Sudan University of Science and Technology
College of Graduate Studies

Laser chaos generation, modulation and synchronization by electro-optical feedback in communication systems

tوليد شواش الليزر وتضمينه وتزامنه بواسطة التغذية الخلفية
الضوئية - الكهربائية في نظام الاتصالات

A thesis
Submitted to Sudan University of Science and Technology in fulfillment of the requirements for the degree of Master in laser applications in communications

By
Sora Fahmi Abdalah Baban
Supervised by:
Prof. Dr. Nafie A. Al - Muslet
الهداء

الى:

جذوري العراق
الجبال الشامخة...... ابي و اخواني رحمهم الله
نهر العطاء.............امي اطال الله عمرها
النخلات الباسقات...... اخواتي وفقهن الله
زوجي العزيز........... قيس
زهرات حياتي........... بناتي زينب دانية رحمة

اهديهم جهدي المتواضع هذا
Acknowledgment

At the beginning, I thank GOD for his graces that enable me to continue the requirements of my study and overcome all the difficulties during the studying period.

I would like to express my thanks to my supervisor Prof. Nafie A. Al- Muslet for assisting me through the development of the work, and his guidance and useful comments on the manuscript.

My thanks are extended to the staff of the Iraq telecommunication and post company (ITPC) particularly the formal president Prof. O. Abdulhussien, Prof. W. A. Zainelaabidin, Prof. Ahlam, and Prof. K. A. Kabbani and to the Institute of the Telecommunication and post particularly the formal dean Prof. N. Y. Yakoop, present dean Prof. T. A. Baker, Prof. F. A. Hasson, Prof. S. Faisal, Prof. H. M. Habeeb and Prof. H. K. Ibrahim.

I present my thanks to the Iraqi cultural advisor (Rome) Prof. A. M. Taleb for his kindness’ help.

I am very grateful to Prof. F. T. Arecchi, Prof. R. Meucci and Prof. Kais Al -Naimee at the CNR-INOA, Florence - Italy for supporting and helping me during the research period and gave me all scientific advising.

Finally, I would like to present my extreme appreciation to my husband, and daughters for supporting me during the study period.
Abstract

Chaotic dynamics are at the center of multiple studies to perfect encrypted communication systems. Indeed, the particular time evolution nature of chaotic signals constitutes the fundamentals of their application to secure the optical communications. The information coded on the carrier wave can be extracted with knowledge of the system dynamic evolution law.

The work presents the implementation of experimental chaos generation systems by means of electro-optic feedback of the semiconductor laser. The output photocurrent of the optical receiver is amplified and reinjected as a feedback to the semiconductor laser source. The injected feedback photocurrent produces a chaotic behavior in the laser output.

The change of the chaotic series and its jump from chaotic to periodic form depends on the initial operation condition of the laser diode and on the amplification of the injected feedback photocurrent. The chaotic signal has been used as a carrier for data transmission, the phase masking technique was used during the work. The data (message) signal was injected with the chaotic signal.

Finally, two of the chaotic laser systems have been established to find the synchronization between two chaotic attractors. This step was done in order to extract the encoded message via the chaotic laser system.
المستخلص

تعد ديناميكيا الشواش أو الفوضى الحاكمة في الليزرتا مركزا لدراسات متعددة تهدف إلى تحقيق أمان نام للاتصالات الصوتية. في الحقيقة، تُشكّل طبيعيّة تطور الإشارات الفوضوية أساس لتطبيقات ضمان أمان الاتصالات بواسطة التشغيل. يمكن استخلاص المعلومات المشفرة على الموجه الحاملة بمعرفة قانون تطور النظام الديناميك ي.

في هذا البحث جرى تطبيق أنظمة توليد الفوضى تجريبيا بواسطة التعليقات الكهرو البصرية في ليزر شبه الموصل.

يضع التيار الكهروضوئي للمستقبل البصري وحقن ثانية كتغذية عكسية للمصدر الليزري شبه الموصل. ينتج التيار الكهروضوئي المعزز عكسيا سلوك فوضوي في خرج الليزر.

تغيب سلوك الفوضى أو الشواش وقفرته محل فوضوي من فوضي إلى شكل دوري يعتمد على حالة التشغيل الابتدائية للليزر و على مقدار التكبير في تيار الحقن الكهروضوئي.

تم خلال العمل استعمال إشارة الشواش أو الفوضى كإشارة حاملة لنقل المعلومات باسلاوب فتاع الطور تم تحميل البيانات (رسالة) على الإشارة الفوضوية.

أخيرا تم بناء نظامين فوضويين لإجراء عملية التزامن بينهما كأساس لنظام اتصالات متكامل. تم عمل هذه الخطوة لاستخلاص البيانات المرسلة خلال نظام شوشا (الفوضى) الليزري.

تم اختيار النظام بمعلومات مختلفة وأثبتت نجاحه كنظام عالي الامان للاتصالات الصوتية.
Contents

Abstract..IV

List of tables...X

List of figures..X

Chapter one: introduction and basic concept of optical chaos communications

1.1 Introduction..2

1.2 The aim of the work...4

1.3 Principle of optical bistability..4

1.4 Chaos general knowledge..6

1.4.1 Chaos generation mechanism in a semiconductor laser by feedback in optical communications..8
1.4.1.1 Chaos generation by optical feedback...9
1.4.1.2 Optoelectronic feedback...11
1.5 Chaos analysis tools..13
1.5.1 The bursting..13
1.5.2 Attractor in phase space..14
1.5.3 Bifurcation diagram ..15
1.6 Optical chaos communication and chaos synchronization17
1.6.1 Identical synchronization ..18
1.6.2 Generalized synchronization...21
1.6.3 Phase synchronization...21
1.6.4 Anticipated and lag synchronization..22
1.7 Secure chaos communications...23
1.8 The historical review...24

Chapter two: the experimental work, chaos generation and data transmission

2. 1 Introduction..29
2.2 The materials and methods..29
2.2.1 Distributed feedback (DFB) semiconductor laser sources...............29
2.2.2 The optical photoreceiver...32
2.2.3 Variable optical fiber attenuator...33
List of abbreviations
<table>
<thead>
<tr>
<th>TDS</th>
<th>Theory of Dynamical Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>Maximum Frequency Deviation</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>GaAs</td>
<td>Gallium Arsenide</td>
</tr>
<tr>
<td>GaAlAs</td>
<td>Gallium Aluminum Arsenide</td>
</tr>
<tr>
<td>InP-InGaAsP</td>
<td>Indium Phosphate Gallium Aluminum Arsenide Phosphate</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>APD</td>
<td>Avalanche Photodiode</td>
</tr>
<tr>
<td>OCS</td>
<td>Optical Chaos Synchronization</td>
</tr>
<tr>
<td>CS</td>
<td>Chaos Synchronization</td>
</tr>
<tr>
<td>EDFRL</td>
<td>Erbium-Doped Fiber Ring Laser</td>
</tr>
<tr>
<td>SL</td>
<td>Synchronization Link</td>
</tr>
<tr>
<td>SSU</td>
<td>Synchronization Supply Unit</td>
</tr>
<tr>
<td>PRC</td>
<td>Primary Reference Clock</td>
</tr>
<tr>
<td>MB</td>
<td>Maxwell- Bloch</td>
</tr>
<tr>
<td>DFB</td>
<td>Distributed Feedback</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous Wave</td>
</tr>
<tr>
<td>MCL</td>
<td>Multi-Channel Lasers</td>
</tr>
<tr>
<td>NEP</td>
<td>Noise Equivalent Power</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
</tr>
<tr>
<td>PVG</td>
<td>Precision Voltage Generator</td>
</tr>
<tr>
<td>HC</td>
<td>Homoclinic Chaos</td>
</tr>
</tbody>
</table>
List of Tables

Table 2-1 The photodetector specifications……………………………………34
Table 2-2: The specifications of optical attenuators type: MN 924C Anritsu…..35

Table 2-3: The specifications of differential amplifier Type Le Cory Da 1855…35

Table 2-4: High-performance differential amplifier specifications, probes such as the DXC100 10X/ 100X high CMRR probes are recommended.

Table 2-5: Optical fiber D-coupler specifications………………………………39

Table 2-6: Optical fiber Specifications…………………………………………….40

List of figures

Figure 1-1 The experimental layout showing Ikeda scenario.........................3

Figure 1-2 An optical system whose transmittance J is a function of its output I₀…4

Figure 1-3 a) Transmittance J (I.) versus I., b) Input Iᵢ=I./J (I.) versus Output, c) The output I. versus the input Iᵢ………………………………………………………………………………………………5

Figure 1.4 The instability of the intermediate state may be seen by considering P point……………………………………………………………………………6

Figure 1-5 Butterfly effect……………………………………………………………8

Figure1-6 The fluctuation in the index ofrefraction…………………………………..11

Figure 1-7 The laser delayed optoelectronic feedback……………………………12

Figure 1-8 The neural burst signal showing the duty cycle, active phase and interspike period…………………………………………………………………14

Figure 1-9 Bifurcation Diagram, r between 0 and 4……………………………..16
Figure 1-10 Bifurcation Diagram, r between 3.4 and 4..16

Figure 1-11 Two uncoupled oscillators (laser sources).................................19

Figure 1-12 Two coupled oscillator signals in the transmitting and receiving
sides...19

Figure 1-13 Two coupled laser sources in a chaos communication system; the
lower frame represents the transmitted data stream.................................20

Figure 2-1 Distributed feedback laser structure.......................................30

Figure 2.2 The typical gain, loss and spectral profiles of a distributed feedback
(DFB) laser diode...30

Figure 2-3 The four channels semiconductor laser source..........................31

Figure 2-4 The output spectral line of the used laser diode.......................32

Figure 2-5 Responsivity of the model 1811 photoreceiver..........................33

Figure 2-6 Optical fiber attenuators type: MN 924C Anritsu.......................35

Figure 2-6 Differential amplifier type: Le Croy Da 1855...............................36

Figure 2-7 The laser output versus injected current for laser diode..............41

Figure 2-8 The relaxation frequency of the semiconductor laser diode is
20kHz...41

Figure 2-9 The laser output versus the modulation frequency....................42

Figure 2-10 The experimental setup for chaos generating by an optoelectronic
feedback (a) LD, laser diode, O.Att., optical attenuator, D, detector and OSC
digital oscilloscope,(b) Photographic plate..43
Figure 2-11 The setup of synchronization between two single-mode semiconductor laser sources..............................44

Figure 3-1 Time series of modulation free chaotic signal (a), the attractor of this signal (b), and its power spectrum (c)..........................48

Figure 3-2 The time series (a) and the attractor (b) of the CO$_2$ laser.........49

Figure 3-3 The chaos control using 1kHz, 50mV amplitude modulation signal, a) the modulated chaotic signal, b) attractors of the modulated chaotic signal and modulating signal c) the power spectrum of the chaotic signal........52

Figure 3-4 The chaos control using 1kHz, 100mV amplitude modulation signal, a) the modulated chaotic signal, b) attractors of the modulated chaotic signal and modulating signal c) the power spectrum of the chaotic signal........53

Figure 3-5 The chaos control using 1kHz, 200mV amplitude modulation signal, a) the modulated chaotic signal, b) attractors of the modulated chaotic signal and modulating signal c) the power spectrum of the chaotic signal........54

Figure 3-6 The chaos control using 10kHz, 50mV amplitude modulation signal, a) the modulated chaotic signal, b) attractors of the modulated chaotic signal and modulating signal c) the power spectrum of the chaotic signal........55

Figure 3-7 The chaos control using 10kHz, 100mV amplitude modulation signal, a) the modulated chaotic signal, b) attractors of the modulated chaotic signal and modulating signal c) the power spectrum of the chaotic signal........56

Figure 3-8 The chaos control using 10kHz, 200mV amplitude modulation signal, a) the modulated chaotic signal, b) attractors of the modulated chaotic signal and modulating signal c) the power spectrum of the chaotic signal. Figure a
shows how the chaotic spike train locks to an external periodic perturbation with a 1:1 locking if the applied period is close to the natural one…….57

Figure 3-9 The chaos control using 900kHz, 50mV amplitude modulation signal, a) the modulated chaotic signal, b) attractors of the modulated chaotic signal and modulating signal c) the power spectrum of the chaotic signal……..58

Figure 3-10 The chaos control using 900 kHz, 100mV amplitude modulation signal……………………………………………………………………….59

(a) the modulated chaotic signal.
(b) attractors of the modulated chaotic signal and modulating signal.
(c) the power spectrum of the chaotic signal.

Figure 3-11 The chaos control using 900kHz, 2000mV amplitude modulation signal, a) the modulated chaotic signal, b) attractors of the modulated chaotic signal and modulating signal c) the power spectrum of the chaotic signal.60

Figure 3-12 The R value with frequency changing, the optimum modulation frequency is at R equal to 1………………………………………………61

Figure 3-13 (a) The experimental time series of uncoupled oscillators………63
(b)The experimental time series of coupled oscillators.

Figure 3-14 The experimental time series of two synchronized oscillators in master-slave configuration (a) , the forcing frequency is 10kHz and 100mV amplitude. The relation of spikes events time of the two oscillators is shown in (b)…………………………………………………………..64

XV
Figure 3-15 Experimental time series of two synchronized oscillators in master-slave configuration. The forcing frequency is 100 kHz and 500mV amplitude.

Figure 3-16 Two modulated chaotic signals 1kHz (a) and 10kHz (b), the upper part is the modulating signal represents the message, the lower part represents the filtered message.