Assessment of Blood Cell Count in Sudanese Pregnant Women at Third Trimester Attended to Hassahissa and Aboasher Hospitals in Gazera State

A Dissertation Submitted in Partial Fulfillment of the Requirement for the

M.Sc Degree in Medical Laboratory Science (Hematology and Immunohematology)

By

Wessal Musa Ahmed Abdalla

B.Sc in Medical Laboratory Science (Hematology and Immunohematology)

Sudan University of Science and Technology (2009)

Post graduate Diploma in(Hematology and Immunohematology) Sudan University of Science and Technology(2011)

Supervisor:

Dr. Kawthar Abdelgaleil Mohammed
الآيّة

بسم الله الرحمن الرحيم

قال الله تعالى:

(أَوَ لَمْ يَرْنِ الإِنَسانَ أَنَا خَلَقْتُهَا مِن نَّطْفَةٍ فَذَٰلِكَ هُوَ خُصُمُ مُّبِينٍ (77) وضَرَرَّ لَنَا مِثَالًا وَنَسيٓ خَلْقُهُ قَالَ مِن يُخْيِي العَظَمَةَ وَهُوَ رَمِيمٌ (78) فَلَسْتَ الَّذِي أَنشَأْهَا أَوْلَى مَرَأً وَهُوَ بِكُلِّ خَلْقٍ عِلْمٍ (79) الَّذِي جَعَلَ لَكَ مِن الشَّجْرِ الأَخْضَرِ نَارًا فَإِذَا أَنْتَمْ مَنَّهُ تُوقَدُونَ (80) أَوْلَينَ الَّذِي خَلَقَ السَّمَوَاتِ وَالأَرْضَ بَقَادِرٌ عَلَى أَن يَخْلُقَ مِثْلَهُم بَلْ وَهُوَ الخَلَاقُ العَلِيمُ (81) إِنَّمَا أَمْرُهُ إِذَا أَرَادَ شَيْئًا أَن يَقُولَ لَهُ كَنْ فِي كُونٍ (82) فَسُبُخَ الَّذِي بِيَدِهِ مُكْرُوهُ كُلُّ شَيْءٍ وَإِلَيْهِ تُرْجَعُونَ (83))

صدق الله العظيم

سورة يس، الآيات (77-83)
Dedication

To my respective parents who faded as candles to light our way.

To our teacher who presents their fruitful ideas and great skills to high light our future

To the Soul of Dr Khalda Mirghni Hamza

Wessal
Acknowledgment

Firstly with greatest thanks for Allah enabled me to conduct this study. I would like to express my appreciation of soul supervisor Dr Khalda Mirghani Hamza for her guidance and support during conducting this study and encouragement to make this research possible. My extended appreciation to my husband and Dr Kawthar Abdelgaleil Mohammed Salih for support and help me in this work.

Finally a great thanks to patients who volunteer to donate blood sample in order to complete this project.
Abstract

This was case control study, conducted in Hassahissa Obstetric Hospital and Aboasher Hospitals in Gazera state from February to March 2016, aimed to determine complete blood count (CBC) in Sudanese pregnant women in third trimester.

Hundred fifty (150) healthy pregnant women (case) and Hundred (100) non pregnant women (controls) were informed about the study and agreed for participation. Two and half ml EDTA venous blood was collected and analyzed automatically (Mindary) to measure CBC, the data analyzed using SPSS (version16) computer programm.

Age group (21-30) years was most frequent in both pregnant and non pregnant women (65.3%,57%) respectively while age group (≤ 20) years was least frequent in both study subjects (11.4%,9%) respectively.

Result showed that level of Hb, HCT, RBCs, MCHC, lymphocyte percentage, mix and platelet were significantly decreased in pregnant women when compared with control group (P.value 0.01,0.0.000 0.004,0.000,0.007,0.000,0.012 and 0.000 respectively) while TWBCs ,neutrophil, and PDW increased in their count and showed statistical correlation compared with non-pregnant women (P.value 0.005,0.000,0.000 respectively), in contrast to MCV and MPV showed no statistical correlation between study group (p.value 0.14,0.30).

There was no significant statistical different between age group of pregnant women and Hb,HCT,RBCs,TWBCs and platelet. p.value of Hb of age groups ≤ 20 and 21-30 (p.value = 0.45) HCT of age groups ≤ 20 and > 30 (p.value =0.24).
High level in Hb, HCT, RBCs, MCV, MCH and MCHC in pregnant who taken supplement (e.g Fefol and folic acid) when compared with those without taken supplement \((P.\text{value } 0.000, 0.000, 0.032, 0.047, 0.016, 0.034 \text{ respectively}) \). While TWBCs, lymphocyte neutrophil percentage, mix, platelet MPV and PDW was no significant in pregnant women who taken supplement when compared with those without taken supplement \((p.\text{value } 0.9, 0.2, 0.8, 0.1, 0.8, 0.9, 0.2 \text{ respectively}) \).

Regard to history of abortion there was no statistical correlation of Hb, HCT, RBCs MCH, MCHC, TWBCs, lymphocyte, neutrophil, mix, platelet, MPV and PDW in pregnant women with history of abortion when compared to those without history of abortion also there was insignificant increase in level of MCV due to increase production of RBCs to meet the demands of pregnancy.

There was no statistical correlation of Hb, HCT, RBCs, MCV, MCH, MCHC TWBCs, lymphocyte, neutrophil, mix, platelet MPV and PDW of pregnant women who’s attended clinical regularly compared with irregular clinical follow up. \((p \text{ value } \geq 0.05) \).
المستخلص

تعتبر هذه الدراسة دراسة حالة مقارنة أجريت في مستشفى الصحافيصا للولادة ومستشفى أبوعشر للولاية بولاية الجزيرة في الفترة ما بين فبراير 2016 إلى مارس 2016 لتحديد تعداد الدم الكامل للنساء الحوامل في الثلاثة الأخيرة من الحمل. أخذت من أخذ على عينة من النساء حوامل أصحاء ومنة عينة من غير الحوامل بعد اختراع هذه الدراسة وأخذت توقعات عن المشاركة. تم أخذ أثاث ونصف مل عينة دم وريدية من كل مبهرة ووضعت في مانع تعطيل (EDTA) وتم اختبارها بواسطة جهاز تحليل الدم الآلي ومن ثم تحليل النتائج باستخدام برنامج الحزم الإحصائي للعلوم الاجتماعية المحوسوب.

الفترة العمرية (21-30) سنة كانت تتمثل أغلبية المشاركات من النساء الحوامل وغير الحوامل (57.3,65.3%) على التوالي بينما كانت الفترة العمرية أقل من 20 أو تساوي 20 سنة يمثلن اقل عدد من المشاركات من النساء الحوامل وغير الحوامل (11.4,9%) على التوالي.

أظهرت النتائج أن هناك تناقض ذات دالة معنوية في كل من مستوى الفيروسين، الدم المكس، كريات الدم الحمراء، متوسط تركز خصائص الدم في الخلايا،النسبة الحمضية للخلايا،اللفازية وعدد الصفائح الدموية عند النساء الحوامل مقارنة بغير الحوامل. (مستوى معنوية على التوالي . بينما كريات الدم البيضاء والخلايا المتحدثة ذات زيادة ذات دالة احصائية مقارنة بالنساء غير الحوامل (مستوى معنوية 0.005,0.000,0.000,0.000,0.012,0.000,0.004,0.000,0.012,0.000 على التوالي . بينما كريات الدم البيضاء والخلايا المتحدثة ذات زيادة ذات دالة احصائية مقارنة بالنساء غير الحوامل (مستوى معنوية 0.005,0.000,0.000,0.000,0.000 على العكس ذلك فإن متوسط حجم الخلية الحمراء ومستوى حجم صفيحة الدم الواحدة لا يوجد بينهما علاقة ذات دالة معنوية مقارنة بالمجموعة الضابطة (مستوى معنوية 0.14,0.3.

لا توجد دالة معنوية بين اعمار النساء الحوامل في تركيز الفيروسين،الدم المكس،كريات الدم الحمراء،كريات الدم البيضاء والصفائح الدموية.مستوى معنوية بالنسبة للهمومقلين في الاعمار اقل او يساوي 20 ومن 21-30 = (0.45) والدم المكس بين عمر 20 او اقل من 20 واكثر من 30 مستوى معنوية = (0.24).

زمن مستوى الفيروسين الدم المكس،كريات الدم الحمراء،متوسط حجم الخلية الحمراء،متوسط خصائص الدم في الخلية الواحدة متوسط تركز خصائص الدم في الخلية الواحدة عند النساء اللاتي يتناولن مواد مكملة مثل حبوب الفيتول والفيتيلك اسد مقارنة باللاتي لايتناولن حبوب مكملة (مستوى
معنوية 0.034, 0.016, 0.047, 0.001, 0.032, 0.000, 0.000, 0.000, 0.000, 0.000

الصافائح الدموية، بالنسبة المؤية للخلايا المفاوية، ومتوسط حجم الصفيحة انخفضت انخفاض من غير
دلالة معنوية مقارنة بالنساء اللاتي لا يتناولن حبوب مثل الفيفول والفوليك اسد (مستوى معنوية
0.2).

لا يوجد أي علاقة وصفية ذات دلالة معنوية في الهيموفيلين، الدم المكدس، كريات الدم الحمراء،
متوسط تركيز خضاب الدم في الخلية الواحدة، كريات الدم البيضاء، نسبة المؤية للخلايا المفاوية.
الصافائح الدموية، متوسط حجم صفيحة الدم الواحدة عند النساء اللاتي تعرضن للإجهاض مقارنة
باللاتي لم يتعرضن للإجهاض. هناك زيادة ليست ذات دلالة معنوية في متوسط خضاب الدم نتيجة
لزيادة انتاج كريات الدم الحمراء لمواجهة استهلاك الحمل.

لا يوجد أي علاقة وصفية ذات دلالة معنوية في تركيز الهيموفيلين، الدم المكدس، عدد كريات الدم
الحمراء، متوسط خضاب الدم في الخلية الواحدة، متوسط تركيز خضاب الدم، عدد كريات الدم
البيضاء، نسبة المؤية للخلايا المفاوية، نسبة المتوية للخلايا العدالة، نشاط صفحات الدم ومتوسط حجم
الصفيحة الواحدة عند النساء اللاتي يتابعن بطريقة منظمة مقارنة باللاتي لا يتابعهن بانتظام (مستوى
معنوية أكبر من 0.05).
List of Content

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>II</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>III</td>
</tr>
<tr>
<td>Abstract english</td>
<td>IV</td>
</tr>
<tr>
<td>المستخلص</td>
<td>VI</td>
</tr>
<tr>
<td>List of contents</td>
<td>VIII</td>
</tr>
<tr>
<td>List of tables</td>
<td>XI</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>XII</td>
</tr>
</tbody>
</table>

Chapter one

Introduction and Literature Review

1. **1.1 Introduction**
 - 1

2. **1.2 Literature review**
 - 3

 2.1 **Blood**
 - 3
 2.1.1 **Function of blood**
 - 3
 2.2 **Heamopoiesis**
 - 3
 2.2.1 **Site of heamopoiesis**
 - 3
 2.2.2 **Heamopoietic growth factors**
 - 3
 2.3 **Erythropoiesis**
 - 4
 2.3.1 **Stage of erythropoiesis**
 - 4
 2.3.2 **Erythropoietin (EPO)**
 - 4
 2.3.2.1 **Erythropoietin receptor**
 - 4
 2.4 **Red blood cell count**
 - 4
 2.5 **Packed cell volume (PCV)**
 - 5
 2.6 **Mean corpuscular volume (MCV)**
 - 5
 2.7 **Mean corpuscular hemoglobin (MCH)**
 - 6
 2.8 **Mean corpuscular hemoglobin concentration (MCHC)**
 - 6
 2.9 **Red cell distribution width (RDW)**
 - 7
 2.10 **Heamoglobin**
 - 7
 2.10.1 **Structure of heamoglobin**
 - 7
 2.10.2 **Type of heamoglobin**
 - 7
 2.11 **Leukopoiesis**
 - 8
 2.12 **Granulopoiesis**
 - 8
 2.12.1 **Stage of granulopoiesis**
 - 8
 2.12.2 **White blood cell count**
 - 9
 2.12.3 **Monocyte-macrophage series**
 - 9
 2.12.4 **Lymphocyte development (Lymphopoiesis)**
 - 9
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.13 Thromopoiesis</td>
<td>10</td>
</tr>
<tr>
<td>1.2.13.1 The magakaryocyte series</td>
<td>10</td>
</tr>
<tr>
<td>1.2.14 Platelets count</td>
<td>10</td>
</tr>
<tr>
<td>1.2.14.1 Mean platelet volume</td>
<td>10</td>
</tr>
<tr>
<td>1.2.15 Pregnancy</td>
<td>11</td>
</tr>
<tr>
<td>1.2.15.1 Pregnancy trimester</td>
<td>11</td>
</tr>
<tr>
<td>1.2.15.1.1 First trimester</td>
<td>11</td>
</tr>
<tr>
<td>1.2.15.1.2 Second trimester</td>
<td>11</td>
</tr>
<tr>
<td>1.2.15.1.3 Third trimester</td>
<td>11</td>
</tr>
<tr>
<td>1.2.15.2 Physiological change associated with pregnancy</td>
<td>12</td>
</tr>
<tr>
<td>1.2.15.3 Haematological change associated with pregnancy</td>
<td>12</td>
</tr>
<tr>
<td>1.2.15.4 Haemostatic change associated with pregnancy</td>
<td>13</td>
</tr>
<tr>
<td>1.2.15.5 Infection associated with pregnancy</td>
<td>14</td>
</tr>
<tr>
<td>1.2.16 Anemia</td>
<td>14</td>
</tr>
<tr>
<td>1.2.17 Common type of anemia during pregnancy</td>
<td>14</td>
</tr>
<tr>
<td>1.2.17.1 Iron deficiency anemia</td>
<td>14</td>
</tr>
<tr>
<td>1.2.17.1.1 Iron metabolism</td>
<td>15</td>
</tr>
<tr>
<td>1.2.17.1.2 Causes of iron deficiency anemia</td>
<td>15</td>
</tr>
<tr>
<td>1.2.17.1.3 Diagnosis of iron deficiency anemia</td>
<td>16</td>
</tr>
<tr>
<td>1.2.17.2 Megaloblastic anemia</td>
<td>16</td>
</tr>
<tr>
<td>1.2.17.2.1 Causes of megaloblastic anemia</td>
<td>16</td>
</tr>
<tr>
<td>1.2.17.2.1.3 Diagnosis of megaloblastic anemia</td>
<td>16</td>
</tr>
<tr>
<td>1.2.17.3 Vitamin B12 deficiency anemia</td>
<td>17</td>
</tr>
<tr>
<td>1.2.17.4 Folate deficiency anemia</td>
<td>17</td>
</tr>
<tr>
<td>1.2.18 Complete blood count</td>
<td>18</td>
</tr>
<tr>
<td>1.3 Previous studies</td>
<td>19</td>
</tr>
<tr>
<td>1.4 Rationale</td>
<td>21</td>
</tr>
<tr>
<td>1.5 Objectives</td>
<td>22</td>
</tr>
<tr>
<td>1.5.1 General Objectives</td>
<td>22</td>
</tr>
<tr>
<td>1.5.2 Specific Objectives</td>
<td>22</td>
</tr>
</tbody>
</table>

Chapter Two

Materials and Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Study design area and duration</td>
<td>23</td>
</tr>
<tr>
<td>2.2 Sample size</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Study population</td>
<td>23</td>
</tr>
<tr>
<td>2.3.1 Inclusion criteria</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2 Exclusion criteria</td>
<td>23</td>
</tr>
<tr>
<td>2.3.3 Sampling technique</td>
<td>23</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.4 Method of data collection</td>
<td>23</td>
</tr>
<tr>
<td>2.5 CBC determination</td>
<td>23</td>
</tr>
<tr>
<td>2.6 Blood test and procedure</td>
<td>24</td>
</tr>
<tr>
<td>2.6.1 Sampling collection</td>
<td>24</td>
</tr>
<tr>
<td>2.7 Method of diagnosis</td>
<td>24</td>
</tr>
<tr>
<td>2.7.1 CBC measurement</td>
<td>24</td>
</tr>
<tr>
<td>2.7.1.1 General principle of mindary</td>
<td>24</td>
</tr>
<tr>
<td>2.7.1.2 Measurement of WBCs, RBCs, Platelet</td>
<td>24</td>
</tr>
<tr>
<td>2.8 Quality control (QC)</td>
<td>25</td>
</tr>
<tr>
<td>2.9 Ethical consideration</td>
<td>25</td>
</tr>
<tr>
<td>2.10 Statistical analysis</td>
<td>25</td>
</tr>
<tr>
<td>Chapter Three</td>
<td></td>
</tr>
<tr>
<td>3.1 Results</td>
<td>26</td>
</tr>
<tr>
<td>Chapter Four</td>
<td></td>
</tr>
<tr>
<td>4.1 Discussion</td>
<td>32</td>
</tr>
<tr>
<td>4.2 Conclusions</td>
<td>35</td>
</tr>
<tr>
<td>4.3 Recommendations</td>
<td>36</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>48</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>49</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>50</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>51</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Distribution of age group among study population</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of complete blood count between pregnant and non-pregnant</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of age group on TWBCs,RBCs Hb,HCT,MCV,MCH,MCHC,neutrophil lymphocyte,platelet MPV and PDW during pregnancy</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Relation between CBC and supplement taken among pregnant women</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>Effect of history of abortion on cell blood count during pregnancy</td>
<td>30</td>
</tr>
<tr>
<td>3.6</td>
<td>Relation between CBC and visit to clinic</td>
<td>31</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFU-E</td>
<td>Burst Forming Unit - Erythroid</td>
</tr>
<tr>
<td>CBC</td>
<td>Complete Blood Count</td>
</tr>
<tr>
<td>CFU -E</td>
<td>Colony forming Unit Erythroid</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbone Dioxide</td>
</tr>
<tr>
<td>DMT 1</td>
<td>Divalent Metal Transport 1</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxynucleic Acid</td>
</tr>
<tr>
<td>EPO</td>
<td>Erythropoiten</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Di amine Teter Acetic Acid</td>
</tr>
<tr>
<td>G-G CSF</td>
<td>Granulocyte Colony- Stimulating Factor</td>
</tr>
<tr>
<td>G M-CSF</td>
<td>Granulocyte- Macropage Colony Stimulating Factor</td>
</tr>
<tr>
<td>GBS</td>
<td>Group B Streptococcus</td>
</tr>
<tr>
<td>Hb</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>HGF</td>
<td>Hematopoietic Growth Factor</td>
</tr>
<tr>
<td>IL</td>
<td>Interlukin</td>
</tr>
<tr>
<td>IDA</td>
<td>Iron Deficiency Anemia</td>
</tr>
<tr>
<td>ITP</td>
<td>Immune Thrombocytopenia Purpura</td>
</tr>
<tr>
<td>LDC</td>
<td>Leukocyte Differential Count</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactic Acid Dehy Drogenase</td>
</tr>
<tr>
<td>LMP</td>
<td>Last Menstrual Period</td>
</tr>
<tr>
<td>LNMP</td>
<td>Last Normal Menstrual Period</td>
</tr>
<tr>
<td>MCH</td>
<td>Mean Corpuscular Heamoglobin</td>
</tr>
<tr>
<td>MCHC</td>
<td>Mean Corpuscular Heamoglobin Concentration</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean Corpuscular Volume</td>
</tr>
</tbody>
</table>
M-CSF: Macrophage Colony-Stimulating Factor
MPV: Mean Platelet Volume
MXD: Mixed (Monocyte-Eosinophil-Basophil)
NTH: Neural Tube Defect
PCV: Packed Cell Volume
PLT: Platelet
PGI₂: Prostoglandines
PF1: Protrombin Fragment
RBCs: Red Blood Cells
RDW: Red Cell Distribution Width
RNA: Ribonucleic Acid
WBCs: White Blood Cells