.7 V1.3 in case of credit recharge through phone third party.

3. Security

3 V1 to secure the transformation of data between user, bank and third party over

network through

 3 V1.1 username and password authentication

 3 V1.2 SSL certificates.

4.2.2.2 Decision model artifact:

Table (4.2) illustrate Decision model
[19]

Variation point Decision Type Scope Variant/value Traceabili

ty ID VP

F01 User

category

What is the type

of the user?

Logic OR Normal user 1 V5

Sail point user

Bank user

F02 Preferences Is the user can

change his/her

preferences?

Attrib

ute

Optional Yes 1 V5.4

No

F03 User ID

number

Type of identity

to identify the

user to the

system?

Logic OR National number 1 V6

Card id

Passport number

38

F04 Activation

type

What is the type

of service

activation?

Logic OR Company

activation

1 V7

Regular user

activation

F05 Payment

style

The system

should ask the

user to pay per

month or per

year?

Logic OR Month 2.1.1

V1.2.1

Year

F06 Service

amount

categories

The user must

identify the

provided service

amount per

money or per

company

category (kilo

meter)

Logic OR Company

category

2.1.2 V2

Amount of money

F07 Card value User select card

value to charge

with?

Logic OR 5 SDG 2.1.3 V5

10 SDG

25 SDG

50 SDG

100 SDG

F08 Providing

services

Type of valid

identification id

to grant service

for the user?

Logic Alternative Service secret

number

manipulation

2.2 V3

Bill amount

manipulation

F09 Payment

type

What are the

tools that the

user will use to

pay for service?

Logic OR E-wallet account 2.2 V4

Bank account

F10 Confirmati

on

The user either

confirms the

transaction or

cancels?

Attrib

ute

Optional Confirm 2.3 V4

Cancel

F11 Notificatio

n

What is type of

notification will

display?

Work

flow

Optional Offer 2.3 V6

Advertisement

F12 Display What is the user

view type?

Logic Alternative Android 2.4 V1

Web language

F13 Report

view

What is type of

report will be

Logic Optional Tabular reports 2.5 V1

39

shown to the

user?

Visualizing

reports

F14 Report

duration

What is the

duration of the

report the user

will generate?

Logic Optional Monthly 2.5 V2

Weekly

Daily

F15 Message

forwarding

engine

How can send

message

between user

and bank,

between bank

and third party?

Logic Alternative Web services 2.6 V1

Internally

F16 Bank

service gate

What is the type

of gate use to

get service from

specified third

party?

Logic Alternative Xml vend 2.7 V1

Phone third party

Water third party

NF

R1

7

Secure

transfer

Is there secure

transformation

of data between

user, bank and

third party?

Logic Alternative Username and

password

3 V1

SSL certificates

4.2.3 Document Conformance
Is artifact which displays mandatory and optional standard for core assets

web service as shown in table (4.3), those standards are divided to three categories

core, function-specific and industry-specific
[24]

.

Table (4.3) illustrate Mandatory and Optional standards for core assets web

service

Standard name Type of standard

XML Mandatory

SOAP Mandatory

WSDL Mandatory

WS-Security Optional

OAI-PMH Optional

SRW/U Optional

4.2.4 Check list
Is check list artifact which uses to evaluate variation mechanism, valid

variant and open variation points
[2]

sequentially as shown in table (4.4).

40

Table (4.4) illustrate Check list evaluation
[2]

1- checklist to evaluate if the variation mechanism is correctly designed

Checkpoints Selection

1. Define selection mechanism for optional, Binary and

Alternative variation point

2. Plug-in mechanisms defined for the open variability

3. External profiles should be effectively designed

4. The selected variation mechanism should consider the

software entity and the binding time

2- checklist for each variant to evaluate if its design is valid or not

questions selection

1. Is the tailoring mechanism for each variant effectively

defined?

2. Is the resolution effect correctly defined?

3. Is the attached task effectively designed?

4. Are not there any missing dependencies between variants or

variation points?

3- Checklist for valid open variation points

Checklist selection

1. Is the plug-in specification correctly defined?

2. Is the technique to implement the plug-in specification

available?

3. Is the protocol valid?

41

4.3 Applying model on core asset service

4.3.1 Functional commonality
To measure this attributes we use functional coverage (FC) metrics which

calculate the total number of average application using each functional feature, using

product line scope table (4.1) we have 50 functional feature and 3 Application using

product line core asset service.

 (∑

)

So the total range degree of FC is calculated as following in table (4.5):

Table (4.5) illustrate the result of FC

FEATURE

ID (ID)

NUMBER OF

APPLICATION USING ITH

FEATURE (T)

TOTAL NUMBER

OF APPLICATION

USING PRODUCT

LINE (M)

T/M

1. F1 3 3 1

2. F2 3 3 1

3. F3 3 3 1

4. F4 3 3 1

5. F5 3 3 1

6. F6 3 3 1

7. F7 2 3 0.67

8. F8 3 3 1

9. F9 3 3 1

10. F10 2 3 0.67

11. F11 3 3 1

12. F12 3 3 1

13. F13 3 3 1

42

14. F14 3 3 1

15. F15 3 3 1

16. F16 3 3 1

17. F17 3 3 1

18. F18 3 3 1

19. F19 2 3 0.67

20. F20 1 3 0.33

21. F21 3 3 1

22. F22 3 3 1

23. F23 2 3 0.67

24. F24 1 3 0.33

25. F25 2 3 0.67

26. F26 3 3 1

27. F27 3 3 1

28. F28 3 3 1

29. F29 2 3 0.67

30. F30 3 3 1

31. F31 3 3 1

32. F32 2 3 0.67

33. F33 3 3 1

34. F34 2 3 0.67

35. F35 3 3 1

36. F36 3 3 1

37. F37 2 3 0.67

38. F38 1 3 0.33

39. F39 2 3 0.67

40. F40 3 3 1

41. F41 2 3 0.67

43

42. F42 1 3 0.33

43. F43 1 3 0.33

44. F44 3 3 1

45. F45 3 3 1

46. F46 3 3 1

47. F47 3 3 1

48. F48 1 3 0.33

49. F49 1 3 0.33

50. F50 1 3 0.33

The total summation of (T/M) = (31*1 + 11*0.67 +8*0.33) = 41.01

Fc = 41.01/50 = 0.82

The rate of FC is 82%.

4.3.2 Non Functional commonality
To measure this attributes we use Non-functional commonality (NFC) metric

which is measure by two sub metrics, Architectural Commonality (AC) and

Nonfunctional Coverage (NC) metrics, where AC calculate the average of total

number application sharing product line architecture and NC calculate the total

number of average application using each nonfunctional feature.

There are 3 nonfunctional requirements, all of them relevant to the

architecture and there is no conflict between them and it used by three members,

there for the value of AC is: (3/3) = 1

The rate of AC is 100%.

The total range degree of NC is calculated as following:

 (∑

)

44

There is no nonfunctional feature irrelevant to architecture so NC = 0

The rate of NC is 0%.

From AC and NC, the value of NFC calculates as following:

The weight of (3/3)

=1, the weight of will be 0.

NFC =

The rate of NFC is 100% common among the three members.

4.3.3 Modularity
To measure this attributes we use Modularity (MD) metrics which calculates

the independency between core assets in web service. We have 9 core assets depend

on other and total number of core assets is 53 from product line scope table (4.1), the

relationship between 9 core assets taken from feature model
[19]

.

 (

)

 (

)

The rate of MD is 83.1%.

4.3.4 Variability richness
To measure this attributes we use Coverage Variability (CV) metrics which is

calculate the average of variation point captured in core assets web service.

 (

)

Total number of variation point realized is 17 from decision model table

(4.2), and total number of variation from product line scope table (4.1) is 21.

 (

) = 0.809

45

The rate of CV is 80.9%.

4.3.5 Applicability
To measure this attributes we use Cumulative Applicability (CA) which is

calculate the rate of developing applications by consumer. It depends on FC, NFC

and CV metrics.

The value of weight for each metrics calculated by defining the product line

scope feature in table (4.1) to 4 categories as following:

a: common functional feature without variability = 31

b: common functional feature with variability =19

c: common nonfunctional feature without variability =1

d: common nonfunctional feature with variability =2

 ()

 ()

 () (() ()) = 50/74= 0.675

 ()

 () (() ()) = 3/74= 0.04

 ()

 () (() ()) = 21/74= 0.283

After defining weights for each metric then calculates CA as following:

 = 0.822

The rate of CA is 82.2%.

4.3.6 Standard conformance
To measure this attributes we use Standard Conformability (SC) metric which

is calculate the average of mandatory and optional standard. The core assets web

service uses just core standard such as XML, SOAP and WSDL standards.

46

 (

)

 (

)

The core assets web service has one main function and it is implemented by

adopting related standard illustrated in Table (4.3). Figure (4.1) illustrate WSDL

definition of web service, and figure (4.2) illustrate Soap request.

 (

) (

) = 0.9 + 0 = 0.9

The rate of SC is 90%.

Figure (4.1) Illustrate WSDL Definition

47

Figure (4.2) Illustrate soap request

4.3.7 Tailorability

To measure this attributes we use Effectiveness Tailoring (ET) metrics,

Tailorability of closed variability (TC) metrics and Tailorability of open variability

(TO) metric, where ET calculate the average of resolvable variation point in

consuming process, TC calculate the average of valid closed resolvable variation

point and TO calculate the average of valid open variation point. We apply the

check list 1, 2 and 3 in table (4.4) for ET, TC and TO metric sequentially.

 (

)

Using check list we got 15 effective resolvable, and the total number of

variation point is 17 from decision model.

 (

) = 0.882

The rate of ET is 88.2%.

48

∑ ()

∑ ()

Using check list we have 15 valid close variation points and the total number

of valid variant is 20, and the total number of variant from variation point in

decision model is 37.

 = 0.54

The rate of TC is 54%.

 (

)

According to there is no open variation point in decision model, TO is equal

0.

The rate of TO is 0%

 ()

The final weight of and are 1 and 0 respectively

 () = 0.476

The rate of TL is 47.6%

4.3.8 Component replicability

To measure this attributes we use Component compliance (CC) metric which

is calculate the average of replaceable core asset components.

 (

)

The total number of component is 9 as mention in component specification
[19]

. The number of replaceable component is 7 after satisfy the following point
[2]

:

 If there is a standard or a de facto for component interfaces of the

target domain, then the component should conform to the standard.

 If there is no standard or de facto, dependency between the target

component and the other components should be low.

49

 Interface and the component should be clearly separated.

 There should be no or minor side effects after component replacement.

 Specifications of the component should be sufficiently provided.

 (

) = 0.777

The rate of cc is 77.7%.

4.3.9 Discoverability

To measure this attributes we use Discoverability (DC) metric which is

measure by two sub metrics, the first one is Syntactic Completeness of Service

Specification (SynCSS) and the second is Semantic Completeness of Service

Specification (SemCSS) metrics, where SynCSS calculates the average of total

number well describe syntactic element and SemCSS calculates the average of well

describe semantic element.

 (

)

According to applying well define standardization such as WSDL, SOAP and

XML we can say it is well described as syntactic element, there for the value of

SynCSS is 1. Therefor the rate of SynCSS is 100%.

 (

)

The semantic element mean to describe all web services attributes with

human language which it helps in discovery the exact core assets web services as

much as good than using just key word, here in our case study it is not provide

semantic description but it provide function description as shown in figure (4.3). So

the value of SemCSS is 0, and the rate of SemCSS is 0%.

To calculate the final value of Discoverability; we have to define weight for

each metric, the weight is 0.8 and 0.2 sequentially according to their important.

 = 0.8

The rate of DC is 80%.

50

Figure (4.3) illustrate function description in WSDL definition

4.3.10 Reusability
To calculate the final value of reusability (RE) for bank third party core assets

web services, we used 6 weights; depend on important of attributes so the total of

weights is 1.

The weight of metric is taken according to important of attributes and it is

direct effect in reusing the core assets. Table (4.6) illustrate the important and

according weight for each metric, the range from 6-8 is high, the range from 3-5 is

medium and from 0-2 is low. The weight of Applicability is not counted because

this metrics is not calculated at the final value of reusability the demonstration that

the FC, NFC and CV it will be calculated duple in metric.

Table (4.6) illustrate important and according weight for each attributes

Attributes Metrics Priority Value Weight

Functional commonality FC High 8 0.153

Non Functional commonality NFC High 8 0.153

Modularity MD High 7 0.134

Variability richness CV High 7 0.134

Applicability CA - - -

Standard conformance SC High 6 0.115

Tailorability TL High 6 0.115

Component replicability CC Medium 5 0.1

Discoverability DC Medium 5 0.1

 52 1

51

 =

 = 0.828266

The Final rate of RE is 82.8%

After measuring the Reusability, which it was high comparison with the

result of reusability came out from using SPL or SOA approaches.

4.4 Result summary

After evaluating the reusability on bank third party services, the result came

out from measuring was high comparison with
[12]

 and

[2]

 as shown in table (4.7), also reusability is near 1

that means it‟s high.

Reusability result from SOA model
[12]

 is less than research framework

because it isn‟t include commonality and variability characteristics within its

attributes, also reusability result from SPL framework
[2]

 is less than research

framework because it isn‟t considering building reusability attributes for different

consumer environments (independent programming language).

 For enhancement purpose to achieve higher reusability value more than

82.8%, the variation point (VP) of research case study should be effectively tailored

while developing core assets web services; because tailorability attributes is the

lowest reusability attributes value, which affect on final value of the reusability.

As mentioned in chapter 1 introduction, the hypothesis was attributes derived

from key feature of core assets in software product line and web services in service

oriented architecture, which support maximum reuse, those attributes resulting in

calculation high reusability value. The hypothesis of this research that stated is

achieved. The result of the reusability does not achieve 100%; but we achieved a

high percentage which is 82.8%.

52

Table (4.7) illustrate comparison final value of reusability

Domain Value percentage

Reusability of research Framework 0.828 82.8%

 0.23 23%

 0.819 81.9%

Chapter Five

Conclusions and Recommendations

5.1 Conclusions

5.2 Recommendation

53

5.1 Conclusion
The output of this research is a framework to evaluate reusability of core assets

web service; this framework is used by software product line developer to assess

their system.

The framework consists of six steps to apply the framework and getting final

result. The final reusability value for this framework is result of collection metrics

which is define according to quality attributes derived from characteristic of core

assets and web services that is supporting reusability. After getting the final

reusability value, then determine the usefulness of proposed core assets web service,

according to usefulness result the developer publish core assets web services or not.

This framework was applied on Bank third party services which are credit

recharge, Electricity buying and water billing. The final result was obtained which

achieve the hypothesis is 82.8% and is considered a high value compared with

reusability values used in previous studies.

The success of this framework will permit to leverage the development and

reusing of software product line based service oriented architecture systems.

5.2 Recommendations

As a complement to this research and to improve the reusability, there are

some recommendations for researchers:

 Describe the framework as xml based as to be machine readable.

 Adding quality attributes which reflect the reusability result for return of

investment (ROI) perspective.

 Building comprehensive framework to evaluate reusability from both

sides developer and consumer side.

Reference

54

6 Reference

1. La, Hyun Jung, Jin Sun Her, and Soo Dong Kim. "Framework for evaluating

reusability of component-as-a-service (caas)." Principles of Engineering

Service-Oriented Systems (PESOS), 2013 ICSE Workshop on. IEEE, 2013.

2. Jin, Ji, Sang, Sung, Soo. "A framework for evaluating reusability of core asset in

product line engineering." Information and Software Technology 49.7 (2007):

740-760.

3. Graham, Steve, et al. Building Web services with Java: making sense of XML,

SOAP, WSDL, and UDDI. SAMS publishing, 2004.

4. ISO/IEC 26550:2013 Software and systems engineering--Reference model for

product line engineering and management.

5. Clements, Paul, and Linda Northrop. Software product lines: practices and

patterns. Vol. 3. Reading: Addison-Wesley, 2002.

6. Kim, Soo Dong, Soo Ho Chang, and Chee Won Chang. "A systematic method

to instantiate core assets in product line engineering." Software Engineering

Conference, 2004. 11th Asia-Pacific. IEEE, 2004.

7. Nagamine, Motoi, Tsuyoshi Nakajima, and Noriyoshi Kuno. "A case study of

applying software product line engineering to the air conditioner domain."

Proceedings of the 20th International Systems and Software Product Line

Conference. ACM, 2016.

8. Marks, Eric A., and Michael Bell. Service-oriented architecture: a planning and

implementation guide for business and technology. John Wiley & Sons, 2008.

9. Cerami, Ethan. Web services essentials: distributed applications with XML-

RPC, SOAP, UDDI & WSDL. " O'Reilly Media, Inc.", 2002.

10. Balzer, Yvonne. "Improve your SOA project plans." IBM Global Services

(2004).

11. Erl, T.: Service-oriented Architecture: Concepts, Technology, and Design.

Prentice Hall PTR, Upper Saddle River, New Jersey, Munich (2005).

12. Choi, Si Won, and Soo Dong Kim. "A quality model for evaluating reusability

of services in soa." E-Commerce Technology and the Fifth IEEE Conference on

Enterprise Computing, E-Commerce and E-Services, 2008 10th IEEE

Conference on. IEEE, 2008.

13. Cohen, Sholom, and Robert Krut. Managing variation in services in a software

product line context. No. CMU/SEI-2010-TN-007. CARNEGIE-MELLON

UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 2010.

14. Montagud, Sonia, Silvia Abrahão, and Emilio Insfran. "A systematic review of

quality attributes and measures for software product lines." Software Quality

Journal 20.3-4 (2012): 425-486.

15. Park, Shin Young, and Soo Dong Kim. "A systematic method for scoping core

assets in product line engineering." null. IEEE, 2005.

55

16. Mahmood, Ahmad Kamil, and Alan Oxley. "Reusability assessment of open

source components for software product lines." International Journal of New

Computer Architectures and their Applications (IJNCAA) 1.3 (2011): 519-533.

17. Mahmood, Ahmad Kamil. "A survey and proposed reusability assessment

framework for aspect oriented product line core assets." Research and

Development (SCOReD), 2009 IEEE Student Conference on. IEEE, 2009.

18. Lee, Jaejoon, and Gerald Kotonya. "Combining service-orientation with product

line engineering." IEEE software 27.3 (2010): 35-41

19. M ustafa, samar, ethar and reem. Software product line case study for bank third

party services water billing, electricity and credit recharge. Diss. Sudan

university of science and technology. 2013..

20. Niu, Nan, et al. "A systems approach to product line requirements reuse." IEEE

Systems Journal 8.3 (2014): 827-836.

21. Kim, Jong-Hwan, et al., eds. Robot Intelligence Technology and Applications 2.

Berlin: Springer, 2014.

22. Christensson, Per. "Web Service Definition." TechTerms. Sharpened

Productions, 10 August 2017. Web. 25 September 2018.

<https://techterms.com/definition/web_service>.

23. Booth, David, and Canyang K. Liu. "Web Services Description Language

(WSDL) Version 2.0 Part 0: Primer. W3C, June 2007.

24. Wusteman, Judith. "Realising the potential of web services." OCLC Systems &

Services: International digital library perspectives 22.1 (2006): 5-9.

25. Istoan, Paul, Jean-Marc Jézéquel, and Gilles Perrouin. Software product lines

for creating service-oriented applications. Diss. Master‟s thesis, Irisa Rennes

Research Institute, 2009.

26. Samir, Areeg, and Nagy Ramadan Darwish. "Reusability Quality Attributes and

Metrics of SaaS from Perspective of Business and Provider." International

Journal of Computer Science and Information Security 14.3 (2016): 295-312.

