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Abstract

The controller is an element which accepts the error in some form and
decides the proper corrective action. The block diagrams is shorthand
pictorial representation of control system of the caarskeffect relationship
between input and output of phyalicsystem or dynamic system is time
invariant, is shifting the input of the time axis leads to an equivalent of
shifting of the output along the time with no other changes. The aim of this
research is study systems that the time invariant system and llebtero
The controllability conditions are exactly the same in terms of the matrices
for the discrete and continuous case. So we are justified in making multiple
inputs, multiple outputs. Control system is a method for using any models of
no solution for tansfer functions and has extended nwiltiple inputs,
multiple outputs gained selection stabilty and process. It has been shown
that the properties of zeros mean error and single input; single aapeit
can be also achieve&ounded variance amplifidah that was seen for the
multiple inputs, multipleoutputs case. A design procedure is presented to
achieved idealmultiple inputs, multiple outputsontrol case into more
sensitive modeling error which are inherent in practical process. Our
application $ the first solution follows from a general result on the global
stabilization of controllable linear system with delay in the input by bounded
control laws with a distributed term.
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Introduction

Control theory is an importantdnch of mathematics that has set
applications of distinct area techogy, Engineering, Economicsociology,
among othersCont r ol t heory has many appli
Control theories commonly used today are classical corftedry (also
called conventionalControl theory), modern control theory, and robust
control theory. This book, presents comprehensiventiezds of the analysis
and design of control systems based, on the classical control theory and
modern control theory. Automatic control is essential in aeyd fiof
engineering and sciencatamatic. Control is an important and integral part
of spacevehide systems, robotic systems, modern, manufacturing systems,
and any industrial operations involving control of temperature, pressure,
humidity, flow, etc. It is desirable that most engineers and scientists are.
Familiar with theory andpractice of automati control #d necessary
background materials are included. Mathematical, background materials
related to Laplace transforms and veatmtrix analysis, are presented
separately in appendixes. The first significant work in automatic control was
J ames datdrifugalbgsvernor, for the speed control of a steam engine in
the eighteenth century other, significant works in the early stages of
development of conbl theory were due to Minorsky Hazen, and Nyquist
among many otherdvinorsky worked on, automaticontrollers for steering
ships and showed how stability could be determined, from the differential
equations describing the system, Nyquist, developed a relatively simple
procedure for determining the stability of clodedp, systems on the basis
of operloop response to steadyate sinusoidal inputsHazen, who
introduced the termservomechanismsfor position control systems,
discussed the design of relay servomechanisms capable of closely following
a changing, input. Modern control theory is basedime-domain analysis
of differential equation, systems. Modern control theory made the design of
control systems simpler because. The theory is based on a model of an actual
control system. However, the systemb
betweerthe actual system and its model. This means that when the designed
controller based on a model is applied to the actual. System, the system may
not be stable. To avoid this situation, we design the control. System by first

VI



setting up the range of possiderors and then designing the controller.in
such a way that, if the error of the system stays within the assumed, range,
the designed control system wil stay stable. The design method based on
this. Principle is called robust control theory. This thencprporates both

the frequency response, approach and thedmomeain approach. The theory

IS mathematically very, complex.

VI
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Chapter one

Introduction

1. Background

The concept of a control system is to sense deviation of the control of the
output from the desired value arwbrrect ittill the desired output is
achieved. The deviation of the actual output from its desired value is. called
An error themeasurement oérror is possible because of feedback. The
feedback allows us to compare the actual output with its desired value to
generate the error. The error is denoted by as e (t) the desired value of output
is also called reference input or a set point the errtairddl is required to
be analyzed to take the proper corrective action. The controller is an element
which accepts the error in some from and decides the proper corrective
action. The output of the controller is then applied to the process or final
controler element this brings the output back to its desired set point value.
The controller is the beart of a control system. The accuracy of the entire
system depends on how sensitive is the controller has its own logic to handle
the error. Now it is manipulag such an error the controllers such as
microprocessors microcontrollers, computers are used such controllers
execute certain algorithm to calculate the manipulating sign



Definition of input 1.1

The input is the stimulus excitation or command Applea control system
typically from an external energy source.

Definition of output 1.2

The output is the actual response obtained from a control system .It may or
may not be equal to the specified response implied by the .Inputs and output
can have manyiffierent forms inputs for examples may be physical

variables or more abstract quantities such as reference, set point or desired
values for the output of the control system.

Definition of open loop controll.3

An open loop control system is one in whicle trontrol action is
independent of the output.

Definition of closedloop controll.4

A closed loop control system is one in which the control action is somehow
dependent on the output closed loop control systems are more commonly

called feedback control stem.

Definition of feedback control1.5

Is that property of a closed loop system which permits the output or some

other controlled variable to be compared which the input to the system.

Characteristics of feedbackl .6

The presence of feedback typicalgparts the following to a system.



A- Increased accuracy.
B- Tendency toward oscillation or in stability

C- Reduced sensitive of the ratio of output to input to variation in system
parameters and other Characteristics.

E- Reduced effects of external diddances or noise
H- Increased band width

The bandwidth of a system is a frequency response measure of how well the
system responds to (or filters) variation or frequencies the input signal.

1.1 Control system modés or representations

To solve aontrol systems problem, we must put the specification or
description of the system configuration and its components into a form
amenable to analysis or design. Three basic representations (models) of

components and systems are used extensively in theatedntrol
systems.

1- Mathematical models in the form of differential equations difference
equations and or other mathematical relation for example Laplace and

Z-transforms.
2- Block diagrams.

3- Signal flow graphs.



1.1.1 Block diagrams: Fundamentals

A block diagram is a shorthand pictorial representation of the cause and
effect relationship between the input and output of a physical sySkem

simplest form of the block diagram is single block with one irgmat one
output

Block

Input output

[ [
» »

Figure (1.1) block diagram single input and single outy

The operation of addition and subtraction have a special representation the
block becomes a small circle called a summing point with the appropriate
plusor minus signassociated with the arrows entering the circle the output

is the algebraic sum of theputs any number enter a summing point for
examples

Z
+
O g e
Figure (1. = 1
Figure (1.2 _ _ i igure (1.
addition Difference points Summing points +
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1.1.2 Error

The eror detectors compare the feedback signal with the reference input

i O to generate an error.

CQo o
10 PP
This gives absolute indication of an error the range of the measured variable
RYe
Thus span @ &)

The Hence error can be expressed as



P T P&
Where Q k error as % of span
1.Examplel

The range of measured variable for ascertains control systemis 2 mv to 12
mv and a set point mMv. Find the error as percent of span when the
measured variable is 6.5 mv.

~ ~
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1.1.3 Variable Range
In practical systems, the controlled variable has a range of values within.

Which the control is required to be maintained. This range specified as the
maximum and minimum values allowed for the controlled variable. It can be
specified as some nominghlues and plus minus tolerance allowed about
this value such range is impontdar the design of controllers

1.1.4 Controller Output Range

Similar to the controller variable a range is associated with a controlled
output variable and minimum valuesutBften the controller output is
expressed as a percentage where minimum controller output is 0% and
maximum controller outis 100% but 0% controllerputtdoes not mean
zero ouput Forexample it is necessary of the system that a steam flow

6



correspondigto — opening of the values should mmimum Thus 0%

controller output in such case corresponds tothe opening of the value.
The controller output as a percent of full scale when the output changes
within the specified range is expressed as

n ——— PTT P&

Where

N k Controller output as a percent of full scale
"Yk Value of the output

Y k Maximum value of controling varidé

Y  k Minimum value of controlling variable

1.1.5 Control Lag

The control system can hasdarge associate with it, the control lag is the
time required by the process and controller loop to make the necessary
changes to obtain the outpuitatset point the control lagnust be compared
with the process lag while designing the controllers for example. In a
process value is required to be open or closed for correspondmigtjhe
variable physically the of opening. @bsing of the value is veryiow and

is the part of the process lag. In such a case there is no point in designing a
fast controller than the process lag.



1.1.6 Dead Zone

Many a times a dead zone is associated with a process controlloop the time
corresponding to dead zone is edlidead time. The elapsed between the
instant when error occurs and instant when first corrective action occurs is
called dead time .Nothing happens the error occurs this part is also called
dead hand the effect of such dead time must be consideredhehikegign

of the controllers.

1.2 classifications of the controllers

The classification of the controllers is based on the response of the
controllers and mode of response of the controller

1.2.1Discontinuouscontroller Mode

The discontinuous modmntrollers are further classified &N, OFF
controllers and mufosition controllers. Faxamplein a simple

temperature control of a room the heater is to be controlled it should be
switched on or off by the controller when temperature crosses fisiséet

Such an operation and the mode of operation is called discontinuous mode
of controller but in some process control systems simple on/off decision is
not sufficient for example controlling the steam slow by opening or closing
the value in such casesmooth opening or closing of value is necessary.
The controller in such a case is said to be operating in a continuous mode
thus the contradirs are basically classified discontinuous controllers

1.3.1 Continuous Controller Mode

The continuous modsontrollers are further classified as derivative

controllers. Some continuous mode controllers can be combined to obtain



composite controller mode. For example of such composite controllers are
Pl, PD and PID controllers. The most of the controllers aeepl in the

forward path of control systenubin some cases input to the controller is
controlled though a feedback path. The example of such a controller is rate
feedback controllebut in the continuous controller output smoothly
proportional of the ear or proportional to some form of the error.

Depending upon which form of the error is used as the input to the controller
to product the continuous controller output these controllers are classified as.

Proportional control mode, Integral control modd &erivative control
mode

1.3.1.1Proportional Control Mode

In this control the output of controlis simple proportional to the ey

the relation between the erre(t) and controller outpuRis determined by
constant called proportional gain constant denoted by @bhe output of

the controller is a linear function of the erm(t) . Thus each value of the

error has error has a unique value of the controller output. The range of the
errar which covers 0 % to 100% controller output is called proportional
hand. Now though there exists linear relation between controller output and
the error for a zero error the controller output should not be zero otherwise
the process will come to hallerce there exists some controller output

for the zero error. Hence mathematically the proportional control mode is
expressed i

06 QQO U p8
Where "Q = Proportional gain constant

n = controller output with zero error

9



Controller oulput

High gain
1
Saturation
MY pmmmmm e e e s s s s s s e — - -

|

Pl

]

| i

| i

L i (el e = e o P, =50 %

b

I i

| ]

ﬂ 4:'h-"ll'll F=== ] T :"‘ ": """""

I I | 1

[ I I ]

- ll : 0 |L + : r EITDT%

] —_— | ]

X ' MNarrow ! :

: error band :

I 1

LR o

T L}

! Wider error band !

Figure (1.7)the error may be positive or negative the propodi land

The error may be posttive or negative the propadi fand is

mathematically defined by

0 — 8

1.3.1.2Characteristic of proportional control mode
The various characteristics e proportional mode are
1-When the error of zero, the controller output is constant equal to

2-If the error occurs, then for every 1 of the error the correction of the
b is achieved if the error is positie correction gets added o and

if error is negatived P correction gets subtracted from

10



3-The band of error exists for which the output of the controller is the
between 0> to 100P without saturation

4-The gain0 and error band are invergly proportional to each other

1.3.2 Offset

The major disadvantage of the proportional control mode is that it produces
an offset error in # output When the load changle output deviates from
the set point such a derivation is called offset esr@teady state error such
an offset error is the offset error depends upon the relation rate of the
controller slow reaction rate produces small offset error while fast reaction
rate produces large offset error. The dead time or Transfer lag present in th
system further worsens the result it produces notonly the large offset at the
output but the time required to achieve steady state is also large. The offset
error can be minimizedby the large proportional gaim which reduce the
proportional hand fI’Q is made very large the proportional band costes
small that .It acts as an on, efintroller producing oscillations about the set
point instead of an offset error. The proportional controller can be suitable
where

A- Manual reset of the operatingipt is possible
B- Load changes are small

C- The dead time exists in the system is small

11
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Figure (1.8 offset error in proportional max

1.3.1.3Integral Control Mode

In the proportional control mode, error reduces but cannot go to zero. It
finally produces an offset an offset error it cannot adapt with the changing
load conditions. To avoid this coatrmode isoftenly used in the control
systems which is based on the histofyhe errors. This mode is called

integral mode or reset action controller the value of the controller output p(t)
Is changed at a rate which is proportional to the actuating error signal e(t)

mathematically it is expressed as
Q0o P®

Where "Qk constant relating error and rate the consfatso integral
constant integrating the above equation actual controller output at any time t
can be obtained as

06 Q QO6Q6 A P&

P (O)k controller outut when intgral action starts @t0

12
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Figure 1.9 Integral mode

The scale factor or constaf¥expresses the scaling between error and the
controller outputhus a large value d® mean that a small errorgduces a
large rate of changd p(t) andviceversalf there is positive errothis is

shown in thdigure 1.8 controller output begins to ram.ur he input error
step it can be seen that when ersopositive the output p(t) rampp

et
dt

Figure (1.10 the step response of integral control mc

Thestep response of integral control mode is shown in figure 1.10

The integration timeonstant is the time takeorfthe out to the change by
an Amount equal tdhe input error step this is shown in figure 1.11 it can be
seen that when error is positive thatput ramps up, Faero error there is

13



no change in the output and when error is negdtieeoutput p (t) ramps

down

e{t)y

29

When error
rero, pit)is
constant

Figure (1.11)step respons

1.3.1.4 Characteristics the integral mode

The integrating controller is relatively slow controller its output at a rate
which is dependent on the integrating time constant until the error signal is
can celled compared to the proportional control. The integral control
requires time to build an apgriable outputHowever it continuous to act till

the error signal disappears this corrects the problem of the offset error in the

proportional controller. Thus for an integral mode

A- If error is zero, the output remains at a fixed value to what isnas

the error became zero.

14



B- If the error is not zero, then the output begins to increase at ‘@ f4te
per second forevery p bfor error in some case the inverse@talled
integral time is specified denoted a5

Y o Q¢ 0 QAAQD R p&y
It is expressed in minutes instead of second. The comparison of

proportional and integral mode behavior at the time of occurrence of an error
signal is tabulked below.

Controller Intial behavior Steadystake behavior

P Acts Immediately Offset error always
Action according to | present larger the

~
€

Q "Q smaller the error

1 Acts slowly it is Error signal always

. mes zer
The time integral of becomes zero

the error signal

It can be seen that proportional mode is more favorable at the start while the
integral is better for steady state response in pure integral mode, error can
oscillate about zero and can be cyclic ,Hence is practiceahtepde is

never used alone but combined with the proportional mode to enjoy the
advantages of both the modes.

15



1.3.1.5Derivative control Mode

In practice the error is function of time and at a particular instant it can be
zero but it may not remain zero for ever after that instant. Hence some action
is required corresponding to the rate at which the error is changing. Such

a controller is cale derivative controller. In this mode the output of the
controller depends on the time rate of change of the actual errors. Hence it is
also called rate action mode anticipatory action mode. The maibama

eguation for the mode is

no Q— P&

WhereQ k Derivative gain constant indicates by now much % the

controller output must change for every % per sec of the change of the error.
GenerallyQ is expressed in minutes. The important featuréuisftype of

control mode signahere is a unique value thfe controller output. The
advantage of the derivative control action is that it responds t@th of

change of error angroduce of significant correction before the magnitude

of the actuating error becomes too large. Derivative control thus arggipat
the actuating error intiagean early corrective action and tends to increase
stability of the system improving the transient response

1.3.1.6Characteristics of Derivative Control Mode

The figure 1.12 shows how derivative mode change the controller output for
the various rates of the change of the error

16
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Figure (1.12 the derivative mode changes the contrc
output for various rates of change of the er;

The derivative mode changes the controller output for various rates of
change of the error. The controller output is 50% for the zero error when
error starts increasing the controller output suddenly jumps to the higher

value it further jumps to higher wa for higher rate of increase of error then
error becomes constant the output ret@ons0% when error is decreasing
Having negative slope controller output decrease suddenly to a lower value.
The Various Characteristics of the derivative mode are

A- For agiven rate of change of error signal there is a unique value of the
controller output.

B- When the error is zero the controller output is zero.

C- When the error is constanite rate of change of error is zero the
controller output is zero.

D- When error is chaging the controller output chang€s %

17



For even 1% per second rate change of error
Note:
Hence it is never used along its gain should be small because faster rate of
change of error can cause very large sudden change of controller output
this may lead to the instability of the system.
1.3.1.7Composite Control Modes
As mentionable eagr due to offset error proportional mode is not used
alone similarly integral and derivative modes are also not used individually
in practice. Thus to take the advantages of various modes together the
composite control modes are used the various compasiteoller modes
are.

I. Proportional integral mode (PI).

i. Proportional Derivative mode (PD).

ii. Proportional +ntegral + Derivative mode (PID)
Let us see the characteristics of these three modes
Proportional Integral Mode (P1 Control Mode)

This is a composite control mode obtained by combining the Proportional
mode and the integral mode. The mathematical expression for such a
composite control is

06 0VQ6 MVQ QoQd L T PR T

Whered Tt = initial value of the output at t=0.The important advantage of

this controlis that one to one correspondence of proportional mode is

18



available while the offset gets eliminated due to integral mode the integral
part of such a composite contpyovides a reset of the zero error output
after load change occurs.

elt)
Errar 4

0 > T

pit)
Contraliar
output

Rise in oulput due to integral
action between limes t, and L,

Immediate nse due to
proportional action

Timea

Integral acton lime
Figure (1.13 Behavior of Pl controller:

The composite Pl mode completely removes the offset problems of
proportional mode such a mode can be used in the system with the frequent
or large load changes. But the process must have relatively slow changes in
the load to prevent the oscillations.

Proportional + Derivative Mode (PD control mode)

The series combination of proportional and derivative control mode gives
proportional plugerivative control mode. The mathematical expression
for the PD composite control is

19
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The behavior of such a PD control to a ramp type of the input igtive

Ermor e(L)

Time

Controller
output

Rise in signal due 1o proportional
action betwean limes ty and Ly

Immediate rise due (o
derivative action

Timea

L=

—
-

—
=]

Figure (1.14 Behavior of PD controllers

Rise in signal due to proportional action between timando
Immedate rise due derivative action
1.3.1.8Behavior of PD Controller
The ramp function of error occurs@t 0 the derivative mode cause a

stepw ato and proportional mode cause arisecofat o .This is for

direct action PxontrolProportionalderivative Type of Controller. A
controller in the forward path which changes the controller output
correponding to proportional plus derivative of error signal is PD

controller

l.e. output of controller Q> Y — PP ¢

20



Taking Laplace =

QA i YOI Oi Qivy p® othe transfer
function of such controller iSQ i Y this can be realized as shown in the
R(s) + igueg€iLS)
-] K} i
A Plant
Figure (1.19 controller Y
output of PD controlle
AssumingQ p
We can write
Ol 5 PP T
And
P i™gU¢
R — v
G20z 0E™ U P®

Comparing denominator with standard fobmis same as in the previous p

type controller
And
C 2 2

Z—

0 YOE B

PP ¢
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Because of this controller dampingtio increases by factoru"':c—\é.l.e.

system becomes tyre nature. Now as order increase by one system
relatively becomes less stable@smust be designed in such a way system
will remain in stable condition second order system is always stable. Hence
transient response gets affected badly if controller is not designed properly.

While
Q 1 Ed Oi Oi H_Q
s PP X

~

Q T EJdiOi 0Oi HB_Q
Hence as type is increased by one error becomes zero for ramp type of

inputs steady state of system gets improved and sysienmies more
accurate in naturddence Pl Controller has following Effect

I. it increaseorder of the system
.. it increase type of the system

ii. Design of "Q must be proper to maintain stability of system so It makes
system relatively state error reduce tremendously for same type of inputs. In
general this controller improves steady state part affecting the transient part

1.3.1.9PID Type of Controller

As PDimproves transient and Pl improves steady combination of two may
be used to improve overall time response of the system this can be realized
as shown in the Figurél6)
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R(s) ol |t Plant C(s)
LN N T i |
A Controller
Q
i

Figure (1.16 the design of such controller is complicated in prac

The design of such controller is complicated in practice, Rate Feedback
Controller (output Derivative Controller). This is achieved by feeding back
the derivative of atput signal internally us@atachogenerator and

comparing with the signal proportional to error as shown this is called minor
loop feedback compensation output of controller

tore JR o
— P Y

Take Laplace
COutput controllerQO i Qi PP W

This can be realized as shown in therdo Figure(17)
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R(s) l K L @_’ — C(s)

"Yu

Figure (1.17) controller output PID cor'g\rsogeuming 0 0

Let us study its effect on same system which is considered earlier
With
of  ——— P& T

vy zi:,

Time constant (T) is the time required by the system output to reach 63.2%
of its final value during the first attempt. The equatiwm the actual
response

ct)is
v v
OEJ 6 — - W& QO

|
< Z ~
w P w

L p Z P8 p

= Damped Frequency of Oscillatioasd

z

— 0W¢e P& ¢

z
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1.3.6 Steady State Error

Consider a simple closed loop system using negative feedback as shown in
the Figure(18)

R(s) E(s) C(s)
— G(s) >
B(S) -
H(s) |

Figure (1.18 Steady State Erro
Where

E(s) = Error signal and

B(s) =Feedback signal

Oi Yi O0i 600i 0i Oi we Qi
Oi O p& 0
Oi Yi O01i 80i P& 1
Oi Yi Oi "0i 0Oi pg v
Yi Oi ©Oi 0i 8i P& O
coi AL &
p Oi 80i P& X

For nonunity Feedback
oi Y &

5 O pE Y

For unity Feedback
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This E(s) is error in Laplace domain

calculate the error value in time domain. Corresponding error will be e(t)

now steady state of the system is that state which remad< &b
Steady state error
Q 1 Ed Qo P8 W

Now we can relate this in Laplace domain by using final value theorem
which states that

I Ed 00 1 Ed i "®,BQo P& T
Therefore
Q 1 Edo 1 EIQ ot p

Where E(s)is Q0

0 1 Ei_Y
S CTIEY

P ¢

For negative feedback system use positive imiglominator while use
negative sign in denominatorsiystem uses positive feedbaEkom the
above expression it caelzoncluded that stead state error depends on
R(s) .e. Reference input its type and magnitude

iI. G(s).H(s)i.e. open loop transfer function

i. Dominant non linarites presentif any
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2.Example 1

The figure(1.19) shown PD controller used for the system .Determine the

value of’Y so that system will be critically damped calculate its, settling

time
R(s) — C(s)
7, ®7 1 |, YY o .
A _ +
vy
Figure (1.19 PD controller
“Oi 5 H(s) =1

Comparing denominator with standard form
0 tho ¢ And
¢z pP®» TY

pH T'Y
1

C~z
Now system required is critically damped i.e=1

i Yo -
Cp p@%)ﬁ plp 1Y
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R
C 'Y — ¢i Qd@nd settling time —

3.Example 1

APID controller hasQ  ¢8thQ clti Q®

~

Q ci QoAnd O m T TP

Draw the plot of controller output for error

error Ep%
4
2-
b .‘ | | | | >  t  sec
i 1 \}/3 4 s
-4 Figure (1.20 PID controller
Q chQ cgi Qd 0 ¢ Q®

U TT Tnih

ForG2 O & 0O whered slope
O O ForO02sec — p for224 0 & 6 ®
Two point on the line are (2,8) (4,-3)

0w W O C

a — ®
oou)rcC
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bl  ¢® ¢ & @ X
CO C®0 x For 24sec
For 46 sec

Two points on the line are )
Ca —— - pd

CO pd0 ®

4+ At (4,-3) =3=1.6

Co

CoO p® O w For46 sec

The mode Equation for PID controller

~

0 QO VO, 0 QOLU —+0 T
CO ¢O 18 0QOT— 1T
For 02

0 CO T8_ 0QOT—0 TTE2t+220 1
This plotted for 2 sec
At the end of 2 sec

The integral term has accumulated to

~
5

L ¢ T8 0Q0 Tm18 — THNT1T@P

For 24 sec
29

Tt



0 ¢ C¢® X 718 C® xXQot1— B X T @

VO PT T& PEUVLO T XO C PTTT @@
LBO &0 pa&

This is plotted for 24 sec

At the end of 2 sec the integral term has accumulated to

01T TTPEUL T X XO T S T@® 1T8BD

For 46 sec

0 CpPpdO W T8, pPAO OQO T— pdO & 1 8 =3t-

18+44[0.7%-at 1T p® TB OO0 PYTITUL PO
wWwo T @ T8 o0®0 o0 poy

This is plotted for 46 sec

After 6 sec error is zero hence the out will simply be the accumulated
integral response providing a constartt jwt

CO @ TIMXO p@ OO TS +44.4=31.2%
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The complete graph of controller outputis shown in the figure (21)

I | E— 1 B ; =1 : : !
" Comtroller —} T T N el R e o T —E e
L oulput : ! | : ] ca il ="} : o
(%) i pr—s | = ]I ) i~ Seale
PN S SRR | ! I T on X-axis —e 1 unil = 1 sec
p—t—1— g0 i e Ll ony-anis —eTunil=5% =

I
l
T
!
|

I
o] [
i nddlatd B e 3.5 30 (A i
. I 1 :
I |
|
¥

i
30 e =1
— B s . i 4

]
1
iai: e grfegtislttar @ Bonaistigg] 4 S mhaebd 60 i Time -4

i ke | O I i i ) o i O W

Figure (1.21) graphical solution of PID controlle

4.Example 1
Temperature control system has the block diagram given in figure

The input signal is a voltage and represents the desired temperatuses

unit step the integral term and

() D(s) =1 (i) D(s)= 1+>

(i) D(s) =1+0.3 s

What is effect oflte integral term in the PI controller and derivative term in

PD controller on the steady staeor
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o— "
—>

r

Figure (1.22 PD controller on
the steady state err

For given system

"Oi

Ed

ap,

v

Ol T3 C

vi o 2

Q | Ed iOi
D(s) =1

cQ 1 Ed
(i) D(s) = 1+-2
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¢ TmT
— D(s) i i ¢
Controller plant

TSI G

¢ Qi

i pi ¢

5= 0H O pT



P

cQ

M-
Q.
[o¢]

Do pT

Due to Pl controller the steady state error reduces drastically while PD
controller has neffect on the stead state error

5.Example 1

An integral controller is used for temperature control within arrang@0&0
the set point is 48 fthe contoller output is initially 12%\When error is
zero the integral constaf i@ bcortroller output per second
pecentage error if the temperature increas® Balculate the controller

output After 2 sec for a constizerror

For integral controller
DO Q 0QO 0™

Controller output initially denotedby 1 p ¢ Ithe integral constant
denoted byQ T w IBec % error

O Error=constant=——— p 1T

Now r= set point =4&

b= Actual temperate = 54

~
3

&) O IR T

~
¥

, TYur
O — pmnm oTm
T TT

>v
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P (t) = €0.2) (30)(t)+12

At ¢ T8 om¢ p¢gcgTh
This controller output after 2 sec
Example 15

A proportional controller is employed for the cont. of temperature in the
range 5 -130D with a set point of 73.& the zero error controller
outputis 60% what will be the offset error resulting from a change in the

controller output to 55% the proportional gain is 2% find the offset in
For proportional control mode

0 QO Om

P (0) = controller output W no error =50%

'Q Proportional gain = 2% per second

o 0 0 UVUUT &
0 C C

For the design of a control system
system of interest behave and how it respond to deferent control design the
Laplace transform agiscussed in the Laplace transform module is a

valuable tool that can be used to solve differential equations and obtain the
dynamic

A Transfer function G(s) is defined as the following relation between the
output of the system Y(s) and the input toslgstem U(s)
Wi

SN © J—— &
Yi p® 0
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The roots of polynomial U(s) poles of the system and roots of ¥(&led
the zeros of the systelfnthe input of the syem is a unit impulse (U(S) =1)

1.4Blok Diagrams and Transfer functions

The combination of Blok Diagrams and Transfer functions is a powerful
way to represent the control systems. Transfer funcgilating different
signals in thesystem. Derivation of trafier functions from state model.

Consider a standard state model derived for linear time invariant system as

~

WO 0w 0 Y P& T

WO 6w 0 PR U
And taking the Laplace transfer of both sides

YA T O O0M O& Qi 60 O™ Pd @

Note that as the system is timeanant the coefficient of matrices A, B, C

and D are constant while the definition of the transfer function is based on
the assumption of zero initial condition

OT T

~
€

CYWd O0® OV GeWA O 067V P® X

Now S & an operator while A is matrix of order (m), hence to match the

orders of two terms on | ift hand side
same order
C"Y"O't’bt‘) A 6 YY®OE QYOO Gi 6™ pd W
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Multiplying both sides by“Y"O0

YO0 YOO Qi YOO O M PR W
C i YOO 6™ P8 T
Substituting in the equation (1.)3&e get

W i 6YO0 6™ OM ®& &i
6 YOO 6 0O7Yi P8 p

C40 — Y04 & O 06 6Y0d - P8

The state model of a system is not unique but tmsfiea function of
obtained from any state model is unique. It is independent of the method
used to express the system in state model form.

1.4.1Characteristic equation

It is seen from the excretion of transfanétion that the denominator

is "YO 0 the equation obtained by equating denominator of transfer
function to zero is called characteristic equation the root of this equation are
the closed loop poles of the system thus the characteristic equation of the
systemis"Y'O0  mThe stabilityof the system depends on the roots, the

roots of the equation’Y'O0  marecalled Eigen values of matrix A and

this are generally denoted by
7 .Examplel
Consider a system having state model

(153 C (0} D) O ~«
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o
Y PP oy

With D=0 obtain

8Y'050 "YTC'.G

Y
w om0 0
oQQé 5

d§d00s Y ¢ Y ¢

i 'O 0

T.F=

Y ¢ T Y ¢ o
o Y C T Y ¢

PC Y TY pc Y W

(’) nO no b w

Figure (1.23 product of the transfer function:

The transfer function of the systemi@ "O"O ie the praluct of the

transfer functions.

A\ 4

»
>

0

::E;>_g

Figure (1.24 aparallel connection of systen
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Consider garallel connection of systems with the transfer functi@hand
‘O.Letd6 'Q be the input to the system the pure exponential output of

first systemw  "O0 and the output of the second systemis "O06

The pure exponential output of the parallel connection is thus

w 06 06 O 0O

The transfer function of the parallel connection is thus

‘0 0 O

u 5| 0 y

s

Figure (1.25 feedback connection of syster

<
<

Consider a feedback connection of systems with the transfer fun@@ions
and 'O&eti 'Q be the input to the systetithe pure exponential output

and be the pure exponential part of the eldiiting the relations for the
different blocks and a summation unit we find

w 0Q weW i Ow
Elimination ofQgives®w "O 1 "OwHence (1¥0"0) y="0i
Which imples w ——— 8 .The transfer function of the feed Feedback
connection is thus

O i

l O i O i
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E(s o — W i
R(s) ol >
0
Control Plant
Figure (1.26 Closed loop transfer function feed ba
W VO0Y w , Y —
. ‘00
YOO w 00 ho Y———
P 0 00
CUYi 00 & o
0 00 P
drroy O Wi
_> "
"Oi

Figure (1.27) Closed loop transfer function with a senor transfer func
w 00Y wi0i Yo "0O0Y "000w

p 000w "O0Y

C "Yi P8 1
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1.5 Signalflow graphs

A signal flow graph is pictorial representation of the simultaneous equations
describing a system. It graphically displays the transmissiotieo signal
through the system as does the block diagram. But it is easier draw and

therefore easier to manipulate than the block diagram. The properties of
signal flow graphs are represented

1.5.1Fundamental of signal flow

Let us first consider the sirfgst equation

W 0 W 8
The variables @ € & can be functions of time complexeffuency or other

guantity they many even constants which are variables in mathematical
sense.

For signal flow graphs is a mathematical operator mapptgQe @ €
and is called the transmission function .For exandplenay be a constant
in which casev is a constant timesv in equation (1.45) ito andw are
functions of sord may be transfer functioa i @ & & athe signal
flow graph for equation (1.45)is given in figure 1this simplest form of a
signal flow graph .Note that the variables® ¢ & are represented by a
small dot called anode and the transmission functionis represented by a
line with arrow called a branch

Node Ay Node
> - -
X Branch X,

Figure (1.28

Every variable in a signal flow graphdesignated by anode and every
transmission function by a branch. Branches are always unidirectional. The
arrow denotes the direction of signal flow graph

Example 1.8

Ohm,s law state th&@ °Y ‘@here E is a voltage | a current and R a
resistance the signal flow graph for this equation is given by
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R
>

Figure (1.29
The addition rule

The value of the variable designated by anode is equal to the sum of the all
signals entering the nodetine other words the equation represented by

W 0 W p& o

Figure (1.30

The TransmissionRule

The value of the variable designated by anode is transmitted on every branch
leaving that node in other words the equation

© 6 v
plt FE RAQQ QM QQ P8 X

Is represented by
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Figure (1.31)

Example 1.9

The signal flowgraphof simultaneous equations o® D Twis
given by figure (1.32)

__.-11"

X e

Figure (1.32 —4

The Multiplication Rule

A cascaded (series) connection®f p branches with transmission
function equal to productofthe old onesthatds 0 X ® O
Eb Qo

The signal flow graph equivalence represented by figure

Ay e Apn-1) AEIAH s Angin-1)
—— — — = . »- —a
X1 XI X,.-l X,, X1 xn

Figure (1.33
Example1.10

The signal flow graph of the simultaneous equatidn p D C 1bis
the given by the by figure
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10 ~20 —200

® > ® > ® which reduces to . > *
X Y 4 X Z
Figure (1.39
Definitions 1.8
The following terminology is frequently used in signal flow graph theory
the example associated with each definition refer to figure
Ay
[ -
X,

Figure (1.395

Definition 1.8.1

A path is a continuous, unidirectional succession of branches along which co
node is passed more than once

Forexamplei 0 € 0O & 0 & hw 0 € and backta O & 0O & 0 &
are paths
Definition 1.8.2

An input node or source is anode with only outgoing branches .For example
 is an input node

Definition 1.8.3

An output node or sink is anode with only incoming branches For example
@ is an output node

Definition 1.8.4

A forward path is path from the inpaode to the output. For
exampleo 0 € 0 & 0 & are forward path

Definition1.8.5

A feedback path or feedback loop is a path which originates on the same
node
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For examplen 6 & & @ @@ is a feedback path
Definition 1.8.6

A self-loop is a feedback loop consisting of a single branch .For example
is a selfloop

Definition 1.8.7

The gain of branch is transmission function of that branch gain encountered
in traversing a path .For example the path gain of the forward

fromw 0 € 0 & 0 & Q6 0 O

Definition1.8.8

The loop gain is product ofthe branch galns of the loop Forexample the
loop gain of the feedback loop forgd 0 € & Q@ WD o

1.5.2 Construction ofsignal flow graph

The signal flow graph of linear feedback control system whose components
are specified non interacting transfer functions can be constructed by direct
reference to block diagram of the system. Each variable of the block diagram
becomes anode and each block becomes branch

£l

o — o
a b ab
o > o > o = o > o
X4 X X X3
a
a+b
. . _ o——p» o
X, he: X, X,




ac

X,
be
X
ab
1-be
a XJ h X3 ab X3
oO—bpp Q > = — o o
Xl \’j Xl i ) 15{1 1{3
c be
R C G(s)
ﬂh G(s) 1 © o, > O
R(s) R(s)
: E(: Ci(s) 1 G(s)
R(s) (s) o ) i o &
R(s) Eiﬁlui?(s)
-H(s)
H(s) ——
N(s)

R(s) E(s)
G(s)

GQ(SJ

His) =




1.5.3 Block diagram Reduction using flow graphs and the General
input-output gain formula

Often the easiest way to determine the controlratio of complicated block
diagram into a signal flow graph

Example1.11

Let us determine the control raticand the canonical block diagram of the
feedback control system

Gy
51T @
Gy G, > -
Hy |
Figure (1.39

The signalflow graph is gives in figure (1.36) there are forward path

0 000 B 000

*m
Y=
Y=
L 1n]

Figure (1.3
There are three feedback loops

N "0'00 M) "0'0'00 h) "0"0"0'0
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There are no nontouching loops and all loopshdorward paths than
Y phY p
Therefore the control ratio is

T {’:‘ Plﬁ'l - Pz 52 GIGIG‘ + GlGde
R A 1 -GGy H, + G,G.G, H, + G,G,G, H,
GGG, + Gy)

T 1= G,GyH, + G,G,G H, + GGG, H,

a7



Chapter two
Time Invariant system

2. Introduction

A dynamic system is Time invariant ghifting the input on the time axis
leads to on equivalent shifting of the output along the time axis with no other
changes in other words a time invariant system maps a given input trajectory
u(t) no matter when it occurs. Many physical systems can kelew as
inear time invariant (LTI) systems very general signals can be represented
as linear combinations of delayed impulses by the principle of super position
the response y[n] of a discrete time (TLI) system is the sum of the response

to the individuashifted impulses to the individual shifted impulses marking
up the input signal x[x]

wo t 060 ft CP

The formula above says specifically that if an input aige delayed by
some amount T so will be the output and wathother changes

/\,% (\\-tp(t

Figure (2.1) Figure (2.2)
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y(t) y (t-t)

/\/\ A

g

Figure (2.3) Figure (2.4)

An example of a physical time varying system is the pitch response of a
rocket y (t) when the thrusters are being steered by an afileYou can

see first that this is an inverted pendulum problem and unstable without .A
closed loop controller it is time varying because as the rocket burns fuel its
mass is changing and so the pitch responds differently to various inputs
throughout itdlight. In this case the absolute time coordinate is the time
since lift off. To assess whether a system is time varying or not follow these
steps replace u (t) with u{) on one side ofaquation replace y (t) with Wt

1) on the other side of thequation and then check if they are equal Hoer
several examples.

Y () = u (O
This systemis clearly time invariant because it is a static map Next

1. Example 2

wo 60 Qo

Replace u ftwith u {-z) in the right hand side and it the
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wo 60 T @ 60 D@

The left hand side is simply

Clearly the right and left hand sides are different hence the system is not
time invariant. As another example consider

2.Example 2

wo 6 0 O

The right hand side becomes with the time shift

Whereas the left hand side is

wo ¥ 6 0 ®

The two sides of the defining equatiare equal under a time shifind so

this system s time invarianime invariant also known as shift invariance
describe function independence from the location oft = 0 on the time lime
By defintion a time invariant describe S a function's independence from the

location of t=0 onthe time lime By definition a time invariant systems
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output will shift in tine if its input shifts in time but otherwise will remain
exactly the same in other words a time invariant function does not words a
time invariant function does not care wihiene it is we describe time

invariance with the following notation

VQLME "QooMano i QO i C&
System because is a crucial property of real system because it allows us to
assume that a stem will respond in a predictable manner at any time

modeling time dependent systems are often highly influenced by initial
condition and system definition

3.Example 2
Is the systemd O O time invariant?

To prove whether or not the above systertime invariant we must a
mathematical technique called proof by contradiction proof by contradiction

is often used when two separate conditions can be tested on the same system
or mathematical contract. In this case we can compare the results of the time

shifted system with the solution assuming that the system is time invariant
thus the shifted system is represent the original system as

WO wWwo i wo i
Now if we definethe input function to bex0 i W 0 which we

may assume if andnly if the system is time invariant then we represent the
original systemas w 6 0 WO |
Sincew ® we may conclude that the systemis not time invariant

through proof by contradiction

ol



Example 2.4

Isthe systemw | «d |  timeinvariant?  (Nota andb are
constant)

We will use of some method a gain on the new system described above
The shifted system is representeda® @O § | «O i f

Again fwe woO i W 0 and (other by assume system flystem

is time in variant)rhan we represent the original system as
Wo |w o I | ao i 1
Sincew w we may conclude that the system is time invariant
2.1 Solving the time invariant state Equation

In this part, we show obtaihe general solution of the linear time
invariant system equation .We shall first consider the homogeneous case and
then the nonhomogeneous case.

2.1.1 Solution of Homogeneous state Equations

Before we solve vector matrix ftirential equationsLet u revew the
soltion of the scalar differentia

@ O Cd
In solving this equation, we may assume a solutigi) of the form

WO ® WO wo EF = q:
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By substituting this eaumed solution in to Equation (2.&e obtain

~

® COO owd EE E

>
€
£
o‘
£
o
T
mh
T

a1 Cd

If the assumed solution is be the true solution Equation (2.sust hold for
any t Hence, equating the coefficients of the dqueawers of t , we obtain

O b Rd o - -GOhd -6

— 60 B 00

The value ofd is determined bgubstituting t = 0 into equation (2.4or

Hence, the solution x (t) can be written

NN oy p N = p oo = \ . \
wo WO —wWw0o0 E =wo0o E wTt Q wTt
P A )

We shall now solve the vector matrix differential equation

o ! 8 CH

Where X = ni vector
A =n3 n constant matrix

By analogy with the scalar case, agsume that the solution is in the form
of vector power series in t, by substituting this asumed solution in to
equation (2.bwe obtain
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~

® CcOO owod EE

M
Th
@

Th

5 & o »o EE

8y

If the assumed solution is be true solutionequation (2.8 must hold for all
t. thus by equating the coefficients of like powersoh both sides g
equation (2.8Bwe obtain

~ ~ ~

w 00 o dn o -0 -6woh o -0
—8h B -0 O

By substituting t = 0 into eqgtian (2.7 we obtain

wT  ®.Thus, the solution x (t) can be written as

NN 0oy p © \ = p o \ = \
WO OO0 —0 O E =00 E ot
P A )

The expression in the parenthesadhe right hand sidef this last equation

is an n® n matrix because of the similarity to the infinte power series for a

scalar exponential we
p 66-606 E -60 E 0Q
A A

In terms of the matrix exponential is very important in state Spatate
space analysis of linear systems, we shall next examine its properties

Definition 2.1

It can be proved that the matrix exponential of &nmmatrix A
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Q 0 0 &o
’?‘m C

Conveages absolutely for all finite Hence, computes calculations for
evaluating the demenf@ by using the series expansion can be easily
carried outBecause of the convergence of the infinite series

Q

00
. CP T

~

A

The series can be differential term to give

(0.0) 66(‘)66 & 00 &
Qo CA Q pA PP

6p 60—+ E :

5p 5022 g 2 0O
P CA Q pA

R

The matrix exponential has the property that
Q QQ P q

This can be proved as follows

0 o 6 0 o i
’?’m ’F’gl'\
B o B . B b @
A A A
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In paricular, if s =-t, then
Q Q Q P
Thus, the inverse @ "Qi '‘Qsince the inverse & always exist{
Is nonsingularit is very important to remember that
Q QQ Q86 66/ QQ Q&6 606

To prove this note that

Q 5 60 — 2 5 29 4 E
P cA oA
Q Q 006(‘) 0 0 E 0066 0 0 E
P cA OA P cCA oA

00 00 000 060 00

0O 00 .
P CA oA CA CA oA
£
Hence

Q Q

Q Q

00 660 00 006000 000 cOO 660

cA oA

The difference betweer2 Q and Q Q vanishes if A and B commute

Laplace transforms Approach to the solution of Homogeneous state equation

Let us first consider the scalar case
@ OW ¢H o
Taking theLaplace transform of equation (2)18e obtain
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Y OTT WK CPT

Where® i e  for solving (2.14) for X(s) gives

w i — I 0 om

The inverse lap lace transform of this last equation gives the solution
wo Q

The foregoing to the approachto the solution of the homogeneous scalar
differential equation can be extended to the homogeneous state equation

@ 0 CPp L
Taking the Laplace transform of both sides of equgiib)
YW T 0 Qi
Where i « w&ence YOO i ® wm
Premultiplying both sides of this last equation BY'O0  we obtain
Wi YO0 T

The inverse Laplactansformation of X(s) gives the solution x (t), Thus

WO o "Y'OO0 W TT & R0)
Note that
o~ p O 0O
YOO - = —
Y Y Y
g

o7



Hence the inverse Laplat@nsformof "Y'O0  gives

NP1 © nooy p © \ = p ©n \ -3
. YO0 00 —00 E =00 E
P A )

Q CP X

The Laplace transform of a matrix is the matrix consisting of the inverse
Laplace transformall elements form equation (2.16) and (2.17) the solution
of equation (2.1pis obtained as

WO Q T

The importance of eqtian (2.17 lies in the fact that it provides a
convenient means for finding the closadution for matrix exponential

2.2 State Transition Matrix

We can write the solution of the homogeneous state equation

W 0w Py

WO Mol P w
Where 0 is an n® n matrix and is the unique solution of
n%9 On o6 hnmm p
To verify this note that
QT DPTOWT T

And
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WO no0mM O OOT O QO
We thus confirm that equation (2)18 the solution of t equatior2..6 from
equation 2.17).and (2.18we obtain

no 0Q . "Y'OO0
Note that
n o 0Q no o

From equation (2.19)we see that the solution of condition, hence the

unique matrix? 0O is called the state information matrix.

The state information contains all the information about the fre®nsobf
the system defined by (2.3)

If the Eigen values  , FE M of the matrix A are distinct, thah ©

will contain the rexponentials

~ ~

Qh Q@ EKQ

In particular, ifthe matrix A is diagonal, then

e ot 2
& R
- t_¢e u
0(teft=¢g 2 :
€0 eontu
& H

(A:diagonal)

If there is a multiplicity in the Eigen values for example Alatd ,, | 3.l 4,

I 5 1Ié‘]

Thenf (t) will contain, in addition to the exponentiexf’:Lt,ea2t,...,eant terms
ike t€®' and t2e'
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2.2.1 Properties of Statel ransition Matrix

We shall now some matrix the important properties of state transition matrix
n o forthe time invariant system

@ 0®
For which
no Q
We have the following
p8 N 0 Q )
cd 0o Q 0Q n o €I o M o
od 0 O Q Q Q nono nNono

8N 0 NeEO

v 6 oro oM PO O NO ONO O

5.2 Example
Obtain the state transition matrit) of the following system

é,X' ? e0 1 géxlﬂ
e qu=¢ ue, ~u
goH &2 - gy

Obtain also the inverse of the state transition métrig) for system

0 1
2 -

Q

e
A:é
e

&
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The state transition matrix 0 is given by
no Q n YO0
Since

&S Og e0 2g &S -1g
S-A=¢ wré . uTé oo
O Sy 2 -3 & S+3

The inverse of (Sl A) is given by

S+3 1g
slAatl=__ 1 2 >
( ) (S+1)(St+2) g_ 2 Sﬂ

é St3 -1 @
(52 (5H)(s2)u
_ € u

- e u
e -2 s, U
&(s+1)(s+2 (stl)(st2U

Hence

22e‘t- a2t ot e—2t;3
a(tefM=rYsi-n-Y=¢ 0

& 2l +2e?t - el +26%

Noting that" O N O we obtain the inverse of the sdtansition

matrix as follows

2¢t - g2t el- g2t 2

- - - u

a1 =ehl = N
- 26t +2e2t - el 4262

D D D

oD

2.3Solution of nonhomogeneous state equations
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We shall begin by considering the scalar case
P DL Wo cg& T
let us rewrite equation (2.2@5 &° © & & 6multiplying both sides of

this equation b2 we obtain

€, n \ w N\ ’Ql AV} 1} ’;’"
Q ®»O0 wWw 5(‘)9 @O Q woo

Integraing this equation between and t give

Q woO Q wtQt
or

W0 Qom Q Q wotQt

The first term on the right hand side is the response to the initial condition
and the second term is the response to the nonhomogeneous state equation
described by

@ 00 067y c& p
Where X =1 vector

U =rT vector

U = n3 n constant matrix

U = n3 r constant matrix
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By writing equating (2.213s®> 6 @0 6 YO and premultiplying both

sides of this equation § we obtain

1 n \ © LAY ’Q X N Y X o T\
Q PO 0 0o 5(‘)9 AXo) Q 6 °Y

Integration the preceding equation between o and t gives
Q w0 T Q 66t Qf
Or
w0 Qoom Q Q 6ot Qf C& ¢

Equation above can also between as

Wo nNowm "o tootQf C8& o

Where n 0 Q

Equation (2.22) and (2.23) is the solution of equation §&I¥ solution x(t)

is clearly the sum of a term consisting of the transition of the initial gtdte a
a term arising from the input vector. Laplace transforms Approachto the
solution of nonhomogeneous state equation. The solution of the
nonhomogeneous state equation

W 0w 67Y C& T
Can also be obtained by the Laplace transform approach, the Laplace

transform of this last equation yields
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Y OTT 0w O Y
Or

~

YO0 D i m OM cg& v

Premultiplying both sides of this last equation(By25) “Y'O 0

We obtain

i YOO GOm YOO 6™

Using the relationship given by equatif$hl17) gives

i PQ Oom nQ 6™

The inverse Laplace transform of thist equation can be obtained by use of
the convolution integral as follows.

WO Q wn Q Q oot Qft Cg& T

Solution in term s of xg},thus for we have assumed the initial time to be
zero. If however, the inttial time is given by to instead of o, them the saluted
to above equation must be modified to

wo Q womn Q Q 6ot Qt

6.2 Example
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Obtain the time response of the following system

eXjg_¢0  1p 10
é u=¢g ueéuy

gl 62 -3 o &l
Where u (1) is the unit step function occurring at t = 0 or U(t) = I(t)
For this system

e0 lo &0g
u,Bb=¢éu

A=¢ y
g2 -3 ély

The state transition matrix © 'Q was obtained

The response to the unit step input is then is obtained as

X(t)

-~ Q Q Q Q :

Q o S QT
Ne ¢Q Q 0 p P

Or

® O cQ Q Q Q oo Tt P P

& 0O cQ  ¢Q @ ¢ om P .0

If the initial state is zera (0) = 0.Then u (t) can be simplified to

P g
P
Q

& 0 P
& o P
Q

2.4 State model of linear system

Consider multiple input multiple output nth order
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Number of inputs=m

Number of outputs=p

Uy ———e — e ¥,
U " MIMO — "2
Inputs SYSTEM Outputs
Figure (2.5)
Xy X3 X3 Xa
Slate varlables
rvé 0 'l rv(b 0 Il n’w O
. |p ,O ] o |w ’OI,I o |w OII
YO i @ A h®o @ oA hno 1 e
I é n 11 é n 11 é n
w ouv w oU w o

All Colum vectors having ordér phlE p®& B p respectively

For such a system the state variable representation can be arranged in the
form of n fist order differential agptions

Qo 0 0
0 h Beh n EED &
Qo 0 0
00 h Eeh 7 EEh &
5
5
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=
P
Th
¢
¢
P
mh
¢
5%

Where"Q is the functional operator

R Yol o)

Integrating the above equation
o wo Q ; gefofogeh § Q0 & ¢

.n . . Where.=1, 2,.

Thus n stateariables andhence state vectat any time t can beetermined
uniquely ay ndimensional time invariant system has state equation in
functional form as

Qo "QOhY &
a0 C& X

While outputsof such system are dependent on thgeand instantaneous
Inputs Linctional output equation can be written as

o  "Qdo & Y
Where g is functional output

For the time invariant system thensaequation s can be written as

— QY E E State equation

MO QYD E E Output equation

Diagrammatically this can be repretashin the figure above
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U(t) Instantanecus

input
Input X(t)
Ui - Y1)
T Quiput
Figure (2.
X(t) gure (2.9
Initial stale

Inputoutput state description of system

The functional equations cére expressed in terms of linear combination of
system states and inputs as

i] = ﬂl] Kl + ﬂ]zxi + ..k alnxn + h11U1 + h]i[.]z L R blm Um

il =an X1 + ﬁqu eir azn)(“ +b‘21U1 +b‘22U2+ i +I‘sz Um

in = anl xl + ﬂ.rax!"l' e ﬁmx“‘" thl + me:"" ves ¥ b.'l'lﬂ'l UI:'I'I

For linear time invariant systems the coefficietitsand & thus all

equations can be written in the vector matrix form as

WO 0M 06 7Y & W
Where

X (t) state vector matrix of order rp

U(t)=input vector matrix of order mp

A=system matrix or Evaluation matrix of order &

B=input matrix of control maitt of ordern a
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Similarly the output variables at time t can be expressed as the linear
combinations of the input variables and state variables at time t as

?l{t] =on x|{ﬂ + . * Cin xnl:t:l + dlI Ul.[ﬂ + 0 * d'lm Um{t:l

Yp(t) = €py Xg(B) + oo+ €y Xg(®) + iy Uglt) + oo + dpy Uph(8)

For linear time invariansystems, the coefficients and’Q are constants

thus all the output equations can be written in the vector matrix form as
Y (t) =CX (t) +DU (1)

Where

Y (t) =output vector matrix of order pp

C=output matrix or observation matrix of order

D=Direct transmission matrix afrderp a

The two vector equations together is called state model of linear system

o 00 067 State equation

WO 600 07 Output equation

This state model of a system

For linear time invariant system the matrix ACBand Dare also time
dependentThus

WO 00WwO O607Y0 Cd T
M0 6000 0067YO0
For linear time invariant system
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2.5 State model of single inpusingle output system
Consider a single inptitsingle output

O But its order n hence n state variable are required to define state of system

in such case the state model is

WO 00 67Y & p
WO 6w QY

Where

O € €& Matrix®d €& p matrix

0 p ¢ Matrix d=constantand u(t)=single scalar input variables

In general remember the order of various matrices

0 Evoluation matrix® ¢ ¢

0 Controlmatri® ¢ &

@ Observation matrix &

O Transimission matri® n a
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Chapter Three

Controllable Pairs of matrice

3. Introduction

A system is said to be controllable at tieif it is possible by means of an
unconstrained control vector to transfer the system from. Any initial state
X(0 ) to any other state in a finite interval of time. A system is said to be
observable at timé if, with the system in state(0 ), it is possible ©
determine this state from the observation of the output over a finite time
interval. The concepts of controllability and obseiiglbwere introduced

by Kalman,s hey Play an important role in the design of control systems in
state space. In¢d the Conditions of controllability and observabilty may
govern the existence of a complete Solution to the control system design
problem. The solution to this problem may not, exist if the system
considered is not controllable. Aithough most physiyatems are
.Controllable and observable, corresponding mathematical models may not
possessthe Property ofrtmllability and observablilityl' hen it is necessary
to know the. Conditionanderwhich a system controllable and observable
this deals with contrllability and the nextliscusses observabilityn what
follows, we shall first derive the condition for complete state controllability.
Then we derive alternative forms of the condition for complete state
controllability followed by discussions of compdeoutput controllability.
Finally, we present the concept of stabilizability

3.1 Complete State Controllability of ContinuousTime Systems.
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Consider the, Continuotigne system.

1). (3 W AX 67Y

Wherex = state vectofn-vector)

U=control signal (scalar)

Nn=n n matrix

B=n pmatrix
The syseém described by Equation (3i&)said to be state controllable at
0 O ifitis possible to constructan unconstrained control signal that will
transfer an initial state to any final state in a finite time interval If every state
is controllable, then the system is said éoclhmpletly state controllabléVe
shall now derive the condition for complete state controllability. Without
loss of generality, we can assume that the final state is the origin of the state
space and that tHaitial time is zeroord  TLThe solution of Equatio
(31)is
X{H=Q x@0)+ Q 6 Yt Qt
Applying the definition of complete state controllability just given, we have
X(0)=Q x@0)+ Q 6°YfQt
Or
X (0) o Q 6°vrQt
2).(3
By definttion ofQ can be written

Q B | (19

3).(3
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Substituting Equation (3) into Equation 8.2) gives

X0 B 6B | (Hudt
4).(3

Letusput | (Hu@df O .ThenEquation34) becomes

X (0) B 06Bb= 6E06EEO 6
5).(3
If the system is completely state controllable, then, given any inttial xstate
(0) Equation 8.5) must be satisfied. This requires that the rank o thre
matrix

6 80 6GEEO 6
From this analysis, we can stéte condition for completetate
controllability as follows.The system given by Equatio8.1) is completely
state controllable if and only

If the vectors B, ABE, & B are linearly independent, or the n matrix

680 6EEDO 6
Is of rankn
The result just obtained can be extended to the case where the control vector
u is n-dimensional If the system is described by
o AX 6°7Y
WhereU is an rvector, then it can be proved that the condition for complete
state Controllability is that then nr matrix
6 80 6EEO 6
Be of rankn, or containn linearly indepedent column vectors. The matrix
680 6EEO 6
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Is commonly called theontrollability matrix
1 Consider the system given .BEjxample 3

& p p @ p
of n op W T
Since 6 €0 6 f; 1pT singular matrix
The systemis not completely statmtrollable.
3:1:1 Alternative Form of the Condition for Complete State
Controllability. Consider the system defined by
6). W A 6°7Y (3
Wherex = state vecton-vector)
U=control signal (scalar)
n=n n matrix
B=n p matrix
If the eigenvectors ok are distinct, then it is possible to find a

transformation matrpP such that

0 AP=D=

M Tp Mh [Th
=~ o > 3

E
A
&
E

3 oo

Note that if the eigenvalues Afre distinct, then the eigenvectorsAaire
distinct; however, the converse is not true. For example, ameal
symmetric matrix having, multiple eigenvalues hasstinct eigenvectors.
Note also that each column of the Matrix is an eigenvectér agsociated
with A = (=1, 2E [¥)

Let us define

7). X=PZ 3
Substituting Equation3(5) into Equation 3.4), we obtain
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By defining
@ 000 67 o
By defining

0 B=F=(Q).We can rewrite Equatior8(7) as

@ A Q MM .0

: E

@ A Q "Q

Th

&

(]8

A Q Q : Q

If the elements of any one row of ther matrix Fare d zero, then the

corresponding tate variable cannot be controlled by any ofé¢heHence,

the condition ofcomplete tate controllability is that if the eigenvectors of A
are distinct, thehe system is completely Statentrollable if and only if

no row ofd B has all zero elements. It is important. To note that, to apply

this condition for completstate controllability, we mugtut the matrix

0 6 Oin Equation 8.8) in diagonal form If the Anatrix in Equation §.6)

does not posss distinct eigenvectors, theiagonalization is impossible. In

such a case, we may transfornnfo a Jordan canacal Form. Iffor

example,A has eigenvalues and ha8 distinct. Eigenvectors, then the

Jordan canonical form of &

N p T 1T TU.-
n 11
, |T[ A Tt Tt -':EI,I
U 1 7T T A p e
lE T € €& én

ut 1m 1T Tt AU
The square sub matrices on the main diagonal are dalle@dn blocks.
Suppose that we can find a transformation m&such that
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Y OY U
If we define a new state vectbby
® YO odo
Then substitution dEquation (9) into Equation (6) yields
@ Y 0°YRY 06°7Y

VAOY 67Y oP T
The condition for complete state controllability of the system of Equation
6) may Then be stated as follows: Thesggm is completely staté3
10) are.controllable if and only if, No two Jordan blocksJof Equation 8
associated with the same eigenvalues, the elements of any row of that
3) .correspond to the last row of each Jordan block. Are not all zero3and (
the eéments of each row of that correspond to distinct, Eigenvalues are not
all zero.

2 the following systems are completely state controlldEt@mple3

o o
P Tt

I noc W U

C

C
v
Since 6 €6 6 pC ¢ €singular matrix the systensi

T
completelystate controllable
3.1.2 Conditions for Complete Staé Controllability in the Plane

The condition for complete state controllability can be stated in terms of
transfer functions or transfer matrices. It can be proved that a necessary and
sufficient condition for complete state controllability is that no cancellation
occur in the transfer function or transfer matrix. If cancellation occurs;the

system cannot be controlled in the direction of the canceled mode.

3 Considerhe following tranger function.Example 3
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DY i ch
Yy i chv i p

Clearly, cancellation of the fact(s+2.5)occurs in the numerator and
denominator of this. Transfer function. (Thus one degree of freedom is lost.)
Because of this cancellation, this system is notpetsly state controllable.
The same conclusion can be obtained by writing this transfer functitie in
form of a state, Equation a stapace representation is
of n p W P
¢  ch pp ® p
Since 688 P P
P P
The rank of the matrix id €6 6 .Therefore, we arrive at the same
conclusion: The system is not completely state controllable.
4 Show that the system described3lgxample
o AX 6°7Y
®w 0w
Wherex = state vecto(n-vector)
U=control vectofr-vector)
W £ 60 npéEa& oiméecto) (m &)
A=n n matrix
B=n i matrix
0 a4 cawoi Qw
Is completely output controllable if and only if the compositenr matrix),

where

<

0 6068606 &6 6 EEE 8606 6
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Is of rankm (Notice) thatcomplete stateontrollability is neitler necessary
nor sufficient forcomplete output controllability
Suppose that the system is output controllable and the guii)tarting
from anyy (0) the initial outputcan be transferred to the origin of the output
spacein a finite time interval
0 t thatis
y(T)=Cx(T)=0
Since the solution of Equation P is

Mo Q 8
Att “Yve have
. . 8
WO Q

Substituting Equation (3.12) intéquation (3.1}, we obtain
Y (T) =Cx(T)
0Q
On the other hand;, (0) =Cx (0). Notice that the complete output
controllability meanghat the Vector CX0) spans then-dimensional output

space. Sinc® is nonsingular, if C¢0) spans the adimensional output

space, so does(® x(0), and vice versd&rom Equation (3.8we obtain

A om AQ Q o67YY tQft

Note thatQ | Q 6 6"Y T 'Qtanbe expressed as the surd

is
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QoYY tQft [

Where
I T Y 1TQtT | oa i
And| (T) satisfies

Q ° o
(P: degree ofhe minimal polynomial of 3.12)

And is thé® ; jth column of Therefore, we can writdQ 0 mas
AQ om [ 000

From this last equation, we see ti@ 0 1 is a linear combination of
000 .(=0, 1, 2,p,P-1;j=1, 2 p,r). Note that if the rank a®, where

- 6 686 6 860 6 EEE 860 6 n ¢
Ism, then sois the rank of P, and vice versa. [This is obviqusrifIf p<n,
then the @ 6 .(Wherep h n-1) are linearlydependent on& ,CAO
Co 0 .Hence, the rank gfis equal to that of Q.] If the rank ofi®m,

then 2 x (0) spans then-dimensional output, space. This means that if
the rank of Asm, then CX0) also spans the-dimensional output spa,

and the system is completely output controllable. Conversely, suppose that
the system is completely output controllable, but the rankiokPwhere

k<m. Then the set of all initial outputs that can be transferred to the origin is

of,
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K-dimensionalspacehence, the dimension of this setis less tmait his
contradicts the assumption, that the systemis completely output controllable.
This completes the proof. Note that it can be immediately provedririae
system of Equations (3.12) and (3.12ate controllability on

0O t Timplies complete output controllability on Ot T, if and only if

m rows of Care linearly in depend

5obtain a statspace equation and output equation and 3dsxample
controllable for the system defined by
OY ci i i C
YUY i i v ¢
From the given transfer function, the differential equation for the system is
W® 1w? v’ co O 62 6° ¢b
Comparing this equation with the standard equation given by Equation

W@ G DR o OO HoD HEY »o

We find

—0-0f =1-4 2=-7
=®0-0Of -Of =1-4 (-7)-5 2=19
=8 ¢ 4 19-5 (-7)-2 2=-43

w=y-T u=y-2u
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&

F DO OO T o CW VW TW T O

Hence, the statgpace representation of the system is

053 TT P TT (6)) X
0 m 1 op W pw ¢U
oS C v ¢ W 10
)
Y=p T T W
W
Test controllable
Controllability matrix=0 €0 6€0 0
Since
X nm p ™ X p w
o] PW,00 T T P P W T0
T0 C U ¢ T0 §)
m T P T0
0 ¢ U ¢,00=v
T U] P POX
X pwW TO
M= & €0 6EO O PW TGO U

TO LU pPoOX
S $61492 1 is systemis complete controllable

Example3.6the following systems are completely state controllable
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¢ mn TP p T T T T
O mg¢g T m O p T o . T[Onn
T G P T P P
T G T T T T T
0O ¢ 1 0 mtTmn 00 1 ™
o p T W P W p
mp T ¢ T T
0 P T ¢ M T T
mpop wp

Rank (M)=3 , det(left half)<(3)=3 0 fully statecontrollability

3.1.3 Vander Monde Matrix

If the state modat obtained using the phase variables then the matrix A is
in bush for or phase variable form as

{l ! 0 0
0 0 1 )
A = :
() 0 0 1
T e e ]

And the characteristic equation i.e. denominator of T(s) is

Oi i Wi E ® i & 1

In such a case model matrix takes a form of a special matrix as
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[ 1 1 1 7
-;L'l d.\.-’L: A....
Vo= 2 2 K 2
':I"I ?"E }"n
gy

Such a model matrix for matrix A which in phase variable is called Vander
monde matrix

Example 37 consider a state model with matrix A as

¥ 2 0
.-"“l- = 4 ” 1
458 =34 -4

Determine (a) characteristic equation (b) Eigen values (c) Eigen vector and
model matrix ,also prove that the transformed 6 0 a diagonal matrix

(a) Characteristic equation 0 0S

p T T Tt C Tt A ¢ T
O AT p T T T p mht = P T
T T P TY 0T TYOoOT A

AN W ¢ TYT T YA ® OTAT

A W CQOACT T
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This is required characteristic equation

(b) To find Eigen values teat ¢ for root

-2 1 g 26 24

-2 =14 =24

1 7 12 0

A C AN XN PC TTEAAAN ¢ AN O AN T Tt
K O\ c CNER T

These are the Eigen values of the matrix A

(c) To find Eigen vectors, obtain matria ‘O 0 for each Eigen values by
substituting value of in above equation

L ¢ ¢
"O€ A ¢haO © T ¢ p
TYPot X
6 ~ ~ ~ ~ ~
0 0 0MI ;0 ;0 WE QOO EEE P
o}
3 CT[ p T v T AR v 7
0 ¢ p OMWE a & €00 W L 'Q W 'QQE o
T T G
5 o ¢ T
"O¢ A oha 'O 0 T 0 p
TPotT @
o P& q
0 0 QT o
0 U P
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O¢ A T AOO T T p
TYoT U
0 pT P
v 0 Cu C
0 VN0 T
D B O&® O AWQQANR0 O T | Qi HESFIOVIAND G 6 Qi
AOER
(d) The modal matrix is
3} 3} N N p c p
b 0 d P O ¢
¢ p T

Letusproved 00 "QHQQDQE ® @id " Qw
OO wé QO & KE |

SUS Ds
pmTy X Pt X P
OQm X O ) q_J © P
P P P X L P
poc P . s0l PTX P
SV P O G p h 55 v o p
¢ p T X 0 0
T C T p C p C o .
TLlJ oT w C p T T ol PO
6 60 W ¢ p ¢ ® WY T o T
X v_pP 1 o pe T T T
A TU TT
T A T Y
m T A

3.1.4MIMO System
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For multiple inputs multiple output systems a single transfer function does
not exist. There exists a mathematical relationship between each output and
all the inputs. Hence for such systems there exists a transfer matrix rather

than transfefunction but method of obtaining transfer matrix remains same
as before.

8 Determine the transfer matrix for MIMO system givenEbample 3

¢ moo © pop ¥
oF ¢ v W pop Y
® ¢ p @

From given state model

AT 9 g PP c &P p g
¢ v P p P T
TM 6°Y00 o6 ©O
vos ="' . °
Cc i o
o O O _i uv ¢ i v o
Adj “Y'Oo 5 5 T g | ¢ i
SY0O0s i vi @i i ¢i o
¢ Y08 =
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3.15Gil bert 6s Test for controll abi

For Gilbertbds test it 1Is necessary th
.Hencethe given state model required to be transformed to the canonical
form first to applythe Gilbert test

Consider single input linear time invariant system represented by
W 600 6V
Where A is not in the canonical form then it can be transformed to be

canonical form by the transformatond © 0 ®0  Where M=model
matrix. Thetransformed state model, as derived earlier take the form

o ndo 6 Yo
Wheren Q" Q0 Q& &x®d®d@ Qow

0 0 O

It is assumed that the Eigen values of A are distinct in such a case the
necessary and sufficient condition for ammplete state controllability is

that the vector matri¥* should not have any zero elements If it has zero
elements then the corresponding state variables are not controllable if the
Eigen values are repeated then matrix A cannot be transformed ta Jorda
results Jordan canonical form, as

-
vhy 1,0 0 0 O 0
|
v 0 M1 0 D 0 Do 0

= YTy TRTTTTTEY o
A o 0 by 0 : 0 0
Jordan 0 0 : 0 A 1y 0 0
WHENT 0 100 A 0 0
0 0 0 0 0 g 0
D Qereosememsenssmmms s issssnne R

In such a case the condition for complete state controllability is that the
elements of any row @f* that corresponds Jordan to the last row of each
Jordan block are not all zero

Example 3.9consider the system \itstate equation
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J:ir 01 01X | (0

Xz|=|0 0 1j|X, [+ 01U

X3 -6 -11 -6}|X,] |1

Estimate the state controllability

(i) Kaman,s test

O O0dDa o680 o

Tt P T Tt Tt
00 Tt Tt p T p
® pp O p ®
T P m T P Tt T T P
0 moom o p T T P ® pp O
® PP O © pp O OCOQ G QU
T T p T P m T P
00 @ pp o ¢ b m™ p o
o@ @M CUP CU P @ U

rrrrrrrrrr

p® iIDSQE € ¢ i Q& QO & OI

Hence the rank of M is 3 which is n thus the system is completely state
controllable

(i)  Gilbert test. Forthis it is necessary to express A in the canonical
form find the Eigen values of A

A p T 5
AO 0O T A o) Th ov ppAp T
¢ ppA @
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¢ ¢ C
5 0D L g o o C® L&
S P_G o 1 o)
SRS C P p® ™
O C® ™ T®
00 0 O o T P P

p P ™ ®

As matrix A is in phase variable form the model matrix M is Vander monde
matrix.As none of the elements @fare zero the system is completely state
controllabl e. As Gilbertdés test requi

form it is time consuming ahhence kalman,s test is popularly used to test
controllability

3.1.60utput controllability

In the practical design @f control system, we may wamat tontrol the

output rather than the state of the system. Complete state controllability.is
neither neessary nor sufficient for contling the output of the systeroif

this reason, it is desirable to define separately complete output
controllability.

Consider the system described by

14). o Ax 60 3
w 0 0o o v
Wherex = state vecto(n-vector)
U=control vectofr-vecton
W £ 60 g a& oméecto)
A=n n matrix
B=n i matrix

60 a4 ¢awoi Qw
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O a 1awoi Qw
The g/stem described by Equations (3.14) and (BislSaid to be
completely output. Controllable if it is possible to construct an unconstrained
control vectow (t) that wil. Transfer any given initial outpyAtO B to any
final outputyAtl B in a finite time intervald t 0 ,It can be proved it
the condition for complete output controllability is as follows:
15) is completely outputl4) and (3rhe gystem described by Equations (3
controllable. If and only if then (n+1) rmatrix
6 86 0 60 6 EEE 866 6 &0
4.1.7 Uncontrollable System.
An uncontrollable system has a subsystem that is physically disconnected
from the Input

3.2 OBSERVABILITY
We discuss the observability of linear systems. Consider the unforced
System described by the followingjuations
16).68 Ax (3
w 0o oP X
Wherex = state vectofn-vector)

W €00 RE&I @ndvecto)

A=n n matrix

C=m ¢ matrix
The system s said to be completely observable if everystat¢ can be
determined from the observationygf) over a finite time interva)  t

0
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The system is thereforempletely observable if every transition of the
state eventually affects every element, of the output vector. The concept of
observability $ useful in solving the probleof reconstructing
unmeasurable state variables from measurable variables nmrtinaim
possible length of time we treat only linear, timeariant systems.
Therefore, without loss of generality, we can assumebthditthe concept
of observability is very important because, in practice, the difficulty.
Encountered with state feedikecontrolis that some of the state variables
arenot. Accessible for direct measurement, with the result tHa¢comes
necessary to estimatee unmeasable state variables in orderdonstruct
the control signals. It will be. Shown in that suchreate of state variables
are possible if and only the system is completely observable. In discussing
observability conditions, we consider the unforced system as Biven
17).The reason for this is as follows: If the systemi® and (Equationg(3
desribed
o Ax 07Y
® 6 07
Then
XH)=Q x@0)+ Q ootQft
And y (1) is
Y1) =Q x(0)+ Q 60tQt O7Y
Since the maices A, B, C, and [&re known and () is also known, the last
two terms, on the rightand side of this last equation are knoywantities.
Therefore they mabe subtracted from the observed valug (). Hence,

for investigating a necessary andfieignt condition for complete
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Observability, it suffices to consider thgstem described by Equations
17).16) and (33

3.2.1 Complete Observability of Contiious-Time Systems.

17).The outputl6) and (3Consider theygstem described by Equations (3
vecorY (1) is

Y (1) =CQ X (0).

12), we havel0) or (3Referring to Equation (3

Q B | (Do

Wheren is the degree of the characteristic polynomial. Note that Equations
(3.8) and 8.10) with mreplaced by can be derived using tledharactastic
polynomial. Hence we obtain

wo B | (HDoodm

WO | o0t | 000 E | 000 Tt o Y
If the system is completely observable, then, given the outfilbver a
(3.18).time interval0 t & X (0)is uniqtely determined from Equation

It can be shown that this requires the rank ofifme n matrix

6 2
~ o, oo
100
] é 2
11 é ]
wo U

From this analysis, we can state the condition for complete observability as
follows thesystem described biyquations (3L6)and 3.17)s completely

observable if and only if the nm matrix
6 60 6 EEEE O 0
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Is of rankn or hasn linearly independent column vectors. This matrix is
called theobservability matrix
10.3 Example
considethe system .Is this si@m controllable and observab&nce the
rank of the matrix
djs A}

_ W

Y=p T o

sé6 T P
P P
Is 2, the system is completely state controllable. For output controllability,
let us find the mak of the matrix 6 6€6 0 Osince
O 0E0 0 6=p T
The rank of this matrix is 1. Hence, the system is completely output
controllable. To test the observabilty condition, examine the rank of
0O €0 O
Since
5 86 6 PP
m p
Therank of6 €0 O is 2. Hence, thasystemis completely observable

3.2.2 Conditions for Comgete Observability in the Plane
The conditions for complete observability can also be stated in terms of
transfer functions or transfer matrices. The necessary and sufficient
conditions for complete observability are that no cancellation, occurin the
transfer function or transfer matrif cancellation occurs, the canceled,
modecannot be observed in the output
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Example3:11
Show that the following system is not completely observable

& bH 8Ty

Y 6
Where
N mT p W T
X=(:§),A n m p, B m, C 1t v p
W ¢ PP O P

Note that the control function does not affect the compdebbservability of
the system texamine complete observability, we may simplys€. For

this system, we have

(14 > [} 4 (3 [14 T (p (p
O 00 é0 O v X U
PP P
Note that
T ¢ 0
v X U Tt
PP P

Hence, the rank of the matrid 66 6 6EE 6 6 isless
than3.Therefore, the system is not, completely observable.
Comments.The transfer function has no cancellation if and only if the
system is completely, state controllable and cletaly observable. This
means that the canceled transfer, function does not carry along all the
information chaacterizing the dynamic system.
3.2.3 Alternative Form of the Condition for Complete Observability.
Consider thesystem described by EquationS)hand (14), rewritten

@ 0 0P w
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W 0 Cq T

Suppose that the transformation maRikransformsA into a diagonal
matrix, or

0 60 O
WhereD is a diagonal matrix et us define

» 0
Then Equation$16) and (17) can be written
@ 0 00O

@ 0L W

Hence

~

WO O0W om
The systemis completely observable if (1) no two Jordan blockare
associated with, the same eigenvalues, (2) no colum@Stifat correspond
to the first row of each. Jordan block consist of zero elements, and (3) no
columns ofCSthat correspond to, distinct eigenvalues consist of zero
elements
3.2.4Gilbert test observability

It is known that for Gilbert test the state model must be expressed in the
canonical form; consider the state model of linear time invariant system, as

WO 0N 60O DEBDO 6
Use the transformatiod © 0 @®0 0V'Mi Nk d € Q@ DO I Qw
CHOo 60 6 0o OMi @ 00

For a single input single output system
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¢ dao0od ao ES ao
Due to the canacal form all the state are decoupled and not like the each
other. Hence for the system to be observable each term corresponding to
each state must be observed in the output Hence none of the coefficient of
the 0 must be zero thus the system is the plete observable if all the
coefficients ofd* are nonzero coefficient none of the coefficient is zero if
any element is zero the corresponding state remains unobservable i.e
shielded from observation

Example 3.12evaluate the observabllty ofthe sye m wi t h using Gi
test

mop T Tt
0O mn p M MOER o1 p
m ¢ O P

For Gilbertédés test find the Eigen val

AP T §
ANO 0 T A p T M OAN QAT
mT ¢ A O
AN oAnC TCAAN P A C T

A T p M q

As the Eigen values are distinct the model matrix M is the Vavdede
matrix

P P P P P P
§) N N N TT P C
T op
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When the model transformed form

'y von p p p
6 60 o1 p M p ¢ o p
mT p T

As there is one zero elements dh the system is not complete observsble

Example 3.13Use controllability and observability matricesdetermine
whether the system represented by the flow graph shown the figure is
completely controllability and completely observability

The value of variable at the node is an algebraic sum of all signals entering
at the node

X3 = X;+X,+2, X2= x]-EK: +J~:3+2u
]
}it = —3){|+X2, Y=}{1+2}{2—13
-3 1 0 )
A=|1 -2 1|,B={2|,C=]1 2-1]
1 1 0 2

97



p T T G
66 p ¢ P g q
P p MO G
c p T O p T pTT L P
0 P C p P C P T ¢ C
P p M p p T S P P
pm v p T U]
0 0 T ¢ ¢ ¢ 1l
C p P CQ Tt
m Q W } 5 ~
0 ¢ ¢ Y CPDs o¢C MMeE WODEQo ¢
¢ C Tt

The system s fully state controllable

~

Forobservablityd ¢ d 66 o 6 hé o

o c p p P §
66 p ¢ p ¢ T
mop M op G
©n [14 G p p C -[
6 6 P Cp T T
T p T C T
i} p ¢ T . C I
CO C T Y D S mweQ c T
p ¢ T P

Thus¢ ¢ determinant is zero hence the system is not observable
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3.3 Principle of Duality
We shallnow discuss the relationship between controllability and
observability.We shall introduce the principle of duality, due to Kaman, to

clarify apparent analogies between controllability and observability.
Consider the systeiY described by
of Ax 60
@ 0
Wherex = state vecton-vector)
U=control vectofr-vector)
W £ 60 P& oméecto)
A=n n matrix
B=n i matrix
0 a4 €¢a®WOi Qw
O a 1awoi Qw
And the dual systenY defined by
& 00 6w
€ 0°®
Where
Z State vectofn-vector)
V=control vector{m-vectol)
n outputvecto(r-vector)
0° wé & QOAMONI M8i Q
6° Q& & QOANDdN MBI Q
6° & & QOOAMD QI /el Q
The principle of duality states that the systéhis completely state

controllable.(Observable) if and only if systérmis completely observable
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(state controllable).To verify this principle, let us write down the necessary
and sufficient conditions for complete state controllability and complete
Observability for system& and™Y

For system'Y :

1. A necessary and sufficient condition for complete state controllability is
that the. Rank of tha nr matrix

114 ~ 0" LIav.4

0€eoo

[3)

O O

[T

Be n
2. A necessary and sufficient condition for complete observability is that

the rank of then nm matrix

r~n

O €0 O €

T

E €0 o)
Ben:

For system|
A. A necessary and sufficient condition for complete state controllability is

that the. Rank of tha nm matrix

EED 0

[T

O €0 6 €
Be n
B. A necessary and sufficient condition for complete observability is that the
rank of then nr matrix

6 80 6EEDO 6

Ben.
By comparing these conditions, the truth of this principle is apparent. By use
of this, principle, the observabllity of a given srstcan be checked by

testing the sta controllability, of its dual
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3.4 Detectability.
For a partially observable system, if the unobservable modes are, stable and

the observable modes are unstable, the system is said to be detectable. Note,

that theconcept of detectability is dual to the concept of stabilizability
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Chapter Four

Bounded controls

4. Introduction

Time delay often occurs in engineering system. Since the existence of time
delay usually instability of the system the study on the Time delay systems
has received considerable attentions and many stability criteria for time
delay systems can be found lretliterature. Stability criteria for time delay
systems. Tend to fall into one of the two categories: delay independent and
delay dependent .As the name implies delay independent criteria provide
conditions which guarantee stability for any length oftilne delay on the
other hand delay dependent criteria exploit a priori knowledge of upper
bounds on the a mount of time delay, These criteria since more information

about the Time delay is assumed to be known

4.1 stability
Definition of stability 4.1

A continuous system (discrete time system) is stable if its impulse response
yi(t) (koneke delta responsgty approaches zero at time approaches

infinity.

Alternatively the definition of a stable system can be upon the response of

the system to bounded mig that is inputs whose magnitudes are less than

some finite value for all time.
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Other definition of stability 4.2

A continuous or discrete time system is stable if every boungatl
produces a bounded outgBiBO) dso definition. The system is stabif

f)y D yv b as t

f(t)ﬂ

MAYN

v

The systemis an unstablefif) Y b a's H t Y

A

f(t) /
/N . T
S\

The systemis a marginally stab{® tloes not decay to O or goHivas
t b

A
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Consideration of degree of stabilty of a system often provides valuable
information about its behavior. That is if it stable how close is it to being
unstable and Definition of stability

v

Poles on the iw axis: marginally stable in above figure we define stability the

closed loop transfer function left hand s{@BO ).
4.1.1Characteristic Rootlocations for continuous systems

A major result of chapter 3 is that the impulse responsérefaa time

invariant continuous systemis a sum of exponential time funcWhsse
exponents are the roots of the system characteristic equation A necessary
and sufficient condition for the system to be stable is that real parts of the
roots of the chacteristic equation have negative real parts. This ensures that
the impulse response will decay exponentially with time. If the system has
some roots with real parts equal to zero but none with posttive real parts the
system is said to be marginally stabiethis instance the impulse response
does not decay to zero although it is bounded but certain other inputs with
produce unbounded outputs therefore marginally stable system unstable.
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Example4.1

Differential Equation

(S +Dy (S =U©)

Has the characteristic equation

S?+1=0

This equation has the two rootg

Since these roots have zero real parts the system is notisiallewever

marginally stableiace the equation has no roots with posttive real parts. In

response to most inpot output will contain term of the form y=t nstar

This is unbounded

4.1.2Routh stability criterion

The Routh criterion is a method of determining continuous system stability

for system with an nth order characteristic equation of the form

//////////

,,,,,,,,

W N éééééééé
W W ééeéécéecééc
A wWééébébébbééé

@ @ wWééééécééééé.
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Where® ,00 , é é é é® are the coefficient of the characteristic
equation and

The table is continued horizontally and velig unit only zero are obtained

before the next row is computed without disturbing the properties of the
table.

The Rouh criterion .all the roots of the characteristic if the elements of the
first column of the Routh table have the same sign. Othervessaumber of

roots with positive real parts is equalthe number of change of sign

Example 4.2

S+ 65 +12S+8 =0

106



Since there are no changes of sign in the first column of the table all the
roots of the egation hae negative real part®©ften it is desirable to
determine arrange of value of a particular system parameter for which the
system is stablélhis can be accomplished by writing the inequalities the
ensure that there is no change of sign in the first cohifrtite Routh table

for the system

These inequalities then specify the range of allowable values of the
parameter.

For no sign change in the first column it is necessary that the condition
P U TY L T

Be satisfied .thus the characteristic equationrbass with negative real
parts if-1< k <8 the simultaneous solution of these tinequalities. aow

of zero the Yfow of the RoutlStableindicates that the polynomial has a pair
of roots which satisfy the auxiliary equation formed law/$

AY +B =0
Where A and B are the first and second elements oith®w zero in the

To continue thestable the zero in théfrow are replaced with the
coefficients of the derivative of auxiliary equation is 2AS+0=0

The coefficients 2A and 0 are then entered th& Yow and the table is
continued as described above
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Example 4.3

i Ci o Ti

The system unstable 2 poles RHP

Special casd

Example4.4
i Ci i ¢ T
1 1
L 2 2
Th Tt
1 0

The system s stable
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Special case

Example 4.5

i Ci ¢t TWO¢Y O vm T
| 1 24 25

1 2 48 50

i T T 0

i 24 -50 o

| 112,7 0

i -50

The system is unstable
| poles RHP
4.1.3Hurwitz stability criterion

The Hurwitz criterion is another method for determining whether all the
roots of thecharacteristic equation of a continuous system have negative real
parts.

This criterion is applied using determents formed form the coefficients of the

characteristic equation.
It is assumed that the first coefficientisapositive the determinants; A=
1,2, 3, é6ééééé, n

Are formed as the principal minor determinants of the determinant
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OD- . . .eeee....

-|’elﬂ\ LI J
W QLD Q¢
60 66 & W QL QQ
. . ') -n ) . . . . . (1) "Qyml\) !Q‘e
oé .. .. .. 0 .. W . W.éeééeee. éeéé
céeé.. ... . ....o0.

Oeééeééeéecéeceéée

The determinant are thus formed as follows

D]_:d)
A_Q) OV _ o
=0 ) =W -0 W
() () w
A= 0 O O = O O +tOO © Ww -®
L w w

And so on up ta

All the roots of the characteristic equation haegative real pats if and only

If Nn=3

W W T
D O O T OO O O hD
mT O ©
D>0
D =w®

Thus all the roots of the characteristic equation have negative real parts if
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B O@ -6 H>0 QD -HD>0 @G>0

() ()
NDW W ) CT Tt
= p pT T
\ Ty qT
) ()]
Example4.6

Determinant if the characteristic equation below represents a stable or au
stable system using the Hurwitz criterion method

[ U] CT CT T
i
i

CT

D

470 €&

CT
P T
W

D Yprtgrtm Y ¢Ip T M TP Y T
COUWXPCPpp

D HD
In this method the system is a stabl®iff O
\ D=2112 >0 the system is stable
D =w» =8

\ Each determinant is positive

111



\ The system s a stable.

Example4.7

For what range of values of K is system with following characteristic
equation stable using Hurwitz method

Y Qi ¢CQp T
The Hurwitz determinant for this system

D

~

D Q
In order for this determinant stable positive
It is necessarythat K>0 an2k 0
Thus the systemis stable if K > %
Example4.8

Determine the Hurwitz condition for stability of the following general fourth

order characteristic equation assumitlg is positive
M S+ S+ ST +M SHH =0

The Hurwitz determinants are

W W T T
A= = o o 1 2P@oow WW)-wwow
T ® ® ®
W O T
A=W ® T DO OWW-0OW
T O o
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w W

A:(I)(I) —WwWw -0Ww

WOO- ® -0 >0 The conditions for stabilty are then >0
W W -0w>0

@O WO)wwr>0

Is the system with the following characteristic equation stable?
S'+3S’+6S° +9S+12=0

Substituting the appropriate values for the coefficient in the general

condition of above Example of Examy&)we have

H=12%=9 H=6 _H=3 & =1

®>0Y 3>0

WO -O®>0 Y3.6-1.9>0Y 189=9>0
PDOR-OO-OWO>0Y (3.6.9-(3°-(1)@>0Y 16210881 >0Y
27< 0

3((6.9,19 -3(12)°) - (9)*(12)(1)>0

= 3(649 - 432 - 972 >0 =649 972 =-324< 0

Since the last two conditions are not satisfied the systansisble
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4.1.4Continued Fraction stability criterion

This criterion is applied to the characteristic equation of a continuous
system by forming a continued fraction form the odd and even portion of the

equation in the following manner

LetO(s)= S+ S +8 8+ S+D

0.5)=6 S+ S™+88 B

0,9)=¢ S0 S+88B

Form the Fracton—— and then divide the denanator into the

numerator andnvert the remainder to form a continued Fracasrfollow:

O oo
0 ©ID

m™ o |©
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h,, €& é g dre all postitive then all roots of(§) =0 have negative If h;
real parts

Example4.9
Using the continued Fraction stability criterion the polynomial
(S) = S +45+8S+12
Is divided into the two parts
(S)= S +8S
(S) = 45+12
The continued Fraction for S

O _
()

=Yas+——=Y4Ss +——

CAIl coefficient of s are positive, the polynomial has all roots in thei left

plane and the system with the characteristic equatiai)=0
CThe system is stable
Example4.10

Determine bounds the parameter k which a system the following
characteristic equation is stable

S® +14<456s5+K=0

The continued Fraction for is

= =—i +(—)S=—i + Y 7
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For the systeno be stable the following condition must be satisfied
56—>0
And k>0 that is 0 <k <784

Example4.11

Derive conditions for all the roots of a general third order polynomial to
have negative real parts

For Q9=wi i oi ©

The continued Fraction for is

The conditiorfor all the roots of)(s) to have negative real parts are then

>0 >0 —>0

- -~

Thus if & is positive the required conditions a@be héd hd > 0 and
OO >0 OO0,

Note that if®d is not positive (s) should be multiplied byl before
checking theabove condition

4:1:5 Stability criterions for Discrete Time systems

The stability of discrete systems is determined by the roots of the discrete
system characteristic equation
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e 0w a E888 ha & m
However in this case the stability region is defined by the unit el
in the Z plane.A necessary and sufficient condition for system stability is
that all roots of the characteristic equation have a magnitsdethan one
That is be within the unit circle this ensures that the kronecker delta response
decays with timeA stability criterion for discrete system similar to Routh

criterion is called the jury test for this test the coefficients of the

characteristic equation are first arranged in the Jury array row.

z

1
W w 0888888880 o

2
0 A 8888w o
3

O O ws88888 88H

4
® ® 888 88&H

5 & ® »888 88

2n-5 l |1 |
2n-4 | | l |
Where n3 i i i
. OO 0O
Do e 9T 5 6
Y 3 RY
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The first two rows are written using the characteristic equation coefficients
and the next two rows are computed using the determinant relationships
shown aboveThe process is continued with each succeeding pair of rows
having one less column than the\poes pair unit row 2¢8 is computed

which only has three entries the array is then termindiay test:

Necessary and sufficient conditions for the ro(®)Q=0, To have
magnitudes less than one are

Q(1D>0

Q(-1)>>o0 ) for neven
<0 for odd
SAESKIS

WEW S

(D)v

SRS IS

§d 88

Note that if the QL) or Q (-1) condition above are not satisfied the system is
unstable and it is not necessary to construct the array

4.2 Stabilization by bounded delayed control

Time delay ofteroccurs in engineering system. Since the existence of time
delay usually instability of the system the study on the Time delay systems
has received considerable attentions and many stabitityiafor time

delay systemsan be found in the literature. ghility criteria for time delay
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systems. Tend to fall into one of the two categories: delay independent and
delay dependent, As the name implies delay independent criteria provide
conditions which guarantee stability for any length of the time delay on the
other hand delay dependent criteria exploit a priori knowledge of upper
bounds on the a mount of time deld)ese criteria since more information
about the Time delay is assumed to be known

Consider the following linear time delay stem

Q) =Bx(t) +0 wo YO (4.1)

Where T(t) is a unknown time varying parameter which satisfies

40 d 10 0q T h

XY isthestateBand 1Y  are constant matrices

In is used to denote-dimensional identity matrixGiven a matrix M , the
transposition an the conjugate transposition are denotéd ayd M

™ and' respectively.A matrix M is called positive definite if m belongs téd H
OMX >0foral X6 x mThe notation M >0 is used to denote positive
definiteness the positive semi definiteness negative definiteness and negative
semi definiteness have similar defintions except that the > is replaced by
¢ c¢,c cand respectiveWe use kL to denote the spa of square
assumable Function defined to time intervalj0Given a signal f in L
spaceWe usex£CEL, denote the fnorm off to denote the,induced norm

of G Dgnote the time delay operator and let

DBe(D+-1)J -that is
Dy (v): = U(t-T(1)) , and

D)= & )d—
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Lemma (A)

OperatoDis bounded) spaceth& induced norm obyis equal to h and
D

Satisfies integral quadratic defined by
s(vw)=_ "Q QO X Q9 -w(Q X w(t)dt
Where X= is any positive definite matrix

Proof
DQXO W € Wwe® DO UL Q
W)= ()dj)d— and

xgwelt) =- ,  6(3aQh)A-Ah X - (. Oh Ah)

O(—98 gh) A-Ah

Using the Cauchy Schwartz in equality formula we get.

~

x§ W Q 0h@ Oh _ o= Qh)A-An

h & Gh)AAh  Ohedhih h o) &) A—

This is turn implies

00 00Q0 . EOFD ()A—=h_ _ trs) v(t+s)dgdt

h &0 viddyds= "QCB) vbdt
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\ DBounded by H#

4.3 Stability criteria based on integral quadratic constraints
Lemma (B)

Let M 'Y be a constant matrix then the time delay system
WO0=Bx0o+" x(-T(t)) can be equivalent formulated as.

® O =B+m" Xt(X)+() -m)" 0 ()+m" "0 ) +m" 0 ()é T
WhereU (t) =x(t-T(t))

0 (t)= v —Q—0 (t)= w—Q—

Using one can put the linear time delay system standard linear fractional

transformation setup for robustness analysis as shown in figupe

The linear time invarianc@ TI) system G ha a state space representation

W) =!x 0 +"104(D)+ "0 5(t) 8
Q) = x(©)

I 7] o

SO up0

0 ,= Dr(Q) and matrices Where0 ;= D(Q)
"=[m" B m" ]";=() -m)’ 6l=B + nt'

Since systei@.1) ,(B) and(4.3) are equivalent stability of any one system

implies stability of the other Two.
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Figure (4.4)

Stabllity criteria derived in the previous topic are used on Simuien
bounded type of integral quadratic constraint ferabd D which might be
very conservativeLess conservative criteria can be derived prov{tes)
which better characterize;[2ndD are a viable in this topic strong@CS)

for Dy andD are derived .
Lemma (C) ( swapping lemma for operatokp

Let H be a stable linear invariant system with state and let T denote operator
of multiplying e

T(v(): =4(t) v(t) then

Dr 0 H(s)= H(s) IDr- H(s)IT I5H(s)

Proof

Let V be any L Function and defined y arniito be
y(0=0 Ut =5 y() +v(t)
2(0)=0 WEO6 z(t) + (t-T(D)

Let r(t) = y(t-T(t)) - z(t) and we have

19 =Ut- TO)L-4() - &9
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Ut- T()) =06 (YT ) - 2(0) - 40)

=0 r(t) - 4()o$ (UY)

Which implies$ (( § =Ho$ (6) - Ho$ (—(HV))
This conclude the proof

Lemma (D)(swapping lemma for operatby

Let Hand T be the operators as defined in lemma 2 then
DoH(s) =H(s)oD- H(s)oTo$ oH(s)

Proof

The proofis similar to the of lemma

z and x to be Let V be any L Function and defined y
y(0)=0 U =05 y(t) + V(1)
20=0 (6 2+, VO()A
= CUNA U9
One can easily verify that
1O =y(t- TO)1-40) ) &
yenoe,  VUNA Ue 40
=, YUNA b Ud 4Onud 4O
=5 r(t)- 491 (U9)

Which implies D(HV) = HoD(V)- HoTo$ (HV) this concludes the proof
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4 .4 Bounded by a neighborhood

Fo >o mESE b

Let y/'Y and pickany T 0 and any integer q 1
ThenY (M+Q Y((M+ééé.G+ ) Y=Y (n

Lemma(E) if Cis an open convex sub setéfand L is a sub space o6f
contained in C then c +L =C

Proof

so we only need prove the other inclusion pick a@yeary ¢ =c +0 C +L

x| Cand ¥ Lthenforali O

Xty= — p o < |_|°°

Since C is ope(il+i )xi C for some sufficiently small 1t
Since L is a sub spacei—[ o Lic
Thatx+yl #A AT 1T OAGEQU
Lemma (H)
T Othen Letul 'Y and pick any Two S
Y(M+Q Y=Y (m
Proof
Pick.

w=_A ) BO (Tdt=, A ) B0 (T-s)dt and
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w=_ A ) BO (T)dt

Note that With inputs0 U- valued

Qo = K ) B0 (T)dt

Thus @ Q w=_ A ) B w(T )dt
0 @ m 4 3

Where Ws)= v 4" g0 4 3 4

w(s)i U forall T [0, s+T]
ThusY (mM+Q Y((m Y (mn)
The converse inclusion follows by reversing these steps
ThereforeY () Q Y (m=Y (m
Lemma (1)
Assume thafA, B) is controllable and u'Y is an eigh borhood of O then
* 1Y (0) forall k
Proof

First replacing if necessaly by a convex subset we may assume without
loss of generality that u is a convex neighborhood of Owe prove that
statement by induction on k the case k=0 being trivial so assume that

6 =any, +i6,6:1 'Y () * 1°Y (O)and take ar§l *
First pick any T>0soth®® =Q forallj=

0, 1, eééeééeécéce
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If b=0 one may take any T >0

Otherwise, we may use for instance
T= o next choose ang> O with the property that ¥/=d6 [ 'Y (0)

There is such d becausé& (0) contains O in its interior

Since M Ker(l I-A)* where V 6

A VD) V=+TAL D +—A-1 1)+ é é é)V=V+ W | 4
Where W *

Thus

Q V=g V=0 V- w=Q V-4 V 4 E4

/////

Decomposing into real and imaginary parts
w=0 +i0 andtaking real parts in above equation
j=0, 1, E6=0 O0-d x tgT
Now pick any integer g 1 then
B d O0=B A 0+03
Where03=-B'(Q  belong to the sub spake

Applying First corollary (i) and lemma (A)

We conclude
PoN'Y (0)+* 12 (0)
Where PB  '( B p=q -
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Here is precisely where we used théit O
ThereforelP6,=PV,7 2 (0)
On the other handi P 1 means that

61:7dp61+ (1'd_)0
Is a convex combination

Since dP6;and 0 both belong & (0) we conclude by convexity of the
latter that indee®,7 2 (0)

Corollary (ii)
Assume that (A, B) is controllable andil2 is a convex and bounded
neighborhood of O
There exists a set B such that
2 (0)=B+L and B is bounded convex and open relative to m
Proof
We clam tha2 (0)=(2 (0) a 0O
Oninclusion is clear form
2 m, a O 2 (©)+L=2 (0
Applying lemma (B)
Conversely any V2 (0) can by decomposed as V=xf jn + L
We need to showthafx2 (0) But
x=vy7 2 (0)+L=2 (0)
Applying the same lemma (B) yet again this establishes the claim
Welet B: =2 (0) &
This setis convex and open in m becaig@®) is open and convex
We only need to proofthat it is bounded
Let PYY ° 'Y be the projection onm a long L
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yi (bbserve that PA =AP because each ofhat is P(x+y) =x if x &
AyT Omply AxT m and mare Ainvarig (SO v=Xx+Yy

PAV =Ax =APV).

Pickany XY 1 _ &

Since X 'Y Tt thereare some T and sanw so that

x=_.Q  60°Q

Thus x=px=Q 60°Q= Q  x(O)d

Where x()=PW() & n 606 forall * since the restriction of Atom
has all its Eigen values negative real part

There are positive constants C, m>0 such that

AQ £ o AmoForallt m

Thatif xisalsoin PB(uyQ £ ®Q  foral t m

So for as above we conclude

AYE © Q Q

Q~| S

"
a4

4.5 Lower Bounded control lyapunov Functions

We will consider systems of the form

@O0 =F(x(t) u(t)

Where the state x (t) evolves ¥ and the controls u(t) take values in a sub
setu 2 containing the origin. For simplicity we assume tha2 v=
Themap fY 'Y © 'Y "Qb € o ¢ 6QFR o0 o and f(0,0) =0
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To stabilize this system to x =0 we will use eeFginction v which can be
made to decrease a long system trajectories. A FunctiortviR 1t

Is positive definite if v(0) =0 v( )> O for T

And properif vi{ )°© b asA A£© Hfor 72

We denote by £O EEAcliden norm

For a locally Lipchitz continuous Function

V.2 OR and P2 we define the Dini derivate of v in the direction of
P At to be

$ & .p=l EJ OOB

In what follows we will be considering closed loop systems of the form
uf ), (T
Where the feedback controller is measurable and locally bounded but
possibly discontinuous hence the classical notion of solution need not apply
to deal with this situation we will use the generalized solution due to flipper
Set valued Function
T ZWNLfO.(BE{AS.{ )= 60

1>0 ‘“(N)=0
d ) is a ball of radiusd centered at £Vhereby (£
6 (Denoted the closure of the convex hull and m is used Lévesque measure
on2 ,AFilippov solution on an interval | CR
Is absolution continuous on any inten@ls Function x:P 2 such that x(
Al most everywhere on | solution x (t) to § o ]I, And a(t)¥ A6, (x ()
are thus statrajectories of the systeander The Feedback controller u =
0.(s) which are differentiable al mostevery where with respet&ince f(£
£)) is measurable and locally bound@&tle set valued Functiord. (£)_0.

IS upper semi continuous compact and convex value and locals bounded in
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particularthe differentialie inclusion satisfies, The basic condition and thus
has oFilippov solution for each intrastate .the solution x (t) =0 of a different
inclusionw(t) = (X)) is called stable if for ea¢h T1Tthere exists  TTwith
the following propertyForeachn i ¢'@hat A A& each solution x(t) to
X(t) to ()T o6 with intial data x(0) =
Exists for0 0 Hband satisfies the inequality

AYE | T 0 M
*asymptotically stable if x (t) =0 is stable and in addition, (@ as © O
The possibly discontinuous Feedback controller
X0 0, @ | O G 0 QEtrEAKH x(t)=0
Is a stable solution of the correspting differential inclusion
4.5.1 Lower bounded lyapunov pairs
Lipchitz continuous lyapunov pair (v,w) consists ddeally Lipchitz
continuous positive definite proper FunctioiYv? Y and anon negative
continuous Function
WY O ‘Ysuchthat for £ 1t
V) will, There exists pf(£
p) W(EO w(E
Definition 4.1
A lower bounded lyapunov pair for the system
w (t)= f(x(t), u(t) is alipschitz continuous lyapunov pair (v,w) such that
V) such * For £ T1tthere exist® , DT (£
D) ééeéééeééeéeéeéeéeéeée. DYi-WwWE) O wE O w(E
forT TOMIi @ “Qi >0 $uch that for 0 &ZA< (i) holds with

A A Q)
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Definition4.2
A lower bounded lyapunov (v,w) said to be regular if

1. The setvalued Function £)(is upper semi continuous, compactand
convex valued and locally bounded.

2. There is appositive definite continuous mapn'Y such that at
points£ where the Function v is not different table ( or more
generally where

p)is notlineaP® O (£
p) -0 ZIexxM (£)0 ®(E
rmll - 3a .
0 & ¢ i QILIDE ¢ 0 QME§ 60a @WR0E R IQ Kuction
V is called alower bounded control lyapunov Function-(CR.F),
QO i st apositive definite Function w such that (v,w) is regular lower
bounded lyapunov pair the pair (v,w) will be call regWapunov pair for
0'Q ¢ BNV QT Q Q6 ECEE O HWMQQQQQI RRD Wi Q¢ &
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Chapter five

Reachability and controllability under sampling

5. Introduction

When studying the input to state interaction we caa tak different
points of viewin the former we assume that the initial state of the system,
the state of the system@t0 is the fixed and we consider the problem of
determining the states of system that can be reached applying a certain input
in this case we study the so called Redulity property in the latteWe
assume that the final state of the system at someltiéixed and we aim
at determining all initial states that can be steered, by means of a certain
input signal to the selected final state. In this case we stedsotballed
Controllability property. In the study of reachability and controllability
whenever the input signal that drives a certain initial state to a certain final
state is not uniqgue we could impose constraints on such an input signal. E.g.
we could onsider the input signal with minimum time if minimum

amplitude or the input signal whichchieves the transfer are equivalent no
constrain is imposed all input signals a achieving the considered transfer in
minimum time For linear systems the propert&seachability and
controllability are referred to the state Thhence we say that a state is
reachable to mean that it is reachable farm rtand that a state is

controllable to mean that it is controllablecto Tt Note more over that,
Because thesaqperties are used to describe the input to state interaction
they trivially depend only upon properties of the matrices A and B
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5.1 Reachability of discrete time systems
Consider a linear, time invariant, discrete time system

Letwtt  T1and consider an input sequence u(0) , u(l), u(?), .. ~1Jufk
the state reached at t = k is given

6°Q p
(b'rQ n | n8 & 1 O Q,e c
é
0T
This implies that the set of states that can be reached at t=k is a linear space
I-e it is the subspa@ spained by all inear combinations of the columns

of the matrix
2 R o I "

The seR is a vector space, denoted as the reachable subspace ink steps if

2 @l-erank2 1 then all state of the system are reachable in (at

most) k steps and the system is said to be reachable in k steps. Ask varies we
have a sequence of subspace nar2elg 8 2 &his sequence of

subspaces is such that the following properties hold.

Propostion (5.1)

The sequence of subspace (A) is such2h&t2 1 81 2 1 8

Moreover if forsomeE,2 2 thenforal k ER 2 finally
2121 812 2

Proof
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To prove the first claim note that if a staj&s reached from zero in k steps,

using

The input s eque n-]¢henue 8adme statels (aldo) :
reached from zero in k+1 steps, using the input sequence 0, u(0),u(l),
....,u(lel),hence for alk p

2 12

To prove the second claim it is enough to show, Or equivalently that if then
any, Belongs also to .Forlet be an element of this mean that there is an
input sequence which steers the state of the systenufromtto afin E+z

step consider now the state reached &ftdrsteps using the same input
sequence which we denote wih By assumption hence there is an input

sequence which steers the state of the systemdram T1to win ‘Qsteps

However by definition ofoit is possible to steebto afin one step , hence
there is an input sequence which steers  Ttto win E+1 steps which
proveclaim o prove the third claim note that if forsomek <, 2
then the claim follows from equation. Suppose nowfthaall k the
dimension of2 s strictly larger that the dimension 2f this implies
that the sequences diin.Is strictly increasing at each step however this
sequence

is bounded (from above) by n and this proving claim?
Definition5.1

Consider thediscrete time system (A) the subspéceA is reachability
subspace of theystem, lte matrix R=2 is reachabilty matrix of the
system
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The system s said to be reachable if R =X Femark ty definition

-

2 ) | ,Hence the discrete time system
s o "@&d U A $0
With @7@=A , u@®)i A ,y@®f A and AB,C and D matrices of

appropriate dimensions and with constant entries. The discrete time system

is said to be reachable if and only if .Rank R = n. Equation is known as
Kaman reachabillity rank condition

Remark(5.1)

From the above discussionit is obvious that in an. Dimensional linear
discrete time system if a staifis reachable, Them it is reachable in at most
n steps this does not mean that n steps are necessarily reguifEdei state
ajcould be reached ieds than n steps .In a reachable system. The smallest
integer E* such that ranke - = n .Is called the reachability index of the

system Note that for single input reachable systems necedSariy

Example5.1

Consider a discrete time system wthA

m 1 F Tt

! mnF B=p

T 1T p P
. , . np
Then 2 OPbAI 2 2 20DAp ™
p P

Hence the system s not reachable and its reachable subspace has dimension
two
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Example5.2

Consider a discrete time system with A

mp T A
' momop B= "
T T TT U
Then
a [ r a
2 OPAd r m 2 OPAd r 2  ODPAI
[T T [T

As a result the system is reachable if and only if tmoreoverifr
AT A

[ TtThe system is not reachable and the reachable subspace has

dimension two. Finally itr | manda Tt

The system s not reachable and the reachable subspace has dimension one
the reachability subspace R has the following important property

The proof of which is a simple consequence of the definition of the subspace
Proposition (5.2)
Thereachabilty sub space contains the subspace spanB i

SpanB R

And it is Ainvariant i.e. AR A we conclude this case noting that

algebraically equivalent system, with state x @indspectively
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Let be the coordinates transformation matrix, as a given in equation below
consider a continuous time Finite dimensional linear system described by the
equations

D=A{t)x + B()u , y=C(t)x + D(t)u

y(t) | [2 and the change of coordinates(t) | A With @ C=A
WO A0 uft)
With I(t) invertible for all t, the state space representation in the new
coordinates is given by

w=[I"(t) (Ax+BO)(U) +I'®) x  adow=(0lt O 1 O O@+I
“(HB(Hu

And y(t) = CL(t)@+ D(t)u

Similarly for a discrete time finite dimensional linear system described by
the statethe equationschange of coordinates, With u(t) invertible for all t
space representation in the new coordinates is givend¥ and2 the
reachability subspacesand R a@hthe reachability matrixes respectively
then

Hence.And one of the two systems is reachable if and only if the other is

5.2 Controllability of discrete time system
The result established for the reachability the controllability property

In fact for a linear time invariant, discrete time systArstateds is
controllability (to zero) in k steps if there exists an input sequence u(0) , u(l)
, € e é é -l that drive the state fromThis last equation implies that
is controllable if the state, is reachable in K stéfence if; It is easy to see
137



that the set ofall such that equatiblold is a vector space denotes by
and called controllability subspace irstepsA linear discrete time system
is controllable in k steps if Im

Example5.3

Consider the system in Example the systemis controllable in two steps in
fact

! I X2
Example5.4

Consider the system in Example the systemis controllable in three steps no
matrix the values o& i andr ,Note in fact that T.The system is
controllable in two stepsf r manda T 1 @ Tmfinaly itis

controllable in one stepif 1 anday T Simiarly to the reachability

subspaces ask varies we have a sequence of controllability subspace namely
This sequence of subspace is such that following properties hold.
Proposition (5.3)

The sequence of subspaces is such that, More over if for some the for all

Proof

The proof of this statement is similar to the one of propositibiweé simply
remark that if a state is controllable in K steps using the input sequence u(0)
, u( 1) ;1) then tie(s&me state is also controllable in k+1 steps using

Input sequencet (O , u( 1)-1), é, u(Kk
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Definition 5.2

Consider the discrete time system

, 0 0mO66h ww0od

Withw] A R OXA |, y(tJ A and A,B,C and D matrices
The subspace Ca is the controliability subspace ofthe system

The systemis said tme controllable if C& A | the discrete time system
above is controllable if and only if I / A.In particular if A is nipotent
i.e. 0 TmForsome q ¢ then for any B(even B=0)

The system s controllable
Note:

That reachable system ismtrollable but the converse statement does
not hold in particular

Al #l 8 A
5.3 Construction of input signals

The study of the properties of reachability and controllabilty leads to
the following equationls it possible to explicitly constructan input
seguence which steers the state of the system from an initial condition?

Wt  ® to afinal conditiort in ki stepsied™@ ® @ .ie

To answer this equation consider the problem of determemupput
seqguence u( OGl)suchthat( 1) , é. ,u(Kk

w 6w YYY
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Where

22 P
Iq) Q,CI,I'
5 o e JA
Ilép |”|
uorm

Consider now an input signal definedsas =2 O

Where V has to be determined using 1 his definition and setting k = n

equation
w 0w 25
Becomesh O w 220

Where the matri2 2 is square and invertible Hence a control sequence
solving the considered problem in n steps is given by

5 YYY (w 0w
It is possible to show that among all input sequence steering the state of the

system fronmw to @ in n steps the one constructed has minimal norm

(energy).

5.4 Reachability and Controllability of Continuous Time

System:

The properties of reachability and controllability for linear, time invariant
continuous time systems can be assessed using the same ideas exploited in
the case of discrete time systems however the tools are more involved as the
input state relationsiexpressed by means of an integral
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w0 Q w A " ™A
Consider the reachability problem i.e. the initial state of the system is
W T

And we want to characterize all statd¢that can be reaeld in some interval
of time t i.e.all states suethat for some input function u(t)

Note:

Now that by Clayeyi Hamilton theorem
Q do0dodb E d 0606
For some scalar functiod 0 Hence
This implies that a statejis reachable only if
of ) [B:AB:é 6 6 )I 2

We now prove the converse fagt that is in the image of R it is reachable
to this end define the controllability Gramian

v . Q 00Q QY
With t > 0 and note that ImMR =ImWt
Selecting U (T) BiQ I

Wherd Qi€ ¢ | deitorgielda 0,1
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