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Abstract 

    Some developments in the theory of function spaces involving differences are shown. 

Difference and new characterizations of Besov, Sobolev and Triebel-Lizorkin spaces on 

metric measure spaces, on the Euclidean space and on averages balls are studied. We 

obtain directly and perfectly the dual multi-parameter, singular integrals and boundedness 

of the composition operators on Triebel-Lizorkin and Besov spaces associated with 

singular integrals with different homogeneities and of regular distributions. We introduce 

the method of H ̈rmander type theorems for multi-linear and boundedness of multi-

parameter Fourier multiplier operators with limited smoothness and on Triebel-Lizorkin 

and Besov-Lipschitz spaces of logarithmic smoothness, approximation spaces and limiting 

interpolation. We explain the treatments of the characterizations of generalized and 

logarithmic Besov spaces in terms of differences, Fourier-analytical decompositions, 

wavelets bases and semi-groups. 
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 الخــــــلاصـــــــة

قمىا  توضياابع تاااط راو ااضنرر ةااض وات ااد ةةا لرر راةراااد راموةاامىد را تلقاا ر   اا   نر ااد را اات        

ااولننه لىاف ةةا لرر راسبا م راموات   -لراوشخبص ر راجة ةة ا ة لرر تبساض  ل  اضتضابو ل  ت  ا 

ة  راموااا -للىااف را ةاا ل ردقىبااة  للىااف نااترر راموض اا  ر   اا  رامصااض  ل  اااتة ل م لاا   لىااف راممبااو

ااولننه لتبساض   -راثى ئض للىف راوك للار راش ذة لراممةل  د امؤثترر راوتنبا  لىاف ةةا لرر  ت  ا 

رامش نند لع راوك للار راش ذة للع راوج وسا ر رامخوى اد لراوضع اا ر رامىواماد  ن  ىىا   ت ساد ل ت ىا ر 

راض اابم لااع  -ةااضن ت لواااة  اخ بااد لرامةل  ااد ماااف لااؤثترر لةاا لور -وااضه  ضنل وااةنمت  لواااة ة

اب شبوو ماف رامىس ن راىضغت ثمض لةةا لرر  -اولننه ل تبسض  -رامىس ن رامىوهض للىف ةة لرر  ت   

راوست اااا  لرد ااااوكم   رامىوهااااض  نلياااامى  راما اجاااا ر ماااااف  شخبصاااا ر ةةاااا لرر تبسااااض  راماممااااد 

 راولت راومىبىبد لن  م رامض ج ر لا ه  -لراىضغت ثمبد تةلالار را تلق ر ل  كبك ر ةضن ت
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Introduction 
      On a metric measure space satisfying the doubling property, we establish several 

optimal characterizations of Besov and Triebel-Lizorkin spaces, including a pointwise 

characterization. 

      The theory of one-parameter Triebel–Lizorkin and Besov spaces has been very well 

developed in the past decades, the multi–parameter counterpart of such a theory is still 

absent. The main purpose is to develop a theory of multi-parameter Triebel–Lizorkin and 

Besov spaces using the discrete Littlewood–Paley–Stein analysis in the setting of implicit 

multi–parameter structure. It is motivated by Han and Lu in which they established a 

satisfactory theory of multi–parameter Littlewood–Paley–Stein analysis and Hardy spaces 

associated with the flag singular integral operators studied by Muller–Ricci–Stein and 

Nagel–Ricci–Stein. The theory of Triebel–Lizorkin and Besov spaces in one-parameter 

has been developed satisfactorily, not so much has been done for the multi-parameter 

counterpart of such a theory. We introduce the weighted Triebel–Lizorkin and Besov 

spaces with an arbitrary number of parameters and prove the boundedness of singular 

integral operators on these spaces using discrete Littlewood–Paley theory and Calder ́n‟s 

identity. This is inspired by the work of discrete Littlewood–Paley analysis with two 

parameters of implicit dilations associated with the flag singular integrals recently 

developed by Han and Lu. We introduce new Triebel–Lizorkin and Besov Spaces 

associated with the different homogeneities of two singular integral operators. 

      We obtain a wavelet representation in (inhomogeneous) Besov spaces of generalized 

smoothness via interpolation techniques. We establish conditions on the parameters which 

are both necessary and sufficient in order that Besov and Triebel–Lizorkin spaces of 

generalized smoothness contain only regular distributions. 

      We characterize the Triebel-Lizorkin space  ̇   
      via a new square function 

           {∑    |
 

|        |
∫ [         ]  

 

 (     )

|

 

   

}

  ⁄

  

where      
                           and         ]. We show several 

equivalent characterizations of Sobolev spaces of even integer orders on     using the 

average 

        
 

|      |
∫       

 

      

  

of a function   over the ball                |     |     with      and   
       Let     and       ]  We show that the sequence                consisting 

of the differences between   and the ball average         characterizes the Besov space 

 ̇   
      with       ] and the Triebel–Lizorkin space  ̇   

       with       ] when 

the smoothness order           It is shown that           plays the same role as the 

approximation to the identity        appearing in the definitions of  ̇   
      and 

 ̇   
       

     We are concerned with the limited smoothness conditions in the spirit of Hörmander on 

the multi-linear and multi-parameter Coifman–Meyer type Fourier multipliers studied by 

   Muscalu, J. Pipher, T. Tao,    Thiele where they established the    estimates for the 

multiplier operators under the assumption that the multiplier has smoothness of 
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sufficiently large order. We study the duality theory of the multi-parameter Triebel-

Lizorkin spaces  ̇ 
        associated with the composition of two singular integral 

operators on    of different homogeneities. Such composition of two singular operators 

was considered by Phong and Stein in 1982. For        we establish the dual spaces 

of such spaces as   ̇ 
   

        ̇
  
          and for       we prove   ̇ 

   
       

    
           We then show the boundedness of the composition of two Calder ́n-

Zygmund singular integral operators with different homogeneities on the spaces 

    
     

  Surprisingly, such dual spaces are substantially different from those for the 

classical one-parameter Triebel-Lizorkin spaces  ̇ 
         We show that under the 

limited smoothness conditions, multi-parameter Fourier multiplier operators are bounded 

on multi-parameter Triebel–Lizorkin and Besov–Lipschitz spaces by the Littlewood–Paley 

decomposition and the strong maximal operator. 

      We compare Besov spaces     
   

 with zero classical smoothness and logarithmic 

smoothness   defined by using the Fourier transform with the corresponding spaces     
   

 

defined by means of the modulus of smoothness. With the help of limiting interpolation 

we determine the spaces obtained by iteration of approximation constructions. We work 

with Besov spaces     
   

 defined by means of differences, with zero classical smoothness 

and logarithmic smoothness with exponent    
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Chapter 1 

Developments in Theory and Characterizations of Besov Spaces 

   We show some recent developments of distributional Sobolev–Besov spaces and 

Sobolev–Besov spaces of measurable functions of positive smoothness which can be 

characterized in terms of differences. We discuss their (non) triviality under a Poincaré 

inequality.     

Section (1.1) Function Spaces Involving Differences 

   For        The classical Sobolev spaces   
      can be characterized as the 

collection of all       
   such that there exists a function         

   with 

|         |  |   |(         )                                         
Furthermore, 

‖ |  
     ‖  ‖ |    

  ‖      ‖ |    
  ‖                                              

where the infimum is taken over all   with (1). The idea of dealing with Sobolev spaces of 

first order in terms of pointwise inequalities goes back to Bojarski and Hajłasz [7, 26]. 

This approach has been extended afterwards by Bojarski and coauthors to higher-order 

Sobolev spaces. See [3, 4, 5, 6, 8, 25]. It is quite clear that pointwise estimates of type (1) 

and even more their counterparts for higher-order Sobolev spaces, usually defined as 

distributional spaces or spaces of measurable functions, require some care and 

justification. This new approach attracted a lot of attention. (1), (2) have been extended in 

[69] to spaces   
      with     and      . If        then   

      

  
      are the classical Sobolev spaces. If        , then   

      are no longer 

spaces of distributions, but of measurable functions. One may understand   
      as a 

proposal how the classical Sobolev spaces   
      can be extended naturally from 

       to         These pointwise characterizations can be used to have a new 

look at embedding assertions of Besov–Sobolev spaces in terms of differences, [30], limits 

of Besov norms and reformulations of some Gagliardo–Nirenberg inequalities, [61, 63]. 

We concentrate on definitions, explanations and assertions referring for proofs to the 

above mentioned. However, we wish to make this presentation accessible to a larger 

audience interested in function spaces and how the outlined specific topic is located 

within. 

   We introduce distributional function spaces and smoothness spaces of measurable 

functions. We recall some known relations. Deals with properties of the spaces  

  
                    , covering in particular the above-mentioned spaces 

  
                . Afterwards we apply these assertions to embeddings and to 

limits of Besov norms and to Gagliardo–Nirenberg inequalities. 

   Let   be the collection of all natural numbers and           Let    be Euclidean n-

space, where    . Put     , whereas   is the complex plane. Let       be the usual 

Schwartz space and        the space of all tempered distributions on   . Furthermore, 

    
  , with        is the standard complex quasi-Banach space with respect to the 

Lebesgue measure in   , quasi-normed by  

‖ |    
  ‖  .∫ |    | 

 

  

  /

  ⁄

                                                  

with the natural modification if      As usual   is the collection of all integers; and   , 

   , denotes the lattice of all points                  with     . Let   
  , 

   , be the set of all multi-indices, 



 

2 
 

                             | |  ∑  

 

   

                                                   

If          then 

 ̂                   ⁄  ∫      
 

  

                                                  

denotes the Fourier transform of  . As usual,      and    stand for the inverse Fourier 

transform, given by the right-hand side of (5) with i in place of –  . Here    stands for the 

scalar product in   . Both   and     are extended to   (  ) in the standard way. Let 

         with 

           | |                                 | |                                         
and let 

          
         

                                                
Since 

 ∑       

 

   

                                                                        

the   ‟s form a dyadic resolution of unity. The entire analytic functions (   ̂)
 
    make 

sense pointwise in    for any           
Definition (1.1.1) [74] Let          

  be the above dyadic resolution of unity. 

(i) Let 

                                                                     
Then     

      is the collection of all           such that 

‖ |    
     ‖

 
 4∑    

 

   

‖    ̂ 
 |    

  ‖
 
5

  ⁄

                                     

      (with the usual modification if      ). 

(ii) Let 

                                                                     
Then     

      is the collection of all          such that 

‖ |    
     ‖

 
 ‖4∑    

 

   

|    ̂ 
    |

 
5

  ⁄

|    
   ‖                             

     (with the usual modification if       
Remark (1.1.2) [74] The theory of these spaces may be found in [65, 66, 67]. The above 

spaces are independent of admitted resolutions of unity according to (5)–(8) (equivalent 

quasi-norms). This justifies our omission of the subscript   (in (10), (12)) in what follows. 

We remind a few special cases and properties referring for details to the above, especially 

to [67, Section 1.2]. 

(i)            Then 

    
       

                                                                     

is a well-known Littlewood–Paley theorem.  

(ii) Let       and     .Then 

  
          

                                                                    

      are the classical Sobolev spaces usually equivalently normed by 



 

3 
 

‖ |  
     ‖

 
 (∑ ‖    |    

  ‖
 

| |  

+

  ⁄

                                             

(iii) We denote by 

           
                                                                   

the H ̈lder–Zygmund spaces. Let 

   
                   (  

    )      
 (  

  )                                 
where               , be the iterated differences in   . Let        . Then 

‖ |      ‖     
    

|    |     | |  |  
     |                                                    

are equivalent norms in        (for the continuous representatives), where the                        

second supremum in (18) is taken over all      and      with   | |     
(iv) This assertion can be generalized to the spaces     

       with 

                      (   
 

(
 

 
  *   *                                             

as follows. Let      . Then 

‖ |    
     ‖

 
 ‖ |    

  ‖  .∫     
 

 

   
| |  

‖  
  |    

  ‖
   

 
/

  ⁄

                    

and 

‖ |    
     ‖

 

 
 ‖ |    

  ‖  .∫ | |   
 

| |  

‖  
  |    

  ‖
   

| | 
/

  ⁄

                

(with the natural modifications if      are equivalent quasi-norms in     
     . See 

[65, Theorem 2.5.12, p. 110]. The spaces     
      with         and     are the 

classical Besov spaces. 

   We deal with function spaces not only in the framework of distributions but also of 

Lebesgue-measurable functions in   . Let M (  ) be the collection of the equivalence 

classes of all almost everywhere finite complex-valued functions with respect to the 

Lebesgue measure in   . This linear space, furnished with the convergence in measure, 

can be converted into a complete metric space. A short description may be found in [60, p. 

19] see [43, Section I.5]. One may consider M (  ) as the largest space covering 

everything that will be treated of measurable functions including the definition of the 

spaces     
     ,   

      , and the convergence of series. It is the substitute of        of 

the distributional spaces according above. But for our purpose it is sufficient to remark 

that the convergence in the quasi-Banach space     
  ,        is stronger than in M 

(  ), [60, p. 19]. Let again   
      (  

  )   , with    ,          , and 

          be the iterated differences as introduced in (17). 

Definition (1.1.3) [74] (i) Let         and    . Let     with    .Then 

    
      is the collection of all       

   (or likewise           such that 

‖ |    
     ‖

 
 ‖ |    

  ‖  .∫     
 

 

   
| |  

‖  
  |    

  ‖
   

 
/

  ⁄

                    

      is finite (with the usual modification if    ). 

(ii) Let       and    . Let     with    . Then    
       is the collection of 

all       
   (or likewise           for which there exists a function       

   

with        a. e. such that for all      with   | |   , 



 

4 
 

| |  |  
     |  ∑       

 

   

                                                                   

Let 

                         ‖ |  
      ‖  ‖ |    

  ‖      ‖ |    
  ‖                                           

      where the infimum is taken over all   with (23). 

(iii) Let       and    . Then 

  
        

                                                                      

Remark (1.1.4) [74] The spaces     
      have some history, when             . 

The study for all admitteds,   and   goes back to [57], relevant comments and references 

may be found in [67, pp. 387–389]. See [1, Chapter 5, Definition 4.3] and [15, Chapter 2, 

Section 10]. An approach including atomic and quarkonial characterizations is given in 

[29, 31, 49], see also [52, 71].     
      are quasi-Banach spaces which are independent 

of     with     (equivalent quasi-norms). The equivalence of (20) and (21) can be 

extended to the spaces     
      by the same arguments as in [65, Theorem 2.5.12, p. 

110]. In other words, if         and        , then  

‖ |    
     ‖

 

 

 
 ‖ |    

  ‖  .∫ | |   
 

| |  

‖  
  |    

  ‖
   

| | 
/

  ⁄

                

is an equivalent quasi-norm in     
     . By (19), (20) one has 

    
          

                                                                     
(appropriately interpreted). Recall that all spaces in the above definition must be 

understood of      , hence in terms of equivalence classes, especially 

  
           

                                                                  

This applies to (23) for any fixed      with   | |   . We remark that   
       are 

quasi-Banach spaces. Related arguments may be found in [69, p. 73] which will not be 

repeated here. It is sufficient to restrict (1) to           with |   |     Then it 

follows from the above definition that  

  
        

                                                              

We complement the spaces     
      by the corresponding spaces     

     . 

   Let       be two complex quasi-Banach spaces with       (continuous embedding). 

Let       and        Then            are the usual real interpolation spaces, 

quasi-normed by 

‖ |          ‖    4∫         
        
     

 ‖  |  ‖   ‖  |  ‖ 
 

 

 

  

 
5

  ⁄

                 

(with the usual modification if     . Basic information may be found in [2, 62]. Let 

         with     be the Lipschitz spaces consisting of all       
   such that 

‖ |        ‖     
    

|    |     | |  |  
     |                                               

is finite, where the second supremum is taken over all      and all      with 

  | |   . See [69, p. 73] where one finds some discussion about these spaces and 

equivalent norms. Recall that the near by H ̈lder–Zygmund spaces        according to 

(16) can be normed by (18). As usual,           , collects all functions   having 

bounded classical derivatives     with | |   , normed by 



 

5 
 

‖ |      ‖  ∑    
    

|      |

| |  

                                                               

It is well known that for    , 

                                                                             
and 

                                                                                          
One may consult [69, p. 75] and [68, pp. 170–172] as far as (34) with     is concerned. 

This can be extended to    . As before “   ” indicates continuous embeddings. 

Theorem (1.1.5) [74] 

(i) Let         and        Then 

           
        

           
                                                       

(ii) Let         ,              and        Then 

(    
     

      )
   

     
                                                           

(iii) Let     and        Then 

  
        

                                                                       
Furthermore, 

  
                                                                     

Remark (1.1.6) [74] This coincides essentially with the main theorem in [69], where one 

finds detailed proofs. The most complicated assertion of the above theorem is the left-hand 

side of (35). Its proof is based on subatomic decompositions of     
       Afterwards one can 

reduce (36) to the reiteration theorem of interpolation theory and the remarkable formula 

(    
        

     )
    

      
                                                                 

where              ]     and      . See [18, Theorem 6.3, p. 859] and the 

related comments in [68, pp. 373–374] and [69, p. 74]. 

Remark (1.1.7) [74] The assertion (37) extends (29), and hence (1), (2), from     to 

   . This will be used later on. One obtains (38) from (23)–(25) and (34). Recently 

Bojarski proved in [5] that (37) remains valid if one replaces (23) by 

|  
     |  |   | (         )              

                  

where           and         This is the direct generalization of (1), (2). 

   The spaces     
      according to Definition (1.1.3) (i) are independent of     with 

   . We have no assertion of this type for the spaces   
       introduced in Definition 

(1.1.3) (ii). 

Problem (1.1.8) [74] Let       and    . The question arises whether the spaces 

  
       depend on     if    . 

Remark (1.1.9) [74] If      then it follows from Definition (1.1.3) and from (16), (18) 

that 
  
           

          
                                            

It is not clear whether assertions of this type can be extended to      Based on (23), 

(24) there is a temptation to ask whether   
       with       and         

coincides with     
       But it will be seen below that in general this is not the case and 

that there is a more promising candidate. 

   We complement the spaces     
       according to Definition (1.1.3) (i) by their  -

counterparts. Let       
   with       and let (  

  )    be the differences as 

introduced in (17). Let 



 

6 
 

    
       .   ∫ |(  

  )   |
 
  

 

| |  

/

  ⁄

                              

be the related local means. Let             and        . Then 

    
       is the collection of all       

   (or likewise          such that 

‖ |    
     ‖

 
 ‖ |    

  ‖  ‖.∫         
      

  

 

 

 

/

   

|    
  ‖                   

is finite, where  

‖ |    
     ‖

 
 ‖ |    

  ‖  ‖    
     

       
     |    

   ‖                         

The theory of these spaces has been developed in [67, Chapter 9], [53, 54], and 

complemented in [69]. They are independent of     with    . Of interest for us are 

the embeddings 

           
          

                  
                                                

for                , see [53] (extending the well-known result [65, 

Proposition 2.3.2/2] to spaces of type     
  and     

    and 

    
          

                                                      

Here     
      are the distributional spaces according to Definition (1.1.1) (ii) and    has 

the same meaning as in (19).     
      is smaller than     

     According to [69, (4.7), 

p. 80], the right-hand side of (35) can be strengthened by 

  
           

                                                  
This suggests complementing Problem (1.1.8) and Remark (1.1.9) as follows. 

Problem (1.1.10) [74] Let       and    . The question arises whether 

  
           

                                                                       

Remark (1.1.11) [74] A first affirmative answer was given by Yang who proved in [72, 

Corollary 1.3, p. 686] that 

  
           

          
                                           

where the second equality is covered by (46). In this context we mention also the 

remarkable observation in [38], 

  
        

          
      

 

   
                                        

(Hardy–Sobolev spaces). Both (49) and (50) have been extended substantially in [39, 40]. 

   We deal with necessary and sufficient conditions for the Sobolev-type embeddings 

    
          

             
 

 
  

 

 
                                              

where                  , employing (37), based on (23)–(25). First we fix 

an easy consequence of (25). Recall that we normed the classical Sobolev spaces   
      

with            according to (15). 

Proposition (1.1.12) [74] Let       and    . Then 

(i) the norms 

‖ |  
     ‖  ‖ |    

  ‖     
  | |  

| |  ‖  
  |    

  ‖                               

are equivalent in   
       

(ii) the seminorms 

∑ ‖   |    
  ‖     

        
| |  ‖  

  |    
  ‖

| |  

                                       



 

7 
 

are equivalent in   
       

Theorem (1.1.13) [74] Let                   and     with         

      The following assertions are equivalent. 

(i)     
          

    

(ii)        
(iii) For all     ,     with       there is a constant          such that 

‖ |    
  ‖     

  | |  
| |  ‖  

  |    
  ‖

  ‖ |    
  ‖   .∫ | |       

 

  | |  

‖  
  |    

  ‖
   

| | 
/

  ⁄

              

for all       ) (with the usual modification if       
(iv) For all     ,     with       there is a constant          such that 

   
| |  

| |  ‖  
  |    

  ‖   .∫ | |       
 

| |  

‖  
  |    

  ‖
   

| | 
/

  ⁄

                

for all         (with the usual modification if       
Remark (1.1.14) [74] This is the main assertion of [30]. The equivalence of (i) and (ii) is 

well known and covered, for instance, by [68, Theorem 11.4, p. 170], based on [55]. 

Corresponding assertion for     
      can be found in [29] and, in case of         

and    , in [1, Chapter 5, Theorem 4.6, Corollaries 4.20, 4.21], [24] and [36]. Roughly 

speaking, one lifts (i) to the level of Sobolev spaces, hence 

    
          

                                                                

and applies Proposition (1.1.12) (i). But the details require some effort. Part (iv) is a 

homogeneity assertion similarly as (53). 

   In the homogeneous case (and dealing with generalized moduli of smoothness) there are 

related results in [59, Theorem 2.4]. Moreover, assertions of type (iii) and (iv) can also be 

regarded as inequalities of Ul‟yanov type referring to the first observation of this kind 

[70]; for more recent works (in the periodic case) see [19, 58]. 

   Dealing with spaces of generalized smoothness, sharp (limiting) embeddings were 

studied in some detail in [12, 14] with forerunners in [11, 13, 47]; see also [42, Theorem 

D.4.1.7]. The most general result may be found in [27], but this only concerns criteria in 

the sense of (i) and (ii). Though characterizations of such spaces by differences, the full 

counterpart of Theorem (1.1.13) as presented above has apparently not yet been obtained. 

   We describe two further applications of the above considerations. we deal with limits of 

Besov norms and in the following we deal with some related aspects of Gagliardo–

Nirenberg inequalities.  

    Let      . Then it had been observed in [9, 10] that there is some constant     

such that 

   
   

     ∫
|         | 

|   |    
    

 

   

  ∫ |     | 
 

  

                                

for all          Limiting assertions of this type attracted afterwards some attention. A 

few references will be given later on. Otherwise we follow [63] where we applied the 

above theory to problems of this type. Recall that the spaces     
      can be quasi-

normed by (22) and (26), in analogy to (20), (21). Let   
      be the Sobolev spaces 

according to (25) with (37) if        Let 

            
| |  

‖  
  |    

  ‖                                  



 

8 
 

be the usual moduli of continuity. 

Proposition (1.1.15) [74] (i) Let       and    . Then there is a constant     

such that for all   with       and all   with        

‖ |    
     ‖

 
  (      )

   ⁄
‖ |  

     ‖
 
                                         

(with 1 in place of                       
(ii) Let       and     . Let      

       Then             is continuous on the 

interval (0,1] and can be extended continuously to the closed interval [0,1] with 

   
   

               
     

                
   

                                           

   Recall again that ‖ |    
     ‖

 
 is given by (22). 

Theorem (1.1.16) [74] (i) Let             and    . Let      
       Then 

   
   

       ⁄ ‖ |    
     ‖

 
     ⁄    

   
                                               

(ii) Let               and     . Then there are positive equivalence constants 

which are independent of   and      
       (but may depend on    ) such that 

   
   

       ⁄ ‖ |    
     ‖

 
     ⁄ ∑ ‖   |    

  ‖
| |  

                                  

Remark (1.1.17) [74] We refer to [63]. From 

   
   

     ‖ |    
  ‖      

   
     ∫       

 
      

  

 

 

 

                           

it follows that one can replace (61) by the more handsome homogeneous version 

   
   

       ⁄ .∫       
 
      

  

 

 

 

/

  ⁄

     ⁄    
   

                                  

This is also the basis to prove (62) which can be rewritten as 

   
   

       ⁄ .∫       
 
      

  

 

 

 

/

  ⁄

      ⁄ ∑ ‖   |    
  ‖

| |  

                     

   Gagliardo–Nirenberg inequalities go back to [22, 50]. In 1959, Nirenberg proved in [50, 

Theorem, p. 125] that for              and     with      

∑ ‖   |    
  ‖

| |  

  ‖ |    
  ‖   ( ∑ ‖   |    

  ‖
| |  

+

 

                         

for smooth functions   in    with compact support, where  

  
 

 
       

 

 
  (  

 

 
*  

 

 
                                            

(with some additional conditions in limiting cases). Here           where     
   

with          refers to the H ̈lder spaces        (an ingenious notation but not in 

common use nowadays). In the same year, 1959, Gagliardo published in [22] inequalities 

which are equivalent to Nirenberg‟s observation, but formulated differently. The assertion 

(66) with (67) is dimension balanced (differential dimensions on both sides of (67)). This 

suggests formulating assertions of type (66) preferably in terms of homogeneous (semi-) 

norms. Gagliardo–Nirenberg inequalities, sometimes also called refined Sobolev 

embeddings, attracted a lot of attention up to our time. We contributed to this topic in [61] 

and [64, Chapter 4]. We formulate essentially only one assertion which is directly related 

to (66), (67) and to the above considerations, especially (53). Recall that the H ̈lder–

Zygmund spaces           , can be normed according to (18). 
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Theorem (1.1.18) [74] Let                 and 

  
 

 
         

 

 
  (  

 

 
*                                                   

Then there is a constant     such that for all     
          

    

   
         

    

| |  |  
     |   ‖ |    

  ‖   ( ∑ ‖   |    
  ‖

| |  

+

 

 ‖ |    
  ‖      

        
 

| |    ‖  
  |    

  ‖
 
                                          

From 

    
  

 
 

  
 
 
 
 
 

                                                               

and 

     
 

 
  (

 

 
 
 

 
*     

 

 
      

 

 
                                   

it follows that (69) fits in the usual scheme of Gagliardo–Nirenberg inequalities. The 

equivalence in (69) comes form (53). Otherwise the above theorem coincides essentially 

with [61, Remark 3.7] where it is a comment on Gagliardo–Nirenberg inequalities. See 

[35, 41, 51]. 

Section (1.2) Triebel-Lizorkin Spaces on Metric Measure Spaces 

    For       a metric space and   be a regular Borel measure on   such that all balls 

defined by   have finite and positive measures, and assume that   satisfies a doubling 

property: there exist constants      and     such that for all             and 

           
              

            
   The following definition of Besov spaces from [23]. 

Definition (1.2.1) [95] Let         and         ]  The homogeneous Besov space 

 ̇   
      is defined to be the collection of all       

 
    such that 

 

   
 ̇   
     

 (∫ 4∫ ∫ |         |            

 

      

 

 

5

   

 
  

     
 

 

 

,

   

      

with the usual modification made when     or      
   Above,       

 
    requires that         for each ball    

   Observe that functions in  ̇   
      have the smoothness of order s as measured by 

   .∫ |         |       
 

      

/

   

 

   Recall that, there are several ways to measure the smoothness of functions. For example, 

letting   [       [   ] and          for all measurable functions    set 

  
             .∫ |         |       

 

      

/
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             .∫ |             |

 
      

 

      

/

 
 

  
 

  
             .   

   
∫ |      |       

 

      

/

 
 

  
 

  
                     

       
   .   

   
∫ |      |       

 

      

/

   

  

for all     and          
   We show that the smoothness of functions in Besov, spaces can be measured by the 

above quantatives with optimal parameters. We introduce the following spaces of Besov 

type. In what follows, we denote by  ⃗    the operator that maps each       
     into a 

measurable function  ⃗       on         defined by  ⃗             ≡   
           for all 

    and          We define  ⃗      ⃗    and   ⃗     . 

Definition (1.2.2) [95] Let             [   ] and         ]  For  ⃗⃗   ⃗     ⃗      ⃗    

or   ⃗      the homogeneous space  ⃗⃗ ̇       of Besov type is defined to be the collection of 

all       
     such that 

                               ‖ ‖ ⃗⃗ ̇           (∫ ‖ ⃗⃗         ‖
     

  

 

  

 
)
    

    

with the usual modification made when     or      
   For our convenience, for         and       ]  we always set 

                                       {
                        ⁄⁄

                                      ⁄  
                                                

Definition (1.2.3) [95] Let         and let   be a measurable function on    A 

sequence of nonnegative measurable functions,  ⃗            is called a fractional s-

Hajłasz gradient of   if there exists     with        such that for all     and 

        satisfying                 , 

|         |  [      ] [           ]  
Denote by        the collection of all fractional  -Hajłasz gradients of    
   In fact,  ⃗           , above is not really a gradient. One should view it, in the 

Euclidean setting (at least when       for all    ), as a maximal function of the usual 

gradient. 

   The characterizes the Besov spaces in Definition (1.2.1) via the fractional Hajłasz 

gradient. In what follows, for         ] and a sequence  ⃗           of nonnegative 

functions, we always write ‖{  }    
‖
  
  {∑ |  |

 

   }
  ⁄

 when     and ‖{  }    
‖
  

 

       |  |, ‖{  }    
‖
  (     )

 ‖,‖  ‖     
-
    

‖
  
  

Definition (1.2.4) [95] Let         and         ]  The homogeneous Hajłasz-Besov 

space  ̇   
     is the space of all measurable functions   such that 

‖ ‖ ̇   
         

 ⃗⃗      
‖ ⃗‖  (     )     

   Theorem (1.2.6) and (i) through (iv) of Theorem (1.2.5) follow from Theorem (1.2.12) 

below, whose proof relies on an inequality of Poincaré type established in Lemma (1.2.7) 

and a pointwise inequality given by Lemma (1.2.10). The proof of (v) through (vii) of 

Theorem (1.2.5) will be given at the end. 
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   We state the corresponding results for Triebel-Lizorkin spaces (see Theorem (1.2.16)). 

As a special case, we also establish the equivalence between Hajłasz-Sobolev spaces and 

the Sobolev type spaces of Calderón and DeVore-Sharpley (see Corollary (1.2.18)). 

   Applying the above characterizations, we prove the triviality of Besov and Triebel-

Lizorkin spaces under a suitable Poincaré inequality (see Theorem (1.2.19) and Theorem 

(1.2.20)), and also give some examples of nontrivial Besov and Triebel-Lizorkin spaces to 

show the “necessity” of such a Poincaré inequality (see Theorem (1.2.21)). 

   The notation     or     means that       If     and      we then write 

     For two spaces   and   endowed with (semi-) norms, the notation     means 

that     implies that     and ‖ ‖  ‖ ‖ , and the notation     means that 

    and      Denote by   the set of integers and   the set of positive integers. For 

any locally integrable function    we denote by ∫     
 

 
 the average of   on    namely, 

∫     
 

 
   

 

    
 ∫     

 

 
  

Theorem (1.2.5) [95] Let         and         ]  

(i) If       ]  then  ̇   
       ⃗    ̇   

      

(ii) If              then  ̇   
       ⃗    ̇   

      

(iii) If   [     and              then  ̇   
       ⃗      ̇   

      

(iv) If             ] and              then  ̇   
      ⃗    ̇   

      

Moreover, the ranges of   and   above are optimal in the following sense.  

(v) Let                   and          Then there exists a function   such that for 

all       ]    ̇   
       but       

     , and hence, for  ⃗⃗   ⃗      ⃗    or  

 ⃗         ⃗⃗ ̇   
         

(vi) Let                 and                      Then there exists a 

function   such that for all       ]    ̇   
       but    ⃗    ̇     

       

(vii) Let         and          Then there exists a function    ̇   
       with 

   ⃗      ̇     
    

   It is natural and necessary to consider the full range of   due to the nontrivial example of 

nontrivial Besov spaces  ̇      ⁄⁄
      for all         given by Theorem (1.2.21). 

   A fractional pointwise gradient was introduced in [40] to measure the smoothness of 

functions. 

Theorem (1.2.6) [95] Let         and         ]  Then   ̇   
      ̇   

     . 

   Under the additional assumptions that µ also satisfies a reverse doubling condition,  

    and            ̇   
     also allows for a kernel function characterization [90]. 

Proofs of Theorem (1.2.5) and Theorem (1.2.6) 

We begin with a Poincaré type inequality. 

Lemma (1.2.7) [95] Let         and            Then for every pair of            
with       there exists a positive constant   such that for all           measurable 

functions   and  ⃗         
 

   
   

.∫ |      |          
 

 (     )

/

      ⁄

      
  
∑         

  2∫ [     ]
 
     

 

          

3

  ⁄

     

 

where       is as in (72). 

   Recall that when       ] and       Lemma (1.2.7) was established in [40, Lemma 

2.3]. Generally, Lemma (1.2.7) can be proved by an argument similar to that of [40, 
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Lemma 2.3] with the aid of the following variant of [85, Theorem 8.7]. In what follows, 

for every         and measurable function   on    a non-negative function   is called 

an s gradient of   if there exists a set     with        such that for all              
|         |  [      ] [         ]                                                

Denote by       the collection of all s-gradients of  .  

Lemma (1.2.8) [95] Let                   and let       be as in (72). Then there 

exists a positive constant   such that for all              and all measurable 

functions   and          
 

   
     

4 ∫ |      |          

 

      

5

      ⁄

    8 ∫ [     ]
 
     

 

       

9

  ⁄

  

   When       ]  since    is also a distance on    Lemma (1.2.8) follows from [85, 

Theorem 8.7]. When          with       in mind, checking the proof of [85, 

Theorem 8.7] line by line, we still have Lemma (1.2.8). 

   We still need the following pointwise inequality, which is a variant of the pointwise 

inequality established in [40, (5.7)]. 

Lemma (1.2.9) [95] For every real-valued measurable function    there exists a 

measurable set     with        such that for all        
                        . 

   Lemma (1.2.9) was proved in [79, Lemma 2.2] for       and the very same argument 

gives Lemma (1.2.9). 

Lemma (1.2.10) [95] Let          Then there exists a positive constant   such that, for 

each function       
      one can find a set   with        so that for each pair of 

points         with        [            
|         | 
 

  ∑ {      
     

64 ∫ |      |   

 

 (     )

57

  ⁄

 
     

       
         

6 ∫ |      |   

 

 (     )

7

  ⁄

}

 

      

   To prove Lemma (1.2.10), we need Lemma (1.2.9) above. In what follows, for a real 

valued measurable function   and a ball    define the median value of   on   by 

          {                    
    

 
}                           

Proof. Let   be a real-valued measurable function and   be the set given by Lemma 

(1.2.9). Then for all        by Lemma (1.2.9),         
                  and 

hence 

|             
    |  ∑|        

             
      |

   

  ∑*|        
              |  |        

                |+  

   

 

where           is a real number such that 
 

∫ |       (     )|
 
          

   
∫ |      |       

 

        

 

 (     )

 

We claim that for every ball   and each      
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|       |   { ∫|      |      

 

 

}

  ⁄

                                          

Assume that this claim holds for a moment. We have 

|  ( (   
  ))    (     )|  8 ∫ |       (     )|

 
     

 

 (     )

9

  ⁄

 

 

       
     

8 ∫ |      |      

 

 (     )

9

  ⁄

                   

and 

|  ( (   
    ))    (     )|  8 ∫ |       (     )|

 
  

 

 (        )

9

  ⁄

 

 

 8 ∫ |       (     )|
 
  

 

 (     )

9

  ⁄

     
     

8 ∫ |      |   

 

 (     )

9

  ⁄

             

Therefore, 

|             
    |  ∑      

     
8 ∫ |      |      

 

 (    )

9

  ⁄

   

                      

 

     For         with                 , we write  

|         |  |       (     
   )|  |  (     

     )    (       )|  

     |                    
    |  |             

    |. 

By an argument similar to that of (78), we have 

|                    
    |        

     
8 ∫ |      |   

 

 (       )

9

  ⁄

  

which together with (79) and (77) gives (74). 

   Now we prove the claim (76). For every ball   and each      observing that         
          and recalling that |     |   | |    as proved in [79, Lemma 2.1], we have 

|        |   |   |    . By this, (76) is reduced to 

 |   |    { ∫|      |      

 

 

}

  ⁄

                                             

To see this, letting   ∫ |      |   
 

 
, by Chebyshev‟s inequality, for every      we 

have     

 ({    |      |        ⁄ })         |      |      

       ∫|      |    
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 which yields that 

 ({    |      |        ⁄ })  
    

 
 

and hence by (75),  |   |          ⁄ . Then letting      we obtain (80) and hence 

prove the claim (76). This finishes the proof of Lemma (1.2.10). 

    We also use the following lemma. 

Lemma (1.2.11) [95] Let             [   ] and         ]  Let  ⃗⃗   ⃗     ⃗      ⃗    

or   ⃗     . Then for each measurable function    

‖ ‖ ⃗⃗ ̇       ‖{ ⃗⃗          }
   

‖
  (     )

                                            

Proof. Observe that  ⃗⃗          ⃗⃗             for all             ] and      
from which (81) follows by a simple computation. This finishes the proof of Lemma 

(1.2.11). 

   With the aid of Lemma (1.2.7), Lemma (1.2.10) and Lemma (1.2.11), we obtain the 

following result, which, together with the fact  ⃗    ̇        ̇      , implies Theorem 

(1.2.6) and (i) through (iv) of Theorem (1.2.5). 

Theorem (1.2.12) [95] Let         and         ]  

(i) If       ]  then  ̇   
       ⃗    ̇        

(ii) If              then  ̇   
       ⃗    ̇        

(iii) If    [     and               then  ̇   
       ⃗      ̇        

(iv) If             ] and               then  ̇   
       ⃗    ̇        

Proof. First, notice that if         then  

          
     

                                                               

Indeed, suppose that diam      Fix a ball             By our assumptions on    we 

have                Notice that for any      with             , by the doubling 

property and                           we have 

 ( (   
 

 
        )*      

      ( (            ))      
      (        ). 

Let               Since  (   
 

 
        *              we have 

      (        )  [      
     ] (        )  

Repeating this procedure for   times, we can find      and      such that 

                              (        )  [      
     ] (            ) 

         [      
     ] (        )  

which tends to infinity as      This is a contradiction. Thus diam      
   Assume that                    for some       Observe that 

‖ ‖ ⃗⃗ ̇       4 ∑ ‖ ⃗⃗          ‖
     

 

      

5

  ⁄

 

and that for any  ⃗       , we can always take      for         Because of this, 

the proof of Theorem (1.2.6) for the case        is a slight modification of that for the 

case        below. In what follows, we only consider the case         
     We first prove (ii) and (iii). Observing that 
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for all         and      we have  ⃗      ̇        ⃗    ̇      . So it suffices to prove 

that  ⃗    ̇        ̇   
      ⃗      ̇        

   To prove  ⃗    ̇        ̇   
    , let    ⃗    ̇       and   with        be as in 

Lemma (1.2.10). By Lemma (1.2.10), it is easy to see that for          and        
[               

|         |   [      ] ∑        [ 
   
           

   
         ] 

     

                  

For      set 

   ∑        

     

 
   
                                                                  

Then  ⃗                 modulo a fixed constant and it is easy to check that 

‖ ⃗‖  (     )  ‖{ 
   
      }

   
‖
  (     )

; 

see the proof of [40, Theorem 2.1] for details. So, by Lemma (1.2.11),    ̇   
     and 

‖ ‖ ̇   
     ‖ ⃗‖  (     )  ‖{ 

   
      }

   
‖
  (     )

 ‖ ‖ ⃗     ̇                         

This leads to  ⃗    ̇        ̇   
    . 

     To prove that  ̇   
      ⃗      ̇      , since        , we can choose          and 

        such that       
            ⁄   We also let            and      

                    For given    ̇   
    , take  ⃗        with ‖ ⃗‖  (     )  

 ‖ ‖ ̇   
    . Set 

      
   
∑    

   

   

   

for      Then  ⃗⃗                          
   
   for any      and moreover, it is 

easy to check 

‖ ⃗⃗‖
  (     )

 ‖ ⃗‖  (     )  ‖ ‖ ̇   
                                                

see the proof of [40, Theorem 2.1] for details. Then by Lemma (1.2.7), for all     and 

     

 
   
             .   

   
∫ |      | 

 

 (     )

     /

  ⁄

 

 

                              .   
   

∫ |      |         ⁄
 

 (     )

     /

         ⁄

 

 

                                  
  

∑        
   

     

.∫ [     ]
 

 

 (       )

     /

  ⁄

 

 

                                  ∑           
   

     

.∫ [     ]
 

 

 (       )

     /

  ⁄

 

                                                  ∑           
   

               

               ∑           
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Here and in what follows   denotes the Hardy-Littlewood maximal operator and 

      [ (| | )]
  ⁄

 for all       
      and            Thus for all      

 
   
                      

   
        

   
          

    
   

                   
   
                                                     

So, by the    ⁄     boundedness of  , Lemma (1.2.11) and (87), we have   

 ⃗      ̇       and 

   ‖ ‖ ⃗      ̇        ‖{ 
   
        }

   
‖
  (     )

 

 ‖           ‖  (     )  ‖ ⃗⃗‖
  (     )

 ‖ ‖ ̇   
     

This yields  ̇   
      ⃗      ̇       and thus finishes the proofs of (ii) and (iii). 

   Now we prove (i). Since  

  
            

                                                                      

for all         and      we have  ⃗    ̇        ⃗    ̇      , and hence by (ii), 

 ⃗    ̇        ̇   
      So we only need to show that  ̇   

      ⃗    ̇        For given 

   ̇   
      take  ⃗        with ‖ ⃗‖  (     )   ‖ ‖ ̇   

      Then by Lemma (1.2.7), 

for all      

 
   
             4∑

 

         
   

∫ |         | 
 

 (     )  (       )⁄

     5

  ⁄

 

 

     4 ∑      

     

∫ ([     ]
 
 [     ]

 
)

 

 (     )

     5

  ⁄

 

 

                         4 ∑          

     

[     ]
 
 ∑          

     

∫ [     ]
 
     

 

 (     )

5

  ⁄

  

If      then when          applying the H ̈lder inequality, we have 

 
   
          4∑         

   

[  (  )   ]
 
5

  ⁄

 ∑         ⁄

   

  (  )   4∑              ⁄

   

5

      ⁄

 ∑         ⁄

   

  (  )                                                                                                   

and when   [      by         

 
   
          ∑        

   

  (  )     

From this, it is easy to deduce that 

‖{ 
   
      }

   
‖
  (     )

 ‖           ‖  (     )  
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By this, the    ⁄    -boundedness of   and Lemma (1.2.11), we have    ⃗    ̇       

and 

‖ ‖ ⃗    ̇      
 ‖{ 

   
      }

   
‖
  (     )

 ‖ ⃗‖  (     )  ‖ ‖ ̇   
      

If      then 

‖ ‖ ⃗    ̇       {∑4∫ ∑         

   

[     ]
 
     

 

 

5

  ⁄

   

}

  ⁄

 {∑4∫ ∑         

   

∫ [     ]
 
          

 

 (     )

 

 

5

  ⁄

   

}

  ⁄

 {∑4∫ ∑         

   

[     ]
 
     

 

 

5

  ⁄

   

}

  ⁄

 ‖ ⃗‖  (     )  ‖ ‖ ̇   
      

This gives  ̇   
      ⃗    ̇       and thus finishes the proof of (i).  

    Finally, we prove (iv). Trivially,  

  
            

                                                                     

for all     and          which implies that  ⃗    ̇        ⃗    ̇         On the other 

hand, since           and        , we can find                   ). Notice 

that, for any      by the Minkowski inequality and the H ̈lder inequality, 
 

4∫ |         |
   

      

     5

   ⁄

 4∫ |   | 
 

 

      

     5

   ⁄

 |         |            

 

                                 4∫ |   | 
 

 

      

     5

   ⁄

  

which together with the H ̈lder inequality again implies that 

  
            

    
          

    
                                                    

for all       
         and          Then  ⃗   

 
 ̇        ⃗    ̇        Recall that we 

have proved that  ⃗   
 
 ̇        ̇   

      ̇   
      ⃗    ̇        So we obtain (iv). The 

proof of Theorem (1.2.12) is finished. 

   One can derive the following inequality from the proof of (88).  

Corollary (1.2.13) [95] For                             and           there exist 

    satisfying           and constant   such that for all       
         and 

     

 
   
                 4 ∑  

   
      

   

     

5                                          

Proof. If       then (94) is trivial or follows from the H ̈lder inequality. If       then 

we employ the argument for (88) with the special choice     
   
    

    for all         

   We close by proving the optimality of the ranges of   and   in Theorem (1.2.5).  
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Proofs of (v) though (vii) of Theorem (72). (v) For          define  

      | |                            

We first claim that     ̇   
      when              To see this, for      we set 

         | |              

and, for      we set 

         | |    (       )            | |             (       )     

Then it is easy to check that  ⃗  {  }           modulo a fixed constant. Moreover, 

since       for      we have that 

‖  ‖      

 
 ∫     | |     

 

      

       

and for      

  ‖  ‖      

 
 ∫     | |     

 

 (       )

 ∫          | |         
 

        (       )

 

   [                     
Observing that         and recalling that      we have ‖ ⃗‖              which 

is as desired. Now, taking       and noticing                    we have 

    ̇   
      and hence by Theorem (1.2.6),     ̇   

       This yields (v) since 

       
       

(vi) Let        Since          as shown in (v),     ̇   
       Let us check that 

‖  ‖ ⃗    ̇     
      Indeed, if     | |       then                 and for all 

            
| |      ⁄           ⁄       | |    

which implies that |         |         | |    and hence by       

∫ |         |  
 

      

   ∫ |    |  
 

      ⁄  

      

Therefore 

‖ ‖ ⃗    ̇     
   {∫ .∫ |         |  

 

      

  /

  ⁄ 

      ⁄         ⁄  

  }

  ⁄

   

   

as desired. This gives (vi). 

    (vii) Let         and                and define 

     | |  (   
 

| |
*
 

                          

We claim that    ̇   
     . To see this, similarly to (v), for      we set  

         | |  (   
 

| |
*
 

            

and for      we set 

         | |  (   
 

| |
*
 

  (       )
            | |    (   

 

| |
*
 

         (       )
     

Then  ⃗  {  }           modulo a fixed constant. Since         and        

we have that 
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           ∑   ‖  ‖      

 

   

 ∑∫     | |   (   
 

| |
*
  

  
 

 (       )   

 

                        ∑∫          | |       (   
 

| |
*
  

   
 

        (       )   

 ∫ | |       (   
 

| |
*
  

  
 

      

 ∫(   
 

 
*
    

 

 

 

    

and that 

           ∑   ‖  ‖      

 

   

 ∫ | |       (   
 

| |
*
  

  
 

      

    

Thus    ̇   
       On the other hand, for any            and all   | |  

  
            | |  .   

   
∫ |      | 

 

    | | 

  /

  ⁄

   | |   .∫ |          |
 

 

    | | 

  /

  ⁄

  

where may choose        | |   Moreover, up to a rotation, we can assume that 

    |  | | |  Observe that if |  |  | |  then for         | |         | |     
|          |  |            |        

Moreover, if |  |  | |  then for          | |                | |     
                     |          |  |            |        
Hence by       | |           | |        | |  and          we have  

  
            | |    (   

 

| |
*
 

 | |   ⁄ (   
 

| |
*
 

  

from which together with          it follows that 

‖ ‖
 ⃗      ̇     

   

 
 ∑‖ 

   
        ‖

  ( (       ))

 

   

 ∑∫ | |  (   
 

| |
*
   

 (       )

  

   

 ∫ | |  (   
 

| |
*
     

      

   ∫ (   
 

 
*
      

 

  ⁄

 

    

The proof of Theorem (1.2.12) is finished. 

   In what follows, for         ] and a sequence  ⃗ of measurable functions, we set 

‖ ⃗‖         ‖‖ ⃗‖  ‖       

Definition (1.2.14) [95] Let         and         ]  The homogeneous Hajłasz-

Triebel Lizorkin space  ̇   
     is the space of all measurable functions   such that 

‖ ‖ ̇   
        where when         or        

             

‖ ‖ ̇   
        

 ⃗⃗      
‖ ⃗‖          

and when     and          
 
 

‖ ‖ ̇   
        

 ⃗⃗      
   
   

   
   

8∑∫ [     ]
 

 

        

     

   

9

  ⁄
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Definition (1.2.15) [95] Let             [   ] and         ]  For  ⃗⃗   ⃗     ⃗      ⃗    

or   ⃗      the homogeneous space  ⃗⃗ ̇       of Triebel-Lizorkin type is defined to be the 

collection of all       
     such that ‖ ‖ ⃗⃗ ̇          where when           

‖ ‖ ⃗⃗ ̇       ‖.∫ [ ⃗⃗        ]
   

 

 

 

/

  ⁄

‖

     

 

with the usual modification made when      and when     and           

‖ ‖ ⃗⃗ ̇          
   

   
   

.∫ ∫ [ ⃗⃗        ]
 
     

  

 

 

      

 

 

/

  ⁄

 

and when       ‖ ‖ ⃗⃗ ̇       ‖ ‖
 ⃗⃗ ̇̇      

  

Theorem (1.2.16) [95] Let           and           ]  Let               

(i) If          then  ̇   
       ⃗    ̇        

(ii) If              then  ̇   
       ⃗    ̇        

(iii) If   [     and               then  ̇   
       ⃗      ̇        

(iv) If             ] and               then  ̇   
       ⃗    ̇        

Proof. The proof of Theorem (1.2.16) is similar to that of Theorem (1.2.12). We only 

sketch it. By (83), we have  ⃗      ̇        ⃗    ̇        

   For    ⃗    ̇        by taking  ⃗          as in (85), similarly to (86), we can show 

that ‖ ‖ ̇   
     ‖ ‖ ⃗     ̇         Hence,  ⃗    ̇        ̇   

      

   The result  ̇   
       ⃗      ̇       follows from an argument similar to that   ̇   

     

 ⃗      ̇       where the inequality (89) plays an important role. The restriction   

          ensures the existence of          and          such that            
Moreover, by          we can use the Fefferman-Stein maximal inequality (see [81]) to 

obtain 

‖           ‖         ‖ ⃗⃗‖
        

  

This gives (ii) and (iii).  

       For (i), by (90), we have  ⃗    ̇        ⃗    ̇        ̇   
      The converse result 

 ̇   
      ⃗    ̇       follows from (91) and an argument similar to the proof of 

 ̇   
      ⃗    ̇       for          Here the restriction         comes from the 

Fefferman-Stein maximal inequality used to prove 

‖           ‖         ‖ ⃗‖          
This gives (i). 

   For (iv), the equivalence  ⃗    ̇        ̇   
      follows from (92), (93) with    

                 and (ii). This gives (iv) and hence finishes the proof of Theorem 

(1.2.16). 

    In Theorem (1.2.16) (iii), we have the restriction   [      However, when     and 

     we have the following result. 

Theorem (1.2.17) [95] Let         and       ]  If              then  ̇   
     

  ⃗      ̇         

Proof. To see  ⃗      ̇        ̇   
      let    ⃗      ̇        By (84) and taking  ⃗  

        with     
     
         we have  ⃗         and  
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‖ ⃗‖         ‖{ 
   
        }

   
‖
        

 ‖ ‖
 ⃗      ̇̇      

  

which implies that    ̇   
     and  ‖ ‖ ̇   

     ‖ ‖
 ⃗      ̇̇      

  

   Conversely, let    ̇   
     and  ⃗        with ‖ ⃗‖          ‖ ‖ ̇   

      Taking 

           ‖ ⃗‖    we have         and ‖ ‖      ‖ ‖ ̇   
      By   

           let         such that          Then by Lemma (1.2.8), for all     and 

     
 
     
                      

which together with the    ⁄    -boundedness of   implies that  ⃗      ̇       and 

‖ ‖
 ⃗      ̇̇      

 ‖ ‖ ̇   
     This finishes the proof of Theorem (1.2.17). 

     Let           and recall the classical fractional sharp maximal functions 

           
       

   ∫ |            |
 

      

      

and 

  
          

       
      

   
.∫ |      |      

 

      

/

  ⁄

  

The Sobolev-type space  ̇       of Calder ́n and DeVore-Sharpley is defined as the 

collection of all locally integrable functions u such that ‖ ‖ ̇       ‖    ‖
     

  ; see 

[78, 93]. Also observe that 

  
                      

            ‖ ⃗           ‖
  

 , 

and hence ‖ ‖
 ⃗      ̇̇      

 ‖  
   ‖

     
  On the other hand, recall from [40] that  ̇   

     

is simply the Hajłasz-Sobolev space  ̇        Here  ̇        is the collection of all 

functions   such that  

‖ ‖ ̇          
       

‖ ‖         

where       is the set of all  -gradients of   as in (73). Then, as a consequence of 

Theorem (1.2.16) and Theorem (1.2.17), we have the following corollary. 

Corollary (1.2.18) [95] Let         and       ]  

   (i) If              then    ̇       if and only if   
         , and moreover, for 

every    ̇       ‖ ‖ ̇       ‖  
      ‖

     
. 

  (ii) If             ]  ̇        ̇      . 
   We say that   supports a weak      -Poincaré inequality with   [     if there exist 

positive constants   and     such that for all functions    -weak upper gradients   of   

and balls   with radius      

∫ |       |     
 

 
   {∫ [    ] 

 

  
     }

  ⁄
. 

Recall that a nonnegative Borel function   is called a  -weak upper gradient of   if 

|         |  ∫    
 

 

                                                            

for all            where   and   are the endpoints of         denotes the collection of 

non-constant compact rectifiable curves and   has  -modulus zero. If   is complete, the 

above Poincaré inequality holds if and only if it holds for each Lipschitz function with the 

pointwise Lipschitz constant 
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|         |

 
 

on the right-hand side. See [84].  

    By triviality of  ̇   
     or  ̇   

     below we mean that they only contain constant 

functions. In order to obtain such a conclusion, one needs some connectivity assumption 

on    simply consider                where       and |  |     equipped with the 

Euclidean distance and Lebesgue measure. Then          ̇   
      ̇   

     for all 

       Notice that   does not support any Poincaré inequality. 

Theorem (1.2.19) [95] Suppose that   supports a weak      -Poincaré inequality with 

         Then for all          ̇   
     and  ̇   

     are trivial. 

Proof. Since for          ̇   
      ̇   

     and  ̇   
      ̇   

      ̇   
    , we 

only need to prove that for   [      ̇   
     and  ̇   

     are trivial. Assume that 

  [      Notice that  ̇   
      ̇   

      ̇      , where  ̇       is the Hajłasz-

Sobolev space [26]. Moreover, under the weak      -Poincaré inequality, it is known that 

 ̇        ̇       (see [92, Theorem 4.9] and [87]), where  ̇       is the Newtonian 

Sobolev space introduced in [92]. So  ̇   
      ̇      . Let    ̇   

    . Then.   

 ̇       The proof of the trivialilty of  ̇   
     is reduced to proving ‖ ‖ ̇        . To 

this end, it suffices to find a sequence         of  -weak upper gradients of   such that 

‖  ‖        as    .  

    For      set 

         
   

  ∫ |       (     )|
 

 (     )

       

Then    is nonnegative Borel measurable function for all      Moreover, we have that 

              for almost all    . Indeed, by a discrete variant of Theorem (1.2.16) 

(ii), 

‖{ 
   
      }

   
‖
        

 ‖ ‖ ̇   
        

which implies that ‖{ 
   
         }

   
‖
  

   and hence       ‖{ 
   
         }

   
‖
  

   

as     for almost all      Moreover, applying the Lebesgue dominated convergence 

theorem, we have ‖  ‖                   

   Now it suffices to check that    is a  -weak upper gradient of    Observe that if 

       , then         (     ) exists. In fact, we have 

|  (     )    (     )|                     

as        For such an    we define  ̃            (     ). Generally, for      if 

        (     ) exists, then we define  ̃            (     ); otherwise,  ̃       

Obviously,       ̃    for almost all      and hence   and  ̃ generate the same 

element of  ̇         Therefore we only need to check that    is a  -weak upper gradient 

of  ̃  To this end, notice that for all       with               we have 

| ̃     ̃   |        [           ]  
Moreover, by [92, Proposition 3.1],   is absolutely continuous on  -almost every curve, 

namely,     is absolutely continuous on [      ] for all arc-length parameterized paths 

            where   has  -modulus zero. For every             we will show that (95) 
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holds. To see this, by the absolute continuity of   on    it suffices to show that for   large 

enough, 

  |∫       
   

 

   ∫       
    

        
  |  ∫           

    

 

 

But, borrowing some ideas from [75], for   large enough, we have 

  |∫       
   

 

   ∫       
    

        
  |    |∫ [   (     )        ]

        

 

  |

   ∫ |   (     )       |
        

 

  

 ∫ [ 
 
  (     )  

 
     ]

        

 

   ∫  
 
        

    

 

 

This means that    is a  -weak upper gradient of  ̃. 

   To prove the triviality of  ̇   
     with          for    ̇   

      applying Theorem 

(1.2.12), we have 

‖{ 
   
      }

   
‖
         

 ‖ ‖ ̇   
        

which implies that ‖ 
   
      ‖

     
   as      For every      let         be a 

maximal set of   with                    for all    . Then    { (      
  )}

 
 is a 

covering of   with bounded overlap. Let {    }  be a partition of unity with respect to    

as in [86, Lemma 5.2]. We define a discrete convolution approximation to   by    
 

∑                    By an argument similar to that of [86, Lemma 5.3], we have that 

   
   in     

 
    and hence in     

     as    , and that        
      

     
          

for all      where     and      are constants independent of     and  . Now 

  
     
       is an upper gradient of    

. So, for every ball           , by the weak 

     -Poincaré inequality, we have 
 

∫|       |      
 

 

    
   

∫ |   
    (   

)
 
|

 

 

     

       
   

  2∫ [ 
     
         ]

 
     

 

         

3

  ⁄

    

which implies that   is a constant on   and hence is a constant function on    This finishes 

the proof of Theorem (1.2.19). 

Theorem (1.2.20) [95] Suppose that   supports a weak      -Poincaré inequality with 

         Let          Then for       ]  ̇          ⁄   
     is trivial, and for 

               ⁄ ]   ̇          ⁄   
     is trivial. Moreover, if either   is complete 

or   supports a weak        -Poincaré inequality for some           then for 

             ⁄   ]   ̇          ⁄   
     is trivial.  

Proof. We first prove the triviality of  ̇          ⁄   
      ̇            ⁄      by 

considering the following three cases: Case         Case        and   is Ahlfors 

 -regular, and Case        but   is not Ahlfors  -regular. 

   Case          Notice that by (81),                    for some     . In this 

case, it suffices to prove that  ̇            ⁄       ̇   
     for some          then the 
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triviality of  ̇            ⁄      follows from that of  ̇   
     as proved by Theorem 

(1.2.19). let    ̇            ⁄      and let         with ‖ ‖           ⁄     

 ‖ ‖ ̇            ⁄       We claim that there exists         such that 

‖{ 
   
      }

      
‖
        

 ‖ ‖           ⁄                                            

Assume that this claim holds for a moment. By Theorem (1.2.16) (ii) and a variant of 

Lemma (1.2.11), we have    ̇   
      and ‖ ‖ ̇   

      ‖ ‖ ̇            ⁄       

    To prove (96), by Lemma (1.2.8), 
 

‖{ 
   
         }

      
‖
  

 

 ∑    

      

   
   

∫ |      | 
 

 (     )

     

 ∑          

      

∫ [    ] 
 

 (     )

     

 ∑
         

 (        )
      

∑∫ [    ] 
 

 (     )  (       )   

       

Notice that there exists       such that for      

 (        )   ( (     ))         ; 

see [94]. Choosing         such that             we have  

‖{ 
   
         }

      
‖
  

 

 ∑
 

 (      )
      

∑                 
 

      

∫ [    ]      
 

 (     )  (       )

 

 ∑
         

 (        )
      

∫ [    ]      
 

 (     )  (       )

          
           

where for            denotes the fractional integral defined by  

         ∫
[      ] 

 ( (        ))

 

 

           

Therefore, 

‖{ 
   
      }

      
‖
        

 ‖[         
  ]

  ⁄
‖
     

 ‖         
  ‖

   ⁄    

  ⁄
  

Notice that for all     and            

 (      )       
  

         
     

Recall that    is bounded from       to           for all            see, for example, 

[83, Theorem 3.22]. We have  

‖{ 
   
      }

      
‖
        

 ‖  ‖
           ⁄     

  ⁄  ‖ ‖           ⁄      

which gives (96).  

       Case        and   is Ahlfors  -regular. Recall that   is Ahlfors  -regular if for 

all     and      

 (      )     
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Observe that the fractional integral    is still bounded from       to          , and hence 

by an argument similar to above, we have  ̇            ⁄       ̇   
      for some 

         which implies the triviality of  ̇            ⁄       
     Case        but   is not Ahlfors  -regular. Notice that, in this case, we do not have 

the boundedness from       to           of the fractional integral    and hence we cannot 

prove  ̇            ⁄       ̇   
     for some         as above. But the ideas of an 

imbedding as above and the proof of Theorem (1.2.19) still work here for a localized 

version. Indeed, we will show that any function    ̇            ⁄      is constant on 

every ball of    which implies that   is a constant function on whole     
   To this end, let         be a negative integer and let   be a cutoff functions such that 

                     
        on       

       and        on         
        

Observe that        on       
      

   For every    ̇            ⁄       with                    ⁄      we first claim 

that     ̇        Indeed, if           
        

|                 |  |         |     |    ||         |
 |         |        [|    |  |    |]
       [|    |  |    |           ] 

with     (        )∑         
   
            ; if             

                

           ; if         
       and           

       or         
        

and           
      , then by            , we have 

                |                 |  |    |  |    |           [|    |  |    |]  
This means that     (    

     )           modulo a constant depending on     Notice 

that, by Lemma (1.2.8),       
      So to obtain (   (    

     )   )         it 

suffices to prove that        . For          define the local fractional integral by 

         ∫
[      ] 

 ( (        ))

 

             
           

By an argument similar to that of (97), for         
       we still have 

     ‖{ 
   
         }

      
‖
  

 *       ( 
   (    

     ))    +
  ⁄

  

Obviously,        ( 
   (         )) is supported in       

        Moreover, by an 

argument similar to that of [83, Theorem 3.22], for         one can prove that    is 

bounded from   (      
      ) to           with its operator norm depending on 

        and    This together with an argument similar to that for the case        

implies that         and hence the claim that     ̇        
For      set 

 ̃        
   

  .   
   

∫ |         |      
 

 (     )

/

  ⁄

  

Since     ̇      , as what we did in the proof of Theorem (1.2.19), we can show that 

 ̃  is a p-weak upper gradient of   ̅  Notice that   ̅                  for almost all 

        
    , and that for all         

       and                      

          , and hence  ̃             
           Moreover, 



 

26 
 

‖{ 
   
      }

    
‖
  ( (    

     )   )
 ‖*       ( 

   (    
     ))+

  ⁄

‖
     

          

                            ‖ ‖
           ⁄ ( (    

     ))
    

which implies that ‖{ 
   
         }

    
‖
  

   and hence  ̃     ‖{ 
   
         }

    
‖
  

   

as     for almost all         
        Then by the Lebesgue dominated convergence 

theorem, we have ‖ ̃ ‖  ( (         ))
           Applying the Poincaré inequality, 

we obtain 
 

   
   

∫ |       (          ⁄ )|      
 

 (    
      ⁄ )

    
   

∫ |             (          ⁄ )|      
 

 (    
      ⁄ )

 

 

 4∫  ̃ 
    

 

 (    
     )

     5

  ⁄

    

This means that   is a constant on       
      ⁄    Since    is arbitrary, we conclude 

that   is a constant function.  

   Moreover, for q   (0, ∞], the triviality of˙ ̇          ⁄   
     follows from 

 ̇          ⁄   
      ̇            ⁄       

Meanwhile, for                 ⁄ ]  the triviality of  ̇          ⁄   
     follows 

from  ̇          ⁄   
      ̇          ⁄            ⁄

      ̇            ⁄       

    Finally, we prove the triviality of  ̇          ⁄   
     for              ⁄    ]  In 

fact, it follows from the triviality of  ̇          ⁄   
     since  ̇          ⁄   

     

 ̇          ⁄   
      To see the triviality of  ̇          ⁄   

      we need the additional 

condition that   supports a weak        -Poincaré inequality for some            
Recall from [87] that if   is complete and supports the weak      -Poincaré inequality, 

then   supports a weak        -Poincaré inequality for some            Without 

loss of generality, we can ask   close to   such that 

    
 

 
 

 

   
    

Observe that 

 
  

        
 

      

            
                                                

Now we will consider the following two cases:        and         
   Case           Assume that                    for some       We claim 

that  ̇          ⁄   
      ̇          ⁄   

     for any          Indeed, for every 

   ̇          ⁄   
      

‖    
      

 
   
      ‖

     

 ‖    
      

         
   
      ‖

     

 ‖ 
      
        ‖

     
              

Since  

‖ ‖ ̇          ⁄   
        

      
‖ 

   
        ‖

     
 

and          
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‖ ‖ ̇          ⁄   
     ‖    

      
 
   
      ‖

     

 

we conclude that ‖ ‖ ̇          ⁄   
     ‖ ‖ ̇          ⁄   

     and hence our claim. Then 

the triviality of  ̇          ⁄   
     follows from that of  ̇      [            ]⁄   

     and 

(98). 

   Case         Since the constant in (99) depends on    and hence the diameter of    
we can not get the imbedding  ̇          ⁄   

      ̇          ⁄   
     for          But 

for any fixed      and       we still have  

‖    
       

 
   
      ‖

  ( (    
     ))

 ‖    
       

         
   
      ‖

  ( (    
     ))

 

 ‖ 
       
        ‖

  ( (    
     ))

    

which further means that           [            ] ⁄ (      
      )  With the weak 

      )-Poincaré inequality in hand, by adapting the arguments in Case µ(X) but X is 

not Ahlfor n-regular as above, we still can prove that u is constant on ball       
     ⁄    

Hence u is a constant function on whole X. We omit the details. This finishes the proof of 

Theorem (1.2.20). 

   Finally, we give an example to show the “necessity” of the weak      -Poincaré 

inequality to ensure the triviality of  ̇  ⁄    ⁄
     for   [      

Theorem (1.2.21) [95] For each          there exists an Ahlfors 2-regular space X such 

that X supports a weak      -Poincaré inequality but for every          ̇  ⁄    ⁄
     is 

not trivial. 

Proof. Let         and    be the cantor set in [   ] obtained by first removing an 

interval of length  –  and leaving two intervals of length     and then continuing 

inductively. The Hausdorff dimension    of    is           ⁄  ⁄   The space    is 

obtained by replacing each of the complementary intervals of    by a closed square 

having that interval as one of its diagonals. Then    is Ahlfors 2-regular with respect to 

Euclidean distance and by [88, Theorem 3.1], for any  

  
    
    

   
    

     
   

  supports the      -Poincaré inequality.  

   So for any      choosing   (          ⁄ )  we know that    supports the weak 

     -Poincaré inequality. Moreover, for any             , define the Cantor 

function by          [    ]       Then   is constant on each square generating    

and moreover, |         |  |     |
   [      ]   for all        (see [86]). 

For     , taking       [       ]
     for all     , we have          We claim 

that          if 

    
    
    

 
          

               
  

Indeed, on each square      with diagonal length             we have 

∫[    ]   
 

 

 |     |
         

 

since             , namely,          ⁄  which is given by               ⁄   

Observing that there are    such squares, we have 
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∫ [    ]   
 

   

 ∑  |     |
         

   

 ∑    [         ]           ⁄  

   

    

where in the last inequality we use  

  [         ]           ⁄     [         ]   ⁄     
which is equivalent to               ⁄   Thus    ̇       . Taking       for 

each           we know that  ̇    ⁄      are nontrivial. Notice that  ̇    ⁄      

 ̇   
      when      Similarly, when        ̇         ̇  ⁄    ⁄

       and moreover, 

 ̇  ⁄    ⁄
      contains the restriction of any function in  ̇  ⁄    ⁄

      to   .Then 

 ̇  ⁄    ⁄
      for all         are nontrivial. This finishes the proof of Theorem (1.2.21). 

Corollary (1.2.22) [314] For each        there exists an Ahlfors 2-regular space X 

such that X supports a weak         -Poincaré inequality but for every      , 

 ̇    ⁄      ⁄
       is not trivial. 

Proof. Let         and    be the cantor set in [   ] obtained by first removing an 

interval of length  –  and leaving two intervals of length     and then continuing 

inductively. The Hausdorff dimension    of    is           ⁄  ⁄   The space    is 

obtained by replacing each of the complementary intervals of    by a closed square 

having that interval as one of its diagonals. Then    is Ahlfors 2-regular with respect to 

Euclidean distance and by [88, Theorem 3.1], for any  

    
    
    

   
    

     
   

   supports the         -Poincaré inequality.  

   So for any      choosing   (      ⁄ )  we know that    supports the weak      

   -Poincaré inequality. Moreover, for any       
    

     , define the Cantor 

function by     
       [    

 ]       Then    is constant on each square 

generating    and moreover, ∑|    
       

  |  ∑|  
    

 |   ∑[        ]   

for all          (see [86]). For       , taking        [        ]
         

for all      , we have           We claim that          if 

    
    

        
 

          

                 
  

Indeed, on each square      with diagonal length             we have 

∫ ∑[     ]    
 

 

 |     |
(        )   

 

since (        )      , namely,              ⁄  which is given by   

      (        )⁄   Observing that there are    such squares, we have 

∫ ∑[     ]    
 

   

 ∑  |     |
(        )   

   

 ∑    [(        )   ]           ⁄  

   

    

where in the last inequality we use  

  [(        )   ]           ⁄     [(        )   ]   ⁄     

which is equivalent to                   ⁄   Thus     ̇         . Taking 

        for each           we know that  ̇          ⁄      are nontrivial. 

Notice that  ̇        ⁄       ̇   
      when      Similarly, when       , 

 ̇         ̇    ⁄      ⁄
         and moreover,  ̇    ⁄      ⁄

        contains the restriction of 

any function in  ̇    ⁄      ⁄
        to   .Then  ̇    ⁄      ⁄

        for all       are nontrivial. 

This finishes the proof of Corollary (1.2.22). 
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Chapter 2 

Multi-Parameter Triebel-Lizorkin and Singular Integrals with Boundedness of 

Composition Operators 

   We show the boundedness of flag singular integral operators on Triebel–Lizorkin space 

and Besov space. The methods here can be applied to develop easily the theory of multi-

parameter Triebel–Lizorkin and Besov spaces in the pure product setting. The derivation 

of the boundedness of singular integrals on the spaces is substantially different from those 

used where atomic decomposition on the one-parameter Triebel–Lizorkin and Besov 

spaces. The discrete Littlewood–Paley analysis allows us to avoid using the atomic 

decomposition or deep Journe‟s covering lemma in multi-parameter setting. We then 

establish the boundedness of composition of two Calder ́n–Zygmund singular integral 

operators with different homogeneities on these Triebel–Lizorkin and Besov spaces. 

Section (2.1) Besov Spaces Associated with Flag Singular Integrals 

   The multi-parameter pure product theory has been developed. This theory includes the 

boundedness on           and multi-parameter Hardy spaces            of 

singular integral operators of the form       , where   is homogeneous, that is, 

                    or, more generally,      satisfies a certain differential 

inequalities and cancellation conditions such that               also satisfy the same 

bounds. This theory also includes the atomic decomposition of Hardy spaces, duality and 

interpolation theorems on product spaces, maximal function characterization of Hardy 

spaces, etc. See Gundy and Stein [96], Carleson [97], Fefferman and Stein [98], Fefferman 

[99], Chang and Fefferman [100–102], Journe [103–104], Pipher [105], etc. 

   Substantial attention has been paid to the theory of flag singular integral operators in the 

multi-parameter setting. This is an implicit multi-parameter structure which arises in a 

number of occasions such as Marcinkiewcz multiplier operators associated with the sub-

laplacian   and the centralizer   on the Heisenberg group (see Muller–Ricci–Stein [106]) 

and flag singular integrals (see Nagel–Ricci–Stein [107]). We focus on the case that the 

implicit multi-parameter structure is induced by the flag singular integrals on       

studied by Nagel–Ricci–Stein [107]. The simplest form of flag singular integral kernel 

       on       is defined through a projection of a product kernel  ̃        defined 

on         given by 

       ∫  ̃            
 

  

                                                       

   Discrete Littlewood–Paley–Stein analysis and multi-parameter Hardy space theory has 

been developed in the framework of flag singular integral operators by Han and Lu [108]. 

One of the main ideas of the program in [108] is to develop a discrete version of Calder ́n 

reproducing formula associated with the given multi-parameter structure, and thus prove a 

Min-Max comparison inequality in this setting. This discrete scheme of Littlewood–

Paley–Stein analysis is particularly useful in dealing with the Hardy spaces    for 

       Using this method of discretizing, they are able to show that the flag singular 

integral operators are bounded on   
 

 for all        and then further show that these 

operators are also bounded from   
 

 to    for all       . This method offers an 

alternate approach of Fefferman‟s method of restricting singular integral operator‟s action 

on the rectangle atoms. Thus, they bypass the use of Journe‟s covering lemma in proving 

the   
 

 to    boundedness for all       . The duality theory of the Hardy space, 

Calder ́n–Zygmund decomposition and interpolation theorems have also been established 

in the setting of multi-parameter flag setting in [108]. Multi-parameter Hardy space theory 
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associated with the Zygmund dilation has also been developed in [109] in which endpoint 

results of singular integral operators (introduced by Ricci and Stein in [110]) have been 

established. 

   We study initiated in [108], and introduce the multi-parameter Triebel–Lizorkin and 

Besov spaces and prove the boundedness of the flag singular integral operators on such 

spaces. Though the theory of one-parameter Triebel–Lizorkin and Besov spaces has been 

very well developed in the past decades, the multi-parameter counterpart of such a theory 

is still absent. We develop a theory of multi-parameter Triebel–Lizorkin and Besov spaces 

using the discrete Littlewood–Paley–Stein analysis in the setting of implicit multi-

parameter structure. 

   We first introduce the continuous version of the Littlewood–Paley–Stein square function 

  . Inspired by the idea of lifting method of proving the           boundedness 

given in [106], we will use a lifting method to construct a test function defined on 

     , given by the non-standard convolution    on the second variable only: 

              
         ∫               

        
 

  

                           

where                          and satisfy 

∑|    ̂ (       
    )|

 

 

   

for all                      , and 

∑|    ̂       |
 

 

   

for all           and the moment conditions 

∫                  
 

    

 ∫            
 

  

   

for all multi-indices       and    We remark here that this idea of considering such a 

convolution was introduced in [108]. It is this subtle convolution    which provides a rich 

theory for the implicit multi-parameter analysis. 

   We now recall some definitions given in [107]. Following closely from [107], we begin 

with the definitions of a class of distributions on an Euclidean space     A k-normalized 

bump function on a space     is a   -function supported on the unit ball with   -norm 

bounded by  . As pointed out in [107], the definitions given below are independent of the 

choices of    and thus we will simply refer to “normalized bump function” without 

specifying  . 

   For the sake of simplicity of presentations, we will restrict our considerations to the case 

          . We will rephrase Definition 2.1.1 in [107] of product kernel in this 

case as follows: 

Definition (2.1.1) [120] A product kernel on         is a distribution K on        

which coincides with a    function away from the coordinate subspaces         and 

         where            and             and satisfies 

     (i) (Differential Inequalities) For any multi-indices                             
and                 

|  
   

 
  
 
        |         | |  | |      | | | |  | |   | | 

for all                  with | |  | |    and | |     
    (ii) (Cancellation Condition) 
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|∫   
   

 
                

 

  

|       | |  | |      | | | | 

for all multi-indices     and every normalized bump function    on    and every      

|∫   
 
                     

 

    

|    | |
   | | 

for every multi-index   and every normalized bump function    on      and every 

     and 

|∫                              
 

      

|    

for every normalized bump function    on       and every      and       
Definition (2.1.2) [120] A flag kernel on       is a distribution on      which 

coincides with a    function away from the coordinate subspace               where 

     and      and satisfies 

 (i) (Differential Inequalities) For any multi-indices                            , 

|  
   

 
      |      | |

   | |   | |  | |    | | 

for all             with | |     
(ii) (Cancellation Condition) 

|∫   
               

 

  

|    | |
   | | 

for every multi-index   and every normalized bump function    on    and every      

|∫   
 
              

 

  

|    | |
   | | 

for every multi-index   and every normalized bump function    on    and every      
and 

|∫                      
 

    

|    

for every normalized bump function    on      and every      and       
   By a result in [106], we may assume first that a flag kernel   lies in   (    ). Thus, 

there exists a product kernel    on         such that 

       ∫              
 

  

  

Conversely, if a product kernel    lies in            , then        defined as above 

is a flag kernel on      . As pointed out in [106], we may always assume that         
a flag kernel, is integrable on       by using a smooth truncation argument. 

   In order to use the Littlewood–Paley–Stein square function    to define the Hardy space, 

one needs to extend the Littlewood–Paley–Stein square function to be defined on a 

suitable distribution space. We will recall several definitions introduced in [108] 

concerning the test function space on      associated with the flag singular integral 

operators. 

Definition (2.1.3) [120] A Schwartz test function          defined on          is 

said to be a product test function on         if 

∫                 ∫                                                        

for all multi-indices       of nonnegative integers. 
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   If   is a product test function on        we denote       
        and the 

norm of   is defined by the norm of Schwartz test function. 

Furthermore, the test function space    on      associated with the flag structure can 

be defined as follows: 

Definition (2.1.4) [120] A function        defined on       is said to be a test 

function in     
      if there exists a function       

        such that 

       ∫              
 

  

                                                       

If       
     , then the norm of   is defined by 

‖ ‖             ‖  ‖             for all representations of   in (4)}. 

We denote by     
  the dual space of   . 

   For               the Littlewood–Paley–Stein square function of   is defined by 

           8∑∑|           |

  

 

9

 
 

  

where functions 

            
   

    
   
       

   
                    (       )       

                                         

   By taking the Fourier transform, it is easy to see the following continuous version of the 

Calder ́n reproducing formula holds on           

       ∑∑                

  

                                                 

   Formally, in [108] the flag Hardy space is defined as follows: 

Definition (2.1.5) [120] Let         
 
               

                    

       If     
 
       the norm of   is defined by  

‖ ‖  
  ‖     ‖ .                                                      (7) 

    It is proved in [108] that this definition is independent of the choice of functions      

and the following boundedness results of flag singular integral operators are established. 

Theorem (2.1.6) [120] Suppose that   is a flag singular integral defined on       with 

the flag kernel        ∫             
 

  , where the product kernel    satisfies the 

conditions in Definition (2.1.2). Then   is bounded on   
 

 and from   
 

 to    for     
   Namely, for all       there exists a constant    such that 

‖    ‖  
    ‖ ‖  

       ‖    ‖  
    ‖ ‖  . 

Moreover,   is bounded on     . Namely, there exists a constant   such that 

‖    ‖      ‖ ‖      

   Having obtained the boundedness of flag singular integral operators on multi-parameter 

Hardy spaces, a natural question arises: Are these operators bounded on more general 

function spaces? We will use the approach in [108] to develop a satisfactory theory of the 

Triebel–Lizorkin space and Besov space associated with the implicit multi-parameter 

structures induced by the flag singular integrals. Indeed, our ideas and methods apply 

easily to the pure product theory of Triebel–Lizorkin and Besov spaces. This pure product 

theory appears to be new and has not been studied. 

    We now describe our approach and results in more details. 
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Definition (2.1.7) [120] Let                       The Triebel–Lizorkin type 

space  ̇   
   
        associated with the flag singular integrals is defined by 

 ̇   
   
               

  ‖ ‖ ̇   
   

            

where 

‖ ‖ ̇   
    ‖‖4∑∑                |         |

 

      

5

 
 

‖‖

 

                                

  The Besov space  ̇   
   
         associated with the flag singular integrals is defined as  

 ̇   
   
                ‖ ‖ ̇   

        

where  

‖ ‖ ̇   
    4∑∑                ‖      ‖ 

  

      

5

 
 

                                     

   If          then  ̇   
        when        and  ̇   

       
 

 when       defined 

in [108]. A natural question arises whether this definition is independent of the choice of 

functions       To study the  ̇   
   

-boundedness of flag singular integrals we need to 

discretize the norm of   ̇   
   

. In order to obtain such a discrete  ̇   
   

 norm we will prove the 

Min-Max comparison principle. To prove such principle is the Calder ́n reproducing 

formula (6). To be more specific, in [108] they have proved that the formula (6) still holds 

on test function space     
      and its dual space     

  (see Theorem 3.6 in [108]). 

Furthermore, using an approximation procedure and the almost orthogonality argument, 

the following discrete Calder ́n reproducing formula is proved in [108]. 

Theorem (2.1.8) [120] [108, Theorem 1.8] Suppose that       are the same as in (5). Then 

       ∑∑∑∑| || | ̃   (         )             

    

                            

where  ̃   (         )      
                 are dyadic cubes with side-

length            and                     for a fixed large integer         

are any fixed points in      respectively; and the series in (10) converges in the norm of 

    
      and in the dual space     

 . 

   The discrete Calder ́n reproducing formula (10) provides the following Min-Max 

comparison principle in Treibel–Lizorkin spaces. We use the notation     to denote 

that two quantities   and   are comparable independent of other substantial quantities 

involved. 

   We show the boundedness of the flag singular integral on Triebel–Lizorkin spaces and 

Besov spaces. We outline the corresponding results for Triebel–Lizorkin spaces and Besov 

spaces in the pure product setting and boundedness of singular integral operators on these 

spaces without any proof. Their proofs can be carried out easily following the more 

complicated case in the implicit flag multi-parameter structure dealt. 

   We establish the Min-Max comparison principles in Triebel–Lizorkin and Besov spaces. 

These principles are important in proving that the Triebel–Lizorkin and Besov spaces are 

well defined. 
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    We first recall some decay estimates proved in [108]. If                 for 

                         is a smooth function and satisfies the differential 

inequalities 

|  
    

    
    

    
    

                 |

                       
    |   |  |   |       |   |                   

and the cancellation conditions 

∫                          ∫                     

 ∫                          ∫                                      

and for fixed                                
        and satisfies 

|  
    

    
                 |

                  |    |  |    | 
      | |                                     

for all positive integers     and multi-indices                  of nonnegative integers, 

then we have the following almost orthogonality estimate: 

Lemma (2.1.9) [120] [108] For any given positive integers       and        there exists a 

constant                  depending only on             and the constants in (11) 

and (13) such that for all positive            we have 

|∫     
                    

                    
 

      

| 

  .
 

  
 
  

 
/

  

.
 

  
 
  

 
/

          

      |    |  |    | 
        

 
        

      | |     
      

where     
                          

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  and  

    
                          (

 

 
 
 

 
 
 

 
 
  
 
 
  
 
)   

Lemma (2.1.10) [120] [108] For any given positive integers       and      , there exists 

a constant                  depending only on             such that if        
  , then 

|                |   .
 

  
 
  

 
/

  

.
 

  
 
  

 
/

  

 
        

      | |       
        

      | |     
  

and if          , then 

|                |   .
 

  
 
  

 
/

  

.
 

  
 
  

 
/

  

 
        

      | |       
        

      | |     
  

 

Lemma (2.1.11) [120] [108] Suppose that       are the same as in (5). Then 

       ∑∑                

  

                                                

where the series converges in the norm of    and in dual space     
   

   Before we prove the Min-Max comparison principles (Theorems (2.1.13) and (2.1.14)), 

we also give the following lemma. 

Lemma (2.1.12) [120] [108] Let           be dyadic cubes in    and    respectively such 

that                                      
    and          

       
     

Thus for any        and         we have, when          , 
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∑
  |   

 |   |   
 |        

         
    |  ||  |

(     
 
 |     |)

    
(     

 
 |     |)

    
     

|        (       )|

           
         |   

 |    |   
 |  

 864∑∑  |                 |      

    

5

 

79

 
 

         

and when            

∑
  |   

 |   |   
 |        

         
    |  ||  |

(     
 
 |     |)

    
(     

 
 |     |)

    
     

|                 |

           
         |   

 |    |   
 |  

 864∑∑  |                 |      

    

5

 

79

 
 

         

where   is the Hardy–Littlewood maximal function on     ,    is the strong maximal 

function on       (see [111]), and     
 

    
 

 

    
    and 

          
         

(
 
 
  )      

  
[                     ](  

 
 
)
  

            
          

 
 
           [     

                   ]   
 
 
   

   We now are ready to give the 

Theorem (2.1.13) [120] Suppose                                   and 

       ∫                      
 

  

 

       ∫                      
 

  

 

and         satisfy the conditions in (5). Then for                and   

            

‖‖8∑∑                

  

∑∑    
       

|           |
 
          

  

9

 
 

‖‖

 

 ‖‖8∑∑        
        

  

∑∑    
       

| 
   
       |

 
          

  

9

 
 

‖‖

 

  

where           are dyadic cubes with side-length            and      
            for a fixed large integer       and    are indicator functions of   and  , 
respectively. 

     Similarly, we have the Min-Max comparison principle in Besov spaces. 

Proof. By Theorem (2.1.8),      can be represented by 

       ∑∑∑∑|  ||  |

  

 ̃     (           )(        )         

      

  

We write 
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(      )      

 ∑∑∑∑|  ||  |

  

(      ̃     (           ))

  

     (        )(       )

    

  

   By the almost orthogonality estimates in Lemma (2.1.10), for any given positive integer 

   taking              , we have, if        
|      ̃               |

    |   
 |    |   

 |  
   

  

    
 
 |     | 

   
 

   
  

    
 
 |     | 

   
  

and if        we have 

|      ̃               |

    |   
 |    |   

 |  
   

  

    
 
 |     | 

   
 

   
  

    
 
 |     | 

   
  

Using Lemma (2.1.12), for any                              

|           |   ∑ ∑∑  |   
 |   |   

 | |  ||  |

         

 

 
   

  

(   
 
 |     |)

    
   

  

(   
 
 |     |)

   |        (       )|

  ∑ ∑∑  |   
 |   |   

 | |  ||  |

         

 

 
   

  

(   
 
 |     |)

    
   

  

(   
 
 |     |)

   |        (       )| 

              ∑   |   
 |    |   

 | 8  4∑∑|        (       )|      

    

5

 

9

 
 

     

        

                    ∑   |   
 |   |   

 | 8 4∑∑|                 |      

    

5

 

9

 
 

     

         

where   is the Hardy–Littlewood maximal function on         is the strong maximal 

function on        and     
 

   
 

 

   
             by taking   large enough. 

     Applying the H ̈lder‟s inequality and summing over         yields 

8∑∑∑∑                

    

    
       

|           |     9

 
 

 

  

{
 
 

 
 

∑∑   
      ( 

    )   

    

8  4∑∑|                 |      

    

5

 

9

 
 

}
 
 

 
 

 
 

  

Since     and     are arbitrary points in    and   , respectively, we have 
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8∑∑∑∑                

    

    
       

|           |
 
    9

 
 

 

  

{
 
 

 
 

∑∑   
      ( 

    )   

    

8  4∑∑    
         

|             |      

    

5

 

9

 
 

}
 
 

 
 

 
 

  

and hence, by the Fefferman–Stein vector-valued maximal function inequality [112] with 

           we get 

‖‖8∑∑∑∑                

    

    
       

|           |
 
    9

 
 

‖‖

 

  ‖‖8∑∑∑∑                

        

    
         

| 
     

       |
 
 
  
 
  
9

 
 

‖‖

 

  

This ends the proof of Theorem (2.1.13). 

Theorem (2.1.14) [120] For       
          and               we have 

4∑                

   

‖∑    
       

|           |     
   

‖

 

 

5

 
 

 4∑                

   

‖∑    
       

|           |     
   

‖

 

 

5

 
 

  

where           and           are defined as in (5),            are dyadic cubes 

with side-length            and                  for a fixed large integer  . 

   Theorem (2.1.13) implies that the Triebel–Lizorkin space  ̇   
   
        in (8) is well 

defined and Theorem (2.1.14) implies that the Besov space  ̇   
   
        in (9) is well 

defined. 

   By use of the Min-Max comparison principle, we will prove the boundedness of flag 

singular integrals on  ̇   
   

 and on  ̇   
   
  

Proof. As in the proof of Theorem (2.1.13),      can be represented by 

       ∑∑∑∑| || |  ̃                                     

        

  

Arguing as in the proof of Theorem (2.1.13), we have 

|           | 

  ∑   |   
 |    |   

 | 8  4∑∑|        (       )|      

    

5

 

     9
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  ∑   |   
 |   |   

 | 8 4∑∑|        (       )|      

    

5

 

     9

 
 

     

 

     ∑   |   
 |    |   

 | 8  4∑∑|        (       )|      

    

5

 

     9

 
 

     

  

Therefore, 

   
       

|           |           

  ∑   |   
 |    |   

 | 8  4∑∑|        (       )|      

    

5

 

     9

 
 

     

  

When        by the Fefferman–Stein vector-valued maximal function inequality 

[112] with      we have 

‖∑    
       

|           |    
   

‖

 

  ‖‖∑   |   
 |    |   

 | 8  4∑∑|        (       )|      

    

5

 

9

 
 

     
‖‖

 

  ∑   |   
 |    |   

 | 
‖‖8  4∑∑|        (       )|      

    

5

 

9

 
 

‖‖

 

     

  ∑  |    |    |    | ‖∑∑| 
     

  ( 
  
  

  
)| 

  
 
  

    

‖

      

  

If    , applying the H ̈lder‟s inequality and if        by using the usual inequality, 

and summing over     yields 

4∑                ‖∑    
       

|           |    
   

‖

 

 

   

5

 
 

 

 (∑                

   

(∑   |   
 |    |   

 |  

     

‖∑∑|        (       )|      

    

‖

 

,

 

,

 
 

 

  (∑    
      ( 

    )   

     

‖∑∑|        (       )|      

    

‖

 

 

,

 
 

  

When        the Fefferman–Stein vector-valued maximal function inequality [112] 

with     yields 
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∫(∑    
       

|           |            

   

+

 

     

  ∑   |   
 |     |   

 |  ∫

(

   4∑∑|        (       )|      

    

5

 

     

)

 

 
 

    

     

 

      ∑   |   
 |     |   

 |  ∫4∑∑|        (       )|            

    

5

 

    

     

  

Since        taking      by the H ̈lder‟s inequality, we have 

(∫(∑    
       

|           |            

   

+

 

    +

 
 

 

    |   
 |         |   

 |       4∫4∑∑|        (       )|            

    

5

 

    5

 
 

 

So if        then applying the H ̈lder‟s inequality and if         by using the 

usual inequality, we have 

4∑                ‖∑    
       

|           |    
   

‖

 

 

   

5

 
 

 

 (∑                

   

(∑   |   
 |         |   

 |       

     

‖∑∑|        (       )|      

    

‖

 

,

 

,

 
 

 

  (∑    
      ( 

    )   

     

‖∑∑|        (       )|      

    

‖

 

 

,

 
 

  

Since     and     are arbitrary points in    and     respectively, we have the desired 

inequalities in Theorem (2.1.13).  

   To establish the boundedness of flag singular integral operators on Triebel–Lizorkin and 

Besov spaces associated with the flag multi-parameter structure using the results we have 

proved. As a consequence of Theorems (2.1.13) and (2.1.14), it is easy to see that the 

Triebel–Lizorkin spaces  ̇   
   

 and Besov spaces are independent of the choice of the 

functions    Moreover, we have the following characterization of˙  ̇   
   

 and  ̇   
   

 by using 

the discrete norm. 

Proposition (2.1.15) [120] Let         and               Then we have 

‖ ‖ ̇   
    ‖‖4∑∑∑∑                

 

|             |
 
          

   

5

 
 

‖‖

 

      

where                   are the same as in Theorem (2.1.13). 

Proposition (2.1.16) [120] Let         and               Then we have 
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‖ ‖ ̇   
    4∑∑                ‖∑∑|             |

 

          

 

‖

 

 

  

5

 
 

      

where                   are the same as in Theorem (2.1.14). 

   Before we give the proof of the boundedness of flag singular integrals on  ̇   
   

 and  ̇   
   
  

we show several properties of them. 

Proposition (2.1.17) [120]     
      is dense in  ̇   

   
 and in  ̇   

   
  

Proof. Suppose    ̇   
   
  and set              | |    | |                 

where     are dyadic cubes in       with side length                    respectively, 

and        are balls in      centered at the origin with radius  . It is easy to see that 

∑  | || |  ̃                           

           

 

is a test function in     
      for any fixed        To show the proposition, it 

suffices to prove 

∑  | || |  ̃                           

            

 

tends to zero in the  ̇   
   

 norm as       tend to infinity. This follows from (16) and a 

similar proof to that of Theorem (2.1.13). In fact, repeating the same proof as in Theorem 

(2.1.13) yields 

‖ ∑ | || | ̃   (         )      (     )
            

‖

 ̇   
   

   ‖‖8 ∑                 |             |
 
    

            

9

 
 

‖‖

 

  

where the last term tends to zero as       tend to infinity whenever    ̇   
   
  

   Suppose    ̇   
   
  set           | |    | |     and                        

where     are dyadic cubes in       with side length                    
respectively. Then 

‖ ∑ | || |  ̃                           

        
          

 

‖

 ̇   
   

  ( ∑                 

        
 

‖ ∑ |             |    
        

 

‖

 

 

,

 
 

  

where the last term tends to zero as       tend to infinity whenever    ̇   
   
   

     As a consequence of Proposition (2.1.16),          is dense in  ̇   
   
        and 

also in  ̇   
   
         

Theorem (2.1.18) [120] Suppose that   is a flag singular integral defined on       

with the flag kernel        ∫              
 

  , where the product kernel   satisfies 
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the conditions in Definition (2.1.2). Then   is bounded on  ̇   
   

 . Namely, for all   

      and              there exists a constant    such that 

‖    ‖ ̇   
      ‖ ‖ ̇   

     

Proof. We assume that   is the kernel of  . Applying the discrete Calder ́n reproducing 

formula in Theorem 3.4 in [108] implies that for             ̇   
   
  

‖‖8∑∑∑∑                

    

|             |
 
          9

 
 

‖‖

 

 ‖
‖8∑∑∑∑                

 

|∑∑∑∑|  ||  |        ̃     (       

           

      )                        |

 

          9

 
 

‖
‖

 

  

where the discrete Calder ́n reproducing formula in          is used. 

   Noting that     are test functions as defined in (5), one can easily check that 

|        ̃     (             )     |     |   
 |    |   

 |  

 ∫
      

   

(      
   |    |  |      |)

     

 

  

 
      

   

(      
   | |)

       

where   depends on    given in Theorem 3.4 in [108] and    is chosen to be large 

enough. Repeating a similar proof to that of Theorem (2.1.8) (see [108]), we obtain 

‖  ‖ ̇   
     

‖

‖

{
 
 

 
 

∑∑   
      ( 

    )   

    

8  4∑∑|       (       )|      

    

5

 

9

 
 

     

}
 
 

 
 

 
 

‖

‖

 

 

  ‖‖8∑∑∑∑   
      ( 

    )   

        

|       (       )|
 
            9

 
 

‖‖   ‖ ‖ ̇   
     

where the last inequality follows. 

   Since          is dense in  ̇   
   
   can be extended to a bounded operator on   ̇   

   
  This 

ends the proof of Theorem (2.1.18). 

Theorem (2.1.19) [120] Suppose that   is a flag singular integral with the kernel        
satisfying the same conditions as in Theorem (2.1.18). Then   is bounded on  ̇   

   
. 

Namely, for all         and              there exists a constant    such that 

‖    ‖ ̇   
      ‖ ‖ ̇   

     

   From the above of the proof of Theorem (2.1.18), it is obvious that Theorem (2.1.19) 

follows from similar proof of Theorem (2.1.18) immediately. 

   We some remarks on how our methods can be applied to derive results of Triebel–

Lizorkin and Besov spaces in the simplest case of product spaces of two Euclidean spaces. 
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We shall not provide any proofs since they can be given easily by following those in the 

flag singular integral case. 

   To state the realization of our main results on      . Let       denote Schwartz 

functions in   . Then the test function defined on       can be given by 

                       

where                        and satisfy ∑ | ̂          |
 

       for all    

          and ∑ | ̂          |
 

       for all            and the moment conditions 

∫            
 

  

 ∫            
 

  

   

for all nonnegative integers   and  .  

   Let              Thus       the Littlewood–Paley–Stein square function of    is 

defined by 

          8∑∑|           |
 

  

9

 
 

  

where functions 

                    (   )                                                       

   By taking the Fourier transform, it is easy to see the following continuous version of 

Calder ́n‟s identity holds on            

       ∑∑                

  

  

    Using the orthogonal estimates and together with Calder ́n‟s identity on   , one can 

easily obtain the    estimates of   for        Namely, there exist constants    and    

such that for        
  ‖ ‖  ‖    ‖    ‖ ‖   

    In order to use the Littlewood–Paley–Stein square function   to define the Treibel–

Lizorkin Besov spaces in pure product setting, one needs to extend the Littlewood–Paley–

Stein square function to be defined on a suitable distribution space. We introduce the 

product test function space on      . 

Definition (2.1.20) [120] A Schwartz test function        defined on       is said to 

be a product test function on       if            and 

∫           
 

  

 ∫           
 

  

   

for all indices     of nonnegative integers. 

   If   is a product test function on       we denote            and the norm of 

  is defined by the norm of Schwartz test function. 

   We denote by             the dual of           
   Since the functions      constructed above belong to           so the Littlewood–

Paley–Stein square function   can be defined for all distributions in              
Formally, we can define the multi-parameter Triebel–Lizorkin and Besov spaces in the 

pure product setting as follows: 

Definition (2.1.21) [120] Let                     . The Triebel–Lizorkin type 

space  ̇ 
   
        in the pure product setting is defined by 

 ̇ 
   
               

   ‖ ‖ ̇ 
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where 

‖ ‖ ̇ 
    4∑∑            ‖         ‖ 

 

      

5

 
 

                                       

   The Besov space  ̇ 
   
        in the pure product setting is defined as 

 ̇ 
   
                 ‖ ‖ ̇ 

        

where 

‖ ‖ ̇ 
    4∑∑              ‖      ‖ 

 

      

5

 
 

                                      

   If          then  ̇ 
        when       and  ̇ 

        when        the 

product Hardy spaces introduced in [100–102]. It can be shown that this definition is 

independent of the choice of functions     . 

   To establish the Triebel–Lizorkin and Besov space theory on       we need the 

following discrete Calder ́n‟s identity. 

Theorem (2.1.22) [120] Suppose that      are the same as in (18). Then 

       ∑∑| || |  ̃                             

      

                                   

where  ̃                                     are dyadic intervals with 

interval length                       for a fixed large integer         are any fixed 

points in     respectively, and the series in (22) converges in the norm of          and 

in the dual space              
    By use of the Min-Max comparison principle in the pure product setting similar to 

Theorems (2.1.13) and (2.1.14), we can prove the boundedness of singular integrals of 

product kernels on       defined as in Definition (2.1.2) (one notes that it is       

instead of        ) on  ̇ 
   

 and on  ̇ 
   

 

Theorem (2.1.23) [120] Suppose that   is a product singular integral defined on       

where the product kernel   satisfies the conditions in Definition (2.1.2). Then   is 

bounded on  ̇ 
   

 and  ̇ 
   

. Namely, for all         and              there 

exists a constant    such that 

‖    ‖ ̇ 
      ‖ ‖ ̇ 

    

and 

‖    ‖ ̇   
      ‖ ‖ ̇   

     

   We also remark that Hardy space theory associated with non-isotropic flag singular 

integrals induced by the non-isotropic dilation          on      has been carried out by 

Ruan in [117–118]. Therefore, it can be applied to develop the multi-parameter Treibel–

Lizorkin and Besov space theory in that setting. See Han and Lu [118] for more 

comprehensive summaries of multi-parameter Hardy space theory and discrete 

Littlewood–Paley–Stein analysis. 

Section (2.2) Weighted Triebel–Lizorkin and Besov Spaces of Arbitrary Number of 

Parameters 

   The multi-parameter pure product theory has been developed over the past decades. This 

theory includes the boundedness on multi-parameter    spaces         and multi-
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parameter Hardy spaces         ) of singular integral operators. This theory also 

includes the atomic decomposition of multi-parameter Hardy spaces, duality and 

interpolation theorems on product spaces, and maximal function characterizations, etc. See 

Gundy and Stein [96], Carleson [97], Fefferman and Stein [98], Fefferman [99, 121], 

Chang and Fefferman [100–102], Journe [103, 104] and Pipher [105], etc. 

   [108, 122], developed a theory of discrete Calder ́n reproducing formula and 

Littlewood–Paley analysis and then developed the implicit multi-parameter Hardy space 

theory associated with the flag singular integrals. Adapting ideas from [108, 123] 

established the boundedness of singular integral operators on weighted multi-parameter 

Hardy spaces   
 
        and from   

 
        to   

 
        when the weight 

  is in     The boundedness of singular integral operators on weighted multi-parameter 

Hardy spaces of arbitrary number of parameters was derived in [124]. 

   The theory of one-parameter Triebel–Lizorkin and Besov spaces has been very well 

developed. The multi-parameter counterpart of such theory is still very little explored. 

[120] studied the nonweighted Triebel–Lizorkin and Besov spaces associated with the flag 

singular integral operators and proved the boundedness of the flag singular integrals on 

these spaces. 

   To use the discrete multi-parameter Littlewood–Paley–Stein analysis to establish the 

theory of weighted Triebel–Lizorkin and Besov spaces on                 and the 

boundedness of singular integral operators on  ̇ 
   
                    and 

 ̇ 
   
                    for all       

                        and 

                    . For the simplicity of the presentation, we assume     and 

denote               . 

   We now recall some definitions of product weights in three parameter setting. 

   For        a nonnegative locally integrable function       
         if 

there exists a constant     such that 

.
 

| |
∫      

 

 

/.
 

| |
∫           ⁄   

 

 

/

   

   

for any dyadic cuboid          where       are cubes in       and    

respectively. We say        
         if there exists a constant     such that 

             
for almost every             where    is the strong maximal function defined by 

          
   

 

| |
∫ |    |  

 

 

 

for any dyadic cuboid         on         . We define       
     

    by 

    
         ⋃     

        

     

  

If     , then                  is called the critical index of  . Notice that if 

    , then     . The     
         has the following restriction property: 

      
         implies              

                
                

    

   We will use an appropriate Littlewood–Paley square function to characterize the 

weighted Triebel–Lizorkin space  ̇ 
   
              and Besov spaces 

 ̇ 
   
                   

       ). To approach this, we first introduce 

the test function space     
          where   is a positive integer. 
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Definition (2.2.1) [128] We call   defined on          a test function of order   if 

       | | | | | |       

|  
   

 
  
 
        |   

 

    | |     | |

 

    | |     | |

 

    | |     | |
  

        |    |  
 

 
    | |      | |    | | | |       

|  
   

 
  
 
           

   
 
  
 
         |

  
|    |

    | |     
 

    | |     | |

 

    | |     | |
  

         |    |  
 

 
    | |        | |    | | | |       

|  
   

 
  
 
           

   
 
  
 
         |

  
|    |

    | |     

 

    | |     | |

 

    | |     | |
  

        |    |  
 

 
    | |       | |    | | | |       

|  
   

 
  
 
           

   
 
  
 
         |

  
|    |

    | |     
 

    | |     | |

 

    | |     | |
  

       |    |  
 

 
    | |  |    |  

 

 
    | |  and | |  | |    | |       

|  
   

 
  
 
           

   
 
  
 
            

   
 
  
 
            

   
 
  
 
          |
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    | |     
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    | |     | |
  

        |    |  
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    | |  and | |  | |    | |       

|  
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    | |     
 

    | |     | |
  

         |    |  
 

 
    | |  |    |  

 

 
    | |  and | |  | |    | |       

|  
   

 
  
 
           

   
 
  
 
            

   
 
  
 
            

   
 
  
 
          |

  
|    |

    | |     

|    |

    | |     
 

    | |     | |
  

(viii) For |    |  
 

 
    | |  |    |  

 

 
    | |  |    |  

 

 
    | |  and | |  

   

|[  
   

   
            

   
   

             
   

   
             

   
   

           ]

 [  
   

   
             

   
   

              
   

   
           

   
   

   
            ]|   

|    |

    | |     
|    |

    | |     

|    |

    | |     
  

          | | | | | |       

∫             
 

  

 ∫             
 

  

 ∫             
 

  

    

   If   is a test function of order   on          we denote       
         

and the norm of   is defined by 
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‖ ‖                        –             

It is easy to check that     
         with this norm is a Banach space. The dual 

space of     
         is denoted by     

        ). Note that a Schwartz 

function with condition      belongs to   . 

   Let                                  and satisfy 

∑|    ̂        |

   

                        

∑|    ̂        |

   

                        

∑|    ̂        |

   

                        

and the moment conditions 

∫         
 

  

   ∫         
 

  

   ∫         
 

  

   

for all multi-indices     and    Denote 

              (  
      

      
   )          

        
        

            

where 

  
              (   )   

                      
   
           (   )  

   By taking the Fourier transform, it is easy to see the following continuous version of 

Calder ́n reproducing formula holding on               

         ∑(               )       

     

                                              

   For       
             we define the Littlewood–Paley square function on 

         by 

            4 ∑ |               |
 

       

5

  ⁄

                                      

where       , satisfies the same conditions as in (22). 

Definition (2.2.2) [128] A product kernel   is a distribution on          which 

coincides with a    function away from the coordinate subspaces         and     

and satisfies 

(i) (Differential Inequalities) For any multi-indices                             and 

               

|  
   

 
  
 
        |        | |

    | | | |    | | | |    | |   

(ii) (Cancellation Condition) For all normalized bump functions          on          

respectively and for any             

|∫   
                           

 

     

|   | |   | |  

|∫   
 
                          

 

     

|   | |   | |  

|∫   
 
                          

 

     

|   | |   | |  

|∫   
 
                                   

 

        

|     
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   We describe the approach and results. 

Definition (2.2.3) [128] Let                               The weighted 

Triebel–Lizorkin type space  ̇ 
   
             is defined by 

 ̇ 
   
                    

  ‖ ‖ ̇ 
   

                  

where 

‖ ‖ ̇ 
   

              ‖‖4 ∑                 |        |
 

       

5

 
 

‖‖

     

                        

   The weighted Besov space  ̇ 
   
             is defined by 

 ̇ 
   
                    

  ‖ ‖ ̇ 
   

                 

where 

‖ ‖ ̇ 
   

               4 ∑                 ‖        ‖     

 

       

5

 
 

                      

   By Littlewood–Paley theory, if             then  ̇ 
             when        

and  ̇ 
              when       as defined in [124]. To proceed further, a natural 

question arises whether this definition is independent of the choice of function       . 

Moreover, to study the  ̇ 
   
            -boundedness and  ̇ 

   
         

   -boundedness of singular integral operators we need to discretize the norm of 

 ̇ 
   
                  ̇ 

   
              To do that we shall prove a Min-

Max comparison principle. The main tool to prove such principle is the Calder ́n 

reproducing formula (23). Furthermore, using an approximation procedure and the almost 

orthogonality estimate, the following discrete Calder ́n reproducing formula is proved in 

[124]. 

Theorem (2.2.4) [128] Let        be the same as in (22). Then 

         ∑∑ | || || |  ̃                                       

          

                   

where  ̃          
                              are dyadic cubes with 

            where      is the side length of              and            for a 

fixed large integer            are any fixed points in       respectively, and the series in 

(27) converges in the norm of     
         and in the dual space     

     
        
   The discrete Calder ́n reproducing formula (27) provides the following Min-Max 

comparison principle in weighted Triebel–Lizorkin spaces and Besov spaces. 

Lemma (2.2.5) [128] Given positive integers                and   , there exists a 

constant                        such that for all positive numbers                 
|                         |

  .
 

  
 
  

 
/

  

.
 

  
 
  

 
/

  

.
 

  
 
  

 
/

  

 
        

      | |     

        

      | |     

        

      | |     
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where         and           are the same as in (22) and                            

Lemma (2.2.6) [128] Given any positive integers                  , let           and 

     be dyadic cubes in       and    respectively such that                 

                              
             

             
     Then for any 

                          we have 

∑ {
  |   

 |    |   
 |    |   

 |    (   
 )    (   

 )    (   
 )  |  ||  ||  |

(     
 
 |     |)

    
(     

 
 |     |)

    
(     

 
 |     |)

    

        

 |           (           )|}

   |   
 |      |   

 |     |   
 |  

  8  4∑∑∑|                         |         

      

5

 

          9

 
 

  

where    is the strong maximal function on                    
 

  
     is 

the critical index of  , and 

     
 
 
              

 
 
 [                                ]  

   The proof of Lemmas (2.2.5) and (2.2.6) can be found in [108] and [124]. 

   We need the following weighted Fefferman–Stein vector-valued inequality in the multi-

parameter setting: 

∫ |            |  
 
              

 

        

  ∫ |     |  
 
              

 

        

          

where       
       ) and                      The one-parameter version 

of this inequality corresponding to the Hardy–Littlewood maximal function instead of the 

strong maximal function, was proved in [126]. From one-parameter version together with 

the observation 

                                     
where      denotes the Hardy–Littlewood maximal operator acting on the i-th variable, 

the above multi-parameter inequality follows (see, e.g., [127]). 

Theorem (2.2.7) [128] Let                                  and                   
Suppose that        and        satisfy the same conditions as in (22). Then for       

                            
                   

             

‖‖(∑                

     

∑    
           

|               |
 

     

                ,

  ⁄

‖‖

     

 

 ‖‖(∑                

     

∑    
           

|               |
 

     

                ,

  ⁄

‖‖

     

      

4∑                

     

‖∑    
           

|               |
 

     

       ‖

     

 

5

  ⁄
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 4∑                

     

‖∑    
           

|               |
 

     

       ‖

     

 

5

  ⁄

               

   Theorem (2.2.7) ensures that the Triebel–Lizorkin space  ̇ 
   
             and 

the Besov space  ̇ 
   
             in Definition (2.2.3) are well defined. 

   By use of the Min-Max comparison principle, we shall prove the boundedness of 

singular integrals on both of  ̇ 
   
                  ̇ 

   
              

Proof. By Theorem (2.2.4),       
       )  can be represented by 

         ∑ ∑ |  ||  ||  |  ̃                                                   

                

  

We write 

(        )        

 ∑ ∑ |  ||  ||  | (        ̃        )                                           

                

  

   By the almost orthogonality estimate in Lemma (2.2.5) by choosing         

                
 
       

 
 and       

 
  we have from Lemma (2.2.6) that for any 

given positive integers                    and for any               and      
 , 

|(        )       |   ∑ ∑ (
  |   

 |    |   
 |    |   

 |    (   
 )    (   

 )  

(     
 
 |     |)

    
(     

 
 |     |)

    

                

 

                                                            
  (   

 )  |  ||  ||  |

(     
 
 |     |)

    
| 

        
  (          )|+ 

  ∑   |   
 |    |   

 |    |   
 |  

        

 8  64∑∑∑|                         |         

      

5
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where    is the strong maximal function on          and      
 

    
 

 

    
 

 

    
  

       
 

  
     Applying H ̈lder‟s inequality and summing over           and  , we 

have 

8∑∑                   
           

|                 |
 
      

          

9

 
 

 

  

{
 
 

 
 

∑     
     

     
     4  6 ∑ |                         |         

        

7

 

5

 
 

        

}
 
 

 
 

 
 

  

   Since         and     are arbitrary points in       and    respectively, we have by 

weighted Fefferman–Stein vector-valued inequality that 
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‖‖8∑∑                   
           

|                 |
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‖

‖
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∑   ( 
     

     
   ) 4  6 ∑    

              
|                  |         
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‖

‖

     

 

    ‖‖8 ∑ ∑   ( 
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|                  |

 
         

                

9

 
 

‖‖

     

  

the last inequality follows from the fact that       
 

  
    and       . Thus (29) 

follows and the proof of the first part of Theorem (2.2.7) is completed. 

   Next, we will show the second part of Theorem (2.2.7), i.e., (30). As in the proof of (29), 

we have 
   

           
|                 |       

  ∑   |   
 |    |   

 |    |   
 |  

        

  8  4 ∑ |           (            )|         

        

5

 

          9

 
 

  

When        by the weighted boundedness of strong maximal function    with 

      
 

  
    and       , we have 

‖∑    
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‖

     

 

 ‖
‖ ∑   |   
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 |    |   
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‖
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‖8  4 ∑ | 
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‖
‖

     

        

 

 ∑   |   
 |    |   

 |    |   
 |   ‖ ∑ | 

        
                |         

        

‖

     
        

  

If      applying H ̈lder‟s inequality and if        using the inequality  ∑       
∑   

 
   and summing over       yields 
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When      , by the fact that         we have 

∫.    
           

|                 |               /

 

               

           ∑   |   
 |     |   

 |     |   
 |   

        

 

 ∫8  4 ∑ | 
        

  (            )|          
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       9

  ⁄

               

         ∑   |   
 |     |   

 |     |   
 |   
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  (            )|          
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   By H ̈lder‟s inequality with exponents 
 

 
 and  

 

   
, we have 

2∫.    
           

|                 |               /

 

              3

 
 

  ∑   (|   
 |   |   

 |   |   
 |  ) 

        

 8∫4 ∑ | 
        

  (            )|          

        

5

 

              9

 
 

  

where          Then, if     by using H ̈lder‟s inequality and if       by using 

inequality  ∑       ∑   
 

  again, we have 

4∑                ‖    
           

|                 |      ‖
     

 

 

     

5

 
 

 [∑                ( ∑   (|   
 |   |   

 |   |   
 |  ) 

             

 ‖ ∑ | 
        

  (            )|          

        

‖

     

,

 

 ]

 
 

 

  ( ∑   ( 
     

     
   ) ‖ ∑ |                         |         

        

‖

     

 

        

,

 
 

  

Since                 are arbitrary points in       and    respectively, we have the desired 

inequality (30).  

   As a consequence of Theorem (2.2.7), it is easy to see that the weighted Triebel–

Lizorkin and Besov Spaces are independent of the choice of the function  . Moreover, we 
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have the following discrete characterization of  ̇ 
                     ̇ 

   
      

        
Proposition (2.2.8) [128] Let                                   Then we have 

‖ ‖ ̇ 
   

     ‖‖4∑ ∑                |          (        )|
 
      

          

5

 
 

‖‖

     

                      

‖ ‖ ̇ 
   

     4∑                ‖∑|          (        )|      
     

‖

     

 

     

5

 
 

                          

where                       are the same as in Theorem (2.2.7). 

   Before we prove the boundedness of singular integrals on  ̇ 
   
         ̇ 

   
    we 

introduce several properties of them. 

Proposition (2.2.9) [128]     
         is dense in  ̇ 

   
             and in 

 ̇ 
   
              

Proof. Suppose that    ̇ 
   
              By Theorem (2.2.4), 

         ∑ ∑ | || || | ̃     

            

                                      

Set 

                 | |     | |     | |                    
where       are dyadic cubes in          with side-length                    
respectively, and        is a ball in          centered at the origin with radius    
Obviously, 

∑ | || || | ̃                                         

             

 

is a test function in     
         for any fixed          and    where  ̃      

    
          Repeating the same proof as in Theorem (2.2.7), we have 

 

‖ ∑ | || || | ̃     (              )(        )(        )
                

‖

 ̇ 
      

  ‖‖8 ∑                 |                   |
 

                

      9

 
 

‖‖

     

  

the last term tends to zero as          and   tends to infinity whenever    ̇ 
   
      

            
            

   Suppose that    ̇ 
   
              Set 

            | |     | |     | |                                     
where       are dyadic cubes in          with side-length                    
respectively. Then 

‖ ∑ ∑ | || || | ̃     (              )(        )(        )

          
           

 

‖

 ̇ 
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 ( ∑                 ‖ ∑ |(        )           |

          
 

      ‖

     

 

          
 

,

 
 

  

the last term tends to zero as          and   tends to infinity whenever    ̇ 
   
      

            
             

   As a consequence of Proposition (2.2.9),              is dense in  ̇ 
   
      

       and in  ̇ 
   
              

Theorem (2.2.10) [128] Suppose that   is a singular integral defined on          by 

                          where the kernel satisfies conditions in Definition (2.2.2). 

Then   is bounded on  ̇ 
   
             and  ̇ 

                 Namely, for 

all                         and       there exists a constant    such that 

‖    ‖ ̇ 
   

(          )    ‖ ‖ ̇ 
   

(          )                                              

‖    ‖ ̇ 
   

(          )    ‖ ‖ ̇ 
   

(          )                                              

   We end with the following. Rychkov [125] characterized the weighted Besov–Lipschitz 

and Triebel–Lizorkin spaces on    with weights that are locally in    but may grow or 

decrease exponentially at infinity. A certain local variant of the Calder ́n reproducing 

formula is also constructed and used in [125]. We get the boundedness of singular 

integrals on the weighted Triebel–Lizorkin and Besov spaces with    weights. This 

theorem is new even in one parameter case. 

   We will prove Theorem (2.2.7), namely, the Min-Max comparison principle which 

implies that the weighted Triebel–Lizorkin and Besov spaces are well defined as given in 

Definition (2.2.3). Provides the proof of the boundedness of singular integrals on the 

weighted Triebel–Lizorkin and Besov spaces, namely, Theorem (2.2.10). 

   We establish the Min-Max comparison principle in weighted Triebel–Lizorkin and 

Besov spaces. We first recall the almost orthogonality estimates on   . 

Proof. We assume now that K is the kernel of  . Applying the discrete Calder ́n 

reproducing formula, we get, for       ̇ 
                 

‖‖8∑∑                |          (        )|
 
               

          

9

 
 

‖‖

     

 ‖
‖(∑∑                | ∑ ∑ |  ||  ||  |          ̃         

                          

                                                 |

 

               ,

 
 

‖
‖

     

  

Noting that        are dilation of bump functions, one can easily get from almost 

orthogonality estimate that 
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|           ̃                                  |
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 |    |   

 |    |   
 | 

  (   
 ) 

(      
   |     |)

   

 
  (   

 ) 

(      
   |     |)

    
  (   

 ) 

(      
   |     |)

                                                    

where   only depends on    and    is chosen to be large enough. Then following a 

similar proof in Theorem (2.2.7), we have 

‖  ‖ ̇ 
   

(          ) 

  
‖

‖

(

 
 

∑   ( 
     

     
   ) 
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Since               ̇ 
   
             is dense in  ̇ 

   
         

     we could yield (33) in Theorem (2.2.10) by a limiting argument. 

   Similarly, for       ̇ 
   
              applying the Calder ́n reproducing 

formula, 

       8∑                ‖∑|                 |               

     

‖

     

 

 

     

9

 
 

 (∑                ‖∑ | ∑ ∑ |  ||  ||  |          ̃         

                          

                                         |       ‖

     

 

 ,

 
 

  

By (35), we obtain 
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Section (2.3) Triebel–Lizorkin and Besov Spaces with Different Homogeneities 

   The multi-parameter pure product theory has been developed. This theory includes the 

boundedness of singular integral operators on multi-parameter    spaces         and 

multi-parameter Hardy spaces            This theory also includes the atomic 

decomposition of multi-parameter Hardy spaces, duality and interpolation theorems on 

product spaces, and maximal function characterizations, etc. See [96, 97, 99, 100–105, 

121, 129]. 

   [108, 119, 122], developed a theory of discrete Calder ́n reproducing formula and 

Littlewood–Paley analysis, and then applied it to establish the implicit multi-parameter 

Hardy space and dual space theory associated with the flag singular integrals both in 

Euclidean spaces and Heisenberg groups. Their results lead to the endpoint estimates of 

the Marcinkiewitz multipliers on the Heisenberg group where the    estimates were 

established by Muller–Ricci–Stein [106]. Ideas and methods have inspired much 

subsequent works using the discrete Littlewood–Paley theory in various multi-parameter 

settings, see [123, 130, 131, 133, 134, 136], etc. Using the discrete Littlewood–Paley 

analysis developed in [108] and [119], [128] and [120] introduced the theory of multi-

parameter Triebel–Lizorkin and Besov spaces associated with the flag singular integrals 

[120] and weighted Triebel–Lizorkin and Besov spaces of arbitrary number of parameters 

[128] and proved the boundedness of singular integral operators on these spaces. These 

Triebel–Lizorkin spaces include the multi-parameter Hardy spaces when the index   is 

less than or equal to 1. (See also [138] for Triebel–Lizorkin and Besov spaces associated 

with the flag singular integrals when the indices   and   are strictly bigger than 1.) 

   [132] established the boundedness of composition singular integrals on Hardy spaces 

associated with different homogeneities. To describe their result, we begin with some brief 

review of composition of two operators with different homogeneities. 

   The composition of operators was considered by Calder ́n and Zygmund when 

introducing the first generation of Calder ́n–Zygmund convolution operators. Let      be 

a function on    homogeneous of degree   in the isotropic sense and smooth away from 

the origin. Similarly, suppose that      is a function on    homogeneous of degree   in 

the nonisotropic sense similar the one in situation of the heat equation, and also smooth 

away from the origin. Then the classical Calder ́n–Zygmund theory tells us that the 

Fourier multipliers    defined by      ̂         ̂    and    given by      ̂    

     ̂    are both bounded on    for        and satisfy various other regularity 

properties such as being of weak-type (1, 1). It was also well known that    and    are 

bounded on the classical isotropic and non-isotropic Hardy spaces, respectively. The 

following question raised by Rivier ́ in [137] is highly nontrivial: Is the composition 

      still of weak-type (1, 1)? It was Phong and Stein who answered in [135] this 

question and gave a necessary and sufficient condition such that the composition operator 

      is of weak-type (1, 1). In fact, the operators Phong and Stein studied are 

compositions with different homogeneities and such a composition operator arises 

naturally in the study of  ̅-Neumann problem. 

   It is well known that any Calder ́n–Zygmund singular integral operator associated with 

the isotropic homogeneity is bounded on the classical Hardy space        with     
   A Calder ́n–Zygmund singular integral operator associated with the non-isotropic 

homogeneity is not bounded on the classical Hardy space but bounded on the non-

isotropic Hardy space. However, the composition operator is bounded on neither the 
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classical Hardy space nor the non-isotropic Hardy space. This motivates the authors of 

[132] to introduce a new Hardy space associated with the different homogeneities. 

   Motivated by [120, 128, 132], we consider new Triebel–Lizorkin and Besov spaces 

associated with the composition of two operators with different homogeneities. All 

functions and operators are always defined on   . We write           with 

                 
               . We consider two kinds of homogeneities 

                        
and 

                          
The first is the classical isotropic dilations occurring in the classical Calder ́n–Zygmund 

singular integrals, while the second is non-isotropic and related to the heat equations (also 

Heisenberg groups). 

   For                            | |
 
  |  |

 
 |  |

  

 

      | |
 
  |  |

 
 |  | 

 

 
. 

We also use notations                              . The singular integrals 

considered are defined in the following. 

Definition (2.3.1) [139] A locally integrable function    on        is said to be a 

Calder ́n–Zygmund kernel associated with the isotropic homogeneity if 

|
  

   
     |   | | 

   | |            | |                                                

∫        
 

   | |    

                                                                   

for all            
   We say that an operator    is a Calder ́n–Zygmund singular integral operator associated 

with the isotropic homogeneity if                         where    satisfies 

conditions in (36) and (37). 

Definition (2.3.2) [139] Suppose        
             is said to be a Calder ́n–

Zygmund kernel associated with the non-isotropic homogeneity if 

|
  

      
  

     
 
    

     |   | | 
     | |   

  | |                              

∫        
 

   | |    

                                                                   

for all            
   We say that an operator    is a Calder ́n–Zygmund singular integral operator associated 

with the non-isotropic homogeneity if                         where     satisfies 

the conditions in (38) and (39). 

   Denote     
            ∫         

 

      | |    . Let            with 

        ̂  {               
 

 
 | |   }                                          

and 

∑|    ̂              |
 

   

                                                          

      Let            with 

        ̂  {               
 

 
 | |   }                                           

and 
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∑|    ̂               |
 

   

                                                          

   Denote           
   

   
        where   

                                
            

                       . Using an approximation procedure and the almost orthogonality 

estimate, the following discrete Calder ́n reproducing formula is proved in [132]. 

Theorem (2.3.3) [139] Suppose that      and     are functions satisfying conditions in 

(40)–(41) and (42)–(43), respectively. Then 

         ∑ ∑                     

                   

          
                    

       
                           

where the series converges in            
   and   

       
   With the discrete Calder ́n reproducing formula, we can define Triebel–Lizorkin spaces 

and Besov spaces with different homogeneities. 

Definition (2.3.4) [139] Let                      . The Triebel–Lizorkin type 

space with different homogeneities  ̇ 
   
     is defined by 

 ̇ 
   
          

      ‖ ‖ ̇ 
   

         

where 

‖ ‖ ̇ 
   

     ‖‖4∑   [                ] 

     

 ∑ |        
                    |

 
    

        

              

5

 
 

‖‖

      

  

where   are dyadic cubes in      and   are dyadic intervals in   with the side length 

               and                and the left lower corners of   and the left end points 

of   are                         respectively. 

     The Besov space with different homogeneities  ̇ 
   
     is defined by 

 ̇ 
   
          

      ‖ ‖ ̇ 
   

         

where 

‖ ‖ ̇ 
   

     (∑   [                ] 

     

 ‖ ∑         
                        

        

              

‖

      

 

,

 
 

 

where     are the same as the above description. 

   Note that, the multi-parameter structures are involved in the discrete Calder ́n‟s identity 

and also in the new Triebel–Lizorkin spaces and Besov spaces. To see that these spaces 

are well defined, we need to show that  ̇ 
   
    and  ̇ 

   
     are independent of the 

choice of the functions    and   . This will directly follow from the following. 

   We now state the main results. 
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Lemma (2.3.5) [139] Suppose that      and        satisfy the same conditions in (40)–(43). 

Then for any given integers   and  , there exists a constant            such that 

|             
     |     |   

 |   |   
 | 

     
            

(      
      |  |)

       
 

 
    

         

       
         |  | 

     
  

   Modifying the proof of Lemma 3.2 in [132] slightly, we have the following discrete 

version of the strong maximal function. 

Lemma (2.3.6) [139] Let      be dyadic cubes in      and      be dyadic intervals in   

with the side lengths                      ( 
    )   and                     

  ( 
     )   for an integer    , and the left lower corners of      and the left end points 

of      are             ( 
    )                 and     

          
  for        ,  

       
  , respectively. 

Then for any                , and any 
   

     
    , 

∑
      (         )    

               [(     )  ]  ( 
     )  

(      
      |       

          |)
       

(      
 )       

 
|(        )( 

 (     )        ( 
     )    

 )|

(      
        |       

          
 |)

     
 

   {  4 ∑            
 (     )        ( 

     )    
  |      

(      
 )

5

 

       }

   

  

Where            
 

 
        

 

 
                

(
 

 
  )              

  here        
            and    is the strong maximal function. 

Theorem (2.3.7) [139] Let                 satisfy conditions (40)–(41),           

      satisfy conditions (42)–(43). Then for                       and     
       

‖‖4∑   [                ] 

     

∑ |      ( 
                   )|
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‖‖

      

 

 ‖‖4∑   [                ] 

     

 ∑ |      ( 
                   )|
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and 

(∑   [                ] 

     

 ‖ ∑       ( 
                   )    
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,

 
 

 

 (∑   [                ] 

     

 ‖ ∑         
                        

        
              

‖

      

 

,

 
 

  

where      is constructed as     . 
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Proof. Let        
     Denote                                      

         and 

        
        

 . By Theorem (2.3.3), Lemma (2.3.6) and the almost orthogonality 

estimates, for 
   

     
     and any            we have 

|(      )(     )| 

 |∑ ∑       (     )  ( 
     )

(      
 )     

 (           )(             )(        )(       )| 
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 |   |   

 | 
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      (         )    

               (     )  ( 
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      |      |)
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|(        )(       )|
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        |      |)
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(      
 )
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       }

 
 

      

Summing over     and          for any          , we have 
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When      , using the inequality  ∑       ∑   
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             |      
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]

 

       

}
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where in the last inequality we use the facts that:              |    |  |  
  |                |    |   |    | and if choose   big enough such that 

        
 

 
     |  |  |  | then 
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∑  |   
 |  

   

  |   
 |          

                 
           

 
    

When    , by H ̈lder‟s inequality with exponents      
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where in the last inequality we use similar estimates as in the case of      , since 

∑  (|   
 |   )  ⁄   (|   

 |   )  ⁄

     

  
  
    

and 

∑  (|   
 |  )  ⁄

   

  (|   
 |  )  ⁄         

                 
            

by choosing   big enough. At last, applying Fefferman–Stein‟s vector-valued strong 

maximal inequality on            provided              yields the first part of 

Theorem (2.3.7). 

   Next, we show the second part of Theorem (2.3.7). 

When        with (44), we have 
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  ∑   |   
 |   |   

 |        
 
 
                 

 
 
                 

     

 ‖ ∑ |                   |      

(      
 )

‖

      

 

by the          boundedness of strong maximal function    for a small         , 

applying H ̈lder‟s inequality and if      , using the inequality  ∑       ∑   
 

 , and 

summing over     yields 

(∑   [                ] 

     

 ‖ ∑       ( 
                   )    

        

              

‖

      

 

,

 
 

 

  ( ∑   [  
          

        ] 

       

 ‖ ∑           
                

        
      

        

(      
 )       

‖

      

 

,

 
 

  

When      , using (44) again, 
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By H ̈lder‟s inequality with exponents 
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, we have 

8∫4 ∑       ( 
                   )    

        

              

5

 

      9

  ⁄

 4∑ [  |   
 |   |   

 |  
     (

 
 
  )(         )

  (
 
 
  )(           )

 ]
       ⁄

     

5

   
 

 ∑ [  |   
 |   |   

 |  
     (

 
 
  )(         )

  (
 
 
  )(           )

 ]
  ⁄

     

 8∫4 ∑ |(        )(       )|      

(      
 )

5

 

         
    9

  ⁄

 



 

62 
 

 ∑ [  |   
 |   |   

 |  
     (

 
 
  )             

(
 
 
  )              ]

  ⁄

     

 8∫4 ∑ |(        )(       )|      

(      
 )

5

 

         
    9

  ⁄

  

At last, if     by using H ̈lder‟s inequality and if       by using inequality 
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which completes the proof. 

   Before we prove the boundedness of singular integrals on  ̇ 
   
     and  ̇ 

   
     we 

introduce several properties of them. 

Proposition (2.3.8) [139]     
   is dense in  ̇ 

   
     and in  ̇ 

         

Proof. Let    ̇ 
   
      For any fixed    , denote 

               | |    | |    |  |    |  |     
and 

    
       ∑                              

                    

             

 

                                   
                              

where      is the same as in Theorem (2.3.3). 

   Since          
    we obviously have        

  . Repeating the same proof as 

that of Theorem (2.3.7), we have 

‖  ‖ ̇ 
   

      ‖ ‖ ̇ 
   

      

moreover, 
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‖    ‖ ̇ 
   

     

 ‖‖4 ∑   [                ] 

              

 |        
                    |

     
        5

 
 

‖‖

  

  

where the last term tends to   as   tends to infinity. 

   Suppose that    ̇ 
         Set 

          | |     | |                  | 
 |     |  |       

and 

    
       ∑ ∑                              

                    

                  

       
                            

Then        
   too.  Proceeding as above, we have 
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and 
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where the last term tends to   as       tends to infinity.  

   As a consequence of Proposition (2.3.8),          
   
     and         ̇ 

   
     

are dense in  ̇ 
   
     and  ̇ 

   
     respectively. 

   In order to obtain almost orthogonality estimates with the kernel of  , we need a discrete 

Calder ́n-type identity on         ̇ 
   
     and         ̇ 

         To do this, let 

           with                 , 

∑|    ̂       |
 

   

                                                                     

and  

∫            
 

  

               | |                                                       

where   is a fixed large positive integer depending on      . We also let            

with                   

∑|    ̂               |
 

   

                                                        

and  

∫            
 

  

               | |                                                     

Set         
      

     where   
                    and   

                                    

   For simplicity, let   be one of   ̇ 
   
     and  ̇ 

       . The discrete Calder ́n-type 

identity is then given by the following. 

Proposition (2.3.9) [139] Let      and      satisfy conditions (45)–(48). Then for any 

          , there exists            such that for a sufficiently large      
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         ∑ ∑ | || |      
                                    

                   

                               
where the series converges in    and     are dyadic cubes in      and   are dyadic 

intervals in   with side-length                and                , and the left 

lower corners of   and the left end points of   are             and             , 

respectively. Moreover, 

‖ ‖       ‖ ‖       

and 

‖ ‖  ‖ ‖   
Proof. The proof is similar to that of Theorem 4.1 in [132], and we only provide a brief 

outline. For any           from the continuous Calder ́n identity, 

         ∑             
     

   

  

Applying Coifman‟s decomposition of the identity operator, we obtain 
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here   are dyadic cubes in      and   are dyadic intervals in   with side-length      
          and                 and the left lower corners of   and the left end points of 

  are             and             , respectively. 

   Applying discrete Calder ́n‟s identity, 

         ∑ ∑                     
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Then 
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which follows 
‖  

    ‖    ‖  
    ‖ ̇ 

        ‖ ‖   

and 
‖  

    ‖      ‖ ‖   
by repeating the same proof as that of Theorem (2.3.7). With a similar proof, one also has 

‖  
    ‖       ‖ ‖   ‖  

    ‖      ‖ ‖   

   By choosing sufficiently large     
   ∑     

  
    is bounded in both    and  , which 

implies that 

‖  
     ‖       ‖ ‖       

and 

‖  
     ‖  ‖ ‖   

Moreover, for any           , set     
       Then 

              
            

 ∑ ∑ | || |      
                              

                   

           
                          

where the series converges in    and in     
   Repeating the same proof as that of Theorem (2.3.7), we have 

Corollary (2.3.10) [139] Let                     .Suppose      satisfies the 

same conditions as in Proposition (2.3.9) with a large  . For a large   as in Proposition 

(2.3.9), if       ̇ 
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Theorem (2.3.11) [139] Let    and    be Calder ́n–Zygmund singular integral operators 

with the isotropic and non-isotropic homogeneity, respectively. Then for all       

               , the composition operator         is bounded on  ̇ 
   
     and 

 ̇ 
         

   We first recall two important lemmas in [132], almost orthogonality estimates and 

discrete version of the strong maximal function, which play an important role in the theory 

developed in [108, 122]. 

Proof. We assume that    is the kernel of the convolution operator   ,        and   is 

the kernel of the composition operator        . Then          and        . 

Suppose that      and      are functions satisfying conditions in (40)–(41) and (42)–(43), 

respectively. Then by definition 
‖    ‖ ̇ 
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   Applying the discrete Calder ́n-type reproducing formula in Proposition (2.3.9), for 
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where      and      satisfy (45)–(48). It is easy to see that 
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]         

For       
   

   
   

, since      has compact support and satisfies the cancellation 

condition in (46), one can obtain the following estimates from [132]: 

|      
   
       |   

  
  

     
 
|  |           

 
|  | 

   
                           

Note that,  | |                 satisfies the same conditions of     , that is, 

compact support and satisfies the cancellation condition in (46) with order not less than 

   . Then 

|   ( 
     )

  
       |   

  
  

(    
 |  |)

     
(    

 |  |)
                       

and          
   
           

 | |     
          

        By classical methods of the 

almost orthogonality estimates,        , using          
            

   
         

  
 | |     

          
       and (50), and if     , using cancellation condition (46) to 

      
   

 and (49), we obtain 
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|      
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Similarly, for       
   

   
   
  

|      
   

   
   
       |   

  |   
 |       

       

        
  |  |                 

  |  | 
     

         

Estimates (51) and (52) yield that 
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Together with Lemma (2.3.6), applying the same proof as that of Theorem (2.3.7) yields 

that 
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where in the last step we use Corollary (2.3.10). Since     ̇ 
   
     is dense in 

 ̇ 
         we conclude the boundedness of   on  ̇ 
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Chapter 3 

Wavelets Bases and Generalized Besov Spaces 

   We show that compactly supported wavelets of Daubechies type provide an 

unconditional Schauder basis in these spaces when the integrability parameters are finite. 

We also connect this with the possibility of embedding such spaces in some particular 

Lebesgue spaces. 

Section(3.1) Generalized Besov Spaces 

   Wavelets have many applications into mathematics and other areas, such as engineering 

and physics. For instance, wavelet bases are used in the numerical resolution of some 

PDE‟s with the advantage of providing fast and efficient algorithms. Concerning functions 

spaces, wavelet bases give us the possibility of describing their elements in terms of basic 

and simple “building blocks.” In general, an important point is that we can characterize the 

original (quasi-)norm by means of certain sums involving the wavelet coefficients. On the 

other hand, wavelet bases can be quite useful to study some intrinsic questions related to 

functions spaces. For example, they were successfully used to estimate entropy numbers of 

compact embeddings between weighted spaces (see [148]). 

    Motivated by Triebel on wavelet bases in function spaces, we deal with wavelet 

representations in Besov spaces with generalized smoothness. [151] proved, that 

compactly supported wavelets of Daubechies type form an unconditional Schauder basis 

in the “classic” Besov spaces    
 . The aim is to extend this result to the “generalized” 

Besov spaces    
 

, showing that the same wavelet system also provides an unconditional 

Schauder basis in these spaces. We would like to remark that function spaces of 

generalized smoothness have applications in other fields such as probability theory and 

stochastic processes (see [144]). 

   It is possible to get the result without repeating the approach suggested in [151]. Hence, 

instead of making use of all that powerful tools (atomic decompositions, local means, 

maximal functions, duality theory), we try mainly to take advantage of the classic case by 

means of suitable interpolation techniques. We would like to remark that interpolation 

tools were recently used by Caetano (see [141]) in order to get subatomic representations 

of Bessel potential spaces modelled on Lorentz spaces from the corresponding ones for the 

usual spaces   
 . 

   As long as wavelet bases is concerned, see [143, 151, 150, 155]. And [146], where 

wavelet decompositions of Besov spaces were studied in a multiresolution analysis 

framework. 

   We give the definition of Besov spaces of generalized smoothness and compare them to 

other well-known function spaces. We also discuss some interpolation properties which 

will play a key role later on, is devoted to the wavelet representation of Besov spaces. For 

convenience, we contextualize the problem recalling what is already done in the “classic” 

case, and then we formulate the main result as well as some of its consequences. 

   For    be then-dimensional Euclidean space and    the usual lattice of all points with 

integers components      . For           
   denotes the well-known quasi-

Banach space with respect to the Lebesgue measure, quasi-normed by 

‖  |    
  ‖  ( ∫|    |   

 

  

+

   

  

with the usual modification if    . Let       be the space of all complex-valued 

uniformly continuous bounded functions in    and let, for    , 

                           | |                                               
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normed by 

‖ |      ‖  ∑ ‖    |    
  ‖

| |  

  

By       we denote the Schwartz space of all rapidly decreasing and infinitely 

differentiable functions on   , and by        its topological dual, that is, the space of all 

tempered distributions. If          then        ̂  stands for the Fourier transform of 

 , 

                ⁄ ∫           

 

  

                                          

where as             denotes its inverse Fourier transform, given by the right-hand side 

of (2) with   in place of   . Both the Fourier transform and its inverse are extended to 

       in the usual way. 

   Let          be such that 

             | |                          | |                                   
Putting 

            ⁄                          ( 
     )              

then 

         {          | |      }      

and 

∑       

 

   

       

Hence         
 forms a dyadic smooth resolution of unity. We recall that, for       

         , the usual Besov and Triebel–Lizorkin spaces are defined as the 

collection of all          such that 

‖  |   
     ‖   4∑    ‖    ̂ 

 |    
  ‖

 
 

   

5

  ⁄

                                   

and 

‖  |   
     ‖   ‖4∑    |    ̂ 

    |
 

 

   

5

  ⁄

|    
   ‖                              

(with the usual modification if     and     in the F-case) are finite, respectively. 

They are quasi-Banach spaces and are independent of the system         
 chosen 

according to (3) and (4) (with equivalent quasi-norms). We refer to [65] for a systematic 

theory on these spaces. It is well known that these scales contain some classic spaces as 

special cases. For instance, 

    
        

                 

are the fractional Sobolev spaces (they are the classic Sobolev spaces when    ) and 

    
          

                                                             

are the local (or inhomogeneous) Hardy spaces introduced by Goldberg (see [147]). 

   We need to deal with some sequence spaces into a general context as follows. Let   be a 

quasi-normed space,   a countable set and        We denote by         the 
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“sequence” spaces of all  -valued families           such that ‖ |       ‖ is finite, 

where 

‖ |       ‖   (∑‖  | ‖
 

   

+

  ⁄

                                             

and 
‖ |       ‖      

   
‖  | ‖                                                         

define quasi-norms. If the set   is clear from the context, we shall omit it. Besides, we may 

omit   from the notation if    . 

   We obtain Besov spaces of generalized smoothness replacing the usual regularity index 

  in (5) by a certain function with given properties. We consider a sufficiently wide class 

of such functions, which allows us to cover many cases. 

Definition (3.1.1) [157] We say that a function               belongs to the class   

if it is continuous,       , and 

 ̅        
   

     

    
          

   See [142, 149] for more details concerning this class. For a function    , the Boyd 

upper and lower indices   ̅ and   ̅ are then well-defined, respectively, by 

  ̅         
    ̅   

    
 and   ̅        

    ̅   

    
 with      ̅    ̅      

   If   is a quasi-normed space,       and    , one can consider the spaces 

  
 
    of all sequences         

 such that   (  )       
        equipped with the 

quasi-norms‖ |     ‖ according to (8) and (9) (with     ). When           

         , we simply write   
      instead of   

 
     for short. 

   Let         
       be a system with the following properties: 

                  | |                                                                                                          
           {          | |      }                                                                  

      
    

|        |     
  | |          

                                                              

   ∑      

 

   

                                                                                                                   

Definition (3.1.2) [157] Let         
 be a dyadic resolution of unity with the properties 

(10)–(13) above. For            and      , we define    
 
     as being the 

class of all           such that      ̂ 
      

   
 
     

    with 

‖  |   
 
    ‖  ‖     ̂ 

      
|  

 
     

   ‖  

   These spaces were studied by Merucci (see [149]) as a result of real interpolation with 

function parameter between Sobolev spaces and then by Cobos and Fernandez in [142]. 

Such as in the classic case according to (5), they are quasi-Banach spaces and are 

independent of the system         
 chosen, up to equivalent quasi-norms. We point out 

that the spaces    
      can be obtained as a particular case of the spaces    

 
     by 

taking                    . 

   In general, we are only dealing with functions spaces on   . Hence, from now on, we 

shall omit the    in their notation. For convenience, we will refer to the spaces    
  as 

classic Besov spaces. 
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   Besov spaces with generalized smoothness have been considered and studied. See [144]. 

In [144] we can also find a general and unified approach for these spaces, as well as the 

counterpart for the Triebel–Lizorkin scale. As far as Besov spaces are concerned, it is 

possible to define generalized spaces    
  by replacing       by        , in Definition 

(3.1.2), where   is a certain admissible sequence of positive real numbers in the sense of 

[7]: 

   
  {     ‖  |   

 ‖  ‖       ̂ 
      

|       ‖   }                             

where           
satisfies the condition 

                                                                        

for some        . The definition given in [144] is even more general: it is introduced a 

fourth parameter           
related to generalized resolutions of unity, namely, 

allowing different sizes for the support of the involved functions. We restrict ourselves 

here to the standard decomposition, that is, with           
. 

   Some “other” generalized spaces of Besov type were introduced by Edmunds and 

Triebel. They are usually denoted by    
     

 and are defined as in (5) with             in 

place of     . The parameter   here represents a perturbation on the smoothness index  , 

and, of course, it fulfills certain conditions. See [47] for a systematic study on spaces 

   
     

. 

   As it was remarked in [144], the spaces    
     

 are covered by the general formulation 

(14), by taking        (   )       Since we have  ̅   ⁄     (  )   (    )  

 ̅    (  )     , the spaces    
 
    , are also a particular case of the spaces defined 

in (14). However, we would like to point out that is enough to consider the spaces    
 

. 

This fact may be justified by the following result, which was suggested to us by Caetano. 

Proposition (3.1.3) [157] Let   be an admissible sequence in the sense of (15) and 

         Then there exists a function      such that 

   
  

    
   

Proof. Let   be admissible. First, we remark that one can always assume      without 

loss the generality. In fact, the sequence    defined as   
    and   

        , is 

equivalent to  , so    
     

  
. 

We can construct a function      as follows: 

      {
 
       

  
(    )       [       )       

                         
 

(cf. [12, Section 2.2]). Hence,     
      for all      and we get the result. 

   Taking into account this proposition, from now on we will only deal with Besov spaces 

from Definition (3.1.2). Such as in the classic case (cf. [65, pp. 47-48]) one proves the 

following embeddings related to the spaces    
 

. 

Proposition (3.1.4) [157] 

(i) Let                  Then 

         
 
           . 

(ii) Let                    . Then 

    
 

         
 

    . 
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(iii) Let                      . If ,
     

     
-
    

           , then 

    
 

          
 

      

   As usually, the symbol “ ” above indicates that the corresponding embedding is 

continuous. Property (iii) is important, in particular, to derive Lemma (3.1.6) bellow. 

   As it was referred before, the spaces    
 
    , can be obtained from real interpolation 

between Sobolev spaces with an appropriate function parameter. Interpolation of this kind 

fits well into these generalized Besov spaces framework if the function parameter belongs 

to the same class  . See [142,149]. In [142] several interpolation results were obtained for 

the spaces    
 

 in the Banach case          . The approach followed there was 

based on interpolation properties of sequence spaces. Those properties were then 

transferred to the spaces    
 

, by means of the so-called method of retraction and co-

retraction(cf. [2, p. 150] and [153, p. 22], for example). Briefly, let   be a quasi-Banach 

space,     and              Taking into account [142, Theorem 5.1 and Remark 

5.4], one can write 

(   
         

     )
   

   
                                                           

if                     ̅    ̅     and 

     
  

  
     

 . 
 

     /

                                                          

It is possible to show that    
 

 is a retract of   
 
     if     by constructing certain 

applications (retraction and co-retractions) based on the Fourier transform. But this does 

not work if      . However, as it was remarked in [142, Remark 5.4], some of the 

interpolation results obtained hold in the quasi-Banach case as well. We do not intend to 

go into too many details, but we give here a brief description how this question in the 

general case can be dealt with. Following [152, Theorem 2.2.10], one can prove the result 

bellow. 

Proposition (3.1.5) [157] Let            and         
  satisfying the conditions 

(10)–(13). Then              if and only if                  . Moreover, 

there are constants         independent of   and   such that 

  ‖ 
         |   ‖  ‖          |   ‖    ‖ 

         |   ‖  

   Note that    is the local Hardy space from (7). Using these estimates, one can replace    

by    in Definition (3.1.2) when     (note that                  . With this 

change, one avoids the mentioned troubles caused by the Fourier transform. On the other 

hand, we can prove that    
 

 is a retract of   
 
    : if         

   is a system with the 

properties (10)–(13), then 

         
  ∑     ̃     

 

   

       ̃   ∑     

 

    

  

is a retraction from   
 
     to    

 
  and                    

 is the corresponding co-

retraction. We remark that   is well-defined with the help of the following lemma, which 

can be proved following similar techniques as in [156, Theorem 3.6], 
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Lemma (3.1.6) [157] Let                  Assume that         
    

fulfills the conditions 

             | |                      {       | |      }       

If ‖        |       ‖   , then ∑   
 
    converges in   . 

   Hence, it is possible to get the result bellow. 

Proposition (3.1.7) [157] Let            and            . Assume         

satisfy      ̅    ̅     and   as in (17). Then 

(    
       

  )
   

    
 
  

   Proposition (3.1.7) shows, that spaces    
     

 mentioned can be obtained by interpolation 

of classic Besov spaces with a suitable function parameter. This fact was already observed 

in [140]. 

   The aim is to obtain wavelet representations for the generalized Besov spaces under 

consideration. We will make use of the system considered in [151] and follow the same 

notation. 

   Let                  and     . It is known that, for any    , there are real 

compactly supported functions 

                                                                        
with 

∫         

 

  

       
  | |                                                

such that 

{    ⁄    
                    }                                     

with 

   
     2

                                                

  (       )                
                              

is an orthonormal basis in   . As mentioned in [151], an example of such a system of 

functions is the (inhomogeneous) Daubechies wavelet basis (see [143, 150, 155]). 

   Wavelets with the properties above are sufficiently good to provide unconditional bases 

in many classical spaces. For instance, it was known that the mentioned Daubechies 

system forms an unconditional Schauder basis in the Sobolev spaces   
  if       

  | |, and in the Besov spaces    
  if            | |  These two examples show, 

that the smoothness required on the wavelets in (18) should be large enough, depending on 

the regularity of the functions that we pretend to represent. This fact can also be observed. 

   The main aim in [151] was to extend the results above about Sobolev spaces and some 

Besov spaces to the entire scales    
  and    

 . For convenience, we recall here the main 

result related to Besov spaces. Let                                and 

                           

Theorem (3.1.8) [157] Let                  and 

            (  
  

 
 
 

 
  *                                                     

(i) Assume     with          and let     . Then      
  if and only if it can be 

represented as 

  ∑    
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unconditional convergence in    and in any space    
  if    . Moreover, the 

representation (23) is unique: 

                    
          ⌌     

 ⌍                                            

Furthermore,       ⌌     
 ⌍           defines an isomorphic map of    

  onto    
  and 

‖  |    
 ‖  ‖      |    

 ‖                                                             

(equivalent quasi-norms). 

(ii) In addition, if             then (23) with (24) converges unconditionally in    
  

and     
           is an unconditional Schauder basis in    

 . 

   Here,    
  is the space of all complex-valued sequences       

            such that 

‖  |    
 ‖  4 ∑           ( ∑ |   

 |
 

    

+

   

         

5

   

    

with standard modifications if     and/or      
   The proof of Theorem (3.1.8) was based on atomic decompositions, characterizations by 

local means, and duality theory (see [68, 154]). An important point there was that the 

wavelets considered were simultaneously atoms and kernels of those local means. It was 

also commented in [151] the possibility of getting a similar result of other scales of 

function spaces. To do that, it would be enough to have the same tools available. However, 

as we mentioned before, we will not follow this approach. Instead, we will consider a 

scheme based on interpolation techniques in order to take advantage of the already known 

wavelet decompositions for the classic case. 

   Let                  For our purposes we need to introduce the sequence 

spaces    
 

, consisting of all complex-valued sequences       
            such that the 

quasi-norm 

‖  |    
 
‖   4 ∑ ( (  )     ⁄ )

 
( ∑ |   

 |
 

    

+

   

         

5

   

                          

(with the usual modifications if                ) is finite. When           

         , then    
 

 coincides with the space    
  defined in [151]. We would like to 

remark that sequence spaces with this structure were introduced by Frazier and Jawerth in 

[115, 145] in connection with atomic decompositions of (classic) Besov and Triebel–

Lizorkin spaces and they have been used afterwards by many. 

   The interpolation property bellow will be very useful in proving the main result. 

Proposition (3.1.9) [157] Let     and                If       are real numbers 

fulfilling      ̅    ̅     , then we have 

(    
       

  )
   

    
 
  

where   is defined as in (17). 

Proof. Firstly, we note that spaces     
   and     

   form an interpolation couple since they 

are both continuously embedded in    
  , for example. We can interpret    

 
 as the 

sequence space   
        

    where                ⁄           In fact, the index   

does not bring any trouble. It is not hard to see that formula (16) remains valid for these 

spaces. On the other hand, the Boyd indices of    are given by 
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  ̅ 
   ̅  

 

 
 and   ̅ 

   ̅  
 

 
  

Taking         ⁄          then we have 

     ̅ 
   ̅ 

    and         
  

       ( 
 

     *⁄                        

Hence, attending to formula (16), we have 

(   
  (    

  )     
  (    

  )*
   

   
  (    

  )   

that is, (    
       

  )
   

    
 
  

Lemma (3.1.10) [157] Let          , and        If     
               

  and 

  is a natural number such that                 then ∑    
    

 
          converges 

unconditionally in    
  if     and in any    

                     

Proof. First, we assume that    . From properties (18), (19), and (21), we see that, for 

each  , the functions              
  are   -atoms       or         -atoms       

according to [154, Definition 13.3], ignoring constants which are independent of,      and 

 . Using the Atomic Decomposition Theorem (cf. [154, pp. 75–76]), we arrive at the 

conclusion that there exists     such that the estimate 

‖ ∑    
    

  |    
 

         

‖

 

  ∑       ⁄   

   

(∑|   
 |

 

 

+

  ⁄

                         

holds for all finite subsets   of   (the sums on the right-hand side run over all indices 

       and   such that             From this estimate and from the summability of the 

two families of positive real numbers involved in (26), we conclude that the partial sums 

on the left-hand side of (27) constitute a generalized Cauchy sequence in the complete 

space    
 , thus converge in this space. 

   Now, let     and    . We reduce this case to the previous one by using the atomic 

decomposition result as before (with   in place of  ) and remarking that    
     

  with 

       
   We formulate our main result related to wavelet representation and some of its 

consequences. 

Theorem (3.1.11) [157] Let          , and        Consider the system 

    
            as previously. Then there exists        such that, for any     with 

          the following holds: 

   Given     , then      
 

 if and only if it can be represented as 

  ∑    
    

  

         

             
 
                                                  

(unconditional convergence in   ). Moreover, the “wavelet coefficients”    
  are uniquely 

determined by 

   
     

          ⌌     
 ⌍                                                 

Further, 

‖  |    
 
‖  ‖     |    

 
‖                                                         

(equivalent quasi-norms), where          
                

Proof. 

Step 1. Assume that      can be represented as 
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  ∑    
    

  

         

                                  

for some      
 
  Let        . Attending to Lemma (3.1.10), we conclude that the 

operator 

      
       

        
       

    

given by 

   ∑    
    

      

         

                                   

is well-defined and linear if       (               )  for example, where           
     is given by (22). Moreover, by Theorem (3.1.8) one concludes that the restriction of 

  to each     
   is a bounded linear operator into     

  . Choosing       above such that 

     ̅    ̅     and attending to the interpolation property and to Propositions (3.1.7) 

and (3.1.9), we arrive at the conclusion that the restriction of   to    
 

 is also a bounded 

linear operator into    
 

. Thus,      
 

 and 

‖  |    
 
‖  ‖   |    

 
‖   ‖  |    

 
‖ 

for some     independent of   and  . 

Step 2. Now, let      
 

. Assume that      , and   fulfill the same conditions as in Step 

1. Consider the operator 

      
       

        
       

   

defined by 

         {   (⌌      
 ⌍  ⌌      

 ⌍) }
         

                                    

where         with        
        . Theorem (3.1.8) shows that   is well-

defined, it is linear and its restriction to each     
   is a bounded linear operator into     

  . 

Taking into account the interpolation property as previously, one concludes that the 

restriction of   to    
 

 is a bounded linear operator into    
 

 as well. Therefore, 

‖   |    
 
‖  ‖     |    

 
‖   ‖  |    

 
‖                                             

where     does not dependent on  . So         
 

 and hence 

   ∑    
       

  

         

                                                          

(unconditional convergence in   ) belongs to the space    
 

 by Step 1. But Theorem 

(3.1.8) once again allows us to conclude that    is the identity operator, so    . But we 

have (by Step 1) 

‖  |    
 
‖   ‖    |    

 
‖                                                              

    independent of    Therefore, equivalence (30) follows from estimates (32) and (34). 

It remains to show that representation (28) is unique. We do this next. Suppose that 

     
 

 admits the representation 

  ∑    
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Since    
 

     
       

       
          

 
     

       
       

   (note that      ), then 

      
   has the representation 

  ∑    
    

                 
  

         

                                   

which is unique by Theorem (3.1.8). The proof of the theorem is completed. 

Corollary (3.1.12) [157] Let      and   be as in Theorem (3.1.11). If     is large 

enough and      then     
            forms an unconditional Schauder basis in    

 
. 

Proof. Attending to Theorem (3.1.11), all we need to do is to check that the series in (28) 

converges unconditionally in    
 
             We proceed as in the first part of the proof 

of Lemma (3.1.10): observe that            ⁄    
  are   - -atoms            or 

        - -atoms       according to [144, Definition 4.4.1], with              
 and 

          
. Hence, it is possible to use the Atomic Decomposition Theorem from [144, 

Section 4.4.2], in order to get the counterpart of estimate (27), that is, 

‖ ∑    
    

  |    
 

         

‖   ∑(          ⁄ )
 

   

(∑|   
 |

 

 

+

  ⁄

 

with     independent of  . To do that we have to assume that          satisfies also 

the conditions mentioned in that theorem restricted to our particular case. We conclude 

now as in Lemma (3.1.10). 

Corollary (3.1.13) [157] Let      , and   as in Theorem (3.1.11). Then 

    {   ⌌     
 ⌍}

         
 

establishes a topological isomorphism from     
 

 onto     
 

. 

Proof. This result follows at once from the properties of the operators   and   studied in 

the proof of Theorem (3.1.11). 

Corollary (3.1.14) [314] Let      and        If         are real numbers fulfilling 

      ̅̅ ̅̅     ̅̅ ̅̅       , then we have 

(            
                 

  )
        

             
  

  

where   is defined as in (17). 

Proof. Firstly, we note that spaces             
     and             

   form an interpolation 

couple since they are both continuously embedded in        
  , for example. We can 

interpret             
  

 as the sequence space      
  
 

        
    where   

        

                 ⁄         In fact, the index   does not bring any trouble. It is 

not hard to see that formula (16) remains valid for these spaces. On the other hand, the 

Boyd indices of   
  are given by 

 
  
 ̅̅ ̅̅     ̅̅ ̅̅  

 

   
  and   

  
 ̅̅ ̅̅     ̅̅ ̅̅  

 

   
  

Taking           ⁄            then we have 

    
  
 ̅̅ ̅̅   

  
 ̅̅ ̅̅        and           

     
    

        

  
 .     

 
        /

                       

Hence, attending to formula (16), we have 

(     
    (      

  )      
  (      

  ))
      

      
  
 

(      
  )  
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that is, (            
                 

  )
      

             
  

  

Section (3.2) Triebel–Lizorkin Spaces of Regular Distributions 

   We describe completely, in terms of their parameters, when the generalized Besov and 

Triebel–Lizorkin spaces     
        and     

        contain only regular distributions. In 

other terms, we aim to characterize the relations  

    
          

        

and 

    
          

        

in terms of the behaviour of       and  . 

   Besides the intrinsic interest of such a question within the theory of those spaces, such a 

characterization might also be useful when calculating with distributions belonging to 

them, as the possibility of representing distributions by functions naturally leads to 

simplifications. 

   A final answer to such a question of classical spaces     
      and     

      was given 

in [55, Thm. 3.3.2]: 

Theorem (3.2.1) [169] 

(i) Let           and        Then the following two assertions are 

equivalent: 

    
    

   , 

                (
 

 
  *         

                                                             
                                                             

(ii) Let           and        Then the following two assertions are 

equivalent: 

    
    

   , 

                  (
 

 
  *

 

        

               (
 

 
  *         

                             

   The spaces of generalized smoothness     
        and     

        in which we intend to 

study the same problem are natural generalizations of the classical Besov and Triebel–

Lizorkin spaces in the direction of generalizing the smoothness and the partition in 

frequency. Now, instead of       , for some    , the smoothness will be controlled by a 

general so-called admissible sequence         , whereas the splitting in frequency will 

also be controlled by an admissible sequence          more general than the classical 

     . 

   Originally they were introduced by Goldman and Kalyabin in the middle of the seventies 

of the last century on the basis of expansions in series of entire analytic functions and 

coverings. Another approach used differences and general weight functions. In all these 

cases the function spaces were subspaces of     
          by definition, therefore 

the question under which conditions they can contain or not contain singular distributions 

was pointless. See [32] or [42]. Here we just briefly recall the approaches just mentioned: 
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Let       be strongly increasing,       be of bounded growth and    
        . Then a 

space of generalized smoothness     
                    

         was defined as the 

collection of all       
   such that   ∑   

 
           

   with              

    | |      and ‖        |       ‖                  |            

   And, respectively, a space of generalized smoothness denoted by     
         was defined 

by 

    
         {      

   4∫.
  
      

    
/

 
     

    

 

 

5

  ⁄

  } 

where            is a non-decreasing, continuous function with                  

and   
          | |  ‖  

     |   ‖   
   For the connection with the spaces we describe in Definition (3.2.8), cf. [144]. 

   Later on spaces of generalized smoothness appeared naturally by real interpolation with 

a function parameter (cf. [149] and [142]). Putting it briefly, for example for given 

             and   a suitable function parameter one has the interpolation result 

(    
     

     )
   

     
                 ( (    ))

  
  

   Function spaces of generalized smoothness have been used to describe compact and 

limiting embeddings with the help of the finer tuning given by the smoothness parameter, 

for example with additional „logarithmic‟ smoothness for function spaces either on 

bounded domains in [165] or in [167] to describe general embeddings of Pohozhaev–

Trudinger type. 

   Moreover they have shown up also in connection with generalized  -sets and  -sets 

(special fractals) and function spaces defined on them as trace spaces. For example, in the 

case of the so-called       -sets   one has 

    
      

             
   

   
 

  
 
 
  

 
      

see [68, Chap. 22], [47] and [158]. 

   In probability theory they have been used as generalized Bessel potential spaces defined 

by pseudo-differential operators with negative definite functions as symbols [161]. If these 

negative definite functions are suitably constructed with the help of Bernstein functions, 

then those generalized Bessel potential spaces belong to the scale of the spaces     
        

we consider. 

   For a more complete historical survey up to the end of 2000, see [144]. 

   As can be noticed by comparing our main assertions in Theorems (3.2.28) and (3.2.29) 

below with the classical counterpart recalled in Theorem (3.2.1) above, it is not at all clear 

why the latter should generalize in that way. As a matter of fact, it was somewhat of a 

surprise to us that the characterization could be done in such a neat way, specially in the 

cases where a comparison between the numbers     and 2 seemed to be in order. We 

stress that we get a characterization, and not mere sufficient conditions. The bulk of the 

work has, indeed, to do with the proof that the guessed conditions are necessary. The tools 

used there rely heavily on the useful Proposition (3.2.26), which we denote by “a reverse 

Hölder‟s inequality result”, and on the consideration of suitable sets of extremal functions. 

These are, for most of the cases, inspired by the possibility of representing the elements of 

the functions spaces under study by means of infinite linear combinations of atoms. For 
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the tricky cases given by the last lines in Theorems (3.2.28) and (3.2.29) we had to resort 

to lacunary Fourier series (and standardization) for that effect (by the way, Theorem 

(3.2.25) might also have independent interest). 

   Still with respect to techniques used, specially the consideration of extremal functions 

built as atomic representations in the functions spaces under study, one first difficulty 

faced is the possibility of having such representations with the required moment 

conditions. This is solved by Proposition (3.2.27), also used in the somewhat related 

question of characterizing the growth envelopes of the same spaces. In fact, a construction 

of this kind appears already in [68, Cor. 13.4] and was used in the study of the growth 

envelopes of the classical spaces     
      and     

      (cf. [68, 163]). For the study of 

growth envelopes of the generalized spaces considered, see [12, 14]. These contain also 

sufficient conditions for those spaces to be constituted by regular distributions alone, as 

this is a requirement for the consideration of the concept of growth envelope itself. So, 

from this point of view, our results here broaden the class of sufficient conditions to the 

point that they also become necessary. The fact that in both situations extremal functions 

are pursued is related to the fact that in both cases one is looking for the validity of 

embeddings – in   
        in our case and in local spaces of integrable functions in the 

case of growth envelopes. 

   As a by-product of the main results, we also extend to our framework the classical result 

[55, Cor. 3.3.1], which states that the Besov and Triebel–Lizorkin spaces of integrability 

parameter      which are completely formed by regular distributions are exactly those 

which continuously embed in the Lebesgue spaces of power          – cf. Corollary 

(3.2.31). 

   Since all the Besov and Triebel–Lizorkin spaces under consideration are spaces on   , 

we shall omit the    from the notation. 

   Given any       ]  we denote by    the number, possibly  , defined through the 

expression 
 

  
     

 

 
    in case when          is the same as the conjugate 

exponent usually defined through 
 

 
  

 

  
  . 

   The symbol   is used for continuous embedding from one space into other. 

   Unimportant positive constants might be denoted generically by the same letter, usually 

 , with additional indices to distinguish them in case they appear in the same or close 

expression. 

   Before introducing the spaces we want to consider, we define and make some comments 

about the type of sequences which will be used as parameters. 

Definition (3.2.2) [169] A sequence           
, with     , is called an admissible 

sequence if there are two constants                         such that 

                                                                            

Definition (3.2.3) [169] Two admissible sequences           
 and           

 are 

called equivalent if there exist constants    and    such that 

     
  
  

                         

   To illustrate the flexibility of (35) we refer the reader to some examples discussed in 

[144] or [158, Chap. 1]. 

   The following definition, of Boyd indices of a given admissible sequence, is taken from 

[159]: 
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Definition (3.2.4) [169] Let           
    

  
                

    

  
       Then 

        
   

      
 

    
   

      
 

                  
   

       
 

    
   

       
 

 

are the (upper and respectively lower) Boyd indices of the sequence  . 

Remark (3.2.5) [169] (i) It is easy to see that the Boyd indices of an admissible sequence 

  remain unchanged when replacing   by an equivalent sequence in the sense of 

Definition (3.2.2). 

(ii) Given an admissible sequence   with Boyd indices    and    then it is possible to find 

for any     a sequence   which is equivalent to   with             and        
     , i.e. 

                                                                                    

Assumption (3.2.6) [169] From now on we will denote           
a sequence of real 

positive numbers such that there exist two numbers         with 

                                                                                        

     is a so-called strongly increasing sequence – compare Definition 2.2.1 and Remark 

4.1.2 in [144]. We would like to point out that the condition      played a key role in 

[144, Assump. 4.1.1] in order to get atomic decompositions in function spaces of 

generalized smoothness. 

   Moreover we choose a natural number    in such a way that     
  and consequently 

       for any        such that        holds. We will fix such a    in the 

following. 

Definition (3.2.7) [169] For a fixed sequence           
 as in Assumption (3.2.6), let 

   be the collection of all function systems       
      

 such that: 

(i) 

  
    

                  
                                           

(ii) 

       
  {      | |       }                                

       
  {            | |       }                           

(iii) for any     
  there exists a constant      such that for any      

|    
     |       | |   | |  ⁄                        

(iv) there exists a constant      such that 

  ∑  
     

 

   

                              

   In what follows   stands for the Schwartz space of all complex-valued rapidly 

decreasing infinitely differentiable functions on    equipped with the usual topology,    
denotes its topological dual, the space of all tempered distributions on   , and   and     

stand respectively for the Fourier transformation and its inverse. 

   Let         
 be an admissible sequence         

 be an admissible sequence satisfying 

Assumption (3.2.6) and let      . 

Definition (3.2.8) [169] 

(i) Let       and         The Besov space     
   

 of generalized smoothness is 

defined as 
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{     ‖  |     
   ‖  4∑  

 

 

   

‖   (  
   ) |     

  ‖
 
5

  ⁄

  }   

(ii) Let       and        The Triebel–Lizorkin space     
   

 of generalized 

smoothness is defined as 

{     ‖  |     
   ‖  ‖4∑  

 

 

   

|   (  
   )   |

 
5

  ⁄

 |     
  ‖   }   

In both cases one should use the usual modification when      

   Both     
   

and     
   

 are Banach spaces which are independent of the choice of the system 

        
, in the sense of equivalent quasi-norms. As in the classical case, the embeddings 

      
       and       

       hold true for all admissible values of the parameters 

and sequences. If       then   is dense in     
   

and in     
     Moreover, it is clear that 

    
        

   
. 

   Note also that if        and                 
 with   real, then the above spaces 

coincide with the usual function spaces     
  and     

  on   , respectively. We shall use the 

simpler notation     
  and     

  in the more classical situation just mentioned. Even for 

general admissible    when        we shall write simply     
  and     

  instead of     
   

 

and     
   

, respectively. 

   We have the following relation between   and   spaces, the proof of which can be done 

similarly as in the classical case (cf. [65, Prop. 2.3.2/2. (iii), p. 47]): 

Proposition (3.2.9) [169] Let               Let   and   be admissible 

sequences with   satisfying also Assumption (3.2.6). Then 

           
        

               
     

   Of intrinsic interest are also embedding results involving such spaces. Here we present 

two which will, moreover, be of great service to us later on. In the case of  Besov spaces, 

this is taken from [12, Thm. 3.7]: 

Proposition (3.2.10) [169] Let           
 be an admissible sequence as in Assumption 

(3.2.6) and let           
and           

 be two further admissible sequences. Let 

                    and 
 

  
   

 

  
 

 

  
    If 

.  
      

  
 
  

 
 
  

 
/
    

                                                             

then       
          

     

   The following partial counterpart for the  -spaces (which will be enough for our 

purposes) can be proved similarly (cf. also [166, Prop. 1.1.13. (iv), (vi)]): 

Proposition (3.2.11) [169] Let   be an admissible sequence as in Assumption (3.2.6) and 

let   and   be two further admissible sequences. Let                 and 
 

  
   

 

  
 

 

  
    If 

(  
    )    

                                                                  

then      
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   We state now sufficient conditions, already known to us, in order that     
   

 and 

    
   

contain only regular distributions. 

Proposition (3.2.12) [169] (See [12, Cor. 3.18].) Let              Let   and   

be admissible sequences with   satisfying also Assumption (3.2.6). If 

.  
   

 

  
 
 
    

/
    

      

then     
               

Proposition (3.2.13) [169] (See [14, Sec. 4, Prop. 3].) Let              Let   

and   be admissible sequences with   satisfying also Assumption (3.2.6). If 

8

(  
    

 )
    

                               

   
   

 

  
 
 
   

     
                                                 

 

then     
      

     

   In order to deal with the main question formulated, we need to introduce some technical 

tools and derive some results which will be required later on. 

   In our setting, standardization is the ability to identify our generalized spaces with 

spaces where    has the classical form     

   Let   and   be admissible sequences,   satisfying also the Assumption (3.2.6) as 

before, and let    be the fixed natural number with   
      Define 

                         {      
         

}                       

Then we have that 
                     

with        {    
  }             

     
   Under these conditions we proved in [14, Thm. 1] the following standardization: 

Theorem (3.2.14) [169] Let   and   be admissible sequences,   satisfying also the 

Assumption (3.2.6). Let, further,         (with     in the  -case). Then 

    
        

 
                  

        
 
  

where            
is determined by (40). 

   As a consequence of this we obtain in case      
    for all     : 

Corollary (3.2.15) [169] Let         
 and         

 be as before and         (with 

    in the  -case). Then 

    
     

     
         

                                                             

and 

    
     

     
         

                                                              

   This extends [144, Thm. 3.1.7] also to the  -spaces and to the case        The 

corollary will be useful to prove the sufficiency of the conditions in Theorems (3.2.28) and 

(3.2.29). 

   One of the most significant ingredients in the proof of the following theorem, which is 

Lemma 1 in [14] and will also be useful later on, was again the above standardization 

theorem. 

Theorem (3.2.16) [169] Let                    Let            
 and 

           
 be admissible sequences with   satisfying also Assumption (3.2.6). Let    

and     be the admissible sequences defined respectively by 
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Then 

     
         

         
      

if, and only if,            
   As we shall see, the main results will be established in terms of the behaviour of the 

sequences   and    Sometimes it is useful to deal with the case of general   after having 

dealt with the more classical situation when           
  through standardization. The 

problem afterwards then might be that the criteria obtained are expressed in terms of 

      
       

  for the      defined in (40), instead of the original sequence    
       

  This 

difficulty can, however, be circumvented by the following observations. 

Remark (3.2.17) [169] From the definition of      the following two properties easily follow: 

(i) For    the fixed natural number such that   
      it holds 

                     

(ii) There is      such that 

                   

for example,           where      satisfies        and       is chosen such 

that         
      

Proposition (3.2.18) [169] Let   be an admissible sequence and        Let      be 

defined as in (40). Then 

                                   
       

     

Proof. We deal only with the main case when        The case     can be dealt 

with usual modifications. 

   Consider the numbers    and    as in Remark (3.2.17). 

   On one hand, 

∑     
  

 

   

 ∑ ∑          
  

    

   

 

   

 ∑ ∑         
  

 

   

    

   

 ∑ ∑  
  

 

   

    

   

   ∑  
  

 

   

      

where the inequality is justified by the fact that, for each fixed             , 

               
 is a subsequence of    as follows from Remark (3.2.17) (ii). 

   On the other hand, 

  ∑     
  

 

   

 ∑ ∑      
  

    

   

 

   

  ∑ ∑        
  

    

   

 

   

  ∑   
  

 

      

                           

where the first inequality is a direct consequence of the admissibility of   (with the factor 

  depending on   ) and the second inequality comes from the fact that the term following 

each           
   in the middle line above, being        

   is, by Remark (3.2.17) (i), either 

the next term in the sequence     or a term already considered before and that we can 

discard, turning the total sum smaller, though not smaller than the sum in the last line 

(because of Remark (3.2.17) (ii)). 

   Combining (43) and (44), we get the required result. 
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   One of the tools we shall need is the atomic representation of functions in spaces of 

generalized smoothness. In order to present the atomic decomposition theorem see also 

[144, Sect. 4.4]. 

   Let    be the lattice of all points in    with integer-valued components. 

   If                           we denote by     the cube in    centred at 

  
        

            
       which has sides parallel to the axes and side length   

    
   If     is such a cube in    and     then      denotes the cube in    concentric 

with     and with side length    
    

Definition (3.2.19) [169] (i) Let       
    and      A function         which 

is   times differentiable (continuous if    ) is called a   - -atom if: 

                                                                                 
|      |         | |                                                             

(ii) Let           
 be an admissible sequence, let      ,           

    

and      A function         which is   times differentiable (continuous if    ) is 

called a         - -atom if: 

                                                                             

|      |     
    

 
 
 | |

          | |                                                 

∫        

 

  

         | |                                                            

   If the atom   is located at     (that means                                  ) 

then we will denote it by      
   As in the classical case, the  -atoms (associated to the sequence  ) are normalized 

building blocks satisfying some moment conditions. 

   The value of the number      in (45) and (47) is unimportant. It simply makes clear 

that at the level   some controlled overlapping of the supports of     must be allowed. 

   The moment conditions (49) can be reformulated as    ̂         | |     which 

shows that a sufficiently strong decay of   ̂ at the origin is required. If     then (49) 

simply means that there are no moment conditions required. 

   The reason for the normalizing factor in (46) and (48) is that then there exists a constant 

     depending on    such that for all these atoms we have ‖   |     
   ‖    and 

‖   |     
   ‖   , provided   and   are large enough – see Theorem (3.2.21) below. In 

[144]   was fixed to 1 but we can use any other   to the effect of normalization. 

   If           and     is a cube as above, let     be the characteristic function of 

     if       let 

   
   

   
  ⁄

    
(obvious modification if    ) be the   -normalized characteristic function of    . 

Definition (3.2.20) [169] Let              Then: 

(i)      is the collection of all sequences                      such that 

‖  |    ‖  4∑( ∑ |   |
 

    

+

  ⁄ 

   

5

  ⁄

 

   (with the usual modification if     and/or    ) is finite; 

(ii)     
  is the collection of all sequences                      such that 
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‖  |     
 ‖  ‖(∑ ∑ |      

   
   | 

    

 

   

+

  ⁄

|   ‖ 

   (with the usual modification if     and/or    ) is finite. 

   One can easily see that      and     
  are quasi-Banach spaces and using ‖   

   
 |   ‖    it 

is clear that comparing ‖  |     ‖ and ‖  |     
 ‖ the roles of the quasi-norms in    and    

are interchanged. 

   In [144] it was proved the following atomic decomposition theorem. 

Theorem (3.2.21) [169] Let           
 be an admissible sequence from Assumption 

(3.2.6) with      and let           
be an admissible sequence. 

   Let        respectively              and let          be such that 

  
      
      

                                                                     

and 

      (
      
      

 

          
  *  

      
      

                                    

respectively 

      (
      
      

 

        
  *  

      
      

                                      

Then      belongs to     
   

, respectively to     
   

, if and only if it can be represented as 

  ∑ ∑       
    

 

   

                                                                

convergence being in   , where     are   - -atoms       or         - -atoms 

      and       
   respectively         where                     

   Furthermore, for any fixed     , any fixed      and any   and   as above, 

    ‖  |     
 ‖  respectively in ‖  |    ‖  where the infimum is taken over all admissible 

representations (53), is an equivalent quasi-norm in     
   

, respectively     
     

   See [144]. The use of arbitrary     instead of     changes only the equivalence 

constants for the quasi-norm. 

Remark (3.2.22) [169] Let  ̃    ̃      
 be an admissible sequence as in Assumption 

(3.2.6) which is equivalent to the sequence    
   Let also  ̃    ̃      

be an admissible sequence equivalent to    

   It follows directly from Definition (3.2.19) that for arbitrary fixed      and     

there exist   ̃    and  ̃    such that any   - -atom is a   - ̃-atom and such that any 

        - -atom is a   ̃      - ̃-atom with respect to the numbers    ̃ and  ̃. 

   Clearly   ̃ and   ̃    depend on          and on the equivalence constants for the 

sequences   and    
   Let us denote by    and     respectively    and   , the Boyd indices of   and   

respectively. 

   According to Remark (3.2.22), Remark (3.2.5) and taking into account the definition of 

Boyd indices, conditions (50)–(52) can be reformulated and improved as 

  
  
  

                                                                               

and 
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      (
  
  

 

           
  *  

  
  

                                               

      (
  
  

 

         
  *  

  
  

 (                    )                          

   At one point we shall need a specific result about lacunary Fourier series, that is, of 

Fourier series of the form 

∑   
    

 

   

 

where       is some given sequence of positive integers for which there exists   such that 
    

  
          

   For the following result, see [164, p. 204]. 

Proposition (3.2.23) [169] If  ∑    
     

   , with       as above, is the Fourier series of a 

function of    [    ]   then           

   Related to this, we shall also need the following technical lemma of [160, Lem.5.5.2] 

and the theorem which we state and prove afterwards, though the proof follows along the 

same lines of a corresponding result in [160, Thm. 4.2.1; see also Rem. 4.2.2.(c)]. 

Lemma (3.2.24) [169] Let           
and consider a function system           

 

   as in Definition (3.2.7) built in the following way: for each            

    
        where, for some suitable          is chosen such that 

           
                  | |     

                         | |         
and 

                     | |           
     is chosen so that                 if | |    and                | |      

Consider                  . Given     (  )           |  |     
   for some 

    and      the function 

    ∑  

 

   

 (      )                                                          

is well-defined with convergence in   and, for any given      

   
   

   (          
    )                                                        

Theorem (3.2.25) [169] Let              in the case of  -spaces),       

and   be admissible. Let                         with |  |   
   for some      Then 

              ∑   
     

 

   

 

converges in    and 

       
                          

                                       

Proof. The hypothesis on the sequence         immediately guarantees that   makes 

sense in    and is indeed a periodic distribution on    (cf. [168, Sect. 3.2]). Then it is a 

straightforward calculation to see that 

      ∑   (    
   )

 

   

 ∑      

 

   

               ∑      

 

   

(      )  
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where    stands for                 
   Considering a system   as in Lemma (3.2.24), then 

        ∑      

 

   

(      )   

can be taken as the    in (57),      for the choice       Therefore the conclusion 

(58) reads here as 

   
   

   (           (     
   )*               

where     is at our disposal. Applying the inverse Fourier transformation we get 

   
   

   (                  
     )                                                 

and, using       also 

   
   

   ‖                  
      |   ‖                                           

Notice now that (with the usual modification in the case    ) we have 

(∑  
 ‖     

      |   ‖
 

 

   

+

  ⁄

 

  (∑  
 
‖   (        ) |   ‖

 
 

   

+

  ⁄

  (∑  
 
‖   (        )       

      |   ‖
 

 

   

+

  ⁄

     

and a corresponding estimation obtained by interchanging the roles of      
      and 

              Since the last term in (62) can be estimated from above by 

(∑  
 
     

 

   

+

  ⁄

   
   

   ‖   (        )      
      |   ‖ 

and, from (35),       
         by choosing          we get, also with the help of 

(61), that the above expression is finite and therefore, from (62) and the corresponding 

estimate referred to above, 

∑  
 ‖   (        ) |   ‖

 
 

   

                  

if, and only if, 

∑  
 
‖    

      |   ‖
 

 

   

                 

That is, and after simplifying the last expression (taking also into consideration the 

hypothesis         ), 
       

                                     

   As for     
   with          we start by observing that from (60) it follows, in 

particular, that for any     and any     

   
   

   
    

,   | |     |   (        )      
     |-     

Then we have, pointwisely, with       that 

   | |   ∑    |   (        )       
     |

 
 

   

 

 (∑  (   
 ) 

 

   

+(   
   

    
    

   | |     
 
|   (        )      

     |*
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is finite and therefore the series of functions above converges pointwisely and, moreover, 

   
    

{   | |   ∑    |   (       )       
     |

 
 

   

}                         

Using now that       
        – cf. (35) – and choosing     large enough and 

         in (63), we get that 

∫(∑  
 |   (       )       

     |
 

 

   

+

  ⁄

  

 

  

 

 ∫   | |      

 

  

    
    

(   | |   ∑           |   (        )       
     |

 
 

   

+

  ⁄

 

                                                                                                                                                             
The counterpart of (62) is now 

‖(∑  
 
|     

     |
 

 

   

+

  ⁄

 |   ‖ 

  ‖(∑  
 
|   (        )|

 
 

   

+

  ⁄

 |   ‖   ‖(∑  
 
|   (        )       

     |
 

 

   

+

  ⁄

 |   ‖   

and, again, a corresponding estimation obtained by interchanging the roles of      
      

and    (        ) also holds. Therefore, taking (64) into account, 

‖(∑  
 |   (        )|

 
 

   

+

  ⁄

 |   ‖               

if, and only if, 

‖(∑  
 |     

     |
 

 

   

+

  ⁄

 |   ‖                   

That is, and after simplifying the last expression (taking also into consideration the 

hypothesis            
        

                                         

   We have been assuming, in this case of  -spaces, that both   and   are finite. However, 

with the usual modifications the preceding arguments also work out for      
   We start by considering a reverse Hölder‟s inequality result which will be used as a 

backbone for the proof of the necessity of most of the conditions in Theorems (3.2.28) and 

(3.2.29) below. 

Proposition (3.2.26) [169] Let       and (  )    (  )        (    )    belongs 

to    for all sequences (  )   belonging to   , then (  )         

   The case       is contained in [162, Thm. 161, p. 120]. The case     is trivial 

(just take all   ‟s equal to 1), though something stronger is true, namely the conclusion 

still holds merely by drawing (  )    from     as follows from [162, Thm. 162 (i), pp. 

120–121]. Finally, the case       (then     ) can be proved by contradiction. 

Indeed, assume (  )        Then for each natural number   there exists an index 

        such that |   |   
 

 
    where    can, e.g., be taken equal to  . Define 
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    2 
 
 
 
                         

                            
 

Then (  )       but ∑ |  |  
 
       

   To prove the necessity of some conditions in the next theorem we will construct so-

called extremal functions starting from a smooth basic function   with compact support 

and vanishing moment conditions, which we describe next: 

Proposition (3.2.27) [169] For every     and      there exist a   -function   on    

and suitable positive constants       and     these constants depending only on    and    
such that             

               | |                   | |     
and 

∫                               
          | |     

   A construction of such functions was described in [12, Lem.4.6]. 

Theorem (3.2.28) [169] Let          Let   and   be admissible sequences with   

satisfying also Assumption (3.2.6). The following are necessary and sufficient conditions 

for     
      

     where    

   

 should be understood as   : 

(i)    
   

 

  
 

 
   

     
                              

(ii)    
       

                                     

(iii)    
       

    

   
                                 

(iv)    
       

    

   

                                 

Proof. (i) First we prove the sufficiency of the given conditions in each case. 

   In case 1, it follows directly. 

   For each one of the remaining cases we use, in sequence, Proposition (3.2.10), Corollary 

(3.2.15) and Theorem (3.2.1). This explains why we can write, assuming the condition in 

each one of the cases, that in case 2 

    
        

     
     

    
     

in case 3 

    
        

     
     

    
    

and in case 4 

    
        

     
     

    
     

(ii) Here we prove the necessity of the condition stated in case 1. 

   Let   be chosen in dependency of         
and         

 by (52) or (56), respectively, 

and let   be a corresponding basic function depending on     and    from Proposition 

(3.2.27) Let         be a sequence belonging to    and 

       ∑|  |  
    

  ⁄
 (   )

 

   

                                                 

convergence in   . For     this is always a finite sum and for each   the functions 

  
    

  ⁄
 (   ) are         - -atoms located at     in the sense of Definition (3.2.19) 

and Theorem (3.2.21). Then    belongs to     
   

 and 

‖   |     
   ‖   ‖        |   ‖  
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Now we assume     
      

     Then 

∫ |     |  

 

| |      
  

    

and, actually,    will also be given by (65) in the pointwise sense a. e. We will split part of 

the set    | |      
  } in a non-overlapping way to obtain simple passages 

             
    

   | |      
      

because on these passages we have 

 (   )                      

and 

 (   )                         

For each     we have 

  ∫ |     |  

 

| |      
  

 ∫ |∑|  |  
    

  ⁄
 (   )

 

   

|   

 

    
    

   | |      
  

 ∑ ∫ |∑|  |  
    

  ⁄
 (   )

 

   

|   

 

    
    

   | |      
  

 

   

   ∑ ∫ ∑|  |  
    

  ⁄

 

   

  

 

    
    

   | |      
  

 

   

   ∑|  |  
    

  ⁄
     

    
   

     
  

 

   

  ∑|  |  
    

  
 
 
   

 

   

   

   The sum on the right-hand side is monotone increasing and the left-hand side is 

independent of    So we have 

∑|  |  
   

 

  
 
 
   

 

   

                                                                

for any sequence            if     
      

     

   Now by Proposition (3.2.26) it follows 

   
   

 

  
 
 
   

     
      

(iii) Now we prove the necessity of the conditions stated in cases 2 and 3. 

   Let         
 be an arbitrary sequence belonging to     For technical reasons we consider 

now the sequence   ̃      
with 

 ̃       (|  |      
    

  
)                                                

It is clear that   ̃      
also belongs to     Define 

                             ∑ ̃ 

 

   

                

Then      if     and             where   is equal to ‖  ̃      
|  ‖  

   For all           put 

    {                                                 }  



 

93 
 

We obtain rectangles in    which become narrower in the   -direction. Inside each    we 

consider cubes     of the type considered. There exist    such cubes inside   , centred in 

  
                 Because of 

     
        

    
  

  ̃  

and assuming, without loss of generality, that       we have 

     
                  

   ̃   

In dependency of         
and         

 choose   which fulfil (52) or (56), respectively. 

Furthermore let   be a basic function depending on     and    from Proposition (3.2.27) 

and put  ̃              Let 

       ∑∑   ̃ (  (    
    ))

  

   

 

   

                                           

(pointwise convergence) be a compactly supported function where         is an arbitrary 

sequence of non-negative numbers which will be specified later. Notice that by 

construction for each      in the double sum appears at most one summand which is 

not zero and that   
    

  ⁄
 ̃ (  (    

    )) are         - -atoms located at     
 in 

the sense of Definition (3.2.19) and Theorem (3.2.21). 

   If    
   

  
    

  ⁄
                 where   

   
    if        and   

   
   

otherwise, then the double sum in (68) converges in    to some    which, by Theorem 

(3.2.21), belongs to     
   

 and which, moreover, satisfies (assuming further that both   and 

  are finite) 

‖   |     
   ‖   (∑4∑|      

 
 
 |

 
  

   

5

  ⁄
 

   

,

 
 

  4∑  
 
  
 
 
 

 
  
 
 
 

 
 

 

   

5

 
 

  4∑  
 
  
 
 
 

 
  
 
 
 

  
 
 ̃
 

 
 

 

   

5

 
 

  4∑  
 
  
 
 ̃
 

 
 

 

   

5

 
 

    

For each given sequence         
    we choose 

  
 
    

  
  ̃
 

 
 
  

 

and obtain 

‖   |     
   ‖   ‖  ̃      

 |   ‖
  ⁄

    

With this special choice of         we also have 

∫ |     |  

 

[   ] [   ]   

 ∑ ∫|     |  

 

  

 

   

 ∑  
   ̃

 

 
 
 
 
 
 

 

   

∑ ∫ | ̃ (  (    
    ))|

 

    

  

  

   

 

 ∑  
   ̃

 

 
 
 
 
 
 
  

    

 

   

 ∑  
   ̃

 

 
 
 
 
 
 
  

    
  ̃ 

 

   

 ∑  
   ̃

 

  
 
 
 
 
 

 

   

  

where the equivalence constants might depend on    Now we assume     
      

     Then 

   and    coincide a. e. and for every sequence         
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∑  
   ̃

 

  
 
 
 
 
 

 

   

 ∫ |     |  

 

[   ] [   ]   

     

Moreover by (67) 

∑  
  |  |

  
 
 
 
 
 

 

   

  ∑  
   ̃

 

  
 
 
 
 
 

 

   

 

whenever   
 

 
 

 

 
    But this is the case if      

   Therefore     
      

    implies ∑   
  |  |

  
 

 
 
 

  
      for all sequences         

     

But this is equivalent to ∑   
  |  |

 
      for all sequences         

     where 
 

 
   

 

 
 

 

 
    Then it follows    

       
     by Proposition (3.2.26). In case       

(this is equivalent to    ) we get 
 

  
 

 

 
 

 

 
 and in case       (this is equivalent to 

   ) we have       Consequently we obtain that     
      

    implies 

   
       

    
   

                

   
       

                             

Adapting the above arguments to the cases where   or   are infinite, we get the same 

conclusions as long as we interpret    

   

        

(iv) Finally we prove the necessity of the condition stated in case 4. 

   Let     
   

 be given. Then by Theorem (3.2.14) we find a sequence         
  

           
 determined by (40) with     

        
 
  Furthermore by Theorem (3.2.25) we 

can construct for each sequence           with |  |     
   (for some    ) a 

distribution 

           ∑   
     

 

   

 

such that 

        
 

                                         

If we assume     
        

    
     then it follows       

        whenever           

    With a choice of   different from   everywhere, then also     
        and, 

consequently, the one variable version   (that is,      ∑    
     

   ) is locally 

integrable too. ∑    
     

    is the Fourier series of a function in    [    ]  and by 

Proposition (3.2.23) it follows             

   Since the assumption              implies that |  |     
   for some      then we 

have shown that            for all sequences           such that               

Given any           

 
 and defining 

     |  |
 
   

    

the assumption              is satisfied and therefore    
  |  |                 

then again by Proposition (3.2.26) we have    
         

 

   i.e.,    
          

   

 (with 

the understanding that    

   

 should be read as   ). 
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   Finally, by Proposition (3.2.18) we can transfer this to the original sequence   with 

arbitrary      and obtain    
       

    

   

  

Theorem (3.2.29) [169] Let              Let   and   be admissible 

sequences with   satisfying also Assumption (3.2.6). The following are necessary and 

sufficient conditions for     
      

     where    

   

 should be understood as 2: 

(i)    
   

 

  
 

 
   

     
                              

(ii)    
       

                              

(iii)    
       

    

   

                           

Proof. (i) First we prove the sufficiency of the given conditions in each case. 

   In case 1, it follows directly from Proposition (3.2.13). 

   For both remaining cases we use, in sequence, Proposition (3.2.11), Corollary (3.2.15) 

and Theorem (3.2.1). This explains why we can write, assuming the condition in each one 

of the cases, that in case 2 

    
        

     
     

    
    

and in case 3 

    
        

     
     

    
     

(ii) Now we prove the necessity of the conditions stated in cases 1 and 2. 

   If we assume     
      

     by Proposition (3.2.9) it follows 

           
      

     

In case       and       it holds              and by Theorem (3.2.28), 

part 1, we have    
   

 

  
 

 
   

     
     

   In case       and       it holds                     and by Theorem 

(3.2.28), part 2, we have    
       

     

 (iii) Finally, the proof of the necessity of the condition stated in case 3 is the same, 

mutatis mutandis, as in the last part in Theorem (3.2.28) because, under the conditions of 

Theorem (3.2.25), 

       
 

                       
 
  

Example (3.2.30) [169] Let                where     and      . Then 

    
       

      
  

for any       that is, we have a scale in smoothness finer than in the classical case. 

   Naturally we obtain in some cases also really finer results concerning the embedding of 

    
  in   

     

(i) Let       and        Then the classical result gives the embedding if and 

only if     
 

 
     while in our example the embedding is still true if     

 

 
    and 

in addition   
   

 
  

(ii) Let       and               Then, in contrast to the classical case,     is 

possible if and only if   
   

  
 (meaning   

 

 
 if    ). 

(iii) Let       and               Then again     is possible if and only if 

  
   

  
 (meaning   

 

 
 if    ). 
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(iv) The same is true for the  -spaces in the case       and        where 

instead of     now     together with   
   

  
 (meaning   

 

 
 if    ) is permitted. 

   The following extends [55, Cor. 3.3.1] to our setting: 

Corollary (3.2.31) [169] Let   and   be admissible sequences with   satisfying also 

Assumption (3.2.6). 

(i) Let              The following two assertions are equivalent: 

    
      

    

and 

    
               

(ii) Let      . The following two assertions are equivalent: 

    
      

    

and 

    
         

 (iii) Let            . The following two assertions are equivalent: 

    
      

    

and 

    
               

Proof. Since the implication in which one concludes that     
   

 or     
   

 is in   
     is 

obvious, we concentrate on the reverse one. So, let us assume that     
      

    when 

proving (i) and (ii) above and that     
      

    when proving (iii). 

   In what follows we shall use the following classical facts without further notice: 

    
                                        [               ]   

    
                                                         [              ]   

                                                           [              ]   

    
                                                     [              ]   

    
       

                 [                               ]   
(i) The   case when        
   First let       and        

   We have, by Theorem (3.2.28), that    
   

 

  
 

 
   

     
     and by Proposition (3.2.10) 

and Corollary (3.2.15) it follows 

    
        

     
     

      
      

                   

   In case       and              Theorem (3.2.28) implies    
       

    

and by Propositions (3.2.9), (3.2.11) and Corollary (3.2.15) we have 

    
        

        
     

     
                

   If       and               then Theorem (3.2.28) implies    
       

    

   

 

and combining Proposition (3.2.10), Corollary (3.2.15) and Proposition (3.2.11) we get 

    
        

     
     

      
      

                

   Finally in case       and              Theorem (3.2.28) gives    
       

 

   

   

 and again Proposition (3.2.10), Corollary (3.2.15) and Proposition (3.2.9) lead to 
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(ii) The   case when      
   Then we have, similarly as above, that, in case                 

       
    and 

    
         

     
      

      
       

in case                 
       

    

   

 and 

    
         

     
      

      
       

(iii) The   case. 

   Let first       and        Then by Theorem (3.2.29) it holds 

.  
   

 

 (
 

 
  )

/
    

     By Theorem (3.2.16) we obtain 

    
        

                      
        

 (
 
 
  )

  

Moreover by Proposition (3.2.10) and Corollary (3.2.15) we get 

    
          

     
     

      
      

                   

   If       and       we obtain    
       

   and by Proposition (3.2.11) and 

Corollary (3.2.15) we have 

    
        

     
     

                               

and 

    
        

     
     

                                  

   At last, in case       and       we get    
       

    

   

and in a similar way 

by Proposition (3.2.11) and Corollary (3.2.15) 
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Chapter 4 

New Characterizations of Sobolev and Besov Spaces 

   We establish similar characterizations are also established for Triebel-Lizorkin spaces 

 ̇   
      with             and          ], and for Besov spaces  ̇   

      with  

                 ] and       ]  The characterizations rely only on the metric 

and the Lebesgue measure on    and are simpler than those obtained recently by Alabern 

et al. These results may shed new light on the theory of high order Sobolev spaces on 

spaces of homogeneous type. The corresponding results for inhomogeneous Besov and 

Triebel–Lizorkin spaces are also obtained. These results, for the first time, give a way to 

introduce Besov and Triebel–Lizorkin spaces with any smoothness order in        on 

spaces of homogeneous type, where      
Section (4.1) Triebel–Lizorkin Spaces on    

   The fractional Sobolev space  ̇        with         and         can be 

characterized by the square function     defined by setting, for all        and   
    
              

 

          {∫ 0∫ [         ]  
 

      

1

 
  

     

 

 

}

  ⁄

  

where above and in what follows, for any       
      and ball       

 

∫       
 

 

  
 

| |
∫       

 

 

 

and        denotes the ball of    with the center      and          see, for 

example, [56], [65], [72], [174]. However, when       and          the above square 

function fails to characterize  ̇         indeed, if       
      and ‖     ‖          

then   must be a constant function (see [6, Section 4]). 

   Alabern, Mateu and Verdera [170] characterized the fractional Sobolev space  ̇        
for         and         via a new square function defined by setting, for all 

      
             and       

 

          {∫ |∫ [         ]  
 

      

|

 
  

     

 

 

}

  ⁄

  

  -function characterizes the Sobolev space  ̇         Comparing    with     we see that 

the only difference is that |         | appearing in the definition of       is replaced 

by           in that of        Such a slight difference leads to a quite different 

conclusion in the characterization of (fractional) Sobolev spaces. The main point, as first 

observed by Wheeden in [173] (see [174]), when studying the Lipschitz-type (Besov) 

spaces, and later independently by Alabern, Mateu and Verdera in [170], is that   -

function provides smoothness up to order 2 in the following sense: for all          and 

         
 

∫ [         ]  
 

      

             

which follows from the Taylor expansion of order 2 

                        |   |           
   The purpose is to show that the above observation further leads to a new characterization 

of Triebel-Lizorkin spaces with reasonable parameters. We denote by  ̇   
      the 

classical homogeneous Triebel-Lizorkin space while     
      the inhomogeneous Triebel-
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Lizorkin space for all reasonable parameters; see for their definitions. Moreover, we 

introduce the following function spaces of Triebel-Lizorkin type via a variant of the above 

square function     
Definition (4.1.1) [177] Let         and       ]  

(i) If          the space   ̇   
      is defined as the collection of all functions   

    
             such that ‖ ‖  ̇           ‖       ‖      

    where, for all       

            {∑    |∫ [         ]  
 

 (     )

|

 

   

}

  ⁄

 

with the usual modification made when      

(ii) The space   ̇   
      is defined as the collection of all functions       

      

       such that 
 

‖ ‖  ̇   
          

    
   
   

{∫ ∑    |∫ [         ]  
 

 (     )

|

 

   

  
 

 (     )

}

  ⁄

   

with the usual modification made when      
(iii) If       ]  the inhomogeneous space      

      is defined by 

     
                ̇   

      

with its norm ‖ ‖            ‖ ‖       ‖ ‖  ̇         for all        
       

   In the above definition,       denotes the space of all Schwartz functions and        
its topological dual, namely, the space of all Schwartz distributions. Recall that   
    
             means that     

      and the natural pair ⌌   ⌍ given by the integral 

∫           
 

   exists for all         and induces an element of          

   Then the first result reads as follows. 

Theorem (4.1.2) [177] Let         and       ]  Then  ̇   
        ̇   

       with 

equivalent norms, and also     
           

       with equivalent norms. 

Remark (4.1.3) [177] Notice that to obtain Theorem (4.1.2), it is necessary to make the a 

priori assumption       
             in Definition (4.1.1). Indeed, let           

                          Then   is a harmonic function in the plane and hence by the 

mean value property, 
 

∫ [         ]  
 

 (     )

      ∫       
 

 (     )

   

for all      and      So       
      and                  for all,       as in 

Theorem (4.1.2). However, let                ⁄      ⁄        Then         and 

∫           
 

      which implies that           Since  ̇   
      is a subspace of 

       (or        modulo polynomials), we then conclude that    ̇   
       In this 

sense, the assumption       
             in Definition (4.1.1) is necessary. 

   In what follows, the space  ̇   
         denotes the set of all functions that are locally in 

the homogeneous Sobolev space  ̇ 
          When             with      

        and       ]  as motivated by higher order Taylor expansions, for all   

 ̇   
                and       we set 

 

            {∑    |∫         
     

 

 (     )

|

 

   

}

  ⁄
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where, for all          

         
               ∑

 

  
      |   |  

 

   

                               

with       | |   for             see [170] (also [173]) for more details. Similar to 

Definition (4.1.1), we introduce its following higher-order variant. 

Definition (4.1.4) [177] Let             with           ] and         be as in (1). 

(i) If          the space   ̇   
       is defined as the collection of all functions   

 ̇   
                such that ‖ ‖  ̇          ‖       ‖

      
   with the usual 

modification made when      

(ii) The space   ̇   
      is defined as the collection of all functions    ̇   

         

       such that 
 

‖ ‖  ̇   
          

    
   
   

{∫ ∑    |∫         
     

 

 (     )

|

 

   

  
 

 (     )

}

  ⁄

   

with the usual modification made when      
(iii) If       ]  the inhomogeneous space      

      is defined by 

     
                ̇   

      

with its norm ‖ ‖            ‖ ‖       ‖ ‖  ̇         for all        
       

   Recall that, via the square function     , Alabern, Mateu and Verdera [170] also 

characterized the higher order Sobolev space  ̇    for all             with     

and          We extend this as follows. 

Theorem (4.1.5) [177] Let                 and         ]  Then  ̇   
      

  ̇   
       with equivalent norms, and also     

           
       with equivalent norms. 

   We prove Theorems (4.1.2) and (4.1.5). We extend the above results to Besov spaces 

and also give some further remarks on the case      and on the higher order Triebel-

Lizorkin spaces on metric measure spaces. 

   Finally, we point out that the proofs of Theorems (4.1.2) and (4.1.5) below are totally 

different from the method used in [170]. The method in [170] strongly depends on the 

theory of Fourier transforms and vector-valued singular integrals, while our approach 

heavily depends on some Calderon reproducing formulae, one of which is from Peetre [91] 

(see also Frazier and Jawerth [145] and Frazier, Jawerth and Weiss [171], or Lemma 

(4.1.7) below) and some others are constructed. 

   Let            Denote by       the space of all Schwartz functions, whose 

topology is determined by a family of seminorms, {‖   ‖        }
      

  where, for all 

             and          
‖ ‖             

    
  | |  

   
    

   | |  |      |  

Here, for any                
  | |          and     (

 

   
)
  
 (

 

   
)
  

 . 

It is known that       forms a locally convex topological vector space. Denote by        
the topological dual space of       endowed with the weak topology. In what follows, for 

every             and                              
   For       ]  denote by        the Lebesgue space of order    For     and 

         denote by  ̇        the homogeneous Sobolev space of order     namely, the 
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collection of all measurable functions   with their distributional derivatives     
        where      

  and | |     Moreover, let 

‖ ‖ ̇         ∑ ‖   ‖      

| |  

  

Set  ̇                 ̇        as the inhomogeneous Sobolev space with norm 

‖ ‖          ‖ ‖       ‖ ‖ ̇        

for all             Denote by the space     
      the locally integrable function and 

similarly the space  ̇   
         

   Now we recall the notions of Triebel-Lizorkin and Besov spaces; see [65], [66]. In what 

follows, for any           ̂ denotes the Fourier transform of  , namely, for all 

        

 ̂     ∫             
 

  

  

Definition (4.1.6) [177] Let                 ] and         satisfy that 

      ̂              | |   ⁄      | ̂   |                   | |    ⁄⁄      

(i) The homogeneous Triebel-Lizorkin space  ̇   
      is defined as the collection of all 

         such that ‖ ‖ ̇            where, when          

‖ ‖ ̇          ‖(∑    |      |
 

   

+

  ⁄

‖

      

  

with the usual modification made when      and 

‖ ‖ ̇   
          

    
   
   

{∫ ∑    |        |
 

   

  
 

 (     )

}

  ⁄

  

with the usual modification made when      
   When       ]  the inhomogeneous Triebel-Lizorkin space     

      is defined by 

    
               ̇   

      

with the norm ‖ ‖           ‖ ‖       ‖ ‖ ̇         for all       
       

(ii) The homogeneous Besov space  ̇   
      is defined as the collection of all   

        such that ‖ ‖ ̇            where 

‖ ‖ ̇          (∑    ‖      ‖      

 

   

+

  ⁄

 

with the usual modifications made when     or      
   When       ]  the inhomogeneous Besov space     

      is defined by 

    
               ̇   

      

with the norm ‖ ‖           ‖ ‖       ‖ ‖ ̇                       
       

   we need the following Calder ́n reproducing formula established in [91, pp. 52-54] (see 

also [145, Remark 2.2]). 

Lemma (4.1.7) [177] For any         satisfying (3), there exists         satisfying 

(3) such that, for a            

∑ ̂      ̂     

   

    

Moreover, for ever           there exist polynomials {  }    and    such that 
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8∑              

 

   

9                                            

in         

Theorem (4.1.8) [177]  Let           ⁄  and         ]  If    ̇   
      then there 

exists a polynomial    such that        ̇   
       moreover, ‖    ‖  ̇        

 

 ‖ ‖ ̇         where   is a positive constant independent of    

Proof. We first assume that         and         ]  Notice that  ̇   
      

    
       see, for example, [90, Proposition 4.2] or [176, Proposition 5.1] for a proof. Let 

   ̇   
       Then              

       Let   and   be as in Lemma (4.1.7). Then 

(4) holds for    Observe that    ̇   
      further implies that the degrees of the 

polynomials         in (3) do not exceed ⌊    ⁄ ⌋   ; see [115, pp. 153-155] and 

[145]. Moreover, since    has at most degree   for each    we have 
 

      ∫        
 

 (     )

   

for all      and      Moreover, as shown in [115, pp. 153-155],      is the 

canonical representative of    in the sense that if for              and      satisfy (3) and 

∑    ̂           ̂       

   

   

for all           then   
   

   
   

is a polynomial of degree not more than ⌊    ⁄ ⌋  

   where   
   

 is as in (4) corresponding to {         } for          Also notice that for all 

     and       
 

  
         

       ∫ *  
         

      +   
 

 (     )

    

Let  ̃        Then by (4), we have 

 ̃   ̃ (     )  ∑(            )        

   

                                       

in         Here     
       

|      |
 and                 From the above discussion, it follows 

that  ̃   ̃ (     ) is independent of the choices of   and   satisfying (3). Then it suffices 

to prove that, when         and       ]  

{
 
 

 
 

∫ 6∑    4∑|(            )           |

   

5

 

   

7

 
 

  
 

  

}
 
 

 
 

 
 

 ‖ ‖ ̇                  

and that, when     and       ]  for all     and      
 

8∫ ∑    4∑|(            )           |

   

5

 

   

 

 (     )

  9

 
 

 ‖ ‖ ̇               

Indeed, if (6) holds, then for each      we have 
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∫ 6∑|(            )           |

   

 7

 

  
 

  

    

which further implies that (5) holds in        and hence almost everywhere. Therefore, 

for every       

| ̃   ̃ (     )|  ∑|(            )        |

   

 

almost everywhere, and hence ‖ ̃‖
  ̇   

     
 is less than the left hand side of (6), which 

further implies that kef ‖ ̃‖
  ̇   

     
 ‖ ‖ ̇         Similarly, if (7) holds, then (5) holds in 

    
      and hence almost everywhere and, moreover, an argument similar to above leads 

to ‖ ̃‖
  ̇   

     
 ‖ ‖ ̇   

       

   To prove (6), we consider ∑     and ∑     separately. Notice that for any smooth 

function   on    

          ∫        
 

 

            ∫              
 

 

                       

Let                  for   [   ] and         Then 

 (     )   (   )      (   )   ∫             (      )    
 

 

  

where    denotes the transpose of    Therefore, when      for all     , 
 

|                  |  |∫    [ (         )   (   )]
 

      

  |

 |∫    [ (     )   (   )]
 

 (      )

  | 
 

 |∫    ∫             (      )    
 

 

 

 (      )

  |         
   

   |   |  
     

where      Hence 

|(            )           |         ∫
   

   |   |  
|           |  

 

  

         (|      |)     
where   denotes the Hardy-Littlewood maximal function. Then, choosing            
by H ̈lder's inequality and          we see that 

    {∫ 6∑    4∑|(            )           |

   

5

 

   

7

  ⁄

  
 

  

}

  ⁄

 {∫ 6∑    

   

∑           [ (|      |)   ]
 

   

7

  ⁄
 

  

  }

  ⁄

 {∫ 6∑    [ (|      |)   ]
 

   

7

  ⁄
 

  

  }

  ⁄
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which, together with the Fefferman-Stein vector-valued maximal inequality (see [112]), 

further implies that 

   {∫ 6∑    |         |
 

   

7

  ⁄

  
 

  

}

  ⁄

 ‖ ‖ ̇          

   Notice that when      for all       we always have 

|(            )           |  |                 |  |              | 

                                                [ (|      |)]     (|      |)   | 

    (|      |)    
where     denotes the composition of   and    Then by      taking          and 

applying H ̈lder's inequality, we obtain 

    {∫ 6∑    4∑|(            )           |

   

5

 

   

7

  ⁄

  
 

  

}

  ⁄

 {∫ 6∑        

   

∑    [   (|      |)   ]
 

   

7

  ⁄
 

  

  }

  ⁄

 {∫ 6∑    [   (|      |)   ]
 

   

7

  ⁄
 

  

  }

  ⁄

  

which, together with the Fefferman-Stein vector-valued maximal inequality, further 

implies that     ‖ ‖ ̇          This proves (6). 

   To prove (7), we consider ∑        ∑        and ∑        separately. If        from 

(9) and H ̈lder's inequality, we deduce that for all       
 

|(            )           |         ∫
   

   |   |  
|           |  

 

  

        ∑        
 

   

∫ | 
   

     |
 

 

 (      )

  

        ∑        
 

   

2∫ | 
   

     |
 

 

 (      )

  3

  ⁄

 

                      ∑           ‖ ‖ ̇   
     

 

   

             ‖ ‖ ̇   
       

where we used the following trivial estimate that 
 

2∫ |         |
 

 

 (      )

  3

  ⁄

     ‖ ‖ ̇   
       

Hence 
 

8∫ ∑    4∑|(            )           |

   

5

 

   

 

 (     )

  9

  ⁄
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 8∫ ∑    4∑           

   

5

 

   

 

 (     )

  9

  ⁄

‖ ‖ ̇   
      ‖ ‖ ̇   

       

If        then, for all       
 

|(            )           | 
 

                 (|      |  (     ))     ∑ ∫ |         |
 

 (      )

  

     

 

         (|      |  (     ))                                  ‖ ‖ ̇   
      

and hence, by H ̈lder's inequality, 
 

8∫ ∑    6 ∑ |(            )           |

     

7

 

   

 

 (     )

  9

  ⁄

 

 

                      8∫ ∑    6 ∑             (|      |  (     ))    

     

7

 

   

 

 (     )

  9

  ⁄

 8∫ ∑    6 ∑                       

     

7

 

   

 

 (     )

  9

  ⁄

‖ ‖ ̇   
     

 8∫ ∑    6 ∑        |         |

     

7

 

   

 

 (     )

  9  ‖ ‖ ̇   
     

 ‖ ‖ ̇   
       

Similarly, if        then we have 

|(            )           |

  (  (     ) (|      |  (     ))*                    ‖ ‖ ̇   
       

which further implies that 

8∫ ∑    4∑|(            )           |

   

5

 

   

 

 (     )

  9

  ⁄

 ‖ ‖ ̇   
       

This proves (7). 

   Now we consider the case              with      Since the idea of the proof is 

similar to the case           we only sketch the main steps. First we observe that 

 ̇   
       ̇   

          which follows from the lifting properties of Triebel-Lizorkin 

spaces (see [13]) and the fact that  ̇   
             

      mentioned above. Moreover, 

similar to the above,    ̇   
      implies that the degrees of the polynomials         in 

(3) do not exceed ⌊    ⁄ ⌋        and also that the polynomial    is unique modulo 

a polynomial with degree no more than ⌊    ⁄ ⌋      ; see [115, pp. 153-155] and 

[145]. In what follows, we set  ̃        and let  ̃        
    be defined as in (3) with 

  replaced by  ̃  
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   Notice that for            | |
     

 

    
  Then from (4), it follows that for all 

      

∫  ̃        
     

 

 (     )

     ̃    ∑     
 

  

 

    
   ̃   

 

   

 ∑[        ∑     
 

  

 

    
      

 

   

]

   

            

We now consider ∑      and ∑      separately. 

   By an argument similar to (8), we see that, for any smooth function   on   and      

          ∑
       

  
 

 

       
∫                      

 

 

    

   

                  

As above, choosing                 for   [   ] and         we have 

 (     )   (   )      (   )   
 

  
      (   )    

 
 

       
∫                      (      )         

 

 

  

Notice that in this expansion, except the terms 
 

  
   (   )|     |

  
 for       and 

the last term, the other terms are harmonic and then have average   on any ball centered at 

   When      applying these facts, we conclude that, for all       
 

|           ∑     
 

  

 

    
         

 

   

|

 |∫    [ (         )  ∑
 

  
   (   )|     |

  
 

   

]
 

      

  |

 |∫    ∫                      (      )           
 

 

 

 (      )

|

             
   

   |   |  
  

where     is larger than    Here the decay factor              is crucial. Indeed, when 

     we see that 

|(           ∑     
 

  

 

    
         

 

   

+           |

              (|      |)     
while, when      we also see that 

|(           ∑     
 

  

 

    
         

 

   

+           |

            (|      |)     
Since              for all         and       ]  by exactly the same 

procedure as above, we conclude that 
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‖    ( ̃)‖      
 {∫ 4∑    6∑             (|      |)   

   

7

 

   

5

  ⁄

  
 

  

}

  ⁄

 

 {∫ 4∑    

   

6∑             (|      |)   

   

7

 

5

  ⁄

 

  

  }

  ⁄

 ‖ ‖ ̇   
       

When              for all     and       ]  from a much more complicated 

argument, similar to the case           and       ]  we also deduce that 

‖ ̃‖
  ̇   

     
 ‖ ‖ ̇   

       We omit the details. This finishes the proof of Theorem 

(4.1.8). 

Lemma (4.1.9) [177] Let    
       

|      |
                    

(i) There exist           satisfying that               ∫         
 

     for all 

| |    and       ̂               | |     ⁄⁄   such that, for all           

∑ ̂   
    ̂   

   [ ̂   
     ̂    

   ]

   

                                            

Moreover, for every       
              there exist polynomials {  }    and     such 

that 

        
    

8∑          (  (     )    (      ))    

 

   

9                         

in         
(ii) There exist           satisfying the same conditions as in     such that, for all 

          

∑ ̂   
    ̂   

   {[ ̂   
    ∑     

 

  

 

    
| |  

 

   

]

   

 [ ̂    
    ∑         

 

  

 

    
| |  

 

   

]}                                                               

Moreover, for every    ̇   
                  there exist polynomials {  }    and    

such that 

        
    

8∑          

 

   

 [(  (     )  ∑     
 

  

 

    
   

 

   

+  (  (      )  ∑         
 

  

 

    
   

 

   

+]   9       

in         
Proof: (i) It suffices to show (11). The proof of (11) follows from (12) and an argument 

similar to the arguments in [91, pp. 52-54]. 

   First we show that there exists a positive constant    such that for all     | |     ⁄⁄   

|  ̂     ̂    |                                                                  

By [172, p. 429], we know that  ̂             ⁄      | |  ⁄⁄   where    ⁄  is the Bessel 

function of order   ⁄   Thus, 
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 ̂    
 

|      |

   ⁄      

| |  ⁄
      ̂     

 

|      |

   ⁄      

|  |  ⁄
 

Therefore, 

 ̂     ̂     
   ⁄

|      |    ⁄    ⁄      ⁄  
 

 2∫ [    | |      | | ]        ⁄    ⁄
 

  

  3   

Notice that if     | |     ⁄⁄  and   [    ]  then   | |  [   ⁄    ⁄ ] and 

hence       | |         | |    Then we conclude that 

| ̂     ̂    |  
   ⁄

|      |    ⁄    ⁄      ⁄  
 

 2∫ [      | |         | |  ]        ⁄    ⁄
 

  

  3   

By the fact that     | |     ⁄⁄  and   [    ] again, we see that   | |    
    | |     Thus, by the Taylor expansion of the cosine function, we know that 

      | |         | |      | |    
and hence 

| ̂     ̂    |  
   | |   

|      |    ⁄    ⁄      ⁄  
2∫           ⁄    ⁄

 

  

  3  

From the properties of Gamma functions (see [172, Appendix A]), it follows that 

   ⁄

|      |    ⁄    ⁄      ⁄  
2∫         ⁄    ⁄

 

  

  3

 
     ⁄  

     ⁄    ⁄      ⁄  
2∫        ⁄    ⁄     ⁄

 

 

  3

 
     ⁄  

     ⁄    ⁄      ⁄  

    ⁄    ⁄      ⁄  

    ⁄    
    

Thus, 

| ̂     ̂    |     | | 
∫           ⁄    ⁄ 

  
  

∫         ⁄    ⁄ 

  
  

    | | 
∫    ⁄        ⁄    ⁄ 

 
  

∫     ⁄        ⁄    ⁄ 

 
  

 

    | | 
    ⁄      ⁄    ⁄      ⁄    

    ⁄      ⁄    ⁄      ⁄    
 
   | | 

   
                              

Therefore, for all     | |     ⁄⁄   we have 

| ̂     ̂    |      
   

   
    

namely, (15) holds. 

   For any fixed            select a smooth function   on    such that        

       ∫         
 

               | |         |    |                   | |  ⁄    ⁄ , 

where   is a positive constant. Then   
       has vanishing moments till order   and 

satisfies that 

| ̂   [ ̂     ̂    ]|                                                           
for all     | |     ⁄⁄   
   Let         such that  ̂ is nonnegative,       ̂            | |     ⁄⁄   and 

 ̂                | |      ⁄⁄   where   is a positive constant. Let 
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   ∑ ̂(    ) 

   

 

Then   is a bounded smooth function satisfying that          for all     and 

 (    )     
   Now define     ̂  ⁄   Then                         ⁄    | |   ⁄      

         for all       | |      ⁄⁄   and ∑  (    )    for all      By (17), we 

define a Schwartz function by setting   ̂   { ̂[ ̂   ̂ ]}
  
  Then 

      ̂            | |     ⁄⁄   
and, for all           

∑ ̂       ̂      [ ̂        ̂       ]

   

 ∑ ̂(    )

   

    

which completes the proof of (i). 

(ii) Similar to the argument in (i), it suffices to show that there exists a positive constant    

such that, for all     | |     ⁄⁄   

|[ ̂    ∑
 

  

 

    
| |  

 

   

]  [ ̂     ∑   
 

  

 

    
| |  

 

   

]|                      

From (16), we deduce that, for all     | |     ⁄⁄   

| ̂     ̂    |  
   | | 

   
  

while 

|∑   
 

  

 

    
| |  

 

   

 ∑
 

  

 

    
| |  

 

   

| 

 | | ∑
        

    

         

∑                         

 

   

  | |      ⁄   

Thus, (18) holds in this case, which completes the proof of (ii) and hence Lemma (4.1.9). 

Theorem (4.1.10) [177] Let            and         ]  If     ̇   
       then 

   ̇   
      and there exists a positive constant    independent of    such that 

‖ ‖ ̇   
       ‖ ‖  ̇   

       

Proof. We first consider the case          Let     ̇   
       By Lemma (4.1.9) (i) and 

      
              we conclude that 

  ∑          (           )   

   

 ∑          (                    )

   

  

which, modulo polynomials, holds in         Here   and   are as in Lemma (4.1.9) (i). 

Let   be as in (3). For      we have 

       ∑               (  (     )    (      ))

   

  

Notice that for all        and       

|                 |  |                |     |   |
  (        )

(  |  (        ) |)
       

where     can be chosen large enough as we need; see, for example, [175, Lemma 2.2]. 

Thus, 
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|                |  |               |     |   |      

Therefore, when          from Definition (4.1.6), H ̈lder's inequality and the 

Fefferman-Stein vector-valued maximal inequality, we infer that 

‖ ‖ ̇         ‖8∑    

   

|∑        (  (     )    (      ))

   

|

 

9

  ⁄

‖

      

 ‖8∑    

   

|∑        (  (     )    (      ))

   

|

 

9

  ⁄

‖

      

 ‖8∑    

   

* (  (     )    (      ))+
 

9

  ⁄

‖

      

 ‖8∑    

   

|  (     )    (      )|
 

9

  ⁄

‖

      

 ‖8∑    

   

|  (     )   |
 

9

  ⁄

‖

      

 ‖       ‖      
  

When      we need to show that 

8∫ ∑    4∑|               *  (     )    (      )+    |

   

5

 

   

 

 (     )

  9

  ⁄

 

is controlled by ‖ ‖  ̇   
      uniformly in      and      The proof of this is quite 

similar to that of (7). Indeed, we consider ∑        ∑           ∑       separately. With 

the help of (19) and some necessary calculus, we arrive at ‖ ‖ ̇   
      ‖ ‖  ̇   

       We 

omit the details. 

When                 by Lemma (4.1.6) (ii), we see that 

  ∑          [  (     )  ∑     
 

  

 

    
   

 

      

   (      )  ∑         
 

  

 

    
   

 

   

]  

   By (19) with          and      repeating the above argument for the case  

         we then conclude that ‖ ‖ ̇         ‖ ‖  ̇          This finishes the proof of 

Theorem (4.1.10). 

   We first establish a similar characterization for Besov spaces and then make some 

remarks for the case       

   Let                     and         ]  The space   ̇   
      of Besov 

type is defined as the collection of functions    ̇   
                 such that 

 

‖ ‖  ̇          8∑    

   

‖∫          
   

 

 (     )

  ‖

      

 

9

  ⁄

    

Here  ̇   
            

         with     is as in (2) and, for all         
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Also the space   ̇   
      is similarly defined as above. 

   Then Theorems (4.1.8) and (4.1.10) admit Besov space versions; indeed, by similar 

arguments, Theorems (4.1.8) and (4.1.10) still hold with spaces  ̇   
      and   ̇   

      

replaced by Besov spaces  ̇   
      and   ̇   

      and, moreover, with the indices      

and   replaced, respectively, by                  ] and       ]  Namely, we 

have the following characterization on Besov spaces. 

Theorem (4.1.11) [177] Let                  ] and       ]  Then  ̇   
      

  ̇   
       with equivalent norms, and     

           
       with equivalent norms. 

   It should be pointed out that     
           

      when         and     [   ] 

was obtained by Wheeden [173, Theorem 5] via a totally different approach. 

   Finally, we make some remarks. The first remark is on the missing indexes      in 

Theorems (4.1.2) and (4.1.5) while the second one is on the higher order Besov and 

Triebel-Lizorkin spaces on metric measure spaces. 

Remark (4.1.12) [177] We point out that when       it was proved in [170] that a 

variant of Theorems (4.1.2) and (4.1.5) when         and     still holds. However, it 

is not clear that when     , whether there exists a similar variant of Theorems (4.1.2) 

and (4.1.5) when     and Theorem (4.1.11) for all       ]  Indeed, as pointed out in 

[170],     -function as in (1) fails to characterize  ̇   
       ̇         To overcome this 

drawback, Alabern, Mateu and Verdera [170] then introduced a variant of (1) to 

characterize  ̇   
       Precisely, for         , and       , let 

         
    

 

            ∑
 

  
  

   

   

    |   |   
 

  
.∫       

 

 (     )

  / |   |         

where    is as in (2). Let         be as in (1) with    replaced by    and, similarly, the 

spaces   ̇   
      for             and         ] are similarly defined to the 

spaces   ̇   
       Then it was proved in [170] that   ̇   

        ̇   
       ̇         

for     and          
   When             and         ]   by modifying the proofs, we can also show 

that   ̇   
        ̇   

      with equivalent norms. But our above proof can only show 

  ̇   
        ̇   

       for      and         ]  It is still unknown whether the 

relation  ̇   
         ̇   

       is still true for      and         ] but     or not. 

Section (4.2) Sobolev Spaces via Averages on Balls 

   The problem of introducing Sobolev spaces on metric measure spaces where differential 

structures are not available is one of the central topics in analysis. A very important 

progress on this problem was achieved by Haj asz [26], who successfully introduced a 

concept of gradients (now widely known as the Haj asz gradients) and used it to introduce 

the first order Sobolev spaces on metric measure spaces. The Haj asz gradients have 

become a powerful tool in the study of the first order Sobolev spaces on metric measure 

spaces; see [26, 72, 108, 184, 186]. After the pioneering work of Haj asz [26], several 

different approaches were proposed to introduce and study first-order Sobolev spaces on 

metric measure spaces (see [72, 108, 118, 183, 184, 185]). Indeed, great success has been 

achieved on the theory of the first order Sobolev spaces on metric measure spaces. On the 
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other hand, however, the problem of developing a successful theory of higher order 

Sobolev spaces on metric measure spaces remains open. 

   Alabern, Mateu and Verdera [170] obtained an interesting new characterization of 

Sobolev spaces on     which relies only on the metric and the Lebesgue measure on    

and hence provides a possible way to introduce Sobolev spaces of arbitrary order of 

smoothness on any metric measure space. To describe this new characterization, we first 

recall that the (inhomogeneous) Sobolev spaces          on    consist of all functions 

  on    such that                                
               Here, the 

smoothness index   is any positive real number,             ∑ (
 

   
)
 

 
    is the 

Laplacian, and         is the fractional Laplacian defined in terms of the distributional 

Fourier transform via                 | |  ̂    for any tempered distribution    
Next, we recall a well-known classical characterization of          via square functions 

(see [174, 56, 65, 72]), which asserts that, for         and                     if 
and only if          and               where       is the square function given by 
 

          {∫ 0∫ |         |  
 

      

1

  

 

  

     
}

  ⁄

                                     

For       
                        

               |   |      
 

∫        
 

      

  
 

|      |
∫        

 

      

                                            

Such a characterization, however, fails for      Indeed, it is known that, if      then 

                           implies     on    (see [95, Section 4]). 

   In order to have a similar characterization for          with      Alabern, Mateu 

and Verdera [170] introduced a new square function     with a slight modification of the 

definition of       via dropping the absolute value in |         | of (21), given by 
 

          {∫ |∫ |         |  
 

      

|

  

 

  

     
}

  ⁄

       
                            

It turns out that such a modification is significant enough for [170] to establish a 

characterization for all Sobolev spaces of smoothness orders       ): for         and 

                   if and only if          and               The key point 

here is that, unlike the classical square function    in (21), this new function    in (23) 

provides smoothness up to order 2, namely, for          and        , 
 

∫ [         ]   
 

      

                                                     

This phenomenon, followed directly from the Taylor expansion, was first observed by 

Wheeden in [173] (see [174]) and later independently by Alabern, Mateu and Verdera in 

[170]. 

   A more complicated characterization of          for higher orders of smoothness (i.e., 

   ) was also established in [170, Theorems 2 and 3]. Assume that   [         
with                  For                 

       define 
 

                    {∫ |∫             
 

      

|

  

 

  

 
}

  ⁄
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where, for all         

                            ∑      |   |  
   

   

 

                                 {
     |   |                                   

       |   |             
                       

Here we recall that    is the average operator given in (22). With the above notation, it is 

shown in [170] that             with   [             and          if and 

only if          and 

                       
for some functions                   Indeed, according to [170, Theorem 3], the 

functions    can be taken as 
 

  
    almost everywhere with        | |    where 

             Of particular interest is the case when     and      where the 

characterization can be formulated more explicitly as follows (see [170, Theorem 2]). 

Theorem (4.2.1) [188] Let          Then            if and only if          and 

there exists          such that 

            {∫ |
           

  
       |

  

 

  

 
}

  ⁄

                                 

where    is as in (22). Moreover, the function   can be chosen such that          + 

                is equivalent to             with equivalent positive constants 

independent of    
   See [170], and the pointwise characterizations of the first-order Sobolev spaces via the 

Haj asz gradients established in [26] (see also [186, 72]). Recall that a non-negative 

measurable function   on    is called a Haj asz gradient of a measurable function   on 

   if the inequality 

|         |  |   |[         ]                                              
holds true for almost every         Haj asz [26] proved that a function          
belongs to the first order Sobolev space           with          if and only if it has a 

Haj asz gradient in         Also recall that          (or even higher order Sobolev 

spaces) can also be characterized via the second order difference (or higher order 

differences) (see Haroske and Triebel [74, Proposition 4.1] and also [30, 63, 69]); but it is 

still unclear how to introduce higher order differences on spaces of homogeneous type in 

the sense of Coifman and Weiss [179, 180]. 

   The aim is to use the average operator    in (22) to establish pointwise characterizations 

of the higher-order Sobolev spaces          that are analogous to (28). A novel aspect of 

our characterizations of          for     lies in that they look much simpler than those 

in [170]. We will state the main result for the second order Sobolev spaces          only. 

Pointwise characterizations of the higher-order Sobolev spaces will be given. The main 

result for the second order Sobolev spaces can be stated as follows. 

Lemma (4.2.2) [188] Let         and  ̃ be a given positive constant. Then 

   
    

     

  
  

 

      
                                                          

and 

   
    

∫
       ̃     

  

 

      

    
 ̃ 
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where the convergences are with respect to the topology of        
Proof. By the Taylor expansion of          for any given         there exists a 

point      on the line segment connecting   and   such that 

          ∑
 

  
            

  | |  

 ∑
 

  
   (    )      

| |  

  

here and hereafter, for any                     
  | |   |  |            |  |     

                    
     

 

   
          

 

   
     Fixing      and          and taking 

average over          on both sides of the last equation, we see that 
 

             
 

      
        ∑

 

  
∫    (    )         

 

      | |  

         

Hence, for any       
        and all      and t   (0, ∞), we have 

|  (
     

  
 [ 

 

      
  ]*    |      | |  

 |4
      ( 

  )

  
 

 

      
 (   )5   |      | |   

 

       | |  ∫
|   | 

(  |    |)
 

   | |  

  
  

 

      

       | |          

which converges to   as       This proves (29). 

   The proof of (30) is similar to that of (29), the details being omitted. This finishes the 

proof of Lemma (4.2.2). 

   Recall that, for any       
      and       the Hardy–Littlewood maximal function 

   is defined by 
 

          
   

∫|    |    
 

 

 

where the supremum is taken over all balls   containing    
Theorem (4.2.3) [188] Let          The following statements are equivalent: 

 (i)             
(ii)          and there exists a function         such that 

   
    

     

  
          

                                                           

(iii)          and there exists a non-negative         such that, for all         
and almost every       

|           |                                                                   
(iv)          and there exist a non-negative           and positive constants    and 

   (depending only on  ) such that, for all         and almost every       
 

∫ |             |    
 

      

   ∫        
 

        

                                    

(v)          and there exist a non-negative           and a positive constant    

(depending only on  ) such that, for all         and almost every       
 

|∫ [             ]   
 

      

|                                                       
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   Furthermore, if             then the functions                in the above 

statements, can be chosen so that            are equivalent to            with the 

implicit equivalent positive constants depending only on   and    
   Clearly, the pointwise inequality (33) can be considered as a second-order analogue of 

the pointwise characterization (28). 

Proof. “(i)   (ii)”: This implication is a direct consequence of (29) and the facts that the 

operators 
     

  
 and   are both self-adjoint with respect to the inner product of         

Indeed, if             we choose the function    as      
 

      
    

   “ (ii) =⇒ (iii) ”: We first observe that, if                    then 

|           |     ( ∑ |   |

| |  

+                                     

Indeed, by the Taylor expansion of    we see that 
 

|           |  |∫ [         ]   
 

      

|

 ∑ ∫ |∫           (          )
 

 

  | |   | 
 

      

  

| |  

 ∑   ∫ ∫ |        |
 

      

  
 

 

   

| |  

 

from which (36) follows. 

   Now assume that (ii) is satisfied. Then Lemma (4.2.2) implies that, for all          

⟨    ⟩     
   

⌌   
 

      

     

  
⌍     

   
⌌ 

 

      

     

  
  ⌍  ⌌ 

 

      
    ⌍  

This means that      
 

      
          in         Since           this further 

implies that             
   Now (iii) follows from (36) and a standard limiting argument. To see this, let   
  
      be such that ∫       

 

      Let           for all      Since           is 

an approximation to the identity, it follows from (36) that, for almost every       

|
           

  
|     

   
|
            (      )   

  
|

  4 ∑    
   

|      
  |

| |  

5     4 ∑       

| |  

5     

where   denotes the Hardy–Littlewood maximal operator. Now letting 

     ̃ 4 ∑       

| |  

5   

where  ̃ is the implicit positive constant in the above inequality, we deduce from the 

boundedness of   on         with          that 

           ∑ ‖   ‖      

| |  

                                                 

This shows (iii). 
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“(iii)   (iv)”: The implication (iii)   (iv) is straightforward. Indeed, letting         

and         we obtain by (33) that 
 

              ∫      
 

      

     ∫      
 

      

    

“(iv)   (v)”: (v) follows directly from (iv) with        and          
“(v)   (i)”: Notice that LHS of (35) can be written as |              |  Thus, (v) 

implies that 

   
   

                   

  
                

By the Banach–Alaoglu theorem (see [187, p. 70, Theorem 3.17]), there exist a 

subsequence      
    of positive integers and a function          such that  

                      and, for all          

   
   

⌌     
 
   (   

   
    )   ⌍  ⟨   ⟩  

Since the operators             are self-adjoint with respect to the inner product of         

it follows that, for all          

    ⌌ 
 
   (   

   
    )   ⌍      ⌌ 

 
   (     

   
    )⌍   

However, by (30), we find that 

   
   

     
 
   (   

   
    )    

  
 

      
              

Thus, for all          we have 

⟨    ⟩   
        

  
 ⟨   ⟩  

This implies that     
        

  
          and hence             

   Finally, it is easily seen from the above proof that all the functions                 can 

be chosen so that each norm            is equivalent to             This finishes the 

proof of Theorem (4.2.3). 

   From the above proof of Theorem (4.2.3), we further deduce the following equivalent 

descriptions of         . 
Corollary (4.2.4) [188] Let          The following statements are equivalent: 

(i)             
(ii)          and there exists          such that 

        
    

     

  
                 

(iii)          and there exist          and a sequence         of positive numbers 

such that     
   

     and 

   
   

     
 

  
                  

(iv)          and 

   
       

‖      ‖      

  
          

   In (ii) and (iii), the function   can be chosen such that           is equivalent to 

           with the equivalent positive constants independent of    which also holds true 

for    in (iv). 
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Corollary (4.2.5) [188] Let           [             and       ]  Then 

            if and only if          and     
            Moreover,              

     
           with the implicit equivalent positive constants depending only on         

and    

   One novel idea used in these proofs is the convergence of        
     

  
 to  

 

      
   

in       (see Lemma (4.2.2)). After that, we show how to establish similar 

characterizations for the higher order Sobolev spaces           In our discussion the 

concept of higher-order average operators       Ideas behind the introduction of the 

operators      are also explained in detail. Finally, several remarks on how to introduce 

higher order Sobolev spaces on spaces of homogeneous type are given and an advantage 

of these definitions is that they are simper than those of [170] and, in the case of Euclidean 

spaces, all these definitions are equivalent. Also, several related open problems in this 

direction are raised. 

   Let       denote the collection of all Schwartz functions on     endowed with the 

usual topology, and        its topological dual, namely, the collection of all bounded 

linear functionals on       endowed with the weak  -topology. For all         
        

  and          let 

            
| | | |     

   | |  |      |  

For any         and          we let                   
   The symbol   denotes a positive constant which depends only on the fixed parameters 

      and probably on auxiliary functions, unless otherwise stated; its value may vary 

from line to line. We use the symbol     to denote that there exists a positive constant   

such that       The symbol     is used as an abbreviation of        
   The following simple lemma plays a key role in our proofs. In what follows,      

means     and      
   Now we are ready to prove Corollary (4.2.5). 

Proof. If             then, by Theorem (4.2.3) (ii), we know that, for all       

    
          

       
0∫ |     |

 
 

      

1

 
 

 [  |  |
     ]  ⁄   

where   denotes the Hardy–Littlewood maximal operator. Since      by the 

boundedness of   on    ⁄      with   [      it follows that 

‖    
   ‖

      
 ‖[  |  |

  ]  ⁄ ‖
      

 ‖  |  |
  ‖

      
  ⁄

 ‖  ‖       ‖  ‖        

which is the desired estimate. 

   Conversely, assume that     
          . By the definition of     

   
 and the H ̈lder 

inequality, we see that, for all         and       
 

∫ |            |   
 

      

       
        

From the proof of the implication “(v)   (i)” in the proof of Theorem (4.2.3), it follows 

that this implies that            and ‖  ‖       ‖    
   ‖

      
  . This finishes 

the proof of Corollary (4.2.5). 

   We discuss how to establish similar characterizations of the higher order Sobolev spaces 

          with     and        . The crucial idea is to replace the average operator 

   with its higher order invariant      defined via higher order symmetric differences. 
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   To illustrate the idea behind the definition of     , we first recall that the  -th order 

directional symmetric difference   
   of a function         along a vector      is 

defined by 

  
             ⁄         ⁄     

     
   

                 
Letting                for all     , we can write   

   more explicitly as 

  
          

 

            ∑     (
 

 
)  (  (

 

 
  )  )

 

   

           

where   denotes the identity operator. 

   Next, we observe that, for all         and     , 

                 
 

 
∫ [               ]   

 

      

 

 

  
 

 
∫ [                     ]   

 

      

   
 

 
∫    

        
 

      

              

This means that             can be considered as a constant multiple of the integral 

average of the second order symmetric difference    
      of   at   with respect to   over 

the unit ball         In view of the characterizations of Sobolev spaces via differences 

(see [74, 69, 63, 30]), this, in some sense, explains the reason why       can be used to 

characterize the second order Sobolev spaces on     
   Given      according to (39), it is very natural to introduce a higher order average 

operator      via the identity 
 

              
 

  
∫    

         
 

      

                                      

Where    is a normalization constant to be specified later. To obtain an explicit 

formulation of       we deduce from (38) that 
 

 

  
∫    

         
 

      

 
 

  
∑     (

  

 
*

  

   

∫                
 

      

 
     (  

 
)

  
     

      

  
∑     (

  

   
*        

 

   

                                            

Comparing (40) with (41), we let            (  
 
) and then obtain 

          
  

(  
 
)
∑     (

  

   
*         

 

   

                                     

Notice that (42) relies only on the metric and the Lebesgue measure of   . We point out 

that the higher order average operator      was previously used and studied in 

approximation theory (see [178, 181]). 

   Another way to look at (42) is to consider       as a   -th order symmetric difference of 

    with respect to    To be precise, for any fixed       
      and       let 

         8

                                      

                                            

                                 

                                            

Then a straightforward calculation shows that, for all     and          

              
     

(  
 
)
∑     (

  

 
*     (       )

  

   

 
     

(  
 
)
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   The results of Theorem (4.2.3) can be easily extended to the case of higher order 

Sobolev spaces, with 
     

  
 replaced by 

       

   
. We have the following conclusion. 

Theorem (4.2.6) [188] Let     and          Then the conclusion of Theorem (4.2.3) 

remains valid when              and    therein are replaced by                 and 

     respectively. 

   The proof of Theorem (4.2.6) is very close to that of Theorem (4.2.3) given. The crucial 

step is to show the following analogue of Lemma (4.2.2): for each              
 ̃        and          

    
    

       

   
       

   

and 

    
    

∫
         ̃     

   

 

      

         
   

with convergences in      , where 

    
 

(  
 
)

                       

                             
  

with (  
 
) being the binomial coefficient, and      ̃    . 

Remark (4.2.7) [188] Recall that, for         and          the Sobolev spaces 

         can be characterized via the square function     given in (23) (see [170]). 

Motivated by this characterization, very naturally, one can introduce a higher-order 

analogue of the square function      using         to replace        More precisely, 

given     and           we define, for all        
      and       

            2∫ |             |
   

     

 

 

3

  ⁄

                                      

It turns out that such a square function can be used to characterize higher-order Sobolev 

spaces. It is possible to show that, for all              and           
         if and only if          and               Indeed, a discrete version of 

this assertion was proved (see [196]). 

   Is devoted to some related questions on spaces of homogeneous type in the sense of 

Coifman and Weiss [179, 180]. Recall that a triple         is called a space of 

homogeneous type in the sense of Coifman and Weiss [179, 180] if   is a quasi-metric on 

   namely,   satisfies 

(i)                                 
(ii)                                 
(iii) there exists a constant   [                                  

        [             ]                                                       
and   is a non-trivial regular Borel measure on   satisfying the following doubling 

condition: there exists a constant    [     such that, for all     and          
                                                                              

Every quasi-metric   on   determines a topology on    for which the class of all balls, 

                                   
forms a basis on  . A space         of homogeneous type is called a metric measure 

space of homogeneous type if     in (46); namely, if       is a metric space. 

   As in the Euclidean case, the average operator is defined by 
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         ∫           
 

      

  
 

         
∫           

 

      

  

where       
          and        . Similarly, given      we define the   -th 

order average operator as in (42). 

   In what follows,         always denotes a space of homogeneous type. We have the 

following analogue of Theorem (4.2.6). 

Theorem (4.2.8) [188] Let     and          Then the following two statements are 

equivalent: 

(i)         and there exist a non-negative          and a positive constant    such 

that, for all         and almost every      
 

∫ |               |      
 

      

                                                   

(ii)         and there exist a non-negative          and positive constants       

such that, for all         and almost every      
 

∫ |               |      
 

      

    ∫            
 

        

                           

Proof. The implication (ii)   (i) is obvious as we may choose         and    
    where   denotes the Hardy–Littlewood maximal operator on    
   To show the inverse implication (i)   (ii), we first notice that, for any           

                                 
Thus, by the doubling condition of the measure    it follows that, for all           
 

∫ |               |      
 

      

  ∫ |               |      
 

           

  

which, by (i), is controlled by         modulus a positive constant    Thus, 
 

∫ |               |      
 

      

       
        

         ∫            
 

      

  

This yields (ii) with              and        Thus, the proof of Theorem (4.2.8) is 

complete. 

   According to Theorem (4.2.8) and the characterizations in [170], it is very natural to 

introduce the following notion of Sobolev spaces on          
Definition (4.2.9) [188] Let     and          
(i) The Sobolev space          is defined to be the set of all functions         for 

which either of the condition (i) or (ii) in Theorem (4.2.8) is satisfied. For any   
          write 

‖ ‖           ‖ ‖          
 
{‖ ‖     }   

where   in the infimum is taken over either all functions    satisfying (48) or functions    

satisfying (49). 

(ii) For           the Sobolev space         is defined to be the set of all functions 

        for which 

         2∫ |       |
 
 
  

     

 

 

3

  ⁄

        

For any            define 

‖ ‖         ‖ ‖       ‖       ‖     
  

Several remarks are in order. 
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Lemma (4.2.10) [188] For          it holds true that 

    
    

       

  
       

and 

    
    

∫
             

  

 

   

         

in the sense of        where 

 

       ∫          
 

 

  ∑∑    
  

      

 

   

 

   

       ∫      
 

 

                

   Since       ∑ ∑         
 
   

 
    is an elliptical homogeneous polynomial, it follows 

that 

‖     ‖         ‖  ‖                
Similar to the proof of Theorem (4.2.3), we can show the following conclusion.   

Theorem (4.2.11) [188] The conclusions of Theorem (4.2.3) remain true with       in 

place of       
   Next, for any           

      and       we define 

            
  

     
∑     
 

   

(
  
   

*            

As the higher order variant of Theorem (4.2.11), we have the following result. 

Theorem (4.2.12) [188] The conclusion of Theorem (4.2.6) remains valid with      therein 

replaced by         
Section (4.3) Triebel–Lizorkin Spaces via Averages on Balls 

   The theory of function spaces with smoothness is a central topic of the analysis on 

spaces of homogeneous type in the sense of Coifman and Weiss [179, 180]. The first order 

Sobolev space on spaces of homogeneous type was originally introduced by Hajłasz in 

[85] and later Shanmugalingam [118] introduced another kind of a first order Sobolev 

space which has strong locality and hence is more suitable for problems related to partial 

differential equations on spaces of homogeneous type. Alabern et al. [170] gave a way to 

introduce Sobolev spaces of any order bigger than 1on spaces of homogeneous type in 

spirit closer to the square function and Dai et al. [190] gave several other ways, different 

from [170], to introduce Sobolev spaces of order 2on spaces of homogeneous type in spirit 

closer to the pointwise characterization as in [85], where                 Later, 

motivated by [170], Yang et al. [178] gave a way to introduce Besov and Triebel–Lizorkin 

spaces with smoothness order in       on spaces of homogeneous type. It is still an open 

question how to introduce Besov and Triebel–Lizorkin spaces with smoothness order not 

less than 2 on spaces of homogeneous type. 

   We establish a characterization of Besov and Triebel–Lizorkin spaces which can have 

any positive smoothness order on    via the difference between functions themselves and 

their ball averages. Since the average operator used is also well defined on spaces of 

homogeneous type, this characterization can be used to introduce Besov and Triebel–

Lizorkin spaces with any positive smoothness order on any space of homogeneous type 

and hence our results give an answer to the above open question. 

   It is well known that a locally integrable function   belongs to the Sobolev space 

          with         and          if and only if          and 
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       {∫ 6 ∫ |         |

 

      

  7

  

 

  

     
}

  ⁄

        

(see, for example, [174, 56, 65, 72]). Here,        denotes an open ball with center at 

     and radius          and                denotes the integral average of   

    
      on the ball            namely, 

 

∫        

 

      

  
 

|      |
∫        

 

      

                                              

However, when   [           is not able to characterize           since, in this case, 

      
      and ‖     ‖         imply that   must be a constant function (see [95, 

Section 4]). 

   Alabern et al. [170] established a remarkable characterization of Sobolev spaces of 

smooth order bigger than   and they proved that a function           with         and 

         if and only if          and the square function            where 
 

          {∫ | ∫ |         |

 

      

  |

  

 

  

     
}

  ⁄

       
      

(see [170, Theorem 1 and p. 591]). Comparing    and     we see that the only difference 

exists in that the absolute value |         | in       is replaced by           in 

     . However, this slight change induces a quite different behaviour between       and 

   when characterizing Sobolev spaces. The former characterizes Sobolev spaces only 

with smoothness order less than 1, while the later characterizes Sobolev spaces with 

smoothness order less than 2. Such a difference follows from the following observation: 

for all          and          
 

∫ [         ]  

 

      

                                                     

which follows from the Taylor expansion of   up to order 2: 

                        |   |           
in other words, the   -function provides smoothness up to order 2. We point out that this 

phenomenon was first observed by Wheeden in [173] (see also [174]), and later 

independently by Alabern, Mateu and Verdera [170]. 

   By means of the fact (51), Alabern et al. [170, Theorems 2 and 3] also characterized 

Sobolev spaces of higher smoothness order and showed that             with   
[             and          if and only if          and there exist functions 

                 such that                         where 
 

                    {∫ | ∫           

 

      

  |

  

 

  

 
}

  ⁄

 

with 

                    ∑     |    |
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when              and 

                    ∑      |    |
  

   

   

        |    |
                           

when       Indeed, the function    was proved in [170, Theorems 2 and 3] to equal to 
 

  
    almost everywhere, where       | |                  . As the corresponding 

results for Triebel–Lizorkin spaces, Yang et al. [170, Theorems 1.1, 1.3 and 4.1] further 

proved that, for all                 and       ]  the Besov space  ̇   
      

with       ] and the Triebel–Lizorkin space  ̇   
      with       ] can be 

characterized via the function  
 

           8∑| ∫  ̃         

 

 (     )

|

 

   

9

  ⁄

                                    

where, for all        and      

 ̃                   ∑
 

  
      |   |  

 

   

                                     

It is an open question, posed in [178, Remark 4.1], whether there exists a corresponding 

characterization for  ̇   
      and  ̇   

      when      with      Moreover, only 

when          [178, Theorems 1.1 and 4.1] provide a way to introduce Besov and 

Triebel–Lizorkin spaces with smoothness order   on spaces of homogeneous type. 

   Via higher order differences, Triebel [69, 63] and Haroske and Triebel [30, 74] obtained 

another characterization of Sobolev spaces with order bigger than   on    without 

involving derivatives. Recall that, for      the  -th order (forward) difference operator 

 ̃ 
  with      is defined by setting, for all functions   and       

 ̃ 
                    ̃ 

    ̃ 
  ̃ 

         

By means of  ̃ 
    Triebel [69, 63] and Haroske and Triebel [30, 74] proved that the 

Sobolev space          with     and         can be characterized by a pointwise 

inequality in the spirit of Hajłasz [26] (see also Hu [85] and Yang [72]). Recall that the 

difference  ̃ 
   can also be used to characterize Besov spaces and Triebel–Lizorkin spaces 

with smoothness order no more than  . See Triebel‟s monograph [66, Section 3.4] for 

these difference characterizations of Besov and Triebel–Lizorkin spaces; see also [193, 

Section 3.1]. However, it is still unclear how to define higher than   order differences on 

spaces of homogeneous type. 

   On the other hand, recall that the averages of a function   can be used to approximate   

itself in some function spaces; see [178, 182]. Motivated by (51) and the pointwise 

characterization of Sobolev spaces with smoothness order no more than   (see Hajłasz 

[26], Hu [85] and Yang [72]), it established in [190] some pointwise characterizations of 

Sobolev spaces with smoothness order    on    via ball averages of    where    . To 

be precise, as the higher order variants of    in (50), for all              and 

      we define the   -th order average operator      by setting, for all       
      

and       
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(  
 
)
∑     (

  

   
*       

 

   

                                         

here and hereafter, (   
   

) denotes the binomial coefficients. Obviously,            

Moreover, it was observed in [190] that         is a   -th order central difference of the 

function          with step   at the origin, namely, for all               
    
      and       

              
     

(  
 
)
  
                                                        

with 

      8

                                      

                                            

                                 

                                            

Here and hereafter, for all functions   on   and        let                 and the 

central difference operators   
  are defined by setting 

  
                (  

 

 
*   (  

 

 
*  (   ⁄      ⁄ )      

  
         (  

    )    ∑(
 

 
*      (  

  

 
   *

 

   

              

   It is proved in [190] that              with     and          if and only if 

         and there exist a non-negative          and a positive constant   such that 

|             |           for all         and almost every     . Various 

variants of this pointwise characterization were also presented in [190]. Recall that 

centered averages or their combinations were used to measure the smoothness and to 

characterize the  -functionals in [189, 191, 192]. 

   Comparing the difference         with the usual difference  ̃ 
     we find that the 

former has an advantage that it involves only averages of   over balls, and hence can be 

easily generalized to any space of homogeneous type, whereas the difference operator 

 ̃ 
    cannot. We can also see their difference via (57). Indeed, it follows from (57) that 

        is a   -th order central difference of a function   and the parameter related to 

such a difference is the radius         of the ball        with       while the 

parameter related to  ̃ 
    is       which also curbs the extension of  ̃ 

    to spaces of 

homogeneous type. 

   Although there exist differences between         and the usual difference  ̃ 
     the 

characterizations of           via         obtained in [190] imply that, in some sense, 

        also plays the role of   -order derivatives. Therefore, it is natural to ask whether 

we can use         to characterize Besov and Triebel–Lizorkin spaces with smoothness 

order less than    or not. 

   Let            and       denote the collection of all Schwartz functions on     
endowed with the usual topology, and        its topological dual, namely, the collection 

of all bounded linear functionals on       endowed with the weak  -topology. Let 

    
   be the set of all Schwartz functions   such that ∫         

 

     for all     
   

and   
      its topological dual. For all     

        and          let 
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‖ ‖        
     | | | |

    | |  |      |   

   For all     
       we use  ̂ to denote its Fourier transform. For any         and 

         we let               ⁄    
   For all    , ⌊ ⌋ denotes the maximal integer no more than  . For any       let    

be its characteristic function. 

   We now recall the notions of Besov and Triebel–Lizorkin spaces; see [65, 66, 115, 195]. 

Definition (4.3.1) [196] Let                 ] and         satisfy that 

      ̂          ⁄  | |         | ̂   |                  ⁄  | |    ⁄          

(i) The homogeneous Besov space  ̇   
      is defined as the collection of all     

      

such that ‖ ‖ ̇            where 

‖ ‖ ̇          [∑    ‖      ‖      

 

   

]

  ⁄

 

with the usual modifications made when     or      

(ii) The homogeneous Triebel–Lizorkin space  ̇   
      is defined as the collection of all 

    
      such that ‖ ‖ ̇            where, when          

‖ ‖ ̇          ‖[∑    |         |
 

   

]

  ⁄

‖

      

 

with the usual modification made when      and 

‖ ‖ ̇   
           

    
   
   

8 ∫ ∑     |         |
 

 

   

 

        

  9

  ⁄

 

with the usual modification made when      

   It is well known that the spaces  ̇   
      and  ̇   

      are independent of the choice of 

functions   satisfying (59); see [171]. 

   We also recall the corresponding inhomogeneous spaces. 

Definition (4.3.2) [196] Let                 ]         satisfy (59) and 

        satisfy that 

      ̂        | |         | ̂   |                 | |    ⁄                    

   (i) The inhomogeneous Besov space     
      is defined as the collection of all   

       such that ‖ ‖             where 

‖ ‖           6∑     ‖      ‖      

 

    

7

  ⁄

 

with the usual modifications made when     or      where, when          is 

replaced by    
   (ii) The inhomogeneous Triebel–Lizorkin space     

      is defined as the collection of 

all          such that ‖ ‖             where, when          

‖ ‖           ‖6∑     |         |
 

    

7

  ⁄

‖
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with the usual modification made when      and 

‖ ‖    
           

    
   
    

8 ∫ ∑     |      |
 

 

   

 

        

  9

  ⁄

 

with the usual modification made when      where, when          is replaced by    
   It is also well known that the spaces     

     and     
      are independent of the 

choice of functions   and   satisfying (59) and (60), respectively; see, for example, [65]. 

   We prove that the difference           with     plays the same role of the 

approximation to the identity        in the definitions of Besov and Triebel–Lizorkin 

spaces in the following sense. 

   We need some technical lemmas. Let, for all         and            
 

|      |
           and               ⁄    Then 

(     )    
  

(  
 
)
∑     (

  

   
* (     )   

 

   

               

and hence 

(     )
 
           ̂                                                          

where 

       
  

(  
 
)
∑     (

  

   
*  ̂    

 

   

                                           

A straightforward calculation shows that 

 ̂      ∫     | |       
   
   

 

 

                                           

with     [∫       
   

   
 

 
]   (see also Stein‟s book [194, p. 430, Section 6.19]). 

Lemma (4.3.3) [196] For all     and       
           | |                                                                    

where 

         
  

(  
 
)
∫      

   
 (   

  

 
)
  

  

 

 

                                    

Furthermore,           is a smooth function on   satisfying that there exist positive 

constants    and    such that 

     
     

   
          ]                                                  

and 

   
   

|(
 

  
*
 

.
     

   
/|         

Proof. Combining (62) with (63), we obtain 

      
    

(  
 
)
∫ 6∑     (

  

   
*       | | 

 

   

7       
   
 

 

 

                   

However, a straightforward calculation shows that, for all      
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   (   
 

 
)
  

 (
  

 
*  ∑     (

  

   
*        

 

   

  

This, together with (67), implies (64). 

   Next we show (66). By the mean value theorem, we know that, for all         and 

     there exists         such that 

 (   
  

 
)
  

 (
 

 
  *

  

(   
   

 
*
  

  

From this and (65), we deduce that, for all       ]  

     

   
   

  

 (  
 
)
∫      

   
      

 

 

       

and 

     

   
   

  

 (  
 
)

∫       
   
    (   

   

 
*
  

  

    ,  
  
  

-

 

 

   
 

 (  
 
)

∫       
   
       

    ,  
  
  

-

 

   
 

 (  
 
)
∫      

   
       

 
 

 

        

These prove (66). 

   Finally, by the mean value theorem again, an argument similar to the above also implies 

that 

   
   

|(
 

  
*
 

.
     

   
/|    

for all      This finishes the proof of Lemma (4.3.3). 

   Recall that the Hardy–Littlewood maximal operator   is defined by setting, for all 

      
       

          
    

∫|    |

 

 

               

where the supremum is taken over all balls   in    containing    The following two 

lemmas can be verified straightforwardly. 

Lemma (4.3.4) [196] Let             be a family of multiplier operators given by setting, 

for all           
     

            ̂                 
for some            If 

‖     ‖       ‖ ‖             

then there exists a positive constant   such that, for all          and     , 

   
       

|      |            

Proof. For all                  and       by the Fubini theorem, we see that 

|      |  | ∫      ̂          

 

  

|  | ∫    

 

  

∫      ̂              

 

  

  | 
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 | ∫     

 

|   |  

∫      ̂              

 

  

  |  | ∫    

 

|   |  

|          

It is easy to see that   ‖ ‖             

For II, via the Fubini theorem and the integration by parts, we also have 

   ∫
|    |

|   |   

 

|   |  

∫    |         |  

 

  

   

 ‖     ‖      ∑ ∫
|    |

|   |   

 

    |   |      

  

 

   

 

             ‖     ‖      ∑        

 

   

 ‖     ‖             

which completes the proof of Lemma (4.3.4). 

Lemma (4.3.5) [196] Let                 ] and          Then there exists   

positive constant    independent of          such that 

6∑    4∑|  |

 

   

5

 

   

7

  ⁄

  (∑    |  |
 

   

+

  ⁄

 

and 

6∑     4 ∑ |  |

 

    

5

 

   

7

  ⁄

  (∑     |  |
 

   

+

  ⁄

 

Theorem (4.3.6) [196] Let     and           

(i) Let       ] and       ]  If    ̇   
       then there exists       

      

  
      such that     in   

      and ||| ||| ̇          ‖ ‖ ̇         for some positive 

constant   independent of  , where 

||| ||| ̇          {∑    ‖         ‖      

 

   

}

  ⁄

  

   Conversely, if       
        

      and ||| ||| ̇            then      ̇   
      and 

‖ ‖ ̇          ||| ||| ̇         for some positive constant   independent of    

(ii) Let       ] and       ]  If    ̇   
       then there exists       

      

  
      such that     in   

      and ||| ||| ̇          ‖ ‖ ̇         for some positive 

constant   independent of    where, when          

||| ||| ̇          ‖{∑    |         |
 

   

}

  ⁄

‖

      

 

and, when      

‖ ‖ ̇   
           

    
   
   

8 ∫ ∑     |               |
 

 

   

 

        

  9

  ⁄
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   Conversely, if       
        

      and ||| ||| ̇            then    ̇   
      and 

‖ ‖ ̇          ‖ ‖ ̇         for some positive constants   independent of    

Proof. We only prove (ii), the proof of (i) being similar and easier. 

   To show (ii), let         satisfy (59) and ∑  ̂       on         Assume first that 

                 and       ]  Let    ̇   
        We know that  ̇   

      

    
      in the sense of distributions; see, for example, [90, Proposition 4.2], [176, 

Proposition 5.1] or [195, Proposition 8.2] for a proof. Indeed, it was proved therein that 

there exists a sequence         of polynomials of degree not more than     ⁄  such that 

the summation ∑              converges in     
      and   

      to a function 

      
       which is known to be the Calderón reproducing formula (see, for example, 

[115, 171]). The function   serves as a representative of    Thus, in the below proof, we 

identify   with    Then       
        

       Now we show ||| ||| ̇         

‖ ‖ ̇          namely, 

‖{∑    |         |
 

   

}

  ⁄

‖

      

 ‖ ‖ ̇                                         

To this end, for all       and           define      as 

(     )
 
      ̂(    )    

  | |  ̂                                        

Noticing that the degree of each    is not more than ⌊     ⌋     and             

for all polynomials   of degree less than     we then find that 

          ∑     

   

                                                            

We split the sum ∑     in this last equation into two parts ∑      and ∑       The first part 

is relatively easy to deal with. Indeed, for      by (69), we see that, for all       

|        |  |                     |  |         |    ∑|                |

 

   

                                                                                                                     
From this and Lemma (4.3.5), it follows that 

∑    |∑     

   

|

 

   

 ∑    6∑ (      )

   

7

 

   

 ∑    [ (      )]
 

   

         

   Now we handle the sum ∑       Since   satisfies (59), by [171, Lemma (6.9)], there 

exists         satisfying (59) such that 

∑ ̂(    ) ̂(    )

   

             

Thus, for all           

(     )
 
     ̂(    )    

  | |  ̂             ̂      

where     ∑        
 
     and 

          ̂(    )
    

  | | 

    | |   
    | |              

Write  ̄            ( 
  )  From Lemma (4.3.3), it follows that, for all     and 
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|   ̄      |           
             ⁄  

        
                                

and hence ‖ ̄   ‖      
 ‖     ̄   ‖      

           which, together with Lemma 

(4.3.4), implies that 

|        |                         . 

Thus, by Lemma (4.3.5), for           we have 

∑    | ∑      

 

    

|

 

   

 ∑         4 ∑        

 

    

5

 

 

   

∑    [   ]
 

   

               

    Combining (72) and (74) with (70), and using the Fefferman–Stein vector-valued 

maximal inequality (see [112] or [194]), we see that 

‖{∑    |         |
 

   

}

  ⁄

‖

      

 ‖{∑    [ (      )]
 

   

}

  ⁄

‖

      

 ‖ ‖ ̇          

This proves (68) and hence finishes the proof of the first part of Theorem (4.3.6) (ii). 

   To see the inverse conclusion, we only need to prove 

‖ ‖ ̇         ‖{∑    |         |
 

   

}

  ⁄

‖

      

                               

whenever       
        

      and the right-hand side of (75) is finite. To this end, we 

first claim that 

|         |   (         )                                     

Indeed, we see that, for all     and           

        
     

 ̂(    )

    
  | | 

           
                        

      

where       
 ̂   

   | | 
 for all           which is well defined due to (66). By Lemma 

(4.3.3), we know that     
      and        ,     

 

 
 | |   -  The claim (76) 

then follows from Lemma (4.3.4). 

   Now, using the claim (76) and the Fefferman–Stein vector-valued maximal inequality 

(see [112] or [194]), we find that 

‖ ‖ ̇         ‖8∑    [ (         )]
 

   

9

  ⁄

‖

      

 ‖‖8∑    |         |
 

   

9

 
 

‖‖

      

  ||| ||| ̇          

This proves the desired conclusion when                  and       ]  
   It remains to consider the case that              and       ]. The proof is 

similar to that of the case         but more subtle. Assume first that    ̇   
     . By 

an argument similar to the above, in this case, we need to show 
 

 

   
    

   
   

8 ∫ ∑     |               |
 

 

   

 

        

  9

  ⁄

 ‖ ‖ ̇   
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Notice that, if            and             with     and              then 

                 Then, similar to (71), we know that, for     and             

|        |  |(        )(      )   |  |         |    ∑|     (      )   |

 

   

 

                                                            |      |                    

which, together with (70) and Lemma (4.3.5), implies that 

∑     |∑        

 

   

|

 

   

 ∑     6∑ (|      |              )   

   

7

 

   

 

 ∑    [ (|      |              )   ]
 

   

                 

   When        by (73), instead of Lemma (4.3.4), we find that, for all      integer 

      and             

|        |          ∑                              

 

   

 

and hence, by Lemma (4.3.5) and the Minkowski inequality, we see that 

8∑     |∑         

 

   

|

 

   

9

  ⁄

 ∑        8∑          6∑  (    (  (    )   ))    

 

   

7

 

   

9

  ⁄
 

   

 ∑        8∑     *         (    )        +
 

 

   

9

  ⁄
 

   

                               

When        we invoke (73) to find that, for all       

|        |  | ∫      ∫  ̄   ( 
   )             

 

  

 

|   |    

|  | ∫    

 

|   |    

| 

 

                  ∫ |     |

 

|   |    

   ∫
|     |

|   | 
∫|   ̄   ( 

   )|  

 

  

  

 

|   |    

 

 

                            ∑        
 

   

∫ |     |

 

|   |     

   

         ∑        
 

   

    ‖ ‖ ̇   
                  ‖ ‖ ̇   

                        

where |   |       means that        |   |       and we chose      
   Combining (70), (78), (79) and (80), and applying the Minkowski inequality and the 

boundedness of   on        with       ]  we know that, for all     and       
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8 ∫ ∑     |               |
 

 

   

 

        

  9

  ⁄

 8 ∫ ∑    [ (|      |              )   ]
 

   

 

        

  9

  ⁄

 ∑        8 ∫ ∑    * (    (  (    )   ))    +
 

   

 

        

  9

  ⁄
 

   

 8 ∫ ∑    6 ∑             

     

7

 

   

 

        

  9

  ⁄

‖ ‖ ̇   
     

 8 ∫ ∑    |         |

   

 

             

  9

  ⁄

 ∑            ⁄ 8 ∫ ∑    [     ]
 

   

 

 (  (    )   )

  9

  ⁄
 

   

 ‖ ‖ ̇   
     

 ‖ ‖ ̇   
       

where we took          ⁄    This proves (77). 

   Finally, the inverse estimate of (77) is deduced from an argument similar to that used in 

the above proof for (77), with  ̄    and    therein replaced by    
 ̂

   | | 
 and            

respectively. This finishes the proof for the case             and       ]  and 

hence Theorem (4.3.6). 

   We first present the inhomogeneous version of Theorem (4.3.6). As a further 

generalization, we show that the conclusions of Theorems (4.3.6) and (4.3.7) remain valid 

on Euclidean spaces with non-Euclidean metrics. 

   It is known that, when         and          then     
          

              

while when     and          then     
          

             where       

denotes the set of all complex-valued uniformly continuous functions on    equipped 

with the sup-norm; see, for example, [55, Theorem 3.3.1] and [193, Chapter 2.4, Corollary 

2]. 

Theorem (4.3.7) [196] Let     and          
(i) Let       ]  Then       

      if and only if          when         or 

        when      and 

||| |||           ‖ ‖       {∑    ‖         ‖      

 
 

   

}

  ⁄

    

Moreover, |||  |||          is equivalent to ‖ ‖           

(ii) Let       ] and       ]  Then       
      if and only if          when 

        or         when      and ||| |||             where, when          
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||| |||           ‖ ‖       ‖{∑    |         |
 

 

   

}

  ⁄

‖

      

 

and, when      

||| |||    
       ‖ ‖          

    
   
   

8 ∫ ∑     |               |
 

 

   

 

        

  9

  ⁄

  

Moreover, |||  |||          is equivalent to ‖   ‖           

Proof. By similarity, we only consider (ii). The proof is similar to that of Theorem (4.3.6), 

and we mainly describe the difference. We need to use the following well-known result: 

when         and         ]  then, for all       
       

‖ ‖           ‖ ‖       ‖ ‖̃                                                         

where ‖ ‖̃          is defined as ‖ ‖          in Definition (4.3.2) with      and      

therein replaced, respectively, by     and     (which can be easily seen from [55, 

Theorem 3.3.1]and [193, Chapter 2.4, Corollary 2]). 

   Assume first that       
       By [55, Theorem 3.3.1] and [193, Chapter 2.4, Corollary 

2], we know that          when         or         when      On the other 

hand, repeating the proof of Theorem (4.3.6), we see that, when          

‖{∑    |         |
 

 

   

}

  ⁄

‖

      

 ‖ ‖          

and, when      

   
    

   
   

8 ∫ ∑     |               |
 

 

   

 

        

  9

  ⁄

 ‖ ‖    
      

which show ||| |||          ‖ ‖           

   Conversely, assume that          when         or         when      and 

||| |||             Again the proof of Theorem (4.3.6) shows that, when          

‖ ‖̃          ‖{∑    |         |
 

 

   

}

  ⁄

‖

      

 

and, when      

‖ ‖̃    
         

    
   
   

8 ∫ ∑     |               |
 

 

   

 

        

  9

  ⁄

 ‖ ‖    
      

This, together with (81), further implies that ‖ ‖    
      ||| |||    

       and hence 

finishes the proof of Theorem (4.3.7). 

   Finally, we point out that the conclusions of Theorems (4.3.6) and (4.3.7) are 

independent of the choice of the metric in   . To be precise, let ‖   ‖ be a norm in     
which is not necessarily the usual Euclidean norm. Then     ‖   ‖  is a finite dimensional 

normed vector space with the unit ball 

          ‖ ‖      
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Clearly,   is a compact and symmetric convex set in    satisfying that      and 

                  for some              
   For all           

      and       define 

            
  

(  
 
)
∑     (

  

   
*         

 

   

  

Then we have the following conclusion. 

Theorem (4.3.8) [196] The conclusions of Theorems (4.3.6) and (4.3.7) remain valid with 

     therein replaced by         
   Since the proof of Theorem (4.3.8) is essentially similar to the proofs of Theorems 

(4.3.6) and (4.3.7), we only describe the main differences, the other details being omitted. 

   We first observe that 

(       )
 
              ̂          

where 

         
  

(  
 
)
∑     (

  

   
*   ̂    

 

   

       

Similar to the proof of Lemma (4.3.3), by means of the symmetry property of    a 

straightforward calculation shows that, for all       
 

        ∫
  

(  
 
)
∑     (

  

   
*          

 

   

  

 

 

              

where 

         
  

(  
 
)
∫(   

   

 
)
  

  

 

 

  

Furthermore, we have the following estimates: for all      with | |     

     
       

| |  
                                                                  

and 

|         |       {| |      }                                                 
where       and   are positive constants independent of    Similar to the proof of Lemma 

(4.3.4), by (82) and (83), we observe that 
 

   
       

∫|       |

 

 

         

for all       
      and       

   Finally, notice that, by the equivalence of norms on finite-dimensional vector spaces, the 

spaces  ̇   
       ̇   

      and their inhomogeneous counterparts are essentially 

independent of the choice of the norm of the underlying space     By means of this 

observation and using (82), (83) in place of Lemma (4.3.3), we obtain Theorem (4.3.8) via 

some arguments similar to those used in the proofs of Theorems (4.3.6) and (4.3.7), the 

details being omitted. 

Corollary (4.3.9) [314] Let             be a family of multiplier operators given by 

setting, for all            

∑(      )
 
      (      )∑ ̂                
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for some           If 
‖     ‖       ‖ ‖             

then there exists a positive constant   such that, for all           and     , 

   
     

∑|           |     ∑        

Proof. For all                 and       by the Fubini theorem, we see that 

∑|         |  ∑| ∫          ̂     
      

 

  

|

 ∑| ∫     

 

  

∫          ̂     
          

 

  

  |

 ∑| ∫      

 

|   |    

∫          ̂     
          

 

  

  |  | ∫    

 

|   |    

|

         
It is easy to see that   ‖ ‖      ∑        

For II, via the Fubini theorem and the integration by parts, we also have 

   ∑ ∫
|     |

|   |   

 

|   |    

∫        |     (      )|  

 

  

   

 ‖     ‖      ∑     ∫
|     |

|   |   

 

        |   |          

  

 

   

 

             ‖     ‖      ∑         

 

   

 ‖     ‖      ∑        

which completes the proof of Corollary (4.3.9). 

Corollary (4.3.10) [314] Let     and        
(i) Let      Then            

        if and only if             when       or 

         when      and 

∑|||  |||                 ∑‖  ‖        
 ∑{∑       

 
‖           ‖        

   
 

   

}

    ⁄

    

Moreover, |||  |||                is equivalent to ‖  ‖               
  

(ii) Let        Then            
        if and only if             when       

or          when      and ∑ |||  |||                   where, when        

∑|||  |||                 ∑‖  ‖        
 ∑‖{∑       

 
|           |

   
 

   

}

    ⁄

‖

        

 

and, when      

∑|||  |||      
         ∑‖  ‖      

    
    

   
   

∑8 ∫ ∑        
 
|                 |

   
 

   

 

        

  9

    ⁄

  

Moreover, |||  |||                is equivalent to ‖   ‖                 



 

136 
 

Proof. By similarity, we only consider (ii). The proof is similar to that of Theorem (4.3.6), 

and we mainly describe the difference. We need to use the following well-known result: 

when        then, for all            
         

∑‖  ‖               
  ∑‖  ‖        

 ∑‖ ̃ ‖               
                             

where ∑‖ ̃ ‖               
 is defined as ∑‖  ‖               

 in Definition (4.3.2) with      

and      therein replaced, respectively, by     and     (which can be easily seen 

from [55, Theorem 3.3.1]and [193, Chapter 2.4, Corollary 2]). 

   Assume first that            
         By [55, Theorem 3.3.1] and [193, Chapter 2.4, 

Corollary 2], we know that             when       or          when      

On the other hand, repeating the proof of Theorem (4.3.6), we see that, when      , 

‖{∑       
 
∑|           |

   
 

   

}

    ⁄

‖

        

 ∑‖  ‖               
 

and, when      

   
    

   
   

8 ∫ ∑        
 
∑|                 |

   
 

   

 

        

  9

    ⁄

 ∑‖  ‖      
       

 

which show ∑ |||  |||                ∑‖  ‖               
  

   Conversely, assume that             when       or          when      

and ∑ |||  |||                   Again the proof of Theorem (4.3.6) shows that, when 

     , 

∑‖ ̃ ‖               
 ‖{∑       

 
∑|           |

   
 

   

}

    ⁄

‖

        

 

and, when      

∑‖ ̃ ‖      
       

    
    

   
   

8 ∫ ∑        
 
∑|                 |

   
 

   

 

        

  9

    ⁄

 ∑‖  ‖      
       

 

This, together with (84), further implies that ∑‖  ‖      
       

 ∑ |||  |||      
         and 

hence finishes the proof of Corollary (4.3.10). 
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Chapter 5 

Hörmander Type Theorems and Duality and Boundedness of Multi-Parameter 

Triebel-Lizorkin Spaces and Fourier Multiplier Operators 

   We show that                  boundedness with 
 

  
        

 

  
 

 

 
 for             

  and        The proof of    estimates also offers a different and more direct 

approach than the one given in Muscalu et al. where they use the deep analysis of multi-

linear and multi-parameter paraproducts. We also show a Hörmander type multiplier 

theorem in the weighted Lebesgue spaces for such operators when the Fourier multiplier is 

only assumed with limited smoothness. The work requires more complicated analysis 

associated with the underlying geometry generated by the multi-parameter structures of 

the composition of two singular integral operators with different homogeneities. 

Therefore, it is more difficult to deal with than the duality result of the Triebel-Lizorkin 

spaces in the one-parameter settings. We note that for           and   
   ̇ 

        is the Hardy space associated with the composition of two singular operators 

considered. The work appears to be the first effort on duality for Triebel-Lizorkin spaces 

in the multi-parameter setting. We offer a different and more direct method to deal with 

the boundedness instead of transforming Fourier multiplier operators into multi-parameter 

Calder ́n–Zygmund operators. We also show the boundedness of multi-parameter Fourier 

multiplier operators on weighted multi-parameter Triebel–Lizorkin and Besov–Lipschitz 

spaces when the Fourier multiplier is only assumed with limited smoothness. 

Section (5.1) Multi-Linear and Multi-Parameter Fourier Multiplier Operators with 

Limited Smoothness 

   We consider the limited smoothness condition on the Fourier multipliers in the multi-

parameter and multi-linear setting. This is an analogue of the well-known Hörmander–

Mihlin type theorem in the linear and multi-linear cases. 

   Let       denote the space of Schwartz functions, and        denote tempered 

distributions. The Fourier transform  ̂ and the inverse Fourier transform  ̌ of         
are defined by 

        ̂     ∫           
 

  
                   ̌    

 

     
∫               

 

  
       

In the linear case, we first recall the following Mihlin theorem (see, e.g., [197, Corollary 

8.11]): 

Theorem (5.1.1) [224] If a multiplier    *
 

 
+           satisfies the following condition 

|      |     | |
 | |                | |  *

 

 
+                                             

then the Fourier multiplier operator          [  ̂] defined with the symbol      is 

bounded from        to        for all        
   Hörmander reformulated and improved Mihlin‟s theorem using the Sobolev regularity of 

the multiplier [198]. To describe Hörmander‟s theorem, we let         be a Schwartz 

function satisfying 

       {     
 

 
 | |   }  ∑ (

 

  
*    

   

                                

For      the Sobolev space        consists of all          such that 

‖ ‖   ‖        ⁄  ‖
  
                                                        

where         ⁄      [   | |    ⁄  ̂   ]  Then the Hörmander multiplier theorem says. 
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Theorem (5.1.2) [224] If          satisfies 

   
   

‖       ‖
      

               
 

 
  

where   is the same as in (3) when     and        is the Sobolev space, then the 

Fourier multiplier operator      defined with the symbol   is bounded from        to 

       for all        

   Clearly, Hörmander‟s theorem is stronger than Mihlin‟s and the number 
 

 
 cannot be 

improved in Hörmander‟s theorem. 

   The weighted estimates for Fourier multipliers. We first introduce the notion of 

Muckenhoupt‟s    weights [199]. Let       and denote    
 

   
  We say that a 

weight     belongs to the Muckenhoupt class     
    if 

   
 

.
 

| |
∫      

 

 

/.
 

| |
∫       

 
  

 

 

/

   

                                      

where the supremum is taken over all cubes   in     We also use  

‖ ‖  
 
     .∫ |    |       

 

  

/

 
 

  

   Then, Kurtz and Wheeden [200] extended Hörmander‟s theorem to weighted Lebesgue 

spaces and proved the following: 

Theorem (5.1.3) [224] Let 
 

 
     and        Assume 

 

 
     and      

 
  

If          satisfies 

   
   

‖       ‖
      

    

then the Fourier multiplier operator      defined with the symbol   is bounded from 

  
 
     to   

 
     for all        

   We now turn to the discussion of multi-linear Coifman–Meyer Fourier multiplier 

operators. We only state the bilinear case as an example for simplicity of its presentation. 

For            the bilinear Coifman–Meyer Fourier multiplier operator    is defined 

by 

           
 

        
∫                 ̂    ̂        

 

   

                          

for all            
   Coifman and Meyer [5–7] first proved that if               satisfies 

|  
   

 
      |       | |  | |   | | | |                                            

for all | |  | |     where   is a sufficiently large natural number, then    is bounded 

from               to        for all           satisfying              
Results in [201–203] have been extended to multi-linear Calderón–Zygmund operators by 

Kenig and Stein [204], Grafakos and Kalton [205], Grafakos and Torres [206], [207] to 

include       (see also work of generalizations to bilinear square functions and 

vector-valued Calderón–Zygmund operators of Hart [208]). However, in many cases 

where m has only limited smoothness, we cannot use this result since   is not an explicit 

number. Finding the best possible number of   thus becomes an interesting problem. By 

reducing the bilinear Fourier multiplier operators to linear Calderón–Zygmund operators, 

Coifman–Meyer obtained the    estimates under the assumption         [206] also 
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proved the condition (7) with        assures the boundedness of    by using the 

bilinear    theorem. However this number seems to be too large in view of the linear case. 

   Tomita [209] improved this theorem for multipliers with limited smoothness in terms of 

the Sobolev regularity. To state the result in [209], for            we set         
                    where   is the same as the (3) with       
Theorem (5.1.4) [224] Let               and              If           
satisfies 

   
   

‖  ‖          

then    is bounded from               to         
   For further improvement in this direction in the case       or the case where   or   

can be smaller than or equal to 1, see the works in Grafakos, Miyachi and Tomita [210], 

Miyachi and Tomita [211] and Grafakos and Si [212]. 

   Fujita and Tomita [213] considered the weighted norm inequalities for multilinear 

Fourier multiplier operators, for simplicity we only state their result in the bilinear case. 

Theorem (5.1.5) [224] Let                     and         Assume 

(i)                                         or 

(ii)                                            

If           satisfies 

   
   

‖  ‖           

Then    is bounded from             to        
   This theorem can be understood as bilinear version of the results by Kurtz and Wheeden 

[200]. 

   We discuss the    estimates for the multi-linear and multi-parameter Fourier multiplier 

operators. In the bilinear and bi-parameter case, Muscalu, Pipher, Tao, and Thiele [214] 

proved the following 

Theorem (5.1.6) [224] Let                           and           
satisfy 

|   
     

     
     

                |

            |  |  |  | 
  |  | |  |  |  |  |  | 

  |  | |  |                                

for |  |  |  |     and |  |  |  |     where     are sufficiently large natural 

numbers. 

   Then    is bounded from                          where    is defined by 

               

 
 

        
∫                

                      ̂        ̂                   

 

   
          

   This theorem was extended to the case of multi-linear and multi-parameter setting in 

[215]. The method of proof of the above theorem in [214, 215] is to decompose the multi-

linear and multi-parameter Fourier multiplier operator into discretized multi-linear and 

multi-parameter paraproducts. By proving the    estimates for the discretized 

paraproducts, they establish the    estimates for the Fourier multipliers. The difficult part 

of their proof is in the quasi-Banach case when       where the standard duality 

argument for the paraproducts does not work (see [216]). Therefore, [214, 215] establish 

the desired result by using a new duality lemma of      for          the stopping-time 

decompositions arguments and multi-linear interpolation. We mention in passing that the 

endpoint estimates of results in [214, 215] were obtained by Lacey and Metcalfe [217] and 
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   estimates in the above Theorem (5.1.6) have also been established recently in the case 

of multi-linear and multi-parameter pseudo-differential operators by W. Dai [218]. 

Furthermore, symbolic calculus has been carried out and boundedness of multi-parameter 

and multi-linear pseudo-differential operators in the Hörmander classes have been 

established by Q. Hong [219].    estimates for modified bilinear and multi-parameter 

Hilbert transforms have also been established by W. Dai [220], where we address the open 

question raised in [214]. 

   It is worth noting that the smoothness condition for the Fourier multiplier 

               in [214, 215] requires   and   to be sufficiently large. Thus, it is 

interesting to know what the limited smoothness assumption is on   to assure the    

estimates. This is one of the main purposes. 

   To establish the    estimates of the multi-linear and multi-parameter Fourier multipliers 

with limited smoothness, we need to introduce the two-parameter Sobolev spaces. For 

         the two-parameter Sobolev space             consists of all           such 

that 

‖ ‖       ‖          ⁄     ⁄  ‖
  
                                                  

where 

          ⁄     ⁄       [   |  |
  |  |

     ⁄    |  |
  |  |

     ⁄  ̂             ] 

where                 
   We first establish a Hörmander‟s type theorem in the bilinear and bi-parameter setting. 

One of the main theorems states that: 

   From the theorem above, we have 

Theorem (5.1.7) [224] Let         and              If                 
         satisfies 

|   
     

     
     

                |

            |  |  |  | 
  |  | |  |  |  |  |  | 

  |  | |  |                              

for all |  |  |  |      |  |  |  |      and                                
then    is bounded from                 to          
   Finally, we consider the weighted norm inequalities for the bilinear and bi-parameter 

Fourier multipliers. To this end, we first introduce the notion of product    weights (see 

[221]). 

   Let        We say that a weight     belongs to the product Muckenhoupt class 

    
       if  

   
 

.
 

| |
∫          

 

 

/.
 

| |
∫         

 
    

 

 

/

   

                              

where the supremum is taken over all rectangles         and   are both cubes in     
   We define     

       ⋃     
         as usual. 

   Then we can establish the following 

Theorem (5.1.8) [224] Let     (    )  Set 

                             
 
         

 
    

 
         

 
   

where           are the same as in (3) with      there. For any          the  -

linear,  -parameter multiplier operator   
   

 maps    (   )             (   ) to   (   )  

provided that                  
  

 
        

  

 
  where    

  

 
        

  

 
 and 

                 and 
 

 
 

 

  
         

 

  
   and the multiplier   satisfies 



 

141 
 

   
           

‖          ‖                
    

   We can also establish the following weighted estimates. 

Theorem (5.1.9) [224] Let               
 

  
         

 

  
 

 

 
 and 

  

 
               

                  Assume one of the following two conditions (i) and (ii) holds, namely, 

(i)    
  

 
        

  

                                                                                                     

(ii)                (
  

 
)
 
         

          

  

                                                              

If     (    ) satisfies 

   
           

‖          ‖                
                                                   

Then    is bounded from                         to       where     

 

         

 

     

   We prove Theorem (5.1.17), namely, the    estimates for the multi-linear and multi-

parameter Coifman–Meyer multiplier operators with limited smoothness. We give the 

proof of Theorem (5.1.18), i.e., the weighted version of Theorem (5.1.17). 

   The strong maximal operator    for a function   on     is defined by 

            
       

 

  
 

 

  
 ∫|      |    

 

 

                                            

where             | |   |     |   |      and   is a locally integrable 

function on      It is well known that    is bounded on         for all        
Lemma (5.1.10) [224] Let          Then there exists a constant     such that 

   
       

.  
   

 ∫
|      |

     |   |          |   |     
    

 

   

/                    

for all locally integrable functions   on      
Proof. Note that 

  
   

 ∫
|      |

     |   |          |   |     
    

 

      |   |   
   |   |   

  
           

and 

∫
|      |

     |   |          |   |     
    

 

      |   |   
   |   |   

  
 

 ∑∫
|      |

     |   |          |   |     
    

 

          
   |   |       

       
   |   |       

  

 

   

 

 ∑
 

                  
∫ |      |    

 

      |   |       
   |   |       

  

 

   

  

   Then it follows immediately that 

   
       

.  
   

 ∫
|      |

     |   |          |   |     
    

 

   

/              

   Using the inequality for vector-valued Hardy–Littlewood maximal functions of    
Fefferman and Stein [112], and the fact that                      where    and    

are the Hardy–Littlewood maximal functions with respect to the   and   variables 

respectively, we have the following inequality for the vector-valued strong maximal 

functions: 
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Lemma (5.1.11) [224] Let          Then there exists a constant     such that 

‖{∑      
 

   

}

  ⁄

‖

  

  ‖{∑|  |
 

   

}

  ⁄

‖

  

                                       

for all sequences         of locally integrable functions on      
   Using the Littlewood–Paley inequality of    estimates in the product space of R. 

Fefferman and Stein [98], we can deduce immediately the following 

Lemma (5.1.12) [224] Let        and let             be such that         
           | |     for some                        | |     for some 

     Then there exists a constant     such that 

‖8∑ |  (   ⁄ )      ⁄   |
 

     

9

  ⁄

‖

  

  ‖ ‖                                     

where [  (   ⁄ )       ⁄   ]           [ ̂ (    
 ⁄ )  ̂      

 ⁄    ̂        ]          

Moreover, if ∑        
        for all       for        then 

‖8∑ |  (   ⁄ )      ⁄   |
 

     

9

  ⁄

‖

  

 ‖ ‖                                       

   Let    be a   -function on [     satisfying 

           [     ]         [     ]                                            
we set                and set for        the following notations: 

             |  | | |                                | | |  |                           

                |  | | |          | | |  |                                              

Lemma (5.1.13) [224] ([213]). 

(i) For                       
                                                                           

(ii) Each      satisfies 

|  
    

           |         | |  | |   |  | |  |                                      

for all multi-indices        
(iii) supp       | |   | |   | |   supp       | |  | |    and supp       | |  

| |     
   With a similar proof to that of Lemma 3.2 in [209] with a little modification, we can 

obtain the following: 

Lemma (5.1.14) [224] Assume that                         satisfies 

|   
     

     
     

                |

            |  |  |  | 
  |  | |  |  |  |  |  | 

  |  | |  |                              

for all |  |  |  |    |  |  |  |    and                                where 

     are non-negative integers. Let    and           be such that none of 

                contains the origin, and set 

 ̄                                                                             

Then         ‖ ̄   ‖         
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Lemma (5.1.15) [224] ([210]). Let           and      Then there exists a 

constant     such that 

‖ ̂‖
        

 .∫ |      |                   
 

   

/

  ⁄

   ‖ ‖                      

   We need to establish the following 

Lemma (5.1.16) [224] Let          and let             be such that                 

are compact and none of them contains the origin. Assume that              
         satisfies 

|   
     

     
     

                |

            |  |  |  | 
  |  | |  |  |  |  |  | 

  |  | |  |   

for all               
    Then there exists a constant     such that 

   
     

‖                                                      ‖           
     

‖    ‖      
 

for all           satisfies         ‖    ‖           
    where      is defined by (29). 

Proof. We mimic the proof of Lemma (3.4) in [210]. First, we assume that         
     ⁄   |       |         and               ⁄    |       |         for some 

         Given        take       satisfying                    . Then, 

since      ⁄         ⁄     by change of variables, 

‖                          ‖      

  ‖ (       ) (       )  ( 
     )    

      ‖
      

  

   Let                   be as in (3) with       Using        ( 
     )         ⁄  

|       |       and          
              ⁄  |       |        we have 

‖ (       ) (       )  ( 
     )    

      ‖
      

 

  ∑ ∑ ‖ (       ) (       )  ( 
     )    

       (    ⁄ )      ⁄  ‖
      

  

          

  

          

 

  ∑ ∑ ‖ (       ) (    ⁄ ) (    ⁄ )‖
      

‖ (       )  ( 
     )  ( 

     )‖
      

  

          

  

          

 

  ∑ ∑ ‖ (             )        ‖
      

‖            ‖      

  

          

  

          

 

  .   
     

‖ (             )  ‖
      

/.   
     

‖            ‖      /   

By Lemma (5.1.14),         ‖            ‖          

   The proof is then complete. 

   The main effort is to establish the first main theorem on    estimates for the multi-linear 

and multi-parameter Fourier multipliers with limited smoothness, namely, Theorem 

(5.1.17). The proof is quite complicated and involved due to the multi-parameter structure 

of the Fourier multiplier  . Therefore, we will divide the proof into several steps. The 

main idea is to decompose the multiplier into different pieces and handle them separately 

in each piece. 

Theorem (5.1.17) [224] Let            Set 

                   (      
     

     
   )                                      

where       are the same as (3) with       Let                            

    
  

 
   

  

 
 and             with        If           satisfies 
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‖    ‖           
                                                        

then    is bounded from                 to          

Proof. Let         and           satisfy         ‖    ‖      
    where      is 

defined by (29). Since                                          it is sufficient to consider 

           where               . We rewrite   as follows: 

                             (∑           

 

   

+4∑           

 

   

5 

 ∑                                     

 

     

 ∑                  

 

     

          

where                 are defined by (22) and (23). 

   By Lemma (5.1.13), we divide these      into four groups and estimate the bilinear and 

bi-parameter Fourier multiplier operator defined by each symbol       Since the Fourier 

multiplier operator corresponding to every symbol      in the same group can be 

estimated in the similar way, we just choose one to handle in each group. 

• Group 1: 

–                       |  |  |  |  ⁄  |  |  |  |  ⁄   
–                       |  |  |  |  ⁄  |  |  |  |  ⁄    
• Group 2: 

–                       |  |  |  |  ⁄  |  |  ⁄  |  |   |  |  
–                       |  |  |  |  ⁄  |  |  ⁄  |  |   |  |  
–                       |  |  ⁄  |  |   |  | |  |  |  |  ⁄   
–                       |  |  ⁄  |  |   |  | |  |  |  |  ⁄    
• Group 3: 

–                         |  |  |  |  ⁄  |  |  |  |  ⁄   
–                       |  |  |  |  ⁄  |  |  |  |  ⁄    
• Group 4: 

–                       |  |  ⁄  |  |   |  | |  |  ⁄  |  |   |  |   
In the following proof, we assume    ⁄       

   Estimates for Fourier multiplier corresponding to a symbol      in Group    

   First, we consider       for simplicity we denote it as    instead of       Using the fact 

that    norm is bounded by the    norm in the multi-parameter setting established, e.g., in 

[108, 119, 222], and the equivalence of the definition of the multi-parameter Hardy space, 

we have for all       

‖       ‖    ‖   
     

|           |‖
  
 ‖8∑ |      ⁄        ⁄         |

 

     

9

  ⁄

‖

  

     

for        where                                        and  ̂ does not 

contain the origin,   is the same as (3) with      

   Let            since ∑             for all           we have 
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      (   ⁄ )     ⁄                 

 
 

        
∫                 

                          

 

   

     ̂                 ̂                   

 
 

        
∫                 

                     
 

   

           ̃      ̂                 ̃      ̂                   

 
 

        
∫                 

                     
 

   

           ̃      ̂                 ̃      ̂                   

 ∫                   
              

          
          

    

 

   

         ̃     ̃                                                              

where            ⁄   and  ̃           such that  ̃                       
on the          since |     |  |  |  The same is true for  ̃      i.e., ̃         
              on the          since |     |  |  |  

    
     (      

     
     

   )                                           

Take       satisfying    ⁄                

| |             ∫ (    |     |    |     |)
 
     |     |    |     | 

  
 

   

 (       
 ) (           

          
          

        )

 (    |     |    |     |)
  
     |     |    |     | 

  

 ( ̃     ̃     )                            

          .∫    |  |  |  | 
      |  |

 

   

 |  | 
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 )             |
  

/

   ⁄

             

 .∫         (    |     |    |     |)
   

     |     |
 

   

   |     | 
    |( ̃     ̃     )               |

 
            /

  ⁄
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)
.∫       |        |

      |     | 
    ⁄ ( 

 

   

   |     |)
    ⁄

      /

  ⁄

 .∫       |( ̃     ̃     )       |
 
(    |     |)

    ⁄
  

 

   

   |     | 
    ⁄       /

  ⁄

 

 ‖    
 ‖

    (  (|  ̃     ̃      |
 
)        )

  ⁄

    | |
          

  ⁄                        

   The last inequality is from Lemmas (5.1.10) and (5.1.11) since         
   Then by Hölder‟s inequality, (32) and (35), we have 



 

146 
 

‖  
             ‖  

    
     

‖    
 ‖

    ‖8∑(  (|  ̃     ̃      |
 
)*

  ⁄

   

9

  ⁄

‖

  

‖,(   | |
  )

  ⁄
-
  ⁄

‖
  

    
     

‖    
 ‖

    ‖8∑(  (|  ̃     ̃      |
 
)*

  ⁄

   

9

  ⁄

‖

   ⁄

  ⁄

‖,(   | |
  )

  ⁄
-
  ⁄

‖
   ⁄

  ⁄
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Using            ⁄  √|  |
  |  |

      ⁄  √|  |
  |  |

     for some        
by Lemma (5.1.11) we have 

   
     

‖    
 ‖

        
     

‖    ‖                                                       

Consequently 

‖   ‖            
     

‖    ‖     
                                                  

Changing the roles       and        we can prove 

‖   ‖            
     

‖    ‖      
                                                

where         this time. 

   Estimates for the Fourier multiplier operators with a symbol in Group    
   We write    instead of      for simplicity. Since            |  |  |  |  ⁄  
|  |  ⁄  |  |   |  |   then there exists           such that       

            on 

 |  |  ⁄  |  |   |  |   where   is the function which is the same as case    Hence, 

 (   ⁄ )               

 
 

        
∫                 
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           ̃            ̂         
      ̂                   
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  ̃             
      ̂         

      ̂                   

 ∑∫                   
              

          
    

 

   
 

      
         

   ̃      
                

                          ∑    
 

       

where  ̃ is the same as we used in Estimates for symbols in Group   and        
      

       
    

    (      
     

     
   )                                              
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   Take       satisfying    ⁄                Arguing in the same way as 

deriving (35), we can prove 

|    |  ‖    
 ‖

    (  (|  ̃      
      |

 
)        )

  ⁄

      
    | |          

  ⁄         

Moreover we can assume                        where               since       

is dense in                Then we have 
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 ( (|  
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Then from (40) and (43), we have 
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}                                                  

   Since   ⁄    ⁄    ⁄     by Hölder‟s inequality, Lemmas (5.1.11), (5.1.12) and (45) 
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Using          
     ⁄  √|  |

  |  |
      ⁄  √|  |

  |  |
     for some        

by Lemma (5.1.16) we have 

   
     

‖    
 ‖

        
     

‖    ‖                                                       

Consequently 

‖   ‖            
     

‖    ‖                                                      

By changing the roles of    and    or         and          we can prove other situations 

in Group    
   Estimates for Fourier multiplier with symbols in Group    
   We write    instead of       the proof is similar to case   with necessary modification. 

Since |     |  |  | and |     |  |  |we have 

     ⁄                 
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∫                 

                     
 

   

           ̃      ̂                 ̃      ̂                   

 ∫                   
              

          
          

         
 

   

   ̃              ̃                                                                       

where    ̃ are defined the same way as we deal with symbols in Group   and 

    
           

     
     

                                                   

As we did in dealing with symbols in Group    we can easily prove 

|    |  ‖    
 ‖

    (  (|  ̃      |
 
)        )

  ⁄

(  (|  ̃      |
 
)        )

  ⁄

                 

where          ⁄        
   Since the rest of the proof is similar to that of case    we omit the details. Thus we obtain 
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‖     
 ‖

    
    

     
‖    ‖                                   

   By changing the roles of         and          we can get the same conclusion for 
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   Estimates for Fourier multipliers with symbols in Group    
   We write    instead of       Since the proof is similar to the case dealing with symbols 

in Group    we will outline the main estimates and omit the details here. 

First, we can easily prove 

|               |
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 ‖
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where           ⁄        
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   )         ̃             ̃                        

Since   ⁄    ⁄    ⁄     by Hölder‟s inequality, Lemmas (5.1.11) and (5.1.12), we have 
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Since            ⁄  √|  |
  |  |

      ⁄  √|  |
  |  |

     for some        

by Lemma (5.1.16) we have 
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 ‖
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Next, we consider             the dual operator of     which are defined by 

∫            
 

   

 ∫             
 

   

  ∫             
 

   

                       

for all               
   If we have proved the same conclusion for            as     then using the same proof 

as in the bilinear case in [209], we complete the proof of Theorem (5.1.17) by multi-linear 

and multi-parameter duality and interpolation. 
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   To finish the proof of Theorem (5.1.17), we only need to show 
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‖    ‖           
                                  

where                                             and                

   (                       )  
   We only choose one case to prove, the remaining cases are the same. 

   By a change of variables, 

‖     

  ‖
      

 

 ‖ (             
          

     
   )                  ‖      
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   )                              ‖      

            

Since √|   |  | |  √| |  | |   then we can obtain 
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‖     

  ‖
      

                                           

Therefore, we have finished the proof of Theorem (5.1.17). 

Theorem (5.1.18) [224] Let                     and              
            Assume 

(i)                                                                                                                                  

                                                                                                                                   

(ii)                                                                                                                      
         

            ⁄    
            ⁄                                                                                    

If           satisfies 

   
     

‖    ‖           
                                                            

   then    is bounded from               to        where w =   
  ⁄

  
  ⁄

  
   The statements and their proofs of Theorems (5.1.17) and (5.1.18) can be easily 

generalized to multi-linear and multi-parameter settings. We also remark that the proofs of 

our main theorems can be viewed as alternative ones different from those given in [214, 

215]. Moreover, we provide weighted estimates for the multi-linear and multi-parameter 

Coifman–Meyer multiplier operators considered in [214, 215]. We only state these results 

here. 

   In general, any collection of   generic vectors       
     

            
     

  in     

generates naturally the following collection of   vectors in    : 

 
 
    

     
   

 
    

     
        

 
    

     
                                        

Let             be a bounded symbol in   (    ) that is smooth away from the 

subspaces   
 
              

 
    and satisfying 

| 
  

         
  

      |            ∏| 
 
|
 |  |

 

   

                                          

for sufficiently many multi-indices            We will naturally want to investigate the    

estimates of the  -linear multiplier operator   
   

 defined by 

  
                   ∫      ̂           ̂      
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   Thus, we can prove the following    estimates for general n-linear,  -parameter 

multiplier operator   
   

 with limited smoothness. 

Proof. Is devoted to establishing the second main theorem on weighted estimates for the 

multi-linear and multi-parameter Fourier multipliers with limited smoothness, namely, 

Theorem (5.1.18). Before we prove Theorem (5.1.18), we recall some useful facts about 

product     
      weights. 

Lemma (5.1.19) [224] ([223]). Let       and       
       Then 

(i)            
      

(ii) there exists       such that       
       

Lemma (5.1.20) [224] Suppose that         
      with       for some 

              and let               be such that                   Then 

  
          

                                                                       

Proof. First note that                     for            then apply Hölder‟s inequality, 

we can obtain the conclusion. 

Lemma (5.1.21) [224] ([112]). Let         and       
       Then there 

exists a constant     such that 
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for all sequences         of locally integrable functions on      
Lemma (5.1.22) [224] ([98]). Let             
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be such that                   | |     for some                 
       | |     for some      Then there exists a constant     such that 
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Lemma (5.1.23) [224] ([124]). If             
        is a local integrable 

function in   
 
         Then 

‖ ‖      ‖8∑ |      ⁄        ⁄   |
 

     

9

  ⁄

‖

     

                              

   We first prove Theorem (5.1.18) under assumption (i) in Theorem (5.1.18). Since 

    ⁄           and          ⁄   by Lemma (5.1.19), we can take     ⁄     

         satisfying        ⁄   the same is for     Then 
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where we take               then       ⁄   and       ⁄   

   To conclude the weighted estimates for the Fourier multipliers    we need to do 

estimates corresponding to other symbols. Since the estimates for the remaining symbols 

in other groups are similar to that of   . 

   We give the proof of Theorem (5.1.18) under condition (ii) we consider case   
          Since        ⁄     then        ⁄    ⁄      ⁄    ⁄    ⁄     ⁄   that 
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             ⁄   by Lemma (5.1.19) 

we have 
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where (77) is from Lemma (5.1.20). 

   It is from the assumption that      we also have     ⁄   then          ⁄  

     ⁄   Since               ⁄              ⁄   by Lemma (5.1.20) we can take 
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   By duality and (59), it is enough to prove 
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From the proof of Theorem (5.1.17), we have 
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   The weighted estimates for the Fourier multiplier operators corresponding to the 

remaining symbols are the same as with      thus we finish the proof of Theorem 

(5.1.18). 

Section (5.2) Composition of Two Singular Integral Operators 

   The classical theory of one-parameter harmonic analysis may be considered as centering 

around the Hardy-Littlewood maximal operator and its relationship with certain singular 

integral operators which commute with the usual one-parameter dilations on     given by 

                        If this isotropic dilation is replaced by more general non-

isotropic groups of dilations, then many nonisotropic variants of the classical theories can 

be produced, such as the strong maximal functions, multi-parameter singular integral 

operators, corresponding to the multi-parameter dilations                    
                                  Such a multi-parameter theory has been 

developed extensively over the past decades. See [96–105, 110, 116, 121, 123, , 128, 129, 

136, 233, 234, 237]. Multi-parameter flag singular integrals and their boundedness on    

and    spaces have been studied in [106–108, 118, 120, 235, 239,  240, 242], multi-

parameter and multi-linear Coifman-Meyer Fourier multipliers have been investigated in 

[214, 215, 219, 220, 224], and a theory of multi-parameter singular Radon transforms have 

been developed in [244–246]. 

   [132] developed a theory of new multi-parameter Hardy space associated with the 

composition of two singular integral operators with different homogeneities and 

established the boundedness of the composition of such singular integrals on this space.  

For           with           where        and       they consider two 

kinds of homogeneities: 

                         
and 

                          
The first is the classical isotropic dilations occurring in the classical Calder ́n-Zygmund 

singular integrals, while the second is non-isotropic and related to the heat equations (also 

Heisenberg groups). For                   denote | |   |  |  |  |
  

 

  and 

| |   |  |  |  |
  

 

   The singular integrals considered in [132] are defined in the 

following. 

Definition (5.2.1) [250] A locally integrable function    on        is said to be a 

Calder ́n-Zygmund kernel associated with the isotropic homogeneity if 

|
  

   
     |   | | 

   | |                | |                                              

∫        
 

   | |    

                                                                

for all            
   An operator    is said to be a Calder ́n-Zygmund singular integral operator associated 

with the isotropic homogeneity if                         where    satisfies 

conditions in (81) and (82). 

Definition (5.2.2) [250] Suppose        
             is said to be a Calder ́n-

Zygmund kernel associated with the non-isotropic homogeneity if 

|
  

      
  

     
 
    

     |   | | 
     | |   

      | |                             
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∫        
 

   | |    

                                                               

for all            
   An operator    is said to be a Calder ́n-Zygmund singular integral operator associated 

with the non-isotropic homogeneity if                         where    satisfies the 

conditions in (83) and (84). 

   Both the classical Calder ́n-Zygmund theory and theory of singular integral operators 

associated with the non-isotropic dilations indicate that both the operators    and    are 

bounded on    for       and of weak-type (1,1). It is shown by Phong and Stein in 

[135] that in general the composition operator       is not of weak-type (1,1). [135] gave 

a necessary and sufficient condition such that the composition operator       is of weak-

type (1,1). This answers the question raised by Rivier ́ in [249]. In fact, the operators 

studied in [135] are compositions with different homogeneities, and such a composition 

operator arises naturally in the study of the  ̅-Neumann problem. 

   It is also well-known that any Calder ́n-Zygmund singular integral operator associated 

with the isotropic homogeneity is bounded on the classical Hardy space        with 

       A Calder ́n-Zygmund singular integral operator associated with the non-

isotropic homogeneity is not bounded on the classical Hardy space but bounded on the 

non-isotropic Hardy space (see [230]). The composition operator       is bounded on 

neither the classical Hardy space nor the non-isotropic Hardy space. Thus, the natural 

question is to ask on what Hardy space can the composition operator       be bounded? 

[132] introduced a new Hardy space     
 

     associated with the composition of these 

two different homogeneities and proved that       is indeed bounded on such spaces. 

Developed in [139] the theory of the Triebel-Lizorkin spaces  ̇ 
        associated with 

the composition of these different homogeneities. Such Triebel-Lizorkin spaces for 

              and     are the Hardy spaces     
 

     considered in [132]. 

Triebel-Lizorkin spaces form a unifying class of function spaces encompassing many well 

studied classical function spaces such as Lebesgue spaces, Hardy spaces, the Lipschitz 

spaces, and the space BMO [65, 115]. Boundedness of singular integrals and pseudo-

differential operators on the Triebel-Lizorkin spaces have also been extensively studied; 

see, Frazier and Jawerth [115] and Torres [247]. 

   The main goals are to identify the dual spaces     
     

 of the new Triebel-Lizorkin 

spaces  ̇ 
         

   We now introduce the new Triebel-Lizorkin spaces associated with different 

homogeneities. Denote     
             ∫         

 

       | |      Let            

with 

         ̂  {               
 

 
 | |   }                                   

and 

∑|    ̂              |
 

   

                                                         

Let            with 

         ̂  {               
 

 
 | |     ⁄ }                                

and 
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∑|    ̂               |
 

   

                                                        

Denote            
   

   
         where    

                  (         ) 

  
                                    and                             The 

following discrete Calder ́n reproducing formula is from [132]. 

Theorem (5.2.3) [250] Suppose that      and      are functions satisfying conditions in 

(85)-(86) and (87)-(88), respectively. Then 

         ∑ ∑                     (      )( 
                   )

                   

     ( 
                         )                                                             

where the series converges in            
   and   

       
Definition (5.2.4) [250] Let                       The multi-parameter Triebel-

Lizorkin type space with different homogeneities  ̇ 
        is defined by 

 ̇ 
             

      ‖ ‖ ̇ 
   

         

where 

‖ ‖ ̇ 
        ‖4∑   [                ] 

     

 

                     ∑ |        
                    |

 
    

        

              

5

 
 

‖‖

      

  

where   are dyadic cubes in      and   are dyadic intervals in   with the side lengths 

             and                and the left lower corners of   and the left end points 

of   are           and             respectively. 

   This multi-parameter Triebel-Lizorkin space is well defined, since it has been proved in 

[139] that  ̇ 
        is independent of the choice of the functions    and     This space 

can also be characterized by its continuous form, that is, 

‖4∑   [                ] 

     

 ∑ |      ( 
                   )|

 
    

        

              

5

 
 

‖‖

      

 ‖‖4∑   [                ] 

     

|      |
 
5

 
 

‖‖

      

                                                   

for a rigorous proof, see [229]. 

   In Definition (5.2.4), setting                    one obtains Hardy spaces 

associated with different homogeneities      
 

      which was introduced in [132] to 

study the boundedness of composition operators with different homogeneities. 
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   Note that the multi-parameter structure with different homogeneities is involved in (90). 

If           in (90) is the form   
        

      then we obtain the Triebel-Lizorkin space 

of multi-parameter pure product  ̇ 
          with the norm 

‖‖4∑   [                ] 

     

|      |
 
5

 
 

‖‖

         

 

for    ̇ 
                                 It has been introduced in [128]. 

   Let    denote the conjugate of    so that   ⁄     ⁄    when        If     
   it is also convenient to let      The first main theorem concerns the duality of the 

spaces  ̇ 
   

 when      

Definition (5.2.5) [250] For                          and with     and 

      being the same as before, the space     
        is defined by 

    
             

      ‖ ‖    
            

where 
‖ ‖    

        

    
 

4
 

| |
 
 
 
 
  
∫ ∑   [                ]  ∑ (|             |

 
     )

               

 

 

  5

  ⁄

      

   In order to prove the duality theorems, following Frazier and Jawerth in the one-

parameter case [115] (see also [247]), we should first do these in the corresponding 

discrete multi-parameter Triebel-Lizorkin sequence spaces. For any         setting 

      | |  ⁄       
             then by (89), it‟s easy to have 

     ∑⌌    ⌍     

   

                                                            

Definition (5.2.6) [250] Suppose that      and      are functions satisfying conditions in 

(85)-(86) and (87)-(88), respectively. Define the multi-parameter  -transform    as the 

map taking     
      to the sequence                where        ⌌    ⌍  

Define the inverse multi-parameter  -transform    as the map taking a sequence   

      to     ∑           

   By (92), for          
  one has 

⌌   ⌍  ⌌∑           

   

  ⌍  ⌌       ⌍                                        

For a sequence       one also has the following identity: 

⌌     ⌍  ∑⌌    ⌍  
   

 ⌌  ∑     

   

⌍  ⌌     ⌍                                  

   The discrete Triebel-Lizorkin sequence space  ̇ 
   

 is defined as follows. 

Definition (5.2.7) [250] For                           define  ̇ 
   

 to be 

the collection of all complex-valued sequences         such that 

 ‖ ‖ ̇ 
    ‖(∑(| |       ⁄ | |  |  | ̃    )

 

   

+

  ⁄

‖

  

                            

where  ̃     | |   ⁄        
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Definition (5.2.8) [250] For                           define   
   

 to be 

the collection of all complex-valued sequences         such that 

 ‖ ‖  
       

 
4

 

| |
 
 
 
 
  
∫ ∑ (| |       ⁄ | |  |  | ̃    )

 

       

 

 

  5

  ⁄

                

where  ̃     is the same as the form defined in Definition (5.2.7). 

Theorem (5.2.9) [250] Suppose                           and      and      

are functions satisfying conditions in (85)-(86) and (87)-(88), respectively. The operators 

    ̇ 
   

  ̇ 
   

 and      ̇
   

  ̇ 
   

 are bounded, and       is the identity on  ̇ 
   

  

Proof. The boundedness of    is immediate since 

‖     ‖ ̇ 
    ‖ ‖ ̇ 

    

from the definition. 

   We now outline the proof of   ‟s boundedness. For a sequence            let 

         ∑            Then by almost orthogonality estimates (e.g. see Lemma 3.1 

in [132]), one has 

|           (             )| 

   |   
 |   |   

 | 
     

            

       
      |      | 

       
 

    
   (    )

       
         |      | 

     
  

Hence for any          
      

|                 |  ∑  |   
 |   |   

 | 

   

  {  4 ∑ | |   ⁄ |  |    
      

5

 

       
  }

  ⁄

 

for a     which can be sufficiently small if one chooses   big enough by Lemma 3.2 in 

[132]. Summing over       and        
    one has 

4 ∑   [( 
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     )  ]  

       

∑ |        (       )|
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  }
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]
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Then by the inequality  ∑        ∑    
 

   if        or Cauchy‟s inequality with 

exponents      
 

 
 

 

  
    if      we obtain 

4 ∑   [( 
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(

 ∑   [( 
    )   ( 

     )  ]  

     

{  4 ∑ | |   ⁄ |  |    
      

5

 

       
  }

  ⁄

)

 

 
 

  

Applying Fefferman-Stein‟s vector-valued strong maximal inequality on    ⁄     ⁄   
provided               we complete the proof.  

   We will obtain a similar correspondence between     
   

 and   
   

  Following the proof 

of Lemma 3.1 in [132], one can obtain the following almost orthogonality estimates. 

Lemma (5.2.10) [250] Suppose that      and        satisfy the same conditions in (85)-

(88). Then for any given integers       and    there exists a constant            

such that 

|             
     |     |   

 |    |   
 |  

                

       |  |                |  | 
     

  

Proof. One can write 

               
      ∫    

   
  

  
   
                 

   
  

  
   
          

    

 

      

  

Then by classical almost orthogonality estimates, one has 

|  
   

  
  
   
       |   

     
     |   

 |  

(       
  |  |)

       
(       

  |  |)
     

               

and 

|  
   

  
  
   
       |   

     
         |   

 |  

(       
  |  |)

       
(        

  |  |)
     

             

for any positive integer       and    With the same process as in the proof of Lemma 3.1 

in [132], we have 

|             
     | 

    |   
 |    |   

 |  
     

            

       
      |  |        

 
    

         

       
         |  | 

     
  

which gives 

|             
     | 

   |   
 |    |   

 |  
        (         )            

       |  |        
 
                (    )      

         

        |  | 
     

  

After observing that 

              |    |  |    | 
and 

                  |    |   |    |  
we obtain the desired result. 

   The next theorem concerns the actions of the multi-parameter  -transform    and its 

inverse  -transform    on the space     
   

 and its discrete sequence form   
   

  We 

prove that operators        
   

   
   

 and      
   

     
   

 are bounded, and 

      is the identity on     
   

  The proof of this theorem is rather involved, and the 

underlying geometry of the multi-parameter structures of the dyadic rectangles associated 

with the composition of two operators with different homogeneities plays an important 

role. These sorts of ideas have been initially used in [108] and then [132] for duality of 
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flag Hardy spaces, and similar ideas have been used subsequently for Hardy spaces in 

different multi-parameter settings (see [130], [131], [133], etc.). It is more difficult and 

complicated to carry out our multi-parameter Triebel-Lizorkin spaces. 

Theorem (5.2.11) [250] Suppose                         and      and 

     are functions satisfying conditions in (85)-(86) and (87)-(88), respectively. Then the 

operators        
   

   
   

 and      
   

     
   

 are bounded, and       is the 

identity on     
   

  

Proof. We only prove    is bounded since the rest is obvious. Let             
   

 and 

  ∑         When        we are going to prove 
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For any            by Lemma (5.2.10), one has 
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 ( 
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Since |         |  |    |  |    | |           |  |    |  |     |  one has 
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for any sufficiently larger        Using conditions (85), (87), it is easy to see that 
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from which follows 
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In order to prove inequality (99), using (100), we only need to prove 
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To do this, define 

     ⋃       

       

  

For any      let         be the collection of dyadic rectangles    so that 

                                                                  
and for      

                                                                         

              
and for      

                                                                     

                  
and for        
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and        
                                       

   It is easy to see that for any     ⋃                                    if 

              and               Note that for                   

  
          

     
      

          

     
     

from which follows 
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,
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   We only estimate    since estimates of estimate       and    can be concluded by 

applying the same techniques. 

   For each integer      let   
                    |   

              |  
 

  
|         |   Let 

  
      

        
                              

    ⋃   

     
   

  

Then 
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 (|  |       ⁄ |  |  |   ||  |   ⁄ )
 
|  |  

To estimate the right-hand side of the above inequality, we only need to estimate 

∑            
       

       

  

Firstly, because             one has                    For      there are four 

cases: 

   Case 1: |    |  | | |    |  | |  Case 2: |    |  | | |    |  | |  

   Case 3: |    |  | | |    |  | |  Case 4: |    |  | | |    |  | |  

From the definition of          one can see that if            then 
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which implies Case 2 is an empty set. For the same reason, Case 3 is also an empty set. 

We split    into two terms: 

   
 

| |
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In Case 1, since            and      
     one has 
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| (         )|            

In          we should compare the side-length of   with the side-length of     We divide 

    into four categories: 

   Category 1.1 | |  |  | | |  |  |  Category 1.2 | |  |  | | |  |  |  
   Category 1.3 | |  |  | | |  |  |  Category 1.4 | |  |  | | |  |  |  

For Category 1.1, (102) gives          |  |           | | for some integer     

since      are all dyadic, where      is used to offset     For each fixed      the 

number of such  ‟s must be less than             since                 Therefore 

∑            
       

        | | |  | | | |  |

    ∑
(         )

 

              
   

                 

For Category 1.2, | |  |  | | |  |  |  From (102), one has 

| ||  |  | |  |               |  |                 |  
 

    
|            |  

It follows that 

| |  
           

    
|  |  

hence          |  |           | | for some integer      For each fixed      the 

number of such  ‟s must be less than                 since            Moreover from 

|  |  | |  |    | we have |    |  | | for some positive integer   with        For 

each fixed      the number of such  ‟s must be less than         since            
Hence 

∑            
       

        | | |  | | | |  |
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   With a similar argument to Category 1.2, for Category 1.3 one can obtain the following 

estimates: 
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For Category 1.4, from (102) one has 

|  |  
 

    
|            |  

from which follows that                   On the other hand, with |  |  | |  

|         |  one has          |  |    | | for some integer               For 

each fixed      the number of such  ‟s must be less than      since          
       So 



 

163 
 

∑            
       

        | | |  | | | |  |

 ∑     .
  

         
/

         

   

        

Therefore 

  
  

 

| |
 
 
 
 
  
∑ ∑ ∑         

     
           

∑            
       

       

 (|  |       ⁄ |  |  |   ||  |   ⁄ )
 
|  | 

 
 

| |
 
 
 
 
  
∑ (∑(                                                 )

        

 ∑      

                  

+        |  
   |

 
 
 
 
  

 
 

|  
   |

 
 
 
 
  

∑ (|  |       ⁄ |  |  |   ||  |   ⁄ )
 
|  |

     
   

 ∑ (∑                 ∑      

                     

+

     

              
 
 
 
 
     

 ̅

 

| ̅|
 
 
 
 
  

∑(|  |       ⁄ |  |  |   ||  |   ⁄ )
 
|  |

    ̅

    
 ̅

 

| ̅|
 
 
 
 
  

∑(|  |       ⁄ |  |  |   ||  |   ⁄ )
 
|  |

    ̅

 

since |  
   |     |    |     | |           and choosing       with   

large enough. 

   In Case 4, firstly, since            and      
     one has 
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which follows          Moreover, from |    |  | | |    |  | |  one has 

           |  |  | | for some integer      For each fixed     and any     the 

number of such  ‟s must be less than     In this situation, we have the following 

estimates: 
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Then with the same process, one has 

  
     

 ̅

 

| ̅|
 
 
 
 
  

∑(|  |       ⁄ |  |  |   ||  |   ⁄ )
 
|  |

    ̅

  

We then complete the proof of (100). 
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Its proof is similar to the case of        hence we only give an outline. 

   We use the same symbols as above. With the same process, one has 
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*
  

                    
 

| |
 
 
  

   
           

∑               |  |       ⁄ |  |  |   || 
 |   ⁄

          

 

                     
 

| |
 
 
  

   
           

4 ∑  ∑ ∑  

             

∑ ∑  

             

∑ ∑  

                         

5

                |  |       ⁄ |  |  |   || 
 |   ⁄               

   We only estimate    since estimates of       and    can be concluded by applying the 

same techniques. 

   For each integer      let   
                       |   

           |  
 

  
|         |   Let 

  
      

        
                              

    ⋃   

     
   

  

Then 

   
 

| |
 
 
  

   
           

∑ ∑ ∑                

     
           

 |  |       ⁄ |  |  |   ||  |   ⁄   

To estimate the right-hand side of the above inequality, we only need to estimate 

∑        

     
   

  

Firstly, because              one has                    For      
     there are 

also four cases: 

   Case 1: |    |  | | |    |  | |  Case2: |    |  | | |    |  | |  
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   Case 3: |    |  | | |    |  | |  Case4: |    |  | | |    |  | |  

It is easy to see that Case 2, Case 3 are none. Then      
    

   
   For            one has 

| |  |               |  |                 |  
 

    
|            |  

We divide           into four categories: 

   Category 1.1 | |  |  | | |  |  |   Category 1.2 | |  |  | | |  |  |  
   Category 1.3 | |  |  | | |  |  |   Category 1.4 | |  |  | | |  |  |  

In Category 1.1, we have          |  |           | | for some integer      

Moreover, for any fixed     and    the number of such   ‟s is less than             

since                   and |    |  | | |    |  | |  Hence 

∑        

               

 ∑           .
         

         
/

 

   

               

   In Category 1.2, one has          |  |           | | for some integer      For each 

fixed     and    the number of such   ‟s must be less than              Moreover, 

from |  |  | |  |    |  we have |    |  | | for some positive integer   with        

For each fixed      and    the number of such   ‟s must be less than          Hence 

 

∑        

              

    ∑∑
       (         )

 

            
    

   

 

      

                

With a similar argument, one has 

∑        

              

                

   In Category 1.4, one has                   and with |  |  | |  |         |  one 

has          |  |    | | for some integer               For each fixed      

the number of such   ‟s must be less than              So 

 

∑        

              

 ∑             .
  

         
/

         

   

        

Therefore 

  
  

 

| |
 
 
  

   
           

∑ ∑ ∑                

                

|  |       ⁄  |  |  |   || 
 |   ⁄  

 
 

| |
 
 
  

   
           

∑ ∑ ∑                |  
   |

                

 
 

|  
   |

 
 
  

   
    

   

|  |       ⁄ |  |  |   ||  |   ⁄

    
 

 

| |
 
 
  

   
               

|  |       ⁄ |  |  |   ||  |   ⁄   

With a similar argument for the rest, we can obtain the desired result. We then have 

completed the proof. 
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Theorem (5.2.12) [250] Suppose that      and        satisfy the same conditions in (85)-

(88). Then if                           one has 

   
 

4
 

| |
 
 
 
 
  
∫ ∑   [                ]  ∑ (|      (     )|

 
     )

               

 

 

  5

  ⁄

 

    
 

4
 

| |
 
 
 
 
  
∫ ∑   [                ]  ∑ (|             |

 
     )

               

 

 

  5

  ⁄

 

for     
   

   The proof of this theorem can follow from the  -transforms that correspond between the 

multi-parameter Triebel-Lizorkin spaces  ̇ 
   

 and the discrete multi-parameter Triebel-

Lizorkin sequence spaces  ̇ 
   

 indexed by the multi-parameter dyadic rectangles in    

associated with the underlying structures of the composition of two singular integrals. 

Since the definition of  ̇ 
   

     is independent of the choice of the functions    and     

this theorem is immediate once we prove the following duality theorem (Theorem 

(5.2.20)). Nevertheless, we offer another proof following the proof of Theorem (5.2.11). 

The dual spaces for  ̇ 
   

 when       are considerably different from those for 

      and more difficult to get, in the multi-parameter settings. Therefore, the 

following duality result is the third main theorem. 

Proof. Suppose that      and      are functions satisfying conditions in (85)-(86) and 

(87)-(88), respectively. For       
   

  setting       | |  ⁄       
            

with         and    ⌌    ⌍                 by Theorem (5.2.11), we have   

∑       and           
   

  Then (100) gives 

   
 

 

| |
 
 
 
 
  

4 ∑ (| |       ⁄ | |  |      (     )|)
 
| |

           

5

  ⁄

 

    
 

 

| |
 
 
 
 
  

4 ∑ (|  |       ⁄ |  |  |   ||  |   ⁄ )
 
| |

           

5

  ⁄

 

The conclusion of Theorem (5.2.12) follows immediately. 

   We give a characterization of imbedding of    spaces into  ̇ 
   

 and imbedding of  ̇ 
   

 

into    spaces. This result was first established by Verbitsky [248] in the dyadic cubes 

with respect to an arbitrary positive locally finite measure on the Euclidean space and was 

generalized by Bownik [225] to discrete anisotropic Triebel-Lizorkin sequence spaces. 

Lemma (5.2.13) [250] (Theorem 1 (i)(ii) of [248]). Let            Then 

‖(∑|  |
   

 

   

+

  ⁄

‖

  

   ‖ ‖   

holds if 

∫   
 

 [(  
   

   ‖  ‖  
 
)]

      ⁄
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   Suppose            Then 

‖(∑|  |
   

 

 

+

  ⁄

‖

  

   ‖ ‖   

holds if 

∫   
 

 [(  
   

   ‖  ‖  
 

⁄ )]
      ⁄

       

Lemma (5.2.14) [250] (Theorem 1.1 of [243]). Let            be any index set, 

and         be a family in     Then, the inequality 

‖   
   

 |  |   ‖
  

  ‖ ‖   

holds for all scalar sequences              if and only if there exists a nonnegative 

measurable function     with ∫          such that 

   
   

‖    ⁄   ‖       
    

where         is a weak-   with respect to the measure              defined by 

‖ ‖         (   
   

           |    |     *
  ⁄

   

for            
Lemma (5.2.15) [250] (Remark 3 of [248]). If            then 

‖(∑|  |
   

 

   

+

  ⁄

‖

  

   ‖ ‖   

holds if and only if there exists     such that 

∫                   
 
‖    ⁄   ‖         

where               
Theorem (5.2.16) [250] Assume that   is any subfamily   and          is any positive 

sequence. 

(i) Suppose            Then the inequality 

‖(∑|  |
     

   
   

+

  ⁄

‖

  

   ‖ ‖                                                

holds for all scalar sequences            if and only if 

∫   
   

      
 | |       ⁄                                                         

(ii) Suppose            Then the inequality 

‖(∑|  |
     

   
   

+

  ⁄

‖

  

   ‖ ‖                                                

holds for all scalar sequences            if and only if (105) holds. 

   To establish Theorem (5.2.16) we will follow the original approach of Verbitsky [248].  

Proof. We begin with the proof of part (i). Firstly (104) ⇒ (103) is a direct consequence of 

Lemma (5.2.13) since ∫         
        

 | |  
   Now suppose that (103) holds for      By imbedding       and Lemma (5.2.14), 

there exists a non-negative measurable function     with ∫          such that 
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‖    ⁄     ‖       
    

   
  ‖ 

   ⁄   ‖       
                                

where         Let       ⁄     then ‖ ‖      | |  ⁄   Suppose       and 

  ⁄    ⁄        ⁄  with        Applying the well-known interpolation inequality 

(e.g. Proposition 1.1.14 of [231]) 

‖ ‖        ‖ ‖       
 ‖ ‖       

     

one has for any      

.∫    ⁄           
 

 

/

  ⁄

  | |  ⁄ ‖    ⁄   ‖       

   
  

Letting     ⁄    and combining the above inequality with (106), we obtain 

(  | |
  ⁄ )

       ⁄
.
 

| |
∫     

 

 

/

  ⁄

      

On the other hand, by H ̈lder‟s inequality with exponents 
   

 
 
   

 
 one has 

.
 

| |
∫     

 

 

/

  ⁄

.
 

| |
∫    

 

 

/

  ⁄

    

for all        Hence 

(  | |
  ⁄ )

       ⁄
  .

 

| |
∫    

 

 

/

  ⁄

       
        ⁄  

for      where    denotes the strong maximal operator. Since    is bounded on    ⁄  for 

       we have 

∫   
   

      
 | |       ⁄    ∫     

        ⁄    ∫          

We then have completed the proof of part (i) of Theorem (5.2.16). 

   We now give the proof of part (ii). The second part of Lemma (5.2.13) gives the proof of 

(104) ⇒ (105). Now suppose that (105) holds. We first prove (104) for     following 

the original argument of Verbitsky [248]. By Lemma (5.2.15), there exists           
such that 

   
   

∫     ⁄       
       

   
    

 ∫     ⁄       

It follows from the above inequality that 

∫   
   

      
 | |       ⁄         ∫   

   
 .

 

| |
∫     ⁄   

 

 

/

      ⁄

       

 ∫     
    ⁄            ⁄      ∫          

   When      we use the argument of Bownik [225] by taking advantage of the already 

established duality of  ̇ 
         Note that by duality 

‖ ‖      
      

 ∑|  |
 |  |

    ⁄

‖ ‖        ⁄
  

Hence (105) is equivalent to the inequality 

(∑|  |
 |  |

 

   

+

  ⁄

  ‖(∑|  |
     

   
   

+

  ⁄

‖

  

‖ ‖        ⁄                        



 

169 
 

On the other hand, since     ⁄     by the already established duality   ̇  ⁄
      

 ̇      ⁄
      one has for    

 

 
      

 

 
   

   
      

|∑   ̅ |

‖∑    ‖   ⁄
    

      

|⌌   ⌍|

‖ ‖ ̇  ⁄
   

 ‖ ‖ ̇      ⁄
     ‖   

   
|  || |

    ‖
       ⁄

       

Let 

   {
|  |

     
       

                                  ⁄  
 

and 

   {
|  |

     
                 

                                  ⁄  
 

Then (108) may be rewritten in the following form by taking the  th roots: 

   
      

|∑ |  |
 |  |

 
   |  ⁄

‖ ∑ |  |
     

         ⁄ ‖  
 ‖   

   
|  |    

  | |   ⁄   ‖
        ⁄

                 

Let           ⁄            ⁄  and  ̃      
  | |   ⁄   Combining (107) with 

(109) yields  

‖   
   

|  |  ̃  
    ‖

   
  ‖ ‖    

for all          Using the facts that            ⁄         ⁄         and applying 

(i) of Theorem (5.2.16), we get from the preceding inequality 

∫   
   

    ̃  
  | |          ⁄         ∫   

   
      

 | |       ⁄            

Hence (104) holds for      We thus have completed the proof. 

Theorem (5.2.17) [250] Suppose                           Then 

  ̇ 
   

    ̇
  
     

  

Proof. For any    ̇ 
   

    ̇
  
    

 we have 

|∑     ̅
   

|  ∫∑| |       ⁄ | |  |  | ̃    | |
        ⁄ | |   |  | ̃      

   

 

 ∫(∑(| |       ⁄ | |  |  | ̃    )
 

   

+

  ⁄

 (∑(| |        ⁄ | |   |  | ̃    )
  

   

+

   ⁄

   

 ‖ ‖ ̇ 
   ‖ ‖

 ̇
  
      

by duality if       or by imbedding       if        This yields that   is a 

continuous linear functional on  ̇ 
   

 and 

‖ ‖  ̇ 
   

   ‖ ‖
 ̇
  
       

   For the converse direction, we split its proof into 2 cases:             [     and 

             

Case1:              [      This case is elementary. Take any     ̇ 
   

    Then 

there exists some sequence      such that      ∑      ̅  for any          ̇ 
   

  

Now we need a well-known result that 

            
 
   

 
                                                               

if              where 
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       8       ‖ ‖       ‖(∑|  |
 

 

+

  ⁄

‖

  

  9   

with the pairing ⌌   ⌍  ∫∑    ̅    for               
 
   

 
  (see e.g. [65]). Let 

   ̇ 
   

        be defined by 

     {    }                 ∑ | |       ⁄ | |     ̃    

      

  

Clearly, the map   is a linear isometry onto a subspace of         By the Hahn-Banach 

Theorem, there exists  ̃            such that  ̃      and ‖ ̃‖  ‖ ‖  By (110),  ̃    

⌌   ⌍ for some     
 
   

 
   with ‖ ‖

  
 
   

 
 
    Hence 

      ̃(    )  ∫∑     ̅   
   

 ∫∑4 ∑ | |       ⁄ | |     ̃    

      

5  ̅      

   

   

 ∑ ∑   .| |
       ⁄ | |  | |   ⁄ ∫ ̅        

 

 

/

         

 ∑ ∑     
         

 ⌌   ⌍  

for all    ̇ 
   

  where         with    | |       ⁄ | |  | |   ⁄ ∫  ̅        
 

 
 for         

Then 

‖ ‖
 ̇
  
      ‖∑ ∑ .

 

| |
∫    

 

 

/

         

     ‖

  
 

 ‖          ‖          
‖ ‖

  
 
   

 
 
 ‖ ‖  

This completes the proof of Case 1. 

Case 2:                    In this case,        is not a normed space; hence we can‟t 

use the Hahn-Banach theorem. 

   Take     ̇ 
   

    Then there exists some sequence      such that for any         

 ̇ 
   

  

|    |  |∑    ̅
 

|   ‖ ‖ ̇ 
     ‖(∑ (| |       ⁄ | |  |  | ̃    )

 

   

+

  ⁄

‖

  

       

If we prove the estimates 

‖ ‖ ̇
  
     ‖   

   
(| |        ⁄ | |   |  | ̃    )‖

  
 
    

we then complete the proof. 

Define               and let        ̅     
| |       ⁄ | |  

| |  ⁄ |  |
 for      We may 

assume that     ̅    for all     by choosing proper     Moreover we can assume 

               Then (111) can be rewritten as 

‖ ‖    ‖(∑|  |
     

   
   

+

  ⁄

‖

  

 

for all            Then (ii) of Theorem (5.2.16) with             yields 

∫   
   

 (      | |)
      ⁄

      

that is, 
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∫   
   

 ((| |        ⁄ | |   |  || |
   ⁄   ))

      ⁄

      

We thus have completed the proof. 

Theorem (5.2.18) [250] Suppose                           Then 

  ̇ 
   

     
     

  

Proof. We first assume        Suppose     
     

  For any    ̇ 
   

  set 

     (∑(| |       ⁄ | |  |  | ̃    )
 

   

+

  ⁄

  

and for      
                   

        |    |  
 

 
| | |      |  

 

 
| |   

One can obtain 

|∑     
   

|  ∑ ∑ .| |        ⁄ | |   |  || |
 
 
 | |

 
  /  .| |       ⁄ | |  |  || |

 
 | |

 
 
  /

     

 

 {∑6∑ .| |        ⁄ | |   |  || |
 
 
 | |

 
  /

  

    

7

   ⁄

 

 6∑ .| |       ⁄ | |  |  || |
 
 | |

 
 
  /

 

    

7

  ⁄

}

  ⁄

                                                    

Let  ̃              
     

 

 
   then | ̃ |  |  |  One sees that if       then one 

has    ̃   So 

 6∑ .| |        ⁄ | |   |  || |
 
 
 | |

 
  /

  

    

7

   ⁄

 

 
 

| ̃|
 
 
 
 
 

6∑ .| |        ⁄ | |   |  || |
 
 
 | |

 
  /

  

    

7

   ⁄

| ̃|
 
 
 
 
  ‖ ‖

  
     |  |

 
 
 
 
   

On the other hand, using the fact that if         ̃   one also obtains 
 

 
| |  |      |  |   ̃      |  

Hence 

6∑ .| |       ⁄ | |  |  || |
 
 | |

 
 
  /

 

    

7

  ⁄

 6∑ .| |       ⁄ | |  |  || |
 
 
 
 
  
 
 
 /

 

| |

    

7

  ⁄

 6∑ (| |       ⁄ | |  |  || |
  ⁄ )

 
|   ̃      |

    

7

  ⁄

 

 4∫ ∑ (| |       ⁄ | |  |  | ̃    )
 

    

  
 

 ̃      

5

  ⁄

 .∫        
 

 ̃      

/

  ⁄

   |  |
  ⁄   
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Combining (112) with the above inequality, one obtains 

|∑     
   

|  ‖ ‖
  
     (∑   |  |

 

+

  ⁄

 ‖ ‖
  
     ‖ ‖ ̇ 

     

   Next, we will prove   
     

 ( ̇ 
   

)
 
  Let     ̇ 

   
    Then there exists some          

such that for every           ̇ 
   

       ∑       and 

|∑    
 

|  ‖ ‖  ̇ 
   

  ‖ ‖ ̇ 
     

Once having shown     
     

  we will then complete the proof. For any open set      

with finite measure, let              and let   be a measure on   such that the μ-

measure of   is | | if       or        if      Then by the above inequality, one 

has 

( ∑ (| |        ⁄ | |   |  || |
   ⁄ )

  

| |

       

+

   ⁄

 ‖| |        ⁄ | |   |  || |
   ⁄ ‖

  
 
      

    
‖ ‖          

| ∑ | |        ⁄ | |   |  || |
   ⁄   | |

       

|

 ‖ ‖  ̇ 
   

     
‖ ‖          

‖| |        ⁄ | |   |  || |
   ⁄   | |‖ ̇ 

     

On the other hand, 

‖| |        ⁄ | |   |  || |
   ⁄   | |‖ ̇ 

   

 ‖( ∑ (| |       ⁄ | |  | |        ⁄ | |   | |   ⁄ |  || | ̃    )
 

       

+

  ⁄

‖

  

 

 ‖( ∑  |  |      
 

       

+

  ⁄

‖

  

 {∫ ∑  |  |      
 

       

  
 

 

}

  ⁄

| |
 
 
 
 
  

by H ̈lder‟s inequality since            So 

( ∑ (| |        ⁄ | |   |  || |
   ⁄ )

  

| |

       

+

   ⁄

 

 ‖ ‖  ̇ 
   

     
‖ ‖          

{∫ ∑  |  |      
 

       

  
 

 

}

  ⁄

| |
 
 
 
 
  ‖ ‖  ̇ 

   
  | |

 
 
 
 
   

that is,     
     

  

   When        by the trivial imbedding  ̇ 
   

  ̇ 
     one has 

  ̇ 
   

     ̇ 
        

      

To show the other direction, as above, let     ̇ 
   

    Then there exists some         

such that for every           ̇ 
   

       ∑       and 

|∑    
 

|  ‖ ‖  ̇ 
   

  ‖ ‖ ̇ 
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   We now prove ‖ ‖  
         

 

| |
 
 
  
          | |

        ⁄ | |   |  || |
   ⁄     

For any fixed          let        if      otherwise         So 

   
       

| |        ⁄ | |   |  || |
   ⁄     

       
∑     | ̃|

        ⁄
| ̃|

   | |   ⁄ |  |

   ̃  ̃  

 

    
       

‖ ‖
( ̇ 

   
)
 ‖    | ̃|

        ⁄
| ̃|

   | |   ⁄ ‖
 ̇ 
   

    
       

‖ ‖
( ̇ 

   
)
 ‖| |    ‖   

    
       

‖ ‖  ̇ 
   

  
| |

 
 
  

    
       

‖ ‖  ̇ 
   

  
| |

 
 
  

 

since        which implies our desired results, and we thus have completed the proof 

of Theorem (5.2.18). 

   We derive the duality of Theorem (5.2.19) and Theorem (5.2.20) from Theorem (5.2.17) 

and Theorem (5.2.18), respectively, in the sequence space cases. It is known from 

Proposition 3.1 in [139] that     
   is dense in  ̇ 

        for          

Theorem (5.2.19) [250] Suppose                           then 

  ̇ 
   

    ̇
  
     

  

Namely, if    ̇
  
     

  then the map     given by       ⌌   ⌍  defined initially for 

      extends to a continuous linear functional on  ̇ 
   

 with ‖  ‖  ‖ ‖
 ̇
  
       

Conversely, every     ̇ 
   

   satisfies      for some    ̇
  
     

 with ‖  ‖  ‖ ‖
 ̇
  
       

   On dual spaces of multi-parameter Hardy spaces (see [102], [108], [129], [130], [131], 

[132], etc.), the duality of Triebel-Lizorkin spaces has only been studied in the one-

parameter settings started in [65, 115]; see also [225] for anisotropic Triebel-Lizorkin 

spaces, [236] for weighted anisotropic Triebel-Lizorkin spaces. For              

the Triebel-Lizorkin space of one-parameter  ̇ 
        with the norm 

‖‖4∑    

   

|    |
 
5

 
 

‖‖

      

 

was investigated in [115, 65]. There it was shown that the dual space of  ̇ 
        is 

  ̇ 
          {

 ̇
  
                                          

 ̇ 
         ⁄               

                                 

where  ̇ 
        is defined to be the set of all     

      such that 

‖ ‖ ̇ 
           

              
4
 

| |
∫ ∑      |    |

 
 

           

 

 

  5

  ⁄

    

It is well known that  ̇ 
        is the classical Hardy space           From (113), 

one has 

    
   ̇ 

      ⁄          

The method to obtain (113) no longer works in multi-parameter cases when        By 

using techniques of discrete Littlewood-Paley theory developed in [108, 235] for flag 

Hardy spaces, established the dual spaces for flag Hardy spaces. Using similar ideas of 

discrete Littlewood-Paley theory, the dual spaces for Hardy spaces on product spaces of 
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homogeneous type and on weighted multi-parameter Hardy spaces have been obtained in 

[130, 131] and [133]. To give an idea of such dual spaces in the simplest form, we state 

the dual space of multi-parameter pure product Hardy space     ̇ 
           by 

another form, for        
    

        

where        is defined by 

‖ ‖         
 

4
 

| |
 
 
  

∫ ∑ ∑ (|           |
 
     )

               

 

 

  5

  ⁄

 

for all open sets         with finite measure (see [133]). Combining the techniques 

developed in [65, 115] for one-parameter Triebel-Lizorkin spaces and [235] for multi-

parameter Hardy spaces, we investigate the dual spaces of the multi-parameter Triebel-

Lizorkin spaces associated with different homogeneities when        Before we state 

the duality result, we first give the definition of     
         

Proof. Let    ̇
  
                

   and              Then by the identity 

(93) one has ⌌   ⌍  ⌌       ⌍  Hence 

|⌌   ⌍|   ‖   ‖ ̇ 
   

    
‖   ‖

 ̇
  
     

    
 ‖ ‖ ̇ 

   
    ‖ ‖ ̇

  
     

    
 

by Theorem (5.2.17) and Theorem (5.2.9). This proves that ‖  ‖  ‖ ‖
 ̇
  
     

    
  

   Conversely, suppose   ( ̇ 
       )

 
  Then           ̇ 

   
    so by Theorem 

(5.2.17), there exists          ̇
  
     

 such that 

      ⌌   ⌍  ∑     ̅
 

 

for all          ̇ 
         Moreover ‖ ‖

 ̇
  
      ‖  ‖  ‖ ‖ for the boundedness of 

    Note that                 since       is an identity by Theorem (5.2.9). 

Then letting         and       
    one has 

                ⌌       ⌍  ⌌       ⌍  ⌌   ⌍ 

by (94), which implies that      and by Theorem (5.2.9) again, one has 

‖ ‖
 ̇
  
      ‖     ‖

 ̇
  
      ‖ ‖

 ̇
  
      ‖ ‖  

We have then completed the proof of Theorem (5.2.19). 

Theorem (5.2.20) [250] Suppose                           Then 

  ̇ 
   

       
     

 

where    is defined to be ∞ when        

   By duality, one can obtain the boundedness of       on     
     

. 

Proof. One can go through the same process as above to finish the proof of Theorem 

(5.2.20). 

Theorem (5.2.21) [250] Suppose                           Then the 

composition operator         is bounded on     
   

  

Proof. We assume that    is the kernel of the convolution operator           and    is 

the conjugate operator of   with the kernel     One may check that 

         ̃   ̃        ̃   ̃       
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for      
   where  ̃                   Hence    is bounded on  ̇ 

   
 for all 

             by Theorem 1.5 in [139] since  ̃  satisfy Definition (5.2.1), 

Definition (5.2.2), respectively. 

   For          there exists a    ̃    such that  ̃     Then by Theorem (5.2.20), 

‖    ‖    
       

‖ ‖
 ̇ 
    ̄   

|⌌      ⌍|     
‖ ‖

 ̇ 
    ̄   

|⌌       ⌍|

    
‖ ‖

 ̇ 
    ̄   

‖ ‖    
   ‖     ‖

 ̇ 
    ̄     

‖ ‖
 ̇ 
    ̄   

‖ ‖    
   ‖ ‖

 ̇ 
    ̄ 

 ‖ ‖
    

      

We thus have completed the proof of Theorem (5.2.21). 

   The multi-parameter Triebel-Lizorkin spaces we study here are associated with the 

composition of two singular integral operators with the specific dilations 

                        
and 

                          
The first is the classical isotropic dilations occurring in the classical Calder ́n-Zygmund 

singular integrals, while the second is non-isotropic and related to the heat equations (also 

Heisenberg groups). 

   These two dilations are motivated by the study of weak-(1, 1) boundedness of the 

composition of two singular integrals by Phong and Stein [135]. This composition of such 

two singular integral operators is particularly interesting because they essentially arise 

naturally in the study of the  ̅-Neumann problem (see [135],  [232], [241], [242]). This 

motivates us to study the function spaces associated with the composition of two such 

dilations and then the boundedness of relevant operators. It is to note that the underlying 

multi-parameter structure we study is intrinsic to the composition of these two dilations. 

Nevertheless, the multi-parameter structures we consider are still in the framework of the 

translation-invariant environment. The more general case of translation non-invariant 

dilations will be studied in a forthcoming project. 

   Though we restrict our attention to the above two very specific dilations, all results can 

be carried out to the composition with more singular integral operators associated with 

more general non-isotropic homogeneities. To see this, let 

                    
 

         
             

        

for                   and        

   For      we denote | |  
√|  |

 

     |  |
 

         |  |
 

      Let            with 

         ̂                     
 

 
 | |     

and 

∑|    ̂              
               

          |
 

    

                           ⁄   

Set              
       

   
    

   
          

   
     where 

   

                                               
              

           

   Then we can obtain the following general discrete Calder ́n reproducing formula: 

Theorem (5.2.22) [250] Suppose that                 are functions satisfying the above 

conditions, respectively. Then 
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 ∑ ∑ ∏                                           

 

                            

                                        
                              

                                                       
                                  

where the series converges in            
   and   

       
   With the above discrete Calder ́n reproducing formula, the multi-parameter Triebel-

Lizorkin spaces with different homogeneities can be introduced as follows: 

Definition (5.2.23) [250] Let                              The multi-parameter 

Triebel-Lizorkin type spaces with different homogeneities  ̇ 
        are defined by 

 ̇ 
             

      ‖ ‖ ̇ 
   

         

where 

‖ ‖ ̇ 
        ‖‖4 ∑ ∏                               

 

              

 ∑ |                   
                                

              

                                 |
 
                        5

 
 

‖‖

      

  

where               are dyadic intervals in   with the side length                                     

and the left end points of    are                                 respectively. 

   Applying the same techniques, one can establish the duality theory (Theorem (5.2.19)) 

of the multi-parameter Triebel-Lizorkin spaces associated with these more general non-

isotropic dilations. The details of the proofs appear to be very lengthy and complicated to 

present in the more general situation. Therefore, we shall not discuss these in more detail. 

Corollary (5.2.24) [314] Suppose                          Then the 

composition operator              is bounded on       
          

Proof. We assume that    is the kernel of the convolution operator             and 

    
  is the conjugate operator of      with the kernel     One may check that 

    
  ∑       ̃     ̃  ∑       ̃   ̃    ∑      

for      
   where  ̃                     Hence     

  is bounded on  ̇   
          

for all               by Theorem 1.5 in [139] since  ̃  satisfy Definition (5.2.1), 

Definition (5.2.2), respectively. 

   For          Then by Theorem (5.2.20), 

∑‖    (  )‖      
        

 

    
‖  ‖ ̇   

           

∑|⌌    (  )   ⌍| 

    
‖  ‖ ̇   

           

∑|⌌       
 (  )⌍|     

‖  ‖ ̇   
           

∑‖  ‖      
        ‖    

 (  )‖ ̇   
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‖  ‖ ̇   

           

∑‖  ‖      
        ‖  ‖ ̇   

          ∑‖  ‖      
          

We thus have completed the proof of Corollary (5.2.24). 

Section (5.3) Triebel–Lizorkin and Besov–Lipschitz Spaces 

   Many have worked on proving boundedness of the one-parameter Fourier multipliers. 

Mihlin [252] obtained the   -boundedness of the one-parameter Fourier multiplier 

operators with minimal smooth condition. H ̈rmander [198] reformulated and improved 

Mihlin‟s theorem using the Sobolev regularity of the multiplier. Peetre [253] considered 

the boundedness of the one-parameter Fourier multiplier operators on Triebel–Lizorkin 

spaces. 

   The multi-parameter singular integral and Hardy space theory play an important role in 

many aspects of harmonic analysis. Many have studied the pure product theory. This 

theory includes the boundedness on multi-parameter    spaces         and multi-

parameter Hardy spaces            etc. For more results related to multi-parameter 

theory, see [96–105, 107, 108, 121, 129, 131, 133, 233, 235, 240, 242, 244, 245, 246, 

254]. [120, 128, 139] established the boundedness of singular integral operators on multi-

parameter Triebel–Lizorkin and Besov–Lipschitz spaces. The atomic decomposition and 

dual spaces for multi-parameter Triebel–Lizorkin spaces associated with the composition 

of two singular operators studied by Phong and Stein [135] were given in [229, 250]. 

   We establish the sufficient conditions for boundedness of multi-parameter Fourier 

multiplier operators on multi-parameter Triebel–Lizorkin and Besov–Lipschitz spaces 

(Theorem (5.3.11)). Furthermore, we also consider the weighted cases (Theorem (5.3.13)). 

For the sake of simplicity of presentations, we will restrict our consideration to the bi-

parameter case of        
   We denote by                  the  -dimension multi-index, by          the 

spaces of Schwartz functions on       and by           the spaces of all tempered 

distributions on        The bi-parameter Fourier transform and the Fourier inverse 

transform of   are defined respectively by 

 ̂        ∫                                 

 

   
 

and 

           ∫                                 

 

   
 

for             
Definition (5.3.1) [255] A bi-parameter Fourier multiplier operator is defined as follows 

             ∫          
                  ̂             

 

   
  

where                     
   We denote by         and         Schwartz functions whose Fourier transforms are 

supported in    ⁄  | |      Moreover, we require that they satisfy the vanishing 

moment condition 

∫            
 

  

 ∫            
 

  

   

for all multi-indices   and    The test function defined on       can be given by 
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where         satisfies ∑ |    ̂       |      for all            and         satisfies 

∑ |    ̂       |      for all             

   Let           denote the space of Schwartz functions whose Fourier transform are 

supported away from origin and              be its dual. For                 
the Littlewood–Paley–Stein square function of   is defined by 

          4∑|           |
 

   

5

 
 

  

where the function 

                                     

Definition (5.3.2) [255] Let                       The bi-parameter Triebel–

Lizorkin space  ̇ 
   

        is defined by 

 ̇ 
   

                         ‖ ‖ ̇ 
        

where 

‖ ‖ ̇ 
    ‖‖4∑          |         |

 

   

5

 
 

‖‖

  

  

Definition (5.3.3) [255] Let                        The bi-parameter Besov–

Lipschitz space  ̇ 
   

        is defined by 

 ̇ 
   

                         ‖ ‖ ̇ 
        

where 

‖ ‖ ̇ 
    4∑          ‖         ‖  

 

   

5

 
 

  

   Here we need to emphasize that the definitions of bi-parameter Besov–Lipschitz and 

Triebel–Lizorkin spaces are independent of      and       See [128, 250] for the detailed 

proof. Therefore, we can choose             in our proofs. 

Definition (5.3.4) [255] The strong maximal operator is defined as follows 

            
       

 

    
 

 

    
 
∫|      |    

 

 

  

where                 |   |     |   |       and   is a locally integrable 

function on        
Definition (5.3.5) [255] A nonnegative locally integrable function   is said to be in the 

class     
            if there exists a constant     such that 

.
 

| |
∫              

 

 

 / .
 

| |
∫         

 
 

         

 

 

 /

   

   

for any rectangle         
   A nonnegative locally integrable function   is said to be in     

      if there exists 

a constant     such that 

                     
for almost every                where    denotes the strong maximal operator. 

   The class     
      is defined by 
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      ⋃     

     

     

  

Definition (5.3.6) [255] Let                       The weighted bi-parameter 

Triebel–Lizorkin space  ̇ 
   

          is defined by 

 ̇ 
   

                           ‖ ‖ ̇ 
   

        

where 

‖ ‖ ̇ 
   

    ‖‖4∑          |         |
 

   

5

 
 

‖‖

     

  

Definition (5.3.7) [255] Let                       The weighted bi-parameter 

Besov–Lipschitz space  ̇ 
   

          is defined by 

 ̇ 
   

                           ‖ ‖ ̇ 
   

        

where 

‖ ‖ ̇ 
   

    4∑          ‖         ‖     

 

   

5

 
 

  

Corollary (5.3.8) [255] Let         *
 

 
 

 

        
 +     Assume that        is a 

          function that satisfies 

|  
   

 
      |    

 

| || || || |
 

for all | |    | |    and               with | || |     Then   is bounded on 

   for       and on    for        
   We need to point out that we offer a different way to deal with the boundedness of 

Fourier multiplier operators on bi-parameter Triebel–Lizorkin and Besov–Lipschitz spaces 

(mainly with index      ) instead of transforming Fourier multiplier operators into 

bi-parameter Calder ́n–Zygmund operators. This way also allows us to avoid using atomic 

decomposition and Journ ́‟s covering lemma. We can obtain the boundedness of the multi-

parameter Fourier multiplier operators with limited smoothness assumption on the 

multiplier         We also remark here that using the multi-parameter Littlewood–Paley 

theory to establish the         boundedness of the multi-parameter and multilinear 

Fourier multipliers with limited smoothness has been done in [224]. 

   We will establish the boundedness of Fourier multiplier operators on weighted bi-

parameter Triebel–Lizorkin and Besov–Lipschitz spaces when the multiplier has only 

limited smoothness. We only require the bi-parameter weight   to be in     
      

(see [123] for weighted boundedness for Calder ́n–Zygmund operators and [234] for 

Journ ́ type operators and [128] on weighted Triebel–Lizorkin and Besov spaces in 

product spaces). 

Lemma (5.3.9) [255] ([198]). Let          Then there exists a constant     such that 

‖{∑(      )
 

   

}

 
 

‖

  

  ‖{∑|  |
 

   

}

 
 

‖

  

 

for all sequences      of locally integrable functions on        
   The following lemma is an extension of one-parameter version due to Peetre [253] (see 

also [251]). 
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Lemma (5.3.10) [255] Let       and        For any           function   

whose Fourier transform is supported in  | |      | |        assume that |      |  

    | | 
 

    | | 
 

  for some      Then there exist two constants    and    such that 

the following inequality is valid. 

   
    

      
 
{
 

  

|              |

     |  | 
 
      |  | 

 
 

 
 

  

|              |

     |  | 
 
      |  | 

 
 

}

      
    

      
 

|            |

     |  | 
 
      |  | 

 
 

       | |
       

 
   

where    denotes the strong maximal operator and the constants    and    depend only 

on     and    
Proof. This proof is divided into two parts. 

   Part 1. We first show that 

   
    

      
 
{
 

  

|              |

     |  | 
 
      |  | 

 
 

 
 

  

|              |

     |  | 
 
      |  | 

 
 

}

      
    

      
 

|            |

     |  | 
 
      |  | 

 
 

                                                        

Select a Schwartz function   on    whose Fourier transform is supported in    | |  

    and is equal to   on    | |      Then  ̂ (
 

  
)  ̂ (

 

  
) is equal to   on the support of 

the Fourier transform of        and we can write 

             . ̂      ̂ (
 

  
*  ̂ (

 

  
*/

 

           

 ∫   
                

                        
 

   

  

   We use the partial derivative to obtain 

|              |  

 ∫   
   |     (          )||  

  (          )      |    
 

   

 

                ∫   
        |      |     

      |      |   |      |    
 

   

  

Therefore 
 

  

|              |

     |  | 
 
      |  | 

 
 

 

 ∫   
   

      |      |        |      |    
|      |

     |  | 
 
      |  | 

 
 

    
 

   

  

where   is an arbitrarily large positive integer and    is a constant which depends only on 

   
   Since 

       |      | 
 
 

     |  | 
 
 

     |   | 
 
 

 

and 
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       |      | 
 
 

     |  | 
 
 

     |   | 
 
 

  

we obtain that 
 

  

|              |

     |  | 
 
      |  | 

 
 

    ∫
|      |

     |   | 
 
      |   | 

 
 

 

   

 
  
 

     |      |    
 
 

  
 

     |      |    
 
 

    

      
         

|          |

     | | 
 
      | | 

 
 

                                                              

   Similarly, we also obtain that 

 

  

|              |

     |  | 
 
      |  | 

 
 

      
         

|          |

     | | 
 
      | | 

 
 

                  

Combining (115) and (116), we conclude the proof of Part 1. 

   Part 2. We show that 

   
    

      
 

|            |

     |  | 
 
      |  | 

 
 

     | |
       

 
                              

   Let | |     and | |     for some         to be chosen later. We use the mean value 

theorem to obtain the estimate 

                                                       

                     (   )                                              

for all           Therefore 

|            |

    
|  | |  |   
|  | |  |   

(|                |   |                |  )

 |                |  
where          and           Let    be a ball with radius equal to    and    

being the center, and    be a ball with radius equal to    and    being the center. By 

raising to the power of    averaging over       and raising to the power 
 

 
  we derive 

|            |

   
    
|  | |  |   
|  | |  |   

|                |   |                |  

 .
 

  
   

   
 ∫ ∫ |                | 

 

  

 

  

    /

 
 

  

where            
 

   and    is the volume of the unit ball in     

   Set    
 

  
 and    

 

  
 for some      Then we have |  |  |  |  

 

  
 |  |  |  |  

 

  
 

 

    |  |
 

 

    |  |
 and 

 

    |  |
 

 

    |  |
  Therefore we can write 
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|            |

     |  | 
 
      |  | 

 
 

     

(

 
 
 

   
|  | |  | 

 
  

|              | 

       |  | 
 
      |  | 

 
 

 
|              | 

       |  | 
 
      |  | 

 
 

 

.
  
   

 

      
∫ ∫ |                | 

 

| | 
 
  
 |  |

 

| | 
 
  
 |  |

    /

 
 

     |  | 
 
      |  | 

 
 

)

 
 
 

 

     (    
    

 

|              | 

       |  | 
 
      |  | 

 
 

 
|              | 

       |  | 
 
      |  | 

 
 

   
  
    | |

       
 
 +  

Using (114) and setting   
 

       
   with        

 

   we can achieve (117), where we 

used the hypothesis 

   
|  |  

 

|  |  
 

|            |

     |  | 
 
      |  | 

 
 

    
|  |  

 

|  |  
 

    | |  |  | 
 
    | |  |  | 

 
 

     |  | 
 
      |  | 

 
 

     

Combining (114) and (117), we conclude the proof of Lemma (5.3.10). 

   We are now ready to state our first main theorem. 

Theorem (5.3.11) [255] Suppose that   is a Fourier multiplier operator defined on 

       Let                        *
 

 
 

 

        
 +     Assume that 

       is a           function that satisfies 

|  
   

 
      |    

 

| || || || |
 

for all | |    | |    and               with | || |     Then there exists a 

constant   such that 

‖    ‖ ̇ 
     ‖ ‖ ̇ 

    

and 

‖    ‖ ̇ 
     ‖ ‖ ̇ 

     

where the constant   is independent of    

   If         and      then  ̇ 
                     when       and 

 ̇ 
                     when        Then we can easily obtain the 

boundedness of Fourier multiplier operators on           and           from 

Theorem (5.3.11). 

Proof. The proof is divided into two parts. 

   Part 1. We prove that 

‖    ‖ ̇ 
     ‖ ‖ ̇ 

                                                              

   Let      be a Schwartz function whose Fourier transform is supported in ,
 

 
 | |   - 

and satisfies ∑ | ̂      |      for all            Denote                       

,                and            ̂(    ) ̂              It is easy to see that 

  ∑          By the orthogonality estimate, we have 
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                                       ̂       

 4 ̂       ̂      ∑  ̂(   
 
 ) ̂(   

 
 )       ̂     

     

5

 

     

 4 ̂       ̂      ∑  ̂(         ) ̂(         )       ̂     

     

5

 

     

 4 ̂       ̂      ∑                ̂     

     

5

 

       

where                   We only estimate that 

( ̂       ̂                ̂     )
 
      (   |       | 

      )

 
   

Pick            such that   
 

 
 

 

 
  By Lemma (5.3.10), we have 

|( ̂       ̂                ̂     )
 
     |  |∫     

                          
 

   

| 

    
       

 

|                  |

     |  | 
 
      |  | 

 
 

∫ |    
      |     | | 

 
      | | 

 
     

 

   

 

               (|       |
 
     )

 
 ∫ |    

      |     | | 
 
      | | 

 
     

 

   

  

Next it suffices to estimate 

∫ |    
      |(    | |)

 
      | | 

 
     

 

   

  

We can use the H ̈lder‟s inequality to write 

∫ |    
      |     | |       | |  

 

     | |   
 
 

 

     | |   
 
 

    
 

   

 

 ‖    
           | |       | |  ‖

  
‖

 

     | |   
 
 

 

     | |   
 
 

‖

  

  

It is easy to see that 

‖
 

     | |   
 
 

 

     | |   
 
 

‖

  

    
  
   

  
   

We only estimate ‖    
      (    | |)

 
     | |  ‖

  
  

   We use the obvious fact that 

(    | |)
 
     ∑ |(   )

 
|

| |  

             | |       ∑ |      |

| |  

 

to obtain 

‖    
      (    | |)

 
     | |  ‖

  
 .∫ |    

      |
 
(    | |)

  
     | |       

 

   
/

 
 

 

  ∑ .∫ |    
      |

 
|  | |  |

 
   | |   | |    

 

   
/

 
 

| |   | |  
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  ∑ .∫ |(  
   

 
    )

 
     |

 

   | |   | |    
 

   
/

 
 

| |   | |  

  ∑   | |  | | .∫ |(  
   

 
    )

 
     |

 

    
 

   
/

 
 

| |   | |  

  ∑   | |  | | .∫ |  
   

 
(    )     |

 

    
 

   
/

 
 

| |   | |  

  

   For multi-indices                  and                   we denote     to mean 

      and     to mean       for all              Considering that  ̂    is 

supported on   | 
 

 
 | |      we can use Leibniz‟s rule to obtain 

∫ |  
   

 
(    )     |

 
    

 

   

 ∑    ∫ |   |   |  |   | (  
   ( ̂)) (    ) (  

   
( ̂))         

   
 
      |

 
    

 

   
   
   

 

 ∑     
   | |   | |    | |   | |∫ |   

   
 
      |

 

    
 

     | |     

     | |        
   

 ∑     
   | |   | |    | |   | |          | |    | |

   
   

  

Then 

‖    
           | |       | |  ‖

  
‖

 

     | |   
 
 

 

     | |   
 
 

‖

  

    
  
   

  
 ∑      

 | |   | | .∫ |   
   

 
(    )     |

 

    
 

   

/

 
 

| |   | |  

    
  
   

  
 ∑      

 | |   | | 4 ∑      
         | |    | |

       

5

 
 

| |   | |  

    

where   depends only on          Therefore 

           ̂ 
  (  (|       |)

 
     )

 
   

Similarly we obtain 

     (           ̂)
 
 (  (|       |)

 
     )

 
 
               

Then 

        ̂   (  (|       |)
 
     )

 
   

Therefore we conclude that 

‖    ‖ ̇ 
     ‖(  ̂)

 
‖
 ̇ 
   

  4∑.        ‖(  (|       |
 
))

 
 
‖
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  4∑.        ‖(|       |
 
)‖

 
 
 

 
 /

 

   

5

 
 

 4∑(        ‖       ‖  
)
 

   

5

 
 

  ‖ ‖ ̇ 
    

for all              Since           are dense in  ̇ 
   

  the operator   can be 

extended to a bounded operator on  ̇ 
   

  Then the proof of Part   is accomplished. 

   Part    We show that 

‖    ‖ ̇ 
     ‖ ‖ ̇ 

                                                                  

In Part 1, we have obtained 

        ̂   (  (|       |)
 
)
 
  

for all              Pick            such that 
 

 
 
 

 
    According to 

Fefferman–Stein vector-valued inequality in the bi-parameter setting, we obtain 

‖    ‖ ̇ 
     ‖(  ̂)

 
‖
 ̇ 
   

  ‖‖4∑.        (  (|       |
 
))

 
 
/

 

   

5

 
 

‖‖

  

 

  ‖‖4∑(        |       |
 
)
 
 

   

5
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  ‖‖4∑(        |       |)
 

   

5

 
 

‖‖

  

  ‖ ‖ ̇ 
     

which concludes the proof of Theorem (5.3.11). 

   We prove the bi-parameter Fourier multiplier operators are bounded on weighted bi-

parameter Besov–Lipschitz and Triebel–Lizorkin spaces. First we state a well-known 

vector-valued weighted maximal inequality. 

Lemma (5.3.12) [255] Assume         and       
       Then there exists a 

constant     such that 

‖{∑(      )
 

   

}

 
 

‖

     

  ‖{∑|  |
 

   

}

 
 

‖

     

 

for all sequences      of locally integrable functions on        
Theorem (5.3.13) [255] Suppose that   is a bi-parameter Fourier multiplier operator 

defined on          Let                        *
 

 
 

 

        
 +     

Assume that        is a           function that satisfies 

|  
   

 
      |    

 

| || || || |
 

for all | |    | |    and               with | || |     If       
       

then the following inequalities are valid with the constant   independent of    
(i) ‖    ‖ ̇ 

   
     ‖ ‖ ̇ 

   
     

(ii) ‖    ‖ ̇ 
   

     ‖ ‖ ̇ 
   

     

   We extend the above theorems to the cases where the multipliers        have weaker 

decay condition and worse singularity at the origin. 

Proof. In the proof of Theorem (5.3.11), we have obtained the pointwise estimate 

|          |  (  (|       |
 
))
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Pick   such that   
 

 
 
 

 
   and     

 
  we have 

‖    (   ̂  )‖
     

  ‖(  (|       |
 
))

 
 
‖
     

  ‖       ‖     
                  

By Lemma (5.3.12) and (120), we can derive that 

‖    ‖ ̇ 
        ‖(  ̂)
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which concludes the proof of Theorem (5.3.13). 

   We have proved Theorem (5.3.11) and Theorem (5.3.13). Now we generalize the results 

of Theorems (5.3.11) and (5.3.13) to more general cases where the multipliers have the 

worse singularity at the origin. 

Theorem (5.3.14) [255] Let                                      

and   *
 

 
 

 

        
 +     Assume that        satisfies 

|  
   

 
      |    

 

| || |   | || |   
 

for all | |    | |    and               with | || |     If       
       

Then there exists a constant   such that 

‖    ‖ ̇ 
       ‖ ‖ ̇ 

      

and 

‖    ‖ ̇ 
       ‖ ‖ ̇ 

       

where the constant   is independent of  . 

Proof. By the Littlewood–Paley decomposition, we can derive that 

                     4 ̂       ̂      ∑                ̂     
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where                   We only verify that 

( ̂(    ) ̂                ̂     )
 
               (   |       | 

      )
 
   

Pick            such that   
 

 
 

 

 
  We write 

|( ̂(    ) ̂                ̂     )
 
     |  |∫     
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      (|       |
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 ∫ |    

      |(    | |)
 
      | | 

 
     

 

   

             

   Next we estimate 

∫ |    
      |(    | |)

 
      | | 

 
     

 

   

  

We use the H ̈lder‟s inequality to obtain 
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It suffices to estimate ‖    
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We use Leibniz‟s rule to obtain 

∫ |  
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   ( ̂)) (    ) (  
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   | |   | |    | |   | |           | |         | |    

   
   

                                        

According to (122) and (123), we derive 

‖    
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 | |  | |

(

 ∑     
          | |         | |    
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| |   | |  

                                                                                                                
Combining (121) and (124), we have 
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Similarly we also have 

     (           ̂)
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  ‖ ‖ ̇ 
     

which conclude the proof of Theorem (5.3.14). 

Theorem (5.3.15) [255] Let                                      

and   *
 

 
 

 

        
 +     Assume that        satisfies 

|  
   

 
      |    

 

| || |   | || |   
 

for all | |    | |    and               with | || |     If       
       

Then there exists a constant   such that 
‖    ‖

 ̇ 
     

   
  ‖ ‖

 ̇ 
     

   
 

and 
‖    ‖

 ̇ 
     

   
  ‖ ‖

 ̇ 
     

   
  

where the constant   is independent of    
   We prove that the bi-parameter Fourier multiplier operators are bounded on bi-parameter 

Besov–Lipschitz and Triebel–Lizorkin spaces (Theorem (5.3.11)). We are concerned with 

the weighted cases (Theorem (5.3.13)). We extend the results to more general cases where 

the multipliers have the worse singularity at the origin (see Theorems (5.3.14) and 

(5.3.15)). 

Proof. Since the proof is similar to that of Theorem (5.3.13). 

Corollary (5.3.16) [314] Let        Then there exists a constant        such that 

∑‖{∑(   (  
 ))

    

   

}

 
    

‖

    
 

     ∑‖{∑|  
 |

    

   

}

 
    

‖

    
 

 

for all double sequences    
   of locally integrable functions on        

Corollary (5.3.17) [314] Let        For any     
         function      whose Fourier 

transform is supported in  |    |          |    |              assume that |               |  

        |    | 
 

      |    | 
 

    for some      Then there exist two constants    and      such 

that the following inequality is valid. 
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{
 

  

|                            |

     |  | 
 

          |    | 
 

   

 
 

    

|                            |

     |  | 
 

          |    | 
 

   

}

      
             

|                       |

     |  | 
 

          |    | 
 

   

 

         |    |
               

 
     

where     denotes the strong maximal operators and the constants    and      depend only on   and 

     
Proof. This proof is divided into two parts. 

   Part 1. We first show that 

   
             

{
 

  

|                            |

     |  | 
 

          |    | 
 

   

 
 

    

|                            |

     |  | 
 

          |    | 
 

   

} 

      
             

|                       |

     |  | 
 

          |    | 
 

   

                                                  

Select a Schwartz function   on    whose Fourier transform is supported in       |    |          

and is equal to   on       |    |        Then  ̂ (
    

  
)  ̂ (

    

    
) is equal to   on the support of the 

Fourier transform of                 and we can write 

                        ( ̂         ̂ (
 

  
*  ̂ (

 

    
*+

 

                    

 ∫   
                        

                                                 

 

   

  

   We use the partial derivative to obtain 
|                            |  

 ∫   
   |(      )(                )||    

  (                    )               |          

 

   
 

             ∫   
        |            | 

      
        |              | 

  |               |          

 

   
  

Therefore 

 

  

|                            |

     |  | 
 

          |    | 
 

   

 ∫   
     

      |            | 
         |              | 

  
 

   

 
|               |

     |  | 
 

          |    | 
 

   

            

where   is an arbitrarily large positive integer and         is a constant which depends 

only on    
   Since 

       |            | 
 

   
     |  | 

 
   

     |         | 
 

   

 

and 

         |              | 
 

   
       |    | 

 
   

       |         | 
 

   

  

we obtain that 

 

  

|                            |
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          |    | 
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         ∫
|               |

     |         | 
 

          |         | 
 

   

 

   

 
  
 

     |            | 
   

 
   

    
 

       |              | 
   

 
   

          

      
               

|                         |

     |    | 
 

          |    | 
 

   

                                                                               

   Similarly, we also obtain that 
 

    

|                            |

     |  | 
 

          |    | 
 

   

      
      

        
 

|                         |

     |    | 
 

          |    | 
 

   

          

Combining (126) and (127), we conclude the proof of Part 1. 

   Part 2. We show that 

   
             

|                       |

     |  | 
 

          |    | 
 

   

         |    |
               

 
                    

   Let |    |     and |    |       for some           to be chosen later. We use the 

mean value theorem to obtain the estimate 
                                                         

 (         )                                            
 (         )                                                     

for all             Therefore 
|                       | 

    
|  | |  |   

|    | |    |     

(|                              |   |                              |    )

 |                                 |  

where                 and                      Let    be a ball with 

radius equal to    and    being the center, and      be a ball with radius equal to      and 

     being the center. By raising to the power of        averaging over         and 

raising to the power (
 

   
)  we derive 

|                       | 

          
    

|  | |  |   
|    | |    |     

|(         )                   |   |(         )                   |     

 .
 

      
   

     
 ∫ ∫ |                                 |

   
 

    

 

  

          /

 
   

  

where                     
 

     and        is the volume of the unit ball in     

   Set    
 

  
 and      

 

    
 for some      Then we have |  |  |  |  

 

  
 |    |  

|    |  
 

    
 

 

    |  |
 

 

    |  |
 and 

 

      |    |
 

 

      |    |
  Therefore we can write 

|                       |

     |  | 
 

          |    | 
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|      | |      | 

 
      

|     
                       | 

       |  | 
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|                            | 

         |  | 
 

          |    | 
 

   

 

.
  
     

 

      
    

∫ ∫ |                                 |
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 |  |
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            (    
        

 

|                            | 

       |  | 
 

          |    | 
 

   

 
|                            | 

         |  | 
 

          |    | 
 

   

   
  
       |    |

               
 

   +  

Using (125) and setting   
 

              
   with        

 

     we can achieve (128), where we used 

the hypothesis 

   
|  |  

 

|    |  
 

|                       |

     |  | 
 

          |    | 
 

   

    
|  |  

 

|    |  
 

        |    |  |  | 
 

      |    |  |    | 
 

   

     |  | 
 

          |    | 
 

   

     

Combining (125) and (128), we conclude the proof of Corollary (5.3.17). 

Corollary (5.3.18) [314] Suppose that    are a Fourier multiplier operators defined on        Let 

                          *
 

 
 

 

             
 +     Assume that                 is a 

          function that satisfies 

|     
         

                   |       

 

|    |
|    ||    |

|    |
 

for all |    |    |    |    and                     with |    ||    |     Then there exists a 

constant      such that 

∑‖    
  ‖

 ̇   
         

 

     ∑‖  ‖
 ̇   
         

 

 

and 

∑‖    
  ‖

 ̇   
         

 

     ∑‖  ‖
 ̇   
         

 

  

where the constant      is independent of the sequence     

   If            and     ⁄   then  ̇   
                       when       and 

 ̇   
                       when         Then we can easily obtain the boundedness of 

Fourier multiplier operators on             and             from Corollary (5.3.18). 

Proof. The proof is divided into two parts. 

   Part 1. We prove that 

∑‖    
  ‖

 ̇   
         

 

     ∑‖  ‖
 ̇   
         

 

                                                        

   Let         be a Schwartz function whose Fourier transform is supported in ,
 

 
 |    |   - and 

satisfies ∑ | ̂         |      for all               Denote                  
   

( 
   

) 
   

( 
   

) ∑     ( 
 )  

 ∑ (      
 )  and                          ̂(       ) ̂( 

      )                 It is easy to see 

that      ∑                          By the orthogonality estimate, we have 

∑         
              

 

 ∑         
             

 

 ∑            ̂             

 

 ∑4 ̂(       ) ̂  
       ∑  ̂(   

 
    ) ̂( 

       )                 ̂           
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 ∑4 ̂(       ) ̂  
       ∑  ̂(            ) ̂( 
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 ∑4 ̂(       ) ̂  
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where                   We only estimate that 

∑( ̂          ̂  
                               

 ̂           )
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 ∑(    |      
  |               )

 
   

 

  

Pick                         such that   
 

 
 

 

   
  By Corollary (5.3.17), we have 

∑|( ̂(       ) ̂  
                                ̂           )

 
           |

 

 

     ∑|∫             
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∑
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                     |

     |  | 
 

        |    | 
 

   

∫ |            
            |     |    | 

 
        |    | 
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  |
   

           )

 
   

∫ |            
            |     |    | 

 
        |    | 

 
             

 

   
 

  

Next it suffices to estimate 

∫ |            
            |(    |    |)

 
        |    | 

 
              

 

   

  

We can use the H ̈lder‟s inequality to write 

∫ |            
            |     |    | 

      |    | 
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            (    |    |)
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     |    | 
  

 
   

‖

  

  

It is easy to see that 
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     |    | 
  

 
   

 

     |    | 
  

 
   

‖

  

      
 
  
   

  
   

We only estimate ‖            
            (    |    |)

 
     |    | 

 ‖
  
  

   We use the obvious fact that 

     |    | 
         ∑ |        

    |

|    |  

             |    | 
           ∑ |        

    |

|    |  

 

to obtain 

‖            
            (    |    |)

 
     |    | 

 ‖
  

 .∫ |            
            |
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     |    | 

            

 

   

/
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            |
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/
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                )
 
           |
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/

 
 

|    |   |    |  

     ∑   |    |  |    | .∫ |(     
         

                )
 
           |

 

          

 

   

/

 
 

|    |   |    |  

     ∑   |    |  |    | .∫ |     
         

    (            )           |
 

          

 

   

/

 
 

|    |   |    |  

  

   For multi-indices                           and                            we denote      
     to mean               and           to mean               for all            . 

Considering that  ̂       is supported on      |  
 

 
 |    |      we can use Leibniz‟s rule to obtain 

∫ |     
         

    (            )           |
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 ∑                ∫ |   |         |  |         | (     
         ( ̂)* (       ) (     

         ( ̂))
 

   
         
         

               
         

                   |
 

           

 ∑                 
   |    |   |    |    |    |   |    |

         
         

 ∫ |      
         

                   |
 

          

 

     |    |     

     |    |     

 ∑                 
   |    |   |    |    |    |   |    |          |    |    |    |

         
         

  

Then 
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 ∑                 

 |    |   |    | .∫ |      
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 |    |   |    |4 ∑                 
         |    |    |    |

                   

5

 
 

|    |   |    |  

    

where      depends only on                 Therefore 

∑                   
 ̂  

 

 ∑(   (|      
  |)

   
           )

 
   

 

  

Similarly we obtain 
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Then 
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Therefore we conclude that 
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 ̇   
         

 

 

for the sequence               Since           are dense in  ̇   
           the operators    can 

be extended to a bounded operators on  ̇   
           Then the proof of Part   is accomplished. 

   Part    We show that 
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  ‖

 ̇   
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 ̇   
         

 

                                                     

In Part 1, we have obtained 
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∑           
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for the sequence               Pick                      such that (
    

   
 
    

   
)     

According to Fefferman–Stein vector-valued inequality in the bi-parameter setting, we obtain 
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which concludes the proof of Corollary (5.3.18). 

Corollary (5.3.19) [314] Let          *
 

 
 

 

          
 +     Assume that                 

is a           function that satisfies 

|     
         

                   |       

 

|    |
|    ||    |

|    |
 

for all |    |    |    |    and                     with |    ||    |     Then    is bounded 

on      for       and on      for         
   We show the bi-parameter Fourier multiplier operators are bounded on weighted bi-parameter Besov–

Lipschitz and Triebel–Lizorkin spaces. First we state a well-known vector-valued weighted maximal 

inequality. 

Corollary (5.3.20) [314] Assume       and            
       Then there exists a 

constant        such that 

∑‖{∑(   
(  

 ))
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for all double sequences    
   of locally integrable functions on        

Corollary (5.3.21) [314] Suppose that    are a bi-parameter Fourier multiplier operators defined on 

         Let                           *
 

 
 

 

             
 +     Assume that 

                is a           function that satisfies 

|     
         

                   |       

 

|    |
|    ||    |

|    |
 

for all |    |    |    |    and                     with |    ||    |     If          
  

     then the following inequalities are valid with the constant      independent of the sequence     
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  ‖

 ̇   
               

 

     ∑‖  ‖
 ̇   
               

 

  

   Finally, we extend the above theorems to the cases where the multipliers                 have weaker 

decay condition and worse singularity at the origin. 

Proof. In the proof of Corollary (5.3.18), we have obtained the pointwise estimate 
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Pick       such that   
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By Corollary (5.3.20) and (131), we can derive that 
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which concludes the proof of Corollary (5.3.21). 

Corollary (5.3.22) [314] Let                                              and 

  *
 

 
 

 

             
 +     Assume that                 satisfies 
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                   |       
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|    |     
 

for all |    |    |    |    and                     with |    ||    |     If          
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where the constant      is independent of the sequence     
Proof. By the Littlewood–Paley decomposition, we can derive that 
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According to (133) and (134), we derive 
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Combining (132) and (135), we have 
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which conclude the proof of Corollary (5.3.22). 

Corollary (5.3.23) [314] Let                                              

and   *
 

 
 

 

             
 +     Assume that                 satisfies 
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for all |    |    |    |    and                     with |    ||    |     If          
       

Then there exists a constant      such that 
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where the constant      is independent of the sequence     
   Since the proof of Corollary (5.3.23) is similar to that of Corollary (5.3.21), we omit the details. 
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Chapter 6 

Characterizations of Logarithmic Besov Spaces in Terms of Differences 

   We show that     
      ⁄      

   
 for      ⁄   We also determine the dual of     

   
 with 

the help of logarithmic Lipschitz spaces       
      

  We show embeddings between spaces 

      
      

 and     
   

 which complement and improve embeddings established. We apply the 

reiteration formula and limiting interpolation to investigate several problems on Besov 

spaces, including embeddings in Lorentz–Zygmund spaces and distribution of Fourier 

coefficients. We characterize     
   

 by means of Fourier-analytical decompositions, 

wavelets and semi-groups. We also compare those results with the well-known 

characterizations for classical Besov spaces     
   

Section (6.1) Logarithmic Smoothness and Lipschitz Spaces 

   Besov spaces     
  play a central role in the theory of function spaces as can be seen by 

Triebel [65–67]. For the complete solution of some natural questions as compactness in 

limiting embeddings [165, 261] or spaces on fractals [270, 271], more general spaces have 

been introduced where smoothness of functions is considered in a more delicate manner 

than in     
   These spaces of generalized smoothness have been studied for long and from 

different points of view. See, DeVore, Riemenschneider and Sharpley [226], Brézis and 

Wainger [258], Gol‟dman [275], Merucci [149], Kalyabin and Lizorkin [32], Cobos and 

Fernandez [142], Edmunds and Haroske [268], Haroske and Moura [28], Farkas and 

Leopold [144], Triebel [67, pp. 52–55]. 

   As in the case of     
   spaces of generalized smoothness on    can be introduced by 

following the Fourier analytic approach or by means of the modulus of smoothness. If we 

take classical smoothness sand additional logarithmic smoothness with exponent    the 

first way leads to spaces     
   

 and the second to spaces     
   

. If       and      it 

turns out that     
        

   
 with equivalence of norms (see [28, Theorem 2.5] and [65, 

2.5.12]; but if       and        then     
      ⁄  

     
      ⁄  

 as it is shown in 

[52, Corollary 3.10]). However, the relation between these two kinds of spaces when 

    has not been described yet. This problem is stated in the report of Triebel [282, p. 

6], where first results on this question have been shown: Working with spaces on the unit 

cube    in    and using the Haar basis, Triebel established in [282, Proposition 9] that 

    
            

        provided that       and     or       and         

     See also Besov [257], where spaces     
           are compared with certain 

spaces defined by first differences. 

   We compare spaces     
   

 and     
   

 with the help of the limiting real method 

               {      ‖ ‖         4∫(
      

           
*
 

 

 

  

 
5

  ⁄

  }   

Here     or         and        is the  -functional of Peetre. Among other things, 

for      ⁄  we show that 

    
      ⁄

     
        

      ⁄                  

    
      ⁄      

        
      ⁄
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Therefore,     
      ⁄      

     This implies that the classical space     
   defined by the 

modulus of continuity, coincides with the space     
    ⁄   defined by the Fourier transform, 

with zero classical smoothness and logarithmic smoothness with exponent   ⁄   

   We also consider embeddings between spaces     
     According to [62, Theorem 2.8.1] or 

[1, Corollary 5.4.21], if               and      then     
    ⁄    ⁄    

 

    
   Note that in the embedding the two spaces have the same differential dimension. The 

limit case where     has been studied by DeVore, Riemenschneider and Sharpley [266, 

Corollary 5.3 (ii)], where they showed that the embedding holds with a loss of a unit in the 

exponent of the logarithmic smoothness. To be more precise, if               

and      ⁄   then     
    ⁄    ⁄      

     
     This result has been improved recently by 

Gogatishvili, Opic, Tikhonov and Trebels [274, Corollary 2.8] by showing that the 

embedding holds with the loss of only          ⁄  in the exponent of the logarithmic 

smoothness. We use limiting interpolation to derive the embedding     
    ⁄    ⁄              ⁄

 

    
    following a more simple approach than in [274]. 

   In addition we determine the dual of     
   

 for              and      ⁄   

This is done with the help of logarithmic Lipschitz spaces       
      

 introduced by Haroske 

in [277] (see also [279, Definition 2.16], [267, p. 149]). 

   Finally we study embeddings between Lipschitz spaces       
      

 and Besov spaces     
     

This problem was considered by Haroske [277, 279] and Neves [280] among other 

authors. Our approach allows us to cover some critical cases which come up for the 

techniques used in [277]. As a consequence, we complement and improve several results 

of Haroske [277]. 

   Subsequently, given two quasi-Banach spaces      we put     to mean that   is 

continuously embedded in    
   If     are non-negative quantities depending on certain parameters, we write     if 

there is a constant     independent of the parameters in   and   such that     . We 

put     if     and      
   Let  ̅          be a quasi-Banach couple, that is to say, two quasi-Banach spaces 

      which are continuously embedded in some Hausdorff topological vector space. The 

Peetre‟s  -functional is given by 

                        {‖  ‖    ‖  ‖  }                

where the infimum is taken over all representations         with       and 

       
   For       and        the real interpolation space  ̅               is formed 

by all         having a finite quasi-norm 

‖ ‖ ̅    4∫(         )
 

 

 

  

 
5

  ⁄

 

(as usual, when     the integral should be replaced by the supremum). See [2, 259] or 

[62]. 

   For               let        |     | and 

      {
                          ] 
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Replacing    by        ⁄  we obtain the spaces 

 ̅                   {         ‖ ‖ ̅      4∫(              )
 

 

 

  

 
5

  ⁄

  } 

(see [272, 273]). Under suitable assumptions on   and    spaces              are well-

defined even if     or      In the special case          we simply write 

             instead of                   

   We shall also need the following limiting real spaces. Let             and 

        For     or      the space  ̅                       consists of all those 

     with 

‖ ‖         4∫(
      

            
*
 

 

 

  

 
5

  ⁄

   

(see [276, 260, 262]). To avoid that               if      we assume that     ⁄  if 

     and     if      
   The following result is established in [305, Lemma 2.5] by using the connection between 

limiting real spaces          and logarithmic spaces  ̅      [269, Proposition 1], and 

reiteration results for logarithmic spaces [272, Theorems 5.9*, 4.7*, 5.7 and 4.7]. It will be 

important in our later considerations (we follows, [272] and so it is slightly different from 

[305]). 

Lemma (6.1.1) [283] Let       be quasi-Banach spaces with        Assume that 

              and      ⁄     The following continuous embeddings hold: 

(a)                       ⁄  (             )                               ⁄   

(b)                       ⁄  (             )                               ⁄   

Remark (6.1.2) [283] Note that if      ⁄  then (             )     ⁄    
      so none 

of the embeddings in statement (a) of Lemma (6.1.1) hold in this case. As for statement (b) 

when      ⁄   if     we can determine explicitly (             )     ⁄    
  Indeed, 

by Holmstedt‟s formula [279, Remark 2.1] 

 (                 )  4 ∫ .
            

  
/

        ⁄

 

  

 
5

  ⁄

  

Hence, we obtain 

‖ ‖(             )     ⁄    
 4∫

 

       
∫ .

            

  
/

        ⁄

 

  

 

  

 

 

 

5

  ⁄

 

 4∫.
            

  
/

 

∫
 

       

 

    

  

 

 

 

  

 
5

  ⁄

 4∫.
            

  
(            )

  ⁄
/

  

 

  

 
5

  ⁄

  

Therefore, if      ⁄  and     we still have the embedding of the right-hand side in 

statement (b) of Lemma (6.1.1) because            ⁄     and so                       ⁄  

             But the embedding of the left-hand side in (b) fails. 

   Other kind of limiting reiteration formulae can be seen in [263]. 
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   Let   and    be the Schwartz space of all complex-valued rapidly decreasing infinitely 

differentiable functions on     and the space of tempered distributions on     
respectively. By   we denote the Fourier transform on    and by     the inverse Fourier 

transform. 

Take      such that 

               | |                          | |     
For     and      let           

         
        Then the sequence        

  

forms a dyadic resolution of unity, ∑      
 
      for all       

   For             and        the space     
   

 consists of all      having a 

finite quasi-norm 

‖ ‖
    
    4∑(         ‖         ‖  

)
 

 

   

5

  ⁄

 

(with the usual modification if    ). See [149, 142, 165, 28]. Note that if     then 

    
   

 coincides with the usual Besov space     
   

   Besov spaces of generalized smoothness can be also introduced by using the modulus of 

smoothness as we recall next. Let   be a function on     let      and      We put 

   
                            (  

    )      
 (  

  )     
The  -th order modulus of smoothness of a function      is defined by 

            
| |  

‖  
  ‖

  
      

If k=1we simply write         instead of           

   For         the following connection holds between the  -functional for the couple 

      
   and the  -th order modulus of smoothness: There are positive constants    and 

   such that 

   ( 
         

 )           ‖ ‖               ( 
         

 )                

for all      and     (see [256, Theorem 5.4.12]). 

   For                            and     with      the space 

    
   

 consists of all      such that 

‖ ‖
    
    ‖ ‖   4∫[                     ]

 

 

 

  

 
5

  ⁄

    

See [266, 28]. Note that if     and      ⁄   then     
        

   If     it is well-known that the definition of      
   

 does not depend on the choice of 

    (see [28, Theorem 2.5]). Next we show that the same property holds for     
     We 

also characterize spaces     
   

 by interpolation. 

Theorem (6.1.3) [283] Let                    and      

(a) The space     
   

 does not depend on the choice of      

(b) We have     
          

           with equivalence of quasi-norms. 

Proof. Let           Put 

‖ ‖
    
    ‖ ‖   4∫(                 )

 

 

 

  

 
5

  ⁄
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and 

‖ ‖
    
   

   
 ‖ ‖   4∫(                  )

 

 

 

  

 
5

  ⁄

  

Our aim is to show the equivalence between the quasi-norms ‖   ‖
    
    and ‖   ‖

    
   

   
  Since 

                      it is clear that ‖ ‖
    
   

   
 ‖ ‖

    
     Let us check the converse 

inequality. Using Marchaud‟s inequality [1, Theorem 5.4.4], for        we obtain 

       
 

 ∫
        

 

  

 

 

 

 ∫
        

 

  

 
 ‖ ‖  

 

 

∫    
  

 

 

 

 ∫
        

 

  

 
 ‖ ‖  

 

 

  

Therefore, since           ⁄  is equivalent to a decreasing function, applying Hardy‟s 

inequality [256, Theorem 6.4], we get 

4∫(                )
 

 

 

  

 
5

  ⁄

 

 4∫             

 

 

  

 
5

  ⁄

‖ ‖   4∫6          ∫
        

  
          

 

 

7

  

 

  

 
5

  ⁄

 

          ‖ ‖   4∫0            
        

  
1

  

 

  

 
5

  ⁄

 ‖ ‖
    
   

   
  

This proves statement (a). 

   As for (b), using (1), we obtain 

‖ ‖(     
 )

        
 4∫[          (         

 )]
 

 

 

  

 
5

  ⁄

 

 4∫[          (          
 )]

 

 

 

  

 
5

  ⁄

 4∫ *         (  ‖ ‖           )+
 

 

 

  

 
5

  ⁄

 

 ‖ ‖   4∫[                  ]
 

 

 

  

 
5

  ⁄

 ‖ ‖
    
    

where we have used (a) in the last equivalence. This completes the proof. 

   In what follows we assume that     
   

 is quasi-normed by (2). Next we compare     
   

 and 

    
     

Theorem (6.1.4) [283] Let             and      ⁄   Then 

    
               ⁄

     
        

               ⁄
  

Proof. Recall that 

           
      

             
  

where     
  stands for the Triebel–Lizorkin space (see [65, Proposition 2.3.2/2 (iii)]). 

Moreover,     
    

  [65, Theorem 2.5.6 (i)] and so     
      According to Theorem 

(6.1.3) (b), Lemma (6.1.1) and [142, Theorem 5.3 and Remark 5.4], we derive 
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           (           
    

 )
        

 (   
     

    ⁄             
 )

        

    
     

    ⁄                 ⁄      
               ⁄

  

Similarly, we have 

    
               ⁄

    
     

    ⁄                 ⁄  (   
     

    ⁄             
 )

        

 (           
    

 )
        

       
               

     

Corollary (6.1.5) [283] Let       and      ⁄   

(a) If                
      ⁄

     
        

      ⁄   

(b) If                
      ⁄      

        
      ⁄

  

   In particular, for      ⁄  we obtain with equivalence of norms 

    
      ⁄

     
     

Theorem (6.1.6) [283] Let                    ⁄  and       ⁄    ⁄    
Then 

    
             ⁄

     
     

Proof. According to [1, Corollary 5.4.20], we have 

    
                                                                            

On the other hand, let     such that     and       such that       By [1, 

Corollaries 5.4.13 and 5.4.21], we derive 

  
        

          
       

                                                   

Interpolating embeddings (3) and (4) by the limiting real method we get 

     
    

                   
               

The target space in this embedding can be determined by using [305, Lemma 2.2(b)] and 

Theorem (6.1.3) (b). Indeed, 

        
                    

                     
      

 
  
              

     

As for the domain space, Lemma (3.1.1) (b) yields 

    
             ⁄

       
    ⁄               ⁄  (      

    ⁄      
 )

        
      

    
          . 

This completes the proof. 

   Let             and         Since     
       

     
    ⁄       using the 

duality formula for spaces              (see [265, Theorem 3.1] or [281, Theorem 2.4]) 

and that    
       

   [62, Theorem 2.6.1], it follows that 

(    
   )

 
  

     
                   ⁄     ⁄      ⁄     ⁄  

(see also [144, Theorem 3.1.10]). 

   In order to determine the dual space of     
     we first establish an auxiliary result and 

recall the definition of logarithmic Lipschitz spaces (see [277] and [279]). 

Lemma (6.1.7) [283] Let       be Banach spaces with    continuously and densely 

embedded in     Assume that         ⁄     ⁄     and      ⁄   Then we 

have with equivalence of norms 

               
     

    
              

Proof. Since        we have that                ‖ ‖   for      Take any 

     ⁄   It follows that 

(∫[                      ]
 

 

 

  

 
+

  ⁄

 (∫           
 

 

  

 
+

  ⁄

‖ ‖   ‖ ‖   ‖ ‖                 
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This yields that 

                                                   

Since     ⁄        ⁄   we can apply the duality formula established in [264, 

Theorem 5.6] to derive 

               
                  

     
    

                    

Density of the embedding       implies that   
    

   So         
    

    
‖ ‖    for      Now, using that        ⁄  is a decreasing function we get 

(∫[                        
    

  ] 
 

 

 

  

 
+

   ⁄

 ‖ ‖    

         
    

  4∫                
 

 

 

  

 
5

   ⁄

 ‖ ‖                   
  

Consequently,                
     

    
              

Definition (6.1.8) [283] Let             and     ⁄               The 

space       
      

 is formed by all functions      having a finite quasi-norm 

‖ ‖
      

       ‖ ‖   4∫0
       

           
1

  

 

  

 
5

  ⁄

  

   Now we are ready to describe the dual space of     
     Recall that the usual lift operator    

is defined by 

          | |    ⁄            

Theorem (6.1.9) [283] Let             and       ⁄   The space (    
   )

 
 

consists of all      
   such that         

     
        

 with   ⁄     ⁄      ⁄     ⁄   

Moreover, 

‖ ‖
(    

   )
  ‖    ‖   

     
          

Proof. By Theorem (6.1.3) (b) and Lemma (6.1.7), we derive 

(    
   )

 
 ((     

 )
        

)
 
 (   

      )          
  

On the other hand, lift operators 

       
                  

   

are bijective and bounded. Hence 

 (       
      )   (              

  )          ‖    ‖ 
  
             

where we have used (1)for the last equivalence. Consequently 

‖ ‖
(    

   )
  4∫               

 

 

 

  

 
5

   ⁄

‖    ‖ 
  
 4∫0

           

             
1

   

 

  

 
5

   ⁄

 ‖    ‖   
     
          

   We start by showing that Lipschitz spaces can be generated by interpolation from the 

couple       
     

Lemma (6.1.10) [283] Let             and     ⁄               Then 
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with equivalent quasi-norms. 

Proof. Using (1) we derive 

‖ ‖(     
  )

       
 4∫0

 (            
 )

           
1

  

 

  

 
5

  ⁄

 4∫            

 

 

  

 
5

  ⁄

‖ ‖   4∫ 0
       

           
1

  

 

  

 
5

  ⁄

 ‖ ‖
      

        

   The next result describes the position of Lipschitz spaces between Besov spaces with 

classical smoothness   and additional logarithmic smoothness. 

Theorem (6.1.11) [283] Let             and     ⁄   Then 

    
                ⁄

       
      

     
                ⁄

  

Proof. By Lemmata (6.1.10), (6.1.1) (a) and [142, Theorem 5.3 and Remark 5.4], we 

obtain 

      
      

       
                         

                    
     ⁄                 

       
     ⁄                 ⁄      

                ⁄
  

   Similarly, we derive 

    
                ⁄

       
     ⁄                 ⁄            

     ⁄                 

                
                

                
      

  

Corollary (6.1.12) [283] Let       and     ⁄   

(a) If                
       ⁄

       
      

     
       ⁄   

(b) If                
       ⁄        

      
     

       ⁄
  

     If     ⁄  we have 

    
       ⁄        

      
  

   Next we recall a result of Haroske [267, Proposition 16]. 

Proposition (6.1.13) [283] Let                   ⁄  and     ⁄   Then 

      
      

       
      

                        

{
 

   
 

 
   

 

 
             

  
 

 
   

 

 
             

 

   We show that combining Proposition (6.1.13) with the previous results we can derive 

some complements and improvements of the results of [267]. 

Theorem (6.1.14) [283] Let               and     ⁄   Then 

    
        

      
   

{
 
 

 
 
                                                                           

                          
 

 
 

 

        
 
 

 
 

                            
 

 
 

 

        
 
 

 
 

 

Proof. If               we obtain 

    
             

                 
                

                
      

  

   If             let            ⁄   By Theorem (6.1.11) and Proposition (6.1.13), 

we derive 
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Corollary (6.1.15) [283] Let             and         ⁄   Then 

    
    

       
      

  

Proof. Using again Theorem (6.1.11) and Proposition (6.1.13) we obtain 

    
    

       
        

       
      

  

   Proceeding as in Corollary (6.1.15), we can also derive the embedding 

             
       ⁄

       
      

 

provided that             and     ⁄   This improves [267, embedding (29), 

p. 793] because 

           
       ⁄

              
       ⁄

  

   Note also that from Theorem (6.1.11) we can recover [267, embeddings (41), p. 796] for 

       Besides, Theorem (6.1.11) also yields that if     ⁄  then 

      
      

     
       ⁄

                      

and 

    
       ⁄

       
      

                     

Corollary (6.1.16) [314] Let      The space .        

  
      

   /

 

 consists of all        

 

   such 

that          
(
   

 
 
   

 
)

   
       

   
 
 with      ⁄   Moreover, 

∑‖  ‖

(          

.  
      
   

/

,

  ∑‖     ‖
   

(
   
 

 
   
 

)

   
       
   

 
  

Proof. By Theorem (6.1.3) (b) and Lemma (6.1.7), we derive 

.          

  
      
   /

 

 .          
  

     
      
   

     
/

 

 (    
 

       
 
*
(  

      
   

* 
   
 

  

On the other hand, lift operators 

        
 

       
 
         

 
     

 

   

are bijective and bounded. Hence 

∑ (         
 

       
 
*  ∑ (            

 
     

 

  *

 ∑        ‖     ‖    
 

 ∑             
 

 

where we have used (1) for the last equivalence. Consequently 

∑‖  ‖

4        

  
      
   5

  4∫            
 

 

  

 
5

 
   

∑‖     ‖    
 

 ∑

(

 ∫6

             
 

          
      
   

7

   
  

 

  

 

)

 

 
   

 ∑‖     ‖
      

 
 
   
 

   
       
   

 
  

   We start by showing that Lipschitz spaces can be generated by interpolation from the 

couple           
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Section (6.2) Approximation Spaces and Limiting Interpolation 

   There is a symbiotic relationship between approximation theory and interpolation theory 

as can be seen by Bergh and L ̈fst ̈rm [2], Triebel [62] and Petrushev and Popov [299]. 

The real interpolation method            plays an important role in this matter. Usually 

      but to cover some extreme cases, limiting versions have been also used, where 

      and logarithmic weights may be included. See Gomez and Milman [276], Evans, 

Opic and Pick [273], Cobos, Fern ́ndez-Cabrera, K ̈hn and Ullrich [260], Cobos and 

K ̈hn [262] and Edmunds and Opic [269]. 

   Given a quasi-Banach space   and an approximation family         
 of subsets of     

approximation spaces   
  are defined by selecting those elements of   such that 

      ⁄        belongs to     Here             and       is the error of best 

approximation to   by the elements of     . These spaces have been studied by Butzer 

and Scherer [287], Pietsch [300, 301], Petrushev and Popov [299], and DeVore and 

Lorentz [15]. Limiting approximation spaces   
     

 are defined by doing     and 

inserting the weight             They have been investigated by Cobos and Resina 

[292], Cobos and Milman [291], Cobos and K ̈hn [290], Feh ́r and Gr ̈ssler [295]. As it is 

shown in [292], even when      the theory of limiting approximation spaces does not 

follow from the theory of spaces   
  by taking      Spaces   

  and   
     

 allow to 

establish in an elegant and clear way a number of important results on function spaces, 

sequence spaces and spaces of operators. 

   We continue the investigation on limiting interpolation and approximation spaces, 

applying the results to problems on Besov spaces. 

   After reviewing basic concepts from approximation spaces and interpolation theory, we 

establish some connections between limiting methods and the real method with a function 

parameter. Is devoted to reiteration of approximation constructions. The construction     
  

is stable by iteration [300, Theorem 3.2] and a similar property holds for     
     

 [295, 

Theorem 2]. We study the stability properties when we apply first the construction     
  

and then     
     

 or vice versa. As we will show, outside the case where    , the 

constructions do not commute. The space    
     

  
  consists of those     such that 

      ⁄              ⁄        belongs to    while the space    
   

     
 has a different 

shape that we determine with the help of limiting interpolation. 

   We apply the previous results to investigate several problems on function spaces. We 

first consider embeddings of Besov spaces     
   

 with     into Lorentz–Zygmund 

spaces. In the Banach case where parameters     are greater than or equal to 1, this 

question was studied by DeVore, Riemenschneider and Sharpley [266] by means of weak 

type interpolation. Our approach is different and results cover the whole range of 

parameters. Then we consider Besov spaces     
   

 with zero classical smoothness and 

logarithmic smoothness with exponent    We show embeddings of     
   

 into spaces of the 

kind of the small Lebesgue space     which include the embeddings into Lorentz–

Zygmund spaces established in [289]. We also study the relationship between smoothness 

of derivatives of   and smoothness of    and the behaviour of the conjugate-function 

operator on     
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   We investigate the distribution of Fourier coefficients of functions of     
   
  Our results 

complement and improve those of [266] for the Banach case. We also show estimates for 

Fourier coefficients of functions in spaces close to    and     which extend the estimates 

of Hardy and Littlewood and of Bennett for functions in           [286, Theorem     

   ] and the estimate of Cobos and Segurado for functions in             ⁄  [294, 

Theorem 8.5]. 

   Let    ‖   ‖   be a quasi-Banach space. We say that a sequence         
 of subsets of 

  is an approximation family in   if the following conditions hold 

                                                                                      
                                                                                        

                                                                              
Given any     and      we put 

                   ‖   ‖           

   Let           and         The approximation space   
     

        
     

 

is formed by all those     which have a finite quasi-norm 

‖ ‖
  
      (∑                   

    

 

   

+

  ⁄

          

‖ ‖
  
         

   
                             

The space   
     

 is a quasi-Banach space with   
     

     where the symbol   means 

continuous embedding. The case     and     corresponds to the classical 

approximation spaces, which have been studied in [292, 299, 300]. We write simply   
  

and ‖   ‖    if      If     we obtain the limiting approximation spaces considered in 

[14, 23, 292]. Note that   
     

 coincides with   if      ⁄   Moreover,   
    

     
  for 

any choice of parameters. See [302] for properties of spaces   
     

 if      

   Let us give a concrete example. Let       the space of bounded sequences and let 

       the subset of sequences having at most   coordinates different from    Then, for 

any       the sequence             is the non-increasing rearrangement    
   of the 

sequence    The space   
  coincides with the Lorentz sequence space    ⁄     the space 

  
     

 is the Lorentz–Zygmund space              and   
     

 is    ⁄             Recall 

that for         and         

             8     ‖ ‖             (∑    ⁄             
     

 

   

+

  ⁄

  9 

(the sum should be replaced by the supremum if    ) and                   (see 

[256, 300, 266]). 

   Let      
 
       It is shown in [292, 295] that     

     
 if and only if there is a 

representation   ∑   
 
    with        and 

(∑        ⁄  ‖  ‖  
 

 

   

+

  ⁄

                                                      

Besides, taking the infimum of the values (8) we obtain an equivalent quasi-norm to 

‖   ‖
  
       This property is important for the proof of the following embedding result. 
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   In what follows, if     are non-negative quantities depending on certain parameters, we 

write      if there is a constant     independent of the parameters in   and   such 

that        If      and       we put      
Lemma (6.2.1) [305] Let     be quasi-Banach spaces which are continuously embedded 

in a Hausdorff topological vector space. Let         
 be an approximation family such 

that        for any       Assume that there are constants       such that 

‖ ‖              ‖ ‖            
Then for       and      ⁄  we have that 

  
       

   
     

  

Proof. By (8), there is a constant      such that for any     
       

  we can find a 

representation   ∑   
 
    (in  ) with        such that 

(∑          ⁄  ‖  ‖  
 

 

   

+

  ⁄

   ‖ ‖  
         

Since 

‖  ‖         
 ‖  ‖     ‖  ‖   

we obtain that 

(∑        ⁄  ‖  ‖  
 

 

   

+

  ⁄

   (∑          ⁄  ‖  ‖  
 

 

   

+

  ⁄

    

Now it is not hard to show that ∑   
 
    is convergent in    By compatibility,   

∑   
 
    also in    Therefore, taking the infimum over all possible representations and 

using again (8) we conclude that 

‖ ‖
  
        ‖ ‖  

         

   We now review some notions from interpolation theory. By a quasi-Banach couple 

 ̅          we mean two quasi-Banach spaces       which are continuously embedded 

in some Hausdorff topological vector space. Given      Peetre‟s  -functional is defined 

by 

               ̅               

     {‖  ‖    ‖  ‖                 }          

   Let       and        The real interpolation space  ̅               consists 

of all         having a finite quasi-norm 

‖ ‖ ̅    .∫ (         )
 

 

 

/

  ⁄

 

(when     the integral should be replaced by the supremum). See [2, 62] or [259]. 

   It is shown in [298] that we have 

    
      

         
  

with equivalence of quasi-norms. Here                             

and                The choice                and          ⁄  yields that 

                                                                                    

provided that           and   ⁄          ⁄     ⁄  (see [2] or [62] for another 

proof). Moreover, 

      
         

 
                                                                   

with       (a more general formula is established in Proposition (6.2.7)). 
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   Replacing    by a more general function       we obtain the space  ̅                

Its quasi-norm is 

‖ ‖ ̅    .∫ (
      

    
*
   

 

 

 

/

  ⁄

 

(see [281]). Let               put        |     | and write 

      {
                            ] 

                            
 

If               we put 
                         

See [272, 273] for details on these spaces which, under suitable conditions on    are well 

defined even if     or      Note that our notation is slightly different from [272]. In 

the special case          we simply put                          

   The following limiting real methods will be also very useful in our considerations. Let 

            and         For     or      the space  ̅        

               is formed by all those      having a finite quasi-norm 

‖ ‖ ̅        .∫ (
      

            
*
   

 

 

 

/

  ⁄

 

(see [276, 260, 262]). To avoid that  ̅             when     we suppose that     ⁄  

if      and     if      
   It is clear that the      -method and the          -method have the interpolation 

property for bounded linear operators. 

   We establish now some connections among all these interpolation methods and we also 

determine some concrete interpolation spaces. 

   We put        for the  -functional of          If we work with a different couple, then 

we write it explicitly in the notation of the  -functional. 

Lemma (6.2.2) [305] Let       be quasi-Banach spaces with        Suppose that 

                   ⁄  and         Then we have with equivalence 

of quasi-norms 

    (             )                          

    (             )         
                 

Proof. Since                we have that 

(             )                          

To check the converse embedding, assume first that         By Holmstedt‟s formula 

[279, Remark 2.1], 

                      (∫             
  

 

       ⁄

 

+

  ⁄

  

Hence, we obtain 

‖ ‖(             )        
 4∫ 6

         

 
(∫ (         )

   

 

       ⁄

 

+

  ⁄

7

 
 

 

  

 
5

  ⁄

 (∫ 0
          

       
∫ (         )

   

 

 

 

1

  ⁄ 

 

  

 
+

  ⁄
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 .∫ [
            

       
               ]

  ⁄ 

 

  

 
/

  ⁄

 

where we have used Hardy‟s inequality [256, Theorem 6.4] in the last inequality. 

Therefore ‖ ‖(             )        
 ‖ ‖                and so 

                (             )          

   If       take         Using that                       and the previous case, 

we derive 

                (              )        
 (             )          

This completes the proof of equality (a). The statement (b) follows from similar 

arguments. 

   In order to give some examples, recall that for             and      
   the Lorentz–Zygmund space              on the unit circle   is formed by all (classes 

of) measurable functions   on   having a finite quasi-norm 

‖ ‖              .∫ [   ⁄    |     |       ]
 

  

 

  

 
/

  ⁄

 

where    is the non-increasing rearrangement of    See [1, 256]. If      then 

             coincides with the Zygmund space             and if in addition      then 

the space becomes the Lebesgue space    If     but      we obtain the Lorentz space 

      

Lemma (6.2.3) [305] Let             and      ⁄   Then we have with 

equivalence of quasi-norms 

                               

Proof. The  -functional of         is given by 

       .∫         
  

 

/

  ⁄

                                                       

(see [2, Theorem 5.2.1]). Assume that      Using Hardy‟s inequality [256, Theorem 

6.4], we obtain 

‖ ‖(     )
        

  4∫ 6
          

 
.∫         

  

 

/

  ⁄

7

 
 

 

  

 
5

  ⁄

 (∫ 0
           

 
∫         

 

 

1

  ⁄ 

 

  

 
+

  ⁄

 .∫ [               ] 
 

 

  

 
/

  ⁄

 ‖ ‖              

   Suppose now      Take        Since               ⁄    (see [2, Theorem 

5.2.1]), by Lemma (6.2.2) (a) and the previous case, we derive 

(     )         (           ⁄      )                                       

   For             and      ⁄   we designate by        the collection of all 

(classes of) measurable functions   on   such that 
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‖ ‖       4∫ [          .∫         
 

 

/

  ⁄

]

 
  

 

  

 
5

  ⁄

    

Note that if           and      ⁄   the space         ⁄  coincides with the small 

Lebesgue space     (see [296]). 

Lemma (6.2.4) [305] Let             and      ⁄   Then we have with 

equivalence of quasi-norms 

(     )                 

Proof. Inserting (11) in the quasi-norm of (     )         and making a change of variables 

we obtain 

‖ ‖(     )
        

 4∫ 6         (∫         
   ⁄

 

+

  ⁄

7

 
 

 

  

 
5

  ⁄

 

 4∫ [          .∫         
 

 

/

  ⁄

]

 
 

 

  

 
5

  ⁄

 ‖ ‖        

Lemma (6.2.5) [305] Let       be quasi-Banach spaces with        Assume that 

              and      ⁄     The following continuous embeddings hold 

                           ⁄  (             )                                ⁄   

                           ⁄  (             )                                ⁄   

Proof. Take      ⁄   According to [269, Proposition 1] (which also works in the quasi-

normed case), we have that 

(             )         (             )             

By [272, Theorems 5.9* and 4.7*], we derive that 
           (    

        
    

 
        

*
 (             )         

           (    
        

    
 

        
*
  

   Now applying again [269, Proposition 1], we see that the space to the left is 

                       ⁄  and the space to the right is                        ⁄   This 

completes the proof of the embeddings (a). The proof of (b) can be carried out in the same 

way but using [272, Theorems 5.7 and 4.7]. 

   Next we return to interpolation of approximation spaces. First we establish an auxiliary 

result. 

Lemma (6.2.6) [305] Let   be a quasi-Banach space, let         
 be an approximation 

family and        Then we have 

     ⁄       
  ⁄

    (∑     
 

 

   

+

  ⁄

          

Proof. Take any     and let     such that       
  ⁄

  Then 

(∑     
 

 

   

+

  ⁄

 (∑         ‖ ‖  
 

 

   

+

  ⁄

 (∑        
 

   

+

  ⁄

    ⁄ ‖ ‖ 

 ‖   ‖
  
  ⁄     ⁄ ‖ ‖   

Taking the infimum over all     with       
  ⁄

  we obtain that 
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(∑     
 

 

   

+

  ⁄

      ⁄       
  ⁄

     

   Conversely, choose        satisfying that ‖   ‖          It follows that 

 (   ⁄       
  ⁄

  )  ‖ ‖
  
  ⁄     ⁄ ‖   ‖  (∑     

 

 

   

+

  ⁄

    ⁄       

 (∑     
 

 

   

+

  ⁄

 (∑     
 

 

   

+

  ⁄

 

because         is decreasing. Besides, for        we get 

             ‖   ‖          
Consequently, 

     ⁄       
  ⁄

    (∑     
 

 

   

+

  ⁄

  

   Now we can prove the following interpolation formula. 

Proposition (6.2.7) [305] Let   be a quasi-Banach space and let         
 be an 

approximation family. Suppose that                          and 

put           |     |     Then we have with equivalence of quasi-norms 

   
          

          
  

Proof. Let      We claim that 

   
  ⁄

         
          

                                                            

Indeed, since   
  ⁄

     we have that          
  ⁄

     ‖ ‖  for        This 

yields that 

‖ ‖
   

  ⁄
      

 4∫ [
         

  ⁄
   

             
]

 
 

 

  

 
5

  ⁄

  

Whence, using Lemma (6.2.6) and Hardy‟s inequality [293, Theorem 1.2], we get 

‖ ‖
(  

  ⁄
  )

   

 4∑6
 (   ⁄       

  ⁄
  )

   ⁄           
7

 

 

 

 

   

5

  ⁄

 

 4∑6       ⁄          (∑
     

 

 

 

   

+

  ⁄

7

 

 

 

 

   

5

  ⁄

 (∑[       ⁄                ]
  

 

 

   

+

  ⁄

  

   Take       ⁄   Let       ⁄    and                  |     |     By (12) 

and [281, Corollary 4.4], we get 

   
            

  ⁄
                

  ⁄
         

          
 

where we have used again (12) in the last equality. 

   We close with a Hardy-type inequality which can be proved as [1, Lemma 3.3.9]. 

Lemma (6.2.8) [305] Let   be a non-negative measurable function on        let    
           and        Then 

.∫ 0       |     |  ∫       
 

 

1

  

 

  

 
/

  ⁄

 .∫ [     |     |      ]
 

 

 

  

 
/

  ⁄
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   Let         
 be an approximation family in the quasi-Banach space    Since      

  

and      
     

 for any       the sequence         
 is also an approximation family in 

  
  and   

     
  Hence, we can apply again these constructions. Suppose         and 

         It was shown by Pietsch [300, Theorem 3.2] that 

   
   

 
   

   
                                                                       

On the other hand, Feh ́r and Gr ̈ssler [295, Theorem 2] proved that 

   
     

  
     

   
       ⁄    

                                                         

provided that              ⁄  and      ⁄   

   We determine the space that arises applying the construction     
  to   

     
  For this aim, 

we first establish an inequality of Jackson‟s type. 

Lemma (6.2.9) [305] Let   be a quasi-Banach space and let         
 be an 

approximation family in    Suppose that       and      ⁄   Then there is a 

constant     such that 

                            ⁄         
     

  

for all     
     

 and      

Proof. We can find            such that 

‖    ‖  
              

     
  

and 

‖       ‖               
So,             and 

            ‖       ‖                                            
Since the sequence            is monotone, we obtain 

‖    ‖  
      (∑[                   ]

    
 

   

+

  ⁄

 

           (∑              
 

   

+

  ⁄

                ⁄             

Consequently, by (15) and the choice of     we conclude that 

                                        ⁄  ‖    ‖  
      

                ⁄    (    
     

)   

Theorem (6.2.10) [305] Let   be a quasi-Banach space and let         
 be an 

approximation family. Suppose that             and      ⁄   Then 

   
     

  
    

       ⁄  
 

with equivalence of quasi-norms. 

Proof. Take any      
     

  
   Using Lemma (6.2.9) we obtain 

‖ ‖
  
       ⁄   (∑[              ⁄        ]

 
   

 

   

+

  ⁄

 (∑[              ⁄           ]
 
   

 

   

+

  ⁄
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  (∑ *         
     

 +
 
   

 

   

+

  ⁄

  ‖ ‖
   

     
  
   

   Conversely, according to [302, Theorem 3.3], there is a constant     such that any 

    
       ⁄  

 can be represented as   ∑   
 
    with        and 

(∑[            ⁄ ‖  ‖ ]
 

 

   

+

  ⁄

  ‖ ‖
  
       ⁄    

Since 

‖  ‖  
      4∑[                 ]

    
  

   

5

  ⁄

 4∑[          ]    
  

   

5

  ⁄

‖  ‖             ⁄ ‖  ‖   

we derive that 

(∑ [   ‖  ‖  
     ]

 
 

   

+

  ⁄

   (∑[            ⁄ ‖  ‖ ]
 

 

   

+

  ⁄

   ‖ ‖  
       ⁄    

This yields that the series ∑   
 
    converges to   in   

     
  Finally, by [300, Theorem 

3.1], we get 

‖ ‖
   

     
  
    (∑ [   ‖  ‖  

     ]
 

 

   

+

  ⁄

   ‖ ‖  
       ⁄    

   Writing down Theorem (6.2.10) in the special case          with   being a 

Banach space and         
 being a sequence of subspaces of    we recover a result of 

Almira and Luther [284, Theorem 6.1]. 

Example (6.2.11) [305] If      and        the subset of sequences having at most   

coordinates different from    then for             and      ⁄   we obtain 

               
        

     
  
       

       ⁄  
    ⁄              ⁄   

   It is more difficult to determine the resulting space when we apply the approximation 

constructions in reverse order. We shall do it with the help of interpolation techniques. 

Theorem (6.2.12) [305] Let X be a quasi-Banach space and let         
 be an 

approximation family. Suppose             and      ⁄   Then we have 

with equivalence of quasi-norms 

     
  ⁄

            
     

  

Proof. Doing a change of variable, using Lemma (6.2.6) and Hardy‟s inequality (see [293, 

Theorem 1.2]), we derive 

‖ ‖
(    

  ⁄
)
        

 .∫ *           (         
  ⁄

  )+
  

 

  

 
/

  ⁄

 .∫ *             ⁄  (   ⁄       
  ⁄

  )+
  

 

  

 
/

  ⁄
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 (∑ *             ⁄  (   ⁄       
  ⁄

  )+
 

 

   

   +

  ⁄

 4∑6          (
 

 
∑     

 

 

   

+

  ⁄

7

 
 

   

   5

  ⁄

 (∑[               ]
 

 

   

   +

  ⁄

 ‖ ‖
  
       

Corollary (6.2.13) [305]  Let   be a quasi-Banach space and let         
 be an 

approximation family. Suppose             and      ⁄   Then 

     
             

     
 

with equivalence of quasi-norms. 

Proof. Take       ⁄  and put       By (10), we have that   
     

  ⁄
        

Whence, according to Lemma (6.2.2) (b) and Theorem (6.2.12), we derive 

     
                     

  ⁄
                     

  ⁄
            

     
  

   Now we can determine    
   

     
 by means of an auxiliary sequence space. 

Theorem (6.2.14) [305] Let   be a quasi-Banach space and let         
 be an 

approximation family. Suppose             and      ⁄   Take any     
  ⁄   Then we have 

  (  
 )

 

     
                                 ⁄                 

Proof. Using Corollary (6.2.13) and (13), we get 

(  
 )

 

     
    

  (  
 )

 

  ⁄   
             

    
  ⁄            

In order to estimate the  -functional for the couple    
    

  ⁄    take       such that 

        ⁄   By (10) we have   
     

  ⁄         Whence, according to Holmstedt‟s 

formula [279, Remark 2.1] and Lemma (6.2.6), we derive 

 (    ⁄       
  ⁄    

 )   (    ⁄       
  ⁄  (  

  ⁄   )
   

*

     ⁄ .∫ *    (       
  ⁄   )+

  

   ⁄

  

 
/

  ⁄

     ⁄ (∑ *     ⁄  (   ⁄       
  ⁄   )+

 
 

   

+

  ⁄

 

                     ⁄ (∑ [     ⁄ 4∑     
 

  

   

5

  ⁄

]

 
 

   

,

  ⁄

 

                                ⁄ (∑[     ⁄      ⁄                 ]
 

 

   

+

  ⁄

 

where we have used again Lemma (6.2.6) in the last equivalence but now with the couple 

         viewing    as      
  ⁄   Hence, reversing the steps and using (9), we conclude that 
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      ⁄       
  ⁄    

       ⁄ .∫ [                      ]
 

 

   ⁄

  

 
/

  ⁄

       ⁄                                ⁄                 ⁄      

This yields that 

         
  ⁄    

                      ⁄            

Reversing the couple, we obtain that 

         
    

  ⁄                   ⁄               

Therefore 

‖ ‖
(  

 )
 

      ‖ ‖
   

    
  ⁄

         
 ‖       ‖(   ⁄      )        

 

which completes the proof. 

   We proceed now to study the sequence space that arose in Theorem (6.2.14). 

Definition (6.2.15) [305] Let             and         We put 

           

{
 
 

 
 

      ‖ ‖  (∑[          4∑     
   

 

   

   5

  ⁄

 ]

 
 

   

   ,

  ⁄

  

}
 
 

 
 

  

   Note that when              is a small Lorentz sequence space in the terminology of 

Fiorenza and Karadzhov [296]. 

Lemma (6.2.16) [305] Let                  ⁄  and           ⁄      
Then we have with equivalent quasi-norms 

(   ⁄      )              ⁄            

where ‖ ‖     ⁄           
 ‖ ‖  ‖ ‖   ⁄           

  

Proof. Let   ⁄    ⁄     According to [279, Theorem 4.2], we have that 

 (           ⁄   )  (∫         
  

 

+

  ⁄

  .∫ (       )
   

 

 

  
/

  ⁄

        

Here 

      {
  
                                                          
  
                  [                   

 

Therefore, 

‖ ‖(   ⁄      )        
 .∫ [                          ⁄    ]

 
 

 

  

 
/

  ⁄

 .∫ [                          ⁄    ]
 

 

 

  

 
/

  ⁄

 4∫ 6             (∫         
  

 

+

  ⁄

7

 
 

 

  

 
5

  ⁄

 4∫ [          .∫ (       )
   

 

 

  
/

  ⁄

]

 
 

 

  

 
5

  ⁄

        

For the term     a change of variables yields 

   4∫ [    ⁄           .∫         
 

 

/

  ⁄

]

 
 

 

  

 
5

  ⁄
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Since  

4∫ [    ⁄          .∫         
 

 

/

  ⁄

]

 
 

 

  

 
5

  ⁄

   
 .∫ [   ⁄    ⁄          ]

 
 

 

  

 
/

  ⁄

   
  

 .∫         
 

 

/

  ⁄

.∫ [    ⁄           ]
 

 

 

  

 
/

  ⁄

 4∫ [    ⁄           .∫         
 

 

/

  ⁄

]

 
 

 

  

 
5

  ⁄

  

we obtain that 

   4∫ [    ⁄    |     |  .∫         
 

 

/

  ⁄

]

 
 

 

  

 
5

  ⁄

 4∫ [    ⁄    |     |   .∫         
 

 

/

  ⁄

]

 
 

 

  

 
5

  ⁄

  

Now using the Hardy-type inequality given in Lemma (6.2.8), we derive 

   .∫ [     ⁄    |     |         ]
  ⁄

 

 

  

 
/

  ⁄

 .∫ [     |     |       ] 
 

 

  

 
/

  ⁄

 (∑[              
 ] 

 

   

 

 
+

  ⁄

  

   As for     we get 

   4∫ [          .∫ (       )
   

 

 

 

/

  ⁄

]

 
 

 

  

 
5

  ⁄

 4∑∫ [          .∫ (       )
   

 

 

 

/

  ⁄

]

 
   

 

  

 

 

   

5

  ⁄

  

Hence 

    (∑[          4∑∫ (       )
   

 

   

 

 

   

5

  ⁄

]

 
 

   

 

 
,

  ⁄

 (∑[          4∑(          
 )

  

   

 

   

5

  ⁄

]

 
 

   

 

 
,

  ⁄

  

Similarly, 

   (∑[          4 ∑ (          
 )

  

   

 

     

5

  ⁄

]

 
 

   

 

 
,

  ⁄

  

Consequently, 

‖ ‖(   ⁄      )        
       

 (∑[             
 ] 

 

   

 

 
+

  ⁄

 (∑[         4 ∑ (          
 )

  

   

 

     

5

  ⁄

]

 
 

   

 

 
,

  ⁄

 

 ‖ ‖   ⁄           
  ‖ ‖   
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   As a direct consequence of Theorem (6.2.14) and Lemma (6.2.16), we can now show the 

following explicit description of (  
 )

 

     
  

Theorem (6.2.17) [305] Let   be a quasi-Banach space and let         
 be an 

approximation family. Suppose             and      ⁄   Put 

           {                    } 

with ‖ ‖  ‖       ‖   Then we have with equivalence of quasi-norms 

(  
 )

 

     
   

     
    

Corollary (6.2.18) [305] Let   be a quasi-Banach space and let         
 be an 

approximation family. Suppose           and      ⁄   Then we have with 

equivalence of quasi-norms 

(  
 )

 

     
   

       ⁄  
 

Proof. Using equality of the lower parameters, we obtain 

‖ ‖  4∑(       )
 
   

 

   

∑              
 

   

5

  ⁄

 4∑(               ⁄      )
 
   

 

   

5

  ⁄

 ‖ ‖
  
       ⁄    

Therefore, applying Theorem (6.2.17), we derive 

(  
 )

 

     
   

     
   

       ⁄  
   

       ⁄  
  

   Corollary (6.2.18) and Theorem (6.2.10) show that in the “diagonal case” where     

the order of application of the approximation constructions is not important. 

   As we have seen in Theorem (6.2.17), in general (  
 )

 

     
 cannot be realized as a space 

  
     

  In applications it is important to know the biggest (respectively, smallest) space 

  
     

 which is contained in (respectively, which contains to) (  
 )

 

     
  Next we 

determine those spaces. 

Theorem (6.2.19) [305] Let             and      ⁄   Then 

  
     

 
        

 

 (  
 )

 

     
   

     
 

        
 

  

Proof. Let      By Corollary (6.2.13) and (13), we obtain that 

(  
 )

 

     
    

    
 
           

Moreover, according to (10),   
       

 
     for       Therefore, Lemma (6.2.5) (b) 

and Proposition (6.2.7) yield the wanted embeddings. 

Remark (6.2.20) [305] Embeddings in Theorem (6.2.19) are the best possible in the sense 

that in general for any     embeddings 

  
     

 
        

   

 (  
 )

 

     
                                                         

(  
 )

 

     
   

     
 

        
   

                                                         

do not hold. We show it now by means of counterexamples. 
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   Take      and        so             
   As for (16), suppose that             

Given any      choose     such that        The sequence 

  (                  ⁄      ⁄    ) 

belongs to    ⁄              ⁄      
       ⁄    

  However, since 

4∑               ⁄      ⁄        
 

   

5

  ⁄

                  ⁄     

if       ⁄    and the series diverges otherwise, it follows that 

‖ ‖
(  

 )
 

      ‖ ‖  (∑[                           ⁄    ]
 
   

 

   

+

  ⁄

 (∑                    
 

   

+

  ⁄

    

Hence, (16) does not hold. 

   As for (17), assume that             Given any      let       and put 

  (                  ⁄    ⁄    )  

We claim that   (  
 )

 

     
  Indeed, 

‖ ‖
  
      ‖ ‖   ⁄           

 (∑            ⁄         
 

   

+

  ⁄

    

and 

‖ ‖  (∑[         4∑              ⁄          
 

   

5

  ⁄

]

 
 

   

   ,

  ⁄

 

 (∑                 
 

   

+

  ⁄

    

Hence, according to Theorem (6.2.17),   (  
 )

 

     
  However,      ⁄                ⁄  

  

     
 

        
   

  

   We apply the previous results to study several problems on Besov spaces. 

   In what follows we take          the Lebesgue space of periodic measurable 

functions defined on the unit circle    and we choose    as the set    of all trigonometric 

polynomials of degree less than or equal to    Then   
  is the (classical) Besov space 

    
    

     
 coincides with the Besov space of logarithmic smoothness     

   
 and   

     
 with 

    
   

 (see [34,19,10]). 

   The following interpolation formulae follow from Proposition (6.2.7) and Corollary 

(6.2.13): 

(       
 )

   
     

                         |     |                               

(       
 )

        
     

   
             ⁄                                            
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   DeVore, Riemenschneider and Sharpley have established in [266, Corollary 5.5] 

embeddings of spaces     
   

 with     into Lorentz–Zygmund spaces. They dealt with the 

Banach case where the parameters are greater than or equal to 1. Next we extend those 

results to the whole range of parameters. We start with known embeddings into    (see 

[168, Theorem 3.5.5]). 

Theorem (6.2.21) [305] Let        Then 

    
  ⁄

     

Proof. According to [300, Theorem 3.1], there is a constant     such that for any 

      
  ⁄

 there is a representation   ∑   
 
    with        and 

∑   ⁄ ‖  ‖  

 

   

  ‖ ‖
    
  ⁄   

Hence, using the Nikolskiĭ inequality for trigonometric polynomials (see [297, 3.4.3] and 

[284]), we derive that 

‖ ‖   ∑‖  ‖  

 

   

 ∑   ⁄ ‖  ‖  

 

   

  ‖ ‖
    
  ⁄   

Theorem (6.2.22) [305] Let             ⁄    ⁄        and      
   Then 

    
                  

Proof. Combining Theorem (6.2.21) with the natural embedding       and 

interpolating with the function parameter           |     |    where       ⁄   
we derive the continuous embedding 

(       
  ⁄

)
   

 (     )     

By (18), the space to the left is     
   

 and, according to [281, Lemma 6.1], the space to the 

right is               This completes the proof. 

Theorem (6.2.23) [305] Let             and     ⁄     Then 

    
  ⁄             ⁄

               

Proof. We interpolate by the limiting method with     the embeddings 

    
  ⁄

          

to obtain that 

(       
  ⁄

)
        

 (     )          

Lemma (6.2.24) [305] Yields that (     )                       On the other hand, 

take       and put         ⁄    |     |             ⁄   Using (18) and Lemma 

(6.2.5) (a), we get 

    
  ⁄             ⁄

 (       
  ⁄ )

   
 (   (       

  ⁄ )
  ⁄   

)
        

 (       
  ⁄

)
        

  

Consequently, 

    
  ⁄             ⁄

               

   We focus the attention on Besov spaces     
     Embeddings of     

   
 into Lorentz–

Zygmund spaces have been established by [289] (see also Caetano, Gogatishvili and Opic 

[288] for the case of Besov spaces on    and by Triebel [282]). Now we show 

embeddings into spaces        introduced. 
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Theorem (6.2.25) [305] Let                  ⁄      and     

  ⁄    ⁄   Then     
            

Proof. This time we interpolate the embeddings 

    
  ⁄

          

by the limiting method with      Since      ⁄   using (19) and Lemma (6.2.4), it 

turns out that 

    
   

 (       
  ⁄

)
        

 (     )                 

Besides, by [295, Lemma 2], we have     
        

   
  Therefore     

            

Corollary (6.2.26) [305] Let        Then     
     ⁄

 is continuously embedded in the 

small Lebesgue space       
   Now we study the relationship between smoothness of derivatives of   and the 

smoothness of    Let      According to [266, page 70], if       
     

 then         
   
  

The following result shows that sometimes the loss of smoothness is less than a logarithm. 

Theorem (6.2.27) [305] Let                 and      ⁄   If       
    

 

          
 

then         
   
  

Proof. Clearly      
     is bounded and            Then     

        

       
    and so 

       
   

     
      

     
     

   
 

is bounded. Moreover, it follows from the embedding            
    

  (see [168, Remark 

4, page 164 and Theorem 3.5.4, page 169]) that             
   

     
    

   
     

  Finally, by 

Theorem (6.2.19), 

    
    

 
          

      
     

 
               

 

              
   

     
             

   
     

  

Therefore,        
    

 

          
     

   
 is bounded. 

   We close with a result on the conjugate-function operator    which is defined on       
by the principal-value integral 

           
    

∫                 ⁄    
    

 

 

(see [38, Chapter IV]). 

Theorem (6.2.28) [305] Let       and      ⁄   If       
     

 then        
   

 

Proof. According to [304, Theorem IV.3.16], we have that           is bounded. 

Besides, by [1, Lemma 3.6.9],   maps any trigonometric polynomial in another 

trigonometric polynomial with the same degree. Hence, 

      
     

      
       

        
       

 

is bounded. 

   Using the Nikolskiĭ inequality in Lorentz spaces [303, Theorem 3], we obtain that 

‖ ‖           ‖ ‖           

Therefore, Lemma (6.2.1) yields that 

       
       

      
     

      
   
  

Consequently, 
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is bounded. 

   The result above in the case       can be found in [266, Corollary 6.3 and Remark 

8.4]. Other estimates for   can be seen in [256, Section IV.16] and [1, Chapter 3]. 

   Given any integrable function   on    its Fourier coefficients are defined by 

 ̂       
 

  
∫              

  

 

      

We write   for the operator assigning to any function   the sequence        ̂     of 

its Fourier coefficients. 

   We use the reiteration results to study Fourier coefficients of functions in Besov spaces 

with logarithmic smoothness. 

Theorem (6.2.29) [305] Let          ⁄      ⁄        and      ⁄   If 

      
   

 then   ̂     belongs to                

         

  

Proof. By the Hausdorff–Young inequality,          is bounded. Besides       

       the subset of sequences having at most      coordinates different from    
Therefore                                for      It follows that 

      
   

         
     

          
     

 

is bounded. Now, according to Theorem (6.2.19), we have that 

         
     

        
   ⁄

  
     

      

    ⁄    
 

         
 

                
         

  

This completes the proof. 

   The distribution of the Fourier coefficients of functions of     
   

 was considered by 

DeVore, Riemenschneider and Sharpley in [266, Corollary 7.3/(i)]. They proved that if 

      and       
   

 then   ̂                    Theorem (6.2.29) improves this 

result in two ways: On the one hand, if     and      
               

         

                

on the other hand   can now take values less than  . 

   We study Fourier coefficients of functions in spaces close to    and to     For this end, 

we do not need the approximation constructions but limiting interpolation results 

established. 

   It was shown by Hardy and Littlewood (case    ) and Bennett (case    ) that if 

            then ∑               
     

      (see [286, Theorem 1.6/(a)]). Next we 

extend this result to functions in               

Theorem (6.2.30) [305] Let       and      ⁄   If                        ⁄  then 

∑             
      

 

   

    

Proof. Since         and         are bounded operators, we obtain that 

                                  boundedly. 

Take        By Lemma (6.2.2) (b) we have 

                             ⁄                                                        

On the other hand, [281, Lemma 6.1] and Lemma (6.2.5) (b) yield that 
                     ⁄                           ⁄                             
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Hence 
                       ⁄                  

is bounded. Now we work with the space at the right side. We have 

                             ⁄                                         

where the last equality follows by using that              ∑   
  

    and Hardy‟s 

inequality. Consequently, 

                       ⁄              

is bounded, which completes the proof. 

   Note that when     and      Theorem (6.2.30) recovers [286, Theorem 1.6/(a)]. 

Theorem (6.2.31) [305] Let       and      ⁄   If                        ⁄  then 

∑(   ⁄                     ⁄   
 )

 
   

 

   

    

Proof. This time we interpolate by the other limiting method to obtain that 

                                  

is bounded. By [281, Lemma 6.1] and Lemma (6.2.5) (a), we get that 
                     ⁄           ⁄                ⁄               ⁄            

                  

Besides, Lemma (6.2.5) (a) and Proposition (6.2.7) yield that 
                             ⁄                      ⁄                ⁄

                      ⁄   

Therefore 
                       ⁄                       ⁄  

boundedly. 

   Writing down Theorem (6.2.31) in the special case     and       we recover a 

result of Cobos and Segurado [294, Theorem 8.5]. 

Corollary (6.2.32) [314] Let X be a quasi-Banach space and let         
 be an 

approximation family. Suppose      Then we have with equivalence of quasi-norms 

       
    ⁄

 
     

      
   

     
     

   
      
   

 
  

Proof. Doing a change of variable, using Lemma (6.2.6) and Hardy‟s inequality (see [293, 

Theorem 1.2]), we derive 

∑‖  ‖       
    ⁄

 
     

      
   

     

 ∑.∫ [         
      
                  

    ⁄
   ]

    

 

  

 
/

    ⁄

 ∑.∫ [         
      
         ⁄        ⁄          

    ⁄
   ]

    

 

  

 
/

    ⁄

 (∑∑[         
      
         ⁄        ⁄          

    ⁄
   ]

    

   

   +

    ⁄

 4∑∑6         
      
   (

 

 
∑      

   

 

   

+

    ⁄

7

   
 

   

   5

    ⁄

 (∑∑[         
      
         ]

    

   

   +

    ⁄

 ∑‖  ‖
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Corollary (6.2.33) [314] Let   be a quasi-Banach space and let         
 be an 

approximation family. Suppose      Then we have with equivalence of quasi-norms 

(  
   )

   

(  
      
   

*
     

       
 

Proof. Using equality of the lower parameters, we obtain 

∑‖  ‖ 
 

 4∑∑(          )
   

   

 

 

   

∑         
    
      

 

   

5

    ⁄

 4∑∑(                    )
   

   

 

 

   

5

    ⁄

 ∑‖  ‖    
       

 

  

Therefore, applying Theorem (6.2.17), we derive 

     
    

   

(  
      
   

*
     

(  
      
   

*
     

       
     

       
  

Corollary (6.2.34) [314] Let        Then 

      
    ⁄

     

Proof. According to [300, Theorem 3.1], there is a constant     such that for any 

         
    ⁄

 there is a representation ∑     ∑ ∑   
 

 
 
    with   

 
     and 

∑∑     ⁄ ‖  
 
‖
    

 

 

   

  ∑‖  ‖      
    ⁄

 

  

Hence, using the Nikolskiĭ inequality for trigonometric polynomials (see [297, 3.4.3] and 

[284]), we derive that 

∑‖  ‖  
 

 ∑∑‖  
 
‖
  

 

 

   

 ∑∑     ⁄ ‖  
 
‖
    

 

 

   

  ∑‖  ‖      
    ⁄

 

  

Corollary (6.2.35) [314] Let       If           
  
      

    then   ̂     belongs to 

    

 
    

             
   

   
 

    
   
 

     

  

Proof. By the Hausdorff–Young inequality,            

 

 is bounded. Besides 

             the subset of sequences having at most      coordinates different from 

   Therefore                   

 

                for      It follows that 

          
  
      
                

   
      
   

 
      

 
       

   
      
   

 
 

is bounded. Now, according to Theorem (6.2.19), we have that 

     
 
       

   
      
   

 
         

 

 
       

   
      
   

 
        

 
 

   
 
      
   

   
 

    
   
 

     
 

     
 

    
             

   
   

 

    
   
 

     

  

This completes the proof. 
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Section (6.3) Fourier-Analytical Decompositions with Wavelets and Semi-Groups 

   For   be a (complex-valued) Lebesgue measurable function in             and 

     We put 

   
                     and   (  

    )      
 (  

  )     

      The  -th order modulus of smoothness of a function             is 

defined by 

            
| |  

‖  
  |  ‖                                                      

Let 

              and                                                         
Let        The classical Besov space     

  on    consists of all      such that 

‖ |    
 ‖

  
 ‖ |  ‖  4∫[           ]

   

 

 

 

5

  ⁄

                                  

is finite (as usual, if      the integral should be replaced by the supremum). See [65, p. 

110] or [1, p. 332]. Besov spaces     
  have a central role in many aspects of the theory of 

function spaces as can be seen, for example, by Triebel [62, 65, 66, 67, 311]. There are 

numerous characterizations of these spaces in terms of other means. Let 

         
  ∑     

 

   

                                                     

be the usual dyadic resolution of unity in   . Then     
  consists of all      such that 

‖ |    
 ‖

 
 4∑‖(   ̂)

 
|  ‖

 
 

   

5

  ⁄

                                               

is finite (the sum should be replaced by the supremum if    ). Furthermore ‖  

 |    
 ‖

  
 and ‖   |    

 ‖
 

 are equivalent quasi-norms (see [62, 66]). Let 

         
 

       ⁄
∫  

|   | 

        

 

  

 (   | |
 
 ̂   )

 
                            

          be the Gauss–Weierstrass semi-group,         (identity). Let       be 

as in (21) and   ⁄       Then     
  consists of all      such that 

‖ |    
 ‖

   
 ‖ |  ‖  4∫   

 
 
 ‖  

       

   
|  ‖

 
 

 

  

 
5

  ⁄

                          

is finite. Furthermore, ‖   |    
 ‖

   
 is an equivalent quasi-norm in the space     

   See [62, 

Theorem 2.5.2, p. 191], [66, Theorem 2.6.4, p. 152]. Another equivalent quasi-norm is 

‖ |    
 ‖

   

 
 ‖ |  ‖  4∫  

 
 
 ‖[       ] |  ‖

 

 

 

  

 
5

  ⁄

                       

(see [306, Theorem 3.4.6 and Section 4.3.2] and [62, Section 1.13.2]). Finally we recall 

the characterizations of the spaces     
  in    in terms of wavelets. Let          and 

  {    
 

               }                                                 

be the same real orthonormal wavelet basis in    as [311, Section 1.2.1, pp. 13–14]. Let 

    
  be the collection of all sequences 
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  {  
   

                 }                                              
such that 

‖ |    
 ‖  4∑ 

 (  
 
 
) 

∑ ( ∑ |  
   
|
 

    

+

  ⁄

    

 

   

5

  ⁄

                             

is finite. Let again       be as in (21). Then     
  consists of all      which can be 

represented as 

  ∑   
   
     ⁄     

 

     

       
                                              

unconditional convergence being in     This representation is unique, 

  
   

   
   
        ⁄ (      

 
)      ⁄ ∫        

 
     

 

  

                         

and 

     {    ⁄ (      
 

)}                                                           

is an isomorphic map of     
  onto     

   See [311, Theorem 1.20, pp. 15–16]. 

   The complete solution of some natural questions has motivated the introduction of 

Besov spaces where smoothness of functions is considered in a more delicate manner than 

in     
  (see, DeVore, Riemenschneider and Sharpley [266], Kalyabin and Lizorkin [32], 

Farkas and Leopold [144]). Among them, logarithmically perturbed Besov spaces are 

receiving a growing interest in recent times as can be seen Caetano, Gogatishvili and Opic 

[288, 307], Besov [257] or Cobos and Domínguez [283, 289, 305]. These spaces have 

classical smoothness zero and logarithmic smoothness with exponent    They are near    

but they have additional properties than    due to their structure of Besov spaces and their 

logarithmic smoothness (see, [305, Theorem 5.1]). The most popular version imitates (22). 

Let 

               and         ⁄                                           

Let                  according to (20) (first differences). Then     
   

 consists of all 

     such that 

‖ |    
   ‖  ‖ |  ‖  4∫[                ]

   

 

 

 

5

  ⁄

                             

is finite. According to [283, Theorem 3.1] one can replace         in (35) by 

              which means that     
   

 consists of all      such that 

‖ |    
   ‖

  
 ‖ |  ‖  4∫[                 ]

   

 

 

 

5

  ⁄

 

is finite. This property justifies to deal with this type of logarithmic Besov spaces of 

perturbed main smoothness. 

   It is natural to investigate if     
   

 admits characterizations in terms of Fourier-analytical 

decompositions, wavelets and heat kernels. Accordingly, we establish those 

characterizations. They are new even for spaces     
   

 where      

   Let   be as in (23) and       be as in (34). The natural candidate of quasi-norm 
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4∑       ‖(   ̂)
 
|  ‖

 
 

   

5

  ⁄

 

does not characterize     
   

 but the Fourier-analytically defined space     
   

 also with 

logarithmic smoothness of exponent b but which is different from     
   

 (see [283, Theorem 

3.3]). We show that     
   

 consists of all      such that 

‖ |    
   ‖

  
 (∑       ‖4∑|(   ̂)

 
   |

 
 

   

5

  ⁄

|  ‖

 
 

   

,

  ⁄

 

is finite and that ‖   |    
   ‖

  
 is an equivalent quasi-norm to ‖   |    

   ‖
  
  Therefore, in 

contrast to (24), the Fourier-analytical characterization of     
   

 requires now an additional 

truncated Littlewood–Paley construction. 

   Such new ingredient also appears in the characterization of     
   

 by means of wavelets. 

Let      be the characteristic function of the cube                     in    where 

     and       Let     
   

 be the collection of all sequences   according to (29) such 

that 

‖ |    
   ‖  

(

 
 
∑       ‖‖(∑ ∑ |  

   |
 
       

    

    
 

 

   

,

  ⁄

|  ‖‖

 

 

   

)

 
 

  ⁄

              

is finite. Let       be as in (34). Then     
   

 consists of all      which can be 

represented as 

  ∑   
   
     ⁄     

 

     

       
     

unconditional convergence being in     This representation is unique with   
   

 as in (32). 

Furthermore,   in (33) is an isomorphic map of     
   

 onto     
     

   However the truncated Littlewood–Paley construction does not appear in the following 

characterization of     
   

 by means of heat kernels. Let      be as in (25) and let       be 

as in (34) and       Then     
   

 consists of all      such that 

‖ |    
   ‖

   

 
 ‖ |  ‖  4∫         ‖[       ] |  ‖

 

 

 

  

 
5

  ⁄

 

is finite (equivalent quasi-norms). 

   The arguments rely decisively on real interpolation in limiting situations. We introduce 

the spaces     
   

 and show another characterization by differences, as well as some results 

on their structure. We deal with the indicated characterizations of     
   

 in terms of Fourier-

analytical decompositions, wavelets and heat kernels. Results on heat kernels are derived 

from abstract results on semi-groups of operators which are of independent interest and 

apply to the Cauchy–Poisson semi-group as well. We also ask for embeddings between 
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 and their Fourier-analytically defined counterparts     
     In addition we discuss the 

structural differences of diverse quasi-norms of     
   

 and their counterparts in     
  and 

    
     

   Given two non-negative quantities     depending on certain parameters, we put     

if there is a constant     independent of all parameters such that       If     and 

     we write      
   Let       be Banach spaces with        where   means continuous embedding. The 

Peetre  -functional is defined by 

                         ‖    |  ‖   ‖  |  ‖                   
   As in [283], given       and      we define the limiting real method with     

by 

               {     ‖ |              ‖  4∫.
      

         
/

 
  

 

 

 

5

  ⁄

  }   

It is easy to check that the interpolation theorem for bounded linear operators holds for the 

construction               

   The space                is quasi-normed and complete. It is a Banach space if        

   Proceeding as in [283, p. 79], if       and     ⁄   we can compare 

               with logarithmic interpolation spaces                  studied in [272, 264]. 

Indeed, take      ⁄   It turns out that 

                                                                                    

Consequently, since     ⁄         ⁄   it follows from [264, Corollary 3.7] and 

(37) that 

   is dense in                 if          and      ⁄                            

   We establish now some auxiliary results. The first one refers to interpolation of couples 

of vector-valued   -spaces. Our measure space is    with the Lebesgue measure. So, 

          
      The proof is similar to [62, Theorem 1.18.4]. Recall that 

                              
       
     

 ‖  |  ‖
    ‖  |  ‖

    ⁄   

Lemma (6.3.1) [313] Let       be Banach spaces with        Let       and 

    with      ⁄   Then we have with equivalence of norms 

(             )
        

   (               )  

Proof. Consider the collection   of all functions      ∑      
    

     where     

       the measure of       is finite and         if      By (38), the set   is 

dense in (             )
        

 and in   (               )  For     we have 

‖ |(             )
        

‖
 

 ∫4            
       
     (  )

{‖  |      ‖
 
   ‖  |      ‖

 
}
  ⁄

5

 

  

 

 

 

 ∫          ∫    
                

      (  )

 ‖     |  ‖
    ‖     |  ‖
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 ∫∫                          
 
  

 
  

 

 

 

  

 ∫‖    |               ‖
 
  

 

  

 ‖ |  (               )‖
 
  

This completes the proof. 

   Next consider the sequence space    on    and for     write 

  
  {          

 ‖ |  
 ‖  4∑    |  | 

 

 

   

5

  ⁄

  }   

If   is a Banach space, the vector-valued sequence space   
     is defined by 

  
     {          

 ‖ |  
    ‖  4∑    ‖  | ‖ 

 

 

   

5

  ⁄

  } 

Lemma (6.3.2) [313] Let       and      Then we have with equivalence of quasi-

norms 

      
           {       ‖ ‖  4∑6       ∑|  |

 

 

   

   ⁄ 7

 
 

   

5

  ⁄

  } 

and ‖   ‖ is an equivalent quasi-norm on       
            

Proof. Consider first the case      Since 

            
   (∑           |  | 

 

 

   

+

  ⁄

  

we have for     that 

    
          

   (∑     |  | 
 

 

   

+

  ⁄

 4 ∑ |  |
 

 

     

5

  ⁄

  

Hence 

‖ |(     
 )

        
‖  4∑[        ( 

    )]
 

 

   

5

  ⁄

 4∑6       ∑     |  | 
 

 

   

   ⁄ 7

 
 

   

5

  ⁄

 4∑6       ∑|  |
 

 

   

   ⁄ 7

 
 

   

5

  ⁄

  

In the last expression, the first term is dominated by the second term. Indeed, if   ⁄     
we obtain 

(∑6       ∑(    |  |)
 

 

   

7

  ⁄
 

   

,

  ⁄

 4∑           ∑   |  |
 

 

   

 

   

5

  ⁄

 4∑   |  |
 

 

   

∑           
 

   

5

  ⁄

 (∑       |  |
 

 

   

+

  ⁄
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 4∑6       ∑|  |
 

 

   

   ⁄ 7

 
 

   

5

  ⁄

  

   If     ⁄  we use the variant of Hardy‟s inequality given in [309, Lemma 3.1] (see also 

[299, Lemma 3.10]). We get 

(∑[         4∑   |  | 
 

 

   

5

  ⁄

]

 
 

   

,

  ⁄

 (∑6           ∑   |  | 
 

 

   

7

  ⁄
 

   

,

  ⁄

 

 4∑[           |  |]
 

 

   

5

  ⁄

 (∑[      4∑|  |
 

 

   

5

  ⁄

]

 
 

   

,

  ⁄

  

Consequently, 

‖ |      
          ‖  (∑[      4∑|  |

 

 

   

5

  ⁄

]

 
 

   

,

  ⁄

  

   The general case     follows by appropriate modifications. 

   Let     
   

 be the Besov spaces on    with logarithmic smoothness defined in (35) by 

means of differences. Note that definition makes sense in a wider range of parameters than 

(34). Namely 

                        ⁄  
but the extreme value      ⁄  may give rise to jumps in the scale (see [308, Theorem 

3.2 and Corollary 3.3] and Remark (6.3.8) below), and the cases       sometimes 

require different type of arguments (see [308, Theorem 3.8]). 

   As we have pointed out, the quasi-norms 

‖ |    
   ‖

  
 ‖ |  ‖  4∫[                 ]

   

 

 

 

5

  ⁄

      

are equivalent on     
     This is the log-version of the quasi-norms (22) on the classical 

Besov spaces     
  with      According to [65, Theorem 2.5.12, p. 110], the quasi-norm  

(22) is equivalent to 

‖ |    
 ‖

 
 ‖ |  ‖  4 ∫ | |   ‖  

  |  ‖
   

| | 

 

| |  

5

  ⁄

                               

The next result shows the characterization by differences in     
   

 corresponding to (39). 

Theorem (6.3.3) [313] Let                  ⁄  and      Then 

‖ |    
   ‖

 
 ‖ |  ‖  4 ∫       | |   ‖  

  |  ‖
   

| | 

 

| |  

5

  ⁄

 

is an equivalent quasi-norm on     
     

Proof. We shall use that 

         4   ∫ ‖  
  |  ‖

 
  

 

| |  

5

  ⁄
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(see [33, (2.4) and Appendix A]). We have 

‖ |    
   ‖

  
 ‖ |  ‖  4∫[                 ]

   

 

 

 

5

  ⁄

 ‖ |  ‖  4∫             ∫ ‖  
  |  ‖

 
  

 

| |  

  

 

 

 

5

  ⁄

 ‖ |  ‖  4 ∫ ‖  
  |  ‖

 
∫             

  

 

 

| |

 

| |  

  5

  ⁄

 ‖ |  ‖  4 ∫ ‖  
  |  ‖

 
| |        | |     

 

| |  

5

  ⁄

 ‖ |    
   ‖

 
  

Conversely, 

         ‖ |    
   ‖

 
 ‖ |  ‖  4 ∫       | |        | |  

   

| | 

 

| |  

5

  ⁄

 

                               ‖ |  ‖  4∑ ∫       | |        | |  
   

| | 

 

      | |    

 

   

5

  ⁄

 

                               ‖ |  ‖  4∑             
    

 

 

   

5

  ⁄

 

 ‖ |  ‖  4∫                  
   

 

 

 

5

  ⁄

 ‖ |    
   ‖

  
  

Remark (6.3.4) [313] The special case of the semi-quasi-norm 

4 ∫       | |   ‖  
  |  ‖

   

| | 

 

| |  

5

  ⁄

 

when     and     has been used by Besov [257]. 

   In our later characterizations the structure of     
   

 as approximation space will be useful. 

We describe it now. 

   Let        and for     put 

   ,           ̂     | |    -                                              

So if      then   is an entire analytic function of exponential type    Given      and 

     let 

           {‖   |  ‖        }  

For                 and        put 

     
            

  {     ‖ |     
 ‖  4∑          

    
 

   

5

  ⁄

  } 

and 
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(  ) 
     

 (   {  }) 
     

 

 {     ‖ |     
     

‖  4∑                 
    

 

   

5

  ⁄

  }         

(see [62, 300, 295, 305]). 

   The following result can be proved using ideas of [297, Section 5.6] and [62, Section 

2.5.4] but also by means of interpolation as we do. 

Lemma (6.3.5) [313] Let             and      ⁄   Then we have 

(  ) 
     

     
     

Proof. Take any        By [65, Theorem 2.5.3] (see also [62, Theorem 2.5.4]), we 

know that      
      

   Whence, using [305, Corollary 3.5 and Lemma        ], we 

derive 

(  ) 
     

 (   (  ) 
 
)
        

 (       
 )

        
 (   (     

 )
   

)
        

 

                             (     
 )

        
     

    

where the last equality follows from [283, Theorem 3.1]. 

   In the proof of the previous lemma we have used that     
    (     

 )
        

 [283, 

Theorem 3.1]. We can show now that in this interpolation formula the Sobolev space   
  

can be replaced by any fractional Sobolev space   
      

   any Triebel–Lizorkin space 

    
   or any Besov space     

   

Theorem (6.3.6) [313] Let                       and         For  

    
      

  or     
  we have with equivalence of quasi-norms     

    (       
 )

        
  

Proof. By [65, Proposition 2, p. 47], we have 

           
      

             
   

Hence, using [65, Theorem 2.5.3], [305, Corollary 3.5] and Lemma (6.3.5), we derive 

(       
 )

        
 (              

 )
        

 (               
 )

        
 (  ) 

     
     

     

For the converse embedding, we obtain 

    
    (  ) 

     
 (               

 )
        

 (              
 )

        
 (       

 )
        

  

   With the help of the limiting real method for     we are going to characterize     
   

 by 

using smooth dyadic resolutions of unity and the Fourier transform. 

   Subsequently   and    stand for the Schwartz space of all (complex-valued) rapidly 

decreasing infinitely differentiable functions on     and the space of tempered 

distributions on     respectively. If       we write  ̂ for its Fourier transform and    for 

its inverse Fourier transform. Take      such that 

              | |     and           if   | |     
For     and      let           

         
        The sequence         

 is a 

smooth dyadic resolution of unity, ∑      
 
      for all       

   Imitating the quasi-norm (24), for                 and      the Besov 

spaces     
   

 are defined by 
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    {     ‖ |    

   ‖  4∑(          ‖    ̂ 
 |  ‖)

 
 

   

5

  ⁄

  }             

(see [142, 47, 28, 144, 169]). We are mainly interested in the case      Spaces     
   

 also 

have logarithmic smoothness but they are different from     
   

 although they are closely 

related (see [283, Theorem 3.3] and [308, Theorem 3.2]). The characterization of     
   

 in 

terms of Fourier-analytical decompositions has not been studied yet, even for the classical 

space     
   Next we establish it. We start with the diagonal case where      

Theorem (6.3.7) [313] Let       and      ⁄   Then      belongs to     
   

 if 

and only if 

‖  |    
   ‖

  
 (∑       ‖4∑|(   ̂)

 
   |

 
 

   

5

  ⁄

|  ‖

 
 

   

,

  ⁄

    

Moreover, ‖  |    
   ‖

  
 is an equivalent norm on     

     If     we obtain 

    
  

{
 
 

 
 

     ‖ |    
 ‖

  
 (∑‖4∑|(   ̂)

 
   |

 
 

   

5

  ⁄

|  ‖

 
 

   

,

  ⁄

  

}
 
 

 
 

  

Proof. We know that        
  is a retract of        and that   

      
  is a retract of 

     
    the corresponding coretraction operator being    ((   ̂)

 
)
    

 (see [62, p. 

185]). For the vector-valued   -spaces, using Lemmata (6.3.1) and (6.3.2), we obtain 

(            
  )

        
   (      

          ) 

 

{
 

 

  (  )  ‖ ‖  ‖‖(∑       4∑|     |
 

 

   

5

  ⁄
 

   

,

  ⁄

|  ‖‖   

}
 

 

  

Since     
    (     

 )
        

 (see [283, Theorem 3.1/(b)]or Theorem 3.4), and 

‖  ‖
  ((     

 )
        

)
 (∑       ∫4∑|(   ̂)

 
   |

 
 

   

5

  ⁄

  

 

  

 

   

,

  ⁄

 (∑       ‖4∑|(   ̂)
 
   |

 
 

   

5

  ⁄

|  ‖

 
 

   

,

  ⁄

  

the wanted characterization follows from [62, Theorem 1.2.4]. 

Remark (6.3.8) [313] It is shown in [283, Corollary 3.5] that 

    
        

      ⁄
 if      ⁄   

In the more recent paper [308, Corollary 3.3], it has been proved that in the limit case 

     ⁄  we have 
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     ⁄      

      ⁄  {     4∑(               ⁄ ‖(   ̂)
 
|  ‖)

 
 

   

5

  ⁄

  }   

Using Theorem (6.3.7) we can see clearly the reason for this jump in the scale: It is owing 

to the asymptotic behaviour of    ∑         
    which behaves as           if 

     ⁄  and as          if       ⁄   Indeed 

‖ |    
   ‖

 
 ∑       ‖4∑|(   ̂)

 
   |

 
 

   

5

  ⁄

|  ‖

 

   

 

 ∑       ∫4∑|(   ̂)
 
   |

 
 

   

5  

 

  

 

   

 ∫4∑|(   ̂)
 
   |

 
 

   

∑       
 

   

5  

 

  

 

 ∑4  
  ⁄ ( ∫ |(   ̂)

 
   |

 

  

 

  

+

  ⁄

5

 
 

   

 8
‖ |    

      ⁄ ‖
 
            ⁄  

‖ |    
      ⁄ ‖

 
              ⁄  

  

   Next we study the non-diagonal case      We work with the vector-valued sequence 

spaces 

  
      8        

 ‖    |  
     ‖  (∑    ‖  |  ‖ 

 

 

   

+

  ⁄

  9   

Here     and         
 is a sequence of Banach spaces. It is well-known that for 

                 and        we have with equivalence of quasi-norms 

(  
         

      )
   

   
                                               

(see [62, Theorem 1.18.2] where (43) is proved for            arguments work also 

in the general case). 

Theorem (6.3.9) [313] Let             and      ⁄   Then      belongs 

to     
   

 if and only if 

‖ |    
   ‖

  
 (∑[      ‖4∑|(   ̂)

 
   |

 
 

   

5

  ⁄

|  ‖]

 
 

   

,

  ⁄

                    

(usual modification if    ). Furthermore, ‖  |    
   ‖

  
 is an equivalent quasi-norm on     

     

Proof. Take       such that    ⁄         ⁄    ⁄      We can find       

such that 

    ⁄             ⁄          ⁄                                         
With this choice of parameters, Lemma (6.3.5) and [295, Theorem 5] yield that 

    
         

         
                                                                       

Moreover, it follows from Theorem (6.3.7) and Lemma (6.3.2) that     
     is a retract of 

  (      
           )        Note also that 

‖((   ̂)
 
) |  (      

           )‖  (∑        ‖4∑|(   ̂)
 
   |

 
 

   

5

  ⁄

|  ‖

 
 

   

,

  ⁄
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 (∑ ∑     ‖4 ∑ |(   ̂)
 
   |

 
 

     

5

  ⁄

|  ‖

 
      

    

 

   

,

  ⁄

  

If             then      and so ∑            
                     ⁄     Whence, 

‖((   ̂)
 
) |  (      

           )‖  4∑        ⁄   ‖( ∑ |(   ̂)
 
   |

 
 

      

+

  ⁄

|  ‖

 
 

   

5

  ⁄

  

Write          ̂ 
             

 and           for       The previous 

considerations and Theorem (6.3.7) show that 

      
       

     ⁄
     

is bounded for        Interpolating this operator and using (43), (45) and (46), we derive 

that 

      
      

    ⁄
     

is also bounded. Therefore one has by (44) 

‖ |    
   ‖

  
 4∑6       ⁄  ‖( ∑ |(   ̂)

 
   |

 
 

      

+

  ⁄

|  ‖7

 
 

   

5

  ⁄

 ‖  |  
    ⁄

    ‖  ‖ |    
   ‖  

   To check the converse inequality, note that using       -Fourier multipliers and 

Littlewood–Paley theorem based on      where        if |   |    one has 

‖ ∑ (   ̂)
 

 

     

|  ‖  ‖4∑|(   ̂)
 
   |

 
 

   

5

  ⁄

|  ‖   

Hence 

‖ |    
   ‖

  

 
 ∑[      ‖4∑|(   ̂)

 
   |

 
 

   

5

  ⁄

|  ‖]

 
 

   

 ‖ |  ‖
 
 ∑       ⁄   ‖(∑ |(   ̂)

 
   |

 
 

    

+

  ⁄

|  ‖

 
 

   

 ‖ |  ‖
 
 ∑       ⁄   ‖ ∑ (   ̂)

 
 

      

|  ‖

  

   

 ‖ |  ‖
 
 ∑       ⁄   ‖  ∑(   ̂)

 
  

   

|  ‖

 
 

   

  

Let      
 
 and consider the sets    defined in (40). Since 

    4∑(   ̂)
 

  

   

5

 

     ∑   ̂

  

   

 {  | |      }  

we have ∑ (   ̂)
   

          and 

‖  ∑(   ̂)
 

  

   

|  ‖     
         

‖   |  ‖             



 

237 
 

Consequently, using [295, Lemma 1] and Lemma (6.3.5), we derive that 

‖ |    
   ‖

  
 4‖ |  ‖

 
 ∑       ⁄          

 

 

   

5

  ⁄

 ‖ |(  ) 
     

‖  ‖ |    
   ‖  

This completes the proof. 

   We collect basic notation of wavelets as needed below following closely [311, Section 

1.2.1, pp. 13–14]. As usual,       with     collects all (complex-valued) continuous 

functions on   having continuous bounded derivatives up to order   (inclusively). Let 

                                                                    
be real compactly supported Daubechies wavelets with 

∫      
   

 

 

                                  

Recall that    is called the scaling function (father wavelet) and    the associated 

wavelet (mother wavelet). The extension of these wavelets from   to           is 

based on the usual tensor procedure. Let 

                         
which means that    is either For    Let 

                              

which means that    is either For   where * indicates that at least one of the components 

of   must be an    Hence    has    elements, whereas    with     has      elements. 

Let 

    
         ⁄ ∏     

       

 

   

                                  

where (now)       We always assume the    and    in (47) have   -norm 1. Then 

  {    
 

                } 

is an orthonormal basis in     
   and 

  ∑ ∑ ∑   
   
     ⁄     

 

        

 

   

 

with 

  
   

   
   
        ⁄ ∫        

 
     

 

  

     ⁄ (      
 

) 

in the corresponding expansion, adapted to our needs, where      ⁄     
 

  are uniformly 

bounded functions (with respect to   and  ). The spaces     
  with       according to (21) 

can be expanded in terms of   as described above in (31)–(33) where        This is a 

special case of [311, Theorem 1.20, pp. 15–16]. 

   Let      be the characteristic function of the dyadic cube                     in 

   with sides of length     parallel to the axes of coordinates and      as the lower left 

corner. For       and        we write     
  for the space of all sequences   

   
   
  with          and      such that 

‖ |    
 ‖  ‖4∑     |  

   
       |

 

     

5

  ⁄

|  ‖     
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We put 

  
      {    

   
     

    
     

 ‖    
   
     

    
 |  

     ‖  4∑    ∑|  
   
|
 

    

5

  ⁄

  }   

Lemma (6.3.10) [313] For       and        the space     
  can be identified with a 

complemented subspace     
  of      

        The projection onto     
  associates to each 

                
     

   
        

    
     

      
       the function    defined by 

           ∫   
   
            

 

    

     

    
     

   

Proof. Given any       
   let      be the function defined by                 where 

         
   
            

    
  Since 

‖ |    
 ‖  ‖‖

(

 ∑     ∑ |  
   
|
 
       

    

    
    

)

 

  ⁄

|  ‖‖  ‖4∑     ‖     |  ‖
 

    

5

  ⁄

|  ‖

 ‖    |     
      ‖ 

we have that     
  is isometric to the subspace     

  {            
 } of      

        It is 

easy to check that      for any       
   Let us show that   is bounded in      

        

We have that 

   ∫|  
   
   |         

 

    

 (   
   
)          

where   is the Hardy–Littlewood maximal operator. Using the vector-valued estimate for 

  (see [194, Theorem 1.1.1, p. 51]), we obtain 

‖  |  (  
     )‖  ‖‖

(

 ∑ ∑ 4   ∫|     
      |  

 

    

5

 

       

    

    
    

)

 

  ⁄

|  ‖‖ 

 ‖‖

(

 ∑ ∑ (     |  
   
|    )

 

    

    
    

)

 

  ⁄

|  ‖‖  ‖‖

(

 ∑ ∑     |  
   
   |

 

    

    
    

)

 

  ⁄

|  ‖‖

 ‖ |     
      ‖  

In addition, this also shows that if        
       then        

   The proof is completed. 

Lemma (6.3.11) [313] Let       and      ⁄   Then      
   
  belongs to 

     
      

           if and only if 

‖ ‖  

(

 
 
∫∑       

(

 ∑ ∑ |  
   |

 
       

    

    

 

   
)

 

  ⁄

  

 

   

 

  

)

 
 

  ⁄
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is finite. Moreover, ‖ ‖ defines an equivalent norm in      
      

            

Proof. By Lemmata (6.3.1), (6.3.2), we have that 

                 
                         

                 

Hence, according to Lemma (6.3.10) and the theorem on interpolation of complemented 

subspaces [62, Theorem 1.17.1], we derive that 

‖ |     
      

          ‖  

(

 
 
∫∑       

(

 ∑ ∑ |  
   |

 
       

    

    

 

   
)

 

  ⁄

  

 

   

 

  

)

 
 

  ⁄

  

   In what follows we work with the sequence of wavelets      
 

  defined in (48) with 

    and the sequence space     
   

 defined in (36) but allowing now      ⁄   

Theorem (6.3.12) [313] Let       and      ⁄   Then   belongs to     
   

 if, and 

only if, it can be represented as   ∑   
   
     ⁄     

 
      (unconditional convergence 

being in   ) with   
   

   
   
        ⁄        

 
  and 

‖ |    
   ‖

  
 ‖   

   
 |    

   ‖  

(

 
 
∑       ‖‖(∑ ∑ |  

   |
 
       

    

    

 

   

,

  ⁄

|  ‖‖

 

 

   

)

 
 

  ⁄

 

is finite. Moreover, ‖  |    
   ‖

  
 defines an equivalent norm in     

     

Proof. The unconditional convergence in    for any sequence    
   
      

   
 follows from 

a corresponding assertion for    based on     
  according to [311, Theorem 1.20] and 

    
         

  as a consequence of Lemma (6.3.11). 

   Let   be the operator defined by 

     
   
    ∑   

   
     ⁄     

 

     

  

According to [311, Theorem 1.20], the restrictions 

      
      and        

    
  

are isomorphisms. Interpolating and using Theorem (6.3.6) or [283, Theorem 3.1], we 

obtain that 

       
      

                 
               

    

is also an isomorphism. As for the source space of this operator, by Lemma (6.3.11), we 

know that 

‖(  
   
)|(    

      
 )

        
‖  

(

 ∫∑       (∑ ∑ |  
   |

 
       

    

    

 

   

,

  ⁄

  

 

   

 

  

)

 

  ⁄

 

(

 
 
∑       ‖‖(∑ ∑ |  

   |
 
       

    

    

 

   

,

  ⁄

|  ‖‖

 

 

   

)

 
 

  ⁄

  

Furthermore,   
   

   
   
    is again covered by [311, Theorem 1.20]. This completes the 

proof. 
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   In order to study the case      we first introduce some notation and we establish an 

auxiliary result. 

   For       and      let           be the operator defined by 

     ∑ ∑   
           ⁄     

 

    

    

   

   

  

   As {    
 } is an unconditional Schauder basis in     we have that 

   {‖   |     ‖     }     

   Let        and for           with                put 

             {       ∑ ∑   
        ⁄     

 

    

    

   

   

        
     }   

Then           is an approximation scheme in the sense of Pietsch [300]. Put 

  
         {‖   |  ‖        }      

and define the space           
     

 as (41) but replacing the sequence          by 

   
        

   Note that 

 
  
      ‖      |  ‖      

Indeed, given any          we have 

‖      |  ‖  ‖   |  ‖  ‖      |  ‖  ‖   |  ‖  ‖        |  ‖

 ‖   |  ‖  

Lemma (6.3.13) [313] Let             and      ⁄   Then we have with 

equivalence of norms 

          
     

     
     

Proof. We start with the case          Put      
 
       We have 

‖ |(   {  }) 
     

‖
 

 ‖ |  ‖
 
 ∑(       ⁄     

     )
 

 

   

 ‖ |  ‖
 
 ∑(       ⁄  ‖      |  ‖)

 
 

   

 ‖ |  ‖
 
 ∑       ⁄   ‖∑ ∑   

           ⁄     
 

    

    

 

    

|  ‖

 
 

   

 ‖ |  ‖
 
 ∑       ⁄   ‖‖(∑ ∑ |  

      |
 
       

    

    

 

    

,

  ⁄

|  ‖‖

 

 

   

 

where we have used [67, Theorem 1.64](or [311, Theorem 1.20]) in the last equivalence. 

Now the result follows from Theorem (6.3.12). Note that the above argument works even 

if      ⁄   
   To establish the remaining case      choose       such that    ⁄         ⁄  
  ⁄     and take       with 
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    ⁄             ⁄          ⁄    
According to (46), [295, Theorem 5] and the result just proved for the diagonal case, we 

obtain that 

    
         

         
                    

                 
                     

     
  

Theorem (6.3.14) [313] Let             and      ⁄   Then   belongs to 

    
   

 if, and only if, it can be represented as   ∑   
   
     ⁄     

 
      (unconditional 

convergence in   ) with   
   

   
   
        ⁄        

 
  and 

‖ |    
   ‖

  
 ‖(  

   
)|    

   ‖  

(

 
 
∑       ‖‖(∑ ∑ |  

   |
 
       

    

    

 

   

,

  ⁄

|  ‖‖

 

 

   

)

 
 

  ⁄

    

Moreover, ‖  |    
   ‖

  
 defines an equivalent quasi-norm in     

     

Proof. The unconditional convergence in    is covered by the related argument at the 

beginning of the proof of Theorem (6.3.12) and the above interpolation (46). 

Using Lemma (6.3.13), we obtain 

‖ |    
   ‖  ‖ |(   {  }) 

     
‖  4‖ |  ‖

 
 ∑       ⁄      

     
 

 

   

5

  ⁄

 4‖ |  ‖
 
 ∑       ⁄   ‖      |  ‖

 
 

   

5

  ⁄

 

(

 
 
‖ |  ‖

 
 ∑       ⁄   ‖‖(∑ ∑ |  

   |
 
       

    

    

 

    

,

  ⁄

|  ‖‖

 

 

   

)

 
 

  ⁄

 

(

 
 
∑       ‖‖(∑ ∑ |  

   |
 
       

    

    

 

   

,

  ⁄

|  ‖‖

 

 

   

)

 
 

  ⁄

  

Remark (6.3.15) [313] Comparing Theorem (6.3.14) with the corresponding result for 

classical Besov spaces given in (30)–(33), we observe again an additional truncated 

Littlewood–Paley-type construction. The corresponding sequence space being     
   

 quasi-

normed by (36) in contrast to     
  in       

   In order to take a closer look into these sequence spaces, consider the Banach case 

      and notice that the norm (30) of     
  can be rewritten as 

‖ |    
 ‖  4∑    ∑ ‖ ∑ |  

   
|       

    

|  ‖

 

    

 

   

5

  ⁄

                                 

Then it follows for some            

  ‖ |    
 ‖  

(

 
 
∑    ‖‖(∑ ∑ |  

   |
 
       

    

    

 

   

,

  ⁄

|  ‖‖

 

 

   

)

 
 

  ⁄
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   ‖ |    
 ‖       

                                                                    

where we used again      Hence one can replace     
  in (30) by the middle term in (50). 

Afterwards one can compare     
  with     

   
 according to (36). 

   To continue with the description of relationships between classical and logarithmic 

spaces, let 

         ∑ |  
   
   |       

    

    

 

and 

 

          (∑ ∑ |  
      |

 
       

    

    

 

   

,

  ⁄

  

Then 

‖ |    
 ‖

 
 4∑    ‖   |  ‖

 
 

   

5

  ⁄

                                           

and 

‖ |    
 ‖

  
 4∑    ‖(   )

 
|  ‖

 
 

   

5

  ⁄

                                      

are equivalent norms in     
   This is covered by (30), (33) combined with (49), (50). The 

norm-generating basic ingredient in the refined norm (52) is monotonically decreasing in 

   in contrast to their original counterpart in (51). 

   If one switches from     
  to their logarithmic counterpart     

     then as it is shown in 

Theorem (6.3.14), the corresponding norm to (52) is 

‖ |    
   ‖

  
 4∑       ‖(   )

 
|  ‖

 
 

   

5

  ⁄

  

On the other hand, according to [157, Theorem 13] and the comments in [60, Section 

1.3.3, pp. 54–60], the counterparts of (51), hence 

‖ |    
   ‖

 
 4∑       ‖   |  ‖

 
 

   

5

  ⁄

 

is an equivalent norm in the space     
   

 which does not coincide with     
     

   To finish we consider the embeddings 

    
               ⁄

     
        

               ⁄
  

established in [283, Theorem 3.3] for             and      ⁄   As an 

application of the characterizations by means of wavelets, we show next two results on the 

optimality of the embeddings above. 

Remark (6.3.16) [313] Let             and      ⁄   Suppose that 

              We are going to show that for any     we have     
        

      ⁄   
  

   Given   choose βsuch that     ⁄    ⁄        ⁄    ⁄    and put 
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 {
    ⁄                                        

                                                        
                                                   

 

Then   ∑   
   
     ⁄     

 
      belongs to     

     Indeed, according to Theorem (6.3.14), 

it is enough to show that 

‖ |    
   ‖

  
 (∑       ‖4∑(    ⁄        )

 
               

 

   

5

  ⁄

|  ‖

 
 

   

,

  ⁄

    

We claim that if     and       then 

4∑(    ⁄        )
 
               

 

   

5

  ⁄

 4∑(    ⁄        )
 
             

 

   

5

  ⁄

        

with constants in the equivalence which are independent of   and    Indeed, assume 

     The case     can be carried out similarly. Since        it is clear that 

4∑(    ⁄        )
 
               

 

   

5

  ⁄

 4∑(    ⁄        )
 
               

 

   

5

  ⁄

  

To check the converse inequality, we distinguish two cases. If                           

then                   for      So 

4∑(    ⁄        )
 
               

 

   

5

  ⁄

   4∑(    ⁄        )
 
               

 

   

5

  ⁄

  

Suppose now that             and let       the bigger value such that                  

We have 

4∑(    ⁄        )
 
             

 

   

5

  ⁄

 4∑(    ⁄        )
 

  

   

5

  ⁄

 

 4∑(    ⁄        )
 

  

   

5

  ⁄

      ⁄       
   4∑(    ⁄        )

 

  

   

5

  ⁄

 4∑(    ⁄        )
 
               

 

   

5

  ⁄

 

which establishes (53). 

Consequently, since         and        ⁄        we get 

‖ |    
   ‖

  
 (∑       ‖4∑(    ⁄        )

 
             

 

   

5

  ⁄

|  ‖

 
 

   

,

  ⁄

 (∑       4 ∫∑(    ⁄        )
 
             

 

   

  

 

  

5

  ⁄
 

   

,

  ⁄
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 (∑       4∑(    ⁄        )
 
    

 

   

5

  ⁄
 

   

,

  ⁄

 (∑       4∑        
 

   

5

  ⁄
 

   

,

  ⁄

 4∑                     ⁄

 

   

5

  ⁄

 4∑            ⁄   

 

   

5

  ⁄

    

Therefore,       
     But, by our choice of    we have 

4∑     ⁄           ⁄     (    ⁄        )
 

 

   

5

  ⁄

 4∑          ⁄       

 

   

5

  ⁄

    

Hence, according to [157, Theorem 13], we derive that       
      ⁄   

  

   Assume this time that               Let us show that for any     we have 

    
      ⁄   

     
     Take   such that     ⁄     ⁄          ⁄     ⁄  and put 

as before, 

  
    {

    ⁄                                                       
                                                                       

 

and   ∑   
   
     ⁄     

 
       Using (53) we derive 

‖ |    
   ‖

  
 (∑       ‖4∑(    ⁄        )

 
             

 

   

5

  ⁄

|  ‖

 
 

   

,

  ⁄

 (∑       ‖4∑(    ⁄        )
 
             

 

   

5

  ⁄

|  ‖

 
 

   

,

  ⁄

 

 (∑       4∑(    ⁄        )
 
    

 

   

5

  ⁄
 

   

,

  ⁄

 (∑       4∑        
 

   

5

  ⁄
 

   

,

  ⁄

  

This sum is   if          If          we have 

‖ |    
   ‖

  
 (∑       4∑        

 

   

5

  ⁄
 

   

,

  ⁄

 4∑            ⁄   

 

   

5

  ⁄

    

So, Theorem (6.3.14) yields that       
     However 

4∑      ⁄           ⁄     (    ⁄        )
 

 

   

5

  ⁄

 4∑          ⁄       

 

   

5

  ⁄

   

which means, according to [157, Theorem 13], that       
      ⁄   

  

   First we show an abstract result on semi-groups of operators and limiting real 

interpolation, and then we apply it to heat kernels and spaces     
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   Let   be a (complex) Banach space and let              be a family of linear and 

bounded operators from   into itself. The family           is called to be a strongly 

continuous equi-bounded semi-group of operators in   if 

(i)                        
(ii)                         
(iii) ‖     | ‖   ‖  | ‖          
(iv)                     
   The infinitesimal generator   of the semi-group           is defined by 

      
   

             

whenever that the limit exists. The domain      of   consists of all those     for which 

the limit exists. The domain       of the  -th power of   is a Banach space endowed 

with the norm 

‖ |     ‖  ‖ | ‖  ‖   | ‖            
   The semi-group           is said to be analytic (or holomorphic) if in addition to (i)–

(iv), it satisfies 

(v)                                 
(vi)  ‖      | ‖   ‖  | ‖            
See [5,31,33] for more details on semi-groups of operators. 

   Consider the following modulus of continuity of order     

 ̅   
        

     
‖[       ]  | ‖   

This modulus is related to the  -functional of the couple          Indeed, it is shown in 

[306, Proposition 3.4.1] that 

 (            )   ̅   
              ‖  | ‖                               

and 

 ̅   
                                                                          

On  the  other  hand,  if  the  semi-group  is  analytic  and  we  consider  the  modified  -

functional given by 

 ̃       ̃                 
      

  
 ‖    | ‖   ‖    | ‖   

then it follows from [191, Theorem 5.1] that 

 ̃               ‖[       ]  | ‖                                        
Theorem (6.3.17) [313] Let   be a Banach space, let           be a strongly continuous 

equi-bounded semi-group of operators in    let           and      ⁄   The 

quasi-norm 

‖ ‖  ‖ | ‖  4∫(          ̅   
    )

   

 

 

 

5

  ⁄

 

is equivalent to the interpolation quasi-norm ‖   |                 ‖ on 

                   

   In addition, if the semi-group           is analytic then 

‖ ‖  ‖ | ‖  4∫          ‖[       ]  | ‖  
  

 

 

 

5

  ⁄

 

is also an equivalent quasi-norm on                    

Proof. Making a change of variable and using (54), we obtain 
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‖ |(       )
        

‖  4∫(               )
   

 

 

 

5

  ⁄

 4∫(                )
   

 

 

 

5

  ⁄

      

 4∫(          ̅   
    )

   

 

 

 

5

  ⁄

 4∫              
  

 

 

 

5

  ⁄

‖ | ‖  ‖ ‖   

To check the converse inequality, note that                      Moreover, by (55), we 

have 

4∫(          ̅   
    )

   

 

 

 

5

  ⁄

 4∫(                )
   

 

 

 

5

  ⁄

 ‖ |                 ‖  

Consequently, ‖ |                 ‖  ‖ ‖   

   Assume now that the semi-group           is analytic. To complete the proof we first 

show that 

        ‖ | ‖   ̃                                                 
Indeed, take any           Using the triangle inequality in   and that      we obtain 

       ‖    | ‖   ‖  | ‖   ‖    | ‖
  ‖    | ‖   ‖ | ‖   ‖    | ‖  

Taking the infimum over all          it follows that         ‖ | ‖   ̃       
Conversely, 

 ‖ | ‖   ̃       ‖ | ‖  ‖    | ‖   ‖    | ‖
  ‖    | ‖   ‖  | ‖  ‖    | ‖   ‖    | ‖
  ‖    | ‖   ‖  |   

  ‖  
Therefore, we derive (57). 

   Now (57) and (56) yield that ‖   ‖  ‖   |                 ‖  This completes the proof. 

   Next we specify Theorem (6.3.17) for the case of the Gauss–Weierstrass semi-group 

         
 

       ⁄
∫   

|   | 

        

 

  

 (   | |
 
 ̂   )

 
              

                          
Basic information about the use of           in connection with function spaces may be 

found in [62, Section 2.5.2, pp. 190–192]. See also [306, Section 4.3.2], [66, Section 2.6.4] 

and [312, Section 3.6.6]  The semi-group           is analytic in    for       and 

its infinitesimal generator is the Laplacian operator   ∑      
 ⁄ 

     Hence,       

  
   for            

   Since     
          

            (see [283, Theorem 3.1] or Theorem 3.4) as a direct 

consequence of Theorem (6.3.17) we obtain the following characterization of     
   

 by 

means of heat kernels. 

Theorem (6.3.18) [313] Let                  ⁄  and      Then      

belongs to     
   

 if, and only if, 

‖ |    
   ‖

   

 
 ‖ |  ‖  4∫         ‖[       ]  |  ‖

 

 

 

  

 
5

  ⁄

 

is finite. Furthermore, ‖  |    
   ‖

   

 
 is an equivalent quasi-norm in     
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   Comparing Theorem (6.3.18) with the corresponding result for classical Besov spaces 

    
  given in (27) we observe that the truncated Littlewood–Paley construction does not 

appear this time. 

   We consider harmonic extensions, that is, the case of the Cauchy–Poisson semi-group 

           ∫
 

 |   |     
   
 

      

 

  

 (   | | ̂   )
 
              

where   ‖   | |         ⁄ |  ‖     with          This is also an analytic semi-

group in    for       (see [62, Section 2.5.3] and [66, Section 2.6.4]). The 

corresponding characterization reads as follows. 

Theorem (6.3.19) [313] Let                  ⁄  and      Then      

belongs to     
   

 if, and only if, 

‖ |    
   ‖

   

 
 ‖ |  ‖  4∫         ‖[       ]  |  ‖

 

 

 

  

 
5

  ⁄

 

is finite. Furthermore, ‖  |    
   ‖

   

 
 is an equivalent quasi-norm in     

     

Proof. For the semi-group           we have 

                 and             
    

Using again that     
          

            and Theorem (6.3.17), we obtain that the 

wanted result holds for any even natural number m. To complete the proof, write 

‖ ‖  ‖ |  ‖  4∫         ‖[       ]  |  ‖
 

 

 

  

 
5

  ⁄

  

It suffices to show that for any     the quasi-norms  ‖   ‖  and ‖   ‖    are equivalent 

on     
     

   Take any       
     Using (56), we obtain 

‖[       ]  |  ‖               
       

     
‖[       ]  |  ‖   ̅   

      

By [266, (4.10)], we have that  ̅     
        ̅   

     Hence 

‖ ‖    ‖ |  ‖  4∫(          ̅     
      )

   

 

 

 

5

  ⁄

 ‖ |  ‖  4∫(          ̅   
    )

   

 

 

 

5

  ⁄

 ‖ ‖   

In order to establish the converse inequality, note that 

 ̅   
       ∫       ̅     

        

 

 

 

(see [310, Theorem 1.4, (1.7)]). Therefore 

‖ ‖  ‖ |  ‖  4∫(          ̅   
    )

   

 

 

 

5

  ⁄
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 ‖ |  ‖  4∫4           ∫
 ̅     

      

    
  

 

 

5

 

  

 

 

 

5

  ⁄

 ‖ |  ‖  4∫4           ∫
 ̅     

      

    
  

 

 

5

 

  

 

 

 

5

  ⁄

 4∫(           ∫
 ̅     

      

    
  

 

 

+

 

  

 

 

 

5

  ⁄

 ‖ |  ‖         

Since  ̅     
            is equivalent to the decreasing function  ̃               

we can still apply the extension of the Hardy inequality established in [256, Theorem 6.4] 

to derive that 

   4∫.             
 ̅     

      

    
/

 
  

 

 

 

5

  ⁄

 4∫         ‖[       ]    |  ‖
 

 

 

  

 
5

  ⁄

 ‖ ‖     

As for     using that 

 ̅     
        ̃              

      ‖ |  ‖ 

we get 

   4∫              
  

 

 

 

5

  ⁄

‖ |  ‖  ‖ ‖     

This yields that ‖ ‖  ‖ ‖    and completes the proof. 

   Comparing (27) with Theorem (6.3.18), one might think that the counterpart of the 

quasi-norm (26) for logarithmically perturbed Besov spaces is given by replacing in (26) 

the term    
 

 
 
 by             However, the involved spaces are not     

   
 but     

     We 

shall need the spaces     
         introduced in (42) and the logarithmic interpolation 

spaces              formed by all those         such that the quasi-norm 

‖ |            ‖  4∫ (      |    |        )
   

 

 

 

5

  ⁄

 

is finite. Here             and      See [272, 264]. 

   The following result refers to abstract semi-groups. 

Theorem (6.3.20) [313] Let   be a Banach space, let           be an analytic semi-group 

of operators in A, let     ⁄            and      The quasi-norm 

‖ ‖  ‖ | ‖  4∫(   
 
          ‖       | ‖)

   

 

 

 

5

  ⁄

 

is equivalent to the interpolation quasi-norm on            ⁄        

Proof. Since ‖ | ‖  ‖ |     ‖ for any          we have that        ‖ | ‖ for 

any     and      This yields that 
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‖ |(       )
  ⁄      

‖  ‖ | ‖  4∫(     ⁄                )
   

 

 

 

5

  ⁄

 ‖ | ‖  4∫(    ⁄                 )
   

 

 

 

5

  ⁄

  

Using that 

  ‖       | ‖                                                              

(see [306, Lemma 3.5.4]), we get that ‖ ‖  ‖ |           ⁄      ‖  To check the 

converse inequality, note that 

‖[       ]  | ‖  ∫    ‖       | ‖  

 

 

                                    

 (see [306, Lemma 3.5.5]). Hence, using (54), we obtain for       

         ̅   
       ‖ | ‖  ∫    ‖       | ‖  

 

 

   ‖ | ‖  

This implies that 

‖ |           ⁄      ‖  ‖ | ‖  4∫4    ⁄          ∫    ‖       | ‖  

 

 

5

 

  

 

 

 

5

  ⁄

  

By (iii), we have for       that 

‖       | ‖  ‖             | ‖   ‖       | ‖  
Hence, using the extension of the Hardy inequality established in [256, Theorem 6.4], we 

derive that 

‖ |           ⁄      ‖  ‖ | ‖  4∫(   
 
              ‖       | ‖)

   

 

 

 

5

  ⁄

 ‖ ‖   

   Next we apply Theorem (6.3.20) to the Gauss–Weierstrass semi-group            
Subsequently    stands for the usual lift operator defined by 

    (   | |    ⁄  ̂)
 
      

Theorem (6.3.21) [313] Let                 and      Then 

‖ |    
   ‖

   
 ‖    |  ‖  4∫(           ‖

       

   
|  ‖*

 
 

 

  

 
5

  ⁄

 

is an equivalent quasi-norm on     
     

Proof. According to [47, Proposition 1.8], the operator     is an isomorphism from     
   

 

onto     
     The classical smoothness of     

   
 is     so, by [28, Theorem 2.5], we know 

that 

‖ |    
   ‖ ‖ |  ‖  4∫(                         )

 

 

 

  

 
5

  ⁄

                       

Moreover, for      and      we have 
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                ‖ |  ‖                                 

(see [1, Theorem 5.4.12]). It follows from (60) and (61) that 

    
          

      
           ⁄                

           
               ⁄             

where     is the infinitesimal generator of the semi-group            Applying 

Theorem (6.3.20) we get 

‖ |    
   ‖  ‖    |    

   ‖  ‖    |  ‖  4∫(           ‖            |  ‖)
 

 

 

  

 
5

  ⁄

  

Next we use that 

                               
       

and that, according to [56, p. 133], 

‖    |  ‖  ‖          |  ‖  ‖ |  ‖  
This yields that 

‖ |    
   ‖  ‖    |  ‖  4∫(           ‖

       

   
|  ‖*

  

 

  

 
5

  ⁄

  

   Note that the operator     is necessary because in general     
   

 may not contain only 

regular distributions (see [169, Theorem 4.3]). 

   Finally we consider the case of the Cauchy–Poisson semi-group            
Theorem (6.3.22) [313] Let                 and      Then 

‖ |    
   ‖

   

 
 ‖    |  ‖  4∫(           ‖

       

   
|  ‖*

  

 

  

 
5

  ⁄

 

is an equivalent quasi-norm on     
     

Proof. This time                       and              
      

  By (62), we get 

    
          

                 ⁄         
               ⁄   

Therefore, applying Theorem (6.3.20) with      we obtain 

‖ |    
   ‖  ‖ |  ‖  4∫(                  ‖            |  ‖)

 

 

 

  

 
5

  ⁄

  

This means that for any even natural number   with     we have 

‖ |    
   ‖  ‖ |  ‖  4∫(             ‖       |  ‖)

 

 

 

  

 
5

  ⁄

                   

   Write ‖ ‖ 
  for the quasi-norm on the right-hand side of (63). We claim that for any 

    with     we have 

‖   ‖ 
  ‖   ‖   

                 
                                                     

Indeed, by (vi), given any      we have 

‖         |  ‖  ‖     ⁄        ⁄   |  ‖     ‖      ⁄   |  ‖  

Whence 

‖ ‖    ‖ |  ‖  4∫(             ‖      ⁄   |  ‖)
 

 

 

  

 
5

  ⁄

 ‖ ‖    
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 ‖ |  ‖  4∫ (             ‖       |  ‖)
 

  ⁄

 

  

 
5

  ⁄

 ‖ ‖ 
   

Conversely, by (58) and (57) 

‖ ‖ 
  ‖ |  ‖  4∫(             (           

  )*
 

 

 

  

 
5

  ⁄

 ‖ |  ‖  4∫(             ̃ (           
  )*

 
 

 

  

 
5

  ⁄

  

As we have seen in the proof of Theorem (6.3.19), 

 ̃ (           
  )   ̅   

      

Moreover, by [310, Theorem 1.4, (1.7)] 

 ̅   
       ∫

 ̅     
      

    
  

 

 

  

   Now proceeding as in the proof of Theorem (6.3.19), using that     and the extension 

of the Hardy inequality [256, Theorem 6.4], we obtain 

‖ ‖  ‖ |  ‖  4∫4             ∫
 ̅     

      

    
  

 

 

5

  

 

  

 
5

  ⁄

 ‖ |  ‖  4∫4             ∫
 ̅     

      

    
  

 

 

5

  

 

  

 
5

  ⁄

 4∫                

 

 

  

 
5

  ⁄

‖ |  ‖

 ‖ |  ‖  4∫.             
 ̅     

      

    
/

  

 

  

 
5

  ⁄

 ‖ |  ‖  4∫(            ‖[       ]    |  ‖)
 

 

 

  

 
5

  ⁄

 ‖ |  ‖  4∫4            ∫  ‖         |  ‖

 

 

5

  

 

  

 
5

  ⁄

 

where we have used (59) in the last inequality. The extension of the Hardy inequality 

implies now that 

‖ ‖ 
  ‖ |  ‖  4∫(              ‖         |  ‖)

 

 

 

  

 
5

  ⁄

 ‖ ‖   
   

This proves (64). 

   Now to complete the proof of the theorem we can proceed as in Theorem (6.3.21) with 

the help of the lift operator      Indeed, given any natural number      since 
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by (63) and (64) we obtain 

‖ |    
   ‖  ‖     |    

   ‖  ‖    ‖ 

 ‖     |  ‖  4∫(             ‖     
        |  ‖)

 

 

 

  

 
5

  ⁄

 ‖     |  ‖  4∫(             ‖         |  ‖)
 

 

 

  

 
5

  ⁄

 ‖     |  ‖  4∫.             ‖
         

     
|  ‖/

  

 

  

 
5

  ⁄

  

This finishes the proof. 

Corollary (6.3.23) [314] Let         be Banach spaces with          Let       and 

           ⁄    with      Then we have with equivalence of norms 

(                   )(   (      )    ⁄ )    
     (         (   (      )    ⁄ )    )   

Proof. Consider the collection   of all functions          ∑              
    

 
     where     

           the measure of           is finite and                if         By (38), the 

set   is dense in (                   )(   (      )    ⁄ )    
 and in     (         (   (      )    ⁄ )    )  

For        we have 

‖    |(                   )(   (      )    ⁄ )    
‖
   

 

 ∫4            ( 
     )    ⁄    

            
           (      )

 ‖    |          ‖
            ‖  |        ‖

        ⁄ 5

   

      

     

 

 

 

 ∫             
     ∫    

                        

                 

 ‖        |    ‖
            ‖      |  ‖

       

 

  

      

     

 

 

 

 ∫∫             
                               

   
      

     
   

 

 

 

  

 

 ∫‖        |         (   (      )    ⁄ )    ‖
   

   

 

  

 ‖    |    (         (   (      )    ⁄ )    )‖
   

  

This completes the proof. 

   Next consider the sequence space    on    and for    . 

  
  {          

 ‖ |  
 ‖  4∑    |  | 

 

 

   

5

  ⁄

  }   

If      is a Banach space, the vector-valued sequence space   
        is defined by 

  
        {              

      ‖  |  
       ‖  4∑    ‖     |    ‖ 

 

 

   

5

  ⁄

  } 

Corollary (6.3.24) [314] Let        and            ⁄     Then we have with 

equivalence of quasi-norms 

      
      (      )    ⁄       {       ‖ ‖  4∑6     ( 

     )    ⁄  ∑|  |
 

 

   

   ⁄ 7

   
 

   

5

    ⁄

  } 
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and ‖   ‖ is an equivalent quasi-norm on       
      (      )    ⁄        

Proof. Consider first the case      Since 

              
   (∑               |  | 

 

 

   

+

  ⁄

  

we have for     that 

    
          

   4∑     |  | 
 

 

   

5

  ⁄

 4 ∑ |  |
 

 

     

5

  ⁄

  

Hence 

‖ |(     
 )

(   (      )    ⁄ )    
‖  4∑[     ( 

     )    ⁄   ( 
    )]

   
 

   

5

    ⁄

 

 4∑6       
         ⁄  ∑     |  | 

 

 

   

   ⁄ 7

   
 

   

5

    ⁄

 4∑6       
         ⁄  ∑|  |

 

 

   

   ⁄ 7

   
 

   

5

    ⁄

  

In the last expression, the first term is dominated by the second term. Indeed, if       ⁄     we obtain 

(∑6      ( 
     )    ⁄ ∑(    |  |)

 

 

   

7

      ⁄
 

   

,

    ⁄

 4∑      
             ∑       |  |

   

 

   

 

   

5

    ⁄

 4∑       |  |
   

 

   

∑      
             

 

   

5

    ⁄

 (∑      
     |  |

   

 

   

+

    ⁄

 4∑6     ( 
     )    ⁄  ∑|  |

 

 

   

   ⁄ 7

   
 

   

5

    ⁄

  

   If         ⁄  we use the variant of Hardy‟s inequality given in [309, Lemma 3.1] (see also [299, 

Lemma 3.10]). We get 

(∑[     ( 
     )    ⁄    4∑   |  | 

 

 

   

5

  ⁄

]

   
 

   

,

    ⁄

 (∑6      ( 
     )    ⁄     ∑   |  | 

 

 

   

7

      ⁄
 

   

,

    ⁄

 

 4∑[     ( 
     )    ⁄      |  |]

   
 

   

5

    ⁄

 

(

 ∑[     ( 
     )    ⁄ 4∑|  |

 

 

   

5

  ⁄

]

   
 

   
)

 

    ⁄

  

Consequently, 

‖ |      
      (      )    ⁄      ‖  

(

 ∑[     ( 
     )    ⁄ 4∑|  |

 

 

   

5

  ⁄

]

   
 

   
)

 

    ⁄

  

Corollary (6.3.25) [314] Let       and           Then 

‖  |        

  (      )    ⁄
‖
    

 ‖  |    ‖  4 ∫       |  |  
     ‖   

      |    ‖
      

|  | 

 

|  |  

5

    ⁄

 

is an equivalent quasi-norm on         

  (      )    ⁄
  

Proof. We shall use that 
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          4       ∫ ‖   

      |    ‖
   

   
 

|  |    

5

    ⁄

 

(see [33, (2.4) and Appendix A]). We have 

‖  |        

  (      )    ⁄
‖
       

 ‖  |    ‖  4∫[            ( 
     )    ⁄        

         ]
         

     

 

 

5

    ⁄

 

 ‖  |    ‖  4∫             
            ∫ ‖   

      |    ‖
   

   
 

|  |    

      

     

 

 

5

    ⁄

 

 ‖  |    ‖  4 ∫ ‖   
      |    ‖

   
∫                    

     
      

     

 

|  |

 

|  |  

   5

    ⁄

 

 ‖  |    ‖  4 ∫ ‖   
      |    ‖

   
|  |        |  |  

        
 

|  |  

5

    ⁄

 ‖  |        

  (      )    ⁄
‖
    

  

Conversely, 

‖  |        

  (      )    ⁄
‖
    

 ‖  |    ‖  4 ∫       |  |  
            

  |  |    
   

   

|  | 

 

|  |  

5

    ⁄

 ‖  |    ‖  4∑ ∫       |  |  
            

  |  |    
   

   

|  | 

 

      |  |    

 

   

5

    ⁄

 ‖  |    ‖  4∑      
          ( 

     )
   

   
 

   

5

    ⁄

 ‖  |    ‖  4∫             
            

         
   

      

     

 

 

5

    ⁄

 ‖  |        

  (      )    ⁄
‖
       

  

Corollary (6.3.26) [314] Let         Then we have 

         
(  (      )    ⁄ )

         

  (      )    ⁄
  

Proof. Take any      By [65, Theorem 2.5.3] (see also [62, Theorem 2.5.4]), we know that 

         
            

     Whence, using [305, Corollary 3.5 and Lemma        ], we derive 

         
(  (      )    ⁄ )

                
    (   (      )    ⁄ )     (             

   )
(   (      )    ⁄ )    

 

 (               
         )(   (      )    ⁄ )    

           
  (   (      )    ⁄ )             

  (      )    ⁄
 

where the last equality follows from [283, Theorem 3.1]. 

   We have used that         

  (      )    ⁄
           

     (   (      )    ⁄ )     [283, Theorem 3.1]. We can show 

now that in this interpolation formula the Sobolev space     
     can be replaced by any fractional Sobolev 

space     
          

     any Triebel–Lizorkin space            
     or any Besov space            

   . 

Corollary (6.3.27) [314] Let       and –             For            
    

           
    or            

    we have with equivalence of quasi-norms         
             ⁄

 

(                
   )

               ⁄      
  

Proof. By [65, Proposition 2, p. 47], we have 

                    
               

                        
     

Hence, using [65, Theorem 2.5.3], [305, Corollary 3.5] and Lemma 3.3, we derive 
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(                
   )

(   (      )    ⁄ )    
 (                         

   )
(   (      )    ⁄ )    

 

 (                          
   )

(   (      )    ⁄ )    
          

(  (      )    ⁄ )
         

  (      )    ⁄
  

For the converse embedding, we obtain 

        

  (      )    ⁄
          

(  (      )    ⁄ )
 (                          

   )
(   (      )    ⁄ )    

 

 (                         
   )

(   (      )    ⁄ )    
 (                

   )
(   (      )    ⁄ )    

  

Corollary (6.3.28) [314] Let        Then         belongs to         

  (      )    ⁄
 if and only if 

‖  |        

  (      )    ⁄
‖
  

 

(

 ∑      
     ‖4∑|(  

  ̂ )
 
   |

 
 

   

5

  ⁄

|    ‖

   
 

   
)

 

    ⁄

    

Moreover, ‖  |        

  (      )    ⁄
‖
  

 is an equivalent norm on         

  (      )    ⁄
  

   If   (   √ )  ⁄  we obtain 

        
  

{
 
 

 
 

        ‖ 
 |        

 ‖
  

 

(

 ∑‖4∑|(  
  ̂ )

 
   |

 
 

   

5

  ⁄

|    ‖

   
 

   
)

 

    ⁄

  

}
 
 

 
 

  

Proof. We know that            
  is a retract of          and that     

        
  is a retract of 

       
    the corresponding coretraction operator being     ((  

  ̂ )
 
)
    

 (see [62, p. 185]). For the 

vector-valued     -spaces, using Corollary (6.3.23) and (6.3.24), we obtain 

(                
  )

(   (      )    ⁄ )    
     (      

  (   (      )    ⁄ )    ) 

 

{
 

 

   (  
 )  ‖  ‖  ‖‖(∑      

     4∑|  
     |

 
 

   

5

      ⁄
 

   

,

    ⁄

|    ‖‖   

}
 

 

  

Since         

  (      )    ⁄
           

  (   (      )    ⁄ )      (see [283, Theorem 3.1/(b)] or Theorem 3.4), and 

‖   ‖
    ((     

 )
(   (      )    ⁄ )    

*
 (∑      

     ∫4∑|(  
  ̂ )

 
    |

 
 

   

5

      ⁄

   

 

  

 

   

,

    ⁄

 

                                                            

(

 ∑      
     ‖4∑|(  

  ̂ )
 
   |

 
 

   

5

  ⁄

|    ‖

   
 

   
)

 

    ⁄

  

Corollary (6.3.29) [314] Let        Then         belongs to         

  (      )    ⁄
 if and only if 

‖  |        

  (      )    ⁄
‖
  

 

(

 ∑[     ( 
     )    ⁄ ‖4∑|(  

  ̂ )
 
   |

 
 

   

5

  ⁄

|    ‖]

   
 

   
)

 

    ⁄

         

(usual modification if    ). Furthermore, ‖  |        

  (      )    ⁄
‖
  

 is an equivalent quasi-norm on 

        

  (      )    ⁄
  

Proof. Take         such that      ⁄                  ⁄      We can find       

such that 

                ⁄                  ⁄                                                  
With this choice of parameters, Corollary (6.3.26) and [295, Theorem 5] yield that 

        

  (      )    ⁄
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Moreover, it follows from Corollary (6.3.28) and Corollary (6.3.24) that         
         is a retract of 

    (      
                 )        Note also that 

‖((  
  ̂ )

 
) |    (      

                 )‖

 

(

 ∑                ‖4∑|(  
  ̂ )

 
   |

 
 

   

5

  ⁄

|    ‖

   
 

   
)

 

    ⁄

 

(

 ∑ ∑             ‖4 ∑ |(  
  ̂ )

 
   |

 
 

     

5

  ⁄

|    ‖

   
       

       

 

     ⁄
)

 

    ⁄

  

If                 then         and so ∑                     
                                

                    ⁄          Whence, 

‖((  
  ̂ )

 
) |    (      

                 )‖

 (∑                    ⁄        ‖( ∑ |(  
  ̂ )

 
   |

 
 

         

+

  ⁄

|    ‖

   
 

   

,

    ⁄

  

Write          
  ̂                       

 and                for            The previous 

considerations and Corollary (6.3.28) show that 

          
             

            ⁄  
        

is bounded for        Interpolating this operator and using (43), (66) and (67), we derive that 

          

  (      )    ⁄
     

         

is also bounded. Therefore one has by (65) 

‖  |        

  (      )    ⁄
‖
  

 ( ∑ 6        ‖( ∑ |(  
  ̂ )

 
   |

 
 

         

+

  ⁄

|    ‖7

   
 

     ⁄

,

    ⁄

 ‖   |    
        ‖  ‖  |        

  (      )    ⁄
‖  

   To check the converse inequality, note that using         -Fourier multipliers and Littlewood–Paley 

theorem based on    (      )    ⁄
   where   (      )    ⁄

   
    if |             ⁄    |    

one has 

‖ ∑ (  
  ̂ )

 
 

     

|    ‖  ‖4 ∑ |(  (      )    ⁄
  ̂ )

 

   |
 

 

            ⁄   

5

  ⁄

|    ‖   

Hence 

‖  |        

  (      )    ⁄
‖
  

   

 ∑[     ( 
     )    ⁄ ‖4∑|(  

  ̂ )
 
   |

 
 

   

5

  ⁄

|    ‖]

   
 

   

 ‖  |    ‖
    ∑        ‖(∑ |(  

  ̂ )
 
   |

 
 

    

+

  ⁄

|    ‖

   
 

   

 ‖  |    ‖
    ∑        ‖ ∑ (  

  ̂ )
 

 

      

|    ‖
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 ‖  |    ‖
    ∑        ‖   ∑(  

  ̂ )
 

  

   

|    ‖

   
 

   

  

Let      
 
 and consider the sets    defined in (40). Since 

    4∑(  
  ̂ )

 
  

   

5

 

     ∑  
  ̂ 

  

   

 {   |  |      }  

we have ∑ (  
  ̂ )

   
          and 

‖   ∑(  
  ̂ )

 
  

   

|    ‖     
          

‖     |    ‖         
       

Consequently, using [295, Lemma 1] and Corollary (6.3.26), we derive that 

‖  |        

  (      )    ⁄
‖
  

 4‖  |    ‖
    ∑             

     
   

 

   

5

    ⁄

 

 ‖  |         
   (      )    ⁄  

‖  ‖  |        

  (      )    ⁄
‖   

This completes the proof. 

Corollary (6.3.30) [314] For        and        the space       
      

 can be identified with a 

complemented subspace       
    of        

          The projection onto       
    associates to each       

   
         

   (   
 )

   
        

     

     
        

         the function     defined by 

             ∫ (   
 )

   
                

 

     

     

     
     

   

Proof. Given any         
        let      be the function defined by             

       where 

  
        

  
   

              

     

  Since 

                    ‖ |      
      ‖  ‖‖

(

 ∑         ∑ | 
  
   

|
 
        

    

     
    

)

 

  ⁄

|    ‖‖

 ‖4∑         ‖  
    |  ‖

 

    

5

  ⁄

|    ‖  ‖    |       
        ‖ 

we have that       
      

 is isometric to the subspace       
    ,              

      - of        
          It is 

easy to check that        for any          
     Let us show that   is bounded in        

          We 

have that 

   ∫ |(   
 )

   
    |             

 

     

 ( (   
 )

   
)             

where   is the Hardy–Littlewood maximal operator. Using the vector-valued estimate for   (see [194, 

Theorem 1.1.1, p. 51]), we obtain 

‖   |    (  
       )‖  

‖

‖

(

 
 
∑ ∑ (   ∫ |       (   

 )
   

    |    

 

     

,

 

        

    

     
    

)

 
 

  ⁄

|    
‖

‖
 

 ‖‖

(

 ∑ ∑ ( (       |(   
 )

   
|)    *

 

    

     
    

)

 

  ⁄

|    ‖‖  ‖‖

(

 ∑ ∑         |(   
 )

   
   |

 

    

     
    

)

 

  ⁄

|    ‖‖ 
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 ‖  |       
        ‖  

In addition, this also shows that if           
         then           

     The proof is completed. 

Corollary (6.3.31) [314] Let        Then     
  
   

  belongs to           
           

                 ⁄       

if and only if 

‖ ‖  

(

 
 
∫∑      

     (∑ ∑ |   
   |

 
         

    

     

 

   

,

      ⁄

   

 

   

 

  

)

 
 

    ⁄

 

is finite. Moreover, ‖ ‖ defines an equivalent norm in           
           

      (      )    ⁄        

Proof. By Corollary (6.3.23), Corollary (6.3.24), we have that 

                     
           (      )    ⁄                  

      (      )    ⁄             

Hence, according to Corollary (6.3.30) and the theorem on interpolation of complemented subspaces [62, 

Theorem 1.17.1], we derive that 

‖ |          
           

      (      )    ⁄      ‖  

(

 ∫∑      
     (∑ ∑ | 

  
   |

 
         

    

     

 

   

,

      ⁄

   

 

   

 

  

)

 

    ⁄

  

Corollary (6.3.32) [314] Let        Then    belongs to         

  (      )    ⁄
 if, and only if, it can be 

represented as    ∑  
  
   

     ⁄  
    
 

       (unconditional convergence being in     ) with  
  
   

 

 
  
   

         ⁄      
    
 

  and 

‖  |        

  (      )    ⁄
‖
  

 ‖  
  
   
 |        

  (      )    ⁄
‖

 

(

 
 
∑      

     ‖‖(∑ ∑ |   
   |

 
        

    

     

 

   

,

  ⁄

|    ‖‖

   

 

   

)

 
 

    ⁄

 

is finite. Moreover, ‖  |        

  (      )    ⁄
‖
  

 defines an equivalent norm in         

  (      )    ⁄
  

Proof. The unconditional convergence in      for any sequence   
  
   

          
  (      )    ⁄

 follows from a 

corresponding assertion for      based on          
  according to [311, Theorem 1.20] and 

        
  (      )    ⁄

           
  as a consequence of Corollary (6.3.31). 

   Let   be the operator defined by 

    
  
   

    ∑  
  
   

     ⁄  
    
 

      

  

According to [311, Theorem 1.20], the restrictions 

           
        and             

      
  

are isomorphisms. Interpolating and using Corollary (6.3.27) or [183, Theorem 3.1], we obtain that 

            
           

      (      )    ⁄                 
      (      )    ⁄               

  (      )    ⁄
 

is also an isomorphism. As for the source space of this operator, by Corollary (6.3.31), we know that 

‖( 
  
   
)|(         

           
 )

(   (      )    ⁄ )    
‖

 

(

 ∫∑      
     (∑ ∑ |   

   |
 
         

    

     

 

   

,

      ⁄

   

 

   

 

  

)

 

    ⁄

 

(

 
 
∑      

     ‖‖(∑ ∑ |   
   |

 
        

    

     

 

   

,

  ⁄

|    ‖‖

   

 

   

)

 
 

    ⁄
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Furthermore,  
  
   

  
  
   

     is again covered by [311, Theorem 1.20]. This completes the proof. 

Corollary (6.3.33) [314] Let        Then we have with equivalence of norms 

              
   (      )    ⁄  

         

  (      )    ⁄
  

Proof. We start with the case        Put      
 
       We have 

‖  |(     {  })   
(  (      )    ⁄ )

‖
   

 ‖  |    ‖
    ∑(      

        )
   

 

   

 ‖  |    ‖
    ∑(   ‖       

 |    ‖)
   

 

   

 ‖  |    ‖
    ∑        ‖∑ ∑  

  
            ⁄      

 

    

     

 

    

|    ‖

   
 

   

 ‖  |    ‖
    ∑        ‖‖(∑ ∑ | 

  
       |

 
        

    

     

 

    

,

  ⁄

|    ‖‖

   

 

   

 

where we have used [67, Theorem 1.64](or [311, Theorem 1.20]) in the last equivalence. Now the result 

follows from Corollary (6.3.32). Note that the above argument works even if      
   To establish the remaining case      choose         such that      ⁄                  ⁄  

   and take       with 

               ⁄                ⁄    
According to (67), [295, Theorem 5] and the result just proved for the diagonal case, we obtain that 

        

  (      )    ⁄
          

               
                            

                       
              

               
   (      )    ⁄  

  

Corollary (6.3.34) [314] Let        Then    belongs to         

  (      )    ⁄
 if, and only if, it can be 

represented as    ∑  
  
   

     ⁄  
    
 

       (unconditional convergence in     ) with  
  
   

  
  
   

     

    ⁄      
    
 

  and 

‖  |        

  (      )    ⁄
‖
  

 ‖( 
  
   

) |        
  (      )    ⁄

‖

 

(

 
 
∑      

     ‖‖(∑ ∑ | 
  
   |

 
        

    

     

 

   

,

  ⁄

|    ‖‖

   

 

   

)

 
 

    ⁄

    

Moreover, ‖  |        

  (      )    ⁄
‖
  

 defines an equivalent quasi-norm in         

  (      )    ⁄
  

Proof. The unconditional convergence in      is covered by the related argument at the beginning of the 

proof of Corollary (6.3.32) and the above interpolation (67). 

Using Lemma (6.3.13), we obtain 

‖  |        

  (      )    ⁄
‖  ‖  |(     {  })   

(  (      )    ⁄ )
‖

 4‖  |    ‖
    ∑           

        
   

 

   

5

    ⁄

 4‖  |    ‖
    ∑        ‖       

 |    ‖
   

 

   

5

    ⁄
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(

 
 
‖  |    ‖

    ∑        ‖‖(∑ ∑ | 
  
   |

 
        

    

     

 

    

,

  ⁄

|    ‖‖

   

 

   

)

 
 

    ⁄

 

(

 
 
∑      

     ‖‖(∑ ∑ | 
  
   |

 
        

    

     

 

   

,

  ⁄

|    ‖‖

   

 

   

)

 
 

    ⁄

  

Corollary (6.3.35) [314] Let      be a Banach space, let              be a strongly continuous 

equi-bounded semi-group of operators in       let              The quasi-norm 

‖    ‖  ‖    |    ‖  4∫(            ( 
     )    ⁄  ̅  (      

 
     ))

         

     

 

 

5

    ⁄

 

is equivalent to the interpolation quasi-norm ‖   |         
  

      (      )    ⁄      ‖ on 

         
  

      (      )    ⁄        

   In addition, if the semi-group              is analytic then 

‖    ‖  ‖    |    ‖  4∫(              
         ⁄ ‖[         ] 

 
    |    ‖)

         

     

 

 

5

    ⁄

 

is also an equivalent quasi-norm on          
  

      (      )    ⁄        

Proof. Making a change of variable and using (54), we obtain 

‖    |         
  

      (      )    ⁄      ‖

 4∫(            ( 
     )    ⁄            )

         

     

 

 

5

    ⁄

 4∫(            ( 
     )    ⁄  (      

 
     ))

         

     

 

 

5

    ⁄

 4∫(            ( 
     )    ⁄  ̅  (      

 
     ))

         

     

 

 

5

    ⁄

 4∫(            ( 
     )    ⁄       

 
)
         

     

 

 

5

    ⁄

‖    |    ‖

 ‖    ‖   

To check the converse inequality, note that          
  

      (      )    ⁄             Moreover, by 

(55), we have 

4∫(            ( 
     )    ⁄  ̅  (      

 
     ))

         

     

 

 

5

    ⁄

 4∫(            ( 
     )    ⁄  (      

 
     ))

         

     

 

 

5

    ⁄

 ‖    |         
  

      (      )    ⁄      ‖  

Consequently, ‖    |         
  

      (      )    ⁄      ‖  ‖    ‖   

   Assume now that the semi-group              is analytic. To complete the proof we first show that 



 

261 
 

                 ‖    |    ‖   ̃                                           

Indeed, take any        
 
   Using the triangle inequality in      and that      we obtain 

            ‖       |    ‖       ‖  |    ‖       ‖  
 
  |    ‖ 

                                     ‖       |    ‖       ‖    |    ‖       ‖  
 
  |    ‖  

Taking the infimum over all        
 
  it follows that                  ‖    |    ‖  

 ̃            Conversely, 

     ‖    |    ‖   ̃          

      ‖    |    ‖  ‖       |    ‖       ‖  
 
  |    ‖

      ‖       |    ‖       ‖  |    ‖  ‖       |    ‖

      ‖  
 
  |    ‖   ‖       |    ‖       ‖  |   

  
 ‖  

Therefore, we derive (68). 

   Now (68) and (56) yield that ‖   ‖  ‖   |         
  

      (      )    ⁄      ‖  This completes the 

proof. 

Corollary (6.3.36) [314] Let       and       Then         belongs to         

  (      )    ⁄
 if, 

and only if, 

‖  |        

  (      )    ⁄
‖
(  )

 ‖  |    ‖  4∫            ( 
     )    ⁄ ‖[         ] 

 
  |    ‖

   
 

 

      

     
5

    ⁄

 

is finite. Furthermore, ‖  |        

  (      )    ⁄
‖
    

 

 is an equivalent quasi-norm in         

  (      )    ⁄
  

Proof. For the semi-group              we have 

   
 
        

 
  

 
      and         

 
      

   
  

Using again that         

  (      )    ⁄
           

   
     (      )    ⁄       and Corollary (6.3.35), we obtain 

that the wanted result holds for any even natural number     To complete the proof, write 

‖  ‖   ‖  |    ‖  4∫            ( 
     )    ⁄ ‖[         ] 

 
  |    ‖

   
 

 

      

     
5

    ⁄

  

It suffices to show that for any      the quasi-norms  ‖   ‖   and ‖   ‖     are equivalent on 

        

  (      )    ⁄
  

   Take any            

  (      )    ⁄
  Using (56), we obtain 

‖[         ] 
 
  |    ‖   (      

 
          ( 

  
)) 

    
    

‖[         ] 
 
  |    ‖   ̅  (      

 
   )  

By [266, (4.10)], we have that  ̅    (      
      )   ̅  (      

 
   ) Hence 

‖  ‖     ‖  |    ‖  4∫(            ( 
     )    ⁄  ̅    (      

      ))
         

     

 

 

5

    ⁄

 

 ‖  |    ‖  4∫(            ( 
     )    ⁄  ̅  (      

 
   ))

         

     

 

 

5

    ⁄

 ‖  ‖    

In order to establish the converse inequality, note that 

 ̅  (      
 
   )        

 
∫      ( 

 )   ̅    (      
      )      

 

   

 

(see [310, Theorem 1.4, (1.7)]). Therefore 

‖  ‖   ‖  |    ‖  4∫(            ( 
     )    ⁄  ̅  (      

 
   ))

         

     

 

 

5

    ⁄
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 ‖  |    ‖  (∫4            ( 
     )    ⁄       

 
∫

 ̅    (      
      )

      
   

      

 

   

5

   

      

     

 

 

,

    ⁄

 

      ‖  |    ‖  (∫4            ( 
     )    ⁄       

 
∫
 ̅    (      

      )

      
   

      

 

   

5

   

      

     

 

 

,

    ⁄

 4∫(            ( 
     )    ⁄       

 
∫

 ̅    (      
      )

      
   

      

 

 

+

   

      

     

 

 

5

    ⁄

 ‖  |    ‖         

Since  ̅    (      
      )       

    is equivalent to the decreasing function   ̃(      
      ) 

      
     we can still apply the extension of the Hardy inequality established in [256, Theorem 6.4] to 

derive that 

   4∫.      
               ( 

     )    ⁄
 ̅    (      

      )

      
   

/

   
      

     

 

 

5

    ⁄

 

 4∫            ( 
     )    ⁄ ‖[         ] 

     |    ‖
   

 

 

      

     
5

    ⁄

 ‖  ‖      

As for     using that 

 ̅    (      
      )   ̃       

               
       ‖  |    ‖ 

we get 

   4∫(            ( 
     )    ⁄       

 
)
         

     

 

 

5

    ⁄

‖  |    ‖  ‖  ‖      

This yields that ‖  ‖   ‖  ‖     and completes the proof. 

Corollary (6.3.37) [314] Let      be a Banach space, let              be an analytic semi-group 

of operators in     , let       ⁄              and            ⁄     The quasi-

norm 

‖    ‖  ‖    |    ‖  4∫(      
  

   
             ( 

     )    ⁄ ‖  
 
          |    ‖*

         

     

 

 

5

    ⁄

 

is equivalent to the interpolation quasi-norm on          
  

      ⁄        (      )    ⁄   

Proof. Since ‖    |    ‖  ‖    |   
  

 ‖ for any          
 
   we have that             

‖    |    ‖ for any           and      This yields that 

‖    | (      ( 
  

))
      ⁄        (      )    ⁄

‖ 

 ‖    |    ‖  4∫(              ⁄             ( 
     )    ⁄            )

         

     

 

 

5

    ⁄

 

 ‖    |    ‖  4∫(            ⁄             ( 
     )    ⁄  (      

 
     ))

         

     

 

 

5

    ⁄

  

Using that 

      
 
‖  

 
          |    ‖   (      

 
     )                                           

(see [306, Lemma 3.5.4]), we get that ‖    ‖  ‖    |         
  

      ⁄        (      )    ⁄ ‖  To 

check the converse inequality, note that 

‖[         ] 
 
    |    ‖ 
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 ∫              ⁄   
   ‖  

 
              ⁄      |    ‖              ⁄  

   

 

         

 (see [306, Lemma 3.5.5]). Hence, using (54), we obtain for     

 (      
 
     )   ̅  (      

 
     )        

 
‖    |    ‖ 

 ∫              ⁄   
   ‖  

 
              ⁄      |    ‖              ⁄  

   

 

       
 
‖    |    ‖  

This implies that 

‖    | (   ( 
  

))
      ⁄        (      )    ⁄

‖ 

 ‖    |    ‖ (∫4            ⁄             ( 
     )    ⁄

 

 

 ∫              ⁄   
   ‖  

 
              ⁄      |    ‖              ⁄  

   

 

5

   

      

     
,

    ⁄

  

By (iii), we have for               ⁄    that 

‖  
 
        |    ‖  ‖                 ⁄     

 
              ⁄      |    ‖

  ‖  
 
              ⁄      |    ‖  

Hence, using the extension of the Hardy inequality established in [256, Theorem 6.4], we derive that 

‖    | (      ( 
  

))
      ⁄        (      )    ⁄

‖ 

 ‖    |    ‖ 4∫(     
   
             ( 

     )    ⁄       
   ‖  

 
          |    ‖*

         

     

 

 

5

    ⁄

 

    ‖    ‖   

Corollary (6.3.38) [314] Let                  ⁄    and       Then 

‖  |        
  (      )    ⁄

‖
(  )

 

 ‖    
 |    ‖  4∫.      

 
            ( 

     )    ⁄ ‖
  

 
        

       
 |    ‖/

    

 

      

     
5

    ⁄

 

is an equivalent quasi-norm on         
  (      )    ⁄

  

Proof. According to [47, Proposition 1.8], the operator     is an isomorphism from         
  (      )    ⁄

 onto 

        
             ⁄

  The classical smoothness of         
             ⁄

 is     so, by [28, Theorem 2.5], we know that 

‖  |        
  (      )    ⁄

‖ 

 ‖  |    ‖  4∫(                   ( 
     )    ⁄           

         )
   

 

 

      

     
5

    ⁄

        

Moreover, for         and       we have 

 (      ( 
   )             

 (    )
)     (        ( 

   ))‖  |    ‖    (    )  
               

(see [1, Theorem 5.4.12]). It follows from (71) and (72) that 

                     
  (      )    ⁄

 (         

 (    )
)
 (    )     (      )    ⁄⁄

    

                  
  (      )    ⁄

          
       (    )     (      )    ⁄⁄                           

where     is the infinitesimal generator of the semi-group               Applying Corollary 

(6.3.36) we get 

‖  |        
  (      )    ⁄

‖  ‖    
 |        

  (      )    ⁄
‖ 
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 ‖    
 |    ‖  4∫(      

 
              

         ⁄ ‖  
             

 |    ‖)
   

 

 

      

     
5

    ⁄

  

Next we use that 

  
             

    
                    

  
         

and that, according to [56, p. 133], 

‖    
 |    ‖  ‖           |    ‖  ‖  |    ‖  

This yields that 

‖  |        
  (      )    ⁄

‖ 

 ‖    
 |    ‖  4∫.      

 
            ( 

     )    ⁄ ‖
  

 
        

       
 |    ‖/

    

 

      

     
5

    ⁄

  

   Note that the operator     is necessary because in general         
  (      )    ⁄

 may not contain only regular 

distributions (see [169, Theorem 4.3]). 

Corollary (6.3.39) [314] Let                  ⁄    and       Then 

‖  |        
  (      )    ⁄

‖
(  )

 

 

 ‖    
 |    ‖  4∫.      

 
            ( 

     )    ⁄ ‖
  

 
        

       
 |    ‖/

    

 

      

     
5

    ⁄

 

is an equivalent quasi-norm on         
  (      )    ⁄

  

Proof. This time                 
     

      and                 
       

  By (73), we get 

        
  (      )    ⁄

           

 (    )
             (      )    ⁄⁄           

                  (      )    ⁄⁄   

Therefore, applying Corollary (6.3.37) with      we obtain 

‖  |        
             ⁄

‖ 

 ‖  |    ‖  4∫(        
                    

         ⁄ ‖    
            |    ‖)

   
 

 

      

     
5

    ⁄

  

This means that for any even natural number    with      we have 

‖  |        
             ⁄

‖ 

 ‖  |    ‖  4∫(      
                 

         ⁄ ‖  
 
        |    ‖)

   
 

 

      

     
5

    ⁄

      

   Write ‖  ‖
  
 

 for the quasi-norm on the right-hand side of (74). We claim that for any      with 

     we have 

‖   ‖  
  ‖   ‖    

                    
  (      )    ⁄

                                                        

Indeed, by (vi), given any         we have 

‖  
           |    ‖  ‖         ⁄    

 
        ⁄    |    ‖         ‖  

 
        ⁄    |    ‖  

Whence 

‖  ‖
    
  ‖  |    ‖ 4∫(      

               ( 
     )    ⁄ ‖  

 
        ⁄    |    ‖)

   
 

 

      

     
5

    ⁄

 

 ‖  |    ‖  4∫ (      
               ( 

     )    ⁄ ‖  
 
        |    ‖)

   

  ⁄

 

      

     
5

    ⁄

 ‖  ‖
  
   

Conversely, by (69) and (68) 

‖  ‖
  
  ‖  |    ‖  4∫(                   ( 

     )    ⁄  (      
 
          ( 

  
))*

   
 

 

      

     
5

    ⁄
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 ‖  |    ‖  4∫(                   ( 
     )    ⁄  ̃ (      

 
          ( 

  
))*

   
 

 

      

     
5

    ⁄

  

As we have seen in the proof of Corollary (6.3.36), 

 ̃ (      
 
          ( 

  
))   ̅         

 
      

Moreover, by [310, Theorem 1.4, (1.7)] 

 ̅         
 
           

 
∫

 ̅           
       

      
   

      

 

   

  

   Now proceeding as in the proof of Corollary (6.3.36), using that      and the extension of the Hardy 

inequality [256, Theorem 6.4], we obtain 
‖  ‖

  
 

 

 ‖  |    ‖  (∫4      
               ( 

     )    ⁄ ∫
 ̅    (      

      )

      
   

      

 

   

5

    

 

      

     
,

    ⁄

 

 ‖  |    ‖  (∫4      
               ( 

     )    ⁄ ∫
 ̅    (      

      )

      
   

      

 

   

5

    

 

      

     
,

    ⁄

 4∫(      
               ( 

     )    ⁄ )
   

 

 

      

     
5

    ⁄

‖  |    ‖ 

 ‖  |    ‖  4∫.      
               ( 

     )    ⁄  ̅    (      
      )

      
   

/

    

 

      

     
5

    ⁄

 

 ‖  |    ‖  4∫(                   ( 
     )    ⁄ ‖[         ] 

     |    ‖)
   

 

 

      

     
5

    ⁄

 

 ‖  |    ‖  (∫4                   ( 
     )    ⁄ ∫       

 
‖  

           |    ‖

   

 

5

    

 

      

     
,

    ⁄

 

where we have used (70) in the last inequality. The extension of the Hardy inequality implies now that 

‖  ‖  
 

 

 ‖  |    ‖  4∫(                     
         ⁄       

 
‖  

           |    ‖)
   

 

 

      

     
5

    ⁄

 

 ‖  ‖    
   

This proves (75). 

   Now to complete the proof of the theorem we can proceed as in Corollary (6.3.38) with the help of the 

lift operator      Indeed, given any natural number       since 

  
 
          

      
                     

              
by (74) and (75) we obtain 

‖  |        
             ⁄

‖  ‖    
  |        

             ⁄
‖  ‖    

 ‖
  
   

 ‖    
  |    ‖  4∫(      

                 
         ⁄ ‖     

            |    ‖)
   

 

 

      

     
5

    ⁄

 

 ‖    
  |    ‖  4∫(      

                 
         ⁄ ‖  

           |    ‖)
   

 

 

      

     
5

    ⁄

          

 ‖    
  |    ‖  4∫.      

                 
         ⁄ ‖

  
           

       
   

|    ‖/

    

 

      

     
5

    ⁄

      

This finishes the proof. 
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