بِسَي مِٱللَّهِٱلرَّحْمَزِٱلرَّحِيمِ

(اللَّهُ نُورُ السَّمَاوَاتِ وَالْأَرْضِ مَثَلُ نُورِهِ كَمِشْكَاةٍ فِيهَا مِصْبَاحُ الْمِصْبَاحُ فِي رُجَاجَةٍ الزُّجَاجَةُ كَأَنَّهَا كَوْكَبٌ دُرِّيٌّ يُوقَدُ مِنْ شَجَرَةٍ مُبَارَكَةٍ زَيْتُونَةٍ لَا شَر<u>ْقِيَّةٍ</u> وَلَا غَرْبِيَّةٍ يَكَادُ زَيْتُهَا يُضِيءُ وَلَوْ لَمْ تَمْسَسْهُ نَارُ نُورُ عَلَى نُورٍ يَهْدِي اللَّهُ لِنُورِهِ مَنْ يَشَاءُ وَيَضْرِبُ اللَّهُ الْأَمْثَالَ لِلنَّاسِ وَاللَّهُ بِكُلِّ شَيْءٍ عَلِيم) ﴿ 90 اللَّهُ الْوَرِهِ مَنْ يَشَاءُ وَيَضْرِبُ اللَّهُ الْأَمْثَالَ لِلنَّاسِ وَاللَّهُ الحَطِيمِ وَيَضْرِبُ اللَّهُ الْأَمْثَالَ لِلنَّاسِ وَاللَّهُ بِكُلِّ شَيْءٍ عَلِيم) ﴿ 90 مَنْ

Dedication

To whom my words are not enough to expiree my deep indebtedness, thanks and gratefulness. To my father soul and my mother, the sustainable source of tenderness, kindness and endless support and specific. My dedication also extends to my brothers, sisters, colleagues, friends, relatives, and

teachers

ACKNOWLEDGMENT

First, I would like to thank my advisors, *Professor.Yousif Hassan Abdelrahim*, for his guidance and support throughout the work. His motivating words and sharp direction has helped me in the completion of my work and research towards the completion of this thesis.

I would like to express my sincere gratitude to my Co-Supervisor *Assoc. Prof. Dr. Abdalaziz Yousif Mohamed Abbas* for his professional guidance, interesting discussion, and encouragement throughout the period of this research. He is always listening and giving advice, encouraging and guides me to a deeper and broader understanding of the work, and shows me the need to be persistent to accomplish any goal. None of this would have been possible without his support.

Special thanks to thank *Assoc. Prof. Dr. Giddani Osman Addalan Kalcon*, He was so generous to share his time to meet and talk about my ideas, taught me different ways to approach a research idea, advice, feedback, and direction

I want especially thanks to *Assoc. Prof. Dr. Mohamed Hussien Mohamed Narma*, for his fruitful suggestions and their invaluable comments.

I would like to German Academic Exchange Service (**DAAD**) for providing me financial support to perform this research work.

I am very grateful to **Eng.** *Mohamed Yousif*, Sudanese Electricity Transmission Co. Ltd, who gave me great help to complete the testing of the design system.

I would like to express a special thank to *Eng. Ahmed Yagoub*, who has supported me about electronic problems with remarkable patience.

I wish to thank Department of Electrical Engineering, College of Engineering **Sudan University of science and technology** and extend my acknowledgements to all staff members in the department for their kind help and encouragement.

I would like to thank **University of Nyala** for offering me to carry out doctoral research.

Finally, my heartfelt appreciation goes toward my mother, *Raddina* have always encouraged me to pursue higher education. I would like to extend a special thanks to my family and friends for their support and encouragement throughout my education. Their support means everything to me.

Abstract

The requirement for reliability and security in power system is increasing every day with the increase in complexity of the power system networks. In order to ensure highest level of reliability and protection, relays have to receive correct and accurate measurement values. Conventionally, currents and voltages in protection system are measured using inductive-type instrument transformers. Due to their design, conventional instrument transformers introduce distortions to the current and voltage signal replicas, which may cause mal-operation of protective relays.

The aim of this thesis is to develop new optical fiber current transformer (OFCT). The performance of power system protection is evaluated using an OFCT instead of conventional CT through dynamic simulation studies. Additionally, the thesis focuses into development of an experimental model of an OFCT, and investigation of its application in power system protection.

Derivations a mathematical model of the optical fiber current transformer from its principles of operation indicating the various detection configurations provided. Various assumptions are taken into considerations to reduce the complexity of the OFCTs model whilst maintaining an acceptable level of accuracy of dynamic performance of OFCTs. Jonse Matrix is used to redesign the OFCT with Faraday Rotation Mirror to eliminate linear birefringence and other effects.

Multifunction numerical relay model is developed including fault detection algorithms. The operating performance of the numerical relay with OFCT is evaluated using various simulation scenarios based on operating characteristic, and trip-times. The simulation evaluation is carried-out using MATLAB / SIMULINK.

An experimental model is configured to implement and test the OFCT, the numerical relay is implemented using PIC16F877A microcontroller. The simulation and experimental results prove that OFCTs are capable to measure current with very high accuracy over wide dynamic range with acceptable errors that match the IEC 0.2 class accuracy requirements. Furthermore, OFCTs has extraordinary features, which makes it more suitable for replacing conventional CTs. Additionally, OFCTs are providing direct to digital outputs according to the IEC 61850 standard, these outputs are immediately compatible with modern digital substation communication.

iv

المستخلص

تزايد متطلبات الموثوقية والأمان في نظم االقدرة الكهربائية كل يوم مع زيادة تعقيد شبكات نظم القدرة. من أجل ضمان أعلى مستوى من الموثوقية يجب أن تتغذي مرحلات الحماية بقيم مقياسة دقيقة وصحيحة. تقليديا، يتم قياس التيارات والجهود في نظم حماية القدرة الكهربائية بإستخدام محولات التيار و الجهد التقليدية المبنية علي اساس الحث الكهرومنغاطيسي. بناءاً علي تصميمها، تظهر محولات القياس التقليدية بعض التشويهات لإشارات التيار والجهد التي قد تتسبب في تشغيل خاطئ لمرحلات الحماية.

يهدف هذا البحث لتصميم وتطوير محول تيار الالياف بصرية (OFCT) وإستخدامه في منظومة الحماية لنظم القدرة الكهربائية. تم تقييم أداء حماية القدرة الكهربائية باستخدام محولات تيار الالياف بصرية OFCT بدلاً من محولات التيار التقليدية من خلال در اسات المحاكاة الديناميكية. بالإضافة إلى ذلك، يركز هذا البحث على تطوير نموذج مختبري لمحول تيار الالياف البصرية والتحقق من تطبيقه في حماية نظم االقدرة الكهربائية.

أشتق النموذج الرياضي لمكونات محول تيار الالياف البصرية من خلال مبادئ التشغيل وهيئات كشف الاشارة المختلفة. أخذت في الاعتبار بعض الإفتراضات لتقليل تعقيد نموذج محول تيار الالياف البصرية مع الحفاظ على مستوى مقبول من الدقة للأداء الديناميكي.

أستخدمت مصفوفات جونس(Jonse Matrix) لإعادة تصميم محول تيار الالياف البصرية مع مرآة دوران فاراداي للقضاء على تاثير ثنائية الانكسار الخطي والتأثيرات البصرية الأخرى. تم تطوير نموذج المرحل العددي متعدد الوظائف بما في ذلك خوارزميات إكتشاف الاعطال الكهربائية.

تم تقييم الأداء التشغيلي لمرحل الحماية العددي مع محول تيار الالياف البصرية باستخدام سيناريوهات محاكاة مختلفة على أساس خصائص التشغيل وزمن إشارة الفصل للمرحل ثم نفذ تقييم المحاكاة باستخدام محاكاة مختلفة على أساس خصائص التشغيل وزمن إشارة الفصل للمرحل ثم نفذ تقييم المحاكاة باستخدام البصرية ، وكذلك بناء و تنفيذ المرحل العددي باستخدام المتحكم الدقيق PIC16F877A. اثبتت نتائج نموذح المحاكاة والنتائج المعملية أن محولات تيار الالياف البصرية قادرة على قياس التيار بدقة عالية جدًا عبر نطاق ديناميكي عريض مع أخطاء مقبولة تتطابق مع متطلبات دقة فئة 20.0 IEC. بالإضافة إلى ذلك ، لدى محولات تيار الالياف البصرية مما يجعلها أكثر ملاءمة لاستبدال محولات التيار التقليدية. علاوة على ذلك ، توفر محول تيار الالياف البصرية مخرجات رقمية وفقًا لمعيار IEC 61850، مما يجعل هذه المخرجات متوافقة مع نظام الاتصالات الرقمية في المحطات الفرعية الحديثة.

TITLE PAGE اية i DEDICATION ii ACKNOWLEDGEMENTS iii ABSTRACT iv المستخلص v Tables of Contents vi List of Tables Х List of figures xi List of Symbol xvi List of Abbreviations xviii Chapter One Introduction 1.1 General Concept 1 1.2 Motivation 2 1.3 Thesis Objectives 3 1.4 Problem Statement 4 1.4 Methodology 5 1.5 Thesis Structure 6 1.6 Author's Contributions 7 Chapter Two Background and Literature Review 2.1 Introduction 8 2.2 Current Measurement and Monitoring Application 8 2.3 Voltage Measurement and Monitoring Application 16 2.4 Protection Scheme Application 19 2.4.1 Faults Detection and Overcurrent Protection Scheme 21 2.4.2 Differential Current Unit Protection Scheme 24 2.4.3 Distance Protection Scheme 27 2.5 Summary 31

TABLE OF CONTENTS

Chapter Three		
Instrument Transformers		
3.1 Introduction	32	
3.2 Instrument Transformers Function	32	
3.3 Conventional Instrument Transformers	34	
3.3.1 Voltage Transformers	34	
3.3.2 Current Transformers	36	
3.4 Conventional Instrument Transformers Performance Problems	38	
3.5 Conventional Instrument Transformers Correction Performance	38	
3.5.1 Correction of Voltage Transformers Performance	39	
3.5.2 Correction of Current Transformer Errors	40	
3.6 Instrument Transformer Problem in Power System Protection	42	
3.6.1 Design and Characteristics Problems	42	
3.6.2 Interfacing Problems	43	
3.7 Non-Conventional Instrument Transformers		
3.7.1 Hybrid Current Transformers		
3.7.2 Optical Voltage Transformer		
3.7.3 Optical Fiber Current Transformers		
3.7.3.1 Optical Fiber Current Transformers Principles5		
3.7.3.2 Optical Fiber Current Transformer Configurations		
3.8 Summary		
Chapter Four		
Modeling and Design		
4.1 Introduction	62	
4.2 Optical fiber Current Transformer Modeling	62	
4.2.1 Laser Source Model	64	
4.2.2 Polarizer Model	65	
4.2.3 Sensing Fiber Model	66	
4.2.4 Analyzer Model	68	
4.2.5 Photodetector Optical Model	69	
4.3 Reflection Configuration Fiber Optical Current Transformer70		
4.3.1 Faraday Rotation Mirror Model	71	

4.3.2 Model of Reflection structure Fiber Optical Current Transformer	
4.4 Electronic Signal Processing of OFCT	
4.5 Optical Fiber Current Transformer Bandwidth	
4.6 Optical Voltage Transformer Model	
4.6.1 Complete Optical Voltage Transformer Model	81
4.6.2 The Signal Processing Circuit of OVT	83
4.7 Numerical Protective Relays Model	84
4.7.1 Overcurrent Relay Model	86
4.7.2 Distance Relay Model	90
4.8 Summary	93
Chapter Five Simulation and Results	I
5.1 Introduction	95
5.2 Configuration of Study System Simulation	95
5.3 Optical Fiber Current Transformer Simulation	96
5.3.1 Light Source Simulation	
5.3.2 Polarizer Simulation	
5.3.3 Sensing Head Subsystem	100
5.3.4 Electronic Processing Subsystem	
5.4 Performance Evaluation of OFCT	
5.5 Reflection Configuration Simulation	107
5.6 Power System Protection using Optical Transformer	110
5.7 Simulation Scenarios	112
5.7.1 Overcurrent Protection Scheme	113
5.7.2 Distance Protection Scheme	119
5.8 Summary	129
Chapter Six	
Experimental Work	
6.2 System Hardware Components Description	101
6.2 System Hardware Components Description	131
6.3 Readout of Optical Fiber Current Transformer	
6.3.1 Laser Light Source	134

6.3.2 Polarizer	134	
6.3.3 Optical Fiber Sensing Coil and its Accessories	135	
6.3.4 Polarizing Beam Splitter	135	
6.3.5 Light Dependent Photoresistors	135	
6.3.6 Signal Processing Electronic Circuit Description	136	
6.3.6.1 PIC 16F877A Microcontroller	137	
6.3.6.2 Interfacing LCD to the microcontroller PIC16F877A	137	
6.3.6.3 Software Description	140	
6.4 Electrical Current Source	141	
6.5 OFCT Experimental Procedures	142	
6.6 Numerical Relay for Overcurrent Protection	144	
6.6.1 Relay	146	
6.6.2 The ULN2003A Buffer	146	
6.6.3 DC Power Supply for the Circuit	147	
6.6.4 Software Algorithm	148	
6.6.5 Implementation of Overcurrent Relay	149	
6.7 Summary	152	
Chapter Seven	<u> </u>	
Conclusions and Future Work		
7.1 Conclusions	155	
7.3 Future Works	157	
References	158	
APPENDICES	175	
A.1 The laser source model parameters	175	
B.1 OFCT MATLAB Code	182	
B.2 OVT MATLAB Code	182	
B.3 impedance calculation	183	
B.4 Mho Relay Apparent Impedance Plots	183	
C.1 C code for Signal Processing of OFCT	185	
C.2 C code for Overcurrent Protection	187	
D. List of Author's Publications	193	

List of Tables

TABLE NO.	TITLE	PAGE
4.1	Parameters for Different Types of Inverse Characteristics	87
4.2	Fault Impedance Calculation on Difference Faults	91
6.1	Experimental model Overcurrent based OFCT Results	153
A.1	The laser source model parameters	175

List of Figures

Figure		
NO.	litte	Page
3.1	Instrument Transformer Functional Diagram	33
3.2	Role of the instrument transformer in electrical systems	33
3.3	Equivalent Circuit for CT	34
3.4	Equivalent Circuit for CVT	35
3.5	Equivalent circuit of a capacitive voltage transformer	39
3.6	Steady state errors of the CT due to large input signal	41
3.7	Basic Components of an Optical Fiber Instrument Transformer	44
3.8	Schematic diagram of the ECT with a Rogowski coil	46
3.9	Schematic configuration for optical voltage transformer	48
3.10	Faraday Effect in linearly polarized light	53
3.11	Polarimetric Detection Scheme	55
3.12	Schematic of the dual-quadrature polarimetric	57
3.13	Sagnac loop interferometer current transformer	58
3.14	In-line interferometer current transformer	60
4.1	Schematic Diagram of Optical Fiber Current Transformer	63
4.2	Sensing Fiber Turns	66
4.3	Schematics of Reflection Structure of OFCT	71
4.4	The Jones calculus Description of OFCT Setup	72
4.5	Equivalent Circuit of Photodiode Model with DC Error Sources.	76
4.6	Data Acquisition of Optical Current Transformer Signals	78
4.7	Optical Voltage Transformer Components	80
4.8	Block Diagram of Signal Processing Circuit of OVT	83
4.9	Functional Elements of Protective Digital Relay	85
4.10	Functional Subsystems of Numerical Protective Relay	86
4.11	Elements of Over-current Relay Model	88
4.12	Block Diagram for Implementing a Digital Over-Current Relay	89
4.13	Numerical over-current relay Algorithm	90
4.14	Elements of Numerical Distance Relay Model	92

4.15	Numerical Distance Relay Characteristic Algorithm	93
5.1	Block Diagram of Digital Protection System using OFCT	
	Simulation	96
5.2	Simulink Layouts for Optical Fiber Current Transformer	97
5.3	Simulink Model of Laser Source	98
5.4	Laser Model Response to 2ns, 1mA Pulse for 10mA	98
5.5	Laser Model Response to 2ns, 1mA Pulse for 15mA	99
5.6	Simulink model of Polarizer	99
5.7	Simulink Block Diagrams of Sensing Head	100
5.8	Simulink Model of Photodetector	101
5.9	Simulink Model of Electronic Signal Processing	101
5.10	The Output Voltage versus Applied Electrical Current	102
5.11	Effect of Number of Turns on OFCT	103
5.12	Calibration Curve of OFCT Responding to the Applied	
	Electrical Current	104
5.13	OFCT Normalize Sensitivity versus Wavelength	105
5.14	Theoretical Optical bandwidth of OFCT	105
5.15	Magnitude and Phase Response of Electronic Circuit	106
5.16	Complete Model and its Simulink implementation	107
5.17	Final Phase Shift Variation by Input Current	108
5.18	Comparison of Applied Current and OFCT Model Output	108
5.19	Comparisons of Amplitude and Phase Angle Response of OFCT	
	Configurations	109
5.20	The Hierarchical Structure of Complete System Simulation	
	Environment	111
5.21	Power System Protection Model	112
5.22	General Connection diagram of Test System	113
5.23	Current Waveforms during Conventional CT Saturation	114
5.24	Impact of CT saturation on Relay Model Response	115
5.25	Normal Operation Condition and Trip Signal	116
5.26	Single Line to Ground Fault and Trip Signal	116

5.27	Double Line and Trip Signal	117
5.28	Double Line to Ground Fault and the Trip Signal	118
5.29	Three Phase / Ground Fault, and the Trip Signal	118
5.30	The Normal Operating Trip Signal	120
5.31	The Impedance Trajectories at Normal Operation Condition	121
5.32	Impact of CT on Distance Relay MHO Characteristics	122
5.33	Fault and Post-fault Voltage and Current Waveforms	123
5.34	The Relay Trip Signals for Single Phase to Ground Fault	124
5.35	Fault Impedance Locus for Fault at Zone-1	125
5.36	The Relay Tripped in Zone-2	126
5.37	Fault Impedance Locus for Fault at Zone-2	127
5.38	Trip Signals for Fault Outside of the Relay Model Setting Zones	127
5.39	Fault Impedance Locus for Fault Outside of Selected Setting	
	Zones	127
6.1	Architecture of experiment for the OFCT based protection	
	system	133
6.2	Experimental setup	133
6.3	Helium Neon laser	134
6.4	Polarizer	134
6.5	Optical Fiber Sensing Coil and its Accessories	135
6.6	Light Dependent Resistor (LDR), (a) Physical view, (b) Wire	
	connection	136
6.7	Light Dependent Resistor circuit for interface of OFCT to the	
	PIC16F877A Microcontroller DSP ADC input	136
6.8	The block diagram of the signal processing circuit	137
6.19	LCD pin arrangement	139
6.10	Implemented circuit for LCD interfaced and crystal oscillator	
	connected to PIC16F877A	140
6.11	Schematic diagram of implementation of signal processing	
	circuit using PIC16F877A microcontroller	141
6.12	A photograph of MEGGER PCITS2000/2 Primary Current	142

	Injection Test Set with Optical Fiber coil1	
6.13	The Readout of OFCT at no Electrical Current	143
6.14	Prototype Hardware Readout of OFCT at no Electrical Current	143
6.15	Readout of OFCT at Maximum Electrical Current	143
6.16	Prototype Hardware Readout of OFCT at Maximum Electrical	
	Current	144
6.17	Circuit diagram of the Overcurrent Protection Scheme using	
	PIC16F877A microcontroller	145
6.18	Relay	146
6.19	Relay energizing through ULN2003	147
6.20	DC power supply	147
6.21	Flowchart of the proposed monitoring and protection system	148
6.22	Proteus schematic overcurrent relay showing the system status	
	and pickup current value	150
6.23	The hardware of overcurrent and OFCT signal processing	150
6.24	Proteus schematic of Microcontroller based overcurrent relay	
	showing the Normal Operation	152
6.25	Hardware Overcurrent Relay showing the Normal Operation	152
6.26	Proteus schematic of Microcontroller based relay showing the	
	tripping status with the pickup current value	153
6.27	Hardware Overcurrent Relay showing the Faulty Operation	153

List of Symbols

N _u	a transformation ratio of the CVT
Ι	light beam intensity [w/m ²]
ω	angular frequency [rad/s]
φ	angle of state of polarization [rad]
V	Verdet constant
В	magnetic flux density vector [tesla]
f	Frequency [Hz]
λ	wavelength
п	refractive index
N_F	number of turns of sensing optical fiber loop
I _{elec}	electrical current in conductor [A]
i(t)	laser current [mA]
L	inductance [H]
S(t)	photon density [m ⁻³]
Γ	optical confinement factor
go	slope gain [cm ⁻³ /s]
N(t)	carrier density [m ⁻³],
No	carrier density at transparency [cm ⁻³]
τ_{n}	carrier lifetime
Va	volume of the active region[cm ³]
$\phi(t)$	phase of the laser electric field [rad]
P(t)	Laser diode optical output power [w]
υ	frequency of the laser [s ⁻¹]
τ_{n}	carrier lifetime
η	total quantum efficiency
$n(\lambda)$	refraction index t a given wavelength,
λ_0	initial wavelength.
$V(\lambda)$	Verdet constant as function of wavelength [rad/tesla.m]
$\alpha(L)$	attenuation coefficient of function of fiber length [dB/km]
$\alpha(\lambda)$	attenuation coefficient due to Rayleigh scattering [dB/km]

Ε	Electric Field
ϕ	phase shift due to the circular birefringence [rad]
δ	phase shift due to linear birefringence [rad]
Δ	geometric mean of phase shifts
J	Jones vector of optical component
$\mathcal{R}(\lambda)$	responsivity of photodetector as function of wavelength [A/W].
I_P	photocurrent
D _C	diameter of the fiber sensing coil [m].
С	Speed of light [m/s]
l	Length of optical path [m]
k	Wavenumber of light wave [m ⁻¹]
τ	optical fiber sensing coil transit time of optical signal.
γ	electro-optic coefficient
μ_o	Permeability of free space [H/m]
εο	Permittivity of free space [F/m]
TMS	time multiplier setting
t	operating time [s]
Is	overcurrent setting [A]
K	Residual compensation factor
Z ₀	Zero-sequence impedance [Ω]
<i>Z</i> ₁	Positive-sequence impedance $[\Omega]$
I_a, I_b, I_c	current phases [A]
V_{an}, V_{bn}, V_{cn}	voltage phases [V]
R	Resistance [Ω]
X	reactance $[\Omega]$
С	Capacitive [F]

List of Abbreviations

A, B, C	phase A, phase B, phase C
ABB	ABB Asea Brown Boveri
AF	Analog Filter
ADC	Analog to Digital Converter
ALU	Arithmetic Logic Unit
ANN	Artificial Neural Networks
BW	Band Width
BS	Beam Splitter
CCVT	Coupling Capacitor Voltage Transformers
CSI	Current Source Inverter
СТ	Current Transformer
DAQ	Data Acquisition
DFT	Discrete Fourier Transform
DSP	Digital Signal Processor
DC	Direct Current
EMI	Electromagnetic Interference
emf	Electromotive Force
ECT	Electronic Current Transformer
EMTP/ATP	Electromagnetic Transients Program
EOVT	Electro-optic Voltage Transducer
EVT	Electronic Voltage Transformer
FP	Fabry-Pérot
FRM	Faraday Rotator Mirror
FFT	Fast Fourier Transform
FBG	Fiber Bragg Grating
FPGA	Field Programmable Gate Array
FR	Frequency Response
GPS	Global Positioning System
HV	High Voltage
HB	Highly Birefringent

ICD	In Circuit Debug
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronics Engineers
IT	Instrument Transformer
IED	Intelligence Electronic Device
IDMT	Inverse Definite Minimum Time
LDR	Light Dependent Resistors
LED	Light Emitting Diode
LCD	Liquid Crystal Display
LV	Low Voltage
MOCT	Magneto-optical Current Transformer
MU	Merging Unit
NCIT	Non-conventional Instrument Transformer
NPR	Numerical Protective Relays
NXCT	NxtPhase Current Transformer
NXVCT	NxtPhase Voltage and Current Transformer
NXVT	NxtPhase Voltage Transformer
OCT	Optical Current Transformer
OFCT	Optical Fiber Current Transformer
OHL	Overhead Lines
OIT	Optical Instrument Transformer
OVT	Optical Voltage Transformer
OE	Optoelectronic
OCR	Overcurrent Relay
PD	Photodetector
PBS	Polarizing Beam Splitter
PC	Polarization Controller
PDL	Polarization Dependent Loss
PMF	Polarization Maintaining Fiber
PMUs	Phasor measurement units
PIC	Programmable Interrupt Controller

PST	phase-shifting transformer
RAM	Random Access Memory
ROM	Read only Memory
RISC	Reduced Instruction Set Computing
RCCT	Rogowski Coil Current Transducer
RMS	Root Mean Square
SNR	Signal to Noise Ratio
SLGF	Single Line to Ground Fault
SMF	Single Mode Fiber
SOP	State of Polarization
UGC	underground cable
UHV	Ultra High voltage
WP	Wollaston Prism