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Abstract 

In this research we studied Fourier transform and Fourier Analysis. We first 

introduced an analytical formulation using Hilbert space. We utilized the principle 

of uniform boundedness and the open mapping theorem to establish the 

convergence of  Fourier series and the existence of Fourier transform. Here the 

geometry of Hilbert space has been involved. Then we applied Fourier transform to 

Engineering problems, these include Motion group, Robotics, Statistical 

mechanics, Mass density, and frame density. 
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 خلاصة البحث

في البذايت تحذثنب عن تحليل فىريز ببستخذام فضبء . في هذا البحث تحىيلاث فىريز وتحليل فىريزدرسنب 

وقذ استخذهنب نظزيتي الوحذوديت الونتظوت والتطبيق الوفتىح لإنشبء تقبرة هتسلسلت فىريز، ووجىد . هيلبزث 

حيث ادخلنب  هنذست فضبء هيلبزث ، وهن ثن طبقنب تحىيل فىريز على الهنذست في عذة هجبلاث . تكبهل فىريز

 . كثبفت الكتلت واطبر الكثبفت،الويكبنيكب الإحصبئيت للجشيئبث الكبيزة، الزوبىتبث ، هنهب  سهزة الحزكت
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Introduction: 

 

The Fourier transform method, named after Joseph Fourier, a French 

mathematicianin 1801,to explainthe flow of heat around an anchor ring. It has 

become a powerful tool in diverse fields of science and engineering. It can provide 

a means of solving unwieldy equations that describe dynamic responses to 

electricity, heat or light. In some cases, it can also identify the regular contributions 

to a fluctuation signal. Fourier transform has become indispensable in the 

numerical calculations needed to design electrical circuits, to analyze mechanical 

vibrations, and to studywave propagation. 

In mathematics, Fourier analysis is the study of the way general functions may be 

represented or approximated by sums of simpler trigonometric functions. Fourier 

analysis grew from the study ofFourier series, that showed representing a function 

as a sum of trigonometric functions greatly simplifies the study of heat propagation. 

the subject of Fourier analysis encompasses a vast spectrum of mathematics. In the 

sciences and engineering, the process of decomposing a function into simpler 

pieces is often called Fourier analysis, while the operation of rebuilding the 

function from these pieces is known as Fourier synthesis. In mathematics, the term 

Fourier analysis often refers to the study of both operations. 

The decomposition process itself is called a Fourier transform. The transform is 

often given a more specific name which depends upon the domain and other 

properties of the function being transformed. Moreover, the original concept of 

Fourier analysis has been extended over time to apply to more and more abstract 

and general situations, and the general field is often known as harmonic analysis. 

http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Trigonometric_functions
http://en.wikipedia.org/wiki/Fourier_series
http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Harmonic_analysis
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Each transform used for analysis has a  correspondinginverse transform that can be 

used for synthesis 

        Fourier transform techniques have been widely used to solve problems 

involving Simi-infinite or totally infinite range of the variables or unbounded 

regions. In order to deal with such problems, it is necessary to generalize Fourier 

series to include infinite intervals and to introduce the concept of Fourier integral, 

with many applications in physics and engineering. We review a number of 

engineering problems that can be posed or solved using Fourier transforms for the 

groups of rigid-body motions of  the plane or three-dimensional space.  

Mathematically and computationally these problems can be divided into two 

classes:  (1) physical problems that are  described  as  degenerate  difusions  on  

motion  groups; (2) enumeration problems  in  which  fast  Fourier  transforms  are  

used  to  efciently  compute motion-group  convolutions.   We  examine  

engineering  problems  including the  analysis  of  noise  in  optical  communication  

systems,  the  allowable  positions  and  orientations  reachable  with  a  robot  arm,  

and  the  statistical mechanics  of  polymer  chains.   In  all  of  these  cases,  

concepts  from  non-commutative  harmonic  analysis  are  put  to  use  in  

addressing  real-world problems, thus rendering them tractable.  

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Transform_%28mathematics%29
http://en.wikipedia.org/wiki/Inverse_function
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Engineering
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Chapter One 

Introduction to Fourier Transform 

 

 

Introduction (1.1): 

The motivation for the Fourier transform comes from the study ofFourier series. In 

the study of Fourier series, complicated but periodic functions are written as the 

sum of simple waves mathematically represented by sins and cosines. The Fourier 

transform is an extension of the Fourier series that results when the period of the 

represented function is lengthened and allowed to approach infinity. 

Due to the properties of sine and cosine, it is possible to recover the amplitude of 

each wave in a Fourier series using an integral. In many cases it is desirable to use 

Euler's formula, which states that 𝑒2𝜋𝑖𝜃 = 𝑐𝑜𝑠(2𝜋𝜃)  +  𝑖 𝑠𝑖𝑛(2𝜋𝜃), to write Fourier 

series in terms of the basic waves 𝑒2𝜋𝑖𝜃  This has the advantage of simplifying 

many of the formulas involved, and provides a formulation for Fourier series that 

more closely resembles the definition followed in this research. Re-writing sins and 

cosines as complex exponentials makes it necessary for the Fourier coefficients to 

be complex valued. The usual interpretation of this complex number is that it gives 

both the amplitude (or size) of the wave present in the function and the phase (or 

the initial angle) of the wave. These complex exponentials sometimes contain 

negative "frequencies". If θ is measured in seconds, then the waves 𝑒2𝜋𝑖𝜃 and 

𝑒−2𝜋𝑖𝜃 both complete one cycle per second, but they represent different frequencies 

in the Fourier transform. Hence, frequency no longer measures the number of 

cycles per unit time, but is still closely related. 

http://en.wikipedia.org/wiki/Fourier_series
http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Cosine
http://en.wikipedia.org/wiki/Euler%27s_formula
http://en.wikipedia.org/wiki/Complex_exponentials
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Phase_%28waves%29
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With the assumption that there exists a series expansion of the type 

𝑓 𝑥 =
1

2
𝑎0 +   𝑎𝑛 cos

𝑛𝜋𝑥

𝐿
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝐿
 

∞

𝑛=1
         (1)                    

𝑎𝑛 = ∫ f(t)cos
nπt

L

L

−L
 d                   n= 0,1,2,… 

𝑏𝑛 = ∫ sin
𝑛𝜋𝑡

𝐿

L

−L
 dt                       n= 1,2,… 

Valid in the interval –L≤ 𝑥 ≤ 𝐿it is a simple matter to determine the coefficients,  

𝑎𝑛  and 𝑏𝑛 .Indeed, disregarding the question of validity of interchange of order of 

summation and integration, we proceed as follows. 

     Multiply each term of equation (1) by sin 
𝑡𝜋𝑥

𝐿
 dx, where t is a positive integer. 

And then integrate each term from –L to +L thus arriving at 

∫ f x  sin
𝑡𝜋𝑥

𝐿

L

−L
 dx =   

1

2
𝑎0 ∫ sin

𝑡𝜋𝑥

𝐿

L

−L
 dx+  𝑎𝑛 ∫ 𝑐𝑜𝑠

𝑛𝜋𝑥

𝐿

𝐿

−𝐿
  𝑠𝑖𝑛

𝑡𝜋𝑥

𝐿
 𝑑𝑥 +∞

𝑛=1

                                              𝑏𝑛 ∫ 𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿

𝐿

−𝐿
  𝑠𝑖𝑛

𝑡𝜋𝑥

𝐿
 𝑑𝑥 (2) 

As seen earlier, 

 

 

∫ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿

𝐿

−𝐿
  𝑠𝑖𝑛

𝑡𝜋𝑥

𝐿
 𝑑𝑥 =0                    for all t and n.(3) 

And 

∫ 𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿

𝐿

−𝐿
  𝑠𝑖𝑛

𝑡𝜋𝑥

𝐿
 𝑑𝑥 =0     for t≠ 𝑛; 𝑡, 𝑛 = 1,2,3 , …(4) 

Therefore each term on the right-hand side of equation (2) is zero except for the 

term n = t thus equation (2) reduces to  

∫ 𝑓(𝑥)
𝐿

−𝐿
  𝑠𝑖𝑛

𝑡𝜋𝑥

𝐿
 𝑑𝑥 = 𝑏𝑡 ∫ 𝑠𝑖𝑛2 𝑡𝜋𝑥

𝐿

𝐿

−𝐿
 𝑑𝑥                                    (5) 

Since 
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∫ 𝑠𝑖𝑛2 𝑡𝜋𝑥

𝐿

𝐿

−𝐿
 𝑑𝑥  = L 

We have 

𝑏𝑡 =
1

𝐿
∫ 𝑓(𝑥)
𝐿

−𝐿
  𝑠𝑖𝑛

𝑡𝜋𝑥

𝐿
 𝑑𝑥               t= 1, 2, 3,… 

From which the coefficients 𝑏𝑛 in equation (1) follow by mere replacement of t 

with n; that is  

𝑏𝑛 =
1

𝐿
∫ 𝑓(𝑥)
𝐿

−𝐿
  𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿
 𝑑𝑥               n= 1, 2, 3,…(6) 

Let us obtain the 𝑎𝑛  in a like manner. Using the multiplier cos (
𝑡𝜋𝑥

𝐿
) dx throughout  

∫ 𝑓(𝑥)
𝐿

−𝐿
  𝑐𝑜𝑠

𝑡𝜋𝑥

𝐿
 𝑑𝑥 =

1

2
𝑎0 ∫ cos

𝑡𝜋𝑥

𝐿

L

−L
 dx+  𝑎𝑛 ∫ 𝑐𝑜𝑠

𝑛𝜋𝑥

𝐿

𝐿

−𝐿
  𝑐𝑜𝑠

𝑡𝜋𝑥

𝐿
 𝑑𝑥 +∞

𝑛=1

𝑏𝑛 ∫ 𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿

𝐿

−𝐿
  𝑐𝑜𝑠

𝑡𝜋𝑥

𝐿
 𝑑𝑥    (7) 

To coefficient 𝑏𝑛  in (7) is zero for all n and t. if t ≠ 0 we know that  

∫ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿

𝐿

−𝐿
  𝑐𝑜𝑠

𝑡𝜋𝑥

𝐿
 𝑑𝑥 = 0                                  for n ≠ t 

 = L                                  for n = t 

And also the coefficient of 
1

2
𝑎0is zero. Such that for t ≠0, equation (7) reduces to 

∫ f x  cos
𝑡𝜋𝑥

𝐿

L

−L
 dx = 𝑎𝑡 ∫ cos2 𝑡𝜋𝑥

𝐿

L

−L
 dx 

From which𝑎𝑡 , and therefore 𝑎𝑛  , can be found in the way 𝑏𝑡was determined 

Thus we get 

1

𝐿
∫ f x  cos

𝑛𝜋𝑥

𝐿

L

−L
 dx,                      n = 1, 2, 3,                    (8) 

Next let us determine 𝑎0. Suppose t = 0 in equation (7) so we have the equation  

∫ 𝑓(𝑥)
𝐿

−𝐿
 𝑑𝑥 =

1

2
𝑎0 ∫ 𝑑𝑥

𝐿

−𝐿
+  𝑎𝑛 ∫ 𝑐𝑜𝑠

𝑛𝜋𝑥

𝐿

𝐿

−𝐿
  𝑑𝑥 + 𝑏𝑛 ∫ 𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿

𝐿

−𝐿
  𝑑𝑥 ∞

𝑛=1  

The term involving n ≥ 1are each zero. Hence  

∫ 𝑓(𝑥)
𝐿

−𝐿
 𝑑𝑥 = 

1

2
𝑎0 (2L) 

From which we obtain 
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𝑎0 = ∫ 𝑓(𝑥)
𝐿

−𝐿
 𝑑𝑥                                      (9) 

Equation (9) fits in with equation (8) as the special case n = 0 had the factor 
1

2
 not 

been inserted in equation (1), a separate formula would have been needed. As it is, 

we may write the formal expansion as follows: 

𝑓 𝑥 =
1

2
𝑎0 +   𝑎𝑛 cos

𝑛𝜋𝑥

𝐿
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝐿
 

∞

𝑛=1
            (10) 

With 

𝑎𝑛 =
1

𝐿
∫ f(x)cos

nπX

L

L

−L
 dx                   n= 0, 1, 2,   (11) 

𝑏𝑛 =
1

𝐿
∫ F(x) sin

𝑛𝜋𝑋

𝐿

L

−L
 dx                 n= 1, 2,   (12) 

        Before proceeding to specific examples and applications it behooves us to 

state conditions under which the equality in (10) makes sense. 

        When 𝑎𝑛  and 𝑏𝑛  are given by (11) and (12) above, then the right-hand 

member of equation (10) is called the Fourier series, over the interval −𝐿 ≤ 𝑥 ≤ 𝐿 

for the function f(x). A statement of condition sufficient to insure that the Fourier 

series in (10) represent the function f(x) in a reasonably meaningful manner 

follows. 

Let f(x) be continuous and differentiable at every point in the interval 

−𝐿 ≤ 𝑥 ≤ 𝐿 Except for, at most, a finite number of points, and at those points let 

𝑓(𝑥) and 𝑓 ′  (x) have right-hand and left-hand limits.[39] 

 



5 
 

Theorem (1.2): 

Under the stipulations of the preceding paragraph, the Fourier series 𝑓(𝑥), namely 

the series on the right in equation (10) with coefficients given by equation (1) and 

(12), converges to the value 𝑓(𝑥) at each point of continuityof   𝑓(𝑥); at each point 

of discontinuity of 𝑓(𝑥) the Fourier series converges to arithmetic mean of the 

value approached by 𝑓(𝑥) from the right and the left. 

    Since the Fourier series for 𝑓(𝑥) may not converge to the value 𝑓(𝑥) everywhere 

(for instance, at discontinuities of the function), it is customary to replace the 

equals sine in equation (10) by the symbol~, which may be read “has for its 

Fourier series.” We write            

𝑓 𝑥 ~
1

2
𝑎0 +   𝑎𝑛 cos

𝑛𝜋𝑥

𝐿
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝐿
 

∞

𝑛=1

 

With 𝑎𝑛  and 𝑏𝑛  given by equation (11) and (12). 

       An interesting fact and one often useful as a check in numerical problems is 

that 
1

2
𝑎0 is the average value of 𝑓(𝑥) over the interval −𝐿 < 𝑥 < 𝐿 . 

      The sine and cosine functions are periodic with period 2𝜋, so the term in the 

Fourier series (12) for 𝑓(𝑥) are periodic with period 2𝐿 therefore the series 

represents a function that is as described above for the interval −𝐿 < 𝑥 < 𝐿 and 

repeats that structure over and over outside that interval, the corresponding Fourier 

series would converge to the periodic function. Not the convergence to the average 

value at discontinuities, the periodicity, and the way in which the two together 

determine the value to which the series converges at 𝑥 = 𝐿 and𝑥 = −𝐿. 
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We have an expansion of a function 𝑓(𝑥) in a series involving only sine functions, 

the expansion to represent, the original 𝑓(𝑥) in an interval 0 < 𝑥 < 𝐿 with the 

notation we have been using, the Fourier series  

𝑓 𝑥 =
1

2
𝑎0 +   𝑎𝑛 cos

𝑛𝜋𝑥

𝐿
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝐿
 

∞

𝑛=1

 

Will reduce to a series with each term containing a sine function if somehow the 

𝑎𝑛 ,where n = 1,2,3,… , can be made to be zero. Examining the formula for 

𝑎𝑛 , reveals that the 𝑎𝑛  will vanish if the function being expanded is an odd function 

over the interval −𝐿 < 𝑥 < 𝐿. 

     Therefore, to get a sine series for 𝑓(𝑥) we introduce a new function 𝑔(𝑥) 

defined to equal 𝑓(𝑥) in the interval 0 < 𝑥 < 𝐿 and to be the odd extension of that 

function in the remaining interval,  −𝐿 < 𝑥 < 0. That is, we define 𝑔(𝑥) by 

𝑔(𝑥)  =  𝑓(𝑥),                     0 < 𝑥 < 𝐿 

 =  −𝑓(−𝑥)                     − 𝐿 < 𝑥 < 0 

Then g(x) is an odd function over the interval−𝐿 < 𝑥 < 𝐿. Hence from  

g 𝑥 ~
1

2
𝑎0 +   𝑎𝑛 cos

𝑛𝜋𝑥

𝐿
+ 𝑏𝑛 sin

𝑛𝜋𝑥

𝐿
 

∞

𝑛=1
 

it follows that 

𝑎𝑛 =
1

L
∫ g 𝑥  cos

nπx

L

L

−L
 dx = 0                   n= 0, 1, 2, 

𝑏𝑛 =
1

L
∫ g 𝑥  sin

𝑛𝜋𝑥

𝐿

L  

−L
 dx=

2

L
∫ f 𝑥  sin

𝑛𝜋𝑥

𝐿

L  

0
 dx 

The resultant series represent f(x) in the interval 0<x<L, because g(x) and f(x)are 

identical over that portion of the whole interval. 

Thus we have 
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𝑓 𝑥 ~ 𝑏𝑛 sin
𝑛𝜋𝑥

𝐿

∞

𝑛=1
 ,          0<x<L   (13) 

In which 

𝑏𝑛 =
2

L
∫ f 𝑥  sin

𝑛𝜋𝑋

𝐿

L  

0
 dx,           n= 1, 2, 3, (14) 

The representation (13)is called the Fourier sine series for f(x) over the interval 

0 < 𝑥 < 𝐿. 

      It should be realized that the device of introducing the function g(x) was a tool 

for arriving at (13) and (14). Those we handle by direct use of (13) and (14) above. 

 Example (1): 

Expand 𝑓(𝑥)  =  𝑥2 in a Fourier sine series over the interval0 < 𝑥 < 1. 

At once we may write. For 0 < 𝑥 < 1, 

𝑥2~ 𝑏𝑛 sin nπx∞
𝑛=1  ,                   (15) 

In which 

𝑏𝑛 = 2 𝑥2  sin nπx
1  

0

 dx 

= 2 −
𝑥2 cos 𝑛𝜋𝑥

𝑛𝜋
+  

2𝑥  sin nπx

 𝑛𝜋  2
+ 

2 cos 𝑛𝜋𝑥

 𝑛𝜋  3
 

0

1

 

=  2  −
cos 𝑛𝜋

𝑛𝜋
+

2 cos 𝑛𝜋

𝑛3𝜋3
−

2

𝑛3𝜋3
        (16) 

Hence the Fourier sine series, over 0<x<1, for 𝑥2 is 

𝑥2 ~ 2  
 −1 𝑛+1

𝑛𝜋
− 

2 1− −1 𝑛  

𝑛3𝜋3
 ∞

𝑛=1 sin 𝑛𝜋𝑥,     (17) 
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The series on the right in (17) this function being called the odd periodic extension, 

with period 2, of the function 

𝑓(𝑥)  =  𝑥2,          0 < 𝑥 < 1 

        In a manner entirely to that used to obtain the Fourier sine series, it is possible 

to obtain a series of cosine terms, including a constant term, for a function defined 

over the interval0 < 𝑥 < 𝐿. Indeed, given 𝑓(𝑥) defined over the interval  

0 < 𝑥 < 𝐿,We may define an auxiliary function 𝑕(𝑥 )by 

𝑕(𝑥)  =  𝑓(𝑥),                     0 < 𝑥 < 𝐿 

=  𝑓(−𝑥)                    − 𝐿 < 𝑥 < 0 

Then 𝑕(𝑥) is an even function of x and, of course, it is equal to 𝑓(𝑥) over the 

interval where 𝑓(𝑥) was defined. Since 𝑕(𝑥) is even, it follows that in its ordinary 

Fourier expansion over the interval−𝐿 < 𝑥 < 𝐿, the 𝑏𝑛are all zero. 

𝑏𝑛 =
1

L
∫ h 𝑥  sin

𝑛𝜋𝑋

𝐿

L  

−L
 dx = 0 

Because of the oddness of the integrand. Furthermore, since 𝑕(𝑥) is even, 𝑕(𝑥)    

cos (
𝑛𝜋𝑋

𝐿
) is also even and 

𝑎𝑛 =
2

L
∫ h 𝑥  cos

nπx

L

L

0
 dx =

2

L
∫ f 𝑥  cos

nπx

L

L

0
 dx, 

Since h(x)and f(x) are identical over the interval0 < 𝑥 < 𝐿, we may write what is 

customarily called the Fourier cosine series for 𝑓(𝑥) over that interval, namely 

F 𝑥 ~
1

2
𝑎0 +  𝑎𝑛 cos

𝑛𝜋𝑥

𝐿

∞

𝑛=1
 ,             0<x<L,         (18) 

In which 

𝑎𝑛 =
2

L
∫ f 𝑥  cos

nπx

L

L

0
 dx,                         (19) 

Example (2): 

      Find the Fourier cosine series over the interval 0<x<L for the function 
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𝑓(𝑥)  =  𝑥. 

At once we have 

F 𝑥 ~
1

2
𝑎0 +  𝑎𝑛 cos

𝑛𝜋𝑥

𝐿

∞

𝑛=1
 

In which 

𝑎𝑛 =
2

L
 x cos

nπx

L

L

0

 dx 

For n≠ 0, the 𝑎𝑛  may be evaluated as follows: 

𝑎𝑛 =  
2

L
 
𝐿

𝑛𝜋
𝑥 𝑠𝑖𝑛 

𝑛𝜋𝑥

𝐿
+  

𝐿

𝑛𝜋
 

2

𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿
 

0

𝐿

 

                                     = 
2

L
  

𝐿

𝑛𝜋
 

2
𝑐𝑜𝑠 𝑛𝜋 −  

𝐿

𝑛𝜋
 

2

  

                                    = - 
2𝐿

𝑛2𝜋2
 1 − 𝑐𝑜𝑠 𝑛𝜋 ,                      n≠ 0 

The remaining coefficient 𝑎0 is readily obtained: 

𝑎0 =
2

L
∫  x 

L

0
 dx = 

2

𝐿
 .
𝐿2

2
 = L. 

Thus the Fourier cosine series over the interval 0<x<L for the function f(x) = x is 

F 𝑥  ~ 
1

2
L −

2𝐿

𝜋2  
1−  −1 n

n2
cos

𝑛𝜋𝑥

𝐿

∞

𝑛=1
 

Which may also be written in the form 

f 𝑥  ~ 
1

2
L −

4𝐿

𝜋2  
cos   2t+1 𝜋𝑥 L  

 2t+1 2

∞

𝑡=0
            (20) 

The infinite series on the right in (3) converges to a function which is often called 

the even periodic extension of the function 𝑓(𝑥)  =  𝑥. 

     The Fourier transformis very commonly used it transforms a mathematical 

function of time, f  𝑡   into a new function, sometimes denoted by  𝑓^ or F, whose 

argument is frequency with units of cycles or radians per second.  The new function 

is then known as the Fourier transform and/or the frequency spectrum of the 

http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Frequency_spectrum
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functionf TheFourier transform is also a reversible operation. Thus, given the 

function  𝑓^  one can determine the original function,f (See Fourier inversion 

theorem.)  f and   𝑓^ are also respectively known as time domain and frequency 

domain representations of the same "event".  Most often perhaps, f is a real-valued 

function, and    𝑓^is complex valued, where a complex number describes both the 

amplitude and phase of a corresponding frequency component.  In general, f is also 

complex, such as the analytic representation of a real-valued function. The term 

"Fourier transform" refers to both the transform operation and to the complex-

valued function it produces. 

In the case of a periodic function (for example, a continuous but not necessarily 

sinusoidal musical sound), the Fourier transform can be simplified to the 

calculation of a discrete set of complex amplitudes, called Fourier series 

coefficients. Also, when a time-domain function is sampled to facilitate storage or 

computer-processing, it is still possible to recreate a version of the original Fourier 

transform according to the Poisson summation formula, also known as discrete-

time Fourier transform. For an overview of those and other related operations, refer 

to Fourier analysis or List of Fourier-related transforms.[6] 

 

Definition (1.3): Fourier Transform: 

There are several common conventions for defining the Fourier transform F of an 

integral function f:R → C. We  will use the definition: 

F (𝜔) = F (f) ( 𝑥) =∫  f(x) 
∞

−∞
e−2πi𝜔𝑥  dx,   for every real number 𝜔. 

http://en.wikipedia.org/wiki/Fourier_inversion_theorem
http://en.wikipedia.org/wiki/Fourier_inversion_theorem
http://en.wikipedia.org/wiki/Fourier_inversion_theorem
http://en.wikipedia.org/wiki/Time_domain
http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Analytic_signal
http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Sine_wave
http://en.wikipedia.org/wiki/Fourier_series
http://en.wikipedia.org/wiki/Sampling_%28signal_processing%29
http://en.wikipedia.org/wiki/Poisson_summation_formula
http://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
http://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
http://en.wikipedia.org/wiki/Fourier_analysis
http://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
http://en.wikipedia.org/wiki/Fourier_transform#Other_conventions
http://en.wikipedia.org/wiki/Lebesgue_integration
http://en.wikipedia.org/wiki/Real_number
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Then  𝐹−1 𝜔 = 𝑓(𝑥) = ∫ 𝐹(𝜔)𝑒2𝜋𝑖𝜔𝑥∞

−∞
 where 𝐹−1 𝜔  is the inverse Fourier 

transform. 

When the independent variable x represents time (with SI unit of seconds), the 

transform variable 𝜔 represents frequency (in hertz). Under suitable conditions, f is 

determined by F via the inverse transform: 

F ( 𝑥) = ∫  F(𝜔)  
∞

−∞
e2πi𝜔𝑥  d𝜔,for every real number x. 

The statement that f can be reconstructed from F is known as the Fourier inversion 

theorem, and was first introduced in Fourier's Analytical Theoryof Heat although 

what would be considered a proof by modern standards was not given until much 

later. The functions f and F often are referred to as a Fourier integral pair or Fourier 

transform pair. 

There is a close connection between the definition of Fourier series and the Fourier 

transform for functions ofwhich are zero outside of an interval. For such a function, 

we can calculate its Fourier series on any interval that includes the points where f is 

not identically zero. The Fourier transform is also defined for such a function. As 

we increase the length of the interval on which we calculate the Fourier series, then 

the Fourier series coefficients begin to look like the Fourier transform and the sum 

of the Fourier series of f begins to look like the inverse Fourier transform. To 

explain this more precisely, suppose that L is large enough so that the interval 

[−L/2,L/2] contains the interval on which f is not identically zero. Then the n-the 

series coefficient cn is given by: 

𝑐𝑛 =  𝑓 𝑥 𝑒−2𝜋𝑖  𝑛 𝐿  𝑥

𝐿

2

−𝐿

2

𝑑𝑥 

http://en.wikipedia.org/wiki/SI
http://en.wikipedia.org/wiki/Second
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Fourier_inversion_formula
http://en.wikipedia.org/wiki/Fourier_inversion_formula
http://en.wikipedia.org/wiki/Fourier_inversion_formula
http://en.wikipedia.org/wiki/Joseph_Fourier
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Comparing this to the definition of the Fourier transform, it follows that can = 

F(n/L) since ƒ(x) is zero outside [−𝐿/2, 𝐿/2]. Thus the Fourier coefficients are just 

the values of the Fourier transform sampled on a grid of width 1/L. As L increases 

the Fourier coefficients more closely represent the Fourier transform of the 

function. 

Under appropriate conditions, the sum of the Fourier series of f will equal the 

function f. In other words, f can be written: 

f(x) = 
1

𝐿
 𝐹 𝑛 𝐿  ∞
𝑛=−∞ 𝑒2𝜋𝑖  𝑛 𝐿  𝑥  =  𝐹 𝜔𝑛 

∞
𝑛=−∞ 𝑒2𝜋𝑖  𝜔𝑛  𝑥  ∆𝜔 

Where the last sum is simply the first sum rewritten using the definitions 𝜔𝑛= n/L, 

and ∆𝜔 =  (𝑛 +  1)/𝐿 −  𝑛/𝐿 =  1/𝐿. 

This second sum is a Riemann sum, and so by letting L → ∞ it will converge to the 

integral for the inverse Fourier transform given in the definition section. Under 

suitable conditions this argument may be made precise. 

In the study of Fourier series the numbers cn could be thought of as the "amount" of 

the wave present in the Fourier series of f. Similarly, as seen above, the Fourier 

transform can be thought of as a function that measures how much of each 

individual frequency is present in our function f, and we can recombine these 

waves by using an integral (or "continuous sum") to reproduce the original 

function. 

Example (3): 

The following images provide a visual illustration of how the Fourier transform 

measures whether a frequency is present in a particular function. The function 

depicted ƒ(𝑡)  =  𝑐𝑜𝑠 (6𝜋𝑡) 𝑒 − 𝜋𝑡2 oscillates at 3 hertz (if t measures seconds) 

http://en.wikipedia.org/wiki/Riemann_sum
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and tends quickly to 0. (The second factor in this equation is an envelope function 

that shapes the continuous sinusoid into a short pulse. Its general form is a 

Gaussian function). This function was specially chosen to have a real Fourier 

transform which can easily be plotted. The first image contains its graph. In order 

to calculate F (3) we must integrate e
−2πI (3t)

 ƒ (t). The second image shows the plot 

of the real and imaginary parts of this function. The real part of the integrand is 

almost always positive, because when ƒ (t) is negative, the real part of e
−2πI (3t)

 is 

negative as well. Because they oscillate at the same rate, when ƒ (t) is positive, so is 

the real part of e
−2πI (3t)

. The result is that when you integrate the real part of the 

integrand you get a relatively large number (in this case 0.5). On the other hand, 

when you try to measure a frequency that is not present, as in the case when we 

look at F (5), the integrand oscillates enough so that the integral is very small. The 

general situation may be a bit more complicated than this, but this in spirit is how 

the Fourier transform measures how much of an individual frequency is present in a 

function ƒ(t). 

  

Original function showing oscillation 3 hertz. 

http://en.wikipedia.org/wiki/Envelope_%28waves%29
http://en.wikipedia.org/wiki/Gaussian_function
http://en.wikipedia.org/wiki/File:Function_ocsillating_at_3_hertz.svg
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  

Real and imaginary parts of integrand for Fourier transform at 3 hertz 

  

Real and imaginary parts of integrand for Fourier transform at 5 hertz 

http://en.wikipedia.org/wiki/File:Onfreq.svg
http://en.wikipedia.org/wiki/File:Offfreq.svg
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  

Fourier transform with 3 and 5 hertz labeled. 

As would be expected, Fourier transform have many properties analogous to those 

of Fourier series with regard to the connection between transforms of related 

functions. As previously we denote FT {f (t)} by g (𝜔). The unfamiliar last term is 

discussed below. 

- Differentiation              𝐹𝑇{𝑓 `(𝑡)} =  𝑖𝜔𝑔(𝜔)               (21) 

- Integration                        𝐹𝑇{∫ 𝑓 𝑠 𝑑𝑠
𝑡

} =  − 𝑖𝜔−1𝑔(𝜔) + 2𝜋𝑐𝑕(𝜔)(22) 

- Translation    𝐹𝑇{𝑓(𝑡 +  𝑎)}  =  𝑒𝑖𝑎𝜔 𝑔(𝜔)               (23) 

- Exponential multiplication           𝐹𝑇{𝑒𝛼𝑡𝑓(𝑡)}  =  𝑔(𝜔 + 𝑖𝛼)                 (24) 

 

In (24)(∝) may be real, imaginary or complex. The last term 2𝜋𝑐h (𝜔) in 

(22) represents the FT of the constant of integration associated with the 

definition of the indefinite integral. 

Here we assumeƒ(𝑥), g(x) and h(x) are integral functions, are Lévesque-

measurable on the real line, and satisfy: 

http://en.wikipedia.org/wiki/Lebesgue-measurable
http://en.wikipedia.org/wiki/Lebesgue-measurable
http://en.wikipedia.org/wiki/File:Fourier_transform_of_oscillating_function.svg
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  𝑓(𝑥) 𝑑𝑥 < ∞.
∞

−∞

 

We denote the Fourier transforms of these functions by F(𝜔), G(𝜔), and H(𝜔)      

respectively. 

The Fourier transform has the following basic properties:  

Linearity: 

For any complex numbersa and b, if 𝑕 𝑥 = 𝑎𝑓 𝑥 + 𝑏𝑔 𝑥 ,      then    

 

𝐻(𝜔)  =  𝑎 . 𝐹(𝜔)  +  𝑏 . 𝐺(𝜔), 

Translation: 

For any real number𝑥0, if 𝑕(𝑥) = 𝑓(𝑥 − 𝑥0),    then  

 

𝐻(𝜔)  =    𝑒−2𝜋𝑖𝑥0𝜔  𝐹(𝜔) 

Modulation: 

For any real number𝜔0if  h(𝑥) =   𝑒2𝜋𝑖𝑥 𝜔0𝑓(𝑥)then  

 

𝐻(𝜔)  =  𝐹(𝜔 − 𝜔0)  

Scaling: 

For a non-zero real numbera, if h(x) = ƒ(ax), then     H(𝜔) = 
1

 𝑎 
𝐹  

𝜔

𝑎
  

 

   The case a = -1 leads to the time-reversal property, which states: if 

  𝑕 𝑥 = 𝑓 −𝑥 , then𝐻(𝜔)  =  𝐹(−𝜔) 

Conjugation: 

If 𝑕 𝑥 = 𝑓 𝑥 ,            then   𝐻(𝜔)  =  𝐹(−𝜔)          

In particular, if ƒ is real, then one has the reality condition𝐹(−𝜔)  =  𝐹(𝜔)         

http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Complex_conjugate


17 
 

And if ƒ is purely imaginary, then   𝐹(−𝜔)  =  − 𝐹(𝜔)        

        In mathematics, the Fourier sine transform is a special case of the continuous 

Fourier transform, arising naturally when attempting to transform an odd function. 

Consider the general Fourier transform: 

𝐹(𝜔)  =  𝐹(𝑓)( 𝑡) = 
1

 2π
∫  f(t) 
∞

−∞
e−i𝜔𝑡  dt. 

We may expand the integral by means of  Euler’s formula: 

F (𝜔) = 
1

 2π
∫  f t 
∞

−∞
(cos𝜔𝑡 −  i sin𝜔𝑡) dt, 

Or written as the sum of two integrals: 

F(𝜔) = 
1

 2π
∫  f t 
∞

−∞
cos𝜔𝑡  dt − 

i

 2π
∫  f t 
∞

−∞
sin𝜔𝑡  dt, 

Now notice that if we assume f(t) is an odd function, the product f(t) cos𝜔𝑡 is also 

odd whilst the product f(t)sin 𝜔𝑡 is an even function. Since we are integrating over 

an interval symmetric about the origin (i.e. -∞, +∞), the firest integral must vanish 

to zero, and the second may be simplified to give: 

F(𝜔) = −𝑖 
2

𝜋
∫  f t 
∞

0
sin𝜔𝑡  dt, 

Which is the Fourier sine transform for odd f(t). it is clear that the transformed 

function F(𝜔) is also an odd function, and similar analysis of the general inverse 

Fourier transform yields  a second sine transform, namely: 

𝑓(𝑡) = 𝑖 
2

𝜋
∫  F 𝜔 
∞

0
sin𝜔𝑡  d𝜔, 

Note that the numerical factors in the transforms are  defined uniquely only their 

product, as discussed for general continuous Fourier transform.for this reason the 

imaginary units  i and –i can be omitted, with the more commonly seen forms of 

the Fourier sine transforms being: 

F(𝜔) =  
2

𝜋
∫  f t 
∞

0
sin𝜔𝑡  dt, 
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And 

f t =  
2

𝜋
∫  F(𝜔)
∞

0
sin𝜔𝑡  d𝜔, 

        In mathematics, the Fourier cosine transform is a special case of the 

continuous Fourier transform, arising naturally when attempting to transform an 

even function. Consider the general Fourier transform: 

F(𝜔) = F(f)( 𝑡) = 
1

 2π
∫  f(t) 
∞

−∞
e−i𝜔𝑡  dt 

We may expand the integral by means of Euler’s formula: 

F (𝜔) = 
1

 2π
∫  f t 
∞

−∞
(cos𝜔𝑡 −  i sin𝜔𝑡) dt, 

Or written as the sum of two integrals: 

F(𝜔) = 
1

 2π
∫  f t 
∞

−∞
cos𝜔𝑡  dt − 

i

 2π
∫  f t 
∞

−∞
sin𝜔𝑡  dt, 

Now notice that if we assume f(t) is an even function, the product f(t) cos𝜔𝑡 is also 

even whilst the product f(t)sin 𝜔𝑡 is an odd function. Since we are integrating over 

an interval symmetric about the origin (i.e. -∞, +∞), the second integral must 

vanish to zero, and the first may be simplified to give: 

F(𝜔) =  
2

𝜋
∫  f t 
∞

0
cos𝜔𝑡  dt, 

Which is the Fourier cosine transform for even f(t). it is clear that the transformed 

function F(𝜔) IS also an even function, and similar analysis of the integral inverse 

Fourier transform yields  a second cosine transform, namely: 

f(t) =  
2

𝜋
∫  F 𝜔 
∞

0
cos𝜔𝑡  d𝜔, 

  Note that the numerical factors in the transforms are  defined uniquely only their 

product, as discussed for general continuous Fourier transform. 

      The Fourier transform translates between convolution and multiplication of 

functions. If ƒ(x) and 𝑔(𝑥) are integrable functions with Fourier transforms 𝐹(𝜔), 

http://en.wikipedia.org/wiki/Convolution
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and𝐺(𝜔), respectively, then the Fourier transform of the convolution is given by 

the product of the Fourier transforms 𝐹(𝜔), and𝐺(𝜔), (under other conventions for 

the definition of the Fourier transform a constant factor may appear). 

This means that if: 

𝑕 𝑥 =  𝑓 ∗ 𝑔  𝑥 =  𝑓 𝑦 𝑔 𝑥 − 𝑦 𝑑𝑦,
∞

−∞

 

where(∗) denotes the convolution operation, Proof the product 

𝑓 ∗ 𝑔 =
1

 2𝜋
 𝑓 𝑦 𝑔(𝑥 − 𝑦)𝑑𝑦
∞

−∞

 

Is called the convolution of the functions f and g over the interval (-∞ ,∞). The the 

Fourier transform of this convolution integral yields 

𝐹 [(𝑓 ∗ 𝑔);  𝜔] =
1

2𝜋
∫ 𝑒𝑖𝜔𝑥
∞

−∞
∫ 𝑓 𝑦 𝑔(𝑥 − 𝑦)𝑑𝑦
∞

−∞
dx 

                                            = 
1

2𝜋
∫ ∫ 𝑒𝑖𝜔𝑥  𝑓 𝑦 𝑔(𝑥 − 𝑦)𝑑𝑦

∞

−∞
dx

∞

−∞
 

Since f and g are absolutely integrable, the order of integration can be interchanged 

and, therefore,  

𝐹 [(𝑓 ∗ 𝑔);  𝜔] =
1

2𝜋
∫ 𝑓 𝑦 
∞

−∞
[∫ 𝑔(𝑥 − 𝑦)𝑒𝑖𝜔(𝑥−𝑦)𝑒𝑖𝜔𝑦

∞

−∞
dx ] 𝑑𝑦 

Let 𝑥 –  𝑦 =  𝑢.then 𝑑𝑥 =  𝑑𝑢. therefore, 

𝐹 [(𝑓 ∗ 𝑔);  𝜔] =
1

2𝜋
∫ 𝑓 𝑦 
∞

−∞
[𝑒𝑖𝜔𝑦 ∫ 𝑔(𝑦)𝑒𝑖𝜔𝑢

∞

−∞
du ] 𝑑𝑦 
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=
1

 2𝜋
 𝑒𝑖𝜔𝑦 𝑓 𝑦 𝑑𝑦
∞

−∞

1

 2𝜋
 𝑒𝑖𝜔𝑢 𝑔(𝑢)𝑑𝑢
∞

−∞

 

= 𝐹(𝜔) . 𝐺(𝜔) 

    Hence the theorem is proved. 

then: 

𝐻(𝜔)  =   𝐹(𝜔) .  𝐺(𝜔), 

 

In linear time invariant (LTI) system theory, it is common to interpret g(x) as the 

impulse response of an LTI system with input ƒ(x) and output h(x), since 

substituting the unit impulse for ƒ(x) yields h(x) = g(x). In this case, 

G(𝜔)representsthefrequency response of the system. 

Conversely, if ƒ(x) can be decomposed as the product of two square integrable 

functions p(x) and q(x), then the Fourier transform of ƒ(x) is given by the 

convolution of the respective Fourier transforms𝑃(𝜔)and Q(𝜔). 

    We can verify that 𝑓 ∗  𝑔 =  𝑔 ∗  𝑓, i,e., 

𝑓 ∗ 𝑔 =
1

 2𝜋
 𝑓 𝑦 𝑔(𝑥 − 𝑦)𝑑𝑦
∞

−∞

 

Setting 𝑥 –  𝑦 =  𝜔, we have 𝑑𝑦 =  − 𝑑 𝜔. 𝑡𝑕𝑒𝑛 

𝑓 ∗ 𝑔 =
1

 2𝜋
∫ 𝑓 𝑥 −  𝜔 𝑔 𝜔 𝑑𝜔 
∞

−∞
= 

1

 2𝜋
∫ 𝑔 𝑦 𝑓 𝑥 −  𝑦 𝑑𝑦 
∞

−∞
 = g * f 

Hence the convolution is commutative. 

http://en.wikipedia.org/wiki/LTI_system_theory
http://en.wikipedia.org/wiki/Impulse_response
http://en.wikipedia.org/wiki/Dirac_delta_function
http://en.wikipedia.org/wiki/Frequency_response
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The  Sine and cosine convolution integrals 

1-∫ 𝐹𝐶 𝜔 𝐺𝐶 𝜔  𝐶𝑂𝑆 𝜔𝑥 𝑑𝜔 
∞

0
= 

2

𝜋
∫ 𝐹𝐶 𝜔  𝐶𝑂𝑆 𝜔𝑥 𝑑𝜔 
∞

0
∫ 𝑔 𝛼  𝐶𝑂𝑆𝛼𝜔 𝑑𝛼 
∞

0
 

=  
2

𝜋
∫ 𝑔 𝛼  𝑑𝛼 
∞

0
∫ 𝐹𝐶 𝜔  𝐶𝑂𝑆 𝜔𝑥 𝐶𝑂𝑆𝛼𝜔 𝑑𝜔 
∞

0
 

=  
1

2𝜋
∫ 𝑔 𝛼  𝑑𝛼 
∞

0
∫ 𝐹𝐶 𝜔  [𝐶𝑂𝑆  𝑥 −  𝛼  𝜔 +  𝐶𝑂𝑆  𝑥 + 𝛼  𝜔] 𝑑𝜔 
∞

0
 

But, 

𝑓(𝑥) =  
2

𝜋
∫ 𝐹𝐶 𝜔  𝐶𝑂𝑆 𝜔𝑥 𝑑𝜔 
∞

0
=  

1

2
∫ 𝑔 𝛼  𝑑𝛼 
∞

0
[𝑓  𝑥 −  𝛼   + 𝑓(𝑥 + 𝛼)] 

2- if𝐹𝑠(𝜔) and 𝐺𝑠(𝜔) are the Fourier sine transforms of f(x) and g(x), then we can 

show that 

∫ 𝐹𝑠 𝜔 𝐺𝑠(𝜔) 𝑠𝑖𝑛 𝜔𝑥 𝑑𝜔 
∞

0
 = 

1

2
∫ 𝑓 𝛼 
∞

0
[𝑔  𝑥 −  𝛼  − 𝑔(𝑥 + 𝛼)] 𝑑𝛼 

3- ∫ 𝐹𝑐 𝜔 𝐺𝑠 𝜔 𝑠𝑖𝑛 𝜔𝑥 𝑑𝜔 =  
2

𝜋
∫ 𝐹𝐶 𝜔  𝑠𝑖𝑛 𝜔𝑥 𝑑𝜔 
∞

0

∞

0
∫ 𝑔 𝛼 sin 𝛼𝜔  𝑑𝛼 
∞

0
 

=  
2

𝜋
∫ 𝑔 𝛼  𝑑𝛼 
∞

0
∫ 𝐹𝐶 𝜔  𝑠𝑖𝑛 𝜔𝑥 sin 𝛼𝜔 𝑑𝜔 
∞

0
 

1

 2𝜋
 𝑔 𝛼  𝑑𝛼 
∞

0

 𝐹𝐶 𝜔  [𝐶𝑂𝑆  𝑥 −  𝛼  𝜔 −  𝐶𝑂𝑆  𝑥 + 𝛼  𝜔] 𝑑𝜔 
∞

0

 

= 
1

2
∫ 𝑔 𝛼 
∞

0
[𝑓  𝑥 −  𝛼  − 𝑓(𝑥 + 𝛼)] 𝑑𝛼 
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4- ∫ 𝐹𝑠 𝜔 𝐺𝑐 𝜔 𝑠𝑖𝑛 𝜔𝑥 𝑑𝜔 =
1

2
∫ 𝑓 𝛼 
∞

0
[𝑔  𝑥 −  𝛼  − 𝑔(𝑥 + 𝛼)] 𝑑𝛼

∞

0
 

Definition (1.4): Heaviside step function: 

the  Heaviside step function, H, also called the unit step function, is a discontinuous 

function whose value is zero for negative argument and one for positive argument. 

It seldom matters what value is used for 𝐻(0), since H is mostly used as 

distribution. Some common choices can be seen below. 

      The function is used in the mathematics of control theory and signal processing 

to represent a signal that switches on at a specified time and stays switches onat a 

specified time and stays switched on indefinitely. It was named after the English 

polymath Oliver Heaviside.[3] 

     It is the cumulative distribution function of a random variable which is almost 

surely 0. The Heaviside function is the integral of the Dirac delta function:  

𝐻′ = 𝛿. This is sometimes written as 

𝐻(𝑥) = ∫ 𝛿(𝑡)𝑑𝑡
∞

−∞
 

 

Although this expansion may not hold for x = 0, depending on which formalism 

one uses to give meaning to integrals involving 𝛿 

        The Fourier transform of the  Heaviside step function is a distribution. Using 

one choice of constants for the definition of the Fourier transform we have 

H^(s) = ∫ 𝑒−2𝜋𝑖𝑥𝑠∞

−∞
𝐻(𝑥)𝑑𝑥 = 

1

2
(𝛿(s) - 

𝑖

𝜋𝑠
) 
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Here the 
1

𝑠
 term must be interprteted as a distribution that takes a test function 𝜑 to 

the Cauchy principal value of  

 
𝜑(𝑥)

𝑥

∞

−∞

 

Using Fourier  transforms, one finds that 

 1 . 𝑒−2𝜋𝑖𝑓𝑡
∞

−∞

𝑑𝑡 

And therefore: 

∫ 1 . 𝑒2𝜋𝑖𝑓1𝑡 𝑒2𝜋𝑖𝑓2𝑡 
∗∞

−∞
𝑑𝑡 = ∫  𝑒−2𝜋𝑖 (𝑓2−𝑓1)𝑡  𝑑𝑡

∞

−∞
 = 𝛿 (𝑓2 – 𝑓1) 

Which is a statement of the orthogonality property for the Fourier kernel. Equating 

these non-converging improper integrals to 𝛿(x)  is not mathematically rigorous. 

However, they behave in the same way under a definite integral. That 

∫ 𝐹 𝑓 (∫  𝑒−2𝜋𝑖𝑓 (𝑡)∞

−∞

∞

−∞
dt) df = f(0) 

According to the definition of the Fourier transform. Therefore, the bracketed term 

is considered equivalent to the Dirac delta function.[26] 
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 Chapter Two 

Some Classical Applications of Fourier Transform 

 

Introduction (2.1): 

We discus some applicationsof Fourier transform to differential 

equationsandintegeral equations. 

   Consider the nth order linear ordinary differential equation with constant 

coefficients  

𝐿𝑦 𝑡 = 𝑓(𝑡)              (1) 

Where L is the nth order differential operator given by 

𝐿 = 𝑎𝑛𝐷
𝑛 + 𝑎𝑛−1𝐷

𝑛−1 + ⋯+ 𝑎1𝐷 + 𝑎0 

𝑎0, 𝑎1 , … , 𝑎𝑛are constants, 𝐷 =
𝑑

𝑑𝑡
 , and 𝑓 ∈ 𝐿1(ℝ) or 𝑓 ∈ 𝐿2(ℝ). Application of 

the Fourier transform to both sides of (1) gives  

 𝑎𝑛 𝑖𝜔
𝑛 + 𝑎𝑛−1𝑖𝜔

𝑛−1 + ⋯+ 𝑎1𝑖𝜔 + 𝑎0 𝑦  𝜔 = 𝑓  𝜔  

Or 

𝑝  𝑖𝜔 𝑦  𝜔 = 𝑓  𝜔  

Where 𝑝  𝑧 = 𝑎𝑛𝑧
𝑛 + 𝑎𝑛−1𝑧

𝑛−1 + ⋯+ 𝑎1𝑧 + 𝑎0 

Thus; 

𝑦  𝜔 =
𝑓  𝜔 

𝑝  𝑖𝜔 
= 𝑓  𝜔 𝑔  𝜔  

Where 

𝑔  𝜔 =
1

𝑝  𝑖𝜔 
 

Now the convolution theorem gives the solution 

𝑦 𝑡 =
1

 2𝜋
 𝑓 𝜉 
∞

−∞

𝑔(𝑡 − 𝜉)𝑑ξ 
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Provided 𝑔 𝑡 = ℱ−1{𝑔  𝜔 } is known explicity. 

  To give a physical interpretation of the result, we consider the differential 

equation associated with a sudden impulse function 𝑓 𝑡 = 𝛿(𝑡). 

𝐿𝐺 𝑡 = 𝛿(𝑡) 

Application of Fourier transform to this equation yields the solution 

𝐺 𝑡 = ℱ−1  
1

 2𝜋
𝑔  𝜔  =

1

 2𝜋
𝑔(𝑡) 

Now the above solution can be written as 

𝑦 𝑡 =
1

 2𝜋
 𝑓 𝜉 
∞

−∞

𝐺(𝑡 − 𝜉)𝑑ξ 

Clearly, 𝐺(𝑡) behaves like a Green’s function, that is, it is the response to a unit 

impulse. In any physical system, 𝑓(𝑡) is usually called the input function, while 

y(t) is called the output obtained by the superposition principle. The Fourier 

transform of  2𝜋𝐺 𝑡  is called the admittance 𝑔  𝜔 = (𝑝  𝑖𝜔 )−1. To determine  

the response to a given input, we first find the Fourier transform of the input, 

multiply the result by the admittance, and then apply the inverse Fourier transform 

to the product.[21] 

Example (1): 

The electric current I(t) in the circuit is governed by the equation 

𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅𝐼 = 𝐸         (2) 

Where L is the inductance, R is the resistance, and E is the applied electromagnetic 

force. With 𝐸 𝑡 = 𝐸0𝑒
− 𝑡 , application of the Fourier transform (with respect to t) 

to equation (2) gives 

 𝑖𝜔𝐿 + 𝑅 𝐼  𝜔 =  
2

𝜋

𝐸0

1 + 𝜔2
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Or 

 

𝐼  𝜔 =  
2

𝜋

𝐸0

 𝑖𝜔𝐿 + 𝑅 (1 + 𝜔2)
 

 

The inverse Fourier transform yields 

𝐼 𝑡 =
𝐸0

𝜋
 

𝑒𝑖𝜔𝑡 𝑑𝜔

 𝑖𝜔𝐿 + 𝑅 (1 + 𝜔2)

∞

−∞

 

This integral can readily be evaluated by the theory of residues. for𝑡 > 0, 

𝐼 𝑡 =
𝐸0

𝜋
2𝜋𝑖   𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑎𝑡 𝜔 = 𝑖 + [𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑎𝑡 𝜔 =

𝑖𝑅

𝐿
]  

= 2𝑖𝐸0  
𝑒−𝑡

2𝑖(𝑅 − 𝐿)
+

𝑒−𝑅𝑡 𝐿 

𝑖𝐿(1 − 𝑅2 𝐿2 )
  

= 𝐸0  
𝑒−𝑡

𝑅 − 𝐿
+

2𝐿𝑒−𝑅𝑡 𝐿 

𝑅2 − 𝐿2
  

Similarly, for 𝑡 < 0, we optain 

𝐼 𝑡 = −
𝐸0

𝜋
 .2𝜋𝑖 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑎𝑡 𝜔 = −𝑖 =

𝐸0𝑒
𝑡

𝐿 + 𝑅
 

At t=0, the current is continuous, hence 

𝐼 0 = lim
𝑡→0

𝐼(𝑡) =
𝐸0

𝐿 + 𝑅
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Wave equation (2.2): 

The wave equation as an evolution equation, I.e.  an ordinary differential equation 

describing the evolution over time of any initial distribution so it is an ordinary 

differential equation with values  in the vector space of distributions. 

The bottom line of the wave equation  

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑐2

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
 

This is the differential equation that describes the propagation of dissipationless, 

dispersionless waves. This derivation will be inductive and general. For each 

specific case like tension waves on a string or sound waves in the air, it is also 

possible to give a detailed deductive derivation that applies to that physical system. 

 We begin with observation of waves on the hose or on the rods. We see that 

to a fair approximation, they have two properties. First the waves do not change 

size as they propagate. Actually they do slowly get smaller with time, but we can 

imagine doing a better job of eliminating the “friction” so that they approach the 

limit of propagating on indefinitely without getting smaller. This is the idealization 

of waves without dissipation. Second we see two other properties that are 

equivalent. The waves keep the same shape as they propagate, and all shapes have 

the same speed. Waves with this property are said to have no dispersion. (for media 

with dispersion, waves of different wavelength have different speeds. An  example 

is light in glass. That is why a prism can separate the colors of the rainbow in white 

light.) our demonstration examples are a better approximation to the idealization of 

no dispersion than they are to that of no dissipation. 

   This means that if we know the shape of the wave at one time, then we know it at 

later time y just moving it over by a distance ct. 
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This can e expressed in equations as follows: suppose that at 𝑡 = 0, the shape of the 

waves is given by a function 𝑓(𝑥) so that 𝑢(𝑥, 0)  =  𝑓(𝑥) and the function 𝑢(𝑥, 𝑡) 

at later time. Since it just gets moved over by ct, we have  

𝑢(𝑥, 𝑡)  =  𝑢(𝑥 − 𝑐𝑡, 0) =  𝑓(𝑥 − 𝑐𝑡).   Suppose the function 𝑓(𝑥) has peak at 

𝑥 = 𝑥0.   Then with the form above, the peak will be where 𝑥 − 𝑐𝑡 = 𝑥0 or  

𝑥 = 𝑥0 + 𝑐𝑡, i.e. the peak moves to the right with speed c. all this is independent of 

the actual form of 𝑓(𝑥).we assert that the equation we are are looking for must 

have the property that for any function 𝑓(. ), 𝑓(𝑥 − 𝑐𝑡)is a solution. But we don’t 

want to be stinsist that for any𝑔(. ), a left-moving wave of the form 𝑔(𝑥 + 𝑐𝑡) must 

also be a solution with this input, we can figure out what the form of the differential 

equation describing the waves must be 

𝜕𝑢

𝜕𝑥
= 𝑓 ′(𝑥 − 𝑐𝑡)

𝜕2𝑢

𝜕𝑥2
= 𝑓 ′′ (𝑥 − 𝑐𝑡) 

𝜕𝑢

𝜕𝑡
= −𝑐𝑓 ′(𝑥 − 𝑐𝑡)

𝜕2𝑢

𝜕𝑡2
= 𝑐2𝑓 ′′ (𝑥 − 𝑐𝑡) 

So that 
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡 2
= 𝑐2 𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
 as advertised. A similar calculation with f(x-ct) 

replaced by 𝑔(𝑥 + 𝑐𝑡) gives the same equation for 𝑢(𝑥, 𝑡). we generalizing the 

wave equation in three dimensions. a function that describes the disturbance is now 

a function of 𝑥, 𝑦, 𝑧, and t, 𝑢(𝑥, 𝑦, 𝑧, 𝑡).the three dimensional wave equation is  

𝜕2𝑢

𝜕𝑡2
= 𝑐2[

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
] 

The combination of partial derivatives that appears on the right hand side comes up 

in many places, it gets its own notation 

∇2=
𝜕2

𝜕𝑥 2
+

𝜕2

𝜕𝑦 2
+

𝜕2

𝜕𝑧 2
 . 

Then the wave equation in three dimensions can be written more easily as  

𝜕2𝑢

𝜕𝑡2
= 𝑐2∇2𝑢 . 
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the wave equation in the PDE    

𝜕2𝑢

𝜕𝑡2
=  

𝜕2𝑢

𝜕𝑥𝑗
2

𝑛

𝑗=1

 

For a function 𝑢 = 𝑢(𝑥, 𝑡) of x ∈ ℛ. For brevity this will usually be written 

𝑢𝑡𝑡 = ∆𝑢. 

This is usually supplemented by initial conditions, specified at t = 0. Since it is a 

second order equation in time the initial value and the initial time derivative are 

usually specified: 

𝑢(𝑥, 0)  =  𝑓(𝑥),    𝑢𝑡(𝑥, 0) =g(x) 

where𝑓 and g are given function in ℛ𝑛 . 

Note that the wave equation is definitely not an elliptic PDE, since the sing of the 

second t-derivatives is opposite to the sign of the space derivatives. We shall soon 

see that the solutions to the wave equation have a very different character to those 

of elliptic equations.   

The homogenous wave equation with constant coefficient can besolved y many 

ways such as separation of variables, the method of characteristics, Laplace 

transform, and Fourier transform.[2] 

 

Using Fourier transform to solve wave equation (2.2.1): 

If u(x, t) is the displacement from equilibrium of a string at position x and time t 

and if the string is undergoing small amplitude transverse vibrations, then we have 

seen  that 

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡 2
= 𝑐2 𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
                         (1) 

For a constant c. we are now going to solve this equation by multiplying both sides 

by 𝑒−𝑖𝑘𝑥  and integrating with respect to x. that is, we shall Fourier transform with 
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respect to the spatial variable x. denote the Fourier transform with respect to x, for 

each fixed t of 𝑢(𝑥, 𝑡) by  

𝑢 (𝑘, 𝑡) =  𝑢 𝑥, 𝑡 𝑒−𝑖𝑘𝑥  𝑑𝑥
∞

−∞

 

We have already seen that the Fourier transform of the derivative 𝑓 ′ 𝑥  is 

 

∫ 𝑓 ′ 𝑥 𝑒−𝑖𝑘𝑥  𝑑𝑥
∞

−∞
 = ik∫ 𝑓 𝑥 𝑒−𝑖𝑘𝑥  𝑑𝑥

∞

−∞
 = 𝑖𝑘𝑓 (k)                     (2) 

By integrating by parts with u =𝑒−𝑖𝑘𝑥 , dv = 𝑓 ′ 𝑥  dx, du = -ik𝑒−𝑖𝑘𝑥 , v = f(x) and 

assuming that 𝑓(𝑥)  → 0 as x → ±∞. Applying this with f(x) = 
𝜕𝑢 (𝑥,𝑡)

𝜕𝑥
 and a second 

time with 𝑓(𝑥)  =  𝑢(𝑥, 𝑡), gives that Fourier transform of 
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
is −𝑘2𝑢 (𝑘, 𝑡). 

Computation of the Fourier transform of 
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
 is even easier. For the first t- 

derivative, 

∫ 𝑢𝑡(𝑥, 𝑡)𝑒−𝑖𝑘𝑥  𝑑𝑥
∞

−∞
 = ∫ lim𝑕→0

𝑢 𝑥,𝑡+𝑕 −𝑢(𝑥,𝑡)

𝑕
𝑒−𝑖𝑘𝑥  𝑑𝑥

∞

−∞
 

= lim
𝑕→0

1

𝑕
 ∫ 𝑢 𝑥, 𝑡 + 𝑕 𝑒−𝑖𝑘𝑥  𝑑𝑥 − ∫ 𝑢 𝑥, 𝑡 𝑒−𝑖𝑘𝑥  𝑑𝑥

∞

−∞

∞

−∞
  

= lim
𝑕→0

1

𝑕
 𝑢  𝑘, 𝑡 + 𝑕 − 𝑢  𝑘, 𝑡   

=  
𝜕𝑢  𝑘,𝑡 

𝜕𝑡
                (3) 

To get two t- derivatives, we just apply this twice, with u replaced by 𝑢𝑡  the 

first time 

∫
𝜕2𝑢 𝑥,𝑡 

𝜕𝑡2
𝑒−𝑖𝑘𝑥  𝑑𝑥 =

𝜕

𝜕𝑡
∫

𝜕

𝜕𝑡
𝑢 𝑥, 𝑡 𝑒−𝑖𝑘𝑥  𝑑𝑥 

∞

−∞

∞

−∞
= 
𝜕2𝑢  𝑘,𝑡 

𝜕𝑡2
 

So applying the Fourier transform to both sides of (1) gives 

𝜕2𝑢  𝑘,𝑡 

𝜕𝑡2
 = −𝑐2𝑘2𝑢  𝑘, 𝑡     (4) 

This has not yet led to the solution for 𝑢(𝑥, 𝑡) or 𝑢  𝑘, 𝑡 , but it has led to 

considerable simplification. We now have, for each fixed k, a constant coefficient, 
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homogeneous, second order ordinary differential equation to emphasise that each k 

may now be treated independently, fix any k and write 𝑢  𝑘, 𝑡  = 𝑈(𝑡). The 

differential equation (4) now is 𝑈′′  𝑡 + 𝑐2𝑘2𝑈 𝑡  = 0. we know that this equation 

can be solved easily by trying 𝑈 𝑡  = 𝑒𝑟𝑡 . since  

𝑈′′  𝑡 + 𝑐2𝑘2𝑈 𝑡 =  𝑟2 + 𝑐2𝑘2 𝑒𝑟𝑡= 0 

If and only if r =±𝑖𝑐𝑘, the general solution to 𝑈′′  𝑡 + 𝑐2𝑘2𝑈 𝑡  = 0, for 

any𝑘 ≠ 0, is𝑈 𝑡 = 𝑑1𝑒
−𝑖𝑐𝑘𝑥 + 𝑑2𝑒

𝑖𝑐𝑘𝑥 . For 𝑘 =  0, when the two values of r = 

±𝑖𝑐𝑘 are the same, the differential equation reduces to 𝑈′′ = 0 and has general 

solution𝑈 𝑡 = 𝑑1 + 𝑑2𝑡. We have to reject the 𝑑2𝑡 solution (i.e. we have require 

that𝑑2 = 0) on physical grounds small transverse oscillations certainly do not 

include amplitudes that grow to infinity at t goes to infinity. Recalling that 𝑈(𝑡)  =

𝑢  𝑘, 𝑡  we conclude that the general solution to (4) is 

𝑢  𝑘, 𝑡 = 𝐹  𝑘 𝑒−𝑖𝑐𝑘𝑡 + 𝐺  𝑘 𝑒𝑖𝑐𝑘𝑡  

We have renamed the arbitrary constants 𝑑1𝑎𝑛𝑑 𝑑2to𝐹  𝑘  𝑎𝑛𝑑 𝐺  𝑘  

respectively. The reason for these names will be made clear very soon. In any 

event, the arbitrary constants are certainly allowed to depend on k – viewed as an 

equation for an unknown function of t, (4) is a different equation for every different 

value of k. to recover 𝑢(𝑥, 𝑡) we just need to take the inverse Fourier transform 

𝑢  𝑥, 𝑡  = 
1

2𝜋
∫ 𝑢  𝑘, 𝑡 𝑒𝑖𝑘𝑥  𝑑𝑘 
∞

−∞
 

=  
1

2𝜋
∫  𝐹  𝑘 𝑒−𝑖𝑐𝑘𝑡 + 𝐺  𝑘 𝑒𝑖𝑐𝑘𝑡  𝑒𝑖𝑘𝑥  𝑑𝑘 
∞

−∞
 

=  
1

2𝜋
∫ 𝐹  𝑘  𝑒𝑖𝑘(𝑥−𝑐𝑡) 𝑑𝑘 
∞

−∞
+

1

2𝜋
∫ 𝐺  𝑘  𝑒𝑖𝑘(𝑥+𝑐𝑡) 𝑑𝑘 
∞

−∞
 

=  𝐹(𝑥 −  𝑐𝑡)  +  𝐺(𝑥 +  𝑐𝑡) 

The 𝐹(𝑥 −  𝑐𝑡) part of the solution represents a wave packet moving to the 

right with speed c. we can see this by observing that all points (𝑥, 𝑡) in space time 

for which 𝑥 –  𝑐𝑡 takes the same fixed value, 𝑧, have the same value of   



32 
 

𝐹(𝑥 −  𝑐𝑡) namely𝐹(𝑧). so if we move so that our position at time t is 

 𝑥 =  𝑧 +  𝑐𝑡 (i.e. move the right with speed c) we always see the same 

string height. The figure below illustrates this. It contains the graphs of 𝐹(𝑥), 

𝐹(𝑥 −  𝑐)  =  𝐹(𝑥 −  𝑐𝑡)|𝑡=1and𝐹(𝑥 –  2𝑐) =  𝐹(𝑥 −  𝑐𝑡)|𝑡=2 for a bump 

shaped 𝐹(𝑥). in the figure  we have chosen the location of the tick z on the x – axis 

so that 𝐹(𝑧)  = 𝑚𝑎𝑥𝑥𝐹(𝑥). 

Similarly, 𝐺(𝑥 +  𝑐𝑡) represents a wave packet moving to the left with speed c. 

Suppose for example, the string starts at rest with the initial bump 𝑢(𝑥, 0)  =  𝑝(𝑥). 

to satisfy these initial conditions, F and G must obey 

𝑝(𝑥)  =  𝑢(𝑥, 0)  =  𝐹(𝑥)  +  𝐺(𝑥) 

And 

0 = 𝑢𝑡(𝑥, 0) = −𝑐𝐹′ 𝑥 + 𝑐𝐺 ′ 𝑥 ↔ 𝐹′ 𝑥 =  𝐺 ′ 𝑥 ↔ F(x) = G(x) + c 

These equations only determine F and G up to be additive constant. This additive 

constant is irrelevant adding any constant to F while subtracting the same constant 

from G does not change the value of 𝐹(𝑥 −  𝑐𝑡)  +  𝐺(𝑥 +  𝑐𝑡) for any x or t. the 

functions 𝐹(𝑥)  =  𝐺(𝑥)  =  
1

2
 𝑝(𝑥) do the job. So the bump resolves itself into two 

equal sized halves. One moves to the right with speed c and the other moves to the 

left with speed c. If the initial speed 𝑢𝑡 𝑥, 0 =  𝑠(𝑥) is not zero, the string behaves 

similarly, but the left and the right moving parts need not have the same size and 

shape.[3] 

 

Heat Equation (2.3): 

In a metal rode with non- uniform temperature, heat is transferred from regions of 

higher temperature to regions of lower temperature. Three physical principals are 

used here. 

1. Heat energy of a body with uniform properties: 
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Heat energy =  𝑐𝑚𝑢, where m is the body mass, u is the temperature, c is the 

specific heat, units[𝑐]  = 𝐿2𝑇−2𝑈−1(basic units M mass, L length, T time, U 

temperature). C is the energy required to raise a unit mass of the substance 

unit in temperature. 

2. Fourier’s law of heat transfer: 

Rate of heat transfer proportional to negative temperature gradient, 

Rate of heat transfer/area = - 𝐾0
𝜕𝑢

𝜕𝑋
                    (5) 

Where 𝐾0 is the thermal conductivity, units[𝐾0] = 𝑀𝐿𝑇−3𝑈−1. In other 

words, heat is transferred from areas of high temp to low temp. 

3. Conservation of energy. Consider a uniform rod of length 1 with non- 

uniform temperature lying on the x – axis from x = 0 to x = 1. By uniform 

rod, we mean the density 𝜌, specific heat c, thermal conductivity 𝐾0, cross 

sectional area A are all constants. Assume the sides of the rode are insulated 

and only the ends may be exposed. Also assume there is not heat source 

within the rod. Consider an arbitrary thin slice of the rod of width ∆𝑥 

between x and x + ∆𝑥. The slice is so thin that the temperature throughout 

the slice is u(x, t). thus 

Heat energy of segment = c × 𝜌𝐴∆𝑥 × 𝑢 = c𝜌𝐴∆𝑥 𝑢 𝑥, 𝑡 . 

By conservation of energy, 

Change of heat          heat in from     heat out from 

energy of segment = left boundary – right boundary 

in time ∆𝑡 

From Fourier’s law (5), 

c𝜌𝐴∆𝑥 𝑢 𝑥, 𝑡 + ∆𝑡 -c𝜌𝐴∆𝑥 𝑢 𝑥, 𝑡 = ∆𝑡𝐴  − 𝐾0
𝜕𝑢

𝜕𝑥
 
𝑥
− ∆𝑡𝐴  − 𝐾0

𝜕𝑢

𝜕𝑥
 
𝑥+∆𝑥

 

 Rearranging yields (recall c, 𝜌, 𝐴, 𝐾0 are constants), 
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𝑢 𝑥,𝑡+∆𝑡 −𝑢(𝑥,𝑡)

∆𝑡
 =
𝐾0 

c𝜌
 
 
𝜕𝑢

𝜕𝑥
 
𝑥+∆𝑥

−  
𝜕𝑢

𝜕𝑥
 
𝑥

∆𝑥
  

 Taking the limit ∆𝑡, ∆𝑥 → 0 gives the heat equation, 

𝜕𝑢

𝜕𝑡
= 𝑘

𝜕2𝑢

𝜕𝑥 2
    (6) 

Where 

K = 
𝐾0 

c𝜌
 

Is called the thermal diffusivity, units[k] = 
𝐿2

𝑇
. Since the slice we chosen 

arbitrarily, the heat equation (6) applies through the rod. 

Now consider the heat equation on a semi- infinite domain 0≤ 𝑥 < ∞, 

𝑢𝑥  = k 𝑢𝑥𝑥 ,                                            0≤ 𝑥 < ∞, 

𝑢(𝑥, 0)  =  𝑓(𝑥),                                        0≤ 𝑥 < ∞, 

and𝑓(𝑥), 𝑢(𝑥, 𝑡) approach zero fast enough as  𝑥 → ∞ so that the integral 

  𝑢(𝑥, 𝑡)  𝑑𝑥
∞

−∞

 

Is finite.  Also, a boundary condition is imposed at 𝑥 =  0. Either a fixed 

temperature, 

𝑢(0, 𝑡)  =  0,                                       t >0, 

or insulated, 

𝑢𝑥 0, 𝑡 =  0                                   t >0 

To solve this problem, we recall the temperature distribution on the infinite 

domain −∞ < 𝑥 < ∞ due to an initial temperature𝑓 (𝑥) was given by 

𝑢(𝑥, 𝑡) =  𝑘(𝑠, 𝑥, 𝑡)𝑓 (𝑠) 𝑑𝑠
∞

−∞

 

Where the heat kernel is defined as 

𝑘 𝑠, 𝑥, 𝑡 =  
1

 4𝜋𝑘𝑡
exp⁡(−

 𝑥 − 𝑠 2

4𝑘𝑡
) 
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Note that at 𝑥 = 0, the heat kernel is even in s, i.e. 𝑘 𝑠, 0, 𝑡 =  𝑘 −𝑠, 0, 𝑡 . 

Also, 

𝑢(0, 𝑡) =  𝑘(𝑠, 0, 𝑡)𝑓 (𝑠) 𝑑𝑠
∞

−∞

 

Thus 𝑢 0, 𝑡 = 0 if 𝑓 (𝑠) is odd. Therefore, the solution to the heat problem 

on the semi – infinite domain 0≤ 𝑥 < ∞ with zero temperature at 𝑥 =

 0 (𝑢 (0, 𝑡)  =  0) is 

𝑢(𝑥, 𝑡) =  𝑘(𝑠, 𝑥, 𝑡)𝑓 (𝑠) 𝑑𝑠
∞

−∞

 

Where 𝑓 (𝑠) is the odd extensionof 𝑓(𝑠), i.e. 

𝑓  𝑠 =  
𝑓 𝑠       𝑠 > 0
0              𝑠 = 0
−𝑓 𝑠       𝑠 < 0

  

Similarly, not that the x- derivative of the heat kernel is odd at s = 0, 

 

𝑘𝑥 𝑠, 0, 𝑡 = 
𝑠

2𝑘𝑡 4𝜋𝑘𝑡
exp  −

𝑠2

4𝑘𝑡
 = −𝑘𝑥 −𝑠, 0, 𝑡 . 

And hence the solution to the heat problem on the semi – infinite domain 

0≤ 𝑥 < ∞ with an insulated at 𝑥 =  0 (𝑢𝑥 0, 𝑡 =  0) is 

𝑢(𝑥, 𝑡) =  𝑘(𝑠, 𝑥, 𝑡)𝑓 (𝑠) 𝑑𝑠
∞

−∞

 

Where 𝑓  𝑠  is the even extension of f(x), i.e. 

𝑓  𝑠 =  
𝑓 𝑠       𝑠 > 0
0              𝑠 = 0
𝑓 −𝑠       𝑠 < 0

  

the heat equation for a function u :ℛ+ × ℛ𝑛 → ℂ is the partial differential equation 

 𝜕𝑡 −
1

2
∆  𝑢 = 0  with 𝑢(0, 𝑥)  =  𝑓(𝑥)              (7) 
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Where f is a given function on ℛ𝑛 . By Fourier transforming equation. (7) in the x- 

variables only, one finds that (7) implies that 

 𝜕𝑡 +
1

2
 𝜔 2 𝑢  𝑡, 𝜔 = 0with𝑢  0, 𝜔 =  𝑓  𝜔 . 

And hence that 𝑢  𝑡, 𝜔 = 𝑒−𝑡 𝜔 
2/2𝑓  𝜔 .Inverting the Fourier transform then 

shows that 

𝑢(𝑥, 𝑡)  = 𝐹−1  𝑒−
𝑡 𝜔  2

2 𝑓  𝜔   𝑥 =  𝐹−1  𝑒−
𝑡 𝜔  2

2  ∗ 𝑓  𝑥 = 𝑒−
𝑡∆

2
 𝑓 𝑥 .

 

From example, 

𝐹−1  𝑒−
𝑡 𝜔  2

2  (𝑥) = 𝑝𝑡 𝑥 =  𝑡
−𝑛

2 𝑒−
1

2𝑡
 𝑥 2

 

And therefore, 

𝑢(𝑥, 𝑡)  =  ∫ 𝑝𝑡 𝑥 − 𝑦 𝑓 𝑦 𝑑𝑦
ℛ𝑛 . 

Now we define the Fourier transform of a function u(x, t) as an operator: 

𝐹(𝑢) = 𝑢  𝜔, 𝑡  = 
1

2𝜋
∫ 𝑢 𝑥, 𝑡 𝑒𝑖𝜔𝑥  𝑑𝑥
∞

−∞
           (8) 

Thus, the Fourier transform maps a function of (x, t) to a function of  𝜔, 𝑡 .to 

transform the heat equation, we must consider how the Fourier transform maps 

derivatives. Note that 

F(𝑢𝑡) =  
1

2𝜋
∫ 𝑢𝑡(𝑥, 𝑡) 𝑒𝑖𝜔𝑥  𝑑𝑥
∞

−∞
 = 

𝜕

𝜕𝑡
 

1

2𝜋
∫ 𝑢 𝑥, 𝑡 𝑒𝑖𝜔𝑥  𝑑𝑥
∞

−∞
 =  

𝜕

𝜕𝑡
𝐹 𝑢 =

𝜕

𝜕𝑡
𝑢  𝜔, 𝑡  

Also, integration by parts and the fact that 𝑢(𝑥, 𝑡)  → 0 as  𝑥 → ∞ allow us to 

calculate the Fourier transform of 𝑢𝑥  

F(𝑢𝑥) =  
1

2𝜋
∫ 𝑢𝑥(𝑥, 𝑡) 𝑒𝑖𝜔𝑥  𝑑𝑥
∞

−∞
 =  

1

2𝜋
 𝑢(𝑥, 𝑡)𝑒𝑖𝜔𝑥  

−∞

∞
- 

1

2𝜋
∫ 𝑢 𝑥, 𝑡 (𝑖𝜔𝑒𝑖𝜔𝑥 ) 𝑑𝑥
∞

−∞
 

= - 𝑖𝜔(
1

2𝜋
∫ 𝑢 𝑥, 𝑡 𝑒𝑖𝜔𝑥  𝑑𝑥
∞

−∞
) 

= - 𝑖𝜔 𝐹 𝑢 =  − 𝑖𝜔𝑢  𝜔, 𝑡  
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Thus, the Fourier transform of an x- derivative of a function is mapped to –  𝑖𝜔 

times the Fourier transform of the function. Hence 

F(𝑢𝑥𝑥 ) = - 𝑖𝜔 𝐹 𝑢𝑥  =  − 𝑖𝜔2𝐹 𝑢 = −𝜔2 𝑢  𝜔, 𝑡  

Thus the Fourier transform of the heat equation 𝑢𝑥  = 𝑘𝑢𝑥𝑥  is 

𝜕

𝜕𝑡
 𝑢  𝜔, 𝑡 = −k𝜔2 𝑢  𝜔, 𝑡  

Hence the Fourier transform maps the heat equation, a PDE, to a first order ODE, 

integrating in time gives  

 𝑢  𝜔, 𝑡 = 𝐶(𝜔)𝑒−𝑘𝜔
2𝑡               (9) 

Where 𝐶 𝜔  is an arbitrary function, due to partial integration with respect to time. 

Setting t= 0 in (8) and (9) gives 

𝐶(𝜔) =  𝑢  𝜔, 0  = 
1

2𝜋
∫ 𝑢 𝑥, 0 𝑒𝑖𝜔𝑥  𝑑𝑥
∞

−∞
 = 

1

2𝜋
∫ 𝑓 𝑥 𝑒𝑖𝜔𝑥  𝑑𝑥
∞

−∞
 

We could substitute 𝐶(𝜔) back into (9) and use the interval Fourier transform to 

obtain 𝑢(𝑥, 𝑡). the solution would be the same as that for separation of variables. 

However ,𝑢(𝑥, 𝑡) can be obtained almost immediately using a result called the 

convolution theorem. 

Let 𝑢 𝑥, 𝑡 = 𝐹 𝑥 𝐺 𝑡 then 

𝐹𝐺𝑡 = 𝑐2𝐹𝑥𝑥𝐺 ,  

So 

1

𝑐2

𝐺𝑡

𝐺
=

𝐹𝑥𝑥

𝐹
= 𝐴,where A is constant. 

We get a pair of ODEs:𝐹𝑥𝑥 = 𝐴𝐹, 𝑎𝑛𝑑 𝐺𝑡 = 𝑐2𝐴𝐺. 

By the intropy principle G must decay as t increases, so we must assume that 𝐴 <

0. 

Let 𝐴 = −𝜔2.  Then 𝐹𝑥𝑥 + 𝜔2𝐹 = 0 And 𝐺𝑡+ 𝑐2𝜔2𝐺 = 0. 

Solving both ODEs we obtain 𝑢 𝑥, 𝑡; 𝜔 =  𝐶1𝜔𝑒
𝑖𝜔𝑥 + 𝐶2𝜔𝑒

−𝑖𝜔𝑥  𝑒−𝑐
2𝜔2𝑡 , 

So the general solution is:  
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𝑢 𝑥, 𝑡 =  𝑢 𝑥, 𝑡; 𝜔 𝑑𝜔 =
∞

0

 𝐶1𝜔𝑒
−𝑐2𝜔2𝑡+𝑖𝜔𝑥 𝑑𝜔 +  𝐶2𝜔𝑒

−𝑐2𝜔2𝑡−𝑖𝜔𝑥 𝑑𝜔
∞

0

∞

0

 

Changing variable in the second integral  𝜔 → −𝜔 we obtain: 

𝑢 𝑥, 𝑡 =  𝐶1(𝜔)𝑒−𝑐
2𝜔2𝑡+𝑖𝜔𝑥 𝑑𝜔 − 𝐶2(−𝜔)𝑒−𝑐

2𝜔2𝑡+𝑖𝜔𝑥 𝑑𝜔
−∞

0

∞

0

 

=  𝐶1 𝜔 𝑒
−𝑐2𝜔2𝑡+𝑖𝜔𝑥 𝑑𝜔 +  𝐶2 −𝜔 𝑒

−𝑐2𝜔2𝑡+𝑖𝜔𝑥 𝑑𝜔
0

−∞

∞

0

 

Recombining the two integrals we obtain: 

𝑢 𝑥, 𝑡 =
1

 2𝜋
 𝑓 (𝜔)𝑒−𝑐

2𝜔2𝑡+𝑖𝜔𝑥 𝑑𝜔
∞

−∞

 

Where 

𝑓  𝜔 =  
 2𝜋 𝐶1 𝜔        𝑓𝑜𝑟 𝜔 > 0

 2𝜋 𝐶2 −𝜔        𝑓𝑜𝑟𝜔 < 0
  

[34] 

Laplace Transform (2.4): 

1- the class function 𝜀 consists of all piecewise continuous functions   

f:[0, +∞[→ ℂ,  for which there are constants A > 0, 𝐵 ∈ ℛ  such that 

 𝑓 𝑡  = 𝐴𝑒𝐵𝑡 for every  t∈  [0, +∞[      (10) 

Using the quantors  ∀, and ∂ we define 

𝜌 𝑓 =inf { B∈ ℛ|∂ A >  0∀𝑡 ≥ 0:  𝑓 𝑡  ≤ 𝐴𝑒𝐵𝑡} .               (11) 

In many simple cases concerning the Laplace transformation it suffices just 

to consider functions from 𝜀. 

2-The class of function Ӻ consists of all measurable functions  

𝑓: [0, +∞[ → 𝐶^ ∗  =  𝐶 ∪ {∞} 

for which there is a constant 𝜍 ∈ ℛ such that 

∫  𝑓 𝑡  𝑒−𝜍𝑡
+∞

0
𝑑𝑡 <  +∞                                                    (12) 

We put 
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𝜍(𝑓) = inf{𝜍 ∈  ℛ, ∫  𝑓 𝑡  𝑒−𝜍𝑡
+∞

0
𝑑𝑡 <  +∞ }                          (13) 

By introducing the Lebesgue integral in (12) we see that in (13)  is less complicated 

than (11). Furthermore, if (12) is holds for some 𝜍0 ∈ ℛ,  the its clearly holds for 

all   𝜍 ≥ 𝜍0, because   𝑒−𝜍𝑡 ≤ 𝑒−𝜍0𝑡 , we even get that if (12) holds for some 

𝜍 ∈ ℛ, then 

∫ 𝑓(𝑡)𝑒−𝑧𝑡
+∞

0
𝑑𝑡,               for z:= 𝜍 + 𝑖𝜏 

       Is convergent for every 𝜏 ∈ ℛ. 

Let f ∈ 𝜀, i.e. f satisfies condition (10). for given 𝜀 > 0, we choose 𝜍 = 𝐵 + 𝜀, 

from which we get  

  𝑓 𝑡  𝑒−(𝐵+𝜀)𝑡
+∞

0

𝑑𝑡 ≤ 𝐴  𝑓 𝑡  𝑒−𝜀𝑡
+∞

0

𝑑𝑡 < +∞ 

and (12) holds for every 𝜍 = 𝐵 + 𝜀, 𝜀 > 0, from which we conclude that 𝜀∁ Ӻ , and 

𝜍(𝑓) ≤  𝜌 𝑓 . 

3- Let f ∈  Ӻ, we define the Laplace transform 𝐿{f} of f as the complex function 

given by 

𝐿{f}(z) =∫ 𝑓(𝑡)𝑒−𝑧𝑡
+∞

0
𝑑𝑡 ,                                    (14) 

Where z is belongs to the set of the complex numbers, for which the integral on the 

right hand side of (14) is convergent. 

Example (2):  

Let f(t) = 𝑡𝑛 , t ≥ 0 and n∈ ℕ. since the exponential dominates the power function, 

we see that if  𝑡𝑛 ∈ 𝜀 with 𝜌 𝑡𝑛 = 𝜍 𝑡𝑛 =  0. For R z > 0we get y partial 

integration, 

𝐿{𝑡𝑛}(z) =∫ 𝑡𝑛𝑒−𝑧𝑡
+∞

0
𝑑𝑡 =  −

1

𝑧
𝑡𝑛𝑒−𝑧𝑡  

𝑡=0

+∞
+
𝑛

𝑧
∫ 𝑡𝑛−1𝑒−𝑧𝑡

+∞

0
𝑑𝑡 = 

𝑛

𝑧
 𝐿{𝑡𝑛−1}(z), 

So we get by recursion 𝐿{𝑡𝑛}(z) = 
𝑛

𝑧
 .
𝑛−1

𝑧
 …  

1

𝑧
  . 𝐿{1}(z) = 

𝑛!

𝑧𝑛
 .

1

𝑧
=  

𝑛!

𝑧𝑛+1
      for R z 

>0, where 𝐿{1}(z) = 
1

𝑧
  .[53] 
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Example (3): 

Let a∈ ℂ be a constant, and consider a function f(t) = 𝑒𝑎𝑡 , for t ≥ 0. Then 𝑒𝑎𝑡 ∈ 𝜀  

and𝜌 𝑒𝑎𝑡  = 𝜍 𝑒𝑎𝑡  =  𝑅𝑎. 

We compute for R z >Ra, 

𝐿{𝑡}(z)= ∫ 𝑓(𝑡)𝑒−𝑧𝑡
+∞

0
𝑑𝑡 =∫ 𝑒𝑎𝑡𝑒−𝑧𝑡

+∞

0
𝑑𝑡 =∫ 𝑒−(𝑧−𝑎)𝑡+∞

0
𝑑𝑡 = 

 −
1

𝑧−𝑎
𝑒−(𝑧−𝑎)𝑡 

𝑡=0

+∞
=  

1

𝑧−𝑎
 , 

Thus the 𝐿{𝑒𝑎𝑡}(z) = 
1

𝑧−𝑎
 for R z >Ra 

Then in follows for R z >  𝑅𝑎  that  

𝐿{sinh 𝑎𝑡 }(z) = 
𝑎

𝑧2−𝑎2
 

𝐿{cosh⁡(𝑎𝑡)}(z) = 
𝑧

𝑧2−𝑎2
 

Then put 𝑎 = 𝑖𝑏 so that 𝑅 𝑧 >  𝑅(𝑖𝑏) 

𝐶𝑜𝑠𝑕 (𝑎𝑡)  =  𝑐𝑜𝑠𝑕 (𝑖𝑏𝑡)  =  𝑐𝑜𝑠(𝑏𝑡)and similarly 

𝑠𝑖𝑛𝑕 (𝑎𝑡)  =  𝑠𝑖𝑛𝑕 (𝑖𝑏𝑡)   =  𝑠𝑖𝑛(𝑏𝑡) 

Therefore, by this simple subustitution it follows from the above that 

𝐿{sin 𝑏𝑡 }(z) = 
𝑏

𝑧2+𝑏2
 

𝐿{cos(𝑏𝑡)}(z) = 
𝑧

𝑧2+𝑏2
 

The next three formulas follows from the general property 

𝐿{𝑡𝑛𝑓(𝑡)}= (−1𝑛)𝐹 𝑛 (𝑧), 

𝐿{𝑡𝑠𝑖𝑛 𝑎𝑡}(z) = 
2𝑎𝑧

 𝑧2  + 𝑎2 2
 

𝐿{𝑡𝑐𝑜𝑠 𝑎𝑡}(z) = 
𝑧2− 𝑎2

 𝑧2  + 𝑎2 2
 

𝐿{𝑡𝑒−𝑎𝑡}(z) = 
1

 𝑧 + 𝑎 2
 , where a > 0. 

In general 𝐿{𝑡𝑛𝑒−𝑎𝑡}(z) = 
𝑛!

 𝑧 + 𝑎 𝑛+1
 ,  where a > 0. 

The next formulas follows from the shift property 𝐿{𝑒𝑎𝑡𝑓(𝑡)}(z) = F(z – a). 
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𝐿{𝑒−𝑎𝑡 𝑠𝑖𝑛 𝛽𝑡}(z) = 
𝛽

 𝑧+𝑎 2+𝛽2
 , where a > 0. 

𝐿{𝑒−𝑎𝑡 𝑠𝑖𝑛𝑕 𝛽𝑡}(z) = 
𝛽

 𝑧+𝑎 2+𝛽2
 , where a > 0. 

𝐿{𝑒−𝑎𝑡 𝑐𝑜𝑠 𝛽𝑡}(z) = 
𝑧+𝑎

 𝑧+𝑎 2+𝛽2
 , where a > 0. 

𝐿{𝑒−𝑎𝑡 𝑐𝑜𝑠𝑕 𝛽𝑡}(z) = 
𝑧+𝑎

 𝑧+𝑎 2+𝛽2
 , where a > 0. 

 

 

Fourier Transform and Laplace (2.4.1): 

Suppose the temperature of a infinite wall is kept at f(x), for −∞ < 𝑥 < ∞. To find 

the steady-state temperature I the region adjoining the wall, y > 0.the steady-state 

temperature satisfies Laplace’s equation, 

∇2𝑢𝐸  = 0,                                                −∞ < 𝑥 < ∞, y > 0. 

The boundary conditions 

𝑢𝐸 = 𝑓 𝑥 ,                                                −∞ < 𝑥 < ∞, y = 0, 

lim𝑦→∞ 𝑢𝐸 𝑥, 𝑦 = 0,                                lim 𝑥 →∞ 𝑢𝐸 𝑥, 𝑦  =0. 

        The research employ the Fourier transform in x, 

𝐹[𝑔(𝑥, 𝑦)] = 
1

2𝜋
∫ 𝑔(𝑥, 𝑦)𝑒𝑖𝜔𝑥
∞

−∞
𝑑𝑥 

And define that 𝑈𝐸 𝜔, 𝑦 = F[𝑢𝐸(x, y)]. As before, we have 

F[𝑢𝐸𝑥𝑥 ] = -𝜔2F[𝑢𝐸] = -𝜔2𝑈𝐸 𝜔, 𝑦 ,         F[𝑢𝐸𝑦𝑦 ] =
𝜕2

𝜕𝑦2
 F[𝑢𝐸] = 

𝜕2

𝜕𝑦2
𝑈𝐸 𝜔, 𝑦 . 

Hence Laplace’s equation for the steady-state temperature 𝑢𝐸(x, y) becomes  

𝜕2

𝜕𝑦2
𝑈𝐸 𝜔, 𝑦 − 𝜔2𝑈𝐸 𝜔, 𝑦 = 0 

Solving the ordinary differential equation and being careful about the fact that 𝜔 

can be positive or negative, we have 

𝑈𝐸 𝜔, 𝑦 = 𝑐1(𝜔)𝑒− 𝜔 𝑦  +𝑐2(𝜔)𝑒 𝜔 𝑦  
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Where 𝑐1 𝜔 , 𝑐2(𝜔) are arbitrary functions.  Since the temperature must vanish as 

𝑦 → ∞, we must have 𝑐2 𝜔 = 0. Thus 

𝑈𝐸 𝜔, 𝑦 = 𝑐1(𝜔)𝑒− 𝜔 𝑦         (15) 

Imposing the boundary conditions at y = 0 gives 

𝑐1 𝜔 = 𝑈𝐸 𝜔, 0 = 𝐹 𝑢𝐸 x, 0  =
1

2𝜋
∫ 𝑢𝐸 x, 0 𝑒𝑖𝜔𝑥
∞

−∞
𝑑𝑥 =

1

2𝜋
∫ 𝑓(𝑥)𝑒𝑖𝜔𝑥
∞

−∞
𝑑𝑥. 

Where the inverse Fourier transform of 𝑒− 𝜔 𝑦  is 

𝐹−1 𝑒− 𝜔 𝑦  = ∫ 𝑒− 𝜔 𝑦𝑒−𝑖𝜔𝑥
∞

−∞
𝑑𝜔 = ∫ 𝑒𝜔(𝑦−𝑖𝑥)0

−∞
𝑑𝜔 + ∫ 𝑒−𝜔(𝑦+𝑖𝑥)∞

0
𝑑𝜔 

= 
𝑒𝜔(𝑦−𝑖𝑥 )

𝑦−𝑖𝑥
 
−∞

0

+  
𝑒−𝜔(𝑦+𝑖𝑥 )

−(𝑦+𝑖𝑥)
 

0

∞

 

=
1

𝑦−𝑖𝑥
+

1

𝑦+𝑖𝑥
=

2𝑦

𝑥2+ 𝑦2
 

Therefore, applying the convolution theorem to (15) with 𝐹−1 𝑐1 𝜔  = f(x) and 

𝐹−1 𝑒− 𝜔 𝑦  = 
2𝑦

𝑥2+ 𝑦2
 gives 

𝑢𝐸(𝑥, 𝑦) = 
1

2𝜋
∫ 𝑓(𝑠)

2𝑦

(𝑥−𝑠)2+ 𝑦2

∞

−∞
𝑑𝑠 

 

[6] 

Geometric Interpretation of the Complex Fourier Transforms of a 

Class of Exponential Functions (2.5): 

In this section we show how a class of complex Fourier transforms of exponential 

functions which have all their zeros on the real line may be explored from a 

geometric perspective. These transforms belong to the Laguerre-Pólya class, and it 

is proved that all the zeros are simple 

Functions which map the complex plane to the complex plane provide an 

interesting challenge when it comes to visualisation. A full plot would require 4 

dimensions, yet on paper we are obliged to draw in 2 dimensions. Here, we are 
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going to explore ways of visualising a certain class of holomorphic entire functions 

defined for integer values of 𝑛 ≥ 1, namely: 

𝐹2𝑛 𝑧 = ∫ 𝑒−𝑡
2𝑛∞

−∞
∙ 𝑒𝑖𝑧𝑡𝑑𝑡 = 𝑅 𝜍, 𝑤 + 𝑖𝐼 𝜍, 𝑤 , where 𝑧 = 𝑤 − 𝑖𝜍,

and  𝜍, 𝑤, 𝑅, 𝐼 ∈ ℜ.                                                             (1) 

In 1923, Professor Pólya proved that all the zeros of these functions lie on the real 

line 𝑚 (𝑧)  =  0. 

Case 𝒏 =  𝟏:It is straightforward to show by contour integration that: 

𝐹2 𝑧 =  𝜋 ∙ 𝑒
−
𝑧2

4 =  𝜋 ∙ 𝑒
 𝜍+𝑖𝑤  2

4 =  𝜋 ∙ 𝑒 𝜍
2−𝑤2 /4 ∙ 𝑒 𝑖𝜍𝑤  /2. 

This is a Laguerre - Pólya function of order 2 in z . Whilst it is an elementary 

expression, we are going to examine some geometric aspects as they provide clues 

to the more involved cases which follow when 𝑛 ≥ 2. 

The modulus of F squared, call it 𝐿 (for length) squared: 𝐿2 = 𝑅2 + 𝐼2 = 𝜋 ∙

𝑒 𝜍
2−𝑤2 /2 so there are no zeros in this case. For constant 𝜍 not equal to zero, and 

𝑤 =  𝑣𝑡 where 𝑣 is a constant velocity and 𝑡represents time, a parametric plot of 

(𝑅, 𝐼) yields a spiral orbit of rapidly diminishing radius: 

(Fig. 1, not to scale, 𝜍 > 0) 

If a larger value of 𝜍 is chosen, the orbit is enlarged. 

The field lines 𝑅 =  0 are given by 𝑤 = 𝜋(1 + 2𝑚)/𝜍 and the field lines 𝐼 = 0 are 

given by 𝑤 = 𝜋(2𝑚)/𝜍, where 𝑚 is any integer: 
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(Fig 2) 

 

We observe that the 𝑅 =  0 field lines never meet each other. The same is true for 

the 𝐼 = 0 field lines, and also no 𝐼 =  0 field line ever meets an𝑅 =  0 field line (or 

else there would be a zero,which would establish a contradiction).  A plot of 𝐿2 

against 𝜍 for constant 𝑤 rises steadily as 

𝜍  moves away from 0: 

 

(Fig 3) 

 

Where as a plot of 𝐿2 against 𝑤 for constant 𝜍 falls steadily as 𝑤 moves away from 

0: 
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(Fig 4) 

Case 𝒏 ≥  𝟐 

In the same paper previously mentioned (I), Pólya a lso proved that in this case 

there are an infinite number of real zeros. Pólya proved that the order of such 

functions is at most 2𝑛/(2𝑛 − 1)  <  2. 

By Hadamard’sfactorisation theorem (see for example III), such (entire) functions 

have the product representation: 

𝐹2𝑛 𝑧 = 𝑧𝑚𝑒𝐺 𝑧  (1 − 𝑧/𝑤𝑘
∞
𝑘=1 ) where 𝐺(𝑧) is a polynomial of degree at most 

𝑑, where 𝑑 ≥ 0 is aninteger such that 𝑑 ≤ 𝑣 ≤ 𝑑 + 1, and 𝑣 is the order of 𝐹2𝑛 𝑧 . 

As 𝑣 <  2, we see 𝑑 <  2, and so themost general form of 𝐹2𝑛 𝑧  is given by 

𝐹2𝑛 𝑧 = 𝑧𝑚𝑒 𝑎+𝑏∙𝑧 ∙   1 −
𝑧

𝑤𝑘
 ∞

𝑘=1 = 𝑐 ∙ 𝑧𝑚𝑒𝑏𝑧 ∙   1 −
𝑧

𝑤𝑘
 .∞

𝑘=1  2 . 

We now observe that 𝑧 = 0 ⟹ 𝐹2𝑛 𝑧 = ∫ 𝑒−𝑡
2𝑛∞

−∞
𝑑𝑡 > 0 and so 

𝑚 = 0 and 𝑐 >  0. As the exponential kernel in the integral  

∫ 𝑒−𝑡
2𝑛∞

−∞
∙ 𝑒𝑖𝑧𝑡𝑑𝑡  is even in 𝑡, it follows that for every root there is another root of 

equal magnitude and opposite sign.   

  If we pair each root 𝑤𝑘  with its partner of opposite sign, then 
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𝐹2𝑛 𝑧 = 𝑐 ∙ 𝑒𝑏𝑧   1 − 𝑧2/𝛼𝑟
2 ∞

𝑟=1 where𝑤1 = 𝛼1 , 𝑤2 = −𝛼1, 𝑤3 = 𝛼2, 𝑤4 = −𝛼2

 etc, and the 𝛼𝑟  are the positive roots. Owing to the kernel 𝑒−𝑡
2𝑛

 in the 

integral expression (equation (1)) being even in 𝑡, it follows that 𝐹2𝑛 𝑧  is an even 

function in 𝑧, and so 𝑏 =  0. 

  Accordingly, we see that: 𝐹2𝑛 𝑧 = 𝑐  1 −
𝑧

𝑤𝑘
 ∞

𝑘=1  3  

and also that 𝐹2𝑛 𝑧 = 𝑐 ∙   1 −
𝑧2

𝛼𝑟
2 

∞
𝑟=1  4  

These functions belong to the so-called Laguerre-Pólya class, which we will denote 

by L-P. 

Now let us consider 𝐿2 = 𝐹2𝑛 𝑧 ∙ 𝐹2𝑛 𝑧 = 𝑐2   1 −
𝑧2

𝛼𝑟
2 

∞
𝑟=1  1 −  𝑧 −2/𝛼𝑟

2  

As 𝑧 = 𝑤 − 𝑖𝜍, 𝐿2 = 𝑐2   1 −   𝑤 − 𝑖𝜍 2/𝛼𝑟   1 −   𝑤 + 𝑖𝜍 2/𝛼𝑟  
∞
𝑟=1  

The rth term inside the product, call it 𝑃𝑟 = 1 − 2 𝑤2 − 𝜍2 /𝛼𝑟
2 +  𝑤2 − 𝜍2 2/

𝛼𝑟
4 , which can be written  1 −

 𝑤2+𝜍2 

𝛼𝑟
2  

2

+4𝜍2/𝛼𝑟
2, which is always positive for 

positive 𝜍. When 𝜍 =  0, 𝑝𝑟  reduces to 

 1 − 𝑤2/𝛼𝑟
2 2. Now 

𝜕𝑃𝑟

𝜕𝜍
is 

4𝜍

𝛼𝑟
2 + 4𝜍 𝜍2 + 𝑤2 /𝛼𝑟

4which is positive for positive 𝜍.If 

𝜍 =  0 and w is equal to one of the roots, then 𝐿2 = 0 at that point. Since the zeros 

of holomorphic functions are isolated, as we increase 𝜍 above 0 (keeping w 

constant) there must immediately be an interval where 𝐿2 >  0, and as each 𝑝𝑟  is 

strictly increasing for positive 𝜍, so 𝐿2 must increase as 𝜍 increases, and keep 

increasing. If on the other hand we start with 𝜍 =  0 and pick a value of w which is 

not a root, then 𝐿2 is greater than 0 anyway, and as we increase 𝜍above zero (with 

𝑤 constant), 𝐿2 must increase as each𝑝𝑟  is strictly increasing for positive 𝜍. 
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These arguments show that the graph of 𝐿2 against 𝜍 for constant 𝑤 has a similar 

form to the one in Fig.3 previously, except that if we start with 𝑤 =  𝑎 root, the 

curve passes through  

 

 

(Fig 5)𝐿2against 𝜍, constant w(a root)                   (Fig 6) 𝐿2 against 𝜍, constant w(nota root) 

This reveals one geometric reason why all the zeros of 𝐹2𝑛 𝑧  as defined by 

equation (1) lie on the real line: for any given constant 𝑤, the modulus of the 

function rises monotonically if we travel away from the real line 𝜍 =  0. 

I will now explore 𝐿2 from a different angle – by looking at the integral  formula 

which defines 𝐹2𝑛 𝑧 : 

𝐹2𝑛 𝑧 =  𝑒−𝑡
2𝑛
∙ 𝑒𝑖𝑧𝑡𝑑𝑡

∞

−∞

     𝑤𝑕𝑒𝑟𝑒 𝑧 = 𝑤 − 𝑖𝜍 

Now𝐿2 = 𝐹2𝑛 𝑧 ∙ 𝐹2𝑛 𝑧  

=   𝑒 −𝑥
2𝑛+𝜍∙𝑥  cos𝑤𝑥 + 𝑖 sin𝑤𝑥 

∞

−∞

 ∙   𝑒 −𝑦
2𝑛+𝜍∙𝑦   cos𝑤𝑦 − 𝑖 sin𝑤𝑦 

∞

−∞

𝑑𝑦  
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=  𝑒 −𝑥
2𝑛−𝑦2𝑛+𝜍∙(𝑥+𝑦 

ℜ2

∙   cos𝑤𝑥 ∙ cos𝑤𝑦 + sin𝑤𝑥 sin𝑤𝑦 

+ 𝑖 sin𝑤𝑥 cos𝑤𝑦 − cos𝑤𝑦 sin𝑤𝑦  . 𝑑𝑥𝑑𝑦 

= ∬ 𝑒
 −𝑥2𝑛−𝑦2𝑛+𝜍∙ 𝑥+𝑦  

∙  cos(𝑤𝑥 − 𝑤𝑦) + 𝑖 sin 𝑤𝑥 − 𝑤𝑦  
ℜ2 𝑑𝑥𝑑𝑦  

=  𝑒
 −𝑥2𝑛−𝑦2𝑛+𝜍∙ 𝑥+𝑦 +𝑖∙𝑤 𝑥−𝑦  

ℜ2

𝑑𝑥𝑑𝑦 

(manipulations justified by Fubini’s Theorem). 

Now as 𝑒𝜍 𝑥+𝑦 =  𝜍𝑚 𝑥 + 𝑦 𝑚/𝑚!𝑚≥0 we can write 𝐿2as:   

 
𝜍𝑚

𝑚!𝑚≥0 ∬  𝑥 + 𝑦 𝑚 ∙ 𝑒− 𝑥
2𝑛−𝑦2𝑛  +𝑖𝑤 𝑥−𝑦 

ℜ2  𝑑𝑥𝑑𝑦(justified by absolute uniform 

convergence) and substituting 𝑡 =  𝑥 +  𝑦, 𝑋 =  𝑥 –  𝑦 we see:    

𝐿2 =  
𝜍𝑚

𝑚!
𝑚≥0

 𝑡𝑚𝑒−  𝑡+𝑋 /2 
2𝑛

+  𝑡−𝑋 /2 
2𝑛

)+𝑖𝑤𝑋

ℜ2

 
𝜕 𝑥, 𝑦 

𝜕 𝑡, 𝑋 
 𝑑𝑡𝑑𝑋 

=
1

2
 

𝜍𝑚

𝑚!
𝑚≥0

 𝑡𝑚𝑒−  𝑡+𝑋 /2 
2𝑛

+  𝑡−𝑋 /2 
2𝑛

)+𝑖𝑤𝑋

ℜ2

𝑑𝑡𝑑𝑋 

And as 𝑒−  𝑡+𝑋 /2 
2𝑛

+  𝑡−𝑋 /2 
2𝑛

)+𝑖𝑤𝑋 is even in 𝑡, for odd powers of 𝑛 the integrals 

must be zero, so we need only consider the even powers and we can write:  

𝐿2 =
1

2
 

𝜍2𝑚

 2𝑚 !
𝑚≥0

𝐴2𝑚,2𝑛 𝑤  5  
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Where  𝐴2𝑚,2𝑛 𝑤 = ∬ 𝑡2𝑚𝑒
−  

 𝑡+𝑋 

2
 

2𝑛
+ 

 𝑡−𝑋 

2
 

2𝑛
 +𝑖𝑤𝑋

ℜ2 𝑑𝑡𝑑𝑋      6  

Lemma (2.5.1): 

𝐴2𝑚,2𝑛 𝑤 ≥ 0     ∀ 𝑚 ≥ 0, 𝑛 ≥ 0 

Proof : 

𝐴2𝑚,2𝑛 𝑤 =
1

𝑖2𝑚
∙
𝜕2𝑚

𝜕𝑢2𝑚
  𝑒

−  
 𝑡+𝑋 

2
 

2𝑛
+ 

 𝑡−𝑋 

2
 

2𝑛
 +𝑖 𝑤𝑋+𝑢𝑡  

ℜ2

𝑑𝑡𝑑𝑋 

𝑢=0

 

and as the imaginary part of the exponent in the integrand can be expressed as 

(𝑤 + 𝑢)(𝑋 + 𝑡)/2 + (𝑢 − 𝑤)(𝑡 − 𝑋)/2, if we now reverse the substitution 

𝑡 =  𝑥 +  𝑦, 𝑋 =  𝑥 − 𝑦 we obtain: 

𝐴2𝑚,2𝑛 𝑤 =  −1 𝑚 ∙
𝜕2𝑚

𝜕𝑢2𝑚
  𝑒− 𝑥

2𝑛+𝑦2𝑛  +𝑖  𝑤+𝑢 𝑥+ 𝑢−𝑤 𝑦 

ℜ2

2𝑑𝑥𝑑𝑦 

𝑢=0

 

=  −1 𝑚 ∙
𝜕2𝑚

𝜕𝑢2𝑚
  𝑒−𝑥

2𝑛+𝑖𝑥 𝑤+𝑢 𝑑𝑥

∞

−∞

.  𝑒−𝑦
2𝑛+𝑖𝑦 𝑢−𝑤 𝑑𝑦.

∞

−∞

2 

𝑢=0

 

By Fubini’s theorem 

=  −1 𝑚 ∙
𝜕2𝑚

𝜕𝑢2𝑚
 𝐹2𝑛 𝑢 + 𝑤 ∙ 𝐹2𝑛 𝑢 − 𝑤  𝑢=0 7  

Now let us pick one particular value of𝑛.  Recall equation (4), namely that 

𝐹2𝑛 𝑧 = 𝑐 ∙   1 − 𝑧2/𝛼𝑟
2 ∞

𝑟=1 Consider the partial product 



50 
 

𝑃𝑁 𝑧 = 𝑐 ∙   1 − 𝑧2/𝛼𝑟
2 ∞

𝑟=1 and suppose that for one partial value of 𝑁,𝐾 say, 

𝑇𝐾,𝑚 𝑤 =  −1 𝑚2 ∙
𝜕2𝑚

𝜕𝑢2𝑚
 𝑃𝐾 𝑢 + 𝑤 ∙ 𝑃𝐾 𝑢 − 𝑤  𝑢=0 ≥ 0 ∀𝑚 ≥ 0, ∀𝑤 ∈ ℜ. 

Now let us consider 𝑇𝐾+1,𝑚  𝑤 =  −1 𝑚2 ∙
𝜕2𝑚

𝜕𝑢2𝑚
 𝑃𝐾+1 𝑢 + 𝑤 ∙ 𝑃𝐾+1 𝑢 −

𝑤  𝑢=0 

=  −1 𝑚2 ∙
𝜕2𝑚

𝜕𝑢2𝑚
  1 −

 𝑢 + 𝑤 2

𝛼𝐾+1
2  ∙ 𝑃𝐾 𝑢 + 𝑤 ∙ 𝑃𝐾 𝑢 − 𝑤  

𝑢=0

 

=  −1 𝑚2 ∙
𝜕2𝑚

𝜕𝑢2𝑚
  1 − 2

 𝑢 + 𝑤 2

𝛼𝐾+1
2  +  𝑢4 + 𝑤4 − 2𝑢2𝑤2/𝛼𝐾+1

4  ∙ 𝑃𝐾 𝑢 + 𝑤 

∙ 𝑃𝐾 𝑢 − 𝑤  
𝑢=0

 

For brevity of writing, call 1 − 2 𝑢2 + 𝑤2 /𝛼
𝐾+1+ 𝑢4+𝑤4−2𝑢2𝑤2 
2 /𝛼𝐾+1

4 = 𝐵 and 

𝑃𝐾 𝑢 + 𝑤 ∙ 𝑃𝐾 𝑢 − 𝑤 = 𝐷 

If 𝑚 = 0 then 𝑇𝐾+1,0 𝑤 = 2 𝑃𝐾+1
2  𝑤 ≥ 0. 

If 𝑚 = 0 then 𝑇𝐾+1,1 𝑤 = −2 𝐵𝑢𝑢𝐷 + 2𝐵𝑢𝐷𝑢 + 𝐵𝐷𝑢𝑢  𝑢=0where the subscripts 

denote partial differentiation with respect to (𝑤𝑟𝑡) 𝑢.As𝐵 is an even function in 𝑢, 

the middle term is zero. 

Now 𝐵𝑢𝑢 = −
4

𝛼𝐾+1
2 +  12𝑢2 − 4𝑤2 /𝛼𝐾+1

2 , so we obtain:   

𝑇𝐾+1,1 𝑤 = 4 
1

𝛼𝐾+1
2 +

𝑤2

𝛼𝐾+1
4  𝑇𝐾,0 𝑤 +  1 − 𝑤2/𝛼𝐾+1

2  2 ∙ 𝑇𝐾,1 𝑤 ≥ 0 
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If 𝑚 ≥ 2 then 
 −1 𝑚𝑇𝐾+1,𝑚  𝑤 

2
=

𝜕2𝑚

𝜕𝑢2𝑚
 𝐵, 𝐷 𝑢=0 = 

 𝐵
𝜕2𝑚𝐷

𝜕𝑢2𝑚
+2𝑚𝐶1𝐵𝑢 ∙

𝜕2𝑚−1𝐷

𝜕𝑢2𝑚−1
+2𝑚𝐶2𝐵𝑢𝑢 ∙

𝜕2𝑚−2𝐷

𝜕𝑢2𝑚−2
+2𝑚𝐶3𝐵𝑢𝑢𝑢

∙
𝜕2𝑚−3𝐷

𝜕𝑢2𝑚−3
+2𝑚𝐶4𝐵𝑢𝑢𝑢𝑢 ∙

𝜕2𝑚−2𝐷

𝜕𝑢2𝑚−2
 
𝑢=0

 

As before, the odd terms are zero as 𝐵 is an even function in 𝑢, and also partial 

derivatives of 𝐵𝑤. 𝑟. 𝑡 𝑢 of degree more than 4 are identically zero. 

Then as additionally 𝐵𝑢𝑢𝑢𝑢 = 24/𝛼𝐾+1
4 ,we see 𝑇𝐾+1,𝑚 𝑤 =   

 𝐵
𝜕2𝑚

𝜕𝑢2𝑚
  −1 𝑚2𝐷 +2𝑚 𝐶2𝐵𝑢𝑢

𝜕2𝑚−2

𝜕𝑢2𝑚−2
  −1 𝑚2𝐷 

+2𝑚 𝐶4𝐵𝑢𝑢𝑢𝑢
𝜕2𝑚−4

𝜕𝑢2𝑚−4
  −1 𝑚2𝐷  

𝑢=0
 

=  𝐵
𝜕2𝑚

𝜕𝑢2𝑚
  −1 𝑚2𝐷 −2𝑚 𝐶2𝐵𝑢𝑢

𝜕2𝑚−2

𝜕𝑢2𝑚−2
  −1 𝑚2𝐷 

+2𝑚 𝐶4𝐵𝑢𝑢𝑢𝑢
𝜕2𝑚−4

𝜕𝑢2𝑚−4
  −1 𝑚2𝐷  

𝑢=0
 

=  1 −
𝑤2

𝛼𝐾+1
2  

2

∙ 𝑇𝐾,𝑚 𝑤 +
2𝑚𝐶24 

1

𝛼𝐾+1
2 +

𝑤2

𝛼𝐾+1
4  ∙ 𝑇𝐾,𝑚−1 𝑤 +

2𝑚𝐶2 ∙ 24/𝛼𝐾+1
4

∙ 𝑇𝐾,𝑚−2 𝑤  

which is ≥ 0.  

What has been established is the inductive step, namely that ∙ 𝑇𝐾+1,𝑚 𝑤 ≥ 0. 

If we now consider the case 𝐾 = 1 it is easy to see that 𝑇1,𝑚 𝑤 ≥ 0 ∀𝑚 ≥ 0: 
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𝑇1,0 = 2𝑃1
2 𝑤 ≥ 0, 𝑇1,1 𝑤 = 8 

1

𝛼1
2 +

𝑤2

𝛼1
4 , 𝑇1,𝑀 𝑤 is 0 for M ≥ 3. 

Therefore by induction 𝑇𝑁,𝑚 𝑤 ≥ 0 for 𝑁 as large as we like, ∀𝑚 ≥ 0. 

Therefore taking the limit as 𝑁 → ∞ shows the expression for 𝐴2𝑚,2𝑛 𝑤  in 

equation (7) is ≥ 0.This argument holds for all integer values of 𝑛 from 2 upwards. 

QED. 

Looking again at formula for 𝐿2 in (5), the graphs in Fig.5 and Fig.6 are now very 

clear, along with the result that there are no zeros of 𝐹2𝑛 𝑧  off the line 𝜍 = 0. 

As the functions 𝐴2𝑚,2𝑛 𝑤  are Fourier transforms and so tend to zero as 𝑤 → ∞, 

we can also see that the plot of 𝐿2 against 𝑤 for constant 𝜍 must also have the form 

of the curve in Fig.4 (perhaps with some minor undulations, as 𝐴0,2𝑛 𝑤 =

𝐹2𝑛
2  𝑤 ≥ 0 has undulations because of the zeros 𝑤𝑘 ): 

 

 

(Fig 7) plot of 𝐴0,2𝑛 𝑤   against w 

 

 

Now we will consider the parametric plot of (𝑅, 𝐼) when 𝜍 is constant and not 

equal to zero, and 𝑤 =  𝑣 𝑡 where 𝑣 is a constant velocity. 
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The angular momentum 𝐽 = 𝑚 𝑟 ∧ 𝑟 = 𝑚  

𝑒1 𝑒2 𝑒3

𝑅 𝐼 0
𝑅 𝐼 0

 where the dots denote 

differentiationwith respect to time, and the vectors in the top row are a left-handed 

set of orthonormal vectors, with the first being in the positive 𝑅 direction and the 

second in the positive 𝐼 direction. 

So 

𝐽 = 𝑚 𝑅 ⋅
𝑑𝐼

𝑑𝑤
⋅
𝑑𝑤

𝑑𝑡
− 𝐼 ⋅

𝑑𝑅

𝑑𝑤
⋅
𝑑𝑤

𝑑𝑡
 𝑒3                                          (8) 

As we are holding 𝜍 fixed, we see that 𝐽 = 𝑚𝜈  𝑅 ⋅
𝜕𝐼

𝜕𝑤
− 𝐼 ⋅

𝜕𝑅

𝜕𝑤
 𝑒3  

which by the Cauchy-Riemann equations can be expressed as : 

𝑚𝜈  𝑅 ⋅
𝜕𝑅

𝜕𝜍
− 𝐼 ⋅

𝜕𝐼

𝜕𝜍
 𝑒3is    mν ∙

𝜕

𝜕𝜍
 𝑅2 + 𝐼2 𝑒3 9  

By equation (5), we can immediately see that for positive 𝜍 the angular momentum 

is also strictly positive, and as the 𝐴2𝑚.2𝑛 𝑤  are Fourier transforms and tend to 

zero as 𝑤 → ∞, the locus of (𝑅, 𝐼) must follow a spiral orbit where the radius is 

never zero for any finite 𝑤, as in Fig.1  

It is worth observing that, given any fixed value of 𝑛,  it is not possible as m varies 

for all the 𝐴2𝑚.2𝑛 𝑤  to be zero at the same time for any particular value of 𝑤,𝑤∗ 

say, as by equation (5) this would lead to a continuous line of zeros of 𝐹2𝑛 𝑧  in the 

complex plane along 𝑤 = 𝑤∗, which is impossible as holomorphic functions only 

have isolated zeros. 

We are now going to explore the plot of the field lines 𝑅 = 0 and 𝐼 = 0: 
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Trivially, 𝐼 = 0 when 𝑤 = 0, because the integral in equation (1) is then real, and 

𝐼 = 0 when 𝜍 = 0, as the integral kernel is then even in 𝑡. 

Now consider the spiral orbit discussed on the last page. This means that as we 

travel up the line 𝜍 = constant at speed 𝑣, we are crossing the field lines 𝑅 =  0, 

then 𝐼 =  0, 𝑅 =  0 etc. 

The field lines with equation 𝑅 = 0 traverse the zeros on the 𝑤 − axis. 

If we consider a field line 𝑅 = 0, then along this line we have: 

𝑅𝜍 + 𝑅𝑤
𝑑𝑤

𝑑𝜍
= 0,or alternatively 𝑅𝜍

𝑑𝜍

𝑑𝑤
+ 𝑅𝑤 = 0 10  

 Where the suffixes denote the first partial differentials. 

Now L-P is closed under differentiation, so it follows that all the zeros of the first 

derivative 𝐹2𝑛
 1  𝑧  must also lie on the line 𝜍 = 0 too. 

This means 𝑅𝑤  and 𝑅𝜍  cannot both be zero at the same time off the line 𝜍 =  0, or 

else by the Cauchy-Riemann equations 𝐹2𝑛
 1  𝑧  would have a zero, which would 

establish a contradiction. 

Therefore, as we move along 𝑅 =  0, unless 
𝑑𝑤

𝑑𝜍
 or

𝑑𝜍

𝑑𝑤
is zero, by (10), neither 

𝑅𝑤nor𝑅𝜍  canbe zero (if one were zero the other would also have to be zero), which 

means that they mustkeep the same sign, and therefore so must  
𝑑𝑤

𝑑𝜍
. 

All these factors considered, we might expect the 𝑅 = 0 field line plot to look like 

that in Fig.2, except with the lines bent so that they cross the 𝑤 −axis, intercepting 

the zeros, with the 𝐼 = 0 field lines in between the 𝑅 = 0 field lines when 𝜍 is not 

equal to 0. 
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By way of example, consider the case 𝑛 = 2, where: 

𝑅𝑒 𝐹4 𝑧  =  𝑒−𝑡
4+𝜍∙𝑡 ∙ cos 𝑤𝑡 𝑑𝑡 = 0                      

∞

−∞

 11  

Consider positive values of 𝜍.  Letting 𝑡 =  𝑇 +  𝑘, and choosing 𝑘 so that the 

coefficient of 𝑇 in the exponent of the integrand vanishes leads us to set 𝑘 =

 𝜍/4 (1/3) and leads to: 

 𝑒
− 𝑇4+4𝑇3 

𝜍

4
 

1
3+6𝑇2 

𝜍

4
 

2
3 

.  cos 𝑤𝑇 cos 𝑤 𝜍/4 1/3  

ℜ

− sin 𝑤𝑇 sin  𝑤  
𝜍

4
 

1

3
 𝑑𝑇 = 0 

Replacing 𝑇 with 𝑢.  4/𝜍 1/3 then leads to: 

 𝑒
− 𝑢4∙ 

4

𝜍
 

1
3+4𝑢3 

4

𝜍
 

2
3+6𝑢2 

.  cos𝑤𝑢 4/𝜍 1/3 cos𝑤 4/𝜍 1/3 

ℜ

− sin𝑤𝑢 4/𝜍 1/3 sin𝑤 4/𝜍 1/3 𝑑𝑢 = 0. 

Rearrangement then yields: 

cos 𝑤 𝜍/4 1/3  𝑒
− 𝑢4∙ 

4

𝜍
 

3/4
+4𝑢3 

4

𝜍
 

2
3+6𝑢2 

. cos 𝑤𝑢 4/𝜍 1/3 

ℜ

𝑑𝑢 = 

sin  𝑤  
4

𝜍
 

1

3

  𝑒
− 𝑢4∙ 

4

𝜍
 

3
4+4𝑢3 

4

𝜍
 

2
3+6𝑢2 

. sin  𝑤𝑢  
4

𝜍
 

1

3

 

ℜ

𝑑𝑢 12  
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We can see that in the asymptotic case as 𝜍 → ∞, the exponent in the integrand 

tends to −6𝑢2,so there is a family of asymptotic solutions given by 𝑤 =

𝑢 4/𝜍 1/3 ∙
𝜋

2
∙  2𝑚 + 1 , where m is any 2integer.  In the asymptotic limit 

equation (12) then reduces to: 

0 = limitas𝜍 → ∞  −1 𝑚 ∫ 𝑒− 6𝑢
2 

ℜ
sin  𝑢 4/𝜍 1/3 ∙

𝜋

2
∙  2𝑚 + 1  𝑑𝑢 ;the sine 

function is odd and the exponential function is even, hence the integral is zero. 

A plot of the 𝑅 = 0 lines is shown below in Fig.8 (solid lines), along with part of 

the curves 𝑤 =  4/𝜍 1/3 ∙
𝜋

2
∙  2𝑚 + 1  (dashed lines). As we can see, the 

asymptotic behaviour quickly becomes 2 apparent for relatively small values of 𝜍. 

The horizontal axis is the𝜍 axis, and the vertical axis is the 𝑤 axis: 

(Fig 8) 

Finally, a plot of 𝑅 =  0 field lines (black) and 𝐼 = 0 field lines (green) is shown in 

Fig. 9 below. 

The zeros of 𝐹4 𝑧  occur only where the 𝑅 = 0 field lines cross the 𝑤 axis (which 

is itself one of the 𝐼 = 0 field lines), so all the zeros lie on the line 𝜍 = 0. As 

before, the horizontal axis is the𝜍 axis, and the vertical axis is the 𝑤 axis: 
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(Fig 9) 

 

 

A similar analysis can be carried out in the cases 𝑛 ≥ 3, but the asymptotic 

convergence of the 𝑅 = 0 field lines to the curves 𝑤 =  2𝑛/𝜍 1/(2𝑛−1) ∙
𝜋

2
∙

 1 + 2𝑚  as 𝜍 → ∞ is slower.  

We can see that there is another geometric reason for the location of the zeros of 

𝐹2𝑛 𝑧 : 

the only place where the 𝑅 = 0 and 𝐼 = 0 field lines intersect is on the 𝑤  axis, ie 

where 𝜍 =  0. 

Simplicity of zeros (2.5.2): 

It will now be proved that all the zeros of 𝐹2𝑛 𝑤  are simple: 

It is easy to see from equation (1) that the functions 𝐹2𝑛 𝑤  obey the differential 

equations 

𝐹2𝑛
 2𝑛−1  𝑤 =

 −1 𝑛

2𝑛
𝑤𝐹2𝑛 𝑤                                  (13) 

Where 𝐹2𝑛
 2𝑛−1  𝑤  denotes the (2𝑛 − 1)th derivative with respect to 𝑤. 
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Differentiating again yields: 

𝐹2𝑛
 2𝑛  𝑤 =

 −1 𝑛

2𝑛
 𝐹2𝑛 𝑤 + 𝑤𝐹2𝑛

 1  𝑤                       (14) 

Lemma (2.5.3): 

If 𝐺 is a function in L-P of the form 𝐺 𝑤 = 𝑐 ∙   1 − 𝑤/𝑤𝑘 
∞
𝑘=1 ,  

And 𝐺 𝑤∗ ≠ 0 and 𝐺 1  𝑤∗ ≠ 0,then  𝐺 2  𝑤∗  cannot be zero.  

Proof : 

Differentiating the natural logarithm of the modulus of 𝐺 as above twice yields: 

 𝐺 1 
2
−𝐺 2 𝐺 

𝐺2
=   𝑤 − 𝑤𝑘 

−2∞
𝑘=1 and we see that if 𝐺 𝑤∗ ≠ 0 (in other words, 

𝑤∗ ≠ 𝑤𝑘 for any 𝑘)and 𝐺 1  𝑤∗ = 0, then −𝐺 2  𝑤∗ 𝐺 𝑤∗ > 0, so 𝐺 2  𝑤∗ ≠

0.          

Now observe that L-P is closed under differentiation.   

Set 𝐺 𝑤 = 𝐹2𝑛
 2𝑛−2  𝑤 If for any particular𝐹2𝑛 𝑤  there were a multiple root at 

𝑤 = 𝑤∗, then by (13) and (14) 𝐹2𝑛
 2𝑛−1  𝑤∗ = 0 and 𝐹2𝑛

 2𝑛  𝑤∗ =  0. Therefore, by 

the above lemma, 𝐺 𝑤∗  must be zero, or a contradiction would be obtained. 

So 𝐹2𝑛
 2𝑛−2  𝑤∗  and 𝐹2𝑛

 2𝑛−1  𝑤∗  must both be zero. By the same reasoning, 

𝐹2𝑛
 2𝑛−3  𝑤∗ , 𝐹2𝑛

 2𝑛−4  𝑤∗ ,…… , 𝐹2𝑛
 2  𝑤∗  must all be zero, and we know 𝐹2𝑛

 1  𝑤∗  

and 𝐹2𝑛 𝑤
∗  are both zero too. In other words, all the derivatives of 𝐹2𝑛 𝑤

∗ , up to 

and including the (2𝑛 − 1)𝑡𝑕, evaluated at 𝑤 = 𝑤∗, are zero. 

Successive differentiation of equation (14) shows that all the derivatives of 𝐹2𝑛 𝑤  

above the (2𝑛 − 1)𝑡𝑕, evaluated at 𝑤 = 𝑤∗, are zero as well. 

So the Taylor expansion for 𝐹2𝑛 𝑧  about 𝑧 = 𝑤∗ is: 

𝐹2𝑛 𝑧 = 𝐹2𝑛 𝑤
∗ + 𝐹2𝑛

 1  𝑤∗  𝑧 − 𝑤∗ +
𝐹2𝑛
 2  𝑤∗ 

2!
 𝑧 − 𝑤∗ 2

+
𝐹2𝑛
 3  𝑤∗ 

3!
 𝑧 − 𝑤∗ 3 + ⋯⋯ 
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and as all the coefficients 𝐹2𝑛
 𝑟  𝑤∗  are zero, we conclude 𝐹2𝑛 𝑧  is identically zero 

in some disk around 𝑧 = 𝑤∗. This establishes a contradiction, as the zeros of 

holomorphic functions are isolated. 

Therefore there cannot be a multiple zero of 𝐹2𝑛 𝑤 , in other words all the zeros 

are simple. 

QED. 

Now let us consider a particular root on the w-axis, say 𝑤 = 𝑤∗, for a particular 

value of 𝑛. 

  Therefore 𝐹2𝑛 𝑤
∗ = 0 and by the above𝐹2𝑛

 1  𝑤∗  (in other words, 𝑅𝑤  evaluated 

at 𝑤 = 𝑤∗) ≠ 0, as all the roots are simple. We also see that at 𝑧 = 𝑤∗, 𝑅𝜍 =

∫ 𝑡 ∙ 𝑒−𝑡
2𝑛
∙ cos 𝑤∗ ∙ 𝑡 𝑑𝑡

ℜ
= 0 by symmetry,so by equation (10), 

𝑑𝜔

𝑑𝜍
= 0 on the 

𝑅 =  0 fieldline that crosses through 𝑧 = 𝑤∗  when 𝜍 = 0. 

The geometric significance of this result is that the 𝑅 =  0 fieldline that crosses 

each zero on the w-axis does so with a zero gradient (ie perpendicular to the w-

axis). 

By way of example, here is part of the plot of the 𝑅 = 0 fieldlines in the case 

𝑛 = 2: 

 

(Fig 10) 
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As before, the 𝑤–axis is vertical, and the𝜍 axis is horizontal.[15] 
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Chapter Three 

Functional analysis of Fourier Transform 

 

Introduction (3.1):  

     Functional analysis is a branch of mathematical analysis, the core of which is 

formed by the study of vector spaces endowed with some kind of limit-related 

structure (e.g. inner product, norm, topology, etc.) and the linear operators acting 

upon these spaces and respecting these structures in a suitable sense. The historical 

roots of functional analysis lie in the study of spaces of functions and the 

formulation of properties of transformation of functions such as the Fourier 

transform as transformation defining continuous, unitary etc. operators between 

functions spaces. This point of view turned out to be particularly useful for the 

study of differential and integral equations. 

In modern introductory texts to functional analysis, the subject is seen as the study 

of vector spaces endowed with a topology, in particular infinite dimensional spaces. 

In contrast, linear algebra deals mostly with finite dimensional spaces, or does not 

use topology. An important part of functional analysis is the extension of the theory 

of measure, integration, and probability to infinite dimensional spaces, also known 

as infinite dimensional analysis. 

The basic and historically first class of spaces studied in functional analysis are 

completenormed vector spaces over the real or complex numbers. Such spaces are 

called Banach spaces. An important example is a Hilbert space, where the norm 

arises from an inner product. These spaces are of fundamental importance in many 

areas, including the mathematical formulation of quantum mechanics. 

http://en.wikipedia.org/wiki/Differential_equations
http://en.wikipedia.org/wiki/Integral_equations
http://en.wikipedia.org/wiki/Dimension_%28vector_space%29
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Measure_%28mathematics%29
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Complete_space
http://en.wikipedia.org/wiki/Complete_space
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Banach_space
http://en.wikipedia.org/wiki/Hilbert_space
http://en.wikipedia.org/wiki/Quantum_mechanics
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An important object of study in functional analysis are the continuouslinear 

operators defined on Banach and Hilbert spaces.[12] 

Hilbert spaces can be completely classified: there is a unique Hilbert space up 

toisomorphism for every cardinality of the orthonormal basis. Finite-dimensional 

Hilbert spaces are fully understood in linear algebra, and infinite-dimensional 

separable Hilbert spaces are isomorphic to ℓ2(𝒩0). Separability being important 

for applications, functional analysis of Hilbert spaces consequently mostly deals 

with this space. One of the open problems in functional analysis is to prove that 

every bounded linear operator on a Hilbert space has a proper invariant subspace. 

Many special cases of this invariant subspace problem have already been proven. 

General Banach spaces are more complicated than Hilbert spaces, and cannot be 

classified in such a simple manner as those. In particular, Banach spaces lack a 

notion analogous to an orthonormal basis. 

In Banach spaces, a large part of the study involves the dual space: the space of all 

continuous linear maps from the space into its underlying field, so-called 

functionals. A Banach space can be canonically identified with a subspace of its 

bidual, which is the dual of its dual space. The corresponding map is an isometry 

but in general not onto. A general Banach space and its bidual need not even be 

isometrically isomorphic in any way, contrary to the finite-dimensional situation. 

This is explained in the dual space article. 

Also, the notion of derivative can be extended to arbitrary functions between 

Banach spaces.  

Probably the biggest difference between analysis and algebra is that in the former 

one utilizes the concept of limits. With limiting notions, one can discuss such 

http://en.wikipedia.org/wiki/Continuous_function_%28topology%29
http://en.wikipedia.org/wiki/Continuous_function_%28topology%29
http://en.wikipedia.org/wiki/Continuous_function_%28topology%29
http://en.wikipedia.org/wiki/Continuous_function_%28topology%29
http://en.wikipedia.org/wiki/Hilbert_space
http://en.wikipedia.org/wiki/Up_to
http://en.wikipedia.org/wiki/Up_to
http://en.wikipedia.org/wiki/Up_to
http://en.wikipedia.org/wiki/Up_to
http://en.wikipedia.org/wiki/Cardinal_number
http://en.wikipedia.org/wiki/Orthonormal_basis
http://en.wikipedia.org/wiki/Linear_Algebra
http://en.wikipedia.org/wiki/Separable_space
http://en.wikipedia.org/wiki/Invariant_subspace
http://en.wikipedia.org/wiki/Invariant_subspace_problem
http://en.wikipedia.org/wiki/Banach_space
http://en.wikipedia.org/wiki/Orthonormal_basis
http://en.wikipedia.org/wiki/Continuous_dual
http://en.wikipedia.org/wiki/Continuous_function_%28topology%29
http://en.wikipedia.org/wiki/Isometry
http://en.wikipedia.org/wiki/Derivative
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things as differentiation and integration and can deal with infinite processes in 

general; or, rather, one can avoid infinite processes by reducing them to a 

consideration of some finite process. If one looks at anything pertaining to limits of 

real or complex numbers one sees that they all rest on the fact that some measure of 

closeness can be ascribed to any pair of points. In order to wrest linear spaces from 

purely the realm of algebra, we now wish to introduce some sort of distance 

measuring device to those spaces and ultimately introduce limiting notion. 

Specifically, the concept of a norm on a vector space will be defined, and indeed 

almost all our subsequent results will involved normed spaces.[52] 

Normed space (3.2): 

An inner product on X is a mapping from X×X, the Cartesian product space, into 

the scalar fields, which we shall denote generically by F: 

X×X → F, 

< 𝑋, 𝑌 >→ (𝑋, 𝑌) 

That is,  (𝑋, 𝑌) denotes the inner product of the two vectors, wheareas < 𝑋, 𝑌 > 

represents only the ordered pair X×X with the following properties: 

1- Let x, y ∈ 𝑋; then (x, y) = (𝑦, 𝑥)        where the bar denotes complex conjugation;  

2- If 𝛼 and 𝛽 are scalars and x, y, and z are vectors, then 

(𝛼𝑥 +  𝛽𝑦, 𝑧) = 𝛼 𝑥, 𝑧 +  𝛽 𝑦, 𝑧 ; 

3-  𝑥, 𝑥 ≥ 0for all 𝑥 ∈ 𝑋 and equal to 0 if and only if  𝑥is the 0 vector. It is 

noted that by property (1) that  𝑥, 𝑥  must always be real. So this requirement 

always makes sense. 
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Some immediate consequences of the definition will now be noted, the first of 

which is that if a vector y  has the property that  𝑥, 𝑦  = 0 for all 𝑥 ∈ 𝑋,  then y 

must be the zero vector. To prove this, noting that this is true for every vector in the 

space. Take x = y and apply part (3) of the definition.  

If x, y and z are vectors, 𝛼 and 𝛽 are scalars, then  

(𝑧, 𝛼𝑥 +  𝛽𝑦) = 𝛼  𝑧, 𝑥 + 𝛽  𝑧, 𝑦 . 

The mapping of X into F via  𝑥, 𝑥 
1

2  is a norm on 𝑋 and will be denoted by  𝑥 . 

The notion of a norm will be thoroughly elaborated upon later, and for the sake of 

the present discussion, it suffices to regard  𝑥  as merely a convenient shorthand 

representation for  𝑥, 𝑥 
1

2 . 

We defined the notation  𝑥  to mean  𝑥, 𝑥 
1

2  in an inner product space, and we 

would now like to note some further properties of this mapping. It is simple to 

verify that the following assertions about  𝑥  are valid: 

   : 𝑋 → 𝑅, 

𝑥 →  𝑥  . 

1-  𝑥 ≥ 0 and = 0 if and only if  𝑥 = 0; 

2- For a scalar 𝛼 and a vector 𝑥,  𝛼𝑥 =   𝛼  𝑥 ; 

3-  𝑥 + 𝑦 ≤  𝑥 +   𝑦  (triangle inequality). 

We shall verify here that the third assertion is indeed correct. consider 

 𝑥 + 𝑦 2 = (𝑥 + 𝑦, 𝑥 + 𝑦) 

                                                       =  𝑥, 𝑥 +  𝑥, 𝑦 +   𝑦, 𝑥 + (𝑦, 𝑦) 

                                                   =  𝑥 2 + 2𝑅𝑒 𝑥, 𝑦 +  𝑦 2. 
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But, since 2𝑅𝑒 𝑥, 𝑦 ≤ 2 (𝑥, 𝑦) , we can say 

 𝑥 + 𝑦 2 ≤  𝑥 2 + 2 (𝑥, 𝑦) +  𝑦 2. 

Appealing to the Cauchy-Schwarz inequality, we can now say 

 𝑥 + 𝑦 2 ≤  𝑥 2 + 2 𝑥  𝑦 +  𝑦 2 =( 𝑥 +  𝑦 )2, 

And it remains only to take the square root of both sides to complete the proof. 

       We now wish to view mapping of the above type abstractly; that is, we now 

single out the three properties cited above and define mappings of his tybe, on a 

real or complex space, to be norms. 

 To have a norm it is not necessary to have an inner product at all. Conversely, 

though, whenever one has an inner product, one can always define a norm right 

From the inner product as we have already indicated. Real  or complex spaces over 

which a norm is defined are called normed linear spaces (n. l. s), and we remark 

that there are normed linear spaces over which one cannot define an inner product 

that will “generate” [that is, no inner product such that 𝑥  =  𝑥, 𝑥 
1

2  ] the norm 

on the space. Thus the essential thing is to make the norm and inner product 

generate norm agree. As one might except, if further conditions are imposed on the 

norm, one can guarantee the existence of an inner product that will generate the 

norm. One such further condition is the parallelogram law. There are many other 

conditions that one might equally well impose upon the norm to guarantee an inner 

product representation but other interests prevent us from listing them all here. It is 

now necessary to leave normed spaces temporarily for the sake of a more general 

structure  the metric space.[12] 



66 
 

Metric spaces (3.3): 

if𝑋 is a normed linear space and𝑥, 𝑦 ∈ 𝑋, it easily verified that the function 

𝑑 𝑥, 𝑦 =  𝑥 − 𝑦  satisfies the following conditions 

1- 𝑑 𝑥, 𝑦 ≥ 0 and is equal to zero if and only if 𝑥 = 𝑦; 

2- 𝑑 𝑥, 𝑦 =  𝑑 𝑦, 𝑥 ; 

3- 𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 for any 𝑥, 𝑦, 𝑧 ∈ 𝑋 (triangle inequality). 

Again, in a manner analogous to the way the norm was defined abstractly, one can 

now make the following definition.[1] 

 

Definition (3.3.1): 

    𝑋, an arbitrary set, will be called a metric space if there is a function 

𝑑: 𝑋 × 𝑋 → 𝑅satisfying properties 1-3 above. The mapping 𝑑 itself will be called a 

metric. 

One thing that should be pointed out immediately is that, when one refers to metric 

spaces, it dose not suffice to mention just the set 𝑋 involved; indeed, one must 

speak of  the pair (𝑋, 𝑑), for it is certainly possible that tow different metrics ould 

be defined on the same set and would, thus give rise to tow different metric spaces. 

To clarify these notions, several examples will now be given, nothing that normed 

space is, of course, a metric space. 

Example (1): 

Although the metric we shall define now is not too interesting for its own sake, it 

comes in quite handy in counterexample. In addition, it illustrates that one can 

define a metric over any set whatsoever 
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Let𝑋 be an arbitrary set and consider the function  

𝑑 𝑥, 𝑦  
1    𝑥 ≠ 𝑦 ,

0    𝑥 = 𝑦 ,
  

Where 𝑥𝑎𝑛𝑑𝑦 are members of𝑋. It is exceedingly simple to verify that properties 

1-3 are satisfied by this mapping. This particular metric is called the trivial 

metric.[1] 

Banach space (basic definition) (3.4): 

In mathematics, more specifically in functional analysis, a Banach space is a 

completenormed vector space. Thus, a Banach space is a vector space with a metric 

that allows the computation of vector length and distance between vectors and is 

complete in the sense that a Cauchy sequence of vectors always converges to a well 

definedlimit in the space. 

Banach spaces are named after the Polish mathematician Stefan Banach, who 

introduced and made a systematic study of them in 1920–1922 along with Hans 

Hahn and Eduard Helly. Banach spaces originally grew out of the study of function 

spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a 

central role in functional analysis. In other areas of analysis, the spaces under study 

are often Banach spaces. 

The following definition generalizes the notation of distance known from the 

everyday life.[13] 
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Definition (3.4.1): 

A metric (or distance function) d on a set 𝑀  is a function d :𝑀 × 𝑀 → ℛ+ from the 

set o pairs to non-negative real numbers such that: 

1- d x, y ≥ 0for all x, y ∈ M, d x, y = 0 implies x =  y. 

2- 𝑑 𝑥, 𝑦 =  𝑑 𝑦, 𝑥 for all x, y ∈ M. 

3- 𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝑀 (triangle inequality). 

Definition(3.4.2): 

Let 𝑉 be a (real complex) vector space. A norm on 𝑉 is a real-value function, 

written  𝑥 , such that  

1-  𝑥 ≥ 0 for all 𝑥 ∈ 𝑉, and  𝑥 = 0 implies 𝑥 = 0. 

2-  𝜆𝑥 =  𝜆  𝑥 for all scalar 𝜆 and vector 𝑥. 

3-  𝑥 + 𝑦 ≤  𝑥 +  𝑦  (triangle inequality). 

A vector space with norm is called normed space. 

The connection between norm and metric is as follows: 

Proposition : if   .   is a norm on 𝑉, then it gives a metric on 𝑉 by  

d x, y =  𝑥 − 𝑦 . 

Figure1: triangle inequality in metric (a) and normed (b) space. 

Proof: this is a simple exercise to derive items 1, 3 of definition 2 from 

corresponding items of definition 3. For example, see the figure to derive the 

triangle inequality  

An important notations known from real analysis are limit and convergence. 

Particularly we usually wish to have enough limiting points for all  

“ reasonable” sequences            
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Definition(3.4.3): 

A Banach space is a vector spaceX over the field R of real numbers, or over the 

field C of complex numbers, which is equipped with a norm and which is 

completewith respect to that norm, that is to say, for every Cauchy sequence {xn} in 

X, there exists an element x in X such that 

lim
𝑛→∞

𝑥𝑛 = 𝑥 

or equivalently: 

lim
𝑛→∞

 𝑥𝑛 − 𝑥 = 0. 

The vector space structure allows one to relate the behavior of Cauchy sequences to 

that of converging series of vectors. A normed space X is a Banach space if and 

only if each absolutely convergent series in X converges,
 

  𝑣𝑛 𝑥
∞
𝑛=1 < ∞implies that  𝑣𝑛

∞
𝑛=1  converges in 𝑋 

Completeness of a normed space is preserved if the given norm is replaced by an 

equivalent one. 

All norms on a finite-dimensional vector space are equivalent. Every finite-

dimensional normed space over R or C is a Banach space.[52] 

Example (2): 

Here is some examples of normed spaces 

(i) ℓ2
𝑛  is either ℛ2 or  ℂ2 with norm defined by: 

 (𝑥1 …… . 𝑥𝑛) 2=   𝑥1 
2 +  𝑥2 

2 …+  𝑥𝑛  
2. 

(ii) ℓ1
𝑛  is either ℛ2 or  ℂ2 with norm defined by: 

http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Norm_(mathematics)
http://en.wikipedia.org/wiki/Complete_metric_space
http://en.wikipedia.org/wiki/Cauchy_sequence
http://en.wikipedia.org/wiki/Series_(mathematics)#Generalizations
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 (𝑥1 …… . 𝑥𝑛) 1=  𝑥1 
2 +  𝑥2 

2 …+  𝑥𝑛  
2 

(iii) ℓ∞
𝑛   is either ℛ2 or  ℂ2 with norm defined by: 

 (𝑥1 …… . 𝑥𝑛) ∞ =max ( 𝑥1 .  𝑥2 …  𝑥𝑛  ) 

(iv) let𝑋 be a topological space, then 𝐶𝑏(𝑋) is the space of continuous bounded 

functions : 𝑋 → ℂ with norm  𝑓 ∞=𝑠𝑢𝑝𝑋 𝑓(𝑋) . 

(v) Let 𝑋 be any set then ℓ∞(𝑋) is the space of all bounded (not necessarily 

continuous) functions 𝑓: 𝑋 → ℂ with norm  𝑓 ∞=𝑠𝑢𝑝𝑋  𝑓(𝑋) . 

All these normed spaces are also complete and thus are Banach spaces.  

Hilbert space(3.5): 

    The mathematical concept of a Hilbertspace, named after David Hilbert, 

generalizes the notion of Euclidean space. It extends the methods of vector algebra 

and calculus from the two-dimensional Euclidean plane and three-dimensional 

space to spaces with any finite or infinite number of dimensions. A Hilbert space is 

an abstract vector space possessing the structure of an inner product that allows 

length and angle to be measured. Furthermore, Hilbert spaces must be complete, a 

property that stipulates the existence of enough limits in the space to allow the 

techniques of calculus to be used. 

Hilbert spaces arise naturally and frequently in mathematics, physics, and 

engineering, typically as infinite-dimensional function spaces. The earliest Hilbert 

spaces were studied from this point of view in the first decade of the 20th century 

by David Hilbert, Erhard Schmidt, and FrigyesRiesz. They are indispensable tools 

in the theories of partial differential equations, quantum mechanics, Fourier 

analysis (which includes applications to signal processing and heat transfer) and 

Ergodic theory, which forms the mathematical underpinning of thermodynamics. 

The success of Hilbert space methods ushered in a very fruitful era for functional 
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analysis. Apart from the classical Euclidean spaces, examples of Hilbert spaces 

include spaces of square-integrable functions, spaces of sequences, Sobolev spaces 

consisting of generalized functions, and Hardy spaces of holomorphic functions. 

Geometric intuition plays an important role in many aspects of Hilbert space 

theory. Exact analogs of the Pythagorean theorem and parallelogram law hold in a 

Hilbert space. At a deeper level, perpendicular projection onto a subspace (the 

analog of "dropping the altitude" of a triangle) plays a significant role in 

optimization problems and other aspects of the theory. An element of a Hilbert 

space can be uniquely specified by its coordinates with respect to a set of 

coordinate axes (an orthonormal basis), in analogy with Cartesian coordinates in 

the plane. When that set of axes is countably infinite, this means that the Hilbert 

space can also usefully be thought of in terms of infinite sequences that are square-

summable. Linear operators on a Hilbert space are likewise fairly concrete objects: 

in good cases, they are simply transformations that stretch the space by different 

factors in mutually perpendicular directions in a sense that is made precise by the 

study of their spectrum.[19] 

Definition(3.5.1): 

A Hilbert spaceH is a real or complexinner product space that is also a complete 

metric space with respect to the distance function induced by the inner product. To 

say that H is a complex inner product space means that H is a complex vector space 

on which there is an inner product  𝑥, 𝑦 associating a complex number to each pair 

of elements x, y of H that satisfies the following properties: 

 The inner product of a pair of elements is equal to the complex conjugate of 

the inner product of the swapped elements: 
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http://en.wikipedia.org/wiki/Lp_space#Lp_spaces
http://en.wikipedia.org/wiki/Lp_space#Lp_spaces
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 𝑦, 𝑥 =  𝑥, 𝑦 .         

 The inner product is linear in its first argument. For all complex numbers a 

and b, 

 𝑎𝑥1 + 𝑏𝑥2, 𝑦 = 𝑎 𝑥1, 𝑦 + 𝑏 𝑥2, 𝑦  

 The inner product of an element with itself is positive definite: 

 𝑥, 𝑥 ≥ 0 

where the case of equality holds precisely when x = 0. 

It follows from properties 1 and 2 that a complex inner product is antilinear in its 

second argument, meaning that 

 𝑥, 𝑎𝑦1 + 𝑏𝑦2 = 𝑎  𝑥, 𝑦1 + 𝑏 𝑥, 𝑦2 . 

A real inner product space is defined in the same way, except that H is a real vector 

space and the inner product takes real values. Such an inner product will be bilinear 

that is, linear in each argument. 

The norm is the real-valued function 

 𝑥 =   𝑥, 𝑥 , 

and the distance d between two points x, y in H is defined in terms of the norm by 

𝑑 𝑥, 𝑦 =  𝑥 − 𝑦 =   𝑥 − 𝑦, 𝑥 − 𝑦 . 

That this function is a distance function means: 

 (1) that it is symmetric in x and y. 

http://en.wikipedia.org/wiki/Linear_functional
http://en.wikipedia.org/wiki/Definite_bilinear_form
http://en.wikipedia.org/wiki/Norm_%28mathematics%29
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 (2) that the distance between x and itself is zero, and otherwise the distance 

between x and y must be positive.  

(3) that the triangle inequality holds, meaning that the length of one leg of a 

triangle xyz cannot exceed the sum of the lengths of the other two legs:  

 

𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑(𝑦, 𝑧) 

 

 

This last property is ultimately a consequence of the more fundamental Cauchy–

Schwarz inequality, which asserts 

  𝑥, 𝑦  ≤  𝑥  𝑦  

with equality if and only if x and y are linearly dependent. 

Relative to a distance function defined in this way, any inner product space is a 

metric space, and sometimes is known as a pre-Hilbert space. Any pre-Hilbert 

space that is additionally also a complete space is a Hilbert space. Completeness is 

expressed using a form of the Cauchy criterion for sequences in H: a pre-Hilbert 

space H is complete if every Cauchy sequenceconverges with respect to this norm 

to an element in the space. Completeness can be characterized by the following 

http://en.wikipedia.org/wiki/Triangle_inequality
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
http://en.wikipedia.org/wiki/Linear_independence
http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Complete_space
http://en.wikipedia.org/wiki/Cauchy_criterion
http://en.wikipedia.org/wiki/Cauchy_sequence
http://en.wikipedia.org/wiki/Cauchy_sequence
http://en.wikipedia.org/wiki/Cauchy_sequence
http://en.wikipedia.org/wiki/File:Triangle_inequality_in_a_metric_space.svg
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equivalent condition: if a series of vectors  𝑢𝑘
∞
𝑘=0 converges absolutely in the 

sense that 

  𝑢𝑘 

∞

𝑘=0

< ∞ 

then the series converges in H, in the sense that the partial sums converge to an 

element of H. 

As a complete normed space, Hilbert spaces are by definition also Banach spaces. 

As such they are topological vector spaces, in which topological notions like the 

openness and closedness of subsets are well-defined. Of special importance is the 

notion of a closed linear subspace of a Hilbert space that, with the inner product 

induced by restriction, is also complete (being a closed set in a complete metric 

space) and therefore a Hilbert space in its own right. 

WewillseethatL2isaHilbertspace(wealreadyreallyhaveallthe 

bitsofinformationweneedtoseethis)andthatinsomesensetheL2-spaces(with different 

µ’s)aretheonlyHilbertspaces.Wewillcometoseehowtheproblem 

thatFourierexamined,about decomposingfunctionsasinfinitesums ofother 

somehowmorebasicfunctions,isaproblembestphrasedandunderstoodinthe 

languageofabstractHilbertspaces.Oneofthetriumphsoffunctionalanalysisis 

totakeaveryconcreteprobleminthiscaseFourierdecompositionviewitin 

anabstractsetting,andusetheoreticaltoolstoobtainpowerfulresultsthatcanbe 

translatedbacktotheconcretesetting.Fourier’sworkcertainlyholdsanimportant 

spotattherootsoffunctional analysis,anditmotivated muchearlyworkinthe 

developmentofthefield. 

Fourierbeginswithanarbitraryfunction 𝑓ontheintervalfrom–πtoπandstates 

thatifwecanwrite 

http://en.wikipedia.org/wiki/Banach_space
http://en.wikipedia.org/wiki/Topological_vector_space
http://en.wikipedia.org/wiki/Topology
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Closed_set
http://en.wikipedia.org/wiki/Linear_subspace
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𝑓 𝑥 =
𝑎0

2
+  𝑎𝑘cos⁡(𝑘𝑥)

∞

𝑘=1

+ 𝑏𝑘sin⁡(𝑘𝑥) 

 

Thenitmustbethecasethatthecoefficients𝑎𝑘and𝑏𝑘aregivenbytheformulas 

𝑎𝑘 =
1

𝜋
∫ 𝑓(𝑥)
𝜋

−𝜋
cos 𝑘𝑥 𝑑𝑥       𝑘= 0, 1, 2, 

And 

𝑏𝑘 =
1

𝜋
∫ 𝑓(𝑥)
𝜋

−𝜋
sin 𝑘𝑥 𝑑𝑥       𝑘= 1, 2, 

The 

bigquestionisthis:whenisthisdecompositionactuallypossible?Eveniftheintegralsinvol

vedmakesense,doestheseriesconverge? Ifitdoesconverge, 

whattypeofconvergence(pointwise,uniform,etc.)doweget?Eveniftheseriesconvergesi

nsomesense,doesitconvergeto   𝑓? 

TheimmediategoalistoshowyouhowtheequestionsaboutFourierseriescanbetreatedint

heabstractsettingofaninnerproductspace. 

Letusnowtakestockofwhatwealreadyknowbygatheringourinformation 

about𝐿2.First,recallthat 𝐿2=𝐿2 𝜇 ,foranyabstractmeasurespace(X,R,µ), 

denotesthecollectionofallmeasurablefunctions 𝑓: 𝑋 → ℂ such that the integral 

  𝑓 2

𝑥

𝑑𝜇 

Isfinite.Thesefunctionsareoftencalledthe “squareintegrable”functionson X with 

norm 

 𝑓 2 =    𝑓 2
𝑥

𝑑𝜇 

ThiscollectionoffunctionsbecomesaBanachspace.Wecandefineaninnerproduct 

on𝐿2 via 
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 𝑓, 𝑔 =  𝑓𝑔 
𝑥

𝑑𝜇. 

Itiseasilyseenthatthisisaninnerproduct,andthatthenormdoesindeedcomefromthisinne

rproduct.Thatis, 

 𝑓 2 =   𝑓, 𝑓 =    𝑓 2
𝑥

𝑑𝜇 

ℝ: showsthat𝐿2isaHilbertspace. 

Inthefollowingdefinitions,theterminologyshouldseemfamiliarfromyourexperiences

withℝn. 

Let (𝑉,  . , .  ) beaninnerproductspace.WesaythatvandwinVare orthogonal

if 𝑣, 𝑤 = 0.Wesaythatvis normalized if  𝑣 =   𝑣, 𝑣 = 1. A sequence 

 𝑣𝑘 𝑘=1   
∞ inVisan orthonormal sequenceif 𝑣𝑘 , 𝑣𝑗  = 𝛿𝑘𝑗 , 1 ≤ 𝑘, 𝑗 ≤ ∞. the 

trigonometric system 

1

 2𝜋
,
cos⁡(𝑛𝑥)

 𝜋
,
sin⁡(𝑚𝑥)

 𝜋
,               𝑛,𝑚 = 1,2,… 

Is an orthonormal sequence in the inner product space 

𝐿2( −∞,∞ ,𝑚)Fromthis, you shouldfind itplausiblethat thegoal 

ofFourieranalysisinitsgeneralsettin

isthis:Givenanorthonormalsequence 𝑓𝑘 𝑘=1
∞  in an inner product space V and an 

𝑓 ∈ 𝑉, find complex numbers  𝑐𝑘  such that 

𝑓 =  𝑐𝑘𝑓𝑘

∞

𝑘=1

 

Theconvergenceofthisinfinitesumisinthenorminducedbytheinnerproduct. 

Further,itwouldbedesirabletobeabletodothis for all 𝑓 ∈ 𝑉.Ingeneral, this cannot be 
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done. Notice that Fourier was asserting that when  𝑓𝑘 𝑘=1
∞  is the trigonometric 

system,the coefficients are  of form 𝑓, 𝑓𝑘 wheneverhisdecompositionworks. 

Let  𝑓𝑘 𝑘=1
∞  be an orthonormalsequenceinV.Ifitisthecasethatfor each 

𝑓 ∈ 𝑉wecanfindconstants  𝑐𝑘  (dependingon𝑓)suchthat 

𝑓 =  𝑐𝑘𝑓𝑘

∞

𝑘=1

 

Thenwesaythatthe 𝑓𝑘 𝑘=1 
∞ isa complete orthonormalsequencein V. A complete 

orthonormalsequenceissometimescalledanorthonormalbasis  forV. 

Thelatterterminologycancauseconfusionsinacompleteorthonormalsystem 

isnotabasisinthefinite-dimensionalThequestionsposedbyFourier’sworkare,tosome 

degree, answered by the fact that the trigonometric system 

doesindeedformacompleteorthonormalsequenceinL2. 

Thetrigonometricsystem iscertainlyanimportantcompleteorthonormalse- 

quence(fortheHilbertspaceL2([−π,π])).WecanusetheGram-

Schmidtprocesstoconstructanorthonormalsequenceinanyinnerproductspace. 

Forourfirstexample,theHilbertspaceisL2([−1,1]).If one applies the Gram–

Schmidtprocesstothefunctions1,x,x2,x3, . . . 

oneobtainsthecompleteorthonormalsequenceofLegender polynomials 

 
2𝑛 + 1

2

1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
 𝑥𝑛 − 1 𝑛 ,          𝑛 = 1, 2,… 

Next,considertheHilbertspaceL2((0,∞)).If oneappliestheGram–

Schmidtprocesstothefunctions  𝑥𝑛𝑒−𝑥 , n=0,1, . .,oneobtainsthecompleteorthonorma

lsequenceof Laguerre functions. 
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Forourthirdexample,theHilbertspaceisL2(ℝ).IfoneappliestheGram–Schmidt 

process other functions  𝑥𝑛𝑒
−𝑥2

2 ,   n=0, 1,2, 

…oneobtainsthecompleteorthonormalsequenceofHermite functions. 

TheLegendre,Laguerre,andHermitefunctionsallshowupaseigenfunctions 

ofcertainlinearoperatorsrelatedtotheSturm–

Liouvilleproblemindifferentialequations. 

ThefinalfamilywediscussisthecompleteorthonormalsequenceofHaarfunctions.The

HilbertspaceisL2([0,1]).Thisexampleisfundamentallydifferent 

fromthepreviousexamplesinthatthefunctionsinthisfamilyarenotcontinuous, 

andtheyarenotconnectedwithdifferential equations.[50] 

 

Open mapping theorem(3.6): 

Definition(3.6.1): 

let𝑋, 𝑌 be metric spaces. A map T: 𝒟(T) → 𝑌 with 𝒟(T) ⊂ 𝑋 is called an open 

mapping if whenever U⊂ 𝒟(T) is an open set, so is 𝑇 𝑈 ⊂ Y.  that means T Takes 

open sets to open sets.[1] 

let X, Y be Banach spaces, and T: X → 𝑌 a continuous linear map from X onto Y, ( 

T ∈ 𝐵(𝑋, 𝑌)). We shall show that T is an open mapping. 

Theorem (3.6.2): A map T: X → 𝑌 between metric spaces is continuous if and only 

if whenever U⊂ Y is an open set, so is  

𝑇−1 𝑈 = {𝑥 ∈ 𝑋 /  𝑇(𝑥) ∈ 𝑈} 

The preimage  of U. 
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Example (3): 

here are some examples of linear maps that are also open mappings. 

 Identity map ℛ𝑛 →  ℛ𝑛 .This is obviously open because any open U⊂  ℛ𝑛  is 

mapped to itself, an open set. 

 Projection  ℛ𝑛 →  ℛ𝑘 , defined by (𝑥1 , …  , 𝑥𝑛 )→ (𝑥1, …  , 𝑥𝑘), Where 𝑘 < 𝑛. 

Let U⊂  ℛ𝑛  be an open set, and consider its image 𝑇(𝑈) ⊂  ℛ𝐾. Let 𝑦 ∈ 𝑇(𝑈). 

Then 𝑦 = 𝑇(𝑥) for some 𝑥 ∈ 𝑈. There is an open set of the form 𝐵∈ 𝑥 =

 𝑥1−∈, 𝑥1+∈ × … ×  𝑥𝑛−∈, 𝑥𝑛+∈  where  

x= (𝑥1 , …  , 𝑥𝑛 ) and contained in U. then𝑇(𝐵∈ 𝑥 )=  𝑥1−∈, 𝑥1+∈ × … ×

 𝑥𝐾−∈, 𝑥𝐾+∈  is an open set contained in 𝑇 𝑈 and containing the given point y, so 

𝑇(𝑈) is open and projection is an open mapping. 

 

Open mapping theorem (3.7): 

Let X, Y be Banach spaces. If T∈ 𝐵(𝑋, 𝑌) is surjective, then it is an open mapping. 

The theorem follows from the following lemma. 

 

Lemma(3.7.1): 

let X,Y be Banach spaces. If T∈ 𝐵(𝑋, 𝑌) is surjective, then the image T(𝐵1) of the 

open unit ball(centered at 0∈ 𝑋) contains an open ball around 0∈ 𝑌. 
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Proof: The proof involves the Baire Category theorem. Let 𝐵𝑟 := 𝑥 ∈ 𝑋   𝑥 < 𝑟  

always denote the open ball of radius 𝑟 > 0 centered at0 ∈ 𝑋, and 𝐵𝑟(𝑥0) centered 

at𝑥0. 

Clearly,  

𝑋 =  𝐵𝑛 2 

∞

𝑛=1

 

𝑠𝑖𝑛𝑐𝑒 T is surjective, we have that 

𝑌 =  𝑇(𝐵𝑛 2 )

∞

𝑛=1

 

We have also assumed that Y is Banach, hence complete. The Baire Category 

theorem now guarantees that there must be some 𝑛0 ∈ ℕ such that 𝑇(𝐵𝑛0 2 )            has non 

-empty interior. This implies that 𝑇(𝐵𝑛0 2 )           = 𝑛0𝑇(𝐵1 2 )           has non -empty interior, 

hence, 𝑇(𝐵1 2 )           has non -empty interior, meaning it contains some ball 𝐵𝜖(𝑦0) 

centered at some point 𝑦0 ∈ 𝑇(𝐵1 2 )          . 

Suppose that X and Y are two normed spaces and T is a linear operator from X to 

Y. consider the equation 

Tx=y,                                   (1) 

Where 𝑦 ∈ 𝑌 is given and 𝑥 ∈ 𝑋 is unknown. The following are some aspects of the 

equation that are usually considered. 

- Existence:IfTissurjective,then(1)hasatleastonesolutionx∈X for every y∈Y. 

- Uniqueness:IfTisinjective,then(1)hasnotmorethanonesolutionx∈Xforeveryy∈X. 
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-Existenceanduniqueness: 

IfTisobjective(injectiveandsubjective),then  𝑇−1exists 

and(1)haspreciselyonesolutionx=𝑇−1𝑦∈Xforeveryy∈X. 

Stability: Supposethat   𝑇−1isbounded.If  𝑦 = 𝑦𝑒 +

𝑦𝜀 ,where  𝑦𝑒 istheexactright-hand sideand𝑦𝜀 is the errorintheright-hand 

side,then 

𝑥 = 𝑇−1(𝑦𝑒 + 𝑦𝜀)=𝑇−1𝑦𝑒 + 𝑇−1𝑦𝜀 = 𝑥𝑒 + 𝑇−1𝑦𝜀 . 

Where 𝑥𝑒 istheexactsolutionto(1),whichmeansthat? 

 𝑥 − 𝑥𝑒 =  𝑇−1𝑦𝜀 ≤  𝑇−1  𝑦𝜀  

Hence, small errors in theright-hand side of (1) will give small errors in the solution. 

SupposethatXandYarenormedspacesandTisaninvertiblelinearoperatorfromX to Y.  

Then𝑇−1 i s  a  continuous  (bounded) operatorfromYtoXifandonlyif 

(𝑇−1)−1 𝐺 = 𝑇(𝐺) 

IsanopensubsetofYforeveryopensubsetGofX.? 

Definition: SupposethatXandYarenormedspacesandT is a linear operator from X to 

Y. the operator T is said to be open if 𝑇(𝐺) is open for every open supset G to X. 

 

Theorem (3.7.2):  

SupposethatXandYaretwoBanachpaces. Thenalinearoperator 

T∈B(X,Y)isopenifandonlyifTissubjective. 

 

Remark (3.7.3): 

Thehardestpartoftheproofusedtoprove”sufficiency”iscontained in 

thefollowinglemma,whoseproofweshallomit. 
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Lemma(3.7.4): 

SupposethatXandYaretwoBanachspacesand 

𝑇 ∈ 𝐵(𝑋, 𝑌).IfTissurjective, then T(𝐵1(0)) contains anopenball 𝐵𝜀(0). 

proof: 

 Necessity: 

 SinceTisopen,T(𝐵1(0))containsanopenball𝐵𝜀(0). 

 SinceTislinear,itfollowsthat  𝐵𝑅(0)⊂T(𝐵𝑅

𝜀
(0))foranynumberR>0. 

 Sufficiency: 

 SupposethatG⊂Xisopenandy=𝑇𝑋∈T(G). 

 Thenthereexistsanopenball𝐵𝑟(x)⊂G. 

 Thisimpliesthat   𝐵𝑟(0)⊂G−x. 

 According tothelemma,thereexistsanopenball 

 𝐵𝜀(0)⊂T(𝐵1(0)). 

 Butthen 

𝐵𝑟𝜀  0 ⊂ 𝑇 𝐵𝑟 0  ⊂ 𝑇 𝐺 − 𝑋 = 𝑇 𝐺 − 𝑦, 

So 𝐵𝑟𝜀  𝑦 ⊂ 𝑇 𝐺 .  

Let us consider the equation 

F(x)=0          (2) 

 

Theorem (3.7.5): 

let F be mapping of  X Into Y, where X, Y are  linear normed spaces. Let 

Z be a Banach space and f, g mapping such that 𝑓: 𝑌 → 𝑍, 𝑔: 𝑍 → 𝑋,let y be 

alinear continuous mapping of Z onto Z and E a closed subset of Z. 

furthermore, let the following conditionsbe fulfilled:  

1- for every 𝑧1, 𝑧2 ∈ 𝐸 the inquality  

 𝑓𝐹 𝑔 𝑧1  − 𝑓𝐹 𝑔 𝑧2  − 𝑦(𝑧1 − 𝑧2) ≤ 𝛼 𝑧1 − 𝑧2  
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Holds, where the mapping F, f are such that 𝑚(𝐹) = 𝑏 > 0 on 𝑔 𝐸 ⊂ 𝑋 and 

𝑚 𝑓 = 𝑎 > 0 on 𝐹 𝑔 𝐸  ⊂ 𝑌,f(0)=0. 

2- the closed ball𝐷 =  𝑧 ∈ 𝑍;  𝑧 − 𝑧1 ≤ 𝑟  , is contained in E, where 𝑧1 is 

defined by the equality 𝑦0 = 𝑦 𝑧1 − 𝑧0 , 𝑧0 being an arbitrary element of E, 

𝑦0 being defined by 𝑦0 =  𝑓𝐹 𝑔 𝑧0  , 𝑟 ≥ 𝛽 1 − 𝛽 −1.  𝑥1 − 𝑥0 , 𝛽 =

𝛼𝑚 < 1, where m is constant . then the equation (2) has a unique solution 

𝑥∗in 𝑔 𝐷        ⊂ 𝑋. the sequence 𝑥𝑚  defined by 𝑥𝑚 = 𝑔 𝑧𝑚 , 𝑦𝑚−1 =

𝑦 𝑧𝑚 − 𝑧𝑚−1 , 

𝑦𝑚 = 𝑦𝑚−1 − 𝑓𝐹 𝑔 𝑧𝑚−1  + 𝑓𝐹 𝑔 𝑧𝑚  ,  

converges in the norm topology of X to 𝑥∗. 

3-  𝑥∗ − 𝑥𝑚 ≤ 𝛽𝑚  𝑦 + 𝛼 [𝑎𝑏(1 − 𝛽)]−1 𝑧1 − 𝑧0 . 

 

Uniform Boundedness Principle (3.8): 

Let X be a Banach space and Y be a normed space. Suppose the sequence 

 𝑇𝑛 ⊂  𝐵 𝑋, 𝑌  has the property that for every 𝑥 ∈ 𝑋, the sequence  𝑇𝑛(𝑥) ⊂

𝑌 is bounded. Then the sequence   𝑇𝑛  ⊂ℝ of norms is bounded. 

Remark: if X is Banach space, then pointwiseboundedness implies uniform 

boundedness.[18] 

Example(4): 

consider 

X= 𝑝 𝑥 = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + …+ 𝛼𝑑𝑥

𝑑  𝛼𝑖 ∈ 𝔽, 𝑑 ∈ ℕ ∪ {0} , 

The set of all polynomials, and consider the norm defined by  𝑝 = 𝑚𝑎𝑥𝑖 𝛼𝑖  

we readily see that this turns X into a normed space. Ut we claim that Xis not 

complete, and is therefore not Banach space : since we want to use the unifom 

boundedness principle to prove this, firest we show that  the conclusion of the 

UBP does not hold on X, and therefore X cannot be complete. In other words, 
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we must find a sequence   𝑇𝑛 ⊂ 𝐵 𝑋, 𝑋  that is bounded pointwise, but not 

uniformly. 

   We take  𝑇𝑛(𝑝)=𝛼0 + 𝛼1 + ⋯+ 𝛼𝑛−1. And if p=0, then T(𝑝). Then the linear 

operator 𝑇𝑛  is bounded because 𝛼𝑗 ≤ 𝑚𝑎𝑥𝑖 𝛼 = 𝑝  for every j.  𝑇𝑛(𝑝) ≤

𝑛 𝑝 , and we indeed have {𝑇𝑛} ⊂ B(X,X). 

Now, fixing some polynomial p(x)=𝛼0 + 𝛼1𝑥 + ⋯+ 𝛼𝑑𝑥
𝑑 , we examine the 

sequence { 𝑇𝑛(𝑝) }𝑛∈𝑁 . For any n, we have 

 𝑇𝑛(𝑝) = 𝛼0 + 𝛼1 + ⋯+ 𝛼𝑛−1  

≤  𝛼0 + 𝛼1 + ⋯+ 𝛼𝑑   

≤  𝛼0 +  𝛼1 + ⋯+  𝛼𝑑   

≤ 𝑑 𝑝 , 

     And for a fixed polynomial,  𝑝  and d are fixed numbers, so we have 

shown that the sequence { 𝑇𝑛(𝑝) }𝑛∈𝑁is a bounded sequence. 

   Now we claim that { 𝑇𝑛 }𝑛∈𝑁, the sequence of norms of 𝑇𝑛 , is not bounded. 

for every 𝑇𝑛  we choose an “inconvenient” polynomial, 𝑝𝑛 𝑥 = 1 + 𝑥 + 𝑥2 +

⋯+ 𝑥𝑛−1. then  𝑝𝑛 = 1. But  𝑇𝑛(𝑝𝑛) = 𝑛, which informs us that  𝑇𝑛 ≥

𝑛 → ∞. so {𝑇𝑛} is not bounded as a sequence in B(X,X), contraryto the 

conclusion of uniform boundedness principle. So X cannot be complete. 

Example (5): 

suppose   we have a sequence of complex numbers  𝑥 = (𝑥1, 𝑥2 , … ) ⊂ ℂ                                                          

with the property that whenever 𝑦 = (𝑦1, 𝑦2 , … ) ⊂ ℂ is a sequence that 

converges to 𝑦𝑛 → 0, we have that the sum  𝑥𝑖𝑦𝑖
∞
𝑖  converges. Show that 

  𝑥𝑖 
∞
𝑖  converges. 
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Solution: the first step is of course to translate this problem into familiar 

functional analytic terms. The condition that the sequence y converges to 0 is 

simply the statement that y is a member of 

𝑐0 =  𝑦 ∈ 𝑙∞  𝑦𝑛 → 0 ={the set of sequence converging 0} 

And we use the fact that 𝑐0 is a Banach space with norm .  ∞ . and x is just 

some sequence, which we would like to show is an element of 𝑙1. 

Since we would like to use Uniform Boundedness Principle in some way, let us 

start by finding a sequence {𝑇𝑛} ⊂ B(𝑐0, 𝑦) where y is some normed space.  

Let 

𝑇𝑛 𝑦 =  𝑥𝑖𝑦𝑖
𝑛
𝑖=1 ,    where    𝑦 = (𝑦1, 𝑦2 , … ) ∈ 𝑐0 

Be the truncated sum which we have assumed converges. It is clear that 

𝑇𝑛⊂B(𝑐0, ℂ)=(𝑐0)′ . Indeed, the calculation 

 𝑇𝑛 𝑦  =   𝑥𝑖𝑦𝑖

𝑛

𝑖=1

 ≤  𝑥𝑖𝑦𝑖 

𝑛

𝑖=1

≤    𝑥𝑖 

𝑛

𝑖=1

  𝑦 ∞  

Shows that the  𝑇𝑛  are bounded operators. The assumption that  𝑥𝑖𝑦𝑖
𝑛
𝑖=1  

converges for any 𝑦 ∈ 𝑐0 implise that for any 𝑦 ∈ 𝑐0,  the sequence {𝑇𝑛 𝑦 } is 

convergent, hence bounded. So {𝑇𝑛  } is a pointwise bounded sequence of 

operators. Therefore, by the uniform boundedness principle, it is uniformaly 

bounded, meaning thathere is some 𝑀 > 0 such that {𝑇𝑛  }≤ 𝑀 for all 𝑛 ∈ ℕ. 

Now, another way to express 𝑇𝑛  is to let 𝑥(𝑛) = (𝑥1, 𝑥2, … , 𝑥𝑛 , 0, … ) be a 

truncated version of x (so that{𝑥(𝑛)}𝑛∈ℕ) is a sequence in𝑙1), and let  
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𝑇𝑛 𝑦 =  𝑥𝑖
(𝑛)
𝑦𝑖

∞
𝑖=1 where 𝑦 = (𝑦1 , 𝑦2 , … ) ∈ 𝑐0. 

Suppose we define 𝑦(𝑛) = (𝑦1
(𝑛)

, 𝑦2
(𝑛)

, … ) ∈  𝑐0 by 

𝑦𝑘
 𝑛 

=  
𝑥 𝑘
 𝑛 

,  𝑥𝑘
 𝑛 
  

0  𝑖𝑓  𝑥𝑘
(𝑛)

= 0  

  𝑖𝑓  𝑥𝑘
 𝑛 

= 0 

Then 𝑇𝑛 𝑦
 𝑛  = 𝑥 𝑛  

1
=  𝑥 𝑛  

1
 𝑦 𝑛  

∞
. This implies that  𝑇𝑛 ≥  𝑥 𝑛  

1
, 

which in turn implies that  𝑥 𝑛  
1
≤ 𝑀 for all n. but it clear from the definition 

of 𝑥 𝑛  that { 𝑥 𝑛  
1
} ⊂ℝ is an increasing sequence of real numbers. Being 

bounded above by M, it must converge, hence 

  𝑥𝑖 

∞

𝑖

< ∞ 

And 𝑥 ∈ 𝑙1 is desired.[10] 

 

Theorem(3.8.1):  

LetXbe a Banach space andYa normed space.  Let 

E⊂L(X,Y)beanyset of bounded linear operators.suppose  that  for  

everyx∈X,thereexists𝑀𝑥 ≥ 0 such that, for all T∈E, 

 𝑇𝑥 ≤ 𝑀𝑥 .  

Then there exist M≥ 0 such that, for all T∈ 𝐸, 

 𝑇 ≤ 𝑀 

Remark: TheconclusionofthetheoremstatesthattheoperatorsTinEareuniformly 

bounded. 
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Proof: 

Foreachx∈X,letMxbechosenasinthestatementofthetheorem.Foreachn,letKn⊂Xbethec

losedsetdefinedby 

𝐾𝑛 = {𝑥:  𝑇𝑥 ≤ 𝑛, ∀𝑇 ∈ 𝐸}. 

Ifn≥Mx,thenxbelongstoKn; sotheunionofalltheseKn 

isthewholeofX.SonotalloftheKncanbenowheredense,bytheBairetheoreminitsseco

ndformabove.Sowecanfindaparticular 

nsothattheclosedsetKnactuallycontainsaclosedball: 

𝐵 (𝑥0;  𝜀) ⊂ 𝐾𝑛 . 

Ifx∈X,then𝑥0 + 𝜀𝑥  𝑥  belongstotheclosedball𝐵  𝑥0;  𝜀 andthereforebelongstotheclo

sedsetKn.So,forallxandallT∈E, 

 𝑇  𝑥0 +
𝜀𝑥

 𝑥 
  ≤ 𝑛. 

Withanapplicationofthetriangleinequality,thisyields(forallxandT∈E) 

 𝑇𝑥 ≤
1

𝜀
(𝑛 +  𝑇𝑥0 ) 𝑥  

≤
1

𝜀
(𝑛 + 𝑀𝑥0

) 𝑥  

So 

 𝑇 =≤
1

𝜀
(𝑛 + 𝑀𝑥0

) 

For all T in E. 

Wecansharpenupthestatementofthetheoremalittle. 

ThelastpartoftheproofshowsthatifthereisanynsuchthatKn 

containsaball,thenthefamilyofoperatorsE⊂L(X,Y)isuniformlybounded.Tostatethisth

eotherwayround:ifthefamilyofoperatorsEisnotuniformlybounded,theneveryKnisno

wheredense.Thisleadstothefollowingversion: 
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Corollary(3.8.2): 

SupposeE⊂L(X,Y ) isnotuniformlybounded:thatis, 

sup{ 𝑇 :T∈E}=∞ 

Thenthere xisx∈Xsuchthat 

sup{ 𝑇𝑥 :T∈E}=∞ 

Indeed,thesetofpointsx∈Xwiththispropertyiscomeager. 

Proof: 

Thefirstpartofthiscorollaryisjustarestatementoftheoriginaltheorem. For 

thesecondpart,wenotedabovethatifEisnotuniformlybounded,thentheclosedset 

Kn ={x: 𝑇𝑥 ≤n,∀T∈ E}. 

 

Isnowheredense,foralln.TheunionK=𝑈𝑛𝐾𝑛 isthereforemeager.Ifxbelongstothecom

eagersetX\K,then 

sup{ 𝑇𝑥 :T∈E}=∞

Thisprovesthecorollary.[8] 

Application:non-convergenceofFourierseries(3.8.3): 

LetC(T)denotetheBanachspaceofcontinuousperiodicfunctions 
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f:ℝ→ℂwithperiod1.Foreachf∈C(T),let  𝑠𝑛𝑓 denoteasbeforethenthe 

partialsumofitsFourierseries.Inclass,weindicatedtheconstruction 

ofafunctionfforwhichthepartialsums(𝑠𝑛𝑓)(0)atx=0divergedas 

n→∞. 

Usingtheuniformboundednessprinciple,wecanestablishtheexistenceofsuchanf,ands

howfurtherthatfunctionsfwiththisapparentlypathologicalbehaviorarecomeagerinC(

T). 

 

Proposition (3.8.4): 

there is acomeager set of functions f ∈C(T)for which the partial sums of the 

Fourier series atx=0,(𝑠𝑛𝑓)(0),diverge 

𝑠𝑢𝑝  𝑠𝑛𝑓 (0) = ∞  

Proof:Foreachn≥0,let  𝑇𝑛∈𝐿 𝐶 𝑇 , ℂ bethelinearfunctional 

𝑇𝑛(𝑓)= 𝑠𝑛𝑓 (0)) 

 

Each𝑇𝑛 isaboundedlinearfunctional,butthecollectionoffunctions 

𝐸 = {𝑇𝑛 ∶ 𝑛 ∈ 𝑁} 

 

Isnotuniformlybounded. 

Indeed,aswesawinclass,bytaking𝑓𝑛 tobeacontinuousapproximationtothe 

𝑠𝑖𝑔𝑛(𝐷𝑛) 

 

where  𝐷𝑛  istheDirichletkernel,wecanseethat 
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 𝑇𝑛 ≥   𝐷𝑛  
1

0

Whichdivergeslikelogn.Bytheabovecorollarytotheuniformboundednesstheorem, 

thereexistsacomeagersetZ,offunctionsf∈C(T)suchthat 

𝑠𝑢𝑝 𝑇𝑛𝑓 = ∞  

Forall  𝑓 ∈ 𝑍.ThisstatementispreciselytheconclusionoftheProposition. 

Thesameargumentapplies,ofcourse, tothevaluesof  𝑠𝑛𝑓atanypoint 

𝑥 ∈  0,1 ,notjustx=0.Becausea countable 

eintersectionofcomeagersetsiscomeager,wededuce: 

 

Corollary(3.8.5): 

Givenanycountable set of points {𝑥𝑘}𝑘∈𝑁in[0,1],wecanfinda continuous periodic    

function  𝑓 ∈ 𝐶(𝑇)whose Fourier series is divergent  an 

every𝑥𝑘 .Indeed,thefunctionsf with this property are a coeager 

set. 

So,atanygivencountablesetofpoints,convergenceofaFourierseriesistheexception, 

nottherule. 

ThisshouldbecontrastedwiththecorollarytoCarleson’sverydifficulttheorem,whichtell

susthatforanycontinuousperiodicfunctionf,thepartialsums𝑠𝑛𝑓 𝑥 convergeforalmos

tallx. 

 

Operators (3.9): 

     The supset D is called the Domain of definition of the operator A and denoted 

by Dom(A) ; the set {A(x):x∈ 𝐷} is called the domain of values of the operator A 

or its range , and is denoted by R(A). 
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  If A is an operator from X into Y where X=Y, then A is called an operator on X. 

   If Dom(A)=X, then A is called an everywhere  defined operators. 

   If 𝐴1 , 𝐴2 are operators from 𝑋1 into 𝑌1 and from 𝑋2 into 𝑌2 with domains of 

definition Dom(𝐴1) and Dom(𝐴2), respectively, such that  

Dom(𝐴1) ⊂ Dom(𝐴2), and 𝐴1𝑥 = 𝐴2𝑥 for all 𝑥 ∈ Dom(𝐴1), then if 𝑋1 = 𝑋2, 

𝑌1 = 𝑌2, the operator 𝐴1is called a compression or restriction of the operator 𝐴2, 

while𝐴2 is called an extension of 𝐴1 ; if 𝑋1 ⊂ 𝑋2, 𝐴2 is called an extension of  

𝐴1exceeding𝑋1. 

Many equation in function spaces or abstract spaces can be expressed in the form 

Ax=y, where x∈ 𝑈, y∈ 𝑉 , where U, V are vector spaces; y is given, x is unknown 

and A is an operator from U into V.  the assertion of the existence of a solution to 

this equation for any right-hand side y∈ 𝑉 is equivalent to the assertion that the 

range of the operator A is the whole space V; the assertion that the equation Ax=y 

has a unique solution for any y∈ 𝑅(𝐴) means that A is a one-to-one mapping from 

Dom(A) onto 𝑅(𝐴). 

If U and V are vector spaces, Then in the set of  all operators from U into V it is 

possible to single out the class of linear operators, the remaining operators from U 

into V are called non-linear operators. 

   If U and V are topological vector spaces, then in the set of operators from U into 

V the class of continuous operators can be naturally singled out. So are the class of 

bounded linear operators A (operators A such that the image of any bounded set in 

U is bounded in V) and the class of compact linear operators . 
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The most common kind of operator encountered are linear operators. Let U and V 

be vector space over field K. operator A:𝑈 → 𝑉 is called linear if  

𝐴 𝛼𝑥 + 𝛽𝑦 = 𝛼𝐴𝑥 + 𝛽𝐴𝑦
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For all x, y in U and for all 𝛼, 𝛽 in K. 

The importance of linear operators is partially because they are morphisms between 

vector spaces. 

In finite-dimensional case linear operators can be represented by matrices in the 

following way. Let K  be a field, and U and V be finite-dimensional vector spaces 

over K. let us select a basis  𝑢1, 𝑢2, … , 𝑢𝑛 , in U and 𝑣1, 𝑣2, … , 𝑣𝑛 , in V. then let 

𝑥 = 𝑥𝑖𝑢𝑖  be an arbitrary vector in U, and A:𝑈 → 𝑉 be linear operator. Then 

𝐴𝑋 = 𝑥𝑖𝐴𝑢𝑖 = 𝑥𝑖(𝐴𝑢𝑖)
𝑗𝑉𝑗 . 

Then 𝑎𝑖
𝑗
≔ (𝐴𝑢𝑖)

𝑗 ∈ 𝐾 is a matrix of the operator A in fixed bases 𝑎𝑖
𝑗
does not 

depend on the choiceof x, and  Ax=y iff𝑎𝑖
𝑗
𝑥𝑖 = 𝑦𝑗 . Thus in fixed bases n-by-m 

matrices are in bijective correspondence to linear operators from U to V.[12] 

   If U and V are locally convex spaces, then it is natural to examine different 

topologies on U and V; an operator is said to be semi-continuous if it defines a 

continuous mapping from the space U into the space V with the weak topology (the 

concept of semi-continuity is mainly used in the theory of non-linear operators ); an 

operator is said to be strongly continuous  if it is continuous as a mapping from U 

with the boundedly weak topology into the space V; an operator is called weakly  

continuous if it defines a continuous mapping from U into V where U and V have 

the weak topology. Compact operators are often called completely- continuous 

operators. Sometimes the term “completely- continuous operator” is used instead of  

“strongly- continuous operator”, or to denote an operator which maps any weakly-

convergent sequence to a strong-convergent one; if U and V are reflexive 
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Banachspaces, then these conditions are equivalent to the compactness of the 

operator. If an operator is strongly continuous, then it is weakly continuous 

The important concepts directly related to operators between finite-dimensional 

vector space are the ones of rank, determinant, inverse operator, and eigenspace.  

Linear operators also play a great role in the infinite- dimensional case. The 

concept of rank and determinant cannot be extended to infinite- dimensional 

matrices. This is why very different techniques are employed when studying liner 

operators in the infinite- dimensional case. The study of linear operators in the 

infinite- dimensional case is known as functional analysis. 

The space of sequences of real numbers, or more generally sequences of vectors in 

any vector space, themselves form an infinite-dimensional vector space. The most 

important cases are sequences of real or complex numbers, and these spaces, 

together with linear subspaces, are known as sequence spaces. Operators on these 

spaces are known as sequence transformations. 

Bounded linear operators over Banach space form a Banach algebra in respect to 

the standard operator norm. The theory of Banach algebras develops a very general 

concept of spectra that elegantly generalizes the theory of Eigen spaces. 

   The Fourier transform is useful in applied mathematics, particularly physics and 

signal processing. It is knows as integral operator; it is useful mainly because it 

converts a function on one (temporal) domain to a function on another (frequency) 

domain, in a way effectively invertible. Nothing significant is lost, because there is 

an inverse transform operator. In the simple case of periodic functions, this result is 

based on the theorem that any continuous periodic function can be represented as 

the sum of a series of sine waves and cosine waves: 

http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Sequence_space
http://en.wikipedia.org/wiki/Sequence_transformation
http://en.wikipedia.org/wiki/Banach_space
http://en.wikipedia.org/wiki/Banach_algebra
http://en.wikipedia.org/wiki/Spectrum_(functional_analysis)
http://en.wikipedia.org/wiki/Invertible
http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Sine_wave
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𝑓 𝑡 =
𝑎0

2
+  𝑎𝑛

∞

𝑛=1

cos 𝜔𝑛𝑡 + 𝑏𝑛𝑠𝑖𝑛 𝜔𝑛𝑡  

Coefficients (𝑎0,𝑎1,𝑏1,𝑎2,𝑏2, ...) are in fact an element of an infinite-dimensional 

vector space ℓ
2
, and thus Fourier series is a linear operator. 

When dealing with general function R → C, the transform takes on an integral 

form: 

𝑓 𝑡 =
1

 2𝜋
 𝑔(𝜔)𝑒𝑖𝜔𝑡

+∞

−∞

 

 

[52]

http://en.wikipedia.org/wiki/Sequence_space
http://en.wikipedia.org/wiki/Integral
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Chapter Four 

Engineering Interpretation of Fourier Transform 

 

Introduction (4.1): 

The Fourier transformbyJeanBaptisteJosephFourier isanindispensabletoolfor 

manyfieldsofmathematics,physics,computerscienceandengineering. Especially 

the analysis and solution ofdifferential equations orsignaland 

imageprocessingcannotbeimaginedwithoutitany more. Its kernel 

consistsofthecomplexexponentialfunction. With 

thesquarerootofminusone,theimaginaryunitI,aspart of 

theargumentitisperiodicandthereforesuitablefortheanalysisofoscillatingsystems. 

William KingdonCliffordcreated the geometric algebras in1878. They usually 

contain continuoussubmanifolds ofgeometric square roots of minusone.Each 

multivectorhas anaturalgeometric interpretationso the generalization of the 

Fourier transform tomultivectorvaluedfunctionsin 

thegeometricalgebrasisveryreasonable. Ithelpstointerpret thetransform, apply 

itinatargetoriented waytothespecificunderlying problemandallows 

anewpointofviewonfieldmechanic. 

Applicationoriented manydifferentdefinitionsof Fourier transformsin geometric 

algebras weredeveloped. For  example the CliffordFourier trans- 

formintroducedbyJancewicz andexpanded byEblingandScheuermannandHitzer 

andMawardi, ortheoneestablishedbySommen, and re-

establishedbyBü low.FurtherwehavethequaternionicFourier transformbyEll,  

and later byBü low,the space-time Fourier transformbyHitzer ,  the 

CliffordFourier transformforcolorimagesbyBatardetal. , the Cylindrical Fourier 
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transformbyBrackxetal.thetransforms byFelsberg ,orEllandSangwine.Allthese 

transformshavedifferentinterestingproperties and deserve to bestudied 

independentlyfrom oneanother.Butthe analysis oftheirsimilarities reveals alot 

abouttheir qualities, too.Weconcentrateonthis matterand summarize allofthemin 

onegeneraldefinition. 

Recently therehavebeenverysuccessfulapproachesbyDeBie,Brackx, DeSchepper  

andSommentoconstructCliffordFourier transformsfromoperator 

exponentialsanddifferential equations .Thedefinition presentedinthis research 

doesnotcoverallofthem,partly becausetheirclosed integral 

formisnotalwaysknownorhighlycomplicated,andpartly because they 

canbeproduced bycombinationsandfunctions ofourtransforms. 

Wefocusoncontinuous geometric Fourier transformsoverflatspaces 𝑅𝑝,𝑞 intheir 

integral representation.Thatwaytheir finite, regular discrete equivalents   as 

used in computationalsignal and image processing can be intuitively 

constructedanddirectapplicabilitytotheexistingpracticalissues andeasynumerical 

manageabilityareensured.[26] 

 

Definition (4.2): 

Weexamine geometric algebras 𝐶ℓ𝑝,𝑞 ,𝑝 + 𝑞 = 𝑛 ∈ 𝑁overℝ𝑝+𝑞generatedbythe 

associative, bilinear geometric productwith  neutralelement1 satisfying 

𝑒𝑗𝑒𝑘 + 𝑒𝑘𝑒𝑗 = 𝜖𝑗𝛿𝑗𝑘  

Forall𝑗, 𝑘 ∈  1, . . . , 𝑛 withtheKronecker symbol  𝛿  and 

𝜖𝑗 =  
1      ∀𝑗 = 1,… , 𝑝

−1       ∀𝑗 = 𝑝 + 1,… , 𝑛
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For the sake of brevity wanttorefertoarbitrarymultivectors 

𝐴 =   𝑎𝑗1…𝑗𝑘  𝑒𝑗1 …𝑒𝑗𝑘 ∈ 𝑐ℓ𝑝𝑞
1≤𝑗1<⋯<𝑗𝑘≤𝑛

𝑛

𝑘=0

 

𝑎𝑗1…𝑗𝑘  ∈ ℝ, as 

𝐴 =  𝑎𝑗𝑒𝑗
𝑗

 

Whereeachofthe 2𝑛 
multi-indices 𝑗 ⊆  1, . . . , 𝑛 indicates abasisvector of 

𝐶ℓ𝑝,𝑞by𝑒𝑗 = 𝑒𝑗1 …𝑒𝑗𝑘 , 1 ≤ 𝑗1 <. . . < 𝑗𝑘 ≤ 𝑛, 𝑒∅ = 𝑒0 = 1  anditsassociated 

coefficient𝑎𝑗 = 𝑎𝑗1…𝑗𝑘  ∈ℝ.[16] 

Definition (4.3): 

Theexponential functionofamultivectorA∈𝐶ℓ𝑝,𝑞 is defined bythepowerseries 

𝑒𝐴 ≔ 
𝐴𝑗

𝑗!

∞

𝑗=0

 

Lemma (4.4): 

For twomultivectors𝐴𝐵 = 𝐵𝐴that commute amongst each other wehave 

𝑒𝐴+𝐵 = 𝑒𝐴𝑒𝐵 

 

Proof: 

Analogoustotheexponentruleofrealmatrices. 
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Notation: For each geometric algebra 𝐶ℓ𝑝,𝑞wewillwrite ʝ𝑃,𝑞 = {𝑖 ∈ 𝐶ℓ𝑝,𝑞 , 

𝑖2 ∈ ℝ−} todenote the realmultiples ofallgeometric square roots of Minus 

one.Wechosethesymbol  ʝtobereminiscentof the imaginary numbers. 

 

Definition (4.5):  

   Let𝐶ℓ𝑝,𝑞 beageometric Algebra, A:ℝ𝑚 → 𝐶ℓ𝑝,𝑞beamultivector fieldand  𝑥, 𝑢 ∈

ℝ𝑚vectors. 

AGeometricFourierTransform(GFT)ℱ𝐹1 ,𝐹2
 𝐴 isdefinedbytwoordered 

finitesets 

𝐹1 =  𝑓1 𝑥,𝑢 , … , 𝑓𝜇  𝑥,𝑢  , 𝐹2={𝑓𝜇+1(𝑥, 𝑢),… , 𝑓𝑣(𝑥,𝑢)} 

of mappings  𝑓𝑘 𝑥,𝑢 :ℝ𝑚 × ℝ𝑚 → ʝ𝑃,𝑞 , ∀𝑘 = 

1, . . . , 𝜈andthecalculationrule 

ℱ𝐹1 ,𝐹2
 𝐴  𝑢 ≔   𝑒−𝑓 𝑥,𝑢 

𝑓∈𝐹1
ℝ𝑚

. 𝐴(𝑥) 𝑒−𝑓 𝑥,𝑢 

𝑓∈𝐹2

𝑑𝑚𝑥 

   This definition combines many Fouriertransformsto asinglegeneral one.It 

enables ustoproofthe wellknown theorems just dependentonthe properties 

ofthechosenmappings. 

 

General Properties  (4.6): 

   First weproofgeneralproperties validforarbitrarysets  𝐹1, 𝐹2. 
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Theorem(4.6.1):   

   Thegeometric Fouriertransformexistsforallintegrablemultivector fields  𝐴 ∈

𝐿1(ℝ𝑛). 

Proof: 

Theproperty 

𝑓𝑘
2 𝑥, 𝑢 ∈ ℝ− 

Ofthemappings 𝑓𝑘 for  𝑘 = 1, . . . , 𝜈leadsto 

𝑓𝑘
2(𝑥, 𝑢)

 𝑓𝑘
2(𝑥, 𝑢) 

= −1 

Forall𝑓𝑘 𝑥,𝑢 ≠ 0.Sousingthedecomposition 

𝑓𝑘 𝑥, 𝑢 =
𝑓𝑘 𝑥, 𝑢 

 𝑓𝑘 𝑥, 𝑢  
 𝑓𝑘 𝑥, 𝑢   

Wecanwrite  ∀𝑗 ∈ ℕ 

𝑓𝑘
𝑗  𝑥, 𝑢 =

 
 

 
(−1)𝑙 𝑓𝑘 𝑥, 𝑢  𝑗                      𝑓𝑜𝑟 𝑗 = 2𝑙, 𝑙 ∈ ℕ0

 −1 𝑙
𝑓𝑘 𝑥, 𝑢 

 𝑓𝑘 𝑥, 𝑢  
 𝑓𝑘 𝑥, 𝑢  𝑗      𝑓𝑜𝑟 𝑗 = 2𝑙 + 1 , 𝑙 ∈ ℕ0

  

Whichresults in 

𝑒−𝑓𝑘(𝑥,𝑢) =  
(−𝑓𝑘(𝑥, 𝑢))𝑗

𝑗!

∞

𝑗=0
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=  
(−1)𝑗  𝑓𝑘(𝑥, 𝑢) 2𝑗

(2𝑗)!

∞

𝑗=0

−
𝑓𝑘(𝑥, 𝑢)

 𝑓𝑘(𝑥, 𝑢) 
 

(−1)𝑗  𝑓𝑘(𝑥, 𝑢) 2𝑗+1

(2𝑗 + 1)!

∞

𝑗=0

 

= cos  𝑓𝑘 𝑥, 𝑢   −
𝑓𝑘(𝑥, 𝑢)

 𝑓𝑘(𝑥, 𝑢) 
sin⁡( 𝑓𝑘 𝑥, 𝑢  ) 

Becauseof 

 𝑒−𝑓𝑘 (𝑥,𝑢) =  cos  𝑓𝑘 𝑥, 𝑢   −
𝑓𝑘(𝑥, 𝑢)

 𝑓𝑘(𝑥, 𝑢) 
sin⁡( 𝑓𝑘 𝑥, 𝑢  )  

≤  cos  𝑓𝑘 𝑥, 𝑢    +  
𝑓𝑘 𝑥, 𝑢 

 𝑓𝑘 𝑥, 𝑢  
  sin⁡( 𝑓𝑘 𝑥, 𝑢   ≤ 2 

Themagnitudeoftheimproper integral 

 ℱ𝐹1 ,𝐹2
 𝐴  𝑢  =   𝑒−𝑓 𝑥,𝑢 

𝑓∈𝐹1
ℝ𝑚

. 𝐴(𝑥) 𝑒−𝑓 𝑥,𝑢 

𝑓∈𝐹2

𝑑𝑚𝑥 

≤    𝑒−𝑓 𝑥,𝑢  

𝑓∈𝐹1
ℝ𝑚

.  𝐴(𝑥)   𝑒−𝑓 𝑥,𝑢  

𝑓∈𝐹2

𝑑𝑚𝑥 

≤   2

𝑓∈𝐹1
ℝ𝑚

 𝐴(𝑥)  2

𝑓∈𝐹2

𝑑𝑚𝑥 

=2𝑣 ∫  𝐴(𝑥) 
ℝ𝑚

𝑑𝑚𝑥 

 

IsfiniteandthereforethegeometricFouriertransformexists. 
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CoorthogonalityandBases(4.7): 

   Wecalltwovectors𝑣, 𝑤orthogonal(𝑣 ⊥ 𝑤)if  𝑣 · 𝑤 = 0andcolinear  (𝑣 w) if 

𝑣𝑤 = 0. 

 

Definition(4.7.1): 

   Wecalltwo blades  𝐴, 𝐵orthogonal(𝐴 ⊥ 𝐵)ifalloftheir generating 

vectorsaremutuallyorthogonalandcolinear  (𝐴 B) ifallvectors 

fromonebladearecollinear toallvectors intheother one. 

Foravector  𝑣  andablade  𝐵 = 𝑏1 …˄ 𝑏𝑑 thefollowingequalities hold 

𝑣 ⊥ 𝐵 ⇔ 𝑣𝐵 =  𝑣 ∧ 𝐵 ⇔ 𝑣 · 𝐵 = 0 ⇔ 𝑣𝐵 = (−1)𝑑𝐵𝑣,
 𝑣 B⇔ 𝑣𝐵 = 𝑣 ·

𝐵 ⇔ 𝑣 ∧ 𝐵 = 0 ⇔ 𝑣𝐵 = (−1)𝑑−1𝐵𝑣. 

 

Definition (4.7.2): 

WecalltwobladesAand 𝐵 coorthogonal if  𝐴𝐵 = ±𝐵𝐴.  

  Abladecanalternativelybewrittenasan outer  productof vectors or asageometric 

product oforthogonalvectors. For blades𝐴 = 𝑎1 …˄ 𝑎𝜇and 𝐵 =

𝑏1 …˄ 𝑏𝑣wewillusethenotations  𝑠𝑝𝑎𝑛 𝐵 ≔ span 𝑏1, … , 𝑏𝑣 , 𝐴 ⊕𝐵: =

 𝑠𝑝𝑎𝑛 𝐴 ⊕ 𝑠𝑝𝑎𝑛 𝐵 ⊆ ℝ𝑝,𝑞 ,𝐴 ∩ 𝐵: =  𝑠𝑝𝑎𝑛 𝐴 ∩ 𝑠𝑝𝑎𝑛 𝐵 ⊆ ℝ𝑝,𝑞  

𝛽(𝐴,𝐵): = 𝑑𝑖𝑚(𝐴 ∩ 𝐵)and 𝛼(𝐴,𝐵): = 𝑑𝑖𝑚(𝐴⊕ 𝐵) 

= 𝜇 + 𝜈 − 𝛽 𝐴,𝐵 .For aset ofblades 𝐵 = {𝐵1, … , 𝐵𝑑 }, 𝑑 ∈ ℕweusethe 

notation 𝑠𝑝𝑎𝑛 𝐵 =⊕𝑘=1
𝑑 𝑠𝑝𝑎𝑛 𝐵𝑘  and 𝛼 𝐵 = dim 𝑠𝑝𝑎𝑛 𝐵  .[43] 

Lemma (4.7.3):  
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Thebasisblades  𝑒𝑘of  𝐺𝑝,𝑞 thataregeneratedfromanorthogonal basisofℝ𝑝,𝑞are 

mutually coorthogonal. 

 

 

Proof: 

Allorthogonalbasisvectorsof  ℝ𝑝,𝑞satisfy 

𝑒𝑗𝑒𝑘 =  
−𝑒𝑘𝑒𝑗              𝑓𝑜𝑟 𝑗 ≠ 𝑘 ∈ ℕ

𝑒𝑘𝑒𝑗               𝑓𝑜𝑟 𝑗 = 𝑘           
  

Ineverygeometric algebra 𝐺𝑝,𝑞 .Sofortwobasisblades 𝑒𝑗 = 𝑒𝑗1 ,…𝑗𝜇 , 𝑒𝑘 = 𝑒𝑘1 ,…𝑘𝑣 , 

1< 𝑗1 < ⋯ < 𝑗𝜇 ≤ 𝑛, 1 ≤ 𝑘1 < ⋯ < 𝑘𝑣 ≤ 𝑛, with dimentions 𝜇,  respectively 𝑣 

we get 

𝑒𝑗𝑒𝑘 = (−1)𝜇𝑣−𝛽(𝑒𝑗 ,𝑒𝑘)𝑒𝑘𝑒𝑗  

where𝛽 𝑒𝑗 , 𝑒𝑘 = |{𝑙 ∈  ℕ, 𝑙 ∈  𝑗𝑎𝑛𝑑𝑙 ∈  𝑘}|isthenumber 

ofindicesappearinginbothsets, respectively the dimension  of the 

meetofthetwoblades. 

Lemma (4.7.4):     

For twocoorthogonal blades  𝐴 and 𝐵 there isanorthonormalbasis 

𝑉 =  𝑣1, … , 𝑣𝛼 𝐴,𝐵  , of  𝐴 ⊕𝐵 ⊆ ℝ𝑝,𝑞suchthat bothcanbeexpressedas real 

multiples ofbasis blades, that means 𝐴 = 𝑠𝑔𝑛 𝐴  𝐴 𝑣𝑗1
, … , 𝑣𝑗𝑚 and 𝐵 =

𝑠𝑔𝑛 𝐵  𝐵 𝑣𝑘1
, … , 𝑣𝑘𝑣 , 𝑎, 𝑏 ∈ ℝ withthesignumfunction being1or−1. 

Proof: 
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Weknowthateveryblade  𝐴 spansavectorspace  𝑠𝑝𝑎𝑛 𝐴 ,that 

thisvectorspacehasanorthonormalbasis,howitcanbeproducedandthatfor

  𝑠𝑝𝑎𝑛 𝐵 ⊂ 𝑠𝑝𝑎𝑛 𝐴 thereisauniqueblade𝐴 ⊥ 𝐵 = 𝐵−1. 

A Orthogonal to 𝐵,suchthat  𝑠𝑝𝑎𝑛(𝐵) ∩ 𝑠𝑝𝑎𝑛(𝐴 ⊥ 𝐵) = ∅,𝑠𝑝𝑎𝑛(𝐵) ∪

𝑠𝑝𝑎𝑛(𝐴 ⊥ 𝐵) = 𝑠𝑝𝑎𝑛(𝐴). 

Thereforewecanseparatethespace𝐴⊕𝐵 = (𝐴 ∩ 𝐵) ∪ 𝑠𝑝𝑎𝑛(𝐴⊥(𝐴∩𝐵)) ∪

𝑠𝑝𝑎𝑛(𝐵⊥(𝐴∩𝐵)) 

into three disjointparts and immediately  know that𝐴 ∩  𝐵isorthogonalto both 

(𝐴⊥(𝐴∩𝐵))and (𝐵⊥(𝐴∩𝐵)).Since𝑠𝑝𝑎𝑛(𝐴⊥(𝐴∩𝐵)) ∩  𝑠𝑝𝑎𝑛(𝐵⊥(𝐴∩𝐵)) = ∅all 

basisvectors𝑎1, … , 𝑎𝜇−𝛽(𝐴,𝐵)of 𝐴⊥(𝐴∩𝐵) satisfy 

𝑎 1
, … , 𝑎𝜇−𝛽(𝐴,𝐵)∉span 𝐵⊥(𝐴∩𝐵) 𝑠𝑜∀𝑗 = 1,… , 𝜇 − 𝛽(𝐴, 𝐵): 𝑎𝑗  ˄𝐵⊥(𝐴∩𝐵) ≠

0.Fortheproductofavectorandabladewehave 

𝑎𝑗  𝐵⊥(𝐴∩𝐵) = 𝑎𝑗 .  𝐵⊥(𝐴∩𝐵) + 𝑎𝑗  ˄𝐵⊥(𝐴∩𝐵) 

= (−1)𝑣−𝛽 𝐴,𝐵 −1
𝐵⊥(𝐴∩𝐵). 𝑎𝑗

+ (−1)𝑣−𝛽 𝐴,𝐵 
𝐵⊥(𝐴∩𝐵) 𝑎˄𝑗  

and since  𝑎𝑗 ∧ 𝐵 ≠ 0  necessarily 𝑎𝑗 . 𝐵 = 0  hastobevalid∀𝑗 = 1, . . . , µ −

𝛽 𝐴,𝐵 inordertosatisfycoorthogonality.Thatisequivalentto  𝐴⊥(𝐴∩𝐵)⊥𝐵⊥ 𝐴∩𝐵 a

nd therefore unifying the orthonormalbasesofall  threeparts 

formanorthonormalbasis of  𝐴 ⊕𝐵.Let 𝑏1 , … , 𝑏𝑣−𝛽(𝐴,𝐵)bethe basis of 

𝑠𝑝𝑎𝑛 𝐵 , 𝑐1, … , 𝑐𝛽 𝐴,𝐵 bethebasisof 𝐴 ∩ 𝐵then the blade  𝐴hascanbe 

writtenas 

𝐴 = 𝑠𝑔𝑛 𝐴  𝐴 𝑐1, … , 𝑐𝛽 𝐴,𝐵 
,
𝑎 1

, … , 𝑎𝜇−𝛽(𝐴,𝐵)and the blade as 

𝐵 =  𝑠𝑔𝑛 𝐵  𝐵 𝑐1, … , 𝑐𝛽 𝐴,𝐵 
,
𝑏 1

, … , 𝑏𝑣−𝛽(𝐴,𝐵) 
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Lemma(4.7.5): 

Let𝐵 =  𝐵1, … , 𝐵𝑑 , 𝑑 ∈ ℕbenon-zero  mutuallycoorthogonalblades.Then there 

isanorthonormalbasis𝑣1, … , 𝑣𝛼(𝐵)) of 𝑠𝑝𝑎𝑛(𝐵)such that every𝐵𝐾 ,𝑘 =

1, . . . , 𝑑canbewrittenasarealmultipleofabasisblade,That means 𝐵𝐾 =

𝑠𝑔𝑛(𝐵𝐾) 𝐵𝐾 𝑣𝑗  𝑘 with 

𝑣𝑗  𝑘 = 𝑣𝑗1 𝑘 ,… ,𝑗𝜇  𝑘 , 𝜇 = 𝜇 𝑘 = dim 𝐵𝐾 ,  𝐵𝐾 ∈ ℝ. 

 

Proof:  

The set 𝐷isthe set ofintersectionsofthe subspaces spanned by  

allpossiblecombinationsofelementsof𝐶.Theelements𝐷𝐾of 𝐷 withminimaldimensi

onsatisfy∀𝐷𝑗 : 𝐷𝐾 ∩ 𝐷𝑗 ∈ {∅, 𝐷𝐾},becauseotherwise  𝐷𝐾 ∩ 𝐷𝑗  

wouldhavelowerdimension than  𝐷𝐾whichisacontradiction.Inboth 

casesallgenerating vectorsof  𝐷𝐾canbeadded tothebasis,compare 

theproofofLemma(4.7.4)Sothechoiceofanyvector𝑐 ∈  𝑠𝑝𝑎𝑛(𝐷𝐾)willbesuccessful. 

Onceavectorischosenthere aretwomorecasesthat already appeared inthe 

proofofLemma (4.7.4) Inthe caseof  𝑐 ∉ 𝑠𝑝𝑎𝑛 𝐶𝐾 follows,thatcis orthogonalto 

𝐶𝐾 ,because inthe caseof   𝑐 ∈ 𝑠𝑝𝑎𝑛(𝐶𝐾)themultiplicationof𝑐 to   𝐶𝐾inthe 

algorithmalwayscreates blades 𝑐𝐶𝐾oflowerdimension orthogonaltoc,becauseof 

𝑐−1𝐵 =  𝑐−1𝐵 dim  𝐵 −1 

Therefore the applicationofthisoperation  to all blades in  𝐶only leaves blades 

thatareorthogonalto𝑐but still coorthogonal amongst each  other because of 

𝑐−1𝐶𝑗 𝑐
−1𝐶𝑘 =  −1 𝜇𝐶𝑗 𝑐

−1𝑐−1𝐶𝑘  

  𝑐−1 2∈ℝ =  −1 𝜇  𝑐−1 2𝐶𝑗𝐶𝑘  
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= ± −1 𝜇 𝑐−1 2𝐶𝑘𝐶𝑗  

= ± −1 𝜇+𝑣−1𝑐−1𝐶𝑘𝑐
−1𝐶𝑗  

Atthe beginning 𝐶 spans the wholespace 𝑠𝑝𝑎𝑛 𝐶 = 𝑠𝑝𝑎𝑛 𝐵 but as the 

algorithem proceeds 

𝑠𝑝𝑎𝑛 𝐶 = 𝑠𝑝𝑎𝑛(𝐵)\𝑠𝑝𝑎𝑛(𝐵𝑎𝑠𝑖𝑠) 

Suchthat 𝑠𝑝𝑎𝑛  𝐶 and 

span(Basis)areorthogonal.BecauseofthatthesetBasisisorthogonalatall 

times.Thealgorithmstopswhen  𝛼 𝐶  vectorsareinBasis.Sofinally𝛼 𝐶  orthogon

alvectorswillbeinbasis,whichtherefore  indeedisanorthogonal basisof𝑠𝑝𝑎𝑛(𝐵), 

allelementsofCwillhavedimensionzeroandthealgorithm 

willendreturningthebasisandhowthebladescanbeconstructed. 

  Sotriviallyspoken,coorthogonalityofbladescanaswellbeinterpreted 

ascoorthogonalityofalltheir generating vectors, that meansalltheir generating 

vectors areeither orthogonalorcolinear. 

Theorem (4.7.6): 

Afinitenumber ofbladesare coorthogonal ifand onlyifthey are 

realmultiplesofbasisbladesofanorthonormalbasisofℝ𝑝,𝑞 . 

Proof: 

Theassertion follows fromLemma( 4.7.3) and(4.7.5) together withnormalization, 

thebasiscompletion theorem andtheGram-Schmidtorthogonalizationprocess. 
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we will only deal with geometricFourier transformswhosedefiningfunctions 

𝑓1,… ,𝑓𝑣 ,aremutually coorthogonal  blades, thatmeans they satisfy the 

property∀𝑙, 𝑘 = 1,… , 𝑣, ∀ 𝑥, 𝑢 ∈ ℝ𝑚 . 

𝑓𝑙 𝑥
,𝑢 𝑓𝑘 𝑥,𝑢 = ±𝑓𝑘 𝑥,𝑢 𝑓𝑙 𝑥

,𝑢  

Allowsustowrite 

𝑓𝑙 𝑥
,𝑢 = 𝑠𝑔𝑛(𝑓𝑙 𝑥

,𝑢 ) 𝑓𝑙 𝑥
,𝑢  𝑒𝑗 𝑙(𝑥,𝑢) 

Forall𝑙 = 1,… , 𝑣,witharealvalued function  𝑓𝑙 𝑥
,𝑢  :ℝ𝑚 × ℝ𝑚 → ℝ,and 

afunction  𝑗𝑙 𝑥
,𝑢 :ℝ𝑚 × ℝ𝑚 → 𝑝  1,… , 𝑛  thatmaps to  amulti-index 

indicating a basis multivectorofa certain basis. Wewillrefertoa set of functions 

withthispropertysimplyasasetofbasisbladefunctions. 

 

Theorem (4.7.7): 

The geometric Fouriertransformislinear withrespect toscalar factors. Let𝑏, 𝑐 ∈

ℝ and𝐴,𝐵, 𝐶:ℝ 𝑚→𝐶ℓ𝑝,𝑞bethreemultivector fieldsthat satisfy 

𝐴(𝑥) = 𝑏𝐵(𝑥) + 𝑐𝐶(𝑥),then 

ℱ𝐹1 ,𝐹2
 𝐴  𝑢 = 𝑏ℱ𝐹1 ,𝐹2

 𝐵  𝑢 + 𝑐ℱ𝐹1 ,𝐹2
 𝐶  𝑢  

Proof: 

Theassertion isaneasyconsequenceofthedistributivityofthe 

geometricproductoveraddition,thecommutativityofscalarsandthelinearity 

oftheintegral. 
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  Allgeometric  Fouriertransformscanalsobe expressedintermsof astronger 

claim.Themappings 𝑓1, . . . , 𝑓𝑣  , withthefirstµonesleftoftheargumentfunction 

andthe𝜈 − µ    others ontherightofit, areallbilinear andtherefore take theform. 

𝑓𝑘 𝑥, 𝑢 = 𝑓𝑘   𝑥𝑗𝑒𝑗 ,

𝑚

𝑗=1

 𝑢𝑙𝑒𝑙

𝑚

𝑙=1

  

 

=  𝑥𝑗𝑓𝑘(𝑒𝑗 ,

𝑚

𝑗=1

𝑒𝑙)𝑢𝑙 = 𝑥𝑇𝑀𝑘𝑢 

∀𝑘 = 1, . . . , 𝜈,where𝑀𝑘∈(ʝ𝑃,𝑞)𝑚×𝑚 ,(𝑀𝑘)𝑗𝑙 = 𝑓𝑘(𝑒𝑗 , 𝑒𝑙)according toNotation. 

1. IntheCliffordFourier transform𝑓1canbewrittenwith 

𝑀1 = 2𝜋𝑖𝑛𝐼𝑑 

2. The𝜈 = 𝑚 = 𝑛  mappings 𝑓𝑘 ,𝑘 = 1, . . . , 𝑛ofthe Bü lowCliffordFourier 

transformcanbeexpressedusing 

(𝑀𝑘)𝑗𝑙 =  
2𝜋𝑒𝑘      𝑓𝑜𝑟 𝑘 = 𝑙 = 𝑗

0                          𝑒𝑙𝑠𝑒
  

3. SimilarlythequaternionicFourier transformisgeneratedusing 

(𝑀1)𝑙𝑖 =  
2𝜋𝑖   𝑓𝑜𝑟 𝑙 = 𝑖 = 1
0                          𝑒𝑙𝑠𝑒

  

(𝑀2)𝑙𝑖 =  
2𝜋𝑗   𝑓𝑜𝑟 𝑙 = 𝑖 = 2
0                          𝑒𝑙𝑠𝑒

  

4. Wecanbuildthespacetime Fourier transformwith 
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(𝑀1)𝑙𝑗 =  
𝑒4        𝑓𝑜𝑟 𝑙 = 𝑗 = 1
0                          𝑒𝑙𝑠𝑒

  

(𝑀1)𝑙𝑗 =  
𝜖4𝑖4𝑒4        𝑓𝑜𝑟 𝑙 = 𝑗 ∈ {2,3,4}

0                          𝑒𝑙𝑠𝑒
  

5. TheCliffordFourier transformforcolorimagescanbedescribed by 

𝑀1 =
1

2
𝐵𝐼𝑑 

𝑀2 =
1

2
𝑖𝐵𝐼𝑑 

𝑀3 = −
1

2
𝐵𝐼𝑑 

𝑀4 = −
1

2
𝑖𝐵𝐼𝑑 

6. ThecylindricalFouriertransformcanalsobereproduced withmappings satisfying 

becausewecanwrite 

𝑥𝑢 = 𝑒1𝑒2𝑥1𝑢2 − 𝑒1𝑒2𝑥2𝑢1 + ⋯+ 𝑒𝑚−1𝑒𝑚𝑥𝑚−1𝑢𝑚 − 𝑒𝑚−1𝑒𝑚𝑥𝑚𝑢𝑚−1 

And set 

(𝑀1)𝑙𝑗 =  
0                 𝑓𝑜𝑟 𝑙 = 𝑗
𝑒𝑙𝑒𝑗                         𝑒𝑙𝑠𝑒

  

 

Theorem (4.7.8): 

     Let 0 ≠ 𝑎 ∈ 𝑅bea real number, 𝐴 𝑥 = 𝐵(𝑎𝑥) 

Twomultivector fieldsandall  𝐹1, 𝐹2bebilinear mappings 

thenthegeometricFouriertransformsatisfies 



 

 

109 
 

ℱ𝐹1 ,𝐹2
 𝐴  𝑢 =  𝑎 −𝑚ℱ𝐹1 ,𝐹2

 𝐵  
𝑢

𝑎
  

Proof: 

Achange ofcoordinatestogether with the bilinearityproves the assertion by 

ℱ𝐹1 ,𝐹2
 𝐴  𝑢 =   𝑒−𝑓 𝑥,𝑢 

𝑓∈𝐹ℝ𝑚
. 𝐵(𝑎𝑥) 𝑒−𝑓 𝑥,𝑢 

𝑓∈𝐵

𝑑𝑚𝑥 

𝑎𝑥 = 𝑦           𝑒
−𝑓 

𝑦

𝑎
,𝑢 

𝑓∈𝐹ℝ𝑚
. 𝐵(𝑦) 𝑒

−𝑓 
𝑦

𝑎
,𝑢  𝑎 −𝑚

𝑓∈𝐵

𝑑𝑚𝑦 

=  𝑎 −𝑚   𝑒
−𝑓 𝑦,

𝑢

𝑎
 

𝑓∈𝐹ℝ𝑚
. 𝐵(𝑦) 2

𝑓∈𝐵

𝑑𝑚𝑥 

=  𝑎 −𝑚ℱ𝐹1 ,𝐹2
 𝐵  

𝑢

𝑎
  

      Toobtain properties oftheGFT likelinearitywithrespect toarbitrarymultivectors 

orashifttheorem wewillhavetochangetheorderofmultivectorsand 

productsofexponentials.Sincethegeometricproductusually isneither 

commutativenoranticommutativethis isnottrivial. Inthissectionwe provide useful 

lemmathatallowaswapifat leastoneofthe factors is invertible 

 

Remark (4.7.9): 

Everymultiple ofasquarerootofminus one  𝑖 ∈ ʝ𝑃,𝑞 isinvertible,sincefrom𝑖2 = −𝑟, 𝑟 ∈

ℝ\ 𝟎 follows  𝑖−1 =
−𝑖

𝑟
.Becauseofthat forall 𝑢,𝑥 ∈ ℝ 𝑚 afunction 

𝑓𝑘(𝑥, 𝑢):ℝ 𝑚 × ℝ 𝑚 → ʝ𝑃,𝑞 ispointwisinvertible. 

Definition (4.7.10): 
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For an invertible  multivector  𝐵 ∈ 𝐶ℓ𝑝,𝑞and an arbitrary multivector  𝐴 ∈

𝐶ℓ𝑝,𝑞wedefine 

𝐴𝑐0(𝐵)=
1

2
(𝐴 + 𝐵−1𝐴𝐵) 

𝐴𝑐1(𝐵)=
1

2
(𝐴 − 𝐵−1𝐴𝐵) 

 

 

Lemma (4.7.11): 

Let 𝐵 ∈ 𝐶ℓ𝑝,𝑞beinvertible with the unique inverse 𝐵−1
=

𝐵 

𝐵2
,𝐵2 ∈ ℝ\{0}. 

Every multivector A∈ 𝐶ℓ𝑝,𝑞  can be expressed unambiguously bythesumof  

𝐴𝑐0(𝐵) ∈ 𝐶ℓ𝑝,𝑞 thatcommutes and 𝐴𝑐1(𝐵) ∈

𝐶ℓ𝑝,𝑞 thatanticommuteswithrespecttoB.Thatmeans 

𝐴 = 𝐴𝑐0(𝐵) + 𝐴𝑐1(𝐵) 

𝐴𝑐0(𝐵)𝐵 = 𝐵𝐴𝑐0(𝐵) 

𝐴𝑐1(𝐵)𝐵 = −𝐵𝐴𝑐1(𝐵) 

Proof: 

Wewillonlyprovetheassertion for𝐴𝑐0(𝐵). 

With Definition(3-6-11)weget 

𝐴𝑐0 𝐵 + 𝐴𝑐1 𝐵 =
1

2
 𝐴 + 𝐵−1𝐴𝐵 + 𝐴 − 𝐵−1𝐴𝐵  

= 𝐴 
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And considering 

𝐵−1𝐴𝐵 =
𝐵 𝐴𝐵

𝐵2
= 𝐵𝐴𝐵−1 

We also 

𝐴𝑐0(𝐵)𝐵 =
1

2
(𝐴 + 𝐵−1𝐴𝐵)B 

=
1

2
(𝐴 + 𝐵𝐴𝐵−1)B 

=
1

2
 𝐴𝐵 + 𝐵𝐴  

                  = 𝐵
1

2
 𝐵−1𝐴𝐵 + 𝐴  

=  𝐵𝐴𝑐0(𝐵) 

Uniqueness:weget 

𝐴𝑐1(𝐵) = 𝐴 − 𝐴𝑐0(𝐵) 

together withthethird onethisleadsto 

 𝐴 − 𝐴𝑐0 𝐵  𝐵 = 𝐵(𝐴 − 𝐴𝑐0(𝐵)) 

𝐴𝐵 − 𝐴𝑐0 𝐵 𝐵 = −𝐵𝐴 + 𝐵𝐴𝑐0 𝐵  

𝐴𝐵 + 𝐵𝐴 = 𝐴𝑐0 𝐵 𝐵 + 𝐵𝐴𝑐0 𝐵  

And from the second claim finally follows 

𝐴𝐵 + 𝐵𝐴 = 2𝐵𝐴𝑐0 𝐵  
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1

2
 𝐵−1𝐴𝐵 + 𝐴 = 𝐴𝑐0 𝐵  

The derivation of the expression for 𝐴𝑐1(𝐵) works analogously. 

Corollary (3.7.12):  

let𝐵 ∈ 𝐶ℓ𝑝,𝑞  be invertable, then ∀𝐴 ∈ 𝐶ℓ𝑝,𝑞  

𝐵𝐴 = (𝐴𝑐0 𝐵 − 𝐴𝑐1(𝐵))𝐵 

 

 

Corollary (4.7.13):  

let 𝐵 ∈ 𝐶ℓ𝑝,𝑞  be invertable, then ∀𝐴 ∈ 𝐶ℓ𝑝,𝑞  

𝐵𝐴 = (𝐴𝑐0 𝐵 − 𝐴𝑐1(𝐵))𝐵 

 

Definition (4.7.14): 

For 𝑑 ∈ ℕ, 𝐴 ∈ 𝐶ℓ𝑝,𝑞 , The ordered set 𝐵 = {𝐵1, … , 𝐵𝑑} of invertable multivectors 

and any multi-index  𝑗 ∈ {0,1}𝑑  we define 

𝐴𝑐 𝑗 (𝐵  ) = ((𝐴𝑐 𝑗1(𝐵1))𝑐 𝑗2(𝐵2) …)𝑐 𝑗𝑑 (𝐵𝑑) 

𝐴𝑐 𝑗 (𝐵  ) = ((𝐴𝑐 𝑗𝑑 (𝐵𝑑 ))𝑐 𝑗𝑑 −1(𝐵𝑑−1) …)𝑐 𝑗1(𝐵1) 

Recursively with𝑐0, 𝑐1 of definition  (4.7.14). 

Example (1): 

Let 𝐴 = 𝑎0 + 𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎12𝑒12 ∈ 𝐺
2,,0, then for example 

𝐴𝑐0 𝑒1 
=

1

2
 𝐴 + 𝑒1

−1𝐴𝑒1  
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                   =
1

2
(𝐴 + 𝑎0 + 𝑎1𝑒1 − 𝑎2𝑒2 − 𝑎12𝑒12) 

= 𝑎0 + 𝑎1𝑒1 

And further 

𝐴𝑐0,0 𝑒1 ,𝑒2            = (𝐴𝑐0 𝑒1 
)𝑐0 𝑒2 

 

=  𝑎0 + 𝑎1𝑒1 𝑐0 𝑒2 
= 𝑎0 

The computation of the other multi-indices with d=2 works analogously and 

therefore  

𝐴 =  𝐴𝑐 𝑗  𝑒1 ,𝑒2 

𝑗∈{0,1}𝑑

 

= 𝐴𝑐00 𝑒1 ,𝑒2            + 𝐴𝑐01 𝑒1 ,𝑒2            + 𝐴𝑐10 𝑒1 ,𝑒2            + 𝐴𝑐11 𝑒1 ,𝑒2             

= 𝑎0 + 𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎12𝑒12 . 

[26] 

 

GeometricConvolutionTheorem(4.8): 

Wehaveseenthatcoorthogonal bladefunctionscanbeexpressedasrealmultiples 

ofbasis blades.  

𝑓 𝑥, 𝑢 = 𝑠𝑔𝑛(𝑓(𝑥, 𝑢))𝑒𝑗 (𝑥,𝑢):ℝ
𝑚 × ℝ𝑚 → ʝ𝑝,𝑞  

Forbasisbladefunctions, that during thedecomposition 

intocommutativeandanticommutativeparts ofa 

multivectornoadditionaltermsappear inthesumoverthebasisblades.Each 

partisarealfragmentofthemultivectoralongthebasisbladesofthe 

orthogonalbasisfromTheorem (4.7.6) Becauseof that anexponentialcanonly 

becomedecomposed  intofourdifferentshapes itself,acosine,abasisblade multiplied 
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withasineorzero.Thismotivates thegeneralization ofgeometricFourier transforms 

totrigonometrictransforms.  

 

Geometric Trigonometric Transform (4.8.1): 

Let𝐴:ℝ𝑚 → 𝐺𝑝,𝑞be amultivectorfieldand 𝑥, 𝑢 ∈ ℝ𝑚vectors, 𝐹1 , 𝐹2twoordered 

finitesetsof µ,respectively 𝜈 − µ,mappings ℝ𝑚 × ℝ𝑚  →ʝ𝑝,𝑞 ,𝐺1, 𝐺2twoordered 

finite setsofµ, respectively ν−µ,mappings (ℝ𝑚 × ℝ𝑚  

→ʝ𝑝,𝑞 )→𝐺𝑝,𝑞witheach𝑔𝑙 −𝑓 𝑥, 𝑢  ∀𝑙 = 1,… , 𝑣, having one of shape: 

𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  =

 
 
 

 
 

𝑒−𝑓𝑙 𝑥 ,𝑢) 

cos⁡( 𝑓𝑙 𝑥, 𝑢)  )

−
𝑓𝑙 𝑥, 𝑢 

 𝑓𝑙 𝑥, 𝑢)  
sin( 𝑓𝑙 𝑥, 𝑢)  )

0

  

The GeometricTrigonometricTransform(GTT)  

ℱ𝐺1(𝐹1),𝐺2(𝐹2) 𝐴  𝑢 ≔   𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  

𝜇

𝑙=1ℝ𝑚

𝐴(𝑥)  𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  

𝑣

𝑙=𝜇+1

 

Wehaveseenthat thedecomposition ofanexponential 

withrespecttobasisbladestakesthesameshapelikethefunctions𝐺1,𝐺2 ofaGTT. 

Therefore forageometric Fourier transformwithbasisblade functions 

𝐹1 , 𝐹2,twosets ofbasis blades 𝐵1 =  𝑒 𝑘 1
, … , 𝑒 𝑘 𝜂  , 𝐵2 =  𝑒 𝑘 𝜂+1

, … , 𝑒 𝑘 𝜃−𝜂  and 

strictlylower and upper triangularmatrices 𝐽 ∈  0,1 𝜇×𝜂 , k ∈  0,1  v−μ ×θ  whose 

rows are 𝜇and 𝑣 − 𝜇multi-indices 𝑗 𝑙 ∈  0,1 𝜂  respectively 𝑘 𝑙 ∈  0,1 𝜃 , we can 

construct a geometricTrigonometricTransform ℱ𝐺1(𝐹1),𝐺2(𝐹2) 𝐴  by setting 
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𝑔𝑙(−𝑓𝑙(𝑥, 𝑢))=𝑒
𝑐 (𝐽 )𝑙

−𝑓𝑙(𝑥,𝑢)
 for 𝑙 = 1,… , 𝜇 and  𝑔𝑙(−𝑓𝑙(𝑥, 𝑢))=𝑒

𝑐 (𝑘)𝑙

−𝑓𝑙(𝑥,𝑢)
for𝑙 = 𝜇 +

1,… , 𝑣  we refer to it shortly as  

ℱ(𝐹1)𝑐𝐽(𝐵1), (𝐹2)𝑐𝐾(𝐵2) 𝐴  𝑢 ≔   𝑒
𝑐 𝐽  𝑙 (𝐵1)

−𝑓𝑙 𝑥,𝑢 

𝜇

𝑙=1ℝ𝑚
𝐴(𝑥)  𝑒

𝑐
(𝑘)𝑙−𝜇 (𝐵2)

−𝑓𝑙(𝑥,𝑢)

𝑣

𝑙=𝜇+1

𝑑𝑚𝑥 

In the case of  

ℱ(𝐹1)𝑐 𝑗 (𝐹1), (𝐹2)𝑐𝐾 𝐹2 
we will only write ℱ(𝐹1)𝑐 𝑗 , (𝐹2)𝑐𝐾 . 

The  geometrictrigonometrictransformisageneralizationofthe geometric  Fourier 

transform.Wewilluseittoprovetheconvolution theorem ofthe  GFT. 

Definition (4.8.2): 

WecallaGFT left(right)separable,if 

𝑓𝑙 =  𝑓𝑙 𝑥, 𝑢)  𝑖𝑙(𝑢) 

∀𝑙 = 1,… , 𝜇,  𝑙 = 𝜇 + 1,… , 𝑣 , where 𝑓𝑙 𝑥, 𝑢)  : ℝ𝑚 × ℝ𝑚  → ℝ is a real 

function and  

𝑖𝑙 : ℝ
𝑚→ʝ𝑝,𝑞a function thatdoesnotdepend onx. 

 

Lemma(4.8.3):  

Let F = 𝑓1 𝑥, 𝑢 , . . . , 𝑓𝑑  𝑥,𝑢  bea set ofpointwiseinvertiblefunctions 

thentheordered product oftheir exponentialsandanarbitrarymultivector𝐴 ∈

𝐺𝑝,𝑞satisfies 

 𝑒−𝑓𝑙 𝑥,𝑢) 𝐴 =  𝐴
𝑐 𝑗  𝐹         𝑥, 𝑢 

𝑗∈ 0,1 𝑑

𝑑

𝑙=1

 𝑒− −1 𝑗 𝑙

𝑑

𝑙=1

𝑓𝑙 𝑥, 𝑢)  
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Where 𝐴
𝑐 𝑗  𝐹         𝑥, 𝑢 ≔ 𝐴

𝑐 𝑗  𝐹  𝑥,𝑢                    is a multivector valued functionℝ𝑚 × ℝ𝑚→𝐺𝑝,𝑞 . 

 

Lemma (4.8.4):  

   Let𝐹 =  𝑓1 𝑥, 𝑢 , . . . , 𝑓𝑑 𝑥,𝑢  beasetofseparable functions that are  linear 

withrespect to𝑥.Furtherlet𝐽 ∈ {0,1}
𝑑×𝑑

beastrictly lowertriangularmatrix,  that is 

associated column bycolumn witha multi-index 

𝑗 ∈ {0,1}
𝑑

by∀𝑘 = 1,… , 𝑑 ∶   𝐽𝑙,𝑘𝑑
𝑙=1  mod 2 = 𝑗𝑘 , 𝑤𝑖𝑡𝑕 (𝐽)𝑙  being its  𝑙 − 𝑡𝑕 row, 

then 

 𝑒−𝑓𝑙 𝑥+𝑦,𝑢) 

𝑑

𝑙=1

=    𝑒
𝑐
 𝐽  𝑙 𝑓1 ,…,𝑓𝑙 ,0,…,0                                 
−𝑓𝑙 𝑥,𝑢 

𝑑

𝑙=1𝑗∈ 0,1 𝑑×𝑑

 (𝐽)𝑙𝑑
𝑙=1  𝑚𝑜𝑑  2=𝑗

𝑗∈ 0,1 𝑑

 𝑒− −1 𝑗 𝑙𝑓𝑙 𝑦 ,𝑢 

𝑑

𝑙=1

 

Oralternatively withstrictly upper  triangularmatrices 

 𝑒−𝑓𝑙 𝑥+𝑦,𝑢) 

𝑑

𝑙=1

=    𝑒− −1 𝑗 𝑙𝑓𝑙 𝑥,𝑢 

𝑑

𝑙=1𝑗∈ 0,1 𝑑×𝑑

 (𝐽)𝑙𝑑
𝑙=1  𝑚𝑜𝑑  2=𝑗

𝑗∈ 0,1 𝑑

 𝑒
𝑐
 𝐽  𝑙 0,…,0,𝑓1 ,…,𝑓𝑙                                 
−𝑓𝑙 𝑦 ,𝑢 

𝑑

𝑙=1

 

Definition(4.8.5): 

   For asetoffunctions  𝐹 = {𝑓1(𝑥,𝑢), . . . , 𝑓𝑑(𝑥,𝑢)}andamulti- index𝑗 ∈

{0,1}
𝑑

,wedefinethesetoffunctions𝐹(𝑗)by 

𝐹(𝑗): =  {(−1)𝑗1𝑓1 𝑥, 𝑢 ,… , (−1)𝑗𝑑𝑓𝑑 𝑥, 𝑢 }  
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WealsoneedageneralizationofLemma(4.8.3)thatallowsustoswaptheorderofpartia

lexponentialsandmultivectors. 

Lemma (4.8.6): 

Forsetsoffunctions  𝐹 = {𝑓1(𝑥, 𝑢), . . . , 𝑓𝑑(𝑥,𝑢)}, 

𝐺={𝑔1. . . , 𝑔𝑑 } wegetanalogously toLemma (4.8.3). 

 𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  

𝜇

𝑙=1

𝐴 =  𝐴𝑐 𝑗  𝐹 
𝑗∈ 0,1 𝑑

 𝑔𝑙

𝑑

𝑙=1

(− −1 𝑗 𝑙𝑓𝑙 𝑥, 𝑢 ) 

Proof: 

First weanalyze the interactionof  𝐴  with 

onepartialexponential 𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  .  

Itcantake three differentshapes 

 𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  =

 
 
 

 
 

𝑒−𝑓𝑙 𝑥,𝑢 

cos  𝑓𝑙 𝑥, 𝑢   

−
𝑓𝑙 𝑥, 𝑢 

 𝑓𝑙 𝑥, 𝑢  
sin⁡( 𝑓𝑙 𝑥, 𝑢  )

0                                                 

  

Inthe first  caselemma (4.8.3)proves the assertion  

and the last oneistrivial. Assumethesecondcaseandnotethatthen 

 𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  equals  𝑔𝑙 𝑓𝑙 𝑥, 𝑢  becauseofthesymmetryofthecosine. 

 𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  𝐴 = 𝐶𝑂𝑆  𝑓𝑙 𝑥, 𝑢   𝐴 

= 𝐴𝐶𝑂𝑆  𝑓𝑙 𝑥, 𝑢    
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= 𝐴𝑐0(𝑓𝑙
)𝑐𝑜𝑠  𝑓𝑙 𝑥, 𝑢   + 𝐴𝑐1(𝑓𝑙

)𝑐𝑜𝑠  𝑓𝑙 𝑥, 𝑢    

= 𝐴𝑐0(𝑓𝑙
) 𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  + 𝐴𝑐1(𝑓𝑙

) 𝑔𝑙 𝑓𝑙 𝑥, 𝑢   

Inthethird casewehave 

 𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  𝐴=−
𝑓𝑙 𝑥 ,𝑢 

 𝑓𝑙 𝑥 ,𝑢  
sin  𝑓𝑙 𝑥, 𝑢   𝐴 

=𝐴𝑐0(𝑓𝑙
)
−𝑓𝑙 𝑥 ,𝑢 

 𝑓𝑙 𝑥 ,𝑢  
sin  𝑓𝑙 𝑥, 𝑢    

+𝐴𝑐1(𝑓𝑙
)
𝑓𝑙 𝑥, 𝑢 

 𝑓𝑙 𝑥, 𝑢  
sin  𝑓𝑙 𝑥, 𝑢    

= 𝐴𝑐0(𝑓𝑙
) 𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  + 𝐴𝑐1(𝑓𝑙

) 𝑔𝑙 𝑓𝑙 𝑥, 𝑢   

Soinallcaseswehave 

𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  𝐴 = 𝐴𝑐0(𝑓𝑙
) 𝑔𝑙 −𝑓𝑙 𝑥, 𝑢  + 𝐴𝑐1(𝑓𝑙

) 𝑔𝑙 𝑓𝑙 𝑥, 𝑢   

=  𝐴𝑐 𝑗  𝑓𝑙 
𝑗∈ 0,1 𝑑

 𝑔𝑙

𝑑

𝑙=1

(− −1 𝑗 𝑙𝑓𝑙 𝑥, 𝑢 ) 

Applying itrepeatedlytothe wholeproductlikeinthe proofofLemma (4.8.3) 

leadstotheassertion. 

 

Definition (4.8.7): 

   Let(𝑥),𝐵(𝑥):ℝ𝑚  →𝐺𝑝,𝑞betwomultivectorfields.Theirconvolution (𝐴 ∗

𝐵)(𝑥)isdefinedas 
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 𝐴 ∗ 𝐵  𝑥 =  𝐴 𝑦 𝐵(𝑥 − 𝑦)𝑑𝑚𝑦
ℝ𝑚

 

 

ConvolutionTheorem (4.8.8): 

   Let  𝐴,𝐵, 𝐶:ℝ𝑚  →𝐺𝑝,𝑞bemultivector fields with  𝐴(𝑥) = (𝐶 ∗ 𝐵)(𝑥)and 

𝐹1 , 𝐹2becoorthogonal, separable and linearwithrespect tothefirstargument, 

j,𝑗′ ∈ {0,1}𝜇 , k,𝑘′ ∈ {0,1}(𝑣−𝜇) and 𝐽 ∈ {0,1}𝜇×𝜇  and 𝑘 ∈

{0,1}(𝑣−𝜇)×(𝑣−𝜇)arethestrictlylower,respectivelyupper,triangularmatriceswithrow

s (𝐽)𝑙 , (𝐾)𝑙−𝜇   summing upto( (𝐽)𝑙)𝑚𝑜𝑑2 = 𝑗
𝜇
𝑙=1

 respectively 

( (𝐾)𝑙−𝜇 ) 𝑚𝑜𝑑2 = 𝑘𝑣
𝑙=𝜇+1  a s  i n  l e m m a ( 4.8.4) ,  t h e n  t h e  geometric 

FouriertransformofAsatisfies theconvolution property 

ℱ𝐹1 ,𝐹2
 𝐴  𝑢 =   (ℱ𝐹1 𝑗  ,𝐹2 k+𝑘 ′  (𝐶)(𝑢))

𝑐 𝑗
′
(𝐹1 )𝐽 ,𝐾𝑗 ,𝑗 ′ ,k,𝑘 ′ ℱ(𝐹1 𝑗

′  )
𝑐𝐽

,(𝐹2 )
𝑐𝐾
 B

𝑐𝑘
′
(𝐹2)

K  (u) 

Proof: 

ℱ𝐹1 ,𝐹2
 𝐴  𝑢 = 

  𝑒−𝑓 𝑥,𝑢 

𝑓∈𝐹1
ℝ𝑚

. (𝐶 ∗ 𝐵)(𝑥)  𝑒−𝑓 𝑥,𝑢 

𝑓∈𝐹2

𝑑𝑚𝑥 

=   𝑒−𝑓 𝑥,𝑢 

𝑓∈𝐹1
ℝ𝑚

 𝐶 𝑦 𝐵 𝑥 − 𝑦 
ℝ𝑚

𝑑𝑚𝑥 𝑒−𝑓 𝑥,𝑢 

𝑓∈𝐹2

𝑑𝑚𝑥 

𝑥 − 𝑦 = 𝑧                𝑒−𝑓 𝑧+𝑦,𝑢 

𝑓∈𝐹1
ℝ𝑚ℝ𝑚

𝐶 𝑦 𝐵 𝑧  𝑒−𝑓 𝑧+𝑦,𝑢 

𝑓∈𝐹2

𝑑𝑚𝑥 𝑑𝑚𝑧 

We separate the products into parts that only depend on y and ones that only 

depend on z. 
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=      𝑒
𝑐  𝐽  𝑙 (𝐹1)

−𝑓𝑙 𝑧,𝑢 

𝑙=1𝐽∈ 0,1 𝜇×𝜇

( (𝐽)𝑙)𝑚𝑜𝑑 2=𝑗

j∈{0,1}𝜇ℝ𝑚ℝ𝑚
 𝑒− −1 𝑗 𝑙𝑓𝑙 𝑦 ,𝑢  

𝜇

𝑙=1

𝐶 𝑦 𝐵(𝑧) 

   𝑒− −1 
𝑘𝑙−𝜇 𝑓𝑙 𝑦 ,𝑢  

𝑣

𝑙=1+𝜇𝑘∈ 0,1 𝑣−𝜇×𝑣−𝜇

 𝐾𝑙𝑚𝑜𝑑 2=𝑗

𝑘∈{0,1}𝑣

 𝑒
𝑐
 𝐾 𝑙−𝜇 (𝐹2)

−𝑓𝑙 𝑧,𝑢 

𝑣

𝑙=1+𝜇

𝑑𝑚𝑦 𝑑𝑚𝑧 

 

=     𝑒
𝑐  𝐽  𝑙 (𝐹1 )

−𝑓𝑙 𝑧,𝑢 

ℝ𝑚ℝ𝑚𝐽 ,𝐾𝑗 ,k

 𝑒− −1 𝑗 𝑙𝑓𝑙 𝑦 ,𝑢  

𝜇

𝑙=1

𝐶 𝑦 𝐵(𝑧)  𝑒− −1 
𝑘𝑙−𝜇 𝑓𝑙 𝑦 ,𝑢  

𝑣

𝑙=1+𝜇

 

 𝑒
𝑐
 𝐾 𝑙−𝜇 (𝐹2 )

−𝑓𝑙 𝑧,𝑢 

𝑣

𝑙=1+𝜇

𝑑𝑚𝑦 𝑑𝑚𝑧 

 

Next step is to collect all parts then depend on y. 

     𝑒
𝑐  𝐽  𝑙(𝐹1)

−𝑓𝑙 𝑧,𝑢 

𝜇

𝑙=1ℝ𝑚ℝ𝑚𝐽 ,𝐾𝑗 ,k

 𝑒− −1 𝑗 𝑙𝑓𝑙 𝑦 ,𝑢  

𝜇

𝑙=1

𝐶 𝑦  

  𝑒− −1 
𝑘𝑙−𝜇 +𝑘′ 𝑙−𝜇 𝑓𝑙 𝑦 ,𝑢  

𝑣

𝑙=1+𝜇𝑘 ′∈ 0,1 𝑣−𝜇

𝐵
𝑐𝑘

′
 𝐹2 

(𝑧) 

 𝑒
𝑐
 𝐾 𝑙−𝜇 (𝐹2 )

−𝑓𝑙 𝑧,𝑢 

𝑣

𝑙=1+𝜇

𝑑𝑚𝑦 𝑑𝑚𝑧 

=     𝑒
𝑐 𝐽 𝑙(𝐹1)

−𝑓𝑙 𝑧,𝑢 

𝜇

𝑙=1
ℝ𝑚

𝐽,𝐾𝑗,k,𝑘′

  𝑒− −1 𝑗𝑙𝑓𝑙 𝑦,𝑢 

𝜇

𝑙=1

𝐶 𝑦 
ℝ𝑚

 

 𝑒− −1 
𝑘𝑙−𝜇 +𝑘′ 𝑙−𝜇  𝑓𝑙 𝑦 ,𝑢  

𝑣

𝑙=1+𝜇

𝐵
𝑐𝑘

′
 𝐹2 

(𝑧)  𝑒
𝑐
 𝐾 𝑙−𝜇 (𝐹2 )

−𝑓𝑙 𝑧,𝑢 

𝑣

𝑙=1+𝜇

 𝑑𝑚𝑧 

=     𝑒
𝑐  𝐽  𝑙(𝐹1 )

−𝑓𝑙 𝑧,𝑢 

𝜇

𝑙=1ℝ𝑚𝐽 ,𝐾𝑗 ,k,𝑘 ′

ℱ𝐹1 𝑗  ,𝐹2 𝑘+𝑘 ′   𝐶  𝑢 𝐵𝑐𝑘′  𝐹2 
(𝑧) 

 𝑒
𝑐
 𝐾 𝑙−𝜇 (𝐹2 )

−𝑓𝑙 𝑧,𝑢 

𝑣

𝑙=1+𝜇

 𝑑𝑚𝑧 
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Finally we gather the parts on z. 

=     (ℱ𝐹1 𝑗  ,𝐹2 𝑘+𝑘 ′   𝐶  𝑢 )𝑐𝑗 ′  𝐹1 
𝑗 ′∈ 0,1 𝜇ℝ𝑚𝐽 ,𝐾𝑗 ,k,𝑘 ′

 

 𝑒
𝑐  𝐽  𝑙 (𝐹1 )

−(−1)𝑗 𝑙 𝑓𝑙 𝑧,𝑢 

𝜇

𝑙=1

𝐵
𝑐𝑘

′
 𝐹2 

(𝑧)  𝑒
𝑐
 𝐾 𝑙−𝜇 (𝐹2)

−𝑓𝑙 𝑧,𝑢 

𝑣

𝑙=1+𝜇

 𝑑𝑚𝑧 

=   (ℱ𝐹1 𝑗 ,𝐹2 𝑘+𝑘′  𝐶  𝑢 )
𝑐 𝑗
′
 𝐹1 

𝐽,𝐾𝑗,𝑗′,k,𝑘′

 

  𝑒
𝑐 𝐽 𝑙(𝐹1)

−(−1)𝑗𝑙 𝑓𝑙 𝑧,𝑢 

𝜇

𝑙=1
ℝ𝑚

𝐵
𝑐𝑘

′
 𝐹2 

(𝑧)  𝑒
𝑐
 𝐾 𝑙−𝜇(𝐹2)

−𝑓𝑙 𝑧,𝑢 
𝑣

𝑙=1+𝜇

 𝑑𝑚𝑧 

=   (ℱ𝐹1 𝑗  ,𝐹2 𝑘+𝑘 ′   𝐶  𝑢 )𝑐 𝑗 ′  𝐹1 
𝐽 ,𝐾𝑗 ,𝑗 ′ ,k,𝑘 ′

ℱ(𝐹1 𝑗
′ ) 

𝑐𝐽
,(𝐹2)

𝑐𝐾
 (𝐵

𝑐𝑘
′
 𝐹2 

) 𝑢  

[43] 

 

Engineering Applications of the Motion-Group Fourier Transform 

(4.9): 

Noncommutative harmonic analysis is a beautiful and powerful area of pure 

mathematics that has connections to analysis, algebra, geometry, and the theory of 

algorithms. Unfortunately, it is also an area that is almost unknown to engineers. In 

this research, we have addressed a number of seemingly intractable “real-world” 

engineering problems that are easily modeled and/or solved using techniques of 

noncommutative harmonic analysis. In particular, we have addressed 

physical/mechanical problems that are described well as functions or processes on 

the rotation and rigid-body-motion groups. The interactions and evolution of these 

functions are described using group-theoretic convolutions and diffusion equations, 

respectively. We provide some of these applications and show how computational 

harmonic analysis on motion groups is used. 
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The group of rigid-body motions, denoted as SE(𝑁) (shorthand for “special 

Euclidean” group in N-dimensional space), is a unimodularsemidirect product 

group, and general methods for constructing unitary representations of such Lie 

groups have been known for some time. In the past 40 years, the representation 

theory and harmonic analysis for the Euclidean groups have been developed in the 

pure mathematics and mathematical physics literature. The study of matrix 

elements of irreducible unitary representation of SE(3).  

However, despite the considerable progress in mathematical developments of the 

representation theory of SE(3), these achievements have not yet been widely 

incorporated in engineering and applied fields. In work summarized here we try to 

fill this gap.  

we review the representation theory of SE(2), give the matrix elements of the 

irreducible unitary representations and review the definition of the Fourier 

transform for  SE(2). We also review operational properties of  theFourier 

transform. We do not go into the intricate details of the Fourier transform for 

SE(3), as those are provided in the references described above and they add little to 

the understanding of how to apply noncommutative harmonic analysis to real-

world problems. Then we devoted to application areas: coherent optical 

communications, robotics, and polymer statistical mechanics, respectively.[15] 

 

Fourier Analysis of Motion (4.10): 

we review the basic definitions and properties of the Euclidean motion groups. Our 

emphasis is on the motion group of the plane, but most of the concepts extend in a 

natural way to three-dimensional space.  

 

Euclidean motion group (4.10.1): 
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The Euclidean motion group, SE(𝑁), is the semidirect product of ℝ𝑁with the 

special orthogonal group, SO(𝑁). We denote elements of SE 𝑁 as 𝑔 =  𝑎, 𝐴 ∈

SE(𝑁) where 𝐴 ∈ SO 𝑁 and 𝑎 ∈ ℝ𝑁 . The identity element is 𝑒 = (0, 𝐼) where I is 

the 𝑁 × 𝑁identity matrix. For any 𝑔 =  𝑎, 𝐴 and 𝑕 =  𝑟, 𝑅 ∈ SE(𝑁), the group 

law is written as 𝑔 ∘ 𝑕 = (𝑎 + 𝐴𝑟, 𝐴𝑅);and 𝑔−1 = (−𝐴𝑇𝑎, 𝐴𝑇). Any 𝑔 =  𝑎, 𝐴 ∈

SE(𝑁) acts transitively on a position 

𝑥 ∈ ℝ𝑁as 

𝑔 ∙ 𝑥 = 𝐴𝑥 + 𝑎 

That is, position vector x is rigidly moved by rotation followed by a translation. 

Often in the engineering literature, no distinction is made between a motion, 

𝑔, and the result of that motion acting on the identity element. Hence, we 

interchangeably use the words “motion” and 

“frame” when referring to elements of SE(𝑁). 

It is convenient to think of an element of SE(𝑁) as an 𝑁 + 1 ×  𝑁 + 1 matrix of 

the form: 

𝑔 =  
𝐴 𝑎
0𝑇 1

  

 

In the engineering literature, matrices with this kind of structure are called 

homogeneous transforms. 

For example, each element of SE(2) can be parameterized using polar coordinates 

as: 

𝑔 𝑟, 𝜃, 𝜙 =  
cos𝜙 − sin𝜙 𝑟 cos 𝜃
sin𝜙 cos𝜙 𝑟 sin 𝜃

0 0 1
  

 

where  𝑟 ≥ 0  is the magnitude of translation. SE(2)is a 3-dimensional manifold 

much like ℝ3. We can integrate over SE(2) using the volume element 
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𝑑 𝑔 𝑟, 𝜃, 𝜙  = (4𝜋2)−1𝑟 𝑑𝑟 𝑑𝜃 𝑑𝜙. This volume element is bi-invariant in the 

sense that it does not change under left and right shifts by any fixed element 

𝑕 ∈ SE 2 : 

𝑑 𝑕 ∘ 𝑔 = 𝑑 𝑔 ∘ 𝑕 = 𝑑 𝑔 . 

Bi-invariant volume elements exist for SE(𝑁) for 𝑁 = 2,3,4,…A group with bi-

invariant volume element is called a unimodular group. 

    The Lie group SE(2) has an associated Lie algebra 𝑠𝑒(2). Physically, elements 

of SE(2) describe finite motions in the plane, whereas elements of 𝑠𝑒(2) represent 

infinitesimal motions. Since SE(2) is a three-dimensional Lie group, there are three 

independent directions along which any infinitesimal motion can be decomposed. 

The vector space of all such motions relative to the identity element 

𝑒 ∈ 𝑆𝐸 2 together with the matrix commutator operation defines se(2). As with 

any vector space, we can choose an appropriate basis. One such basis for the Lie 

algebra se(2) consists of the following three matrices: 

𝑋1 =  
0 0 1
0 0 0
0 0 0

 ;    𝑋2 =  
0 0 0
0 0 1
0 0 0

 ;    𝑋3 =  
0 −1 0
1 0 0
0 0 0

  

The following one-parameter motions are obtained by exponentiating the above 

basis elements of 𝑠𝑒(2): 

𝑔1 𝑡 = exp(𝑡𝑋1) =  
1 0 𝑡
1 1 0
0 0 1

 ; 

 

𝑔2 𝑡 = exp(𝑡𝑋2) =  
1 0 0
0 1 𝑡
0 0 1

 ; 

 

𝑔3 𝑡 = exp(𝑡𝑋3) =  
cos 𝑡 − sin 𝑡 0
sin 𝑡 cos 𝑡 0

0 0 1
 . 
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For the purposes of the current discussion, we can take as a definition of 𝑠𝑒(2)the 

vector space spanned by any linear combination of 𝑋1, 𝑋2, and 𝑋3. The exponential 

mapping 

exp: 𝑠𝑒(2) → SE(2) 

is well defined for every element of se(2) and is invertible except at a set of 

measure zero in SE(2). 

Any rigid-body motion in the plane can be expressed as an appropriate combination 

of these three basic motions. For example, 𝑔 = 𝑔1(𝑥)𝑔2(𝑦)𝑔3(𝜙).[30] 

 

Differential operators on 𝐒𝐄 𝟐 (4.10.2): 

The way to take partial derivatives of a function of motion is to evaluate 

𝑋 𝑖
𝑅𝑓 ≜

𝑑

𝑑𝑡
𝑓 𝑔 ∘ exp 𝑡𝑋𝑖  |𝑡=0,    𝑋 𝑖

𝐿𝑓 ≜
𝑑

𝑑𝑡
𝑓 exp 𝑡𝑋𝑖 ∘ 𝑔 |𝑡=0.  

(In our notation, R means that the exponential appears on the right, and L means 

that it appears on the left. This means that 𝑋 𝑖
𝑅is invariant under leftshifts, while 

𝑋 𝑖
𝐿is invariant under right shifts. Our notation is different thanothers in the 

mathematics literature where the superscript denotes the invarianceof the vector 

field formed by the concatenation of these derivatives.) Explicitly, we find the 

differential operators  𝑋 𝑖
𝑅in polar coordinates to be  

𝑋 1
𝑅 = cos 𝜙 − 𝜃 

𝜕

𝜕𝑟
+

sin 𝜙 − 𝜃 

𝑟

𝜕

𝜕𝜃
, 

𝑋 2
𝑅 = −sin 𝜙 − 𝜃 

𝜕

𝜕𝑟
+

cos 𝜙 − 𝜃 

𝑟

𝜕

𝜕𝜃
, 

𝑋 3
𝑅 =

𝜕

𝜕𝜃
, 
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and in Cartesian coordinates to be 

𝑋 1
𝑅 = cos𝜙

𝜕

𝜕𝑥
− sin𝜙

𝜕

𝜕𝑦
,      𝑋 2

𝑅 = sin𝜙
𝜕

𝜕𝑥
+ cos𝜙

𝜕

𝜕𝑦
,    𝑋 3

𝑅 =
𝜕

𝜕𝜙
 

The differential operators 𝑋 𝑖
𝐿in polar coordinates are 

 

𝑋 1
𝐿 = cos 𝜃

𝜕

𝜕𝑟
−

sin 𝜃

𝑟

𝜕

𝜕𝜃
,     𝑋 2

𝐿 = sin 𝜃
𝜕

𝜕𝑟
+

cos 𝜃

𝑟

𝜕

𝜕𝜃
,     𝑋 3

𝐿 =
𝜕

𝜕𝜙
+

𝜕

𝜕𝜃
. 

 

 

 

 

 

Fourier analysis on𝐒𝐄(𝟐) (4.10.3): 

 The Fourier transform,ℱ, of a function of motion, 𝑓(𝑔) where 𝑔 ∈ SE(𝑁), is an 

infinite-dimensional matrix defined as  

ℱ 𝑓 = 𝑓  𝑝 =  𝑓(𝑔)𝑈(𝑔−1, 𝑝)𝑑(𝑔)
𝐺

 

 

where  𝑈(𝑔, 𝑝) is an infinite dimensional matrix function with the property that 

𝑈 𝑔1 ∘ 𝑔1, 𝑝 = 𝑈(𝑔1, 𝑝)𝑈(𝑔2, 𝑝): This kind of matrix is called a matrix 

representation of SE(𝑁). It has the property that it converts convolutions on SE(𝑁) 

intomatrix products: 

ℱ 𝑓1 ∗ 𝑓2 = ℱ 𝑓2 ℱ 𝑓1 . 

In the case when 𝑁 = 2, the original function is reconstructed as 

ℱ−1 𝑓  = 𝑓 𝑔 =  trace 𝑓  𝑝 𝑈 𝑔, 𝑝  𝑝 𝑑𝑝
∞

0

, 

and the matrix elements of 𝑈 𝑔, 𝑝  are expressed explicitly as: 
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𝑢𝑚𝑛  𝑔 𝑟, 𝜃, 𝜙 , 𝑝 = 𝑗𝑛−𝑚𝑒−𝑗  𝑛𝜙+ 𝑚−𝑛 𝜃 𝐽𝑛−𝑚(𝑝𝑟) 

where𝐽𝑣(𝑥) is the 𝑣𝑡𝑕order Bessel function and 𝑗 =  −1. This inverse transform 

can be written in terms of elements as 

𝑓 𝑔 =   𝑓 𝑚𝑛 𝑢𝑛𝑚  𝑔, 𝑝 𝑝𝑑𝑝
∞

0𝑚,𝑛∈℞

.                        (1) 

In analogy with the classical Fourier transform, which converts derivatives of 

functions of position into algebraic operations in Fourier space, there are 

operational properties for the motion-group Fourier transform. 

   By the definition of the SE(2)-Fourier transform  ℱ and operators  𝑋 𝑖
𝑅and  𝑋 𝑖

𝐿, 

we can write the Fourier transform of the derivatives of a function of motion as 

ℱ 𝑋 𝑖
𝑅𝑓 = 𝑢  𝑋𝑖 , 𝑝 𝑓  𝑝 ,            ℱ 𝑋 𝑖

𝐿𝑓 = −𝑓  𝑝 𝑢  𝑋𝑖 , 𝑝 , 

where 

𝑢  𝑋𝑖 , 𝑝 ≜
𝑑

𝑑𝑡
𝑈 exp 𝑡𝑋𝑖 , 𝑝 |𝑡=0 

 

Explicitly, 

𝑢𝑚𝑛  exp 𝑡 𝑋1 , 𝑝 = 𝑗𝑛−𝑚 𝐽𝑚−𝑛 𝑝𝑡 . 

and 

 

We know that 

𝑑

𝑑𝑥
𝐽𝑚 𝑥 =

1

2
 𝐽𝑚−1 𝑥 − 𝐽𝑚+1 𝑥   

 

Hence, 

𝑢 𝑚𝑛  𝑋1, 𝑝 =
𝑑

𝑑𝑡
𝑢𝑚𝑛  exp 𝑡𝑋1 , 𝑝) 𝑡=0 = −

𝑗𝑝

2
(𝛿𝑚,𝑛+1 + 𝛿𝑚,𝑛−1) 
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Likewise, 

𝑢𝑚𝑛 exp 𝑡𝑋2 , 𝑝) = 𝑗𝑛−𝑚𝑒−𝑗  𝑛−𝑚 𝜋 2 𝐽𝑚−𝑛 𝑝𝑡 = 𝐽𝑚−𝑛 𝑝𝑡 , 

and so 

𝑢 𝑚𝑛  𝑋2, 𝑝 =
𝑑

𝑑𝑡
𝑢𝑚𝑛  exp 𝑡𝑋2 , 𝑝) 𝑡=0 =

𝑝

2
 𝐽𝑚−𝑛−1 0 − 𝐽𝑚−𝑛+1 0  

=
𝑝

2
 𝛿𝑚,𝑛+1 + 𝛿𝑚,𝑛−1 . 

Similarly, we find 

𝑢𝑚𝑛 exp 𝑡𝑋3 , 𝑝) = 𝑒−𝑗𝑚𝑡 𝛿𝑚,𝑛  

And 

𝑢 𝑚𝑛  𝑋3 , 𝑝 =
𝑑

𝑑𝑡
𝑢𝑚𝑛  exp 𝑡𝑋3 , 𝑝) 𝑡=0 = −𝑗𝑚𝛿𝑚,𝑛 . 

 

Fast Fourier transforms for  SE 2 and SE 3 . 

Operational properties for SE 3  which are analogous to those presented here for 

SE 2 . [26] 

 

Phase Noise in Coherent Optical Communications (4.11): 

In optical communications, laser light is used to transmit information along fiber 

optic cables. There are several methods that are used to transmit and detect 

information within the light. Coherent detection is a method that has the ability to 

detect the phase, frequency, amplitude and polarization of the incident light signal. 

Therefore, information can be transmitted via phase, frequency, amplitude, or 

polarization modulation. However, the phase of the light emitted from a 

semiconductor  laser  exhibits  random  fluctuations due to spontaneous emissions 

in the laser cavity. This phenomenon is commonly referred to as phase noise. Phase  

noise puts  strong limitations on the performance of coherent communication 

systems. Evaluating the influence of phase noise is essential in system  design  and  
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optimization . Analytical models that describe the relationship between phase noise 

and the filtered signal. In particular, the Fokker–Planck approach represents the 

most rigorous description of phase noise effects . To better apply this approach to 

system design and optimization, an efficient and powerful computational tool is 

necessary. we describe one such tool that is based on the motion-group Fourier  

transform. Readers  unfamiliar  with the technical terms used below. The 

discussion in the following paragraph provides a context for this particular 

engineering application, but the value of noncommutative harmonic analysis in this 

context is solely due to its ability to solve equation (2). 

Let 𝑠(𝑡) be the input signal to a bandpass filter which is corrupted by phase noise. 

Using the equivalent baseband representation and normalizing it to unit amplitude 

𝑠 𝑡 = 𝑒𝑗𝜙 (𝑡) 

 

Where 𝜙(𝑡) is the phase noise, usually modeled as a Brownian motion process. 

The function 𝑕(𝑡) is the impulse response of the bandpass filter. The output of the 

bandpass filter is denoted 𝓏(𝑡). Let us represent 𝓏(𝑡) through its real and imaginary 

parts: 

𝓏 𝑡 = 𝑥 𝑡 + 𝑗𝑦 𝑡 = 𝑟 𝑡 𝑒𝑗𝜃  𝑡 . 

The 3-D Fokker–Planck equation defining the probability density function (pdf) of 

𝓏(𝑡) is derived: 

𝜕𝑓

𝜕𝑡
= −𝑕 𝑡 𝑐𝑜𝑠𝜙

𝜕𝑓

𝜕𝑥
− 𝑕 𝑡 sin𝜙

𝜕𝑓

𝜕𝑦
+
𝐷

2

𝜕2𝑓

𝜕𝜙2
  (2) 

with initial condition 𝑓 𝑥, 𝑦, 𝜙; 0 = 𝛿(𝑥)𝛿(𝑦)𝛿(𝜙), where 𝛿 being the Dirac delta 

function. The parameter D is related to the laser line width  Δ𝑣by 𝐷 = 2𝜋Δ𝑣. 

Having an efficient method for solving equation (2) is of great importance in the 

design of filters. 
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A number of papers have attempted to solve the above equations using a variety of 

techniques including series expansions, numerical methods based on discretizing 

the domain, and analytical methods. However, all of them are based on classical 

partial differential equation solution techniques. 

In our work, we present a new method for solving these methods using harmonic 

analysis on groups. These techniques  reduce the above Fokker–Planck equations to 

systems of linear ordinary differential equations with constant or time-varying 

coefficients in a generalized Fourier space. The solution to this system of equations 

in generalized Fourier space is simply a matrix exponential for the case of constant 

coefficients. A usable solution is then generated via the generalized Fourier 

inversion formula. 

Using the differential operators defined on the motion group, the 3-D Fokker– 

Planck equation in (3–10-1) can be rewritten as 

𝜕𝑓

𝜕𝑡
=  −𝑕 𝑡 𝑋 2

𝑅 +
𝐷

2
 𝑋 3

𝑅 
2
 𝑓.                                   (3) 

This equation describes a kind of process that evolves on the group of rigid-body 

motions  SE(2). Applying the motion-group Fourier transform to (3–2), we can 

convert it to an infinite system of linear ordinary differential equations: 

𝑑𝑓 

𝑑𝑡
𝐴 𝑡 𝑓 .                                                      (4) 

For equation (3–10-2), the matrix is 

𝐴 𝑡 = −𝑕 𝑡 𝑢  𝑋2, 𝑝 +
𝐷

2
(𝑢 (𝑋3, 𝑝))2 

And its elements are 

𝐴(𝑡)𝑚𝑛 = −𝑕 𝑡 
𝑝

2
 𝛿𝑚,𝑛+1 − 𝛿𝑚,𝑛−1 −

𝐷

2
𝑚2𝛿𝑚,𝑛 . 

Numerical methods such as Runge–Kutta integration can be applied to easily solve 

the truncated version of this system. In the case when 𝑕(𝑡) is a constant, then 𝐴 is a 
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constant matrix and the solution to the resulting linear time-invariant system can be 

written in closed form as 

𝑓  𝑝; 𝑡 = exp(𝐴𝑡) 

With the initial condition that 𝑓  𝑝; 0  is the infinite-dimensional identity matrix. 

In practice we truncate A at finite dimension, then exponentiate. 

Once we get the solution to (4), we can then substitute it into the Fourier inversion 

formula for the motion group in (1) to recover the pdf  f(g; t) of z(t). 

To get the pdf 𝑓(𝑟, 𝜃; 𝑡) is just an integration with respect to 𝜙as 

𝑓 𝑟, 𝜃; 𝑡 =
1

2𝜋
 𝑓(𝑔; 𝑡)𝑑𝜙

2𝜋

0

=  𝑗−𝑛𝑒−𝑗𝑛𝜃

𝑛∈℞

 𝑓 0,𝑛𝐽−𝑛 𝑝𝑟 𝑝 𝑑𝑝
∞

0

. (5) 

Integrating equation (3–10-4) over 𝜃will give us the marginal pdf of  𝓏(𝑡) as: 

𝑓 𝑟; 𝑡 =  𝑓 0,0 𝑝 𝐽0 𝑝 𝑟 𝑝 𝑑𝑝
∞

0

.                         (6) 

Using our method, we can get a simple and compact expression for the marginal 

pdf for the output of the bandpass filter given in (6). 

For details and numerical results generated using this approach. 

 

Robotics (4.12): 

A robotic manipulator  arm is a device used to position and orient objects in space. 

The set of all reachable positions and orientations is called the workspace of the 

arm. A robot arm that can attain only a finite number of different states is called a 

discretely-actuated manipulator. For such manipulators, it is a combinatorially 

explosive problem to enumerate by brute force all possible states for arms that have 

a high degree of articulation. The function that describes the relative density of 

reachable positions and orientations in the workspace (called a workspace density 
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function) has been shown to be an important quantity in planning the motions of 

these manipulator arms. This function is denoted as 

𝑓 𝑔; 𝐿 where 𝑔 ∈ SE(𝑁), and L  is the length of the arm. 

Noncommutative  harmonic  analysis  enters in this problem as a way to reduce this 

complexity. that the workspace density function 𝑓(𝑔; 𝐿1 + 𝐿2) for two 

concatenated manipulator segments with length 𝐿1 and 𝐿2 is the motion-group 

convolution 

𝑓 𝑔; 𝐿1 + 𝐿2 = 𝑓 𝑔; 𝐿1 ∗ 𝑓 𝑔; 𝐿2 =  𝑓 𝑕; 𝐿1 
𝐺

𝑓 𝑕−1 ∘ 𝑔; 𝐿2 𝑑𝑕,   (7) 

where 𝑕  is a dummy variable of integration and 𝑑𝑕 is the bi-invariant measure for 

SE(𝑁). That is, given two short arms with known workspace densities, we can 

generate the workspace density of the long arm generated by stacking one short 

arm on the other using equation (7). In order to perform these convolutions 

efficiently, the concept of  FFTs for the motion groups. 

we discuss an alternative method for generating manipulator workspace density 

functions that does not explicitly compute convolutions. 

Instead, it relies on the same kinds of degenerate diffusions we have seen already in 

the context of phase noise. 

 

Inspiration of the algorithm (4.12.1): 

Consider a discretely-actuated serial manipulator which consists of concatenated 

segments called modules. Suppose that each module can reach 16 different states. 

The workspace of this manipulator with 2 modules, 3 modules and 4 modules can 

be generated by brute force enumeration because 162, 163, and 164 are not terribly 

huge numbers. It is easy to imagine that the size of the workspace will spread out 

with the increment of modules. This enlargement of the workspace is just like the 

diffusion produced by a drop of ink spreading in a cup of water. Inspired by this 
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observation, we view the workspace of a manipulator as something that 

grows/evolves from a single point source at the base as the length of the 

manipulator increases from zero. The workspace is generated after the manipulator 

grows to full length.[25] 

 

Implementation of the algorithm (4.12.2): 

 With this analogy, we then need to determine what kind of diffusion equation is 

suitable to model this process. We get such an equation by realizing that some 

characteristics of manipulators are similar to those of polymer chains like DNA. 

During our study of conformational statistics in polymer science, we derived a 

diffusion-type equation defined on the motion group. This equation describes the 

probability density function of the position and orientation of the distal end of a 

stiff macromolecule chain relative to its proximal end. By involving parameters 

which indicate the kinematic properties of a manipulator  into this equation, we can 

modify it to the diffusion-type equation describing the evolution of the workspace 

density function. It is written explicitly as 

𝜕𝑓

𝜕𝐿
=  𝛼 𝑋 1

𝑅 + 𝛽  𝑋 1
𝑅 

2
+  𝑋 3

𝑅 + 𝜀  𝑋 1
𝑅 

2
 𝑓.                  (8) 

Herefstands  for the workspace density  function, and  L is the manipulatorlength. 

The differential operators  𝑋 1
𝑅  and  𝑋 3

𝑅  are those defined on SE(2) givenearlier. 

Parameters 𝛽, 𝜀and 𝛼describe the kinematic properties of manipulators. 

We define these kinematic properties as flexibility, extensibility and the degree of 

asymmetry. The parameter  𝛽 describes the flexibility of a manipulator in the sense 

of  how much a segment of the manipulator can bend per unit length. A larger value 

of  𝛽 means that the manipulator can bend a lot. The parameter "describes the 

extensibility of a manipulator in the sense of how much a manipulator can extend 

along  its backbone direction. A larger value of "means that the manipulator can 
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extend a lot. The parameter  𝛼 describes the asymmetry in how the manipulator 

bends. When 𝛼 = 0, the manipulator can reach left and right with equal ease. 

When 𝛼 < 0, there is a preference for bending to the left, and when 𝛼 > 0 there is 

a preference for bending to the right. Since  𝛼,𝛽, and 

𝜀  are qualitative descriptions of the kinematic properties of a manipulator, they are 

not directly measurable. 

This simple three-parameter model qualitatively captures the behavior that has been 

observed in numerical simulations of workspace densities of discretely-actuated 

variable-geometry truss manipulators. Clearly, equation (8) can be solved in the 

same way as the phase-noise equation.  

 

Statistical Mechanics of Macromolecules (4.13): 

we show how certain quantities of interest in polymer physics can be generated 

numerically using  Euclidean-group convolutions. We also show how for wormlike 

polymer chains, a partial differential equation  governs a process that evolves on 

the motion group and describes the diffusion of end-to-end position and orientation. 

This equation can be solved using the SE(3)-Fourier transform in a manner very 

similar to the way the phase-noise Fokker–Planck was addressed before. This 

builds on classical works in polymer theory. 

 

Mass density, frame density, and Euclidean group convolutions 

 (4.13.1): 

In statistical mechanical theories of polymer physics, it is essential to compute 

ensemble properties of polymer chains averaged over all of their possible 

conformations. 
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Noncommutative harmonic analysis provides a tool for computing probability 

densities used in these averages. 

In this subsection we review three statistical properties of macromolecular 

ensembles. These are: 

 (1) The ensemble mass density for the whole chain 𝜌(𝑥), which is generated by 

imagining that one end of the chain is held fixed and a cloud is generated by all 

possible conformations of the chain superimposed on each other. 

(2) The ensemble tip  frame density 𝑓(𝑔) (where𝑔is the frame of reference of the 

distal end of the chain relative to the fixed proximal end). 

(3) The function  𝜇(𝑔, 𝑥), which is the ensemble mass density of all configurations 

which grow from the   frame fixed to one end of the chain and terminate at the 

relative frame  𝑔 at the other end.  

The functions  𝜌, 𝑓, and 𝜇are related to each other. Given 𝜇(𝑔, 𝑥), the ensemble 

mass density is calculated by adding the contribution of each 𝜇for each different 

end position and orientation: 

𝜌 𝑥 =  𝜇(𝑔, 𝑥)
𝐺

𝑑𝑔.                                    (9) 

This integration is written as being over all motions of the end of the chain, but 

only frames 𝑔 in the support of 𝜇  contribute to the integral. Here G is shorthand for 

SE(3) and 𝑑𝑔  denotes the invariant integration measure for  SE(3). 

 

In an analogous way, it is not difficult to see that integrating the 𝑥-dependence out 

of  𝜇  provides the total mass of configurations of the chain starting at frame 

𝑒  and terminating at frame 𝑔. Since each chain has mass M, this means that the 

frame density 𝑓(𝑔) is related to 𝜇 (𝑔, 𝑥)as: 

𝑓 𝑔 =
1

𝑀
 𝜇(𝑔, 𝑥)
ℝ3

𝑑𝑥.                               (10) 
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We note the total number of frames attained by one end of the chain relative to the 

other is 

𝐹 =  𝑓(𝑔)
𝐺

𝑑𝑔. 

It then follows that  

 𝜌(𝑥)𝑑𝑥
ℝ3

= 𝐹.𝑀. 

If the functions 𝜌(𝑥) and 𝑓(𝑔) are known for the whole chain then a number of 

important thermodynamic and mechanical properties of the polymer can be 

determined. 

We can divide the chain into  Psegments that are short enough to allow brute force 

enumeration calculation of  𝜌𝑖(𝑥) and 𝑓𝑖 𝑔 for 𝑖 = 1,… , 𝑃, where g is the 

relativeframe of reference of the distal end of the segment with respect to the 

proximal one. For a homogeneous chain, such as polyethylene, these functionsare 

the same for each value of   𝑖 = 1,… , 𝑃 

In the general case of a heterogeneous chain, we can calculate the functions 

𝜌𝑖,𝑖+1 𝑥 , 𝑓𝑖,𝑖+1(𝑔), and 𝜇𝑖,𝑖+1(𝑔, 𝑥 ) for the concatenation of segments𝑖 and 

𝑖 + 1 from those of segments 𝑖 and 𝑖 + 1 separately in the following way: 

𝜌𝑖,𝑖+1 𝑥 = 𝐹𝑖+1𝜌𝑖 𝑥 +  𝑓𝑖 𝑕 𝜌𝑖,𝑖+1
𝐺

 𝑕−1 ∘ 𝑥 𝑑𝑕,              11  

 

𝑓𝑖,𝑖+1 𝑔 = 𝑓𝑖 ∗ 𝑓𝑖+1 𝑔 +  𝑓𝑖 𝑕 𝑓𝑖+1
𝐺

 𝑕−1 ∘ 𝑔 𝑑𝑕,              (12) 

And 

𝜇𝑖,𝑖+1 𝑔, 𝑥  =   𝜇𝑖 𝑕, 𝑥  𝑓𝑖+1 𝑕
−1 ∘ 𝑔 

𝐺

+ 𝑓𝑖 𝑕 𝜇𝑖+1 𝑕
−1 ∘ 𝑔, 𝑕−1 ∘ 𝑥     𝑑𝑕.               (13) 
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In these expressions 𝑕 ∈ 𝐺 = SE(3) is a dummy variable of integration. 

The meaning of equation (11) is that the mass density of the ensemble of all 

conformations of two concatenated  chain segments  results from two contributions. 

The first is the mass density of all the conformations of the lower segment 

(weighted by the number of different upper segments it can carry, which is 

𝐹𝑖+1 = ∫ 𝑓𝑖+1𝐺
𝑑𝑔). The second contribution results from rotating and translating 

the mass density of the ensemble of  the upper segment, and adding the 

contribution at each of these poses. This  contribution  is weighted by the number 

of frames that the distal end of the lower segment can attain relative to its base. 

Mathematically 𝐿 𝑕 𝜌𝑖+1 𝑥 = 𝜌𝑖+1(𝑕−1 ∘ 𝑔) is a left-shift operation which 

geometrically has the significance of rigidly translating and rotating the function 

𝜌𝑖+1 𝑥  by the transformationh. The weight 

𝑓𝑖 𝑕  𝑑𝑕 is the number of configurations of the 𝑖𝑡𝑕segment terminating at frame of 

reference h. 

The meaning of equation (12) is that the distribution of frames of reference at the 

terminal end of the concatenation of segments 𝑖  and 𝑖 + 1 is the group theoretical 

convolution of the frame densities of the terminal  ends of each of the two segments 

relative to their respective bases. This equation holds for exactly the same reason 

why equation (9) does in the context of robot arms. 

Equation (13) says that there are two contributions to 𝜇𝑖,𝑖+1  (𝑔, 𝑥 ). The first comes 

from adding up all the contributions due to each  𝜇𝑖(𝑕, 𝑥 ). This is weighted by the 

number of upper segment conformations with distal ends that reach the frame 

𝑔 given that their base is at frame h. The second comes from addingup all shifted 

copies of 𝜇𝑖+1(𝑔, 𝑥 ), where the shifting is performed by the lower distribution, and 
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the sum is weighted by the number of distinct configurations of the lower segment 

that terminate at h. This number is 𝑓𝑖 𝑕  𝑑𝑕.  

 

Statistics of stiff molecules as solutions to PDEs on 𝐒𝐎(𝟑) and 𝐒𝐄(𝟑) 

(4.13.2): 

  Experimental measurements of the stiffness constants of DNA and other stiff  

macromolecules have been  reported in a number of papers, as well as the statistical 

mechanics of such molecules.  

The stiffness and chirality can be described with parameters 𝐷𝑙𝑘   and 𝑑𝑙for 

 𝑙, 𝑘 = 1, 2, 3. In particular, 𝐷𝑙𝑘are the elements of the inverse of the stiffness 

matrix. When a force is applied, these constants determine how easily one end of 

the molecule deflects from the helical shape that it assumes when no forces act on 

it. The parameters 𝑑𝑙describe the helical shape of an undeformed molecule with 

flexibility described by  𝐷𝑙𝑘 .  

Degenerate diffusion equations describing the evolution of position and orientation 

of frames of reference attached to points on the chain at different values of length, 

L. These equations incorporate stiffness and chirality information and are written in 

terms of SE(3) differential operators as 

 

 
𝜕

𝜕𝐿
−

1

2
 𝐷𝑙𝑘

3

𝑘,𝑙=1

𝑋 𝑙
𝑅𝑋 𝑘

𝑅 − 𝑑𝑙

3

𝑙=1

𝑋 𝑙
𝑅 + 𝑋 6

𝑅 𝑓 = 0.                  (14) 

 

The initial conditions are 𝑓 𝑎, 𝐴; 0 = 𝛿(𝑎)𝛿(𝐴) where  𝑔 =  𝑎, 𝐴 . 

This equation has been solved using the operational properties of the SE(3) Fourier 

transform.[30] 
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