

Sudan University of Science and Technology College of Engineering Power Engineering Department

Effect of High Pressure Heat Exchanger on Steam Power Plant Efficiency أثر المبادلات الحرارية ذات الضغط العالي في كفاءة محطات الطاقة البخارية *Case study (Garri 4)* Project submitted in partial fulfillments for the degree of B.Eg. (Honors) in Mechanical Engineering (power)

Prepared By:

1. HamamKamalelden Ibrahim Mohamed

2. Ibrahim Siddeg Ibrahim Suliman

3. Mohammed Osman Elsir Osman

Supervised by:

Dr: AbdallahMokhtar Mohammed Abdallah

October 2017

بسم الله الرحمن الرحيم

الآية

قال تعالى:

{لَا يُكَلِّفُ اللَّهُ نَفْسًا إِلَّا وُسْعَهَا ۖ لَهَا مَاكَسَبَتْ وَعَلَيْهَا مَا اكْتَسَبَتْ ۖ رَبَّنَا لَا تُؤَاخِدْنَا إِنْ نَسِينَا أَوْ أَخْطَأْنَا ۚ رَبَّنَا وَلَا تَحْمِلْ عَلَيْنَا إِصْرًا كَمَا حَمَلْتَهُ عَلَى الَّذِينَ مِنْ قَبْلِنَا ۚ رَبَّنَا وَلَا تُحَمِّلْنَا مَا لَا طَاقَة لَنَا بِهِ ۖ وَاعْفُ عَنَّا وَاغْفِرْ لَنَا وَارْحَمْنَا ۚ أَنْتَ مَوْلَانَا فَانْصُرُنَا عَلَى الْقَوْمِ الْكَافِرِينَ }

سورة البقرة الآية (286)

Dedication

We would like to take this opportunity to finally give back a small something to my parents whose support and unconditional love are thereason for

my being here today .they have supported us through the peaks and troughs of life and refused to give up on us at times when we almost gave up on ourselves .they gave us the power to push through university and get gave us the head start in life what we need to make something of ourselves, we also dedicate this for that hidden soul which encourage us to do good things.

Acknowledgement

We thank our supervision DR. AbdallahMokhtar For his unlimited help and support. Without him this study wouldn't have been possible.

We would like to extend our gratitude to the entire staff of the Mechanical who has guided us throughout this study and whose much useful advice was of great help to us.

And we are also thankful for manger efficiency of department and all engineering in Gari4 power plant.

Also thank for engineer Osman abdalla for helping to completsumlation modeling.

Lastly and not least, we are grateful for our families which have been there for encouragement and support every step of the way.

Abstract

Development of power plants is one of most important studies that may be heuristically in the field of power engineering department, where these studies aimed at developing stations by reaching for ways to increase performance and reduce the cost of the plants.

From this upstream we conducted our research in this field and chose us as a model of Garri power station (4) which operated by steam turbine and boiler type CirculatingFluidized Bed (CFB).

The importance of our project is to study the effect of high pressure heat exchangers in raising the efficiency of the steam turbine generating stations, thus increasing the productive capacity and supplying the national network with a current that meets the consumer's needs. On the other hand, it reduces the vibrations in the turbine shaft and increases the operating life of the steam turbine station. High pressure heaters are of great importance in increasing the operating life of the boiler type by reducing the voltage exerted by the absence of high pressure exchangers.

Through our study, we followed the calculation of the ratio of the amount of heat added in the presence of thesehigh pressure heat exchangers and lack of presence and which are more effective in increasing efficiency and calculating the impact of each of them we have concluded that heat exchangers high pressure oils have the effectiveness in increasing the generating capacity so the efficiency increased from (31.6%) to (36.6%).

We have also made a simulation of the movement of Belding from turbines to high pressure heaters and their impact on turbine shaft, efficiency and general simulation of the water and steam cycle of Garripower plant.

التجريدة

أصبحت الدرسات لتطوير محطات توليد الطاقة الكهربائية أحد اهم الدرسات التي يمكن ان تجريها في مجال هندسة القدرة، حيث تهدف الدرسات لتطوير المحطات من خلال البحث عن طرق لرفع الاداء وتقليل التكلفة للمحطات.

من هذا المنبع اجرينا بحثنا في هذا المجال وإخترنا كنموذج محطة كهرباء قري (4) التي تعمل بواسطة التوربينة البخارية ومرجل نوع (Circulating Fluidized Bed).

تكمن أهمية المشروع في دراسة أثر المبدلات الحرارية زات الضغط العالي في رفع كفاءة محطات التوليد التي تعمل بواسطة التوربينات البخارية وبالتالي زيادة القدرة المنتجة وامداد الشبكة القومية بتيار يلبي حوجة المستهلك ومن جانب اخر فهي تقلل الاهتزازت في عمود التوربينة وزيادة العمر التشغيلي لمحطة التوربين البخاري وايضا تعتبر المبادلات زات الضغط العالي ذات أهمية عالية في زيادة العمر التشغيلي للمرجل نوع الصومعة بتقليل الجهد الواقع علية في عدم وجود مبادلات الضغط العالي.

من خلال الدراسة التي قومنا بها واتبعنا فيها حساب نسبة كمية الحرارة المضافة في ظل وجود هذة المبادلات الحرارية ذات الضغط العالي وعدم وجودها وايهما اكثر فعالية في زيادة الكفاءة وحساب اثر كل واحد منهم توصلنا الى ان المبادلات الحرارية ذات الضغط العالي لها فعالية في زيادة القدرة المولدة وبالتالي زادت الكفاءة من (31.6%) إلى (36.6%).

وايضا قد قومنا بعمل تمثيل لحركة الاستؤاف من التوربينة الى السخانات الضغط العالي واثرها علي عمود التوربينة وكفاءة وتمثيل عام لدورة المياة والبخار لمحطة كهرباء قري4 .

Table of Contents

Contents	Page		
الآبة			
Dedication			
Acknowledgement			
Abstract	IV		
التجريدة			
Table of Contents	VI		
List of figures	IX		
List of tables			
List of abbreviation and symbols	XII		
CHAPTER I			
Introduction			
1.Introduction	2		
1-1 Thermal generation	2		
1-2 Types of thermal energy	3		
1-3 open Feed water Heaters	4		
1.4 Closed Feed water Heaters	4 5		
1-5 Efficiency of Thermal Power Station or Plant			
1-6 Problem statement			
1-7 Objectives	5		
1-8 Methodology			
1-9-1 there are multiple ways to collect information like	6		
1-10 Scope			
1-10 Important of research			
1-11 Lay out			
1-12The research plan shown in the figure below			
CHAPTER II			
Preview studies			
2-Preview studies	9		
2-1Increase The Thermal Efficiency In K.R.C power station	9		
2-2Blow down process effect on boiler efficiency to	9		
Increase output power of generating.	10		
2-3 Effect of maintenance on burner efficiency			
2-4The Usage of solid fuel in power plant	11		
(sponge coke)			
2-5Effect of Turbine Back Pressure of on steam cycle Efficiency	12		
2-6 Relationship of previous studies with our study	14		
CHAPTER III Theoretical			
Theoretical 3-1 preface	16		
	10		

3-2 Actual Vapour Power Cycle			
3-4 The Ideal Reheat Rankine Cycle			
3-5 Regeneration cycle			
3-6 Advantages Open Feed water Heaters			
3-7 Disadvantages Open Feed water Heaters			
3-8 Advantages closed Feed Water Heaters			
3-9 Disadvantages closed Feed Water Heaters			
3-10 Theoretical Turbine efficiency	34		
3-11A heat exchanger	34		
3-11-1 Flow arrangement	36		
3-11-2 Types			
3-11-2-1 Shell and tube heat exchanger			
3-11-2-2 Plate heat exchangers	38		
3-12Advantages of plate and fin heat exchangers	39		
3-13 Disadvantages of plate and fin heat exchangers	39		
3-14Phase-change heat exchangers	39		
3-15 Direct contact heat exchangers	40		
3-16 Theory and Application	40		
3-17 steam condenser	41		
3-18 equation used in Conclusion	42		
3-19 Methods used in calculations	42		
CHAPTER IV			
Case study			
4-1 preface	44		
4-2 Location of Garri4	45		
4-3 Layout of Garri4 Power Station	45		
4-3-1 CFB Boiler			
4-3-2Sponge coke feeding system			
4-4 Steam Turbine and its systems			
4-5 Brief working principle of impulse steam turbine			
4-6 Main technical parameter of turbine unit			
4-7 Turbine structure			
4-8 Steam Turbine Systems			
4-9 How to Monitor Feed water Heater Performance to Ensure Optimum			
Heat Rate			
4-10 Calculation	58		
4-11 third the programmer of MATLAB	63		
CHAPTER V			
Results and Discussion			
5-1 Results	73 76		
5-2 Discussion			

CHAPTER VI	
Conclusion and Recommendations	
6-1 Conclusion	78
6-2 Recommendations	79
References	80
Appendices	81

List of figures

Figures name	Page
(3.1) Schematic of a Vapor Power Plant	17
(3.2) Schematic of a Vapor Power Plant	
(3.3) Schematic of a Vapor Power Plant	
(3.4) Deviation of Actual Vapor Cycle from	
(3.5) the Effect of Lowing the Condenser Pressure	22
(3.6) the Effect of Superheating the Steam HigherTemperature	22
(3.7) the Effect of Increase the Boiler Pressure	23
(3.8) Schematic and T-s Diagram of an Ideal Reheat Rankine Cycle	24
(3.9) Multistage Reheat Approaching an Isothermal Process	25
(3.10)T-s Diagram of Lowering the Condenser Pressure	26
(3.11) Schematic of a Power Plant Running an Ideal Regenerative Rankin Cycle with One Open Feed water heater	
(3.12) T-S Diagram of an Ideal Regenerative Rankin Cycle with One Open Feed water Heater	
(3.13) Schematic of a Power Plant Running an Ideal Regenerative Ranking Cycle with One Closed Feedwater Heater	
(3.14) T-S Diagram of an Ideal Regenerative Ranking Cycle with One Closed Feedwater Heater	30
(3.15) An Open Feed water Heater	32
(3.16) Closed Feed water heater.	33
(3.17) Shell and tube heat exchanger, single pass (1–1 parallel flow)	35
(3.18) Shell and tube heat exchanger, 2-pass tube side (1–2 crossflow)	35
(3.19) Shell and tube heat exchanger, 2-pass shell side, 2-pass tube side (2- 2 countercurrent)	
(3.20) A shell and tube heat exchanger	
(3.21) Conceptual diagram of a plate and frame heat exchanger.	
(3.22) A single plate heat exchanger	
(3.23) 21 An interchangeable plate heat exchanger applied to the system of a swimming pool.	
(3.23) Typical kettle re boiler used for industrial distillation towers.	39
(3.24) explain condenser	41
(4.1) water & steam cycle	46
(4.2) Coke Feeder	47
(4.2) Coke Feeder (4.3) Main Steam and High Pressure Bypass System	50
(4.4) Low pressure heaters	52
(4.5) Deaerator	
(4.6) High pressure heaters	<u>53</u> 54
(4.7) The heat rat over all cycle	
(4.8) Total of heat rate of design	58 69
	09

(4.9) quantity of heat addition from feed water	70
(4.10) effect of high pressure heaters	71

List of tables

Table name	Page
Table (1.1) Efficiency of Thermal Power Station or Plant	5
Table (1.2) The research plan	7
Table (4.1) Manufacturer Shanghai steam turbine factory Data	
Table (4.2) Data used in actual calculation	60
Table (5.1) The results	74

List of abbreviation and symbols

BFP	Boiler feed pump
HRSG	Heat recovery steam generator
HPH	High pressure heater
LPH	Low pressure heater
KRC	Khartoum refinery cooperation
HFWO	Heater feed water open
NEC	National electricity
SSC	Specific steam consumption
LMTD	Log mean temperature difference
CFB	Circulating Fluidized Bed
LDO	Light diesel oil
TTD	Terminal Temperature Difference
DCA	Drain Cooler Approach
HFWC	Heater feed water close