
 
 

 

Sudan University of Science and Technology 

College of Graduate Studies 

 

 

 

 

  

Reachability and Controllability for Time - Invariant 

Control System with physical Applications 

ϣуϚϝтϿуУЮϜ ϤϝЧуϡГϧЮϜ Йв ϽуПϧв ыЮϜ бЫϳϧЮϜ ϣгЗжϜ евϿЮ ϣугЫϳϧЮϜм ЬнЊнЮϜ ϣуЯϠϝЦ 

 

 

A Thesis submitted in Fulfillment Requirements for the Degree 

of Ph.D in Mathematics 

 

 

By: 

Saleh Musa Abdallah  Hamdallah  

  

Supervisor: 

Dr.Abdelrhim Bashir Hamid  



II 
 

 Dedication 

To My parents. 

Who always support 

To My Brothers and My Sister 

Who always encourage me 

To my best friends 

Who always stand beside and help me 

To Classmates (My batch), 

Who donôt find similar to it 

 

 

 



III 
 

Acknowledgments 
 

First , I thank Allah  for guiding me and taking care of me all the time. My 

life is so blessed because of hi 

s majesty. I would like to thank My Family especially My Parents for 

encouraging and supporting my all the time. Also I would like to take this 

opportunity to thank all myTeachers and my research supervisor, 

DrAbdelrhim Bashir Hamid of for giving me the opportunity to work with 

har and guiding and helping me throughout this research and other courses. 

Very special thanks to my 

Co- Supervisor Dr. Mohmed khabir  for his continues Encourage and 

support. For guiding and supporting me by har experience and valuable 

advices to accomplish this research .I wish to express my considerable 

gratitude to best Friends (YaseenBbbakerIbraheem Mohammed), who 

Always help me, and for their supports. 



IV 
 

Abstract 

  The controller is an element which accepts the error in some form and 

decides the proper corrective action. The block diagrams is shorthand 

pictorial representation of control system of the cause-and-effect relationship 

between input and output of physical system or dynamic system is time 

invariant, is shifting the input of the time axis leads to an equivalent of 

shifting of the output along the time with no other changes. The aim of this 

research is study systems that the time invariant system and controllable. 

The controllability conditions are exactly the same in terms of the matrices 

for the discrete and continuous case. So we are justified in making multiple 

inputs, multiple outputs. Control system is a method for using any models of 

no solution for transfer functions and has extended to multiple inputs, 

multiple outputs gained selection stability and process. It has been shown 

that the properties of zeros mean error and single input; single output case 

can be also achieved. Bounded variance amplification that was seen for the 

multiple inputs, multiple outputs case. A design procedure is presented to 

achieved ideal multiple inputs, multiple outputs control case into more 

sensitive modeling error which are inherent in practical process. Our 

application is the first solution follows from a general result on the global 

stabilization of controllable linear system with delay in the input by bounded 

control laws with a distributed term. 
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ϣЊыϷЮϜ 

         ̭ϜϽϮшϜ ϼϽЧтм ϝв ЭЫІ сТ ϓГϷЮϜ ЭϡЧт ϽЋзК нк бЫϳϧгЮϜϟЂϝзгЮϜ сϳуϳЋϧЮϜ.  ϤϝГГϷгЮϜ

 аϝЗзЮϜ ϤϝϮϽϷвм Ϥы϶Ϲв еуϠ ϣϯуϧзЮϜм ϟϡЃЮϜ ϣЦыЛЮ бЫϳϧЮϜ аϝЗзЮ ϽЋϧϷв ЭуϫгϦ ск ϣуЦмϹзЋЮϜ

 пЮϖ рϸϕт сзвϿЮϜ ϼнϳгЮϜ Ϥы϶Ϲв ЭтнϳϦ нкм ̪ϥϠϝϫЮϜ евϿЮϜ нкм ̪сϚϝтϿуУЮϜ аϝЗзЮϜ мϜ сЫувϝзтϹЮϜ

ϒ ϤϜϽууПϦ рϒ дмϸ ϥЦнЮϜ ЬнА пЯК ϤϝϮϽϷгЮϜ ЬнϳϦ ϙТϝЫт ϝвоϽ϶.  нк ϩϳϡЮϜ Ϝϻк ев РϹлЮϜ

ϝлуЯК ϢϽГуЃЮϜм ϥϠϝϫЮϜ евϿЮϜ аϝЗзϠ ЭгЛϦ сϧЮϜ ϣгЗжъϜ ϣЂϜϼϸ.  ев ϝвϝгϦ ϝлЃУж ск бЫϳϧЮϜ АмϽІ

ϢϽгϧЃгЮϜм ϣЯЋУзгЮϜ ϣЮϝϳЯЮ ϤϝТнУЋгЮϜ ϩуϲ.  ϢϸϹЛϧв  ϣгЗжϜ бтϹЧϦ сТ ХЧϳϧЮϜ ев ϹϠъ ЩЮϻЮ

ϤϝϮϽϷгЮϜ ϢϸϹЛϧв ̪Ϥы϶ϹгЮϜ. аϜϹϷϧЂъ ϣЧтϽА нк бЫϳϧЮϜ аϝЗж  ЬϜмϹЮϝϠ ϝлЯϲ еЫгтъ ϬϾϝгж рϒ

.ϣϯЮϝЛгЮϜм рϼϝуϧ϶Ϝ ϼϜϽЧϧЂϜ ϥϡЃϧЪϜ ϢϸϹЛϧв ϤϝϮϽϷв ̪ϢϸϹЛϧв Ϥы϶Ϲв сЮϜ ϹϧгϦм ϣЯЦϝзЮϜ   еуϡϦ ϹЦм

 ϣЮϝϲ ХуЧϳϦ ϝЏтϜ еЫгтм ̪рϸϽУЮϜ ϬϽϷгЮϜ ̪рϸϽУЮϜ Э϶ϹгЮϜм ϓГϷЮϜ сзЛϦ ϼϝУЊцϜ ЉϚϝЋ϶ дϒ

Ϝ  ев ϹтϹЛЯЮ ϹкнІ рϻЮϜ ϹϧггЮϜ етϝϡϧЮϜ буϷЏϦ .ϢϹϲϜм ϬϽ϶ϢϸϹЛϧгЮϜ ϤϝϮϽϷгЮϜ ϣЮϝϲ ̪Ϥы϶ϹгЮ.  бϦ

 ϓГ϶ сТ ϢϸϹЛϧгЮϜ ϭϦϜнзЮϜ сТ бЫϳϧЮϜ ϣЮϝϲм ̪ϣуЮϝϫгЮϜ ϢϸϹЛϧгЮϜ Ϥы϶ϹгЮϜ ХуЧϳϧЮ бугЋϧЮϜ ̭ϜϽϮϖ бтϹЧϦ

ϣуЯгЛЮϜ ϣϮϝЛв сТ ϣзвϝЫЮϜ ϣуЂϝЃϲ ϽϫЪцϜ ϣϮϻгзЮϜ.   пЯК ϣвϝК ϣϯуϧж ев ЬмцϜ ЭϳЮϜ нк ϝзЧуϡГϦ дϖ

 ЙЎϝ϶  сГ϶ аϝЗзЮ ЭвϝЇЮϜ ϼϜϽЧϧЂъϜ ϣϡЦϜϽгЮϜ еужϜнЦ Ьы϶ ев Ϥы϶ϹгЮϜ сТ Ͻу϶ϓϦ Йв бЫϳϧЯЮ

ϢϽϧУЮϜ ЙтϾнϦ Йв ϢϸϹϳгЮϜ. 
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Introduction  

Control theory is an important branch of mathematics that has several 

applications of distinct area technology, Engineering, Economics, sociology, 

among others. Control theory has many applications in our lifeôs style 

Control theories commonly used today are classical control theory (also 

called conventional .Control theory), modern control theory, and robust 

control theory. This book, presents comprehensive treatments of the analysis 

and design of control systems based, on the classical control theory and 

modern control theory. Automatic control is essential in any field of 

engineering and science automatic. Control is an important and integral part 

of space-vehicle systems, robotic systems, modern, manufacturing systems, 

and any industrial operations involving control of temperature, pressure, 

humidity, flow, etc. It is desirable that most engineers and scientists are. 

Familiar with theory and practice of automatic control all necessary 

background materials are included. Mathematical, background materials 

related to Laplace transforms and vector-matrix analysis, are presented 

separately in appendixes. The first significant work in automatic control was 

James Wattôs centrifugal governor, for the speed control of a steam engine in 

the eighteenth century other, significant works in the early stages of 

development of control theory were due to Minorsky  Hazen, and Nyquist  

among many others .Minorsky worked on, automatic controllers for steering 

ships and showed how stability could be determined, from the differential 

equations describing the system, Nyquist, developed a relatively simple 

procedure for determining the stability of closed-loop, systems on the basis 

of open-loop response to steady-state sinusoidal inputs .Hazen, who 

introduced the term servomechanisms for position control systems, 

discussed the design of relay servomechanisms capable of closely following 

a changing, input. Modern control theory is based on time-domain analysis 

of differential equation, systems. Modern control theory made the design of 

control systems simpler because. The theory is based on a model of an actual 

control system. However, the systemôs, stability is sensitive to the error 

between the actual system and its model. This means that when the designed 

controller based on a model is applied to the actual. System, the system may 

not be stable. To avoid this situation, we design the control. System by first 
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setting up the range of possible errors and then designing the controller.in 

such a way that, if the error of the system stays within the assumed, range, 

the designed control system will stay stable. The design method based on 

this. Principle is called robust control theory. This theory incorporates both 

the frequency response, approach and the time-domain approach. The theory 

is mathematically very, complex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 
 

The Contents 

Inde

x 

Title  Page No. 

 Dedication I 

 Acknowledgements II  

 Abstract III  

 ϣЂϜϼϹЮϜ ЉϷЯв IV 

 Introduction        V 

Chapter one: Introduction 

1.0 Background 1 

1.1 Control system modes or representations 2 

1.1.1 Block diagrams 3 

1.1.2 Error 4 

1.1.3 Variable Range 5 

.1.1.4 Controller Output Range 5 

1.1.5 Control Lag 6 

1.2 classifications of the controllers 7 

1.2.1  Discontinuous controller Mode 7 

1.3.1 Continuous Controller Mode 8 

1.3.2 Offset  9 

1.3.3 Behavior of PD Controller 15 

1.3.4  PID Type of Controller 17 

1.5.5 Steady State Error 19 

1.8  Signal flow graphs 35 



IX 
 

1.8.1 Fundamental of signal flow 35 

1.8.2   Construction of signal flow graph 39 

1.8.3 Block diagram Reduction using flow graphs and the General 

input-output gain formula 

       40 

Chapter Two: Time Invariant system 

2.0 Introduction 43 

3.1 Solving the time invariant state Equation 47 

2.1.1 Solution of Homogeneous state Equations 47 

2.2 State Transition Matrix 51 

2.2.1 Properties of State Transition Matrix 53 

2.3 Solution of non-homogeneous state equations 55 

2.5 State model of linear system 58 

2.6 State model of single input-single output system 

 

62 

Chapter Three: Controllable Pairs of matrices 

3.0 Introduction 64 

3.1 Complete State Controllability of Continuous-Time Systems 64 

3.1.1 Alternative Form of the Condition for Complete State Control 66 

3.1.2 Condition for Complete State Controllability in the Plane 68 

3.1.3  Vander Monde Matrix 73 

3.1.4 multiple inputs multiple output 77 

3.1.5  Gilbertôs Test for controllability 78 



X 
 

3.1.6 Output controllability 81 

4.1.8 Uncontrollable System. 82 

3.2 OBSERVABILITY 82 

3.2.1 Complete Observability of Continuous-Time Systems 83 

3.2.2 Conditions for Complete Observability in the Plane                       85 

3.2.3 Alternative Form of the Condition for Complete Observability 85 

3.2.4 Gilbert test observability 86 

3.3 Principle of Duality 89 

3.4  Detectability 91 

Chapter Four: Bounded controls 

4.0 Introduction 92 

4.1 Stability 92 

4.1.1 Characteristic Root locations for continuous systems 93 

4.1.2 Routh stability criterion  94 

4.1.3  Hurwitz stability criterion  98 

4.1.4  Continued Fraction stability criterion   102 

4.1.5 Stability criterions for Discrete Time systems 105 

4.2 Stabilization by bounded delayed control  107 

4.3 Stability criteria based on integral quadratic constraints 109 

4.4 Bounded by a neighborhood 111 

4.5 Lower Bounded control lyapunov Functions 116 



XI 
 

4.5.1 Lower bounded lyapunov pairs  118 

 Chapter five: Reachability and controllability under 

sampling 

 

5.0 Introduction 120 

5.1 Reachability of discrete time systems 120 

5.2  Controllability of discrete time system   124 

5.3  Construction of input signals  125 

5.4 Reachability and Controllability of Continuous Time System 127 

5.5 Canonical form for reachable systems 131 

 Chapter six: Applications andConclusions  

6.1 Model of Inverted pendulum 137 

6.3 ὨὥίὬὴέὸ ίώίὸὩά άέόὲὸὩὨ έὲ ὥ άὥίίὰὩίί ὧὥὶὸ 139 

6.4 Conclusions and Result 142 

References 143-147 

 

 

 

 

 

 

 

 

 



1 
 

Chapter one 

Introduction 

1. Background 

The concept of a control system is to sense deviation of the control of the 

output from the desired value and correct it till the desired output is 

achieved.  The deviation of the actual output from its desired value is called. 

An error the measurement of error is possible because of feedback. The 

feedback allows us to compare the actual output with its desired value to 

generate the error. The error is denoted by as e (t) the desired value of output 

is also called reference input or a set point the error obtained is required to 

be analyzed to take the proper corrective action. The controller is an element 

which accepts the error in some from and decides the proper corrective 

action. The output of the controller is then applied to the process or final 

controller element this brings the output back to its desired set point value. 

The controller is the beart of a control system. The accuracy of the entire 

system depends on how sensitive is the controller has its own logic to handle 

the error. Now it is manipulating such an error the controllers such as 

microprocessors microcontrollers, computers are used such controllers 

execute certain algorithm to calculate the manipulating sign  
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Definition of input  1.1 

The input is the stimulus excitation or command Applied to a control system 

typically from an external energy source. 

Definition of output  1.2 

The output is the actual response obtained from a control system .It may or 

may not be equal to the specified response implied by the .Inputs and output 

can have many different forms inputs for examples may be physical 

variables or more abstract quantities such as reference, set point or desired 

values for the output of the control system. 

Definition of open loop control 1.3 

An open loop control system is one in which the control action is 

independent of the output. 

Definition of closed loop control 1.4 

A closed loop control system is one in which the control action is somehow 

dependent on the output closed loop control systems are more commonly 

called feedback control system. 

Definition of feedback control 1.5 

Is that property of a closed loop system which permits the output or some 

other controlled variable to be compared which the input to the system. 

 

 Characteristics of feedback 1.6 

The presence of feedback typically imparts the following to a system. 
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A- Increased accuracy. 

B- Tendency toward oscillation or in stability 

C- Reduced sensitive of the ratio of output to input to variation in system 

parameters and other Characteristics. 

E- Reduced effects of external disturbances or noise 

H- Increased band width  

The bandwidth of a system is a frequency response measure of how well the 

system responds to (or filters) variation or frequencies the input signal. 

    1.1 Control system models or representations 

To solve a control systems problem, we must put the specification or 

description of the system configuration and its components into a form 

amenable to analysis or design. Three basic representations (models) of 

components and systems are used extensively in the study of control 

systems. 

1- Mathematical models in the form of differential equations difference 

equations and or other mathematical relation for example Laplace and 

 Z-transforms. 

2- Block diagrams. 

3- Signal flow graphs. 
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        1.1.1 Block diagrams: Fundamentals 

A block diagram is a shorthand pictorial representation of the cause and 

effect relationship between the input and output of a physical system .The 

simplest form of the block diagram is single block with one input and one 

output  

 

  

 

 

 

The operation of addition and subtraction have a special representation the 

block becomes a small circle called a summing point with the appropriate 

plus or minus sign  associated with the arrows entering the circle the output 

is the algebraic sum of the inputs any number enter a summing point for 

examples  

 

   

 

 

 

 

                                                                    Block 

                            Input                                                    output  

X      + X + y 

+ 

y 

X      + X - Y 

- 

y 

X      + x+y+z 

+ 

y 

Z 

+ 

Figure (1.1) block diagram single input and single output 

Figure (1.3) 

Difference points 

 

Figure (1.4) 

Summing points 

 

Figure (1.2) 

addition 
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1.1.2 Error  

The error detectors compare the feedback signal ὦὸwith the reference input 

ὶὸ to generate an error. 

ḈὩὸ ὦὸ

ὶὸ                                                                                             ρȢρ 

This gives absolute indication of an error the range of the measured variable 

ὦὸ 

Thus span ὦ ὦ 

The Hence error can be expressed as  

X 

 

 

Feedback signal 

Error detector 

r(t) e(t) 

__ 

Process to be 

controlled 
Controller 

Feedback element 

Controller output 
(p) Controller output 

c(t) 

Sensing 

Figure (1.5) some authors put a cross in the circle  

 

 

Figure (1.6) Basic control systems 
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Ὡ
ὶ ὦ

ὦ ὦ

ρππ                                                                                     ρȢς 

Where   Ὡḳ error as % of span  

Example1.1 

The range of measured variable for ascertains control system is 2 mv to 12 

mv and a set point 7 mv. Find the error as percent of span when the 

measured variable is 6.5 mv. 

ὦ ρς άὺ      ȟὦ ςάὺ    ȟὦ φȢυ άὺ   ὶ χ άὺ 

Ὡ ρππ=
Ȣ
ρππυ 

1.1.3 Variable Range 

    In practical systems, the controlled variable has a range of values within. 

Which the control is required to be maintained. This range specified as the 

maximum and minimum values allowed for the controlled variable. It can be 

specified as some nominal values and plus minus tolerance allowed about 

this value such range is important for the design of controllers 

 

1.1.4 Controller Output Range 

  Similar to the controller variable a range is associated with a controlled 

output variable and minimum values. But often the controller output is 

expressed as a percentage where minimum controller output is 0% and 

maximum controller out is 100% but 0% controller output does not mean 

zero output. For example it is necessary of the system that a steam flow 
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corresponding to  opening of the values should be minimum Thus 0% 

controller output in such case corresponds to the opening of the value. 

The controller output as a percent of full scale when the output changes 

within the specified range is expressed as  

ὴ ρππ                                                                                       ρȢσ  

Where  

ὴḳ Controller output as a percent of full scale  

Ὗḳ Value of the output  

Ὗ ḳ Maximum value of controlling variable  

Ὗ ḳ Minimum value of controlling variable 

1.1.5 Control Lag 

The control system can have a large associate with it, the control lag is the 

time required by the process and controller loop to make the necessary 

changes to obtain the output at its set point the control lag must be compared 

with the process lag while designing the controllers for example. In a 

process value is required to be open or closed for corresponding the output 

variable physically the of opening. Or closing of the value is very slow and 

is the part of the process lag. In such a case there is no point in designing a 

fast controller than the process lag. 
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1.1.6 Dead Zone 

Many a times a dead zone is associated with a process control loop the time 

corresponding to dead zone is called dead time. The elapsed between the 

instant when error occurs and instant when first corrective action occurs is 

called dead time .Nothing happens the error occurs this part is also called 

dead hand the effect of such dead time must be considered while the design 

of the controllers. 

1.2 classifications of the controllers 

 The classification of the controllers is based on the response of the 

controllers and mode of response of the controller 

1.2.1 Discontinuous controller Mode 

The discontinuous mode controllers are further classified as ON, OFF 

controllers and multiposition controllers. For example in a simple 

temperature control of a room the heater is to be controlled it should be 

switched on or off by the controller when temperature crosses its set point. 

Such an operation and the mode of operation is called discontinuous mode 

of controller but in some process control systems simple on/off decision is 

not sufficient for example controlling the steam slow by opening or closing 

the value in such case a smooth opening or closing of value is necessary. 

The controller in such a case is said to be operating in a continuous mode 

thus the controllers are basically classified discontinuous controllers 

    1.3.1 Continuous Controller Mode 

 The continuous mode controllers are further classified as derivative 

controllers. Some continuous mode controllers can be combined to obtain 
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composite controller mode. For example of such composite controllers are 

PI, PD and PID controllers. The most of the controllers are placed in the 

forward path of control system but in some cases input to the controller is 

controlled though a feedback path. The example of such a controller is rate 

feedback controller but in the continuous controller output smoothly 

proportional of the error or proportional to some form of the error. 

Depending upon which form of the error is used as the input to the controller 

to product the continuous controller output these controllers are classified as. 

Proportional control mode, Integral control mode and Derivative control 

mode  

1.3.1.1 Proportional Control Mode 

In this control the output of control is simple proportional to the error e (t) 

the relation between the error e (t) and controller output P is determined by 

constant called proportional gain constant denoted by as ὑ , The output of 

the controller is a linear function of the error e (t) .Thus each value of the 

error has error has a unique value of the controller output. The range of the 

error which covers 0 % to 100% controller output is called proportional 

hand. Now though there exists linear relation between controller output and 

the error for a zero error the controller output should not be zero otherwise 

the process will come to halt. Hence there exists some controller output ὖ  

for the zero error. Hence mathematically the proportional control mode is 

expressed ὥί  

ὖὸ ὯὩὸ ὖ                                                                                             ρȢτ 

Where      Ὧ  = Proportional gain constant  

                  ὴ = controller output with zero error 



10 
 

 

 

The error may be positive or negative the proportional hand is 

mathematically defined by     

ὖ
▓▬
                                                                                                             Ȣ 

    1.3.1.2 Characteristic of proportional control mode 

The various characteristics of the proportional mode are 

1-When the error of zero, the controller output is constant equal to ὖ  

2-If the error occurs, then for every 1Ϸ  of the error the correction of the ὑ  

Ϸ   is achieved if the error is positive ὑ   correction gets   added to  ὖ and 

if error is negative ὑ  Ϸ correction gets subtracted from  ὖ 

Figure (1.7) the error may be positive or negative the proportional hand 
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3-The band of error exists for which the output of the controller is the 

between 0 Ϸ  to 100 Ϸ without saturation 

4-The gain ὖ and error band ὖare inversely proportional to each other   

 1.3.2 Offset  

The major disadvantage of the proportional control mode is that it produces 

an offset error in the output When the load changes the output deviates from 

the set point such a derivation is called offset error or steady state error such 

an offset error is the offset error depends upon the relation rate of the 

controller slow reaction rate produces small offset error while fast reaction 

rate produces large offset error. The dead time or Transfer lag present in the 

system further worsens the result it produces not only the large offset at the 

output but the time required to achieve steady state is also large. The offset 

error can be minimized by the large proportional gain ὑ  which reduce the 

proportional hand. If  Ὧ is made very large the proportional band comes so 

small that .It acts as an on, off controller producing oscillations about the set 

point instead of an offset error. The proportional controller can be suitable 

where  

A- Manual reset of the operating point is possible  

B- Load changes are small  

C- The dead time exists in the system is small  
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        1.3.1.3 Integral Control Mode  

In the proportional control mode, error reduces but cannot go to zero. It 

finally produces an offset an offset error it cannot adapt with the changing 

load conditions. To avoid this control mode is oftenly used in the control 

systems which is based on the history of the errors. This mode is called 

integral mode or reset action controller the value of the controller output p(t) 

is changed at a rate which is proportional to the actuating error signal e(t) 

mathematically it is expressed as  

ὯὩὸ                                                                                                        ρȢφ  

Where  Ὧ ḳ constant relating error and rate the constant Ὧ also integral 

constant integrating the above equation actual controller output at any time t 

can be obtained as  

ὖὸ Ὧ ὩὸὨὸ ὴπ                                                                              ρȢχ 

P (0) ḳ controller output when integral action starts at t=0 

Time T 

Offset error 

Set point  

Out put  

0 

Figure (1.8) offset error in proportional mode 



13 
 

 

Figure 1.9 Integral mode 

The scale factor or constant Ὧ expresses the scalling between error and the 

controller output thus a large value of Ὧ mean that a small error produces a 

large rate of change of p(t) and viceversa If there is positive error this is 

shown in the figure 1.8  controller output begins to ramp up. The input error 

step it can be seen that when error is positive the output p(t) ramp  up 

 

 

The step response of integral control mode is shown in figure 1.10 

The integration time constant is the time taken for the out to the change by 

an Amount equal to the input error step this is shown in figure 1.11 it can be 

seen that when error is positive the output ramps up, For zero error there is 

Figure (1.10) the step response of integral control mode 

 



14 
 

no change in the output and when error is negative the output p (t) ramps 

down 

 

                   

                1.3.1.4 Characteristics the integral mode 

 The integrating controller is relatively slow controller its output at a rate 

which is dependent on the integrating time constant until the error signal is 

can celled compared to the proportional control. The integral control 

requires time to build an appreciable output. However it continuous to act till 

the error signal disappears this corrects the problem of the offset error in the 

proportional controller. Thus for an integral mode 

A- If error is zero, the output remains at a fixed value to what is was when 

the error became zero. 

Figure (1.11) step response 
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B- If the error is not zero, then the output begins to increase at a rate Ὧ % 

per second for every ρϷ for error in some case the inverse of Ὧ called 

integral time is specified denoted as Ὕ  

Ὕ
ρ

Ὧ
ὭὲὸὩὫὶὥὰ ὸὭάὩ                                                                                 ρȢψ  

  It is expressed in minutes instead of second. The comparison of 

proportional and integral mode behavior at the time of occurrence of an error 

signal is tabulated below. 

 

Controller Initial behavior   Steady state behavior  

P Acts Immediately 

Action according to 

Ὧ 

Offset error always 

present larger the 

Ὧ smaller the error 

1 Acts slowly it is  

The time integral of 

the error signal  

Error signal always 

becomes zero  

 

It can be seen that proportional mode is more favorable at the start while the 

integral is better for steady state response in pure integral mode, error can 

oscillate about zero and can be cyclic ,Hence is practice integral mode is 

never used alone but combined with the proportional mode to enjoy the 

advantages of both the modes. 
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  1.3.1.5 Derivative control Mode  

In practice the error is function of time and at a particular instant it can be 

zero but it may not remain zero for ever after that instant. Hence some action 

is required corresponding to the rate at which the error is changing. Such  

a controller is called derivative controller. In this mode the output of the 

controller depends on the time rate of change of the actual errors. Hence it is 

also called rate action mode anticipatory action mode. The mathematical 

equation for the mode is                   

ὴὸ Ὧ                                                                                                    ρȢω   

Where Ὧ ḳ Derivative gain constant indicates by now much % the 

controller output must change for every % per sec of the change of the error. 

Generally Ὧ is expressed in minutes. The important feature of this type of 

control mode signal there is a unique value of the controller output. The 

advantage of the derivative control action is that it responds to the rate of 

change of error and produce of significant correction before the magnitude 

of the actuating error becomes too large. Derivative control thus anticipates 

the actuating error initiates an early corrective action and tends to increase 

stability of the system improving the transient response  

 

     1.3.1.6 Characteristics of Derivative Control Mode 

The figure 1.12 shows how derivative mode change the controller output for 

the various rates of the change of the error  
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The derivative mode changes the controller output for various rates of 

change of the error. The controller output is 50% for the zero error when 

error starts increasing the controller output suddenly jumps to the higher 

value it further jumps to higher value for higher rate of increase of error then 

error becomes constant the output returns to 50% when error is decreasing 

Having negative slope controller output decrease suddenly to a lower value. 

The Various Characteristics of the derivative mode are  

A- For a given rate of change of error signal there is a unique value of the 

controller output. 

B- When the error is zero the controller output is zero. 

C- When the error is constant - i-e rate of change of error is zero the 

controller output is zero. 

D- When error is changing the controller output changes Ὧ %  

Figure (1.12) the derivative mode changes the controller 

output for various rates of change of the error. 
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For even 1% per second rate change of error 

    Note: 

 Hence it is never used along its gain should be small because faster rate of 

change of error can cause very large sudden change of controller output 

this may lead to the instability of the system. 

      1.3.1.7 Composite Control Modes 

 As mentionable earlier due to offset error proportional mode is not used 

alone similarly integral and derivative modes are also not used individually 

in practice. Thus to take the advantages of various modes together the 

composite control modes are used the various composite controller modes 

are. 

i. Proportional integral mode (PI). 

ii.  Proportional Derivative mode (PD). 

iii. Proportional + integral + Derivative mode (PID) 

Let us see the characteristics of these three modes  

Proportional Integral Mode (PI Control Mode) 

  This is a composite control mode obtained by combining the Proportional 

mode and the integral mode. The mathematical expression for such a 

composite control is  

ὖὸ  Ὧ Ὡὸ ὯὯ ὩὸὨὸὖπ                                               ρȢρπ  

Where ὖπ= initial value of the output at t=0.The important advantage of 

this control is that one to one correspondence of proportional mode is 
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available while the offset gets eliminated due to integral mode the integral 

part of such a composite control provides a reset of the zero error output 

after load change occurs.  

 

 

The composite PI mode completely removes the offset problems of 

proportional mode such a mode can be used in the system with the frequent 

or large load changes. But the process must have relatively slow changes in 

the load to prevent the oscillations. 

Proportional + Derivative Mode (PD control mode) 

  The series combination of proportional and derivative control mode gives 

proportional plus derivative control mode. The mathematical expression 

for the PD composite control is  

Figure (1.13) Behavior of PI controllers 
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ὖὸ ὯὩὸ  ὯὯ
Ὠ Ὡὸ

Ὠὸ
ὖπ                                                      ρȢρρ 

The behavior of such a PD control to a ramp type of the input in the figure 

 

 

 

Rise in signal due to proportional action between time ὸ and ὸ 

Immediate rise due derivative action 

1.3.1.8 Behavior of PD Controller 

  The ramp function of error occurs at ὸ ὸ the derivative mode cause a 

step ὠ at ὸ and proportional mode cause arise of  ὠ at ὸ.This is for 

direct action PD control Proportional  derivative Type of Controller. A 

controller in the forward path which changes the controller output 

corresponding to proportional plus derivative of error signal is PD 

controller  

I.e. output of controller = ὯὩὸ  Ὕ
 
                                             ρȢρς 

Figure (1.14) Behavior of PD controllers 
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 Taking Laplace = 

ὯὉί ί ὝὉί ὉίὯ ί Ὕ                            ρȢρσ the transfer 

function of such controller is Ὧ ί Ὕ  this can be realized as shown in the 

Figure (15) 

 

 

 

 

 

Assuming Ὧ ρ 

We can write          

Ὃί
zǬ
                                                ρȢρτ 

And     

ρ ίὝὨύὲ
ς

ςzύὲ ύὲ
ς ὝὨ ύὲ

ς                                                                         ρȢρυ 

Comparing denominator with standard form ύ  is same as in the previous p 

type controller  

And  

ςzǬύ ςzύ ύ  Ὕ ὥὲὨ zǬ

z                                                  ρȢρφ  

  

Plant 

K 

 

ὛὝ 

R(s) C(s) 

_ 

+ 

 

Figure (1.15) controller 

output of PD controller 
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Because of this controller damping ratio increases by factor    
ύὲὝὨ
ς

 .I.e. 

system becomes type in nature. Now as order increase by one system 

relatively becomes less stable as Ὧ  must be designed in such a way system 

will remain in stable condition second order system is always stable. Hence 

transient response gets affected badly if controller is not designed properly. 

While    

Ὧ ÌÉÍOὋίὌί Њ    ̪ Ὡ

π                                                       ρȢρχ  

Ὧ ÌÉÍOί ὋίὌί Њ    ̪ Ὡ π  

Hence as type is increased by one error becomes zero for ramp type of 

inputs steady state of system gets improved and system becomes more 

accurate in nature. Hence PI Controller has following Effect 

i. it increase order of the system  

ii. it increase type of the system  

iii. Design of  Ὧ must be proper to maintain stability of system so It makes 

system relatively state error reduce tremendously for same type of inputs. In 

general this controller improves steady state part affecting the transient part 

1.3.1.9 PID Type of Controller 

  As PD improves transient and PI improves steady combination of two may 

be used to improve overall time response of the system this can be realized 

as shown in the Figure (16) 
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The design of such controller is complicated in practice, Rate Feedback 

Controller (output Derivative Controller). This is achieved by feeding back 

the derivative of output signal internally using a tachogenerator and 

comparing with the signal proportional to error as shown this is called minor 

loop feedback compensation output of controller 

ὯὉὸ Ὧ
Ὠ Ὡὸ

Ὠὸ
                                                                                            ρȢρψ 

   Take Laplace  

Ḉ Output controller ὯὉί ίὯὧί                                                          ρȢρω 

This can be realized as shown in the lower Figure (17)  

 

 

 

 

 

 

Plant 

And 

Controller 

Ὧ

ί
 

ὛὝ 
R(s) C(s) + 

+ 

Figure (1.16) the design of such controller is complicated in practice 
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Assuming  Ὧ ρ 

Let us study its effect on same system which is considered earlier  

With   

Ὃί
◌▪

▼▼ z◌▪
                                                                                              ρȢςπ 

Time constant (T) is the time required by the system output to reach 63.2% 

of its final value during the first attempt. The equation for the actual 

response  

c (t) is  

ὅὸ ρ

ừ
Ừ

ứ
Ὡz

ρ z

ÓÉÎύὸ —

ữ
Ữ

ử

  ὥὲὨ     ύ

ύ ρ z          ρȢςρ 

= Damped Frequency of Oscillations and   

— ὸὥὲ
z

z
               ρȢςς  

  

 

K 

 

R(s) C(s) 

_ 

Ὓὑ 

_ 

E(s) KE(s) 

Sὑὅ 

Figure (1.17) controller output PID controller 
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1.3.6 Steady State Error 

Consider a simple closed loop system using negative feedback as shown in 

the Figure (18) 

 

 

 

 

 

Where  

E(s) = Error signal and  

B(s) = Feedback signal  

Ὁί Ὑί ὄί ὄόὸ ὄί ὅίὌίὥὲὨ  ὅί

ὉίὋί  ρȢςσ            

Ὁί Ὑί ὅίȢὌί                                                                          ρȢςτ   

Ὁί Ὑί ὉίὋίὌί                                                                    ρȢςυ 

Ὑί Ὁί ὉίὋίȢὌί                                                                  ρȢςφ  

ḈὉί
Ὑί

ρ ὋίȢὌί
                                                                               ρȢςχ 

 For non-unity Feedback  

Ὁί
Ὑί

ρ Ὃί
                                                                                              ρȢςψ 

For unity Feedback 

G(s) 

 

R(s) C(s) 
+ 

H(s) 

_ 

E(s) 

B(S) 

Figure (1.18) Steady State Error 
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This E(s) is error in Laplace domain and is expression inósô .We want to 

calculate the error value in time domain. Corresponding error will be e(t) 

now steady state of the system is that state which remains as ὸO Њ 

Steady state error 

Ὡ ÌÉÍOὩὸ                                                                                          ρȢςω  

Now we can relate this in Laplace domain by using final value theorem 

which states that  

ÌÉÍOὊὸ ÌÉÍOίὊί,ВὪὸ                                                    ρȢσπ    

     

Therefore  

Ὡ ÌÉÍ
ᴼ
Ὡὸ ÌÉÍ

ᴼ
ίὉί                                                                            ρȢσρ 

Where E(s) is    LὩὸ 

Ὡ ÌÉÍ
ᴼ

ίὙί

ρ ὋίὌί
                                                                                  ρȢσς 

For negative feedback system use positive sign in dominator while use 

negative sign in denominator if system uses positive feedback  From the 

above expression it can be concluded that stead state error depends on, i. 

R(s) i.e.  Reference input its type and magnitude  

ii. G(s).H(s) i.e. open loop transfer function  

iii. Dominant non linarites present if any 
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Example 1.2 

The figure (1.19) shown PD controller used for the system .Determine the 

value of Ὕ so that system will be critically damped calculate its, settling 

time 

 

 

 

 

                               

 

 Ὃί    
 

Ȣ
            H(s) =1 

Ḉ    

 

Ȣ

 
 

Ȣ

   =    
 

Ȣ
 

Comparing denominator with standard form  

ύ τȟ    ύ ς   And  

ςz ύ ρȢφ τὝ 

Ḉ z  
ρȢφ τὝ

τ
 

Now system required is critically damped    i.e.   z=1 

Ḉ ρ  
ρȢφ τὝ

τ
 Ýτ ρȟφ τὝ 

τ

ὛὛ ρȢφ
 

ὛὝ 

R(s) C(s) 

_

_ 
+ 

1 

Figure (1.19) PD controller 
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ḈτὝ τ ρȢφ ςȢτ           Ḉ Ὕ
ςȢτ

τ
πȢφ 

And settling time    
z 

   Ḉ Ὕ ς ίὩὧ 

Example 1.3  

APID controller has Ὧ ςȢπ  ȟὯ ςȟς ίὩὧ 

Ὧ ς ίὩὧ     And    ὖ π τπϷ 

Draw the plot of controller output for error  

 

 

 

 

 

 

Ὧ ςȟ     Ὧ ςȢς  ίὩὧ         Ὧ ςίὩὧ    

ὖ π τπϷ 

For 0-2      Ὁ άὸ   where ά  slope 

Ὁ ὸ   For 0-2 sec    ρ   for 2-4  Ὁ ά ὸ ὧ    

Two point on the line are (2,2) ὧ (4,-3)  

ά
ώ ώ

ὼ ὼ

σ ς

τ ς
ςȢυ 

 

 

 

 

 

 

 

   4- 
 

   2- 

  0- 

 -2- 

 

  -4- 

 

    l               l               l             l            l             l                 l 

    1              2              3            4          5           6 

t       sec  

error Ep% 

Figure (1.20) PID controller 
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ὃὸςȟς ςȢυ ς ὧ ὧ χ 

ḈὉ ςȢυ ὸ χ     For   2-4 sec 

For 4-6 sec  

Two points on the line are (4,-3)  

Ḉά ρȢυ  

ḈὉ ρȢυ ὸ ὧ 

At (4,-3) =-3 =1.6  Ĭ4+ ὧ 

Ḉὧ ω 

ḈὉ ρȢυ ὸ ω   For 4-6 sec 

The mode Equation for PID controller  

ὖ ὯὉ ὑὑ᷿Ὁ Ὠὸὑὑ  + ὖ π 

Ḉὖ ς Ὁ τȢτ᷿ Ὁ Ὠὸτ τπ  

For 0-2  

ὖ ς ὸ τȢτ ᷿ ὸ Ὠὸτ ὸ τπ = 2 t + 2.2 ὸ τ τπ 

This plotted for 0-2 sec  

At the end of 2 sec  

The integral term has accumulated to  

ὖ ς τȢτ ᷿ ὸ Ὠ ὸ τπ τȢτ τπ τψȢψϷ  

For 2-4 sec  
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ὖ ς ςȢυὸ χ τȢτ᷿ ςȢυὸ χὨὸτ ςȢυὸ χ τψȢψ  

υ ὸ ρττȢτ ρȢςυὸ τ χὸ ς ρπτψȢψ

υ Ȣυ ὸ ςυȢψ ὸ ρσȢς 

This is plotted for 2-4 sec  

At the end of 2 sec the integral term has accumulated to  

ὖ τ ττρȢςυὸ τ χ χὸ τ ȿ τψȢψ ττȢτϷ  

For 4-6 sec  

ὖ ςρȢυ ὸ ω τȢτ ᷿ ρȢυ ὸ ὥὨ ὸ τ 
 
ρȢυ ὸ ὥ ττȢτ  = 3 t -

18 +4.4 [0.75 ὸ-a t τ ρȢυ ττȢτ σ ὸ ρψττ πȢχυὸ ρφ

ωὸ τ φ ττȢτ σȢσ ὸ σφȢφ ὸ ρσψ 

This is plotted for 4-6 sec  

After 6 sec error is zero hence the out will simply be the accumulated 

integral response providing a constant out put  

Ḉ ὖ φ ττπχυὸ ρφ ὥὸ τȿ + 44.4 =31.2% 

 

 

 

 

 

 

 



31 
 

The complete graph of controller output is shown in the figure (21) 

 

 

Example 1.4 

Temperature control system has the block diagram given in figure  

The input signal is a voltage and represents the desired temperatures q  is a 

unit step the integral term and  

(i) D(s) =1      (ii) D(s)= 1+
Ȣ
  

(iii) D(s) = 1+0.3 s 

What is effect of the integral term in the PI controller and derivative term in 

PD controller on the steady state error  

Figure (1.21) graphical solution of PID controller 
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For given system  

Ὃί
ςππὈί

ί ρ ί ς
 

Ὄί πȢπς  

Ὑί
Ȣ

  

Ὡ ÌÉÍOί Ὂί ÌÉÍO
 

  

D(s) =1  

ḈὩ ÌÉÍO
Ȣ

Ȣ

Ȣ
Ȣ φȢφφρπ   

(ii) D(s) = 1+ 
Ȣ

 

ςππ

ί ί ς
 

 

0.02 

Controller 

πȢπς 

 

 
+

_ 

 

D(s) 

plant 

U 
Ὡ 

r 
Figure (1.22) PD controller on 

the steady state error 
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Ḉ Ὡ ÌÉÍO
Ȣ

Ȣ
Ȣ

φȢφφρπ  

Due to PI controller the steady state error reduces drastically while PD 

controller has no effect on the stead state error 

Example 1.5 

An integral controller is used for temperature control within arrange 40-60ὧ 

the set point is 48 ὧȟ the controller output is initially 12% .When error is 

zero the integral constant Ὧ πȢςϷ controller output per second  

percentage error if the temperature increase 54ὧ,Calculate the controller 

output After 2 sec for a constant error  

For integral controller  

ὖὸ Ὧ ὉὨὸὖπ 

Controller output initially denoted by ὖπ ρςϷ the integral constant 

denoted by Ὧ πȢςωϷ sec % error  

Ὁ  Error = constant = ρππ 

Now r= set point =48ὧ 

b= Actual temperature = 54ὧ 

ὦ φπὧ  ̪ὦ τπὧ 

Ὁ  
τψυτ

φπτπ
ρππ σπ 

Ὁ᷿
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P (t) = (-0.2) (-30)(t)+12 

At ὸ ς πȢς σπς ρς ςτϷ 

This controller output after 2 sec 

Example 1.5  

  A proportional controller is employed for the cont. of temperature in the 

range 50ὧ  -130ὧ with a set point of 73.5 ὧ the zero error controller 

output is 60% what will be the offset error resulting from a change in the 

controller output to 55% the proportional gain is 2% find the offset in ὧ  

For proportional control mode  

ὖ ὯὉ ὖπ 

P (0) = controller output with no error =50%  

Ὧ Proportional gain = 2% per second  

Ὁ
ὖ ὖ

Ὧ

υυυπ

ς
ςȢυ 

For the design of a control system  itôs important to understand how the 

system of interest behave and how it respond to deferent control design   the 

Laplace transform as discussed in the Laplace transform module is a 

valuable tool that can be used to solve differential equations and obtain the 

dynamic   

A Transfer function G(s) is defined as the following relation between the 

output of the system Y(s) and the input to the system U(s)  

     'Ó   
  ὣί

Ὗί
                                                                                           ρȢσσ 
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The roots of polynomial U(s) poles of the system and roots of Y(S) is called 

the zeros of the system If the input of the system is a unit impulse (U(S) =1) 

1.4 Blok Diagrams and Transfer functions 

The combination of Blok Diagrams and Transfer functions is a powerful 

way to represent the control systems. Transfer function relating different 

signals in the system. Derivation of transfer functions from state model. 

Consider a standard state model derived for linear time invariant system as 

ὢὸ ὃὢὸ ὄὟὸ                                                                                  ρȢστ  

ὣὸ ὅὢὸ ὈὟὸ                                                                                    ρȢσυ 

        And taking the Laplace transfer of both sides 

Ὓὢί ὢπ ὃὢί ὄὟί ὥὲὨ ὣί ὅὢί ὈὟί         ρȢσφ  

Note that as the system is time invariant the coefficient of matrices A, B, C 

and D are constant while the definition of the transfer function is based on 

the assumption of zero initial condition  

ὢπ π 

ḈὛὢί ὃὢί ὄὟί ὥὲὨ Ὓὢί ὃὢί ὄὟί                    ρȢσχ 

  

Now S is an operator while A is matrix of order (nn), hence to match the 

orders of two terms on lift hand side multiply ñSò by identity matrix I of the 

same order  

 

ḈὛὍὢίὃὢί ὄὟὛ ὥὲὨ ὛὍὃὢί ὄὟί                           ρȢσψ 



36 
 

Multiplying both sides by ὛὍὃ 

 

ὛὍὃ ὛὍὃὢί  ὛὍὃ ὄὟί                                           ρȢσω 

Ḉ  ὢί ὛὍὃ ὄὟί                                                                         ρȢτπ  

Substituting in the equation (1.36) we get  

 ὣί ὅὛὍὃ ὄὟί ὈὟί ὥὲὨ ὣί

 ὅ ὛὍὃ ὄ ὈὟί                                           ρȢτρ   

Ḉ 4Ó ὅὛὍὃ ὄ Ὀ    ὄόὸ ὛὍὃ
ȿ ȿ

    ρȢτς   

The state model of a system is not unique but the transfer function of 

obtained from any state model is unique. It is independent of the method 

used to express the system in state model form.  

        1.4.1 Characteristic equation 

It is seen from the excretion of transfer function that the denominator 

is ὛὍ ὃ    the equation obtained by equating denominator of transfer 

function to zero is called characteristic equation the root of this equation are 

the closed loop poles of the system thus the characteristic equation of the 

system is ὛὍὃ π The stability of the system depends on the roots, the 

roots of the equation ὛὍὃ π are called Eigen values of matrix A and 

this are generally denoted by l 

Example1.7  

Consider a system having state model 

ὼȢ

ὼȢ  
ς σ
τ ς

  
ὢ
ὢ

σ
υ
  Ὗ And 
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Ҧ       Ҧ         Ҧ 

 

Y ρ ρ
ὢ
ὢ

 

With D=0 obtain 

 ί Ὅ ὃ  = 
ȿ ȿ

 

ổὛὍὃỖ
Ὓ ς σ
τ Ὓ ς

  

ὃὨὮ
ὅ ὅ
ὅ ὅ

Ὓ ς τ
σ Ὓ ς

Ὓ ς σ
τ Ὓ ς

 

 ȿί Ὅ ὃȿ Ὓ ς Ὓ ς ρς Ὓ τὛ ρς Ὓ ψ 

                  ί Ὅ ὃ    

T.F= 
 

. 

 

  

 

The transfer function of the system is Ὃ ὋὋ  ie the product of the 

transfer functions. 

 

 

 

Ὃ Ὃ 
ώ ό  

Ὃ 

Ὃ 
‐ 

u 

 

 

Ὃ 

Ὃ 

‐ 
u y 

Figure (1.23) product of the transfer functions. 

Figure (1.24) a parallel connection of systems 
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Consider a parallel connection of systems with the transfer functions Ὃ and 

 Ὃ.Let ό Ὡ   be the input to the system the pure exponential output of 

first system ώ Ὃό and the output of the second system is ώ Ὃό  

The pure exponential output of the parallel connection is thus  

ώ Ὃό Ὃό Ὃ Ὃ ό  

The transfer function of the parallel connection is thus  

Ὃ Ὃ Ὃ 

 

 

 

 

Consider a feedback connection of systems with the transfer functions Ὃ  

and  ὋȢLet ὶ Ὡ  be the input to the system ώ the pure exponential output 

and  be the pure exponential part of the error. Writing   the relations for the 

different blocks and a summation unit we find 

ώ ὋὩ      ὥὲὨ  Ὡ ὶ Ὃώ  

Elimination of Ὡ gives ώ Ὃ ὶ Ὃώ.Hence (1+ὋὋ) y= Ὃὶ 

Which    implies   ώ  Ȣὶ.The transfer function of the feed Feedback 

connection is thus  

Ὃί
Ὃ ί

Ὃ ί Ὃ ί
 

 

 

      

 

 

Ὃ 

Ὃ 

‐ u y 
e 

Figure (1.25) feedback connection of systems 
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           ώ ὋὋ Ὑ ώ        ,      Ὕ
 

 

ὙὋὋ ώ ὋὋ ρ                ȟώ Ὑ
ὋὋ

ρ ὋὋ
 

ḈὝί
ὋὋ

ρ ὋὋ
                                                                                         ρȢτσ 

 

 

 

 

ώ ὋὋ Ὑ ώίὌίÝ ώ ὋὋὙ ὋὋὌώ  

ρ ὋὋὌώ ὋὋὙ 

 

Ḉ Ὕί                                                                         ρȢττ          

 

 

 

Ὃ ί Ὃ ί 

‐ 
R(s) 

ώ ί E(s) 

ώ 

Plant Control 

Ὃ ί Ὃ ί 
+
  

ώί error 

Ὄί 

Figure (1.26) Closed loop transfer function feed back  

Figure (1.27) Closed loop transfer function with a senor transfer function 
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1.5 Signal flow graphs 

A signal flow graph is pictorial representation of the simultaneous equations 

describing a system. It graphically displays the transmission of the signal 

through the system as does the block diagram. But it is easier draw and 

therefore easier to manipulate than the block diagram. The properties of 

signal flow graphs are represented  

 

1.5.1 Fundamental of signal flow 

Let us first consider the simplest equation 

ὼ ὃὼ                                                                                                                                                          Ȣ  

The variables ὼ ὥὲὨ ὼ can be functions of time complex frequency or other 

quantity they many even constants which are variables in mathematical 

sense. 

For signal flow graphs ὃ  is a mathematical operator mapping ὼ Ὥὲὸέ ὼ 

and is called the transmission function .For example ὃ  may be a constant 

in which case ὼ is a constant times  ὼ in equation (1.45) if ὼ and ὼ are 

functions of  s or z ὃ  may be transfer function ὃί ὥὲὨ ὃᾀ the signal 

flow graph  for equation (1.45)is given in figure 1this simplest form of a 

signal  flow graph .Note that the variables ὼὥὲὨ ὼ are represented by a 

small dot called anode and the transmission function ὃ   is represented by a 

line with arrow called a branch 

    

 

 

Every variable in a signal flow graph is designated by anode and every 

transmission function by a branch. Branches are always unidirectional. The 

arrow denotes the direction of signal flow graph 

Example 1.8 

Ohm,s  law state that Ὁ ὙὍ where E is a voltage I a current and R a 

resistance the signal flow graph for this equation is given by  

Figure (1.28) 
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The addition rule 

The value of the variable designated by anode is equal to the sum of the all 

signals entering the node in the other words the equation represented by 

ὼ ὃὼ                                                                                                   ρȢτφ 

 

 

The Transmission Rule 

The value of the variable designated by anode is transmitted on every branch 

leaving that node in other words the equation  

ὼ ὃ ὼ  Ὥ
ρȟς ȟỄȟὲȟὯ ὪὭὼὩὨ                                                                 ρȢτχ 

Is represented by 

 

Figure (1.29) 

 

Figure (1.30) 
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Example 1.9 

 The signal flow graph of simultaneous equations ὣ σὢ  ȟὤ τὼ is 

given by figure (1.32) 

 

 

 

The Multiplication Rule 

A cascaded (series) connection of  ὲ ρ branches with transmission 

function equal to product of the old ones that is   ὼ ὃ Ͻὃ Ͻὃ Ͻ

Ễὃ Ͻὼ 

The signal flow graph equivalence represented by figure 

 

 

Example 1.10 

The signal flow graph of the simultaneous equation   ὣ ρπὼ ȟὤ ςπὼ is 

the given by the by figure 

Figure (1.31) 

 

Figure (1.32) 

 

Figure (1.33) 
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Definitions 1.8 

The following terminology is frequently used in signal flow graph theory   

the example associated with each definition refer to figure 

 

Definition 1.8.1  

A path is a continuous, unidirectional succession of branches along which co 

node is passed more than once 

For example ὼ ὸέ ὼ ὸέ ὼ ὸέ ὼ ȟὼ ὸέ ὼ and back to ὼ ὸέ ὼ ὸέ ὼ ὸέ ὼ 

are paths 

Definition 1.8.2 

An input node or source is anode with only outgoing branches .For example 

ὼ is an input node 

Definition 1.8.3 

An output node or sink is anode with only incoming branches For example 

ὼ is an output node 

Definition 1.8.4 

A forward path is path from the input node to the output. For 

exampleὼ ὸέ ὼ ὸέ ὼ ὸέ ὼ are forward path 

Definition1.8.5 

A feedback path or feedback loop is a path which originates on the same 

node 

Figure (1.34) 

 

Figure (1.35) 
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For example ὼ ὸέ ὼ ὥὲὨ ὦὥὧὯ ὸέ ὼ is a feedback path 

Definition 1.8.6 

A self-loop is a feedback loop consisting of a single branch .For exampleὃ  

 is a self-loop  

Definition 1.8.7 

The gain of branch is transmission function of that branch gain encountered 

in traversing a path .For example the path gain of the forward 

from ὼ ὸέ ὼ ὸέ ὼ ὸέ ὼ Ὥί ὃ ὃ ὃ   

Definition1.8.8 

The loop gain is product of the branch gains of the loop .For example the 

loop gain of the feedback loop form  ὼ ὸέ ὼ ὥὲὨ ὦὥὧὯ ὼ Ὥί ὃ ὃ 

1.5.2 Construction of signal flow graph 

The signal flow graph of linear feedback control system whose components 

are specified non interacting transfer functions can be constructed by direct 

reference to block diagram of the system. Each variable of the block diagram 

becomes anode and each block becomes branch 
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1.5.3 Block diagram Reduction using flow graphs and the General 

input-output gain formula 

Often the easiest way to determine the control ratio of complicated block 

diagram into a signal flow graph   

Example 1.11 

Let us determine the control ratio  and the canonical block diagram of the 

feedback control system 

 

 

The signal flow graph is gives in figure (1.36) there are forward path 

 

ὖ ὋὋὋ   ȟὖ ὋὋὋ 

 

There are three feedback loops   

 ὴ ὋὋὌ      ȟὖ ὋὋὋ Ὄ   ȟὖ ὋὋὋὌ  

Figure (1.36) 

Figure (1.37) 
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There are no nontouching loops and all loops touch forward paths than 

Ў ρ  ȟЎ ρ 

Therefore the control ratio is 
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Chapter two 

Time Invariant system 

    2. Introduction 

   A dynamic system is Time invariant if shifting the input on the time axis 

leads to on equivalent shifting of the output along the time axis with no other 

changes in other words a time invariant system maps a given input trajectory 

u(t) no matter when it occurs. Many physical systems can be modeled as 

linear time invariant (LTI) systems very general signals can be represented 

as linear combinations of delayed impulses by the principle of super position 

the response y[n] of a discrete time (TLI) system is the sum of the response 

to the individual shifted impulses to the individual shifted impulses marking 

up the input signal x[x] 

 ὣὸ † Ὂόὸ †                                                                                   ςȢρ    

The formula above says specifically that if an input signal is delayed by 

some amount T so will be the output and with no other changes  

 

 

               u (t)                                                                  u(t-t) 

 

 

 

Figure (2.1) Figure (2.2) 
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                y(t)                                                           y (t-t) 

                 

 

An example of a physical time varying system is the pitch response of a 

rocket y (t) when the thrusters are being steered by an angle u (t). You can 

see first that this is an inverted pendulum problem and unstable without .A 

closed loop controller it is time varying because as the rocket burns fuel its 

mass is changing and so the pitch responds differently to various inputs 

throughout its flight. In this case the absolute time coordinate is the time 

since lift off. To assess whether a system is time varying or not follow these 

steps replace u (t) with u (t-†) on one side of equation replace y (t) with y(t-

†) on the other side of the equation and then check if they are equal Hoer 

several examples. 

Y (t) = u (t)
3
/2 

This system is clearly time invariant because it is a static map Next 

 Example 2.1 

ώὸ όὸ   Ὠὸ 

 Replace u (t) with u (t-ʐ) in the right hand side and it the 

 

Figure (2.3) 

 

Figure (2.4) 
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ώὸ όὸ †   Ὠὸ όὸ   Ὠὸ 

The left hand side is simply 

ώὸ † όὸ   Ὠὸ 

 

 

Clearly the right and left hand sides are different hence the system is not 

time invariant. As another example consider 

Example 2.2 

ώὸ ό ὸ   Ὠὸ 

The right hand side becomes with the time shift 

ό ὸ †   Ὠὸ ό ὸ   Ὠὸ 

Whereas the left hand side is 

ώὸ † ό ὸ  Ὠὸ 

The two sides of the defining equation are equal under a time shift t and so 

this system is time invariant. Time invariant also known as shift invariance 

describe function  independence from the location of t = 0 on the time lime 

By definition a time invariant describe S a function's independence from the 

location of    t = 0 on the time lime By definition  a time invariant systems 
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output will shift in tine if its input shifts in time but otherwise will remain 

exactly the same in other words a time invariant function does not words a 

time invariant function does not care what time it is we describe time 

invariance with the following notation 

ὋὭὺὩὲ ὣὸ ὪὸὸὬὩὲ ώὸ ί Ὢὸ ί                                           ςȢς    

System because is a crucial property of real system because it allows us to 

assume that a system will respond in a predictable manner at any time 

modeling time dependent systems are often highly influenced by initial 

condition and system definition 

Example 2.3 

Is the system ώ ὸ ὼὸ   time invariant? 

To prove whether or not the above system is time invariant we must a 

mathematical technique called proof by contradiction proof by contradiction 

is often used when two separate conditions can be tested on the same system 

or mathematical contract. In this case we can compare the results of the time 

shifted system with the solution assuming that the system is time invariant 

thus the shifted system is represent the original system as 

ώ ὸ ώὸ ί ὼὸ ί  

Now if we define the input function to be ὼὸ ί ὼ ὸ which we 

may assume if and only if the system is time invariant then we represent the 

original system as     ώ ὸ ὸ ὼὸ ί 

Since ώ ώ    we may conclude that the system is not time invariant 

through proof by contradiction  
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Example 2.4 

Is the system   ώ ‌ὼὸ ‍      time invariant?     (Note a and b are 

constant) 

We will use of some method a gain on the new system described above   

The shifted system is represented as ώ ὸ ώὸ ί ‌ὼὸ ί ‍ 

Again if we     ὼὸ ί ὼ ὸ and (other by assume system the system 

is time in variant).Than we represent the original system as 

ώ ὸ ‌ὼ ὸ ‍ ‌ὼὸ ί ‍ 

Since ώ ώ we may conclude that the system is time invariant 

    2.1   Solving the time invariant state Equation  

    In this part, we show obtain the general solution of the linear time 

invariant system equation .We shall first consider the homogeneous case and 

then the nonhomogeneous case. 

2.1.1 Solution of Homogeneous state Equations 

Before we solve vector matrix differential equations .Let u review the 

solution of the scalar differentia 

ὢϽ ὥὼ                                                                                                                  ςȢσ 

                                   

In solving this equation, we may assume a solution x (t) of the form 

ὼὸ ὦ ὦὸ ὦὸ ỄỄ Ễ                                                               ςȢτ 
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By substituting this assumed solution in to Equation (2.3) we obtain 

                    ὦ ςὦὸ σὦὸ ỄỄ Ễ 

  

 Áὦ ὦὸ ὦὸ ỄỄ Ễ Øπ                                                      ςȢυ 

                           

If the assumed solution is to be the true solution Equation (2.5) must hold for 

any t, Hence, equating the coefficients of the equal powers of t , we obtain    

                                                                  

ὦ ὥὦ   ȟςὦ ὥὦ                 ȟὦ  ὥὦ  ὥὦ  ȟ     ὦ  ὥὦ

 ὥὦ         ȟὦ
Ȧ
 ὥ ὦ 

The value of ὦ is determined by substituting t = 0 into equation (2.4), or 

Hence, the solution x (t) can be written  

ὼὸ ρ ὥὸ
ρ

ςȦ
 ὥὸ Ễ

ρ

ὯȦ
ὥὸ Ễ ὼπ Ὡ ὼπ 

We shall now solve the vector matrix differential equation 

ὢϽ  !8                                                                                                              ςȢφ   

                                                                                                       

Where X = n ï vector 

A = n ³ n constant matrix 

By analogy with the scalar case, we assume that the solution is in the form 

of vector power series in t, or by substituting this assumed solution in to 

equation (2.5) we obtain 
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ὦ ςὦὸ σὦὸ ỄỄ Ễ                                                                                                  Ȣ  

ὃὦ ὦὸ ὦὸ ỄỄ Ễ                                                                ςȢψ 

If the assumed solution is to be true solution, equation (2.8) must hold for all 

t. thus by equating the coefficients of like powers of t on both sides g 

equation (2.8) we obtain 

                                                                    

ὦ ὃὦ   ȟςὦ ὃὦ                 ȟὦ  ὃὦ  ὃὦ  ȟ     ὦ  ὃὦ

 ὃὦ         ȟὦ
Ȧ
 ὃ ὦ 

By substituting t = 0 into equation (2.7) we obtain  

ὼπ ὦ.Thus, the solution x (t) can be written as 

ὼὸ ρ ὃὸ
ρ

ςȦ
ὃὸ Ễ

ρ

ὯȦ
ὃὸ Ễ ὼπ 

The expression in the parentheses on the right hand side of this last equation 

is an n ³ n matrix because of the similarity to the infinite power series for a 

scalar exponential we 

ρ ὃὸ
Ȧ
ὃὸ Ễ

Ȧ
ὃὸ Ễ Ὡ    

In terms of the matrix exponential is very important in state space in state 

space analysis of linear systems, we shall next examine its properties 

Definition 2.1  

It can be proved that the matrix exponential of an n ³ n matrix A 
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Ὡ
ὃὸ

ὯȦ
                                                                                                    ςȢω 

Converges absolutely for all finite t Hence, computes calculations for 

evaluating the dements Ὡ  by using the series expansion can be easily 

carried out .Because of the convergence of the infinite series  

Ὡ

ὃὸ

ὯȦ
                                                                                                   ςȢρπ 

The series can be differential term to give 

ὨὩ

Ὠὸ
ὃ ὃὸ

ὃὸ

ςȦ
Ễ

ὃὸ

Ὧ ρȦ
                                                 ςȢρρ   

               ὃρ ὃὸ
Ȧ
Ễ

Ȧ
Ễ ὃὩ   

 ὃρ ὃὸ
ὃὸ

ςȦ
Ễ
ὃ ὸ

Ὧ ρȦ
Ễ  ὃὩ                                           

The matrix exponential has the property that  

Ὡ Ὡ Ὡ                                                                                                                 ςȢρς 

This can be proved as follows 

Ὡ Ὡ  
ὃὸ

ὯȦ

ὃί

ὯȦ
                                                                

             В ὃ В
Ȧ Ȧ

 В ὃ
 

Ȧ
ὩὃὸὛ             
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In particular, if s = -t, then 

Ὡ Ὡ  Ὡ ρ 

Thus, the inverse of Ὡ  ὭίὩ since the inverse of Ὡ   always exists Ὡ 

Is nonsingular, it is very important to remember that 

 Ὡ Ὡ Ὡ       ὭὪ  ὃὄ ὄὃ  ȟὩ Ὡ Ὡ      ὭὪ ὃὄ ὄὃ  

To prove this note that 

Ὡ ρ ὃ ὄὸ
ὃ ὄ

ςȦ
ὸ

ὃ ὄ

σȦ
ὸ Ễ 

  Ὡ Ὡ  ρ ὃὸ
ὃὸ

ςȦ

ὃὸ

σȦ
Ễ ρ ὄὸ

ὄὸ

ςȦ

ὃὸ

σȦ
 Ễ   

ρ ὃ ὄὸ
ὃὸ

ςȦ

ὃὸ

σȦ

ὃὄὸ

ςȦ

ὃὄὸ

ςȦ

ὄὸ

σȦ

Ễ 

Hence 

  Ὡ Ὡ  

Ὡ Ὡ                                                                                                            

ὄὃ ὃὄ

ςȦ
ὸ

ὄὃ ὃὄὃὄὃ ὄὃὄςὃὄ ὃὄ

σȦ
ὸ 

The difference between   Ὡ Ὡ  and    Ὡ Ὡ   vanishes if A and B commute 

Laplace transforms Approach to the solution of Homogeneous state equation 

Let us first consider the scalar case 

ὼϽ ὥὼ                                                                                                                ςȢρσ 

Taking the Laplace transform of equation (2.13) we obtain  
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Ὓὢί ὢπ ὥὢί                                                                                    ςȢρτ 

Where ὢί •ὼ for solving (2.14) for X(s) gives  

ὢί
ὼπ

ί ὥ
ί ὥ ὼπ                                                                                

The inverse lap lace transform of this last equation gives the solution 

ὼὸ Ὡ  

The foregoing to the approach to the solution of the homogeneous scalar 

differential equation can be extended to the homogeneous state equation 

ὢϽ ὃὢ                                                                                                             ςȢρυ  

Taking the Laplace transform of both sides of equation (2.15) 

      Ὓὢί ὢπ ὃὢί   

Where ὢί •ὼȢHence     ὛὍὃὢίὢ ὢπ 

Premultiplying both sides of this last equation by ὛὍὃ   we obtain 

ὢί ὛὍὃ  ὼπ 

The inverse Laplace transformation of X(s) gives the solution x (t), Thus 

                       

ὼὸ • ὛὍὃ  ὼπ                                                                      ςȢρφ  

       

Note that  

ὛὍὃ  
ρ

Ὓ

ὃ

Ὓ

ὃ

Ὓ

Ễ                                                                                   
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Hence the inverse Laplace transform of ὛὍὃ  gives 

• ὛὍὃ  ρ ὃὸ
ρ

ςȦ
ὃὸ Ễ

ρ

ὯȦ
ὃὸ Ễ

Ὡ           ςȢρχ 

The Laplace transform of a matrix is the matrix consisting of the inverse 

Laplace transform all elements form equation (2.16) and (2.17) the solution 

of equation (2.15) is obtained as 

ὢὸ Ὡ ὢπ                                                                                                              

The importance of equation (2.17) lies in the fact that it provides a 

convenient means for finding the closed solution for matrix exponential 

 

  2.2 State Transition Matrix 

We can write the solution of the homogeneous state equation                         

 

ὢϽ ὃὢ                                                                                                               ςȢρψ 

 

ὢὸ ᶮὸὢπ                                                                                               ςȢρω 

Whereɲ ὸ is an n ³ n matrix and is the unique solution of 

ᶮϽὸ ὃɲ ὸ  ȟ   ɲ π ρ                                                                          

To verify this note that  

ὢπ ᶮπὢπ ὢπ                                                                                        

And 
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 ὢϽὸ ᶮϽὸὢπ ὃɲ ὸὢπ ὃὢὸ 

We thus confirm that equation (2.19) is the solution of t equation (2.16) from 

equation (2.17).and (2.18) we obtain 

               ɲ ὸ Ὡ • ὛὍὃ   

Note that 

 ɲ ὸ Ὡ ᶮ ὸ 

From equation (2.19)   we see that the solution of condition, hence the 

unique matrix ɲ ὸ is called the state information matrix. 

The state information contains all the information about the free motions of 

the system defined by (2.3) 

If the Eigen values ᴧ  ȟ    ᴧȟỄȟᴧ      of the matrix A are distinct, than ɲὸ  

will contain the n-exponentials 

Ὡᴧ ȟ Ὡᴧ   ȟỄȟὩᴧ  

In particular, if the matrix A is diagonal, then 

ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é

ê

è

==
tnɚ

t2ɚ

t1ɚ

At

e0

e

0e

eű(t)

        (A:diagonal)

 

If there is a multiplicity in the Eigen values for example A are l1, l2, l3 ,l4, 

l5, é,ln 

Then f(t) will contain, in addition to the exponential 
tnɚt2ɚt1ɚ e,...,e,e  terms 

like 
t1ɚte  and 

t1ɚ2et   

4ÙÐÅ ÅÑÕÁÔÉÏÎ ÈÅÒÅȢ
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2.2.1 Properties of State Transition Matrix 

We shall now some matrix the important properties of state transition matrix 

ᶮὸ for the time invariant system 

ὢϽ ὃὢ                 

For which 

ᶮὸ Ὡ  

We have the following 

          ρȢ    ɲὸ Ὡ ρ     

        ςȢɲ ὸ Ὡ Ὡ    ᶮ ὸ  έὶ ɲ ὸ ᶮ ὸ                  

σȢɲ ὸ ὸ Ὡ Ὡ Ὡ ᶮὸᶮὸ ᶮὸᶮὸ  

          τȢɲ ὸ ᶮὲὸ 

         υȢɲ ὸ ὸᶮὸ ὸ ᶮ ᶮὸ ὸ ᶮὸ ὸᶮὸ ὸ 

 

Example 2.5 

Obtain the state transition matrix f(t) of the following system 

ù
ù

ú

ø

é
é

ê

è

ù
ù
ú

ø

é
é
ê

è

ù
ù

ú

ø

é
é

ê

è

--
=

2

1
.1
2

x

x

22

10

x

.x
 

Obtain also the inverse of the state transition matrix f
-1
(t) for system 

ù
ù
ú

ø

é
é
ê

è

--
=

32

10
A 
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The state transition matrix ɲὸis given by  

ᶮὸ Ὡ ᶮ ὛὍὃ  

Since 

ù
ù
ú

ø

é
é
ê

è

ù
ù
ú

ø

é
é
ê

è

ù
ù
ú

ø

é
é
ê

è

+
=

--
-=

3S2

1-S

32

20

0

0S
A-SI

S
 

The inverse of (SI ï A) is given by  

ù
ù
ú

ø

é
é
ê

è

-

+

++
=

S

3S

2)1)(S(S
1A)-(SI

2

11- 

                   

ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é

ê

è

++++

++++
+

=

21)(s(s21)(s(s

2-

2)1)(s(s
1-

2)1)(s(s
3S

s

 

Hence 

ù
ù
ù

ú

ø

é
é
é

ê

è ----

--

+-+-

--

=-==

2tt2tt

2tt2tt

11At

2ee2e2e

eee2e

]A)[SIeū(t) f 

 

Noting that ɲ ὸ ᶮ ὸ we obtain the inverse of the state transition 

matrix as follows  

ù
ù
ù

ú

ø

é
é
é

ê

è

+-+-

--

==

2tt2tt

2tt2tt

At-1-

2ee2e2e

eee2e

e(t)ū

 

2.3 Solution of non-homogeneous state equations  
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We shall begin by considering the scalar case 

ὢϽ ὥὼὦό                                                                                                     ςȢςπ 

let us rewrite equation (2.20) as  ὢϽ ὥὼ ὦό  multiplying both sides of 

this equation  by Ὡ we obtain  

 Ὡ  ὢϽὸ ὥὼὸ
Ὠ

Ὠὸ
 Ὡ ὼὸ Ὡ ὦόὸ                                      

Integrating this equation between o  and  t give 

Ὡ ὼὸ ὼπ Ὡ ὦό†Ὠ† 

or 

ὼὸ Ὡ ὼπ Ὡ Ὡ ὦό†Ὠ† 

The first term on the right hand side is the response to the initial condition 

and the second term is the response to the nonhomogeneous state equation 

described by  

                   

ὢϽ ὃὢ ὄὟ                                                                                 ςȢςρ 

Where   X = n ï vector 

              U = r ï vector 

              U = n ³ n constant matrix 

              U = n ³ r constant matrix 
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By writing equating (2.21) as ὢϽ ὃὢὸ ὄὟὸ and premultiplying both 

sides of this equation by Ὡ we obtain  

Ὡ  ὢϽὸ ὃὢὸ
Ὠ

Ὠὸ
 Ὡ ὢὸ Ὡ ὄὟὸ                                      

Integration the preceding equation between o and t gives 

Ὡ ὼὸ ὼπ Ὡ ὄό†Ὠ† 

Or 

ὼὸ Ὡ ὼπ Ὡ Ὡ ὄό†Ὠ†                                                  ςȢςς 

Equation above can also between as 

   

ὢὸ ᶮὸὢπ ᷿ᶮὸ †ὄό†Ὠ†                                                   ςȢςσ 

           

Where     ɲ ὸ Ὡ    

Equation (2.22) and (2.23) is the solution of equation (2.21) the solution x(t) 

is clearly the sum of a term consisting of the transition of the initial state and 

a term arising from the input vector. Laplace transforms Approach to the 

solution of nonhomogeneous state equation. The solution of the 

nonhomogeneous state equation 

ὢϽ ὃὢ ὄὟ                                                                                                    ςȢςτ 

Can also be obtained by the Laplace transform approach, the Laplace 

transform of this last equation yields  
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Ὓὢί ὢπ ὃὢὸ ὄὟὸ 

Or 

ὛὍὃὢί π ὄὟί                                                                      ςȢςυ  

 

Premultiplying both sides of this last equation by (2.25) ὛὍὃ   

We obtain 

ὢί ὛὍὃ  ὢπ ὛὍὃ  ὄὟί 

Using the relationship given by equation (2.17) gives 

ὢί ᶮὩ ὢπ ᶮὩ ὄὟί 

The inverse Laplace transform of this last equation can be obtained by use of 

the convolution integral as follows. 

ὼὸ Ὡ ὼπ Ὡ Ὡ ὄό†Ὠ†                                        ςȢςτ           

Solution in term s of x(t0),thus for we have assumed the initial time to be 

zero. If however, the initial time is given by to instead of o, them the saluted 

to above equation must be modified to 

ὼὸ Ὡ ὼπ Ὡ Ὡ ὄό†Ὠ†             

 

 

 

Example 2.6 
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Obtain the time response of the following system 

ù
ù
ú

ø

é
é
ê

è

ù
ù

ú

ø

é
é

ê

è

ù
ù
ú

ø

é
é
ê

è

ù
ù

ú

ø

é
é

ê

è

--
=

1

0

x

x
,

32

10

x

x

2

1

2

1
.

.

 

Where u (t) is the unit step function occurring at t = 0 or U(t) = I(t) 

For this system 

ù
ù
ú

ø

é
é
ê

è

ù
ù
ú

ø

é
é
ê

è
=

--
=

1

0
B,

32

10
A 

The state transition matrix ɲὸ Ὡ  was obtained  

 

The response to the unit step input is then is obtained as  

x(t)

Ὡ ὼπ ᷿
ςὩ Ὡ Ὡ Ὡ
ςὩ ςὩ Ὡ ςὩ

π
ρ
ρὨ† 

Or 

ὢ ὸ
ὢ ὸ

ςὩ Ὡ Ὡ Ὡ
ςὩ ςὩ Ὡ ςὩ

ὢ π
ὢ π

ρ

ρ
Ὡ

ρ 

ρ
Ὡ

Ὡ Ὡ

 

If the initial state is zero x (0) = 0.Then u (t) can be simplified to 

ὢ ὸ
ὢ ὸ

ρ

ρ
Ὡ

ρ 

ρ
Ὡ

Ὡ Ὡ

 

2.4 State model of linear system 

Consider multiple input multiple output nth order  
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Number of inputs=m 

Number of outputs=p 

 

Ὗὸ

ụ
Ụ
Ụ
Ụ
ợ
ό ὸ
ό ὸ
ể
ể

ό ὸỨ
ủ
ủ
ủ
Ủ

   ȟ    ὢὸ

ụ
Ụ
Ụ
Ụ
ợ
ὼ ὸ
ὼ ὸ
ể
ể
ὼ ὸỨ

ủ
ủ
ủ
Ủ

     ȟὣὸ

ụ
Ụ
Ụ
Ụ
ợ
ὣ ὸ
ὣ ὸ
ể
ể
ὣ ὸỨ

ủ
ủ
ủ
Ủ

 

All Colum vectors having order ά ρȟὲ ρ ὥὲὨ ὴ ρ  respectively  

For such a system the state variable representation can be arranged in the 

form of n fist order differential equations 

Ὠὼ ὸ

Ὠὸ
Ὢ

ȟ ȟỄỄȟ ȟ ȟỄỄȟ ȟ
 

Ὠὼ ὸ

Ὠὸ
Ὢ

ȟ ȟỄỄȟ ȟ ȟỄỄȟ ȟ
 

  ể                                

ể                           

Figure (2.5) 
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Ὢ
ȟ ȟỄỄȟ ȟ ȟỄỄȟ ȟ

   

Where Ὢ

Ὢ
Ὢ
ể
Ὢ

 is the functional operator 

Integrating the above equation 

ὢ ὸ ὢ ὸ Ὢ
ȟ ȟỄỄȟ ȟ ȟỄỄȟ ȟ

Ὠὸ                                        ςȢςφ 

Where i=1, 2,............, n 

Thus n state variables and hence state vector at any time t can be determined 

uniquely any n dimensional time invariant system has state equation in 

functional form as 

Ὠὼ

Ὠὸ
ὪὢȟὟ                                                                                                      ςȢςχ 

While outputs of such system are dependent on the state and instantaneous 

Inputs functional output equation can be written as  

ὢὸ Ὣὼȟό                                                                                                   ςȢςψ 

Where g is functional output  

For the time invariant system the same equation s can be written as  

ὪὢȟὟȟὸ ỄỄ State equation 

ὣὸ ὫὢȟὟȟὸ ỄỄ Output equation 

Diagrammatically this can be represented in the figure above 
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Input-output state description of system 

The functional equations can be expressed in terms of linear combination of 

system states and inputs as 

 

For linear time invariant systems the coefficients ὥ and   ὦ  thus all 

equations can be written in the vector matrix form as   

ὢϽὸ ὃὢὸ ὄὟὸ                                                                                   ςȢςω 

Where 

X (t) state vector matrix of order nρ 

U(t)=input vector matrix of order mρ 

A=system matrix or Evaluation matrix of order nὲ  

B=input matrix of control matrix of order n ά  

Figure (2.6) 
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Similarly the output variables at time t can be expressed as the linear 

combinations of the input variables and state variables at time t as  

 

For linear time invariant systems, the coefficients ὅ  and Ὠ are constants 

thus all the output equations can be written in the vector matrix form as  

              Y (t) =CX (t) +DU (t) 

Where 

Y (t) =output vector matrix of order pρ 

C=output matrix or observation matrix of order pὲ 

D=Direct transmission matrix of order p ά 

The two vector equations together is called state model of linear system  

ὢϽὸ ὃὢὸ ὄὟὸ             State equation 

ὣὸ ὅὢὸ ὈὟὸ              Output equation 

This state model of a system 

For linear time invariant system the matrix A,B,C and D are also time 

dependent. Thus 

ὢϽὸ ὃὸὢὸ ὄὸὟὸ                                                                       ςȢσπ 

ὣὸ ὅὸὢὸ ὈὸὟὸ 

For linear time invariant system 
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2.5 State model of single input-single output system 

Consider a single input ïsingle output 

BOut its order n hence n state variable are required to define state of system 

in such case the state model is  

ὢϽὸ ὃὢὸ ὄὟὸ                                                                               ςȢσρ     

ὣὸ ὅὢὸ ὨὟὸ 

Where 

ὃ ὲ ὲ  Matrix ὄ ὲ ρ  matrix 

ὅ ρ ὲ Matrix d=constant and u(t)=single scalar input variables 

In general remember the order of various matrices 

ὃ Evoluation matrix O ὲ ὲ   

ὄ Control matrixO ὲ ά 

ὧ Observation matrixO ὴ ὲ  

Ὀ Transimission matrix O ὴ ά  
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                      Chapter Three 

                    Controllable Pairs of matrice 

   3. Introduction 

A system is said to be controllable at time ὸ,if it is possible by means of an 

unconstrained control vector to transfer the system from. Any initial state 

x(ὸ) to any other state in a finite interval of time. A system is said to be 

observable at time ὸ if, with the system in state x (ὸ), it is possible to 

determine this state from the observation of the output over a finite time 

interval. The concepts of controllability and observability were introduced 

by Kalman,s they Play an important role in the design of control systems in 

state space. In fact, the Conditions of controllability and observability may 

govern the existence of a complete Solution to the control system design 

problem. The solution to this problem may not, exist if the system 

considered is not controllable. Although most physical systems are 

.Controllable and observable, corresponding mathematical models may not 

possess the Property of controllability and observability Then it is necessary 

to know the. Conditions under which a system controllable and observable 

this deals with controllability and the next discusses observability  in what 

follows, we shall first derive the condition for complete state controllability. 

Then we derive alternative forms of the condition for complete state 

controllability followed by discussions of complete output controllability. 

Finally, we present the concept of stabilizability 

 

3.1 Complete State Controllability of Continuous-Time Systems. 
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 Consider the, Continuous-time system. 

 

ὼϽ Ax ὄὟ                                                                                    (3.1) 

 

Where x = state vector (n-vector) 

          U=control signal (scalar) 

         n=n n matrix 

         B=n ρmatrix 

The system described by Equation (3.1) is said to be state controllable at 

ὸ ὸ if it is possible to construct an unconstrained control signal that will 

transfer an initial state to any final state in a finite time interval If every state 

is controllable, then the system is said to be completely state controllable We 

shall now derive the condition for complete state controllability. Without 

loss of generality, we can assume that the final state is the origin of the state 

space and that the Initial time is zero .or ὸ π.The solution of Equation 

(3.1) is 

X (t) =Ὡ x (0) +᷿ Ὡ ὄὟ†Ὠ† 

Applying the definition of complete state controllability just given, we have 

X (ὸ) =Ὡ  x (0) +᷿ Ὡ ὄὟ†Ὠ† 

Or 

X (0)  ᷿ Ὡ ὄὟ†Ὠ†                                                                       

(3.2) 

By definition of Ὡ can be written 

   Ὡ В ‌ (†)ὃ                                                                                

(3.3) 
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Substituting Equation (3.3) into Equation (3.2) gives 

X (0)  В ὃB ᷿ ‌ (†) U (†) d†                                                     

(3.4) 

Let us put ᷿ ‌(†) u (†) d†   ὄ  .Then Equation (3.4) becomes 

X (0) В ὃBὄ=  ὄểὃὄểỄὃ ὄ                                        

(3.5) 

If the system is completely state controllable, then, given any initial state x 

(0) Equation (3.5) must be satisfied. This requires that the rank of the n n 

matrix 

ὄểὃὄểỄὃ ὄ 

From this analysis, we can state the condition for complete state 

controllability as follows. The system given by Equation (3.1) is completely 

state controllable if and only 

If the vectors B, AB,Ễ, ὃ B are linearly independent, or the n n matrix 

 

ὄểὃὄểỄὃ ὄ 

Is of rank n 

The result just obtained can be extended to the case where the control vector 

u is n-dimensional. If the system is described by 

ὢϽ AX ὄὟ                                   

Where U is an r-vector, then it can be proved that the condition for complete 

state. Controllability is that the n nr matrix  

ὄểὃὄểỄὃ ὄ 

Be of rank n, or contain n linearly independent column vectors. The matrix 

ὄểὃὄểỄὃ ὄ 
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Is commonly called the controllability matrix 

Example 3.1 Consider the system given by 

 

ὼȢ

ὼȢ  
ρ ρ
π ρ

  
ὼ
ὼ

ρ
π

U 

Since ὄểὃὄ
ρ ρ
π π

 singular matrix 

The system is not completely state controllable. 

3:1:1 Alternative Form of the Condition for Complete State 

Controllability. Consider the system defined by 

                         ὢϽ Aὢ ὄὟ                                                                  (3.6) 

Where x = state vector (n-vector) 

          U=control signal (scalar) 

         n=n n   matrix 

         B=n ρ  matrix 

If the eigenvectors of A are distinct, then it is possible to find a 

transformation matrix P such that 

ὖ AP=D=

ᴧ Ễ Ễ π
ể ᴧ Ễ ể
ể ể Ệ ể
π Ễ Ễ ᴧ

 

Note that if the eigenvalues of Aare distinct, then the eigenvectors of Aare 

distinct; however, the converse is not true. For example, an n n real 

symmetric matrix having, multiple eigenvalues has n distinct eigenvectors. 

Note also that each column of the Matrix is an eigenvector of A associated 

with ᴧ= (i=1, 2,Ễȟὲ) 

Let us define 

      X=PZ                                                                                           (3.7) 

Substituting Equation (3.5) into Equation (3.4), we obtain 
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By defining 

ὤϽ ὃὖὤὖ ὄὟ                                                                                          σȢψ 

By defining 

                              ὖ B=F= (Ὢ).We can rewrite Equation (3.7) as 

ᾀȢ  ᴧ  Ὢ
     
Ὢ

Ễ  
 Ὢ

 
  

  

ᾀȢ  ᴧ  Ὢ
     
Ὢ

Ễ 
 Ὢ

 
 

                             ể  

 ᾀȢ  ᴧ  Ὢ
     
Ὢ

Ễ 
Ὢ

 
 

If the elements of any one row of the n r matrix F are all zero, then the 

corresponding  state variable cannot be controlled by any of the ό. Hence, 

the condition of  complete state controllability is that if the eigenvectors of A 

  are distinct, then the system is completely State controllable if and only if 

no row of ὖ B has all zero elements. It is important. To note that, to apply 

this condition for complete state controllability, we must put the matrix 

ὖ ὃὖ in Equation (3.8) in diagonal form If the A matrix in Equation (3.6) 

does not possess distinct eigenvectors, then diagonalization is impossible. In 

such a case, we may transform A into a Jordan canonical Form. If for 

example, A has eigenvalues and has n-3 distinct. Eigenvectors, then the 

Jordan canonical form of A is 

ὐ

ụ
Ụ
Ụ
Ụ
ợ
ᴧ ρ π π π
π ᴧ π π π
π π ᴧ ρ ể
ể π ể ể ể
π π π π ᴧỨ

ủ
ủ
ủ
Ủ

 

The square sub matrices on the main diagonal are called Jordan blocks. 

Suppose that we can find a transformation matrix S such that 
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Ὓ ὃὛ ὐ 

If we define a new state vector z by 

ὢ Ὓὤ                                                                                                                σȢω 

Then substitution of Equation (9) into Equation (6) yields 

ὤȢ Ὓ ὃὛὤὛ    ὄὟ    

ὐὤὛ ὄὟ                                                  σȢρπ 

The condition for complete state controllability of the system of Equation 

(3.6) may. Then be stated as follows: The system is completely state 

controllable if and only if, No two Jordan blocks in J of Equation (3.10) are 

associated with the same eigenvalues, the elements of any row of that 

correspond to the last row of each Jordan block. Are not all zero, and (3.3) 

the elements of each row of that correspond to distinct, Eigenvalues are not 

all zero. 

Example3. 2 the following systems are completely state controllable: 

 

ὼȢ

ὼȢ  
ρ π
π ς

  
ὼ
ὼ

ς
υ

U 

     Since  ὄểὃὄ
ς ς
υ ρπ

 ὲέὲsingular matrix the system is 

completely state controllable 

3.1.2 Conditions for Complete State Controllability in the Plane 

   The condition for complete state controllability can be stated in terms of 

transfer functions or transfer matrices. It can be proved that a necessary and 

sufficient condition for complete state controllability is that no cancellation 

occur in the transfer function or transfer matrix. If cancellation occurs; the 

system cannot be controlled in the direction of the canceled mode. 

 

Example 3.3 Consider the following transfer function  
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ὢὛ

ὟὛ
   

ί ςȟυ

ί ςȟυ ί ρ
 

 

Clearly, cancellation of the factor (s+2.5) occurs in the numerator and 

denominator of this. Transfer function. (Thus one degree of freedom is lost.) 

Because of this cancellation, this system is not completely state controllable. 

The same conclusion can be obtained by writing this transfer function in the 

form of a state, Equation a state-space representation is 

ὼȢ

ὼȢ  
π ρ
ςȟυ ρȟυ

  
ὼ
ὼ

ρ
ρ

U 

 Since    ὄểὃὄ
ρ ρ
ρ ρ

  

The rank of the matrix is ὄểὃὄ .Therefore, we arrive at the same 

conclusion: The system is not completely state controllable. 

Example 3.4 Show that the system described by 

                         ὢϽ AX ὄὟ             

                                 ὣ ὅὢ 

Where x = state vector (n-vector) 

          U=control vector(r-vector) 

        ὣ έόὸὴόὸ ὧέὲὸὶέὰ (m-vector)  (m  ὲ) 

        A=n n   matrix 

       B =n ὶ  matrix 

      ὅ ά ὲ άὥὸὶὭὼ 

Is completely output controllable if and only if the composite m nr matrixὖ, 

where 

 ὖ ὅὄểὅὃὄểὅὃὄểỄỄểὅὃ ὄ 
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Is of rank m (Notice) that complete state controllability is neither necessary 

nor sufficient for complete output controllability 

 Suppose that the system is output controllable and the output y (t) starting 

from any y (0) the initial output can be transferred to the origin of the output 

space in a finite time interval 

0  t  that is 

                      y (T) = Cx(T) = 0 

Since the solution of Equation P is 

    ὢὸ Ὡ
᷿                                                                     Ȣ

 

At t Ὕwe have 

    ὢὸ Ὡ
᷿                                                                                  Ȣ

     

Substituting Equation (3.12) into Equation (3.11), we obtain 

Y (T) = Cx(T) 

ὅὩ
᷿                                                                                     Ȣ

     

On the other hand, y (0) =Cx (0). Notice that the complete output 

controllability means that the. Vector Cx(0) spans the m-dimensional output 

space. Since Ὡ  is nonsingular, if Cx(0) spans the m-dimensional output 

space, so does CὩ x(0), and vice versa. From Equation (3.3) we obtain 

ἍὩ ὀπ ἍὩ Ὡ ὄὟὝ †Ὠ† 

Note that Ὡ ᷿Ὡ ὄόὝ †Ὠ†can be expressed as the sum of ὃὄ▒; that 

is 
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Ὡ ὄὟὝ †Ὠ† ‎  ὃ║▒ 

Where 

‎ ‌ † Ὕ †Ὠ† ίὧὰὥὶ 

And ‌(†) satisfies 

Ὡ В  ὃ 

(P: degree of the minimal polynomial of ( 3.12)) 

 

And is theὄ; jth column of Therefore, we can write ἍὩ ὀπ as 

ἍὩ ὀπ ‎ ὅ ὃὄ 

From this last equation, we see that ἍὩ ὀπ is a linear combination of 

ὅ ὃὄ . (i=0, 1, 2, p,P-1; j=1, 2, p, r). Note that if the rank of Q, where 

- ὅὄểὅὃὄểὅὃὄểỄỄểὅὃ ὄ         ὴ ὲ 

Is m, then so is the rank of P, and vice versa. [This is obvious if p=n. If p<n, 

then the Cὃὄ.(Where p  h  n-1) are linearly dependent on Cὄ ,CAὄ , 

Cὃ ὄ . Hence, the rank of p is equal to that of Q.] If the rank of P is m, 

then CὩ x (0) spans the m-dimensional output, space. This means that if 

the rank of P ism, then Cx(0) also spans the m-dimensional output space, 

and the system is completely output controllable. Conversely, suppose that 

the system is completely output controllable, but the rank of P is k, where 

k<m. Then the set of all initial outputs that can be transferred to the origin is 

of, 
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K-dimensional space hence, the dimension of this set is less than m. This 

contradicts the assumption, that the system is completely output controllable. 

This completes the proof. Note that it can be immediately proved that, in the 

system of Equations (3.12) and (3.13), state controllability on 

 0  t T implies complete output controllability on 0  t  T, if and only if 

m rows of C are linearly in depend 

 

Example 3.5 obtain a state-space equation and output equation and test 

controllable for the system defined by 

ὣὛ

ὟὛ

ςί ί ί ς

ί τί υί ς
 

From the given transfer function, the differential equation for the system is 

ώϽϽϽ τώϽϽ υώϽ ςώ ςόϽϽϽ όϽϽ όϽ ςό 

Comparing this equation with the standard equation given by Equation 

ώϽϽϽ ὥώϽϽ ὥώϽ ςώ ὦόϽϽϽ ὦόϽϽ ὦόϽ ὦό 

We find 

ὥ τȟὥ υȟὥ ς 

ὦ ςȟὦ ρȟὦ ρȟὦ ς 

ὥὲὨ 

‍ = ὦ = 2 

‍ = ὦ- ὥ‍ = 1 - 4  2 = -7 

‍= ὦ- ὥ‍- ὥ‍= 1 - 4  (-7) - 5  2 = 19 

‍=ὦ  ς 4  19 - 5   (-7) - 2  2 = -43 

And 

ὼ= y - ‍u = y - 2u 

ὼ ὼȢ  ‍u=ὼȢ 
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 ὼ ὼȢ  ‍Õ ὼȢ ρωÕ  

 And 

ὼȢ ὼ  

 

ὼȢ ὼ  

 

ὼȢ  ὥ ὼ ὥὼ ὥὼ ‍ό ς ὼ υὼ τὼ τσό 

Hence, the state-space representation of the system is 

 

ὼȢ

ὼȢ

ὼȢ
  

π ρ π
π π ρ
ς υ ς

  

ὼ
ὼ
ὼ

χ
ρω
τσ

ςU 

 

Y= ρ π π

ὼ
ὼ
ὼ

 

Test controllable  

Controllability matrix=ὄểὃὄểὃὄ 

Since  

ὄ  
χ
ρω
τσ

, ὃὄ  
π ρ π
π π ρ
ς υ ς

 
χ
ρω
τσ

ρω
τσ
υ

 

ὃ
π π ρ
ς υ ς
τ ψ ρ

 , ὃὄ=
τσ
υ
ρφχ

 

M= ὄểὃὄểὃὄ  
χ ρω τσ
ρω τσ υ
τσ υ ρφχ

  

ȿ-ȿ=61492 π  is system is complete controllable 

Example3.6 the following systems are completely state controllable 
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ὃ
ς π π
π ς π
π σ ρ

      ὄ
π ρ
ρ π
π ρ

             ὅ
ρ π π
π ρ π

      Ὀ
π π
π π

 

ὃ
π ς
ς π
σ ρ

        ὃ
τ π π
π τ π
π ω ρ

    ὃὄ
π τ
τ π
ω ρ

 

ὓ
π ρ π ς π τ
ρ π ς π τ π
π ρ σ ρ ω ρ

 

 

Rank (M)=3 ,  det(left half)=-1(3)=-3 0 fully state controllability 

 

3.1.3 Vander Monde Matrix 

If the state model is obtained using the phase variables then the matrix A is 

in bush for or phase variable form as  

 

And the characteristic equation i.e. denominator of T(s) is 

 Ὂί ί ὥί Ễ ὥ ί ὥ π 

In such a case model matrix takes a form of a special matrix as 
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Such a model matrix for matrix A which in phase variable is called Vander 

monde matrix  

Example 3.7 consider a state model with matrix A as 

 

 Determine (a) characteristic equation  (b) Eigen values (c) Eigen vector and 

model matrix  ,also prove that the transformed ὓ ὃὓ a diagonal matrix 

 

 

 

 

 

 (a) Characteristic equation is ȿᴧὍ ὃȿ 

ὃ ᴧ
ρ π π
π ρ π
π π ρ

π ς π
τ π ρ
τψ στ ω

π    ȟ
ᴧ ς π
τ π ρ
τψστᴧ ω

π 

 

ᴧ ᴧ ω ς τψπ π ψᴧ ω στᴧπ 

 ᴧ ωᴧ ςφᴧςτ π 
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This is required characteristic equation 

(b) To find Eigen values test ᴧ ς for root  

 

ᴧ ς ᴧ χᴧ ρς π  ὭȢὩ ᴧ ς ᴧ σ ᴧ τ π 

ὭȢὩ   ᴧ ς  ȟᴧ σ  ὥὲὨ ᴧ τ  

 

These are the Eigen values of the matrix A 

(c) To find Eigen vectors, obtain matrix ᴧὍ ὃ  for each Eigen values by 

substituting value of ᴧ in above equation 

Ὂέὶ ᴧ ς ȟᴧὍ ὃ
ς ς π
τ ς ρ
τψστ χ

 

ὓ
ὅ
ὅ
ὅ
 ύὬὩὶὩ ὧ ȟ ὧ ȟ ὧ  ὧέὪὥὧὸέὶ έὪ  ὶέύ ρ 

ὓ
ςπ
ςπ
τπ

ρ
ρ
ς
  ὸὬὩ ὧέάάέὲ  Ὢὥὧὸέὶ ὧὥὲ ὦὩ ὸὥὯὩὲ έόὸ  

Ὂέὶ ᴧ σȟᴧ Ὅ ὃ
σ ς π
τ σ ρ
τψστ φ

 

ὓ
ὅ
ὅ
ὅ

ρφ
ςτ
ψ

ς
σ
ρ
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Ὂέὶ ᴧ τ  ᴧ Ὅ ὃ
τ ς π
τ τ ρ
τψστ υ

 

ὓ
ὅ
ὅ
ὅ

ρτ
ςψ
υφ

ρ
ς
τ

 

ὓȟὓ ὥὲὨ ὓ ὥὶὩ ὸὬὩ ὩὭὫὩὲ ὺὩὧὸέὶί ὧέὶὶίὩίὴέὲὨὭὲὫ ὸέ ὸὬὩ ὩὭὫὩὲ ὺὥὰόὩί 

 ᴧ  ȟᴧ  ὥὲὨ ᴧ  

(d) The modal matrix is  

ὓ ὓȡὓȡὓ
ρ ς ρ
ρ σ ς
ς ρ τ

 

Let us prove ὓ ὃὓ Ὥί ὥὨὭὥὫέὲὥὰ άὥὸὶὭὼ 

ὓ
ὃὨὮὓ

ȿὓȿ

ὧέὪὥὧὸέὶ έὪ ὓ

ȿὓȿ
 

ὃὨὮὓ
ρπψ χ
χ φ υ
ρ ρ ρ

ρπ χ ρ
ψ φ ρ
χ υ ρ

 

ȿὓȿ
ρ ς ρ
ρ σ ς
ς ρ τ

ρ  ȟ
ὃὨὮὓ

ȿὓȿ
 
ρπ χ ρ
ψ φ ρ
χ υ ρ

 

 

ὃὓ
π ς π
τ π ρ
τψ στ ω

ρ ς ρ
ρ σ ς
ς ρ τ

ς φ τ
ς ω ψ
τ σ ρφ

 

ὓ ὃὓ
ρπ χ ρ
ψ φ ρ
χ υ ρ

ς φ τ
ς ω ψ
τ σ ρφ

ς π π
π σ π
π π τ

ᴧ π π
π ᴧ π
π π ᴧ

Ў 

 

3.1.4 MIMO System 
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 For multiple inputs multiple output systems a single transfer function does 

not exist. There exists a mathematical relationship between each output and 

all the inputs. Hence for such systems there exists a transfer matrix rather 

than transfer function but method of obtaining transfer matrix remains same 

as before. 

Example 3.8 Determine the transfer matrix for MIMO system given by 

ὼȢ

ὼȢ  
π σ
ς υ

  
ὼ
ὼ

ρ ρ
ρ ρ

  
Ὗ
Ὗ

 

ὣ
ὣ

ς ρ
ρ π

  
ὼ
ὼ  

From given state model 

A
π σ
ς υ

  , B
ρ ρ
ρ ρ

  , C
ς ρ
ρ π

 , D π 

T.M ὅὛὍὃ ὄ Ὀ 

ὛὍὃ=
ί σ
ς ί σ

   

Adj ὛὍὃ
ὅ ὅ
ὅ ὅ

=
ί υ ς
σ ί

ί υ σ
ς ί

  

ȿὛὍὃȿ ί υί φί ί ς ί σ 

Ḉ ὛὍὃ
ȿ ȿ

=
 

 

Ḉ T.M ὅὛὍὃ ὄ =
   

 

 

=
  

= 
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           3.1.5 Gilbertôs Test for controllability 

For Gilbertôs test it is necessary that the matrix A must be in canonical form 

.Hence the given state model required to be transformed to the canonical 

form first to apply the Gilbert test 

Consider single input linear time invariant system represented by 

ὢϽ ὃὢὸ ὄὟὸ 

Where A is not in the canonical form then it can be transformed to be 

canonical form by the transformation    ὢὸ ὓὤὸ     Where M=model 

matrix. The transformed state model, as derived earlier take the form 

ὤϽὸ ὤɳὸ ὄͯὟὸ 

Where ɳ ὨὭὥὫέὲὥὰ άὥὸὶὭὼ 

ὄͯ ὓ ὄ 

It is assumed that the Eigen values of A are distinct in such a case the 

necessary and sufficient condition for are complete state controllability is 

that the vector matrix  ὄͯshould not have any zero elements If it has zero 

elements then the corresponding state variables are not controllable if the 

Eigen values are repeated then matrix A cannot be transformed to Jordan 

results Jordan canonical form, as  

 

In such a case the condition for complete state controllability is that the 

elements of any row of ὄͯ that corresponds Jordan to the last row of each 

Jordan block are not all zero  

Example 3.9 consider the system with state equation 
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Estimate the state controllability by (i) kalman,s test and (ii) Gilbertôs test 

(i)  Kaman,s test 

ὓ ὄȡὃὄȡὃὄȣὔ σ 

ὃὄ
π ρ π
π π ρ
φ ρρ φ

π
π
ρ

π
ρ
φ

 

ὃ
π ρ π
π π ρ
φ ρρ φ

π ρ π
π π ρ
φ ρρ φ

π π ρ
φ ρρ φ
σφ φπ ςυ

 

ὃὄ
π π ρ
φ ρρ φ
σφ φπ ςυ

π
π
ρ

ρ
φ
ςυ
   ȟὓ

π π ρ
π ρ φ
ρ φ ςυ

 

ρ ȟὸὬόί ȿὓȿ Ὥί ὲέὲίὭὲὫόὰὥὶ 

Hence the rank of M is 3 which is  n  thus the system is completely state 

controllable  

(ii)  Gilbert test. For this it is necessary to express A in the canonical 

form find the Eigen values of A 

 

 ᴧὍ ὃ
ᴧ ρ π
π ᴧ ρ
φ ρρᴧ φ

π    ȟᴧ φᴧ ρρᴧφ π   

ᴧ ρ ᴧ ς ᴧ σ π  ȟᴧ ρȟ ᴧ ςȟ    ᴧ σ 

ὓ

ρ ρ ρ
ᴧ ᴧ ᴧ

ᴧ ᴧ ᴧ

ρ ρ ρ
ρ ς σ
ρ τ ω
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ὓ
ὃὨὮὓ

ȿὓȿ

φ φ ς
υ ψ σ
ρ ς ρ

ς

σ ςȢυ ὕȢυ
σ τ ρ
ρ ρȢυ πȢυ

 

ὄͯ ὓ ὄ
σ ςȢυ πȢυ
σ τ ρ
ρ ρȢυ πȢυ

πȢυ
ρ
πȢυ

 

  

As matrix A is in phase variable form the model matrix M is Vander monde 

matrix.As none of the elements of ὄͯare zero the system is completely state 

controllable. As Gilbertôs test requires transforming matrix A into canonical 

form it is time consuming and hence kalman,s test is popularly used to test 

controllability 

3.1.6 Output controllability 

 In the practical design of a control system, we may want to  control the 

output rather than the state of the system. Complete state controllability.is 

neither necessary nor sufficient for controlling the output of the system for 

this reason, it is desirable to define separately complete output 

controllability. 

Consider the system described by 

 

                         ὼȢ Ax ὄό                                                                  (3.14) 

                                 ὣ ὅὢ Ὀό                                                              σȢρυ 

Where x = state vector (n-vector) 

          U=control vector(r-vector) 

        ὣ έόὸὴόὸ ὧέὲὸὶέὰ (m-vector) 

        A=n n   matrix 

       B =n ὶ  matrix 

      ὅ ά ὲάὥὸὶὭὼ 
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     Ὀ ά ὶ άὥὸὶὭὼ 

The system described by Equations (3.14) and (3.15) is said to be 

completely output. Controllable if it is possible to construct an unconstrained 

control vector u (t) that will. Transfer any given initial output yAt0 B to any 

final output yAt1 B in a finite time interval ὸ  t  ὸ ,It can be proved that 

the condition for complete output controllability is as follows: 

The system described by Equations (3.14) and (3.15) is completely output 

controllable. If and only if the m (n+1) r matrix 

ὅểὅὃὄểὅὃὄểỄỄểὅὃ ὄểὈ 

4.1.7 Uncontrollable System. 

An uncontrollable system has a subsystem that is physically disconnected 

from the, Input 

 

3.2 OBSERVABILITY 

We discuss the observability of linear systems. Consider the unforced 

System described by the following equations 

ὼȢ Ax                                                                                              (3.16) 

 ὣ ὅὢ                                                                                                        σȢρχ 

Where x = state vector (n-vector) 

        ὣ έόὸὴόὸ ὧέὲὸὶέὰ (m-vector) 

        A=n n   matrix 

       C =m ὲ  matrix 

The system is said to be completely observable if every state x (ὸ)  can be 

determined from the observation of y(t) over a finite time interval, ὸ  t  

ὸ  
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 The system is therefore completely observable if every transition of the 

state eventually affects every element, of the output vector. The concept of 

observability is useful in solving the problem of reconstructing 

unmeasurable state variables from measurable variables in the minimum 

possible length of time we treat only linear, time-invariant systems. 

Therefore, without loss of generality, we can assume that ὸ=0 the concept 

of observability is very important because, in practice, the difficulty. 

Encountered with state feedback control is that some of the state variables 

are not. Accessible for direct measurement, with the result that it becomes 

necessary to estimate the unmeasurable state variables in order to construct 

the control signals. It will be. Shown in that such estimate of state variables 

are possible if and only if the system is completely observable. In discussing 

observability conditions, we consider the unforced system as given By 

Equations (3.16) and (3.17).The reason for this is as follows: If the system is 

described 

                         ὼȢ Ax ὄὟ             

                                 ὣ ὅὢ ὈὟ                        

Then 

X (t) =Ὡ x (0) +᷿ Ὡ ὄό†Ὠ† 

And y (t) is 

     Y (t) = Ὡ x (0) +᷿ Ὡ ὄό†Ὠ†ὈὟ  

Since the matrices A, B, C, and D are known and u (t) is also known, the last 

two terms, on the right-hand side of this last equation are known quantities. 

Therefore they may be subtracted from the observed value of y (t). Hence, 

for investigating a necessary and sufficient condition for complete 
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Observability, it suffices to consider the system described by Equations 

(3.16) and (3.17) 

3.2.1 Complete Observability of Continuous-Time Systems. 

 Consider the system described by Equations (3.16) and (3.17).The output 

vector Y (t) is 

 Y (t) =CὩ X (0). 

Referring to Equation (3.10) or (3.12), we have 

 

  Ὡ В ‌(†)ὃ 

 

Where n is the degree of the characteristic polynomial. Note that Equations 

(3.8) and (3.10) with m replaced by n can be derived using the characteristic 

polynomial. Hence  we obtain. 

ώὸ  В ‌ (†) ὅὃὢπ 

 

ώὸ ‌ ὸὅὢπ ‌ ὸὅὃὢπ Ễ ‌ ὸὅὃ ὢπ            σȢρψ 

If the system is completely observable, then, given the output y (t) over a 

time interval ὸ  t  ὸX (0) is uniquely determined from Equation .(3.18) 

It can be shown that this requires the rank of the nm n matrix 

ụ
Ụ
Ụ
Ụ
ợ
ὅ
ὅὃ
ể
ể

ὅὃ Ứ
ủ
ủ
ủ
Ủ

 

From this analysis, we can state the condition for complete observability as 

follows the system described by Equations (3.16)and 3.17) is completely 

observable if and only if the n nm matrix 

ὅ ểὃ ὅ ểỄỄểὃ  ὅ  
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Is of rank n or has n linearly independent column vectors. This matrix is 

called the.observability matrix 

Example 3.10 

 consider the system .Is this system controllable and observable. Since the 

rank of the matrix 

ὼȢ

ὼȢ  
ρ ρ
ς ρ

  
ὼ
ὼ

π
ρ

 

Y= ρ π
ὼ
ὼ 

                  ὄểὃὄ
π ρ
ρ ρ

  

Is 2, the system is completely state controllable. For output controllability, 

let us find the rank of the matrix  ὅὄểὅὃὄ  since 

                        ὅὄểὅὃὄ  = ρ    π 

The rank of this matrix is 1. Hence, the system is completely output 

controllable. To test the observability condition, examine the rank of  

 ὅ ểὃ ὅ  

  Since 

 ὅ ểὃ ὅ 
ρ ρ
π ρ

 

The rank of ὅ ểὃ ὅ  is 2. Hence, the system is completely observable 

 

 3.2.2 Conditions for Complete Observability in the Plane 

The conditions for complete observability can also be stated in terms of 

transfer functions or transfer matrices. The necessary and sufficient 

conditions for complete observability are that no cancellation, occur in the 

transfer function or transfer matrix. If cancellation occurs, the canceled, 

mode cannot be observed in the output 
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Example3:11  

. Show that the following system is not completely observable 

ὢϽ ὃὢ ὄὟ 

                                                        Y ὅ 

Where 

X=

ὢ
ὢ
ὢ

,   A
π ρ π
π π ρ
φ ρρ φ

,    B
π
π
ρ

,     C τ υ ρ 

Note that the control function u does not affect the complete observability of 

the system to examine complete observability, we may simply set u=0. For 

this system, we have 

ὅ ểὅὃ ểὃ ὅ  
τ φ φ
υ χ υ
ρ ρ ρ

 

Note that 

τ φ φ
υ χ υ
ρ ρ ρ

π 

Hence, the rank of the matrix ὅ ểὅὃ ểỄỄ ὃ ὅ   is less 

than3.Therefore, the system is not, completely observable. 

Comments. The transfer function has no cancellation if and only if the 

system is completely, state controllable and completely observable. This 

means that the canceled transfer, function does not carry along all the 

information characterizing the dynamic system. 

3.2.3 Alternative Form of the Condition for Complete Observability. 

Consider the System described by Equations (13) and (14), rewritten 

ὢϽ ὃὢ                                                                                                          σȢρω 
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ὣ ὅὢ                                                                                                              ςȢςπ    

                                           

Suppose that the transformation matrix P transforms A into a diagonal 

matrix, or    

ὖ ὃὖ Ὀ 

Where D is a diagonal matrix  let us define 

ὢ ὖὤ 

Then Equations (16) and (17) can be written 

ὤϽ ὖ ὃὖὤὈὤ 

                                                  ὣ ὅὖὤ 

Hence 

ὣὸ ὅὖὩ ὤπ 

The system is completely observable if (1) no two Jordan blocks in J are 

associated with, the same eigenvalues, (2) no columns of CS that correspond 

to the first row of each. Jordan block consist of zero elements, and (3) no 

columns of CS that correspond to, distinct eigenvalues consist of zero 

elements  

                  3.2.4 Gilbert test observability 

It is known that for Gilbert test the state model must be expressed in the 

canonical form; consider the state model of linear time invariant system, as 

ὢϽὸ ὃὢὸ ὄὟὸ    ὥὲὨ  ὣὸ ὅὢὸ 

Use the transformation ὢὸ ὓὤὸ  ύὬὩὶὩ ὓḳάέὨὩὰ άὥὸὶὭὼ  

Ḉ  ὣὸ ὅὓὤὸ ὅͯὤὸ           ύὬὩὶὩ  ὅͯ ὅὓ 

For a single input single output system 
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ὣὸ ὅͯὤὸ ὅͯ   ὅͯ    Ễὅͯ

ᾀ

ᾀ ὸ
ể
ᾀ ὸ

 

ὅͯ ᾀὸ  ὅͯ ᾀ ὸ   Ễὅͯ ᾀ ὸ 

Due to the canonical form all the state are decoupled and not like the each 

other. Hence for the system to be observable each term corresponding to 

each state must be observed in the output Hence none of the coefficient of 

the  ὅͯ must be zero thus the system is the complete observable if all the 

coefficients of  ὅͯ are nonzero coefficient none of the coefficient is zero if 

any  element is zero  the corresponding state remains unobservable  i.e 

shielded from observation 

Example 3.12 evaluate the observability of the system with using Gilbertôs 

test 

ὃ
π ρ π
π π ρ
π ς σ

 ȟὄ
π
π
ρ
 ὥὲὨ ὅ σ τ ρ 

 

For Gilbertôs test find the Eigen values 

ᴧὍ ὃ
ᴧ ρ π
π ᴧ ρ
π ς ᴧ σ

π    ȟᴧ σᴧ ςᴧπ 

ᴧᴧ σᴧς π  Ḉᴧᴧ ρ ᴧ ς π 

ᴧ π ȟᴧ ρ ȟᴧ ς 

 

As the Eigen values are distinct the model matrix M is the Vander Monde 

matrix 

ὓ

ρ ρ ρ
ᴧ ᴧ ᴧ

ᴧ ᴧ ᴧ

ρ ρ ρ
π ρ ς
π ρ τ
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When the model transformed form 

ὅͯ ὅὓ σ τ ρ
ρ ρ ρ
π ρ ς
π ρ τ

σ π ρ 

As there is one zero elements in  ὅͯ the system is not complete observsble 

 

Example 3.13 Use controllability and observability matrices to determine 

whether the system represented by the flow graph shown the figure is 

completely controllability and completely observability 

   

  

 

The value of variable at the node is an algebraic sum of all signals entering 

at the node 
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For controllability  ὓ ȡ ȡ       

ὃὄ
σ ρ π
ρ ς ρ
ρ ρ π

π
ς
σ

ς
ς
ς
   

ὃ
σ ρ π
ρ ς ρ
ρ ρ π

σ ρ π
ρ ς ρ
ρ ρ π

ρπ υ ρ
τ φ ς
ς ρ ρ

 

 

 

 

ὃὄ
ρπ υ ρ
τ φ ς
ς ρ ρ

π
ς
ς

ψ
ψ
π

 

ὓ
π ς ψ
ς ς ψ
ς ς π

     Ḉ ȿὓȿ σς π ὬὩὲὧὩ ὶὥὲὯ ὲ σ ὲ  

The system is fully state controllable 

For observablility  ὓ  ὅȡὃὅ ȡὃ ὅ    ȟὲ σ 

ὃὅ
σ ρ ρ
ρ ς ρ
π ρ π

ρ
ς
ρ

ς
τ
ς

 

ὃ ὅ
σ ρ ρ
ρ ς ρ
π ρ π

ς
τ
ς

τ
τ
τ

 

Ḉ ὓ  

ρ ς τ
ς τ ψ
ρ ς τ

        ȟȿὓ  ȿ π ὥὲὨ 
ς τ
ρ ς

π 

Thus ς ς determinant is zero hence the system is not observable 
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3.3 Principle of Duality 

We shall now discuss the relationship between controllability and 

observability .We shall introduce the principle of duality, due to Kaman, to 

clarify apparent analogies between controllability and observability. 

Consider the system Ὓ described by 

                         ὼȢ Ax ὄό             

                                 ὣ ὅὢ                     

Where x = state vector (n-vector) 

          U=control vector(r-vector) 

        ὣ έόὸὴόὸ ὧέὲὸὶέὰ (m-vector) 

        A=n n   matrix 

       B =n ὶ  matrix 

      ὅ ά ὲάὥὸὶὭὼ 

     Ὀ ά ὶ άὥὸὶὭὼ 

And the dual system Ὓ defined by 

ὤȢ ὃᶻὤ ὅᶻὠ 

ὲ ὄᶻὤ 

Where 

Z State vector (n-vector) 

V=control vector (m-vector) 

n output vector(r-vector) 

 ὃᶻ ὧέὲὮόὫὥὸὩ ὸὶὥὲίὴέίὩ έὪ ὃ 

  ὄᶻ  ὧέὲὮόὫὥὸὩ ὸὶὥὲίὴέίὩ έὪ ὄ 

 ὅᶻ  ὧέὲὮόὫὥὸὩ ὸὶὥὲίὴέίὩ έὪ ὅ 

The principle of duality states that the system Ὓ is completely state 

controllable.(Observable) if and only if system Ὓ is completely observable 
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(state controllable).To verify this principle, let us write down the necessary 

and sufficient conditions for complete state controllability and complete 

Observability for systems Ὓ and Ὓ 

For system Ὓ  : 

1. A necessary and sufficient condition for complete state controllability is 

that the. Rank of the n nr matrix 

ὄểὃὄểỄὃ ὄ 

Be n  

  2. A necessary and sufficient condition for complete observability is that 

the rank of the n nm matrix 

ὅ ểὃ ὅ ểỄỄểὃ  ὅ  

Be n: 

For system ╢  

A. A necessary and sufficient condition for complete state controllability is 

that the. Rank of the n nm matrix 

ὅ ểὃ ὅ ểỄỄểὃ  ὅ  

Be n 

B. A necessary and sufficient condition for complete observability is that the 

rank of the n nr matrix 

ὄểὃὄểỄὃ ὄ 

Be n. 

By comparing these conditions, the truth of this principle is apparent. By use 

of this, principle, the observability of a given system can be checked by 

testing the state controllability, of its dual 
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3.4 Detectability.  

For a partially observable system, if the unobservable modes are, stable and 

the observable modes are unstable, the system is said to be detectable. Note, 

that the concept of detectability is dual to the concept of stabilizability 
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                                      Chapter Four    

                        Bounded controls  

4. Introduction 

Time delay often occurs in engineering system. Since the existence of time 

delay usually instability of the system the study on the Time delay systems 

has received considerable attentions and many stability criteria for time 

delay systems can be found in the literature. Stability criteria for time delay 

systems. Tend to fall into one of the two categories: delay independent and 

delay dependent .As the name implies delay independent criteria provide 

conditions which guarantee stability for any length of the time delay on the 

other hand delay dependent criteria exploit a priori knowledge of upper 

bounds on the a mount of time delay, These criteria since more information 

about the Time delay is assumed to be known  

4.1 stability 

Definition of stability  4.1 

A continuous system (discrete time system) is stable if its impulse response 

yf(t) (koneke delta response yf(t) approaches zero at time approaches 

infinity. 

Alternatively the definition of a stable system can be upon the response of 

the system to bounded inputs that is inputs whose magnitudes are less than 

some finite value for all time. 
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Other definition of stability 4.2 

A continuous or discrete time system is stable if every bounded input 

produces a bounded output (BIBO) also definition. The system is stable if  

 

f(t) ᶌ Ð      as    t ᶌ Ð 

  

 

 

 

The system is an unstable if f(t) Ÿ Њ     as    t Ÿ Њ 

 

 

 

 

The system is a marginally stable f(t) does not decay to 0 or go to Њ as 

tŸ Њ 

 

 

 

 

 

 

 
 

f(t) 

 

   

T 

 f(t) 

 

     T 

 

 

t 
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Consideration of degree of stability of a system often provides valuable     

information about its behavior. That is if it stable how close is it to being 

unstable and Definition of stability  

 

 

 

 

 

Poles on the iw axis: marginally stable in above figure we define stability the 

closed loop transfer function left hand side (BIBO). 

4.1.1 Characteristic Root locations for continuous systems 

A major result of chapter 3 is that the impulse response of a linear time 

invariant continuous system is a sum of exponential time functions. Whose 

exponents are the roots of the system characteristic equation A necessary 

and sufficient condition for the system to be stable is that real parts of the 

roots of the characteristic equation have negative real parts. This ensures that 

the impulse response will decay exponentially with time. If the system has 

some roots with real parts equal to zero but none with positive real parts the 

system is said to be marginally stable. In this instance the impulse response 

does not decay to zero although it is bounded but certain other inputs with 

produce unbounded outputs therefore marginally stable system unstable. 

 

 

 

Ὡ  

i w 

Ὡ  „ Ĭ 
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Example 4.1 

Differential Equation  

(S
2
 +1) y (S)   = U(S) 

Has the characteristic equation  

S
2
+1=0 

This equation has the two roots  j 

Since these roots have zero real parts the system is not stable it is however 

marginally stable since the equation has no roots with positive real parts. In 

response to most input or output will contain term of the form y= t constant  

This is unbounded 

 

4.1.2 Routh stability criterion   

The Routh criterion is a method of determining continuous system stability 

for system with an nth order characteristic equation of the form  

ans
n
 + an-1 s

n-1
 +éééééééééé+a1s +a0=0 

The criterion is applied using a Routh table defined as follows  

 

 

 

 

 

Ὓ          ὥ        ὥ                 ὥ  éééééééé.. 

Ὓ        ὥ             ὥ              ὥ ééééééééééé 

.            ὦ            ὦ                 ὦ ééééééééééé. 

.          ὧ              ὧ        ὧ éééééééééé. 

. 
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Where  ὥ , ὥ  ,éééé, ὥ   are the coefficient of the characteristic 

equation and  

ὦ ɀ   

ὦ ɀ 
                                                                         

 

ὅ                      ȟ                                     
 

The table is continued horizontally and vertically unit only zero are obtained 

before the next row is computed without disturbing the properties of the 

table. 

The Routh criterion .all the roots of the characteristic if the elements of the 

first column of the Routh table have the same sign. Otherwise the number of 

roots with positive real parts is equal to the number of change of sign 

 

Example 4.2 

S
3
 + 6S

2 
+12S+8 =0 

 

 

                                                    ὦ    

 

ὅ                                                                                                      

ί 

ί 

ί 

ί 

 

1          12     0 

6           8       0 

        0 

8 
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Since there are no changes of sign in the first column of the table all the 

roots of the equation have negative real parts. Often it is desirable to 

determine arrange of value of a particular system parameter for which the 

system is stable. This can be accomplished by writing the inequalities the 

ensure that there is no change of sign in the first column of the Routh table 

for the system  

These inequalities then specify the range of allowable values of the 

parameter. 

For no sign change in the first column it is necessary that the condition 

ψ ὑ π ̪ ρ ὑ π 

Be satisfied .thus the characteristic equation has roots with negative real 

parts if -1< k <8, the simultaneous solution of these two inequalities. a row 

of zero the Ὓ row of the Routh Stable indicates that the polynomial has a pair 

of roots which satisfy the auxiliary equation formed as flows 

AὛ +B =0 

Where A and B are the first and second elements of the Ὓ  row zero in the  

To continue the stable the zero in the Ὓ row are replaced with the 

coefficients of the derivative of auxiliary equation is 2AS+0=0 

The coefficients 2A and 0 are then entered into the Ὓrow and the table is 

continued as described above 
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Example 4.3 

ί ςί σί τί υ π 

 

 

 

 

 

                                                                                                                  

The system unstable 2 poles RHP 

 Special case 1 

Example4.4  

ί ςί ί ς π 

 

        

                                                                                                     

                                                                                                     E = 0.0001 

The system is stable 

 

 

 

 

 

ί 

ί 

ί 

ί 

ί 

1          3         5 

2       4          0 

1      5         0 

-6      0       0 

5 

 

ί 

ί  

ί 

ί 

πɴ         π                                                      

1          1 

2          2 

1            0 
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Special case 2 

Example 4.5 

ί ςί ςτί τψί ςυί υπ π 

 

                                                                                          

  

                                                                        

 

 

                                                                            

The system is unstable 

I poles RHP 

4.1.3 Hurwitz stability criterion  

The Hurwitz criterion is another method for determining whether all the 

roots of the characteristic equation of a continuous system have negative real 

parts. 

This criterion is applied using determents formed form the coefficients of the 

characteristic equation. 

It is assumed that the first coefficient an is positive the determinants Ai I = 

1,2,3,éééééé,n-1 

Are formed as the principal minor determinants of the determinant 

 

ί  

ί 

ί 

ί 

ί 

ί 

 

1    24            -25     

2      48            -50 

π       π           0       

24       -50          o 

112,7    0    

   -50 
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The determinant are thus formed as follows  

D1=  ὥ 

  

 

 

And so on up to D 

All the roots of the characteristic equation have negative real pats if and only  

If n=3 

D

ὥ ὥ π
ὥ ὥ π
π ὥ ὥ

ὥὥὥ ὥ ὥ                ȟD  
 

D> 0                                            i= 1,2,ééééé..,n            

D = ὥ  

Thus all the roots of the characteristic equation have negative real parts if  

Dn=      ὥ     ὥ éééé...é
ὥ ὭὪ ὲ έὨὨ
ὥ  ὭὪ ὲ ὩὺὩὲ

  0  0............................. 

          ὥ                                  
ὥ  ὭὪ ὲ έὨὨ
ὥ ὭὪ ὲ ὩὺὩὲ 

  0é.........éé.......é0 

         0                 ὥ   ὥ ééééé.ééé...........................é.0 

         0                 ὥ   ὥ éééé.é.éé.........................éé. 0  

         0ééééééééééééééééééééééééὥ 

= 
ὥ ὥ
ὥ ὥ        =  ὥ  ὥ    - ὥ ὥ   

= 

ὥ ὥ ὥ
ὥ ὥ ὥ
π ὥ ὥ

=  ὥ  ὥ  ὥ +ὥ ὥ  ὥ  ὥὥ  - ὥ ὥ 
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ὥ> 0    ̪ὥὥ - ὥὥ> 0  ̪ ὥὥὥ - ὥὥ>0 

 

 

 

 

 

 

Example4.6  

Determinant if the characteristic equation below represents a stable or au 

stable system using the Hurwitz criterion method  

  ί ψί ςτί ςτ π 

D
ψ ςτπ
ρ ρτπ
π ψ ςτ

 

                D ψρτςτπ ψ ςτρ ςτπ πρ ψ π

ςφψψυχφςρρ 

D
    ȟ

 D  

In this method the system is a stable iffD> 0 

\D= 2112 >0 the system is stable  

D =ὥ  =8  

\Each determinant is positive  

= 

ὥ   ὥ     ὥ
ὥὥ ὥ  

π        ὥ         ὥ

=  
ψ          ςτ          π
ρ          ρτ           π
π           ψ         ςτ
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\The system is a stable. 

Example4.7  

For what range of values of K is system with following characteristic 

equation stable using Hurwitz method  

Ὓ ὯίςὯ ρ π 

The Hurwitz determinant for this system  

D
      

 

  D Ὧ    

In order for this determinant stable positive  

It is necessary that K >0   an 2K-1> 0 

Thus the system is stable if K > ½  

Example4.8 

Determine the Hurwitz condition for stability of the following general fourth 

order characteristic equation assuming  ὥ  is positive  

ὥ S
4
+ὥ S

3
 +ὥ S

2
 +ὥ S+ὥ =0 

The Hurwitz determinants are  

 

 

 

 

= 

ὥ ὥ π π
ὥ ὥ ὥ π
π ὥ ὥ π
π ὥ ὥ ὥ

ὥ ὥ ὥὥ ὥὥ)- ὥὥὥ   

= 

ὥ ὥ π
ὥ ὥ π
π ὥ ὥ 

    ὥ ὥ ὥ ὥὥ -ὥὥ 
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D =ὥ  

 

The conditions for stability are then ὥ > 0 ̪ὥ ὥ - ὥ ὥ > 0  ̪ὥ ὥ ὥ - 

ὥὥ -ὥὥ>0  

ὥ (ὥ ὥὥ ὥὥ)- ὥὥὥ>0 

Is the system with the following characteristic equation stable? 

S
4
+3S

3
 +6S

2
 +9S+12=0 

Substituting the appropriate values for the coefficient in the general 

condition of above Example of Example (3 )we have  

ὥ =1      ̪ὥ= 3     ̪ὥ= 6     ̪ὥ=9    ̪ὥ =12 

ὥ> 0Ý   3 > 0 

ὥὥ - ὥὥ> 0   Ý3.6 -1.9 > 0 Ý 18-9= 9 > 0 

ὥὥὥ - ὥὥ -ὥὥ> 0  Ý(3.6.a) - ( 3)
2
 - (1)(a)

2
> 0 Ý 162-108-81 > 0 Ý 

 -27< 0 

3((6.9,12) -3(12)
2
) - (9)

2
(12)(1)>0  

= 3(648) - 432) - 972 > 0 = 648 ï 972 = -324< 0 

Since the last two conditions are not satisfied the system is unstable 

 

= 
ὥ  ὥ 
ὥ ὥ

       =  ὥ ὥ   - ὥ ὥ  
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   4.1.4 Continued Fraction stability criterion   

  This criterion is applied to the characteristic equation of a continuous 

system by forming a continued fraction form the odd and even portion of the 

equation in the following manner  

Let ὗ(s) = ὥ S
n
+ὥ  S

n-1
 +ȣȢ +ὥ S+ὥ  

ὗ1(s) = ὥ S
n
+ὥ  S

n-2
 +ȣȣȢȢ 

ὗ2(s) = ὥ  S
n-1

+ὥ  S
n-3

 +ȣȣȢȢ 

Form the Fraction       and then divide the denominator into the 

numerator and Invert the remainder to form a continued Fraction as follow: 

 

      
 

 
(   

   ) ( ) ỄȢ

 

ὬὛ
ρ

ρ
 

                          ὬὛ
ρ

ρ
   

                                               ὬὛ
ρ

ρ
  

                                                                 Ệ 
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If h1 ̪ h2 , éééhn  are all positive then all roots of Q(S) =0 have negative 

real parts  

Example4.9  

Using the continued Fraction stability criterion the polynomial    

(S) = S
3
 +4S

2
+8S+12  

                               Is divided into the two parts  

(S) = S
3
 +8S 

(S) = 4S
2
+12  

The continued Fraction for       is  

()

()
  = 

 
 = ¼ s +   = ¼ s + 

 
 

 

Ḉ All coefficient of s are positive, the polynomial has all roots in the left ï 

plane and the system with the characteristic equation      (Ó)=0 

ḈThe system is stable  

Example4.10 

Determine bounds the parameter k which a system the following 

characteristic equation is stable  

S
3
 +14s

2
+56s+K=0 

The continued Fraction for is  

 = 
 

 
  = 

 
ί +( )S = 

 
ί + Ὓ Ⱦ 
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For the system to be stable the following condition must be satisfied 

 56- > o  

And k>0 that is 0 < k < 784 

Example 4.11 

Derive conditions for all the roots of a general third order polynomial to 

have negative real parts  

For   Q (s) = ὥ ί ὥ ί ὥ ί ὥ  

  The continued Fraction for    is  

   

  
  =  

 
ί

 
   

 

  
 ί  =   

 
ί+  

 
  

 

ί
  

  
 

 

 

The condition for all the roots of Q(s) to have negative real parts are then  

 

 
> 0      ̪ 

 
   

 

> 0   ̪
 

   

 

 
> 0 

Thus if ὥ is positive the required conditions are ὥ   ȟὥ  ȟὥ > 0 and  

ὥ ὥ  ̮̮̮̮ὥ ὥ  > 0 

Note that if ὥ   is not positive    (s) should be multiplied by -1 before 

checking the above  condition 

4:1:5 Stability criterions for Discrete Time systems   

The stability of discrete systems is determined by the roots of the discrete 

system characteristic equation  



117 
 

 ὥᾀ  ὥ ᾀ Ễȣȣȣ ὥᾀ ὥ π 

However in this case the stability region is defined by the unit circle ȿὤȿ=1 

in the Z- plane .A necessary and sufficient condition for system stability is 

that all roots of the characteristic equation have a magnitude less than one. 

That is be within the unit circle this ensures that the kronecker delta response 

decays with time .A stability criterion for discrete system similar to Routh 

criterion is called the jury test for this test the coefficients of the 

characteristic equation are first arranged in the Jury array row. 

 

 

 

 

 

 

 

 

 

Where 

 

 

 

zz 

1           

 ὥ  ὥ    ὥȣȣȣȣȣȣȣȣὥ   ὥ 

2    

     ὥ  ὥ     ὥ    ȣȣȣȣὥ       ὥ 

3    

      ὦ     ὦ        ὦȣȣȣȣȣ   ȣȢὦ 

4            

ὦ     ὦ          ὦ ȣȣȣ   ȣȢὦ 

5           ὧ   ὧ           ὧȣȣȣ   ȣȢὧ 

2n-5          ὶ     ὶ  ὶ      ὶ 

2n-4       ὶ      ὶ       ὶ           ὶ 

2n-3      ί      ί         ί 

Ὓ
            ȟ

     ȟὛ  

 

ὦ= 
ὥ ὥ  

ὥ   ὥ
      ὧ= 

ὦ      ὦ
ὦ       ὦ
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The first two rows are written using the characteristic equation coefficients 

and the next two rows are computed using the determinant relationships 

shown above .The process is continued with each succeeding pair of rows 

having one less column than the previous pair unit row 2n-3 is computed 

which only has three entries the array is then terminated .Jury test: 

Necessary and sufficient conditions for the root Q(Z)  =0, To have 

magnitudes less than one are  

Q(1)>0 

Q(-1)>> o    for   n even  

< 0    for   n      odd 

ȿὥȿ<ὥ 

ȿὦȿ>ȿὦ ȿ 

ȿὧȿ<ȿὧ ȿ 

ể 

ȿὶȿ>ȿὶȿ 

ȿίȿ>ȿίȿ 

Note that if the Q(1) or Q (-1) condition above are not satisfied the system is 

unstable and it is not necessary to construct the array  

4.2 Stabilization by bounded delayed control  

Time delay often occurs in engineering system. Since the existence of time 

delay usually instability of the system the study on the Time delay systems 

has received considerable attentions and many stability criteria for time 

delay systems can be found in the literature. Stability criteria for time delay 
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systems. Tend to fall into one of the two categories: delay independent and 

delay dependent, As the name implies delay independent criteria provide 

conditions which guarantee stability for any length of the time delay on the 

other hand delay dependent criteria exploit a priori knowledge of upper 

bounds on the a mount of time delay .These criteria since more information 

about the Time delay is assumed to be known  

Consider the following linear time delay stem  

ὢ (t) =Bx(t) + ὄὼὸ Ὕὸ                                                                (4.1). 

Where T(t) is a unknown time varying parameter which satisfies  

o  T(t)  h     ̪4Ô d        ᶅ ὸ 0 

x‭Ὑ   is the state B and ὄ‭Ὑ   are constant matrices  

In is used to denote n-dimensional identity matrix. Given a matrix M , the 

transposition an the conjugate transposition are denoted by ὓ  and M
*
 

respectively .A matrix M is called positive definite if m belongs to H
nĬm

 and 

ὢMX > 0 for all x‭ὅ      x π,The notation M >0 is used to denote positive 

definiteness the positive semi definiteness negative definiteness and negative 

semi definiteness have similar definitions except that the > is replaced by 

ͼ ͼ , ͼ ͼ and   respective. We use L2 to denote the space of square 

assumable Function defined to time interval [0,Њ .Given a signal f in L2 

space .We use ᴁὪᴁ L2 denote the L2norm off to denote the L2induced norm 

of G  Denote the time delay operator and let  

DBe(DT-I)Ј   that is  

DT (v): = v(t-T(t)) , and  

D(v) =᷿ Ö(!)
()

 d— 
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Lemma (A)    

Operator D is bounded ὒspace the ὒ induced norm of DT is equal to h and 

D 

Satisfies integral quadratic defined by 

s(v,w)= ᷿ Ὤ Ö(Ô) X Ö(Ô) -w(Ô) X w(t)dt 

Where X=ὢ  is any positive definite matrix  

Proof 

ὒὩὸ ὢ ὢ  έ   ὥὲὨ ύ D ύὩ ὬὥὺὩ  

W(t) =  ᷿ Ö(ʃ)
()

 d—      and  

×Ǯ(t)We(t) = - ᷿ ό(—)
()

ὢÖ(h)Ä—Äh\ 
X - (᷿ ÖhÄh) 

= ᷿ ᷿ Ö(—)8 Ö(h) Ä—Äh 

Using the Cauchy Schwartz in equality formula we get. 

×ǮW ᷿ Ὤ ὺhǬ ὺh ᷿ Ö(—)  Ö(h) Ä—Äh 

h ᷿ Ö(—) Ö(h) Ä—Äh ᷿ Ö(h)8 Ö(h)Äh  h ᷿ Ö(ʃ)  Ö(ʃ) Ä— 

This is turn implies  

᷿ ύὸ ύ(Ô)Ὠὸ ᷿ È Ö  Ǯ(—)(ʃ)Ä— = h ᷿ ᷿ Ö(t+s)  v(t+s) ds)dt 

h᷿ ᷿ Ö(Ô) v(t)dt) d s = ᷿ ὬÖǮ(t)v(t)dt 
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\D Bounded by h # 

4.3 Stability criteria based on integral quadratic constraints 

Lemma (B)   

Let mÍὙ be a constant matrix then the time delay system 

ὢὸ= Bx ὸ+ "x(t-T(t))    can be equivalent formulated as. 

ὢὸ=(B+m")x t (x)+ ()-m)"ύ(t)+m""ύ(t) + m"ύ(t)é τȢς 

Where ύ(t) =x(t-T(t)) 

ύ(t)=᷿ ὼ—Ὠ—  ̪ύ(t)=᷿ ύ —Ὠ— 

Using   one can put the linear time delay system standard linear fractional 

transformation setup for robustness analysis as shown in figure     ρ 

The linear time invariance (LTI) system G has a state space representation  

ὢ(t) = !1x ὸ + "1ύ1(t)+ "2ύ2(t)                                                                    τȢσ 

Ö1(t) = x(t) 

Ö2(t) = 
Øὸ
ύρ(Ô)

 

Where ύ1= DT(Ö1) ̪ύ2= DT(Ö2)  and matrices  

ὃӶ =B + m"  ̪ "1 =()-m)" ̪"2= [ m"B       m" ] 

Since system(4.1) ,(B) and (4.3) are equivalent stability of any one system 

implies stability of the other Two. 
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Stability criteria derived in the previous topic are used on simple norm 

bounded type of integral quadratic constraint for DT and D which might be 

very conservative .Less conservative criteria can be derived provided (ICS) 

which better characterize DT and D are a viable in this topic stronger (ICS) 

for DT and D are derived . 

Lemma (C)  ( swapping lemma for operator DT) 

Let H be a stable linear invariant system with state and let T denote operator 

of multiplying i- e  

T(v(t)): =4(t) v(t) then  

DT o H(s)= H(s) ЈDT- H(s)ЈTЈsH(s) 

Proof  

Let V be any L2 Function and defined y and ὤ to be  

Ù(t) = ὃy(t) + v(t) ̪   y(0)=0 

Ú= ὃz(t) + v(t-T(t)) ̪  z(0)=0 

Let r(t) = y(t-T(t)) - z(t)   and we have  

ὶ(Ô) = Ù(t- T(t))(1-4(t)) - ᾀ(Ô) 

 

 

G 

DT    

D 

Ö1 Ö2 ύ2 ύ1 

Figure (4.4) 
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= ὃ(y(t-T(t)) - z(t)) - 4(t)0 Ù(t- T(t)) 

= ὃ r(t) - 4(t)o$(Ù(t)) 

Which implies $((6) = Ho$(6) - Ho$((HV)) 

This conclude the proof 

)Dswapping lemma for operator ()Lemma (D 

Let H and T be the operators as defined in lemma 2 then  

DoH(s) =H(s)oD - H(s)oTo$oH(s) 

Proof  

The proof is similar to the of lemma   

Let V be any L2 Function and defined y  ̪z and x to be  

Ù(t) = ὃy(t) + v(t) ̪   y(0)=0 

Ú= ὃz(t) + ᷿ Ö (ʃ) Äʃ      
()

 ̪  z(0)=0 

r(t)=᷿ Ù(ʃ) Äʃ Ú(Ô)
()

 

One can easily verify that  

ὶ(Ô) =y(t- T(t))(1-4(t)) -y(t)- ᾀ(Ô) 

=᷿ Ù(ʃ) Äʃ Ú(Ô) 4(Ô)
()

0 y(t-T)(t) 

 =ὃ ᷿ Ù(ʃ) Äʃ ὃÚ(Ô) 4(Ô)π Ù(Ô 4)(Ô)
()

 

=ὃ r(t) - 4(Ô)π$(Ù(Ô)) 

Which implies D(HV) = HoD(V)- HoTo$(HV) this concludes the proof 
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4 .4 Bounded by a neighborhood 

╒▫►▫■■╪►◐░  

Let yÌὙ  and pick any T  0 and any integer q  1 

Then Ὑ(π) + Ὡ Ὑ(π) +ééé.+Ὡ( ) Ὑ(π) = Ὑ (π) 

Lemma(E)  if C is an open convex sub set of Ὑ  and L is a sub space of  Ὑ  

contained in C then c +L =C                  

   Proof 

Cleary c =c +0  C +L  ̪ so we only need prove the other inclusion pick any 

x Í C and  yÍ L then for all Í  0 

x+y = 
Í
ρ Í)Ø

Í

Í

Í

Í
ώ 

Since C is open (1+Í)xÍC for some sufficiently small Í π 

Since L is a sub space 
Í

Í
ώÍL Ì c 

That x+ y Í# ÂÙ ÃÏÎÖÅØÉÔÙ  

Lemma (H) 

Let u ÌὙ  and pick any Two S  ̪T  0 then  

Ὑ(π) + Ὡ Ὑ(π) = Ὑ (π) 

   Proof  

Pick. 

ὼ = ᷿ Å( )  Bύ(T)dt = ᷿ Å( )  Bύ(T-s)dt    and  
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ὼ = ᷿ Å( )  Bύ(T)dt 

With inputs ύ U- valued ̪ Note that  

Ὡ ὼ   = ᷿ Å( )  Bύ(T )dt 

Thus   ὼ  Ὡ ὼ = ᷿ Å( )  B w(T )dt 

Where w(s)= 
ύ(4)                π 4 3
ύ(4 Ó)  Ó 4 3 4

 

w(s)ÍU  for all   TÍ[ 0, s+T] 

Thus Ὑ(π) + Ὡ Ὑ(π) Ὑ (π) 

The converse inclusion follows by reversing these steps  

There fore Ὑ(π)  Ὡ Ὑ(π) = Ὑ (π) 

Lemma (I)  

Assume that (A, B) is controllable and uὙ  is an eigh borhood of 0 then 

 *  ÌὙ (0) for all k  

   Proof  

First replacing if necessary U by a convex subset  we may assume without 

loss of generality that u is a convex neighborhood of 0we prove that 

statement by induction on k the case k=0 being trivial   so assume that  

 *   ÌὙ (0)and take any6Í* ̪   l ̪6 = any61 + i6261ÍὙ (0) 

First pick any T >o so that Ὡl = Ὡ   for all j = 

0,1,éééééééééé 
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If b=0 one may take any T >0  

Otherwise, we may use for instance  

T= 
ȿbȿ

 next choose any d> 0 with the property that V1: = d6ÍὙ(0) 

There is such a d because Ὑ (0) contains 0 in its interior  

Since VÍKer(lI-A)
k
   where V =d 6 

Å( l) V = (1+T(A-lI) + (A--lI)
2
 +ééé.) V=V+ W         ᶅ 4 

Where wÍ*     

Thus  

Ὡᶿ V= Ὡl V = Ὡ V - Ὡlw = Ὡ V- Ὡᶿ V          ᶅ 4 Ê4    

j=0,1,ééééé. 

Decomposing into real and imaginary parts  

w = ύ  + i ύ   and taking real parts in above equation  

Ὡᶿ Ö = Ὡ Ö - Ὡᶿ × tᶅ =jT    ̪ j=0,1,éé.. 

Now pick any integer q 1   then   

В Ὡᶿ Ö = В Å Ö+ύǮ 

Where ύǮ = - ВὩᶿ    belong to the sub space Ê 

Applying First corollary (i) and lemma (A) 

We conclude 

P ὠᶰὙ (0) + * Ì2 (0) 

Where P=В Ὡᶿ В ρ =q 
d
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Here is precisely where we used that   ᶿ  0 

ThereforedP61=PV1  ‭ 2 (0) 

On the other hand  d P 1 means that  

61=
d
dp61+ (1-

d
)0 

Is a convex combination  

Since   dP61 and 0 both belong to 2 (0) we conclude by convexity of the 

latter that indeed 61 ‭2 (0) 

 

Corollary (ii) 

Assume that (A, B) is controllable and U Ì2  is a convex and bounded 

neighborhood of 0  

There exists a set B such that  

2 (0) =B + L    and B is bounded convex and open relative to m  

Proof  

We claim that 2 (0) = (2 (0)᷊ ά ὒ  

On inclusion is clear form  

 2 π᷊ά ὒÌ   2 (0) + L=  2 (0) 

Applying lemma (B) 

Conversely any V‭2 (0) can by decomposed as V= x + y ‭ m + L  

We need to show that x ‭ 2 (0)   But  

x= v-y ‭ 2 (0) + L = 2 (0) 

Applying the same lemma (B) yet again this establishes the claim  

We let B: = 2 (0)᷊ ά 

This set is convex and open in m because 2 (0) is open and convex 

We only need to proof that it is bounded  

Let P:Ὑᴼ Ὑ   be the projection on m a long L  
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That is P(x+y) = x    if   x‭ά̪ y‭ὒ observe that PA =AP because each of L 

and m are A invariant (so   v = x + y    ̪Ax ‭ m ̪Ay ‭ὒ imply  

PAV =Ax =APV). 

Pick any   x‭Ὑ  π ά᷊ 

Since x ‭ Ὑ  π there are some T and some w so that  

x= ᷿Ὡ ` ὄύ̀ Ὢ 

On the other hand since x‭ά  ̪ x=px 

Thus    x= px =᷿ Ὡ ` ὄύ̀ Ὢ=᷿Ὡ `      x( )̀d` 

Where   x (̀) =PW(̀)‭ά᷊ ὴὄό  for all  ̀ since the restriction of A to m 

has all its Eigen values negative real part  

There are positive constants C, m>0 such that  

ᴁὩ ᴁ ὧὩ  ᴁὼᴁFor all t π 

That if x is also in PB (u), ᴁὩ ᴁ ὧὩ     for all     t π 

So for as above we conclude  

 

ᴁὼᴁ ὧ Ὡ `Ὢ
ὧ

ά
ρ Ὡ  

ὧȾȾ

ά
 

 

             4.5 Lower Bounded control lyapunov Functions  

 

We will consider systems of the form  

ὢὸ=F(x (t) u (t))  

Where the state x (t) evolves in Ὑ  and the controls u(t) take values in a sub 

set u   2   containing the origin. For simplicity we assume that v=2 

The map f:ὙὙ ᴼὙ Ὥί ὰέὧὥὰὰώ ὰὭὴίὧὬὭὸᾀὥὸ ὼȟὺ and f(0,0) =0 
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To stabilize this system to x =0 we will use energy Function v which can be 

made to decrease a long system trajectories. A Function v:Ὑ  OR π 

 Is positive definite if v(0) =0   v( π      rof 0 <(  ‮ 

And proper if v (Oᴁ‮ᴁ sa    Њᴼ( ‮ Њ for     ‭2 

We denote by ᴁmron nedilcuEÅÈÔᴁ‮  

For a locally Lipchitz continuous Function  

V:2 RO  and   P ‭2 we define the Dini derivative of v in the direction of 

P At  to be  

$  Ö(ÐÕÓ OÍÉÌ =(p , ‮
     

 

In what follows we will be considering closed loop systems of the form  

 f ( (( ‮)*u ̪ ‮ 

Where the feedback controller u* is measurable and locally bounded but 

possibly discontinuous hence the classical notion of solution need not apply 

to deal with this situation we will use the generalized solution due to flipper 

Set valued Function  

Ằόz(᷊᷊=(‮ ὅὕ{fόz(B(£̪  {N \(  ‮ 

0= (N)‘     0<‮ 

Whereby (£ ̪d  ) is a ball of radius   d  centered at £ 

ὅὕDenoted the closure of the convex hull and m is used Lévesque measure 

on 2 ,AFilippov solution on an interval   I C R 

Is Function x:IO 2  such that x()0 is absolution continuous on any interval 

[ὸȟὸ]I , And ὼ(t) ɴ  Ằ όz(x (t)) ,Al most everywhere on I solution x (t) to (c) 

are thus state trajectories of the system under. The Feedback controller u = 

όz(s) which are differentiable al mostevery where with respect to †.Since f(£ 

 ̪ό̪z £)) is measurable and locally bounded .The set valued Function   όz (£) 

is upper semi continuous compact and convex value and locals bounded in 
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particular the differentiable inclusion  satisfies ,The basic condition and thus 

has oFilippov solution for each intrastate .the solution x (t) =0 of a different 

inclusion ὼ (t) = (x)) is called stable if for each ‭ π there exists ‏ π with 

the following property ,For each ὼ ίόὧὬ  that ᴁὼᴁ< ‏  each solution x(t) to  

x(t)  to  ὼ (t) ‭    ὼὸ with intial data x(0) =ὼ 

Exists for 0 ὸ Њ and satisfies the inequality  

ᴁὼᴁ ‭ π ὸ Њ  

*asymptotically stable if x (t) =0 is stable and in addition, x (t) O0  as  tO 0 

The possibly discontinuous Feedback controller  

Xᴼόz ὼ  ίὸὥὦὭὰὭᾀὩ systm (A) iff x(t)=0  

Is a stable solution of the corresponding differential inclusion 

4.5.1 Lower bounded lyapunov pairs  

Lipchitz continuous lyapunov pair (v,w) consists of a locally Lipchitz 

continuous positive definite proper Function v:Ὑ ᴼὙ and anon negative 

continuous Function   

W:Ὑ ᴼὙ such that for   £ π 

There exists p ‭f(£̪ V) will 

Ὀ ὠ (£ ̪ p)  -w (£) 

Definition 4.1 

A lower bounded lyapunov pair for the system  

ὼ (t)= f(x(t), u(t) is alipschitz continuous lyapunov pair (v,w) such that  

* For £ π there exists Ð, Ð‭ f(£̪ V) such  

Ὀ ὠ (£ ̪Ð)  -w (£) Ὀ ὠ (£ ̪ Ð)ééééééééééééé..(i) 

**for ‭ π ὸὬὩὶὩ ὩὼὭίὸί 0<‏ such that for 0 <ᴁΖᴁ< (i) holds with 

 

̪ό) ̪ᴁόᴁ< 
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Definition4.2  

A lower bounded lyapunov (v,w) said to be regular if  

1. The set valued Function     (£) is upper semi continuous, compact and 

convex valued and locally bounded. 

2. There is appositive definite continuous map ύ on Ὑ  such that at 

points £ where the Function  v is not different table ( or more 

generally where  

P O Ὀ ὠ (£ ̪ p) is not linear) 

Ὀ ὠ (£ ̪ p)  -ύΖ Ðᶅצצȟ (£) 

╓▄█░▪░◄░▫▪ 4.3 

ὃὰέὧὥὰὰώ ὰὭὴίὧὬὸᾀ ὧέὲὸὭὲόέόίȟὴέίὭὸὭὺὩ ὨὩὪὭὲὭὸὩ ὥὲὨ ὴὶὴὩὶ Fuction 

V is called alower bounded control lyapunov Function (LB- CLF), 

ὭὪ ὸὬὩίὩ Exist apositive definite Function w such that (v,w) is regular lower 

bounded lyapunov pair the pair (v,w) will be call regular lyapunov pair for 

ύὩ ὲέὸὩ ὸὬὥὸ ὭὪ ὺȟύὭί ὥὶὩὫόὰὥὶ ὴὥὭὶ Ὢέὶ ὠ ὸὬὩὲ ὸὬὩ ὨὭὪὪὩὶὩὲὸὭὥὦὰὩ ὭὲὧὰόίὭέὲ  
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                      Chapter five 

Reachability and controllability under sampling 

 5. Introduction 

  When studying the input to state interaction we can take two different 

points of view in the former we assume that the initial state of the system, 

the state of the system at ὸ=0 is the fixed and we consider the problem of 

determining the states of system that can be reached applying a certain input 

in this case we study the so called Reachability property in the latter .We 

assume that the final state of the system at some time T is fixed and we aim 

at determining all initial states that can be steered, by means of a certain 

input signal to the selected final state. In this case we study the so called 

Controllability property. In the study of reachability and controllability 

whenever the input signal that drives a certain initial state to a certain final 

state is not unique we could impose constraints on such an input signal. E.g. 

we could consider the input signal with minimum time if minimum 

amplitude, or the input signal which achieves the transfer are equivalent no 

constrain is imposed all input signals a achieving the considered transfer in 

minimum time. For linear systems the properties of reachability and 

controllability are referred to the state ὼ πȟ hence we say that a state is 

reachable to mean that it is reachable form ὼ π and that a state is 

controllable to mean that it is controllable to ὼ π.Note more over that, 

Because these properties are used to describe the input to state interaction 

they trivially depend only upon properties of the matrices A and B 
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       5.1 Reachability of discrete time systems  

Consider a linear, time invariant, discrete time system  

Let ὼπ π and consider an input sequence u(0) , u(1), u(2), . .  .  , u[k-1] , 

the state reached at t = k is given  

ὼὯ " !"ȣȢȢ! "

όὯ ρ
όὯ ς
ể
όπ

 

This implies that the set of states that can be reached at t= k is a linear space 

i-e it is the subspace 2  spanned by all linear combinations of the columns 

of the matrix  

2 "  !" ȣ ! " 

The set 2  is a vector space, denoted as the reachable subspace ink steps if 

2 Ø ,I-e rank 2 Î then all state of the system are reachable in (at 

most) k steps and the system is said to be reachable in k steps. Ask varies we 

have a sequence of subspace namely 2ȟ2ȟȣȟ2 Ȣ this sequence of 

subspaces is such that the following properties hold.  

Proposition (5.1) 

The sequence of subspace (A) is such that 2Ì 2Ì  ȣÌ 2Ì ȣ  

Moreover if for  some Ë , 2 2  then for all k Ë ȟ2  2 finally  

2Ì 2Ì  ȣÌ 2 2   

Proof 
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To prove the first claim note that if a state ὼӶ is reached from zero in k steps, 

using  

The input sequence u(0) , u(1) , é., u[k-1] then the same state is also 

reached from zero in k+1 steps, using the input sequence 0, u(0),u(1), 

....,u(k-1),hence for all k ρ 

2 Ì 2  

To prove the second claim it is enough to show, Or equivalently that if then 

any, Belongs also to .For let   be an element of    this mean that there is an 

input sequence which steers the state of the system from ὼ π to ὼӶ in Ë+z 

step consider now the state reached after Ë+1 steps using the same input 

sequence which we denote with ὼ .By assumption    hence there is an input 

sequence which steers the state of the system from ὼπ π to ὼ in Ὧ steps  

However by definition of ὼ it is possible to steer ὼ to ὼӶ in one step , hence 

there is an input sequence which steers ὼπ π to ὼ in Ë+1 steps which 

prove claim to prove the third claim note that if for some k < n , 2 2  

then the claim follows from equation. Suppose now that for all k the 

dimension of  2  is strictly larger that the dimension of 2  this implies 

that the sequences dim 2 .Is strictly increasing at each step however this 

sequence  

is bounded (from above) by n and this proving claim? 

Definition5.1  

Consider the discrete time system (A) the subspace Á = Á  is reachability 

subspace of the system, the matrix R= 2  is reachability matrix of the 

system  
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The system is said to be reachable if R = x = 2  remark by definition  

2 )Í2, Hence the discrete time system  

s ὼ ! ὼ "Õ ȟ      Ù Ãὼ $Õ                               

With  ὼ‭ Ø =Á  ,  u(t) ‭ Á   , y(t) ‭ Á  and A,B,C and D matrices of 

appropriate dimensions and with constant entries. The discrete time system 

is said to be reachable if and only if .Rank R = n.  Equation is known as 

Kaman reachability rank condition  

Remark(5.1)  

From the above discussion it is obvious that in an. Dimensional linear 

discrete time system if a state ὼӶ is reachable, Them it is reachable in at most 

n steps this does not mean that n steps are necessarily required i-e ,The state 

ὼӶ could be reached in less than n steps .In a reachable system. The smallest 

integer Ëᶻ such that rank Ë  z= n .Is called the reachability index of the 

system Note that for single input reachable systems necessarily Ëᶻ= n  

Example 5.1 

Consider a discrete time system with ὼ‭Á  

          !
π π F

π π F

π π ρ
             B= 

π
ρ
ρ

 

Then    2 ÓÐÁÎ "             2 2 2 ÓÐÁÎ  
π ρ
ρ π
ρ ρ

 

Hence the system is not reachable and its reachable subspace has dimension 

two 
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Example5.2  

Consider a discrete time system with ὼ ‭ Á   

          !
π ρ π
π π ρ
π π π

             B= 

Ä
"
Ù

 

Then  

2 ÓÐÁÎ "    , 2 ÓÐÁÎ 

a ɼ
ɼ ɾ
ɾ π

    , 2 ÓÐÁÎ 

a ɼ ɾ
ɼ ɾ π
ɾ π π

  

As a result the system is reachable if and only if ɾ π moreoverif ɾ

π ÁÎÄ  

ɼ π The system is not reachable and the reachable subspace has 

dimension two. Finally if ɾ  ɼ π  and  a π  

The system is not reachable and the reachable subspace has dimension one 

the reachability subspace R has the following important property  

The proof of which is a simple consequence of the definition of the subspace  

Proposition (5.2)  

The reachability sub space contains the subspace span B i-e 

       Span BÌ R 

And it is A invariant i.e. ARÌ Á we conclude this case noting that 

algebraically equivalent system, with state x and Ø respectively  
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Let be the coordinates transformation matrix, as a given in equation below 

consider a continuous time Finite dimensional linear system described by the 

equations  

Ø =A(t)x + B(t)u    ,   y = C(t)x + D(t)u  

With ØÍC = Á    ̪  u(t) ÍÁ     ̪   y(t) Í|2 and the change of coordinates  

ὼὸ ὰὸὼ(t)  

With l(t) invertible for all t , the state space representation in the new 

coordinates is given by  

ὼ =[ l
-1
(t) (A)x+B(t)(u) + l

-1
(t) x ὰὸὼ = (l(t Ô  Ì ÔÌÔØ + l

-

1
(t)B(t)u  

And y(t) = CL(t) Ø + D(t)u 

Similarly for a discrete time finite dimensional linear system described by 

the equations  change of coordinates, With u(t) invertible for all t ̪ the state 

space representation in the new coordinates is given by and 2  and 2  the 

reachability subspaces and R and 2 the reachability matrixes respectively 

then  

Hence .And one of the two systems is reachable if and only if the other is  

5.2 Controllability of discrete time system   

The result established for the reachability the controllability property  

In fact for a linear time invariant, discrete time system .A state ὼᶻ is 

controllability (to zero) in k steps if there exists an input sequence u(0) , u(1) 

, éééé, u(k-1) that drives the state from. This last equation implies that  

 is controllable if the state, is reachable in K steps, Hence if; It is easy to see 
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that the set of all    such that equation. Hold is a vector space denotes by    

and called controllability subspace in k steps, A linear discrete time system 

is controllable in k steps if Im  

Example5.3  

Consider the system in Example the system is controllable in two steps in 

fact  

          !  2צ!

Example5.4  

Consider the system in Example the system is controllable in three steps no 

matrix the values of a ȟ‍ and ɾ ,Note in fact that ! π .The system is 

controllable in two steps .If ɾ π and a π     ÏÒ ɼ π finally it is 

controllable in one step if ɾ π   and  a ɼ π, Similarly to the reachability 

subspaces ask varies we have a sequence of controllability subspace namely  

This sequence of subspace is such that following properties hold.  

Proposition (5.3) 

The sequence of subspaces is such that, More over if for some the for all  

     Proof  

The proof of this statement is similar to the one of proposition 7-1 we simply 

remark that if a state is controllable in K steps using the input sequence u(0) 

,u(1), é,u(k-1) then the same state is also controllable in k+1 steps using  

Input sequence, u (0),u(1), é,u(k-1), 
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Definition 5.2 

Consider the discrete time system  

„ὼ ὃὼ ὄό  ȟώ ὧὼὈό  

Withὼ‭ὢÁ    ȟÕÔצÁ , y(t)‭Á  and A,B,C and D matrices  

The subspace C = ὧ is the controllability subspace of the system  

The system is said to be controllable if C =ὼ Á , the discrete time system 

above is controllable if and only if Im ὃÌ Á.In particular if A is nilpotent 

i.e.  ὃ π For some q ὲ then for any B(even B=0) 

The system is controllable  

Note:  

         That reachable system is controllable but the converse statement does 

not hold in particular  

                          ÁÌ#Ì8 Á 

5.3 Construction of input signals  

          The study of the properties of reachability and controllability leads to 

the following equation .Is it possible to explicitly construct an input 

sequence which steers the state of the system from an initial condition?  

ὼ  .i.e  ̪ ὼπ ὼ to a final condition ὼ in k ï steps i.e ὼὯ ὼ 

To answer this equation consider the problem of determining an input 

sequence u(0) , u(1) ,é.,u(k-1) such that  

ὼ ὃὼ ὙὟ   
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Where   

5  

ụ
Ụ
Ụ
Ụ
ợ
όὯ ρ
όὯ ς
ể
όρ
όπ Ứ

ủ
ủ
ủ
Ủ

‭Á  

Consider now an input signal defined as 5  = 2Ö  

Where V has to be determined using 1 his definition and setting k = n 

equation  

ὼ  ὃὼ 25  

Becomes ὼ  ὃὼ 22Ö 

Where the matrix 22  is square and invertible Hence a control sequence 

solving the considered problem in n steps is given by  

5 Ὑ ὙὙ (ὼ  ὃὼ 

It is possible to show that among all input sequence steering the state of the 

system from ὼ to ὼ in n steps the one constructed has minimal norm 

(energy). 

5.4 Reachability and Controllability of Continuous Time 

System:  

     The properties of reachability and controllability for linear, time invariant 

continuous time systems can be assessed using the same ideas exploited in 

the case of discrete time systems however the tools are more involved as the 

input state relation is expressed by means of an integral  
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ὼὸ Ὡ ὼ Å "Õ4Ä4 

Consider the reachability problem i.e. the initial state of the system is 

ὼπ π   

And we want to characterize all states ὼӶ that can be reached in some interval 

of time t i.e. all states such that for some input function u(t) 

ὼӶ Å "Õ4Ä4 

Note: 

   Now that by Clayey ïHamilton theorem  

Ὡ d ὸὍ d ὸὃ Ễ d ὸὃ   

For some scalar function dὸ Hence  

This implies that a state  ὼӶ  is reachable only if  

ὼӶ ‭ )Í[ B : AB: é   : ὃ ὄ )Í2       

We now prove the converse fact i-e that is in the image of R it is reachable 

to this end define the controllability Gramian  

ύ  ᷿Ὡ ὄὄὩ ὨὝ 

With t > 0 and note that ImR =ImWt  

Selecting U (T) =B¡Ὡ ‍   

Where ‍ Ὥί ὥ ὧέὲίὸὥὲὸ vector yield ὼӶ ύt ‍ 




