

 بسم الله الرحمن الرحيم

Sudan University of Sciences and Technology

Faculty of Engineering

Aeronautical Engineering Department

Implementation of a Quadcopter Control

System

A project submitted in partial fulfillment for the requirements of

the Degree of B.Sc. (Honor) in aeronautical engineering

By:

Al-Baraa Omer Mohammed Abu Arki

Mohammed Saif El-Deen Ibraheem Idrees

Muzammil Mohammed Muzammil Abbas

Supervised By:

Dr. Khidir Tay Allah Yousif

October, 2017

I

 الآيـــــــــــــــــــــة

 الرّحْمَنِ الرّحِيمِ بِسْمِ اّللهِ

نْسَانَ مِنْ عَلقٍَ)1اقْرَأْ باِسْمِ رَبِّكَ الَّذِي خَلقََ) نْسَانَ مَا لمَْ يعَْلمَْ)4(الَّذِي عَلَّمَ باِلْقلَمَِ)3(اقْرَأْ وَرَبُّكَ الْْكَْرَمُ)2(خَلقََ الِْْ (5(عَلَّمَ الِْْ

 صدق الله العظيم

5 الي 1الْيات –سورة العلق

II

Abstract

The control system of a quadcopter is the most important part. Control system governing

quadcopter stability and control movement by correcting measurement errors and comparing to

the desired values achieving pilot desired and safe flight.

This thesis concerned with the implementation of a quadcopter control system that is

tested through visual simulation with real physics then hardware capabilities test that describes

the capabilities of the hardware mounted on the quadcopter after the construction is over.

This work was divided into two subsections: simulation and construction; the simulation

was conducted using Protues circuit simulation software that failed and was replaced by unity 3D

due to its limitation to simulate electronic speed controller (ESCs) and Inertial Measurement

Unit (IMU) which are essential to simulate the quadcopter system, Unity 3D simulation software

provided 3D visual simulation of the quadcopter depending only on the code and no components

simulation was need only the mass and drag properties of the frame.

The construction of the quadcopter consisted of choosing a suitable frame to carry the

load of the quadcopter that was plastic foam due its light weight and flexibility casted with fiber

glass to reinforce to ensure strength. The quadcopter components were mounted on it with

distributed load to ensure equilibrium then the transmitter was setup to determine what position

of the transmitter sticks belonged to which flight movement and all the ESCs were calibrated to

operate at the same speed then the Proportional-Integral-Derivative (PID) controller code was

uploaded and operation was successful which gives us the time to add auto leveling.

Auto leveling of the quadcopter were possible by taking the readings of the gyroscope

and applying correction when there is no user input received; the Proportional-Integral-

Derivative (PID) applies gyroscope correction to stabilize the aircraft which is zero gyroscope

orientation in all axes.

III

 التجريد

نظام التحكم في الطائرات بدون طيار يعد اهم جزء منها لانه يحكم استقرارية و حركة الطائرة عن طريق تصحيح اخطاء

 قياسها ومقارنتها بالقيم المراده لطيران آمن حسب رغبة الطيار.

ارها عن طريق المحاكاة البصرية بقيم هذا البحث يهتم بتضمين نظام تحكم للطائرة رباعية المراوح بدون طيار والتي تم اختب

قسم البحث الي جزئين جزء المحاكاة وجزء التي سوف تركب علي الطائرة.وقوي فيزيائية حقيقة محوسبة واختبار مقدرات اجزاءها

اء الحسية فر محاكاة بصرية للطائرة كما تمت محاكاة الاجزلتو unity 3D و Protuesالبناء, جزء المحاكاة تم عن طريق برنامج

 للطائرة عن طريق برنامج يحدد خصائص الطائرة بعد تركيب اجزائها.

تطلب بناء الطائرة وجود هيكل يجمع بين المرونة وخفة الوزن الذي تم التحصل عليه بالجمع بين مادتي الفلين والفايبر جلاس

ثبيت الاجزاء الالكترونية عليه وتمت تهيئة المرسل لمعرفة الذي منح الهيكل صلابة الفايبر ومرونة وخفة الفلين. بعد صناعة الهيكل تم ت

كلها في نفس اي حركة من حركات الطيران تنتمي الي اي وضع من اواع حركة ذراع المرسل ثم تمت تهيئة متحكمات السرعة لتعمل

 ية التوازن الذاتي.الوقت بنفس السرعة ثم تم تحميل برنامج الطيران علي الطائرة مما اعطانا بعض الوقت لاضافة خاص

الذي يقوم بتصحيح حركة الطيران الي وضع الاتزان حينما لا gyroscopeالتوازن الذاتي للطائرة يعتمد علي قراءات ال

 يتحكم في الطائرة.يكون المستخدم

IV

Acknowledgement

Many thanks and appreciation to our supervisor and everyone helped make this thesis see

the light of day and to all who dedicated their time, knowledge and resources to grow our

knowledge and skills.

V

Dedication

So much love to our families and friends whom stood by our side when times were hard and

those whom were with us every step of our way and those who loved us and believed in us more

than others.

VI

Table of Contents

Contents
 I ... الآيـــــــــــــــــــــة

Abstract ... II

 III .. التجريد

Acknowledgement .. IV

Dedication .. V

Table of Contents .. VI

List of Figures ... IX

List of Tables ... X

Glossary .. XI

Symbols.. XIII

Chapter One .. 1

Introduction ... 1

1.1 Overview .. 1

1.2 Aim & Objectives... 1

1.2.1 Aim ... 1

1.2.2 Objectives ... 1

1.3 Problem Statement ... 1

1.4 Proposed Solution .. 2

1.5 Methodology .. 2

1.6 Thesis Outline .. 2

Chapter Two.. 3

Literature Review and Background .. 3

2.1 Introduction ... 3

2.2 History of Quadcopter... 4

2.3 Dynamic Model .. 5

2.3.1 Quad-rotor Characteristics ... 5

2.3.2 System Description .. 7

2.4 Quadcopter Block Diagram .. 12

VII

2.4.1 Inertial Measurement Unit (IMU) .. 12

2.4.2 RF Receiver ... 13

2.4.3 Brushless DC Motor .. 13

2.4.4 Electronic Speed Controller (ESC) .. 13

2.4.5 Flight Controller... 14

2.5 Tools ... 14

2.5.1 Arduino .. 14

2.5.2 Proteus 8 Labcenter .. 14

2.5.3 Unity 3D... 14

2.5.4 eCalc – xcopterCalc ... 14

Chapter Three.. 15

Modeling and Simulation .. 15

3.1 Mathematical Modeling .. 15

3.1 PID Controller ... 17

3.1.1 Theory of operation.. 18

3.1.2 PID Tuning... 19

3.1.3 Classic PID Equations.. 19

3.2 Simulation ... 20

3.2.1 Unity .. 20

3.2.3 eCalc .. 22

Chapter Four ... 25

Construction .. 25

4.1 Overall hardware connection to the microcontroller .. 25

4.2 Hardware Components.. 26

4.2.1 The Frame of the Quadcopter .. 26

4.2.2 The Microcontroller – Arduino Uno .. 26

4.2.3 Electronic Speed Controllers ... 27

4.2.4 Inertial Measurement Unit ... 29

4.2.5 IMU interface with ARDUINO ... 30

4.2.6 The Battery Pack .. 31

4.2.7 The Brushless Motors .. 33

VIII

4.2.8 Propellers ... 35

4.3 Software Implementation .. 35

4.3.1 Quadcopter Flowchart .. 35

4.3.2 Transmitter and Receiver ... 36

4.3.3 Gyroscope .. 37

4.3.4 ESCs connection to Arduino .. 39

Chapter Five .. 41

Results and Discussion ... 41

Chapter Six.. 42

Conclusion and Recommendations ... 42

6.1 Conclusion .. 42

6.2 Recommendations ... 42

References ... 43

Appendix A: eCalc Hardware Analysis ... I

Appendix B: Quadcopter Simulation Code .. II

B.1 PID Controller Simulation Code .. II

B.2 Quadcopter simulation code ... IV

Appendix C: Quadcopter Code ... XI

IX

List of Figures
Figure 1: Shows the x and + structure configurations of a quadcopter .. 3

Figure 2: shows the quadcopter rotorcraft of Bothezat ... 4

Figure 3: shows the Quad-rotor rotorcraft .. 5

Figure 4: shows throttle control input ... 6

Figure 5: (a) Pitch (b) Roll (c) Yaw .. 6

Figure 6: shows the quadcopter in an inertial frame ... 8

Figure 7: Quadcopter Block Diagram ... 12

Figure 8: Quadcopter control loop .. 17

Figure 9: Quadrotor 3D model .. 20

Figure 10 :Rigid body component attached to the quadrotor 3D model....................................... 21

Figure 11: Quadcopter controller parameters ... 22

Figure 12: Hardware Specifications passed into eCalc for evaluation ... 23

Figure 13 :Range Estimation .. 23

Figure 14: Motor characteristics at full throttle .. 24

Figure 15: Overall Quadcopter hardware connection ... 25

Figure 16: Plastic foam frame incase in fiber glass .. 26

Figure 17: Arduino UNO Microcontroller Board ... 27

Figure 18: 30A Brushless ESC ... 28

Figure 19: MPU6050 IMU used in our quadcopter .. 30

Figure 20: MPU6050 Interface with Arduino ... 30

Figure 21: 3S LiPo Battery ... 32

Figure 22: A2212/13T 1000 KV BLDC (Brushless DC Motor) .. 34

file:///C:/Users/dihajom-soft/Desktop/Graduation_Project_Final-2.docx%23_Toc499115743
file:///C:/Users/dihajom-soft/Desktop/Graduation_Project_Final-2.docx%23_Toc499115747

X

List of Tables
Table 1: Effects of each of controllers 𝑲𝒑, 𝑲𝒊, and 𝑲𝒅 on a closed-loop system 19

Table 2 : Specification for 30A Brushless ESC .. 29

Table 3 : LiPo batteries 3S 11.1V 2600MAH 30C packs ... 33

Table 4 : Specifications of A2212 / 920 KV out runner motor .. 34

XI

Glossary

ADC Analog to digital converter

BEC Battery Eliminator Circuit

BLDC Brushless DC Motor

BT Bluetooth

DAC Digital to Analog Converter DLPF Digital Low Pass Filter

EMF Electro Motive Force

ESCs Electronic Speed Controllers

FET Field Effect Transistors

FHSS Frequency-Hopping Spread Spectrum

FSK Frequency Shift Keying

GFSK Gaussian Frequency Shift-Keying I2C Inter-Integrated Circuit

IDE Integrated Development Environment

IMU Inertial Measurement Unit

LAN Local Area Network

LQ Linear Quadratic

MAV Micro Aerial Vehicle

MEMS Micro Electronic Mechanical System

PAN Personal Area Network

PCB Printed Circuit Board

PID Proportional Integral Derivative

PPM Pulse Width Modulation

XII

PWM Pulse Position Modulation

RC Remote Control

RF Radio Frequency

RPM Revolution Per Minute SCL Serial Clock Line

UAV Unmanned Aerial Vehicles SDA Serial Data Line

USB Universal Serial Bus

XIII

Symbols

Symbol Unit Description

Θ rad Pitch angle

𝜃 ∙ rad.𝑠 −1 Pitch angle rate

ρ kg.𝑚−3 Air density at sea level and 20◦C

τs - Time constant

∅ rad Roll angle

∅ ∙ rad.𝑠 −1 Roll angle rate

Φ rad Yaw angle

φ ∙ rad.𝑠 −1 Yaw angle rate

𝜔 rad.𝑠 −1 Propeller angular velocity

𝜔 − rad.𝑠 −1 Quadrotor’s angular velocities (P Q R)

 DP m Propeller diameter

Fnet N Combination of all the forces acting on the quadrotor

Fnet= (FxFyFz)

FP N Total thrust generated by the propellers FP = (Fpx FPy FPz)

G m.𝑠 −2 Earth’s gravity (constant value of 9.81m.𝑠 −2)

I kg.𝑚2 Inertia matrix of the Quadrotor

Mnet - Sum of all the moments acting on the Quadrotor

Mnet = (Mx My Mz)

m kg Mass of the Quadrotor

P rad.𝑠 −1 Angular speed around the ux0 axis of the Quadrotor

𝑃 ∙ rad.𝑠 −2 Angular acceleration of the Quadrotor along the ux0 axis of

XIV

Inertial reference frame

Q rad.𝑠 −1 Angular speed around the uy0 axis of the Quadrotor.

𝑄 ∙ rad.𝑠 −2 Angular acceleration of the Quadrotor along the uy0 axis of the

Inertial reference frame

R rad.𝑠 −1 Angular speed around the uz0 axis of the Quadrotor

𝑅 ∙ rad.𝑠 −2 Angular acceleration of the Quadrotor along the uz0 axis of the

Inertial reference frame

S - Rotation matrix (also known as direction cosine matrix)

T N Propeller thrust

𝑉 ∙ m. 𝑠 −2 Linear acceleration of the Quadrotor along the uy axis of the

Inertial reference frame

𝑊∙ m.𝑠 −2 Linear acceleration of the Quadrotor along the uz axis of the

Inertial reference frame

𝑈 ∙ m. 𝑠 −2 Linear acceleration of the Quadrotor along the ux axis of the

Inertial reference frame

1

Chapter One

Introduction

1.1 Overview
Study and development of unmanned aerial vehicles (UAV) and micro aerial vehicles

(MAV) are getting high encouragement nowadays, since the application of UAV and MAV can

apply to variety of areas such as rescue mission, military, film making, agriculture and others [1].

Quadcopter has advantages over the conventional helicopter where the mechanical design is

simpler. Besides that, Quadcopter changes direction by manipulating the individual propeller’s

speed and does not require cyclic and collective pitch control [2].

1.2 Aim & Objectives

1.2.1 Aim

This work aim to fly the quadcopter using hand gestures on a Leap Motion hand gesture

sensor; each hand gesture has a unique instruction programmed on the motion sensor transmitted

to the quadcopter flight controller with Wi-Fi wireless signals.

1.2.2 Objectives

• Run a successful visual simulation of the controller in Unity3D software.

• Implementation of the PID controller to the Arduino microcontroller as flight controller

unit

• Construct the quadcopter and record a successful flight time of at least 1 minute

1.3 Problem Statement
The stability and control of a quadcopter is a challenging matter and the most fundamental

feature in UAVs to sustain a balanced well controlled flight when building it instead of ready

manufactured flight controllers.

2

1.4 Proposed Solution
PID controller allows you to change the UAVs flight characteristics, including how it

responds to user input, how well and how quickly it stabilizes.

1.5 Methodology
The method applied on choosing the proper PID controller gains is trial and error method

to set the values that results in balanced, stable and controlled flight. A collection of

hardware components was used to build the quadcopter model providing the hardware to

implement the PID flight controller.

1.6 Thesis Outline
 Chapter 2 is the literature review and background discussing the UAVs historically and

providing a background of the components that are essential in the operation of the quadcopter;

relative reports that discussed building a quadcopter controller are also included in the literature

review.

Chapter 3 includes the modeling of the quadcopter and the simulation of implementing

the PID controller to a quadcopter flight controller.

 Chapter 4 shows the steps that were followed in constructing the hardware of the

quadcopter model that was used to implement the PID controller.

 Chapter 5 discusses the result and discusses those results that were observed during

building the hardware and implementing the software.

 Chapter 6 is the conclusion of the thesis that includes the recommendations for our

successors to solve the problems we could not and start their work where we finished.

3

Chapter Two

Literature Review and Background

2.1 Introduction
A quad copter flying machine also known as quad rotor is a rotary wing aircraft powered

by four motors mounted on each edge of the structure in a an x or + formation depending on the

formation.

Figure 1: Shows the x and + structure configurations of a quadcopter

 However the quadcopter concept isn’t introduced recently considering that it existed

since 1921; in January 1921 a US Army Corps. Contract of developing a vertical flying Machine

was awarded to Dr. George de Bothezat and Ivan Jerome. The 1678 kg X-shaped structure

supported 8.1 m diameter 6 blade rotor at each end of the 9 m arms and a 180 hp Le Rohne radial

engine. At the ends of the lateral arms, two small propellers with variable pitch were used for

thrusting and yaw control; each rotor had individual collective pitch control to produce

differential thrust through vehicle inclination for translation.

4

Figure 2: shows the quadcopter rotorcraft of Bothezat

 On the aircraft first flight in October 1922, the rotor craft weighed 1700 kg at take-off;

the engine was soon upgraded to a 220 hp Bentley BR-2 rotary, about 100 flights were made by

the end of 1923. Although the contract called for a 100 m hover, the highest it ever reached was

5 m. After expanding $200,000 de Bothezat demonstrated that his vehicle could be quite stable

and that the practical helicopter, it was however unpowered, unresponsive, mechanically

complex, susceptible to reliability problems and pilot work load was too high during hover to

attempt lateral motion [3].

2.2 History of Quadcopter
Only few works were reported in the literature of a helicopter having four rotors. Young

et al [4]. Sponsored by the Directorate Aerospace in NASA Ames Research Center present new

configuration s of mini-drones and their applications among which the helicopter with four rotors

called the Quad-rotor Tail-Sitter.

 Pounds et al [5]; Conceived and developed a control algorithm for a prototype of an

aerial vehicle having four rotors; they considered using an MIU (Measurement Inertial Unit) to

measure the speed and acceleration. They use a linearization of the dynamic model to conceive

the control algorithm; the result of the control law was tested in the simulation.

 Altug et al [6]; Proposed a control algorithm to stabilize the quad-rotor using vision as

principal sensor. They studied two methods, the first uses a control algorithm of linearization and

the other uses the technique of back-stepping. They have tested the control laws in the

simulation; they also present an experience using vision to measure yaw angle and the altitude.

 The main reason there’s few works of literature taking quad-rotors as case study or

research area is that the interest in quadcopters has increased recently and more researchers and

aeronautics specialists are looking into the matter and conducting research.

5

2.3 Dynamic Model

2.3.1 Quad-rotor Characteristics

Consider Figure 3 below; the front and rear motors rotate counter-clockwise while the

other two rotate clockwise, gyroscopic effects and aerodynamic torques tend to cancel in

trimming flight.

Figure 3: shows the Quad-rotor rotorcraft

 This four-rotor rotor-craft does not have a swash plate; in fact, it doesn’t need any blade

pitch control. The collective input or throttle input is the sum of the thrusts of each motor (Figure

4).

6

Figure 4: shows throttle control input

 Pitch movement is obtained by increasing/reducing the speed of the rear motor while

reducing/increasing the speed of the front motor. The roll movement is obtained similarly using

the lateral motors. The yaw movement is obtained by increasing/decreasing the speed of the front

and rear motors while decreasing/increasing the speed of the lateral motors; this should be done

while keeping the total thrust constant.

Figure 5: (a) Pitch (b) Roll (c) Yaw

7

2.3.2 System Description

The dynamic model of the quadcopter is presented simply by regarding it as a solid body

developed in the three dimensions experiencing one force and three moments; the electric

motors’ dynamics are neglected along with its blades flexibility due to its relatively fast speed.

The generalized coordinates of the rotorcraft are:

 𝑞 = (𝑥, 𝑦, 𝑧, 𝜑, 𝜃, ∅) ∈ 𝑅6

…….2.1

Where:

(x, y, z) ≡ The position of the center of mass of the quadcopter

(𝜑, 𝜃, ∅) ≡ Euler angles- angles of pitch, yaw and roll- of the quadcopter

Hence the model is naturally divided into translational and rotational coordinates:

 𝜉 = (𝑥, 𝑦, 𝑧) ∈ ℜ3, 𝜂 = (𝜑, 𝜃, ∅) ∈ 𝑆3

…….2.2

The translational kinetic energy of the rotorcraft is

 𝑇𝑡𝑟𝑎𝑛𝑠 ≜
𝑚

2
 𝜉 𝑇𝜉

…….2.3

Where m denotes the mass of the rotorcraft. The rotational kinetic energy is:

𝑇𝑟𝑜𝑡 ≜

1

2
 𝜂𝑇𝕁𝜂

…….2.4

8

The matrix 𝕁 acts as the inertia matrix for the full rotational kinetic energy of the

rotorcraft expressed directly in terms of generalized coordinates 𝜂. The only potential energy

which needs to be considered is the gravitational potential given by

 𝑈 = 𝑚𝑔𝑧

…….2.5

The Langrangian is

𝐿(𝑞, 𝑞.) = 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑟𝑜𝑡 − 𝑈 =

𝑚

2
 𝜉 𝑇𝜉 +

1

2
 𝜂𝑇𝕁𝜂 − 𝑚𝑔𝑧

…….2.6

Figure 6: shows the quadcopter in an inertial frame

9

The dynamic model of the quadcopter is obtained from the Euler Lagrange equations

with external generalized force

 𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞.
−

𝜕𝐿

𝜕𝑞
= 𝐹

…….2.7

𝐹 = (𝐹𝜉 , τ) Where 𝜏 are the generalized moments and 𝐹𝜉 is the translational force applied

to the rotorcraft due to control inputs, we ignore the small body forces because they are generally

of a much smaller magnitude than the principal control inputs u and𝜏, then we write

ℱ = (

0
0
𝑢
)

…….2.8

See figure 4:

 𝑢 = 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4

…….2.9

 𝑓𝑖 = 𝑘𝑖𝜔𝑖
2 𝑖 = 1,… , 4

…….2.10

Where 𝑘𝑖 > 0 is a constant and 𝜔𝑖 is the angular speed of motor i then

 𝐹𝜉 = 𝑅ℱ …….2.11

Where R is the transformation matrix representing the orientation of the rotorcraft, we use 𝑐𝜃 for

cosθ and 𝑠𝜃 for 𝑠𝑖𝑛(𝜃)

10

𝑅 = (

𝑐𝜃𝑐𝜓 𝑠𝜓𝑠𝜃 −𝑠𝜃

𝑐𝜓𝑠𝜃𝑠𝜙 −𝑠𝜓𝑐𝜙𝑠𝜓𝑠𝜃𝑠𝜙 +𝑐𝜓𝑐𝜙𝑐𝜃𝑠𝜙

𝑐𝜓𝑠𝜃𝑐𝜙 +𝑠𝜓𝑠𝜙𝑠𝜓𝑠𝜃𝑐𝜙 −𝑐𝜓𝑠𝜙𝑐𝜃𝑐𝜙

) …….2.12

The generalized moments on the η variables are

𝜏 ≜ (

𝜏𝜓

𝜏𝜃

𝜏𝜙

) …….2.13

Where

𝜏𝜓 = ∑ 𝜏𝑀ℓ

4

𝑖=1

 𝜏𝜃 = (𝑓2 − 𝑓4)ℓ 𝜏𝜙 = (𝑓3 − 𝑓1)ℓ …….2.14

Where ℓ is the distance from the motors to the center of gravity and 𝜏𝑀ℓ
 is the couple

produced by motor 𝑀𝑖.

 Since the Langrangian contains no cross-terms in the kinetic energy combining �̇� and �̇�,

the Euler-Langrange equation may be divided to the �̇� dynamics and η dynamics.

𝑚�̈� + (

0
0

𝑚𝑔
) = ℱ𝜉 …….2.15

𝕁�̈� + 𝕁�̇̇� −

1

2

𝜕

𝜕𝜂
 (�̇�𝑇𝕁�̇�) = 𝜏 …….2.16

Defining the Coriolis/centripetal vector

�̅�(𝜂, �̇�) = 𝕁�̇̇� −

1

2

𝜕

𝜕𝜂
 (�̇�𝑇𝕁�̇�) …….2.17

11

We may write

 𝕁�̈� + �̅�(𝜂, �̇�) = 𝜏 …….2.18

But we can rewrite �̅�(𝜂, �̇�)

�̅�(𝜂, �̇�) = (�̇� −

1

2

𝜕

𝜕𝜂
 (�̇�𝑇𝕁)�̇�) = 𝐶(𝜂, �̇�)�̇� …….2.19)

Where 𝐶(𝜂, �̇�) is referred to as the Coriolis terms and contains the gyroscopic and

centrifugal terms associated with the η dependence of 𝕁. Finally:

𝑚�̈� = 𝑢 (
−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙

) + (
0
0

− 𝑚𝑔
)

…….2.20

 𝕁�̈� = −𝐶(𝜂, �̇�)�̇� + 𝜏 …….2.21

In order to simplify let us propose a change of input variables.

 𝜏 = 𝐶(𝜂, �̇�)�̇� + 𝕁�̃� …….2.22

�̃� = (

�̃�𝜓

�̃�𝜃

�̃�𝜙

) …….2.23

Are the new inputs, then 𝜂 =̈ �̃�, rewriting the equations

 𝑚�̈� = −𝑢 𝑠𝑖𝑛𝜃 𝑚�̈� = 𝑢 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙 𝑚�̈� = 𝑢 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙 − 𝑚 …….2.24

 �̈� = �̃�𝜓 �̈� = �̃�𝜃 �̈� = �̃�𝜙 …….2.25

12

Where x and y are the coordinates of the horizontal plane and z is the vertical position. 𝜓

is the yaw angle around the z-axis, 𝜃 is the pitch angle around (new) y-axis and 𝜙 is the roll

angle around the (new) x-axis. The control inputs u,�̃�𝜓, �̃�𝜃 and �̃�𝜙 are the total thrust or

collective input directed from the bottom of the aircraft and the new angular moments.

2.4 Quadcopter Block Diagram

The quadcopter rotorcraft consists of an Inertial Measurement Unit (IMU), flight control

unit, Electric Speed Controllers (ESC) for the motors and a Radio Frequency (RF) receiver; as

shown on figure 7 below the IMU consists of an accelerometer, gyroscope and a magnetometer.

Figure 7: Quadcopter Block Diagram

2.4.1 Inertial Measurement Unit (IMU)

Accelerometers are devices that measure acceleration. A gyroscope is a device consisting

of a wheel or disk m0ounted so that it can spin rapidly about an axis that is itself free to alter in

direction. The orientation of the axis is not affected by tilting of the mounting; so, gyroscopes

can be used to provide stability or maintain a reference direction in navigation systems,

13

automatic pilots, and stabilizers. A magnetometer is an instrument used for measuring magnetic

forces, especially the earth's magnetism.

2.4.2 RF Receiver

A quadcopter consists of a communication system to transmit pilot commands to the

copter flight controller to carry out a pitch, roll or a yaw; this system consists of a transmitter

which is the R/C controller the pilot uses to control the rotorcraft and a Radio Frequency receiver

on the quad copter (RF) to receive information signals sent by the R/C controller.

2.4.3 Brushless DC Motor

BLDC motors are a type of synchronous motor. This means the magnetic field generated

by the stator and the magnetic field generated by the rotor rotates at the same frequency. The

stator of a BLDC motor consists of stacked steel laminations with windings placed in the slots

that are axially cut along the inner periphery, the stator resembles that of an induction motor;

however, the windings are distributed in a different manner. Most BLDC motors have three

stator windings connected in star fashion. Each of these windings is constructed with numerous

coils interconnected to form a winding. One or more coils are placed in the slots and they are

interconnected to make a winding. Each of these windings is distributed over the stator periphery

to form even numbers of poles.

 The rotor is made of permanent magnet and can vary from two to eight pole pairs with

alternate North (N) and South (S) poles. Based on the required magnetic field density in the

rotor, the proper magnetic material is chosen to make the rotor. Ferrite magnets are traditionally

used to make permanent magnets. As the technology advances, rare earth alloy magnets are

gaining popularity. The ferrite magnets are less expensive but they have the disadvantage of low

flux density for a given volume. In contrast, the alloy material has high magnetic density per

volume and enables the rotor to compress further for the same torque. Also, these alloy magnets

improve the size-to-weight ratio and give higher torque for the same size motor using ferrite

magnets. Neodymium (Nd), Samarium Cobalt (SmCo) and the alloy of Neodymium, Ferrite and

Boron (NdFeB) are some examples of rare earth alloy magnets. Continuous research is going on

to improve the flux density to compress the rotor further.

2.4.4 Electronic Speed Controller (ESC)

An electronic speed controller or ESC is an electronic circuit that vary an electric motor's

speed, its direction and possibly also to act as a dynamic brake. ESCs most often used

for brushless motors essentially providing an electronically generated three-phase electric

power low voltage source of energy for the motor.

14

2.4.5 Flight Controller

A Flight Controller Unit is the block responsible of receiving the flight commands,

stabilizing the quad copter, executing pilot commands, controlling the speed of the motors and

performing flight movements.

2.5 Tools

2.5.1 Arduino

Arduino is an open-source electronics platform based on easy-to-use hardware and

software. Arduino boards are able to read inputs - light on a sensor, a finger on a button, or a

Twitter message - and turn it into an output - activating a motor, turning on an LED, publishing

something online. You can tell your board what to do by sending a set of instructions to the

microcontroller on the board. [7]

2.5.2 Proteus 8 Labcenter

Protues software by Labcenter enabling powerful features to design, test and layout

professional PCB layouts and supports the schematics and simulation of 800 microcontrollers.

2.5.3 Unity 3D

Unity3D is a powerful cross-platform 3D engine and a user-friendly development

environment for developing 3D projects and simulations equipped with graphical and

programmatic documentation and scripting guide to simulate real world physics and variables

making it easy for the user to run their simulations and see the result visually rather than tables

and figures.

2.5.4 eCalc – xcopterCalc

eCalc is an online tool for simulating real-life quadrotor parameters by providing

quadcopter parameters such as model weight, number of rotors, frame size, elevation, … etc. and

other parameters concerning the flight controller, Motors and propellers then assessing and

providing suggestion to get the best performance of the quadcopter.

15

Chapter Three

Modeling and Simulation

3.1 Mathematical Modeling

To mathematically write the movement of an aircraft we must employ Newton’s second

law of motion. As such, the equations of the net force and moment acting on the Quadrotor’s

body (respectively 𝐹𝒏𝒆𝒕 and 𝑀𝒏𝒆𝒕) are provided:

𝐹𝑛𝑒𝑡 =
𝑑

𝑑𝑡
(𝑚𝑣)𝑏 + 𝜔− × (𝑚𝑣)𝑏………………………………3.1

𝑀𝑛𝑒𝑡 =
𝑑

𝑑𝑡
(𝐼𝜔−)𝑏 + 𝜔− × (𝐼𝜔−)𝑏…………………………….3.2

Where I is the inertia matrix of the Quadrotor, v is the vector of linear velocities and𝜔−

is the vector of angular velocities. If the equation of Newton’s second law is to be as complete as

possible, we should add extra terms such as the force of gravity (Fg) which is too significant to

be neglected, thus it is defined by

𝐹𝑔 = 𝑚𝑆[0 0 𝑔]𝑇 = 𝑚𝑔[−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅ 𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅]𝑇
𝑏……………3.3

Where S is the rotation matrix

S= [

cos 𝜃 cos𝜑 cos 𝜃 sin φ − sin 𝜃
sin φ sin 𝜃 cos𝜑 − cos∅ sin𝜑 cos ∅ cos 𝜑 + sin∅ sin 𝜃 sinφ sin∅ cos 𝜃
cos ∅ sin 𝜃 cos𝜑 + sin∅ sin 𝜑 sin 𝜃 cos ∅ sinφ −sin∅ cos𝜑 cos 𝜃 cos ∅

]

The force of gravity together with the total thrust generated by the propellers (FP) have

therefore to be equal to the sum of forces acting on the Quadcopter:

16

𝐹𝑛𝑒𝑡 = 𝐹𝑝 + 𝐹𝑔……………………………3.4

Combine equations 1, 3, 4. We can write the vector of linear accelerations acting on the

vehicle’s body:

[
𝑈∙

𝑉 ∙

𝑊 ∙
] = [

0
𝑅

−𝑄

−𝑅
0
𝑃

𝑄
𝑃
0
] [

𝑈
𝑉
𝑊

] +
1

𝑚
[

𝐹𝑝𝑥

𝐹𝑝𝑦

𝐹𝑝𝑧

] + [
−𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅
𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅

] 𝑔………………….3.5

Where [FP x FP y FP z] are the vector elements of FP.

The forces and moments acting on Quadcopter of (×) congigrations

𝐹𝑝𝑧 = −(𝑇1 + 𝑇2 + 𝑇3 + 𝑇4) …………………………….3.6

𝑀𝑥 = 𝑙(−𝑇1 − 𝑇2 + 𝑇3 + 𝑇4) …………………………3.7

𝑀𝑦 = 𝑙(𝑇1 − 𝑇2 + 𝑇3 − 𝑇4) ……………………….3.8

𝑀𝑧 = 𝐾𝑇 𝑀(𝑇1 + 𝑇2 − 𝑇3 + 𝑇4)…………………3.9

where

L is the distance to the aircrafts COG, and KT M is a constant that relates moment

and thrust of a propeller

Assuming the Quadcopter is a rigid body with constant mass and axis aligned with the

principal axis of inertia, then the tensor I becomes a diagonal matrix containing only the

principal moments of inertia:

𝐼 = [
𝐼𝑥𝑥

0
0

0
𝐼𝑌𝑌

0

0
0

𝐼𝑍𝑍

]…………………………3.10

Combine equation 9 and 10 result:

17

𝑀𝑛𝑒𝑡 = [

𝐼𝑥𝑥𝑃
∙

𝐼𝑦𝑦𝑄∙

𝐼𝑧𝑧𝑅
∙
] + [

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑃𝑅
(𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑃𝑄

]………………….3.11

𝑀𝑛𝑒𝑡 = [
𝐼𝑥𝑥

0
0

0
𝐼𝑌𝑌

0

0
0
𝐼𝑍𝑍

] [
𝑃∙

𝑄∙

𝑅∙
] + [

𝑃
𝑄
𝑅
] × [

𝐼𝑥𝑥

0
0

0
𝐼𝑌𝑌

0

0
0
𝐼𝑍𝑍

] [
𝑃
𝑄
𝑅
]...........3.12

Then

[
𝑃∙

𝑄∙

𝑅∙
] =

[

𝑀𝑥

𝐼𝑥𝑥

𝑀𝑦

𝐼𝑦𝑦

𝑀𝑧

𝐼𝑧𝑧]

−

[

(𝐼𝑧𝑧−𝐼𝑦𝑦)𝑄𝑅

𝐼𝑥𝑥

(𝐼𝑥𝑥−𝐼𝑧𝑧)𝑃𝑅

𝐼𝑦

(𝐼𝑦𝑦−𝐼𝑥𝑥)𝑃𝑄

𝐼𝑧𝑧]

…………………….3.13

Figure 8: Quadcopter control loop

3.1 PID Controller
Proportional-Integral-Derivative controller is a closed feedback loop system used in

applications requiring continuous modulated control by continuously calculating an error value

𝑒(𝑡) representing a difference between a desired set point and a measured process variable then

applies correction based on proportional, integral and derivative terms

18

3.1.1 Theory of operation

 The sum of the three PID terms produces a Manipulated Variable (MV) that is used to

correct the error of the system:

 𝑢(𝑡) = 𝑀𝑉(𝑡) = 𝐾𝑝 𝑒(𝑡) + 𝐾𝑖 ∫ 𝜏 𝑑𝜏
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
……………………. 3.14

Where

𝐾𝑝 is proportional gain

𝐾𝑖 is the integral gain

𝐾𝑑 is the derivative gain

𝑒(𝑡) is the error

t is the continuous time

𝜏 is the variable of integrations

 The proportional term produces an output value that is proportional to the current error

value. The proportional response can be adjusted by multiplying the error by a constant 𝐾𝑝,

called the proportional gain constant.

The contribution from the integral term is proportional to both the magnitude of the error

and the duration of the error. The integral in a PID controller is the sum of the instantaneous

error over time and gives the accumulated offset that should have been corrected previously. The

accumulated error is then multiplied by the integral gain (𝐾𝑖) and added to the controller output.

The derivative term of the process error is calculated by determining the slope of the

error over time and multiplying this rate of change by the derivative gain 𝐾𝑑. The magnitude of

the contribution of the derivative term to the overall control action is termed the derivative

gain𝐾𝑑.

The present, past and future errors are dependent on the terms of the PID respectively

meaning the present error depends on P, past error accumulates the I and future error is

forecasted by the D term.

The proportional controller 𝐾𝑃 will reduce the rise time and the steady state error but will

not eliminate the steady state error; the integral controller 𝐾𝐼 will eliminate the steady state error

however it may worsen the transient error; a derivative controller 𝐾𝐷 will increase the stability of

the system by reducing the overshoot and improving the transient response.

19

Table 1: Effects of each of controllers 𝑲𝒑, 𝑲𝒊, and 𝑲𝒅 on a closed-loop system

Closed Loop

Response

Rise Time Overshoot Settling

Time

Steady State

Error

𝑲𝑷 Decrease Increase Small Change Decrease

𝑲𝑰 Decrease Increase Increase Eliminate

𝑲𝑫 Small Change Decrease Decrease Small Change

3.1.2 PID Tuning

Tuning a control loop is the adjustment of its control parameters (proportional band/gain,

integral gain/reset, derivative gain/rate) to the optimum values for the desired control response.

Stability (no unbounded oscillation) is a basic requirement, but beyond that, different systems

have different behavior, different applications have different requirements, and requirements

may conflict with one another. [8]

3.1.3 Classic PID Equations

Proportional controller

 𝐴(𝑡) = 𝐾𝑃 ∗ 𝑒(𝑡)…………………….3.15

Integral Controller

 𝐴(𝑡) = 𝐾𝐼 ∗ ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
…………………….3.16

Derivative Controller

 𝐴(𝑡) = 𝐾𝐷 ∗
𝑑 𝑒(𝑡)

𝑑𝑡
…………………….3.17

The total equation of the classic controller

 𝑢(𝑡) = 𝐾𝑃 ∗ 𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝐷

𝑑 𝑒(𝑡)

𝑑𝑡
…………………….3.18

20

3.2 Simulation

Simulation of the quadcopter was conducted over three software’s each of which

completing the other’s limitation Proteus was used to design the circuit and add the code

simulating the operation of the quadrotor; unity provided a graphic simulation of the quadrotor

operating using a PID controller simulated using unity scripting and documentation references;

the hardware capabilities of the quadrotor were tested using eCalc to define which parameters

needed adjusting until an appropriate hardware status was obtained.

3.2.1 Unity

Unity documentation provided a better ground to build the simulation of the PID

controllers through code only existing inside the unity environment written for the purpose of

simulating real life physics subjecting the PID controller to an environment similar to real life

parameters.

Figure 9: Quadrotor 3D model

From figure 10 above illustrates the three-dimensional model of the quadrotor, the physics forces

applied on the motors to rotate them is supplied to the four motors simultaneously, hence the

motors are named individually as Front Right (FR), Front Left (FL), Back Right (BR) and Back

Left (BL).

To simulate the quadrotor as a rigid body unity offers a physics component called a rigid

body providing all the physical specifications of a real rigid body. Consider figure 11 below:

21

Figure 10 :Rigid body component attached to the quadrotor 3D model

The Transform tab describes the coordinates- x, y and z coordinates system- of the

quadrotor position, rotation and scale in the simulation; position (0, 5, 0) means the quadrotor is

in the origin of the simulation plane with an elevation of 5 units from the ground and (0, 0, 0)

rotation means that the quadrotor is perfectly balanced and there is no rotation around any axes

and the scale is one unit cubed representing height, width and length.

A rigid body in unity is a component simulating real objects physics qualities such as mass, drag,

angular drag, etc.; the use gravity check box allows you to use real gravity which is going to

affect the object as soon as the simulation starts and is kinematic specifies whether the object

will remain at rest the whole time the simulation is running and the collision detection is set to

discrete that will update it every frame of the simulation.

Now when the simulation runs the gravity will pull the quadrotor to the ground and it will remain

in this state if no force is applied to counter the gravity two pieces of code are associated with

this the quadcopter controller which is the implementation of the PID controller to the

quadcopter that is simulated in another script.

The simulation will require constant variables to be initialized by the quadcopter PID

controller; maximum propeller force, maximum torque, throttle and move factor are set as shown

in figure below, the mass and drag of the quadcopter is set in the rigid body component.

22

Figure 11: Quadcopter controller parameters

Once the simulation starts the quadrotor will be affected by gravity and instantly pulled to

the ground waiting for user input as it orientation is balanced; the craft controller has two sticks

the one on the left controls the steering forward and back, left and right and the right stick

controls the throttle and the turning-yawing – left and right which pass the user input to another

function to execute the command that is set as desired point for the controller.

Pitch, roll and yaw errors will be calculated to be passed to the PID controller assuming

no errors at all when the simulations starts then adapting the PID variables to the throttle and

calculating the force that must be added to the propellers based on the PID output to translate the

quadrotor from its measured position to the user desired point.

3.2.3 eCalc

The hardware chosen for the quadrotor was passed as input with detailed specifications to

the eCalc tool to determine its ability to withstand the load and power consumption then

adjusting the hardware based on the suggestions provided to ensure best performance possible.

23

As shown in Figure above the specification of hardware pieces are passed onto to the

input fields of the tool providing a detailed description about the important hardware operating

the quadcopter such as battery cell, controller, motor and propellers also general specifications of

weight, number of rotors, frame size, … etc., are required in order to provide specific

performance graphs.

Figure 13 :Range Estimation

Figure 12: Hardware Specifications passed into eCalc for evaluation

24

 Figure above shows the analysis made by eCalc for the range that the quadcopter

with the specifications entered possesses. Flight time estimated by eCalc is 9 minutes with a

maximum speed of 54 km/h (33.2 mph); the green area denotes the best flight operation range.

Figure 14: Motor characteristics at full throttle

Figure above denotes the characteristics of the motors at full throttle, the best

characteristics are a power of 137.5 W, 75% efficiency, a maximum RPM of 85 rpm and a

wasted power of 25 W shown by the circles.

25

Chapter Four

Construction

4.1 Overall hardware connection to the microcontroller

Figure 15: Overall Quadcopter hardware connection

26

4.2 Hardware Components

4.2.1 The Frame of the Quadcopter

Typical quad-rotors utilize a four-spar method, with each spar anchored to the central

hub. The frame of the quad copter is composed of a combination of materials chosen for their

strength, weight and flexibility.

 When designing an autonomous quad-rotor, there are several material options which must

be considered. When designing a machine capable of flight, weight must be greatly well thought-

out.

The airframe is the mechanical structure of an aircraft that supports all the components,

much like a “skeleton” in Human Beings. Designing an airframe from scratch involves important

concepts of physics, aerodynamics, materials engineering and manufacturing techniques to

achieve certain performance, reliability and cost criteria.

4.2.2 The Microcontroller – Arduino Uno

Arduino Uno is a microcontroller board based on the ATmega328P It has 14 digital

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz quartz

crystal, a USB connection, a power jack, an ICSP header and a reset button.

It contains everything needed to support the microcontroller; simply connect it to a

computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. "Uno"

means one in Italian and was chosen to mark the release of Arduino Software (IDE) 1.0. The

Figure 16: Plastic foam frame incase in fiber glass

27

Uno board and version 1.0 of Arduino Software (IDE) were the reference versions of Arduino,

The Uno board is the first in a series of USB Arduino boards, and the reference model for the

Arduino platform; for an extensive list of current, past or outdated boards see the Arduino index

of boards.

Figure 17: Arduino UNO Microcontroller Board

4.2.3 Electronic Speed Controllers

An electronic speed control or ESC is a circuit with the purpose to control an electric

motor's speed, its direction and possibly also to act as a dynamic brake in some cases. ESCs are

often used on electrically powered brushless motors essentially providing an electronically-

generated three phase electric power, with a low voltage source.

An ESC interprets control information in a way that varies the switching rate of a

network of field effect transistors (FETs), not as mechanical motion as would be the case of a

servo. The quick switching of the transistors is what causes the motor itself to emanate its

characteristic high-pitched whine, which is especially noticeable at lower speeds. It also allows

much smoother and more precise variation of motor speeds in a far more efficient manner than

the mechanical type with a resistive coil and moving arm once in common use.

28

The ESC generally accepts a nominal 50 Hz Pulse Width Modulation (PWM) servo input

signal whose pulse width varies from 1ms to 2ms. When supplied with a 1ms width pulse at 50

Hz, the ESC responds by turning off the DC motor attached to its output. A 1.5ms pulse-width

input signal results in a 50% duty cycle output signal that drives the motor at approximately 50%

speed. When presented with 2.0ms input signal, the motor runs at full speed due to the 100%

duty cycle (on constantly) output.

The correct phase varies with the motor rotation, controlled and monitored by the ESC.

The orientation of the motor is determined by the back EMF (Electromotive Force). The back

EMF is the voltage induced in a motor wire by the magnet spinning past its internal coils.

Finally, a PID algorithm in the controller adjusts the PWM to maintain a constant RPM.

 Reversing the motor's direction may also be accomplished by switching any two of the

three leads from the ESC to the motor.

Ideally the ESC controller should be paired to the motor and rotor craft with the

following considerations.

 1. Temperature and thermal characteristics.

 2. Max Current output and Impendence.

 3. Needs to be Equipped with a BEC (Battery Eliminator Circuit) to eliminate the need

of a second battery.

 4. Size and Weight properties.

 5. Magnet Rating.

Figure 18: 30A Brushless ESC

29

Additionally, the speed controller has fixed throttle settings so that the "stop" and "full

throttle” points of all the various modes which can be cut through cleanly. The controller

produces audible beeps to assist in navigating through the program modes and troubleshooting

logs.

Table 2 : Specification for 30A Brushless ESC

4.2.4 Inertial Measurement Unit

Precision and accuracy is important when it comes to Accelerometer and gyroscope

measurement. We require a 3-axis accelerometer and gyroscope that provides reliable and

accurate data. It is also an advantage if they can be on the same chip. For this reason, we went

with the MPU-600, which is a small, thin, ultralow power, 3-axis accelerometer and gyroscope.

The device is very accurate, as it contains 16-bis analog to digital conversion hardware for each

channel. It measures the static acceleration of gravity in tilt-sensing applications, as well as

dynamic acceleration resulting from motion or shock. The sensor has a "Digital motion

processor" which can be programmed with firmware and is able to do complex calculations with

the sensor values.

30A Brushless ESC Output Continuous 30A, burst 40A up to 10 Sec

Input voltage 2-4 cells lithium battery or 5-12 cells NiCd/NiMH battery

BEC 2A / 5V (Linear mode).

Max speed 210,000rpm for 2 poles BLM, 70,000rpm for 6 poles BLM,

35,000rpm for 12 poles BLM. (BLM: Brushless Motor

Size 45 * 24 * 11mm / 1.8 * 0.9 * 0.4in

Weight 25g / 0.9oz

Item total weight 480g / 1.06Lbs

30

Figure 19: MPU6050 IMU used in our quadcopter

4.2.5 IMU interface with ARDUINO

Figure 20: MPU6050 Interface with Arduino

31

4.2.6 The Battery Pack

Selecting the proper battery for our rotor copter was a challenging task. Nickel Cadmium

(NiCd), Nickel Metal Hydride (NiMH), and Lithium Polymer (LiPo) were common choices with

the advantages and disadvantages of each battery pack.

NiCd batteries are reasonably inexpensive, but they have a number of negatives. NiCd

batteries need to be fully discharged after each use. If they aren’t, they will not discharge to their

full potential (capacity) on following discharge cycles, causing the cell to develop what’s

commonly referred to as a memory. Additionally, the capacity per weight (energy density) of

NiCd cells is commonly less than NiMH or LiPo cell types as well. Finally, the Cadmium that is

used in the cell is quite destructive to the environment, making disposal of NiCd cells an issue.

NiMH cells have many advantages over their NiCd counterparts. NiMH cell

manufacturers are able to offer significantly higher capacities in cells approximately the same

size and weight of equivalent NiCd cells. NiMH cells have an advantage when it comes to cell

memory as well, as they do not develop the same issues as a result of inappropriate discharge

care.

Lithium Polymer (LiPo) cells are one of the newest and most revolutionary battery cells

Available. LiPo cells maintain a more consistent voltage over the discharge curve when

compared to NiCd or NiMH cells. The higher nominal voltage of a single LiPo cell (3.7V vs.

1.2V for a typically NiCd or NiMH cell); making it possible to have an equivalent or even higher

total nominal voltage in a much smaller package LiPo cells typically offer very high capacity for

their weight, delivering upwards of twice the capacity for ½ the weight of comparable NiMH

cells.

Lastly, a LiPo cell battery needs to be carefully monitored during charging since

overcharging and the charging of a physically damaged or discharged cell can be a potential fire

hazard and possibly even fatal.

LiPo Pro's:

• Highest power/weight ratio.

• Very low self-discharge.

32

• Less affected by low temperatures than some.

LiPo Con's:

• Intolerant of over-charging.

• Intolerant of over-discharging Battery.

• significant fire risk

Figure 21: 3S LiPo Battery

33

Table 3 : LiPo batteries 3S 11.1V 2600MAH 30C packs

Capacity 2600mAh

Configuration 3S1P

Dimensions 116X34X26mm

Weight 200g

Constant Discharge 30C

Burst Discharge 60C

Balance connector ST-XHR

Discharge plug T plug

Use Vehicles & Remote-Control

Toys

Material EVA

4.2.7 The Brushless Motors

Each of the four rotors comprises of a Brushless DC Motor attached to a propeller. The

Brushless motor differs from the conventional Brushed DC Motors in their concept essentially in

that the commutation of the input voltage applied to the armature's circuit is done electronically,

whereas in the latter, by a mechanical brush. As any rotating mechanical device, it suffers wear

during operation, and as a consequence it has a shorter nominal life time than the newer

Brushless motors.

In spite of the extra complexity in its electronic switching circuit, the brushless design

offers several advantages over its counterpart, to name a few: higher torque/weight ratio, less

operational noise, longer lifetime, less generation of electromagnetic interference and much more

power per volume. Virtually limited only by its inherent heat generation, whose transfer to the

outer environment usually occurs by conduction.

34

Figure 22: A2212/13T 1000 KV BLDC (Brushless DC Motor)

Table 4 : Specifications of A2212 / 920 KV out runner motor

No. of Cells: 2 - 3 Li-Poly

6 - 10 NiCd/NiMH

Kv:

Max Efficiency:

Max Efficiency Current:

1000 RPM/V

80%

4 - 10A (>75%)

No Load Current:

Resistance:

Max Current:

0.5A @10V

0.090 ohms

13A for 60S

Max Watts:

Weight:

Size:

150W

52.7 g / 1.86 oz.

28 mm diameter x 28 mm bell length

Shaft Diameter:

Poles:

Model Weight:

3.2 mm

14

300 - 800g / 10.5 - 28.2 oz.

35

4.2.8 Propellers

Propeller is a set of rotating blades design to convert the power (torque) of the

Engine in to thrust.

The Quadrotor consists of four propellers coupled to the brushless motor. Among

These four propellers, two clockwise and the remaining other two are counter clockwise.

Clockwise and anticlockwise propellers cancel their torque from each other.

Propellers are specified by their diameter and pitch. The propeller used is 1045

Fixed-pitch, symmetric, tapered Normal Rotation Carbon Fiber Propeller, shown in (figure):

Figure 23: 1045 fixed-pitch, Carbon fiber Propeller

4.3 Software Implementation

4.3.1 Quadcopter Flowchart

The operation flow of the quadcopter is illustrated in figure below demonstrating steps at

which quadcopter flows in order to fly and satisfy pilot commands.

36

Figure 24: Quadcopter flow chart

4.3.2 Transmitter and Receiver

A four channel RC transmitter is used for the purpose of giving freedom to control

throttle, pitch, roll and yaw individually. To obtain an accurate response set points and minimum

and maximum ranges must be determined before transmission execution.

 Since the main loop of the code executes sequentially - one line at a time- an interrupt

needs to occur enabling receiving signals transmitted from the RC; Arduino allows pins to allow

interrupt only if the interrupt for a specific pin was declared in the code.

Before declaring the interrupt pins, interrupt mode must be activated through the following

syntax:

PCICR |= (1 << PCIE0);

37

After enabling interrupt mode four pins are declared as receiver interrupt pins each for each

channel of the transmitter, the pins being Arduino pins 8, 9,10 and 11 declared as following:

PCMSK0 |= (1 << PCINT0);

PCMSK0 |= (1 << PCINT1);

PCMSK0 |= (1 << PCINT2);

PCMSK0 |= (1 << PCINT3);

4.3.3 Gyroscope

In order to determine the error, the actual quadcopter readings and the received signal

needs to be compared with each other; the gyroscope is interfaced with an I2C interface-

pronounced Isquared-C, is a multi-master, multi-slave, single-ended, serial computer bus

invented- typically used for attaching lower-speed peripheral ICs to processors and

microcontrollers in short-distance, intra-board communication.

 To connect to the gyroscope the Wire Library is included in code allowing the Arduino to

use the I2C; communications start by the master (Arduino) sending a tart bit followed by the 7-

bit address of the slave (GY-85 with address 0x68) so that only gyroscope is chosen using the

following statement:

Wire.beginTransmission (0x68);

 Referring to the Gyroscope data-sheet set the gyro output scale to ±2000 deg/s by writing

the value (3) decimal to the 3th and 4th bits of (22) gyroscope register.

Wire.write (22); // calling the register of Full Scale

Wire.write (3<< 3); // write 3 then shift it to left of Full Scale register

Wire.endTransmittion (); // necessary to end each call to register

 250 readings per second has to be obtained, we do so by setting the sampling rate of the

gyroscope sampling rate register; the first three bits of register (22) are used for setting internal

sampling rate with either 1KHz or 8KHz.

38

 Register (21) can also be used for setting the sampling rate and is called Sampling Rate

Divider Register which output is set to any values satisfying the equation:

 𝐹𝑠𝑎𝑚𝑝𝑙𝑒 = 𝐹𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (𝑑𝑖𝑣𝑖𝑑𝑒𝑟 + 1)⁄ (31)

𝐹sample is the sample rate

𝐹internal is the internal rate determined by register (22) which is either (1KHz,8KHz)

Divider is determined by register (21)

Hence, to get 250 reading out of that gyro, reg. (22) need to be set to zero which is

already the default value, the divider register (21) need to be set to 31 decimals, simply be

writing that value to that register.

Wire.begingTransmittion (0x68);

Wire.write (21);

Wire.write (31);

Wire.endTransmittion ();

After configuring sensor register, the gyro is ready to provide readings through the

registers (29-34) readings are ready in registers to be picked by the microcontroller any time. The

readings collected usually have consistent off-set errors which differ in the value from an axis to

another which are eliminated by calculating the average value for a fair amount of readings

storing this into variables (gyro_roll_cal, gyro_pitch_cal, gyro_yaw_cal) these values are

subtracted from each reading taken hence eliminating the gyro offset error.

The calibrated reading taken from gyroscope includes noise-measurement noise from

propellers and motors- which can't be eliminated by eliminating the offset error but with the use

of a very simple filter that was proven to provide accurate results.

39

Figure 25: Recursive Filter Block Diagram

 𝑦(𝑛) = 𝑎𝑦(𝑛 − 1) + 𝑏𝑥(2) (32)

Where a = b – 1

 The filter takes the input x (n) and sums it with the feedback y (n – 1); a and b are gains

to be tuned to get the required output response. Applying filter to the three inputs of system (roll,

pitch, yaw) will eliminate the noise and obtain the required response.

4.3.4 ESCs connection to Arduino

So far, the RC signal was transmitted, received and processed by the Arduino then the

Gyro sensor provided the angular accelerations the Quadcopter which were filtered, calibrated

and processed in the Arduino.

The Arduino output ports connected to the ESCs need to be declared before computing

the total received input signal.

DDRD |= B11110000;

40

The output of the ESCs controls the motors depending on the PID output however the

basic movement of the quadcopter is satisfied by the following equations passed as output values

of the ESCs.

 𝑒𝑠𝑐_1 = 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 − 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑝𝑖𝑡𝑐ℎ + 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑟𝑜𝑙𝑙 − 𝑃𝐼𝐷 𝑜𝑢𝑡 _𝑦𝑎𝑤 (33)

 𝑒𝑠𝑐_2 = 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 + 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑝𝑖𝑡𝑐ℎ + 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑟𝑜𝑙𝑙 + 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑦𝑎𝑤 (34)

 𝑒𝑠𝑐_3 = 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 + 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑝𝑖𝑡𝑐ℎ − 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑟𝑜𝑙𝑙 − 𝑃𝐼𝐷 𝑜𝑢𝑡 _𝑦𝑎𝑤 (35)

 𝑒𝑠𝑐_4 = 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 − 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑝𝑖𝑡𝑐ℎ − 𝑃𝐼𝐷𝑜𝑢𝑡 _𝑟𝑜𝑙𝑙 + 𝑃𝐼𝐷 𝑜𝑢𝑡 _𝑦𝑎𝑤 (36)

The positive and negative signs for the PID outputs in the ESCs equations are set

according to the basic movements of the Quadcopter. Lastly tuning the PID gains (𝐾𝑃, 𝐾𝐼, 𝐾𝑃) to

provide a smooth and stable response of the Quadcopter.

41

Chapter Five

Results and Discussion

 The results that will be discussed in this chapter will include notice of unnatural behavior

by the quadcopter during construction and after unnatural here is defined as any error or fault

that can endanger the safety of the quadcopter.

 It has been noticed that the motors had a variation of speed resulting from the ESCs; the

voltage supplied from the battery to the ESCs- with only the battery connected to the ESCs

without any software code or even Arduino connected- vary from one ESC to the other, this was

resolved by ESC calibration meaning all ESCs start the motors at the same time with the same

speed on the condition that all ESCs has the same current rating, if the ESCs had different

current rating overheat will if the rating of ESC is less than the others due because it will try to

compensate the difference by operating the motor at a higher speed.

 A power regulator must be used and the mounting, isolation and soldering of the

components must be accurate and tight, at one point one of the ESCs experienced excessive

overheat without and obvious reason however when the isolation was removed it was found that

the soldering was loose; if the mounting of the propellers and motor is not tight a high degree of

vibration occurs in the quadcopter and will also cause the propellers to detach itself from the

quadcopter body.

 A high vibration was clearly noticed in the propellers that was perceived at first to be a

vibration problem so the propeller was re-mounted at the center of the propeller shaft and a

square piece of duct tape was added to them as load to reduce vibration which reduced the

vibration to a minimal value measured by computer code implemented to the quadcopter

(Appendix-X).

 The trial and error method in choosing the PID parameters that result in the stability of

the quadcopter; the ease of control was noticed in the quadcopter however a negative roll angle

kept occurring however a successful flight time of 53 seconds was recorded in the process of

finding the suitable PID gains for a stable flight without any drifts.

42

Chapter Six

Conclusion and Recommendations

6.1 Conclusion

 The research phase of the thesis aided in understanding the mathematical model of the

quadcopter which is a step required before control and a background of the PID controller and it

operation theory in order to transform its equations to equations that are applicable to the

quadcopter and were implemented in the Arduino microcontroller.

 The choice of the unity software was made upon the fact that it provided an environment

with no limitation on executing and constructing a PID controller with code based on its basic

equations and theory of operation.

 In conclusion the construction of the circuit that connected the hardware components and

implementation of the software was the initial work however troubleshooting and tuning the PID

gains was challenging and the trial and error method proved to be a failure in choosing the

proper PID parameters that provide stable flight without any offsets or deviations.

6.2 Recommendations
1. Another method should be used to choose the proper PID gains for a more stable flight

2. Wires can be connected with jacks instead of soldering wires together.

3. Power distribution boards are more helpful in mounting the IMU properly on the frame

beneath the microcontroller and placing the battery safely.

4. Replacing the RC transmitter with a motion sensor that captures hand gestures transmitted as

movement commands with a wireless Wi-Fi communication.

43

References

[1] Allison Ryan and J. Karl Hedrick (2005). “A mode-switching path planner for UAV-

assisted search and rescue.” 44th IEEE Conference on Decision and Control, and the European

Control Conference 2005.

[2] Kong Wai Weng (2011). “Quadcopter” Robot Head To Toe Magazine September 2011

Volume 3, pp. 1-3.

[3] Modeling and Control of mini flying machines, springer

[4] Young L. A., Aiken E. W., Johnson J. L., Demblewski R., Andrews J. and Klem J., “ New

concepts and perspectives on micro-rotorcraft and small autonomous rotary-wing vehicles”,

Proceedings of the 20th AIAA Applied Aerodynamics Conference, St. Louis, MO, 2002

[5] Pounds P., Mahony R., Hynes P. and Roberts J., “Design of a four rotor aerial robot”,

Proceedings of the Australasian Conference on Robotics and Automation, Auckland, Australia,

2002.

[6] Altu ̆g E., Ostrowski J. P. and Mahony R., “Control of a quadrotor helicopter using visual

feedback”, Proceedings of the 2002 IEEE International Conference on Robotics and Automation,

ICRA 2002, May 11–15, 2002, Washington, DC

[7] https://www.arduino.cc/en/Guide/Introduction

[8] en.wikipedia.org/wiki/PID_controller#PID_controller_theory

https://www.arduino.cc/en/Guide/Introduction

I

Appendix A: eCalc Hardware Analysis

II

Appendix B: Quadcopter Simulation Code

B.1 PID Controller Simulation Code
using UnityEngine;
using System.Collections;

public class PIDController : MonoBehaviour
{
 float error_old = 0f;
 //The controller will be more robust if you are using a further ba
ck sample
 float error_old_2 = 0f;
 float error_sum = 0f;
 //If we want to average an error as input
 float error_sum2 = 0f;

 //PID parameters
 public float gain_P = 0f;
 public float gain_I = 0f;
 public float gain_D = 0f;
 //Sometimes you have to limit the total sum of all errors used in
the I
 private float error_sumMax = 20f;

 public float GetFactorFromPIDController(float error)
 {
 float output = CalculatePIDOutput(error);

 return output;
 }

 //Use this when experimenting with PID parameters
 public float GetFactorFromPIDController(float gain_P, float gain_I
, float gain_D, float error)
 {
 this.gain_P = gain_P;
 this.gain_I = gain_I;
 this.gain_D = gain_D;

III

 float output = CalculatePIDOutput(error);

 return output;
 }

 //Use this when experimenting with PID parameters and the gains ar
e stored in a Vector3
 public float GetFactorFromPIDController(Vector3 gains, float error
)
 {
 this.gain_P = gains.x;
 this.gain_I = gains.y;
 this.gain_D = gains.z;

 float output = CalculatePIDOutput(error);

 return output;
 }

 private float CalculatePIDOutput(float error)
 {
 //The output from PID
 float output = 0f;

 //P
 output += gain_P * error;

 //I
 error_sum += Time.fixedDeltaTime * error;

 //Clamp the sum
 this.error_sum = Mathf.Clamp(error_sum, -
error_sumMax, error_sumMax);

 //Sometimes better to just sum the last errors
 //float averageAmount = 20f;

 //CTE_sum = CTE_sum + ((CTE - CTE_sum) / averageAmount);

 output += gain_I * error_sum;

 //D

IV

 float d_dt_error = (error - error_old) / Time.fixedDeltaTime;

 //Save the last errors
 this.error_old_2 = error_old;

 this.error_old = error;

 output += gain_D * d_dt_error;

 return output;
 }
}

B.2 Quadcopter simulation code
using UnityEngine;
using System.Collections;

public class QuadcopterController : MonoBehaviour
{
 //The propellers
 public GameObject propellerFR;
 public GameObject propellerFL;
 public GameObject propellerBL;
 public GameObject propellerBR;

 //Quadcopter parameters
 [Header("Internal")]
 public float maxPropellerForce; //100
 public float maxTorque; //1
 public float throttle;
 public float moveFactor; //5
 //PID
 public Vector3 PID_pitch_gains; //(2, 3, 2)
 public Vector3 PID_roll_gains; //(2, 0.2, 0.5)
 public Vector3 PID_yaw_gains; //(1, 0, 0)

 //External parameters
 [Header("External")]
 public float windForce;
 //0 -> 360
 public float forceDir;

V

 Rigidbody quadcopterRB;

 //The PID controllers
 private PIDController PID_pitch;
 private PIDController PID_roll;
 private PIDController PID_yaw;

 //Movement factors
 float moveForwardBack;
 float moveLeftRight;
 float yawDir;

 void Start()
 {
 quadcopterRB = gameObject.GetComponent<Rigidbody>();

 PID_pitch = new PIDController();
 PID_roll = new PIDController();
 PID_yaw = new PIDController();
 }

 void FixedUpdate()
 {
 AddControls();

 AddMotorForce();

 AddExternalForces();
 }

 void AddControls()
 {
 //Change throttle to move up or down
 if (Input.GetKey(KeyCode.UpArrow))
 {
 throttle += 3f;
 }
 if (Input.GetKey(KeyCode.DownArrow))
 {
 throttle -= 3f;
 }

 throttle = Mathf.Clamp(throttle, 0f, 200f);

VI

 //Steering
 //Move forward or reverse
 moveForwardBack = 0f;

 if (Input.GetKey(KeyCode.W))
 {
 moveForwardBack = 1f;
 }
 if (Input.GetKey(KeyCode.S))
 {
 moveForwardBack = -1f;
 }

 Mathf.Clamp (moveForwardBack, 0, 45f); //Clamping rot

 //Move left or right
 moveLeftRight = 0f;

 if (Input.GetKey(KeyCode.A))
 {
 moveLeftRight = -1f;
 }
 if (Input.GetKey(KeyCode.D))
 {
 moveLeftRight = 1f;
 }

 Mathf.Clamp (moveLeftRight, 0, 45f); //Clamping rot

 //Rotate around the axis
 yawDir = 0f;

 if (Input.GetKey(KeyCode.LeftArrow))
 {
 yawDir = -1f;
 }
 if (Input.GetKey(KeyCode.RightArrow))
 {
 yawDir = 1f;
 }
 }

 void AddMotorForce()
 {
 //Calculate the errors so we can use a PID controller to stabi
lize

VII

 //Assume no error is if 0 degrees

 //Pitch
 //Returns positive if pitching forward
 float pitchError = GetPitchError();

 //Roll
 //Returns positive if rolling left
 float rollError = GetRollError() * -1f;

 //Adapt the PID variables to the throttle
 Vector3 PID_pitch_gains_adapted = throttle > 100f ? PID_pitch_
gains * 2f : PID_pitch_gains;

 //Get the output from the PID controllers
 float PID_pitch_output = PID_pitch.GetFactorFromPIDController(
PID_pitch_gains_adapted, pitchError);
 float PID_roll_output = PID_roll.GetFactorFromPIDController(PI
D_roll_gains, rollError);

 //Calculate the propeller forces
 //FR
 float propellerForceFR = throttle + (PID_pitch_output + PID_ro
ll_output);

 //Add steering
 propellerForceFR -= moveForwardBack * throttle * moveFactor;
 propellerForceFR -= moveLeftRight * throttle;

 //FL
 float propellerForceFL = throttle + (PID_pitch_output -
 PID_roll_output);

 propellerForceFL -= moveForwardBack * throttle * moveFactor;
 propellerForceFL += moveLeftRight * throttle;

 //BR
 float propellerForceBR = throttle + (-
PID_pitch_output + PID_roll_output);

 propellerForceBR += moveForwardBack * throttle * moveFactor;
 propellerForceBR -= moveLeftRight * throttle;

VIII

 //BL
 float propellerForceBL = throttle + (-PID_pitch_output -
 PID_roll_output);

 propellerForceBL += moveForwardBack * throttle * moveFactor;
 propellerForceBL += moveLeftRight * throttle;

 //Clamp
 propellerForceFR = Mathf.Clamp(propellerForceFR, 0f, maxPropel
lerForce);
 propellerForceFL = Mathf.Clamp(propellerForceFL, 0f, maxPropel
lerForce);
 propellerForceBR = Mathf.Clamp(propellerForceBR, 0f, maxPropel
lerForce);
 propellerForceBL = Mathf.Clamp(propellerForceBL, 0f, maxPropel
lerForce);

 //Add the force to the propellers
 AddForceToPropeller(propellerFR, propellerForceFR);
 AddForceToPropeller(propellerFL, propellerForceFL);
 AddForceToPropeller(propellerBR, propellerForceBR);
 AddForceToPropeller(propellerBL, propellerForceBL);

 //Yaw
 //Minimize the yaw error (which is already signed):
 float yawError = quadcopterRB.angularVelocity.y;

 float PID_yaw_output = PID_yaw.GetFactorFromPIDController(PID_
yaw_gains, yawError);

 //First we need to add a force (if any)
 quadcopterRB.AddTorque(transform.up * yawDir * maxTorque * thr
ottle);

 //Then we need to minimize the error
 quadcopterRB.AddTorque(transform.up * throttle * PID_yaw_outpu
t * -1f);
 }

 void AddForceToPropeller(GameObject propellerObj, float propellerF
orce)
 {
 Vector3 propellerUp = propellerObj.transform.up;

 Vector3 propellerPos = propellerObj.transform.position;

IX

 quadcopterRB.AddForceAtPosition(propellerUp * propellerForce,
propellerPos);

 //Debug
 //Debug.DrawRay(propellerPos, propellerUp * 1f, Color.red);
 }

 //Pitch is rotation around x-axis
 //Returns positive if pitching forward
 private float GetPitchError()
 {
 float xAngle = transform.eulerAngles.x;

 //Make sure the angle is between 0 and 360
 xAngle = WrapAngle(xAngle);

 //This angle going from 0 -> 360 when pitching forward
 //So if angle is > 180 then it should move from 0 to 180 if pi
tching back
 ///note: xAngle > 180f && xAngle < 360f
 if (xAngle > 30f && xAngle < 60f)
 { //xAngle = 60 - xAngle
 = 60f - xAngle;

 //-1 so we know if we are pitching back or forward
 xAngle *= -1f;
 }

 return xAngle;
 }

 //Roll is rotation around z-axis
 //Returns positive if rolling left
 private float GetRollError()
 {
 float zAngle = transform.eulerAngles.z;

 //Make sure the angle is between 0 and 360
 zAngle = WrapAngle(zAngle);

 //This angle going from 0-> 360 when rolling left
 //So if angle is > 180 then it should move from 0 to 180 if ro
lling right
 ///note: zAngle > 180f && zAngle <c> 360f
 if (zAngle > 30f && zAngle < 60f)

X

 {
 zAngle = 360f - zAngle;

 //-1 so we know if we are rolling left or right
 zAngle *= -1f;
 }

 return zAngle;
 }

 //Wrap between 0 and 360 degrees
 float WrapAngle(float inputAngle)
 {
 //The inner % 360 restricts everything to +/- 360
 //+360 moves negative values to the positive range, and positi
ve ones to > 360
 //the final % 360 caps everything to 0...360
 return ((inputAngle % 360f) + 360f) % 360f;
 }

 //Add external forces to the quadcopter, such as wind
 private void AddExternalForces()
 {
 //Important to not use the quadcopters forward
 Vector3 windDir = -Vector3.forward;

 //Rotate it
 windDir = Quaternion.Euler(0, forceDir, 0) * windDir;

 quadcopterRB.AddForce(windDir * windForce);

 //Debug
 //Is showing in which direction the wind is coming from
 //center of quadcopter is where it ends and is blowing in the
direction of the line
 Debug.DrawRay(transform.position, -windDir * 3f, Color.red);
 }
}

XI

Appendix C: Quadcopter Code

#include <Wire.h> //Include the Wire.h library so we can communicate with the

gyro.

#include <EEPROM.h> //Include the EEPROM.h library so we can store

information onto the EEPROM

///

//PID gain and limit settings

///

float pid_p_gain_roll = 1.3; //Gain setting for the roll P-controller

float pid_i_gain_roll = 0.04; //Gain setting for the roll I-controller

float pid_d_gain_roll = 18.0; //Gain setting for the roll D-controller

int pid_max_roll = 400; //Maximum output of the PID-controller (+/-)

float pid_p_gain_pitch = pid_p_gain_roll; //Gain setting for the pitch P-controller.

float pid_i_gain_pitch = pid_i_gain_roll; //Gain setting for the pitch I-controller.

float pid_d_gain_pitch = pid_d_gain_roll; //Gain setting for the pitch D-controller.

int pid_max_pitch = pid_max_roll; //Maximum output of the PID-controller (+/-)

float pid_p_gain_yaw = 4.0; //Gain setting for the pitch P-controller. //4.0

float pid_i_gain_yaw = 0.02; //Gain setting for the pitch I-controller. //0.02

float pid_d_gain_yaw = 0.0; //Gain setting for the pitch D-controller.

int pid_max_yaw = 400; //Maximum output of the PID-controller (+/-)

boolean auto_level = true; //Auto level on (true) or off (false)

XII

///

//Declaring global variables

///

byte last_channel_1, last_channel_2, last_channel_3, last_channel_4;

byte eeprom_data[36];

byte highByte, lowByte;

volatile int receiver_input_channel_1, receiver_input_channel_2, receiver_input_channel_3,

receiver_input_channel_4;

int counter_channel_1, counter_channel_2, counter_channel_3, counter_channel_4,

loop_counter;

int esc_1, esc_2, esc_3, esc_4;

int throttle, battery_voltage;

int cal_int, start, gyro_address;

int receiver_input[5];

int temperature;

int acc_axis[4], gyro_axis[4];

float roll_level_adjust, pitch_level_adjust;

long acc_x, acc_y, acc_z, acc_total_vector;

unsigned long timer_channel_1, timer_channel_2, timer_channel_3, timer_channel_4, esc_timer,

esc_loop_timer;

unsigned long timer_1, timer_2, timer_3, timer_4, current_time;

unsigned long loop_timer;

double gyro_pitch, gyro_roll, gyro_yaw;

double gyro_axis_cal[4];

XIII

float pid_error_temp;

float pid_i_mem_roll, pid_roll_setpoint, gyro_roll_input, pid_output_roll, pid_last_roll_d_error;

float pid_i_mem_pitch, pid_pitch_setpoint, gyro_pitch_input, pid_output_pitch,

pid_last_pitch_d_error;

float pid_i_mem_yaw, pid_yaw_setpoint, gyro_yaw_input, pid_output_yaw,

pid_last_yaw_d_error;

float angle_roll_acc, angle_pitch_acc, angle_pitch, angle_roll;

boolean gyro_angles_set;

///

//Setup routine

///

void setup(){

 //Serial.begin(57600);

 //Copy the EEPROM data for fast access data.

 for(start = 0; start <= 35; start++)eeprom_data[start] = EEPROM.read(start);

 start = 0; //Set start back to zero.

 gyro_address = eeprom_data[32]; //Store the gyro address in the

variable.

 Wire.begin(); //Start the I2C as master.

 TWBR = 12; //Set the I2C clock speed to 400kHz.

 //Arduino (Atmega) pins default to inputs, so they don't need to be explicitly declared as inputs.

 DDRD |= B11110000; //Configure digital poort 4, 5, 6 and 7

as output.

XIV

 DDRB |= B00110000; //Configure digital poort 12 and 13 as

output.

 //Use the led on the Arduino for startup indication.

 digitalWrite(12,HIGH); //Turn on the warning led.

 //Check the EEPROM signature to make sure that the setup program is executed.

 while(eeprom_data[33] != 'J' || eeprom_data[34] != 'M' || eeprom_data[35] != 'B')delay(10);

 //The flight controller needs the MPU-6050 with gyro and accelerometer

 //If setup is completed without MPU-6050 stop the flight controller program

 if(eeprom_data[31] == 2 || eeprom_data[31] == 3)delay(10);

 set_gyro_registers(); //Set the specific gyro registers.

 for (cal_int = 0; cal_int < 1250 ; cal_int ++){ //Wait 5 seconds before

continuing.

 PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high.

 delayMicroseconds(1000); //Wait 1000us.

 PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.

 delayMicroseconds(3000); //Wait 3000us.

 }

 //Let's take multiple gyro data samples so we can determine the average gyro offset

(calibration).

 for (cal_int = 0; cal_int < 2000 ; cal_int ++){ //Take 2000 readings for

calibration.

XV

 if(cal_int % 15 == 0)digitalWrite(12, !digitalRead(12)); //Change the led status to

indicate calibration.

 gyro_signalen(); //Read the gyro output.

 gyro_axis_cal[1] += gyro_axis[1]; //Ad roll value to gyro_roll_cal.

 gyro_axis_cal[2] += gyro_axis[2]; //Ad pitch value to gyro_pitch_cal.

 gyro_axis_cal[3] += gyro_axis[3]; //Ad yaw value to gyro_yaw_cal.

 //We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while

calibrating the gyro.

 PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high.

 delayMicroseconds(1000); //Wait 1000us.

 PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.

 delay(3); //Wait 3 milliseconds before the next loop.

 }

 //Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset.

 gyro_axis_cal[1] /= 2000; //Divide the roll total by 2000.

 gyro_axis_cal[2] /= 2000; //Divide the pitch total by 2000.

 gyro_axis_cal[3] /= 2000; //Divide the yaw total by 2000.

 PCICR |= (1 << PCIE0); //Set PCIE0 to enable PCMSK0 scan.

 PCMSK0 |= (1 << PCINT0); //Set PCINT0 (digital input 8) to

trigger an interrupt on state change.

 PCMSK0 |= (1 << PCINT1); //Set PCINT1 (digital input 9)to

trigger an interrupt on state change.

 PCMSK0 |= (1 << PCINT2); //Set PCINT2 (digital input 10)to

trigger an interrupt on state change.

 PCMSK0 |= (1 << PCINT3); //Set PCINT3 (digital input 11)to

trigger an interrupt on state change.

XVI

 //Wait until the receiver is active and the throtle is set to the lower position.

 while(receiver_input_channel_3 < 990 || receiver_input_channel_3 > 1020 ||

receiver_input_channel_4 < 1400){

 receiver_input_channel_3 = convert_receiver_channel(3); //Convert the actual

receiver signals for throttle to the standard 1000 - 2000us

 receiver_input_channel_4 = convert_receiver_channel(4); //Convert the actual

receiver signals for yaw to the standard 1000 - 2000us

 start ++; //While waiting increment start whith every

loop.

 //We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while

waiting for the receiver inputs.

 PORTD |= B11110000; //Set digital poort 4, 5, 6 and 7 high.

 delayMicroseconds(1000); //Wait 1000us.

 PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.

 delay(3); //Wait 3 milliseconds before the next loop.

 if(start == 125){ //Every 125 loops (500ms).

 digitalWrite(12, !digitalRead(12)); //Change the led status.

 start = 0; //Start again at 0.

 }

 }

 start = 0; //Set start back to 0.

 //Load the battery voltage to the battery_voltage variable.

 //65 is the voltage compensation for the diode.

 //12.6V equals ~5V @ Analog 0.

 //12.6V equals 1023 analogRead(0).

XVII

 //1260 / 1023 = 1.2317.

 //The variable battery_voltage holds 1050 if the battery voltage is 10.5V.

 battery_voltage = (analogRead(0) + 65) * 1.2317;

 loop_timer = micros(); //Set the timer for the next loop.

 //When everything is done, turn off the led.

 digitalWrite(12,LOW); //Turn off the warning led.

}

///

//Main program loop

///

void loop(){

 //65.5 = 1 deg/sec (check the datasheet of the MPU-6050 for more information).

 gyro_roll_input = (gyro_roll_input * 0.7) + ((gyro_roll / 65.5) * 0.3); //Gyro pid input is

deg/sec.

 gyro_pitch_input = (gyro_pitch_input * 0.7) + ((gyro_pitch / 65.5) * 0.3);//Gyro pid input is

deg/sec.

 gyro_yaw_input = (gyro_yaw_input * 0.7) + ((gyro_yaw / 65.5) * 0.3); //Gyro pid input is

deg/sec.

XVIII

 //Gyro angle calculations

 //0.0000611 = 1 / (250Hz / 65.5)

 angle_pitch += gyro_pitch * 0.0000611; //Calculate the traveled pitch

angle and add this to the angle_pitch variable.

 angle_roll += gyro_roll * 0.0000611; //Calculate the traveled roll angle

and add this to the angle_roll variable.

 //0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians

 angle_pitch -= angle_roll * sin(gyro_yaw * 0.000001066); //If the IMU has yawed

transfer the roll angle to the pitch angel.

 angle_roll += angle_pitch * sin(gyro_yaw * 0.000001066); //If the IMU has yawed

transfer the pitch angle to the roll angel.

 //Accelerometer angle calculations

 acc_total_vector = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z)); //Calculate the total

accelerometer vector.

 if(abs(acc_y) < acc_total_vector){ //Prevent the asin function to

produce a NaN

 angle_pitch_acc = asin((float)acc_y/acc_total_vector)* 57.296; //Calculate the pitch

angle.

 }

 if(abs(acc_x) < acc_total_vector){ //Prevent the asin function to

produce a NaN

 angle_roll_acc = asin((float)acc_x/acc_total_vector)* -57.296; //Calculate the roll angle.

 }

 //Place the MPU-6050 spirit level and note the values in the following two lines for calibration.

XIX

 angle_pitch_acc -= 0.0; //Accelerometer calibration value for

pitch.

 angle_roll_acc -= 0.0; //Accelerometer calibration value for roll.

 angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004; //Correct the drift of the

gyro pitch angle with the accelerometer pitch angle.

 angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004; //Correct the drift of the

gyro roll angle with the accelerometer roll angle.

 pitch_level_adjust = angle_pitch * 15; //Calculate the pitch angle

correction

 roll_level_adjust = angle_roll * 15; //Calculate the roll angle correction

 if(!auto_level){ //If the quadcopter is not in auto-level mode

 pitch_level_adjust = 0; //Set the pitch angle correction to zero.

 roll_level_adjust = 0; //Set the roll angle correcion to zero.

 }

 //For starting the motors: throttle low and yaw left (step 1).

 if(receiver_input_channel_3 < 1050 && receiver_input_channel_4 < 1050)start = 1;

 //When yaw stick is back in the center position start the motors (step 2).

 if(start == 1 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1450){

 start = 2;

 angle_pitch = angle_pitch_acc; //Set the gyro pitch angle equal to the

accelerometer pitch angle when the quadcopter is started.

XX

 angle_roll = angle_roll_acc; //Set the gyro roll angle equal to the

accelerometer roll angle when the quadcopter is started.

 gyro_angles_set = true; //Set the IMU started flag.

 //Reset the PID controllers for a bumpless start.

 pid_i_mem_roll = 0;

 pid_last_roll_d_error = 0;

 pid_i_mem_pitch = 0;

 pid_last_pitch_d_error = 0;

 pid_i_mem_yaw = 0;

 pid_last_yaw_d_error = 0;

 }

 //Stopping the motors: throttle low and yaw right.

 if(start == 2 && receiver_input_channel_3 < 1050 && receiver_input_channel_4 > 1950)start

= 0;

 //The PID set point in degrees per second is determined by the roll receiver input.

 //In the case of deviding by 3 the max roll rate is aprox 164 degrees per second ((500-8)/3 =

164d/s).

 pid_roll_setpoint = 0;

 //We need a little dead band of 16us for better results.

 if(receiver_input_channel_1 > 1508)pid_roll_setpoint = receiver_input_channel_1 - 1508;

 else if(receiver_input_channel_1 < 1492)pid_roll_setpoint = receiver_input_channel_1 - 1492;

 pid_roll_setpoint -= roll_level_adjust; //Subtract the angle correction from

the standardized receiver roll input value.

XXI

 pid_roll_setpoint /= 3.0; //Divide the setpoint for the PID roll

controller by 3 to get angles in degrees.

 //The PID set point in degrees per second is determined by the pitch receiver input.

 //In the case of deviding by 3 the max pitch rate is aprox 164 degrees per second ((500-8)/3 =

164d/s).

 pid_pitch_setpoint = 0;

 //We need a little dead band of 16us for better results.

 if(receiver_input_channel_2 > 1508)pid_pitch_setpoint = receiver_input_channel_2 - 1508;

 else if(receiver_input_channel_2 < 1492)pid_pitch_setpoint = receiver_input_channel_2 -

1492;

 pid_pitch_setpoint -= pitch_level_adjust; //Subtract the angle correction

from the standardized receiver pitch input value.

 pid_pitch_setpoint /= 3.0; //Divide the setpoint for the PID pitch

controller by 3 to get angles in degrees.

 //The PID set point in degrees per second is determined by the yaw receiver input.

 //In the case of deviding by 3 the max yaw rate is aprox 164 degrees per second ((500-8)/3 =

164d/s).

 pid_yaw_setpoint = 0;

 //We need a little dead band of 16us for better results.

 if(receiver_input_channel_3 > 1050){ //Do not yaw when turning off the motors.

 if(receiver_input_channel_4 > 1508)pid_yaw_setpoint = (receiver_input_channel_4 -

1508)/3.0;

 else if(receiver_input_channel_4 < 1492)pid_yaw_setpoint = (receiver_input_channel_4 -

1492)/3.0;

XXII

 }

 calculate_pid(); //PID inputs are known. So we can

calculate the pid output.

 //The battery voltage is needed for compensation.

 //A complementary filter is used to reduce noise.

 //0.09853 = 0.08 * 1.2317.

 battery_voltage = battery_voltage * 0.92 + (analogRead(0) + 65) * 0.09853;

 //Turn on the led if battery voltage is to low.

 if(battery_voltage < 1000 && battery_voltage > 600)digitalWrite(12, HIGH);

 throttle = receiver_input_channel_3; //We need the throttle signal as a

base signal.

 if (start == 2){ //The motors are started.

 if (throttle > 1800) throttle = 1800; //We need some room to keep full

control at full throttle.

 esc_1 = throttle - pid_output_pitch + pid_output_roll - pid_output_yaw; //Calculate the pulse

for esc 1 (front-right - CCW)

 esc_2 = throttle + pid_output_pitch + pid_output_roll + pid_output_yaw; //Calculate the pulse

for esc 2 (rear-right - CW)

 esc_3 = throttle + pid_output_pitch - pid_output_roll - pid_output_yaw; //Calculate the pulse

for esc 3 (rear-left - CCW)

 esc_4 = throttle - pid_output_pitch - pid_output_roll + pid_output_yaw; //Calculate the pulse

for esc 4 (front-left - CW)

XXIII

 if (battery_voltage < 1240 && battery_voltage > 800){ //Is the battery connected?

 esc_1 += esc_1 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-1

pulse for voltage drop.

 esc_2 += esc_2 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-2

pulse for voltage drop.

 esc_3 += esc_3 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-3

pulse for voltage drop.

 esc_4 += esc_4 * ((1240 - battery_voltage)/(float)3500); //Compensate the esc-4

pulse for voltage drop.

 }

 if (esc_1 < 1100) esc_1 = 1100; //Keep the motors running.

 if (esc_2 < 1100) esc_2 = 1100; //Keep the motors running.

 if (esc_3 < 1100) esc_3 = 1100; //Keep the motors running.

 if (esc_4 < 1100) esc_4 = 1100; //Keep the motors running.

 if(esc_1 > 2000)esc_1 = 2000; //Limit the esc-1 pulse to 2000us.

 if(esc_2 > 2000)esc_2 = 2000; //Limit the esc-2 pulse to 2000us.

 if(esc_3 > 2000)esc_3 = 2000; //Limit the esc-3 pulse to 2000us.

 if(esc_4 > 2000)esc_4 = 2000; //Limit the esc-4 pulse to 2000us.

 }

 else{

 esc_1 = 1000; //If start is not 2 keep a 1000us pulse for

ess-1.

XXIV

 esc_2 = 1000; //If start is not 2 keep a 1000us pulse for

ess-2.

 esc_3 = 1000; //If start is not 2 keep a 1000us pulse for

ess-3.

 esc_4 = 1000; //If start is not 2 keep a 1000us pulse for

ess-4.

 }

 if(micros() - loop_timer > 4050)digitalWrite(12, HIGH); //Turn on the LED if the

loop time exceeds 4050us.

 //All the information for controlling the motor's is available.

 //The refresh rate is 250Hz. That means the esc's need there pulse every 4ms.

 while(micros() - loop_timer < 4000); //We wait until 4000us are passed.

 loop_timer = micros(); //Set the timer for the next loop.

 PORTD |= B11110000; //Set digital outputs 4,5,6 and 7 high.

 timer_channel_1 = esc_1 + loop_timer; //Calculate the time of the faling

edge of the esc-1 pulse.

 timer_channel_2 = esc_2 + loop_timer; //Calculate the time of the faling

edge of the esc-2 pulse.

 timer_channel_3 = esc_3 + loop_timer; //Calculate the time of the faling

edge of the esc-3 pulse.

 timer_channel_4 = esc_4 + loop_timer; //Calculate the time of the faling

edge of the esc-4 pulse.

 //There is always 1000us of spare time. So let's do something usefull that is very time

consuming.

XXV

 //Get the current gyro and receiver data and scale it to degrees per second for the pid

calculations.

 gyro_signalen();

 while(PORTD >= 16){ //Stay in this loop until output 4,5,6

and 7 are low.

 esc_loop_timer = micros(); //Read the current time.

 if(timer_channel_1 <= esc_loop_timer)PORTD &= B11101111; //Set digital output

4 to low if the time is expired.

 if(timer_channel_2 <= esc_loop_timer)PORTD &= B11011111; //Set digital output

5 to low if the time is expired.

 if(timer_channel_3 <= esc_loop_timer)PORTD &= B10111111; //Set digital output

6 to low if the time is expired.

 if(timer_channel_4 <= esc_loop_timer)PORTD &= B01111111; //Set digital output

7 to low if the time is expired.

 }

}

ISR(PCINT0_vect){

 current_time = micros();

 //Channel 1===

 if(PINB & B00000001){ //Is input 8 high?

 if(last_channel_1 == 0){ //Input 8 changed from 0 to 1.

 last_channel_1 = 1; //Remember current input state.

 timer_1 = current_time; //Set timer_1 to current_time.

 }

 }

XXVI

 else if(last_channel_1 == 1){ //Input 8 is not high and changed from

1 to 0.

 last_channel_1 = 0; //Remember current input state.

 receiver_input[1] = current_time - timer_1; //Channel 1 is current_time -

timer_1.

 }

 //Channel 2===

 if(PINB & B00000010){ //Is input 9 high?

 if(last_channel_2 == 0){ //Input 9 changed from 0 to 1.

 last_channel_2 = 1; //Remember current input state.

 timer_2 = current_time; //Set timer_2 to current_time.

 }

 }

 else if(last_channel_2 == 1){ //Input 9 is not high and changed from

1 to 0.

 last_channel_2 = 0; //Remember current input state.

 receiver_input[2] = current_time - timer_2; //Channel 2 is current_time -

timer_2.

 }

 //Channel 3===

 if(PINB & B00000100){ //Is input 10 high?

 if(last_channel_3 == 0){ //Input 10 changed from 0 to 1.

 last_channel_3 = 1; //Remember current input state.

 timer_3 = current_time; //Set timer_3 to current_time.

 }

 }

XXVII

 else if(last_channel_3 == 1){ //Input 10 is not high and changed

from 1 to 0.

 last_channel_3 = 0; //Remember current input state.

 receiver_input[3] = current_time - timer_3; //Channel 3 is current_time -

timer_3.

 }

 //Channel 4===

 if(PINB & B00001000){ //Is input 11 high?

 if(last_channel_4 == 0){ //Input 11 changed from 0 to 1.

 last_channel_4 = 1; //Remember current input state.

 timer_4 = current_time; //Set timer_4 to current_time.

 }

 }

 else if(last_channel_4 == 1){ //Input 11 is not high and changed

from 1 to 0.

 last_channel_4 = 0; //Remember current input state.

 receiver_input[4] = current_time - timer_4; //Channel 4 is current_time -

timer_4.

 }

}

///

//Subroutine for reading the gyro

///

void gyro_signalen(){

 //Read the MPU-6050

XXVIII

 if(eeprom_data[31] == 1){

 Wire.beginTransmission(gyro_address); //Start communication with the

gyro.

 Wire.write(0x3B); //Start reading @ register 43h and auto

increment with every read.

 Wire.endTransmission(); //End the transmission.

 Wire.requestFrom(gyro_address,14); //Request 14 bytes from the gyro.

 receiver_input_channel_1 = convert_receiver_channel(1); //Convert the actual

receiver signals for pitch to the standard 1000 - 2000us.

 receiver_input_channel_2 = convert_receiver_channel(2); //Convert the actual

receiver signals for roll to the standard 1000 - 2000us.

 receiver_input_channel_3 = convert_receiver_channel(3); //Convert the actual

receiver signals for throttle to the standard 1000 - 2000us.

 receiver_input_channel_4 = convert_receiver_channel(4); //Convert the actual

receiver signals for yaw to the standard 1000 - 2000us.

 while(Wire.available() < 14); //Wait until the 14 bytes are received.

 acc_axis[1] = Wire.read()<<8|Wire.read(); //Add the low and high byte to

the acc_x variable.

 acc_axis[2] = Wire.read()<<8|Wire.read(); //Add the low and high byte to

the acc_y variable.

 acc_axis[3] = Wire.read()<<8|Wire.read(); //Add the low and high byte to

the acc_z variable.

 temperature = Wire.read()<<8|Wire.read(); //Add the low and high byte to

the temperature variable.

 gyro_axis[1] = Wire.read()<<8|Wire.read(); //Read high and low part of the

angular data.

 gyro_axis[2] = Wire.read()<<8|Wire.read(); //Read high and low part of the

angular data.

XXIX

 gyro_axis[3] = Wire.read()<<8|Wire.read(); //Read high and low part of the

angular data.

 }

 if(cal_int == 2000){

 gyro_axis[1] -= gyro_axis_cal[1]; //Only compensate after the

calibration.

 gyro_axis[2] -= gyro_axis_cal[2]; //Only compensate after the

calibration.

 gyro_axis[3] -= gyro_axis_cal[3]; //Only compensate after the

calibration.

 }

 gyro_roll = gyro_axis[eeprom_data[28] & 0b00000011]; //Set gyro_roll to the

correct axis that was stored in the EEPROM.

 if(eeprom_data[28] & 0b10000000)gyro_roll *= -1; //Invert gyro_roll if the

MSB of EEPROM bit 28 is set.

 gyro_pitch = gyro_axis[eeprom_data[29] & 0b00000011]; //Set gyro_pitch to the

correct axis that was stored in the EEPROM.

 if(eeprom_data[29] & 0b10000000)gyro_pitch *= -1; //Invert gyro_pitch if the

MSB of EEPROM bit 29 is set.

 gyro_yaw = gyro_axis[eeprom_data[30] & 0b00000011]; //Set gyro_yaw to the

correct axis that was stored in the EEPROM.

 if(eeprom_data[30] & 0b10000000)gyro_yaw *= -1; //Invert gyro_yaw if the

MSB of EEPROM bit 30 is set.

 acc_x = acc_axis[eeprom_data[29] & 0b00000011]; //Set acc_x to the correct

axis that was stored in the EEPROM.

 if(eeprom_data[29] & 0b10000000)acc_x *= -1; //Invert acc_x if the MSB of

EEPROM bit 29 is set.

XXX

 acc_y = acc_axis[eeprom_data[28] & 0b00000011]; //Set acc_y to the correct

axis that was stored in the EEPROM.

 if(eeprom_data[28] & 0b10000000)acc_y *= -1; //Invert acc_y if the MSB of

EEPROM bit 28 is set.

 acc_z = acc_axis[eeprom_data[30] & 0b00000011]; //Set acc_z to the correct

axis that was stored in the EEPROM.

 if(eeprom_data[30] & 0b10000000)acc_z *= -1; //Invert acc_z if the MSB of

EEPROM bit 30 is set.

}

///

//Subroutine for calculating pid outputs

///

void calculate_pid(){

 //Roll calculations

 pid_error_temp = gyro_roll_input - pid_roll_setpoint;

 pid_i_mem_roll += pid_i_gain_roll * pid_error_temp;

 if(pid_i_mem_roll > pid_max_roll)pid_i_mem_roll = pid_max_roll;

 else if(pid_i_mem_roll < pid_max_roll * -1)pid_i_mem_roll = pid_max_roll * -1;

 pid_output_roll = pid_p_gain_roll * pid_error_temp + pid_i_mem_roll + pid_d_gain_roll *

(pid_error_temp - pid_last_roll_d_error);

 if(pid_output_roll > pid_max_roll)pid_output_roll = pid_max_roll;

 else if(pid_output_roll < pid_max_roll * -1)pid_output_roll = pid_max_roll * -1;

 pid_last_roll_d_error = pid_error_temp;

XXXI

 //Pitch calculations

 pid_error_temp = gyro_pitch_input - pid_pitch_setpoint;

 pid_i_mem_pitch += pid_i_gain_pitch * pid_error_temp;

 if(pid_i_mem_pitch > pid_max_pitch)pid_i_mem_pitch = pid_max_pitch;

 else if(pid_i_mem_pitch < pid_max_pitch * -1)pid_i_mem_pitch = pid_max_pitch * -1;

 pid_output_pitch = pid_p_gain_pitch * pid_error_temp + pid_i_mem_pitch + pid_d_gain_pitch

* (pid_error_temp - pid_last_pitch_d_error);

 if(pid_output_pitch > pid_max_pitch)pid_output_pitch = pid_max_pitch;

 else if(pid_output_pitch < pid_max_pitch * -1)pid_output_pitch = pid_max_pitch * -1;

 pid_last_pitch_d_error = pid_error_temp;

 //Yaw calculations

 pid_error_temp = gyro_yaw_input - pid_yaw_setpoint;

 pid_i_mem_yaw += pid_i_gain_yaw * pid_error_temp;

 if(pid_i_mem_yaw > pid_max_yaw)pid_i_mem_yaw = pid_max_yaw;

 else if(pid_i_mem_yaw < pid_max_yaw * -1)pid_i_mem_yaw = pid_max_yaw * -1;

 pid_output_yaw = pid_p_gain_yaw * pid_error_temp + pid_i_mem_yaw + pid_d_gain_yaw *

(pid_error_temp - pid_last_yaw_d_error);

 if(pid_output_yaw > pid_max_yaw)pid_output_yaw = pid_max_yaw;

 else if(pid_output_yaw < pid_max_yaw * -1)pid_output_yaw = pid_max_yaw * -1;

 pid_last_yaw_d_error = pid_error_temp;

}

XXXII

//This part converts the actual receiver signals to a standardized 1000 – 1500 – 2000

microsecond value.

//The stored data in the EEPROM is used.

int convert_receiver_channel(byte function){

 byte channel, reverse; //First we declare some local variables

 int low, center, high, actual;

 int difference;

 channel = eeprom_data[function + 23] & 0b00000111; //What channel

corresponds with the specific function

 if(eeprom_data[function + 23] & 0b10000000)reverse = 1; //Reverse channel

when most significant bit is set

 else reverse = 0; //If the most significant is not set there is

no reverse

 actual = receiver_input[channel]; //Read the actual receiver value for

the corresponding function

 low = (eeprom_data[channel * 2 + 15] << 8) | eeprom_data[channel * 2 + 14]; //Store the low

value for the specific receiver input channel

 center = (eeprom_data[channel * 2 - 1] << 8) | eeprom_data[channel * 2 - 2]; //Store the center

value for the specific receiver input channel

 high = (eeprom_data[channel * 2 + 7] << 8) | eeprom_data[channel * 2 + 6]; //Store the high

value for the specific receiver input channel

 if(actual < center){ //The actual receiver value is lower than

the center value

 if(actual < low)actual = low; //Limit the lowest value to the value

that was detected during setup

XXXIII

 difference = ((long)(center - actual) * (long)500) / (center - low); //Calculate and scale the

actual value to a 1000 - 2000us value

 if(reverse == 1)return 1500 + difference; //If the channel is reversed

 else return 1500 - difference; //If the channel is not reversed

 }

 else if(actual > center){ //The actual receiver value

is higher than the center value

 if(actual > high)actual = high; //Limit the lowest value to the value

that was detected during setup

 difference = ((long)(actual - center) * (long)500) / (high - center); //Calculate and scale the

actual value to a 1000 - 2000us value

 if(reverse == 1)return 1500 - difference; //If the channel is reversed

 else return 1500 + difference; //If the channel is not reversed

 }

 else return 1500;

}

void set_gyro_registers(){

 //Setup the MPU-6050

 if(eeprom_data[31] == 1){

 Wire.beginTransmission(gyro_address); //Start communication with

the address found during search.

 Wire.write(0x6B); //We want to write to the

PWR_MGMT_1 register (6B hex)

 Wire.write(0x00); //Set the register bits as 00000000 to

activate the gyro

 Wire.endTransmission(); //End the transmission with the gyro.

XXXIV

 Wire.beginTransmission(gyro_address); //Start communication with

the address found during search.

 Wire.write(0x1B); //We want to write to the

GYRO_CONFIG register (1B hex)

 Wire.write(0x08); //Set the register bits as 00001000

(500dps full scale)

 Wire.endTransmission(); //End the transmission with the gyro

 Wire.beginTransmission(gyro_address); //Start communication with

the address found during search.

 Wire.write(0x1C); //We want to write to the

ACCEL_CONFIG register (1A hex)

 Wire.write(0x10); //Set the register bits as 00010000 (+/-

8g full scale range)

 Wire.endTransmission(); //End the transmission with the gyro

 //Let's perform a random register check to see if the values are written correct

 Wire.beginTransmission(gyro_address); //Start communication with

the address found during search

 Wire.write(0x1B); //Start reading @ register 0x1B

 Wire.endTransmission(); //End the transmission

 Wire.requestFrom(gyro_address, 1); //Request 1 bytes from the gyro

 while(Wire.available() < 1); //Wait until the 6 bytes are received

 if(Wire.read() != 0x08){ //Check if the value is 0x08

 digitalWrite(12,HIGH); //Turn on the warning led

 while(1)delay(10); //Stay in this loop for ever

 }

XXXV

 Wire.beginTransmission(gyro_address); //Start communication with

the address found during search

 Wire.write(0x1A); //We want to write to the CONFIG

register (1A hex)

 Wire.write(0x03); //Set the register bits as 00000011 (Set

Digital Low Pass Filter to ~43Hz)

 Wire.endTransmission(); //End the transmission with the gyro

 }

}

