بسم الله الرحمن الرحيم

(إنَّ فِي خَلْقِ السَّمَوَاتِ والأرضِ واختلافِ اللَّيْلِ والنَّهَارِ لآيَاتٍ لأولِي الألباب الَّذين يَذْكُرُونَ اللَّهَ قياماً وقعوداً وعلى جَنْوِهِم وِي تَفْكِرُونَ فِي خَلْقِ السَّمَوَاتِ والأرْضِ) رَبّنا مَا خَلَفْتَ هَذَا بَاطِلًا سَبِحَاتَكَ فَقَنَا عَذَابَ النَّارِ)

آل عمران
Contents

Dedication ... i
Acknowledgements .. ii
Abstract... iii
المستخلص .. iv

CHAPTER One
Introduction
 1.1 Mathematical model building .. 2
 1.2 The advantages of mathematical models in design .. 3
 1.3 Steps of model building .. 3
 1.4 Aims and Objectives .. 4

CHAPTER Two
Literature Review
 2.1 Modeling of Fixed Bed Catalytic Reactor .. 5
 2.1.2 Types of Fixed Bed Reactor Models .. 6
 2.1.3 Solution Procedure .. 7
 2.1.4 Optimization .. 9
 2.1.5 Mathematical model of the fixed bed reactor .. 10
 Axial dispersion .. 10
 Radial dispersion .. 10
 Radial velocity gradients ... 11
 Interphase mass and heat transfer resistance .. 11
 Intraparticle mass and heat transfer resistances .. 11
 Pressure drop in fixed bed reactor .. 12
 2.1.6 The continuum models of fixed bed reactor .. 12
 One-dimensional pseudo-homogeneous model ... 13
 One-dimensional heterogeneous model .. 13
 One-dimensional pseudo-homogeneous and heterogeneous models with axial dispersion .. 14
 Two-dimensional models .. 14
Models accounting for intraparticle resistance. The effectiveness factor 15

2.1.7 Dynamic models ... 15

2.2 Modeling of Fluidized Bed Reactor ... 16

2.2.1 The Mechanics of Fluidized Beds 18

2.2.2 The Minimum Fluidization Velocity 21

2.2.3 Descriptive Behavior of a Fluidized Bed – The Two Phase Model...23

2.2.4 Model assumptions ... 24

2.2.5 Bubble Velocity and bubble Size ... 25

2.2.6 Bubble Size .. 25

2.2.7 Mass Transfer in Fluidized Beds .. 27

2.2.8 Mass Transfer between the Fluidized-Bed Phases 28

2.2.9 General Model Formulation ... 30

2.2.10 Steady-state modeling of the bubble phase 31

2.5.2 Steady-state modeling of the dense phase 31

CHAPTER Three

Models Development for Ammonia and Methanol Processes

3.1 Modeling of Ammonia synthesis from synthesis gas in fixed bed reactor 33

3.1.2 Kinetics of Ammonia Syntheses... 33

3.1.3 Ammonia Synthesis ... 34

3.1.4 Formation of Ammonia in the Converter 34

3.1.5 Mathematical modeling assumptions 36

3.1.6 Material balance.. 36

3.1.7 Energy balance.. 39

3.1.8 Heat Capacitance ... 39

3.1.9 Pressure Drop... 40

3.1.10 Model Development .. 40

3.2 Modeling of Ammonia synthesis from synthesis gas in fluidized bed reactor .. 43

3.2.1 Bubble phase material balance ... 47

3.2.2 Dense phase material balance ... 47
CHAPTER Four

Results and Discussion Using MATLAB

4.1 Ammonia synthesis if fixed bed reactor

4.1.1 Conversion Based on N₂ along the Reactor

4.1.2 Molar Flow of the components along the beds

4.1.3 Effect of changes in flow rate on Nitrogen Conversion

4.1.4 Effect of changes in Feed Pressure on Nitrogen Conversion

4.1.5 Effect of input ammonia concentration on the conversion

4.1.6 Temperature Change Along the Reactor

4.2 Fluidized Bed Results

4.2.1 Mole Fraction of the components along the Reactor

4.2.2 The Effect of Catalyst Particle Size on the Conversion

4.2.3 Effect of mass transfer between the bubble and dense phases

4.2.4 The Effect of Bed Height to Diameter

4.2.5 The Effect of Initial Pressure

4.3 The result of methanol modeling in fixed bed reactor

4.3.1 Conversion of H₂ and CO₂ along the reactor

4.3.2 Molar Flow of the components along the beds
4.3.3 Temperature Change along the Reactor .. 88
4.3.4 Effect of changes in the feed pressure ... 89
4.3.5 Effect of inlet temperature ... 90
4.3.6 The Effect of H₂ to CO₂ .. 92

4.4 The result of methanol modeling in fluidized bed reactor 93
4.4.1 Conversion of CO₂ and H₂ along the reactor 94
4.4.2 The effect of catalyst particle size on the conversion 95
4.4.3 Effect of mass transfer between the bubble and dense phases 96
4.4.4 The Effect of Bed Height to Diameter ... 97
4.4.5 The Effect of Initial Pressure .. 98

CHAPTER Five
Results and Simulation Using HYSYS

5.1 Introduction ... 100
5.2 Simulation of Ammonia Synthesis in Kellogg Reactor 100
5.3 Simulation of Methanol Synthesis in Khark Reactor 105
5.4 Simulation of ammonia and methanol synthesis in fluidized bed reactor. 108

CHAPTER Six: Conclusions and Recommendations

6.1 Conclusions ... 100
6.2 Recommendation .. 102

Appendix .. 109
References ... 112
List of Tables

Table (2.1) Main fixed bed catalytic processes ... 6
Table (2.2) Classification of fixed bed reactor models ... 7
Table (3.1) Coefficients of \(C_p \) polynomial for some component 40
Table (3.2) Reactor Specification, Catalyst Properties and Feed Conditions 41
Table (3.3) Reactor Specification, Catalyst Properties and Feed Conditions 54
Table (3.4) Frequency Factor of Kinetic Equation ... 61
Table (3.5) Frequency Factor for Enthalpy Equation ... 64
Table (4.1) fixed bed reactor industrial data used as a basis for comparison 72
Table (4.2) Comparison between the Results of the Model and Industrial data .. 72
Table (4.3) Changes of \(N_2 \) conversion along the fixed beds 73
Table (4.4) molar flow rate and mole fractions of the main components 74
Table (4.5) conversion along beds for different values of initial pressure 77
Table (4.7) temperature change along beds ... 79
Table (4.8) Nitrogen Conversion Change along the Fluidized Bed Reactor 80
Table (4.9) Change of Mole fractions along the Fluidized Bed Reactor 81
Table (4.10) Effect of Particle size on the Conversion .. 82
Table (4.11) The effect of mass transfer between phases on the conversion 83
Table (4.12) the effect of height to diameter on the flow and conversion 84
Table (4.13) the effect of pressure on the conversion ... 86
Table (4.14) Comparison between the Results of the Model and Industrial data 87
Table (4.15) Conversion change along the reactor ... 87
Table (4.16) molar flow rate along the reactor ... 88
Table (4.17) temperature change along beds ... 89
Table (4.18) methanol flow rate for different values of pressure 90
Table (4.19) the effect of the inlet temperature on the methanol flow rate 92
Table (4.20) the flow rate of methanol synthesis components along the reactor 94
Table (4.21) the change of conversion along the reactor ... 95
Table (4.22) Effect of particle size on the methanol production 96
Table (4.23) the effect of mass transfer on methanol production 97
Table (4.24) the effect of height to diameter ratio on methanol production.98
Table (4.25) the effect of initial pressure on methanol production100
Table (5.1) comparison between the industrial, model and simulation values ..104
Table (5.2) comparison between the industrial, model and simulation values ..107
Table (5.3) comparison between the model and simulation values of ammonia synthesis in fluidized bed reactor ...109
Table (5.3) comparison between the model and simulation values of methanol synthesis in fluidized bed reactor ...109
List of Figures

Figure 2.1 The continuum models of fixed bed reactor ...12
Figure 2.2 Fine powder inside a tube starting to fluidize due to gas flow rate16
Figure 2.4 Phases of fluidized bed ..24
Figure 2.5 Transfer between bubble, cloud, and emulsion27
Figure 2.6 The two phases of fluidized bed ...31
Figure 3.1 Kellogg horizontal intercooled ammonia converter36
Figure 3.3 MATLAB code for ammonia synthesis in fluidized bed reactor53
Figure 3.4 MATLAB code for methanol synthesis in fluidized bed reactor69
Figure 3.5 MATLAB code for methanol synthesis in fixed bed reactor71
Figure 4.1 Changes of N$_2$ conversion along the beds ...73
Figure 4.2 Molar Flow of the components along the beds ..75
Figure 4.3 Mole Fraction of the components along the beds75
Figure 4.4 The effect of the inlet flow rate on the conversion76
Figure 4.5 The effect of the inlet pressure on the conversion77
Figure 4.6 The effect of initial ammonia concentration on the conversion79
Figure 4.7 Temperature change along the bed ..80
Figure 4.8 Change of Nitrogen Conversion along the Reactor81
Figure 4.9 Change of component mole fraction along the Reactor82
Figure 4.10 The effect of Particle Diameter on Conversion along the Reactor ...83
Figure 4.11 The effect of components mass transfer between Phases84
Figure 4.12 Effect of Bed Height to Diameter Ratio on the Conversion85
Figure 4.13 Gas Flow in the Bubble and Dense Phases ...85
Figure 4.14 the effect of pressure on the conversion ...87
Figure 4.15 conversion change along the reactor ...88
Figure 4.16 molar flow rate along the reactor ..89
Figure 4.17 Temperature change along the reactor ..90
Figure 4.19 the effect of the inlet temperature on the methanol flow rate92
Figure 4.20 methanol flow rate for different values of temperature93
Figure 4.21 CH$_3$OH flow rate against H_2/CO_2 ratio ..94
Figure (4.22) methanol flow rate along fluidized bed reactor..........................95
Figure (4.23) the change of conversion along the reactor96
Figure (4.24) Effect of particle size on the methanol production97
Figure (4.25) the effect of mass transfer on methanol production98
Figure (4.26) the effect of height to diameter ratio on phases flow rate99
Figure (4.27) the effect of height to diameter ratio on methanol production99
Figure (4.28) the effect of initial pressure on methanol flow rate100
Figure (5.1) Simulation of Kellogg Ammonia Converter102
Figure (5.2) Temperature change along the first bed103
Figure (5.3) Temperature change along the second and third beds104
Figure (5.4) Components mole fraction along the first bed105
Figure (5.5) Components mole fraction along the second and third beds105
Figure (5.6) Simulation of Methanol Khark Reactor106
Figure (5.7) Temperature change along the Khark methanol reactor107
Figure (5.8) Components molar flow rate along the reactor108
Figure (5.8) Simulation of fluidized bed reactor in HYSYS109
Nomenclature

A Limiting reactant
A_b Cross sectional area of bubble phase (m^2)
A_r Dimensionless argon concentration
a Catalyst surface area per unit volume of the reactor ($\frac{m^2}{m^3}$)
Bi Biot number
C_{pg} Heat capacity of bulk gas ($\frac{J}{kg.K}$)
C_{pf} Average heat capacity of gas ($\frac{J}{kg.K}$)
C_{pc} Heat capacity of the coolant ($\frac{J}{kg.K}$)
C_{pm} Heat capacity of the metal ($\frac{J}{kg.K}$)
C_{ps} Heat capacity of catalyst ($\frac{J}{kg.K}$)
C_j Bulk Concentration of component j in the gas phase ($\frac{mol}{m^3}$)
$C_{s,j}$ Surface Concentration of component j ($\frac{mol}{m^3}$)
D_a Axial dispersion coefficient ($\frac{m^2}{sec}$)
d_b Bubble diameter (m)
D_r Radial dispersion coefficient ($\frac{m^2}{sec}$)
D_e Effective diffusivity ($\frac{m^2}{sec}$)
D_p Equivalent diameter of catalyst particle (m)
dp Catalyst diameter (m)
d_r Diameter of reactor (m)
d_i Inside diameter of tube (m)
d_o Outside diameter of tube (m)
\[E \quad \text{Activation energy (} \frac{J}{mol} \text{)} \]

\[f_j \quad \text{Fugacity of component } j \text{ (atm)} \]

\[g \quad \text{Gravitational acceleration (m/sec}^2\text{)} \]

\[H \quad \text{Expanded bed height (m)} \]

\[h \quad \text{Time (hour)} \]

\[(H_{bd})_b \quad \text{Interphase heat transfer coefficient between bubble and dense phase} \]
\[(j/m^3 \text{ sec K}) \]

\[(K_{bd})_{jb} \quad \text{Interphase mass transfer coefficient between bubble and dense phase} \]
\[(\text{sec}^{-1}) \]

\[N_j \quad \text{Molar flow rate of component } j \text{ leaving reactor (Kmoles/sec)} \]

\[N_{jb} \quad \text{Molar flow rate of component } j \text{ in the bubble phase (Kmoles/sec)} \]

\[N_{jd} \quad \text{Molar flow rate of component } j \text{ in the dense phase (Kmoles/sec)} \]

\[N_{jF} \quad \text{Molar flow rate of component } j \text{ in the fresh feed to fluidized bed reactor (Kmoles/sec)} \]

\[P \quad \text{Reactor pressure (bar)} \]

\[Q_F \quad \text{Volumetric flow rate of total feed reactor (m}^3\text{/sec)} \]

\[Q_b \quad \text{Volumetric flow rate of bubble phase gas (m}^3\text{/sec)} \]

\[Q_d \quad \text{Volumetric flow rate of exit dense phase gas (m}^3\text{/sec)} \]

\[Q_{dF} \quad \text{Volumetric flow rate of inlet dense phase gas (m}^3\text{/sec)} \]

\[R \quad \text{The gas constant (m}^3\text{pa/gmol.K)} \]

\[r_{NH_3} \quad \text{Ammonia rate of reaction (kgmol of NH}_3\text{/h.m}^3\text{ of catalyst bed)} \]

\[T_b \quad \text{Bubble phase temperature (K)} \]

\[T_d \quad \text{Dense phase temperature (K)} \]

\[T_{exit} \quad \text{Fluidized bed exit temperature (K)} \]

\[T_F \quad \text{Feed gas temperature (K)} \]

\[u_b \quad \text{Superficial gas velocity of bubble phase gas (m/sec)} \]
\(u_0 \) Superficial gas velocity of fresh feed gas (m/sec)

\(u_{mf} \) Superficial gas velocity of fresh feed gas at minimum fluidization (m/sec)

\(V \) Volume of overall reactor (m\(^3\))

\(x_{jF} \) Mole fraction of component j in fresh feed (dimensionless)

\(Z \) Distance along bed height (m)

\(\delta \) Bubble phase volume as a fraction of total bed volume (dimensionless)

\(\varphi_j \) Fugacity coefficient of component

\(\Delta H_r \) Heat of reaction (J/gmol)

\(\rho_g \) Density of gas (kg/m\(^3\))

\(\rho_g \) Density of solid particles (kg/m\(^3\))

\(\varepsilon_{mf} \) Dense phase voidage at minimum fluidization conditions (dimensionless)

\(\mu \) Viscosity (kg/m.sec)