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 الآية

 قال تعالى:

 بسم الله الرحمن الرحيم

ورِهِ كَمِشأكَاةٍ فِيهَا اللَّهُ نُورُ السَّمَاوَاتِ وَالْأرَأضِ ۚ مَثَلُ نُ ﴿

نَّهَا كَوأكَبٌ دُرِ يٌّ 
َ
مِصأبَاحٌ ۖ الأمِصأبَاحُ فِي زُجَاجَةٍ ۖ الزُّجَاجَةُ كَأ

يُوقَدُ مِنأ شجََرَةٍ مُبَارَكَةٍ زَيأتُونَةٍ لَ شرَأقِيَّةٍ وَلَ غرَأبِيَّةٍ يَكَادُ 

نُورٍ ۗ يَهأدِي اللَّهُ  زَيأتُهَا يُضِيءُ وَلَوأ لَمأ تَمأسسَأهُ نَارٌ ۚ نُورٌ عَلَى  

لِنُورِهِ مَنأ يَشاَءُ ۚ وَيَضأرِبُ اللَّهُ الْأمَأثَالَ لِلنَّاسِ ۗ وَاللَّهُ بِكُلِ  

 ﴾شيَأءٍ عَلِيمٌ 
 صدق الله العظيم                

 (53الآية )سورة النور،            
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ABSTRACT 

The presence of gravitational waves (GW) has been a matter of argument for 

decades, ever since their presence was predicted by Einstein’s general relativity theory 

(GR). And because every object in the path of such a wave feels a tidal gravitational 

force that acts perpendicular to the wave direction of propagation, that is why their 

presence were investigated in terms of the presence of a very tiny strain occur in objects 

in their path and that is via a some certain laser interferometer devices setup, e.g. in the 

USA an outstanding method of detecting these waves have been established, i.e. the 

Laser Interferometer Gravitational Waves Observatory (LIGO). In our dissertation we’ve 

collected strain data of the observation setup of gravitational waves events from the 

LIGO webpage and we reproduced interpretation of the presence of gravitational waves 

and that is via obtaining the dynamic spectrum plots for these GW events using time 

series data of the strain (ℎ) where we obtained power spectrum in the frequency- time 

domain through discrete Fourier time series (D- FFT) on the data. We have viewed GW 

in our plots where peak amplitude occur at the time: 16.53 second. Therefore, detection 

of GW is expected to open up a new window for observational astronomy since 

information carried by GW are very different from those information carried by 

electromagnetic waves.  
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 المستخلص

وجودها بواسطة ن تم التنبؤ ب( مسألة غامضة لعقود وذلك منذ أGW) جاذبيةلقد كان وجود موجات ال

بوجود قوة جذب تعمل  ن كل جسم في مسار الموجات يشعر( ولأGRينشتاين )النظرية النسبية لأ

 داخلالت قياسجهزة أالتحقق من وجودها بواسطة نتشار هذه الموجات. لهذا تم على إتجاه إ عموديا  

المتميزة يقة طرهذه النشاء مريكية تم إل المثال في الولايات المتحدة الأعلى سبيف( LIGO) الليزري

 .للكشف عن موجات الجاذبية

وحاولنا  (LIGOث موجات الجاذبية المرصودة بطريقة )حدافي هذا البحث قمنا بجمع بيانات لأ

ستخدام ططات الطيف الديناميكي بإل على مخوجود موجات الجاذبية عن طريق الحصومن  التحقق

على طيف القدرة في مجال التردد الزمني من خلال  ناحصل( حيث تhالسلاسل الزمنية للانفعال )

 (.D-FFT) ة فورير الزمنيةلسلسحساب مت

لك المبني على ( نافذة جديدة لعلم الفGW) ن يفتح الكشف عن موجات الجاذبيةومن المتوقع أ

لمعلومات التي تحملها موجات الجاذبية تختلف في طبيعتها عن تلك التي ن االملاحظة حيث نجد أ

 .تحملها الموجات الكهرومغنطيسية
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CHAPTER I  

INTRODUCTION 

1.1. Preface 

Gravitational waves (GW) have been a matter of obscurity for scientists for some 

time ago, although Einstein was postulated their existence since 1916, that is as a 

consequence of his famous theory of general relativity (GR). 

Gravitational waves are emitted by coherent bulk motions of matter and coherent 

oscillations of space time curvature, they ripples in curvature of the space time, and 

spread on waves forms.  

Detection of gravitational waves is important for two reasons: First, their 

detection is expected to open up a new window for observational astronomy, since 

information carried by gravitational waves are very different from those carried by 

electromagnetic waves; Second, detecting gravitational waves is important for our 

understanding of the fundamental laws of physics; the proof that gravitational waves exist 

will verify a fundamental 85-year-old prediction of general relativity. Also, Einstein’s 

prediction that gravitational waves travel with same speed of light, could be checked and 

that is by comparing the arrival time of a gravitational wave from a source like 

supernovae and electromagnetic waves. Finally, if detected we could verify that these 

gravitational waves have the polarization predicted by general relativity. 

1.2. Objectives of research 

 The aim of the current work is to review methods of detecting gravitational 

waves via some new found system setup techniques, i.e. the Laser interferometer 

gravitational-wave observatory (LIGO) method and the Italian Michelson interferometer 

named after the Virgo cluster (VIRGO) method, accordingly, we specified the following 

objectives: 

I. To carry out a spectral analysis method on LIGO data in order to view some 

unconfirmed gravitational waves (GW) events. 
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II.  To carry out a comparison between viewing results of the spectral analysis 

method carried out on data from VIRGO and the obtained viewing results from 

data of LIGO. 

1.3. Research methodology  

Since the main task of this dissertation is to review how to detect gravity waves 

and show evidences of their existence and based on a theoretical background we analyzed 

observational data, which were collected from the famous experiment setup of LIGO. 

Data represents a time series strain (ℎ) that may reflect the passage of a gravity wave.      

The first step on the analysis is to collect some events from the LIGO but the presence of 

the gravity wave in these events were not confirmed and visualized yet in the website or 

in some other study, so we obtained the dynamic spectrum graphs using a MATLAB 

code dedicated for that purpose which is to visualize the gravity waves events. 

1.4. Statement of research Problem 

The theory of GR has explained many phenomena in nature; and with the great 

success of this theory it left many of its predictions to be questioned for evidences and 

proofs. One of the outstanding predictions of this general relativity theory is: 

gravitational waves. The existence of these waves has been a matter of debates for some 

long time ago. Hence, the question of how to detect gravitational waves remains a task 

that addressed many researches work. In this work we focused on showing the 

significance of some existing methods of detecting these GW.   

However, detection of gravitational waves is expected to open up a new window 

for observational astronomy since information carried by gravitational waves are very 

different from those carried by electromagnetic waves. Moreover, detecting gravitational 

waves is important for our understanding of the fundamental laws of physics, i.e. the GR 

laws. 
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1.5. Outline of the dissertation  

We organized the dissertation into four chapters. Chapter one is dedicated to 

introduction, and a theoretical background on gravitational waves is presented in some 

details in chapter two. In chapter three we present device LIGO and methodology. 

Finally, we presented plotting results, discussion and conclusion and final remarks in the 

last chapter, i.e. chapter four.   
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  CHAPTER II 

BACKGROUND: GRAVITATIONAL WAVES  

2.1. General relativity and gravitational waves 

 Special relativity (SP) is a theory appertain to study effects of uniformed motion 

on both space and time, therefore there are two main rules that SP suggests: first, that all 

physical laws in nature are same for all frame of references; and second, that the speed of 

light remains constant in all references, regardless of the motion of source of light or the 

observer. On the other hand, the general relativity (GR) theory is dedicated to study the 

description of space-time curvature.   

  In the theory of GR the information of the varying gravitational field propagates 

with finite speed, the speed of light, as a ripple in the fabric of space-time. The existence 

of gravitational waves is an immediate consequence of any relativistic theory of gravity. 

However, the strength and the form of the waves depend on the details of the 

gravitational theory. This means that the detection of gravitational waves in the future 

will also serve as a test of basics of such a gravitational relativistic theory (Kokkotas ، 

2002). 

The fundamental geometrical framework of relativistic metric theories of gravity 

is space-time, which mathematically can be described as a four-dimensional manifold 

whose points are called events. “The choice of the coordinate system is quite arbitrary 

and coordinate transformations of the form �̃�𝜇  =  𝑓𝜇(𝑥⋋) are allowed. 

In GR the motion of a test particle is described by a curve in space-time. The 

distance 𝑑𝑠 between any two neighboring events, one with coordinates 𝑥𝜇 and the other 

with coordinates 𝑥𝜇  +  𝑑𝑥𝜇, can be expressed as a function of the coordinates via a 

symmetric tensor, called metric, i.e. 𝑔µ𝜈(𝑥⋋) =  𝑔𝜈µ(𝑥⋋), such that this curvature is 

given by (K.S.Thorne & S.W.Hawking ، 1996)  : 

 ds2  =  𝑔µ𝜈d𝑥μd𝑥v                                                                                                                    (2.1) 

In the following text, we will consider mass distributions, which we will describe 

by the stress-energy tensor, i.e. 𝑇µ𝜈(𝑥⋋). For a perfect fluid (a fluid or gas with isotropic 

pressure but without viscosity or shear stresses) the stress-energy tensor is given by the 

following expression:  
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𝑇𝜇𝑣(𝑥⋋) =  (𝜌 +  𝑝)𝑢𝜇𝑢𝑣  +  𝑝𝑔𝜇𝑣                                                                                   (2.2) 

Where 𝑝(𝑥⋋) is the local pressure, 𝜌 (𝑥⋋) is the local energy density and 𝑢𝜇(𝑥⋋) is the 

four velocity of the infinitesimal fluid element characterized by the event 𝑥⋋ (Kokkotas, 

2002). 

“Einstein’s gravitational field equations connect the curvature tensor and the 

stress-energy tensor through the fundamental relation:  

𝐺𝜇𝑣  ≡ 𝑅𝜇𝑣  −
1

2
 𝑔𝜇𝑣 𝑅 =  𝑘𝑇𝜇𝑣                                                                                               (2.3) 

Where, 𝑅𝜇𝑣 is the so- called Ricci tensor and comes from a contraction of the 

Riemann tensor (𝑅𝜇𝑣  =  𝑔𝛼𝜎𝑅𝜎µ𝜌𝜈), R is the scalar curvature (𝑅 =  𝑔𝜌𝜎𝑅𝜌𝜎), while  

𝐺𝜇𝑣 is the so-called Einstein’s tensor, 𝑘 =  8𝜋𝐺/𝑐4 is the coupling constant of the 

theory, which, unless otherwise stated will be considered equal to1, and 𝐺 is the 

gravitational constant. This means that the gravitational field, which is directly connected 

to the geometry of space-time, is related to the distribution of matter and radiation in the 

universe. 

By solving the field equations, both the gravitational field (the 𝑔𝜇𝑣) and the 

motion of matter is determined. The vanishing of the Ricci tensor corresponds to a space-

time free of any matter distribution. However, this does not imply that the Riemann 

tensor is zero.  As a consequence, in the empty space far from any matter distribution, the 

Ricci tensor will vanish while the Riemann tensor can be nonzero; this means that the 

effects of a propagating gravitational wave in an empty space-time will be described via 

the Riemann tensor” (Kokkotas, 2002). 

2.2. Energy flux carried by gravitational waves 

These Gravitational waves carry energy (Instead of Einstein’s theory: 𝐸 = 𝑚. 𝑐2) 

and cause a deformation of space-time. The stress-energy carried by gravitational waves 

cannot be localized within a wavelength. Instead, one can say that a certain amount of 

stress-energy is contained in a region of the space which extends over several 

wavelengths. “It can be proven that in the transverse–traceless (𝑇𝑇) gauge of linearized 

theory the stress-energy tensor of a gravitational wave (in analogy with the stress-energy 

tensor of a perfect fluid that we have defined) is given by (J-P.Lasota & J-A.Marck, 

1997):  
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tμv
Gw =

1

32π
〈(𝜕𝜇ℎ𝑖𝑗

𝑇𝑇)(𝜕𝑣ℎ𝑖𝑗
𝑇𝑇)〉                                                                                                  (2.4) 

Where the angular brackets are used to indicate averaging over several wavelengths. 

For the special case of a plane wave propagating in the 𝑧 direction, the stress-energy 

tensor has only three non-zero components, which take the simple form: 

t00
GW =

𝑡𝑧𝑧
𝐺𝑊

𝐶2
=  −

𝑡0𝑧
𝐺𝑊

𝑐
=

1

32𝜋

𝑐2

𝐺
𝑤2(ℎ+

2 + ℎx
2)                                                                      (2.5) 

 

 Where t00
GW is the energy density, 𝑡𝑧𝑧

𝐺𝑊 is the momentum flux and 𝑡0𝑧
𝐺𝑊 the energy flow 

along the 𝑧 direction per unit area and unit time (for practical reasons we have restored 

the normal units). The energy flux has all the properties one would anticipate by analogy 

with electromagnetic waves: (a) it is conserved (the amplitude dies out as: 1/𝑟, the flux 

as 1/𝑟2), (b) it can be absorbed by detectors, and (c) it can generate curvature like any 

other energy source in Einstein’s formulation of relativity. As an example, by using the 

above relation, we can estimate the energy flux in gravitational waves from the collapse 

of the core of a supernova (10 𝑀⊙(, to create a black hole at a distance of 50-million-

light-years (~15𝑀𝑝𝑐) from the earth (at the distance of the Virgo cluster of galaxies).  

Accordingly, conservative estimate of the amplitude of the waves on earth is of 

the order of 10−22 (at a frequency of about 1kHz), this corresponds to a flux of about 

3 𝑒𝑟𝑔𝑠/𝑐𝑚2 sec and it is an enormous amount of energy flux and is about ten orders of 

magnitude larger than the observed energy flux in electromagnetic waves the basic 

difference is the duration of the two signals; gravitational wave signal will last a few 

milliseconds, whereas an electromagnetic signal lasts many days. This example provides 

us with a useful numerical formula for the energy flux: 

 𝐹 = 3 (
𝑓

1𝑘𝐻𝑍
)

2

(
ℎ

10−22)
2 𝑒𝑟𝑔𝑠

𝑐𝑚2𝑠𝑒𝑐
                                                                                                (2.6) 

From which one can easily estimate the flux on earth, given the amplitude (on earth) and 

the frequency of the waves” (Kokkotas, 2002), (Saulson, 1994).  

2.3. Generation of gravitational waves 

Understanding the generation of gravitational waves could be grasped directly if 

the nature of gravitational radiation is confirmed and that is in correspondence to 

electromagnetic radiation, therefore, the production of electromagnetic radiation is done 
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by slowly varying charge distribution which can be decomposed into a series of multi 

poles, where the amplitude of the 2ℓ𝑝𝑜𝑙𝑒 (ℓ =  0, 1, 2, . . . ) contains a small factor 2ℓ, 

with equal ratio to the diameter of the source to the typical wavelength, namely, a number 

typically much smaller than1. From this point of view the strongest electromagnetic 

radiation would be expected for monopole radiation (ℓ = 0), but this is completely absent, 

because the electromagnetic monopole moment is proportional to the total charge, which 

does not change with time (it is a conserved quantity) (Saulson, 1994). 

Therefore, electromagnetic radiation consists only of ℓ ≥  1 multipoles, the strongest 

being the electric dipole radiation (ℓ = 1), followed by the weaker magnetic dipole and 

electric quadruple radiation (ℓ = 2). One could proceed with a similar analysis for 

gravitational waves and by following the same arguments showing that mass 

conservation (which is equivalent to charge conservation in electromagnetic theory) will 

exclude monopole radiation. Also, the rate of change of the mass dipole moment is 

proportional to the linear momentum of the system, which is a conserved quantity, and 

therefore there cannot be any mass dipole radiation in Einstein’s relativity theory. 

The next strongest form of electromagnetic radiation is the magnetic dipole. For 

the case of gravity, the change of the magnetic dipole is proportional to the angular 

momentum of the system, which is also a conserved quantity and thus there is no dipolar 

gravitational radiation of any sort. It follows that gravitational radiation is of quadruple or 

higher nature and is directly linked to the quadruple moment of the mass distribution 

(K.S.Thorne & S.W.Hawking, 1996). 

Einstein derived the quadruple formula for gravitational radiation. This formula 

states that the wave amplitude ℎ𝑖𝑗   is proportional to the second time derivative of the 

quadruple moment of the source: 

 ℎ𝑖𝑗 =
2

𝑟
  

𝐺

𝐶4
�̈�𝑖𝑗

𝑇𝑇 (𝑡 −
𝑟

𝑐
)                                                                                                             (2.7) 

Where 

 𝑄𝑖𝑗
𝑇𝑇(𝑥) = ∫ 𝜌 (𝑥𝑖𝑥𝑗 −

1

3
𝛿𝑖𝑗𝑟2) 𝑑3𝑥                                                                                      (2.8) 

Is the quadruple moment in the 𝑇𝑇 gauge, evaluated at the retarded time 𝑡 −  𝑟/𝑐 and 𝜌 

is the matter density in a volume element 𝑑3𝑥 at the position𝑥𝑖. This result is quite 

accurate for all sources, as long as the reduced wavelength   ⋋̃= ⋋/2𝜋 is much longer 
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than the source size R. Using the formulae (2.4) and (2.5) for  the energy carried by 

gravitational waves, one can derive the luminosity in gravitational waves as a function of 

the third-order time derivative of the quadruple moment tensor. This is the quadruple 

formula: 

𝐿𝐺𝑊 = −
𝑑𝐸

𝑑𝑡
=

1

5

𝐺

𝐶5
〈
𝜕3𝑄𝑖𝑗

𝜕𝑡3
 
𝜕3𝑄𝑖𝑗

𝜕𝑡3
〉                                                                                        (2.9)  

Based on this formula, we derive some additional formulas, which provide order of 

magnitude estimates for the amplitude of the gravitational waves and the corresponding 

power output of a source. First, the quadruple moment of a system is approximately equal 

to the mass 𝑀 of the part of the system that moves, times the square of the size 𝑅 of the 

system. This means that the third-order time derivative of the quadruple moment is 

𝜕3𝑄𝑖𝑗

𝜕𝑡3
~

𝑀𝑅2

𝑇3
~

𝑀𝑣2

𝑇
~

𝐸𝑛𝑠

𝑇
                                                                                                 (2.10) 

where 𝑣 is the mean velocity of the moving parts, 𝐸𝑛𝑠 is the kinetic energy of the 

component of the source’s internal motion which is non-spherical, and T is the time scale 

for a mass to move from one side of the system to the other. The time scale (or period) is 

actually proportional to the inverse of the square root of the mean density of the system 

𝑇 ~√𝑅3/𝐺𝑀                                                                                                                                (2.11) 

This relation provides a rough estimate of the characteristic frequency of the system  𝑓 =

2𝜋/𝑇 . Then, the luminosity of gravitational waves of a given source is approximately (J-

P.Lasota & J-A.Marck, 1997). 

𝐿𝐺𝑊~
𝐺

𝐶5
(

𝑀

𝑅
)

5

~
𝐺

𝐶5
(

𝑀

𝑅
)

2

𝑣6~
𝐶5

𝐺
(

𝑅𝑠𝑐ℎ

𝑅
)

2

(
𝑣

𝐶
)

6

                                                                (2.12) 

Where 𝑅𝑠𝑐ℎ  =  2𝐺𝑀/𝑐2 is the Schwarzschild radius of the source; It is obvious that the 

maximum value of the luminosity in gravitational waves can be achieved if the source’s 

dimensions are of the order of its Schwarzschild radius and the typical velocities of the 

components of the system are of the order of the speed of light. This explains why we 

expect the best gravitational wave sources to be highly relativistic compact objects. The 

above formula sets also an upper limit on the power emitted by a source, which for 

𝑅 ~ 𝑅𝑠𝑐ℎ and 𝑣 ~𝑐 is  

𝐿𝐺𝑊~𝐶5/𝐺 = 3.6 × 1059𝑒𝑟𝑔𝑠/ sec                                                                                   (2.13) 
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This is an immense power, often called the luminosity of the universe. Using the above 

order-of-magnitude estimates, we can get a rough estimate of the amplitude of 

gravitational waves at a distance r from the source (D.G.Blair, 1991): 

ℎ~
𝐺

𝐶4

𝐸𝑛𝑠

𝑟
~

𝐺

𝐶4

𝜀𝐸𝑘𝑖𝑛

𝑟
                                                                                                               (2.14) 

Where: 𝐸𝑘𝑖𝑛 (𝑤𝑖𝑡ℎ 0 ≤ 𝜀 ≤  1) is the fraction of kinetic energy of the source that is able 

to produce GW. The factor 𝜀 is a measure of the asymmetry of the source and implies 

that only a time varying quadruple moment will emit gravitational waves. For example, 

even if a huge amount of kinetic energy is involved in a given explosion or implosion, if 

the event takes place in a spherically symmetric manner, there will be no gravitational 

radiation (K.P & C.Cutler, 2002). 

Another formula for the amplitude of gravitational waves relation can be derived from 

the flux formula (2.6). If, for example, we consider an event (perhaps a supernovae 

explosion) at the Virgo cluster during which the energy equivalent of 10−4𝑀⊙ is released 

in gravitational waves at a frequency of 1 𝑘𝐻𝑧, and with signal duration of the order of 

1 𝑚𝑠𝑒𝑐, the amplitude of the gravitational waves on Earth will be: (K.S.Thorne & 

S.W.Hawking, 1996) 

h ≈ 10−22 (
𝐸𝐺𝑊

10−4𝑀⊙
)

1
2

(
𝑓

1𝑘𝐻𝑧
)

−1

(
𝜏

1𝑚𝑠𝑒𝑐
)

−
1
2

(
𝑟

15𝑀𝑝𝑐
)

−1

                                        (2.15) 

For a detector with arm length of 4 𝑘𝑚 we are looking for changes in the arm length of 

the order of : 

∆ℓ =  ℎ · ℓ  =  10−22  ·  4𝑘𝑚 =  4 × 10−17 cm 

These numbers shows why experimenters are trying so hard to build ultra-sensitive 

detectors and explains why all detection efforts failed for some time ago. Finally, it is 

useful to know the damping time, that is, the time it takes for a source to transform a 

fraction 1/𝑒 of its energy into gravitational radiation. One can obtain a rough estimate 

from the following formula (K.S.Thorne & S.W.Hawking, 1996). 

𝜏 =
𝐸𝑘𝑖𝑛

𝐿𝐺𝑊
~

1

𝐶
𝑅 (

𝑅

𝑅𝑆𝑐ℎ
)

3

                                                                                                           (2.16) 
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2.4. Rotating binary system 

Arguably sources of gravitational waves are binaries. These consisting of black 

holes or neutron stars, the most promising source for the gravitational wave detectors. 

Binary systems are also the sources of gravitational waves whose dynamics we 

understand the best. If we assume that the two bodies making up the binary lie in the   

𝑥 − 𝑦 plane and their orbits are circular then the only non-vanishing components of the 

quadruple tensor are: 

𝑄𝑥𝑥 = −𝑄𝑦𝑦 =
1

2
𝜇𝑎2𝑐𝑜𝑠 2Ω𝑡,    𝑎𝑛𝑑     𝑄𝑥𝑦 = 𝑄𝑦𝑥 =

1

2
𝜇𝑎2𝑠𝑖𝑛 2Ω𝑡                       (2.17) 

Where Ω is the orbital angular velocity, 𝜇 =  𝑀1𝑀2/𝑀 is the reduced mass of the 

System and 𝑀 =  𝑀1  + 𝑀2 its total mass. 

According to equation (2.6) the gravitational radiation luminosity of the system is 

𝐿𝐺𝑊 =
32

5

𝐺

𝐶5
𝜇2𝑎4Ω6 =

32

5

𝐺4

𝐶5

𝑀3𝜇2

𝑎5
                                                                                 (2.18) 

Where, in order to obtain the last part of the relation, we have used Kepler’s third law, 

Ω2 =  𝐺𝑀/𝑎3. As the gravitating system loses energy by emitting radiation, the distance 

between the two bodies shrinks at a rate (C. Cutler, 2002) 

𝑑𝑎

𝑑𝑡
= −

64

5

𝐺3

𝐶5

𝜇𝑀2

𝑎3
                                                                                                                 (2.19)  

And the orbital frequency increases accordingly( �̇� /𝑇 =  1.5�̇�/𝑎). If, for example, the 

present separation of the two stars is a0, then the binary system will mix after a time 

𝜏 =
5

256

𝐶5

𝐺3

𝑎0
4

𝜇𝑀4
                                                                                                                      (2.20) 

Finally, the amplitude of the gravitational waves is: 

 ℎ = 5 × 10−22 (
𝑀

2.8𝑀⊙
)

2/3

(
𝜇

0.7𝑀⊙
) (

𝑓

100𝐻𝑧
)

2/3

(
15𝑀𝑝𝑐

𝑟
)                                                 (2.21) 

In all these formulae we have assumed that the orbits are circular. The orbits of the two 

bodies are approximately ellipses, but it has been shown that long before the coalescence 

of the two bodies, the orbits become circular, at least for long-lived binaries, due to 

gravitational radiation. Also, the amplitude of the emitted gravitational waves depends on 

the angle between the line of sight and the axis of angular momentum; formula (2.21) 

refers to an observer along the axis of the orbital angular momentum. The complete 
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formula for the amplitude contains angular factors of order1. The relative strength of the 

two polarizations depends on that angle as well. If three or more detectors observe the 

same signal it is possible to reconstruct the full waveform and deduce many details of the 

orbit of the binary system (C.Cutler, 2002). 

 

Figure (2-1): Explain the motion of Rotating binary system, (Stars, March 16, 2010). 

2.5. Astronomical sources of gravitational waves  

The new generation of gravitational wave detectors: Laser Interferometer Gravity-

Wave Observatory (LIGO) and the Italian Michelson interferometer named after the 

Virgo cluster (VIRGO) have very good chances of detecting gravitational waves, we can 

only make educated guesses as to the possible astronomical sources of gravitational 

waves. The detectability of these sources depends on three parameters: their intrinsic 

gravitational wave luminosity, their event rate, and their distance from the Earth. The 

luminosity can be approximately estimated via the quadruple formula that we discussed 

earlier. Even though there are certain restrictions in its applicability (weak field, slow 

motion), it provides a very good order-of-magnitude estimate for the expected 

gravitational wave flux on Earth. The rate, at which various events with high luminosity 

in gravitational waves take place is extrapolated from astronomical observations in the 

electromagnetic spectrum. Still, there might be a number of gravitationally luminous 

sources, for example binary black holes, for which we have no direct observations in the 

electromagnetic spectrum. Finally, the amplitude of gravitational wave signals decreases 

as one over the distance to the source. Thus, a signal from a supernova explosion might 

be clearly detectable if the event takes place in our galaxy (2-3 events per century), but it 

is highly unlikely to be detected if the supernova explosion occurs at far greater 
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distances, of order 100 𝑀𝑝𝑐, where the event rate is high and at least a few events per 

day take place. All three factors have to be taken into account when discussing sources of 

gravitational waves (J-P.Lasota & J-A.Marck, 1997), (K.S.Thorne & S.W.Hawking, 

1996).  

It was mentioned earlier that the frequency of gravitational waves is proportional 

to the square root of the mean density of the emitting system; this is approximately true 

for any gravitating system. For example, neutron stars usually have masses around 

1.4𝑀⊙ and radii in the order of 10 km; thus if we use these numbers in the relation 

𝑓 ~√𝐺𝑀/𝑅3 we find that an oscillating neutron star will emit gravitational waves 

primarily at frequencies of 2 − 3 𝑘𝐻𝑧. By analogy, a black-hole with a mass~ 100𝑀⊙, 

will have a radius of ~300 km and the natural oscillation frequency will be~ 100 𝐻𝑧. 

Finally, for a binary system Kepler’s law provides a direct and accurate estimation of the 

frequency of the emitted gravitational waves. For two 1.4𝑀⊙ neutron stars orbiting 

around each other at a distance of 160 Km, Kepler’s law predicts an orbital frequency of 

50 Hz, which leads to an observed gravitational wave frequency of 100 𝐻𝑧 

(K.D.KOKKOTAS, 2002). 

2.6. Radiation from gravitational collapse 

Type II supernovae are associated with the core collapse of a massive star 

together with a shock-driven expansion of a luminous shell which leaves behind a rapidly 

rotating neutron star or a black hole, if the core has mass of>  2 − 3𝑀⊙. The typical 

signal from such an explosion is broadband and peaked at around 1 kHz. Detection of 

such a signal was the goal of detector development over the last three decades. 

However, we still know little about the efficiency with which this process produces 

gravitational waves. For example, an exactly spherical collapse will not produce any 

gravitational radiation at all. The key question is what is the kinetic energy of the non-

spherical motions since the gravitational wave amplitude is proportional? 

After 30 years of theoretical and numerical attempts to simulate gravitational 

collapse, there is still no great progress in understanding the efficiency of this process in 

producing gravitational waves. For a conservative estimate of the energy in non-spherical 

motions during the collapse, leads to events of an amplitude detectable in our galaxy, 

even by bar detectors. The next generation of laser interferometers would be able to 
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detect such signals from Virgo cluster at a rate of a few events per month 

(K.D.KOKKOTAS, 2002). 

The main source for deviations from spherical or axial symmetry during the 

collapse is the angular momentum. During the contraction phase, the angular momentum 

is conserved, and the star spins up to rotational periods of the order of 1 msec. In this 

case, consequent processes with large luminosity might take place in this newly born 

neutron star. A number of instabilities, such as the so-called bar mode instability and the 

r-mode instability, may occur which radiate copious amounts of gravitational radiation 

immediately after the initial burst. Gravitational wave signals from these rotationally 

induced stellar instabilities are detectable from sources in our galaxy and are marginally 

detectable if the event takes place in the nearby cluster of about 2500 galaxies, the Virgo 

cluster, 15 𝑀𝑝𝑐 away from the Earth. Additionally, there will be weaker but extremely 

useful signals due to subsequent oscillations of the neutron star; 𝑓, 𝑝 and 𝑤 modes are 

some of the main patterns of oscillations (normal modes) of the neutron star that 

observers might search for these modes have been studied in detail and once detected in 

the signal, they would provide a sensitive probe of the neutron star structure and its supra 

nuclear equation of state. Detectors with high sensitivity in the kHz band will be needed 

in order to fully develop this so-called gravitational wave aster seismology. 

If the collapsing central core is unable to drive off its surrounding envelope, then 

the collapse continues and finally a black hole forms. In this case the instabilities and 

oscillations that we discussed above are absent and the newly formed black hole radiates 

away, within a few milliseconds, any deviations from axisymmetric and ends up as a 

rotating or Kerr black hole. The characteristic oscillations of black holes (normal modes) 

are well studied, and this unique ringing down of a black hole could be used as a direct 

probe of their existence. The frequency of the signal is inversely proportional to the black 

hole mass. For example, it has been stated earlier that a 100𝑀⊙ black hole will oscillate 

at a frequency of ~100 𝐻𝑧 (an ideal source for LIGO), while a supermassive one with 

mass 107𝑀⊙, which might be excited by an in falling star, will ring down at a frequency 

of 10−3 𝐻𝑧 (an ideal source for Laser Interferometer Space Antenna (LISA)). The 

analysis of such a signal should reveal directly the two parameters that characterize any 
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(uncharged) black hole; namely its mass and angular momentum (K.D.KOKKOTAS, 

2002). 

2.7. Radiation from binary systems 

Binary systems are the best sources of gravitational waves because they emit 

copious amounts or gravitational radiation, and for a given system we know exactly what 

is the amplitude and frequency of the gravitational waves in terms of the masses of the 

two bodies and their separation. If a binary system emits detectable gravitational 

radiation in the bandwidth of our detectors, we can easily identify the parameters of the 

system. According, the observed frequency change will be 

𝑓̇~𝑓11/3𝑀5/3                                                                                                                            (2.22) 

and the corresponding amplitude will be 

ℎ~
𝑀5/3𝑓2/3

𝑟
=

𝑓̇

𝑟𝑓3
                                                                                                                 (2.23) 

Where 𝑀5/3   =  𝜇𝑀2/3 is a combination of the total and reduced mass of the system, 

called chirp mass. Since both frequency 𝑓 and its rate of change 𝑓̇ are measurable 

quantities, we can immediately compute the chirp mass (from the first relation), thus 

obtaining a measure of the masses involved. The second relation provides a direct 

estimate of the distance of the source. These relations have been derived using the 

Newtonian theory to describe the orbit of the system and the quadruple formula for the 

emission of gravitational waves. Post-Newtonian theory inclusion of the most important 

relativistic corrections in the description of the orbit can provide more accurate estimates 

of the individual masses of the components of the binary system. 

When analyzing the data of periodic signals the effective amplitude is not the 

amplitude of the signal alone but ℎ𝑐  =  √𝑛 . ℎ, where n is the number of cycles of the 

signal within the frequency range where the detector is sensitive. A system consisting of 

two typical neutron stars will be detectable by LIGO when the frequency of the 

gravitational waves is ~10𝐻𝑧 until the final coalescence around 1000Hz. This process 

will last for about 15 min and the total number of observed cycles will be of the order of 

104, which leads to an enhancement of the detectability by a factor 100. Binary neutron 

star systems and binary black hole systems with masses of the order of 50𝑀⊙are the 

primary sources for LIGO. Given the anticipated sensitivity of LIGO, binary black hole 
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systems are the most promising sources and could be detected as far as 200 Mpc away. 

The event rate with the present estimated sensitivity of LIGO is probably a few events 

per year, but future improvement of detector sensitivity (the LIGO II phase) could lead to 

the detection of at least one event per month. Supermassive black hole systems of a few 

million solar masses are the primary source for LISA (J-P.Lasota & J-A.Marck, 1997). 

These binary systems are rare, but due to the huge amount of energy released, 

they should be detectable from as far as the boundaries of the observable universe 

(K.D.KOKKOTAS, 2002). 

2.8. Radiation from spinning neutron stars 

A perfectly axisymmetric rotating body does not emit any gravitational radiation. 

Neutron stars are axisymmetric configurations, but small deviations cannot be ruled out. 

Irregularities in the crust (perhaps imprinted at the time of crust formation), strains that 

have built up as the stars have spun down, off-axis magnetic fields, and/or accretion 

could distort the axisymmetric. A bump that might be created at the surface of a neutron 

star spinning with frequency 𝑓 will produce gravitational waves at a frequency of 2𝑓 and 

such a neutron star will be a weak but continuous and almost monochromatic source of 

gravitational waves. The radiated energy comes at the expense of the rotational energy of 

the star, which leads to a spin down of the star. 

If gravitational wave emission contributes considerably to the observed spin down 

of pulsars, then we can estimate the amount of the emitted energy. The corresponding 

amplitude of gravitational waves from nearby pulsars (a few kpc away) is of the order of 

ℎ ~ 10−25 − 10−26, which is extremely small. If we accumulate data for sufficiently long 

time, e.g., 1 month, then the effective amplitude, which increases as the square root of the 

number of cycles, could easily go up to the order of ℎ𝑐  ~ 10−22. We must admit that at 

present we are extremely ignorant of the degree of asymmetry in rotating neutron stars, 

and these estimates are probably very optimistic. On the other hand, if we do not observe 

gravitational radiation from a given pulsar we can place a constraint on the amount of 

non-asymmetry of the star (K.S.Thorne & S.W.Hawking, 1996). 

2.9. Cosmological gravitational waves 

One of the strongest pieces of evidence in favor of the Big Bang scenario is the 

(2.7) °𝐾 cosmic microwave background radiation. This thermal radiation first bathed the 
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universe around 380,000 years after the Big Bang. By contrast, the gravitational radiation 

background anticipated by theorists was produced at Planck times, i.e. at 10−32 sec or 

earlier after the Big Bang. Such gravitational waves have travelled almost unimpeded 

through the universe since they were generated. The observation of cosmological 

gravitational waves will be one of the most important contributions of gravitational wave 

astronomy. These primordial gravitational waves will be, in a sense, another source of 

noise for our detectors and so they will have to be much stronger than any other internal 

detector noise in order to be detected. Otherwise, confidence in detecting such primordial 

gravitational waves could be gained by using a system of two detectors and cross-

correlating their outputs. The two LIGO detectors are well placed for such a correlation 

(K.S.Thorne & S.W.Hawking, 1996). 

2.10. Properties of gravitational waves 

The most prominence change that gravitational waves undergo as they propagate 

is the decrease in amplitude while they travel away from their source, and the redshift 

they feel (cosmological, gravitational or Doppler), as is the case for electromagnetic 

waves. 

There are other effects that marginally influence the gravitational waveforms, for 

instance, absorption by interstellar or intergalactic matter intervening between the 

observer and the source, which is extremely weak (actually, the extremely weak coupling 

of gravitational waves with matter is the main reason that gravitational waves have not 

been observed). Scattering and dispersion of gravitational waves are also practically 

unimportant, although they may have been important during the early phases of the 

universe (this is also true for the absorption). Gravitational waves can be focused by 

strong gravitational fields and also can be diffracted, exactly as it happens with the 

electromagnetic waves (K.S.Thorne & S.W.Hawking, 1996). 

 There are also a number of “exotic” effects that gravitational waves can 

experience, that are due to the nonlinear nature of Einstein’s equations (purely general 

relativistic effects) properties mentioned above there is a correspondence with 

electromagnetic waves. Gravitational waves are fundamentally different, however, even 

though they share similar wave properties away from the source. Gravitational waves are 

emitted by coherent bulk motions of matter (for example, by the implosion of the core of 
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a star during a supernova explosion) or by coherent oscillations of space-time curvature, 

and thus they serve as a probe of such phenomena. By contrast, cosmic electromagnetic 

waves are mainly the result of incoherent radiation by individual atoms or charged 

particles as a consequence, from the cosmic electromagnetic radiation. We mainly learn 

about the form of matter in various regions of the universe, especially about its 

temperature and density, or about the existence of magnetic fields. Strong gravitational 

waves, are emitted from regions of space time where gravity is very strong and the 

velocities of the bulk motions of matter are near the speed of light. Since most of the time 

these areas are either surrounded by thick layers of matter that absorb electromagnetic 

radiation or they do not emit any electromagnetic radiation at all (black holes), the only 

way to study these regions of the universe is via gravitational waves (Kokkotas, 2002), 

(D.G.Blair, 1991).  

 

Figure (2-2): The gravitational-wave event GW150914 observed by the LIGO Hanford 

(H1, left column panels) and Livingston (L1, right column panels) detectors. Times are 
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shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all-time series 

are filtered with a 35–350 Hz band pass filter to suppress large fluctuations outside the 

detectors’ most sensitive frequency band, and band-reject filters to remove the strong 

instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, 

right: L1 strain. GW150914 arrived first at L1 and 6.9−0.4
+0.5 ms later at H1; for a visual 

comparison, the H1 data are also shown, shifted in time by this amount and inverted (to 

account for the detectors’ relative orientations). Second row: Gravitational-wave strain 

projected onto each detector in the 35–350 Hz band. Solid lines show a numerical 

relativity waveform for a system with parameters consistent with those recovered from 

GW150914 confirmed to 99.9% by an independent calculation carried out by another 

author. Shaded areas show 90% credible regions for two independent waveform 

reconstructions. One (dark gray) models the signal using binary black hole template 

waveform .The other (light gray) does not use an astrophysical model, but instead 

calculates the strain signal as a linear combination of sine-Gaussian wavelets. These 

reconstructions have a 94% overlap.  Third row: Residuals after subtracting the filtered 

numerical relativity waveform from the filtered detector time series. Bottom row: A time-

frequency representation of the strain data, showing the signal frequency increasing over 

time.  (B.P.Abbott & R.Abbott, 2016)  and the references there in. 
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CHAPTER III 

DATA AND METHODOLOGY 

3.1. The device LIGO 

Before presenting the LIGO detector for gravitational waves we note that: Holes-

Taylor mentioned the existence of gravitational waves, and they provide evidence 

through binary systems, accordingly, the received gravitational waves signal depend on 

the change in the shape of the detector LIGO, i.e. L shape. Anybody in the path of the 

wave will feel an oscillating tidal gravitational force that acts in a plane perpendicular to 

the wave’s direction of propagation. This means that a group of freely moving masses, 

placed on a plane perpendicular to the direction of propagation of the wave, will oscillate 

as long as the wave passes through them, and the distance between them will vary as a 

function of time. Thus, the detection of gravitational waves can be accomplished by 

monitoring the tiny changes in the distance between freely moving test masses. these 

changes are extremely small; for example, when the Holes-Taylor binary system finally 

merges, the strong gravitational wave signal that will be emitted will induce changes in 

the distance of two particles on earth, that are (1 𝑘𝑚) apart much smaller than the 

diameter of the atomic nucleus. To measure such motions of macroscopic objects is a 

tremendous challenge for experimentalists; as early as the mid-1960s, Joseph Weber 

designed and constructed heavy metal bars, seismically isolated, to which a set of 

piezoelectric strain transducers were bonded in such a way that could detect vibrations of 

the bar if it had been excited by a gravitational wave. Today, there are a number of such 

apparatuses operating around the world which have achieved unprecedented sensitivities, 

but they still are not sensitive enough to detect gravitational waves. Another form of 

gravitational wave detector that is more promising uses laser beams to measure the 

distance between two well-separated masses. Such devices are basically kilometer sized 

laser interferometers consisting of three masses placed in an L-shaped configuration. The 

laser beams are reflected back and forth between the mirrors attached to the three masses, 

the mirrors lying several kilometers away from each other (D.G.Blair, 1991).  
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  A gravitational wave passing by will cause the lengths of the two arms to oscillate 

with time and when one arm contracts, the other expands, and this pattern alternates. The 

result is that the interference pattern of the two laser beams changes with time. With this 

technique, higher sensitivities could be achieved than are possible with the bar detectors. 

It is expected that laser interferometry detectors are the ones that will provide us 

with the first direct detection of gravitational waves. A pair of masses joined by a spring 

can be viewed as the simplest conceivable detector. In practice, a cylindrical massive 

metal bar or even a massive sphere is used instead of this simple system. When a 

gravitational wave hits such a device, it causes the bar to vibrate. By monitoring this 

vibration, we can reconstruct the true waveform. The next step, following the idea of 

resonant mass detectors, was the replacement of the spring by pendulums. In this new 

detector the motions induced by a passing-by gravitational wave would be detected by 

monitoring, via laser interferometry, the relative change in the distance of two freely 

suspended bodies (J-P.Lasota & J-A.Marck, 1997). 

The use of interferometry is probably the most decisive step in our attempt to 

detect gravitational wave signals. In what follows, we will discuss both resonant bars and 

laser interferometry detectors. Although the basic principle of such detectors is very 

simple, the sensitivity of detectors is limited by various sources of noise. The internal 

noise of the detectors can be Gaussian or non-Gaussian. The non-Gaussian noise may 

occur several times per day such as strain releases in the suspension systems which 

isolate the detector from any environmental mechanical source of noise, and the only way 

to remove this type of noise is via comparisons of the data streams from various 

detectors. The so-called Gaussian noise obeys the probability distribution of Gaussian 

statistics and can be characterized by a spectral density𝑆𝑛(𝑓). The observed signal at the 

output of a detector consists of the true gravitational wave strain h and Gaussian noise 

(K.P & C.Cutler, 2002). 

The optimal method to detect a gravitational wave signal leads to the following signal-to-

noise ratio (D.G.Blair, 1991). 

(
𝑆

𝑁
)

𝑜𝑝𝑡

2

= 2 ∫
|ℎ̃(𝑓)|

2

𝑆𝑛(𝑓)

∞

0

𝑑𝑓                                                                                                     (3.1) 
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Where, ℎ̃(𝑓) is the Fourier transform of the signal waveform; it is clear from this 

expression that the sensitivity of gravitational wave detectors is limited by noise (J-

P.Lasota & J-A.Marck, 1997). 

3. 2. Beam detectors 

3.2.1. Laser interferometers 

Idea these device work the relative change in the distance of two well-separated 

masses by monitoring their separation via a laser beam that continuously bounces back 

and forth between them; (This technique is actually used in searching for gravitational 

waves by using the so-called Doppler tracking technique, where a distant interplanetary 

spacecraft is monitored from earth through a microwave tracking link; the earth and 

spacecraft act as free particles) soon, it was realized that it is much easier to use laser 

light to measure relative changes in the lengths of two perpendicular arms. Gravitational 

waves that are propagating perpendicular to the plane of the interferometer will increase 

the length of one arm of the interferometer, and at the same time will shorten the other 

arm, and vice versa. This technique of monitoring the waves is based on Michelson 

interferometry. L − shaped Interferometers are particularly suited to the detection of 

gravitational waves due to their quadruple nature (Saulson, 1994). 

 

 

Figure (3-1): Explain device LIGO (Laser Interferometer Gravitational Observatory).  

(Orwig, 10/03/2014) 



 22  

 

Contain a schematic design of a Michelson interferometer; the three masses𝑀0, 

M1 and 𝑀2 are freely suspended. Note that the resonant frequencies of these pendulums 

should be much smaller than the frequencies of the waves that we are supposed to detect 

since the pendulums are supposed to behave like free masses (D.G.Blair, 1991). 

Mirrors are attached to 𝑀1 and 𝑀2 and the mirror attached on mass 𝑀0 splits the 

light (beam splitter) into two perpendicular directions. The light is reflected on the two 

corner mirrors and returns back to the beam splitter. The splitter now half transmits and 

half-reflects each one of the beams. One part of each beam goes back to the laser, while 

the other parts are combined to reach the photo detector where the fringe pattern is 

monitored. If a gravitational wave slightly changes the lengths of the two arms, the fringe 

pattern will change, and so by monitoring the changes of the fringe pattern one can 

measure the changes in the arm lengths and consequently monitor the incoming 

gravitational radiation (K.P & C.Cutler, 2002).  

 

 

Figure (3-2): Explain Michelson device and its components (Leywon, 21 April 2017). 

Consider an impinging gravitational wave with amplitude ℎ and (+) polarization, 

propagating perpendicular to the plane of the detector. We will further assume that the 

frequency is much higher than the resonant frequency of the pendulums and the 

wavelength is much longer than the arm length of our detector. Such a wave will generate 

a change of ∆𝐿 ~ℎ𝐿/2 in the arm length along the 𝑥- direction and an opposite change in 

the arm length along the 𝑦- direction. The total difference in length between the two arms 

will be: 
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∆𝐿

𝐿
~ℎ                                                                                                                                            (3.2) 

And for a gravitational wave with amplitude ℎ ~10−21 and detector arm- length 4 km 

(such as LIGO), this will induce a change in the arm-length of about: ∆𝐿 ~ 10−16. 

In the general case, when a gravitational wave with arbitrary polarization 

impinges on the detector from a random direction, the above formula will be modified by 

some angular coefficients of order 1 (D.G.Blair, 1991). 

In practice, things are arranged so that when there is no actual change in the arms, 

all light that returns on the beam splitter from the corner mirrors is sent back into the 

laser, and only if there is some motion of the masses there is an output at the photo 

detector. If the light bounces a few times between the mirrors before it is collected in the 

photodiode, the effective arm length of the detector is increased considerably, and the 

measured variations of the arm lengths will be increased accordingly. This is a quite 

efficient procedure for making the arm length longer. For example, a gravitational wave 

at a frequency of 100 Hz has a wavelength of 3000 Km, and if we assume 100 bounces of 

the laser beam in the arms of the detector, the effective arm-length of the detector is 100 

times larger than the actual arm-length, but still this is 10 times smaller than the 

wavelength of the incoming wave. The optical cavity that is created between the mirrors 

of the detector is known as a Fabry-Perot cavity and is used in modern interferometers. 

In the remainder of this paragraph we will focus on the Gaussian sources of noise 

and their expected influence on the sensitivity of laser interferometers (K.P & C.Cutler, 

2002). 

A. Photon shot noise: When a gravitational wave produces a change ∆𝐿 in the arm-

length, the phase difference between the two light beams changes by an amount ∆𝜙 =

 2𝑏Δ𝐿/⋋̃, where ⋋̃ is the reduced wavelength of the laser light (~ 10−8𝑐𝑚) and b is the 

number of bounces of the light in each arm. It is expected that a detectable gravitational 

wave will produce a phase shift of the order of 10−9rad. 

The precision of the measurements, though, is ultimately restricted by fluctuations in the 

fringe pattern due to fluctuations in the number of detected photons. The number of 

photons that reach the detector is proportional to the intensity of the laser beam and can 

be estimated via the relation 𝑁 =  𝑁0sin2(∆𝜙/2), where 𝑁0 is the number of photons 



 24  

 

that the laser supplies and N is the number of detected photons. Inversion of this equation 

leads to an estimation of the relative change of the arm lengths Δ𝐿 by measuring the 

number of the emerging photons N. However, there are statistical fluctuations in the 

population of photons, which are proportional to the square root of the number of 

photons. This implies an uncertainty in the measurement of the arm length: 

𝛿(∆𝐿)~
⋋̃

2𝑏√𝑁0

                                                                                                                        (3.3) 

Thus, the minimum gravitational wave amplitude that we can measure is 

ℎ𝑚𝑖𝑛 =
𝛿(∆𝐿)

𝐿
=

∆𝐿

𝐿
 ~

⋋̃

𝑏𝐿𝑁0
1/2

~
1

𝑏𝐿
(

ℏ𝑐 ⋋̃

𝜏𝐼0
)

1/2

                                                              (3.4) 

Where𝐼0: the intensity of the laser light (~5 − 10 𝑊) and 𝜏 is the duration of the 

measurement. This limitation in the detector’s sensitivity due to the photon counting 

uncertainty is known as photon shot noise. For a typical laser interferometer the photon 

shot noise is the dominant source of noise for frequencies above 200 Hz, while its power 

spectral density 𝑆𝑛(𝑓) for frequencies 100-200Hz is of the order of ~3 ×  10−23 √𝐻𝑧 

(C.Cutler, 2002). 

B. Radiation pressure noise: According to formula (2.27), the sensitivity of a detector 

can be increased by increasing the intensity of the laser. However, a very powerful laser 

produces a large radiation pressure on the mirrors. Then an uncertainty in the 

measurement of the momentum deposited on the mirrors leads to a proportional 

uncertainty in the position of the mirrors or, equivalently, in the measured change in the 

arm-lengths. Then, the minimum detectable strain is limited by 

ℎ𝑚𝑖𝑛~
𝜏

𝑚

𝑏

𝐿
 (

𝜏ℏ𝐼0

𝐶⋋̃
)

1/2

                                                                                                                (3.5) 

Where 𝑚 is the mass of the mirrors. 

As we have seen, the photon shot noise decreases as the laser power increases, while the 

inverse is true for the noise due to radiation pressure fluctuations. If we try to minimize 

these two types of noise with respect to the laser power, we get a minimum detectable 

strain for the optimal power via the very simple relation: 

ℎmin~
1

𝐿
(

𝜏ℏ

𝑚
)

1/2

                                                                                                                          (3.6) 
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Which for the LIGO detector (where the mass of the mirrors is ≈100 kg and the arm 

length is 4 km), for observation time of (1) ms , gives ℎmin  ≈  10−23. 

C. Quantum limit. An additional source of uncertainty in the measurements is set by 

Heisenberg’s principle, which says that the knowledge of the position and the momentum 

of a body is restricted from the relation∆𝑥 · ∆𝑝 ≥  ℏ. For an observation that lasts some 

time 𝜏, the smallest measurable displacement of a mirror of mass m is∆𝐿; assuming that 

the momentum uncertainty is∆𝑝 ≈ 𝑚 ·  ∆𝐿/𝜏, we get a minimum detectable strain due to 

quantum uncertainties 

ℎmin =
∆𝐿

𝐿
~

1

𝐿
(

𝜏ℏ

𝑚
)

1/2

                                                                                                           (3.7) 

Surprisingly, this is identical to the optimal limit that we calculated earlier for the other 

two types of noise. The standard quantum limit does set a fundamental limit on the 

sensitivity of beam detectors. An interesting feature of the quantum limit is that it 

depends only on a single parameter, the mass of the mirrors (K.S.Thorne & 

S.W.Hawking, 1996). 

D. Seismic noise. At frequencies below 60 Hz, the noise in the interferometers is 

dominated by seismic noise. This noise is due to geological activity of the earth, and 

human sources, e.g., traffic and explosions. The vibrations of the ground couple to the 

mirrors via the wire suspensions which support them. This effect is strongly suppressed 

by properly designed suspension systems. Still, seismic noise is very difficult to eliminate 

at frequencies below 10-5 Hz (J-P.Lasota & J-A.Marck, 1997). 

E. Residual gas-phase noise. The statistical fluctuations of the residual gas density 

induce a fluctuation of the refraction index and consequently of the monitored phase 

shift. Hence, the residual gas pressure through which the laser beams travel should be 

extremely low. For this reason the laser beams are enclosed in pipes over their entire 

length. Inside the pipes a high vacuum of the order of 10−9 Torr guarantees elimination 

of this type of noise. 

Prototype laser interferometry detectors have been already constructed in the 

USA, Germany and UK. These detectors have an arm length of a few tens of meters and 

they have achieved sensitivities of the order of ℎ~10−19.The construction of the new 

generation of laser interferometry detectors is near completion and some of them have 
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already collected data. It is expected that will be in full operation (Saulson, 1994). The 

US project named LIGO consists of two detectors with arm length of 4 Km, one in 

Hanford, Washington, and one in Livingston, Louisiana. 

The detector in Hanford includes, in the same vacuum system, a second detector with arm 

length of 2 km. The detectors are already in operation and they have recently achieved 

the designed sensitivity (D.G.Blair, 1991). 

3.2.2. Space detectors 

Both bars and laser interferometers are high-frequency detectors, but there are a 

number of interesting gravitational waves sources which emit signals at lower 

frequencies.  

The seismic noise provides an insurmountable obstacle in any earth-based experiment 

and the only way to surpass this barrier is to fly a laser interferometer in space. 

LISA will consist of three identical drag-free spacecraft’s forming an equilateral triangle 

with one spacecrafts at each vertex. The distance between the two vertices (the arm 

length) is 5 × 106 km. The spacecrafts will be placed into the same heliocentric orbit as 

earth, but about 20o behind earth. The equilateral triangle will be inclined at an angle of 

60o with respect to Earth’s orbital plane. The three spacecraft would track each other 

optically by using laser beams. Because of the diffraction losses it is not feasible to 

reflect the beams back and forth as is done with LIGO. Instead, each spacecraft will have 

its own laser. The lasers will be phase locked to each other, achieving the same kind of 

phase coherence as LIGO does with mirrors. The configuration will function as three, 

partially independent and partially redundant, gravitational wave interferometers. 

At frequencies𝑓 ≥ 10−3, LISA’s noise is mainly due to photon shot noise. The 

sensitivity curve steepens at 𝑓 ~ 3 × 10−2 𝐻𝑧 because at larger frequencies the 

gravitational waves period is shorter than the round-trip light travel time in each arm. 

For𝑓 ≤  1 × 10−2 𝐻𝑧, the noise is due to buffeting-induced random motions of the 

spacecraft, and cannot be removed by the drag- compensation system. LISA’s sensitivity 

is roughly the same as that of LIGO, but at 105 times lower frequency.  

Since th-e gravitational waves energy flux scales as 𝐹 ~ 𝑓2ℎ2, this corresponds to 1010 

times better energy sensitivity than LIGO (K.D.KOKKOTAS, 2002). 
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 3.3. MATLAB 

MATLAB is known as a multi-paradigm  numerical computing environment 

and proprietary programming language  developed  by Math Works. 

MATLAB allows  matrix  manipulations plotting of function and data, implementation 

of algorithms, creation of user interfaces, and interfacing with programs written in other 

languages, including C, C++, C#, Java, Fortran and Python. 

3.3.1. The MATLAB environment 

The MATLAB environment (on most computer systems) consists of menus, 

buttons and a writing area similar to an ordinary word processor. There are plenty of help 

functions that you encouraged you to use it. The writing area that you will see when you 

start MATLAB, is called the command window. In this window you give the commands 

to MATLAB. For example, when you want to run a program you have written for 

MATLAB you start the program in the command window by typing its name at the 

prompt. The command window is also useful if you just want to use MATLAB as a 

scientific calculator or as a graphing tool. If you write longer programs, you will find it 

more convenient to write the program code in a separate window, and then run it in the 

command window. 

3.3.2. Useful functions and operations in MATLAB 

Using MATLAB as a calculator is easy: Example: 

Compute 5 sin (2.53-pi) +1/75. In MATLAB this is done by simply typing 

5*sin (2.5^ (3-pi)) +1/75 

At the prompt. Be careful with parentheses and don't forget to type * whenever you 

multiply! 

Note that MATLAB is case sensitive. This means that MATLAB knows a difference 

between letters written as lower and upper case letters. For example, MATLAB will 

understand sin (2) but will not understand Sin (2). 

3.4. Fourier transform (FT) 

The Fourier transform (FT) decomposes a function of time (a signal) into the 

frequencies that make it up, in a way similar to how a musical chord can be expressed as 

the frequencies (or pitches) of its constituent notes. The Fourier transform of a function 

of time is itself a complex-valued function of frequency, whose absolute value represents 

https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Proprietary_programming_language
https://en.wikipedia.org/wiki/MathWorks
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Chord_(music)
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Absolute_value
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the amount of that frequency present in the original function, and whose complex 

argument is the phase offset of the basic sinusoid in that frequency. 

The Fourier transform is important in mathematics, engineering, and the physical 

sciences.  Its discrete counterpart, the Discrete Fourier Transform (DFT), which is 

normally computed using the so-called Fast Fourier Transform (FFT), has revolutionized 

modern society, as it is ubiquitous in digital electronics and signal processing.  Radio 

astronomers are particularly avid users of Fourier transforms because Fourier transforms 

are key components in data processing (e. g, periodicity searches) and instruments (e.g, 

antennas, receivers, spectrometers), and they are the corner stores of interferometry and 

aperture synthesis. 

3.5. The spectral analysis carried on 

The analysis should be carried on is to calculate the normalized amplitude of the 

strain time series data on frequency- time domain and to plot results, a MATLAB code is 

written to achieve this. The algorithm is simple: read the data from a text file, calculate 

the power of the discrete fast Fourier on the time series data (D- FFT), and plot the result 

on frequency- time domain. For this we used the following MATLAB library main 

functions: dlmread, spectrogram, and surf. Here, is the code in two versions for two 

different frequencies: 

1- The Code for GPS (1186741861) at (4096) Hz 

sp=1; 

%% Read data from a text file 

N = dlmread('V-V1_LOSC_4_V2-1186741845-32.txt','\t',4);  

JJJ=N; 

 

%% Calculate the power of the discrete fast Fourier time 

series data D- FFT on a frequency time domain 

[P,F,T] = spectrogram(JJJ,1024,1/sp); 

 

%% Plotting the normalized amplitude 

surf(T/1000,F*10,10*log10(abs(P)),'EdgeColor','none') 

axis xy; 

axis tight; 

colormap(jet); 

shading flat; 

view(0,90); 

xlabel('Time'); 

ylabel('Frequency  (Hz)'); 

https://en.wikipedia.org/wiki/Complex_argument
https://en.wikipedia.org/wiki/Complex_argument
https://en.wikipedia.org/wiki/Phase_offset
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2- The Code for GPS (1186741861) at (16384) Hz 

sp=1; 

%% Read data from a text file 

N = dlmread('V-V1_LOSC_16_V2-1186741845-32.txt','\t',4);  

JJJ=N;* 

 

%% Calculate the power of the discrete fast Fourier time 

series data D- FFT on a frequency time domain 

[P,F,T] = spectrogram(JJJ,1024,1/sp); 

  

%% Plotting the normalized amplitude 

surf(T/4000,F*10,10*log10(abs(P)),'EdgeColor','none') 

axis xy; 

axis tight; 

colormap(jet); 

shading flat; 

view(0,90); 

xlabel('Time'); 

ylabel('Frequency  (Hz)'); 
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CHAPTER IV 

RESULTS OF GW DETECTION METHOD, DISCUSSION AND CONCLUSIONS 

4.1. Result of the dynamic spectrum plots 

Here, we present results of the dynamic spectrum plots of strain data; note that all strain 

data used here after noise subtraction. The following figures show dynamic spectrum 

plots obtained from data collected on the date of: August, 14 2017, and collected from 

different devices. (M Vallisneri, 2014). The time series data of the strain were 

transformed using Fast Fourier Transforms and the spectral density of the data were 

obtained and plotted with frequency and time to get these dynamical spectrum plots, see 

next plots and captions of plots for more details. 

 

 

Figure (4-1): Show dynamic spectrum of data from the device on Hanford GPS  

(1186741861) at (4096) Hz at 32 second (event signal reaches peak amplitude 16.53 

second ±30 msec from start, see the arrow position in the figure). (M Vallisneri, 2014) 
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Figure (4-2): Show dynamic spectrum of data from the device on Livingston GPS 

(1186741861) at (4096) Hz at 32 second (event signal reaches peak amplitude 16.53 

second ±30 msec from start, see the arrow position in the figure). (M Vallisneri, 2014) 

 

 

 

Figure (4-3): Show dynamic spectrum of data from the device on Virgo GPS 

(1186741861) at (4096) Hz at 32 second (event signal reaches peak amplitude 16.53 

second ±30 msec from start, see the arrow position in the figure). (M Vallisneri, 2014)  
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Figure (4-4): Show dynamic spectrum of data from the device on Hanford GPS 

(1186741861) at (16384) Hz at 32 second (event signal reaches peak amplitude 16.53 

second ±30 m sec from start, see the arrow position in the figure). (M Vallisneri, 2014) 

. 

 

 

Figure (4-5): Show dynamic  spectrum of data from the device on Livingston GPS 

(1186741861) at (16384) Hz at 32 second (event signal reaches peak amplitude 16.53 

second ±30 m sec from start, see the arrow position in the figure). (M Vallisneri, 2014) 
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 Figure (4-6) : Show dynamic spectrum of data from the device on Virgo GPS 

(1186741861) at (16384) Hz at 32 second (event signal reaches peak, amplitude 16.53 

second ±30 m sec from start, see the arrow position in the figure). (M Vallisneri, 2014) 

4.2. Discussion 

Gravitational waves affect any mass object located on its passage through a 

transverse strain, therefore the strain data obtained from the LIGO devices at each 

observation side and also the data from the VIRGO device are expected to view the GW. 

Looking at the resulting dynamic spectral graphs (Figures: 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6) 

the location of the peak amplitude of the GW were determined according to data 

provider, but on the above graphs these peaks not so much obvious in particular to data 

from LIGO device the reason is the dominating noise sources as well as the events are 

localized within a narrow time span about few parts of 100 divisions of the second (0.10 

– 0.60) to some extend the GW peak is clear on the plots of data collected from VIRGO. 

In all cases the GW event amplitude is peak at 16.53 seconds. Therefore, in comparing 

between viewing GW from data of LIGO device and VIRGO device it is obvious that 

VIRGO device data show the GW more clearly, and this can be explained because of the 

absence of seismic noise sources in the VIRGO data.                   

4.3. Conclusions 

This review showed the value of observing GW via devices like: LIGO and 

VIRGO, and as long as more events to be recorded in the future that will open up a gate 
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to a new era in understanding the universe surrounding us. We believe that these methods 

of detecting GW are of value and also convincing in terms of observation methodology 

for the GW. 

4.4. Recommendations 

As a concluding remark we recommend to carry out more analysis in order to 

view well the peak amplitude of the GW, e.g. to truncate data in the narrow time span of 

the peak amplitude of the GW and to zoom out. 
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